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Chapter 1

Introduction

Increasing demand for both reduced rotorcraft maintenance cost and im-
proved operational safety has paved the way for the Health and usage Mon-
itoring System (HUMS). These systems emerged in the early nineties as a
response to the relatively high accident rate experienced by offshore shuttle
helicopters trafficking the petrol installations in the North Sea. However, it
soon became clear that these systems, in addition to reducing accident rates,
had a potential for maintenance cost reduction. Research and development
into HUMS technologies over the years has kept a focus on both aspects by
working toward better safety. At the same time, efforts have been made to
exploit the increased situation awareness given by the HUMS in order to help
the operators better organize their maintenance tasks.

A HUMS deploys both proactive and reactive methods to anticipate drive-
train failure. Proactive methods include usage spectrum analysis such as
load cycle calculation, allowing remaining component safe life to be estimated
based on the actual stress a component has been under for the duration of its
service. The reactive approach is based on detecting propagating component
failure at an early stage, before seizure occurs. This method relies on a
sensor network covering engines and transmission system. For the current
generation HUMS, this sensor network is mainly limited to vibration sensors
and angular shaft speed sensors.

During operation, the HUMS airborne segment gathers data from its
sensor network. Some HUMS performs diagnosis real time in flight, providing
the pilots with instant warning of any suspected problems. However, most
HUMS perform diagnosis and reporting between flights. This is achieved by
transferring the data, by means of a data cartridge, to a stationary computer.
The stationary computer, known as a ground station, analyzes the recorded
data and produces a discrepancy report for the maintenance crew.

This study is concerned with methods to interpret the vibratory data as
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12 CHAPTER 1. INTRODUCTION

accurately as possible. The motivation for this is twofold; increased safety
and reduced maintenance cost. By improving the detection capabilities of
the system, the risk of in-flight mechanical failure is reduced. As a rotorcraft
drive-train is largely non-redundant, failure can have serious consequences.
Further, all HUMS, like any automated fault detection system, are prone
to produce unjustified alerts from time to time. This has implications both
on the operational availability as well as on the maintenance cost of the ro-
torcraft, as false alarms often results in unnecessary aircraft grounding and
maintenance. The methods described in this study are designed to produce
vibration-base diagnosis accurately as possible, so that the fault detection
rate is maximized and the false alarm rate minimized. An additional objec-
tive is removing any aircraft specific configuration of the HUMS. The need
for configuring, or training, the HUMS for each aircraft, and retrain it after
major overhauls, is a weak-spot on most commercial HUMS. This imposes a
significant workload on the operator, and renders the HUMS vulnerable miss-
training. Both of which detract from the system’s usefulness by increased
operating cost and reduced fault detection capabilities.

This report is organized in 8 chapters. Chapter 1 contains the general
introduction to the subject. More detail on HUMS is given in chapter 2,
with chapter 3 detailing the state of the art for the technologies deployed
in a HUMS. Practical issues concerning data transfer and storage are elabo-
rated in chapter 4. Chapter 5 treats validation and pre-processing of HUMS
vibration data. New methods for feature extraction are developed in chapter
6, and fault detection in chapter 7. Finally, concluding remarks are presented
in chapter 8. In order to keep the report as brief and clear as possible, details
on mathematical tools are kept in the appendixes.



Chapter 2

Problem Statement

2.1 Background

2.1.1 History

The history of Health and Usage Monitoring System (HUMS) dates back
as far as the mid eighties. At this time, it became clear that helicopters
operated in the North Sea where overrepresented in the accident statistics,
compared to equal size turbo prop airplanes. The UK Civil Aviation Au-
thority (UK) (CAA) Helicopter Airworthiness Requirements Panel (HARP)
submitted a report in 1986, concluding that the risk level in North Sea he-
licopter operations were above what could be seen as acceptable [47]. To
improve rotorcraft airworthiness, several steps were recommended. Among
them was the permanent installation of vibration monitoring equipment.

Vibration monitoring of mechanical systems was at the time already an
established technology. Although not previously tested on aircraft, such tech-
niques had already proven their effectiveness in condition monitoring of in-
dustrial machinery, such as paper mills and power plants. However, it was not
until the eighties that the size and weight of the necessary numeric hardware
were in such a manner that it could be fitted on a helicopter.

By the end of the eighties, two parallel trials were under way. Motivated
by the HARP report, and largely sponsored by the petroleum industry, these
programs aimed at testing the concept of in-flight vibration monitoring. One
of the programs was led by Steward Hughes Limited (SHL) / Teledyne, the
other by Meggitt Avionics. The purpose of the trials was however more to
create a proof of concept, than refining diagnosis algorithms. By the time the
trials ended in 1991, the technology was, however promising, still regarded
as immature.

In 1990, CAA issued new regulations making Flight Data Recorders

13



14 CHAPTER 2. PROBLEM STATEMENT

(FDRs) mandatory in helicopters operating in hostile environments. The
avionics manufacturers participating in the HUMS trials saw this as an op-
portunity to introduce their newly developed technology to the market. With
the operators’ and the petroleum industry’s increasing interest in the tech-
nology, creating combined FDR / Cockpit Voice Reorder (CVR) / HUMS
systems had obvious competitive advantages. Thus, two FDR / CVR /
HUMS systems were put on the market; SHL’s North Sea HUMS and Meg-
gitt Avionics’ IHUMS.

Al though not mandatory by law, the oil companies’ great interest in these
systems made them an important burgeoning point when negotiating service
contracts with the rotorcraft operators. As a result, HUMS quickly became a
reality for all operators involved in offshore flight, on both sides of the North
Sea. In 1999, the CAA issued regulations making HUMS mandatory for all
heavy rotorcraft registered in the UK.

2.1.2 Motivations

As already mentioned, the initial motivation for introducing vibration mon-
itoring in helicopters was safety. However, it soon became clear that a tool
capable of describing the actual condition of critical components had consid-
erable potential in maintenance planning and cost reduction.

Aircraft maintenance workload is normally measured in Mean Man Hours
/ Flight Hours (maintenance) (MMH/FH). Maintenance workload is highly
dependent on aircraft size and type, and can be found anywhere from less
than one hour to several hours per flight hour. Compared to equal size
turbo prop airplanes, even the most economical rotorcrafts have very high
operating cost due to maintenance. In fact, around 25% of the total life cycle
cost (LCC) for most helicopters is maintenance, equivalent to the acquisition
cost.

Maintenance can be divided in two main categories: Condition Based
Maintenance (CBM), and Time Based Maintenance (TBM). CBM represents
the maintenance tasks which are generated as a result of faults uncovered
during inspections, faults uncovered by HUMS, and operational irregularities,
such as torque limit overshoots or rotor over-speeds. TBM, on the other hand,
is performed at various fixed intervals. Some are just a few hours apart, or
even between each flight. This is the tedious day-to-day work of inspections,
to ensure that the aircraft is in an airworthy condition.

The TBM workload is very high on rotorcraft compared to most other
vehicles, and is one of the main cost drivers in helicopter operations. This
is due to the large amount of moving parts in the helicopter transmission
system, as well as the lack of redundancy in the power path from engine
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to rotor. Because of the lack of redundancy, several failure modes in the
helicopter transmission system can be catastrophic. To minimize risk, very
strict and expensive maintenance routines must be followed in rotorcraft
TBM.

Every component on a helicopter has a safe life limit. Upon reaching this
age, the component must be overhauled. The safe life limit of each component
is derived from an expected usage spectrum of the aircraft, and then given
a substantial margin. Consequently, most retired parts are in a perfectly
good condition. However, if an aircraft is exposed to higher loads than what
was anticipated when the maintenance schedules where created, components
might be exposed to more stress than they where design to handle (Fig. 2.1).

Wear

Safe Life Limit

Time

Component
Retirement

Expected
Envelope

Unused
Potential

Danger

Possible
Envelopes

Figure 2.1: HUMS Overview

Most of the inspections and overhauls performed as TBM are unneces-
sary, in the sense that maintenance is performed on helicopters which are
in a perfectly airworthy condition. This is however the proactive nature of
TBM, if one is to ensure that the possibility of mechanical failure is mini-
mized. Obviously, helicopter operating costs could be decreased dramatically
if one were to perform maintenance only "on condition" (CBM), whenever a
failure occurs. However, performing corrective maintenance after a fault has
occurred will in most cases pose an unacceptable safety risk.

This is, of course, unless one has a reliable way, other than manual inspec-
tion, to detect a propagating fault before it becomes critical. HUMS was,
and still is, regarded as the answer to this problem. In addition to increase
safety, HUMS was seen as the technology that would revolutionize rotorcraft
maintenance, and shift rotorcraft maintenance strategy from TBM to CBM.
For various reasons, these ambitions have so far not been reached.
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2.1.3 Regulatory Definition

The only formal definition of HUMS is maintained by the UK CAA, as the
UK is still the only country where HUMS is mandatory. HUMS is mandatory
for helicopters in the following category:

United Kingdom registered helicopters issued with a Certificate
of Airworthiness in the Transport Category (Passenger), which
have a maximum approved seating configuration of more than 9
passengers.

In reality, HUMS is demanded on all offshore flights by the petroleum
companies operating in the North Sea. Consequently, HUMS becomes a
requirement for heavy helicopters operating in both British and Norwegian
sector.

The CAA definition divides HUMS in two main subsystems; a Vibration
Monitoring System (VMS), and "existing established techniques". The latter
part covers functions such as temperature- and torque monitoring, magnetic
plugs and chip detectors, thus corresponding to the Usage Monitoring System
(UMS) of HUMS. It is worth noting that these functions are mandatory on
all helicopters, regardless of whether a HUMS is installed or not. In case no
HUMS is installed, these functions are maintained by other systems.

The VMS addresses the Health aspect of HUMS. The definition applies
to all rotorcraft, and is thus not very precise. The CAA directive [1] reads
as follows

Vibration monitoring System (VMS) should monitor :

• Engine to main gearbox input drive shafts

• Main gearbox shafts, gears and bearings

• Accessory gears, shafts and bearings

• Tail rotor drive shafts and hanger bearings

• Intermediate and tail gearbox gears, shafts and bearings

• Oil cooler drive

• Main and tail rotor track and balance

Further, the HUMS Minimum Equipment List (MEL) states that

Depending upon system installation, if the data analysis (or fail-
ure indication system) indicate a malfunction of any system or
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sensor, i.e. accelerometer, then the maximum period that the
item or system can be deemed unserviceable would be as follows:

(1) 25 flying hours

However, if the specific item has been under investigation due
to adverse trend identified by the HUM system, the maximum
period of unserviceability would be as follows:

(2) 10 flying hours

2.2 Rotorcraft Failure Modes

The transmission system of a heavy rotorcraft is highly complex, and has a
high number of possible failure modes. Failure scenarios are typically com-
plex, in the sense that one propagating fault tends to trigger other failures.
This is especially the case for gearboxes. Still, it is possible to distinguish
some classical fault types, and their symptoms.

2.2.1 Engines

Helicopter jet engines consist of two stages. The first stage includes com-
pressor, combustion chamber and turbine, and resembles the design of a
traditional fixed-wing engine. This assembly is followed by the second stage,
which is an additional turbine. The second stage delivers power from the
engine to the transmission system.

Engine Compressor and Turbine Unbalance

Engine turbines and compressors rotate at very high speeds, and must be per-
fectly balanced. Problems like disk cracks, blade cracks and broken blades
typically produce unbalanced rotation, and are uncovered by monitoring vi-
bration energy at the frequencies corresponding to the compressor and tur-
bine rotating speeds.

Engine Power Degradation

Engine performance is gradually degraded throughout the lifetime of the
engine. Performance must however not be allowed to drop below a certain
minimum threshold. The potential of an engine is determined by measuring
which engine temperature is required to sustain a given torque.
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2.2.2 Transmission System

The helicopter transmission system is a set of shafts and gearboxes which
receives the power from the engines, and forwards it to the rotors as well
as equipment such as cooling fans, hydraulic pumps and power generators.
Helicopter transmission systems are characterized by high exchange rates,
high power and low weight, making it critical high-precision machinery.

Shaft Unbalance

Unbalanced rotation is caused by bent or otherwise damaged shafts. This
fault types is especially critical for the high speed shafts between the engines
and the main gearbox, due to the amount of force generated by even slight
unbalance. Shaft unbalance is easily detectable by measuring the energy
corresponding to the shaft rotating speed.

Shaft Misalignment

Bad shaft coupling can cause one shaft element to become misaligned. This is
a critical point for engine shafts, and for rotorcraft where the tail drive shaft
is made up of concatenated segments. Shaft unbalance is easily detectable
by measuring the energy corresponding to twice the shaft rotating speed.

Localized Gear Damage

Bent or broken gear teeth are critical faults in helicopter transmission sys-
tems, and require immediate retirement of the damaged components. A
localized damage to a gear surface typically generates an irregularity in the
vibration waveform whenever the damaged region interfaces with another
gear.

Gear Hub Crack

A gear hub / web crack occurs, like localized damage, due to excessive load.
This fault type will change the gear shape from perfect circular to some-
what oval. An oval rotating track results in the vibration signature changing
periodically, with period equal to the gear rotation.

Distributed Gear Damage

Distributed gear damage, or fretting, occurs as fine scratches across the gear
tooth pattern. This fault type typically accompanies localized damage and
hub cracks, as unbalanced rotation or rough tooth edges on one gear tend
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to damage its interfacing gear. Distributed gear damage alters the vibration
signature just slightly, and is inherently difficult to detect using traditional
vibration monitoring.

Epicyclic Carrier Cracks

Several rotorcraft gearboxes have one or two epicyclic stages just before the
output to the main rotor. Due to high torque, the epicyclic planet carrier
is in some cases prone to crack propagation. Cracks from the carrier rim
toward the center results in one or more planets interfacing with different
force than the others. This will again result in a periodic change in vibration
signature, with period equal to the carrier rotation.

Bearing Race and Roller Cracks

Excessive load to bearings might cause cracks in the races or the rolling
elements themselves. A crack in a bearing race will generate a sharp pulse
whenever a roller passes over it. A roller crack will generate a pulse whenever
the roller interfaces with the inner or outer race.

Bearing Corrosion

Corrosion is a problem for external bearing, such as those on the tail drive
shaft. Corroded bearing races typically produce wide band noise, creating
an increase in the total vibration energy.

2.2.3 Rotors

The rotors are the non-redundant lifting and anti-torque devices of a heli-
copter. Control and propulsion is also managed by the rotors, making them
the most critical part of any helicopter. Serious rotor damage is usually
catastrophic.

Unbalance

A rotor must have its Center of Gravity (CG) at the center of the mast to
avoid vibration at the frequency corresponding to the mast rotating speed.
The amplitude of an unbalance is identified by measuring vibration in the
rotor plane. Unbalance direction (which blades are too light or too heavy)
can be measured using a blade indexer. Correction is done by simply adding
or removing weights from the blades.



20 CHAPTER 2. PROBLEM STATEMENT

Blade Track Split

All the blades of a rotor should ideally follow the same track. Worn blades
do however tend to change track slightly, causing increased vibration levels.
Blade track can be estimated either by measuring vertical acceleration, or by
using a camera measuring the distance between each blade and the airframe.
Correction is done by altering length of the blade pitch links, or by using
bendable flaps on the blades.

Bearing Wear

Some rotorcraft use fully articulate rotors, meaning that each blade can be
rotated along three axis. This is achieved by fixing the blade sleeve to the hub
using an assembly of three traditional bearings, or a single spheric elastomer
bearing. The former solution is prone to traditional bearing problems, while
the latter might suffer from damaged elastomer. Such problems are identi-
fiable by an increase in vibration energy at the frequency corresponding to
the mast rotating speed or blade pass speed.

Damper Wear

Fully articulate rotors use dampers on the main rotor to damp blade move-
ment in the lead / lag (horizontal) plane. Worn dampers are identifiable by
an increase in vibration energy at the frequency corresponding to the mast
rotating speed or blade pass speed.

Swashplate Eccentricity

The swashplate is basically a gigantic bearing which encircles the main rotor
mast. One part of the swashplate is fixed to a set of actuators mounted on
the top of the main gearbox. The other part is connected to the blade pitch
links. The swashplate is the medium allowing the stationary actuators to
control the angle of the rotating blades.

Like all bearings, the swashplate is prone to generate some eccentricity
after excessive use. This is usually detectable as an increase in vibration
energy at the frequency corresponding to the mast rotating speed or blade
pass speed.

2.3 Health and Usage Monitoring Tasks
A HUMS is responsible for alerting the operator of any problems which might
threaten the airworthiness of the aircraft. To accomplish this, the HUMS
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use a sensor array covering most critical components on the aircraft. Some
of these sensors are part of the standard avionics package, such as airspeed
sensors and engine temperature probes. Others, like accelerometers and rotor
indexers, are proprietary to the HUMS.

A HUMS works both reactively and proactively. The reactive approach
allows the HUMS to detect any faults present in rotorcraft, while the proac-
tive methods allow faults to be anticipated before they occur.

2.3.1 Sensors and Acquisition Procedures

The vibration monitoring part of a HUMS uses three types of data; ac-
celerometer and tachometer signals, as well as contextual parameters such as
airspeed, temperature and torque. The need for the latter category of data
will be explained later. Accelerometers are mounted on all critical compo-
nents, including gearboxes, engines and the bearing block for the tail drive
shaft (Fig. 2.2). The rotors are covered by accelerometers mounted on the
airframe. Speed sensors are mounted on each engine compressor, engine out-
put turbine, and on each rotor. The rotor speed sensors generate only one
pulse per rotation, making it possible to know the position of the rotors
relative to the vibration phase.

MGB IGB

TGB

AGBs

Engines

TDS
AGB Accessory Gearbox
IGB Intermediate Gearbox
MGB Main Gearbox
TDS Tail Drive Shaft
TGB Tail Gearbox

Rotors

Figure 2.2: Mechanical Overview

A HUMS solution for a large aircraft can require more than thirty ac-
celerometers, making it impossible to acquire all accelerometers simultane-
ously without generating enormous volumes of data. To counter this, all
commercial HUMS solutions acquire only one component at a time with a
finite length acquisition. During flight, the HUMS airborne segment cycles
a preset program acquiring data from all components, one at a time.
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Figure 2.3: Mechanical overview for AS332L2, part 1.
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Figure 2.4: Mechanical overview for AS332L2, part 2.
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Figure 2.5: AS332L2 left hand ancillary intermediate gear acquisition.
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Figure 2.6: AS332L2 left hand ancillary intermediate gear acquisition.
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As the transmission system of every rotorcraft is different, so is the sensor
positioning. Figures 2.3 and 2.4 shows sensor positioning for the HUMS
EuroARMS when fitted on a AS332L2 rotorcraft. Figures 2.5 and 2.6 shows
an acquisition from the AS332L2 left hand ancillary intermediate gear in the
temporal and the frequency domain.

2.3.2 Usage Monitoring

Two proactive methods exist. One is estimating the load on key each compo-
nents, and integrating this over time to see the total stress the components
have been subjected to. This allows the HUMS to estimate the remaining
safe life limit for the components. The other method is simply detecting
obvious misuse, such as engine overloads and over speeds.

Parameter Exceedance

Which parameters to monitor for exceedances and how to monitor them is
aircraft dependent, but usually involves engine torque, engine temperature
and rotor speed. Parameter threshold overshoots are automatically logged
by the HUMS, together with additional information such as time, time over
threshold, max value, etc. Traditional aircraft avionics displays a warning
directly to the pilots whenever an event is detected. The pilots must then re-
lay this information to the maintenance crew. The advantage of HUMS when
recording excessive use is automated logging, more precise logging, as well
as logging of additional information which helps determine the seriousness of
the event, and consequently the best choice of corrective maintenance.

Load Cycle Calculation

All rotorcraft parts have a safe life limit. For most parts, the safe life limit is
defined in flight time. For more critical components, mainly engines, rotors
and gearboxes, a safe life limit is also defined in load cycles. Al though flight
time gives a good pointer to the total stress a component has been subject
to, flight time does not reflect the severity of the actual use of the aircraft.
For this, a more reliable metric must be defined. The load cycle scale is a
metric which more accurately reflects actual accumulated component strain.

Load cycles are calculated using reliable metrics such as torque, engine
temperature and rotor speed. The HUMS then keep accumulative counters
for the components for which load cycles are used, and alerts the maintenance
crew whenever a component is about to reach its safe life limit. Load cycles
must be calculated on all aircraft regardless of whether a HUMS is installed
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or not. For aircraft with no HUMS, this task must be performed by other
systems or by manual calculation.

Engine Power Assurance Check

Engine performance is gradually degraded throughout the lifetime of the
engine. Performance must however not be allowed to drop below a certain
minimum threshold. To ensure this, the engine Power Assurance Check
(PAC) is performed at regular intervals, calculating the performance of each
engine. The PAC consists in measuring the exhaust temperature needed
to produce a given torque. On rotorcraft not equipped with HUMS, this
procedure must be performed with engines running on the ground, using
temporarily installed equipment.

2.3.3 Health Monitoring

The reactive part of a HUMS consists in detecting faults in the drive train
as they occur, but before they become critical. This is a challenging task, as
the system must be able to detect early in the propagation process, while at
the same time not generate unjustified alarms.

Engine Vibration Monitoring

During engine power up and stabilized speed, temperature and vibration lev-
els must be within certain limits defined by the engine manufacturer. These
levels must be monitored at regular intervals to maintain airworthiness. For
most HUMS, this task is performed automatically at each engine startup.
On rotorcraft not equipped with HUMS, this procedure must be performed
on the ground, temporarily installed equipment.

Transmission Monitoring

The health monitoring function tries to capture component condition using
accelerometers mounted on the engines, gearboxes and shaft bearings. Chip
detectors are also used on engines and gearboxes. A chip detector is capable
of detecting metal debris in the lubrication. All rotorcraft are equipped with
chip detectors generating cockpit warnings.

Rotor Track and Balance

In order to avoid violent vibrations at once per revolution of the main and
tail rotor, the rotors must be well balanced. In addition, the track of each
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blade must be adjusted, relative to the mast. Balance adjustments are made
by adding or removing weights in the blades. Track is adjusted by changing
the blade angle and profile. The vibration recordings required to calculate
these adjustments are acquired during normal flight.

On rotorcraft not equipped with HUMS, this procedure must be per-
formed with rotors running on the ground, temporarily installed equipment.
Test flights are also required, to validate the result.

2.4 Impact of Current Technology

2.4.1 Reliability

Although effective in capturing several drive train failure modes, all existing
HUM Systems are also responsible for generating a substantial number of
unjustified warnings. The total number of warnings is aircraft and system
dependent, but is reported by the operators [11] to be somewhere between
4.5 and 12 pr. 1000 flight hours, as a global average. The number of justified
alerts is typically in the order of 1 or 2 pr. 1000 flight hours. Obviously,
this number of false warnings can be quite overwhelming for inexperienced
operators and the cause of a frustration for both HUMS personnel and man-
agement. Also, this creates a significant unregulated void in the procedures
of rotorcraft operations.

