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Thesis: Analytic evaluation of wireless cellular

networks performance by a spatial Markov

process accounting for their geometry, dynamics

and control schemes

Informatique et Réseaux
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ix



x PREFACE

Short abstract: We build load control schemes for wireless cellular networks and

develop analytic methods for the performance evaluation of these networks by a spa-

tial Markov process accounting for their geometry, dynamics and control schemes.

First, we characterize the single link performance by using the digital communication

techniques. Then the interactions between the links are taken into account by for-

mulating a power allocation problem. We propose decentralized load control schemes

which take into account the influence of geometry on the combination of inter-cell

and intra-cell interferences. In order to study the performance of these schemes, we

analyze a pure-jump Markov generator that can be seen as a generalization of the

spatial birth-and-death generator, which allows for mobility of particles. We give suf-

ficient conditions for the regularity of the generator (i.e., uniqueness of the associated

Markov process) as well as for its ergodicity. Finally we apply our spatial Markov

process model to evaluate the performance of wireless cellular networks using the fea-

sibility based load control schemes.

Keywords: wireless, cellular, performance, load control, power allocation feasibility,

birth-and-death, mobility, regularity, ergodicity, invariant measure, Gibbs, spatial Er-

lang formula, blocking, cut probability, delay, throughput.

Titre (in frensh): Evaluation analytique des performances des réseaux cellulaires

sans fil par un processus de Markov spatial prenant en compte leur géométrie, dy-

namique et algorithmes de contrôle

Cour résumé: Nous proposons des algorithmes de contrôle de charge pour les

réseaux cellulaires sans fil et développons des méthodes analytiques pour l’évaluation

des performances de ces réseaux par un processus de Markov spatial prenant en compte

leur géométrie, dynamique et algorithmes de contrôle. D’abord, nous caractérisons la

performnace d’un lien unique en utilisant les techniques de communication numérique.

Ensuite les interactions entre les liens sont prises en compte en formulant un problème

d’allocation de puissances. Nous proposons des algorithmes de contrôle de charge

décentralisés qui tiennent compte de l’influence de la géométrie sur la combinaison

des interférences inter-cellules et intra-cellules. Afin d’étudier les performances de ces

algorithmes, nous analysons un générateur d’un processus Markovien de saut qui peut

être vu comme une généralisation du générateur de naissance-et-mort spatial, qui tient

compte de la mobilité des particules. Nous donnons des conditions suffisantes pour la

régularité du générateur (c.-à-d., unicité du processus de Markov associé) aussi bien

que pour son ergodicité. Enfin nous appliquons notre processus de Markov spatial

pour évaluer les performances des réseaux cellulaires sans fil utilisant les algorithmes

de contrôle de charge basés sur la faisabilité de l’allocation de puissance.

Mots-clés: sans fil, cellulaire, performance, contrôle de charge, faisabilité de l’allocation

de puissance, naissance-et-mort, mobilité, régularité, ergodicité, mesure invariable,

Gibbs, formule d’Erlang spatiale, blocage, probabilité de coupure, delai, débit.



Abstract

We build load control schemes for wireless cellular networks which are rapid and
efficient and develop analytic methods for the performance evaluation of these
networks by a spatial Markov process accounting for their geometry, dynamics
and control schemes. We show that the analytic evaluation of the performance
of wireless cellular networks is possible, but it requires the use of tools coming
from several disciplines.

The first step is to characterize the single link performance by using the
digital communication techniques. Then the interactions between the links are
taken into account by formulating a power allocation problem. Optimal load
control schemes based on the necessary and sufficient condition for the feasibility
of the power allocation problem are unpractical because they are centralized.
Extending the work in [16], we propose load control schemes that allow each
base station to decide independently of the others what set of voice calls to
serve and/or what bit rates to offer to elastic calls competing for bandwidth.
These control schemes are primarily meant for large CDMA networks. They
take into account in an exact way the influence of geometry on the combination
of inter-cell and intra-cell interferences as well as the existence of maximal power
constraints of the base stations and users. We also evaluate the performance of
these control schemes in terms of the infeasibility probability (the probability
that the admission’s condition doesn’t hold for a given cell when the calls are
modelled as a Poisson process).

From the user’s point of view, the performance is more suitably evaluated
by the mean of the blocking and cut (drop) probabilities of streaming (real-
time as voice) calls and the delay and throughput of elastic (non-real-time as
web surfing) calls in the long run of the network. In order to build analytic
methods for evaluating these performance indicators we build and analyze a
pure-jump Markov generator that can be seen as a generalization of the spa-
tial birth-and-death generator, which allows for mobility of particles. We give
sufficient conditions for the regularity of the generator (i.e., uniqueness of the
associated Markov process) as well as for its ergodicity. We show when the sta-
tionary distribution is a Gibbs measure. This extends previous work in [97] by
allowing for mobility of particles. Our spatial birth-mobility-and-death process
can be seen also as a generalization of the spatial queueing process considered
in [106, 67]. This way our approach yields regularity conditions and alterna-
tive conditions for ergodicity of spatial open Whittle networks, complementing

xi



xii ABSTRACT

works in [106, 67].
Next we apply our spatial Markov queueing process model to build analytical

methods for evaluating the performance of wireless cellular networks controlled
by feasibility based load control schemes. This evaluation is made by the mean
of indicators which are relevant from the user’s point of view rather than the
classical outage probability [47]. Our formula for the blocking probability of
streaming traffic might be seen as a spatial extension of the well-known Erlang
loss formula. In the case of elastic traffic, we build explicit analytic expressions
for the user throughput.

The analytic performance evaluation permit to build a new class of coher-
ent methods for the different fundamental problems in wireless cellular systems:
quality of service, capacity, dimensioning and cost. The ease of use of the ana-
lytical expressions makes this type of approach more effective than simulations
for macroscopic evaluation and optimization.



Introduction

Our research stems from wireless cellular communications which are in perma-
nent and rapid evolution. In few years, wireless cellular systems have evolved
through several generations with completely different characteristics (for exam-
ple, different multiple access schemes: FDMA4 for GSM5, CDMA6 for UMTS7,
TDMA8 for HSDPA9). This rapid evolution explains perhaps why much of the
global performance analysis of these networks is made by simulations. Unfortunately,
simulations give numerical result for a given situation but don’t give a global
comprehension of the key parameters and relationships.

0.1 Problem statement

The performance evaluation of wireless cellular networks, is a hard task. First,
the performance evaluation of a single radio link is difficult because we should
take into account the radio signal variations due to multi-path fading. Moreover
the signal processing techniques, such as modulation, spreading and power con-
trol, etc., used to counteract the harmful effects of the radio signal variations
are often complex (cf. for example [51, Chapter 9], [118, §3.4.3]).

Once the single link performance evaluation is carried, we should take into
account the interference between the different links which depends on the rela-
tive geographic positions of the users. This process is usual in the engineering
of the wireless cellular networks; first we characterize the performance of a sin-
gle link and in a second step we consider the interactions between the different
links. In doing so, we should consider carefully the separation of the time scales
between phenomena such as multi-path fading and variations due to the geome-
try of the problem. (We will see an example of this issue when we study HSDPA
later.) This is not an easy task as it depends not only on the phenomenon itself
but also on the control algorithms (e.g. power control) in the network.

Wireless networks have to offer service for calls (users) which have differ-
ent requirements and which may be roughly classified in two classes:

4Frequency Division Multiple Access
5Global System for Mobile
6Code Division Multiple Access
7Universal Mobile Telecommunications System
8Time Division Multiple Access
9High Speed Downlink Packet Access

xiii
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• Real-time (or streaming) calls (voice calls, real-time audio-video stream-
ing) require a fixed bit-rate on each link, and they are blocked if momen-
tarily it is not possible to satisfy their requirement. To analyze the quality
offred to such calls, one constructs loss models and studies blocking and
cut (drop) probabilities.

• Non-real-time (or elastic) calls (data traffic) can be served at an ar-
bitrary low bit-rate, for the price of large delays. To analyze the quality
offred to such calls, one uses typically queueing models and studies sojourn
times (delays) and average throughput.

The interaction between all the users is taken into account in specific control
schemes called load control schemes, which may be roughly classified in two
types: admission control for streaming calls and congestion control for
elastic ones. These load control schemes attempt to assure that the required
performance specific to each single radio link is satisfied. More precisely they
manage traffic in order to ensure required quality for both incoming calls as well
as previously admitted ones, and to reject incoming calls only when necessary.
The essential problem for the load control decisions may be formulated as fol-
lows: may the network allocate a power to each user large enough for him to
get his required link performance and small enough for the other users to get
their required link performance. We say that load control attempt to ensure
the feasibility of the power allocation problem, and if so, the user powers may
be found by an iterative process called power control. Solving the power
control problem isn’t in the scope of the present work (cf. for example [55]
and the references therein). We will focus only on criteria which indicate if the
power control problem is feasible or not, without trying to solve it.

One may consider a load control scheme based on the necessary and suffi-
cient condition (denoted NSFC) of the feasibility of the power allocation prob-
lem. Such load control scheme is optimal (i.e. offers the maximal capacity)
but is unfortunately difficult to implement in real networks as the admission
decision of a new call requires the collection and treatment of information from
all the calls in the network. We call such load control scheme centralized.
Moreover the performance evaluation of the optimal load control scheme is time
consuming numerically, and hard analytically (no explicit formulae exist to our
knowledge). The load control schemes implemented in the real networks are
proposed by constructors (manufacturers) [64], [81]. They are decentral-
ized (i.e. depend on parameters which are local to the cell in which the new
call request for admission) but they don’t assure the power allocation feasibility.
Moreover no analytic evaluation method of the constructor schemes exist to our
knowledge.

There is a rich literature on the performance evaluation of load control
schemes in cellular networks. Unfortunately it is often difficult to find the rela-
tionship between the indicators calculated by the authors because they consider
different traffic models. The distinction between the following four classes of
traffic models allows a first classification.
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• Static model: Number and positioning of active (i.e. currently being
served) calls are fixed.

• Semi-static model: Active calls are modelled by a spatial Poisson point
process. In other words, “snapshots” of active calls are seen as realizations
of spatial Poisson processes; these snapshots are used as the non-constrained
traffic process on which we will define and evaluate the (in)feasibility prob-
abilities.

• Semi-dynamic model: Users (or calls) arrive at a random location and
last for some random duration; each user is motionless during its call;
this is the “minimal” dynamic model where an admission control can be
specified, and where blocking probabilities can be considered.

• Dynamic model: We have the same as above but users may move during
their calls; an admission and motion (or handoff) control can then be
specified. Blocking and motion-cut probabilities can be evaluated.

The load control scheme performance may be evaluated by modelling the
users as a planer Poisson process. This lead in the classical literature to the
notion of outage probability [47], which is roughly the probability that a given
user doesn’t attain his required link performance. The outage probability is
not a satisfying performance indicator because it relies on some simplifying
assumptions (especially on the powers of the users) which makes its meaning
unclear. Another approximate method consists of making some average calculus
leading in the classical literature to the notion of pole capacity. Both the outage
probability and pole capacity are heuristics, and we consider in the present work
more relevent performance indicators.

From the user’s point of view, the performance is more suitably eval-
uated by means of the long run blocking and cut probabilities for streaming
calls and the delay and throughput for elastic calls. Recall that the blocking
probability is defined as the fraction of calls that are rejected by the admis-
sion control scheme in the long run, a notion of central practical importance.
(Analogous definitions may be formulated for the other indicators.) In order to
calculate these dynamic performance indicators (blocking, cut, delay and
throughput) we should consider the temporal dynamics and the geometry (lo-
calizations) of the call arrivals, mobility and departures from the network. The
temporal dynamics of the call arrivals and departures are well studied in wired
communication networks, which led in particular to the famous (and widely
used) Erlang’s formula [44]. This formula is often used for wireless cellular net-
works by eliminating the spatial component of the problem. In fact no analytic
methods for calculating performance of wireless cellular networks accounting for
the spatial component (geometry of interference) exist in previous literature to
our knowledge. Most work done in this field involves time consuming and com-
plex simulations which are not suitable for dimensioning and global cost and
capacity optimization of wireless networks. Analytic performance evaluation
methods are not only suitable for the dimensioning and optimization of wireless
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cellular networks which are crucial tasks for the network operators, but also of
great interest for the scientists how attempt to understand the current system
performances and propose modifications to ameliorate them. Till now the work
of operators and scientists is done either by considering only the single link
performance; or by heuristically accounting for the geometry of interference.

Classical queueing and loss models (see e.g. [74]) are well adapted to wired
networks, where the spatial component of the model is typically represented
by some graph of links, and where the coexistence of calls on a common link is
modeled by the occupancy of a discrete number of circuits available on this link.
In wireless cellular communications, one needs to take into account the spatial
characteristics of the network in a more thorough way because it is the relative
location of all the radio channels that determines their joint feasibility. One of
the additional difficulties then stems from the fact that the spatial component of
the model is subject to changes due to the mobility of users and instantaneous
changes of radio conditions. All this makes spatial models more suitable for
analysis of wireless communications.

0.2 Objectives

We aim to solve the problem stated above. More specifically, three objectives
are particularly relevant:

1. Firstly we aim to build rapid, accurate, and efficient load control schemes
for wireless cellular networks. (We say that a load control scheme is ac-
curate if it assures the feasibility of the power allocation problem; and
we say that it is efficient if it offers a capacity close to the optimum
–corresponding to NSFC–.)

2. Secondly we aim to develop a stochastic model for wireless cellular net-
works accounting for their geometry, dynamics and control schemes and
permitting to evaluate analytically their performance. This model should
be general enough such that different cases as: streaming or elastic traf-
fic; with or without mobility; CDMA, FDMA or TDMA; etc. would be
particular cases of the general model.

3. Thirdly we aim to apply the above model to the performance evaluation
of real wireless cellular networks: UMTS, HSDPA, GSM.

In fact the three objectives above are closely related since we begin by build-
ing load control schemes (objective 1), then we develop mathematical mod-
els (objective 2) permitting to analytically evaluate the performance of these
schemes which are precisely the performance of the wireless cellular networks
(objective 3).
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0.3 Organization

The report comprises three parts I, II and III corresponding to the three above
objectives respectively.

The introductions of each part (and some chapters) give a detailed state of
the art and a description of its novelty as well as its organization.

The thesis report is long, but the reader may read the parts I and II in any
order he wants. The reader interested in the mathematics of the stochastic tools
developed in the thesis may read part II, whereas the reader interested in the
application of these tools to cellular networks may read parts I and III. The
appendices (Part V) are long because we gather some basic results scattered in
the litterature, and present some useful complementary numerical results.

0.4 Publications

Journals. Our papers [13] and [15] contain some material from Parts I and II
respectively.

Conferences. Our papers [14] and [21] contain some material from Parts II
and III.

Patents. The load control algorithms proposed in Part I are patented in [11]
and [12].
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Chapter 1

Introduction

The present part focuses on the first objective described in §0.2, i.e. to build
load control schemes for wireless cellular networks which are rapid, accurate,
and efficient. Recall that the load control schemes attempt to assure that the
required performance of each single radio link is satisfied while taking into ac-
count the interactions between all the users.

1.1 Related works

Load control algorithms. The most largely proposed load control algo-
rithms for CDMA networks are based on the total interference received at the
base station for the uplink [120] and on the power transmitted by the base sta-
tion for the downlink [77]. Constructors of UMTS infrastructure implemented
load control schemes based on these indicators as described in [64], [81]. Many
other load indicators are proposed: signal to interference ratio [84], through-
put, effective bandwidth, number of active connections. We call this class of
algorithms direct algorithms. The direct algorithms usually do not guarantee
the quality requirements to all calls and call dropping can occur even instan-
taneously as a call is admitted. In order to avoid this call dropping, security
margins are applied which may decrease the offered capacity if the margins are
too large.

Some authors propose to temporarily admit new calls with a low power
level and to evaluate if a new feasible power allocation can be found (cf. for
example [7]). We call this class of algorithms trial algorithms. The duration
of the admission process of these algorithms may be too long which makes them
impractical.

An emergent method is based on a criterion which indicates if the power
control problem is feasible or not, without trying to solve it. A decentralized
version of such criterion is proposed in [16] for the downlink case without power
limit. We will call the load control algorithms based on this idea feasibility
load control algorithms.

3
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Performance. The performance indicators introduced in [52, 121, 84, 47] cor-
respond to the probability that the signal-to-interference-and-noise ratio (SINR)
threshold is less than some threshold, when users, modeled as a Poisson point
process, are all accepted. In [84] and [47] this indicator is called the outage
probability. The authors of [121] call it the blocking probability, but as men-
tioned in [84], the term outage probability is more appropriate.

The authors of [16] introduce the notion of infeasibility probability
which designates the probability that there is no solution to the power alloca-
tion problem when the users are modelled as a Poisson point process. Observe
that the infeasibility probability is different from the outage probability which
is related to the event that the transmission quality of service is not attained for
given transmission powers. Hence both the outage and the infeasibility proba-
bilities are related to “the probability that the transmission quality of service is
not attained”. But the outage probability depends on the transmission powers of
the users and the base stations; whereas the infeasibility probability corresponds
to an intrinsic characterization of power allocation feasibility, and consequently
doesn’t depend on transmission powers. The infeasibility probability is then a
more appropriate performance indicator.

Power allocation related work. Load control is closely related to the power
allocation problem. In fact the latter has already been considered by several
authors more for estimating the capacity of wireless cellular networks than for
building load control schemes. Nettleton and Alavi [1] first considered the power
allocation problem in the cellular spread spectrum context.

Gilhousen et al [52], pose the problem the following way. Suppose Base
Station number 1 emits at the total power P1 in the presence of K − 1 other
base stations, which emit at power P2, . . . , PK respectively. How many users N1

can then base station 1 accommodate assuming that the load of the network is
only interference-limited and that each user has some required bit rate? In [52]
a sufficient condition is proposed which allows for the determination of N1. But
this condition comprises P1, . . . , PK , hence it does not reflect a key feature,
that in reality the total power emitted by the base station should depend on the
number of users (and even on their locations), namely Pk should be a function
Pk(N1, . . . , NK).

In order to address this issue, Zander [126, 125] expresses the global power
allocation problem by the multidimensional linear inequality

AP ≤ 1 + ξ

ξ
P (1.1)

with unknown vector P of emitted powers; here one assumes the required signal-
to-interference power ratio ξ (or equivalently the required user bit rate) to be
given and one assumes the matrix A, the i, k-th entry of which gives the nor-
malized path-losses between user i and base station k, to be given too. The
main result is then that the power allocation is feasible (i.e. there exists a non-
negative, finite solution to (1.1)) if and only if ξ < 1/(ρ(A)− 1), where ρ(A) is
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the spectral radius of the matrix A. (The spectral radius of a matrix A is
defined as the maximum of the absolute values of the eigenvalues of A.) In order
to simplify the problem, all same-cell channels are assumed to be completely
orthogonal and the external noise is suppressed.

Foschini and Miljanic [49] and Hanly [56] introduced external noise to the
model: Foschini considered a narrow-band cellular network and Hanly a two-cell
spread spectrum network. On the basis of the previous works, Hanly extended
the model in several articles. Hanly [59] extends this approach to the case
with intra-cell interference and external noise (essentially for the uplink). Using
the block structure of A, he solves the problem in two steps: first the own-
cell power allocation conditions are studied (microscopic view) and then the
macroscopic view considers some aggregated cell-powers. He also interprets
ρ(A) as a measure of the traffic congestion in the network.

The evaluation of ρ(A) can be done either from a centralized knowledge of
the state of the network, which is non practical in large networks, or by channel
probing as suggested in [59, §VIII] and described in [128]. When it exists, the
minimal finite solution of inequality (1.1) can also be evaluated in a decentralized
way (using Picard’s iteration of operator A, cf. the discussion in [58, §IX]).
However this does not provide decentralized admission or congestion control
algorithms, namely decentralized ways of controlling the network population
or bit rates in such a way that the power allocation problem remains feasible,
namely that ρ(A) remains less than 1 + 1/ξ.

The approach in [126, 59] is continued in [16], where decentralized admis-
sion/congestion control protocols are proposed for the downlink, without max-
imal power constraints. These protocols are based on the simple mathematical
fact that the maximal eigenvalue of any sub-stochastic matrix (i.e. matrix with
non-negative entries, whose row sums are less than 1) is less than 1.

1.2 Our contribution

The single link performance requirement may be expressed as the signal-to-
interference power ratio larger than a given threshold. If a power allocation
satisfying these constraints and maximal power limit exists, then we say that
power allocation with power limitations is feasible.

Our work continues [16] by building decentralized power allocation feasi-
bility conditions (denoted FC) taking into account the power limits and the
uplink. We build admission control algorithms based on these conditions for a
given user positions (static model).

Moreover we build explicit approximate formulae for the performance eval-
uation of FC load control in a hexagonal network in terms of the infeasibility
probability (defined as the probability that FC doesn’t hold for a given cell
when the users are modelled as a Poisson process –semi-static model).
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1.3 Organization

The present part is organized as follows.
In the premilinary chapter 2 we characterize the performance of each single

link, describe the model and present the notation.
In Chapter 3 we build decentralized conditions for the feasibility of the power

allocation problem in a static traffic model.
In Chapter 4 we evaluate the performance of these conditions in a semi-static

traffic model.



Chapter 2

Preliminaries

2.1 Single link performance

The present section is just a collection of the relevant results from the literature
to which we refer the reader for more details. The multi-path fading channel
may be modelled as a linear time varying Input/output model [51, Chapter 9]

vm =
L∑

k=1

gk,mum−k + zm

where {um} is the input, {vm} is the output, {gk,m} is the channel filter and
{zm} designates the noise. The multi-path channel is characterized by the sta-
tistics of the channel filter. The noise is assumed to be additive white Gaussian
(AWGN) with (power-spectral) density N0.

The multi-path fading channel may be seen as a random channel with AWGN
noise as that analyzed in [31, §III.4.1]. The performance of a given modula-
tion scheme may be expressed by its bit-rate, r, and a curve giving the error-
probability as function of the energy-per-bit to noise-density ratio, Eb/N0, at
the input of the receiver. It is usual to fix some error-probability threshold,
and deduce the corresponding Eb/N0 threshold. In general, we have several
modulations and a specific Eb/N0 threshold for each one.

[118, §3.4.3] studies the modulation performance in a CDMA network such
as UMTS Release 99 where active users use simultaneously the entire system
bandwidth. Using the arguments in [53, §6.3], [118, §3.4.3], we deduce that for
this system the energy-per-bit Eb is averaged over fading.

The signal and noise powers are given respectively by

S = rEb, N = WN0

where r is the bit-rate, Eb is the energy-per-bit and W is the bandwidth (5MHz
for UMTS). Hence the signal-to-noise ratio, denoted S/N , equals

S
N

=
r

W

Eb

N0

7
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In practice, we have for UMTS the following relation

S
N

=
r

W ′
Eb

N0
(2.1)

where W ′ designates the chip-rate (W ′ = 3.84MHz for UMTS). For each modu-
lation, given the error-probability threshold we get the Eb/N0 and S/N thresh-
olds.

We apply now the above link performance characterization to streaming
and elastic traffic. A streaming call requires to transmit for some duration with
a given modulation, i.e. a given bit-rate and energy-per-bit to noise-density
ratio Eb/N0, and thus a given S/N threshold. It is served by a (fixed bit-
rate) Dedicated CHannel (DCH) in UMTS. If the required rate may not
be offered, then the call is blocked (by the admission control scheme). We
may consider different streaming classes, each characterized by a specific S/N
threshold.

An elastic call has an amount of data to transmit at a bit-rate among a (fi-
nite) set of possible rates which may be adjusted by the network (by the conges-
tion control scheme). Elastic calls may be served by the Downlink Shared
CHannel (DSCH) in UMTS. The Eb/N0 thresholds of the various modulations
used on DSCH (called DSCH modulations) are close [64, §12.5.1], so we may
take a single representative Eb/N0 and assume that the set of possible rates is
continuous: R+. With this assumption we get the linear relation (2.1) between
the S/N ratio and the bit-rate r.

We may also consider the Shannon’s bound which gives the theoretical
maximal bit-rate over an AWGN channel

r = W log2

(
1 +

S
N

)
(2.2)

where the parameters are the same as for the previous display. For a steaming
call, the bit-rate is fixed, hence we may deduce from (2.2) the corresponding S/N
threshold. For an elastic call, Equation (2.2) is a non linear relation between
the S/N ratio and bit-rate. Using the property of the log function we have the
bound

S
N
≥ r

W
ln (2) (2.3)

and, if S/N ¿ 1 then we have the approximation

S
N
' r

W
ln (2) (2.4)

hence we get also in this case a linear relation between the S/N ratio and the
bit-rate.

Once the single link performance is characterized, we should take into ac-
count the interference between the different links. To this end, we make the ap-
proximation that the interference observed by some user may be approximated
by a AWGN of power equal to the sum of the noise and the interference powers
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(averaged over the multipath fading). This approximation is justified by the
large number of interferers (Central Limit Theorem) in [118, §4.3.1]. Hence the
S/N threshold may be called the signal-to-interference-and-noise ratio (SINR)
threshold.

2.2 Model

We now describe the considered multiple access scheme, the cell patterns (base
station positions), the propagation model, the antenna types and the typical nu-
merical values for UMTS system used in the numerical applications throughout
the present part.

2.2.1 Multiple access

In order to simplify the presentation, we focus in the present part on CDMA
networks such as UMTS Release 99 (recall that in such system the active users
use simultaneously the entire system bandwidth). However, our approch is
sufficiently general and may be extended to wireless cellular networks with other
multiple access schemes (cf., for example, Chapter 11 for TDMA and Chapter 12
for FDMA).

2.2.2 Cell pattern

The radio part of a wireless cellular network comprizes some base stations. Each
base station has an antenna and serves a geographic zone called cell. The
cell is defined as the set of locations in the plane which receive a signal from a
base station which is stronger than the signal from any other base station. We
assume in the present study that each user is served by a single base station (no
macrodiversity). The effect of macrodiversity (that is a user may be served
by several base stations) on the stability of a wireless cellular network serving
elastic traffic is studied for example in [28].

We consider a hexagonal model where the base stations are placed on a
regular grid denoted on the complex plane by {∆(p+qeiπ/3); (p, q) ∈ Z2} where
∆ is the distance between two adjacent base stations and Z designates the set of
all the integers, both positive and non-positive. Denote by λS the mean number
of base stations per km2. Let R be defined by the formula

λS = 1/(πR2) (2.5)

Bearing this definition in mind, we call R the cell radius. The cell radius
is in fact the radius of the disc whose area is equal to that of the hexagon. In
order to simplify some calculations, we make the following approximation (as
in [80]).

Approximation 1 From hexagon to disc. We approximate the hexagonal
cell with the (virtual) disc of radius R. This is illustrated in Figure 2.1.
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R
∆

Figure 2.1: Hexagon to disc approximation

Lemma 1 The cell radius R is related to the distance ∆ between two adjacent
hexagons by ∆2 = 2πR2/

√
3, or equivalently

R = ∆

√√
3

2π
(2.6)

Numerically this gives R ' 0.525 ∆.

Proof. Let r be the radius of the circumscribed circle to a hexagon. It is
easy to see that ∆ = r

√
3. The surface of a hexagon is 6 1

2r
∆
2 =

√
3

2 ∆2. Hence
we should have

√
3

2 ∆2 = πR2 which gives the desired relation.
We consider sometimes a pattern where base station positions constitute a

Poisson process in the plane, with intensity λS. The cell pattern in this model
is called Poisson-Voronoi. The hexagonal and Poisson-Voronoi models are
illustrated in Figure 2.2. Note that the base station locations as well as the
cells are random in the Poisson-Voronoi model. We always assume that the
Poisson process of base stations is independent from all other considered random
elements.

The hexagonal and Poisson-Voronoi models are extreme and complementary
architectures: The hexagonal model represents perfectly structured networks,
whereas the Poisson-Voronoi model takes into account irregularities of real net-
works in a statistical way. We shall treat in details the hexagonal model and
just recall the results for the Poisson-Voronoi model from [16] for the purpose
of comparison.

We consider large networks where the number of base stations and the area
covered by the network may be very large. We consider both the downlink
(from the base stations to the users) and the uplink (from the users to the base
stations).

If the network is modelled on some bounded zone of R2, then the cells at the
frontier of the zone don’t suffer the same interference as the cells in the center
of the zone. In this case we model the network on a torus in order to avoid
the border effect.
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Hexagonal Poisson-Voronoi

Figure 2.2: Hexagonal and Poisson-Voronoi models

2.2.3 Propagation

We model propagation-loss on distance r by

L (r) = (Kr)η (2.7)

where η > 2 is the so-called propagation exponent and K > 0 is a mul-
tiplicative constant. The above formula represents the effect of the distance
which is the principal cause of the received signal variations.

In order to simplify some formulae we introduce the normalized propagation-
loss

l (r) = L (r) /L(R)

where R designates the cell radius.
The objects in the path between the antenna and the user (as for e.g. hills,

buildings, trees, etc.) affect also the received signal. We may distinguish two
scales of these variations: fast fading and shadowing (called also slow fading).
Fast fading is related to multi-path propagation [51, Chapter 9] and induces
variations over about half a wavelength. The effect of fast fading on the perfor-
mance of a single link is studied in [118, §3.4.3] and recalled briefly in Section 2.1.
Shadowing is related to diffraction over the obstacles in the path between the
antenna and the user and induces variations over several wavelengths. Measure-
ments have shown that the shadowing factor is log-normal distributed. We will
not take into account the shadowing effect in the present work.

2.2.4 Antennas

We will consider the following two versions of the hexagonal network (see Fig-
ure 2.3):

• Omni: each base station is equipped with an omni antenna; this antenna
serves users in the whole disc around the base station.

• Directional: each base station is equipped with a directional antenna;
each antenna serves users in its sector defined as the set of locations in
the disc within the cone of 120◦ around the antenna’s azimuth.
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Omni Directional

Figure 2.3: Illustration of the two versions of the hexagonal network: omni and
directional.

In real network the power transmitted by the antennas and by the users is
limited by some maximal-power constraints. We consider the cases with and
without power limit. Even if the case “without power limit” isn’t realistic,
we will see that it is a limit of the case “with power limit” when the cell radius
is small which is the case for dense urban zones.

We denote by P̃ the maximum power including the transmitting and re-
ceiving antenna gains, denoted G, and losses, denoted L (which may include
transmitting and receiving antenna loss, body loss, indoor loss, etc.). We denote
by P̂ the maximum power which doesn’t account for G and L, i.e.

P̂ = P̃ −G + L

2.2.5 UMTS numerical parameters

Unless otherwise specified, the following values are used for the numerical ap-
plications throughout the present part.

Propagation

We consider the following propagation-loss parameters η = 3.38, K = 8667
(which correspods to the so-called Cost-Hata propagation model in an urban
area [45]).

Cell radius

We consider the following cell radii

R =
{

0.525, 1, 2, . . . , 5km for the downlink
0.525, 1, 2, 3km for the uplink
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Antenna parameters

By default, we consider omni antennas with loss L = 0 and gain(1)

G =
{

9dBi for the downlink
12dBi for the uplink

(The antenna gain isn’t null because the energy is focused on a plan). For
directional antennas we take

G =
{

12dBi for the downlink
15dBi for the uplink

The maximum power (without antenna gain and loss) equals P̂ = 43dBm(2)
for the base stations and P̂ = 21dBm for the mobiles.

Downlink specific parameters

A supplementary limit on the power transmitted to each user is sometimes
imposed, typically 36dBm (without antenna gain and loss). In the present
work, we have only considered the limit on the total power transmitted by the
base station.

The common channels (CCH), including pilot, synchronization and paging
channels, have a constant power, denoted P ′. We assume that P ′ is a fraction
of the maximal power

P ′ = εP̃

where ε = P ′/P̃ = 0.12.

Orthogonality factor

The orthogonality factor, denoted α, affects the intra-cell interference.
Typically

α =
{

0.4 in the downlink
1 in the uplink

The orthogonality factor takes into account approximately the loss of orthogo-
nality of the spreading sequences within a cell due to the multi-path. Hence α =
0 for perfectly orthogonal. (Therefore, we should call α the non-orthogonality
factor, but it is the usage to call it the orthogonality factor.)

Noise power

Typically, the noise power equals

N =
{ −103dBm in the downlink
−105dBm in the uplink

1The antenna gain G is a ratio of two powers, hence it has not a unit. The logarithmic
representation, 10 log10(·), may be expressed in dB, which is denoted ”dBi” in the particular
case of antenna gains.

2The abbreviation dBm designates ”dB milli-Watt”, i.e. 10 log10 of the value in milli-Watt.
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Link\service voice data 64kbps(3) data 144kbps data 384kbps
Downlink −16 −11 −9 −5
Uplink −18 −14 −12 −8

Table 2.1: SINR thresholds in dB for UMTS vehicular-A channel.

SINR thresholds

Unless otherwise specified, calculations are made for voice with SINR threshold

ξ =
{ −16dB in the downlink
−18dB in the uplink

We consider sometimes other streaming classes whose SINR thresholds are given
in Table 2.1 (from [81]).

Eb/N0 threshold

We take for elastic services on the DSCH in UMTS a single representative value
of the Eb/N0 equal to 5dB [64, §12.5.1].

2.3 Notation

We will use the following notation.

2.3.1 Antenna locations and path loss

• u, v designate indexes for base stations.

• m, n designate indexes for users (mobiles). The letter designating a base
station (or a user) is sometimes used to designate it geographic position.

• U is the set of base stations (which is assumed finite, but some results
may be extended to the infinite case [16]).

• M is the set of users.

• We denote m ∈ u to say that a user m is served by base station u. Hence
we use the same letter to designate the base station and the set of users
it serves.

• Lu,m is the propagation-loss between base station u and user m. For the
propagation-loss function (2.7) we get Lu,m = L (d (u,m)) where d (u,m)
designates the Euclidian distance between a user at position m and a base
station at position u.



2.3. NOTATION 15

2.3.2 Engineering parameters

• ξm is the signal-to-interference-and-noise ratio threshold for user m.

• N is the external noise power.

• α is the orthogonality factor.

• In order to simplify the formulae we introduce

αuv =
{

1 if v 6= u ∈ U
α if v = u ∈ U

and the modified SINR

ξ′m = ξm/ (1 + αξm) , m ∈ M

• In the downlink, we will use the following notation:

– P̃u designates the maximal total power of base station u;

– Pu,m designates the power of dedicated channel (DCH) of user m ∈ u;

– P ′u is the power of common channels of base station u which is a
fraction of the maximal power

P ′u = εP̃u, u ∈ U

where ε is a given constant.

– Pu = P ′u +
∑

m∈u Pu,m is the total power transmitted by base station
u.

• In the uplink, we will use the following notation:

– P̃m designates the maximum power of user m.

– Pm designates the power transmitted by user m.

– Iu = N +
∑

v∈U αuv

∑
n∈v Pv/Lu,n is the total power (sum of noise

and powers from all the users) received at base station u. We will
call Iu the total interference received at base station u.

• We shall see that the following parameter, called f-factor, plays an
important role in the analysis of the performance of cellular networks

f (m) =
∑

v 6=u

Lu,m/Lv,m, u ∈ U

(See Annex 13.B for the properties and in particular the moments of the
f-factor.)
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2.3.3 Mathematics

For a random variable Z we denote Z̄ its expectation, i.e.

Z̄ = E
[
Z̄

]

In particular for a function f (m) of the user m ∈ u we denote

f̄ = E [f (n)]

where n is a random user in the cell u.



Chapter 3

Feasibility conditions

The objective of the present chapter is to build decentralized conditions for the
feasibility of the power allocation problem in a static traffic model.

The present chapter is organized as follows. In Section 2.1 we characterize
the single link performance. The following two Sections 3.1 and 3.2 correspond
to the downlink and uplink respectively with similar contents.

Section 3.1 is composed of 2 subsections. In subsection 3.1.1 we state the
power allocation feasibility problem which rises from the interactions between
the different radio links. In subsection 3.1.2 we solve this problem by building
decentralized feasibility conditions.

In Section 3.3 we describe admission control schemes based on the feasibility
conditions.

3.1 Downlink

We consider here the downlink (DL), i.e. the link from the base stations to the
users. The reverse or uplink (UL) is treated in the following section.

The downlink power allocation is studied in [126], [87], [112], [63] and [16].
A first difference from the uplink case is the orthogonality factor α which

affects the intra-cell interference only in the downlink. Moreover in the downlink
there are common channels (such as the pilot channel) which have to be taken
into account as interferers. Finally, interference in the downlink comes from the
base stations which have fixed locations whereas the interference in the uplink
comes from the users which have variable locations. We will see that in spite of
these differences, the algebras of the power allocation problems of the two links
present some similarities.

The authors of [16] consider the downlink with neither power limit nor com-
mon channels. We extend their results to take into account these two features.
Moreover we propose explicit approximate methods to evaluate the probabil-
ity that the power allocation is infeasible (for a Poisson user population and a
hexagonal base station architecture).

17
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3.1.1 Power allocation problem

We aim to formulate the power allocation problem for a given base station
positions and user population (fixed positions {m} and SINR thresholds {ξm}).
We will say that power allocation is feasible if there exist powers such that
the SINR for each user m is larger than the SINR threshold ξm.

Proposition 1 Matrix representation. The downlink power allocation prob-
lem is feasible if there exist powers {Pu,m ∈ R+; m ∈ u ∈ U} such that

Pu,m/Lu,m

N − αPu,m/Lu,m +
∑

v∈U αuvPv/Lv,m
≥ ξm, m ∈ u ∈ U (3.1)

The problem above may be written
{

(1− A)P ≥ a
P ≥ 0 (3.2)

where the matrix A= [Am,n] is given by

Am,n = αuvξ′mLu,m/Lv,m, m ∈ u ∈ U, n ∈ v ∈ U (3.3)

the vector a = (am)T (where T designates the transpose operation) is given by

am =

(
N +

∑

v∈U

αuvP ′v/Lv,m

)
Lu,mξ′m, m ∈ u ∈ U

and the vector P = (Pu,m)T .
The power allocation problem above is feasible iff1

ρ (A) < 1

in which case
P∗ = (1− A)−1 a (3.4)

is the minimal solution.

Proof. The power received by user m from its serving base station u is
Pu,m/Lu,m. The interference due to another user n ∈ u is Pu,n/Lu,m. Then the
interference due to own cell, called intra-cell interference, is

I(i)
u,m = α


P ′u +

∑

n∈u\{m}
Pu,n


 /Lu,m = α (Pu − Pu,m) /Lu,m, m ∈ u

The interference due to other cells, called inter-cell interference, is

I(e)
u,m =

∑

v∈U\{u}
Pv/Lv,m, m ∈ u

1The abbreviation iff means “if and only if”.
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Hence, the signal-to-interference-and-noise ratio equals

Pu,m/Lu,m

N + α (Pu − Pu,m) /Lu,m +
∑

v∈U\{u} Pv/Lv,m

which may be rearranged to get the left hand side of the inequality (3.1). (When
we neglect the noise term N = 0, Inequality (3.1) is similar to [126, Equation (3)
and Definition §III]. The inequality (3.1) is slightly different from that given
in [63] because we neglect here the synchronization channel specificity considered
there.)

We rearrange the inequality (3.1) as follows

Pu,m/Lu,m

N +
∑

v∈U αuvPv/Lv,m
≥ ξ′m

Hence

Pu,m/Lu,m

N +
∑

v∈U αuvP ′v/Lv,m +
∑

v∈U

∑
n∈v αuvPv,n/Lv,m

≥ ξ′m

Then it is easy to see that Problem (3.1) may be written in the form (3.2).
Corollary 12 gives the last part of the proposition.

Corollary 1 Achievable SINR targets. Assume that the ξm are constant,
i.e. ξm = ξ. We say that some SINR target is achievable if the power
allocation problem for that value of SINR is feasible. The set of achievable
SINR targets is

0 ≤ ξ <
1

ρ (A′)− α

where the matrix A′=
[
A′m,n

]
is given by

A′m,n = αuvLu,m/Lv,m, m ∈ u ∈ U, n ∈ v ∈ U

Proof. We may write A = ξ′A′. By Proposition 8, the power allocation
problem is feasible iff

ξ′ρ (A′) < 1

Note that A′m,m = α then ρ (A′) ≥ ∑
n∈M A′m,n > α. Since ξ′ = ξ/ (1 + αξ),

we get the desired result. (The author [126] gives a similar result.)

Reduced problem. We aim to formulate the power allocation problem in
terms of the powers {Pu; u ∈ U} transmitted by the base stations. To this end
we rearrange the inequality (3.1) as follows

Pu,m ≥
(

N +
∑

v∈U

αuvPv/Lv,m

)
Lu,mξ′m, m ∈ u ∈ U
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We now add over the set {m ∈ u}

∑
m∈u

Pu,m ≥
∑
m∈u

(
N +

∑

v∈U

αuvPv/Lv,m

)
Lu,mξ′m, u ∈ U

The left term equals Pu − P ′u.
We say that the reduced power allocation problem is feasible if there

exist powers {Pu ∈ R+; u ∈ U} of the base stations such that

Pu ≥ N
∑
m∈u

Lu,mξ′m + P ′u +
∑

v∈U

αuv

∑
m∈u

Lu,m/Lv,mξ′mPv, u ∈ U (3.5)

Proposition 2 Matrix representation of the reduced problem. The
power allocation problem (3.5) may be written

{
(1−A) P ≥ a
P ≥ 0 (3.6)

where
Auv = αuv

∑
m∈u

Lu,m/Lv,mξ′m, u, v ∈ U (3.7)

au = P ′u + N
∑
m∈u

Lu,mξ′m, u ∈ U (3.8)

and A = [Auv], a = [au] and P = (Pu)T .
The power allocation problem above is feasible iff

ρ (A) < 1 (3.9)

in which case
P ∗ = (1−A)−1

a (3.10)

is the minimal solution.

The condition (3.9) is a necessary and sufficient feasibility condi-
tion (abbreviated by NSFC).

Proof. The first part of the proposition is just a matrix representation. (The
idea of this ”reduced problem” is from [16] and we just extend it to account for
the effect of common channels.)

Corollary 12 gives the last part of the proposition.

Original versus reduced problem.

Proposition 3 The power allocation problem (3.2) is feasible iff the reduced
problem (3.6) is feasible. In this case their respective minimal solutions P∗ and
P ∗ are related by

P ∗u = P ′u +
∑
m∈u

P ∗u,m, u ∈ U (3.11)
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and

P ∗u,m =

(
N +

∑

v∈U

αuvP ∗v /Lv,m

)
Lu,mξ′m, m ∈ u ∈ U (3.12)

Proof. (i) Suppose that Problem (3.2) is feasible and let P∗ = (1− A)−1 a
be the minimal solution. Let P ∗ = {P ∗u ;u ∈ U} be defined by (3.11). From the
fact that (1− A)P∗ = a which may be written P∗ = a + AP∗, we get (3.12).
Adding the equalities (3.12) over the set {m ∈ u}, we get

∑
m∈u

P ∗u,m =
∑
m∈u

(
N +

∑

v∈U

αuvP ∗v /Lv,m

)
Lu,mξ′m, u ∈ U (3.13)

The left term equals P ∗u−P ′u. Then P ∗ is a solution of the reduced problem (3.6).
It is easy to see that in fact it is the minimal one.

(ii) Suppose now that the reduced problem (3.6) is feasible and let P ∗ =
(1−A)−1

a be the minimal solution. Let P∗ =
{
P ∗u,m;m ∈ u ∈ U

}
be defined

by (3.12). Adding the equalities (3.12) over the set {m ∈ u}, we get (3.13).
Observe that the right-hand side of (3.13) equals P ∗u − P ′u since P ∗ satisfies
P ∗ = a + AP ∗. Hence we get

∑
m∈u P ∗u,m = P ∗u − P ′u. Replacing P ∗v by

P ′v +
∑

n∈v P ∗v,n in the right-hand side of (3.12) shows that P∗ is the minimal
solution of Problem (3.2). (Note that [16] defines a local and a global problem
and shows that the power allocation feasibility is equivalent to the feasibility of
both the local and global problems. We show in Proposition 3 that there is no
need to introduce the local problem.)

The above proposition shows that the condition for the feasibility of the
reduced problem should be the same as that for the original problem. Therefore

ρ (A) < 1 ⇔ ρ (A) < 1

In fact we have the following stronger result.

Proposition 4 We have

σ (A) \ {0} = σ (A) \ {0}
where σ (A) and σ (A) designate the sets of eigenvalues of A and A respectively;
and in particular

ρ (A) = ρ (A)

Proof. From Equation (3.3) we deduce that

AT
m,n = αvuLv,n/Lu,nξ′n, m ∈ u, n ∈ v

We know that A and AT have the same eigenvalues. Consider a eigenvector x
of AT corresponding to a non zero eigenvalue λ. Then

∑

v∈U

αvu

∑
n∈v

Lv,n/Lu,nξ′nxn = λxm, m ∈ u
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So xm depends only on the base station u serving the user m. Denote the
common value xu. Then

∑

v∈U

αvu

∑
n∈v

Lv,n/Lu,nξ′nxv = λxu

Recall that is given by (3.7), then the above equation may be written
∑

v∈U

Avuxv = λxu

Hence AT x = λx, which means that x = (xu)T is an eigenvector of AT corre-
sponding to the eigenvalue λ.

Inversely from an eigenvector x = (xu)T of AT corresponding to a non zero
eigenvalue λ we construct a vector x= (xm)T by xm = xu. It is easy to see that
x is an eigenvector of AT corresponding to the eigenvalue λ.

Then AT and AT have the same non zero eigenvalues. We deduce that A and
A have the same non zero eigenvalues.

Power limitation. In the case where there is a power limitation constraint,
the power allocation problem becomes

{
(1−A) P ≥ a

0 ≤ P ≤ P̃
(3.14)

where P̃ =
(
P̃u

)T

designates the vector of the base station power limits.

Proposition 5 The power allocation problem above is feasible iff

ρ (A) < 1 and (1−A)−1
a ≤ P̃ (3.15)

In this case, the minimal solution is P ∗ = (1−A)−1
a.

The condition (3.15) is a necessary and sufficient feasibility condi-
tion (abbreviated by NSFC).

Proof. Immediate from Proposition 2.

3.1.2 Feasibility conditions

Without power limit. We use the fact that the spectral radius of a matrix
is lower than the maximum row sum [85, Exercice 8.2.7] to establish a sufficient
condition for the feasibility of the power allocation problem (3.6).

Proposition 6 If
∑
m∈u

ξ′m
∑

v∈U

αuvLu,m/Lv,m < 1, u ∈ U (3.16)

then the power allocation problem (3.6) is feasible.
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The inequality in the above proposition is called downlink feasibility
condition abbreviated by DFC (or simply FC when there is no need to precise
“for the downlink without power limit”).

Proof. The row sums of A may be written as follows
∑

v∈U

Auv =
∑
m∈u

ξ′m
∑

v∈U

αuvLu,m/Lv,m, u ∈ U

The spectral radius ρ (A) is less than the largest row sum of A which is less than
1 under DFC. Then DFC implies ρ (A) < 1 which implies that power allocation
problem is feasible by Proposition 2. (The idea of this sufficient feasibility
condition is from [16].)

With power limit. We shall now establish a sufficient condition for the fea-
sibility of the power allocation problem with power limit.

Proposition 7 If
(1−A) P̃ ≥ a (3.17)

then the power allocation problem (3.14) is feasible and admits P ∗ = (1−A)−1
a

as the minimal solution. The above inequality is equivalent to

∑
m∈u

ξ′mLu,m

(∑

v∈U

αuvP̃v/Lv,m + N

)
≤ P̃u − P ′u, u ∈ U (3.18)

The inequality in the proposition above which is called extended down-
link feasibility condition, abbreviated by EDFC or simply FC when there
is no need to precise “for the downlink with power limit”.

Proof. Since the vector P̃ is non-negative and satisfies (3.17) we deduce that
ρ (A) < 1 and hence (1−A)−1 is non-negative. Then P̃ = (1−A)−1 (1−A) P̃ ≥
(1−A)−1

a. Hence (3.15) is satisfied which finishes the first claim of the propo-
sition.

Condition (3.17) may be written as follows

au ≤
(

P̃u −
∑

v∈U

AuvP̃v

)
, u ∈ U

which is equivalent to EDFC.
In the case where P̃u = P̃ is the same for all base stations, EDFC becomes

∑
m∈u

(∑

v∈U

αuvLu,m/Lv,m + NLu,m/P̃

)
ξ′m ≤ 1− P ′u/P̃ , u ∈ U (3.19)

If P̃ →∞ we find
∑
m∈u

∑

v∈U

αuvLu,m/Lv,mξ′m ≤ 1, u ∈ U

analogous to DFC (the inequality is strict there).
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Remark 1 We will build in Section 3.3 load control schemes based on DFC and
EDFC. Since DFC and EDFC include the users served by the base station but
not the users served by other base stations, we say that they are decentralized
(whereas the NSFC is centralized).

3.2 Uplink

We consider here the uplink, i.e. the link from the users to the base stations.
The uplink is extensively addressed in literature [126], [57], [59], [46], [90].

3.2.1 Power allocation problem

Similarly to the downlink, we formulate in the following proposition the power
allocation problem in the uplink for given user population (fixed positions {m}
and SINR thresholds {ξm}).

Proposition 8 Matrix representation. The power allocation problem is
feasible if there exist powers {Pm ∈ R+; m ∈ M} such that

Pm/Lu,m

N +
∑

v∈U αuv

∑
n∈v\{m} Pn/Lu,n

≥ ξm, m ∈ u ∈ U (3.20)

The above problem may be written
{

(1− B)P ≥ b
P ≥ 0 (3.21)

where the matrix B= [Bm,n] is given by

Bm,n = αuvξ′mLu,m/Lu,n, m ∈ u ∈ U, n ∈ v ∈ U (3.22)

the vector b = (bm)T is given by

bm = ξ′mNLm,u, m ∈ u ∈ U

and the vector P = (Pm)T .
The above power allocation problem is feasible iff

ρ (B) < 1

in which case
P∗ = (1− B)−1 b (3.23)

is the minimal solution.

Proof. The signal transmitted by a user n is received at base station u with
power

Sn,u = Pn/Lu,n



3.2. UPLINK 25

Hence for a user m ∈ u, the usefull signal power at u is

Sm,u = Pm/Lu,m

and the interference and noise power is given by

N +
∑

v∈U

αuv

∑

n∈v\{m}
Pn/Lu,n

Hence, the signal-to-interference-and-noise ratio equals

Pm/Lu,m

N +
∑

v∈U αuv

∑
n∈v\{m} Pn/Lu,n

which finishes the proof of (3.20). (When we neglect the noise term N = 0, (3.20)
is similar to [126, Equation (3) and Definition §III].)

We rearrange the inequality (3.20) as follows

Pm ≥ NLm,uξm +
∑

v∈U

αuv

∑

n∈v\{m}
Lu,m/Lu,nξmPn

which may be written as

Pm ≥ NLm,uξ′m +
∑

v∈U

αuv

∑
n∈v

Lu,m/Lu,nξ′mPn

Then it is easy to see that Problem (3.20) may be written in the form (3.21).
Corollary 12 gives the last part of the proposition.

Corollary 2 Achievable SINR targets. Assume that the ξm are constant,
i.e. ξm = ξ. We say that some SINR target is achievable if the power allocation
problem for that value of SINR is feasible. The set of achievable SINR targets
is

0 ≤ ξ <
1

ρ (B′)− α

where the matrix B′=
[
B′m,n

]
is given by

B′m,n = Lu,m/Lu,n, m ∈ u ∈ U, n ∈ M

Proof. We may write B = ξ′B′. By Proposition 8, the power allocation
problem is feasible iff

ξ′ρ (B′) < 1

Note that B′m,m = α then ρ (B′) ≥ ∑
n∈M B′m,n > α. Since ξ′ = ξ/ (1 + αξ), we

get the desired result. (The author [126] gives a similar result.)
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Comparison of uplink and downlink. We shall now compare the uplink
and the downlink. The matrices playing an important role in the power allo-
cation problem are denoted by A and B and are given by (3.3) and (3.22) for
downlink and uplink respectively. Note that B is generally different from AT .
Nevertheless the following proposition proves that, in some cases, they have the
same eigenvalues, and therefore the same spectral radius.

Proposition 9 If the orthogonality factor α and the SINR targets {ξm} are
the same for uplink and downlink2, then the matrices A and B defined by (3.3)
and (3.22) respectively have identical eigenvalues. In particular, they have the
same spectral radius, that is ρ (A) = ρ (B).

Proof. Consider the diagonal matrix defined by

Dm,n = Lu,mξ′mδm,n, m ∈ u ∈ U, n ∈ M

where δm,n designates the Kronecker symbol defined by

δm,n =
{

1 if m = n
α if m 6= n

Using the expression (3.22) of the matrix B,

Bm,n = αuvLu,m/Lu,nξ′m, m ∈ u ∈ U, n ∈ v ∈ U

we deduce that
(
D−1BD

)
m,n

= D−1
m,mBm,nDn,n = αuvξ′nLv,n/Lu,n, m ∈ u ∈ U, n ∈ v ∈ U

Denote B̃ = D−1BD. The characteristic polynomials of B̃ and B are identical.
On the other hand, from the expression (3.3) of the matrix A, we get

An,m = αuvξ′nLv,n/Lu,n

Hence B̃ = AT . The determinant of the transpose of a matrix equals that of the
matrix. This implies that the characteristic polynomials of A and B̃ are identical.
We deduce that the characteristic polynomials of A and B are identical. Then
the two matrices have identical eigenvalues.

(A similar result for narrowband systems was given in [127].)

Corollary 3 If the orthogonality factor α and the SINR targets {ξm} are the
same for uplink and downlink, then the uplink power allocation problem (3.21)
is feasible iff the downlink power allocation problem (3.2) is feasible.

Proof. Immediate from Propositions 1, 8, and 9.
(An analogous result is given in [1].)

2The assumtion that the SINR targets are the same for uplink and downlink is not realistic
for non symmetric services where the bit-rate of the downlink is different (generally larger)
than that of the uplink.
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Remark 2 Comparison of downlink and uplink continued. Assume
that ξm ¿ 1 for all user m (which is the case for voice service) for both downlink
and uplink. Hence ξ′m ' ξm for all user m. In this case ρ (A) is non-decreasing
with α, and since, practically, the orthogonality factor for the downlink is smaller
than that for the uplink, we deduce that ρ (A) ≤ ρ (B). Hence, in this context,
the uplink is the limiting case.

Reduced problem. We aim to formulate the problem in terms of the total
intereference {Iu; u ∈ U} received at base stations. To this end we rearrange
the inequality (3.20) as follows

Pm/Lu,m ≥ ξm (Iu − αPm/Lu,m)
(1 + αξm) Pm/Lu,m ≥ ξmIu

Pm ≥ ξ′mLu,mIu

We rewrite the above inequality for some user n ∈ v ∈ U, that is

Pn ≥ ξ′nLv,nIv

We divide by Lu,n an then add over n ∈ v and over v ∈ U, which gives

Iu −N ≥
∑

v∈U

∑
n∈v

Lv,n/Lu,nξ′nIv

We say that the reduced power allocation problem is feasible if there
exist antenna interferences {Iu ∈ R+; u ∈ U} such that

Iu ≥ N +
∑

v∈U

∑
n∈v

Lv,n/Lu,nξ′nIv, u ∈ U (3.24)

Proposition 10 (Matrix representation of the reduced problem) The power al-
location problem (3.24) may be written

{
(1−B) I ≥ b,
I ≥ 0, (3.25)

where
Buv =

∑
n∈v

Lv,n/Lu,nξ′n, u, v ∈ U (3.26)

bu = N, u ∈ U (3.27)

and B = [Buv], b = (bu)T and I = (Iu)T .
The above power allocation problem is feasible iff

ρ (B) < 1 (3.28)

in which case
I∗ = (1−B)−1

b (3.29)

is the minimal solution.
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Proof. The first part of the proposition is just a matrix representation.
Corollary 12 gives the last part of the proposition.

(Reducing the uplink power allocation problem was already made in [59]
where the original problem is called microscopic and the reduced one is called
macroscopic. Unlike [59], we don’t make the approximation of including the use-
ful signal in the interference. Moreover we treat the problem with inequalities,
whereas the author of [59] considers a system of equalities.)

Original versus reduced problem.

Proposition 11 The power allocation problem (3.21) is feasible iff the reduced
problem (3.25) is feasible. In this case their respective minimal solutions P∗ and
I∗ are related by

I∗u = N +
∑

v∈U

αuv

∑
n∈v

P ∗n/Lu,n, u ∈ U (3.30)

and
P ∗m = ξ′mLu,mI∗u, m ∈ u ∈ U, m ∈ u ∈ U (3.31)

Proof. (i) Suppose that Problem (3.21) is feasible and let P∗ = (1− B)−1 b
be the minimal solution. Arguments analogous to those leading to the reduced
power allocation problem (3.24) show that I∗ = {I∗u; u ∈ U} defined by (3.30)
is a solution (in fact the minimal one) of the reduced problem (3.25).

(ii) Suppose now that the reduced problem (3.25) is feasible and let I∗ =
(1−B)−1

b be the minimal solution. Consider P∗ = {P ∗m; m ∈ M} given by (3.31).
From (1−B) I∗ = b we get

I∗u = N +
∑

v∈U

αuv

∑
n∈v

Lv,n/Lu,nξ′nI∗v (3.32)

By construction
P ∗n = ξ′nLv,nI∗v , n ∈ v ∈ U

then ∑

v∈U

αuv

∑
n∈v

P ∗n/Lu,n =
∑

v∈U

αuv

∑
n∈v

Lv,n/Lu,nξ′nI∗v

hence, using (3.32) ∑

v∈U

αuv

∑
n∈v

P ∗n/Lu,n = I∗u −N

or equivalently
I∗u = N +

∑

v∈U

αuv

∑
n∈v

Pn/Lu,n

Using the above equality and Equation (3.31), we deduce that

Pm = NLm,uξ′m +
∑

v∈U

αuv

∑
n∈v

Lu,m/Lu,nξ′mPn, m ∈ u ∈ U
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which proves that Pm is the minimal solution of Problem (3.21).
The above proposition shows that the condition for the feasibility of the

reduced problem should be the same as that for the original problem. Therefore

ρ (B) < 1 ⇔ ρ (B) < 1

In fact we have the following stronger result.

