
HAL Id: pastel-00000689
https://pastel.hal.science/pastel-00000689

Submitted on 6 Sep 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization Techniques for the Dimensioning and
Reconfiguration of MPLS Networks

Sergio Ariel Beker

To cite this version:
Sergio Ariel Beker. Optimization Techniques for the Dimensioning and Reconfiguration of MPLS
Networks. domain_other. Télécom ParisTech, 2004. English. �NNT : �. �pastel-00000689�

https://pastel.hal.science/pastel-00000689
https://hal.archives-ouvertes.fr

Thèse

présentée pour obtenir le grade de docteur

de l’Ecole Nationale Supérieure des Télécommunications

Spécialité : Informatique et Réseaux

Sergio BEKER

Techniques d’Optimisation pour le Dimensionnement et la
Reconfiguration des Réseaux MPLS

soutenue le 5 avril 2004 devant le jury composé de

Roberto Sabella (CORITEL) Président

Walid BenAmeur (INT)

Deep Medhi (UMKC) Rapporteurs

Eitan Altman (INRIA)

Renaud Moignard (FTR&D) Examinateurs

Daniel Kofman (Télécom Paris) Directeur de thèse

Contact: Sergio Beker <beker@infres.enst.fr>

A Pascale...

Résumé

La superposition de topologies virtuelles à la topologie physique d’un réseau est un des
principaux mécanismes de l’ingénierie de trafic. Soit un réseau physique d’une certaine
topologie et capacité fixées et une matrice de trafic à véhiculer, il s’agit de trouver une
topologie logique permettant de mapper de manière optimale la matrice de trafic sur le
réseau physique. A titre d’exemple, la topologie logique peut être bâtie grâce à des connex-
ions ATM ou MPLS; c’est d’ailleurs une des principales raisons de l’intérêt qui est porté de
nos jours sur MPLS.

Cette gestion centralisée des ressources peut être vue comme une généralisation du partage
de charge, prenant en compte une vision globale du réseau au lie de se limiter à l’ensemble
des chemins entre deux points. Mais les deux outils peuvent être vus comme complémen-
taires si on les regarde à différentes échelles de temps. En effet, changer un layout s’avère
plus compliqué que changer une politique de partage de charge. Lors de l’évolution de la
matrice de trafic, on peut imaginer qu’on fasse évoluer les politiques de partage de charge
afin de pouvoir maintenir le niveau de QoS attendu sans avoir à modifier le layout. Il est
clair que sur des échelles de temps plus longues et donc face à des variations importantes
de la matrice de trafic, il faudra agir sur le layout.

Nos travaux dans ce domaine ont été réalisés dans le contexte du projet RNRT VTHD
et VTHD++. Nous avons apporté deux contributions principales. La première concerne
la définition de fonctions de coût que nous considérons mieux adaptées à la réalité d’un
opérateur que celles utilisées habituellement, la deuxième concerne la prise en compte du
coût de changement d’un layout. Les fonctions de coût usuellement utilisées visent à min-
imiser certaines métriques telles que le délai. Nous ne considérons que cela soit une bonne
approche. A partir d’un certain seuil les applications deviennent insensibles à une réduc-
tion supplémentaire du délai de traversée du réseau. Le délai maximum est une contrainte
que l’on doit repecter. Il est par contre intéressant d’un point de vu opérateur de réduire
les coûts d’opération et maintenance et donc, en particulier, de réduire la complexité des
layouts. Celle-ci peut être mesurée comme une fonction du nombre de chemins virtuels qui
la compossent (nous parlerons de LSP par la suite même si les idées présentées dépassent
largement le cadre MPLS).

Nous avons donc formulé divers problèmes de minimisation de la commplexité des layouts

5

6

sous des contraintes de QoS. Il s’agit ici d’une modélisation réaliste mais qui engendre des
modèles difficiles à résoudre. En effet, le problème de Multicommodity Flow qui en résulte
est du type MINLP (Mixed Integer Non-Linear Program). Nous avons d’une part analysé
et validé les modèles pour des petits réseaux par des méthodes de résolution determin-
istes (solver MINLP), et d’autre part développés des heuristiques qui permettent de trouver
des solutions proches des optimales pour des réseaux de taille bien plus importante. Nous
avons montré que la complexité des layouts peut être significativement réduite en compara-
ison avec celle obtenue suite à l’optimisation des fonctions de coût classiques.

En ce qui concerne la deuxième famille de contributions, le changement d’un layout implique
d’une part un coût d’opération et d’autre part peut engendrer des coupures de service qui
affecteront directement le coût d’opération. Nous avons donc formulé une famille de prob-
lèmes qui prennent en compte le coût du changement de layout. L’une des heuristiques
citées a été adaptée pour analyser ces nouveux problèmes.

Mots Clés : Réseaux Convergents de Nouvelle Génération, Réseaux MPLS, Ingénierie de
Trafic, Contrôle Dynamique à Boucle Fermée, Dimensionnement des Layouts MPLS, Re-
configuration des Layouts MPLS, Problèmes MINLP, Heuristiques Approchés, Tabu Search,
Algorithme de Déviation de Flots.

Acknowledgments

I would like to express my deep recognition to my thesis director Daniel Kofman. He has
supported me through the difficult process of defining the area of research and later bringing
those ideas to actual contributions. He has had an infinite patience to discuss with we on
and on, even when my ideas weren’t clear sometimes. For his unlimited help and dedication
through the whole process, for helping me beyond his duties at a human level, my sincere
thanks.
Walid BenAmeur and Deepankar Medhi have honored me in taking the responsibility as
well as the heavy task of reporting on my thesis, even considering the short delays I have
imposed on them. I would also like to thank Eitan Altman, Roberto Sabella and Renaud
Moignard for being part of my jury. I highly appreciate the time they have found through
their busy agendas to discuss some issues with me, in particular the discussion about solvers
with Walid BenAmeur, and whose papers inspired much of this work. Also, some comments
from Deep Medhi about methods to solve the formulated problems have been very useful
to develop the heuristics presented through this thesis.

A Special thanks to Christian Guillemot from France Telecom R&D, director of the VTHD
project in which I’ve participated, for his patience at the very beginning of my stay in
France, when my communication skills in French were nonexistent. To Annie Gravey for
her availability and her interest in my activities. To my colleagues in the the VTHD project,
for understanding my sometimes limited availability for the project when I was writing the
thesis report. In all cases, the discussion about technical matters within and outside the
project have enriched me with different points of view about what a Next Generation IP
Network is expected to offer.

I would like to express my appreciation and gratitude to the members of the RHD group
in the Computers and Networks Department at Telecom Paris: Ramon Casellas and Jean-
Louis Rougier for the invaluable information gathered through discussions and innumerable
questions. They have always been there for me. Without Ramon Casellas, the implemen-
tations of the algorithms proposed through this thesis would have been impossible. I would
like also to thank Nicolas Puech and Vasilis Friderikos, members of the AM group in the
Computers and Networks Department at Telecom Paris, for their help in defining and im-
plementing the Tabu Search heuristics.

7

8

I must also thank my fellow doctoral students at Telecom Paris: Anthony Busson, Ouahiba
Fouial and Thomas Quinot, with whom I shared the office and the stress of doing a thesis
at different stages of their work and mine.

I gratefully acknowledge Pascale’s understanding and support through difficult times. To
my parents for their support through time and distance: I’m proud of bringing them this
accomplishment.

Contents

Résumé 3

Aknowledgments 6

1. General Introduction 21

1.1. Motivations . 21

1.2. Document Organization . 23

2. Technological Context: Next Generation IP Networks 25

2.1. Introduction . 25

2.2. Drivers for Service Integration . 25

2.3. Next Generation IP Network (NGN) Architectures 26

2.3.1. Definitions and Objectives . 26

2.3.2. Transport Layer: Towards an IP Multiservice High Speed Transport 26

2.3.3. Control Layer . 28

2.3.4. Service Layer . 29

2.4. The Role of MPLS in the NGN Transport Infrastructure 30

2.5. Conclusions . 31

3. Evolved Traffic Engineering 33

3.1. Traffic Engineering Objectives and Timescales 33

3.1.1. TE Objectives . 34

3.1.2. Control Loops and Timescales . 35

3.1.3. The Role of MPLS in The Traffic Engineering 39

3.2. Traffic Engineering and Measurements . 43

3.2.1. Network States . 44

3.3. Contributions to the Long-term Control Loop: Dimensioning and Reconfig-
uration . 46

3.3.1. Defining an Optimal Point of Operation: Network Dimensioning . . 47

3.3.2. Varying Traffic Conditions: Network Reconfiguration 48

4. Contribution to the Dimensioning of MPLS Networks: Design of Reduced Com-

plexity Layouts 51

4.1. Motivations and Previous Work . 51

9

10 Contents

4.2. Network Model Notation . 52

4.3. Building the Cost Functions . 56

4.4. Setting QoS Guarantees . 58

4.5. Formulation: Minimum Path Set and Flow Allocation Problem (MPSFAP) 60

4.6. Preliminary Results on MPSFAP and Model Validation 62

4.6.1. Traffic Matrixes . 63

4.6.2. Network Topologies . 63

4.6.3. Reference Problem . 64

4.6.4. Interface to Solvers: Modeling Language 64

4.6.5. Results and Analysis . 65

4.7. Extensions for Multiple Classes of Service 70

4.8. Conclusions . 72

5. Contribution to the Development of Heuristics for Solving the Minimum Path

Set and Flow Allocation Problems (MPSFAP) 75

5.1. Exact Methods for Solving MINLP Problems 75

5.2. Meta-Heuristics: Tabu Search Methods . 77

5.3. A Tabu Search Heuristic Approach Applied to the MPSFAP Problems . . . 79

5.3.1. Initial Solution . 79

5.3.2. Perturbation mechanism . 79

5.3.3. Evaluation Functions . 80

5.3.4. Evaluation of TS Heuristics for MPSFAP 85

5.4. Ad-Hoc Heuristics Based on The Flow Deviation Algorithm 89

5.4.1. The Flow Deviation Algorithm . 89

5.5. A Modified Flow Deviation (MFD) Algorithm for Solving the MPSFAP Prob-
lems . 91

5.5.1. Path Delay Constraints Simplification 93

5.5.2. Path Weights Calculation . 94

5.5.3. Determining the Shift Direction . 96

5.5.4. Determining the Shift Factor . 98

5.5.5. Determining the Best Node Pair . 99

5.5.6. Evaluation of the MFD Algorithm for MPSFAP 101

5.6. Conclusions . 104

6. Results and Analysis of the MPSFAP Problems for Large Networks Using Tabu

Search (TS) and Modified Flow Deviation (MFD) Methods 107

6.1. Considered Network Topologies . 107

6.2. Comparison from TS and MFD for the MPSFAP on Large Networks 108

6.3. Result Analysis of Large Networks by Using MFD 114

6.4. Conclusions . 119

Contents 11

7. Contribution to Reconfiguring MPLS Networks: Design of Reduced Reconfigu-

ration and Complexity Layouts 121

7.1. Motivations and Previous Work . 121
7.2. Network Model Notation: Extensions for Dynamic Traffic Conditions 123
7.3. Building the Cost Functions . 125
7.4. Setting QoS Guarantees . 127
7.5. Formulation: Minimum Reconfiguration, Path Set and Flow Allocation Prob-

lem (MRPSFAP) . 127
7.6. Preliminary Results on MRPSFAP and Model Validation 128

7.6.1. Traffic Matrixes: Considering the Traffic Dynamics 129
7.6.2. Results and Analysis . 129

7.7. Extensions for Multiple Classes of Service 135
7.8. Conclusions . 136

8. Contribution to the Development of Heuristics for Solving the Minimum Recon-

figuration and Path Set Flow Allocation Problem (MPRSFAP) 137

8.1. Selecting Efficient Heuristics . 137
8.2. Adapting the Modified Flow Deviation Algorithm (MFD) for Solving the

MRPSFAP Problem . 138
8.3. A Modified Flow Deviation Algorithm for Reconfiguration (MFD-R) 139

8.3.1. Initialization: The Initial Layout . 139
8.3.2. Search for a Shift Direction: Progressive Exploration 141

8.4. Evaluation of the MFD-R Algorithm for MRPSFAP 142
8.4.1. Evaluation of the MFD-R Algorithm on Small Networks 142
8.4.2. Results on Reconfiguration from the MFD-R Algorithm on Large Net-

works . 145
8.5. Conclusions . 149

General Conclusions 155

A. Multicommodity Flow Problems 159

A.1. Introduction . 159
A.2. Node Formulation . 159
A.3. Path Formulation . 160
A.4. Solution Approaches . 161

A.4.1. Optimality Conditions . 162

B. AMPL: A Modeling Language for Mathematical Programming 165

B.1. Mathematical Programming . 165
B.2. AMPL Basics . 166
B.3. Model Files . 167

12 Contents

B.3.1. Model File for MPSFAP1 Problem 167
B.3.2. Model File for MPSFAP2 Problem 169
B.3.3. Model File for MTDFAP Problem 171
B.3.4. Model File for MRPSFAP Problem 172

B.4. Data Files . 174
B.4.1. Data File for MPSFAP and MTDFAP Problems 174
B.4.2. Data File for MRPSFAP Problem 175

. Bibliography 179

List of Figures

2.1. NGN Architecture . 27

2.2. NGN Simplified Control Architecture . 28

2.3. NGN Protocol Structure . 31

3.1. The Traffic Engineer and Timescales . 36

3.2. Policy Based Network Management Architecture 37

3.3. TE Mechanisms and Their Relationship to Timescales 38

3.4. Closed Loop Traffic Engineering System . 39

3.5. Diffserv PHB y PHB Scheduling Class . 42

3.6. MPLS-Diffserv LSP Types . 43

3.7. TE System and Network States . 44

4.1. Path Flows: Relationship to Demands and Link Capacities 55

4.2. Example on the importance of avoiding path-delay constraints on unused paths 59

4.3. NET1 and NET2 Networks. 64

4.4. Average End-to-end Path Delay for NET1 67

4.5. Maximum End-to-end Path Delay for NET1 68

4.6. Average End-to-end Path Delay for NET2 69

4.7. Maximum End-to-end Path Delay for NET2 69

5.1. Results from MINLP Solver (NEOS) and Tabu Search (TS) for NET1 . . . 87

5.2. Results from MINLP Solver (NEOS) and Tabu Search (TS) for NET2 . . . 88

5.3. Modified Flow Deviation Algorithm: Path Delay Constraint Simplification . 95

5.4. MFD Algorithm Example: Overloaded Path is Still the Shortest Path . . . 96

5.5. Results from MINLP Solver (NEOS), Tabu Search (TS) and Modified Flow
Deviation (MFD) for NET1 . 103

5.6. Results from MINLP Solver (NEOS), Tabu Search (TS) and Modified Flow
Deviation (MFD) for NET2 . 104

6.1. VTHD Network Topology . 108

6.2. NSF Network Topology . 109

6.3. Value of The Objective Function for MPSFAP1 (Total Hops) for VTHD and
NSF Network Topologies using TS and MFD Algorithms 112

13

14 List of Figures

6.4. Used Paths for Layouts Obtained from MPSFAP1 for VTHD and NSF Net-
work Topologies using TS and MFD Algorithms 113

6.5. Maximum Path Delay in Layouts Obtained from MPSFAP1 for VTHD and
NSF Network Topologies using TS and MFD Algorithms 114

6.6. Maximum Path Delay and Average Maximum Path Delay for VTHD Network
Topologies Using MFD Algorithm, as a Function of Delay Constraint 115

6.7. Maximum Path Delay and Average Maximum Path Delay for NSF Network
Topologies Using MFD Algorithm, as a Function of Delay Constraint 115

6.8. Average Quantity of Hops for VTHD Network Topologies Using MFD Algo-
rithm, as a Function of Delay Constraint . 116

6.9. Average Quantity of Hops for NSF Network Topologies Using MFD Algo-
rithm, as a Function of Delay Constraint . 116

6.10. Average Quantity of Paths for VTHD Network Topologies Using MFD Al-
gorithm, as a Function of Delay Constraint 117

6.11. Average Quantity of Paths for NSF Network Topologies Using MFD Algo-
rithm, as a Function of Delay Constraint . 117

6.12. Feasibility Rate for VTHD Network Topologies Using MFD Algorithm, as a
Function of Delay Constraint . 118

6.13. Feasibility Rate for NSF Network Topologies Using MFD Algorithm, as a
Function of Delay Constraint . 118

7.1. Traffic measures at packet level for different timescales [68] 124
7.2. Weekly and Daily Traffic Profile on a OC192 Link [69] 124
7.3. Overall process to generate the test set of demand matrixes (static and dynamic)129
7.4. Overall process to compare layouts obtained from MPSFAP1 and MRPSFAP

for a series from an original matrix . 130
7.5. Used paths and accumulated path additions for MPSFAP1 and MRPSFAP

on NET2 for demand matrix series M1 . 131
7.6. Used hops and accumulated hop additions for MPSFAP1 and MRPSFAP on

NET2 for demand matrix series M1 . 131
7.7. Path additions and deletions for MPSPAF1 and MRPSFAP for demand ma-

trix series M1 . 132
7.8. Hop additions and deletions for MPSPAF1 and MRPSFAP for demand ma-

trix series M1 . 132
7.9. Used paths and accumulated path additions for MPSFAP1 and MRPSFAP

on NET2 for demand matrix series M2 . 133
7.10. Used hops and accumulated hop additions for MPSFAP1 and MRPSFAP on

NET2 for demand matrix series M2 . 133
7.11. Path additions and deletions for MPSPAF1 and MRPSFAP for demand ma-

trix series M2 . 134

List of Figures 15

7.12. Hop additions and deletions for MPSPAF1 and MRPSFAP for demand ma-
trix series M2 . 134

8.1. Used hops and accumulated hop additions for MPSFAP1 and MRPSFAP
on NET2 for demand matrix series M1 using MINLP Solver (NEOS) and
MFD-R Heuristic . 142

8.2. Used paths and accumulated path additions for MPSFAP1 and MRPSFAP
on NET2 for demand matrix series M1 using MINLP Solver (NEOS) and
MFD-R Heuristic . 143

8.3. Hops added and deleted for MPSFAP1 and MRPSFAP on NET2 for demand
matrix series M1 using MINLP Solver (NEOS) and MFD-R Heuristic . . . 144

8.4. Paths added and deleted for MPSFAP1 and MRPSFAP on NET2 for demand
matrix series M1 using MINLP Solver (NEOS) and MFD-R Heuristic . . . 144

8.5. Active hops and accumulated hop additions for MPSFAP1 and MRPSFAP
on VTHD for demand matrix series MV THD

1 using MFD and MFD-R heuristics145
8.6. Active paths and accumulated path additions for MPSFAP1 and MRPSFAP

on VTHD for demand matrix series MV THD
1 using MFD and MFD-R heuristics146

8.7. Hops added and deleted for MPSFAP1 and MRPSFAP on VTHD for demand
matrix series MV THD

1 using MINLP Solver (NEOS) and MFD-R heuristics 146
8.8. Paths added and deleted for MPSFAP1 and MRPSFAP on VTHD for demand

matrix series MV THD
1 using MINLP Solver (NEOS) and MFD-R heuristics 147

8.9. Active hops and accumulated hop additions for MPSFAP1 and MRPSFAP
on NSF for demand matrix series MNSF

1 using MFD and MFD-R heuristics 147
8.10. Active paths and accumulated path additions for MPSFAP1 and MRPSFAP

on NSF for demand matrix series MNSF
1 using MFD and MFD-R heuristics 148

8.11. Hops added and deleted for MPSFAP1 and MRPSFAP on NSF for demand
matrix series MNSF

1 using MINLP Solver (NEOS) and MFD-R heuristics . 148
8.12. Paths added and deleted for MPSFAP1 and MRPSFAP on NSF for demand

matrix series MNSF
1 using MINLP Solver (NEOS) and MFD-R heuristics . 149

List of Tables

2.1. Drivers for Service Integration . 25

4.1. Example on the importance of avoiding path-delay constraints on unused paths 60
4.2. Quantity of Hops and Paths for MTDFAP, MPSFAP1 and MPSFAP2 Prob-

lems with NET1 Network . 66
4.3. Quantity of Hops and Paths for MTDFAP, MPSFAP1 and MPSFAP2 Prob-

lems with NET2 Network . 68

5.1. Quality of the Solutions from TS with respect to MINLP for MPSFAP1 and
MPSFAP2 . 86

5.2. Comparison of Average Quantity of Hops from MINLP and TS for MPSFAP1
and MPSFAP2 . 86

5.3. Comparison of Average Quantity of Paths from MINLP and TS for MPSFAP1
and MPSFAP2 . 88

5.4. Quality of the Solutions from MFD with respect to TS and MINLP for
MPSFAP1 . 102

5.5. Quantity of Paths and Hops for the Solutions from MINLP, TS and MFD for
MPSFAP1 . 102

6.1. Average Execution Times and Feasibility Ratios for MPSFAP1 by Using TS
and MFD Algorithms . 110

6.2. Average Values of the Objective Function for MPSFAP1 by Using TS and
MFD Algorithms . 110

6.3. Average Paths and Average Maximum End-to-end Path Delay for MPSFAP1
by Using TS and MFD Algorithms . 111

17

List of Algorithms

5.1. Pseudo-code for the General Tabu Search Method 78
5.2. Tabu Search Heuristics Applied to MPSFAP: algorithm to generate a neigh-

bor of the current solution . 83
5.3. Tabu Search Heuristics Applied to MPSFAP: algorithm to change path flows

for a selected node pair . 83
5.4. Pseudo-code for the Tabu Search Heuristics Applied to the MPSFAP Problems 85
5.5. Pseudo-code for the Modified Flow Deviation Method Applied to the MPSFAP1

Problem . 94
5.6. Pseudo-code for the Improvement to the MFD Method to Consider All Can-

didate Paths . 97
5.7. Pseudo-code for Calculating the Path Weights 97
5.8. Pseudo-code for Increasing the Path Weights for Overloaded Paths 98
5.9. Pseudo-code for Calculating the Shift Direction 99
5.10. Pseudo-code for Calculating the Shift Factor 100
5.11. Pseudo-code for Calculating the Choice Index 101

8.2. Pseudo Code for Calculating the Set of Shortest Paths Within a Path Set . 139
8.1. Pseudo-code for the Modified Flow Deviation Method Applied to the MRPS-

FAP Problem . 140
8.3. Pseudo Code for Examining All Possible Candidates for a Shift Direction

Within a Given Set of Paths . 141

19

1. General Introduction

1.1. Motivations

Next Generation IP networks are in their way to become the new paradigm in IP network
evolution for telecom operators. In the last decade we have seen the IP architecture and its
related protocols dominate over other transport technologies, becoming the natural choice
for service integration. Increasing computing power on terminals at lower costs allows for
a wide range of capabilities and service offerings, constituting a powerful driver for ser-
vice integration. At the same time, ever increasingly competitive markets ask for operator’s
efficiency at economical and technical levels. This need for efficiency pushes the telecom ser-
vice providers to operate their networks in a reliable and efficient way, constituting another
powerful driver for service integration. Indeed, a unified transport infrastructure allows
for CAPEX (Capital Expenditures) and OPEX (Operational Expenditures) savings for the
operator.

It is not a secret why IP has become the transport technology of choice after the commercial
explosion of the Internet. Its simplicity and openness have boosted a wide range of services
to be developed everywhere, constituting a positive network externality difficult to over-
come by any other transport technology. Despite the reasons that contributed to impose
IP as the ubiquitous technology in today networks, it has not been conceived to offer all
the transport functionalities that a reliable and efficient service integration requires. IP
best-effort (sometimes called least-effort) packet delivery policy and its connectionless na-
ture don’t contribute to devise a good Quality of Service (QoS) provisioning scheme, while
making difficult for the operator to realize an efficient resource utilization. If IP is called
to be the transport technology of use for next generation multiservice networks, we need to
add some mechanisms in order to allow for Traffic Engineering (TE) objectives to be realized.

Traffic Engineering for IP networks assembles a set of mechanisms applied at different
timescales and points in the network in order to ensure some QoS guarantees to the cus-
tomer, while efficiently using the available network resources. Provided that the agreed
QoS guarantees are met, an efficient use of network resources allows the operator to reduce
operations and maintenance (OAM) costs as well as capital expenditures, through careful
planning and dimensioning.

21

22 1. General Introduction

The traffic engineering as a way of controlling the dynamic behavior of the network in or-
der to adapt to changing operational conditions (i.e. topology changes, load conditions,
etc.) can be thought as a closed loop control system. The different TE mechanisms are
appropriate only when applied within a particular timescale and scope. Each timescale
corresponds to a control loop. We identify three main timescales, summarized in three
main control loops: the long term, the medium term and the short term. In the long term
control loop, TE mechanisms are assimilated to the tasks of planning and dimensioning the
network: the objective is to position the network in an operational state which is optimal
with respect to economical and performance objectives according to the operator’s point of
view. From the optimal operational state, the control loop will act to adapt the network
to the changing operational conditions in its own timescale. The network will have then to
be redimensioned, leading to the need of reconfiguring the network. The observation of the
operational conditions in order to determine the current network state is a main function
in the control loop. The inference of the network state from observation need to be related
to the timescale in which the control loop is operating. The same principle is applied to the
inner control loops, where TE mechanisms are applied in shorter timescales to control the
dynamic behavior of the network on less global scopes.

The present work focuses on the dimensioning and reconfiguration aspects of network op-
eration in a medium to long term timescale. Considering that during the planning phase
the operator has already optimized the node and capacity placement, the dimensioning
phase will optimize the way the paths are set up, as well as the corresponding flow alloca-
tion over those paths in order to meet the presented demands with respect to an objective
function. The objective functions generally used through the literature aim at optimizing
some measure of performance as cross-network delay or link utilization. We find that the
classic objectives are not representative of the cost models associated with realistic network
operation and maintenance. The first contribution of the present work is the definition
of objective functions modeling the actual costs associated with the dimensioning phase.
When traffic dynamics is considered, the layout (i.e. the set of paths and the corresponding
flow allocation constituting the optimal routing) will have to change accordingly in order to
keep the optimality with respect to the design objectives at every significant change in the
traffic demands. The transition from the current operational layout to the next one has also
a cost for the operator in terms of spare resources that need to be made available, as well
as service disruption times to allow for the changes to be made. In large networks this cost
could be considerable. Our second contribution addresses the issue of layout optimization
considering the complexity of the new layout, as well as the complexity of the transition.
To our knowledge, the resulting reconfiguration problem has not been considered so far in
the literature regarding the MPLS layout design and optimization.

1.2. Document Organization 23

The minimum cost multicommodity flow problems resulting from the realistic modelling are
known to be NP-complete, which limits the size of the networks that can be treated through
numerical exact methods. Available solvers were used to obtain results for the formulated
problems for small networks. These results are useful to validate the proposed cost models,
as well as the correctness of the problem formulations. To overcome the tractable network
size limitation, heuristic methods were developed to approximately solve the described prob-
lems. Heuristics may use general search techniques without any knowledge on the nature of
the problem: generally called meta-heuristics, or they may use search techniques adapted to
the nature of the particular problem being treated. This group of heuristics are called Ad-
Hoc heuristics, and they make use of the knowledge available on the mentioned problem.
Our third contribution constitutes the development and implementation of an algorithm
using Tabu Search (TS) techniques (meta-heuristics), and of an algorithm based on the
well-known flow-deviation algorithm (ad-hoc heuristics) to solve the dimensioning prob-
lem on large networks. Also due to size limitations of the deterministic solvers, we need
to develop heuristics to solve the reconfiguration problem on large networks. Our fourth
major contribution constitutes the development of such algorithm based on the experience
obtained when developing and testing the algorithms to solve the dimensioning problem.
This solution is based on a further modification to the flow-deviation method presented for
the dimensioning problem, which enables it to handle the reconfiguration problem as well.

1.2. Document Organization

The document is organized as follows:

In Chapter 2 the technological context is given. The Next Generation Convergent IP Net-
works require a unified transport. Being the IP protocol the natural choice for implementing
the transport services such architectures require, Traffic Engineering mechanisms have to
be introduced in order to be able to control the behavior of the network and to be able
to offer QoS guarantees. In Chapter 3, we introduce the concept of Traffic Engineering
as a closed loop control system capable of dealing with network dynamics. The different
timescales and scopes in which the TE mechanisms are to be applied are identified. Also,
the observation and measurement aspects of the TE system are presented, identifying the
network states. Actions to be taken according to each network state and timescale (i.e. TE
mechanisms to be used on which network elements) are related to each timescale, identify-
ing possible research activities on each one of them. We identify the long term timescale
related problems a important to the set up of an operational point for the network, which
will affect the efficiency and the quality of the services offered. Two important aspects to
control in the long-term control loop are the dimensioning of the virtual topology and the

24 1. General Introduction

reconfiguration of the network when the currently operational network layout has to change.
In Chapter 4, the network model is presented, as well as the identified factors that take part
in the OAM costs from an operator’s standpoint. Suitable cost functions are proposed to
optimize the MPLS layout according to those objectives, and the problem mathematically
formulated. Also, a deterministic solver is used to obtain a preliminary insight in the model
and the cost functions proposed. In Chapter 5, both meta-heuristics and ad-hoc heuristics
are implemented through Tabu Search and Modified Flow Deviation algorithms, capable of
dealing with large topologies. The results obtained using both heuristics are compared to
those obtained using the deterministic solver in order to conclude on the performance and
quality of the results obtained. In Chapter 6, both algorithms are used to obtain results for
two large topologies representing nation-wide networks in Europe and United States. Re-
sults show that the Modified Flow Deviation algorithm we propose largely outperforms the
Tabu Search algorithm. In Chapter 7 the reconfiguration problem is studied. When traffic
dynamics is considered, the operational point will need to be recalculated. Even when the
new calculated layout is optimized taking into account the OAM cost objectives studied
in the dimensioning problem, the cost of the transition between the currently operational
layout and the new calculated one may be also high in terms of OAM (spare resources and
service disruption time). Our interest is to take into account the dimensioning objectives
as well as the reconfiguration objectives when calculating the new layout, in an attempt to
include realistic cost of operations and maintenance in the optimization objectives. The cost
function is modelled and the problem mathematically formulated. Also, results are obtained
from deterministic solvers in order to gain some insight in the interest and correctness of
the proposed cost function. Finally, in Chapter 8 we propose a further modification to the
algorithm presented in Chapter 5, based on the flow-deviation algorithm, which allow us to
obtain results for large network topologies. Through an analysis of the obtained results, we
conclude in the General Conclusions on the interest of the proposed cost functions, and we
discuss some perspectives opened by the work presented here.

2. Technological Context: Next Generation IP Networks

2.1. Introduction

Service integration in a unique infrastructure has been a major objective for the telecom
operators since the inception of packet switched networks. The convergence of multiple ser-
vices in a unique infrastructure is mainly driven by the CAPEX and OPEX cost reductions
for the operator. This integration occurs at different planes in the network architecture. In
the transport plane, IP appears as the natural choice for integration, as most services are
being developed to use IP as the transport protocol, and the Internet success has made of
IP the transport protocol used everywhere. The evolution of today IP networks towards an
integrated multiservice infrastructure requires the adaptation of IP and its related proto-
cols to provide a service transport capable of offering service differentiation and a flexible
adaptation to new ever demanding services through signaling and control functions. The ar-
chitecture appearing as the natural evolution towards this integrated services infrastructure
is know as Next Generation Internet (IP) Networks (NGN). In the present chapter, we first
introduce the principal factors driving to the need of service integration in a unique infras-
tructure, and later a brief description of the network architecture in its different functional
planes, including the related protocols and standards where applicable.

2.2. Drivers for Service Integration

The main drivers for service integration can be enumerated as in Table 2.2:

User Drivers Operator Drivers Market Drivers
One-Stop Shopping Integrated/Increased

Service Offering
Reduced entry barriers for

new operators

Integrated Billing Reduced Time-to-Market Third-party applications

Unified Interface for
customer care

Reduced
CAPEX/OPEX

Increased terminal
capabilities

Convergent Applications Increased Access
Bandwidth

Table 2.1: Drivers for Service Integration

From the operator’s standpoint, service integration will help in reducing capital and opera-

25

26 2. Technological Context: Next Generation IP Networks

tional expenditures by multiplexing all services onto a unique infrastructure. This integra-
tion is possible through packet multiplexing of the different services. As such, mechanisms
to ensure that packets are treated in the network according to the needs of the service they
carry, as well as to ensure that enough resources are available in order to allow for the
correct behavior of all services must be added.

2.3. Next Generation IP Network (NGN) Architectures

2.3.1. Definitions and Objectives

NGN is a concept for defining and deploying networks, which, due to their formal sepa-
ration into different layers and planes and use of open interfaces, offers service providers
and operators a platform which can evolve in a step-by-step manner to create, deploy and
manage innovative services. (ETSI-NGN Starter Group).

Besides the integration of services in a unique infrastructure, the separation in layers and
the support for a step-by-step migration from legacy infrastructures are key factors in the
road to NGN. The separation in layers is important because of the introduction of open and
standardized interfaces, which allow for the realization of services independently of the un-
derlying technology. This opens the possibility for third party content and service providers
to develop applications working seamlessly with the network, broadening the service offer-
ing and generating more positive network externalities. The openness of the interfaces also
allows for the support of the different access technologies and terminal types.

The separation of transport, control and service layers in the NGN architecture is depicted
in Figure 2.1. In what follows, we will present a brief description of the evolution path at
every layer. A detailed discussion about the other components of the architecture such as
the access techniques and terminal capabilities evolution are out of the scope of the present
work.

2.3.2. Transport Layer: Towards an IP Multiservice High Speed Transport

Different transport technologies have appeared as strong candidates for the integration at
the transport layer. From the evolution of telephone networks, the Integrated Services Digi-
tal Network (ISDN) and its broadband version (B-ISDN) with Asynchronous Transfer Mode
(ATM) at the transport plane, all were conceived to provide evolved traffic engineering to
multiple services with a broad range of requirements using a unified infrastructure. ISDN
approache is to switch circuits as needed in order to make fixed bandwidth (n×64 Kbps cir-
cuits) available to applications. As such, the traffic engineering aspect is not required, as the
applications have a dedicated circuit or bundles of dedicated circuits to meet the bandwidth

2.3. Next Generation IP Network (NGN) Architectures 27

Transport Layer

N
etw

ork C
ore

Terminals

Fixed Access Wireless Access Mobile Access

Control Layer

Service Layer

Open and
Normalized
Interfaces

Open and
Normalized
Interfaces

Operator Third Party

Figure 2.1: NGN Architecture

requirements when needed. On the other hand, B-ISDN with ATM as the transport tech-
nology is based on packet switching. Virtual circuits offer a bandwidth to the applications,
whose characteristics are specified by a traffic contract describing the particular treatment
given to each one of the predefined services classes. ATM was designed to deal with a broad
range of service requirements ranging from real-time voice to streaming video. Short equally
sized packets allow for a more deterministic packet delay and delay variation when needed.
Particular traffic engineering mechanisms (e.g. schedulers, algorithmic droppers, etc.) are
required in order to guarantee the appropriate treatment to packets belonging to each ser-
vice class on a particular virtual connection according to the underwritten traffic contracts.
Traffic engineering mechanisms are conceived both to guarantee the QoS specified in the
contract and also to control that ingress traffic is complying to the same contract. Despite
its potential, ATM didn’t succeed in becoming the technology of choice for service integra-
tion. In particular, the lack of native ATM services (i.e. designed natively to use ATM as
transport technology) is one of the main reasons why it wasn’t widely adopted by operators
as a unique transport technology capable of integrating voice and data traffic. ATM is today
being used mostly in the access to IP broadband networks (e.g. ADSL and cable operators).

Most deployed infrastructures use IP transport technology and related protocols, making
unavoidable the use of IP as agent for transport unified infrastructure in NGNs. IP lacks
natively of the Traffic Engineering (TE) mechanisms capable of offering a differentiated QoS
to the customers, while allowing the operator to efficiently allocate the network resources.

28 2. Technological Context: Next Generation IP Networks

MPLS offers a straightforward way of incorporating such TE mechanisms to IP, enabling
evolved network engineering such as optimal dimensioning in both static and dynamic en-
vironments.

2.3.3. Control Layer

Among the multiple services that need to be integrated into the Convergent IP infrastruc-
ture, real-time services like voice calls and streaming applications (or media calls require
evolved control functionalities. These call control functionalities need to be incorporated
into the convergent architecture, and more precisely at the control plane. We briefly de-
scribe in this section the main issues to be considered in the NG convergent IP networks
architectures, as well as the current efforts in the normalization organizations to solve those
issues. The NGN architecture for the control of media calls (i.e. voice, video, etc.) is
composed of three main elements, which perform the main functionalities needed to both,
establish and manage the calls, and interoperate with the legacy networks. The architecture
with all the functional elements is depicted in Figure 2.2. The main components in the NGN
control architecture are [21]:

IP Network

SS7 Network

POTS/Mobile
Network

Soft
Switch

Media
Gateway

Signaling
Gateway SIP/H.323

SIP/H.323

SIGTRAN

MGCP/H.248

Source: Arcome

Figure 2.2: NGN Simplified Control Architecture

The Softswitch

Traditional voice switches are replaced in the NGN architecture by the so called Softswitch
or Media Gateway Controller. The softswitch corresponds to the processor and memory

2.3. Next Generation IP Network (NGN) Architectures 29

resources in the traditional switch.

The Media Gateway

The interoperation with legacy networks is done at the media gateway. The media gateway
is located in the NGN architecture at the media flow transport layer, between the Plain Old
Telephone Service network (POTS) or the access network and the IP network. The main
functionalities of the media gateway are:

• The coding and packetization of media streams coming from a non IP network, and
the conversion of IP packets to the media stream in the destination network.

• The relay of the media streams as signalled by the media gateway controller.

The Signaling Protocols

In order to make possible the convergence of multimedia communications with traditional
data services, the NGN network must take care of the media streams at the transport layer.
This gives rise to the development of a series of protocols at the control layer. We can
classify the different type of protocols in different functional groups:

• Call Control Protocols: allowing to establish a media communication from a ter-
minal to another terminal or to a server. Candidates protocols are H.323 (ITU-T)
and SIP (IETF).

• Media Gateway Command Protocols corresponding to the separation between
transport and control layers in the NGN architecture. Allows the media gateway
controller to control the media gateways. Candidate protocols are H.248/MEGACO
(ITU-T/IETF) and MGCP (IETF).

• Inter-Media Gateway Controller Signaling Protocols for the management of
the control plane. In the backbone the candidate protocols are Bearer Independent
Call Control (BICC) and H.323 both from ITU-T, and SIP-T (IETF). Regarding the
interconnection with legacy networks (in particular with SS7 networks), the corre-
sponding signaling gateways implement protocols like SIGTRAN (IETF).

2.3.4. Service Layer

Currently, services are developed within the framework of the corresponding networks: In-
telligent Network services (IN) for the telephone terminals (fixed or mobile), and traditional
Internet services such as Web, Mail, News, etc. for the IP networks. Together with the evo-
lution of access technologies, which makes more bandwidth available to users, the evolution
in terminals capabilities push a transformation of the service platform. This new platform
must allow a broad range of users to access services no matter the terminal and protocols

30 2. Technological Context: Next Generation IP Networks

used.

Important aspects of the service offering in the context of the new platform are adaptability
and portability [21]: the user must be able to recover its personal environment no matter
what particular terminal he is using, and it should be adapted to that particular terminal.
Two basic and complementary models arise:

• Softswitch Centered: service architecture based on the OSA/PARLAY normalized
service interface. This model is best adapted to telecom type services, requiring a
strong participation of the call control entities.

• Web Services Centered: service architecture based on the protocols and tech-
nologies used on the Internet world (XML, SOAP), providing distributed services
transported transparently on IP and with a strong participation of the terminals.

2.4. The Role of MPLS in the NGN Transport Infrastructure

As we stated in section 2.3.2, IP has become the natural choice because of its positive ex-
ternalities, driven mainly by its openness, which has made possible the rapid and effective
development of the wide range of services available nowadays. All the characteristics that
have made IP the paradigm for service integration are at the same time its drawbacks. IP
was conceived to push complexity to the edge of the network: connection oriented trans-
port, checking and recovery of lost packets are functionalities implemented by the hosts
participating in the end-to-end communication. The network as such participates with the
least effort to convey packets as independent units from one point to the other in the net-
work. Routing and delivery of packets are uncorrelated functions in any network node in
an IP network. In order to make IP a QoS aware transport technology, a set of complex
traffic engineering mechanisms have to be added. In particular MPLS (Multiprotocol La-
bel Switching) appears as a best adapted complement to IP at level 2 of the OSI layers,
representing a good trade-off between complexity of implementation and traffic engineering
evolved mechanisms it enables compared to ATM. We will discuss the traffic engineering
concepts and mechanisms working together with IP, as well as their timescale and scope of
application in Chapter 3.

Most current deployed infrastructures rely on fiber optics as the transmission media. Wave
Division Multiplexing (WDM) makes multiple wavelengths available to the upper trans-
mission layers, traditionally organized in digital hierarchies. Time Division Multiplexing
(TDM) techniques such as Plesiochronous Digital Hierarchy (PDH) and Synchronous Digi-
tal Hierarchy (SDH) provide transmission paths to the IP layer through layer 2 protocols.
Other layer 2 transport technologies like Frame Relay (FR) and Asynchronous Transfer
Mode (ATM) provide virtual circuits to IP, which can be permanently established or on

2.5. Conclusions 31

Optical Fiber CoaxCopper

SDH/PDH

Applications

EthernetGMPLS

WDM

POS

ATM

MPLS

Application Helpers (UDP, TCP, RTP, etc.)

Frame
Relay

IP

Sources: ITU-T/Arcome

Figure 2.3: NGN Protocol Structure

a demand basis through signaling. More recently, Multiprotocol Label Switching (MPLS)
has emerged as the transport technology of choice for network operators. It provides La-
bel Switched Paths (LSPs) or tunnels individualized by a label added to the IP (or other
protocol) packets. The advantage is that packets are switched directly using this label,
and no IP address lookup and packet contents processing is further needed while relaying
the packet in the network. Only the edge nodes or the end hosts process the IP packet as
such. MPLS offers performance gains (due to the switching at layer 2), as well as allows
for the implementation of evolved traffic engineering to be added to the IP transport. A
generalization of MPLS is currently being defined within many normalization and study
organizations and forums (IETF, ITU-T and OIF), which switches wavelengths in the way
that MPLS switches packets. We will enumerate and discuss many of its advantages in
Chapter 3 in the context of the traffic engineering for the NGNs, as we assume the use of
MPLS/GMPLS as the underlying transport technology underneath IP when defining the
network models presented in Chapters 4 and 7.

2.5. Conclusions

Service convergence in a unique multiservice infrastructure requires a unified transport layer.
IP is the technology of choice to achieve this integration, but it lacks the mechanisms to
ensure QoS guarantees to the end users, as well as the mechanisms to allow the network
operator to use its resources in a cost-effective way. Complementary traffic engineering

32 2. Technological Context: Next Generation IP Networks

functionalities are then adjoined to IP at the transport layer in order to allow for an end-to-
end control of the offered QoS and the resources needed to attain such objectives. Protocols
also need to be added at the control layer to deal with signalling of the media calls in
the IP world, as well as the interworking with legacy networks. Finally, at the service
layer, interfaces must be created to allow users to keep a personalized environment which
is both, independent of the terminal and adaptable to its capabilities. In what follows, we
will concentrate on the transport layer, particularly in the traffic engineering mechanisms
at long-term timescales to allow the operator to attain both objectives: to provide QoS
guarantees while reducing operational costs.

