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Abstract

The aim of this work is to implement a software-based algorithm in order to achieve
a robust, fast enough and good quality registration of thoracic and abdominal CT and
18F-FDG whole-body emission PET images. The proposed algorithm may be applied
to register C'T and PET images acquired on separate devices or to refine hardware
registration provided by combined PET/CT scanners.

The proposed registration methodology is based on the incorporation of prior
anatomical information in an intensity-based non-linear registration algorithm. The
incorporation of this prior information is performed in an explicit way, by initializ-
ing the intensity-based registration stage with the solution obtained by a non-linear
registration of corresponding anatomical surfaces segmented through a hierarchically
ordered set of anatomy-specific rules. Then, we only use general anatomical knowledge
instead of any kind of geometrical or morphological model of the structures such as
atlases of phantoms, permitting to work with any kind of unexpected situations, which
are common in pathological images. Therefore, the general scheme of the registration
approach we propose is divided in two stages: a structure registration phase in which
homologous structures are segmented in both CT and emission PET grey-level images
and registered with a non-linear transformation; and a grey-level registration phase in
which a non-linear registration technique is applied to the whole set of image intensi-
ties of the images. The second registration stage is initialized with the transformation
provided by the structure registration stage and it furnishes the final non-linear trans-
formation. Non-linear deformations are modeled in both registration steps by means
of a FFD technique. Mutual Information is used as the similarity criterion at the
grey-level registration step.

A set of 20 pairs of thoracic and abdominal CT and whole-body emission PET
images obtained by separate devices and 3 provided by a combined PET/CT machine
have been processed. Five of these pairs of images have been evaluated by the visual
assessment protocol we have also designed. In all 15 thoracic cases, the registrations
were successful as visually assessed, notably at the diaphragmatic wall. In the abdom-
inal cases, very good results are obtained on liver and kidneys structures, but some
small errors are found at the stomach. With respect to combined PET/CT scanners,
some improvements using our algorithm are found on the cardiac region for 1 case. The
visual assessment protocol has been used by three independent physicians, confirming
visual results. Registration errors provided by the evaluation protocol are less than
lcm on lungs, heart, liver and kidneys structures but up to 1.5¢cm on the stomach.
The average computational time was less than 2 hours to furnish good quality results.
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Résumeé

Introduction

Dans le domaine de 1'oncologie, la combinaison des images anatomiques et fonc-
tionnelles prend de plus en plus d'importance, grace au développement de nouveaux
appareils d’acquisition, de nouvelles méthodes algorithmiques et grace a la complé-
mentarité des modalités. En imagerie fonctionnelle, le développement des acquisi-
tions TEP (Tomographie & Emission de Positons) avec le traceur fluorine 18 fluo-
rodeoxyglucose (18-FDG) donne acces a une information tres riche pour le diagnostic
et le suivi thérapeutique de cancers primitifs et métastasiques. L’inconvénient de
cette modalité est que 'information anatomique est réduite, rendant difficile la locali-
sation de tumeurs avec une haute précision par rapport aux organes. Cette information
anatomique est fournie par la tomodensitométrie (TDM ou Computed Tomography ou
CT) ou I'Imagerie par Résonance Magnétique (IRM) et permet au clinicien d’obtenir
une localisation des lésions tres précise, ainsi que des mesures de taille et de forme.
Malheureusement, ces modalités ne fournissent pas une information suffisante sur la
malignité de la lésion. La combinaison de ces deux modalités peut donc avoir un
impact significatif sur les décisions médicales pour le diagnostic, la thérapie et la plan-
ification de traitements [294]. Du point de vue du traitement d’images, le probléme
s’exprime essentiellement comme un probléme de recalage, de mise en correspondance
entre les informations issues des deux modalités.

Le but de ces travaux est de proposer une contribution au recalage d’images TDM-
TEP dans les régions thoraciques et abdominales. Les fortes déformations existant
entre les images excluent d’emblée toute solution de recalage rigide entre les deux
modalités et il faut développer des méthodes de recalage non linéaire (plus de 12
degrés de liberté dans la transformation). Ces déformations sont principalement dues
aux protocoles d’acquisition et a la nature élastique des organes considérés.

Le probléeme du recalage

L’objectif d’un algorithme de recalage est de trouver la transformation mettant en
relation 'information contenue dans une image et sa correspondance anatomique sur
I’autre image. Les méthodes de recalage peuvent étre classées selon plusieurs criteres :
région d’intérét, modele physique de déformation, mesure de similarité et méthode
d’optimisation utilisée. Des syntheses exhaustives des méthodes de recalage peuvent
étre trouvées dans [177 ; 11].
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Plusieurs transformations non linéaires sont disponibles dans la littérature du
traitement d’images. Les Déformations de Forme Libre & base de B-splines (B-spline
Free Form Deformations ou FFD) constituent un modele paramétrique qui fournit une
transformation non linéaire souple car aucune supposition n’est faite quant aux images
ou aux structures a recaler. Ce modele a été utilisé avec succes dans différentes applica-
tions d’imagerie médicale, comme pour le recalage de mammographies [242], le recalage
de régions cérébrales [113] ou pour la segmentation de régions cardiaques [167 ; 178].
En général, une transformation linéaire est calculée avant la phase non linéaire pour
s’approcher suffisamment de la solution finale. Cependant, la plupart de ces appli-
cations travaillent avec des données monomodalités, ou le rapport entre les intensités
dans les images a recaler est plus simple que dans le cas des applications multimodales.
En outre, les images fonctionnelles introduisent des difficultés supplémentaires liées au
bruit important et aux artefacts. Mattes et al. [190] ont tout de méme appliqué le
modele FFD pour recaler des images TDM-TEP (avec des images TEP de transmis-
sion) des régions thoraciques, en utilisant un schéma hiérarchique et multi-résolutions
pour éviter les minima locaux et pour éviter d’avoir a fournir une initialisation tres
précise. Un inconvénient de cette méthode est qu’elle considéere une relation fonction-
nelle entre les acquisitions des images TEP de transmission et d’émission. En outre,
les auteurs signalent que les résultats ne sont pas completement satisfaisants dans les
régions avec des déformations plus importantes a compenser, comme le diaphragme et
I’abdomen.

Une solution a ce probléme est de contraindre ces déformations pour éviter la con-
vergence vers des minima locaux et pour réduire le cott de calcul de l'algorithme.
Ces contraintes nous conduisent a proposer une méthodologie divisée en une phase
d’initialisation recalant les structures segmentées dans les deux images, et une deux-
ieme phase de recalage a niveaux de gris, raffinant ’étape précédente de ’algorithme.
Les transformations sont modélisées dans les deux étapes a partir de Free Form Defor-
mations (FFD), gérées par une grille de plusieurs points de contréle par dimension. La
segmentation est réalisée en appliquant un modele déformable 3D a base de maillages
simplexes sur les régions d’intéret dans une procédure hiérarchique de reconnaissance
des formes.

Segmentation de structures anatomiques

Schéma de la procédure La phase initiale de recalage nécessite une étape de
segmentation des structures thoraciques et abdominales dans les deux images. Ce pre-
mier recalage sera raffiné en utilisant I'information de niveaux de gris. Les éventuelles
erreurs de segmentation ne seront pas propagées vers le résultat final car la seconde
phase de recalage pourra les corriger.

Les différents niveaux de difficulté dans la segmentation de structures suggerent
'utilisation d’une procédure hiérarchique : ’extraction d’une structure donnée utilisera
des informations dérivées des structures plus simples. Ces informations sont composées
de contraintes spatiales déduites a partir de structures segmentées précédemment et
sont exprimées sous la forme de Régions d’Intéret (ROI), dans lesquelles la recherche




Résumé

des nouvelles structures aura lieu. Cette stratégie a été aussi utilisée dans une appli-
cation concernant la segmentation des structures cérébrales internes sur des images
IRM [64 ; 62]. Dans le présent travail, les structures a segmenter pour le recalage
sont les poumons, les reins et le foie (dans cet ordre). Bien qu’ils ne soient pas em-
ployés dans le processus de recalage, la peau et le squelette sont également extraits et
constituent les premieres étapes de la procédure hiérarchique dans le cas des images
TDM.

Les poumons, les reins et le foie sont traités en deux étapes différentes. Une
premiere étape est composée d’un seuillage automatique et d’opérations de morpholo-
gie mathématique dans la région d’intérét définie par les objets déja segmentés. La
deuxieme étape consiste a raffiner le résultat en utilisant un modele déformable 3D.
La peau et le squelette sont segmentés en employant seulement la premiere étape.

Premiere étape : segmentation grossiere Pour contraindre la segmenta-
tion, une région d’intérét est définie en utilisant des relations spatiales par rapport
aux autres structures. Ces relations incluent des directions (par exemple, le foie est
en-dessous des poumons) et des contraintes d’exclusion (les structures segmentées au-
paravant sont soustraites de la région d’intérét pour éviter la superposition de deux
objets). La région d’intérét pour chaque structure est définie comme suit :

e peau et squelette : ils constituent les premiers pas de la procédure pour les
images TDM et il n’y donc pas de région d’intéret ;

e poumons : dans les images TDM, la région d’intérét est calculée a partir de la
peau. Dans les images TEP, nous segmentons les poumons dans les images de
transmission et nous dilatons le résultat pour produire une région d’intéret dans
I'image TEP d’émission;

e reins : dans les images TDM, la région est limitée en utilisant les dimensions
du thorax déterminées a partir de la segmentation du squelette. Une limite
supérieure dans la direction z est déterminée a partir des poumons : la région
d’intérét est définie en-dessous d’une ligne liant la limite inférieure droite du
poumon gauche et la limite inférieure gauche du poumon droit (une ligne est
automatiquement tracée sur chaque coupe coronale). Une limite inférieure est
calculée en utilisant la partie haute du bassin, extrait a partir du squelette. Dans
les images TEP, nous utilisons seulement la limite supérieure calculée a partir
des poumons car le squelette n’est pas disponible;

e foie : la région d’intérét est la méme que dans le cas des reins, mis a part ces
derniers qui ont été soustraits. La région d’intérét a été particulierement utile
pour séparer le foie des structures proches comme le coeur et les reins.

Dans cette région, nous réalisons une succession d’opérations : seuillage automa-
tique par k-moyennes, érosion binaire, sélection des composantes connexes, dilata-
tion binaire et remplissage de trous en 3D. Dans le cas des poumons et du foie,
nous sélectionnons la plus grande composante connexe, alors que pour les reins, les
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deux composantes les plus symétriques par rapport au plan de symétrie du corps sont
choisies, en utilisant un algorithme proposé dans [63].

Deuxieéme étape : raffinement avec un modele déformable 3D La pre-
miere étape ne peut pas étre considérée comme une segmentation finale. Le principal
probléme vient de I’absence de régularisation, en particulier dans le cas des structures
fines qui peuvent étre détectées dans une modalité mais pas dans ’autre, introduisant
ainsi une différence que la procédure de recalage interpréterait a tort comme une
déformation et essaierait de compenser. Un modele déformable 3D a été implanté
pour résoudre ce probleme.

Nous avons choisi d’implanter un modele discret fondé sur les maillages simplexes
(introduits par Delingette [75]). Le fait d’avoir une bonne initialisation est tres utile
pour atteindre une convergence rapide du modele, et c’est pour cette raison que nous
utilisons pour chaque structure une surface initiale dérivée de la premiere phase de
segmentation. La segmentation obtenue dans la premiere étape est érodée pour assurer
que l'initialisation est a l'intérieur de ’objet. Ensuite, elle est transformée en une
triangulation par un algorithme d’isosurfaces [165]. Elle est alors décimée et convertie
en un maillage simplexe par 'opération duale. Cette conversion est valable quelles que
soient la complexité et l'irrégularité des maillages.

L’évolution d’une surface déformable peut est décrite par une équation de force
dynamique composée d’une force interne qui spécifie la régularité de la surface et
d’une force externe qui mene la surface vers les contours de I'image. Dans notre cas,
la force externe n’est pas seulement dérivée a partir des contours de l'image, mais
contraint également le modele a rester dans la région d’intérét. Elle peut étre écrite
comme une combinaison linéaire d’'un champ Gradient Vector Flow (GVF) (introduit
par Xu et al. [308]) et d’une force liée a la région d’intérét. Un champ GVF est calculé
par diffusion du vecteur gradient d’une carte de contours donnée.

La carte de contours est obtenue a partir du gradient apres diffusion anisotrope.
Cette technique [100] est une méthode efficace pour enlever du bruit dans des régions
homogenes tout en préservant et méme en renforcant les contours. Elle s’est révélée
particulierement utile pour les images TEP.

Le deuxieme terme de la force externe est utilisé pour éviter que le modele déforma-
ble ne sorte de la région d’intérét. Ce terme est une force potentielle de distance [56],
cette distance étant, dans notre cas, une carte distance a la région d’intérét (la force est
nulle dans la région d’intérét). De plus, nous utilisons aussi la région d’intérét comme
masque pour le GVF et ainsi le GVF est nul hors la région d’intérét. Finalement, nous
employons aussi la région d’intérét comme masque pour la segmentation obtenue pour
assurer que les objets ne se superposent pas.

Procédure de recalage non linéaire

Schéma La procédure de recalage non linéaire est séparée en deux phases: une
premiere étape de recalage entre les structures segmentées dans les deux images et une
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deuxieme étape, initialisée avec la transformation calculée précédemment, qui réalise
un recalage raffiné utilisant les intensités des deux images.

Modele de déformation Plusieurs transformations non linéaires sont dispo-
nibles dans la littérature du traitement d’images, comme par exemple les splines de
plaque mince (Thin-Plate Splines ou TPS) [27], les modeéles élastiques [7] ou les modeles
de viscosité [34]. Notre application impose les restrictions suivantes : un nombre suffi-
samment élevé de degrés de liberté pour recaler les déformations plus locales ; un cofit
calculatoire limité pour pouvoir utiliser ’algorithme en routine clinique ; 'impossibilité
d’utiliser des reperes externes pour aider la procédure de recalage.

Les B-splines Free Form Deformations (FFD), introduites par Sederberg et al.
[253], sont une technique paramétrique qui fournit des transformations non linéaires
souples. Dans cette technique, les déformations de I'objet 3D sont calculées via
I’optimisation d’une grille sous-jacente de points de controle. Le nombre de points
de controle définira la localité des déformations permises par le modele FFD. Cepen-
dant, avec une grille densément peuplée, les temps de convergence seront notablement
accrus. Ainsi, un compromis doit étre effectué concernant ces deux aspects. Nous
avons choisi une grille de 10 points de controle par dimension.

Le choix de cette méthode par rapport a d’autres modeles paramétriques con-
traints est du a la grande variabilité des structures dans notre application. En fait, il
est extrémement difficile de fournir un modele anatomique approprié qui puisse étre
appliqué automatiquement sur n’importe quel patient et qui puisse tenir compte de
tout type de déformation. Pour cette raison, nous préférons la souplesse des FFD qui
est liée au fait qu’aucune hypothese n’est faite sur les structures a recaler. De plus, les
conditions de vitesse du systeme font que les FFD sont plus appropriées que d’autres
méthodes de déformation plus réalistes mais plus cotiteuses en temps de calcul, comme
les modeles élastiques [7] ou les modeles fluides [34].

Le modele FFD a été utilisé dans les deux étapes de la méthode de recalage, celle
des structures segmentées et celle a niveaux de gris. Cette implantation nous a permis
d’intégrer facilement les deux phases dans la méme procédure, le recalage de structures
étant considéré comme un pas de plus dans la chaine multi-résolutions utilisée dans
la plupart des techniques iconiques. Ainsi, le recalage a niveaux de gris commence
avec la grille trouvée lors de la phase des structures segmentées, laquelle fournit une
transformation initiale trés proche de la solution finale, tout au moins dans le voisinage
des structures segmentées.

La procédure d’optimisation est fondée sur une technique itérative de descente
de gradient sur la totalité de la grille de points de controle. A chaque itération,
nous calculons une estimation locale du gradient pour chaque point de controle par
la méthode des différences finies. De plus, un terme de régularisation composé d’une
force molle locale a été introduit pour éviter l'intersection entre les nceuds, ce qui
pourrait produire des modifications non souhaitées de la topologie des structures.

Recalage de structures Le but de cette étape est de fournir une initialisation
au recalage a niveaux de gris aussi proche que possible du résultat final souhaité. Cette
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transformation contraindra la recherche de la solution globale qui sera effectuée dans
la prochaine étape.

Avant la réalisation du recalage non linéaire entre les structures, nous calculons
une approximation initiale de la transformation entre les deux images. Cette approxi-
mation est composée d’'un mouvement rigide, d’un changement d’échelle indépendant
dans les trois axes et d’'une élimination des parties des volumes qui n’ont pas d’intérét
pour notre application. Cette élimination est réalisée a partir de la boite englobant les
structures a recaler et elle est complétement automatique, a la différence des méthodes
classiques de recalage qui nécessitent un recalage manuel (principalement dans la di-
rection z) avant de pouvoir étre appliquées sur les images TDM et TEP corps entier.

Le recalage de surfaces 3D a été traité largement dans les domaines du traitement
d’image et de la vision. Des syntheses de ces techniques peuvent étre trouvées dans [5 ;
177]. Une des méthodes les plus performantes est I'ICP (Iterative Closest Point),
proposée par Besl et al. [16], et qui a été utilisée avec de bons résultats pour différentes
applications. Cet algorithme optimise itérativement une transformation rigide qui
minimise la distance entre deux ensembles de points (lignes, points, triangles, ...).
Les correspondances sont donc déterminées par proximité. Dans un premier temps,
nous avons employé la carte de distances calculée avec cette méthode pour réaliser
une estimation de la transformation non linéaire entre les surfaces des organes. Cela
était utilisé pour initialiser les positions de points de controle de la FFD du recalage
a niveaux de gris. Cependant, I'interaction entre les deux phases de recalage pouvait
conduire a une perte d’informations.

Pour ces raisons, nous avons décidé d’appliquer a I’'étape du recalage de structures
le méme modele de déformation FF'D que dans la phase de recalage avec I’ensemble des
intensités de 'image, simplifiant ’'interaction entre les deux étapes. Nous proposons
donc deux approches fondées sur les FFD pour réaliser le recalage de structures. La
premiére méthode emploie le critere d’Erreur Quadratique Moyenne (EQM) comme
mesure de similarité, en calculant une estimation locale du gradient a chaque point de
contrdle de la grille, et en utilisant une procédure de descente itérative de gradient. La
deuxieme méthode calcule un champ Gradient Vector Flow (GVF) sur les structures
segmentées sur 'image TDM pour guider I'optimisation des points de controle.

e Déformations de Forme Libre guidées par I’Erreur Quadratique Moyenne (EQM-
FFD) :

La méthode de déformation FFD nécessite I'optimisation des points de contrdle
de la grille pour minimiser un critere de similarité donné. Le choix de ce
critere est simple dans notre cas, puisque nous travaillons avec des images seg-
mentées qui possedent un rapport linéaire entre leurs intensités. Ainsi, I’Erreur
Quadratique Moyenne (EQM) des niveaux de gris de voxels homologues sur
I’ensemble du volume sera utilisée pour déterminer les parametres optimaux
de la déformation. Nous aurions pu utiliser des mesures de similarité plus
simples, mais nous avons choisi 'EQM parce qu’elle nous permet de travailler
avec plusieurs structures en méme temps. Les résultats obtenus en appliquant
cette méthode montrent une bonne performance de I’algorithme de recalage non
linéaire dans les cas des poumons et du foie.
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e Déformations de Forme Libre guidées par le Gradient Vector Flow (GVF-FFD) :

Un inconvénient de la méthode EQM-FFD est la nécessité d’optimiser tous les
points de controle avec I’estimation locale de gradient calculée a chaque itération.
Les approches multi-résolutions accélerent la convergence de I'algorithme, mais
I’estimation du gradient reste un probleme en termes de temps de calcul.

Nous proposons une approche originale pour accélerer ’optimisation de la défor-
mation, en calculant un champ de vecteurs sur les structures de référence (dans
notre cas, celles segmentées sur les images TDM) pour guider optimisation des
FFD. Ce champ est appliqué aux structures anatomiques (dans notre cas, celles
segmentées sur les images TEP).

Le Gradient Vector Flow, proposé par Xu et al. [308] est une méthode élégante
pour obtenir ce champ de vecteurs et fournit en chaque point de I'image la direc-
tion vers la structure anatomique de référence. Cette technique est normalement
utilisée pour guider les modeles déformables dans des applications de segmenta-
tion, mais a notre connaissance, elle n’a pas encore été utilisée pour controler les
algorithmes de recalage fondés sur les FFD.

Un champ GVF u est défini comme la solution d’équilibre d’une equation de
diffusion composée de deux termes. Le premier terme de ’équation est appelé
terme de régularisation, et il tend a uniformiser le champ de vecteurs résultant.
Le deuxieme terme est le terme de données, et il amene le champ de vecteurs a
rester proche du gradient de contours calculé a partir des données. Les fonctions
de pondération qui sont appliquées aux termes de régularisation et de données
déterminent le compromis entre le lissage du champ de vecteurs et la fidélité
aux contours de I'image. Nous choisissons une formulation classique permet-
tant la diffusion du vecteur gradient seulement la ou il n’y a pas de forts con-
tours, empéchant ainsi l'effet de moyennage quand des gradients opposés sont
trés proches.

Apres le calcul du champ de vecteurs GVF, nous avons pour chaque point appar-
tenant a la structure TEP la bonne direction pour évoluer vers la structure TDM
correspondante. Ainsi, pour chaque point de controle, nous trouvons les points
du contour des structures TEP sous son influence et nous regardons la valeur du
champ de vecteurs GVF pour ces points. Ces valeurs sont pondérées selon leur
distance vers le point de controle et la moyenne des vecteurs résultants est prise
comme la direction optimale de déplacement de chaque point de controle. A la
fin de chaque itération, un terme de régularisation composé d’une force molle
locale est appliqué comme dans ’algorithme EQM-FFD.

La convergence de ’algorithme dépend de la qualité du champ de vecteurs cal-
culé. De plus, les points de controle tendent a osciller au voisinage des contours
de structures TDM. Ainsi, plusieurs contraintes sur les points de controle ont été
implantées pour éviter les oscillations. Nous avons introduit la méthode dans
une procédure multi-pas pour aider 'algorithme a trouver les déformations glob-
ales dans les premieres itérations, en laissant les plus locales pour la fin. Les
résultats obtenus en appliquant cette méthode montrent que les déformations
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sont de qualité inférieure par rapport a celles obtenues avec la méthode EQM-
FFD. Cependant, cet algorithme converge plus rapidement vers les bonnes trans-
formations, comme cela est montré dans la suite.

e Comparaison des deux méthodes d’optimisation :

Nous avons comparé quantitativement la qualité et le cout de calcul des deux
méthodes de recalage de structures proposés avec ’algorithme ICP. Nous avons
appliqué ces techniques sur une base de données composée de 15 paires de struc-
tures déformables (poumons, foie ou reins), précédemment segmentées dans les
images TDM et TEP.

Pour évaluer ces techniques, en plus de 'inspection visuelle de volumes 3D, nous
avons calculé deux mesures quantitatives : une mesure de superposition calculée
comme le ratio entre l'intersection et la réunion entre les structures (qui vaut
1 si la superposition totale est réalisée); et 'Information Mutuelle (IM) sur les
images a niveaux de gris transformées avec les déformations calculées lors du
recalage de structures. Nous avons choisi d’utiliser I'Information Mutuelle au
lieu de P’EQM directement sur les structures segmentées pour tenir compte de
possibles erreurs induites par la phase de segmentation.

La mesure de superposition et I'IM confirment les résultats visuels, a savoir que
IEQM-FFD est la méthode avec laquelle on obtient les meilleures déformations,
alors que le GVF-FFD améliore tout de méme significativement les résultats des
méthodes de recalage rigide. Il faut remarquer que la mesure de superposition
entre les structures n’arrive jamais a 1; cela est du a la régularisation intrinseque
au modele de déformation non linéaire choisi. En fait, cela nous convient parce
que ces différences sont normalement provoquées par les modalités d’acquisition,
pas par les erreurs de recalage, et elles doivent étre préservées.

Nous avons observé que 'EQM-FFD donne de meilleurs résultats que le GVF-
FFD dans des régions avec des déformations tres locales. Cela est dii au compro-
mis fait dans le calcul du champ de vecteurs GVF entre le rejet des structures non
désirées (par exemple les bronches dans les poumons) et la capacité de recaler
les déformations locales.

De plus, la méthode GVF-FFD a de meilleures performances en termes de ra-
pidité de convergence, alors que 'EQM-FFD reste un algorithme tres lourd en
calcul, ce qui est dii au calcul des estimations locales du gradient a chaque
itération, a la différence du GVF-FFD ou l'on calcule seulement une fois le
champ de vecteurs qui controle 1’évolution dans toutes les itérations. Finale-
ment, la méthode que nous proposons consiste a initialiser TEQM-FFD avec
la solution fournie par le GVF-FFD, ce qui a donné des résultats de meilleure
qualité qu’avec seulement 'EQM-FFD, tout en fournissant des temps de conver-
gence raisonnables pour notre application.

Recalage a niveaux de gris La transformation produite par I’étape d’initiali-
sation n’est pas nécessairement valable dans les régions éloignées des structures seg-

XXVi



Résumé

mentées. Le calcul de leur déplacement doit donc étre effectué par ’étape de recalage
a niveaux de gris. En revanche, dans les zones proches des structures segmentées, cette
étape doit seulement corriger les erreurs qui ont pu étre introduites par la procédure
de segmentation. Une conséquence importante est que l'optimisation des points de
contrdle qui sont tombés sur les structures segmentées sera beaucoup plus rapide, car
leur valeur initiale de déplacement est déja tres proche de la solution finale, ce qui
accélere considérablement cette étape.

Comme la méthode de déformation n’a pas changé, I’algorithme est essentiellement
le méme que celui utilisé dans 1’étape de recalage des structures. Cependant, le fait
de travailler avec ’ensemble des niveaux d’intensité nous oblige a changer le critere
de similarité a maximiser. Le choix d’'une mesure de similarité est directement lié
aux modalités d’imagerie a recaler. Une situation particulierement difficile se présente
quand les distributions d’intensités des deux modalités différentes ne suivent pas un
rapport fonctionnel, ce qui est le cas des images TEP et TDM. L’'Information Mutuelle
(Mutual Information ou MI), un critére proposé par Viola [292] et Collignon [59], est
un outil tres performant pour le recalage d’images multimodales avec un rapport non
linéaire entre les intensités. L’Information Mutuelle exprime la quantité d’information
d’'une image I contenue dans une autre image J. Ainsi, 'Information Mutuelle sera
maximale si les deux images sont recalées géométriquement. Elle est obtenue a partir
des entropies marginales des deux images et de leur entropie conjointe, calculées a
partir de leur histogramme conjoint. L’Information Mutuelle Normalisée (Normalized
Mutual Information ou NMI) est une variante de MI introduite par Studholme [269]
pour éliminer 'effet 1ié a la superposition des images sur la mesure.

Ces calculs nécessitent ’estimation des distributions de probabilités conjointes et
marginales des deux images. Nous utilisons une approximation fréquentielle, p;; =
ni;j/m, ou p;; est la probabilité estimée d’avoir un niveau de gris ¢ dans une image et
j dans 'autre image, n;; étant le nombre de voxels avec ces intensités et n le nombre
total de voxels.

Résultats et conclusions

Nous avons testé notre méthode sur un ensemble de 20 acquisitions TEP et TDM de
régions thoraciques et abdominales, provenant du LifeScan Louisville, de 'Hopital de
Percy et du H.ILA. du Val de Grace. Les images CT ont une taille de 512 x 512 pixels
dans le plan xy et entre 60 et 125 coupes, avec des dimensions de voxels d’environ 1.0
x 1.0 x 5.0 mm?3. Les images TEP ont une taille de 144 x 144 pixels dans le plan xy et
entre 160 et 230 coupes, avec des dimensions de voxels d’environ 4.0 x 4.0 x 4.0 mm?3.

L’évaluation qualitative des méthodes de recalage non linéaire n’est jamais un
probléme simple a gérer et nous devons normalement nous contenter d’une inspection
visuelle qui a ses limites. Une méthode utilisant des marqueurs de référence internes
définis par les cliniciens [103], ne serait pas suffisamment précise pour notre appli-
cation, a cause de I'absence de références anatomiques communes dans les deux im-
ages. Une méthode originale d’évaluation a été proposée par Schnabel et al. [249], qui
utilisent des techniques d’éléments finis pour développer un simulateur de déformations
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biomécaniques. Les auteurs ont appliqué leur méthode pour évaluer les résultats de
recalage non linéaire sur une application concernant des mammographies IRM avec re-
haussement de contraste. Dans notre cas, une telle approche nécessiterait une <verité
terrains, une paire de volumes TDM-TEP thoraciques correctement recalés, qui pour
le moment n’est pas disponible.

La seule maniere d’obtenir des mesures objectives et fiables serait a travers une
procédure de validation clinique avec des marqueurs implantés mais cela n’est pas
possible dans notre application, seule 1’évaluation subjective des résultats par des
cliniciens experts peut fournir une idée de la qualité de 1’algorithme de recalage. Un
protocole d’évaluation pour des méthodes de recalage non linéaire a été développé, sous
la supervision du Dr. Foehrenbach (H.I.A. du Val de Grace), qui permet aux cliniciens
et aux spécialistes du recalage de fournir une mesure semi-qualitative de la précision
du recalage, sans devoir parcourir le volume 3D compléetement. Plusieurs coupes
anatomiquement significatives des volumes TDM et TEP recalés sont présentées. Par
exemple, pour un volume 256 x 256 x 97, 6 coupes coronales et 6 coupes axiales sont
montrées, chaque paire d’images étant marquée avec une regle qui définit quelques
points de référence et marque les structures anatomiques significatives. Ces marques
permettent aux évaluateurs d’estimer les différences de position des structures men-
tionnées et de noter le recalage.

Trois médecins (Dr. Foehrenbach, Dr. Rigo et Dr. Marchandise) de trois hopitaux
différents ont utilisé le protocole décrit pour évaluer les résultats du recalage grace a
un formulaire en ligne. La mesure fournie indique une erreur inférieure a 4mm pour
les structures les plus significatives (poumons, foie, reins, ceeur), ce qui correspond a
I’objectif de ’application qui était d’avoir des erreurs plus petites que la résolution des
images TEP.

Nous avons vérifié que le recalage est meilleur aux alentours des structures seg-
mentées qui ont été déja recalées dans la phase d’initialisation, et ce indépendamment
de leur appartenance aux zones thoraciques ou abdominales. Une exception est le
probleme trouvé dans I’estomac. Ce probleme est du a des mouvements trés impor-
tants entre les deux acquisitions et au fait que nous n’avons pas imposé de contraintes
sur cette structure. Le recalage a niveaux de gris n’a donc pas convergé vers le recalage
correct. Le fait de contraindre la déformation FFD a travers une étape d’initialisation
a largement augmenté la vitesse de convergence du recalage a niveaux de gris : le
temps de calcul a été réduit d’environ 80% notamment grace au plus petit nombre de
points de controle.

En conclusion, les résultats présentés dans ces travaux indiquent que notre méthode
peut fournir un outil valable pour I'analyse de données dans les applications on-
cologiques pour des régions thoraciques et abdominales. La non rigidité des régions
étudiées a été effectivement modélisée grace aux FFD, et des résultats de recalage
satisfaisants peuvent étre obtenus en minimisant le critere d’Information Mutuelle
Normalisée. Une méthode de segmentation progressive a été proposée pour fournir
une initialisation, en l'intégrant comme une premiere étape dans une procédure multi-
résolutions. Le fait de pas avoir une segmentation tres précise n’a pas été un souci
majeur, car seule une approximation est requise, grace a la stratégie utilisée, ou le
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Résumé

recalage a niveaux de gris doit corriger ces possibles imperfections.

Les prochains travaux seront focalisés sur la possibilité de permettre dans la phase
d’initialisation d’affecter un poids aux points de controle de la grille en tenant compte
des propriétés mécaniques des tissus sous-jacents.
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Introduction

Knowledge about human body, its functioning and its behavior under the influence
of external factors has been one of the major concerns of mankind since human beings
have reasoning capacity. The fear to death, the love to life and the desire of extending
as long as possible its natural limits have induced human beings to dedicate all possible
efforts, economic and intellectual, in order to find answers and solutions to mortal
diseases. One of these diseases, that is linked to human beings since donkey’s years
ago, is cancer.

Study of cancer through the years has resulted in the actual deep knowledge of
this disease, to the point of having developed tools to fight it in a very efficient way,
notably reducing its effects and its mortality rate. The apparition of medical image
acquisition devices represented an enormous advance in the study of the human body
because they allowed, for the first time in history, visualization of the human anatomy
without using such drastic means as directly open and watch.

Oncology is the branch of medicine that studies cancer disease. Omncology has
also taken benefit of the apparition of medical images, allowing strong advances on
several medical decisions concerning cancer disease such as diagnosis, therapy and
treatment planning. At first, the medical imaging modalities used by oncologists were
CT (Computed Tomography) or MRI (Magnetic Resonance Image). These medical
imaging modalities are classified as anatomical ones because they offer good quality
and spatial resolution, providing a good localization of the visualized structures and
tumors. On the other hand, they do not give any functional or metabolic information.
Furthermore, tumors are sometimes not distinguishable from surrounding structures
due to their similar intensity values. The apparition of nuclear medicine devices such
as PET (Positron Emission Tomography) or SPECT (Single Photon Emission Com-
puterized Tomography) entailed a revolution in oncology because they could provide
this metabolic information that was absent. The main drawback of images provided
by these functional modalities is their low SNR (Signal to Noise Ratio) quality. As a
matter of fact, nuclear medicine images have a high presence of noise and artifacts, pre-
venting a good localization of anatomical structures. An accurate information about
structure localization is crucial for several oncology applications such as radiotherapy
or surgery to better define radiation area and biopsy starting point respectively.

The combination of information provided by anatomic and functional images allows
to have complementary data for a given patient but such a combination is a challenging
task. Even if anatomical and functional images for a given patient represent the
same reality, the recognition of corresponding zones or structures in different images
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remains difficult for several reasons. The main problem is the time passed between
both image acquisitions and consequently, movements suffered by structures modifying
their localization and morphology in the images. Furthermore, structures sometimes
appear in only one of both images, thus lacking of correspondences, due to the different
nature of acquisition devices.

These difficulties ask for a high knowledge of human body and structure behavior
in order to find these correspondences, in a visual way, with a high degree of reliability,
therefore, only a expert on the targeted medical application can achieve it.

Until few years ago, these correspondences were computed by the physician in a
visual way, studying the 2D slice series from each modality in the traditional light
box. Then, the physician should combine the available complementary information in
his mind to produce a mapping between homologous structures in different images.
This visually obtained mapping strongly depends on physician’s knowledge and ex-
pertise but it is also influenced by different structure orientations, field of views and
image resolutions, making difficult to determine the correspondence between anatom-
ical structures. This procedure, even for expert physicians, remains very rough and
time-consuming, and uncertainty in the mental mapping from one image to another
may lead to uncertainty in the diagnosis or planning.

Computers and their constant processing capacity improvement have represented
an important step towards the objectivity of this mapping computation, allowing to
obtain reliable image superimpositions. In image processing, this task involves the
spatial transformation of one of the images (this image is then called floating or source
image) in order to put it in the same spatial reference as the other (this image is
called target or reference image), aiming at superimposing homologous structures of
the images. This procedure is called registration !. The nature of this transformation
highly depends on the targeted body zone due to the different nature of movements
suffered in different anatomical body regions. For instance, brain induces some dif-
ferences between anatomic and functional images that can be modeled by means of a
transformation called linear, composed of translations and rotations, because head has
a limited range of movements. On the other hand, in other regions such as thoracic
and abdominal ones, the structures placed in these zones suffer strong movements due
to respiratory and cardiac cycles (between other reasons), inducing differences between
the images that require more powerful transformations such as non-linear ones.

The main goal of this thesis has been the search of these non-linear transformations
in order to guide an objective, robust, fast and as automatic as possible registration
software algorithm applied to CT and emission PET images of thoracic and abdominal
regions. We have developed a registration methodology in which anatomical prior in-
formation is incorporated in an intensity-based non-linear multi-modality registration
algorithm. The incorporation of this prior information is performed in an explicit way,
by initializing the intensity-based registration stage with the solution obtained by a
non-linear registration of corresponding anatomical surfaces segmented through a hier-
archically ordered set of anatomy-specific rules. This is the main original point of the
proposed registration methodology since we only use general anatomical knowledge

!For a funny multi-modal registration application, the interested reader is referred to Appendix A.
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Introduction

instead of any kind of geometrical or morphological model of the structures such as
atlases of phantoms which application to pathological images is too risky. The results
on clinical data are validated using a semi-quantitative assessment protocol.

This document is split in two main parts. The first one introduces the medical
interest of the application and the algorithmic background on registration. The sec-
ond part presents the original methodology developed to register CT and emission
PET images of thoracic and abdominal regions and the evaluation protocol we have
designed to assess registration result accuracy. This part finishes with a conclusion
and perspective section. Some appendices are included at the end of the manuscript
as complementary information about some aspects of the project. Next, a brief de-
scription of each chapter is given.

Chapter 1 presents the medical interest of the application. A brief explanation
about CT and PET imaging techniques and their use in oncology applications are
given. Afterwards, the interest of the combination of anatomical and functional in-
formation provided by these imaging modalities is justified. Finally, the two possible
options that can furnish this information combination, hardware and software solu-
tions, are described. This chapter is complemented with Appendix B, in which the
interested reader can find detailed information about cancer, its origins and causes,
statistics of this disease and a historical review of the evolution on the knowledge
about it.

Chapter 2 presents the algorithmic background of registration methods. First,
basic concepts of a registration method are described, followed by an explanation of
the particular conditions of a CT-PET registration application in order to establish its
constraints and its requirements. In this chapter, a classical division of a registration
system is used, separating it in four phases: image representation, transformation,
similarity criterion and optimization. A section of the chapter is dedicated to the
description of each one of these phases, including their different possible choices. The
second part of this chapter aims at making an exhaustive overview of the published
methods for registering CT and emission PET images, emphasizing those ones applied
to thoracic and abdominal regions. Finally, a discussion about the different registration
options is presented in order to distinguish which approaches are well-suited for our
application.

The second part of the manuscript begins with Chapter 3, which presents the
proposed registration methodology. First, some results obtained applying linear and
Free-Form Deformation registration techniques found in the literature are shown and
discussed. The poor quality of the results obtained by these methods justifies the
development of a new registration approach dedicated to our application. The orig-
inal proposed registration methodology is based on an explicit incorporation of prior
anatomical information in the registration procedure. This methodology is divided
into an nitialization phase registering segmented homologous structures from both
CT and emission PET images and a second registration working with the whole set
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of image intensities, called fine registration. This strategy has allowed to take benefit
of the advantages associated to both feature-based and voxel-based techniques while
canceling some drawbacks of each approach. The initialization phase is then separated
into two steps: a segmentation phase in which common structures in both images are
recognized; and a structure registration phase that computes an initial transforma-
tion between segmented organs in order to initialize close to the final solution the
refinement registration phase.

Therefore, Chapter 4 describes the proposed procedure for the segmentation of
the main and discernible homologous CT and emission PET structures of the tho-
rax and abdomen. The segmentation of these structures is not a simple problem, in
particular in functional images. For this reason, we propose an original hierarchical
segmentation strategy in which organ-specific prior information complements distinct
photometric properties of the structures. The developed procedure delineates organs in
a hierarchical order, from simple to more complex to segment. Then, the extraction of
a given structure is driven by information derived from anatomical objects which have
been previously segmented. This information is composed of spatial constraints (di-
rections, exclusions) inferred from the previously segmented structures and expressed
by the means of Regions Of Interest (ROI) in which the search for new structures will
take place. Structures are treated in two different stages: a first stage is composed of
automatic thresholding and other low level operations in the ROI defined by previously
segmented objects; a second stage employs a 3D deformable model to refine and regu-
larize results provided by the former step. In Appendix C, numerical implementation
details of some parts of the proposed segmentation procedure are described. A similar
segmentation procedure has been successfully used in a brain internal structure seg-
mentation application, described in Appendix E. Initial results on a semi-interactive
tumor segmentation procedure we are developing are shown in Appendix D. The
main goal of this procedure is to include tumor information on the initial registration
phase, thus imposing some constraints on the tumor transformation.

Chapter 5 presents three different methods we have developed for registration of
structures recognized during the previous segmentation phase. This structure-based
registration should provide a good initial non-linear deformation for the fine-grained
intensity-based registration phase. The first method is an extension of the well-known
Iterative Closest Point (ICP) technique to non-linear transformations. The second
algorithm (RMS-FFD) employs a B-spline Free-Form Deformation (FFD) model in
conjunction with a Root Mean Squared (RMS) difference similarity criterion to align
both labeled segmentation structures. The third method (GVF-FFD) computes a de-
formation field over CT segmented structures by means of the Gradient Vector Flow
(GVF) technique in order to make corresponding PET structure surfaces evolve to-
wards CT ones. The transformation is also modeled by means of a FFD and its control
point displacements are optimized according to the GVF field. The final section of the
chapter compares and evaluates the three developed structure registration methods,
in terms of registration accuracy and computational cost.

Chapter 6 describes the fine registration phase which works with the whole set
of CT and emission PET image intensities. The transformation is also modeled by
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means of a FFD model, thus making easier the interaction between both stages of
the proposed registration methodology. Normalized Mutual Information (NMI) has
been employed as similarity criterion to guide the optimization of the control points
displacements of the FFD grid.

Chapter 7 is devoted to the assessment of the registration result accuracy. First,
a review of the evaluation techniques frequently used in medical image processing, and
in particular in registration applications, is given. Afterwards, the visual assessment
protocol we have developed in collaboration with the physicians involved in the project
is described and the study of its inter-observer consistency proves that it can be used
to obtain an objective enough estimation of the registration result accuracy provided
by the proposed methodology.

Chapter 8 shows statistics furnished by the visual evaluation protocol on some
final registration results provided by the proposed registration methodology. Several
snapshots of three final registration results are also shown, illustrating the good per-
formance of the proposed methodology.

In Chapter 9, conclusions about the general proposed methodology and its dif-
ferent stages are presented, together with some perspectives of our work.
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In this chapter, we present the medical interest of the combination of anatomical
and functional information provided by CT and PET images in oncologic applications.
First, some definitions and statistics are given in Section 1.1. In Appendix B, detailed
medical and biologic information about cancer, statistics and other information re-
lated to this disease are available. Thereafter, in Section 1.2 we introduce CT and
PET imaging modalities, their physics principles and their contribution in oncologic
applications. In Section 1.3, the combination of anatomical and functional data in on-
cology is studied. First, the benefit of this combination is presented and proved with
a review of several published clinical studies about this subject. Then, we enumer-
ate the difficulties to overcome in order to combine information provided by CT and
PET images of thoracic and abdominal regions. Finally, current techniques that can
be used to perform this combination are described. The development of a software-
based registration algorithm is then justified and some particular requirements of our
application are also presented.



1.1 Cancer disease

1.1 Cancer disease

Cancer is a term used to describe a group of illnesses all having in common the
lack of regulated cell growth, which results in serious health problems. Cancer has
afflicted humans throughout recorded history. Nowadays, worldwide, there are over
10 million new cases of cancer and more than 6 million deaths from cancer annually.
In approximately 20 years time, the number of deaths annually due to cancer will
increase from about 6 million to 10 million. Detailed information about cancer, its
origins and causes, statistics of this disease and a historical review of the evolution of
knowledge about it can be found in Appendix B.

The study of this disease is one major trend in medical research in which imaging
modalities and their image processing play a significant role.

1.2 Imaging modalities

In these days, medical decisions are rarely taken without the use of imaging technol-
ogy. Imaging allows us to explore inside the body in a non-invasive way. Not only more
comfortable and safe to the patient, imaging allows views of anatomy and physiology
that cannot be obtained by any other means.

Since the discovery of X-rays by W.C. Roentgen (1845-1923) in 1896, the last 100
years has seen a veritable boom in medical imaging methods and technology. The
original X-ray is only one of the many methods in a radiologist’s arsenal of imaging
modalities. Together with Computed Tomography (CT), Magnetic Resonance Imaging
(MRI), Single Photon Emission Computed Tomography (SPECT), Positron Emission
Tomography (PET) and Ultrasound (US), the physician can examine the patient in
a manner which was beyond imagination only 50 years ago. In general, imaging can
address two issues: structure and function. One can either view structures in the body
and image anatomy or view chemical processes and image biochemistry. Structural
imaging techniques include X-rays, CT, MRI and US. It is the role of SPECT and
PET imaging to view the biochemical processes inside.

In the particular case of cancer, both structural and functional imaging modali-
ties decisively contribute to medical tasks such as diagnosis, benign and malignant
tumor distinction, staging ! of malignant lesions, cancer spread assessment, survival
prediction, monitoring and treatment planning, surgical intervention guiding, thera-
peutic follow-up or treatment response evaluation. In these days, CT and PET are
the imaging modalities usually employed in oncology applications involving thoracic
and abdominal regions.