Proposition 12 We have

σ (B) \ {0} = σ (B) \ {0}

where σ (B) and σ (B) designate the sets of eigenvalues of B and B respectively;
and in particular

ρ (B) = ρ (B)

Proof. Consider the diagonal matrix defined by

Dm,n = Lu,mξ′mδm,n

Using Equation (3.22) we deduce that
(
D−1BD

)
m,n

= D−1
m,mBm,nDn,n = Lv,n/Lu,nξ′n

Denote B̃ = D−1BD. The characteristic polynomials of B̃ and B are identical.
Then the two matrices have identical eigenvalues. Consider a eigenvector x̃ of
B̃ corresponding to a non zero eigenvalue λ. Then

∑
n∈v

Lv,n/Lu,nξ′nx̃n = λx̃m

So x̃m depends only on the base station u serving the user m. Denote the
common value xu. We can decompose the sum in the previous equation

∑

v∈U

∑
n∈v

Lv,n/Lu,nξ′nx̃n = λx̃m

Then ∑

v∈U

∑
n∈v

Lv,n/Lu,nξ′nxv = λxu

Using (3.26), we get
∑

v∈U Buvxv = λxu hence Bx = λx. This means that
x = (xu)T is an eigenvector of B corresponding to the eigenvalue λ.

Inversely from an eigenvector x = (xu)T of B corresponding to a non zero
eigenvalue λ we construct a vector x̃ = (x̃m)T by x̃m = xu. It is easy to see
that x̃ is an eigenvector of B̃ corresponding to the eigenvalue λ.

Then B̃ and B share the same non zero eigenvalues. We deduce that B and
B share the same non zero eigenvalues. (Making the approximation that the
useful signal is part of interference, the author [59] proves a similar result.)
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Comparison of uplink and downlink revisited. Assume that the orthogo-
nality factor α and the SINR targets {ξm} are the same for uplink and downlink,
then from (3.7) and (3.26), we get

Auv =
∑
m∈u

Lu,m/Lv,mξ′m = Bvu

Then the matrices for the uplink and downlink are transpose of each other

B = AT

Hence ρ (B) = ρ (A). Hence we get another proof of Corollary 3.

Power limitation. In the case where there is a power limitation constraint,
the power allocation problem becomes

{
(1− B)P ≥ b
0 ≤ P ≤ P̃ (3.33)

where P̃ =
(
P̃m

)T

designates the vector of user power limits.

Proposition 13 The power allocation problem (3.33) is equivalent to
{

(1−B) I ≥ b,
0 ≤ I ≤ Ĩ

(3.34)

where Ĩ =
(
Ĩu

)T

with

Ĩu = inf
m∈u

P̃m

ξ′mLu,m
(3.35)

The above power allocation problem is feasible iff

ρ (B) < 1 and (1−B)−1
b ≤ Ĩ (3.36)

In this case, the minimal solution is I∗ = (1−B)−1
b.

The condition (3.36) is a necessary and sufficient feasibility condi-
tion (abbreviated by NSFC).

Proof. (i) Suppose that Problem (3.33) is feasible and let P∗ = (1− B)−1 b
be its minimal solution (see Corollary 13). Similarly to the proof of Proposi-
tion 11, we show that I∗ given by Equation (3.30) satisfies (1−B) I∗ = b and
that Equation (3.31) is satisfied. Then from P∗ ≤ P̃ we get I∗ ≤ Ĩ. Then
Problem (3.34) is feasible.

(ii) Suppose now that Problem (3.34) is feasible and let I∗ be its minimal
solution. Similarly to the proof of Proposition 11, we show that P∗=(Pm)T

defined by (3.31) satisfies (1− B)P∗ = b. From I∗ ≤ Ĩ we get P∗ ≤ P̃. Then
Problem (3.33) is feasible.

The last part proof is deduced from Corollary 13.
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3.2.2 Feasibility conditions

Without power limit. We use the fact that the spectral radius of a matrix is
lower than the maximum column sum [85, Exercice 8.2.7] to establish a sufficient
condition for the feasibility of the power allocation problem (3.25).

Proposition 14 If
∑
m∈u

ξ′m
∑

v∈U

Lu,m/Lv,m < 1, u ∈ U (3.37)

then the power allocation problem (3.25) is feasible.

The inequality in the above proposition is called uplink feasibility con-
dition, abbreviated by UFC (or simply FC when there is no need to precise
“for the uplink without power limit”).

Proof. The column sums of B may be written as follows
∑

v∈U

Bvu =
∑

v∈U

∑
m∈u

Lu,m/Lv,mξ′m, u ∈ U

The spectral radius ρ (B) is less than the largest column sum of B which is less
than 1 under UFC. Then UFC implies ρ (B) < 1 which implies that power allo-
cation problem is feasible by Proposition 10. (The idea of UFC is inspired from
the work for downlink of [16]. We have adapted this idea to the uplink. UFC is
different from [57, Equation (8.20)] and [46, Equation (11)] which include the
users served by all the base stations. Moreover [46, Equation (11)] is obtained
with the following assumptions: the noise is neglected; the received power at
base station from some user in its cell is proportional to its SINR threshold.)

Remark 3 Since UFC is decentralized, Remark 1 also applies here. This may
seem surprising, because the classical load control algorithms in the uplink de-
pend on the positions of the users of all the base stations. Intuitively UFC
controls the interference caused by the users in each cell on the other base sta-
tions. Consequently the interference caused by users in other cells on each base
station will be limited enough to assure the existence of a solution for the power
allocation problem.

With power limit. We shall now establish a sufficient condition for the fea-
sibility of the power allocation problem with power limit.

Proposition 15 If
(1−B) Ĩ ≥ b (3.38)

where Ĩ is given by (3.35), then the power allocation problem (3.34) is feasible
and admits I∗ = (1−B)−1

b as the minimal solution.
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Proof. Since the vector Ĩ is non-negative and satisfies (3.38) we deduce that
ρ (B) < 1 and hence (1−B)−1 is non-negative. Then Ĩ = (1−B)−1 (1−B) Ĩ ≥
(1−B)−1

b. Hence (3.36) is satisfied, which finishes the first claim of the propo-
sition.

Condition (3.38) may be written as follows
∑

v∈U

∑
n∈v

Lv,n/Lu,nξ′nĨv ≤ Ĩu −N, u ∈ U (3.39)

The condition in the above display is called sufficient feasibility con-
dition (abbreviated by SFC). It is not decentralized. The following proposition
gives a decentralized condition.

Proposition 16 If for some collection of real numbers γu,v ≥ 0, such that
γu =

∑
v∈U γu,v < ∞ the following two conditions are satisfied

γu = Ĩu −N, u ∈ U (3.40)

where Ĩ is given by (3.35), and

N + γu

γv,u

∑
m∈u

Lu,m/Lv,mξ′m ≤ 1, u, v ∈ U (3.41)

then the power allocation problem (3.34) is feasible.

Proof. Denote C = [Cu,v] where

Cu,v =
γu,v

N + γv

Note that Condition (3.41) may be written
∑
m∈u

Lu,m/Lv,mξ′m ≤ Cv,u

The left term is Bv,u. Then we have B ≤ C coordinate-wise. Note that
(
(1− C) Ĩ

)
u

= Ĩu −
∑

v∈U

Cu,v Ĩv = N

Then (1− C) Ĩ = b. Hence

Ĩ = b + CĨ ≥ b + BĨ

which may be written (1−B) Ĩ ≥ b. Proposition 15 finishes the proof.
Consider the symmetric case γuv = γvu. If we replace the collection of

inequalities (3.41) by one condition adding the inequalities up, we get
∑
m∈u

∑

v∈U

Lu,m/Lv,mξ′m ≤ 1−N/Ĩu, u ∈ U (3.42)

The condition in the above display is called extended uplink feasibility
condition abbreviated by EUFC (or simply FC when there is no need to precise
“for the uplink with power limit”).
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Remark 4 Note that Propositions 15 and 15 remain true if we replace Ĩ by
some Î ≤ Ĩ. Each such Î gives a different version of SFC and EUFC. Our
numerical applications are made with the version of SFC and EUFC obtained
by replacing Ĩ with Î given by

Îu =
P̃

L(R)ξ̃′

where P̃ = infm P̃m and ξ̃′ = supm ξ′m where the infimum and the supremum are
taken over all the possible values (not only over the set of users currently served
by the base station). This permits to make the right-hand side of EUFC (3.42)
independent of the particular set of users currently served by the base station.

Remark 5 Link budget. It is easy to see that NSFC, SFC and EUFC imply

Ĩu ≥ N, u ∈ U

The versions of SFC and EUFC described in Remark 4 imply

Îu ≥ N, u ∈ U

hence, the cell radius R should be less than

Rmax =
1
K

(
P̃

ξ̃′N

)1/η

3.3 Admission control schemes

Recall that we call NSFC the Necessary and Sufficient Feasibility Condition
(Equation (3.15) for the downlink and Equation (3.36) for the uplink). Recall
also that we call SFC the uplink Sufficient Feasibility Condition (Equation (3.39)
which is not decentralized).

We built in the previous section decentralized feasibility conditions of the
power allocation problem, denoted by FC which comprise:

• DFC: downlink Feasibility Condition without power limit (Equation (3.16));

• EDFC: extended (i.e. with power limit) downlink Feasibility Condition
(Equation (3.18));

• UFC: uplink Feasibility Condition without power limit (Equation (3.37));

• EUFC: extended (i.e. with power limit) uplink Feasibility Condition
(Equation (3.42)).

Recall that the above conditions, except EUFC, assure the feasibility of the
power allocation problem. Note that the FC may be written in the general
form (4.13). The FC may be extended to the case of an infinite network as
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in [116]. Hence our FC are scalable, i.e. may be applied to an infinite network
in a decentralized way.

Assume the bit rates of all users, or equivalently all the (modified) SINR’s
{ξ′m}, to be specified. The admission control problem can then be formulated
as follows. Should a base station admit a new user requesting for admission?

The first idea is to admit the new user if and only if the power allocation
problem is feasible, i.e. to use the NSFC as an admission criteria. Unfortunately
this is difficult because we should collect information from all the users in the
network before taking the admission decision (centralized). Therefore the NSFC
is impractical in the field but also very time consuming in simulation tools.
Moreover the analytic evaluation of its performance is yet an open problem.

We shall now build admission control schemes for streaming traffic based on
the feasibility conditions of the power allocation problem. We call such scheme
feasibility based admission control. (Feasibility based congestion control
schemes for elastic traffic will be proposed in §10.2.)

FC may be used as an admission criteria. When a new user applies to some
base station, the base station accepts it if the respective FC is satisfied with
this additional user and rejects it otherwise. This admission scheme inherits
the decentralized property of the FC. If each base station applies this admis-
sion scheme, then the global power allocation problem is feasible (with high
probability for EUFC and certainly for the other schemes).



Chapter 4

First performance
evaluation

The objective of the present chapter is to evaluate the performance of the decen-
tralized feasibility conditions established in the previous chapter in a semi-static
traffic model.

Hypothesis 1 In this chapter we shall make the following assumptions:

• We consider an infinite network on the plan R2 where base station posi-
tions are either hexagonal or Poisson-Voronoi with intensity λS.

• Users are distributed as a Poisson point process with intensity λM.

• Each user is served by the nearest base station.

• The power limits P̃u and the common channel powers P ′u are the same for
all base station u ∈ U. The power limits P̃m are the same for all user
m ∈ M.

The present chapter is organized as follows. In Section 4.1 we introduce
a mean model which permits to define precisely the classical notions of pole
capacity and load. In Section 4.2 we define the notion of infeasibility probability
and build approximate explicit expression for it.

4.1 Mean model

In this section we introduce a mean model which permits to define precisely the
classical notions of pole capacity and load. Besides Hypothesis 1, we assume
in the present section that the random entries of A and a in Problems (3.6)
and (3.14) (respectively B and b in Problems (3.25) and (3.34)) are replaced
by their means E [A] and E [a] (respectively E [B] and E [b]). This defines the
mean model.

35
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4.1.1 Downlink

Each base station plays the same role as the others, then the row sums of the
matrix E [A] are identical; that is

∑
v∈U E [Auv] is independent of u ∈ U. Hence,

the spectral radius of the matrix E [A] equals this row sum

ρ (E [A]) =
∑

v∈U

E [Auv] , ∀u ∈ U

If this latter quantity is less than 1, then the vector (1−E [A])−1 E [a] has
indentical components which are given by

Ṗ =
E [au]

1−∑
v∈U E [Auv]

(4.1)

Is is easy to see that ∑

v∈U

E [Auv] = ξ̄′
(
α + f̄

)
M̄

E [au] = ξ̄′M̄Nl̄L (R) + P ′

where we denote
l̄ = E [l(r)] = E [L(r)] /L (R)

and
M̄ = λM/λS = λMπR2

From (4.1) we get

Ṗ =
ξ̄′M̄Nl̄L (R) + P ′

1− ξ̄′
(
α + f̄

)
M̄

(4.2)

DFC. For the mean model, DFC (3.16) is not only sufficient but also necessary,
and it has the form

M̄ < Γ =
1

ξ̄′
(
α + f̄

) (4.3)

where the right-hand side of the above display, denoted Γ, is called the pole
capacity. If we apply a scale on the network the pole capacity Γ remains
unchanged, hence Γ is independent of the cell radius R. We define the load as

θ̄ =
M̄

Γ
= ξ̄′

(
α + f̄

)
M̄

which equals the spectral radius of the mean matrix E [A], that is θ̄ = ρ (E [A]).
Note that the average number of users per cell equals M̄ = πR2λM. Then

Inequality (4.3) illustrates the phenomenon called cell breathing: If the
traffic intensity λM increases the cell sizes shrink in order to keep the average
number of users per cell constant.
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Remark 6 The only difference in the pole capacity between the hexagonal and
the Poisson-Voronoi model is the values of f̄ . For Poisson-Voronoi model, we
have (see [16]) f̄ = 2/ (η − 2) whereas for hexagonal model we have approxi-
mately, f̄ ' 0.94/ (η − 2). (This approximation is established in Annex 13.B.)
The pole capacity for hexagonal model is larger than that for Poisson-Voronoi
by a factor equal to

α + 2/ (η − 2)
α + 0.94/ (η − 2)

which is about 1.7.

EDFC. For the mean model, EDFC (3.18) takes the form

(1−E [A]) P̃ ≥ E [a]

The necessary and sufficient feasibility condition (3.15) is

M̄ <
1

ξ̄′
(
α + f̄

) , and Ṗ ≤ P̃

(where Ṗ is given by (4.1)) which is equivalent to

M̄ ≤ Γ =
1− ε(

α + f̄ + l̄L(R)N/P̃
)

ξ̄′
(4.4)

which is equivalent to EDFC. Hence EDFC is not only sufficient but also nec-
essary.

Remark 7 The only difference between the hexagonal and the Poisson-Voronoi
model is in f̄ and l̄. These parameters characterize the influence of the net-
work geometry on the relation between M̄ and R, as shown by Inequality (4.4).
For hexagonal model, we have (by an easy direct calculation) l̄ = (1 + η/2)−1,
whereas for Poisson-Voronoi model, we have (see [16]) l̄ = Γ (1 + η/2) (where
Γ (·) is the gamma function not to be confused with the ressource Γ defined in
Equation (4.4).)

We now evaluate the effect of the power limitation by comparing the two
conditions (4.3) and (4.4). In the condition (4.4), for relatively small R, it is
the fraction ε = P ′/P̃ that reduces the pole capacity of the downlink

M̄ ≤ Γ ' 1− ε

ξ̄′
(
α + f̄

)

We call this case interference-limited case. In this case, the above display
shows that the power limitation doesn’t play an important role. On the other
hand, for large R, the dominant restriction is

M̄ ≤ Γ ' (1− ε) P̃

ξ̄′Nl̄L (R)

We call this case noise-limited. In this case, the above display shows that the
power limit P̃ plays an important role, since the pole capacity is proportional
to P̃ .
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4.1.2 Uplink

Each base station plays the same role as the others, then
∑

v∈U E (Buv) is
independent of u. Then ρ (B) =

∑
v∈U E (Buv). If this latter is less than 1,

then the vector (1−E [B])−1 E [b] has constant components given by

İ =
E [bu]

1−∑
v∈U E [Buv]

(4.5)

Is is easy to see that ∑

v∈U

E [Buv] = ξ̄′
(
1 + f̄

)
M̄

E [bu] = N

From (4.5) we get

İ =
N

1− ξ̄′
(
1 + f̄

)
M̄

(4.6)

Hence

Ṗm = ξ′mLu,mİ = ξ′mLu,m
N

1− ξ̄′
(
1 + f̄

)
M̄

, m ∈ u (4.7)

UFC. For the mean model, UFC (3.37) is in fact necessary and it takes the
form

M̄ < Γ =
1

ξ̄′
(
1 + f̄

) . (4.8)

where Γ is called the pole capacity. If we apply a scale on the network the pole
capacity Γ remains unchanged. Then Γ is independent of the radius R of a cell.
We define the load as

θ̄ =
M̄

Γ
= ξ̄′

(
1 + f̄

)
M̄

which equals the spectral radius of the mean matrix E [B], that is θ̄ = ρ (E [B]).
As for the downlink, Inequality (4.8) illustrates the phenomenon called cell

breathing.

Remark 8 As for the downlink, the only difference in the pole capacity between
the hexagonal and the Poisson-Voronoi model is the values of f̄ . The capacity
for hexagonal model will be larger than that for Poisson-Voronoi by a factor
equal to

1 + 2/ (η − 2)
1 + 0.94/ (η − 2)

which is about 1.4.
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EUFC. For the mean model, SFC (3.38) takes the form

(1−E [B]) Ĩ ≥ E [b]

The necessary and sufficient feasibility condition (3.36) is

M̄ <
1

ξ̄′
(
1 + f̄

) , and İ ≤ Ĩ (4.9)

which is equivalent to

M̄ ≤ Γ =
1−N/Ĩu

ξ̄′
(
1 + f̄

) (4.10)

which is equivalent to SFC. Hence SFC is also necessary.
Note that if we take the expectation of the left-hand side of EUFC (3.42),

then we get a condition equivalent to the above display.
We summarize the results for the mean model in the proposition below.

Proposition 17 The feasibility condition for the mean model may be written
in the form

M̄ ≤ Γ =
C

ϕ̄

where M̄ = λMπR2;

ϕ̄ =

{ (
α + f̄

)
ξ̄′ for DFC, UFC, EUFC[

α + f̄ + l̄L (R)N/P̃
]
ξ̄′ for EDFC (4.11)

and

C =





1 for DFC et UFC
1− ε for EDFC
1−N/Ĩu for EUFC

(4.12)

4.2 Infeasibility probability

In this section we define the notion of infeasibility probability and build ap-
proximate explicit expression for it. To this end, we make Hypothesis 1, and
consider only the hexagonal model for base station positions.

Proposition 18 The feasibility conditions DFC, EDFC, UFC and EUFC may
be written in the generic form

S =
∑
m∈u

ϕ (m) < C (4.13)

where

ϕ (m) =

{
[α + f (m)] ξ′m for DFC, UFC, EUFC[
α + f (m) + NLu,m/P̃

]
ξ′m for EDFC , m ∈ u

(4.14)
and C is given by Equation (4.12).
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Proof. The feasibility conditions DFC, EDFC, UFC and EUFC are given
respectively by Inequalities (3.16), (3.18), (3.37) and (3.42) which are clearly in
the form of Inequality (4.13) where the function ϕ (·) and the parameter C are
those given in the proposition.

In fact, the equality in (4.13) is not strict for EDFC and EUFC. Replacing
it by a strict inequality gives still a sufficient feasibility condition which looks
more severe but has in fact the same performance when the random variable S
has a continuous density.

The infeasibility probability is defined as follows

P (S ≥ C) (4.15)

where S is given by (4.13). Due to Hypothesis 1, the infeasibility probability is
the same for all base station u ∈ U.

Since S =
∑

m∈u ϕ (m) is a shot noise, its mean and standard deviation are
respectively given by

S̄ = M̄ϕ̄, σS =
(
M̄ϕ̄2

)1/2
(4.16)

Proposition 19 The mean of ϕ (m) is given by Equation (4.11). Its second
moment is given by

ϕ̄2 =

{ (
f̄2 + 2αf̄ + α2

)
ξ̄′2 for DFC, UFC, EUFC[

L (R)2 l̄2N2/P̃ 2 + f̄2 + α2 + 2αf̄ + 2
{
αl̄ + f̄ l

}
L (R)N/P̃

]
ξ̄′2 for EDFC

Proof. Consider first DFC, UFC and EUFC. From the expression ϕ (m) =
[α + f (m)] ξ′m, we obtain the expression of ϕ̄ and ϕ̄2 in the proposition.

Consider now EDFC. From the expression ϕ (m) =
[
α + f (m) + NLu,m/P̃

]
ξ′m

we get the expression of ϕ̄ in the proposition. Moreover

ϕ̄2 = E
[(

α + f (m) + l (m)L (R) N/P̃
)2

ξ′2m

]

=
[
l̄2L (R)2 N2/P̃ 2 + f̄2 + α2 + 2αf̄ + 2αl̄L (R) N/P̃ + 2f̄ lL (R) N/P̃

]
ξ̄′2

=
[
L (R)2 l̄2N2/P̃ 2 + f̄2 + α2 + 2αf̄ + 2

{
αl̄ + f̄ l

}
L (R)N/P̃

]
ξ̄′2

4.2.1 Calculation methods

Note that the parameter C is constant for DFC, UFC and EDFC. Considering
the version of EUFC described in Remark 4 assures that the parameter C is
also constant for EUFC. Here are some methods to calculate the infeasibility
probability:
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Complete simulation

The principle of the complete simulation is the following. We choose a discrete
set of test intensities (of users) λ0 < λ1 < . . . < λk and simulate k independent
patterns of Poisson point processes Ni (i = 0, . . . , k) with respective intensities
λ0 and Λi = λi−λi−1 in the considered cell. Let Fi(C) = 1S≥C be the indicator
that the event {S ≥ C} holds for the population of users NM =

∑i
j=0Nj .

Obviously E [Fi] = P(S ≥ C) at λM = λi and Fi is increasing in i. The same
holds for F

(n)
i = 1/n

∑n
u=1 Fi,u, where (Fi,u, i = 0, . . . , k), u = 1, . . . , n are

independent copies of (Fi, i = 0, . . . , k). In addition, F
(n)
i converges a.s. to

P(S ≥ C) at λM = λi as n →∞.

Gaussian approximation

We approximate the infeasibity probability by assuming that S has a Gaussian
distribution

P(S ≥ C) ' Q

(
C − S̄

σS

)
(4.17)

where Q is the Gaussian tail distribution function Q(x) = 1/
√

2π
∫∞

x
e−t2/2dt.

The above approximation is called the Gaussian approximation.
[86] shows that the Gaussian approximation is good if the skewness

g3 =
ϕ̄3

ϕ̄23/2

1√
M̄

is small compared to the infeasibity probability. We calculate numerically for
DFC

ϕ̄3

ϕ̄23/2
' 1.5

We expect the Gaussian approximation to be good when M̄ is large enough
which is the case for voice service.

Poisson approximation

The Poisson approximation consists of replacing ϕ (m) by its mean ϕ̄ in the
expression S =

∑
m∈u ϕ (m) which gives

P(S ≥ C) ' P (M ≥ C/ϕ̄)

where M is the number of user in the cell u, which has a Poisson distribution
with mean M̄ . Hence the infeasibility probability may be approximated by
the complementary of the cumulative distribution function of a Poisson random
variable.

The following lemma justifies the Poisson approximation from the linear
regression theory. It shows that ϕ̄M is the best predictor of

∑
m∈u ϕ(m) in

terms of an affine function of M .



42 CHAPTER 4. FIRST PERFORMANCE EVALUATION

Lemma 2 Let S =
∑

m∈u ϕ(m). Among all variables Z = aM + b, where a
and b are real numbers, the one that minimizes the error E[(Z − S)2] is

Ŝ = ϕ̄M

and the error is then

E[(Ŝ − S)2] = M̄ϕ̄2
(
1− ρ2

MS

)

where the correlation coefficient of M and S, denoted ρMS, is given by

ρMS =
ϕ̄√
ϕ̄2

Proof. From the linear regression theory we know that among all variables
Z = aM + b, where a and b are real numbers, the one that minimizes the error
E[(Z − S)2] is

Ŝ = S̄ +
σMS

σ2
M

(M − M̄)

where σMS = E[
(
M − M̄

) (
S − S̄

)
] is the covariance of M and S and σ2

M is the
variance of M .

Since M is a Poisson random variable, we have σ2
M = M̄ . The random

variables S and M may be viewed as shot noises. From general results for shot
noises, we get

σ2
S = M̄ϕ̄2, S̄ = ϕ̄M̄ , σMS = ϕ̄M̄

Hence

Ŝ = ϕ̄M̄ +
ϕ̄M̄

M̄
(M − M̄) = ϕ̄M

The regression error equals

E[(Ŝ − S)2] = σ2
S(1− ρ2

MS)

where ρMS is the correlation coefficient of M and S defined by

ρMS :=
σMS

σMσS
=

ϕ̄M̄√
M̄

√
M̄ϕ̄2

=
ϕ̄√
ϕ̄2

4.3 Numerical results

Unless otherwise specified, all the numerical applications are made using the
default values specified in Section 2.2.5. The versions of SFC and EUFC used
in the calculations are those described in Remark 4.

Table 4.1 gives the pole capacity for the hexagonal model without power
limit (DFC for the downlink and UFC for the uplink).
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FC\service voice data 64kbps(1) data 144kbps data 384kbps
DFC 38.0 12.3 7.9 3.4
UFC 38.7 15.8 10.2 4.4

Table 4.1: Pole capacity for the hexagonal model without power limit (DFC for
the downlink and UFC for the uplink).
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Figure 4.1: Pole capacity for the hexagonal and Poisson-Voronoi models with
power limit (EDFC for the downlink and EUFC for the uplink).

Figure 4.1 represents the pole capacity for the hexagonal and Poisson-Voronoi
models with power limit (EDFC for the downlink and EUFC for the uplink).
This figure shows that the pole capacity of the Poisson-Voronoi model is about
2/3 that of the hexagonal model. For a each model, the pole capacity of the
downlink and the uplink depend on the cell radius. For small cell radii the
uplink pole capacity is larger than the downlink pole capacity, whereas for large
cell radii the situation is reversed. Hence the answer to the question “which
link is limiting: the downlink or the uplink?” depends on the cell radius (and
the other radio parameters).

Figure 4.2 represents the infeasibility probability obtained with complete
simulation, Gaussian approximation and Poisson approximation for EDFC. Vi-
sual inspection of this figure shows that the Gaussian and Poisson approxima-
tions are both good and that the Gaussian one is better.

We have also made the comparison between complete simulation, Gaussian
approximation and Poisson approximation for data 64, 144 and 384kbps respec-
tively. The results are similar to the voice case. In particular the Gaussian
and Poisson approximations are both good. It is surprising that the Gaussian
approximation is good even for small M̄ as for data service 384kbps.
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Chapter 5

Introduction

The present part focuses on the second objective described in Section 0.2, i.e. to
develop a general enough model for wireless cellular networks to account for their
geometry and dynamics and permitting an analytic evaluation of their perfor-
mance. In this perspective, mush as in [106, 67], we introduce a Spatial Markov
Queueing (SMQ) process which is a pure jump Markov process that takes its
values in the space of finite point measures on some general, complete, separable,
metric space. We think of these point measures as describing locations of some
individuals in the space. The SMQ process evolves by individuals being born,
moving or dying individually, with only one such event being possible at a time.
The process is defined by its generator, which describes the behavior of each in-
dividual by a common, fixed Markov routing kernel and departure-arrival rates
that are supposed to be the intensities at which this individual is “repulsed”
from its present location and is “attracted” by a new one. These rates possibly
depend on the entire, actual configuration of calls. Some special cases of the
SMQ processes are Spatial Birth-and-Death (SBD) processes, where individuals
do not move in the space, and Markov Poisson Location (MPL) processes where
individuals are being born, move and die independently of each other. Spatial
queueing Jackson and Whittle networks are special cases too.

5.1 Related works

The SMQ process has already been studied. In particular Preston [97] estab-
lishes sufficient conditions for the regularity (i.e. non-explosion) and ergodic-
ity of the SBD processes. Iglehart [68] establishes such conditions for discrete
SMQ processes. Serfozo introduces spatial Whittle processes in [106, 67], SMQ
processes in [107, 66], and some extensions of SMQ in [108, 109].

The regularity of the SMQ generator is not adressed by Serfozo. We study
this question by extending Preston’s arguments.

Our approach to ergodicity is inspired by Preston’s paper and is different
from Serfozo’s work. In this latter, sufficient conditions for the null measure to
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be positive recurrent are found by comparing the process to a M/GI/∞ queueing
system, via a MPL process with some modified system of traffic equations. Our
method is more general, and our sufficient conditions for ergodicity seem to be
less constraining in cases when both approaches can be applied. In particular
we do not need uniformly bounded arrival rates.

Preston gave the explicit form of the invariant measure of SBD processes.
The invariant measure of general SMQ processes is due to the pioneering work
of Serfozo. For the sake of completeness, we recall the results in our report and
give proofs based on results of point process theory (Proposition 20).

Stability of some general (not necessarily Markov) spatial queueing systems,
where the individuals are motionless, is studied in [27].

5.2 Our contribution

We give sufficient conditions for the SMQ generator to be regular and ergodic
which may be seen as extensions of Iglehart’s conditions [68] to the spatial
case and of Preston’s conditions [97] to the case with mobility. We prove both
regularity and ergodicity by comparing our SMQ process to a discrete birth-
and-death process, for which the respective conditions are known (given in [102]
and in [72]). More specifically, in order to prove ergodicity, we use a dominating
birth-and-death process to give sufficient conditions for the null measure (rep-
resenting the empty-system) to be positive recurrent. Then the limiting and
invariant measure is given by the classical cycle formula.

The spatial component of wireless networks is subject to changes due to the
mobility of users. In such a perspective, we believe that SMQ processes are
suitable for modeling modern wireless communication systems.

To make this claim evident, we use the SMQ process to model wireless
cellular networks serving elastic traffic. We build two mobility models and we
give explicit formulae for the delay and average throughput.

We also use our SMQ process to define and analyze two loss models (which
in some case cannot be seen as Whittle networks). Our goal in this part is to
give possibly explicit formulae for blocking and cuts probabilities for streaming
traffic. In particular, in one setting of our models we prove an expression for
blocking rates that might be seen as a spatial version of the classical Erlang loss
formula.

5.3 Organization

In chapter 6, we introduce and study the SMQ process. In Chapters 7 and 8
we use the SMQ process to model wireless cellular networks serving elastic and
streaming traffic respectively.



Chapter 6

Spatial Markov queueing
process (SMQ)

The present chapter presents the SMQ process and its basic properties. It is
organized as follows. In Section 6.1 we introduce the notation and recall some
basic facts concerning point processes and measure valued pure-jump Markov
processes. In Section 6.2 we introduce the SMQ generator. In Sections 6.2.2
and 6.3 we give sufficient conditions for it to be regular and ergodic respectively.
In section 6.4 we give conditions for its invariant measure to be Gibbsian.

6.1 Preliminaries

6.1.1 Point process

Very much as in [106, 67], we will consider a system in which users are located
in a complete, separable metric space D with its Borel σ-field D. Typically
D would be a bounded subset of some Euclidean space. If D is a finite set of
points, the system is discrete. In the general case, we will represent the state
of the system by a finite counting measure ν on D. Suppose that x1, . . . , xk ∈ D
are the locations of users. These locations can be described by a counting
measure ν on D defined by

ν(A) =
k∑

i=1

δxi(A), for all A ∈ D

where k is some given integer and δx is a Dirac measure with unit mass
at x, i.e. δx(A) = 1 if x ∈ A and 0 otherwise. As a simple consequence
of this notation we have for a given real valued measurable function f on D:∫

f(x)ν(dx) =
∑k

i=1 f(xi).
A random configuration N of points at a given time, will be modeled by

a point process that is a measurable mapping from some given probability
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space to the state spaceM of all finite counting measures on D (with the smallest
σ-algebra M making the mappings M 3 ν 7→ ν(B) measurable for all B ∈ D).

The mean measure λ(·) of the point process N is defined as λ(B) =
E[N(B)], B ∈ D; it represents the expected numbers of points present in subsets
of D.

Here are two examples of point processes.

Example 1 The most prominent point processes are Poisson processes de-
fined as follows: Let λ be a finite measure on (D,D), a point process N is
Poisson with mean measure λ if for each A ∈ D the random variable N(A)
is Poisson with mean λ(A) and for all mutually disjoint A1, . . . , Ak ∈ D the
random variables N(A1), . . . , N(Ak) are independent.

Example 2 Another important class of point processes is that of Gibbs processes.
For a given non-negative measurable function Ψ : M→ R+ (R+ denotes the set
of non-negative real numbers) and a measure ρ on D, the Gibbs distribu-
tion on M, with density or energy function Ψ with respect to the Poisson
weight process N of mean measure ρ, is the distribution ΠΨ on M defined
by

ΠΨ(Γ) = Z−1E [1 {N ∈ Γ}Ψ(N)] , for all Γ ∈M

where Z = E [Ψ (N)] is the normalizing constant assumed to be positive and
finite (called also partition function or statistical sum). The energy function
can often be expressed as follows

− log(Ψ(ν)) =
ν(D)∑

k=1

E(xk,

k−1∑

i=1

δxi)

where ν =
∑ν(D)

i=1 δxi , and where E : D ×M → R is called the local energy
function.

Proposition 20 Let N be a Gibbs process on D, with density Ψ with respect
to a Poisson weight process with finite measure ρ. For any measurable function
g : D×M→ R+ we have

E
[∫

D
g (x,N − δx)N (dx)

]
= E

[∫

D
g(x,N)

Ψ(N + δx)
Ψ(N)

ρ(dx)
]

(6.1)

(The term p(x,N) = Ψ(N+δx)
Ψ(N) is called the Papangelou’s exvisible inten-

sity.)

Proof. (The proposition may be deduced from [113, Theorem 5.1, p. 179];
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but no proof is provided there.) The left-hand side of (6.1) equals

A = E
[∫

D
g (x,N − δx)N (dx)

]
= EN

[∫

D
g (x, ν − δx) ν (dx)

]

=
∞∑

n=0

e−ρ(D)

n!

∫

Dn+1
g


x,

n∑

j=1

δxj − δx


 Ψ




n∑

j=1

δxj


 ρ (dx1) . . . ρ (dxn)

n∑

j=1

δxj (dx)

=
∞∑

n=1

e−ρ(D)

n!

∫

Dn

n∑

i=1

g


xi,

n∑

j=1,j 6=i

δxj


Ψ




n∑

j=1

δxj


 ρ (dx1) . . . ρ (dxn)

The right-hand side of (6.1) equals

B = E
[∫

D
g(x,N)p(x,N)ρ(dx)

]
= EN

[∫

D
g (x, ν) p (x, ν) ρ(dx)

]

=
∞∑

n=0

e−ρ(D)

n!

∫

Dn+1
g


x,

n∑

j=1

δxj


 p


x,

n∑

j=1

δxj


 Ψ




n∑

j=1

δxj


 ρ (dx1) . . . ρ (dxn) ρ(dx)

=
∞∑

n=0

e−ρ(D)

n!

∫

Dn+1
g


x,

n∑

j=1

δxj


 Ψ




n∑

j=1

δxj + δx


 ρ (dx1) . . . ρ (dxn) ρ(dx)

With the change of notation x → xi, xi → xi+1, . . . , xn → xn+1, we obtain

∫

Dn+1
g




n∑

j=1

δxj , x


 Ψ




n∑

j=1

δxj + δx


 ρ (dx1) . . . ρ (dxn) ρ(dx)

=
∫

Dn+1
g




n+1∑

j=1,j 6=i

δxj , xi


 Ψ




n+1∑

j=1

δxj


 ρ(dx1) . . . ρ(dxn+1)

Therefore

B =
∞∑

n=0

e−ρ(D)

n!

∫

Dn+1

1
n + 1

n+1∑

i=1

g


xi,

n+1∑

j=1,j 6=i

δxj


 Ψ




n+1∑

j=1

δxj


 ρ(dx1) . . . ρ(dxn+1)

=
∞∑

n=1

e−ρ(D)

n!

∫

Dn

n∑

i=1

g


xi,

n∑

j=1,j 6=i

δxj


 Ψ




n∑

j=1

δxj


 ρ(dx1) . . . ρ(dxn)

and therefore A = B.

6.1.2 Measure-valued Markov process

We will model the temporal evolution of the system of points by a time-homogeneous
Markov jump process N· = {Nt; t ≥ 0} taking values in the state space M of
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all finite counting measures on D. A survey of general results concerning such
processes is made in [41].

Let q (·) : M → R+ be M-measurable, and let q(·, ·) : M ×M → R+ be a
kernel (that is: for each Γ ∈M, q(·,Γ) is a non-negative measurable function
on M; and for each ν ∈M, q(ν, ·) is a measure on M).

A stochastic process N· = {Nt; t ≥ 0} with state space (M,M) is called a
Markov jump process with (infinitesimal) generator (q(·), q(·, ·)) (called
also q-pair) if, given that the process is in state ν, then the waiting time to the
next jump has an exponential distribution with expectation 1/q (ν) (if q (ν) = 0
then the process remains indefinitely in state ν) and is independent of the past
history, and the probability that the following jump leads to a value in Γ ∈M is
q(ν, Γ)/q (ν) (cf. [48]). The transition kernel Pt(ν, Γ) = P{Nt ∈ Γ|N0 = ν}
then satisfies the following Chapman-Kolmogorov equations

Pt+s(ν, Γ) =
∫

M
Ps(µ,Γ)Pt(ν, dµ) ν ∈M,Γ ∈M, t, s ≥ 0

P0(ν, Γ) = 1{ν ∈ Γ}, ν ∈M,Γ ∈M
where 1{A} = 1 if A true and 0 otherwise. The transition kernel {Pt} also
satisfies the following set of Backward Kolmogorov equations:

∂Pt(ν, Γ)
∂t

= −Pt(ν, Γ)q(ν) +
∫

M
Pt(µ, Γ)q(ν, µ)dµ, ν ∈M, Γ ∈M (6.2)

P0(ν, Γ) = 1{ν ∈ Γ}, ν ∈M,Γ ∈M
If q(ν, {ν}) = 0, ∀ν ∈ M (i.e. there is no pseudo-transitions) then we have also
the following relations between the transition kernel and the generator

q(ν, Γ) = lim
t↘0

t−1Pt(ν, Γ \ {ν}), ν ∈M, Γ ∈M (6.3)

q(ν) = lim
t↘0

t−1 (1− Pt(ν, {ν})) , ν ∈M

Suppose that the q-pair is stable; i.e., that q(ν) < ∞ for all ν ∈ M and
conservative; i.e., that q(ν) = q(ν,M\{ν}). Given the intial distribution, the
q-pair defines the evolution of a Markov jump process {N (∞)

t (ω) : t ∈ [0, t∞(ω))}
where the explosion time t∞(ω) can be either the first time of accumulation
of jumps if such time is finite or otherwise is equal to ∞. We call this process
the minimal Markov jump process associated to the given q-pair. Given, its
initial distribution, the minimal process is unique in distribution. The Markov
transition kernel P∞t (·, ·) describing the evolution of this process is the so called
minimal solution of the Backward Kolmogorov equations (6.2). (It is minimal
in the sense that any other solution Pt(·, ·) of (6.2) satisfies Pt(ν, Γ) ≥ P∞t (ν, Γ),
for all ν ∈ M, Γ ∈ M.) The minimal solution P∞t is substochastic, i.e.,
P

(∞)
t (ν,M) ≤ 1 for all ν ∈M and t ≥ 0. The minimal solution P∞t is stochastic

iff t∞ = ∞ a.s.. In this case P
(∞)
t is the unique solution of (6.2) (unique among

the substochastic kernels which are solutions of (6.2)) and we say that q is
regular.
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Suppose that q is regular so we can speak about the unique Markov kernel
Pt(·, ·). We say that a non-null measure Π on M is invariant for Pt(·, ·) if

Π(Γ) =
∫

M
Pt(ν, Γ)Π(dν), Γ ∈M, t ≥ 0 (6.4)

For a given t ≥ 0, the right hand side of (6.4) defines a measure denoted ΠPt,
that is

(ΠPt) (Γ) =
∫

M
Pt(ν, Γ)Π(dν), Γ ∈M

It is known for a probability measure Π(·) that (6.4) is equivalent to the following
global balance equations

∫

Γ

q(ν,M)Π(dν) =
∫

M
q(µ, Γ)Π(dµ), Γ ∈M (6.5)

(see e.g. [34, Theorem 4.17, p.129]).
We call ν ∈ M a positive recurrent state of a Markov jump process

{Nt; t ≥ 0} if E[T ν |N0 = ν] < ∞ where T ν is the return time of {Nt} to ν
(strictly after the first jump of the process).

We will say that a Markov kernel Pt(·, ·) (or the associated process {Nt; t ≥
0}) is ergodic if there exists a probability measure Π satisfying

lim
t→∞

sup
Γ∈M

|Pt(ν, Γ)−Π(Γ)| = 0

for all ν ∈ M. We say in this case that Pt (ν, ·) converges in total variation
to Π (·).

We say that the Markov kernel Pt(·, ·) is reversible with respect to a non-
null measure Π on M if

∫

Γ1

Pt(ν, Γ)Π(dν) =
∫

Γ

Pt(ν, Γ1)Π(dν), Γ, Γ1 ∈M, t ≥ 0 (6.6)

It is known for a probability measure Π(·) that (6.6) is equivalent to a set of
detailed balance equations which has the form of (6.5) with M replaced
by Γ1, for all Γ1 ∈M. (see e.g. [34, Theorem 6.7 p.230]).

In what follows, for some ν ∈ M, we will write Eν [·] = E[·|N0 = ν] and
similarly, for some measure Π on (M,M), we will denote by EΠ[·] the expecta-
tion conditionally to N0 being distributed according to Π. Recall also that for
some measurable Ψ : M→ (0,∞) and some measure Π on (M,M) it is usual to
denote EΠ[Ψ] =

∫
MΨ (ν)Π (dν). Note that there is a slight conflict of notation

which is not harmful since which EΠ[·] we are considering would be clear from
the context.

6.2 Spatial Markov queueing process

As in [106, 67], the system consists of a set D of locations which is a complete
separable metric space, typically D is a subset of Rd induced with the Euclidean
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distance. We will consider the topology generated by the metric and take D as
the Borel σ-algebra. Users (or calls) move along the locations where they
are served. The evolution of the system is represented by a continuous-time
stochastic process N· = {Nt}t≥0 whose states are in M, the space of all finite
counting measures on D. Let M be the σ-algebras on M generated by the
mappings ν 7→ ν (B) , B ∈ D. For ν ∈M, we denote νx = ν {x}.

Lemma 3 If D is countable, then M is countable.

Proof. We may assume without loss of generality that D = {1, 2, . . .}. For
y ∈ D, let M(y) =

{
ν ∈ ND : νx = 0,∀x ≥ y

}
. Clearly M =

⋃
y∈DM(y). Using

the fact that the countable union of finite sets (and even of countable sets) is
countable, proves that M is countable.

The users move within the set of locations

D̄ = D ∪ {o} (6.7)

where the location o designates the outside of the system. We will associated to
D̄ the σ-algebra D̄ = D ∪ {Γ ∪ {o} : Γ ∈ D}. The system state ν doesn’t record
any population size for location o. In order to write some equations in a more
compact form, we will view each element ν ∈ M as a counting measures on D̄
such that ν ({o}) = 1.

6.2.1 Infinitesimal generator

We aim to model the system by a Markov process. Let (Ω,F ,P) be the un-
derlying probability space. A typical transition of the process will be triggered
by the movement of a user from some location x to some location y 6= x in D̄.
Then we have a transition from state ν to state Txyν = ν − δx + δy where, by
convention, δo = 0 and for x ∈ D, δx is the measure with unit mass concentrated
at x. The transition is called a migration or motion if x, y ∈ D, a birth if
x = o and a death if y = o.

We consider an infinitesimal generator (q (·) , q (·, ·)) given by
{

q (ν, Γ) =
∫
D̄×D̄ rxy (ν) 1Γ (Txyν)λ (x, dy) ν (dx) , Γ ∈M, ν ∈M

q (ν) =
∫
D̄×D̄ rxy (ν) λ (x, dy) ν (dx) , ν ∈M (6.8)

where λ : D̄ × D̄ → R+ constitute a kernel (i.e. for each A ∈ D̄, λ(·, A) is a
non-negative measurable function on D̄; and for each x ∈ D̄, λ(x, ·) is a measure
on D̄) called the routing rates and r : D̄ × D̄ ×M → R+, (x, y, ν) 7→ rxy (ν)
are measurable functions called the service rates. We sometimes denote
rxy (ν, Txyν) = rxy (ν). From now on we assume that the routing rates
satisfy

λ (x, {x}) = 0, x ∈ D̄ (6.9)

(This implies that q (ν, {ν}) = 0.) and that the service rates satisfy

(x ∈ D and ν({x}) = 0) ⇒ (∀y ∈ D̄, rxy (ν) = 0)
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The first equation in (6.8) is written in a compact form with some abuse of
notation. It may be written more explicitly as follows

q (ν, Γ) =
∫

D
roy (ν) 1Γ (Toyν)λ (o, dy) +

∫

D

[∫

D̄
rxy (ν) 1Γ (Txyν) λ (x, dy)

]
ν (dx)

=
∫

D
roy (ν) 1Γ (Toyν)λ (o, dy) +

∫

D×D
rxy (ν) 1Γ (Txyν)λ (x, dy) ν (dx)

(6.10)

+
∫

D
rxo (ν) 1Γ (Txoν)λ (x, {o}) ν (dx)

The sum in the right-hand side of the above equation comprises three terms
which correspond respectively to births, motions and deaths.

Definition 1 We call the generator (6.8) spatial Markov queueing (SMQ)
or equivalently spatial birth, motion and deaths generator. It is called
Whittle if the service rates have the form rxy (ν) = ψx (ν) and Jackson if
ψx (ν) is a function of only νx denoted, with a slight abuse of notation, ψx (νx).

Remark 9 The idea of the spatial Whittle generator is due to [106, 67] and
that of the general SMQ appears is due to [107, 66].

Remark 10 Serfozo [106] uses the term Whittle network only when the service
rates rxy (ν) = ψx (ν) have a certain balance property which will be defined later
(Definition 3).

In order to simplify some equations, we denote

TABν = {Txyν : y 6= x, x ∈ A, y ∈ B} , A, B ∈ D̄, ν ∈M (6.11)

If A is a singleton {x} we write T{x}Bν simply TxBν. The same notation sim-
plification applies when B is a singleton. Hence the quantity q (ν, Γ) in (6.10)
may be written as the sum

q (ν, Γ) = q (ν, Γ ∩ ToDν) + q (ν, Γ ∩ TDDν) + q (ν, Γ ∩ TDoν)

where the right-hand side comprises three terms which correspond respectively
to the intensity of births, motions and deaths:





q (ν, Γ ∩ ToDν) =
∫
D roy (ν) 1Γ (Toyν)λ (o, dy)

q (ν, Γ ∩ TDDν) =
∫
D×D rxy (ν) 1Γ (Txyν)λ (x, dy) ν (dx)

q (ν, Γ ∩ TDoν) =
∫
D rxo (ν) 1Γ (Txoν)λ (x, {o}) ν (dx)

Example 3 The Markov-Poisson location (MPL) process can be seen as
a SMQ process where users arrive, move and depart from D completely indepen-
dently of each other. Thus, rxy (ν) ≡ 1.

Example 4 A spatial birth-and-death (SBD) process is a SMQ process
without mobility. Thus λ(x,D) = 0, for all x ∈ D.
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6.2.2 Regularity

We aim now to find sufficient conditions assuring that there exists a unique
q-process (or transition functions) associated to the generator q given by (6.8).
In this case, given the intial distribution, there will be a unique (in distribution)
homogeneous Markov process N· = {Nt : t ∈ R+} associated to the generator
q. In such a case we could talk about the process defined by the generator (6.8)
since this process is uniquely defined (in distribution).

Conservative By definition of the generator (6.8), q (ν) = q (ν,M\ {ν}) which
assures that the generator q is conservative.

Stable Recall that the stability condition for a generator q reads q (ν,M\ {ν}) <
∞. For the SMQ generator (6.8) we may write

q (ν,M\ {ν}) = q (ν, ToDν) + q (ν, TDDν) + q (ν, TDoν)

where the three terms correspond, respectively, to the intensity of births, mo-
tions and deaths. The death intensity is always finite, hence the SMQ generator
is stable iff ∫

D
rxy(ν)λ(x, dy) < ∞, x ∈ ν ∪ {o} , ν ∈M (6.12)

what will be assumed from now on.

Uniqueness The generator q defines uniquely the evolution of a jump process
until the first (random) time of accumulation of jumps, say τ∞ (called explosion
time). Let N∞

· = {N∞
t (ω) : t ∈ [0, τ∞ (ω))} be the process describing this

evolution, and call it the minimal q-process.
Recall that a stable and conservative generator q is called regular if there

exists a unique Markov jump process defined for all t ∈ R+ associated to q,
which is equivalent to τ∞ = ∞, P-a.s. or equivalently {the number of jumps is
finite within any finite time interval (0, t]} P-a.s.

Sufficient conditions for regularity

We aim to establish sufficient conditions for q to be regular. We begin by a
particular case which will be useful later.

Lemma 4 Let q be a generator given by (6.8). If

sup
ν∈M

q (ν, ToDν) + q (ν, TDDν) < ∞ (6.13)

then q is regular.

Proof. In order to prove that q is regular, we will construct the minimal q-
process in a manner assuring that τ∞ = ∞, P-a.s. or equivalently {the number
of jumps of N∞

· is finite within any finite time interval (0, t]} P-a.s.
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First, we construct a sequence of independent and identically random vari-
able Y1, Y2, . . . which are exponential with parameter supν∈M q (ν, ToDν)+q (ν, TDDν)
(we may extend the original probability space if necessary to include these
random variables). Let Sn =

∑n
k=1 Yk ({Sn} is called a renewal process).

From (6.13) we deduce that

lim
n→∞

Sn = ∞, P− a.s. (6.14)

We will construct the minimal q-process in a way assuring that the (increasing)
sequence of birth and motion instants, denoted 0 ≤ T1, T2, . . ., satisfy

Tn ≥ Sn, almost surely (6.15)

To this end we construct the minimal q-process recursively using competing
exponential random variables (or equivalently homogeneous Poisson processes)
as in [32]. Let ν be the SMQ state at the time origin t = 0. The competing
events for the determination of the next jump after t = 0 are birth, motion
and death. We generate the times to these (eventual) events as exponential
random variables, say B, M and D, with parameters q (ν, ToDν), q (ν, TDDν)
and q (ν, TDoν) respectively. We may generate B and M such that B ≥ S1

and M ≥ S1 (Strassen Theorem). The lowest variable among B, M and D will
determine the jump. At the time of this jump, the same procedure recommences
with the following precaution. Unless the first birth or motion occurs, B and M
are generated such that B ≥ S1 and M ≥ S1. Once a birth or a motion occurs,
we consider the following Sn.

As the state of the SMQ is finite, the number of deaths, before the following
birth or motion, is finite. Moreover as the above construction satisfies (6.15), the
number of births and motions in each finite time interval is finite due to (6.14).
Then the number of jumps of the minimal q-process in each finite time interval
is finite.

Define

bn = sup
ν∈M:ν(D)=n

q (ν, ToDν) , dn = inf
ν∈M:ν(D)=n

q (ν, TDoν) (6.16)

From now on we will assume that for each n ≥ 0

bn < ∞ and sup
ν∈M:ν(D)=n

q(ν, TDDν) < ∞ (6.17)

The following result gives sufficient conditions for the q to be regular.

Proposition 21 Let q be a generator given by (6.8). If the discrete birth-death
generator q′ on N with birth rates bn and death rates dn defined by (6.16) is
regular then so is the generator q.

We begin by giving simple proofs in some particular cases, then we give the
proof in the general case.
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Proof. Proposition 21 in the case of finite networks.
(Cf. [8, p.309] and the references [101, 68] therein.)
Proof. Proposition 21 in the case of birth-death networks with

general state space.
Our proof consists of verifying the conditions of [97, Proposition 5.1]. The

generator is given by

q (ν, Γ) =
∫

D
roy (ν) 1Γ (Toyν) λ (o, dy)+

∫

D
rxo (ν) 1Γ (Txoν)λ (x, o) ν (dx) Γ ∈M, ν ∈M\Γ

Using the same notations as [97], denote

B (ν, Γ) =
∫

Γ

roy (ν)λ (o, dy) , D (ν, x) = rxo (Toxν) λ (x, o)

α (ν) = q (ν)

K (ν, Γ) = q (ν, Γ) /q (ν) , if q (ν) > 0

(if q (ν) = 0 then it doesn’t matter how to define K (ν, ·)) then

q (ν, Γ) = B (ν, ToLν) +
∑
x∈ν

D (Txoν, x) 1Γ (Txoν)

which is equivalent to [97, Formula (4.4a)]. Note that assumption (6.9) is im-
plicit in [97]. Moreover the stability condition (6.12) reduces to q (ν, ToDν) <
∞, ∀ν ∈ M which is equivalent to Preston’s condition that, for each ν ∈ M,
B (ν, ·) is a finite measure on (D,D). Finally, Condition (6.17) reduces to
supν∈M:ν(D)=n q (ν, ToDν) < ∞, ∀n ∈ N which is equivalent to Preston’s con-
dition bn < ∞,∀n ∈ N. Hence our proposition for birth-death networks is just
a reformulation of [97, Proposition 5.1].

In order to prove Proposition 21 in the general case we will construct a
coupling between the SMQ generator q given by (6.8) and the birth-death gen-
erator q′ analogous to that given by [97]. Consider an infinitesimal generator q̃
on M̃ =M× N defined as follows.

• If ν (D) 6= n, then

q̃ ((ν, n) ; Γ× {n}) = q (ν, Γ)
q̃ ((ν, n) ; {ν} × {n + 1}) = bn

q̃ ((ν, n) ; {ν} × {n− 1}) = dn

q̃ ((ν, n)) = q (ν) + bn + dn
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• If ν (D) = n, then

q̃ ((ν, n) ; Γ× {n + 1}) = q (ν, Γ) , Γ ⊂ ToDν

q̃ ((ν, n) ; {ν} × {n + 1}) = bn − q (ν, ToDν) (6.18)

q̃ ((ν, n) ; Γ× {n− 1}) = q (ν, Γ)
dn

q (ν, TDoν)
, Γ ⊂ TDoν (6.19)

q̃ ((ν, n) ; Γ× {n}) = q (ν, Γ)
(

1− dn

q (ν, TDoν)

)
, Γ ⊂ TDoν

(6.20)

q̃ ((ν, n) ; Γ× {n}) = q (ν, Γ) , Γ ⊂ TDDν (6.21)
q̃ ((ν, n)) = bn + q (ν, TDoν) + q (ν, TDDν) (6.22)

In order to adapt the coupling defined by [97] for our generator q, we added
the term (6.21) to take into account motions and modify the term (6.22)
in order to assure conservation of the coupling generator.

Note that, for every (ν, n) ∈ M̃, and Γ ∈M such that ν /∈ Γ,

q̃ ((ν, n) ; Γ,N) = q (ν, Γ) , which is independent of n

q̃ ((ν, n) ;M, n + 1) = bn, which is independent of ν

q̃ ((ν, n) ;M, n− 1) = dn, which is independent of ν

which assures that q̃ is a coupling of two generators. (The above conditions
which are taken from [33] mean that the transition rate of each component is in-
dependent of the initial state of the other component. Note that q̃ ((ν, n) ; {ν} ,N)
may be different from 0 = q (ν, {ν}).) We see that the marginal generators
(cf. [33]) of the first and second components are equal to q and q′ respectively
(where q′ is a birth-death generator on N with birth rates bn and death rates
dn) except for the diagonal terms which may be non-null which means that the
marginal processes may have pseudo-transitions. Recall that two generators
differing only by the diagonal terms lead to Markov jump processes which are
equal in distribution.

The coupling construction above has the following interpretation. Consider
the minimal q̃- process Ñ∞

· = (N·, N ′
· ) (recall that Ñ∞

t (ω) is defined until the
first explosion time, say τ̃∞ (ω)). Denote its components on M and N by N·
and N ′

· respectively. Assume that at the time origin N0 (D) ≤ N ′
0 and consider

times t ∈ [0, τ̃∞). As long as ν (D) < n (i.e. Nt (D) < N ′
t) the components N·

and N ′
· evolve independently of each other. If ν (D) = n (i.e. Nt (D) = N ′

t),
then we consider first N ′

· -births at rate bn and N·-deaths at rate q (ν, Γ). Each
N ′
· -birth is either accompanied by an N·-birth at rate q (ν, ToDν) or not at rate

bn − q (ν, ToDν). We can generate a Bernoulli random variable with parameter
q (ν, ToDν) /bn saying whether an N ′

· -birth is accompanied by an N·-birth or not.
Analogously, each N·-death is either accompanied by an N ′

· -death at rate (6.19)
or not at rate (6.20). The rates here are a little bit more complicated to write as
they depend of the set Γ where the N·-death occurs. We can generate a Bernoulli
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random variable with parameter dn/q (ν, TDoν) saying whether an N·-death is
accompanied by an N ′

· -death or not. Finally when there is an N·-motion, N ′
·

remains unchanged. This coupling assures that, if N0 (D) ≤ N ′
0 then

Nt (D) ≤ N ′
t , 0 ≤ t < τ̃∞ (6.23)

Note that the first explosion time of the q-process τ∞ and of the q′-process
τ ′∞ are both larger than τ̃∞, i.e.