3. Evolved Traffic Engineering

In Chapter 2 we established the technological framework: the next generation networks as
a multiservice integrated infrastructure. The architectures being proposed deal with service
integration at three different levels: transport, control and service layers. Service integra-
tion at the transport layer require the adaptation of the existing IP transport services to
match the new requirements: providing service differentiation to the different applications,
flexibility to easily adapt to new ever developing services, and tools to control the behavior
of the network and make an efficient use of network resources. Evolved traffic engineering
helps in complementing the current IP transport functionalities in order to achieve those
objectives.

Conceptually, the control of the network dynamics can be thought as a feedback control
system, including a demand system (i.e. the traffic), a constraints system (i.e. the intercon-
nected network elements), and a response system (i.e. the network protocols and control
mechanisms running on the network) [6]. The Traffic Engineering (TE) defines the param-
eters and points of operation for the network, as well as the mechanisms that control the
return of the network to the defined operational points when the demand system and/or
the constraint system vary.

In order to define a closed loop control system we have first to identify the traffic engineering
mechanisms available to the operation, as well as the timescale in which they can be used.
Then it is necessary to decide when each of those mechanisms can be used either to correctly
dimension the network and set a point of operation, or to react to dynamic changes in the
traffic conditions. Care must be taken that the interaction among the different TE mecha-
nisms won’t produce unwanted effects. In what follows, we present the traffic engineering
objectives, identifying the main elements contributing to the TE system.

3.1. Traffic Engineering Objectives and Timescales

To meet the TE objectives, the operator disposes of a bundle of TE mechanisms to control
the response of the network to dynamic traffic conditions, and to position it in the desired
point of operation. Thinking the dynamic management of the network as a classical con-
trol system, the pertinent timescales must be identified as well as the appropriate traffic
engineering mechanisms to each timescale. Each timescale is identified with a control loop.

33

34 3. Evolved Traffic Engineering

The different TE mechanisms interact, even when applied at different timescales. This in-
teraction could produce negative effects on the control of the network behavior, and must
be accounted for when defining the control processes associated to each control loop.

3.1.1. TE Objectives

The network operator aims at providing QoS guarantees to its customers while making an
efficient resource usage. As a key element in the control system, these objectives become
those of the traffic engineering. The TE objectives as seen by the operator can then be
summarized as follows:

Traffic Oriented: related to the control of the QoS provided to the customer traffic. From
an end user’s standpoint, these objectives can be relative (e.g. service differentiation
with relative priorities and drop probabilities at packet or flow level), or absolute (e.g.
guaranteed throughput, end-to-end delay, etc). Parameters generally associated to the
measure of the traffic oriented objectives include packet loss, end-to-end packet delay,
delay variation and throughput among others. From an operator’s standpoint, besides
providing individual guarantees to the flows per user and application, an important
objective affecting the whole network performance is the proportion of total customer
traffic meeting the underwritten Service Level Agreements (SLAs) with respect to the
total traffic transported. This is not perceived individually by end users, but affects
the QoS guarantees given to them as a whole.

Resource Oriented: related to the efficient usage of network resources. These objectives
are seen exclusively from an operator’s standpoint, and are determined mainly by
the business model adopted. Traffic oriented objectives can be met, even with poor
efficiency on the resource oriented objectives. For instance, currently used policies tend
to minimize the traffic engineering efforts by overprovisioning the network, resulting
in ever increasing needs for bandwidth to provide QoS guarantees to end users.

A traffic engineering system is called rational if it is designed to attain the traffic oriented
objectives, while optimizing the resource oriented objectives [6].

The task of the traffic engineering system is to drive the network from sub-optimal states to-
wards optimal states (in terms of both traffic engineering objectives) reflecting the business
model and service agreements with its customers. In terms of TE objectives, sub-optimal
network states are related to congestion situations produced wether by insufficient network
resources for a given demand at a particular instant, or by inefficient mapping of the trans-
ported traffic over those resources. The TE system can deal with congestion situations
produced by insufficient network resources by increasing the available capacity (planning

3.1. Traffic Engineering Objectives and Timescales 35

and dimensioning) if the traffic injected by the end users conforms the traffic contracts, or
by policing the traffic at the ingress if some of those contracts are violated. The objective
of traffic policing is to make the ingress traffic conform to the underwritten contracts, and
is applied on a customer by customer basis on the ingress interface acting at packet or
flow level (e.g. traffic shaping, flow control, packet marking, etc.). New techniques aim at
controlling the traffic entering the network through pricing policies, encouraging the cus-
tomer to reduce the sending rate when congestion situations arise. The TE system must
identify the appropriate mechanism to use on each network situation, since the different TE
mechanisms can’t be applied at the same timescale. For instance, a congestion state pro-
duced by a systematic increase in traffic demands cannot be addressed using traffic policing,
requiring a network redimensioning (or even a capacity reallocation process) applied in a
longer term. On the other hand, a congestion state produced by a temporary increase in
the traffic demands for a particular group of customers (and maybe observed to be out of
profile according to the traffic contracts) can be addressed by means of short-term related
TE mechanisms (e.g. traffic shaping) applied to the particular interfaces associated with
those customers. In the last case, a network redimensioning would result impractical.

Congestion states produced by inefficient traffic mappings on the available network resources
can be addressed by using routing techniques acting at different timescales. The adminis-
trative metrics used by the IGPs in a pure IP environment for instance, can be dynamically
modified to adapt to varying traffic conditions; load sharing (Equal Cost Multipath or MPLS
based) can be established to allow the network to attain higher transport efficiencies (both
applied at short to medium term timescales). On a longer timescale, the base layout rep-
resenting the actual traffic mapping to the network resources can be recalculated, resulting
in a more efficient resource usage.

In what follows, we present in detail the timescales that can be identified in a traffic engi-
neering system and their correspondence to the control loops involved. The different TE
mechanisms associated to each control loop are presented and discussed.

3.1.2. Control Loops and Timescales

In previous sections we have modelled the traffic engineering as a closed loop control system,
capable to identify the network state and take actions to drive the network to a desired
operational state. As in any control system, the current state is measured and compared
to the desired state. This information or difference between both states is used to take a
decision about the action to take to reduce that difference. To determine the state of the
network, measure and inference from those measures becomes a key element in the system.
It will be treated in more detail in section 3.2. In the case of the traffic engineering control

36 3. Evolved Traffic Engineering

system for IP networks, the available actions are the different TE mechanisms acting at
packet and flow levels. Naturally, those mechanisms have to be coordinated and carefully
engineered so as to interwork and not to interfere one to another. Figure 3.1 shows the
role of the traffic engineer as a decision maker in the process of controlling the network
dynamics. Events arise and are detected by the observation and measurement system, the
state of the network is inferred from the observed events and the decision system must
decide what action is appropriate to the observed state, given the context.

Warning!
Congestion

Warning!
Congestion

Warning!
Packet Loss

Warning!
Packet Loss

Warning!
Packet Delay/

Delay Variation
increasing

Warning!
Packet Delay/

Delay Variation
increasing

Alarm!
Link Down

Alarm!
Link Down

To Configure Dropping
Precedence?
Schedulers?

To Configure Dropping
Precedence?
Schedulers?

To Adjust
IGP Metrics?

To Adjust
IGP Metrics?

To Adjust
Admission Control

Parameters?

To Adjust
Admission Control

Parameters?

To Adjust
Load Sharing?

To Adjust
Load Sharing?

Tim
escales

To Recalculate
Network

Dimensioning?

To Recalculate
Network

Dimensioning?

New SLSNew SLS

TE EngineerTE Engineer

What Mechanism?
When?
Where?

Observation and
Measurement

ActionsDecision

Figure 3.1: The Traffic Engineer and Timescales

The traffic engineer, as a decision maker, will take into account the nature of the observed
state and decide to apply a particular action or set of actions. The correspondence between
a given condition and the action taken is defined as a policy. In recent years, the Internet
Engineering Task Force (IETF) has made efforts towards defining an architecture capable
of dealing with the complexity of the management in an evolved traffic engineering environ-
ment: the Policy Based Network Management (PBNM). The Resource Allocation Protocol
(RAP) working group has defined the framework, including the architectural elements [1].
In Figure 3.2, the architectural elements are shown. The Policy Enforcement Points (PEPs)
(i.e. routers, switches, access points) are the elements where the different TE mechanisms
are applied, since they see the packets and flows traverse through them and are in a position
to change the treatment given to the traffic. The actions to be taken are stored in policy
repositories [4] in the format of policies (i.e. conditions and the corresponding actions). The

3.1. Traffic Engineering Objectives and Timescales 37

Policy Decision Point (PDP) is the element in charge of identifying the adequate policies to
apply to what PEPs, and to communicate them through the Common Open Policy Service
(COPS) protocol [2]. The PBNM architecture is intended to be able to manage any aspect
of network operation, from Diffserv and traffic policing to security or billing. In particular,
TE mechanisms can be configured through the policy based architecture by means of COPS
protocol extensions (e.g. Diffserv [3] or RSVP-TE [5]).

Domain A Domain B

Domain C

PEPPEP

PEPPEP

PEPPEP

PEPPEP

PolicyPolicy
RepositoryRepository

PolicyPolicy
RepositoryRepository

PolicyPolicy
RepositoryRepository

LDAPLDAP
LDAPLDAP

LDAPLDAP
Network Network

ManagementManagement

Network Network
ManagementManagement

PEPPEP

PEPPEP

PEPPEP

PEPPEPUserUser UserUser

PEPPEP

PDPPDP

PDPPDP

PDPPDP

COPSCOPS
COPSCOPS

COPSCOPS

Figure 3.2: Policy Based Network Management Architecture

The PBNM architecture tries to somewhat standardize the interface between the network
elements and the measurement system to determine the state of the network, and between
the decision maker (i.e. the traffic engineer) and the network elements to implement the
mechanisms which will help in driving the network to the desired state. However, the way in
which decisions are taken are proprietary to the operator, as they constitute a main source
of differentiation among them. As such, the design of policies for traffic engineering are left
open to research activities. We have already stated that TE mechanisms are appropriate
within a given timescale. Figure 3.3 classifies some of the TE mechanisms in relation to
the correspondent timescale in which they are generally applied, relating them also to the
scope of application. TE mechanisms inscribed in shorter timescales are also likely to be
applied at local scopes (e.g. individual interfaces), while TE mechanisms inscribed in longer
timescales are likely to be applied at global scopes (e.g. routing areas or the whole network).

38 3. Evolved Traffic Engineering

SHORT LONG

LOCAL

GLOBAL

Service Differentiation Dimensioning Planning

Congestion Control

Router Scheduling
and Marking

Layout Optimization
and Reconfiguration

Load Balancing

Admission Control

Capacity Planning

Element Placing

Timescale

Sc
op

e

Figure 3.3: TE Mechanisms and Their Relationship to Timescales

To deal with interdependencies among the TE mechanisms, a control loop can be defined
corresponding to each of the identified timescales. Nesting the control loops, actions taken
in an outer loop generate a network state that is presented to inner loops as the observed
state, so interdependencies are solved in the model. The longer timescale can then be
identified with the planning and dimensioning control loop: the network will be planned
and dimensioned taking into account the traffic forecast and the observed network state,
positioning the network in an optimal state with respect to some cost function. This cost
function would take into account OAM related and deployment costs to the operator. Figure
3.4 shows the different control loops and some of the actions identified with each one of them.

Once the network positioned in an optimal operational state, significative load variations
will require a new network dimensioning (and eventually a new capacity allocation scheme),
resulting in a network reconfiguration. Depending on the transport technology being used,
the reconfiguration in the network can involve changing the routing policies or setting up a
completely new layout (e.g. in the case of MPLS). What dimensioning and reconfiguration
policies are to be used give rise to a bunch of research directions in the field of network
optimization and operational research. For small load variations, redimensioning and re-
configuring the network may be impractical (i.e. the cost of reconfiguration can be higher
than the cost of operating a suboptimal network). Those variations can be dealt with in an

3.1. Traffic Engineering Objectives and Timescales 39

Dimensioning

Load
Variations

Measure

-

Policing/
Admission

Control

Measure

-

+

+

Traffic
Forecast

Traffic Demand Estimates

Load
Variations

Observable
Traffic

Parameters

Short Term Control Loop

Long Term Control Loop

+Load Sharing/
Dynamic
Routing

+

Measure

+

+

-

Medium Term Control Loop

Figure 3.4: Closed Loop Traffic Engineering System

inner control loop corresponding to a medium-term timescale. Techniques such as optimal
load sharing [76, 64] in the case of MPLS as transport technology, or changing the metrics
of the IGP routing protocols [45] in a pure IP environment, can help to balance the load dy-
namically and allow for a better efficiency of the network resources. In a shorter timescale,
and for traffic variations on a user-by-user flow level, techniques such as flow control at TCP
level [77], admission control or traffic shaping among others can be used. Here again, poli-
cies on how to decide the techniques to use at medium and short term timescales give rise
to a wide field of research. In this thesis, we are interested in the problems associated with
the dimensioning and reconfiguration of the network on a long-term timescale, in particular
considering MPLS layouts. We consider that many contributions are possible in this field,
since small or no attention has been paid to the dimensioning and reconfiguration optimiza-
tion of layouts for transport techniques other than optical networks, taking into account
the OAM costs as viewed by the operator and the particularities of transport technologies
associated to the IP family like MPLS.

3.1.3. The Role of MPLS in The Traffic Engineering

The way in which traffic is routed through the network is one of the most important set
of tools the operator has to meet the TE objectives. Looking in detail to the network el-
ements in charge of delivering the packets at any point in the network, two steps can be

40 3. Evolved Traffic Engineering

identified: packet routing (also called the control part and packet forwarding. The IETF
has recently created a Working Group (the Forwarding and Control Element Separation
forces WG to address issues regarding both functionalities). In pure IP environments, IGP
routing protocols are generally used within an autonomous system to decide the routing
of packets through the network. These IGPs (e.g. OSPF, IS-IS) take routing decisions on
a per-packet basis, using the destination IP address as the sole information, resulting in
a limited capability for the implementation of evolved TE techniques to control the traffic
distribution within the network, such as non-ECMP (Equal Cost Multipath) load sharing
and general optimal routing virtual topologies among others. Also, since routing decisions
are taken hop-by-hop, the packet forwarding part doesn’t offer either much room to imple-
ment evolved TE functionalities in order to offer end-to-end service differentiation and QoS
guarantees. Indeed, the fact that routing decisions are taken on a hop-by-hop basis makes
difficult a coordinated packet treatment on all the interfaces used by a particular path for
a given service class.

Significant work is currently undergoing to overcome the difficulties in implementing evolved
TE capabilities in an IP transport technology. In pure IP environments, the limitations of
the IGPs to better control the traffic distribution are being addressed by dynamically chang-
ing, for instance, the protocol metrics associated to each link (those used by the protocol to
calculate the routes) according to some measure of performance generally associated with
congestion [75, 45]. Protocol extensions are being considered also in order to establish routes
on demand, based on service classes traffic requirements [78]. Another aspect difficult to
implement in a pure IP transport with IGPs is the load sharing functionality (i.e. to share
the load from source to destination among multiple paths), allowing for a more efficient use
of available capacity. IGP load sharing is limited to ECMP: the set of paths on which the
load is shared have to be equal cost paths in terms of the protocol metrics and the load
is shared equally among them, otherwise routing loops could take place. Regarding the
forwarding part of the routing function, the Differentiated Services (Diffserv [79]) and the
Integrated Services (Intserv [80]) architectures are models proposed by the IETF to provide
relative service class differentiation in the former or absolute QoS guarantees in the later.
However, the connectionless nature of IP routing makes difficult to implement end-to-end
service differentiation using IGPs, since no global vision of the network is available to the
routing protocol at the moment of deciding the route, and packets belonging to the same
service class are not guaranteed to receive the same (or equivalent) treatment along the
whole path, as the path can change during the life of the flow.

Multiprotocol Label Switching (MPLS) enables the possibility to implement evolved traffic
engineering techniques in IP networks. These techniques allow to solve the above mentioned
problems associated to the use of IGPs in pure IP environments. MPLS architecture is de-

3.1. Traffic Engineering Objectives and Timescales 41

scribed in [8]. MPLS establishes virtual tunnels or label switched paths (LSPs), associating
a label to each LSP. A label is associated to a Forward Equivalent Class (FEC) (e.g. origin
and destination IP address + class of service), which ensures that all packets labelled with a
particular FEC will be delivered along the same path. In this way, routes can be decided by
the traffic engineering system using more complete network state information, and estab-
lished at the origin (source routed paths). Also, as the whole path is known and all packets
belonging to a FEC are guaranteed to be forwarded over the same path, the treatment given
to all packets of that FEC can be guaranteed also to receive the same treatment, easing the
implementation of QoS guarantees. The requirements for implementing TE functionalities
with MPLS are described in [9]. The routers implementing MPLS are called Label Switched
Routers (LSRs); the switching of labels instead of looking up to the IP level results in an
important efficiency gain in the routers.

One important characteristic in traffic engineering is the concept of traffic trunk. A traffic
aggregate is defined by the whole traffic going from a particular source to a particular
destination, and belonging to a given class of service. The problem of mapping those
traffic aggregates on the physical network topology is a main problem in the TE. In an
MPLS environment, each traffic aggregate can be directly mapped to a particular LSPs
(or multiple LSPs in the case of load sharing). Those paths can be calculated to optimize
a given cost function depending on performance and/or economic objectives. The virtual
topology or layout obtained (corresponding to the general optimal routing) can be wholly
implemented deploying the adequate labels, which is equivalent to establishing the virtual
paths on the network. A particular treatment can be associated to each path, adding QoS
guarantees to the traffic traversing the network. In summary, MPLS allows for performance
and efficiency optimization on an IP network in many aspects:

Congestion States Produced by a Sub-Optimal Routing : The existent LSPs can be re-
routed or new LSPs added in order to redistribute the traffic so as to drive the network
towards an optimal state (dimensioning and reconfiguration).

Congestion States Produced by Transitory Traffic Variations : The existent LSPs can be
reconfigured to deal with non systematic traffic variations (load sharing).

MPLS support Differentiated Services (MPLS-Diffserv) [11] enables the possibility of en-
gineering the different classes of service defined in the Diffserv architecture by assigning
to each per-domain scheduling class (PSC) [81] a particular FEC (or set of FECs), which
ensures that the appropriate treatment will be given to packets belonging to that PSC.
Figure 3.5 shows the service class definition in Diffserv architecture:

PHB Group (PG): a set of one or more Per-Hop Behavior (PHB) with a common con-
straint (queue servicing or management policy).

42 3. Evolved Traffic Engineering

AF1

PHB
Group

3

2

Forwarding
Probability

Delay
Variation

Assured Forwarding PHB
AF11

AF12

AF13

Constraint = Delay Variation

3

2

1

AF2

3

2

1

AF3

3

2

1

AF4

1PHB

Figure 3.5: Diffserv PHB y PHB Scheduling Class

PHB Scheduling Class (PSC): a PHB Group with the common constraint of ordering
preservation for packets belonging to the same microflow.

Figure 3.6 shows the different types of LPS supporting Diffserv PSCs. EXP-Inferred-PSC
LSP (E-LSP) uses the experimental (EXP) field defined in the MPLS header to signal
the PSCs being transported in a particular LSP (defined by the MPLS label). An E-LSP
can transport many PSCs, resulting in an efficient use of label space, but a less efficient
separation of service classes within a single LSP. A possible use of E-LSPs is, for instance,
the support of service differentiation within a single Virtual Private Network (VPN): The
FEC determines the paths used by the particular VPN to transport the customer traffic,
and supporting service differentiation within the VPN. In this case, the TE mechanisms
necessary to ensure the service differentiation are applied at the edge of the network, and
are based mainly on traffic policing and admission control.

The Label-Only-Inferred-PSC LSPs (L-LSP) on the other hand, uses the EXP field and
the label in the MPLS header to signal the service class being transported. This means
that each LSP transports a particular PSC (e.g. AF1 service class with the 3 dropping
precedences AF11, AF12 and AF13), offering a better separation of service classes within
the network. Each service class could have, for instance, a dedicated LSP, which offers the
possibility of applying TE mechanisms along the path in order to offer individual guaran-
tees. This advantage comes at the price of intensive label space usage.

3.2. Traffic Engineering and Measurements 43

MPLS Label IP HeaderDSCP PayloadEXP

Copy

Link LSP

3

2

1

3

2

1

EF PHB = PHB PSC

BE PHB

AF2x PSC

AF1x PSC

MPLS Label IP Header PayloadEXP

Link LSP

3

2

1
AF1x PSC

Signals dropping
precedence

E-LSP: MPLS Label determines FEC and EXP field determines PHB.

L-LSP: MPLS Label and EXP field determine the pair <FEC , PSC>.

Figure 3.6: MPLS-Diffserv LSP Types

MPLS appears then, as a natural solution to the difficulties found in pure IP environments
when implementing evolved TE functionalities. The introduction of MPLS as a transport
technology is a key complement to IP to achieve the main objective of service integration
in a unique infrastructure, while making an efficient use of network resources. As we men-
tioned before, MPLS allows the implementation of the general optimal routing layout by
establishing source routed paths copying the optimally calculated layout. As a consequence,
the number of paths (LSPs) required to establish a particular layout could be specially im-
portant for large networks, introducing the associated problems of layout complexity and
reconfiguration. In [40], the implementation of the general optimal routing layout with a
mix of IGP for the compatible part of the layout and MPLS to complete the non-compatible
part of the layout is studied. However, the design of reduced complexity layouts and the
complexity of layout reconfiguration are open issues scarcely addressed in the literature,
and are the main field of contribution in this thesis.

3.2. Traffic Engineering and Measurements

At the beginning of this chapter, we have described the TE system as a closed loop control
system, in which the TE mechanisms are the actions taken to drive the network to the

44 3. Evolved Traffic Engineering

desired operational state, and the observation and measurement subsystem is responsible
for determining the current state of the network in order to make possible for the traffic
engineer to take an appropriate decision. The observation and measurement sub-system
is a key element in the traffic engineering conceived as a control of the network dynamics.
The observation and measurement sub-system is responsible for determining the state of
the network based on measures integrated in the correspondent timescale. Also, based
on measures and an appropriate statistical model, it contributes to determine the traffic
forecast that can be used in the capacity planning and dimensioning phases of the network
design. In what follows, some preliminary notions on how network states can be classified
and observed are introduced.

3.2.1. Network States

Regarding the dynamic control concept of the TE, the network can be thought as a state
machine, where the states are optimal (i.e. desired states) or sub-optimal, and the differ-
ent TE mechanisms are used to transition the network from sub-optimal states to optimal
states. Figure 3.7 presents a simplistic representation of network states that can be iden-
tified according to observation and measurement within the network, and the related TE
mechanisms that can be used to drive the network among states.

Optimal
State

Sub-Optimal
State

Congestion or
Oversize

Measure

Short to Medium Term TE
Mechanisms

MeasureMeasure

Long Term TE Mechanisms

Measure
• What?
• Where?
• How Often ?

How we
determine
the optimal
state?

When is the
system in sub-
optimal state?

When is the
system congested
or
overdimensioned?

Short to Medium Term TE
Mechanisms

Admission Control Load Variation

Load VariationLoad Variation

Figure 3.7: TE System and Network States

3.2. Traffic Engineering and Measurements 45

Optimal State : The network is in a state defined by the operator as the optimal state with
respect to the cost functions representing its business model. In the optimal state,
all the underwritten service contracts (SLAs) are honored, while efficiently using the
network resources according to the operator’s objectives.

Sub-Optimal State : The network is in a state defined by the operator as sub-optimal with
respect to its business objectives. In a sub-optimal state, the service contracts are still
honored, but the network resources are no longer being used efficiently. Sub-optimal
states are generated by transitory variations in the load conditions.

Congestion or Sub-utilization State : The network is in a congestion state when service
contracts are not honored in a systematic way, even when network resources are ef-
ficiently used (although this is not likely). A congestion state is produces by a sys-
tematic and significant variation in traffic load conditions (traffic increase). If service
contracts are honored, but the network resources are being systematically used in an
inefficient way, we identify the network state as a sub-utilization state. TE techniques
like dimensioning and reconfiguration allow the operator to return to the optimal state
in either case.

Each network state is univocally defined by a set of observable and/or measurable param-
eters. The observation and measurement sub-system is the one responsible to infer the
network state from these observations and measurements. The observation implies two
different levels:

• Detailed: per customer and service class. It individually observes (through measure-
ment) the state of the individual service contracts.

• Global: on a traffic aggregate basis within the network. It helps the operator to
determine if the network resources are correctly provisioned so as to ensure the QoS
to the set of service contracts.

The combination of detailed and global observation is used by the sub-system to determine
the network state, and again, this is based on the policies configured by the operator, repre-
senting mainly its business model. As such, the particular parameters and conditions that
determine the network state are proprietary to each operator, and constitute a source for
market differentiation.

Observation and measurement in the network can be passive or active. Passive measurement
is based on the collection of information in the network without injecting measurement
traffic, while active measurement is based on special packets injected for measurement
purposes. Four main approaches have been considered [82] for gathering information from
the network passively:

46 3. Evolved Traffic Engineering

1. The necessary traffic statistics may be available directly from Single Management Pro-
tocol (SNMP) Management Information Bases (MIBs), depending on the forwarding
technology being used (e.g. MPLS MIBs can be consulted to obtain the measured
traffic volume on the LSPs).

2. The demands can be computed by combining packet level or flow level measurements
at the edge of the network with the information available in routing tables.

3. The demands can be inferred based on observation of the aggregate loads inside the
network in conjunction with routing data (this approach is known as network tomog-
raphy).

4. New techniques for packet sampling offer the possibility of direct observation of the
demands as it flows through the network.

Important work is undergoing at the IETF regarding the active metrology in IP environ-
ments. The IP Performance Metrics (IPPM) working group defined the framework archi-
tecture [83], in which a set of metrics to measure different aspects of network performance
such as connectivity, one way delay and one way packet loss among others are defined.
Important research directions are being addressed regarding active measurement, such as
determining the sampling frequency, statistic techniques to interpret the measures among
others.

3.3. Contributions to the Long-term Control Loop: Dimensioning and

Reconfiguration

The long term control loop function is to establish an operational point for the network.
This operational point is realized by the set of paths and the corresponding traffic being
routed over that set of paths or layout. The main objective is to efficiently route the traffic
demands between every pair of nodes in the network. To obtain an optimal layout according
to the operational and business objectives is one of the main problems the operator has to
face. The problem of designing this optimal layout is referenced as dimensioning. Once
this operational point established, and according to the measured traffic dynamics and the
operator’s service and business model, this operational point will have to be recalculated.
The repositioning of the operational point will require a reconfiguration of the set of paths
and and the flow distributions over those new paths. The resulting reconfiguration, de-
pending on the size of the network and the transport technology being used, could imply a
large amount of resources being involved in the change, resulting in a high cost of operation
(maybe higher than operating the network on a sub-optimal point). A new objective associ-
ated with the dimensioning arises: the optimization of the reconfiguration. In our work, we
address both, the dimensioning and reconfiguration problems taking int account the OAM

3.3. Contributions to the Long-term Control Loop: Dimensioning and
Reconfiguration 47

costs as seen by the operator. Increasing attention is being paid to these problems, initially
treated in relation to the design of optical transport networks, as the service integration at
the IP transport layer requires the introduction of technologies like MPLS.

3.3.1. Defining an Optimal Point of Operation: Network Dimensioning

As it was described in previous sections, in a pure IP environment the traditional routing
protocols calculate the route to use at each hop by calculating the shortest path based on
metrics associated to each link. To offer QoS guarantees to the different classes of service,
a QoS-aware routing is the best fit to find a path meeting the constraints imposed by the
demands. The associated metrics are generally made dependent on the flow traversing the
link, so that the load conditions in the network are taken into account when calculating the
best route for every pair of nodes (and indirectly determining a working layout). However,
as the metrics are dynamically updated to reflect the load conditions in the network, route
oscillations will be produced. Load sharing techniques could help in reducing the probabil-
ity of the route oscillations, but in a pure IP environment, the use of load sharing is limited
to equal costs paths to avoid routing cycles.

MPLS can help introduce the required TE functionalities, while avoiding the cited problems
of route oscillation and route cycles. The fact that all packets labelled with the same FEC
are guaranteed to be delivered over the same route allows us to define a virtual topology
constituted by the LSPs mapped onto the physical topology. There are two ways in which
the optimal virtual layout can be calculated: on-line and off-line.

On-Line Layout Calculation

The idea behind on-line methods is to find a path meeting the constraints upon demand
arrivals. The LSPs can be calculated to provide the required resources and to meet the
service constraints, while optimizing a particular objective function of the network perfor-
mance. The resulting LSP can then be established using protocol extensions like RSVP-TE
[10] or protocols intended for that purpose like CR-LDP [12].

The problem of finding an optimal path meeting a set of constraints is referenced as
constrained-based routing. Constrained-based routing constitutes an important area of re-
search. The Minimum Interference routing (MIRA) algorithm [15] tries to find a path
avoiding the critically loaded paths while verifying the constraints. [25] improves upon
MIRA by choosing a set of k minimum-interference paths meeting the constraints. Gener-
ally used costs are related to the objective of minimizing congestion.

48 3. Evolved Traffic Engineering

Selecting the paths on-line, the long term traffic distribution in the network depends on
the order and size of demand arrivals. As a consequence, the resulting layout will not be
globally optimal with respect to a global performance objective. In that case the point of
operation cannot be fixed, as the paths are established as needed, and calculated using local
information on the state of the network.

Off-Line Layout Calculation

In the context of the presented TE closed loop system, we are interested in fixing an op-
erational point. As such, we need to resort to an off-line calculation of the virtual layout.
The off-line calculation has the advantage of allowing the use of global information, so for
a given traffic demand, a globally optimal layout can be calculated with respect to a cost
function representing the OAM costs. Cost functions generally used consider transport
costs or traditional performance measures like total delay. In the present work, realistic
cost functions are proposed representing the costs as seen by the operator: operation and
maintenance costs. The OAM costs in large networks are related to the complexity (i.e.
number of hops and paths) needed to route a given demand. A suitable objective will be
then to minimize the complexity of the virtual layout being calculated. Each path has an
associated cost if the path is being used, representing the particular cost structure of the
operator. Given that QoS guarantees must be ensured, such as the end-to-end path delay
and throughput, the calculation includes these guarantees as constraints.

The problem of minimizing the total number of paths in a layout has been already addresses
in the field of optic network design and planning. The results obtained for optic networks
are useful as a reference, but they cannot be directly applied to the design of MPLS layouts
because of the different granularities required for the IP transport layer. At the same time,
the large bandwidths available in a lightpath allow for the end-to-end path delay constraints
to be expressed simply as a limit in the number of hops used in a given path, while in
a MPLS context these constraints are modelled in a more realistic way given the smaller
bandwidths required for each path.

A first contribution in the present work constitutes the formulation of the layout design
problem minimizing the complexity required, while meeting realistic QoS constraints im-
posed by the demands.

3.3.2. Varying Traffic Conditions: Network Reconfiguration

When the traffic dynamics is considered, the point of operation is not the optimal anymore,
as the traffic matrix for which the current operational layout has been calculated doesn’t
represent the current demands. A given operational point can absorb more or less important

3.3. Contributions to the Long-term Control Loop: Dimensioning and
Reconfiguration 49

traffic variations thanks to the TE mechanisms used inside shorter terms control loops, but
for significative changes in demand conditions, calculating a new operational point becomes
unavoidable.

The new layout has to also take into account the objectives introduced in section 3.3.1.
However, when the number of established paths in the current layout is large, the transition
between two optimal layouts in the sense of the presented objective can be very costly.
Indeed, if all paths of the new layout have to be established in parallel in order to minimize
service disruption times, the operator will have to make enough resources available for this
to happen. On the other hand, if all the paths in the new layout are set up once the paths in
the old layout have been released in order to minimize the need for spare network resources,
then the service disruption time may be increased to levels incompatible with the service
contracts. We identify the objective of minimizing the transition complexity, together with
the complexity of the new calculated layout to be an important contribution in the field of
MPLS layout design considering the traffic dynamics.

4. Contribution to the Dimensioning of MPLS Networks: Design

of Reduced Complexity Layouts

4.1. Motivations and Previous Work

Assuming that the network topology has already been deployed to optimize the cost func-
tions considered in the planning phase, which includes the capacity planning and node
placement problems [42, 43, 44], the operator faces the problem of how to design, for a
given traffic demand, the virtual topology (i.e. the set of LSPs) mapped onto the physical
topology. Indeed, evolved traffic engineering on source routed paths allows to split the load
of the total demand for a given node pair among the various LSPs connecting that node
pair. In this way, the optimal routing with respect to some measure of operations and
maintenance costs can be effectively implemented, by optimizing the way the total demand
for all node pairs in the network is routed through this virtual topology.

Both, off-line and on-line approaches have been proposed throughout the literature to de-
sign the layout. The idea behind on-line approaches is to find a suitable path upon demand
arrivals. LSPs can be calculated to meet demand requirements and service constraints, such
as available capacity and experienced delay, as well as to optimize some function of network
economics. Calculated paths will be established using CR-LDP [12] or RSVP-TE [10]. In
the on-line path calculation approaches, the resulting global traffic distribution over time
depends on the arrival order and size of demands. Actual resource allocation over time
could become far from optimal with respect to some performance criteria (e.g. maximum
link load or total delay) or economic criteria (e.g. quantity of paths or links) used to design
the layout. Off-line LSP layout calculation allows for the setting up of a point of operation,
globally optimal with respect to some performance criteria related to the network cost of
operation. Off-line calculation takes into account global information about the state of the
network and traffic forecast, while on-line calculations are only allowed to take into account
local and incomplete information. In fact, on-line and off-line calculations are complemen-
tary. The network can be optimally engineered and set up around a point of operation
on a long term basis, and on-line decisions can be taken to accommodate traffic variations
around that point on a shorter timescale.

Usually proposed cost functions for layout optimization consider the transport cost seen by
each user imposing a demand [22], minimizing the most loaded link in the network [23], or

51

52
4. Contribution to the Dimensioning of MPLS Networks: Design of Reduced

Complexity Layouts

minimizing the average cross network packet delay, subject to a delay constraint for each
origin-destination pair [24].

In this chapter, we take into account the operation and maintenance cost of the network.
In order to do so, we focus on the problem of obtaining a layout which is optimal in the
number of required LSPs. Indeed, cost of operation in large networks in directly related to
the layout complexity. We use weights associated to each path in order to reflect a particular
operator’s cost structure. The problem of minimizing the total number of paths has been
analyzed in the context of DWDM networks [25]. The related results cannot be applied in
our context since the delay constraints cannot be expressed here just as maximum number
of hops and thus linear programming approaches are not applicable to solve our problem.
We formulate the problem, which we call Minimum Path Set and Flow Allocation Problem
(MPSFAP), as a Mixed Integer Non Linear Problem (MINLP). Two different cost functions
are proposed. The first one aims at minimizing a function of the total number of paths,
under an end-to-end delay constraint. The second one aims at minimizing an increasing
function of the total number of paths and of the total delay under an end-to-end delay
constraint. The second approach leads to a more homogeneously distributed load. We first
consider a unique service class, and give QoS guarantees for it, by imposing a maximum
delay constraint on each path. The model is then extended to consider multiple service
classes.

4.2. Network Model Notation

For our modeling purposes, the underlying physical network provides transmission lines
between connecting nodes. These transmission lines have an associated physical capacity.
According to the traffic engineering techniques reviewed in Chapter 3, we identify the nodes
with MPLS Label Switching Routers (LSR), originating and terminating Label Switched
Paths (LSP) over which the traffic will be transported between source and destination
nodes. The LSPs can be established using either manual or automated procedures via a
management system through signalling protocols (e.g. CR-LDP or RSVP-TE). The LSPs
are established over the transmission lines connecting the nodes, and allocated a part of the
available capacity.

Formally, the physical network is represented by a directed graph G = (V, E), where V is
the set of vertices indexed 1, 2, . . . , N ; E is the set of directed edges indexed 1, 2, . . . ,M ,
corresponding to the links in the network. Link i, corresponding to a transmission line, has
capacity Ci. Let C be the single column matrix representing the M -dimensional capacity
vector.

4.2. Network Model Notation 53

Paths

The virtual topology mapped onto the physical topology allows for evolved traffic engineer-
ing to be implemented on the network, making a more efficient traffic distribution possible.
This efficiency stems from the fact that the traffic can be splitted among different paths
instead along a unique path as is the case with interior gateway protocols (IGP) in a pure
IP environment. Let’s assume that every pair of nodes in the physical topology is connected
through one or more paths, corresponding to the different LSPs in the layout. We use the
terms path and LSP as synonymous.

Let the node pairs (m,n), with m 6= n, be indexed 1, 2, . . . , Q where Q = N(N − 1) is
the total quantity of node pairs. For each source-destination pair q = (m,n), we identify
a commodity with the demand requested for q as dq. The commodity dq may be routed
via the Kq different acyclic paths (or routes) binding node m to node n over the graph.
These paths are indexed a1

q , a
2
q , . . . , a

Kq
q , and are known in advance. Any path akq can be

represented as a vector with entries akq,i = 1 if path akq uses link i, and 0 otherwise, for
i = 1, 2, . . . ,M . As stated, we only consider acyclic paths, i.e. no path traverses twice the
same link or the same node. We can represent the K =

∑Q
q=1Kq single paths between all

pair of nodes as the M ×K arc-path incidence matrix A:

A =

a1
1,1 ... aK1

1,1 a1
2,1 ... aK2

2,1 ... a1
Q,1 ... a

KQ

Q,1

a1
1,2 ... aK1

1,2 a1
2,2 ... aK2

2,2 ... a1
Q,2 ... a

KQ

Q,2
...

...
...

...
...

...
a1
1,M ... aK1

1,M a1
2,M ... aK2

2,M ... a1
Q,M ... a

KQ

Q,M

The matrix A can be represented synthetically as the block matrix:

A =
(
A1 A2 . . . AQ

)
(4.1)

where the block Aq is the arc-path matrix corresponding to the Kq paths for the node pair q.

Let W be the single column matrix representing the K-dimensional vector containing the
weight wkq associated with path akq . In section 4.3 we present a way weights can be used to
fine tune the path cost structure for a given operator.

Demands

In order to characterize the demands to every pair of nodes, we need to understand the
nature of the IP traffic. We can analyze it at different timescales: packet and flows.

54
4. Contribution to the Dimensioning of MPLS Networks: Design of Reduced

Complexity Layouts

Packet Level Characteristics

It is well known that the stochastic processes describing the arrival of IP packets exhibit a
high variability at all timescales [27]. Consequently, the use of a token bucket to describe
its behavior is not well adapted. The description of IP traffic between any pair of nodes
should be made therefore in terms of flows or aggregates.

Flow Level Characteristics

A flow can be defined as a succession of packets near in time to one another, generated by
the same application instance between a particular source and destination pair. We can
identify two great categories of flow types [20]: elastic and stream flows. Stream flows are
representative of real-time applications (e.g. audio or video); they have intrinsic tempo-
ral properties that the network must preserve. The elastic flows are representative of file
transfer-like applications. For elastic flows the transfer throughput depends on the avail-
able bandwidth: the transfer duration is a function of the file size and traffic characteristics
of the transport network during the transfer. Elastic traffic is the most important of the
Internet in terms of its proportion to stream traffic (approximately 80% of the flows). To
describe the flow arrival process, the usual practice is to characterize it as a Poisson process.
For the stream flow types, we can assimilate it to the arrival of voice calls, and the Poisson
description would be appropriate. For the elastic flows, a detailed study of the behavior of
a typical user during a session (e.g a web session) should be considered. However, empirical
results show that we can appropriately assimilate the arrival process of elastic flows to a
Poisson process in a given link at the core of the network [28].

Demand Characterization

Measures on Internet backbone links have shown that the traffic on those links is more or
less predictable [29]. The traffic intensity presents cycles, resulting on long high utilization
periods, followed by long low utilization periods during the day on weekdays. The same
periodicity can be found during the weekend, but with different intensities and times of the
day. This periodicity suggests that the traffic intensity could be modelled using a stationary
stochastic process. More precise studies regarding the modelling of traffic processes at flow
level can be found in [85, 86, 87]. The average measured traffic could be then interpreted as
a demand with a throughput equal to the product of the flow arriving rate and the average
throughput of the individual flows (both stream and elastic).

The use of flows allows us to better characterize the demands, and as such, to also char-
acterize the QoS offered by the network. Based on these models, we can calculate the
required dimensioning to provide the required QoS guarantees. The flow level corresponds
to the timescale at which we apply the traffic engineering mechanisms to control the offered
QoS (i.e. short timescale corresponds to packet level and longer timescales to flow level).
In conclusion, we propose a flow level description of demands through the single column
matrix:

4.2. Network Model Notation 55

D =

d1

d2

...
dQ

 (4.2)

with entry dq being the traffic value requested for the node pair q, for 1 ≤ q ≤ Q

Path Flows

The optimal dimensioning of the network with respect to an objective function given by
the operator would make use of multiple paths connecting every pair of nodes. Each path
in the set of paths between a particular source and destination is allocated a proportion
of the demand for that node pair. The proportion of flow allocated to each path is also a
result of the layout optimization. Figure 4.1 shows the path flows and their relationship
to the demands and the link capacities. We can easily see that the total amount of flow
allocated to the set of paths connecting a given pair of nodes must equal the demand for
that pair of nodes; this equality gives rise to the demand constrain in the mathematical
problem formulation. In the same way, we can see that a given link is traversed by paths
connecting different pair of nodes, so the sum of flow allocated to each of such paths must
be less or equal the capacity of that link; this inequality gives rise to the capacity constraint
in the mathematical problem formulation.

b2
(2,3)

b1
(2,3)

1

2

9

3

6

7

Aubervilliers

St. Lambert

Montsouris

Rennes

6

5

2

1

3

16

20

18

13

14

15

4
17

19

8

7

d(7,1)

d(7,2)

d(7,3)

d(7,6)

d(2,1)

d(2,3)

d(2,6)

d(2,7)

d(3,1)

d(3,2)
d(3,6)

d(3,7)

d(1,2)

d(1,3)

d(1,6)

d(1,7)

d(6,1)

d(6,2)

d(6,3)

d(6,7)

demands

b1
(7,1)

b2
(7,1)

b3
(7,1)

∑ =
=

3

1)1,7()1,7(k
kbdDemand

Constraint

k
q

Q

q

K

k

k
q abx

q

19,
1 1

19 ∑∑
= =

= Capacity
Constraint

VTHD Network fragment (www.vthd.org)

Figure 4.1: Path Flows: Relationship to Demands and Link Capacities

56
4. Contribution to the Dimensioning of MPLS Networks: Design of Reduced

Complexity Layouts

Formally, let the flow assigned to path akq be denoted by bkq . The single column matrix
representing the path flows is:

B =

b11
...
bK1
1
...

b1Q
...

b
KQ

Q

(4.3)

Let us define R = (rq,i) the Q×K commodity-path incidence matrix, where entry rq,i = 1
if i lies in the interval [K1 +K2 + . . .+Kq−1 +1,K1 +K2 + . . .+Kq−1 +Kq] and 0 otherwise,
for 1 ≤ q ≤ Q and 1 ≤ i ≤ K. We assume no flow loss, hence the sum of the flows for the
Kq paths connecting the node pair q must satisfy the demand dq, for all 1 ≤ q ≤ Q:

R ·B = D (4.4)

Let xi be the value of the total flow traversing link i, for 1 ≤ i ≤M , and let X be the single
column matrix representing the M dimensional vector of total flows for all links:

X = A ·B (4.5)

4.3. Building the Cost Functions

The cost of operation for large networks is related to the layout complexity [16]. We define
complexity as the number of paths necessary to transport a given demand matrix D. In-
deed, the operations and maintenance costs are related to the quantity of paths to establish
when setting up the layout and then maintained once the layout is in place. Traditionally,
objectives for layout optimization consider the minimization of some measure of network
performance. Functions of total cross network delay or link load [22, 23, 24] are generally
proposed as objectives for layout optimization. Layouts obtained with these objectives will
distribute the flows on the paths so as to equalize the loads on the links, resulting in a low
delay variation from link to link. Models proposing those objective functions assume a cost
proportional to the use of the capacity, which is not realistic in terms of operations and
management costs from an operator’s standpoint. As we discussed in previous chapters,
the cost of capacity deployment is already considered in the capacity planning phase. We
are focusing on the dimensioning of the network (i.e. the obtention of a layout and flow
allocations) given the physical topology.