1.2.1 Computed Tomography (CT)

The CT scan is a natural progression from X-rays. The method is based on the
principle that a three-dimensional object can be reconstructed from its two dimensional

L After cancer has been diagnosed, doctors assign a stage to the cancer to determine how far the
disease has progressed.
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projections. The mathematics are based on the Radon transform which is a map from
an n-dimensional space to an (n-1)-dimensional space.

The scanner rotates an X-ray tube around the patient in an arc and the emergent
radiation beam is measured by photo-electric detectors, taking X-ray pictures from
various angles and then combining them together to reconstruct the three-dimensional
structures in the body. A computer is used to display the measurements as a grey-
level image representing a cross-sectional slice of the patient, based on the density (or
attenuation value) of tissues to X-rays. Dense structures such as cortical bone appear
bright, whereas low density areas like air appear dark, as is the case with conventional
radiographs.

The main advantage of CT scans (MRI as well) is that they provide exquisite
anatomical detail, i.e., about the localization and the morphology of structures and
tumors, as shown in Figure 1.1. Therefore, diagnosis, staging and re-staging of cancer,
as well as monitoring and planning of cancer treatments have traditionally relied on
this anatomical imaging modality. Furthermore, information provided by CT images
is indispensable specifically for guiding intervention techniques, in which a high level
of precision is required in order to exactly define tumor position with respect to sur-
rounding structures. It permits the operator to situate an instrument with confidence
and safety, even in relatively inaccessible areas of the body.

Figure 1.1: Left: tumoral thoracic image obtained with CT acquisition. Right: patho-

logical brain image obtained with T1-MRI acquisition. A circle defines corresponding
tumoral regions.

Although CT is effective in disease detection and localization, it does not provide
sufficient knowledge about the lesion malignancy, since many have similar attenua-
tion characteristics. Size criteria limits CT ability to characterize masses reliably as
malignant or benign. Necrotic, scar (and other post-surgery alterations) or inflamma-
tory tissue often cannot be differentiated from malignancy based on anatomic imaging
alone. This implies that CT generally has a high sensitivity 2 for the detection of struc-

2Sensitivity represents the proportion of truly diseased persons in a screened population who are
identified as being diseased by the test; it is a measure of the probability of correctly diagnosing a
condition.




1.2 Imaging modalities

tural alterations, but a low specificity ® for further characterizing these abnormalities
and response to therapy. For example, it may not be possible to distinguish fibrotic
masses from benign or malignant neoplasms % on the basis of their CT appearance
alone. Another problem associated to this imaging modality is that it does not easily
provide whole-body images, thus, impeding complete metastasis detection.

1.2.2 Positron Emission Tomography (PET)

Figure 1.2: Coronal and sagittal slices from a PET volume with an uptake in the
tumoral regions (a blue ellipse defines them).

PET imaging modality uses a tracer to image biochemical basis of normal and
abnormal functions within the body. This is very important because °:

e the basis of all tissue function is chemical,

e diseases result from errors introduced into its chemical systems by different fac-
tors (viruses, bacteria, genetic abnormalities, ... );

3Specificity is the proportion of truly non-diseased persons who are so identified by the screening
test. It is a measure of the probability of correctly identifying a non-diseased person.

4A neoplasm is an abnormal new growth of tissue.

SFrom the tutorial called Let’s play PET of the Crump Institute for Molecular Imaging, UCLA
School of Medicine. http://www.crump.ucla.edu/software/lpp/.
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e the most selective, specific, and appropriate therapy is one chosen from a diag-
nostic measure of the basic chemical abnormality;

e detection of chemical abnormalities provides the earliest identification of disease;

e assessment of restoration of chemical function provides an objective means for
determining the efficacy of therapeutic interventions in the individual patient;

e the best way to judge whether tissue is normal is by determining its biochemical
function.

A tracer is an analogue of a biologically active compound in which one of the atoms
has been replaced by a radioactive atom. When the tracer is introduced into the body,
its site-specific uptake can be traced by means of the labeled atom. PET tracers are
labeled with positron emitting isotopes, such as Fluorine-18 (F-18) and Carbon-11 (C-
11), having in general a relatively short half-life (about 110 minutes for Fluorine-18
and 20 minutes for Carbon-11), then putting a practical upper limit on the activity
of the manufactured isotope. Nevertheless, the F-18 isotope half-life allows a certain
independence from the cyclotron required to produce it.

When the labeled atom disintegrates in the body, the emitted positron comes to
rest and annihilates with an electron. This event produces two 511 keV photons which
fly off at almost 180 degrees to one another. The PET detector is set up in such a way
as to accept events in which both annihilation photons are detected in coincidence.

Attenuation correction of the emission ® PET image is necessary because deep-
seated tissues appear to contain less activity because the annihilation photons stand
a higher chance of being absorbed before leaving the body. This correction enhances
emission PET image quality and it is in general achieved by means of radioactive
sources (Germanium®® and Cesium!3" are frequently used) integrated in the PET scan,
producing transmission PET images. This transmission image is often acquired im-
mediately before acquisition of the emission image, thus, it may be a non-negligible
misalignment between the emission and transmission scans. In PET-CT combined
machines (see Section 1.3.3) attenuation correction can be performed by means of the
X-ray source of the CT scan [142], which has proved to be a faster and more precise
strategy in several cases [198], even if several artifacts may appear [104].

PET tracers include 18-fluorodeozyglucose (FDG), a marked analogue of glucose
that contains the radionuclide Fluorine F-18. FDG is employed to image general
metabolic rate and can be used to image tumors. As a matter of fact, FDG utilizes
the markedly increased glucose metabolic activity of tumor cells and provides images of
the whole-body distribution of phosphorylated FDG, in which benign from malignant
lesions can be accurately discriminated. This is based on the fact that malignant
tissue exhibits markedly increased rates of glucose consumption. Even if FDG is the
most used tracer in oncologic applications, there is an active research on new and
more specific molecules such as fluorothymidine, fluorotyrosine or fluorocholine, that
permit cancer detection by means of the evaluation of other metabolisms. For instance,

SPET images displaying functional activity (emitted photons) are then called emission ones




1.3 Combination of CT-PET images in oncologic applications

FDG has some disadvantageous properties such as the accumulation in inflammatory
tissue. The 18-fluorodeoxy-L-thymidine (FLT), a new radiopharmaceutical reflects
DNA-synthesis and shows promising clinical potential since it is expected that FLT
accumulates more specifically in tumor tissue than FDG. In fact, imaging of the DNA-
synthesis rate with FLT is a direct measure of cell proliferation and tumor growth
whereas glucose consumption (FDG-PET) is a derivative of tumor growth.

In our work, only PET images based on the FDG tracer were available. These
images are very useful because of its sensitivity and specificity in identifying the bi-
ological behavior of tumors (see Figure 1.2), thus diagnosing, staging and re-staging
cancer with a substantially higher accuracy than CT. Furthermore, whole-body FDG-
PET images permit the detection of unsuspected distant metastasis unlike CT ones.

Several clinical studies have proved these improvements in a wide variety of on-
cologic applications. For instance, Dwamena [86] concluded that PET demonstrated
both higher sensitivity (79% versus 60%) and specificity (91% versus 77%) than CT for
correctly classifying mediastinal lymph nodes. Similar observations have been made in
patients with lymphoma [134], colo-rectal cancer [290], breast cancer [293], and many
other malignancies. FDG-PET has also been established as a powerful prognostic and
treatment evaluation tool in cancer patients [293]. Gambhir et al. [97] have recently
summarized the power of FDG-PET based on tabulated research data obtained in
more than 26,000 patients with a variety of cancers. PET was 10% to 20% more
accurate than conventional imaging for diagnosing staging and re-staging most can-
cers. Based on these studies, PET acquisition with FDG has become a very extended
technique in oncologic applications involving lung and colo-rectal cancer, lymphoma,
melanoma, head and neck cancer pancreatic, hepatocellular carcinoma or esophageal
cancer [73].

While PET imaging furnishes a valuable functional information about cancer, it
provides little information on the anatomy around the increased uptake due to the
non-specific uptake in several organs (muscles, brain, heart, liver, colon, ...), the low
spatial resolution, the low Signal-to-Noise Ratio (SNR) and the strong presence of
noise and artifacts. Thus, making a precise lesion localization is quite difficult, and
additional anatomical information is required in some oncologic applications, as shown
in Section 1.3).

1.3 Combination of CT-PET images in oncologic ap-
plications

1.3.1 Contribution

As mentioned above, PET and CT techniques each have limitations that can lead
to diagnostic uncertainty in certain cases. Their combination is especially comple-
mentary: PET is a highly accurate method for detecting cancer and other metabolic
abnormalities, but it does not provide the anatomical landmarks needed to precisely
locate lesions. On the other hand, CT scans are not as sensitive but offer excellent
anatomic detail, pinpointing the exact size, shape, and location of diseased tissue.
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The combination of the mutual advantages of both techniques can have a signif-
icant impact on improving medical decisions [294] for diagnosis, staging, re-staging,
selection of treatment modalities, biopsy guiding, recurrence detection, planning of
radiation therapy (definition of clinical target volume), or the monitoring of surgical,
chemotherapy and radiation treatments. In the particular case of thoracic and abdom-
inal regions, some more specific tasks can be: diagnosis of isolated lung cell; staging of
primitive lung cancer and metastasis; definition of radiotherapy target volumes in non-
small cell lung cancer; follow-up of the response to therapy in primitive lung cancer;
detection of mediastinal or parietal lesions; staging of recidives of colo-rectal cancer;
differentiation of urinary artifacts; location of the pelvis and biopsy guiding in hepatic
metastasis.

Figure 1.3 shows two examples in which the combination of information provided
by the CT and PET images could improve the knowledge about the disease. On the
CT image (left in Figure 1.3) corresponding to the first case (top images in Figure 1.3),
tumors are not distinguishable from surrounding structures, making risky several de-
cisions such as the definition of radiotherapy target volumes. On the other hand, the
tumors are well contrasted in the PET image (right in Figure 1.3), but there is a lack
of anatomical references. The superimposition of both images will be very useful in
this case. In the second case (bottom images in Figure 1.3), the tumor can be easily
recognized in both scans, but the PET image (right Figure 1.3) provides a valuable ad-
ditional information consisting in the definition of the necrotic part of the tumor (the
inner dark region of the tumor). Nevertheless, for diagnostic or radiotherapy purposes,
the CT scan must be used as an anatomical reference, then again, the combination of
information provided by both images could be quite useful.

Several clinical studies have proved the benefits of the PET-CT combination in
some of the applications mentioned above.

Charron et al. [46] compare combined whole-body PET and CT imaging of ma-
lignancies with the results from PET imaging alone. Thirty patients with a variety
of malignancies were examined. In 8 patients, images from the combined scanner al-
lowed differentiation of areas with variable amount of physiologic FDG uptake from
juxtaposed contiguous neoplastic process. Martinelli et al. [187] reviewed more than
100 oncology studies acquired with a PET/CT scanner. From their observations in
patients with a variety of malignancies, they concluded that PET/CT offered signif-
icant advantages including more accurate localization of FDG-uptake, distinction of
pathological from physiologic uptake, and improvements in monitoring treatment. In
another study [10], PET/CT improved the accuracy of PET in 48% of the patients
mainly by improving lesion localization, and led to retrospective detection of CT ab-
normalities in a considerable number of patients. Gupta et al. [110] studied the staging
and diagnostic accuracy increase combining CT-PET images in a database composed
of 23 patients. The combination confirmed PET staging in 6 patients, changed cancer
staging in 4, led to cancellation of surgery in 3, directed successful biopsy in 4 and
changed diagnosis in 2. PET lesions were also evaluated with PET/CT by Yeung
et al. [311]. Analyzing the findings in the first 100 patients studied with PET/CT,
they reported that 57% of the equivocal PET findings could be classified correctly
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1.3 Combination of CT-PET images in oncologic applications

Figure 1.3: Two examples in which a combination of anatomical and functional infor-
mation provided by CT (left) and PET (right) images could be useful. A circle defines
tumoral regions in each image. Top images: patient 1. Bottom images: patient 2.

into normal or abnormal categories, differentiating benign or artifactual lesions from
malignant disease.

The role of PET/CT for evaluating patients for lung cancer recurrence was assessed
by Keidar et al. [140]. This study of 26 patients revealed that PET/CT provided
important additional information in 56% of the patients. Importantly, lesions missed
by CT initially were visualized by PET/CT and were identified subsequently on CT
images. Similarly, Weng et al. [297] also reported a higher diagnostic accuracy for
PET and CT than for PET or CT alone for lung cancer staging. The impact of
PET/CT imaging on the pre-operative staging of lung cancer patients was evaluated
by Steinert et al. [265]. These authors reported an incremental impact of PET/CT
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imaging with increasing patient stage, concluding that PET/CT was superior to PET
or CT alone in initial staging of lung cancer. Another advantage of PET/CT in the
staging/re-staging of lung cancer patients was provided by Osman et al. [202] in 34
patients.

Chin et al. [50] reported a series of 30 patients studied with PET and CT to
determine mediastinal lymph node involvement. They concluded that the combined
information of PET and CT yielded the highest diagnostic accuracy (90%). Kamel et
al. [137] reported focal FDG uptake in the lower anterior neck in 6 of 184 patients who
underwent lung cancer staging. The PET/CT assessment avoided the false positive
findings of PET alone. Makhija et al. [179] used PET/CT to evaluate patients with
suspected recurrent ovarian cancer. PET/CT identified the site of recurrence in 5
(62%) of 8 patients who had negative CT findings.

One important emerging clinical contribution of PET/CT is its role in the field
of radiation oncology, specifically radiation planning. This is because CT alone can
only delineate mass lesions, but frequently fails to determine reliably the amount
and extent of viable tumor. PET merged with CT makes it possible a structural
and functional approach to optimize biological target volumes in radiation therapy
planning. Dizendorf et al. [81] evaluated prospectively the impact of PET/CT on
radiation planning in 30 consecutive patients scheduled to undergo external beam
radiation. Combined PET/CT changed the radiation treatment strategy from curative
to palliative in 20% of the patients. In 30% of the patients, the radiation dose was
changed and changes of the target volume were reported in 40% of the patients.

Finally, an interesting use of the PET-CT combination concerns the validation of
new tracers for PET imaging and the combination of complementary information they
provide. As mentioned in Section 1.2.2, even if the FDG is the most employed tracer
due to its good properties in terms of half-life, new tracers are emerging. These new
tracers use different metabolism procedures for cancer detection and they allow a new
role of PET images in radiotherapy (tumoral hypoxic tracers, 18-fluoromisonidazole),
chemotherapy (marked chemotherapeutic products) or hormonotheraphy (marked hor-
mones, 18-fluoroestradiol) planning definition. One characteristic of the images ac-
quired with these new tracers is that they have even less anatomical references than
FDG-PET images. Thus, the combination of the information provided by these func-
tional images must be based on a CT associated to each one of these PET scans.

1.3.2 Difficulties

Integrating data from different imaging modalities requires a prior geometric align-
ment or registration phase to be able to compare both images and superimpose the
homologous structures they contain. The aim of our work is to develop a registration
procedure of CT and PET images to be applied to thoracic and abdominal regions.
This is a challenging task due to several difficulties associated to this application that
are mainly due to:

e the elastic and local nature of the organs located in these regions;

e the large inter-individual range of structure movements and metabolic activity;
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e the different physical nature underlying both acquisition techniques;

e the different acquisition protocols and the time passed between them:;

The first problem concerns the elastic nature of the deformations to cope with in
thoracic and abdominal structures, being much more complex than in other more rigid
regions such as the brain. For instance, the lung volume and morphology vary con-
siderably during the respiratory cycle, as shown in Figure 1.4. In these coronal slices,
we can observe these differences between breath-hold and normal breathing acquisi-
tions. Top images show CT scans acquired when the patient is breathing normally
and bottom images show CT ones performed in a single breath-hold at full inspiration
(maximum expansion of the thorax). Moreover, these deformations have a very local
nature, as observed in the lung example in which the diaphragmatic wall suffers a
severe displacement while the upper part of the lungs remains quite stable.

A second problem associated to our application is the large inter-individual vari-
ability concerning structure morphology, nature of their movements and metabolic
activity, as illustrated in Figure 1.4 (each column of Figure 1.4 corresponds to one
patient). This image illustrates the large inter-patient variability in terms of severity
of the deformations and structure morphology.

Figure 1.4: Examples of deformations suffered by the lungs through the respiratory
cycle. Top images show C'T scans acquired at normal respiration while bottom images
show those ones performed in a single breath-hold. Left: patient 1; right: patient 2.
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CT and PET techniques are based on different physical properties that lead to
images displaying the same scene in a different way. A critical consequence is the lack
of linear correspondences between some anatomic and functional set of grey-levels. For
instance, the intensity values corresponding to the heart can vary up to a factor of ten
in PET images, while in CT ones they are almost constant. Furthermore, there are
structures that do not appear at all in PET scans because they do not accumulate the
tracer (thus, no uptake in the image), producing an incomplete representation of the
anatomy. This problem is aggravated by the strong presence of noise and artifacts in
PET images.

Finally, the different clinical acquisition protocols and the time passed between
them produce differences in the presentation of the data scans that the registration
procedure must recover. Therefore, it allows us barely no prior knowledge on resolu-
tion, displayed region, patient position, ..., beyond the most basic, such as the general
orientation of the patient, as illustrated in Figure 1.5. For instance, in thoracic CT,
the scan is sometimes performed in a single breath-hold and the patient is requested
to maintain maximum inspiration if possible during the acquisition (15 seconds in a
helicoidal scanner). Also, to avoid attenuation of the arms in the X-ray beam, the pa-
tient holds them above his head. In PET, the scan time is longer (30-60 minutes) and
the patient breathes normally. Due to the long duration of this scan, reconstruction
algorithms provide an averaged image over the respiratory and cardiac cycles. A respi-
ratory gating of the PET acquisition would be helpful [30], but at the moment it is not
a promising approach due to the substantial resulting increase in imaging time [103].
Furthermore, the arms are in general placed at the side of the body because some pa-
tients cannot endure an arms-up posture during a full PET acquisition. The fact that
the time between both image acquisitions can be very long (weeks or even months)
involves even more differences between CT and PET scans due to long-term changes
in the patient’s anatomy. Deformations induced by different patient positioning, scan
formats or time passed between both acquisitions are considerably reduced in hybrid
PET/CT systems (see Section 1.3.3) with respect to stand-alone devices.

The differences mentioned above leave among the images little more than a sta-
tistical, conceptual similarity, in the way that organs generally correspond to uniform
regions (except in some structures such as the heart), and spatial relationships among
these organs are very stable in the two image volumes. Thus, a combination of informa-
tion provided by anatomical and functional imaging modalities can only be performed
by experts trained on this task.

Until few years ago, image registration was achieved by the physicians in a visual
way, meaning that the physician had the 2D slice series from each modality mounted
on a traditional light box. Then, the physician should combine the information from
several imaging modalities in his mind to produce a mapping of the 3D homologous
points between the images. This mapping depends on the physician’s knowledge and
expertise but it is influenced by different structure orientation, field of view and res-
olution of the images, making it difficult to determine the correspondence between
anatomical structures. This procedure, even performed by expert physicians, remains
very rough and time-consuming, and uncertainty in the mental mapping from one
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Figure 1.5: Example of CT (left) and PET (right) images of an abdominal study
illustrating the differences in the presentation of the data. The CT image is focused on
the abdominal region while the PET one displays the whole body. Size and resolution
of the images are also quite different.

CT size: 512 x 512 x 59 pixels; CT resolution: 0.84 x 0.84 x 7.5mm?

PET size: 128 x 128 x 205 pixels; PET resolution: 4.297 x 4.297 x 4.297mm?.

image to another may lead to uncertainty in the diagnosis or planning. Therefore,
solutions providing a fully or semi-automatic and more objective way to produce this
mapping could considerably help the physicians to improve their decisions.

1.3.3 Current techniques to combine anatomical and functional
information

Nowadays, four different techniques could be used to combine anatomical and func-
tional information provided by CT and PET scans.

The simplest of these techniques is manual registration, in which an operator
matches recognizable objects in each of the images. In our application, manual regis-
tration is not considered because it has most of the weaknesses of the mental mapping
mentioned above.

Another technique involves the use of temporary markers on the patient to help
register images. Nevertheless, external landmarks will not give crucial information
about the nature of the elastic and local deformations to cope with in thoracic and
abdominal structures. This is therefore not a well-suited approach for our application.
Furthermore, one of the main requirements for our registration procedure is to not
modify the acquisition protocols employed in the clinical sites associated to the project,
but working with images acquired in clinical routine.
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Another possibility concerns the use of the recently introduced hybrid PET-CT
systems that produce images that are intrinsically registered because both scans are
obtained one immediately after another with the patient in the same position (except
for an axial translation of the bed).

Finally, computer algorithms also allow to register images, looking for the geomet-
rical transformation which best superimposes CT and PET images.

Combined machines and computer algorithms, being the most used techniques in
the registration of CT and PET images, are further discussed below.

Combined PET-CT systems

Combined PET-CT systems (see Figure 1.6) have been introduced by scanner con-
structors (General Electric, Philips and Siemens) a few years ago [18]. These machines
allow the acquisition of anatomical and functional information in the same examina-
tion, thus furnishing a hardware (or mechanical) rigid registration. The fact that the
CT and PET images are acquired one immediately after another with the patient in
the same position avoids strong deformations appearing in images obtained by sep-
arated machines. For instance, a slight variation in the patient trunk position will
produce strong image differences in terms of rotation. Other advantages of this tech-
nique include organizational facilities (images almost at the same time in the same
room), a better attenuation correction of the emission PET image (it is achieved using
the CT scan) and the possibility of comparing PET images acquired with different
tracers (using the CT scan as an anatomical reference).

The importance of these hybrid systems is illustrated by the fact that the majority
of the PET devices installed in 2004 will be combined PET-CT machines. A very
interesting review of this technique can be found in [283].

Figure 1.6: Combined PET-CT machines. Left: General Electric; Center: Philips;
Right: Siemens.

Even if this technology is a huge step towards an automatic and objective mapping
of CT and PET images, there are some unanswered questions. As a matter of fact,
there are remaining potential registration errors in these systems due to the physio-
logical motion in the patient. In the chest, these errors are predominantly caused by
breathing, except in the vicinity of the heart, where cardiac movement is the major rea-
son, or with insufficient patient cooperation [103]. This motion consists of anisotropic
movements of the thoracic wall and the diaphragm, moving tumors and organs in a
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non-linear way in all three directions, thus leading to distortions and asymmetrical
position changes.

Several studies [24 ; 204] have proved the presence of artifacts in images acquired
with combined PET-CT machines due to respiration. The anatomic regions most
affected by breathing artifacts include the diaphragm, the base of the lung, and the
upper pole of the liver [283]. Blodgett et al. [24] found non-systematic displacements
of the diaphragm by as much as 25mm in the axial direction. Osman et al. [204]
have quantified the Respiration Motion Artifact (RMA) in a database of 50 patients,
being noted in most (84%) of the studied patients. RMA was 16.4 £ 10.5mm at
anterior, 14.3 £ 7.6mm at middle, and 13.6 4= 8.6mm at posterior aspects of the right
lung base and 17.8 + 10.8mm in the posterior aspect of the left lung base. In a
more recent study [203], these authors noted that, in 300 patients with proven liver
lesions, approximately 2% appeared to have the lesion localized in the lung due to
respiratory motion. Therefore, even in images provided by hybrid systems, a non-linear
registration phase is necessary in order to cope with these physiological deformations.

Computer-based registration algorithms

The current processing ability of computers allows the development of software
algorithms that solve complex image processing and computer vision problems. In
registration applications, it offers another way to compensate for the differences be-
tween two images to register, computing the transformation which best aligns them. A
computer-based registration algorithm, together with an interactive and user-friendly
visualization interface can be a very helpful tool to the physician.

Software-based registration techniques have been developed and successfully used
in several medical applications such as computed-assisted surgery [150], radiation ther-
apy planning [49], brain database studies [60] and others (the interested reader is re-
ferred to the classical medical image registration reviews [177 ; 119 ; 217] for more
examples). The majority of these registration algorithms provide a cheap, attractive
and suitable tool for clinical routine in brain imaging applications, but they do not
fulfill the requirements of robustness, speed and minimum interaction when applied to
more elastic regions. In Section 2.6, an exhaustive state-of-the-art of software-based
registration methods applied to CT and PET images is presented.

In the context of thoracic and abdominal CT-PET registration, software-based reg-
istration techniques can be seen as an alternative or a complement to hybrid systems.
In fact, some scanner constructors actually offer semi-interactive options in their visu-
alization workstations to compensate remaining errors between PET and CT images
acquired with hybrid machines 7.

Regardless of the CT and PET image provenance (hybrid system or stand-alone
scanners), a software-based registration algorithm must deal with several difficulties
(see Section 1.3.2) linked to the particularities of our application (severe deformations,
incomplete and noisy anatomy representation in PET images, anatomy variability,

..). Furthermore, if the algorithm is planned to be used in clinical routine, other

"http://www.gemedicalsystems.com/rad/nm_pet/products/workstation/aw_fusionsw.html
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constraints are imposed on the methodology:

e robustness and precision: clinical routine asks for a robust enough algorithm in
order to assure a good solution in most of cases. This is an essential requirement
because an error may have serious consequences to the patient. The large inter-
patient anatomy variability in thoracic and abdominal structures and the severe
deformations they suffer make this constraint a challenging one;

e speed: clinical routine asks for a fast enough algorithm in order to be embedded
in it without altering clinical schedules. In practice, with current acquisition
times, the registration phase should be obtained in less than an hour;

e maximum automatisation and minimum interaction: these constraints are im-
portant in order to avoid to avoid subjective and time consuming manual adjust-
ments. Anyway, the algorithm must offer the possibility of manual modifications
and easy user-interaction and introduction of prior information after each pro-
cessing intermediary phase.

Therefore, the main goal of our work has been the development of a software-
based algorithm capable of fulfilling these requirements in order to achieve a robust,
fast enough and good quality registration of thoracic and abdominal CT and emission
PET images.

It must be pointed out that a particular requirement (coming from the industrial
partner associated to the project) for our methodology was to work on the images
acquired with already defined acquisition protocols, without altering them. Therefore,
we should focus on the image processing and analysis and forgive techniques involving
changes in the image reconstruction stage [26] or the acquisition protocol (for instance
using fiducial markers), that could be considerably helpful to find better registration
methodologies. In the future, our work should be completed with research on these
crucial aspects.

8Tt is important to specify that the aim is to register the emission PET image and not only the
transmission one. It means that we will not use the assumption of no deformation between both
emission and transmission PET scans. This subject is further discussed in Section 2.6.
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This chapter presents the theorical framework of a classical registration system.
First, in Section 2.1, a general scheme of a registration is described, followed by an
introduction of the peculiarities of a registration procedure working with thoracic and
abdominal CT and emission PET images. Afterwards, the choices for the different
stages of an image registration method are briefly enumerated: image representation
(Section 2.2); transformation model (Section 2.3); similarity criterion (Section 2.4);
and optimization method (Section 2.5). In Section 2.6, an exhaustive state-of-the-
art of registration methods applied to CT and PET images is presented. Finally,
Section 2.7 justifies the particular choices for each of these registration components in

the context of CT/PET registration of the thorax and abdomen.
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2.1 Introduction

2.1.1 Registration of medical images

Registration or spatial alignment of images is not a recent topic in the literature.
D’Arcy Thompson [279] has treated this subject in 1917, concerning a morphometry
application [12]. Several decades later, Talairach et al. [274] presented a registration
system for brain imaging. It was in the 1980’s when the registration was introduced
as a computer based procedure with the works of Bacjsy et al. [8 ; 7], Broit [36],
Bookstein [27] and others.

Nowadays, the literature in the field of image registration is extraordinary large.
As an estimation, according to the database of the Institute of Scientific Information
(ISI), in the last 10 years, more than 1000 papers were published on this topic [316].
Another recent study [215] illustrates the growth of the medical image registration field
over the past decades, in particular elastic registration, as can be seen in Figure 2.1.
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Figure 2.1: Publications on image registration (left) and on elastic image registration
(right). From [215].

Because of this importance, several complete reviews have appeared providing clas-
sifications of the registration methods proposed by the research community. The first
surveys were proposed in [102] and [101] presenting correlation-based and medical reg-
istration methods respectively. Later, Brown et al. [37] published a key review paper,
including registration techniques in several application domains and a complete classi-
fication according to the different phases composing a registration system. After that,
the overviews-expert research group of the University of Utrecht has published the
most complete surveys on medical image registration [291 ; 177]. Other interesting
reviews on this subject can be found in [119 ; 159 ; 316 ; 5.

A registration procedure is needed in very different computer vision and image pro-
cessing medical and non-medical applications. Within former ones, we can mention
pathology detection, localization and follow-up or computer-assisted surgery. With
respect to non-medical applications, some examples include segmentation improve-
ment, object or template recognition, stereovision, shape reconstruction or tracking.
In all these applications, medical or not, a registration phase is required to combine
information provided by two or more digital images of the same scene taken from dif-
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¥

Figure 2.2: Classical scheme of a registration system.

ferent sensors, different viewpoints, or at different times. But, what does registration !
means? In this document we shall use the term registration for the process of deter-
mining a spatial transformation T that relates the position and its associated intensity
of features appearing in one image with the position and its associated intensity of
their corresponding features in a different image. In this way, we include in the reg-
istration process sampling and interpolation phases that are required after computing
the spatial transformation. The goal of an image registration procedure is then to
determine the parameters of the transformation that spatially aligns the images to
register in order to superimpose voxels representing the same reality, therefore having
complementary information in each one of these voxels.

Brown [37] provides the following mathematical definition of a registration system:

A

T = argr%lez%(S(I, T(J)) (2.1)

where I is the fixed image (reference or target image), J is the image to transform
(source or floating image), and T is the spatial transformation (in a defined trans-
formation space E) which maximizes, by means of an optimization phase, an appro-
priately chosen similarity measure S between images to register. Figure 2.2 shows
a classical scheme of a registration system with the steps involved in the procedure.
Another possible mathematical formulation of a registration process is proposed by
Gee et al. [53 ; 98] expressing this task in a Bayesian framework.

Several authors have proposed different classifications of registration methods,
defining the different steps constituting a classical registration procedure. It is not
a straightforward task due to the large variability of applications and the different
points of view to face the problem. Brown [37] and Maintz [177] have proposed ex-
haustive classifications which decompose a registration algorithm into several steps.

lwords like matching, fusion, warping, fitting, co-registration, correlation, are also employed to
refer to the same procedure
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Maintz use nine basic criteria, augmenting and detailing the classification proposed by
Van den Elsen et al. [291]: dimensionality; nature of registration basis; nature of trans-
formation; domain of transformation; interaction; optimization procedure; modalities
involved; subject; and object.

The goal of this chapter is not to provide an alternative classification of registration
methods. We only enumerate the different choices for the different aspects of a reg-
istration process in order to evaluate each possible option according to the particular
requirements of our application. The majority of registration systems can be roughly
divided into four main phases, as it can be seen in Figure 2.2:

e image representation,
e transformation,

e similarity measure,

e optimization.

The first step, image representation, deals with the extraction of significant
features from the images to register, that will guide the registration procedure. The
next issue concerns the modeling of the transformation between recognized features
in both images. The similarity measure is the criterion that evaluates the goodness
of the registration using the estimated transformation. Finally, the optimization
phase must find the set of transformation parameters that provides best registration
results. These four phases are strongly linked between them and the particular choices
for each of these registration components cannot be made independently from each
other.

2.1.2 Peculiarities of a thoracic and abdominal CT-PET regis-
tration application

CT-PET image registration of thoracic and abdominal regions is a recent medical
image processing topic. This statement is confirmed by studying the few number of
published works on this subject with respect to brain or other modality registration
applications. For instance, one of the most complete and cited registration surveys,
published by Maintz et al. [177] in 1998, does not include any reference on this par-
ticular registration application. In our opinion, this lack of registration bibliography
about this particular application is mainly due to the following reasons.

The first cause concerns PET images. Actually, this nuclear medicine imaging
modality is widely used in clinical routine but few years ago the acquisition of PET
images was a real challenge for the image processing community. Several problems
emerged for the acquisition of a PET machine in a clinical institution: economical
aspects; the availability of a close cyclotron in order to furnish isotopes to inject in the
patient; and in some countries (for example, France), the unwillingness of the govern-
ments to bet on an imaging modality involving the nuclear word. Fortunately, several
factors have made the tables turned, PET images being, at the present time, easily
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available for image processing researchers. Some of these factors are: the development
of new and cheaper PET machines; the availability of new radiotracers with longer life
times, allowing a certain spatial independence of the cyclotron; law adaptation due to
evidences demonstrating the impact of PET images on medical decisions; progressive
digitalization of clinical services.

The second cause concerns the historical research evolution in medical image reg-
istration. As a relatively recent topic, researchers have naturally adopted a simple-to-
complex strategy, beginning with anatomical brain images, in which deformations to
cope with are less severe than in other regions. Therefore, brain image registration has
induced the development of rigid or linear transformation models that provide efficient
and robust solutions in mono-modal and multi-modal brain registration applications.
Once this challenge has been overcome, researchers turn to registration applications
involving body regions in which structure movements are more complex than in the
brain. Another factor that makes it possible to work these days with 3D thoracic and
abdominal images is the improvement of the processing capacity of computers. Until
a few years ago, as they are considerably bigger than brain images, their analysis and
processing was discouraged. In our opinion, other possible obstacle was the quality of
emission PET images (low SNR, high presence of artifacts) that hindered the develop-
ment of accurate and in particular robust (most important quality in a medical image
processing procedure) algorithms. Fortunately, new PET acquisition devices furnish
high quality images (see Figure 2.3). We have observed the evolution of the quality of
PET images during the last three years. In Figure 2.3, this evolution is illustrated, by
showing snapshots of the first and the last PET images we have worked with.

Figure 2.3: Examples of emission PET images having different spatial resolution, SNR
and presence of artifacts. Left: three years ago (2000); right: nowadays (2003).
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The choice of each phase of the registration procedure will be made according to
some conditions or requirements (see also Section 1.3.3) imposed by the application:

e image representation: this phase must take into account the high difference of
quality (and voxel resolutions) between CT and PET images and the high pres-
ence of noise and artifacts in the latter, in order to fulfil the crucial requirement
of robustness of the developed algorithm. Another impeding point concerns the
impossibility of using external markers because clinical protocols should not be
modified. Furthermore, the need of some kind of user interaction will also influ-
ence the chosen image representation;

e transformation: a high number of degrees of freedom is required in order to
cope with large and local deformations involved in inter-patient thoracic and
abdominal applications. On the other hand, computational cost of the algorithm
must remain reasonable in order to be possible to use it in clinical routine;

e similarity criterion: it must be able to guide a registration procedure between
images having a non-functional relation between their intensities;

e optimization: in this registration aspect, the main requirement is also the com-
putational cost of the algorithm. Nevertheless, the optimization method will
fully depend on the transformation model and the similarity criterion chosen in
the registration system.

As mentioned above, the need of a high number of degrees of freedom is confronted
with the requirement of a limited computational cost, thus a trade-off between these
conflicting requirements must be made that will influence the choice in each aspect
of the registration algorithm. Another critical aspect is the robustness of the proce-
dure, which is especially critical when working with medical images that will influence
physician decisions.

The registration literature review in the following sections is discussed with respect
to these requirements. Section 2.6 groups registration methods that have been applied
to CT and PET images.

2.2 Image representation

Image representation involves the decision about which features are going to be used
to guide the registration procedure. It must search homologous and significant features
between the images to register, assuring that they represent information contained on
these images with an enough accuracy. The criteria to select a particular image rep-
resentation are application-specific, depending on the characteristics of the anatomy,
the nature of the transformation to be computed and the imaging modalities used in
the registration procedure.

Registration methods can be classified into two categories with respect to the image
representation aspect: feature-based methods; and whole-content based methods.
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Former methods attempt to express image content as a set of features extracted by
means of a recognition phase to provide a compact and sparser description of the im-
age. These features must constitute homologous reference structures that could guide
the transformation computation between the images to register. In general, a feature-
based registration method comprises three steps: feature extraction; computation of
the transformation between features; and computation of the entire volume deforma-
tion. The first step extracts meaningful features that can be categorized according
to their intrinsic dimension, the dimension of their evolution space and their intrinsic
nature [11], as can be seen in Table 2.1. The second step must provide the transforma-
tion which better aligns segmented corresponding features. Finally, this transformation
must be extended to the entire volume. A regular interpolation is usually employed to
this purpose. Feature-based methods have been successfully used in a large number
of different medical registration applications [27 ; 236 ; 194 ; 176 ; 79 ; 93 ; 151 ; 208].
Complete reviews on these registration techniques can be found in [5 ; 11 ; 316 ; 177].

’1_“%]b)l_e 2.1: Different classes of features
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Whole-content based methods operate on the image grey-levels without prior re-
duction of image information, so they consider pixel or voxel intensity values as im-
age features. Therefore, all information available in the images is used to determine
the registration transformation. The registration is usually achieved by transforming
one image and measuring the similarities of all spatially corresponding voxel pairs of
the two images. The optimization of the transformation parameters is performed by
means of an energy or cost function representing similarity between the images and
some kind of regularization. Whole-content based registration methods have been
extensively used in a vast number of different medical image applications. The inter-
ested reader is referred to the exhaustive registration reviews available in the litera-
ture [177 ; 119 ; 159 ; 316 ; 217 ; 11 ; 301 ; 159].

The main advantage of feature-based methods concerns the reduction of the data
involved in the registration procedure, leading to less expensive computational cost
algorithms. On the other hand, the registration accuracy is frequently limited to the
accuracy of the segmentation step. Furthermore, the selection of homologous, dis-
tinctive, reliable and stable features in both images to register remains a hard task
to achieve, in particular in thoracic and abdominal (due to the large inter-patient
variability) PET images (due to their low SNR quality). The main advantage of
intensity-based methods over feature-based ones is the absence of the feature recogni-
tion step. Another advantage of these techniques is their robustness to the variations of
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input image nature, resulting in more flexible and application-independent registration
methods than feature-based ones. On the other hand, the considerable computational
cost, associated to these methods has impeded their use in clinical routine, in partic-
ular in applications involving 3D images. Furthermore, these methods do not seem
to be well-suited for multi-modal applications. In fact, whole-content based methods
tend to get trapped in local minima of the chosen similarity criterion if they are not
initialized within a relatively narrow range near the desired solution or if the imposed
relation between grey-values of the images to register is slightly violated.

An interesting idea is to merge features with intensity-based methods in order to
combine their associated advantages while cancelling their drawbacks. For instance,
this strategy is proposed by Pluim et al. [216] in order to introduce spatial information
obtained from image gradients in a whole-content based registration approach guided
by the Mutual Information criterion.

2.3 Transformation

2.3.1 Classes of transformations

A spatial transformation model must be chosen in order to compensate differences
between the features that represent images to register. The transformation will be
applied to the floating image in order to map its information into the reference one.
This spatial transformation model must be completed with an interpolation step in
order to obtain an intensity mapping as well (see Section 2.3.3).

Several confronting factors influence the critical decision about the transformation
model in a registration procedure. Some of them include: nature of the deformations to
cope with; availability of robust prior information about the targeted transformation;
desired result accuracy; and importance of the algorithm computational cost. The
two former factors control the flexibility of the transformation model, while a trade-off
must be taken between the accuracy of the desired solution and the computational
cost of the algorithm. As a matter of fact, a high level of accuracy needs an elevated
number of degrees of freedom in the transformation model that necessarily involves
computational costing registration methods. The decision of the transformation model
in medical image registration applications is also critical due to the non-unicity of the
solution. As a matter of fact, different transformations can provide very similar results,
as confirmed in the RIRE project [298].

The type of transformation can be classified according to three different criteria:
influence area, nature of the model and geometry preservation.

The influence area criterion divides spatial transformations into two categories:
local and global. A transformation is called global if it is applied to the entire image.
On the other hand, when transformation parameters depend on the spatial location,
this transformation is called local.

Concerning the nature of the transformation model, we distinguish parametric from
non-parametric models. Non-parametric models consist in the direct computation of
a displacement vector field applied to the entire image that transforms each point
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Figure 2.4: Synthetic example of linear transformations, from [175].

of the floating volume. On the other hand, a parametric transformation implies the
optimization of a limited number of parameters of a given transformation model that
furnishes the displacement for each voxel of the image.

Concerning geometry preservation, transformations can be categorized into linear
and non-linear. A linear transformation maintains geometrical relationships between
the structures. This category includes rigid (composed of translations and rotations),
affine (rigid plus isotropic or anisotropic scale and skew, mapping parallel lines onto
parallel lines) and projective (maps lines onto lines) transformations. The interested
reader is referred to [89] in order to find a complete description of projective geometry.
Figure 2.4 shows a synthetic example of linear transformations, including local and
global behavior. Non-linear transformations possess more degrees of freedom, allowing
to cope with more complex deformations associated to some body structures. They can
transform a straight line into a curve, thus structures transformed in a non-linear way
may not necessarily retain their shape. Registration methods employing these transfor-
mations include polynomials, Radial Basis Functions (RBF), Free-Form Deformations
(FFD), Elastic Body Splines (EBS) and viscous models (some of these techniques are
further detailed in Section 2.3.2). A recent survey of registration approaches focused
on non-rigid approaches is proposed by Lester and Arridge [159].

Traditional registration methods apply rigid or affine transformations, which are
useful in cases where rigid body assumptions are likely to hold and structures retain
their shape during the registration procedure. Some examples include bone or brain
alignment applications. Furthermore, linear registration methods have a small number
of parameters to estimate, thus being fast convergence algorithms. However, for most
body organs, many more degrees of freedom are necessary to accurately represent the
anatomical movements due to their deformable nature. Moreover, linear transforma-
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tions cannot account for morphological variability between different subjects, which is
crucial in pre-operative, post-operative or atlas-patient registration applications. De-
formations involved in our particular application has a non-linear nature. Therefore,
the next section details some non-linear transformations frequently used in registration
applications.

2.3.2 Non-linear transformations

In general, non-linear transformations are represented by means of a dense defor-
mation field and a displacement vector ¢ is associated to each point of the feature or
volume to transform:

=z +60(z) (2.2)

In order to compute the displacement §(z) for each point of the volume, the ma-
jority of methods optimize a cost function composed of a data fitting term and a
regularization term to ensure the local continuity of the transformation [11]:

T = argmax(E[S(z + dr(x), 2")] + E[or]); (2.3)

where E[S(z+67(z), 2)] is the data fitting energy associated to the similarity function
S, and E[dr] is the regularization energy over the class of transformations (6 € T').

Non-linear transformations may differ by several aspects, such as the degree of
elasticity and constraints of the deformation model. In order to model severe non-linear
deformations, the transformation model needs a high number of degrees of freedom.
If this transformation is computed only from information provided by the images
to register, this problem is ill-posed in in Hadamard’s sense. The introduction of
additional constraints is required in order to assure the uniqueness of the solution and
have a well-posed problem. The regularization of the transformation can be either
constrained by underlying physical models of material properties (realistic models) or
by free-form constraints (free-form models), were any deformation is allowed, even if
this deformation can be based on a physical model which may not necessarily conform
to any known behavior. Some classical non-linear transformations that have been
extensively used in registration applications are detailed below.

Radial Basis Functions (RBF)

Radial basis functions [3 ; 243] (or particle models in computer graphics), formulate
the transformation as a linear combination of basis functions. In general, registration
methods based on RBF use control-points derived from corresponding anatomical fea-
tures (landmarks). Then, the RBF map each control point in one image to its homol-
ogous in the other one and provides an interpolation of this mapping at intermediate
points. Each basis function can be expressed as a combination of a polynomial that
provides the global component of the transformation and a sum of a weighted elastic
or non-linear basis function RBF are then a linear combination of radially symmetric
basis functions, each centered on a control point.
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Different basis functions can be used in this technique to guide a registration al-
gorithm and some examples are Multiquadrics [112], Gaussians [3], Wendland’s func-
tions [95], and Thin-Plate Splines [111 ; 27]. Nevertheless, several studies [107 ; 300],
aiming at comparing the performances of different Radial Basis Functions, conclude
that Thin-Plate Splines have favorable properties for image registration.

Thin-Plate Splines (TPS), is a particular case of RBF that employs splines as
basis functions. The use of TPS for medical image registration has been introduced
by Bookstein [27]. An exhaustive review of medical image registration methods based
on TPS can be found in [235]. The transformation produced by these basis functions is
expressed differently in all three dimensions by means of linear combinations of mono-
dimensional splines. Knowing the position of the corresponding pairs landmarks in
both images, the TPS forces the transformation to superimpose them by means of
either an exact interpolation [107] or an approximation computed with a mean square
algorithm [237].

An interesting characteristic of these techniques is that the geometry of the control
point grid has no restrictions, i.e., it can be sparse and irregular. On the other hand,
a high number of control points and well-distributed in the image are required in
order to assure acceptable registration results. The selection of these control points
in a simple and robust way remains a difficult problem in some images such as PET
ones. Furthermore, if the number of control points is elevated, this technique is very
expensive in computational terms. Another problem associated to TPS concerns their
infinite support because it impedes a local control of the deformation, thus limiting
its use in certain applications.