τ∞ ≥ τ̃∞, τ ′∞ ≥ τ̃∞ (6.24)

Then the paths Nt (ω) and N ′
t (ω) where t ∈ [0, τ̃∞ (ω)) are portions of the paths

of the minimal q-process N∞
· and the minimal q′-process N ′∞

· respectively.
We will need the following lemma to prove Proposition 21. Denote Mm =

{ν ∈M : ν (D) ≤ m}, M′
m = {1, . . . , m} and M̃m,k = Mm ×M′

k.

Lemma 5 Consider the minimal q̃-process
{

Ñ∞
t

}
= {(Nt, N

′
t) , t ∈ [0, τ̃∞)}.

Then for all m,n ∈ N

P{Ñ∞
s ∈ M̃m,n for all s ∈ (0, τ∞); and τ̃∞ < ∞} = 0 (6.25)

Proof. It is enough to prove that if all visited states within a finite interval
are in M̃m,n, then the number of jumps is finite P-a.s.

Fix some m ∈ N, t ≥ 0. Let’s first prove that, within (0, t], if all visited states
are in M̃m,n then the number of jumps is finite. Let A (t) denote the number
of jumps within (0, t] and A′ (t) = A (t)× 1{all visited states within (0, t] are in
M̃m,n}. Let T denote the time of the first transition to a state outside M̃m,n

and τ (t) = min (t, T ). Note that

A′ (t) ≤ A (τ (t))

Note that A (τ (t)) may be viewed as the number of jumps within (0, t] of a mod-
ified Markov generator q̃m,m where each state outside M̃m,n is made absorbing,
i.e.

q̃m,m ((ν, n) ; Γ) = q ((ν, n) ,Γ) 1
{

(ν, n) ∈ M̃m,m

}
, ν ∈ M̃, Γ ⊂ M̃

q̃m,m ((ν, n)) = q ((ν, n)) 1
{

(ν, n) ∈ M̃m,m

}
, ν ∈ M̃

By (6.17), the generator q̃m,m satisfies (6.13), then it is regular by Lemma 4.
Hence A (τ (t)) is finite which implies that A′ (t) is finite. This completes the
proof.

Proof. Proposition 21 in the case of general networks (i.e. including
motions in addition to births and deaths).

Let q, q′ be as in Proposition 21. Let q̃ be the coupling defined above. Let
Qm

t (ν, Γ) be the probability of a transition of N∞
· from state ν to Γ; in time

t; with a finite number of jumps; and with visited states in Mm. Similarly
Q′m

t (n,A) designates the probability of a transition of N ′∞
· from state n to A;
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in time t; with a finite number of jumps; and with visited states in M′
m; and

Q̃m,k
t (ν, n;F ) designates the probability of a transition of Ñ∞

· from state (ν, n)
to F ; in time t; with a finite number of jumps; and with visited states in M̃m,k.

From Inequality (6.23) we deduce that for ν(D) ≤ n, we have Q̃m,k
t (ν, n; F ) =

Q̃k,k
t (ν, n; F ) ,∀m ≥ k. We aim now to prove that

Q̃m,m
t (ν, n;M×A) = Q′mt (n,A) (6.26)

We will prove that each side of (6.26) is not larger than the other one. (i)
Consider a transition of Ñ∞

· from state (ν, n) to M×A; in time t; with a finite
number of jumps; and with visited states in M̃m,m. In such case we have a
transition of N ′

· from state n to A; in time t; with a finite number of jumps;
and with visited states in M′

m. By (6.24), such a transition may be viewed
as a transition of N ′∞

· , hence Q̃m,m
t (ν, n;M×A) ≤ Q′m

t (n,A). (ii) Consider
now a transition of N ′∞

· from state n to A; in time t; with a finite number of
jumps; and with visited states in Mm. If t < τ̃∞, then we have a transition of
Ñ∞
· from state (ν, n) (for some ν ∈ M) to M × A; in time t; and with visited

states in M̃m,m. It remains to show that P{N ′∞
s ∈ Mm for all s ∈ (0, t]; and

t ≥ τ̃∞} = 0; to obtain Q′m
t (n,A) ≤ Q̃m,m

t (ν, n;M×A). Note that

{N ′∞
s ∈Mm for all s ∈ (0, t]; and t ≥ τ̃∞}

⊂ {Ñ∞
s ∈ M̃m,m for all s ∈ (0, τ̃∞); and t ≥ τ̃∞}

⊂ {Ñ∞
s ∈ M̃m,m for all s ∈ (0, τ̃∞); and τ̃∞ < ∞}

The event in the right-hand side has probability 0 by Lemma 5. This finishes
the proof of (6.26).

Now by the continuity property of the probability

lim
m→∞

Q̃m,m
t (ν, n;M×A) = P̃

(∞)
t (ν, n;M×A), lim

m→∞
Q
′(m)
t (n,A) = P

′(∞)
t (n,A)

where P̃
(∞)
t , P

′(∞)
t designate the minimal solutions of the backward Kolmogorov

equations with the generators, respectively, q̃ and q′. Then, by (6.26)

P̃
(∞)
t (ν, n;M×A) = P

′(∞)
t (n,A)

and in particular P̃
(∞)
t (ν, n;M× N) = P

′(∞)
t (n,N) = 1.

Observe that P̃
(∞)
t (ν, n;M × N) ≤ P

(∞)
t (ν,M) (since if Ñ∞

· makes a finite
number of jumps, then N· makes a finite number of jumps, hence N∞

· makes
a finite number of jumps as it is equal in distribution to N·). We deduce that
P

(∞)
t (ν,M) = 1 which finishes the proof.

Discrete case

Remark 11 In the discrete case, one may apply [34, Theorem 3.19] to obtain
sufficient conditions for regularity of the SMQ generator. But in order to apply



62 CHAPTER 6. SPATIAL MARKOV QUEUEING PROCESS (SMQ)

this theorem we should have supν∈Mm
q (ν) < ∞, ∀m ∈ N, and in particular

the death rates are uniformly bounded over Mm, which is more restrictive than
Condition (6.17).

Conditions for a birth-death generator q′ on N with birth rates q′n,n+1 = bn

and death rates q′n,n−1 = dn (where bn, dn are given non-negative constants) to
be regular are given in [102]. The following are sufficient conditions

bn = 0, ∀n ≥ n0 (6.27)

or

bn > 0, ∀n ≥ n0 and
∞∑

n=n0

wn = ∞ (6.28)

where
wn =

1
bn

+
dn

bnbn−1
+ . . . +

dn . . . dn0+1

bn . . . bn0

+
dn . . . dn0

bn . . . bn0

Note that (6.28) is satisfied if either

bn > 0, ∀n ≥ n0 and
∞∑

n=n0

1
bn

= ∞

or

bn > 0, ∀n ≥ n0 and
∞∑

n=n0

dn . . . dn0

bn . . . bn0

= ∞

Corollary 4 Consider a birth-death generator on N with birth rates bn and
death rates dn. If supn∈N bn < ∞ then the generator is regular.

Proof. Let b = supn∈N bn. The birth-death generator on N with birth rates
b and death rates dn is regular by (6.27) if b = 0 and by (6.28) otherwise. Then
by Proposition 21 the birth-death generator on N with birth rates bn and death
rates dn is regular.

Corollary 5 Consider the context of Proposition 21, if supν∈M q (ν, ToDν) < ∞
then q is regular.

Proof. We use the same notation as in Proposition 21. As supν∈M q (ν, ToDν) =
supn∈N bn < ∞, the birth-death generator on N with birth rates bn and death
rates dn is regular by Corollary 4. Then q is regular by Proposition 21.

6.2.3 Interpretation of Whittle SMQ

In this section we consider a Whittle SMQ with a regular generator q which
defines a (unique in distribution) Markov process, say {Nt}t≥0. We aim to
describe the dynamics of such a process. Assume that

ψo (ν) = 1 (6.29)
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We have
q (ν, TxD̄ν) = λ

(
x, D̄

)
νxψx (ν)

In particular, the exogenous arrival rate equals

q (ν, ToD̄ν) = λ
(
o, D̄

)
ψo (ν) = λ

(
o, D̄

)

(Since by assumption (6.29, we have ψo (ν) = roy (ν) = 1.). On the other hand

q (ν, TxAν)
q (ν, TxD̄ν)

=
λ (x,A)
λ

(
x, D̄

) , A ∈ D̄

Hence, we have the following description of the Whittle network dynam-
ics [106, 67]. Given the routing rates {λ (x,A)}x∈D̄,A∈D̄ and the service rates
{ψx (ν)}x∈D̄,ν∈M, the system dynamics are the following:

(a1) Exogenous arrivals come to dx as a Poisson process with intensity λ (o, dx).

(b1) Each departure from x ∈ D is routed to dy according to the probability
Kernel λ (x, dy) /λ

(
x, D̄

)
, independently of everything else.

(c1) Whenever the system is in state ν, the time to the next departure from
location x is exponentially distributed with rate νxψx (ν)λ

(
x, D̄

)
.

6.3 Limiting behavior

In this section we consider q a generator given by (6.8) and we suppose that
the hypotheses of Proposition 21 are satisfied. We will give sufficient conditions
for q to be ergodic. We will use again the coupling generator q̃ introduced in
the previous section and will show that if 0 is the positive recurrent state for q′

then the null measure ∅ (∅(A) ≡ 0 for any A ∈ D) is such a state for q. Then
the ergodicity of q will follow from the standard arguments for regenerative
processes.

We denote Pt, P
′
t and P̃t the unique transition functions associated to q,

q′ and q̃. We denote N·, N ′
· and Ñ· = (N·, N ′

· ) the respective corresponding
Markov processes (which are unique in distribution). We take the initial state
such that N0 (D) ≤ N ′

0 which assures (6.23).

6.3.1 Limiting distribution

We aim first to give a sufficient condition under which, if the process starts from
state ∅, then the limiting distribution of the process exists.

Lemma 6 Let q′ be the discrete birth-death generator with birth rates bn and
death rates dn defined by (6.16); T ′0 be the return time of the q′-process to state
0; and T ∅ be the return time of the q-process to state ∅.

(i) If the state 0 is positive recurrent for q′ then ∅ is a positive recurrent state
for q.
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(ii) If for some n ∈ N, P
{
T ′0 < ∞|N ′

0 = n
}

= 1, then P
{
T ∅ < ∞|N0 = ν

}
=

1 for all ν ∈Mn.

Proof.

(i) Let’s denote by T ′0 is the return time of N ′
· to state 0. Let’s denote the

times of the first jumps of N· and N ′
· by τ1 and τ ′1 respectively. Starting

from N0 = ∅ and N ′
0 = 0, the following first event for both processes N·

and N ′
· is necessarily a birth. Denote . By the coupling inequality (6.23)

the first birth in N· occurs after that in N ′
· , then τ ′1 ≤ τ1. We will show

that in fact τ ′1 = τ1 (conditionally to the fact that N0 = ∅, N ′
0 = 0). Note

that the birth rate at state 0 of N ′
· is, by definition, given by

b0 = sup
ν∈M:ν(D)=0

q (ν, ToDν) = q (∅, ToD∅)

which equals the birth rate at state ∅ of N·. From (6.18) we deduce that
q̃ (∅, 0; {∅} × {1}) = 0. Hence the first N ′

· -birth is accompanied by an
N·-birth. Hence τ ′1 = τ1. Observe now that

E
[
T ′0|N ′

0 = 0
]

= E [inf {t : t ≥ τ ′1, N
′
t = 0} |N ′

0 = 0]
= E [inf {t : t ≥ τ ′1, Nt ∈M, N ′

t = 0} |N0 = ∅, N ′
0 = 0]

= E [inf {t : t ≥ τ1, Nt = ∅, N ′
t = 0} |N0 = ∅, N ′

0 = 0]
≥ E [inf {t : t ≥ τ1, Nt = ∅, N ′

t ∈ N} |N0 = ∅, N ′
0 = 0]

= E [inf {t : t ≥ τ1, Nt = ∅} |N0 = ∅]
= E

[
T ∅|N0 = ∅

]

Then E
[
T ∅|N0 = ∅] < ∞, which means that ∅ is positive recurrent for the

SMQ generator q.

(ii) Fix some ν ∈Mn. Let’s denote the times of the first jumps of N· and N ′
·

by τ1 and τ ′1 respectively. We have

P
{

T ∅ = ∞|N0 = ν
}

= P {Nt 6= ∅, ∀t ≥ τ1|N0 = ν}
= P {Nt 6= ∅, N ′

t ∈ N,∀t ≥ τ1|N0 = ν,N ′
0 = n}

= P {Nt 6= ∅, N ′
t 6= 0, ∀t ≥ τ1|N0 = ν, N ′

0 = n}
≤ P {Nt ∈M, N ′

t 6= 0, ∀t ≥ τ1|N0 = ν, N ′
0 = n}

= P {N ′
t 6= 0, ∀t ≥ τ1|N ′

0 = n}
= P {N ′

t 6= 0, ∀t ≥ τ ′1|N ′
0 = n}

= P
{
T ′0 = ∞|N ′

0 = n
}

= 0

where for the third equality we use the coupling inequality (6.23), and for
the sixth line we use the fact that τ ′1 = τ1 proved in (i).
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Proposition 22 If ∅ is a positive recurrent state for the generator q then

Π(Γ) = lim
t→∞

Pt (∅,Γ)

exists for all Γ ∈M and it is given by

Π (Γ) =
1

E∅
[
T ∅

]E∅
[∫ T∅

0

1 {Nt ∈ Γ} dt

]
(6.30)

where T ∅ is the return time of N· to state ∅ and E∅ [·] is the conditional expec-
tation E∅ [·] =E[·|N0 = ∅].

Proof. Clearly, conditionally to N0 = ∅, the process {Nt}t≥0 is a zero-
delayed regenerative process with generation points {t ≥ 0 : Nt = ∅}. We aim
to apply the limit theorem [10, Theorem 1.2 p.170] for such processes. The con-
ditions of this theorem, besides the fact that {Nt}t≥0 is regenerative, are: (i) the
state spaceM is a metric space; (ii) {Nt}t≥0 has right-continuous paths; (iii) the
cycle length distribution, say F , defined by F (A) = P

{
T ∅ ∈ A|N0 = ∅} , A ∈

B (R) has a finite mean; and (iv) F is non-lattice (called also non-arithmetic).
Let’s prove that these conditions hold.

(i) The state space M may be metrizable (cf. [40, p.629]).

(ii) We assume that, by construction, the Markov jump process {Nt}t≥0 has
right-continuous paths.

(iii) ∅ is a positive recurrent state for the generator q means that the cycle
length distribution F has finite mean.

(iv) It is sufficient to show that F is absolutely continuous with respect to the
Lebesgue measure. We denote by N1, N2, . . . , NK the sequence of visited
states (other than ∅) in the first cycle (the number K of these states is
also random). For A ∈ B (R),

F (A) = E
[
P

{
T ∅ ∈ A|N0 = ∅, N1, . . . , NK

}
1 {N1 6= ∅, . . . , NK 6= ∅}

]

Note that, conditionally to N0 = ∅, N1, . . . , NK , the random variable T ∅ is
a sum of exponential random variables. If A has a zero Lebesgue measure,
then P

{
T ∅ ∈ A|N0 = ∅, N1, . . . , NK

}
= 0, hence F (A) = 0.

Conditions of [10, Theorem 1.2 p.170] are all satisfied, then P∅ {Nt ∈ ·}
converges weakly of to Π (·). This means that for all Π-continuity set Γ ∈ M
(i.e. Π (∂Γ) = 0), P0 {Nt ∈ Γ} → Π(Γ).

(v) In fact we may show that the previous convergences holds true for all
Γ ∈ M. To this end, we proceed exactly as in the proof of [10, Theo-
rem 1.2 p.170], but here we consider a measurable function f : M → R
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which is bounded but not necessarily continuous (for example f (x) =
1 {x ∈ Γ}). It is then not immediate that the function z defined by
z (t) =E∅

[
f (Nt) ; t < T ∅

]
= P∅

{
Nt ∈ Γ; t < T ∅

}
is right-continuous. In

fact, this is true because our process {Nt} is a regular jump Markov
process. (Fix some s ≥ 0. Note that for each ω ∈ Ω, there exists
some ε > 0 such that Nt (ω) = Ns (ω) for each t ∈ [s, s + ε), hence
limt→s+ f (Nt) = f (Ns). The dominated convergence theorem gives

lim
t→s+

E∅
[
f (Nt) ; t < T ∅

]
= E∅

[
f (Ns) ; s < T ∅

]

Hence z (t) =E∅
[
f (Nt) ; t < T ∅

]
is right-continuous.)

The following corollary gives a sufficient condition under which, if the process
starts from some state ν, then the limiting distribution of the process exists.

Corollary 6 If ∅ is a positive recurrent state for the generator q and if for
some ν ∈M, P

{
T ∅ < ∞|N0 = ν

}
= 1, then, for all Γ ∈M,

lim
t→∞

Pt (ν, Γ) = Π (Γ) (6.31)

where Π is given by (6.30).

Proof. Conditionally to N0 = ν, {Nt} is a delayed regenerative process
with a delay equal to the first time the process attains the regeneration point
∅, which is precisely T ∅ the return time to ∅. [10, Theorem 1.2 p.170] assures
the weak convergence which may be strengthened in the same manner as (v) of
the proof of Proposition 22.

The following result strengthens the convergence assured in Proposition 22
and Corollary 6 by assuring that it holds in the sense of total variation.

Proposition 23 Under the conditions of Corollary 6, the convergence

lim
t→∞

Pt (ν, ·) = Π (·)

holds in the sense of total variation. (Recall that if this is true for all ν ∈ M,
then the process is said to be ergodic.)

Proof. We apply [10, Corollary 1.4 p.188] to prove convergence of Pν {Nt ∈ ·}
in total variation to Π. The conditions of this corollary, besides the fact that
{Nt}t≥0 is regenerative, are: (i) the cycle length distribution, say F , is spread
out; (ii) F has a finite mean; (iii) Nt (ω) is measurable jointly in (t, ω). Let’s
prove that these conditions hold.

(i) In (iv) of the proof of Proposition 22 we showed that F is absolutely
continuous with respect to the Lebesgue measure which implies that F is
spread out.
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(ii) Proved in (iii) of the proof of Proposition 22.

(iii) We have to show that for each A ∈M,

B = {(ω, t) ∈ Ω× R+ : Nt (ω) ∈ A} ∈ F ⊗ B (R+)

To this end, let {tn}n∈N be some countable dense set in R+; let {εk}k∈N be
a sequence of positive reals such that limk→∞ εk = 0; let Bnk = N−1

tn
(A)×

[tn − εk, tn]; and let B′ =
⋂

k

⋃
n Bnk. We aim to show that B′ = B which

will prove the measurability of B.

Consider first some (ω, t) ∈ B′, for each εk there exists some tn such
that Ntn

(ω) ∈ A and t ∈ [tn − εk, tn]. Due to the fact that our process
is a regular jump Markov process, there exists some ε > 0 such that
Ns (ω) = Nt (ω) for each s ∈ [t, t + ε]. Then for εk sufficiently small
Ntn (ω) = Nt (ω), hence Nt (ω) ∈ A. We get that (ω, t) ∈ B. We deduce
that B′ ⊂ B.

Consider now some (ω, t) ∈ B, i.e. Nt (ω) ∈ A. There exists some ε > 0
such that Ns (ω) = Nt (ω) for each s ∈ [t, t + ε]. For each εk consider
some tn ∈ [t, t + εk ∧ ε]. Clearly (ω, t) ∈ Bnk. We get that (ω, t) ∈ B′.
We deduce that B ⊂ B′.

Hence B = B′ which finishes the proof of the measurability of B for each
A ∈M; hence the measurability of Nt (ω) jointly in (t, ω).

Remark 12 Recall that the weak convergence assures that limt→∞Eν [f (Nt)] =∫
M fdΠ only for bounded continuous functions. The convergence assured in

Proposition 22 and Corollary 6; i.e. limt→∞ Pt (ν, Γ) = Π (Γ) , ∀Γ ∈ M; is
equivalent to, limt→∞Eν [f (Nt)] =

∫
M fdΠ for every bounded measurable func-

tion f :M→ R. (One way is trivial and the other follows from dominated con-
vergence Theorem.) This convergence is stronger than weak convergence showed
in [10, Theorem 1.2 p.170] which is due the fact that we consider a regular
jump process whereas [10, Theorem 1.2 p.170] considers general regenerative
processes.

Recall that the total variation convergence assures that

lim
t→∞

sup
f

∣∣∣∣Eν [f (Nt)]−
∫

M
fdΠ

∣∣∣∣ = 0

where the supf is taken over all bounded measurable functions f . Hence the
convergence assured in 22 and Corollary 6 is intermediate between the weak
convergence and the total variation convergence.

[72] show that the state 0 is positive recurrent for the birth-death process
N ′
· on N iff either b0 = 0 or b0 > 0 and one of the following holds:

bm = 0 for some m ≥ 1 and dn > 0 ∀0 < n ≤ m (6.32)
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or

bn > 0 for all n ≥ 0 and dn > 0 ∀n ≥ 1 and (6.33)
∞∑

n=1

b0 . . . bn−1

d1 . . . dn
< ∞

If b0 > 0, then Condition (6.33) implies that the hypotheses of Lemma 6(ii)
holds for all n ∈ N.

6.3.2 Novelty of our ergodicity conditions

Recall that a Markov Poisson location (MPL) process is defined in Example 3
as a SMQ process for which

rxy (ν) ≡ 1

Proposition 24 Let {Xt} be a MPL process. The total number of users {Xt (D)}
may be viewed as a M/GI/∞ queue with arrival rate λ = λ (o,D). If the traffic
equations (these are the balance equations for the routing rates which will be
written later (6.47)) admit a solution ρ(·) with finite mass, ρ(D) < ∞, then the
mean service duration of the equivalent M/GI/∞ queue, say µ−1, is given by

µ−1 =
ρ(D)

λ (o,D)
(6.34)

The average time between successive visits of {Xt} to ∅ is given by

E∅
[
T ∅

]
=

eρ(D)

λ (o,D)
< ∞ (6.35)

and the return time of {Xt} to ∅ from any initial state is almost surely finite.

Proof. In the case of a MPL process, users arrive, move and depart from
D completely independently of each other. The motion dynamics of each user
may be described by a Markov process (called motion process) on the state
space D̄ with generator λ (·, ·). Let τo be the return time of the motion process
to o.

Consider the whole system as a single queue. Let T1, T2, . . . be the sequence
of exogenous arrival times. The arrival point process Φ =

∑
n∈Z δTn is a Poisson

process with intensity λ (o,D). The user arriving at time Tn will be called
user n for simplicity. The service duration of a user n equals the return time
of the motion process of user n to o, say τo

n. The random variables {τo
n} are

i.i.d. (independent and identically distributed) and independent from the arrival
process. Hence we get a M/GI/∞ queue with arrival rate λ = λ (o,D) and mean
service duration, say µ−1 = E [τo

n], which we will determine later. This finishes
the proof of the first part of the proposition.
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Assume now that the traffic equations admit a solution ρ(·) with finite mass,
ρ(D) < ∞. Then the motion process of each user is positive recurrent and its
invariant distribution π(·) is obtained by normalizing ρ(·),

π(A) =
ρ(A)
ρ(D̄)

=
ρ(A)

1 + ρ(D)
, A ∈ D̄

in particular

π({o}) =
1

1 + ρ(D)

By properties of Markov processes, we have

π({o}) =
1

λ (o,D)Eo [τo]

where Eo [·] designates the expectation conditionally to that the motion process
starts at state o. Hence

Eo [τo] =
1 + ρ(D)
λ (o,D)

In order to get the mean service duration of the equivalent M/GI/∞ queue, we
have to remove from Eo [τo] the mean sojourn duration of the motion process
at state o which equals 1/λ (o,D), hence we get

µ−1 =
ρ(D)

λ (o,D)

which proves (6.34).
The average time between successive visits of a MPL process {Xt} to ∅

equals the expectation of the busy period in a M/GI/∞ queue which equals [37,
p.37]

eλ/µ

λ
=

eρ(D)

λ (o,D)

hence we get (6.35).
The last part of the proposition is due to the ergodicity of the M/GI/∞

queue when λ/µ = ρ(D) < ∞.

Remark 13 The problem adressed in Proposition 24 was already adressed in [109,
Theorem 4] where the ergodicity condition is ρ(D) < 1/2 which is much more
constraining than the condition ρ(D) < ∞ in Proposition 24. (Indeed, with the
convention ρ ({0}) = 1−ρ(D) made in [109, Theorem 4], ρ(·) isn’t reversible with
respect to the routing rates λ (·, ·). Such reversibility holds with the convention
ρ ({0}) = 1.)

Remark 14 Our ergodicity conditions presented in Section 6.3.1 can be seen as
en extension of the results on ergodicity of spatial birth death processes in [97]
and we will now comment on the ergodicity result for spatial queueing systems
given in [106, Chapter 10]. The open spatial queueing system considered there is
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a special case of our SMQ process, where rxy(ν) = ψx(ν) for some function ψ·(·).
In this case in [106, Theorem 10.5] one considers, instead of our dominating
discrete birth-and-death process, a MPL process with the routing kernel

λ̂(x,B) = b̄xλ(x,B), x ∈ D̄, B ∈ D̄

where

b̄x =

{
infν 6=∅ ψx(ν) for x ∈ D
supν ψo(ν) for x = o

provided b̄0 < ∞ and b̄x > 0 for x ∈ D. As observed in the prove of the
Theorem 10.5 there, it is possible to couple the original Whittle process {Nt} with
this MPL process, call it {X̂t}, in such a way that Nt(D) ≤ X̂t(D) for all t ≥ 0.
Then, as observed in this proof too, for ∅ to be the positive recurrent state of
{Nt} it suffices to assume that the same holds true for {X̂t}. By Proposition 24,
the necessary and sufficient condition for this latter is

∫

D
1/b̄x ρ(dx) < ∞ (6.36)

where ρ(·) is the solution of the traffic equations (6.47), which is much less
constraining than b̄o

∫
D 1/b̄x ρ(dx) < 1 used in [106] (c.f. condition (10.11)

there). Note also that our dominating birth-and-death process in the case of a
Whittle network has the following rates

bn = sup
ν(D)=n

λ(o,D)ψo(ν) ≤ b̄oλ(o,D) (6.37)

dn = inf
ν(D)=n

∫

D
ψx(ν)λ(x, {o}) ν(dx) ≥ inf

ν(D)=n

∫

D
b̄xλ(x, {o}) ν(dx) (6.38)

In contrast to [106, Theorem 10.5] we do not require b̄o < ∞, which would imply
supn bn < ∞. Our Lemma 6 combined with the results on the ergodicity of the
discrete birth-and-death process gives the result also when bn are unbounded.
Indeed suppose that

inf
x∈D

b̄xλ(x, {o}) = ε > 0, (6.39)

then we have by (6.38) that dn ≥ nε > 0 and thus by Lemma 6 and (6.33) ∅ is
positive recurrent for Nt if

∞∑
n=1

b0 . . . bn−1

εnn!
< ∞ (6.40)

For this latter condition supn bn < ∞ is sufficient but not necessary. As a final
comment, note also that in our approach to ergodicity, we do not require a’priori
explicit form of the invariant measure and even existence of the solution of the
traffic equations.
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6.3.3 Invariance of the limiting distribution

We aim now to prove that under suitable sufficient conditions, the probability
measure Π given by (6.30) is the unique invariant probability measure. (Recall
that a non-null measure is said invariant if it satisfies (6.4).)

Lemma 7 If ∅ is a positive recurrent state for the generator q, then

P
{

T ∅ < ∞|N0 = ν
}

= 1, for Π-almost all ν ∈M

Proof. Consider some Γ ∈M such that ∀ν ∈ Γ,

P
{

T ∅ < ∞|N0 = ν
}

< 1

We will show that Π (Γ) = 0 which will proves the lemma. Let Ft = σ {Ns : s ≤ t};
T be the return time to Γ which is a stopping time (for a Markov jump process,
the return time to any measurable set is a stopping time). Let τ be the return
time to ∅ after T , i.e.

τ = inf {t ≥ T : Nt = ∅}
Observe that τ = h (NT+t : t ≥ 0) where h is defined as follows: for every
x : R+ →M, h (x) = inf {t ≥ 0 : xt = ∅}. We have a.s. on {T < ∞},

E∅
[
1

{
T ≤ T ∅

}
τ
]

= E∅
[
E

[
1

{
T ≤ T ∅

}
τ |FT

]]

= E∅
[
1

{
T ≤ T ∅

}
E [τ |FT ]

]

= E∅
[
1

{
T ≤ T ∅

}
E [h (NT+t : t ≥ 0) |FT ]

]

= E∅
[
1

{
T ≤ T ∅

}
ENT

[h (Nt : t ≥ 0) |FT ]
]

= E∅
[
1

{
T ≤ T ∅

}
ENT

[
T ∅

]]

where the first and second equalities are due to the properties of conditional
expectation and the fourth equality is due to the strong Markov property [10,
p.34]. (Our process is a Markov jump process, then it has the strong Markov
property by [71, Theorem 12.14 p.237]). On the other hand 1

{
T ≤ T ∅

}
τ ≤ T ∅,

then
E∅

[
1

{
T ≤ T ∅

}
ENT

[
T ∅

]]
≤ E∅

[
T ∅

]
< ∞

But for each ν ∈ Γ,Eν

[
T ∅

]
= ∞ (because P

{
T ∅ = ∞|N0 = ν

}
> 0) then for

each ω ∈ Ω,ENT (ω)

[
T ∅

]
= ∞. We deduce that P∅

{
T ≤ T ∅

}
= 0. From (6.30)

we deduce that

Π (Γ) =
1

E∅
[
T ∅

]E∅
[∫ T∅

0

1 {Nt ∈ Γ} dt

]
= 0

which finishes the proof.
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Proposition 25 If ∅ is a positive recurrent state for the generator q, then

(i) limt→∞PΠ {Nt ∈ Γ} = Π(Γ) for all Γ ∈M; and

lim
t→∞

EΠ [f (Nt)] =
∫

M
fdΠ

for every bounded measurable function f :M→ R;

(ii) Π is an invariant probability measure;

(iii) If Q is an invariant probability measure, such that

P
{

T ∅ < ∞|N0 = ν
}

= 1, for Q-almost all ν ∈M

then Q = P .

Proof.

(i) For Γ ∈M,

lim
t→∞

PΠ {Nt ∈ Γ} = lim
t→∞

∫

M
P {Nt ∈ Γ|N0 = ν}Π(dν)

= lim
t→∞

∫

M
Pν {Nt ∈ Γ}Π(dν)

=
∫

M
lim

t→∞
Pν {Nt ∈ Γ}Π(dν)

where the last equality is due to the dominated convergence theorem. Us-
ing Lemma 7 and Corollary 6, finishes the proof of limt→∞PΠ {Nt ∈ Γ} =
Π(Γ) for all Γ ∈ M. The second assertion in (i) follows from dominated
convergence Theorem.

(ii) Fix some t ≥ 0. By (i) lims→∞ΠPs+t (Γ) = Π (Γ). On the other hand

ΠPs+t (Γ) = (ΠPs)Pt (Γ)

=
∫

M
Pt (ν, Γ) (ΠPs) (dν)

= EΠ [Pt (Ns,Γ)]

which converges when s → ∞ to
∫
M Pt (ν, Γ)Π (dν) = (ΠPt) (Γ) which

follows from (i) applied to the function f (ν) = Pt (ν, Γ). Then Π (Γ) =
(ΠPt) (Γ) for all t ∈ R+, Γ ∈ M. (Another proof of the fact that Π is in-
variant may be obtained by proceeding as in the proof of [10, Theorem 3.2
p.200] using only the weak convergence.)
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(iii) Lets take an invariant measure Q; i.e. (QPt) (Γ) = Q (Γ). For all t ≥ 0,
the distribution of Nt will be PQ {Nt ∈ Γ} = (QPt) (Γ) = Q (Γ). On the
other hand

lim
t→∞

PQ {Nt ∈ Γ} = lim
t→∞

QPt (Γ)

= lim
t→∞

∫

M
Pν {Nt ∈ Γ}Q (dν)

=
∫

M
lim

t→∞
Pν {Nt ∈ Γ}Q (dν)

=
∫

M
Π(Γ) Q (dν) = Π (Γ)

where the third equality is due to the dominated convergence theorem;
and the fourth equality is due to the fact that P

{
T ∅ < ∞|N0 = ν

}
= 1

for Q-almost ν ∈M and Corollary 6. Hence Q = P .

6.3.4 Time averages

We will give one result concerning some time average limits (such limits are
used as the definition of the blocking probability in wireless networks).

Assume that there exists an invariant probability measure Π. First observe
that there exists a stationary version of the q-process {Nt}t∈R with doubly
infinite time which may be viewed as a random object taking its values in the
set of functions R→ D which are right-continuous, piecewise constant and with
a finite number of discontinuities in each finite interval. Equivalently {Nt} may
be viewed a marked point process

∑
n∈Z δTn,Nn where {Tn}n∈Z are the jump

times (with the usual convention T0 ≤ 0 < T1) and Nn = NTn . Considering
the canonical space as in [17, Example 1.1.6 p.9], we see that there exists a
probability space (Ω,F ,PΠ) and a flow {θt} such that PΠ is θt-invariant and
{Nt} is θt-compatible. (This probability space is eventually enlarged to include
some supplementary randomness.) From now on we consider this (enlarged)
probability space and we denote it by (Ω,F ,PΠ) and we denote the flow by
{θt}.

Let Φ be the point process on R counting the jump times {Tn}n∈Z and Φ∅
be the point process on R counting times

{
T ∅n

}
n∈Z of visits to state ∅ (T ∅0 ≤

0 < T ∅1 ). Note that T ∅1 equals the return time of the q-process to state ∅ which
was previously denoted T ∅. Note that Φ and Φ∅ are stationary with respective
intensities λ = EΠ [Φ(0, 1]] and λ∅ = EΠ [Φ∅(0, 1]].

Lemma 8 If ∅ is a positive recurrent state for the generator q, then 0 < λ∅ <
∞. In this case we denote P∅ the Palm probability associated to Φ∅.

Proof. Note that λ∅ = 1/E∅
[
T ∅

]
> 0 because E∅

[
T ∅

]
< ∞ by assumption.

On the other hand E∅
[
T ∅

] ≥ E∅ [T1] = 1/q (∅,M) > 0, then λ∅ < ∞.
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By the Slivnyak inverse construction [17, Section 1.3.5 p.25], it is easy to
prove that P∅ equals the Palm probability P0

∅ associated to Φ∅. This justifies
the notation suggested in the Lemma.

Let {τn}n≥1 be a renewal process on (0, +∞) and denote τ0 = 0. We say
that a process {Xt}t≥0 is cumulative with respect to {τn}n≥1, if X0 = 0; for
any n ≥ 0, {Xτn+t −Xτn

}t≥0 is independent from τ1, . . . , τn and {Xt}t<τn
; and

the distribution of {Xτn+t −Xτn}t≥0 is independent of n [10, p.178]. We will
say that a point process N on R is cumulative with respect to {τn}n≥1 if the
associated process {N(0, t]}t≥0 is so.

Let H be a measurable subset of D× D− diag (D) and let ΦH be the point
process counting the H-transitions of {Nt} defined by

ΦH (B) =
∑

n∈Z
1 {(Nn−1, Nn) ∈ H} 1B (Tn) , B ∈ B (R) (6.41)

Note that we may write ΦH(0, t] =
∑

k≥1 1 {(Nk−1, Nk) ∈ H} 1 {0 < Tk ≤ t}
then ΦH(0, T ∅n+t]−ΦH(0, T ∅n ] =

∑
k≥1 1 {(Nk−1, Nk) ∈ H} 1

{
T ∅n < Tk ≤ T ∅n + t

}

which shows that ΦH is cumulative with respect to
{
T ∅n

}
.

Proposition 26 Suppose that ∅ is a positive recurrent state for the generator
q and let Φ′ be a point process on R. We have

EΠ [Φ′(0, 1]] = λ∅E∅
[
Φ′(0, T ∅]

]
(6.42)

Moreover

(i) If Φ′ is cumulative with respect to Φ∅ and EΠ [Φ′(0, 1]] < ∞, then

lim
t→∞

t−1Φ′(0, t] = EΠ [Φ′(0, 1]] , a.s. (6.43)

for all initial state ν such that P
{
T ∅ < ∞|N0 = ν

}
= 1.

(ii) If Φ′ is a point process counting the H-transitions, then

EΠ [Φ′(0, 1]] = EΠ [q (N, HN )] (6.44)

where HN = {ν ∈M : (N, ν) ∈ H}.
Proof. We aim now to apply the Swiss army formula [17, Formula (1.3.28)

p.29]. With the notations of the previous reference, we define A = Φ∅, D
such that τn = T ∅n+1, X (t) = 1, Z (t) = 1, B (t) = Φ′(0, t], then we have
W0 = τ0−T ∅0 = T ∅1−T ∅0 = T ∅1 , P∅-a.s. Then the Swiss army formula gives (6.42).

(i) We aim now to apply [10, Theorem 3.1 p.178] to the process {Φ′(0, t]}.
Let U = Φ′(0, T ∅] and V = max0≤t<T∅ |Φ′(0, t]| = |U |. By (6.42), we
have E∅ |U | < ∞ then E∅ [V ] < ∞. Then [10, Theorem 3.1 p.178] gives
limt→∞ t−1Φ′(0, t] = λ∅E∅

[
Φ′(0, T ∅]

]
, a.s. which together with (6.42) im-

plies (6.43).
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(ii) We have

EΠ [Φ′(0, 1]] = EΠ

[∑

n∈Z
1 {(Nn−1, Nn) ∈ H} 1 {0 < Tn ≤ 1}

]

= EΠ

[∫ 1

0

∫

M
1 {(Ns, ν) ∈ H} q (Ns, dν) ds

]

= EΠ

[∫ 1

0

q (Ns,HNs
) ds

]

= EΠ [q (N,HN )] (by stationarity)

where the second equality is due to Lévy’s formula.

Corollary 7 If ∅ is a positive recurrent state for the generator q, then the
intensity λ of Φ is given by λ = EΠ [q (N)] > 0.

Proof. From Proposition 26 (ii) we have λ = EΠ [q (N)]. We aim now
to show that λ is non-null. Observe that λ = EΠ [q (N)] ≥ q (∅)Π (∅) =
q (∅,M)Π (∅). Note first that 0 < 1/q (∅,M) =E∅ [T1] ≤E∅

[
T ∅

]
< ∞ by as-

sumption; then q (∅,M) > 0. On the other hand by (6.30) Π (∅) =E∅ [T1] /E∅
[
T ∅

]
>

0, then λ > 0.

Remark 15 Here is another proof of (6.44). Let Zk = 1 {(Nk−1, Nk) ∈ H}.
Note that E∅

[
Φ′(0, T ∅]

]
equals

E∅

[∫

(0,T∅]
Z0 ◦ θtΦ(dt)

]

= E∅


∑

k≥1

Zk1
{

Tk ≤ T ∅
}




= E∅


∑

k≥1

Zk1
{

Tk ≤ T ∅
}

q (Nk−1)E∅ [Tk − Tk−1| {Nn}]



= E∅


∑

k≥1

E∅
[
Zk1

{
Tk ≤ T ∅

}
q (Nk−1) (Tk − Tk−1) | {Nn}

]



= E∅


∑

k≥1

Zk1
{

Tk ≤ T ∅
}

q (Nk−1) (Tk − Tk−1)




= E∅

[∫ T∅

0

Z0 ◦ θtq (N−1 ◦ θt) dt

]

= λ−1
∅ EΠ [Z0q (N−1)] (Inversion formula [17, Formula (1.2.25) p.20])

= λ−1
∅ EΠ [q (N−1) 1 {(N−1, N0) ∈ H}] (6.45)
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where for the third equality we use
{
Tk ≤ T ∅

}
= {N1 6= ∅, . . . , Nk−1 6= ∅}. The

sequence {Nk}k∈Z is a discrete time Markov jump process with transition Kernel
P (ν, dµ) = q (ν, dµ) /q (ν), then, for any A,A0 ∈M,

PΠ {N−1 ∈ A,N0 ∈ A0} =
∫

A

Π(dν)
q (ν, A0)

q (ν)

=
∫

M
Π(dν) 1 {ν ∈ A}

∫

M

q (ν, dν0)
q (ν)

1 {ν0 ∈ A0}

then, for any measurable function f :M×M→ R+,

EΠ [f (N−1, N0)] =
∫

M
Π(dν)

∫

M

q (ν, dν0)
q (ν)

f (ν, ν0)

In particular

EΠ [q (N−1) 1 {(N−1, N0) ∈ H}] =
∫

M
Π(dν)

∫

M

q (ν, dν0)
q (ν)

q (ν) 1 {(ν, ν0) ∈ H}

= EΠ

[∫

M
1 {(N−1, ν) ∈ H} q (N−1, dν)

]

= EΠ

[
q
(
N−1,HN−1

)]
(6.46)

Equations (6.45) and (6.46) implies λ∅E∅
[
Φ′(0, T ∅]

]
= EΠ [q (N,HN )] which

together with (6.42) imply (6.44).

6.3.5 Countable case

Proposition 27 Consider an at most countable SMQ. Suppose that the SMQ
generator q given by (6.8) is regular and irreducible. Suppose that a probability
measure Π is invariant with respect to q. Then q is ergodic.

Proof. By [34, Theorem 4.17 p.129], Π is invariant with respect to the
transition functions associated to q, then [8, Proposition 5.1.6 p.160] finishes
the proof.

6.4 Invariant probability measure

In this section we gather results concerning invariant measures for the SMQ
generator q given by (6.8).

The formula (6.30) does not give Π in an explicit form. Studying the global
balance equation, we can sometimes express Π in a more tractable way. This
the case when the routing kernel λ(·, ·) satisfies certain traffic equations and
r(·, ·) are “balanced” in some way which will be defined soon.

Definition 2 Traffic equations. We call a locally finite measure ρ(·) on D̄
(defined in (6.7)) a solution of the traffic equations if

ρ {o} = 1,

∫

B

λ
(
x, D̄

)
ρ (dx) =

∫

D̄
λ (y,B) ρ (dy) , B ∈ D̄ (6.47)
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Moreover, we will say that λ(·, ·) is reversible with respect to ρ if the equa-
tions (6.47) hold with D̄ replaced by any A ∈ D̄.

Note that (6.47) may be decomposed in two equations

λ
(
o, D̄

)
=

∫

D̄
λ (y, {o}) ρ (dy) (6.48)

∫

B

λ
(
x, D̄

)
ρ (dx) =

∫

D̄
λ (y,B) ρ (dy) , B ∈ D (6.49)

By standard arguments from indicator functions, to simple functions and then
to non-negative functions, we may show that

∫

D̄
λ

(
x, D̄

)
h (x) ρ (dx) =

∫

D̄×D̄
h (x)λ (y, dx) ρ (dy) (6.50)

for every D̄-measurable function h : D̄→ R+.

Definition 3 Service rate balance. We say that the service rates r : D̄ ×
D̄×M→ R+, (x, y, ν) 7→ rxy (ν) are balanced if there exists some measurable
function Ψ : M→ (0,∞) such that

Ψ(ν) r (ν, Txyν) = Ψ (Txyν) r (Txyν, ν) , x 6= y ∈ D̄, ν ∈M, νx > 0

In particular Whittle service rates ψx (ν) are Ψ-balanced iff

Ψ (ν)ψx (ν) = Ψ (Txyν)ψy (Txyν) , x 6= y ∈ D̄, ν ∈M, νx > 0

Remark 16 Serfozo [106] calls the quantity

φx (ν) = νxψx (ν)

service rates. In fact φx (ν) may be viewed as the service rate per location and
ψx (ν) may be viewed as the service rate per user. It is easy to see that if ψx is
Ψ-balanced, then φx is Φ-balanced where

Φ(ν) = Ψ (ν)
1∏

x∈supp(ν)νx!

6.4.1 Balance for Whittle SMQ

Proposition 28 Consider a Whittle generator q such that the traffic equa-
tions (6.47) have a solution some measure ρ on D̄ and such that the service
rates are balanced with respect to some measurable function Ψ : M → (0,∞).
Suppose that

ρ
(
D̄

)
< ∞ (6.51)

and
EΠρ [Ψ] =

∫

M
Ψ(ν)Πρ (dν) < ∞ (6.52)
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where Πρ is the distribution of the Poisson process on D with intensity measure
ρ. If we normalize Ψ such that EΠρ

[Ψ] = 1, then the Gibbs distribution ΠΨ

having density Ψ with respect to the Poisson process Πρ is an invariant measure
for q. (The Gibbs distribution is defined in Example 2.)

Proof. By the form of the SMQ generator q, the left-hand side of (6.5) may
be written

I =
∫

Γ

q (ν,M)ΠΨ (dν)

=
∫

M
ΠΨ (dν) 1Γ (ν)

[
ψo (ν)λ

(
o, D̄

)
+

∫

D
ν (dx) 1Γ (ν)ψx (ν)λ

(
x, D̄

)]
(6.53)

Note that the second term in the right-hand side of Equation (6.53) can be
written as

I2 =
∫

M
ΠΨ (dν)

∫

D
ν (dx) g (x, ν − δx)

where

g (x, ν) = 1Γ (ν + δx)ψx (ν + δx) λ
(
x, D̄

)

Since ΠΨ is the Gibbs distribution, by Proposition 20,

I2 =
∫

M
ΠΨ (dν)

∫

D
ρ (dx) g (x, ν)

Ψ(ν + δx)
Ψ(ν)

=
∫

M
ΠΨ (dν)

∫

D
ρ (dx) 1Γ (ν + δx)ψx (ν + δx)λ

(
x, D̄

) Ψ(ν + δx)
Ψ(ν)

Note also that ρ({o}) = 1 and interpreting ν + δo ≡ ν we can write the first
term in the right-hand side of Equation (6.53) as

I1 =
∫

M
ΠΨ (dν) ρ ({o}) 1Γ (ν + δo)ψo (ν + δo)λ

(
o, D̄

) Ψ(ν + δo)
Ψ(ν)

Consequently

I = I1 + I2

=
∫

M
ΠΨ (dν)

∫

D̄
ρ (dx) 1Γ (ν + δx)ψx (ν + δx) λ

(
x, D̄

) Ψ(ν + δx)
Ψ(ν)

Consider the function h : D̄→ R+ defined by

h (x) = 1Γ (ν + δx)ψx (ν + δx)Ψ (ν + δx)
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We have
∫

D̄
ρ (dx)λ

(
x, D̄

)
h (x) =

∫

D̄×D̄
ρ (dy) h (x)λ (y, dx)

=
∫

D̄×D̄
ρ (dy) 1Γ (ν + δx)ψx (ν + δx)Ψ (ν + δx)λ (y, dx)

=
∫

D̄×D̄
ρ (dy) 1Γ (ν + δx)ψy (ν + δy) Ψ (ν + δy)λ (y, dx)

=
∫

D̄
ρ (dy) ψy (ν + δy)Ψ (ν + δy)λ (y, ToΓν)

where we use (6.50) for the first equality and Ψ-balance property for the third
one. (The notation ToΓν is defined by (6.11).) Hence

I =
∫

M
ΠΨ (dν)

∫

D̄
ρ (dy)ψy (ν + δy)

Ψ (ν + δy)
Ψ(ν)

λ (y, ToΓν)

The right-hand side of (6.5) may be written

J =
∫

M
q (ν, Γ)ΠΨ (dν)

=
∫

M
ΠΨ (dν)

[
ψo (ν) λ (o, ToΓν) +

∫

D
ν (dx)ψx (ν) λ (x, TxΓν)

]
(6.54)

Note that the second term in the right-hand side of Equation (6.54) can be
written as

J2 =
∫

M
ΠΨ (dν)

∫

D
g (x, ν − δx) ν (dx)

where
g (x, ν) = ψx (ν + δx)λ (x, ToΓ (ν))

Since ΠΨ is the Gibbs distribution, by Proposition 20,

J2 =
∫

M
ΠΨ (dν)

∫

D
ρ (dx) g (x, ν)

Ψ(ν + δx)
Ψ(ν)

=
∫

M
ΠΨ (dν)

∫

D
ρ (dx)ψx (ν + δx)λ (x, ToΓ (ν))

Ψ(ν + δx)
Ψ(ν)

Note also that ρ({o}) = 1 and interpreting ν + δo ≡ ν we can write the first
term in the right-hand side of Equation (6.54) as

J1 =
∫

M
ΠΨ (dν) ρ ({o}) ψo (ν + δo)λ (o, ToΓ (ν))

Ψ(ν + δo)
Ψ(ν)

Consequently

J = J1 + J2

=
∫

M
ΠΨ (dν)

∫

D̄
ρ (dx)ψx (ν + δx) λ (x, ToΓ (ν))

Ψ(ν + δx)
Ψ(ν)
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Note that J = I which finishes the proof.
The Gibbs distribution in Proposition 28 is given by

ΠΨ (Γ) =
∞∑

n=0

e−ρ(D)ρ (D)n

n!
ΠΨ (Γ) =

∞∑
n=0

e−ρ(D)ρ (D)n

n!

∫

Γ

Ψ(ν)Π(n)
ρ (dν) , Γ ∈M

where Π(n)
ρ is given by

Π(n)
ρ (Γ) =

∫

Dn

1

(
n∑

k=1

δxk
∈ Γ

)
ρ (dx1)
ρ (D)

. . .
ρ (dxn)
ρ (D)

, n ∈ N, Γ ∈M

Remark 17 An invariant measure for the spatial Whittle generator is proposed
in Serfozo’s pioneer work [106, 67]. We shall now compare this invariant mea-
sure with the invariant distribution given in Proposition 28.

Note that the term πn in [106, Equation (10.5) p.269] and [67, Equation (5)]
should be replaced by 1

n!πn as done in [107]. Indeed the proof in [106, 67]
accounts well for the motions but not for the births and deaths.

With this replacement, the invariant distribution given in Proposition 28 is
just a renomalized version of Serfozo’s invariant measure.

Example 5 In the particular case where D is finite D = {1, 2, . . . , D}, we have,
for ν ∈M,

Π(n)
ρ (ν) =

(
n

ν1 . . . νD

)
1

ρ (D)n

∏
x∈ν

ρνx
x

=
n!

ρ (D)n

∏
x∈ν

ρνx
x

νx!

where we use for ν = (ν1, . . . , νD) the notation ν =
∑

x∈D νxδx and denote
n = ν (D). Then

ΠΨ (ν) = e−ρ(D)Ψ(ν)
∏
x∈ν

ρνx
x

νx!

In this case

EΠρ [Ψ] =
∞∑

n=0

e−ρ(D)ρ (D)n

n!
EΠρn [Ψ]

=
∞∑

n=0

e−ρ(D)ρ (D)n

n!

∑

ν:ν(D)=n

Ψ(ν)
n!

ρ (D)n

∏
x∈ν

ρνx
x

νx!

= e−ρ(D)
∞∑

n=0

∑

ν:ν(D)=n

Ψ(ν)
∏
x∈ν

ρνx
x

νx!
(6.55)
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6.4.2 Balance for SMQ

Suppose that λ is reversible with respect to some measure ρ on D̄, i.e.
∫

B

λ (x,C) ρ (dx) =
∫

C

λ (y, B) ρ (dy) , B, C ∈ D̄ (6.56)

Note that (6.56) may be decomposed in two equations

λ (o, C) =
∫

C

λ (y, {o}) ρ (dy) , C ∈ D̄ (6.57)

∫

B

λ (x,C) ρ (dx) =
∫

C

λ (y, B) ρ (dy) , B ∈ D, C ∈ D̄ (6.58)

By standard arguments from indicator function, to simple functions and then
to non-negative functions, it is easy to show that

∫

D̄×D̄
h (x, y)λ (x, dy) ρ (dx) =

∫

D̄×D̄
h (x, y) λ (y, dx) ρ (dy) (6.59)

for every D̄ × D̄-measurable function h : D̄× D̄→ R+.

Proposition 29 If the conditions of Proposition 28 are satisfied for a SMQ
generator q given by (6.8) and if λ is reversible with respect to ρ, then q is
reversible with respect to ΠΨ.

Proof. It suffices to prove that

I (Γ,K) =
∫

Γ

q (ν, K)ΠΨ (dν)

is symmetric with respect to Γ,K, i.e.; that I(Γ,K) = I(K,Γ) for all K, Γ ∈M.
By the form of the SMQ generator q

I (Γ,K) =
∫

Γ

q (ν,K)ΠΨ (dν)

=
[∫

M
ΠΨ (dν) 1Γ (ν)

∫

D̄
λ (o, dy) r (ν, Toyν) 1K (Toyν)

]
(6.60)

+
[∫

D
ν (dx)

∫

D̄
λ (x, dy) r (ν, Txyν) 1K (Txyν)

]

Note that the second term in the right-hand side of Equation (6.60) can be
written as

I2 =
∫

M
ΠΨ (dν)

∫

D
ν (dx) g (x, ν − δx)

where
g (x, ν) = 1Γ (ν + δx)

∫

D̄
λ (x, dy) r (ν + δx, Toyν) 1K (Toyν)
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interpreting Tooν ≡ ν. Since ΠΨ is the Gibbs distribution, by Proposition 20,

I2 =
∫

M
ΠΨ (dν)

∫

D
ρ (dx) g (x, ν)

Ψ(ν + δx)
Ψ(ν)

=
∫

M
ΠΨ (dν)

∫

D
ρ (dx)

Ψ(ν + δx)
Ψ(ν)

1Γ (ν + δx)
∫

D̄
λ (x, dy) r (ν + δx, Toyν) 1K (Toyν)

Note also that ρ({o}) = 1 and interpreting ν + δo ≡ ν we can write the first
term in the right-hand side of Equation (6.60) as

I1 =
∫

M
ΠΨ (dν) ρ({o})Ψ(ν + δo)

Ψ(ν)
1Γ (ν + δo)

∫

D̄
λ (o, dy) r (ν + δo, Toyν) 1K (Toyν)

Consequently

I (Γ,K) = I1 + I2

=
∫

M
ΠΨ (dν)

∫

D̄×D̄
ρ (dx)λ (x, dy) 1 (Toxν ∈ Γ, Toyν ∈ K) r (Toxν, Toyν)

Ψ(Toxν)
Ψ(ν)

The symmetry of I (·, ·) follows from (6.59) and the symmetry of Ψ (ν) r (ν, ζ).

Remark 18 Proposition 29 is due to Serfozo [107, 66]. A more general result
is given in [108, 109].

6.4.3 Invariant probability measure

Proposition 30 Assume that the generator q given by (6.8) is regular and let
Π be a probability measure on (M,M). The following statements hold true.

(i) If Π satisfies the balance equations (6.4), then Π is invariant with respect
to the transition functions associated to q.

(ii) If Π is reversible with respect to q, then Π is reversible with respect to the
transition functions associated to q.

Proof.

(i) (Cf. [34, Theorem 4.17 p.129]).

(ii) (Cf. [34, Theorem 6.7 p.230]).
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6.5 Mobility process for wireless networks

We give in the present section a Markov jump mobility process which may be
used for wireless networks. The reader may doubt about the relevance of a
Markov jump process to model mobility in wireless networks. In fact we don’t
assume that the user remains at a given position for some time and then jumps
to another place, but rather we account for the effect of the mobility on the
state of our system only if the position of the user changes appreciably.

Denote by D ⊂ R2 the cell served by the given base station u = 0. We may
model the internal mobility of users is D by a Markov jump process.

Specifically, assume that the users move independently of each other in D.
The sojourn duration of a given user at location x ∈ D is exponentially dis-
tributed with parameter λ′(x). Any user finishing its sojourn at location x,
is routed to a new location dy according to some probability kernel p′(x, dy),
where p′(x,D) = 1.

The above description corresponds to the Markov process on D with the
following generator (of the individual user mobility): λ(x, dy) = λ′(x)p′(x, dy).

A probability measure %(·) on D is invariant for this mobility Markov process
iff it satisfies the following equations

%(D) = 1,

∫

A

λ(x,D)%(dx) =
∫

D
λ(x,A)%(dx), A ∈ D (6.61)

6.5.1 Completely aimless mobility

We show now an example where we can calculate concretely the above mobility
parameters λ′(x) and p′(x, dy).

We consider the model described in [115]. It is based on the following as-
sumptions:

• The velocity vectors of the users are independent.

• The velocity direction is uniformly distributed in [0, 2π).

The authors of [70] call this model completely aimless motion.

Sojourn duration

We are interested in the user’s sojourn duration in a given geographic zone of
area A and perimeter L. Much as in [115], we derive a relation between the
average sojourn duration and the average velocity.

We are interested in the users crossing an infinitesimal element dl of the
border (for example from outside to inside) within an infinitesimal duration dt.
Such users are located in a rectangle of sides dl and V cosαdt, as illustrated in
Figure 6.1, where:

• V is the user’s velocity magnitude;
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• and α is the angle formed by the user’s velocity vector and the perpendic-
ular to dl.

zone

~v

v cos(α)dt

dl

Figure 6.1: Rectangle containing customers crossing an element dl of the border
during dt

Integrating over V and α, we obtain the average number of users crossing
an element dl of the border of the zone, from outside to inside, during dt

∫ π/2

−π/2

∫ +∞

0

V F (dV ) cos α
dα

2π
ρdldt =

υρ

π
dldt

where ρ is the intensity of users per surface unit, F is the cumulative distribution
function of the user’s velocity and υ = E [V ]. Then the average number of users
crossing the zone border per time-unit denoted λ (which is the average arrival
rate of users to the zone) is given by

λ = υρL/π (6.62)

where L is the perimeter of the zone.
Denote τ the average sojourn time of a user in a zone and M̄ the average

number of users in the zone. By Little’s formula, we have

M̄ = λτ

which gives

τ = M̄λ−1 = ρA
π

υρL
=

π

υ

A

L
(6.63)

where A is the surface of the zone. For a disc of radius R, we have A/L = R/2.
The authors of [70] consider an exponential distribution for the sojourn time.

This assumption is justified by [35].

