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Résumé

Les méthodes à noyaux désignent une famille récente d’outils d’analyse de données,
pouvant être utilisés dans une grande variété de tâches classiques comme la classi-
fication ou la régression. Ces outils s’appuient principalement sur le choix a priori
d’une fonction de similarité entre paires d’objets traités, communément appelée
“noyau” en apprentissage statistique et analyse fonctionnelle. Ces méthodes ont
récemment gagné en popularité auprès des praticiens par leur simplicité d’utilisation
et leur performance.

Le choix d’un noyau adapté à la tâche traitée demeure néanmoins un problème
épineux dans la pratique, et nous proposons dans cette thèse plusieurs noyaux
génériques pour manipuler des objets structurés, tels que les séquences, les graphes
ou les images. L’essentiel de notre contribution repose sur la proposition et l’étude
de différents noyaux pour nuages de points ou histogrammes, et plus généralement
de noyaux sur mesures positives. Ces approches sont principalement axées sur
l’utilisation de propriétés algébriques des ensembles contenant les objets considérés,
et nous faisons ainsi appel pour une large part à la théorie des fonctions harmoniques
sur semigroupes. Nous utilisons également la théorie des espaces de Hilbert à noyau
reproduisant dans lesquels sont plongées ces mesures, des éléments d’analyse con-
vexe ainsi que plusieurs descripteurs de ces mesures utilisés en statistiques ou en
théorie de l’information, comme leur variance ou leur entropie. En considérant tout
objet structuré comme un ensemble de composants, à l’image d’une séquence trans-
formée en un ensemble de sous-séquences ou d’images en ensembles de pixels, nous
utilisons ces noyaux sur des données issues principalement de la bioinformatique et
de l’analyse d’images, en les couplant notamment avec des méthodes discriminantes
comme les machines à vecteurs de support.

Nous terminons ce mémoire sur une extension de ce cadre, en considérons non
plus chaque objet comme un seul nuage de point, mais plutôt comme une suite
de nuages embôıtés selon un ensemble d’évènements hierarchisés, et aboutissons
à travers cette approche à une famille de noyaux de multirésolution sur objets
structurés.

Abstract

Kernel methods refer to a new family of data analysis tools which may be used
in standardized learning contexts, such as classification or regression. Such tools
are grounded on an a priori similarity measure between the objects to be handled,
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which have been named “kernels” in the statistical learning and functional analysis
literature. The simplicity of kernel methods comes from the fact that, given a
learning task, such methods only require the definition of a kernel to compare the
objects to yield practical results.

The problem of selecting the right kernel for a task is nonetheless tricky, no-
tably when the objects have complex structures. We propose in this work various
families of generic kernels for composite objects, such as strings, graphs or images.
The kernels that we obtain are tailored to compare clouds of points, histograms or
more generally positive measures. Our approach is mainly motivated by algebraic
considerations on the sets of interests, which is why we make frequent use of the
theory of harmonic functions on semigroups in this work. The theoretical justifica-
tion for such kernels is further grounded on the use of reproducing kernel Hilbert
spaces, in which the measures are embedded, along with elements of convex analysis
and descriptors of the measures used in statistics and information theory, such as
variance and entropy. By mapping any structured object to a cloud of components,
e.g., taking a string and turning it into a cloud or a histogram of substrings, we ap-
ply these kernels on composite objects coupled with discriminative methods, such
as the support vector machine, to address classification problems encountered in
bioinformatics or image analysis.

We extend this framework in the end of the thesis to propose a different
viewpoint where objects are no longer seen as clouds of points but rather as nested
clouds, where each cloud is labelled according to a set of events endowed with a
hierarchy. We show how to benefit from such a description to apply a multiresolution
comparison scheme between the objects.
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Chapter 1

Introduction

Résumé

Les champs d’application et la portée théorique des méthodes à noyaux se sont
considérablement étoffés ces dix dernières années; ce chapitre se propose de dresser
un panorama général de ces outils qui sera un préalable à la lecture de cette thèse.
Nous insistons en tout début de chapitre sur ce qui différencie l’approche par noy-
aux, basée sur le choix d’une mesure de similarité entre objets traités, des approches
paramétriques qui nécéssitent la définition d’un modèle statistique vraisemblable
pour les données étudiées. Nous poursuivons cet exposé en section 1.1 avec une
présentation des différentes interprétations données à la notion de noyau défini
positif en statistique mathématique (1.1.1) pour introduire par la suite (1.1.2) les
différentes machines qui peuvent être directement utilisées avec ces noyaux pour
mener à bien des tâches d’apprentissage machine. La section 1.2 précise davantage
le cadre de cette thèse qui est de définir des noyaux sur objets structurés au travers
d’outils empruntés à la modélisation statistique et à la géométrie de l’information,
en faisant un point sur les contributions passées dans ce domaine. Les contributions
de cette thése sont plus spécifiquement détaillées dans la Section 1.3.

1



2 Chapter 1. Introduction

Industries, public institutions and academia from all fields are drowning under
data, stored in data warehouses that have now become an inexpensive and integral
part of larger information systems. Computational means have expanded in such
a way that massive parallel clusters are now an affordable commodity for most
laboratories and small companies. This abundance of measurements matched with
cheap computational power is ripe for statistics and machine learning to address
crucial problems, from most fields of science and social sciences alike.

From a historic viewpoint in the trend of statistics, this situation confronts
more than ever statisticians with real-life problems: ill-conceived information sys-
tems and slow computers are no longer an excuse, while practitioners now expect
data analysis tools to be efficient with little if no prior tuning. The demand for such
algorithms is but expanding, aimed at superseding human intelligence for repetitive
tasks or even surpass it for large-scale studies that involve monitoring and extracting
knowledge out of millions of measurements.

This situation has spurred in the last decades fertile discoveries in the field. It
has also raised questions to rethink statistical sciences in the digital age. Arguably,
one of the most interesting of these shifts is the increasing diversity of data structures
we are now faced with. Some inherently complex data types that come from real-
life applications do not fit anymore in the vectorial paradigm that was once the
benchmark way of considering objects. When the task on such data types can
be translated into elementary subtasks that involve either regression, binary or
multi-class classification, dimensionality reduction, canonical correlation analysis
or clustering, a novel class of algorithms known as kernel methods have proven to
be effective, if not reach state-of-the art performance on many of these problems.

The mathematical machinery of kernel methods can be traced back to the sem-
inal presentation of reproducing kernel Hilbert spaces by Aronszajn (1950) followed
by its utilization in statistics by Parzen (1962). However, most of the practical
ideas that make kernels widespread in machine learning today derive from the con-
current exposition of efficient kernel machines – such as gaussian processes with
sparse representations (Csató and Opper, 2002) or the popular support vector ma-
chine (Cortes and Vapnik, 1995) – which are direct translations of the principles
guiding statistical learning (Cucker and Smale, 2002; Vapnik, 1998), with efficient
kernel design schemes that go beyond the simple usage of nonlinear kernels applied
on vectorial data, with pioneering work by Haussler (1999); Watkins (2000). Two
prominent features of kernel methods have been often pointed out to justify their
success, that is, their ability to cope in a unified framework with the complexities
and multimodalities of real-life data.
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Versatile framework for structured data

Structured objects such as (to cite a few) strings, 3D structures, trees and networks,
time-series, histograms, images, and texts have become in an increasing number of
applications the de facto inputs for learning algorithms. Modelling their generation
is no longer sufficient and practitioners expect now to infer complex rules that
directly use them. The originality of kernel methods is to address this diversity
through a single approach. The kernel viewpoint starts by defining or choosing a
similarity measure between pairs of objects. Hence, and no matter how complex
the objects might be, dealing with a learning problem through kernels involves
translating a set of n data points into a symmetric n × n similarity matrix that
will be the sole input used by an adequate algorithm called a kernel machine. On
the contrary, most data analysis methods inherited from parametric approaches in
statistics and connectionism impose a functional class beforehand (e.g. a family of
statistical models or a neural architecture), that is, either tailored to fit vectorial
data – which requires a feature extraction procedure to avoid very large or noisy
vectorial representations –, or tailored to fit a particular data type (hidden Markov
models with strings, Markov random fields with images, etc.).

Versatile framework for multimodality and semi-supervised learning

Additionally, all previously quoted objects can often be regarded as different hetero-
geneous representations of a single entity, seen under diverse forms. For instance,
a protein can be successively treated as an amino-acid sequence, a macro-molecule
with a 3D-structure, an expression level in a DNA-chip, a node in a biological path-
way or in a phylogenetic tree. The interrelations between these modalities is likely
to have a determinant role in our ability to predict a response variable, and hope-
fully in our understanding of the underlying mechanisms at work. Kernel methods
provide an elegant way of integrating multimodalities through convex kernel com-
binations, at an earlier stage than standard techniques which usually only do so by
aggregating final decision functions. A wide range of techniques have been designed
to do so through convex optimization and the use of unlabelled data (Lanckriet
et al., 2004; Sindhwani et al., 2005). Kernels can thus be seen as atomic elements
that focus on certain types of similarities for the objects, which can be combined
to correspond better to the learning task.

Following this brief presentation, we review in the next section some of the
mathematical machinery behind kernel methods, before presenting in Section 1.2
the statistical approach to design kernels on structured objects, followed by a short
overview in Section 1.3 of the contributions presented in the remaining chapters of
this thesis.

1.1 Nuts and Bolts of Kernel Methods

Let us start this section by providing the reader with a definition for kernels, since
the term “kernel” itself is used in different branches of mathematics, from linear
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algebra, density estimation to integral operators theory. Some classical kernels used
in estimation theory, such as the Epanechnikov kernel1, are not, for instance, kernels
in the sense of the terminology adopted in this work. We develop in this section
elementary insights on kernels, inspired by sources such as (Berlinet and Thomas-
Agnan, 2003; Berg et al., 1984; Schölkopf and Smola, 2002) to which the reader
may refer for a more complete exposition.

1.1.1 The Multiple Facets of Kernels in Machine Learning

Quite like mathematics in general, statistical learning also admits different defini-
tions for kernel functions. However, they are all equivalent and ultimately boil down
to the same family of mathematical objects. We focus in this section on four major
approaches that are the most common in the literature. Let X be a non-empty set
sometimes referred to as the index set, and k a symmetric real-valued2 function on
X × X .

Positive Definite Kernels

For practitioners of kernel methods, a kernel is above all a positive definite function
in the following sense:

Definition 1.1 (Real-valued Positive Definite Kernels). A symmetric func-
tion k : X × X → R is a positive definite (p.d.) kernel on X if

n
∑

i,j=1

cicj k (xi, xj) ≥ 0 (1.1)

holds for any n ∈ N, x1, . . . , xn ∈ X and c1 . . . , cn ∈ R.

Functions for which the sum in Equation (1.1) is (strictly) positive when c 6= 0
are sometimes referred to as positive definite functions, in contrast with functions
for which this sum is only non-negative, which are termed positive semi-definite. We
will use for convenience throughout this thesis the term positive definite for kernels
that simply comply with non-negativity, and will consider indifferently positive
semi-definite and positive definite functions. Most theoretical results that will be
presented are indifferent to this distinction, and in numerical practice definiteness
and semi-definiteness will be equivalent.

One can easily deduce from Definition 1.1 that the set of p.d. kernels is a closed,
convex pointed cone3. Furthermore, the positive definiteness of kernel functions
translates in practice into p.d. matrices that correspond to a sample of points X =
{xi}i∈I in X , that is matrices

KX = [k(xi, xj)]i,j∈I .

1for h > 0, kh(x, y) = 3
4

(

1 −
(

x−y

h

)2
)+

2Kernels are complex valued in the general case, but we only consider the real case here, which
is the common practice in statistics and machine learning.

3A set C is a cone if for any λ > 0, x ∈ C ⇒ λx ∈ C, pointed if x ∈ C,−x ∈ C ⇒ x = 0
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Elementary properties of the set of kernel functions such as its closure under point-
wise and tensor products are directly inherited from well known results in Kronecker
and Schur (or Hadamard) algebras of matrices (Bernstein, 2005, Chapter 7). This
matrix viewpoint on kernels often challenges the functional viewpoint itself, no-
tably in the semi-supervised setting where defining a kernel matrix on a dataset is
sufficient to use kernel methods. Kernel matrices for a sample X can be obtained
by applying transformations r that conserve positive definiteness to a prior Gram
matrix KX , and in that case use a matrix r(KX) directly without having to define
explicit formulas for the constructed kernel on the whole space X ×X . Examples of
such constructions are the computation of the diffusion kernel on elements of a graph
through its Laplacian matrix (Kondor and Lafferty, 2002) or direct transformations
of the kernel matrix through unlabelled data (Sindhwani et al., 2005).

Let us add that Equation (1.1) appears to practitioners as the essence of a
kernel. Equation (1.1) is considered as a numerical safeguard to use an arbitrary
similarity measure on X × X with a kernel method such as Gaussian processes or
SVM’s, for if this function does not comply with Equation (1.1) the convergence
of such machines may not be guaranteed, since they rely on convex optimizations
and matrix inversions. In the case of support vector machines however, a looser
constraint of conditional positive definiteness4 for the kernel suffices to ensure con-
vergence of the algorithm. More recent studies show that no positive definiteness at
all of the considered similarity may sometimes translate with SVM like optimization
into exploitable results (Haasdonk, 2005).

The fact that the whole mathematical machinery of kernels is hidden behind
the positive definiteness constraint explains part of the practical success of kernel
methods. Indeed, defining a p.d. similarity measure appears for most practitioners
a much easier task than defining a family of statistical models or a connectionist
architecture with its adequate estimation schemes. The criticism that kernel ma-
chines are black boxes is however misled, since the functional view described below
and the regularization schemes exposed in Section 1.1.2 make the kernel approach
conceptually transparent.

Reproducing Kernels

Kernels are also integral part of functional analysis, since with each kernel k on X
is associated a Hilbertian space Hk of real valued functions on X .

Definition 1.2 (Reproducing Kernel). A function k : X × X → R is a re-
producing kernel of a Hilbert space H of real-valued functions on X if and only
if

i) ∀t ∈ X , k(·, t) ∈ H;

ii) ∀t ∈ X , ∀f ∈ H, 〈f, k(·, t)〉 = f(t).

4The definition of conditional positive definiteness (c.p.d.) is the same as that of positive
definiteness, except that non-negativity of the sum in Equation (1.1) only has to be ensured when
∑

i ci = 0. See (Berg et al., 1984, Section 3.2) for a review
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A Hilbert space that is endowed with such a kernel is called a reproducing
kernel Hilbert space (RKHS) or a proper Hilbert space. Conversely, a function
on X × X for which such a Hilbert space H exists is a reproducing kernel and we
usually write Hk for this space which is unique. It turns out that both Definitions 1.1
and 1.2 are equivalent, a result known as the Moore-Aronszajn theorem (Aronszajn,
1950). First, a reproducing kernel is p.d., since it suffices to write the expansion of
Equation (1.1) to obtain the squared norm of the function

∑n
i=1 cik(xi, ·), that is

n
∑

i,j=1

cicj k (xi, xj) =

∥

∥

∥

∥

∥

n
∑

i=1

cik(xi, ·)
∥

∥

∥

∥

∥

2

H
, (1.2)

which is non-negative. To prove the opposite in a general setting, that is not limited
to the case where X is compact which is the starting hypothesis of the Mercer
representation theorem (Mercer, 1909) to be found in (Schölkopf and Smola, 2002,
p.37), we refer the reader to the progressive construction of the RKHS associated
with a kernel k and its index set X presented in (Berlinet and Thomas-Agnan, 2003,
Chapter 1.3). In practice, the RKHS boils down to the completed linear span of
elementary functions indexed by X , that is

Hk
def
= span{k(x, ·), x ∈ X}

The consequences of this are striking: defining a positive definite kernel k on any
set X suffices to inherit a Hilbert space of functions Hk. By selecting a kernel k,
we hope that the space Hk – though made up of linear combinations of elementary
functions – may contain useful functions with low norm, just as we could hope
polynomials of low degree may approximate some functions of interest on a given
interval. Ideally, these functions should be used to carve structures in clouds of
points, or translate efficiently into decision functions with continuous or discrete
outputs.

Another crucial aspect of RKHS is the simplicity of their induced norms and
dot-products which are both inherited from the reproducing kernel. The fact that
this norm is easy to compute for finite expansions, as seen in Equation (1.2), will
be a decisive tool to quantify the complexity of a function in Hk, paving the way
for Tikhonov regularization schemes (Tikhonov and Arsenin, 1977). Additionally,
the dot-product between two functions in the RKHS can be expressed through the
values taken directly by the kernel on the index set, since

〈

∑

i∈I
aik(xi, ·),

∑

j∈J
bjk(yj , ·)

〉

=
∑

i∈I,j∈J
aibjk(xi, yj).

The fact that in Hk the dot-product 〈k(x, ·), k(y, ·)〉Hk
is equal to k(x, y) illustrates

the next viewpoint, which stresses further the fact that the kernel is a dot-product
rather than the fact that k(x, ·), x ∈ X are continuous evaluation functionals on
Hk.
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Feature Maps

The theorem below (Berlinet and Thomas-Agnan, 2003, p.22) gives an interpreta-
tion of kernel functions, seen as dot-products between feature representations of
their arguments in a space of sequences.

Theorem 1.3. A function k on X × X is a positive definite kernel if and only
if there exists a set T and a mapping φ from X to l2(T ), the set of real sequences
{ut, t ∈ T } such that

∑

t∈T |ut|2 <∞, where

∀(x, y ) ∈ X × X , k(x, y) =
∑

t∈T
φ (x)tφ (y)t = 〈φ(x), φ(y)〉l2(X)

The proof is derived from the fact that for any Hilbert space (notably Hk)
there exists a space l2(X) to which it is isometric. As can be glimpsed from this
sketch, the feature map viewpoint and the RKHS one are somehow redundant, since

x 7→ k(x, ·)

is a feature map by itself. If the RKHS is of finite dimension, functions of the
RKHS turn out to be the dual space of the Euclidian space of feature projections.
Although closely connected, it is rather the feature map viewpoint than the RKHS
one which actually spurred most of the initial advocation for kernel methods in
machine learning, notably the SVM as presented in (Cortes and Vapnik, 1995;
Schölkopf and Smola, 2002). The intuition behind kernel machines was then that
they would first map all the inputs into a high-dimensional feature space, that is
translate all points to their feature representation,

{x1, · · · , xn} 7→ {φ(x1), · · · , φ(xn)},

to find a linear decision surface to separate the points in two distinct classes of
interest. This interpretation actually coincided with the practical choice of using
polynomial kernels5 on vectors, for which the feature space is of finite dimension.
The feature map viewpoint is also illustrated in the constructive approach in (Cuturi
and Vert, 2005) presented in Chapter 2.

However, the feature map approach was progressively considered to be restric-
tive, since it imposes to consider first the extracted features and then compute the
kernel that matches them. Yet, useful kernels obtained directly from a similarity
between objects do not always translate into clear feature maps, as in (Cuturi et al.,
2005) with the inverse generalized variance for measures. Kernels without explicit
feature maps may also be obtained through more complex kernel manipulations as
in Chapter 5. The feature map formulation, particularly advocated in the early
days of SVM’s, also misled some observers into thinking that the kernel mapping
was but a piece of the SVM machinery. Instead, SVM should be rather seen as
an efficient computational approach – among many others – deployed to select a

5k(x, y) = (〈x, y〉 + b)d, d ∈ N, b ∈ R+
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“good” function f in the RKHS Hk given examples, as presented in Section 1.1.2.
We review next a classical connection between reproducing kernels and stochastic
processes that is pertinent when considering Gaussian processes from a machine
learning viewpoint.

Covariance Kernels of Stochastic Processes

Reproducing kernels on X are not only equivalent to positive definite ones, they are
also connected to real-valued second order stochastic processes indexed on X . Let
(Ω,A , ρ) be a probability space, and write L2(Ω,A , ρ) for the corresponding space
of second order random variables on Ω, which is a Hilbert space with the inner
product 〈X,Y 〉 = Eρ[XY ]. We consider a stochastic process Xs, with s ranging
over X , for which all random variables Xs are second order. In that case we write

R(t, s) = Eρ[XtXs]

for the second moment function of X . We then have that

Theorem 1.4 (Loève). R is a second moment function of a second order stochastic
process indexed by X if and only if R is a positive definite function.

This correspondence between positive definite kernels and stochastic processes
explains why Gaussian processes and their usage in machine learning are closely
linked with kernel design, as shown in (Wahba, 1990). The interested reader may
refer to (Seeger, 2004) for a shorter overview of this correspondence.

1.1.2 Using Reproducing Kernel Hilbert Spaces in Practice

From the four previous interpretations of kernels, we will mainly make use of the
reproducing kernel viewpoint in this section. However, we will refer frequently to the
positive definite and feature map facets of kernels throughout this thesis. We review
first different methods to analyze clouds of unlabelled data and extract a structural
knowledge from such clouds using functions in the RKHS. We also introduce the
kernel approach to supervised problems, notably binary classification, regression,
dimensionality reduction and graph inference. Most of these results wouldn’t be
valid however without the following theorem.

The Representer Theorem

Most estimation procedures presented in the statistical literature to perform a di-
mensionality reduction or infer a decision function out of sampled points rely on
the optimization of a criterion which is usually carried out over a class of linear
functionals. Indeed, PCA, CCA, logistic regression and least-square regression and
its variants (lasso or ridge regression) all look for linear transformations of the orig-
inal data points to address the learning task. When these optimizations are led
instead on an infinite dimensional space of functions, namely in the RKHS Hk, the
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optimization can be performed in finite subspaces of Hk if the criterion only de-
pends on the values of the target function on a finite sample of points. This result
is known as the representer theorem and explains why so many linear algorithms
can be “kernelized” when trained on finite datasets.

Theorem 1.5 (Representer Theorem (Kimeldorf and Wahba, 1971)). Let
X be a set endowed with a kernel k and Hk its corresponding RKHS. Let {xi}1≤i≤n
be a finite set of points of X and let Ψ : Rn+1 → R be any function that is strictly
increasing with respect to its last argument. Then any solution to the problem

min
f∈Hk

Ψ (f(x1), · · · , f(xn), ‖f‖Hk
)

is in the finite dimensional subspace span{k(xi, ·), 1 ≤ i ≤ n} of Hk.

The theorem in its original form was cast in a more particular setting, where
the term ‖f‖Hk

would be simply added to an empirical risk as shown below. This
generalized version allows us to regard both supervised and unsupervised settings
from the same viewpoint, and we make constant use of this generalized version in
the next sections.

Studying Unlabelled Data through Eigenfunctions in Hk

In the unsupervised setting, the structure that underlies a set X = {xi}1≤i≤n of
points of X is the focus of study. Additionally, the quantification of the correlation
between the measurements observed in a set X with that of another set of points
with the same indexes Y = {yi}1≤i≤n from a set Y can be of interest, notably when
each index refers to the same underlying object cast in different modalities (Vert and
Kanehisa, 2003). If both X and Y are Euclidian spaces, classical linear techniques
can be applied, such as:

• Principal component analysis (PCA), which aims at defining an orthonormal
base v1, · · · , vdim(X ) of X such that for 1 ≤ j ≤ dim(X ),

vj = argmax
v∈X ,‖v‖X=1,v⊥{v1,··· ,vj−1}

varX [〈v, x〉X ],

where for any function f : X → R, varX [f ] denotes the empirical variance
with respect to the points enumerated in X , that is EX [(f − EX [f ])2]. The
set is then usually represented by only considering the projections of the
points in the subspace generated by an arbitrary number of r first eigenvectors
v1, · · · , vr supposed to capture the main features of the data.

• Canonical correlation analysis (CCA), quantifies how X and Y are related,
by computing

ρ(X,Y ) = max
ξ∈X ,ζ∈Y

corrX,Y [〈ξ, x〉X , 〈ζ, y〉Y ]

= max
ξ∈X ,ζ∈Y

covX,Y [〈ξ, x〉X , 〈ζ, y〉Y ]
√

varX [〈ξ, x〉X ] varY [〈ζ, y〉Y ]



10 Chapter 1. Introduction

where for two real valued functions f : X → R and g : Y → R we write

covX,Y [f, g] = EX,Y [(f − EX [f ])(g − EY [g])].

We observe that both optimizations search for vectors in X (and Y for CCA)
that will be representative of the data dependencies. The kernelization of such
algorithms is natural when one thinks in the same terms, but in the reproducing
kernel Hilbert spaces instead. We write for convenience HX and HY for the RKHS
associated with X and Y with respective kernels kX and kY . Using RKHS, we
are now looking for vectors – that is functions – that are directions of interest in
the sense that they capture most of the variance in the data now seen as a cloud of
functions. The fact that we select these functions based on a criterion which satisfies
the requirements of the representer theorem leads in practice to computations led
on finite subspaces of Hk that are analogous to the standard case. The two previous
optimizations become

fj = argmax
f∈HX ,‖f‖HX

=1,f⊥{f1,··· ,fj−1}
varX [〈f, kX (x, ·)〉HX ],

for 1 ≤ j ≤ n this time and

ρ(X,Y ) = max
f∈HX ,g∈HY

covX,Y [〈f, kX (x, ·)〉HX , 〈g, kY(y, ·)〉HX ]
√

varX [〈f, kX (x, ·)〉HX ] varY [〈g, kY(y, ·)〉HY ]
. (1.3)

The first problem has been termed kernel-PCA in the seminal work of Schölkopf
et al. (1998) and boils down to a simple singular value decomposition of the kernel
matrix KX . Note that kernelizing weighted PCA is not as straightforward and can
be only carried out through a generalized eigendecomposition, as briefly formulated
in (Cuturi and Vert, 2005). Similarly to PCA, practitioners are usually interested
in the first eigenfunctions of a set of points, and little attention is usually paid to
eigenfunctions with lower eigenvalues. The reader may look at Figures 3.2, 3.4 and
3.5 for a comparison between standard PCA and kernel-PCA for clouds of points
in [0, 1]2 and may refer to (Schölkopf and Smola, 2002, Section 14.2) for a more
detailed review.

The second optimization, called kernel-CCA (Akaho, 2001), is ill-posed if
Equation (1.3) is used directly, and requires a regularization scheme to produce
satisfying results. Understanding better kernel-CCA is a topic of current research,
and the reader may consult a recent overview in (Fukumizu et al., 2005). The topic
of supervised dimensionality reduction, explored in (Fukumizu et al., 2004), is also
linked to the kernel-CCA approach. The author look for a sparse representation of
the data that will select an effective subspace for X and delete all the directions in
X that are not correlated to what is observed in Y, based on the samples X and
Y . In linear terms, such a sparse representation can be described as a projection of
the points of X into a subspace of much lower dimension while conserving the cor-
relations observed with corresponding points in Y. When kernelized, the approach
is roughly equivalent in the RKHS, up to regularization schemes.
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Kernel Regression and Classification

Suppose that we wish to infer now from what is observed in the samples X and Y a
causal relation between all the points of X and Y. This type of inference is usually
restricted to finding a mapping f from X to Y that is consistent with the collected
data and has desirable smoothness properties so that it appears as a “natural”
decision function seen from a prior perspective. If X is Euclidian and Y is R,
the latter approach is a well studied field of mathematics known as approximation
theory, rooted a few centuries ago in polynomial interpolation of given couples of
points, and developed in statistics through spline regression (Wahba, 1990) and
basis expansions (Hastie et al., 2001, Chapter 5).

Statistical learning theory starts its course when a probabilistic knowledge
about the generation of the points (x, y) is assumed, and the reader may refer
to (Cucker and Smale, 2002) for a valuable review. We skip its rigorous exposition,
and favour intuitive arguments next. A sound guess for the learning rule f would
be a function with a low empirical risk,

Remp
c ( f )

def
=

1

n

n
∑

i=1

c (f(xi), yi),

quantified by a cost function c : Y ×Y → R+ that penalizes wrong predictions and
which is nil on the diagonal. Minimizing directly Remp

c given training sets X and Y
is however unlikely to give interesting functions for f . If the function class F from
which f is selected is large, the problem becomes ill-posed in the sense that many
solutions to the minimization exist, of which few will prove useful in practice. On
the contrary, if the function class is too restricted, there will be no good minimizer
of the empirical risk that may serve in practice. To take that tradeoff into account,
and rather than constraining F , assume that J : F → R is a function that quantifies
the roughness of a function which is used to penalize the empirical risk,

Rλc (f)
def
=

1

n

n
∑

i=1

c (f(xi), yi) + λJ(f). (1.4)

Here λ > 0 balances the tradeoff between two desired properties for the function f ,
that is a good fit for the data at hand and a smoothness as measured by J . This
formulation is used in most regression and classification settings to select a good
function f as

f̂ = argmin
f∈F

Rλc .

We recover through this viewpoint a large variety of methods, notably when the
penalization is directly related to the norm of the function in a RKHS:

• When X is Euclidian and Y = R, F = X ∗, the dual of X and c(f(x), y) =
(y − f(x))2, minimizing Rλc is known as least-square regression when λ = 0,
ridge regression when λ > 0 and J is the Euclidian 2-norm, and the lasso
when λ > 0 and J is the 1-norm.
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• When X = [0, 1], Y = R, F is the space of m-times differentiable functions

on [0, 1] and J =
∫

[0,1]

(

f (m)(t)
)2
dt, we obtain regression by natural splines of

order m. This setting actually corresponds to the usage of thin-base splines
which can also be regarded as a RKHS type method (Wahba, 1990), see (Girosi
et al., 1995, Table 3) for other examples.