Free-Form Deformations

Free-Form deformations (FFD), introduced by Sederberg et al. [253], also models
the transformation by means of a linear combination of spline basis functions. In this
technique, deformations of the object volume are achieved by tuning an underlying
mesh of control points, but unlike the case of TPS, FFD employs a grid of control points
distributed in a regular way on the image. Control point displacements are interpolated
to obtain a smooth and continuous C? transformation. There are two major advantages
of FFD with respect to TPS: the absence of a control point detection phase; and a
local control of the deformation due to their limited support. Nevertheless, this local
control depends on the nature of the chosen basis function. For instance, if cubic
B-spline basis functions are used, we will obtain a more local control, at the expense
of a higher number of control points in the FFD grid. On the other hand, if Bernstein
basis functions are employed, a lower number of control points is required, but we
will obtain less local deformations as well. In medical applications involving elastic
deformations in which a high local control is desired, B-splines is the most frequently
used basis function [76 ; 123 ; 190 ; 250 ; 234 ; 241]. Further details of this technique
are discussed in Section 5.4.1.
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Elastic models

Elastic registration methods, introduced by Bajcsy et al. [7], are based on physical
models of the behavior of elastic materials under the influence of external forces. The
behavior of the deformation is composed of two terms: the set of external forces ap-
plied to the image, aiming at superimposing the homologous structures; and a set of
internal forces of elasticity, induced by the characteristics of the material in answer to
the external forces. The non-linear transformation will describe the equilibrium state
between these two forces, and can be obtained in an iterative way, as the deformation
field that solves the linear partial differential equations (PDE) of Navier [280]. In a
registration algorithm, the external forces are defined as a function of a given similarity
criterion, and the feature matching and mapping are performed simultaneously. Elas-
tic registration methods have mostly been used in brain image-to-atlas registration
applications [8 ; 71].

The main drawback of this technique is that it cannot deal with severe deforma-
tions because it is constrained by the internal energies. Nevertheless, multi-resolution
approaches or prior global registration techniques can be used in order to solve this
problem.

Fluid models

Fluid techniques can deal with severe local deformations, unlike elastic methods.
This non-linear transformation model is based on physical laws that provide an un-
constrained model which allows free deformations similar to the behavior of viscous
fluids [158]. The floating image is modeled as a viscous fluid which gradually deforms
over time to match the reference image. Fluid models are frequently used in medical
image registration [34 ; 51 ; 70]. A comparison between different fluid-based techniques
can be found in [302].

Several drawbacks are associated to this transformation model. Since a high non-
linear equation has to be solved, the solution must be approximated, thus involving
excessive convergence times. Furthermore, global behaviors are not taken into account
by using this transformation, but this problem can also be overcome by using multi-
resolution approaches or prior global registration algorithms.

The combination of fluid models with other transformation techniques has been
largely proposed in order to overpass their limits. For instance, several authors [157 ;
52] have mixed elastic or radial basis functions with fluid models, producing viscoelastic
approaches in order to compensate drawbacks associated to each method.

Physical models

Physical or behavior-based deformable models, unlike elastic and fluid techniques,
use actual physical models of change, describing behaviors by means of partial differ-
ential equations. They mimic the actual behavior of a specific region of the body, thus
being very application-depended. For instance, Bro-Nielsen [35] employs this technique
in order to model bone growth between time sequences of human mandibles.
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A drawback of this technique concerns the difficulty of modeling and dealing with
temporal or inter-subject registration due to the high variability of deformations in-
volved in these applications.

Other methods

Two examples of other interesting non-linear registration methods are the optical
flow [127] and the Demons [277 ; 278] techniques, that have been widely used in medical
applications.

The optical flow technique uses an intensity conservation hypothesis in order to
compute the displacement field between the images to register. A good review of
these techniques can be found in [152]. Some improvements of this technique has
been proposed in order to bypass its problems associated to the hypothesis of intensity
conservation. Hellier [115] replaces the quadratic cost term of the function with robust
estimators in order to make the algorithm more robust with respect to outliers.

The Demons algorithm, introduced by Thirion et al. [277 ; 278], is based on the
search of attraction or repulsion forces between points belonging to the contour of
the structures to register. A Gaussian regularization embedded in a multi-resolution
procedure is used, equivalent to a dense field regularization by means of a linear
elasticity [34]. Roche [227] has adapted this technique in order to deal with registration
of multi-modal images.

2.3.3 Interpolation and resampling

An interpolation step is required in order to complement the chosen spatial trans-
formation model. The interpolation technique must provide the value of the reference
image at the position where the transformed voxel has arrived. This interpolation
phase will have an important impact in terms of computational time and result accu-
racy of the registration system, thus a trade-off between both aspects must be taken.
This impact is due to the high number of times that the interpolation step is employed
during the registration process. At the end of the system, a final interpolation is re-
quired to yield the final registered image, but this task is only performed once, thus a
more complex interpolation method can be adopted.

Several interpolation algorithms, based on different approximations of the sinc
kernel (ideal one) with bounded support, has been proposed in registration applica-
tions such as nearest-neighbor [230 ; 171], bilinear and cubic functions [206 ; 304],
quadratic [124], cubic [276 ; 189] and higher-order splines [155], Gaussians [2], trun-
cated sinc functions [275] and others. Nearest Neighbor (NN) and linear (TRI) interpo-
lation methods are the simplest and quickest between these interpolation techniques.
They represent a good choice when the computational time is the most important
requirement, at the expense of increasing interpolation artifacts that can introduce
mismatches in the registration procedure. Partial Volume (PV) interpolation was pro-
posed by Collignon [59] in order to overcome these drawbacks when constructing the
joint histogram in registration methods using statistical similarity measures. Several
interpolation comparative studies can be found in the literature [108 ; 154].
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2.4 Similarity criterion

The similarity criterion evaluates the quality of the registration result accuracy of a
given transformation comparing the reference image with the transformed floating one.
If the similarity between these images is not accurate enough, the registration proce-
dure must produce an alternative transformation in order to obtain a better similarity
between both images to register. Consequently, the transformation will be optimal
when the similarity measure reaches a global maximum (or minimum depending on
the optimization implementation).

A distinction must be made between similarity criteria used in feature-based and
full-content based approaches, because of their different nature.

2.4.1 Feature-based algorithms

Similarity criteria associated to feature-based algorithms can be divided into two
categories [175]: rigid and deformable.

Rigid criteria have in general a Euclidean nature [11]. Distances, areas and volumes
are included between the similarity measures that are applied to segmented features
obtained from the images to register. Some of the most popular registration methods
using rigid similarity criteria include nearest-neighbor based approaches (Procrustean-
based [84 ; 93 ; 105] or ICP [16 ; 314 ; 151]), probabilistic models [296 ; 69 ; 54|, the
head-hat algorithm [208 ; 48] and Chamfer distance-based [29 ; 19 ; 184] techniques.

Feature-based registration methods using deformable criteria typically employ ac-
tive contours or snakes in order to make contours of the structures in the floating image
evolve towards contours of their corresponding structures in the reference image. Fur-
ther information about deformable models can be found in Section 4.2.3. A drawback
of deformable models is the requirement of a good initialization in order to assure a
good convergence towards desired contours in the reference image, having difficulties
to cope with severe deformations. On the other hand, deformable models are well
suited for registration applications involving local curved transformations, such as in
inter-subject and patient-atlas applications.

2.4.2 Whole content-based algorithms

In whole-content based registration methods, the similarity criterion is based on the
assumption that some kind of dependency exists between the set of intensities of both
images. As a matter of fact, it supposes that a given anatomical structure falls into a
certain range of grey-values in both imaging modalities, and that it is possible to model
the relation between these sets of grey-values. This relation obviously depends on the
imaging modalities involved in the registration procedure and it is more complex to
model it in multi-modal applications.

The choice of the similarity measure is a critical decision in registration algorithms
because of the difficulties to model this relation and the high impact of this step in final
results. Furthermore, a trade-off must be taken between the accuracy of the results
and the computational complexity and robustness. Some similarity measures are very
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general and complex but are difficult to optimize, leading to high convergence times.
On the other hand, general similarity criteria can be used in different applications
without algorithm redefinition.

The assumed dependency between the intensities of the images to register can be
functional or non-functional, according to how much constrained is this relation.

Functional relation

These similarity criteria measure the functional (linear or non-linear) dependency by
comparing the intensities of corresponding voxels in the images to register. Several of
these similarity measures have been proposed to guide registration procedures, differing
by the constraints imposed on the functional relation between the intensities.

The simplest similarity measures consist in directly analyzing the difference be-
tween the corresponding voxel intensities. The Sum of Squared Differences, the Mean
Square Error, the Mean Square Differences, the Sum of Absolute Differences [122 ; 153]
or the Stochastic Sign Change [122 ; 153] are examples of these measures.

The second important group of functional-relation similarity criteria is composed
by correlation-based measures. If the images to register only differ by a linear relation
between the intensities and an additive Gaussian noise, these measures can efficiently
estimate their similarity. The normalized cross-correlation (NCC) coefficient [153 ; 221]
is the most popular version of these measures. A weakness of this technique is that it
is not robust enough with respect to the presence of local distortions or outliers in the
image. Furthermore, the search for the optimal registration is difficult due to its narrow
peak in the correlation space. Despite these drawbacks, these measures are frequently
used, in particular in mono-modal applications, due to their easy implementation.

Several improvements of this technique can be found in the literature. Roche et
al. [228 ; 229 ; 109] have introduced the correlation ratio that deals with the intensity
differences between multi-modal images, by assuming a non-linear function between
them. They claim better performance of this criterion over other statistical measures in
certain registration applications because the correlation ratio takes into account prox-
imity in the intensity space, resulting in higher robustness at relatively low resolution
and in attractive computing time.

An interesting option to explore, if fast-to-compute measures are required or if
the images are influenced by a frequency-depended noise, is the use of Fourier meth-
ods [316], which represent the images in the Fourier space. The Fourier Shift Theo-
rem [33] is used to guide a phase correlation method and it computes the cross-power
spectrum of both images to register and search the peak corresponding to the correct
registration on its inverse.

Non-functional relation

In multi-modal registration applications, the assumption of a functional relation be-
tween the intensities of the images to register is not further valid or at least very
difficult to model. Furthermore, some mono-modal applications may also require non-
functional dependency because of intensity changes between both image acquisitions
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(for instance, after administration of a contrast agent).

Even if image intensities corresponding to the same structure may be very different
depending on the imaging modality, they are not completely independent because they
represent the same underlying physical reality. In fact, a statistical relation between
the two sets of intensities can be assumed because the availability of information about
a given region in one of the images will necessarily reduce the uncertainty about the
same region in the other image. Based on this principle, several statistical similarity
criteria have been proposed to evaluate registration result accuracy.

Woods et al. [304 ; 305] were the first to introduce a similarity measure adapted to
multi-modal images, which is based on the following hypothesis: a given anatomical
region having a more or less homogeneous set of intensities in one image corresponds,
after a registration procedure, to a regular region in the other image, also having a
limited variation in its voxel intensities (but probably in a different grey-level range
from those of the first image). Then, the ratio of the intensities for all homologous
points in a given region in each image will vary little and the average distance of this
ratio for all regions may be minimized to achieve registration [217]. Woods obtains
good registration results on a PET-MRI brain application with an accuracy of 2mm.

Based on the work of Woods, Hill et al. [121] propose an adaptation of the algorithm
using the joint histogram of the images. Hill and colleagues have observed that the
behavior of the joint representation of the intensities reflects the mismatching between
the images. In fact, they postulate that when a joint histogram of two images is more
dispersed, the misalignment between them is high. Starting from this idea, Hill et
al. [120] employ the third-order moment of the joint histogram of two images, which
represents the skewness of the distribution, in order to guide the registration procedure.

The use of the n-th order moment of the joint histogram as a measure of disper-
sion is equivalent to a generalized version of the joint entropy [171]. Collignon [59]
and Studholme [270] were the first to propose the entropy as a similarity measure of
the correspondence of two images due to the capacity of the entropy of adequately
measuring the dispersion of the joint histogram. In fact, a dispersed histogram (and
consequently, a misregistration) produces a high entropy while an histogram with a
few number of sharp peaks (and then, well-defined correspondences between inten-
sities) provides a low entropy. Shannon entropy [259] is the most widely used in
entropy-based registration algorithms. Nevertheless, alternative entropy formulations
have been also proposed such as Jumarie entropy [230 ; 135], Renyi entropy [130 ; 168]
or f-entropies [239 ; 212 ; 200], to overcome some drawbacks associated to Shannon’s
expression of the entropy.

Mutual Information (MI), simultaneously proposed by Viola [292] and Collignon
[59], has represented a step forward in the use of entropy-based measures on image
registration. It expresses the quantity of information remaining in one of the images
to register knowing the other one, which is maximal when equivalent data sets are
correctly registered. A good property of this similarity criterion is its flexibility to deal
with a high variety of applications and images. As a consequence, Mutual Information
has been used in a large number of different registration applications, as illustrated in
an exhaustive review performed by Pluim et al. [217] about these techniques. Further
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details about Mutual Information can be found in Section 6.3.

The main advantage of entropy-based similarity measures is that the weight ac-
corded to each voxel is independent of its intensity. This allows these measures to
be only influenced by the statistical properties of the joint probability density func-
tion of the intensities. This makes these approaches very appropriate for multi-modal
applications where the relation between intensities is not functional.

A good review including other similarity criteria used in image registration can be
found in [244], where a high number of different measures coming from different fields
are presented. Some of these measures include: matched filters, optical flow com-
putation, grey-level variance in segments, gradient differences, normalized standard
deviation, cosinus criterion, divergences, distance to the independence, pattern inten-
sity, convolution,... Another comparison study between different similarity measures
can be found in [209].

2.5 Optimization

The optimal parameters of the chosen transformation model must be determined.
This can be seen as a multi-dimensional optimization problem in which the degrees of
freedom of the transformation will define the dimensionality of the situation. These
optimal parameters are assumed to produce the transformation that best aligns the
images to register. In the case of registration applications, the cost function to optimize
is usually composed of a dissimilarity term based on the selected similarity criterion,
and a regularization term that constrains the search in the parameter space.

Two possible approaches can be considered to obtain the optimal transformation
parameters, either by means of an ezhaustive search or by means of an iterative search
of the optimum of the cost function in the parameter space. The former technique
determines the parameters in a direct way and it assures the obtention of a global
optimum but it is very expensive in terms of computational cost. Due to the high
complexity of non-linear transformation models and similarity measures, the second
approach is the most common one.

It would be desirable that the cost function to optimize is convex, continuous and
of class C*, in order to guarantee a good behavior of the optimization step. In general,
the similarity function is quasi-convex [175] and most of the classical optimization
methods can be used. Nevertheless, it normally lacks of smoothness and several local
minima that could disturb registration results frequently appear. These local min-
ima can occur for several reasons [217] such as a local good match, errors due to the
choice of interpolation, distortions induced by noise and artifacts or overlap change.
Some solutions have been proposed in order to minimize the number of local minima:
pre-processing; noise and artifact elimination; the employment of higher-order inter-
polation methods; the normalization of the similarity criterion by the overlap region;
or the use of a constrained search space for transformation parameters.

Among the vast literature of optimization methods, the most popular in medical
registration applications are the quadratic or semi-quadratic approaches. These meth-
ods assume the quasi-convexity of the cost function around the optimal solution. The
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popularity of these approaches is due to their good performance in a well constrained
situation, such as in a registration case [11]: high similarity between homologous
features, adapted cost functions, quasi-unicity of the solution (if the search space is
limited), initialization close to the final solution, ....

A simple classification divides quadratic optimization methods in those that require
function derivatives, and those which do not require them. The exact or approximate
computation of the cost function gradient implies higher computational costs than
a simple evaluation of the function. Optimization methods based on the Hessian
matrix are even more expensive in computational terms. On the other hand, these
methods compensate this drawback with a fast and robust convergence towards the
desired solution once the gradient or the Hessian are already computed. Furthermore,
they are less sensitive to local minima than optimization methods that do not require
function derivatives. The choice between these two types of optimization methods
will depend on the application requirements in terms of accuracy and computational
cost, and in the availability or not of the cost function gradient. Some examples of
optimization methods that do not require function derivatives include the Downhill
Simplex [223] and the Powell [220] techniques. With respect to optimization methods
using derivate functions, some of the most popular in registration algorithms include
the steepest and conjugate gradient-descent, Newton-based, the Gauss-Newton and
the Levenberg-Marquardt [276 ; 173] techniques. The majority of cited optimization
methods are well detailed in [223]. A comparison of the performance of some of these
optimization methods can be found in [125 ; 170 ; 244].

Other optimization methods have been occasionally used in certain image regis-
tration applications. Simulated annealing [201 ; 226 ; 264], genetic methods [40 ;
120 ; 131], stochastic search [292 ; 195] or heuristic methods [88 ; 156 ; 180] are some
examples of these alternative optimization techniques.

Several improvements on these optimization techniques can be found in the lit-
erature in order to improve their performance in terms of accuracy, robustness and
computational cost. Some of the most frequently used in registration applications
are multi-resolution (pyramids) approaches, multi-scale schemes or the combination of
different optimization methods.

Pyramid schemes start by performing the optimization of the transformation pa-
rameters at a coarse resolution, which initialize the optimization at a finer resolution
stage of the pyramid, then refining the previous estimation, until reaching the sam-
pling of the original image. Different techniques have been proposed in order to con-
struct the pyramids. Gaussian pyramids [176 ; 162 ; 39|, local averaging [29 ; 304],
wavelets [224 ; 182 ; 78| or spline pyramids [288 ; 287] are the most commonly used. A
good review of these hierarchical methods can be found in [159]. Multi-scale schemes
consist in increasing the transformation complexity instead of modifying the image
resolution. In fact, the majority of registration methods use this strategy when they
first compute a linear transformation followed by a non-linear one. But some authors
have also introduced a hierarchy scheme in the non-linear phase [268 ; 45 ; 234 ; 166].
Finally, another possible improvement is based on the succession of several optimiza-
tion methods using fast and rough methods to obtain a first estimation of the initial
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position, followed by more accurate and slower optimization techniques to refine the
result. Several combinations of methods are possible but Powell’s method is frequently
used in the first stage [136 ; 231 ; 133].

2.6 CT-PET registration bibliography

Brain regions

Even if the main subject of the presented work is focused on thoracic and abdominal
registration applications, some references of CT-PET registration methods applied to
brain images are given as complementary information.

In brain image registration involving PET imaging modality, anatomical informa-
tion is usually provided by MR images due to their better quality with respect to CT
ones in these regions. Nevertheless, some works have been published in the CT-PET
brain registration context [48 ; 295 ; 38 ; 58 ; 175]. The registration literature in brain
MR-PET imaging is very large. Several of the most popular registration methods have
been evaluated in the Retrospective Registration Evaluation Project (RREP) [298].
Registration techniques involved in this project only provide linear transformations.
Other useful and non-linear registration methods for brain MR-PET images can be
found in the classical reviews on image registration [177 ; 159 ; 316 ; 217].

Thoracic and abdominal regions

A registration method applied to thoracic and abdominal regions is more complex
than methods for brain regions due to the higher severity of the deformations in these
zones. Additional problems appear when working in multi-modal applications, in
particular involving functional images. Some registration methods have been proposed
in order to overcome these difficulties.

Some of these registration techniques employ linear transformations in these re-
gions. Wahl et al. [295], aiming at registering PET with either CT or MR thoracic
images, use a 2D rigid, point-based method. Yu et al. [312] match PET and CT
images using a 2D rigid surface-based algorithm. A registration surface technique
based on the Chamfer distance is the choice of Cai et al. [42] in order to achieve a
thoracic CT-PET matching. Parsai et al. [207], in another surface-based approach,
use the ICP algorithm in a CT-SPECT thoracic and abdominal application. Maes
et al. [172] proposed a fully automatic affine geometric registration method based on
Mutual Information. It is applied to thoracic CT and PET images and on other multi-
modal applications. As mentioned in Section 2.3, linear transformations are not as
well adapted to registration of thoracic and abdominal images as non-linear ones.

Sato et al. [246] propose a point-to-point based matching methodology that uses
the Cauchy-Navier spline transformation to model the deformable anatomical behavior
associated with non-rigid thoracic medical image registration. This transformation is
applied to landmarks extracted from both images. The main drawback of this method
is the high computational cost associated to the optimization of the cost function.
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Meyer et al. [194] apply a Mutual Information-based registration algorithm in tho-
racic CT-PET images. They employ a full affine mapping and a five-point Thin-Plate
Spline (TPS) warped registration technique. Furthermore, this technique is also used
in a CT-SPECT abdomen application. The major drawback of this method is the
manual selection of the control points required for the TPS model.

In a similar method, Slomka et al. [263] propose a registration strategy divided
into four steps: a first step consisting of a 9-parameter linear multi-resolution regis-
tration based on Mutual Information between the CT image and a combination of
the emission and transmission PET scans; the next step concerns the automatic lung
contour detection in CT and transmission PET images; afterwards, a large number of
corresponding control points are computed on the detected lung contours by means of
a ray-tracing technique from the centroid of the lungs and outside the body; finally
a TPS interpolation algorithm from the corresponding control points is used in order
to furnish a dense non-linear transformation. The main drawback of this approach
concerns the selection of the control points, which in our opinion, is not optimal. Fur-
thermore, there is a lack of information in the regions far away from lungs and body
contours (even the information of the inside of the structure is not taken into account).
Finally, the use of TPS transformation model does not assure a local control of the
deformation, which is required in thoracic regions.

Tai et al. [273] have developed and evaluated a non-rigid CT and whole-body
PET registration method. Registration is performed following a multi-stage proce-
dure: mask on transmission images; compensation of linear attenuation coefficients of
different energy spectrums; and linear and elastic transformations.

Erdi et al. [87] also employ the transmission PET image to guide the registration
with the CT image in a thoracic application, based on the Mutual Information measure.

One elegant solution to the registration of chest CT and transmission PET images
was proposed by Mattes [188 ; 190]. They model deformations with cubic B-splines de-
fined by placing a regular grid of control points over the transmission PET volume and
then modified by moving the control points. Mutual Information is used to measure
image similarity, computed by means of a Parzen window technique. The optimization
procedure is based on a hierarchical multi-resolution approach. The authors point out
that obtained results are not completely satisfactory on more deformable regions such
as the diaphragm or the abdomen. Based on Mattes’ work, Delzescaux et al. [76]
studied the influence of the CT respiration phase and the Free-Form Deformation
(FFD) model ability to cope with non-linear deformations due to respiration move-
ments. They propose to transform the CT image instead of the PET one in order
to preserve the metabolic information provided by PET images, this approach being
well-suited for radiotherapy applications. Carlsen and Wischmann [43] also proposed
a FFD-based procedure using a CT-derived pseudo-transmission image to compute a
non-linear transformation based on tri-cubic B-splines

All previous non-linear techniques (except that one proposed by Sato [246]) assumes
a linear relation or even no deformations between emission and transmission PET
scans. This hypothesis is not always accomplished because emission and transmission
images are not acquired in a simultaneous way. Apart from little differences that can
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appear in cardiac regions, the main danger of this assumption concerns pathologies
or tumors that are only visible in emission PET images. Using only the transmis-
sion PET scan to guide the registration process, tumors shall not take into account.
Furthermore, the liver can not be distinguishable from the surrounding structures in
transmission PET scans, therefore, these methods cannot be used in abdominal reg-
istration applications. Figure 2.5 illustrates uptake differences between emission and
transmission PET scans that can influence considerably in the registration with the
CT image.

Y

Figure 2.5: Coronal slices showing uptake differences between emission and transmis-
sion PET scans. Left: emission PET scan. Right: transmission PET scan. The blue
marker is placed in a tumoral region. In the transmission PET image, tumor, kidneys
and liver are not as well contrasted as in the emission PET scan.

With respect to precedent FFD-based registration techniques, none of them directly
work on emission PET scans due to their low SNR quality and the lack of constraints
on the FFD transformation model. As a matter of fact, when working with emission
PET images, these approaches tend to get trapped in local minima of the chosen
similarity criterion if they are not initialized within a relatively narrow range near to
the final solution. This point is further discussed in Chapter 3.

In the particular case of abdominal images, SPECT images are sometimes used
instead of PET images. An affine point-based transformation is used by Kaplan et
al. [138]. Kramer et al. [146] propose a 2D polynomial-based technique in a CT and
MR-PET thoracic and abdominal image registration application. A similar low-degree
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polynomial-based technique is introduced by Maguire et al. [174] to match CT and
SPECT images of the abdomen. Concerning the same application, Koral et al. [145]
propose a Mutual Information-based registration approach. Scott et al. [251] use a
rigid surface-based technique combined with manually segmented contours of the CT
image to achieve a MR or CT-SPECT image registration application focused on the
lower abdomen. Studholme et al. [271] apply a rigid transformation computed by
means of a Mutual Information-based approach to match MR and PET images of the
pelvis. Pérault et al. [222] compute an affine point-based transformation to register
CT and SPECT pelvic images. Sjogreen et al. [262] use a rigid method based on the
principal-axes technique and optimized by means of the cross-correlation similarity
measure in a CT-SPECT kidney registration application.

In another context, General Electric provides a semi-interactive non-linear registra-
tion method, called Advantage Workstation Fusion software, in the stations furnished
in conjunction with the PET-CT combined systems. The goal is to correct the possi-
ble differences that still exist in the images provided by combined CT/PET machines.
The algorithm is not well explained in its corresponding site 2, but it seems to cre-
ate a model for the CT and PET transmission images using a six degrees of freedom
transformation.

2.7 Conclusions

The different possible choices for each aspect of a registration system have been
briefly presented. The first conclusion that can be drawn is that no registration
methodology is universal or well-suited for the broad range of registration applica-
tions which exist due to their different requirements in terms of accuracy, robustness
or computational cost. Furthermore, some studies such as the RREP project [298] have
proved that different registration strategies applied to the same images can lead to very
similar results. Therefore, the choices for each aspect of the registration technique shall
be taken according to the particular characteristics of the images involved in the pro-
cess and the constraints imposed by the application (see Section 2.1.2 and 1.3.1). A
discussion about each phase of a registration system with respect to our application
is presented below.

Image representation We recall that registration methods can be classified into
two categories with respect to the image representation aspect: feature-based methods;
and whole-content based methods. Due to the low SNR quality of emission PET scans,
the presence of severe deformations in thorax and abdomen and the lack of linear cor-
respondences between the intensities of homologous regions, a whole-content based
approach could rarely provide satisfactory enough registration results without addi-
tional prior information. In our application, some thoracic and abdominal structures
can be more or less easily recognized in CT and PET images, and these anatomical
features could be used to guide the registration procedure. Nevertheless, the number

2http://www.gemedicalsystems.com/rad/nm_pet/products/workstation/aw_fusionsw.html
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of these structures is limited and using only this feature-based strategy we will not
take into account local deformations far away from the recognized structures or even
those in the inner parts of the structures, leading to misregistrations. In consequence,
we propose to merge the advantages associated to each one of these strategies, us-
ing a feature-based phase to incorporate prior information in a whole-content based
registration method, as detailed in Section 3.2.

Transformation In Section 2.3.1, we have divided the type of transformation ac-
cording to three different criteria: influence area, nature of the model and geometry
preservation.

Concerning the influence area criterion, a combination of local and global transfor-
mations becomes necessary in order to model the different deformations of the thoracic
and abdominal structures between CT and PET images. For instance, differences in
scan formats such as size, resolution or field of view influence the whole scans while
movements due to cardiac cycle are only suffered in a local zone around the heart. As
a matter of fact, since macroscopic features are generally more stable than microscopic
ones (for human anatomy), it is always better to recover first global deformations and
in a later stage, local ones.

The geometry preservation criteria divides transformations into linear and non-
linear. As mentioned in Section 2.3.1, linear transformations are appropriate in reg-
istration applications where rigid structures are involved such as the head. A lim-
ited number of parameters have to be estimated and thus, low time-cost procedures,
well-suited for clinical routine use, are obtained. Thoracic and abdominal structures
undergo complex deformations due to respiratory and cardiac cycles and other phys-
iological processes that cannot be classified as rigid or linear ones. Moreover, the
time passed between both scan acquisitions induces long-term differences in the struc-
tures that cannot be either modeled in a linear way. On the other hand, computation
times of non-linear transformations are usually too high (due to the high number of
parameters to estimate) in order to be used in clinical routine.

The particularities of our application force us to use local and non-linear techniques,
but it do not impose any constraint on the use of parametric and non-parametric trans-
formation models. In theory, non-parametric techniques are better suited than para-
metric ones in some situations where the studied organs are very deformable [152 ; 197].
Moreover, they allow a high control of the regularization term, thus permitting the the
presence of discontinuities in the deformation field. This characteristic could induce
problems (it may violate the local continuity and bijectivity of the transformation) in
the interfaces between organs but it will represent the complex nature of body struc-
ture movements in a more accurate way. On the other hand, these approaches are in
general more expensive in terms of computation time than parametric techniques. Fur-
thermore, a parametric transformation model with an enough number of parameters
and local control of the deformation can also provide accurate results while assuring
smooth transformations.

Due to the non-unicity of the solution in medical image registration applications,
the decision of the transformation model will be taken according to the particular

43



2.7 Conclusions

requirements of our application: a high number of degrees of freedom to cope with
large and local deformations; and a reasonable computational cost.

Elastic, fluid, visco-elastic and physical models are limited by their time consuming
nature due to the regularization phase and therefore they are not well-suited in our
application. Moreover, this regularization stage does not guarantee that the deforma-
tions are correct, even if they are constrained to be realistic (based on the particular
characteristics of a given material). Radial Basis Functions methods are less accurate
than realistic approaches mentioned above, but they perform better in terms of com-
putational cost, being able to be used in clinical routine. The principal drawback of
these methods is the selection of control points that guide the transformation compu-
tation, in particular in our application due to the lack of stable and reliable anatomical
landmarks in PET images. Free-Form Deformations (FFD) bypass this problem by
using a regular grid of control points superimposed on the floating image, without a
previous segmentation step. Furthermore, this model is very flexible because no as-
sumptions on the underlying anatomy are made, thus allowing to deal with the great
variability of the anatomical structures in the thoracic and abdominal regions. An-
other good property of this deformation model is that it has a limited support, i.e. it
furnishes a local control of the deformation, which contributes to reduce significantly
the amount of computation needed during the optimization process. Registration al-
gorithms based on a FFD model with B-spline functions have been proposed in a wide
variety of medical applications [76 ; 123 ; 190 ; 250 ; 234 ; 242] in which structures
suffer local and non-linear deformations between the images to register. Even if FFD
have been mostly used in almost mono-modality applications 2, our methodology will
be based on this transformation model, as is further detailed in Section. 3.2. Never-
theless, we will need to adapt this model in order to overcome problems associated to
this transformation model when used in multi-modal applications.

Similarity measure In Section 2.4, the two main approaches with respect to the
similarity measure have been presented: methods assuming a functional relation be-
tween the set of intensities of the images to register; and statistics-based similarity
criteria. In CT and PET applications involving thoracic and abdominal regions, no
prior information about the relation between the intensities is available, thus statistics-
based approaches seem to be better suited than functional-based ones. Among the
statistics-based methods, the ones based on Mutual Information (MI) are the most
advanced and generally applicable. Therefore, in multi-modal medical image registra-
tion applications, these approaches have become a standard reference. Nevertheless,
MI-based methods have proved to fail in certain situations due to the presence of local
or spurious global maxima of the cost function to optimize. The use of multi-resolution
techniques or the combination of MI-based methods with feature-based ones can limit
these failures.

31t means that FFD have not been tested to register anatomical and functional images. To our
knowledge, they have only been used in anatomical registration applications (CT-CT, MR-CT, CT-
transmission PET scan).
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Optimization This registration stage is completely dependent on the choice made
in the precedent three phases. The optimization method must be chosen according to
the cost function nature, the availability or not of its gradient and the time constraints
of the targeted application.
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CHAPTER 3

Initial tests and proposed
methodology
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This chapter presents the methodology we propose to register CT and emission
PET images of thoracic and abdominal regions. First, in Section 3.1, some results
applying linear and Free-Form Deformation registration techniques to our images are
shown. The poor quality of the results obtained by these methods justifies the devel-
opment of a new registration approach dedicated to our application. The proposed
methodology is detailed in Section 3.2.

3.1 Initial tests

In Section 2.7, we have reached several conclusions about several parts of the regis-
tration methodology we need to develop, but some questions remain unanswered.
Things are clear concerning the need of a non-linear transformation and the use
of Mutual Information (MI) as similarity criterion. The choice of a Free-Form Defor-
mation model over other techniques as non-linear transformation has been justified in
Section 2.7. Nevertheless, we need to verify if a whole-content based approach may
provide satisfactory enough registration results or if it needs additional prior informa-
tion in our application. In theory, this approach has difficulties to deal with the low
SNR quality of emission PET scans, the presence of severe deformations in thorax and
abdomen and the lack of linear correspondences between the intensities of homologous
regions. In the following sections, we show some initial tests we have performed in
order to answer this question and to better identify the challenges of our registration
application.
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3.1.1 Linear registration

Even in registration applications requiring non-linear deformations, linear transfor-
mations are very helpful and they are mostly used to initialize posterior non-linear
stages. They can cope with larger and global deformations, leaving more local ones to
more accurate transformation models. Therefore, in these initial tests, we have used an
affine (12 parameters) registration algorithm, based on MI, in order to better identify
regions that undergo large non-linear deformations and to observe the difficulties of a
linear model to cope with them. The Powell optimization method [220] is employed to
obtain the transformation parameters. Similar strategies have been successfully used
for the registration of rigid structures (bone, brain). The interested reader is referred
to the survey on MI registration methods proposed by Pluim et al. [217] for a complete
list of these works.

Figure 3.1 shows results obtained by this linear registration algorithm in a thoracic
case. We can observe huge differences between the CT and the linearly registered PET
images, in particular around the diaphragmatic wall, i.e. the lower part of the lungs
or the upper part of the liver. This zone suffers severe non-linear movements due to
the respiratory cycle (in this case, CT was acquired in a single breath-hold at full
inspiration), mostly in the z axis, as seen in Figure 3.1. Nevertheless, in more rigid
regions such as the upper part of the lungs, the skeleton or the kidneys, the linear
registration algorithm provides correct correspondences.

Figure 3.1: Linear registration results in a thoracic case. Left: coronal (top) and axial
(bottom) slices of the superimposition of CT (grey) and registered PET (red temper-
ature) images. Center: coronal (top) and axial (bottom) slices of the superimposition
of CT (grey) and registered PET (red) segmented lungs Right: 3D superimposition of
CT (blue) and registered PET (yellow) rendered lungs. The three different displays
prove that a linear transformation cannot cope with deformations suffered by some
thoracic structures such as the lungs.
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3.1.2 Free-Form Deformation based registration algorithms

Once more deformable regions have been identified, we wanted to test the per-
formance of the FFD-based techniques in our registration application. Rueckert et
al. [242] were pioneers in using B-Spline FFD as the non-linear transformation mod-
eling deformations between two images to register. As mentioned in Section 2.7, this
technique has been mostly used in almost mono-modality applications in which cor-
respondences between the images to register are better defined than in multi-modal
cases. In theory, the lack of constraints on the FFD model combined with the lack of
uptake of several structures and the low SNR quality in the emission PET scans, does
not lead to good registration results with this strategy.

CT and emission PET registration

Therefore, we have applied this registration methodology to CT and emission PET
scans of thoracic and abdominal regions ! in order to identify its limits in our appli-
cation.

Rueckert’s registration method is divided into two phases: an affine registration
phase; and a non-linear registration phase based on a B-spline FFD model. The affine
transformation (some results are shown in Figure 3.1) initializes the non-linear stage
in which local deformations are recovered. Both stages use the Mutual Information
criterion to guide the optimization of the set of transformation parameters by means of
a gradient-descent technique. The optimization stage is embedded in a multi-resolution
framework, speeding up the convergence of the algorithm and providing more accurate
results. This registration technique is further detailed in Chapter 6.

Several parameters must be specifically tuned in a FFD-based registration tech-
nique, mostly the number of control points of the grid (the number of multi-resolution
levels, bins or target blurring are common parameters of any registration procedure)
that will define its resolution and in consequence the degree of local deformations the
transformation could cope. Another aspect to be taken into account with respect to
this choice is the computational cost of the algorithm because a higher number of con-
trol points involves a higher quantity of parameters to optimize. In our example, we
have found a good trade-off between these two aspects with a grid of 10 control points
per dimension, i.e. one control point each 60mm. The number of multi-resolution
levels has been set to 3 and the incremental step decreases from 8 to 0.5 through the
optimization procedure (these parameters have been tuned in an experimental way).

Figure 3.2 shows results obtained by applying this strategy to CT and emission
PET images of thoracic and abdominal regions. We can observe in the non-linearly
registered emission PET image (bottom right in Figure 3.2) that the FFD-based reg-
istration technique fails to provide good results, even if it is initialized with an affine
registration phase (bottom left in Figure 3.2 and Figure 3.1). For instance, we can
observe that several critical structures are fully misregistered such as the liver or the
kidneys and that the lung registration is neither accurate enough. The set of inten-
sities in emission PET scans corresponding to the boundaries of these structures are

LOpen-source codes of this method are available at www. imageregistration.com
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Figure 3.2: Results obtained by computing an affine + FFD transformation between
CT and emission PET images. Top: CT (left) transmission (center) and emission
PET (right) original images. Bottom: registered emission PET images obtained by
applying affine (left) and affine+FFD (right) transformations. The displacement field
(red arrows) associated to each one of these transformations (affine on the left and
FFD on the right) is superimposed on the images. These results prove the difficulties
of this approach to deal with the particular characteristics of our application.

not well distinguished and, depending on the incremental step in the parameter op-
timization stage, some incorrect transformations can provide good similarity measure
values. As a matter of fact, the optimization step must be large enough to cope with
severe deformations involved in these elastic regions, but the lack of constraints in
the FFD model allowing any possible correspondence between the images produces
these misregistrations. The tuning of the registration parameters coul improve these
results as well as the use of multi-grid techniques, but we consider that, even if this
MI-FFD registration technique is very useful in some applications, we need to change
the strategy in order to deal with CT and emission PET images.
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CT and transmission PET registration

In addition, we have also tested the strategy proposed by Mattes et al. [242] in order
to register CT and PET images of the thorax. They use a similar registration approach
as Rueckert et al. [242], but in order to deal with problems associated to emission
PET images, they employ the transmission PET scan to compute the transformation
which best aligns it with the CT scan. Therefore, they assume that there are no
deformations between emission and transmission PET images. This strategy seems
to provide good results when this assumption is fulfilled, but in some pathological
images, the strong differences existing between emission and transmission PET scans
in tumoral regions make this assumption too risky. Moreover, Mattes’ approach cannot
be used in abdominal images because structures located on this region cannot be
seen in transmission PET images. Some results obtained by applying this strategy
to CT and emission PET images of thoracic and abdominal regions are illustrated in
Figure 3.3. This figure shows the transmission (bottom row) and emission (second row)
PET scans registered with the affine (left) and affine + FFD (right) transformations
obtained between the CT and transmission PET images. The displacement field (red
arrows) associated to each one of these transformations is also superimposed on the
images.

We can observe in Figure 3.3 that this registration strategy provide accurate results
for the lungs, due to the high contrast of these structures with respect of neighboring
regions in transmission PET scans. Nevertheless, the algorithm furnishes misregistra-
tions of the liver and the kidneys, and in general, in the abdominal region, due to the
lack of uptake of these structures in the transmission PET scans. As a matter of fact,
we can see that the FFD displacement field (red in middle and bottom righ images
of Figure 3.3) forces the lower part of the liver to go up, while in order to obtain a
better matching with the CT liver, the PET one should be deformed in the opposite
direction.
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Figure 3.3: Results obtained by computing an affine + FFD transformation between
CT and transmission PET images. Top: CT (left) transmission (center) and emission
PET (right) original images. Middle: emission PET image registered by applying
the transformation computed between the CT and transmission PET scans. Bottom:
transmission PET image registered by applying the transformation computed between
the CT and transmission PET scans. The displacement field (red arrows) associated
to each one of these transformations (affine on the left and FFD on the right) is
superimposed on the images. These results prove the difficulties of this approach in
several regions, in particular in the abdomen.

56



Initial tests and proposed methodology

3.2 Proposed methodology

In the previous section, we have highlighted the problems associated with whole-
content based non-linear registration approaches when working with emission PET
images in thoracic and abdominal cases and without prior information or constraints
introduced in the procedure. These techniques must cope with large and elastic defor-
mations but they are usually trapped in local minima of the cost function due to the
strong presence of noise and artifacts, slowing down the convergence of the algorithm,
but even worse, providing incorrect registration results.

In order to avoid these problems, prior information about the anatomical structures
involved in the application must be introduced in the registration procedure. The
incorporation of prior anatomical information in registration processes is at the core
of current state-of-the-art research in non-linear registration.

In the majority of cases, prior anatomical information is introduced in an implicit
way. This approach forces the registration procedure to furnish plausible deforma-
tions that have been found by modeling the expected structure variability between the
images to register and the spatial relationships between these structures. Biomechan-
ical Finite Element Models (FEM) such as NCAT phantom [254 ; 255] and statistical
model methods such as Active Appearance Modeling (AAM) [67] or Statistical Defor-
mation Modeling (SDM) [241] can be used to obtain prior information about plausible
deformations. Two major drawbacks are associated to this approach in the context of
our application. First, relying in anatomical atlas or expected structure morphology
and movements obtained by means of an average of different images seems too risky
when working with pathological images (as in the case of oncology) due to the large
inter-patient variability. As a matter of fact, tumors may appear anywhere in the
image, being able to modify considerably shape and volume of structures, as well as
spatial relationships between them. Secondly, implicit approaches ask for additional
registration processes in order to align prior anatomical models to the image data. The
main consequence is an increase of the computational overhead of the whole procedure,
which is a critical point in our application, as justified in Section 1.3.3.

Due to the particular requirements of our application, we propose an alternative
approach based on an ezplicit incorporation of anatomical prior information into the
registration procedure. This approach consists in obtaining anatomical knowledge
directly from the images to register by means of segmentation techniques. This infor-
mation is used to initialize deformations as close as possible to the final solution before
applying whole-content registration techniques. With this initialization, the search of
the global solution will be constrained and the algorithm will converge in a more ro-
bust and faster way. This approach does not make assumptions on the structures or
their deformations but only rely on available information in the images, permitting to
work with any kind of unexpected situations. Moreover, the extraction of anatomical
knowledge from the images is in general less expensive in terms of computational cost
than registration procedures.

A general scheme of the registration approach we propose is shown in Figure 3.4. It
is divided into two stages: a structure registration phase (see left part of Figure 3.4)
in which homologous structures are segmented (A’ and B') in both CT and emission
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Figure 3.4: General scheme of the proposed approach. The left part corresponds to the
structure registration stage and the right part to the grey-level registration stage. The
transformation obtained between the segmented structures initializes the registration
phase that works with the whole set of intensities.

PET grey-level images (A and B) and registered; and a grey-level registration
phase in which a non-linear registration technique is applied to the whole set of image
intensities of the images. The second stage is initialized with the transformation
(Tstruet) provided by the structure registration stage and it furnishes the final non-
linear transformation (Zyrey—ievet)-

As a matter of fact, the structure registration phase (see Chapter 5) can be seen
as an anatomical multi-resolution step, filtering out from the data the main anatom-
ical structures, then transferring the result as an initial estimate to a higher level
where finer anatomical detail will be considered. The grey-level registration phase
(see Chapter 6) can be considered as a refinement step of the structure registration
results, capable of correcting any errors the segmentation might have induced and
improving the registration of those regions distant from the segmented structures.

Transformations in both steps are modeled by means of Free-Form Deformations
(FFD), governed by a three-dimensional grid of control points. This choice facilitates
the interaction between initialization and refinement stages, as it will be shown in
Section 6.2. Nevertheless, different similarity criteria will be used in each registration
phase to compute the transformation parameters due to the difference of working with
the segmented and labelled anatomical structures (structure registration phase) or the
whole set of intensities (grey-level registration phase).

The use of this strategy also implies a less expensive registration procedure in terms
of computational cost. The reasons are the robustness improvement of the registra-
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tion algorithm in the presence of local minima, and the reduction of the number of
iterations required for the grey-level registration phase due to the proximity of the
initial transformation to the final solution. On the other hand, the inclusion of the
anatomical feature extraction stage (see Chapter 4), makes the registration method-
ology dependent on the amount of anatomical information obtained from both data
volumes. Furthermore, this segmentation stage is a challenging task in emission PET
images, in particular if a high accuracy is required. Nevertheless, as further detailed in
Chapter 4, the proposed registration methodology only asks for an approximative seg-
mentation of the structures in both scans in order to obtain an initial transformation
between them, that will be refined in the grey-level registration stage.
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CHAPTER 4

Structure segmentation
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This chapter is devoted to the structure segmentation stage, which is the first
phase of the structure registration stage. First, in Section 4.1, the choice of the com-
mon structures to be extracted in CT and emission PET images is justified and an
explanation of the segmentation procedure is given. This procedure is based on a
hierarchical strategy (Section 4.2), divided into an initial segmentation and a refine-
ment phase based on a deformable model. In Section 4.3 some results of the structure
segmentation in CT and PET images are shown and discussed, and finally, in Sec-
tion 4.4 conclusions about this segmentation stage are presented. This chapter is
complemented with Appendix D, in which preliminary results on a semi-interactive
tumor segmentation procedure are shown.
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4.1 Introduction

It should be evident at this point that the effectiveness of the proposed registration
method is strongly related to the actual amount of anatomical information that we are
capable to extract from both data volumes. This anatomical information will be ex-
plicitly incorporated in the registration procedure in order to complement information
provided by the images and to constrain and initialize the subsequent whole-content
based registration phase.

