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Résumé de la thèse  
 
 

La turbo égalisation est un processus de réception itératif entre l’égalisation et le décodage du 
canal; les informations souples générées par chaque fonction de réception est améliorée au fur 
des itérations jusqu’à aboutir le comportement optimal du système.  

Dans cette thèse, on propose une nouvelle procédure itérative d’estimation de canal et de 
détection du symbole dans un schéma de turbo égalisation pour des canaux multi-trajets à 
évanouissement et des systèmes de transmission codés utilisant des modulations à grande taille 
M-QAM (M=2m). Cette procédure utilise la séquence d’apprentissage et les données décodées, et 
elle sera appelée la technique de la Séparation de l’Observation (OS). L’estimation de canal 
utilise la méthode pseudo-inverse. Pour chaque symbole, la détection prend en compte seulement 
une partie de l’observation qui contient ce symbole et sa longueur correspond à la longueur de la 
mémoire du canal. Cette partie d’observation est retirée de l’observation totale pour estimer le 
canal utilisé pour la détection de ce symbole. Ainsi, on a le même nombre d’estimation de canal 
que de symboles dans un bloque, ce qui rend très complexe cette technique. Cette complexité 
peut être réduite en utilisant une méthode modifiée de l’estimation pseudo-inverse. Le canal 
considéré est multi-trajets variable ou non avec le temps. Les techniques de détection utilisées 
sont l’égalisation linéaire en bloc de forçage à zéro (ZF-BLE) pour l’itération initiale et la 
méthode de suppression d’interférences (IC) pour les autres itérations. Pour la boucle de retour, 
les décisions dures ou souples de la sortie de décodeur du canal sont employées. 

Ensuite, on étend la technique de la séparation d’observation (OS) à la technique de détection 
itérative des étiquetages. On considère un système de modulation à bits codés et entrelacés avec 
un décodage itérative (BICM-ID) sur un canal multi-trajets pour des transmissions codées de 16-
QAM. On propose d’étudier l’influence de l’étiquetage sur les performances de la turbo 
égalisation. Et on analyse l’amélioration apportée par l’utilisation de l’étiquetage optimisé à la 
turbo égalisation et on va proposer un étiquetage binaire optimisé de la constellation 16-QAM 
dans l’ordre d’augmenter le gain de codage, qui peut être utilisée pour plusieurs cas pratiques et 
importants. Il est démontré que un choix prudent de la conception de l’étiquetage différent de 
l’étiquetage classique de Gray, les performances en probabilité d’erreur par bit sont améliorées. 

Pour le codage correcteur d’erreur, on étudie l’algorithme de décodage de la maximisation a 
posteriori (MAP) pour les codes non binaires sur une extension du corps de Galois GF(q).  Cette 
règle de décodage minimise la probabilité d’erreur par symbole sur des canaux discrets sans 
mémoire en employant le code dual. Il est montré que cet algorithme possède tous les exigences 
nécessaires pour le décodage itératif ainsi la sortie du décodeur peut être divisée en trois 
estimations indépendantes: la valeur souple du canal, le terme a priori et une valeur extrinsèque. 
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Il représente une forme meilleure de décodage pour les codes LDPC non binaires, qui sont 
meilleure que les codes LDPC binaires et les codes Reed-Solomon sur le canal gaussien AWGN. 
Cet algorithme de décodage nous donne un nouveau algorithme de décodage plus rapide et à 
complexité réduite. L’inconvénient est la complexité qui, dans cette règle de décodage varie 
inversement proportionnel au rendement du code, faisant la technique particulièrement attractive 
pour les codes à rendement élevé. On voit que la complexité est réduite en utilisant le code dual 
et l’algorithme est accéléré en utilisant la transformée d’Hadamard rapide (FHT). On applique 
cette règle de décodage aux codes LDPC non binaires. 

   Ensuite, on va proposer des nouveaux codes LDPC adaptatives où on propose d’adapter la 
taille de la constellation dans le codeur directement avant la construction de la matrice de parité, 
cela nécessite une connaissance du profile du canal. L’adaptation est conçue d’une manière 
simple en se basant sur l’évanouissement de chaque sous-canal en supposant que le canal est 
divisé en plusieurs sous-canaux (sous-porteuses OFDM) et en calculant la capacité de chaque 
sous-canal et la comparant au rendement du code. On va démontrer que ce code LDPC adaptative 
peut être facilement appliqué dans un système OFDM et décodé par la même règle conçue 
auparavant. 

Finalement, on va essayer d’améliorer les performances de la turbo égalisation (TE), 
considérant à l’émetteur une modulation non binaire codée avec le code LDPC non binaire 
comme code correcteur d’erreur. Le récepteur itératif correspondant combine l’égaliseur à 
suppression de l’interférence (IC), l’estimation avec la technique de séparation d’observation (OS) 
et le décodage LDPC non binaire souple. On se focalise sur le développement des codes LDPC 
pour les canaux avec des entrées non binaires et à mémoire ISI. On est concerné par la 
conception des codes LDPC turbo égalisés qui donnent la probabilité d’erreur par bit la plus 
faible possible pour un apport de complexité très faible. On montre que un bon choix de la degré 
de distribution des codes LDPC non binaires nous conduit à améliorer les performances par 
rapport aux turbo codes, malgré que celles des codes LDPC binaires avec la même degré de 
distribution sont plus mauvaise que celles des turbo codes.  
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Turbo equalization is a receiving process performing iteratively equalization and channel 
decoding; soft information generated by each receiving function is improved through the 
iterations until the optimum behavior of the system is reached. 

In this thesis, we propose a new iterative channel estimation and symbol detection procedure 
in a turbo equalization scheme for a multipath fading channel and coded transmission system 
with a high level modulation M-QAM (M=2m) by using the training sequence and the decoded 
data, which is named Observation Separation (OS). The channel estimation corresponds to the 
pseudo-inverse type. For every symbol, the detection takes into account just the part of the 
observation, which contains the considered symbol and has a length corresponding to the channel 
memory length. The previous part of the observation is excluded from the total observation for 
make the channel estimation of this symbol. Thus there are as many symbol detections as 
channel estimates. The channel considered is a time variant or invariant multipath. The detection 
techniques used are the Zero Forcing Block Linear Equalizer (ZF-BLE) for the initial iteration 
and Interference Cancellation (IC) for the other iterations. We can reduce the complexity by 
using the modified pseudo-inverse channel estimation. For the feedback loop, the soft or hard 
decision of the channel decoder output is employed.   

Next, we extend the iterative demapping technique to Observation Separation (OS). We 
consider a bit interleaved coded modulation with iterative decoding (BICM-ID) on a multipath 
channel for coded transmission system with 16QAM. We propose to study the influence of 
mapping over the performance of turbo equalization. And we analyze the improvement of 
mapping optimization for turbo equalization and we proposed an optimized binary mapping of 
16-QAM constellation in order to increase coding gain, which can be used for some practically 
important cases. It is demonstrated that with a carefully designed mapping, different to the 
classical Gray mapping, bit error rate performance is improved.  

For the error correcting codes, we study symbol-by-symbol maximum a posteriori (MAP) 
decoding algorithms for non binary codes over an extension field GF(q). This decoding rule 
minimizes the probability of symbol error over a time-discrete memory less channel by 
employing the dual code. It is shown that these algorithms meet all requirements needed for 
iterative decoding as the output of the decoder can be split into three independent estimates: soft 
channel value, a priori term and extrinsic value. It represents a better form of coding for the q-ary 
LDPC codes, which have been shown to outperform binary LDPC codes and Reed–Solomon 
codes on the AWGN channel and it gives us a new fast and reduced-complexity decoding 
algorithm. The drawback is the complexity which, in this rule varies inversely with code rate, 
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making the technique particularly attractive for high rate codes. We see that complexity is 
reduced by using the dual code, and the algorithm is accelerated by using the Fast Hadamard 
Transform (FHT). We apply this design rule to decoding the non binary LDPC. 

Then, we present a new Adaptive LDPC code where we propose to adapt the constellation 
size directly in the decoder, before the construction of the parity matrix and this necessities the 
knowledge of the channel profile. The adaptation is design simply based on the fading of each 
sub-channel by supposing that the channel is divided to several OFDM sub-channels and by 
computing the capacity of each sub-channel and comparing to the code rate. We will demonstrate 
that this adaptive LDPC code can be simply applied to the OFDM system and decoded by the 
same design rule presented beforehand.   

Finally, we try to assess the performance of Turbo Equalization (TE), considering at the 
transmitter a non binary coded modulation with Low Density Parity Check (LDPC) code as error 
correcting code. The corresponding turbo-receiver combines Interference Cancellation (IC) 
equalizer, Observation Separation (OS) estimator and a soft non binary LDPC decoder. We focus 
on developing LDPC codes for channels with non binary inputs and ISI memory. We are 
concerned with finding LDPC-turbo equalization which produces the lowest possible bit-error 
rate for a minimum amount of complexity. We show that a good choice of distribution degree of 
non binary LDPC codes leads us to outperform the performances of turbo codes; this despite the 
performance of the binary LDPC codes with the same distribution degree is not so good. 
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Résumé de la thèse en Français 

 
  
  
  
 

Chapitre 1: Introduction  
 
 
 

Dans les systèmes de télécommunication numériques, l'interférence limite la capacité 
du récepteur à détecter les symboles discrets envoyés par le transmetteur. Le canal est la 
partie des systèmes de communication qu'on peut pas le change, pour cela les techniques 
de détection qui prennent en considération l'interférence sont très importantes. 

L'utilisation du principe "Turbo" approche de prés les performances théoriques de 
Shannon concernant la capacité du canal. 

Dans ce chapitre d'introduction, je vais présenter quelques notions de bases et 
l'organisation de la thèse dans la section I.2. 
 

 
1.1 Notions  
 

Un des problèmes les plus importants dans la réalisation des systèmes de 
communication sur un canal sélective en fréquence est la présence de Interférences Entre 
Symboles (IES). Pour protéger l'intégrité des données à transmettre, on utilise les codes 
correcteur d'erreurs (CCE), où on ajoute quelques bits de redondance (codage). 

Dans les dernières années, le nombre des utilisateurs de systèmes de communication 
sans fil à augmenter de façon exponentielle. Pour cette raison, augmenter la capacité du 
système devient de plus en plus un issue cruciale, spécialement pour la prochaine  
génération des systèmes cellulaires qui ont une capacité limitée par les interférences. La 
réduction des ces interférences améliore la performance des systèmes. Une approche 
promettant pour supprimer l'interférence est de travailler sur le traitement de signal. 

    Les systèmes mobiles ajoute une dimension de plus au problème; les chemins de 
transmission du signal varient avec le temps. Quand la transmission utilise une séquence 
de symboles digitales, un canal de transmission à chemin multiple est aussi appelé canal 
IES. Les symboles arrivent à la récepteur simultanément par chemins différents vont être 
superposer comme l'image d'un télévision lorsqu'on reçoit deux images en même temps. 
Le but du concepteur de la récepteur est de combattre le IES, la propagation par des 
chemins multiples et la mobilité pour que l'intégrité de la message transmit soit préservée. 

Il est très important de prendre note que les algorithmes turbos ne sont optimaux. 
Pourtant l'évidence suggère que ces algorithmes sous optimaux utilisés dans le principe 
turbo performent proche de l'optimum.  
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1.2 Aperçu de la thèse 
 

Dans cette thèse, on développe un schéma pratique pour annuler l'effet de 
l'interférence dans le canal pour que la communication numérique devient plus sûre. 
On focalise sur le scénario dans lequel l' émetteur ne connaît pas le canal. Dans le 
chapitre 2, on décrit le model bande de base pour les systèmes de communication 
numériques et on définie le problème de détection. On présente un petit perspective 
où on explique comment la détection peut être combinée au codage et décodage du 
canal dans des scénarios différents.  

On présente aussi dans le chapitre 3 quelques schémas classiques de détection qui 
ont été présentées dans la littérature et quelques livres mais ici elles vont être 
groupées dans un même chapitre pour faciliter l'introduction de la turbo égalisation 
faite dans le chapitre 4, qui commence par une explication de la théorie de turbo 
codage. Après on montre comment la schéma turbo peut être modifiée pour 
développer le turbo égaliseur.  

Le concept nommé la technique de Séparation d'Observation (SO) qui sépare 
partiellement les observations utilisées pour l'estimation du canal de celles utilisées 
pour la détection de symboles, est présenter dans le chapitre 5. On applique cette 
technique SO au système UMTS-TDD et aussi à un système bande étroite avec une 
modulation binaire BPSK et des modulations haut niveau M-QAM sur un canal IES 
invariable avec le temps.  

Après, on va essayer d'améliorer les performances de notre système en suggérant 
dans le chapitre 6, la conception d'une constellation optimale dans une schéma BICM-
ID avec SO estimation du canal et IC égaliseur. 

  Dans le chapitre 7, on introduit les codes LDPC et quelques unes de ces 
propriétés,  algorithmes de construction et de décodage. On généralise l'idée originale 
de décodage "dual APP" (DAPP) à des alphabets non binaires dans le chapitre 8. Par 
alphabet non binaire on considère que les symboles du code sont pris d'une certaine 
extension du corps GF(q=2m). Dans ce chapitre, on utilise les codes non binaires avec 
des modulations non binaires (haut niveau). On présente une nouvelle règle de 
décodage qui est, dans un sens, le dual du décodage Viterbi pour les codes linéaires. 
Et on explique comment la complexité sera réduite avec notre règle de décodage et on 
réussit à rendre l'algorithme plus rapide par l'utilisation de transformées d'Hadamard 
rapides (FHT) des probabilités. Finalement dans ce chapitre, on présente les codes 
LDPC adaptives adressés aux systèmes sans fil de 3ième génération et plus comme 
l'OFDM. L'idée principale de l'utilisation de codage adaptive est de changer le corps 
de Galois dans des codes LDPC non binaires en adaptant un corps de Galois différent 
sur chaque fréquence, l'objective est de bénéficier de la totalité du spectre et de 
prendre avantage de toute la capacité du canal par l'utilisation de la technique de 
Water-filling en considérant que les caractéristiques du canal sont parfaitement 
connues et l'émetteur utilise ces estimations pour choisir la constellation appropriée.   

Dans le chapitre 9, on focalise sur le développement des codes LDPC pour les 
canaux avec entrées binaires et mémoire IES. On est concerné par découverte d'un 
schéma LDPC-Turbo égalisation qui produit le plus petit rapport de bits erronés pour 
une complexité minimale. 

Finalement dans le chapitre 10, on résume les contributions de cette thèse et on 
discute des directions des futures recherches. 
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Chapitre 2: Les limites des canaux de communication  
 
 
 

Au début de 1940, le consensus général était que lorsqu'on augmente le débit 
d'information transmises sur un canal de communication, on augmente la probabilité 
d'erreur. Cependant, dans son papier de 1948 "A M Mathematical Theory of 
Communication,” Shannon a quantifié le débit maximum d'information qui peut être 
envoyé sans erreur sur un canal de communication [45]. La preuve de Shannon implique 
qu'on peut avoir un code aléatoire avec une probabilité d'erreur exponentiellement petite 
pour des longues blocs, associé à une règle de décodage. Malheureusement, ces genres de 
codes sont extrêmement difficile de décoder en pratique, généralement nécessitant des 
tableaux et/ou des calculs exponentiellement larges.  

Depuis ce temps, les chercheurs ont trouvé des codes structurés qui ont des apports 
très proche de la limite théorique et qui peuvent être décodé simplement. Il y a plusieurs 
limites de l'information et dans ce chapitre, on va rappeler le maximum possible de 
rapports d'information pour différentes scénarios et comment les chercheurs ont essayé 
d'approcher ces rapports avec des modulations pratiques. En particulier, on s'intéresse aus 
canaux sans interférences, canaux à interférence et l'émetteur les connaît, et canaux à 
interférence sans la connaissance de l'émetteur. 

Dans ce chapitre, on décrit un model de communication numérique en bande de base 
et on définit le problème de détection associé à ce model. On présente un perspective où 
on explique comment la détection est combinée avec le codage et le décodage du canal 
dans des différentes scénarios de communication pour aboutir à des rapports 
d'informations transmis proche du maximum théorie. 

On présente dans ce chapitre la définition du: 

2.1 Canal AWGN et le calcule de la capacité. 

2.2 Model du canal à interférences: 

2.2.1 Calcule de la capacité avec water filling. 

2.2.2 Calcule de la capacité sans water filling. 

2.2.3 Comparaison.  
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Chapitre 3: Schémas de détection classiques 
 
 
 

On peut trouver une variété de détecteurs qui peuvent être utilisés dans notre 
schéma, dans ce chapitre on va discuter quelques un. On commence avec le détecteur 
à maximum de vraisemblance (MV) qui minimise la probabilité d'erreur et considéré 
comme optimal. Les autres détecteurs présentés dans ce chapitre sont conçus pour 
offrir une solution proche de celle de la détection MV avec une complexité plus 
faible.  

Avant de revoir ces détecteurs classiques, il est utile d'établir une méthode avec 
laquelle on peut comparer les performances des détecteurs. Comme les détecteurs 
traitent typiquement les données codées et non codées, en focalisant sur les systèmes 
non codés nous permet d'isoler la qualité du détecteur de la qualité du décodeur. 

 Dans ce chapitre, on présente et rappelle quelques schémas classiques de 
détection qui ont été présentées dans la littérature et quelques livres mais ici on les 
groupe dans un même chapitre pour faciliter l'introduction de la turbo égalisation faite 
dans le chapitre suivant. 
 
3.1 Détection MV     

 
Le détecteur calcule le vecteur le plus probable basé sur la connaissance du signal 

reçu R, du canal H et de la distribution du noise W. 

 
 

 3.2 Détection Linéaire 
 
On prend le vecteur reçu R et on le multiplie par une matrice B. On prend la décision 

sur ce résultat du produit. La matrice B peut être optimisée en utilisant plusieurs critères, 
mais les deux les plus populaires sont le Zero-Forcing (ZF) et le MMSE.  
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3.2.1 Whitening Matched Filter 
 

L'estimateur de données conventionnel est un filtre bien défini et assorti qui peut 
être étendu par un filtre de blanchissement.  

Il traite l'IES comme du noise, il est introduit ici car tous les techniques présentées 
après peuvent être interprété comme un extension du WMF, où le noise est blanchi, et 
le signal obtenu est envoyé à un filtre. 
 
3.2.2 L'égaliseur linéaire Zero-Forcing  

 
Le ZF-BLE qui minimise la forme quadratique donne une valeur estimée et 

continue. L'estimation est faite au terme zero forcing car il élimine totalement l'ISI 
sans respecter le niveau du bruit. 

 
3.2.3 L'égaliseur linéaire Minimum-Mean-Square Error 
 

Le MMSE minimise l'erreur quadratique et donne une valeur estimée, il réduit 
la dégradation résultante de ZF car la décision prend en compte la corrélation du 
bruit qui existe dans les variables à estimer. 

 
3.3 Decision-Feedback Detection 

 
Le DFE ajoute au détecteur linéaire une boucle de retour non linéaire, le signal 

reçu R est multiplié par la matrice B et la décision sera prise sur le résultat après 
soustraction de la valeur venant de la boucle de retour (c-à-d du résultat précédent)      

 
 

3.4 Détection Multi-étage 
 

Dans le but de symétriser le problème de pouvoir annuler seulement les symboles 
futures dans le DFE,  le détecteur multi-étage traite le vecteur reçu en bloc 
d'itérations. Il peut être considéré comme un processeur parallèle, où le DFE est un 
processeur séquentiel. Et voici quelques exemples: 

 
3.4.1 Annulatif d'Interférence  
 
3.4.2 L'erreur quadratique moyen  
 
3.4.3 Annulatif d'Interférence Adaptatif  
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Chapitre 4: Turbo Egalisation – Cours 
 
 
 

L' introduction de la concaténation des codes correcteurs d'erreur et la théorie de 
décodage (Turbo Code) dans le champ de communications a permis de travailler avec 
des débit proche de la limite de Shannon. Ce chapitre commence avec une explication 
de la théorie du turbo code. Ensuite, on montre comment le schéma turbo peut être 
modifié pour développer la "turbo égalisation" pour égaliser la sortie du canal IES. 
Puis les modifications nécessaires pour la turbo égalisation pour l'adapter au canal 
IES variable avec le temps sont décrites et enfin on discute du problème de la 
complexité du récepteur. 

   
4.1 Turbo Code 

 

  Il entraîne la concaténation de deux convolutional codes séparés par un 
entrelaceur. Le principe "turbo" parle du décodage itératif du code complexe généré. 
Chacun des deux codes est décodé séparément, mais avec l'avantage d'avoir quelques 
informations appris de l'autre code pendant l'itération précédente. Chaque code est 
décodé au récepteur par un décodeur SISO. 

Cette présentation de la théorie turbo code développe une notion qui représente 
une expansion, combinaison, et clarification des conventions prises de la littérature.  

 
4.1.1 SISO 

 Quand un bloc d'information codées est transmis sur un canal avec AWGN, 
l'information du kieme symbole de la séquence transmise a trois sources 
indépendant. 

1. La valeur reçu du kieme symbole 
2. l'information a priori sur le symbole 
3. l'information sur le symbole qui réside dans tous les autres symboles 

reçus du même bloc. 

Le module SISO reçoit l'observation et l'intrinsèque comme entrés et sort 
l'extrinsèque et la probabilité a posteriori d'information codée qui a été transmise 
sur le canal. 

Le SISO peut être réalisé avec plusieurs algorithmes tant que le codeur peut 
être représenté dans une treillis.   

  
4.1.2 Configuration Parallèle du Turbo Code 

Les codes convolutionels peuvent être concaténés en série ou en parallèle. 
Initialement on décrit la concaténation parallèle des codes. 

 
4.1.3 Configuration série du Turbo Code 

Les codes concaténés en série sont plus simples. Les composants exécutent les 
mêmes fonctions que dans le cas parallèle seulement l'interconnexion diffère dans 
le cas série.  
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 4.2 Turbo Egalisation 
  

4.2.1 Turbo Egalisation – Principe 
L'égalisation entraîne une compensation pour la réception par rapport à une 

transmission à chemin multiple. Dans ce paragraphe on décrit la modification faite 
sur le turbo code pour égaliser les données reçues sur un canal IES. 

Le canal IES est modélisé par un nombre de chemins qui arrivent à des 
instants différentes. Ce model de canal est adapté au treillis et alors le même 
algorithme employé dans le SISO peut être utilisé pour décoder le canal.  

Deux modifications relative au décodeur concaténé en série vont être faite. 
Premièrement, l'égaliseur SISO qui remplace le premier SISO accepte la sortie du 
canal et calcule les vraisemblances du canal. Deuxièmement, les sorties 
extrinsèques sont modifiées. Les valeurs de la sortie supérieure ne sont pas 
utilisées, la sortie inférieure est cruciale. A l'intérieur de l'égaliseur SISO, les 
probabilités des symboles sont calculées, et puis l'algorithme du décodage est 
exécuté comme dans un SISO normal. La décision du turbo égaliseur est faite 
comme dans le SCCC.  

 
4.2.2 Turbo Egalisation – Métriques de performance 

Un des principales buts de n'importe quelle chaîne de transmission est d'avoir 
un communication sûre avec un SNR minimisé. Un faible SNR est typiquement 
associé à l'avantage de la faible consommation de la puissance, petite dimension, 
et meilleure portabilité. Malgré que la turbo égalisation réduit beaucoup le SNR, 
mais elle augmente la complexité qui consomme beaucoup d'énergie. 

Pour représenter la sûreté du schéma de transmission, le rapport des bits 
erronés (BER) des données reçues est tracé par rapport au SNR. Le SNR est 
exprimé en terme de Eb/No. La complexité est exprimée en terme de nombre 
d'additions, de multiplications, maximisation, et l'exigence de mémoire.      

 
4.3 Estimation du Canal  
 

Pour conclure avec l'analyse de la turbo égalisation, le problème de la 
connaissance du canal doit aussi être soigneusement examiné. On propose ici au 
moins deux méthodes pour la re-estimation des coefficients du canal. Une partie 
importante de la dégradation est introduite par le mal fonctionnement de l'estimation 
du canal qui peut être récupérée par les méthodes de re-estimation, sans une grande 
augmentation de la capacité. 

 
4.3.1 EM based re-estimation 

Jusqu'à maintenant on considère que les coefficients du canal sont connus au 
récepteur, en pratique, ils sont estimés avec une séquence d'apprentissage insérée 
dans la séquence transmise. La méthode classique de l'estimation corrélative du 
canal (pseudo inverse method) cause une dégradation importante de performance 
par rapport à l'estimation parfaite. Cette lacune peut être réduit par l'utilisation des 
techniques avancées d'estimation de canal, comme l'algorithme EM, qui est 
puissant outil qui performe l'estimation des paramètres par la méthode de 
maximum de vraisemblance. 
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4.3.2 Re-estimation du canal bootstrap 
 Au lieu de considérer les symboles estimés après le décodeur IES, les 

décisions sont prises après le re-entrelacement de la séquence décodés. Comme 
ça, on profite de la diversité temporelle apportée par l'entrelacement et de 
l'efficacité du décodage du canal. On va décrire la succession des opérations. 

1. Après la re-entrelacement de la sortie doux produite par le décodeur du canal, 
une décision dure est prise sur chaque bit de chaque symbole de la séquence. 
Une estimation des symboles utiles est alors disponible. 

2. La matrice du système est formée 

3. Une solution qui minimise la probabilité d'erreur est bien connue. 
 
4.4 Entrelacement et Des-entrelacement 

 
La fonction d'entrelacement permet la distribution temporelle d'une séquence 

d'erreur. Utilisé généralement avec les canaux variables avec le temps, l'entrelaceur 
est une fonction essentielle de la turbo égaliseur même si le canal n'est pas variable 
avec le temps.   
 
4.5 Constellation Optimisée 

 
On propose ici d'étudier l'influence du mapping sur le performance de la turbo 

égalisation. On montre que cette technique est intéressante pour un bon choix du 
mapping. Dans l'ordre d'expliquer le choix technique, on utilise deux différentes 
approches fournies par Ten Brink and Gorokhov. 

 
4.5.1 The geometrical approach 

Gorokhov propose deux critère de conception pour l'optimisation du mapping, 
basée sur le calcul des distances spécifiques de constellation. Le choix du 
mapping est alors atteint sans aucun notions sur le point de fonctionnement. 
Cependant, cette critère de conception donne une préférence pour les 
performances asymptotiques que pour le traitement itératif durant la convergence 
qui n'est pas tout le temps désirable. 

 

4.5.2 The mean average mutual information approach 
Ten Brink utilise les paramètres de l'information mutuelle, qui permet de 

distinguer exactement les performances de chaque mapping, cependant, le calcul 
de ce paramètre demande une simulation intensive et dépends du vue du point de 
fonctionnement.  
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Chapitre 5: La technique de la séparation itérative de 
l'observation 
 
 
 

Un des problèmes le plus important dans la sûreté d'une communication de 
données sur un canal sélectif en fréquence est l'atténuation de l'ISI. Plusieurs systèmes 
de communications numériques, comme n'importe quel système mobile CDMA 
rencontre ce problème de transmission sur un canal à chemin multiple où le bruit, l'ISI 
sont deux des principaux facteurs qui dégrade le performance.  

En plus l'augmentation de la capacité des systèmes est devenu une question 
majeure surtout pour le prochaine génération des systèmes cellulaires qui ont une 
capacité limitée par l'interférence. 

Un approche promettant pour supprimer cet interférence est le travail sur le 
traitement du signal. Une solution optimale qui inclue estimation du canal, détection 
de symboles et décodage du canal apparaît exorbitant de point de vue complexité. 
Plusieurs méthodes conjointes itérative, utilise la décision moue ou dure sont 
proposées pour le cas des modulations sans et/ou avec étalement du spectre. 

Dans ce contexte, on applique le concept nommé Séparation d'Observation qui 
sépare partiellement les observations utilisées pour l'estimation du canal des 
observations permettant la détection de symboles.  

L'estimation du canal est très simple et consiste principalement d'un traitement 
classique de bootstrap utilisant la pseudo inverse linéaire. Pour chaque symbole, les 
techniques de détection prend en considération seulement la partie de l'observation, 
qui contient le symbole considéré et la longueur correspondante à la longueur de la 
mémoire du canal.  

Les techniques de détection sont le ZF pour l'itération initiale et un annulatif 
d'interférence classique pour les autres itérations. On a aperçu que si le filtre assorti 
est utilisé pour l'itération initiale, le résultat restera le même. Une partie importante de 
la dégradation introduite par les erreurs de l'estimation du canal peut être récupérée 
par cette méthode de re-estimation, sans augmentation considérable de la complexité. 

On applique dans ce chapitre la technique OS au système UMTS-TDD et aussi au 
système bande étroite avec une modulation binaire BPSK et des modulations haut 
niveau M-QAM sur un canal IES invariable avec le temps. Pour la comparaison, on 
va prendre en compte la technique itérative classique parallèle annulatif d'interférence 
(PIC) et la technique classique de bootstrap déjà appliquée au système GSM. Ainsi un 
traitement conjoint de détection de symbole et d'estimation du canal est une solution 
très attirante. 