All aspects aircraft operations are highly regulated. What maintenance
work to perform, when to perform it, how to perform it, and what information
to report to regulatory bodies and Original Equipment Manufacturer (OEM)
is defined in fine detail. This applies of course also to any fly / no-fly deci-
sion, based on the outcome of maintenance inspections. The practical use of
HUMS as a maintenance tool is however somewhat in contrast to this level
of regulation.

Operators in the UK are obliged to submit documentation of their HUMS
organizational structure and handling procedures to the CAA. Be that as it
might, the day-to-day use of HUMS still leave waste room for subjective in-
terpretation when it comes to HUMS based decision making. Even though
the Eurocopter endorsed systems display reference to working cards in re-
sponse to HUMS alarms, these can not be followed blindly. Obviously, a
false alarm rate in the order of 4-1 would generate an immense amount of
added (and unnecessary) maintenance work, if the alarms / working cards
were to be followed without question. This leaves important decision making
to the line technician or in best case to the company HUMS expert. As there
is no formal training or certification for the interpretation of HUMS output,
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it is up to each operator to maintain a level of training which ensures that
safety is maintained. Thus, there are in reality no formal procedures for
HUMS based decision making.

The Norne accident in 1997 did highlight the need for regulation of
HUMS. In the Norne case, the aircraft was fitted with HUMS, but the sen-
sor adjacent to the failed component was unserviceable at the time of the
accident. If the HUMS would have been able to detect the fault, given
a serviceable sensor, has been subject to debate. Regardless, the accident
displayed the need for formal HUMS procedures and regulations, and was
probably one of the contributing factors in the mandatory introduction of
HUMS in the UK [1]. However, the regulations which are defined concerning
HUMS address only the functionality and availability of the system. It does
not specify formal procedures in the decision making process between HUMS
output and possible maintenance responses.

In some cases, like the Eurocopter endorsed systems, the aircraft OEM
and the HUMS provider is the same party. In these cases, the OEM can pro-
vide maintenance recommendations in cases where the operator is in doubt.
However, the customer support throughput is usually not sufficient to pro-
vide diagnoses on flight-to-flight bases. As HUMS output should indeed to
be analyzed between each flight, this still leaves much of the decision making
to the line personnel.

There are no formal procedures for reporting detections and non-detections.
As a result, it is difficult to create accurate statistics to determine which
HUMS functions work and which do not. Some feedback is provided by the
operators, but this information is highly biased and inconsistent. The follow-
ing sections tries to extract whatever information possible, based on recorded
data and expert opinions.

2.4.2 Safety

Helicopter accident rates have shown a clear downwards trend from the be-
ginning of the eighties. Several measures, among them HUMS, where taken
during the eighties to improve safety. Although it is difficult to quantify the
effect of each measure, the safety enhancing effect of HUMS is none the less
significant. The report "Helicopter Safety Study 2" by Sintef, states that
HUMS is "the most significant isolated safety improvement measure during
the last decade". The CAA estimates that about 70% percent of all drive
train faults are uncovered by the current generation HUMS [38]. This figure
is equivalent to the detection statistics available for the Eurocopter endorsed
systems.

Despite good diagnostics capabilities for a wide range of failure modes,
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several in-service difficulties have been reported by the operators. Some
of these difficulties are related to the fault diagnosis technology available.
Others are related to more practical usability issues which were not foreseen
during the design of these systems.

2.4.3 Maintenance Credit

Changes in maintenance procedures, removal of maintenance tasks, or ex-
tension of component time between overhaul (TBO) due to the introduction
of alternative monitoring techniques are referred to as maintenance credits.
Maintenance credits to HUMS have been granted to the following functions:

• Load Cycle Calculation

• Exceedance Monitoring

• Power Assurance Check (PAC)

• Rotor Track and Balance (RTB)

• Engine Vibration Monitoring (EVM)

The functions listed above are mandatory functions on most helicopters.
The calculation of usage cycles on non HUMS rotorcraft is performed by
another permanently installed device. On HUMS rotorcraft, this function
is simply embedded into the HUMS. In the case of PAC, RTB and EVM,
HUMS is certified to replace temporarily installed equipment, used at fixed
intervals. Performing these tasks on non HUMS rotorcraft require ground-
runs of engines and / or rotors. In the case of RTB, test flights are also
required. On HUMS rotorcraft, the information needed for tasks is recorded
during the normal operation of the helicopter. This is clearly a cost saver,
both in terms of maintenance man hours and even pilot man hours (for RTB
technical flights).

Although an effective cost saver in some areas, HUMS contribution to
reduced TBM is a different matter. As mentioned in previous chapters, the
probability of a technical failure in rotorcrafts is minimized through regu-
lation. The consequences of system fault in a given component is put in
one of the following categories; Catastrophic, Hazardous / Severe, Major or
Minor. The probability of component failure must be no greater than 10−9,
10−6 or 10−3 pr. flight hour for the three upper categories respectively. For
the rotorcraft transmission system, most components fall into the two upper
categories. This means that a HUMS function set to monitor a component
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which is "only" of Hazardous / Severe criticality must still have a probability
of failure less than 10−6 / Flight Hour. This is a long way from the average
detection rate of 70% experienced with the current systems. Although some
of the diagnostic functions are well above 70%, there are still large regulatory
boundaries which must be overcome on order to have any credit granted.

A major cost-driver in avionics development is the problem of hardware
and software certification. A HUMS system which is to be qualified to Haz-
ardous / Severe for a given function, must have airborne software certified in
accordance to DO - 178 B Level B, which in itself is a feasible task. However,
system criticality assessments are performed end-to-end. For instance, if a
fault is captured by the airborne segment, but lost at the ground station due
to buggy software, safety is obviously not maintained. For a Hazardous / Se-
vere certified HUMS, this translates into level B software also on the ground
station. As no operating systems are certified above level D, the entire ground
station software, including operating system and hardware drivers, must be
built from scratch. Further, all this software must also be certified to level B,
which is a very expensive and time consuming task for such a large amount
of software.

In theory, some mitigating solutions can be made to avoid this problem.
This can for instance be to develop the software for two different platforms
(OS + HW), and show that both solutions create identical results. Unfortu-
nately, the Federal Aviation Authority (FAA) does not allow Commercial Off
The Shelf (COTS) solutions containing software below level B in these cases.
This means that custom made hardware must be ordered and certified for
the ground station. Such a procedure would probably be even more costly
than a level B software solution.

Given some improvements in detection reliability, HUMS has in theory
a clear potential in the reduction of TBM. It is however difficult to see how
any progress can be gained under the current regulatory regimes.

2.5 Objectives

The focus for this study is identifying methods which will improve fault de-
tection rates and reduce false alarm rates for the health monitoring functions
of EuroARMS and M’ARMS, two commercially available HUMS implemen-
tations manufactured by Eurocopter. An additional objective is to increase
the autonomy of these solutions, so that they require little or no configura-
tion by the user. The main axis of research is improving the fault detection
methods which are based on vibration monitoring. Other sensor technologies
for detecting propagating damage will also be discussed briefly. Further, the
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Information Technology (IT) solutions providing the infrastructure for the
health monitoring functions will be reviewed, and improvement recommen-
dations will be made to avoid IT related problems becoming a limited factor
for the performance of the system.

Improved prognosis based on more precise load cycle calculation is cur-
rently an important area of research. This path will however not be perused
by this study. Nor will it treat problems related to airborne hardware, such
as sensor and harness susceptibility to damage, digital hardware obsoles-
cence, or practical problems related to the implementation of established
usage monitoring techniques.

All tools used in this study, such as wavelets, artificial neural networks,
and programming models are used without introduction. For any details on
these technologies, the user might refer to the appendices and references.



32 CHAPTER 2. PROBLEM STATEMENT



Chapter 3

Current and Emerging
Technologies

3.1 Introduction

This chapter explains the technologies that make up a HUMS. The state
of the art for these technologies is reviewed, including an review of existing
commercial solutions. From this, shortfalls for complying with the objectives
of this study are identified. Finally, improvement potential for the existing
solutions are derived, and a number of research areas recommended.

The HUMS diagnosis logic accepts a set of sensor signals and produces a
diagnosis of the underlying assets based on this information. This requires
a set of formal steps, including contextual validation and correction, feature
extraction, and classification (Fig. 3.1). Contextual validation and correc-
tion is necessary in order to ensure that the data is representative for the
state of the underlying assets. Any invalid data, like overly noisy data or
data recorded in unfavorable conditions are removed or corrected at this
stage. Such correction can be performed both before and after the feature
extraction.

Feature extraction is to extract metrics about the system input which is
more informative the evaluating at the raw input itself. The purpose of this
step is to extract the essential characteristics of this input, so that it is more
easily interpretable for the classifier. The classifier, for instance a fuzzy logic
system or a neural network, is responsible for translating a set of features
to an output diagnosis. As a classifier is no more than a mapping tool, its
performance is no more consistent than the features presented to it. It is
thus vital that the pre-processing steps, contextual correction and feature
extraction, does a good job in extraction features which makes it easy to

33
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distinguish the different classes, i.e. states of the underlying assets, that the
classifier is supposed to recognize.

A classifier can be implemented as a neural network, fuzzy logic system,
or simply a threshold tester. The classifier accepts the data generated by the
feature extractor, and makes a decision on the state of the monitored asset
based on this. As a minimum, the classifier must be able to distinguish assets
in a normal condition from those behaving abnormally. In a more complex
setting, the classifier can produce more detailed information such as fault
recognition and expected time to failure.
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Figure 3.1: Diagnosis Overview

3.2 Data Validation and Correction

It is of course possible to test a mechanical assembly in a test-rig using a
static environmental context, i.e. constant torque, constant rotation speed,
constant temperature, and so on. A helicopter must however sustain sub-
stantial variations in operating conditions. The vibrations signature of all
components is to some extent sensitive to variations in environmental con-
text. Consequently, such variations must be compensated for before data is
passed on to the classifier.
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Obviously, any change in rotating speed for a mechanical assembly will
change its vibratory signature. Even though the rotating speed of a helicopter
drive-train is relatively constant, any variations which might occur must be
compensated for. Further, the vibratory signature for some components is
also susceptible to other contextual factors, such as torque. It is indeed of
interest to compensate for such factors as well, so that the information passed
on to the classifier is as consistent as possible.

3.2.1 Correction of Speed Variations

The vibration signature of a component is a function of its rotating speed. A
gear will generate a tone, known as the meshing tone, at the frequency corre-
sponding to the tooth pass frequency. The frequency of this tone, measured in
Hertz, is obviously dependent on rotating speed. To uncouple rotating speed
and vibration signature, the signal is re-sampled using synchronous sampling.
Synchronous sampling means that the sampling interval is synchronous with
the shaft rotation rather than time. Consequently, the resulting output has
a fixed number of samples per shaft rotation rather than per second.

Synchronous averaging [43] refers to the process of recording a given num-
ber of rotations of a component, re-sample the signal to synchronize it with
the shaft rotating speed, and adding together each segment representing one
complete rotation. This will amplify any signal being periodic with the shaft
rotating speed, and attenuate everything else. Synchronous averaging is a
convenient tool for removing background noise. This is especially effective
for gearboxes, where a single accelerometer will capture the vibration signa-
tures of several components. By creating a re-sampled and averaged signal
for each component, each resulting signal contains the vibration signature
from only a single component. A few cases do however exist, where a signal
captures the signals from several components. These are the cases where
two similar components, like two gears or two bearings, are located in close
proximity rotate at the same speed. In these cases, only the applicable selec-
tion of vibration features can separate the characteristics of each component.
For some components, like the epicyclical planet gears, also the same vibra-
tion features are applicable for each component in the acquisition. Thus, no
unambiguous error localization can be made.

Synchronous averaging is typically used for shafts and gears. Bearing
acquisitions are typically re-sampled, but not averaged. This because roller
slip will cause a phase delay in the vibration signal, causing it no longer to
be periodic with the shaft rotation.
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3.2.2 General Contextual Correction

Although the vibration signature from all rotating components is sensitive
to rotating speed, some vibration signatures are also sensitive to other fac-
tors. Helicopters in normal use experiences a large variation in contextual
parameters, such as altitude, speed, oil temperature, torque, etc. Torque is
a well known influence especially on gears.

Because the environmental context is random in time, variations in envi-
ronmental context are manifested as random variations on the recorded vi-
bration signals, and consequently the vibrations features. Most commercial
HUMS amend this problem by using a contextual window in where acqui-
sition is allowed. This involves setting maximum and minimum thresholds
for key parameters, such as speed and torque. A drawback of this method is
that the contextual variation within the window can be substantial. Reduc-
ing windows size might reduce random variation, but risk reducing the data
volume collected.

A supplementary method is by using a model representing the influence
of contextual variations on the different vibration features. Once models are
estimated for each feature, they can be used to cancel the effect of contextual
variations. This method has been successfully deployed using engine torque
as the only environmental context [21].

3.2.3 Epicyclic Frequency Separation

Frequency separation is a pre-processing technique particular to epicyclic
planet gears and bearings. An accelerometer monitoring an epicyclic gear
stage must, for practical reasons, be placed outside the gearbox housing.
This means that the accelerometer will pick up the vibration signatures of the
ring gear, the sun gear and bearing, as well as all planet gears and bearings.
The ring, sun and planet vibration signatures can easily be separated using
synchronous averaging, as these components rotate at different speeds. This
method will however not separate the different planet signatures, as all planet
gears and bearing are rotating at the same speed. Consequently, it is not
possible to pinpoint any detected planet fault to a specific planet gear or
bearing. Further, the error-indicating features from one faulty gear or bearing
will get buried in the normal state vibration signatures from the other planets,
making fault detection difficult.

A method known as frequency separation [32] [31] was developed to
amend this problem. Frequency separation method requires an indexer to be
placed on the planet carrier, so that it is possible to know when each planet
passes the accelerometers. The recorded signal is then split up into equal
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size windows, where the number of windows equals the number of carrier
rotations time the number of planets. Phase is adjusted so that each window
contains one planet passing the accelerometer. The windows are then sorted
by planet, forming one new signal for each planet.

3.3 Feature Extraction

Feature extraction is the process of extracting metrics about the system in-
put which are more informative than evaluating at the raw input itself. Input
features are the meta of the input, and constitutes a higher order interpre-
tation. Feature extraction is a parameterization process which often reduces
the data volume, though this is not always the case. Desirable properties for
features are that they are sensitive to the characteristics of the input which
differs between classes, while insensitive to characteristics which differ within
each class. The latter typically being insensitivity to measurement noise and
other irrelevant factors which might confuse the classifier.

In the case of vibration monitoring, a brute-force approach to feature
extraction is extracting the Discrete Fourier Transform (DFT) of the vibra-
tion signal. The absolute value of the DFT contains an estimate of the
signal power spectrum, which displays substantially different behavior be-
tween health state and damaged state signals. Further, the absolute DFT is
insensitive to the shaft phase offset, which is random and thus a source of
variation in signal characteristics within each class.

Given the geometry of a mechanical assembly, it is however possible to
predict which frequencies, i.e. DFT coefficients, are affected by different
failure modes. Consequently, any other coefficient becomes less relevant.
Further, some fault-indicating signal characteristics are not well captured
by the DFT, but are better enhanced using other transforms. Thus, it is
common to design feature extractors which outputs only the information
relevant for detecting the failure modes to which the associated components
are susceptible. This information are in the context of HUMS referred to as
indicators.

3.3.1 Condition Indicators

The feature extraction part of a HUMS attempts to isolate signal features
which have substantially different behavior in normal state signals and signals
recorded from damaged components. For shafts and bearing, this process is
fairly straight forward. Normal state shafts do not produce much vibra-
tion energy. Shaft failures, such as unbalance and miss-alignment, are easily
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identifiable as vibration energy increases at the frequencies corresponding to
multiples of the shaft rotation frequency. Classical bearing failures are, as
already explained, identifiable as periodic energy pulses with frequency given
by the rotation speed and bearing geometry, as well the fault type.

For gears, feature extraction is not that simple. According to [30], a
perfect gear produces a distinct meshing tone (Eq. 3.1), with a harmonic
distribution Pn given by the geometry of the gear, over a noise floor w(n).
The variables z, Ω and Φn symbolized shaft rotation frequency, the number
of gear teeth, and phase offset for each harmonic.

xperfect(t) =
∞∑

n=0

Pncos(ntzΩ + Φn) + w(t) (3.1)

Due to the imperfect nature of any physically gear implementation, each
gear mesh harmonic is subject to amplitude and phase modulation by any
multiple of the shaft rotating frequency (Eq. 3.2).

xrealistic(t) =
∞∑

n=0

an(t)cos(ntzΩ + bn(t)) + w(t) (3.2)

an(t) =
∞∑

k=0

Ak,ncos(ntΩ + αk,n) (3.3)

bn(t) =
∞∑

k=0

Bk,ncos(ntΩ + βk,n) (3.4)

Consequently, a gear vibration signature becomes a function of the am-
plitude modulation amplitude matrix Ak,n, the amplitude modulation phase
matrix αk,n, the phase modulation amplitude matrix Bk,n, and the phase
modulation phase matrix βk,n. As the coefficient values tend to drop off
quickly for increasing values of n and k, simplified finite-size approximations
of these matrices can provide a good approximation of a gear vibration sig-
nature.

According to [42], any presence of gear failures tends to increase the
modulation between the meshing tone harmonics and low multiples of the
shaft rotation. This corresponds to a value increase in the coefficient matrix
Ak,n for low values of k. Traditional condition indicators are designed to
capture this phenomenon. Indicators do also exist which capture changes in
the noise floor w(t), which also is associated with certain types of damage.
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Overview

The indicator definitions presented here assume that the input signal is finite,
which is the case for all commercial HUMS. It is indeed possible to create
indicator algorithms working on infinite signals, but this topic is not treated
in this study due to lack of relevance in the context of HUMS. The indicators
explained here are only few examples of the total number existing in the
literature, and only an extract of those are given an in-depth explanation.

Indicator Damage Detected Ref
IR Bearing inner race crack [35]
OR Bearing outer race crack [35]
BS Bearing roller crack [35]

Crest Factor General gear [10]
Energy Operator Localized gear [26]

Energy Ratio General gear [44]
FM0 General gear [42]
FM4 Localized gear [42]

Kurtosis Localized gear / bearing [39]
M6A Localized gear / bearing [28]
M6A* Localized gear / bearing [44]
M8A Localized gear / bearing [28]
M8A* Localized gear / bearing [44]
MOD Gear web crack [42]
NA4 Localized gear [55]
NA4* Localized gear [17]
NB4 Localized gear [53]
NB4* Localized gear [54]
RMS General [10]

RMSR General gear [44]
Ω1 Shaft unbalance
Ω2 Shaft misalignment
Ωzn General gear

Table 3.1: Common condition indicators.

Root Mean Square

The root mean square represents the energy of the signal. As most serious
defects in gear and bearing assemblies will increase the signal energy, this is
a general fault indicator.
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RMSx =

√
1

N

∑
n∈N

(x(n)− µx)2 (3.5)

µx =
1

N

∑
n∈N

x(n) (3.6)

Residual Energy

The residual signal [55] is given by (Eq. 3.7), where DFCx is the DFT co-
efficients of x. This transform captures the noise floor w(t) of the signal, by
removing the signal components corresponding to the harmonics of the mesh-
ing tone. An alternative definition [42] exists, which also removes the signal
components corresponding to the first modulation sidebands. By calculating
the rms of the residual signal, RMSxres , the energy of the signal noise floor
is estimated. Several gear failures tend to increase the noise floor, making
this an indicator both to localized and distributed damage.

xres = x−DFT−1[MDFC] (3.7)

MDFCk = DFCk.[modulus(z, k)! = 0] (3.8)

Residual Energy Ratio

The residual energy ratio is the ratio between the residual energy and the
total signal energy. Alternatively, it can be defined as the ratio between the
residual energy and the meshing energy [44]. The former definition is always
between zero and one, where zero indicates the perfect gear definition (Eq.
3.1).

ER =
RMSx

RMSxres

(3.9)

Kurtosis

Kurtosis is the fourth statical moment of a dataset, and indicates how outlier-
prone the dataset is. In vibration monitoring, this provides a good shock
indicator, indicating if a small portion of the signal has significantly higher
amplitude than the rest. Kurtosis is associated with localized gear damage,
as well as a cracks and corrosion for bearings.



3.3. FEATURE EXTRACTION 41

Kurtosisx =

∑
n∈N (x(n)− µx)

4

RMSx

(3.10)

Omega

With Ω being the shaft rotation frequency, the Ωn is simply a spectral pointer
defined relative to the shaft rotation. For synchronously sampled signals, Ωn

corresponds simply to the n’th DFT coefficient. The values 1 and 2 for
n, denotes frequencies for detection of shaft unbalance and misalignment
respectively. Values for n being multiples of the number of teeth extracts
frequencies associated with gear damage.

Modulation

According to (Eq. 3.1), a perfect gear should only produce vibration energy
at multiples of its tooth pass frequency. A gear hub crack will however
create a different energy of the meshing tone depending on the rotational
position of the gear. Thus, gear rotation and meshing becomes modulated.
This will manifest itself as modulation sidebands to the harmonics of the
meshing tone, with sideband distance to the carrier equal to the shaft rotation
frequency. Monitoring these frequencies will provide indications of gear web
cracks, severe localized damage, and unbalance in the gear shaft [42].

Bearing Indicators

A crack in the inner race or outer race of a bearing will manifest itself as a
pulse repeated every time a roller passes over the crack. A crack directly on
the roller will generate a pulse every time the crack passes one of the races,
i.e. twice for every rotation of the roller. This gives the three fault frequencies
of a bearing; ball pass frequency inner race (IR) ball pass frequency outer
race (OR) and ball spin frequency (BF) [35]. These frequencies, relative to
the shaft rotation, are specific to each bearing.

Monitoring any of these frequencies directly will however not detect any
faults, as repeated pulses on these frequencies will become modulate on the
natural frequency of the bearing, and end up as sidebands to this frequency.
As the natural frequency normally is high, and not necessarily known, looking
for modulation sidebands in the expected locations is not practical.

A better approach is to demodulate the signal. The signal envelope, or
Hilbert transform, will demodulate the bearing fault frequencies from the
carrier and project them back to their expected locations. Calculating the
DFT of the enveloped signal will thus reveal any bearing damage. Normally,
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an area of ±10% around each fault frequency is extracted to accomodate for
roller slip.

3.3.2 Stationarity Indicators

Although the basic condition indicators provide reliable indications to change
in the condition in the underlying assets, they are of little use without a
comparative baseline. Rather than defining a baseline for each indicator, it
is possible to compare each observation with the most recent ones to look for
any trends in the evolution of the indicators. A simple method is to perform
a linear regression of the last couple of observations, and measure the rate of
incline or decline over this segment [33] [21] [22]. Alternative, it is possible
to extrapolate the linear model, and estimate the time remaining before
it crosses some pre-defined threshold. If a condition indicator is seen as a
parameterization of the raw sensor signal, a stationarity indicator constitutes
a second level parametrization.