4.3. Building the Cost Functions 57

To minimize OAM costs we need to take into account some function of layout complexity,
provided that the QoS guarantees given to the customers are always met. We introduce a
way to provide these QoS guarantees through constraints in the optimization problem in
section 4.4. The objective will be then to minimize a function of the general form:

Minimize

 Q∑
q=1

Kq∑
k=1

wkqh
k
q

 (4.6)

where hqk is a binary variable indicating if the corresponding path akq is in use or not. We
define H as a single column matrix, whose entries hkq are defined as follows:

hkq =

1 if bkq > 0

0 otherwise
(4.7)

The objective function of the form given in (4.6) will minimize the weighted sum of the bi-
nary variables. The weight associated to each path represents then the cost that the set-up
of such path has for the operator. The way in which such weights are defined can be used
by the operator to fine tune the cost structure of the network OAM.

If the path weights are independent of the path flow, the layouts optimizing the objective
function (4.6) will tend to concentrate the flow on fewer paths. One of the consequences
of this result is that experienced end-to-end delay along the different paths connecting any
given pair of nodes will exhibit a great dispersion from the average for that group of paths.
If a packet-based routing strategy is to be used, this dispersion will produce a high rate
of resequencing at the end nodes, since IP packets using paths with different end-to-end
delay will not arrive in order to the destination. If a flow-based routing strategy is to be
used, the need for resequencing is minimized, since packets belonging to the same flow will
traverse the same path. In order to minimize the dispersion in the end-to-end path delay
on the layout, we propose an alternative objective function, which makes appear a second
term taking into account the total cross network delay:

Minimize

α Q∑
q=1

KQ∑
k=1

wkqh
k
q + β

Q∑
q=1

Kq∑
k=1

hkq

M∑
i=1

λakq,i
Ci − xi

 (4.8)

Assuming that it is appropriate in our model to approximate the link delay1 by an M/M/1
queueing system [30], the second term in 4.8 will produce layouts which tend to equalize
the load distribution through the network, while keeping the complexity low. The factors α

1Neglecting packetization and transmission delays

58
4. Contribution to the Dimensioning of MPLS Networks: Design of Reduced

Complexity Layouts

and β help us in controlling the relative importance of each term in the objective function,
and λ is the average packet size. Indeed, as we expressed in section 4.2, we are assuming
that a Poisson process is a good model for the flow arrival process. At the same time, as
the dimensioning refers to the network core, the flows are seen at an aggregate level. The
hypotheses to apply the Kleinrock independence approximation for each link delay then
hold2.

Path Weights

The weights wkq associated with each path can be used by the operator to fine tune the
cost structure of the path layout. For instance, setting the weights on a hop-count basis,
the operator can introduce the fact that setting up shorter paths is less expensive for its
management and maintenance cost structure than setting up paths with longer hop-counts:

wkq =
M∑
i=1

akq,i k = 1, . . . ,Kq; q = 1, . . . , Q (4.9)

In particular, hop-count based weights minimize a function of the number of used links.
Setting all the weights to 1 minimizes the total number of paths. Operators having different
cost structures might use these weights to represent their own operational costs. In what
follows, we use (4.9) to calculate the weights associated to each path. As results show,
minimizing the total number of links, indirectly minimizes the total number of used paths,
and we assure at the same time that shortest paths (in terms of hops) are taken first.

4.4. Setting QoS Guarantees

If no performance measures are included in the objective function, we need a way to ensure
that QoS guarantees are met. These guarantees will then be introduced in the problem
formulation as constraints. Those constraints ensure that no path will exceed a flow al-
location on component links that violates the required QoS objectives. We are interested
in providing two types of QoS guarantees: throughput and end-to-end delay. The demand
constraints ensure that enough bandwidth is allocated to the set of paths connecting any
given pair of nodes, so as to guarantee the throughput for that node pair. Identifying a
commodity with all the demand for the node pair q, the bandwidth guarantee is given for
the total demand dq:

dq =
Kq∑
k=1

bkq (4.10)

2Assuming packet sizes exponentially distributed, a densely connected network and moderate to heavy load

4.4. Setting QoS Guarantees 59

Paths in this context will then be identified as transporting an aggregate of traffic, and guar-
antees are given for that aggregate. A discussion about different alternatives on guarantees
for multiple classes of service (both absolute and relative) is given in section 4.7.

Guarantees for delay are given through the end-to-end path delay constraints. Any given
path in the set of paths connecting a given node pair q, which has an allocated path flow
bkq > 0, cannot exceed a given end-to-end maximum allowed delay θq:

hkq

M∑
i=1

λakq,i
Ci − xi

≤ θq (4.11)

for all the paths in the set k = 1, . . . ,Kq connecting the node pair q. Again, this guarantee
is given for any packet of the aggregate dq traversing any path connecting the node pair q.
A discussion about separate guarantees given for different classes of service on the aggregate
dq is given in section 4.7.

It is important to note here that the end-to-end path delay constraint should be applied
to used paths only (i.e. paths with a positive flow allocation). Indeed, the path delay for
a given commodity not only depends on the value of its own traffic, but also on the traffic
issued by all the other paths sharing the same links, as can be seen in an example depicted
in Figure 4.2, and Table 4.1.

1 2

3

b �

�

b �

�b �

�

b �

�

1

2 3

d �

d �

d �

d �

d �

d �

Figure 4.2: Example on the importance of avoiding path-delay constraints on unused paths

In the referred example, packets sent along the path a2
1 would see a total delay of 18.18

msec., which is greater than the maximum allowed delay θ1 = 10 msec. This violated
constraint will prevent paths a1

2 and a1
3 from being able to carry the corresponding flows to

meet the demands. If no path delay constraint is imposed on unused paths, both a1
2 and

a1
3 will be able to carry the flows b12 and b13 to meet the demands without violating any

constraint.

60
4. Contribution to the Dimensioning of MPLS Networks: Design of Reduced

Complexity Layouts

commodities

q (s, d) dq(bps) θq(msec)

1 (1, 2) 890 10

2 (1, 3) 890 10

3 (3, 2) 890 10

links

link Ci(bps) xi(bps)

1 1000 890

2 1000 890

3 1000 890

paths

ak
q links bk

q (bps) τk
q (msec)

a1
1 1 890 9.09

a2
1 2, 3 0 18.18

a1
2 2 890 9.09

a1
3 3 890 9.09

τk
q is the calculated end-to-end path delay

for path ak
q

Table 4.1: Example on the importance of avoiding path-delay constraints on unused paths

4.5. Formulation: Minimum Path Set and Flow Allocation Problem (MPSFAP)

Given the network physical topology and the traffic matrix, the problem is to find a set
of paths and the flow allocation over those paths in order to optimize a cost objective,
complying to some QoS constraints. In this section we formulate the problem of designing
the optimal layout w.r.t. the complexity of the layout (as defined in section 4.3, while
meeting some QoS guarantees (i.e. end-to-end path delay and available bandwidth per
node pair). The Network Design Multicommodity Flow Allocation Problem in its matrix
form is stated as follows:

MPSFAP 1
Minimum Path Set and Flow Allocation Problem

Given:

A,C,D,Θ,∆,W

minimize :

tW ·H (4.12)

subject to:

X = A ·B ≤ C (4.13)
R ·B = D (4.14)

hkq

M∑
i=1

λakq,i
Ci − xi

≤ θq k = 1, . . . ,Kq; q = 1, . . . , Q (4.15)

bkq ≤ hkqδq k = 1, . . . ,Kq; q = 1, . . . , Q (4.16)

hkq ∈ {0, 1} k = 1, . . . ,Kq; q = 1, . . . , Q (4.17)

bkq ≥ 0 k = 1, . . . ,Kq; q = 1, . . . , Q (4.18)

4.5. Formulation: Minimum Path Set and Flow Allocation Problem
(MPSFAP) 61

where Θ is the column matrix containing the maximum tolerable delay θq for each com-
modity dq and ∆ is the column matrix containing the maximum flow δq acceptable on one
path for the commodity dq.

Similarly, we can define a problem MPSFAP 2 using the objective function (4.8) to take
care of the flow distribution in the layout:

MPSFAP 2
Minimum Path Set and Flow Allocation Problem Considering Flow Distribution

Given:

A,C,D,Θ,∆,W

minimize :

α tW ·H + β

Q∑
q=1

Kq∑
k=1

hkq

M∑
i=1

λakq,i
Ci − xi

(4.19)

subject to:

X = A ·B ≤ C (4.20)
R ·B = D (4.21)

hkq

M∑
i=1

λakq,i
Ci − xi

≤ θq k = 1, . . . ,Kq; q = 1, . . . , Q (4.22)

bkq ≤ hkqδq k = 1, . . . ,Kq; q = 1, . . . , Q (4.23)

hkq ∈ {0, 1} k = 1, . . . ,Kq; q = 1, . . . , Q (4.24)

bkq ≥ 0 k = 1, . . . ,Kq; q = 1, . . . , Q (4.25)

Constraints (4.13)/(4.20) and (4.15)/(4.22), both impose limitations in the usable capacity
on each link. However, the constraints (4.15)/(4.22) are more restrictive in the sense that
solutions meeting these constraints, will also meet the constraints (4.13)/(4.20) for all links.
We keep all constraints in our formulation for clarity, but they will be automatically simpli-
fied in the presolve phase of the solvers. The additional constraints (4.16)/(4.23) are useful
to prevent paths for a given commodity to take all the available capacity of a particular link
(e.g. if we want to make possible to share a critical link among paths connecting different
node pairs and provide bandwidth guarantees for each path), or to somewhat control a
priori the load sharing granularity when designing the layout (i.e. we know that each path
for commodity dq will not transport more than δq units of bandwidth).

In section 4.6 we compare results obtained for both MPSFAP 1 and MPSFAP 2 for small

62
4. Contribution to the Dimensioning of MPLS Networks: Design of Reduced

Complexity Layouts

networks.

4.6. Preliminary Results on MPSFAP and Model Validation

The MPSAFP problems are network design multicommodity flow problems, since the binary
variables hkq make decisions on whether a path is to be included in the solution or not, and
the continuous flow variables bkq indicate the quantity of flow to be allocated to each of the
selected paths. The MPSFAP 1 problem can be seen as solving two related problems at
the same time: one 0-1 network design problem as only the binary variables are present
in the objective function, and a constraint satisfaction problem on the path flow variables.
The set of paths is given through the arc-path incidence matrix A. The commodity-path
incidence matrix R indicates which of those paths connect what node pairs. The resulting
MPSFAP are Mixed Integer Non-Linear Programming (MINLP) problems, since they have
a combination of integer (hkq) and continuous (bkq) variables, and a set of linear and non-
linear constraints.

Constrained global optimization is NP-complete, because it takes exponential time to ver-
ify whether a feasible solution is optimal or not for a general constrained NLP [32, 33].
Besides, the MPSFAP problems lie in the category of general MINLP problems, which are
NP-complete [34, 35]. Even if we formulate the problem using piecewise linear constraints
for the path delay instead of the original non-linear constraints, the resulting MILP problem
is known to be also NP-complete. Replacing the non-linear constraints however is not prac-
tical in the context of the design of MPLS layouts, since we need to make no assumptions
on the underlying transport technologies, whenever they provide links with an associated
available capacity. The underlying transport infrastructure will then provide links with dif-
ferent capacities, leading to a different piecewise linear function for each possible capacity
value. This adds to the size of an already large and complex problem, relativizing the gains
obtained by formulating a MILP problem instead of a MINLP problem. We resort then to
heuristics to efficiently solve the MPSFAP problems in Chapter 5.

The MPSFAP problems are particularly difficult to solve due to their size and complex-
ity. We use a path formulation instead of a flow formulation in order to reduce the size
of the problem [14], but we pay the price of having an enormous set of variables. The
MPSFAP problems have two variables for each path: one integer variable representing the
decision variable of the network design problem, and one continuous variable representing
the amount of flow to allocate to that particular path in the constraint satisfaction prob-
lem (in particular for the MPSFAP 1 problem, which we consider the most interesting in
terms of practicality as we can safely assume flow-by-flow routing in the network core).
The quantity of variables is 2K, where K is the total number of paths connecting every

4.6. Preliminary Results on MPSFAP and Model Validation 63

pair of nodes (i.e. the number of rows in the arc-incidence matrix). The number of all
possible paths will typically be enormous, growing exponentially with the network size [14].
MPSFAP problems have Q demand constraints, M capacity constraints, and K path de-
lay constraints, in addition to the nonnegativity conditions imposed on the path flow values.

Due to the limitations imposed by the size of the problems to solve, we first obtain prelim-
inary results from a solver for small networks. The objective is to validate the model and
obtain a first insight on the results obtained in view of the heuristics to develop in the next
chapter.

4.6.1. Traffic Matrixes

Traffic demands are randomly generated according to the following method, which is in-
spired in the method described in [25]. A certain proportion p of the node-pairs are assigned
a demand flow following a random variable uniformly distributed within the interval [0, Cq

a],
where Cq is the total capacity available for connecting the node pair q if no traffic is flowing
through the network, and a is an arbitrary integer to help us in scaling the traffic intensity
when all node pairs are considered. Indeed, increasing a would produce traffic matrixes
with larger probability of being feasible solutions for a given network topology. To model
some degree of asymmetry in the network, we allow a proportion (1− p) of the node pairs
to have traffic demands uniformly distributed in the interval [0, CqY

a]. We define Y as the
ratio maxq{Cq}

minq{Cq} , which are the capacity of the best connected node pairs and the capacity of
the worst connected node pairs in the network respectively.

A set of 25 traffic matrixes are randomly generated for each of the test topologies described
in section 4.6.2.

4.6.2. Network Topologies

In order to study the problem and validate the model we resort to two small sized network
topologies, so that the size of the problem is tractable by known solvers in the domain.
The network topologies proposed are a 4-node network with 8 and 10 (directed) links re-
spectively. We denote these test topologies by NET1 and NET2. Figure 4.3 shows the
corresponding network topologies.

Link capacities for both networks are set to 2.5 Gbps for all links. NET1 has a total of
24 possible paths, generating a problem of 48 variables and 68 constraints (besides the
path flow positivity conditions and the simplifications in the presolve phase of the solver).
Similarly, NET2 has a total of 38 possible paths, generating a problem of 76 variables and

64
4. Contribution to the Dimensioning of MPLS Networks: Design of Reduced

Complexity Layouts

98 constraints. These problem sizes allow us to obtain preliminary results useful to evaluate
the interest of the proposed cost functions.

��� ��� �

2.5 Gbps

2.5 Gbps

2.5 Gbps

2.5 Gbps

�� ��� �

��� ��� � �� ��� �

(a) NET1

��� ��� �

2.5 Gbps

2.5 Gbps

2.5 Gbps

2.5 Gbps

�� ��� �

��� ��� � �� ��� �

2.5 Gbps

2.5 Gbps

(b) NET2

Figure 4.3: NET1 and NET2 Networks.

4.6.3. Reference Problem

One of the most used cost functions through the optimization literature is a measure of
network performance such as total delay in the network. We are interested in evaluating
the complexity of the layouts created with our proposed cost functions to the complexity of
layouts obtained with a cost function minimizing total delay in the network. We propose
then a reference problem which minimizes total cross network delay, and we will denote
this problem by Minimum Total Delay Flow Allocation Problem (MTDFAP). The proposed
objective for MTDFAP is to minimize:

Q∑
q=1

Kq∑
k=1

hkq

M∑
i=1

λakq,i
Ci − xi

(4.26)

for all pairs q = 1, . . . , Q, subject to the same constraints as defined for the MPSFAP
problems (4.13)(4.15)(4.14) for MPSFAP1, and (4.20)(4.22)(4.21) for MPSFAP2. MTDFAP
is also formulated as a MINLP problem. Unfortunately, the MTDFAP problem can not be
used to compare our results for larger networks using the proposed heuristics in Chapter 6
because of the size of the problem instances generated.

4.6.4. Interface to Solvers: Modeling Language

As a first approach to solving the MPSFAP problems, numeric solvers can help to get an
insight in the problem structure and complexity. A numeric solver can help also in validat-

4.6. Preliminary Results on MPSFAP and Model Validation 65

ing the problem formulations through the use of a formal mathematical modeling language
extensively used in the field of operations research. We have searched first for a suitable
solver, since they are generally adapted to a very narrow type of problem and particular
structures of the associated matrixes. We resorted to a well-known source of solver imple-
mentations, which makes available a set of solvers, categorized by problem type and input
interface: the NEOS server on the Internet [18, 37, 38].

The MINLP solver [19] available through NEOS server provides the solution of mixed in-
teger nonlinearly constrained optimization problems in AMPL format. MINLP is suitable
for large nonlinearly constrained problems with a modest number of degrees of freedom.
MINLP implements a branch-and-bound algorithm searching a tree whose nodes correspond
to continuous nonlinearly constrained optimization problems. The continuous problems are
solved using filterSQP [39], a Sequential Quadratic Programming solver which is suitable
for solving large nonlinearly constrained problems.

AMPL is a mathematical modeling language, which provides a standardized way of repre-
senting or modeling a problem. If we wanted to present a solver with a particular instance
of a problem, we would have to change the equation system (right hand side terms, quan-
tity of equations, coefficients in equations, etc.) according to each instance. If we used a
modeling language instead, we would present the solver with a model of the problem, which
describes its structure, and then the solver would be capable of instantiate every problem
according to the data associated. There are two common modeling languages widely used
in the operational research world: A Modeling Language for Mathematical Programming
(AMPL) [36], and General Algebraic Modeling System (GAMS) [84]. Solvers are increas-
ingly being developed to accept one or both of the input formats. The solver must then
implement an AMPL or GAMS compilator to create the problem instances with the asso-
ciated data presented at its input. Once the instance created (correctness of the model and
data is checked during compilation), the solver executes a presolve phase to detect whether
the problem can be simplified (constraints and variables eliminated or transformed). The
simplified problem is then passed to the solver.

4.6.5. Results and Analysis

Solutions for NET1 and NET2 for 25 traffic matrixes generated according to the model in
section 4.6.1 are obtained from the exact (deterministic) MINLP solver available through
the NEOS server. Solution for MPSFAP1 and MPSFAP2 problems are compared to the
solutions obtained for the MTDFAP problem using the same parameters and topologies.
Both MPSFAP1 and MPSFAP2 problems have associated path weights wkq set to the num-
ber of hops used by the path. Parameters are set to δq = 2.5 Gbps. (i.e. the path flows can

66
4. Contribution to the Dimensioning of MPLS Networks: Design of Reduced

Complexity Layouts

use up to the maximum available capacity in any link), end-to-end path delay limits θq are
set to 30 µsec. The factors α and β are set to 1 for the MPSFAP2 problem. The set of 25
traffic matrixes are generated with parameters a = 3 and a = 4 for the NET1 network; and
a = 5 and a = 6 for NET2 network. In all cases, we use p = 0.2, meaning that 20% of node
pairs are allowed demands up to Y = 1 (there are exactly 2 possible paths connecting every
pair of nodes in NET1) times larger for NET1 and Y = 1.33 (there are some node pairs
connected through 2 paths and some connected through 3 paths in NET2) times larger for
NET2.

NET1 - Hops and Paths

Matrix

a = 4 / p = 0.2 a = 3 / p = 0.2

MTDFAP MPSFAP1 MPSFAP2 MTDFAP MPSFAP1 MPSFAP2

Paths Hops Paths Hops Paths Hops Paths Hops Paths Hops Paths Hops

1 12 16 12 16 12 16 14 20 12 16 12 16

2 12 16 12 16 12 16 12 16 12 16 12 16

3 12 16 12 16 12 16 13 18 12 16 12 16

4 13 18 12 16 12 16 I I I I I I

5 12 16 12 16 12 16 12 16 12 16 12 16

6 13 18 12 16 12 16 I I I I I I

7 12 16 12 16 12 16 13 18 13 18 13 18

8 13 18 12 16 12 16 13 18 13 18 13 18

9 13 18 12 16 12 16 14 20 14 20 14 20

10 12 16 12 16 12 16 13 18 13 18 13 18

11 12 16 12 16 12 16 13 18 12 16 12 16

12 12 16 12 16 12 16 14 20 13 18 13 18

13 12 16 12 16 12 16 13 18 12 16 12 16

14 12 16 12 16 12 16 12 16 12 16 12 16

15 12 16 12 16 12 16 12 16 12 16 12 16

16 12 16 12 16 12 16 I I I I I I

17 12 16 12 16 12 16 12 16 12 16 12 16

18 12 16 12 16 12 16 13 18 12 16 12 16

19 13 18 12 16 12 16 13 18 12 18 13 18

20 12 16 12 16 12 16 13 18 12 16 12 16

21 12 16 12 16 12 16 I I I I I I

22 12 16 12 16 12 16 13 18 12 16 12 16

23 12 18 12 16 12 16 I I I I I I

24 12 16 12 16 12 16 12 16 12 16 12 16

25 12 16 12 16 12 16 13 18 12 16 12 16

Averages 12.20 16.40 12.00 16.00 12.00 16.00 12.85 17.70 12.30 16.70 12.35 16.70

Table 4.2: Quantity of Hops and Paths for MTDFAP, MPSFAP1 and MPSFAP2 Problems
with NET1 Network

Table 4.2 and Table 4.3 show the quantity of hops and paths in the solution for the MTD-
FAP, MPSFAP1 and MPSFAP2 problems for NET1 and NET2 respectively. In both tables,
the value I indicates an integer infeasible problem as declared by the solver. A set of 25
demand matrixes is generated for each of two load situations, corresponding to mild and
heavy load. For NET1 a mild load condition is found with a = 4 (all problems feasible), and
heavy load with a = 3 (20% of the matrixes resulted in infeasible problems). For NET2, a
mild load condition is found with a = 6 (all problems feasible), and a heavy load is found
with a = 5 (24% of the problems infeasible). After problem simplification (presolve) all the
problem instances for NET1 generated a total of 48 linear variables, 24 linear constraints
and 44 non-linear constraints, while the problems instances for NET2 generated a total of
76 linear variables, 38 linear constraints and 60 non-linear constraints. The quantity of
variables and constraints generated by these simple network topologies give us a taste of

4.6. Preliminary Results on MPSFAP and Model Validation 67

the complexity of the problem larger networks would generate.

The time consumed at the solver server for all problem formulation and all instances of
NET1 is under 10 seconds, while the time consumed for NET2 under the same conditions
is higher than 100 seconds. We see a time increase of about 10 times when adding a pair of
links in the topology (increasing from 24 to 38 possible paths).

Results for NET1 in Table 4.2 show that the number of hops in the layouts resulting
from MPSFAP1 and MPSFAP2 are always lower than those in the layouts obtained from
MTDFAP. Under a mild load (a = 4), MPSFAP1 and MPSFAP2 use in average 2.5% less
total hops than MTDFAP. When the load increases (a = 3), MPSFAP1 and MPSFAP2 use
a 5, 99% less total hops than MTDFAP. Looking at the quantity of paths, results show that
for mild load MPSFAP1 and MPSFAP2 produce layouts with 1.67% less paths than those
produced by MTDFAP, while for heavy load MPSFAP1 and MPSFAP2 produce layouts
with around 4.5% less paths than those produced by MTDFAP.

a=4 / p=0.2

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrixes

m
ic

ro
se

c.

Avg Path Delay - MTDFAP
Avg Path Delay - MPSFAP1
Avg Path Delay - MPSFAP2

(a) a = 4

a=3 / p=0.2

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrixes

m
ic

ro
se

c.

Avg Path Delay - MTDFAP
Avg Path Delay - MPSFAP1
Avg Path Delay - MPSFAP2

(b) a = 3

Figure 4.4: Average End-to-end Path Delay for NET1

At first sight, both MPSFAP1 and MPSFAP2 produce layouts with the same quantity of
hops and paths. Figure 4.4 shows the average end-to-end path delay for mild and heavy
load situations. Figure 4.5 shows the maximum end-to-end path delay obtained for every
matrix on the set for mild and heavy load situations.

Average end-to-end delay on paths in layouts produced by MPSFAP1 are noticeably higher
than those on paths produced by MTDFAP, and the difference increases with the load.
Average end-to-end delay on paths in layouts produced by MPSFAP2 are closer to those on
paths in layouts produced by MTDFAP. Correspondingly, we see that a higher number of
paths reach the maximum allowed end-to-end delay for MPSFAP1 when the load increases,
while paths in layouts produced by MPSFAP2 and MTDFAP rarely reach the maximum

68
4. Contribution to the Dimensioning of MPLS Networks: Design of Reduced

Complexity Layouts

a=4 / p=0.2

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrixes

m
ic

ro
se

c.

Max Path Delay - MTDFAP
Max Path Delay - MPSFAP1
Max Path Delay - MPSFAP2

(a) a = 4

a=3 / p=0.2

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrixes

m
ic

ro
se

c.

Max Path Delay - MTDFAP
Max Path Delay - MPSFAP1
Max Path Delay - MPSFAP2

(b) a = 3

Figure 4.5: Maximum End-to-end Path Delay for NET1

allowed end-to-end delay (delay constraint).

NET2 - Hops and Paths

Matrix

a = 6 / p = 0.2 a = 5 / p = 0.2

MTDFAP MPSFAP1 MPSFAP2 MTDFAP MPSFAP1 MPSFAP2

Paths Hops Paths Hops Paths Hops Paths Hops Paths Hops Paths Hops

1 13 16 12 14 12 14 13 16 13 16 13 16

2 14 19 12 15 12 15 I I I I I I

3 12 15 12 14 12 14 12 15 12 14 12 14

4 13 16 12 14 12 14 13 16 13 16 13 16

5 13 16 12 14 12 14 14 18 13 16 13 16

6 12 16 12 15 12 15 I I I I I I

7 12 14 12 14 12 14 12 14 12 14 12 14

8 12 14 12 14 12 14 13 16 12 14 12 14

9 12 16 12 15 12 15 I I I I I I

10 14 18 12 15 12 15 I I I I I I

11 12 16 12 15 12 15 13 17 12 16 12 16

12 12 14 12 14 12 14 13 16 12 14 12 14

13 12 14 12 14 12 14 13 17 12 14 12 14

14 13 17 13 16 13 16 I I I I I I

15 12 16 12 15 12 15 13 18 12 15 12 15

16 12 14 12 14 12 14 12 14 12 14 12 14

17 12 16 12 14 12 14 12 16 12 15 12 15

18 13 16 12 14 12 14 13 16 13 16 13 16

19 12 15 12 15 12 15 13 18 12 15 12 15

20 12 14 12 14 12 14 12 14 12 14 12 14

21 13 18 12 15 12 15 14 20 14 19 14 19

22 12 16 12 14 12 14 12 16 12 15 12 15

23 13 16 12 15 12 15 13 16 13 16 13 16

24 12 16 12 14 12 14 13 17 12 15 12 15

25 14 18 14 18 14 18 I I I I I I

Averages 12.52 15.84 12.12 14.60 12.12 14.60 12.79 16.32 12.37 15.16 12.37 15.16

Table 4.3: Quantity of Hops and Paths for MTDFAP, MPSFAP1 and MPSFAP2 Problems
with NET2 Network

Results in Table 4.3 show similar trends as results for NET1 in all three problems. In this
case, the savings in quantity of hops is of about 8% for MPSFAP1 and MPSFAP2 in all
load situations. Similarly, the savings in quantity of paths is of about 3.5% under the same
conditions. Figures 4.6 and 4.7 show the average and maximum end-to-end delay for NET2
respectively on paths in layouts obtained with MTDFAP, MPSFAP1 and MPSFAP2 under
mild and heavy load conditions.

4.6. Preliminary Results on MPSFAP and Model Validation 69

a=6 / p=0.2

0,00

2,00

4,00

6,00

8,00

10,00

12,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrixes

m
ic

ro
se

c.

Avg Path Delay - MTDFAP
Avg Path Delay - MPSFAP1
Avg Path Delay - MPSFAP2

(a) a = 6

a=6 / p=0.2

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrixes

m
ic

ro
se

c.

Avg Path Delay - MTDFAP
Avg Path Delay - MPSFAP1
Avg Path Delay - MPSFAP2

(b) a = 5

Figure 4.6: Average End-to-end Path Delay for NET2

a=6 / p=0.2

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrixes

m
ic

ro
se

c.

Avg Path Delay - MTDFAP
Avg Path Delay - MPSFAP1
Avg Path Delay - MPSFAP2

(a) a = 6

a=5 / p=0.2

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrixes

m
ic

ro
se

c.

Avg Path Delay - MTDFAP
Avg Path Delay - MPSFAP1
Avg Path Delay - MPSFAP2

(b) a = 5

Figure 4.7: Maximum End-to-end Path Delay for NET2

These results suggest that when the network size increases, the savings in quantity of hops
and paths can be more significative, encouraging the development of heuristics which would
allow us to obtain layouts minimizing complexity for larger networks in order to realize op-
eration and maintenance cost savings. The reason for the increase in savings when network
density increases is quite obvious: a denser network presents more paths connecting every
pair of nodes. As MTDFAP tries to minimize the total delay in the network, the optimal
solution would be to use as much paths as possible, charging each path to a minimum so
as to make the delay on each path as low as possible, the limit given by the critical links,
which will set the lower bound delays on any path traversing them. Results also show that
even when the objective function aims at minimizing the total number of hops in the layout
through the choice of the path weights defined in equation (4.9), the number of total paths
gets also minimized.

70
4. Contribution to the Dimensioning of MPLS Networks: Design of Reduced

Complexity Layouts

4.7. Extensions for Multiple Classes of Service

In section 4.4 we defined a commodity as an aggregate of traffic to be transported from node
m to node n. As such, all packets belonging to the same aggregate are transported through
the set of paths connecting the corresponding node pair, all receiving the guarantees given
for that set of paths. If classes of service (CoS) are considered within each aggregate, then
we need to do something in order to individually meet the QoS guarantees for each CoS on
each path. As discussed in chapter 3, we have two approaches to solve this issue. The first
approach will still consider a commodity as all the traffic to be transported from node m
to node n. In this case, the problem stays the same as before, where we need to establish
the optimal layout for a given set of demands, and the QoS guarantees are globally met
for all classes of services on each path through the constraints introduced in the MPSFAP
problems. Individual relative guarantees could be given to each individual CoS within each
path through service differentiation mechanisms (e.g. using Diffserv-aware LSPs). The sec-
ond approach considers instead all the traffic aggregate for a single class of service to be
transported between node m and node n as a commodity. Here, each path in the set of
paths connecting a given node pair will transport a fraction of the traffic of a single CoS
demanded between that node pair, so that individual QoS guarantees can be given to each
CoS for each node pair.

The first approach is trivial from the point of view of problem formulation. The second
approach needs a little bit of work to extend the model to multiple classes of service. In
this section, we present the model extensions needed to formulate MPSFAP for multiple
classes of service. It is worth noting that the extended problem will generate even larger
instances than those generated for a single class in a particular network topology. This
makes the development of heuristics even more interesting in the context of dimensioning
IP next generation networks, where service differentiation and individual QoS guarantees
are a strong requirement.

Formally, let us suppose that each pair q has now a demand composed of one or more
service classes. Each pair can now originate and terminate more than one commodity. Let
us extend the demand matrix to include a column for each class l indexed 1, . . . , L. The
demand is now represented by a matrix D:

D =

d1,1 . . . d1,L

d2,1 . . . d2,L

...
...

...
dQ,1 . . . dQ,L

 (4.27)

4.7. Extensions for Multiple Classes of Service 71

The path flow matrix B is now modified to include the flow associated to each class of
service:

B =

b11,1 . . . b11,L
...

...
...

bK1
1,1 . . . bK1

1,L
...

...
...

b1Q,1 . . . b1Q,L
...

...
...

b
KQ

Q,1 . . . b
KQ

Q,L

(4.28)

The weight matrix W, is here a K × L matrix containing the weights associated to the
paths connecting a pair q for a given commodity dq,l. Calculating the weights for MPSFAP
using (4.9) will produce equal path weights for all classes of service demanded between a
given pair. Economic factors and particular service needs can be introduced through the
choice of path weights (e.g. shortest paths in terms of number of hops would be preferred
for classes associated with real time service). Accordingly, the matrix H is extended to
indicate whether a given path akq is used (entry hkq,l = 1) or unused (entry hkq,l = 0) by the
commodity dq,l. Similar extensions are made to the matrixes Θ and ∆. X must now be
calculated as A · B · 1lL, where 1lL is a L-dimensional column matrix with all its entries
set to 1. MPSFAP is extended to a Minimum Path Set and Flow Allocation Problem with
Multiple Classes of Service (MPSFAPQ).

A MPSFAPQ1 problem can be then defined, where W(l) and H(l) are the l column of the
corresponding matrixes W and H. Similarly, δq,l is a limit in the quantity of flow acceptable
on one path for a given commodity. As before, constraints (4.33) impose a limit on any path
to the quantity of flow for a particular CoS and node pair. When dimensioning for multiple
classes of service, traffic engineering can benefit of imposing such constraints in order to
achieve the planified bandwidth limits for each class on critical links. The formulation in
MPSFAPQ is compatible with the Diffserv aware traffic engineering in MPLS [11].

A MPSFAPQ2 problem can be similarly defined to take care of the delay variation among
paths transporting the same commodity. The objective function (4.8) can be then extended
to include multiple classes of service:

Minimize

α Q∑
q=1

KQ∑
k=1

L∑
l=1

wkq,lh
k
q,l + β

Q∑
q=1

Kq∑
k=1

L∑
l=1

hkq,l

M∑
i=1

λakq,i
Ci − xi

 (4.36)

72
4. Contribution to the Dimensioning of MPLS Networks: Design of Reduced

Complexity Layouts

MPSFAPQ 1
Reduced Complexity Layout with End-to-End Delay Guarantees - QoS Extension: Multiple
Classes of Service

Given:

A,C,D,Θ,W

minimize :

L∑
l=1

tW(l) ·H(l) (4.29)

subject to:

A ·B · 1lL ≤ C (4.30)
R ·B = D (4.31)

hkq,l

M∑
i=1

λakq,i
Ci − xi

≤ θq,l l = 1, . . . , L; k = 1, . . . ,Kq; q = 1, . . . , Q (4.32)

0 ≤ bkq,l ≤ hkq,lδq,l l = 1, . . . , L; k = 1, . . . ,Kq; q = 1, . . . , Q (4.33)

hkq,l ∈ {0, 1} l = 1, . . . , L; k = 1, . . . ,Kq; q = 1, . . . , Q (4.34)

bkq,l ≥ 0 l = 1, . . . , L; k = 1, . . . ,Kq; q = 1, . . . , Q (4.35)

4.8. Conclusions

The problem of obtaining optimal routing schemes is a well known issue in the field of net-
work flow problems with application to communication and transport networks. In those
contexts, the usual objectives are related to the use of paths in order to globally ensure
a minimum congestion when transiting the network. When dealing with telecommunica-
tion networks such objectives are usually kept. Given that in a pure IP environment it is
practically impossible to find a unique metric allowing to implement a fully optimal general
routing scheme using a routing protocol [40], we resort to source routing schemes. In par-
ticular, layouts established as MPLS LSPs allow the implementation of any general optimal
routing. Paths are calculated and established by the management system. However, while
a minimum congestion layout is a common optimal routing objective, it is not representa-
tive of the cost of operations and maintenance incurred by an operator when establishing
a given routing scheme through a source routed layout. With this in mind, from a set of
layouts capable of transporting a given demand within certain QoS bounds given by the
underwritten service contracts, an operator would chose those which guarantee a minimum
cost for their operational structure.

4.8. Conclusions 73

A first contribution in our work is the definition of a minimum complexity layout as the
optimization objective. Whenever the QoS guarantees are met, considering the operator’s
objectives, the optimal layout is the one which minimizes the quantity of elements to man-
age during operation: the quantity of links and paths that the layout globally uses to
transport a given demand. Important work on the subject consider the optimization of
congestion based objective functions without considering end-to-end QoS guarantees (such
as path-delay), both in the on-line and off-line contexts [15, 22, 23, 45, 46, 47]. The main
interest being the development of algorithms and heuristics to solve the resulting complex
problem. End-to-end path delay constraints have been considered so far in the context of
multiconstrained route selection [48], routing from one source to all destinations [49, 50],
or optimizing virtual circuit layouts [24], but the cost functions still consider congestion
based objectives, and the path-delay is generally modelled as a hop-count constraint. The
issue of layout complexity for MPLS layouts has particularly been addressed in [88], where
restrictions to the number of paths allowed to traverse any given link are imposed as a way
of reducing the quantity of labels needed at every hop. The resulting problem can be formu-
lated as a MIP (Mixed Integer Linear Program), as the end-to-end path delay constraints
are not included. This allows to exactly solve large instances of the problem by techniques
such as Lagrangean Decomposition. The definition of end-to-end path delay constraints
as bundling constraints in the problem formulation constitutes the second contribution in
our work, as the end-to-end path delay associated to hop-count is not realistic in the con-
text of MPLS networks as it is in the context of optical network design due to its coarse
bandwidth granularity and broadband nature. However, some simplifications in the path
delay constraints are necessary to implement suitable heuristics, as we describe further in
Chapter 5. As discussed, the non-linearities in our problem formulation are introduced by
the end-to-end path delay constraints, which constitute one of the main contributions in
our work. We could try to linearize the non-linear constraints in order to be able to apply
Lagrangean Decomposition. To do so, we would need to linearize a large number of delay
constraints, as a different piecewise linear function is needed for each different capacity.
Although this is possible to do, we prioritize then the choice of offering a fine granularity
to the layout design, and then we need to develop the heuristic methods presented in next
chapter to approximately solve the problem for large networks.

5. Contribution to the Development of Heuristics for Solving the

Minimum Path Set and Flow Allocation Problems (MPSFAP)

5.1. Exact Methods for Solving MINLP Problems

The Minimum Path Set and Flow Allocation Problems (MPSFAP) are formulated in Chap-
ter 3 as Mixed-Integer Non-Linear Programming (MINLP) problems. MINLP problems are
NP-complete, what makes its resolution intractable for large instances. For computation-
ally tractable problem sizes, exact or deterministic algorithms can be used to find optimal
solutions. When the problem size becomes larger, we must resort to heuristic methods,
which yield approximated optimal solutions. Deterministic algorithms use implicit enu-
meration and tree search rules, with evaluation techniques to determine whether a given
solution is optimal or not. Deterministic algorithms commonly used for exact solution of
MINLP problems range within one of the following types:

Branch and Bound (B&B)

The B&B algorithm for MINLP problems [51, 52] is based on the same ideas as B&B for
solving MILP problems. The first step is to solve the problem generated by relaxing the
integrality condition on the variables. If the solution of that problem fulfils all integrality
conditions the whole problem is solved. Otherwise, in a minimization problem the relaxed
problem provides a lower bound (of course only if the global minimum can be determined)
and the search tree is built up. A feasible integer solution provides an upper bound. A
major drawback of B&B applied to MINLP problems is that nodes deeper in the tree cannot
benefit so greatly from information available at previous nodes as is the case in MILP B&B
using the dual simplex algorithm. A variant of B&B method called Extended Cutting Plane
(ECP) [57] does not solve the NLP subproblems. Instead, it relies exclusively on successive
linearizations.

Generalized Benders Decomposition (GBD)

Generalized Benders Decomposition [53] divides the variables into two sets: complicat-
ing and non-complicating variables. In MINLP models the class of complicating variables
is made up by the discrete (usually binary) variables. Then the algorithm generates a
sequence of NLP sub-problems (produced by fixing the binary variables) and solves the

75

76
5. Contribution to the Development of Heuristics for Solving the Minimum

Path Set and Flow Allocation Problems (MPSFAP)

so-called MILP Master problems in the space of the complicating variables. The NLP sub-
problems yield upper bounds for the original problem while the MILP Master problems
yield additional combination of binary variables for subsequent NLP sub-problems. Under
convexity assumptions the Master problems generate a sequence of lower bounds increasing
monotonically. The algorithm terminates if lower and upper bounds equal or cross each
other.

Outer Approximation (OA)

Outer Approximation [54, 55] also consists of a sequence of NLP sub-problems produced by
fixing the binary variables generated by MILP Master problems. The significant difference is
how the Master problems are defined. Algorithms based on OA describe the feasible region
as the intersection of an infinite collection of sets with a simpler structure (e.g. polyhedra).
In OA the Master problems are generated by outer approximations (e.g. linearizations or
Taylor series expansions) of the nonlinear constraints in those points which are the optimal
solutions of the NLP subproblems (i.e. a finite collection of sets). The key idea is to solve
the MINLP with a much smaller set of points (i.e. tangential planes). In convex MINLP
problems, a superset of the feasible region is established. Thus, the OA Master problems
(MILP problem in both discrete and continuous variables) produce a sequence of increasing
lower bounds. The termination criterion is the same as in GBD.

The problem subclasses of MINLP, Mixed Integer Linear Programming (MILP) and Non-
Linear Programming (NLP), present different degrees of difficulty. MILP are combinatorial
problems for which branch and bound techniques with linear programming (LP) relaxation
is often proven to be sufficient. NLP problems can only be solved iteratively. NLP problems,
however are usually easier to solve than MILP problems. MINLP combines all the difficul-
ties of its subclasses, adding other difficulties of its own: while for convex NLP problems
the local minimum is identical to the global minimum, the same property does not hold for
convex MINLP problems; even when assuming convexity in the MINLP problem could be
useful, it constitutes no guarantee of finding a global minimum.

In recent years a new trend has emerged in the formulation and solution of mixed-integer
optimization problems: the Generalized Disjunctive Programming (GDP). The basic idea
behind GDP is to use boolean and continuous variables, and to formulate the problem with
an objective function and subject to three type of constraints: global inequalities inde-
pendent of integer decisions, disjunctions that are conditional constraints involving an OR
operator, and pure logic constraints that involve only the boolean variables. The interest in
this method resides in that it simplifies the problem formulation. Further details on GDP
are out of the scope of this thesis, as our focus is on models for network optimizations in

5.2. Meta-Heuristics: Tabu Search Methods 77

the context of dimensioning and reconfiguration, as well on heuristics allowing to obtain
good enough approximated solutions in times compatible with the dynamic control of the
network. However, it constitutes an interesting research direction for extending the present
work.