Notre technique SO est réalisée en associant un annulatif d'interférence adaptatif à 
la détection de symbole avec une estimation de canal pseudo inverse modifiée pour 
chaque symbole. Pour la boucle de retour, sortie moue et/ou dure du décodeur du 
canal est considérée. Cependant cette schéma de réalisation sur le concept SO n'est 
pas unique et la recherche pour des solutions meilleures est ouverte.  
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Pour une conception réelle comme la 2ième et 3ième génération et pour de raison de 
complexité du décodeur, on propose la boucle de retour dure pour le décodage 
(Décodage Viterbi). 

On a appliqué cette technique au service 12.2 du système uplink UMTS-TDD et 
aussi au service 12.2 du système QPSK à bande étroite associé et modulation haut 
niveau M-QAM avec un code convolutionel de rendement 1/3. La longueur de la 
séquence d'apprentissage et le nombre de chemin estimée du canal sont deux 
paramètres laissées pour étudier leur effet sur la performance de la procédure SO. Les 
performances obtenues sont très promettant. 

Selon le scénario considéré, les résultats de simulation ont montré proche de 1 dB 
gain pour la technique SO comparée à la technique classique de l'annulatif 
d'interférence, ce qui présentent des performances très attirantes.       
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Chapitre 6: Optimisation de la constellation avec la 
technique SO 
 
 
 

Le décodage itératif est traditionnellement appliqué avec soit une concaténation 
parallèle soit une concaténation d'au moins deux codes. A l'émetteur, les deux codes 
sont séparés par un entrelaceur. Au récepteur, le décodage est itéré le long des deux 
composants de codes pour le système concaténé en parallèle, ou le deux décodeurs 
pour le système concaténé en série respectivement.  

Deux approches principaux pour l'optimisation de la constellation:  

Ten Brink utilise les paramètres de l'information mutuelle, qui permettent de 
distinguer exactement les performance de chaque constellation, cependant, le calcule 
de ces paramètres demande une simulation intensive et dépend de la vue du point de 
fonctionnement. Dans ces papiers on trouve une bref description de l'approche pour 
obtenir une règle de conception basée sur l'information mutuelle. Cela réduit d'une 
manière significatif le fardeau des simulations exhaustives pour trouver une bonne 
constellation car l'information mutuelle est très simple à calculer par l'intégration 
numérique. 

Gorokhov approche l'effet de la constellation à travers l'analyse du rendement 
d'erreur de la démodulation/décodage à maximum de vraisemblance d'une part, et à 
l'analyse statistique de la métrique de bit demappé dans le première itération de 
démodulation d'autre part. Ces deux caractéristiques mène Gorokhov pour proposer 
deux critère de conception pour l'optimisation de la constellation, basées sur le calcule 
de distances spécifiques de la constellation. La choix de mapping est alors accompli 
sans n'importe quel notion du point de fonctionnement. Cependant, cette critère de 
conception donne préférence aux performances asymptotiques qu'au traitement itératif 
durant la convergence, qui n'est pas toujours désirable.  

Dans ces papiers, on trouve une conception de la constellation qui compte sur 
l'observation commune dont les procédures de décodage itérative approche le 
comportement des décodeurs optimaux quand SNR augmente, ainsi on obtient la 
première critère de conception qui optimise la constellation pour assurer de bonne 
performance du décodage itératif, à des niveaux de SNR relativement hautes. La 
deuxième critère vise à améliorer la seuil du SNR pour des utilisations pratiques des 
décodeurs itératifs. 

Dans ce chapitre, on suggère la conception d'une constellation optimale dans un 
schéma BICM-ID tout ça appliqué à un système avec estimation de canal SO et 
procédure IC. Cela veut dire que on applique le principe turbo dans deux cas: 
démodulation turbo et détection de symbole turbo. On ne mentionne pas les 
modulations à treillis codées (TCM) car il n'y a pas de code interne qui peut ajouter de 
l'information superflue. Le système peut être vu comme deux schémas de décodage 
itérative en série par lequel le décodeur interne est remplacé par un composant de 
demapping souple dans la démodulation turbo et un composant de détection de 
symboles dans la détection turbo. On applique le concept nommé la technique SO, 
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introduite dans le chapitre 5 pour les applications CDMA et système à bande étroite; 
dans ce chapitre, le symbole peut appartenir à un groupe de modulations haut niveau 
(16-QAM) et le canal est considéré comme un canal IES invariable avec le temps. 
Chapitre 5 montre que la technique SO 

1. Exhibe des meilleurs performances quand on l'utilise avec une large 
constellation comparé à IC, 

2.  Peut approcher et converger aux performances du canal parfaitement connu. 
En se basant sur ces résultats proche du canal parfaitement connu, notre objectif 
principale est d'améliorer notre première itération, qui mène à améliorer les 
performances quand le canal est connu, par l'optimisation de la constellation. On va 
montrer comment le demapping itératif réduit le rapport de bits erronés dans ce 
système décrit précédemment. 

 On crée une constellation QAM binaire optimisée dans l'ordre d'augmenter le 
gain de codage, qui assume la connaissance parfaite des informations a priori. Cette 
expression est nommée la méthode de génie. Cette constellation optimisée peut être 
utilisée pour plusieurs applications importantes. 

 Cet algorithme est appliquer au cas de modulation à haut niveau (16-QAM…) et 
notre constellation optimisée est comparée aux constellations conventionnelles (Gray, 
Set partionning…) dans les deux cas la technique classique IC et le technique SO, et 
les résultats des simulations sont présentées.  

Le faite de connaître que le codage et la modulation sont isolés par l'entrelaceur de 
bits, et d'identifier l'impacte du décodage itératif sur le moyen harmonique de la 
distance euclidienne minimale, on a développé un système turbo égalisation puissant 
avec une complexité relative.  

La partie théorique et le grand nombre de simulations démontre que le moyen 
harmonique de la distance euclidienne minimale identifiée comme cruciale pour le 
BICM, peut augmenter fortement avec BICM-ID. 

Une nouvelle constellation optimisée sous la critère du moyen harmonique pour la 
16-QAM est présentée. Les simulations présentées démontre que même lorsque la 
constellation a les meilleures performances asymptotiques n'est pas nécessaire qu'elle 
aura les meilleures performances dans la turbo égalisation; certaines constellations ne 
sont pas adaptées à la turbo égalisation comme l'Anti Gray. On présente notre 
constellation optimisée qui semble une bonne compromis et qui améliore la 
performance de la constellation de gray by 0.5dB sur le SNR élevé mais 
malheureusement perd prés de 0.5dB sur faible SNR. 

Finalement, notre système proposé améliore les performances du système 
classique aussi lorsque on l'utilise avec ou sans SO et ID. notre système sans la 
technique SO obtient un gain de 0.5dB, avec SO et sans ID présente un gain de 1 dB, 
et lorsqu'on utilise les deux techniques proposées SO et ID, on obtient un gain de 
1.5dB par rapport au system classique utilisé actuellement. 
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Chapitre 7: Low-Density Parity-Check Codes 
 
 

Les codes LDPC ont été inventés par Gallager dans sa thèse. Ils n'ont pas eu 
l'attention nécessaire pour quelques dizaine d'année jusqu'à récemment lorsque les très 
réussis turbo codes ont été découvertes. Les codes LDPC ont été redécouverts by 
Spielman et Mackay. Pour plusieurs canaux et décodeurs itératifs, ils exhibent un 
phénomène du seuil: lorsque la longueur de code tend vers l'infinité, une petite 
probabilité de bits erronés aléatoire peut être obtenue si le niveau de bruit est plus 
petit qu'une certaine seuil. Pour de niveau de bruit au dessus de ce seuil, la probabilité 
de bits erronés est plus grande d'un constant positif. Gallager a observé ce phénomène 
pour de canal binaire symétrique lorsqu'il a introduit les codes LDPC réguliers en 
utilisant une construction explicite de graphes réguliers. Luby a généralisé cette idée 
aux codes LDPC irréguliers et construits d'une manière aléatoire, il a montré que les 
codes irréguliers se comporte mieux que ceux réguliers. 

Cette observation est généralisée par Richardson et Urbanke pour une grande 
gamme de canaux à entrée binaire, (canal à effacement, symétrique, Laplace, et 
AWGN) et pour plusieurs algorithmes de décodage. Richardson démontre le théorème 
de concentration générale montrant que les performances du décodeur pour des 
graphes aléatoires convergent à sa valeur attendue tant que la longueur du code 
augmente. A cause de la difficulté à déterminer ces performances avec un ensemble 
de codes finis, on a utilisé le comportement attendu à la limite des codes infinis qui 
peut être déterminé du cycle libre dans le graphe correspondant. Ils ont défini un seuil 
comme indiqué précédemment pour l'ensemble des codes irréguliers et aléatoires 
spécifiés par les distributions de degré, et développés un algorithme nommé 
l'évolution de la densité pour le calcule itératif de la densité du message, permettant la 
détermination du seuil. Utilisant ce résultat, ils ont construit des codes LDPC qui de 
manière claire battent le turbo code sur un canal AWGN. Récemment, ce résultat a été 
amélioré, en suggérant que les codes LDPC force à approcher asymptotiquement la 
capacité du canal pour les canaux AWGN. 

En calculant les seuil et en optimisant les distributions de degré, l'utilisation de 
l'évolution de la densité est une tâche intensive en calcule pour la plupart des canaux 
sauf le canal à effacement qui avec l'évolution de la densité devient unidimensionnel 
et il est possible de faire plus d'analyses et encore de construire des codes qui 
approchent la capacité. Pour les canaux plus intéressants, compris le canal AWGN, 
cependant, l'évolution de la densité est très compliqué pour être analyser.  

Dans ce chapitre, on introduit les codes LDPC et quelques une de leurs propriétés, 
méthodes de construction et algorithmes de décodage. Les codes LDPC sont des 
codes binaires linéaires en bloc et leur nom indique qu'ils ont une matrice de parité 
qui a une faible densité de 1s. on distingue entre les codes LDPC réguliers et 
irréguliers où seul les codes irréguliers peuvent approcher la capacité. Pour obtenir un 
bon codes LDPC il faut utiliser des méthodes de conception bien spéciales. Quelques 
une de ces méthodes dépendent de l'évolution de la densité. Pour approcher la 
capacité, des blocs de longueur infinie sont nécessaires. Cependant les résultats des 
simulation montre que les codes LDPC fonctionnent près de la capacité avec de 
longueur de bloc modéré (N=104 ... 105). 
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Chapitre 8: Décodage des Codes Non Binaires et 
Adaptatifs 
 
 
 

Récemment, beaucoup de recherche ont été dévoué aux codes LDPC binaires et à 
cause de leur performance proche de la capacité, ils ont surgi comme un candidat 
potentiel et promettant pour les codes correcteurs d'erreurs dans les systèmes futures 
sans fils et deviennent un des concurrents sérieux du turbo code. Cependant, une 
amélioration importante dans les performances peut être aboutie en utilisant les codes 
non binaires. 

En même temps, il y en a eu un intérêt augmentant dans les schémas de décodage 
à décision souple pour les codes correcteurs d'erreurs. Les différentes algorithmes 
utilisés pour le décodage des codes LDPC (belief propagation, sum-product…) 
approchent itérativement la solution à maximum de vraisemblance pour le problème 
de décodage. Le décodage LDPC est fait par le passage des messages sur les edges 
entre les nœuds de la graphe bipartie "graphe de Tanner" qui représente la matrice de 
parité des codes LDPC. La complexité moyenne du processus de décodage est le 
produit de trois facteurs: 

1. Le nombre des opérations par nœud,  

2. Le nombre moyen d'itérations, et 

3. Le nombre des nœuds actives dans chaque itération. 

Un schéma de décodage puissant, comme le turbo code, nécessite l'utilisation des 
algorithme de décodage qui calcule les probabilités a posteriori basé sur le symbole 
par symbole. Une contribution au décodage APP est faite par Gallager où le décodage 
est fait par une module APP sur chaque nœud de parité. Dans la même période, une 
application du décodage APP aux codes décodables par seuil est faite par Massey. 
Malheureusement les algorithmes APP proposés ont une grande complexité qui 
augmente avec le nombre d'états et le nombre de transition dans le treillis du code. De 
là les algorithmes APP qui réduit la complexité de calcule et/ou les besoins de 
mémoire sont intéressants pour les applications pratiques. Beaucoup d'auteurs ont 
observé que le APP peut être calculé sur le treillis du code dual qui simplifie le 
décodage si le code est de rendement élevé, terminant après quelques transitions du 
treillis dual par rapport au treillis original. 

Ici, on généralise l'idée originale du décodage  "dual APP" au alphabets non 
binaires. Par alphabet non binaire, on considère que les symboles du code sont pris 
d'une certaine extension du corps GF(q=2m). 

Le premier travail sur les codes q-aire LDPC apparaît avec Mackey et Davey. 
Dans ce chapitre, on adresse les codes non binaires en conjonction avec une 
modulation non binaire. On présente une règle de décodage MAP qui est, d'une 
manière, le décodage dual de l'algorithme de Viterbi pour les codes linéaires. Ce code 
est aussi approfondi, mais dans un sens que chaque mot du code dual est utilisé dans 
le processus de décodage. Cela veut dire qu'en pratique la règle de décodage peut être 
utilisée seulement avec les codes dont leur code dual a un petit nombre of mot de 
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code, i.e. codes à rendement élevé ou codes avec un rendement petit ou moyen mais 
avec une contrainte de faible longueur. L'application de ces codes non binaires à une 
modulation orthogonale est d'une importance particulier en pratique. Cette règle joue 
un rôle majeur dans les cas non itératifs. On décrit encore comment la complexité 
peut être réduite en utilisant notre règle de décodage et accélère le calcule avec 
l'utilisation des transformées d'Hadamard rapides de la probabilité. 

 Finalement, on présente le codage LDPC Adaptatif adressé aux systèmes sans fils 
de la 3ième génération. L'utilisation de la modulation et du codage adaptatives (AMC) 
est un des clés permettant aux techniques dans les standards de 3ième génération à 
achever une efficacité spectrale très élevée sur des canaux radios. La principale idée 
de AMC est de changer dynamiquement les schémas de modulation et codage pour 
les adapter au total efficacité spectrale des conditions de canal. La décision sur la 
sélection appropriée est faite au récepteur selon les conditions observées du canal 
avec les informations retournées à l'émetteur dans chaque trame.  

Dans ce chapitre, on change seulement le niveau de la modulation durant le 
codage pour prendre avantage de toute la capacité en utilisant la technique Water 
Filling, l'ensemble des modulations candidates sont BPSK, 4-QAM, 8-QAM, 16-
QAM, 64-QAM et 256-QAM avec la constellation de gray. Où on considère que les 
caractéristiques du canal sont bien établies et le canal peuvent être sondées pour 
obtenir une bonne qualité d'estimation du canal, l'émetteur ensuite utilise cette 
estimation pour choisir la constellation la plus appropriée. 

Ici, on ne rentre pas en détail de l'AMC; on va seulement comparer les 
performances de l'AMC si on adapte le niveau de la modulation dans le modulation 
ou dans le codage. Dans le premier cas, on considère à l'émetteur un codage LDPC 
binaire et une modulation où le niveau est adapté au profile du canal, et au récepteur 
on calcule les probabilités sur chaque bit qui seront utilisées dans le décodage itératif. 
Dans le second cas, on considère à l'émetteur un codage LDPC adaptatif où le niveau 
est adapté dans la matrice de codage et une modulation, et au récepteur on calcule les 
probabilités sur chaque symbole qui seront utilisées dans le décodage LDPC adaptatif. 
On va voire que la règle de décodage présentée précédemment peut être facilement 
appliquée au décodage non binaire et au décodage adaptatif et les performances 
obtenues sont très intéressants.  

  Les résultats des simulations sur canal AWGN suggèrent que les codes LDPC 
non binaire (resp. SPC) fonctionnent mieux que les codes LDPC binaires (resp. SPC) 
spécialement lorsque la modulation est non binaire, et démontre que malgré quand le 
code turbo fonctionne mieux que le code LDPC binaire, le code q-aire LDPC peut 
rattraper cette perte et passe devant. Le gain du code q-aire LDPC (resp. q-aire SPC) 
est de 2 dB (resp. 1 dB) sur un corps de galois GF(256) par rapport au code LDPC 
(resp. SPC), malgré qu'on n'a pas de gain sur GF(4) mais ce gain augmente avec la 
taille du corps de galois, i.e. la taille de la modulation. Après on montre que le code q-
aire LDPC fonctionne mieux que le turbo code de l'UMTS sur GF(q>4) de 0.6 dB ou 
0.8 dB cela dépend de q. 

Finalement, on propose pour les systèmes OFDM, des codes LDPC adaptatifs qui 
peuvent être simplement décodés par la règle de décodage présentée dans ce chapitre. 
En dépit que les performances des codes LDPC adaptatifs approche à des SNR élevés 
des codes LDPC binaires, il restera un très bon sujet  attirant pour les recherches 
future.    
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Chapitre 9: La Technique SO Itérative avec Codes 
LDPC Non Binaires 
 
 
 

Pour les canaux IES, plusieurs d'autres codes ont été considérés pour l'utilisation 
dans la turbo égalisation, incluant les turbo codes parallèles, les codes convolutionels, 
les codes de parité et plus récemment les codes LDPC. 

On a montré que les codes LDPC sont des codes robustes et ont des performances 
excellentes sur plusieurs canaux, et lorsque le décodage sur le canal IES, le rapport de 
bits erronés peut être amélioré davantage par l'utilisation de la turbo égalisation. Les 
codes LDPC qui approche la capacité du canal AWGN sous le décodage itératif ont 
été construits par Chung. Depuis ce temps, l'évolution de la densité a été utilisé pour 
optimiser les codes LDPC pour plusieurs canaux sans mémoire, et les résultats 
suggèrent, pour chaque canal, que les séquences de codes LDPC décodés 
itérativement peuvent en effet approcher la capacité du canal. En réalité, la découverte 
du canal dont la capacité ne peut être approchée par les codes LDPC peut être plus 
surprenante que la preuve que les codes LDPC décodés itérativement peuvent 
approcher la capacité de n'importe quel canal symétrique binaire. 

Comme on a déjà vu, l'idée de décoder un code transmis sur un canal avec 
mémoire par l'intermédiaire d'itération a été introduite par Douillard dans le contexte 
du turbo code. Cet approche peut aussi être généralisé pour les codes LDPC par la 
construction d'un seul graphe qui représente les contraintes du canal et du code. Cette 
idée a été examinée pour canal à réponse partielle par Kurkoski, Siegel, et Wolf. 
Jusqu'à récemment, il était difficile de comparer les performances de la turbo 
égalisation avec la capacité du canal car la capacité du canal à entré binaire était 
inconnue. Récemment, une nouvelle méthode a gagné l'acceptation pour l'estimation 
et un certain nombre d'auteurs ont commencé à désigner les schémas de codage LDPC 
qui approche les rendements d'information accomplies des ces canaux. Les principaux 
sujets présentés sont: 

1. Théorème de concentration pour les codes Gallager et le décodeur sum-
product de passement de message sur les canaux binaires IES. 

2. La méthode d'évolution de la densité pour calculer les seuils de la performance 
zéro erreur sur ces canaux; 

3. Théorèmes établies qui les performances asymptotiques de codes Gallager 
utilisant l'algorithme de sum-product est bornées par le rendement 
d'information symétrique et la capacité i.i.d. 

4. Et le calcule de la borne BCJR, qui est le limite de performance zéro erreur de 
l'algorithme sum-product si la portion de treillis de l'algorithme est exécutée 
une seule fois. 

Comme dans le cas avec DE pour les canaux binaires, l'évaluation du seuil du code et 
l'optimisation de ces seuil sont numériquement faites. L'analyse de ce système est 
plutôt complexe car l'algorithme BCJR est utilisé pour décoder le canal. A cause de la 
capacité du canal avec mémoire est généralement n'est pas accomplie par le 
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signalement équiprobable, un peut au lieu viser le rendement d'information 
symétrique du canal (SIR). Le SIR est défini comme le rendement maximal 
d'information accomplie par le codage aléatoire avec des symboles d'entrée 
équiprobable. A cause des codes linéaires utilise tous les entrées équiprobables, le SIR 
est aussi le rendement maximal est directement accomplie avec les codes linéaires. 

Dans ce chapitre, la technique de séparation d'observation sur la technique 
itérative conjointe de l'estimation du canal et de la détection de symboles ont été 
considérée pour les systèmes 16-QAM codés par le code LDPC non binaire. On a 
considéré la modulation entrelacé et turbo codé par bit, modulation LDPC codé par bit 
et modulation LDPC codé par symbole à l'émetteur. Au récepteur, on considère la 
technique turbo égalisation avec l'estimation SO dans ces trois cas. Et on compare 
leur résultats. Le performance obtenue est très attractif. 

Notre système proposé est réalisé par l'association de codage LDPC non binaire 
(16-aire) à l'émetteur et la technique SO avec le décodage LDPC non binaire. On a 
montré que le bon choix de la distribution de degré des codes LDPC non binaire nous 
mène à améliorer les performances des turbo codes; en dépit des performances des 
codes LDPC binaires avec le même degré de distribution ne sont pas assez bien. 
L'inconvénient est la complexité, mais on a présenté dans le chapitre 8 une règle de 
décodage pour réduire la complexité et accélère l'algorithme.  

Selon le scénario considéré, les résultats des simulations montrent un gain près de 
0.5 dB pour les codes LDPC non binaires avec la technique SO par rapport aux turbo 
codes avec la technique SO, et 3.25 dB par rapport aux codes convolutionels avec la 
technique SO où le BER=10-4; c'est un très bon résultat et une performance attirante. 
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Chapitre 10: Conclusions et Perspectifs 

 

 

10.1 Contributions 

Dans cette thèse, on a proposé et analysé des stratégies à faible complexité pour 
combattre l'interférence du canal lorsque l'information sur le canal est indisponible à 
l'émetteur et estimée au récepteur. De plus, dans le chapitre 8 on a introduit les codes 
LDPC adaptatifs. Ces stratégies sont centrées sur la technique de la turbo égalisation, 
qui annule l'interférence du canal des signaux reçus utilisant les décisions celles qui 
améliore la sûreté avec chaque itération consécutive. Parmi les algorithmes de 
réception considérés dans le passé, le turbo égaliseur est considéré la plus importante 
en termes de performances, en plus que l'égaliseur converge avec quelque itérations. 
Mais il demande une initialisation par un autre algorithme pour atteindre des bonnes 
performances. 

Les propriétés de convergence de l'égaliseur, qui dépend du canal et du SNR au 
récepteur, ensemble avec l'utilisation du code de canal, détermine les performances de 
récepteur. On a démontré que la turbo égalisation travaille particulièrement bien 
lorsqu'elle est utilisée en conjonction avec la technique SO en estimation. Pour 
approcher une communication sûre au rendement proche de l'information mutuelle de 
l'interférence du canal, un codage du canal est nécessaire, et une conception 
convenable du code peut optimiser la transmission et améliore le performance de 
récepteur si les statistiques du canal sont connues ou no de l'estimation SO.  

La technique de séparation d'observation sur le traitement itératif conjoint de 
l'estimation du canal et de la détection de symboles a été considérée pour les systèmes 
mobiles CDMA et à bande étroite. Le concept SO correspond à découpler les 
observations utilisées pour l'estimateur de celles utilisées pour la détection. Les 
performances obtenues sont très attirantes. Dans cette thèse, notre SO est réalisée par 
l'association d'un annulatif d'interférence adaptatif pour la détection de symboles avec 
une estimation de canal pseudo-inverse modifiée pour chaque symbole. Pourtant, cette 
schéma de réalisation de la concept SO n'est pas unique et la recherche pour une 
solution meilleure est lancée. On a appliqué cette technique au service 12.2 de 
l'UMTS-TDD uplink,  au service 12.2 du système à bande étroite associé et aussi au 
systèmes de haut niveau M-QAM. 

Après, on a analysé et évalué une nouvelle approche pour la conception du BICM-
ID pour les canaux IES. Par connaître que la modulation et le codage sont séparés par 
un entrelaceur de bit, et identifier l'impacte du décodage itératif sur la moyenne 
harmonique de la distance euclidienne minimale, on a développé un système de turbo 
égalisation puissant à complexité relativement faible. On démontre que la moyenne 
harmonique de la distance euclidienne minimale identifiée comme cruciale pour le 
BICM, et peut augmenter fortement avec le BICM-ID. Ensuite une nouvelle 
constellation optimisée sous la critère de la moyenne harmonique pour 16-QAM est 
présentée. On remarque que même lorsque la constellation a des meilleures 
performances asymptotiques, ce n'est pas nécessaire que la constellation aura des 
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meilleures performances dans la turbo égalisation; quelques constellations ne sont pas 
adaptées pour la turbo égalisation comme Anti-Gray. 

 Ensuite on a essayé d'améliorer les schémas de codage et du décodage et on 
focalise sur les systèmes récepteurs employant les codes LDPC. Les performances du 
récepteur sont fortement améliorées, si l'estimation des coefficients du canal et la 
variance du bruit sont disponibles au récepteur. Cependant pour des bonnes 
performances du récepteur, on demande quelques itérations de la turbo égalisation et 
sur le décodeur LDPC.  

Après, on a présenté une règle de décodage pour les codes LDPC non binaires. Le 
codage et décodage LDPC non binaire améliore les performances du code LDPC 
binaire spécialement quand la modulation est non binaire, et on prouve que même 
lorsque le turbo code est meilleur des codes LDPC, les codes LDPC non binaires peut 
rattraper cette perte et mieux. Considérant la complexité, la règle de décodage est 
pratique pour le haut rendement, applicable aux codes LDPC non binaires et réduit 
énormément la complexité en utilisant la propriété de dualité et accélère le calcule en 
utilisant le FHT. La complexité de la règle de décodage pour les codes linéaires est 
comparable à la complexité de décodeur Viterbi de code dual.  

 Finalement, la technique SO sur le traitement itératif de l'estimation du canal et 
de la détection de symbole a été considéré pour les systèmes 16-QAM codés par un 
code LDPC non binaire. On l'a comparé au modulation codée par un turbo code et au 
modulation codée par un code LDPC binaire. Au récepteur, on considère la technique 
de turbo égalisation avec l'estimation SO dans ces trois cas. Notre système proposé est 
réalisé par l'association du codage LDPC non binaire à l'émetteur et la technique SO 
avec décodage LDPC non binaire. On a montré que un bon choix de la distribution de 
degré nous mène à améliorer les performances du turbo codes; en dépit que les 
performance des codes LDPC non binaires avec la même distribution de degré ne sont 
pas bonnes. L'inconvénient est la complexité, mais on a présenté dans  le chapitre 8 
une règle de décodage pour réduire la complexité et accélérer l'algorithme. 

On discuter dans cette thèse: 

 Dans le chapitre 5, la technique SO pour l'estimation du canal. 

 Dans le chapitre 6, la conception d'une constellation optimale pour le schéma 
turbo égalisation avec la technique SO. 

 Les propriétés essentielles des codes LDPC dans le chapitre 7. Dans le 
chapitre suivant, les codes LDPC non binaire, la règle de décodage non 
binaire, et les codes LDPC adaptatifs. 

 Dans le chapitre 9, application des codes LDPC non binaire sur la schéma de 
la turbo égalisation avec la technique SO 

 

10.2 Futures Travaux 
Bien que dans les chapitres précédents on a vu des possibilités pour plus de 

recherche, on discute maintenant quelques directions de recherche les plus fructueux 
inspirées de cette thèse. Il y a beaucoup de questions ouvertes qui peuvent attirer plus 
de recherche. 
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Le problème de la détection conjointe demande plus d'études. Au moins, on doit 
essayer de réduire la complexité de façon que la turbo égalisation soit plus simple à 
implémenter. 

 On a besoin de faire l'analyse de la convergence en utilisant l'EXIT chart ou 
n'importe quelle autre méthode. 

Pour les codes LDPC, il y a encore du travail pour déterminer un algorithme 
généralisé de l'évolution de la densité pour les systèmes non binaires par exemple et 
peut-être les codes LDPC adaptatifs dans un système turbo égalisation sur un canal 
IES. 

Finalement, tout ce travail dans cette thèse peut être simplement étendu aux 
systèmes MIMO qui sont prise en compte dans les normes de la future génération sans 
fil.   
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Chapter 1 
Introduction 
 
 

In a digital communication system, channel interference limits the ability of the receiver to 
detect the discrete symbols sent by the transmitter. The channel is a part of the communication 
system we typically cannot change, so techniques to detect the transmitted symbols that take into 
account the channel interference are important. 

Use of the "turbo" principle to iteratively decode parallel or serial concatenated error 
correction codes has lead to performance closely approaching Shannon's theoretical channel 
capacity limit. This principle has also been used to improve the reliability of communications 
over a multi-path channel. 

In this introductory chapter, we present some relevant background material. We present the 
outline for the rest of the thesis in Section I.2. 
 
 
1.1 Background 
 

One of the important problems in reliable data communications over frequency selective 
fading channels is the mitigation of inter-symbol interference (ISI). Many of practical 
communication systems encounter this problem of data transmission over a multi-path channel 
where the noise and ISI are two of the main factors that degrade the performance. To protect the 
integrity of the data to be transmitted, a controlled amount of redundancy is added (encoding) 
using error correction code (ECC). 

In the past few years the number of users of wireless communication systems has been 
growing exponentially. For this reason increasing system capacity is a critical issue, especially 
for the next generation cellular systems whose have a capacity limited by interference. Reduction 
of channel interference (ISI), co-channel interference from own cell (MAI, Multiple Access 
Interference), or neighboring cells (inter-cell interference) improves the system performance. 
Promising approach to suppress interference and multi-path channel distortion is the work over 
signal processing.  