• When X is an arbitrary set endowed with a kernel k and Y = {−1, 1}, F = Hk,
J = ‖ · ‖Hk

and the hinge loss c(f(x), y) = (1 − yf(x))+ is used, we ob-
tain the support vector hyperplane. Replacing the cost function by the loss
c(f(x), y) = ln(1 + e−yf(x)), we obtain logistic regression, which, when used
along with non-linear kernels has been coined down kernel logistic regres-
sion (Zhu and Hastie, 2002).

• When X is an arbitrary set endowed with a kernel k and Y = R, F = Hk,
J = ‖ · ‖Hk

and c(f(x), y) = (|y − f(x)| − ε)+, the ε-insensitive loss function,
we obtain the support vector regression.

Finally, we quote another example of RKHS type regularization. In the context of
supervised graph inference, Vert and Yamanishi (2005) consider a set of connected
points {xi}1≤i≤n whose connections are summarized in the combinatorial Laplacian
matrix L of the graph, that is for i 6= j, Li,j = −1 if i and j are connected and
0 otherwise, and Li,i = −∑j 6=i Li,j. The authors look for a sequence of functions

{fi}1≤i≤d of a RKHS Hk to map the original points in Rd, and hope to recover
the structure of the original graph through this representation. Namely, the pro-
jection is optimized such that the points, once projected in Rd, will have graph
interactions in that metric (that is by linking all nearest neighbours up to some dis-
tance threshold) that will be consistent with the original interactions. This leads to
successive minimizations that may recall those performed in kernel-PCA, although
very different in nature through the regularization term in λ:

fj = argmax
f∈Hk,f⊥{f1,··· ,fj−1}

f⊤
XLfX + λ‖f‖Hk

f⊤
XfX

.

The supervised aspect is here included in the vectors fX where

fX
def
=(f(x1), · · · , f(xn))

⊤.

The term f⊤
XLfX above can be interpreted as cost functions with respect to the

observable graph L, that will favour values for f that are close for two connected
nodes.

All these regularization schemes and the practical ways to solve the corre-
sponding optimizations have fostered considerable research. The subject of this
thesis is not, however, related to this part of the kernel machinery. Instead, we turn
more specifically to the natural issues that arise from the use of kernels, without
considering the issue of the search for interesting functions in Hk.
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1.1.3 Selecting and Designing the Kernel

In supervised learning, where performance can be quantified by the error of the
algorithm on a test set of points, most practitioners are very much aware of the
sensitivity of kernel methods to the kernel that is selected. When a single family
of parameterizable kernels is used (e.g., Gaussian kernel), this involves choosing a
parameter range that will yield a good generalization; when many kernels are avail-
able for the task this involves picking the right kernel with an adequate parameter,
or a good combination of such kernels.

Hence, if the kernel – that is the RKHS of candidate functions chosen for the
task – is not conveniently selected, the low-performance of kernel methods such as
the SVM cannot be avoided and should not be attributed to the SVM optimization
itself, as has sometimes been reported (Hastie et al., 2001, Section 12.3.4), but
rather to the inadequateness of the kernel. It is thus no surprise that, after the early
successes of SVM as a kernel machine, followed by faster implementations (Platt,
1999), the focus progressively shifted on designing and combining efficient kernel
representations for data, with important concepts laid out by Haussler (1999) and
pioneering applications (Watkins, 2000; Jaakkola and Haussler, 1999; Joachims,
1997; Brown et al., 2000; Pontil and Verri, 1998).

Tuning and Combining Kernels

Other than through cross-validation, the topic of selecting the parameters through
different error estimates has been addressed in a variety of papers, notably (Chapelle
et al., 2002). The subject itself can be linked to the regularization penalty used in
most learning schemes, and is still the subject of current research (Vert and Vert,
2005). A more general avenue to have kernels that are suited to the task is to
combine a few of them. As recalled in Section 1.1.1, the set of kernels is a convex
cone of functions which is further closed under pointwise product. Therefore, any
polynomial on the set of kernels with positive coefficients is itself a kernel. For com-
putational reasons, linear combinations rather than multiplicative ones have been
considered so far, that is given a family k1, · · · , kd of d kernels, consider kernels of
the form

kα =

d
∑

i=1

αiki , αi > 0.

Although surprisingly good results can be obtained from a kernel that is just the
mean of other kernels (Vert and Yamanishi, 2005), various schemes to optimize the
weights α have been proposed, notably through semi-definite programming (Lanck-
riet et al., 2004; Bach et al., 2004). Going one step higher in abstraction, Ong
et al. (2005) propose a framework where kernels themselves are selected according
to a prior knowledge, which translates in practice to a supplementary regularization
term for the regularized empirical risk,

Rλ,µc (f, k) =
1

n

n
∑

i=1

c (f(xi), yi) + λ||f ||2Hk
+ µ||k||2H .
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where ‖.‖H stands for the norm of k in a “hyper-RKHS” defined by a kernel... on
kernel functions. Finally, Tsuda and Noble (2004) propose to estimate directly
a kernel matrix on selected points (and not the whole kernel function itself) by
choosing the matrix with maximal von Neumann entropy6 from a set of matrices
whose coefficients satisfy convex constraints derived from empirical observations.
This criterion is set so that the obtained matrix has a large rank which may reveal
interesting features, a work further formalized and generalized with a larger family
of divergences in (Tsuda et al., 2005). Alternatively Tsuda et al. (2003) also propose
a framework to fill in kernel matrices with missing values. This problem arises when
objects of interest may have different modalities, but the measurements about some
of the modalities may be incomplete. Proteins for instance have well known amino-
acid sequences, while their 3D structure still remains difficult to measure. The
authors propose to fill in these missing values by using auxiliary matrices that may
come from other modalities through a series of projections in successive matrix
spaces.

Designing Kernels

The other method to define kernels is to construct them explicitly, inspired by
available knowledge on the objects. Kernels for vectors have been long studied in
the context of spline regression (Wahba, 1990) and in spatial statistics, through the
seminal works of Matheron (1965). For structured objects however the task was
hardly studied in practice before (Haussler, 1999), although important theoretical
foundations were laid out well before by (Berg et al., 1984). Defining such kernels
is still a topic of open research, as it involves making arbitrary choices motivated
by applications. Consider for instance the alphabet {A,B,C} and the following
strings

m1 = AAAA, m2 = BBBB, m3 = AAAAAAAAAAAA,

m4 = ABAB, m5 = BCBC, m6 = BBAA.

From m1 to m3, and from m4 to m6, one can think of many different situa-
tions where m1 (resp. m4) should be more similar to m3 (resp. m5) than to m2

(resp. m6), and vice-versa. This arbitrary has fostered considerable research, so
that most common concepts of similarity available for objects could be accordingly
translated into p.d. kernels, positive definiteness being often the stumbling block.
Applications where such non-trivial kernels have significantly improved performance
include bioinformatics (Schölkopf et al., 2004) and text categorization (Joachims,
2002). In string, speech and image analysis, the similarities that have inspired
kernel design involve in large parts the minimization of a criterion, notably the
dynamic time warping alignment (Shimodaira et al., 2002), the edit-distance, or
Smith-Waterman score (Vert et al., 2004), and the tangent distance (Haasdonk and
Keysers, 2002) respectively. Each of these criterions is defined through a set S

6The von Neumann entropy of a p.d. matrix is the entropy of its eigenvalues normalized such
that they sum to 1.
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of bijective transformations for the objects, where each transformation s ∈ S is
weighted by a nonnegative cost c(s). Given two objects x and y, the computation
of such criterions involves finding the sequence of transformations of S that will
transform x into y7 with minimum total cost, where the criterion is set to be the
cost of this optimal path. The computation of this “shortest” path from x to y is
usually carried out through dynamic programming algorithms. However, the exact
value of the criterion, that is the total cost of the optimal path, does not translate
easily into p.d. kernels – as most operations involving min’s and max’s – unless
clever approximations are carried out as in (Vert et al., 2004). More generally and
when a similarity measure inspired by common practice cannot be easily turned
into a p.d. kernel, another procedure known as the empirical kernel map (Schölkopf
et al., 2002) can be used at a great computational cost but with good results on
experiments so far (Liao and Noble, 2002). Given a set of non-necessarily labelled
points {xi}i∈I , the empirical feature map

φ : x 7→ {k(xi, x)}i∈I
is used to define a kernel on x, y through their representations φ(x) and φ(y), with a
simple dot-product φ(x) ·φ(y) usually applied to the vectors. We leave for the next
section an important category of kernels that is grounded on statistical modelling.

1.2 Blending Discriminative and Generative
Approaches with Kernels

For a wide variety of objects, notably sequences, researchers in the field of kernel
methods quickly turned to existing statistical generative models, long tailored for
these objects, to extract features of interest.

1.2.1 Statistical Models as Feature Extractors

Jaakkola and Haussler (1999) first thought of using generative models to build
kernels that would provide in turn the inputs for discriminative machines. In the
case of sequences for instance, the hidden Markov model (HMM), that was known
to capture efficiently the behaviour of amino-acid sequences, quickly turned out to
be an efficient feature extractor. The authors did so by defining for each sequence
a vector of features that would be derived from an estimated HMM model, namely
the Fisher score. Given a measurable space (X ,B, ν) and a parametric family of
absolutely continuous measures of X represented by their densities {pθ, θ ∈ Θ ⊂
Rd}, the Fisher kernel between two elements x, y of X is

kθ̂(x, y) =

(

∂ ln pθ(x)

∂θ

∣

∣

θ̂

)⊤
J−1

θ̂

(

∂ ln pθ(y)

∂θ

∣

∣

θ̂

)

,

where θ̂ is a parameter selected beforehand to match the whole training set, and
Jθ̂ is the Fisher information matrix computed in θ̂. The statistical model not only

7or equivalently y into x if we assume that the cost of a transformation and its inverse are the
same.
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acts as a feature extractor through the score vectors, but also defines the metric to
use with these vectors through Jθ̂.

The Fisher kernel was perceived by the community as a promising bridge
between generative and discriminative approaches, which fostered a lot of research
and extensions in this sense, notably in (Tsuda et al., 2002a; Smith and Gales,
2002). The motivation behind these contributions was to overcome the limiting

assumption that the parameter θ̂ on which the score vectors are evaluated is unique
and fits the whole set of points at hand. Rather, Tsuda et al. (2002a) and Smith
and Gales (2002) proposed simultaneously to incorporate in the context of binary

classification two parameters θ̂1 and θ̂2 for each class respectively, and consider the
score vector of the likelihood ratio between the two classes evaluated in x,

φθ̂1,θ̂2 : x 7→





∂ ln
pθ1

(x)

pθ2
(x)

∂ϑ

∣

∣

∣

ϑ̂=(θ̂1,θ̂2)





where ϑ = (θ1, θ2) is now in Θ2, to propose the kernel

(x, y) 7→ φθ̂1,θ̂2(x)
⊤φθ̂1,θ̂2(y).

The Fisher kernel was the source of further theoretical work in (Tsuda et al., 2004)
where its statistical consistency was studied. It was also related to a wider class of
kernels coined down as mutual information kernels by Seeger (2002). Starting also
from a set of distributions {pθ, θ ∈ Θ} where Θ is measurable, and from a given
prior ω ∈ L2(Θ), the mutual information kernel kω between two elements x and y
is defined as

kω(x, y) =

∫

Θ

pθ(x)pθ(y)ω(dθ).

As noted in (Seeger, 2002), the Fisher kernel can be regarded as a maximum a
posteriori approximation of the mutual information kernel, by setting the prior
ω to the multivariate Gaussian density N (θ̂, J−1

θ̂
), following the approximation of

Laplace’s method. We proposed in (Cuturi and Vert, 2005), reported in Chapter 2,
a kernel on strings that is based on the mutual information approach without using
such an approximation. In this work the distributions {pθ, θ ∈ Θ} are Markov chain
densities with finite depths, weighted by a prior ω set to convenient conjugate priors,
namely a combination of branching process priors for the structure of the chain and
mixtures of Dirichlet priors for the transition parameters. This setting yields closed
computational formulas for the kernel, benefitting from similar computations in
universal coding (Willems et al., 1995; Catoni, 2004).

In the framework of sequence analysis first (Tsuda et al., 2002b), and then in
comparisons of graphs (Kashima et al., 2003), further attention was given to latent
variable models to define kernels in a way that also generalized the Fisher kernel.
In a latent variable model, the probability of emission of an element x is condi-
tioned by an unobserved latent variable s ∈ S, where S is a finite space of possible
states. When a string is considered under the light of a hidden Markov model, to
its chain x = x1 · · ·xn of letters is associated a similar sequence s = s1 · · · sn of
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states that is not usually observed. When the sequence of states s is known, the
probability of x under such a model is then determined by the marginal probabil-
ities p(xi|si). Building adequate transition structures for the emitting states, and
their corresponding emission probabilities is one of the goals of HMM estimations.
The marginalized kernel assumes that this sequence is not known for objects x and
y, but it performs, given an available structure of states, an averaging

k(x, y) =
∑

s∈S

∑

s′∈S
p(s|x) p(s′|y)κ ((x, s) , (y, s′))

of arbitrary kernel evaluations κ weighted by posterior probabilities which are es-
timated from data. In this setting, κ can be any arbitrary kernel on X × S. For
particular choices of κ the kernel can be computed in closed form, both on sequences
and graphs (Mahé et al., 2004).

Finally, and rather than marginalizing the probabilities of the objects through
a prior belief on the parameters, or the opposite by considering marginalized like-
lihoods, a different approach takes the direction of comparing two objects by con-
sidering directly the parameters that fits them better, that is, map first

X 2 ∋ (x, y) 7→ (θ̂x, θ̂y) ∈ Θ2,

through maximum likelihood estimation for instance, and then compare x and y
through a kernel kΘ on Θ,

k(x, y) = kΘ(θ̂x, θ̂y).

Notable examples of this approach include the survey of Jebara et al. (2004) which
presents the family of kernels

kβ(x, y) =

∫

X
pθ̂x

(z)βpθ̂y
(z)βdz

for β > 0, the case β = 1
2 being the well known Bhattacharrya affinity between

densities. The authors review a large family of statistical models for which these
kernels can be computed in closed form, ranging from graphical models, Gaussian
multivariate densities and multinomials to hidden Markov models. Aiming also at
computing functions kΘ of interest, Lafferty and Lebanon (2005) propose to fol-
low Kondor and Lafferty (2002) and use diffusion processes to define kernels. To do
so they express solutions for the heat equation in the Riemannian manifold induced
by the Fisher metric of the considered statistical models, under the light of informa-
tion geometry as defined by Amari and Nagaoka (2001). They derive information
diffusion kernels out of such solutions which, when specialized to multinomials, that
is elements of the simplex8, boil down to kernels of the form

kΣd
(θ, θ′) = e−

1
t

arccos2(
√
θ·θ′), (1.5)

where t > 0 is the diffusion parameter. Note that the squared arc-cosine in Equa-
tion (1.5) is the squared geodesic distance between θ and θ′ seen as elements from

8writing Σd for the canonical simplex of dimension d, i.e., Σd = {ξ = (ξi)1≤i≤d : ξi ≥ 0,
∑

ξi =
1}.
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the unit sphere (that is when each θi is mapped to
√
θi). Based on the seminal

work of Schoenberg (1942), Zhang et al. (2005) rather advocate the direct use of
the geodesic distance in the context of text classification which is also addressed
by Lafferty and Lebanon (2005). They prove that the geodesic distance is a neg-
ative definite kernel9 on the whole sphere, while its square used in Equation (1.5)
does not seem to be in numerical practice. If the points are restricted to lie in the
positive orthant, which is the case for multinomials, both approaches yield however
positive definite kernels.

1.2.2 Nonparametric Kernels on Measures

When the considered objects for the task are composite, that is built by the ag-
gregation of more atomic elements in a set X , and when these elements can be
assumed to have been generated independently according to a probability measure
in M1

+(X ), one can represent each structured object by a cloud of weighted points
on a measurable space (X ,B, ν), that is a molecular measure10, or a histogram when
X is finite. An early reference for this approach in a discriminative framework was
brought forward by Chapelle et al. (1999), and whose advocated kernel on Σd,

ka,b(θ, θ
′) = e−

∑d
i=1 |θa

i −θ′ai |b , a > 0, b > 0,

has shown good results in most of our applications, as illustrated in Chapter 5. The
general approach of considering objects as clouds of points was spurred by a few
practical examples:

• sequences have been typically considered as sets of subsequences, called n-
grams in text analysis (Lodhi et al., 2002) or k-mers in bioinformatics (Leslie
et al., 2002, 2003; Rätsch and Sonnenburg, 2004).

• images can be decomposed into histograms of colors (Chapelle et al., 1999),
but also sets of salient points (Eichhorn and Chapelle, 2004).

• bags of words representations for texts have long been advocated in the
framework of natural language processing (Salton, 1989), and notably used
for state-of-the-art kernel methods in the field (Joachims, 2002).

• graphs and 3D structures and their decomposition as sets of paths have
been used in (Kashima et al., 2003), notably for the analysis of molecules
by Ralaivola et al. (2005) and Mahé et al. (2004).

The family of kernels designed on these nonnegative counters of components
encompasses thus the family of kernels on multinomials, histograms, clouds of points
and densities. Such a family has been coined down more generally as “kernels on
measures”, and we adopt this terminology from now on. By designing general
families of kernels on measures, we aim at having a generic toolbox of kernels

9a negative definite kernel is the negative of a c.p.d. kernel
10A molecular measure, also called an atomic measure in the literature.
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that can be used efficiently to compare structured objects decomposed into sets
components.

The setting adopted in (Chapelle et al., 1999) does not rely on a statistical
model, but rather on a simple notion of proximity between the empirical measures.
Arguably, this viewpoint might be better suited for kernel methods. Indeed, statis-
tical generative models have long been designed to be interpretable and fit existing
data, that is to provide an interpretation for the underlying natural phenomenon,
and provide an efficient framework to estimate their parameters. Putting the focus
on a good estimation of θ̂x may not be of any use at all, since θ̂x it but computed to
compare it directly with θ̂y, regardless of the accuracy of both estimators in repre-
senting the data. This question is raised in the experimental account in Section 2.6
where a very simple model, namely Markov chains of order 2, suffices to define an
efficient kernel on protein sequences. Coupled with SVM’s for classification, this
kernel yields far better results than the estimation of complex HMM models for
each considered family used then as a plug-in rule, which can be observed in (Liao
and Noble, 2002).

These remarks spurred the definition of nonparametric kernels that would use
directly the geometry of M b

+(X ) through adequate metrics. A survey of such kernels
derived from a family of metrics on R+ is presented in (Hein and Bousquet, 2005).
The authors consider the family of distances

d2
α,β =

2β(xα + yα)
1
α + 2α(xβ + yβ)

1
β

2
1
α − 2

1
β

,

presented in (Fuglede and Topsøe, 2004), for α ∈ [1,∞] and β ∈ [ 12 , α] or β ∈
[−∞,−1]. Given two absolutely continuous measures µ, µ′ with densities p, p′ w.r.t.
ν, the authors propose to integrate pointwise the distances between the densities,
defining n.d. kernels

d2
α,β(µ, µ

′) =

∫

X
d2
α,β(p(x), p

′(x)ν(dx), (1.6)

to characterize the following family of p.d. kernels11,

k1,−1(µ, µ
′) =

∫

X

p(x)p′(x)
p(x) + p′(x)

ν(dx), k 1
2 ,1

(µ, µ′) =

∫

X

√

p(x)p′(x)ν(dx),

k1,1(µ, µ
′) =

−2

ln 2

∫

X
p(x) ln

p(x)

p(x) + p′(x)
+ p′(x) ln

p′(x)
p(x) + p′(x)

ν(dx),

k∞,1(µ, µ
′) =

∫

X
min(p(x), q(x))ν(dx),

which correspond respectively to the symmetric χ2, Hellinger, Jensen-Shannon and
total variation metrics. All these metrics are invariant under a change of the base
measure ν.

11through the equivalence that if φ(x, y) = ψ(x, x0) + ψ(y, x0)− ψ(x, y)− ψ(x0, x0), φ is p.d. if
and only if ψ is n.d. and choosing in this case x0 = 0, see (Berg et al., 1984, p. 74)
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In parallel to such non-parametric approaches, further research was given to
the incorporation in these kernels of a prior knowledge on the component space X
itself. When this knowledge is a kernel on the components, “kernelized” estimates of
kernels on measures can be computed. An early approach which is numerically non-
satisfactory because it leads to diagonally dominant kernels is presented in (Wolf
and Shashua, 2003), to compare two clouds of points of equal size using a kernel
on the space where the points are taken from. Beyond a few points however, the
kernel has negligible values which prevents using it in most problems.

The issue when kernelizing a kernel on measures is well illustrated in the differ-
ences between two papers from the same authors, (Jebara et al., 2004) and (Kondor
and Jebara, 2003). In the first paper, the authors review a large family of models for
which the Bhattacharrya family of kernels can be computed directly. In the latter,
which can be seen as a seminal reference to our knowledge, the authors recall the
expression of the Bhattacharrya affinity for sets of points seen as empirical samples
from a Gaussian law; the affinity, which only depends on the empirical means and
variances of the respective clouds, is then kernelized. This modification of the orig-
inal algorithm is possible thanks to analogies that can be drawn between the two
first moments of a measure and the kernel matrix of the elements of its support. The
kernelization which is proposed in (Kondor and Jebara, 2003) is however complex
and demands extensive calculations. Hein and Bousquet (2005) also propose such
a kernelization, and coin down two of these kernelized estimates structural kernels.
They incorporate in the integration of Equation (1.6) an additional kernel term
through two forms:

kI(µ, µ
′) =

∫

X

∫

X
k(x, y)k̂(p(x), p′(y)ν(dx)ν(dy).

kII(µ, µ
′) =

∫

X

∫

X
s(x, y)k̃(p(x), p(y))k̃(p′(x), p′(y))ν(dx)ν(dy),

where k,k̂ and k̃ are kernels with desirable properties and s is a non-negative valued
function. The implementation of such techniques is only ensured under certain
restrictions on the class of considered kernels and require usually a pre-treatment
of the submitted measures.

1.3 Contribution of this Thesis

We present in the following chapters different contributions that are all aimed at
understanding better kernels on structured objects, notably strings in Chapter 2,
but more generally measures and histograms, in Chapters 3 and 4. Chapter 5
contains echoes from the first chapter, and we apply certain ideas of (Willems
et al., 1995) to generalize the approach of (Cuturi and Vert, 2005) to turn it into a
general template approach for all kinds of objects seen as multiresolution measures.
A unifying trait of most of these contributions is that they make frequent use of the
notion of semigroup, that is simple sets endowed with an associative operation and
a neutral element, but where all elements do not necessarily have an inverse. Many
objects encountered in real life applications have this property, since substraction
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is not such a natural thing after all.

1.3.1 A String Kernel Inspired by Universal Coding

The main inspiration behind the context-tree kernel is the algorithmic efficiency of
the context-tree weighting (CTW) algorithm presented by (Willems et al., 1995)
and further studied in (Catoni, 2004). The CTW algorithm provides a framework
to compute a mixture of source distributions for strings,

pω(X) =

∫

θ∈Θ

pθ(X)ω (dθ ),

where {ρθ, θ ∈ Θ} is a set of Markov chain distributions and ω is a prior on the
parameters. Rather than considering the integration of pθ(X), we consider instead
the integration of pθ(X)pθ(Y ) and benefit from the same computational trick given
that {pθ, θ ∈ Θ} is an exponential family. The context-tree kernel translates into a
kernel on strings that can be computed in linear time and which translates into a
similarity measure that is seemingly more useful than more simple approaches based
on the same counters (Leslie et al., 2002), while using no biological knowledge.

1.3.2 Semigroup Kernels on Measures

The following work, first proposed in (Cuturi and Vert, 2005) and extended in (Cu-
turi et al., 2005), was inspired by two remarks formulated while investigating the
properties of the context-tree kernel. First, while many kernels used on vectors x, y
are translation invariant and boil down to kernels of the type k(x, y) = h(x − y),
this choice is impossible with strings where no minus operation exists. Harmonic
analysis on semigroups, surveyed in (Berg et al., 1984), proposes a more general
theoretical framework to compare objects through their sum (concatenation for
strings) rather than only through their difference. Second, observing that all the
calculations performed to compute the context-tree kernel can be translated into
operations on histograms of transitions, we chose to generalize this approach by
considering directly kernels on measures. The natural structure of positive mea-
sures is moreover that of semigroup, since the substraction of two positive measures
doesn’t yield one in the general case. This remark made us investigate Bochner-type
theorems to characterize kernels on measures that would only depend on their sum.
Finally, the trend of defining kernels that could be kernelized led us to an approx-
imation grounded on the second order moment of a measure, drawing interesting
connections between variance matrices and kernel matrices.

1.3.3 Spectral Semigroup Kernels on Measures

We reformulate the parallel between the variance of a molecular measures and the
Gram matrix of the elements of its support to define a wider family of positive
definite kernels on measures than the one proposed in (Cuturi et al., 2005). We
coin down this family of kernels “spectral semigroup kernels” because these kernels
only depend on the spectrum of the variance of their mixture. Besides proposing
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a general formula which can be related to the characteristic function of the convex
cone of positive definite matrices, we propose various examples of such functions
that can be computed in a close computational form, as well as a very simple case
of such kernels that yields a fast kernel on clouds of points.

1.3.4 A Multiresolution Framework for Nested Measures

In parallel to the previous study, we present in this chapter a framework inspired
by (Willems et al., 1995) to extend the applicability of kernels on measures. The
easiest criticism that can be drawn against the idea of representing objects as his-
tograms of components is that crucial information, about the components’ local-
ization for instance, might be lost in this translation. Rather than considering a
single measure on the space of components, we use in this context families of nested
sub-probability measures that sum up to the overall histogram and which can be
assembled using a hierarchical knowledge on how these sub-probabilities, which may
be each linked to a specific event, are extracted. The approach is at an early stage
and calls for the further study of kernels that can handle both sub-probabilities and
probabilities.



Chapter 2

The Context Tree Kernel

for Strings

Résumé

Nous proposons dans ce chapitre un nouveau noyau pour châınes de caractères
particulièrement adapté à l’étude de séquences biologiques. Etant données deux
châınes de caractères X et Y , ce noyau est construit en considérant les probabilités
de X , Y , puis de leur concaténation XY évaluées toutes les trois selon des densités
extraites d’une large famille de modèles markoviens. Ces probabilités sont ensuite
moyennées selon une approche bayésienne sur les divers paramètres des modèles con-
sidérés, une approche inspirée de la théorie du codage universel et de la compression.
Nous sommes alors en mesure, en comparant ces trois probabilités moyennées, de
proposer une quantité définie positive en les châınes qui peut être utilisée comme un
noyau. Le calcul rapide de ce noyau, d’une complexité linéaire en temps et espace
mémoire, facilite son utilisation sur des données biologiques (plusieurs milliers de
châınes de plusieurs centaines de caractères, en l’occurrence d’acides aminés), no-
tamment dans des expériences de classification où il peut être couplé avec diverses
méthodes à noyaux telles que les machines à vecteurs de support. Les performances
de ce noyau sur la base de données étudiée sont encourageantes, alors qui n’utilise
aucune connaissance biologique a priori sur le type de séquences traitées.

23
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This work is co-authored with Jean-Philippe Vert and was published in a
slightly different form in Neural Networks, September 2005 (Cuturi and Vert, 2005).

2.1 Introduction

The need for efficient analysis and classification tools for strings remains a key issue
in machine learning. This is notably the case in computational biology where the
availability of an ever-increasing quantity of biological sequences calls for efficient
and computationally feasible algorithms to detect, cluster, and annotate functional
similarities between DNA or amino-acid sequences.

Recent years have witnessed the rapid development of a class of algorithms
called kernel methods (Schölkopf and Smola, 2002) that may offer useful tools for
these tasks. In particular, the Support Vector Machine (SVM) algorithms (Boser
et al., 1992; Vapnik, 1998) provide state-of-the-art performance in many real-world
problems of classifying objects into predefined classes. SVMs have already been
applied with success to a number of issues in computational biology, including
but not limited to protein homology detection (Jaakkola et al., 2000; Leslie et al.,
2002, 2003; Noble and Liao, 2002; Ben-Hur and Brutlag, 2003; Vert et al., 2004),
functional classification of genes (Liao and Noble, 2002; Vert, 2002), or prediction of
gene localization (Hua and Sun, 2001). A more complete survey of the application
of kernel methods in computational biology is presented in (Schölkopf et al., 2004).