Segmentation or recognition of anatomical structures in medical images is at the
core of current state-of-the-art research in image processing and computer vision fields.
The constant improvement of the quality of these images and the availability of power-
ful computers allow to develop medical segmentation-based procedures (atlas construc-
tion, medical training) helping physician’s critical decisions. Nevertheless, medical
image segmentation remains a challenging task due to either inter-patient variability
or imperfections linked to image acquisition devices.

Given the noisy and complex nature of functional images employed in our applica-
tion, it could be a serious problem if an accurate segmentation were needed, as would
be the case if the final result would only rely on the registration of extracted anatomical
structures. Even if it is possible to localize several common structures in both imaging
modalities and if their segmentation in CT volumes can be achieved in an efficient
and robust way (depending on the desired accuracy), their recognition in emission
PET scans, in an automatic, robust and accurate way, is not a trivial task. This is
due to the poor emission PET image quality (noise, weak contours, artifacts) and the
large variability of the metabolic activity (uptake in the scans) in a given structure in
different patients or even within the structure !, as detailed in Section 1.3.2. These
characteristics make difficult the finding of structure contours in emission PET scans,
even visually in some cases.

However, in the proposed registration procedure, segmentation errors will not nec-
essarily be propagated to the final result, as the second intensity-based registration
stage will be able to correct them. Thus, we just need to get a reasonably good approx-
imation of the anatomical features visible in both volumes, or, if this is not possible,
as many references about them as can be detected. So, instead of accuracy, our main
concerns here are the speed and the reliability of the system. Speed prerequisite comes
from the desire of using the registration methodology in clinical routine, which forces
us to develop robust and fast image processing algorithms. As registration techniques
are already high computational cost procedures, structure segmentation must be per-
formed in almost real-time in order to dedicate most of the time to the alignment
computation. Furthermore, if a minimum interaction is desirable in order to improve
result robustness, a fast segmentation method is required.

Our registration methodology requires a list of homologous structures that can be
found and recognized in thoracic/abdominal emission PET and CT images in a robust
way. Furthermore, it is important that the representation of the selected structures

L As a matter of fact, emission PET segmentation procedures must deal with the same difficulties
as registration algorithms working with these images. This is not surprising because registration and
segmentation techniques are strongly linked, even if they are often seen as separated processes.
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would be as equivalent as possible in both scans (i.e. we visualize the same object in
both images), in order to deal with deformations caused only by physiological structure
movements and not by the acquisition characteristics. As mentioned in Section 1.3.2,
when using certain image modalities such as PET one, only a part of the structure
(the tracer is not accumulated in the same way through the whole structure) can be
seen and the registration procedure will try to compensate these differences produced
by the acquisition device, introducing wrong and sometimes severe deformations. For
instance, in the case of the lungs, the bronchia are seen in the CT acquisition while in
the PET image they do not appear, and these differences must be taken into account
before the computation of the transformation between the structures is performed.
Another example concerns the accumulation of the 18-FDG tracer in the heart, that
can vary up to a factor of ten in PET scans while it remains constant in CT images.

Based on discussions with medical experts, we finally chose to segment the following
structures: skin, skeleton, lungs, kidneys and liver. Since the skeleton is difficult to
extract with enough robustness in emission PET scans, it is only used for the CT image
segmentation as a support structure constraining the construction of some ROIs, but
does not play any role in the registration procedure.

Segmentation of the targeted anatomical structures is a challenging task, in partic-
ular in functional images due to the problems discussed above. Several authors have
proposed different segmentation algorithms for each targeted structure, in particular
in CT images, including the segmentation of lungs [17 ; 286 ; 4 ; 148], skeleton [315],
liver [196 ; 256 ; 163 ; 14 ; 161] or kidneys [266]. We do not present a complete
review of these methods in this manuscript because it is not the scope of our work.
Due to the proposed registration methodology, the segmentation accuracy is not the
end-goal validation criterion, unlike published segmentation techniques. Therefore, we
decided to develop a segmentation procedure according to the special requirements of
our application.

For the segmentation of the targeted structures, relying only on their image grey-
level intensities is not a robust and stable enough strategy, as they depend too much
on the acquisition characteristics and suffer from a high intra-patient variability. Con-
sequently, other types of information must be used to complement or constrain infor-
mation provided by the image. A classical way to introduce this prior information is
to use atlases or anatomical models. Apart from the high degree of shape variability
of thoracic and abdominal structures (e.g. over 40 different liver morphologies can
be found in the human being [68]), the use of atlases or anatomical models is always
open to criticism when working with pathological images, in particular in oncology
applications where tumors or surgical operations may modify considerably the mor-
phology of a given structure. Furthermore, the large structure deformations involved
in the targeted regions would require a previous registration phase between the atlas
and the images to segment, thus considerably increasing the computational cost of the
algorithm.

Instead, we decided to exploit the spatial relationships between the organs, which
are less sensitive to the deformations than the characteristics of the organs themselves
(shape or grey-level values). For instance, we can assure, without any doubt, that
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the liver is always localized below the lungs. This knowledge will provide a constraint
allowing to locate the liver which would not be segmentable relying only on intensities.
Therefore, we propose an original hierarchical segmentation procedure based on the
mathematical modeling of robust spatial relationships between the targeted structures
that shall provide prior constraints to be combined with information from the images.
Furthermore, using this strategy, we imitate the reasoning of a physician when inter-
preting a medical image and it allows an easy introduction of user or additional prior
information into the procedure. The segmentation of each structure is performed in
two steps: a first stage composed of automatic thresholding and other low-level pro-
cessing operations in a ROI defined by previously segmented objects; and a second
stage consisting in refining the result using a 3D deformable model.

4.2 Hierarchical procedure

Spatial relationships have been rarely used in medical image segmentation algo-
rithms. Some exceptions can be found in [22 ; 214 ; 64], where they are employed
in brain imaging applications. They take benefit of considering human body as a
structured scene, in which some relations between organs possess a high degree of
robustness and have a low inter-subject variability. In our application, we must also
take into account that in some pathological cases, some of these relations may be al-
tered. Many examples of stable spatial relations can also be found in thoracic and
abdominal regions only using basic knowledge on human anatomy: “stomach is placed
above kidneys”, “lungs are included inside the thoracic cage”, “liver is placed under
the lungs”, “kidneys are closer to liver than to lungs”, .... Although these spatial
relationships may seem trivial, their addition to an image processing algorithm can
considerably help in constraining or rejecting possible solutions.

Therefore, the proposed hierarchical procedure classifies the different anatomical
structures in a progressive fashion. The extraction of a given structure will be con-
strained by the information derived from those which are simpler to recognize. An
anatomical structure is considered as simple to segment if its associated intensities are
fairly homogeneous, if it is well contrasted with respect to neighboring structures and
if its morphology, spatial location and relationships are robust and not very variable
among different patients.

In general, spatial relations are categorized into three classes: topological, distance
and orientation relations [149]. Morphological and symmetry relations are sometimes
added as new classes. In our work, topological, orientation and symmetry spatial rela-
tions are used as prior constraints. This information is employed to construct Regions
Of Interest (ROI) (see Section 4.2.1) in which the search for new structures will take
place. As mentioned above, the segmentation of each structure 2 is performed in two
steps in the corresponding ROI: a first stage where a structure-specific combination
of low-level image processing techniques provide an initial segmentation; and a second
stage in which a 3D simplex mesh deformable model refines the previous results. As

2Skin and skeleton are segmented only using the first stage because they are only support structures
in the segmentation procedure.
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shown in Sections 4.2.2 and 4.2.3, spatial relationships are also used to select struc-
tures in the ROI corresponding to a given criterion and to constrain the subsequent
deformable model phase.

The proposed hierarchical method requires a specific order for the segmentation
of the structures. This order, which has been chosen based on structure recognition
simplicity and relationship robustness, is (see Figure 4.1):

1. skin,

2. skeleton (only for CT scan),
3. lungs,

4. kidneys,

5. and liver.

Using this hierarchical procedure, a good trade-off between speed of the algorithm
and quality of segmentation results can be achieved. Nevertheless, it must be pointed
out that an important drawback of this strategy might be the error propagation be-
tween different stages, i.e., errors obtained in the segmentation of simpler structures
will highly influence the segmentation of subsequent ones. In order to avoid this prob-
lem, consistency checks are included after each structure recognition, as it is further
detailed in Section 4.2.2.

4.2.1 Construction of the Regions Of Interest (ROI) by means
of spatial relationships

As described above, the search of a given structure is limited to a ROI defined
using robust and stable (even in pathological cases) spatial relationships with respect
to previously segmented structures. Relationships used in the proposed procedure
include direction, symmetry and exclusion relations.

The ROI for each structure is defined as follows.

Skin and skeleton

The skin constitutes the first step of the segmentation procedure in CT and PET
images and therefore no ROI is used. Concerning skeleton segmentation in CT scan,
it is only constrained to be placed inside the skin volume.

Lungs

In CT images, the lung ROI is derived from the skin, i.e., lungs must be included in
the area delimited by the skin.

As discussed in Section 2.6, several CT-PET registration methods [190 ; 263 ; 273 ;
87] proposed in the literature consider strictly no movement between emission and
transmission PET acquisitions. This assumption is not valid in all cases, as illustrated
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CT Emission PET

Simplest to
recognize
Skeleton
Lungs
Kidneys
) Hardest to
Liver :
recognize

Figure 4.1: CT (left) and PET (right) structures and order of the hierarchical segmen-
tation procedure.
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in Figure 2.5 and 4.2. For instance, in some clinical protocols the patient is moved
from the scanner bed after the transmission scan for tracer injection. Furthermore,
transmission PET scans do not give any metabolic information about tumor nature,
then there is not any uptake for the malignant tumors. On the other hand, as illus-
trated in Figure 4.2, lung contours are usually better defined in transmission PET
images than in emission ones, in which lungs are difficult to recognize 3.

Therefore, we use the transmission PET image, in which lungs are easier to segment
in order to obtain the lung ROI for the emission PET image, making the assumption
that there are no large lung deformations between emission and transmission scans.
This strategy will allow us to cope with little differences between both scans that
frequently appear in the cardiac region and to include information from tumoral re-
gions. The segmentation procedure detailed in Section 4.2.2 is used to recognize the
lungs in the transmission image. Then, we dilate (mathematical morphology dilation)
them in order to construct a ROI for the lungs in the emission image. Figure 4.2
shows the contours of the segmented transmission PET lungs (red) superimposed on
the transmission (left) and the emission (center) scans, and the ROI (right) for the
segmentation of the PET lungs.

Figure 4.2: ROI construction for the segmentation of emission PET lungs. The con-
tours (red) of the segmented tranmission PET lungs are superimposed on the trans-
mission (left) and the emission (center) PET scans. A dilation of the transmission
lungs is performed in order to obtain the ROI (right) for the emission lungs.

As mentioned in Section 1.3.3, in PET-CT hybrid systems, the attenuation correc-
tion is perfomed by means of the CT image, therefore the transmission PET scan is
not always available. Nevertheless, our strategy is still valid because in these cases, the
ROI for the emission PET lungs is built from the CT ones because they are already
rigidly registered, and there are not strong lung deformations between both scans.

Kidneys and liver

In CT images, an upper bound in the z axis is derived from previously segmented lungs
based on the following spatial relationship: “liver and kidneys are under the lungs”.

3Nevertheless, emission PET images acquired with recent high-quality scanners allow to segment
lungs without using transmission scans due to their well-defined contours.

67



4.2 Hierarchical procedure

This upper limit, computed on each 2D coronal slice, is composed of the lower lung
contours and a line linking two automatically extracted landmarks: the lower-left *
limit of the right lung (point B in Figure 4.3) and the lower-right limit of the left lung
(point C'in Figure 4.3). These landmarks have proved to be robust and stable enough
in all studied cases to define an upper bound for the kidneys and liver ROIs.

The automatic detection of these landmarks is achieved by the following procedure.
For each 2D coronal slice, the first lung contour point, starting from left columns of
the 2D slice, is selected (point A in Figure 4.3). Starting from this point, the next
landmark is defined as the one which has maz(z+z2), z and z being spatial coordinates
of the image (point B). In order to compute the corresponding points in the left lung,
the same procedure is used in a symmetrical way, this time the second landmark point
corresponding to maz(z —z) (point C in Figure 4.3). Once points B and C' are found,
a line linking them is automatically drawn, defining, together with the lower lung
contours, the upper limit of kidneys and liver ROIs for each 2D coronal slice. This
upper bound has proved to be very helpful for separating the liver from the heart, in
particular in CT images, in which these structures have similar grey-level intensities.

Figure 4.3: Landmarks (points A, B, C and D) and upper bound obtained from the
lungs in CT (left) and emission PET (right) images in order to built liver and kidneys
ROL

If the skeleton has been segmented, as in the case of CT images, additional limits
can be obtained for the kidneys and liver ROIs, by detecting the top of the pelvis and
the ribs. The following spatial relationships are then employed: “liver and kidneys are
above the top of the pelvis”; and “liver and kidneys are laterally limited by the ribs ”.

A lower bound is also computed using the top of the pelvis, which is extracted
from the skeleton. The top of the pelvis is found by the following procedure. The
area of the skeleton surface is computed for each 2D axial slice. This area can be used
to detect the first 2D axial slice in which the spine is visible, coming from the pelvic
region in a foot-to-head scanning: the top of the pelvis is then obtained when the 2D
axial skeleton area is below a given threshold which is chosen in an experimental way.

4In medical imaging the “left is right” convention is used.
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Finally, ribs are also used to laterally limit the ROI corresponding to kidneys and
liver. First, we remove z slices under the top of the pelvis that has been computed just
before. The next step separates the ribs from the rest of the skeleton by computing
symmetrical pairs of objects distant from the image symmetry plane in each 2D coronal
slice. Image symmetry plane and selection of symmetrical pairs of objects algorithms
are detailed in Section 4.2.2. Once ribs are found for each 2D coronal slice, a line
linking each rib with its two neighbor ribs is drawn, defining other limits of the CT
liver ROI, as can be seen in Figure 4.4.

In PET images, as skeleton is not available, we only use the upper bound derived
from segmented lungs.

Concerning the ROI for the liver, in addition the previously segmented kidneys
are suppressed from the ROI in order to avoid overlap between these structures, as
illustrated in Figure 4.4.

Figure 4.4: Examples of liver ROIs (in red) superimposed on grey-level images. Left:
CT image; Right: PET image.

The proposed procedures to obtain the limits of the ROI are very structure-specific
and have been derived from stable and robust relationships between the targeted
structures. Nevertheless, in largely pathological cases, some of these spatial relations
can be slightly disturbed. For instance, in post-operative images, one of the lungs
may be removed. In the proposed ROI construction methodology, lung recognition is
only critical to obtain the upper bound for liver and kidneys ROIs, but a lung removal
does not affect it because we could always use a more flexible upper bound computed
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from information provided by the remaining lung. The presence of large tumors in
the images do not have altered the performance of the ROI construction either. As a
matter of fact, the use of direction, symmetry and exclusion relations allows to impose
soft constraints on the algorithm, unlike other less flexible spatial relationships such
as distances.

The structure segmentation phase depends on the accuracy of the ROI construc-
tion, therefore each phase involving critical parameter tuning is followed by consis-
tency checks of the results, as detailed in the next section. Furthermore, the proposed
methodology permits an easy introduction of additional information about general spa-
tial relationship perturbations in some particular cases, thus improving the robustness
of the algorithm as well.

4.2.2 Initial segmentation

The initial segmentation of each structure is obtained by means of the following
sequence of operations (in this order) that are applied to the corresponding ROI:

1. K-means and automatic thresholding;
2. binary erosion;

3. selection of connected components;

4. binary dilation;

5. consistency check.

K-means: The well-known K-means clustering method [169 ; 85] is the first step of
the initial segmentation procedure. The goal of the K-means algorithm is to minimize
dissimilarity in the elements within each cluster (K denotes the number of clusters)
while maximizing this value between elements in different clusters. This method is
able to provide satisfactory classification results only if it is applied to a restricted
ROI, in which not too many structures (and thus, not too many different grey-level
values) appear. Otherwise this method will produce several segmentation errors. This
will be typically the case for the liver because it will be classified into the same class
as the heart due to the high similarity between their intensities. The use of spatial
relationships to construct the ROI solves this problem and allows us to apply automatic
thresholding. Nevertheless, an initial phase of parameter tuning (number of classes
and their centers) must be performed for each structure. In our case, after this training
phase, parameters have proved to be robust enough in order to fix them (for a given
anatomical structure) for the whole set of processed images.

Mathematical morphology: The two basic binary mathematical morphology op-
erations, erosion and dilation, are used in the initial segmentation procedure. The
former, applied after the K-means stage, aims at separating undesirable components
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from relevant structures and dilation, applied after the selection of connected compo-
nents stage, recovers some of the data lost in the erosion step. The interested reader
is referred to some of the classical books on mathematical morphology [247 ; 257] to
find further details about these operations.

A combination of mathematical morphological operations can be used as a 3D hole
filling procedure. The presence of holes in some segmentation results is induced by
either segmentation errors or the existence of small structures with highly different
grey-level values within a larger structure. For instance, in the case of lung structures,
in CT images, the bronchia are easily distinguished in the lungs in CT images, pro-
ducing the apparition of holes in the segmented volume, whereas in the PET scans,
the bronchia do not appear. This difference between CT and PET segmented volumes
will be wrongly interpreted by the registration procedure as a deformation to cope
with, thus producing wrong transformations. Therefore, the 3D hole filling stage is
employed to limit these differences.

Selection of connected components: This stage consists in selecting the correct
connected components among those classified by the automatic thresholding phase as
having similar intensities as the targeted structure.

In the case of liver and lung segmentation, the chosen criterion is to select the
largest connected components. A particularity of the lung segmentation concerns the
removal of the trachea in CT scans. This anatomical structure appears attached to
the segmented lungs in this imaging modality while it does not always appear in PET
acquisitions. In order to avoid the possible misregistrations induced by this situation,
the part of the trachea above (in the z axis, i.e. closer to the head) the lungs is removed
from the images. It is achieved by looking for the first axial slice (in a head-to-foot
scanning), in which only two connected components are found. As a matter of fact,
when the trachea is present, three connected components can be seen in the axial
slices. Therefore, these upper slices (with three connected components) are removed
from the segmentation. The subsequent segmentation stage based on a deformable
model prevents any problem due to the trachea removal by regularizing the solution.
Therefore, this special situation does not further lead to misregistration of the lung
structures.

A noteworthy exception in the selection of connected components is the case of
kidneys because they are not the largest connected components in the ROI. The two
most symmetrical components with respect to the body symmetry plane are selected,
as illustrated in Figure 4.5. The symmetry plane computation is based on an algorithm
originally developed for brain images [285] and the selection of symmetrical regions is
made using a symmetry measure proposed in [65].

For a 3D grey-level image f, a symmetry mesure of f with respect to a given plane
IT can be defined as a similarity measure between f and its reflection with respect to
I1, denoted eg(f):

o4(I1) = S(f, en(f), (4.1)

The search of a symmetry plane can be seen as a monomodal registration problem,
thus a standard [ metric or normalized correlation measure can be chosen. The
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corresponding symmetry measure o;(II) is computed as follows:

N —en(HI3

o) =1="517

(4.2)
where || f||2 denotes the [y metric of f.

The problem of finding the best symmetry plane is then expressed as the maxi-
mization of the symmetry measure which is an optimization problem in the parametric
space | — 7/2,m/2] x [0, 7[xR representing all possible plane orientations and direc-
tions. The optimization procedure needs an initialization and the ellipsoid of inertia
is usually used to define candidates for this starting point, in the case of brain images.
In our application, the vertical plane passing by the center of mass already provides
a good initialization. Afterwards, the symmetry plane initialization must be refined,
improving the position and the orientation of this plane. The Nelder-Mead downhill
simplex method [223] is used to this purpose. This method is accurate and robust
under a good starting point and it produces good results in our application, as can be
seen in Figure 4.5.

Figure 4.5: Symmetry plane (white vertical line) in a whole-body image and kidneys
symmetry. Left: CT image; right: PET image

Once the best reflection symmetry plane for the images is computed, the selection
of the most symmetrical components must be done. The symmetry measure of a pair
of binary objects (A, B) is defined as :

_ [Anen(B)|

S en(B) = 50 B

Then, for each pair (A, B) of connected components in the image, this symmetry mea-
sure is computed. The pair of connected components furnishing the highest measure
will be chosen as the most symmetrical one.

Consistency verification: Robustness is a major concern for any medical image
processing algorithm. In order to improve the robustness of the initial segmentation
procedure (in particular of the steps involving parameter tuning), we automatically
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verify result consistency after each critical phase. To this purpose a set of routines have
been developed that systematically check for certain parameters of the extracted organ,
like dimensions, volume or compactness, to be within the expected range. As a matter
of fact, physicians usually ask for an interactive control of structure segmentation
procedures, therefore, these check routines will help the development of an user-friendly
segmentation interface. From the robustness point of view, the most critical operations
include automatic thresholding and selection of connected component. Nevertheless,
due to the limited size of ROIs where structures are searched, errors produced by
these stages have been well identified and taken into account in the procedure. Some
situations involving repetitions of the procedure are:

e Skin: the K-means algorithm is systematically repeated with a range of different
number of classes because a circle around the visualized region appears in some
of the available CT images, as shown in Figure 4.6;

e Lungs: after the K-means stage, the lungs are classified either as a unique con-
nected component or as separated structures in CT images. This fact is due
to the thin part that separates both lungs in the anterior region and the low
resolution of some CT images, producing partial volume errors in the images,
as shown in Figure 4.6. By computing the centroid location of the recognized
structure, it can be known whether segmented lungs are joined or not (if the
centroid is placed far away from the symmetry plane of the image or not). If
only one of the lungs is found (lungs are separated), the selection of connected
components is repeated by selecting the two largest connected components of
the image instead of only the largest one.

e Liver: the separation of the liver from surrounding small structures having simi-
lar grey-level values is a complex task that even the use of a ROI has not solved.
Nevertheless, as we only require an approximation of the structure, possible liver
segmentation errors will be corrected in subsequent stages of the methodology.

In each image processing step, when consistency measures are finally within the
expected range, the detected region is the input of the following regularization phase.

If an inconsistency in the final segmented structure were ever detected, the proposed
methodology will force the whole procedure to be repeated with a different set of
parameters.

Even if the proposed segmentation procedure is a simple combination of low-level
image processing techniques, it is the introduction of robust spatial relationships and
the automatical construction of the ROIs that allows the system to provide an approx-
imative segmentation of the structures. This approximation is accurate enough for our
application, keeping in mind that a regularization phase by means of a 3D deformable
model will be further applied. Nevertheless, the proposed methodology allows an easy
integration of more sophisticated segmentation techniques that could be applied in the
ROI corresponding to a given structure.
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&

Figure 4.6: Ambiguities solved by consistency verification checks. Top: Presence or
absence of a circle limiting the FOV of the CT image. Middle and bottom: low (left)
and high (right) resolution CT images with joint (left) or separated (right) lungs,
leading to the selection of one or two connected components in the segmentation
procedure. The 3D rendered segmented lungs are shown in the bottom images.
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4.2.3 Refinement with a deformable model

The previous initial segmentation phase provides a good approximation of the struc-
tures, indicating their location in an accurate way. However, this result cannot be
considered as an accurate final segmentation result, even in our context of initial reg-
istration. The main problem is the lack of regularization. This has proven to be an
inconvenience in the case of subtle structures such as the bronchia (even after applying
hole-filling techniques), which can be detected in the CT scan but not in the PET one,
thus introducing a difference that the registration process will wrongly interpret as a
deformation and try to compensate. Furthermore, a regularization stage can be very
helpful to define the boundaries where, due to an insufficient image resolution or to
patient motion, no significant edges are found, such as in the liver.

These problems are overcome using a 3D simplex mesh deformable model [75], ap-
plied to the binary images containing structures segmented in the initial segmentation
phase.

Deformable models [139] are curves or surfaces defined in a given image domain
which evolve under the influence of constraints computed from image data (usually an
edge map) and regularity constraints. They have been largely used in several image
processing and computer vision applications, such as image segmentation, animation,
contour or motion tracking or shape and geometric modeling.

Basically, there are two main types of deformable models: parametric [139] and
geometric [181 ; 44] ones.

The former needs a parametric or discrete representation and it is based on an elas-
tic curve (or surface) that can dynamically evolve towards object shapes in response
to internal forces and external forces. Geometric deformable models, based on the
theory of curve evolution and the level sets method, employ an implicit representation
of the model and allow topology changes. They consider the snake as the zero level set
of a higher dimensional function, solving the corresponding equation of motion. This
approach is well-suited for the recovery of objects with complex shapes and unknown
topologies. Parametric deformable models are more intuitive for shape analysis and
visualization or for user interaction, and less expensive in terms of computational cost.
As a matter of fact, their mathematical formulation makes easier to integrate image
data, initial estimations, desired contour properties and prior constraints. Further-
more, they are robust enough to noise and possible contour discontinuities, obtaining
theoretically a sub-voxel segmentation of the image.

Due to the particular requirements of our application, a parametric technique has
been chosen. Geometric deformable models allow the structure topology to change
but in our specific problem, this is not needed and is even undesirable, according to
the physician’s point of view. Furthermore, when parametric deformable models are
implemented using a discrete representation, a fast convergence can be obtained. As
mentioned above, parametric techniques have also the advantage of naturally allowing
the use of initial results, which is very suitable in the proposed segmentation strategy.

Otherwise, parametric deformable models also present several problems. The most
critical one concerns the sensitivity of these models to their initial conditions, and they
have therefore to be initialized as close as possible to the true contour to avoid the
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convergence to an erroneous result. Nevertheless, segmentation results provided by
the initial segmentation stage are close enough to the final solution to assure a good
performance of the deformable model.

In the following paragraphs, basic guidelines on 3D deformable models are given.
Further details about 2D active contours, its numerical implementation and the ex-
tension to 3D can be found in Appendix C.1.

Evolution of the deformation model

The evolution of a deformable surface is usually described either using an energy
minimizing formulation or a dynamic force formulation. We present here the latter
which allows the use of more general data terms. The evolution of the deformable
surface X can be written as follows:

0X

Yo = Fint(X) + Fert(X) (4.3)

where F,,; is the internal force related to the physical properties or constraints of the
model that specifies the regularity (elasticity and stiffness) of the surface and F.y; is
the ezternal force that drives the surface towards the desired features in the image (in
general image edges), and sometimes includes forces interactively introduced by the
user. The solution is the steady state of the previous equation. The chosen internal
force is:

Fin = aV?X — BV?(V2X) (4.4)

where « and § respectively control the surface tension (prevent it from stretching)
and rigidity (prevent it from bending) and V? is the Laplacian operator. It is then
discretized on the simplex mesh using the finite difference method [306].

Gradient Vector Flow The choice of the external force is crucial in order to make
the deformable model evolve towards the contours of the object to segment. Initially,
Kass et al. [139] have proposed a force computed from the image gradient to achieve
this. Some drawbacks of this technique include a reduced attraction region and the
need of an initial deformable model surface very close to the targeted contour.

To solve these problems, in particular the capture range (or attraction domain),
Xu et al. [307] have introduced an external force based on the diffusion of the gradient
vector associated to a given contour map, called Gradient Vector Flow (GVF). A
generalization of this technique was also proposed, the GGVF [309], that improves the
convergence towards thin concavities and that converges towards the middle of thick
contours. On the other hand, this is a relatively high computational cost algorithm,
sometimes more expensive than the model evolution in computational terms.

The GVF technique produces dense vector fields derived from the images, by solv-
ing the equation of vectorial diffusion that distributes gradient vectors of a binary or
grey-level contour map computed from the image. Then, deformable models using
GVF as external force cannot be formulated as the negative gradient of a potential
force, unlike those using other forces, and the approach is expressed by means of a
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dynamical equation of forces. The GVF field u(x) of the function f(x) is defined as

the equilibrium solution of the following vector diffusion equation:

w = gV f)V2u - (Y f[)(u— V) ws
u(z,0) = Vf(z)

where u; = 71_1; and t is the time parameter. The first term of the first equation is called
smoothing term, and tends to smooth the resulting vector field. The second term is the
data term, and drives the vector field u towards the 7 f computed from the data. The
function f(x) can be any edge map and a classical Canny-Deriche [77] edge detector
followed by a hysteresis thresholding was initially used. However, this technique often
fails due to its Gaussian smoothing phase which looses weak contours. A gradient
computed after applying an anisotropic diffusion algorithm [100] has proved to provide
better results in some cases, because this technique removes noise in homogeneous
regions while keeping and even enhancing contours in the image. This has been very
useful for PET images due to their noisy nature.

The functions g(-) and h(-) are weighting functions that apply respectively to the
smoothing and data terms. They depend on the gradient of the contour map, which is
spatially variable, thus, these functions will also vary through the space domain. As it
is desirable that the vector field will vary in a slow and smooth fashion far away from
the contours (where the gradient is weak), but at the same time acts as V f near them,
g(-) and h(-) must be decreasing and increasing functions of | v/ f|, respectively. Thus,
a small smoothing is performed near strong contours (where h dominates), producing a
vector field similar to the one obtained only with the edge map gradient. The following
weighting functions, proposed in [309], accomplish these conditions:

g(IVfl) = e (F) (4.6)

WV =1-g(V I, (4.7)

where K determines the trade-off between the field smoothness and the fidelity to the
contour gradients of the image. This formulation allows gradient vector diffusion only
where there are no strong edges, thus preventing the smoothing effect from averaging
close opposing gradients, which could lead to a gap in the contour through which our
model could leak. An example of a GVF field computed for an emission PET lungs is
shown in Figure 4.7.

Regions of Interest constraining the deformable model A large number of
works [66 ; 260 ; 196] have introduced shape constraints in the deformable mod-
els. However, as we previously mentioned, relying on shape information would be
hazardous in our application and we rely instead on knowledge derived from spatial
relations. The Regions of Interest (ROI) computed from the spatial relations are used
in order to limit the evolution of the snake. An approach for integrating spatial re-
lations into deformable models has been proposed in [64]. This approach deals with
relations represented by fuzzy sets which can be seen as fuzzy ROIs. In our case,
the ROIs are binary and are therefore considered as a particular case of the previous
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Figure 4.7: Axial slice of GVF computed on an emission PET image (left) and detail
(right).

approach. The integration is accomplished by means of an additional term inserted in
the external force formulation. This term, called a limiting force, must be combined
with one derived from the image data and must constrain the model to keep it from
going outside the ROI. But inside the ROI, the model must be only limited by the data
term (the limiting force must be zero inside the ROI). Thus, the modulus of this force
must be inversely proportional to the satisfaction of the condition. Finally, this force
is preferable to have a certain spatial regularity and its computation should remain
reasonable.

Therefore, the external force is not only derived from image edges but also con-
strains the deformable model to stay in the ROI. It can be written as a linear combi-
nation:

Fe:ct = Av + ,UJFROI (48)

where v is a Gradient Vector Flow (GVF) field and Froy is the force attached to the
ROI and A and p are weighting parameters.

The second term of the external force is used to prevent the deformable model from
going outside the ROI. This can be useful, for example, for separating the liver from
the ribs, the heart or the kidneys. Fgo; is a distance potential force [56] and it can
be written as follows:

FROI(HC) = —XROI(SC)”%&;H (4-9)

where d is a distance map to the ROI and xgror is the characteristic function of the
ROI (this means that this force is switched-off inside the ROI). It should be noted
that we also use the ROI as a mask on the GVF and thus the GVF is equal to zero
outside the ROI. Finally, we also use the ROI as a mask on the obtained segmentation
to ensure that no objects are overlapping.

Simplex mesh deformable model

A discrete representation has to be chosen in order to implement the parametric
deformable model to achieve the refinement stage. Most common discrete represen-
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tations are triangulations and simpler meshes. Even if triangulations are easier to
construct, simplex meshes, introduced in [75], are the selected discrete representation.
This decision avoids problems due to surface parameterization associated to trian-
gulations, while remaining a reasonable computational cost algorithm. In addition,
local shape constraints can be easily added to the model, and there are also simple
discretization methods for the evolution equations and topologic and geometric adap-
tation algorithms. Other good properties of this approach include that they are are
topologically dual to triangulations and have a constant vertex connectivity. Complete
details on simplex meshes can be found in [74 ; 75 ; 196].
The following procedure is used to obtain simplex meshes:

1. Erosion of initial segmentation;
2. generation of triangulations with the isosurface algorithm;
3. decimation of triangulations;

4. conversion from triangular to simplex meshes.

First, initial structure segmentations are systematically eroded in order to ensure
that this initialization is inside the targeted object. The next step consists in trans-
forming them into a triangulation. This transformation is performed by means of an
isosurface algorithm [213] based on tetrahedra. Once the triangulation is computed,
the mesh must be decimated in order to reduce the number of triangles to a manage-
able quantity. The last step converts the triangular mesh into a simplex mesh [75],
using the dual operation.

Definitions A simplex mesh is a polygonal mesh where each node (vertex) has a
constant number of connections to its neighbors (a k-simplex of R" is then a mesh with
every vertex having k 4+ 1 neighbors, k& being equal to n). This neighbor relationship
defines the edges of the mesh. In addition, a face is defined as a series of vertices,
successively linked in pairs by the edges, and in a way that no edge divides by two
this face. Then, faces in a simplex mesh are not necessary flat. Mathematically, a
k-simplex mesh M of R" is defined as the pair (V (M), N(M)) where V(M) is the
vertex set of M given by

V(M) ={P,i€{l,...,n},P, € R"} (4.10)
and N (M) is its associated connectivity function, defined as follows:
NWM):{1,....,n} — {1,..., 0} (4.11)
in such a way that
Vie {l,...,n},i —> (N1(2), No(%), - .., Ngs1(2)) (4.12)
and
Vie{l,...,n},Vje{l,...;k+1},Vie{1,....k+ 1}l # (4.13)
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(1) Nj) #i
(2) M) # Ny(i).

Constraints (1) and (2) assure that the mesh will not present loops or double edges.
A connectivity constraint is also added in order to guarantee that for every pair of
vertices, there exists a path between them. A simplex mesh can be defined in any
dimension, but in our work, only the case of 2-simplex meshes of R® are considered
(every 3D surface can be represented by means of a 2-simplex mesh). Thus, these
meshes are 3-connected. Examples of 2-simplex meshes are shown in Figure 4.8.

(b)

Figure 4.8: Examples of simplex meshes. (a): liver (top) and caudate nucleus (bot-
tom) simplex meshes; (b) simplex mesh of an art object (by courtesy of Carlos Her-
nandez [118]).

Dual operation Triangular meshes have been largely studied in recent years for
several computer vision applications and they are obtained in a simple fashion. The
topological duality of these meshes with simplex ones offers us the possibility of gener-
ating, in a simple fashion, a simplex mesh from a triangular one. The dual operation is
based on the following correspondences from a triangular to a simplex mesh: a vertex
becomes a face; and a triangle becomes a vertex.

It must be pointed out that this duality is only exact in a topological sense, but
not in geometrical terms. Therefore, if a triangular mesh is transformed into a simplex
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one, and then, reconverted to a triangulation, it would be topologically similar, but
geometrically different due to the position changes of the vertices. The center of each
face must be joint to its vertex, obtaining a triangulation with more vertices, but
geometrically correct, as can be seen in Figure 4.9.

Figure 4.9: Left: simplex mesh; Center: dual triangulation; Right: triangulation
geometrically corresponding to the simplex mesh.

Construction of the triangular mesh A triangular mesh is constructed from
each segmented structure by means of isosurface techniques. An isosurface is a surface
that goes through the whole set of space points that have values equal to a specified
isovalue, resulting in a tesselated surface. The marching cubes algorithm, proposed
in [165], has been largely used in recent years in visualization and other computer
vision applications. In spite of being an efficient and simple algorithm, it has been
proved that it possesses some inconsistencies and ambiguous cases [213], producing
rendering errors in the resulting surface. Thus, another isosurface algorithm [213],
based on tetrahedra instead of cubes, is employed because it produces an Eulerian
surface, while being simpler and more general.

Evolution of the simplex mesh The dynamical equation 4.3 is discretized by
means of a finite differences method [306], resulting in the following formulation of the
evolution for each vertex p of the mesh:

pl = pt*1 + T(@Aptfl — 5A(Apt*1) + Fewt(ptfl)) (4.14)

where 7 is the time step and A is the discrete Laplacian operator computed on the
simplex mesh (A? is the discrete biharmonic operator).This operator is computed as
follows:

N 1
Ap = g(pl +p2+Pp3) — P (4.15)
o 1 3
A(Ap) =5 _pi+6) pi+12p) (4.16)
=4 =1

points p; ... P9 corresponging to the neighbors of first and second order of p.
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Figure 4.10: Example of an initial segmentation (left) and its refinement (right) with
the deformable model of emission PET lungs.

As in the case of 2D deformable contours (see Appendix C), the external energy
term F,;; can be obtained for each vertex p of the mesh by means of an interpolation
of its values in the discrete contiguous positions to the vertex. Then, an efficient
numerical implementation of the deformable surface will depend on the regularity and
the simplicity on the obtained mesh.

Topology and geometric refinement Several techniques have been proposed in
[196] and [74] in order to improve the quality of the resulting simplex mesh in topolog-
ical and geometrical terms, using mesh characteristics such as the normal of a vertex,
the simplex angle or the mean curvature. The topological quality is defined as the
regularity of the number of edges which make up a face, since it is desirable to have a
similar number of vertices for each face. Our meshes have been refined in order to ful-
fill these topological quality requirements by means of a succession of edge exchanges.
Geometric refinement is useful to simplify the representation and to reduce computa-
tional costs, but it is not necessary for our application due to the relative small size
of our objects and the closeness to the final solution of the initialization provided by
the first initial segmentation step.

Influence of the regularization phase An example of the influence of this reg-
ularization phase is shown in Figure 4.10. In this figure, we can observe the effect
of the deformable model refinement in the segmentation of PET lungs. The initial
segmentation result (left in Figure 4.10) is not a smooth surface due to the nature of
the PET scan. This is corrected in the deformable model stage, producing a regular
surface better suited for subsequent algorithm stages. Care must be taken concern-
ing the trade-off between the data and the smoothing terms in the deformable model
evolution . In our application, a different set of parameters have been chosen for CT
and PET images due to the different level of confidence on their contour gradients
For instance, in PET scans, the smoothing term has more influence in order to define
the boundaries where no significant edges are found in the image. This is done at the
expense of loosing some local data provided directly from the image, such as in the
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upper part of the right lung in Figure 4.10. Nevertheless, the grey-level registration
stage will recover this loss of information.

4.3 Results

In our work, 20 data sets composed of CT and PET (emission and transmission)
scans of thoracic and/or abdominal regions provided by three different hospitals have
been used. An example of structure segmentation results in both CT and emission
PET images is shown in Figures 4.11, 4.12 and 4.13. In the first figure, 3D simplex
meshes of final segmented structures, including skeleton (white), lungs (red), kidneys
(yellow) and liver (blue), are superimposed on 2D coronal slices of CT and PET grey-
level images. In the second (CT) and third (PET) figures, 2D axial slices of original
grey-level volumes are superimposed with contours of final segmentation results cor-
responding to lung (red), kidney (green) and liver (blue) structures.

There has been no quantitative validation of these results because it would require
too much additional time, since it involves the acquisition of manual ground-truth
segmentations (in emission PET images, manual structure segmentations will not be
reliable enough to assess a segmentation procedure). Furthermore, the end-goal valida-
tion criterion is not the segmentation accuracy, but the final mapping of the anatomy
in both data sets.

Nevertheless, we have assessed segmentation results in two different ways: a vi-
sual inspection of these results by expert observers; and a retrospective segmentation
evaluation from the assessment of final registration results.

Visual inspection of segmentation results has been done by superimposing them
on original grey-level images and comparing corresponding structure contours. The
visual accuracy criterion has taken into account our context of initial registration and
it should be more severe if these segmented structures would be used as final results.
Segmentation results have been positively evaluated by medical experts, in all CT
and PET structures. Lung segmentation results are very accurate in CT images (in
practice, we obtain global sub-voxel segmentation accuracy) while in emission PET
ones, some insignificant errors (these errors do not induce further misregistrations)
appear due to the low SNR of these images. Furthermore, the strategy of using the
emission PET scan to refine lung segmentations obtained in the transmission PET
images has proved to provide more accurate results, in particular in pathological cases.
Concerning kidney segmentation, the symmetry plane procedure has proved to be very
efficient and the only problem has been the classification of the inner part of these
structures, that sometimes has different grey-level values. A 3D hole filling processing
stage has solved this situation. The liver is the most difficult structure to segment
both in CT and PET images due to the presence of several neighboring structures
with similar grey-level values. A reasonable approximation of the liver is obtained,
notably separating it from kidneys and heart. Nevertheless, we have sometimes found
unidentified small structures close to the liver (i.e. the rate) that our procedure does
not separate. In our application, this situation is not a major concern but in other
medical segmentation applications it must be classified as a bad segmentation result.
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The second way of evaluating segmentation result accuracy is based on the assess-
ment of final registration results obtained by the proposed methodology. As a matter
of fact, the transformation computation between CT and PET images strongly de-
pends on the anatomical information that we are capable to extract from both data
volumes, i.e., it depends on the segmentation result accuracy. Therefore, the evalua-
tion of final registration results can also be seen as a retrospective assessment of the
segmentation stage. This point is discussed in Section 8.4.

Figure 4.11: Simplex meshes of final segmented structures, including skeleton (white),
lungs (red), kidneys (yellow) and liver (blue). Left: 3D rendering of CT segmented
structures superimposed on a 2D coronal grey-level slice. Right: 3D rendering of PET
segmented structures superimposed on a 2D coronal grey-level slice.
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Figure 4.12: Contours of the CT segmented lungs (red), liver (blue) and kidneys
(green), superimposed on 2D axial slices of the CT grey-level image.
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Figure 4.13: Contours of the emission PET segmented lungs (red), liver (blue) and
kidneys (green), superimposed on 2D axial slices of the emission PET grey-level image.
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4.4 Conclusions

In this chapter, we have presented an original hierarchical segmentation procedure
aiming at segmenting several significant anatomical structures (lungs, kidneys, liver) in
CT and emission PET images. The segmentation strategy has been implemented ac-
cording to the special characteristics of the structures, the imaging modalities involved
in the application and our context of initial registration.

The use of a hierarchical procedure takes advantage of stable spatial relationships
between structures to construct the ROIs where the search of a given structure takes
place. In this way, segmentation of the most difficult structures, such as liver in emis-
sion PET scans, has been achieved by using classical image processing techniques that
could not been used without spatial constraints provided by simpler and previously
segmented structures.

The ROI construction is very structure-specific because it is based on spatial rela-
tionships that can not be generalized to other structures or even to the same structures
imaged with other modalities. For instance, in PET images acquired with new tracers
(see Section 1.2.2), there are even less anatomical references than in FDG-PET scans
and the segmentation of some structures in these images is, at the moment, quite im-
possible. Nevertheless, the general proposed segmentation procedure can be used in
other recognition applications. As a matter of fact, we have employed a similar strat-
egy in a brain internal segmentation application [64], obtaining very good results (see
Appendix E for further details about this work). The developed strategy could be also
used in non-medical applications, in structured scenes in which spatial relationships
present high robustness. It is only required to identify and model them, and construct
their corresponding ROlIs.

The main concerns in this stage have been the robustness and the convergence speed
of the procedure, therefore the segmentation methodology has been designed according
to these requirements. Concerning robustness, consistency check routines have been
added after segmentation steps involving less robust parameter tuning. An important
drawback of the proposed strategy could be the error propagation between different
segmentation stages, i.e., errors obtained in the segmentation of simpler structures will
highly influence the segmentation of subsequent structures. Here again, the consistency
checks included after each structure recognition appear to be very important and allow
us to avoid these problems. The robustness of the segmentation procedure cannot be
satisfactory enough in largely pathological cases when spatial relationships or structure
morphology are considerably altered. For instance, if our segmentation procedure is
applied to a case in which a kidney has been removed, the selection of the two most
symmetrical components for kidney segmentation will provide incorrect results. On
the other hand, a lung removal will not influence the final segmentation results, as
discussed in Section 4.2.1. However, the proposed segmentation strategy allows an
easy introduction of prior information and user interaction, that could solve these
problems.

With respect to convergence speed, the procedure employs low computational cost
algorithms in the initial segmentation phase, while the regularization phase has been
implemented to assure a fast convergence as well. For a pair of images with standard
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dimensions °, the initial segmentation phase takes about 60 seconds and the regular-
ization phase about 90 seconds for each structure. These computation times fulfill
time constraints of our algorithm, thus having a larger time margin for registration
algorithms of the proposed methodology.

Therefore, using the proposed hierarchical procedure, a good trade-off between
speed and segmentation accuracy has been achieved. A visual inspection of the results
has been done because a quantitative validation would ask for a manual segmentation
of several structures in CT and emission PET images. Furthermore, these manual
segmentations will not be reliable enough for segmented structures in emission PET
images due to their low SNR. The second way of evaluating segmentation result accu-
racy is based on the assessment of final registration results obtained by the proposed
methodology, as discussed in Chapter 8.