Mobile systems add an additional dimension to the problem; the signal transmission pathways 
are changing with time. When the transmission uses a sequence of digital symbols, a multi-path 
transmission channel is also referred to as an ISI channel. Symbol that arrive at the receiver 
simultaneously by different paths are superimposed just like the image on the television when we 
obtain a double images. The goal of the receiver designer is to combat time-variant ISI due to 
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limited bandwidth, multi-path propagation and movement so that the integrity of the transmitted 
message is maintained. 

Error correction codes have significantly improved the reliability of digital signal 
transmission and reception. The relatively recent introduction of the "turbo" principal by Berrou 
and al. [1] has enabled the design of communication systems with channel capacities closely 
approaching Shannon's theoretical limit (for a bit rate equal to ½, a performance within 0.5 dB of 
the capacity limit was achieved). The turbo principle involves iteratively decoding a hugely 
complex code generated by two convolutional encoders separated by an interleaver. 

Since their first presentation in 1993 by Berrou and al. [1], a considerable amount of the work 
has been done on turbo codes, both for improving the original scheme and for better 
understanding the reasons for their astonishing performances. Moreover, the "turbo principle" has 
been extended to many fields other than channel coding theory and should now be regarded as a 
general approach for combining and serially performing in an iterative way two or more tasks in 
the receiver digital communication chain. Based on the invention of turbo codes [1], in the past 
few years, a new concept, called "turbo equalization", has emerged as a way of efficiently 
fighting against channel ISI. The turbo principle has been first applied by Douillard and al. [5] to 
the field of equalization. The basic idea consists of considering the channel as a time-varying 
non-recursive non-systematic convolutional code, assuming an outer convolutional channel 
encoder and a channel interleaver, the reference turbo detection scheme is then formally 
analogous to a serial concatenation of convolutional codes and the same iterative techniques can 
be applied to realize joint detection and decoding [7]. Equalization and soft output channel 
decoding are concatenated and executed in an iterative way.  

Performing iterations like in turbo decoding can improve the bit error rate (BER) and the 
frame error rate (FER) dramatically. In fact simulation results show that all the ISI can be 
eliminated by such a process and the performance of coded signals over the Gaussian channel can 
be reached assuming perfect channel estimation and sufficient interleaver depth. 

To combat the effects of ISI, linear (linear equalizer, LE), or non-linear processing (decision 
feedback equalizer, DFE, or detector) of the received symbols can be applied [9], but optimal 
methods for minimizing the FER or BER are non-linear and based on ML estimation, e.g., the 
FER-optimizing Viterbi Algorithm [10]. ML estimation turns into maximum a posteriori 
probability (MAP) estimation, e.g., the BER-optimizing BCJR algorithm [4, 11], in presence of a 
priori information about the transmitted data. 

In the original paper describing the turbo detector [5], Douillard's approach is based on 
maximum likelihood (ML) sequence estimation for equalization as well as for soft output channel 
decoding (a min-log-BCJR algorithm was used for symbol detection and a low-complexity 
SOVA for channel decoding).  

More recently, Bauch and al. in [8], optimal symbol-to-symbol BCJR detectors and decoders 
with a convolutional ECC have been introduced to improve the scheme.  

Unfortunately, the complexity of all those ML/MAP or sub-MAP devices depends 
exponentially on the length of the channel's impulse response (CIR) and the size of modulation, 
and it might become quickly prohibitive when higher level modulations rather than simple BPSK 
(or GMSK) and 6-tap (or more) CIR are considered. Consequently, the first challenge is the 
reduction of the overall computational complexity of the turbo detector. Since the complexity 
will be dominated by the ISI detector, (all know turbo equalization schemes apply soft output 
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channel decoding to determine the extrinsic information which is the additional information 
provided by the channel decoder. This extrinsic information is fed as a priori information to the 
next equalizer's input), an important number of previous studies focus on the design of a low-
complexity turbo detector based on a suboptimal soft-input soft-output (SISO) sequence 
estimator, e.g., SISO-delayed decision feedback sequence estimator (SISO-DDFSE) coupled with 
a minimum phase pre-filtering, as proposed by Berthet and al. [12]. They analyze and compare 
several strategies for iteratively decoding trellis-encoded signals over channels with memory, and 
soft-in/soft-out extensions of reduced complexity trellis search algorithms such as DDFSE or 
parallel decision feedback decoding (PDFD) algorithms are used instead of conventional BCJR 
and min-log-BCJR algorithms; the second attractive problem studied in [12] is the combination 
of the detection and a powerful iteratively decodable codes (turbo codes) and it focus on the 
serially concatenated codes (SCCC) because he could be more efficient than parallel 
concatenated codes (PCCC). 

Ariyavistakul and Li [13] proposed a joint coding equalization approach, distinct from turbo 
equalization, working with convolutional coding and a DFE; here, within the DFE, soft 
information from the DFE forward filter and hard decisions from the decoder using the Viterbi 
algorithm (VA) are fed back. 

Another common technique to decrease the complexity of the MAP equalizer is to reduce the 
number of states in the trellis; which was applied to turbo equalization in [15].  
In order to reduce the computational complexity, the MAP detector can be advantageously 
replaced by an ISI canceller. This new receiver makes it possible to almost completely overcome 
ISI over time invariant and/or time varying Rayleigh channels for high spectral efficiency 
modulation. 

Therefore Glavieux [6] is one among the firsts to replace the ML equalizer by a so called ISI 
canceller. Since this is an adaptive weight FIR filter, its computational complexity depends only 
in a linear way on the length of the CIR.  

Glavieux and al. in [17] propose a low complexity soft-input soft-output M-ary turbo 
equalizer that allows inter-symbol interference to be reduced drastically. The equalizer is close to 
an inter-symbol interference canceller (IC). For each stage, the equalizer is updated according to 
the mean square error (MSE) criterion, and they propose an adaptive algorithms such as 
stochastic gradient least mean square (SG-LMS) or recursive least square (RLS) which can be 
used for updating equalizer parameters, these algorithms minimize the MSE criterion. 

This idea is enhanced in [18], where the filter coefficients are obtained using the LMS 
algorithm to match the output of a MAP equalizer, for varying signal-to-noise ratios (SNRs) and 
feedback information constellations, a linear estimate of the MAP equalizer is stored in a table 
and used for equalization in the receiver. 

Tuchler and al. in [16] introduce new approaches to combining equalization based on linear 
filtering with decoding, they replace the MAP equalizer with an LE and a DFE, where the filter 
parameters are updated using the MMSE criterion and derive four different implementations of 
this general approach. 

Wang and Poor [14] proposed a turbo equalization like system part of a multi-user detector 
for CDMA, this iterative scheme is based in the turbo equalization using an LE to reduce ISI and 
MAP decoding, the MAP equalizer is thus replaced with an LE, whose filter parameters are 
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updated for every output symbol of the equalizer, and they extend this scheme on any type of 
channels and in presence of MAI and ISI.   

Vila and al. in [19] propose to optimize the interference canceller at each iteration, thanks to 
the training sequence, so to improve performance in a reduced number of iterations. Lampe and 
Huber in [21] show that iterative multi-user interference suppression based on adapted MMSE 
filters combined with serial successive cancellation and single user decoding can reach near 
optimum performance within a few iteration cycles. Further, they evidence that for sufficiently 
reliable symbol estimates soft decision feedback can be replaced by hard decision feedback 
without any performance degradation but with significant savings in complexity. 

The approaches in [6, 14, 16-19, 21] address a major shortcoming of the classical turbo 
equalization scheme, which is the exponentially increasing complexity of the equalizer for 
channels with a long impulse response or a large signal alphabets. 

To overcome the channel symbol detection problem, several iterative multi-user detection and 
decoding schemes have been proposed, providing close to optimum performance if channel state 
information (CSI) is available. Unfortunately, a simple concatenation of these multi-user channel 
symbol detection algorithms with standard estimation schemes results in a considerable 
performance loss, since channel estimation is still done without exploiting information on multi-
user interference. More advanced techniques, also dealing with the problem of channel estimation, 
use the a priori knowledge with respect to the interference, e.g., its correlation properties, to 
avoid distortion due to other users in the channel estimation and symbol detection procedure. 

The standard approach to equalization with unknown channels is to generate a single channel 
estimate based on the statistics of the channel. This requires either a training sequence or a 
delayed decision directed approach. However, a more integrated technique, such as maximum 
likelihood sequence estimation (MLSE) linked with per-survivor processing (PSP), provides 
superior performance. More recently, the advent of "turbo processing" [1], has revitalized interest 
in maximum a posteriori (MAP) equalization in preference to MLSE. 

Most previous work on iterative equalization and decoding assumes that the channel impulse 
response (CIR) is known to the receiver. To conclude with the turbo detection analysis, the 
problem of channel knowledge also has to be raised and carefully investigated.  

The optimum receiver for transmission over unknown fading channels performs joint channel 
state and data symbol estimation. In [6], a least mean square (LMS) type of channel estimation 
algorithm is used besides a LE to estimate and track the CIR, where both the estimator and the 
equalizer incorporate the feedback information from the decoder. Other approaches use this 
information for estimation and equalization simultaneously, e.g., using a non-linear Kalman 
filters based on soft statistics. In [22] Tuchler and al. propose a recursive least square (RLS) type 
of iterative channel estimation algorithm based on soft information from the decoder, which is 
distinct from the equalization algorithm, and show that this scheme does not always give a better 
estimate of the channel when the channel is time-invariant. Therefore they devise a simple 
criterion to decide whether this soft information should be used for estimation. In [24] indeed, it 
is shown by simulations that MAP and sub-MAP devices are very sensitive to channel estimation. 
(A degradation of 2.9 dB occurs when assuming mismatched channel estimation by classical 
technique). In [12] Berthet and al. propose at least two methods for re-estimating the channel 
coefficients. The first method exploits the EM algorithm [25]. The EM iteration is done after each 
turbo detector iteration. The second method is even simpler and basically consists of a simple 

_____________________________________________________________________________________________________________________ 

 



Introduction                                                                                                                                      5 

bootstrap process using linear pseudo-inverse. A significant part of the degradation introduced by 
mismatched channel estimation can be recovered by such re-estimation methods, without 
substantial complexity increase. 

In [23] Linda and al. present an extension to the block processing MAP equalizer for the case 
where the channel is not assumed to be known, they use an expanded trellis so as to include extra 
memory for measuring the channel. This allows joint channel estimation and equalization. 
Expansion of the state space is made possible by the fact that the low-pass nature of the fading 
effectively introduces correlation into the received signal. The expanded state can then be used to 
form separate channel estimates for each trellis state, the size of the expanded state is fixed and 
MMSE techniques are proposed for forming channel estimates. In [20] Lampe propose a 
practically interesting approach for iterative channel estimation, for a multi-user detection, and 
single-user decoding based on MAP symbol-by-symbol estimation for DS-CDMA, he shows that 
near single-user channel phase and amplitude estimation accuracy is achieved for frequency 
selective fading channels, even in highly loaded systems, this iterative receiver performing pilot 
symbol aided channel phase and amplitude estimation as well as data and symbol estimation for 
coded transmission. This estimator consists in simplified minimum mean squared error (MMSE) 
channel estimation filters for each user and each path.  

Strauch and al. in [26] derive a suboptimal estimator with substantially lower complexity, 
based on feedback soft output from the equalizer to the channel estimator (reduce the error 
propagation) which will significantly reduce the complexity with only a small loss in 
performance. In [19], Vila and al. propose to optimize the equalizer structure (an interference 
canceller) thanks to the training sequence available to estimate the CIR.  

It has been shown that iterative demodulation improves dramatically the performance of the 
receiver, but that improvement depends substantially on the transmitter and specially on the 
chosen signal labeling. Particularly in recent research, iterative decoding algorithms for spectrally 
efficient modulation have become a vital field of research in digital communications. Thus it's 
necessary to show the influence of the mapping on the signal-to-noise ratio (SNR) threshold and 
on asymptotic performance. 

Two principals approach for optimizing the labeling map; Ten Brink [27, 28] and Gorokhov 
[29]. In [27], Ten Brink and al. propose a design rule based on mutual information to find the 
'best' mapping. As turned out in simulations [27, 28] the right choice of the mapping is crucial for 
a good performance of iterative demapping and decoding. In these papers we find a briefly 
description of an approach to obtain a design rule based on mutual information. This significantly 
reduces the burden of performing exhaustive simulations to find good mapping since mutual 
information is very easy to calculate by numerical integration. Gorokhov, in [29], approach the 
effect of signal labeling through the error rate analysis of maximum likelihood 
demodulation/decoding on one hand, and the statistical analysis of de-mapped bit metrics at the 
first demodulation iteration on the other hand. These two features lead to two different 
optimization criteria, which are used to design labeling for some practically important cases. In 
these papers we find a mapping design that relies upon the common observation that iterative 
decoding procedures approach the behavior of the optimal decoders as SNR grows, thus we 
obtain the first design criterion that optimize the labeling map to ensure a good performance of 
the iterative decoding, at a relatively high SNR. The second design criterion aims at an improved 
SNR threshold of practically used iterative decoders. 

_____________________________________________________________________________________________________________________ 

 



6                                                                                                    Introduction 

Finally, there is a large theoretical work about choice of interleaver, block length, and 
encoder polynomials. The optimal interleaver is unknown; however, Benedetto and Montorsi [30] 
have determined an upper error bound for a turbo code using a theoretical interleaver called a 
uniform interleaver. Furthermore they showed that random interleaver will perform close to the 
theoretical uniform interleaver. It is important for the interleaver to interleave code symbols and 
not simply code words. This is especially important when transmitting over a channel with 
memory. It is advantageous for the block length of the coded information (and interleaver) to be 
long, but this leads to a proportionally long latency at the receiver. 

It is important to take note that the turbo algorithm is not optimal. However, evidence 
suggests that the sub-optimal algorithms used in turbo principle can perform close to the optimal. 
Actual maximum likelihood decoding is impossible because of the huge number of states 
generated by interleaving a large block of data. 

 
 

1.2 Thesis Outline 
 

In this thesis, we develop practical schemes to mitigate the effects of channel interference to 
make digital communication more reliable. We focus on the scenario in which the transmitter has 
no knowledge of the channel interference as is often the case in, for example, wireless 
communication over radio waves. 

In chapter 2, we describe a discrete-time baseband model for digital communication systems 
and define the associated detection problem. We present a broader perspective where we explain 
how detection can be combined with channel coding and decoding in different communication 
scenarios to reliably transmit information at rates close to the theoretical maximum. We also in 
chapter 3 present and remind some classical detection schemes which have be presented in the 
literature and some books but grouped in the same chapter to facilitate the introduction of turbo 
equalization done in chapter 4, which begins with an explanation of turbo coding theory. It then 
shows how the turbo scheme can be modified to develop a "turbo equalizer" to equalize the 
output from an inter-symbol interference (ISI) channel. Next the necessary modifications of a 
turbo equalizer to allow adaptation to a time-varying ISI channel are described and the issue of 
receiver complexity is discussed. 

The concept named Observation Separation (OS) technique which partially separates the 
observation used for channel estimation from the observation that allows the symbol detection is 
introduced in chapter 5. We apply this OS technique to the UMTS-TDD system and also to a 
narrowband system with a binary modulation BPSK and high level modulations M-QAM on a 
time-invariant ISI channels. For the purpose of comparison, we will take into account the 
classical iterative parallel interference cancellation (PIC) technique and the classical bootstrap 
technique already applied to GSM system. Thus joint processing of symbol detection and 
channel estimation is an attractive solution. Next, we will try to improve the performances of our 
system by suggesting in chapter 6, a design of optimal mapping in BICM-ID scheme to OS 
channel estimation and IC procedure system. The system can be regarded as two serially 
concatenated iterative decoding schemes whereby the inner decoder is replaced by the soft 
demapping device (also referred to as 'demapper') in the turbo demodulation, and by the 
detection symbols device in the turbo detection. In this chapter, the symbol can belong to a set of 
high level modulations (16-QAM) and the channel is considered like a time-invariant ISI 
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channels. Based on the results presented in chapter 5, close to perfect known channel, our main 
objective is to outperform our first iteration, which leads to improve the performance when the 
channel is known, by optimization mapping and de-mapping. We design an optimized binary 
mapping of the QAM constellation, in order to increase coding gain, which assumes perfect a 
priori information. This expression is called the genie method. Like if we consider the presence 
of a genie delivering perfect a priori information. This optimized mapping can be used for some 
practically important cases.  

In chapter 7, we introduce the LDPC codes and some of their properties, constructions and 
decoding algorithms. LDPC codes are binary linear block codes and, as their name indicates, 
have a parity check matrix that has only a small number of “1”s per row and per column. Thus, 
the parity check matrix has a low density of “1”s. We generalize the original idea of “dual APP” 
(DAPP) decoding to non binary alphabets in chapter 8. By non binary alphabet we mean that 
code symbols are taken from some extension field GF(q=pm), mostly binary field GF(q=2m).In 
this chapter, we address the non binary codes in conjunction with non binary modulation. We 
present a symbol-by-symbol maximum a posteriori (MAP) decoding rule which is, in a way, the 
dual of correlation-Viterbi decoding for linear codes. This code is also exhaustive, but in the 
sense that every word in the dual code is used in the decoding process. This means that in 
practice this decoding rule can be used only with codes whose dual code has a small number of 
code words, i.e., high rate codes or low-to-middle rate codes with short constraint lengths. In the 
same time, we describe how this complexity can be reduced using our decoding rules and make 
the computation faster with Fast Hadamard Transform (FHT) of the probabilities. Finally in this 
chapter, we present the Adaptive LDPC codes addressed for 3rd Generation & Beyond wireless 
systems like orthogonal frequency division multiplexing (OFDM). The use of Adaptive Coding is 
one of the key enabling techniques in the standards for 3rd-Generation (3G) wireless systems that 
have been developed to achieve high spectral efficiency. The core idea of Adaptive LDPC codes 
is to dynamically change the Galois field in a non binary LDPC codes by adapting a different 
Galois field on each carrier, the objective of adapting is to benefit of the overall spectral 
efficiency to the channel condition and to take advantage of the whole of the capacity by using 
the water filling technique. We consider that the characteristics of the channel are well-
established and the channel can be probed to obtain a reliable channel quality estimate, the 
transmitter then uses this estimate to choose the appropriate signaling set. We compare two cases: 
In the first case, we consider at the transmitter a binary LDPC encoding and a modulator where 
the level size is adapted to the channel profile, and at the receiver we compute the probabilities 
over each bit which will be used in the binary LDPC decoder. In the second case, we consider at 
the transmitter an adapted LDPC encoding where the level size will be adapted in the encoding 
matrix and a modulator, and at the receiver we compute the probabilities over each symbol and 
use this in a type of adapting LDPC decoder. We will see that the decoding rule presented in 
section 8.1 can be easily applied to the non binary decoding and to the adaptive decoding and the 
performances obtained are very interesting. 

In chapter 9, we focus on developing LDPC codes for channels with binary inputs and ISI 
memory. We are concerned with finding LDPC-turbo equalization which produces the lowest 
possible bit-error rate for a minimum amount of complexity. 

Finally in Chapter 10, we summarize the contributions of this thesis and discuss future 
research directions. 
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Chapter 2 
Information limits of communication channels 
 
 

In the early 1940s, the general consensus was that increasing the rate of information 
transmitted over a communication channel increased the probability of error. However, in his 
1948 paper “A Mathematical Theory of Communication,” Shannon quantified the maximum rate 
of information that can be sent error-free over a communication channel [45]. Shannon’s proof 
involved using random codes with exponentially small error probability for long block lengths, 
coupled with a nearest neighbour decoding rule. Unfortunately, such structureless codes are 
extremely difficult to decode in practice, generally requiring an exponentially large lookup table 
and/or computation. Ever since then, researchers have sought structured codes whose rates are 
close to theoretical limits and yet can be decoded simply. There are different information limits 
for different communication scenarios, and in this section we review the maximum possible 
information rates for various scenarios and how researchers have tried to achieve those rates with 
practical modulation schemes. In particular, we look at interference-free channels, interference 
channels when the transmitter has knowledge of the interference (also known as channel state 
information), and interference channels when the transmitter does not have such knowledge. 

In this chapter, we describe a discrete-time baseband model for digital communication 
systems and define the associated detection problem. We present a broader perspective where we 
explain how detection can be combined with channel coding and decoding in different 
communication scenarios to reliably transmit information at rates close to the theoretical 
maximum. 

 
 
2.1 AWGN Channel 
 

Additive white Gaussian noise (AWGN) channels can be thought of as interference-free 
channels. The maximum information rate that can be sent over an AWGN channel or, more 
commonly, the capacity of the AWGN channel in bits per two dimensions is well known to be 

 2
0

log 1 .s
AWGNC

N
ε⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 (2.1) 

 
Code design and practical decoding techniques for rates close to AWGN channel capacity are 

well understood today. In low SNR regimes where low-rate codes suffice, turbo codes [1] and 
low-density parity-check (LDPC) codes [37, 38] approach theoretical limits and are practically 
decodable with “message-passing” algorithms like those discussed in Chapter 4. In [34], it was 
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demonstrated that an LDPC code can operate at an SNR that is 0.0045 dB away from the 
minimum SNR necessary for codes of that rate. In high SNR regimes where high-rate codes are 
required, multilevel codes with multistage decoding [41, 42] can be used to approach capacity. 
 
 
2.2 Interference Channel Model 
 

In this thesis, we focus on discrete-time baseband channel models, which abstract the channel 
impairments and hide the specific implementational details of the digital communication system. 
In doing so, we can talk about different digital communication systems with different kinds of 
channel interference in one common signal space framework. 

Let us now describe the channel model that we use in this thesis. The N × 1 vector X contains 
the data to be transported over the channel, and is chosen from a finite equiprobable set. 
Depending on the underlying communication system, the components of X may correspond either 
to distinct time instants, distinct carrier frequencies, distinct physical locations, etc. The channel 
interference is modelled as linear interference, which is represented by multiplication of X with a 
Q × N matrix H. With channel noise being composed of the superposition of many independent 
actions, the central limit theorem suggests that we can model the noise as a zero-mean, complex-
valued, additive white Gaussian noise (AWGN) vector W with circularly symmetric components 
of variance N0. The Q×1 vector R that is obtained at the receiver is thus as illustrated in Fig. 2.1. 

 ,R HX W= +  (2.2) 

In this thesis, we are primarily concerned with detection at the receiver of the transmit vector 
X based on knowledge of R, H, and the statistics of W. The parameters of H can be learned at the 
receiver via techniques collectively known as training, in which H is estimated by sending 
vectors jointly known to the transmitter and receiver across the channel. If the channel changes 
with time, then the estimate of H can be updated using the detection decisions. 

 
RX H  

  W
Figure 2.1: The Vector model. 

  
Sometimes it is also useful to periodically perform training in case tracking becomes 

unsuccessful. In any event, we assume in most of the thesis that H and the statistics of W are 
explicitly known at the receiver. 

Though we focus specifically on applications of the vector detection model (2.2) to digital 
communication systems, the detection schemes we develop in this thesis are applicable to any 
scenario in which (2.2) applies. We now complete this section with a few applications in digital 
communication. 

One example of a communication system in which the channel model (2.2) applies is the 
uplink scenario of a N-user discrete-time synchronous code-division multiple-access (CDMA) 
system, shown in Fig. 2.2. In this system, the ith user modulates a complex symbol xi onto a 
signature sequence hi[k] of length Q assigned to that user. The modulated signature sequence is 
_____________________________________________________________________________________________________________________ 
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sent across the channel, where it encounters channel attenuation by a factor of Ai. The base 
station receives the superposition of all the users’ signals in noise as described by (2.2), where the 
columns of H are the users’ signatures scaled by the corresponding channel attenuation factors; 
i.e., 

 

[ ]
[ ]

[ ]

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]

[ ]
[ ]

[ ]

0 0 1 1 1 1 0

0 0 1 1 1 1 1

0 0 1 1 1 1 1

0 0 0 0
1 1 1 1

1 1 1 1

N N

N N

N N N

r A h A h A h x w
r A h A h A h x w

r Q A h Q A h Q A h Q x w Q

− −

− −

− − −

⎡ ⎤ ⎡ ⎤ ⎡⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣

0
1

1

⎤
⎥
⎥
⎥
⎥

− ⎥⎦

0

1

1−

⎤
⎥
⎥
⎥
⎥
⎥⎦

i

 (2.3) 

Another example in which (2.2) applies is a discrete-time synchronous multiple antenna 
system with N transmits antennas and Q receives antennas. As shown in Fig. 2.3, each transmit 
antenna sends a different complex symbol xi over the channel. For narrowband transmission, the 
path from the ith transmit antenna to the jth receive antenna is described by a single flat fading 
coefficient, hji, the set of which can be assembled into the matrix H. Each receive antenna 
receives a superposition of signals from all transmit antennas in white noise, so again we 
encounter the model in (2.2): 

  (2.4) 

0 00 01 0, 1 0

1 10 11 1, 1 1

1 1,0 1,1 1, 1 1

N

N

Q Q Q Q N QN

r h h h wx
r h h h wx

r h h h wx

−

−

− − − − − −

⎡ ⎤ ⎡ ⎤ ⎡⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥= +
⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣

A discrete-time point-to-point channel with inter-symbol interference (ISI), depicted in Fig. 
2.4, can also be modelled using (2.2). The transmitted data is a stream of complex symbols xi, 
which are corrupted by a convolution with the impulse response of the ISI channel, hi, and by 
additive noise, wi, to produce the received symbols 

 .i i k k
k

r h x w−= +∑  (2.5) 

If ri, xi, and wi are each arranged in vector format, and H = [h1, …, hP] with hi-k being a time-
delayed version of hi arranged in vector format, then we again obtain the model (2.2). An 
example with an impulse response of length two is 

  (2.6) 

0
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⎥
⎦

Note, that the H matrix in this case is square and Toeplitz. 
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2.2.1 Interference Channels with Water Pouring 
 

In communication systems where the interference matrix H is non-trivial and known at the 
transmitter, to support the maximum information rate it is necessary to optimally allocate 
transmit power amongst the various components of X so that the power transmitted over the kth 
mode of the channel is given by the “water-pouring” formula [43] 

 0
, max ,0s k

k

NLε
λ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (2.7) 

where L is chosen such that the average transmit energy is 

 
1

,
0

1 N

s s k
kN

ε ε
−

=

= ∑  (2.8) 

 

 
Figure 2.2: Uplink scenario of CDMA system. 

 

 
Figure 2.3: Multiple antenna system. 
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Figure 2.4: ISI channel. 

 
The idea of water pouring is to transmit more power over large modes, and to transmit less 

power over small modes. In fact, modes that are too small are allocated no transmit power. If K is 
the set of modes allotted transmit power via water pouring, then the capacity of the interference 
channel in bits per two dimensions is 
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 (2.9) 

Where
,

1

k A K
λ

and
,

1

k G K
λ

are, respectively, the arithmetic and geometric means of 1

kλ
over K, 

given by 

 
,

1 1
k Kk kA K

K
1

λ λ∈

= ∑  (2.10) 

 
,

1 1log log
k Kk kG K

K
1

λ λ∈

= ∑  (2.11) 

Techniques are known today to approach the capacity of interference channels as closely as 
the capacity of interference-free channels, provided the transmitter is aware of the interference. A 
communication system that incorporates such techniques is shown in Fig. 2.6. At the transmitter, 
knowledge of channel state information is used in an interference “pre-canceller” that optimally 
allocates transmit power to the channel modes. The cascade of the transmitter pre-canceller and 
the channel appears interference-free, so the coding and decoding techniques for AWGN 
channels can be exploited to approach capacity. There are two main classes of such techniques. 
One class treats all the modes as belonging to a single channel [33, 40, 47], while the other class 
partitions the underlying channel into parallel independent sub-channels, over which symbols are 
transmitted according to the water-pouring power allocation [44]. 
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Figure 2.5: A communication system that pre-cancels channel interference. 

 
For ISI channels, an example in the former class is Tomlinson-Harashima precoding, and an 

example in the latter is discrete multi-tone (DMT). 
 
 
2.2.2 Interference Channels without Water Pouring 
 

When the transmitter has no channel state information, water pouring cannot be done to 
achieve the capacity of the interference channel. Rather, the transmit power is evenly distributed 
across all the modes of the system, leading to a maximum rate of bits per two dimensions. 
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1 log 1
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⎝ ⎠
∑  (2.12) 

We call this quantity the mutual information of the channel rather than the capacity because 
the information rate is not optimized at the transmitter via water pouring. 

In this scenario, the communication system depicted in Fig. 2.5 can no longer be used, and 
creating parallel; rather, interference must be dealt with at the receiver. The optimal receiver in a 
probability of error sense uses a maximum-likelihood (ML) or maximum a posteriori (MAP) 
algorithm that treats the encoder and the interference channel as a single product code and 
performs joint detection and decoding, shown in Fig. 2.6. Though jointly optimal, the complexity 
of such a system is usually determined by the product of the complexities of the optimal detector 
for the corresponding uncoded system and the optimal decoder for the corresponding AWGN 
channel. Thus, the complexity of such a system is prohibitive. 

A classical suboptimal solution is to separate the problems of detection and decoding as 
shown in Fig. 2.7. The detector should be designed so that the cascade of the interference channel 
and the detector appears like an AWGN channel, so the complexity of the detector is no different 
than for uncoded data. 
 