The basic ingredient shared by all kernel methods is the kernel function, that
measures similarities between pairs of objects to be analyzed or classified. To use
kernel methods in the field of string classification requires a prior design of an
efficient kernel function on strings. Indeed, while early-days SVM focused on the
classification of vector-valued objects, for which kernels are well understood and
easily represented, recent attempts to use SVM for the classification of more general
objects have resulted in the development of several kernels for structured objects
such as strings (Watkins, 2000; Haussler, 1999; Jaakkola et al., 2000; Leslie et al.,
2002, 2003; Noble and Liao, 2002; Ben-Hur and Brutlag, 2003; Vert et al., 2004),
graphs (Kashima et al., 2003), or even phylogenetic profiles (Vert, 2002).

A useful kernel for sequences, as the one we wish to propose in this work,
should have several properties. It should represent a meaningful measure of sim-
ilarity between two sequences and be general enough to be efficient on different
datasets without excessive tuning. This similarity measure needs to be further pos-
itive definite to be applied in the general framework of kernel methods and rapid to
compute to sustain large-scale implementations (typically, have a linear complexity
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with respect to the lengths of the compared sequences). Such an ideal kernel prob-
ably does not exist, and different kernels might be useful in different situations. For
large-scale studies which might involve comparing thousands of sequences, yielding
to millions of kernel evaluations, or to answer simple queries which could be found
in on-line applications, the computation cost becomes critical and only fast kernels,
such as the spectrum (Leslie et al., 2002) and mismatch (Leslie et al., 2003) kernels
can be accepted. In applications where accuracy is more important than speed,
slower kernels that include more biological knowledge such as the Fisher (Jaakkola
et al., 2000), pairwise (Liao and Noble, 2002) or local alignment (Vert et al., 2004)
kernels might be accepted if they improve the performance of a classifier.

Our contribution in this paper is to introduce a new class of string kernels
which are both fast to compute and based on the spectrum of the considered strings.
The spectrum of a string as defined by (Leslie et al., 2002) is the weighted list of k-
mers (or k-grams, that is a substring of k letters) contained in the string, where the
weights stand for the occurrence (or relative frequency with respect to the string’s
length) of the considered k-mer in the string. While the work of (Leslie et al.,
2002) uses a linear dot-product on that representation, we propose in this work an
alternative class of kernels on those counters.

The motivation behind these kernels is grounded on information theory, in a
similar way to the work proposed recently in (Li et al., 2004). By applying an in-
formation theoretic viewpoint on the information carried out by strings, we present
a way to compare strings through kernel methods using little prior knowledge on
the structure of the alphabet, just as universal coding (Cover and Thomas, 1991)
aims at giving a sound compression of sequences with no prior assumptions on the
nature of those sequences. This information theoretic viewpoint takes the form of
a string compression algorithm, which is first applied on two strings X and Y to
be compared taken separately, and then on their concatenation XY . Intuitively if
the compression behaves in a similar way (in terms of gain for instance) for X , Y
and XY , one can expect the strings to share similar properties. On the opposite,
one might conclude that the strings are dissimilar if their concatenation cannot be
efficiently compressed. This intuition can be translated mathematically in terms
of differences in coding redundancy between X and Y with respect to XY , in the
light of noiseless coding theory for instance (Cover and Thomas, 1991).

The compression method we choose in this work is the popular context-tree
weighting (CTW) algorithm (Willems et al., 1995), and we show how to derive
a kernel out of it. The compression performed by the CTW algorithm involves a
Bayesian averaging of the probability of a string under a large collection of weighted
source distributions. These source distributions are chosen among variable-length
Markov chains, which are also known as context-tree (CT) models. Using the
CTW algorithm to derive a kernel brings a sound answer to the criterions expressed
previously, since it guarantees positive definiteness, computational speed, and an
additional interpretation (other than the one considered by compression) to our
kernel.

Indeed, the integral representation of the CTW compression, not shared with
ad-hoc heuristics such as the Lempel-Ziv algorithm, first enables us to cast easily
the proposed kernels in the framework of mutual information kernels (Seeger, 2002),
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which ensures their positive definiteness. Second, the Bayesian integration over
Markovian (and hence exponential) models performed by such kernels provides us
with an alternative probabilistic interpretation of their computation. Following
that alternative perspective, the kernels project each sequence to be compared to
the set of their probabilities under all distributions contained in the class of CT
models, and compare different sequences in the light of their respective projections.
These projections can be intuitively considered as feature extractions, where each
considered context-tree distribution acts as a feature extractor, providing a feature
which is the likelihood of the distribution for the considered sequence. Because we
find that perspective to be clearer, we will favor this interpretation and present
the family of context-tree kernels in a constructive manner and as a special case
of mutual information kernels. However the reader should keep in mind that most
choices in models and priors taken to devise such kernels are chosen to match
the CTW algorithm’s ones, so as to benefit from its properties including notably
computational tricks presented by the authors of (Willems et al., 1995) to ensure
linear (in time and space) computational costs.

The paper is organized as follows. In Section 2.2 we present the general strat-
egy of devising mutual information kernels from families of probabilistic models. In
Section 2.3 we define a kernel for sequences based on context-tree models. Its effi-
cient implementation, derived from the CTW algorithm, is presented in Section 2.4.
We present further interpretations of the context-tree kernel’s computation as well
as links with universal coding in Section 2.5. Experimental results on a benchmark
problem of remote protein homology detection are then presented in Section 2.6.

2.2 Probabilistic Models and Mutual Information
Kernels

A parametric probabilistic model on a measurable space X is a family of distri-
butions {Pθ, θ ∈ Θ} on X , where θ is the parameter of the distribution Pθ. Typ-
ically, the set of parameters Θ is a subset of Rn, in which case n is called the
dimension of the model. As an example, a hidden Markov model (HMM) for se-
quences is a parametric model, the parameters being the transition and emission
probabilities (Durbin et al., 1998). A family of probabilistic models is a family
{Pf, θf

, f ∈ F , θf ∈ Θf}, where F is a finite or countable set, and Θf ⊂ Rdim(f)

for each f ∈ F , where dim(f) denotes the dimension of f . An example of such a
family would be a set of HMMs with different architectures and numbers of states.
Probabilistic models are typically used to model sets of elements X1, . . . , Xn ∈ X ,
by selecting a model f̂ and a choosing a parameter θ̂f̂ that best “fits” the dataset,
using criteria such as penalized maximum likelihood or maximum a posteriori prob-
ability Durbin et al. (1998).

Alternatively, probabilistic models can also be used to characterize each single
element X ∈ X by the feature representation

φ(X) =
(

Pf, θf
(X)

)

f∈F , θf∈Θf
, (2.1)

spanning all possible probabilities of X within the considered families. If the
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probabilistic models are designed in such a way that each distribution is roughly
characteristic of a class of objects of interest, then the representation φ(X) quantifies
how X fits each class. In this representation, each distribution can be seen as a
filter that extracts from X an information, namely the probability of X under this
distribution, or equivalently how muchX fits the class modelled by this distribution.

Kernels are real-valued function κ : X ×X → R that can be represented in the
form of a dot-product κ(X,Y ) = 〈ψ(X), ψ(Y )〉F for some mapping ψ from X to
a Hilbert space F (Schölkopf and Smola, 2002). Given the preceding mapping φ of
Equation (2.1), a natural way to derive a kernel from a family of probabilistic models
is to endow the set of representations φ(X) with a dot-product, and set κ(X,Y ) =
〈φ(X), φ(Y )〉. This can be done for example if a prior probability π(f, dθf ) can
be defined on the set of distributions in the models, by considering the following
dot-product:

κ(X,Y ) = 〈φ(X), φ(Y )〉 def
=
∑

f∈F
π(f)

∫

Θf

Pf, θf
(X) Pf, θf

(Y ) π(dθf ). (2.2)

By construction, the kernel in Equation (2.2) is a valid kernel, that belongs to the
class of mutual information kernels (Seeger, 2002). Observe that contrary to the
Fisher kernel that also uses probabilistic models, no model or parameter estimation
is required in Equation (2.2). Intuitively, for any two elements X and Y the kernel
of Equation (2.2) automatically detects the models and parameters that explain
both X and Y , with consequent weights if the models and parameters are likely to
appear under the prior π. On the other hand, models and parameters for which X
and Y present no simultaneous fit bring a marginal contribution to the value of the
kernel and are thus ignored.

There is of course some arbitrariness in the previous definition, both in the def-
inition of the models and in the choice of the prior distribution π. This arbitrary can
be used to include prior knowledge in the kernel. For example, if one wants to detect
similarity with respect to families of sequences known to be adequately modelled
by HMMs, then using HMM models constrains the kernel to detect such similari-
ties. However, these choices need to be decided having computational limitations
in mind. The calculations involved in Equation (2.2), namely the computation of
the likelihood of a distribution for two given sequences and the integration of those
likelihoods over a set of parameters, should not only be tractable under a closed
form but also fast to compute. This is not likely to be the case for most families of
models and most choices of priors. We consider those limitations under the light of
the solution proposed by the CTW algorithm in the framework of universal coding,
to define below a suitable set of models and prior distributions.

Prior to this definition, we note that some biases might appear when attempt-
ing to compare sequences of different lengths, which is likely to be the case for
most applications. Indeed, as the probability of a sequence under most models de-
fined on strings (including Markovian models) decreases roughly exponentially with
its length, the value of the kernel (2.2) can not only be strongly biased if we di-
rectly consider the probabilities of two strings of very different lengths, but will also
quickly tend to negligible values when comparing long strings. This is a classical
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issue with many string kernels that leads to bad performance in classification with
SVM (Schölkopf et al., 2002; Vert et al., 2004). This undesirable effect can easily
be controlled in our case by normalizing the likelihoods as follows:

κσ(X,Y ) =
∑

f∈F
π(f)

∫

Θf

Pf, θf
(X)

σ
NX Pf, θf

(Y )
σ

NY π(dθf ). (2.3)

where σ is a width parameter and NX and NY stand for the lengths of both se-
quences. Equation (2.3) is clearly a valid kernel (only the feature extractor φ is
modified), and the parameter σ controls the range of values it takes independently
of the lengths of the sequences used.

2.3 A Mutual Information Kernel Based on
Context-Tree Models

In this section we derive explicitly a mutual information kernel for strings based
on context-tree models with mixtures of Dirichlet priors. Context-tree models, also
known as probabilistic suffix trees, are Markovian models which are actually equiv-
alent to Markov chains up to a different parametrization as we will see below. They
have been shown useful to model several families of sequences, including biological
ones as illustrated by their use in (Bejerano and Yona, 1999; Eskin et al., 2000)
where different techniques to estimate such models on protein sequences were pro-
posed. Note however that the use of context-trees in the present work should not
be related excessively to their previous success in representing sequences, notably
protein families. Arguably, we both believe and observe in our experiments that the
overall performance of the kernels proposed in this paper does not rely so much on
the individual ability of such distributions to model specific families of sequences,
but rather on their overall efficiency to extract features out of strings.

2.3.1 Framework and notations

Starting with basic notations and definitions, let E be a finite set of size d called
the alphabet. In our experiments E will be the 20 letters alphabet of amino-
acids. For a given depth D ∈ N corresponding to the maximal memory of the
Markovian models, we write E∗

D for the set of strings of E of length smaller or
equal to D, i.e., E∗

D = ∪Di=0E
i, which includes ∅, the empty word. We introduce

X = ∪∞
n=0(E

D × E)n, the set on which we choose to define our kernel. Observe
that we do not define directly the kernel on the set of finite-length sequences, but
rather in a slightly different framework which stresses the fact that we are chiefly
interested in the local behaviour of the sequence. Indeed, we see sequences as finite
sets of (context,letter) couples, where the context is a D-letters long subsequence of
the initial sequence and the letter is the element next to it. This transformation is
justified by the fact that we consider Markovian models with a memory limited to D
letters, and is equivalent to the information contained by the spectrum of orderD+1
of a string. An element X ∈ X can therefore be written as X = {(xic, xil)}i=1..NX

where NX is the cardinality of X , xic ∈ ED and xil ∈ E for all 1 ≤ i ≤ NX .
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By considering strings as collections of transitions (or equivalently substrings of
length D+1) we do not only follow previous approaches such as (Leslie et al., 2003,
2002; Ben-Hur and Brutlag, 2003) but also refer to a recent framework in kernel
design (Kondor and Jebara, 2003; Cuturi et al., 2005) which aims at computing
kernels on compound objects (such as long strings) as kernels for collections of
smaller components (D + 1-mers in this case).

2.3.2 Context-Tree Models

Context-tree distributions require the definition of a complete suffix dictionary
(c.s.d) D. A c.s.d is a finite set of words of E∗

D such that any left-infinite se-
quence has a unique suffix in D, but no word in D has a suffix in D. We write L(D)
for the length of the longest word contained in D and FD for the set of c.s.d D
that satisfy L(D) ≤ D. We note that c.s.d are in correspondence with suffix trees
based on E as illustrated in Figure 2.1. Once this dictionary D or the equivalent
suffix tree structure is set, a distribution on X can be defined by attaching a multi-
nomial distribution12 θs ∈ Σd to each word s of D. Indeed, through the family of
parameters θ = (θs)s∈D we define a conditional distribution on X by the following
equation:

PD, θ(X) =

NX
∏

i=1

θD(xi
c)

(xil), (2.4)

where for any word m in ED, D(m) is the unique suffix of m in D. Note that
Markov chains are a simple case of context-tree distributions when the c.s.d. is
set to ED. Conversely a context-tree distribution D can be easily expressed as a
Markov chain by assigning the transition parameter θs to all the contexts in ED

which admit s as their unique suffix in D. Context-trees can thus be seen as an
alternative parametrization and a handier representation of Markov chains, where
the importance of some suffixes is highlighted by developing further or stopping the
tree expansion in branches which have more or less significance in the generation of
our string. We present in Figure 2.1 an example where the alphabet has been set
to E = {A,B,C} and the maximal depth D to 3. We write PD for {PD, θ : D ∈
FD, θ ∈ ΘD}, the set of context-tree distributions of depth D.

2.3.3 Prior Distributions on Context-Tree Models

We define in this section priors on the family of distributions PD introduced in
the previous section, following the framework set in Equation (2.3). Namely, we
propose a prior probability π(D, dθ) on PD to finalize the definition of the family
of kernels presented in this paper, which we name context-tree kernels. Note that
we use and adapt the priors proposed by (Willems et al., 1995) to our computation
to ensure the computation feasibility of the proposed kernels. The prior probability
π(D, dθ) on PD factorizes as π(D, dθ) = π(D)π(dθ| D), two terms which are defined
as follows.

12writing Σd for the canonical simplex of dimension d, i.e., Σd = {ξ = (ξi)1≤i≤d : ξi ≥ 0,
∑

ξi =
1}.
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θA A
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B

θAB
A

θBB

B

b

C

θACB

A

θBCB
B

θCCB

C

θC

C

Figure 2.1. Tree representation of a context-tree distribution. The alphabet
E is set to {A,B,C}, the maximal depth D to 3 and the complete suffix dictionary
D is the set of strings {A,AB,BB,ACB,BCB,CCB,C}. Each parameter θs for
s ∈ D is in that case a vector of the 3-dimensional simplex Σ3.

Prior on the Tree Structure

The set FD of complete suffix dictionaries is equivalent to the set of complete d-ary
trees of depth smaller than D, namely the set of trees where each node has either d
sons or none, up to nodes of depth D which can only be leaves. Following (Willems
et al., 1995) we define a simple probability πD on the set FD of trees that is the
direct translation of an intuitive random generation of trees stopped at depth D.
Starting from the root, the tree generation process follows recursively the following
rule: up to depth D − 1, each node has probability ε of giving birth to d children,
and probability 1− ε of having no children, that is probability 1− ε of becoming a
leaf; if the node is however located at depth D of the tree, it becomes automatically
a leaf with no successors. In mathematical terms, this defines a branching process
on d-ary trees, truncated at depth D. The typical outcome of this generation is
completely parameterized by ε, since a low value will favour short-depth trees while
values closer to 1 will yield fully grown trees of depth D up to the case where ε = 1

and only the full tree of depth D is considered. If we denote by
◦
D the set of all strict

suffixes (corresponding to inner nodes of the tree) of elements of D, the probability
of a tree is given by:

πD(D) =
∏

s∈
◦
D

ε
∏

s∈D
l(s)<D

(1 − ε) = ε
|D|−1
d−1 (1 − ε)

card{s∈D | l(s)<D}
. (2.5)

This probability is illustrated with the case of the tree shown in Figure 2.2, with a
prior value for that example of ε3(1 − ε)4.



2.3. A Mutual Information Kernel Based on Context-Tree Models 31

ε

1 − ε

ε

1 − ε

1 − ε

ε

1

1

1

1 − ε

Figure 2.2. Branching-process generation of the example shown in Figure
2.1 with a depth D = 3. The prior value for that tree is ε3(1 − ε)4.

Priors on Multinomial Parameters

For a given tree D we now define a prior on the family of multinomial parameters
ΘD = (Σd)

D which fully characterizes a context-tree distribution based on a dictio-
nary of suffixes D. We assume an independent prior among multinomials attached
to each of those suffixes as

π(dθ|D) =
∏

s∈D
ω(dθs),

where ω is a prior distribution on the simplex Σd. Following Willems et al. (1995)
a simple choice is to make use of Dirichlet priors:

ωβ(dθ) =
1√
d

Γ(
∑d

i=1 βi)
∏d
i=1 Γ(βi)

d
∏

i=1

θβi−1
i λ(dθ),

where λ is Lebesgue’s measure and β = (βi)i=1..d is the parameter of the Dirich-
let distribution. The parameter β incorporates all the prior belief we have on the
distribution of the alphabet. It can be either tuned based on empirical data or
chosen having theoretical considerations in mind. A natural choice in the latter
case is to use Jeffrey’s prior (Amari and Nagaoka, 2001, p.44) also known as the
Krichevski-Trofimov prior (Willems et al., 1995) and set βi = 1

2 for 1 ≤ i ≤ d.
Alternative choices, such as Laplace’s successor rule (βi = 1) or the Schurmann-
Grassberger estimate (βi = 1

d) have been advocated in the literature and will also
be explored in the experimental section of this work, taking into account discus-
sions presented in (Nemenman et al., 2002) for instance. Furthermore, the use of
a simple Dirichlet prior can be extended to additive mixtures of Dirichlet priors
since the latter have been shown to incorporate more efficiently information on the
distributions of amino-acids (Brown et al., 1993). We propose to include such priors
in the construction of our kernel and extend the computational framework of the
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CTW by doing so. An additive mixture of n Dirichlet distributions is defined by
a family of n Dirichlet parameters β(1), . . . , β(n) and n weights γ(1), . . . , γ(n) (with
∑n
k=1 γ

(k) = 1) to yield the prior:

ωγ, β(dθs) =

n
∑

k=1

γ(k) ωβ(k) (dθs). (2.6)

2.3.4 Triple Mixture Context-Tree Kernel

Combining the definition of the kernel of Equation (2.3) with the definition of the
context-tree model distributions in Equation (2.4) and of the priors on the set of
distributions of Equations (2.5), (2.6), we obtain the following expression for the
context-tree kernel:

κσ(X,Y ) =
∑

D∈FD

πD(D)

∫

ΘD

PD, θ(X)
σ

NX PD, θ(Y )
σ

NY

∏

s∈D

(

n
∑

k=1

γ(k)ωβ(k)(dθs)

)

.

(2.7)
We observe that Equation (2.7) involves three summations respectively over the
trees, the Dirichlet components used in our additive mixtures, and the multinomial
parameters over which a Bayesian averaging is performed. This generalizes the
double mixture performed in (Willems et al., 1995) in the context of sequence
compression by adding a mixture of Dirichlet priors.

2.4 Kernel Implementation

As pointed out in the introduction, the models and priors selected to define the
mutual information kernel of Equation (2.7) may not fit in the best way the natu-
ral process which generates the considered sequences. Some distributions favoured
by these priors may not even correspond to the ones that are frequently observed
in sequences generated by the natural phenomenon. While this may already seem
arguably not so important in the context of this paper (which highlights feature ex-
traction as opposed to parameter estimation), we also advocate such choices having
in mind they yield an efficient computation of the value of Equation (2.7).

For r ∈ N, and β = (βi)1≤ i≤ r ∈ (R+∗)
r

and α = (αi)1≤ i≤ r ∈ (R+)
r

we write
Gβ(α) for

Gβ(α)
def
=

∫

Σr

r
∏

i=1

θαi

i ωβ(dθ) =
Γ(β

�
)

∏r
i=1 Γ(βi)

∏r
i=1 Γ(αi + βi)

Γ(α
�
+ β

�
)

,

where Γ is the Gamma function, Σr the r-dimensional simplex, β
�
=
∑r
i=1 βi, and

α
�
=
∑r

i=1 αi. The quantity Gβ(α) corresponds to the averaging of the multinomial
likelihood Pθ(α) under a Dirichlet prior of parameter β when θ spans Σr. As a
reference to Chapter 3, we note that for a family β ∈ (R+∗)r, Gβ is a semigroup
positive definite function on (R+)r endowed with the usual addition, or on Σr when
restricted on multinomials in the sense of Definition 4.1.



2.4. Kernel Implementation 33

The computation of the context-tree kernel on two strings can be divided into
two phases for more clarity, which can be implemented side by side. A look at
Figure 2.3 may give a better intuition on the computations actually performed by
the CTW algorithm.

2.4.1 Defining Counters

The first step of the algorithm is to compute for m ∈ ED the counter

ρm(X)
def
=

NX
∑

i=1

1(xic = m),

which simply counts the occurrences of m within contexts enumerated in X . For
contexts present in the stringX , that is wordsm such that ρm(X) > 0, the empirical
behaviour of transitions can be estimated as

θ̂m, e(X)
def
=

∑NX

i=1 1(xic = m,xil = e)

ρm(X)
.

θ̂m, e summarizes the empirical probability of the appearance of letter e after m has
been observed. We finally define a last counter:

am,e(X,Y )
def
=
ρm(X)

NX
θ̂m, e(X) +

ρm(Y )

NY
θ̂m,e(Y ).

am, e(X,Y ) is a weighted average of the transitions encountered in X and Y . Once
those counters are computed on visited contexts, which are up to NX + NY , the
following downward recursion on the length of the string m (when m spans all strict
suffixes of visited contexts) computes equivalent counters for shorter suffixes:

ρm(X) =
∑

f∈E
ρf.m(X),

θ̂m, e(X) =

∑

f∈E ρf.m(X) θ̂f.m, e(X)

ρm(X)
,

am, e(X,Y ) =
∑

f∈E
af.m, e(X,Y ).

So far, the memory needed to store the information on which the kernel will be
computed (essentially counters a which can be stored in the leaves of a suffix tree
generated while scanning only visited contexts) is linear with respect to the size of
our strings and is loosely upper-bounded by D(NX +NY ).

2.4.2 Recursive Computation of the Triple Mixture

We can now attach to each m for which we have calculated the previous counters
the value:

Km(X,Y ) =

n
∑

k=1

γ(k)Gβ(k)

(

σ · am, e (X,Y )e∈E
)

,
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a∅=( 1
3

, 5
3
)
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Figure 2.3. CTW calculation tree for two binary strings X = 0111 and
Y = 10101, with a depth D = 2, σ = 1 and an arbitrary Dirichlet parameter β.
The two string are considered as sets of weighted transitions X = {(01, 1), (11, 1)}
and Y = {(10, 1), (10, 1), (01, 0)}, and the resulting kernel value K(X,Y ) is Υ∅.

which computes two mixtures, the first being a continuous Bayesian averaging on
the possible values of θ weighted by a given Dirichlet prior and the second being
a discrete weighted summation using the weighted Dirichlet distributions provided
by the mixture (γ(k), β(k))k=1..n. A numerical approximation of Gβ(k) can be used
in practice, through Lanczos’ approximation of the ln Γ function for instance. By
defining the quantity Υm(X,Y ), which is also attached to each visited word m and
computed recursively through

Υm(X,Y ) =

{

Km(X,Y ) if l(m) = D,

(1 − ε)Km(X,Y ) + ε
∏

e∈E Υe.m(X,Y ) if l(m) < D.

we actually perform the third mixture over all possible tree structures by taking
into account the branching probability ε. Indeed, we finally have, recalling ∅ is the
empty word, that:

κσ(X,Y ) = Υ∅(X,Y ). (2.8)

Proof. For a c.s.d model (D, θ) and two sets of transitions X = (xic, x
i
l)i=1≤NX

and
Y = (yic, y

i
l)1≤i≤NY

we have that

PD, θ(X)
σ

NX PD, θ(Y )
σ

NY =
∏

s∈D

∏

e∈E
θs(e)

σas, e(X,Y ).
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The latter product of likelihoods can thus be calculated using only counter a, and
we further have that

∫

ΘD

PD, θ(X)
σ

NX PD, θ(Y )
σ

NY

∏

s∈D

(

n
∑

k=1

γ(k)ωβ(k)(dθs)

)

=

∫

ΘD

∏

s∈D

[

∏

e∈E
θs(e)

σas, e(X,Y )

(

n
∑

k=1

γ(k)ωβ(k)(dθs)

)]

=
∏

s∈D

n
∑

k=1

γ(k)

∫

Σd

∏

e∈E
θs(e)

σas, e(X,Y )ωβ(k)(dθs)

=
∏

s∈D

n
∑

k=1

γ(k)Gβk

(

σ (as, e (X,Y ))e∈E
)

=
∏

s∈D
Ks(X,Y ),

where we have used Fubini’s theorem to factorize the integral in the second line.
Having in mind Equation (2.7), we have thus proved that

κσ(X,Y ) =
∑

D∈FD

πD(D)
∏

s∈D
Ks(X,Y ).

The second part of the proof is identical to the one given in (Willems et al.,
1995), and developed in (Catoni, 2004) whose recursive treatment we adopt. Let us
prove by induction, with respect to successively decreasing lengths of m (i.e., over
words m such that l(m) = D, ..., 0), that

Υm(X,Y ) =
∑

D∈FD−l(m)

πD−l(m)(D)
∏

s∈D
Ks.m(X,Y ), (2.9)

where πD−l(m) is the distribution of a tree according to the branching process prior
previously presented stopped at level D− l(m). We notice that the set FD−l(m) of
c.s.d’s of depth D − l(m) can be further divided into:

FD−l(m) =
{

{(s, y) : y ∈ E, s ∈ Dy} ,Dy ∈ FD−l(m)−1

}

∪ {{∅}} ,

where we have that:

πD−l(m)({(s, y) : y ∈ E, s ∈ Dy}) = ε
∏

y∈E
πD−l(m)−1(Dy),

πD−l(m)({∅}) = 1 − ε.

Starting our recursion with words of length d = D, where Equation (2.9) is valid
by the recursive definition of Υ, we assume Equation (2.9) to be valid with words
of length d and prove that it holds for words of length d − 1. Given m such that
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l(m) = d− 1, we can write:

Υm(X,Y ) = (1 − ε)Km(X,Y ) + ε
∏

y∈E
Υy.m(X,Y )

= (1 − ε)Km(X,Y ) + ε
∏

y∈E

∑

D∈FD−d

πD−d(D)
∏

s∈D
Ks.y.m(X,Y )

= (1 − ε)Km(X,Y ) + ε
∑

(Dy)∈(FD−d)E

∏

y∈E
πD−d(Dy)

∏

s∈Dy

Ks.y.m(X,Y )

= πD−l(m)({∅})Km(X,Y )

+
∑

(Dy)∈(FD−d)E

πD−l(m)({(s, y) : y ∈ E, s ∈ Dy})
∏

(s,y)∈Dy×E
Ks.y.m(X,Y )

=
∑

D∈FD−d

πD−d(D)
∏

s∈D
Ks.m(X,Y )

.

Applying Equation (2.9) to the case where m = ∅ we finally prove Equation (2.8).�
As previously recalled, the computation of the counters has a linear cost in

time and memory with respect to D(NX +NY ). As only counters that correspond
to visited suffixes of X and Y are created, recursive computation of Υm is also
linear in time and space (the values Υm for suffixes m not encountered, such that
ρm(X) = ρm(Y ) = 0, being equal to 1). As a final result, the computation of the
kernel is linear in time and space with respect to D(NX +NY ).

2.5 Source Coding and Compression Interpretation

There is a very classical duality between source distributions (a random model to
generate infinite sequences) and sequence compression (Cover and Thomas, 1991).
Roughly speaking, if a finite sequence X has a probability P (X) under a source
distribution P , then one can design a binary code to represent X by r(X) =
− log2 P (X) bits, up to 2 bits, using for example arithmetic coding. In this sec-
tion, we provide an interpretation of the context-tree kernel in terms of information
theory and compression, and highlight its differences with the spectrum kernel.