3.3.3 Modeling

A more general approach to feature extraction is modeling. A modeling ap-
proach does not, unlike traditional condition indicators, make any assump-
tions about features of importance, and does not require any a priori infor-
mation about the geometry of the underlying assets.

General parametric signal models are MA, AR and ARMA [4]. By as-
suming that a signal power spectrum is stationary, this power spectrum can
be approximated by any of these models. Fitting a model to an observed
signal can be done by a number of algorithms found in the literature [36].
The number of parameters for any of these models fitted to an observed sig-
nal are far subsiding the number of DFT coefficients for the same signal.
Consequently, these parameters make a set of features suitable for classifier
input. This was successfully tested in [14] [20], using a cluster classifier.

A similar approach is using the lifting scheme [45] to generate a wavelet
capable of predicting a signal waveform. This method involves deriving a
wavelet from a normal state transmission. The same wavelet can then be used
for time domain prediction of subsequent observed signals. Any substantial
prediction error indicates that the observed signal does not correspond to the
normal state wavelet, and is thus an indication of failure [7] [40] [41].
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3.4 Classification

With the exception of the usage functions, which utilize simple and precise
metrics for decision making, HUMS lies within the field of pattern recogni-
tion. There are however a few characteristics which separate HUM Systems
from most other pattern recognition systems. This is mainly due to the crit-
icality of detecting all failure modes, regardless of their frequency of occur-
rence. Consequently, the systems are set to detect failure modes for which
they are not trained, even some of which have never even occurred (and
maybe never will). It is to some extent possible to extrapolate the tested
and confirmed diagnosis functions of one component to other components
for which training data does not exist. This is however not done without
adding even more uncertainty to discipline which by default is quite "fuzzy",
and is partially the reason for the high false alarm rate experienced with
these systems.

3.4.1 Threshold Testing

Condition indicator threshold testing is the oldest classification technique in
the HUMS field, and is incorporated in several commercially available solu-
tions. The technique consists simply of testing each indicator to a threshold
(Fig. 3.2). Given the type of indicator and the component from which it
originates, at threshold breach gives both an indication that something is
wrong, as well as information on which component is faulty and what type
of failure it suffers from. In a practical implementation, it is common to
require N out of M threshold overshoots on a given indicator before an alarm
is raised. This is to avoid that indicator outliers, in the context of HUMS
referred to as spikes, result in unjustified alarms.

The main objection to threshold testing in health monitoring is the dif-
ficulty in setting the optimal threshold values. Setting thresholds too low
might result in false alarms, i.e. threshold overshoots despite the fact that
nothing is wrong. Setting the thresholds too high renders the system less
sensitive to variations in the vibration signature, and thus less equipped for
detecting faults. For some indicators, it is possible to set global or fixed
thresholds. This means that the same threshold is applied across an entire
fleet. Unfortunately, most indicators have a normal state envelope which is
unique to each aircraft. Further, this envelope is prone to change between
major overhauls, a phenomenon known as a step change. To accommodate
for this, thresholds must constantly be updated for each aircraft.

Threshold adjustment, or learning, is performed on new aircrafts and after
major overhauls. The process consists in acquiring a statistically significant
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Figure 3.2: An indicator breaching its threshold.

baseline of observations, typically on the magnitude of 50 flight hours, and
calculating the gaussian localization µi and distribution σi parameters on the
dataset. The threshold or thresholds for an indicator i are then defined using
a threshold policy of type Ti = µi +Nσi. During the learning period, a set of
alternate thresholds are used. These are global, and are to avoid false alarms
set so high that they have reduced chance of detecting faults. Consequently,
the aircraft is vulnerable during the training period.

Threshold re-learning is a tedious task for heavy aircraft with several hun-
dred indicators, and it is not always possible to predict which overhauls will
require re-learning of which indicators. This burden is a common complaint
from operators who wishes more autonomous solutions.

Alternative variants are hysteresis thresholds, hypothesis testing and Bayesian
decision approaches. Hysteresis thresholds are applicable in systems where
it is necessary to measure the number of times a variable crosses a threshold
over a given period. This method is used in several of the usage monitoring
functions of the HUMS, but has no obvious applications in health monitoring.

Using hypothesis testing it is possible to compare two groups of observa-
tions, and find the possibility of the two groups originating from the same
distribution. If one group represents the normal state baseline and the other
a set of observations from an asset in an unknown condition, it reasonable to
assume that the asset is in a damaged state if its associated observation dis-
tribution is highly different from the normal state baseline. This is in reality
a generalization of the threshold testing method described above, but per-
mits comparing a group of samples to the learnt baseline. Another variant is
analyzing the possibility of various failure modes given an alarm. By knowing
these prior probabilities, it is possible to identify the most likely problem,
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given a series of alarms. This has successfully been applied to rotorcraft
condition indicators in [37].

The main drawback with the two latter methods is that they require a
substantial amount of observations in order to produce a diagnosis. This
means that there will be a delay between the occurrence of a problem and
its detection. As far as Bayesian decision making is concerned, it is due to
limited availability of training data difficult to estimate the prior possibilities.

3.4.2 Clustering

Most failure modes tend to affect more than one indicator. A gradual shift
in several indicators is thus a better indication of failure than random per-
turbations in a single indicator. Consequently, a more robust indication of
failure is measuring the total drift across all indicators for a given component,
relative to their normal state baselines.Ω1

Ω2

Normal

Unbalance

Miss Alignment

Figure 3.3: Relevant clusters for shaft fault detection.

A classifier taking this into account can be implemented through a cluster
system [16] [18]. A cluster system is a space with a number of dimensions
equal to the number of inputs. Each class is a multi-dimensional region in
this space. Any input vector is classified by determining which sphere it falls
within (Fig. 3.3), or alternatively classified as unknown it falls in the void
between the regions.

A HUMS classifier based on this method must as a minimum implement
the normal state class. Consequently, any observation falling outside this
sphere must be considered faulty. Such a system might also implement classes



46 CHAPTER 3. CURRENT AND EMERGING TECHNOLOGIES

representing known failure modes. This technology has been adapted for
several commercial solutions [3] [22], and provide a classification tool which
is both flexible and transparent.

3.4.3 Feedforward Networks and Fuzzy Logic

Certain solutions based on feedforward networks and fuzzy logic exist in the
academic literature [39] [25]. Compared to cluster solutions, the feedforward
network is more efficient by allowing complex class regions to be defined with
fewer neurons. The principal objection against feedforward networks working
directly on DFTs or condition indicators is that training requires non-linear
optimization. Using a non-linear optimization in the learning process will
result in an even more complicated post-overhaul re-learning procedure for
the operator. This can be circumvented by normalizing the inputs against
learnt baselines before entering them into a factory-set network, although
this solution has not been addressed in the literature. Moreover, feedforward
networks require substantial amounts of training data and provide less insight
to their inner logic. It should also be noted that flexibility similar to a feed
forward network can be achieved with a cluster solution by adding a linear
layer behind the radial basis layer.

It is a well known phenomenon in vibration monitoring that damage to
one component can cause perturbations in the condition indicators of adja-
cent components. This might cause confusion as to what the actual fault is,
and where it originates from. Fuzzy logic solutions tying together the indi-
vidual classification systems of components into system-wide or aircraft-wide
diagnosis has been suggested to amend this [24] [13]. The physics involved
in inter-component vibration propagation are however quite complex, and
not always well understood by the OEM. Moreover, it is difficult to gather
sufficient relevant training data to create and validate a robust solution.

3.4.4 Prognosis

Threshold testing can in combination with trend analysis be used for prog-
nosis. This is the case both for single indicator thresholds, as used with
traditional threshold testing, and multidimensional thresholds, as used with
clustering systems. Given the value and the slope of an indicator progression
at a point in time, it is possible to estimate the time remaining until the
threshold will be breached. In a clustering system, this corresponds to the
estimated time remaining until the system leaves the normal state cluster,
given the current position and gradient. This estimate obviously assuming
that the progression slope or gradient remains constant.
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For this to have a significant operational interest, the link between the
threshold, or cluster, and the mechanical state it represents should be clear
and well understood. If classifier training is based purely on statistical anal-
ysis of a normal state indicator distribution, the prognosis will simply give
the estimated time until the vibration signature changes from normal to ab-
normal, given an arbitrary definition of normality and abnormality. As the
mechanical state associated with the threshold or cluster border is unknown,
the estimated time until the mechanical system reaches this point will have
less operational interest.

3.5 Commercial Solutions

Several commercial HUMS implementations exist from several manufactur-
ers. This section introduces a few of them. The selection of systems discussed
here is however biased toward systems developed for heavy rotorcraft operat-
ing in hostile environments, as this was the origin of the HUMS development.
Numerous implementations and manufacturers have since joined the HUMS
marked, addressing both the original audience, as well as new markets such
as military operators and medium or even light rotorcraft.

3.5.1 IHUMS

IHUMS is manufactured by Meggitt Avionics in cooperation with rotorcraft
operator Bristow [2]. It is a first generation system, and was one of the
first two systems on the market. IHUMS ground stations with graphical user
interface exist for both UNIX and Microsoft Windows NT. Diagnosis is based
on condition indicators processed by a fuzzy logic-like matrix system. The
matrix system aids in suppressing spurious alerts due to indicator spikes.

3.5.2 North Sea HUMS

North Sea HUMS was developed by British avionics company SHL (currently
Smiths Aerospace). It is also a first generation HUMS, and is together with
IHUMS one of the first two systems on the market. Although in the process of
becoming obsolete, it is still widely used and has a good reputation among its
users. North Sea HUMS uses a ground-station running on UNIX, and offers
remote desktop capabilities. Diagnosis is based on basic condition indicator
thresholds.
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3.5.3 EuroHUMS

In 1993, the Norwegian operator Helicopter Service negotiated HUMS instal-
lation as part of a Super Puma purchase contract. Eurocopter did however
not have a HUMS program at the time. As an intermediate solution, HUMS
development was outsourced to SHL. SHL were one of the most experienced
companies in this field, and had already developed a HUMS for Super Puma,
North Sea HUMS. EuroHUMS is simply a Eurocopter customized version of
this system.

3.5.4 GenHUMS

GenHUMS is manufactured by Smiths Aerospace. The GenHUMS grounds
station works standalone, but can also relay data back to the OEM. The sys-
tem uses a cluster-based data fusion technique merging all indicators from a
component into a single value. This data fusion indicator is then subjected
to trend analysis, uncoupling aircraft specific and fault indicating features
[22]. Although the trend analysis part is not yet commercialized, this con-
stitutes one of the most interesting advances in HUMS research, as it makes
it possible to produce an autonomous HUMS not requiring aircraft specific
training.

3.5.5 IMD HUMS

IMD HUMS is manufactured by Goodrich Fuel Systems. This system fea-
tures state of the art diagnosis methods, including flight regime recognition
for more accurate load and wear estimation based on actual use. The IMD
HUMS grounds station works standalone, but can also relay data back to the
OEM.

The IMD HUMS compensate for torque variations using a "bucket"-based
system, sorting indicator values into classes given by the torque at the time
of the acquisition [29]. The data in each class is then processed individually.
Further processing involves deploying a cluster-based data fusion technique
merging all indicators from a component into a single value [3]. These values
are normalized, based on training data, to stay between zero and one for any
possible input. This makes it easy to mark up normal, suspect and faulty
regions for each component.
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3.5.6 T-HUMS

T-HUMS is manufactured by Israeli avionics company RSL. This is a military
system which, contrary to civilian HUMS implementations, is capable of
performing the bulk of its calculations in flight. It can also be fitted with a
cockpit display providing the pilots with real-time battle damage assessment.

The T-HUMS uses condition indicators based on several transforms, in-
cluding DFTs, Ceptrum and periodograms from non-averaged signals [21].
Indicators are then normalized against learnt baselines to representing the
normal state aircraft specific vibration signature. The system then compen-
sates for environmental changes using a polynomial approximation of the
relationship between vibration signature and environmental conditions. It
also applies trend analysis based on linear regression both on condition in-
dicators, thus creating new indicators, and on classification results. This is
done using two frame sizes, detecting long and short term tendency. The
indicators are then subject to further processing by classification algorithms
such as cluster systems, fuzzy logic, and artificial neural networks.

3.6 M’ARMS and EuroARMS

Eurocopter is currently supporting two HUMS; Modular Aircraft Recording
and Monitoring System (M’ARMS), and its predecessor Eurocopter Aircraft
Recording and Monitoring System (EuroARMS). Although EuroARMS and
M’ARMS are two different systems, they inhibit the same functions. Thus,
these two systems are in this report jointly referred to as Aircraft Recording
and Monitoring System (ARMS). Both systems collect data while in oper-
ation, which are downloaded to a PCMCIA flash memory card after each
flight (Fig. 3.4). The content of the flash card is analyzed at a Windows NT
or Server 2003 workstation using specialized software. This workstation is
referred to as the ground station.

3.6.1 Airborne Segment

The ARMS airborne segment taps into the Arinc databus, which is used for
transmitting data between different system modules. This provides access to
contextual information such as altitude, temperature and air speed. Contex-
tual information is used for generating parameter threshold overshoot alarms
and estimating component load cycles. Further, this information is used for
determining if the aircraft is in a flight stage when it is possible to perform
vibration acquisitions.
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Figure 3.4: ARMS data flow

In addition to using data acquired through the Arinc bus, the ARMS has
its own set of sensors. This includes speed sensors mounted on the engine
compressors, engine turbines, main rotor and tail rotor, as well as a number of
accelerometers. The number of accelerometers is aircraft specific, but does
generally cover engines, all gearboxes, oil cooler, rotors and the tail drive
shaft.

During one acquisition cycle, the system acquires finite length acquisitions
from all monitored components, following a preset program. A total of six
acquisition cycles are performed per flight; one on the ground, and five in
cruise (Fig. 3.5). To save space, acquisitions are immediately re-sampled and
averaged with the shaft rotation speed. This shortens gear, shaft and rotor
acquisitions from 200 rotations to simply 1. Vibration signals, parameter
exceedance alarms and load cycle calculations are stored on a data cartridge
at the end of the flight. The cartridge is then analyzed at the ground station.

3.6.2 Ground Segment

The ground station performs a number of functions. Upon receiving the data
cartridge from the aircraft, it generates a maintenance report containing all
parameter exceedances encountered during the flight, accompanied by their
corrective actions. It also keeps track of load cycles, and alerts the user if a
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Figure 3.5: ARMS acquisition cycles

component has reached its safe life limit.

On the vibration acquisition of each component a number of indicators
are calculated. These are then evaluated against thresholds to determine if
a fault is present on the associated component. Indicator threshold breaches
are added to the maintenance report, accompanied with the maintenance
actions for the detected fault types.

While some thresholds are globally fixed, most are individual to each
aircraft. These thresholds are set based on a training period, where the
normal state location and dispersion for each indicator is identified. Following
major overhauls, aircraft individual thresholds must be reset, as overhauls
changes the vibration signature of the transmission system.
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3.6.3 Decision Flow

Under normal circumstances, the operator is able to determine if a fault is
present on a helicopter by evaluating the ground station output. When in
doubt, the operator submits a defect report to Eurocopter customer support.
This is normally done by fax / email, with screenshots of the affected indi-
cator plots attached. An expert evaluation is then returned to the operator
(Fig. 3.6).
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Figure 3.6: ARMS decision flow

In addition to this problem driven data flow, digital HUMS data is sub-
mitted to Eurocopter on more or less regular intervals. This is done by
sending data backup tapes in the mail. This approach is however too slow
to use in support cases, as the backup tapes can take several days before
reaching Eurocopter.

3.6.4 Improvement Potential

This study limits itself to address surveillance of the transmission system
between the engines and the rotors, as well as any IT-related problems re-
lated to this task. Monitoring of engines and rotors are the topic of other
studies, and will therefore not be treated here. Any problems related to the
implementation of traditional and well proven usage functions, like parame-
ter exceedance warnings, are considered to be more a development / quality
assurance nature, and are thus also excluded from this study.
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This section suggests a number of possible improvements of the ARMS
solutions. The overall aims for these propositions are to:

• Reduce false alarm rates

• Increase detection rates

• Reduce operator workload

Only methods related to vibration monitoring, or methods replacing ex-
isting vibration monitoring techniques are considered. Some of these propo-
sitions are outside the scope of this study, in the sense that they can not
be implemented and tested during the assigned time-frame. They are none
the less included for future reference, and as recommended topics for future
studies.

Acquisition Rate

The systems currently in use perform a maximum of five acquisition cycles per
flight. This choice was made due to hardware limitations at the time when
the first systems were created. In addition, it was believed that vibration-
based condition indicators could be reliably interpreted like any other flight
parameter. Experience has however shown that condition indicators have
considerable scatter, and are usually best regarded as signals themselves,
subject to further signal processing and statistical analysis methods.

A way to increase system reliability is to increase the number of acquisi-
tions per flight. Due to the false-alarm rate of existing HUMS, the probability
of a fault being present on a component, given an alarm, is not very high.
With repeated alarms, the probability of a fault being present will however
quickly converge [37]. The more data is acquired per flight hour, the quicker,
in terms of flight hours, a reliable diagnosis can be produced. This is pro-
vided that the recorded data is representative, and not polluted by contextual
variations.

Evaluating data over a large number of acquisitions with current system
does however pose a serious threat of overlooking rapidly propagating faults,
due to the low acquisition rate of these solutions. Acquisition rate is however
in part a limitation of the airborne hardware, and can not necessarily be
altered by simply modifying software or configuration. Increased acquisition
rate should however be kept in mind when designing the next generation
airborne segment.
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Sensor Fault Detection

It is well agreed that the most flawed component monitored by the HUMS
is the HUMS itself [11]. Although the ARMS solutions possess self test
functions capable of identifying problems like dysfunctional circuit boards,
capabilities for robust detection of partially damaged sensors or harness are
less developed. A consequence of this is that the changes in vibration sig-
nature caused by sensor and harness degradation are frequently interpreted
as mechanical damage by the ground station. Efforts should therefore be
made to develop indicators capable of distinguishing between electrical and
mechanical problems.

Due to lack of relevant data, research in this area will require extensive
test rig experiments.

Contextual Data Correction

The current implementations of Eurocopter Aircraft Recording and Moni-
toring System (EuroARMS) / Modular Aircraft Recording and Monitoring
System (MARMS) use contextual validation to decide when acquisition is
enabled. This is to limit the number of environmental contexts for when
acquisition is performed, thus reducing indicator scatter. There are however
still significant variations within this window, contributing to considerable
variance between acquisitions.

Efforts should be made to investigating the correlation between different
environmental contexts, flight stages, and vibration signatures. If such cor-
relations can be modeled, these correlations can also be compensated for.
Environmental normalization of condition indicators has already been pro-
posed in [21]. There are however no methods in the literature which address
the correction of vibrations signals. This is of interest for long-durations ac-
quisitions typical for rotors and epicyclic carriers. In these cases, acquiring
a single finite length signal takes several seconds. This leaves a considerable
probability for the environmental context changing throughout the acquisi-
tion period. Consequently, the raw signal must be piecewise corrected before
any indicators are calculated.

Implementing this method for EuroARMS / MARMS will however require
redesign of the airborne segment. This because the method must be applied
before synchronous signal averaging. Any modification to the airborne soft-
ware is however highly expensive. Consequently, this solution should be kept
in mind for the next evolution of the airborne segment.



3.6. M’ARMS AND EUROARMS 55

Epicyclic Monitoring

Due to high complexity and several parts monitored by a single accelerome-
ter, fault detection in epicyclic gearbox stages are inherently difficult. Apart
from the problem of long distance between components and sensors, several
components are captured in the same acquisition. This means that the error
indicating signature from a faulty component will be buried in the normal
state signatures from the healthy state components captured in the acqui-
sition. A method is already proposed in [32] [31], which deals with this
problem.

Like with contextual signal normalization, this method must be applied
before synchronous signal averaging. Further, the method requires an in-
dexer on each epicyclic stage, which is currently not available for gearboxes
with multiple epicyclic stages. This need for modification of both airborne
software and hardware makes this an expensive solution which should be
considered for the next generation airborne segment.

New Sensor Technologies

The existing chip detector technology is reliable, but provides warning at
a very late stage. For fault types such as gear fretting, the chip detector
will provide warning only after severe damage. Obviously, the purpose of
condition monitoring is to uncover faults at a much earlier stage. Gear fret-
ting is also notoriously difficult to detect through vibration monitoring, be-
cause it produces little low frequency vibration. Oil debris monitoring differs
from classical chip detection by providing precise quantitative and qualita-
tive analysis of oil debris. This technology might prove to be quite effective
for monitoring of gearboxes, as fretting tends to cause substantial amounts
of fine grained metal debris in the lubrication.

A weak-spot for all HUM System in use today is detection of gear fretting
and bearing corrosion. These failure modes typically create metal-to-metal
contact, which is a generator of weak signals at high frequency. As the signals
are quite weak compared to the low frequency vibration, in addition to being
out of the sensitive spectrum of most accelerometers, they are easily lost.
Further, the use of synchronous averaging on gears will efficiently suppress
any signal not correlated with the shaft rotation. This includes the metal-
to-metal noise created by fretting.

A method better suited for detecting these failure modes is Acoustic Emis-
sion (AE) monitoring. Acoustic emissions are ultrasonic energy emissions
created in response to metal-to-metal contact and metal deformation. This
information is normally recorded through acoustic sensors or wide band ac-
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celerometers, in an asynchronous manner. AE monitoring systems are very
sensitive to early signs of gear / bearing failure, mainly metal deformation
and direct metal-to-metal contact. Thus, it should have the properties nec-
essary to detect both bearing corrosion and gear fretting. In addition, this
technology might be able to detect fretting between statically assembled com-
ponents. Examples of problem areas are loosening of shaft splines, gearbox
housing joints, and gear fastenings bolts. The latter is a known problem on
the Super Puma LH ancillary gearbox, where the intermediate gear fastening
bolts tend to loose torque. Being able to detect this phenomenon before the
entire gear start to loosen would of course be a benefit.

Adding new sensor technologies to the HUMS will require a profound
redesign of the airborne segment. These are thus considerations which should
be kept in mind for the long term system evolution.

Indicator Processing and Classification

The current classification methods evaluate the input of each indicator against
an individual threshold. There is no evaluation of indicator trends over time,
and no testing for parallel drift in indicators.

Most faults tend to cause gradual increase in indicator values, creating
trends of a more or less clear nature. Further, most faults tend to affect more
than one indicator, causing parallel trends on several indicators. For some
faults, the indicators tend to rise also on the adjacent components. These
are correlations that could be exploited to improve diagnosis results.

Given N indicators calculated at M acquisitions, the most general way
of evaluating this information is an N by M feature matrix containing all
information ever recorded. A single instance of this matrix will contain all
information necessary to detect faults on all components on the aircraft. For
simplification purposes, this operation can be split up in several steps, each
step covering one component. N will then be replaced by a subset of N,
N’, containing all indicators for the component in question. N’ might also
contain indicators from adjacent components. M can be replaced by a subset
of M, M’, containing the last few acquisitions or all acquisitions since last
overhaul.