5CT image with a size of 512 x 512 x 60 voxels and a PET image with 144 x 144 x 200 voxels.
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Structure registration
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This chapter is devoted to the registration between the CT and PET homologous seg-
mented structures. After a brief introduction (Section 5.1), the initial linear transfor-
mation computed between the segmented structures is detailed in Section 5.2. There-
after, in Section 5.3, the Iterative Closest Point (ICP) algorithm and its use in order to
initialize the grey-level registration stage is discussed. The following section presents
two additional non-linear registration methods, called RMS-FFD and GVF-FFD, both
optimization of a Free-Form Deformation model. Finally, we evaluate and
compare the results obtained with the three different surface non-linear registration

based on the

methods in Section 5.5.
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5.1 Introduction

The main goal of this stage is to find a transformation between homologous CT
and PET anatomical features that have been recognized in the previous segmentation
phase. The segmented structures employed in this stage include lungs, kidneys and
liver. Skin and skeleton (in CT images) are also obtained in the segmentation pro-
cedure (see Chapter 4). Nevertheless, the skin is not used for registration purposes
due to the excessive variability of this structure among the images without providing a
reliable reference for guiding the registration of other internal structures. The skeleton
is not used due to the difficulty of its extraction from PET scans, thus, it is only a
complementary step in the segmentation of CT images but without playing a role in
the registration procedure.

The transformation between segmented structures can be seen as an initialization
of the final registration stage working with the whole set of grey-level values. The non-
linear transformation chosen for the last registration stage is a FFD model, therefore,
the structure registration procedure must, in some way, initialize the control points of
the FFD grid close to their final displacement value, in order to make their optimization
easier in the last step. Then, an important issue will be the interaction between both
registration phases, as discussed in Section 6.2.

The registration method in this phase works with labeled images (a different label
is affected to each 3D surface) and it must compute the deformation between cor-
responding 3D surfaces representing segmented thoracic and abdominal structures.
Registration of 3D surfaces has been extensively treated in various fields of image
processing and computer vision. Interesting reviews of these techniques can be found
in [5; 177]. In our application, the registration procedure must deal with structures
having different characteristics in terms of geometry, local irregularities and topology
(even if they have in general spherical topology). For instance, the algorithm must
deal with the concavities produced by the bronchia in lung surfaces while assuring an
appropriate regularization in the most sphere-shaped structures such as the kidneys.

First, a linear registration is applied to the extracted homologous structures, as
detailed in Section 5.2. Then, three different methods to compute the non-linear
transformation between CT and PET anatomical features are implemented: a first
one based on the ICP algorithm (see Section 5.3); and two methods derived from the
FFD deformation framework, called RMS-FFD (see Section 5.4.2) and GVF-FFD (see
Section 5.4.3), each of them with a different optimization method. A scheme of this
stage, including the different phases of each structure registration method, is displayed
in Figure 5.1.

5.2 Linear registration

In general, non-linear registration methods proposed in the literature compute an
initial rigid or affine transformation in order to cope with global deformations between
the images to register. In the developed procedure, before moving to the non-linear
registration of the labeled images, the segmented structures can be easily used to au-

90



Structure registration
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Figure 5.1: Scheme of the non-linear structure registration stage. Different phases
corresponding to each developed method are shown. Left: ICP-based method. Center:
RMS-FFD method. Right: GVF-FFD method.

tomatically establish a first approximation of the alignment. This includes translation
and independent scaling in the three axes and cropping out the parts of the volumes
without a correspondence or that have no interest for our application. This is achieved
using a computed bounding box surrounding the structures to register in both modal-
ities !, as illustrated in Figure 5.2. Trivial as it may seem, this simple step allows
the whole system to be independent of the actual field of view (FOV) of the origi-
nal images, unlike the classical registration methods which need a manual adjustment
(mainly in the z direction, as in [170]) before being able to apply them to CT and
whole-body PET images. The difference in field of view of the images to register can
cause difficulties, as anatomical structures identified in one image may not be present
in the second. By using the proposed strategy, our image database may include vol-
umes as dissimilar as torso CT and whole-body PET scans. The combination of the
hierarchical segmentation strategy and this initial cropping stage allows us to register

'When there are several segmented structures (lungs, liver, kidneys) in one image, we use a unique
global bounding box for all structures.

91



5.2 Linear registration

these images without the need of any user interaction, concerning their differences in

FOV.

Figure 5.2: Example of different fields of view and bounding boxes computed around
the structures. Left: original CT (top) and PET (bottom) images superimposed on the
bounding box computed from lung segmentation. Right: input of the lung structure
registration stage.

In addition, this approach simplifies and speeds up the registration procedure, by
reducing the spatial resolution and size of the images. To this purpose, we assume that
the anatomical regions visualized in both bounding boxes are in general equivalent in
terms of real spatial dimensions. For instance, even if PET lungs are smaller than CT
ones, they represent the same structure, and then, the CT and PET bounding boxes
surrounding them must have approximately same dimensions in millimeters. Even if
this hypothesis is not completely true, due to the deformations suffered by the organs
between both image acquisitions (respiratory and cardiac movements, different part
of the structure visualized in CT and PET images, ...), errors produced by this as-
sumption are not important enough and will be compensated in the final grey-level
registration phase. In the particular case of the lungs, one of the most deformable
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structures, this hypothesis is still valid due to the small movements suffered by the
upper part of the lungs and the lower point of the lung (usually placed at the lower-left
part of the right lung) between CT and PET images. Concerning liver and kidney seg-
mented structures, our assumption does not affect the performance of the registration
procedure.

Therefore, the sampling spatial resolution of each axis corresponding to the vol-
ume with higher resolution is modified in a way that the number of voxels match
with that one of the lower resolution. In our application, the registration accuracy
is limited by the resolution of the PET image, then the CT volume is downsampled,
removing large quantity of data that do not provide significant information for reg-
istration. Once bounding boxes are built and downsampled, translational and scale
degrees of freedom are already roughly recovered. Then, we apply a classical affine
registration technique [171] between CT and PET bounding boxes, using the Powell’s
multi-dimensional direction set method [220] in order to find remaining parameters of
the linear transformation (rotation and skews).

5.3 Iterative Closest Point (ICP) algorithm

One of the most successful linear registration feature-based methods is the Iterative
Closest Point (ICP), proposed by Besl et al. [16], and it has been widely used with
good results in several applications [207 ; 314 ; 151 ; 191]. A non-linear transforma-
tion is more approppriate in our application for initializing the subsequent grey-level
registration phase, therefore, an adaptation of the rigid ICP transformation must be
done. To this purpose, we employ the distance map provided by the ICP, as detailed
in Section 5.3.2.

5.3.1 Linear transformation

The ICP algorithm iteratively tunes a rigid transformation to minimize the Eu-
clidean distance between two element (point, line, triangle, ...) sets, the correspon-
dences of which have been determined by proximity, as shown in Figure 5.3. Even
if any kind of element sets can be used, the ICP algorithm establishes point-to-point
correspondences using a given distance, so the data may need decomposition into point
sets. Its popularity is mainly due to the fact that it always converges in a monotonous
way towards the closest local minima, having a fast convergence rate in the first iter-
ations.

S and S’ being two surfaces, there exist two ways of performing the registration:
either by determining for each point P’ of S’ its corresponding point P in the surface
S, by means of a search under some constraints in a specific region of S; or by using an
iterative estimation of these correspondences. The latter option is the approximation
used by the ICP. Two steps are iterated in this algorithm until a given stop criterion
is satisfied:

e let S be the surface of the reference image (the fixed one) and S’ the surface of
the target one (that one to transform). To each element P/ € S’, we assign the
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Figure 5.3: ICP correspondences in a line (a) and a circle (b) registration case.

homologous element P; € S which minimizes the following distance:
d*(P] - F;) (5.1)

In order to speed up the procedure, a precomputed distance transformation of
the volume containing S can be used. To achieve this, a Chamfer Distance
Transform (CDT) technique is employed, avoiding the high computational cost
associated to the exact Euclidean distance. The CDT, proposed by Rosenfeld et
al. [238] and generalized in [28], is a fast algorithm that only uses two scans of
the volume in order to compute an approximation of the distance transform.

e the computation of the parameters corresponding to the rigid transformation T
which minimizes the following distance is performed:

D=3 (T(P) - P, (5.2)

The transformation is calculated by a quaternion-based method [126] in each
iteration and the optimal transformation is applied to the surface S’.

As mentioned above, this scheme converges in a monotonous way towards the
closest registration position.

5.3.2 Non-rigid adaptation

The rigid (translations and rotations) transformation provided by the ICP algorithm
does not provide too much additional information with respect to the result given by
the linear registration phase (Section 5.2).

Some non-rigid extensions of the ICP algorithm can be found in the literature.
Feldmar et al [90 ; 91] define a 3D Euclidean point in 8D with normal and principal
curvatures in addition to the spatial coordinates component, implementing global and
local affine, volume spline and radial basis functions transformations.

However, we propose a simpler non-linear adaptation of the ICP algorithm, based
on the distance map computed for this method, in order to cope with more local de-
formations and thus better initialize the subsequent grey-level registration phase. The
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procedure is composed of three stages: an estimation of the non-linear transformation
between surfaces already registered by the rigid ICP method; a generalization of this
estimation to the whole volume; and the initialization of the positions of the FFD
control points that will drive the grey-level registration stage.

Non-rigid projection of the surface

The distance map computed for the ICP method by means of the CDT technique is
employed to estimate an efficient, if primitive, non-rigid transformation. This distance
map is used in order to project the elements P’ of the surface S’ onto their homologous
closest points of the reference surface S. In fact, the non-rigid deformation field f is
obtained by storing the distance between each pair of corresponding points. In order
to compensate for the lack of regularization, each vector is averaged with the mean of
its neighborhood. One example of the non-rigid projection is shown in Figure 5.4. It
can be observed an evident improvement of the surface matching with respect to the
rigid ICP results, in particular in most deformable parts such as in the diaphragmatic
wall.

Figure 5.4: PET lung contours (red) registered with the rigid transformation provided
by the classical ICP registration method (top) and non-rigid projection (bottom),
superimposed on the homologous CT lung contours (grey).

Generalization of the deformation to the whole volume

The previous step provides a transformation only valid for image points placed on
the surface of the structures. Therefore, this transformation must be extended to
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the whole structure volume, for instance by propagating the solution defined on the
surface. An iterative diffusion process, proposed in [99], is applied to the deformation
vector field f by forcing it to have a zero Laplacian V f = 0. This technique consists in
solving the zero Laplacian field, knowing the limit conditions, by changing (in a parallel
way) the non-limit values into the mean of its neighbor values, and by iterating these
changes until convergence is reached. For each spatial dimension, the procedure is
initialized by a linear interpolation of the deformation values on the surface and then
their propagation onto the interior of the volume is done.

Initialization of the FFD control points

Once this non-rigid transformation is obtained, we need to transfer it to the FFD
grid that will guide the grey-level registration phase, i.e. initialize the FFD control
points with the 3D dense vector field provided by the extended ICP algorithm. This
is achieved by a classical linear interpolation, assigning to each control point the 3D
dense vector field values in its neighborhood, weighted by the distance to the control
point. It is clear at this point that the accuracy of this FFD grid initialization will
strongly depend on the number of control points, meaning that we will need a enough
populated grid to recover information provided by the extended ICP algorithm.

5.3.3 Results and conclusions

Some results obtained by using this registration procedure are shown in Figure 5.5.
The evaluation of their registration accuracy is done in Section 5.5. Anyway, by simple
visual inspection of the images, it can be appreciated a noticeable improvement on the
CT and PET structure matching with respect to linear registration results. This
enhancement relies on the better proximity of the PET structure contours to the CT
ones, in particular in regions having more global non-linear deformations. As a matter
of fact, this method works better when applied to more sphere-shaped structures such
as the liver, as illustrated in Figure 5.5, due to a lower number of ambiguities in the
projection step.

Nevertheless, some drawbacks associated with this technique must be pointed out.
Some erroneous deformations appear around structures without an obvious correspon-
dence. This is due to the projection of the segmented structure contours which is very
sensitive to large differences between CT and PET anatomical features. One example
concerns the errors found in the lungs, caused by the presence of large local irregulari-
ties that the ICP-based structure registration method cannot cope with. In fact, there
is a trade-off between the regularization of the results and the capacity of the method
to cope with more local deformations, which prevents this technique to provide better
transformations in these zones.

Another criticism on this method concerns the simplicity of the generalization
of the deformation on to the whole volume, based on a zero Laplacian condition.
Furthermore, it is a time consuming step, which is a critical point in our methodology.
Some modifications could be done in order to speed up the algorithm convergence such
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as the use of a multi-resolution approach in the propagation. Further work must be
done in order to improve this stage.

Finally, another drawback of this structure registration procedure involves the in-
teraction with the FFD-based registration, that is solved in such a way that some
information can be lost and, consequently, some of the precision achieved in the reg-
istration of the segmented structures can be lost as well.
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Figure 5.5: Structure registration results obtained with the ICP-based method. Grey-
level coronal and axial CT slices are superimposed on contours (red temperature)
of registered PET lungs (top rows) and liver (botton rows). Left: PET structures
registered with a linear transformation. Right: PET structures registered with the
ICP-based method.
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5.4 FFD-based non-linear structure registration al-
gorithms

Due to the limits of the ICP-based procedure concerning the interaction with the
grey-level registration stage, we have chosen to integrate both structure and grey-level
registration phases within the same FFD deformation framework, originally intended
only for the grey-level stage. Therefore, thoracic and abdominal PET structures in
the labeled PET image will be mapped onto their homologous CT ones in the labeled
CT image. The main advantages of this strategy are: the availability of more degrees
of freedom in order to model more local deformations; and the simplification of the
interaction between both phases. On the other hand, this approach implies an increase
of the computational burden of the registration procedure, as shown in Section 5.5.

5.4.1 Free-Form Deformation model

As justified in Section 2.7, a non-linear transformation based on B-spline Free-
Form Deformations (FFD) has been chosen to model differences to cope with in our
application. FFDs, introduced by Sederberg et al. [253] and first used by Rueckert et
al. [242] for registration purposes, are a particular case of non-linear transformations
computed by means of a linear combination of spline basis functions.

In this technique, deformations of the floating volume (the PET scan in our ap-
plication) are achieved by tuning an underlying mesh of control points, but unlike
the case of TPS, FFD employs a regular mesh of control points equally distributed
on the image, thus avoiding the complex control point selection phase needed in TPS
approaches. On the other hand, several control points of the FFD grid will be located
in places with no interest for registration purposes, thus increasing computational cost
of the procedure without providing additional information.

Once the FFD grid has been optimized, control point displacements are interpo-
lated to obtain a smooth and continuous C? deformation field for the whole image,
using some spline basis functions. The nature of the chosen basis function will strongly
influence the local control of the deformation. For instance, if cubic B-spline basis
functions are used, we will obtain a more local control, at the expense of a higher
number of control points in the FFD grid. On the other hand, if Bernstein basis func-
tions are employed, a lower number of control points is required, but we will obtain
less local deformations as well. In medical applications involving elastic deformations
in which a high local control is desired, B-splines is the most frequently used basis
function [76 ; 123 ; 190 ; 250 ; 234 ; 241].

A B-spline based FFD can be written as a 3D tensor product of one-dimensional
cubic B-splines, producing a transformation separately for each axis. Let ® denote
an uniformly spaced grid of n, x ny X n, control points ¢;;; with a spacing of ¢,
where -1 < ¢ <n,—-1,-1<j<n,—1,-1 <k <n,—1. Then, the non-linear
transformation for each image point z,y,z is computed as:

u(z,y,2) = Z Z Z 01(1) 0 (V)0 (W) Pit1,j 4 ko4 (5.3)

=0 m=0 n=0
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Here, ¢ = |z/n,| — 1, j = |y/ny] — 1, and k = |2z/n,| — 1, denote the index of the
control point cell containing (z,y,z), and u = z/n, — |x/ns|, v =y/n, — |y/ny ], and
w = z/n, — |z/n,]| are the relative positions of (z,y,2z) in the three dimensions, 6
through 63 being 1D cubic B-splines:

o = (1—u)’/6

01 = (3U3 — 6U2 + 4)/6

0o = (—3u®+3u*+3u+1)/6
03 = U3/6

(5.4)

As mentioned above, a very convenient property of B-splines is the fact that they
have a limited support, thus providing us a local control of the transformation, which
contributes to reduce significantly the amount of computation needed during the op-
timization process. Furthermore, thanks to this compact support and the separability
as a tensor product, the B-spline can be precalculated and stored in an array to accel-
erate the process. A 2D grid of control points and a 3D teddy bear deformed with a
FFD model are shown in Figure 5.6. This figure illustrates the effect of control point
displacements on the object deformations.
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Figure 5.6: A 2D grid of control points and a 3D teddy bear are deformed with a
FFD model. The displacement of several control points of the grid induces smooth
deformations of the objects.
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The number of control points of the grid is chosen according to the magnitude
of the local deformations to cope with, the resolution and the size of the images to
register. In general, we have experimentally set the distance between control points
to 20mm in the bounding box around the structures to register, that has proved to
provide accurate enough results.

5.4.2 RMS-FFD

Once the transformation model is chosen, the similarity criterion that will drive
the optimization of the control point displacements must be defined. The choice of
this metric is, in this case, straightforward as we are working with labeled images
with a linear intensity relation. Thus, the Root Mean Square (RMS) difference of
corresponding voxel intensities, summed across the whole volume, will be used to
determine the optimal deformation parameters 2.

It should be pointed out that employing RMS as similarity criterion allows us to
deal with several structures in each image at the same time to perform the registration,
by assigning adequate values to the labeled structures. For instance, right lung and
liver are spatially close, so we give them values as most separated as possible in the
color scale. Moreover, additional weights can be used in order to further penalize
deformations overlapping close structures, such as the lungs and the liver.

Optimization

The optimization of the transformation parameters (i.e. control point displace-
ments, ¢; ;) is achieved by applying iteratively a gradient descent technique to all
control points simultaneously, as proposed by Rueckert et al. [242], advancing along
the gradient direction until no further improvement of the similarity measure is found:

Dijk = Dijk + 1V Dijk, (5.5)

where p is the optimization step size and V¢; ; is the gradient estimation, that must
be re-calculated after each iteration of the procedure.

This gradient estimation is performed by computing local differences over the con-
trol point grid: for every control point, one step displacements are tried along each
axis, and subsequent differences in the similarity criterion are measured. If one of these
displacements provides better similarity measures (i.e. better registration results), the
control point displacement is updated.

This procedure is embedded in a multi-step framework, in order to cope with more
global deformations at the beginning and more local ones at the end. Furthermore,
a local spring force regularization term, pulling each node towards the centroid of its
neighboring nodes, has been added to avoid overfitting and to prevent the nodes from
intersecting, which could lead to unwanted alterations of the structure topology. The
following scheme summarizes the optimization of one control point displacements:

2from now on, RMS-FFD is used to refer this method.
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A

displacemenf

Figure 5.7: Gradient estimation based on local differences over the grid of control
points.

Algorithm 1 Optimization of node displacements with a gradient estimation

for all 3 degrees of freedom (x,y,z) of each control point (i,j,k) do
computation of the similarity measure (s in Figure 5.7) in a small window around
the control point
set control point displacement to + step size: ¢; jr = +u
re-computation of the similarity measure (sl in Figure 5.7)
set control point displacement to - step size: ¢; ;r = —pu
re-computation of the similarity measure (s2 in Figure 5.7)
if s1 or s2 is better than s then

update control point displacement: ¢; ;x = @k +uV Pk = Gijrp+p(s2—sl)

end if

end for

application of local spring regularization term

Results and conclusions

Examples of results obtained by registering PET segmented structures (lungs and
liver) with their homologous in CT images using the RMS-FFD and linear registration
methods are displayed in Figure 5.8. On the left part of the figure, 2D axial and coronal
slices of superimposed CT (grey) and registered PET (red) structures are shown. In
a similar way, two different views of the superimposition of the 3D CT (blue for CT
lungs and green for CT liver) and registered PET (brown for registered PET lungs
and red for registered PET liver) rendered structures are also shown. We can visually
appreciate the good performance of the RMS-FFD algorithm in both lung and liver
cases, even with largest and most local deformations. A complete evaluation of these
results is achieved in Section 5.5.

It is worth noting that using this scheme to register the segmented images raises
convergence and computational cost issues that could be avoided if a simpler reg-
istration method, like the ICP-based method of Section 5.3, were applied instead.
However, this implementation melts elegantly with the next registration stage, inte-
grating as just an extra step of the multi-resolution chain used in most voxel-based
techniques. Moreover, as seen in Figure 5.8, the obtained transformation provides a
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high quality and valuable initialization that will make easier and notably accelerate
the final grey-level registration step.

Figure 5.8: Structure registration results obtained with the RMS-FFD method. Left
part of the figure: 2D coronal and axial slices of CT (grey) segmented lungs (top rows)
and liver (bottow rows) are superimposed on their homologous PET structures (red),
registered with a linear transformation (first and third row) and with the RMS-FFD
method (second and fourth row). Right part of the figure: a 3D representation of the
same structures is shown (CT lungs in blue, registered PET lungs in brown, CT liver
in green and registered PET liver in red).
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5.4.3 GVF-FFD

An important drawback of the RMS-FFD method in our application, that is quite
limited in terms of convergence times, is precisely its associated high computational
burden. This is due to the nature of the optimization procedure, in which a local
gradient estimation is needed at each iteration to update the control point displace-
ments of the whole grid. For instance, in a typical grid of 10 nodes per dimension, the
algorithm must compute at each iteration the gradient for 3000 parameters. Multi-
resolution and multi-grid approaches accelerate the convergence of the algorithm, but
the gradient estimation remains a problem in terms of computation time.

Optimization

We propose an original way to speed-up the optimization of the control point dis-
placements, using a 3D dense vector field v computed over the contours of segmented
target structures (in our case, CT structures) instead of the gradient-based procedure
employed in the RMS-FFD algorithm. This vector field provides a displacement vec-
tor at each image voxel pointing the direction towards CT structure contours, thus
giving us information about how a surface must evolve to assure a good matching.
Therefore, we update control point displacements of the FFD grid at each iteration
with the information provided by displacement vectors located in the neighborhood of
each control point:

R
Gijk = Dijk + u% Z p(r,4, 4, k)v,, (5.6)
r=0
where R denotes the number of floating structure contour points under the influence
of a given control point and p(r, i, j, k) is a weight depending on the distance between
the contour and the control points.

The main advantage of this approach is that the vector field must be computed
only once, unlike the gradient estimation that must be updated at each iteration.
Moreover, as we work with structure contours, voxel scannings will take lower times as
if whole volumes were considered, thus reducing even more the computational burden
of the algorithm. The following algorithm summarizes this optimization procedure:

There are several options to obtain v. The simplest one could be the use of some
kind of vector distance transform technique such as the CDT (already used in the ICP-
based registration algorithm, see Section 5.3), computed on CT structure contours.
Another possibility concerns the use of the Gradient Vector Flow (GVF) technique,
described in Section 4.2.3, that is usually employed to guide deformable models in
segmentation applications, but to our knowledge, it has not been used before to guide
a FFD model in registration algorithms. The advantage of the GVF with respect to
the CDT approach is the presence of a regularization term controlling the trade-off
between the smoothness of the vector field and the fidelity to the contour gradients of
the image. As a matter of fact, a smooth vector field is better suited for optimizing
FFD control points, at the expense of slightly increasing the computational cost of the
algorithm due to the regularization term. However, a trade-off must be taken between
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Algorithm 2 Optimization of node displacements with a 3D dense vector field
for all segmented structures to register do
contour detection of the structures to match {already registered in a linear way }
computation of v over target structure contours
while p # pieng do
while distance(n) < distance(n-1) do
for all control points do
computation of r
store v values of r (i.e., v,) and weight them with the distance with respect
to the control point (p(r,1, j, k))
update control point displacement with Equation 5.6
end for
application of local spring regularization term
apply FFD grid to floating structure contours
computation of the distance between target and floating contours
end while
divide p by 2
end while
end for

outlier rejection and the nature of the local deformations to cope with in the vector
field computation.

Therefore, the GVF technique is chosen to furnish the 3D dense vector field 3.
The left part of Figure 5.9 shows a 2D axial slice of the superimposition of CT lung
contours on the GVF field computed over them. It can be observed that despite of
the regularization term, the local irregularities of the lungs are well coped with.

Once v is obtained, we need to update the control point displacements of the FFD
grid according to the GVF vector field. As we are working with structure contours,
we only take into account the v values of the set of floating structure contour points
r under the influence of each control point. These v, values are weighted according
to their distance to the control point under consideration p(r,i,j, k), and the mean
of the resulting vectors are taken as the optimal control point displacement direction.
The magnitude of the displacement also depends on the step (u) of the optimization
procedure. At the end of each iteration, a local spring regularization term is applied
in a similar way as in the RMS-FFD algorithm (see Section 5.4.2).

The convergence of the algorithm depends on the quality of the computed vector
field. As a matter of fact, in some cases, the evolution tends to oscillate in the vicinity
of CT structure boundaries. In order to avoid that, the distance between target
and registered floating contours is computed at the end of each iteration and is used
as a stop criterion when the contour evolution starts to oscillate. Furthermore, we
have introduced the procedure in a multi-step framework in order to cope with large
deformations in the first iterations and with more local ones at the end.

3from now on, GVF-FFD is used to refer this method.

105



5.4 FFD-based non-linear structure registration algorithms

An example of the evolution of PET lung contours towards their corresponding
CT contours is shown in Figure 5.9. It can be appreciated the remarkable improve-
ment of the contour match after applying the GVF-FFD registration method (right in
Figure 5.9) with respect to results obtained by a linear registration procedure (center
in Figure 5.9). Nevertheless, some problems appear in regions undergoing more local
deformations.

It must be pointed out that in our registration context, in which we need to register
several thoracic and abdominal structures at the same time, some problems could arise
if structures overlap with non-corresponding structures since the labels are not taken
into account in the contour evolution. We deal with this situation by computing the
GVF field and making the floating contours for each structure evolve independently.
In fact, possible errors produced by that will be corrected in the subsequent grey-level
registration phase.

Figure 5.9: Contour evolution of PET lung contours towards their corresponding CT
ones using the GVF-FFD method. A 2D axial slice of the GVF field computed over
the CT contours is superimposed on them (left), and on PET contours before (center)
and after (right) applying the GVF-FFD method. Top: 2D axial slice. Bottom: detail.

Results and conclusions

Examples of results obtained by registering PET segmented structures (lungs and
liver) with their homologous in CT images using the GVF-FFD and linear registration
methods are displayed in Figure 5.10. On the left part of the figure, 2D axial and
coronal slices of superimposed CT (grey) and registered PET (red) structures are
shown. In a similar way, two different views of the superimposition of the 3D CT
(blue for CT lungs and green for CT liver) and registered PET (brown for registered
PET lungs and red for registered PET liver) rendered structures are also shown. By
means of a simple visual inspection of the results, we can appreciate that we obtain
better registration accuracy using the GVF-FFD method with respect to the linear
registration algorithm, but it does not reach that one derived from the use of the RMS-
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FFD registration procedure. On the other hand, the GVF-FFD technique converges
much faster towards acceptable (in our application) transformations, as detailed in
Section 5.5, in which a complete evaluation of these results is also presented.

Figure 5.10: Structure registration results obtained with the GVF-FFD method. Left
part of the figure: 2D coronal and axial slices of CT (grey) segmented lungs (top rows)
and liver (bottow rows) are superimposed on their homologous PET structures (red),
registered with a linear transformation (first and third row) and with the GVF-FFD
method (second and fourth row). Right part of the figure: a 3D representation of the
same structures is shown (CT lungs in blue, registered PET lungs in brown, CT liver
in green and registered PET liver in red).
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5.5 Evaluation of structure registration methods

5.5.1 Quantitative measures

The visual inspection of results provided by the three structure registration methods
described in this chapter is not enough for evaluating in a proper way their registration
accuracy. Therefore, we have computed four different measures on target and regis-
tered floating structures aiming at assessing, in a quantitative way, the performance
of each one of the proposed structure registration techniques.

Let T and F' be the set of voxels corresponding to the target and the registered
floating structures respectively and the operator |A| be the cardinality of the set of
voxels A. The four criteria [196] used for estimating registration accuracy are the
following;:

e overlap Measure

| TNF |
OM = ———; 5.7
TOF| (5.7)
e similarity
| TNF |
SIMI =2———; 5.8
T+ F] 9
e sensitivity
| TNF |
SENS = ———; (5.9)
| T |
e specificity
TNF

The overlap measure (OM) is a classical criterion to evaluate the matching between
two structures and consists of the quotient between intersection and union of struc-
tures to evaluate, which is equal to 1 if total overlap is achieved (best registration).
The similarity criterion (SIMI) provides an estimation of the reliability of the superim-
position of both structures, which is also equal to 1 for the ideal case. The sensitivity
(SENS) and specificity (SPEC) measures give us additional information about how
the overlap of both structures is achieved. For instance, if two structures provide a
low sensitivity value but a high specificity one, it means that the registered floating
structure is too small and is included on the target structure. Both criteria are also
equal to 1 if total overlap is achieved.
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Table 5.1: Evaluation of structure registration methods. OM: overlap measure. SIMI:
similarity. SENS: sensitivity. SPEC: specificity. Values corresponding to these mea-
sures represent the mean and the standard deviation of these measures computed on

the structure database.

Lungs Liver
OM 0.731 £ 0.129 | 0.820 £ 0.034
SIMI | 0.838 £ 0.094 | 0.901 £ 0.021
ICP SENS | 0.831 £0.171 | 0.893 +£ 0.026
SPEC | 0.869 £ 0.039 | 0.909 £ 0.033
OM 0.857 £ 0.037 | 0.902 £ 0.006
SIMI | 0.923 + 0.022 | 0.949 +£ 0.003
RMS-FFD | SENS | 0.996 £ 0.003 | 0.998 + 0.001
SPEC | 0.860 £ 0.035 | 0.904 + 0.006
OM 0.821 £ 0.065 | 0.876 £ 0.016
SIMI | 0.901 £ 0.040 | 0.934 £ 0.009
GVF-FFD | SENS | 0.956 £+ 0.048 | 0.987 £ 0.014
SPEC | 0.852 4+ 0.038 | 0.886 + 0.006

5.5.2 Results

We have applied the three structure registration methods detailed in this chapter
to a database composed of 20 pairs of deformable structures (13 lungs and 7 livers).
These structures have been obtained by either applying the segmentation procedure
described in Chapter 4 to CT and PET images of the same patient (8 cases) or using
the NCAT phantom [254 ; 255 for generating structures at different stages of the
respiratory and cardiac cycles (12 pairs of structures). It must be pointed out that
differences between segmented structures coming from real CT and PET data are
larger than those from the NCAT phantom and, in a similar way, lung registration is
more challenging than liver one due to the presence of large surface irregularities to
deal with.

Table 5.1 summarizes statistics (mean value + standard deviation) furnished by
the quantitative assessment measures computed on the whole set of target and regis-
tered floating structures. Figures 5.11, 5.12, 5.13 and 5.14 show registration accuracy
measures obtained for each pair of structures of the database. We have separated
results of lung and liver structures in order to analyze the behavior of the registration
techniques with respect to different structures.

The four studied evaluation criteria furnish consistent results on both set of images
(patients and NCAT) and confirm visual inspection conclusions with respect to the
comparison between the three structure registration methods. That is, the RMS-FFD
technique provides the most accurate registration results, while the GVF-FFD method
still clearly surpasses the ICP-based registration technique. The three evaluated meth-
ods provide more accurate results when working with liver than lung structures, and in
a similar way, they perform slightly better with data coming from the NCAT phantom
than from CT and PET patients. This is due to the difference nature of the deforma-
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Figure 5.11: Overlap measure graph of structure registration methods applied on 13
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Figure 5.13: Sensitivity graph of structure registration methods applied on 13 lung
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tions to cope with in each case. It is evident that the lungs suffer more deformations
than the liver because of the effect of the respiratory cycle on these structures. In
a similar way, the registration of structures provided by applying the segmentation
step to CT and emission PET images is more challenging than that one working on
the NCAT images, since in the former application the algorithm must also recover
large deformations such as those ones concerning differences on arm’s position in both
acquisitions (arms along body in PET scans and above head in CT acquisitions).

Sensitivity and specificity measures are close to 1 for both FFD-based methods,
with specificity values slightly lower, proving that in general, the registered floating
structure remains smaller than the target one. On the contrary, the ICP-based method
produces surfaces overpassing target structure sizes.

Moreover, we observe that differences of registration accuracy between results pro-
vided by the RMS-FFD and GVF-FFD are larger in structures undergoing more local
deformations such as the lungs. These effects are due to the trade-off taken in the com-
putation of the GVF vector field between the rejection of outliers and the capacity to
cope with local deformations.

In addition to the registration accuracy measures, we have analyzed the conver-
gence times of each structure registration method due to its major significance in our
application. We have normalized them by the dimensions of each image, to be able to
compare directly method performances, independently of image sizes. The GVF-FFD
method shows better performances (52.610 us./voxel) than the RMS-FFD technique
(699.365 ps./vozel), which remains a high-computational cost algorithm. This is due
to the gradient computation associated to the RMS-FFD technique, that must be up-
dated at each iteration, while the GVF-FFD technique uses a vector field computed
only once at the beginning of the procedure to optimize the control point displacement
of the FFD grid. The ICP-based registration approach provides very low convergence
times (6.607 ps./vozel) but the registration accuracy provided by this method is not
enough for our application.

5.6 Conclusions

In this chapter, we have proposed three different structure registration methods
in order to provide an initial transformation between the CT and PET structures
segmented in the precedent stage of the proposed registration methodology. This
structure transformation will initialize the subsequent grey-level registration stage of
the proposed methodology.

First, we have adapted a well-known surface registration method, the ICP tech-
nique, in order to furnish non-rigid deformations between the structures to register.
While the non-rigid projection of the surface stage provides good visual results, as
shown in Figure 5.4, the poor final performance of the ICP-based method in the eval-
uation stage shows that the transfer of the non-rigid field generated by this technique
to the FFD grid is not correctly achieved, loosing valuable information.

Thereafter, we have decided to employ directly the same FFD registration frame-
work in the structure registration stage as well. At the beginning, the optimization
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of the control point displacements of the FFD grid is done in a classical way (we
called it RMS-FFD), using a gradient descent technique guided by the RMS similar-
ity measure, that needs the computation of a gradient estimation in each iteration.
This gradient estimation makes this structure registration algorithm very expensive in
terms of computational cost.

Then, we propose an alternative and original way to optimize control point dis-
placements of the FFD grid, the GVF-FFD technique, that uses a 3D dense vector
field computed on the target structure contours to guide the evolution of the floating
structure ones.

We have evaluated and compared these three structure registration methods in a
database of 20 pairs of deformable objects coming from real patients and the NCAT
phantom. We have computed four measures in order to assess the registration accuracy
provided by each method. In addition, we have also analyzed the computational
burden associated to each structure registration algorithm. RMS-FFD has proved to
be the method providing best results in terms of registration accuracy, at the expense
of a high computational cost. On the other hand, GVF-FFD, furnishing slightly less
accurate registration results, converges towards the solution in a much shorter time
(10 times). The ICP-based technique fails to provide accurate enough results due to
the loss of information in the transfer between the non-rigid projection surface and
the FFD grid initialization stages.

The choice between the RMS-FFD and GVF-FFD techniques will depend on the
priorities for a given application, concerning registration accuracy or low computa-
tional costs. In our context, the subsequent grey-level registration phase will comple-
ment the structure registration stage, thus at this point we only need an approximation
of the transformation between the structures to register. Therefore, we prefer to use
the GVF-FFD technique due to the good trade-off between its convergence times and
the registration accuracy it provides. Nevertheless, if we would need better registration
accuracy for a given application, we could use the GVF-FFD technique as a starting
point and employ the RMS-FFD to refine the results.
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Grey-level Registration
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This chapter describes the last stage of the proposed registration methodology, i.e.
the registration phase working with the whole set of image intensities. After an in-
troduction about the objectives of this stage in Section 6.1, we detail in Section 6.2
how the transfer between the structure registration phase and the grey-level one is
done. This registration phase is based on a FFD model, that has been described in
Section 5.4.1, using Mutual Information as the similarity criteria to guide the opti-
mization of the control point displacements. Therefore, Section 6.3 is devoted to the
theory of Mutual Information and its use in our application. The optimization pro-
cedure of the grey-level registration stage is detailed in Section 6.4 and finally some
conclusions are given in Section 6.5. Some registration results obtained after the grey-
level registration phase are shown in Section 8.3. In addition, in Chapter 7, we have
developed a visual assessment protocol (see Section 7.4) aiming at evaluating in a
semi-quantitative way registration accuracy furnished by the proposed methodology,
and it is applied to the registered images after this grey-level registration stage.
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6.1 Introduction

The grey-level based registration phase is the last stage of the proposed registration
methodology. As already mentioned, this stage aims at refining registration results
provided by the initial structure registration phase computed on segmented thoracic
and abdominal structures. Furthermore, it must furnish a displacement field for regions
far away from the segmented structures because at this point, reliable registration
information is not yet available for them. For instance, the region located under the
left lung and above the left kidney, where the stomach is usually found, only benefits
from the registration information interpolated from deformations corresponding to
the lungs and the kidneys. Finally, another objective of this stage is the correction
of misregistrations that may have been introduced by structure segmentation errors,
taking advantage of the entire image grey-level information with which we are now
working.

This grey-level registration stage is based on the method proposed by Rueckert
et al. [242] in a non-rigid registration of contrast-enhanced breast MRI application.
The elastic transformation is modeled by a FFD based on B-splines (see Section5.4.1
for details on this model) using Normalized Mutual Information (NMI) as a similarity
measure *. This approach has been successfully used in several registration applica-
tions [190 ; 250 ; 211]. Nevertheless, as shown in Section 3.1.2, a drawback of this
method when it is directly applied to CT and emission PET images of thoracic and ab-
dominal regions concerns the lack of constraints on the FFD model, the lack of uptake
of several structures and the low SNR quality in the emission PET scans. Therefore,
the transformation tends to converge towards local minima of the similarity criterion

unless a very accurate initialization was provided.

For this reason, we have proposed our registration methodology, in which the ini-
tialization is provided by the initial structure registration stage, furnishing to the
NMI-FFD approach an initial transformation very close to the final solution, at least
in the neighborhood of segmented structures. Moreover, as shown in Section 5.5, struc-
ture registration methods providing more accurate results were those based on a FFD
framework, thus allowing a better interaction between the two registration phases, as
described in Section 6.2.

The NMI-FFD registration approach employed in this stage is basically the same
as we have called RMS-FFD in Section 5.4.2, but the fact of working with the whole
set of grey-level values forces us to change the similarity criterion that will guide the
optimization of the control points of the FFD grid. This similarity criterion must
model the relation between the intensities of the CT and emission PET images we are
working with, that is extremely more complex than in the structure registration stage
dealing with labeled images. Mutual Information and its variations have proved to be
able to guide this type of multi-modal registration applications, as further detailed in
Section 6.3.

!Rueckert’s codes and other softwares from the CISG group of King’s College can be downloaded
on http://www.imageregistration.com.
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6.2 Interaction between structure and grey-level reg-
istration phases

As a consequence of the proposed methodology, we need to transfer information
provided by the structure registration phase to the FFD grid we are going to use in
the grey-level based registration stage.

As seen in Section 5.3.2, the interaction between the initialization provided by
the ICP-based algorithm and the grey-level registration stage was not optimal, in the
sense that some information about the deformation may be lost during this transfer.
This is not the case with the initial transformation furnished by both FFD-based
methods, RMS-FFD and GVF-FFD (see Section 5.4), since the interaction between
both stages is solved using a common grid of control points. Therefore, those control
points located near segmented structures will already be a very good approximation
of their final displacement before the grey-level registration stage that will be mostly
devoted to the optimization of the control points which are far away from the relevant
structures.

If we use a common FFD grid of control points through the whole registration
methodology, grid dimensions should be the same in both registration steps, i.e., have
the same number of control points per dimension. One solution to that is the use of
a multi-grid framework. Some authors [242 ; 248 ; 234] have proposed registration
algorithms where the number of control points increases during the optimization pro-
cedure, starting to cope with more global deformations and finishing with more local
ones. The main drawback of this kind of refinement is the significant increase of the
computational burden of the algorithm since the refinement is usually applied on the
whole FFD grid, thus limiting its use in applications with strong time constraints, as
in our case.

An alternative is to identify the regions in which the refinement is more necessary.
In the proposed registration methodology, we can take benefit of information derived
from segmented structures in order to only refine or subdivide the grid in a bounding
box around these structures. The algorithm starts with a large grid (white stripes in
Figure 6.1) of control points superimposed on the emission PET image, reasonably
populated (taking into account that a linear registration step has been previously
done). After the structure segmentation stage, we can adjust the bounding box in
order to match its vertices with control points of the large grid. Then, we increase
the resolution of the grid within this bounding box (green stripes in Figure 6.1),
coping with more local deformations in these crucial zones of the image, as shown
in Figure 6.1 in a thoracic case (the CT is a thoracic scan while the emission PET
images is a whole-body scan). Once we have built the FFD grid, the optimization
of the control point displacements is performed following the proposed registration
methodology. Furthermore, the grey-level registration stage can be implemented in
order to devote most of its time to the optimization of control points not located within
the segmented structures.

Unluckily, this refinement strategy is still in testing phase, but some promising
results in terms of computational cost and registration accuracy have been already
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obtained for a few cases.

- . .
W .
T
-
-

Figure 6.1: Example of multi-grid registration strategy. Left: large original FFD grid.
Right: region in which the FFD grid is refined using information provided by lung
segmentation (red).

6.3 Similarity criterion: Mutual Information

Mutual Information (MI), simultaneously proposed by Viola [292] and Collignon
[59], has represented a step forward in the use of statistical measures in image reg-
istration, in particular in multi-modal applications, as illustrated in an exhaustive
review performed by Pluim et al. [217] about these techniques. The main advantage
of this similarity criterion is its flexibility to deal with a high variety of applications
and images since it is only influenced by the statistical properties of the joint proba-
bility density function (PDF) of the image intensities, as shown in Section 6.3.1. As
a matter of fact, in our application, the relation between the sets of intensities corre-
sponding to CT and emission PET images of thoracic and abdominal regions can only
be assumed statistical, due to the large differences between both images to register
(see Section 1.3.2 for a list of factors inducing these differences).

Several variations of the original MI formulation can be found in the literature
and some of them, including the Normalized Mutual Information (NMI), are detailed
in Section 6.3.2. One common problem of all these measures concerns the histogram
computation phase, that will influence registration accuracy and convergence times of
the algorithm, as described in Section 6.3.3.
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6.3.1 Mutual Information theory

Mutual Information (MI), simultaneously proposed by Viola [292] and Collignon
[59], has represented a step forward in the use of statistical measures in image reg-
istration, in particular in multi-modal applications, as illustrated in an exhaustive
review performed by Pluim et al. [217] about these techniques. The main advantage
of this similarity criterion is its flexibility to deal with a high variety of applications and
images since it is only influenced by the statistical properties of the joint probability
density function (PDF) of the image intensities.

This similarity criterion expresses the quantity of information remaining in one
image I4 knowing another image I, which is maximal when equivalent data sets
are correctly registered. Another interpretation of this similarity criterion is that it
measures the degree of dependence of two images, 14 and I, as the distance between
the joint probability distribution p; ; and the distribution functions p; and p; obtained
in case of total independence, by means of the Kullback-Leibler measure [289]:

MI(I4,Ip) = Z Z Pijl0g; Pi,j'

i€l jelp Pib;

(6.1)

The hypothesis leading to this interpretation states that when both images are well
registered, a maximal dependence between them will be found and misregistration will
cause a decrease of the MI, as shown in Figure 6.2. The left part of this figure shows
two sets that are completely independent, without any overlap region between them
and therefore misregistered. On the right part of the figure, we can observe the effect of
improving the registration of both sets, leading to the apparition of an overlap region
and increasing the dependence between them. If this overlap region, that represents
the MI (or some of its variations such as the NMI) increases, the registration between
both sets will be better done, meaning that information remaining in one set once the
other is known has been reduced.

Figure 6.2: Diagram representing the Mutual Information concept. Left: Two sets
fully independent without overlap region, thus misregistered. Center and right: if
one of the sets is slightly translated, an overlap region between them appears, that
symbolizes the MI (or the NMI) similarity criterion. The increase of MI or the overlap
region means a better registration.
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Mutual Information is related with the entropy theory by the following expressions:

MI(Ia, I) = H(I4) + H(I) — H(I4, Ip) =
=H(Iy)—H(Is|Ip) = (6.2)
= H(Ip) = H(Ip | 14),
where H(I4) and H(Ig) are the marginal entropies of the images, H (4, Ig) their joint

entropy and H(I4 | Ig) and H(Ip | 14) are the conditional entropy of I, given Ip and
of Ig given 14 respectively.

These entropies (according to Shannon’s [259] definition of entropy) are defined as:

—) pslog,p, (6.3)

reX
H(IA:IB Z prl()gszga (6'4)
1€lq jJEIB
IA | IB Z Z Pij 10g2pzlj (6'5)
1€l jJEIB

where p, is the PDF of the random variable z. In the case of images, p, corresponds
to the joint PDF of the intensities of the images.