When sequences are generated by an unknown source P , it is classical to form
a coding source distribution by averaging several a priori sources. Under reasonable
assumptions, one can design this way universal codes, in the sense that the average
length of the codes be almost as short as if P was known and the best source was
used. As an example, the context-tree weighting (CTW) algorithm (Willems et al.,
1995) defines a coding probability Pπ for sequences by averaging source distributions
defined by context-trees as follows:

Pπ(X)
def
=

∑

D∈FD

π(D)

∫

ΘD

PD, θ(X)
∏

s∈D
ωβ(dθs), (2.10)

where ωβ is the Krichevski-Trofimov prior. Up to the mixture of Dirichlet and
the exponents (used to renormalize the probabilities with respect to the sequences’
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lengths), we therefore see, by comparing (2.10) with (2.7), that the context-tree
kernel between two sequences can be roughly interpreted as the probability under Pπ
of the concatenation of the two sequences. Our kernel actually considers a sequence

as a list of weighted empirical distributions {(ρm, θ̂m)}m∈ED ∈ (R+ ×Σd)
ED

which
summarizes the local behaviour of its letter transitions. These coordinates, whose
information is equivalent to the one contained in the spectrum of the sequence, can
be used to compute the likelihood of a specific context-tree distribution (D, θ) on

such a set by deriving {(ρs, θ̂s), s ∈ D} recursively, as in the previous computation.
We write kl(θ||θ′) for the Kullback-Leibler divergence between θ and θ′, two

multinomial parameters of size d, i.e kl(θ||θ′) =
∑d
i=1 θi ln

θi

θ′i
. We also note h(θ)

the entropy of θ, i.e., h(θ) = −∑d
i=1 θi ln θi. We use the following identity on θ and

θ′:
d
∏

i=1

θ
θ′i
i = e

∑d
i=1 θ

′
i ln θi

= e
∑d

i=1 θ
′
i ln

θi
θ′

i

+
∑d

i=1 θ
′
i ln θ′i

= e−h(θ′)−kl(θ′||θ),

to reformulate the mixture coding probability Pπ on X in the context of the context-
tree kernel computation. Indeed, following the priors previously defined on PD, the
following formula expresses the value of the coding probability of a given string
through its counters ρ and θ̂:

Pπ(ρ, θ̂) =
∑

D∈FD

π(D)
∏

s∈D
e−σρsh(θ̂s)

∫

Σd

e−σρskl(θ̂s||θ) ωγ, β(dθ).

We write rπ for − lnPπ , ρ̂(X) for the normalized counters 1
NX

ρ(X) and introduce
the following function tπ of two strings,

tπ(X,Y ) =
1

2

[

rπ

(

ρ̂(X), θ̂(X)
)

+ rπ

(

ρ̂(Y ), θ̂(Y )
)]

− rπ

(

ρ̂(X) + ρ̂(Y )

2
,
θ̂(X) + θ̂(Y )

2

)

.
(2.11)

Finally we have, by defining the renormalized kernel κ̃σ as

κ̃σ(X,Y ) = κσ(X,Y )/
√

κσ(X,X)κσ(Y, Y ),

that
κ̃σ(X,Y ) = e−tπ(X,Y ).

We note here that the function tπ can be interpreted in the light of semigroup ker-
nels on sets of components or measures, as proposed in (Cuturi and Vert, 2005;
?). A semigroup is roughly a set with an associative composition law, which in our
case is just the addition of counters and estimated transitions as in Equation (2.11).
What the structure of tπ highlights is that the similarity computed by context-tree
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kernels between two strings, and more precisely the sequences of counters indexed
on ED that describe them, is just a function of their sum. This is opposed to the
computations led by the spectrum kernel, which considers products on those coun-
ters (namely a linear-dot-product on those vectors of counters). The whole family
of context-tree kernels are hence defined through a prior belief on the behaviour of
sequences of counters (tuned through a selection of specific priors), which is first

applied to the sequences individually,
(

ρ̂(X), θ̂(X)
)

and
(

ρ̂(Y ), θ̂(Y )
)

, before eval-

uating it on their mean
(

ρ̂(X)+ρ̂(Y )
2 , θ̂(X)+θ̂(Y )

2

)

. This formulation makes the link

with compression more precise, where instead of concatenating strings we rather
perform counter averaging. This viewpoint can also bring forward a geometrical
perspective on the actual computation which is performed. The choice of a com-
pression algorithm (namely a selection of priors) defines the shape of the function
rπ on the whole space of counters, and the similarity between two sequences is
measured through the difference between three evaluations of rπ , first taken on the
two points taken apart and then on their average, which is directly related to the
convexity of rπ .

2.6 Experiments

2.6.1 Protein Domain Homology Detection Benchmark

We report results concerning the performance of the context-tree family of kernels
on a benchmark experiment that tests the capacity of SVMs to detect remote ho-
mologies between protein domains. This is simulated by recognizing domains that
are in the same SCOP (Structural Classification of Proteins (Hubbard et al., 1997),
ver. 1.53) superfamily, but not in the same family, using the procedure described
in (Jaakkola et al., 2000). We used the files compiled by the authors of (Noble and
Liao, 2002), which consist in 4352 sequences extracted from the Astral database
of protein domains. For each of the 54 tested families, the protein domains within
the family where considered positive test examples while protein domains within
the superfamily but outside the family were considered as positive training exam-
ples. This results in 54 classification experiments with at least 10 positive training
examples and 5 positive test examples. Negative examples were selected outside
of the positive sequences’ fold with a similar ratio. Following previous studies of
this benchmark, we computed the ROC (Receiving Operator Characteristic, (Grib-
skov and Robinson, 1996)), ROC50 and RFP (Rate of False Positives) of each of
the classification performed by a SVM based on various parameter settings of the
context-tree kernel. The ROC score (or AUC, Area Under the ROC Curve) is the
normalized area under the curve which plots the number of true positives as a func-
tion of false positives; the ROC50 is the area under the ROC curve up to 50 false
positives while the median RFP is the number of false positives scoring as high or
better than the median scoring true positives. We average those criterions on the
54 experiments to provide an overall measure of the performance of the considered
kernels on this task.
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2.6.2 Parameter Tuning and Comparison with Alternative String

Kernels

Let us now recall, along with the formula of the context-tree kernel, the different
parameters which need to be set to control the output of the family of context-tree
kernels;

κσ(X,Y ) =
∑

D∈FD

πD(D)

∫

ΘD

PD, θ(X)
σ

NX PD, θ(Y )
σ

NY

∏

s∈D

(

n
∑

k=1

γ(k)ωβ(k)(dθs)

)

.

• σ represents the width taken by the probabilities used to compute the kernel,
allowing us to control the range of values appearing in Gram matrices. Large
values of σ will favor diagonal-dominant matrices while lower values will tend
to create Gram matrices of similar elements. We thus tuned these values
empirically, so that none of the two previous problematic cases appears. Using
a σ value between 1 and 5 typically ensures this and we usually set σ = 2.

• The branching-process probability πD is parameterized by ε, which controls
the typical amount of suffixes numbered in dictionaries in relation with D,
their maximal depth. A sound choice for ε, as well as being validated by exper-
iments and used in the original paper (Willems et al., 1995) is to set ε = 1/d,
as this keeps a good balance between small trees which might capture simple
interactions and larger trees which might detect longer range interactions.

• The depth parameterD controls the maximal memory of our Markovian mod-
els. This parameter influences the complexity of our features extractors and
adds computational time to most calculations. The submitted sequences have
typical lengths of roughly two hundred amino-acids. Hence lengths set be-
tween 2 and 4 for the substrings (that is contexts of length 1 to 3) should
suffice to capture most of the available information, following the empirical
observation of (Li et al., 2004) that the base d logarithm of the average length
of the sequences suffices as a context length to capture most of the letter-to-
letter transition information. Those lengths were also shown to give the best
performance on the datasets.

• Finally, different Dirichlet priors but also families of Dirichlet mixtures

(γ(k), β(k))1≤k≤n,

can be considered to compute mixtures at the level of each node.

We tested three popular uniform priors, namely the Jeffrey prior (βi = 1/2)
as used in (Willems et al., 1995), the Laplace successor rule (βi = 1) and the
Schurmann-Grassberger estimate (βi = 1/d). The first two choices yielded
equivalently good results in practice and better than the third one. We also
tested mixtures of Dirichlet priors, hoping they would prove more accurate in
comparing biological strings. We considered 3, 9 and 20 components additive
mixtures (respectively hydro-cons.3comp, byst-4.5-0-3.9comp, recode3.20comp,
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fournier20.comp and dist20.comp) which can be downloaded from a Dirichlet
mixture repository13. These mixtures gave disappointing results when aver-
aged over the 54 families (considering ROC average this means a performance
of roughly 87% to 88%) but produced somehow different results for some
families which seemed hard to classify through other methods. However, we
interpret the fact that those families of Dirichlet mixtures did not improve
overall accuracy as a form of overfitting. Again, while this biological knowl-
edge might improve the selection of a specific model to fit sequences (notably
Hidden Markov Models), it does not seem to work in our framework where
we only use statistical models as feature extraction tools.

Except for the poor performances of context-tree kernels defined with Dirichlet
mixtures, the few experiments we led on different parameters yielded no surprises
and favoured ranges of parameters which were theoretically motivated, namely short
depths, a branching process prior of roughly 1/d and uniform Dirichlet priors (either
the Laplace of the Krichevski-Trofimov rule). Note further that the variety of all
54 protein families used in the experiment prevents overfitting since an increase
in performance over certain families usually implies a decrease in other ones. We
compare the performance of context-tree kernels with other string kernels, where
the performances we report were computed according to the parameters known to
perform in a good way on that dataset and proposed by the respective authors of
those kernels. We present here the best mismatch kernel (5,1) reported in (Leslie
et al., 2003), which can also be computed in linear time and space, but also more
greedy algorithms such as the pairwise kernel (Liao and Noble, 2002) and the two
local alignment kernels (LA-Eig, LA-Ekm) presented in (Vert et al., 2004), which, as
opposed to the context-tree Kernel, take into account relevant information known
to be of capital importance for biological sequences (such as gaps, deletions or
mutations of amino-acids). We also report the results of the spectrum kernel (Leslie
et al., 2002) with depth 3 and 4 and show that based on the same information (D-
grams) the context-tree kernel clearly outperforms the latter. The classification was
led using the Gist (version 2.1.1) implementation of SVM14, where all parameters
specific to SVM optimization were set to default values (elementary attempts to
tune the latter parameters did not yield significative improvements in accuracy).

2.6.3 Mean Performances and Curves

We present in Figure 2.4 the performance of all previously quoted kernels, along
with an implementation of the context-tree kernel where σ = 2, D = 4, ε = 1/20 and
where a uniform Jeffrey prior was used. The results show that the CTK performs
roughly better than the mismatch kernel and overall similarly to the pairwise ker-
nel, notably in regions where classification becomes more difficult and ROC scores
become lower for all techniques. Except in those regions, it is outperformed by both
versions of the local-alignment kernels. The CTK is computed in linear time and
without any biological knowledge, a property exclusively shared with the spectrum

13http://www.cse.ucsc.edu/research/compbio/dirichlets/
14http://microarray.cpmc.columbia.edu/gist/download.html
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Method ROC ROC50 RFP
CTK 0.894 0.371 0.0869

Spectrum 3 0.781 0.277 -
Spectrum 4 0.716 0.208 -

Mismatch 5,1 0.872 0.400 0.0837
Pairwise 0.894 0.461 0.0846
LA-ekm 0.934 0.663 0.0525
LA-eig 0.923 0.646 0.0552

Table 2.1. Mean results for ROC, ROC50 and RFP as produced over the
54 families by all compared kernels, where CTK denotes the context-tree kernel set
with σ = 2, ε = 1/20, Jeffrey’s prior and depth D = 4.

kernel whose curve in the figure is significantly below that of the CTK (only results
obtained for the spectrum with a depth 3 have been represented in the plot).

Table 2.1 summarizes the three main statistics used to compare performances
over the studied benchmark between context-tree kernels and all other kernels. In
this table, context-tree kernels perform (relatively to other kernels) better in terms
of ROC score than in terms of ROC50 and RFP, and we have no explanation for
this. As can be easily deduced from the previous figure, the context-tree kernel
clearly outperforms the spectrum kernel while using exactly the same information.
In the general case where only the spectrum information of a string is available, the
context-tree kernel may hence prove more useful than the simple spectrum kernel.

Additionally, we report that using the 20-components mixture fournier20 with
usual parameters (D = 4 and ε = 0.05) produced the means (0.887, 0.366, 0.096) for
ROC, ROC50 and RFP scores respectively. Simpler mixtures with less components
did not yield a substantial increase in performance either and we hence did not
use them further, notably because of their computational cost. However, we ob-
served important variations on the performance for each family with respect to other
context-tree kernels which only use uniform priors, while their overall performance
was similar or slightly worse. This might be interpreted as some complementary
between the two kinds of kernels and may be a subject of future research, through
a linear combination of kernels for instance (Lanckriet et al., 2004). Finally we
present in Table 2.2 a few results for meaningful settings of the context-tree ker-
nels using Jeffrey’s prior. These results show that an increase in the complexity
of the models used to perform the Bayesian mixture does not yield better results
in practice. Surprisingly, a context-tree kernel of depth 1 suffices to provide good
results, while more complex models which require far more computational cost give
relatively poor results. These observations show once more that in the context of
mutual information kernels, the relevance of distributions to model the data does
not seem to be an important criterion.
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Figure 2.4. Performance of all considered kernels on the problem of recog-
nizing domain’s superfamily. The curve shows the total number of families for which
a given methods exceeds a ROC score threshold. CTK denotes the context-tree kernel
set with σ = 2, ε = 1/20, Jeffrey’s prior and depth D = 4.

2.7 Closing remarks

We introduced a novel class of kernels for sequences that are fast to compute while
only using the spectrum of the submitted strings. The kernel is a mutual information
kernel based on a family of context-tree models, and makes a link between the com-
parison of two string and the ability of universal coding algorithms to compress them
when taken together. On a benchmark experiment of remote homology detection it
performs at a level close to state-of-the-art levels reached by kernels which involve
heavier computational cost and make use of biological knowledge. The context-tree
kernels clearly outperform the spectrum kernel on the same benchmark while using
exactly the same information. The context-tree kernel, whose computation is in-
spired by universal coding theory, may thus share one of the qualities of the latter
algorithms, which is to appear as a sound prior choice to explore similarities between
sequences for whom little knowledge is available and at a reasonable computational
cost.
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Parameters (with Jeffrey’s prior and σ = 2) ROC ROC50 RFP
D = 1, ε = 1/20 0.886 0.373 0.0796
D = 2, ε = 1/20 0.892 0.391 0.0857
D = 3, ε = 1/20 0.895 0.385 0.0865
D = 4, ε = 1/20 0.894 0.371 0.0869
D = 4, ε = 1/4 0.893 0.378 0.0857
D = 4, ε = 1/2 0.889 0.367 0.0877
D = 4, ε = 1 0.872 0.326 0.101
D = 6, ε = 1/20 0.889 0.362 0.0923
D = 8, ε = 1/20 0.885 0.355 0.0986

Table 2.2. From short trees to long and dense trees: mean results of ROC,
ROC50 and RFP scores for different settings of the branching process prior and of
the length of the models selected. Note that when only the complete tree is selected
(ε = 1) the performance decreases significantly. In that case, namely when no
mixture is performed on the class of models, the context-tree computation resembles
the simpler computation performed by the spectrum kernel. Note also that a good
performance is reached when the context-tree only uses contexts of length 1 (namely
Markov chains of depth 1), which shows that models should be selected to extract
features and not to model sequences, a hint which is further confirmed by the fact
that long trees do not perform very well despite their better ability to absorb more
knowledge about the strings’ transitions.
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Chapter 3

Semigroup Kernels on

Measures

Résumé

Nous étudions dans ce chapitre une nouvelle famille de noyaux sur listes d’éléments,
histogrammes ou plus généralement sur des mesures positives bornées sur un es-
pace mesurable X . Cette famille de noyaux, inspirée des noyaux présentés dans le
chapitre 2, se distingue de précédentes contributions dans le domaine des noyaux sur
mesures par le fait que nous comparons ici deux mesures µ, µ′ de M b

+(X ) en ne con-
sidérant qu’une fonction à valeurs réelles ϕ : M b

+(X ) → R, évaluée en leur somme,
i.e., ϕ(µ+ µ′). Nous étudions la famille des fonctions ϕ, dites de semigroupe, telles
que l’application (µ, µ′) 7→ ϕ(µ+µ′) est définie positive sur M b

+(X )×M b
+(X ). Nous

proposons une représentation intégrale de ces fonctions, inspirée des travaux de Berg
et al. (1984). Après avoir considéré la divergence de Jensen entre deux mesures, qui
utilise le cas particulier de l’entropie d’une mesure comme fonction de semigroupe,
nous nous intéressons plus spécifiquement à l’inverse de la variance généralisée de
la moyenne de deux mesures positives. Nous montrons que cette quantité, en plus
d’être définie positive sur M b

+(X ), peut être facilement transformée pour être ap-
plicable dans les cas, fréquents dans la pratique des méthodes à noyaux, où l’espace
de départ X n’est pas Euclidien. Nous terminons ce chapitre sur des expériences
menées dans le domaine de la reconnaissance automatique de chiffres manuscrits
qui montrent l’intérêt pratique de notre approche.

45
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This work is co-authored with Kenji Fukumizu Jean-Philippe Vert and was
published in a slightly different form in the Journal of Machine Learning Research,
July 2005 (Cuturi et al., 2005).

3.1 Introduction

The challenge of performing classification or regression tasks over complex and non
vectorial objects is an increasingly important problem in machine learning, moti-
vated by diverse applications such as bioinformatics or multimedia document pro-
cessing. The kernel method approach to such problems (Schölkopf and Smola, 2002)
is grounded on the choice of a proper similarity measure, namely a positive definite
(p.d.) kernel defined between pairs of objects of interest, to be used alongside with
kernel methods such as support vector machines (Boser et al., 1992). While natural
similarities defined through dot-products and related distances are available when
the objects lie in a Hilbert space, there is no standard dot-product to compare
strings, texts, videos, graphs or other structured objects. This situation motivates
the proposal of various kernels, either tuned and trained to be efficient on specific
applications or useful in more general cases.

One possible approach to kernel design for such complex objects consists in
representing them by sets of basic components which are easier to manipulate, and
designing kernels on such sets. Such basic components can be typically subparts of
the original complex objects, where the sets can be obtained by exhaustive enumer-
ation or random sampling. For instance, a very common way to represent a text
for applications such as text classification and information retrieval is to break it
into words and consider it as a bag-of-words, that is, a finite set of weighted com-
ponents. Another frequent use of this scheme in sequence analysis is to extract all
fixed-length blocks of consecutive letters of a string and represent the string by the
vector of counts of all blocks (Leslie et al., 2002), or even to add to this representa-
tion additional blocks obtained by slight modifications of the blocks present in the
text with different weighting schemes (Leslie et al., 2003). Similarly, a grey-level
digitized image can be considered as a finite set of points of R3 where each point
(x, y, I) stands for the intensity I displayed on the pixel (x, y) in that image (Kondor
and Jebara, 2003).

Once such a representation is obtained, different strategies have been adopted
to design kernels on these descriptions of complex objects. When the set of basic
components is finite, this representation amounts to encoding a complex object as a
finite-dimensional vector of counters, and any kernel for vectors can be then trans-
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lated to a kernel for complex object through this feature representation (Joachims,
2002; Leslie et al., 2002, 2003). For more general situations, several authors have
proposed to handle such weighted lists of points by first fitting a probability distri-
bution to each list, and defining a kernel between the resulting distributions (Laf-
ferty and Lebanon, 2002; Jebara et al., 2004; Kondor and Jebara, 2003; Hein and
Bousquet, 2005). Alternatively, Cuturi and Vert (2005) use a parametric family
of densities and a Bayesian framework to define a kernel for strings based on the
mutual information between their sets of variable-length blocks, using the concept
of mutual information kernels (Seeger, 2002). Finally, Wolf and Shashua (2003) re-
cently proposed a formulation rooted in kernel canonical correlation analysis (Bach
and Jordan, 2002; Melzer et al., 2001; Akaho, 2001) which makes use of the principal
angles between the subspaces generated by the two sets of points to be compared
when considered in a feature space.

We explore in this contribution a different direction to kernel design for weighted
lists of basic components. Observing that such a list can be conveniently represented
by a molecular measure on the set of basic components, that is a weighted sum of
Dirac measures, or that the distribution of points might be fit by a statistical model
and result in a density on the same set, we formally focus our attention on the prob-
lem of defining a kernel between finite measures on the space of basic components.
More precisely, we explore the set of kernels between measures that can be expressed
as a function of their sum, that is:

k(µ, µ′) = ϕ(µ+ µ′). (3.1)

The rationale behind this formulation is that if two measures or sets of points µ
and µ′ overlap, then it is expected that the sum µ + µ′ is more concentrated and
less scattered than if they do not. As a result, we typically expect ϕ to quantify the
dispersion of its argument, increasing when it is more concentrated. This setting
is therefore a broad generalization of the observation by Cuturi and Vert (2005)
that a valid kernel for strings, seen as bags of variable-length blocks, is obtained
from the compression rate of the concatenation of the two strings by a particular
compression algorithm.

The set of measures endowed with the addition is an Abelian semigroup, and
the kernel (3.1) is exactly what Berg et al. (1984) call a semigroup kernel. The
main contribution of this paper is to present several valid positive definite (p.d.)
semigroup kernels for molecular measures or densities. As expected, we prove that
several functions ϕ that quantify the dispersion of measures through their entropy or
through their variance matrix result in valid p.d. kernels. Using entropy to compare
two measures is not a new idea (Rao, 1987) but it was recently restated within dif-
ferent frameworks (Hein and Bousquet, 2005; Endres and Schindelin, 2003; Fuglede
and Topsøe, 2004). We introduce entropy in this paper slightly differently, noting
that it is a semigroup negative definite function defined on measures. On the other
hand, the use of generalized variance to derive a positive definite kernel between
measures as proposed here is new to our knowledge. We further show how such
kernels can be applied to molecular measures through regularization operations. In
the case of the kernel based on the spectrum of the variance matrix, we show how
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it can be applied implicitly for molecular measures mapped to a reproducing ker-
nel Hilbert space when a p.d. kernel on the space of basic components is provided,
thanks to an application of the “kernel trick”.

Besides these examples of practical relevance, we also consider the question
of characterizing all functions ϕ that lead to a p.d. kernel through (3.1). Using
the general theory of semigroup kernels we state an integral representation of such
kernels and study the semicharacters involved in this representation. This new result
provides a constructive characterization of such kernels, which we briefly explore
by showing that Bayesian mixtures over exponential models can be seen as natural
functions ϕ that lead to p.d. kernels, thus making the link with the particular case
treated by Cuturi and Vert (2005).

This paper is organized as follows. We first introduce elements of measure
representations of weighted lists and define the semigroup formalism and the notion
of semigroup p.d. kernel in Section 3.2. Section 3.3 contains two examples of semi-
group p.d. kernels, which are however usually not defined for molecular measures:
the entropy kernel and the inverse generalized variance (IGV) kernel. Through reg-
ularization procedures, practical applications of such kernels on molecular measures
are proposed in Section 3.4, and the approach is further extended by kernelizing
the IGV through an a priori kernel defined itself on the space of components in
Section 3.5. Section 3.6 contains the general integral representation of semigroup
kernels and Section 3.7 makes the link between p.d. kernels and Bayesian posterior
mixture probabilities. Finally, Section 5.4 contains an empirical evaluation of the
proposed kernels on a benchmark experiment of handwritten digits classification.

3.2 Notations and Framework

In this section we set up the framework and notations of this paper, in particular
the idea of semigroup kernel on the semigroup of measures.

3.2.1 Measures on Basic Components

We model the space of basic components by a Hausdorff space (X ,B, ν) endowed
with its Borel σ-algebra and a Borel dominant measure ν. A positive Radon measure
µ is a positive Borel measure which satisfies (i)µ(C) < +∞ for any compact subset
C ⊆ X and (ii)µ(B) = sup{µ(C)|C ⊆ B,C compact } for any B ∈ B (see for
example Berg et al. (1984) for the construction of Radon measures on Hausdorff
spaces). The set of positive bounded (i.e., µ(X ) < +∞) Radon measures on X is
denoted by M b

+(X ). We introduce the subset of M b
+(X ) of molecular (or atomic)

measures Mol+(X ), namely measures such that

supp(µ)
def
= {x ∈ X|µ(U) > 0, for all open subset U s.t. x ∈ U}

is finite, and we denote by δx ∈ Mol+(X ) the molecular (Dirac) measure of weight 1
on x. For a molecular measure µ, an admissible base of µ is a finite list γ of weighted
points of X , namely γ = (xi, ai)

d
i=1, where xi ∈ X and ai > 0 for 1 ≤ i ≤ d, such that

µ =
∑d
i=1 aiδxi

. We write in that case |γ| =
∑d

i=1 ai and l(γ) = d. Reciprocally,
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a measure µ is said to be the image measure of a list of weighted elements γ if the
previous equality holds. Finally, for a Borel measurable function f ∈ RX and a
Borel measure µ, we write µ[f ] =

∫

X fdµ.

3.2.2 Semigroups and Sets of Points

We follow in this paper the definitions found in Berg et al. (1984), which we now
recall. An Abelian semigroup (S,+) is a nonempty set S endowed with an associative
and commutative composition + and a neutral element 0. Referring further to the
notations used in Berg et al. (1984), note that we will only use auto-involutive
semigroups in this paper, and will hence not discuss other semigroups which admit
different involutions.

A function ϕ : S → R is called a positive definite (resp. negative definite, n.d.)
function on the semigroup (S,+) if (s, t ) 7→ ϕ(s+ t) is a p.d. (resp. n.d.) kernel on
S × S. The symmetry of the kernel being ensured by the commutativity of +, the
positive definiteness is equivalent to the fact that the inequality

N
∑

i,j=1

cicj ϕ (xi + xj) ≥ 0

holds for any N ∈ N, (x1, . . . , xN ) ∈ SN and (c1 . . . , cn) ∈ RN . Using the same
notations, and adding the additional condition that

∑n
i=1 ci = 0 yields the definition

of negative definiteness as ϕ satisfying now

N
∑

i,j=1

cicj ϕ (xi + xj) ≤ 0.

Hence semigroup kernels are real-valued functions ϕ defined on the set of interest
S, the similarity between two elements s, t of S being just the value taken by that
function on their composition, namely ϕ(s+ t).

Recalling our initial goal to quantify the similarity between two complex ob-
jects through finite weighted lists of elements in X , we note that (P(X ),∪) the set of
subsets of X equipped with the usual union operator ∪ is a semigroup. Such a semi-
group might be used as a feature representation for complex objects by mapping
an object to the set of its components, forgetting about the weights. The resulting
representation would therefore be an element of P(X ). A semigroup kernel k on
P(X ) measuring the similarity of two sets of points A,B ∈ P(X ) would use the
value taken by a given p.d. function ϕ on their union, namely k(A,B) = ϕ (A∪B).
However we put aside this framework for two reasons. First, the union composition
is idempotent (i.e., for all A in P(X ), we have A ∪ A = A) which as noted in Berg
et al. (1984, Proposition 4.4.18) drastically restricts the class of possible p.d. func-
tions. Second, such a framework defined by sets would ignore the frequency (or
weights) of the components described in lists, which can be misleading when deal-
ing with finite sets of components. Other problematic features would include the
fact that k(A,B) would be constant when B ⊂ A regardless of its characteristics,
and that comparing sets of very different sizes should be difficult.
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In order to overcome these limitations we propose to represent a list of weighted
points z = (xi, ai)

d
i=1, where for 1 ≤ i ≤ d we have xi ∈ X and ai > 0, by its image

measure δz =
∑d

i=1 aiδxi
, and focus now on the Abelian semigroup (M b

+(X ),+) to
define kernels between lists of weighted points. This representation is richer than
the one suggested in the previous paragraph in the semigroup (P(X ),∪) to consider
the merger of two lists. First it performs the union of the supports; second the sum
of such molecular measures also adds the weights of the points common to both
measures, with a possible renormalization on those weights. Two important fea-
tures of the original list are however lost in this mapping: the order of its elements
and the original frequency of each element within the list as a weighted singleton.
We assume for the rest of this paper that this information is secondary compared
to the one contained in the image measure, namely its unordered support and the
overall frequency of each point in that support. As a result, we study in the follow-
ing sections p.d. functions on the semigroup (M b

+(X ),+), in particular on molecular
measures, in order to define kernels on weighted lists of simple components.

X

θ(δz)

θ(δz′)θ(δz + δz′)

δz δz′

Figure 3.1. Measure representations of two lists z and z′. Each element
of z (resp. z′) list is represented by a black circle (resp. a white square), the size of
which represents the associated weight. Five measures of interest are represented:
the image measures δz and δz′ of those weighted finite lists, the smoothed density es-
timates θ(δz) and θ(δz′) of the two lists of points, and the smoothed density estimate
θ(δz + δz′) of the union of both lists.

Before starting the analysis of such p.d. functions, it should however be pointed
out that several interesting semigroup p.d. kernels on measures are not directly
applicable to molecular measures. For example, the first function we study below
is only defined on the set of absolutely continuous measures with finite entropy.
In order to overcome this limitation and be able to process complex objects in
such situations, it is possible to think about alternative strategies to represent such
objects by measures, as illustrated in Figure 5.3:

• The molecular measures δz and δz′ as the image measures corresponding to
the two weighted sets of points of z and z′, where dots and squares represent
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the different weights applied on each points;

• Alternatively, smoothed estimates of these distributions obtained for example
by non-parametric or parametric statistical density estimation procedures,
and represented by θ(δz) and θ(δz′ ) in Figure 5.3. Such estimates can be
considered if a p.d. kernel is only defined for absolutely continuous measures.
When this mapping takes the form of estimation among a given family of
densities (through maximum likelihood for instance) this can also be seen as
a prior belief assumed on the distribution of the objects;

• Finally, a smoothed estimate of the sum δz+δz′ corresponding to the merging
of both lists, represented by θ(δz+δz′), can be considered. Note that θ(δz+δz′)
might differ from θ(δz) + θ(δz′).