Evaluation of these feature matrices can be performed by classification
systems such as clustering, artificial neural networks, fuzzy logic, or polyno-
mial approximation. As any component state will not have an unambiguous
signature in such a matrix, it is necessary to perform a second level param-
eterization. This can be achieved by for instance calculating the indicator
derivative or developing a parametric indicator progression model.

HUMS support personnel are capable of detecting faults more precisely
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than any HUMS, simply by using manual screening of the condition indi-
cators. This screening is mainly focused on indicator progression analysis.
Automating this process will thus provide a substantial improvement of the
HUMS, especially of it involves avoiding aircraft individual thresholds. As
indicator progression analysis can be developed without any modification to
the airborne segment, this axis of research should have the highest priority.

Data Migration

All first generation HUMS were made under the assumption that a given air-
craft would be associated with a single ground station. Practice has however
shown that HUMS data from a single aircraft can be processed at several
ground stations, on the various bases of the operator. This creates obvious
data consistency problems, as data from a single aircraft will be fragmented
across several ground stations.

Another problem is moving data from the operator to Eurocopter. This is
performed through backup tapes sent in the paper mail at more or less regular
intervals. The procedure is however too slow to perform the customer has
a potential problem. In response to possible detections, information is sent
to Eurocopter by emailing indicator plot screenshots. This is cumbersome
for the operator, and does not always provide Eurocopter support personnel
with all the necessary information.

Developing a model which allows migration of HUMS data between ground
stations and between ground stations and Eurocopter should be given high
priority. Such a model is vital both to answer the clients day to day data
migration needs, as well as to provide Eurocopter with a situation awareness
concerning its HUMS equipped fleet. The latter point is vital to any fur-
ther development the MARMS / EuroARMS systems, as it helps providing
relevant data for research into fault detection algorithms.

3.7 Axis of Research

Based on the improvement potential identified in the previous section, this
work follows several axis of research. The suggested improvements are how-
ever too numerous to be explored in the context of a single PhD. A decision
was therefore made to focus on methods not requiring redesign of the air-
borne system. This leaves research into methods for improved processing
and interpretation of the condition indicators. Further, a set of measures are
proposed to deal with some of the data migration issues.

To reduce data scatter, contextual data correction has been developed
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both for signals and for indicators. Contextual correction of indicators is
aimed at indicators originating from short duration acquisitions, for which
contextual variation within the acquisition is unlikely. Contextual correction
of signals is aimed at long duration signals, and permits correcting a signal
piece vice to compensate for context change throughout the period. The
latter method remains theoretic as it can not be implemented and tested on
the current generation airborne segment. It was developed none the less, due
to its relevance for future use.

To avoid the current problems of individual indicator thresholds for each
aircraft, two methods for indicator trend analysis were developed. These
methods start by calculating traditional indicators from a batch of vibration
acquisitions. Once an indicator series is obtained, trend analysis is used for
analyzing how the indicator series behaves over time. The first method uses
a flexible parametric model to approximate indicator behavior over time.
Indicator behavior along the time line is then identified by evaluating the
first derivative of this model. The second method applies a set of wavelet
filter banks to the indicators separating regions representing maintenance
actions, normality and mechanical degradation. The wavelet coefficients are
then passed through a threshold system or a radial basis network to flag
regions of maintenance actions and mechanical degradation.

Finally, a framework for HUMS data migration is developed. This frame-
work is designed to facilitate transport of data between the operator and the
HUMS OEM, and to help the HUMS OEM fuse together data recorded by
different systems. The data migration framework is completed with a sys-
tem for online registration of HUMS alarms and mechanical problems. This
facilitates the communication between the operator and the HUMS OEM
customer support, and greatly improves the response time for customer sup-
port as well as reducing operator workload.

Eurocopter France owns a patent, currently pending, on the work con-
cerning contextual normalization and non-parametric trend analysis.



Chapter 4

Data Migration

4.1 Introduction
For the continued evolution of the Health and Usage Monitoring Systems, it is
of vital importance to be able to aggregate the experience already obtained
by the systems currently in service. For an airframe OEM, this involves
collecting data at regular intervals from all of its fleet, typically involving
multiple HUMS models and versions produced by delivered HUMS OEMs.
Collecting and fusing data from different HUMS models and versions poses
several technical challenges, as each system organizes its data storage in
different ways. This chapter presents a data handling system which has been
developed as part of this PhD study. The data handling system is designed
to fuse the data from different systems and system versions into a common
database, so that this data can be accessed through a single interface. Such
a tool is essential for extracting and aggregating the experience obtained
through all HUMS solutions currently and formerly in use [49].

4.2 Analysis Process
Although each HUMS solution on the market does things slightly different,
the overall process is more or less the same (Fig. 4.1). This includes the
datatypes that are recorded or derived by the HUMS. The fundamental data
sources for usage monitoring are the flight data parameters, i.e. informa-
tion like airspeed, altitude and engine torque. These are used for generating
event markers like engine overheat and rotor overspeed. The usage moni-
toring function also calculates usage cycles, and generates event markers for
components reaching their retirement age in terms of accumulated cycles.
Each marker is stored with the contextual information relevant to its type.
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Figure 4.1: HUMS analysis process.

For health monitoring, the fundamental data sources are the vibration
recordings. From the recording from each component, a set of condition
indicators are derived. These are parameterizations of the raw vibration
signals, and are closely correlated with the state of the underlying assets.
The indicators are aggregated by a classification system able to detect the
presence of mechanical degradation. A set of event markers are produced
by the classification system. This set of markers represents observations
of assumed mechanical degradation, and compliments the set of markers
representing anticipated faults generated by the usage monitoring.

SignalsSignals IndicatorsIndicators

Flight DataFlight Data

EventsEvents Event FieldsEvent Fields

Data StorageData Storage

Figure 4.2: Basic datatypes.

This makes a total of five datatypes for the HUMS. Two fundamental
once; flight data parameters and vibration recordings, and three derived once;
indicators, event markers and event marker fields (Fig. 4.2). The event
marker fields are the contextual information companying each event marker.
The work distribution between the airborne segment and the ground station
is proprietary to each HUMS solution. Regardless, all five datatypes will
eventually end up in the data storage of the ground station.
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4.3 Architectural Layers

Although the data from every HUMS can be generalized into a set of standard
datatypes, the storage format in proprietary to each HUMS. Most HUMS so-
lutions on the market today use either a proprietary directory / file structure
or a third party SQL database (Sec. B.1). Even though SQL databases have
standard interfaces, the table structure is still proprietary to each HUMS
version.

This barrier has been overcome by developing a data storage driver for
each supported HUMS version. A storage driver is an implementation of
standardized Application Program Interface (API). The functions defined in
the API provide the necessary tools to connect to a data storage, enumerate
the elements of each datatype, and extract the underlying data. Although
the inner workings of each driver is very different, the outside interfaces are
identical (Sec. B.2.1).

The common interface layer exposes this standardized interface to any
third party application through ActiveX (Sec. B.2.3) and .net (Sec. B.2.4).
This layer accepts connection requests from any third party application, loads
the driver corresponding to the HUMS version provided in the connection
request, and connects to the specified target data source. Once a connection
is open, the third party application can interrogate data objects within any
supported HUMS data storage without any knowledge about its underlying
structure (Fig. 4.3). The choice of Microsoft-based component models, over
more open solutions like Java (Sec. B.2.2), was made due to the fact that
large amounts of code has already been developed inside the company base
on Microsoft computing platforms.
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Figure 4.3: Data interface layers.
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All HUMS data drivers support remote connection, meaning that data
source and target application need not be running on the same computer.
For HUMS solutions relying on a third party SQL database, remote access
is managed by the database engine and connectivity drivers. For proprietary
directory / file structured data storage, remote access is provided through
standard file sharing protocols. This way, remote access is provided without
having to install any additional software on the data storage servers. This
is an important point, as ground station software today exists for a variety
of hardware and operating system platforms which in some cases are in the
process of becoming obsolete, thus rendering development of any additional
platform specific software unpractical.

For communication across Internet, data are channeled through Virtual
Private Networks (VPN). VPN is an open technology which ties together
two Internet connected Local Area Networks (LAN) so that they appear
as one. A VPN tunnel ensures protection of both end networks, provides
authentication of both parties, and allows encryption of all data transferred
through the tunnel. Again, this is achieved using only standard protocols
which are supported by all platforms.

4.4 Common Storage

The continuous research into fault detection algorithms requires large amounts
of vibration data in order to understand how mechanical faults affect the
vibration signatures of the transmission system. Test-rig experiments are
expensive, and are not necessarily representative for the vibration signatures
recorded in flight. It is thus essential for a HUMS OEM to gather as much
authentic HUMS data as possible. Such data can be extracted from the op-
erator ground stations using the solution presented in the previous section.

An additional technical challenge is finding efficient means of storing large
quantities of data from several systems. By default, a HUMS OEM must keep
one data reservoir available for each system and version in order to provide its
researchers with access to the relevant data. Further, some ground station
data reservoirs have limited capacity due to their design, meaning that a
large number of data storage servers are necessary to host the data from an
entire fleet of aircraft.

This problem has been overcome by the development of a common data
storage. The common data storage is based on the generalized HUMS data
format introduced in the previous sections, and is thus capable of storing
data from any system for which a data reservoir driver exist. Further, this
data storage solution is scaled to store all data ever recorded by an entire
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fleet. Consequently, it provides researchers with a single interface into all
data recorded by all supported systems, greatly simplifying data management
tasks for the HUMS OEM.

A data synchronization tool allows data to be transferred from a source
ground station to the common data storage. The synchronization tool has its
own graphical user interface (GUI) for selecting source and target connection
credentials. In addition, it has an ActiveX programmatic interface allowing
integration into other computer systems, such as web fronts.

Common InterfaceCommon Interface

Driver LayerDriver Layer

Common
Storage

Common
Storage

Data Export
Interface

Data Export
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Data Analysis
Tools

Data Analysis
Tools

Data Analysis
Tools

HUMS CHUMS CHUMS BHUMS BHUMS AHUMS A

Figure 4.4: Global dataflow.

Rather than interfacing directly with the common data storage at SQL
level, third party applications gains access through a data export interface.
The data export interface is an ActiveX component allowing third party
application to programmatically enumerate the objects within the common
storage and extract the underlying data (Fig. 4.4). It has also a GUI allowing
the extraction of data into applications which do not have their own GUI for
data object management. Further, the data export interface offers a mecha-
nism for connecting directly to a ground station data reservoir through the
common interface layer. This is especially convenient in support situations,
as it allows HUMS OEM support personnel to tap directly into an operator’s
ground station using specialist data analysis tools.

4.5 Discrepancy Reporting

Historical HUMS data is of little use if the states of the assets corresponding
to the data recordings are not known. In order to extract any knowledge
about the correlation between mechanical states and vibration signatures,
both the states and their corresponding signatures must be known. In the
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context of pattern recognition, this is known as marked training sets. In
order to have the historical HUMS data from an aircraft correctly marked,
it is necessary to know when the operator experienced mechanical problems,
as well as the nature of the problems.

This has led to the development of a discrepancy reporting system. The
discrepancy reporting system allows operators to file a report online when
ever an anomaly is suspected. Any such report will be handled by an expert
at the HUMS OEM advising the operator of the appropriate action. This is
a two-way communication process where the operator and the HUMS expert
work together to locate the origin of the problem (Fig. 4.5). Once the
problem is identified and the appropriate actions taken, the HUMS expert
will set a marker in the common storage database explaining the uncovered
anomaly, if any. This marker will be stored for future reference with all
communication made during the fault isolation process.
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Figure 4.5: Discrepancy reporting and follow-up.

Discrepancy reporting procedures already exists in some form or another
for most HUMS OEMs. The advantage of the online reporting system is
that it cuts response time for the support personnel significantly. Further,
it provides automatic logging of discrepancy reports, facilitating statistical
studies and correlation with HUMS data. This combination of a HUMS data
storage facility and a discrepancy database allows researchers and support
personnel to extract and investigate the vibration signatures corresponding to
specific mechanical problems through the click of a button. When managing
data from an entire fleet of aircraft, each aircraft producing hundreds of
condition indicators for thousands of hours every year, it is essential to have
data management at this level in order to keep oversight.

4.6 Benefits

This data storage facility is meant to benefit both researchers and support
personnel. The key advantage for support personnel is the speed and flexibil-
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ity of the discrepancy reporting system, allowing faster response to operator
requests. This is supplemented by the common interface which gives instant
access operators’ HUMS data. Instant access means that support personnel
can view an operator’s HUMS data directly, rather than explicitly requesting
the operator to send the necessary data (Fig. 4.6). This results in reduced
workload for the operator and shorter response time for support personnel.
An additional benefit is that the periodic data transfer from operator to
the HUMS OEM no longer requires the intervention of the operator, again
reducing operator workload.
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Figure 4.6: Condition indicator with discrepancy markers.

The motivation for providing researchers with this tool is, as already men-
tioned, to facilitate research into the correlation between vibration signatures
and drive-train failure modes. Further, the discrepancy database permits
data mining operations like calculating fault detection frequencies and false
alarm frequencies. Such frequencies can be calculated across indicators, com-
ponents and rotorcraft models. This helps the HUMS OEM gain a better
understanding of the effectiveness of each HUMS function, so that research
can be focused on the most significant weak-points. It also gives support
services a better situation awareness concerning problem distribution across
operators, aircraft and aircraft models.

4.7 Conclusion
Most in-service difficulties associated with Health and Usage Monitoring Sys-
tems can be attributed to their complexity. The number of components mon-
itored and the number of failure modes these systems are designed to detect
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are immense. This makes it highly challenging to monitor the performance
and reliability of each sub-function, and poses the risk of HUMS OEMs be-
ing buried in discrepancy reports and raw HUMS data without being able to
extract the knowledge contained within.

The data migration solutions developed in this thesis are an attempt to
counter these problems by aiding the HUMS OEM in organizing the incoming
data, and extracting its essence. This is done by addressing the problem of
accumulating data extracted from different systems, correlating this data
with discrepancy logs, and exporting it to third party numerical analysis
tools. Although the two latter points are already addressed by certain OEMs
in some form or another, data fusion across systems is an area which so far
has received little attention. This is however a vital point, given the number
of solutions in service today. For the continued evolutions of HUMS, it is
essential to be able to exploit the knowledge accumulated by older systems
when developing the next generation technology.

The tradeoffs from better data handling are both short and long term.
On a short horizon, these methods provide better support services for the
HUMS OEM by reducing response time for the support personnel as well as
reducing operator workload. In the long run, better data handling will result
in better situation awareness for the HUMS OEM, making it easier to adapt
the systems to customer demand.
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Data Correction

5.1 Introduction

The spectral signature of HUMS vibration acquisitions are affected not only
by the underlying assets, but also environmental factors [50]. During opera-
tion, acquisitions are performed at different airspeeds, engine torques and oil-
temperatures, as well as during level flight, turning, climbing and so on. As
the environmental context of an acquisition is random, relative to when the
acquisition is performed, the impact of the various conditions is manifested
as random variations between the signals. This impact is manifested differ-
ently for each frequency on each acquisition. The energy at some indicators
/ frequencies at some acquisitions are heavily influenced by environmental
factors, while others are not.

These random variations are manifested as noise clouding the vibration
measurements. Working with fault detection, it is desirable to reduce ran-
dom noise as much as possible, in order to avoid erroneous diagnosis as a
result of unreliable measurements. Methods to limit contextual variations in
the measurements currently implemented in commercial solutions are mainly
limited to contextual windows for when acquisition is enabled. I.e. the use of
min and max criteria for signature-influential parameters, such as airspeed
and torque. A disadvantage of this approach is that variations can still be
considerable within these windows. Further, applying strict contextual win-
dows poses problems for aircraft with diverse operating envelopes, such as
search and rescue aircraft, resulting in low flight time within the contextual
window and consequently a low data volume per flight.

This chapter tries to compensate for contextual variations through mod-
eling. After an initial theoretical framework is developed, methods for both
indicator correction and raw signal correction are presented. The purpose
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of the methods is to de-correlate the vibration signatures and their environ-
mental context, thus reducing variance between observations representing
the same condition of the underlying asset. The better choice of correction
method, indicator correction or raw signal correction, depends on the type
of indicator and diagnosis methods are deployed on the corrected data, and
will be discussed in the following.

5.2 Modeling
In this study, it is assumed that the observed finite length signal x recorded at
time t can be seen as the product of a number of models Mk, each depending
on the linear or nonlinear combinations of the elements in a vector of model
parameters pk(t) (Eq. 5.1).

x(t) =
∏

k

Mk(pk(t)) (5.1)

It is further assumed that this expression can be simplified by considering
only the influence by the condition of the associated component Mc and the
environmental factors Me (Eq. 5.2).

x(t) = Mc.Me(pc(t)) (5.2)

The environmental influence, Me, is given by the environment at the
time of acquisition. Each HUMS acquisition is accompanied by a set of
contextual parameters describing this environment. These are flight data
parameters such as airspeed, torque and oil temperature, where the selection
of parameters available depends on HUMS model and version. Consequently,
Me can be made as a function of an array of contextual parameters pc(t).

Defining xt as a set of finite-length signals, makes x a vector of signal
samples and t acquisition start time. With xt acquired from a component
in a stationary condition throughout the set, the output from Mc will be
constant across t. Consequently, the only factor contributing to non-constant
behavior in xt across t is Me. Given xt and the contextual parameters on
which Me depends, the function Me can be estimated. This provided that all
the necessary contextual parameters are recorded, and that sufficient relevant
training data exists.

In order to cancel the effect of environmental changes, a reference en-
vironment must be defined. The purpose of the reference environment, a
vector of contextual parameters constituting an environment of reference pr

e,
is to correct each observation so that they appear to have been made in
this environment. A correction function (Eq. 5.3) is defined so that it for
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an observation provides the ratio between the reference environment and the
environment at the time of the observation. Weighting each observation with
its correction function G will thus de-correlate Me and the observations.

G(pe(t)) =
Me(p

r
e)

Me(pe(t))
(5.3)

This methodology can be applied directly to a signal, or to each indicator
derived from the signal of a given component. The former approach requires
G to be a filter, where the filter transfer function is given by the set of relevant
flight parameters. Using the latter method makes G a simple scalar function
describing the coupling between a single indicator and the set of relevant
flight parameters. A function G must thus be estimated for each indicator
of the signal associated with each component on the aircraft.

This chapter makes no assumptions about the underlying physical phe-
nomena responsible for the correlation between environmental context and
vibrations signature. The methods developed here are purely general, and
must be adapted to each component on the aircraft.

5.3 Indicator Correction
Not all indicators are sensitive to environmental changes. Others are sen-
sitive, but show a change in scatter rather than localization. A significant
group of indicators show a substantial change in location as a function of
environmental context. The relationship between indicators from this group
and the applicable flight parameters is normally possible to approximate with
a polynomial model (Eq. 5.4). In this case pe(t) contains not only the pa-
rameter, or parameters, of interest, but also the necessary powers for each
parameter.

M̂e(pe(t)) = pe(t).â (5.4)

The vector â contains the weight of each power of each parameter, and
is estimated using a set of indicator values i and their associated flight pa-
rameters pe recorded over a period where the condition of the underlying
asset is stationary. As the condition is stationary, any fluctuations in the
indicator value must be caused by environmental variations. By subtracting
the mean value of the indicator µi, the fluctuations are isolated, and the
model M̂e(pe(t)) is estimated to approximate these fluctuations (Eq. 5.5).
By subtracting the environmental model from the indicator series, the fluctu-
ations caused by environmental changes are removed, thus reducing indicator
scatter.
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Figure 5.1: LH Free Wheel Gear RMS versus indicate airspeed.
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Figure 5.2: LH Free Wheel Gear RMS versus lateral pitch.
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Figure 5.3: LH Free Wheel Gear RMS versus pitch attitude.
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â = (pep
T
e )−1pT

e .(i− µi) (5.5)

Figures 5.1, 5.2 and 5.3 shows the left hand free wheel gear rms indicator
from an EC225 in slow cruise as a function of indicated airspeed, lateral pitch,
and pitch attitude. Indicated airspeed is the speed of the aircraft relative
to the atmosphere, lateral pitch is the cyclic stick position in the lateral
(forward) direction, and pitch attitude is the angle of the aircraft in the
forward direction. The unit is knots for the first parameter, and percentage
of max angle for the two others. During cruise, these three parameters are
strongly correlated. The data for this example was however acquired in slow
cruise. In such condition there is a substantial delay between a change in
stick position, subsequent change in aircraft angle, and finally change in
aircraft speed. The three parameters are thus only partially correlated for
this dataset. Common for all three parameter is however their correlation
with engine torque.

From the figures, it appears as if there is a strong correlation between all
three parameters and the indicator. The green line in each figure shows a
third order polynomial approximation of the relationship between indicator
and parameter.

Figure 5.4 contains the above indicator as a function of acquisition index,
with the raw indicator accompanied by a corrected one. Model estimation
was done using acquisitions 50 to 110. As can be seen from the figure, the
model remains valid also outside the training period.
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Figure 5.4: LH Free Wheel Gear RMS raw and corrected for environmental
changes.

The relationship between indicator values and environmental conditions
is specific to each indicator and aircraft. In the above example, there is a
certain correlation between the three parameters. All three parameters are
also known to have an impact on torque, which is probably the underlying
cause of the indicator fluctuations. Physical models for rotorcraft dynamics
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and their impact on vibration signatures are however outside the scope of
this study.

5.4 Signal Correction

Working directly on the signals, it is only necessary to estimate one model
per component, although this argument is countered by the increased com-
plexity of this method. An advantage held by direct signal correction is that
it is producing corrected raw signals suitable for non-linear indicators and
classification methods working directly in the time or frequency domains [46].
Examples of such are adaptive lifting [41] and mathematical modeling [14].
These methods use a reference wavelet or filter as an approximate of the sig-
nal, calculating the distance between each sample signal and the reference.
Once a scalar feature is extracted, like the sum square difference, it is too
late to perform any correction.

Another advantage is the possibility to piecewise normalize the raw signals
before any further processing is performed. This is of interest for acquisitions
where the recording period is sufficiently long for the environmental context
to be subject to change throughout the recording period. Components re-
quiring acquisitions of long duration are mainly rotors, as these rotate at
slow speed.

This section attempts to de-correlates environmental context and signal
power spectrum magnitude, giving the impression that all signals where ac-
quired in the reference environment. Any correlation between environmental
factors and power spectrum phase is however not considered. On the con-
trary, the correction filter does itself introduce a significant phase distortion
to the signal. If this is acceptable or not, depends on the classification system
for which the data is intended. Most systems in use today rely only on sig-
nal magnitude at specific frequencies, and does not consider phase. Should
the above method be used for pre-processing data for a phase-sensitive clas-
sification system, the data must also be passed through a phase-equalizer
correcting the distortions caused by the magnitude-equalizer.