6.5.2 Intracell mobility

The cell D is modeled by a disc of radius R which is divided into J rings. Each
ring denoted by j = 1, . . . , J is delimited by discs with radii rj−1 and rj where
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r0 = 0 and rJ = R. Let Aj = π
(
r2
j − r2

j−1

)
be the surface of ring j. Of course

J should be large enough to capture correctly the geometry of the problem.
Consider the case where mobility is within a given cell. Denote λ′j the inverse

of the average sojourn duration of users at ring j. Applying Equation (6.63)
gives

λ′j = υ
π

Lj

Aj
= 2υ

rj+rj−1
Aj

, j = 1, . . . , J − 1
λ′J = υ

π
LJ

AJ
= 2υ rJ−1

AJ

A user finishing its sojourn at ring j is routed:

• either to ring j − 1 or to ring j + 1 with respective probabilities p′j,j−1 =
rj−1/ (rj + rj−1) and p′j,j+1 = rj/ (rj + rj−1), if j = 2, . . . , J − 1;

• to ring 2 with probability 1, if j = 1;

• to ring J − 1 with probability 1, if j = J .

Hence
λj,j−1 = 2υ

rj−1
Aj

, j = 2, . . . , J

λj,j+1 = 2υ
rj

Aj
, j = 1, . . . , J − 1 (6.64)

Proposition 31 The mobility kernel (λjk; j, k ∈ {1, . . . , J}) where the λjk are
given by (6.64) admit

%j =
Aj

πR2
, j = 1, . . . , J (6.65)

as invariant probability measure, i.e. solution of (6.61),

Proof. Equations (6.61) may be written as follows




%j (λj,j−1 + λj,j+1) = %j−1λj−1,j + %j+1λj+1,j for j = 2, . . . , J − 1
%1λ1,2 = %2λ2,1

%JλJ,J−1 = %J−1λJ−1,J

For the rates (6.64) we get




%j
rj+rj−1

Aj
= %j−1

rj−1
Aj−1

+ %j+1
rj

Aj+1
for j = 2, . . . , J − 1

%1
r1
A1

= %2
r1
A2

%J
rJ−1
AJ

= %J−1
rJ−1
AJ−1

which clearly admits % given by (6.65) as solution.

Proposition 32 Reversibility of the routing kernel. Consider the mo-
tion rates (6.64), and let λoj > 0 and λjo > 0 be the arrival and departure rates
respectively. Then the routing kernel (λjk; j, k ∈ {0, 1, . . . , J}) is reversible, iff

λojλjkλko = λokλkjλjo (6.66)

which is equivalent to
λj+1,o

λjo
=

λo,j+1

Aj+1

Aj

λoj
(6.67)
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in which case λ is reversible with respect to ρ defined by

ρ0 = 1, ρj =
λoj

λjo
(6.68)

In the particular case where the intensity of arrivals per unit surface, say λ, is
constant, i.e. λoj = λAj, Condition (6.67) is equivalent to

λj+1,o = λjo

Proof. If λ is reversible, then by Kolmogorov criterion, we should have (6.66).
Inversely if (6.66) holds true, then

λoj

λjo
λjk =

λok

λko
λkj , and

λoj

λjo
λjo = λoj

hence λ is reversible with respect to ρ defined by (6.68).
Taking k = j + 1 in Equation (6.66) we get

λoj
rj

Aj
λj+1,o = λo,j+1

rj

Aj+1
λjo

and taking k = j − 1 in Equation (6.66) we get

λoj
rj−1

Aj
λj−1,o = λo,j−1

rj−1

Aj−1
λjo

which is true iff (6.67) holds true.

Proposition 33 Consider the motion rates (6.64), and let λoj > 0 and λjo > 0
be the arrival and departure rates respectively. Then for each speed υ ≥ 0, the
traffic equations associated to the routing kernel (λjk; j, k ∈ {0, 1, . . . , J})

ρ0 (υ) = 1 and ρj (υ)
J∑

k=0

λjk =
J∑

k=0

ρk (υ) λkj , j ∈ {1, . . . , J} (6.69)

admit a unique solution. Moreover

lim
υ→∞

ρj (υ) = Aj

∑J
k=1 λok∑J

k=1 Akλko

Proof. The routing kernel (λjk; j, k ∈ {0, 1, . . . , J}) is irreducible by the
positivity of the arrival and departure rates. Since the state space {0, 1, . . . , J}
is finite, the Markov process associated to the routing kernel is positive recurrent
and admits an invariant measure ρ with positive terms and unique up to a
multiplicative factor. Hence (6.69) admit a unique solution.

It remains to show that limυ→∞ ρj (υ) exists and is finite for all j ∈ {1, . . . , J}.
To this end we may write equations (6.69) in the matrix form ρ (υ) Λ = 0 where
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Λ = (λjk; j, k ∈ {0, 1, . . . , J}) with the diagonal terms chosen such that the row
sums are null. Note that Λ may be written in the form

Λ = υΛ(0) + Λ(1)

where

Λ(0) =




0 0 0 . . . 0
0 ∗ λ12/υ 0
0 λ12/υ ∗ λ23/υ
...

. . . . . . . . .
0 λJ−1,J/υ ∗




and

Λ(1) =




∗ λ01 . . . λ0J

λ10 ∗ . . . 0
...

...
. . .

...
λJ0 0 . . . ∗




with the diagonal terms chosen such that the row sums are null. Hence ρ (υ)
satisfies

ρ (υ)
(

Λ(0) +
1
υ

Λ(1)

)
= 0

In the case where υ is large, we say that Λ(0) and 1
υ Λ(1) are the unperturbed

generator and the perturbation respectively and since the unperturbed generator
is reducible, the perturbation is said to be singular. The existence and finiteness
of limυ→∞ ρj (υ) may be deduced from [43].

Note that we may get the expression of the limit from [43], but we give a
direct proof. Let ρj = limυ→∞ ρj (υ) for all j ∈ {1, . . . , J}. Dividing (6.69) by
υ and letting υ →∞ shows (ρj , j ∈ {1, . . . , J}) satisfies the traffic equations of
the mobility kernel and hence by Proposition 31

ρj = α
Aj

πR2
, j = 1, . . . , J

for some constant α. Summing equations (6.69) over j = 1, . . . , J we get

J∑

k=1

λok =
J∑

k=1

ρk (υ)λko

letting υ →∞ in the display above gives

α =
∑J

k=1 λok∑J
k=1

Ak

πR2 λko

which proves the formula given in the proposition for limυ→∞ ρj (υ).
(Historically the above problem is treated in [105], [39], [43] and references

therein. We may view the limiting behavior as υ goes to ∞ in terms of the so
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called aggregated process on the set of the ergodic classes of Λ(0), say {0, 1}
with generator [124, Theorem 7.4]

Λ̄ =
(

1 0
0 %

)
Λ(1)

(
1 0
0 1

)
=

(
−∑J

k=1 λok

∑J
k=1 λok∑J

k=1 %kλko −∑J
k=1 %kλko

)

The above perturbation problem with countable sate space, and in particular
the problem of finding an analytic series of ρ (υ) in 1

υ is treated in [5] or [123].)

6.5.3 Intercell mobility

Denote λ′u the inverse of the average sojourn duration of users at cell u. Applying
Equation (6.63) gives

λ′u =
υ

π

L

A
=

2υ

πR
(6.70)

where the perimeter equals L = 2πR and the area equals A = πR2. If each base
station has 6 neighbours as in the infinite or toric hexagonal model, then

λu,w =
1
6
λ′u =

υ

3πR

for each pair of neighbours u,w.
Note that in the case of intracell mobility, the average sejourn duration in

ring j, say τj , may be deduced from Equation (6.63)

τj = π
2υ (rj − rj−1) , j = 1, . . . , J − 1

τJ = π
2υ

r2
J−r2

J−1
rJ−1

Then the average sejourn duration in the cell is given by

J∑

j=1

τj =
π

2υ

r2
J

rJ−1
=

πR

2υ

R

rJ−1

If J is sufficiently large, then R
rJ−1

∼ 1 and the right hand side of the above
display is almost equal to πR

2υ which is the sojourn duration in a cell deduced
directly from Equation (6.63).

6.5.4 Complete mobility

Consider now a network of hexagonal cells such that each one has exactly 6
neighbours. Each cell is approximated by a disc and divided into J rings. The
cells are indexed by u ∈ U = {1, . . . , U}, and the rings by j ∈ J = {1, . . . , J}.
The ring j of the cell u is indexed by uj ∈ D = J×U.
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Remark 19 We may alternatively index the rings of the cell u as follows (u− 1)J+
1, . . . (u− 1) J + J . Hence each ring is identified by some x = {1, . . . , U × J}.
From a given such x, we may retreive the index of the corresponding cell u and
ring j by the Euclidean division

x− 1 = (u− 1)J + (j − 1) , 1 ≤ j ≤ J

Denote λ′uj the inverse of the average sojourn duration of users at ring uj.
Applying Equation (6.63) gives

λ′uj =
υ

π

Lj

Aj
= 2υ

rj + rj−1

Aj
, j ∈ J

A user finishing its sojourn at ring uj is routed:

• to either ring u (j − 1) or ring u (j + 1) with respective probabilities p′uj,u(j−1) =
rj−1/ (rj + rj−1) and p′uj,u(j+1) = rj/ (rj + rj−1), if j = 2, . . . , J − 1;

• to ring u2 with probability 1, if j = 1;

• to either ring u (J − 1) or ring wJ , where w is a neighbour of u, with re-
spective probabilities p′uJ,u(J−1) = rJ−1/ (rJ + rJ−1) and p′uJ,wJ = 1

6rJ/ (rJ + rJ−1),
if j = J .

Hence 



λuj,u(j−1) = 2υ
rj−1
Aj

, j = 2, . . . , J

λuj,u(j+1) = 2υ
rj

Aj
, j = 1, . . . , J − 1

λuJ,wJ = 1
3υ rJ

AJ
, w is a neighbour of u

(6.71)

The result of Proposition 31 may be easily extended to the complete mobility
case as follows

Proposition 34 The mobility kernel (λuj,wk; uj, wk ∈ J×U) given by (6.71)
admit

%uj = %j =
Aj

πR2
, j ∈ J, u ∈ U

as invariant probability measure, i.e. solution of (6.61).

Proof. Besides the proof of Proposition 31, it remains to show that

%J

[
λuJ,u(J−1) +

∑
w

λuJ,wJ

]
= %J−1λu(J−1),uJ + %J

∑
w

λwJ,uJ

which is equivalent to

%JλuJ,u(J−1) = %J−1λu(J−1),uJ

which holds true.
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Relation to intracell traffic equations

We aim in the present section to study the relation between the traffic equations
associated to complete mobility and those associated to intracell mobility.

If the arrival and departure rates don’t depend on the particular cell but
only on the ring in which they occur, then it is easy to extend the results of
Proposition 32 and Proposition 33 to the complete mobility case. Let’s for
example verify the reversibility annouced in Proposition 32 with respect to

ρuo = ρo = 1, ρuj = ρj =
λoj

λjo

Besides the proof of Proposition 31, it remains to show that

ρJλuJ,wJ = ρJλwJ,uJ

which clearly holds true.
The following proposition shows the relation between the solutions of the

traffic equations associated to intracell and complete mobility.

Proposition 35 Assume that the arrival and departure rates don’t depend on
the particular cell but only on the ring in which they occur. If

(
ρj ; j ∈ J̄

)
is

solution of the traffic equations associated to the routing kernel (λjk; j, k ∈ J),
then

(
ρuj ;uj ∈ D̄)

defined by

ρuo = ρo = 1, ρuj = ρj , u ∈ U, j ∈ J (6.72)

is solution of the traffic equations associated to the routing kernel
(
λuj,uk; uj, uk ∈ D̄)

.

Proof. Assume that
(
ρj ; j ∈ J̄

)
is a solution of the traffic equations as-

sociated to the routing kernel (λjk; j, k ∈ J). Let’s verify that
(
ρuj ; uj ∈ D̄)

defined by (6.72) satisfy the traffic equations associated to the routing kernel(
λuj,uk; uj, uk ∈ D̄)

, i.e.




ρj

(
λuj,o + λuj,u(j−1) + λuj,u(j+1)

)
= ρoλo,uj + ρj−1λu(j−1),uj + ρj+1λu(j+1),uj for j = 2, . . . , J − 1

ρ1 (λu1,o + λu1,u2) = ρoλo,u1 + ρ2λu2,u1

ρJ

[
λuJ,o + λuJ,u(J−1) +

∑
w λuJ,wJ

]
= ρoλo,uJ + ρJ−1λu(J−1),uJ +

∑
w ρJλwJ,uJ

which are clearly satisfied since λuj,uk = λjk and
∑

w λuJ,wJ =
∑

w λwJ,uJ .



Chapter 7

SMQ for elastic traffic

We consider here elastic traffic (i.e. messages having some amount of data to
transmit at a bit rate which may be chosen by the network).

The classical results for discrete single server queues are recalled in §14.A.1.
In particular analytical formulae for the throughput and delay for a M/GI/1
multiclass processor-sharing queue are recalled. The aim of the present chapter
is to extend these results to the case where the set of classes is continuous, and
where there is mobility between the different classes.

To this end we consider two Markovian models for wireless networks serving
elastic traffic: the Whittle model proposed for such networks in [25, § 2]; and a
wireless model, that we describe later. The fundamental difference between the
two models is that in the wireless model each user has some given data-volume
to transmit during the whole sojourn in the system, while in the Whittle of [25,
§ 2] each user has a different data-volume to transmit at each visited location,
and he does not move from this location until the end of the transmission of the
required volume. Consequently, when the Whittle model approaches congestion,
user mobility is being frozen, whereas it is not influenced by a congestion in the
wireless model.

Unfortunately the ergodicity conditions for established in § 6.3 are not help-
full in the case of elastic traffic, thus we need to establish ergodicity by alterna-
tive ways.

7.1 Whittle model

7.1.1 Model

The following model is classical for modelling wired networks serving elastic
traffic [98] in the discrete case, [106]):

(a2) Exogenous arrivals come to dx as a Poisson process with intensity λ (o, dx).

(b2) A user finishing its service at location x is routed to dy according to the

91
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probability Kernel p (x, dy) (Bernoulli routing) where p
(
x, D̄

)
= 1. As

usual y = o corresponds to the case where the user exits the system.

(c2) Define the location-call-volume at a location x as the residual amount
of data to transmit or receive at location x before a motion to another
location or the exit from the system. The location-call-volumes are as-
sumed i.i.d. exponentially distributed with parameters λ (x) (or equiva-
lently with mean 1/λ (x)) and independent from arrivals. (Note that the
location-call-volume equals the service duration if the user is served at
rate 1.)

(d2) The state of the system is ν ∈M counting the users at each location. The
rate allocated to the users at location x when the state of the system is
ν equals νxψx (ν) (i.e. the rate allocated for each user at location x is
ψx (ν)).

Note that the mobility process here is different from that given in Section 6.5.
In particular the sojourn duration of some user at a given position x depends on
the bit-rate allocated by the network, which in its turn depends on the number
and locations of the other users.

Proposition 36 The physical interpretation (a2)–(d2) corresponds to the math-
ematical description (a1)–(c1) in Section 6.2.3 and thus to the generator (6.8)
if {

λ (x) = λ
(
x, D̄

)
, x ∈ D

p (x,A) = λ (x,A) /λ
(
x, D̄

)
, x ∈ D, A ∈ D̄

and

rxy (ν) =
{

1, x = o, y ∈ D
ψx (ν) , x ∈ D, y ∈ D̄

Hence we get a Whittle network.

Proof. Clearly (a2) is the same as (a1) and (b2) is equivalent to (b1) if

p (x, A) = λ (x,A) /λ
(
x, D̄

)

It remains to show that (c2)-(d2) imply (c1). At a given location x there
are νx users, each of which, by (c2) and (d2), will depart from location x after
an exponentially-distributed duration of rate λ (x)ψx (ν). The next departure
will then take place at the minimum of these durations which is exponentially
distributed with rate λ (x) νxψx (ν), hence we obtain (c1) if

λ (x) = λ
(
x, D̄

)

Hence the departure rate λ (x)×νxψx (ν) comprises two factors. The first one
λ (x) may be interpreted as the rate of an exponentially-distributed location-
call-volume at location x (which is related to the motion within the system and
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the exist from the system) of a given user and the second one νxψx (ν) may
be interpreted as the total rate at location x when the state of the system is ν
(νxψx (ν) is called capacity by some authors [98]).

The Whittle model is classically used for wired networks, but it may be used
for wireless networks. We will discuss the relevance of the Whittle model for
wireless networks in Remark 21.

7.1.2 Service rate balance

The following lemmas will be useful in the study of the ergodicity and balance
of the service rates of the Whittle model for wireless networks.

Lemma 9 Let γ : D→ R∗+ be some measurable function. If, for all x ∈ D, y ∈
D̄, A ∈ D̄, we replace λ (x,A) by λ (x,A) /γ (x) and rxy (ν) by rxy (ν) γ (x) the
generator (6.8) remains invariant.

Proof. The products λ (x, {o}) rxo (ν) and λ (x, dy) rxy (ν) remain invariant,
then the generator (6.8) remains invariant.

Corollary 8 Consider a Whittle network where, for all x ∈ D, ν ∈ M, the
service rate ψx (ν) is in the form 1/ (h (ν (D)) γ (x)) for two positive measur-
able functions γ and h. By replacing λ (x,A) by λ (x,A) /γ (x) and ψx (ν) by
1/h (ν (D)) (for all x ∈ D, ν ∈M, A ∈ D̄) the generator (6.8) remains invariant.

Proof. Immediate consequence of Lemma 9.

Lemma 10 The service rates ψx (ν) = 1/h (ν (D)) are balanced by

Ψ(ν) = Z−1

ν(D)∏
n=1

h (n)

where Z is a normalizing constant. Let ρ be some measure on D and Πρ be the
distribution of a Poisson process of intensity measure ρ. If we normalize Ψ such
that EΠρ [Ψ] = 1, then

Z = EΠρ




ν(D)∏
n=1

h (n)


 = E

[
X∏

n=1

h (n)

]
(7.1)

where X a Poisson random variable with mean ρ (D). If ψx (ν) = 1/ν (D) and
if ρ (D) < 1, then

Z = e−ρ(D) (1− ρ (D))−1

and
Ψ(ν) = eρ(D) (1− ρ (D)) ν (D)!

Proof. We normalize Ψ such that EΠρ [Ψ] = 1. If ψx (ν) = 1/ν (D) then

Z = E [X!] =
∞∑

n=0

e−ρ(D) ρ (D)n

n!
n! = e−ρ(D) (1− ρ (D))−1
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7.1.3 Ergodicity

Particular case: no mobility

Proposition 37 Consider the model described in Section 7.1.1 without mobility
and with ψx (ν) = 1/h (ν (D)) , x ∈ D, ν ∈M. The corresponding SMQ {Nt} has
routing rates satisfying

λ (x,D) = 0, x ∈ D
and service rates given by

rxy (ν) =

{
1 if x = o, y ∈ D
1/h (ν (D)) if x ∈ D, y ∈ D̄

The total number of users {Nt (D)} may be viewed as a generalized processor-
sharing (GPS) M/GI/1 queue with arrival rate λ = λ (o,D), with mean volume
(i.e. amount of data to transmit or receive)

µ−1 =
1

λ (o,D)

∫

D

λ (o, dx)
λ (x, {o})

and such that, when there are n users in the queue, each one is served at rate
1/h (n).

If

λµ−1 =
∫

D

λ (o, dx)
λ (x, {o}) < lim

n→∞
n/h (n)

then the state ∅ is positive recurrent for the process {Nt} and the return time of
{Nt} to ∅ from any initial state is almost surely finite.

Proof. A user arrives at dx with probability λ (o, dx) /λ (o,D) and has a
location-call-volume which is exponentially distributed with mean 1/λ (x, {o}).
Hence at his arrival, a user has a volume with mean

µ−1 =
1

λ (o,D)

∫

D

λ (o, dx)
λ (x, {o})

The traffic intensity of the equivalent GPS queue is

λµ−1 = ρ(D)

The last part of the proposition is due to the properties of the GPS queue [78,
Proposition 4.1 and Remark 4.1].

Note that the traffic equations (6.47) admit the solution ρ(dx) = λ (o, dx) /λ (x, {o}),
then

ρ(D) = λµ−1

and the ergodicity condition writes

ρ(D) < lim
n→∞

n/h (n)
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Particular case: volume mean independent from location

Proposition 38 Consider the model described in Section 7.1.1 with location-
call-volume rates p(x, {o})λ(x) = µ where µ is a given constant (i.e. indepen-
dent from location x ∈ D) and with ψx (ν) = 1/h (ν (D)) , x ∈ D, ν ∈ M. The
corresponding SMQ {Nt} has routing rates satisfying

λ (x, {o}) = µ, x ∈ D

and service rates given by

rxy (ν) =

{
1 if x = o, y ∈ D
1/h (ν (D)) if x ∈ D, y ∈ D̄

The total number of users {Nt (D)} may be viewed as a processor-sharing M/M/1
queue with arrival rate λ = λ (o,D), with mean volume µ−1, and such that, when
there are n users in the queue, each one is served at rate 1/h (n).

If
λµ−1 < lim

n→∞
n/h (n)

then the state ∅ is positive recurrent for the process {Nt} and the return time of
{Nt} to ∅ from any initial state is almost surely finite.

Proof. A user arrives at dx with probability λ (o, dx) /λ (o,D) and has a
location-call-volume which is exponentially distributed with mean 1/(p(x, {o})λ(x)) =
1/µ. Hence at his arrival, a user has a volume with mean

∫

D
µ−1 λ (o, dx)

λ (o,D)
= µ−1

The traffic intensity of the equivalent processor-sharing M/M/1 queue is

λµ−1 = ρ(D)

Another way to prove the equivalence of our system to a M/M/1 queue is
to consider the subsets of the state space M defined by

Γ (ν) = {ν′ ∈ M ; ν′ (D) = ν (D)} , ν ∈M

We say that Γ (ν) is the class of ν ∈ M and we show now that the aggregation
of the states into these classes gives rise to a Markov process, say {Ñt}. To this
end we have to show that

ν′ ∈ Γ (ν) ⇒ (q (ν, Γ (η)) = q (ν′, Γ (η)) , ∀η ∈M\Γ (ν)) (7.2)

in which case the aggregated Markov process {Ñt} would have the generator q̃
defined on the state space M̃ = {Γ (ν) ; ν ∈M} by

q̃(Γ (ν) ,Γ (η)) = q (ν, Γ (η)) (7.3)
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From (6.10) we get

q (ν, Γ (ν) + 1) = λ (o,D) , q (ν, Γ (ν)− 1) =
ν (D)

h (ν (D))
µ

hence (7.2) is satisfied. Note that the state space M̃ may be identified with the
set of integers N, and from (7.3) we get the aggregated generator

q̃ (n, n + 1) = λ (o,D) , q̃(n, n− 1) =
n

h (n)
µ

which is the generator of a M/M/1 queue with the properties announced in the
Proposition.

The second part of the proposition is due to the properties of the processor-
sharing M/M/1 queue; see e.g. [37].

Note that if the traffic equations (6.47) admit a solution ρ(·), then by Equa-
tion (6.48),

ρ(D) = λµ−1

and the ergodicity condition writes

ρ(D) < lim
n→∞

n/h (n)

Particular case: the set D of locations is discrete

Proposition 39 Consider the model described in Section 7.1.1 with ψx (ν) =
1/h (ν (D)) , x ∈ D, ν ∈ M. Assume moreover that the set D of locations is
discrete, the SMQ generator q is irreducible and that the traffic equations (6.47)
have a solution some measure ρ on D̄. Then the condition

ρ(D) < lim
n→∞

n/h (n) (7.4)

implies that the SMQ process {Nt} is ergodic.

Proof. Since the Markov process {Nt} has a discrete state space, it is
enough to show that it admits a finite invariante measure. To this end, we show
that the conditions of Proposition 28 hold true.

First note that (7.4) implies Condition (6.51). It remains to show that the
condition (7.4) implies (6.52). Note that the service rates are balanced with
respect to

Ψ (ν) =
ν(D)∏
n=1

h(n)

Since under Πρ, the total number of points ν (D) is a Poisson random variable
with mean ρ(D), we deduce that, for each fixed b ∈ R+,

EΠρ

[
bν(D)ν (D)!

]
= e−ρ(D) 1

1− bρ(D)
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Denote a = limn→∞ h (n) /n and fix some ε > 0 such that (a− ε) ρ(D) < 1
(which is possible since aρ(D) < 1). There exists some nε such that, for
all n > nε, h (n) ≤ (a− ε) n. Then, writing Ψ (ν) = 1 {ν (D) ≤ nε}Ψ(ν) +
1 {ν (D) > nε}Ψ(ν), we deduce that

EΠρ
[Ψ] = EΠρ

[1 {ν (D) ≤ nε}Ψ(ν)] + EΠρ
[1 {ν (D) > nε}Ψ(ν)]

≤ EΠρ
[1 {ν (D) ≤ nε}Ψ(ν)] + EΠρ


1 {ν (D) > nε}

nε∏
n=1

h(n)
ν(D)∏

n=nε+1

(a− ε) n




≤ sup
1≤k≤nε

(
k∏

n=1

h(n)

)
+

(
nε∏

n=1

h(n)
(a− ε)n

)
EΠρ




ν(D)∏
n=1

(a− ε)n




≤ sup
1≤k≤nε

(
k∏

n=1

h(n)

)
+

(
nε∏

n=1

h(n)
(a− ε)n

)
e−ρ(D) 1

1− (a− ε) ρ(D)
< ∞

which shows that Condition (6.52) holds true.

General case: Ergodicity condition

An interesting question for future work is whether Condition (7.4) is sufficient
for ergodicity when the state space is not discrete.

7.1.4 Performance

Delay

We consider the model described in Section 7.1.1.
We assume that ∅ is positive recurrent for the SMQ process {Nt}, and that

the return time of {Nt} to ∅ from any initial state is almost surely finite. Then
by Corollary 6 limt→∞ Pt (ν, Γ) = Π (Γ) for all ν ∈ M,Γ ∈ M where Π is
a probability measure given by (6.30). By Proposition 25, there is a unique
invariant probability measure which is the limiting distribution Π.

In the present section we extend the development of [25, §.4] to the spatial
case. Assume from now that the system is at its stationary regime.

By Proposition 26, the arrival rate of users to some A ∈ D, which we denote
Λ (A), equals

Λ (A) = EΠ

[
q
(
ν, TD̄\A,Aν

)]

= EΠ

[∫

A

roy (ν)λ (o, dy) +
∫

(D\A)×A

rxy (ν) λ (x, dy) ν (dx)

]

= λ (o,A) +
∫

D\A
λ (x,A)EΠ [ψx (ν) ν (dx)]
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By Little’s theorem (cf. [17]), the expected delay for users in A ∈ D, denoted
T̄ (A), equals

T̄ (A) =
EΠ [ν (A)]

Λ (A)
=

EΠ [ν (A)]
λ (o, A) +

∫
D\A λ (x,A)EΠ [ψx (ν) ν (dx)]

(7.5)

In particular, the delay for users in all the area D equals

T̄ (D) =
EΠ [ν (D)]
λ (o,D)

Proposition 40 Assume now that Conditions of Proposition 28 hold true, then
the limiting distribution Π is a Gibbs distribution with density Ψ with respect to
a Poisson weight process with finite measure ρ. In this case, for any A ∈ D,

EΠ

[∫

A

ψx (ν) ν (dx)
]

= ρ (A) (7.6)

then

T̄ (A) =
EΠ [ν (A)]

λ (o, A) +
∫
D\A λ (x,A) ρ (dx)

(7.7)

Proof. (Cf. [106, p?] for the discrete case.) By Proposition 25, there is a
unique invariant measure, then Π is a Gibbs distribution. The left hand side
of (7.6) may be written in the form

EΠ

[∫

D
g (ν − δx, x) ν (dx)

]

where
g (ν, x) = ψx (ν + δx)1 {x ∈ A}

From Proposition 20 we get

EΠ

[∫

D
g (ν − δx, x) ν (dx)

]
= EΠ

[∫

D
g(ν, x)

Ψ(ν + δx)
Ψ(ν)

ρ(dx)
]

= EΠ

[∫

A

ψx (ν + δx)
Ψ(ν + δx)

Ψ(ν)
ρ(dx)

]

But since the service rates ψx are Ψ-balanced we have

ψx (ν + δx)
Ψ(ν + δx)

Ψ(ν)
= 1

which proves Equation (7.6).
Using Equations (7.5) and (7.6) we get (7.7).
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Proposition 41 Assume that the traffic equations (6.47) have a solution ρ
which satisfies ρ (D) < 1. If ψx (ν) = 1/h (ν (D)), then

EΠ [ν (A)] = ρ (A)H (ρ (D)) (7.8)

where the function H(s) is defined for s > 0 by

H(s) =
E[H(X + 1)]

E[H(X)]
, H (k) =

k∏
n=1

h (k) (7.9)

where X is a Poisson random variable with parameter s. The delay for users in
A ∈ D,

T̄ (A) =
ρ (A)

λ (o,A) +
∫
D\A λ (x,A) ρ (dx)

H (ρ (D)) (7.10)

In particular

T̄ (D) =
ρ (D)

λ (o,D)
H (ρ (A)) (7.11)

More particularly, if ψx (ν) = 1/ν (D), then

EΠ [ν (A)] =
ρ (A)

1− ρ (D)
(7.12)

and the delay for users in A ∈ D,

T̄ (A) =
ρ (A)

(1− ρ (D))
[
λ (o,A) +

∫
D\A λ (x,A) ρ (dx)

] (7.13)

In particular

T̄ (D) =
ρ (D)

(1− ρ (D)) λ (o,D)
(7.14)

Proof. Assume that ψx (ν) = 1/h (ν (D)). Let A ∈ D. Applying Proposi-
tion 20 with g (ν, x) = 1 {x ∈ A} we obtain

EΠ [ν (A)] = EΠ

[∫

A

Ψ(ν + εx)
Ψ (ν)

ρ (dx)
]

= EΠ

[∫

A

h (ν (D) + 1) ρ (dx)
]

= ρ (A)EΠ [h (ν (D) + 1)]
= ρ (A)EΠρ [h (ν (D) + 1) Ψ (ν)]
= ρ (A)H (ρ (D))

where the function H (·) is given by (7.9). This proves (7.8). From Equa-
tions (7.7) and (7.8) we get (7.10). Equation (7.11) is obtained by taking A = D
in (7.10).

In the particular case ψx (ν) = 1/ν (D) we have

E [H (X + 1)] = ZE [(X + 1)!] =
∞∑

n=0

e−ρ(D) ρ (D)n

n!
(n + 1)! = e−ρ(D) (1− ρ (D))−2
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then
H (ρ (D)) =

1
1− ρ (D)

(7.15)

Hence we get (7.12), (7.13) and (7.14).

Remark 20 When D is discrete our expression (7.8) is coherent with that given
in [29, Proposition 3.1]. In deed our h (n) is denoted n/G (n) there, so the
expression of the mean number of users in [29, Proposition 3.1] reads

EΠ [ν (D)] =
∑∞

n=0 nρ (D)n H(n)
n!∑∞

n=0 ρ (D)n H(n)
n!

= ρ (D)
∑∞

n=0
ρ(D)n

n! H (n + 1)
∑∞

n=0
ρ(D)n

n! H (n)

Throughput

Recall that the rate allocated to the users at location x when the state of the
system is ν equals νxψx (ν), then, the average rate allocated to users in A ∈ D
at the steady state is

EΠ

[∫

A

ψx (ν) ν (dx)
]

Then the expected throughput for users in A ∈ D, denoted r̄ (A), equals

r̄ (A) =
EΠ

[∫
A

ψx (ν) ν (dx)
]

EΠ [ν (A)]
(7.16)

Proposition 42 If Conditions of Proposition 28 hold true, then

r̄ (A) =
ρ (A)

EΠ [ν (A)]
(7.17)

If ψx (ν) = 1/h(ν (D)), we get

r̄ (A) =
1

H (ρ (D))
(7.18)

where the function H (·) is given by (7.9). In the particular case ψx (ν) =
1/ν (D), we get

r̄ (A) = 1− ρ (D) (7.19)

Proof. Equation (7.39) is immediate from (7.16) and (7.6). Equation (7.19)
is obtained from (7.12).

Example 6 Whittle model for HSDPA. We consider the case where ψx (ν) =
1/ (h (ν (D)) γ (x)) and denote {Nt} the corresponding Whittle SMQ process. We
consider the SMQ {N ′

t} where we modify the following rates

λ′ (x, A) = λ (x,A) /γ (x) , x ∈ D, A ∈ D̄
ψ′x (ν) = 1/h (ν (D)) , x ∈ D, ν ∈M
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We denote with prime (′) the parameters which are specific to {N ′
t}. By Corol-

lary 8, the processes {N ′
t} and {Nt} are identical in law. Assume that the traffic

equations for the routing rates λ′ admit a solution ρ′, then it is easy to see that
λ admit a solution

ρ (dx) = ρ′ (dx) /γ (x) (7.20)

Assume that ρ′ (D) < limn→∞ n/h (n) which is equivalent to
∫

D
γ (x) ρ (dx) < lim

n→∞
n/h (n)

which assures the ergodicity of {N ′
t} and thus also of {Nt}. Let Π be their

common limiting distribution. From (7.8) we get

EΠ [ν (A)] = ρ′ (A)H (ρ′ (D))

where the function H (·) is given by (7.9). From (7.10) we get

T̄ (A) =
ρ′ (A)

λ (o,A) +
∫
D\A λ′ (x, A) ρ′ (dx)

H (ρ′ (D))

=
ρ′ (A)

λ (o,A) +
∫
D\A λ (x,A) ρ (dx)

H (ρ′ (D))

From (7.6) we get

EΠ

[∫

A

ψx (ν) ν (dx)
]

= EΠ

[∫

A

γ (x)−1
ψ′x (ν) ν (dx)

]
=

∫

A

γ (x)−1
ρ′ (dx) = ρ (A)

and from (7.16) we get

r̄ (A) =
EΠ

[∫
A

ψx (ν) ν (dx)
]

EΠ [ν (A)]
=

EΠ

[∫
A

ψx (ν) ν (dx)
]

EΠ [ν (A)]
=

ρ (A)
ρ′ (A)

1
H (ρ′ (D))

Example 7 Whittle model for the shared channel in CDMA. This is
a particular case of Example 6 where h (n) = n. In this case, from (7.15) we
get

H (ρ′ (D)) =
1

1− ρ′ (D)

then

EΠ [ν (A)] =
ρ′ (A)

1− ρ′ (D)

T̄ (A) =
ρ′ (A)

(1− ρ′ (D))
[
λ (o,A) +

∫
D\A λ (x, A) ρ (dx)

] (7.21)

r̄ (A) =
ρ (A)
ρ′ (A)

[1− ρ′ (D)] (7.22)
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7.2 Wireless model

7.2.1 Model

We have sometimes to distinguish the motion dynamics from the service dy-
namics. This is particularly useful for wireless networks.

We describe first the service dynamics:

(a3) Exogenous arrivals come to dx as a Poisson process with intensity λ (o, dx).

(b3) Define the call-volume at a location x as the residual amount of data
to transmit or receive at location x before the exit from the system. The
call-volumes are assumed i.i.d. exponentially distributed with parameters
λ (x, {o}) (or equivalently with mean 1/λ (x, {o})) and independent from
arrivals. (Note that the call-volume equals the service duration if the user
is served at rate 1.)

(c3) The state of the system is ν ∈M counting the users at each location. The
rate allocated to the users at location x when the state of the system is
ν equals νxgx (ν) (i.e. the rate allocated for each user at location x is
gx (ν)).

We describe now the motion dynamics:

(d3) The sojourn duration of users at location x are i.i.d. random variables
which are exponentially distributed with rate λ′ (x) and independent of
arrivals, call-volumes and the service rates.

(e3) A user finishing its sojourn at location x, is routed to dy according to the
probability kernel p′ (x, dy) where p′ (x,D) = 1.

An example of the rates λ′ (x) and the kernel p′ (x, dy) is given in Section 6.5.

Proposition 43 This physical interpretation (a3)–(e3) corresponds to the gen-
erator (6.8) if

λ′ (x) = λ (x,D) , x ∈ D
p′ (x,A) = λ (x,A) /λ′ (x) , x ∈ D, A ∈ D (7.23)

and

rxy (ν) =

{
1 if x ∈ D̄, y ∈ D
gx (ν) if x ∈ D, y = o

(7.24)

Proof. Suppose that the state of the system at some instant t is some
ν ∈ M. The next event may be a birth (which corresponds to transitions
ν → Toxν for some x ∈ D), a death (which corresponds to transitions ν → Txoν
for some x ∈ ν) or a motion (which corresponds to transitions ν → Txyν for
some x ∈ ν, y ∈ D).
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By (a3)
q (ν, ToAν) = λ (o,A) , A ∈ D

At a given location x there are νx users, each of which, by (b3) and (c3), will
exit the system after an exponentially-distributed duration of rate λ (x, {o}) gx (ν).
The next departure will take place at the minimum of these durations which is
exponentially distributed with rate λ (x, {o}) νxgx (ν), hence

q (ν, Txoν) = λ (x, {o}) νxgx (ν)

By (d3)-(e3), for each user at location x, the next transition from this lo-
cation to A ∈ D will, take place after an exponentially-distributed duration of
rate λ′ (x) p′ (x,A). The next transition of a user from x to A will take place
at the minimum of these durations which is exponentially distributed with rate
λ′ (x) p′ (x,A) νx, hence

q (ν, TxAν) = λ′ (x) p′ (x,A) νx, x ∈ D, A ∈ D

If we have the conditions of the Proposition we retrieve the generator (6.8).

Remark 21 Note that we get a SMQ which is not Whittle. So the model for
wireless networks serving elastic traffic described in the present section is differ-
ent from the classical Whittle model described in Section 7.1.1 classically used
for wired networks and sometimes used for wireless networks [25, §.2]. The fun-
damental difference between the two models is the following. At arrival epoch,
a user requires some volume to transmit during the whole call in the wireless
model; wheras he requires some volume to transmit at each location he visits in
the Whittle model. Consequently in the wireless model, the motion is indepen-
dent from transmission whereas in the Whittle model, the motion is related to
the bit-rate allocated by the network. Hence when the system approaches conges-
tion (instability), the users motion is frozen in the Whittle model whereas they
continue their motion independently from the system congestion in the wireless
model.

7.2.2 Service rate balance

The following lemmas will be useful in the study of the ergodicity and balance
of the service rates for the wireless model.

Lemma 11 The service rates (7.24) are balanced iff gx (ν) is a (measurable)
function of ν (D), say gx (ν) = 1/h (ν (D)). In such case the results of Lemma 10
hold true.

Proof. Suppose that the service rates (7.24) are balanced. Then there exists
some positive function Ψ : M→ (0,∞) such that

Ψ (ν) rxy (ν) = Ψ (Txyν) ryx (Txyν) , x 6= y ∈ D̄, ν ∈M, νx > 0
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which is equivalent to

Ψ (ν) gx (ν) = Ψ (Txoν) , when y = o (7.25)
Ψ (ν) = Ψ (Toyν) gy (Toyν) when y 6= o, x = o (7.26)

Ψ (ν) = Ψ (Txyν) when y 6= o, x 6= o (7.27)

From (7.27) we deduce that Ψ (ν) depends only on ν (D), and not in the partic-
ular positions of the points of ν. Equation (7.25) shows then that gx (ν) is only
a function of ν (D).

Inversely, suppose now that gx (ν) is only a function of ν (D), say 1/h (ν (D)).
Consider

Ψ (ν) =
ν(D)∏
n=1

h (n)

It is clear that Equation (7.25), (7.26) and (7.27) are satisfied. Hence The
service rates (7.24) are balanced.

Lemma 12 Let γ : D → R∗+ be some measurable function. If, for all x ∈ D,
we replace λ (x, {o}) by λ (x, {o}) /γ (x) and rxo (ν) by rxo (ν) γ (x) the genera-
tor (6.8) remains invariant.

Proof. The product λ (x, {o}) rxo (ν) remains invariant, then the genera-
tor (6.8) remains invariant.

Corollary 9 Consider service rates in the form (7.24) where, for all x ∈ D, ν ∈
M, the service rates gx (ν) is in the form 1/ (h (ν (D)) γ (x)) for two positive mea-
surable functions γ and h. By replacing λ (x, {o}) by λ (x, {o}) /γ (x) and gx (ν)
by 1/h (ν (D)) (for all x ∈ D, ν ∈M) the generator (6.8) remains invariant, and
the transformed service rates are balanced.

Proof. Immediate consequences of Lemma 12 and Lemma 11.
In the rest of the present section we consider the context deduced from

Corollary 9, where, if the state of the system is ν, then the service rate of each
user is 1/h (ν (D)), i.e. depends only on the number of users in the system and
no on their particular positions (we assume that λ (x, {o}) has been correctly
modified as indicated in Corollary 9).

7.2.3 Ergodicity

Particular case: no mobility

The model described in Section 7.2.1 without mobility (i.e. λ′ (x) = 0, for all
x ∈ D) and with service rates gx (ν) is equivalent to the model described in
Section 7.1.1 without mobility and with ψx (ν) = gx (ν) , x ∈ D, ν ∈M. Thus, if
gx (ν) = 1/h (ν (D)), then the results of Proposition 37 hold true.
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Particular case: call-volume mean independent from location

Proposition 44 Consider the model described in Section 7.2.1 with call-volume
mean independent from location and with gx (ν) = 1/h (ν (D)) , x ∈ D, ν ∈ M.
The corresponding SMQ {Nt} has routing rates satisfying

λ (x, {o}) = µ, x ∈ D

where µ is a given constant, and service rates given by

rxy (ν) =

{
1 if x = D̄, y ∈ D
1/h (ν (D)) if x ∈ D, y = o

The total number of users {Nt (D)} may be viewed as a processor-sharing M/M/1
queue with arrival rate λ = λ (o,D), with mean call-volume µ−1, and such that,
when there are n users in the queue, each one is served at rate 1/h (n).

If
λµ−1 < lim

n→∞
n/h (n)

then the state ∅ is positive recurrent for the process {Nt} and the return time of
{Nt} to ∅ from any initial state is almost surely finite.

Proof. A user arrives at dx with probability λ (o, dx) /λ (o,D) and has a
call-volume which is exponentially distributed with mean 1/λ (x, {o}) = 1/µ.
The rest of the proof is similar to that of Proposition 38.

Infinite mobility case

Consider the model described in Section 7.2.1 with service rates gx (ν) = 1/h (ν (D)) , x ∈
D, ν ∈M and where the motion rates {λ (x,A) , x ∈ D, A ∈ D} are given in Sec-
tion 6.5.

In order to simplify the study the process at hand, we may aggregate its
states, by grouping the states with the same number of users, i.e. let

Mn = {ν ∈M; ν (D) = n} , n = 0, 1, 2, . . .

The aggregated process has state space N = {0, 1, 2, . . .}. Generally, the aggre-
gated process is not necessarily Markov, but we will see that the limit process
when the user’s average speed υ goes to infinity is Markovian.

To this end note that the Markov generator at hand may be decomposed in
two terms

q = υq(0) + q(1)

where the generator υq(0) corresponds to the motion

q(0) (ν, Γ) =
∫

D×D
1Γ (Txyν)

λ (x, dy)
υ

ν (dx)
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and the generator q(1) corresponds to the births and deaths

q(1) (ν, Γ) =
∫

D
1Γ (Toyν) λ (o, dy) +

1
h (ν (D))

∫

D
1Γ (Txoν)λ (x, {o}) ν (dx)

If υ is very large, then the transitions due to motion are much more frequent
then the births and deaths. A rich literature treated the limiting behavior as υ
goes to∞ when the state space is either finite (cf. for example [43]) or countable
(cf. for example [5]). If D is countable (which is the case if we divide the cell
into a countable set of rings), then our sate space M is countable. In this case,
previous works (cf. for example [5]) shows that the limiting behavior as υ goes
to ∞ may be studied in terms of the so called aggregated generator defined on
N = {0, 1, 2, . . .} by

q̄ (n,m) = EΠn

[
q(1) (ν,Mm)

]

where Πn designates the invariant probability measure of q(0) on class Mn.

Lemma 13 Assume that the motion generator {λ (x, A) , x ∈ D, A ∈ D} is pos-
itive recurrent. Let Πn be the invariant probability measure of q(0) on class Mn.
Then

EΠn

[
q(1) (ν,Mm)

]
= 1m=n+1λ (o,D) + 1m=n−1

n

h (n)

∫

D
λ (x, {o}) % (dx)

where % is the solution of the traffic equations associated to the motion generator
{λ (x,A) , x ∈ D, A ∈ D}.

Proof. We should first calculate the invariant probability measures Πn of
q(0) on each class Mn. It is not difficult to see that Πn is the distribution of n
i.i.d. points on D, each one having distribution %. That is,

Πn (dν) = n!
∏

x∈supp(ν)

%νx
x

νx!
dν

or equivalently, for each measurable function f :Mn → R+,

EΠn [f ] =
∫

Mn

f




n∑

j=1

δxj


 % (dx1) . . . % (dxn)

in particular
EΠn [ν (A)] = n% (A) , A ∈ D

From the expression of the generator q(1), we get

EΠn

[
q(1) (ν,Mm)

]
= 1m=n+1λ (o,D) + 1m=n−1

n

h (n)

∫

D
λ (x, {o}) % (dx)

The above analysis justifies the model for infinite mobility described in the
following proposition.



7.2. WIRELESS MODEL 107

Proposition 45 Consider the model described in Section 7.2.1 with gx (ν) =
1/h (ν (D)) , x ∈ D, ν ∈ M. Suppose that the mobility of users is so fast that we
can reasonably assume that during the periods of time when the number of users
ν(D) is constant, the call-volume rate λ (x, {o}) is averaged over mobility; i.e.,
assume that the call-volume rate is

∫

D
λ (x, {o}) %(dx) (7.28)

where % is the solution of the traffic equations associated to the motion generator
{λ (x,A) , x ∈ D, A ∈ D}.

The total number of users {Nt (D)} may be viewed as a M/GI/1 processor-
sharing queue with arrival rate λ = λ (o,D), with mean call-volume (7.28), and
such that, when there are n users in the queue, each one is served at rate 1/h (n).

If
λ (o,D)∫

D λ (x, {o}) %(dx)
< lim

n→∞
n/h (n) (7.29)

then the state ∅ is positive recurrent for the process {Nt} and the return time of
{Nt} to ∅ from any initial state is almost surely finite.

Proof. The mean call-volume (7.28) is clearly independent from location,
then the result follows from Proposition 44.

General case

An interesting subject for future research is to determine the ergodicity con-
dition for the model described in Section 7.2.1 with gx (ν) = 1/h (ν (D)) , x ∈
D, ν ∈M. TO COMPLETE.

7.2.4 Performance

Delay

We assume that ∅ is positive recurrent for the SMQ process {Nt}, and that the
return time of {Nt} to ∅ from any initial state is almost surely finite. Then
by Corollary 6 limt→∞ Pt (ν, Γ) = Π (Γ) for all ν ∈ M,Γ ∈ M where Π is
a probability measure given by (6.30). By Proposition 25, there is a unique
invariant probability measure which is the limiting distribution Π.

Now assume that the system is at its stationary regime.
The arrival rate of users to some A ∈ D, which we denote Λ (A), equals

Λ (A) = EΠ

[
q
(
ν, TD̄\A,Aν

)]

= EΠ

[∫

A

roy (ν)λ (o, dy) +
∫

(D\A)×A

rxy (ν) λ (x, dy) ν (dx)

]

= λ (o,A) +
∫

D\A
λ (x,A)EΠ [ν (dx)]
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By Little’s theorem (cf. [17]), the expected delay for users in A ∈ D, denoted
T̄ (A), equals

T̄ (A) =
EΠ [ν (A)]

Λ (A)
=

EΠ [ν (A)]
λ (o,A) +

∫
D\A λ (x,A)EΠ [ν (dx)]

(7.30)

In particular, the delay for users in all the area D equals

T̄ (D) =
EΠ [ν (D)]
λ (o,D)

Proposition 46 Assume that the traffic equations (6.47) have a solution ρ
which satisfies ρ (D) < 1 and that gx (ν) = 1/h (ν (D)) and let

Ψ (ν) = Z−1

ν(D)∏
n=1

h (n)

where Z is a normalizing constant (see Lemma 10). Assume moreover that the
Gibbs distribution with density Ψ with respect to a Poisson weight process with
finite measure ρ is invariant (which is the case when for example the routing
kernel λ is reversible). Then the limiting distribution Π is this Gibbs distribution
and

EΠ [ν (A)] = ρ (A)H (ρ (D)) (7.31)

where the function H (·) is given by (7.9). The delay for users in A ∈ D, is
given by

T̄ (A) =
ρ (A)

1
H(ρ(D))λ (o,A) +

∫
D\A λ (x,A) ρ (dx)

(7.32)

In particular

T̄ (D) =
ρ (D)

λ (o,D)
H (ρ (D)) (7.33)

More particularly, if ψx (ν) = 1/ν (D), then

EΠ [ν (A)] =
ρ (A)

1− ρ (D)
(7.34)

and the delay for users in A ∈ D,

T̄ (A) =
ρ (A)

(1− ρ (D)) λ (o,A) +
∫
D\A λ (x,A) ρ (dx)

(7.35)

In particular

T̄ (D) =
ρ (D)

(1− ρ (D))λ (o,D)
(7.36)

Proof. The proof of (7.31) is analogous to that of (7.8). We deduce (7.32)
from (7.30) and (7.31).

In the particular case ψx (ν) = 1/ν (D), the function H (·) is given by (7.15),
hence we get (7.34), (7.35) and (7.36).
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Throughput

Recall that the rate allocated to the users at location x when the state of the
system is ν equals νxgx (ν), then, the average rate allocated to users in A ∈ D
at the steady state is

EΠ

[∫

A

gx (ν) ν (dx)
]

Then the expected throughput for users in A ∈ D, denoted r̄ (A), equals

r̄ (A) =
EΠ

[∫
A

gx (ν) ν (dx)
]

EΠ [ν (A)]
(7.37)

Example 8 If for the wireless model the stationary distribution Π is a Gibbs
distribution with density Ψ with respect to a Poisson weight process with finite
measure ρ, then, for any A ∈ D,

EΠ

[∫

A

gx (ν) ν (dx)
]

= ρ (A) (7.38)

and

r̄ (A) =
ρ (A)

EΠ [ν (A)]
(7.39)

If ψx (ν) = 1/h (ν (D)), then

r̄ (A) =
1

H (ρ (D))

where the function H (·) is given by (7.9). In the particular case gx (ν) =
1/ν (D),

r̄ (A) = 1− ρ (D) (7.40)

Proof. The proof of (7.38) is similar to the proof of Equation (7.6). Equa-
tion (7.39) is then obtained from (7.37). Equation (7.40) is finally obtained
from (7.34).

Example 9 Wireless model for HSDPA. We consider the case where gx (ν) =
1/ (h (ν (D)) γ (x)) and denote {Nt} the corresponding SMQ process as described
in Proposition 43. We consider the SMQ {N ′

t} where we modify the following
rates

λ′ (x, {o}) = λ (x, {o}) /γ (x) , x ∈ D
g′x (ν) = 1/h (ν (D)) , x ∈ D, ν ∈M

We denote with prime (′) the parameters which are specific to {N ′
t}. By Corol-

lary 9, the processes {N ′
t} and {Nt} are identical in law. Assume that the traffic

equations for the routing rates λ′ admit a solution ρ′. Assume that {N ′
t} is er-

godic (which is the case if ρ′ (D) < limn→∞ n/h (n) either in the case without
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mobility by Proposition 37 or in the case where the call-volume mean is inde-
pendent from location by Proposition 44) and thus {Nt} is also ergodic. Let Π
be their common limiting distribution. Assume moreover that the Gibbs distri-
bution with density Ψ′ (which balances g′x (ν) = 1/h (ν (D))) with respect to a
Poisson weight process with finite measure ρ′ is invariant for {N ′

t} (which is
the case when for example the routing kernel λ′ is reversible). Then the limiting
distribution Π is this Gibbs distribution. From (7.31) we get

EΠ [ν (A)] = ρ′ (A)H (ρ′ (D))

where the function H (·) is given by (7.9). From (7.32) we get

T̄ (A) =
ρ′ (A)

λ(o,A)
H(ρ′(D)) +

∫
D\A λ (x,A) ρ′ (dx)

From (7.38) we get

EΠ

[∫

A

gx (ν) ν (dx)
]

= EΠ

[∫

A

γ (x)−1
g′x (ν) ν (dx)

]
=

∫

A

γ (x)−1
ρ′ (dx) = ρ (A)

and from (7.37) we get

r̄ (A) =
EΠ

[∫
A

gx (ν) ν (dx)
]

EΠ [ν (A)]
=

ρ (A)
ρ′ (A)

1
H (ρ′ (D))

Example 10 Wireless model for the shared channel in CDMA. This
is a particular case of Example 9 where h (n) = n. In this case, from (7.15) we
get

H (ρ′ (D)) =
1

1− ρ′ (D)
then

EΠ [ν (A)] =
ρ′ (A)

1− ρ′ (D)
(7.41)

T̄ (A) =
ρ′ (A)

(1− ρ′ (D)) λ (o,A) +
∫
D\A λ′ (x,A) ρ′ (dx)

(7.42)

r̄ (A) =
ρ (A)
ρ′ (A)

[1− ρ′ (D)] (7.43)

Remark 22 It is surprising that even if the Whittle model and our wireless
model are different mathematically and physically, the delay and throughput ex-
pressions for the two models (in the particular case where ψx (ν) = gx (ν) =
1/ν (D)) are the same. In fact we should notice that the solution ρ (·) of the
traffic equations accounts for users speed in our wireless model whereas it is
independent of the users speed in the Whittle model (in fact the Whittle model
doesn’t account for the users speed; see Remark 21).

In the case of Whittle model for the shared channel in CDMA (Example 7)
we have the relation (7.20), while this relation doesn’t hold for the wireless
model (Example 10) except for the particular cases when there is no motion,
i.e. λ (x,D) = 0,∀x ∈ D, or when γ (x) = 1.



Chapter 8

SMQ for streaming traffic

We consider here streaming traffic (i.e. calls requiring to be served for a given
duration).

Consider a M/GI/∞ queue where arrivals have intensity λ and call duration
has mean 1/µ. As recalled in Lemma 24, the stationary distribution, say Π, of
the number of calls in progress of such a free (i.e. unconstrained) system is a
Poisson with mean λ/µ. Assume now that the number of servers is some positive
integer C. We need to describe an admission control policy which specifies how
the model performs when the C limit is reached. Suppose that we simply drop
the calls that arrive when there are C calls already in progress. We get the
M/GI/C loss queue whose properties are recalled in Lemma 25. In particular,
the blocking probability b is given by the Erlang’s formula (14.3) which may be
written as follows

b =
Π {C}
Π(Mf)

where Mf = {0, 1, . . . , C} is the state space. Erlang’s formula shows that in
spite of the differences between the dynamics of the free and that of the loss
system, the blocking probability can be expressed in terms of the stationary
distribution of calls in progress of the free system. This is the surprising fact
that we will attempt to extend to the spatial case.

As well known, Erlang published this formula in 1917 [44], and since that
time, the statistical equilibria of much more complicated loss networks have been
found to coincide with the truncation of the stationary distribution of some free
system to some polytope1. This lead to the calculation of the associated blocking
probabilities in explicit form for large classes of networks. For an exhaustive
survey on loss systems, see [75]. Classical loss models are well adapted to
wired communication networks, where the spatial component of the model is
typically represented by some graph of links, and where the coexistence of calls
on a common link is modeled by the occupancy of a discrete number of circuits
available on this link. In wireless communication, one needs to take into account

1A polytope is a generalization to Rn (n ∈ N) of the notion of polygon in R2.

111



112 CHAPTER 8. SMQ FOR STREAMING TRAFFIC

the spatial characteristics of the network in a more thorough way because it is
the relative location of the radio channels which determines their joint feasibility.
This is especially important for CDMA and other so called interference limited
systems. One of the additional difficulties then stems from the fact that the
spatial component of the model is subject to changes due to the mobility of
users and instantaneous changes of radio conditions.

The classical results for discrete multiserver queues are recalled in §14.A.2.
In particular analytical formulae for the blocking probability for a M/GI multi-
class loss queue are recalled. The aim of the present chapter is to extend these
formulae to the case where the set of classes is continuous, and where there is
mobility between the different classes. In particular we establish in this setting
a relation between the blocking probability in the loss system, and the stationary
distribution of calls in progress of the free system. This relation may be seen as
a spatial extension of the Erlang’s formula.

8.1 Whittle and wireless models

In Section 6.2.3, we give a mathematical description (a1)-(c1) of a Whittle SMQ.
We aim here to give a physical description of networks serving streaming traffic.

8.1.1 Whittle model

The following model is classical for modelling wired networks serving streaming
traffic ([98] in the discrete case, [106]):

(a2) Exogenous arrivals come to dx as a Poisson process with intensity λ (o, dx).

(b2) A user finishing its service at location x is routed to dy according to the
probability Kernel p (x, dy) (Bernoulli routing) where p

(
x, D̄

)
= 1. As

usual y = o corresponds to the case where the user exits the system.

(c2) Define the location-call-duration at a location x as the residual du-
ration at location x before a motion to another location or the exit from
the system. The location-call-durations are assumed i.i.d. exponentially
distributed with parameters λ (x) (or equivalently with mean 1/λ (x)) and
independent from arrivals.