A kernel between two lists of points can therefore be derived from a p.d. function
on (M b

+(X ),+) in at least three ways:

k(z, z′) =











ϕ(δz + δz′), using ϕ directly on molecular measures,

ϕ (θ(δz) + θ(δz′)) , using ϕ on smoothed molecular measures,

ϕ (θ(δz + δz′)) , evaluating ϕ on a smoothed version of the sum.

The positive definiteness of ϕ on M b
+(X ) ensures positive definiteness of k only

in the first two cases. The third expression can be seen as a special case of the
first one, where we highlight the usage of a preliminary mapping on the sum of
two measures; in that case ϕ ◦ θ should in fact be p.d. on (M b

+(X ),+), or at least
(Mol+(X ),+). Having defined the set of representations on which we will focus in
this paper, namely measures on a set of components, we propose in the following
section two particular cases of positive definite functions that can be computed
through an addition between the considered measures. We then show how those
quantities can be computed in the case of molecular measures in Section 3.4.

3.3 The Entropy and Inverse Generalized Variance
Kernels

In this section we present two basic p.d. semigroup kernels for measures, motivated
by a common intuition: the kernel between two measures should increase when
the sum of the measures gets more “concentrated”. The two kernels differ in the
way they quantify the concentration of a measure, using either its entropy or its
variance. They are therefore limited to a subset of measures, namely the subset
of measures with finite entropy and the subset of sub-probability measures with
non-degenerate variance, but are extended to a broader class of measures, including
molecular measures, in Section 3.4.

3.3.1 Entropy Kernel

We consider the subset of M b
+(X ) of absolutely continuous measures with respect to

the dominant measure ν, and identify in this section a measure with its correspond-
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ing density with respect to ν. We further limit the subset to the set of non-negative
valued ν-measurable functions on X with finite sum, such that

Mh
+(X )

def
= {f : X → R+| f is ν-measurable , |h(f)| <∞, |f | <∞}

where we write for any measurable non-negative valued function g,

h(g)
def
= −

∫

X
g ln g dν,

(with 0 ln 0 = 0 by convention) and |g| def
=
∫

X g dν, consistently with the notation
used for measures. If g is such that |g| = 1, h(g) is its differential entropy. Using
the following inequalities,

(a+ b) ln(a+ b) ≤ a lna+ b ln b+ (a+ b) ln 2, by convexity of x 7→ x ln x,

(a+ b) ln(a+ b) ≥ a lna+ b ln b,

we have that (Mh
+(X ),+) is an Abelian semigroup since for f, f ′ in Mh

+(X ) we
have that h(f + f ′) is bounded by integrating pointwise the inequalities above, the
boundedness of |f + f ′| being also ensured. Following Rao (1987) we consider the
quantity

J(f, f ′)
def
= h(

f + f ′

2
) − h(f) + h(f ′)

2
, (3.2)

known as the Jensen divergence (or Jensen-Shannon divergence) between f and f ′,
which as noted by Fuglede and Topsøe (2004) can be seen as a symmetrized version
of the Kullback-Leibler (KL) divergence D, since

J(f, f ′) =
1

2
D(f ||f + f ′

2
) +

1

2
D(f ′||f + f ′

2
).

The expression of Equation (3.2) fits our framework of devising semigroup kernels,
unlike the direct use of the KL divergence (Moreno et al., 2004) which is neither sym-
metric nor negative definite. As recently shown in Endres and Schindelin (2003)
and Österreicher and Vajda (2003),

√
J is a metric on Mh

+(X ) which is a direct
consequence of J ’s negative definiteness proven below, through Berg et al. (1984,
Proposition 3.3.2) for instance. The Jensen-Divergence was also recently reinter-
preted as a special case of a wider family of metrics on M b

+(X ) derived from a
particular family of Hilbertian metrics on R+ as presented in Hein and Bousquet
(2005). The comparison between two densities f, f ′ is in that case performed by
integrating pointwise the squared distance between both densities d2(f(x), f ′(x))
over X , using for d a distance chosen among a suitable family of metrics in R+ to en-
sure that the final value is independent of the dominant measure ν. The considered
family for d is described in Fuglede and Topsøe (2004) through two parameters, a
family of which the Jensen Divergence is just a special case as detailed in Hein and
Bousquet (2005). The latter work shares with this paper another similarity, which
lies in the “kernelization” of such quantities defined on measures through a prior
kernel on the space of components, as will be reviewed in Section 3.5. However,
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of all the Hilbertian metrics introduced in Hein and Bousquet (2005), the Jensen-
Divergence is the only one that can be related to the semigroup framework used
throughout this paper.

Note finally that a positive definite kernel k is said to be infinitely divisible if
− lnk is a negative definite kernel. As a consequence, any positive exponentiation
kβ , β > 0 of an infinitely divisible kernel is a positive definite kernel.

Proposition 3.1. h is a negative definite function on the semigroup Mh
+(X ). As

a consequence e−h is a positive definite function on Mh
+(X ) and its normalized

counterpart, kh
def
= e−J is an infinitely divisible positive definite kernel on Mh

+(X )×
Mh

+(X ).

Proof. It is known that the real-valued function r : y 7→ −y ln y is n.d. on R+

as a semigroup endowed with addition (Berg et al., 1984, Example 6.5.16). As a
consequence the function f 7→ r ◦ f is n.d. on Mh

+(X ) as a pointwise application of
r since r ◦ f is integrable w.r.t ν. For any real-valued n.d. kernel k and any real-
valued function g, we have trivially that (y, y′) 7→ k(y, y′) + g(y) + g(y′) remains

negative definite. This allows first to prove that h( f+f ′

2 ) is also n.d. through the

identity h( f+f ′

2 ) = 1
2h(f+f ′)+ ln 2

2 (|f |+ |f ′|). Subtracting the normalization factor
1
2 (h(f) + h(f ′)) gives the negative definiteness of J . This finally yields the positive
definiteness of kh as the exponential of the negative of a n.d. function through
Schoenberg’s theorem (Berg et al., 1984, Theorem 3.2.2).

Note that only e−h is a semigroup kernel strictly speaking, since e−J involves
a normalized sum (through the division by 2) which is not associative. While both
e−h and e−J can be used in practice on non-normalized measures, we name more
explicitly kh = e−J the entropy kernel, because what it indeed quantifies when
f and f ′ are normalized (i.e., such that |f | = |f ′| = 1) is the difference of the
average of the entropy of f and f ′ from the entropy of their average. The subset of
absolutely continuous probability measures on (X , ν) with finite entropies, namely
{

f ∈Mh
+(X ), s.t. |f | = 1

}

is not a semigroup since it is not closed by addition,
but we can nonetheless define the restriction of J and hence kh on it to obtain a
p.d. kernel on probability measures inspired by semigroup formalism.

3.3.2 Inverse Generalized Variance Kernel

We assume in this subsection that X is an Euclidian space of dimension n endowed
with Lebesgue’s measure ν. Following the results obtained in the previous sec-
tion, we propose under these restrictions a second semigroup p.d. kernel between
measures which uses generalized variance. The generalized variance of a measure,
namely the determinant of its variance matrix, is a quantity homogeneous to a
volume in X . This volume can be interpreted as a typical volume occupied by a
measure when considering only its second order moments, making it hence a useful
quantification of its dispersion. Besides being easy to compute in the case of molec-
ular measures, this quantity is also linked to entropy if we consider that for normal
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laws N (m,Σ) the following relation holds:

1√
detΣ

∝ e−h(N (m,Σ)).

Through this observation, we note that considering the Inverse of the Generalized
Variance (IGV) of a measure is equivalent to considering the value taken by e−2h

on its maximum likelihood normal law. We will put aside this interpretation in this
section, before reviewing it with more care in Section 3.7.

Let us define the variance operator on measures µ with finite first and second
moment of M b

+(X ) as

Σ(µ)
def
= µ[xx⊤] − µ[x]µ[x]⊤.

Note that Σ(µ) is always a positive semi-definite matrix when µ is a sub-probability
measure, that is when |µ| ≤ 1, since

Σ(µ) = µ[(x− µ[x]) (x− µ[x])
⊤

] + (1 − |µ|)µ[x]µ[x]⊤.

We call detΣ(µ) the generalized variance of a measure µ, and say a measure µ is
non-degenerate if detΣ(µ) is non-zero, meaning that Σ(µ) is of full rank. The subset
of M b

+(X ) of such measures with total weight less than or equal to 1 is denoted by
Mv

+(X ); Mv
+(X ) is convex through the following proposition:

Proposition 3.2. Mv
+(X )

def
=
{

µ ∈M b
+(X ) : |µ| = 1, detΣ(µ) > 0

}

is a convex set,
and more generally for λ ∈ [0, 1), µ′ ∈ M b

+(X ) such that |µ′| = 1 and µ ∈ Mv
+(X ),

(1 − λ)µ+ λµ′ ∈Mv
+(X ).

Proof. We use the following identity,

Σ ((1 − λ)µ+ λµ′) = (1−λ)Σ(µ) +λΣ(µ′)+λ(1−λ) (µ[x] − µ′[x]) (µ[x] − µ′[x])
⊤
,

to derive that Σ((1 − λ)µ + λµ′) is a (strictly) positive-definite matrix as the sum
of two positive semi-definite matrices and a strictly positive definite matrix Σ(µ).

Mv
+(X ) is not a semigroup, since it is not closed under addition. However we

will work in this case on the mean of two measures in the same way we used their
standard addition in the semigroup framework of M b

+(X ).

Proposition 3.3. The real-valued kernel kv defined on elements µ, µ′ of Mv
+(X )

as

kv(µ, µ
′) =

1

detΣ(µ+µ′

2 )

is positive definite.
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Proof. Let y be an element of X . For any N ∈ N, any c1, ..., cN ∈ R such that
∑

i ci = 0 and any µ1, ..., µN ∈Mv
+(X ) we have

∑

i,j

cicjy
⊤Σ(

µi + µj
2

)y =
∑

i,j

cicjy
⊤
(

1

2
µi[xx

⊤] +
1

2
µj [xx

⊤]−

1

4

(

µi[x]µi[x]
⊤ + µj [x]µj [x]

⊤ + µj [x]µi[x]
⊤ + µi[x]µj [x]

⊤)
)

y

= −1

4

∑

i,j

cicjy
⊤ (µj [x]µi[x]

⊤ + µi[x]µj [x]
⊤) y

= −1

2

(

∑

i

ciy
⊤µi[x]

)2

≤ 0,

making thus the function µ, µ′ 7→ y⊤Σ(µ+µ′

2 )y negative-definite for any y ∈ X .
Using again Schoenberg’s theorem (Berg et al., 1984, Theorem 3.2.2) we have that

µ, µ′ 7→ e−y
⊤Σ( µ+µ′

2 )y is positive definite and so is the sum 1

(2π)
n
2

∫

X e
−y⊤Σ( µ+µ′

2 )yν(dy)

which is equal to 1/
√

detΣ(µ+µ
2 ) ensuring thus the positive-definiteness of kv as its

square.

Both entropy and IGV kernels are defined on subsets of M b
+(X ). Since we are

most likely to use them on molecular measures or smooth measures (as discussed
in Section 3.2.2), we present in the following section practical ways to apply them
in that framework.

3.4 Semigroup Kernels on Molecular Measures

The two positive definite functions defined in Sections 3.3.1 and 3.3.2 cannot be
applied in the general case to Mol+(X ) which as exposed in Section 3.2 is our
initial goal. In the case of the entropy kernel, molecular measures are generally
not absolutely continuous with respect to ν (except on finite spaces), and they
have therefore no entropy; we solve this problem by mapping them into Mh

+(X )
through a smoothing kernel. In the case of the IGV, the estimates of variances might
be poor if the number of points in the lists is not large enough compared to the
dimension of the Euclidean space; we perform in that case a regularization by adding
a unit-variance correlation matrix to the original variance. This regularization is
particularly important to pave the way to the kernelized version of the IGV kernel
presented in the next section, when X is not Euclidian but simply endowed with a
prior kernel κ.

The application of both the entropy kernel and the IGV kernel to molecular
measures requires a previous renormalization to set the total mass of the measures
to 1. This technical renormalization is also beneficial, since it allows a consistent
comparison of two weighted lists even when their size and total mass is very different.
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All molecular measures in this section, and equivalently all admissible bases, will
hence be supposed to be normalized such that their total weight is 1, and Mol1+(X )
denotes the subset of Mol+(X ) of such measures.

3.4.1 Entropy Kernel on Smoothed Estimates

We first define the Parzen smoothing procedure which allows to map molecular
measures onto measures with finite entropy:

Definition 3.4. Let κ be a probability kernel on X with finite entropy, i.e., a
real-valued function defined on X 2 such that for any x ∈ X , κ(x, ·) : y 7→ κ(x, y)
satisfies κ(x, ·) ∈ Mh

+(X ) and |κ(x, ·)| = 1. The κ-Parzen smoothed measure of µ
is the probability measure whose density with respect to ν is θκ(µ), where

θκ : Mol1+(X ) −→Mh
+(X )

µ 7→
∑

x∈suppµ

µ(x)κ(x, ·).

Note that for any admissible base (xi, ai)
d
k=1 of µ we have that θκ(µ) =

∑d
i=1 aiκ(xi, ·). Once this mapping is defined, we use the entropy kernel to propose

the following kernel on two molecular measures µ and µ′,

kκh(µ, µ′) = e−J(θκ(µ), θκ(µ′)).

As an example, let X be an Euclidian space of dimension n endowed with
Lebesgue’s measure, and κ the isotropic Gaussian RBF kernel on that space, namely

κ(x, y) =
1

(2πσ)
n
2

e−
‖x−y‖2

2σ2 .

Given two weighted lists z and z′ of components in X , θκ(δz) and θκ(δz′) are
thus mixtures of Gaussian distributions on X . The resulting kernel computes the
entropy of θκ(δz) and θκ(δz′) taken separately and compares it with that of their
mean, providing a positive definite quantification of their overlap.

3.4.2 Regularized Inverse Generalized Variance of Molecular

Measures

In the case of a molecular measure µ defined on an Euclidian space X of dimension
n, the variance Σ(µ) is simply the usual empirical estimate of the variance matrix
expressed in an orthonormal basis of X :

Σ(µ) = µ[xx⊤] − µ[x]µ[x]⊤ =
d
∑

i=1

aixix
⊤
i −

(

d
∑

i=1

aixi

)(

d
∑

i=1

aixi

)⊤

,

where we use an admissible base γ = (xi, ai)
d
i=1 of µ to give a matrix expression

of Σ(µ), with all points xi expressed as column vectors. Note that this matrix
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expression, as would be expected from a function defined on measures, does not
depend on the chosen admissible base. Given such an admissible base, let Xγ =
[xi]i=1..d be the n × d matrix made of all column vectors xi and ∆γ the diagonal
matrix of weights of γ taken in the same order (ai)1≤ı≤d. If we write Id for the
identity matrix of rank d and 1d,d for the d× d matrix composed of ones, we have
for any base γ of µ that:

Σ(µ) = Xγ(∆γ − ∆γ1d,d∆γ)X
⊤
γ ,

which can be rewritten as

Σ(µ) = Xγ(Id − ∆γ1d,d)∆γ(Id − 1d,d∆γ)X
⊤
γ ,

noting that (∆γ1d,d)
2 = ∆γ1d,d since tr∆γ = 1.

The determinant of Σ(µ) can be equal to zero when the size of the support of µ
is smaller than n, the dimension of X , or more generally when the linear span of the
points in the support of µ does not cover the whole space X . This problematic case
is encountered in Section 3.5 when we consider kernelized versions of the IGV, using
an embedding of X into a functional Hilbert space of potentially infinite dimension.
Mapping an element of Mol1+(X ) into Mv

+(X ) by adding to it any element ofMv
+(X )

through Proposition 3.2 would work as a regularization technique; for an arbitrary
ρ ∈Mv

+(X ) and a weight λ ∈ [0, 1) we could use the kernel defined as

µ, µ′ 7→ 1

detΣ
(

λµ+µ′

2 + (1 − λ)ρ
) .

We use in this section a different strategy inspired by previous works (Fuku-
mizu et al., 2004; Bach and Jordan, 2002) further motivated in the case of covariance
operators on infinite dimensional spaces as shown by Cuturi and Vert (2005). The
considered regularization consists in modifying directly the matrix Σ(µ) by adding
a small diagonal component ηIn where η > 0 so that its spectrum never vanishes.
When considering the determinant of such a regularized matrix Σ(µ) + ηIn this is
equivalent to considering the determinant of 1

ηΣ(µ) + In up to a factor ηn, which
will be a more suitable expression in practice. We thus introduce the regularized
kernel kηv defined on measures (µ, µ′) ∈M b

+(X ) with finite second moment as

kηv (µ, µ
′)

def
=

1

det
(

1
ηΣ
(

µ+µ′

2

)

+ In

) .

It is straightforward to prove that the regularized function kηv is a positive definite
kernel on the measures of M b

+(X ) with finite second-order moments using the same
proof used in Proposition 3.3. If we now introduce

Kγ
def
=
[

x⊤i xj
]

1≤i,j≤d ,

for the d× d matrix of dot-products associated with the elements of a base γ, and

K̃γ
def
=

[

(xi −
d
∑

k=1

akxk)
⊤(xj −

d
∑

k=1

akxk)

]

1≤i,j≤d
= (Id − 1d,d∆γ)Kγ(Id − ∆γ1d,d),
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for its centered expression with respect to the mean of µ, we have the following
result:

Proposition 3.5. Let X be an Euclidian space of dimension n. For any µ ∈
Mol1+(X ) and any admissible base γ of µ we have

det

(

1

η
K̃γ∆γ + Il(γ)

)

= det

(

1

η
Σ(µ) + In

)

.

Proof. We omit the references to µ and γ in this proof to simplify matrix notations,
and write d = l(γ). Let X̃ be the n × d matrix [xi −

∑d
j=1 ajxj ]i=1..d of centered

column vectors enumerated in γ, namely X̃ = X(Id − ∆1d,d). We have

Σ = X̃∆X̃⊤,

K̃∆ = X̃⊤X̃∆.

Through the singular value decomposition of X̃∆
1
2 , it is straightforward to see that

the non-zero elements of the spectrums of matrices K̃∆,∆
1
2 X̃⊤X̃∆

1
2 and Σ are

identical. Thus, regardless of the difference between n and d, we have

det

(

1

η
K̃∆ + Id

)

= det

(

1

η
∆

1
2 X̃⊤X̃∆

1
2 + Id

)

= det

(

1

η
X̃∆X̃⊤ + In

)

= det

(

1

η
Σ + In

)

,

where the addition of identity matrices only introduces an offset of 1 for all eigen-
values.

Given two measures µ, µ′ ∈ Mol1+(X ), the following theorem can be seen as a
regularized equivalent of Proposition 3.3 through an application of Proposition 4.7

to µ′′ = µ+µ′

2 .

Theorem 3.6. Let X be an Euclidian space. The kernel kηv defined on two measures
µ, µ′ of Mol1+(X ) as

kηv (µ, µ
′) =

1

det
(

1
η K̃γ∆γ + Il(γ)

) ,

where γ is any admissible base of µ+µ′

2 , is p.d. and independent of the choice of γ.

Given two objects z, z′ and their respective molecular measures δz and δz′ ,
the computation of the IGV for two such objects requires in practice an admissible
base of δz+δz′

2 as seen in Theorem 3.6. This admissible base can be chosen to be
of the cardinality of the support of the mixture of δz and δz′ , or alternatively be
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the simple merger of two admissible bases of z and z′ with their weights divided by
2, without searching for overlapped points between both lists. This choice has no
impact on the final value taken by the regularized IGV-kernel and can be arbitrated
by computational considerations.

If we now take a practical look at the IGV’s definition, we note that it can
be applied but to cases where the component space X is Euclidian, and only if
the studied measures can be summarized efficiently by their second order moments.
These limitations do not seem very realistic in practice, since X may not have a
vectorial structure, and the distribution of the components may not even be well
represented by Gaussians in the Euclidian case. We propose to bypass this issue
and introduce the usage of the IGV in a more flexible framework by using the kernel
trick on the previous quantities, since the IGV of a measure can be expressed only
through the dot-products between the elements of the support of the considered
measure.

3.5 Inverse Generalized Variance on the RKHS
associated with a Kernel κ

As with many quantities defined by dot-products, one is tempted to replace the
usual dot-product matrix K̃ of Theorem 3.6 by an alternative Gram-matrix obtained
through a p.d. kernel κ defined on X . The advantage of such a substitution, which
follows the well known “kernel trick” principle (Schölkopf and Smola, 2002), is
multiple as it first enables us to use the IGV kernel on any non-vectorial space
endowed with a kernel, thus in practice on any component space endowed with
a kernel; second, it is also useful when X is a dot-product space where a non-
linear kernel can however be used (e.g., using Gaussian kernel) to incorporate into
the IGV’s computation higher-order moment comparisons. We prove in this section
that the inverse of the regularized generalized variance, computed in Proposition 4.7
through the centered dot-product matrix K̃γ of elements of any admissible base γ

of µ, is still a positive definite quantity if we replace K̃γ by a centered Gram-matrix

K̃γ , computed through an a priori kernel κ on X , namely

Kγ = [κ(xi, xj)]1≤i,j≤d

K̃γ = (Id − 1d,d∆γ)Kγ(Id − ∆γ1d,d).

This substitution follows also a general principle when considering kernels on mea-
sures. The “kernelization” of a given kernel defined on measures to take into account
a prior similarity on the components, when computationally feasible, is likely to im-
prove its overall performance in classification tasks, as observed by Kondor and
Jebara (2003) but also by Hein and Bousquet (2005) under the “Structural Kernel”
appellation. The following theorem proves that this substitution is valid in the case
of the IGV.



60 Chapter 3. Semigroup Kernels on Measures

Theorem 3.7. Let X be a set endowed with a p.d. kernel κ. The kernel

kηκ(µ, µ
′) =

1

det
(

1
η K̃γ∆γ + Il(γ)

) , (3.3)

defined on two elements µ, µ′ in Mol1+(X ) is positive definite, where γ is any ad-

missible base of µ+µ′

2 .

Proof. Let N ∈ N, µ1, .., µN ∈ Mol1+(X ) and (ci)
N
i=1 ∈ RN . Let us now study

the quantity
∑N
i=1 cicj k

η
κ(µi, µj). To do so we introduce by the Moore-Aronszajn

theorem (Berlinet and Thomas-Agnan, 2003, p.19) the reproducing kernel Hilbert
space Ξ with reproducing kernel κ indexed on X . The usual mapping from X to Ξ
is denoted by φ, that is φ : X ∋ x 7→ κ(x, ·). We define

Y def
= supp

(

N
∑

i=1

µi

)

⊂ X ,

the finite set which numbers all elements in the support of the N considered mea-
sures, and

Υ
def
= spanφ(Y) ⊂ Ξ,

the linear span of the elements in the image of Y through φ. Υ is a vector space
whose finite dimension is upper-bounded by the cardinality of Y. Endowed with
the dot-product inherited from Ξ, we further have that Υ is Euclidian. Given a
molecular measure µ ∈ Mol1+(Y), let φ(µ) denote the image measure of µ in Υ,
namely φ(µ) =

∑

x∈Y µ(x)δφ(x). One can easily check that any admissible base

γ = (xi, ai)
d
i=1 of µ can be used to provide an admissible base φ(γ)

def
=(φ(xi), ai)

d
i=1

of φ(µ). The weight matrices ∆γ and ∆φ(γ) are identical and we further have

K̃γ = K̃φ(γ) by the reproducing property, where K̃ is defined by the dot-product
of the Euclidian space Υ induced by κ. As a result, we have that kηκ(µi, µj) =
kηv (φ(µi), φ(µj)) where kηv is defined on Mol1+(Υ), ensuring the non-negativity

N
∑

i=1

cicj k
η
κ(µi, µj) =

N
∑

i=1

cicj k
η
v (φ(µi), φ(µj)) ≥ 0

and hence positive-definiteness of kηκ.

As observed in the experimental section, the kernelized version of the IGV is
more likely to be successful to solve practical tasks since it incorporates meaningful
information on the components. Before observing these practical improvements, we
provide a general study of the family of semigroup kernels on M b

+(X ) by casting the
theory of integral representations of positive definite functions on a semigroup (Berg
et al., 1984) in the framework of measures, providing new results and possible
interpretations of this class of kernels.
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3.6 Integral Representation of p.d. Functions on a
Set of Measures

In this section we study a general characterization of all p.d. functions on the whole
semigroup (M b

+(X ),+), including thus measures which are not normalized. This
characterization is based on a general integral representation theorem valid for any
semigroup kernel, and is similar in spirit to the representation of p.d. functions ob-
tained on Abelian groups through Bochner’s theorem (Rudin, 1962). Before stating
the main results in this section we need to recall basic definitions of semicharacters
and exponentially bounded function (Berg et al., 1984, chap. 4).

Definition 3.8. A real-valued function ρ on an Abelian semigroup (S,+) is called
a semicharacter if it satisfies the following properties:

(i) ρ(0) = 1

(ii) ∀s, t ∈ S, ρ(s+ t) = ρ(s)ρ(t).

It follows from the previous definition and the fact that M b
+(X ) is 2-divisible

(i.e., ∀µ ∈M b
+(X ), ∃µ′ ∈M b

+(X ) s.t. µ = 2µ′) that semicharacters are nonnegative
valued since it suffices to write that ρ(µ) = ρ(µ2 )2. Note also that semicharacters are
trivially positive definite functions on S. We denote by S∗ the set of semicharacters
on M b

+(X ), and by Ŝ ⊂ S∗ the set of bounded semicharacters. S∗ is a Hausdorff
space when endowed with the topology inherited from RS having the topology of
pointwise convergence. Therefore we can consider the set of Radon measures on S∗,
namely M b

+(S∗).

Definition 3.9. A function f : M b
+(X ) → R is called exponentially bounded

if there exists a function α : M b
+(X ) → R+ (called an absolute value) satisfying

α(0) = 1 and α(µ+µ′) ≤ α(µ)α(µ′) for µ, µ′ ∈M b
+(X ), and a constant C > 0 such

that:
∀µ ∈M b

+(X ), f(µ) ≤ Cα(µ).

We can now state two general integral representation theorems for p.d. func-
tions on semigroups (Berg et al., 1984, Theorems 4.2.5 and 4.2.8). These theorems
being valid on any semigroup, they hold in particular on the particular semigroup
(M b

+(X ),+).

Theorem 3.10.

• A function ϕ : M b
+(X ) → R is p.d. and exponentially bounded if and only if

it has an integral representation:

ϕ(s) =

∫

S∗

ρ(s)dω(ρ),

with ω ∈M c
+(S∗) (the set of Radon measures on S∗ with compact support).
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• A function ϕ : M b
+(X ) → R is p.d. and bounded if and only if it has an integral

representation of the form:

ϕ(s) =

∫

Ŝ

ρ(s)dω(ρ),

with ω ∈M+(Ŝ).

In both cases, if the integral representation exists, then there is uniqueness of the
measure ω in M+(S∗).

In order to make these representations more constructive, we need to study
the class of (bounded) semicharacters on (M b

+(X ),+). Even though we are not
able to provide a complete characterization, even of bounded semicharacters, the
following proposition introduces a large class of semicharacters, and completely
characterizes the continuous semicharacters. For matters related to continuity of
functions defined on M b

+(X ), we will consider the weak topology of M b
+(X ) which

is defined in simple terms through the portmanteau theorem (Berg et al., 1984,
Theorem 2.3.1). Note simply that if µn converges to µ in the weak topology then
for any bounded measurable and continuous function f we have that µn[f ] → µ[f ].
We further denote by C(X ) the set of continuous real-valued functions on X and by
Cb(X ) its subset of bounded functions. Both sets are endowed with the topology
of pointwise convergence. For a function f ∈ RX we write ρf for the function
µ 7→ eµ[f ] when the integral is well defined.

Proposition 3.11. A semicharacter ρ : M b
+(X ) → R is continuous on (M b

+(X ),+)
endowed with the weak topology if and only if there exists f ∈ Cb(X ) such that
ρ = ρf . In that case, ρ is a bounded semicharacter on M b

+(X ) if and only if f ≤ 0.