To de-correlate vibration power spectrum and environmental context, it is
necessary to create a model describing the environmental impact on the signal
waveform. This can be done by evaluating the signal Power Spectral Density
(PSD) as a function of significant environmental factors, for example airspeed
as shown in figure 5.5. Note that frequency is given in shaft order. For this
data set, a non-parametric PSD is obtained using a simple discrete Fourier
transform, as the signals have already been averaged in the time-domain.
The signal PSD magnitude and phase is thus an alternative representation
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of the time-domain signal, without any loss of information.
To model the spectral behavior as a function of the environmental context,

it is however necessary to approximate the signal PSD using a parametric
model. As seen in figure 5.5, gear vibration signals consist of a small number
of high-energy regions, in this example only one, corresponding to the gear
meshing harmonics and modulation sidebands, over a noise-floor. Such a
spectral shape can successfully be approximated by an autoregressive (AR)
model (Eq. 5.6). An AR model has a number K of high-energy regions,
poles, over a base floor. The frequency position of each pole is given by
ωk ∈ [0, 2π], while the energy level is controlled by rk ∈ [0, 1〉. The general
level is given by b0. All complex poles (ωk /∈ {0, pi}), must have a complex
conjugate, or output will be complex.

H(ω) =
b0

1 +
∏

k∈K rkejωke−jω
(5.6)

Figure 5.5: Magnitude PSD of fwd gear acquisitions order by speed.

The amplitude of the high-energy regions vary with the environmental
context while the positions in frequency is constant. Consequently, it is pos-
sible to use a simplified model which explicitly defines ωk for each component
and optimizes only b0 and rk. An altered version (Eq. 5.7) of the original
AR prototype is defined, forcing every pole to have a complex conjugate.
This simplification can be made without loss of generality as no acquisitions
have meshing tone harmonics or modulation sidebands at dc or π frequency,
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meaning that all poles representing meshing tone harmonics or sidebands
must have a complex conjugate. The adjustable parameters b0 and rk are
estimated using Trust Region (Sec. A.4.1). This estimation can also be
performed using an evolutionary algorithm or other gradient-based methods.

H(pe)(ω) =
b0

1 +
∏

k∈K z
(pe)
k e−jωz

∗(pe)
k e−jω

(5.7)

z
(x)
k = r

(x)
k ejω

(x)
k (5.8)

As an alternative, it is still possible to use the original AR definition and
a textbook estimator like LPC or Burg [36]. This will however require an
algorithm for keeping track of the pole angles relative to their indexes, as
these might change order from signal to signal using a textbook optimizer.

The number of complex conjugate poles is chosen to match the number
of high-energy regions, and the pole angles ωk are set to match the frequency
of these regions. By estimating each signal X(pe)(ω) in the dataset, the
corresponding approximate H(pe)(ω), given by b

(pe)
0 and r

(pe)
k , are obtained

(Eq. 5.9). The variable E(pe)(ω) is approximation error.

H(pe)(ω) = X(pe)(ω)− E(pe)(ω) (5.9)

Figure 5.6 shows the magnitude PSD of the same set of signals as in
figure 5.5, but with each signal X(pe)(ω) replaced by its AR approximate
H(pe)(ω). The parameters making up each AR model, b(pe)

0 and r
(pe)
k , can

themselves be modeled as a function of the contextual parameters pe using
a parametric model. This example used a third order polynomial model,
although this might not necessarily be the optimal choice for the pole radius,
as this parameter is always between zero and one. A better model for this
parameter might be a sigmoid, or some other function with output confined
between zero and one.
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Figure 5.6: Fwd gear H(pe)(ω).

The meshing tone amplitude is significantly smaller for H(pe)(ω) than
the non-parametric PSD. This is because b(pe)

0 and r(pe)
k are estimated in the

least-square-error sense, and the meshing tone represents only a single point
in the PSD. If need be, this problem can be amended by giving the meshing
tone frequency higher weight than the rest when optimizing, though at the
cost of less precision for the other frequencies. The difference in amplitude
is however of less importance, as it is proportional for all values of pe and it
is the ratio between different values of pe that is of interest.

Ĥ(pe)(ω) =
b̂
(pe)
0

1 +
∏

k∈K ẑ
(pe)
k e−jωẑ

∗(pe)
k e−jω

(5.10)

Replacing the filter parameters b(pe)
0 , r(pe)

k and ω
(pe)
k by their polynomial

approximates, b̂(pe)
0 , r̂(pe)

k and ω̂(pe)
k , the model Ĥ(pe)(ω) is obtained, modeling

signal energy both as a function of frequency and airspeed (Fig. 5.7) (Eq.
5.10).

In order to correct the signals, a reference environment pr
e is chosen. The

correction filter G(pe)(ω) represents the ratio between the reference power
spectrum and the power spectrum corresponding to any contextual environ-
ment. Due to the division of two AR filters, the correction filter (Eq. 5.11)
becomes an autoregressive moving average (ARMA).
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Figure 5.7: Fwd gear Ĥ(ias)(ω).

G(pe)(ω) =
Ĥ(pr

e)(ω)

Ĥ(pe)(ω)
(5.11)

G(pe)(ω) =
b̂
pr

e
0 (1 +

∏
k∈K ẑ

(pe)
k e−jωẑ

∗(pe)
k e−jω)

b̂
(pe)
0 (1 +

∏
k ẑ

(pr
e)

k e−jωẑ
∗(pr

e)
k e−jω)

(5.12)

The surface of the correction model (Eq. 5.12) is so that if multiplied
with the airspeed model (Eq. 5.10), it returns the reference power spectrum
for all values of pe. The time-domain filter coefficients for a given pe, bk
and ak, is the coefficients corresponding to the numerator and denominator
polynomials of G(pe)(ω). Deriving a correction filter from the airspeed of each
signal, and applying them before further processing is performed, will largely
remove the signal’s contextual sensitivity (Fig. 5.8).
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Figure 5.8: PSD of corrected fwd gear acquisitions order by speed.

5.5 Conclusion
The methods introduced here are an attempt to correct the environmental
influence on HUMS vibration data, so that data acquired at different con-
ditions are more comparable. This is favorable for all rotorcraft, especially
those spending much time outside cruise, as it permits reducing data scatter
and increase the overall reliability of the system. Also aircraft operating in
near optimal condition can benefit from having its data corrected for envi-
ronmental changes.

The underlying physical explanations for these correlations have not been
addressed during this study. A subject for further research could be to es-
tablish a theoretical framework explaining why these correlations occur, and
perhaps correlate indicators’ environmental dependency to factors like incor-
rect equipment installation.
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Chapter 6

Feature Extraction

6.1 Introduction

Most HUMS in use today evaluate each vibration measurement indepen-
dently, with minimal correlation of these measurements along the time line.
Progression analysis taking place in commercial HUMS is mainly limited to
requiring N out of M indicator values to breach their threshold, this to avoid
spikes setting off false alarms. This is in sharp contrast to the methods used
by human HUMS analysts, which for most indicator types pay more attention
to the progression of the indicator than its absolute value.

This chapter looks into progression analysis of vibration data as a means
of feature extraction. A theoretical framework for the relationship between
asset states and vibration signature progression is developed, as well as meth-
ods to analyze the progression of an observed indicator. Both parametric and
non-parametric approaches to progression analysis has been explored, with
strengths and weaknesses discussed in the chapter conclusion.

6.2 Progression Analysis

As explained in chapter 3.3.1, the gear vibration signatures are given by the
matrices A and B in equations 3.2, 3.3 and 3.4 [30]. From this understanding
of vibration signatures, gear condition estimation is transformed into a sys-
tem identification problem. Each condition a given gear can exhibit has its
set of values for A and B. Thus, by estimating these matrices, it is possible to
uncover the corresponding condition. Although this equation set is underde-
termined, making an unambiguous estimation impossible, it is fairly straight
forward to specify a set of condition indicators capturing the essence of A
and B. Consequently, the condition of a gear is given by its set of relevant

79
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indicators. Also for bearings and shafts, a relatively small set of indicators
is sufficient to discriminate all conditions these components can inhibit.

Vibration based fault detection for mechanical components is typically
based on estimating the normal state vibration signature i.e. the normal
state values for a set of relevant indicators, and comparing subsequent obser-
vations to this baseline. An observation displaying significant deviation from
the normal state baseline must be considered as an observation of a compo-
nent in an abnormal condition. The challenge is estimating the baseline, i.e.
the normal state envelope for the set of relevant indicators. This because
the vibration signature of a mechanical component is specific not only to
each design, but specific to each physical realization of a given design. The
cause of this stems from microscopic differences in the way each component
is forged and mounted. All component types suffer from this problem, al-
though gears typically have larger variation in vibration signature between
individual realizations than bearings and shafts. In any case, the normal
state baseline must be estimated for each component, and re-estimated after
major overhauls.

As the condition of a component degrades, its condition changes as a func-
tion of time. Consequently, its vibrations signature and its set of relevant
indicators changes as a function of time, where the function is determined
by the failure mode. Observing a segment of a set of indicators, it is possible
to estimate the function, or progression pattern, to which the segment cor-
responds. The progression pattern estimate will in turn provide a pointer to
which conditions the observed component is traversing, and to which failure
mode this set of conditions corresponds. These assumptions form the base
for indicator progression analysis as a feature extraction tool.

6.2.1 Basic Progression Types

From a HUMS analyst’s point of view, the progression of an indicator belongs
to one of three classes; normal, step or trend. Indicators in the normal class
have a constant expected value, although some indicators have considerable
scatter on around of this mean. A step is a sharp transition between two
levels, and is usually caused by maintenance actions. This corresponds to a
reset of the indicator / condition model, as the set of indicator values corre-
sponding to a given condition changes. Consequently, when working on fault
detection methods using the absolute indicator values directly, any model
must be re-estimated to compensate for this. The trend class represents a
gradual increase or decrease in the expected value, and is usually associated
with mechanical degradation, i.e. a traversal through component conditions.
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Figure 6.1: Normal indicator behavior.
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Figure 6.2: Step change due to maintenance.
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Figure 6.3: Trend due to component degradation.

Mechanical degradation is also frequently associated with an increase in
indicator scatter. Figures 6.1, 6.2 and 6.3 contain examples and characteris-
tics of normal, step and trend behavior.

Trying to model the progression of an indicator (Eq. 6.1), the time se-
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ries can be split in a deterministic component d and a random process r.
Although the contextual normalization introduced in the previous chapter
removes some of the outliers and gaussian noise on the indicators, the data
still remains noisy. This due to influence by processes which cannot be prop-
erly modeled and predicted. This scatter is thus labeled as the random
process r. As established in the previous section, any change in component
condition will cause changes in the value of d and / or in the gain of r, for
one or more indicator associated with the component.

i(t) = d(t) + r(t) (6.1)

Looking at figure 6.3, it is clear that the indicator series produced by this
fault cases consist of several transitions, showing that the associated asset is
traversing several conditions, or fault propagation stages. In an operational
environment it is however impossible to observe the changes taking place in
a mechanical system hour by hour. It is only the final result observed when
a gearbox is removed and stripped which can be matched to its indicator
progression pattern. As a given end result, or observable failure mode, can
have several propagation patterns, it is difficult to match a known failure
mode to an observed propagation pattern. Further, it is from an operational
point of view sufficient to know if a component is in a healthy condition or
not. If a component is suspected faulty, it will in any case be removed and
inspected manually. Assuming that the initial condition of a component is
healthy, it is for fault detection sufficient to detect any change in component
condition, corresponding to changes in d and / or changes in the gain of r.

6.2.2 Progression Modeling

From the assumptions made in the previous section, an indicator progression
model is constructed. For normal component behavior, the model produces a
d with constant value and a r with constant gain. In response to a component
replacement, the model produces an abrupt change in the value of d. To
emulate progression patterns associated with mechanical degradation, the
model produces random transitions in the value of d and in the gain of r.

The variations in d are obviously not random for a given failure mode.
However, given a failure mode which is unknown or not well understood, these
fluctuations will appear as random. As this is the case for most failure modes
to which a helicopter transmission system is susceptible, the fault signature
model is made without assumptions of a priori knowledge of progression
patterns.

The two main components for the indicator time series is the deterministic
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process d and the random process r (Eq. 6.1). The component d is itself
made up of a step component b and a trend component c.

d(t) = b(t) + c(t) (6.2)

The component b is recursive with initial value b(0) equal to dcc. This
constitutes the initial value of b and thus the initial expected value of the in-
dicator. The last term of the expression contains a boolean expression which
returns 1 when true, and 0 otherwise. This results in a step of amplitude ab

at position pb. The parameters ab and pb can be arrays of several elements,
a

(k)
b and p

(k)
b , in which case several steps will be generated and step index is

denoted by k.

b(t) = b(t− 1) + [t == p
(k)
b ].a

(k)
b (6.3)

The trend component is made up of a sum of weighted sigmoids, where
ac constitutes amplitude, qc slope and pc position in time. The variable k is
the sigmoid index, and Kc is the number of sigmoids in the sum.

c(t) =
∑
k∈Kc

a
(k)
c

1 + e−q
(k)
c (t−p

(k)
c )

(6.4)

The random component r is itself made up of two processes, the outlier
component s and the white noise process w.

r(t) = s(t) + w(t) (6.5)

The white noise component is constructed from a gaussian process rg

with variable gain gw (Eq. 6.6). The gain function gw is given by a sum of
sigmoids over a constant (Eq. 6.7).

w(t) = gw(t).rg (6.6)

gw(t) = dcw +
∑

k∈Kw

a
(k)
w

1 + e−q
(k)
w (t−p

(k)
w )

(6.7)

The outlier component is constructed from a gaussian distribution rg (Eq.
6.9) with gain gs times the gain of w. Any point smaller than two standard
deviations are then set to zero (Eq. 6.8), so that only the peak values are
kept.

s(t) = s′(t).[s′(t) > 2gs.gw(t)] (6.8)
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s′(t) = rg.gs.gw(t) (6.9)

This gives a total of 13 configuration parameters controlling the character-
istics of a synthetically generated indicator series: dcc, a

(k)
b and t(k)

b controlling
the edge process, Kc, a

(k)
c , q(k)

c and p
(k)
c controlling the trend process, dcw,

Kw, a(k)
w , q(k)

w and p(k)
w controlling the white noise process, and gs controlling

the outlier process. By assigning specific values or probability distributions
to these parameters, indicator progressions similar to those associated with
various mechanical conditions can be generated.

Figure 6.4 shows a flow chart of the indicator model. The collection boxes
(double boxes) used for sigmoids and steps signifies that zero or more tran-
sitions are generated. In the cases where more shapes a produced, these are
simply added together in the sum blocks following each sigmoid and step
block. When several shapes a produced by a collection block, the control
parameters for each transition are tagged with transition index (k) in super-
script, as shown in equation 6.3, 6.4 and 6.7. The operator ">" produces
zero for false and one for true. The intermediate results gw, w, s, b, c, d and
r are labeled in the figure.
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Figure 6.4: Indicator model overview.

Figures 6.5 to 6.10 show synthetically generated progressions represent-
ing normality, a maintenance action and a fault propagation. Each figure
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is accompanied with the distributions from which their model parameters
where chosen. All configuration parameters associated with steps and tran-
sitions are generated from random uniform distributions ru(from, to). For
the counters Kw and Kc, the integer uniform distribution run(from, to) is
used, to that {Kw, Kc} ∈ N .
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Figure 6.5: Normal indicator behavior.
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ŝ

50 100 150 200
−4
−2

0
2
4

Noise w(t)

ŵ
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Figure 6.6: Normal progression components.

Symbol Value Symbol Value
dcw 0.5 dcc 5
Kw ∅ Kc ∅
a

(k)
w ∅ a

(k)
c ∅

q
(k)
w ∅ q

(k)
c ∅

p
(k)
w ∅ p

(k)
c ∅

gs(t) 2gw(t) ab ∅
pb ∅

Table 6.1: Normal state model parameters
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Figure 6.7: Step change due to maintenance.
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Figure 6.8: Step progression components.

Symbol Value Symbol Value
dcw 0.5 dcc 5
Kw ∅ Kc ∅
a

(k)
w ∅ a

(k)
c ∅

q
(k)
w ∅ q

(k)
c ∅

p
(k)
w ∅ p

(k)
c ∅

gs(t) 2gw(t) ab ru(1, 4)
pb 100

Table 6.2: Step change model parameters.
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Figure 6.9: Trend due to component degradation.
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Figure 6.10: Trend progression components.

Symbol Value Symbol Value
dcw 0.5 dcc 5
Kw run(1, 4) Kc run(1, 4)

a
(k)
w ru(0, 1) a

(k)
c ru(−5, 5)

q
(k)
w ru(0.1, 0.2) q

(k)
c ru(0.2, 0.5)

p
(k)
w ru(100, 200) p

(k)
c ru(100, 200)

gs(t) 2gw(t) ab ∅
pb ∅

Table 6.3: Damaged state model parameters.
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The following three sections describe three methods to "reverse engineer"
the component sum generated by the indicator model into its four base com-
ponent. All three methods where tested on the same ten indicator series.
The series have the same progression parameters for the model (Tab. 6.4),
but with different seeds for the random number generator. Each method is
illustrated with one of the progression from the test set. The component sum
for this progression is given in (Fig. 6.11).

Symbol Value Symbol Value
dcw 0.5 dcc 5
Kw run(1, 4) Kc run(1, 4)

a
(k)
w ru(0, 1) a

(k)
c ru(−5, 5)

q
(k)
w ru(0.1, 0.2) q

(k)
c ru(0.2, 0.5)

p
(k)
w ru(100, 200) p

(k)
c ru(100, 200)

gs(t) 2gw(t) ab ru(1, 4)
pb 50

Table 6.4: Test set model parameters.
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Figure 6.11: Progression generated by the configuration (Tab. 6.4)

6.3 Linear Progression Analysis
Before proceeding with fault detection, it is necessary to identify variations
in the b, c, w and s components of which an indicator time series consist. A
very interesting method developed by Sylvie Charbonnier et al. [5] permits
dividing a time series into linear segments without the use of non-linear
optimization. This section uses a variant of this algorithm as an alternative
to the sigmoid based method developed in the previous section.
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6.3.1 Segmentation

The segmentation algorithm starts by finding a first order polynomial ap-
proximation d̂0 of the first Linit samples of the dataset i. A cumulative error
metric (Eq. 6.10) is used for validating d̂0 as an approximation of i. The
dataset is then tested sample by sample starting at the beginning of the
dataset. When e breaches the threshold Th1, a marker is set in the dataset.
Once e breaches a second threshold Th2, d̂0 is rejected. A new first order
polynomial approximation, d1, is then estimated using the data from the
marker up to the point where d0 was rejected. This process is repeated until
the entire dataset is segmented.

e(n) =

∣∣∣∣∣
n∑

k=0

d0(k)− i(k)

∣∣∣∣∣ (6.10)

6.3.2 Segment Concatenation

The above segmentation process approximates a dataset i as a set d̂k of linear
segments which need not be continuous. In order to reduce the number
of discontinuities in the approximation, the value at the beginning of each
segment d̂k is compared to the value at the end of it preceding segment
d̂k−1. If this difference supersedes the threshold Thc, the segments are left
discontinuous. Inversely, if the gap between the segments is less than Thc, the
angle of d̂k is changed so that its starting point matches the ending point of
d̂k−1. This process removes minor discontinuous in the approximation. The
component d̂ is then constructed by concatenating all the d̂k segments.

A noise estimate r̂ is produced by subtracting d̂ from the original obser-
vations (Eq. 6.11).

r̂(t) = i(t)− d̂(t) (6.11)

Once r̂ is obtained, its gain ĝr is estimated using a sliding window rms
(Eq. 6.12).

ĝr(t) = wrms(r̂, t, Lr) (6.12)

The components ŵ and ŝ are then separated by comparing each value
in r̂ to its gain estimate ĝr(t). Any points being larger than Ts standard
deviations of r̂ are considered to be part of ŝ (Eq. 6.13 and 6.14).

ŝ(t) = r̂(t).(
|r̂(t)|
ĝr(t)

> Ts) (6.13)
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ŵ(t) = r̂(t)− ŝ(t) (6.14)

Once ŵ is obtained, its gain ĝw is estimated using a sliding window rms
(Eq. 6.15). A parametric model ˆ̂gw of the noise gain is obtained using the
same parameterization methods that was used to identify d̂.

ĝw(t) = wrms(ŵ, t, Lw) (6.15)

6.3.3 Trend Analysis

An estimate for d is generated by the parameterization process. The compo-
nent b̂ is identified from the segmentation algorithm. Any two segments left
discontinuous constitutes a change in b̂, with position and amplitude given
by the position and amplitude of the discontinuity. The component ĉ is iden-
tified by subtracting b̂ from d̂. In order to detect changes in the condition of
the underlying asset, fluctuations in the value of c and the gain of w must be
monitored. This is done by computing the time derivative of ĉ (Fig. 6.12)
and ˆ̂gw (Fig. 6.13); aĉ (Fig. 6.14) and aˆ̂gw

(Fig. 6.15).
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Figure 6.12: Indicator decomposition.
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Figure 6.13: Indicator noise gain estimate.
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Figure 6.14: Indicator trend slope.
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Figure 6.15: Indicator noise gain slope.
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6.4 Sigmoid Progression Analysis

Although the line-based method performs very well, it is desirable to find
a model which permits modeling of curved shapes. According to the pro-
gression model defined in the previous section, d is either constant, abruptly
changing or gradually changing. When estimating the model d̂ based on a
set of observations of i, it is necessary to find a model prototype capable of
assuming any behavior exhibited by d. A possible candidate is the sigmoid,
as it is the primitive already used for generating gradual transitions in d.
Further, it is also, with the correct set of configuration parameters, capable
of producing abrupt transitions and straight lines.

The shape of the sigmoid prototype is adjusted by entry level dcd, transi-
tion amplitude ad, transition slope qd, and transition point pd, as illustrated
by equation (Eq. 6.16) and figure 6.16 [51].

d̂(t) = dcd +
ad

1 + e−qd(t−pd)
(6.16)
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Figure 6.16: Sigmoid prototype.

Subtracting d̂ from the observed indicator time series i obtains a scatter
and outlier estimate r̂ (Eq. 6.17). As r by definition is Gaussian noise, an r̂
with a balanced power spectrum indicates that the model r̂ and consequently
the model d̂ is correct. By adjusting the sigmoid shape parameters so that r̂
assumes a white power spectrum, d̂ assumes a close approximation of d.

r̂(t) = i(t)− d̂(t) (6.17)

Once r̂ is obtained, its gain ĝr is estimated (Eq. 6.18) using a sliding
window rms (Sec. A.2) of length Lr.
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ĝr(t) = wrms(r̂, t, Lr) (6.18)

The components ŵ and ŝ are then separated by comparing each value
in r̂ to its gain estimate ĝr(t). Any points being larger than Ts standard
deviations of r̂ are considered to be part of ŝ:

ŝ(t) = r̂(t).(
|r̂(t)|
ĝr(t)

> Ts) (6.19)

ŵ(t) = r̂(t)− ŝ(t) (6.20)

Once ŵ is obtained, its gain ĝw is estimated using a sliding window rms
(Eq. 6.21). A parametric model ˆ̂gw of the noise gain estimate is then obtained
by adjusting the sigmoid parameters (Eq. 6.22) so that the sum square
difference between ĝw and ˆ̂gw is minimized.