(d2) At a given time t, some users are being served and others are waiting.
The state of the system is ν ∈ M counting all the users (being served or
waiting) at each location. The number of active servers at location x when
the state of the network is ν equals νxψx (ν) ≤ νx (since there are at most
νx streaming messages served simultaneously). The νx − νxψx (ν) users
which are not being served are placed in a waiting room at note x which
is assumed infinitely large.
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Proposition 47 The physical interpretation (a2)–(d2) above corresponds to a
Whittle SMQ if

{
λ (x) = λ

(
x, D̄

)
, x ∈ D

p (x,A) = λ (x, A) /λ
(
x, D̄

)
, x ∈ D, A ∈ D̄

and

rxy (ν) =
{

1, x = o, y ∈ D̄
ψx (ν) , x ∈ D, y ∈ D̄

Proof. Clearly (a2) is the same as (a1) and (b2) is equivalent to (b1) if

p (x,A) = λ (x,A) /λ
(
x, D̄

)

It remains to show that (c2)-(d2) imply (c1). Suppose that the state of
the system at some instant t is some ν ∈ M. Recall that the minimum of
independent exponential random variables is an exponential random with rate
equal to the sum of the rates. Suppose that the network state at some instant
is ν. At a given location x, by (d2), there are νxψx (ν) active users (the term
active means that the user is served by the network) each of which, by (c2),
will depart from location x after an exponentially-distributed duration of rate
λ (x). The next departure from location x will then take place at the minimum
of these durations which is exponentially distributed with rate λ (x) νxψx (ν),
hence we obtain (c1) if

λ (x) = λ
(
x, D̄

)

Note that since the exogenous arrival rate equals q (ν, ToD̄ν) = λ
(
o, D̄

)
all the

arriving users are admitted to the system, but there are not necessarily served
immediately. The νx − νxψx (ν) users which are not being served are placed in
a waiting room with has an infinite capacity as assumed in (d2).

Hence the departure rate λ (x) × νxψx (ν) comprises two factors. The first
one λ (x) may be interpreted as the rate of an exponentially-distributed service
duration at location x (which is related to the motion within the network and
the exit from the network) of a given user and the second one νxψx (ν) may be
interpreted as the number of active servers at location x when the state of the
network is ν (called capacity by some authors [98]).

The following examples illustrate the decomposition of the departure rate.

Example 11 Consider the case where users are motionless.

• If there is an infinite number of servers at each location, then the departure
rate from location x is λ (x, {o})× νx where the first term λ (x, {o}) is the
rate of the exponentially-distributed time until the exist from the network
(call duration or total service time has exponential distribution with mean
λ (x, {o})−1); and the second term νx is the number of active servers at
location x when the state of the network is ν. In the particular case where
there is a single location, i.e. |D| = 1, we get the M/M/∞ queue.
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• Suppose now that there is a single server at each location, then the de-
parture rate from location x is λ (x, {o})× 1 {νx > 0} where the first term
λ (x, {o}) has the same interpretation as previously and since there is a
single server at each location, νxψx (ν) = 1 {νx > 0}. If there is a single
location, i.e. |D| = 1, we get the M/M/1/∞ queue.

• Suppose now that each location x consists of s ∈ [1,∞] exponential servers,
then the departure rate from location x is λ (x, {o}) × min (νx, s) where
the first term λ (x, {o}) has the same interpretation as previously and the
number of active servers equals νxψx (ν) = min (νx, s). If |D| = 1, we get
the M/M/s/∞ queue.

Example 12 Consider now a network consisting of two locations D = {x, y}
where motion between locations is possible. We study the three above case:

• If there is an infinite number of servers at each location, then the depar-
ture rate from location x is (λ (x, {o}) + λ(x, {y})) × νx where the first
term λ (x, {o}) + λ(x, {y}) comprises λ (x, {o}) which is the rate of the
exponential time until the exist from the network and λ(x, {y}) which is
the rate of the exponential time until the departure to {y} and the second
term νx is the number of active servers at location x when the state of the
network is ν.

• Suppose now that there is a single server at each location, then the depar-
ture rate from location x is (λ (x, {o}) + λ(x, {y}))× 1 {νx > 0} where the
first term λ (x, {o}) + λ(x, {y}) has the same interpretation as previously
and since there is a single server at each location, νxψx (ν) = 1 {νx > 0}.

• Suppose now that each location x consists of s ∈ [1,∞] exponential servers,
then the departure rate from location x is (λ (x, {o}) + λ(x, {y}))×min (νx, s)
where the first term λ (x, {o}) + λ(x, {y}) has the same interpretation as
previously and the number of active servers is νxψx (ν) = min (νx, s).

8.1.2 Wireless model

We have sometimes to distinguish the motion dynamics from the service dy-
namics. This is particularly useful for wireless networks.

We describe first the service dynamics:

(a3) Exogenous arrivals come to dx as a Poisson process with intensity λ (o, dx).

(b3) Define the call-duration at a location x as the residual duration at
location x before the exit from the system. The call-durations are assumed
i.i.d. exponentially distributed with parameters λ (x, {o}) (or equivalently
with mean 1/λ (x, {o})) and independent from arrivals.

(c3) At a given time t, some users are being served and others are waiting.
The state of the system is ν ∈ M counting all the users (being served or
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waiting) at each location. The number of active servers at location x when
the state of the network is ν equals νxψx (ν) ≤ νx (since there are at most
νx streaming messages served simultaneously). The νx − νxψx (ν) users
which are not being served are placed in a waiting room at note x which
is assumed infinitely large.

We describe now the motion dynamics:

(d3) The sojourn duration of users at location x are i.i.d. random variables
which are exponentially distributed with rate λ′ (x) and independent from
arrivals and from residual service duration in the system.

(e3) A user finishing its sojourn at location x, is routed to dy ⊂ D according
to the probability Kernel p′ (x, dy) where p′ (x,D) = 1.

Proposition 48 Assume that only active users are moving (waiting users are
motionless), then the physical interpretation (a3)–(e3) corresponds to the net-
work generator (6.8) if

{
λ′ (x) = λ (x,D) , x ∈ D
p′ (x,A) = λ (x,A) /λ′ (x) , x ∈ D, A ∈ D (8.1)

and

rxy (ν) =
{

1, x = o, y ∈ D̄
ψx (ν) , x ∈ D, y ∈ D̄

If all the users (active and waiting ones) are moving, then we have to add the
condition

ψx (ν) = 1 (8.2)

i.e. rxy (ν) ≡ 1 which corresponds to the Markov Poisson location (MPL)
process is defined in Example 3.

Proof. Suppose that the state of the system at some instant t is some
ν ∈ M. The next event may be a birth (which corresponds to transitions
ν → Toxν), a death (which corresponds to transitions ν → Toxν) or a motion
(which corresponds to transitions ν → Txyν).

By (a3)
q (ν, ToAν) = λ (o,A) , A ∈ D

By (c3), at a given location x, there are νxψx (ν) active users. By (b3), each
of the active users at location x, will exit the network after an exponentially-
distributed duration of rate λ (x, {o}). The next death (exit from the network)
will take place at the minimum of these durations which is exponentially dis-
tributed with rate λ (x, {o}) νxψx (ν), hence

q (ν, Tx0ν) = λ (x, {o}) νxψx (ν)

By (d3)-(e3), for each user at location x, the next transition from this loca-
tion to A ∈ D will take place after an exponentially-distributed duration of rate
λ′ (x) p′ (x,A).
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1. Assume that only active users are moving. The next transition of an active
user from x to A will take place at the minimum of νxψx (ν) independent
exponentially-distributed durations with rates λ′ (x) p′ (x,A), hence

q (ν, TxAν) = λ′ (x) p′ (x,A) νxψx (ν) , x ∈ D, A ∈ D

If we have the conditions (8.1) we retrieve the generator (6.8).

2. Assume that all the users are moving. The next transition of an ac-
tive user from x to A will take place at the minimum of νx independent
exponentially-distributed durations with rates λ′ (x) p′ (x,A), hence

q (ν, TxAν) = λ′ (x) p′ (x, A) νx, x ∈ D, A ∈ D

If we have the conditions (8.1) and (8.2) we retrieve the generator (6.8).

Note that if only active users are moving (waiting users are motionless),
then we get a Whittle network as in Section 8.1.1. Hence wired and wireless
networks serving streaming traffic may be modelled by the same model in this
case. This is also the case if all the users (active and waiting ones) are moving
and Condition (8.2) holds true.

Remark 23 If we assume that λ (x, {x}) = 0, then there is no feedback at the
locations. If λ (x, {x}) > 0, then the network is equivalent to another network
with the same service rates as the initial one and with routing rates λ̃ (x,A) =
λ (x,A\{x}). This is due the property of Markov process which says that if
we get rid of pseudo-transitions from a Markov process (with stable q-matrix
and unique transition functions), we obtain a process equivalent in law with the
initial process.

The correspondent parameters in the above descriptions are

λ̃ (x) = λ (x)− λ (x, {x}) = λ (x) (1− p (x, {x})) , x ∈ D
p̃ (x,A) = p (x,A\{x}) / (1− p (x, {x})) , x ∈ D, y ∈ D̄

λ̃′ (x) = λ′ (x)− λ (x, {x}) = λ′ (x) (1− p′ (x, {x})) , x ∈ D
p′ (x,A) = p′ (x,A\{x}) / (1− p′ (x, {x})) , x, y ∈ D

8.2 Two spatial loss wireless models

Classical loss models are well adapted to wired communication networks. In
wireless communication models, we have to take into account two important
aspects, absent in the classical models. The spatial geometry of the network
cannot be longer reduced to an abstract graph of links but has to capture the
relative location of radio channels, which determines their joint feasibility. This
spatial component of the model is subject to changes due to the mobility of users
and also instantaneous changes of radio conditions. One of the consequences
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of the above circumstances, is that a call can be rejected not only when it is
arriving to the network but also when a user is changing its geometrical location
while his communication being in progress. Note that this latter can happen
even if the user displacement is the only change in the configuration of calls in
progress.

Consider a SMQ generator q introduced in Section 6.2. We suppose that
it is regular and ergodic. We call the corresponding SMQ process {Nt} the
free process and consider it as describing the evolution of a system without
capacity constraints. Thus, q describes arrivals of calls, service demands, service
discipline and the mobility of calls. Suppose now that the evolution of the free
process is subject to some constraints, which can be expressed as the limitation
of the original state space M to a given fixed measurable subset Mf ⊂ M of
feasible states. The constrained (restricted) process, started off at an initial
state in Mf follows the same dynamic as the free process as long as it stays
in Mf , and will be forced to modify its behavior each time an attempt of a
transition from Mf to M \Mf occurs. We will consider two possible behaviors
adopted at such epochs. They lead to two following different models.

• Transition blocking model. In this model we suppose that all the transi-
tions from a state ν ∈ Mf to a state M \Mf are “blocked”, which means
that the process remains in the state ν and continues its evolution driven
by q. The dynamics of the restricted process {N tb

t } in this model is de-
scribed by a generator qtb where

qtb(ν, Γ) =

{
q(ν, Γ ∩Mf) if ν ∈Mf

q(ν, Γ) if ν 6∈Mf
(8.3)

qtb(ν) =

{
q(ν,Mf) if ν ∈Mf

q(ν,M) if ν 6∈Mf

Note that qtb is also a SMQ generator, with the same routing kernel λ
and the service rates

rtb
xy(ν) =

{
rxy(ν)1(Txyν ∈Mf) if ν ∈Mf

rxy(ν) if ν 6∈Mf
(8.4)

and we will always assume that it is regular and ergodic. Moreover qtb

is the so called truncation of q and its invariant measure is equal to the
truncation of the invariant measure of q to Mf , at least if qtb is reversible.
This makes possible an expression of blocking probabilities in relatively
simple formula, which we call the spatial Erlang formula.

Not that in the transition blocking model there are no losses of calls in
progress: an unauthorized displacement is blocked and the call in question
rests at its previous location until the next event. This might be seen as
a not very realistic assumption in the context of modeling of voice calls.
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• Forced termination model. In this model we suppose that all the call
arrivals that would result in taking the process to a state outside Mf are
blocked, as in the transition blocking model, however an attempt of the
displacement of a call in progress that would take the process to M \Mf

lead to the forced termination of this call. The evolution of the process is
thus described by the following generator

qft(ν, Γ) =





q(ν, Γ ∩Mf) for Γ ⊂ TD̄Dν, ν ∈Mf

q(ν, Γ) + q(ν, TADν \Mf) for Γ = TAoν,A ∈ D, ν ∈Mf

q(ν, Γ) for Γ ∈M, ν 6∈Mf

(8.5)

qft(ν) =

{
q(ν,Mf ∪ TDD̄ν) if ν ∈Mf

q(ν,M) if ν 6∈Mf

and we assume that Mf is closed with respect to transition Txoν for all
x ∈ D. Note that qft is also a SMQ generator, with the same routing kernel
λ and the service rates rft

xy(ν) = rtb
xy(ν) for y 6= o and rft

xo(ν) = rxo(ν) +∫
D rxy(ν)1(Txyν 6∈ Mf) λ(x, dy)/λ(x, o) if ν ∈ Mf and rxo(ν) otherwise.

We will always assume that qft it is regular and ergodic. However it
cannot be seen as a truncation of q and typically its invariant measure is
not explicitly known even if the invariant measure of q is known.

In the remaining part of this section we will study loss probabilities in the
above models.

8.2.1 Transition blocking model

In this section we will concentrate on the transition blocking model. Suppose q is
a regular, ergodic SMQ generator, as described in Section 6.2, and call its unique
invariant probability measure Π. Consider the SMQ process {Nt} corresponding
to q as the free process (without capacity constraints; see the discussion above).
Fix a measurable subset Mf of its state space M as the subspace of all feasible
states of the restricted process {N tb

t } that evolves according the generator qtb

given by (8.3). In what follows we assume that the restricted process is also
ergodic and has a particular form of the limiting distribution Πtb being the
truncation of Π to Mf . This truncation property does not always hold, and one
simple sufficient condition for it to hold is as follows (cf [106, Proposition 3.14]):

Lemma 14 Suppose that Π(Mf) > 0. The invariant probability measure Πtb of
the restricted process {N tb

t ; t ≥ 0} is given by

Πtb(Γ) =
Π(Γ ∩Mf)

Π(Mf)
(8.6)

if and only if Π satisfies the following balance equation

q(ν,Mf)Π(dν) =
∫

Mf
q(µ, dν)Π(dµ), ν ∈Mf
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The truncation property (8.6) holds in particular if {Nt; t ≥ 0} is reversible on
Mf or M \Mf with respect to Π, meaning that q satisfies the following detailed
balance equation

q(ν, dµ)Π(dν) = q(µ, dν)Π(dµ)

for, either ν, µ ∈Mf or ν, µ ∈M \Mf .

In what follows we assume that (8.6) is true, in particular Π(Mf) > 0, and
we call Π(Mf) the feasibility probability. Note that Π(Mf) is the probability that
the free process in steady state takes its value in the feasible (for the restricted
process) part of the space.

Blocking probabilities

For given subsets A ∈ D̄, B ∈ D we are interested, roughly speaking, in
the “ergodic frequency” ptb

AB of “blocked transitions” ν → Txyν for x ∈ A,
y ∈ B of the process driven by qtb. (The quantity ptb

AB will be defined pre-
cisely later; cf. Equation (8.7).) Actually ptb

AB cannot be well defined given
realizations of the process N tb

t because “we do not observe” blocked transi-
tions there. In order to formalize this notion note that the time-epochs and
departure-arrival locations of the blocked transitions can be modeled by a dou-
ble stochastic Poisson point process Φtb

0 =
∑

i δ(ti,xi,yi) driven by N tb
t , where

ti, xi, yi denote, respectively, the time-epochs, departure and arrival locations
of blocked transition of N tb

t . Given a realization N tb
· = {N tb

t , t ≥ 0}, Φtb
0 is

a Poisson point process with intensity measure Λtb
Ntb·

on (0,∞) × (D̄)2, given
by Λtb

N·(D × A × B) =
∫

D
q(N tb

t , TABN tb
t \ Mf)dt. Denote also by Φtb

1 the
point process on (0,∞) × (D̄)2 associated to (“true”) transitions of N tb

t ; i.e.,
Φtb

1 (D × A × B) =
∑

s>0 1(s ∈ D,N tb
s = TxyN tb

s−, x ∈ A, y ∈ B). Let
Φtb = Φtb

0 +Φtb
1 be the superposition of Φtb

i , i = 0, 1. Finally define the blocking
probability for the transitions ν → TAB(ν) for some A,B ∈ D̄ and ν ∈Mf (will
call them transitions from A to B for short) as the following limiting ratio of
blocked transitions to all transitions

ptb
AB = lim

t→∞
Φtb

0 ((0, t]×A×B)
Φtb((0, t]×A×B)

(8.7)

The above limit exists by the following result.

Lemma 15 Suppose that ∅ is a positive recurrent state for qtb with the limiting
distribution Πtb. If

EΠtb [q(N,M)] < ∞ (8.8)

then

lim
t→∞

1
t
Φtb

0 ((0, t]×A×B) = EΠtb [q(N, TABN \Mf)]

lim
t→∞

1
t
Φtb

1 ((0, t]×A×B) = EΠtb [q(N, TABN ∩Mf)]

a.s. for any initial value N tb
0 = ν for which the return time to ∅ is a.s. finite.
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Proof. Consider a probability space (Ω,F ,PΠ) on which {Nt}t∈R and both
point processes Φtb

i (i = 0, 1) are (time) stationary. Note that the expectation
corresponding to the distribution of {Nt}t≥0 under PΠ is EΠ. Condition (8.8)
implies

λ1 = EΠtb [Φtb
1 ((0, 1]× D̄× D̄)] = EΠtb [qtb(N tb

0 )] ≤ EΠtb [q(N tb
0 ,M)] < ∞

where the second equality is by Lévy’s formula (6.44). Similarly, since Φtb
0 is a

doubly stochastic Poisson point process,

λ0 = EΠtb [Φtb
0 ((0, 1]×D̄×D̄)] =

∫ 1

0

EΠtb [q(N tb
t ,M\Mf)] dt ≤ EΠtb [q(N tb

0 ,M)] < ∞

For given A, B ∈ D̄ the processes Xi
t = Φtb

i ((0, t] × A × B) (i = 1, 2) are
cumulative with the imbedded renewal process being the epochs of successive
visits of N tb

t at ∅. By (6.43) we have then

lim
t→∞

1
t
Φtb

1 ((0, t]×A×B) = EΠtb [Φtb
1 ((0, 1]×A×B)]

= EΠtb [q(N tb
0 , TABN tb

0 ∩Mf)]

where the second equality follows from Lévy’s formula (6.44). Similarly, by the
fact that Φtb

0 is a doubly stochastic Poisson point process

lim
t→∞

1
t
Φtb

0 ((0, t]×A×B) = EΠtb [Φtb
0 ([0, 1]×A×B)]

= EΠtb [Λtb
N·((0, 1]×A×B)]

= EΠtb [q(N tb
0 , TABN tb

0 \Mf)]

This completes the proof.
The following result immediately follows from Lemma 15.

Proposition 49 If the conditions of Lemma 15 are satisfied, then

ptb
AB =

EΠtb [q(N, TABN \Mf)]
EΠtb [q(N, TABN)]

Corollary 10 If the conditions of Lemma 15 are satisfied then for B ∈ D,

ptb
oB =

∫
B

ptb(o, y)EΠtb [roy (N)]λ (o, dy)∫
B

EΠtb [roy (N)]λ (o, dy)

where

ptb(o, y) =
EΠtb [roy(N)1(ToyN 6∈Mf)]

EΠtb [roy (N)]
y ∈ D (8.9)

called the blocking rate on the transition from o to y. Suppose moreover that (8.6)
holds. Then

ptb(o, y) =
EΠ[roy(N)1(N ∈Mf , ToyN 6∈Mf)]

EΠ[roy(N)1(N ∈Mf)]
y ∈ D (8.10)
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If roy(ν) ≡ 1 for Π-almost all ν ∈ Mf , in particular if q is a MPL generator,
then we have

ptb(o, y) =
Π(N ∈Mf , ToyN 6∈Mf)

Π(N ∈Mf)
(8.11)

If the conditions of Proposition 28 (or Proposition 29) for the free generator q
hold, then

ptb(o, y) =
EΠρ

[roy(N)Ψ(N)1(N ∈Mf , ToyN 6∈Mf)]
EΠρ [roy(N)Ψ(N)1(N ∈Mf)]

y ∈ D (8.12)

Proof. The first equation follows from Proposition 49 and the fact that

EΠtb [q(N, ToBN)] = EΠtb [
∫

B

roy (N)λ (o, dy)]

=
∫

B

EΠtb [roy (N)]λ (o, dy)

EΠtb [q(N, ToBN \Mf)] = EΠtb [
∫

B

roy (N) 1
(
ToyN 6∈Mf

)
λ (o, dy)]

=
∫

B

EΠtb [roy (N) 1
(
ToyN 6∈Mf

)
]λ (o, dy)

Equation (8.10) is immediate from (8.9) and (8.6). Equation (8.11) is immediate
from (8.10). Equation (8.12) is a consequence of the fact that the distribution
Π is Gibbs with density Ψ with respect to Πρ.

Remark 24 Note that formula (8.11) might be seen as a spatial extension of
the classical Erlang formula.

Corollary 11 If the conditions of Proposition 29 for the free generator q hold
as well as Lemma 15 and condition (8.6), then for A,B ∈ D,

ptb
AB =

∫
A

∫
B

ptb(x, y)EΠρ [rxy (ToxN) 1(ToxN ∈Mf)Ψ(ToxN)]ρ (dx)λ (x, dy)∫
A

∫
B

EΠρ [rxy (ToxN) 1(ToxN ∈Mf)Ψ(ToxN)]ρ (dx) λ (x, dy)

where

ptb(x, y) =
EΠρ [rxy (ToxN) 1

(
ToxN ∈Mf , ToyN 6∈Mf

)
Ψ(ToxN)]

EΠρ [rxy (ToxN) 1(ToxN ∈Mf)Ψ(ToxN)]
x, y ∈ D

(8.13)
called the blocking rate on the transition from x to y. If rxy(ν) ≡ 1 for Π-almost
all ν ∈Mf , in particular if q is a MPL generator, then we have

ptb(x, y) =
Π(ToxN ∈Mf , ToyN 6∈Mf)

Π(ToxN ∈Mf)
x ∈ D, y ∈ D. (8.14)
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Proof. From Proposition 49 we deduce that

ptb
AB =

EΠtb [
∫

A

∫
B

rxy (N) N (dx) 1
(
TxyN 6∈Mf

)
λ (x, dy)]

EΠtb [
∫

A

∫
B

rxy (N)N (dx)λ (x, dy)]

=
EΠ[

∫
A

∫
B

rxy (N) 1
(
N ∈Mf , TxyN 6∈Mf

)
N (dx)λ (x, dy)]

EΠ[
∫

A

∫
B

rxy (N) 1(N ∈Mf)N (dx) λ (x, dy)]

=
EΠ[

∫
A

∫
B

rxy (ToxN) 1
(
ToxN ∈Mf , ToyN 6∈Mf

)
Ψ(ToxN)/Ψ(N)ρ (dx)λ (x, dy)]

EΠ[
∫

A

∫
B

rxy (ToxN) 1(ToxN ∈Mf)Ψ(ToxN)/Ψ(N)ρ (dx) λ (x, dy)]

=

∫
A

∫
B

EΠρ
[rxy (ToxN) 1

(
ToxN ∈Mf , ToyN 6∈Mf

)
Ψ(ToxN)]ρ (dx) λ (x, dy)∫

A

∫
B

EΠρ [rxy (ToxN) 1(ToxN ∈Mf)Ψ(ToxN)]ρ (dx) λ (x, dy)

=

∫
A

∫
B

ptb(x, y)EΠρ [rxy (ToxN) 1(ToxN ∈Mf)Ψ(ToxN)]ρ (dx)λ (x, dy)∫
A

∫
B

EΠρ [rxy (ToxN) 1(ToxN ∈Mf)Ψ(ToxN)]ρ (dx)λ (x, dy)

where for the third equality we use Proposition 20 for

g (N, x) = 1 (x ∈ A)
∫

B

rxy (ToxN) 1(ToxN ∈Mf)λ (x, dy)

for the denominator and

g (N, x) = 1 (x ∈ A)
∫

B

rxy (ToxN) 1(ToxN ∈Mf , ToyN 6∈Mf)λ (x, dy)

for the numerator.

Average number of users

In some particular cases, the average number of users in the stationary state is
related explicitly to the blocking rates as shown in the following lemma.

Lemma 16 If rxy(ν) ≡ 1 for Πρ-almost all ν ∈Mf , in particular if q is a MPL
generator, then we have

EΠtb [N (B)] =
∫

B

[
1− ptb (o, x)

]
ρ (dx) , B ∈ D (8.15)

Assume that λ(x, o) is constant. If moreover ρ (dx) = λ(o, dx)/λ(x, o) in par-
ticular if q is a SBD generator, then

EΠtb [N (B)] = (1− poB) ρ(B) (8.16)
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Proof. We have

EΠtb [N (B)] =
∫

M
N (B)Πtb (dN)

= Π(Mf)−1

∫

M
1

{
N ∈Mf

}
N (B) Π (dN)

= Π(Mf)−1EΠ

[
1

{
N ∈Mf

}
N (B)

]

= Π(Mf)−1

∫

B

EΠ

[
1

{
N ∈Mf

}
N (dx)

]

= Π(Mf)−1

∫

B

EΠ

[
1

{
N + δx ∈Mf

}
ρ (dx)

]

=
∫

B

Πtb
(
N + δx ∈Mf

)
ρ (dx)

where the second equality is due to the truncation property and for the fifth
one we use Proposition 20 for g (N, x) = 1

(
N + δx ∈Mf

)
.

If λ(x, o) is constant, then

poB =
1

λ(o, B)

∫

B

ptb (o, x)λ(o, dx) =
1

ρ(B)

∫

B

ptb (o, x) ρ(dx)

from which we get (8.16).

8.2.2 Forced termination model

In this section we will consider the forced termination model and will clearly
distinguish between blocking of new arrivals and cutting of existing calls in
progress.

We suppose that qft is regular and ergodic, and it has the an invariant
distribution that we denote by Πft. Note that Πft is a probability distribution
on M.

Blocking probabilities

As in the previous section, the blocked arrivals can be modeled by a double sto-
chastic Poisson point process Φft

0 =
∑

i δ(tiyi) driven by N ft
t , where ti, yi denote,

respectively, the time-epochs and arrival locations of blocked transition of N ft
t .

Given a realization N ft
· = {N ft

t , t ≥ 0}, Φft
0 is a Poisson point process with in-

tensity measure Λft
N ft·

on (0,∞)×D, given by Λft
N·(D×B) =

∫
D

q(N ft
t , ToBN ft

t \
Mf)dt. Denote also by Φtb

1 the point process on (0,∞)×D associated to (“true”)
arrivals of N ft

t ; i.e., Φft
1 (D × B) =

∑
s>0 1(s ∈ D, N ft

s = ToyN ft
s−, y ∈ B). Let

Φft = Φft
0 + Φft

1 be the superposition of Φft
i , i = 0, 1. Finally define the blocking

probability for the transitions ν → ToB(ν) for some B ∈ D and ν ∈Mf (will call
them arrivals to B for short) as the following limiting ratio of blocked transitions
to all transitions

pft
oB = lim

t→∞
Φft

0 ((0, t]×B)
Φft((0, t]×B)
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The following result can be proved along the same lines as Lemma 15.

Proposition 50 Suppose that ∅ is a positive recurrent state for qft with the
limiting distribution Πft. If

EΠft [q(N,M)] < ∞ (8.17)

then

lim
t→∞

1
t
Φft

0 ((0, t]×B) = EΠft [q(N,ToBN \Mf)]

lim
t→∞

1
t
Φft

1 ((0, t]×B) = EΠft [q(N,ToBN ∩Mf)]

a.s. for any initial value N ft
0 = ν for which the return time to ∅ is a.s. finite.

Moreover

pft
oB =

EΠft [q(N,ToBN \Mf)]
EΠft [q(N, ToBN)]

=

∫
B

pft(o, y)EΠft [roy (N)]λ (o, dy)∫
B

EΠft [roy (N)]λ (o, dy)

where

pft(o, y) =
EΠft [roy(N)1(ToyN 6∈Mf)]

EΠft [roy (N)]
y ∈ D (8.18)

Cut probabilities

We are now interested in forced terminations (cuts) of the service. Looking at
the form of the generator qft we see that each transition ν → Txoν for some
x ∈ ν can be, independently of everything else, either a “regular termination”
with probability

τν,x({o}) =
rxo(ν)
rft
xo(ν)

or a “forced termination” due to an unsuccessful displacement to B ∈ D with
probability

τν,x(B) =

∫
B

rxy(ν)1(Txyν 6∈Mf) λ(x, dy)
rft
xo(ν)λ(x, o)

So we can model different terminations of the process N ft by a marked point
process Φft

2 =
∑

i δ(ti,xi,yi) where ti are termination epochs, xi ∈ D denote the
departure locations and yi ∈ D̄ denote the termination status: yi = o if it is
a regular one and yi ∈ D if it is caused by an unsuccessful displacement from
xi to yi. Note that given a realization of N ft

t the points ti and marks xi are
known, and we assume that yi are independently chosen with the distribution
τN ft

ti
,xi

(B). Considering marked point processes of epochs and departure-arrival
location of all transition we can express various ergodic limit fractions of users
cut on when trying to move from some given A ∈ D to B ∈ D. Here we will show
only how to treat ergodic limit fractions c of users that are forced to terminate
during their sojourn in the network

c = lim
t→∞

Φft
2 ((0, t]× D× D)
Φft

1 ((0, t]× D)
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Proposition 51 Suppose that ∅ is a positive recurrent state for qft with the
limiting distribution Πft. If

EΠft [q(N, ToDN ∩Mf)] < ∞ (8.19)

and
EΠft [q(N, TDDN \Mf)] < ∞ (8.20)

then the limit c exists almost surely for any initial value N ft
0 = ν for which the

return time to ∅ is finite and

c =
EΠft [q(N,TDDN \Mf)]
EΠft [q(N, ToDN ∩Mf)]

(8.21)

= 1− EΠft [q(N, TDoN)]
EΠft [q(N, ToDN ∩Mf)]

(8.22)

Proof. Note that the process Xt = Φft
2 ([0, t] × D × D) is cumulative with

the imbedded renewal process being the epochs of successive visits of N ft
t at

∅. Following the same lines as in the proof of Lemma 15 we find under condi-
tion (8.20) that limt→∞ 1/t Φft

2 ((0, t] × D2) = EΠft [Φft
2 ((0, 1] × D2)]. Similarly,

under condition (8.19) limt→∞ 1/t Φft
1 ((0, t] × D) = EΠft [Φft

1 ((0, 1] × D)]. By
Lévy’s formula we obtain (8.21).

Writing that the arrival rate equals the departure rate, gives

EΠft [q(N, TDDN \Mf)] + EΠft [q(N, TDoN)] = EΠft [q(N, ToDN ∩Mf)]

which together with (8.21) imply (8.22).

8.2.3 Approximation of the cut probability

We don’t have an explicit expression of the stationary distribution of the forced
termination model. Hence Formula (8.21) doesn’t give an explicit way to cal-
culate the cut probability. We define for the transition blocking model a ficti-
tious-cut probability which will be shown to be a good approximation of the cut
probability of the forced termination model in §10.4.

For the transition blocking model, we define the motion-blocking as the
ratio of blocked motions to regular terminations

dtb = lim
t→∞

Φtb
0 ((0, t]× D× D)

Φtb((0, t]× D× {o}) (8.23)

The fictitious-cut probability is defined as

ctb =
dtb

1 + dtb

The following proposition permits to relate the motion-blocking to the sta-
tionary distribution of the transition blocking model.
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Proposition 52 The motion-blocking equals

dtb =
EΠtb [q(N,TDDN \Mf)]

EΠtb [q(N,TDoN)]
(8.24)

If rxy(ν) ≡ 1 for Πρ-almost all ν ∈Mf , then

dtb =

∫
D×D λ (x, dy)Πtb

(
N + δx ∈Mf , N + δy 6∈Mf

)
ρ (dx)∫

D λ (x, {o}) [1− ptb (o, x)] ρ (dx)
(8.25)

Proof. From Lemma 15 we get (8.24). Assume that rxy(ν) ≡ 1 for Πρ-
almost all ν ∈ Mf , in particular if q is a MPL generator. For the denominator
of the right-hand side of the above display we have

EΠtb [q(N, TDoN)] =
∫

D
λ (x, {o})EΠtb [N (dx)] =

∫

D
λ (x, {o}) [

1− ptb (o, x)
]
ρ (dx)

where the last equality is due to Lemma 16.
For the numerator, we have

EΠtb [q(N,TDDN \Mf)] =
∫

D×D
λ (x, dy)EΠtb [1(TxyN 6∈Mf)N (dx)]

We calculate

EΠtb [1(TxyN 6∈Mf)N (dx)] = Π(Mf)−1EΠ

[
1(N ∈Mf , TxyN 6∈Mf)N (dx)

]

= Π(Mf)−1Π
(
N + δx ∈Mf , N + δy 6∈Mf

)
ρ (dx)

= Πtb
(
N + δx ∈Mf , N + δy 6∈Mf

)
ρ (dx)

where the first equality is due to the truncation property and for the second one
we use Proposition 20 for g (N,x) = 1

(
N + δx ∈Mf , N + δy 6∈Mf

)
(note that

g (N − δx, x) = 1(N ∈Mf , N − δx + δy 6∈Mf) = 1(N ∈Mf , TxyN 6∈Mf)).

Example 13 Assume that

Πtb
(
N + δx ∈Mf , N + δy 6∈Mf

)
= Πtb

(
N + δx ∈Mf

)
Πtb

(
N + δy 6∈Mf

)

(which is the case if Mf is in the form (8.27)) then

EΠtb [1(TxyN 6∈Mf)N (dx)] = Πtb
(
N + δx ∈Mf

)
Πtb

(
N + δy 6∈Mf

)
ρ (dx)

= ptb (o, y)
[
1− ptb (o, x)

]
ρ (dx)

Hence, from (8.25), we get

dtb =

∫
D×D λ (x, dy) ptb (o, y)

[
1− ptb (o, x)

]
ρ (dx)∫

D λ (x, {o}) [1− ptb (o, x)] ρ (dx)
(8.26)
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Assume now that each location plays the same role then

dtb = ptb (o, ·)
∫
D×D λ (x, dy) ρ (dx)∫
D λ (x, {o}) ρ (dx)

= ptb (o, ·) λ (·,D)
λ (·, o)

Assume moreover that D is discrete and

Mf = {ν ∈M;∀x ∈ D, νx ≤ Γ} (8.27)

then
ptb (o, ·) = Erl (ρ·, Γ)

where Z is a Poisson random variable with mean ρ (D). If, for each x ∈ D, we
take λx,xk

= λ for some constant λ and some neighbours x1, . . . , xn of x, then

dtb = Erl (ρ·, Γ)
λ

λ (·, o)n (8.28)

In this case, the fictitious-cut probability equals

ctb =
dtb

1 + dtb

= 1− 1
1 + dtb

= 1− 1
1 + Erl (ρ·, Γ) λ

λ(·,o)n
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Chapter 9

Introduction

The present part focuses on third objective described in Section 0.2, i.e. to
apply the results of the previous two parts to the performance evaluation of
wireless cellular networks.

Our motivation is to build explicit expressions for quality of service indicators
in large cellular systems. A particular effort is made to go further than pure
simulations, i.e. to build explicit expressions. This is a crucial issue because
explicit expressions are more effective than simulations for the optimization of
the capacity of the network and for the study the interactions between the link
level and the system level.

Wireless networks carry both streaming and elastic traffic. The service re-
quirements are specific to each type of service. Streaming users require some
connection duration with a fixed bit-rate, whereas elastic users have some amount
of data to send. Quality of service may be expressed in terms of the blocking and
cut probabilities for streaming traffic, and in terms of the expected throughput
and delay for elastic traffic.

The results of Chapter 6 are helpfull to prove the regularity and the ergod-
icity of the process modellling the evolution of the streaming calls: as well as
the regularity of the process modellling the evolution of the elastic calls.

We show that the tools developped in the first two parts permit to study sys-
tems with different multiple access schemes: CDMA such as UMTS Release 99,
TDMA such as HSDPA, and FDMA such as GSM in Chapters 10, 11 and 12
respectively.

We shall use the notation described in Section 2.3 (with some adaptation for
HSDPA and GSM).
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Chapter 10

UMTS Release 99

10.1 Introduction

We consider a UMTS1 Release 99 network serving both streaming and elastic
traffic. Each streaming user is served by a Dedidated CHannel (DCH). The
elastic users in a given cell are served simultaneously by the Downlink Shared
CHannel (DSCH).

The present chapter is organized as follows. Section 10.2 considers the case
where there are only elastic traffic and gives explicit expressions of the through-
put per user. Section 10.3 considers a network carrying streaming traffic only
and give explicit approximate expressions of the blocking probability for such
services. Mixed scenarios with streaming and elastic traffic are studied in sec-
tion 10.5. We shall describe the related works and our contribution within each
section.

10.2 Elastic traffic on DSCH

We consider in the present section a UMTS network carrying elastic traffic
only. Hence each user has some volume of data to transmit (or receive) with a
flexible bit-rate. We assume that active users are served simultaneously by the
DSCH. Our objective is to evaluate the quality of service perceived by a user
for this type in terms of the expected throughput (i.e. the average effective
transmission or reception bit-rate) and delay (i.e. transfer time).

10.2.1 Related works

The major part of the existing literature treating these issues in CDMA net-
works make some simplifying assumptions about the interference. In [2, 62] the
uplink of a CDMA network is treated with the assumption that the inter-cell
interference is proportional to intra-cell interference. An analogous assumption

1Universal Mobile Telecommunications System
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is made for the downlink in [110]. The authors of [6] make a statistical indepen-
dence assumption between the inter-cell interference perceived by the different
cells.

For elastic traffic, the mean number of users may grow unboundedly in the
long run of the system; in which case the system is said to be unstable. This
situation has to be avoided, which means that the stochastic process describing
the evolution of the system should be ergodic and that the mean number of
users under the limiting distribution should be finite. The literature say in this
case that the system is stable. (Note that this notion of stability of a system is
different from the notion of stability of a generator of a Markov process defined
in §6.1.2.)

By definition a necessary condition for the system to be stable is that the sto-
chastic process describing its evolution is ergodic. The conditions for ergodicity
depend on the congestion control algorithm. [28] establishes the ergodicity con-
dition for feasibility based congestion control algorithms in CDMA networks.
The author investigates also the macro-diversity effects. Ergodicity issues of
TDMA networks are addressed in [24] for a single cell network. The impact of
mobility within the cell on ergodicity is studied in [22]. Ergodicity issues are
also addressed for queueing networks without the spatial component (cf. for
example [9]).

Another concern of congestion control algorithms is to assure fairness
among users. We discuss this issue in Annex 14.B.

10.2.2 Our contribution

We describe the temporal evolution of a large CDMA network serving elastic
traffic only by a spatial processor-sharing Markov queuing process, and obtain
in this framework the explicit expressions of the expected throughput (and de-
lay) for the congestion control scheme based on the decentralized feasibility
condition, denoted FC.

Contrarily to the models in [2, 6], our model takes into account the exact
representation of the geometry of inter-cell and intra-cell interferences.

Our model is more restrictive than that considered in [28] where the arrival
process is not necessarily Poisson. In [28], an ergodicity condition is established,
whereas in the present work we go further by establishing explicit expressions
for expected throughput (and delay).

10.2.3 Congestion control algorithms

Recall that the feasibility condition FC may be written in the general form
∑
m∈u

ϕ (m) < C, u ∈ U

where u designates a base station, the notation m ∈ u means that user m
is served by base station u and the formulae for the function ϕ (·) and the
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parameter C are given by (4.14) and (4.12). Note that the function ϕ (.) may
be decomposed as follows

ϕ (m) = Xmξ′m, m ∈ u

where

• ξ′m designates the modified SINR ξ′m = ξm/ (1 + αξm);

• ξm designates the signal-to-interference-and-noise ratio (SINR) threshold;

• α is the orthogonality factor, which we assume constant;

• Xm is some factor characterizing the geometry

Recall that C depends on the case considered: uplink or downlink, with or
without power limitation. We assume from now that C is independent of the
SINR thresholds {ξm}. (This is true except for the uplink with power limitation.
This particular case needs further investigations which may be carried in future
studies.)

As in §2.1, we take for DSCH modulation a single representative value of
the Eb/N0 and assume that the set of possible rates is continuous: R+. Then
the bit-rate rm and the SINR ξm are related by Equation (2.1) which may be
written as follows

rm =
W ′

Eb/N0
ξm (10.1)

where Eb/N0 designates the energy-per-bit to noise-density ratio and W ′ designates
the chip-rate.

If the bit-rates {rm; m ∈ u} satisfy
∑
m∈u

γmrm = 1 (10.2)

where the weighting coefficients γm are given by

γm =
Eb/N0

CW ′ Xm (10.3)

then ∑
m∈u

Xmξm = C (10.4)

which implies the feasibility condition (4.13), since ξ′m < ξm. (There will be a
loss of capacity, but this loss is small if ξ′m ' ξm;or equivalently αξm ¿ 1.)

Egalitarian congestion control

In [16, 13] an egalitarian scheme where all users in a given cell are given the
same bit-rate is proposed. In order to satisfy (10.2), the allocated bit-rates are
given by

rm =
1∑

m∈u

γm

, m ∈ u (10.5)
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Proposed congestion control

The performance of the egalitarian congestion algorithm (10.5) are very diffi-
cult to calculate and it is probably hopeless to obtain analytical results. In
the present section we consider the same congestion control algorithm as that
considered in [28]. This algorithm allocates bit-rates to users as follows

rm =
1

Mγm
, m ∈ u (10.6)

where M designates the number of users in progress in cell u. (We shall compare
different bit-rate allocations in Annex 14.B.)

Remark 25 Note that we consider the case with no admission control, where
an increase of the number of users in a cell is just coped with via a reduction
of the bit rates of the users of this cell. Our case is more like TCP where the
increase of the number of competitors eventually results in a decreased bit rate
for all, and where no user is ever rejected. We model the user bit-rate as a
fluid whose rate adjusts immediately in response to changes in the number and
positions of users in progress.

10.2.4 Associated SMQ process

Traffic model

New elastic users arrive to the network as a Poisson process with intensity λx×dx
in any region of surface dx. The required volumes (amount of data to transmit
or receive) are i.i.d. exponentially distributed with mean µ−1

x and independent
from arrivals. We may have different service classes, such as http, ftp, etc.,
with specific values of the arrival and volume parameters for each service class
(arrival and volume processes for different service classes are assumed indepen-
dent). In this case the parameter x designates both the geographic position and
the service class. We consider a set D designating the possible values of the
service class and position of users. Hence a value x ∈ D, called a location,
corresponds to a given service class and a given geographic position. We assume
that

λx > 0, µx > 0, ∀x ∈ D
We assume that the users don’t move from one cell to another during their

calls (mobility may eventually occur within each cell). Since moreover our con-
gestion control algorithm is decentralized, we may study each cell independently
from the other cells. Hence the location set D corresponds to a given cell.

Generator

We assume that the users in a location x ∈ D are assigned the same bitrate.
We model the evolution of the system by a continuous-time Markov process
{Nt; t ≥ 0} where Nt is a finite counting measures on D such that Nt (A)
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designates the number of users in location x ∈ A at time t. The state space, de-
noted M, is the space of all finite counting measures on D and a typical element
of M is denoted ν.

Equation (10.2) may be written as follows
∫

D
γ (x) rxν (dx) = 1 (10.7)

where ν ∈ M is the state of the system, i.e. Nt = ν; γ (x) are some coefficients
pondering the capacity consumption of the different locations; and rx is the
bit-rate allocated to the users of class x. The bit-rate allocation (10.6) takes
the following form

rx = ν (D)−1
γ (x)−1 (10.8)

We shall now determine the generator, say q, of the Markov process {Nt; t ≥ 0}.
The birth rate at dx equals λxdx where λx is the intensity of arrival of users of
class x. From Equation (10.8) we deduce that the death/service rate at dx ∈ D
equals µxrxν (dx) = µxγ (x)−1

ν (dx) ν (D)−1 where µ−1
x designates the mean

volume that users of class x require to transmit.
From Proposition 43, we deduce that the generator q of the Markov process

{Nt; t ≥ 0} may be viewed as a SMQ with birth rates and death rates given
respectively by

λ (o, dx) = λxdx, λ (x, {o}) = µx

motion rates, say λ (x,A) , x ∈ D, A ∈ D, given in section 6.5, and service rates

rxy (ν) =

{
1 if x ∈ D̄, y ∈ D
γ (x)−1

ν (D)−1 if y = o, x ∈ D; νx > 0

By Lemma 12, it is equivalent to consider another SMQ with routing rates

λ′ (o, dx) = λxdx, λ′ (x, {o}) = µxγ (x)−1 (10.9)

motion rates λ′ (x,A) = λ (x, A) , x ∈ D, A ∈ D; and service rates

r′xy (ν) =

{
1 if x ∈ D̄, y ∈ D
ν (D)−1 if y = o, x ∈ D; νx > 0

(10.10)

(where we replaced λ (x, {o}) by λ (x, {o}) γ (x)−1 and rxo (ν) by rxo (ν) γ (x)).
We denote with prime (′) the parameters which are specific to this new SMQ.
Of course, the generators are identical, q′ = q.

10.2.5 No mobility case

Here q′ is a spatial birth death (SBD) generator (which is a particular case of
SMQ studied in Part II).
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Regular. The generator q′ is stable iff Condition (6.12) is satisfied, which is
equivalent to

λ′ (o,D) =
∫

D
λxdx < ∞

what will be assumed from now on. Consider the birth rates {b′n} and
death rates {d′n} defined by (6.16), i.e.

b′n = sup
ν∈M:ν(D)=n

q′ (ν, ToDν) = λ′ (o,D)

d′n = inf
ν∈M:ν(D)=n

q (ν, TDoν)

Observe that q′ (ν, ToDν) = λ′ (o,D) hence Condition (6.17) is satisfied. More-
over we have supν∈M q′ (ν, ToDν) = λ′ (o,D) < ∞, hence by Lemma 4, the
generator q′ is regular. Let {N ′

t ; t ≥ 0} be a Markov jump process associated to
the generator q′.

Limiting distribution. Consider the associated M/GI/1 queue as described
in Proposition 37. The traffic demand of this M/GI/1 queue is

ρ′ (D) =
∫

D

λ′(o, dx)
λ′ (x, o)

=
∫

D
λxγ (x) µ−1

x dx (10.11)

The quantity ρ′ (D) is called modified traffic demand in order to distinguish
it from the traffic demand of the original system, denoted ρ (D), and given
by

ρ (D) =
∫

D

λ(o, dx)
λ (x, o)

=
∫

D
λxµ−1

x dx

From Propositions 37 and 23 we deduce that a sufficient condition for the er-
godicity of the Markov process {N ′

t ; t ≥ 0} is

ρ′ (D) < 1 (10.12)

what will be assumed from now on.

Invariant probability measure. The traffic equations (6.47) have solution

ρ′ {o} = 1, ρ′ (dx) =
λ′ (o, dx)
λ′ (x, {o}) =

γ (x)λx

µx
dx, x ∈ D (10.13)

The measure ρ′ satisfies Condition (6.51). The service rates are balanced by

Ψ′ (ν) = eρ′(D) (1− ρ′ (D)) ν (D)!

which satisfies Condition (6.52). Let ΠΨ′ be the Gibbs distribution on D having
density Ψ′ with respect to the Poisson process with intensity measure ρ′. Since
the routing kernel λ′ is reversible with respect to ρ′, then, by Proposition 29,
ΠΨ′ is reversible with respect to q. In particular ΠΨ′ is invariant with respect to
the generator q′. By Proposition 25, there is a unique such probability measure
which is the limiting distribution.
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Analytical expressions

In the case without mobility, the Whittle and wireless models described in
Sections 7.1.1 and 7.2.1 respectively are equivalent. Hence we may deduce
from (7.21) or (7.42) that the expected delay for users in A ∈ D, denoted
T̄ (A), equals

T̄ (A) =
ρ′ (A)

λ (o,A) (1− ρ′ (D))
(10.14)

From Equation (7.22) or (7.43) we deduce that the expected throughput for
users in A ∈ D, denoted r̄ (A), equals

r̄ (A) =
ρ (A)
ρ′ (A)

[1− ρ′ (D)]

where

ρ (A) =
∫

A

λx

µx
dx (10.15)

In particular, the expected throughput for users in all the area D equals

r̄ (D) =
ρ (D)
ρ′ (D)

[1− ρ′ (D)] (10.16)

10.2.6 Infinite mobility case

Consider now the infinite mobility case described in Proposition 45 and re-
call that we consider the birth rates λ′ (o, dx) and death rates λ′ (x, {o}) given
by Equation (10.9). The total number of users {N ′

t (D)} may be viewed as
a M/GI/1 processor-sharing queue with arrival rate λ′ = λ′ (o,D) and with
call-volume rate

∫
D λ′ (x, {o}) %(dx), i.e. with traffic demand, say ρ′, given by

ρ′ =
λ′ (o,D)∫

D λ′ (x, {o}) %(dx)
=

λ (o,D)∫
D µxγ (x)−1

%(dx)
(10.17)

where % is the stationary distribution of the location of individual user in D (i.e.
% is solution of Equation (6.61)). The ergodicity condition (7.29) writes

ρ′ < 1 (10.18)

From Lemma 22 we deduce that, in steady state, the mean number of users
denoted E [π′], equals

E [π′] =
ρ′

1− ρ′
(10.19)

the expected delay, denoted T̄ , equals

T̄ =
ρ′

λ (o,D) (1− ρ′)
(10.20)
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The above two displays may also be deduced from (7.41) and (7.42) respec-
tively.

From Lemma 22 we deduce also that the expected throughput of the M/GI/1
processor-sharing queue equals 1 − ρ′. This is not the expected throughput of
our system, since we have modified the service rates (we transferred the term
γ (x) from the service rates to the death rates). Observe that the user volume
rate of our system is

∫
D λ (x, {o}) %(dx), then the expected throughput of our

system, denoted r̄, equals

r̄ =
1

T̄
∫
D λ (x, {o}) %(dx)

=
ρ

ρ′
(1− ρ′) (10.21)

where

ρ =
λ (o,D)∫

D λ (x, {o}) %(dx)
=

λ (o,D)∫
D µx%(dx)

(10.22)

10.2.7 Numerical results

In this section, we assume that the birth rates λx and the death rates µx don’t
depend on x.

Unless otherwise specified, all the numerical applications are made using the
default values specified in Section 2.2.5.

No mobility case

The traffic intensities ρ′ (D) and ρ (D) are deduced from Equations (10.11)
and (10.15)

ρ′ (D) = γ̄ρ (D) , ρ (D) = πR2λµ−1

where γ̄ is the average of γ (x) over the cell D. Hence the ergodicity condi-
tion (10.12) may be written as follows

ρ (D) < γ̄−1

Note that ρ (D) is the traffic demand per cell, hence the ergodicity condition
says that the traffic demand per cell should be less than some critical value,
denoted ρc (D), that is

ρ (D) < ρc (D) (10.23)

where the critical traffic demand is given by

ρc (D) = γ̄−1 (=
ρ (D)
ρ′ (D)

) (10.24)

The expected delay for users in all the area D is given by Equation (10.14)

T̄ (D) =
γ̄

µ (1− γ̄ρ (D))
(10.25)

The expected throughput for users in all the area D is given by Equation (10.16)

r̄ (D) = γ̄−1 − ρ (D) (10.26)
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Figure 10.1: Expected throughput and delay for DSCH.

DSCH. Recall that the weighting coefficient γ (x) for DSCH modulation is
given by (10.3). Then γ̄ = Eb/N0

CW ′ X̄. Hence, we get the critical traffic from
Equation (10.24)

ρc (D) =
1
γ̄

=
CW ′

X̄Eb/N0
(10.27)

The expression of X̄ may be deduced from Appendix 13.D. For example for
DFC (i.e. the downlink without power limitation) we have

X̄ = α +
0.94
η − 2

which gives
ρc (D) ' 1.1Mbit / s

If the traffic demand ρ (D) exceeds this critical value 1.1Mbit / s, then the system
becomes unstable (cf. (10.23)).

Fix the value of the call-volume average µ−1 = 0.5Mbit. Figure 10.1 repre-
sents the expected throughput and delay for DSCH.

In particular for a traffic demand ρ (D) ' 0.5Mbit / s, which corresponds
to a mean interarrival duration λ−1 = 1 s, we get an expected throughput and
delay respectively equal to

r̄ (D) = 0.6Mbit / s, T̄ (D) = 0.8 s

We see in Figure 10.1 that the expected throughput decreases and the delay in-
creases when the traffic demand increases. At the limit when the traffic demand
ρ (D) tends to the critical value ρc (D), the throughput goes to 0 and the delay
goes to infinity.
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Shannon. The approximation (2.4) for the Shannon’s bound may be written
as follows

rm ' W

ln (2)
ξm

In this case the expression (10.3) should be replaced by the following one

γm =
ln (2)
CW

Xm

We get a critical traffic for Shannon’s bound ρc (D) ' 6.7Mbit / s (for the down-
link without power limitation) which is about six times the critical traffic for
DSCH.

Infinite mobility case

The traffic intensities ρ′ and ρ are deduced from Equations (10.17) and (10.22)

ρ′ =
ρ

γ−1
, ρ = πR2λµ−1

where γ−1 is the average of γ−1 (x) over the cell D. Hence the ergodicity con-
dition (10.18) may be written as follows

ρ < ρc = γ−1

where ρc is called critical traffic.
The expected delay is deduced from Equation (10.20)

T̄ =
1(

γ−1 − ρ
)

µ

The expected throughput is given by Equation (10.21)

r̄ = γ−1 − ρ

We compare the expected throughputs for DSCH in the no mobility and the
infinite mobility cases in Figure 10.2. We deduce that the mobility increases the
expected throughput by a factor of about 1.5.

Intermediate mobility

We recall the ingredients of the generator of our wireless model. The birth rates
λ′ (o, dx) and death rates λ′ (o, dx) are given by (10.9) and the motion rates
λ′ (x,A) = λ (x, A) , x ∈ D, A ∈ D are given in section 6.5. The service rates
r′xy (ν) are given by (10.10).
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Figure 10.2: Expected throughputs for DSCH in the no mobility and the infinite
mobility cases.

Trafic equations. We assume now an average speed υ which is finite and
non-null. The cell D is modeled by a disc of radius R which is divided into J
rings. Each ring denoted by j ∈ J = {1, . . . , J} is delimited by discs with radii
rj−1 and rj where r0 = 0 and rJ = R.

Let ρ denote the traffic demand, i.e. ρj = λoj

λjo
for j ∈ J, and let ρ′ be

the solution of the traffic equations, which is function of ρ and of the speed υ
denoted ρ′ (ρ, υ). We call ρ′ (ρ, υ) the modified traffic.

For a given speed υ, if we multiply the traffic demands by a ∈ R+, i.e. ρj is
replaced by aρj for j ∈ J, then ρ′ is multiplied by the same factor, i.e.

ρ′ (aρ, υ) = aρ′ (ρ, υ)

Proof. Multiplying the original the traffic equations by a, gives





aρ′j
(
λjo + λj(j−1) + λj(j+1)

)
= aλoj + aρ′j−1λ(j−1)j + aρ′j+1λ(j+1)j for j = 2, . . . , J − 1

aρ′1 (λ1o + λ12) = aλo1 + aρ′2λ21

aρ′J
(
λJo + λJ(J−1)

)
= aλoJ + aρ′J−1λ(J−1)J

which shows the desired result.
Hence

ρ′ (ρ, υ) = ρD × ρ′ (ρ/ρD, υ)

and in particular

ρ′D (ρ, υ) = ρD × ρ′D (ρ/ρD, υ) (10.28)
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Figure 10.3: Monotonicity of the modified traffic with speed.

Whittle model. We construct a Whittle model by replacing artificially the
service rates (10.10) of the wireless model by

r′xy (ν) =

{
ν (D)−1 if x = o, y ∈ D
ν (D)−1 if y = o, x ∈ D; νx > 0

and keeping the same routing rates λ′ (x, dy). In particular, the traffic equations
are the same for both the wireless and the Whittle models.

We know that the wireless and Whittle models are identical at null and
infinite speed υ. We will compare numerically the results of the two models for
non-null finite speeds.

Monotonicity with speed. In the simulations we take the call-volume average µ−1 =
1Mbit. For other values of the call-volume average µ, we can always retreive
this particular case, since we may replace the generator q by q/µ without al-
tering the ergodicity and invariant distribution. In doing so, we should replace
the speed υ by υ/µ. In other words we may view our speed as expressed in
kilometers per µ× seconds.

Figure 10.3 represents the modified traffic on the cell ρ′D (ρ/ρD, υ) as function
of the speed. This figure shows that the modified traffic per cell is a decreasing
function of the speed. (Nevertheless, we observe numerically that the modified
traffic at a given ring ρ′j (ρ/ρD, υ) is not always monotonous with speed.) From
this numerical observation, we propose the following conjectures:

Conjecture 1 The modified traffic per cell decreases with the speed.
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Figure 10.4: Monotonicity of the mean number of users in a cell with speed.

Let N̄D be the mean number of users in a cell. Since in the Whittle model,
we have

N̄D =
ρ′D

1− ρ′D
(10.29)

we deduce that when the speed increases, the mean number of users per cell
decreases. (Therefore the delay decreases and the throughput increases.)

Figure 10.4 represents the mean number of users per cell as function of the av-
erage speed υ for different values of the traffic demand ρD = 0.2, 0.4, 0.6, 0.8Mbit / s.
We observe numerically that the mean number of users per cell of the Whittle
model is an upper bound of that of the wireless model; and that this upper
bound is tight for small traffic demand.

From the above numerical observations, we propose the following conjecture:

Conjecture 2 The mean number of users per cell of the Whittle model is an
upper bound of that of the wireless model. This upper bound is tight for small
traffic demand.

Stability. The stability condition for the Whittle model is

ρ′D (ρ, υ) < 1

or equivalently
ρD < 1/ρ′D (ρ/ρD, υ)

The right-hand side of the above inequality is called critical traffic de-
mand.

Figure 10.5 represents the critical traffic demand as function of the speed.
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Figure 10.5: Critical traffic demand

We investigate numerically the stability of the wireless model. Figure 10.6
represents the mean number of users per cell as function of the traffic demand
for different values of the average speed υ = 0, 0.2, 0.4, 0.6, 0.8, 1. From this
numerical result, we propose the following conjecture:

Conjecture 3 The stability condition of the wireless model is
{

ρ′D (ρ, 0) < 1 for υ = 0
ρ′D (ρ,∞) < 1 for υ > 0

10.3 Streaming traffic on DCH without mobility

We consider in the present section a UMTS network carrying streaming traffic
only. Hence each user requires some transmission duration at fixed bit-rate and
is served by a specific DCH. Our objective is to evaluate the quality of service
perceived by a user for this type in terms of the blocking probability.