We have presented here some details about the deterministic methods and some well-known
algorithms to solve general MINLP problems. The MINLP solver used in Chapter 4 to ob-
tain results for the small network topologies NET1 and NET2 implement some of the above
described techniques [56]. The different methods used by the deterministic solvers lead in
general to the need of solving a large number of NLP subproblems when applied to the
MPSFAP formulated here, since the number of integer variables increases with the number
of paths, which grows exponentially with the size and density of the network. Linearizing
the constraints would help in reducing the NLP subproblems to LP subproblems (enabling
more efficient implementations of B&B for instance), but the number of subproblems to
solve would still be prohibitively large considering our objective. Our main interest lies
then in the development of algorithms implementing heuristics capable of avoiding the need
to solve such a large number of subproblems. It is worth noting that our main objective
however, is not to develop algorithms to improve existing methods and algorithms largely
studied and implemented in the field of operations research, but to find heuristics capable
of yielding good approximations to the optimal solution, which will allow us to study the
proposed problems. Two heuristic methods to intelligently explore the solution space with-
out solving a large number of subproblems are presented next. The first uses Tabu Search
(TS) techniques to explore the solution space, while the second modifies the well-know flow
deviation algorithm used in the classical literature [64, 31] and a particular implementation
[65] to solve our MINLP formulation of MPSFAP problems. In Chapter 8, a further im-
provement to the Modified Flow Deviation (MFD) algorithm produces solutions for large
networks for the dimensioning and reconfiguration problem defined in Chapter 7.

5.2. Meta-Heuristics: Tabu Search Methods

Optimization algorithms based on meta-heuristics have recently gained interest because
they are able to cope with problem instances of large size, overcoming the complexity issues
of most problems found in practical applications. Among others, Simulated Annealing (SA)
[58], Genetic Algorithms (GA) [59] and Tabu Search (TS) [60, 61] have been proposed to
tackle multicommodity flow problems. The computed solution however is not guaranteed
to be optimal. That is why it is necessary to check the accuracy of the solutions provided
by such a heuristic based algorithm and to compare them with exact solutions on small size
problems. A detailed description of the TS algorithm can be found in [60].

78
5. Contribution to the Development of Heuristics for Solving the Minimum

Path Set and Flow Allocation Problems (MPSFAP)

The TS basic idea consists in exploring the complex space of solutions until a defined num-
ber of iterations is reached or until a specific cost criterion is satisfied. The exploration
starts with an initial solution computed by another algorithm (e.g. an initial solution ran-
domly generated). At each iteration, TS computes a set or neighborhood of solutions derived
from the current solution via perturbations applied to this solution. All the solutions of the
neighborhood are evaluated (i.e. assigned a value according to a cost function) and the
best one is selected as the new current solution. In order to prevent the algorithm from
cycling along the same series of current solutions, a tabu list is maintained, which contains
a number of last visited solutions that cannot be chosen as long as they belong to this list.
This allows the algorithm to choose a solution worse than the current one, allowing it to
escape from the local minima possibly found during the search.

Formally, let N (s) be the neighborhood of a given solution s in the space of solutions S.
N (s) is obtained by applying an elementary transformation to s. The method can be viewed
as an iterative technique which explores a set of problem solutions by repeatedly moving
from one solution s to another solution s′ located in the neighborhood N (s) of s. The moves
aim at efficiently reaching a solution which qualifies as good (i.e. optimal or near-optimal)
with respect to some objective function f(s) to be minimized. Using classic descendant
methods to search the solution space (i.e. choosing a solution s′ for which f(s′) < f(s)) will
lead to get trapped in local minima for non-convex objectives; the local minima will depend
upon the way the initial point was generated. To avoid getting trapped in local minima, the
search procedure must allow some solution for which f(s′) > f(s), so as to explore different
regions of the solution space. But accepting a solution s′ that may be worse than s may
produce cycling. To avoid this, TS adds a memory of the visited solutions, forbidding the
search process to visit a solution which is in a tabu list of already evaluated solutions. The
concept of memory can be formally stated by saying that the neighborhood also depends on
the iteration, so we denote it now by N (s, j), being j the iteration in which s was visited.
We can now write a pseudo code with the general TS idea:

Generate an initial solution s ∈ S
s∗ := s
j := 0
while the stopping condition is not met do
j := j + 1
Generate V∗ ⊆ N (s, j)
Choose the best s′ in V∗
if f(s′) < f(s∗) then
s∗ := s′

end if
end while

Algorithm 5.1: Pseudo-code for the General Tabu Search Method

5.3. A Tabu Search Heuristic Approach Applied to the MPSFAP Problems 79

Practically, the concept of memory will be implemented through a tabu list T of already
visited solutions. There may be several possible stopping conditions, but the simplest would
be some logical combination of the following:

• An optimal solutions is found.

• N (s, j + 1) = ∅.

• k is greater than the maximum number of iterations allowed.

• The number of iterations performed since last s∗ changed is greater than a specified
maximum.

5.3. A Tabu Search Heuristic Approach Applied to the MPSFAP Problems

We restrict to the case of a single class of service to define the TS heuristics applied to the
MPSFAP problems [?]. The heuristics can easily be extended to multiple classes of service
as defined in MPSFAPQ problems in Chapter 4. Three problem-specific elements must be
defined to implement a particular TS heuristic for the MPSFAP problems1 [62]:

5.3.1. Initial Solution

An initial solution must be computed. For the MPSFAP problems, the initial layout is the
one obtained when taking the shortest path in terms of number of hops (although other
metrics could be used) for every pair of nodes. For each shortest path âq connecting node
q, the whole demand dq is assigned as path flow. The resulting layout can be feasible or
infeasible, and it will be evaluated according to the objective function described below2. A
solution s is defined in this context as a set of Q tuples or coordinates with Kq components:

s =
{(
b1q , . . . , b

Kq
q

)
: q = 1, . . . , Q

}
(5.1)

5.3.2. Perturbation mechanism

A perturbation mechanism is necessary to generate a neighborhood N (s) of the current
solution s. A neighbor solution s1 ∈ N (s) is calculated by randomly choosing a source-
destination pair q, and then rearranging some of the path flow values bkq . The way path
flows are changed for the node pair q is also random. The new flow distribution meets the

1The TS heuristics were developed in the context of the internship of V.Friderikos at the INFRES depart-
ment, Telecom Paris (ENST) (financed by the VTHD project [63]), co-directed by S.Beker and N.Puech.
Work based on a previous implementation due to T.Vergnaud

2The problem of obtaining a feasible layout is also NP-complete, and it can be viewed as the constraint
satisfaction subproblem in MPSFAP

80
5. Contribution to the Development of Heuristics for Solving the Minimum

Path Set and Flow Allocation Problems (MPSFAP)

demand constraints but not necessarily meets the link flow and path delay constraints. The
number of node pairs which are to have their path flows changed when generating each
neighbor is a parameter of the algorithm. The number of neighbors to generate from the
current solution is also a parameter of the algorithm. The first parameter, the number of
node pairs to have their path flows changed is a compromise between the aggressiveness of
the solution space exploration and the computation complexity of the algorithm. Hence,
the neighbor generation process leads to new candidate solutions that may be considered
as valid (i.e. solutions that meet all the constraints) or invalid (i.e. solutions that do not
meet the link flow or path delay requirements).

5.3.3. Evaluation Functions

A cost function f : S → R mapping elements in the solution space S to real numbers must
be defined so as to allow comparison of the different solutions in the neighborhood N (s) of
the current solution s. Since we allow infeasible layouts as initial solution, we must ensure
that the evaluation of invalid solutions in the neighborhood of the current one will drive the
exploration of the solution space towards feasible or valid solutions. We use a cost function
that evaluates distinctly valid and invalid solutions. Indeed, not all invalid solutions are the
same, and we must evaluate them differently. According to the constraint being violated in
the solution, we can distinguish two types of invalidity:

Type-1 Invalidity: A solution s is invalid because at least one of the link capacity con-
straints (4.13)/(4.20) is violated.

Type-2 Invalidity: A solution s is invalid because all the capacity constraints are met,
but at least one of the path delay constraints (4.15)/(4.22) is violated.

Practically, we want the evaluation to be as computationally inexpensive as possible. By
evaluating only capacity constraints first, we only perform M invalidity checks (there are M
links in the network), if we found the solution to be type-1 invalid, then no further evaluation
must be performed. If we found the solution not to be type 1-invalid, then further evaluation
is necessary to decide wether it is type-2 invalid or valid. K type-2 invalidity checks are
performed, where K is the total number of paths in the arc-incidence matrix A (K can
be a very large number). Valid solutions are evaluated using the corresponding objective
functions for MPSFAP1 and MPSAP2 (depending on the problem to be solved). A given
solution s is evaluated as follows:

5.3. A Tabu Search Heuristic Approach Applied to the MPSFAP Problems 81

f(s) =

MPSFAP1(s)/MPSFAP2(s) if s is valid

g1(s) if s is Type-1 Invalid

g2(s) if s is Type-2 Invalid

(5.2)

we rewrite the objective functions MPSFAP1 and MPSFAP2 here for convenience:

MPSFAP1(s) =
Q∑
q=1

Kq∑
k=1

wkqh
k
q (5.3)

MPSFAP2(s) = α

Q∑
q=1

Kq∑
k=1

wkqh
k
q + β

Q∑
q=1

Kq∑
k=1

hkq

M∑
i=1

akq,i
λ

Ci − xi

=
Q∑
q=1

Kq∑
k=1

hkq

(
αwkq + β

M∑
i=1

aq,i
λ

Ci − xi

) (5.4)

with all variables defined as before (Chapter 4). We are interested in ensuring that evalu-
ation for type-1 invalid solutions will be always greater than evaluation for type-2 invalid
solutions. At the same time, we must ensure that evaluation for type-1 or type-2 invalid
solutions is always greater than evaluation for valid solutions using either MPSFAP1 or
MPSFAP2 evaluation. We know that MPSFAP2 evaluations are always greater than eval-
uations of the same solution with MPSFAP1 (α > 0 and β > 0 by definition). We can then
establish the following relationship:

g1(s) > g2(s) > MPSFAP2(s) > MPSFAP1(s) (5.5)

In this way, valid solutions will be preferred over type-2 invalid solutions, and type-2 invalid
solutions will be preferred over type-1 invalid solutions. At the same time, a mechanisms
to provide a slope within type-1 invalid solutions must be provided, so as to guide the
exploration of the solution space towards type-2 invalid or valid solutions. The evaluation
of type-1 invalid solutions can then be defined as:

g1(s) =
M∑
i=1

g′1(xi) +
Q∑
q=1

Kq∑
k=1

wkq +
Q∑
q=1

Kq∑
k=1

1

=
M∑
i=1

g′1(xi) +
Q∑
q=1

Kq∑
k=1

(
wkq + 1

) (5.6)

where g′1(xi) is defined as:

82
5. Contribution to the Development of Heuristics for Solving the Minimum

Path Set and Flow Allocation Problems (MPSFAP)

g′1(xi) =

xi−Ci
Ci

if xi > Ci

0 otherwise
(5.7)

for every link i = 1, . . . ,M in the network. The first term in (5.6) provides a degree of
invalidity for the type-1 invalid solutions. It measures the degree of violation in the link
capacities constraint in order to provide a slope towards type-2 invalid or valid solutions.
Similarly, The evaluation of type-2 invalid solutions is defined as:

g2(s) =
Q∑
q=1

Kq∑
k=1

hkqg
′
2(τ

k
q) +

Q∑
q=1

Kq∑
k=1

wkq

=
Q∑
q=1

Kq∑
k=1

(
hkqg

′
2(τ

k
q) + wkq

) (5.8)

where g′2(τ
k
q) is defined as:

g′2(τ
k
q) =

τk
q −θq

θq
if τkq > θq

0 otherwise
(5.9)

for k = 1, . . . ,Kq and q = 1, . . . , Q (all paths connecting a node pair and all node pairs).
τkq is the calculated delay for path akq in the current solution. As with g1(s), the first term
in (5.8) provides a degree of invalidity for the type-2 invalid solutions. It measures the
degree of violation in the path delay constraints in order to provide a slope towards valid
solutions. The second and third terms in (5.6) ensure that g1(s) is greater than an evalua-
tion of any type-2 invalid solution, since the second term supposes that all paths are used,
and third term supposes that all paths are overloaded in terms of g2(s) evaluation. Simi-
larly, the second term in (5.8) ensures that an evaluation of any type-2 invalid solution will
be greater than an evaluation of any valid solution, since it supposes that all paths are used.

5.3. A Tabu Search Heuristic Approach Applied to the MPSFAP Problems 83

Ensure: generate neighbor(s)
Require: current solution (s ∈ S)
Require: number of node pairs to change (qmax > 0)
s′ ← s
q ← 0
qchanged ← 0
listchanged ← ∅
while qchanged < qmax do
q ← random(0, . . . , 1)×Q
if Kq ≥ 2 and q /∈ listchanged then

change path flows(q, s′)
qchanged ← qchanged + 1

end if
end while
Return s′

Algorithm 5.2: Tabu Search Heuristics Applied to MPSFAP: algorithm to generate a
neighbor of the current solution

Ensure: change path flow(q, s′)
Require: node pair to change (q > 0 : q = 1, . . . , Q)
Require: candidate neighbor solution (s′ ∈ S)
load left← dq
k ← 1
while k ≤ Kq and load left > 0 do

if k = Kq then
bkq ← load left

else
bkq ← bkq + random(−0.5, . . . ,+0.5)× (1− wk

q

maxk wk
q
)× load left

if bkq < 0 then
bkq ← 0

end if
if bkq > load left then
bkq ← load left

end if
end if
load left← dq − bkq
k ← k + 1

end while
Return s′

Algorithm 5.3: Tabu Search Heuristics Applied to MPSFAP: algorithm to change path
flows for a selected node pair

Algorithm 5.4 represents the pseudo code for our implementations of TS heuristics applied
to the MPSFAP problems. The stopping rule is a combination of a maximum number of
global iterations and a maximum number of inefficient iterations (i.e. the number of global

84
5. Contribution to the Development of Heuristics for Solving the Minimum

Path Set and Flow Allocation Problems (MPSFAP)

iterations since the the algorithm didn’t produce an improvement in the evaluation). The
parameter neighbormax defines the total number of neighbors to generate during the current
iteration. The best neighbor of all generated neighbors is then evaluated and compared to
the evaluation of the current solution. If it doesn’t evaluate better than the current solution,
it is put in the tabu list so it would not be visited again. If it evaluates better than the
current solution, then it is adopted as the current solution. Algorithm 5.2 generates as
many neighbors as defined by the parameter neighbormax. For each neighbor, it selects as
many node pairs to have their path flows changed as defined by the parameter qmax. A
node pair can only have its path flows rearranged if it has more than one path in the set
of paths connecting it. Indeed, it will not be possible rearrange the path flow for a unique
paths, as it has to carry the whole demand dq. The path flows for each of the selected node
pairs are changed as described in the algorithm 5.3. Path flows are increased or decreased
with equal probability. The quantity of flow to be increased or decreased on a given path is
randomly calculated, with a relative weight according to the path weights of the paths in
the set: paths with lower weights have higher probability of receiving or losing flow.

5.3. A Tabu Search Heuristic Approach Applied to the MPSFAP Problems 85

Require: maximum number of global iterations (iterationmax > 0)
Require: maximum number of global inefficient iterations (iterationmaxinef > 0)
Require: number of neighbors to generate (neighbormax > 0)

Generate an initial solution (s ∈ S)
s∗ ← s
T ← ∅
iteration← 0
iterationinef ← 0
while iteration < iterationmax and iterationinef < iterationmaxinef do

for neighbor = 1 to neighbormax do
s′ ← generate neighbor(s)
if neighbor = 1 then
ŝ← s′

end if
if f(s′) < f(ŝ) and s′ /∈ T then
ŝ← s′

end if
end for
if f(ŝ) ≥ f(s) then
T ← ŝ
iterationinef ← iterationinef + 1

else
s∗ ← ŝ
iterationinef ← 0

end if
iteration← iteration+ 1
s← s∗

end while
Algorithm 5.4: Pseudo-code for the Tabu Search Heuristics Applied to the MPSFAP
Problems

5.3.4. Evaluation of TS Heuristics for MPSFAP

To evaluate the TS heuristics for the MPSFAP problems, we run the algorithm for the set
of 25 matrixes and network topologies NET1 and NET2 used in Section 4.6 in Chapter 4 .
We then compare the results obtained from TS with the results obtained from the MINLP
solver. In this context, since the MINLP solver yields exact optimal solutions, the total
cost of the solutions constitute a reference for optimality. The number of global iterations
of the TS algorithm is set to 20, while the number of inefficient iterations is set to 10. 200
neighbors are generated for the current solution in each iteration of the algorithm. We find
that having the path flows of 2 node pairs changed when generating a neighbor from the
current solution is a good tradeoff between the speed of progression in the solution space
and computational effort needed.

86
5. Contribution to the Development of Heuristics for Solving the Minimum

Path Set and Flow Allocation Problems (MPSFAP)

Table 5.3 shows the average values of the objective function for the set of demand matrixes
considered. f(s)MINLP corresponds to the value of the objective function obtained from
the MINLP solver in Chapter 4, and f(s)TS the average evaluation obtained from the
TS heuristics (for both problems MPSFAP1 and MPSFAP2). The evaluation function
f(s) become the objective function given by (4.6), with wkq calculated as in (4.9) when the
problem is feasible. This allows us to compare the values of the objective functions obtained
from the two methods directly for feasible problems. To establish a comparison between
the results obtained from MINLP and TS, we define f(s)%TS as follows:

f(s)%TS =
f(s)TS − f(s)MINLP

f(s)MINLP
100 (5.10)

MPSFAP1 MPSFAP2

f(s)MINLP f(s)TS f(s)%TS f(s)MINLP f(s)TS f(s)%TS

NET1
a = 3/p = 0.2 16.70 18.68 11.86 16.73566 17.84925 6.91

a = 4/p = 0.2 16.00 17.20 7.50 16.01753 16.30396 1.79

NET2
a = 5/p = 0.2 15.16 16.74 8.18 15.1943 16.07869 5.82

a = 6/p = 0.2 14.60 15.88 8.77 14.62582 15.66635 7.11

Table 5.1: Quality of the Solutions from TS with respect to MINLP for MPSFAP1 and
MPSFAP2

It can be seen from the values of f(s)%TS that MPSFAP problems can be approximated
by the TS heuristics with an acceptable error. Solutions obtained for MTDFAP in Chapter
4, evaluated with the objective functions of MPSFAP1 and MPSFAP2 yield close values
in average than those obtained from TS. This means that, even when the approximations
are good enough, we are obtaining layouts with TS that are not better in terms of the cost
functions considered than those obtained when optimizing a classic performance objective
such as total delay.

Hops

MPSFAP1 MPSFAP2 MTDFAP

MINLP TS MINLP TS MINLP

NET1
a = 3/p = 0.2 16.70 18.68 16.70 17.80 17.70

a = 4/p = 0.2 16.00 17.20 16.00 16.28 16.40

NET2
a = 5/p = 0.2 15.16 16.74 15.16 16.05 16.32

a = 6/p = 0.2 14.60 15.88 14.60 15.64 15.84

Table 5.2: Comparison of Average Quantity of Hops from MINLP and TS for MPSFAP1
and MPSFAP2

However, it can be seen that the approximation gets better as the size of the network in-
creases. Indeed, as the network size increases (or the network gets more densely connected),
the diversity of paths available also increases, offering a larger number of possible combi-

5.3. A Tabu Search Heuristic Approach Applied to the MPSFAP Problems 87

nations to be tried. In conclusion, as there is more room (solution space) to explore, the
exploration becomes more effective and the solutions approach the optimal. Unfortunately,
solutions for larger networks obtained from TS cannot be compared to those obtained with
the reference solver MINLP, as problem size limitations arise with the last for networks
larger than those already considered. However, solutions from TS for large networks can
be compared with solutions from the heuristic algorithm presented next, which will be also
referenced to the solutions obtained from the MINLP solver for NET1 and NET2 topologies.

Tables 5.2 and 5.3 show the average hop-count and path-count obtained from TS and
MINLP for all cases considered. Figures 5.1 and 5.2 show the compared results for each
matrix. Points without value in the graphs represent infeasible matrixes.

NET1 (a=3/p=0.2)

10,00

12,00

14,00

16,00

18,00

20,00

22,00

24,00

26,00

28,00

30,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

H
op

s

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

11,00

12,00

13,00

14,00

15,00

16,00

17,00

18,00

Pa
th

s

Hops - MPSFAP1 (NEOS)

Hops - MPSFAP1 (TS)

Paths - MPSFAP1 (NEOS)

Paths - MPSFAP1 (TS)

(a) MPSFAP1, a = 3

NET1 (a=3/p=0.2)

10,00

12,00

14,00

16,00

18,00

20,00

22,00

24,00

26,00

28,00

30,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

H
op

s

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

11,00

12,00

13,00

14,00

15,00

16,00

17,00

18,00

19,00

20,00

Pa
th

s

Hops - MPSFAP2 (NEOS)

Hops - MPSFAP2 (TS)

Paths - MPSFAP2 (NEOS)

Paths - MPSFAP2 (TS)

(b) MPSFAP2, a = 3

NET1 (a=4/p=0.2)

10,00

12,00

14,00

16,00

18,00

20,00

22,00

24,00

26,00

28,00

30,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

H
op

s

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

11,00

12,00

13,00

14,00

15,00

Pa
th

s

Hops - MPSFAP1 (NEOS)

Hops - MPSFAP1 (TS)

Paths - MPSFAP1 (NEOS)

Paths - MPSFAP1 (TS)

(c) MPSFAP1, a = 4

NET1 (a=4/p=0.2)

10,00

12,00

14,00

16,00

18,00

20,00

22,00

24,00

26,00

28,00

30,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

H
op

s

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

11,00

12,00

13,00

14,00

Pa
th

s

Hops - MPSFAP2 (NEOS)

Hops - MPSFAP2 (TS)

Paths - MPSFAP2 (NEOS)

Paths - MPSFAP2 (TS)

(d) MPSFAP2, a = 4

Figure 5.1: Results from MINLP Solver (NEOS) and Tabu Search (TS) for NET1

Finally, we evaluate the CPU time consumed in an Intel Pentium IV c© running at 2.4 GHz
and 512 Mb RAM. Computational times for NET1 topology average to 20 seconds, while
for NET2 topology average to 25 seconds. Indeed, time increase doesn’t directly relate

88
5. Contribution to the Development of Heuristics for Solving the Minimum

Path Set and Flow Allocation Problems (MPSFAP)

to combinatorial complexity at each iteration for TS as it does with the numeric solvers.
At each iteration, TS algorithm must generate a number of neighbors, operation whose
complexity is limited to the number of node pairs Q and the number of paths connecting
the node pairs which are to be rearranged Kq.

Paths

MPSFAP1 MPSFAP2 MTDFAP

MINLP TS MINLP TS MINLP

NET1
a = 3/p = 0.2 12.30 13.16 12.35 12.85 12.85

a = 4/p = 0.2 12.00 12.52 12.00 12.08 12.20

NET2
a = 5/p = 0.2 12.37 13.21 12.37 13.00 12.79

a = 6/p = 0.2 12.12 12.84 12.12 12.72 12.52

Table 5.3: Comparison of Average Quantity of Paths from MINLP and TS for MPSFAP1
and MPSFAP2

NET2 (a=5/p=0.2)

10,00

12,00

14,00

16,00

18,00

20,00

22,00

24,00

26,00

28,00

30,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

H
op

s

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

11,00

12,00

13,00

14,00

15,00

16,00

Pa
th

s

Hops - MPSFAP1 (NEOS)

Hops - MPSFAP1 (TS)

Paths - MPSFAP1 (NEOS)

Paths - MPSFAP1 (TS)

(a) MPSFAP1, a = 5

NET2 (a=5/p=0.2)

10,00

12,00

14,00

16,00

18,00

20,00

22,00

24,00

26,00

28,00

30,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

H
op

s

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

11,00

12,00

13,00

14,00

15,00

16,00

Pa
th

s

Hops - MPSFAP2 (NEOS)

Hops - MPSFAP2 (TS)

Paths - MPSFAP2 (NEOS)

Paths - MPSFAP2 (TS)

(b) MPSFAP2, a = 5

NET2 (a=6/p=0.2)

10,00

12,00

14,00

16,00

18,00

20,00

22,00

24,00

26,00

28,00

30,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

H
op

s

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

11,00

12,00

13,00

14,00

15,00

16,00

Pa
th

s

Hops - MPSFAP1 (NEOS)

Hops - MPSFAP1 (TS)

Paths - MPSFAP1 (NEOS)

Paths - MPSFAP1 (TS)

(c) MPSFAP1, a = 6

NET2 (a=6/p=0.2)

10,00

12,00

14,00

16,00

18,00

20,00

22,00

24,00

26,00

28,00

30,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

H
op

s

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

11,00

12,00

13,00

14,00

15,00

16,00

Pa
th

s

Hops - MPSFAP2 (NEOS)

Hops - MPSFAP2 (TS)

Paths - MPSFAP2 (NEOS)

Paths - MPSFAP2 (TS)

(d) MPSFAP2, a = 6

Figure 5.2: Results from MINLP Solver (NEOS) and Tabu Search (TS) for NET2

5.4. Ad-Hoc Heuristics Based on The Flow Deviation Algorithm 89

The complexity of the algorithm is then in the order of K the total number of paths in
the network. This could also be a problem for large networks, as we will see in Chapter 6
when evaluating results for large topologies. Even when able to solve large problems (unlike
solvers like MINLP using B&B techniques), TS will require increasingly big amounts of
CPU time to cope with them. Our main objective is to find heuristics that would allow
solving the dimensioning (and later the reconfiguration) problems in times compatible with
network operation. In next section we develop such heuristics adapted to the nature of the
MPSFAP1 problem.

5.4. Ad-Hoc Heuristics Based on The Flow Deviation Algorithm

Ad-Hoc heuristics take advantage of certain knowledge of the nature of the problem being
solved. An ad-hoc heuristic is developed to solve the particular problem considered and
results particularly efficient to solve it, contrary to meta-heuristics whose general procedure
can be used to solve a broad range of problems with more or less efficiency. In the present
section, we identify a set of particular characteristics related to the MPSFAP problems
which help us in developing a particularly efficient algorithm based on the well known Flow
Deviation Algorithm due to Frank and Wolfe [67]

5.4.1. The Flow Deviation Algorithm

Considering convex cost functions associated to each path in the network, a well known re-
sult says that the optimal routing results when flow travels along Minimum First Derivative
Length (MFDL) paths for each node pair [64]. An obvious consequence is that a layout is
suboptimal if some positive quantity of flow is travelling along a non MFDL path for some
node pair. It follows that a way to improve a suboptimal layout would be to iteratively
shift flow from non MFDL paths to MFDL paths. A method based on this idea would have
to decide first on a direction of change and then on the optimal amount of flow to shift on
each iteration. In general, a direction of change have to meet two requirements:

1. The direction of change has to be a feasible direction in the sense that if B is a feasible
path flow vector, then for a positive φ, the path vector B+φ∆B obtained by shifting
φ units of flow along the direction ∆B =

{
∆bkq

}
is also a feasible path flow vector.

2. The direction of change has to be a descent direction in the sense that the cost function
can be decreased by making small movements along the direction ∆B from the current
point B.

90
5. Contribution to the Development of Heuristics for Solving the Minimum

Path Set and Flow Allocation Problems (MPSFAP)

The Frank-Wolfe (Flow Deviation) Method

The Flow Deviation Method [67] is a particular case of the Frank-Wolfe method to solve
general, non-linear programming problems with convex constraints sets. It implements the
philosophy of incremental changes along feasible descent directions to solve a minimum cost
multicommodity flow allocation problem. Given a feasible path flow vector B, we find a
minimum MFDL path for each node pair. The first derivatives of the cost function F′(B)
are evaluated at the current path flow vector B (we assume a convex cost function of the
path flows)3. Let B =

{
bkq

}
be the vector of path flows that would result by routing all the

demand dq along the corresponding MFDL paths for each node pair. Let φ∗ be the stepsize
that minimizes F

[
bk

q + φ(bk
q − bk

q)
]
, φ ∈ [0, 1]. The new set of path flows is obtained by:

bkq ← bkq + φ∗(bkq − bkq) (5.11)

for k = 1, . . .Kq and q = 1, . . . , Q. The process continues until some stopping rule is met
(e.g. a number of iterations without improvement in the cost function). The flow deviation
method is shown to reduce the value of the cost function to its minimum in the limit [64],
though the convergence rate near the optimum tends to be very slow. Mathematically, the
feasible descendent direction must meet the following requirements:

Kq∑
k=1

∆bkq = 0 for q = 1, . . . , Q (5.12)

and

Q∑
q=1

Kq∑
k=1

∂F(B)
∂bkq

∆bkq < 0 (5.13)

Requirement (5.12) is a flow conservation condition for the set of paths connecting a given
node pair: the total flow shift for the path set must be cancelled. Requirement (5.13)
indicates that the flow shift must be done in the sense of decreasing the cost function. In
other words, for all non shortest paths (in the sense that ∂F(B)

∂bkq
> ∂F(B)

∂bkq
) connecting the

node pair q, we require that ∆bkq ≤ 0; and for at least one shortest path of the same node
pair, we require that ∆bkq > 0. This conditions are very important for the design of any
algorithm based on the flow deviation method.

3The Modified Flow Deviation Algorithm proposed in Section 5.5 works out a way of adapting this method
to the cost functions proposed for the MPSFAP problems, which are not dependent on the path flows bk

q

5.5. A Modified Flow Deviation (MFD) Algorithm for Solving the MPSFAP
Problems 91

5.5. A Modified Flow Deviation (MFD) Algorithm for Solving the MPSFAP

Problems

The characteristic property of the flow deviation method is that flow is shifted to the shortest
paths in equal proportions (the optimal proportion φ∗) for each node pair. In the context
of multicommodity flow problems, flow is shifted from non-shortest paths to shortest paths
in equal proportion for all node pairs [65]. A different approach, called gradient projection
methods [64], shift flow from non-shortest to shortest paths in unequal proportions, making
convergence to the optimum quicker, but still shifting flow for all node pairs. Besides, the
direction of change are chosen following feasible descent directions. These characteristics
arise many issues when trying to adapt the flow deviation method to our MPSFAP problems:

1. If a set of currently used paths in each iteration H is maintained, according to the
particular implementation in [65], a path is added to H whenever it is determined to
be the shortest (in the MFDL sense) for a given node pair and it is not already in
H. Conversely, a non-shortest path is leaving H whenever its corresponding path flow
bkq = 0 after a flow shift to a shortest path. The rate at which paths are incorporated
to H is likely to higher than the rate at which paths are leaving it, due to:

• The cost of each path is generally a convex function of link usage. As a conse-
quence, the currently unused paths are likely to present lower costs than currently
used paths when the algorithm is not iterating near the optimum.

• A shortest path is being calculated for each node pair in the current iteration.

• The flow shifts are made in equal proportion for all paths. This proportion is
calculated in a way that it is the minimum φ∗ to make at least one non-shortest
path to have its flow lowered to 0. The number of paths leaving H in each
iteration is unlikely to be bigger than 1.

2. The feasible descent directions assume that the starting point is an already feasible
path flow set, and that convex differentiable functions are being used.

• We have stated in Section 4.6 in Chapter 4 that it is also anNP-complete problem
to find a feasible path flow for MPSFAP problems. We have interest in being able
to start from any random solution and to make the algorithm converge towards
feasible optimal solutions.

• The objective functions being proposed in MPSFAP problems are not convex in
the link flow, as we are not interested in penalizing link usage as in the classic
literature. Our objective is to minimize the total number of hops (indirectly the
number of paths) used to set up a layout, while meeting the QoS constraints
established in Chapter 4.

92
5. Contribution to the Development of Heuristics for Solving the Minimum

Path Set and Flow Allocation Problems (MPSFAP)

A major contribution in this section consists in the introduction of the appropriate modifi-
cations to the flow deviation algorithm in order to address the above mentioned issues, and
to adapt it to our particular MPSFAP problems. The key modifications introduced to the
basic flow deviation algorithm as implemented in [65] can be summarized as follows:

1. We shift flow from non-shortest to shortest paths for only one pair of nodes in each
iteration. This allows us to limit the number of paths added to H to almost 1 per
iteration. This also allows the algorithm to increase the proportion φ∗ of flow that is
to be shifted, and the probability that at least one of the non-shortest paths in the
path set will have its path flow bkq lowered to 0, leaving H.

2. In order to be able to start from non-feasible layouts, we will decide the direction of
change following only descent directions in the sense of decreasing the cost function,
but allowing a non-feasible path set B in the current iteration.

3. The cost function has to be adapted in consequence as we did for the Tabu Search
heuristics, so as to present higher evaluations for overloaded paths than for non-
overloaded paths, as well as to present a slope towards feasible path flows. Path
length is then determined as a function of the overload proportion to the link capacity
for the overloaded component links.

4. We simplify the capacity and path delay constraints, combining them into a unique
capacity-delay constraint per link.

In what follows, we present the Modified Flow Deviation Algorithm (MFD), including the
detailed description of the issues mentioned above. We restrict to the case of a single class
of service to define the MFD algorithm applied to the MPSFAP problems. The heuristics
can easily be extended to multiple classes of service as defined in MPSFAPQ problems in
Chapter 4. In particular, we address the MPSFAP1 problem, as the method takes advan-
tage of the nature of that particular problem.

Algorithm 5.5 shows the general procedure for the MFD method. The general procedure ba-
sically starts assigning all the demands to the set of shortest paths (in terms of hop-count).
If constraints are met, then the algorithm stops and the optimal solution is found. If the
initial set is infeasible, then path weights are recalculated as indicated in the corresponding
procedure (in terms of hop-count and link overload) and a new set of shortest paths is calcu-
lated using those new calculated path weights. A shift direction ∆B is then calculated. The
node pair to be shifted is decided basically searching for the one which would produce the
higher benefit (maximum cost function reduction) if its paths are having their flows shifted
by the maximum allowed proportion φq for that node pair. The maximum proportion of
change is calculated on a node pair basis, and it results from the minimum flow that can

5.5. A Modified Flow Deviation (MFD) Algorithm for Solving the MPSFAP
Problems 93

be shifted out from the least loaded or shifted in to the critically loaded component link for
all paths connecting q. After the flow shift, the set of currently used paths H is updated. If
∆B = 0, then no shift direction could be found and the algorithm finishes. The algorithm
ensures that ∆B = 0 either if the current solution is valid or if there is no more candidate
node pairs.

For a valid solution, the procedure is likely to have found the best approximation to the
optimal, since the flow shift proportions are calculated in such a way that paths are being
exchanged before sharing the load. A less loaded path is entering H while a more loaded
one is leaving it, keeping the quantity of used paths to a minimum (the choice of the node
pair to shift is calculated in a way that path swaps are preferred to load sharing during
the algorithm iterations). Since the algorithm decides flow shift proportions looking at the
component links loads, we need a way of translating path constraints to link constraints.

5.5.1. Path Delay Constraints Simplification

We assume that the end-to-end path delay constraint can be transformed into a link de-
lay constraint for all the component links of the path. This transformation allows us to
combine the new link delay and the previous capacity constraints into a unique constraint.
In order to operate the transformation of the end-to-end path delay constraint into a link
delay constraint, we take into account the path flows traversing each link. We set the link
delay constraint to the most restrictive path delay constraint on the paths traversing it,
individualized to that link.

In other words, let θq be the delay constraint imposed to every path transporting the
commodity q. Let wkq be the weight associated to the path akq , calculated as its hop-count.
Making the simplification that each component link of a path equally contributes to the
total path delay, we can write the delay constraint imposed on a any link i by a particular
path akq traversing it as θq

wk
q
. Considering all paths traversing that particular link, the delay

constraint imposed on it can be calculated as:

θi = min
q

min
k

{
akq,i

θq
wkq

}
(5.14)

Assuming that conditions in Section 4.3 in Chapter 4 hold, the link delay constraint will
reduce the bandwidth usage on a link with capacity Ci by the quantity λ

θi
, where λ is the

average packet size. Figure 5.3 shows an example of path delay and capacity to link delay
constraint simplification.

94
5. Contribution to the Development of Heuristics for Solving the Minimum

Path Set and Flow Allocation Problems (MPSFAP)

Require: A,Θ,W,D,C as defined in Chapter 4
Ensure: B,H or INFEASIBLE

B← 0
H← ∅ {set of currently used paths}
F←W
∆B← 0
P← ∅ {set of current shortest paths}
P← find shortest paths(F) {P =

{
akq : mink

{
F kq
}}
}

for all (akq ∈ P) do
bkq ← dq {assign all the demands to the shortest paths}

end for
H← P
X← A ·B
F← update path weights(X)
P← find shortest paths(F)
∆B← find shift direction(B,P,H,F)
while (∆B 6= 0) do
φ← find shift factor(∆B,X)
B← B + φ∆B
X← A ·B
H← ∪k=1,...,Kq ;q=1,...,Q

{
akq : bkq > 0

}
F← update path weights(X)
P← find shortest paths(F)
∆B← find shift direction(B,P,H,F)

end while
if constraints are met then

Return B,H
else

Return INFEASIBLE
end if

Algorithm 5.5: Pseudo-code for the Modified Flow Deviation Method Applied to the
MPSFAP1 Problem

5.5.2. Path Weights Calculation

As with the Tabu Search heuristics, we are interested in redefining the objective function so
as to evaluate invalid solutions with higher values than valid solutions. We don’t distinguish
here among type-1 and type-2 invalid solutions, because we have simplified the constraints
into a unique (more restrictive) constraint. The cause of invalidity then is the overload of
at least one component link of the path being evaluated, in other words, the violation of the
link delay constraint θi as defined in the previous section. As before, we are also interested
in providing a degree of invalidity once the constraint is violated, so as to create a slope
towards valid path flow vectors (i.e. towards path without overloaded component links).
We introduce this evaluation in the way path weights are calculated:

5.5. A Modified Flow Deviation (MFD) Algorithm for Solving the MPSFAP
Problems 95

1 2 3

4

C1 C2

C4
C3

b3
1

b1
1 b5

1

b2
1

�θ
�θ �θ

�θ

�
��

�
��

�
	

�
�

�
�

�
�
�

= ��
�

�
�
�

�
�
�

�
� ��� ���� ��

�����
θθθθ

Figure 5.3: Modified Flow Deviation Algorithm: Path Delay Constraint Simplification

F kq ← wkq +
M∑
i=1

akq,if(xi) (5.15)

where wkq is calculated as in (4.9) and

f(xi) =

0 if xi ≤ Ci − λ

θi

xi

Ci− λ
θi

if xi > Ci − λ
θi

(5.16)

for each link i. The second term in (5.15) adds up an extra weight to the hop-count based
path weights for each component link which is overloaded. The value to be added depends
on how much flow over the limit is traversing that link, and we have ensured that we add
up at least 1 (xi > Ci − λ

θi
) for every overloaded link in the path. The idea behind this

evaluation function is that a path will appear as a shortest path candidate to receive flow
from the other paths in the set only if its combination of hop-count and number and propor-
tion of overloaded component links is less than the same combination for all the other paths.

The way we determine the path weights is responsible for making appear more or less
candidate paths in a given node pair. The Algorithm 5.5 as it is defined can fail to find a
shift direction ∆B because no shortest path appears, even when there are unloaded paths
in the group that could receive flow. The example of the Figure 5.4 illustrates a case where

96
5. Contribution to the Development of Heuristics for Solving the Minimum

Path Set and Flow Allocation Problems (MPSFAP)

an overloaded path is still the shortest path, even when other (longer) unloaded paths are
available.

1
2

3 4 5 6

7

8 9

10

q
1

q
1

q
2

q
3

Figure 5.4: MFD Algorithm Example: Overloaded Path is Still the Shortest Path

A way to overcome this problem is to iteratively add up 1 to the weight of each path using
at least one overloaded link when ∆B = 0 and the constraints are still not met, until some
∆B > 0 is produced up to the diameter of the network. This will make longer unloaded
paths to appear as candidates, but only when shorter paths (in terms of hop count) are not
available at a given iteration. Algorithm 5.6 improves 5.5 by incorporating the necessary
iterations to test for all candidates.

Algorithm 5.7 and 5.8 describe the corresponding procedures to calculate the path weights
and to increase the weight of overloaded paths over longest paths to try all possible candi-
dates if necessary.

5.5.3. Determining the Shift Direction

The shift direction indicates for which node pair we are going to shift the path flows travelling
along non-shortest paths to the shortest path in the sense of F kq for the current iteration.
In order to determine the shift direction ∆B we must consider all candidate shift directions
per node pair ∆Bq and then chose the one with the higher benefit in terms of reducing the
total overload in the network with respect to the cost of the newly introduced path. The
shift direction for each node pair q is calculated as:

5.5. A Modified Flow Deviation (MFD) Algorithm for Solving the MPSFAP
Problems 97

...
while (∆B 6= 0) do
φ← find shift factor(∆B,X)
...
∆B← find shift direction(B,P,H,F)
if (∆B = 0) and (constraints are not met) then
threshold← 1
Fb ← F
while (∆B = 0) and (threshold < network diameter) do

Fb ← increase threshold level(Fb, threshold)
P← find shortest paths(Fb)
∆B← find shift direction(B,P,H,Fb)
threshold← treshold+ 1

end while
end if

end while
if constraints are met then

Return B,H
else

Return INFEASIBLE
end if

Algorithm 5.6: Pseudo-code for the Improvement to the MFD Method to Consider All
Candidate Paths

Require: X {the link flows vector}
Ensure: update path weights(X)

for q = 1 to Q do
for k = 1 to Kq do
F kq ← wkq
for i = 1 to M do

if (akq,i = 1) and (xi > Ci − λ
θi

) then
F kq ← F kq + xi

Ci− λ
θi

end if
end for

end for
end for
Return F

Algorithm 5.7: Pseudo-code for Calculating the Path Weights

∆Bq =
{

∆bkq
}

=

dq − bkq if akq ∈ P

−bkq if akq ∈ H ∧ akq /∈ P

0 otherwise

(5.17)

for k = 1, . . . ,Kq and all node pairs. ∆Bq expresses the fact that we allow for potentially

98
5. Contribution to the Development of Heuristics for Solving the Minimum

Path Set and Flow Allocation Problems (MPSFAP)

Require: F, treshold
Ensure: increase treshold level(F, treshold)
overloaded← NO
for q = 1 to Q do

for k = 1 to Kq do
for i = 1 to M do

if (akq,i = 1) and (xi > Ci − λ
θi

) then
overloaded← YES

end if
end for
if (overloaded = YES) then
F kq ← F kq + 1

end if
end for

end for
Return F
Algorithm 5.8: Pseudo-code for Increasing the Path Weights for Overloaded Paths

all the demand dq to be shifted to the newly found shortest path (we also consider the case
where the path was already carrying some traffic), and all currently transported flow to leave
a non-shortest path. The set P contains the shortest paths for the current iteration, and
the set H all the currently used paths. Algorithm 5.9 shows the pseudo-code to calculate
the shift direction.