ĝw(t) = wrms(ŵ, t, Lw) (6.21)

ˆ̂gw(t) = dcw +
aw

1 + e−qw(t−pw)
(6.22)

6.4.1 Sigmoid Series

This method can only model an indicator time series consisting of a single
transition, i.e. a single trend or a single step change, and a single change in
noise gain. A useful feature extraction algorithm must be sufficiently robust
to be able to analyze an indicator time series consisting of several transitions.
A solution is to model each transition in the indicator series with a separate
sigmoid. This can be achieved by using a model with an arbitrary number
of sigmoids (Eq. 6.23) and (Eq. 6.24).

d̂(t) = dcd +
∑
k∈Kd

a
(k)
d

1 + e−q
(k)
d (t−p

(k)
d )

(6.23)

ˆ̂gw = dcw +
∑

k∈Kw

a
(k)
w

1 + e−q
(k)
w (t−p

(k)
w )

(6.24)

The choice of model order Kd and Kw is discussed in the following.
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6.4.2 Estimation Methods

The sigmoid sum model proposed above is underdetermined and non-linear,
and cannot be estimated by matrix inversion like polynomial models. The
problem of finding the set of model parameters which causes the model d̂
to obtain a the best possible approximate of d is a non-linear optimization
problem. A solution to this problem is finding the set of model parameters
which generates the most balanced power spectrum for r̂. Provided that the
model order is fixed, this can be simplified to the problem of finding the set
of model parameters which minimizes the r̂ sum of squares [48]. However,
if model order is itself a model parameter, minimizing square sum r̂ will
estimate a model d̂ generating an r̂ equal to zero. I.e. d̂ models both d and
r.

For the noise gain parametrization, it is sufficient to minimize the sum
square difference between ĝw and ˆ̂gw. If model order is itself a parameter,
it is however not possible to validate the model by evaluating the residual
power spectrum. This because the sum square difference between ĝw and ˆ̂gw

is expected to assume a power spectrum of mainly low frequency, even for
a correct model. Consequently, a traditional model validation technique like
r2 or adjusted r2 must be used.

Several methods exist for non-linear optimization problems, two of them
being evolutionary optimization and Trust Region. Evolutionary optimiza-
tion is inspired by the process of natural selection. Trust Region is a tradi-
tional steepest descent method.

All methods presented here attempt to minimize square sum r̂, unless
otherwise stated. The two former methods need model order to be decided in
advance, while the remaining ones are capable of estimating this parameter.
All methods were tested using a synthetically generated dataset.

Evolutionary Optimization with Pre-Defined Order (EO)

This methods uses evolutionary optimization (Sec. A.4.2) to adjust the sig-
moid parameters given a predefined function order, with the aim to minimize
sum square r̂. As the function order is fixed, there is no danger of "over fit-
ting". The method was tested using an elite ratio of 0.1. Of the remaining
individuals, the crossover fraction was set to 0.8 and mutation fraction the
remaining 0.2. Initial range for dcd and the a(k)

d parameters were set to the
range of i. All p(k)

d parameters had their initial range set to the range of t,
and the q(k)

d parameters where given the static initial range from 0 to 10. A
population size of 200 individuals where evaluated over 200 generations with
the end result shown in figure 6.17. Orders was set to 3.
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Figure 6.17: Calibration set with approximated using evolutionary optimiza-
tion.

For the example dataset, the approximation has one miss-placed step
and a significant bias toward the end of the dataset. In general, this method
works well. The main drawbacks is that it does not determine order, and
convergence is slow due to a poorly chosen initial condition.

Trust Region with Pre-Defined Order (TR)

This method was tested using convergence of the solution to the approximate
function as stopping criteria. The dcd parameter was given the initial value
equal to µi, while the a(k)

d and q(k)
d parameters were set to 0 and 1 respectively.

Each sigmoid’s position, p(k)
d , was set so that the sigmoids were uniformly

distributed across t. Final results are shown in figure 6.18. Orders was set
to 3.
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Figure 6.18: Calibration set with approximated using Trust Region with
simple initial guess.

This method performs reasonably well on the example dataset. The main
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objection to this method is execution speed, as robust evolutionary optimiza-
tion requires a large number of evaluations of the object function. Further,
this method is incapable of determining model order.

Residual Spectrum Validation (RSV)

In the context of HUMS data analysis, it would be sufficient to analyze
the last 200 - 300 flight hours of an aircraft to assess the condition of the
drive-train. For an indicator series of this duration, more than three or four
transition would be extremely unlikely. Consequently, good results can be
obtained using a fixed model order. Still it would be desirable to automati-
cally determine the optimal model order, with the optimal order being one
which balances the power spectrum of r̂ while at the same time minimizes
model order.

A simple way of determining the best model order is to start with a
first order model. For most realistic cases, this will be sufficient. The noise
estimate is then evaluated by the function J (Eq. 6.25).

J =
(
∑N−1

n=0 r̂(n)2)2∑N−1
n=0

∑∞
k=−∞ r̂(n)r̂(n− k)

(6.25)

As d is a low frequency process, any contribution from d in r̂ will be con-
fined to the first few DFT coefficients, and will thus unbalance the otherwise
white spectral content of r̂. The function J determines the whiteness of r̂.
This function has an expected value of 0.5 for white noise, and less than
0.5 for non-white signals. If r̂ is not sufficiently white, the model order is
incremented and the model parameters reestimated. This process is repeated
until an acceptable model is found.

The whiteness acceptance criterion is more suitable for this application
than traditional goodness-of-fit criteria, like r2 or adjusted r2, as these are
energy-based metrics. In this context, one can however not make any as-
sumption about the energy distribution between d and r. The only identify-
ing mark remains the power spectrum of r.

This approach can be implemented as a wrapping around the two previous
methods, thus identifying both the optimal model order and the optimal
value for each parameter. The method was tested using Trust Region and a
spectral acceptance criterion of 0.45, with final results in figure 6.19. Spectral
validation produces repeatedly good results when used with Trust Region.
Execution time is low, but the method seems inherently robust.
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Figure 6.19: Calibration set with Trust Region residual spectrum validation
model.

Iterative Evolutionary Estimation (IEO)

Although evolutionary optimization is a robust method in the presence of
local optimums, the algorithm struggles when the parameter space grows
to waste. In order to maintain robustness, the algorithm should maintain
a number of individuals sufficient to span the space containing the optimal
solution with a certain population along each dimension. If for instance a
one dimensional problem is solved using a population of k individuals, then
a two dimensional problem will require k2 individuals to maintain the same
population density. This becomes a problem when the order of the sigmoid
model increases, as this causes the number of dimension in parameter space to
increase three times as fast, thus causing the number of individuals necessary
to maintain population density to increase exponentially.

The problem of approximating an indicator series containing several tran-
sitions is one where a problem consisting of several sub problems is more
complex than the sum complexity of the sub problems. This because an N th

order model can have N ! different orderings of its sigmoids which for the
optimization algorithms are seen as N ! different solutions, even though they
indeed are equivalent.

A simplification will thus be to solve one sub-problem at a time, instead of
trying to solve all the problems at once. This can be attempted by splitting
the input series into uniform segments, and approximating one segment at a
time. The algorithm starts by estimating a first order model to the first K
observations of the input series. It then extends the estimation window by
K observations, and estimates a model consisting of two sigmoids, treating
the previously estimated dc component as static. I.e. the estimate for the dc
component is kept while the sigmoid is re-estimated. The estimation window
is extended by anotherK points for the third iteration, and the dc component
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and first of the sigmoids are frozen while the model is re-estimated using an
additional two sigmoids. This process, estimating each sigmoid two times,
continues until the length of the estimation window reaches the length of i.

This method was tested with the same configuration as the previous evo-
lutionary method, but using 50 individual for 50 generations at each iteration.
Final results are shown in figure 6.20.
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Figure 6.20: Calibration set with iteratively approximated sigmoid model.

This method should be seen as a failure. It is exceptionally slow, and
produces erratic results. A main reason for its lack of precision is that it
does not solve the global optimization problem. This is visible in the output,
like in the example dataset, where output behavior is abruptly changing
between segments.

Trust Region using Band-Limited Differentiator Pre-Processing

The success or failure of a gradient search optimization is to a large extent
given by the initial guess, i.e. the initial current position in parameter space.
Consequently, if a more accurate initial guess can be made, robustness and
convergence speed will increase.

If the position and amplitude of each significant transition can be approx-
imated in a linear manner, then only transition slope need to be estimated
through non-linear optimization. A common approach to trend detection is
using band-limited differentiators [9].

Due to the high levels of noise, the derivation filter is applied to a de-
noised version of i, using noise removal methods developed in [12] and further
adapted to health indicators. This de-noising method has the advantage,
compared to simply altering the bandwith of the derivation filter, of pre-
serving edges while retaining a good damping of white noise. By detecting
zero-crossing of the first derivative, local optimums along the time-series are
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discovered. Transition points can then be set in between each optimum. The
corresponding transition amplitudes are given by the amplitude difference in
the de-noised i between the leading and trailing optimum to each transition
point. Initial approximate for dc is the mean value from the start of the
series to the first zero-crossing. Final results are shown in figure 6.21.
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Figure 6.21: Calibration set with sigmoid approximate.

This method produces repeated good results, and has the lowest execution
time of all the models. Approximation is very close on the example dataset,
as well as all other datasets on which it has been tested.

Comparison

Although execution speed and model error for the different methods can
easily be compared, which algorithm best model the features of operational
importance remains a subjective opinion. Execution time is of course of in-
terest, but as the analysis of HUMS data is done off-line, this point is not
crucial. The main point of interest is in each algorithm’s robustness in mod-
eling the operationally important features correctly for any realistic input
series. For such a study, the test-sets used here are not sufficient. Con-
sequently, identifying the optimal method becomes a somewhat subjective
choice.

The two initial methods require order to be determined in advance. Al-
though, in an industrial setting, such a requirement can be met by using a
reasonable order given the length of the data set, it is also desirable to have
a more autonomous solution. Further, the evolutionary algorithm is not well
suited for high order models.

The spectral validation method produces good results when used as a
wrapping around Trust Region. An objection to this algorithm is execution
time, as it re-estimates the model each time order is incremented, thus requir-
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ing substantial execution time for high order models. This could probably
be amended by using the final results from the last optimization as initial
condition when model order is incremented, simply adding a sigmoid in the
region where model error is largest. Such improvements have however not
been further explored in this study.

Iteratively evolutionary estimation was an attempt to estimate a complex
function using a reduced parameter space, by estimating one segment at a
time. The method is still slow, and lacks accuracy because it does not solve
the global optimization problem.

Trust Region with initial guess given by band-limited derivation is clearly
the best method for the problem at hand, as the initial position is very close
to the optimal solution. This means that convergence is quick, and that the
initial position is closer to the global optimum than any local optimums.

6.4.3 Trend Analysis

Given a d̂ which is optimized to closely approximate d, the parameters con-
trolling d̂ constitutes a compact form representation of d̂. By analyzing this
compact form representation, it is possible to understand the behavior of d̂,
and the d which it approximates. The traversal through states associated
with mechanical degradation is however manifested as changes in the value
of c not d. It is thus necessary to separate the contribution from b̂ and ĉ in d̂.
As already explained, a step change constitutes a change in b while a trend
constitutes a change in c. In the progression pattern referred to as normal,
both b and c are static.

From this information, the key properties a(k)
r , a(k)

d and q(k)
d are extracted.

The two latter parameters hold the information necessary to identify what
type of transition is being approximated by a sigmoid, and consequently the
behavior of b and c within the region covered by the sigmoid. The former
parameter holds the information necessary to understand the progression of
the indicator scatter level.

In order to separate c and b, the q(k)
d metric is tested against a threshold Tq.

If a q(k)
d value overshoots this threshold, transition k is considered to be part

of b. Inversely, if a q(k)
d value is inferior to Tq, transition k is considered to be

part of c. After the transition has been sorted, b̂ and ĉ are constructed from
their respective sigmoids, giving the full 4-way decomposition(Fig. 6.22). In
order to detect changes in the condition of the underlying asset, fluctuations
in the value of c and the gain of w must be monitored. This is done by
computing the time derivative of ĉ (Fig. 6.22) and ˆ̂gw(t) (Fig. 6.23); aĉ (Fig.
6.24) and aˆ̂gw

(Fig. 6.25).
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Figure 6.22: Indicator decomposition.
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Figure 6.23: Indicator noise gain estimate.
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Figure 6.24: Indicator trend slope.

0 20 40 60 80 100 120 140 160 180 200
−5

0

5

10

15

20
x 10

−3

Flight Time (Hours)

D
er

riv
at

iv
e 

V
al

ue

aˆ̂g
w

Figure 6.25: Indicator noise gain slope.
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6.5 Non-Parametric Progression Analysis
The trend analysis model developed in the previous section was based on the
model believed to generate the observable time series. Although choosing
such an analysis model permits estimating an accurate approximate of the
original data, model estimation is difficult due to the non-linear nature of
the model. It is thus desirable to find a trend analysis method not in need
of non-linear optimization techniques. This is achievable through the use
of band-limited differentiators [9]. The method developed in this section is
based on the same principle as band-limited differentiators, but is further
specialized to fit the characteristics of condition indicator time series [52].

In the previous section, it was assumed that the observed indicator time
series are the sum of a deterministic process and a random noise process. Like
in the previous section, i(n) is split in four components; an outlier process
s(n), a random noise process w(n), an edge process b(n), and a trend process
c(n).

These components correspond exactly to the component used in the syn-
thetic indicator progression model. The traversal through states associated
with mechanical degradation is as already explained manifested as changes
in the value of c and the gain of w. A first step in the fault detection process
is thus to separate these four components.

6.5.1 Outlier Separation

The dataset i is de-trended (Eq. 6.26) by having its moving median (Sec.
A.1) at window size Ls−mm removed. This filter is an effective form of de-
noising, and will remove all of s and some of w, while keeping most of c and
b intact. The modified dataset i′1 will consequently contain all of s, some of
w and very little of c and b.

i′1(n) = i(n)−mm(i, n, Ls−mm) (6.26)

As the modified dataset has very little trend or edge contribution, it
will have zero mean. An outlier is defined as a point of value Ts standard
deviation outside the mean of the dataset (Eq. 6.27). Windowed rms (Eq.
A.2) at window size Ls−wrms is used as signal scatter might vary along the
time line.

ŝ(n) = i′1(n).(
|i′1(n)|

wrms[i, n, Ls−wrms]
> Ts) (6.27)

Before proceeding with the separation of w, b and c, the outlier component
is removed from the dataset (Eq. 6.28).
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i1(n) = i(n)− ŝ(n) (6.28)

6.5.2 Edge Separation

Wavelet expansions allow a signal x to be represented as a weighted sum of
scalings and dilatations of a wavelet function ψ(t). The Continuous Wavelet
Transform (CWT) (Sec. A.3.1) calculates, given an input signal and a
wavelet function, the weights corresponding to each scaling and dilatation
of ψ(t) (Eq. 6.29). This produces a matrix cwc

(j,n)
x with the j index rep-

resenting the scaling dimension and the n index representing dilatation or
time. The cwc(j,n)

x matrix can be interpreted as a spectrogram, although the
relationship between scale and frequency, in the Fourier sense, depends on
the choice of wavelet.

cwci1 = cwt(i1, ψ) (6.29)

Edges are easy to spot in the dataset, and are usually synonyms with
maintenance actions. In order to detect edges, the indicator series is ex-
panded on the Haar [19] wavelet using at scales 1 through Jedge. The meaning
of a wavelet coefficient matrix depends on the choice of the wavelet. For the
Haar wavelet, the coefficients signify the numeric derivative of the dataset at
different scales. I.e. the vector cwcji1 contains the dataset mean derivative
across a sliding window of 2j points. The Haar wavelet is chosen because it
resembles a step. Thus, whenever a step in encountered in the dataset, the
wavelet coefficients will exhibit higher values than if no step is present.

Trends are slowly evolving phenomena, and are thus confined to the
coarser scales of the cwci1 matrix. Random noise is wide band, but its pres-
ence in the coarse scales is negligible compared to the energy of the trends.
The only component with a significant impact across all scales is the edge.
The effect of a unit step at a given scale is 2

j
2 .

Consequently, an edge can be identified by looking for the edge signature
across the scales. A modified detail matrix cwc

′(j,n)
i1

(Eq. 6.30) is created
to capture the amplitude of the edge. An edge at position n will produce a
modified detail matrix with coefficients cwc′(j,n)

i1
equal to the edge amplitude

for all values of j along the n’th column.

cwc
′(j,n)
i1

= 2
−j
2 cwc

(j,n)
i1

(6.30)

Using the above definition, an edge is a position in time n where cwc′(j,n)
i1

is equal for all values of j. Due to the presence of components w and c,
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the values across the scales will not be completely identical. Thus, an edge
signature metric is defined (Eq. 6.31).

bp(n) =
|mean[cwc

′(j,n)
i1

]|
std[cwc

′(j,n)
i1

]
(6.31)

This represents the degree of edge behavior in each point n along the
time line. The functions mean and std are computed across all scales j for
each point n in time. Thus, an edge can be defined as a point in time n
where bp(n) is higher than the threshold Tp. Unfortunately, this will also
capture minor transition which also satisfies the above criteria. Thus, an
edge magnitude criteria is therefore introduced (Eq. 6.32).

bm(n) =
|mean[cwc

′(j,n)
i1

]|
wrms[i1, n, Lb]

(6.32)

An edge is a transition which rises clearly above the background noise.
The above equation will normalize the edge magnitude by the total dataset
energy in a trailing window with size Lb. An edge exists in a point in time
n which satisfies the trend signature criteria, while also having a magnitude
bm(n) larger than Tm (Eq. 6.33).

btrue(n) = (bp(n) > Tp) ∧ (bm(n) > Tm) (6.33)

A recursive equation (Eq. 6.34) provides an estimate for the edge process.
This equation always outputs it last value except when a step is detected, in
which case it adds the amplitude of the step to its output value.

b̂′(n) = b′(n− 1) +mean[cwc
′(j,n)
i1

].btrue(n) (6.34)

The initial value of b̂′ is zero. A modified version, b̂, will be developed
later. The initial value of this component will be the initial value of the
dataset, after s and w are removed. Another modified dataset, i2, is con-
structed without the edge component.

i2(n) = i1(n)− b̂′(n) (6.35)

6.5.3 Random Noise Separation

In order to perform a CWT which contains all information about the source
signal, the source signal must be analyzed at an infinite number of scales,
making reconstruction impossible. This problem is overcome by the Dis-
crete Wavelet Transform (DWT)(Sec. A.3.2) and the Stationary Wavelet
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Transform (SWT) (Sec. A.3.3), which expands the input signal on a wavelet
function using an arbitrary number of scales. The remainder of the signal,
which can not be expanded using the number of scales chosen, is left in the
approximate vector. Consequently, the approximate vector swta and the de-
tail matrix swtd will together contain all information in the original signal,
making reconstruction possible. While the DWT has applications in signal
compression, the SWT (Eq. 6.36) is the preferred choice for de-noising.

[swtai2 , swtdi2 ] = swt(i2, ψ, Jnoise) (6.36)

This study deals only with finite signals. In order to keep transform
output length the same as input length, while reducing transients, signals /
coefficients are padded at start and end. Padding consists of samples having
the mean value of the K first / last samples. This provides better results
than periodic padding, circular convolution, as the start and end of the signals
used in this study can have very different amplitudes.

The dataset i2 is expanded on the db5 wavelet [19] using the SWT at
scales 1 through Jnoise (Eq. 6.36). The constant Jnoise is chosen, for a realis-
tic dataset, to capture most of the trend energy in swtai2 . Regardless of the
trend distribution between swtdi2 and swtai2 , the vector swtd(1,n)

i2
has vir-

tually no contribution from c. Consequently, the energy in swtd
(1,n)
i2

is only
w. Assuming w to be Gaussian white noise, the energy level in swtd

(1,n)
i2

is
representative for the contribution of w across all scales. Using the windowed
RMS, a w energy estimate across time is made.

ĝw(n) = wrms[swtd
(1,n)
i2

, n, Lw] (6.37)

The component w is then assumed to be the coefficients in swtdi2 with
absolute value less than Tw. As w is assumed to be white, the same threshold
is applied across all scales.

swtdj,n
w = swtdj,n

i2
.(|swtdj,n

i2
| < ĝw(n).Tw) (6.38)

Standard de-noising usually consists of setting the smallest swtd coeffi-
cients to zero before reconstructing. As the purpose of this exercise is to
capture the noise w rather than the signal c, the largest swtdi2 coefficients
and all of swtai2 are zeroed out before reconstruction.

ŵ = idwt(0, swtdj,n
w , ψ) (6.39)

The edge component is based on the b′ calculated above, but corrected
so that its initial value is the initial value of the dataset minus w and s.
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b̂(n) = b̂′(n) + i2(0)− w(0) (6.40)

The trend component is the remaining data after s, w and b has been
removed.

ĉ(n) = i(n)− ŝ(n)− ŵ(n)− b̂(n) (6.41)

Figure 6.26 shows the entire separation process as a flow chart, with input,
output, and constants.
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Figure 6.26: Source splitter overview.

6.5.4 Trend Analysis

As already stated, it is in the value of c and the gain of w that are of interest
to uncover mechanical faults. Even though this algorithm manages to split
the four components making up i, it does not produce a parametric model
whose parameters can be evaluated to understand the behavior of the data.
It is thus necessary to perform an additional parametrization step, in the
form of a trend analysis of c as well as ĝw from (Eq. 6.37).

The HUMS acquires data during flight from each sensor at regular in-
tervals, so that the spacing between each indicator value, in flight time, is
relatively uniform. All methods discussed here assumes uniform spacing.
For datasets where this is not the case, with for instance missing data due
to sensor problems etc., the indicator series must be interpolated with a
smoothing-function and re-sampled.
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Figure 6.27: Indicator decomposition.
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Figure 6.28: Indicator noise gain estimate.
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Figure 6.29: Indicator trend slope.
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Figure 6.30: Indicator noise gain slope.
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Trend analysis of a signal x is performed by the CWT using the the Haar
wavelet [19]. This corresponds to a sliding window linear regression. Window
size is given by the scale parameter j so that the size of the window in which
the linear regression is performed equals 2j. Consequently, a small value
for j will capture rapid fluctuations, while large values for j captures longer
trends. In order to detect the increasing and decreasing trends associated
with mechanical degradation, it is necessary to use several values for j. This
produces a coefficient matrix a(j)

c (n) with dimensionN by J . Figures 6.29 and
6.30 shows how the different wavelet scales reacts to fast and slow movement
in ĉ (Fig. 6.27) and ĝw (Fig. 6.28).

a(j)
c (n) = cwt(c, ψ) (6.42)

a
(j)
ĝw

(n) = cwt(ĝw, ψ) (6.43)

6.6 Calibration
Both the parametric and the non-parametric feature extractor depends on a
number of tuning parameters to perform a correct decomposition of the input
data. An optimal configuration of these parameters depends on the type of
input, i.e. the energy distribution between s, w, b and c, and is essential for
the performance of the algorithms.