 
Figure 2.6: Optimal joint detection and decoding. 
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Figure 2.7: Classic suboptimal separation of detection and decoding. 

 
However, it is more difficult to make the cascade of the channel and the detector look like an 

AWGN channel than it is for the cascade of a transmitter pre-canceller and the channel to look 
like one, because noise from the channel can be amplified or enhanced by the detector. 
Nevertheless, assuming that the detector is designed well, coding and decoding schemes for 
AWGN channels can be used, so the complexity of the decoder is the same as if there were no 
interference in the channel. The result is that the overall complexity is the sum, rather than the 
product, of the complexities of the individual components. 

It is this scenario of the three for which techniques to approach the theoretical limits are least 
developed. This thesis presents practical schemes with low complexity to approach the mutual 
information of an interference channel without channel knowledge at the transmitter. Before we 
review some classical detectors, let us gain some insight by comparing the theoretical 
information limits of the three communication scenarios presented. 

 
 

2.2.3 A Comparison of Maximum Information Rates 
 

We now compare the maximum achievable rates of different communication scenarios at the 
same received SNR, as defined in (2.6). To facilitate the comparison, we assume that 

2

1

N
kF k

H λ
=

=∑ is normalized to N, the number of columns in H, so that the symbol energy sε and 

the noise variance are also fixed. When the transmit power is equally distributed amongst the 
modes, the interference channel cannot have a mutual information greater than the corresponding 
AWGN channel with equivalent SNR. We can see this from the concavity of the log function: 
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"where we have used the normalization of 2

F
H , and the rates are per two dimensions. At low 

SNR, however, we can show that int AWGNI C≈ using the approximation ( )ln 1 :α α+ ≈ " 
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At high SNR, the rate loss from Cint to Iint due to the absence of water pouring is negligible 
because the capacity-achieving allotment of transmit power to the various modes is 
asymptotically equal. The term “high SNR” is relative in this context, because not only does the 
total transmit power need to be high, but the amount allocated to each mode must be high as well. 
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Thus, for Cint and Iint to be approximately equal, a channel with a few small modes requires a 
higher SNR than a channel with no small modes. At low SNR, however, the capacity Cint of an 
interference channel can substantially exceed both the mutual information without water pouring 
Iint and the capacity of the AWGN channel CAWGN even with the normalization of 2

F
H . 

Intuitively, transmit power is selectively loaded onto channel modes that can support the highest 
rates. 

 
Figure 2.8 compares andintC intI for the three-tap ISI channel with impulse response to AWGNC . 

 1 20.5 0.707 0.5i i ih iδ δ δ− −= + +  (2.15) 

As noted earlier, the capacity of an ISI channel exceeds that of the corresponding AWGN 
channel at low SNR, since transmit power can be loaded onto favourable frequencies. If water 
pouring is not available, then at low SNR the mutual information of the random ISI channel 
approaches the capacity of the corresponding AWGN channel. At high SNR, the capacity of the 
ISI channel becomes less than the AWGN channel capacity, and also the effect of water pouring 
becomes negligible. The asymptotic slopes of all three curves are equal, implying that the penalty 
of an interference channel is only a fixed rate loss. 

   
Figure 2.8: Information rates for the three-tap ISI channel of (2.15). 
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Chapter 3 
Classical Detection Schemes 
 
 

There are a variety of detectors that can be used in the scenario of Fig. 2.7, and in this section 
we discuss some of the most common. We begin with the maximum-likelihood (ML) detector, 
which minimizes the probability of vector detection error and can be considered optimal. The rest 
of the detectors presented in this section are designed to offer an approximate solution to ML 
detection with lower complexity. While the extent to which these suboptimal detectors trade off 
accuracy with complexity varies, they all share the idea that the effect of H should be explicitly 
“cancelled” or “undone” so that the decision device can treat the channel as an AWGN channel. 
In the special case of an uncoded system, the detection problem can be decoupled and processed 
by a simple symbol-by-symbol decision device. 

Before we review these classical detectors, it is useful to establish a way by which we can 
compare detector performance. Although practical communication systems typically use coded 
transmission, we will compare detectors based on their performance for uncoded transmission, 
i.e., each component of X contains independent data and is equiprobably chosen from a finite 
set χ , and so NX χ∈ . Since detectors typically treat coded data as if it were uncoded, focusing on 
uncoded systems allows us to isolate the quality of the detector from the quality of the decoder. 

The bit error rate for a coded system, defined as the probability that a component of X̂ is not 
equal to the corresponding component of NX χ∈ , is the measure that we use in this thesis when 
specifically talking about detector performance. We use this metric for several reasons. First, the 
ML detector, which minimizes the probability of vector detection error, has a bit error rate that is 
almost identical at high signal-to-noise ratio (SNR) to the detector that minimizes bit error 
probability [10]. Thus asymptotically, the ML detector provides a useful lower bound to the bit 
error rate of any detector. Second, looking at bit errors is equivalent to computing the Hamming 
distance between and , which gives a measure of closeness of the detected vector to the 
transmitted vector. Since the ML vector is closest to X on average, we can infer how close the 
solutions provided by other detectors are to the optimal solution. Third, since suboptimal 
detectors typically attempt to decouple the detection of coded symbols by using a symbol-by-
symbol minimum-distance decision device or slicer, using the bit error rate is intuitive. Fourth, 
codes are often characterized by the number of bit errors in a codeword that can be corrected. In a 
system that performs detection followed by decoding, a low bit error rate after detection is 
desirable for good overall performance of the system.  

x x̂

In this chapter, we present and remind some classical detection schemes which have be 
presented in the literature and some books but here we grouped them in a single chapter to 
facilitate the introduction of turbo equalization done in the next chapter. 
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3.1 ML Detection 
 

Since all vectors x are equally likely, the detector that minimizes the probability of vector 
detection error is the ML detector: 
 ( )ˆ arg max .

NX
X f R X

χ∈
=  (3.1) 

Since the noise is independent of X, uncorrelated and Gaussian, (3.1) simplifies to the minimum-
distance rule depicted in Figure 3.1. 
 ˆ arg min ,

NX
X R HX

χ∈
= −  (3.2) 

 
Thus, the detector computes the most likely vector X based on knowledge of R, H, and the 

distribution of W. The set of all possible uncoded vectors Nχ can be represented in N-dimensional 
Euclidean space as the points of a (shifted) orthogonal lattice bounded within an N- dimensional 
cube, The set of possible vectors is depicted in Fig. 3.2(a) for N = 2. 

 

Transmitter Channel Maximum-Likelihood

 
Figure 3.1: Maximum-Likelihood (ML) detection. 

                 
Figure 3.2: (a) Bounded lattice representing the uncoded set of vectors 2χ .  

(b) Corresponding decision regions for the AWG channel. 
 
In the special case of an AWGN channel, our model becomes R = X + W, and so R is a noise-
perturbed version of X. The minimum-distance rule (1.18) simplifies to 

 ˆ arg min .
NX

X R X
χ∈

= −  (3.3) 

( )a

• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

 

H  

W  

arg min NX
R HX

χ∈
−  X  X̂  

( )b

• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
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Since each component of the uncoded vector X affects only the corresponding component of 
R, and since the noise vector is uncorrelated, the ML detector can be decoupled into a set of 
symbol-by-symbol optimizations; i.e., which can be solved using a symbol-by-symbol minimum-
distance decision device or slicer. 

 ˆ arg min
i

i i i
x

x r x
χ∈

= − for 0,1, , 1,i N= −  (3.4) 

The decision regions, corresponding to the values of R for which each of the possible 
decisions is made, are depicted in Fig. 3.2(b). The ability to decouple the ML detector into 
component wise minimizations is indicated by the fact that the boundaries of the decision regions 
form an orthogonal grid. The minimization for each of the N components of X requires the 
comparison of χ differences, so complexity is linear in N. 

 
Figure 3.3: (a) Bounded lattice representing all possible vectors Hx for an interference channel.  

(b) Corresponding decision regions 
 

In the general case in which linear interference is present, we have that R = HX+W, and the 
ML vector detector of (3.2) generally cannot be decomposed into N smaller problems. We can see 
this by first recognizing that the action of H on the set of all possible uncoded vectors NX χ∈ is 
to map the points of the bounded orthogonal lattice in Fig. 3.2(a) to the points of a bounded 
lattice with generators along the directions of the columns of H, like the bounded lattice in Fig. 
3.3(a). The decision regions of (3.2) are now generally polytopes as shown in Fig. 3.3(b), and 
decoupling of the problem is no longer possible. 

The minimization of (3.2) requires the comparison of Nχ differences, so complexity is 
exponential in N. In fact, the least-squares integer program in (3.2) for general H matrices has 
been shown to be nondeterministic polynomial-time hard (NP-hard) [50]. In the ISI channel case, 
ML detection can be performed using a dynamic programming algorithm known as the Viterbi 
algorithm [10], which has complexity proportional to Lχ where L is length of the channel 

impulse response. If L or χ is large, then ML detection is still complex. 

The high complexity of the ML detector has invariably precluded its use in practice, so lower-
complexity detectors that provide approximate solutions to (3.2) are used, which we review in the 
next section. 
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3.2 Linear Detection 
 

As depicted in Fig. 3.4, linear detectors take the received vector R and pre-multiply it by a 
matrix †B . The resulting product, X , is passed to a minimum-distance symbol-by-symbol slicer 
to produce . The matrix B can be optimized using different criteria, but two of the most popular 
are the zero-forcing (ZF) criterion and the minimum mean-squared error (MMSE) criterion. 

x̂

Channel Linear DetectorTransmitter 

 
Figure 3.4: Linear Detection. 

The ZF criterion, also known as the interference-nulling criterion, chooses B to completely 
eliminate interference in X , while the MMSE criterion chooses B to minimize the variance 
of X X− . The main disadvantage of this low-complexity class of detectors is that they perform 
quite poorly in a symbol-error rate sense because the matrix †B enhances the variance of the noise 
components in W and also makes the difference vector X X− correlated. These problems are 
more severe when the ZF criterion is used, but are present nevertheless for the entire class of 
detectors. 

Shnidman [46] considered the problem of eliminating interference in a multi-user context 
very early on. The MMSE linear detector for CDMA systems was first described by Xie et al. [51] 
and Madhow and Honig [43]. Tufts [48] derived the ZF and MMSE linear detectors for the ISI 
channel case, known in that context as linear equalizers. 
 
3.2.1 Whitening Matched Filter 
 

The conventional data estimator consists of a bank of matched filters. In the case of correlated 
noise, the conventional data estimator is extended by a pre-whitening filter. We will discuss in 
this section about whitening matched filter (WMF), i.e., a combination of pre-whitening and 
matched filters followed by symbol rate samplers. Although the WMF treats ISI and MAI as 
noise, it is introduced here, because all techniques presented in the following can be interpreted 
as an extension of the WMF, where the noise is de-correlated or pre-whitened, and then the pre-
whitened signal is fed into filters matched to the response of the pre-whitening filter to the 
sequence. The structure of the WMF is shown in Fig. 3.5. 

 
Figure 3.5: Structure of WMF. 
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Noise whitening followed by matched filtering is only close to the optimum if the ISI and 
MAI components are negligible, which is the case for large spreading factors and orthogonal 
signature sequences, this implies low spectral efficiency. 

In the following, detection strategies are presented that lead to considerable performance 
improvements over the WMF and the conventional data estimator. 
 
 
3.2.2 Zero-Forcing Block Linear Equalizer 
 

The zero-forcing block linear equalizer (ZF-BLE) investigated in past research and 
minimizing the quadratic form leads to a continuous valued unbiased estimate. 

The equalizer leading to the estimate is termed zero forcing since it totally eliminates ISI and 
MAI, irrespective of the noise level. The ZF-BLE can be interpreted as an extension of the 
whitening matched filter described in section 3.2.1 by a whitening filter and an ISI and MAI 
eliminator. If no ISI is present, the ZF-BLE turns into the de-correlating detector. The structure of 
the ZF-BLE is shown in Fig. 3.6. 

 

 
Figure 3.6: Structure of the ZF-BLE. 

 
 

3.2.3 Minimum-Mean-Square Error Block Linear Equalizer 
 

The minimum mean square error block linear equalizer (MMSE-BLE) minimizes the 
quadratic error and leads to a continuous valued estimate, the MMSE-BLE can be interpreted as 
an extension of the ZF-BLE described in section 3.2.2 by a wiener estimator, which reduces the 
performance degradation of the ZF-BLE resulting from the fact that the decisions do not take into 
account the noise correlations existing in the decision variables. The term of Wiener estimator 
observe the ZF-BLE output, it produces an MMSE estimate. 

By the factor of Wiener, the desired symbols on the one hand and the ISI, MAI, and noise 
terms on the other hand, are de-correlated. The structure of the MMSE-BLE is depicted in Fig. 
3.7. 

 
Figure 3.7: Structure of the MMSE-BLE. 

 
For , the MMSE-BLE approaches the ZF-BLE, and for , the MMSE-BLE 
approaches the WMF. 
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3.3 Decision-Feedback Detection 
 

The decision-feedback detector builds upon the linear detector by combining it with a 
nonlinear feedback loop, pictured in Fig. 3.8. As before, the received vector R is pre-multiplied 
by †B , but rather than making minimum-distance symbol-by-symbol slicer decisions on the 
entire output vector, decisions are made sequentially, one component at a time. To begin, the first 
component of †B R, denoted 1x , is processed by the slicer to produce the detected symbol 1̂x . 
Assuming that 1̂x is equal to 1x , the feedback loop is used to subtract off the interference caused 
by 1x from the remaining components of †B R. The second component of the resulting interference-
reduced vector, denoted 2x , is then processed by the slicer to produce 2x̂ . Assuming that 2x̂ is a 
correct decision, the interference caused by 2x is subtracted from the remaining components 
of †B R, and the process continues until decisions all the components have been made.  

Transmitter Channel Decision-Feedback Detector

 
Figure 3.8: Decision Feedback detection. 

 
As with the linear detector, the ZF and MMSE criteria are popular. Though decision-feedback 

detectors usually perform better than linear detectors, they still have some serious shortcomings. 
First, noise enhancement is still an issue, though the situation is not as bad as with linear 
detection. Second, decisions are made sequentially at the slicer and so are used to improve only 
future decisions, not past ones. Third, the sequential nature of the decision device means that in 
practice, incorrect decisions can lead to further incorrect decisions, a phenomenon known as 
error propagation. Moreover, since the matrices B and D used in decision-feedback detection are 
often optimized under the faulty assumption of no error propagation, there may be some 
mismatch between the desired optimization criterion and the matrices that are used. Fourth, the 
sequential structure of the decision-feedback detector makes it essentially incompatible for use 
with ISI channels in conjunction with channel coding (on channels not known at the transmitter, 
as is the case of interest in this thesis). As a result, use of the decision-feedback equalizer has 
been largely restricted to uncoded systems. 

The idea of feeding back decisions to mitigate the effects of interference for future symbols 
was first used by Austin [32] in the context of ISI channels. Duel-Hallen [35] introduced the idea 
to CDMA systems, while Foschini [36] brought the idea to multiple antenna systems via the Bell 
Labs Layered Space-Time (BLAST) detection algorithm. 
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3.3.1 Zero-Forcing Block Decision Feedback Equalizer 
 

For the description of the zero-forcing block decision feedback equalizer (ZF-BDFE), the 
modified received sequence is introduced [31]. Then the decisions are made according to the 
recursive formula. In the case of coded transmission, it would possible to generate soft inputs for 
the decoder by using the quantized estimates for decision feedback and the continuous valued 
estimates before quantization for decoding, possibly together with some channel state 
information. Subtracting all past decisions from the new estimate, and the estimation can be 
converging if all past decisions are near to right solution. The structure of the ZF-BDFE is 
depicted in Fig. 3.9. It is shown that the ZF-BDFE is equivalent to a noise cancelling detector. If 
continuous valued estimates of uk, are fed back, which are obtained by omitting threshold 
detection, the ZF-BDFE turns into the ZF-BLE.  

 
Figure 3.9: Structure of the ZF-BDFE. 

 
 
3.3.2 Minimum-Mean-Square Error Block Decision Feedback Equalizer 
 

For the description of the minimum mean square error block decision feedback equalizer 
(MMSE-BDFE), the Cholesky decomposition is defined in [31]. The way of deciding and 
subtracting past decisions is the same as described in section III.3.1. The structure of the MMSE-
BDFE is the same as that of the ZF-BDFE in Fig. 3.9 if the matrix of the whitening filter is 
changed. 

 
 
3.4 Multistage Detection 
 

In an attempt to symmetrize the problem of being able to cancel only future symbols in 
decision-feedback detectors, multistage detectors process the received vector in block iterations. 
In some sense, multistage detectors can be thought of as parallel processors, whereas decision-
feedback detectors are sequential processors. An example of a multistage detector is shown in Fig. 
3.10. During the first iteration, the vector R is pre-multiplied by the matched filter to 
produce

†H
( )1X , which is then sent to the slicer to generate a first set of tentative decisions ( )1X̂ on all 

the symbols. During the second iteration, the vector R is again pre-multiplied by the matched 
filter , but before the result is sent to the slicer, an exact replica of the interference is created 
and subtracted off assuming

†H
( )1X̂ is a correct set of decisions. The slicer then takes the resulting 

Whitening 
matched 

Whitening 
filters 

Threshold scaling detector 

Feedback 
operator ZF-BDFE 

_____________________________________________________________________________________________________________________ 

 



24                                                                                 Classical Detection Schemes 
 

vector ( )2X , and generates a second set of tentative decisions ( )2X̂ . Further sets of tentative 
decisions ( )lX are generated in the same manner, using the tentative decisions of the previous 
iteration ( )1lX − to subtract off interference. After a sufficient number of iterations, the most recent 
tentative decisions are taken as the final decisions. The two matrices in this example are fixed 
during each iteration, and are optimized to maximize the signal-to-interference + noise ratio 
(SINR) at the slicer input assuming correct tentative decisions. In general, the class of multistage 
detectors includes detectors with the same structure as in Fig. 3.10 but with alternative pairs of 
matrices that may change with each iteration. The problem with multistage detectors is that the 
decisions typically do not converge to the optimum ones, and limit cycles and divergence are 
possible. The reason for the poor performance of the multistage detector in Fig. 3.10 is that, like 
decision-feedback detectors, the two matrices are optimized assuming correct decisions are made 
at each iteration. Using this faulty assumption causes the incorrect quantities to be subtracted off 
as interference, which leads to the propagation of errors from iteration to iteration. 

Gersho and Lim [39] developed multistage detectors for the ISI channel case, and Varanasi 
and Aazhang [49] later introduced them for the CDMA system case. 
 

Transmitter Channel Multistage Detector 

 
Figure 3.10: A multistage detector. 

 
3.4.1 Interference Canceller 
 

In order to reduce the turbo equalization complexity, the MAP detector can be 
advantageously replaced by an ISI canceller. This new receiver makes it possible to almost 
completely overcome ISI over time invariant and/or time varying Rayleigh channels for high 
spectral efficiency modulations. Fig. 3.11 depicts the interference canceller structure, consisting 
of two transversal filters fed by the received samples and the data, respectively, estimated from 
the previous iteration. 

 
Figure 3.11: Interference Cancellation Structure. 

For each iteration, the interference canceller is updated according to a criterion; we will 
describe here the optimal IC and adaptive IC.  
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3.4.2 Mean square error 
 

The mean square error (MSE) criterion is defined as MSE = E{|sk-uk|²}, where the superscript 
p has been dropped for convenience. 

In order to determine the optimum IC, it is necessary to assume that the symbols ( )kk dd =ˆ  
are known. With the constraint for the central coefficient of the filter Q(f) having to be equal to 
zero (qo = 0), it can be shown that the IC optimum filters have the following transfer function: 

 ( ) ( )*
2

00

L
j flT

loptimal
l

H f
P f p e

hh
πβ −

=

= =∑  (3.5) 

 ( )
( ) 2

2

0

1
L

j flT
loptimal

l L

H f
Q f q e

hh
πβ −

=−

⎛ ⎞
⎜ ⎟= − =
⎜ ⎟
⎝ ⎠

∑  (3.6) 

Where H(f) is the transfer function of the channel, hho the auto-correlation channel function, 
β the weighting coefficient, is equal to 

 
( )

2
0

2 2
0

u

u w

hh
hh
σβ

σ σ
=

+
 (3.7) 

And lp and are the coefficients of filters P(f) and Q(f), respectively. lq
 
Thus, the IC output is ISI-free and equal to  
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k k l k
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⎛ ⎞
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With the output MSE given by  
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 (3.9) 

And the SNR at the IC output is equal to  

 
2

0
2

u
optimal

w

hhSNR σ
σ

=  (3.10) 

It clearly that ISI is completely removed by the IC, without noise enhancement. 

Transmitted symbols uk are generally unknown by the receiver and the IC is sub-optimum 
because Q(f) is fed in by estimated symbols instead of transmitted symbols. This sub-optimality 
is taken into account in an adaptive way to adjust the IC coefficients. So, at the first iteration (p = 
1), the estimated symbols are equal to zero and the IC approximates the MMSE linear equalizer. 
After several iterations (p > 1), the probability of the estimated symbols is expected to be right 
and the adaptive IC is close to the optimum IC defined by the transfer function (3.5) and (3.6). 
 
 
 
3.4.3 Adaptive Interference cancellation 
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Adaptive algorithms such as least mean square (LMS) or recursive least square (RLS) can be 
used for updating equalizer parameters. These algorithms minimize the MSE. In general, they 
require an initial or even periodic data sequence (training sequence) known by the receiver to 
ensure the convergence of the algorithms. Once convergence is established, the algorithms are 
decision-directed and minimize the estimated MSE given by { }2ˆˆ

kk usEESM −=  where  is a 
tentative decision taken at the equalizer output. 

kû

For each iteration, the equalizer structure is depicted in Fig. 3.11. Output channel sequence 
Yk and estimated symbols sequence provided by the channel decoder output of the previous 
iteration feed the equalizer (IC). The IC output is given by  

kÛ

  (3.11) ˆT T
k k k ks P R Q U= − k

2−Where and
1 1

T

k k L k k LR r r r+ −⎡ ⎤= ⎣ ⎦ 2
ˆ ˆ ˆ ˆ

T

k k L k k LU u u u+⎡ ⎤= ⎣ ⎦ are the received samples vector and 

the estimated mean values vector, respectively. ( ) ( ) (
1 10ˆ ˆ ˆk L LP p k p k p k− )⎡ ⎤= ⎣ ⎦  

and are the equalizer parameters vector corresponding to filters 
P(f) and Q(f), respectively. L

( ) ( ) ( )
2 0ˆ ˆ ˆk L LQ q k q k q k−⎡= ⎣ 2

⎤⎦
1 and L2 are appropriate values greater or equal to L. T denotes the 

transposition. 

For a time invariant channel, the LMS algorithm is used for all iterations (p ≥ 1) and 
initialized by a training sequence at the beginning of the transmission. Corresponding update 
equations are given by  
 ( )*

1 ˆk k k kP P R s uµ+ = − − k  (3.12) 

 ( )*
1

ˆ ˆk k k kQ Q U s uµ+ = + − k  (3.13) 
Where µ is an appropriate step size. 

For a time varying channel, the RLS algorithm is used for all iterations (p ≥ 1) and data aided 
by a periodic training sequence. At the first iteration (p = 1), the estimated symbols are unknown 
and the IC is a purely adaptive transversal filter. For the other iterations (p > 1) and from relations 
(3.5) and (3.6), the equalizer coefficients lp and can be calculated with lq
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The advantage of this approach is to have a smaller number of taps to be adjusted in order to 
enable the algorithm to follow channel fluctuation rapidly. However, this approach does not take 
into account the sub-optimality of IC during the very first iterations. 

Furthermore, when a frequency offset exists between the transmitter and the receiver 
oscillators, the equalizer can integrate a phase-locked loop (PLL). 
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Chapter 4 
Turbo Equalization – Tutorial 
 
 

The introduction of concatenated error correction codes and decoding theory (turbo codes) in 
the field of communications has enabled information transmission rates that closely approach 
Shannon's theoretical limits. This chapter begins with an explanation of turbo coding theory. It 
then shows how the turbo scheme can be modified to develop a "turbo equalizer" to equalize the 
output from an inter-symbol interference (ISI) channel. Next the necessary modifications of a 
turbo equalizer to allow adaptation to a time-varying ISI channel are described and the issue of 
receiver complexity is discussed. 
 
 
4.1 Turbo Coding 
 

Turbo coding involves the concatenation of two convolutional encoders separated by an 
interleaver. The "turbo" principle refers to the iterative decoding of the complex code generated. 
Each constituent code is decoded separately, but with the benefit of a limited amount of 
information learned from the other code during previous iterations. This separation enables 
efficient, near optimal decoding. Each code is decoded at the receiver by a four-port device 
known as a soft-input soft-output (SISO) decoder. A firm appreciation of the SISO module is the 
key to understanding how turbo codes are decoded. 

This presentation of turbo coding theory develops a detailed notation that represents an 
expansion, combination, and clarification of conventions taken from the literature. It is based on 
notations primarily used at two labs, Benedetto et al. at the Jet Propulsion Laboratory [2] and 
Hagenauer et al. at The Technical University of Munich [3]. 
 
 
4.1.1 SISO 
 

When a block of encoded information is transmitted over a channel with additive white 
Gaussian noise (AWGN), information about the kth symbol of the transmitted sequence has three 
independent sources. 

1. The received value of the kth symbol. 
2. A priori information about the symbol sent in the kth position. 
3. Information about the kth symbol that resides in all other received symbols within the 

block by virtue of the error correction coding done prior to transmission. 
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These three sources of information are referred to as intrinsic, a priori, and extrinsic 

information respectively. 

The four-port SISO module, illustrate in Fig. 4.1, receives Observation and intrinsic as inputs 
and returns extrinsic information and the a posteriori probabilities about the encoded information 
words that were sent through the channel. One input receives a sequence of independent 
probabilities of transmitted code words based on the channel outputs, named observations and 
designated "Obs". The other input is the a priori probabilities of information words, "Int". The 
two outputs are a sequence of probabilities of the information words ("Ext" and "APP") from the 
corresponding encoder. These probabilities can be generated using the SISO's knowledge of the 
encoding algorithm. For descriptive purposes these four ports are referred to as the observation 
for the received words and intrinsic, a posteriori and extrinsic for the uncoded words respectively. 
 

 Obs APP
SISO 

Int Ext
 

 Figure 4.1: Block diagram of a SISO module. 
 

A SISO can be implemented with a variety of algorithms as long as the encoder can be 
represented as a trellis. The following description of a trellis is established to facilitate 
explanation of the function of a SISO module. The encoders used in turbo coding are systematic 
convolutional encoders that accept as input, a sequential block of K information words 
designated u. The information words are comprised of small groups of ks symbols. The 
information symbols are drawn from an alphabet of size NI. The encoder generates a sequence of 
K parity words p, with ps parity symbols belonged to an alphabet also of size NI. Since the codes 
are systematic the output of the encoder is the sequence of code words, c, that are assembled from 
u and p. Thus, the kth codeword of c contains ns=ks+ps symbols and can be viewed in three 
equivalent forms. 
 [ ] ,1 , ,1 , ,1 ,2 ,s sk k k k k k k k p k k k nc u p u u p p c c c⎡ ⎤ ⎡= = =⎣ ⎦ ⎣ s

⎤⎦  (4.1) 
The rate of the resulting code is ks/ns. 
 
A section of the encoder trellis can be represented by two sets of N states {s0, s1, s2, ..., sN-1} 
interconnected by sk

IN N× edges (Fig. 4.2). An edge, ek, connects the state of the encoder, sk-1, at 
time k-1 to the state, sk, at time k. 
 
The following four functions are associated with each edge, ek, at time k. 
 

1. The starting state sS(ek). 
2. The ending state sE(ek). 
3. The input information word u(ek). 
4. The output codeword c(ek). 

 
If the encoder is in state sk-1= sS(ek), an input of uk = u(ek) results in a transition to state sk = sE(ek) 
along edge ek in association with the generation of the codeword ck = c(ek). 
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The number of states and the edge functions above depend on the characteristics of the 
particular encoder implemented. Given an initial trellis state, there is a one-to one correspondence 
between the sequence of edges traversed and each of the three sequences described by the input u, 
the coded output c, and the sequence of states occupied. 

In this implementation, the SISO uses an optimal decoding algorithm that computes the 
maximum a posteriori probability of an information word at each time k given the entire received 
sequence of symbols, P{uk/r}. 

                          
Figure 4.2: Section of encoder trellis. 

 
This trellis decoding algorithm was first described by Bahl et al.[4] in 1974 and is referred to as 

the BCJR algorithm. Once these probabilities are known, the algorithm selects the word uk that has 
the maximum P{uk/r} as output. The algorithm initially calculates probabilities of transitions along 
each edge given the matched filter output vector y, i.e. P{ek/r}. Note that the desired quantity,  

 { } { }
{ }

,k
k

P e r
P e r

P r
=  (4.2) 

Since the term P{r} is constant for all edges it does not influence the final decision and may be 
dropped without any loss of performance. It is convenient to derive P{ek,r} and assume that the 
appropriate integral has been done where probabilities of continuous data are expressed. 

The encoder is initialized to state zero and forced to return to state zero at the end of the input 
sequence by calculating and appending a short string of additional input symbols. 