Some properties of Mutual information [170 ; 289] are given in Table 6.1 (where T’
is the transformation applied to image B).

Table 6.1: Mutual Information properties
Non-negativity: MI(IA, IB) >0

Independence: MI(I4,1g) =0 < pi;j = pip;
Symmetry: (IA,IB) = MI(Ip,14)
Self information: MI(I14,14) = H(1a)
Boundedness: MI(I14,15) < min(H(l4),H(Ip))

< (H(Lx) + H(Ip))/2
< mazx(H(l4), H(Ip))
< H(IAa IB)
< H(I)H(I5)

Data processing: MI(I4,1g) > MI(14,T(Ig))

Finally, we can also interpret the Mutual Information criterion as a measure of
the dispersion of the joint histogram of two images. As mentioned in Section 2.4.2,
the behavior of the joint representation of the intensities of two images reflects the
mismatching between them, being more dispersed as the misalignement is high. The
entropy can be used to measure this dispersion since a dispersed histogram produces
a high entropy value [270]. The MI can be also used to measure joint histogram dis-
persion, but an important difference appears with respect to the only use of the joint
entropy. It also takes into account the marginal entropies of the images because it re-
duces the dependence to the size and contents of the overlap zone between the images
(marginal entropies penalize transformations that decrease the amount of information
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in the separate images [217]). An example of joint histograms corresponding to dif-
ferent matchings of two images and their MI values is shown in Figure 6.3. It can be
appreciated the relation between the dispersion of the joint histograms, i.e. the accu-
racy of the registration, and the Mutual Information similarity measure (decreasing
as misregistration increases).

Figure 6.3: Joint histograms corresponding to different matchings of two images. Left:
good matching and thus little dispersion of the histogram, MI is equal to 1.47748.
Center: regular matching and thus medium dispersion of the histogram, MI is equal
to 0.852934. Right: bad matching and thus medium dispersion of the histogram, MI
is equal to 0.681276.

It must be pointed out that MI requires some conditions in order to be useful as
similarity measure. The first one is related to the fact that it is a measure based
on the estimation of intensity probability distributions. Due to this dependence, the
Mutual Information criterion is more reliable when the quantity of available data for
histogram computation is large enough to assure a good PDF estimation. The second
requirement is that this criterion must vary smoothly when changing transformation
parameters in order to assure a good behavior of the optimization procedure. This
requirement directly concerns the smoothness of the estimated joint and marginal
probability distributions, p;;, p; and p; with respect to parameter variations and it
depends on the spatial correlation between the voxels of the image [170]. If the image
intensities are spatially correlated, the search space will be better behaved (less local
maxima, big attraction basin of the global maximum) and the optimization phase will
be more robust.

6.3.2 Variations of Mutual Information

Although MI has proved to be a very efficient technique in a vast number of different
registration applications, sometimes it does not lead to correct results. For this reason,
several improvements have been proposed in the literature.

Normalized Mutual Information (NMI) was proposed by Studholme [269] in order
to avoid the dependence of the MI on the size of overlap between the images. It can
be expressed as:
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H(I,)+ H(Ip)
H(14,Ip)

NMI(14,15) = (6.6)

This modification was proved to provide better results than the classical MI for-
mulation in some applications such as the rigid registration of brain MR-CT and MR-
PET images [269]. Another normalization of the MI was also proposed in [171], called
Entropy Correlation Coefficient (ECC). Recently, Butz et al. [41] has demonstrated
mathematically that this equation is equivalent to the efficiency coefficient of order n
with n = 1/2 which they obtain by interpreting image registration as a particular case
of feature selection, modeled by means of Markov chains:

MI(X,Y)"

X,V)= i
en( ) ) H(X’Y)l_n:

n € [0,1] (6.7)
The inclusion of spatial information in a MI-based technique has been also stud-
ied [216 ; 240]. Rueckert et al. [240] propose to include the spatial correlation between
neighboring voxels by computing a higher order joint histogram. A different approach
to add spatial information is proposed by Pluim et al. [216], adding a multiplicative
term based on the image gradients into the cost function to constraint the MI term.

On the other hand, in [216] a multiplicative term based on the image gradients is
added to the cost function of the registration algorithm to constraint the MI term.

In Section 2.4.2; it has been recalled that some authors use alternative entropies to
Shannon’s one in order to bypass some of the drawbacks associated to this information
measure. From these different entropies, alternative expressions of Mutual Information
are obtained with a different behavior from that one derived from Shannon’s entropy.
For instance, f-informations are obtained by using f-entropies, that provide fast and
robust convergences while dealing with complex joint statistics [212].

An interesting idea is to adapt the Mutual Information measure to work in registra-
tion applications involving more than two images. It is defined as higher-dimensional
MI [25; 1 ; 267]. Other variations that must be mentioned include the computation of
this criterion in a local way [160 ; 232] that notably reduces computational time and,
the original use of the MI in feature-based registration algorithms [225 ; 40].

In our work, we have only tested the Normalized Mutual Information, proposed
by Studholme [269]. It has proved to be slightly more efficient than the classical MI
formulation in some cases (for instance, when differences between the FOVs of the
images are large), and for this reason this similarity criterion has been adopted in the
proposed approach to guide the refinement registration phase.

6.3.3 Histogram computation

Histogram computation plays a key role in an entropy-based registration algorithm
because it directly influences result accuracy and computational complexity of the
method. Two important points in the histogram construction are discussed in this
section: the estimation of the joint probability distribution and the binning stage.
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Estimation of the joint probability distribution

The interest of the joint histogram of two images in a registration context has
been already highlighted in Section 6.3.1. This property is used by several similarity
measures, in order to measure registration accuracy provided by a certain set of trans-
formation parameters. Each time these parameters are changed in the optimization
procedure, the joint histogram must be recomputed to know if the new transformation
produces less misregistrations than the preceding one. This histogram computation
clearly influences the registration system in terms of accuracy and computational bur-
den.

Once we have the joint histogram built, it is used to estimate the joint proba-
bility distribution. This estimation can be obtained by different techniques, but two
approaches have been mainly used in image registration: empirical (or frequential)
approximation and Parzen windouw.

e Empirical approximation: it is the most straightforward method to obtain an
estimation of the joint probability distribution and it consists in a normaliza-
tion of the joint histogram. Therefore, having a joint histogram Hist(z), the
probability distribution is approximated as:

_ Hist(z)

= (6.8)

p(2)
where z = (24, zg) is a pair of voxel intensity values from both images (A and
B) to register and N is the sample number in the overlap region between the
images to register.

e Parzen window: this non-parametric technique is based on the overlap of centered
kernels in each element of the sample sets of the histogram. It may be formulated
as follows:

pe) = P = - 3R~ 2, (6.9)

ZjEA

where N4 is the number of elements of a sample A and R is the windowing
function. The most frequently used windows include Gaussian and cubic splines
due to their derivation simplicity.

The difference of this approach with respect to the empirical approximation is
that the Parzen technique updates the bin where the kernel is placed, but also
the neighboring bins weighted by the kernel function. At the expense of a higher
computational cost, this approach has proven to be more robust.

Some authors have proposed different techniques aiming at reducing the compu-
tational cost of the histogram, for instance by means of lookup tables replacing the
most expensive calculations [245 ; 193].

In our case, the simplicity and the low-cost nature of the empirical approximation
have turned the balance towards this approach instead of Parzen windowing.
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Binning

Another crucial implementation aspect in the PDF estimation is the binning. This
task concerns the division in classes or bins of the histogram and its main goal is to
reduce histogram complexity by classifing the combinations of intensity pairs into a
determined number of classes. For instance, for a joint histogram of two images coded
in 8 bits, each with 256 different grey-levels, 65536 combinations are possible and in
order to obtain a significant statistical representation for each intensity pair, images
should have bigger dimensions to provide enough samples. Thus, the binning step
solves this problem by fixing the number of possible combinations, depending on the
specific needs of each registration application.

A critical aspect of the binning step is the choice of the number of bins for each
axis in order to avoid intensity pairs corresponding to different regions falling into the
same bin whereas assuring a certain quantity of samples for each bin. Although several
criteria have been proposed in the literature to solve this uncertainty in the case of 1-D
histograms, such as the Sturges [272], the Scott [252] or the Freedman-Diaconis [96]
norms, this choice remains empirical in bi-dimensional applications. Furthermore, a
regular division of the histogram is in general achieved, meaning that the size of a
given bin is fixed. Recently, Knops et al. [144] have demonstrated that a wiser idea is
to adapt the bin size according to the anatomical structures being visualized. In [313],
a computation of different histograms, each with different bin widths is used.

In our work, it has been verified that the use of 32 bins (regular division approach)
for each axis of the histogram provides a good trade-off between computation times
and the separation of intensities associated to different structures in different bins.

6.4 Optimization phase

This stage must compute the optimal displacement for each control point of the
FFD grid that provides the best similarity measure, hence, theorically, the best super-
imposition between both images to register. Therefore, the parameters to optimize are
these 3D displacements of each control point, like in the RMS-FFD structure registra-
tion technique described in Section 5.4.2. Free-Form Deformation optimizations are
intrinsically critical due to the high number of parameters to estimate. For instance,
for grid of 10 x 10 x 10 control points, the optimization procedure must estimate 3000
transformation parameters or degrees of freedom. For this reason, several tricks are
applied in order to reduce the computational cost of these estimations such as not
taking into account the control points placed on the background of the image.

As seen in Section 2.5, the optimization stage completely depends on the nature of
the cost function to optimize and if its gradient is available or not. In full content-based
registration methods, the cost function is usually composed of a similarity criterion
term and a regularization term. Therefore, the possibility of having a gradient will
depend on the way the similarity criterion is computed and on the nature of the chosen
regularization. In the case of MI-based algorithms, probability distribution compu-
tations and interpolation methods notably influence the cost function nature. For
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example, algorithms employing Parzen windowing technique to estimate the probabil-
ity distribution, due to its formulation, obtain an analytic expression of the gradient.
Maes et al. [171] have proved that the use of Partial Volume interpolation involves
that the MI criterion varies smoothly with the parameters of an affine transformation
and then, the gradient of the MI can be exactly computed, using analytic expressions
for the partial derivatives of MI with respect to the registration parameters.

In the presented work, the optimization procedure is based on a gradient estimation
computed by local differences over the control point grid (see Algorithm 1), as Rueckert
et al. have proposed in [242]. It is basically the same optimization algorithm we have
employed in the RMS-FFD structure registration technique detailed in Section 5.4.2,
but using the NMI as a similarity criterion instead of the RMS measure.

It must be pointed out that the inclusion of the precedent initial structure regis-
tration phase allows us to skip some of the lower multi-resolution steps of the time-
consuming fine registration, thus significantly speeding up the overall process. For
instance, if a multi-resolution pyramid of 4 levels is chosen for the grey-level registra-
tion stage, we reduce it to 2 levels because large deformations are already recovered.
Furthermore, displacements of a large number of control points do not start from zero,
but from the initialization furnished by the previous structure-based phase, and in the
majority of displacement optimizations, only a few number of iterations is needed to
reach the optimal displacement.

6.5 Conclusions

This stage is basically based on the elastic registration method proposed by Rueckert
et al. [242]. Most part of our work has been the adaptation and parameter tuning of
these techniques in order to insert them into the proposed registration methodology
and to apply them to CT and emission PET images of thoracic and abdominal regions.

In Section 3.1.2, we have proved that this technique fails to provide accurate enough
results when it is directly applied on the grey-level images. The proposed registration
methodology furnishes to this grey-level based stage an initial transformation very
close to the final solution that solves problems of the NMI-FFD registration approach
when dealing with our images. The Free-Form Deformation model has proved to
be a flexible technique allowing us to construct an original registration methodology
based on it and providing us a simple way of interaction between feature-based and
full content-based registration phases. This interaction between these two theorically
confronted methods, derived from the chosen strategy, has allowed us to combine their
associated advantages while canceling their drawbacks.

The Normalized Mutual Information similarity criterion has allowed to measure
the statistical relation between the CT and emission PET sets of intensities and thus
to guide the refinement of the control point displacements of the FFD grid. Neverthe-
less, this similarity measure can easily lead to incorrect registration results in regions
without any prior anatomical information derived from the structure-based stage, due
to the strong presence of noise and artifacts in the PET image. Furthermore, as men-
tioned in Section 1.3.2, CT and emission PET images represent the same scene in

125



6.5 Conclusions

different ways. The fact that some structures such as the heart or the stomach can
appear with different intensities (or even not be present) in the PET image while in
the CT scan they are almost constant will mislead the NMI and consequently, the
optimization of the FFD grid of control points. As shown in Chapter 8, in which final
registration results obtained after this grey-level stage are shown, this has not been a
major problem for the heart since it is already very well initialized and constrained by
the segmentation and registration of the lungs. On the other hand, the NMI-FFD has
not provide accurate enough registrations of the stomach. Further details and com-
ments of these results are described in Chapter 8, as well as conclusions of the visual
assessment protocol (see Section 7.4) we have developed to evaluate in a qualitative
way the registration accuracy provided by the proposed registration methodology.

As mentioned above, implementation choices of the histogram computation have
been mostly chosen according to the computational burden of each technique, rather
than on their resulting accuracy. Finally, the optimization phase has been designed
having in mind that the initialization of control point displacements is very close to
their final position, hence, a simple optimization technique can be used.
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This chapter is dedicated to the evaluation of the registration accuracy obtained
by the proposed methodology. First, in Section 7.1, we enumerate some classical defi-
nitions of the criteria related to this validation stage. Then, in Section 7.2, we review
the techniques usually employed to assess registration results in medical imaging ap-
plications. In Section 7.3, we specify the constraints for this task in our application.
In Section 7.4 we describe the visual assessment protocol we have developed in col-
laboration with several physicians involved in the project to validate accuracy of the
registration results provided by the proposed methodology. Finally, in Section 7.5,

some conclusions about this validation stage are given.
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7.1 Validation in medical imaging

Numerous image processing methods have been developed for medical data appli-
cations, such as segmentation, registration, or calibration methods, but most of them
have remained research tools without being incorporated into clinical routine. This
surprising fact is sometimes due to the lack of an exhaustive validation phase, an im-
perative prerequisite before they can be used in a medical environment. Validation
of medical image processing methods is not a trivial task, in particular for non-linear
registration algorithms in which, in general, there is no available ground truth for
comparison. Thus, it is a key topic of several multi-disciplinary meetings and work-
shops [164 ; 261 ; 258 ; 132], aiming at bridging the gap between theory, experimenta-
tion and practice. Furthermore, in order to launch onto the market a medical image
processing software, it must receive the approval of health institutions such as the
Food and Drug Administration for the American market, the CE certification for the
European market or the Japanese health ministry. These approvals are obtained after
a huge inspection/validation on different aspects of the software algorithm to prove
its robustness and effectiveness.

But, what does wvalidation means? Goodman [106] defines the health care tech-
nology assessment (HCTA) as the process of examining and reporting properties of a
medical technology and as the systematic evaluation of properties, effects and/or im-
pact. The most important thing about the validation stage is which questions it must
answer about the method to evaluate. It must characterize the method behavior with
respect to variations of parameter values and input data (image modalities, spatial
resolutions, dimensions), as well as analyze computational cost and output quality of
the results. It should include both individual evaluation of each stage and validation of
the overall system, defining their performances and limitations. Moreover, this phase
must define the targeted clinical context or application and prove its clinical benefit.
Finally, an estimation of the social or economic impact may be performed as well.
These issues depend on image characteristics and the specificities of the clinical con-
text, thus, validation and its requirements are in general application-dependent. For
instance, the required precision for a registration method involving cerebral patholo-
gies is high, while in abdominal exploration it is lower due to the motion that affects
each region.

Some conventional criteria or measures are defined in the literature to standardize
and verify the objectives of an evaluation stage:

e accuracy: Goodman [106] defines accuracy as the degree to which a measurement
1s true or correct. For each sample of experimental data local accuracy is defined
as the difference between computed values and theoretical values, i.e., known
from a ground truth. This difference is generally referred to as local error. The
major constraint of this measure is the need of a ground truth or gold stan-
dard, which in several applications such as non-rigid registration is not possible
to establish. If, in some way, we could obtain this reference for a registration
application, we can measure accuracy as the difference in each point between the
known transformation and the one furnished by the method to evaluate. This
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difference provides the result of the validation, i.e. to accept or to reject the com-
puted transformation. Accuracy can be qualitative or quantitative. The former
relies on simple visual inspection of the results to assess global performance of
the method. As mentioned before, quantitative accuracy needs a gold standard,
unavailable for several applications, thus the following measures are employed.

precision: it is the resolution at which the results provided by a given method are
repeatable, i.e., the value of the random fluctuation in the measurement made by
the process. Precision measures can be obtained concerning the entire system,
or applying to specific components.

reproducibility or reliability: Goodman defines this measure as the eztent to
which an observation that is repeated in the same, stable population yields the
same result.

robustness: the robustness of a method refers to its performance in the presence
of disruptive factors such as intrinsic data variability, pathology, inter-individual
anatomic or physiological variability.

consistency: it is mainly studied in image rigid registration validation [123],
by studying the capability of a registration method to find circular ! transfor-
mations. This measure can be sensitive to bias and may not be applicable to
non-invertible transformations generated by many non-rigid registration meth-

ods [250].

fault detection: it is the ability of a method to detect when it succeeds (e.g.
result is within a given accuracy) or fails.

functional complexity and computation time: they are characteristics about the
method implementation and should be adapted to the time and resource con-
straints of the clinical environment.

other factors: other factors may have to be studied such as cost/effectiveness
ratio, patient acceptance, and outcome factors.

7.2 Validation in registration applications

Different validation approaches have been proposed to overcome the lack of ground
truth in registration applications such as physical phantom, cadaver studies, the use
of invasive markers, simulated data or visual inspection of results by expert observers.
These techniques present a basic framework to compare methods developed in differ-
ent research groups, a task that is more complex than it looks like. These difficulties
are due to the large variety of clinical acquisition protocols and pathological cases

la circular transformation in registration applications is found when applying a given transfor-
mation in one sense (for instance floating to reference images) and its inverse on the other sense
(reference to floating images), we obtain the identity transformation
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7.2 Validation in registration applications

to treat, to the high specific nature of some applications, and to the lack of gold
standard generally accepted. For this reason, the creation of shared or public image
databases with standard ground truth is a crucial point for the evolution of the val-
idation processes and an important research community resource. These databases
must include normal and pathological cases, updates with new imaging protocols and
new modalities and data from new applications, real and synthetic data and reliable
known truth for each context. These databases will allow the exchange of knowledge
between institutions and a fast way to compare methods developed in different sites.
Beside public databases, other actions are emerging with the same aim of sharing in-
formation, such as the open source movement. Projects like ITK 2 or VTK 3, must be
taken as references for the future in order to share research results.

7.2.1 Physical phantoms, cadavers and invasive markers

Physical phantoms [9 ; 282 ; 317 ; 284] or cadavers [117] may be employed to
compute an approximation of the ground truth, by attaching invasive markers to
these phantoms. These markers must be densely distributed over the phantom and
its movements are fully controlled, providing a Target Registration Error (TRE) [93]
at locations of interest of about 0.5mm [192]. The TRE is defined at each point z in
the image as the difference between the calculated transformation (7°) and the gold
standard transformation (7},):

TRE(z) = [T(z) - Ty(a)| (7.1)

Nevertheless, the range of applications in which this technique can be applied is
limited because of nature differences between cadaver and in vivo data, and the dif-
ficulty of constructing a physical phantom representing complicated processes in the
human body. A globally accepted alternative that can provide the gold standard
for inter-patient rigid registration applications consists of the attachment of invasive
markers to the surgical patient at the image acquisition time, furnishing a stereotactic
reference rigid transformation. This technique has been successfully used by West et
al. [298], within the Retrospective Image Registration Evaluation (RIRE *) project,
in order to compare different linear registration algorithms in multi-modal head data.
They attached bone-implanted fiducial markers and a stereotactic frame to the skull
in patients undergoing neurosurgery, then the reference gold standard rigid transfor-
mation is the one which minimizes the mean square distance between corresponding
marker positions in the two images. The accuracy of this reference was estimated
to be 0.4mm for CT to MR and 1.7mm for PET to MR registration, being accurate

2National Library of Medicine Insight Segmentation and Registration Toolkit (ITK). http://
www.itk.org.

3The Visualization Toolkit. http://public.kitware.com/VTK/. Also, VTKCISG [114], from
the Computational Imaging Science Group Radiological Sciences, King’s College London. http:
//www.imageregistration.com.

4Also called RREP, Retrospective Registration Evaluation Project, from the Vanderbilt Univer-
sity. http://www.vuse.vanderbilt.edu/” image/registration/.
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enough for testing registration algorithms. The frame and the markers were manually
removed from the images before using them to evaluate registration algorithms.

This approach, however, is not appropriate for non-rigid or intra-patient registra-
tion, where deformations can not be properly modeled as linear transformations.

7.2.2 Simulated data

Another option is to use software-based simulated data [199], where the ground truth
is perfectly known. These numerical solutions can be adjusted to certain needs and
simulated images or transformations are fully controlled, becoming the gold standard
required to compare results furnished by the method to evaluate. Concerning registra-
tion methods, a known transformation is applied to one image or to some segmented
anatomical features, then the registration accuracy can be calculated by comparing
the transformation provided by the algorithm with the known, gold standard solution.
Rohr et al. [236] have employed this technique in a brain non-rigid registration ap-
plication, displacing a set of landmarks and interpolating a dense displacement map
using Thin-Plate Splines.

Nevertheless, simulated data are not usually realistic enough, because they do not
take underlying tissue properties into account, so that different tissues can undergo
non-plausible deformations [250]. In some applications, this technique can not even
be considered, because of the impossibility to model some clinical contexts, as in the
physical phantom case. Moreover, any evaluation based on synthetic data must be
careful about the possible introduction of bias, in which the algorithm may systemat-
ically favor the class of simulated deformations chosen for the study [233]. Anyway,
it remains appropriate for comparison of methods that are not related to the spatial
deformation model as well as for testing overall registration capabilities.

One improvement of this technique is the addition of realistic modeling of anatom-
ical motion and deformation, including as much biomechanical information as feasible.
Schnabel et al. [250] have proposed an original evaluation method, using Finite Ele-
ment Models (FEM) to develop a biomechanical deformation simulator. They apply
a range of physically plausible, biomechanical tissue deformations to FEMs of dif-
ferent patient anatomies, generating model solutions that simulate gold standard de-
formations. From these biomechanical simulated deformations, deformed images are
generated and the registration accuracy of a given algorithm is obtained by using it
to register these deformed images with the original ones and comparing the result-
ing deformation field with the biomechanical simulated deformations. The authors
have applied this approach to assess non-rigid registration results for an intra-subject
contrast-enhanced MR mammography application, as can be seen in Figure 7.1, but
the same method can be used to other organs (heart, liver [205]) as long as plausible
finite element models could be generated.

Segars et al. [254] developed the 4D (3D + time) NCAT phantom, which models
thoracic and abdominal structure motions due to both respiratory and cardiac cycles.
The organ shapes are formed using Non-Uniform Rational B-Splines (NURBS), and

131



7.2 Validation in registration applications

Figure 7.1: Use of FEM techniques to simulate biomechanical tissue deformations in
an intra-subject contrast-enhanced MR mammography application, from [250]. Top:
(from left to right) pre-contrast image, post-contrast image, subtraction image, and
MIP (Maximum Intensity Projection). Bottom: subtraction slices and MIPs through
subtraction volumes of original pre-contrast images from example FEM deformation
simulations before (left images) and after (right images) registration.

are based on data from the Visible Human image dataset ®>. Three different views of the
NCAT phantom can be seen in Figure 7.2. It has been used in different applications
such as the study of the respiratory gating in myocardial SPECT [255], but to our
knowledge, the NCAT phantom has not been used yet in the assessment of registration
algorithms.

7.2.3 Inspection of correspondences between anatomical fea-
tures

The gold standard for evaluating registration methods is the inspection of correspon-
dences between anatomical features in the registered images [233]. This technique is
frequently used when ground truth is not at all available, thus expert observers, some
prior clinical knowledge or assumptions may give the reference for comparison [132].

First of all, a segmentation, either manual or automatic, must be performed in
order to localize homologous structures in the images. These features can be point
landmarks [61 ; 98 ; 270], segmented structures, regions of interest or others. There-
fore, some quantitative measures are computed on these homologous structures after
the registration stage in order to have an approximation of the result accuracy. For
example, Hellier et al. [115 ; 116] proposed an evaluation of several linear and non-
linear registration methods in a brain registration application. They compute global

5 http://www.nlm.nih.gov/research/visible/visible_human.html.
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Figure 7.2: NCAT phantom. Left: anterior view; Center: posterior view; Right:
right lateral view. Images come from P.W. Segars’ site (http://www.bme.unc.edu/
~wsegars/)

and local measures of the quality of the registration, such as grey/white matter seg-
mentation map overlap, correlation ratio of the mean L,, ® intensities (i.e. 3D measure
of the curvature of the cortex from the MRI volumes), distance and shape variation
of cortical sulcal landmarks.

Several problems are associated to this technique. For instance, segmentation-
based evaluations do not provide volumetric information, thus they do not detect
registration errors within the segmented objects. Concerning landmark identifica-
tion, the drawback is that, in some applications, the selection of corresponding points
is difficult (low contour gradient and inter-patient variability of structures, lack of
anatomical references). For example, as Goerres et al. [103] pointed out (and we have
largely verified it in our application), it is rather difficult to find stable and reliable
landmarks in emission PET scans, due to the poor image quality of these acquisi-
tions. This technique, as in the case of manual segmentation, will always have some
degree of error, bias and inconsistencies because it involves human intervention, which
is subjective and is not easily reproducible, limiting the precision of the evaluation
method. Another drawback of this strategy is the lack of recognized features over the
whole data, resulting in the fact that we can find an approximation of the registration
accuracy only for certain parts of the image. Nevertheless, expert defined anatomical
landmarks or regions of interest remain the gold standard for evaluation of registration
accuracy [233].

As an alternative, registration results can be qualitatively evaluated by visual in-
spection of the images by medical expert observers, classifying the result as success
or failure, depending on whether they judge the registration accuracy to be above or
below the required application accuracy [119]. In fact, in some clinical applications it
is the only reliable method to estimate the quality of the results. This method consists

6this operator is related to the principal curvatures of the iso-intensity surface and the sign of the
mean curvature is used in order to distinguish between sulci and gyri
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in presenting the registration results in a user-friendly display to the evaluators who
will then rank them according to their quality. This presentation can be composed
of both image superimposition, subtraction images, chessboard images, or displays of
only certain anatomical features or landmarks.

Interesting works have been done to study the accuracy of a visual assessment in
a registration framework. Wong et al. [303] studied this issue in a MR-PET rigid
registration context. They found that observers could always detect a translational
misregistration larger than 2 mm in the = and y directions, and larger than 3 mm
in the z direction. Similarly, observers could always detect a rotation larger than 4°
and could detect a rotation error of 3° about any axis at least 80% of the time. In
a CT-MRI brain image application, Fitzpatrick et al. [94] have shown that observer
assessments performed well with registration errors equal or higher than 2mm. These
results are influenced by the image modalities and the database involved in the study,
the observer experience and the interface used to display images. Moreover, the lack
of a result display allowing to highlight 3D complex deformations limits its direct use
in non-rigid validation contexts.

Anyway, even if visual assessment remains a subjective observer-dependent valida-
tion method, it is an important step towards clinical and routine use of a registration
method [249] and can still provide a useful insight on the registration process. As a
matter of fact, we must not underestimate the capacity of the human eye to determine
registration result accuracy. If two images are presented in a proper way, experienced
physicians can rapidly assess the quality of the results in a short amount of time, using
their prior knowledge of where in the anatomy the quality of the registration should
be high and where these requirements can be relaxed [190].

7.3 Validation in whole-body PET-CT non-linear re-
gistration

We divide the evaluation process into three phases:

1. evaluation of algorithm performances based on simulated data;
2. assessment of the registration result accuracy;

3. validation performed in a clinical environment to evaluate its added value in
diagnosis tasks.

The first phase is a quantitative or semi-quantitative validation stage where im-
plementation aspects such as automaticity, computational time or robustness with
respect to the input data variability have been studied throughout the development of
our work. We have also employed some simulated simple data (spheres, cubes, ...) to
validate the non-linear FFD-based registration as well as other phases of the proposed
methodology, but they have not any medical interest, and therefore, the proposed
registration methodology must be directly assessed on pairs of CT and emission PET
images.
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The second assessment stage is a qualitative evaluation of the registration result
accuracy. It depends on the desired accuracy for the targeted application and it is
based on the coherence of anatomical structures displacement, their localization and
of the relationships between normal and pathological structures after registration.

The last evaluation stage must be achieved in the clinical sites participating in
the project, once the visualization interface will be finished (work in progress). The
proposed registration methodology will be tested on a database composed of patients
undergoing surgical operations (biopsies) which will furnish us a valuable approxima-
tion of a gold standard.

Therefore, in this manuscript, we are going to focus on the second evaluation
phase, involving the assessment of the registration accuracy furnished by the proposed
methodology. The desired accuracy depends on several factors such as image modali-
ties, spatial resolution or anatomical regions (and nature of its deformations) involved
in the process. In our case, the required accuracy will be higher in cervical and tho-
racic regions than in abdominal ones due to the lack of identifiable structures in this
zone and its larger deformations. The chosen accuracy must also assure a correct
classification with respect to visualized tumors. In practice, the threshold of the de-
sired accuracy must have the same order of magnitude as the acquisition system owing
the poorest spatial resolution, in our case, PET images. This point will be further
explained in Section 7.4.

As mentioned above, the evaluation of a method depends on its specific application
and its clinical context. In our case, besides the mentioned difficulties caused by the
non-linear nature of the application, we must deal with emission PET images, which
are very noisy and contain a high number of artifacts, as well as low contrast boundaries
in certain regions and low spatial resolution. In addition, to our knowledge, no ground
truth is available to assess an emission PET-CT non-linear thoracic and abdominal
registration application. Even combined PET-CT scanners are unable to furnish a
perfectly registered image that could be used as a reference for testing non-linear
registration methods (for linear methods, it could be useful).

For these reasons, most of the techniques previously exposed cannot be used in our
context. For instance, the use of extrinsic markers was strongly discouraged by the
oncology specialists involved in the project due to its invasive nature. As mentioned
in Section 7.2.2, FEM techniques and biomechanical models have a great potential for
validation purposes and it would be an interesting evaluation method for our appli-
cation. This approach requires the generation of a plausible Finite Element Model,
which at the time being, is not available. Internal reference landmarks have been used
by Goerres et al. [103] to evaluate the optimum breath-holding position of patients
during CT imaging that provides the best match with PET imaging of the thorax,
by acquiring CT scans during different respiratory phases. They chose a reference
point based on the assumption that its position would be stable during the acquisition
process. Thereafter, they measure distances between this reference point and other
anatomical features, such as the lateral thoracic wall or between the apex of the lung
and the top of the diaphragm. The authors pointed out that it is rather difficult to
adequately measure distances in emission PET scans, since it is not easy to identify
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edges of organs, producing large variability in inter-observer agreement. In our con-
text, using physician-defined internal reference landmarks is very inaccurate due to
the lack of common anatomical references in both images. This is due to the different
physical nature of CT and PET imaging modalities that lead to images representing
anatomy in a different way. For example, despite bone structures are easily identified
in the CT volume, the corresponding visible structures in the PET one are in fact the
living tissue inside those bones, and consequently any measure relying on a pairing of
those landmarks would be inaccurate.

7.4 Visual assessment protocol

7.4.1 Procedure

As mentioned above, evaluating the result accuracy of a non-linear registration
method is a complex problem both conceptually and in practice. Indeed, elastic mo-
tions are difficult to perceive in three dimensions, and it must be checked that the
registration phase corrects deformations in mobile structures while not introducing
new errors in the more stable ones.

Even if it is a semi-objective validation technique, visual inspection by medical
experts allows in our application to judge and classify, into a scale of error values,
registration results for the most important anatomical structures. Mattes et al. [190]
have also employed this approach to evaluate the registration accuracy of a non-linear
approach applied on chest CT and transmission PET images. They have developed a
split window interface that shows to the observer different corresponding 2D slices of
both registered volumes in order to quantify the registration error. Furthermore, they
improve the consistency of the evaluation by adding a display normalization stage.
The authors claim that an observer takes around 1.5hours to assess 205 slices of two
registered volumes.

We propose a similar visual assessment protocol 7. It has been developed under
the supervision of Dr. Hervé Foehrenbach, from the H.I.LA. Val de Grace in Paris.
It allows physicians and registration specialists to rapidly generate a semi-objective
and qualitative measure of the registration accuracy, being repetitive enough to allow
statistical interpretation of the results.

For this purpose, several anatomically significant 2D slices of both the original CT
and registered PET volumes, as well as an overlay chessboard image are presented.
This representation was preferred to displaying a single overlay image because, in our
opinion, this reduces measure subjectivity. Slices have been evenly spaced through the
volume in order to display the most significant thoracic and abdominal structures. For
example, for a 256 x 256 x 97 volume, 6 coronal and 6 axial slices are employed. This
is performed by means of an automatic procedure that uses CT segmented structures
in order to decide which 2D slices must be chosen for evaluation purposes. However,

"We would like to point out that our visual assessment protocol has been developed independently
of Mattes’ publication, which has appeared in January 2003, when our evaluation methodology was
already finished.
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the user has also access to all axial slices of the CT and the non-linearly registered
emission PET volume if they must be checked in order to confirm any evaluation score.

Each pair of 2D slices has been marked with a ruler with a spatial resolution of 1cm
per mark in the x and y axes and 2cm in the z axis. Every fifth mark is slightly bigger
for easier reading. Each ruler defines some reference or landmark points as it crosses
significant anatomical structures, such as the chest wall (ribcage), the mediastinal
wall (heart), the diaphragmatic wall (liver), or the stomach and kidneys walls. These
references allow the clinician to estimate differences in the position of the mentioned
structures in both 2D slices and then score the registration accuracy of the method.
For instance, in the case of the lungs, the user must evaluate the registration result
accuracy in the anterior, posterior, inferior and superior part of both, left and right
lungs. Figure 7.3 shows one pair of these 2D slices, corresponding to axial (top)
and coronal (bottom) slices with rulers, together with their corresponding overlay
chessboard images. This procedure is certainly limited in the sense that the evaluation
only measures local translational errors in the reference points that are place on the
surface of some structures, and no assessment about registration result accuracy in
other regions or even within the evaluated structures is provided.

The developed graphical interface allows a fast interaction between the user (eval-
uator) and the statistical analysis of the evaluation. The graphical interface consists
of a html web form where, in a user-friendly way, the evaluator must only click on the
chosen registration score for each landmark point in the slice to assess. Once all slices
are assessed, by clicking on a button, the form sends a text file containing evaluation
results to people in charge of their statistical analysis. In general, an expert user
needs about 20 minutes to complete the validation process, thus considerably faster
than Mattes’ evaluation interface [190]. On the other hand, we do not deal yet with
any kind of display range setting or normalization in the current web form, but a new
version of the graphical interface with this capability is already in progress 8.

The scoring (or dissatisfaction) scale has been defined by the medical specialists
involved in the project keeping in mind that the goal of the registration method was
to attain errors below the resolution of PET images (in general, voxel dimensions of
PET images are around 4.0 x 4.0 x 4.0 mm? in our database). Table 7.1 shows the
scale and its correspondences in mm and in pixels (we recall that the evaluation is
performed in 2D slices). We must point out that since PET images are coming from
different sites, and consequently have different quality and spatial resolutions, we have
added an intermediate (acceptable) quality level.

Table 7.1: Evaluation scale.
Scale | mm | Pixels Quality

0 0-5 0-1 Good
1 5-15 | 1-3 Acceptable
2 15- 3- Unacceptable

8Nevertheless, we always fix display intensity range settings in order to be consistent and do not
induce bias in the evaluation due to false boundary positions.

137



7.4 Visual assessment protocol

Anterior Left Chest Wall : Anterior Right Chest Wall :
¢ =0.5ecm ¢ <l.5em ¢ >1.5cm ¢ =0.5cm ¢ <l.5em ¢ >1.5cm
Anterior Left Mediastinal Wall - Anterior Right Mediastinal Wall
\<05em <l Sem ¢ >1.5em ¢ <05em ¢ <l.Sem ¢ >1.5em
Posterior Left Mediastinal Wall : Posterior Right Mediastinal Wall :
<0Sem <l 5cm ¢ >1.50m ¢ <0Sem ¢ <l.5cm ¢ >1.5em

Posterior Left Chest Wall :
<0.5em | <l.5cm ¢ >1.5em

Posterior Right Chest Wall :
Cel5cm  <l.5cm § >1.5cm

Left Superior Chest Wall :
<0.5em ¢ <l.5em ¢ >1.5em

' Left Superior Mediastinal Wall :

1 Right Superior Mediastinal Wall :
" <b.5em © <l.5em { >1.5em

©<h.5em ¢ <1.5em { >15em

Right Superior Chest Wall :
" <b.Sem  <l.5em | >1.5em

Left Inferior Chest Wall :
<0.5em ¢ <l.Sem ¢ >1.5em

Left Inferior Mediastinal Wall
" <h.5em © <lSem ¢ >1.5em

Right Inferior Mediastinal Wall :
T <0.5em ¢ <l.5em  >1.5em

Right Inferior Chest Wall
" <hSem  <l.5em { >1.5em

Figure 7.3: Example of 2D axial (top) and coronal (bottom) slices of the CT (left),
registered PET (center) volumes and the chessboard display (left) used in the visual
assessment protocol. They are marked with the rulers (white) that define landmark
points where registrations must be evaluated.

7.4.2 Evaluation example

We present here a clarifying example of the use of the visual assessment protocol.
Figure 7.4 shows CT (top left), emission PET (bottom left) and chessboard overlay
(right) 2D axial slices (together with the horizontal rulers used for evaluation purposes)
of an abdominal case. The user must evaluate registration in the liver and the stomach,
specifically at the landmark points placed in the anterior and the posterior left and
right walls of each structure. In this example, we are only going to detail the assessment
of two points (yellow point for CT and red one for emission PET in Figure 7.4): the
posterior liver wall point (A-A’) point) and the anterior stomach wall point (B-B’).

First of all, the user must detect in the three 2D slices the landmark points used as
references for the evaluation. It means that the user must find where the ruler crosses
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Figure 7.4: Evaluation example using the proposed visual assessment protocol in an
abdominal case. Left: 2D axial slices of the original CT (top) and the registered
emission PET (bottom) images. The registration accuracy is evaluated in the liver
(A-A’) and the stomach (B-B’) using the landmark points (yellow in the CT and red
in the emission PET slices) and the ruler. Right: chessboard image with landmark
points from each image modality.

A/A’ Posterior Liver Wall; B/B’ Anterior Stomach Wall.

the liver and the stomach. Afterwards, helped with the marks of the ruler and the
chessboard image (eventually, the evaluator can also visualize all 2D axial and coronal
slices of the volume for further details), the user must estimate the distance between
the pair of corresponding landmark points (for instance the pair A-A’) and classify the
registration accuracy on it according to the dissatisfaction scale. A given structure or
region has several landmark points and thus several registration scores in different 2D
slices. Then, an approximation of the registration accuracy on this structure will be
obtained by computing the mean of the registration scores in the whole set of their
landmark points.

For the particular case shown in Figure 7.4, we observe a good quality of the
registration result in the posterior liver wall but, on the other hand, in the anterior
stomach wall, the assessment must classify the result as failure (in our scale, unac-
ceptable), due to the large distance between CT and emission PET landmark points.
Further discussion about these results is given in Chapter 8.

It has to be pointed out that expert observers must use this visual assessment
protocol, because, as illustrated in Figure 7.4, emission PET contour structures are
very difficult to localize, and it is easy to make a mistake with other tissues different
from the structure to validate.

7.4.3 Inter-observer consistency

We have computed the inter-observer consistency of the developed visual assessment
protocol in order to verify if it is repetitive and objective enough to be used for the
evaluation of registration algorithms. A group of three clinicians of three different
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clinical centers, all of them with a strong experience in oncology, have used the devel-
oped evaluation protocol in order to assess registration result accuracy furnished by
the proposed methodology:

e Dr. Hervé Foehrenbach, from Hopital d’Instruction des Armées du Val de Grace
(Paris, France),

e Dr. Pierre Rigo, from Centre Hospitalier Princesse Grace (Monaco),

e Dr. Xavier Marchandise, from Centre Hospitalier Régional Universitaire de Lille
(Lille, France).

Inter-observer consistency

# 3 users agree
2 users agree

Ono user agree

Percentages

Lungs Kidneys Liver Heart Stomach

Figure 7.5: Inter-observer consistency measure. Bars illustrate, for each structure, the
percentage of landmark points in which: the 3 evaluators have noted the registration
accuracy with the same score (left); only two of the evaluators have agreed with the
same score (center); and the 3 evaluators do not agree at all (right).

The evaluation procedure detailed in Section 7.4.1 has been used by these physi-
cians in an independent way and assessment results have been sent by means of the
developed on-line html web form. They have assessed three registration thoracic and/or
abdominal cases, each one with different degrees of registration accuracy. The number
of landmark points in which the registration has been assessed was: 208 for the lungs;
20 for the kidneys; 36 for the liver; 22 for the heart; and 10 for the stomach.

In order to have an estimation of the inter-observer consistency for each targeted
region, we have computed the percentage of landmark points in which: the 3 evaluators
have noted the registration accuracy with the same score; only two of the evaluators
have agreed with the same score; or when the 3 evaluators do not agree at all.
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Validation of the registration methodology

Obtained results are summarized in Figure 7.5. We can appreciate a good per-
formance of the proposed visual assessment protocol in all the targeted structures in
terms of inter-observer consistency. All cases in which one evaluator disagrees with
the others involve notes differing only in one step of the scoring scale, i.e. from good
to acceptable or from acceptable to unacceptable, but never from good to unaccept-
able. We also observe that there exists more discrepancies for the liver and kidneys
than for the lungs. This is due to the presence of several structures in abdominal CT
images having similar intensity values. On the other hand, discrepancies in the lungs
are mostly due to the lack of strong contours in emission PET images, in particular
after applying the non-linear transformation. An interesting conclusion from the Fig-
ure 7.5 is that the protocol can correctly assess the registration accuracy when it is not
satisfactory, such as in the stomach. Finally, it must be pointed out that only in one
reference point (we recall that 296 of them have been noted), the 3 evaluators have
completely disagreed, also proving the goodness of the visual assessment protocol.

7.5 Conclusions

The validation of registration algorithms is at the core current state-of-the-art re-
search in this field, in particular in those applications involving non-linear transforma-
tions due to the lack of a reliable gold standard.

We have divided the validation of our registration methodology in three parts:
evaluation of algorithm performances based on simulated data; assessment of the reg-
istration result accuracy; and validation performed in a clinical environment to evalu-
ate its added value in diagnosis tasks. In this chapter, we have dealt with the second
phase of the validation procedure. We have reviewed the different techniques usually
employed to assess registration result accuracy in medical imaging applications and
enumerated the special requirements in our application. Then, we conclude that, at
the time being and due to the lack of time to devote to this stage, a quick way to
obtain an estimation of the registration quality furnished by our methodology is the
visual assessment of the results by expert observers.

For this purpose, we have developed a visual assessment protocol, based on several
significant 2D slices marked with a ruler that defines landmark points (where it crosses
with anatomical structures) in which the registration must be evaluated. The registra-
tion is scored according to a dissatisfaction scale that depends on the emission PET
image resolution. We have computed the inter-observer consistency for three registra-
tion results and three different evaluators. Results provided by this study prove that
our visual assessment protocol can be used to obtain an objective enough estimation
of the registration result accuracy. Nevertheless, this protocol must not be seen as an
accurate and definitive validation method and lot of work about this stage must still
be made in order to obtain a gold standard for our application.
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This chapter presents final results obtained by the proposed registration methodol-
ogy, applied on some CT and emission PET images of thoracic and abdominal regions.
In Section 8.1 a brief description of the image database we have employed in our work
is given. The visual assessment protocol we have detailed in Section 7.4 has been used
on some registration results obtained by the proposed registration methodology and
some statistics derived from them are summarized in Section 8.2. Several illustrations
of three final registration results are shown in Section 8.3 and finally, conclusions on
these results and on the proposed registration methodology are discussed in Section 8.4
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8.1 Image database

8.1 Image database

During this work, 20 data sets composed of CT, emission and transmission PET
scans of thoracic and/or abdominal regions provided by LifeScan Louisville, Percy
Hospital and H.I.LA. du Val de Grace have been used. Furthermore, three additional
data sets were available from C.H.P.G. of Monaco, acquired with a combined CT-PET
machine. This image database is continually increasing and new cases shall be treated
in short term.

A common problem when using images from different sites is the lack of homogene-
ity in terms of image quality, due to the use of different scanners and clinical protocols
employed to acquire the images !. We have designed our registration procedure in
order to be as much independent as possible of image acquisition characteristics in
order to avoid reformatting our image database to a common standard. Therefore,
CT images have a size of 256 x 256 or 512 x 512 pixels in the zy plane (axial plane)
and between 60 and 125 slices (depending on their FOV, corresponding to a thoracic
or an abdominal case), with voxel dimensions approximately 1.0 x 1.0 x 5.0 mm?3.
PET images have a size of 144 x 144 pixels in the zy plane (axial plane) with 160 to

230 slices, with voxel dimensions around 4.0 x 4.0 x 4.0 mm?.