The fundamental function of the feature extractor is to map an input
vector to a set of output vectors. In the most general of terms, this is the same
functionality provided by other non-linear mapping tools, like fuzzy logic
classifiers and artificial neural networks. There are two main approaches for
calibrating non-linear mapping tools; through expert knowledge, as normally
applied to fuzzy logic systems, or through the use of training data.

Traditional training methods using marked training sets are inapplicable
in this scenario, as the correct decomposition, i.e. the desired output, for
a real time series cannot be known. Using expert knowledge, it is possible
to derive the configuration parameters from a set of specifications describ-
ing behavior of the different signal components. Any such specification will
however mostly be guesswork based on user experience. As an alternative
approach, a synthetic dataset is generated using the model developed in the
previous section. The correct decomposition of this dataset is known from the
definition of the dataset, and can be used as a target for automatic training.

The four artificially generated components are added together before the
source splitter algorithm is applied. The output from the source splitter, an
estimate of the four components, is compared to the original components and
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an error metric is produced. This procedure is used as object function for
an evolutionary algorithm, set to find the optimal value for the configuration
parameters.

An evolutionary algorithm runs 5 individuals per dimension for 20 gen-
erations with an elite ratio of 0.1 and a crossover fraction of 0.8. As the
dataset contains stochastic elements, the optimization procedures maximize
performance across 10 different datasets generated with different seed for the
random number generator.

6.6.1 Linear Progression Analysis

The line based feature extractor requires three parameters; Th1, Th2 and Thc
[5]. In addition to this, it requires the same parameters as the sigmoid model
to separate ŝ and ŵ. This produces two optimization sets; {Th1, Th2, Thc}
and {Lr, Ts}. The first problem is solved by finding the parameters that
minimizes the square sum error for s. The second problem is solved by
finding the parameters that minimizes the square sum error for d.

Figure 6.31 shows the synthetic components as well as the estimated ones
using the configuration parameters obtained by the calibration procedure.
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Figure 6.31: Decomposition of synthetically generated dataset.

6.6.2 Sigmoid Progression Analysis

The sigmoid feature extractor requires 3 configuration parameters to be set;
Lr, Ts, Tq. The former parameter in N , while the two latter are in R.

To reduce the number of dimensions in the search space, the parameters
controlling the splitting of r̂ and d̂ are estimated separately. This generates
two optimization problems; {Lr, Ts} and {Tq}. The first problem is solved
by minimizing square sum error for s. The second optimization problem is
solved by minimizing the number of miss-placed edges.
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Figure 6.32 shows the synthetic components as well as the estimated ones
using the configuration parameters obtained by the calibration procedure.
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Figure 6.32: Decomposition of synthetically generated dataset.

6.6.3 Non-Parametric Progression Analysis

The non-parametric feature extractor requires 10 configuration parameters
to be set; Ls−mm, Ls−wrms, Lb, Lw, Jb, Jw, Ts, Tp, Tm and Tw. The six former
parameters are in N , while the four latter are in R.

To reduce the number of dimensions in the search space, the parameters
controlling the estimation of s, b and w are estimated separately. This gener-
ates three optimization problems; {Ls−mm, Ls−wrms, Ts}, {Lb, Jb, Tp, Tm} and
{Lw, Jw, Tw}. The first and last problem, i.e. the estimation of the parame-
ters controlling s and w, are solved by minimizing square sum error for s and
w respectively. The second optimization problem, i.e. estimating the param-
eters for identifying edges, is solved by minimizing the number of miss-placed
edges.

Figure 6.33 shows the synthetic components as well as the estimated ones
using the configuration parameters obtained by the calibration procedure.
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Figure 6.33: Decomposition of synthetically generated dataset.

6.7 Conclusion

Using synthetic datasets generated by the progression model, the sigmoid
analysis methods outperforms easily the non-parametric analysis. This can
however to a large extent be contributed to the fact that the parametric
analysis method and the progression model uses the same progression primi-
tive; the sigmoid. As there is no physical evidence that indicator progressions
assume sigmoid shapes, other than that observable indicator trends look "sig-
moid like", this might give the parametric method undeserved good results
when looking only at approximation error. Two other points of interest is
computing time and robustness. As the parametric method uses non-linear
optimization to estimate its progression model, it is significantly slower than
the line-based and non-parametric once and is not guaranteed to find the
optimal solution. Although Trust Region with differentiator pre-processing
significantly obtains both convergence speed and robustness, using non-linear
optimization still poses a certain risk.

The linear method has the advantage of not requiring non-linear optimiza-
tion. Looking exclusively estimation error, this method will in some cases
produces large deviations between algorithm output d̂ and the pre-defined
target d. This can to some extent be contributed to the fact that this is a
real-time algorithm. As the method must detect a significant change in indi-
cator slope before it can adjust its output, it sometimes "overshoots" sudden
changes by a few samples. Another reason for large estimation error on sim-
ulated data, compared to the sigmoid model, is that the sigmoid model and
the simulated data uses the same primitive, giving undeserved good results.
As far as the non-parametric method is is concerned, it will for the task of
separating d and r largely emulate a lowpass filter, for whose performance is
difficult to challenge.
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Table 6.5 contains the d̂ square sum error across ten test signals for each
of the sigmoid methods, as well as the linear and the non-parametric method
(NP). From this, it appears as if the non-parametric method is the most
interesting. Evolutionary optimization and Trust Region using pre-defined
order have slightly lower square sum error, but has the clear disadvantage
of not optimizing function order. This makes the methods less reliable for
signals with variable length and complexity. The non-parametric method
is thus the favored progression analysis tool, as it produces repeated good
results, and has superior computational speed.

Set EO TR RSV IEO TRD Line NP
1 41.853 26.6643 33.4888 54.2973 37.3468 25.5291 23.6302
2 7.696 9.1261 9.2098 55.9464 9.3499 50.1149 10.2
3 7.9776 7.4386 54.6359 33.9158 56.9523 14.8669 13.3758
4 20.9424 20.1561 19.1953 73.9504 22.7163 124.2189 42.2564
5 7.641 14.9461 71.0944 94.8918 68.3208 72 11.7348
6 20.0249 23.8039 84.5186 64.5285 9.9265 67.8417 16.1921
7 27.3242 30.1642 57.9581 2550.4486 50.9997 60.3503 18.0125
8 19.3812 4.7417 4.7386 76.1091 36.4489 62.1104 17.3813
9 2.3191 9.2118 9.2118 18.9621 8.0787 34.2552 11.0039
10 20.6041 15.2271 8.5354 13.0756 5.1164 30.4918 9.2168
µ 17.5763 16.1480 35.2587 303.6126 30.5256 54.1779 17.3004
σ 11.1148 8.2909 28.0450 749.3444 21.7045 29.7517 9.3080

Table 6.5: Progression analysis method comparison chart.

Acronyms: Evolutionary Optimization (EO), Trust Region (TR), Resid-
ual Spectrum Validation (RSV), Iterative Evolutionary Optimization (IEO),
Trust Region using Band-Limited Differentiator Pre-Processing (TRD), Line
model (Line), Non-Parametric Progression Analysis (NP).
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Chapter 7

Fault Detection

7.1 Introduction

This chapter will focus on fault detection based on trend-based feature ex-
traction methods. Anomaly detection methods are developed both for the
parametric and the non-parametric features. The objective of these detection
methods is to identify abnormal indicator behavior without a priori knowl-
edge of specific fault signatures. Although a framework for fault recognition
is suggested, diagnosis is given lower priority. This because there is not suf-
ficient training data to cover all failure modes, thus making training and
validation of such a classification system difficult. Further, it is from an op-
erational point of view sufficient to perform a go / no-go decision and a crude
fault localization. Should a component be suspected faulty, the aircraft will
in any case be subject to a through manual inspection.

7.2 Classification

Most failure modes for most components are identifiable by fluctuations in
the expected value or scatter level in one or more indicators associated with
the component. Although different in architecture, both the parametric and
the non-parametric feature extraction methods developed in the previous
chapter extracts this information. For robust fault detection, it is however
also necessary to perform a validation of each indicator step as well as direct
threshold testing on certain critical indicators.

Edge occurrences should if possible be correlated with the aircraft main-
tenance log to verify that they really originate from equipment replacements.
This generates the signal bfault which return the step size for every step not
occurring at the same moment as a maintenance action. For steps occurring

115
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simultaneously with a maintenance action, bfault remains zero.
Certain components, mainly rotors and engine shafts, have global unbal-

ance thresholds which they not under any circumstance must supersede. To
verify that the vibration levels for these components are within bounds, their
unbalance indicators must be tested directly as a supplement to trend anal-
ysis. To avoid false alarms due to noisy data, this testing should however be
done after the outlier component ŝ has been removed.

This produces a total four metrics from each indicator at each point
in time; a de-noised version of the indicator itself, fluctuations in scatter
level, fluctuations in expected value, and unexpected step occurrences (Fig.
7.1). A component is however usually associated with several indicators. To
identify the condition of a component it is necessary to evaluate the metrics
from all the associated indicators. This provides the component state vector,
consisting of i − ŝ, aĝw , aĉ and bfault for each indicator associated with the
component, and describes the condition of the component at given instance
in time.

NoiseNoise

OutlierOutlier

TrendTrend

StepStep

SlopeSlope

SlopeSlope

RMSRMS

ClassifierClassifier

IndicatorIndicator +   
-

+   
-

Figure 7.1: Indicator parametrization overview.

Using traditional HUMS methodology, a component is diagnosed by com-
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paring the set of associated indicators to a baseline. This baseline must
however be adapted to each aircraft, and is subject to change between main-
tenance actions. Using the component state vector, it is possible to use a
global baseline which is not subject to change. This because the fluctua-
tion metrics aĉ and aĝw are less sensitive to aircraft specific differences in
the expected indicator value. Consequently, for indicators with large vari-
ation in expected value across aircraft, the baseline pays less attention to
the absolute value, i − ŝ, and more attention to the fluctuation parameters
aĉ and aĝw . Inversely, for indicators with little variation between aircraft,
such as shaft unbalance indicators, more significance is given to the indicator
absolute value.

A simple fault detection method is to assign thresholds to each element
in the component state vector. For the slope metrics, aĉ and aĝw , both min
and max thresholds should be used. For bfault and i−s, it is sufficient to only
apply max thresholds. A set of thresholds must be defined for each element
in the state vector for each component on the aircraft. Once this is done,
it will however be possible to apply the same thresholds to all aircraft of a
given type.

Although such a method will permit detecting progressions deviating from
normality, the method will not permit fault identification, i.e. diagnosis. To
enable this, it is not only sufficient to detect that a progression is abnormal,
it is also necessary to determine in which way the progression is abnormal.
This can by done by a nonlinear mapping tool, such as a radial basis network.

All conditions has an expected value and an uncertainty for each element
in the component state vector. This permits using the component state
vector as the input to a radial basis network (Fig. 7.2). The inside of
the radial basis network can be seen as a multidimensional space where the
number of dimensions is equal to the number of inputs. In this space, each
condition has a region, or cluster, at the position corresponding to the vector
of expected values. The size of a region along each dimension is given by
the uncertainty along the corresponding metric. For each input vector, the
network will identify which region, and consequently which condition, the
vector falls within. If a vector falls in the void between the clusters, it’s
interpreted as a unidentifiable anomaly.

Like with the threshold method, an instance of this network must be
adapted to every component on the rotorcraft. Network calibration can be
done either through expert knowledge or automated training. It is however
difficult to obtain the necessary training data and expert knowledge to cover
all conditions for every component. This due to the large number of fail-
ure modes to which a rotorcraft drive-train is susceptible, and due to the
relatively low fault frequency on modern helicopters.
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In order to perform a go / no-go decisions, it is however sufficient to be
able to detect the normal state condition, for which sufficient training data
exist for all components. Any component state vector not corresponding
to normality must by definition be seen as abnormal. To maintain flight
safety, abnormality detection is largely sufficient as any suspected anomaly
will result in a manual inspection of the components in question. If a classifier
is designed to only recognize deviation from normality, a threshold-based
classifier is however preferred. This because the threshold-based approach is
significantly less complex than a neural network.
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Figure 7.2: Component state classification.

7.3 Performance
The threshold-based method is tested using marked training-sets from AS332
L1 and L2 helicopters. The faulty sets are retrieved from clients’ ground sta-
tions, isolating the propagation periods for documented defects. The healthy
sets are data batches chosen on random outside the periods containing known
defects, each case-number represents a different aircraft.

All the fault cases are loss of torque in the left ancillary gearbox interme-
diate gear fixing bolts. This allows the gear to assume a "wobbling" rotation
patter, causing damage to its own tooth surface as well as the tooth surfaces
of adjacent gears. When the gear rotates in an unbalanced manner, it forms
a modulation between the shaft rotation frequency and the tooth meshing
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tone. This creates modulation sidebands on each side of the meshing tone,
with distance to the carrier equal to the shaft rotating speed. As unbalance
increases, so does the modulation sideband energy, which is captured by the
MOD indicator. Any fretting between the gear surfaces causes an increase in
random noise, which increases the noise floor of the signal power spectrum.
This phenomenon is captured by the RMSR indicator. Consequently, the
indicators MOD and RMSR are chosen for detecting this fault type.

To detect the presence of faults, simple thresholds are applied to the
expected value slope aĉ and the scatter level slope aĝw for each indicator.
Scales 1 to 8 are chosen both for aĉ and aĝw . Thresholds are based on the
fluctuation-envelopes for cases 17 to 20. From these cases, the min and max
values for each scale of aĉ and aĝw for each of the two indicators are retrieved,
and used to form the threshold basis. The actual thresholds used for fault
detection are the threshold basis multiplied by a factor. I.e. if the threshold
factor is set to 120%, an alarm is generated whenever aĉ or aĝw is more than
120% above the max value or 120% below the min value experienced in the
normal state training set.

Case 2 is illustrated with indicator decomposition, noise level estimate
and slope shown in (Fig. 7.3, 7.4 and 7.5) for MOD and (Fig. 7.6, 7.7 and
7.8) for RMSR. The dotted lines are the threshold bases for each scale. Only
scales 4 - 6 are plotted, in order to make the figures more readable.

A fault detection test on all the cases is conducted using threshold factors
ranging from 90% to 150% in 10% steps, with results summarized in (Fig.
7.1). The "Length" column contains the length, in flight hours, of each
data set. The "HUMS" column contains the ground-station detection results
for each case, with the ground-station using traditional learned thresholds.
Four of the fault cases (1, 3, 12 and 14) were missed by the ground-station
diagnosis method, and were discovered by either metal chip-alarms or routine
inspections. Case 7 was discovered by the operator manually inspecting the
indicators and signals. It can thus not be known if the HUMS would have
generated an alarm, had it not been detected manually.

It is not known if, and how many, false alarms were generated by the
healthy state datasets. As a global average, a HUMS generates alarms in the
magnitude of 4 to 12 per 1000 flight hours. With the component in question
being one of about 80 components monitored on the AS332, it is likely to
believe that it would produce a proportional number of false alarms.
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Figure 7.3: Case 2 MOD raw and decomposed.
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Figure 7.4: Case 2 MOD scatter energy.
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ĉ

Figure 7.5: Case 2 MOD expected value and scatter energy slopes.
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ŵ

100 200 300 400

0

5

10

Edge b(t)

b̂

100 200 300 400

−5

0

5

Trend c(t)

ĉ

Figure 7.6: Case 2 RMSR raw and decomposed.

0 50 100 150 200 250 300 350 400 450
0.2

0.4

0.6

0.8

1

Flight Time (Hours)

G
ai

n

ĝw

Figure 7.7: Case 2 RMSR scatter energy.
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ĉ

a
(5)
ĉ
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Figure 7.8: Case 2 RMSR expected value and scatter energy slopes.
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Case State Length HUMS 90 100 110 120 130 140 150
1 Faulty 86.03 no yes yes yes yes yes yes yes
2 Faulty 372.8 yes yes yes yes yes yes yes yes
3 Faulty 336.92 no yes yes yes yes yes yes yes
4 Faulty 78.52 yes yes yes yes yes yes yes yes
5 Faulty 267.37 yes no no no no no no no
6 Faulty 50.92 yes yes yes yes yes yes yes yes
7 Faulty 194.47 n / a yes yes yes yes yes yes yes
8 Faulty 251.02 yes yes yes yes yes yes yes yes
9 Faulty 336.88 yes yes yes yes yes yes yes yes
10 Faulty 232.45 yes yes yes yes yes yes yes yes
11 Faulty 77.43 yes yes yes yes yes yes no no
12 Faulty 49.44 no yes yes yes yes yes yes no
13 Faulty 195.99 yes yes yes yes yes yes yes yes
14 Faulty 36.53 no yes yes yes yes yes yes yes
15 Healthy 877.78 n / a no no no no no no no
16 Healthy 2019.85 n / a no no no no no no no
17 Healthy 1608.58 n / a yes no no no no no no
18 Healthy 1479.9 n / a yes no no no no no no
19 Healthy 1093.09 n / a yes no no no no no no
20 Healthy 218.5 n / a no no no no no no no
21 Healthy 148.74 n / a no no no no no no no

Table 7.1: Authentic test cases.

Using a 90% threshold factor obviously causes false alarms in the training
sets, cases 17 - 20. The reason that the other healthy states sets are not
producing any false alarms is that they have significantly lower fluctuation
levels than the training sets. Threshold factors of 100% to 130% provides
good results for the data at hand, although a factor of 100% is unadvisable
for training data with more representative fluctuation levels. Case 5 is the
only non-detection for this range of threshold factors, and requires a factor of
60% to be detected, which obviously will create an unacceptable false alarm
rate. Indicator decomposition, noise level estimate and slope is shown in
(Fig. 7.9, 7.10 and 7.11) for MOD and (Fig. 7.12, 7.13 and 7.14) for RMSR.
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Figure 7.9: Case 5 MOD raw and decomposed.
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ĝw

Figure 7.10: Case 5 MOD scatter energy.
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Figure 7.11: Case 5 MOD expected value and scatter energy slopes.
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Figure 7.12: Case 5 RMSR raw and decomposed.
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Figure 7.13: Case 5 RMSR scatter energy.
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Figure 7.14: Case 5 RMSR expected value and scatter energy slopes.
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Studying the raw indicator plots, trends are indeed visible. The detection
failure is however due to the exceptionally low magnitude for both indicators
in this case. Even though trends are clearly visible to a human analyst,
the slopes, i.e. augmentation or diminution per hour, is still small due to
the abnormally low magnitude of both indicators. A way to circumvent this
problem is to not evaluate the slopes directly, but rather to normalize slopes
by scatter level ĝw. This will in fact mimic the human approach to finding
trends in noisy data; to identify patterns which clearly rise clearly above the
random scatter. Using the test data at hand, this is however not possible.
Due to the short duration of some of the fault cases, the scatter energy ĝw

can not be estimated, thus precluding the use of this method.

7.4 Conclusion
This chapter has been more concerned with fault detection than diagnosis and
prognosis. The reason for this being that there is little authentic fault data
on record, making it difficult to train and validate a fault recognition system.
The only data existing in rich supply is normal state data. Consequently, it
is easier to create a system capable of recognizing deviation from normality,
and validating this on the few fault case datasets that do exist. From an
operational point of view this is largely sufficient, as any suspected damage
will in any case result in manual inspection of the aircraft.

Using the feature extraction methods developed in the previous chapter
with training data representing a healthy condition of an asset, it is possible
to detect most anomalies without aircraft specific configuration of the fault
detection algorithm. Further, this method has a better detection rate than
traditional threshold based methods. Although testing only a single failure
mode is insufficient to determine if the method has potential for other fault
types, the method still show promise. A strong point of the method is that
it does not require any sort of configuration or training by the user. This
is a major advantage compared to traditional methods, which are prone to
miss-learning by the user, leaving the system with reduced fault detection
capabilities.
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Chapter 8

Conclusion

8.1 General

Fault detection in helicopter engines, rotors and transmission systems has
been an area of intense research for over one and a half decade. Even with
this continuous development into HUMS, as well as other areas of accident
prevention, rotorcraft remains overrepresented in the accident statistics com-
pared to equal size airplane. Consequently, there is still work to be done
within the HUMS domain as well as other safety enhancing technologies.

Another aspect of HUMS is maintenance cost reduction. Military opera-
tors have already started to adapted maintenance work to benefit from the
fault detection capabilities of HUMS, retiring components "on condition"
[23]. Although civilian aviation is somewhat behind on this, due to rigid
regulatory bodies, this is also an important are of research for the aircraft
manufacturers. Using military maintenance practice as a proof of concept, it
is likely that civil aviation will follow this trend implementing maintenance
credit for components which can reliably be monitored by HUMS.

8.2 User Friendliness

An aspect easily neglected when working with complex reasoning systems is
the user interface. Although the robustness and accuracy of the reasoning
algorithms if of vital importance for any decision aid system, user interface
is of equal importance in order to establish user confidence. In the context of
HUMS, a somewhat neglected area has been data mining and management.
This mainly due to the fact that all the data analysis needs, both for operator
and OEM, were not clear when the functional specifications for HUMS were
developed. Consequently, HUMS software was not equipped with the data
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analysis tools necessary to satisfy the needs of all clients, and no mechanism
were included to share HUMS data with third party tools when necessary.

These shortcomings have been addressed by the data structuring work
detailed in the chapter on data migration, and facilitate the use of third
party tools to perform more in-depth analysis of HUMS data. This work
also addresses the problem of data availability for the OEM researchers and
support personnel, as well as reducing client workload associated with data
sharing. Further, this study has been a contributer to a project facilitating
discrepancy reporting between client and OEM, significantly reducing client
workload associated with discrepancy reporting as well as cutting response
time for the OEM. This latter point probably being an example to follow for
support services dealing with other aspects of the aircraft than HUMS.

8.3 Reliability

The main focus for this study has been on fault detection, which has aimed
at increasing system reliability and reducing operator workload. In the ut-
most consequence it can be said that traditional threshold based methods
are capable of detecting all faults, provided that all thresholds are correctly
adjusted. Experience does however show that indicator thresholds are not
aways correctly set. This due to the fact that the correct tuning of any
threshold changes as a function of outside factors like maintenance interven-
tions. In order to cope with this reality, it has been necessary to explore new
concepts in order to reach the aim for this study; a reliable fault detection
method not in need of any user configuration.