5.5.4. Determining the Shift Factor

Each shift direction in the paths for a given node pair q will produce a shift on the component
links due to that node pair. The corresponding shifts ∆Xq in the links are calculated from
the path flow shifts for the node pair q as:

∆xi,q =
Kq∑
k=1

akq,i∆b
k
q (5.18)

From the ∆xi,q we can determine the proportion of flow φi,q that can be moved for a given
node pair q on each link i as:

φi,q =

xi
|∆xi,q | if ∆xi,q < 0

Ci− λ
θi
−xi

∆xi,q
if ∆xi,q > 0 ∧ xi < Ci − λ

θi

0 otherwise

(5.19)

5.5. A Modified Flow Deviation (MFD) Algorithm for Solving the MPSFAP
Problems 99

Require: B,P,H,F
Ensure: find shift direction(B,P,H,F)

∆B← 0
∆Bq ← 0
ψq ← 0
ψBEST ← 0
X← A ·B
for q = 1 to Q do

for k = 1 to Kq do
if (akq ∈ P) then

∆bkq ← dq − bkq
else if (akq ∈ H) then

∆bkq ← −bkq
end if

end for
ψq ← calculate choice index(∆Bq,X,H,P,F)
if (ψq > ψBEST) then

∆B←∆Bq

ψBEST ← ψq
end if

end for
Return ∆B

Algorithm 5.9: Pseudo-code for Calculating the Shift Direction

When ∆xi,q < 0, we are actually shifting flow out of link i, the expression (5.19) indicates
that we can at most move out the total flow xi allocated to it. On the other hand, if
∆xi,q > 0 we are trying to move flow into link i. In that case, expression (5.19) says that if
the link is not overloaded, we can shift flow in up to the constraint for that link, given by
Ci− λ

θi
. Having calculated all the shift factors for each link, we take the shift factor for the

node pair to be the minimum for all the links:

φq = min
i
{φi,q : φi,q > 0} (5.20)

Finally, if φq > 1, then we need to set φq = 1 (i.e. the maximum flow that can be shifted
out from a link is the flow already traversing it. Conversely, we cannot shift in to a link
more flow than ∆xi,q, even if there is still available capacity.

5.5.5. Determining the Best Node Pair

The algorithm 5.9 determines the shift direction by choosing among the shift directions for
each node pair, the one with the best choice index ψq. We said that the best shift direction
would be the one producing the higher benefit in terms of reducing the total overload in
the network with respect to the cost of the newly introduced path.

100
5. Contribution to the Development of Heuristics for Solving the Minimum

Path Set and Flow Allocation Problems (MPSFAP)

Require: ∆B,X {called with ∆B calculates φ, called with ∆Bq calculates φq}
Ensure: find shift factor(∆B,X)
φq ← 0
φi,q ← 0
for q = 1 to Q do

∆Xq ← A ·∆Bq

for i = 1 to M do
if (∆xi,q < 0) then
φi,q ← xi

|∆xi,q |
else if (∆xi,q > 0) and (xi < Ci − λ

θi
) then

φi,q ←
Ci− λ

θi
−xi

∆xi,q

end if
if (φi,q > 0) and (φi,q < φq) then
φq ← φi,q

end if
end for

end for
if (φq > 1) then
φq ← 1

end if
Return φq

Algorithm 5.10: Pseudo-code for Calculating the Shift Factor

We calculate then a choice index for every pair of nodes as follows:

ψq =

φq

∑M
i=1 γi|∆xi,q |
F̃q

if γi = 1 for some i
|∆xi,q |
F̃q

if γi = 0 for all i ∧ φq ≥ 1

0 otherwise

(5.21)

where γi = 0 if link i is not overloaded (xi > Ci − λ
θi

) and 1 if the link is overloaded.
F̃q =

∑Kq

k=1 h
k
qF

k
q (i.e. the sum of all used paths in the current iteration). ψq is actually

measuring the amount of reduction on the overloaded links relative to the cost of the set
of used paths for a given node pair q, including the paths added in the current iteration (if
some path is added). If there are no overloaded links, we allow the algorithm to try and
rearrange the path flows to see if there is any place for flow aggregation. We add this possi-
bility in the second option in (5.21): flow aggregation will only be possible if the shift factor
for the candidate node pair is 1 or greater, since the flow would be further splitted otherwise.

Finally, the MFD algorithm can be also adapted to solve the MPSFAP2 problems. Simply
changing the evaluation of the weights for each path during the algorithm to:

5.5. A Modified Flow Deviation (MFD) Algorithm for Solving the MPSFAP
Problems 101

Require: ∆Bq,X,H,P,F
Ensure: calculate choice index(∆Bq,X,H,P,F)
ψq1, ψq2, ψq, ψBEST ← 0
φq ← 0
overload← NO
for q = 1 to Q do
φq ← find shift factor(∆Bq,X)
for i = 1 to M do

∆Xq ← A ·∆Bq

if (xi > Ci − λ
θi

) then
ψq1 ← ψq1 + φq|∆xi,q|
overload← YES

else if (φq ≥ 1) and (|∆xi,q| > 0) then
ψq2 ← |∆xi,q|

end if
end for
if (overloaded = YES) then
ψq ← ψq1

else
ψq ← ψq2

end if
for all akq ∈ H ∪P do
F̃q ← F̃q + F kq

end for
ψq ← ψq

F̃q

if (ψq > ψBEST) then
ψBEST ← ψq

end if
end for
Return ψBEST

Algorithm 5.11: Pseudo-code for Calculating the Choice Index

F kq = wkq + hkq

M∑
i=1

akq,i
λ

Ci − xi
+

M∑
i=1

akq,if(xi) (5.22)

with f(xi) defined as in (5.15). This way of calculating the path weights consider the
path delay as part of its length. Since only the equation (5.15) has been considered in our
implementation for calculating the path weights, we restrain ourselves to the an analysis of
the results obtained from the MFD algorithm for the MPSFAP1 problems.

5.5.6. Evaluation of the MFD Algorithm for MPSFAP

As with the TS heuristics in Section 5.3.4, we run the MFD algorithm for the same set of 25
matrixes, and network topologies NET1 and NET2. We then compare the results obtained

102
5. Contribution to the Development of Heuristics for Solving the Minimum

Path Set and Flow Allocation Problems (MPSFAP)

from MFD to the results obtained from the deterministic solver MINLP. Since the MFD
algorithm runs up to wether obtaining a feasible solution (which is also a minimum cost
approximation to the optimal) or trying all possible candidate shortest paths, the number
of iterations is not a parameter as in TS. Recalling the definition of f(s)%TS given in (5.10),
we define here f(s)%MFD as follows:

f(s)%MFD =
f(s)MFD − f(s)MINLP

f(s)MINLP
100 (5.23)

Recalling the concepts used when working with the TS algorithm, s is a solution as defined
by (5.1). The path flow vector B and the solution s are used here as synonymous. Table 5.4
shows the average values of the objective function for the set of demand matrixes considered.
It must also be noted (as is the case with the TS algorithm) that the evaluation function
f(s) =

∑Q
q=1

∑Kq

k=1 h
k
qF

k
q become the objective function given by (4.6), with wkq calculated

as in (4.9) when the problem is feasible. This allows us to compare the values of the objective
functions obtained from the three methods directly for feasible problems.

MPSFAP1

f(s)MINLP f(s)TS f(s)MFD f(s)%TS f(s)%MFD

NET1
a = 3/p = 0.2 16.70 18.68 17.60 11.86 5.39

a = 4/p = 0.2 16.00 17.20 16.24 7.50 1.50

NET2
a = 5/p = 0.2 15.16 16.74 15.78 8.18 4.09

a = 6/p = 0.2 14.60 15.88 15.04 8.77 3.01

Table 5.4: Quality of the Solutions from MFD with respect to TS and MINLP for
MPSFAP1

We can easily see from the values of f(s)%MFD that the approximation to the optimal
values of f(s) obtained from the MINLP solver are better in all cases than the approximation
obtained from tabu search heuristics. We have included the values relative to TS in all tables
and figures for direct comparison. Again, we see that the approximation improves when the
load increases for a given topology, and also improves when the size of the problem increases
(i.e. when the network gets more densely connected or the number of nodes increases).

MPSFAP1

Hops Paths

MINLP TS MFD MINLP TS MFD

NET1
a = 3/p = 0.2 16.70 18.68 17.60 12.30 13.16 12.80

a = 4/p = 0.2 16.00 17.20 16.24 12.00 12.52 12.12

NET2
a = 5/p = 0.2 15.16 16.74 15.78 12.37 12.52 12.12

a = 6/p = 0.2 14.60 15.88 15.04 12.12 12.84 12.42

Table 5.5: Quantity of Paths and Hops for the Solutions from MINLP, TS and MFD for
MPSFAP1

5.5. A Modified Flow Deviation (MFD) Algorithm for Solving the MPSFAP
Problems 103

NET1 (a=3/p=0.2)

10,00

12,00

14,00

16,00

18,00

20,00

22,00

24,00

26,00

28,00

30,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

H
op

s

Hops - MPSFAP1 (NEOS)

Hops - MPSFAP1 (TS)

Hops - MPSFAP1 (MFD)

(a) Hops, a = 3

NET1 (a=3/p=0.2)

10,00

11,00

12,00

13,00

14,00

15,00

16,00

17,00

18,00

19,00

20,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

Pa
th

s

Paths - MPSFAP1 (NEOS)

Paths - MPSFAP1 (TS)

Paths - MPSFAP1 (MFD)

(b) Paths, a = 3

NET1 (a=4/p=0.2)

10,00

12,00

14,00

16,00

18,00

20,00

22,00

24,00

26,00

28,00

30,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

H
op

s

Hops - MPSFAP1 (NEOS)

Hops - MPSFAP1 (TS)

Hops - MPSFAP1 (MFD)

(c) Hops, a = 4

NET1 (a=4/p=0.2)

10,00

11,00

12,00

13,00

14,00

15,00

16,00

17,00

18,00

19,00

20,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

Pa
th

s

Paths - MPSFAP1 (NEOS)

Paths - MPSFAP1 (TS)

Paths - MPSFAP1 (MFD)

(d) Paths, a = 4

Figure 5.5: Results from MINLP Solver (NEOS), Tabu Search (TS) and Modified Flow
Deviation (MFD) for NET1

Here again, as the problem size increases, a larger number of node pairs will appear as
candidates for becoming a shift direction, as there will be more paths available connecting
each node pair and more node pairs to consider. It can be observed as well that, compared
to the values obtained from MINLP solver for MTDFAP problem (the one minimizing the
total delay of used paths in the network), the MFD algorithm always constitutes an im-
provement on the proposed objectives: to obtain layouts minimizing the total number of
hops (and indirectly of paths) in the layout. Figures 5.5 and 5.6 show the number of hops
and paths obtained from the three methods for NET1 and NET2 respectively. For almost
all matrixes, the TS algorithm constitutes an upper bound for the number of hops and paths
obtained from the MFD algorithm. Finally, CPU times required by MFD under the same
conditions than TS are under the second for both topologies, already ten times less than
times consumed by TS.

104
5. Contribution to the Development of Heuristics for Solving the Minimum

Path Set and Flow Allocation Problems (MPSFAP)

NET2 (a=5/p=0.2)

10,00

12,00

14,00

16,00

18,00

20,00

22,00

24,00

26,00

28,00

30,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

H
op

s

Hops - MPSFAP1 (NEOS)

Hops - MPSFAP1 (TS)

Hops - MPSFAP1 (MFD)

(a) Hops, a = 5

NET2 (a=5/p=0.2)

10,00

11,00

12,00

13,00

14,00

15,00

16,00

17,00

18,00

19,00

20,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

Pa
th

s

Paths - MPSFAP1 (NEOS)

Paths - MPSFAP1 (TS)

Paths - MPSFAP1 (MFD)

(b) Paths, a = 5

NET2 (a=6/p=0.2)

10,00

12,00

14,00

16,00

18,00

20,00

22,00

24,00

26,00

28,00

30,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

H
op

s

Hops - MPSFAP1 (NEOS)

Hops - MPSFAP1 (TS)

Hops - MPSFAP1 (MFD)

(c) Hops, a = 6

NET2 (a=6/p=0.2)

10,00

11,00

12,00

13,00

14,00

15,00

16,00

17,00

18,00

19,00

20,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

Pa
th

s

Paths - MPSFAP1 (NEOS)

Paths - MPSFAP1 (TS)

Paths - MPSFAP1 (MFD)

(d) Paths, a = 6

Figure 5.6: Results from MINLP Solver (NEOS), Tabu Search (TS) and Modified Flow
Deviation (MFD) for NET2

In next Chapter we compare results obtained from both MFD and TS for two large topolo-
gies obtained from real-life size networks. This results allow us to analyze the behavior of
the described heuristics as well as the pertinence and applicability of each one to day-to-day
operational environment.

5.6. Conclusions

In the previous Chapter we have shown the interest, from an operator’s standpoint, of
considering complexity objectives when designing optimal MPLS layouts. In the present
Chapter the major contribution consist in the definition and implementation of two heuris-
tic methods to deal with the MPSFAP problems. The first heuristic is a generic heuristic
using Tabu Search (TS) methods and particular evaluation of the generated solution to
explore the solution space. The second heuristic is an ad-hoc heuristic which makes use of

5.6. Conclusions 105

the particular structure and nature of the problem to intelligently search the solution space
rather than randomly. This last heuristics is based on a modification to the general proce-
dure of the well known Flow Deviation Method to solve the multicommodity flow problem
for convex objective functions. The resulting algorithm is referred as MFD (Modified Flow
Deviation) algorithm. Results obtained with both heuristic methods are compared to the
solutions obtained using the deterministic solver available for the MINLP problems, in order
to establish the quality of the solutions obtained through heuristics methods with respect to
the optimal solution. Due to problem size limitations when using the deterministic solvers,
results are compared for small topologies in order to obtain some insight in the behavior
of the heuristics. Results for the MTDFAP problem are also given as a reference. Finally
results obtained with the TS and the MFD heuristics are compared one to another in order
to establish the relative quality of the solutions obtained through both methods.

Results show that both, TS and MFD yield fairly good approximations for small network
topologies. MFD however, shows better quality results with respect to those obtained by
using the TS algorithm. Besides, the execution times on a standard personal computer
are far lower for MFD than for TS. The figures obtained for small networks encourage us
to continue further exploring both heuristic methods, which we do in the next Chapter.
Although small network topologies do not offer much space for a real difference among the
various optimization criteria, we can already see that we obtain layouts for the MPSFAP
objective functions using less hops and consequently less paths than those obtained for
MTDFAP objectives (i.e. the classic performance objectives used extensively through the
literature). In next Chapter we evaluate both heuristic methods for two large network
topologies, and we explore the results in order to obtain more insight in the behavior of the
cost functions proposed, as well as to evaluate the performance of the heuristic methods
developed.

6. Results and Analysis of the MPSFAP Problems for Large

Networks Using Tabu Search (TS) and Modified Flow

Deviation (MFD) Methods

In the previous Chapter, we have developed two heuristic methods to solve the MPSFAP
problem: a Tabu Search meta-heuristic algorithm based on meta-heuristics, and a Modified
Flow Deviation algorithm based on the Frank-Wolfe method (ad-hoc heuristics). These
algorithms are expected to allow us to overcome the problem size limitations described in
Chapter 4 when evaluating and validating the proposed model for MPLS layout complexity
optimization through deterministic solvers. In the mentioned Chapter, we have individually
evaluated each one of the developed heuristics for small network topologies like the ones
used to first evaluate the models in Chapter 4. We have concluded that both heuristics are
fairly good approximations of the optimal values obtained through the deterministic MINLP
solver. We have also noted that the MFD algorithm outperforms the TS algorithms both
in terms of computational effort and in terms of the quality of the results for the studied
topologies.

In the present Chapter, we extend the study of both heuristics to large network topologies.
Two network topologies are presented, representing national span networks from Europe
(France) and United States. Then results for different load situations using both algorithms
for the presented network topologies are obtained and compared. Finally, based on the
result comparison between the two heuristics, further analysis on results for the MPSFAP
problem using the MFD algorithm are presented.

6.1. Considered Network Topologies

We run the TS and MFD algorithms on two medium-sized to large topologies issued from
real-life networks, covering a national span, both in Europe and United States. The VTHD
network shown in Figure 6.1 is modelled after the French National Research Network, de-
ployed in the context of the VTHD (Vraiment Très Haut Débit)[63] research project, where
only the core nodes of network are represented. In a similar way, the NSF network shown in
Figure 6.2 is a model of the Internet in the US at the time of ARPANET. We have chosen
these two topologies because they represent large networks issued from real-life planning,
with medium to high degrees of connectivity (2.66 for VTHD and 3 for NSF) transporting
traffic aggregates.

107

108
6. Results and Analysis of the MPSFAP Problems for Large Networks Using

Tabu Search (TS) and Modified Flow Deviation (MFD) Methods

Figure 6.1: VTHD Network Topology

The VTHD topology is a 9 nodes and 24 links network, producing a total of 550 paths
connecting all node pairs (i.e. the arc-path incidence matrix is a K×M = 550×24 matrix).
NSF topology is a 14 nodes and 42 links network, producing a total of 14, 250 paths. All
links are set to a Capacity of 2.5 Gbps, corresponding to a single WDM wavelength.

6.2. Comparison from TS and MFD for the MPSFAP on Large Networks

A set of 25 demand matrixes for two load levels is solved for each topology using both TS
and MFD algorithms. We chose the parameter a when generating the traffic matrixes for
each topology so as to produce some infeasible problems in high load and none in medium
load. The chosen parameters to generate the traffic matrixes are then a = 115 and a = 120
corresponding to high and medium load for VTHD topology; correspondingly we chose
a = 37 and a = 40 for NSF network. The parameter p representing the asymmetry for some
node pairs is set to 0.2 in all cases.

It is important to note that the algorithmic implementation of the TS method is highly

6.2. Comparison from TS and MFD for the MPSFAP on Large Networks 109

1

1 2

3

4

5

6

7

8
10

11

12

14

13

9

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
1920

21

22

23

24

25

26

27
28 29

30

31

32

3334

35
36

37

38

39

40

41

42

Figure 6.2: NSF Network Topology

memory consuming and computationally intensive. A number of neighbors need to be gen-
erated and kept in memory at each iteration, limiting the maximum size of the problems
that can be given as input (although much larger than for deterministic solvers). At the
same time, a second limitation appears when increasing the number of paths for the same
topology. Indeed, the time consumed to accomplish each iteration of the TS algorithm de-
pends directly on the total number of paths in A and the number of neighbors to generate,
constituting a practical limitation when running large sets of demand matrixes. Reducing
the number of neighbors to generate at each iteration of the the TS algorithm reduces the
probability of finding a good neighbor, and as such, the quality of the progression in the
solution space. An alternative to reducing the number of neighbors is to reduce the number
of paths considered in the arc-path incidence matrix A. Observing from results in previous
chapters, the path multiplicity of the solutions (even for high load levels) is near unity.
We observe as well that, as the path weights in the objective function for MPSFAP1 are
the hop counts, the paths used in the solution tend to be the shortest or next to shortest
path connecting each node pair. Providing then a reduced set of paths to the algorithm
would not greatly penalize the quality of the solution if enough alternative paths (chosen
in increasing lengths) connecting each node pair are provided. Consequently, we consider
a reduced arc-path incidence matrix, containing a total of 910 paths (i.e. a set of 5 paths
for every node pair), as a good trade-off between path candidates and time consumed. It is
also important to note that the algorithmic implementation of the MFD algorithm doesn’t
present this limitation. In fact, only one instance of the problem is kept in memory at each

110
6. Results and Analysis of the MPSFAP Problems for Large Networks Using

Tabu Search (TS) and Modified Flow Deviation (MFD) Methods

iteration, and the time consumed to perform each iteration does not depend so strongly on
the total number of paths. However, the same reduced arc-path incidence matrix is used
as input for both methods in order to perform result comparisons under the same conditions.

The Tabu Search algorithm is asked in all cases to generate 50 neighbors at each iteration.
It runs for a total of 10 iterations, and it stops if the value of the objective function does
not change for the last 5 iterations (inefficient iterations). The Modified Flow Deviation
algorithm runs until a feasible solution is found or until no shift direction can be found
in the sense of improving the value of the objective function. Table 6.1 shows the time
consumed in average by each algorithm to obtain solutions for the 25 matrix set on a Intel
Pentium IV c© running at 2.4 GHz with 512 Mb RAM. It also shows the feasibility ratio for
each run. In all cases, the end-to-end path delay constraint is set to θq = 50µsec.

MPSFAP1 Tabu Search Modified Flow Deviation

25 matrix set Ex.Time (sec) Feas. (%) Ex.Time (sec) Feas. (%)

VTHD
a = 115 1380 64 0.1 60

a = 120 1380 100 0.1 84

NSF
a = 37 10020 72 1.5 60

a = 40 10020 96 1.5 92

Table 6.1: Average Execution Times and Feasibility Ratios for MPSFAP1 by Using TS
and MFD Algorithms

Table 6.2 shows the average value of the objective function for MPSFAP1 (i.e. total number
of hops) obtained with both TS and MFD. In order to compare the quality of the results,
we redefine (5.10) and (5.23) as follows:

f(s)%MFD/TS =
f(s)TS − f(s)MFD

f(s)MFD
100 (6.1)

MPSFAP1 f(s)TS f(s)MFD f(s)%MFD/TS

VTHD
a = 115 160.94 142.60 12.86

a = 120 150.04 140.81 6.55

NSF
a = 37 422.11 397.13 6.29

a = 40 405.71 392.91 3.26

Table 6.2: Average Values of the Objective Function for MPSFAP1 by Using TS and MFD
Algorithms

From Table 6.1 it can be seen that the MFD algorithm largely outperforms the TS algo-
rithm. Execution times for the MFD algorithm are significatively smaller than execution
times for the TS algorithm (in the order of 104 times), while the quality of the results are

6.2. Comparison from TS and MFD for the MPSFAP on Large Networks 111

significatively better for the MFD algorithm in terms of value of the objective function
under all load conditions, as it can be observed in the Table 6.2. However, the feasibility
ratio is better for the TS algorithm than for the MFD algorithm. This is due mainly to the
end-to-end path constraint simplification, which imposes more restrictive constraints to the
link loads. Table 6.3 shows the average quantity of paths and the average maximum end-
to-end path delay (τkq) obtained for MPSFAP1 using TS and MFD algorithms on VTHD
and NSF topologies for the two load situations.

MPSFAP1 Tabu Search Modified Flow Deviation

25 matrix set Paths Max. τk
q (µsec) Paths Max. τk

q (µsec)

VTHD
a = 115 75.38 26.05 72.70 15.89

a = 120 73.28 21.83 71.76 14.27

NSF
a = 37 189.06 39.66 183.40 25.65

a = 40 185.46 34.33 182.30 19.23

Table 6.3: Average Paths and Average Maximum End-to-end Path Delay for MPSFAP1
by Using TS and MFD Algorithms

Due to the simplification of the end-to-end path delay constraints, more restrictive con-
straints are imposed on link loads, resulting in a higher infeasibility ratio. In fact, as we
can see in Table 6.3 and Figure 6.5, the end-to-end path delay on layouts calculated with
MFD algorithm are significantly lower than those on layouts calculated with the TS method.
More, we verify that resulting path delays with MFD runs are far from the imposed con-
straint θq. Increasing then the end-to-end path delay constraints for MFD would allow for
higher feasibility rates without violating the originally set constraints. This possibility is
further explored in next section.

Figures 6.3 and 6.4 show the detailed hop count (the value of the objective function) and
the quantity of paths used by each layout obtained as a solution by means of TS and MFD
to the corresponding demand matrix. We see that in all cases the MFD algorithm obtains
layouts with a lower number of hops and paths than those obtained by the TS algorithm.
To increase the quality of the solutions obtained with TS we should increase the number
of iterations over which the algorithm explores the solution space, further increasing the
necessary CPU time. The fact that CPU times required by TS to obtain solutions of com-
parable but lower quality than those obtained with MFD are measured in hours instead of
in seconds or minutes, tells us that the algorithm is not compatible with operational times.
In fact, if our objective is to adapt the network to changing traffic conditions on a long-term
basis, we should be able to recalculate the layout in less time than the reconfiguration cycle.
Having found that the MFD algorithm performs better quality calculations in lower CPU
times (several orders of magnitude lower), further development of the TS algorithm is no

112
6. Results and Analysis of the MPSFAP Problems for Large Networks Using

Tabu Search (TS) and Modified Flow Deviation (MFD) Methods

VTHD a=115/p=0.2

100,00

150,00

200,00

250,00

300,00

350,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

H
op

s

Hops - TS
Hops - MFD

(a) VTHD, a = 115

VTHD a=120/p=0.2

100,00

120,00

140,00

160,00

180,00

200,00

220,00

240,00

260,00

280,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

H
op

s

Hops - TS
Hops - MFD

(b) VTHD, a = 120

NSF a=37/p=0.2

300,00

350,00

400,00

450,00

500,00

550,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

H
op

s

Hops - TS
Hops - MFD

(c) NSF, a = 37

NSF a=40/p=0.2

300,00

350,00

400,00

450,00

500,00

550,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

H
op

s

Hops - TS
Hops - MFD

(d) NSF, a = 40

Figure 6.3: Value of The Objective Function for MPSFAP1 (Total Hops) for VTHD and
NSF Network Topologies using TS and MFD Algorithms

longer justified for solving the reconfiguration problem defined in next Chapter.

Regarding the behavior of the objective function we note that, as it is expected, MPSFAP1
requires more paths (and in consequence more hops) under heavy load conditions than it
does under medium load conditions. Indeed, as the demand levels increase, the traffic need
to be splitted among the available paths in order to be able to absorb the demand. Further,
it can be observed that MPSFAP1 objective keeps a low number of required paths overall.
Since VTHD topology is a 9 node network, the total number of node pairs is N(N−1) = 72,
while for NSF the total is 182 pairs. We see from Table 6.3 that the average required num-
ber of paths for VTHD by MFD algorithm is 72.70 under heavy load and 71.76 under light
load. This means that in average, solutions obtained for MPSFAP1 for VTHD are using less
than 1 extra path under heavy load to transport the whole demand (under medium load the
average number of required paths is less than 72 because on some demand matrixes there

6.2. Comparison from TS and MFD for the MPSFAP on Large Networks 113

VTHD a=115/p=0.2

65,00

70,00

75,00

80,00

85,00

90,00

95,00

100,00

105,00

110,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

Pa
th

s

Hops - TS
Hops - MFD

(a) VTHD, a = 115

VTHD a=120/p=0.2

60,00

65,00

70,00

75,00

80,00

85,00

90,00

95,00

100,00

105,00

110,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

Pa
th

s

Hops - TS
Hops - MFD

(b) VTHD, a = 120

NSF a=37/p=0.2

150,00

160,00

170,00

180,00

190,00

200,00

210,00

220,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

Pa
th

s

Hops - TS
Hops - MFD

(c) NSF, a = 37

NSF a=40/p=0.2

150,00

160,00

170,00

180,00

190,00

200,00

210,00

220,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

Pa
th

s

Hops - TS
Hops - MFD

(d) NSF, a = 40

Figure 6.4: Used Paths for Layouts Obtained from MPSFAP1 for VTHD and NSF Network
Topologies using TS and MFD Algorithms

are nodes with 0 demand). In the case of NSF, less than 2 extra paths were required to route
the whole demand under heavy load, while less than 1 extra path is necessary under medium
load. The average hop-count for VTHD is 1.96, while for NSF is 2.16. These figures are
close to the single-path routing case, leading us to think that the optimal layouts according
to MPSFAP1 could be built using an IGP protocol in a pure IP environment. However, to
find a unique IGP metric compatible with the optimal general-routing problem (studied in
[40]) seems particularly difficult. Alternatives using a mix of IGP metrics for the compat-
ible part of the optimal layout and complementary LSPs to complete it have been proposed.

Finally, paying attention to the individual maximum end-to-end path delay in Figure 6.5,
we see that they do not largely depend on the load level. This is explained by the fact that,
as the MPSFAP1 objective is to minimize the number of hops (consequently of paths) used
in the layout, as far as there is some room in the links, the traffic will be aggregated up

114
6. Results and Analysis of the MPSFAP Problems for Large Networks Using

Tabu Search (TS) and Modified Flow Deviation (MFD) Methods

VTHD a=115/p=0.2

0,00

10,00

20,00

30,00

40,00

50,00

60,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

M
ax

.P
at

h
D

el
ay

 (m
ic

ro
se

co
nd

s)

Max. Path Delay - TS
Max. Path Delay - MFD

(a) VTHD, a = 115

VTHD a=120/p=0.2

0,00

10,00

20,00

30,00

40,00

50,00

60,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

M
ax

. P
at

h
D

el
ay

 (m
ic

ro
se

co
nd

s)

Max. Path Delay - TS
Max. Path Delay - MFD

(b) VTHD, a = 120

NSF a=37/p=0.2

0,00

10,00

20,00

30,00

40,00

50,00

60,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

M
ax

.P
at

h
D

el
ay

 (m
ic

ro
se

co
nd

s)

Max. Path Delay - TS
Max. Path Delay - MFD

(c) NSF, a = 37

NSF a=40/p=0.2

0,00

10,00

20,00

30,00

40,00

50,00

60,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Matrix

M
ax

.P
at

h
D

el
ay

 (m
ic

ro
se

co
nd

s)

Max. Path Delay - TS
Max. Path Delay - MFD

(d) NSF, a = 40

Figure 6.5: Maximum Path Delay in Layouts Obtained from MPSFAP1 for VTHD and
NSF Network Topologies using TS and MFD Algorithms

to the limit imposed by the capacity and path delay constraints. As the results show, the
minimum set of paths is obtained to the expense of growing end-to-end path delays, proving
that the introduced constraints are key to keeping the intended QoS guarantees.

In next section we further analyze results for the VTHD and NSF topologies using the MFD
algorithm, as the running times and quality of the obtained results as shown in the present
section allow for extensive tests to gain insight in the behavior of the dimensioning problem
on large networks.

6.3. Result Analysis of Large Networks by Using MFD

Given the observed performance of the MFD algorithm as established in previous section,
we further analyze some results obtained for the VTHD and NSF networks. For the two

6.3. Result Analysis of Large Networks by Using MFD 115

values of the parameter a in the traffic matrixes, corresponding to high and medium load
levels for each network, we explore results obtained when varying the end-to-end path
delay constraint θq for every node pair. The tightest value is set to 50 µseconds, and the
constraint is relaxed up to 170 µseconds. The feasibility ratio, and the evolution of the
observed number of hops and paths, as well as the evolution of the average maximum and
absolute maximum end-to-end path delay with respect to the changes in the constraints are
analyzed. For simplicity, the path delay constraints are all set to the same value.

VTHD (a=115/p=0.2)

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

50,00

55,00

60,00

50 60 70 80 90 100 110 120 130 140 150 160 170
Max. Path Delay Constraint (microseconds)

m
ic

ro
se

co
nd

s

Max. Path Delay (Average)
Max. Path Delay (Max)

Original Path-Delay Constraint (50 microseconds)

(a) VTHD, a = 115

VTHD (a=120/p=0.2)

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

50,00

55,00

60,00

50 60 70 80 90 100 110 120 130 140 150 160 170
Max. Path Delay Constraint (microseconds)

m
ic

ro
se

co
nd

s

Max. Path Delay (Average)
Max. Path Delay (Max)

Original Path-Delay Constraint (50 microseconds)

(b) VTHD, a = 120

Figure 6.6: Maximum Path Delay and Average Maximum Path Delay for VTHD Network
Topologies Using MFD Algorithm, as a Function of Delay Constraint

NSF (a=37/p=0.2)

10,00

20,00

30,00

40,00

50,00

60,00

70,00

50 60 70 80 90 100 110 120 130 140 150 160 170
Max. Path Delay Constraint (microseconds)

m
ic

ro
se

co
nd

s

Max. Path Delay (Average)
Max. Path Delay (Max)

Original Path-Delay Constraint (50 microseconds)

(a) NSF, a = 37

NSF (a=40/p=0.2)

10,00

20,00

30,00

40,00

50,00

60,00

70,00

50 60 70 80 90 100 110 120 130 140 150 160 170
Max. Path Delay Constraint (microseconds)

m
ic

ro
se

co
nd

s

Max. Path Delay (Average)
Max. Path Delay (Max)

Original Path-Delay Constraint (50 microseconds)

(b) NSF, a = 40

Figure 6.7: Maximum Path Delay and Average Maximum Path Delay for NSF Network
Topologies Using MFD Algorithm, as a Function of Delay Constraint

Figures 6.6 and 6.7 show the evolution of the end-to-end path delay with the constraint
imposed on the maximum allowable end-to-end path delays for both topologies. As it
has been highlighted in section 6.2, when setting the end-to-end path delay constraint to

116
6. Results and Analysis of the MPSFAP Problems for Large Networks Using

Tabu Search (TS) and Modified Flow Deviation (MFD) Methods

50 µseconds, the observed absolute maximum end-to-end path delay (i.e. the maximum
observed among all the paths in the layouts obtained for the set of 25 traffic matrixes for
a given load level and θq) is far lower than the value imposed by the constraint. This is
due to the way those constraints were simplified in order to be able to calculate flow shifts
for the MFD algorithm in a link-by-link basis taking into account the path flows traversing
each link. A factor to analyze is then how the absolute maximum path delay for any path
in the layout relates to the imposed path delay constraint.

VTHD (a=115/p=0.2)

140,00

140,50

141,00

141,50

142,00

142,50

143,00

50 60 70 80 90 100 110 120 130 140 150 160 170
Max. Path Delay Constraint (microseconds)

A
vg

. H
op

s

Avg. Hops

(a) VTHD, a = 115

VTHD (a=120/p=0.2)

140,00

140,50

141,00

141,50

142,00

142,50

143,00

50 60 70 80 90 100 110 120 130 140 150 160 170
Max. Path Delay Constraint (microseconds)

A
vg

. H
op

s

Avg. Hops

(b) VTHD, a = 120

Figure 6.8: Average Quantity of Hops for VTHD Network Topologies Using MFD Algo-
rithm, as a Function of Delay Constraint

NSF (a=37/p=0.2)

390,00

400,00

50 60 70 80 90 100 110 120 130 140 150 160 170
Max. Path Delay Constraint (microseconds)

A
vg

. H
op

s

Avg. Hops

(a) NSF, a = 37

NSF (a=40/p=0.2)

390,00

400,00

50 60 70 80 90 100 110 120 130 140 150 160 170
Max. Path Delay Constraint (microseconds)

A
vg

. H
op

s

Avg. Hops

(b) NSF, a = 40

Figure 6.9: Average Quantity of Hops for NSF Network Topologies Using MFD Algorithm,
as a Function of Delay Constraint

As we would expect, the maximum path delay (maxk,q
{
τkq
}
) obtained in any path of the

calculated layout increases as the path delay constraint (θq) are made less tight. We see
that, even when increasing θq to 160 µseconds for a high load situation, maxk,q

{
τkq
}

stays

6.3. Result Analysis of Large Networks by Using MFD 117

below the originally set constraint of 50 µseconds. For a medium load situation (a = 120
for VTHD and a = 40 for NSF), the maxk,q

{
τkq
}

reach later the limit imposed by the
originally set constrain. We can also observe that for NSF network, the maxk,q

{
τkq
}

crosses
the originally set constraint of 50 µseconds for lower values of the path delay constraint
than it does for VTHD network.

VTHD (a=115/p=0.2)

71,00

71,50

72,00

72,50

73,00

50 60 70 80 90 100 110 120 130 140 150 160 170
Max. Path Delay Constraint (microseconds)

A
vg

. P
at

hs

Avg. Paths

(a) VTHD, a = 115

VTHD (a=120/p=0.2)

71,00

71,50

72,00

72,50

73,00

50 60 70 80 90 100 110 120 130 140 150 160 170
Max. Path Delay Constraint (microseconds)

A
vg

. P
at

hs

Avg. Paths

(b) VTHD, a = 120

Figure 6.10: Average Quantity of Paths for VTHD Network Topologies Using MFD Al-
gorithm, as a Function of Delay Constraint

NSF (a=37/p=0.2)

180,00

182,00

184,00

50 60 70 80 90 100 110 120 130 140 150 160 170
Max. Path Delay Constraint (microseconds)

A
vg

. P
at

hs

Avg. Paths

(a) NSF, a = 37

NSF (a=40/p=0.2)

180,00

182,00

184,00

50 60 70 80 90 100 110 120 130 140 150 160 170
Max. Path Delay Constraint (microseconds)

A
vg

. P
at

hs

Avg. Paths

(b) NSF, a = 40

Figure 6.11: Average Quantity of Paths for NSF Network Topologies Using MFD Algo-
rithm, as a Function of Delay Constraint

This can be explained by the fact that the average path length for NSF network is larger
than the average path length for VTHD network. The fact that the obtained path delays are
always lower than the imposed constraints allows us to set less tight constraints, allowing the
concentration of traffic in less paths, and consequently lowering the number of required hops
(and indirectly of paths), as it can be seen in Figures 6.8, 6.10, 6.9 and 6.11. This results

118
6. Results and Analysis of the MPSFAP Problems for Large Networks Using

Tabu Search (TS) and Modified Flow Deviation (MFD) Methods

in an further improvement on the quality of the results, without violating the originally
set constraints. Further study to find a relationship between the values obtained for the
path delays for a given set of path delay constraints may help to set engineering rules
for the design of MPLS layouts. This relationship depends on the topology so an explicit
relationship would be difficult to establish, although we see from the figures that a linear
function yields a fairly good approximation.

VTHD (a=115/p=0.2)

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

50 60 70 80 90 100 110 120 130 140 150 160 170
Max. Path Delay Constraint (microseconds)

A
vg

. P
at

hs

Feasibility (%)

(a) VTHD, a = 115

VTHD (a=120/p=0.2)

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

50 60 70 80 90 100 110 120 130 140 150 160 170
Max. Path Delay Constraint (microseconds)

A
vg

. P
at

hs

Feasibility (%)

(b) VTHD, a = 120

Figure 6.12: Feasibility Rate for VTHD Network Topologies Using MFD Algorithm, as a
Function of Delay Constraint

NSF (a=37/p=0.2)

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

50 60 70 80 90 100 110 120 130 140 150 160 170
Max. Path Delay Constraint (microseconds)

A
vg

. P
at

hs

Feasibility (%)

(a) NSF, a = 37

NSF (a=40/p=0.2)

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

50 60 70 80 90 100 110 120 130 140 150 160 170
Max. Path Delay Constraint (microseconds)

A
vg

. P
at

hs

Feasibility (%)

(b) NSF, a = 40

Figure 6.13: Feasibility Rate for NSF Network Topologies Using MFD Algorithm, as a
Function of Delay Constraint

Finally, looking at the feasibility ratios in Figure 6.12 and 6.13, as we would expect, it can
be seen that they improve when the path delay constraints are made less tight. The reason
why this happens is simple: as the path delay constraints are relaxed, the allowed reduced
capacity on each link increases, also increasing the total available capacity in the network,

6.4. Conclusions 119

so that traffic matrixes that were infeasible before now become feasible.

6.4. Conclusions

In previous Chapter we developed two heuristic methods to solve the MPSFAP problem.
We also tested implementations of both heuristics on small network topologies in order to
evaluate the quality of the results obtained, given the problem size limitations imposed by
the deterministic solvers. From results obtained in Chapter 5 we conclude that the TS and
MFD algorithms implementing generic and ad-hoc heuristics respectively yield approximate
results within an acceptable tolerance from the optimal solutions. In the present Chapter,
we explore the behavior of both algorithms and the cost functions proposed on large net-
work topologies. Results are obtained for two load levels, corresponding to heavy and mild
load in the network.

Regarding the performance of the algorithms proposed in previous Chapter, for the same
topologies and under the same load conditions, we observe that the MFD algorithm per-
forms better than the TS algorithm for both aspects, quality of the solution and execution
time. With respect to the quality of the solutions obtained my MFD, it can be observed
that the value of the MPSFAP1 cost function is lower in all cases, meaning that a lower
number of hops and paths are used in average. On the other hand, we observe that MFD
has an infeasibility ratio which is higher than the one observed for TS. This is explained
by the fact that the simplification operated on the end-to-end path delay constraint when
implementing the MFD algorithm imposes more restrictive limitations to the usable capac-
ity on the individual links than the TS algorithm. This can be observed when comparing
the maximum end-to-end path delay obtained from both algorithms for each one of the 25
traffic matrixes in the test set for any load level. While the maximum path delay values
obtained with TS are almost always close to the imposed constraint, the values for the
MFD algorithm are always far from such limit. This drives us to further explore solutions
with the MFD algorithm for less restrictive path delay constraints, which we do in the
second part of this Chapter. Further, with respect to execution times, we can observe that
MFD algorithm always find better quality solutions than TS in dramatically lower times
than TS, due to the inexpensive nature of the operations performed over only a few paths
on each iteration of the MFD. The execution times observed with the MFD algorithm are
compatible with an on-line operation of a close control loop, allowing us to reduce the time
required to calculate optimal layouts and to dimension the network at shorter timescales.
However, it is not practical to recalculate the optimal layout in a large network too many
times too often, since TE mechanisms at shortest timescales applied on local scopes can
deal appropriately with the dynamic adaptation needed for the observed variations at those
timescales, instead of resorting to global changes which are not justified in terms of costs

120
6. Results and Analysis of the MPSFAP Problems for Large Networks Using

Tabu Search (TS) and Modified Flow Deviation (MFD) Methods

for the operator. The quality of the observed results, together with the execution times are
key factors, which determined us to further develop the MFD algorithm in future research
directions, leaving the TS algorithm behind. In particular, a version of the MFD algorithm
is adapted to solve the MRPSFAP problem in Chapter 8.

Regarding the behavior of the proposed MPSFAP cost function, the study of results ob-
tained by using the MFD algorithm on large network topologies show that when imposing
less restrictive constraints under any load condition, the average quantity of hops (and indi-
rectly the average quantity of paths) gets further reduced. As expected, reducing the load
conditions on a given network topology, also reduces the number of required hops and paths
for a given traffic matrix. It is important to note that in all cases the path multiplicity
required to connect any node pair when calculating the layouts with MPSFAP1 objective
is close to 1, showing the interest of the proposed cost function as representative of the cost
objectives for layout optimization from an operational point of view.

7. Contribution to Reconfiguring MPLS Networks: Design of

Reduced Reconfiguration and Complexity Layouts

7.1. Motivations and Previous Work

In Chapter 4 the problem of dimensioning an MPLS layout has been addressed. Given a
traffic demand and a physical network topology, the objective is to find the set of source
routed paths and the corresponding flow allocation that minimizes the cost of operation.
We have considered so far that the traffic demand is known (e.g. by means of measurement
and inference from those measures) and that we want to obtain a unique optimal layout for
that traffic matrix. In this context, we consider that the cost of operation is related to the
layout complexity in terms of quantity of hops and paths that have to be established and
maintained by the operating system. The dimensioning problem is then formulated as a
mixed-integer non-linear constrained multicommodity flow allocation problem (MPSFAP)
including cost functions taking into account the above mentioned cost issues [16].

On long timescales, traffic demands are observed to present systematic long-term traffic
variations on a daily basis [68, 69]. The design of an optimal layout for a given traffic ma-
trix constitutes then a point of operation during the periods where the traffic is identified to
be static with respect to the considered timescale. Small traffic variations during this cycle
would be accommodated by TE mechanisms taking action at shorter timescales. However,
when the traffic matrix presents significant changes (as those produced when passing from
the current static period to the next one), the currently operational layout is not able to
handle the new traffic conditions efficiently anymore and has to be recalculated. In the
present chapter we consider that there is an additional cost for the network operation and
maintenance in reconfiguring the network to the new layout. Indeed, depending on the
routing policy being implemented, whether additional resources have to be made available
or service disruption times have to be accepted in order to manage the transition from the
current layout to the next one. In this context, the layout has to be recalculated to be op-
timal with respect to the layout complexity (in the sense of MPSFAP problems) and with
respect to the reconfiguration complexity.