Proof. For a continuous and bounded function f , the semicharacter ρf is well-
defined. If a sequence µn in M b

+(X ) converges to µ weakly, we have µn[f ] → µ[f ],
which implies the continuity of ρf . Conversely, suppose ρ is weakly continuous.
Define f : X → [−∞,∞) by f(x) = log ρ(δx). If a sequence xn converges to x in
X , obviously we have δxn

→ δx in the weak topology, and

ρ(δxn
) → ρ(δx),

which means the continuity of f . To see the boundedness of f , assume the contrary.
Then, we can find xn ∈ X such that either of 0 < f(xn) → ∞ or 0 > f(xn) → −∞
holds. Let βn = |f(xn)|. Because the measure 1

βn
δxn

converges weakly to zero, the
continuity of ρ means

ρ
(

1
βn
δxn

)

→ 1,

which contradicts with the fact ρ( 1
βn
δxn

) = e
1

βn
f(xn) = e±1. Thus, ρf is well-

defined, weakly continuous on M b
+(X ) and equal to ρ on the set of molecular

measures. It is further equal to ρ on M b
+(X ) through the denseness of molecu-

lar measures in M b
+(X ), both in the weak and the pointwise topology (Berg et al.,
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1984, Proposition 3.3.5). Finally suppose now that ρf is bounded and that there
exists x in X such that f(x) > 0. By ρf (n δx) = enf(x) which diverges with n we
see a contradiction. The converse is straightforward.

Let ω be a bounded nonnegative Radon measure on the Hausdorff space of
continuous real-valued functions on X , namely ω ∈ M b

+(C(X )). Given such a
measure, we first define the subset Mω of M b

+(X ) as

Mω = {µ ∈M b
+(X ) | sup

f∈suppω
µ[f ] < +∞}.

Mω contains the null measure and is a semigroup.

Corollary 3.12. For any bounded Radon measure ω ∈ M b
+(C(X )), the following

function ϕ is a p.d. function on the semigroup (Mω,+):

ϕ(µ) =

∫

C(X )

ρf (µ) dω(f). (3.4)

If suppω ⊂ Cb(X ) then ϕ is continuous on Mω endowed with the topology of weak
convergence.

Proof. For f ∈ suppω, ρf is a well defined semicharacter on Mω and hence positive
definite. Since

ϕ(µ) ≤ |ω| sup
f∈suppω

µ[f ]

is bounded, ϕ is well defined and hence positive definite. Suppose now that suppω ⊂
Cb(X ) and let µn be a sequence of Mω converging weakly to µ. By the bounded
convergence theorem and continuity of all considered semicharacters (since all con-
sidered functions f are bounded) we have that:

lim
n→∞

ϕ(µn) =

∫

C(X )

lim
n→∞

ρf (µn) dω(f) = ϕ(µ).

and hence ϕ is continuous w.r.t the weak topology.

When the measure ω is chosen in such a way that the integral (3.4) is tractable
or can be approximated, then a valid p.d. kernel for measures is obtained; an ex-
ample involving mixtures over exponential families is provided in Section 3.7.

Before exploiting this constructive representation, a few remarks should be
pointed out. When using non-bounded functions (as is the case when using ex-
pectation or second-order moments of measures) the continuity of the integral ϕ is
left undetermined to our knowledge, even when its existence is ensured. However,
when X is compact we have that C(X ) = Cb(X ) and hence continuity on Mω of
any function ϕ constructed through corollary 3.12. Conversely, there exist contin-
uous p.d. functions on (M b

+(X ),+) that can not be represented in the form (3.4).
Although any continuous p.d. function can necessarily be represented as an integral
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of semicharacters by Theorem 3.10, the semicharacters involved in the representa-
tion are not necessarily continuous as in (3.4). An example of such a continuous
p.d. function written as an integral of non-continuous semicharacters is exposed in
Appendix A. It is an open problem to our knowledge to fully characterize continuous
p.d. functions on (M b

+(X ),+).

3.7 Projection on Exponential Families through
Laplace’s Approximation

The constructive approach presented in corollary 3.12 can be used in practice to
define kernels by restricting the space C(X ) to subspaces where computations are
tractable. A natural way to do so is to consider a vector space of finite dimension
s of C(X ), namely the span of a free family of s non-constant functions f1, ..., fs
of C(X ), and define a measure on that subspace by applying a measure on the
weights associated with each function. The previous integral representation (3.4)
would then take the form:

ϕ(µ) =

∫

Θ

eµ[
∑ s

i=1 θifi] ω(dθ),

where ω is now a bounded measure on a compact subset Θ ⊆ Rs and µ is such
that µ[fi] < +∞ for 1 ≤ i ≤ s. The subspace of C(X ) considered in this section
is however slightly different, in order to take advantage of the natural benefits of
exponential densities generated by all functions f1, ..., fs. Following Amari and Na-
gaoka (2001, p.69), this requires the definition of the cumulant generating function
of ν with respect to f1, ..., fs as

ψ(θ)
def
= log ν[e

∑s
i=1 θifi ],

such that for each θ ∈ Θ,

pθ
def
= exp

(

s
∑

i=1

θifi − ψ(θ)

)

ν,

is a probability density, which defines an exponential family of densities on X as
θ varies in Θ. Rather than the direct span of functions f1, ..., fs on Θ, this is
equivalent to considering the hypersurface {∑s

i=1 θifi−ψ(θ)} in span{f1, .., fs,−1}.
This yields the following expression:

ϕ(µ) =

∫

Θ

eµ[
∑s

i=1 θifi−ψ(θ)] ω(dθ).

Following the notations of Amari and Nagaoka (2001) the η-parameters (or expec-
tation parameters) of µ are defined as

η̂i
def
=

1

|µ|µ[fi], 1 ≤ i ≤ s,
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and θ̂ stands for the θ-parameters of η̂. We assume in the following approximations
that θ̂ ∈ Θ and recall two identities (Amari and Nagaoka, 2001, Chapters 3.5 &
3.6):

χ(θ)
def
=

s
∑

i=1

θiηi − ψ(θ) = −h(θ), the dual potential,

D(θ||θ′) = ψ(θ) + χ(θ′) −
s
∑

i=1

θiη
′
i, the KL divergence,

where we used the abbreviations h(θ) = h(pθ) and D(θ||θ′) = D(pθ||pθ′). We can
then write

µ[

s
∑

i=1

θifi − ψ(θ)] = |µ|
(

s
∑

i=1

θiη̂i − ψ(θ)

)

= |µ|
(

s
∑

i=1

θ̂iη̂i − ψ(θ̂) +
s
∑

i=1

(θi − θ̂i)η̂i + ψ(θ̂) − ψ(θ)

)

= −|µ|
(

h(θ̂) +D(θ̂||θ)
)

,

to obtain the following factorized expression,

ϕ(µ) = e−|µ|h(θ̂)

∫

Θ

e−|µ|D(θ̂|| θ)ω(dθ). (3.5)

The quantity e−|µ|h(θ̂) was already evoked in Section 3.3.2 when multivariate normal
distributions were used to express the IGV kernel. When X is an Euclidian space of
dimension n, this is indeed equivalent to defining s = n+n(n+1)/2 base functions,
more precisely fi = xi and fij = xixj , and dropping the integral of Equation (3.5).
Note that such functions are not bounded and that Mω corresponds here to the set
of measures with finite first and second order moments.

The integral of Equation (3.5) cannot be computed in a general case. The
use of conjugate priors can however yield exact calculations, such as in the setting
proposed by Cuturi and Vert (2005). In their work X is a finite set of short sequences
formed over an alphabet, functions fi are all possible indicator functions of X and
ω is an additive mixture of Dirichlet priors. The kernel value is computed through
a factorization inspired by the context-tree weighting algorithm (Willems et al.,
1995). In the general case a numerical approximation can also be derived using
Laplace’s method (Dieudonné, 1968) under the assumption that |µ| is large enough.
To do so, first notice that

∂D(θ̂||θ)
∂θi

|θ= θ̂ =
∂ψ

∂θi
|θ= θ̂ −η̂i = 0,

∂D(θ̂||θ)
∂θi∂θj

=
∂ψ

∂θi∂θj
= gij(θ),
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where Gθ = [gij(θ)] is the Fisher information matrix computed in θ and hence a
p.d. matrix. The following approximation then holds:

ϕ(µ) ∼
|µ|→∞

e−|µ|h(θ̂)

∫

Rs

ω(θ̂)e−
|µ|
2 (θ−θ̂)⊤G

θ̂
(θ−θ̂)dθ = e−|µ|h(θ̂)

(

2π

|µ|

)
s
2 ω(θ̂)
√

detGθ̂

which can be simplified by choosing ω to be Jeffrey’s prior (Amari and Nagaoka,
2001, p.44), namely

ω(dθ) =
1

V

√

detGθ dθ, where V =

∫

Θ

√

detGθ dθ.

Up to a multiplication by V this provides an approximation of ϕ by ϕ̃ as

ϕ(µ) ∼
|µ|→∞

ϕ̃(µ)
def
= e−|µ|h(θ̂)

(

2π

|µ|

)
s
2

.

The η-coordinates of µ are independent of the total weight |µ|, hence ϕ̃(2µ) =

ϕ̃(µ)2( |µ|
4π )

s
2 . This identity can be used to propose a renormalized kernel for two

measures as

k(µ, µ′)
def
=

ϕ̃(µ+ µ′)
√

ϕ̃(2µ)ϕ̃(2µ′)
=

e−(|µ+µ′|)h(pµ+µ′)

e−|µ|h(pµ)−|µ′|h(pµ′ )

(

2
√

|µ||µ′|
|µ| + |µ′|

)
s
2

.

where pµ stands for pθ̂µ
. When µ and µ′ are normalized such that their total weight

coincides and is equal to β, we have that

k(µ, µ′) = e
−2β

(

h(pµ′′ )−
h(pµ)+h(p

µ′ )

2

)

, (3.6)

where µ′′ = µ + µ′. From Equation (3.6), we see that β can be tuned in practice
and thought of as a width parameter. It should be large enough to ensure the
consistency of Laplace’s approximation and thus positive definiteness, while not
too large at the same time to avoid diagonal dominance issues. In the case of the
IGV kernel this tradeoff can however be put aside since the inverse of the IGV is
directly p.d. as was proved in Proposition 3.3. However and to our knowledge this
assertion does not stand in a more general case when the functions f1, ..., fs are
freely chosen.

3.8 Experiments on images of the MNIST database

We present in this section experimental results and discussions on practical imple-
mentations of the IGV kernels on a benchmark experiment of handwritten digits
classification. We focus more specifically on the kernelized version of the IGV and
discuss its performance with respect to other kernels. The entropy kernel per-
formed very poorly in the series of experiments presented here, besides requiring
a time consuming Monte Carlo computation, which is why we do not consider it
in this section. We believe however that in more favourable cases, notably when
the considered measures are multinomials, the entropy kernel and its structural
variants (Hein and Bousquet, 2005) may provide good results.
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3.8.1 Linear IGV Kernel

Following the previous work of Kondor and Jebara (2003), we have conducted ex-
periments on 500 and 1000 images (28×28 pixels) taken from the MNIST database
of handwritten digits (black shapes on a white background), with 50 (resp. 100) im-
ages for each digit. To each image z we randomly associate a set of d distinct points
which are black (intensity superior to 190) in the image. In this case the set of com-
ponents is {1, .., 28}×{1, .., 28} which we map onto points with coordinates between
0 and 1, thus defining X = [0, 1]2. The linear IGV kernel as described in Section
3.3.2 is equivalent to using the linear kernel κ((x1, y1), (x2, y2)) = x1x2 + y1y2 on a
non-regularized version of the kernelized-IGV. It also boils down to fitting Gaussian
bivariate-laws on the points and measuring the similarity of two measures by per-
forming variance estimation on the samples taken first separately and then together.
The resulting variances can be diagonalized to obtain three diagonal variance ma-
trices, which can be seen as performing PCA on the sample,

Σ(µ) =

(

Σ1,1 0
0 Σ2,2

)

, Σ(µ′) =

(

Σ′
1,1 0
0 Σ′

2,2

)

, Σ(µ′′) =

(

Σ′′
1,1 0
0 Σ′′

2,2

)

.

and the value of the kernel is computed through

kv(µ, µ
′) =

√

Σ1,1Σ2,2 Σ′
1,1Σ

′
2,2

Σ′′
1,1Σ

′′
2,2

.

This ratio is for instance equal to 0.3820 for two handwritten digits in the case shown
in Figure 3.2. The linear IGV manages a good discrimination between ones and
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Σ1,1 = 0.0552 Σ′
1,1 = 0.0441 Σ′′

1,1 = 0.0497
Σ2,2 = 0.0013 Σ′

2,2 = 0.0237 Σ′′
2,2 = 0.0139

Figure 3.2. Weighted PCA of two different measures and their mean, with
their first principal component shown. Below are the variances captured by the first
and second principal components, the generalized variance being the product of the
two values.

zeros. Indeed, ones are shaped as sticks, and hence usually have a strong variance
carried by their first component, followed by a weak second component. On the
other hand, the variance of zeros is more equally distributed between the first and
second axes. When both weighted sets of points are united, the variance of the mean
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of both measures has an intermediary behaviour in that respect, and this suffices
to discriminate numerically both images. However this strategy fails when using
numbers which are not so clearly distinct in shape, or more precisely whose surface
cannot be efficiently expressed in terms of Gaussian ellipsoids. To illustrate this we
show in Figure 3.3 the Gram matrix of the linear IGV on 60 images, namely 20
zeros, 20 ones and 20 twos. Though images of ones can be efficiently discriminated
from the two other digits, we clearly see that this is not the case between zeros and
twos, whose support may seem similar if we try to capture them through Gaussian
laws. In practice, the results obtained with the linear IGV on this particular task
where so unadapted to the learning goal that the SVM’s trained based on that
methodology did not converge in most cases, which is why we discarded it.

0 1 2

0

1

2

Figure 3.3. Normalized Gram matrix computed with the linear IGV kernel
of twenty images of “0”, “1” and “2” displayed in that order. Darker spots mean
values closer to 1, showing that the restriction to “0” and “1” yields good separation
results, while “0” and “2” can hardly be discriminated using variance analysis.

3.8.2 Kernelized IGV

Following previous works (Kondor and Jebara, 2003; Wolf and Shashua, 2003) and
as suggested in the initial discussion of Section 3.5, we use in this section a Gaussian
kernel of width σ to incorporate a prior knowledge on the pixels, and equivalently
to define the reproducing kernel Hilbert space Ξ by using

κ ((x1, y1), (x2, y2)) = e−
(x1−x2)2+(y1−y2)2

2σ2 .

As pointed out by Kondor and Jebara (2003), the pixels are no longer seen as points
but rather as functions (Gaussian bells) defined on the components space [0, 1]2.
To illustrate this approach we show in Figure 3.8.2 the first four eigenfunctions of
three measures µ1, µ0 and µ1+µ0

2 built from the image of a handwritten “1” and
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“0” with their corresponding eigenvalues, as well as for images of “2” and “0” in
Figure 3.8.2.

0.276 0.168 0.184

0.169 0.142 0.122

0.124 0.119 0.0934

0.0691 0.0962 0.0886

Figure 3.4. The four first eigenfunctions of respectively three empirical
measures µ1 (first column), µ0 (second column) and µ1+µ0

2 (third column), displayed
with their corresponding eigenvalues, using η = 0.01 and σ = 0.1.

Setting σ, the width of κ, to define the functions contained in the RKHS Ξ is
not enough to fully characterize the values taken by the kernelized IGV. We further
need to define η, the regularization parameter, to control the weight assigned to
smaller eigenvalues in the spectrum of Gram matrices. Both parameters are strongly
related, since the value of σ controls the range of the typical eigenvalues found in
the spectrum of Gram matrices of admissible bases, whereas η acts as a scaling
parameter for those eigenvalues as can be seen in Equation (3.3). Indeed, using a
very small σ value, which means Ξ is only defined by peaked Gaussian bells around
each pixels, yields diagonally dominant Gram matrices very close to the identity
matrix. The resulting eigenvalues for K̃∆ are then all very close to 1

d , the inverse of
the amount of considered points. On the contrary, a large value for σ yields higher
values for the kernel, since all points would be similar to each other and Gram
matrices would turn close to the matrix 1d,d with a single significant eigenvalue and
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0.146 0.168 0.142

0.141 0.142 0.122

0.127 0.119 0.103

0.119 0.0962 0.0949

Figure 3.5. Same representation as in Figure 3.8.2, with µ2, µ0 and µ2+µ0

2 .

all others close to zero. We address these issues and study the robustness of the
final output of the k-IGV kernel in terms of classification error by doing preliminary
experiments where both η and σ vary freely.

3.8.3 Experiments on the SVM Generalization Error

To study the behaviour and the robustness of the IGV kernel under different pa-
rameter settings, we used two ranges of values for η and σ:

η ∈ 10−2 × {0.1, 0.3, 0.5, 0.8, 1, 1.5, 2, 3, 5, 8, 10, 20}
σ ∈ {0.05, 0.1, 0.12, 0.15, 0.18, 0.20, 0.25, 0.3}.

For each kernel kηκ defined by a (σ, η) couple, we trained 10 binary SVM
classifiers (each one trained to recognize each digit versus all other digits) on a
training fold of our 500 images dataset such that the proportion of each class was
kept to be one tenth of the total size of the training set. Using then the test fold,
our decision for each submitted image was determined by the highest SVM score
proposed by the 10 trained binary SVM’s. To determine train and test points, we



3.8. Experiments on images of the MNIST database 71

led a 3-fold cross validation, namely randomly splitting our total dataset into 3
balanced subsets, using successively 2 subsets for training and the remaining one
for testing (that is roughly 332 images for training and 168 for testing). The test
error was not only averaged on those cross-validations folds but also on 5 different
fold divisions. All the SVM experiments in this experimental section were run using
the spider15 toolbox. Most results shown here did not improve by choosing different
soft margin C parameters, we hence just set C = ∞ as suggested by default by the
authors of the toolbox.

102 η

σ

0.1 0.3 0.5 0.8 1 1.5 2 3 5 8 10 20

0.05

0.1

0.12

0.15

0.18

0.2

0.25

0.3

e < 19.5 % 

e < 22 % 

e < 22 % 

Figure 3.6. Average test error (displayed as a grey level) of different SVM
handwritten character recognition experiments using 500 images from the MNIST
database (each seen as a set of 25 to 30 randomly selected black pixels), carried
out with 3-fold (2 for training, 1 for test) cross validations with 5 repeats, where
parameters η (regularization) and σ (width of the Gaussian kernel) have been tuned
to different values.

The error rates are graphically displayed in Figure 3.6 using a grey-scale plot.
Note that for this benchmark the best testing errors were reached using a σ value of
0.12 with an η parameter within 0.008 and 0.02, this error being roughly 19.5%. All
values below and on the right side of this zone are below 32.5%, which is the value
reached on the lower right corner. All standard deviations with respect to multiple
cross-validations of those results were inferior to 2.3%, the whole region under 22%
being under a standard deviation of 1%. Those preliminary tests show that the

15see http://www.kyb.tuebingen.mpg.de/bs/people/spider/
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IGV kernel has an overall robust performance within what could be considered as a
sound range of values for both η and σ. Note that the optimal range of parameter
found in this experiment only applies to the specific sampling procedure that was
used in this case (25 to 30 points), and may not be optimal for larger matrices.
However the stability observed here led us to discarding further tuning of σ and η
when the amount of sampled points is different. We simply applied σ = 0.1 and
η = 0.01 for the remaining of the experimental section.

As in Kondor and Jebara (2003), we also compared the results obtained with
the k-IGV to the standard RBF kernel performed on the images seen as binary
vectors of {0, 1}28×28

further normalized so that their components sums up to 1.
Using the same range for σ that was previously tested, we applied the formula

k(z, z′) = e−
‖z−z′‖

2σ2 . Since the RBF kernel is grounded on the exact overlapping
between two images we expect it to perform poorly with few pixels and signifi-
cantly better when d grows, while we expect the k-IGV to capture more quickly the
structure of the images with fewer pixels through the kernel κ. This is illustrated
in Figure 3.7 where the k-IGV outperforms significantly the RBF kernel, reaching
with a sample of less than 30 points a performance the RBF kernel only reaches
above 100 points. Taking roughly all black points in the images, by setting d = 200
for instance, the RBF kernel error is still 17.5%, an error the IGV kernel reaches
with roughly 35 points.

Finally, we compared the kernelized-version of the Bhattacharrya kernel (k-
B) proposed in Kondor and Jebara (2003), the k-IGV, the polynomial kernel and
the RBF kernel by using a larger database of the first 1,000 images in MNIST
(100 images for each of the 10 digits), selecting randomly d = 40, 50, 60, 70 and 80
points and performing the cross-validation methodology previously detailed. The
polynomial kernel was performed seeing the images as binary vectors of {0, 1}28×28

and applying the formula kb,d(z, z
′) = (z · z′ + b)d. We followed the observations

of Kondor and Jebara (2003) concerning parameter tuning for the k-B kernel but
found out that it performed better using the same set of parameters used for the
k-IGV. The results presented in Table 5.1 of the k-IGV kernel show a consistent
improvement over all other kernels for this benchmark of 1000 images, under all
sampling schemes.

We did not use the kernel described by Wolf and Shashua (2003) in our ex-
periments because of its poor scaling properties for a large amount of considered
points. Indeed, the kernel proposed by Wolf and Shashua (2003) takes the form
of the product of d cosines values where d is the cardinality of the considered sets
of points, thus yielding negligible values in practice when d is large as in our case.
Their SVM experiments were limited to 6 or 7 points while we mostly consider
lists of more than 40 points here. This problem of poor scaling which in practice
produces a diagonal-dominant kernel led us to discarding this method in our com-
parison. All semigroup kernels presented in this paper are grounded on statistical
estimation, which makes their values stable under variable sizes of samples through
renormalization, a property shared with the work of Kondor and Jebara (2003).
Beyond a minimal amount of points needed to perform sound estimation, the size
of submitted samples influences positively the accuracy of the k-IGV kernel. A
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Figure 3.7. Average test error with RBF (σ = 0.2) and k-IGV (σ = 0.1
and η = 0.01) kernels led on 90 different samplings of 500 images. The curves show
an overall trend that both kernels perform better when they are given more points
to compute the similarity between two images. If we consider d = 200, the RBF
kernel error is 0.175, that is 17.5%, a threshold the IGV kernel reaches with slightly
more than 35 points. Each sampling corresponds to a different amount of sampled
points d, those samplings being ordered increasingly with d. Each sampling has been
performed independently which explains the bumpiness of those curves.

large sample size can lead however to computational problems since the value of
the k-IGV-kernel requires not only the computation of the centered Gram-matrix
K and a few matrix multiplications, but also the computation of a determinant, an
operation which can quickly become prohibitive since it has a complexity of O(d2.3)
where d is the size of the considered Gram matrix. Although we did not optimize
the computations of both k-B and k-IGV kernels (by storing precomputed values for
instance or using numerical approximations in the computation of the determinant),
this computational cost in the case of a naive implementation, illustrated by the
running times displayed in Table 5.1, remains an issue that needs to be addressed
in practical applications.

3.9 Closing remarks

We presented in this work a new family of kernels between measures. Such kernels
are defined through prior functions which should ideally quantify the concentration
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Sample Size
Gaussian Polynomial k-B k-IGV
σ = 0.1 b = 10; d = 4 η = 0.01; σ = 0.1 η = 0.01; σ = 0.1

40 pixels 32.2 (1) 31.3 (1.5) 19.1 (1500) 16.2 (1000)
50 ” 28.5 (1) 26.3 (1.5) 17.1 (2500) 14.7 (1400)
60 ” 24.5 (1) 22.0 (1.5) 15.8 (3600) 14.6 (2400)
70 ” 22.2 (1) 19.5 (1.5) 15.1 (4100) 13.1 (2500)
80 ” 20.3 (1) 17.4 (1.5) 14.5 (5500) 12.8 (3200)

Table 3.1. SVM Error rate in percents of different kernels used on a
benchmark test of recognizing digits images, where only 40 to 80 black points where
sampled from the original images. The 1,000 images where randomly split into 3
balanced sets to perform cross validation (2 for training and 1 for testing), the error
being first averaged over 5 such splits, the whole process being repeated again over
3 different random samples of points. Running times are indicated in minutes.

of a measure. Once such a function is properly defined, the kernel computation goes
through the evaluation of the function on the two measures to be compared and
on their mixture. As expected when dealing with concentration of measures, two
intuitive tools grounded on information theory and probability, namely entropy and
variance, prove to be useful to define such functions. Their expression is however
still complex in terms of computational complexity, notably for the k-IGV ker-
nel. Computational improvements or numerical simplifications should be brought
forward to ensure a feasible implementation for large-scale tasks involving tens of
thousands of objects.

An attempt to define and understand the general structure of p.d. functions
on measures was also presented, through a representation as integrals of elementary
functions known as semicharacters. We are investigating further theoretical prop-
erties and characterizations of both semicharacters and positive definite functions
on measures. The choice of alternative priors on semicharacters to propose other
meaningful kernels, with convenient properties on molecular measures for instance,
is also a subject of future research. As for practical applications, these kernels
can be naturally applied on complex objects seen as molecular measures. We also
expect to perform further experiments to measure the performance of semigroup
kernels on a diversified sample of challenging tasks, including cases where the space
of components is not a vector space, notably when the considered measures are
multinomials on a finite component space endowed with a kernel.
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Appendix A : an Example of Continuous Positive
Definite Function Given by Noncontinuous
Semicharacters

Let X be the unit interval [0, 1] hereafter. For any t in X , a semicharacter on
M b

+(X ) is defined by

ρht
(µ) = eµ([0,t]),

where ht(x) = I[0,t](x) is the index function of the interval [0, t]. Note that ρht
is

not continuous for t ∈ [0, 1) by Proposition 3.11.
For µ ∈ M b

+(X ), the function t 7→ µ([0, t)) is bounded and non-decreasing,
thus, Borel-measurable, since the discontinuous points are countable at most. A
positive definite function on M b

+(X ) is defined by

ϕ(µ) =

∫ 1

0

ρht
(µ)dt.

This function is continuous, while it is given by the integral of noncontinuous
semicharacters.

Proposition The positive definite function ϕ is continuous and exponentially bounded.

Proof. Suppose µn converges to µ weakly in M b
+(X ). We write Fn(t) = µn([0, t])

and F (t) = µ([0, t]). Because µn and µ are finite measures, the weak convergence
means

Fn(t) → F (t)

for any continuous point of F . Since the set of discontinuous points of F is at most
countable, the above convergence holds almost everywhere on X with Lebesgue
measure. From the weak convergence, we have Fn(1) → F (1), which means there
exists M > 0 such that supt∈X ,n∈N Fn(t) < M . By the bounded convergence
theorem, we obtain

lim
n→∞

ϕ(µn) = lim
n→∞

∫ 1

0

eFn(t)dt =

∫ 1

0

eF (t)dt = ϕ(µ).

For the exponential boundedness, by taking an absolute value α(µ) = eµ(X), we
have

|ϕ(µ)| ≤
∫ 1

0

α(µ)dt = α(µ).
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Chapter 4

Semigroup Spectral

Functions on Measures

Résumé

Nous poursuivons dans ce chapitre la caractérisation de noyaux de semigroupe
pour mesures présentés dans le chapitre précédent. Nous nous intéressons plus
spécifiquement aux noyaux définis positifs de deux mesures qui sont calculés à par-
tir du spectre de la matrice de variance du mélange de ces deux mesures. Nous
montrons que les fonctions caractéristiques du cône des matrices définies positives
Σ+
n munies de différentes mesures de probabilité peuvent être directement utilisées

pour définir des noyaux de ce type, en les appliquant directement à la matrice
de variance du mélange considéré. Nous proposons de nouvelles formules pour cer-
tains cas particuliers de ces fonctions caractéristiques, que nous particularisons dans
les cas simples où les mesures sont des mesures moléculaires ou des histogrammes
lorsque X est fini.

77
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4.1 Introduction

Defining positive definite kernels on measures has attracted a lot of attention re-
cently (Cuturi et al., 2005; Jebara et al., 2004; Hein and Bousquet, 2005; Lafferty
and Lebanon, 2005), motivated by potential applications of kernel methods on com-
posite objects seen as measures on spaces of components. The key idea behind this
approach is to represent an object as a measure, possibly a distribution in a statis-
tical model, and use kernels (or combinations of kernels as proposed in Chapter 5)
on these representations. The advantage of this approach is two fold:

• First, and once the space of components is set, the representation of an object
as a measure can be efficiently obtained through statistical estimation, to
represent and regularize properly these measures, e.g., the use of uniform
Dirichlet priors in Cuturi and Vert (2005) to regularize letters’ counters or
tfidf type frequencies for words (Lafferty and Lebanon, 2005; Joachims, 2002).

• Second, defining the kernel on such measures is a matter of choosing the right
metric from a large collection of available metrics (Amari and Nagaoka, 2001;
Hein and Bousquet, 2005), using for instance cross validation.

However, two major and independent issues arise when following this approach:
the arbitrariness in the definition of the space of components, and the fact that
a single measure for the whole object (that is a single histogram if the space of
components is finite) might be a poor representation. The latter issue has been
recently investigated in (Cuturi and Fukumizu, 2005) whose content is exposed in
Chapter 5. We review in this Chapter a few ideas to cope with the first problem,
which may translate into novel directions to design kernels on measures.

We discuss with more details the issues that arise when mapping objects onto
measures in Section 4.2. A class of functions that may be useful to cope with
such issues is presented in Section 4.3, labelled as semigroup spectral functions.
Finally, we review in Section 4.4 a simple particular case of the previous family that
translates into a fast kernel on clouds of points.