It is worthwhile taking advantage of the monotonic nature of the logarithm function and refer 
to natural logarithm of probabilities. This improves decoder execution speed, as will be shown 
later, but more importantly for the moment, it leads to improved clarity in illustrating the rest of 
the SISO algorithm and the interaction of the two SISOs within a turbo decoding scheme. 

A SISO module has two inputs, Obs(rk), the probabilities of the codewords given the 
observable information received, and Int(uk) the intrinsic information about the encoder input 
words. The SISO takes these two sources of information about the encoded sequence, and using 
its knowledge of the encoder trellis, the SISO uses the BCJR algorithm to generate the quantities, 
P(uk,r). The difference between the information generated by the BCJR algorithm and the 
information provided to the SISO defines the extrinsic information contained within the code. 
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APP(uk) represent information about words uk, that resides in all of the received sequence 
excluding the kth word; information that is present by virtue of the trellis constraints imparted by 
the corresponding encoder. The two quantities Ext(u) and APP(u) are the output of the SISO 
module. 

The description of SISO function has been developed with inputs consisting of a vector of 
word likelihoods. If each vector element is replaced by a row of symbol likelihoods at the SISO 
inputs, as can be done when symbol transmissions are independent, extrinsic information for 
individual symbols can be calculated by the SISO. 

 
 

4.1.2 Turbo Code in Parallel Concatenated Configuration 
 

In turbo code two convolutional codes can be concatenated in a serial or parallel fashion. The 
code words are broken into their individual symbols before being transmitted. 

Initially we will describe a parallel concatenated convolutional code (PCCC) as illustrated in 
Fig. 4.3 (encoder) and 4.4 (decoder). The encoders are labeled code 1 and code 2, but the 
constituent code used may or may not differ. The information words to be transmitted are in 
vector, u, of length K.  

The first encoder generates K parity words p1 ( )1 1
k k kc u p⎡ ⎤= ⎣ ⎦ . Prior to input in the second 

encoder, u is shuffled by the pseudo-random interleaver, Π , to form uπ. The interleaver is 
generated with a random generator, but the interleaver performs an invertible operation. The 
receiver has the knowledge required to interleave and de-interleave at will. The second encoder 
operates on uπ and produces K parity words, p2 ( )2 2

k k kc u pπ⎡ ⎤= ⎣ ⎦ . 

However, only minimal coding gains arise from sending both copies of the redundant 
information u and uπ. Thus the code words transmitted as the vector x, of length K, are formed 
from c1 and part of c2 as follows 1 2

k k k kx u p p⎡ ⎤= ⎣ ⎦ .  

The code words x are transmitted one symbol at a time and the channel output r, is presented 
to the decoder of Fig. 4.4. For clarity of presentation it is helpful to consider operators P(.), Obs(.), 
Int(.), APP(.), and Ext(.) as casting the probabilities as a matrix when given a vector argument. 
The matrix size is K by ns where K is the length of the vector and ns is the number of symbols in 
the codewords that comprise the vector argument. Although the rows of Obs(r) are ns elements in 
length. 

 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2

,1 , ,1 , ,1 ,s sk k k k k k k k k kObs r Obs u Obs u Obs p Obs p Obs p Obs p⎡ ⎤= ⎣ ⎦
2

s
 (4.4) 

 ( ) ( ) ( )1( )Obs r Obs u Obs p Obs p2⎡ ⎤= ⎣ ⎦  (4.5) 

Given knowledge of the interleaver, the appropriate columns of Obs(r) can be selected and 
manipulated to give correctly ordered symbol probabilities for each SISO. The channel 
probability inputs to the two SISOs are designated Obs(r1) and Obs(r2). For the first SISO 
decoder ( ) ( ) ( ) ( )1 1Obs r Obs c Obs u Obs p⎡≈ = ⎣

1 ⎤
⎦ . The second SISO decoder requires interleaved 

_____________________________________________________________________________________________________________________ 

 



Turbo Equalization – Tutorial                                                                                                        31 

information symbol Probabilities so the probabilities Obs(u) are first interleaved to form Obs(uπ), 
then ( ) ( ) ( ) ( )2 2Obs r Obs c Obs u Obs pπ⎡ ⎤≈ = ⎣ ⎦

2 . 

 
Figure 4.3: PCCC Encoder 

 
In Fig. 4.4 Int(u) represents intrinsic information about u. The a priori input to the first SISO 

is initialized with Int1(u) = Ext2(u) = ½. Once these SISO inputs are formed, the BCJR algorithm 
is executed within SISO 1. The Extrinsic output of the first SISO Ext1(u) is interleaved and used 
as input to the second SISO as Int2(uπ). Ext1(u) is information that resides in the first code, and is 
independent of the channel observations and the encoded information in code 2. Therefore it is 
valid a priori information to give to the second SISO. Alternatively the output of the second SISO 
Ext2(u), information encoded by code 2, is independent of encoded information in code 1, so it is 
valid a priori information, after de-interleaving, to form Int1(u) before executing SISO 1 a second 
time. This algorithm can be executed iteratively. 

As this process iterates the decoding decisions gradually improve, but the extrinsic 
information from each SISO slowly lose their independence from one another and rate of 
improvement in decoding with each iteration soon slows and eventually ceases. 

 

 
Figure 4.4: PCCC Decoder 
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4.1.3 Turbo Code in Serial Concatenated Configuration 
 

Serial concatenated convolutional codes (SCCC) are more easily grasped after the discussion 
of the parallel case above. Fig. 4.5 and 4.6 show block diagram of a serial concatenated encoder 
and decoder respectively. The components in the figures perform the same functions as in the 
parallel case although the interconnections differ in the serial case. The first and second 
constituent codes of the encoder are often referred to as the outer and inner codes, respectively. 
This terminology arises because it avoids referring to encoders and SISOs by number. The later 
practice is confusing because the inner code (code 2) is decoded first at the receiver. 

In the transmitter, note that the entire codeword of the outer encoder is interleaved to form the 
input to the inner encoder, u2 = cπ, and the output of the inner encoder c2 = x, is the vector used to 
modulate the signal for transmission. The encoders work exactly as in the parallel 

case. ( )( )1 1 1 2 2 2 2 1, ,"k k k k k k kc u p c x u p u c
π

⎡ ⎤ ⎡ ⎤= = = =⎣ ⎦ ⎣ ⎦ . "

 
Figure 4.5: SCCC Encoder 

 
In the serial decoder as in the parallel case, probabilities Obs(r) are formed from the received 

signal r. For the inner SISO the entire Obs(r) is used as input. ( ) ( ) ( )( )2 2 2Obs r Obs u Obs p⎡ ⎤= ⎣ ⎦ . 

For Obs(r1), the observation input to the outer SISO, a component of information comes from the 
channel and another comes from the inner SISO. The channel component is formed by taking 
Obs((c1)π)  from Obs(r) and de-interleaving to form ( ) ( ) ( )( )1 1Obs c Obs u Obs p1⎡ ⎤= ⎣ ⎦ . 

The inner SISO, contributes Ext(u2) = Int(u1)π) which is de-interleaved to form Int(u1). 

Note that, this differs from the parallel case where the observation SISO input comes entirely 
from the channel. 

 
Figure 4.6: SCCC Decoder. 

 
Extrinsic information about the information words from the outer SISO, Ext(u1), correspond 

after interleaving to independent information about the words u2 and is thus suitable as intrinsic 
inputs to the inner SISO. Iteration around the loop will initially improve overall decoding 
accuracy, but improvement eventually ceases. Stopping criteria based on cross entropy are 
similar to the parallel case. 
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4.2 Turbo Equalization 
 
4.2.1 Turbo equalization - Principle  
 

Equalization involves compensating for receptions over multiple transmission paths. This 
section describes modification of a turbo code to equalize data received over an ISI channel. Note, 
we should know that the outer encoder can be a turbo code. 

An ISI channel is most commonly modelled by a tap delay line as shown in Fig. 4.7. In the 
figure, the M channel coefficients, hm, and Gaussian noise, nk, are complex. The input u is a real 
sequence of symbols of alphabet size NI and the output vector y is complex. Given the input u the 
ISI channel can be considered to be in one of the states that are characterized by the past M-1 
symbols sent into the channel. 

This channel model is readily adapted to the trellis model that was introduced in Fig.4.2. The 
same BCJR algorithm employed in the SISO module can be used to decode the channel. The two 
key quantities to determine are P{uk}, the a priori probability of each input symbol and P{rk/ek}, 
the probability of receiving the value rk given the current and past M-1 channels inputs. If it is 
assumed the channel impulse response is known, at each time k, it is expected that the channel 
will produce the codeword ck corrupted by channel noise. Thus P{rk/ek} can be calculated from 
the Gaussian distribution of rk about the symbol associated with the given edge. 

 { } ( )
21

2
22 0

11
221 1 .

2 2

M

m k mkk k m

k k

r h ur c er r r r

k k r r r r
P r e e dr e drσσ

πσ πσ

−

−
=

− −− −+∆ +∆

−∆ −∆

∑
= =∫ ∫  (4.6)                       

Given the terms, P{uk}and P{rk/ek}, the equalization process needs to be integrated into a turbo 
coding scheme. 

The dotted lines in Fig. 4.7 indicates how the ISI channel model can be broken into two parts, 
the first behaving as a convolutional encoder and the second part being a simple AWGN channel. 
Fig. 4.8 shows a block diagram of a serial encoder with the tap delay line functioning as the inner 
encoder and the Gaussian section of the channel taking on its usual role. Fig. 4.9 shows the turbo 
equalizer configuration. Two modifications relative to the SCCC decoder of Fig. 4.6 have been 
made. First, the SISO equalizer that replaces the inner SISO accepts the channel input, r, and 
calculates the channel likelihoods internally. Second the extrinsic outputs are modified. The 
upper output values are not needed so the output is eliminated. The lower output is critical. 

Inside the SISO equalizer, symbol probabilities are calculated, and then the BCJR algorithm 
is executed as in the normal SISO. The decoding decision for the turbo equalizer is made as in the 
SCCC. 

Note that computation of channel likelihoods and execution of the BCJR can be done 
independently, so channel observations could be calculated external to the SISO equalizer in a 
configuration analogous to the SCCC decoder. However, when attempting adaptation to a time 
varying channel the observation calculations are more intimately related to trellis decoding and 
the structure given is required. 
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Figure 4.7: ISI Channel Modelled as Tap Delay Line 

 
 
 

 
Figure 4.8: ISI channel configured as an inner encoder and AWGN channel 

 
 
 

 
Figure 4.9: Turbo Equalization. 
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4.2.2 Turbo equalization – Metrics of performance 
 

A major goal of any communication link is to have reliable communication with a minimized 
signal-to-noise ratio (SNR). A low SNR is typically associated with the benefits of low power 
consumption, small size, and hence portability. While error correction coding schemes such as 
turbo codes make possible dramatic reductions in SNR, these gains are acquired at the price of 
increased complexity at the receiver. The complexity manifests itself by increased power 
consumption at the receiving end, but more importantly it can introduce a significant delay due to 
the time required to decode the received signal. In some applications this latency is acceptable. 
The delay can be minimized by adding hardware decoding circuitry in the receiver. 

To represent reliability of a transmission scheme, the bit error rate (BER) of received data is 
graphed versus SNR. The SNR is expressed in terms of Eb/No, where Eb is the average energy in 
each transmitted bit of information and No/2 is the intensity of the white noise process active on 
the channel. The ratio Eb/No is the signal power-to-noise ration where the power of the noise is 
defined in a bandwidth equivalent to that of the bit rate. This presentation of the reliability is 
common in the literature because it enables establishment of an SNR threshold for a given BER. 
Unfortunately this method is very imprecise at estimating very low BERs (especially BERs at 
SNRs above the SNR threshold) because the error events are so rare and the processing time 
necessary to encounter a significant number of these rare events is very long. The SNR threshold 
is defined at a specified BER, but after the last iteration of decoding, the BER versus Eb/No 
curve is steep. Thus, for a time-invariant ISI channel, the SNR threshold is not very dependent on 
SNR in the BER = 10-5 range. 

Complexity is expressed in terms of the number of additions, multiplications, maximization 
operations, and memory requirements. The rate of growth in the number of these operations when 
decoding increases exponentially with the memory size of the constituent odes of the turbo code. 
In the case of a turbo equalizer the memory size grows with the length of the channel impulse 
response.  
 
 
4.3 Channel Estimation 
 

To conclude with the turbo equalization analysis, the problem of channel knowledge also 
should to be raised and carefully investigated. We propose here at least two methods for re-
estimating the channel coefficients. A significant part of the degradation introduced by 
mismatched channel estimation can be recovered by such re-estimation methods, without 
substantial complexity increase. 
 
 
4.3.1 EM based re-estimation 
 

Most of the previous work, assume that the channel coefficient vector is known at the 
receiver, in practice, channel coefficients are estimated by inserting a known training sequence in 
the transmitted frame. The classical method of correlative channel estimation (pseudo inverse 
method) causes important performance degradation with respect to the perfect channel estimation. 
This gap can be reduced by using more advanced channel estimation techniques, such as the 
expectation-maximization (EM) algorithm, a powerful tool that performs maximum likelihood 
_____________________________________________________________________________________________________________________ 
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(ML) parameter estimation of a doubly stochastic process in an iterative fashion. The Fig. 4.10 
represents the structure of the EM channel re-estimation. 

The optimum ML solution to the problem of channel estimation ˆ
MLh  is obtained by 

maximizing the log likelihood function of the received vector of samples. In most cases, finding 
this solution is practically impossible. However, the EM algorithm provides a feasible solution to 
this optimization problem by iteratively re-estimating the channel coefficients, so that a 
monotonic increase in the likelihood function is guaranteed. It achieves this monotonic increase 
by introducing the following auxiliary function: 

 ( )( ) ( )
1

ˆ log ,p
w

wQ h h E p r h
h

τ ˆ p⎧ ⎫⎛ ⎞= ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 (4.7) 

where ( )ˆ ph is the vector of estimated channel coefficients at the pth iteration of turbo detector and 
w is the so-called complete data that is actually unobservable, but whose knowledge makes the 
estimation easy. Since the complete data w is unknown, its log-likelihood function is a random 
variable, and therefore we maximize the conditional mean of this log-likelihood function given 
the incomplete data (observable) 1r

τ and the set of most recent channel estimates ( )ˆ ph . The 
complexity and the rate of convergence of the algorithm are affected by the choice of the 
complete data w. 

The EM re-estimation sequencing is as follows: during each iteration p of the turbo detector, 
an iteration of the EM algorithm is performed together with the SISO equalization process. This 
EM iteration itself involves a two step procedure: 
 

1) E-step: Compute   ( )( ) ( )
1

ˆ ˆlog ,p p
w

wQ h h E p r h
h

τ⎧ ⎫⎛ ⎞= ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

; 

2) M-step: Solve ( ) ( )( )1ˆ ˆarg maxp p

h
h Q+ = h h  

The new vector of channel coefficients ( )1ˆ ph +  is used by the SISO ISI decoder at iteration p+1 of 
the turbo detector. The expectation operation in the E-step is with respect to the complete data w. 
the performance of the EM algorithm is very sensitive to the choice of the initial estimate ( )0ĥ . 
Therefore, we initialize the algorithm by applying the pseudo-inverse method on the training 
sequence.  

 
Figure 4.10: EM channel re-estimation 
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4.3.2 Bootstrap channel re-estimation 
 

Instead of considering estimated data symbols after the ISI decoder, however, decisions are 
taken after re-interleaving of the decoded sequence, like it is shown in Fig. 4.11. Thus, it benefits 
from time diversity brought by interleaving and from channel decoding efficiency. We now 
describe the sequencing. 
 

1) After re-interleaving of soft outputs produced by the channel decoder, a hard decision is 
taken on each bit of each symbol of sequence. An estimate of useful symbols is then 
available (tail symbols, guard symbols, and training sequence are known a priori). 

2) The matrix system is formed. 
3) A solution minimizing the error probability is well known. 

From the turbo 
detector-equalizer From 

 
Figure 4.11: Bootstrap channel re-estimation. 

 
 
4.4 Interleaving and De-interleaving 
 

The interleaving function allows temporal error sequence distribution to be modified and 
splits the error series. Used generally with time varying channels, the interleaver is an essential 
function of the turbo-equalizer even if the channel is time invariant. Over a severe frequency 
selective channel, the likelihood of the estimated data is weak and the equalizer output presents 
series of errors with large values which perturbed the channel decoder. Due to this, the 
interleaving dimension may be sufficient in comparison with the error sequence length but also in 
comparison with the error value. Some results related to interleaving performance versus 
interleaver size are given in [17]. 

The turbo equalizer represented in Fig. 4.9 can interleave symbols or bits according to the 
position of mapping versus the one of interleaver. The bit-interleaver located between the channel 
encoder and the mapper is often used and gives excellent performance. Nevertheless, it can be 
demonstrated that theoretical bounds for high-order modulation give better performance with a 
symbol-interleaver than a bit-interleaver. 
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4.5 Optimised labelling maps 
   

We propose here to study the influence of mapping over the performance of turbo 
equalization. We show this technique interest to a good choice of mapping. In order to explain 
choice technique, we use two different approaches provided by Ten Brink [27] and Gorokhov 
[29]. 

Gorokhov propose two design criteria for optimization labelling, based on the computing of 
specific distances of constellation. The choice of mapping is then achieved without any notion of 
functioning point. However, these design criteria give preference to asymptotic performances 
than that of iterative process during the convergence, which is not always desirable. 

Ten Brink use mutual information parameters, which allow distinguishing exactly each 
mapping performances, however, the computation of this parameter requests an intensive 
simulation and depends of sight functioning point. 

 
 

4.5.1 The geometrical approach 
 

Let us consider the optimal decoder. In practice, trellis codes are used as forward error 
correction (FEC) for noisy fading channels such as (concatenated) convolutional codes. A typical 
error pattern is characterised by a small number of erroneous coded bits at error rates of potential 
interest. The number of erroneous coded bits is a small multiple of the free distance of the code; 
this number is only a small fraction of the total number of coded bits. Due to interleaving, these 
erroneous coded bits are likely to be assigned to different labels and therefore different symbols. 
More specifically, the probability of having only one erroneous coded bit per symbol approaches 
one along with the increase of the data block size. Hence, we are aiming at decreasing the rate of 
errors such that at most one bit per symbol is corrupted, in order to improve on the overall error 
rate, for error rates of potential interest. 

For a given pair {S, µ}of signal set and labelling map µ, define De the minimum of the 
Euclidian distances between the symbols of S whose m-tuple labels differ in exactly one position. 
Based on the previous observations, Gorokhov suggests the following design criterion. 
 
For given signal set S, select a labelling map µ: {0,1}m  S that maximises De. 
The distance measure De will be called the effective free distance of a given pair {S, µ}. Note that 
De is lower bounded by the exact free distance Df of the signalling S where Df is defined as the 
minimum of Euclidian distances between the symbols of S. 
 

The efficiency of criterion has been proved theoretically for big data blocks (N  ∞) when 
the underlying FEC has a finite trellis complexity. These results apply to most of practically used 
codes such as the standard convolutional codes. (This analysis, however, rules out random like 
codes such as turbo- and LDPC codes). We can show that the achievable error rate is close to the 
optimum when De is comparable to the maximum within the aforementioned distance set. In all 
cases the ratio (De²/Df²) reflects the order of performance improvement (in SNR) as compared to 
the standard labelling maps. It is appropriate to mention that the known maps (e.g., Gray, Set 
partitioning…) are characterised by De = Df. 
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The second design criterion aims at an improved SNR threshold of the practically used 
iterative decoders. A typical feature of the iterative decoding is a relatively poor performance up 
to some SNR threshold. Above this threshold, the error rate of the iterative decoding approaches 
the performance of optimal decoding. Therefore decreasing the SNR threshold value is highly 
desirable. This threshold value depends on the starting point of the iterative procedure, i.e., on the 
distribution of the reliability values provided by de-mapper at the first iteration. The 'worst' 
reliability values are due to the neighbouring symbols, i.e., the element of S that is Df apart. 
Hence the 'average' number of coded bits that suffer from the 'worst case' reliabilities is likely to 
be proportional to the 'average' number of positions in which the labels, encoding the 
neighbouring symbols of S, differ. 

For a given pair {S, µ} of signal set and labeling map µ, define H the average of hamming 
distances between all m-tuple labels whose respective symbols from S are Df apart. According to 
the above discussion, Gorokhov may suggest the following design criterion. 
 
For a given signal set S, select a labelling map µ: {0, 1}m  S that minimises H . 
Note that the first criterion, as such, leads to the standard gray labelling map which is 
characterised by H =1. However, the gray labelling also yields De = Df and therefore a poor 
asymptotic error rate at high SNR. Clearly, the second criterion only makes sense when used 
along with the first criterion and De > Df. 
 

Hence, the design objective is to attain, for a given (preferably maximum possible) De > Df, 
the minimum of H , with the lower bound H ≥ 2. Labelling maps designed according to these 
guidelines will be referred to, according to the main criterion as effective free distance (EFD) 
labelling maps. 

Table 4.1 summarize the values of distances De and H  for Gray, Set Partitioning (SP) and 
EFD mapping and the Fig. 4.12 represent the constellation of 16-QAM EFD mapping proposed 
by Gorokhov. 

Gray mapping had the minimum Hamming distance H , EFD mapping allow at once to 
maximize the effective free distance De and to minimize the Hamming distance H , this mapping 
associated to turbo equalization allow to obtain best performance than the SP mapping. Thus, SP 
mapping had the lowest free distance, equal to that for Gray mapping, whereas it allow to obtain 
the best asymptotic performances. 
 

Mapping Gray SP EFD 
De Df Df 5 Df

H  1 2.3542 2.1458 
Table 4.1: Effective free distance and Hamming distance. 

 
 
4.5.2 The mean average mutual information approach 
 

As turned out in simulations the right choice of the mapping is crucial for a good performance 
of iterative de-mapping and decoding. In this section, we will briefly description of an approach 
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to obtain a design rule based on mutual information. This significantly reduces the burden of 
performing exhaustive simulations to find good mapping since mutual information is very easy to 
calculate by numerical integration. 
 

 
Figure 4.12: Constellation of 16-QAM EFD mapping 

 
We observed that a different random interleaver or a different encoder does not have a 

significant influence on the BER performance of the iterative decoding scheme, with respect to 
different mappings. Hence, the choice of the right mapping dominates the achievable BER, and 
can concentrate on looking solely into the mapping to optimize the composite encoding scheme, 
consisting of encoder, interleaver and mapper. Naturally the following question arises: 'Which is 
the best mapping?' 

For characterizing a mapping we chose the mean average bit-wise mutual information, 
conditioned on 'no other bit known', 'one other bit known', …,'all other bits known': 
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Note that in this section X = (Xo, …, XM-1) is the input to the AWGN channel, Xk the 

respective bit of the mapped codeword, and Z the noise affected output of the channel. With the 
chain rule of mutual information it can be shown that 

 ( )
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0
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M

i
i

I X Z I
−

=

= ∑  (4.9) 

The symbol wise mutual information I(X;Z) is independent of the applied mapping, and only 
dependent on the SNR. 

Ten Brink interpretation is based on the observation of strong correlation between Io and the 
BER. High Io means low BER (no iteration) and vice versa. However, it can be proven 
analytically that this relationship is not a strict one – but apparently sufficiently strong for gaining 
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some insight into the mechanisms that make iterative de-mapping and decoding work. The basic 
idea:  

For the first pass through the demapper and decoder, no a priori knowledge is available, and 
thus the unconditioned bit-wise mutual information Io is the most important parameter of the 
mapping. If the iteration works, more and more bits will become known with high confidence, 
and the remaining 'conditioned' mutual information I(X:Z) – Io comes into play, until finally, only 
Iall =IM-1 (perfect a priori knowledge) limits the achievable BER, if  the iteration succeeded in 
getting that far. 

To verify these ideas Ten Brink created a set of random 16-QAM mappings (truly 16-QAM, 
not 4-PAM mappings anymore) which cover a wide span of different mutual information Io. He 
correlated them with the BER results after 7 iterations, and found a strong correlation between 
BER and mutual information Io. The surprising result; there is no such thing like a 'best' mapping. 
Moreover, the best mapping depends on how much iteration one is willing to invest.  

For low Io the iteration does not even get started. The reliability output from the decoder is 
too poor to be useful for the demapper. Gray mapper exhibits the highest Io value of all mapping, 
and thus it minimizes the BER after 'no iteration'. However, the iteration do not help a lot. For 
Gray mapping I1, …, Iall each are about Io (only slightly higher the more bits are known). Hence, 
even with perfect a priori knowledge, the demapper 'sees' an almost unchanged channel Iall ≈ Io. 
That is why a priori knowledge cannot help much for Gray mapping. 

Keeping in mind that the sum (4.9) is required to add up to a constant value for all mappings, 
Ten Brink realize that if we sacrifice some mutual information at Io, we gain some at I1, …, Iall, 
which would appreciate a priori knowledge much better. And indeed, as we move from Gray 
mapping towards lower Io, we notice that the achievable BER goes through several minima, 
depending on the number of iterations one is willing to spend: for a few number of iterations, we 
should not shift a lot of mutual information from Io towards I1, …, Iall, since we would not make 
use of it anyway due to stopping the iteration before it even can exploit the 'buried capacity' by 
having gathered enough a priori knowledge. Likewise, if we want to use a lot of iterations, we 
can shift more mutual information to I1, …, Iall, but need to be aware of leaving sufficient at Io to 
get the iteration started at all for the desired SNR region. If Io gets too small the iterations 
improve only a little due to declining quality of the decoder soft output values. 

Then Ten Brink found three characteristic branches:  
1- For low SNR values, the BER is dominated by Io values of the mapping. 
2- Depending on the number of iterations the interleaver size, at a particular SNR value a 

more or less pronounced 'turbo cliff' introduces the transition from the 'no other bits 
known' to the 'all other bits known' channel 'capacity' Iall. 

3- Finally, for higher SNR values, only Iall determines the BER performance, independently 
of the interleaver size. 

A careful design is necessary: the 'best' mapping depends on the number of iterations one can 
afford, the SNR region of interest and on the interleaver size. A pragmatic choice would be to just 
choose a mapping with 'medium' unconditioned mutual information Io, to get the iterative 
improvement started at sufficiently low SNR, and still leave enough conditioned mutual 
information Iall for having an acceptable low BER floor. 
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Chapter 5 
The Iterative Observation Separation Technique 

 
 
One of the important problems in reliable data communications over frequency selective 

fading channels is the mitigation of inter-symbol interference (ISI). Many of digital 
communication systems, like any coded packet oriented narrowband or CDMA mobile systems 
encounter this problem of data transmission over a multi-path channel where the noise, the inter-
symbol interference (ISI) and the multiple access interference (MAI) are two of the main factors 
that degrade the performance. To protect the integrity of the transmitted data, a controlled 
amount of redundancy is added (encoding) using error correction code (ECC). In the past few 
years the number of users of wireless communication systems has been growing exponentially. 
For this reason increasing system capacity is a critical issue, especially for the next generation 
cellular systems whose have a capacity limited by interference. Any reduction of channel 
interference (ISI), and co-channel interference from own cell (MAI, Multiple Access 
Interference), and neighboring cells (inter-cell interference) improves the system performance. A 
promising approach to suppress interference and multi-path channel distortion is the work over 
signal processing.  

The relatively recent introduction of the turbo principle in 1993 by Berrou and al. has 
enabled the design of communication systems with channel capacities closely approaching 
Shannon's theoretical limit. Since this date a considerable amount of the work has been done on 
turbo principle. Based on this invention, in the past few years, a new concept, called turbo 
equalization, has emerged as a way of efficiently fighting against channel ISI. The turbo 
principle has been first applied by Douillard and al. to the field of equalization. To combat the 
effects of ISI, linear (linear equalizer, LE), or non-linear processing (decision feedback equalizer, 
DFE, or detector) of the received symbols can be applied, but optimal methods are non-linear 
and based on ML estimation. And it turns into maximum a posteriori probability (MAP) 
estimation in presence of a priori information about the transmitted data. 

More recently, Bauch and al. have been introduced optimal symbol-to-symbol BCJR 
detectors and decoders with a convolutional ECC to improve the scheme. Unfortunately, the 
complexity of all those ML/MAP or sub-MAP devices depends exponentially on the length of 
the channel's impulse response (CIR) and the size of modulation and this complexity become 
quickly prohibitive when higher level modulations rather than simple BPSK (or GMSK) and 6-
tap (or more) CIR are considered. In order to reduce the computational complexity, Glavieux is 
one among the firsts that replaced the ML equalizer by a so called Interference Canceller. Since 
this is an adaptive weight FIR filter its computational complexity depends only in a linear way 
on the length of the CIR. The classical approach to equalization with unknown channels is to 
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generate a single channel estimate based on the statistics of the channel. This requires either a 
known training sequence or a delayed decision directed approach.  

Most previous work on iterative equalization and decoding assumes that the channel impulse 
response (CIR) is perfectly known to the receiver. Practically, the problem of channel knowledge 
also has to be raised and carefully investigated. Glavieux and al. use a least mean square (LMS) 
type of channel estimation algorithm besides a LE to estimate and track the CIR; other 
approaches use this information for estimation and equalization simultaneously. Tuchler and al. 
propose a recursive least square (RLS) type of iterative channel estimation algorithm based on 
soft information from the decoder, which is distinct from the equalization algorithm. Due to the 
additive noise at the receiver side the quality of the channel estimates may be very poor, 
especially in the case of rapid channel variation. These poor estimates will deteriorate the 
efficiency of the ISI and MAI reduction techniques. Thus joint processing of symbol detection 
and channel estimation is an attractive solution.   