8.2 Visual assessment protocol applied on final reg-
istration results

In this Section, we have only employed the visual assessment protocol on the regis-
tration results furnished by the proposed methodology and no comparison with other
registration approaches such as linear registrations or the MI-FF'D technique without
a structure-based initialization has been done. We consider that this question is an-
swered in Chapter 3, where some images are shown and clearly illustrate that these
methods do not furnish accurate enough registration results. Therefore, we do not see
any interest of using the visual assessment protocol to confirm conclusions obtained
by visual inspection of images of Chapter 3.

Therefore, the visual assessment protocol we have developed (see Section 7.4) has
been used by three expert evaluators to assess five different CT and emission PET
image registrations, including thoracic and abdominal cases. These registrations have
been obtained by applying the proposed registration methodology (see Section 3.2 for
a general system overview), using the GVF-FFD structure registration method de-
tailed in Section 5.4.3 as a starting point to initialize a MI-FFD registration stage
(see Chapter 6) working with the original grey-level images. Statistics obtained from
the visual assessment protocol are summarized in Figure 8.1 and in Table 8.1. Fig-
ure 8.1 shows, for each significant thoracic and abdominal structure, the percentage of
landmark points in which the registration error is noted as good, acceptable or unac-
ceptable, according to the scoring scale of Table 7.1. Table 8.1 displays the values of

LFor this reason, we are not going to detail in this manuscript acquisition or scanner characteristics
of each site involved in the project.
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Visual assessment protocol results
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Figure 8.1: Visual assessment protocol applied on final registration results. Bars illus-
trate, for each structure, the percentage of landmark points in which the registration
error is noted as good (left), acceptable (center) or unacceptable (left), according to
the scoring scale of Table 7.1.

Table 8.1: Visual assessment protocol results.

Region | Note = 0 (%) | Note = 1 (%) | Note = 2(%) | Mean | Standard Deviation
Lungs 56.32 29.17 14.51 0.58 0.73
Kidneys 71.67 25.00 3.33 0.38 0.61

Liver 50.45 41.44 8.11 0.57 0.64

Heart 56.16 35.62 8.22 0.52 0.65
Stomach 34.48 24.14 41.38 1.07 0.88

these percentages, together with the mean and the standard deviation of the registra-
tion scores obtained from the set of landmark points corresponding to each structure.
It must be pointed out that these statistics are used only as a qualitative estimation
of the registration error, which maximum is equal to 2 (unacceptable registration, er-
ror larger than 1.5cm) and the minimum is zero (good registration, error lower than
0.5cm). Therefore, mean and standard deviation values shown in Table 8.1 are in the
scoring scale space (not in cm).

Inspection of Figure 8.1 and Table 8.1 illustrates the good performance of the pro-
posed non-linear registration methodology for the majority of the evaluated regions
including lungs, kidneys, liver and heart. On the other hand, some significant mis-
registrations appear near the stomach. This conclusion is based on the percentages of
landmark points in which registration is noted as good or acceptable, with respect to
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those ones having unacceptable registration errors.

In particular, results obtained in the thoracic wall are very satisfactory, even in
the diaphragmatic region where the transformation computation was very critical due
to the large deformations suffered in this region. The upper part of both lungs have
in all cases good registration errors, while some landmark points corresponding to the
lower part of the lungs have been noted equal to 1. The unacceptable errors found in
the lungs correspond to the posterior mediastinal wall, due to the large differences in
this region between CT and emission PET images.

The proposed registration methodology takes advantage of the proximity of the
heart to the lungs and the strong constraints imposed on them to furnish good and
acceptable registration errors of the heart.

We can observe that the kidneys produce the lowest registration errors, and this
is due to the lack of strong deformations on these structures and the good initializa-
tion furnished by their segmentation-based registration stage. The landmark points
corresponding to the kidneys that have been noted equal to 2 concern those ones of
the right kidney close to the stomach, due to the influence of this structure on their
registration. On the other hand, most of the landmark points corresponding to the
left kidney have been noted to 0 (even if there are some scores equal to 1 in zones close
to the liver).

The proposed registration methodology provides good and acceptable registration
errors in the liver, despite of the difficulties of this structure. Its landmark points
noted as 0 correspond in general to the upper part and the left wall of the liver, while
those ones in which registration has been noted to 1 are mostly located on the lower
part of the liver. Some unacceptable registration errors are found on the right wall
of the liver since, sometimes, there are small abdominal structures close and having
similar intensity values to the liver, thus producing good similarity measure values,
even if the registration is not well done.

Most important registration errors have been found in the stomach (it is the only
targeted structure having a mean of notes larger than 1), due to the severity of its
deformations and the lack of strong constraints imposed on this structure. Neverthe-
less, some good and acceptable notes have been assigned to those landmark points
corresponding to the stomach that are relatively close to the kidneys and the lungs
because they take advantage of the initialization registration stage applied to these
structures.

8.3 Illustrations of final registration results

Three final registration result examples are shown in the following pages. Even
if the visual inspection of these examples is biased by the printing quality and the
possibility of showing only a limited number of 2D slices, we think that it can provide
to the reader an approximation of the good performance of the proposed registration
methodology.

The first one contains all segmented thoracic and abdominal structures, i.e., lungs,
kidneys and liver, and other regions that have not been introduced in the initializa-
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tion stage such as heart or stomach. Figure 8.2 includes four axial and two coronal
2D slices of the original CT (left), the registered emission PET (center) image and
their superimposition (right). The visualization of these images graphically confirms
the conclusions obtained from the visual assessment protocol: registration results are
satisfactory in all structures except for the stomach. Nevertheless, some errors appear
around the posterior mediastinal region because the grey-level registration stage has
displaced this region towards nearby zones with similar heart intensities.

The second case, shown in Figure 8.3, is very interesting due to the presence of a
malignant tumor located in the left lung. The challenge of the transformation compu-
tation between these images was to compensate their severe differences, illustrated in
the top row of coronal slices in Figure 8.3, where it can be easily seen that the tumor
is found in distant coronal slices after applying a linear registration transformation to
the emission PET image (Figure 8.3, top row, center). The application of the proposed
non-linear registration methodology has allowed to obtain a transformation capable of
placing the tumor in the correct coronal slice (Figure 8.3, top row, right). The next
images shown in this figure correspond to an axial, a coronal and a sagittal 2D slices
where the tumor can be seen, corresponding to the CT image (left), the emission PET
image after applying our registration methodology (center) and their superimposition
(right).

Finally, some axial (Figure 8.4), coronal (Figure 8.5) and sagittal (Figure 8.6) 2D
slices of a thoracic case are shown, in order to illustrate the good performance of the
registration methodology in the whole 3D volumes.
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8.3 lllustrations of final registration results

Figure 8.2: Final registration result. Case 1. Axial (four top rows) and coronal (two
bottom rows) 2D slices of the CT (left) and registered (with the proposed registration
methodology) emission PET (center) images and their superimposition (right).
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Figure 8.3: Final registration result. Case 2. 2D coronal slices (top row) of the CT
image (left), the emission PET image registered with a linear transformation (cen-
ter) and the emission PET image registered with the proposed non-linear registration
methodology (right). The mark on the top row points out where the tumor is located.
It can be seen that the tumor is found in different coronal slices after applying a linear
transformation (center) and that this problem is solved using the proposed non-linear
registration methodology (right).

An axial (second row), a coronal (third row) and a sagittal (bottom row) 2D slices
of the CT (left) and the registered (applying the proposed registration methodology)
emission PET (center) images, and their superimposition (right).
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Figure 8.4: Final registration result. Case 3 (axial slices). Some axial 2D slices of the
CT (first and fourth columns) and the registered (applying the proposed registration
methodology) emission PET (second and fifth columns) images, and their superimpo-
sition (third and sixth columns).
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Figure 8.5: Final registration result. Case 3 (coronal slices). Some coronal 2D slices
of the CT (first and fourth columns) and the registered (applying the proposed reg-
istration methodology) emission PET (second and fifth columns) images, and their
superimposition (third and sixth columns).

151



8.3 lllustrations of final registration results

Figure 8.6: Final registration result. Case 3 (sagittal slices). Some sagittal 2D slices
of the CT (first and fourth columns) and the registered (applying the proposed reg-
istration methodology) emission PET (second and fifth columns) images, and their
superimposition (third and sixth columns).
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8.4 Conclusions

In this chapter, we have presented some final registration results obtained by ap-
plying the proposed registration methodology to thoracic and/or abdominal CT and
PET emission images.

Results provided by the application of the visual assessment protocol detailed in
Section 7.4 to the pairs of images registered by the proposed methodology prove that
we obtain acceptable registration errors for the majority of the targeted thoracic and
abdominal structures except for the stomach. This is due to the absence of this
structure in the initialization phase, the strong deformations the stomach undergoes
and the existence of close small structures with similar intensity values, misleading the
fine registration step working with the whole set of image grey-levels.

Therefore, these promising registration results illustrate the fact that registration
is better achieved around structures that have been recognized with the segmentation
procedure detailed in Chapter 4. We recall that a second way of evaluating segmenta-
tion result accuracy was based on the assessment of final registration results obtained
by the proposed methodology. As a matter of fact, the transformation computation
between CT and emission PET images strongly depends on the anatomical informa-
tion that we are capable to extract from both data volumes, i.e., it depends on the
segmentation result accuracy. Therefore, the evaluation of final registration results can
also be seen as a retrospective assessment of the segmentation stage. Final segmen-
tation results have proved to be accurate enough to guide the structure registration
procedure that will initialize, close to the final solution near segmented structures, the
refinement registration step working with the whole set of intensities.

Several illustrations of three different registration cases are shown. Visual inspec-
tion of these images confirms the conclusions provided by the visual assessment pro-
tocol.

Some words must be said about registration results obtained by applying the
proposed registration methodology to two particular sets of images available in our
database: images acquired with a combined CT-PET system; and pathological images
with lung tumors.

Insignificant or no improvement has been obtained on the registration of images
acquired by a hybrid system. Only in one case, some small differences have been found
in the cardiac region. It must be pointed out that only three of these pairs of images
were available and they did present neither significant visible artifacts nor visible tu-
mors, it means cases in which a non-linear registration algorithm could give additional
information to the mechanical registration furnished by these machines. Therefore, we
cannot draw any conclusions about the application of the proposed methodology on
this type of images until a more exhaustive database would be available.

As detailed in the manuscript, the proposed registration methodology is based on
an initialization phase guided by the segmentation and registration of several thoracic
and abdominal structures. In some pathological cases (for instance, when a tumor is
located at the middle of a lung), this strategy may produce undesired effects on tumors
since their initial registration is guided by larger structures and the fine registration
stage cannot recover these misregistrations. In order to avoid that, tumors should be
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included in the initialization phase as an additional anatomical structure, thus impos-
ing some constraints on their registration. Some initial results of a semi-interactive
tumor segmentation procedure we have developed and its effect on tumor registration
are detailed in Appendix D.
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CHAPTER g

Conclusions and perspectives

9.1 Conclusions

The main goal of this work has been to provide a satisfactory solution to a complex
problem of medical image processing, the registration of CT and emission PET images
of thoracic and abdominal regions. This solution should be objective, robust, fast and
as automatic as possible in order to be used in clinical routine in a short term. Along
this document, the difficulties associated to this application have been described. The
main ones include the elastic nature of the organs located in thoracic and abdominal
regions, the large inter-individual range of structure movements and metabolic activ-
ity, the different physical nature underlying both acquisition techniques, the different
acquisition protocols and the time passed between them.

We have reviewed the registration literature and we have justified the use of a
Free-Form Deformation model over other non-linear transformation techniques. Fur-
thermore, we have highlighted the problems associated with whole-content based non-
linear registration approaches when working with emission PET images in thoracic
and abdominal cases and without prior information or constraints introduced in the
procedure. As a matter of fact, these approaches have difficulties to deal with the low
SNR quality of emission PET scans, the presence of severe deformations in thorax and
abdomen and the lack of linear correspondences between the intensities of homologous
regions.

Therefore, we have proposed and evaluated a registration methodology in which
prior information about the anatomical structures involved in the application is in-
troduced. Conclusions on the proposed registration methodology are given in the
following paragraphs.

Proposed registration methodology The proposed registration methodology is
based on the incorporation of prior anatomical information in an intensity-based non-
linear registration algorithm. The incorporation of this prior information is performed
in an explicit way, by initializing the intensity-based registration stage with the solution
obtained by a non-linear registration of corresponding anatomical surfaces segmented
through a hierarchically ordered set of anatomy-specific rules. Therefore, the general
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scheme of the registration approach we propose is divided in two stages: a structure
registration phase in which homologous structures are segmented in both CT and
emission PET grey-level images and registered with a non-linear transformation; and
a grey-level registration phase in which a non-linear registration technique is applied
to the whole set of image intensities of the images. The second stage is initialized with
the transformation provided by the structure registration stage and it furnishes the
final non-linear transformation.

As a matter of fact, the structure registration phase can be seen as an anatomical
multi-resolution step, filtering out from the data the main anatomical structures, then
transferring the result as an initial estimate to a higher level where finer anatomical
detail will be considered. The grey-level registration phase can be considered as a
refinement step of the structure registration results, capable of correcting any errors
the segmentation might have induced and improving the registration of those regions
distant from the segmented structures. Therefore, we do not need an accurate structure
segmentation of the targeted structures, since only an approximation is required to
compute an initial transformation between them.

We have justified the use of this explicit approach instead of an implicit one in our
application, in which we work with pathological images and a limited computational
burden of the algorithm is very important. This is the main original point of the
proposed registration methodology since we only use general anatomical knowledge
instead of any kind of geometric or morphologic model of the structures such as atlases
of phantoms, permitting to work with any kind of unexpected situations.

Transformations in both steps are modeled by means of Free-Form Deformations
(FFD), governed by a three-dimensional grid of control points. The FFD model has
proved to be a flexible technique allowing us to construct an original registration
methodology based on it and providing us a simple way of interaction between feature-
based and full content-based registration phases. This interaction between these two
theorically confronted methods, derived from the chosen strategy, has allowed us to
combine their associated advantages while canceling their drawbacks. The FFD model
uses an uniform grid of knot points superimposed on the target image and that guides
its deformation. One could think that this grid of control points is a bit limiting, and
certainly, a grid having more control points in regions where more local deformations
occurs and a lower number of them in less important regions such as the background
could provide better results, in particular in terms of computational cost. Nevertheless,
multi-resolution and multi-grid approaches based on uniform FFD grids can success-
fully cope with large or local deformations, as illustrated in the lung registration stage
of the proposed methodology.

A different problem is if the optimization of a given FFD control point is misled
by the similarity measure criterion, thus providing wrong registrations. For instance,
tumors are usually well contrasted in PET images but in CT ones they may have
similar intensities to neighboring structures. The presented registration methodology
add some constraints on the registration of some structures, but not on the tumors.
Therefore, their registration strongly depends on the deformations undergone by sur-
rounding structures, causing significant tumor misregistrations in some pathological
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cases such as when the tumor is located in the middle of a lung. In order to avoid
these tumor registration errors, we have developed a semi-interactive tumor segmenta-
tion approach, aiming at incorporating some tumor-based constraints to the proposed
registration methodology. Preliminary results are shown in Appendix D.

We have used the visual assessment protocol we have developed to assess five regis-
trations obtained with the proposed methodology. According to the statistics provided
by the visual assessment protocol, the proposed methodology attains the application
requirements fixed at the beginning of our work in terms of accuracy of the registra-
tion results, furnishing registration errors within clinically acceptable ranges in most
relevant structures, unlike other tested non-linear registration methods. Nevertheless,
in parts of some structures such as the heart and the stomach, significant errors are
sometimes found due to the severity of their differences between two acquisitions and
to the lack of strong constraints imposed on them.

We have also applied the proposed registration methodology to three pair of CT and
emission PET images acquired with hybrid systems. Insignificant or little registration
improvement has been obtained since these images did not include cases in which a
software-based non-linear registration algorithm could add some information to the
CT-PET combined machines such as in pathological cases. Then, we should wait until
a more extensive database of these images will be available in order to evaluate the
effect of the proposed methodology on the superimposition of these images.

In terms of computational cost, the proposed methodology has provided the frame-
work for a software that could be used in clinical routine after a phase of code op-
timization and parallelization (that could reduce computational cost by more or less
a factor of 3). At the time being, the proposed registration methodology takes in
general less than 2 hours to furnish good quality results (the structure segmentation
stages only takes around 2 minutes) for a thoracic and abdominal case. This means
a reduction of the computational burden of the algorithm of around 60% (80% if we
only take into account convergence times of the grey-level registration stage).

In fact, the firm associated to the project, SEGAMI S.A.R.L. is actually developing
an interface and adapting our programs in order to provide to the physicians a software
solution ! to this challenging application in their multi-modality workstations (Mirage
stations), that will be operational at the end of 2004. This option will complete the
affine registration (MIRegister ) solution already available on Mirage stations. Due
to the large number of hospitals having these workstations, once the non-linear CT-
PET thoracic and abdominal option will be added, the clinical evaluation phase could
begin. This stage will allow us to test the proposed registration methodology in a
clinical environment, providing a useful feedback from the users and a high number of
cases to better assess the proposed methodology.

1Some parts of the presented work have lead to a U.S. patent proposal, that is actually in an
evaluation phase. U.S. Provisional Patent Appl., number 60/369, 681, Registration of thoracic and
abdominal imaging modalities. I. Bloch, G. Delso and O. Camara.
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Recommendations about the acquisition protocol One of the requirement for
the proposed registration methodology was to be as independent as possible of the
image acquisition protocol. Therefore, we have worked with a database of inhomoge-
neous CT and PET images with differences including respiratory and arm’s position
in both scans. We have not observed a different behavior of the proposed registration
methodology depending on these factors. Nevertheless, it is clear that the transforma-
tion between both images to register will be more complex (strong chest deformations
appear) if the arm’s position is not the same in both scans, thus making easier to
obtain better registration results. As a matter of fact, this is not currently a major
problem since acquisition times for PET images are already quite low (around 30 min-
utes for the most recent scanners), thus, the majority of patients can hold their arms
above head during the acquisition.

Concerning the respiratory position of the CT scan, Goerres et al. [103] have shown
that in order to make easier a CT-PET registration, the CT scan must be acquired
in normal breathing. However, by doing this, the CT scan will have lower image
quality due to the apparition of breathing artifacts. Therefore, this choice strongly
depends on the targeted application of the registration. Obviously, these problems are
considerably reduced in hybrid PET/CT systems with respect to stand-alone devices,
thus a software-based registration algorithm can be focused on coping with non-linear
deformations still existing between images acquired with these systems.

9.2 Future work

The perspectives of our work are numerous and can be classified into short term,
middle and long term and very long term ones.

Short term Future work classified as short term basically concerns implementation
details and enhancements of the proposed methodology in each one of its stages:

e Structure segmentation: the main improvement that could be easily added in
this phase is the addition of other structures into the hierarchical segmentation
procedure such as the heart or the stomach, that would provide additional con-
straints on image zones where these structures are located. As a matter of fact,
the ROI construction corresponding to these structures could be easily derived
from already recognized structures by means of robust spatial relations such as
the ”"the stomach is always located under the left lung” or ”the heart is always
localized on the left of the right lung and close to the left one”. Future work
concerning this stage could also be the construction of a database of segmented
structures in order to study their shape variability and the robustness of their
spatial relationships. This atlas would allow the study of other type of struc-
ture relations such as distances, that could be used to better constrain future
structure segmentations.

e Structure registration: results provided by the GVF-FFD method are less accu-
rate than those obtained with the RMS-FFD due to the trade-off between the
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capacity of coping with local deformations and the rejection of outliers. The use
of outlier rejection techniques such as M-estimators or the use of alternative and
more robust deformation field computation techniques such as block matching
could notably improve the result accuracy of this method. Concerning the RMS-
FFD method, the optimization approach implemented was the simplest one, and
by using more sophisticated techniques, the algorithm computational cost could
be reduced.

e Grey level registration: several ideas that could enhance the performance of this
stage have not been implemented because of a lack of time. The first one concerns
the use of alternative entropy formulations instead of Shannon’s one in order to
accelerate the Mutual Information computation and to better take into account
the dependence between neighboring voxels. Another idea related to the similar-
ity criterion involves the binning procedure in the histogram computation. Scale
space histogram analysis techniques could be used in order to select an optimal
number of bins and their size, depending on the image intensities. Finally, from
the work of Maes et al. [173] or Hermosillo et al. [47], an analytic expression of
the similarity criterion gradient in the case of FFD transformations should be
investigated. This will notably improve convergence results with respect to the
gradient estimation actually employed.

e Evaluation of the registration result accuracy: an interesting evaluation tech-
nique for our application would be the use of biomechanical models, but the lack
of time has forced us to leave it for further work. The idea was to employ a
labeled whole-body IRM numerical phantom, proposed by Zubal et al. [317] to
simulate a PET image by means of Monte Carlo methods, which can describe the
geometry and the physical characteristics of a PET camera. Then, a deformation
field generated from the NCAT phantom [254 ; 255] could be used to simulate
different PET images through the respiratory and cardiac cycles. Another initial
idea was the use of a second tracer, 18-fluor under the Na-F shape, employed to
mark bone structures, in order to verify the absence of undesired deformations
in rigid structures. Unfortunately, these acquisitions are not yet available.

Middle and long term Several possible directions are worth to be evaluated in the
future, concerning the proposed methodology. The first one is the use of an irregular
grid instead of a FFD one in order to place the control points in image regions where
they are needed, such as in the method proposed by Marsland and Twining [186]. This
approach will eliminate the unnecessary optimization of several control points that do
not significantly contribute to the final results.

Another important aspect that could be interesting to investigate is the number
of transformation parameters (control points in a grid-based approach) required for
a given technique in order to furnish an acceptable level of registration accuracy.
Several methods such as Radial Basis Functions-based or Discrete Cosinus Transform-
based can have a lower computational cost than FFD-based because of having a lower
quantity of parameters to optimize. On the other hand, fluid and other non-parametric
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techniques can furnish a very local transformation (three degrees of freedom for each
voxel) allowing the existence of irregular transformations at the expense of a higher
computational burden of the registration algorithm. A comparison between these
techniques and a medical evaluation of the results could furnish useful information in
order to state the required accuracy for this registration application.

Other ideas could be investigated that will notably change the proposed registra-
tion methodology. One of these suggestions involves the computation of the non-linear
transformation using feature and voxel information at the same time, once structures
have been segmented. Or even, mixing segmentation and registration procedures in a
whole system. Another idea concerns the introduction of prior information by means
of biomechanical models, for example modeling structure movements and deforma-
tions along respiratory or cardiac cycles. This is a current state-of-the-art research
subject [250] and it represents one of the most promising branches in registration
because it could furnish valuable information to assure physically correct transforma-
tions and it can be a useful tool for the registration result validation. Some existing
FEM models available for some structures such as the liver, together with the NCAT
phantom [254 ; 255], could be a starting point for this modeling.

The previous idea is linked to the functional tumor registration problem. We have
proposed a semi-interactive tumor segmentation (see Appendix D), and preliminary
results are very satisfactory. The major problem of a registration technique applied
to functional tumors concerns the loss of their significant metabolic information after
a non-linear registration is applied. This is a crucial point because it prevents the
computation of quantitative information such as Standardized Uptake Value (SUV)
measures that are very important for analyzing tumor malignancy, radiotherapy and
treatment planning. Some ideas could be studied in order to preserve this metabolic
information for some registration applications, such as to compute the registration
from the CT image to the PET one.

It could be also useful to take profit of the development of combined CT-PET
devices in order to identify the interest of applying the proposed methodology to im-
ages acquired with these machines aiming at compensating the deformations that the
hardware registration has not been able to cope with. Furthermore, we should study
whether the structure registration phase is still required or the mechanical registration
provided by these systems is already accurate enough for initializing a whole-content
non-linear registration step. As a matter of fact, according to the opinion of the
main workstation developers and scanner constructors, the future scheme of an oncol-
ogy system will be composed of a combined PET/CT machine and a software-based
registration algorithm included on the scanner consoles in order to correct possible
artifacts and registration errors due to soft tissue and physiological motions. This
scheme will allow the apparition of new registration applications involving new emerg-
ing PET tracers. The combination of PET images obtained with different tracers will
be very useful, but the majority of these tracers produces PET images having even
less anatomical references than FDG-PET ones. If these PET scans were acquired
with a hybrid system, we could make the assumption that this CT-PET mechanical
registration is accurate enough and the proposed registration methodology could be
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used to obtain a registration between the CT images associated to each one of the
PET scans acquired with different tracers.

Finally, future work should be also focused on the adaptation of clinical protocols
to be oriented to the image acquisition for registration applications. For instance, a
gating PET acquisition could be very useful in order to integrate this complementary
information in the registration procedure.

In a non-medical application context, although it has not been described in the
manuscript, some parts of the registration system have been successfully used in a
face recognition application. This research line must be further studied, as well as
the application of our registration system in other registration applications involving
other kind of images such as radar ones.

Very long term Future work classified as very long term (10 or 20 years from now)
concerns basically our skills as futurologists. In order to clarify this crazy sentence, I
shall reproduce the advice given by R. Bajcsy [6] in a workshop devoted to biomedical
image registration (WBIR’03) last summer. This adorable woman is one of the pio-
neers on registration techniques who started to work on this subject in the late 70’s.
The advice she has given was: ”Dream big”. When she began her investigations on
this subject, and she had problems to read a 2D slice due to the limited capacity of
available computers, she could not imagine, even dream, the technology advances that
she has lived in medical image applications. In that time, the use of 3D image vol-
umes embedded in a clinical routine protocol or computer-aided surgery applications
sounded foolish. Therefore, it is our turn to dream and we can imagine, in a furthest
future, the possibility of registering 3D CT and PET whole-body images in real-time,
by means of a fast acquisition device (less than one minute), together with powerful,
fast and robust image processing techniques. In order to better illustrate this, the

interested reader is referred to observe the medical staff and their tools in any episode
of Star Trek.
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APPENDIX A

Find-Judas registration application

I have taken the liberty of illustrating the context of our work with a metaphoric
and non-medical example which could help to better understand the interest of the
application. In Figure A.1, a last supper picture is shown, where we can appreciate
the presence of Jesus and his twelve disciples that are peacefully eating. Poor Jesus
knows that one of his friends is a traitor but unluckily he does not know which one.
Let me propose the following application to help Jesus: find Judas. If we are not an
expert observer, it would be difficult to find him. In fact, this picture has the same
characteristics as a CT image: good quality, well localized contours, etc., but it does
not provide any information about the malignancy of the disciples.

e

Figure A.1: Original last supper picture.

If we could obtain another version of the picture by means of another acquisition
system such as a device that allows to represent in an image the aura of the disciples,
or even better the possibility for each disciple of being a traitor, we could know for
each disciple if he is benign or malign. This is also the case of the PET image, which
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like the aura acquisition, is very noisy and has a lot of artifacts, but it provides a
necessary functional information. Let the Figure A.2 be the image produced by this
miraculous device. The very very bad disciple can be easily recognized (in red, for the
not too awaken minds) but the problem is that the nature of both acquisitions is very
different, making more difficult the task of finding the traitor.

Figure A.2: Aura representation of the last supper. The color scale indicates the degree
of malignancy of a person, red color corresponding to a very very bad person, blue
color to a good person and white color to a saint person.

In order to be able to compare and superimpose both images, one of the images
must be transformed (in this case, the aura image) in a non-linear fashion to establish
a correspondence between the auras and the disciples of the picture. In Figure A.3,
the transformed aura image and the superimposition of both images are shown. The
combination of the two images will give us a good localization while preserving the
functional information about the disciple or the tumor, as shown in the figure, where
Judas is found.
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Find-Judas registration application

Figure A.3: Results of the find-Judas application. Top: aura transformed image;
bottom: superimposition of anatomical and functional images.

169



170



APPENDIX B

Medical information about cancer

B.1 What is cancer?

Cancer! is a term used to describe a group of illnesses all having in common the lack
of regulated cell growth, which results in serious health problems. Cancer has afflicted
humans throughout recorded history, the earliest evidence of cancer being fossilized
bone tumors, human mummies in ancient Egypt, and ancient manuscripts (see Fig-
ure B.1 for an example). The origin of the word cancer is credited to Hippocrates
(460-370 B.C.), who used the terms carcinos and carcinoma to describe non-ulcer
forming and ulcer-forming tumors. In Greek these words refer to a crab because of
the swollen blood vessels around the area of a tumor, which were thought to resemble
a crab limbs.

Figure B.1: Mud-fired (terracotta) art object representing a tumor (400 B.C.).

Cancer develops when cells in a part of the body break free of normal constraints
and start reproducing out of control. During the early years of a person’s life, normal
cells divide more rapidly until the person becomes an adult. After that, cells in
most parts of the body divide only to replace worn-out or dying cells and to repair
injuries. This growth of new cells is a highly complex and tightly regulated process.

! Apart from Internet resources, interesting tutorials about cancer can be found in [147 ; 143 ; 80]
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B.1 What is cancer?

With cancer, for one reason or another, the growth of new cells has become defective.
When a cancer cell begins to grow, rather than just replacing the cells that have been
damaged or lost, it multiplies out of control, taking over the organ. Another cause
leading to cancerous cells is when a genetic mutation results in a loss of cell ability of
self-destructing (called apoptosis). All normal cells have surveillance mechanisms that
look for damage or for problems with their own control systems. If such problems are
found, the cell destroys itself.

Cancer is a disorder that can occur inside any cell in our body and it begins with a
damage of the genetic code of the cell (DNA). This substance, presented in every cell,
directs all its activities (including the growth task) and most of the time, when DNA
becomes damaged, the body is able to repair it. In cancer cells, the damaged DNA
is not repaired and this genetic mutation advances when the cell descendants mutate
further. There are three groups of genes implicated in the development of cancer:

e oncogenes: they are damaged genes whose presence in certain forms and/or
overactivity can stimulate the development of cancer by instructing cells to make
proteins that stimulate excessive cell growth and division;

e tumor suppressor genes: they are normal genes whose absence can lead to cancer
because their function is to instruct cells to produce proteins that restrain cell
growth and division;

e DNA repair genes: they are codes for proteins and their normal function is to
correct errors that arise when cells duplicate their DNA prior to cell division.

Cancer often arises because of the accumulation of mutations involving oncogenes,
tumor suppressor genes and DNA repair genes.

In some cases the cancer cell grows so much that it forms a mass of abnormal cells
called a tumor. This tumor can cause health problems by blocking internal ducts or
by pressing against other organs, preventing them from working properly. But not
all tumors are cancerous and depending on whether they can spread or not, tumors
are classified as being either benign or malignant. Benign cancers cause problems
in the organ where they occur, but do not spread. These tumors may be removed
surgically or treated with drugs and/or radiation to reduce their size. This action
usually cures the disease. However, with a malignant growth, cells from the original
tumor have the ability to migrate from the original site and may travel to other sites
in the body. This spread happens in two ways: by invasion, where the cells directly
migrate and penetrate into neighboring tissues; and by metastasis, where cells from
the original tumor have the ability to penetrate into lymphatic and blood vessels,
circulating through the bloodstream. Once this happens, these cancer cells migrate
to many other distant sites and organs in the body, as can be seen in Figure B.2. In
this way, multiple growths occur, affecting many parts of the body, eventually causing
multiple organs to fail. These growths are known as secondary cancers or metastasis,
but they share the name of the original primary tumor. Organs or parts of the body
that have a rich blood or lymph supply are the most likely sites for these secondary
malignant growths to appear (lungs, liver, bone marrow, lymph nodes). By definition,
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the term cancer applies only to malignant tumors. A malignant tumor is a more
serious health problem than a benign tumor because of this ability to metastasize.
Three examples of cell growth leading to skin, lung and prostate cancer are shown in
Figures B.2 and B.3, where the progression of the disease can be appreciated.
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Figure B.2: Top Row. Left: normal growth of skin cells. Cells in the basal layer
divide to replenish dead cells shed from outer surface. Center: beginning of cancerous
growth. Basal cells divide faster than is needed and there is an increase in the total
number of dividing cells. Right: tumor creation. A growing mass of tissue called
tumor is created by the increase of dividing cells and normal organization of the tissue
becomes disrupted.

Bottom row. Left: differences between malignant and benign tumors. Right: exam-
ple of spreading of cancer by invasion and metastasis. Original images come from
a National Cancer Institute tutorial (http://pres2.nci.nih.gov/sciencebehind/
cancer/cancer00.htm).
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Figure B.3: Examples of lung cancer (two left columns) and prostate cancer (right
column). Lung cancer: the top pair of images shows the normal ephitelium of
the bronchi. The next pairs of images show successive stages of abnormal changes
in the bronchial ephitelium, also showing the cellular organization at each stage.
Images come from Kimball’s biology pages (http://users.rcn.com/jkimball.ma.
ultranet/BiologyPages/L/LungCancer.html).

Prostate cancer: the top image shows the organized structure of prostate cells while
the bottom image shows the cancerous tissue which is completely disorganized due to
the uncontrolled growth of malignant cells. Images come from University of Michigan
Health system (http://www.cancer.med.umich.edu/news/relprostate.htm).
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B.2 Types of cancer

There are over 200 different types of cancer, and each has a specific name, growth rate,
treatment and chance of being cured. Anyway, we can distinguish three broad types
of cancer:

e carcinomas: the most common types of cancer, they arise from the cells that
cover external and internal body surfaces. Lung, breast, and colon are the most
frequent cancers of this type;

e sarcomas: they are cancers arising from cells found in the supporting tissues of
the body such as bone, cartilage, fat, connective tissue, and muscle;

e hematological cancers: leukemia, lymphoma and myeloma are classified in this
category and they are all malignancies that arise from blood cells, from cells that
go to make up blood or from the lymph nodes and tissues of the body immune
system.

Leukemias
Bleodsiresm

_ Lymphomas
_.'.;,'-____-L-,rmph nodas
.Eumn Comman
Sarcomas

Fal

Figure B.4: Most common body organs involved in cancer.

B.3 Cancer causes

From the earliest times, physicians have wondered about the causes of cancer. Be-
tween the religious beliefs of the Egyptians (they blamed cancers on the Gods) and the
recent genetic theories, there has been a slow process of evolution through the ages.
Hipoccrates was the first to propose a theory about cancer, based on his humoral
concept of the body. This theory of cancer was passed on by the Romans and was
embraced by the influential doctor Galen’s (129-200 A.C.) medical teaching, which
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remained the unchallenged standard through the Middle Ages for over 1300 years.
During this period, the study of the body, including autopsies, was prohibited for
religious reasons, thus limiting knowledge. Until the middle of the 20th century, sev-
eral cancer theories were also proposed (lymph, blastema, chronic irritation, trauma,
...), but we only cite two anecdotes concerning the parasite theory to illustrate the
misunderstanding level about this disease until recent times. The first one, placed in
the 17th and 18th centuries, when some believed that cancer was contagious and one
consequence of such thought was the displacement outside the city in 1779 of the first
cancer hospital in France (people were afraid of the spread of cancer throughout the
city). Another curiosity was the Nobel Prize wrongly awarded in 1926 for scientific
research documenting stomach cancer being caused by a certain worm.

Nowadays, more correct causes of cancer have been discovered and documented,
mostly due to advances in genetics. While cancer is a mistake at the genetic level of
the cell, in up to 90% of cases this genetic mistake is not one that has been inherited;
it is mostly the exposure to one or more carcinogens during our lifetime that causes
cancer to occur. Carcinogens are the factors which cause the DNA inside a cells to
become altered or mutated (causing the cell either growing without control or becoming
immortal). There can be a delay of several decades between exposure to a carcinogen
and the onset of cancer. For example, a group of young people exposed to carcinogens
from smoking cigarettes generally do not develop cancer for 20 to 30 years. This period
between exposure and onset of disease is the lag time. Carcinogens can be physical,
chemical or biological mutagens:

e physical mutagens: physical mutation of DNA can be caused by ionizing ra-
diation, ultraviolet radiation and by mineral fibers. These three mutagens act
in very different ways. Ionizing radiation literally punches holes in the DNA,
breaking the correct genetic sequence. Ionizing radiation can come directly from
X-rays, cosmic rays (solar radiation) and indirectly from radon gas. Ultravi-
olet radiation (from sunlight) by contrast causes mutations by causing certain
portions of DNA to remain bound together (even when they should not). This
causes mutations by causing misreading of the DNA. Finally, certain natural
mineral fibers like asbestos, because of their size, can cause damage directly to
DNA resulting in carcinogenic mutations;

e chemical mutagens: in the case of chemical mutagens, mutation is caused by
foreign molecules binding to a cell DNA, causing it to be misread. Examples or
chemical mutagens are benzopyrene (found in cigarette smoke) and wvinyl chlo-
ride (found in the plastics industry), aflatorin (found in certain moulds) and
hetrocyclic amines (found in over-cooked food);

e biological mutagens: biological mutagens may be viral or bacterial. Viral mu-
tagens may use a number of different complex mechanisms to cause a cell to
become cancerous (for instance, the insertion of the viral genetic information
carried by the nucleic acids of the virus into the chromosomes of the infected
cell, causing the cell to become malignant). Viruses that cause cancer include
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the human papilloma virus (implicated in cervical cancer) the human T-cell lym-
phyocytic virus (implicated in lymphoma) and the hepatitis B virus (implicated
in liver cancer). Known bacterial mutagens are helicobacter pylori, implicated in
stomach cancer.

The three main daily life causes of cancer are smoking/alcohol, dietary imbal-
ances (excess of fat and calories; inadequate intake of fruits, vegetables, fiber, and
calcium) and chronic infections leading to chronic inflammation.

Drinking excessive amounts of alcohol is linked to an increased risk for several kinds
of cancer, especially those of the mouth, throat, and esophagus. The combination of
alcohol and tobacco appears to be especially dangerous. For example, in heavy smokers
or heavy drinkers, the risk of developing cancer of the esophagus is roughly 6 times
greater than that for non-smokers/non-drinkers. But in people who both smoke and
drink, the cancer risk is more than 40 times greater than that for non-smokers/non-
drinkers.

Studies suggest that differences in diet may also play a role in determining cancer
risk. But in contrast to the clear-cut identification of tobacco, sunlight, and alcohol,
the exact identity of the dietary components that influence cancer risk has been difficult
to determine. Recent evidence suggests that the proportion of cancers related to diet is
less than 35%, although a definitive value is not yet available. Diet-related factors are
now thought to account for about 30% of cancer in developed countries and perhaps
20% of cancers in developing countries. Limiting fat consumption and calorie intake
appears to be one possible strategy to decrease risk of some cancers, because people
who consume large amounts of meat (which is rich in fat) and large numbers of calories
exhibit an increased cancer risk, especially for colon cancer. Epidemiological studies
show that the incidence of most types of cancer is double among people who eat few
fruits and vegetables as compared to those who eat about five portions per day.

Figure B.5 shows the linear relation between meat consumption and colon cancer
rates in different countries.

Hepatitis B and hepatitis C viruses, helicobacter pylort infection, schistosomiasis
and others are examples of chronic infections leading to chronic inflammations. This
is a major cause of cancer in the world because it releases powerful oxidants which
both stimulate cell division and are mutagens.

B.4 Cancer statistics

B.4.1 Measures to assess cancer importance

There are three measures that are commonly used to assess the impact of cancer in
the general population: incidence, mortality and prevalence rates.
The incidence rate is the number of new cases of a given type of cancer diagnosed
per year, usually expressed as the number of cancers per 100,000 population at risk:

N
Incidence rate = w x 100, 000. (B.1)
Population
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Correlation Between Meat Consumption
and Colon Cancer Rates in Different Countries
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Figure B.5: Correlation between meat consumption and colon cancer rates in different
countries. Data come from a National Cancer Institute tutorial (http://pres2.nci.
nih.gov/sciencebehind/cancer/cancer57.htm)

Usually, incidence rates are age-adjusted to the standard population ?. Unfortu-
nately, such data can be obtained only from cancer registries or cancer surveys, both
of which are relatively recent.

Cancer mortality data, on the other hand, have been available for many countries
during most of the 20th century, and can be used to study both geographical patterns
and temporal changes in the disease. Cancer deaths represent incidence indirectly,
since they reflect the failure of treatment as well as the occurrence of the disease. For
those forms of cancer for which available treatments are less effective, for example lung
and stomach cancer, deaths reflect incidence quite accurately. Mortality is expressed
as the number of deaths attributed to a particular type of cancer during the year:

C death
Mortality rate = ancer eja %« 100, 000. (B.2)
Population

Included are deaths of patients whose cancer was diagnosed in earlier years, persons
with a new diagnosis during the year, and patients for whom a diagnosis of cancer is
made only after death. Usually, mortality rates are also age-adjusted to the standard
population.

Prevalence is defined as the number or percent of people alive at a certain date in
a population who previously had a diagnosis of the disease, including new (incidence)
and pre-existing cases.

Other measures used to measure the importance of different types of cancer are:

2a standard population for a geographic area is a table giving the proportions of the population
falling into the age groups 0, 1-4, 5-9, ..., 80-84, and 85+
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the deaths to cases ratio, the age-standardized rate or the person-years of life lost
(PYLL).

B.4.2 World cancer data

Worldwide, there are over 10 million new cases of cancer and more than 6 million
deaths from cancer annually. Two decades ago, these figures were 6 million and 4
million [281]. In approximately 20 years time, the number of deaths annually due to
cancer will increase from about 6 million to 10 million.

Of the 10 million new cancer cases each year, 4.7 million are in the more developed
countries and nearly 5.5 million are in the less developed countries. Although the
disease has often been regarded as a problem principally of the developed world, in
fact, more than half of all cancers occur in the developing countries. The reason is
that in developing countries, increased development is usually associated with many
changes in diet and lifestyle. As a result, patterns of cancer tend to shift towards those
of economically developed countries.

In developed countries, cancer generally accounts for about one-fifth of all deaths
with mortality figures, second only to those for cardiovascular diseases (see Table B.1).
In these countries, of all major conditions that result in death, cancer is one of the
very few for which the proportion is rising significantly. In developing countries, cancer
is now responsible for about one in 10 deaths (see Table B.1), but incidence of the
disease is increasing. As living standards improve and life expectancy is extended, the
incidence of communicable diseases declines and non-communicable diseases such as
cancer assume greater importance.
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Table B.1: Global and regional patterns of annual deaths, by cause, 2000 [299].
Deaths
Deaths from
from infectious Deaths Deaths
all & Deaths from Deaths from
causes parasitic from circulatory Perinatal from other
(thousands)  diseases(%) cancer(%) diseases(%) deaths(%) injury(%) causes(%)
World
55694 25.9 12.6 30.0 4.4 9.1 18.0
total
More
developed 13594 6.0 21.6 47.9 0.7 7.9 15.9
countries
Less
developed 42100 32.3 9.8 24.2 5.6 9.5 18.7
countries
Africa 10572 61.7 5.1 9.2 5.5 7.1 11.5
South and
Central 3097 14.6 14.0 28.5 4.3 12.3 26.2
America
North
2778 6.3 23.8 41.0 0.6 6.4 21.9
America
Middle
4036 32.0 6.1 26.9 7.5 8.4 19.0
East
South-East
14157 29.9 8.0 28.9 7.1 9.7 16.4
Asia
‘Western
11390 10.6 18.6 31.2 2.8 10.7 26.0
Pacific
Europe 9664 5.4 19.8 51.5 0.8 8.5 14.1
Table B.2: Incidence of most common cancers, 2000 [92].
Males Females
Rank Cancer New cases Rank Cancer New cases
(thousands) (thousands)
World 1 Lung 902 1 Breast 1050
2 Stomach 558 2 Cervix 471
3 Prostate 543 3 Colon/rectum 446
4 Colon/rectum 499 4 Lung 337
5 Liver 398 5 Stomach 318
More 1 Lung 471 1 Breast 579
developed 2 Prostate 416 2 Colon/rectum 292
countries 3 Colon/rectum 319 3 Lung 175
4 Stomach 208 4 Stomach 125
5 Bladder 164 5 Corpus uteri 114
Less 1 Lung 431 1 Breast 471
developed 2 Stomach 350 2 Cervix 379
countries 3 Liver 325 3 Stomach 193
4 Oesophagus 224 4 Lung 162
5 Colon /rectum 180 5 Colon/rectum 154
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Among men, lung and stomach cancer are the most common cancers worldwide,
while prostate cancer is largely seen in more developed countries (see Table B.2). For
women, the most common cancers worldwide are breast and cervical cancer, although
cervical cancer is primarily seen in less developed countries. Lung, colorectal and
stomach cancer are among the five most common cancers for both men and women,
in both more developed and less developed countries.

There are four principal reasons for the increase in cancer mortality: deaths from
cardiovascular diseases are declining in developed countries; more people are surviving
to old age, when cancer is more likely to occur (for instance, in Canada, 69% of new
cancer cases and 80% of deaths due to cancer occur among those who are at least
60 years old); increasing tobacco use in recent decades has led to greater incidence of
cancer of the lung and certain other sites; changes in diet, decreasing physical activity
and increasing obesity have most likely contributed to an increase in various forms of
cancer. Table B.3 shows the estimated percentages of cancer deaths attributable to
various causes in people under the age of 65 years in the United States of America.
These estimates probably apply to most industrialized countries.