10.3.1 Related works

We make here a short survey of the literature on performance evaluation of
load control schemes for CDMA networks. The QoS indicators introduced for
semi-static models in [52, 121, 84, 47] correspond to the probability that the
SINR is less than some threshold, when users, modeled as a spatial Poisson
point process, are all accepted. In [84] and [47] this indicator is called the
outage probability. The authors of [121] call it the blocking probability, but
as mentioned in [84], the term outage probability is more appropriate. We
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Figure 10.6: Numerical investigation of the stability of the wireless model.

propose to make the following distinction between outage and infeasibility
probabilities, both being defined for a semi-static model: the former is related
to the event that the transmission quality of service is not attained for given
transmission powers, whereas the latter corresponds to the situation when there
is no solution to the power control problem. Hence both the outage and the
infeasibility probabilities are defined for a semi-static model and are related to
“the probability that the transmission quality of service is not attained”. But
the outage probability depends on the transmission powers of the users and the
base stations; whereas the infeasibility probability corresponds to an intrinsic
characterization of power allocation feasibility, and consequently doesn’t depend
on transmission powers. The infeasibility probability is then a more appropriate
performance indicator.

The authors of [84] define the blocking probability in a semi-dynamic model
and give simulation results, which show that the outage and blocking probabil-
ities are different in general. In [46] it is argued that “the outage probability
may easily be computed whereas the blocking probability, even in the particular
case where a product-form is obtained, requires methods such as Monte-Carlo
acceptance-rejection technique or approximation techniques such as Erlang fixed
point.”

In analytical studies of the blocking probabilities in CDMA networks, the
geometry of interferences specific to CDMA is often absent or seriously reduced.
These studies make the distinction between blocking of new calls and of handoff
calls. Examples of such studies are [100, 61], which consider a single cell and [89,
111], which consider a multi-cell scenario. In [100, 61], blocking probabilities
are calculated via the classical Erlang formula. In [111] explicit expressions of
blocking probabilities are given for two limiting regimes of the dynamic model:
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no mobility and infinite mobility. In [89], Erlang fixed point approximations are
used to calculate blocking probabilities.

10.3.2 Our contribution

We apply the spatial Erlang formula established in §8.2 to built approximate ex-
plicit expressions of the blocking probability of the feasibility based load control
algorithms. It is, to our knowledge, the first time that an explicit expression of
the blocking probability, taking into account in an accurate manner the interfer-
ence in large UMTS networks, is established. Such an expression is very useful
for operators since it opens the way to efficient and rapid capacity, dimensioning
and cost evaluation methods.

10.3.3 Associated SMQ process

Traffic model

The definition of the location set D is similar to §10.2.4, except that now we
consider streaming traffic.

New streaming users arrive to the network as a Poisson process with inten-
sity λx×dx in any region of surface dx. The required transmission durations are
i.i.d. exponentially distributed with mean µ−1

x and independent from arrivals.
We may have different service classes, such as voice, streaming video, etc.,
with specific values of the arrival and duration parameters for each service class
(arrival and duration processes for different service classes are assumed inde-
pendent). In this case the parameter x designates both the geographic position
and the service class. We consider a set D designating the possible values of the
service class and position of users. Hence a value x ∈ D, called a location,
corresponds to a given service class and a given geographic position. We assume
that

λx > 0, µx > 0, ∀x ∈ D
We assume that the users don’t move during their calls. Since moreover our

admission control algorithm is decentralized, we may study each cell indepen-
dently from the other cells. Hence the location set D corresponds to a given
cell.

Generator

We model the evolution of the system by a continuous-time Markov process
{Nt; t ≥ 0} where Nt is a finite counting measures on D such that Nt (A)
designates the number of users in location x ∈ A at time t. The state space, de-
noted M, is the space of all finite counting measures on D and a typical element
of M is denoted ν.

We consider two types of systems as described below.

• Free system. In this case the capacity of each cell is supposed to be infinite.
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• Loss system. We assume the following admission control:

– We consider the FC admission criterion (4.13) which may be written
as follows ∫

D
ϕ (x)Nt (dx) < C

or ∫

D
ϕ (x) ν (dx) < C (10.30)

where C is a given constant, ϕ : D → R+ is a given measurable
function and Nt = ν is the current system state.

– For a new user arrival, we account for the new user in the left-hand
side of (10.30). If the inequality (10.30) is respected, the user is
admitted, otherwise the user is blocked, i.e. definitely lost (i.e. the
system remains in its previous state).

Free system

We shall now determine the generator, say q, of the free system. The birth rate
at dx equals λxdx where λx is the intensity of arrival of users of class x. The
death/service rate at dx ∈ D equals µxν (dx) where µ−1

x designates the mean
required duration for users of class x.

Hence the generator q of the free system may be viewed as a SMQ with birth
rates and death rates given respectively by

λ (o, dx) = λxdx, λ (x, {o}) = µx

motion rates λ (x,A) = 0, for all x ∈ D, A ∈ D, and service rates rxy (ν) = 1,
for all x, y ∈ D̄, ν ∈M. In fact, our process is a SBD.

Regular. The generator q is stable iff Condition (6.12) is satisfied, which is
equivalent to

λ (o,D) =
∫

D
λxdx < ∞

what will be assumed from now on. Consider the birth rates {bn} and
death rates {dn} defined by (6.16), i.e.

bn = sup
ν∈M:ν(D)=n

q (ν, ToDν) = λ (o,D)

dn = inf
ν∈M:ν(D)=n

q (ν, TDoν)

Observe that q (ν, ToDν) = λ (o,D) hence Condition (6.17) is satisfied. Moreover
we have supν∈M q (ν, ToDν) = λ (o,D) < ∞, hence by Lemma 4, q is regular. Let
{Nt; t ≥ 0} be a Markov jump process associated to the generator q.
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Limiting distribution. Observe that

dn = inf
ν∈M:ν(D)=n

∑
x∈ν

νxλ (x, {o}) ≥ n inf
x∈D

µx

If
inf
x∈D

µx > 0

what will be assumed from now on, then Condition (6.33) is satisfied which
implies by Lemma 6 and Proposition 23 that the process {Nt; t ≥ 0} is ergodic.

Invariant probability measure. The traffic equations (6.47) have solution

ρ {o} = 1, ρ (dx) =
λ (o, dx)
λ (x, {o}) =

λx

µx
dx, x ∈ D

The measure ρ satisfies Condition (6.51). The service rates are balanced by
Ψ ≡ 1, hence (6.52) is satisfied. Let Πρ be the distribution of the Poisson
process on D with intensity measure ρ. As the routing kernel λ is reversible
with respect to ρ, then, by Proposition 29, Πρ is reversible with respect to q.
In particular Πρ is invariant with respect to q. By Proposition 25, there is a
unique such probability measure which is the limiting distribution.

Loss system

Let Mf be the feasibility set corresponding to the admission criterion (10.30)

Mf =
{

ν ∈M :
∫

D
ϕdν < C

}

Consider the truncated generator qtb on Mf given by (8.3). The truncated
generator qtb is also a SMQ process with the service rates deduced from Equa-
tion (8.4)

rtb
xy (ν) = 1{ν ∈Mf , Txyν ∈Mf}+ 1

{
ν /∈Mf

}

Regular. Note that qtb (ν) ≤ q (ν); then the generator qtb is stable. Observe
that qtb (ν, ToDν) ≤ q (ν, ToDν) = λ (o,D), hence Condition (6.17) is satisfied.
Moreover we have supν∈M qtb (ν, ToDν) ≤ λ (o,D) < ∞, hence by Lemma 4,
qtb is regular. Let

{
N tb

t ; t ≥ 0
}

be a Markov jump process associated to the
generator qtb.

Limiting distribution. Note that Mf is closed with respect to transition
Txoν for all x ∈ D (we say that Mf is stable by the deaths). Consider the birth
rates {btb

n } and death rates {dtb
n } defined by (6.16), i.e.

btb
n = sup

ν∈M:ν(D)=n

qtb (ν, ToDν)
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dtb
n = inf

ν∈M:ν(D)=n
qtb (ν, TDoν)

Observe that ∀ν ∈ M, qtb (ν, ToDν) ≤ q (ν, ToDν) then btb
n ≤ bn. On the other

hand

dtb
n ≥ inf

ν∈Mf :ν(D)=n
qtb (ν, TDoν) = inf

ν∈Mf :ν(D)=n
q
(
ν, TDoν ∩Mf

)
(by (8.3))

= inf
ν∈Mf :ν(D)=n

q (ν, TDoν) (by the stability of Mf by the deaths)

≥ dn

Hence btb
n ≤ bn and dtb

n ≥ dn. This implies by Lemma 6 and Proposition 23
that the process

{
N tb

t ; t ≥ 0
}

is ergodic.

Invariant probability measure. Let Πtb
ρ be the truncation of Πρ to Mf . As

Πρ is reversible with respect to q, then Πtb
ρ is reversible with respect to qtb. In

particular Πtb
ρ is invariant with respect to qtb. By Proposition 25, there is a

unique such probability measure which is the limiting distribution.

Blocking probability. The following lemma proves a condition needed to
apply Lemma 15 when calculating the blocking probability.

Lemma 17 We have
∫

M
q (ν) Πρ (dν) < ∞ and

∫

Mf
qtb (ν)Πtb

ρ (dν) < ∞

Proof. Note first that qtb (ν) = q
(
ν,Mf

) ≤ q (ν) then, by the truncation
property, it is enough to show the first inequality. We have

∫
qdΠρ = EΠρ [q (ν, ToDν)] + EΠρ [q (ν, TDoν)]

= λ (o,D) + EΠρ

[∫

D
λ (x, {o}) ν (dx)

]

= λ (o,D) +
∫

D
EΠρ [ν (dx)] λ (x, {o})

= λ (o,D) +
∫

D
ρ (dx)λ (x, {o}) = 2× λ (o,D)

which is finite.
From the above lemma and Corollary 10, we deduce that the blocking rate

is given by

ptb(o, x) = 1− Πρ

(
Mf

x

)

Πρ (Mf)
(10.31)

where

Mf
x =

{
ν ∈M :

∫

D
ϕdν < C − ϕ (x)

}
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Note that the infeasibility probability equals Pi = 1 − Πρ

(
Mf

)
. Note also

that the set Mf defined in the above display is analogous to Mf ; the only differ-
ence is in the constant on the right-hand side of the inequality defining the set
(C in Mf is replaced by C − ϕ (x) in Mf). Then Equation (10.31) relates the
blocking rate and the infeasibility probability.

We deduce from Equation (10.31) that the blocking rate at some location x
may be related formally to the infeasibility probability as follows

ptb(o, x) = 1− 1− Pi [with new call at x]
1− Pi [without new call]

10.3.4 Calculation methods

Note that the parameter C is constant for DFC, UFC and EDFC. Considering
the version of EUFC described in Remark 4 assures that the parameter C is
also constant for EUFC. Here are some methods to calculate the infeasibility
probability:

Dynamic simulation

We simulate the Markov process and compute the blocking probability as the
ratio of the number of blocked arrivals to the total number of arrivals in a time
interval sufficiently large.

Gaussian approximation

From the Gaussian approximation of the infeasibility probability given by Equa-
tion (4.17) we deduce the following approximations

Πρ

(
Mf

)
= 1− Pi ' 1−Q

[(
C − S̄

)
/σS

]

Πρ

(
Mf

x

) ' 1−Q
[(

C − ϕ (x)− S̄
)
/σS

]

where S̄ and σS are the expectation and the standard deviation of the random
variable S appearing in the left hand-side of the feasibility condition (4.13).
Hence

ptb(o, x) ' 1− 1−Q
[(

C − ϕ (x)− S̄
)
/σS

]

1−Q
[(

C − S̄
)
/σS

]

In order to gain insight on the variations of the blocking rate with the user’s
location, we make the following approximation

ptb(o, x) ' Q
[(

C − ϕ (x)− S̄
)
/σS

]−Q
[(

C − S̄
)
/σS

]

1−Q
[(

C − S̄
)
/σS

]

' ϕ (x)
exp

[
− ((

C − S̄
)
/σS

)2
/2

]

σS

√
2π

{
1−Q

[(
C − S̄

)
/σS

]} (10.32)
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The blocking probability in the cell, say b̄, is given by

b̄ =
1
|D|

∫

D
ptb(o, x)dx

where D and |D| designate the cell its area respectively. In order to make faster
the blocking probability calculation, we make the following approximation

b̄ ' 1− 1−Q
[(

C − ϕ̄− S̄
)
/σS

]

1−Q
[(

C − S̄
)
/σS

]

' ϕ̄
exp

[
− ((

C − S̄
)
/σS

)2
/2

]

σS

√
2π

{
1−Q

[(
C − S̄

)
/σS

]}

Erlang approximation

From Lemma 2, we deduce that the blocking probability may be approximated
by the classical Erlang formula with traffic demand M̄ for a queue with Γ = C/ϕ̄
servers. (Note that Γ is the pole capacity defined by (4.4) for the downlink and
by (4.10) for the uplink.)

Kauffman-Roberts algorithm

We divide the cell into a finite number of rings and use Kauffman-Roberts
algorithm [73, 104] (described in Algorithm 1).

10.3.5 Numerical results

Unless otherwise specified, all the numerical applications are made using the
default values specified in Section 2.2.5.

Figure 10.7 represents the blocking probability obtained with dynamic simu-
lation, Gaussian approximation, Erlang approximation and Kauffman-Roberts
algorithm for EDFC respectively. Visual inspection of this figure shows that
the Kauffman-Roberts algorithm performs very well whereas the gaussian and
Erlang approximations performs well only for small blocking probabilities (typ-
ically smaller than 0.3).

10.4 Streaming traffic on DCH with mobility

We consider in the present section a UMTS network carrying streaming traf-
fic only in a dynamic context (i.e. users may move during their calls). Our
objective is to build expressions for blocking and cut probabilities. The term
blocking designates the non-admission of new arriving jobs due to the capac-
ity saturation by the active ones. The term cut designates the interruption
of active jobs due to capacity saturation induced by their mobility. Hence we
define two quality of service indicators, the so called blocking probability and cut



154 CHAPTER 10. UMTS RELEASE 99

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  50  100  150  200  250  300

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90  95

B
lo

ck
in

g 
pr

ob
ab

ili
ty

Trafic demand per cell

Traffic per surface unit [Erlang]

Dynamic simulation
Gaussian approximation

Erlang approximation
Kauffman-Roberts

Figure 10.7: EDFC, Cell radius 1Km. (Similar results are obtained for other
cell radii and for DFC,UFC and EUFC.)

probability. The blocking probability designates the fraction of calls that
are not admitted, whereas the cut probability designates the fraction of calls
that are interrupted in the long run by the system. The blocking of arriving
jobs is a well known problem in fixed networks whereas the cut of active jobs is
a new problem induced by mobility which is specific to cellular networks.

10.4.1 Related works

A large part of the existing literature on performance of cellular networks
considers either a semi-static traffic model [52, 121] or a semi-dynamic traf-
fic model [84, 47, 2]. In such context the mobility of users during their calls is
not taken into account; and hence the cut probability, which is the central issue
in the present study, may not be defined.

The literature considering a dynamic model where cut probability may be
defined and going further than pure simulations makes some simplifying as-
sumption about the interference. The most common assumption is that inter-
cell interference is proportional to intra-cell interference. This leads to models
where only the number of jobs per cell (and not their geographic positions) is
relevant. Examples of such studies are [111, 89]. In [111] two QoS indicators are
defined: new call blocking probability and handoff blocking probability. Explicit
expressions for these indicators are given for two limiting regimes: no mobility
and infinite mobility. (Note that the infinite mobility regime is too constraining
as the capacity of the whole network reduces in this case to that of a single cell
without mobility.) In [89] two QoS indicators are defined: blocking probability
and forced termination probability. Erlang fix point approximations are used
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to calculate these probabilities numerically.

10.4.2 Our contribution

The major difference of our work with the existing literature is that our model
takes into account the exact representation of the geometry of inter-cell and
intra-cell interferences. In this context, we establish an explicit approximate
expression of the cut probability as function of the average speed of the users,
which permits to study analytically how does the cut probability varies when
speed increases. It is, to our knowledge, the first time that an explicit expression
of the cut probability, taking into account in an accurate manner the interference
in large cellular networks, is established.

In the present work, we define the cut probability as the ratio of the number
of calls which are cut to the total number of call terminations. The authors
of [89] and [65] calculate the cut probability by considering a mobile moving
along the network and assuming that the mobile don’t affect the network state.
We don’t make this assumption in our present work.

The handoff blocking probability in [111, 89] is defined as the number of
handoffs which are blocked to the total number of handoff attempts. Although
the handoff blocking probability in [111, 89] captures the dynamic aspect (and
in particular the effect of the customer speeds) it is different from what we call
cut probability.

10.4.3 Associated SMQ process

We extend the model described in §10.3 to account for mobility of users during
their calls. We make the same assumptions and use the same notation of §10.3
for call arrivals and durations.

We consider a network of hexagonal cells where mobility may occur either
within each cell or between cells as described in §6.5.4. We consider the FC
admission criterion. Due to user mobility between cells, we may not study each
cell individually. We use the same notation of §6.5.4 for the network description
and user mobility. In particular, the location space is denoted D = U × J
where U is the set of cells and J is the set of rings which each cell. If there
are multiple service classes, then D is replaced by D× “Set of classes”. Hence a
value x ∈ D corresponds to a given service class and a given geographic location.
For brevity, we will say service class x for the service class associated to x
and gegraphic location x for the geographic location associated to x.

As usual, the state of the system is described by a process N = {Nt}t≥0

with state space M the space of all finite counting measures on D. We consider
three types of networks as described below.

• Free: In this case the capacity of each cell is supposed to be infinite. We
use the notation N = {Nt}t≥0 for the stochastic process representing the
state of this network.

• Constrained: we consider two types of blocking as described in §8.2
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– Transition bocking model. We use the notation N tb =
{
N tb

t

}
t≥0

for
the stochastic process representing the state of this network. (This
model is called Repetitive Service Blocking with Random Destination
in [30].)

– Forced termination model: We use the notation N ft = {N ft
t }t≥0 for

the stochastic process representing the state of this network. (This
model is called Rejection Blocking in [30].)

Free

The generator q of the Markov process N is given by

q (ν, Γ) =
∫

D
1Γ (Toxν)λxdx+

∫

D
1Γ (Txoν)µxν (dx)+

∫

D×D
1Γ (Txyν) λ′xp′ (x, dy) ν (dx)

where

• λx designates the intensity (per unit of surface) of the arrivals at the
gegraphic location x;

• µx designates the inverse of call duration for the service class x;

• λ′x designates the sojourn duration parameter of users at the gegraphic
location x;

• p′ (x, dy) is the probability Kernel of motions, i.e. a user finishing its
sojourn at node x, is routed to dy according to p′ (x, dy).

We have a MPL process with service rates rxy (ν) = 1.and routing rates

λ (o, dx) = λxdx, λ (x, {o}) = µx, λ (x, dy) = λ′xp′ (x, dy)

Regular. The generator q is stable iff Condition (6.12) is satisfied, which is
equivalent to

λ (o,D) < ∞, and ∀x ∈ D, λ(x,D) =
∫

λ′xp′ (x, dy) < ∞

what will be assumed from now on. Consider the birth rates {bn} and
death rates {dn} defined by (6.16), i.e.

bn = sup
ν∈M:ν(D)=n

q (ν, ToDν) = λ (o,D)

dn = inf
ν∈M:ν(D)=n

q (ν, TDoν)

Observe that q (ν, TDDν) =
∑

x∈ν νxλ (x,D) hence Condition (6.17) is satisfied
if

sup
x∈D

λ (x,D) < ∞

what will be assumed from now on. Moreover we have supν∈M q (ν, ToDν) =
λ (o,D) < ∞, hence by Lemma 4, q is regular. Let {Nt; t ≥ 0} be a Markov jump
process associated to the generator q.
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Limiting distribution and invariant probability measure. We have ex-
actly the same observations as those made in §10.3.3 for the case without mo-
bility.

Transition blocking model

Let Mf be the feasibility set corresponding to FC

Mf =
{

ν ∈M :
∫

u

ϕ (y) ν (dy) < C, u ∈ U
}

(10.33)

Consider the truncated generator qtb on Mf given by (8.3). The truncated
generator qtb is also a SMQ process with the service rates deduced from Equa-
tion (8.4)

rtb
xy (ν) = 1{ν ∈Mf , Txyν ∈Mf}+ 1

{
ν /∈Mf

}

Regular. Note that qtb (ν) ≤ q (ν); then the generator qtb is stable. Observe
that qtb (ν, TDDν) ≤ q (ν, TDDν), hence Condition (6.17) is satisfied. Moreover
we have supν∈M qtb (ν, ToDν) ≤ λ (o,D) < ∞, hence by Lemma 4, qtb is regular.
Let

{
N tb

t ; t ≥ 0
}

be a Markov jump process associated to the generator qtb.

Limiting distribution and invariant probability measure. We have ex-
actly the same observations as those made in §10.3.3 for the case without mo-
bility. Let Πtb

ρ be the unique invariant with respect to qtb.

Blocking probability. The following lemma proves a condition needed to
apply Lemma 15 when calculating the blocking probability.

Lemma 18 If ∫

D
λ (x,D) ρ (dx) < ∞

what will be assumed from now on, then
∫

M
q (ν) Πρ (dν) < ∞ and

∫

Mf
qtb (ν)Πtb

ρ (dν) < ∞ (10.34)

Proof. Note first that qtb (ν) ≤ q (ν) then, by the truncation property, it is
enough to show the first inequality. We have

∫
qdΠρ = EΠρ [q (ν, ToDν)] + EΠρ [q (ν, TDoν)] + EΠρ [q (ν, TDDν)]

= λ (o,D) + EΠρ

[∫

D
λ (x,D) ν (dx)

]

= λ (o,D) +
∫

D
λ (x,D) ρ (dx)

which is finite if the condition of the Lemma holds.
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From the above lemma and Corollary 10, we deduce that the blocking rate
is given by

ptb(o, x) = 1− Πρ

(
Mf

x

)

Πρ (Mf)
(10.35)

where

Mf
x

=
{
ν ∈Mf : Toxν ∈Mf

}

=
{

ν ∈M :
∫

u

ϕdν < C − ϕ (x) for cell u containing x and
∫

w

ϕdν < C for all w 6= u

}

(10.36)

The product form of the stationary distribution leads to

ptb(o, x) = 1− Πρ

(∫
u

ϕdν < C − ϕ (x)
)

Πρ

(∫
u

ϕdν < C
) , x ∈ u ∈ U

If the traffic ρ is independent from the speed of the users (as in the cases
enumerated in Proposition 32), then the blocking probability in the transition
blocking model is identical to the case without mobility.

Cut probability. We defined in § 8.2.3 the (fictitious) cut probability. Unfortunately,
we don’t have explicit formula for the term Πtb

(
N + δx ∈Mf , N + δy 6∈Mf

)
comprised in the expression of this cut probability. In order to get a first crude
approximation, we average over the geometry inside each cell by replacing FC
with a condition on the number M of users in the cell

M ≤ Γ

where Γ is the pole capacity defined by (4.4) for the downlink and by (4.10)
for the uplink. (This approximation lead to the erlang approximation of the
blocking probability presented in § 10.3.4.) Hence we get the approximation

ctb ' dtb

1 + dtb
(10.37)

where dtb is given by (8.28). We may attempt to approximate the cut proba-
bility, i.e. the term Πtb

(
N + δx ∈Mf , N + δy 6∈Mf

)
, more accuretly in future

work.

Forced termination model

Regularity and limiting distribution. The arguments are identical to the
transition blocking model.

Invariant probability measure. Let Πft
ρ be an invariant probability mea-

sure with respect to qft. By Proposition 25, there is a unique such probability
measure which is the limiting distribution.
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Blocking and cut probabilities. In order to apply Lemma 15 when calcu-
lating the blocking and cut probabilities, we need that

∫

Mf
qft (ν)Πft

ρ (dν) < ∞

what will be assumed from now on.

10.4.4 Numerical results

In the simulations we take the call-duration average µ−1 = 1 s. For other values
of the call-duration average µ, we can always retreive this particular case, since
we may replace the generator q by q/µ without altering the ergodicity and
invariant distribution. In doing so, we should replace the speed υ by υ/µ. In
other words we may view our speed as expressed in kilometers per µ× seconds.

Figure 10.8 shows the blocking probability for the models tb and ft for
different speeds υ = 0.1, 1, 10. This figure shows, as expected, that the tb
blocking probability is independent of speed. If shows also that the ft blocking
probability decreases with speed.
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Figure 10.8: Blocking probability for the models tb and ft for different speeds
υ = 0.1, 1, 10.

Figure 10.9 shows the cut probability for the models tb and ft for different
speeds υ = 0.1, 1, 10. (Recall that for the model tb this cut probability is
fictitious.) This figure shows that the ft cut probability increases with speed
and is well approximated by the tb cut probability as long as it remains small,
typically less than 0.05.

Figure 10.10 shows the tb cut probability and its analytical approxima-
tion (10.37) for different speeds υ = 0.1, 1, 10. This figure shows that the ap-
proximation is accurate when the cut probability is less than 0.05.
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In real networks the cut probability should be maintained an order of mag-
nitude less than 0.05, hence the approximation (10.37) may be used accurately
in this case to estimated the ft cut probability.

It remains to calculate the ft blocking probability. This may be carried
using the following observation deduced from Figure 10.11: the sum of the
ft blocking and cut probabilities is nearly independent of the speed. This is
coherent with our previous observation that the ft blocking decreases wheras
the ft cut increases with speed. Since for a null speed the cut probability is
null and the blocking probability may be calculated by the methods presented
in § 10.3.4, we may easily deduce the ft blocking probability for an arbitrary
speed.

10.5 Integration of elastic and streaming traffic

We consider in the present section a UMTS Release 99 network carrying both
streaming and elastic traffic on the same bandwidth. So interference between
streaming and elastic users has to be taken into account. Each streaming user
is served by a specific DCH whereas the elastic users in a given cell are served
simultaneously by the DSCH.

We aim to establish analytical formulae (or bounds) for the quality of service
indicators for each type of service in this mixed scenario.

The notations are the same as those of the previous two chapters. More-
over, in order to distinguish the streaming and elastic traffic characteristics, we
denote:
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• λs intensity of arrivals of streaming users per surface unit

• λ intensity of arrivals of elastic users per surface unit

• 1/µs mean duration of streaming calls

• 1/µ mean volume of elastic calls

• N s
t number of streaming users in a cell

• Nt number of elastic users in a cell

10.5.1 Related works

We will always assume that streaming traffic has preemptive priority over elas-
tic traffic, which has two important consequences. Firstly, the evolution of the
streaming users is independent of the elastic ones2. Secondly, the elastic users
are served with the capacity left free by the streaming users. Hence the nov-
elty when we consider the integration is that elastic traffic observes a random
environment.

This problem is studied in [4], [95], and [42] for wired communication net-
works. In this case, the ergodicity condition is, roughly speaking, that the traffic
demand of the elastic traffic should be less than the average of the capacity left
free by the streaming users.

In [4] and [95] the stationary distribution of the Markov process describing
the number of elastic users is calculated numerically using the matrix-geometric

2This is obvious for feasibility based load control algorithms.
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Figure 10.11: Sum of the ft blocking and cut probabilities for different speeds
υ = 0, 0.1, 1, 10.

approach of [93]. This approach considers the two-dimensional Markov process
(N s

t , Nt) counting the number of streaming and elastic users respectively which
is a quasi-birth-death process whose infinitesimal generator can be written in a
block matrix form. (Note that the parameters concerning the streaming traffic
are denoted with the subscript “s”. If there is no risk of confusion, this subscript
“s” is omitted.) The stationary distribution can be calculated numerically by
solving iteratively a matrix fix-point problem R = f (R) where R is the unknown
matrix and f is some non-decreasing function. The convergence is assured by
the ergodicity condition. Once R is known, one calculates the distribution of
Nt and in particular its average E [Nt]. The expected delay for elastic traffic
can then be obtained through the Little’s formula. The throughput is obtained
as the ratio of the mean volume and the delay. In [4] the trade-off between the
performance of streaming and elastic traffic (through the streaming admission
threshold) is studied numerically.

In [42] the performance of the streaming traffic are bounded using the so-
called fluid (fl) and quasi-stationary (qs) regimes. The fluid regime corre-
sponds to the case where the elastic traffic is served by a constant capacity
equal to the average of the capacity left free by the streaming users. The
quasi-stationary regime corresponds to the assumption that, for each given
streaming user number, the fluid users attain their stationary regime. The basic
inequalities concern the workload Wt (which denotes the volume remaining to
be transmitted at time t). In fact, for the GI/GI/1 queue with variable ser-
vice rate and for any work-conserving service discipline, we have the following
inequalities between the stationary workloads

W fl ≤icx W ≤icx W qs
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where icx designates the increasing convex ordering [17, p.272] (the fluid bound
is first established in [94], [18]). In the particular case of GI/M/1 (i.e. expo-
nential volume distribution) the authors of [42] prove the following inequalities
between the average number of elastic users

Qfl ≤icx Q ≤icx Qqs

and applying Little’s formula they get inequalities between the expected delay
for elastic traffic

E[T fl] ≤ E [T ] ≤ E[T qs]

As the throughput is the ratio of the volume average and the delay, one gets
the inequalities between the average throughputs

E[rqs] ≤ E [r] ≤ E[rfl]

These bounds are used in [42] to investigate some questions such as: the ad-
mission threshold for the streaming traffic which assures uniform stability (i.e.
stability for each streaming user number) of elastic traffic; the tightness of the
bounds; the integration gain, etc. The performance of the systems giving the
bounds in [42] are insensitive to the distribution of the streaming call durations
and elastic call volumes; whereas the matrix-geometric approach in [4] and [95]
rely on the Markovian assumption (i.e. streaming call durations and elastic call
volumes are assumed to have exponential distributions).

The above models are well adapted to wired communication networks. In
wireless communication models, the relative location of radio channels, deter-
mines their joint feasibility. Hence we have to take into account the spatial
geometry of the network, absent in the above models. An attempt to extend
the approach of [4] to the uplink of a CDMA networks is made in [62] with the
assumption that the inter-cell interference is proportional to intra-cell interfer-
ence.

[27] extends to the spatial context the ergodicity condition for elastic traffic
served with a randomly varying capacity. This extension is made for generally
distributed arrivals and call volumes.

10.5.2 Our contribution

In the integration of streaming and elastic traffic, we take into account the exact
representation of the geometry of inter-cell and intra-cell interferences with the
help of our FC.

In the mixed scenario, the streaming traffic are supposed to have priority
on elastic ones. Thus the streaming users are admitted as long as the power
allocation problem for these users (supposed alone) is feasible. The elastic users
use the remaining capacity according to a (spatially pondered) processor-sharing
policy.

The ergodicity condition for such networks is derived from the ergodicity
condition of the GI/GI/1 queue in random environment [94], [18] (or from the
ergodicity condition of spatial GI/GI/1 queue established in [27]).
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The fluid and quasi-stationary bounds in [42] are used in our spatial con-
text to derive expressions of the delay and throughput of the fluid and quasi-
stationary regimes for UMTS networks. In the fluid regime, the spatial Erlang
formula permits to calculate the capacity left free by the streaming traffic.

10.5.3 Traffic model

The traffic models for streaming and elastic are described in §10.3.3 and §10.2.4
respectively. We assume that the arrival and call-volume processes for elastic
traffic are independent from arrival and call-duration processes of streaming
traffic. Moreover we assume that each user is motionless during his call (semi-
dynamic model).

We consider the FC load control algorithm (admission control for streaming
traffic and congestion control for elastic traffic). Hence we may study each cell
independently from the other cells. From now we consider a given cell denoted
D.

10.5.4 Performance analysis

Feasibility condition

Let N s
t and Nt be the measures representing the positions of streaming and

elastic users respectively at time t. The feasibility condition FC may be written
as follows ∑

x∈Nt

Xxξ′x < C −
∑

x∈Ns
t

Xxξ′x

where

• ξ′x designates the modified SINR ξ′x = ξx/ (1 + αξx);

• ξx designates the signal-to-interference-and-noise ratio (SINR) threshold;

• α, C are given constants and Xx is some factor characterizing the geome-
try. (In the case of uplink with power limitation, the parameter C is not
constant, since it depends on the bit-rate of elastic traffic. In this case,
we don’t take into account the power limit. This approximation may be
refined in future studies.)

We assume that streaming traffic has preemptive priority over elastic traffic,
then FC may be written as

∑

x∈Nt

Xxξ′x < C (t)

where C (t) = C −∑
x∈Ns

t
ξ′xXx varies randomly over time.

Similar arguments to those in §10.2.3 show that if the bit-rates {rx;x ∈ Nt}
satisfy ∑

x∈Nt

γ (x) rx = C (t)
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where the weighting coefficients γ (x) are given by (10.3) then FC holds true.

Queueing System

The system at hand may be seen as a spatial M/GI queue in a random environ-
ment. The birth rates and death rates are given respectively by

λ (o, dx) = λxdx, λ (x, {o}) = µx

and the service rates are given by

rxy (Nt) =

{
1 if x = o, y ∈ D
C (t) γ (x)−1

Nt (D)−1 if y = o, x ∈ D : Nt ({x}) > 0

As in Lemma 12, it is equivalent to consider the routing rates

λ′ (o, dx) = λxdx, λ′ (x, {o}) = µxγ (x)−1

and the service rates

r′xy (Nt) =

{
1 if x = o, y ∈ D
C (t) Nt (D)−1 if y = o, x ∈ D : Nt ({x}) > 0

(where we replaced λ (x, {o}) by λ (x, {o}) γ (x)−1 and rxo (Nt) by rxo (Nt) γ (x))
which should satisfy ∑

x∈Nt

r′xo (Nt) = C (t)

Stability condition

Similarly to Proposition 37, we may associate to our system a M/GI/1 queue
with arrival rate λ′ = λ′ (o,D), with mean call-volume

µ′−1 =
1

λ′ (o,D)

∫

D

λ′ (o, dx)
λ′ (x, {o})

and such that, if at time t there are n users in the queue, each one is served
at rate C (t) /n. This is called a M/GI/1 queue in random environment.
From the properties of such queues [94], [18] (or from the ergodicity condition
of spatial GI/GI/1 queue established in [27]), we deduce that the ergodicity
condition writes ρ′ (D) < C̄ = EΠtb [C (0)] where the traffic demand ρ′ (D) is
given by

ρ′ (D) = λ′µ′−1

=
∫

D

λ′(o, dx)
λ′ (x, {o})

=
∫

D

γ (x)λ(o, dx)
λ (x, {o})

=
∫

D

γ (x)λx

µx
dx =

Eb/N0

W ′

∫

D
Xx

λx

µx
dx
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and Πtb is the stationary distribution of the streaming users.
Note that

C̄ = C −
∫

D
Xxξ′xEΠtb [N s

0 (dx)]

= C −
∫

D
Xxξ′x

[
1− ptb (o, x)

] λs
x

µs
x

dx

where for the second equality we use Lemma 16 and ptb (o, x) is given by the
spatial Erlang formula (10.31).

Assume that the parameters λs
x, µs

x, ξ′x don’t depend on the geographic posi-
tion (but there may be several streaming traffic classes j ∈ J s, each characterized
by specific values of the parameters λs

j , µ
s
j , ξ

′
j). In this case

C̄ = C − M̄ϕ̄ +
∫

D
Xxξ′xptb (o, x)

λs
x

µs
x

dx

where M̄ and ϕ̄ designate respectively the traffic demand per cell and the average
of ϕ(·) for streaming calls.

The approximation (10.32) of the blocking rates may be written in the form

ptb (o, x) ' ξ′xXxq, where q =
exp

[
− ((

C − S̄
)
/σS

)2
/2

]

σS

√
2π

{
1−Q

[(
C − S̄

)
/σS

]} (10.38)

where S̄ = ϕ̄M̄ and σ2
S = ϕ̄2M̄ , then

∫

D
Xxξ′xptb (o, x)

λs
x

µs
x

dx ' q

∫

D
X2

xξ′2x
λs

x

µs
x

dx = qϕ̄2M̄

Then the average residual capacity is given by

C̄ ' C +
(
qϕ̄2 − ϕ̄

)
M̄ (10.39)

Gathering the above results we deduce that the ergodicity condition for
UMTS networks with mixed services writes

Eb/N0

W ′ X̄r̄d < C̄ ' C +
(
qϕ̄2 − ϕ̄

)
M̄

where r̄d is the traffic demand for elastic calls.

Fluid bound

Considering a Markovian context M/M (i.e. exponential inter-arrival durations
and service requirements), we may attempt to apply the matrix-geometric ap-
proach to the spatial case. To this end we may make a discretization of the space
but this will lead to a discrete multiclass M/M queue whereas only a single class
queue is treated in [4]. Even if one succeeds to extend the approach in [4] to the
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multiclass case, the numerical calculations would be time consuming. We shall
focus on the fluid and Quasi-stationary bound.

Recall that the service policy is given by

rxo (Nt) = C (t) γ (x)−1
Nt (D)−1

For the fluid bound, the term C(t) in the right-hand side is replaced by C̄, that
is

rfl
xo (Nt) = C̄γ (x)−1

Nt (D)−1

The expected delay and throughput for elastic calls in A ∈ D, denoted T̄ fl (A)
and r̄fl (A) respectively, may be deduced from equations (10.14) and (10.16)

T̄ fl (A) =
ρ′ (A) /C̄

λ (o, A)
(
1− ρ′ (D) /C̄

) =
ρ′ (A)

λ (o,A)
(
C̄− ρ′ (D)

) (10.40)

r̄fl (A) =
ρ (A)

ρ′ (A) /C̄

[
1− ρ′ (D) /C̄

]
=

ρ (A)
ρ′ (A)

[
C̄− ρ′ (D)

]
(10.41)

where ρ (A) is given by (10.15). In particular, the expected throughput for users
in all the area D equals

r̄fl (D) =
ρ (D)
ρ′ (D)

[
C̄− ρ′ (D)

]

Multiclass case. Assume that the arrival and call-volume parameters λx, µx

for elastic services don’t depend on the geographic position (but there may be
several elastic traffic classes j ∈ J , each characterized by specific values of the
parameters λj , µj). Then

ρ (D) =
∑

j∈J

ρj , ρ′ (D) =
∑

j∈J

ρ′j =
Eb/N0

W ′ X̄ρ (D)

where

ρj = πR2 λj

µj
, ρ′j =

Eb/N0

W ′ X̄ρj

Hence in the fluid regime, for the elastic traffic class j, the delay equals

T̄ fl
j =

ρ′j
πR2λj

(
C̄− ρ′ (D)

) =
1
µj

ρ′ (D)
ρ (D)

1
C̄− ρ′ (D)

and the expected throughput per cell is given by

r̄fl
j =

µ−1
j

T̄j
=

ρ (D)
ρ′ (D)

[
C̄− ρ′ (D)

]

which is independent of elastic class j ∈ J .
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Quasi-stationary bound

In this case C = C (t) is considered as a random variable depending on the
streaming call positions. For elastic calls in A ∈ D, the delay is given by

T̄ qs (A) =
ρ′ (A)

λ (o, A)
E

[
1

C− ρ′ (D)

]

and the expected throughput per cell equals

r̄qs (A) =
µ−1

T̄ qs (D)
=

ρ (A)
ρ′ (A)

(
E

[
1

C− ρ′ (D)

])−1

(10.42)

Comparison

Rewrite the fluid (upper) bound of the throughput (10.41) as follows

r̄fl (A) =
ρ (A)
ρ′ (A)


C − ρ′ (D)−E


 ∑

x∈Ns
t

ξ′xXx







and the quasi-stationary (lower) bound of the throughput (10.41) as follows

r̄qs (A) =
ρ (A)
ρ′ (A)


E


 1

C − ρ′ (D)−E
[∑

x∈Ns
t
ξ′xXx

]





−1

We see that the difference between the fluid and quasi-stationary bound comes
from the fact that, for a random variable Z, E [Z] 6= (

E
[
Z−1

])−1 in general.
(More precisely, from Jensen inequality we get E [Z] ≥ (

E
[
Z−1

])−1 which is
coherent with the fact r̄fl ≥ r̄qs.) Hence it is enough to consider the quantities

θfl = C − ρ′ (D)−E


 ∑

x∈Ns
t

ξ′xXx


 (10.43)

and

θqs =

(
E

[
1

C − ρ′ (D)−∑
x∈Ns

t
ξ′xXx

])−1

(10.44)

which we call average residual capacities.

10.5.5 Numerical results

Unless otherwise specified, all the numerical applications are made using the
default values specified in Section 2.2.5. Moreover we consider DFC.
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Figure 10.12: Validation of average residual capacity approximation.

Validation of the explicit throughput upper bound

The expression of the fluid (upper) bound of the throughput (10.41) relies on
the average residual capacity, denoted θfl = C̄ or E [C]. The expression (10.39)
of the average residual capacity is approximative, relying in particular on the
Gaussian approximation (10.38) of the blocking rates of streaming traffic. In
order to validate this approximation, we compare the average residual capacity
calculated by (10.39) to that estimated by dynamic simulations.

The dynamic simulations are carried as follows. 100 simulations are made, in
each one we start from an empty system and simulate 10000 transitions (arrivals
or departures of streaming users) in order to attain the stationary regime. The
residual capacity at the end of each simulation is recorded, say C (n). Finally
we take the average of the 100 obtained values 1

100

∑100
n=1 C (n) as an estimation

of the residual capacity E [C] (this is basically the crude Monte Carlo method).
Figure 10.12 shows that the approximation is good.

Comparison of throughput upper and lower bounds

Since there is no explicit approximate expression available for the quasi-stationary
bound, we use the dynamic simulation to estimate both the fluid and quasi-
stationary bounds. Figure 10.13 represents the fluid and quasi-stationary aver-
age residual capacities θfl and θqs as function of the streaming traffic per cell
M̄ . We observe that the variation of the absolute difference between the average
residual capacities, θfl − θqs, as M̄ increases is not monotonic.

But it is interesting to consider the ratio θfl

θqs which in fact increases when
M̄ increases or equivalently when the blocking probability b̄ of streaming traffic
increases. Table 10.1 shows that for M̄ = 10 (b̄ = 0%) the throughput upper
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Figure 10.13: Comparison of fluid and quasi-stationary bounds.

M̄ 10 30 60
b̄ 0% 2% 30%
θfl/θqs 1.03 2 5

Table 10.1: Comparison of fluid and quasi-stationary bounds.

and lower bounds are very close; for M̄ = 30 (b̄ = 2%) the throughput upper
bound is about two times the lower bound; and for M̄ = 60 (b̄ = 30%) the
throughput upper bound is about five times the lower bound.

Impact of streaming traffic of elastic ones

In order to estimate the impact of streaming traffic of elastic calls, we consider
two configurations:

• M̄ = 0, in this case elastic traffic uses alone the capacity of the system
(corresponding to a bandwidth of 5MHz)

• M̄ = 30, in this case the elastic traffic uses the capacity left free by
streaming traffic (the blocking probability of streaming traffic b̄ is about
2%)

We calculate the throughput and delay of elastic calls using the expressions
given by the fluid bound. Figures 10.14 and 10.15 represent the fluid throught-
put and delay for the above two cases. We observe that the presence of streaming
traffic reduces significantly the throughput and increases significantly the delay
of elastic calls.



10.5. INTEGRATION OF ELASTIC AND STREAMING TRAFFIC 171

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

T
hr

ou
gh

pu
t f

lu
id

 b
ou

nd
 [M

bi
t/s

]

Elastic traffic demand [Mbit/s]

Streaming traffic demand=0 [Erlang]
=30 [Erlang]

Figure 10.14: Impact of streaming services on throughput of elastic services
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Summary of numerical results. We make comparison of the fluid (upper)
and quasi-stationary (lower) bounds of the throughput. The ratio between
these bounds increases when streaming traffic demand increases (or equivalently
when the blocking probability of streaming traffic increases). For a blocking
probability around 2%, the throughput upper bound is about two times the
lower bound.

Finally we show that the presence of streaming traffic reduces significantly
the throughput (and equivalently increases significantly the delay) of elastic
calls.



Chapter 11

HSDPA

In this section we complement the previous studies by evaluating the perfor-
mance of the congestion control policies for elastic traffic in a UMTS network
release HSDPA (analog of HDR) which relies on a channel-aware policy. Assum-
ing Markovian arrivals and departures of customers that transmit some given
data-volumes, as well as some temporal channel variability (fading), we study
the mean throughput in different parts of the cell ; i.e., the mean bit-rates that
these policies offer in the long-term evolution of the model. Explicit formulas
are obtained in the case of proportional fair policies, which take advantage of
the fading.

We combine known results, in particular concerning the performance of chan-
nel aware policies [29], and mobility [22] with our exact representation of the
geometry of interferences. More precisely, we use [29] that gives the perfor-
mance of an opportunistic weight-based rate allocation policy, which is shown
in [79] to be a good model for opportunistic schedulers implemented in HSDPA
(or HDR). Moreover, following the idea presented in [22] of quasi-stationary
and fluid limit, we consider two extreme cases of motionless and infinitely-rapid
users.

11.1 From link level to dynamic system level

11.1.1 Link level

We consider here elastic traffic served by a HSDPA network using a specific
W = 5 MHz bandwidth. We assume that there is no power control, i.e. each
base station transmits at the maximal power denoted P̃ .

Since there is no power control in HSDPA, the power at the input of the
receiver, denoted S, is given by

S = P̃F/L

where P̃ designates the transmitted power; L designates the distance pathloss;
and F designates the fading effect (cf. [53, §6.3]).

173
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Remark 26 It is shown in [118, §3.4.3 Eq. (3.124)] that the fading term has
the form

F =
L∑

`=1

|h`|2

where {h`; ` = 1, . . . , L} designate the channel tap gains which may be assumed
i.i.d. CN (0, 1/L), i.e. circular symmetric Gaussian random variables [118,
Appendix A] with mean 0 and variance 1/L. Hence

{
|h`|2 ; ` = 1, . . . , L

}
are

i.i.d. exponential random variables with mean 1/L. Therefore F has an Erlang
distribution with probability density function

f (x) =
xL−1

LL (L− 1)!
e−x/L

In the particular case L = 1, F is an exponential random variable with mean 1.

The theoretical maximal bit-rate of the AWGN channel is given by the Shan-
non’s bound

r = W log2

(
1 +

S
N

)
(11.1)

where W is the bandwidth (5 MHz) and S
N is the signal to noise power ratio at

the input of the receiver.
We assume that the link adaptation (changing the coding and modulation

according to the signal to noise conditions) in HSDPA permits to offer the third
of the bit-rate Shannon limit, that is

r =
1
3
W log2

(
1 +

S
N

)
(11.2)

Moreover we make a linear approximation of the above relation

r =
W

3 ln (2)
S
N

(11.3)

These approximations are compared in Figure 11.1 to the HSDPA link perfor-
mance obtained by simulations1 and to the DSCH link performance.

11.1.2 From link level to static system level

By similar arguments to [118, §4.3.1], interference may be approximated by
a AWGN with power averaged over the fast fading. Hence the ratio S

N in
Equations (11.1), (11.2) and (11.3) should be replaced by

S
N + I

1Curve from [114] treated by A. Saadani and N. Ibrahim (France Telecom R&D).
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Figure 11.1: HSDPA link performance

where S comprises the fast fading whereas I is averaged over the fast fading. In
particular Equation (11.3) becomes

r =
W

3 ln (2)
S

N + I
(11.4)

For a user at position m served by a base station u (which we denote m ∈ u),
the signal power is given by

Sm = FmP̃u/Lu,m, m ∈ u

and the interference is given by

Im =
∑

v∈U\{u}
P̃v/Lv,m, m ∈ u

Note that since the HSDPA is a TDMA system, the HSDPA users in the same
cell don’t interfere with each other.

The rate for a user at position m, denoted rm, may be obtained from Equa-
tion (11.4)

rm =
W

3 ln (2)
Sm

N + Im

=
W

3 ln (2)
FmP̃u/Lu,m

N +
∑

v∈U\{u} P̃v/Lv,m

= σ
Fm

X(m)
, m ∈ u (11.5)

where

X(m) =
NLu,m

P̃u

+
∑

v∈U\{u}

P̃v

P̃u

Lu,m

Lv,m
, m ∈ u
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We assume from now that the powers P̃v are the same for all base stations v,
then

X(m) = NLu,m/P̃ +
∑

v∈U\{u}
Lu,m/Lv,m

= NLu,m/P̃ + f(m), m ∈ u

where f(m) =
∑

v∈U\{u} Lu,m/Lv,m is the so-called f-factor which we studied
in depth for the hexagonal base station pattern.

Remark 27 The {rm; m ∈ u} are called feasible rates in [29, §II] without
explicit information about how to get these feasible rates. Equation (11.5) shows
how to relate the feasible rates to the geometry of interference.

Fading varies and should be considered as a new source of dynamics (with
arrivals, mobility, departures); this model is analytically intractable. For a
rapidly changing fading, we use the symplifying idea of separation of the time
scales allows to ”inject” the impact of fading to our previous considerations at
the static system level.

We consider first a time scale at which users don’t move. Hence the number,
say M , and positions of the users are fixed. The scheduling over fading of the
users in a given cell may be studied independently from the users in the other
cells. Hence, at this time scale, we may restrict ourselves to a given base station.
Therefore we get a set of feasible rates

rm =
W

3 ln (2)
Fm

X(m)
, m ∈ {1, . . . , M}

At the time scale considered here, the X(1), . . . , X(m) are constant whereas
F1, . . . , FM are i.i.d. exponential random variables. Following [29, §II], we
denote r = (r1, . . . , rM ) and p (r) its distribution. Note that

E [rm] =
W

3 ln (2)
1

X(m)
, m ∈ {1, . . . ,M}

then
rm

E [rm]
= Fm, m ∈ {1, . . . , M}

Hence {rm/E [rm] ; m ∈ {1, . . . , M}} are i.i.d. (The author of [29, §II] says that
we have in this case a symmetric rate distribution.)

In §11.3 we study the HSDPA (proportional fair) scheduler performance with
the help of the papers [29, §II] and [79]. In particular the throughput of HSDPA
is given by

r′m =
G(M)

M
E [rm] , m ∈ {1, . . . , M}

where

G(M) = E
[

max
m=1,...,M

Fm

]
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If the Fm are exponentially distributed with mean 1, then

G(M) =
M∑

m=1

1
m

11.1.3 From static to dynamic system level

Applying the results of Example 9 with

γ (x) = 1/E [r (x)] =
3 ln (2)

W
X (x) , and h (M) = M/G (M)

we deduce that the mean number of calls, delay and tthroughput for the no
mobility case (N̄ (A), T̄ (A) and r̄ (A) respectively) and infinite mobility case
(N̄ , T̄ and r̄ respectively) are given by

N̄(A) = ρ
′(A)H(ρ′(D)), N̄= ρ′H(ρ′)

T̄ (A) =
ρ′ (A)

λ (o, A)
H(ρ′ (D)), T̄=

ρ′

λ (o,D)
H(ρ′)

r̄ (A)=
ρ (A)
ρ′ (A)

1
H(ρ′(D))

, r̄=
ρ

ρ′
1

H(ρ′)

where ρ (A) , ρ′ (A) are given by (10.15), (10.13) respectively; ρ, ρ′ are given
by (10.22), (10.17) respectively and the function H (·) is given by (7.9).

11.1.4 Comparing DSCH and HSDPA

The differences between HSDPA and DSCH are the following:

(D1) Link performance is better in HSDPA due to link adaptation (changing
the coding and modulation according to the signal to noise conditions)

(D2) Proportional fair scheduler permits to take benefit from fast fading

(D3) In HSDPA, due to TDMA there is no interference between users in the
same cell

(D4) NRT DSCH shares a 5MHz bandwidth with RT DCH whereas NRT HS-
DPA uses a specific 5MHz bandwidth

11.2 Numerical results

The numerical applications are made using the default values specified in Sec-
tion 2.2.5. Moreover we consider a cell radius R = 1.

Figure 11.2 shows the expected throughput as function of the traffic demand
for different policies in motionless scenario. Figure 11.2 gives an example of the
throughput of DSCH (pink curve) and HSDPA (red curve).
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Note that the DSCH scheduling gives the throughput that is a linear function
of the demanded traffic in the bounded stability region, while the HSDPA one
is stable on the whole line, and its gain increases with the traffic.

The green and blue curves consist of mixing DSCH and HSDPA coding
and scheduling which are not realistic but permit to understand the benefit in
HSDPA coming from coding and that coming from scheduling. In particular we
see that the HSDPA coding permits a gain of about 1.5. The HSDPA scheduling
gain is particularly important when the traffic demand increases.

11.3 HSDPA scheduler performance

The section 11.3 is simply a reminder (and essentially a transcription, except
for the proofs which are more detailed here) of the notations, definitions and
results of [29, §II] useful to derive the HSDPA scheduler performance. In the
following Section 11.3 we establish the link of Borst’s work in [29, §II] with Tse’s
scheduler [118, §6.7.1] with the help of the Kushner and Whiting work [79].

Reminder of [29, §II]
We assume that the feasible rates for the various users vary over time according
to some stationary discrete-time stochastic process {R1(t), . . . , RM (t)}, with
Ri(t) representing the feasible rate for user i in time slot t.

Let (R1, . . . , RM ) be a random vector with as distribution the joint station-
ary distribution of the feasible rates. We focus on the case where the feasible
rates (R1, . . . , RM ) have a discrete distribution on some finite set R ⊆ RM

+ . Let
p(r) be the stationary probability that the instantaneous feasible rate vector is
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r ∈ R. With minor modifications, most of the results extend to scenarios with
a continuous rate distribution.

An allocation policy is determined by some variables xi(r) which is the
probability that the slot is allocated to user i when the instantaneous rate vector
is r. Assuming ergodicity, xi(r) equals the fraction of time slots allocated to user
i in which the instantaneous rate vector is r. Thus, the term

∑
r∈R p(r)xi (r) ri

represents the throughput received by user i.
For some policy, let Ti :=

∑
r∈R p(r)xi (r) ri be the (long-term) throughput

received by user i.

Definition 4 A vector T ∈ RM
+ is called achievable throughput iff there

exists an allocation policy determined by variables xi(r), i = 1, . . . ,M, r ∈ R
such that

∑
r∈R p(r)xi (r) ri ≥ Ti, i = 1, . . . , M∑M
i=1 xi(r) ≤ 1, r ∈ R

xi(r) ≥ 0, i = 1, . . . , M, r ∈ R
(11.6)

(i.e. vectors T ∈ RM
+ such that there exists a policy such that the throughput

received by user i is at least equal to Ti). Let A ⊆ RM
+ be the set of achievable

throughput vectors.

We now consider a scenario where the distribution of the rate vector is sym-
metric in the sense that the relative fluctuations in the feasible rates for the
various users around the respective time-average values are statistically iden-
tical. Specifically, we assume that Ri

d= SiYiZ, where Si := E [Ri] is the
time-average rate of user i, Y1, . . . , YM are independent and identically dis-
tributed copies, and Z represents a possible correlation component with unit
mean. Define G(M) := E [maxj=1,...,M Yj ]. We assume that with probability 1,
card {i : Yi = maxj=1,...,M Yj} = 1 (this is the case if the Yj are continuous and
i.i.d.).

Lemma 19 [29, Lemma 2.1] Any achievable throughput vector T ∈ A satisfies,
for any vector (α1, . . . , αM ) ∈ RM

+ ,

M∑

j=1

αjTj ≤ E
[

max
j=1,...,M

αjRj

]

with equality for the throughput achieved by the weight-based policy which assigns
a weight Bi = αi to user i.

Proof. By Definition 4, there exists an allocation policy xi(r), i = 1, . . . , M, r ∈
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R satisfying (11.6). Then

M∑

j=1

αjTj ≤
M∑

j=1

αj

∑

r∈R
p(r)xi (r) ri =

∑

r∈R
p(r)

M∑

j=1

αjrjxj (r)

≤
∑

r∈R
p(r) max

j=1,...,M
αjrj

= E
[

max
j=1,...,M

αjRj

]

For the weight-based policy which assigns a weight Bi = αi to user i, the
inequalities in the above equations may be replaced by equalities. This finishes
the proof of the Lemma.

Lemma 20 [29, Lemma 2.2] In the case of a symmetric rate distribution as
described above, the weight-based strategy defined by the weights B∗

i = 1/Si

achieves the throughputs

T ∗i =
G (M)

M
Si =

G (M)
M

E [Ri] (11.7)

The throughput vector T ∗ given by (11.7) is optimal for the problem

max
T∈A

M∑

i=1

Ti

E [Ri]
(11.8)

Proof. The allocation policy is defined by

x∗i (R) = 1
{

Ri

Si
= max

j=1,...,M

Rj

Sj

}
= 1

{
Yi = max

j=1,...,M
Yj

}
(11.9)

where The throughput achieved by this allocation policy is

T ∗i =
∑

r∈R
p(r)x∗i (r) ri = E [Rix

∗
i (R)] = E [Ri|x∗i (R) = 1]P (x∗i (R) = 1)

Note that

P (x∗i (R) = 1) = P
(

Yi = max
j=1,...,M

Yj

)
=

1
M

because Y1, . . . , YM are i.i.d.. On the other hand

E [Ri|x∗i (R) = 1] = E
[
SiYiZ|Yi = max

j=1,...,M
Yj

]
= SiE

[
Yi|Yi = max

j=1,...,M
Yj

]

= SiE
[

max
j=1,...,M

Yj

]
= SiG(M)

Hence we get (11.7).
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Our complement

Proposition 53 The throughput vector T ∗ given by (11.7) is optimal for the
problems

max
T∈A

min
i=1,...,M

Ti

E [Ri]
(11.10)

and

max
T∈A

M∑

i=1

log Ti (11.11)

(This last statement justifies the name Proportional Fair given to the HS-
DPA algorithm.)