An optimum solution including channel estimation, symbol detection and channel decoding 
seems exorbitant in complexity for current communication systems such as GSM and UMTS-
CDMA. Many iterative joint methods of symbol detection and channel estimation, using the soft 
or hard decoded symbols decision feedback, are proposed for the cases of narrowband 
modulations (no spreading) without MAI and for direct sequence CDMA.  

In this context, we apply the concept named Observation Separation (OS) technique which 
partially separates the observation used for channel estimation from the observation that allows 
the symbol detection. The channel estimation is very simple and basically consists of a classical 
bootstrap process using linear pseudo-inverse. For every symbol, the detection takes into account 
just the part of observation, which contains the considered symbol and has length corresponding 
to the channel memory length. The detection techniques are the ZF-BLE for the initial iteration 
and a classical Interference Cancellation (IC) for the other iterations. We have observed that if 
matched filter is used at initial iteration, the results will be the same. A significant part of the 
degradation introduced by erroneous channel estimation can be recovered by such re-estimation 
methods, without substantial complexity increase. 

We apply in this chapter the OS technique to the UMTS-TDD system and also to a 
narrowband system with a binary modulation BPSK and high level modulations M-QAM on a 
time-invariant ISI channels. For the purpose of comparison, we will take into account the 
classical iterative parallel interference cancellation (PIC) technique and the classical bootstrap 
technique already applied to GSM system. Thus joint processing of symbol detection and 
channel estimation is an attractive solution. Whatever the iterative procedure is, the soft or hard 
decision of the channel decoder output is used in the feedback loop and so for the symbol 
decision feedback when IC or PIC is considered.  
 
 
5.1 The Iterative Observation Separation Technique 
 
The Observation Separation (OS), presented in Fig. 5.1, is an iterative method which is used in a 
joint estimation of any channel H of length l and detection of any length N of symbols 
transmitted {xk}.  
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This technique will be used after the first iteration, where we estimate channel by using the Nt 
symbols of the training sequence which is a part of {xk}, k=1, …, N, and any classical channel 
estimator to obtain Ĥ . After that we can detect the transmitted vector { ˆkx } which is returned to 
be used in the second iteration like the correct transmitted vector, noted as { kx }.   
Then at the second iteration, for detecting the symbol xk, the method propose to use a part of the 
received vector Y, which we will named the observation vector ob 1 - ( ,  ,  ..., )k

k k k l 1y y y+ +=  and 
for making the channel estimate kĤ which is used just for the symbol xk detection, we use the 

other part of the received vector { }† †
0,..., 0, ,0,...,0k ky y ob= − .  

In the symbol detector, we start by using the interference cancellation with the part of return 
symbols from the past iteration: { 1

~
+−lnx … 1

~
−nx , 1

~
+nx … 1

~
−+lnx } and the estimate kĤ . If this part of 

return symbols is correct and kĤ is good, we have the following interference samples: 
  (5.1) ' ' ' ,   ' [ , 1]k k k k ks h x w k k k l−= + ∀ ∈ + −

     
 

{ }†
1 1,..., N ly y + −

{ }†
1,...,k

k k lob y y + −=

             
Figure 5.1: Graphical representation of OS technique. 

The new idea introduced in OS requires N-Nt channel estimations. So the receiver complexity 
may be important. In the following, we propose a simplified version of the Maximum Likelihood 
(also named pseudo-inverse) channel estimation technique. Recalling that at the nth iteration a 
classical pseudo-inverse channel estimation using all the observation is defined as 
 1ˆ ( )H HH X X X Y−=  (5.2) 
Where X~ denotes the reconstruction of the X matrix with the feedback soft or hard symbols { kx~ }, 
k=1…N at (n-1)th iteration. The training sequence part in the symbol series { kx~ } will be 
unchanged. In our proposition, we introduce: 

  (5.3) 
(

1

1 1

ˆ ( )

( ) ( )  0  ob   0 

k H H k

H H H H k

H X X X Y

X X X Y X X X

−

− −

=

= − )
We obtain 

(N+l-1) Received

We use the part of observation 

For the channel estimation,    destined for the k-th symbol detection,   , 

{ }† †
0,...,0, ,0,...,0k ky y ob= −

k-th symbol  

obk

k k+l-1 

For the detection of the k-th symbol 

0………..………0 
k 

 
k+l-1 

we use the other part of observation yk: 

kĤ
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  (5.4) ( ) 1 [1, ]ˆ ˆ  ,     
and k

k H k

t

k N
H H X X H

N
− ∀ ∈⎛

= − ∆ ⎜ ∉⎝ ⎠

⎞
⎟

)
With Nt presents the set of training sequence symbols. 
( 1~~ −

XX H is a square matrix and are calculated once. ( ) 0   0 
Tk H kH X ob∆ = contains l elements, 

and is the variable part to be calculated for each symbol. As obk has just l elements, the correlator 
is very simple. 

So there are the same numbers of operations for channel estimation as the number of symbols 
in a block. Thus Yk represents a part of the total observations of Y with the exclusion of the part 
obk. This can reduce the propagation of error in channel estimation, which saturates the process 
of convergence of the symbol detector. Thus we obtain the observation separation (OS) in each 
couple of symbol detector and channel estimator. 
 
 
5.2 The OS technique in general Narrowband Modulation systems 
 
5.2.1 Conventional BICM Transmitter 
 

AWGN 

Data kxnb
Modulator 

 
Figure 5.2: BICM Transmitter with an ISI Channel. 

 
Conventional Bit-Interleaved Coded Modulation (BICM) can be modeled as a serial 
concatenation of a convolutional encoder, random bit interleaver and a modulator as shown in Fig. 
5.2. At the transmitter, the information sequence is encoded by a convolutional encoder (ζ) before 
being bitwise interleaved. The purpose of the bit interleaver (Π) is to break the sequential fading 
correlation and increase diversity order to the minimum Hamming distance of a code. Next, m 
consecutive bits bn of the interleaved coded sequence are grouped to form vk, a channel symbol at 
the kth signaling interval. A modulator maps each vk to a complex transmitted symbol xk = Ω(vk) 
chosen from M-ary constellation χ where Ω is the labeling map and M=2m.  
We assume an ISI channel, the received discrete-time base band signal can be written as 

 
1

0
 ,    [1, 1]

l

k i k i k
i

y h x w k N l
−

−
=

= + ∀ ∈ +∑ −  (5.5) 

Where xk are the complex coded symbols in a block with k=1,…, N, (xk=0 for k>N), N is the 
block length, wk are white Gaussian noise samples. The l complex taps hi represent the equivalent 
discrete overall channel impulse response. We consider that we have Nt training sequence 
symbols located. 

 

Encoder 
ζ 

Interleaver 
Π BPSK or M-QAM 

Training Sequence

 ISI  
Channel 

kw

ky
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5.2.2 Our Proposed Receiver 
 

In the narrowband systems, only the ISI exists. We consider the problem of symbol detection 
and channel estimation with a coded modulation transmitted over an ISI channel, system 
presented in Fig. 5.3 and detailed in Fig. 5.4. The channel decoder contains the decoder itself and 
the re-encoder. Soft or hard feedback is considered.  

Estimate of coded 

 
Figure 5.3: a typical iterative procedure for the channel estimation and symbol detection. 

 
The received signal yk represented in eq. 5.5, by using vector notation, we can describe the 
received signal as 
 Y XH W= +  (5.6) 
 

With      

1 2 1 0 1 1 1 2 1

1 2 3

11 2

1 21  x ( 1)

(  y ... y ) , (   ... ) , (  w  ... w ) .

0 0... ...
0...0

...... ...
0 0 0 ... ... ...

T T
N l l N l

N

N NT

N l N l N l N l

Y y H h h h and W w

xx x x
x xx x

X

x x xx

+ − − + −

−

− + − + + −

= = =

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

T

 
In the iterative observation separation technique, at the initial iteration (n=0), we use the 

training sequence which is a part of {xk}, k=1… N, with Nt symbol length to obtain the channel 
estimate Ĥ .  

In the symbol detector, we start by using the interference cancellation with our proposed 
Observation Separation (OS) technique. 
 

 
Figure 5.4: The detailed scheme of our Proposed Receiver. 
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Considering that we have a convolutional encoder, a pseudo-random interleaver and a BPSK 
or M-QAM modulator at the receiver, after the ISI channel and the AWGN noise we choice to 
apply a symbol detector and estimator represented in Fig. 5.5, a BPSK or M-QAM demodulator, 
pseudo-random de-interleaver and a soft or hard decoder follow the detection. And the iterative 
receiving processes as follow:    

Initialization: 
1. Make an initial channel estimate based on the known training sequence. The initial channel 

estimate is based on conventional methods ( ) t
H
tt

H
t YXXXH 1)0(ˆ −

= . 
2. Given the channel estimate )0(Ĥ , detect a sequence )0(X̂  by ZF-BLE. And then the reliability 

for detected bits may be calculated by using a demodulator. 

3. Decode detected bits after de-interleaving, and return the extrinsic of coded bits to the 
feedback. 

 

 

 

 

 

 

 

 

 

 
 

Symbol Detector 

Estimator 

ky
kx̂

kĤ

kx~

Figure 5.5: Channel estimation and symbols detection. 
 
Iterations: (Classical IC technique) 

4. Based on the interleaved extrinsic of coded bits make expectation or mapping operation in the 
case hard decoder, )(~ nX for the nth iteration. 

5. Update channel estimate using some adaptation rule, e.g. the pseudo-inverse estimator )1(ˆ +nH , 
based on the returned symbols )(~ nX and the received symbols Y according to eq. (5.2). 

6. Given channel estimate )1(ˆ +nH , update detected sequence )1(ˆ +nX  and its bit wise likelihoods by 
using the IC, then the same demodulator. 

7. De-interleave and decode detected bits… 

8. Iterate between steps 4 to 7 as needed. 

Iterations: (New OS technique) 

The algorithm stays unchanged until the step 4, after that: 

5.  Based on the returned symbols )(~ nX and the received symbols kY . Update the channel 
estimate ( for each symbol , (eq. (5.3)).  ) 1ˆ +nkH kx
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6. Given channel estimate , update detected symbol by using the IC, Repeat steps 5 
and 6 until detection of all the sequence

( ) 1ˆ +nkH )1(ˆ +n
kx

)1(ˆ +nX . 

7. Calculate the bit detected by using demodulator, de-interleaver and decoder on the detected 
symbols. 

8.  Iterate between steps 4 to 7 as needed. 
 
 
5.3 The OS technique in a general CDMA system 
 

Consider the problem of multi-user detection depicted in Fig. 5.6 assuming the presence of 
ISI and Multi-user Access Interference (MAI).  

           
Figure 5.6: a typical iterative procedure for the channel estimation and symbol detection in a 

CDMA system. 
 
The received signal yk can be written as 

  (5.7) 
1

( ) ( )

1 0
, [1,

J l
j j

k i k i k
j i

y h x w k N w
−

−
= =

= + ∀ ∈ +∑ ∑ 1]−

where ( )j
k ix −  are the chips of the spread symbol or the chips of the training sequence of user j with 

j=1, …, J, in a block with k=1, …, N and N corresponding to the number of transmit chips 
( ( )j

kx =0 for k > N),  wk are filtered white Gaussian noise samples. The l complex taps h  
represent the equivalent discrete overall channel impulse response (in chip) of user j and are 
supposed constant in the period of one block. N

( )j
i

t presents the index sub set where Nt training 
sequence symbols are located. 

After multi-user symbol detection, the symbols of each user ( )j
qβ  are decoded separately. The 

channel coding can be applied on more than one block. The channel decoder contains the de-
interleaver, the decoder itself, the re-encoder if hard decision is made and the re-interleaver. 
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When soft feedback is considered, the decoders output the a posteriori log ratio (also called log 
likelihood ratio) of each coded bit; then the expectation of the coded symbol is calculated. For 
the hard feedback, the expectation is just a bit to symbol mapping. Then the soft or hard 
feedback symbols of all the users are re-spread into Q chips separately and fed into the channel 
estimator and multi-user detector. By using vector notation, the received signal can describe as 
 Y XH W= +  (5.8) 
 

With                  ( )
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In the iterative observation separation technique, at the initial iteration (n=0), we use the 
training sequences which are parts of {xk

(j)}, k=1, …, N, and j=1, …, J, with Nt chip length to 
obtain the channel estimate Ĥ . The multi-user symbol detector delivers the estimate of the series 
{ qη , q=1, …, ⎣N/Q⎦ and q.Q∉ Nt } with the symbol set qη ={ ( )j

qβ , j=1, …, J} which corresponds 

to the chips {{ ( )j
kx , ( )

1
j

kx + ,…,  }, j=1, …, J} with k=(q-1).Q+1. ( )
1

j
k Qx + −

For the nth iteration (n≥1), we propose to use the observation vector obq =(yk, yk+1, …, yk+Q-1+l-1 ) 
for detecting the qth symbol set qη and the observation vector defined by 

   
  

For making the channel estimate 

qY ( )T
0  ob  0 .q qY Y= −

ˆ qH which is used just in the detection of qη . The vectors obq 

and are mutually independent. Thus we make the observation separation (OS) in each couple 
of multi-user symbol detection and channel estimation. 

qY

In the multi-user symbol detector, there are J parallel interference cancellation (PIC) 
processes; each process will output one symbol. The jth process starts by using the interference 
cancellation with the parts of feedback chips at (n-1)th iteration: { ( )

1
j

k lx − + , ( )
2

j
k lx − + , …, ( )

1
j

kx − , ( )j
k Qx + , …, 

} and {( )
1 1

j
k Q lx + − + −

( )'
1

j
k lx − + , ( )'

2
j

k lx − + , …, ( )'
1 1

j
k Q lx + − + − } with j'≠j and the corresponding ˆ qH . If all the return 

symbols are correct and ˆ qH is good, in the jth process, we have the following interference free 
samples: 

  (5.9) ( ) ( ) ( )
1

' ' '
0

,   ' [ , 2]
l

j j j
k i k i k

i
s h x w k k k Q l

−

−
=

= + ∀ ∈ + +∑ −

( )
'     0     '   ' 1j

kand x if k k or k k Q= < > + −  
Then a matched filter (including the channel response and the de-spreading) is applied. 

The new idea introduced here requires (N-Nt)/Q channel estimations. So the receiver 
complexity may be important. In the following, we propose a simplified version of the Maximum 
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Likelihood (also named pseudo-inverse) channel estimation technique. Recalling that at the nth 
iteration a classical pseudo-inverse channel estimation using all the observation is defined as 
 1ˆ ( )H HH X X X Y−=  (5.10) 
Where X denotes the reconstruction of the X matrix with the feedback soft or hard chips { ( )j

kx }, 
k=1, …, N at (n-1)th iteration. The training sequence parts in the symbol series { ( )j

kx } will be 
unchanged. In our proposition, we introduce: 

  (5.11) 
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( ) ( )  0  ob   0 

q H H q

H H H H q

H X X X Y

X X X Y X X X

−

− −

=
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With  

 ( ) 1 [1, / ]ˆ ˆ  ,     
 .

q H q

t

q N Q
H H X X H

and q Q N
− ⎛ ⎞∀ ∈ ⎢ ⎥⎣ ⎦= − ∆ ⎜⎜ ∉⎝ ⎠

⎟⎟  (5.12) 

And  
 ( )0   0

Tq H qH X ob∆ =  (5.13) 

(Nt is supposed same for all the users), where Ĥ and ( ) 1HX X
−

 are both calculated only once. 

(with J.l elements ) is the variable part to be calculated for each set of J symbols. As obqH∆ q has 
just Q-1+l elements, the correlator represented by (5.13) remains relatively simple. So we 
reduced the calculation complexity. 
 
 
5.4 Applications, Simulations and Results 
 
5.4.1 UMTS – TDD Application (Multi-user Application) 
 

UMTS-TDD is a time division duplex CDMA block coded system defined in the standard of 
the 3-rd generation mobile communication system. We apply the iterative OS technique to the 
uplink 12.2 kbps service presented in Fig. 5.8. 

The radio transmission of UMTS-TDD is a stream of 10 ms frames with 15 time slots per 
frame, presented in Figure 5.7. A time slot corresponds to the transmission block of our chapter.  
One slot per frame is reserved for the 12.2 kbps service. This service contains the information 
data and the control data. A block of 244 bits of information data is applied to a CRC attachment 
for block error detection, then encoded, interleaved, punctured with 5% rate and finally 
distributed over two consecutive time slots with 380 bits in each. A rate 1/3 convolutional coder 
with generator (557, 663, 711)oct is used. A block of 100 bits of control data is applied also to a 
CRC attachment, then encoded, interleaved and finally distributed over four consecutive time 
slots with 90 bits in each. The same convolutional coder as for the information data is used. The 
resulting multiplexed data in each time slot is interleaved again and combined with 18 signaling 
bits to form a block of 488 bits and thus a block of 244 QPSK symbols. The useful system 
parameters are the spreading factor Q=8, the midamble (training sequence) chip length Nt=512, 
the channel chip length l=57, the guard period equal to 96 chips, the chip rate equal to 3.84 Mcps 
and  the roll-off = 0.22. 
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Figure 5.7: The Radio Frame in an UMTS-TDD System. 

 
Simulation Results: 
 

When we consider the ITU "Vehicular A", the channel evolves normally with the mobile 
speed v for four consecutive frames and is made completely independent from four frames to 
four other frames. We consider also the two paths channel having equal gain, without fading and 
with the delay between paths equal to two symbols.  

The block error rate (BLER or more currently called as FER: frame error rate) and the bit 
error rate (BER) of the information data are considered.  The Viterbi and the log-MAP channel 
decoders are used for the hard and the soft decision feedbacks respectively. In a performance 
figure, for the soft feedback, the "Soft" word is always associated with the performance curve; 
but not for the hard feedback. 

At the initial iteration (n=0), the pseudo-inverse channel estimation based on the training 
sequence is employed; and except indication, the matched filter is used for the multi-user 
detection of OS and PIC techniques. For the classical bootstrap technique named Classic, the 
multi-user detection technique is always the same for all the iterations.  For the nth iteration (n≥1) 
of a non-OS technique, the classical pseudo-inverse channel estimation based on the whole 
return symbols is considered. 

For "Vehicular A" channel with v=3 km/h, J=4, and n=0 (iter0) and 4 (iter4), we depict, in 
Fig. 5.9, the FER and BER curves versus Eb/N0 of the information bits. We have considered the 
iterative OS and PIC procedures with hard and soft feedback. We note that soft OS gives the best 
performance, the hard OS is the second and the gain of soft decision feedback compared to the 
hard one is small, less than 0.1 dB for OS or 0.3 dB for PIC. For the iterative OS procedure, 
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when n changes from 0 to 4, at Eb/N0=10 dB, the FER changes from 1.8x10-1 to 9.6x10-3; and 
the BER changes from 4.9x10-2 to 2.3x10-3.  

In Fig. 5.10, we show the FER curves of OS (zf-ble), PIC (zf-ble) and Classic (zf-ble) with 
J=4, n=0 and 4 and v=50 km/h. Note that for a given iterative procedure the text in the 
parenthesis ( ) corresponds to the detection technique used at the initial iteration. We note that 
the performance improvement of OS compared to Classic comes first from the use of the PIC 
structure instead of the ZF-BLE structure and second from the separation of the used 
observations for the channel estimation and for the symbol detection. 
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Figure 5.8: Uplink 12.2 kbps service. 
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Figure 5.9: Performance of the UMTS-TDD uplink 12.2 kbps service with the soft and hard 

feedback comparison and J=4.  
 
 

 
Figure 5.10: FER performance of the OS(zf-ble), PIC(zf-ble) and Classic(zf-ble) for the UMTS-

TDD uplink 12.2 kbps service. 
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In Fig. 5.11, for J=1, Q=8 and two flat paths channel; we show the BER performance of the 
Classic (mmse-ble), the IC and the OS. For the hard decision feedback, the gain of OS compared 
to IC at BER=10-3 is 0.85 dB. 

 

 
Figure 5.11: BER performance comparison of different techniques for the UMTS-TDD uplink 

12.2 kbps service and J=1. 
 

5.4.2 Narrowband Application (Single user Application) 
 

To be able to analyze the narrowband modulation behavior, we make some adaptations on 
the UMTS-TDD 12.2 kbps service of the previous paragraph. In fact, with the same slot structure 
and the QPSK modulation, we change the spreading factor to Q=1, the training sequence length 
Nt ≤ 512/8 = 64. With channel chip length l=57 in the UMTS-TDD case, the channel symbol 
length l should be 8; but we set l as parameter for study. The guard period is greater than l.  

To make the training sequence, we use the constant amplitude zero auto-correlation 
(CAZAC) sequences with length of Ncazac being multiple of four; the prefix of (Nt - Ncazac) bits 
corresponds to the last (Nt - Ncazac) bits of a CAZAC sequence.   

And we apply the algorithm described in the previous sections to a system with a high level 
coded modulation M-QAM. 

A block of 632 bits coded with a rate 1/3 convolutional coder with generator (557, 663, 
711)oct. The coded bits are interleaved with a pseudo-random interleaver having a block length 
equal to 1920 bits which are modulated by a M-QAM modulator to (1920/log2M) symbols with 
currently used Gray mapping. We add a midamble training sequence with length Nt=Ncazac+l-1 
BPSK symbols adjustable to estimate l channel taps. Ncazac and l leaved as a parameter to study. 
The result is transmitted over an ISI channel (2 channel taps, Proakis A channel: 11 taps) and 
recuperated at the receiver with the symbol detector and estimator which was described above, 
after that the symbols detected are demodulated, and the obtained bits are de-interleaved and 
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decoded with Viterbi decoder when the hard feedback is considered and with MAP decoder in the 
case of soft feedback. Here some of our simulation results: 
 
Simulation Results: 
 

For the QPSK modulation, the OS and IC BER curves are given for l=8 and 17 in the Fig. 
5.12 and for Ncazac=56 and 16 in Fig. 5.13. We note that greater the number of possible channel 
taps is and smaller the training sequence is, more important the gain of OS versus IC can be 
obtained. In Fig. 5.14, we give the BER and FER curves for hard and soft feedbacks of OS and 
IC techniques. The OS performs always over IC whatever the feedback type.  

For the M-QAM modulation, curves are given for l=8, 18 and 24 and for Ncazac=16, 36 and 
48. In Fig. 5.15, we present the BER and BLER performances for a 16-QAM modulation over an 
invariant time channel with length of two; the training sequence contains 36 BPSK symbols to 
estimate 18 channel taps, to compare the performances with soft feedback versus hard feedback. 
This figure shows that for the soft feedback like as for the hard feedback, the OS technique 
outperforms the IC technique in the case of BER and BLER. An important point here is that the 
hard performances are very close to the soft performances, so only the hard performances are 
represented in the following results. 

We present in Fig. 5.16, the BER and the BLER performances of IC and OS with 16-QAM 
over a Proakis A channel (11 taps), the same structure of training sequence like the previous 
results. Furthermore we represent the performances of the same systems without updating the 
channel estimation with iterations, in other words we estimate one time the channel with training 
sequence which we called TE procedure. This figure shows that the OS and the IC procedure 
outperform the TE procedure by 2.5 dB at BER=10-4, in the same time the OS is better than the 
IC by 0.25 dB. We can conclude here that the OS performs well over long channel. 

Fig. 5.17 shows the BER performances of TE, IC and OS with 16-QAM over a two channel 
taps but the length of training sequence is 48 structured to estimate 8 channel taps, furthermore 
we represent the BER performances when the channel is perfectly known. We can conclude from 
this figure the OS outperforms IC by up to 0.25 dB at BER=10-5. The main remark here is the 
convergence of the OS procedure to system with channel known. 

The BER performances of IC and OS with QPSK, 16-QAM and 64-QAM over a two channel 
taps, the length of training sequence is 48 and can estimate 8 taps are represented in Fig. 5.18. 
This figure shows that like in the case of QPSK, 16-QAM and the 64-QAM modulation the OS 
procedure outperforms the IC procedure, and this gain increase with the increasing of the level of 
modulation. At BER=10-4 the gain is 0.2 dB for QPSK, 0.4 for 16-QAM and ~1dB for 64-QAM. 

  In Fig. 5.19, we present the BER performances of IC and OS with 16-QAM over a two 
channel taps, we increase the length of training sequence with maintaining a structure which 
estimate l=8 channel taps. This figure shows that in all the cases the OS procedure outperforms 
the IC procedure and this gain increase with the decreasing of the length of training sequence. At 
BER=10-4, the gain is less than 0.25 when Ncazac=48, it is great than 0.35 when Ncazac=36 and it is 
great than 0.65 when Ncazac=16. 

Finally, we present in Fig. 5.20, the BER performances of IC and OS with 16-QAM over a 
two channel taps, we leave the length of training sequence fixed to Ncazac=48 but with changing 
the structure to increase the number of taps estimated. We remark that in all the cases the OS 
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procedure outperforms the IC procedure and this gain increase with the increasing of the number 
of taps estimated l. At BER=10-4, the gain is less than 0.25 when l=8, it is equal to 0.5 when l=18 
and it is great than 0.75 when l=24. 
 
 
5.5 Conclusion 
 

In this Chapter, the observation separation technique on the joint iterative channel estimation 
and symbol detection technique has been considered for the CDMA, the narrowband QPSK 
mobile and a high level modulation M-QAM systems. For the return loop, the soft or hard 
channel decoder output is considered. The OS concept separates the observation used for the 
estimator from the observation used for the detector. The performance obtained is very attractive.  

Our OS is realized by associating an adaptive IC (or PIC when MAI is presented) structure 
for the symbol detection with a modified pseudo-inverse channel estimation structure for each 
symbol. Nevertheless this realization schema on the OS concept is not unique and that the 
research on a better solution is open. For a real conception like the 2nd and 3rd generation and for 
complexity reason of decoding, we propose the hard decoding feedback (Viterbi decoding). 

We have applied this technique to the 12.2 service of the UMTS-TDD uplink system and also 
to the 12.2 service of the associated narrowband QPSK system and a high level modulation M-
QAM with a rate 1/3 convolutional code, a midamble training sequence of length Nt to estimate a 
l channel taps estimation. These two parameters are leaved to study their effect on the 
performance of the OS procedure. The performance obtained is very promising. 

 Depending on the scenario considered, simulation results have shown up to 1dB gain for the 
OS techniques compared to classical IC techniques, this is very attractive performance. 
 

 
Figure 5.12: BER performance of OS and IC techniques in a QPSK system for different l. 
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Figure 5.13: BER performance of OS and IC techniques in a QPSK system for different Ncazac. 

 
 
 

 
Figure 5.14: FER and BER performance of OS and IC techniques in a QPSK system for soft and 

hard decision feedback. 
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Figure 5.15: FER and BER performance in 16-QAM for soft and hard decision feedback. 
   
 
 

 
Figure 5.16: FER and BER performance in 16-QAM for Proakis A channel. 
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Figure 5.17: BER performance in 16-QAM for 2 channel taps with Ncazac=48, l=8. 

 
 

 

 
Figure 5.18: BER performance in QPSK, 16-QAM and 64-QAM systems. 
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Figure 5.19: BER performance in 16-QAM system with varying Ncazac. 

 
 

 

 
Figure 5.20: BER performance in 16-QAM system with varying l. 
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Chapter 6 
Mapping Optimization with Iterative OS 
Technique 
 
 

Iterative decoding is traditionally applied with either a parallel or a serial concatenation of at 
least two codes. At the transmitter the two encoders are separated by an interleaver. At the 
receiver the decoding is iterated along two component codes for parallel concatenated system, or 
the inner and the outer decoding path for the serially concatenated system respectively. Parallel 
concatenated codes applying systematic recursive convolutional codes were first referred to as 
"turbo codes". As noted in chapter 5, the "turbo principle" can be used not only with traditional 
concatenated coding schemes, but is more generally applicable to several other algorithms that 
can be found in modern digital communications, e.g. iterative equalization or multi-user detection. 

Two principals approach for optimizing the labeling map; Ten Brink and al. use mutual 
information parameters, which allow distinguishing exactly each mapping performances, 
however, the computation of this parameter requests an intensive simulation and depends of sight 
functioning point. In these papers we find a briefly description of an approach to obtain a design 
rule based on mutual information. This significantly reduces the burden of performing exhaustive 
simulations to find good mapping since mutual information is very easy to calculate by numerical 
integration. Gorokhov approach the effect of signal labeling through the error rate analysis of 
maximum likelihood demodulation/decoding on one hand, and the statistical analysis of de-
mapped bit metrics at the first demodulation iteration on the other hand. These two features lead 
Gorokhov to propose two design criteria for optimization labeling, based to the computing of 
specific distances of constellation. The choice of mapping is then achieve without any notion of 
functioning point. However, these design criteria give preference to asymptotic performances 
than that of iterative process during the convergence, which is not always desirable. In these 
papers we find a mapping design that relies upon the common observation that iterative decoding 
procedures approach the behavior of the optimal decoders as SNR grows, thus we obtain the first 
design criterion that optimize the labeling map to ensure a good performance of the iterative 
decoding, at a relatively high SNR. The second design criterion aims at an improved SNR 
threshold of practically used iterative decoders. 