Table B.3: Causes of cancer deaths in the USA, under age 65 years [83]

Cause of cancer Range of
(or contributory Best acceptable
factor) | estimate | estimates
Tobacco 30 25-40
Alcohol 3 2-4
Diet 35 10-70
Reproductive
and sexual 7 1-13
behavior
Occupation 4 2-8
Pollution 2 1-5
Industrial
1 1-2
by-products
Medicines
and medical 1 0.5-3
procedures
Geophysical
3 2-4
factors
Infection 10 1-?

A striking feature of cancer is its geographical and temporal variability. The popu-
lation of a particular place at a specific time exhibits a certain pattern of cancer, with
more cases of one type and fewer of another, as can be seen in Figure B.6. In another
place, or at another time, the pattern of cancer in the population will be different (for
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instance, stomach cancer is especially frequent in Japan, colon cancer is prominent in
the United States, and skin cancer is common in Australia).
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Colon Lung Cancer JAPAN:
Cancer Cancer Stomach
Cancer
BRAIIL:
Cervical AUSTRALIA:
Cancer Skin
Cancer
Figure B.6: Regions of highest incidence of cancer. Image comes from a

National Cancer Institute tutorial (http://pres2.nci.nih.gov/sciencebehind/
cancer/cancer26.htm).

In theory, differences in heredity or environmental risk factors might be responsible
for the different cancer rates observed in different countries. Studies on people who
have moved from one country to another suggest that exposure to risk factors for
cancer vary by geographic location. For example, in Japan, the rate of colon cancer
is lower and the rate of stomach cancer is higher than in the United States. But
this difference has been found to gradually disappear in Japanese families that have
moved to the United States. This suggests that the risk of developing cancer is not
determined primarily by heredity. The change in risk for cancer for Japanese families
could involve cultural or environmental factors predominant in one location and not
in the other. This is illustrated by the following examples.

Carcinogens risks, though encountered almost universally, are not the same in all
parts of the world. In developed countries, for example, the extensive use of X-rays for
diagnostic and therapeutic purposes is generally well accepted, even though the radia-
tion may contribute to the development of certain types of cancer, especially leukemia.
In the same countries, food-handling methods -another lifestyle factor- minimize ac-
cumulation of the mould that produces aflatoxin, which is a liver carcinogen [129].
In many African countries, by contrast, there is little or no danger from medical X-
radiation, but people continue to store food under conditions that favor the production
of aflatoxin. Exposure to non-ionizing ultraviolet radiation in sunlight gives rise to the
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common forms of skin cancer in Caucasian populations [128]. Burning from solar ra-
diation is associated with the rarer, but more fatal, melanoma. Individuals with light
complexions are especially at risk.

B.5 Cancer diagnosis and treatments

B.5.1 Diagnosis

The diagnosis of cancer is not a straightforward task because the presence of symp-
toms and signs related to this disease (unexplained weight loss, fever, fatigue, pain,
changes of the skin) does not necessarily mean that cancer is present and they are not
always recognized as being significant by people, sometimes being dismissed if they
have an obvious case or are only temporary. The diagnosis of cancer is made after a
number of clinical tests have been performed. These tests can include visual physical
inspection, medical image acquisitions and blood/urine (and other substances) tests.
The tests involved will depend on which cancer is suspected.

After cancer has been diagnosed, doctors assign a stage to the cancer to determine
how far the disease has progressed. This staging is based on the conclusions furnished
by the tests about the size of the tumor, the invasion into surrounding tissues and
if cancer has been metastasized to other regions of the body or to regional lymph
nodes. The stage of disease has four levels. An invasive neoplasm confined entirely to
the organ of origin is said to be localized. A neoplasm that has extended beyond the
limits of the organ of origin, either directly into surrounding organs or tissues or into
regional lymph nodes, is said to be regional. A neoplasm that has spread to parts of the
body remote from the primary tumor, either by direct extension or by discontinuous
metastasis, is said to be distant. When information is not sufficient to assign a stage,
a neoplasm is said to be unstaged. For some cancers and diagnosis years, the extent of
disease information can also be converted to Stages 0-IV as defined by the American
Joint Committee on Cancer [13]. The patient’s chances for survival are better when
cancer is detected at a lower stage number (see Figure B.7), because it can be treated
while it is small and is less likely to have spread to other parts of the body. In fact,
cancers that can be detected by screening (regular screening examinations by a health
care professional or self-examinations) account for about half of all new cancer cases.
In the United States, the 5-year relative survival rate for these cancers is about 82%. If
all these cancers were diagnosed at a localized stage through regular cancer screenings,
5-year survival would increase to about 95%.

B.5.2 Treatments

After the staging of the cancer, physicians must take a decision on the treatment
planning of the disease that it would depend on the type of cancer found.
Treatments for cancer have also gone through a slow process of development through
history. Even though medicine progressed and flourished in some ancient civilizations,
there was little progress in cancer treatment. The approach to cancer was Hippocratic
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Figure B.7: Left: example of old primitive surgery in a breast cancer. Right: Rela-
tionship between the stage of the detected cancer and the survival rate.

(or Galenic) for the most part and their views set the pattern for cancer management
for centuries. They considered the patient incurable after a diagnosis of cancer had
been made, although Galen did write about surgical cures for breast cancer if the tu-
mor could be completely removed at an early stage. Surgery then was very primitive
with many complications, including blood loss. It was not until the 19th and early
20th centuries that major advances were made in general surgery and specifically in
cancer surgery.

In 1896, W.C. Roentgen (1845-1923), presented the X-ray, X being the algebraic
symbol for an unknown quantity. Within months, systems were being devised to use
X-rays for diagnosis, and within 3 years radiation was used in the treatment of cancer.
At the beginning of the 20th century, shortly after radiation began to be used for
diagnosis and therapy, it was discovered that radiation could cause cancer as well as
cure it. At the present time, advances in technology make it possible to focus radiation
more precisely than in the past, helping to treat only the area involved by the cancer.
Radiation is focused to avoid the normal tissues as much as possible, thus expecting to
increase the effectiveness and reduce the side effects of radiation therapy. Studies are
in progress to find out which radiation techniques are best suited for specific categories
of patients (conformal proton beam radiation therapy, stereotactic radiation therapy,
hyperthermia, boron neutron capture therapy, ...)

During World War II, the U.S Army was studying a number of agents related
to mustard gas in order to develop more effective agents and to develop protective
measures. In the course of that work, a compound called nitrogen mustard was studied
and found to have substantial activity against a cancer of the lymph nodes called
lymphoma. This agent served as the model for a long series of similar but more
effective agents that killed rapidly proliferating cancer cells by damaging their DNA.
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Since then, other researchers discovered drugs that blocked different functions involved
in cell growth and replication. The era of chemotherapy had begun. Over the years, the
development and use of chemotherapy drugs have resulted in the successful treatment
of many people with cancer. Now several approaches are being studied to improve
the activity and reduce the undesirable side effects of chemotherapy (new drugs and
its combinations, new delivery techniques, novel approaches to targeting drugs more
specifically at the cancer cells to produce fewer side effects, ...).

By the middle of the 20th century, scientists had in their hands the instruments
needed to begin solving the complex problems of chemistry and biology presented by
cancer. DNA was found to be the basis of the genetic code that gives orders to all
cells. After learning how to translate this code, scientists were able to understand
how genes worked and how they could be damaged by mutations becoming possible
to localize the exact site of the damage to a specific gene. Medical scientists are
progressively identifying the genes that are damaged by chemicals or radiation and the
genes that, when inherited, can lead to cancer. This scientists’ understanding of the
biology of cancer cells has led to the development of biologic agents that mimic some
of the natural signals that the body uses to regulate growth. This cancer treatment is
called biologic therapy. Some of these biologic agents are given to patients to imitate
or influence the natural immune response either by directly altering the cancer cell
growth or acting indirectly to help healthy cells control the cancer.

Cancer is not an irreversible death sentence that does not describe a single disease
but rather more than 100 types of disease, some of which are fully curable. The
treatments of even the more lethal types continually improve, and that every day
scientists understand a little more about cancer cause, growth, and spread. These
advances have allowed lots of people to gain the battle against cancer and to continue
their life in an almost normal fashion. Anyway, the adoption of a healthy lifestyle,
including a healthy diet, physical exercise, appropriate body weight, and avoidance of
risk-associated behaviors can lead to a long active life.
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APPENDIX C

Details of segmentation methods

In this Appendix, further details about different parts of the segmentation methods
used in this work are presented. In Section C.1, the theory of 2D active contours,
their numerical implementation and their conversion to 3D are described in order
to complement Section 4.2.3. The next part of the Appendix details the numerical
implementation of the Gradient Vector Flow (Section C.2).

C.1 Deformable models

C.1.1 2D active contours theory

In the initial formulation [139], the evolution of a snake (or active contour) is ex-
pressed as an energy minimization problem. The optimal contour position, corre-
sponding to a correct segmentation, is the one which minimizes the energy. The
energy is decomposed into an internal energy, which is minimum for a regular con-
tour (energy related to the physical behavior of the contour), and an external en-
ergy, which is minimum at the searched contour points (energy related to the re-
liability to the data to model). If the parametric deformable contour is noted as
X(s) = (X(s),Y(s)),s € [0, 1], the evolution equation can be formulated as follows:

E(X) = Eint(X) + Eext(X) (C.1)

The internal energy is expressed as a combination of the first and second order
derivatives:

2

+8(s)

2

2
! oxX X ds (C.2)

1
FulX) =3 [ at9)| 5 o5

where «(s) and 3(s) are the elasticity and rigidity parameters, respectively, and they
are usually constant. Such parameters adjust the model evolution in such a way that a
high value of o tends to shorten the snake and to eliminate loops. On the other hand,
a high value of 8 penalizes the high curvature regions, thus smoothing the contour.

The external energy is computed by means of an integration on the contour of a
potential function which must be minimum at the contour points:
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C.1 Deformable models

Fopy(X) = /O | P(X)ds (C.3)

where P is frequently obtained from the image gradient.

It can be shown that this problem consists in computing the contour that minimizes
the energy function and it is equivalent to find the solution of the Euler-Lagrange
equation [139]:

ant(X) + Fext(X) =0 (04)

with
FauX) = 5 (a5 ) = 5z (80053 ) (c5)

and
Fext(X) = _VP(X) (06)

In order to solve this optimization problem, the time ¢ is added as a variable of
the function X(s,t) to make the equation dynamic. Therefore, the solution is the
equilibrium state of:

0X
"ot

As the solution of this equation is stabilizing, the derivative with respect to the
time disappears, obtaining the desired solution of C.4.

An alternative to the energy formulation is to directly model the problem by means
of a dynamic force equation. The internal forces are the same, but on the other hand,
the external forces are not necessarily derived from a potential, thus being a more
general formulation than the energy one.

Finally, some initial and limit conditions are added to the problem:

= Fint(X) + Fept(X) (C.7)

X(s,t =0) = Xg(s) initial condition

X(0,t) = X(1,t¢ first limit condition (C.8)
2X(0,¢) = 2X(1,t)  second limit condition

C.1.2 Numerical implementation of 2D active contours

The solution of the equation that controls the evolution of the deformable model
can be obtained by means of several methods such as finite elements. In the presented
work, the finite elements in time method has been employed due to its quickness and
simplicity.

Therefore, the procedure starts from a contour defined by a vector X of n samples,
with n being constant. This vector contains the sample coordinates in the simplest
case, even if it could also contain the discretization of other physical characteristics
associated to the model such as elasticity, rigidity, .... Here, they are considered as
being constant. Then, for a given spatial sample step h, X = (x;) is expressed with

zi = (x(ih), y(ih)).
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In this moment, the following hypothesis is assumed: the total energy of the model
is the sum of the energies associated to each one of its samples; and they can be
decomposed in an external energy term (related to the image) and an internal energy
one (related to the stress and twisting suffered by each contour point). It can be
expressed as follows:

Etotal = Z Emt(z) + Eeact(i)- (Cg)
i=1

The external energy can be obtained from a pre-computed image of energies. It
must be pointed out that the position of each contour element is not discretized and
can take any value, thus the corresponding energy must be computed by means of
an interpolation of the nearest discrete position values. This interpolation is very
critical because it will assure a smooth convergence of the contour towards the solution,
avoiding an oscillation between two discrete values of the energy.

In a similar way, a simple expression of the model internal energy can be obtained
from the sample values:

|\z; — mi_1)? + 6\%‘—1 — 2 + x|
2h? 2h4 '

Consequently, the solution of the Euler-Lagrange equation C.4 is equivalent to solve
the matrix equation AX + F,;;(X) = 0, where A is the n x n penta-diagonal matrix:

Eim(i) = (C.10)

20+ 68 —a—4p B 0 0

—a—48 2a+68 —a-—4p B 0
B —a—48 2a+68 —a-—4p B
0 B —a—48 2a+68 —a—48 (C.11)
0 0 I3 —a—48 2a+ 60

If a temporal (7 time steps) discretization of the model evolution is added to the
spatial discretization, the temporal derivative can be approximated in Equation C.7
by means of a difference between successive steps:

Xt _ Xt—l
T

+ AX' = F (X', (C.12)

the evolution of the deformable contour being controlled, from its initial state X°, by
the following equation:

X' = (Id+ 7A) " (1Fpy(X*1) + X1 (C.13)

The advantage of this expression is that the inversion of the matrix (Id+ 7A) must
only be computed once, since it does not include any dynamic term. On the other
hand, the choice of the temporal step 7 asks for a trade-off that guarantees the model
convergence without excessively decreasing its evolution speed.
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C.1.3 Extension from 2D to 3D: deformable surfaces.

The extension from a 2D contour to a 3D deformable surface can be achieved as
follows [55]:

S: [0,1? —» R
(r,s) — S(r,s)=(X(r,s),Y(r,s),Z(r,s))

Therefore, the energy equation has the same shape than the one used to define the
deformable contours (equation C.1):

(C.14)

E(S) = Eint(S) + Eext(S) (C.15)

The 2-order Tikhonov stabilizator is usually chosen as the internal energy:

1 as|® |as|’ s |° |a%s|” |a*s|?
Ei"t(s)_E/[(),l]QO‘(E *1os )*5(‘%5 az| tlae| |
(C.16)
In a similar way, the external energy is expressed as follows:
Eun(S) = / P(S)drds (C.17)
[0,1]2

It can be shown that a surface that minimizes this energy defines an equilibrium

state of: o5
’}/E = Fmt(s) + Fezt(s) (C]_S)

with:
Fi:(S) = aV?s — ,BV2(V2S) (C.19)

where V2 is the Laplacian operator, and:
Fewt(s) = _VP(S) (020)

The problem of the limit conditions is more complex than in the case of deformable
contours because different choices can be performed. Such choices define the surface
topology (spherical, cylindric or toroidal). Finally, these equations must be discretized
and one common choice to achieve it is by means of finite difference methods.
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C.2 Numerical implementation of the Gradient Vec-
tor Flow

The vectorial diffusion equation 4.5, that specifies the GVF, given the weighting
functions, can be implemented by means of a finite difference framework. In the case
of the chosen weighting functions, the equation to solve is the following:

w(z,y,t) = p’u(z,y,t) - [u(z,y,t) — fo(z,9)]
[fol@,9)” + fy(z,y)?] (C.21)

w(z,y,t) = pvo(z,yt)— v,y t) - fy(z,y))
[fo(,9)” + fylz,9)?] (C.22)

The solution in stationary stage of these parabolic linear equations is the solution of
the Euler equations 4.5. Since these equations are not coupled, they can be separately
solved as scalar differential equations with partial derivatives in u and v.

The equations C.21 and C.22 are known as the generalized diffusion equations and
have been widely used in different fields such as the heat conduction or fluid theory.
The equations can be expressed in an easier fashion:

ui(,y,t) = p7? ul@, y, t) — bz, y)u(z, y, 1) + ¢ (2, y) (C.23)
v, y,t) = p7* o(x, y,t) = bz, y)v(z,y, 1) + (2, y) (C.24)
where
b(,y) = fol,y)* + fy(,y)? (C.25)
c(z,y) = bz, y) fo(z, ) (C.26)
(z,y) = b(z, ) fy(z,y) (C.27)

In order to obtain f, and f,, any classical gradient computation method can be
used. Afterwards, the b(z,y), c!(z,y) and ¢?(z,y) coefficients can be computed and
they remain fixed during the iterative procedure.

The indices 7, j and n correspond to z, ¥y and ¢, Az and Ay being the distance
between pixels, and At being the time step between iterations, the partial derivatives
shall solve the iterative solution as follows:

1
Uy = Kt(uﬁl — u?]) (C.28)
1
v = Kt(vz";“l —v3) (C.29)
1
vzu = m(uﬂ—l’j + Ui7j+1 =+ Ufi—l,j —+ ui,j—l — 4Ui7]’) (030)
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1
2, —
VU= A:rAy(

By replacing these approximations in C.23 and C.24, the iterative solution of the
GVF is:

Vit1,5 + Vi, j+1 + Vi—1,5 =+ Vij—1 — 4’(),',]'). (031)

n+l1 __ . n
ui, = (1=biAt)ud; +
n n n n n
(Ui + ugjp +uiy +ug o — dud) +

¢; ;A (C.32)

+ +

+ (Vi v v Tl — du) +
+ At (C.33)
where
HAL
= . C.34
" T AzAy (C:34)

The convergence of the described iterative procedure is guaranteed by a classic
result from the numerical method theory. Assuming b, ¢! and ¢ bounded, Equa-
tions C.32 and C.33 are stables if the Courant-Fiedrichs-Lewy constraint on the step
size (r < 1/4) is accomplished. As Az, Ay and p are usually fixed, from the definition
of r in C.34 it can be obtained that, in order to guarantee the GVF convergence, the
time step must satisfy the following constraint:

AzxAy
At < : .
< I (C.35)
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APPENDIX D

Semi-interactive segmentation of
tumors

D.1 Introduction

The registration methodology we have introduced has as limitation that the regions
placed inside or near the main structures will be deformed according to the registration
computed for the latter. A critical example of this situation occurs when a tumor is
located inside the lungs and there is a large volume difference between CT and PET
images (due to the respiration motion). In this case, the tumor is registered according
to the transformation computed for the lungs, becoming banana-shaped, as shown in
Figure D.1. The aim of this stage is to show how this undesired effect can be avoided
since it is fundamental to assure that the information about geometry and location of
the tumors is not lost in the registration process.

D.2 Introducing tumors in the registration process

The algorithm we propose consists in adding the semi-interactive segmentation of
the tumors in the registration process. The interaction consists for the physician in
defining a landmark in the tumor of interest (in both CT and PET images). This
semi-interactive approach has been chosen due to the complexity of a fully automatic
tumor segmentation method, mainly in CT images. In addition, this very reduced
interaction is well accepted by the users, and even required.

Next, both selected points are used as the input to a relaxation region growing
algorithm [57] to segment the tumors. Lung segmentation in CT and PET images is
achieved using the procedure introduced in Chapter 4 and refined by the results of
tumor segmentation.

Then, a first registration phase based on the CT and PET tumor centers is applied,
providing a rigid transformation that assures that the tumors are linearly registered.
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e

Figure D.1: Improvement of the registration in the tumor area. From left to right:
CT and PET original images; PET image registered without tumor constraints; PET
image registered with tumor constraints.

The next step concerns the non-linear registration phase of the images. The pro-
posed non-linear registration method using Free Form Deformations (FFD) was devel-
oped in order to account for movement of the lungs during the respiration cycle (and of
other organs in the considered regions). However, it does not include any constraints
derived from tumors.

To avoid the incorrect tumor transformation produced by these techniques (see
Figure D.1), we propose to combine two FFD grids: one obtained from a non-linear
registration between tumor surfaces, and the other one computed between CT and
PET lungs. This combination is achieved by means of a trade-off between lung and
tumor grids that depends on the distance from a given control point to the tumor
boundaries and it constitutes an efficient and original feature of the proposed approach.

Finally, a FFD registration, optimizing a mutual information criterion, is applied
between the whole intensity images. It is initialized with the grid computed between
the structures. The objective of this stage is to provide a deformation for the points
far away from the segmented features and to correct possible errors induced by the
segmentation phase.

D.3 Results and conclusions

The proposed method improves the accuracy of registration of CT and PET images
with pathologies. The fact of adding a semi-interactive stage is not a disadvantage
because physicians prefer to control this crucial step. Moreover, with a simple gesture,
the algorithm benefits from medical and expert knowledge and the results are notably
improved, as shown in Figure D.1.

The proposed algorithm has been tested on 5 pairs of CT and PET images with
good results for all cases.
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ApPpeEnDIX E

Description of brain internal
structures by means of spatial
relations for MR image segmentation

This chapter presents a method for segmenting internal brain structures in MR images.
It introduces prior information in an original way through descriptions of the spatial
arrangement of structures by means of spatial relations, which are represented in
the fuzzy set framework. The method is hierarchical as the segmentation of a given
structure is based on the previously segmented ones. The processing of each structure
is decomposed into two stages: an initialization stage which makes extensive use of
prior knowledge and a refinement stage using a 3D deformable model. The deformable
model is guided by an external force representing the combination of a classical data
term derived from an edge map and a force corresponding to a given spatial relation.
We propose different ways to compute a force from a fuzzy set representing a relation
or a combination of relations. Results obtained for the lateral ventricles, the third
ventricle, the caudate nuclei and the thalami are promising. The proposed combination
of spatial relations and deformable models has proved to be very useful to segment
parts of the structures were no visible edges are present, improving the segmentation
accuracy.

E.1 Introduction

The segmentation of brain internal structures such as the ventricles and the deep
grey nuclei (caudate nucleus, putamen, globus pallidus, thalamus) has many med-
ical applications such as morphometric studies, 3D visualization, surgical planning,
anatomical support to functional studies ... However, their automatic segmentation
in MR images remains a challenging task due to the image low-contrast and in some
cases the lack of strong edges between some structures.

Several approaches dedicated to internal brain structures segmentation have been
recently published. Most approaches rely either on a digital atlas which is registered
with the image to be recognized [22 ; 72 ; 310] or/and on deformable templates [219 ;

195



E.2 Spatial Relations

141 ; 260 ; 214] usually based on a statistical shape training. The main drawbacks
of these approaches are the difficulty to deal with the anatomical variability among
subjects and their computational cost.

Our approach uses descriptions of brain structures by means of spatial relations
to constrain the segmentation procedure and a 3D deformable model to refine and to
regularize the result. Spatial relations are less variable than the structures themselves
which justifies to rely on them to constrain the search. Pitiot et al. [214] proposed an
expert-knowledge guided segmentation system, combining distance relations with a de-
formable model for brain structures segmentation and showed improved segmentation
results compared to the use of a deformable template. They combined both explicit
(distance constraints) and implicit knowledge (shape constraints). In our case, we
employ only explicit knowledge expressed through different kinds of spatial relations,
including distances but also adjacency and directional relations. The relations are
represented in a fuzzy set framework and are employed at three different stages of the
process: to produce regions of interest (ROI) that will restrain the segmentation, to
select regions that fulfill a description and to constrain the deformable model. The
idea of using spatial relations in brain structures segmentation was first introduced
by Géraud [99 ; 22]. Nevertheless, in this system, ROI were built using a digital at-
las, which may lead to some problems due to anatomical variability among subjects.
Moreover, this approach did not include a regularization phase which may compromise
the segmentation of low-contrast structures. Another drawback of this strategy is the
computational cost of the registration.

We propose a hierarchical procedure in which the segmentation of a given object
makes use of information derived from previously obtained structures. After some
preprocessing steps, the procedure is initialized by the segmentation of the lateral
ventricles, which are the easiest brain internal structures to segment. Each structure
is then segmented in two stages. The first step consists in a rough segmentation that
will serve as initialization of the deformable model. First we compute a fuzzy region
of interest (ROI) from spatial relationships guaranteeing that the object is included
in it. After an automatic thresholding, we extract different regions of the expected
radiometric class. Regions satisfying the description of the object to segment are then
automatically selected and merged to produce an initial segmentation. In a second
step, this initial result is refined and regularized using a deformable model.

The chapter is organized as follows. In Section E.2, we show how the arrangement
of brain structures is described by means of spatial relations, how these relations are
represented and used in the segmentation process. Then, in Section E.3, we present
the deformable model and the methods to compute an external force from the spatial
relations. Finally some results are presented in Section E.4.

E.2 Spatial Relations

Spatial relations are used extensively in linguistic descriptions found in neuroanatomy
textbooks. These descriptions correspond to structural relations between brain struc-
tures and are likely to be quite stable among subjects. They are naturally used by
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the neuroanatomist when studying an image. In this part, we first show how brain
structures can be described using spatial relations and how this description can be for-
malized. We then introduce methods to represent spatial relations, based on the fuzzy
set framework. Finally, we explain how those relations are used in the segmentation
procedure.

E.2.1 Description of brain structures using spatial relations

In collaboration with a neuroanatomist (D. Hasboun, CHU La Pitié-Salpétriere), we
proposed a description of brain structures using spatial relations. It consists of a hi-
erarchy of objects sharing relationships. Different levels of the hierarchy are linked
by inclusion relations (e.g. the putamen is part of the basis nuclei which are part of
the telencephalon), while objects of the same level are linked by spatial relationships.
We use an anatomical hierarchy derived from the one proposed in Neuronames ! [32].
The relationships are a computational formalization of linguistic descriptions given by
the neuroanatomist. They include four types of relations: direction, adjacency, dis-
tances and symmetry. The 6 directional relations correspond to the 3 dimensions of
the space: “above, below, in front of, behind, lateral, medial”. The relations “lateral”
and “medial”, which are commonly used in anatomical descriptions, replace relations
“left” and “right”. This vocabulary is useful because the brain is approximately sym-
metrical with respect to the mid-sagittal plane, and by using these expressions, both
hemispheres can be described in the same way. “Lateral” means “orthogonally and
away from the mid-sagittal plane” while “medial” means “orthogonally and towards
the mid-sagittal plane”. Adjacency relations describe structures that are touching
each other. Symmetry relations link homologous structures in both hemispheres. Fi-
nally, even though distance relations such as “close to”, “far from” are not present
in the original anatomical description, they have proved useful for the segmentation
and have thus been added to the description. Here are some examples of anatomical
descriptions using spatial relations:

e direction: the thalamus is lateral to the third ventricle and below the lateral
ventricle;

e distance: the lateral ventricles are far from the brain surface;
e adjacency: the thalamus is adjacent to the third ventricle;

e symmetry: homologous structures of both hemispheres (e.g. left and right tha-
lami) are approximately symmetrical with respect to the mid-sagittal plane.

The anatomical description is formalized using a structure called a synthetic hier-
archical graph (SHG). Tt is an attributed hierarchical graph, i.e. a set of graphs called
levels such that the nodes of two consecutive levels are linked by inclusion relations.
Each level has the structure of an attributed graph: the nodes correspond to brain
structures and the edges to spatial relations between them. The SHG corresponding

http://rpresgi.rpre.washington.edu/neuronames/
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Figure E.1: A fraction of the third level of the synthetic hierarchical graph describing
brain structures. The following abbreviations are used for brain structures: cc - corpus
callosum, LV - lateral ventricle, V3 - third ventricle, V4 - fourth ventricle, MB -
mesencephalon, Cd - caudate nucleus, Pu - putamen, GP - globus pallidus, Th -
thalamus, ic - internal capsule. Spatial relations are denoted as follows: I - medial,
E - lateral, H - above, B - below, Av - in front of, Ar - behind. An edge between
two structures indicates an adjacency relation. If the edge is attributed, there is an
additional directional relation. The target object is at the end of the arrow: e.g. the

relation LV - cc means that “the corpus callosum is above the lateral ventricle”.
To avoid conflicting edges and to enhance visualization, the graph is shown on two
different figures, each one representing a fraction of the edges.

to brain structures contains 4 levels. A fraction of the third level, which contains the
structures we want to segment (ventricles and grey nuclei), is shown as an example in
Figure E.1. Higher levels correspond to superstructures such as the telencephalon or
the diencephalon. The lower level (level 4) corresponds to the subdivisions of struc-
tures such as, for example, the different horns of the lateral ventricle. The graph
presented here has been used to represent brain anatomy but can be potentially used
to describe any structured scene.

E.2.2 Representation of spatial relations

To handle imprecision, spatial relationships are represented in a fuzzy set framework
and can refer to fuzzy objects as well as to crisp ones. This imprecision may come
from either the processing of images or from the nature of the relations under consid-
eration (e.g. directional relationships are intrinsically imprecise). Two kinds of fuzzy
approaches can be used to represent spatial relations: one can define either a fuzzy set
representing the degree of satisfaction of the relation with respect to a reference object

198



Description of brain internal structures by means of spatial relations for MR
image segmentation

in each point of the 3D space or a value representing the satisfaction of the relation
between two given objects. The first approach presents several advantages: it allows
the comparison of any target object with the reference one at a low computational
cost, just by comparing the target and the fuzzy set, fusion operators can be used to
combine spatial relations, the fuzzy set can also be considered as a ROI in which the
target object should be found. The second approach consists in a direct comparison
between objects and it can only be applied to the selection of regions.

Directions and distances have been represented using the first approach as in Bloch
et al [22]. Directional relationships are represented by computing a fuzzy dilation of
the reference object by a structuring element representing the direction under consid-
eration. For distances, fuzzy sets representing linguistic descriptions such as A is near
B or A is at about 10 mm from B are constructed on the set of distances RT. By
combining them with distance maps, fuzzy sets in the 3D space are built. Examples
of such fuzzy sets can be found in Figure E.3. Adjacency and symmetry relations
are represented using the second approach. An adjacency degree is defined using the
method proposed by Bloch et al [23]. In the case of non-overlapping binary objects,
this degree is computed as a function of the distance between objects. The symmetry
measure [63] is defined as a measure of comparison between a given object and its
symmetrical image with respect to a given plane, which, in our case, is the brain sym-
metry plane. This plane, which is a good approximation of the mid-sagittal plane, is
found by maximizing a symmetry measure [285]. However, in our current implementa-
tion, symmetry relations are not used in the segmentation because brain hemispheres
are treated separately. Only the brain symmetry plane is used, in order to separate
the hemispheres. Nevertheless, as these relations can be integrated in the approach
straightforwardly, we choose to present them in the chapter.

(a) (b) (c) (d)

Figure E.2: Rough segmentation of the caudate nucleus (axial slices): (a) region of
interest (ROI) corresponding to a conjunctive fusion with t-norm “product” of spatial
relations: “lateral to the lateral ventricle” and “near the lateral ventricle”; (b) au-
tomatic thresholding in the ROI; (¢) morphological opening of the previous result;
(d) separation of the caudate and a fraction of the putamen; (e) rough segmentation;
(f) simplex mesh corresponding to this rough segmentation.
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E.2.3 Spatial relations application

Spatial relations are used in three different ways during the segmentation process: to
define regions of interest (ROI), to select objects corresponding to a given description
and to control the evolution of the deformable model. Let us first recall that each
structure is segmented in two steps: a rough segmentation and a final segmentation.
The first two applications of spatial relations occur only in the first step and are pre-
sented here while the third one, employed in the final segmentation, will be presented
with the deformable model.

The first application of spatial relations concerns the construction of regions of
interest to restrict the search of the structure to be segmented. When several spatial
relations appear in the description of a structure, these relations are combined by
means of fusion operators between fuzzy sets [20]. This is done using either a t-norm
such as “minimum” or “product” in case of a conjunctive fusion. For a disjunctive
fusion, a t-conorm will be adopted. This fusion operation provides a new fuzzy set
which is used as a ROI to restrict the search of a given structure.

The second application is related to the selection of regions which have been labelled
in the ROI. These regions are either connected components extracted after automatic
thresholding or obtained from a watershed segmentation on the distance map to the
contour of the class (the h-minima algorithm is used to remove irrelevant minima [82))
in case where different touching objects cannot be disconnected. When the selection
involves distances and directions, we compute the degree to which a region satisfies
the relation represented by a fuzzy set, using a measure of satisfiability [31]. When
the selection involves adjacencies and symmetries, a measure is directly available.

In order to clarify these two applications, we present an example corresponding to
the rough segmentation of the caudate nucleus. First, using the “product” t-norm,
we compute a ROI which corresponds to the following conjunctive fusion: “lateral to
the lateral ventricle” and “near the lateral ventricle” (Figure E.2(a)). An automatic
thresholding is then performed in the ROI (Figure E.2(b)). The threshold value is
found by using an estimation of the radiometric characteristics of the grey nuclei due
to Poupon [218], which estimates the radiometry of the grey and white matter by the
method of Mangin et al [185]. These values are not critical as the segmentation will be
refined with the deformable model. After morphological opening (Figure E.2(c)), the
largest connected component, which corresponds to the caudate nucleus and a part
of the putamen, is selected. Afterwards, the possible holes are filled by means of a
morphological closing. A watershed segmentation on the distance map to the contour
allows to separate the caudate nucleus from the putamen (Figure E.2(d)). We then
select the regions corresponding to the description of the caudate nucleus: these are
the regions adjacent to the lateral ventricle and satisfying the previously fused relation.
We obtain an initial segmentation (Figures E.2(e) and (f)).
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E.3 Refinement using a 3D deformable model

For most structures, the result obtained from the previous stage cannot be considered
as a final result (see for example Figures E.2(e) and (f)). In particular, the lack of
regularization term may lead to imperfect boundaries. These problems are overcome
using a deformable model.

E.3.1 Simplex mesh deformable model

All the structures in which we are interested have the topology of a sphere (except the
third ventricle). To achieve a correct segmentation, we need to maintain their topology
through the deformation process. This is performed with a discrete model based on
simplex meshes. Simplex meshes, introduced by Delingette [75], are topologically dual
to triangulations and have a constant vertex connectivity. The segmentation obtained
at the first stage is transformed to a triangulation using an isosurface algorithm based
on tetrahedra [213]. It is decimated and converted to a simplex mesh by the dual
operation (Figure E.2(f)). Finally, its topological quality is optimized to make faces
regular.

Evolution

The evolution of the deformable surface X is described by the following dynamic force

equation:
0X

f)/—

ot

where F;,; is the internal force that specifies the regularity of the surface and F.,; is

the external force that drives the surface towards image edges. The chosen internal
force is:

= Fmt(X) + Femt(x)

Fint = aV?X — BV?(V?X)
where « and § respectively control the surface tension (prevent it from stretching)

and rigidity (prevent it from bending) and V? is the Laplacian operator. It is then
discretized on the simplex mesh using the finite difference method [306].

External Force

In our case, the external force is not only derived from image edges but also constrains
the deformable model to satisfy the description of the structure. It can be written as
a linear combination:
Fewr = Av+ uFpg

where v is a Gradient Vector Flow (GVF) field introduced by Xu et al. [307] and Fp, is
the force attached to the spatial relationships described in Section E.3.2. A GVF field
v is computed by diffusion of the gradient vector of a given edge map and is defined
as the equilibrium solution of the following diffusion equation:

{% = g(IVfIDV? = AV f]) (v — V)

v(z,y,2,0) = Vf(z,y,2) (E.1)




E.3 Refinement using a 3D deformable model

where f is an edge map. In Section E.3.3, we show how to construct an edge map
suited to internal brain structures. Such a definition gives the GVF a large capture
range and allows the model to progress into boundary concavities. The functions g
and h are weighting functions which can be chosen as follows:

gr)y=ev
{hm 1= g (E2)

E.3.2 Deriving external forces from spatial relations

While in the two cases presented in Section E.2.3 spatial relations were only involved
in the initialization process, they can also be used to constrain the final segmentation.
Applications of spatial relations in imaging available in the literature [15 ; 22 ; 210]
make use of the relations only in the recognition phase, the segmentation part being
achieved by classical techniques. Even in applications concerning segmentation, like in
Bloch et al. [22], spatial relations are not used to find the contour of the objects but,
in that case, to select a radiometric class. However, in our case, the main difficulty lies
in the lack of visible edges. For this reason, we propose to introduce spatial relations
in a deformable model, through the definition of an external force derived from the
fuzzy set. To our knowledge, the only combination of spatial relations and deformable
models can be found in Pitiot et al [214]. However, the authors only consider the
case of distance relations. Our approach, deriving a force from a fuzzy set, applies
to any spatial relation that can be represented in this fuzzy set framework, including
directional and distance relations.

The idea of deriving a force from a fuzzy set has already been used by Xu et al. [306]
to reconstruct the cortical surface using a deformable model. But, in that case, the
sets represented radiometric classes (of gray and white matters) derived from a fuzzy
segmentation instead of spatial relationships. The authors used a balloon force, the
magnitude of which was computed from the fuzzy sets:

ap(a,3.2) = {

0 if |2ppm + ftgm — 1] <6

2y + Mgm —1 elsewhere (E-3)

where i, is the membership function of the white matter, ji4,, of the gray matter,
and ¢ is a threshold. The direction of evolution (“inflate” or “deflate” the surface)
is naturally determined in the previous equation. Indeed, w, is positive when the
surface lies in the white matter, equal to zero when it is in the gray matter and
negative when it is in the cerebro-spinal fluid or the background. In our case, to
build a force corresponding to a given spatial relation R represented by a fuzzy set of
membership function pg, we could choose wy(z,y, z) = 1 — ug. However, unlike in the
previous case, there is no way to determine whether the surface should be “inflated” or
“deflated”, w, being positive. Thus, a balloon force does not appear to fit our needs.
In the following, we propose three different ways to compute a force from a fuzzy set
R of membership function pg.

In order to attract the deformable model in a region where the spatial relation is
satisfied, the force should possess the following properties: be equal to zero where the
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relation holds (i.e. in the kernel of R), be non-zero elsewhere, be directed towards the
points where the relation is satisfied and have a norm proportional to 1 — ug. If we
used directly PR = 1 — ug as a potential, the corresponding force Fr = —V Pz would
be obviously zero outside the support of R. This can be easily solved by adding to the
potential the distance from the support, then defining:

Pflz(xa Y, Z) =1- MR(~T7 Y, Z) + dsupp(R)(xa Y, Z) (E4)

where dgupp(r) is the distance from the support of R. With the following normalization,
we obtain a force fulfilling our previous properties:

V Pg(z,y, 2)
[VPL(@,y,2)]

Fl = —(1 — pin) (E:5)

A second way to define such a force would be to use a distance force [56] replacing
the edge map with our fuzzy set. One has then to replace the classical distance with a
distance from a fuzzy set, e.g. the morphological distance obtained by fuzzy dilation of
the reference object [21]. However, this distance has a very high computational cost.
Instead of that, we propose to use the distance to the kernel of R which is a binary
object:

Py(z,y,2) = 9(dker(r) (2,9, 2)) (E.6)
where dger(r)(2,y, 2) is a distance map to the kernel of R and g is a non-decreasing
function, e.g. g(z) = —ke ® or g(x) = —1/z. The force F% is derived through
Equation E.5.

A third possibility is to use a gradient vector diffusion technique such as the Gra-
dient Vector Flow (GVF). Again we have to replace the edge map with a fuzzy set,
replacing f with pugr in Equation E.1. However, the force would be non-zero in the
kernel of R which is a non desirable property. This can be solved using the following

normalization: u

[[ul
where u is the GVF computed from the fuzzy set R.

Although they are similar, the 3 previous forces do not have exactly the same
properties. In the particular case of a fuzzy set with local maxima outside its kernel,
F} and F3, would be directed towards these maxima whereas F% would point towards
the kernel of R. Figure E.3 shows an example of each of these forces. One can see that
F}, and F% share a similar behavior. In particular, they are orthogonal to isolevels
of R. This is not the case for F% which is always directed towards the kernel. The
computational cost of FL and F% is very low (5 seconds for a 128x128x124 image on
a PC Pentium III 1Ghz). The computation time is higher for F%, (3 minutes), while
being still acceptable. F% should not be applied in case of fuzzy sets with maxima
outside their kernel. It was not the case in our experiments and all forces have lead to
extremely similar results. Finally, even though F} and F3 are similar, F3, introduces
a regularization which could be useful. It is also worth noting that all these results
are valid in the case of a binary set instead of a fuzzy one. In that particular case,
forces F}, and F% would be equal as the kernel of a binary set is equal to its support.

Fp=(1—pur) (E.7)
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Figure E.3: Slices of fuzzy sets representing spatial relations and the derived external
force (only the part corresponding to the left hemisphere is shown): (a) distance: “close
to the lateral ventricle”, (b) direction: “lateral to the third ventricle”, (c) direction:
“below the lateral ventricle”, (d) conjunctive fusion of the two previous directions, (e)
external force corresponding to the fusioned relation, computed using the first method
F1, (for visualization purposes a 1/3 under-sampling has been performed and we only
show the part of the previous image corresponding to the rectangle shown in (d)),
(f) idem with the second method F%, (g) idem with the third method F%. Bright
areas correspond to high values.

E.3.3 Edge map computation

Two main problems appear when computing an edge map associated to grey nuclei
in MRI: the noise and the lack of contrast of the grey/white interface. Linear spatial
filtering which is usually associated to Canny-Deriche edge detectors is inadequate
in this case as it would mix contours of thin elongated objects such as those we
are interested in. Anisotropic diffusion [100] is an efficient way to remove noise in
homogeneous regions while preserving and even enhancing edges. However, due to the
very tiny transition for some of the grey nuclei, this edge enhancement is insufficient.
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5 :

(
Figure E.4: Edge map for the caudate nucleus (axial slices): (a) original image, (b)
gradient computed on original image, (c) probability map, (d) edge map: gradient
computed on probability map after anisotropic diffusion, (e) Gradient vector flow
(GVF) computed on the previous edge map, (f) zoom on a portion of the GVF.

We propose to use prior information on nuclei grey levels to enhance edges, com-
puting the gradient on a probability map indicating for each voxel its membership to a
given structure. This probability is computed as a distribution P(z) = p(I(z)) where
I is our image. Its gradient is related to the gradient of I by VP(z) = p/'(I(z))VI(z).
This means that edge enhancement will occur in the neighborhood of the extrema of
p'. If we choose p to be a Gaussian function G,,, of mean m and standard-deviation
o, edges will be enhanced in the neighborhood of m + o. Parameters m and o are
estimated for each grey nucleus using the same method as in Section E.2.3. To remove
the noise, we finally apply an anisotropic diffusion on the probability map. Applying
it on the map instead of the original image has the additional advantage to normalize
the image, allowing to chose the same diffusion parameter for all images. Figure E.4
presents an edge map computed for the caudate nucleus and the corresponding GVF.

E.4 Results and Conclusion

All our experiments have been performed on T1-weighted MR images 2. Some prepro-
cessing steps are needed. First, we correct the image for intensity non-uniformity [183].
Then, the brain is extracted using a robust method based on morphological opera-
tions [185]. This allows us to eliminate radiometric classes that are of no interest
to our application (scalp, air, skull...). However, whereas we systematically use the
non-uniformity correction before extracting the brain, we do not suggest to use it for
the grey nuclei because their contrast seems to be altered by this correction. Finally,
we compute the brain symmetry plane [285].

We obtained good results for the ventricular system, the caudate nuclei and the
thalami on a database containing 10 images (an example is shown in Figure E.5).
The ventricles are not very difficult to segment as they present a high contrast with

2These images have a size of 256x256x124.
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Figure E.5: Results obtained for the lateral ventricles, the third ventricle, the caudate
nuclei and the thalami. Top: 3D rendering superimposed on an axial slice. Bot-
tom: structure contours superimposed on axial, sagittal and coronal slices. 3D images
have been visualized using the Anatomist software (www.anatomist.info), developed

at S.H.F.J, Orsay, France.

surrounding structures. Only their separation is a bit more tricky, but this problem
is solved by the watershed computed on the distance map to the contour. The ven-
tricles, which are segmented first, are then used as a reference to segment the other
structures. The lower part of the caudate nucleus is difficult to segment, due to the
lack of gradients, and the trade-off between GVF and the spatial relations has shown
to be useful in that case as can be seen in Figure E.6. We are currently working on
a more extensive validation of the method. The lower part of the thalamus is also
difficult and in that case, the relation with respect to the third ventricle has helped
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iy
[ i

Figure E.6: Influence of spatial relations on the evolution of the deformable model:
segmentation of the caudate nucleus. The force corresponding to spatial relations
prevents the model from evolving beyond the lower limit of the structure. Left: result
obtained without spatial relation. Right: result obtained with the spatial relation.

to produce an acceptable rough segmentation. In order to compare our method to
others, a quantitative validation is needed. At last, whereas the tuning of parameters
has not been very difficult, a full study of their influence will be performed soon.

We proposed a method combining prior information derived from spatial relations
and deformable models to segment brain internal structures in MRI. This information
correspond to a description of brain anatomy and can be represented by a synthetic
hierarchical graph. The combination of spatial relations and the deformable model is
done through the introduction of a new external force. We proposed three methods
to construct such a force. Good results have been obtained for the ventricular system,
the caudate and the thalamus. We are now working on applying the method to other
structures. They can include other grey nuclei such as the putamen and the globus
pallidus but also white matter structures which are usually not segmented. Some
limits of these structures are not visible on the MRI and in that case, spatial relations
could be of great help. Mid-term perspectives of this work include the simultaneous
segmentation of structures, which could lead to a greater robustness for structures
such as the caudate nucleus, and also the combination of spatial relations and shape
constraints in the deformable model.
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