Proof. By Lemma 19,

M∑

i=1

Ti

E [Ri]
≤ E

[
max

j=1,...,M

Rj

E [Ri]

]
= E

[
max

j=1,...,M
Yj

]
= G (M) =

M∑

i=1

T ∗i
E [Ri]

Hence the throughput vector T ∗ is optimal for Problem (11.8). Since

T ∗i
E [Ri]

=
T ∗j

E [Rj ]
, ∀i, j = 1, ..., M

we deduce that T ∗ is also optimal for Problem (11.10).
We calculate

M∑

i=1

log T ∗i =
M∑

i=1

log
G (M)

M
E [Ri] =

M∑

i=1

log E [Ri] + M log
G (M)

M

For any achievable rate

M∑

i=1

log Ti =
M∑

i=1

log E [Rixi (R)] =
M∑

i=1

log E [SiYiZxi (R)]

=
M∑

i=1

log E [Ri] +
M∑

i=1

log E [xi (R)Yi]

≤
M∑

i=1

log E [Ri] +
M∑

i=1

log E
[
xi (R) max

j=1,...,M
Yj

]

=
M∑

i=1

log E [Ri] + M log G (M) +
M∑

i=1

log E [xi (R)]

Now observe that

M∑

i=1

log E [xi (R)] = M
1
M

M∑

i=1

log E [xi (R)] ≤ M log
1
M

M∑

i=1

E [xi (R)] = M log
1
M
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Therefore
M∑

i=1

log Ti ≤
M∑

i=1

log T ∗i

Remark 28 [79] shows that the Proportional Fair scheduling algorithm [118,
§6.7.1] optimizes the problem

max
T∈A

M∑

i=1

log (Ti + di)

where the di, i ≤ N are positive constants, which can be as small as we wish.
This shows that the Proportional Fair scheduling will give a throughput vector
T ∗ approximately given by (11.7).



Chapter 12

GSM

12.1 Introduction

We are interested in FDMA networks such as GSM serving streaming traffic.
We aim to extend to such networks the approch developped for CDMA networks
such as UMTS.

A key feature is to study whether these so called feasibility-based admission
control algorithms may be applied for FDMA networks. In this perspective, the
key questions are the following:

• What are the feasibility condition of power allocation?

• What is loss of capacity induced by the sufficient feasibility condition
compared to the necessary and sufficient feasibility condition?

• Are there approximate explicit expressions of the blocking probability (in
the case of a simple model: regular hexagonal cells, homogeneous traffic
demand, no shadowing, etc.)?

• Can we answer to questions specific to FDMA networks:

– Is the radio constraint or the hard constraint more severe?

– What is the optimal cluster size?

The objective of the present section is to answer to the above questions. We
present here essentially the results for the downlink.

12.2 Model

We make the same assumptions as our previous studies on UMTS: hexagonal
pattern of cells, modelisation of the networks on a torus, distance path loss law,
no shadowing, no macrodiversity.

183
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12.2.1 GSM versus UMTS

We enumerate in the present section the key differences between the two systems
UMTS and GSM.

UMTS. Recall the properties of UMTS:

1. The multiple access scheme is CDMA.

2. The UMTS bandwidth equals W = 5MHz.

3. For voice, the bit energy to noise-density ratio threshold equals Eb
N0

= 9dB.

4. For voice, the signal to noise power ratio threshold is given by

ξ =
rv

W ′
Eb

N0
= 9dB− 25dB = −16dB

where W ′ = 3.84Mchip/s designates the chip rate and rv = 12.2kbit/s
designates the voice bit rate. The noise power is denoted N .

5. The loss of orthogonality of the spreading sequences within a cell due to
the multi-path is taken into account through the orthogonality factor α
(α = 0 for perfectly orthogonal). This multiplies the intra-cell interference.
Typically α = 0.4 in the downlink and α = 1 in the uplink.

6. The transmission powers should not exceed a limit, denoted P̃ , fixed by
the authority of regulation. The powers of Dedicated CHannels (DCH)
are controlled, while Common CHannels (CCH in the downlink) powers
are constant. We assume typically that the common channel power is a
fraction of the maximal power, say εP̃ , where ε is given constant.

GSM. The above properties 1 to 5 in Section 12.2.1 for a UMTS network, are
different for a GSM network:

1. The multiple access scheme is FDMA combined with TDMA1.

2. The GSM bandwidth equals W = 12.5MHz. (We consider GSM 900 with
bandwidth 25MHz shared equally between two operators.)

3. For voice, the bit energy to noise-density ratio threshold Eb
N0

= 9dB.

4. FDMA. The GSM bandwidth is divided into 62 frequency channels;
each one having a bandwidth W ∗ = 200kHz. Among these frequency chan-
nels, 12 are used for the BCCH2 and the remaining W = 50 frequency
channels are used for TCH3. In the case where there is no frequency hop-
ping, the signal to noise power ratio threshold is given by ξ∗ = Eb

N0
= 9dB.

1Time Division Multiple Access
2Broadcast Control CHannel
3Traffic CHannel
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In the present study, we assume that there is frequency hopping and we
will see later (§12.3.1) how to calculate the signal to noise power ratio
threshold in this case.

When the distance between frequency channels equals W ∗, 2W ∗, 3W ∗ the
interference is reduced by 18, 50, 58dB respectively. We neglect in the
present study the interference between the different frequency channels.

TDMA. Time is divided into time slots. A time slot designates an interval
of time of duration 0.577ms. There are 8 TDMA time slots in GSM (for
more details cf. [92, p.195]).

5. We assume that there is no intra-cell interference.

6. The transmission powers should not exceed a limit, denoted P̃ , fixed by
the authority of regulation.

12.2.2 FDMA

The principle of FDMA is to increase the distance between the cells using the
same frequencies in order to reduce the interferences. To do so, we divide the
W available frequency channels into a given number, say χ, of subsets. This
number χ is called the cluster size. Each subset comprises

κ =
W
χ

frequency channels. We allocate a single subset to each base station and attempt
to allocate the same subset to base stations which are as far as possible from
each other. We show below that the cluster sizes can not take any integer value.

Hexagonal architecture. Considers a regular cellular network where each
cell has the form of a hexagon. The hexagon centers are placed on a regular
grid denoted on the complex plane by {∆1(p + qeiπ/3) : (p, q) ∈ {0,±1, . . .}2}
where ∆1 is the distance between two adjacent hexagons. Then the distance
between a hexagon (p, q) and the origin is

(
p2 + pq + q2

)1/2 ∆1. We define the
cell radius, denoted R, as the radius of the virtual disc whose area is equal
to that of the hexagon, that is

R = ∆1

√√
3

2π

If we fix some hexagon center as the origin, the other hexagon center loca-
tions constitute successive rings which we index by k = 1, 2, . . .. Figure 12.1
shows the first two rings k = 1, 2. Let ∆k be the radius of ring k = 1, 2, . . .. Let

χk = (∆k/∆1)
2

which equals p2 + pq + q2 for some (p, q) ∈ {0,±1, . . .}2. Such a number is
called rhombic. Rhombic numbers can be characterized in an elegant way by
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their prime decomposition [83]. From [83, Theorem 1] we get the first rhombic
numbers χk (k = 1, 2, . . . , 13).

k 1 2 3 4 5 6 7 8 9 10 11 12 13

χk =
(

∆k

∆1

)2

1 3 4 7 9 12 13 16 19 21 25 27 28

First rhombic numbers χk (k = 1, 2, . . . , 13)

ring 2

ring 1

Figure 12.1: The first two rings k = 1, 2.

The rhombic numbers are precisely the possible cluster sizes in FDMA net-
works.

Hard and radio constraints. Given a cluster size χ, the distance between
two base stations using the same frequencies, called reuse distance, equals

∆ = ∆1
√

χ

Compared to UMTS, the distance between two base stations using the same
frequencies in GSM is multiplied by a factor

√
χ. This will effectively reduce

interference, but at the expense of the apparition of a new constraint: the
number of simultaneous (i.e. per time slot) users in a cell, which we denote
M , should not exceed the number κ of available frequency channel in the base
station i.e.

M ≤ κ =
W
χ

(12.1)

We call this constraint hard constraint.

12.2.3 Traffic

We assume that there is no interference between the different TDMA time slots.
Moreover we assume that an arriving call chooses a TDMA time slot among the
8 available slots with probability 1/8. So we may consider that each time slot
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serves 1/8 of the traffic demand and is independent from the other times slots.
From now on we consider a given time slot.

New streaming calls arrive as a Poisson processes with intensity λ × dx in
any region of surface dx. The call durations (if the call is not blocked) are i.i.d.
with mean 1/µ and independent from arrivals. We consider a single service
class: voice. We always assume that λ > 0, µ > 0. We consider a semi-dynamic
model where each user is motionless during his call.

12.2.4 Frequency hopping

Since we neglect the interference between the different frequency channels and
we consider motionless users, the sub-networks composed by base stations using
the same frequencies may be treated independently from each other. Their
evolutions are identically distributed. We consider a given sub-network which
we view from now as our network to study. We index the set of frequency
channels available at each base station by 0, 1, . . . , κ − 1 in increasing order.
(Recall that κ designates the number of frequency channels available at each
base station.)

We describe now the slow frequency hopping (SFH) in GSM [92, §4.2.2.3
p.223]. There are 64 hopping sequences indexed by the so called Hopping Se-
quence Number (HSN), say H ∈ {0, 1 . . . , 63}. We denote by

{
FH

0 , FH
1 , . . .

}
the sequence of frequency channels associated to some hopping sequence num-
ber H. (i.e. FH

s designates the frequency channel at time slot s). For a given
H 6= 0,

{
FH

0 , FH
1 , . . .

}
is a sequence of independent and identically distributed

random variables, having as common distribution the uniform distribution on
the set of available frequency channels {0, 1, . . . , κ− 1}. (The particular case
H = 0 corresponds to the sequence where the frequencies are used in order, i.e.
F 0

s = smodκ, for all s ≥ 0.)
For a given base station, we associated a fixed HSN H 6= 0. There are at most

κ simultaneous users served by the base station. We associate to each user a
specific Mobile Allocation Index Offset (MAIO), say A ∈ {0, 1, . . . , κ− 1}. The
frequency hopping sequence of that user is then

{(
FH

0 + A
)
mod κ,

(
FH

1 + A
)
mod κ, . . .

}
.

By this way, two users in the same cell never use simultaneously the same fre-
quency.

The frequency hopping sequences associated to two distinct (non null) hop-
ping sequence numbers H,H ′, are independent, i.e. the sequences {FH

s }s≥0

and {FH′
s }s≥0 are independent. Then {1{FH

s = FH′
s }}s≥0 is a sequence of

independent and identically distributed random variables, having as common
distribution the Bernoulli distribution with parameter

P
(
1{FH

s = FH′
s } = 1

)
= P(FH

s = FH′
s )

=
1
κ
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12.3 Power allocation feasibility

The performance of a wireless cellular network is closely related to the perfor-
mance of the admission control algorithm implemented in the network.

If the network admits a new user, it must ensure to him a certain quality of
service and should preserve the quality of service of other users already present.
This quality of service can be expressed in term of signal-to-interference ratio.
The network must thus ensure the existence of an allocation of powers to the
users respecting the signal-to-interference constraints. Moreover, the powers
should not exceed a limit fixed by the authority of regulation. This defines the
power allocation problem. We say that this problem is feasible if admits
a solution. The feasibility condition will be called radio constraint in order
to distinguish it from the hard constraint already described (Inequality (12.1)).

A new streaming user will be admitted if the radio and hard constraints are
respected. Such algorithm is called admission control algorithm.

The necessary and sufficient condition (NSFC) of feasibility induces
an admission control algorithm which has optimal performances; but which is
unfortunately not practicable in the field, because it requires data coming from
the users in all the network. It will be said that it is a centralized algorithm.

In [13] we build useful feasibility conditions for the power allocation prob-
lem. For UMTS in the downlink, we propose a sufficient feasibility condition
which depends on the users in the cell serving (potentially) the new user, but
not other users in the network. We say that this condition is decentralized
and we note it FC. In the uplink we propose also a sufficient feasibility
condition, that we note SFC, which is unfortunately not decentralized. There-
fore we propose a decentralized feasibility condition that we note FC. Hence the
term FC designates the decentralized feasibility condition either for the
downlink or for the uplink.

12.3.1 Power allocation problem

We assume that two distinct cells use two different (non null) hopping sequence
numbers. This may be easily fulfilled when then number of cells in the networks
is not larger than 63. If this is not the case, we reuse the same hopping sequence
number for base stations sufficiently far from each other to neglect their mutual
interference.

Let U be the set of base stations using the same frequencies and fix some
base station u ∈ U and some user m ∈ u (i.e. m is served by base station u).

Let Pu,m designate the power transmitted by base station u to user m and
Lu,m designate the path-loss between u and m. Let {FHm

s }s≥0 be the hopping
sequence of user m.

The power received by user m from its serving base station u is Pu,m/Lu,m.
The interference due to another user n served by a base station v 6= u at time
slot s is 1{FHm

s = FHn
s }Pv,n/Lv,m. By the law of large numbers, the average

interference over a time interval comprising a large number of time slots will
be E

[
1{FHm

s = FHn
s }] Pv,n/Lv,m = 1

κPv,n/Lv,m. Hence the power allocation
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problem takes the form

Pu,m/Lu,m

N∗ +
∑

v∈U\{u}
1
κ

∑
n∈v Pv,n/Lv,m

≥ ξ∗, m ∈ u ∈ U

where N∗ and ξ∗m designates the noise power and the signal to noise ratio thresh-
old respectively in a single frequency channel. (The arguments to establish the
above result, and in particular the fact that interference may be viewed as noise,
are similar to those concerning CDMA in [118, §4.3.1].)

We may rearrange the above inequality as follows

Pu,m/Lu,m

κN∗ +
∑

v∈U\{u}
∑

n∈v Pv,n/Lv,m
≥ ξ∗m

κ
, m ∈ u ∈ U

Hence we obtain a problem for GSM which has a similar form to the power
allocation problem for UMTS. The only differences are in the parameter values.
For GSM, the orthogonality factor is null, the noise power is N = κN∗ and
the signal to noise power ratio threshold is ξ := ξ∗/κ. Note that the above
inequality may be written as follows

Pu,m/Lu,m

N +
∑

v∈U\{u}
∑

n∈v Pv,n/Lv,m
≥ ξm, m ∈ u ∈ U

We introduce for future reference N (1) = WN∗ and ξ(1) = ξ∗/W corresponding
to a cluster size χ = 1, and write N = N (1)/χ and ξ = χξ(1) which shows
explicitly the dependence of the noise power and the signal to noise power ratio
threshold on the cluster size.

The above analysis shows that the feasibility conditions of the power alloca-
tion problem in CDMA networks [13] may be extended to FDMA networks.

12.3.2 FC

In particular, the FC takes the form
∑
m∈u

ϕ(m) ≤ C

where, for the downlink,

C = 1, ϕ (m) =
[
f (m) + NLu,m/P̃

]
ξm, m ∈ u

and the so called f-factor f (m) is given by

f (m) =
∑

v∈U\{u}
Lu,m/Lv,m

In order to make notations more coherent with UMTS, we denote

α = 0, ξ′m =
ξm

1 + αξm
, ε = 0
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(We may account for some intra-cell interference due to adjacent channels by
taking an orthogonality factor α 6= 0 and some adjacent interference from com-
mon channels by taking ε 6= 0.) Hence

C = 1− ε, ϕ (m) =
[
α + f (m) + NLu,m/P̃

]
ξ′m, m ∈ u

A new constraint appears in FDMA networks: the number of users in a
cell per time slot should not exceed the number of available frequency channel
in the base station. We call this constraint hard constraint in order to dis-
tinguish it from the power allocation feasibility condition, which we call radio
constraint. The admission control algorithm includes both the hard and the
radio constraint.

12.4 Numerical results

We compare the performances of FC and NSFC in a GSM network. The result
depends on cell radius, maximal power and cluster size. The loss of capacity of
FC compared to NSFC decreases with the cluster size χ (this shows that the
FC is well adapted for FDMA networks with high cluster sizes). For a given
cluster size χ, the loss of capacity has the same order of magnitude for different
cell radii R. Assuming usual values of maximal power and cell radius, the loss
of capacity is about 60% for χ = 1 and about 40% for χ = 2. For χ ≥ 3, the
loss of capacity is less than 30% if we consider only the radio constraint and
negligible if we consider both the radio and the hard constraints.

We build explicit approximate expression of the blocking probability for FC
in FDMA networks, and compare it with the blocking probability given by
dynamic simulation.

Even though the loss of capacity of the FC compared to the NSFC is some-
times large (especially for the cluster size 1) and the Erlang approximation for
the FC is not always accurate, this approximation permits to give an interesting
insight on the functioning of a GSM network.

We use the Erlang approximation of the blocking probability to study analyt-
ically the following question. Which constraint is more severe: the radio or the
hard constraint? We show that the answer depends on the three fundamental
parameters: cell radius, maximal power and cluster size.

The investigation of the above question permits to get the following result.
For usual values of cell radius and maximal power in GSM networks, the optimal
cluster size is between 2 and 3.

12.5 Conclusion

The differences between a CDMA/UMTS and a FDMA/GSM network are iden-
tified. We show that sufficient conditions (FC) for the feasibility of the power
allocation problem proposed initially for CDMA networks may be extended to
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FDMA networks. Our analytical approch permits to investigate questions spe-
cific to FDMA networks such as determining whether the radio constraint or
the hard one is more severe; or determining the optimal cluster size.
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We show that the analytic evaluation of the performance of wireless cellular
networks is possible, but it requires to use tools and theoretical issues from
several disciplines.

Feasibility based load control. The first step is to characterize the single
link performance which is fulfilled by looking at the literature analyzing the
performance of the multi-path fading by the digital communication techniques.
These techniques analyze the performance of the modulation seen as a detec-
tion process by expressing the bit error-probability as function of the signal
energy-per-bit over noise-density ratio, say Eb/N0. For vehicular speed users
(or scatters) the Eb is averaged over multi-path fading. For streaming traffic,
one fixes the error probability and deduces the corresponding Eb/N0 threshold,
and hence the signal to noise power ratio, say S/N . For elastic services, we get
a relation between the bit-rate, say r, and the S/N .

The interference between the links is made by formulating the power alloca-
tion problem for both the downlink and the uplink. The necessary and sufficient
condition for the feasibility (NSFC) of this problem is centralized, and hence
difficult to implement. We propose some decentralized conditions (FC) which
are related to the feasibility of power allocation. In fact if each base station
applies FC, then the global power allocation problem is certainly feasible (with
high probability for uplink with power limit).

We introduce a mean model permitting to define precisely the classical notion
of pole capacity. This simple notion permits in particular to illustrates the
phenomenon called cell breathing.

We evaluate the performance of the FC in terms of the infeasibility proba-
bility, defined as the probability that the FC doesn’t hold for a given cell when
modelling the users as a Poisson process. This notion is closely related to the
feasibility of the power allocation which is not the case of the classical outage
probability. In certain cases, for example for a Poisson pattern of users in an
hexagonal network of base stations, we gives explicit approximate formulae for
the infeasibility probability.

We propose admission control schemes for streaming traffic and congestion
control schemes for elastic ones based on the FC. These schemes are based on an
exact representation of the geometry of both the downlink and the uplink chan-
nels and ensure4 that the associated power allocation problems have solutions
under constraints on the maximal power of each station/user. These schemes
are decentralized in that they can be implemented in such a way that each base
station only has to consider the load brought by its own users to decide on ad-
mission. By load we mean here some function of the configuration of the users
and of their bit rates that is described in the report. When implemented in each
base station, such schemes ensure5 the global feasibility of the power allocation
even in a very large (infinite number of cells) network.

We show that the performance of the FC admission control is close to the

4certainly for the downlink and with high probability for the uplink
5Cf. previous note
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optimum (corresponding to the NSFC admission control). Moreover the con-
structor algorithms perform better than the FC in some cases (small cells and
small blocking) and worst in others (large cells or large blocking). The FC
induces a loss of capacity versus the NSFC which not larger than 25%.

From the user’s point of view, the performance is more suitably evaluated
by the mean of the blocking and cut probabilities of streaming users and the
delay and throughput of elastic users in the long run of the network.

Spatial Markov queueing process. We take into account the arrivals, mo-
bility and departures of the users by the mean of a pure-jump Markov process
(on the space of point measures on some Polish space). The user locations are
represented by a spatial point process that evolves over time as users arrive,
move or depart. We call our process spatial Markov queuing process (SMQ) or
equivalently spatial birth, mobility and death Markov process. Conditions for
regularity of the generator (i.e., uniqueness of the associated Markov process)
as well as for its ergodicity are established. In some cases, we show that the
stationary distribution is a Gibbs measure.

Analytic performance evaluation. We apply our general results for SMQ
to establish the explicit dynamic performance of CDMA wireless cellular net-
works serving streaming traffic and elastic traffic. In the case of streaming traffic
we study two spatial loss models and prove an expression for blocking rates. In
particular we show that the infeasibility probability plays an important role in
calculating the blocking probability. We apply the spatial Erlang formula and
the analytic expression of the infeasibility probability to built an approximate
explicit expression of the blocking probability of the FC admission control. In
the case of elastic services, we build a model for wireless cellular networks serv-
ing elastic traffic and we build explicit analytic expressions for the delay and
throughput of the FC congestion control.

Our objectives (Section 0.2) are then attained by the help of tools from dif-
ferent disciplines: digital communication for characterizing the single link per-
formance, linear algebra for building the feasibility based load control schemes,
informatics (simulation) for evaluating and comparing numerically the load con-
trol schemes, stochastic geometry and Markov queueing processes extended to
the spatial case for evaluating analytically the performance of load control in
wireless cellular networks.

12.6 Summary of Contributions

Feasibility based load control. We build rapid, scalable and efficient load
control schemes by extending the work in [16] from the downlink case without
power limit, to both the downlink and the uplink taking into account the maxi-
mal power limit for base stations and users respectively. These schemes are the
subject of the patents [12] and [11].
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Spatial Markov queueing process. Our spatial Markov queueing process
might be seen as a generalization of the spatial birth-and-death generator, which
allows for mobility of particles. Hence our work on the regularity, ergodicity and
invariant measure of the SMQ process extends previous work in [97] by allowing
for mobility of particles. Our spatial birth-mobility-and-death process can be
seen also as a generalization of the spatial queueing system considered in [106].

Analytic performance evaluation. The combination of the power alloca-
tion feasibility condition and our SMQ allows the model to include the exact
representation of the geometry of inter-cell and intra-cell interferences, which
play an essential role in wireless cellular networks.

We build analytical methods for evaluating the performance of large cellular
networks controlled by feasibility based schemes with indicators which are rele-
vant from the user’s point of view (blocking, cut delay, and throughput) rather
than the classical outage probability. Our formula for the blocking probability
might be seen as a spatial extension of the well-known Erlang loss formula.

In the case of elastic services, we build a model for wireless cellular networks
serving elastic traffic more suitable than the classical so called Whittle model.
In our model, the users move independently form the congestion in the network
whereas the users motion is frozen when the network approaches instability in
the Whittle model.

The analytic performance evaluation methods permit to build a new class
of coherent methods for the different fundamental problems in wireless cellu-
lar systems: quality of service, capacity and dimensioning. The new methods
are rapid and accurate, even for large networks. This approach is complemen-
tary to simulations. The ease of use of the analytical expressions makes this
type of approach more effective than simulations for macroscopic evaluation and
optimization. Our methods are implemented in a tool for Orange operator.

12.7 Future Research

For elastic services

• Take into account the maximal instantaneous bit-rate per user (by trun-
cation or using the technique in [26, §5])

• Study the conjectures about the stability, monotonicity and performance
for finite non-null speeds

• Approximate more accuretly the throughput for finite non-null speeds

• Investigate the effect of a non linear relation between bit-rate and signal
to noise power ratio

• Compare FC to NSFC and constructor algorithms

For streaming services
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• Extend the approach to other cellular systems such as LTE wireless net-
works using OFDM

• Study the Shadowing effect

• Study the transmitted power

• Approximate more accuretly the cut probability
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Chapter 13

Appendix of Part I

The present chapter comprises appendices of Part I.
Appendix 13.A gives basic results permitting to establish the NSFC and the

FC in the case where the size of the network is finite. This Appendix contains
well known results which are reproduced here to make the report more self-
contained.

Appendix 13.B studies a quantity called f-factor which depends on the geo-
graphic position of the user and the base stations in the networks. The f-factor
is well known in the previous literature and recognized as a crucial in analyzing
the performance of wireless cellular networks. We will show that the f-factor
is crucial in analyzing the FC performance. Unfortunately no analytic (even
approximate) expressions of the f-factor exist, even in the hexagonal simplified
model. We establish such analytic approximation in Appendix 13.B.

In Appendix 13.C we study the f-factor properties and extend the mean
model and the infieasibility probability formulae to the case with directional
antennas.

Appendix 13.D summarizes the formulae for the analytic approximate eval-
uation of the FC performance in a semi-static context.

In Appendix 13.E we compare the FC admission control to the optimal
scheme as well as to the constructor’s schemes in a semi-dynamic traffic model.

13.A Power allocation basic results

13.A.1 Power allocation problem

We consider only finite dimension matrices and vectors. For a non-negative
matrix A, and a positive vector a, the Power allocation problem is the to find a
vector y such that {

(1−A) y ≥ a
y ≥ 0 (13.1)

201
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13.A.2 Feasibility

Theorem 1 For a real matrix B = [Bij ]i=1,...m,j=1,...n, and two vectors a =

(a1, . . . , an)T
> 0, c = (c1, . . . , cm)T ≥ 0 exactly one of the following problems

{
By ≥ a
y ≥ c

and {
BT x ≤ 0
x ≥ 0, x 6= 0

is feasible (i.e. admits a solution).

Proof. By the so-called Theorem of alternatives [119, Theorem 2.1], exactly
one of the problems ( −B

−1m

)
y ≤

( −a
−c

)

and 



(−BT ,−1m

)(
x
z

)
= 0

( −aT −cT
) (

x
z

)
< 0

x ≥ 0, z ≥ 0

is feasible. The first problem may be written
{

By ≥ a
y ≥ c

The second problem may be written as follows




BT x = −z
−aT x− cT z < 0
x ≥ 0, z ≥ 0

As a > 0 and c ≥ 0 we have z ≥ 0, x ≥ 0, x 6= 0 ⇒ −aT x − cT z < 0. On the
other hand, −aT x− cT z < 0 ⇒ x 6= 0. The the second problem is equivalent to

{
BT x ≤ 0
x ≥ 0, x 6= 0

This finishes the proof.

Theorem 2 For a real matrix A, and two vectors a > 0 and c ≥ 0, exactly one
of the following problems {

(1−A) y ≥ a
y ≥ c

and (
1−AT

)
x ≤ 0, x ≥ 0, x 6= 0

is feasible.
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Proof. Particular case of the previous theorem. Take B = 1−A.

Definition 5 For a square matrix A, the set of eigenvalues is defined as
follows

σ (A) = {λ ∈ C; det(A− λ1) = 0}
The number

ρ (A) = max
λ∈σ(A)

|λ|

is called the spectral radius of A.

Theorem 3 For a non-negative matrix A, the problem

(1−A)x ≤ 0, x ≥ 0, x 6= 0

is feasible iff ρ (A) ≥ 1.

Proof. DenoteN = {x|x ≥ 0 with x 6= 0} and f (x) = min1≤m≤M,xm 6=0[Ax]m/xm.
From [85, §8.3] we have the following results:

1. The Collatz–Wielandt formula for the non-negative matrix A gives ρ (A) =
maxx∈N f (x).

2. There exists some z ∈ N , such that Az = ρ (A) z.

If ρ (A) ≥ 1, then z is a solution to our problem. Inversely, if x is a solution
to our problem, then f (x) ≥ 1, hence ρ (A) ≥ 1. We conclude that our problem
is feasible iff ρ (A) ≥ 1.

Theorem 4 For a non-negative matrix A, and two vectors a > 0 and c ≥ 0,
the problem {

(1−A)x ≥ a
x ≥ c

is feasible iff ρ
(
AT

)
< 1.

Proof. The result is deduced from the two previous theorems.
The previous result is well known when c = 0 (see for example [16] and the

references therein). The proof we give here is based on a theorem of alternatives
and Collatz–Wielandt formula. It is surprising that the feasibility condition is
independent of a and c. The classical literature on power allocation in cellular
systems assumes that the matrix A is irreducible (see for example [90] and [19]).
This assumption is not necessary as we have seen in the proof.

Theorem 5 For a non-negative matrix A, and a vector c ≥ 0, the problem
{

(1−A) x > 0
x ≥ c

is feasible iff ρ
(
AT

)
< 1.
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Proof. Suppose that ρ
(
AT

)
< 1, then take an arbitrary a > 0. The

problem {
(1−A) x ≥ a
x ≥ c

is feasible, then our problem is feasible. Suppose now that our problem is
feasible. Denote y a solution. Denote a = (1−A) y which is positive. Then y
is a solution of the problem

{
(1−A) x ≥ a
x ≥ c

This problem is feasible, then ρ
(
AT

)
< 1.

13.A.3 Minimal solution

For a non-negative matrix A, and a positive vector a, we will prove that the
problem of finding a vector y such that

{
(1−A) y ≥ a
y ≥ 0

is feasible iff the following problem
{

(1−A) y = a
y ≥ 0 (13.2)

called Liontief-input-output problem is feasible. We will prove then that
the solution of Liontief-input-output problem is unique. This solution is called
the minimal solution of the problem at hand.

Theorem 6 For a matrix A ∈ Cn×n,

σ
(
AT

)
= σ (A)

and in particular
ρ

(
AT

)
= ρ (A)

Proof. The transpose does not alter the determinant so that

det (A− λ1) = det
(
AT − λ1

)

Theorem 7 For a matrix A ∈ Cn×n, the following statements are equivalent.

1. The Newmann series
∑+∞

k=0 Ak converges.

2. ρ (A) < 1.
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3. limk→+∞Ak = 0.

Moreover, if one of the above statements is true, then (1−A)−1 exists and
(1−A)−1 =

∑+∞
k=0 Ak.

Proof. [85, §7.10].

Theorem 8 For a non-negative matrix A, ρ (A) < 1 iff (1−A)−1 exists and
(1−A)−1 is non-negative.

Proof. [85, Example 7.10.3].

Theorem 9 For a non-negative matrix A, and a positive vector a, the problem
{

(1−A)x = a
x ≥ 0

is feasible iff ρ (A) < 1. In this case there is a unique solution is (1−A)−1
a.

Proof. If the problem is feasible then, the problem
{

(1−A)x ≥ a
x ≥ 0

is feasible. Then ρ (A) < 1. Suppose now that ρ (A) < 1. Then (1−A)−1

exists and (1−A)−1 is non-negative. Then the problem
{

(1−A)x = a
x ≥ 0

is feasible.

Corollary 12 For a non-negative matrix A, and a positive vector a, the prob-
lem of finding a vector y such that

{
(1−A) y ≥ a,
y ≥ 0, (13.3)

is feasible iff the following problem
{

(1−A) y = a
y ≥ 0

is feasible, which is equivalent to

ρ (A) < 1 (13.4)

In this case, y∗ = (1−A)−1
a is the minimal solution of the power allocation

problem (13.3) (i.e. each other solution y satisfies y ≥ y∗). Moreover

y∗ = (1−A)−1
a =

∑

k

Aka

and the iterates x (k) defined by x (k + 1) = Ax (k) + a converge to the minimal
solution x = (1−A)−1

a for any starting vector x (0). This is called Stationary
Iterative Method.
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Proof. We have showed that each of these problems is feasible iff ρ (A) < 1
which proves that one of these problems is feasible iff the other is also feasible.
Suppose now that ρ (A) < 1. We have see that in this case (1−A)−1 is non-
negative. Consider some solution y of the first problem (with inequalities). We
have

(1−A) y ≥ a

As (1−A)−1 is non-negative, we have

(1−A)−1 (1−A) y ≥ (1−A)−1
a

which give

y ≥ (1−A)−1
a

Corollary 13 For a non-negative matrix A, and a positive vector a, the prob-
lem of finding a vector y such that

{
(1−A) y ≥ a
0 ≤ y ≤ c

(13.5)

is feasible iff the following problem

{
(1−A) y = a
0 ≤ y ≤ c

(13.6)

is feasible, which is equivalent to

ρ (A) < 1 and (1−A)−1
a ≤ c (13.7)

In this case, y∗ = (1−A)−1
a is the minimal solution of the power allocation

problem (13.5).

Proof. Suppose that Problem (13.5) is feasible and let y be a solution.
From Theorem 4 we deduce that ρ (A) < 1. In this case (1−A)−1 exists and
is non-negative. Then

(1−A)−1 (1−A) y ≥ (1−A)−1
a

which give

y ≥ y∗ = (1−A)−1
a

Since y ≤ c we deduce y∗ ≤ c, then y∗ is solution of Problem (13.6). The rest
of the proof is evident.
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Particular cases.

Theorem 10 Consider some positive real numbers γ1, γ2, . . . , γn and

A =




γ1 γ1 · · · γ1

γ2 γ2 · · · γ2

...
...

. . .
...

γn γn · · · γn




The problem {
(1−A)x = a
x ≥ 0

is feasible iff
∑

i γi < 1. Moreover, in this case

xj = aj + γj

∑

i

ai/

(
1−

∑

i

γi

)

is the solution.

Proof. The spectral radius of a matrix is between its minimal column sum
and maximal column sum. Equivalently,

min
j

∑

i

Aij ≤ ρ (A) ≤ max
j

∑

i

Aij

Since the column sums of the matrix A are all equal to
∑

i γi, we deduce that
ρ (A) =

∑
i γi. Suppose from now that

∑
j γj < 1. Let’s search the solution.

Our problem may be written as

xj − γj

∑

i

xi = aj

Adding over j gives ∑

j

xj −
∑

j

γj

∑

i

xi =
∑

j

aj

This may be written

1−

∑

j

γj


 ∑

j

xj =
∑

j

aj

Then xj = aj + γj

∑
i ai/ (1−∑

i γi) is the solution of our problem.

Theorem 11 Consider some positive real numbers γ1, γ2, . . . , γn and

A =




γ1 γ2 · · · γn

γ1 γ2 · · · γn

...
...

. . .
...

γ1 γ2 · · · γn



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The problem {
(1−A) x = a
x ≥ 0

is feasible iff
∑

i γi < 1. Furthermore, in this case

xj = aj +
∑

i

γiai/

(
1−

∑

i

γi

)

is the unique solution.

Proof. The spectral radius of a matrix is between its minimal row sum and
maximal row sum. Equivalently,

min
j

∑

i

Aij ≤ ρ (A) ≤ max
j

∑

i

Aij

Since the row sums of the matrix A are all equal to
∑

i γi, we deduce that
ρ (A) =

∑
i γi. Suppose from now that

∑
j γj < 1. Let’s search the solution.

Our problem may be written as

xj −
∑

i

γixi = aj

Multiplying by γj and then adding over j gives
∑

j

γjxj −
∑

j

γj

∑

i

γixi =
∑

j

γjaj

This may be written

1−

∑

j

γj


 ∑

j

γjxj =
∑

j

γjaj

Then xj = aj +
∑

i γiai/ (1−∑
i γi) is the solution of our problem.

Theorem 12 Let A be a n×n non-negative matrix A and a be a positive vector
with constant coordinates. Suppose that the row sums

∑n
j=1 Aij are independent

of i and less than 1. Then the problem
{

(1−A) x = a
x ≥ 0

has a solution with constant coordinates x1 = x2 = . . . = xn = a1/
(
1−∑n

j=1 A1j

)
.

Proof. The vector x constituted of equal coordinates a1/
(
1−∑n

j=1 A1j

)

is clearly the solution of the problem.



13.B. THE F-FACTOR 209

13.B The f-factor

In the present section, we are interested in a parameter, called f-factor, which
plays an important role in cellular networks. We consider the model presented
in Section 2.2 and we will use the notation described in Section 2.3.

Recall in particular that the cell radius R is related to the distance ∆ between
two adjacent base stations by Equation (2.6). Recall moreover that the set of
the base stations is denoted by U.

Definition 6 We call f-factor the following parampeter

f (m) =
∑

v∈U\{u}
Lu,m/Lv,m, m ∈ u

Observe that the f-factor may be written as follows

f (m) =


 ∑

v∈U\{u}
L−1

v,m


Lu,m

The first term in the right-hand side of the above display is the sum of the
propagation-gains (inverse of propagation-loss) of interferers whereas the second
term is the propagation-loss of the serving base station. Hence the f-factor is the
signal to interference ratio, if all the base station transmit at the same power.

We aim to find simple closed form expressions and study the properties of
the f-factor for the hexagonal cell model. We consider first omni antennas.

No simple closed form expressions nor approximations are known for the
f-factor. Typical values are generally calculated from simulations [88, 96].

The constant K in the propagation-loss expression L (r) = (Kr)η has no
effect on the f-factor. Hence we take in the present section K = 1.

13.B.1 Gain-sum

We focus our attention on the propagation-gain-sum

Iη,∆ (m) =
∑

v∈U\{u}
L−1

v,m (13.8)

This depends on the user position m, the propagation exponent η and the
distance ∆ between two adjacent base stations. Let the location of the serving
base station u be the origin of the coordinate system. We can associate to each
base station a complex number v (p, q) = ∆

(
p + qeiπ/3

)
. Hence

Iη,∆ (m) =
∑
p,q

|v (p, q)−m|−η (13.9)

where the summation is over p ∈ Z and q ∈ Z with p 6= 0 or q 6= 0. It is easy to
see that

Iη,∆ (m) = ∆−ηIη,1 (m/∆) (13.10)
Hence we may limit our study to the case ∆ = 1km. For simplicity we denote
Iη,1 simply by Iη.
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Figure 13.1: Gain-sum versus user location.

Gain-sum versus user location

Gain-sum versus angle.

Approximation 2 The gain-sum depends only on the distance between the user
and its serving base station. This approximation is more accurate when the
propagation exponent η is small.

Proof. Figure 13.1 represents the gain-sum Iη as a function of the user
location (x, y) ∈ R2. In order to interpret this figure, let (r, θ) be the user polar
coordinates. First note that, due to the hexagonal model properties, the gain-
sum is periodic in the angle θ with a period equal to π/3. Moreover, Figure 13.1
shows that for a given user-to-base-station distance r, the gain-sum is maximum
for θ = 0 and minimum for θ = π/6.

To gain more insight on this behavior, we plot in Figure 13.2 the gain-sum Iη

for these two values of θ. This figure shows that the gain-sum is more sensitive
to the angle θ when the user is far from its serving base station.

Figure 13.3 represents the ratio Iη (R) /Iη

(
Reiπ/6

)
as function of the prop-

agation exponent η. This figure shows that the gain-sum is more sensitive to
the angle θ

The above results justify the approximation that the gain-sum is indepen-
dent of the angle θ. We may use the values of the gain-sum for θ = 0 in the
calculation. This leads to a slight overestimation of the gain-sum (and conse-
quently a slight underestimation of the capacity).

Gain-sum versus distance. We shall now study the gain-sum as function of
the user-to-base-station distance r. We observe in Figure 13.1 that the gain-sum
is minimal at r = 0 and maximal at r = R. In order to study the dynamics of
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the gain-sum, we represent in Figure 13.4 the ratio between its maximum and
minimum values, i.e. Iη (R) /Iη (0), as function of the propagation exponent
η ∈ [2, 5]. Observe that the ratio Iη (R) /Iη (0) is within the interval [1, 4] which
is too small compared to the propagation-loss ratio L (R) /L (0) which equals
∞ in our model and typically 109 in real networks. Hence the dynamics of the
gain-sum is too small compared to the dynamics of the propagation-loss, that
is Iη (R) /Iη (0) ¿ L (R) /L (0).

In order to gain more insight into the variations of the gain-sum as function
of the user-to-base-station distance we make the following approximation.

Approximation 3 The gain sum may be approximated by

Iη,∆ (m) ' ζ (η − 1)
[
1/L (∆− r) + 1/L (∆ + r) + 4/L

(√
∆2 + r2

)]
, m ∈ u

(13.11)
where ζ is the Riemann zeta function given by ζ (z) =

∑∞
i=1

1
iz and r is the

distance between the user m and its serving base station u.

Proof. If we fix some hexagon center as the origin O, then the other hexagon
centers are located on successive hexagons having O as the center and having
increasing radii. These hexagons are called levels and indexed by j = 1, 2, . . ..
Figure 13.5 shows the first two levels j = 1, 2. We decompose the gain-sum
Iη,∆ (m) over the different levels

Iη,∆ (m) =
∑

v∈U\{u}
L−1

m,v

=
∞∑

j=1

∑

v∈Level j

L−1
m,v =

∞∑

j=1

Aj
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where Aj =
∑

v∈Level j L−1
m,v is the contribution of level j. At level j there are

exactly 6j base stations, six of which (denoted v
(j)
0 , v

(j)
1 , . . . , v

(j)
5 ) are at distance

j∆ from the center and the other 6 (j − 1) base stations are at distances slightly
less than j∆.Then we get

Aj ≥ j

5∑

k=0

L−1

m,v
(j)
k

= j

(
j−η

5∑

k=0

L−1

m,v
(1)
k

)
= j−(η−1)A1

Hence

Iη,∆ (m) ≥
∞∑

j=1

j−(η−1)A1 = ζ (η − 1) A1 (13.12)

The first step to get the desired approximation is to assume as in [82] that
all the base stations of level j are at the distance j∆, which gives Iη,∆ (m) '
ζ (η − 1)A1.

We shall now establish an approximation of A1 which is the contribution of
level 1 to the gain sum. The base stations of level 1 are denoted v0, v1, . . . , v5.
Figure 13.6 represents a user m at distance r from its serving base station u.
Denote n the point located on the line (u, v0) at distance r from u. We make
the approximation 




Lvq,m ' Lvq,n q ∈ {0, 3}
Lvq,m ' Lv,n q ∈ {1, 2}
Lvq,m ' Lv′,n q ∈ {4, 5}

where v and v′ are defined on Figure 13.6. Hence

A1 =
5∑

q=0

L−1
m,vq

' 1/L (∆− r) + 1/L (∆ + r) + 4/L
(√

∆2 + r2
)

This finishes the establishment of the desired aprroximation.
Figure 13.7 represents the gain-sum Iη as a function of the user-to-base-

station distance calculated with the exact expression and the approximation (13.11)
for different values of propagation exponent η = 3, 4, 5. This figure shows that
the approximation is good.

Gain-sum at cell center. Using the bound (13.12), we get in particular that
the gain sum at the cell center is bounded as follows

Iη (0) ≥ 6ζ (η − 1)

Figure 13.8 represents the gain-sum at cell center Iη (0) and the lower bound
6ζ (η − 1) as functions of the propagation exponent η. This figure shows that
the bound 6ζ (η − 1) is a good approximation of Iη (0).
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level 2

level 1

Figure 13.5: The first two levels j = 1, 2

m

nu
v0

v1

v5

v

v
′

v4

v3

v2

Figure 13.6: Level 1

Proposition 54 Denote

ϕ (η) = Iη (0) =
∑
p,q

(
p2 + pq + q2

)−η/2

where the summation is over p ∈ Z and q ∈ Z with p 6= 0 or q 6= 0. The function
ϕ : ]2, +∞[ → R is well defined, continuous, convex and decreasing. Moreover

lim
η→2

ϕ (η) = +∞ and lim
η→+∞

ϕ (η) = 6
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Proof. We have

ϕ (η) =
∑

q∈Z∗
|q|−η +

∑

p∈Z∗

∑

q∈Z

(
p2 + pq + q2

)−η/2

=
∑

p∈Z∗


|p|−η +

∑

q∈Z

(
p2 + pq + q2

)−η/2




= 2
∞∑

p=1


2p−η +

∑

s∈{−1,+1}

∞∑
q=1

(
p2 + spq + q2

)−η/2




= 4
∞∑

p=1

p−η + 2
∑

s∈{−1,+1}

∞∑
p=1

∞∑
q=1

(
p2 + spq + q2

)−η/2
(13.13)

1. Suppose that η > 2. Fix some p > 0. Using the fact that p2 + q2 ≥ 2pq,
we deduce that p2 + spq + q2 ≥ (2 + s) pq. Then

(
p2 + spq + q2

)−η/2 ≤
(2 + s)−η/2

p−η/2q−η/2 which implies
∑∞

q=1

(
p2 + spq + q2

)−η/2 is conver-
gent and

∞∑
q=1

(
p2 + spq + q2

)−η/2 ≤ (2 + s)−η/2
p−η/2

∞∑
q=1

q−η/2.

Then for η > 2, the double series in the right-hand side of (13.13) is
convergent and we have the upper bound

ϕ (η) ≤ 4
∞∑

p=1

p−η + 2
(
3−η/2 + 1

)( ∞∑
p=1

p−η/2

)2

Hence the function ϕ : ]2, +∞[ → R is well defined.

2. The series
∑

p,q

(
p2 + pq + q2

)−η/2 of functions of η converges uniformly
over each compact in ]2, +∞[, then ϕ (η) is continuous over ]2,+∞[. It is
clearly a decreasing function of η. As a sum of convex function, ϕ (η) is
convex.

3. Using (13.12), we deduce that

lim
η→2

ϕ (η) = +∞.

Form the monotone convergence theorem for series, we get

lim
η→+∞

ϕ (η) = lim
η→+∞

∑
p,q

(
p2 + pq + q2

)−η/2

=
∑
p,q

lim
η→+∞

(
p2 + pq + q2

)−η/2
= 6
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13.B.2 f-factor and lf-factor

The f-factor depends on the user position m, the propagation exponent η and
the distance ∆ between two adjacent base stations. So we denote it by fη,∆ (m).
It is related to the gain sum Iη,∆ (m) by the relation

fη,∆ (m) = Iη,∆ (m)Lu,m, m ∈ u

The gain-sum approximation given in Equation (13.11), gives an approximation
of the f-factor which we denote, with a slight abuse of notation, by fη,∆ (r), thus

fη,∆ (m) ' fη,∆ (r) = ζ (η − 1)L (r)
[
1/L (∆− r) + 1/L (∆ + r) + 4/L

(√
∆2 + r2

)]

and in particular, for ∆ = 1,

fη (r) = ζ (η − 1)
[
rη (1− r)−η + rη (1 + r)−η + 4rη

(
1 + r2

)−η/2
]

From now we call, with a slight abuse of terminology, the approximation fη,∆ (r)
also f-factor.

Figure 13.9 represents the f-factor fη as a function of the user-to-base-station
distance r for different values of propagation exponent η = 3, 4, 5.

We define the lf-factor by

hη,∆ (r) = fη,∆ (r) L (r) /L (R)

We shall now calculate the mean of the f-factor and the lf-factor over a given
cell.
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Proposition 55 The f-factor mean over a cell equals

E [fη,∆] =
2

R2

∫ R

0

rfη,∆ (r) dr = ζ (η − 1)
(R/∆)η

1 + η/2
{ 2F1 ([η, 2 + η], [3 + η] , R/∆)

+ 2F1 ([η, 2 + η], [3 + η] ;−R/∆)

+ 4× 2F1

(
[η/2, 1 + η/2] , [2 + η/2] ,− (R/∆)2

)
} (13.14)

(where 2F1 designates the hypergeometric function) and the lf-factor mean over
a cell equals

E [hη,∆] =
2

R2

∫ R

0

rhη,∆ (r) dr = ζ (η − 1)
(R/∆)η

1 + η
{ 2F1 ([η, 2 + 2η], [3 + 2η] , R/∆)

+ 2F1 ([η, 2 + 2η], [3 + 2η] ;−R/∆)

+ 4× 2F1

(
[η/2, 1 + η] , [2 + η] ,− (R/∆)2

)
} (13.15)

Proof. We calculate

E [fη,∆] =
2

R2

∫ R

0

rfη,∆ (r) dr

=
2

R2
ζ (η − 1) {

∫ R

0

r1+η (∆− r)−η
dr +

∫ R

0

r1+η (∆ + r)−η
dr

+ 4
∫ R

0

r1+η
(
∆2 + r2

)−η/2
dr}

We calculate
∫ R

0

r1+η (∆− r)−η
dr = R2 (R/∆)η

2 + η
2F1 ([η, 2 + η], [3 + η] , R/∆)

∫ R

0

r1+η (∆ + r)−η
dr = R2 (R/∆)η

2 + η
2F1 ([η, 2 + η], [3 + η] ,−R/∆)

∫ R

0

r1+η
(
∆2 + r2

)−η/2
dr = R2 (R/∆)η

2 + η
2F1

(
[η/2, 1 + η/2] , [2 + η/2] ,− (R/∆)2

)

This finishes the proof of Equation (13.14).
We have

E [hη,∆] =
2

R2

∫ R

0

rhη,∆ (r) dr

= 2R−2−ηζ (η − 1) {
∫ R

0

r1+2η (∆− r)−η
dr +

∫ R

0

r1+2η (∆ + r)−η
dr

+ 4
∫ R

0

r1+2η
(
∆ + r2

)−η/2
dr}
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We calculate
∫ R

0

r1+2η (∆− r)−η
dr =

R2+η

2
(R/∆)η

1 + η
2F1 ([η, 2 + 2η], [3 + 2η] , (R/∆))

∫ R

0

r1+η (∆ + r)−η
dr =

R2+η

2
(R/∆)η

1 + η
2F1 ([η, 2 + 2η], [3 + 2η] ,− (R/∆))

∫ R

0

r1+η
(
∆ + r2

)−η/2
dr =

R2+η

2
(R/∆)η

1 + η
2F1

(
[η/2, 1 + η] , [2 + η] ,− (R/∆)2

)

This finishes the proof of Equation (13.15).
From (13.10) we deduce that fη,∆ (r) = fη (r/∆), then

E
[
fk

η,∆

]
=

2
R2

∫ R

0

rfk
η,∆ (r) dr =

2
R2

∫ R

0

rfk
η (r/∆) dr

=
2

(R/∆)2

∫ R/∆

0

ufk
η (u) du = E

[
fk

η

]
, k ∈ N

Since the ratio R/∆ is constant (see Equation (2.6)), then the moments of fη,∆

and fη over the correspondent cells are equal. We have also similar result for
the lf-fcator. Hence we may limit ourselves to the case ∆ = 1 and cell radius
equal to

R1 =
√√

3/ (2π) ' 0.525

For the Poisson-Voronoi model, we have from [16] E [fη] = 2/ (η − 2). This
inspires us to make the following approximations.

Approximation 4 For the hexagonal model, we have the approximations

E [fη] ' 0.936/ (η − 2) (13.16)

E [hη] ' 0.632/ (η − 2) (13.17)

E
[
f2

η

] ' 0.234/ (η − 2) + 1.29/ (η − 2)2 (13.18)

Proof. A least square fit between E [fη] and E [hη] versus 1/ (η − 2) gives
the right hand side of Equations (13.16) and (13.17) respectively. Recall that,
by definition,

E
[
f2

η

]
=

2
R2

1

∫ R1

0

rfη (r)2 dr

A least square fit of E
[
f2

η

]
versus 1/ (η − 2) and 1/ (η − 2)2 gives the right hand

side of Equation (13.18).
Figure 13.10 represent E [fη], E [hη] and E

[
f2

η

]
obtained by exact calcula-

tion and by the approximations (13.16), (13.17) and (13.18) respectively. Visual
inspection of this figure show that the approximation is good when the propa-
gation exponent η ∈ [2.2, 5].
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Figure 13.10: Validation of Approximation 4.

13.C Directional antennas

Till now we have considered omni antennas. In this appendix we shall study the
f-factor properties and extend the mean model and the infieasibility probability
formulae to the case with directional antennas.

In the directional case, the geographic positions of the base stations are
called sites. Each base station has an antenna and its cell is defined as the
set of geographic position where its is the best server.

We use the following notation:

• We assume that there are D antennas (or equivalenly base stations) lo-
cated at each site.

• These antennas have azimuths a2π/D where a ∈ D = {− (D − 1) /2, . . . , (D − 1) /2}.
We use D as an index set of the antennas located at the same site.

• The set of sites is denoted by U.

• A base station is a pair (u, a) where u ∈ U and a ∈ D.

• The set of base stations is the Cartesian product U×D.

• m designates a user position.

• The notation m ∈ (u, a) means that the user m is in the cell of the base
station (u, a).
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13.C.1 The f-factor

In this section we shall extend the results about the f-factor presented in §13.B
to the case with directional antennas.

The present section is based on [20] for the model and on [117] for the f-factor
moments in the hexagonal case.

Model. The propagation-loss has the form

L(u,a),m = Lu,m/G(u,a),m

where:

• Lu,m = L (|m− u|) is the distance propagation loss.

• G(u,a),m is the antenna gain given by

G(u,a),m = G (arg (m− u)− a2π/D)

where G (·) is the normalized radiation pattern.

• |z| , arg (z) are, respectively, the Euclidian norm and the argument of the
vector z ∈ R2 (−π < arg (z) ≤ π).

We consider two models for the normalized radiation pattern: a perfect one
where G (θ) = 1 {|θ| ≤ π/D} and a realistic one. Each antenna (u, a) covers the
sector situated at angle less than π/D around its azimuth. This means that the
antenna (u, a) servers the users m satisfying |arg (m− u)− a2π/D| < π/D.

Lemma 21 The f-factor in the directional case equals

f (D)(m) =
∑

b∈D\{a}

G(u,b),m

G(u,a),m
+

∑

v∈U\{u}

Lu,m

Lv,m

Gv,m

G(u,a),m
, m ∈ (u, a)

where Gv,m designates the total antenna gain from a given site v which is
defined by

Gv,m =
∑

b∈D

G(v,b),m

Proof. For a user m ∈ (u, a), the f-factor equals by definition

f (D)(m) =
∑

(v,b)∈U×D\{(u,a)}

L(u,a),m

L(v,b),m

=
∑

(v,b)∈U×D\{(u,a)}

Lu,m

Lv,m

G(v,b),m

G(u,a),m

By distinguishing the case v = u and v 6= u in the above sumn, we get the
desired result.
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Perfect radiation pattern. In the case of perfect radiation pattern, the f-
factor equals

f (D)(m) =
∑

v∈U\{u}

Lu,m

Lv,m
, m ∈ (u, a)

which is independent of the number of sectors D, and hence equals the f-factor
in the omni case f1

m = f1
m which we have already studied.

Realistic radiation pattern.

Approximation 5 We approximate the total antenna gain by its mean

Gv,m ' Ḡ =
D

2π

∫ π

−π

G (θ) dθ (13.19)

Proof. Consider the antenna (u, a) serving the user m. Without loss of
generality we may take u as the origin of the coordinate system and m − u as
the reference for angles. We have

Gv,m =
∑

b∈D

G(v,b),m

=
∑

b∈D

G (arg (m− v)− b2π/D)

=
∑

b∈D

G (arg (−v)− b2π/D)

Let
G (θ) =

∑

b∈D

G (θ − b2π/D) (13.20)

where θ = arg (−v). Then

Ḡ = E [G (θ)]

=
1
2π

∫ π

−π

G (θ) dθ

=
∑

b∈D

1
2π

∫ π

−π

G (θ − b2π/D) dθ =
D

2π

∫ π

−π

G (θ) dθ

Using the approximation in Equation (13.19) we get

f (D) (m) =

∑
b∈D\{a}G (θ − b2π/D)

G (θ)
+

Ḡ

G (θ)
f(m), m ∈ (u, a)

where θ = arg (m− u) and

f(m) =
∑

v∈U\{u}

Lu,m

Lv,m
, m ∈ (u, a)
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is the f-factor in the omni case. Using the approximation in Equation (13.11),
f(m) depends only on the distance |m− u|. Using the fact that θ = arg (m− u)
is uniformly distributed in (−π/D, π/D), we may calculate the f-factor moments

f̄ (D) = ḠG2f̄ + G1 (13.21)

f̄2(D)
= Ḡ2G4f̄2 + 2ḠG5f̄ + G3 (13.22)

where the antenna parameters Ḡ,G1, . . . , G5 are given by

Ḡ = D
2π

∫ π

−π
G (θ) dθ

G1 = D
2π

∫ π/D

−π/D

P
b6=0 G(θ−b2π/D)

G(θ) dθ

G2 = D
2π

∫ π/D

−π/D
1

G(θ)dθ

G3 = D
2π

∫ π/D

−π/D

[P
b6=0 G(θ−b2π/D)

G(θ)

]2

dθ

G4 = D
2π

∫ π/D

−π/D
1

G2(θ)dθ

G5 = D
2π

∫ π/D

−π/D

P
b6=0 G(θ−b2π/D)

G2(θ) dθ

(13.23)

Denote the normalized propagation-loss in the directional case by

l(D) (r, θ) =
l (r)
G (θ)

=
L (r)

L (R)G (θ)

Its moments are given by

l̄(D) = E
[
G−1l

]
= G2 l̄

l̄2
(D)

= E
[
G−2l2

]
= G4 l̄2

f̄ l
(D) = E

[
f (D)G−1l

]

= E

[∑
b6=0 G (θ − b2π/D)

G (θ)2
l +

Ḡ

G (θ)2
fl

]
= ḠG4f̄ l + G5 l̄ (13.24)

Study of measured patterns. We consider antennas used for UMTS net-
works. We study several antennas and present in detail the results for three
representative antennas with horizontal beamwidths φ0 = 69◦, 90◦ and 112◦.
(The antennas are named ALG 7520-00 T2 2200, ALG 7740-00 T0 2200 and
K 742-149 T0 2200 respectively.) The radiation measured pattern G (·) is given
as pairs (θ,G (θ)) for θ = 1, 2, . . . 359◦. The beamwidth φ0 satisfies by defini-
tion G (φ0/2) = 1/2 = 3dB.

The antenna parameter Ḡ given by (13.23) are calculated numerically

Ḡ =





0.619 for φ0 = 69◦

0.805 for φ0 = 90◦

0.941 for φ0 = 112◦
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Figure 13.11: Antenna parameters Ḡ,G1, G2, G3, G4 and G5 as functions of the
horizontal beamwidth φ.