In this chapter, we suggest a design of optimal mapping in BICM-ID scheme all that applied 
to an OS channel estimation and IC procedure system. This means that we applied the turbo 
principle in two cases: turbo demodulation and turbo detection symbol. We do not refer to 
Ungerboeck's trellis coded modulation (TCM) as can be found since there is no "inner encoder" 
which would add redundant information. The system can be regarded as two serially 
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concatenated iterative decoding schemes whereby the inner decoder is replaced by the soft 
demapping device (also referred to as 'demapper') in the turbo demodulation, and by the detection 
symbols device in the turbo detection. We apply the concept named Observation Separation (OS) 
technique, first introduced in chapter 5 for the CDMA applications and narrowband system, 
which partially decouples the observation used for channel estimation from the observation that 
allows the symbol detection; in this chapter, the symbol can belong to a set of high level 
modulations (16-QAM) and the channel is considered like a time-invariant ISI channels. Chapter 
5 show that the OS technique  

1. Exhibits better performances when used with large constellation compared to IC,  

2. Can approach and converge to the performance when the channel in perfectly known. See 
Fig. 6.1. 

 
Figure 6.1: Performances of OS technique for 16QAM and 64QAM 

 

Based on these results close to perfect channel, our main objective is to outperform our first 
iteration, which leads to improve the performance when the channel is known, by optimization 
mapping and de-mapping. We'll show how iterative demapping reduces the bit error rate in this 
system described above. 

We design an optimized binary mapping of the QAM constellation, in order to increase 
coding gain, which assumes perfect a priori information. This expression is called the genie 
method. Like if we consider the presence of a genie delivering perfect a priori information. This 
optimized mapping can be used for some practically important cases. 

 This algorithm is applied to the case of high level modulation (16-QAM…) and our optimized 
mapping is compared to conventional mapping (Gray, Set partionning…) in the two cases 
classical IC techniques and OS techniques, and the results of simulations are presented. 
 

_____________________________________________________________________________________________________________________ 

 



Mapping Optimization with iterative OS Technique                                                                     65 

6.1 Iterative decoding of BICM 
 

Let us assume perfect channel state information (CSI) so that hi are perfectly estimated by the 
OS concept at the receiver. That's means the output of the IC equalizer and OS 
estimator ˆtx depends only of one coefficient ρt: 

ˆ t t tx x tρ η= +                                                             (6.1) 
Where t corresponding to one channel use, ρt is a type of a Rayleigh distributed fading coefficient 
with E( 2

tρ ) = 1 and tη is a complex white Gaussian noise sample with the variance of N0/2. For 
the AWGN channel, ρt = 1. In our case, ρt = cte. 

In this section, we review the soft-decision bit metric calculation for iterative decoding 
(BICM-ID). Our receiver has two main elements as described in Fig. 6.2: an APP QAM-detector 
that acts as a soft output demodulator, and a SISO decoder for the code ζ. An iterative joint 
detection and decoding process is based on the exchange of soft values between the SISO QAM-
detector and the SISO convolutional decoder. The SISO detector computes the extrinsic 
probabilities ξ(bn) via a classical sum product expression including the conditional likelihoods 
( ˆt tP x x )and the a priori probabilities π(bn) for the coded bits fed back from the SISO decoder.  

The SISO detector computes the extrinsic information, which corresponds to the extrinsic 
probability that the jth coded bit equals 1, as given in the following normalized marginalization 
eq.(6.3).  

 
H Code Structure 

          
Figure 6.2: Turbo Demodulation. (BICM-ID receiver with soft decision feedback) 
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Where 1

n
χ is the subset of χ , whose label has the binary value 1 at the nth bit position. The a 

priori probability P(xt) for the symbol is unavailable on the first pass of demodulation. Therefore, 
an equally likely assumption is made and π(bn)=1/2 is used as the a priori probability for coded 
bits input to the SISO detector, which then generates the extrinsic probabilities for coded bits. 
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Using this; the extrinsic bit probabilities put out from the SISO detector can be written as 
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By exploiting the trellis structure of code, the SISO decoder computes the soft values (a 
priori, a posteriori probabilities) for the coded bits using the Forward-Backward algorithm. After 
the last pass, the final decoded outputs are the hard decisions based on the a posteriori bit 
probabilities APP(cn). 
 
 
6.1.1 Analytical Bound for BICM-ID 
 
The union bound of probability of bit error for convolutional codes of rate k/n is given by 

( ) ( )∑
∞

=

Ω≤
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,,1
dd

Ib dfdW
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P χ                                                  (6.4) 

Where WI(d) is the total input weight of error events at Hamming distance d and dmin is the 
minimum Hamming distance of the code. Note that f(d,Ω,χ) denotes the pairwise error probability 
(PEP) of BICM and depends only on Hamming distance d, a labeling map Ω and a signal 
constellation χ. Two cases: 
 
a. Static channel case: 

The union bound of the PEP of BICM can be written in the form 
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b. Ergodic channel case: 

The Union bound of the PEP of BICM can be written in the form 
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b is the complement of bit b. Note that ( ) ( )ˆ,x x sφ∆ is the Laplace transform of the probability 

density function of the metric difference ( )ˆ,x x∆ between components and x. When Gray 
labeling is used, irrelevant error events can be expurgated from eq.(6.1) and the PEP can be 
rewritten as 

x̂
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And ( )ˆ n
bx x x χ′ ′= ∈ denotes the nearest neighbor of . However, due to large coding gain 

introduced by iterative decoding, we are most interested in an analytical bound for the error free 
feedback performance to which the BICM-ID performance converges at very low BER. For 
convenience, we use the term error floor to indicate the error free feedback performance of 
BICM-ID. 

x̂

For the analysis of the error floor of BICM-ID, we consider the idealized condition assuming 
error-free feedback. With perfect knowledge of some or all values of other bits forming a channel 
symbol, an M-ary constellation can be partitioned into sets of smaller constellations having larger 
inter-signal Euclidean distance. Here, we choose to feedback the decoding decisions of all other 
bits; therefore, any M-ary signal set is converted to M/2 binary signal sets. This significantly 
increases the minimum inter-signal Euclidean distance and also reduces the number of nearest 
neighbor to one when Gray labeling is not used. Given ideal feedback for each ˆ ,n n

b bx χ χ∈ , 
contains only one term ( )ˆx x x′′ ′′= , whose label has the same binary bit values as those of 

except at the nth bit position. Note that

x̂

( )ˆx x′′ is not necessary the same as ( )ˆx x′  depending on the 
labeling map Ω. Therefore, by removing the innermost summation in eq.(6.5), the PEP of the 
error floor of BICM-ID can be written as 
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For Rician fading case: 
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Where K is the Rice factor. By letting K=0, the special case for Rayleigh fading is given as 
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( ) ( )
( )ˆ , 2
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1
ˆ1 1x x s
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                                                 (6.8) 

Then, the PEP of the error floor of BICM-ID defined in eq.(6.5) can be numerically evaluated by 
the Gauss-Chebyshev quadrature method before the bit error probability is calculated using 
eq.(6.4). 

The main difference between (6.6) and (6.7) is that the former remains a valid upper bound 
only for Gray labeling and becomes an approximation for non-Gray labeling while the latter does 
not depend on labeling. 
 
 
6.1.2 Design Optimization 
 

Signal labeling is the crucial part of conventional BICM and our BICM-ID design. It is 
shown in past literature that Gray labeling yield the best performance for BICM. Using eqs.(6.4), 
(6.5) and (6.8), the asymptotic performance of BICM in our special case can be approximated by: 
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Where Pb     probability of bit error; 
            d2(ζ)  minimum Hamming distance of the code; 
            R       information rate; 
            d2

h(Ω) harmonic mean of the minimum squared Euclidean distance. 

For any M-ary constellation with a labeling map Ω, d2
h(Ω) can be calculated by (m = log2(M)) 
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Therefore, it is obvious that the asymptotic BICM performance depends primarily on the 
minimum Hamming distance of a code d2(ζ) and the harmonic mean of the minimum squared 
Euclidean distance d2

h(Ω). Specifically, d2(ζ) controls the slope of the BER curve while d2
h(Ω) 

gives the horizontal offset. Intuitively, the diversity order can further be increased by 
concatenating the larger signal constellation with a lower rate code; however, it may not provide 
a lower Pb in the range of interest due to reduction in the minimum inter-signal Euclidean 
distance among signal constellation points. Note that a labeling map Ω is independent of a 
convolutional code ζ due to bit interleaving; therefore, it can be separately optimized in our 
iterative decoding algorithm without altering the code diversity. This is carried out to maximize 
the harmonic mean of the minimum Euclidean distance as seen with error free feedback. 
From eqs.(6.4), (6.7), and (6.8), the asymptotic performance of the error floor of BICM-ID is 
obtained by: 
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Note that is the only member inx′′ n
bχ as defined in eq. (6.7). Since there is no change in the 

coding structure or constellation size, all terms on the right hand side of eqs. (6.9) and (6.11) are 
the same except that d substitutes for( )2~

Ωh ( )Ωhd 2 . Therefore, from eqs.(6.10) and (6.12), the 
labeling map Ω should be designed such that x̂ x′′− is larger than x̂ x′−  for all (if possible) 
in order to achieve the iterative decoding gain. 

x̂

We can calculate the asymptotic gains of labeling Ω2 with respect to labeling Ω1 as follows: 
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The asymptotic gain in eq.(6.13) computes the gain of labelling ΩdBGain 2 with respect to 
labelling Ω1 in a BICM system or in the first pass of BICM-ID system (before feedback). The 
asymptotic gain G in eq.(6.14) computes the gain of labelling ΩdBain~

2 with respect to labelling Ω1 
in the other iteration of BICM-ID system (after feedback). 
 
 
6.2 BICM-ID combined to OS concept 

H 
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Figure 6.3: BICM-ID combined to OS technique in turbo equalization. 
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Here, we combined the two techniques explained in chapter 5 and previously in section 6.1, 
the OS estimation technique for turbo equalization and the BICM-ID technique for turbo 
demodulation. Then the received signal y is detected by an IC equalizer and an OS estimator to 
give the signal , which is considered like the input of the BICM-ID where it is suffer the first 
iterative treatment. The a posteriori probabilities output of BICM-ID are fed back in their soft or 
hard values to the equalizer which is the second iterative treatment in our system.   

x̂

After our explanation on the design criterion and the choice of the optimal mapping in section 
6.1.2, we will show here some mapping selected among the others to give a good comparison. 
It is good to know that the properties which become the most important in our application are: 
 

• The evolution of the first iteration which mean the moment of triggering. 
• The evolution of the last iteration which mean the asymptotic performances. 

 

With these two properties, the Gray mapping has the best performances for the first iteration, in 
same time it has the worst asymptotic performances.  Naturally, the Anti gray mapping has the 
inverse characteristics. Table 6.1 class the mapping by order from the best to the worst in term of 
performances in the first iteration and the last iteration. Where OMI and EFD mean Optimal 
Mutual Information and Effective Free Distance respectively. 
 

First iteration: 
Trigger moment 

Last iteration: 
Asymptotic performances 

Gray Anti gray 
Optimized EFD by Gorokhov 

OMI by Ten Brink Optimized 
Set partitioning Set partitioning 

EFD by Gorokhov OMI by Ten Brink 
Anti gray Gray 

Table 6.1: Put in order of performances of some mapping. 

The performances of the first iteration for EFD and Anti-Gray mapping are very degrade 
which lead to a very late Trigger moment in the iterative process. These mapping are not adapted 
for the turbo equalization, in the interested SNR zone, whereas they are agreed very well for the 
turbo demodulation. Then we will not consider these two mapping in our study. Fig. 6.4 shows 
the subset partitionning for each for the four bit positions of 16-QAM constellations. The points 
that have the same color correspond to the decision regions (Black for bit 0, each bit in 0

nχ  , 
White for bit 1, each bit in 1

nχ ). It is obvious that all labelling methods have the same minimum 
Euclidian distance between subsets of 1

nχ and 0
nχ  but a different number of nearest neighbors. 

Given ideal feedback of all other bits, a 16-QAM constellation is translated to a binary 
signaling selected from eight possible pairs. Fig. 6.5 illustrates the increase in the minimum 
Euclidean distance between subsets. Gray labelling is not the preferred choice because most of 
binary signal sets resulting from ideal feedback have the same inter-signal Euclidean distance as 
original 16-QAM constellation. 
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Numerical results from calculating the harmonic mean of the minimum Euclidean distance 
before feedback, , and after feedback, 2

hd 2~
hd , are shown in Table 6.2 and 6.3. In table 6.2, we 

present the gain of mapping in relation to gray labeling, and in table 6.3, we call the difference 
in ( )dBhd 2~  and ( )dBhd 2 of conventional BICM with gray labeling as the offset gain. This gives a 
quick comparison between various labeling schemes with iterative decoding and conventional 
BICM. 
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Figure 6.4: Subset partitions of 16-QAM for some mapping schemes. 
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In addition, optimization of is done separately from our decoding algorithm; therefore, 
the offset gain is the asymptotic performance improvement regardless of the code structure. It is 
preferable to have a labeling map that maximizes

( )Ω2
hd

( )Ω2~
hd while having sufficiently large original 

such that the feedback decoder can reach its ideal performance within a few passes. ( )Ω2
hd
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Figure 6.5: The minimum Euclidean distance for some mapping schemes.   
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Consider the impact of signal labeling on the offset gain. For BICM-ID with the same 
convolutional code, Table 6.3 shows that Gray labeling yields the best performance without 
feedback due to the large ; however, the performance gain with feedback is very small. 

Optimized labeling gives the largest 

2
hd

2~
hd in ergodic case, but SP labeling gives a 2~

hd  larger than 
Optimized in static case, and thus the asymptotic offset gain at the cost of having the poorest first 
round performance. 

 
Labeling 2~

hd  Gain % Gray  
(dB) 

Gray 2.5044 0 
SP 2.8164 0.51 

Optimized 2.9628 0.73 
Table 6.2: Distances for ideal a priori information in static channel case at Eb/N0=4dB. 

 
 

Labeling 2
hd  2~

hd  Offset Gain 
(dB) 

Gray 0.492 0.514 0.19 
SP 0.411 1.119 3.56 

Optimized 0.413 2.602 7.23 
Table 6.3: Distances and Offset Gain for some mapping in ergodic channel case. 

 
 
6.3 Simulations and Results 
 

In this section, we show simulation results for BICM-ID over an ISI Channel known or 
estimated by the OS technique. A 16-QAM constellation is used with rate 1/3 convolutional 
codes. Several labeling maps are used to illustrate the importance of labeling design. We will 
consider four iterations for the BICM-ID and the turbo equalization with considering hard 
decision feedback. We also vary the estimated channel length and the training sequence length.  

In Fig. 6.6, we show the asymptotic performance of BICM-ID, with different mappings, in a 
turbo equalization system over a Gaussian, a Rayleigh channel known perfectly. 

We remark that a lot of mapping outperform the Gray mapping in his asymptotic performance 
for turbo equalization, with a gain up to 7dB in case of Rayleigh channel and 0.73dB in case of 
Gaussian channel for our optimized mapping. 

We show, in Fig. 6.7 the performance of BICM-ID, always in turbo equalization system and 
channel known perfectly. We compare these performances to the BICM with Gray mapping. It is 
clear that despite his best asymptotic performance the Anti Gray mapping is not adapted to the 
turbo equalization and it is not able to approach the BICM performances. And this figure certifies 
that the Gray mapping has the best performances for a weak SNR but for high SNR the other 
mappings outperform the gray mapping. It seems that the optimized mapping is a good 
compromise for weak and high SNR. 
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Figure 6.6: Asymptotic performances of considered mapping in our applications. 

 
Figure 6.7: Performances of considered mapping in turbo equalization. 

 
Fig. 6.8 and 6.9 show the effect of the use of BICM-ID and OS technique in the same turbo 

equalization system, and we will vary the estimated channel length l and the training sequence 
length N.  

We remark from these two figures that use of BICM-ID and OS technique leads to same 
behavior when the channel is perfectly known. The optimized mapping loses up to 0.5dB at weak 
SNR but we get back this loss at high SNR contrary to other mappings. 
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Figure 6.8: Performance of considered mapping over 2 path channel and with OS estimation 

technique with N=36 and l=18. 

 
Figure 6.9: Performance of considered mapping over 2 path channel and with OS estimation 

technique with N=48 and l=8. 

Finally, we represent in Fig. 6.10 a comparison between the classical technique (BICM 
without ID and IC equalization without OS estimation in a turbo equalization system) and our 
system applied (BICM-ID and IC equalization with OS estimation in a turbo equalization system). 
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It is clear from the Fig. 6.10 that with or without ID the OS technique outperform the classical 
technique by 1dB. With or without OS the BICM-ID outperforms BICM by 0.5dB. And our 
system proposed outperforms the classical system by up to 1.5dB. 

 
Figure 6.10: Performances of BICM-ID with OS vs BICM without OS. 

 
 
6.4 Conclusion 
 

In this chapter, we have analyzed and evaluated an approach to the design of BICM-ID for 
ISI channels. By recognizing that the coding and modulation are isolated by the bit interleaver, 
and identifying the impact of iterative decoding on the harmonic mean of the minimum Euclidean 
distance, we have developed a powerful turbo equalization system yet relatively complex. 

The theoretical part and the extensive set of simulation results prove that the harmonic mean 
of the minimum Euclidean distance identified as crucial for BICM, can be greatly increased with 
BICM-ID and the error free feedback assumption.  

A new labeling map optimized under the harmonic mean criterion for 16-QAM is presented.  
The simulations presented prove that even when the mapping has the best asymptotic 
performances is not necessary that this mapping will have the best performance in turbo 
equalization; some mapping is not adapted to turbo equalization like Anti Gray. We presented our 
optimized labeling map which seem a good compromise in weak SNR and high SNR and which 
outperforms the Gray mapping by 0.5dB at high SNR but unfortunately loss up to 0.5dB at weak 
SNR. 

Finally, our system proposed outperforms the classical system (IC procedure without OS and 
ID techniques) also when we use this system with or without OS and ID. Our system without OS 
technique makes a gain up to 0.5dB, with OS without ID presents a gain up to 1.0dB and when 
we use the two proposed technique OS and ID we obtain a gain up to 1.5dB in relation to the 
classical system used actually. 
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Chapter 7 
Low-Density Parity-Check Codes 
 
 

LDPC codes were invented by Gallager in his thesis [37, 38]. LDPC codes did not get much 
attention for many decades until recently when highly successful turbo codes were discovered [1]. 
LDPC codes were then rediscovered by Spielman et al. [63] and MacKay et al. [59]. For many 
channels and iterative decoders of interest, low-density parity-check (LDPC) codes exhibit a 
threshold phenomenon [61]: as the block length tends to infinity, an arbitrarily small bit error 
probability can be achieved if the noise level is smaller than a certain threshold. For a noise level 
above this threshold, on the other hand, the probability of bit error is larger than a positive 
constant. Gallager first observed this phenomenon for the binary symmetric channel (BSC) when 
he introduced regular LDPC codes [37, 38] using an explicit construction of regular graphs. Luby 
et al. generalized this idea to randomly constructed irregular LDPC codes, showed that irregular 
codes perform better than regular ones, and also showed that the threshold phenomenon occurs 
for these codes [57]. 

In [61], this observation was further generalized by Richardson and Urbanke to a large range 
of binary-input channels, including binary erasure, binary symmetric, Laplace, and AWGN 
channels, and to various decoding algorithms including belief propagation (sum-product 
algorithm), which are collectively called message-passing algorithms. Richardson et al. proved a 
general concentration theorem showing that the decoder performance on random graphs 
converges to its expected value as the length of the code increases, generalizing the result of 
Luby et al. [60]. Since it is difficult to determine the expected performance for an ensemble of 
finite size, they used the expected behaviour in the limit of infinitely long codes, which can be 
determined from the corresponding cycle-free graph. They defined the threshold as indicated 
above for a random ensemble of irregular codes specified by degree distributions, and developed 
an algorithm called density evolution for iteratively calculating message densities, enabling the 
determination of thresholds. 

Using this result, they constructed LDPC codes that clearly beat the powerful turbo codes [1] 
on AWGN channels. Recently, this was improved in [34], suggesting that LDPC codes might 
approach the channel capacity of the AWGN channel asymptotically. 

Calculating thresholds and optimizing degree distributions using density evolution is a 
computationally intensive task for most channels other than BECs. In BECs, density evolution 
becomes one-dimensional, and it is possible to do more analysis and even to construct capacity 
achieving codes [58]. For more interesting channels, including AWGN channels, however, 
density evolution is too complicated to be analyzed. 
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In this chapter, we introduce the LDPC codes and some of their properties, constructions and 
decoding algorithms. LDPC codes are binary linear block codes and, as their name indicates, 
have a parity check matrix that has only a small number of 1s per row and per column. Thus, the 
parity check matrix has a low density of 1s. We distinguish between regular and irregular LDPC 
codes where only irregular LDPC codes can approach capacity. To obtain good LDPC codes, 
special design methods exist. Some methods rely on density evolution [60]. To achieve, capacity 
infinite block lengths are necessary. However, simulation results show that LDPC codes perform 
near capacity with moderate block length (N = 104… 105). 
 
 
7.1 Regular and Irregular LDPC-Codes 
 

A (dv; dc) regular LDPC code is a binary linear (N, K) block code that has a parity check 
matrix H with a fixed and small number dv ones in each column and a fixed and small number dc 
ones in each row. We denote dv the variable node degree and dc the check node degree 

An irregular LDPC code is a binary linear (N, K) block code that has a parity check matrix 
H with a small number of ones in each column and a small number of ones in each row. The 
variable node degree dv and the check node degree dc is not constant over rows and/or columns. 

Sometimes dv and dc are called column weigh t and row weight because they denote the 
number of ones per column and row in the parity check matrix H. The reason for the additional 
notation of dv as variable node degree and dc as check node degree originates from the 
representation of LDPC codes by factor graphs which consist of variable nodes and check nodes. 
Let E be the total number of ones in the parity check matrix. With E = Ndv = Ldc, we get the 
design code rate of regular LDPC codes as 

 1 1 v
c

c

dK LR
N N d

= = − = −  (7.1) 

The actual code rate can be higher than the design code rate if the parity check matrix contains 
redundant rows. We will present the design code rate of irregular LDPC codes. 
 
 
7.2 Factor Graphs 
 

Factor Graphs [56] have been introduced to visualize complicated global functions which 
can be factorized into products of “local” functions. In particular, the sum-product algorithm used 
to decode LDPC codes computes various marginal functions derived from a global function. 

A factor graph is a bipartite graph that expresses the structure of the factorization. A factor 
graph has a variable node vj for each variable, a check node ci for each local function, and an 
edge from variable node vj to check node ci if and only if vj is an argument of ci. 

In Fig. 7.1 we show the factor graph for the LDPC code with the parity check matrix given in 
(7.7). 

According to the definition of the parity check matrix HLDPC, each row i with 
of H(1 i N K≤ ≤ − ) LDPC represents a parity check equation on certain variables vj with1 j N≤ ≤ . 

A variable vj is involved in the ith parity check equation if the entry Hi,j equals one. 
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We represent this check structure by a factor graph: The factor graph of an LDPC code 
consists of N variable nodes on the left side and L = N - K check nodes on the right side which 
are eventually connected through edges. Each check node ci represents a parity check equation 
which is determined by row i of the parity check matrix HLDPC. We represent this channel 
dependency through the connections coming from the left of the variable nodes. The connection 
from variable node vj to check node ci is determined by the entry Hi,j = 1 in the parity check 
matrix. Because these connections of variable nodes and check nodes are shuffled, we call this 
connection unit the edge interleaver. 

Using factor graphs, the terms variable node degree dv and check node degree dc become 
obvious. The variable node degree  of a certain variable v

jvd j node is the number of edges that 
are connected to this node. Similarly, the check node degree is the number of edges that are 
connected to a given check node c

icd
i. 

From the definition of a regular LDPC code, we can define a regular factor graph if the 
corresponding LDPC code is regular. 
 
 
7.2.1 Cycles and Girth of a Factor Graph 
 

We give only the essential definitions of some of the properties of (factor) graphs. For more 
comprehensive information on graphs, we refer to [70]. 

A cycle in a (factor) graph is a closed loop where each vertex is only used once and the 
staring vertex is identical with the ending vertex. The length K of the cycle is the number of 
edges (or vertices). 

The minimum length of a cycle contained in a (factor) graph is called girth. A tree is a graph 
without cycles. 

Cycles and girth of factor graphs are important when decoding LDPC codes.  
 
 
7.2.2 Degree Distribution 
 

We characterize a class of regular LDPC codes by one variable node degree and one check 
node degree. Similarly, we associate a degree distribution with a class of irregular LDPC codes. 
Specifying degree distributions, from edge perspective, λj denotes the fraction of edges connected 
to all variable nodes that have a certain degree dv = j. Similarly ρj denotes the fraction of edges 
connected to all check nodes that have a certain degree dc = j. 

Let be the highest variable node degree and the highest check node degree. maxvd maxcd
Then the total number E of edges (or equivalently the total number of ones in the parity check 
matrix) equals 

 
max max

1 1

1 1v cd d
ji

i j
E

N i L j
ρλ

= =

= =∑ ∑  (7.2) 

Similarly, as for regular LDPC codes we define the average variable node degree vd and the 
average check node degree cd for irregular LDPC codes as 
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 ;v c
E Ed d
N L

= =  (7.3) 

Where N is the number of variable nodes and L = N - K the number of check nodes. 
 
The design code rate for irregular codes results as 

 1 v
c

c

dR
d

= −  (7.4) 

Then we can specify the degree distribution as polynomials from edge perspective 
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The design code rate for irregular codes becomes 
( )
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                   (7.6) 

In this thesis, we use the factor graph representation of LDPC codes as shown in Fig. 7.1, which 
is a graph representation of the following (L x N) parity check matrix HLDPC (also known as 
Tanner graph or bipartite graph): 

  (7.7) 

1 1 0 0 0 0 0
1 0 0 1 0 1 0
0 1 1 0 0 0 1
1 0 0 0 0 1 0

0 1 0 1 1 0 0

LDPCH

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
Figure 7.1: Factor graph (Tanner graph) of a regular or irregular LDPC code. 
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Analysis of Tanner graphs tells us much about properties such as girth, expansion, degree and 
diameter. These properties affect how good the code is and also how well it is suited to the 
decoding process. The smaller the girth the worse the code performs under sum-product decoding. 
The diameter of the graph is the maximum, over all pairs of nodes, of the shortest path between 
them. This number gives a measure of how quickly information is propagated throughout the 
graph during decoding. It is desirable that the diameter is small. The degree of a node is defined 
as the number of edges that are connected to it. The decoder complexity is proportional to the 
degree of the nodes. There is much interest in finding the optimal degree distribution in the graph. 
A graph is termed a good expander if every set of nodes has a large number of neighbours. Codes 
from graphs that are good expanders can correct more errors. 
 
 
7.3 Construction of a Parity Check Matrix for a Degree Distribution 
    

According to the degree distribution, we can construct the corresponding parity check matrix 
H. This means that we have to place the ones in the parity check matrix so that the degree 
distribution for both rows (check node degree dc) and columns (variable node degree dv) is 
fulfilled.  

Gallager [37], Mackay & Neal [59] construct it randomly: The constraints typically imposed 
on the pseudo-randomly constructed parity-check matrices of binary LDPC codes are that the 
parity-check matrix be regular (or nearly so), and that the code be free of short cycles, especially 
cycles of length 4. However, the difficulties in constructing code without 4-cycles are 
compounded as the order of the field increases. Which push Luby & al. [57], Richardson & 
Urbanke [61] to work in some optimization techniques for the construction a capacity 
approaching LDPC code, and Lucas & al [71] to use the algebraic construction. An interesting 
outcome of the research into binary algebraic LDPC codes has been the recognition of the key 
role played by rank deficient parity-check matrices which can play a significant role in improving 
the performance of q-ary LDPC codes. 

All parity check matrices in this thesis have been constructed randomly. Moreover, cycles 
and small stopping sets should be avoided. 
 
 
7.4 Decoding Algorithms 
 

Decoding algorithms for LDPC codes are called message passing algorithms, and are iterative 
algorithms. The reason for their name is that at each round of the algorithms intermediate 
messages are passed from variable nodes to check nodes, and from check nodes back to variable 
nodes.  

One very important aspect of messages passing is its running time. Since the algorithm 
traverses the edges in the graph, and the graph is sparse, the number of edges traversed is small. 
Moreover, if the algorithm runs for a constant number of times, then each edge is traversed a 
constant number of times, and the algorithm uses a number of operations that is linear in the 
number of message nodes! 
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Another important note about messages passing is that the algorithm itself is entirely 
independent of the channel used, though the messages passed during the algorithm are 
completely dependent on the channel. 

We will describe two generic decoding algorithms for code realizations based on Tanner 
graphs. The structure of the algorithms matches the graphs directly. It will be convenient to think 
of these algorithms as parallel processing algorithms, where each variable and each check is 
assigned its own processor and the communication between them reflects the Tanner graph.  
The algorithms come in two versions: the sum-product algorithm and the min-sum algorithm. 
The ideas behind them are not essentially new; rather, the algorithms are generalizations of well-
known algorithms such as the Viterbi algorithm [67] and other trellis-based algorithms. Another 
important special case is Gallager’s algorithm for decoding low-density parity-check codes [37]. 
A relatively general formulation of the algorithms was also given by Tanner [64]. 

The overall structure of the algorithms, and the context in which they apply, is illustrated in 
Fig. 7.2. As shown, the algorithms do not make decisions; instead they compute a set of final 
results upon which a decision can be made. The channel output enters the algorithms as a set of 
observations. 