Using progression analysis as feature extraction for faults not easily de-
tectable through traditional means has shown increased detection rate and
reduced false alarm rates compared to traditional threshold based methods.
Although the test data available is too scarce to generalize, progression anal-
ysis shows promise as an alternative to conventional methods. Another ad-
vantage of progression analysis is that it does not require any configuration
by the operator. By combining threshold based detection methods where
applicable with progression analysis for components not easily monitored by
traditional means, it is possible to create an autonomous HUMS. Such a sys-
tem has clear safety benefits as it is not susceptible to miss-configuration by
the user. This is probably the most interesting aspect of this study, as there
are currently no systems of the marked capable of functions autonomously.
Together with the increased detection rate demonstrated in the case study,
these advances deliver the technology necessary to produce a commercial
solution well ahead of the competing systems.
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8.4 Forward Perspectives
Although this study has produced original and promising results, much work
remains in validating and industrializing these methods. This mainly due
to the fact that insufficient validation data exist on record. Significant work
on data migration was done as a direct response to this problem, but the
resulting data handling infrastructure came in place too late for this study
to take significant advantage of it. Still, this infrastructure remains in place
for other studies, current and future, within the HUMS domain.

An area in need of further study is the correlation between vibration sig-
natures and environmental factors. Although a framework de-correlation of
vibration signatures and environmental factors were developed as a part of
this study, there is still work to be done to gain an understanding of how
and why the environment affects the vibration signature of a transmission
system. Using the latest generation airborne segment, which entered ser-
vice at the end of this study, gains access to the full range of contextual
parameters recorded on the aircraft, and makes it possible to correlate vibra-
tion signatures against a wide range of environmental factors. By gathering
maintenance logs from the operator it will also be possible to investigate
any connection between erroneous equipment installation and vibration sig-
natures’ sensitivity to environmental factors.

Another research area is validation and industrialization of the progres-
sion analysis methods. Although these have been found effective on a limited
number of test cases, it is still to test the effectiveness of these methods on
a wider variety of failure modes. Using data from the above discussed data
warehouse will facilitate testing against all confirmed fault cases on record.
This is already part of an ongoing study aiming both at including methods
from this study as well as testing new methods [46] to select the set of meth-
ods which will be deployed on the next generation HUMS ground station.

Looking at HUMS from a long term perspective raises the question of
maintenance credit, like extended TBO as a consequence of reliable condi-
tion monitoring. If the effectiveness of existing fault detection methods can
be documented, it will be possible to change aircraft maintenance proce-
dures so that both manual inspection and premature component retirement
is reduced. Deploying this at a large scale will have a profound impact on
rotorcraft maintenance cost, and life cycle cost in total. A study is already
launched aiming at identifying the areas where credit can be obtained, as well
as trying to establish a framework for documenting and certifying automated
monitoring techniques which can be accepted by the civil regulatory bodies.
This will open the door for significant reduction in aircraft maintenance cost
and downtime, while at the same time increasing safety.
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Appendix A

Mathematical Notations

A.1 Moving Median

Moving median filters are frequently used for outlier removal in signal pro-
cessing. The moving median works similar to FIR or IIR filters, but extracts
the median rather than the sum. Median filters can have individual weight
for each tap, but this is not exploited here.

mm(x, n,K) = mediann
k=n−K [x(k)] (A.1)

A.2 Windowed RMS

A windowed RMS is used for estimating signal energy at a limited segment
of the input signal. A windowed RMS with window size K of a signal with
length N gives an output of length N −K.

wrms(x, n,K) =
1

K

n∑
k=n−K

(x(k)− x̄)2 (A.2)

A.3 Wavelets

The wavelet theory discussed here is intentionally cut short. For better un-
derstanding of wavelet theory and applications, the reader should refer to
the relevant literature, such as [27], [19] and [8].
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A.3.1 Continuous Wavelet Transform

Wavelet theory shows that a signal f(t) can be represented as a weighted sum
of functions ψj,k(t) (Eq. A.3). The integer indices j and k represents scaling
and translation of some arbitrary wavelet base function ψ(t) (Eq. A.4).
The better choice of ψ(t) depends on the application. For de-noising and
compression, a wavelet is chosen which confines noise and signal in different
parts of the dj,k coefficient matrix (Eq. A.5). For event detection, a wavelet
is chosen which gives the event an easily recognizable signature.

f(t) =
∑
j,k

dj,kψj,k(t) (A.3)

ψj,k(t) = 2j/2ψ(2jt− k) (A.4)

dj,k =< f(t), ψj,k(t) > (A.5)

The above definitions will for a finite length signal give a coefficient matrix
with finite length in the translation (k) dimension. The number of possible
scalings (j) is however infinite. This means that reconstructions is not pos-
sible unless coefficients for an infinite number of scales are computed.

A.3.2 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) overcomes this by expanding over
only a limited number of scales, leaving the remaining part of f(t) in an
approximate vector ak. This way the detail matrix dj,k and the approximate
vector ak will together hold all information necessary to reconstruct the orig-
inal signal (Eq. A.6). The number of scales must be chosen so that some
intelligent partition of signal features is obtained between the approximate
vector and the different scale vectors of the detail matrix.

f(t) =
∑

k

akφ(t− k) +
∑
j,k

dj,kψj,k(t) (A.6)

< ψ(t), φ(t) >= 0 (A.7)

The wavelet function ψ(t) and the scaling function φ(t), used for extract-
ing the approximate, must be orthogonal (Eq. Eq. A.7). Consequently,
the DWT can only be calculated using wavelet base functions for which an
orthogonal scaling function exist.
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Practical implementations are normally performed using a dyadic filter
bank, where the filters are derived from the wavelet and scaling functions
(Eq. A.8 and A.9).

φ(t) =
∑

n

h(n)
√

2φ(2t− n) (A.8)

ψ(t) =
∑

n

h1(n)
√

2φ(2t− n) (A.9)

This forms a recursive equation set where the initial approximate vector
is the transform input aj0 = f(t) (Eq. A.10 and A.11). The input to any
scale aj is the approximate output from the previous one.

dj,k =
∑

n

h1(n− 2k)aj+1,n (A.10)

aj,k =
∑

n

h(n− 2k)aj+1,n (A.11)

Reconstruction (Eq. A.12) starts with the lowest level detail and approx-
imate vectors, which are used for reconstructing the second lowest approxi-
mate. The algorithm the recurses back until the original aj0 coefficients are
obtained. Consequently, only the lowest level approximate vector, in addi-
tion to the entire detail matrix, is necessary for reconstruction of the original
input.

aj+1,k =
∑

n

h(k − 2n)aj,n +
∑

n

h1(k − 2n)dj,n (A.12)

The 2k translation factor of the filters stems from the factor-of-two rela-
tion between each scale (Eq. A.4). This ensures that each scale has half the
number of coefficients of the previous one. Consequently, the total number
of coefficients for any number of iterations will be equal to the number of in-
put samples. By guarding only high-value coefficients, a reasonably accurate
reconstruction can be made using only a fraction of the original coefficients.
By disposing of the coefficients representing noise, reconstruction gives a
de-noised version of the original input.

A.3.3 Stationary Wavelet Transform

For de-noising, better results are often obtained using the Stationary Wavelet
Transform (SWT) [8]. SWT differs from DWT by upsampling the filters at
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each scale instead of downsampling the coefficients. This creates a redun-
dancy as each layer (j) produces the same number of coefficients as the input
signal. The tradeoff is better time (k) precision for coarse scales.

This study deals only with finite signals. In order to keep filter output
length the same as input length, while reducing transients, signals / coeffi-
cients are padded at start and end. Padding consist of samples having the
mean value of the K first / last samples. This provides better results than
periodic padding (circular convolution), as the start and end of the signals
used in this study can have very different amplitude.

A.4 Nonlinear Optimization
Optimization problems can normally be transformed into minimization prob-
lems, which consist in finding the x which minimizes an object function f(x).
The variable x can be a vector, so that f(x) is a function of one or more vari-
ables. For linear functions, such as polynomials, the solution can be found
using symbolic derivation. For non-linear problems, the solution must be
found using other methods.

Problems, for which a point derivative can be calculated, can be solved
using steepest descent methods. More general methods are Direct Search
and Evolutionary Optimization. These methods do not require the object
function to be point derivable, nor even continuous.

A.4.1 Trust Region

Trust Region [34] is a frequently used steepest descent algorithm. The al-
gorithm approximates the object function f(x) by a trivial function d(x),
normally the first few terms of a Taylor series, which provides a reasonably
accurate approximation within a region, the trust region, surrounding the
initial current position. Once the position minimizing d(x) has been found,
this point is accepted as the new current position, provided that it provides
lower output from f(x) than the previous position. Each time this criteria is
meet, the trust region is expanded. Upon failure, i.e. the previous position
outperforms the new one, the current position is kept and the trust region
contracted.

1. Approximate f(x) by trivial function d(x) in region R around x0

2. Find the value for x, x1, which minimizes d(x)

3. If f(x1) < f(x0) then set x0 = x1, expand R and goto 1
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4. Else contract R and goto 1

The process iterates until some stopping criterion is meet. This will
normally be the step length converging to zero, max number of iterations,
or max execution time. All examples in this study uses a step length of less
than 10−8 as stopping criterion.

A.4.2 Evolutionary Optimization

Evolutionary algorithms [15] exist in several variants. This study makes use
of a method which does not require discretization of the parameters, and uses
the same number of individuals in each generation for a limited number of
generations. The algorithm is initiated by creating a population of parameter
combinations which are chosen on random from an initial range of possible
values. Once performance is tested for all individuals, the best individuals,
i.e. the best combinations of parameters, are labeled elite individuals and
transferred to the next generation. The other individuals for the next gener-
ation are generated from the remaining population of the current generation
by either crossing or mutating. Crossing means that two children are created
from two parents by choosing each parameter for each child from one of the
parents. Which parameter is chosen from which parent is determined by a
binary random process. The probability that an individual is chosen as a
parent is proportional with its rank among the individuals. Consequently,
the best individuals will normally be chosen as parents several times within
the same generation. Finally, a set of individuals are mutated. This means
that they are randomly displaced in parameter space, driven by a Gaussian
random process. Once the parameters for the next generation are ready, the
performance of the next generation is calculated. This process iterates until
a performance goal or the maximum number of generations is reached.

Mutation is necessary in order to create new parameter values, as crossing
simply generates new combinations of existing values. The Gaussian variance
along each dimension is for the first generation set as the span of the initial
range. The variances for the following generations are set as a function of ini-
tial variance and generation number, so that the standard deviation reaches
to zero when max generation count is reached. This way, large parts of the
parameter space is explored early in the evolution, before the individuals
converges on the optimal solution.
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Figure A.1: Evolutionary optimization overview.

A.5 Classification Systems

Classification systems are system for categorizing some input. A classification
system accepts an input vector, generating an output vector. The output
usually corresponds to class probabilities, so that the value of an output
vector element is equivalent to the probability of the input vector belonging
to the associated class.

In the most general of terms, a classification system can be seen as a
mapping tool, mapping one vector to another. Simple classification systems
can be based on polynomials or Gaussian functions. More complex systems,
such as artificial neural networks and fuzzy logic, are capable of more complex
non-linear mapping. Some classification systems can be estimated, trained,
through a set of marked training sets. I.e. input vectors where the output
vector is known. Other classification systems are best designed "by hand"
using expert knowledge.

A commonly used non-linear mapping tool is the radial basis network. A
radial basis layer, left part of figure A.2 [6], consist of a number of neurons A,
each with an R dimensional position in feature space. It accepts an R element
feature vector as input, r, and computes the euclidean distance between
the vector and each neuron. The A dimensional output, which reflects the
distance to each neuron, is multiplied with a bias and sent through a radial
basis function. The radial basis function, of form f(x) = e−x2 , returns 1 for
x = 0 and converges quickly to 0 for input larger than 0. Consequently, the
layer outputs 1 for neurons with coordinates matching the input vector, and
a value between 1 and 0 for neurons further away. The rate of descent for is
controlled by the bias. I.e. the bias controls the active radius, the area for
which a neuron produces a significant output.
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The active region of a neuron is a multidimensional sphere in input space.
A class corresponds to region in input space, covered by the active region
of one or more neurons. As some classes are covered by more than one
neuron, the radial basis layer is often followed by a linear layer. The linear
layer simply fuses together the outputs from the neurons corresponding to
the same class, so that the number of network outputs corresponds to the
number of classes.

||r – W1 ||||r – W1 || **

bb

W1
W1

rr a * W2
a * W2

W2
W2

Figure A.2: Radial basis network.

Two training strategies exist for radial basis networks. One is to fix the
bias and create one neuron for each training vector. This way, the network
is sure to classify all the training vectors correctly. An alternative approach
is to limit the number of neurons, and adjust neuron positions and biases so
that the total miss-classification of the training set is minimized. The latter
approach will generate a network with fewer coefficients / neurons, and in
some cases better generality.
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Appendix B

IT Notations

B.1 Databases

Enterprise business solutions typically generates complex data storage needs,
such as centralized storage for multiple users involving simultaneous multi
users reading and writing. This creates problem that goes far beyond the
scope of the file locking functions provided by most file systems. Standard
Query Language (SQL) databases are solutions that are capable of providing
such functions.

An SQL database is in all simplicity a patch of shared memory. SQL is
the languages used for reading and writing to this memory. Commands in
SQL format are sent from a user to the database engines, which return the
result (if any) to the user. The mode of communication is specific to each
database engine. Most database engines are background processes accessible
through TCP/IP and / or platform specific data pipe systems. Database
engines accessible through TCP/IP are typically accessible over network,
and provides client connectivity implementations for several platforms. A
client connectivity API is necessary even for TCP/IP based database engines,
because there exist no common application layer protocol for SQL database
(the layer between TCP and SQL).

The data in an SQL database is organized in tables. There exist SQL
commands for inserting, retrieving, updating and deleting table data, as well
as crating, modifying and deleting tables. Most database engines are capable
of serving multiple clients at the same time, and provides rigorous mecha-
nisms for ensuring data consistency in multi user environments. Enterprise
scale database engines also provide sophisticated data mining functions and
integrated backup solutions.

In scenarios involving multi user data access and data trafficking over
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networks, developers can save substantial time by using third party database
servers rather than developing their own proprietary solutions. Further, us-
ing open standards like SQL makes solutions more scalable and more easily
accessible through other third party systems.

B.2 Object Oriented Programming

Object oriented programming has received increasing attention over the last
decade, and has become the defacto standard for complex software projects.
Object oriented programming means in essence nesting functions that belong
together into objects. Some object oriented languages also deploys packages
or namespaces, for nesting classes that belong together.

An illustrative problem example is file i/o operations. Using classical C-
style function calls, file opening, reading, writing and closing are managed
by a set of global functions. All of these functions use a file handle as input
or output, where the handle is a reference to a place in memory where the
file is stored. An object oriented approach to the same problem is creating
an object containing the same functions, and with the file handel being part
of the internal memory of object.

The object oriented approach makes code development tidier, as there is
no need to find globally unique names for each function. When designing
an object to manage a certain task, an important aim is usually to make
the external interface to the object as simple as possible, thus concealing the
complex inner working of the task. This allows programmers to develop tidy
code libraries which are highly reusable.

B.2.1 Interface Programming

The externally accessible functions and variables of an object is referred to
as the object interface. An essential part of object oriented programming is
the possibility for objects to implement pre-defined interfaces. If an object
announces that it is implementing an interface, it means that is providing an
implementation for all the methods and variables defined in the interface.

A typical example of interface programming is database access. All SQL
database engines typically provide the same functionality, but has different
access protocols. Thus, object models like Java, ActiveX and .net provide
a hierarchy of interfaces representing the standard database objects such
as connection, command and result set. The database providers then pro-
vide implementations for their specific protocols using these standard inter-
faces. Consequently, a client application can relate only to the standard
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interfaces, without any knowledge about the underlying database specific
protocols. This means that the same client code can interact with several
different database engines by simply loading the interface implementations
corresponding to the desired database engine dynamically at runtime.

Interface programming is a powerful tool allowing application functional-
ity to be split in layers, where each layer can have multiple implementations.
Reusable objects such as database drivers and multimedia codecs can then
be shared between applications. Further, a given application can seamlessly
switch between several implementations of a given interface hierarchy, for
instance to support multiple video formats, without any specific code to ac-
commodate each implementation.

B.2.2 Java

Java is a high level programming language developed by Sun Microsystems.
A Java application does not run directly on the operating system, but on a
Java Virtual Machine (VM). The VM is a kind of operating system inside
the operating system, and exists for most operating systems and hardware
platforms. Thus, the VM acts as an abstraction layer, making the underlying
platform transparent. This makes Java applications highly portable, as the
same compiled code will run on almost any platform.

The VM is responsible for resource allocation, including memory alloca-
tion and deallocation. Object instance memory is typically allocated on the
heap, allowing methods to return object instances by reference. The VM is
also responsible for counting the references to each object instance. Once
the reference count to an object drops to zero, the object instance memory
is automatically released.

Java objects are organized in packages, with each package containing ob-
jects that logically belong together. A package can also contain sub-packages,
forming an hierarchical system. A Java application can effortlessly load ob-
jects at runtime, either from a predefined library location, or from an explic-
itly defined source. Thus, machine code can be imported into the running
assembly from any source, remote or local, or even from code compiled at
runtime.

B.2.3 Component Object Model

A Microsoft Dynamic Link Library (DLL) is a file containing executable code
but which has no default entry point. Accessed to a DLL from an executing
assembly (EXE or DLL) is obtained by loading the DLL into memory and
specifying the address inside the DLL where to start execution. Once the
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DLL instruction path ends, control is returned to the calling assembly. This
corresponds to a C-style function call. A DLL can be loaded when the
executing assembly is loaded, static linking, or when the executing assembly
calls one of the functions in the DLL, dynamic linking.

A library model which only allows for sharing global C-style functions
is an obvious disadvantage in modern object oriented programming. This
problem is solved by the Component Object Model (COM). A COM object
is a standardized DLL containing four functions. Three of these are for
component registration and memory management. The fourth returns an
instance of the Class Factory. The Class Factory is an object which manages
the objects inside the COM object. Given a unique numeric reference to an
object implementation, CLSID, the Class Factory will return an instance of
the requested object. Thus, COM is the means to access shared C++ style
classes using C-style function calls.

Any COM object is registered in the system registry with a globally
unique CLSID, a human readable ProgID, and a reference to the DLL hosting
it. An executing assembly uses a system call to load the object corresponding
to a given CLSID. The operating system answers this call by loading the DLL
specified in the CLSID registry entry, and asking the DLL Class Factory for
an instance of the object corresponding to the CLSID.

COM simplifies memory management by making memory allocation the
responsibility of the callee, rather than the caller, which is is the case for C.
Although making programming easier, this has a certain performance cost
as object instance memory is allocated on the heap rather than the stack. A
particularity of COM, compared to Java and .net, is that garbage collection
is not managed by the operating system. Consequently, each object must
provide its own reference counting and memory deallocation code. This is
managed by methods defined in a Microsoft defined interface, IUnknown,
which all COM objects must implement.

As any object can support multiple interfaces, an object-level type cast
mechanism is provided through IUnknown. This interface contains a method
for fetching a pointer to an interface corresponding to a given interface ID,
IID. Microsoft has defined a wide range of interfaces ranging from window
controls to sound compression codecs. One essential interface is IDispatch.
The IDispatch interface defines a method accepting an array of strings and
pointers as input. This allows for providing an array containing the name
of a method, as well the arguments for the method. IDispatch will process
the request by calling the C++ method corresponding to the specified name,
using the specified argument values.

This mechanism allows an assembly to call the methods of any COM
object implementing IDispatch without needing to be compiled to run any
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other interface than IDispatch. Consequently, an assembly can generate code
"on the fly", and feed it to an object instance through its IDispatch interface.
This functionality is deployed by most win32 based script engines, includ-
ing Microsoft Internet Explorer and Matlab. COM objects implementing
IDispatch are commonly referred to as automation or ActiveX objects.

B.2.4 .net

This technology is developed by Microsoft, and is a continuation of the COM
/ ActiveX concept. A .net application runs inside a framework, much like
a Java application. Consequently, memory deallocation is no longer the re-
sponsibility of the object programmer, but is handled by the framework.
Framework implementations does however only exist for Microsoft operat-
ing systems, making .net applications non-portable to other platforms. This
decrease in generality, compared to Java, gives .net applications access to
Microsoft specific features such as the system registry and the real-time li-
brary DirectX. Objects developed in .net are cross compatible with COM,
meaning that they can both make use of existing COM objects as well as
exposing their own COM interface.

Objects developed in .net are organized in namespaces, which serve the
same function as Java packages. A .net application can effortlessly load
objects at runtime, either from a predefined library location, or from an ex-
plicitly defined source. Thus, machine code can be imported into the running
assembly from any source, remote or local, or even from code compiled at
runtime.
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Résumé 
Le système de surveillance (HUMS) installé dans les hélicoptères permet d’anticiper les 
anomalies et de donner la possibilité d’effectuer des tâches de maintenance prédictive 
avant l’apparition de défauts critiques. Par ailleurs, HUMS est également destiné à 
détecter la propagation de défauts émergents. Ceci consiste à comparer les 
caractéristiques vibratoires en vol de l’hélicoptère aux caractéristiques d’un état normal 
prédéfini. L’inconvénient majeur de cette approche est que les caractéristiques de l’état 
normal sont relatives au type de l’hélicoptère et changent après les tâches de révision et 
de maintenance, ce qui nécessite un réapprentissage de ces caractéristiques.  

Cette étude présente des méthodes d’évaluation de la progression temporelle des 
signatures vibratoires. L’étude de l’évolution de la signature vibratoire dans le temps 
permet de détecter des événements comme des interventions de maintenance ou des 
propagations de défauts sans avoir à définir un modèle de l’état de bon fonctionnement de 
l’appareil. Des méthodes fondées sur des modèles paramétriques et des bancs de filtres 
d’analyse vibratoire ont été testées et validées. Finalement, une méthode de détection de 
défauts a été mise en œuvre et a donné de meilleurs résultats que les méthodes 
traditionnelles utilisées. 

Mots-clés : HUMS, Diagnostic de défauts, Analyse vibratoire, Analyse de tendance 

 

Abstract 
A Health and usage Monitoring System (HUMS) anticipates discrepancies in the 
rotorcraft drive-train, giving the operator an opportunity to perform corrective 
maintenance before any damage becomes critical. In addition to usage spectrum analysis, 
a HUMS deploys vibration monitoring as a means to detect propagating faults. This 
method consists in comparing in-flight vibration recordings to a normal state baseline. A 
recurrent problem with this approach is that this baseline is aircraft specific and subject to 
change between major overhauls, forcing the operator to relearn the baseline on regular 
bases.  

This study presents methods for evaluating the time-progression of the drive-train 
vibration signature. By studying fluctuation in vibration signature over time, it is possible 
to detect events such as maintenance actions and fault propagations without any aircraft 
specific baseline. Several progression analysis methods are tested, both parametric 
models and filter-banks. Finally, progression analysis is used as a basis for fault 
detection, and is shown to produce better results than traditional methods. 
 
Keywords: HUMS, Fault diagnosis, Vibration monitoring, Trend analysis 
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