4.2 Comparing Measures on Arbitrary Spaces
through Kernelized Estimates

Let us start this section with a few notations. We write Σ+
n for the set of positive

semidefinite matrices of order n, and for two elements A,B of Σ+
n , 〈A,B 〉 denotes
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the Frobenius dot-product tr(AB ). We write Id for the identity matrix of rank d
and 1d,d for the d × d matrix composed of ones. For a vector u ∈ Rd and a d × d
real positive semidefinite matrix K, the seminorm ‖ · ‖K is defined as

‖u‖K =
√
u⊤Ku.

Hölder norms for Rd are defined as the family of norms,

‖u‖p =

(

d
∑

i=1

|ui|p
)1/p

,

with p ≥ 1.

4.2.1 Measure Representations of Objects and Component

Spaces

In some applications, the choice of a component space X to decompose a complex
object is unambiguous and motivated by an a priori knowledge on the objects.
Proteins for instance can be seen as macromolecules and are usually sliced into
smaller chains of amino-acids known as domains (Hubbard et al., 1997). In learning
tasks when there is not such a natural option – as guided by intuition and knowledge
on the task – choosing a good size and complexity for the space of components is a
major issue.

For example, the k in the size of k-mers used to slice amino-acids sequences
into shorter subsequences usually has to be selected through cross-validation tech-
niques. The corpus of words used in a bag-of-words representation of texts is also
chosen following empirical considerations, that yield in practice to the erasure of
frequent words with poor discriminative impact. Finally, the far more general issue
of turning continuous values into finite number of bins, e.g., selecting a color depth
for digitalized images, also falls into this type of problem if one wishes to represent
the objects as multinomials of such bins.

When the space of components is too small, crucial details on the objects is
definitely lost. When the component space is large, more information is captured
but the obtained measures may be too sparse to be of practical use. One of the
ways to cope with such a sparsity is, as recalled in the introduction, to regularize
the empirical measures using prior knowledge. In bag of words representations of
texts, Lafferty and Lebanon (2005) and Joachims (2002) use tf or tfidf estimators;
for histograms of letter transitions, Cuturi and Vert (2005) use Dirichlet priors,
while for histograms of colors Chapelle et al. (1999) apply nonlinear transformation
to the counters. Finally, a common practice in bioinformatics is to regularize the
k-mers counters through BLOSUM-type similarity matrices for amino-acids (Leslie
et al., 2003; Rätsch and Sonnenburg, 2004). All these approaches share the following
approach: first regularize the empirical measures and then compare them through
kernels on multinomials which assume that the bins are interchangeable (Lafferty
and Lebanon, 2005; Hein and Bousquet, 2005).
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Rather than regularizing the empirical measures directly, a different direction
incorporates this smoothing step into the expression of the kernel on measures itself,
using in that sense a kernel κ on the component space. This operation is usually
carried out theoretically by mapping a molecular measure on X to a molecular
measure in a finite subspace of the RKHS Hκ associated with κ, and performing
then the original calculations in Hκ. In practice, most calculations only involve a
finite number of kernel evaluations between the components that are directly used
to construct the final kernel value between the two measures. When the space
of components is finite, the bins that are translated into the RKHS Hκ are not
necessarily orthogonal, and hence not interchangeable anymore, but rather depend
on κ directly. This approach has been investigated to our knowledge in two papers;
Kondor and Jebara (2003) and Cuturi and Vert (2005) have recently proposed
kernelized versions of p.d. kernels designed for measures. These approaches can
be related to (Wolf and Shashua, 2003), although the latter reference does not
yield a kernel that can be used in practice as such. A slightly different approach,
presented in (Hein and Bousquet, 2005), performs such a kernelization too but
can only be computed in closed form with certain families of kernels. Through
such kernelizations, all previous authors aim at including prior knowledge on the
components at the level of the kernel itself, and reduce in parallel the arbitrariness
of choosing the right parameterization for the component space.

We extend in this chapter results from (Cuturi et al., 2005) and characterize
a few semigroup kernels on measures defined through variance, which from our
viewpoint is a possible first step to perform such a kernelization.

4.2.2 Computing Kernels on Measures through Variance

While variance can be regarded as an efficient descriptor of a measure, it is also
well suited for a further kernelization that takes into account similarities between
elements of the original space. Indeed, if X is Euclidian, the variance Σ of a molec-
ular measure, that is its centered second-order moment, has natural links with the
dot-product matrix of the centered elements of the support of the measure. The
variance of a measure µ can be roughly expressed in a matrix form as

Σ = X̃X̃⊤,

with X̃ being the matrix of all centered points contained in the support of the
measure in a column form, while its centered dot-product matrix K̃ would take the
form

K̃ = X̃⊤X̃.

This remark suffices to note that all non-zero eigenvalues of both matrices are the
same with the same multiplicity. Real valued p.d. kernels that only rely on the
spectrum of variance matrices, that is spectral functions (Davis, 1957; Lewis, 2003)
of the variance matrices, may hence be kernelized by computing the spectrum of
the Gram matrices of the support of the measures rather than that of the variance
matrix itself (which may not even exist when X is not Euclidian) and apply such
formulas to the spectrum of the dot-product matrix. To ensure a stable formulation,
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the spectral function used should further be invariant if we add an arbitrary number
of zeros to the spectrum. We focus first on the sole issue of defining spectral
functions on variances that may translate into p.d. kernels on measures.

In Euclidian spaces, variance matrices can be seen as an elementary charac-
terization of the dispersion of a measure. When quantified by its determinant, the
volume of a variance matrix has close connections with the entropy of the maxi-
mum likelihood multivariate Gaussian density that fits best the measure (Cuturi
et al., 2005). However, comparing straightforwardly the centered variances of two
measures ignores the discrepancy between the respective means. This has not been
explored so far to our knowledge, but might translate into a useful translation in-
variance. In this framework, using spectral p.d. kernels on Σ+

n should be sufficient
to ensure the resulting kernelization.

When such an invariance is not pertinent, a better grounded alternative is to
map the measures onto multivariate Gaussian distributions, that is consider both
first and second order moments of the empirical measures, and use classical affinities
between these distributions. The Bhattacharrya affinity was recently exposed in
this context (Jebara et al., 2004), along with its kernelized counterpart (Kondor
and Jebara, 2003). The drawback of such an approach is that it requires, when
kernelized, an implicit construction of an orthogonal base for the space spanned by
the support of the two measures, on which the means of the respective measures
have to be projected. When performed in the RKHS this construction can be very
costly.

4.2.3 The Semigroup Framework for Measures

Instead, the direction exploited in (Cuturi et al., 2005) is to use directly the second
order moment of the mean of two measures rather than only consider the measures
separately. Considering the mixture of two measures rather than the separate vari-
ances is a non-linear mapping that takes into account the discrepancies between the
means since

Σ(µ+ µ′) = Σ(µ) + Σ(µ′) −
(

µ̄µ̄′⊤ + µ̄′µ̄⊤) , (4.1)

where we write as a shorthand µ̄ for µ[x]. Taking the variance of the mixture of two
measures is however grounded on geometric considerations: positive measures lie in
a convex cone, and it is natural to add or average two measures. In probabilistic
terms this amounts to merging the outcome of two experiments. On the other
hand, there is no proper substraction between measures that respects their non-
negativeness, unlike usual vector spaces. Semigroup kernels can be seen as a way of
constructing a distance between points when no substraction operation on the set
is available, through a semigroup negative definite function. Intuitively, one aims
at defining a distance through addition, as one would reconstruct the first hand of
the following equation by using only its second-hand,

‖x− y‖2 = −‖x+ y‖2 +
1

2
‖x+ x‖2 +

1

2
‖y + y‖2.

Other types of objects often encountered in machine learning, such as sequences,
motivate the use of the semigroup framework. Indeed, while it is natural to merge
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or concatenate strings, no natural substraction can be proposed on sequences. Fur-
thermore, while the square of the Hilbert norm of a difference is always negative
definite (Berg et al., 1984, Section 3.3) in the two arguments, the converse is not
true in general. One reaches thus more generality by considering all possible neg-
ative definite semigroup kernels rather than focusing only on norms, which is why
for n.d. functions ψ the expression

ψ(µ+ µ′) − 1

2
ψ(µ+ µ) − 1

2
ψ(µ′ + µ′)

may reach more generality to design kernels. If we connect this approach to our
previous discussion on functions on measures that take as an argument variance
matrices, we obtain the formulation

Ψ(Σ(µ+ µ′)) − 1

2
Ψ(Σ(2µ)) − 1

2
Ψ(Σ(2µ′)).

where Ψ ◦ Σ is both negative definite and Ψ is a spectral function defined on Σ+
n .

We name such a composed function ψ = Ψ◦Σ a semigroup spectral negative definite
(s.s.n.d.) function on measures. Note that this is not equivalent to defining directly
negative definite functions Ψ for matrices in Σ+

n , since the underlying semigroup
operation is the addition of measures and not that of the variance matrices of the
measures.

Following this motivation, we propose below a general framework to devise
semigroup spectral functions.

4.3 Semigroup Spectral Functions of Measures

We assume in the beginning of this section that X is an Euclidian space of dimension
n endowed with Lebesgue’s measure ν.

The variance of a measure µ of MV
+ (X ), the semigroup of measures with finite

first and second moment of M b
+(X ), is the matrix

Σ(µ) = µ[xx⊤] − µ[x]µ[x]⊤.

Note that Σ(µ) belongs to Σ+
n when µ is a sub-probability measure, that is when

|µ| ≤ 1, since

Σ(µ) = µ[(x− µ[x]) (x− µ[x])
⊤

] + (1 − |µ|)µ[x]µ[x]⊤.

4.3.1 An Extended Framework for Semigroup Kernels

In practice, the assumption that Σ(µ) ∈ Σ+
n will be crucial in the following sections.

The set on which this is ensured for any measure is the subset of MV
+ (X ) of sub-

probability measures. This subset is not, however, a semigroup, since it is not
closed under addition. To cope with this contradiction, that is to use semigroup
like functions of the type (µ, µ′) → ψ(µ + µ′) where ψ is only defined on a subset
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of the original semigroup, and where this subset may not be itself a semigroup, we
define the following extension to the original definition of semigroup functions.

Definition 4.1 (Semigroup kernels on subsets). Let (S,+) be an auto-involutive
semigroup and U ⊂ S a nonempty subset of S. A function ψ : U → R is a p.d. (resp.
n.d.) semigroup function on U if

∑

i,j

cicjψ(si + sj) ≥ 0 (resp ≤ 0)

holds for any n ∈ N; any s1, . . . , sn ∈ S such that si + sj ∈ U for 1 ≤ i ≤ j ≤ n;
and any c1 . . . , cn ∈ R (resp. with the additional condition that

∑

i ci = 0)

The subset Mv
+(X ) of sub-probability measures µ of MV

+ (X ) with non de-
generated variances, that is such that detΣ(µ) 6= 0, will be used throughout this
exposition, and all semigroup functions on Mv

+(X ) should be considered following
this definition. In practice and for such a semigroup kernel ψ defined on the subset
Mv

+(X ), we will consider kernels of the form

Mv
+(X )2 ∋ (µ, µ′) 7→ ψ

(

µ

2
+
µ′

2

)

to ensure that the mean µ+µ′

2 remains in Mv
+(X ). In other words, we will consider

the product space 1
2M

v
+(X ) × 1

2M
v
+(X ) as the index set of all kernels derived from

a s.s.p.d. function Ψ.

4.3.2 Characteristic Functions and s.s.p.d. Kernels

We establish a link in this section between a classical tool of convex analysis, used
notably in convex optimization through barrier functions (Boyd and Vandenberghe,
2004), and spectral semigroup kernels. We prove first a simple lemma which char-
acterizes a large family of s.s.n.d. on measures.

Lemma 4.2. For any S ∈ Σ+
n , the real-valued function defined on Mv

+(X ), a subset
of the semigroup MV

+ (X ), as

µ 7→ 〈Σ(µ), S〉

is a negative definite semigroup function.

Proof. For any k ∈ N, any c1, ..., ck ∈ R such that
∑

i ci = 0 and any µ1, ..., µk ∈
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MV
+ (X ) such that µi + µj ∈Mv

+(X ), we have using Equation (4.1) that

∑

i,j

cicj 〈Σ (µi + µj) , S 〉 =

〈

∑

i,j

cicj

(

Σ(µi) + Σ(µj) −
(

µ̄iµ̄
⊤
j + µ̄jµ̄

⊤
i

)

)

, S

〉

= −
〈

∑

i,j

cicj
(

µ̄iµ̄
⊤
j + µ̄jµ̄

⊤
i

)

, S

〉

= −2
∑

i,j

cicjµ̄
⊤
i Sµ̄j ≤ 0.

Note that µ 7→ 〈Σ(µ), S〉 is actually a semigroup function on the whole of
MV

+ (X ), but we will mainly use its restriction on Mv
+(X ). The simple case S = In,

that is considering µ 7→ tr Σ(µ), provides interesting results in practice and boils
down to a fast kernel on clouds of points. This case is considered separately with
more depth in Section 4.4. We characterize in the next proposition a large family
of semigroup spectral functions derived from Lemma 4.2.

To do so, we introduce first the notion of the characteristic function of a cone.
Given a cone T endowed with a dot-product 〈·, ·〉T , its dual is defined as

T ∗ =
⋂

t∈T
{s ∈ T, 〈s, t〉T ≥ 0},

and we write T ◦ for its interior. We further assume that T is a measurable space
with a base measure ν.

Definition 4.3 (Characteristic Function of a Cone, Koecher (1957)). The
characteristic function ϕT,ν : T ◦ → R of a cone T endowed with a measure ν is
defined as

ϕT,ν(t) =

∫

T∗

e−〈t,s〉T ν(ds).

Let us particularize this result to the cone Σ+
n of positive semidefinite matrices

which is in addition self-dual16, that is Σ+
n
∗

= Σ+
n . Indeed, this well known result

follows first from the fact that for S, T ∈ Σ+
n ,

〈S, T 〉 = tr(ST ) = tr(ST
1
2 T

1
2 ) = tr(T

1
2ST

1
2 ) ≥ 0.

Then, for S ∈ Σ+
n
∗
, we have that for any vector y ∈ Rn,

y⊤Sy = tr(Syy⊤) ≥ 0,

and hence S ∈ Σ+
n . Note further that Σ+

n
◦

is the set of positive definite matrices.
We endow Σ+

n with its Borel σ-algebra B and consider the Lebesgue measure on

16
Σ

+
n is actually one of five canonical homogeneous and irreducible cones, characterized by

P.Jordan, J. von Neumann and E. Wigner in a seminal paper of 1934.



4.3. Semigroup Spectral Functions of Measures 85

Σ+
n seen as a subset of Rn

2

. Following the terminology for functions, an orthogo-
nally invariant measure ρ on (Σ+

n ,B ) is such that for every B ∈ B and any n × n
orthogonal matrix P ,

ρ(B ) = ρ ({PSP ∗, S ∈ B}) .
The next proposition characterizes a large family of s.s.p.d. kernels on measures.

Proposition 4.4. The function ψρ : Mv
+(X ) → R defined by an orthogonally

invariant measure ρ through

ψρ(µ) = ϕ
Σ

+
n , ρ

(Σ (µ)) ,

is a semigroup spectral p.d. function.

Proof. When µ ∈ Mv
+(X ), Σ(µ) ∈ Σ+

n
◦
. The integral when it exists is a sum of

p.d. semigroup functions through Schoenberg’s theorem (Berg et al., 1984, Theorem
3.2.2), and is hence positive definite. The fact that the function is a spectral function
is ensured by the fact that ρ is orthogonally invariant.

4.3.3 A Few Examples of Semigroup Spectral Functions

We have already evoked the case ρ = δIn
, that is µ 7→ e− tr Σ(µ), and we study its

properties in Section 4.4. Let us review another example with Wishart densities on
Σ+
n , that is densities w.r.t the Lebesgue measure ν of the type

pΣ,d(S) ∝ 1

det(S)(n+1)/2
det(Σ−1S)d/2e−〈Σ−1,S〉,

for d ≥ n. Using this density which integrates to 1 on Σ+
n , we can set ρ = f · ν

where f : S 7→ det(S)
d−n−1

2 to obtain that

µ 7→ 1

detΣ(µ)
d
2

is a s.s.p.d. function on Mv
+(X ). In the next example, we restrict the integration

domain to only consider the subspace of Σ+
n of matrices of rank 1, that is matrices

of the form yy⊤ where y ∈ Rn. For a n × n strictly p.d. matrix A such that its
multispectrum mspecA = {λ1, ..., λn}, we write for 1 ≤ i ≤ n,

γi(A)
def
=
∑

|j|=i

∏n
k=1 Γ(jk + 1

2 )

λj11 · · ·λjnn

where the summation is taken over all families j ∈ Nn such that the sum of their
elements |j| is equal to i. Additionnally we set γ0(A) = 1 and remark that

γn(A) =

(√
π

2

)n
1

det(A)
,
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and

γ1(A) =
π

n
2

2
tr(A−1).

Corollary 4.5. The functions

χi : µ 7→
(

2√
π

)
n
2 √

γn · γi (Σ(µ)) ,

are s.s.p.d. functions on Mv
+(X ) for 1 ≤ i ≤ n− 1.

Proof. The Euclidian norm ‖y‖2
2 of y is the only positive eigenvalue of yy⊤ when

y 6= 0, hence any real-valued function of ‖y‖2
2 is spectral. As a consequence of

Proposition 4.4, where we have restricted the integration domain on matrices of
rank 1, and for any function g : R+ → R+,

µ 7→
∫

Rn

e−y
tΣ(µ)yg(‖y‖2

2)dy (4.2)

is a s.s.p.d. function on Mv
+(X ). Let µ ∈ Mv

+(X ), and write mspec Σ(µ) =
{λ1, ..., λn}. Then by an appropriate base change we have for g : x 7→ xi, i ∈ N,

∫

Rn

e−y
tΣ(µ)yg(‖y‖2

2)dy =

∫

Rn

e−
∑n

k=1 λky
2
k g( ‖y‖2

2)dy

=

∫

Rn

e−
∑n

k=1 λky
2
k

∑

|j|=i

n
∏

k=1

y2jk
k dy

=
∑

|j|=i

n
∏

k=1

∫

R

e−λky
2
ky2jk
k dyk =

∑

|j|=i

n
∏

k=1

Γ(jk +
1

2
)λ

−jk− 1
2

k

=

(

2√
π

)
n
2 √

γn (Σ (µ))
∑

|j|=i

∏n
k=1 Γ(jk + 1

2 )

λj11 · · ·λjnn

=

(

2√
π

)
n
2 √

γn · γi (Σ (µ))

The inverse generalized variance presented in (Cuturi et al., 2005) is recovered
as χ0. We refer now to a series of identities, known as Lancaster’s formulas (Bern-
stein, 2005, p.320) to express more explicitly the cases i = 1, 2, 3.

Proposition 4.6 (Lancaster formulas). Let A,B ∈ Σ+
n . Then, for i = 0, 1, 2, 3

define

Ii def
=

1

π
n
2

√
detA

∫

Rn

(y⊤By)ie−y
⊤Aydy.
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Then

I0 = 1,

I1 = trAB,

I2 = (trAB)2 + 2 tr(AB)2,

I3 = (trAB)3 + 6(trAB)(tr(AB)2) + 8 tr(AB)3

The proof may be found in (Miller, 1987, p.80). Semigroup positive definite
functions can be derived through these formulas by using for g in the proof of
Corollary 4.5 a non-spectral density function of the type g : y 7→ (y⊤By)k. When
B = In, the Lancaster formulas give explicit expressions for χi in the cases i =

1, 2, 3, where we write Σ for Σ(µ) and Cn for
(

2√
π

)
n
2

:

χ0(µ) =
Cn√
detΣ

,

χ1(µ) =
Cn√
detΣ

[

tr Σ−1
]

,

χ2(µ) =
Cn√
detΣ

[

(tr Σ−1)2 + 2 trΣ−2
]

,

χ3(µ) =
Cn√
detΣ

[

(tr Σ−1)3 + 6(tr Σ−1)(tr Σ−2) + 8 trΣ−3
]

.

Finally, let us note that the representation proposed in Proposition 4.4 is not
exhaustive to our knowledge, although it shares some structural similarity with the
integral representation of semigroup p.d. functions studied in Section 3.6. First, the
functions

µ 7→ e−〈Σ(µ),S〉,

are not semicharacters, since

e−〈Σ(µ+µ′),S〉 6= e−〈Σ(µ)+Σ(µ′),S〉

in the general case. Second, the class of functions considered through Lemma 4.2 is
far from characterizing all semigroup negative definite functions on Mv

+(X ) since,
through (Berg et al., 1984, Corrolary 3.2.10, p.78), we have that for any S ∈ Σ+

n

and 0 < α < 1 both
µ 7→ 〈Σ(µ), S〉α,

and
µ 7→ ln(1 + 〈Σ(µ), S〉),

are s.s.n.d. functions. Note that if we use for y ∈ Rn and m ≥ 1 a n.d. function of
the type

µ 7→ m+ n

2
ln

(

1 +
1

m
y⊤Σ(µ)y

)

,
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and exponentiate it in the spirit of Equation (4.2), that is define

µ 7→
∫

Rn

1
(

1 + 1
my

⊤Σ(µ)y
)

m+n
2

dy,

we recover the integration of the Student centered multivariate distribution for
vectors of Rn,

S(y|Σ,m) =
Γ(m+n

2 )
√

detΣ

Γ(m2 )(mπ)n/2

(

1 +
1

m
y⊤Σ(µ)y

)−m+n
2

which boils down again to a kernel that is proportional to χ0.
Before reviewing in the next section a simple kernel, we note that we have

not completely fulfilled the initial objective of proposing a general family of kernels
on measures that would not only be spectral, but also easily “kernelizable”. Com-
putational issues aside, the family of s.s.p.d. functions on Mv

+(X ) obtained from
Proposition 4.4 particularized in Corollary 4.5 may not be used with the same ease
than the regularized IGV proposed in Chapter 3. Indeed, for a measure µ with
admissible base γ, only the non-zero elements of the spectrums of Σ(µ) and the
centered dot-product matrix K̃γ are equal. To be kernelized, the function should
not only be spectral, but also invariant under the addition of an arbitrary number
of null-eigenvalues. This property is only fulfilled so far by the regularized inverse
generalized variance, and by the trace kernel proposed below. Regularizing func-
tions obtained through Proposition 4.4 so that they can satisfy this restriction is
the topic of current research. An intermediate step that would be satisfactory from
an empirical viewpoint would be to project the considered measures onto finite sub-
spaces of the RKHS Hk obtained in a semi-supervised way, as in (Bach and Jordan,
2005), and use directly the family χi on such finite subspaces.

4.4 The Trace as a Semigroup Spectral Function

We focus back on the s.s.p.d. function

ϕtr : µ 7→ e−
1
β
〈Σ(µ),In〉 = e−

1
β

tr Σ(µ),

defined for β > 0, and where ϕtr stands for ϕδIn
as a shorthand to the notation

used in Proposition 4.4. We coin down this function the trace s.s.p.d. function, or
the trace kernel between two measures µ and µ′ when it is evaluated on their mean.

Presented in (Cuturi et al., 2005), the regularized inverse generalized variance
(IGV) kernel quantifies how similar two probability measures µ and µ′ are by con-
sidering the generalized variance of their mixture, that is the determinant of the

centered variance matrix Σ(µ+µ′

2 ). The IGV kernel kηigv (where η > 0), defined17 as

kηigv(µ, µ
′)

def
=

1
√

det
(

1
ηΣ
(

µ+µ′

2

)

+ In

)

,

17In (Cuturi et al., 2005), the IGV kernel is presented without the square root sign. The original
proof incorporates this case however, and we adopt from now on this convention to be consistent
with Proposition 4.4.
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can actually be written as a s.s.p.d function. It suffices to note, using the same
proof used for Corrolary 4.5, that the s.s.p.d. ϕgv defined through

g : y 7→ e−‖y‖2
2 ,

and applied to a scaling 1/η of Σ(µ),

ϕgv : µ 7→
∫

Rn

e−
1
η
〈Σ(µ),yy⊤〉e−‖y‖2

2dy =

∫

Rn

e−〈 1
η
Σ(µ)+In,yy

⊤〉dy

boils down to the identity

kηigv(µ, µ
′) = ϕgv

(

µ+ µ′

2

)

.

ϕgv(µ) and ϕtr(µ) only depend on the spectrum of Σ(µ), and can be interpreted as
two different quantifications of the size of Σ(µ), described by its volume and by its
perimeter respectively. If we write (λi)i=1..n for the eigenvalues of Σ(µ), we have
that:

ϕgv(µ) =

n
∏

i=1

(

1 +
λi
η

)−1

, or ϕgv(µ) = e−
∑n

i=1 ln(1+
λi
η

);

ϕtr(µ) =

n
∏

i=1

e−
λi
β , or ϕtr(µ) = e−

∑n
i=1

λi
β ,

(4.3)

which shows that both IGV and trace kernels apply a different regularization scheme
to these eigenvalues: the trace kernel tends to give more importance to large eigen-
values when seen from the IGV kernel viewpoint expressed in the left-hand side of
Equation (4.3), while the IGV kernel tends to focus more on small eigenvalues when
seen from the trace kernel viewpoint expressed in the right hand side.

4.4.1 The Trace Kernel on Molecular Measures

In the case of a molecular measure µ defined on an Euclidian space X of dimension
n, the variance Σ(µ) is simply the usual empirical estimate of the variance matrix
expressed in an orthonormal basis of X :

Σ(µ) =

d
∑

i=1

aixix
⊤
i −

(

d
∑

i=1

aixi

)(

d
∑

i=1

aixi

)⊤

,

where we use an admissible base γ = (xi, ai)
d
i=1 of µ to give a matrix expression

of Σ(µ), with all points xi expressed as column vectors. Given such an admissible
base, let Xγ = [xi]i=1..d be the n× d matrix made of all column vectors xi, and let
δγ and ∆γ be respectively the column vector and the diagonal matrix of weights of
γ taken in the same order (ai)1≤ı≤d,
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δγ =

















a1

...
ai
...
ad

















, ∆γ =













a1 0 · · · 0

0 a2
. . .

...
...

. . .
. . . 0

0 · · · 0 ad













.

We then have for any base γ of µ that:

Σ(µ) = Xγ(∆γ − ∆γ1d,d∆γ)X
⊤
γ .

If µ is a probability measure,

Σ(µ) = Xγ(Id − ∆γ1d,d)∆γ(Id − 1d,d∆γ)X
⊤
γ , (4.4)

where we used (∆γ1d,d)
2 = ∆γ1d,d since tr∆γ = |µ| = 1. This expression is

however invalid when µ is a not a probability measure, and we use below a more
suitable expression of Σ(µ) than the one in Equation (4.4) in that case. Assume
further that

Kγ
def
=
[

x⊤i xj
]

1≤i,j≤d ,

namely the d× d matrix of dot-products associated with the elements of a base γ,
and subsequently define

K̃γ
def
=

[

(xi −
d
∑

k=1

akxk)
⊤(xj −

d
∑

k=1

akxk)

]

1≤i,j≤d
= (Id − 1d,d∆γ)Kγ(Id − ∆γ1d,d),

for its centered expression with respect to the mean of µ. The reformulation of
Equation (4.4) paves then a way for a natural kernelization of ϕtr(µ), since by
writing X̃ = X(Id − ∆1d,d) we have that the matrices K̃γ∆γ = X̃⊤X̃∆γ and

Σ(µ) = X̃∆γX̃
⊤ share the same non-zero eigenvalues and hence the same trace.

When µ is not a probability measure however, the expression of Σ(µ) becomes
slightly more complicated, although it is still possible to “kernelize” it (that is
express it through Kγ) as seen below.

Proposition 4.7. For a measure µ ∈ Mol+(X ) there exists r > 0 and θ ∈ Mol1+(X )
such that µ = r θ. If γ is an admissible base of θ, then

ϕtr(µ) = r tr Σ(θ) + (r − r2)‖θ[x]‖2
2 ,

= r tr(Kγ∆γ) − r2‖δγ‖2
Kγ
.

(4.5)

Proof. The first identity is obtained by subtracting below the second line to the
first line:

Σ(rθ) = rθ[xx⊤ ] − r2θ[x]θ[x]⊤

rΣ(θ) = rθ[xx⊤ ] − rθ[x]θ[x]⊤ ,
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and using the fact that tr(θ[x]θ[x]⊤) = ‖θ[x]‖2
2. For a probability measure θ, we

refer to the proof of (Cuturi et al., 2005, Proposition 5) for the identification of
non-zero eigenvalues of Σ(θ) and K̃γ∆γ . Hence

ϕtr(θ) = tr(K̃γ∆γ)

= tr(Id − 1d,d∆γ)Kγ(Id − ∆γ1d,d)∆γ

= tr(K∆γ − 1d,d∆γK∆γ −K∆γ1d,d∆γ + 1d,d∆γK∆γ1d,d∆γ)

= tr(K∆γ) − ‖δγ‖2
Kγ

the final identity can be then obtained by noting that ‖θ[x]‖2
2 = ‖δγ‖2

Kγ

The reformulation in (Cuturi et al., 2005, Proposition 5) of a quantity defined
on the variance matrix in terms of matrices of dot-product is used to pave the way
for a kernelization of the IGV kernel in (Cuturi et al., 2005, Theorem 7). Indeed,
the latter theorem proves that changing the dot-product matrix Kγ of a base γ into
any Gram matrix Kγ associated with the same base γ and a kernel κ, that is

Kγ = [κ(xi, xj)]1≤i,j≤d,

retains the positive definiteness of the IGV kernel, while giving it a wider applica-
bility. This substitution is valid here as well, since both IGV and TV kernels can be
kernelized considering molecular measures in X as molecular measures on a finite
subspace of the RKHS associated with a kernel κ and performing exactly the same
computations. Instead of considering dot-product matrices in a strict sense, we will
hence consider Gram matrices of any type induced by any a priori kernel κ on X
without assuming further that X is Euclidian.