Reconfiguration studies have been carried out mainly in the context of WDM layouts [25,
70, 71] and joint MPLS and WDM layout optimization [72], as well as in the field of general
optimal routing [73]. Objective functions considered in off-line approaches minimize the

121

122
7. Contribution to Reconfiguring MPLS Networks: Design of Reduced

Reconfiguration and Complexity Layouts

number of lightpath additions and deletions [25] or a trade-off among the reconfiguration
and the other objectives in the layout design, without considering QoS constraints. In
[25] a new virtual topology is obtained by choosing the layout which minimizes the total
number of added or deleted lightpaths among all the possible layouts. An optimal layout
is calculated for the old and new demand matrixes. The value of the objective function for
the new layout is then included in a new formulation of the problem for the new layout as
a constraint. On-line approaches [70, 71] consider the objective of minimizing the lightpath
additions and deletions in order to adapt the virtual layout to traffic changes. In [70],
low and high watermarks are associated to each lightpath. The load on every lightpath is
observed, and only one operation (i.e. adding or deleting a lightpath) is allowed at the end
of the adaptation cycle. In [71], trade-offs between the reconfiguration costs and the other
objectives are proposed when calculating a path for an arriving demand. In a different
approach that can be assimilated to the reconfiguration problem, [72] and [73] try to find
optimal layouts for MPLS over WDM networks and for the general IP routing, for a given
objective and for a set of traffic demands lying within a polytope. This was first addressed
in [89] and [90] and is commonly referred as Muti-time Period Network Design. Instead of
calculating optimal layouts considering reconfiguration objectives, a unique optimal layout
is calculated with respect to some performance objective, and for a set of demand matrixes
inscribed in a polytope representing all the cycles of traffic variation. In this context, the
optimal layout calculated is expected to be a good point of operation for the set of traffic
matrixes in the polytope, without needing to be recalculated and in consequence rebuilt
or modified. However, there is a trade-off between the extension of the polytope for which
the layout stays optimal and the optimality of the layout with respect to the considered
objective for any particular matrix inscribed in it. In order to have a wide range of valid
demands considered into a single optimal layout, the calculated layout will be suboptimal
with respect to the individual optimal layouts that would be obtained for the individual
matrixes in the set, with the same objective. The suboptimal layout will then be farther
from the individual optimal layouts as the size of the considered polytope increases. This
leads to a situation similar to network overdimensioning. In particular, if the objective is to
obtain an optimal layout in the sense of MPSFAP problems, then the number of hops and
paths would have to be increased in order to consider a larger number of possible matrixes.
In [45] and [75] the metrics of traditional routing protocols in a pure IP environment are
modified in order to adapt the network to varying traffic conditions. However, in the context
of this thesis, Interior Gateway Protocols (IGPs) are not considered as appropriate tools to
allow evolved TE mechanisms to be implemented on NG IP Networks.

In a different but complementary field of research that has recently started to attract at-
tention, progressive techniques to establish the newly calculated layout are being studied.
Once the new layout calculated to be optimal with respect to the complexity of the layout
and the complexity of the reconfiguration, we still need a way to set up the transition in a

7.2. Network Model Notation: Extensions for Dynamic Traffic Conditions 123

progressive non-disruptive and least cost way. In [74] the new layout is considered to have
been already calculated, and a way of minimizing the transition costs is formulated.

All the cited work lead to more or less complicated MILP, MINLP and LP problem formula-
tions. The cost of reconfiguration in WDM networks is related to wavelength commutation,
so lightpath deletions are as costly as lightpath additions. Besides, we consider that in-
cluding reconfiguration objectives in the layout calculation is a good approach to a more
efficient network adaptation to varying traffic conditions.

However, in the context of source-routed IP paths (e.g. MPLS paths) only path additions
are costly, since depending on the routing strategy spare resources have to be made available
or service disruption times tolerated in increasing proportions of the quantity of paths to
replace. The cost of reconfiguration is then considered to be related to the number of
paths (with its associated weight) that have to be added when building up the new layout.
The number of paths to be deleted represent only a marginal cost and can be neglected
(i.e. deleting paths reduces the total cost of the layout). The reconfiguration problem is
formulated as the dynamic version of the MPSFAP problems defined in Chapter 4. The
Minimum Reconfiguration, Path Set and Flow Allocation Problem (MRPSFAP) is then
defined as a Mixed-Integer Non-Linear Program (MINLP) whose objective is to minimize a
function of the difference between the current and the calculated layout and also a function
of the layout complexity as defined in MPSFAP, under end-to-end QoS constraints for the
new layout. As before, two cost functions are proposed correspondingly to MPSFAP1 and
MPSFAP2. A unique class of service is considered first, and QoS guarantees are given for
it. The model is then extended to consider multiple classes of service.

7.2. Network Model Notation: Extensions for Dynamic Traffic Conditions

In this section we recall the definitions from section 4.2 and redefine them as necessary to
be used in the context of the reconfiguration problem. The network is again represented
as a graph, and the arc-incidence matrix A represents the set of all possible paths on
the physical topology as before. W represents the K-dimensional single column matrix
of weights associated to each path. Both matrixes don’t change with time (or instance)
considered, as they represent physical characteristics of the underlying network. In what
follows, we will denote with t the current instant and (t+ 1) the instant for which we want
to calculate the new optimal layout.

Demands: Characterizing the Traffic Dynamics

Traffic measured at packet level [68] (Figure 7.1) and at flow level [69] (Figure 7.2) show
systematic long-term cyclic variations during the day and between weekdays and weekends.
In particular at the flow level, we can then identify periods that can be each represented by

124
7. Contribution to Reconfiguring MPLS Networks: Design of Reduced

Reconfiguration and Complexity Layouts

a different traffic matrix. Assuming that the current layout was calculated for the traffic
matrix at the instant t, Dt, the new layout will be calculated for the traffic matrix at the
instant (t+ 1), D(t+1).

(a) Traffic per 100 seconds for 9 days packet trace (b) Traffic per 10 seconds for 27 hours packet trace

Figure 7.1: Traffic measures at packet level for different timescales [68]

Figure 7.2: Weekly and Daily Traffic Profile on a OC192 Link [69]

Correspondingly, the single column matrix representing the path flows for the new layout
will be now denoted as Bt for the current layout and B(t+1) for the new layout. The
relationships (4.4) and (4.5) get modified as follows:

7.3. Building the Cost Functions 125

R ·B(t+1) = D(t+1) (7.1)

X(t+1) = A ·B(t+1) (7.2)

respectively for the instant (t+ 1) with R defined as before.

7.3. Building the Cost Functions

Considering traffic dynamics, the cost of operation in large networks is related not only to
the complexity of the operating layout as we stated in Chapter 4, but also to the reconfigu-
ration complexity. In fact, establishing a layout from scratch has OAM costs related to the
number of paths and the length of those paths (e.g. in hops) to be set up and maintained
by the management system. In a dynamic environment however, the network is not likely
to be set up from scratch: a currently operational layout is in place, and there are OAM
costs associated to any change that has to be made to that layout. In current operational
environments, the layouts are recalculated independently for each traffic matrix and then
rebuilt through one of two strategies [10]: make-before-break and break-before-make. Make-
before-break strategy establishes all the paths in the new layout and starts routing traffic
through them before start deleting the paths in the old layout. The advantage is that no
service disruption is produced with such strategy, but enough spare resources have to be
made available in order to be able to route all the traffic during the transition; at the same
time, the management system has to deal with roughly twice the number of paths until
the new layout is set up. On the other hand, a break-before-make strategy deletes all the
paths in the layout and rebuilds it as it if were from scratch. The advantage of this ap-
proach is that no spare resources are needed during the transition, but service disruption
is unavoidable; at the same time, the management system has to deal with a whole layout
deleting and set-up. The larger the network, the more spare resources have to be made
available with the former strategy or larger service disruption times will be expected with
the later strategy. In all cases, the management system deals with a large number of paths
whenever a transition is made. Our approach considers the cost of reconfiguration as an
objective when calculating the new layout, as well as the already stated objective of layout
complexity. No matter what strategy is used then to set up the transition, its cost for the
OAM are minimized. The order in which the paths are established or deleted during the
transition constitutes a complementary research direction.

Assuming that the optimal layout for the traffic demand D(t) at the instant t has been
found (i.e. whether by solving a MPSFAP1 problem if t = 0 or a MRPSFAP problem if
t 6= 0), B(t) and H(t) represent the path flow distribution and the set of used paths in the

126
7. Contribution to Reconfiguring MPLS Networks: Design of Reduced

Reconfiguration and Complexity Layouts

optimal layout. Recalling from (4.6), the objective will be then to minimize a function of
the general form:

Minimize

ϕ Q∑
q=1

Kq∑
k=1

wkqh
k
q,(t+1) + ν

Q∑
q=1

Kq∑
k=1

wkq s
k
q,(t+1)

 (7.3)

where hqk is a binary variable defined as in (4.7) for the new layout (i.e. instant (t + 1)),
and the weights associated to each path are calculated as in Section 4.3. The first term in
(7.3) represents the objective of reduced complexity for the new layout as in the MPSFAP
problems. The second term represents the objective of reduced reconfiguration complexity,
and is a function of the current layout (instant t) and the layout being calculated (instant
(t+1)). ϕ and ν are factors to control the importance of each individual objective. We now
need a way to define the matrix S(t+1) as a measure of the difference between the current
and new layouts, in order to measure what we consider as the reconfiguration cost.

If the dispersion in the end-to-end path delays is an issue when calculating the new layout,
a third term can be added to the general objective in (7.3) as we proposed in (4.8). The
effects of such a term in the objective function were studied in Chapter 4 and will not
be addressed here again. In what follows, we will only define the MRPSFAP problem to
consider objective functions of the form (7.3), as the results obtained for MPSFAP2 problem
can be extended to the new layouts calculated by including this third term. We focus then
on the reconfiguration aspects of the new layout, given the current operational one.

Minimizing Layout Reconfiguration: Differential Index

As we stated before, the cost of reconfiguration in the context of MPLS layouts is related
to the quantity of paths (and their lengths in hops) that are to be established in the new
layout with respect to the current operational layout. The addition of a path, even when
replacing an existent one imposes a cost to the management system and should be avoided.
On the other hand, we consider that the deletion of a path imposes only a marginal cost to
the OAM, and should be encouraged whenever the deletion is not being replaced by a new
path. The entries in S(t+1) or differential indexes will be then binary variables indicating
wether the path akq is an addition (i.e. receives flow) in the layout being calculated or it is
an existent one (i.e. keeps some positive flow) or it is being deleted (i.e. looses its flow):

skq,(t+1) =

1 if hkq,(t+1) = 1 ∧ hkq,(t) = 0

0 otherwise
(7.4)

for k = 1, . . . ,Kq and q = 1, . . . , Q. In other words, skq,(t+1) can be defined as a function of
hkq,(t) and hkq,(t+1):

7.4. Setting QoS Guarantees 127

skq,(t+1) = hkq,(t+1)(hq,(t+1) − hq,(t)) (7.5)

where hq,(t) are the binary variables indicating if a given path akq was used in the previous
layout, and is an input of the new problem.

7.4. Setting QoS Guarantees

The constraints introduced for the MPSFAP problems in section 4.4 are kept. In particular,
the end-to-end path delay (4.11) and throughput (4.10) guarantees must be ensured for the
new layout.

7.5. Formulation: Minimum Reconfiguration, Path Set and Flow Allocation

Problem (MRPSFAP)

Given the network physical topology G = (V, E), the currently operational layout B(t) and
H(t) (optimal for some demand matrix D(t)) and the new demand matrix D(t+1), the prob-
lem is to find the new set of paths H(t+1) and the flow allocation over those paths B(t+1)

which minimize a cost objective, complying to some QoS constraints. We formulate the
problem of designing the optimal layout w.r.t. the complexity of the new layout and the
complexity of reconfiguration from the current layout, while meeting QoS constraints (i.e.
and end-to-end path delay constraints and available bandwidth per node pair). The Net-
work Design Multicommodity Flow Allocation Problem in its matrix form is stated as the
MRPSFAP1 problem below.

The objective function (7.6) includes the term considering the new layout complexity ((t+
1)), and the term considering reconfiguration complexity for the transition from the old to
the new layout (t→ (t+1)). We consider that calculating the path weights as the number of
hops each path uses is a good choice to take care of OAM costs for both, layout complexity
and reconfiguration complexity. In fact, the management system (whether through manual
setup or by means of a signaling protocol) effort to set up each path is proportional to the
number of links a path is traversing. From the performance point of view, it is also preferable
to choose shorter paths (in terms of hops) instead of longer paths. Constraints (7.7), (7.8),
(7.9) and (7.10) are equivalent to the constraints included in MPSFAP problems, applied
on the new layout being calculated. The relation (7.5) tying S(t+1) to H(t) and H(t+1) is
expressed as a constraint (7.11). The reason is that both hkq,(t+1) and skq,(t+1) are variables
that the solver will choose to minimize the cost function. As both are binary variables,
through the inequality we ensure that the equality will be true in the optimum. In section
7.6 we compare results obtained from MRPSFAP and MPSFAP1 for NET2 topology.

128
7. Contribution to Reconfiguring MPLS Networks: Design of Reduced

Reconfiguration and Complexity Layouts

MRPSFAP 1
Minimum Reconfiguration, Path Set and Flow Allocation Problem

Given:

A,C,D(t+1),H(t),Θ,∆,W

minimize :

ϕtW ·H(t+1) + νtW · S(t+1) (7.6)

subject to:

X(t+1) = A ·B(t+1) ≤ C (7.7)

R ·B(t+1) = D(t+1) (7.8)

hkq,(t+1)

M∑
i=1

λakq,i
Ci − xi(t+1)

≤ θq k = 1, . . . ,Kq; q = 1, . . . , Q (7.9)

bkq,(t+1) ≤ h
k
q,(t+1)δq k = 1, . . . ,Kq; q = 1, . . . , Q (7.10)

(hkq,(t+1) − h
k
q,(t))h

k
q,(t+1) ≤ s

k
q,(t+1) k = 1, . . . ,Kq; q = 1, . . . , Q (7.11)

hkq,(t+1) ∈ {0, 1} k = 1, . . . ,Kq; q = 1, . . . , Q (7.12)

skq,(t+1) ∈ {0, 1} k = 1, . . . ,Kq; q = 1, . . . , Q (7.13)

bkq,(t+1) ≥ 0 k = 1, . . . ,Kq; q = 1, . . . , Q (7.14)

7.6. Preliminary Results on MRPSFAP and Model Validation

The MRPSFAP problem, as the MPSFAP problems, is a network design multicommodity
flow problem, with the binary variables hkq,(t+1) and skq,(t+1) deciding on wether a paths is
going to be used or not in the new layout, based on usage of those paths in the previous
layout. The resulting MRPSFAP is a MINLP problem, and as before, the non-linearities are
given by the end-to-end path delay constraints imposed on the new layout. The MRPSFAP
problem presents a larger number of variables: 3K instead of 2K in MPSFAP problems,
and 3K+M+Q constraints, instead of the 2K+M+Q constraints present in the MPSFAP
problems. As the MPSFAP problems, the MRPSFAP problem is NP-complete, what re-
duces the size of the network topologies that can be solved through deterministic algorithms.

In the present chapter, due to the size limitations imposed by the nature of the problem,
we evaluate some preliminary results limited to the NET2 topology (NET1 doesn’t offer a
significant difference for reconfiguration) in order to obtain some insight in the behavior of
the objective function and validate the correctness of the proposed cost model. In Chapter
8 we resort to an heuristic method derived from the Modified Flow Deviation Algorithm

7.6. Preliminary Results on MRPSFAP and Model Validation 129

(MFD) presented in Chapter 5.

7.6.1. Traffic Matrixes: Considering the Traffic Dynamics

Traffic matrixes were generated to evaluate the MPSFAP problems in section 4.6.1, following
a method inspired in [25]. To model the dynamics of the demands over a set of identified
static periods, we make evolve each of the generated matrixes by operating a change in the
demand value for a given proportion pv of the node pairs. The new value of the demand
for a changed node pair is uniformly distributed within the interval [0, Cq

a] or the interval
[0, CqY

a], depending on the interval in which that node pair had its demand distributed when
generating the original traffic matrix. We generate then a series of 24 demand matrixes for
each original randomly generated matrix, each new matrix evolving from the previous one
in the series. Figure 7.3 shows the process of generating a series of matrix evolutions from
an original matrix.

Matrix 1.0Matrix 1.0

pa,

Matrix 1.1Matrix 1.1
vp

Matrix 1.24Matrix 1.24

Matrix n.0Matrix n.0 Matrix n.1Matrix n.1
vp

Matrix n.24Matrix n.24

Topology

⎥
⎦

⎤
⎢
⎣

⎡
a

C
p q,0a

⎥
⎦

⎤
⎢
⎣

⎡
−

a
YC

p q,0)1(a

0=t 1=t 24=t

Figure 7.3: Overall process to generate the test set of demand matrixes (static and dy-
namic)

7.6.2. Results and Analysis

The MRPSFAP problem has been modelled into AMPL format in order to be submitted
to the MINLP solver available at the NEOS server on the Internet. The model in AMPL
language for the MRPSFAP problem can be found in Appendix B. The procedure we follow
is depicted in Figure 7.4. For a given traffic matrix at the instant t = 0 denoted by M1.0

130
7. Contribution to Reconfiguring MPLS Networks: Design of Reduced

Reconfiguration and Complexity Layouts

and randomly generated as described in section 4.6.1, we produce an optimal layout in the
sense of MPSFAP1 problem. We denote this optimal layout by S0. Then, we solve the
first matrix evolution M1.1 for the instant (t + 1) using MPSFAP1 to obtain a new layout
without correlation to the current layout S0. We denote this optimal layout obtained with
MPSFAP1 by S′1. At the same time, we solve the same matrix M1.1 using MRPSFAP
to obtain a new optimal layout correlated to the currently operational. We denote this
optimal layout by S1. The process is repeated until all the evolutions in the series for the
considered matrix have been solved. The obtained results are then compared regarding the
total number of hops and paths accumulatively added through the process for each series of
traffic matrix changes, as well as with respect to the total number of hops and paths used
by each one of the optimization criteria.

++

M1.0M1.0 S0S0
MPSFAP1

M1.1M1.1

MRPSFAP

S’1S’1

M
P

S
FA

P
1

++

S1S1

M1.2M1.2

S’2S’2

M
P

S
FA

P
1

++

S23S23

M1.24M1.24

S’24S’24

M
P

S
FA

P
1

S24S24
MRPSFAP MRPSFAP

0=t 1=t 24=t

Figure 7.4: Overall process to compare layouts obtained from MPSFAP1 and MRPSFAP
for a series from an original matrix

Due to the number of demand matrixes in each series, we limit our study to the NET2 topol-
ogy shown in Figure 4.3 and described in section 4.6.2. To generate the traffic matrixes, the
load level parameter is set to a = 5 (which corresponds to a high load level), the proportion
of nodes being allowed a higher load is set to p = 0.2, and the number of nodes pairs having
their load changed from matrix to matrix is set to pv = 0.4 (meaning that 40% of the node
pairs are having their demand values changed from the matrix at t to the matrix at (t+1))
for the M1 series, and pv = 0.2 for the M2 series. We consider that results on NET2 are
representative of results that could be obtained on a similar test topology like NET1, as

7.6. Preliminary Results on MRPSFAP and Model Validation 131

it shows a higher connectivity (density of 2.5) and consequently a higher number of paths
that can be changed. The importance of the complexity and reconfiguration objectives are
equally weighted (ϕ = ν = 1). The end-to-end path delay constraints are in all cases kept
as in Chapter 4. Next, results obtained for two traffic matrixes and their corresponding
evolutions are shown.

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Matrixes

Pa
th

s

Paths - MPSFAP1
Paths - MRPSFAP

(a) Paths, a = 5, p = 0.2, pv = 0.4

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Matrixes

Pa
th

s

Paths - MPSFAP1 - Accumulated Additions
Paths - MRPSFAP - Accumulated Additions

(b) Accumulated path additions, a = 5, p = 0.2, pv =
0.4

Figure 7.5: Used paths and accumulated path additions for MPSFAP1 and MRPSFAP on
NET2 for demand matrix series M1

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Matrixes

H
op

s

Hops - MPSFAP1
Hops - MRPSFAP

(a) Hops, a = 5, p = 0.2, pv = 0.4

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrixes

H
op

s

Hops - MPSFAP1 - Accumulated Additions
Hops - MRPSFAP - Accumulated Additions

(b) Accumulated hops additions, a = 5, p = 0.2, pv =
0.4

Figure 7.6: Used hops and accumulated hop additions for MPSFAP1 and MRPSFAP on
NET2 for demand matrix series M1

In Figures 7.5(b) and 7.6(b), we observe that the number of paths and hops accumulatively
added through the optimization of the reconfiguration complexity operated by MRPSFAP
for the 24 traffic matrixes in the M1 series is significatively lower than the number of addi-

132
7. Contribution to Reconfiguring MPLS Networks: Design of Reduced

Reconfiguration and Complexity Layouts

tions operated by independently optimizing only the layout complexity through MPSFAP1.

Paths Added and Deleted - MPSFAP

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

Pa
th

s

Paths Added MPSFAP
Paths Deleted MPSFAP

Addings Average

Deletions Average

(a) MPSFAP1, a = 5, p = 0.2, pv = 0.4

Paths Added and Deleted - MRPSFAP

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

Pa
th

s

Paths Added MRPSFAP
Paths Deleted MRPSFAP

Addings Average

Deletions Average

(b) MRPSFAP, a = 5, p = 0.2, pv = 0.4

Figure 7.7: Path additions and deletions for MPSPAF1 and MRPSFAP for demand matrix
series M1

Hops Added and Deleted - MPSFAP

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

H
op

s

Hops Added MPSFAP
Hops Deleted MPSFAP

Addings Average

Deletions Average

(a) MPSFAP1, a = 5, p = 0.2, pv = 0.4

Hops Added and Deleted - MRPSFAP

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

H
op

s

Hops Added MRPSFAP
Hops Deleted MRPSFAP

Addings Average

Deletions Average

(b) MRPSFAP, a = 5, p = 0.2, pv = 0.4

Figure 7.8: Hop additions and deletions for MPSPAF1 and MRPSFAP for demand matrix
series M1

By examining Figures 7.5(a) and 7.6(a) we see that layouts obtained by both MPSFAP1
and MRPSFAP use almost the same quantity of hops and paths through the whole series.
The last shows that MRPSFAP optimizes the layout complexity, as well as the reconfigura-
tion complexity during transitions, which is the objective we aim at for the design of MPLS
layouts under dynamic traffic conditions. Also, as the traffic conditions vary significatively
from one matrix to the next in M1 (since pv = 0.4 in this series), the number of hops and
paths also changes to adapt to those variations. However, on some cases MRPSFAP ap-
pears to use more hops and paths than MPSFAP1, but we see that those cases correspond

7.6. Preliminary Results on MRPSFAP and Model Validation 133

to the transitions when additions have to be done and in that case, MRPSFAP is choosing
to use one more path (or a longer one in hops) to keep the number of additions low. It is
important to note that from the results obtained, we verify that the fact of including only
the weighted path additions in the cost function helps the network to adapt to a decrease
in the load level by allowing it to reduce the number of paths in the optimal layout. If path
deletions were penalized as the additions, MRPSFAP would rather choose a higher number
of paths than required for a given traffic load, leading to a non-efficient resource usage.

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Matrixes

Pa
th

s

Paths - MPSFAP1
Paths - MRPSFAP

(a) Paths, a = 5, p = 0.2, pv = 0.2

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Matrixes

Pa
th

s

Paths - MPSFAP1 - Accumulated Additions
Paths - MRPSFAP - Accumulated Additions

(b) Accumulated path additions, a = 5, p = 0.2, pv =
0.2

Figure 7.9: Used paths and accumulated path additions for MPSFAP1 and MRPSFAP on
NET2 for demand matrix series M2

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Matrixes

H
op

s

Hops - MPSFAP1
Hops - MRPSFAP

(a) Hops, a = 5, p = 0.2, pv = 0.2

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrixes

H
op

s

Hops - MPSFAP1 - Accumulated Additions
Hops - MRPSFAP - Accumulated Additions

(b) Accumulated hops additions, a = 5, p = 0.2, pv =
0.2

Figure 7.10: Used hops and accumulated hop additions for MPSFAP1 and MRPSFAP on
NET2 for demand matrix series M2

Figures 7.7(a), 7.7(b), 7.8(a) and 7.8(b) show the detailed path and hops additions and

134
7. Contribution to Reconfiguring MPLS Networks: Design of Reduced

Reconfiguration and Complexity Layouts

deletions operated by both MPSFAP1 and MRPSFAP for the 24 matrixes in the M1 se-
ries. We see that the addition and deletion activity is always lower for MRPSFAP than
for MPSFAP1 for both paths and hops. In conclusion, MRPSFAP requires in general less
changes (i.e. additions) than MPSFAP1 to realize a series of traffic adaptations, and when
those changes have to be done, they are in general shorter (in hops) than those operated
by MPSFAP1.

Paths Added and Deleted - MPSFAP

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

Pa
th

s

Paths Added MPSFAP
Paths Deleted MPSFAP

Addings Average

Deletions Average

(a) MPSFAP1, a = 5, p = 0.2, pv = 0.2

Paths Added and Deleted - MRPSFAP

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

Pa
th

s

Paths Added MRPSFAP
Paths Deleted MRPSFAP

Addings Average
Deletions Average

(b) MRPSFAP, a = 5, p = 0.2, pv = 0.2

Figure 7.11: Path additions and deletions for MPSPAF1 and MRPSFAP for demand
matrix series M2

Hops Added and Deleted - MPSFAP

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

H
op

s

Hops Added MPSFAP
Hops Deleted MPSFAP

Addings Average

Deletions Average

(a) MPSFAP1, a = 5, p = 0.2, pv = 0.2

Hops Added and Deleted - MRPSFAP

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

H
op

s

Hops Added MRPSFAP
Hops Deleted MRPSFAP

Addings Average

Deletions Average

(b) MRPSFAP, a = 5, p = 0.2, pv = 0.2

Figure 7.12: Hop additions and deletions for MPSPAF1 and MRPSFAP for demand matrix
series M2

When the variations in the traffic matrix are less significative (pv = 0.2), we see from Figures
7.9(a) and 7.10(a)1 that the number of paths and hops stays almost unchanged for layouts

1No value in the chart means that the particular traffic matrix was infeasible. Accumulated values are not

7.7. Extensions for Multiple Classes of Service 135

obtained from both optimization objectives, except in early matrixes, when MRPSFAP
used solutions with longer paths in order to avoid path and hops additions. However, from
Figures 7.9(b) and 7.10(b) it can be seen that MPSFAP1 accumulates additions through the
set of matrix changes, even when changes in the layout do not lead to better values in the
objective function (i.e. optimality in the sense of MPSFAP1 problem). Again, from Figures
7.11(a), 7.11(b), 7.12(a) and 7.12(b) we observe that the activity of path and hops additions
and deletions is higher for MPSFAP1. Here the difference is accentuated by the fact that
an important number of those changes were not needed for the given traffic changes, and
as such MRPSFAP guarantees that changes are done when they become unavoidable.

7.7. Extensions for Multiple Classes of Service

MRPSFAPQ 1
Minimum Reconfiguration, Path Set and Flow Allocation Problem for Multiple Classes of
Service

Given:

A,C,Dl,(t+1),H(t),Θ,∆,W

minimize :

ϕ

L∑
l=1

tW(l) ·Hl,(t+1) + ν

L∑
l=1

tW(l) · Sl,(t+1) (7.15)

subject to:

X(t+1) = A ·B(t+1) · 1lL ≤ C (7.16)

R ·B(t+1) = D(t+1) (7.17)

hkq,l(t+1)

M∑
i=1

λakq,i
Ci − xi(t+1)

≤ θq,l l = 1, . . . , L; k = 1, . . . ,Kq; q = 1, . . . , Q (7.18)

bkq,l(t+1) ≤ h
k
q,l(t+1)δq,l l = 1, . . . , L; k = 1, . . . ,Kq; q = 1, . . . , Q (7.19)

(hkq,l(t+1) − h
k
q,l(t))h

k
q,l(t+1) ≤ s

k
q,l(t+1) l = 1, . . . , L; k = 1, . . . ,Kq; q = 1, . . . , Q (7.20)

hkq,l(t+1) ∈ {0, 1} l = 1, . . . , L; k = 1, . . . ,Kq; q = 1, . . . , Q (7.21)

skq,l(t+1) ∈ {0, 1} l = 1, . . . , L; k = 1, . . . ,Kq; q = 1, . . . , Q (7.22)

bkq,l(t+1) ≥ 0 l = 1, . . . , L; k = 1, . . . ,Kq; q = 1, . . . , Q (7.23)

Recalling the model extensions for multiple classes of service in section 4.7, the problem
of reconfiguration and layout complexity can be extended to a Minimum Reconfiguration,

affected.

136
7. Contribution to Reconfiguring MPLS Networks: Design of Reduced

Reconfiguration and Complexity Layouts

Path Set and Flow Allocation Problem for Multiple Classes of Service (MRPSFAPQ). The
demand matrix D defined in (4.27) considering multiple commodities for each node pair
is now individualized in time: D(t) is the demand matrix for instant t, and D(t+1) is the
demand matrix for calculating the new layout (instant (t+1)). Similarly, B(t) as defined in
(4.28) and H(t), are the current path flow matrix and used path matrix, while B(t+1) and
H(t+1) are the corresponding matrixes for the new layout at (t+ 1). The classes of service
are indexed l = 1, . . . , L.

7.8. Conclusions

In this Chapter, the traffic dynamics have been considered. In this context, we find that for
large networks and even when the MPLS layouts for successive demand matrixes are cal-
culated according to the objectives defined for the MPSFAP problems, the reconfiguration
complexity can be also very large, increasing the operational costs due to reconfiguration
of the network. The reconfiguration costs can be even higher than the cost of operating
the network in a sub-optimal state. The major contribution in this Chapter consist in the
definition of a cost function for the optimization of the new layout, which has takes into
account the currently used layout, in order to minimize complexity of the new layout as well
as minimizing the reconfiguration complexity. The formulated problem is then referred as
MRPSFAP (Minimum Reconfiguration and Path Set Flow Allocation Problem). The prob-
lem is formulated mathematically, as in the MPSFAP problems in Chapter 4, as a MINLP
problem. Constraints are included so as to guarantee some QoS parameters as throughput
and end-to-end path delay. Here again, the complexity of the problem formulated limits
the tractable size of the problems by use of a deterministic solver.

In order to validate the model we resort to a deterministic solver, obtaining results for
small network topologies. Results are obtained for two matrixes representing a mild to
heavy load condition, from which a series of 24 traffic matrixes are generated. Results for
the MRPSFAP problem are compared against results obtained by solving as if each traffic
matrix were solved independently using the MPSFAP objective alone. Results show that we
significatively reduce the number of hops and paths having to be changed from one layout
to the next one as the traffic matrix evolves in time. In order to deal with the problem size
limitation when using deterministic solvers, an heuristic based on a further adaptation of
the MFD presented in Chapter 5 is developed in the next Chapter.

8. Contribution to the Development of Heuristics for Solving the

Minimum Reconfiguration and Path Set Flow Allocation

Problem (MPRSFAP)

8.1. Selecting Efficient Heuristics

As the MPSFAP problems, the MRPSFAP problem is also NP-complete. In Chapter 7 the
MRPSFAP problem was evaluated for small networks, which allowed us to to acquire some
insight into the behavior of the objective function with respect to the MPSFAP objectives,
and somewhat determine the interest of such optimization objectives for the design of MPLS
layouts. However, heuristics are needed to solve large instances of the MRPSFAP problem
due to the problem size limitations of the deterministic methods used in available solvers.
In Chapter 5, meta-heuristics and ad-hoc heuristics for solving the dimensioning problems
(MPSFAP) formulated in Chapter 4 were developed and evaluated. Algorithms implement-
ing meta-heuristics based on Tabu Search methods (TS), as well as ad-hoc heuristics based
on the Modified Flow Deviation method (MFD) were developed and tested both on small
and large topologies. In Chapter 6, the implemented algorithms were evaluated for large
networks under the same conditions (i.e. on the same hardware and operating environment),
leading to the confirmation of the interest in including reconfiguration objectives together
with dimensioning objectives for the design of MPLS layouts.

Analyzing the quality of the results obtained for the MPLS layout optimization of MPSFAP
objectives on large networks, together with the corresponding computational effort they
require, we conclude that the Tabu Search algorithm implemented is largely outperformed by
the Modified Flow Deviation algorithm. Both, the quality of the results in terms of the value
of the objective function, but mainly the computational performance of the MFD compared
to the TS algorithms, encourage us to further develop ad-hoc heuristics in order to find a
suitable and efficient algorithm to solve the MRPSFAP problem. In particular, the MFD
algorithm implemented in section 5.5 in Chapter 5 already presents characteristics that make
it naturally well adapted to efficiently solve the MRPSFAP problem with few modifications.
In what follows, we present our contribution to the development of heuristics for solving the
MRPSFAP problem, the Modified Flow Deviation Algorithm for Reconfiguration (MFD-R),
describing the modifications introduced to the MFD described.

137

138
8. Contribution to the Development of Heuristics for Solving the Minimum

Reconfiguration and Path Set Flow Allocation Problem (MPRSFAP)

8.2. Adapting the Modified Flow Deviation Algorithm (MFD) for Solving the

MRPSFAP Problem

Recalling from section 5.5, the basic idea behind the MFD algorithm is to start from a
shortest path layout in terms of number of hops, which can be feasible or infeasible with
respect to the constraints (4.13),(4.14) and(4.15) defined in Chapter 4, and then shift flow
on one node pair at a time in the direction of reducing the value of the objective function,
which is defined as a function of the overload on the link (besides the weighted sum of the
used paths). As such, decreasing the value of the objective function ensures that we shift
flow also in the direction of converting the current solution into a feasible solution. The
procedure of shifting flow on a node pair basis starting from a shortest path layout with
single multiplicity (i.e. only one path connecting each node pair), ensures that the minimum
quantity of paths (and shortest in quantity of hops) are added in the process, so when the
layout obtained after a given iteration is feasible, it will likely be also the optimal in terms of
MPSFAP1 objective. This has been shown when evaluating results for the MFD algorithm
in section 5.5.6.

The algorithm finishes if no candidate is found to make a flow shift in the direction of de-
creasing the overload in the network or shift direction. If this happens and the constraints
are still not met, we conclude that the problem is infeasible. However, we are not sure that
the problem is infeasible if we have not tested all possible candidates in the set of paths.
To improve the algorithm we introduce a modified version in Algorithm 5.6 to make appear
all possible candidates before declaring the problem infeasible.

The MFD algorithm can be easily adapted to solve the MRPSFAP problem taking advantage
of the particular characteristics of the above described procedure. The way we initialize the
algorithm and the flow shift direction are chosen in a node pair basis guarantee that the
solution found will be near-optimal in the sense of MPSFAP1 objective. However, the
shift direction is searched among all the possible paths, what doesn’t take into account the
currently used paths. Indeed, a path that is not being used in the current layout can appear
as a candidate to have flow shifted in, what would produce a path addition. We need to
modify the way we chose the shift direction in order to explore first the paths that are being
currently used and if no shift direction can be found, then all possible paths are explored.
This will produce layouts with a low number of path additions, weighted by their lengths
in hop-counts. However, it must be noted that no solution obtained through the MFD
algorithm can be guaranteed to be globally optimal, since the order in which the flow shifts
are realized affects the progression of the algorithm. We can control the order in which flow
shifts are made by means of the choice index defined in Algorithm 5.11.

8.3. A Modified Flow Deviation Algorithm for Reconfiguration (MFD-R) 139

8.3. A Modified Flow Deviation Algorithm for Reconfiguration (MFD-R)

Formally, given the current operational layout H(t) and the new demand matrix D(t+1)

(along with A, Θ, W and C), Algorithm 5.6 is modified to find the new set of used paths
H(t+1) and path flow vector B(t+1).

Algorithm 8.1 includes the modifications introduced to the MFD algorithm, mainly regard-
ing the way the set of paths in the arc-path incidence matrix A is explored. In the version
of the algorithm to solve the MPSFAP1 problem, the whole matrix is explored on every
iteration, since no reconfiguration objective is considered. When the reconfiguration objec-
tive is included, the way in which the set of paths is explored to find a shift direction which
would produce a decrease in the value of the objective function becomes a key factor. If all
paths in A are explored at each iteration as in the MFD algorithm, then paths that are not
in H(t) could result included inH(t+1) (i.e. paths that are not used in the current layout)
when searching for a shift direction. The set of paths to explore in a particular iteration of
the algorithm is increased as no shift direction is found in the current set, until the whole
matrix A has been searched or a shift direction found.

8.3.1. Initialization: The Initial Layout

The first modification consists in the way the initial layout is generated. One shortest path
per node pair is found within the set of currently used paths H(t) instead of within the
whole matrix A as in MFD. This guarantees that the initial proposed solution exclusively
uses paths in the set of paths that were already used in the current solution. Algorithm 8.2
calculates the single shortest path for every node pair within the set given as argument. In
the initialization phase it is called with H(t), so the returned set of shortest paths P contains
paths only in the set H(t). Later in the MFD-R algorithm, the procedure for calculating
the set of single shortest paths is called with different set of paths to progressively include
larger set of candidates if no shift direction could be found in sets containing already used
paths.

Require: F,V {V is the set of paths within which the shortest paths must be determined}
Ensure: P

P =
{
akq : mink

{
F kq
}
∧ akq ∈ V

}
Return P

Algorithm 8.2: Pseudo Code for Calculating the Set of Shortest Paths Within a Path Set

140
8. Contribution to the Development of Heuristics for Solving the Minimum

Reconfiguration and Path Set Flow Allocation Problem (MPRSFAP)

Require: A,Θ,W,D(t+1),C,H(t) as defined in Chapter 7
Ensure: B(t+1),H(t+1) or INFEASIBLE

B(t+1) ← 0
H(t+1) ← ∅ {set of currently used paths}
F←W
∆B(t+1) ← 0
P← ∅ {set of current shortest paths}
P← find shortest paths(F,H(t))
for all (akq ∈ P) do
bkq,(t+1) ← dq,(t+1) {assign all the demands to the shortest paths}

end for
H(t+1) ← P
X(t+1) ← A ·B(t+1)

F← update path weights(X(t+1))
P← find shortest paths(F,H(t) ∪H(t+1))
∆B(t+1) ← find shift direction(B(t+1),P,H(t+1),F)
if (∆B(t+1) = 0) and (constraints are not met) then

∆B(t+1) ← examine thresholds(F,H(t) ∪H(t+1),B(t+1),H(t+1))
if (∆B(t+1) = 0) then

P← find shortest paths(F,A)
while (∆B(t+1) = 0) do

∆B(t+1) ← examine thresholds(F,A,B(t+1),H(t+1))
end while

end if
end if
while (∆B(t+1) 6= 0) do
φ← find shift factor(∆B(t+1),X(t+1))
B(t+1) ← B(t+1) + φ∆B(t+1)

X(t+1) ← A ·B(t+1)

H(t+1) ← ∪k=1,...,Kq ;q=1,...,Q

{
akq : bkq,(t+1) > 0

}
F← update path weights(X(t+1))
P← find shortest paths(F,H(t) ∪H(t+1))
∆B(t+1) ← find shift direction(B(t+1),P,H(t+1),F)
if (∆B(t+1) = 0) and (constraints are not met) then

∆B(t+1) ← examine thresholds(F,H(t) ∪H(t+1),B(t+1),H(t+1))
if (∆B(t+1) = 0) then

P← find shortest paths(F,A)
while (∆B(t+1) = 0) do

∆B(t+1) ← examine thresholds(F,A,B(t+1),H(t+1))
end while

end if
end if

end while
if constraints are met then

Return B(t+1),H(t+1)

else
Return INFEASIBLE

end if
Algorithm 8.1: Pseudo-code for the Modified Flow Deviation Method Applied to the
MRPSFAP Problem

8.3. A Modified Flow Deviation Algorithm for Reconfiguration (MFD-R) 141

8.3.2. Search for a Shift Direction: Progressive Exploration

Once the initial layout established, it can result feasible or unfeasible. If it is feasible (i.e.
constraints are met) the algorithm has found a feasible solution with the minimum number
of hops using paths that were already used in the previous solution. If the initial layout
is infeasible, then the algorithm starts iterating until a feasible layout is found or no shift
direction could be found (in which case we declare the problem infeasible). The main
iteration in Algorithm 8.1 ensures a way of finding a shift direction that explores all the
possible candidates by increasing the size of the set in which paths are searched for as no
shift direction could be found in smaller sets. There are two possible sets to consider:

• The set of used paths in the current layout along with the set of currently used paths
in the iteration: H(t) ∪H(t+1).

• The whole arc-path incidence matrix A.

As long as a shift direction can be found in the set H(t) ∪H(t+1), we are sure that paths
being included in H(t+1) were already used in the layout at t or were already introduced in
the current layout being calculated at (t + 1) because the shift direction had to be found
looking in A in a previous iteration. At each iteration, the search is narrowed again, as
the path weights are updated making possibly appear new candidates in the smaller set.
Algorithm 8.3 examines all possible candidates within the set given as argument according
to the improvement introduced in Algorithm 5.6.

Require: F,V,B(t+1),H(t+1) {V is the set of paths to explore for a shift direction}
Ensure: ∆B(t+1) > 0 if a possible shift direction exists, and 0 otherwise.

∆B(t+1) ← 0
threshold← 1
Fb ← F
while (∆B(t+1) = 0) and (threshold < network diameter) do

Fb ← increase threshold level(Fb, threshold)
P← find shortest paths(F,V)
∆B(t+1) ← find shift direction(B(t+1),P,H(t+1),Fb)
threshold← threshold+ 1

end while
Return ∆B(t+1)

Algorithm 8.3: Pseudo Code for Examining All Possible Candidates for a Shift Direction
Within a Given Set of Paths

The procedures to calculate the shift direction, the shift factor and the choice index, defined
in Algorithms 5.9, 5.10 and 5.11 stay the same as defined in Chapter 5, except that they
are called with the instances at (t+ 1) of the path flow vector B(t+1) and used path matrix
H(t+1). All the other algorithms defined in section 5.5 do not need to be modified either,
and are used as before.

142
8. Contribution to the Development of Heuristics for Solving the Minimum

Reconfiguration and Path Set Flow Allocation Problem (MPRSFAP)

8.4. Evaluation of the MFD-R Algorithm for MRPSFAP

In this section we first evaluate the Modified Flow Deviation for Reconfiguration (MFD-R)
heuristic by comparing the results obtained from the MINLP deterministic solver for a small
network topology (NET2) in Chapter 7, to the results obtained from the MFD-R algorithm
for the set of matrixes M1. Second, we obtain results for large network topologies such as
VTHD and NSF presented in Chapter 6, using the MFD-R algorithm for two set of matrixes
MV THD

1 and MNSF
1 .

8.4.1. Evaluation of the MFD-R Algorithm on Small Networks

In order to evaluate the MFD-R algorithm, we compare the results obtained for NET2
network topology of previous chapters by using both, the MFD-R and the deterministic
solver (MINLP). As before, we use a small topology to evaluate the algorithm due to the
problem size limitations of the deterministic solver. The same set of matrixes M1 of Chapter
7 is used to compare results for MFD-R and MINLP solver, and all runs for MFD-R are
made under the same conditions on the same machine. Figure 8.1(a) shows the total number
of hops required by MRPSFAP by using both MFD-R and the MINLP solver.