The total antenna gain G (θ) given by (13.20) varies in the intervals

G (θ) ∈




[0.26, 1.00] for φ0 = 69◦

[0.49, 1.01] for φ0 = 90◦

[0.80, 1.02] for φ0 = 112◦

So the approximation in Equation (13.19) is better when the beamwidth is
larger.

The antenna parameters G1, . . . , G5 given by (13.23) are calculated numer-
ically

(G1, . . . , G5) =





(0.127, 2.43, 0.0572, 8.60, 0.629) for φ0 = 69◦

(0.131, 1.58, 0.0483, 2.94, 0.324) for φ0 = 90◦

(0.164, 1.24, 0.0798, 1.67, 0.288) for φ0 = 112◦

Antenna parameters versus beamwidth. We shall now study the ef-
fect of the horizontal beamwidth on the antenna parameters (13.23). We con-
sider the antenna with horizontal beamwidth φ0 = 69◦ as a reference antenna
and we construct radiation patterns G (·) with arbitrary horizontal beamwidth
φ by scaling the original one G0 (·) as follows

G (θ) = G0 (θφ0/φ) , |θ| ≤ π

which respects G (φ/2) = G0 (φ0/2) = 1/2. Figure 13.11 shows the evolution of
the antenna parameters Ḡ,G1, G2, G3, G4 and G5 as functions of the horizontal
beamwidth φ.



13.C. DIRECTIONAL ANTENNAS 225

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 60  80  100  120  140  160  180

T
ot

al
 a

nt
en

na
 g

ai
n 

m
om

en
ts

Antenna horizontal beamwidth [degrees]

Mean
Standard deviation

Standard deviation/Mean

Figure 13.12: The mean Ḡ = E [G (θ)], the standard deviation σ =
(Var [G (θ)])1/2 of the total antenna gain G (θ) and the ratio σ/Ḡ as functions
of the beamwidth φ.

We study now the precision of the approximation in Equation (13.19) for
different values of the beamwidth. Figure 13.12 shows the mean Ḡ = E [G (θ)],
the standard deviation σ = (Var [G (θ)])1/2 of the total antenna gain G (θ) and
the ratio σ/Ḡ as functions of the beamwidth φ. (The mean and the standard
deviation are calculated assuming that θ is uniformly distributed in ]−π, π].)
This figure shows that the larger is the beamwidth, the better is the approxi-
mation in Equation (13.19). For φ ≥ 90◦, the approximation is acceptable, and
for φ ≥ 120◦, the approximation is good.

13.C.2 Mean model

In this section we shall extend the mean model presented in §4.1 to the case
with directional antennas.

Proposition 56 The feasibility condition for the mean model in the directional
case may be written in the form

M̄ ≤ Γ(D) =
CD

ϕ̄(D)

where M̄ = λMπR2;

ϕ̄(D) =

{ (
α + f̄ (D)

)
ξ̄′ for DFC, UFC, EUFC[

α + f̄ (D) + l̄(D)L (R) N/P̃
]
ξ̄′ for EDFC

(13.25)

and C is given by Equation (4.12).
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Proof. To get the results of the directional case, it is enough to make the
following substitution in the formulae of the omni case presented in §4.1

f̄ → f̄ (D)

l̄ → l̄(D)

M̄ → M̄ (D) = M̄/D

The pole capacity Γ(D) of the directional case will be larger than that for
the omni case by a factor

Γ(D)

Γ
= D × ϕ̄

ϕ̄(D)

The above formula permits to analyze the effect on pole capacity when we
replace omni antennas by directional ones. If the antennas have perfect radiation
pattern, then Γ(D) = D × Γ, hence we get an increase of the pole capacity by
a factor D due to the increase of the number of base stations on each site.
Otherwise, the pole-capacity increase factor is smaller than D by a factor equal
to ϕ̄/ϕ̄(D) which characterizes the effect of the radiation-pattern-imperfection.

Figure 13.13 represents the ratio between the directional pole capacity and
the omni pole capacity given in the above display as function of the antenna
beamwidth for DFC, UFC, EUFC and EDFC for cell radius R = 2, 3, 4km.

This figure shows that the pole capacity increases due to directional anten-
nas:

• is optimal for some beamwidth (approximately equal to 90◦);

• is independent of the cell radius for DFC, UFC and EUFC;

• increases with cell radius for EDFC.

13.C.3 Infeasibility probability

In this section we shall extend the mean model presented in §4.2 to the case
with directional antennas.

Proposition 57 The feasibility conditions DFC, EDFC, UFC and EUFC may
be written in the generic form

S(D) =
∑

m∈(u,a)

ϕ(D) (m) < C (13.26)

where

ϕ(D) (m) =

{ [
α + f (D) (m)

]
ξ′m for DFC, UFC, EUFC[

α + f (D) (m) + NL(u,a),m/P̃
]
ξ′m for EDFC

, m ∈ (u, a)

and C is given by Equation (4.12).
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The infeasibility probability is defined as follows

P
(
S(D) ≥ C

)

where S(D) is given by (13.26). Due to Hypothesis 1, the infeasibility probability
is the same for all base station u ∈ U.

Since S(D) =
∑

m∈(u,a) ϕ(D) (m) is a shot noise, its mean and standard
deviation are respectively given by

S̄(D) = D−1M̄ϕ̄(D), σS =
(
D−1M̄ϕ̄2(D)

)1/2

Proposition 58 The mean of ϕ(D) (m) is given by Equation (13.25). Its second
moment is given by

ϕ̄2(D)
=





(
f̄2(D)

+ 2αf̄ (D) + α2
)

ξ̄′2 for DFC, UFC, EUFC[
L (R)2 l̄2

(D)
N2/P̃ 2 + f̄2(D)

+ α2 + 2αf̄ (D) + 2
{

αl̄(D) + f̄ l
(D)

}
L (R)N/P̃

]
ξ̄′2 for EDFC

13.D Synthesis of formulae

We recall below the essential formulae developed in the present part. Recall
that the feasibility conditions DFC, EDFC, UFC, EUFC have the form

S =
∑
m∈u

ϕ (m) ≤ C
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in the case of omni antennas, and

S(D) =
∑

m∈(u,a)

ϕ(D) (m) ≤ C

in the case of directional antennas.
The functions ϕ (·) and ϕ(D) (·) comprise a term, called f-factor and denoted

f(m), for which we propose the following approximation

f(m) ≈ f(|m|) ≈ ζ(η−1)L (|m|)

 1

L(∆− |m|) +
1

L(∆ + |m|) +
4

L
(√

∆2 + |m|2
)


 |m| ≤ R

where ζ(x) =
∑∞

n=1 1/nx is the Riemann zeta function. (Recall that ∆ is the
distance between two adjacent base stations in the hexagonal model and R is
the radius of the disc with area equal to that of a hexagon.)

The parameter C is given by

C =





1 for DFC et UFC
1− ε for EDFC
1−N/ infm∈u

P̃m

ξ′mLu,m
for EUFC

The moments of S can be expressed via some antenna parameters Ḡ,Gi,
i = 1, . . . , 5 and functions f̄ , f̄2, l̄, l̄f of the path loss exponent η, which are
given at the end of this section. Concluding, the mean and standard deviation
of S are respectively given by

S̄ = M̄ϕ̄, σ2
S = M̄ϕ̄2

Those of S(D) have a similar form with the substitution

ϕ̄ → ϕ̄(D)

M̄ → M̄ (D) = M̄/D

The moments of ϕ (·) are given by

ϕ̄ =

{ (
α + f̄

)
ξ̄′ for DFC, UFC, EUFC[

α + f̄ + l̄L (R) N/P̃
]
ξ̄′ for EDFC

ϕ̄2 =

{ (
f̄2 + 2αf̄ + α2

)
ξ̄′2 for DFC, UFC, EUFC[

L (R)2 l̄2N2/P̃ 2 + f̄2 + α2 + 2αf̄ + 2
{
αl̄ + f̄ l

}
L (R)N/P̃

]
ξ̄′2 for EDFC

The moments of ϕ(D) (·) have similar form with the substitution

f̄ → f̄ (D) = ḠG2f̄ + G1

f̄2 → f̄2(D)
= Ḡ2G4f̄2 + 2ḠG5f̄ + G3

l̄ → l̄(D) = G2 l̄

l̄2 → l̄2
(D)

= G4 l̄2

f̄ l → f̄ l
(D) = ḠG4f̄ l + G5 l̄
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The antenna parameters are, for the three-sector case,

Ḡ =
3
2π

∫ π

π

G(θ) dθ

G1 =
3
2π

∫ π/3

−π/3

∑
b 6=0 G (ψ − b2π/3)

G (ψ)
dψ

G2 =
3
2π

∫ π/3

−π/3

1
G (ψ)

dψ

G3 =
3
2π

∫ π/3

−π/3

[∑
b6=0 G (ψ − b2π/3)

G (ψ)

]2

dψ

G4 =
3
2π

∫ π/3

−π/3

1
G2 (ψ)

dψ

G5 =
3
2π

∫ π/3

−π/3

∑
b 6=0 G (ψ − b2π/3)

G2 (ψ)
dψ

The integral functions of the path-loss exponent η are

f̄ = f̄η = 2
∫ 1

0

rf |K=1,R=1(r)dr ≈ 0.9365
η − 2

,

l̄ = l̄η = 2
∫ 1

0

rη+1dr =
1

1 + η/2
,

f̄2 = f̄2
η = 2

∫ 1

0

rf2|K=1,R=1(r)dr

≈ 0.2343
η − 2

+
1.2907

(η − 2)2
,

l̄f = l̄fη = 2
∫ 1

0

r1+ηf |K=1,R=1(r)dr ≈ 0.6362
η − 2

.

Multi-service case Consider the case where there are J classes of service.
Each class j ∈ {1, 2, . . . , J} is characterized by modified SINRs ξ′j and the mean
number of user of this class in a cell M̄j . We have M̄ =

∑J
j=1 M̄j and

ξ̄′ =
J∑

j=1

pjξ
′
j , ξ̄′2 =

J∑

j=1

pjξ
′2
j

where pj = M̄j/M̄ .

13.E Comparison of admission control schemes

The objective of the present section is to compare the FC admission control
schemes built in Section 3.3 to the optimal scheme (corresponding to the NSFC
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admission control) as well as to the constructor’s schemes. We compare the
performance of these admission control schemes in terms of the blocking and cut
probabilities. To this end, the semi-static model considered in Chapter 4 is no
longer sufficient and we should consider at least a semi-dynamic model to define
the blocking probability and a dynamic model to define the cut probability.

We shall study the evolution of the blocking and cut probabilities as functions
of the traffic demand. The traffic demand is defined as the ratio between
the average duration of a call to the average duration between the arrivals of
two successive calls. It is expressed in Erlang. (Note that the mean number
of users per unit surface denoted λM in the semi-static model in Chapter 4 is
precisely the traffic demand per unit surface.)

We consider the case with power limit, hence the term FC designates EDFC
in the downlink and EUFC in the uplink. Unless otherwise specified, all the nu-
merical applications are made using the default values specified in Section 2.2.5.
Moreover, we consider in the present Chapter a finite network composed of 36
hexagonal cells on a torus (6 cells in each direction).

13.E.1 Constructor’s schemes

The constructors for UMTS infrastructure propose admission algorithms which
are decentralized but don’t assure power allocation feasibility [64], [81]. More-
over constructor’s scheme performance may not be evaluated analytically, to
our knowledge.

Downlink. The downlink constructor’s admission control is based on the pow-
ers transmitted by the base stations just before the arrival of a new user [64], [81].
[54] and [122] show that the power vector P = (Pu)u∈U is solution of the prob-
lem

P = min
(
P̃ , AP + a

)

where A and a are given by (3.7) and (3.8) respectively (where the sum
∑

m∈u

in the right-hand side of these equations doesn’t comprise the new user) and P̃
is the vector of the maximal powers.

The downlink constructor’s admission control is now described. Let P be the
solution of the above problem. Given some constant k ∈ (0, 1) called downlink
load threshold by some authors, if

P ≤ kP̃ (13.27)

then the new user is admitted, otherwise he is rejected.

Uplink. The uplink constructor’s admission control is based on the total in-
terference at the base stations just before the arrival of a new user [64], [81].
Similarly to the downlink, using the arguments in [54] and [122] one may show
that the interference vector I = (Iu)u∈U is solution of the problem

I = min
(
Ĩ , BI(t) + b

)
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where B, b and Ĩ are given by (3.26), (3.27) and (3.35) respectively. (Note
that neither the sum

∑
m∈u in (3.26) nor the infimum infm∈u in (3.35) should

comprise the new user.)
The uplink constructor’s admission control is now described. Let I be the

solution of the above problem. Given some constant k′ ∈ (0, 1) called uplink
load threshold by some authors, if

I ≤ k′Ĩ (13.28)

then the new user is admitted, otherwise he is rejected.

13.E.2 Comparison in a semi-dynamic context

We consider here a semi-dynamic traffic model (i.e. users don’t move during
their calls).

Downlink

Figures 13.14 and 13.15 show the blocking probability as function of traffic
demand for the admission algorithms NSFC, FC and constructor and for cell
radii R = 1 and 5km respectively. We study also cell radii R = 0.525, 2, 3 and
4km, but we don’t show the curves here because the important phenomena are
well illustrated in the figures corresponding to cell radii R = 1 and 5km.
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Figure 13.14: Comparison of the admission control algorithms for R = 1km

Erroneous admission. In theory, the constructor scheme doesn’t assure the
power allocation feasibility. We calculate a parameter called erroneous-admission
representing the proportion of admission decisions which don’t assure the power
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Figure 13.15: Comparison of the admission control algorithms for R = 5km

R\Algorithm FC Constructor
R = 0.525km 17.8% 2.7%

R = 1 18% 0%
R = 3 20% 10%
R = 5 23.8% 33%

Table 13.1: Loss of capacity of FC and the constructor algorithm versus NSFC
in the downlink.

allocation feasibility. In our simulation for the downlink the erroneous-admission
is null.

In fact, the constructor scheme is firstly optimized by adjusting the so called
load threshold denoted k in Equation (13.27). The above curves correspond to
the best performance (which corresponds to k = 0.75). No such calibration is
carried (there is no need) for the FC.

Loss of capacity. The capacity is defined as the traffic demand corresponding
to a blocking probability of 2%. Table 13.1 gives the loss of capacity of FC and
the constructor algorithm versus NSFC.

Uplink

Figures 13.16 and 13.17 show the blocking probability as function of traffic
demand for the admission algorithms NSFC, SFC, FC and constructor for cell
radii R = 1 and 3km respectively.
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Figure 13.16: Comparison of the admission control algorithms for R = 1km

Erroneous admission. In theory, neither FC nor the constructor scheme
assure the power allocation feasibility. Hence we have also here the notion of
erroneous-admission which is represented in Figures 13.18 and 13.19 for FC
and contructor respectively. We deduce that, for assuring the power allocation
feasibility:

• FC is better than the constructor scheme for small cells;

• the constructor scheme is better than FC for moderate and large cells.

Note that the constructor scheme performance depends on the so called
load threshold denoted k′ in Equation (13.28). Adjusting this parameter would
probably reduce the erroneous-admission for the constructor scheme, but we use
in the above curves the most largely used value for the load threshold in the
uplink k′ = 0.5.

Loss of capacity. Table 13.2 gives the loss of capacity of FC, the SFC and
the constructor algorithm versus NSFC.

Synthesis of the comparison

We deduce from the above results that, from the blocking probability point of
view:

• constructor scheme performs better than FC for small cells and small
blocking
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Figure 13.17: Comparison of the admission control algorithms for R = 5km

R\Algorithm FC SFC Constructor
R = 0.525km 21.7% 12.6% 0%

R = 1 23% 15.5% 0%
R = 2 13.8% 11.5% 11%
R = 3 21% 12.6% 31%
R = 4 24% 13.6% 100%

Table 13.2: Loss of capacity of FC and the constructor algorithm versus NSFC
in the downlink.

• FC performs better than constructor scheme for large cells or large block-
ing

• the loss of capacity of FC versus NSFC is about 25%

From the power allocation feasibility point of view, the constructor scheme
may assure the power allocation feasibility with high probability, but this re-
quires to calibrate the so called load threshold. In the downlink, FC and con-
structor scheme assure the power allocation feasibility respectively with cer-
tainty and with high probability. Nevertheless, in the uplink, from the power
allocation feasibility point of view, :

• FC performs better than the constructor scheme for small cells

• constructor scheme performs better than FC for moderate and large cells
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Figure 13.18: FC erroneous-admission

13.E.3 Comparison in a dynamic context

We consider here a dynamic traffic model (i.e. users may move during their
calls). We consider the mobility model proposed in § 6.5. The average speed
per user is denoted υ and is expressed in kilometers per µ× seconds where µ
designates the average call duration. We consider the forced termination loss
model presented in § 8.2.2.

The following numerical results concern the downlink, a cell radius R =
1 km, speeds υ = 0.1, 1, 10 and a traffic demand less than 120 Erlang per
cell. We observed numerically that the constructor scheme assures the power
allocation feasibility in this context.

Figure 13.20 represents the blocking probability as function of the traffic
demand for the three admission control schemes NSFC, FC and constructor;
and for different speeds υ = 0.1, 1, 10. We observe that the blocking probability
decreases when the speed increases, but the relative loss of capacity (for fixed
blocking probability) of the FC and constructor schemes versus the NSFC is
approximatively the same for all the speeds.

Figure 13.21 represents the cut probability as functions of the traffic demand
for the three admission control schemes NSFC, FC and constructor; and for
different speeds υ = 0.1, 1, 10. We observe that the cut probability increases
with speed; and that the relative loss of capacity (for fixed cut probability) of
the FC and constructor schemes versus the NSFC is approximatively the same
as when we consider the blocking probability.
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Figure 13.19: Constructor scheme erroneous-admission
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Chapter 14

Appendix of Part II

14.A Classical queues

14.A.1 M/GI/1/PS

First, we recall the definition of a M/GI/1/PS queue. Users arrive at random
times and require to transmit some random volume of data. The term M/GI
(Kendell’s notation) means that

• the interarrivals are i.i.d. with exponential distrubution (M);

• the required volumes are i.i.d. (GI);

• the interarrivals and required volumes are independent;

The term 1/PS, where PS is an abbreviation of processor-sharing, means
that there is a single server and when there are n users in the queue each one
is served at rate 1/n.

The bit-rate at which data has to be trasmitted is not fixed, hence such a
queue is well adpated for elastic traffic.

Lemma 22 Consider a M/GI/1/PS queue with arrival rate λ ∈ R∗+ and mean
required volume µ−1 (where µ ∈ R∗+). Assume that the traffic demand ρ =
λ/µ < 1. Then the process {Nt; t ≥ 0} counting the number of users in this
queue is ergodic and admits as limiting distribution the geometric distribution
with parameter 1− ρ, that is

Π(ν) = (1− ρ) ρν , ν ∈ N (14.1)

Under the limiting distribution, the mean number of users, denoted E [N ], equals

E [N ] =
ρ

1− ρ
(14.2)

239
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the expected delay, denoted T̄ , equals

T̄ =
ρ

λ (1− ρ)

and the expected throughput, denoted r̄, equals

r̄ =
1

µT̄
= 1− ρ

If the required volumes are exponential, then the process {Nt; t ≥ 0} is Markov
and admits the following generator

{
q (ν, ν + 1) = λ, ν ∈ N
q (ν, ν − 1) = µ, ν ∈ N∗

Proof. Cf. [36] and [103, Proposition 7.13 p.194] for ergodicity and the form
of the limiting distribution. The expression of the expected delay is deduced
from Little’s formula. The expected throughput is the average required volume
µ−1 divided by the expected delay.

Note that the traffic demand ρ equals the ratio between the average
volume required by a call to the average duration between the arrivals of two
successive calls. This should be distinguished from the expected throughput r̄
observed by a given user under the limiting distribution, even though these two
quantities have the same unit.

Remark 29 Insensitivity property. Consider a M/GI/1 queue with a ser-
vice discipline which is work conserving (i.e. the server is active as long as
there is some volume in the queue). This includes in particular FIFO (first-in-
first-out), LIFO (last-in-first-out) and PS (processor-sharing) disciplines. De-
fine the workload process to be the remaining required volume at a given
time. It is well kown that the workload process evolution (and in particular its
limiting behaviour) doesn’t depend on the service discipline (see for example [17,
§2.1 p.76]).

Nevertheless, the congestion process counting the number of users in
the queueing station depends on the service discipline. Indeed, as noted in [103,
§7.5 p.202], the limiting distribution for PS and LIFO is the same. It is given
by Equation (14.1). Observe that the limiting distribution depends on the dis-
tribution of the required volume only through its mean µ. This is the so-called
insensitivity property. The M/GI/1 PS and LIFO queues are said to be
insensitive.

It is not the case for the M/GI/1 FIFO queue. Indeed the limiting distribu-
tion for FIFO depends on the distribution of the required volume. In particular,
the expectation of the number of users under the limiting distribution for FIFO
is given by Pollaczek-Kintchine formula [17, Formula (3.2.10) p.197] which de-
pends on the second moment of the distribution of the required volume.
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Multiclass M/GI/1/PS queue

The above results may be generalized to the case where the users belong to
different classes. Let D be the set of classes assumed finite and denote by x ∈ D
a particular class. The state of the queue is denoted by ν = (νx;x ∈ D) where
νx designates the number of active users of class x. The state space is denoted
by M = ND. Denote ν (D) =

∑
x∈D νx.

Lemma 23 Consider a M/GI/1/PS multiclass queue. Assume that users of
each class x ∈ D arrive with rate λx ∈ R∗+ and require to transmit a volume
of mean µ−1

x (where µx ∈ R∗+). Let ρx = λx/µx be the traffic demand for
class x and assume that the total traffic demand ρ (D) =

∑
x∈D ρx < 1. Then

the process {Nt; t ≥ 0} counting the number of users of different classes in this
queue is ergodic and admits as limiting distribution

Π(ν) = Π (0) ν (D)!
∏

x∈D

ρνx
x

νx!
, ν ∈M

where
Π(0) = 1− ρ (D)

Under the limiting distribution, for a given class x ∈ D, the mean number of
users, denoted E [N (x)], equals

E [N (x)] =
ρx

1− ρ (D)

the expected delay, denoted T̄ (x), equals

T̄ (x) =
ρx

λx (1− ρ (D))

and the expected throughput, denoted r̄ (x), equals

r̄ (x) =
1

µxT̄x
= 1− ρ (D)

If the required volumes are exponential, then the process {Nt; t ≥ 0} is Markov
and admits the following generator

{
q (ν, ν + δx) = λx, ν ∈M
q (ν, ν − δx) = µx

νx

ν(D) , ν ∈M, νx > 0

where δx designates the vector having coordinate 1 at position x and 0 elsewhere.

Proof. (Cf. [38].) We recall here a simple proof when the required volumes
are exponential. The process {N (t) ; t ≥ 0} describing the number of users of
different classes in the queue is a continuous-time Markov process with discrete
state space M = ND. It is easy to see that the process {N (t) ; t ≥ 0} is regular
and irreducible and, if ρ (D) < 1, then it admits Π as invariant distribution; and
hence it is ergodic.

The expression of the expected delay of a given class x is deduced from
Little’s formula. The expected throughput of class x is the average required
volume µ−1

x divided by the expected delay.
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14.A.2 M/GI/∞ and loss queue

First, we recall the definition of a M/GI/∞ queue. Users arrive at random times
and require to transmit data for a given duration at rate 1. The term M/GI
(Kendell’s notation) means that

• the interarrivals are i.i.d. with exponential distrubution (M);

• the required transmission durations are i.i.d. (GI);

• the interarrivals and required volumes are independent;

The term ∞ means that the number of servers is infinite, or, in other terms,
when there are n users in the queue each one is served by a specific server at
rate 1.

The bit-rate at which data has to be trasmitted is fixed, hence such a queue
is well adpated for streaming traffic.

Lemma 24 Consider a M/GI/∞ queue with arrival rate λ ∈ R∗+ and mean
required duration µ−1 (where µ ∈ R∗+). Then the process {Nt; t ≥ 0} counting
the number of users in this queue is ergodic and admits as limiting distribution
the Poisson distribution with mean ρ = λ/µ, that is

Π(ν) = e−ρ ρν

ν!
, ν ∈ N

If the required durations are exponential, then the process {Nt; t ≥ 0} is Markov
and admits the following generator

{
q (ν, ν + 1) = λ, ν ∈ N
q (ν, ν − 1) = µν, ν ∈ N∗

Proof. Cf. [37, §2.2 p.42,47].
Note that the traffic demand ρ equals the ratio between the average

duration required by a call to the average duration between the arrivals of two
successive calls. It is expressed in Erlang.

M/GI/C loss queue

Assume now that the number of servers is some positive integer C. Assume also
that we loose the users that arrive when there are already C users in the queue.

Lemma 25 Consider a M/GI/C loss queue with arrival rate λ ∈ R∗+ and mean
required duration µ−1 (where µ ∈ R∗+). Then the process {Nt; t ≥ 0} counting
the number of users in this queue is ergodic and admits as limiting distribution
the Poisson distribution with mean ρ = λ/µ truncated at C, that is

Πf (ν) =
ρν

ν!∑C
k=0

ρk

k!

, ν = 0, 1, . . . , C



14.A. CLASSICAL QUEUES 243

The blocking probability is given by

b =
ρC

C!∑C
k=0

ρk

k!

(14.3)

Under the limiting distribution, the mean number of users, denoted E [N ], equals

E [N ] = ρ (1− b)

which satisfies
ρ (1− b) ≤ C, lim

ρ→∞
ρ (1− b) = C

Proof. Cf. [37, §2.2 p.42].
Formula (14.3) is called Erlang’s formula.

Remark 30 Insensitivity. The limiting distributions for the number of users
in the M/GI/∞ and M/GI/C loss queues depend on the distribution of the
required duration only through its mean µ. Then the M/GI/∞ and M/GI/C
loss queues are insensitive.

Multiclass M/GI/∞
The above results may be generalized to the case where the users belong to
different classes. Let D be the set of classes assumed finite and denote by x ∈ D
a particular class. The state of the queue is denoted by ν = (νx;x ∈ D) where
νx designates the number of active users of class x. The state space is denoted
by M = ND. Denote ν (D) =

∑
x∈D νx.

Lemma 26 Consider a M/GI/∞ multiclass queue. Assume that users of each
class x ∈ D arrive with rate λx ∈ R∗+ and require to transmit for a duration of
mean µ−1

x (where µx ∈ R∗+). Let ρx = λx/µx be the traffic demand for class x
and let ρ (D) =

∑
x∈D ρx be the total traffic demand. The process {Nt; t ≥ 0}

counting the number of users of different classes in this queue is ergodic and
admits as limiting distribution

Π(ν) = e−ρ(D)
∏

x∈D

ρνx
x

νx!

which is the distribution of a Poisson process on D with intensity measure
{ρx; x ∈ D}.

If the required transmission durations are exponential, then the process {Nt; t ≥ 0}
is Markov and admits the following generator

{
q (ν, ν + δx) = λx, ν ∈M
q (ν, ν − δx) = µxνx, ν ∈M, νx > 0

where δx designates the vector having coordinate 1 at position x and 0 elsewhere.
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Multiclass loss queue

Lemma 27 Consider the setting of Lemma 26. Assume now that the state
space is

Mf =

{
ν ∈ ND :

∑

x∈D
νxϕ (x) ≤ C

}

where C is a given positive constant and ϕ : D → R∗+ is a given function.
Assume also that all user whose arrival would result in taking the process to a
state outside Mf is lost. The process {Nt; t ≥ 0} counting the number of users
of different classes in this queue is ergodic and admits as limiting distribution

Πf (ν) = Πf (0)
∏

x∈D

ρνx
x

νx!

where

Πf (0) =


 ∑

ν∈Mf

∏

x∈D

ρνx
x

νx!



−1

The blocking probability for class x is given by

bx = 1−
∑

ν∈Mf
x

Πf (ν) , where Mf
x =



ν ∈ ND :

∑

y∈D
νyϕ (y) ≤ C − ϕ (x)





Proof. Cf. [73] and [104].
Assume now that ϕ takes interger values, that is ϕ : D→ N∗. The blocking

probabilities may be calculate by using the following algorithm.

Algorithm 1 Kaufman-Roberts algorithm [73, 104]. Let q(n) be the proba-
bility that the number of users is n, that is q(n) =

∑
ν∈ND:ν(D)=n Πf (ν). Then

q(·) satisfies the following equations

C∑
n=0

q(n) = 1, and q(n) =
∑

x∈D
ρxϕ (x) q(c− ϕ (x)), n = 0, . . . , C

and the blocking probabilities are given by

bx = 1−
C−ϕ(x)∑

n=0

q(n)

14.B Fairness

We present here some general basic results on the ressource allocation problem,
and particularly of the fairness issue. There is a rich litterature on this subject,
refer for example to [23] and the references therein.
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14.B.1 Definitions

We assume that we have N entities which we index with i = 1, . . . , N to which
we have to allocate resources x = (x (1) , . . . , x (N)) respecting some con-
straint in the form x ∈ X where X is some given subset of RN

+ .

Definition 7 Fairness.
[99, Definition 1] A vector x ∈ X is called max-min fair if for each i ∈

{1, . . . , N} increasing some component x (i) must be at the expense of decreasing
some already smaller component. (In other words we may not increase x (i)
without decreasing one or more x (j) among those having a lower value: x (j) <
x (i).)

[50] A vector x ∈ X is called proportionally fair if for each other vector
y ∈ X , the sum of relative variations is non-positive:

N∑

i=1

y (i)− x (i)
x (i)

≤ 0

with the convention a
0 = +∞ for all a ≥ 0 which will be adopted from now on.

[91] For a given vector w = (w (1) , . . . , w (N)) with real positive components
and a given α > 0, a vector x ∈ X is called (α, w)-proportionally fair if for
each other vector y ∈ X , the sum of relative variations pondered by coefficients
w is non-positive:

N∑

i=1

w (i)
y (i)− x (i)

x (i)α ≤ 0

Let 1 the vector with N coordinates equal to 1. When w = 1 we say that x
is α-proportionally fair. When α = 1, we say that x is a w-weighed
proportionally fair.

Definition 8 Optimality.
A vector x ∈ X is called (globally) optimal if it maximizes

∑N
i=1 x (i).

(If users pay proportionally to the allocated resource, the revenue is proportional
to

∑N
i=1 x (i).)

A vector x ∈ X is called (strictly) Pareto optimal if there is no solution
y dominating it. (We say that y dominate x if y (i) ≥ x (i) for each i, with at
least one strict inequality.)

Remark 31 Note that a α-proportionally fair vector is globally optimal when
α = 0; and proportionally fair when α = 1.

14.B.2 Basic properties

Lemma 28 If a max-min fair vector exists on a set X , then it is unique and
strictly Pareto optimal.

Proof. For uniqueness cf. [99, Proposition 1]. For Pareto optimality cf. [99,
Proposition 3].
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Lemma 29 If a proportionally fair vector exists on a set X , then it is unique
and strictly Pareto optimal.

Proof. Uniqueness. Note that a vector x ∈ X is proportionally fair iff for
each other vector y ∈ X ,

1
N

N∑

i=1

y (i)
x (i)

≤ 1

That is the arithmetic mean of {y (i) /x (i)} is not larger than 1. Since the
harmonic mean is not larger than the arithmetic mean, we get

N∑N
i=1

x(i)
y(i)

≤ 1
N

N∑

i=1

y (i)
x (i)

≤ 1

with equality if and only if y = x. Then

1
N

N∑

i=1

x (i)
y (i)

≥
(

1
N

N∑

i=1

y (i)
x (i)

)−1

≥ 1

If y is also proportionally fair, then we get equalities in the above display, hence
y = x.

Pareto optimality. Assume that some x ∈ X is not Pareto optimal. Then
there exists some y ∈ X\ {x} dominating x, i.e. y (i) ≥ x (i) for each i, with at
least one strict inequality. Hence

N∑

i=1

y (i)− x (i)
x (i)

> 0

Therefore x is not proportionally fair.
We deduce that if some x ∈ X is proportionally fair, then it is strictly Pareto

optimal.

Proposition 59 If a proportionally fair vector exists on a set X , then it is
solution of maxx∈X

∏N
i=1 x (i) which is equivalent to maxx∈X

∑N
i=1 log x (i) with

the convention log 0 = −∞ which will be adopted from now on.
More generally, if a w-weighed proportionally fair vector exists on a set X ,

then it is solution of maxx∈X
∏N

i=1 x (i)w(i) which is equivalent to maxx∈X
∑N

i=1 w (i) log x (i).

Proof. Let x ∈ X be (1, w)-weighed proportionally fair. For each other
vector y ∈ X ,

1
N

N∑

i=1

w (i)
y (i)
x (i)

≤ 1

Since the geometric mean is not larger than the arithmetic mean, we get
(

N∏

i=1

(
y (i)
x (i)

)w(i)
)1/N

≤ 1
N

N∑

i=1

w (i)
y (i)
x (i)

≤ 1
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Then
N∏

i=1

y (i)w(i)

x (i)w(i)
≤ 1

which is the desired result.

Theorem 13 Generalized fairness. Assume that

X =
{
x ∈ RN

+ : Ax ≤ c
}

for some given matrix A ∈ RN×N
+ and vector c ∈ RN

+ .

(i) A vector is (α, w)-proportionally fair if and only it it solves the problem

max
x∈X

N∑

i=1

w (i) fα (x (i)) , where fα (u) =
{

log u if α = 1
u1−α

1−α otherwise
(14.4)

(ii) The (α, w)-proportionally fair vector approaches the max-min vector as
α →∞.

Proof. (Cf. [91])

Example 14 [3] Consider three connections AB, BC and AC as follows

A
x(1)

−−−−−−B
x(2)

−−−−−− C
x(3)

Each link has capacity 1. Hence the constraint writes
{

x (1) + x (2) ≤ 1
x (2) + x (3) ≤ 1

A max-min fair vector is

xm (1) = xm (2) = xm (3) =
1
2

An optimal vector is

xo (1) = xo (2) = 1, xo (3) = 0

A proportionally fair vector is

xp (1) = xp (2) =
2
3
, xp (3) =

1
3

The max-min vector xm is not proportionally fair, since

N∑

i=1

xp (i)− xm (i)
xm (i)

= 2
2
3 − 1

2
1
2

+
1
3 − 1

2
1
2

=
1
3

> 0
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The optimal vector xo is not proportionally fair, since

N∑

i=1

xm (i)− xo (i)
xo (i)

= 2
1
2 − 1

1
+

1
2 − 0

0
= ∞ > 0

Note that xo (3) = 0, i.e. the optimal vector gives 0 resources to connec-
tion AC. The proposition 59 shows that, when possible (by the constraints), the
proportionally fair vector gives always positive allocations to each connection.

14.B.3 Max-min fairness

Lemma 30 If a max-min fair vector exists on a set X , then it is solution of

max
x∈X

min
i=1,...,N

x (i)

Proof. Let x ∈ X be max-min fair. Assume that there exists some vector
y ∈ X such that

min
j=1,...,N

x (j) < min
j=1,...,N

y (j)

Let x (i) = minj=1,...,N x (j). We have

y (i) ≥ min
j=1,...,N

y (j) > min
j=1,...,N

x (j) = x (i)

Then by replacing x by y we increase x (i) without decreasing any x (j) < x (i)
(because no such x (j) exists). This contradicts the fact that x is max-min fair.

Lemma 31 The following optimization problems are equivalent

z = max
x∈X

min
i=1,...,N

x (i) (P1)

max z = mini=1,...,N x (i)
sub x ∈ X (P2)

max z
sub z ≤ x (i) , ∀i = 1, . . . , N

x ∈ X
(P3)

More precisely, for all k, j ∈ {1, 2, 3}, a solution
(
zk, xk

)
of problem (Pk) is also

solution of problem (Pj).

Proof. (P1)⇔(P2)? It is clear that

z1 = max
{

min
i=1,...,N

x (i) , x ∈ X
}

= z2

x1 = arg max
{

min
i=1,...,N

x (i) , x ∈ X
}

= x2
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(P2)⇔(P3)? From
{

z2 ≤ x2 (i) , ∀i = 1, . . . , N
x2 ∈ X

we get z2 ≤ z3. Let now z′3 = mini=1,...,N x3 (i) ≥ z3. From
{

z′3 = mini=1,...,N x3 (i)
x3 ∈ X

we deduce that z′3 ≤ z2. Then

z′3 ≤ z2 ≤ z3 ≤ z′3

Hence z2 = z3, therefore
(
z2, x2

)
is a solution of (P3). Moreover z′3 = z3, then

z3 = mini=1,...,N x3 (i), therefore
(
z3, x3

)
is a solution of (P2).

For each x ∈ RN denote by x̄ the vector defined by x̄ (i) = minj=1,...,N x (j).

Lemma 32 Suppose now that X satisfies the following property: x ∈ X ⇒ x̄ ∈
X . Then the following optimization problems are equivalent to (P1)-(P3):

max z
sub z = x (i) , ∀i = 1, . . . , N

x ∈ X
(P4)

max z =
∑N

i=1 w (i)x (i)
sub x ∈ X ,

x (i) = x (j) ∀i, j = 1, . . . , N

(P5)

where the w (i) are non-negative reals satisfying
∑N

i=1 w (i) = 1. More precisely,
for all k ∈ {1, 2, 3} , j ∈ {4, 5}, if

(
zj , xj

)
is a solution of problem (Pj) then it

is also a solution of problem (Pk); and if
(
zk, xk

)
is a solution of problem (Pk)

then
(
zk, x̄k

)
is a solution of problem (Pj).

Proof. (P3)⇔(P4)? From
{

z4 = x4 (i) , ∀i = 1, . . . , N
x4 ∈ X

we get z4 ≤ z3. Let now z′3 = mini=1,...,N x3 (i) ≥ z3. From
{

z′3 = mini=1,...,N x̄3 (i)
x̄3 ∈ X

we deduce that z′3 ≤ z4. Then

z′3 ≤ z4 ≤ z3 ≤ z′3

Hence z4 = z3, therefore
(
z4, x4

)
is a solution of (P3). Moreover z′3 = z3, then

z3 = mini=1,...,N x3 (i), therefore
(
z3, x̄3

)
is a solution of (P4).

(P4)⇔(P5)? Obvious.
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14.B.4 Case of a linear constraint

Fairness

Proposition 60 We assume that we have N entities (typically users) which we
index with i = 1, . . . , N for which we have to allocate resources x = (x (1) , . . . , x (N))
(typically bit-rate) respecting some constraint (typically power allocation feasi-
bility condition) in the form

N∑

i=1

γ (i)x (i) = 1 (14.5)

where γ (i) are some given positive constants. The α-proportionally fair vector
is

xα (i) =
γ (i)−1/α

∑N
j=1 γ (j)1−1/α

(14.6)

The max-min fair vector is

x∞ (i) =
1∑N

j=1 γ (j)
(14.7)

The proportional fair vector is

x1 (i) =
1

Nγ (i)
(14.8)

An optimal vector is

x0 (i) =
1 {i ∈ J}∑

j∈J γ (j)
(14.9)

where J ⊂ {j : γ (j) = mini γ (i)}.
Proof. For α > 0, let

fα (u) =
{

log u if α = 1
u1−α

1−α otherwise

which is clearly a strictly concave function. Let

gα(x) =
N∑

i=1

fα (x (i)) , ϕ (x) =
N∑

i=1

γ (i) x (i)− 1

The function gα(x) is strictly concave on RN since it is the sum of strictly
concave functions. Then it admits a unique maximum on {x ∈ RN : ϕ(x) = 0}.

Suppose that x is a maximum point of gα on {x ∈ RN : ϕ(x) = 0}. Then,
by the Lagrange multiplier Theorem, there exists λ such that

∂gα

∂x (i)
= λ

∂ϕ

∂x (i)



14.B. FAIRNESS 251

Hence x (i)−α = λγ (i) which combined with the constraint ϕ(x) = 0 gives the
expression of the α-proportionally fair vector given in the claim. (Here is an
alternative proof when α 6= 1. Observe that

N∑

i=1

x (i)1−α =
N∑

i=1

(γ (i)x (i))1−α
γ (i)α−1

Using Hölder’s inequality [60, Equation (2.8.5) p. 25] for a (i) = (γ (i)x (i))1−α,
b (i) = γ (i)α−1, k = 1

1−α and k′ = 1
α , we get

(
N∑

i=1

x (i)1−α

)kk′

≤
(

N∑

i=1

γ (i) x (i)

)k′ ( N∑

i=1

γ (i)

)k

Then

gα(x) ≤ 1
1− α

(
N∑

i=1

γ (i)x (i)

)1−α



N∑

j=1

γ (j)1−1/α




α

then if
∑N

i=1 γ (i) x (i) = 1 we get gα(x) ≤ 1
1−α

(∑N
j=1 γ (j)1−1/α

)α

= gα(xα).)
The limit limα↑∞ xα is max-min fair by Theorem 13, hence we get (14.7).
Taking α = 1 in the expression of xα gives the expression (14.8) of the

proportional fair vector.
We now look for the optimal vector. Fix j ∈ {1, . . . , N} such that γ (j) =

mini γ (i). Observe that

g0(x) =
N∑

i=1

x (i)

=
1

γ (j)

N∑

i=1

γ (j) x (i)

≤ 1
γ (j)

N∑

i=1

γ (i) x (i)

=
1

γ (j)
= g0(x0)

where x0 is given by (14.9). This shows that x0 is optimal. (If we take J =
{j : γ (j) = mini γ (i)}, then limα↓0 xα = x0. Proof: Rearranging xα as follows

xα (i) =




N∑

j=1

γ (j)
(

γ (i)
γ (j)

)1/α


−1

and observing that

lim
α↓0

(
γ (i)
γ (j)

)1/α

= lim
α↓0

exp
(

1
α

ln
γ (i)
γ (j)

)
=




∞ γ (i) > γ (j)
1 γ (i) = γ (j)
0 γ (i) < γ (j)
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gives the desired result.)

Remark 32 The allocation (14.7) is the scheduling algorithm proposed in [16]
for UMTS networks. Unfortunately the associated Markov process is not bal-
anced, hence we have not an explicit expression of the stationary distribution.
We propose the allocation (14.8) as a scheduling algorithm for UMTS networks,
which permits to get explicit expressions of the throughput of elastic traffic.

Corollary 14 In the conditions of Proposition 60, the (α, w)-proportionally fair
vector is

xα,w (i) =
w (i)1/α

γ (i)−1/α

∑N
j=1 w (j)1/α

γ (j)1−1/α

and the value of the maximum in the optimization problem (14.4) is

1
1− α




N∑

j=1

w (j)1/α
γ (j)1−1/α




α

Proof. Assume first that α 6= 1. Let

x′ (i) = w (i)
1

1−α x (i)

γ′ (i) = w (i)−
1

1−α γ (i)

Then the constraint
∑N

i=1 γ (i)x (i) = 1 writes
∑N

i=1 γ′ (i)x′ (i) = 1. The func-
tion to maximize in the optimization problem (14.4) is

N∑

i=1

w (i) fα (x (i)) =
N∑

i=1

fα (x′ (i))

Then x is (α, w)-proportionally fair with respect to the constraint
∑N

i=1 γ (i)x (i) =
1 iff x′ is α-proportionally fair with respect to the constraint

∑N
i=1 γ′ (i)x′ (i) =

1. Hence xα,w (i) = w (i)−
1

1−α x′α (i). Using the expression of x′α given in Propo-
sition 60 we get

xα,w (i) = w (i)−
1

1−α
γ′ (i)−1/α

∑N
j=1 γ′ (j)1−1/α

= w (i)−
1

1−α
w (i)

1
1−α

1
α γ (i)−

1
α

∑N
j=1 w (j)−

1
1−α (1− 1

α ) γ (j)1−
1
α

=
w (i)1/α

γ (i)−1/α

∑N
j=1 w (j)1/α

γ (j)1−1/α

which is the desired expression of the (α,w)-proportionally fair vector.
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We calculate

N∑

i=1

w (i) fα (xα,w (i)) =
1

1− α

N∑

i=1

w (i) (xα,w (i))1−α

=
1

1− α

N∑

i=1

w (i)

(
w (i)1/α

γ (i)−1/α

∑N
j=1 w (j)1/α

γ (j)1−1/α

)1−α

=
1

1− α

∑N
i=1 w (i)w (i)(1−α)/α

γ (i)−(1−α)/α

(∑N
j=1 w (j)1/α

γ (j)1−1/α
)1−α

=
1

1− α




N∑

j=1

w (j)1/α
γ (j)1−1/α




α

which proves the last result in the Corollary.

Dynamics: Markovian model

We consider a situation in which a server provides capacity (bit-rate) to N
elastic bit-rate service classes. The ith class has a Poisson arrival rate of λi

users per second, each user having an exponentially distributed length of mean
1/µi. Denote νi the number of current users of class i and ν = (ν1, . . . , νN ).

We assume that the capacity constraint has the form

N∑

i=1

γiνiψi (ν) = 1 (14.10)

where γi are some given constants and ψi (ν) is the capacity (in bits/s) allocated
to a user of class i.

This system may be described by a Markov process on NN with generator
{

q (ν, ν + ei) = λi

q (ν, ν − ei) = µiψi (ν) νi
(14.11)

This is a multiclass brith-and-death process which is a particular case of spatial
Markov queueing (SMQ) processes. In order to retrieve the notations used for
such processes, let D = {1, . . . , N} be the set of locations, define the routing
rates by

λoi = λi, λio = µi, λij = 0, for all i, j ∈ D
and define the service rates by

r (ν, Toiν) = 1, r (ν, Tijν) = ψi (ν) , for all i, j ∈ D (14.12)

Let ρi = λi

µi
and ρ = (ρi)i=1,...,N which is the solution of the traffic equations.

If the service rates ψi (ν) are balanced by some function Ψ (ν), then an invariant
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measure is given by

Π (ν) = Ψ (ν) e−ρ(D)
N∏

i=1

ρνi
i

νi!

where ρ (D) =
∑N

i=1 ρi.

Performance

We assume now that the Markov process {X (t)}t∈R+
describing our system is

positive recurrent and consider its stationary version {X (t)}t∈R (extended to
negative time in the classical way).

Let us denote TD the sojourn duration of a user (duration between the arrival
and departure from the system). By Little’s theorem [17],

E[ν (D)] = λD ×ED[TD]

where ν (D) =
∑N

i=1 νi, ED is the Palm probability with respect to the arrival
process of users and λD =

∑
i∈D λi is the total arrival rate. Hence

ED[TD] =
E[ν (D)]

λD
(14.13)

which we call the user delay.

Fairness among the users. For a given ν, we may enumerate the users by
some index m and write the capacity constraint (14.10) as follows

∑
m∈ν

γmψm (ν) = 1 (14.14)

where

• we use ν as the name of the index set of the users m;

• γm is the constant corresponding to the class of user m;

• and ψm (ν) is the capacity (in bits/s) allocated to user m.

For a given ν, the capacity constraint (14.14) has a similar form as (14.5)
where γ (i) are replaced by γm. In this context, the allocation (14.6) takes the
following form

ψm (ν) =
γ
−1/α
m∑

n∈ν γ
1−1/α
n

We see that ψm (ν) depends only on the class, say i, of the user m, so we may
denote

ψi (ν) = ψm (ν)

that is

ψi (ν) =
γ
−1/α
i∑N

j=1 νjγ
1−1/α
j

(14.15)
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Proposition 61 The service rates (14.12) where ψi (ν) are given by (14.15) are
balanced iff α = 1 which corresponds to the proportional fair allocation. This
allocation writes

ψi (ν) =
1

ν (D) γi
(14.16)

and is balanced by

Ψ(ν) = Ψ (0) ν (D)!
N∏

i=1

γνi
i (14.17)

where ν (D) designates the total number of users in progress.

Proof. Let’s decompose the service rates (14.12) as follows

r (ν, Tijν) = r1 (ν, Tijν) r2 (ν, Tijν)

where
r1 (ν, Toiν) = 1, r1 (ν, Tioν) = γ

−1/α
i (14.18)

and

r2 (ν, Toiν) = 1, r2 (ν, Tioν) =




N∑

j=1

νjγ
1−1/α
j



−1

(14.19)

The service rates r1 (ν, Tijν) are balanced. Then r2 (ν, Tijν) are balanced iff so
are r2 (ν, Tijν). Let β = 1− 1/α and

hj (ν) = r2 (ν, Tojν) /r2 (Tojν, ν) = 1/r2 (Tojν, ν) = 1/r2 (Tojν, Tjo (Tojν))

=
∑

k

νkγβ
k + γβ

j

r2 is balanced iff h satisfies

hj (ν)hi (Tojν) = hi (ν)hj (Toiν)

which is equivalent to
hj (ν) = hi (ν)

(it is easy to see that hi (Tojν) = hj (Toiν)) that is

γβ
j = γβ

i

which is equivalent to β = 0 that is α = 1.
Equation (14.8) gives the proportional fair allocation

ψi (ν) =
1

Nνiγi

which is in the form

ψi (ν) =
Ψ (ν − ei)

Ψ (ν)

where Ψ (ν) is given by (14.17). Therefore, the service rates (14.16) are balanced
by (14.17).
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Remark 33 In the paticular case of a single linear constraint, the allocation (14.16)
corresponds to the allocation called balanced fairness in [23]. (An allocation is
said balanced-fairness if it is balanced and belongs to the boundary of the ca-
pacity set. Such allocation is unique [98, Lemma 3.1], [69, Proposition 1.4.2].)
Hence in the present paticular case, proportional fairness and balanced-fairness
coincide.

Proposition 62 For the service rates (14.16),

Ψ(0) = eρ(D)

(
1−

N∑

i=1

ρiγi

)
(14.20)

and

E [νi] = ρiγi


1−

N∑

j=1

ρjγj



−1

The user delay is given by

T j = ED[TD] =
1∑N

i=1 λi

∑N
i=1 ρiγi

1−∑N
i=1 ρiγi

(14.21)

Proof. We calculate Ψ (0) in order to satisfy the normalization condition

∑
ν

Π(ν) = 1

We have

∑
ν

Π(ν) = e−ρ(D)
∑

ν

Ψ(ν)
N∏

i=1

ρνi
i

νi!
= Ψ (0) e−ρ(D)

∑
ν

ν (D)!
N∏

i=1

(ρiγi)
νi

νi!

= Ψ (0) e−ρ(D)
∞∑

n=0

∑

ν:ν(D)=n

n!
N∏

i=1

(ρiγi)
νi

νi!

= Ψ (0) e−ρ(D)
∞∑

n=0

(
N∑

i=1

ρiγi

)n

= Ψ (0) e−ρ(D)

(
1−

N∑

i=1

ρiγi

)−1

which proves (14.20).
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We calculate

E [νi] =
∑

ν

νiΠ (ν) = Ψ (0) e−ρ(D)
∑

ν

νiν (D)!
N∏

j=1

(ρjγj)
νj

νj !

= ρiγiΨ(0) e−ρ(D)
∞∑

n=0

∑

ν:ν(D)=n

(n + 1)!
N∏

j=1

(ρjγj)
νj

νj !

= ρiγiΨ(0) e−ρ(D)
∞∑

n=0

(n + 1)




N∑

j=1

ρjγj




n

= ρiγiΨ(0) e−ρ(D)


1−

N∑

j=1

ρjγj



−2

= ρiγi


1−

N∑

j=1

ρjγj



−1

Fairness among the service classes. For a given ν, the capacity con-
straint (14.10) has a similar form as (14.5) where γ (i) are replaced by γiνi.
In this context, the allocation (14.6) takes the following form

ψi (ν) =
(νiγi)

−1/α 1{νi 6= 0}∑N
j=1 (νiγi)

1−1/α
(14.22)

(Note that Proposition 60 assumes that the γ (i) are positive, whereas now
γ (i) = γiνi = 0 when νi = 0. We consider the results of Proposition 60
with some modifications: the equality in the constraint (14.5) is replaced by
inequality ≤; and we multiply the expressions of the fair allocations by the
indicator function 1{γ (i) 6= 0}. This justifies the term 1{νi 6= 0} in the above
display.)

Proposition 63 The service rates (14.12) where ψi (ν) are given by (14.22) are
balanced iff α = 1 which corresponds to the proportional fair allocation. This
allocation writes

ψi (ν) =
1{νi 6= 0}

Nνiγi
(14.23)

and is balanced by

Ψ (ν) = Ψ (0)Nν(D)
N∏

i=1

νi!γνi
i (14.24)

where ν (D) designates the total number of users in progress.

Proof. Let’s decompose the service rates (14.12) as follows

r (ν, Tijν) = r1 (ν, Tijν) r2 (ν, Tijν)
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where

r1 (ν, Toiν) = 1, r1 (ν, Tioν) = (νiγi)
−1/α 1{νi 6= 0} (14.25)

and

r2 (ν, Toiν) = 1, r2 (ν, Tioν) =




N∑

j=1

(νjγj)
1−1/α



−1

(14.26)

The service rates r1 (ν, Tijν) are balanced. Then r2 (ν, Tijν) are balanced iff so
are r2 (ν, Tijν). Let β = 1− 1/α and

hj (ν) = r2 (ν, Tojν) /r2 (Tojν, ν) = 1/r2 (Tojν, ν) = 1/r2 (Tojν, Tjo (Tojν))

=
∑

k 6=j

(νkγk)β + ((νj + 1) γj)
β

r2 is balanced iff h satisfies

hj (ν) hi (Tojν) = hi (ν) hj (Toiν)

which is equivalent to
hj (ν) = hi (ν)

(it is easy to see that hi (Tojν) = hj (Toiν)) that is

((νj + 1) γj)
β = ((νi + 1) γi)

β

which is equivalent to β = 0 that is α = 1.
Equation (14.8) gives the proportional fair allocation

ψi (ν) =
1{νi 6= 0}

Nνiγi

which is in the form

ψi (ν) =
Ψ (ν − ei)

Ψ (ν)

where Ψ (ν) is given by (14.24). Therefore, the service rates (14.23) are balanced
by (14.24).

Proposition 64 For the service rates (14.16),

Ψ(0) = eρ(D)
N∏

i=1

(1−Nρiγi) (14.27)

and
E [νi] = Nρiγi (1−Nρiγi)

−1

The user delay is given by

T c = ED[TD] =
1∑N

i=1 λi

N∑

i=1

Nρiγi

1−Nρiγi
(14.28)
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Proof. We calculate Ψ (0) in order to satisfy he normalization condition
∑

ν

Π(ν) = 1

We have

∑
ν

Π(ν) = e−ρ(D)
∑

ν

Ψ(ν)
N∏

i=1

ρνi
i

νi!
= Ψ (0) e−ρ(D)

∑
ν

Nν(D)
N∏

i=1

(ρiγi)
νi

= Ψ (0) e−ρ(D)
∑

ν

N∏

i=1

(Nρiγi)
νi

= Ψ (0) e−ρ(D)
N∏

i=1

( ∞∑
n=0

(Nρiγi)
n

)
= Ψ (0) e−ρ(D)

N∏

i=1

(1−Nρiγi)
−1

which proves (14.20).
We calculate

E [νi] =
∑

ν

νiΠ(ν) = Ψ (0) e−ρ(D)
∑

ν

νi

N∏

j=1

(Nρjγj)
νj

= Ψ(0) e−ρ(D)

( ∞∑
n=0

n (Nρiγi)
n

)∏

j 6=i

( ∞∑
n=0

(Nρjγj)
n

)

= Ψ(0) e−ρ(D)Nρiγi (1−Nρiγi)
−2

∏

j 6=i

(1−Nρjγj)
−1

Static capacity allocation. [76, § 4.4] studied allocations assigning a fixed
fraction of the available capacity to each service class (i.e. νiψi (ν) is indepen-
dent of ν). The author obtained the optimal allocation which minimizes the
user delay. The minimal user delay is given by [76, Equation (4.22)]

T k =
1∑N

i=1 λi

(∑N
i=1

√
ρiγi

)2

1−∑N
i=1 ρiγi

(14.29)

Comparison. The following lemma is useful for comparing the user delays of
the above allocations.

Lemma 33 For each α1, . . . , αN ∈ [0, 1/N),

N∑

i=1

αi

1−Nαi
≥

∑N
i=1 αi

1−∑N
i=1 αi
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Proof. We have

N∑

i=1

αi

1−Nαi
=

N∑

i=1

αi − 1
N + 1

N

1−Nαi
= −1 +

1
N

N∑

i=1

1
1−Nαi

The second term of the right-hand side is the arithmetic mean of the 1
1−Nαi

,
which is larger than their harmonic mean, that is

1
N

N∑

i=1

1
1−Nαi

≥ N∑N
i=1 (1−Nαi)

=
1

1−∑N
i=1 αi

Then
N∑

i=1

αi

1−Nαi
≥ −1 +

1

1−∑N
i=1 αi

=
∑N

i=1 αi

1−∑N
i=1 αi

From Lemma 33 we deduce that

T j =
1∑N

i=1 λi

∑N
i=1 ρiγi

1−∑N
i=1 ρiγi

≤ 1∑N
i=1 λi

N∑

i=1

ρiγi

1−Nρiγi
=

1
N

T c

Since the allocation (14.23) satisfies the property νiψi (ν) is independent of ν,
we deduce that

T k ≤ T c

Moreover we see from the Equations (14.21) and (14.29) that

T j ≤ T k

Suppose moreover that λi = λ, γi = γ, µi = µ, then

T k =
1

Nλ

(
N
√

ργ
)2

1−Nργ
=

1
Nλ

N2ργ

1−Nργ
= NT j

Then we deduce that the allocation assuring proportional fairness among the
users gives a delay smaller than the delays of the other two allocations (propor-
tional fairness among the classes, and static allocation). The reduction factor
is of order 1

N .
An interesting optimization problem arises: among the allocations defined

by the functions ψi (ν) satisfying (14.10), which one minimizes the delay. Equa-
tion (14.13), shows that the optimal allocation should minimize E[ν (D)]. If we
consider only the balanced allocations, then we deduce from [98, Lemma 3.1], [69,
Proposition 1.4.2] that the optimal allocation is the so-called balanced fairness
(which coincide in our case with the allocation (14.16) which realizes the pro-
portional fairness amoung the users).
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l’information. Ellipses, 1995.
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