4.4.2 Practical Formulations for the Trace Kernel

Following our discussion in the introduction, negative definite kernels on a set X ,
that is real-valued functions k defined on X × X , and Hilbert norms, that is real
valued functions on X × X of the form D(x, y) = ‖Φ(x) − Φ(y)‖H where H is a
Hilbert space and Φ : X → H, are deeply related one to the other. Remarkably,
D is a Hilbert norm (that is an adequate space H and a mapping Φ match its
expression) if and only if D2 is negative definite. On the other hand, the scope of
n.d. kernels spans a larger space of functions, see notably (Berg et al., 1984, Chapter
3.3) and (Hein and Bousquet, 2005) for a discussion in the framework of measures.
Expressing a n.d. kernel k as the square of Hilbert norm can be obtained in practice
by normalizing the kernel, that is writing

k̃(x, y) = k(x, y) − k(x, x) + k(y, y)

2

so that k̃ vanishes on the diagonal. Note that k̃ is still negative definite, as the
addition of two n.d. kernels (Berg et al., 1984, Corollary 3.2.11). We use below such
normalized quantities, and see that they translate naturally into families of Hilbert
norms on M b

+(X ).



92 Chapter 4. Semigroup Spectral Functions on Measures

Clouds of points of X
Given two measures µ = rθ and µ′ = r′θ′ ∈ Mol1+(X ) with admissible bases γ, γ′

for θ and θ′, we have that

ϕ̃tr(µ, µ
′) = ϕtr

(

µ+ µ′

2

)

−ϕtr(µ) + ϕtr(µ
′)

2
=

1

4
(r2‖δ‖2

Kγ
+r′2‖δ′‖2

Kγ′
−2rr′δ⊤K∗δ

′)

where K′′, the Gram matrix of the concatenation γ, γ′ has been decomposed as

K′′ =

(

Kγ K∗
K⊤

∗ Kγ′

)

,

and K∗ is the dot-product matrix between the elements of the support of µ and µ′.

Suppose that we address the simple case µ = 1
d

∑d
i=1 δxi

and µ′ = 1
d′

∑d′

i=1 δyi
, then

we have that

ϕ̃tr(µ, µ
′) =

1

4

(

2
|K∗|
dd′

− |Kγ |
d2

− |Kγ′ |
d′2

)

where for any matrix A, |A| def
=
∑

i,j Ai,j .

Multinomials on finite sets of components X
Various kernels on measures on finite spaces have been proposed recently to be
applied to multinomial probability distributions (Lafferty and Lebanon, 2005; Hein
and Bousquet, 2005; Jebara et al., 2004). This attention has been mainly fueled
by practical considerations when implementing kernel methods on real-life datasets,
since in practice structured objects such as texts or digitalized images can be for-
mulated as multinomials over finite spaces of components, typically sets of words,
letters or bins of discreticized continuous values. When X is finite and n = card(X ),
a measure µ in M b

+(X ) is described by its weights µ(x) where x spans X . If we
define an arbitrary index for the elements of X , this is equivalent to considering
the measure as a vector δ of the simplex Σn. The previously considered Gram ma-
trices of the support of a measure can then be replaced by a single a priori Gram
matrix K defined on the whole set of components ordered in the same way. These
simplifications yield the following expression:

Proposition 4.8 (Trace Kernel for Multinomials). Let µ = rδ, µ′ = rδ′ be
two measures on a finite set X endowed with a kernel κ, where δ and δ′ belong to
Σd.

ϕ̃tr(µ, µ
′) = ‖rδ − r′δ′‖K,

where K is the κ Gram matrix of elements of X .

Proof.

ϕtr

(

µ+ µ′

2

)

− ϕtr(µ) + ϕtr(µ
′)

2
=

1

4

(

r2‖δ‖2
Kγ

+ r′2‖δ′‖2
Kγ′

− 2rr′δ⊤K∗δ
′
)
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We thus obtain through a different path RBF type kernels for multinomials
(and sub-multinomials alike), that is for σ > 0 the kernel

(µ, µ′) 7→ e−
1
σ
‖µ−µ′‖K .

Such kernels are directly parameterized by a kernel function on the bins of interest.
We believe this simple kernel may prove useful in practice to compare objects, at
an additional cost however since the use the seminorm ‖ ·‖K demands d2 operations
to compute the kernel, rather than using directly the Euclidian norm which can be
computed in d steps.
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Chapter 5

Multiresolution Kernels

Résumé

Nous proposons dans ce chapitre une méthodologie pour définir des noyaux pour
objets structurés inspirée de l’algorithme dit du “context-tree weighting” proposé
par Willems et al. (1995) et utilisé pour calculer un mélange de probabilités dans
le deuxième chapitre de cette thèse. Nous faisons le constat que l’approche visant
à représenter un objet complexe comme un histogramme de ces composants peut
s’avérer limitante pour plusieurs applications, alors même que certains noyaux pour
histogrammes peuvent à l’inverse être performants quand ils sont couplés avec des
machines à vecteur de support. Nous tâchons donc d’intégrer ce problème en
proposant une approche générique qui puisse tirer profit d’une représentation de
chaque objet considéré non plus comme un simple histogramme mais comme une
famille d’histogrammes embôıtés selon une hiérarchie d’évènements pouvant con-
ditionner l’apparition de composants. Via l’algorithme de Willems et al. (1995)
nous montrons que le calcul de ce noyau, constitué d’un vaste mélange de noyaux
plus élémentaires, peut s’effectuer en un temps linéaire en le nombre d’histogrammes
élémentaires considérés pour représenter les objets. Dans des applications pratiques,
son implémentation peut améliorer la performance de noyaux sur mesures couplés
avec des SVM, comme en témoignent les expériences exposées en fin de chapitre
visant à catégoriser automatiquement des images vues comme des histogrammes de
couleur.

95
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5.1 Introduction

There is strong evidence that kernel methods (Schölkopf and Smola, 2002) can de-
liver state-of-the-art performance in many classification tasks when the input data
lies in a vector space. Arguably, two factors contribute to this success. First,
the good ability of kernel algorithms, such as the SVM, to generalize and provide
a sparse formulation for the underlying learning problem; Second, the capacity
of nonlinear kernels, such as the polynomial and RBF kernels, to quantify mean-
ingful similarities between vectors, notably non-linear correlations between their
components. Using kernel machines with non-vectorial data (e.g., in bioinformat-
ics, pattern recognition or signal processing tasks) requires more arbitrary choices,
both to represent the objects and to chose suitable kernels on those representations.
The challenge of using kernel methods on real-world data has thus recently fostered
many proposals for kernels on complex objects, notably for strings, trees, images or
graphs to cite a few.

For such objects, multiple representations that lead to various kernels have
been proposed in the literature. Some practitioners expect to use directly some
well-known similarities in their respective fields, and the issue of their positive-
definiteness has to be addressed, either through some clever adaptations (Vert
et al., 2004) or more massive implementations using the so-called “empirical kernel
map” (Schölkopf et al., 2002). Another trend when dealing with such objects is
to consider them as bags of components. In practice this often yields kernels that
should be applied on the histograms of smaller components sampled in the objects,
where the kernels take into account the geometry of the underlying histograms Je-
bara et al. (2004); Lafferty and Lebanon (2005); Cuturi and Vert (2005); Hein and
Bousquet (2005); Cuturi et al. (2005). The previous approaches coupled with SVM’s
combine both the advantages of using discriminative methods with generative ones,
and produced convincing results on many tasks.

One of the drawbacks of such representations is however that they implicitly
assume that each component has been generated independently and in a stationary
way, where the empirical histogram of components is seen as a sample from an
underlying stationary measure. While this viewpoint may translate into adequate
properties for some learning tasks (such as translation or rotation invariance when
using histograms of colors to manipulate images (Chapelle et al., 1999)), it might
prove too restrictive and hence inadequate for other types of problems. Namely,
tasks which involve a more subtle mix of detecting both conditional (with respect
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to the location of the components for instance) and global similarities between the
objects. Such problems are likely to arise for instance in speech, language, time
series or image processing. In the first three tasks, this consideration is notably
treated by most state-of-the-art methods through dynamic programming algorithms
capable of detecting and penalizing accordingly local matches between the objects.
Using dynamic programming to produce a kernel yielded fruitful results in different
applications (Vert et al., 2004; Shimodaira et al., 2002), with the limitation that the
kernels obtained in practice are not always positive definite, as reviewed in (Vert
et al., 2004).

t2.1

t1 t2

t2.2

t1
t2.1

t2.2

t2

Figure 5.1. From the bag of components representation to a set of nested
bags, using a set of conditioning events.

We propose in this work a different approach to detect such similarities, an
approach that is grounded on the decomposition of structured objects into com-
ponents that is also able to detect both conditional and global similarities. The
motivation behind the kernels presented in this work is both intuitive and compu-
tational: intuitively, the global histogram of components, that is the simple bag of
components representation of Figure 5.1, may seem inadequate if the components’
generation can be particularized for certain event. This phenomenon can be taken
into account by considering collections (indexed on the same set of events, to be
defined) of nested bags or histograms to describe the object. Kernels that would
only rely on these detailed resolutions might however miss the bigger picture that is
provided by the global histogram. We propose a trade-off between both viewpoints
through a combination that aims at giving a balanced account of both fine and
coarse perspectives, hence the name of multiresolution kernels, which we introduce
formally in Section 5.2. On the computational side, we show how such a theoretical
framework can translate into an efficient factorization detailed in Section 5.3. We
then provide experimental results in Section 5.4 on an image retrieval task which
show that the methodology improves the performance of kernel based state-of-the
art techniques in this field.
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5.2 Multiresolution Kernels

In most applications, complex objects can be represented as histograms of com-
ponents, such as texts as bags of words or images and sequences as histograms
of colors and letters. Through this representation, objects are cast as probabil-
ity laws or measures on the space X of components, typically multinomials if X
is finite (Lafferty and Lebanon, 2005; Hein and Bousquet, 2005; Chapelle et al.,
1999; Joachims, 2002), and compared as such through kernels on measures. An
obvious drawback of this representation is that all contextual information on how
the components have been sampled is lost, notably any general sense of position in
the objects, but also more complex conditional information that may be induced
from neighboring components, such as transitions or long range interactions.

In the case of images for instance, one may be tempted to consider not only
the overall histogram of colors, but also more specialized histograms which may be
relevant for the task. If some local color-overlapping in the images is an interesting
or decisive feature of the learning problem, these specialized histograms may be
generated arbitrarily following a grid, dividing for instance the image into 4 equal
parts, and computing histograms for each corner before comparing them pairwise
between two images (see Figure 5.2 for an illustration). If sequences are at stake,
these may also be sliced into predefined regions to yield local histograms of letters.
If the strings are on the contrary assumed to follow some Markovian behaviour
(namely that the appearance of letters in the string is independent of their exact
location but only depends on the few letters that precede them), an interesting
index would translate into a set of contexts, typically a complete suffix dictionary
as detailed in (Cuturi and Vert, 2005). While the two previous examples may seem
opposed in the way the histograms are generated, both methodologies stress a par-
ticular class of events (location or transitions) that give an additional knowledge on
how the components were sampled in the objects. Since both these two approaches,
and possibly other ones, can be applied within the framework of this paper using
a unified formalism, we present our methodology using a general notation for the
index of events. Namely, we note T for an arbitrary set of conditioning events, as-
suming these events can be directly observed on the object itself, by contrast with
the latent variables approach of (Tsuda et al., 2002b). Considering still, following
the generative approach, that an object can be mapped onto a probability measure
µ on X , we have that the realization of an event t∈ T can be interpreted in terms of
a joint probability µ(x, t), with x∈ X , factorized through Bayes’ law as µ(x|t)µ(t)
to yield the following decomposition of µ as

µ =
∑

t∈ T
µt,

where each µt
def
= µ(·|t)µ(t) is an element of the set of sub-probability measures

M s
+(X ), that is the set of positive measures ρ on X such that their total mass

ρ(X ) denoted as |ρ| is less than or equal to 1. To take into account the information
brought by the events in T , objects can hence be represented as families of measures

of M s
+(X ) indexed by T , namely elements µ contained in MT (X )

def
= M s

+(X )T .
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5.2.1 Local Similarities Between Measures Conditioned by Sets

of Events

To compare two objects under the light of their respective decompositions as sub-
probability measures µt and µ′

t, we make use of an arbitrary positive definite kernel
k on M s

+(X ) to which we will refer to as the base kernel throughout the paper. For
interpretation purposes only, we may sometimes assume in the following sections
that k is an infinitely divisible kernel which can be written as e−ψ where ψ is a
negative definite kernel on M s

+(X ). Note also that the kernel is defined not only
on probability measures, but also on sub-probabilities. For two elements µ, µ′ of
MT (X ) and a given element t∈ T , the kernel

kt(µ, µ
′)

def
= k(µt, µ

′
t)

measures the similarity of µ and µ′ by quantifying how similarly their components
were generated conditionally to event t. For two different events s and t of T , ks
and kt can be associated through polynomial combinations with positive factors
to result in new kernels, notably their sum ks + kt or their product kskt. This
is particularly adequate if some complementarity is assumed between s and t, so
that their combination can provide new insights for a given learning task. If on
the contrary the events are assumed to be similar, then they can be regarded as a
unique event {s} ∪ {t} and result in the kernel

k{s}∪{t}(µ, µ
′)

def
= k(µs + µt, µ

′
s + µ′

t),

which will measure the similarity of m and m′ when either s or t occurs. The
previous formula can be extended to model kernels indexed on a set T ⊂ T of
similar events, through

kT (m,m′)
def
= k (µT , µ

′
T ) , where µT

def
=
∑

t∈ T

µt and µ′
T

def
=
∑

t∈ T

µ′
t.

Note that this equivalent to defining a negative kernel between elements µ and µ′

conditionned by T as ψT (µ, µ′)
def
= ψ(µT , µ

′
T ).

5.2.2 Resolution Specific Kernels

Let P be a finite partition of T , that is a finite family P = (T1, ..., Tn) of sets of T ,
such that Ti ∩ Tj = ∅ if 1 ≤ i < j ≤ n and

⋃n
i=1 Ti = T . We write P(T ) for the

set of all partitions of T . Consider now the kernel defined by a partition P as

kP (µ, µ′)
def
=

n
∏

i=1

kTi
(µ, µ′). (5.1)

The kernel kP quantifies the similarity between two objects by detecting their joint
similarity under all possible events of T , given an a priori similarity assumed on the
events which is expressed as a partition of T . Note that there is some arbitrary in
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this definition since, following the convolution kernels (Haussler, 1999) approach for
instance, a simple multiplication of base kernels kTi

to define kP is used, rather than
any other polynomial combination. More precisely, the multiplicative structure of
Equation (5.1) quantifies how two objects are similar given a partition P in a way
that imposes for the objects to be similar according to all subsets Ti. If k can be
expressed as a function of a n.d. kernel ψ, kP can be expressed as the exponential
of

ψP (µ, µ′)
def
=

n
∑

i=1

ψTi
(µ, µ′),

a quantity which penalizes local differences between the decompositions of µ and
µ′ over T , as opposed to the coarsest approach where P = {T } and only ψ(µ, µ′)
is considered.

Figure 5.2. A useful set of events T for images which would focus on pixel
localization can be represented by a grid, such as the 8 × 8 one represented above.
In this case P3 corresponds to the 43 windows presented in the left image, P2 to the
16 larger square obtained when grouping 4 small windows, P1 to the image divided
into 4 equal parts and P0 is simply the whole image. Any partition of the image
obtained from sets in P 3

0 , such as the one represented above, can in turn be used
to represent an image as a family of sub-probability measures, which reduces in the
case of two-color images to binary histograms as illustrated in the right-most image.

As illustrated in Figure 5.2 in the case of images expressed as histograms in-
dexed over locations, a partition of T reflects a given belief on how events should be
associated to belong to the same set or dissociated to highlight interesting dissimi-
larities. Hence, all partitions contained in the set P(T ) of all possible partitions18

are not likely to be equally meaningful given that some events may look more simi-
lar than others. If the index is based on location, one would naturally favor mergers
between neighboring indexes. For contexts, a useful topology might also be derived
by grouping contexts with similar suffixes.

Such meaningful partitions can be obtained in a general case if we assume the
existence of a prior hierarchical information on the elements of T , translated into a
series

P0 = {T }, .., PD = {{t}, t∈ T }
18which is quite a big space, since if T is a finite set of cardinal r, the cardinal of the set of

partitions is known as the Bell Number of order r with Br = 1
e

∑∞
u=1

ur

u!
∼

r→∞
er ln r .
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of partitions of T , namely a hierarchy on T . To provide a hierarchical content, the
family (Pd)

D
d=1 is such that any subset present in a partition Pd is included in a

(unique by definition of a partition) subset included in the coarser partition Pd−1,
and further assume this inclusion to be strict. This is equivalent to stating that
each set T of a partition Pd is divided in Pd+1 through a partition of T which is
not T itself. We note this partition s(T ) and name its elements the siblings of T .
Consider now the subset PD ⊂ P(T ) of all partitions of T obtained by using only
sets in

PD0
def
=

D
⋃

d=1

Pd,

namely PD def
= {P ∈ P(T ) s.t. ∀T ∈ P, T ∈ PD0 }. The set PD contains both the

coarsest and the finest resolutions, respectively P0 and PD, but also all variable
resolutions for sets enumerated in PD0 , as can be seen for instance in the third
image of Figure 5.2.

5.2.3 Averaging Resolution Specific Kernels

Each partition P contained in PD provides a resolution to compare two objects,
and generates consequently a very large family of kernels kP when P spans PD.
Some partitions are probably better suited for certain tasks than others, which may
call for an efficient estimation of an optimal partition given a task. We take in this
section a different direction by considering an averaging of such kernels based on
a prior on the set of partitions. In practice, this averaging favours objects which
share similarities under a large collection of resolutions.

Definition 5.1. Let T be an index set endowed with a hierarchy (Pd)
D
d=0, π be

a prior measure on the corresponding set of partitions PD and k a base kernel on
M s

+(X )×M s
+(X ). The multiresolution kernel kπ on MT (X )×MT (X ) is defined as

kπ(µ, µ
′) =

∑

P ∈ PD

π(P ) kP (µ, µ′). (5.2)

Note that in Equation (5.2), each resolution specific kernel contributes to the
final kernel value and may be regarded as a weighted feature extractor.

5.3 Kernel Computation

This section aims at characterizing hierarchies (Pd)
D
d=0 and priors π for which the

computation of kπ is both tractable and meaningful. We first propose a type of
hierarchy generated by trees, which is then coupled with a branching process prior
to fully specify π. These settings yield a computational time for expressing kπ which
is loosely upperbounded by D × cardT × c(k) where c(k) is the time required to
compute the base kernel.
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5.3.1 Partitions Generated by Branching Processes

All partitions P of PD can be generated iteratively through the following rule,
starting from the initial root partition P := P0 = {T }. For each set T of P :

1. either leave the set as it is in P ,

2. either replace it by its siblings enumerated in s(T ), and reapply this rule to
each sibling unless they belong to the finest partition PD.

By giving a probabilistic content to the previous rule through a binomial parameter
(i.e. for each treated set assign probability 1− ε of applying rule 1 and probability
ε of applying rule 2) a candidate prior for PD can be derived, depending on the
overall coarseness of the considered partition. For all elements T of PD this binomial
parameter is equal to 0, whereas it can be individually defined for any element T
of the D − 1 coarsest partitions as εT ∈ [0, 1], yielding for a partition P ∈ PD the
weight

π(P ) =
∏

T ∈ P

(1 − εT )
∏

T ∈
◦
P

(εT ),

where the set
◦
P = {T ∈ PD0 s.t. ∃V ∈ P, V ( T } gathers all coarser sets belonging

to coarser resolutions than P , and can be regarded as all ancestors in PD0 of sets
enumerated in P .

5.3.2 Factorization

The prior proposed in Section 5.3.1 can be used to factorize the formula in (5.2),
which is summarized in this theorem, using notations used in Definition 5.1

Theorem 5.2. For two elements m,m′ of MT (X ), define for T spanning recur-
sively PD, PD−1, ..., P0 the quantity

KT = (1 − εT )kT (µ, µ′) + εT
∏

U ∈ s(T )

KU .

Then kπ(µ, µ
′) = KT .

Proof. The proof follows from the prior structure used for the tree generation,
and can be found in either (Catoni, 2004) or Cuturi and Vert (2005). Figure 5.3
underlines the importance of incorporating to each node KT a weighted product of
the kernels KU computed by its siblings.

If the hierarchy of T is such that the cardinality of s(T ) is fixed to a constant α
for any set T , typically α = 4 for images as seen in Figure 5.2, then the computation
of kπ is upperbounded by (αD+1 − 1)c(k). This computational complexity may
even become lower in cases where the histograms become sparse at fine resolutions,
yielding complexities in linear time with respect to the size of the compared objects,
quantified by the length of the sequences in Cuturi and Vert (2005) for instance.
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Kt3

KT = (1 − εT )k(µT , µ
′
T ) + εT

∏

Kti

Kt2

Kt1

µ′
t3

µt3

µ′
t2

µt2

µ′
t1

µt1

µT =
∑

µti
µ′
T =

∑

µ′
ti

Figure 5.3. The update rule for the computation of kπ takes into account
the branching process prior by updating each node corresponding to a set T of any
intermediary partitions with the values obtained for higher resolutions in s(T ).

5.3.3 Numerical Consistency of the Base Kernel

Before reviewing experimental results, we discuss a numerical issue that may arise
from the choice of the basic seed of the multiresolution approach, namely the base
kernel k on sub-probabilities.

In our Definition 5.1, any kernel on M s
+(X ) can be used to apply a multiresolu-

tion comparison scheme on families of measures. If we even look for more generality
in our formulation, it is easy to note that a different kernel kt might be used for each
event t of T , without altering the overall applicability of the factorization above.
However, we only consider in this discussion a unique choice k for all events and
partitions.

From a numerical perspective, and for a partition P ∈ PD, the kernel kP –
which is a product of many base kernels kT , T ∈ P – can become quickly negligi-
ble for fine partitions, notably if the base kernel is slightly diagonally dominant.
Furthermore, if P is fine, the weight π(P ) that is used for kP in Equation (5.2)
does already penalize it with respect to coarser partitions. To maintain a consistent
weighting framework, one would expect that for any two partitions P1 and P2 of
PD, both kP1 and kP2 share similar ranges of values, so that their respective im-
portance in the mixture only relies on π(P1) and π(P2). This notion is difficult to
quantify, and we only formulate here a basic assumption for k. As can be observed
in Figure 5.4, comparing two families of measures µ, µ′ through multiresolution can
be roughly seen as comparing two broken lines that reach the surface of the simplex
(when X is finite) after a finite number of steps. The condition we propose here
to ensure a basic numerical consistency is that the base kernel k is geometrically
homogeneous, that is for t > 0 and any measures ν, ν′ ∈M s

+(X ),

k(ν, ν′) =

[

k

(

ν

t
,
ν′

t

)]t

.

Seen from the viewpoint of Figure 5.4, this would mean that in the special case that
µ and µ′ are families of parallel segments of equal size, comparing them would not be
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affected by a partition change, that is, for all partitions P1 and P2 of PD, kP1(µ, µ
′) =

kP2(µ, µ
′). If we translate this condition for infinitely divisible base kernels, we

obtain a more usual notion of additive homogeneity for the n.d. kernel ψ, that is
for t > 0 and two measures ν, ν′ ∈M s

+(X ),

ψ(ν, ν′) = tψ

(

ν

t
,
ν′

t

)

.

This elementary criterion is consistent with the experimental results we obtained
in practice, which show better results for such kernels. We even observed that
sub-homogeneous n.d. kernels, that is such that

tψ

(

ν

t
,
ν′

t

)

≤ ψ(ν, ν′),

also seem to work better in practice. This issue is itself related to the branching
process prior that is used, and the relations between the branching-process prior
and the homogeneity behaviour of the kernel ψ that is used is a topic of current
research.

5.4 Experiments

We present in this section experiments inspired by the image retrieval task first
considered in (Chapelle et al., 1999) and also used in (Hein and Bousquet, 2005),
although the images used here are not exactly the same. The dataset was also
extracted from the Corel Stock database and includes 12 families of labelled images,
each class containing 100 color images, each image being coded as 256× 384 pixels
with colors coded in 24 bits (16M colors). The families depict bears, African specialty
animals, monkeys, cougars, fireworks, mountains, office interiors, bonsais, sunsets,
clouds, apes and rocks and gems. The database is randomly split into balanced sets
of 900 training images and 300 test images. The task consists in classifying the test
images with the rule learned by training 12 one-vs-all SVM’s on the learning fold.
The object are then classified according to the SVM performing the highest score,
namely with a “winner-takes-all” strategy. The results presented in this section are
averaged over 4 different random splits. We used the CImg package to generate
histograms and the Spider toolbox for the SVM experiments19.

We adopted a coarser representation of 9 bits for the color of each pixel from
the 98, 304 ones stored in an image, rather than the 24 bits originally available,
to reduce the size of the RGB color space to 83 = 512 from the original set of
2563 = 16, 777, 216 colors. In this image retrieval experiment, we used localization
as the conditioning index set, dividing the images into 1, 4, 42 = 16, 9 and 92 = 81
local histograms (in Figure 5.2 the image was for instance divided into 43 = 64
windows). To define the branching process prior, we simply set an uniform value
over all the grid of ε of 1/α, an usage motivated by previous experiments led in
a similar context (Cuturi and Vert, 2005). Finally, we used kernels described in

19http://cimg.sourceforge.net/ and http://www.kyb.tuebingen.mpg.de/bs/people/spider/
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µ2

µ3

µ4

µ1

µ′
1

µ′
2

µ′
4

µ′
3

µ′
3,4

µ′
1,2

µ1,2

µ3,4

µ1···4 µ′
1···4

0

1

1α

β

Figure 5.4. Two families of measures µ and µ′, decomposed as 4 subprob-
abilities seen as 4 segments in the interior of the simplex Σ2, µi and µ′

i, i = 1..4.
We write α, β for the coordinates of a multinomial, where α + β = 1 on the bor-
der of the simplex. The coarsest approach only compares the averages µ1···4 and
µ′

1···4 represented by dotted lines. The finest one compares pairwise µi and µ′
i, for

i = 1, 2, 3, 4. Other decompositions of the respective broken lines are used by the
multiresolution kernel which may used local averages of short segments, such as
µ1,2 and µ′

1,2. As an analogy, for two points starting from zero and reaching the
simplex in µ1···4 and µ′

1···4, one may have a more detailed perspective than just com-
paring their arrival point by considering the local dissimilarities of their trajectory
in-between stop-overs. Such similarities may then be averaged according to some
weighting scheme on the importance of such stop-overs.

both (Chapelle et al., 1999) and (Hein and Bousquet, 2005) to define the base
kernel k. These kernels can be directly applied on sub-probability measures, which
is not the case for all kernels on multinomials, notably the Information Diffusion
Kernel (Lafferty and Lebanon, 2005). We report results for two families of kernels,
namely the Radial Basis Function expressed for multinomials and the entropy kernel
based on the Jensen divergence (Hein and Bousquet, 2005; Cuturi et al., 2005):

ka,b,ρ(θ, θ
′) = e−ρ

∑ |θa
i −θ′ia|b , kh(θ, θ

′) = e
−h
(

θ+θ′

2

)

+ 1
2 (h(θ)+h(θ′)).

For most kernels not presented here, the multiresolution approach usually improved
the performance in a similar way than the results presented in Table 5.1. Finally,
we also report that using only the finest resolution available in each (α,D) setting,
that is a branching process prior uniformly set to 1, yielded better results than
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the use of the coarsest histogram without achieving however the same performance
of the multiresolution averaging framework, which highlights the interest of taking
both coarse and fine perspectives into account. When a = .25 for instance, this
setting produced 16.5% and 16.2% error rates for α = 4 and D = 1, 2, and 15.8%
for α = 9 and D = 1.

Kernel
RBF, b = 1, ρ = .01

JD
a = .25 a = .5 a = 1

global histogram 18.5 18.3 20.3 21.4
D = 1, α = 4 15.4 16.4 18.8 17
D = 2, α = 4 13.9 13.5 15.8 15.2
D = 1, α = 9 14.7 14.7 16.6 15
D = 2, α = 9 15.1 15.1 30.5 15.35

Table 5.1. Results for the Corel image database experiment in terms of
error rate, with 4 fold cross-validation and 2 different types of tested kernels, the
RBF and the Jensen Divergence.
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