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Matrix

H
op

s

Hops - MRPSFAP(NEOS)
Hops - MRPSFAP(MFD)

(a) Active Hops

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

H
op

s

Hops - MPSFAP(NEOS) - Accumulated Additions

Hops - MRPSFAP(NEOS) - Accumulated Additions

Hops - MPSFAP(MFD) - Acummulated Additions

Hops - MRPSFAP(MFD) - Acummulated Additions

(b) Accumulated Hop Additions

Figure 8.1: Used hops and accumulated hop additions for MPSFAP1 and MRPSFAP on
NET2 for demand matrix series M1 using MINLP Solver (NEOS) and MFD-R Heuristic

From the figure, we see that the number of hops required when solving the MRPSFAP
problem with MFD is greater than the number of hops required when solving the same
instance with the deterministic solver. From Figure 8.2(a) we observe the same trend for
the number of paths. Not surprisingly, this conclusion for the MFD-R algorithm (observed
also for the MFD algorithm applied to the MPSFAP problems) was somewhat expected.
In fact, both the MFD and MFD-R algorithms are heuristics to find approximate solutions
to a complex problems, tackling the size limitations imposed by the deterministic solvers.

8.4. Evaluation of the MFD-R Algorithm for MRPSFAP 143

From Figures 8.1(b) and 8.2(b) we see that the number of accumulated additions (hops and
paths) when optimizing the layouts for the MPSFAP objective by means of the MINLP
solver is significantly higher than the values obtained by using the MFD algorithm for the
same objective.

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Matrixes

Pa
th

s

Paths - MRPSFAP(NEOS)
Paths - MRPSFAP(MFD)

(a) Active Paths

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

Pa
th

s

Paths - MPSFAP(NEOS) - Accumulated Additions

Paths - MRPSFAP(NEOS) - Accumulated Additions

Paths - MPSFAP(MFD) - Acummulated Additions

Paths - MRPSFAP(MFD) - Acummulated Additions

(b) Accumulated Path Additions

Figure 8.2: Used paths and accumulated path additions for MPSFAP1 and MRPSFAP on
NET2 for demand matrix series M1 using MINLP Solver (NEOS) and MFD-R Heuristic

This is due to the fact that the heuristic in which is based the MFD algorithm produces
already a reduced set of paths that is likely the one to be produced again when solving for the
new demand matrix, even when the objective function does not consider the previously used
set of paths for reconfiguration optimization. This is a new interesting conclusion about the
MFD algorithm. Regarding the MFD-R algorithm, which takes into account the previously
used set of paths to optimize both complexity of the new layout as well as reconfiguration
complexity, results from the above mentioned figures also show that the MFD-R algorithm
further improves on the results obtained by the MFD algorithm. In fact, the number of hop
and path additions is further reduced with respect to the MFD results. More, as we would
expect, the results obtained for the MRPSFAP objective through the deterministic solver
are better than the ones obtained by MFD-R. All observed results allow us to conclude
that the MFD-R algorithm is suitable to solve the MRPSFAP problems within a reasonable
approximation, as shown in (8.1) from averages of the objective function obtained by both
solvers.

f(s)%MFD−R =
f(s)MFD−R − f(s)MINLP

f(s)MINLP
100 = 5.33% (8.1)

Figures 8.3 and 8.4 show the activity of added and deleted hops and paths respectively
through the process of optimizing the matrix series M1. We clearly see that the activity
of hops additions and deletions for the MPSFAP1 objective is always higher than the same

144
8. Contribution to the Development of Heuristics for Solving the Minimum

Reconfiguration and Path Set Flow Allocation Problem (MPRSFAP)

activity for the MRPSFAP objective. Regarding the performance of the MFD-R algorithm
as compared to the deterministic solver, we see that the average figures for additions and
deletions for the MFD-R algorithm are only slightly higher than the ones observed for the
MINLP solver.

Hops Added and Deleted - MPSFAP (NEOS vs. MFD)

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

H
op

s

Hops Added MPSFAP(NEOS)
Hops Deleted MPSFAP(NEOS)
Hops Addes MPSFAP(MFD)
Hops Deleted MPSFAP(MFD)

Addings and Deletions
Average (NEOS) = 1.16

Addings and Deletions
Average (MFD) = 0.65

(a) MPSFAP1

Hops Added and Deleted - MRPSFAP (NEOS vs. MFD)

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

H
op

s

Hops Added MRPSFAP(NEOS)
Hops Deleted MRPSFAP(NEOS)
Hops Added MRPSFAP(MFD)
Hops Deleted MRPSFAP(MFD)

Addings and Deletions
Average (NEOS) = 0.46

Addings and Deletions
Average (MFD) = 0.50

(b) MRPSFAP

Figure 8.3: Hops added and deleted for MPSFAP1 and MRPSFAP on NET2 for demand
matrix series M1 using MINLP Solver (NEOS) and MFD-R Heuristic

Paths Added and Deleted - MPSFAP (NEOS vs. MFD)

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

Pa
th

s

Paths Added MPSFAP(NEOS)
Paths Deleted MPSFAP(NEOS)
Paths Added MPSFAP(MFD)
Paths Deleted MPSFAP(MFD)

Addings and Deletions
Average (NEOS) = 0.64

Addings and Deletions
Average (MFD) = 0.35

(a) MPSFAP1

Paths Added and Deleted - MRPSFAP (NEOS vs. MFD)

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

Pa
th

s

Paths Added MRPSFAP(NEOS)
Paths Deleted MRPSFAP(NEOS)
Paths Added MRPSFAP(MFD)
Paths Deleted MPSFAP(MFD)

Deletions
Average (NEOS) = 0.29

Addings and Deletions
Average (MFD) = 0.27

Addings
Average (NEOS) = 0.25

(b) MRPSFAP

Figure 8.4: Paths added and deleted for MPSFAP1 and MRPSFAP on NET2 for demand
matrix series M1 using MINLP Solver (NEOS) and MFD-R Heuristic

The average for additions and deletions (hops and paths) when using MFD as opposed to
MFD-R confirm the observation already made for Figures 8.1 and 8.2 above. The averages
for MFD are higher than the ones for MFD-R, but the difference with the MINLP solver
when optimizing the MPSFAP objective alone are significantly higher, which shows that
MFD is an already suitable algorithm to reduce reconfiguration complexity, even when it

8.4. Evaluation of the MFD-R Algorithm for MRPSFAP 145

does not take into account the previously used set of paths.

In next section we compare results from the MFD-R algorithm with results from the MFD
algorithm for large networks. The conclusions we made in this section regarding the good
performance of MFD for the reconfiguration objectives, even when the complexity alone was
being minimized, will be useful when studying the comparative performance of MFD-R.

8.4.2. Results on Reconfiguration from the MFD-R Algorithm on Large Networks

In this section we compare results obtained by using MFD and MFD-R algorithms to solve
the MPSFAP1 and MRPSFAP problems respectively on large networks. The large network
topologies used in this section are the VTHD and NSF networks presented in Chapter 6.
A set of demand matrixes conforming matrix series obtained as described in section 7.6.1
are presented to each topology. We denote by MV THD

1 the matrix series presented to the
VTHD network, and MNSF

1 the matrix series presented to the NSF network.

130

132

134

136

138

140

142

144

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Matrix

H
op

s

Hops - MPSFAP
Hops - MRPSFAP

(a) Active Hops

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

H
op

s

Hops - MPSFAP - Accumulated Additions

Hops - MRPSFAP - Accumulated Additions

(b) Accumulated Hop Additions

Figure 8.5: Active hops and accumulated hop additions for MPSFAP1 and MRPSFAP on
VTHD for demand matrix series MV THD

1 using MFD and MFD-R heuristics

Figures 8.5(a) and 8.9(a) show the total number of active hops for each of the matrixes in
the corresponding series for VTHD and NSF topologies, when solving each of the matrixes
for the MPSFAP1 objective and the MRPSFAP objective. Figures 8.6(a) and 8.10(a) show
the corresponding values for the total number of used paths. We can observe for VTHD that
exactly the same number of hops and paths is used when solving either for the objective
MPSFAP1 or MRPSFAP. Looking at Figures 8.5(b) and 8.6(b) we can see that the number
of accumulated hop and path additions is higher when solving the matrix series for the
objective MPSFAP1 (algorithm MFD) than for the objectiveMRPSFAP (algorithm MFD-
R), although the difference is not much significant. Looking however to the quantity of

146
8. Contribution to the Development of Heuristics for Solving the Minimum

Reconfiguration and Path Set Flow Allocation Problem (MPRSFAP)

active hops and paths for NSF, we can see that the number of hops required by MRPSFAP
is generally higher than the number of hops required by MPSFAP1, while the number of
paths required by MRPSFAP is always lower than the number required by MPSFAP1.

69

69,5

70

70,5

71

71,5

72

72,5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Matrixes

Pa
th

s

Paths - MPSFAP
Paths - MRPSFAP

(a) Active Paths

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Matrixes

Pa
th

s

Paths - MPSFAP - Accumulated Additions
Paths - MRPSFAP - Accumulated Additions

(b) Accumulated Path Additions

Figure 8.6: Active paths and accumulated path additions for MPSFAP1 and MRPSFAP
on VTHD for demand matrix series MV THD

1 using MFD and MFD-R heuristics

Hops Added and Deleted - MPSFAP

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

H
op

s

Hops Added MPSFAP

Hops Deleted MPSFAP

Addings Average = 1.00

Deletions Average = 1.08

(a) MPSFAP1

Hops Added and Deleted - MRPSFAP

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

H
op

s

Hops Added MRPSFAP

Hops Deleted MRPSFAP

Addings Average = 0.54

Deletions Average = 0.71

(b) MRPSFAP

Figure 8.7: Hops added and deleted for MPSFAP1 and MRPSFAP on VTHD for demand
matrix series MV THD

1 using MINLP Solver (NEOS) and MFD-R heuristics

This is a somewhat expected result, since the MFD-R heuristic concentrate in finding a
feasible solution within the set of already used paths first, and then it looks for new paths
only when no shift direction could be produced within the previously used set. This produces
layouts with a set of paths likely to be a subset of the previously used set for the MRPSFAP
objective, paying the cost of longer paths in order to reduce path additions with respect to
the previous set, while the MPSFAP1 objective is free to chose the shortest paths at every

8.4. Evaluation of the MFD-R Algorithm for MRPSFAP 147

iteration without any reference to the past.

Paths Added and Deleted - MPSFAP

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

Pa
th

s

Paths Added MPSFAP

Paths Deleted MPSFAP

Addings Average = 0.4

Deletions Average = 0.4

(a) MPSFAP1

Paths Added and Deleted - MRPSFAP

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

Pa
th

s

Paths Added MRPSFAP

Paths Deleted MRPSFAP

Addings Average = 0.21

Deletions Average = 0.25

(b) MRPSFAP

Figure 8.8: Paths added and deleted for MPSFAP1 and MRPSFAP on VTHD for demand
matrix series MV THD

1 using MINLP Solver (NEOS) and MFD-R heuristics

375

380

385

390

395

400

405

410

415

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Matrix

H
op

s

Hops - MPSFAP
Hops - MRPSFAP

(a) Active Hops

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

H
op

s

Hops - MPSFAP - Accumulated Additions

Hops - MRPSFAP - Accumulated Additions

(b) Accumulated Hop Additions

Figure 8.9: Active hops and accumulated hop additions for MPSFAP1 and MRPSFAP on
NSF for demand matrix series MNSF

1 using MFD and MFD-R heuristics

The number of accumulated hop and path additions for NSF in Figures 8.9(b) and 8.10(b)
show a significant difference with the values observed for VTHD. The number of accumulated
hop and path additions for the MRSPFAP objective in the case of NSF results almost
doubled with respect to the same values for the MPSFAP1 objective. In fact, this can be
explained by the nature of the topologies considered. VTHD topology doesn’t offer as many
possible path combinations to connect a given node pair as NSF does, presenting critical
links (e.g. links 12, 24, 9, 21, 11, 23, 10 and 22 in Figure 6.1) that are used by all paths
connecting some node pairs (e.g. nodes 5, 4 and 9 in the same figure). The impact of

148
8. Contribution to the Development of Heuristics for Solving the Minimum

Reconfiguration and Path Set Flow Allocation Problem (MPRSFAP)

using a MRPSFAP objective to reduce reconfiguration and layout complexity is then, as we
would expect, strongly dependent on the network topology, but from observed results we can
conclude that reconfiguration and complexity are always reduced by using the MRPSFAP
objective instead of MPSFAP1 objective (i.e. solving always by MFD-R algorithm).

177

178

179

180

181

182

183

184

185

186

187

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Matrixes

Pa
th

s

Paths - MPSFAP
Paths - MRPSFAP

(a) Active Paths

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Matrixes

Pa
th

s

Paths - MPSFAP - Accumulated Additions
Paths - MRPSFAP - Accumulated Additions

(b) Accumulated Path Additions

Figure 8.10: Active paths and accumulated path additions for MPSFAP1 and MRPSFAP
on NSF for demand matrix series MNSF

1 using MFD and MFD-R heuristics

Hops Added and Deleted - MPSFAP

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

H
op

s

Hops Added MPSFAP

Hops Deleted MPSFAP

Addings Average = 10.64

Deletions Average = 11.24

(a) MPSFAP1

Hops Added and Deleted - MRPSFAP

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

H
op

s

Hops Added MRPSFAP

Hops Deleted MRPSFAP

Addings Average = 4.88

Deletions Average = 5.25

(b) MRPSFAP

Figure 8.11: Hops added and deleted for MPSFAP1 and MRPSFAP on NSF for demand
matrix series MNSF

1 using MINLP Solver (NEOS) and MFD-R heuristics

Figures 8.7 and Figure 8.8 show the hop and path adding and deletion activity through
the optimization of the matrixes belonging to the series MV THD

1 for the VTHD network
topology. Figures 8.11 and 8.12 show the corresponding values for the NSF network. As
observed already for the accumulated additions for both networks, the observed activity for
VTHD network is significantly lower than the one observed for NSF network relative to the

8.5. Conclusions 149

size of the corresponding networks.

Paths Added and Deleted - MPSFAP

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

Pa
th

s

Paths Added MPSFAP

Paths Deleted MPSFAP

Addings Average = 3.44

Deletions Average = 3.64

(a) MPSFAP1

Paths Added and Deleted - MRPSFAP

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Matrix

Pa
th

s

Paths Added MRPSFAP

Paths Deleted MRPSFAP

Addings Average = 1.63

Deletions Average = 1.79

(b) MRPSFAP

Figure 8.12: Paths added and deleted for MPSFAP1 and MRPSFAP on NSF for demand
matrix series MNSF

1 using MINLP Solver (NEOS) and MFD-R heuristics

It can also be observed that the additions and deletions are near symmetrical for VTHD
network, while they exhibit a greater asymmetry for the NSF network, the average of
deletions being greater than the average of additions for both paths and hops, which is
a wanted result. Finally, even when the average values for additions and deletions for
VTHD network are relatively low, the ratio from values obtained for MPSFAP1 objective
to the values obtained for MRPSFAP objective is almost the same than for NSF network
(i.e. the averages for MRPSFAP are nearly half of the averages for MPSFAP1), which
drives us to conclude that the MFD-R algorithm performs consistently well to optimize the
MRPSFAP objective. Observed execution times for MFD-R are within the same order than
the execution times observed for MFD under the same conditions.

8.5. Conclusions

The major contribution in the the present Chapter consists in the development of an heuris-
tic method based on the MFD algorithm presented in Chapter 5. The MFD algorithm has
been shown to perform well both in the quality of the results obtained and in the execution
times needed to calculate the layouts. Implementation of the algorithm has been completed,
and further evaluation is presented in this chapter. Results obtained on small networks al-
low us to conclude that the MFD-R algorithm performs within a reasonable range from the
optimal results obtained by using a deterministic solver (MINLP), and important conclu-
sions were obtained about the behavior of the MFD and MFD-R algorithms. Finally, the
MFD-R was evaluated for large networks, and results compared to the results obtained with
the MFD algorithm for the same traffic matrix series. The MFD-R algorithm has shown to

150
8. Contribution to the Development of Heuristics for Solving the Minimum

Reconfiguration and Path Set Flow Allocation Problem (MPRSFAP)

perform within our expectations for optimizing the MRPSFAP objective of reconfiguration
and layout complexity, and as a consequence, obtained results allows us to foresee practical
applications of the MFD-R algorithm in an operational context. Also, comparison to results
obtained with the MFD algorithm helped us to acquire further insight in the behavior of
both objectives. As a final and important conclusion, the MFD-R algorithm can be used
in practical operational environments to calculate layouts with dramatic improvement un-
der dynamic traffic situations both in the sense of layout complexity and reconfiguration
complexity.

General Conclusions

This Chapter presents the general conclusions inferred from the studies described in the
present document. We summarize the main contributions before giving the future research
directions that stem from this work.

Contributions

This thesis concentrates on the traffic engineering mechanisms involved in the dynamic con-
trol of the network behavior considering long-term timescales. We locate our work in the
technological context of Next Generation IP Networks, where a unified transport based on
IP protocol is envisaged. As such, and to allow the operator to provide QoS guarantees
while optimizing the network resources traffic engineering mechanisms have to be added to
IP transport functionalities. Modelling the TE system as a closed loop control system, three
main control loops can be identified, each loop corresponding to a timescale. TE mecha-
nisms inscribed within a particular timescale aim at helping to control the network behavior
in order to ensure that the main objectives of TE are met: to provide QoS guarantees while
ensuring an efficient use of network resources. In the context of NG-IP networks, MPLS
allows for the implementation of evolved TE mechanisms by providing the possibility of
establishing source routed paths. In the long-term timescales, the TE tasks are oriented to
planning and dimensioning of the network according both to underwritten service contracts
and to business objectives. From an operator’s point of view, the business objectives are
realized in a significative part through OPEX and CAPEX reduction. The contributions of
this thesis are then mainly oriented in this sense, where we propose realistic objectives to
dimension the network according to the business objectives, while meeting the user oriented
objectives (i.e. QoS guarantees). Dimensioning the network in a dynamic context involves
the reconfiguration aspects, as it is not enough to obtain an optimal layout for a new traffic
matrix if the transition from the old layout to the new layout is too complex that no oper-
ational cost reduction is obtained in the process.

Dimensioning of MPLS Layouts. Once the network deployed, the cost of operation is
related to the complexity of the network layout. In a connected oriented transport paradigm,
as we assume to be the framework in the present work, the layout is represented by the set
of paths connecting each node pair and the flows to be allocated to each path in order to
meet the demands. We consider that the complexity of this layout, and in consequence the

151

152
8. Contribution to the Development of Heuristics for Solving the Minimum

Reconfiguration and Path Set Flow Allocation Problem (MPRSFAP)

cost of operation, is related to the total number of paths weighted by the quantity of hops
each path is using. The larger the network, the more important this cost becomes. The
QoS guarantees such as end-to-end path delay and throughput for a given node pair can be
guaranteed through constraints, while the actual cost when calculating the optimal layout
for a given traffic matrix is represented by the number of length-weighted paths the layout
requires to route a given demand. In this sense, the MPSFAP problems are formulated
to optimize the layouts with respect to the quantity of total hops needed to route such
demand. To our knowledge, no such optimization objectives have been considered so far
in the context of MPLS and IP networks. Considerable work has been carried out in the
field of optical networks and in the field of general optimal routing in IP networks consid-
ering other performance objectives such as minimizing congestion. The proposed problem
formulation include extensions for multiple classes of service. Results for both small and
large topologies show that average path multiplicity (i.e. the quantity of paths required to
transport the demand between any given node pair) is close to 1 if demands are a fraction
of total available capacity connecting every node pair.

Reconfiguration of MPLS Layouts. When considering the traffic dynamics, the control
loop at long-term timescales will act to drive the network to an optimal operational state for
the new demand matrix inferred from observation of the network state. For large networks,
the transition to the new optimal layout, even when optimized in terms of complexity ac-
cording to the MPSFAP objectives, can be as complex as a non optimized layout. In other
words, the complexity of the transition from an optimized layout to the next optimized lay-
out may result so complex that the incurred cost of reconfiguration results higher than the
cost of operating the suboptimal layout (penalties for not meeting the service contracts con-
sidered). The costs of reconfiguration are relatively high as reconfiguring a large operational
network may need a large amount of spare network resources to avoid service disruption
times to occur. If such resources are not made available, such complex reconfiguration
may take longer times to be set up, and service contracts may be unhonored. Considering
reconfiguration complexity objectives along with layout complexity objectives seems then
natural in a NG-IP technological framework when considering more realistic factors as the
traffic dynamics. The resulting problem we formulate, the MRPSFAP problem, includes
both objectives: layout complexity as well as reconfiguration complexity by including in the
objective the total number of length-weighted paths together with the number of length-
weighted path additions, while keeping the QoS guarantees for the nex calculated layout as
in the MPSFAP problems. As in the case of dimensioning, extensions for multiple classes of
service are included. To our knowledge, this problem has not been extensively studied, be-
sides some initial studies in the field of optical networks. Results obtained for small network
topologies already show that savings in terms of quantity of paths being set up and teared
down at every reconfiguration stage are significant, allowing the operator to make transition

8.5. Conclusions 153

the network from the current optimal operational layout to the next one at a minimum cost.

Heuristics for Solving the Dimensioning Problem. The dimensioning problem, re-
ferred to as Minimum Path Set and Flow Allocation Problem (MPSFAP) in the present work
and formulated as MINLP multicommodity flow problem, is NP-complete. This imposes
problem size limitations to the network topologies that can be solved with deterministic
solvers, restricting the tractable solutions to a reduced set of unpractical network topolo-
gies. In order to tackle this problem size limitation, and to be able to apply the MPSFAP
cost functions to the design of real-life size networks, approximated algorithms were devel-
oped based on both generic and ad-hoc heuristic methods. The generic heuristic makes use
of Tabu Search methods to walk the solution space, while the ad-hoc heuristic method makes
use of the knowledge we have on the particular problem being treated. The former has the
advantage of being easily adaptable to solve new problems if the cost function is changed to
reflect new operational cost and business models, the later is designed particularly for the
cost function being treated. However, the gain in performance both in terms of quality of
results and execution time largely justifies the efforts in developing and implementing the
ad-hoc heuristics, as verified when observing the results obtained using both algorithms.
Studying the well known flow deviation method to solve the multicommodity flow problem
for convex objective functions [64, 31], we observed that the general procedure could be
adapted to guarantee finding a minimum set of paths meeting the QoS constraints. The
Modified Flow Deviation Algorithm has been then defined and implemented, outperform-
ing the TS algorithm. The idea behind developing an ad-hoc heuristic instead of adapting
the problem in order to be able to solve it through deterministic solvers or more general
heuristics is to obtain an algorithm simple and quick enough capable of being implemented
in a control loop in operational networks.

Heuristics for Solving the Reconfiguration Problem. As with the MPSFAP problem,
the MRPSFAP problem is NP-complete. Heuristics are needed in order to overcome the
problem size limitation. Performance obtained with the TS algorithm compared to the
ones obtained with the MFD algorithm for the MPSFAP problem no longer justify further
development in that direction. We oriented our work towards an heuristic based on the
same principles that the MFD algorithm, but restricting the search for a solution to the
set of previously used paths as much as possible. The algorithm has been fully defined and
described in the present work, and is currently under development and testing.

Future Directions

The study of the dimensioning and reconfiguration problems for MPLS layouts open many
research directions as well as several implementation issues that we consider interesting for

154
8. Contribution to the Development of Heuristics for Solving the Minimum

Reconfiguration and Path Set Flow Allocation Problem (MPRSFAP)

further development and study.

Implementation. The possibility of having implemented algorithms capable of solving the
dimensioning and reconfiguration problems in times compatible with the network operation
and within reasonable tolerances from the optimal values when analyzed for small network
topologies, attracts the interest of studying the behavior of actual operational networks
when adapting to dynamic load conditions in long timescales. A very promising platform
for studying such aspects is the VTHD french research network, a very high speed network
already implementing MPLS and with a national span. The algorithm implementing the
MFD heuristics for the dimensioning and reconfiguration problems can be implemented as
the core of a long term control loop acting at a global scope in the network. An interface
to the measurement and observation system can be implemented by reading the MIBS, and
complementary by using COPS or a like protocol to launch active and passive measurements
in the network. An inference system from those observations is needed in order to elaborate
a demand matrix integrating the observations at the appropriate timescale. This demand
matrix is used as the input to the reconfiguration algorithm, which takes into account the
already deployed layout in order to minimize the reconfiguration complexity. The differen-
tial layout is then communicated to the management system through the change in labels
and routes for the MPLS signaling protocols to actually configure the new layout. A new
research direction arises when considering the actual implementation of the new layout, even
when calculated to reduce the complexity of reconfiguration with respect to the currently
used layout: the way in which the new paths are going to be added and some of the old
paths are going to be teared down. A study on progressive techniques to reconfigure the
MPLS layout constitutes a new and interesting direction to take.

Modelling of Demands. The traffic models used through this work are simplified models
at long timescales of ingress traffic processes. As research on IP metrology goes on, we see
the interest of taking those more evolved traffic models into account when optimizing the
MPLS layout design. Also, modelling the traffic dynamics is important to the reconfigu-
ration phase. To model the traffic dynamics at long timescales is necessary to correctly
integrate the measures performed over a long period in order to infer a new traffic matrix
predicting the traffic variations over the next period. Studies on dimensioning the network
at shorter timescales is also estimated as an interesting research direction.

Impact on the Inner Control Loops. The TE mechanisms used at the different
timescales are not independent one to another. The interaction among all the TE mech-
anisms have to be accounted for when deciding which TE mechanisms is to be used for
which situation and under what conditions. In current management architectures, it is to
the traffic engineering to decide on such matters. It would be interesting in the context of

8.5. Conclusions 155

next generation IP networks to take such decisions automatically, based on measurements
and inference of the network state form those measures. However, it is first necessary to
understand the interaction among all the TE mechanisms at the different planes of service
integration in order to be able to infer rules helping to control the network behavior under
almost any condition.

Impact on QoS: Traffic Separation. The problems of dimensioning and reconfigura-
tion have been formulated taking into account extensions to support multiple classes of
service, providing QoS guarantees to each class on a node pair basis. The complexity of
the problem increases with the number of classes, as using label inferred LSPs for instance,
requires a single path for every class of service for each node pair, so QoS guarantees can be
provided individually. Even when extending the proposed algorithms to support multiple
classes of service is quite natural and relatively straightforward, new factors have to be
taken into account when calculating the optimal traffic distribution over the set of paths.
Indeed, the cost functions may be have to be adapted to consider the relative differences in
cost of multiplexing the different classes of service onto the available paths in the network
adequately (e.g. a proportion of bandwidth dedicated to stream flows, and other part of
traffic dedicated to elastic traffic, separation of paths for elastic traffic and for stream traffic).

Appendices

157

A. Multicommodity Flow Problems

A.1. Introduction

In the context of telecommunications networks, a commodity is a quantity of flow that we
need to send from one node in the network (source) to another node in the network (destina-
tion). We want this flow to be sent along an optimal route, for instance, along the shortest
path according to a cost function determining the path lengths. In many telecommunica-
tions applications, we want to transport several commodities at the same time, sharing the
network resources and each commodity governed by its own network flow constraints. If
the commodities do not interact in any way, then to solve routing problems with several
commodities, we would solve each single-commodity problem separately. However, when
the commodities share common facilities, the individual single-commodity problems are not
independent, so to find an optimal flow we need to solve all the coordinated problems at
the same time. The later is referred as a multicommodity flow problem [14].

In what follows, we present the node and path formulations of the multicommodity flow
problem.

A.2. Node Formulation

Let xkij denote the flow commodity k on arc (i, j), and let xk and ck denote the flow
vector and unit cost vector for commodity k. Using this notation, we can formulate the
multicommodity flow problem as:

Minimize
∑

1≤k≤K
ckxk (A.1)

subject to:

∑
1≤k≤K

wkij ≤ uij for all (i, j) ∈ A (A.2)

Nxk = bk for k = 1, 2, . . . ,K (A.3)

0 ≤ xkij ≤ ukij for all (i, j) ∈ A and all k = 1, 2, . . . ,K (A.4)

159

160 A. Multicommodity Flow Problems

where A is the set of links in the network, uij is the arc capacity limiting the total flow of
all commodities on that arc, and N is a node-arc incidence matrix of dimension n×m (i.e
n nodes and m arcs). The constraints (A.3) are the mass balance constraints, modelling
the flow of each commodity k = 1, 2, . . . ,K. The bundle constraints (A.2) tie together
the commodities by restricting the total flow on each arc (i, j) to at most uij . Individual
flow bounds ukij on the flow of commodity k on arc (i, j) are also included, although most
applications do not impose such constraints and can be set to +∞.

A.3. Path Formulation

Let’s consider a special case of the multicommodity flow problem where each commodity k
has a single source node sk and a single sink node tk, and a flow requirement (demand) of dk

units between these source and sink nodes. No flow bounds are imposed on the individual
commodities, other than the bundle constraints. We can then reformulate the multicom-
modity flow problem using path and cycle flows instead of link flows. Let’s assume that the
cost of every cycle W in the underlying network is nonnegative (e.g. if all arc flow costs
are nonnegative). Imposing the nonnegativity condition on the cycle cost, implies that in
some optimal solution to the problem, the flow on every cycle is zero, so we can eliminate
the cycle flow variables. As a consequence, we can express any potentially optimal solution
as the sum of flows on directed paths.

For each commodity k, let Pk denote the collection of all directed paths from the source
sk to the sink node tk in the underlying network. Let δij(P) be an arc-path indicator
variable (i.e. δij(P) is 1 if arc (i, j) is contained in the path P , and 0 otherwise). The flow
decomposition theorem of network flows [14] states that some optimal arc flow xkij can be
always decomposed into path flows f(P) by:

xkij =
∑
P∈Pk

δij(P)f(P) (A.5)

Let ck(P) =
∑

(i,j)∈A c
k
ijδij(P) =

∑
(i,j)∈P c

k
ij be the per unit cost of transporting flow on

the path P ∈ Pk with respect to the commodity k. By substituting the path variables in
the multicommodity flow formulation, we obtain the equivalent path flow formulation of
the problem:

Minimize
∑

1≤k≤K

∑
P∈Pk

ck(P)f(P) (A.6)

subject to:

A.4. Solution Approaches 161

∑
1≤k≤K

∑
P∈Pk

δij(P)f(P) ≤ uij for all (i, j) ∈ A (A.7)

∑
P∈Pk

f(P) = dk for k = 1, 2, . . . ,K (A.8)

f(P) ≥ 0 for all k = 1, 2, . . . ,K and all P ∈ Pk (A.9)

The path flow formulation of the multicommodity flow problem has a very simple constraint
structure, constituting one of the reasons why we have chosen this formulation for our MPS-
FAP and MRPSFAP problems. The problem has a single constraint (A.7) for each arc (i, j)
limiting the total flow (i.e. the sum of path flows) traversing that arc to at most its capacity
uij . Moreover, the problem has a single constraint (A.8) for each commodity k expressing
that the set of paths connecting the source node sk to the destination node tk transport a
quantity of flow equivalent to the demand dk for that commodity.

For a network with n nodes and m arcs and K commodities, the path flow formulation
contains m + K constraints. The arc formulation on the other hand contains m + nK

constraints (since it has one mass balance constraint for every node and commodity combi-
nation). This produces a problem with much less constraints for the path formulation than
for the arc formulation. However, the difference is even more pronounced regarding the
resolution methods that can be applied to either formulation. The savings in the number
of constraints comes at a cost, since the path flow formulation has a variable for every path
connecting a source and a sink nodes for each of the commodities. The number of variables
will then grow very large (exponentially) with the size of the network. However, we expect
that only few of the paths will actually carry flow in the optimal solution, and so the total
number of variables will get drastically reduced.

A.4. Solution Approaches

Several approaches have been developed for solving the multicommodity flow problem, in-
cluding [14]:

• Price-directive decomposition.

• Resource-directive decomposition.

• Partitioning methods.

Price-directive decomposition methods place Lagrangian multipliers (or prices) on the bun-
dle constraints, bringing them into the objective function so that the resulting problem

162 A. Multicommodity Flow Problems

gets decomposed int a separate minimum cost flow problem for each commodity k. These
methods attempt to find appropriate prices so that some optimal solution to the resulting
Lagrangian subproblem also solves the overall multicommodity flow problem. Dantzig-Wolfe
decomposition is another approach to finding the prices for the de decomposed problem. We
note that the multicommodity problem formulated have a set of easy constraints (the flow
constraints) and a set of complicating constraints (the bundle constraints). The approach
begins like Lagrangian relaxation by ignoring or imposing prices on the bundle constraints
and solving Lagrangian subproblems with only the single network flow constraints. The
resulting solution is not asked to meet the bundle constraints, but a linear programming
method is used to update the prices so that solutions generated from the subproblems sat-
isfy the bundle constraints. Iteratively then we are solving a Lagrangian subproblem and a
price setting linear program.

The multicommodity problem can be also seen as a capacity allocation problem: all com-
modities are competing for the available capacity on each arc uij . The basic idea of resource
decomposition methods is to allocate the capacity to the commodities, and then to solve
the independent single-commodity flow problems resulting from that allocation. The in-
formation gathered when solving the independent single-commodity problems is used to
reallocate the capacity to the commodities so the overall system cost is improved.

Partitioning methods exploit the structure of the multicommodity flow problems as special
linear programs with embedded network flow problems. Then the question arises of whether
we could use linear programming methods that are proven to be efficient (such as the simplex
method) to solve the multicommodity flow problem. The partitioning method is a linear
programming approach that maintains a linear programming basis that is composed of
spanning trees of the individual single-commodity flow problems as well as additional arcs
that relate the single-commodity problems together to include the bundle constraints.

A.4.1. Optimality Conditions

Multicommodity Arc Flow Complementary Slackness Conditions

The commodity flows ykij are optimal in the multicommodity flow problem (A.1) with the
ukij = +∞ if and only if they are feasible and for some choice of nonnegative arc prices wij
and node potentials πk(i), the reduced costs and arc flows satisfy the following complemen-
tary slackness conditions:

A.4. Solution Approaches 163

(a) wij

 ∑
1≤k≤K

ykij − uij

 = 0 ∀(i, j) ∈ A (A.10)

(b) cπ,kij ≥ 0 ∀(i, j) ∈ A and k = 1, 2, . . . ,K (A.11)

(c) cπ,kij y
k
ij = 0 ∀(i, j) ∈ A and k = 1, 2, . . . ,K (A.12)

where cπ,kij is the reduced cost of arc (i, j) with respect to commodity k, ad is defined as
follows:

cπ,kij = ckij + wij − πk(i) + πk(j) (A.13)

where wij is the price on arc (i, j), and πk(i) is the node potential for each combination of
commodity k and node i. Both, wij and πk(i) are the variables in the dual of the problem
(A.1).

Multicommodity Path Flow Complementary Slackness Conditions

The commodity path flows f(P) are optimal in the path flow formulation of the multicom-
modity flow problem (A.6) if and only if for some arc prices wij and commodity prices σk,
the reduced costs and arc flows satisfy the following complementary slackness conditions:

(a) wij

 ∑
1≤k≤K

∑
P∈Pk

δij(P)− uij

 = 0 ∀(i, j) ∈ A (A.14)

(b) cσ,wP ≥ 0 ∀(i, j) ∈ A and ∀P ∈ Pk (A.15)

(c) cσ,wP f(P) = 0 ∀(i, j) ∈ A and ∀P ∈ Pk (A.16)

where the reduced cost cσ,wP for each path flow f(P) is:

cσ,wP = ck(P) +
∑

(i,j)∈P

wij − σk (A.17)

B. AMPL: A Modeling Language for Mathematical Programming

B.1. Mathematical Programming

The term mathematical programming is used in the common literature about operational
research as a way to describe the minimization or maximization of an objective function of
many variables, subject to constraints in the variables [36]. One special case in which all
the costs and constraints are linear functions of the variables is called a linear program, and
the process of setting up such a problem and solving it is called linear programming. Linear
programming is particularly important because a wide variety of problems can be modeled
as linear programs, and because the methods to solve it have been well studied, giving birth
to fast and reliable methods to solve them. If some nonlinear function of the variables is
instead used in the objective or constraints, the problem is referred as a nonlinear program.
Methods to solve nonlinear programs were developed only recently, after the success of the
methods for linear programs. Also, the variables can be asked to take only integral values.
Those problems are called integer programming.

Practically, solving a problem through mathematical programming requires the following
steps:

1. Formulate a model: the system of variables, the objective functions and the system
of constraints that represent the general form of the problem to be solved.

2. Collect the data that define a specific problem instance.

3. Generate the specific system of equations from the model and the data instance, which
constitute the specific problem to solve.

4. Solve the problem instance by running a program or solver.

5. Analyze the results.

6. Refine the model and the data as necessary, and repeat.

If humans could deal with mathematical programs the same way a solver does, the formu-
lation and generation phases of modelling might be relatively straightforward. However, a
conversion between the way a human understands a problem (modeler’s form) and the way
a solver represents it (algorithm’s form) needs to be done. The complexity of this conver-
sion depends on the nature of the problem and mainly on the particular problem instance,

165

166 B. AMPL: A Modeling Language for Mathematical Programming

resulting in a time consuming and error-prone procedure.

In the special case of linear programming, the largest part of the solver form of the problem
is the constraint coefficient matrix, which is typically a very large and sparse matrix (with
most entries at 0). Generating the problem instance by hand is practically impossible. A
matrix generator is generally used to generate the problem instances from the model and
the data. Several programming languages have been designed specifically for writing matrix
generators.

Although matrix generators can successfully automate some of the work of translation from
modeler’s form to algorithm’s form, they are difficult to debug and maintain. One way to
deal with the difficulties found in designing matrix generators would be to use a modelling
language for mathematical programming. A modelling language is designed to express the
modeler’s form in a way that can serve as direct input to any solver. In this way, the
translation to the algorithm’s form can be performed entirely inside the computer system
and passed to the solver without the intermediate stage of computer programming.

There is a more than one form to express mathematical programs, so there is more than
one kind of modelling language. An algebraic modelling language is based on the use of
traditional mathematical notation to describe objective and constraints functions. Famil-
iarity to the modeler’s mathematical background is one of the major advantages of algebraic
modelling. The other important advantage is that it can be easily applied to any kind of
linear, nonlinear and integer programming models.

AMPL is an algebraic modelling language for mathematical programming. It was designed
and implemented by R. Fourer, D. Gay and B. Kernighan [36] around 1985. AMPL is widely
chosen together with another powerful modelling language called GAMS [84], mainly be-
cause of the close similarity of its arithmetic expressions to customary algebraic notation,
and for the generality and power of its set and subscripting expressions. Both modelling
languages have become the standard for the input format used by most available (commer-
cial and non-commercial) solvers. By providing a flexible interface, the user can switch to
solve the same problem using any solver implementing the AMPL language without any
additional effort. Once the optimal solution found by the solver, it is translated back to
modeler’s form so that the human user can interpret and analyze them.

B.2. AMPL Basics

The separation of model and data is the key to describing complex linear programs in a
concise and understandable fashion. In the model part of the problem, we write a compact

B.3. Model Files 167

description of the problem in its general form using algebraic notation for the objective and
the constraints. The fundamental components to a problem are:

• Sets.

• Parameters.

• Variables.

• Objective.

• Constraints.

The model describes an infinite number of related optimization problems, instantiated by
the particular values for data given in each data file. When instantiated, a model becomes
a specific problem that can be solved. The advantage of separating model and data in this
way is that large instances can be easily dealt with only changing the data file, while the
model stays unchanged. In what follows, we present the models defined for the MTDFAP,
MPSFAP1 and MPSFAP2 problems defined in Chapter 4 and for the MRPSFAP problem
defined in Chapter 7. Data files for some of the models are given as examples.

B.3. Model Files

B.3.1. Model File for MPSFAP1 Problem

Model For Multicommodity Flow Allocation: MPSFAP

#

Sergio Beker - INFRES-ENST - 03.03.2003

#

File: MPSFAP.static.mod

#

Objective: Minimize sum{p in P} path_cost*used_path

subject to:

1) demand constraint: sum{p in Pq} path_flow = demand_q

2) capacity constraint: sum{p in Pi} path_flow <= Ci

3) path delay constraint: used_path*sum{i in p} link_delay <= max_delay

4) path flow constraint: path_flow <= used_path*limit

#

variables:

path_flow

used_path : binary {0,1}

SETS

param N > 0 integer; # number of nodes

param M > 0 integer; # number of links

param K > 0 integer; # maximun number of paths available for a couple.

set nodes := 1..N; # set of nodes

set links := 1..M; # set of links

set path_index := 1..K; # set of paths available for a couple.

set couples := {n1 in nodes, n2 in nodes : n1 <> n2};

set of couples origin - destination

set path_link_incidence within {(m,n) in couples, k in path_index, i in links};

168 B. AMPL: A Modeling Language for Mathematical Programming

path_link incidence matrix

set paths := setof {(m,n,k,i) in path_link_incidence} (m,n,k);

list of paths in the path_link incidence matrix

set paths_per_link {i in links} := {(m,n,k,j) in path_link_incidence : i = j};

list of paths traversing link i

set links_per_path {(m,n,k) in paths} := {j in links : (m,n,k,j) in path_link_incidence};

list of links used by path (m,n,p)

PARAMETERS

param C {links} >= 0; # link capacity

param e >= 0; # link capacity reduction (to avoid 0 division)

param d {couples} >= 0;

demand matrix

param path_cost {(m,n,k) in paths} := card{links_per_path[m,n,k]};

cost per path = number of hops

param B {(m,n,k) in paths} >= 0;

a limit in the path_flow (to ensure used_path = 0 or 1)

param D {couples} >= 0;

maximum delay to be admitted for a couple origin, destination

param previous_used_path {paths} binary;

VARIABLES

var used_path {paths} binary; # path is used = 1, path is not used = 0

var changed_path {(m,n,k) in paths} = used_path[m,n,k]*(used_path[m,n,k]-previous_used_path[m,n,k]);

path has changed = 1, paths has not changed = 0

var path_flow {paths} >= 0; # bp

var link_flow {i in links} = sum{(m,n,k,i) in paths_per_link[i]} path_flow[m,n,k];

total flow in link i

var link_delay {i in links} = 1/(C[i]-link_flow[i]);

link delay

var path_delay{(m,n,k) in paths} = sum{i in links_per_path[m,n,k]} link_delay[i];

delay associated with a path

OBJECTIVE

minimize total_cost : sum {(m,n,k) in paths} (path_cost[m,n,k]*used_path[m,n,k]);

CONSTRAINTS

subject to capacity_constraint {i in links}: link_flow[i] <= (1-e)*C[i];

Capacity constraint

subject to path_flow_constraint {(m,n,k) in paths} : path_flow[m,n,k] <= B[m,n,k]*used_path[m,n,k];

constraint to force used_paths to take values when b > 0

subject to demand_constraint {(m,n) in couples}: sum {(m,n,k) in paths} (path_flow[m,n,k]) = d[m,n];

demand constraint

subject to delay_constraint {(m,n,k) in paths}: path_delay[m,n,k]*used_path[m,n,k] <= D[m,n];

delay constraint per link

CALCULATED VARIABLES TO DISPLAY

var avg_link_flow = sum{i in links} link_flow[i]/M;

var max_link_flow = max{i in links} link_flow[i];

var active_paths = sum{(m,n,k) in paths} (if path_flow[m,n,k] > 0 then 1 else 0);

to see the total quantity of active paths;

var active_paths_per_commodity {(m,n) in couples} = sum{(m,n,k) in paths} (if path_flow[m,n,k] > 0 then 1 else 0);

B.3. Model Files 169

active paths per commodity

var active_paths_per_link {i in links} = sum {(m,n,k,i) in path_link_incidence} (if path_flow[m,n,k] > 0 then 1 else 0);

var total_hops = sum{(m,n,k) in paths} (path_cost[m,n,k]*used_path[m,n,k]);

var total_changes = sum {(m,n,k) in paths} changed_path[m,n,k];

var max_path_delay = max{(m,n,k) in paths} path_delay[m,n,k]*used_path[m,n,k];

var avg_path_delay = sum{(m,n,k) in paths} used_path[m,n,k]*path_delay[m,n,k]/active_paths;

avg delay counting only the used paths;

var total_delay = sum{(m,n,k) in paths} used_path[m,n,k]*path_delay[m,n,k];

var total_cost_of_change = sum{(m,n,k) in paths} changed_path[m,n,k]*path_cost[m,n,k];

cost of the change part of the objective function (not used in static).

B.3.2. Model File for MPSFAP2 Problem

Model For Multicommodity Flow Allocation: MPSFAP

#

Sergio Beker - INFRES-ENST - 03.03.2003

#

File: MPSFAP.static.mod

#

Objective: Minimize sum{p in P} path_cost*used_path

subject to:

1) demand constraint: sum{p in Pq} path_flow = demand_q

2) capacity constraint: sum{p in Pi} path_flow <= Ci

3) path delay constraint: used_path*sum{i in p} link_delay <= max_delay

4) path flow constraint: path_flow <= used_path*limit

#

variables:

path_flow

used_path : binary {0,1}

SETS

param N > 0 integer; # number of nodes

param M > 0 integer; # number of links

param K > 0 integer; # maximun number of paths available for a couple.

set nodes := 1..N; # set of nodes

set links := 1..M; # set of links

set path_index := 1..K; # set of paths available for a couple.

set couples := {n1 in nodes, n2 in nodes : n1 <> n2};

set of couples origin - destination

set path_link_incidence within {(m,n) in couples, k in path_index, i in links};

path_link incidence matrix

set paths := setof {(m,n,k,i) in path_link_incidence} (m,n,k);

list of paths in the path_link incidence matrix

set paths_per_link {i in links} := {(m,n,k,j) in path_link_incidence : i = j};

list of paths traversing link i

set links_per_path {(m,n,k) in paths} := {j in links : (m,n,k,j) in path_link_incidence};

list of links used by path (m,n,p)

PARAMETERS

param C {links} >= 0; # link capacity

param e >= 0; # link capacity reduction (to avoid 0 division)

param d {couples} >= 0;

demand matrix

param path_cost {(m,n,k) in paths} := card{links_per_path[m,n,k]};

cost per path = number of hops

170 B. AMPL: A Modeling Language for Mathematical Programming

param B {(m,n,k) in paths} >= 0;

a limit in the path_flow (to ensure used_path = 0 or 1)

param D {couples} >= 0;

maximum delay to be admitted for a couple origin, destination

param previous_used_path {paths} binary;

VARIABLES

var used_path {paths} binary; # path is used = 1, path is not used = 0

var changed_path {(m,n,k) in paths} = used_path[m,n,k]*(used_path[m,n,k]-previous_used_path[m,n,k]);

path has changed = 1, paths has not changed = 0

var path_flow {paths} >= 0; # bp

var link_flow {i in links} = sum{(m,n,k,i) in paths_per_link[i]} path_flow[m,n,k];

total flow in link i

var link_delay {i in links} = 1/(C[i]-link_flow[i]);

link delay

var path_delay{(m,n,k) in paths} = sum{i in links_per_path[m,n,k]} link_delay[i];

delay associated with a path

OBJECTIVE

minimize total_cost : sum {(m,n,k) in paths} ((path_cost[m,n,k]+path_delay[m,n,k])*used_path[m,n,k]);

CONSTRAINTS

subject to capacity_constraint {i in links}: link_flow[i] <= (1-e)*C[i];

Capacity constraint

subject to path_flow_constraint {(m,n,k) in paths} : path_flow[m,n,k] <= B[m,n,k]*used_path[m,n,k];

constraint to force used_paths to take values when b > 0

subject to demand_constraint {(m,n) in couples}: sum {(m,n,k) in paths} (path_flow[m,n,k]) = d[m,n];

demand constraint

subject to delay_constraint {(m,n,k) in paths}: path_delay[m,n,k]*used_path[m,n,k] <= D[m,n];

delay constraint per link

CALCULATED VARIABLES TO DISPLAY

var avg_link_flow = sum{i in links} link_flow[i]/M;

var max_link_flow = max{i in links} link_flow[i];

var active_paths = sum{(m,n,k) in paths} (if path_flow[m,n,k] > 0 then 1 else 0);

to see the total quantity of active paths;

var active_paths_per_commodity {(m,n) in couples} = sum{(m,n,k) in paths} (if path_flow[m,n,k] > 0 then 1 else 0);

active paths per commodity

var active_paths_per_link {i in links} = sum {(m,n,k,i) in path_link_incidence} (if path_flow[m,n,k] > 0 then 1 else 0);

var total_hops = sum{(m,n,k) in paths} (path_cost[m,n,k]*used_path[m,n,k]);

var total_changes = sum {(m,n,k) in paths} changed_path[m,n,k];

var max_path_delay = max{(m,n,k) in paths} path_delay[m,n,k]*used_path[m,n,k];

var avg_path_delay = sum{(m,n,k) in paths} used_path[m,n,k]*path_delay[m,n,k]/active_paths;

avg delay counting only the used paths;

var total_delay = sum{(m,n,k) in paths} used_path[m,n,k]*path_delay[m,n,k];

var total_cost_of_change = sum{(m,n,k) in paths} changed_path[m,n,k]*path_cost[m,n,k];

cost of the change part of the objective function (not used in static).

B.3. Model Files 171

B.3.3. Model File for MTDFAP Problem

Model For Multicommodity Flow Allocation: MTDFAP

#

Sergio Beker - INFRES-ENST - 03.03.2003

#

File: MTDFAP.mod

#

Objective: Minimize sum{p in P} path_delay

subject to:

1) demand constraint: sum{p in Pq} path_flow = demand_q

2) capacity constraint: sum{p in Pi} path_flow <= Ci

3) path delay constraint: used_path*sum{i in p} link_delay <= max_delay

4) path flow constraint: path_flow <= used_path*limit

#

variables:

path_flow

used_path : binary {0,1}

SETS

param N > 0 integer; # number of nodes

param M > 0 integer; # number of links

param K > 0 integer; # maximun number of paths available for a couple.

set nodes := 1..N; # set of nodes

set links := 1..M; # set of links

set path_index := 1..K; # set of paths available for a couple.

set couples := {n1 in nodes, n2 in nodes : n1 <> n2};

set of couples origin - destination

set path_link_incidence within {(m,n) in couples, k in path_index, i in links};

path_link incidence matrix

set paths := setof {(m,n,k,i) in path_link_incidence} (m,n,k);

list of paths in the path_link incidence matrix

set paths_per_link {i in links} := {(m,n,k,j) in path_link_incidence : i = j};

list of paths traversing link i

set links_per_path {(m,n,k) in paths} := {j in links : (m,n,k,j) in path_link_incidence};

list of links used by path (m,n,p)

PARAMETERS

param C {links} >= 0; # link capacity

param e >= 0; # link capacity reduction (to avoid 0 division)

param d {couples} >= 0;

demand matrix

param path_cost {(m,n,k) in paths} := card{links_per_path[m,n,k]};

cost per path = number of hops

param B {(m,n,k) in paths} >= 0;

a limit in the path_flow (to ensure used_path = 0 or 1)

param D {couples} >= 0;

maximum delay to be admitted for a couple origin, destination

param previous_used_path {paths} binary;

VARIABLES

var used_path {paths} binary; # path is used = 1, path is not used = 0

var changed_path {(m,n,k) in paths} = used_path[m,n,k]*(used_path[m,n,k]-previous_used_path[m,n,k]);

path has changed = 1, paths has not changed = 0

var path_flow {paths} >= 0; # bp

var link_flow {i in links} = sum{(m,n,k,i) in paths_per_link[i]} path_flow[m,n,k];

total flow in link i

172 B. AMPL: A Modeling Language for Mathematical Programming

var link_delay {i in links} = 1/(C[i]-link_flow[i]);

link delay

var path_delay{(m,n,k) in paths} = sum{i in links_per_path[m,n,k]} link_delay[i];

delay associated with a path

OBJECTIVE

minimize total_cost : sum {(m,n,k) in paths} (path_delay[m,n,k]*used_path[m,n,k]);

CONSTRAINTS

subject to capacity_constraint {i in links}: link_flow[i] <= (1-e)*C[i];

Capacity constraint

subject to path_flow_constraint {(m,n,k) in paths} : path_flow[m,n,k] <= B[m,n,k]*used_path[m,n,k];

constraint to force used_paths to take values when b > 0

subject to demand_constraint {(m,n) in couples}: sum {(m,n,k) in paths} (path_flow[m,n,k]) = d[m,n];

demand constraint

subject to delay_constraint {(m,n,k) in paths}: path_delay[m,n,k]*used_path[m,n,k] <= D[m,n];

delay constraint per link

CALCULATED VARIABLES TO DISPLAY

var avg_link_flow = sum{i in links} link_flow[i]/M;

var max_link_flow = max{i in links} link_flow[i];

var active_paths = sum{(m,n,k) in paths} (if path_flow[m,n,k] > 0 then 1 else 0);

to see the total quantity of active paths;

var active_paths_per_commodity {(m,n) in couples} = sum{(m,n,k) in paths} (if path_flow[m,n,k] > 0 then 1 else 0);

active paths per commodity

var active_paths_per_link {i in links} = sum {(m,n,k,i) in path_link_incidence} (if path_flow[m,n,k] > 0 then 1 else 0);

var total_hops = sum{(m,n,k) in paths} (path_cost[m,n,k]*used_path[m,n,k]);

var total_changes = sum {(m,n,k) in paths} changed_path[m,n,k];

var max_path_delay = max{(m,n,k) in paths} path_delay[m,n,k]*used_path[m,n,k];

var avg_path_delay = sum{(m,n,k) in paths} used_path[m,n,k]*path_delay[m,n,k]/active_paths;

avg delay counting only the used paths;

var total_delay = sum{(m,n,k) in paths} used_path[m,n,k]*path_delay[m,n,k];

var total_cost_of_change = sum{(m,n,k) in paths} changed_path[m,n,k]*path_cost[m,n,k];

cost of the change part of the objective function (not used in static).

B.3.4. Model File for MRPSFAP Problem

Model For Multicommodity Flow Allocation: MINLP1a - Dynamic Formulation

#

Sergio Beker - INFRES-ENST - 03.03.2003

#

File: MINLP1a.dynamic.mod

#

Objective: Minimize sum{p in P} path_cost*used_path + sum {p in P} path_cost*changed_path

subject to:

1) demand constraint: sum{p in Pq} path_flow = demand_q

2) capacity constraint: sum{p in Pi} path_flow <= Ci

3) path delay constraint: used_path*sum{i in p} link_delay <= max_delay

4) path flow constraint: path_flow <= used_path*limit

5) change constraint: (used_path(t+1)-used_path(t))*used_path(t+1) <= changed_path(t+1)

#

variables:

path_flow

used_path : binary {0,1}

changed_path : binary {0,1}

B.3. Model Files 173

SETS

param N > 0 integer; # number of nodes

param M > 0 integer; # number of links

param K > 0 integer; # maximun number of paths available for a couple.

set nodes := 1..N; # set of nodes

set links := 1..M; # set of links

set path_index := 1..K; # set of paths available for a couple.

set couples := {n1 in nodes, n2 in nodes : n1 <> n2};

set of couples origin - destination

set path_link_incidence within {(m,n) in couples, k in path_index, i in links};

path_link incidence matrix

set paths := setof {(m,n,k,i) in path_link_incidence} (m,n,k);

list of paths in the path_link incidence matrix

set paths_per_link {i in links} := {(m,n,k,j) in path_link_incidence : i = j};

list of paths traversing link i

set links_per_path {(m,n,k) in paths} := {j in links : (m,n,k,j) in path_link_incidence};

list of links used by path (m,n,p)

PARAMETERS

param C {links} >= 0; # link capacity

param e >= 0; # link capacity reduction (to avoid 0 division)

param d {couples} >= 0;

demand matrix

param path_cost {(m,n,k) in paths} := card{links_per_path[m,n,k]};

cost per path = number of hops

param B {(m,n,k) in paths} >= 0;

a limit in the path_flow (to ensure used_path = 0 or 1)

param D {couples} >= 0;

maximum delay to be admitted for a couple origin, destination

param previous_used_path {paths} binary;

VARIABLES

var used_path {paths} binary; # path is used = 1, path is not used = 0

var changed_path {paths} binary;

path has changed = 1, paths has not changed = 0

var path_flow {paths} >= 0; # bp

var link_flow {i in links} = sum{(m,n,k,i) in paths_per_link[i]} path_flow[m,n,k];

total flow in link i

var link_delay {i in links} = 1/(C[i]-link_flow[i]);

link delay

var path_delay{(m,n,k) in paths} = sum{i in links_per_path[m,n,k]} link_delay[i];

delay associated with a path

OBJECTIVE

minimize total_cost : sum {(m,n,k) in paths} (path_cost[m,n,k]*used_path[m,n,k]) + sum {(m,n,k) in paths} (path_cost[m,n,k]*changed_path[m,n,k]);

CONSTRAINTS

subject to capacity_constraint {i in links}: link_flow[i] <= (1-e)*C[i];

Capacity constraint

subject to path_flow_constraint {(m,n,k) in paths} : path_flow[m,n,k] <= B[m,n,k]*used_path[m,n,k];

constraint to force used_paths to take values when b > 0

174 B. AMPL: A Modeling Language for Mathematical Programming

subject to demand_constraint {(m,n) in couples}: sum {(m,n,k) in paths} (path_flow[m,n,k]) = d[m,n];

demand constraint

subject to delay_constraint {(m,n,k) in paths}: path_delay[m,n,k]*used_path[m,n,k] <= D[m,n];

delay constraint per link

subject to path_change {(m,n,k) in paths} : (used_path[m,n,k]-previous_used_path[m,n,k])*used_path[m,n,k] <= changed_path[m,n,k];

CALCULATED VARIABLES TO DISPLAY

var avg_link_flow = sum{i in links} link_flow[i]/M;

var max_link_flow = max{i in links} link_flow[i];

var active_paths = sum{(m,n,k) in paths} (if path_flow[m,n,k] > 0 then 1 else 0);

to see the total quantity of active paths;

var active_paths_per_commodity {(m,n) in couples} = sum{(m,n,k) in paths} (if path_flow[m,n,k] > 0 then 1 else 0);

active paths per commodity

var active_paths_per_link {i in links} = sum {(m,n,k,i) in path_link_incidence} (if path_flow[m,n,k] > 0 then 1 else 0);

var total_hops = sum{(m,n,k) in paths} (path_cost[m,n,k]*used_path[m,n,k]);

var total_changes = sum {(m,n,k) in paths} changed_path[m,n,k];

var max_path_delay = max{(m,n,k) in paths} path_delay[m,n,k]*used_path[m,n,k];

var avg_path_delay = sum{(m,n,k) in paths} used_path[m,n,k]*path_delay[m,n,k]/active_paths;

avg delay counting only the used paths;

var total_cost_of_change = sum{(m,n,k) in paths} path_cost[m,n,k]*changed_path[m,n,k];

B.4. Data Files

B.4.1. Data File for MPSFAP and MTDFAP Problems

NET2.dat

Sergio Beker - ENST - INFRES: 27/01/03

#

Multicommodity Flow Problem

nodes = 4

links = 10

demands = 1.

paths = 3 between nodes 1 and 4

data;

param e := 0.0001;

param D default 0.03;

param B default 10000;

param N := 4;

param M := 10;

param K := 5;

param C := 1 2500.0

2 2500.0

3 2500.0

4 2500.0

5 2500.0

6 2500.0

7 2500.0

8 2500.0

9 2500.0

10 2500.0

;

set path_link_incidence :=

(1,2,1,*) 1

(1,2,2,*) 9 4

(1,2,3,*) 8 6 4

B.4. Data Files 175

(1,3,1,*) 8

(1,3,2,*) 9 5

(1,3,3,*) 1 3 5

(1,4,1,*) 9

(1,4,2,*) 1 3

(1,4,3,*) 8 6

(2,1,1,*) 2

(2,1,2,*) 3 10

(2,1,3,*) 3 5 7

(2,3,1,*) 2 8

(2,3,2,*) 3 5

(2,3,3,*) 2 9 5

(2,3,4,*) 3 10 8

(2,4,1,*) 3

(2,4,2,*) 2 9

(2,4,3,*) 2 8 6

(3,1,1,*) 7

(3,1,2,*) 6 10

(3,1,3,*) 6 4 2

(3,2,1,*) 6 4

(3,2,2,*) 7 1

(3,2,3,*) 6 10 1

(3,2,4,*) 7 9 4

(3,4,1,*) 6

(3,4,2,*) 7 9

(3,4,3,*) 7 1 3

(4,1,1,*) 10

(4,1,2,*) 4 2

(4,1,3,*) 5 7

(4,2,1,*) 4

(4,2,2,*) 10 1

(4,2,3,*) 5 7 1

(4,3,1,*) 5

(4,3,2,*) 10 8

(4,3,3,*) 4 2 8

;

param previous_used_path default 0;

param d default 0.0 :

1 2 3 4 :=

1 . 346 729 1524

2 37 . 1186 1584

3 1477 1082 . 1834

4 1788 706 19 . ;

B.4.2. Data File for MRPSFAP Problem

NET2.dat

Sergio Beker - ENST - INFRES: 27/01/03

#

Multicommodity Flow Problem

nodes = 4

links = 10

demands = 1.

paths = 3 between nodes 1 and 4

data;

param e := 0.0001;

param D default 0.03;

param B default 10000;

176 B. AMPL: A Modeling Language for Mathematical Programming

param N := 4;

param M := 10;

param K := 5;

param C := 1 2500.0

2 2500.0

3 2500.0

4 2500.0

5 2500.0

6 2500.0

7 2500.0

8 2500.0

9 2500.0

10 2500.0

;

set path_link_incidence :=

(1,2,1,*) 1

(1,2,2,*) 9 4

(1,2,3,*) 8 6 4

(1,3,1,*) 8

(1,3,2,*) 9 5

(1,3,3,*) 1 3 5

(1,4,1,*) 9

(1,4,2,*) 1 3

(1,4,3,*) 8 6

(2,1,1,*) 2

(2,1,2,*) 3 10

(2,1,3,*) 3 5 7

(2,3,1,*) 2 8

(2,3,2,*) 3 5

(2,3,3,*) 2 9 5

(2,3,4,*) 3 10 8

(2,4,1,*) 3

(2,4,2,*) 2 9

(2,4,3,*) 2 8 6

(3,1,1,*) 7

(3,1,2,*) 6 10

(3,1,3,*) 6 4 2

(3,2,1,*) 6 4

(3,2,2,*) 7 1

(3,2,3,*) 6 10 1

(3,2,4,*) 7 9 4

(3,4,1,*) 6

(3,4,2,*) 7 9

(3,4,3,*) 7 1 3

(4,1,1,*) 10

(4,1,2,*) 4 2

(4,1,3,*) 5 7

(4,2,1,*) 4

(4,2,2,*) 10 1

(4,2,3,*) 5 7 1

(4,3,1,*) 5

(4,3,2,*) 10 8

(4,3,3,*) 4 2 8

;

param previous_used_path [1,*,*] (tr)

: 2 3 4 :=

1 1 1 1

2 0 0 0

3 0 0 0

[2,*,*] (tr)

: 1 3 4 :=

B.4. Data Files 177

1 1 1 1

2 0 0 0

3 0 0 0

4 . 0 .

[3,*,*] (tr)

: 1 2 4 :=

1 1 1 1

2 0 1 0

3 0 0 0

4 . 0 .

[4,*,*] (tr)

: 1 2 3 :=

1 1 1 1

2 0 0 0

3 0 0 0

;

param d default 0.0 :

1 2 3 4 :=

1 . 346 1208 298

2 37 . 1186 1584

3 1477 1082 . 1834

4 1788 706 19 . ;

Bibliography

[1] R. Yavatkar, D. Pendarakis, R. Guerin, A Framework for Policy-based Admission Con-
trol, RFC 2573, January 2000, IETF. 3.1.2

[2] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, A. Sastry, The COPS (Common
Open Policy Service) Protocol, RFC 2748, January 2000, IETF. 3.1.2

[3] K. Chan, J. Seligson, D. Durham, S. Gai, K. McCloghrie, S. Herzog, F. Reichmeyer,
R. Yavatkar, A. Smith, COPS Usage for Policy Provisioning (COPS-PR), RFC 3084,
March 2001, IETF. 3.1.2

[4] R. Sahita, S. Hahn, K. Chan, K. McCloghrie, Framework Policy Information Base,
RFC 3318, March 2003, IETF. 3.1.2

[5] S . Herzog, J. Boyle, R. Cohen, D. Durham, R. Rajan, A. Sastry, COPS usage for
RSVP, RFC 2749, January 2000, IETF. 3.1.2

[6] D. Awduche, MPLS Traffic Engineering in IP Networks, IEEE Communications Mag-
azine, December 1999, IEEE. 3, 3.1.1

[7] D. Awduche et al., Requirements for Traffic Engineering Over MPLS, RFC 2702,
September 1999, IETF.

[8] R. Callon et al., A Framework for Multiprotocol Label Switching, Internet Draft, Septem-
ber 1999, IETF. 3.1.3

[9] E. Rosen, A. Viswanathan, R. Callon, Multiprotocol Label Switching Architecture,
RFC3031, January 2001, IETF. 3.1.3

[10] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, G. Swallow, RSVP-TE: RSVP
Extensions for MPLS Tunnels, RFC3209, December 2001, IETF. 3.3.1, 4.1, 7.3

[11] F. Le Faucheur, B. Davie, S. Davari, P. Vaanen, R. Krishnan, P. Cheval, J. Heinanen,
Multiprotocol Label Switching (MPLS) Support for Differentiated Services, RFC3270,
May 2002, IETF. 3.1.3, 4.7

[12] B. Jamoussi et al., Constraint-Based LSP Setup using LDP, RFC 3212, January 2002,
IETF. 3.3.1, 4.1

179

180 Bibliography

[13] D. Awduche et al., RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC 3209,
December 2001, IETF.

[14] R.Ahuja, T.Magnanti, J.Orlin, Network Flows: Theory, Algorithms and Applications,
Prentice Hall Inc., 1993, p.788-801. 4.6, A.1, A.3, A.4

[15] M.Kodialam, T.Lakshman, Minimum Interference Routing with Applications to MPLS
Traffic Engineering, INFOCOM 2000, Proceedings IEEE, Volume 2. p.884-893. 3.3.1,
4.8

[16] S.Beker, D.Kofman, N.Puech, Off-Line Reduced Complexity Layout Design for MPLS
Networks, Proceedings of IPOM 2003, p.99-105, IEEE. 4.3, 7.1

[17] S.Beker, D.Kofman, N.Puech, Off-Line MPLS Layout Design and Reconfiguration :
Reducing Complexity Under Dynamic Traffic Conditions Proceedings of INOC 2003,
p.61-66, ITC/INFORMS.

[18] J. Czyzyk, M. Mesnier, and J. Moré, The Neos Server, IEEE Journal on Computational
Science and Engineering, 5, pages 68-75. 4.6.4

[19] R. Fletcher, S. Leyffer, Numerical Experience with Lower Bounds for MIQP Branch
and Bound, SIAM Journal of Optimization, 8(2):p.604-616, 1998. 4.6.4

[20] Roberts J.W., Self-Similar Network Traffic and Performance Evaluation, chapter En-
gineering for Quality of Service, Wiley-Interscience, 2000, pages 401-420. 4.2

[21] Cabinet Arcome, Etude Technique, Economique et Réglamentaire de l’Evolution vers
les Réseaux de Nouvelle Génération, Autoritéde Règulation des Télécommunications,
Septembre 2000. 2.3.3, 2.3.4

[22] E. Altman, T. Başar, T. Jiménez, N. Shimkin, Competitive Routing in Networks with
Polynomial Costs, INFOCOM 2000, Proceedings IEEE, Volume 3, p.1586-1593. 4.1,
4.3, 4.8

[23] L. Georgiadis, K. Floros, P. Georgatsos, S. Sartzetakis, Lexicographically Optimal
Balanced Networks, INFOCOM 2001, Proceedings IEEE, Volume 2, p.689-698. 4.1, 4.3,
4.8

[24] H. Hsu, F. Yeang-Sung Lin, Near-Optimal Constrained Routing in Virtual Circuit
Networks, INFOCOM 2001, Proceedings IEEE, Volume 2, p.750-756. 4.1, 4.3, 4.8

[25] D. Banerjee, B. Mukherjee, Wavelength-Routed Optical Networks: Linear Formulation,
Resource Budgeting Tradeoffs, and a Reconfiguration Study, Networking, IEEE/ACM
Transactions on, Volume: 8 Issue: 5 , Oct 2000, p.598-607. 3.3.1, 4.1, 4.6.1, 7.1, 7.6.1

Bibliography 181

[26] G. Banerjee, D. Sidhu, Path Computation for Traffic Engineering in MPLS Networks,
Proceedings of IEEE ICN 2001.

[27] A. Feldman, A.C. Gibert, P. Huang, W. Willinger, Dynamics of IP Traffic: A Study
of the Role of Variability and the Impact of Control, SIGCOM 1999. 4.2

[28] M. Nabe, M. Murata, H. Miyahara, Analysis and Modeling of Worldwide Web Traffic
for Capacity Dimensioning of Internet Access Lines Performance Evaluation, (34):249-
271, 1998. 4.2

[29] K. Thompson, G.J. Miller, R. Wilder, Wide-Area Internet Traffic Patterns and Char-
acterization, IEEE Network, Nov/Dec. 1997, pages: 10-23. 4.2

[30] L. Kleinrock, Queueing systems, Vol. 1 : Theory, John Wiley & Sons, New York, USA.
1975. 4.3

[31] L. Kleinrock, Queueing systems, Vol. 2 : Computer Applications, John Wiley & Sons,
New York, USA. 1976. 5.1, 8.5

[32] T. Wang, Global Optimization for Constrained Non Linear Programming, PhD. Thesis,
University of Illinois at Urbana-Champaign, 2001. 4.6

[33] Michael R. Garey, David. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freemand and Co. New York, 1979. 4.6

[34] George L. Nemhouser, Laurence A. Walsey, Integer and Combinatorial Optimization,
John Wiley & Sons, New York, 1988. 4.6

[35] M. Ajmone Marsan, A. Grosso, E. Leonardi, M. Mellia, A. Nucci, Design of Logical
Topologies in Wavelength-Routed IP Networks, Photonic Network Communications,
December 2002, Vol.4, No.3/4, pp.423-442, ISSN: 1387-974x. 4.6

[36] Robert Fourer, David M. Gay, Brian W. Kernighan, AMPL: A Modeling Language
for Mathematical Programming, Second Edition, Thompson, Brooks/Cole, USA, 2003.
4.6.4, B.1, B.1

[37] W. Gropp and J. Moré, Optimization Environments and the NEOS Server, Approxi-
mation Theory and Optimization, M. D. Buhmann and A. Iserles, eds., pages 167-182,
1997, Cambridge University Press. 4.6.4

[38] E. Dolan, The NEOS Server 4.0 Administrative Guide, Technical Memorandum
ANL/MCS-TM-250, Mathematics and Computer Science Division, Argonne National
Laboratory, May 2001. 4.6.4

[39] R. Fletcher, S. Leyffer, User Manual for Filter SQP, Numerical Analysis Report,
NA/181, Dundee University, April, 1998. 4.6.4

182 Bibliography

[40] W. Ben-Ameur, B. Liau, N. Michel, Routing Strategies for IP Networks, 2/3 2001,
Telektronik Magazine, p. 145-158. 3.1.3, 4.8, 6.2

[41] S. C. Erbas, R. Mathar:, An Off-line Traffic Engineering Model for MPLS Networks,
Proceddings of IEEE 27th Annual IEEE Conference on Local Computer Networks (27th
LCN), pp. 166-174, Tampa, Florida, November 2002.

[42] M. Pióro, A. Myslek, Topological Design of MPLS Networks, IEEE GLOBECOM 2001,
San Antonio, Texas, 2001. 4.1

[43] D. Bienstock, S. Chopra, O. Guenluek, C.Y. Tsai, Minimum Cost Capacity Installation
for Multicommodity Network Flows, Mathematical Programming Journal, (81), p.177-
199, 1998. 4.1

[44] N. Geary, A. Antonopoulos, E. Drakopoulos, J. O’Reilly, Analysis Of Optimisation
Issues In Multi-Period DWDM Network Planning, IEEE INFOCOM 2001, Anchorage,
Alaska, p.152-158. 4.1

[45] B. Fortz, M. Thorup, Internet Traffic Engineering by Optimizing OSPF Weights, IEEE
INFOCOM, p.519-528, 2000. 3.1.2, 3.1.3, 4.8, 7.1

[46] F. Ergun, R. Sinha, L. Zhang, QoS Routing with PerformanceDependent Costs, IEEE
INFOCOM, 2000. 4.8

[47] A. Orda, A. Sprintson, QoS Routing: The Precomputation Perspective, IEEE INFO-
COM, p.128-136, 2000. 4.8

[48] T. Korkmaz, M. Krunz, Multi-Constrained Optimal Path Selection, IEEE INFOCOM,
p.834-843, 2001. 4.8

[49] A. Jüttner, B. Szviatovszki, I. Mécs, Z. Rajkó, Lagrange Relaxation Based Method for
the QoS Routing Problem, IEEE INFOCOM, 2001. 4.8

[50] A. Goel, K.G. Ramakrishnan, D. Kataria, D. Logothetis, Efficient Computation of
Delay-sensitive Routes from One Source to All Destinations, IEE INFOCOM, p.854-
858, 2001. 4.8

[51] O.K. Gupta, A. Ravindran, Branch and Bound Experiments in Convex Non-Linear
Integer Programming, Management Science, 31(12), p.1533-1546, 1985. 5.1

[52] I. Quesada, I.E. Grossmann, An LP/NLP Based Branch and Bound Algorithm for
Convex MINLP Optimization Problems, Computers Chemical Engineering, 16(10/11),
p.937-947, 1992. 5.1

[53] A.M. Geoffrion, A Generalized Benders Decomposition, Journal on Optimization The-
ory and Applications, 10(4), p.237-260, 1972. 5.1

Bibliography 183

[54] M.A. Duran, I.E. Grossmann, An Outer-Approximation Algorithm for a Class of Mixed-
Integer Non-Linear Programming, Mathematical Pogramming, 36, p.307-339, 1986.
5.1

[55] R. Fletcher, S. Leyffer, Solving Mixed Integer Programs by Outer Approximation,
Mathematical Pogramming, 66, p.327-349, 1994. 5.1

[56] S. Leyffer, Integrating SQP and branch-and-bound for Mixed Integer Nonlinear Pro-
gramming, Computational Optimization and Applications, 18, p.295-309, 2001. 5.1

[57] T. Westerlund, F. Petersson, A Cutting Plane Method for Solving Convex MINLP
Problems, Computers Chemical Engineering, 19, p.131-136, 1995. 5.1

[58] S. Kirkpatrick, C.D. Gelatt Jr.,M.P. Vecchi, Optimization by Simulated Annealing,
Science Journal, number 4598, 1983. 5.2

[59] C. Gazen, C. Ersoy, Genetic algorithms for designing multihop lightwave network
topologies, Artificial Intelligence in Engineering, (3), p.211-221, 1999. 5.2

[60] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers, 1997, Boston, MA.
5.2

[61] N. Puech, J. Kuri, M. Gagnaire, Models for the Logical Topology Design Problem,
Proceedings of the 2nd IFIP-TC6 Networking Conference, May, 2002, Springer-Verlag.
5.2

[62] S. Beker, N. Puech, V. Friderikos, A Tabu Search Heuristic for the Off-Line MPLS
Reduced Complexity Layout Design Problem, IFIP-TC6 Networking Conference 2004,
LNCS Springer Verlag Networking 2004 (to be published) May 9-14, Athens. 5.3

[63] Réseau National de Reherche en Téléommunications, 2000-2004, Ministère de
l’Economie, des Finances et de l’Industrie, France, www.vthd.org. 1, 6.1

[64] D. Bertsekas, R. Gallager, Data Networks, Prentice-Hall International Editions, UK,
1987. 3.1.2, 5.1, 5.4.1, 5.4.1, 5.5, 8.5

[65] J.E. Burns, T.J. Ott, Johan M. de Kock, A.E. Krzesinski, Path Selection and Bandwidth
Allocation in MPLS Networks: a Non-Linear Programming Approach, Proceedings of
SPIE, ITCom (4523), 2001. 5.1, 5.5, 1, 5.5

[66] A. Kershenbaum, Telecommunication Design Algorithms, McGraw-Hill, 1993.

[67] L. Fratta, M. Gerla, L. Kleinrock, The Flow Deviation Method: An Approach to Store-
and-Forward Communication Network Design, Networks, (3), p.97-133, 1973. 5.4,
5.4.1

184 Bibliography

[68] M. Lucas, D. Wrege, B. Dempsey, A. Weaver, Statistical Characterization of Wide-Area
IP Traffic, Sixth International Conference on Computer Communications and Networks
(IC3N’97), Las Vegas, NV, September 1997. (document), 7.1, 7.2, 7.1

[69] T. Bonald, S. Oueslati-Boulahia, J.W. Roberts, IP traffic and QoS control: the need
for a flow-aware architecture, World Telecommunications Congress, September 2002
Paris, France. (document), 7.1, 7.2, 7.2

[70] A. Gena̧ta, B. Mukherjee, Virtual-Topology Adaptation for WDM Lesh Networks Under
Dynamic Traffic, INFOCOM 2002, Proceedings IEEE, (1) p.48-56, 2002. 7.1

[71] B. Ramamurthy, A. Ramakrishnan, Virtual Topology Reconfiguration of Wavelength-
Routed Optical WDM Networks, GLOBECOM 2000, Proceedings IEEE, (2) p.1269-
1275, 2000. 7.1

[72] F. Ricciato, S. Salsano, A. Belmonte, M. Listanti, Off-Line Configuration of a MPLS
over WDM Network under Time-Varying Offered Traffic, INFOCOM 2002, Proceedings
IEEE, (1) p.57-65, 2002. 7.1

[73] W. Ben-Ameur, H. Kerivin, Routing of uncertain demands, submitted to Journal on
Operations Research, 2001. 7.1

[74] J.F.P. Labourdette, G.W.Hart, A.S.Acampora, Branch-Exchange Sequences for Re-
configuration of Lightwave Networks, IEEE Transactions on Communications, 42(10)
p.2822-2832, October 1994. 7.1

[75] B. Fortz, J. Rexford, M. Thorup, Traffic Engineering with Traditional IP Routing
Protocols, IEEE Communications Magazine, 2002. 3.1.3, 7.1

[76] R. Casellas, Tesis, ENST, 2002. 3.1.2

[77] K. Ramakrishnan, S. Floyd, D. Black, The Addition of Explicit Congestion Notification
(ECN) to IP, RFC 3178, IETF, Septemnber 2001. 3.1.2

[78] K. Ishiguro, T. Takada, Traffic Engineering Extensions to OSPF version 3, Draft
(draft-ietf-ospf-ospfv3-traffic-01.txt), IETF. August 2003. 3.1.3

[79] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss An Architecture for
Differentiated Services, RFC 2475, IETF, August 1998. 3.1.3

[80] J. Wroclawski, The Use of RSVP with IETF Integrated Services, RFC 2210, IETF,
September 1997. 3.1.3

[81] D. Grossman, New Terminology and Clarifications for Diffserv, RFC 3260, IETF,
April 2002. 3.1.3

Bibliography 185

[82] M. Grossglauser, J. Rexford, Passive Traffic Measurement for IP Operations, The
Internet as a Large-Scale Complex System (Chapter), Oxford University Press, to
appear 2004. 3.2.1

[83] V. Paxson, G. Almes, J. Mahdavi, M. Mathis, Framework for IP Performance Metrics,
RFC 2330, IETF, May 1998. 3.2.1

[84] E. Castillo, A.J. Conejo, P. Pedregal, R. Garcia, N. Alguacil, Building and Solving
Mathematical Programming Models in Engineering and Science, ISBN: 0-471-15043-6,
Hardcover, 568 pages, October 2001. 4.6.4, B.1

[85] A. Feldman, A. Greenberg, C. Lund, N. Reingold, J. Rexford, F. True, Deriving Traffic
Demands for Operational IP Networks: Methododoly and Experience, Proceedings of
ACM SIGCOM 2000, , 2000. 4.2

[86] B. Krithikaivasan, K. Deka, D. Medhi, Adaptive Bandwidth Provisioning Envelope
Based on Discrete Temporal Network Measurements, Proceedings of IEEE INFOCOM
2004, Hong Kong, March 2004. 4.2

[87] K. Papagiannaki, N. Taft, Z.L. Zhang, C. Diot, Long-term Forecasting of Internet
Backbone Traffic: Observations and Initial Models, Proceedings of IEEE INFOCOM
2003, San Francisco, CA, March 2003. 4.2

[88] S. Srivastava, B. Krithikaivasan, D. Medhi, M. Pióro, Traffic Engineering in the Pres-
ence of Tunneling and Diversity Constraints: Formulation and Lagrangian Decomposi-
tion Approach, Proceedings of 18th International Teletraffic Congress (ITC18), pages
461-470, September 2003. 4.8

[89] B. Yaged, Minimum Cost Routing for Dyanamic Network Models, Networks, 3:193-224,
1973. 7.1

[90] N. Zadeh, On Building Minimum Cost Communication Networks Over Time, Net-
works, 4:19-34, 1974. 7.1

	Résumé
	Aknowledgments
	1 General Introduction
	1.1 Motivations
	1.2 Document Organization

	2 Technological Context: Next Generation IP Networks
	2.1 Introduction
	2.2 Drivers for Service Integration
	2.3 Next Generation IP Network (NGN) Architectures
	2.3.1 Definitions and Objectives
	2.3.2 Transport Layer: Towards an IP Multiservice High Speed Transport
	2.3.3 Control Layer
	2.3.4 Service Layer

	2.4 The Role of MPLS in the NGN Transport Infrastructure
	2.5 Conclusions

	3 Evolved Traffic Engineering
	3.1 Traffic Engineering Objectives and Timescales
	3.1.1 TE Objectives
	3.1.2 Control Loops and Timescales
	3.1.3 The Role of MPLS in The Traffic Engineering

	3.2 Traffic Engineering and Measurements
	3.2.1 Network States

	3.3 Contributions to the Long-term Control Loop: Dimensioning and Reconfiguration
	3.3.1 Defining an Optimal Point of Operation: Network Dimensioning
	3.3.2 Varying Traffic Conditions: Network Reconfiguration

	4 Contribution to the Dimensioning of MPLS Networks: Design of Reduced Complexity Layouts
	4.1 Motivations and Previous Work
	4.2 Network Model Notation
	4.3 Building the Cost Functions
	4.4 Setting QoS Guarantees
	4.5 Formulation: Minimum Path Set and Flow Allocation Problem (MPSFAP)
	4.6 Preliminary Results on MPSFAP and Model Validation
	4.6.1 Traffic Matrixes
	4.6.2 Network Topologies
	4.6.3 Reference Problem
	4.6.4 Interface to Solvers: Modeling Language
	4.6.5 Results and Analysis

	4.7 Extensions for Multiple Classes of Service
	4.8 Conclusions

	5 Contribution to the Development of Heuristics for Solving the Minimum Path Set and Flow Allocation Problems (MPSFAP)
	5.1 Exact Methods for Solving MINLP Problems
	5.2 Meta-Heuristics: Tabu Search Methods
	5.3 A Tabu Search Heuristic Approach Applied to the MPSFAP Problems
	5.3.1 Initial Solution
	5.3.2 Perturbation mechanism
	5.3.3 Evaluation Functions
	5.3.4 Evaluation of TS Heuristics for MPSFAP

	5.4 Ad-Hoc Heuristics Based on The Flow Deviation Algorithm
	5.4.1 The Flow Deviation Algorithm

	5.5 A Modified Flow Deviation (MFD) Algorithm for Solving the MPSFAP Problems
	5.5.1 Path Delay Constraints Simplification
	5.5.2 Path Weights Calculation
	5.5.3 Determining the Shift Direction
	5.5.4 Determining the Shift Factor
	5.5.5 Determining the Best Node Pair
	5.5.6 Evaluation of the MFD Algorithm for MPSFAP

	5.6 Conclusions

	6 Results and Analysis of the MPSFAP Problems for Large Networks Using Tabu Search (TS) and Modified Flow Deviation (MFD) Methods
	6.1 Considered Network Topologies
	6.2 Comparison from TS and MFD for the MPSFAP on Large Networks
	6.3 Result Analysis of Large Networks by Using MFD
	6.4 Conclusions

	7 Contribution to Reconfiguring MPLS Networks: Design of Reduced Reconfiguration and Complexity Layouts
	7.1 Motivations and Previous Work
	7.2 Network Model Notation: Extensions for Dynamic Traffic Conditions
	7.3 Building the Cost Functions
	7.4 Setting QoS Guarantees
	7.5 Formulation: Minimum Reconfiguration, Path Set and Flow Allocation Problem (MRPSFAP)
	7.6 Preliminary Results on MRPSFAP and Model Validation
	7.6.1 Traffic Matrixes: Considering the Traffic Dynamics
	7.6.2 Results and Analysis

	7.7 Extensions for Multiple Classes of Service
	7.8 Conclusions

	8 Contribution to the Development of Heuristics for Solving the Minimum Reconfiguration and Path Set Flow Allocation Problem (MPRSFAP)
	8.1 Selecting Efficient Heuristics
	8.2 Adapting the Modified Flow Deviation Algorithm (MFD) for Solving the MRPSFAP Problem
	8.3 A Modified Flow Deviation Algorithm for Reconfiguration (MFD-R)
	8.3.1 Initialization: The Initial Layout
	8.3.2 Search for a Shift Direction: Progressive Exploration

	8.4 Evaluation of the MFD-R Algorithm for MRPSFAP
	8.4.1 Evaluation of the MFD-R Algorithm on Small Networks
	8.4.2 Results on Reconfiguration from the MFD-R Algorithm on Large Networks

	8.5 Conclusions

	General Conclusions
	A Multicommodity Flow Problems
	A.1 Introduction
	A.2 Node Formulation
	A.3 Path Formulation
	A.4 Solution Approaches
	A.4.1 Optimality Conditions

	B AMPL: A Modeling Language for Mathematical Programming
	B.1 Mathematical Programming
	B.2 AMPL Basics
	B.3 Model Files
	B.3.1 Model File for MPSFAP1 Problem
	B.3.2 Model File for MPSFAP2 Problem
	B.3.3 Model File for MTDFAP Problem
	B.3.4 Model File for MRPSFAP Problem

	B.4 Data Files
	B.4.1 Data File for MPSFAP and MTDFAP Problems
	B.4.2 Data File for MRPSFAP Problem

	 Bibliography