 
Figure 7.2: Typical decoding application of the min-sum or sum-product algorithm. 

Min-sum or 
sum-product 

algorithm 

 
Formally, there is one observation for each variable v, denoted by mv; similarly, there is one 

final a posteriori probability for each variable v, denoted by APPvB. 

During the computation, the algorithms maintain a set of intermediate messages: for each pair 
(v,c) of adjacent variable and check set, there is one check-to-variable message mcv, and one 
variable-to-check message mvc. These messages are best thought of as having a direction on the 
Tanner graph. For instance, we will often call the “contribution” from the check c

i jc vm i to the 
variable vj. 
 
 
7.4.1 The Sum-Product Algorithm 
 

Maximum-likelihood decoding usually becomes exponentially difficult for some graph codes 
including LDPC codes as the block length becomes large. Sum-product decoding, also known as 
belief propagation, can be viewed as applying Bayes rule locally and iteratively to calculate 
approximate marginal a posteriori probabilities for these codes. The sum-product algorithm is 
also practical, since the decoding complexity per iteration is linear in block length. If a graph has 
no cycles, then it can be easily proved that the sum-product algorithm computes marginal 
posterior probabilities exactly. 

 
mcv, mvc 

 
Intermediate 

messages 

Channel Decision 
x̂mv  x B∈ APPv 

Observation Final results codeword estimate 

noise 
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However, in many situations of interest including LDPC code graphs as in Fig. 7.1, we have 
graphs with cycles. In such cases, we may still want to run the sum-product algorithm ignoring 
cycles and hope for an answer that closely approximates the correct posterior probabilities. 
Despite a lack of theoretical understanding, the huge success of turbo codes and low-density 
parity-check codes has ignited further research in this area. 

The behaviour of the sum-product algorithm on graphs with a single cycle is relatively well 
understood [52, 54 and 65]. In this case, the sum-product algorithm converges to a unique 
stationary point. If all variables are binary-valued, then the component wise maximum likelihood 
estimates produced by running the sum-product algorithm are correct. However, it is hard to 
generalize this result to a graph with more than one cycle. 

Another approach to understand the sum-product algorithm on a graph with many cycles is to 
assume that all variables are jointly Gaussian [55, 66 and 62]. In this case, the analysis of the 
sum-product algorithm can be simplified since a Gaussian distribution is characterized by its 
mean and variance. 

Richardson et al. [61, 60] demonstrated that the average asymptotic behaviour of a sum-
product decoder for LDPC codes is numerically computable by using an algorithm called density 
evolution. They also showed that for many interesting channels, including additive white 
Gaussian noise (AWGN) channels, one can calculate a threshold value for the ensemble of 
randomly constructed LDPC codes which determines the boundary of the error-free region 
asymptotically, as the block length tends to infinity. 

We first describe how density evolution works for (dv; dc)-regular binary LDPC codes, where 
dv denotes the number of neighbours of a variable node and dc denotes the number of neighbours 
of a check node. Under the sum-product algorithm, variable and check nodes exchange messages 
iteratively. 

A check node gets messages from its dc neighbours, processes the messages, and sends the 
resulting messages back to its neighbours. Similarly, a variable node receives messages from its 
dv neighbours and also from its corresponding channel output, processes the messages, and sends 
messages back to its neighbours. 

Each output message of a variable or a check node is a function of all incoming messages to 
the node except for the incoming message on the edge where the output message will be sent out. 
This restriction is essential for the sum-product algorithm to produce correct marginal a posteriori 
probabilities for cycle-free graphs. This two-step procedure is repeated many times. 

Let be the message passed from variable node v to check node c at the l( )l
vcm th round of the 

algorithm. Similarly, define . At round 0, ( )l
cvm ( )l

vcm  is the log-likelihood of the variable node v 
conditioned on its observed value, which is independent of c. We denote this value by mv

We will describe the sum-product algorithm together with density evolution in more detail. 

Fig. 7.3 and 7.4 show message flows through a variable and a check node, respectively, 
where we use normal realizations [53] of variable and check nodes, which become a repetition 
and parity check, respectively. Under sum-product decoding, constraints become computation 
nodes and states become communication links between constraint nodes. 
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The sum-product algorithm consists of the following three steps: 
 

• Initialization. The observations mv are initialized as appropriate (using, e.g., channel 
information and/or some known a priori distribution). The intermediate messages mvc and 
mcv are set to one. 

• Iteration. The intermediate messages mvc and mcv are updated a suitable number of times 
as follows. The variable-to-check message mvc is computed as the sum of the variable’s 
observation and all contributions coming into v except the one from c: (Fig. 7.3) 

 ( ) ( )
{ }

1
' /

1,
v

l l
vc v c vc C c

m m m if l−
′∈

= + ≥∑  (7.8) 

The check-to-variable message mcv is obtained by: (Fig.7.4)  

 
( ) ( )
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∈
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Where Cv is the set of check nodes incident to variable node v, and Vc is the set of 
message nodes incident to check node c 

• Termination. The a posteriori probabilities APPv are computed as the product of the 
variable’s observation and all contributions coming into v, i.e., 

 ( )
'' v

l
v v cc C vAPP m m

∈
= +∑  (7.10) 

 

                                              
                   Figure 7.3: Message flow                                   Figure 7.4: Message flow 
                     through a variable node.                                        through a check node. 
 
 
7.4.2 The Min-Sum Algorithm 
    

In this section, we analyze density evolution for the min-sum algorithm. Unfortunately, it 
turns out that the max-sum algorithm does not preserve the "symmetry condition." Therefore, it is 
not guaranteed that the probability of error is non-increasing. 

On a cycle-free graph, decoding based on the min-sum algorithm produces a probability of 
error for each bit that is always greater than or equal to that of the sum-product algorithm, 
because the sum-product algorithm produces the minimum probability of error. 

The min-sum algorithm is a straightforward generalization of the Viterbi algorithm [67]. A 
well-known decoding algorithm for generalized concatenated codes [68] is also related, as is 

 

1cd −  

( )l
cvm  

( )
i

l
v cm  

 

1vd −  

( )1
i

l
c vm −  

( )l
vcm  

vm  

_____________________________________________________________________________________________________________________ 

 



Low-Density Parity-Check Codes                                                                                                    85 

threshold decoding [69]. Before going into the general description, we encourage the reader to go 
through the example in Appendix A, where the decoding of a (7, 4, 2) binary linear code using 
the min-sum algorithm is performed in detail. 
 
The algorithm consists of the following three steps: 
 

• Initialization. The observations mv are initialized as appropriate (using, e.g., channel 
information). The intermediate messages mcv and mvc are set to one. 

• Iteration. The intermediate messages mcv and mvc are alternatively updated a suitable 
number of times as follows. The variable-to-check message mvc is computed as the sum of 
the variable’s observation and all contributions coming into v except the one from c: 

 ( ) ( )
{ }

1
' /

1,
v

l l
vc v c vc C c

m m m if l−
′∈

= + ≥∑  (7.11) 

The check-to-variable message mcv is obtained by examining all locally valid 
configurations on the variable v, for each summing all contributions coming into c except 
the one from v. The minimum over these sums is taken as the message mcv: 

 ( ) ( )
{ } '' /
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c

l l
cv v cv V v

m m
∈

⎢ ⎥=
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Where Cv is the set of check nodes incident to variable node v, and Vc is the set of 
message nodes incident to check node c 

• Termination. The a posteriori probabilities APPv are computed as the product of the 
variable’s observation and all contributions coming into v, i.e., 

 ( )
'' v

l
v v cc C vAPP m m

∈
= +∑  (7.13) 

 
For Tanner graphs that contain cycles, there is no general result for a posteriori probabilities, 

or for the decoding performance. 

Despite some shortcomings, there are some applications where the min-sum algorithm is 
preferable. The min-sum algorithm does not require the estimation of the channel noise and is 
simpler to execute than the sum-product algorithm. The min-sum algorithm can then be used as a 
simplified decoding algorithm that approximates the sum-product algorithm. 
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Chapter 8 
Decoding of Non Binary and Adaptive LDPC 
Codes 
 
 

Binary LDPC codes were invented by Gallager more than four decades ago and appear to 
have been largely forgotten until their rediscovery by MacKay and Neal in 1996. In recent years, 
a lot of research has been dedicated to Binary LDPC codes and due to their near-capacity error 
correction performance; they have emerged as a promising candidate technology for forward 
error correction (FEC) in future wireless systems and became serious competitors to Turbo Codes.  

At the same time, there has been a growing interest in “soft decision” decoding schemes for 
error-correcting codes. Powerful turbo codes have been introduced which achieve low bit-error 
rates at low signal-to-noise ratio. They are of interest in wide range of telecommunications 
applications.  

Gallager only considered regular and binary codes, i.e., codes with a fixed number of non-
zero binary elements in the rows and columns of the LDPC matrix HLDPC, respectively. However, 
significant improvements in bit error performance can be achieved by using irregular and non 
binary codes.  

The different algorithms used for LDPC decoding (belief propagation, sum-product …) 
iteratively approximate the maximum likelihood solution of the decoding problem.  

LDPC decoding is done by passing messages on the edges between the nodes of the bipartite 
“Tanner graph” that represents the parity check matrix of the LDPC code Fig. 7.1. The average 
complexity of the decoding process is hence the product of three factors: 

1. The number of operations per node, 
2. The average number of iterations, and 
3. The number of active nodes in each iteration. 

Powerful decoding schemes, like turbo codes, necessitate the utilization of decoding 
algorithms that compute a posteriori probabilities (APPs) on a symbol-by-symbol basis. An early 
contribution to APP decoding was made by Gallager where the decoding is performed by APP 
modules over each check node. At the same period, an application of APP decoding to the 
framework of threshold decodable codes was made by Massey. Unfortunately, the proposed APP 
algorithm has a high complexity which increases with both the number of states and the number 
of transitions in the trellis of the code. Hence, APP algorithms that reduce the computational 
complexity and/or storage requirements are interest for practical applications. Several authors 
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have observed that APPs can be computed on a trellis of the dual code which simplifies decoding 
if the code is high rate, resulting in fewer transitions of the dual trellis in comparison with the 
original (primal) trellis.  

Here, we generalize the original idea of “dual APP” (DAPP) decoding to non binary 
alphabets. By non binary alphabet we mean that code symbols are taken from some extension 
field GF(q=pm), mostly binary extension field GF(q=2m). 

The first work on q-ary LDPC codes appeared with Mackay and Davey. In this chapter, we 
address the non binary codes in conjunction with non binary modulation. We present a symbol-
by-symbol maximum a posteriori (MAP) decoding rule which is, in a way, the dual of 
correlation-Viterbi decoding for linear codes. This code is also exhaustive, but in the sense that 
every word in the dual code is used in the decoding process. This means that in practice this 
decoding rule can be used only with codes whose dual code has a small number of code words, 
i.e., high rate codes or low-to-middle rate codes with short constraint lengths. The application of 
such non binary codes to orthogonal modulation is of particular practical importance. The 
decision rule does also play in the non iterative case a central role, and the crucial extrinsic 
information is also passed on as an a priori information to subsequent decoding iterations. And 
we describe how this complexity can be reduced using our decoding rules and make the 
computation faster with Fast Hadamard Transform (FHT) of the probabilities. 

Finally, we present the Adaptive LDPC Coding addressed for 3rd Generation (3G) wireless 
systems. The use of Adaptive Modulation and Coding (AMC) is one of the key enabling 
techniques in the standards for 3rd-Generation (3G) wireless systems that have been developed to 
achieve high spectral efficiency on fading channels [74] – [77]. The core idea of AMC is to 
dynamically change the Modulation and Coding Scheme (MCS) in subsequent frames with the 
objective of adapting the overall spectral efficiency to the channel condition. The decision about 
selecting the appropriate MCS is performed at the receiver side according to the observed 
channel condition with the information fed back to the transmitter in each frame. In this chapter, 
we dynamically change only the modulation level during the encoding to take advantage of the 
whole of the capacity by using the water filling technique (see Appendix B), the set of candidate 
modulation are BPSK (binary data transmitted), 4-QAM, 8-QAM, 16-QAM, 64-QAM and 256-
QAM with two dimensional Gray mapping. Where we consider that the characteristics of the 
channel are well-established and the channel can be probed to obtain a reliable channel quality 
estimate, the transmitter then uses this estimate to choose the appropriate signaling set. 

Here, we don't enter in details of AMC; we will only compare the performances of an AMC if 
we dynamically adapt the modulation level in the modulator or in the encoding. In the first case, 
we consider at the transmitter a binary LDPC encoding and a modulator where the level size 
adapted to the channel profile, and at the receiver we compute the probabilities over each bit 
which will be used in the binary LDPC decoder. In the second case, we consider at the transmitter 
an adapted LDPC encoding where the level size will be adapted in the encoding matrix and a 
modulator, and at the receiver we compute the probabilities over each symbol and use this in a 
type of adapting LDPC decoder. 

We will see that the decoding rule presented in section 8.1 can be easily applied to the non 
binary decoding and to the adaptive decoding and the performances obtained are very interesting.    
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8.1 The Decoding Rule 
 

For convenience, we present the decoding rule for linear block codes. The extension to 
convolutional codes is simple.  

Let c = (c0, c1, …, cn-1) denote any codeword of (n, k) linear block code ζ over GF(pm) and 
cj’= (c'

j0, c'
j1, …, c'

j,n-1) the jth codeword of the (n, n-k) dual code ζ’. A codeword c is transmitted 
over a time-discrete memory less channel with output alphabet B. The received word is denoted 
by y = (y0, yl, …, yn-1), yj ∈ B.  

The decoding problem is: given y, compute an estimate , of the transmitted code symbol , 
that the probability that equals is maximized.  

iĉ ic

iĉ ic

For the demonstration, readers are referred to Appendix C and D for more detailed list of 
definitions, lemma and theorems; we'll use the following notations:  

• q=pm; p is a prime number.  
• exp[2 1 / ]w π= − p (primitive complex pth root of unity); 
• ).()( γβτ

β γχ w= β andγ ∈GF(pm); χ  and χ  defined in Appendix D. 
•  1ij if i jδ = = and zero otherwise;  
• Pr(x) is the probability of x; and Pr(x|y) is the probability of x given y.  
• Unless otherwise stated, the elements of GF(q) are taken to be the integers 0,1,…,q-1, 

and all arithmetic operations are performed in the field of complex numbers. 
 

Decoding Rule: Set = s, where s∈GF(piĉ m) maximizes the expression (demonstrate in the proof) 

 
1

( )
( ) 1 ( )0

( ) ( ) ( ) Pr( )
n k

jl il

q n

i c
GF q j GF ql

A s s yβ βδ
β γ

lχ χ γ
− −

′ −
∈ = ∈=

γ
⎡ ⎤

= − −⎢ ⎥
⎣ ⎦

∑ ∑ ∑∏  (8.1) 

Theorem: Decoding rule (8.1) maximizes the probability that equals . iĉ ic
 
Proof: We must show that choosing s to maximize Ai(s) is equivalent to maximizing the 
probability that equals s given the received word y. We do this directly by showing that  ic

Pr (ci=s|y)  = λAi(s), where λ is a positive constant which is independent of s.  

We first note that 

 ( ) ( ) ( ) ( )
, ,

Pr( ) Pr Pr [Pr / Pr ]
i i

i
c C c s c C c s

c s y c y y c c y
∈ = ∈ =

= = =∑ ∑  (8.2) 

 

Since the code words of ζ are equiprobable, Pr(c) = p-mk and (8.2) becomes 

 ( ) 0,( . )Pr( ) [ / Pr ]. Pr( )
i

mk
i

c C
c s y p y y c δ−

c e s−
∈

= = ∑  (8.3) 

Where ei= (δi0, δi1… δi,(n-1)) is the vector with one in the ith position and zero elsewhere. In terms 
of their finite Fourier transforms, 
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 1
0,( . )

( )
( . )

ic e s i
GF q

q c eβ
β

δ χ−
−

∈

s= −∑  (8.4) 

 
 

( )

Pr( ) ( , ) ( )
n

n
u

u GF q

y c q F y u cχ−

∈

= ∑  (8.5) 

Where q=pm, and  
 

( )

( , ) Pr( ) ( )
n

u
v GF q

F y u y v vχ
∈

= −∑  (8.6) 

u = (u0, u1, …, un-1) and v = (v0, v1, …, vn-1) are any elements of Vn, the vector space of all n-
tuples over GF(pm).  

Substituting (8.4) and (8.5) in (8.3) yields to 

 
( )

( )

( 1)

( )( )

( 1)
( . )

( ) ( )

Pr( ) [ / Pr ]. ( , ) ( ) ( . )

[ / Pr ]. ( ) ( , ) (

n

in

m n k
i iu

c C GF qu GF q

m n k
u e

GF q c Cu GF q

c s y p y F y u c c e s

p y s F y u

β
β

β β
β

χ χ

χ χ

− + +

∈ ∈∈

− + +
+

∈ ∈∈

⎡ ⎤

)c

⎡ ⎤
= = −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤

= − ⎢ ⎥
⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑
 (8.7) 

 

By using the duality properties of group characters, we know that:  

 
.

( )
( )

0n

k m k

v v GF qc C

q p If v C
c

elsewhere
χ

⊥

∈∈

⎧ = ∈
= ⎨

⎩
∑  (8.8) 

Applying (8.8) to (8.7) gives 

 ( )( 1)

( ) '

Pr( ) [ / Pr ]. ( ) ( , ' . )m n
i i

GF q c C

c s y p y s F y c eβ
β

χ
⊥

− +

∈ ∈

= = − − β∑ ∑  (8.9) 

 

Since the channel is memory less, we may write (8.6) as 

 
1 1

( )0 0( )

( , ) Pr( ) ( ) Pr( ) ( )
l

n

n n

l l u l l u
GF ql lv GF q

F y u y v v y
γ

l
χ γ χ γ

− −

∈= =∈

= − =∑ ∑∏ ∏ −  (8.10) 

 

Substituting (8.10) in (8.9) yields to 

 ( )
1

( 1)
( )

( ) 1 ( )0

Pr( ) [ / Pr ]. ( ) ( ) Pr( )
n k

jl il

q n
m n

i c
GF q j GF ql

c s y p y s yβ βδ
β γ

lχ χ γ
− −

− +
′ −

∈ = ∈=

γ
⎡ ⎤

= = − −⎢ ⎥
⎣ ⎦

∑ ∑ ∑∏  (8.11) 

  

( ) ( )( 1)Pr( ) [ / Pr ].m n
ic s y p y A s− += = i                                                                                  

As one might expect, the decoding rule takes a comparatively simple form;  

In the binary case: set = 0, if Aiĉ i(0) > Ai(1) and = 1 otherwise;  iĉ
In the non binary case: set = s, if max{Aiĉ i(0), Ai(1),…, Ai(s),…, Ai(q-1)}=Ai(s). 

_____________________________________________________________________________________________________________________ 

 



Decoding of Non Binary and Adaptive LDPC Codes                                                                   91 

The computation complexity of the algorithm described above can be reduced and the 
algorithm can be accelerate in the special case were we have a SPC code (its dual code is a 
repetition code). The idea is to use a Fast Hadamard Transform (FHT) in the proposed decoding 
rule and make it faster. And we obtain if p=2: 

 ( ) ( )
1

0,

( ) Pr Pr
n

i i l
l l i

A s y s FHT FHT y γ
−

= ≠

⎧ ⎫
⎡ ⎤≅ ∗ ⎨ ⎬⎣ ⎦

⎩ ⎭
∏  (8.12) 

Since the function Pr(yl/γ) is defined on GF(q), FHT[Pr(yl/γ)] is a q-point FHT instead of qk-
point FHT, on account of the use of dual code. In the first layer, the FHT computes the sum and 
difference of the probabilities of two field elements differing from each other by only one bit 
location. 
 
 
8.1.1 Decoding Rule applied to Single Parity Check Code (SPC) 
 

We will take the single parity check "SPC(6, 5)" code over GF(4) which is a linear block 
code with a single parity check symbol.  

Let u = (u0, u1, …, u4) be the message to be encoded. The single parity check symbol is given by 
u5 = v/a5 and v = a0*u0+ a1*u1+ … + a4*u4, where ai elements of GF(4), a = [a0, a1 … a5] is the 
parity check matrix of the code SPC(6,5) and the sum (+) and product (*) are done in GF(4).  

SPC codes are often used for simple error detection. Here we have chosen the SPC codes 
because their dual codes are repetition codes, i.e., the SPC(6, 5) and the repetition code (6, 1) are 
dual codes to each other. Furthermore, the repetition codes have a small number of code words. 

We will illustrate the decoding rule for the received symbol y0. The other received symbols 
y1, …, y5 may be decoded simply by permuting the received word y in this equation. 

 ( ) ( )
5

0 0 4 41, (4)

( ) Pr Pr l
l GF

A s i y i FHT FHT y
γ

γ
= ∈

⎧ ⎫⎪ ⎪⎡ ⎤= ≅ ∗ ⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭
∏  

Where  is a 4-point FHT. 
4

FHT

0ŝ = i, if max{A0(0), A0(1),A0(2), A0(3)}=A0(s=i),  in the case of non iterative decoding.  
 
 
8.1.2 Simulation Results for SPC(6, 5) 
  

For the non binary SPC codes, the performance of the decoding rule are presented basis on a 
symbol-error-rate. Some simulation results for the white Gaussian channel suggest that the non 
binary encoding and decoding outperforms the binary equivalent especially when the modulation 
is not binary. 

Fig. 8.1 and 8.2 illustrate this by showing up to 1 dB gain in the comparison between non 
binary SPC(6,5) and his binary equivalent when the modulation is q-QAM (q=4, 16, 64, 256). 
The improvement increases with the size of the modulation. 
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Figure 8.1: Comparison of SPC(6, 5) over GF(4) (resp. GF(16)) with 4-QAM (resp. 16-QAM) 

and its binary equivalent. 
 

 

 
Figure 8.2: Comparison of SPC(6, 5) over GF(64) (resp. GF(256)) with 64-QAM (resp. 256-QAM) 

and its binary equivalent. 
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8.2 Non Binary LDPC Codes 
 
 

While a substantial, and rapidly expanding, literature now exists on binary LDPC code 
construction and decoding, comparatively little is known about generalizations to non-binary, in 
which codeword symbols are selected from finite fields GF(q), q = 2m, m ≥ 2 [72, 73]. In some of 
the earliest work on such q-ary LDPC codes, Davey and MacKay demonstrated that LDPC codes 
defined over non binary fields can substantially outperform binary LDPC codes over the binary 
symmetric channel (BSC) and additive white Gaussian noise (AWGN) channel [72, 73]. 

Davey showed that there is an optimum column weight which decreases as the order of the 
field increases, concluding that the best results could be generated by choosing the highest order 
field that is feasible and then selecting an appropriate mean column weight [73]. As is the case 
for most binary LDPC code constructions, once the optimal weight distribution has been 
determined, the q-ary codes are constructed randomly.  

For very long codes this is not a problem as good codes are easily constructed randomly, and 
convergence to an ensemble average in the long codeword limit has been established [61]. 
However for short codes there is typically a significant performance gap between the best and 
worst codes of a particular ensemble and, especially for higher rate codes, good codes can be 
difficult to construct.  

Mackay proved that LDPC codes can approach arbitrarily close to the Shannon limit if we 
choose sufficiently high column weight of HLDPC and then choose a sufficiently long block length. 
However, as we increase the column weight, the number of cycles in the associated bipartite 
graph increases drastically which degrade the performance of our iterative decoding algorithm. 
By moving to GF(q) we manage to increase the mean column weight of the equivalent binary 
parity check matrix HLDPC while retaining the same bipartite graph on which we perform the 
decoding, see Fig. 8.3. The drawback is that the decoding complexity is increased. 

Another way of viewing the difference between binary and q-ary codes is that we increase the 
state space of each node in the decoding graph by decoding over GF(q), which allows us to track 
correlations in the true posterior distribution that are not detectable by the binary algorithm. 
Increasing the field order q for LDPC codes is comparable to increasing the memory of 
convolutional codes. 

It is worth pointing out the importance of the choice of non-zero elements in a parity check 
matrix defined over GF(q). For example, if we choose them all to be ones then the graph of the 
equivalent binary code splits into m disjoint subgraphs. This split occurs because all the non-zero 
m x m blocks in the equivalent binary parity check matrix are identity matrices. In this case the 
decoding is equivalent to that of the binary algorithm applied to each subgraph. 

Non-binary LDPC codes provide a new error control technology of combining the non-binary 
codes and the soft iterative decoding algorithm. In these LDPC codes over GF(q=2m), each code 
symbol contains m bits.  

In principle, q-ary LDPC codes can be generated from Binary LDPC codes. By substituting 
each element one in the LxN parity check matrix HLDPC for a Binary LDPC code with a nonzero 
element randomly chosen from GF(q), a q-ary LDPC LxN parity check matrix HqLDPC is obtained. 
In this way the density and girth properties of the randomly generated binary matrix, HLDPC, are 

_____________________________________________________________________________________________________________________ 

 



94                                                  Decoding of Non Binary and Adaptive LDPC Codes 

retained in the q-ary code. It is clearly that the GF(q) elements replacing the ones in HLDPC cannot 
be all the same, otherwise the resultant q-ary LDPC code is simply composed of m-disjointed 
(also interleaved) Binary LDPC codes. 

1 1 0
3 0 2
⎛ ⎞
⎜ ⎟
⎝ ⎠

1 0 1 0 0 0
0 1 0 1 0 0
0 0 0 1
1 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1 1
1 1

No Cycles!!! 

Cycles of length 4 !!! 

1 

1 3 
2 

 
Figure 8.3: Comparison of corresponding graph structure (right) of a fragments parity check 

matrices over GF(4) and his binary equivalent (left). Note the presence of a short 
cycle in the graph for the binary code. 

 

Conceptually, any Binary LDPC code (random or algebraic, regular or irregular) parity check 
matrix HLDPC can be used to generate a q-ary LDPC code parity check matrix H . qLDPC

The encoding of non-binary LDPC codes is similar to the encoding of binary LDPC codes, 
where the matrix multiplication is performed over the finite field GF(q). 

We can also use the same bipartite graph but allowing the variable nodes to take values from 
GF(q) and allowing the check nodes to impose constraints more complex than binary parity 
checks. 

In the same time, any decoding method for Binary LDPC codes can be extended to q-ary 
LDPC by using the proper field operations. However, the efficient implementation of the belief 
propagation (BP) algorithm for Binary LDPC codes cannot be done for q-ary LDPC codes. This 
fact increases the decoding complexity of q-ary LDPC codes. 
 
 
8.2.1 Encoding with q-ary LDPC matrix 
 
Initially HqLDPC is not in systematic form and is therefore reduced to the form 
 qLDPC LH P I⎡ ⎤= ⎣ ⎦  (8.13) 
 

Using Gaussian elimination where IL is the LxL identity matrix and P has dimensions LxK 
where K = N - L. All arithmetic operations are implemented over the finite field GF(q). The KxN 
generator matrix can now be expressed as 
 qLDPC KG I P′⎡ ⎤= ⎣ ⎦  (8.14) 

The encoding of non-binary LDPC codes is similar to the encoding of binary LDPC codes, 
where the matrix multiplication is performed over the finite field GF(q). 
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8.2.2 Decoding Rule Apply to q-ary LDPC 
  

In the case of q-ary LDPC, a lot of decoding algorithms was represented in the literature, 
where the structure of the algorithms matches the graphs directly. It will be convenient to think of 
these algorithms as parallel processing algorithms, where each site and each check is assigned its 
own processor and the communication between them reflects the Tanner graph. All these 
algorithms can be described by a local message-passing algorithm on the graph, and are iterative 
algorithms. 

During the first half-iteration, each variable node vi sends its observations mv and its a priori 
probabilities mvc given the input from all adjacent check notes cj', j'≠ j to check node cj.  

During the second half-iteration, each check node cj sends its extrinsic probabilities mcv 
taking into account observations and a priori probabilities of all other adjacent variable nodes vi' , 
i'≠ i, to variable node vi.  

At the end of the iteration, we compute a posteriori probability APP that the variable i is in 
state a by: 
 ( ) . .a a a

i v cv vcAPP y a m m m= ∝  (8.15) 

And we make the decision on the received symbols like this: = a, if max{APP(yiŝ i=0), 
APP(yi=1), …, APP(yi=a),…, APP(yi=q-1) } = APP(yi=a). 

At variable nodes:  

• The observations given by the channel remain the same during all iterations. a
vm

• The a priori probabilities are updated with iterations: 
 For the first iteration, we fixed all  to 1/q               a

vcm
 For the other iterations, are computed from  a

vcm a
cvm

1

' 0, '

dv
a
vc c v

c c c

m
−

am ′
= ≠

= ∏  where it has dv adjacent check nodes. 

• Finally, the APP probabilities are computed by eqs (8.15). 
 

At check nodes: (considered like a SPC) 
The extrinsic probabilities  are computed from: a

cvm

 
( )

1

'
' 0, ' ,

dc
a
cv v v cq qv v v b GF q

m FHT FHT m m
−

= ≠ ∈

b b⎧ ⎫⎪ ⎪⎡ ⎤= ⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

∏  (8.16) 

Where dc is the number of its adjacent variable nodes. 
 

We consider every check node in the tanner graph like a SPC code then its dual code is a 
repetition code which reduces the computation complexity of the algorithm described above. This 
algorithm is accelerated in relation to other decoding algorithm in the q-ary LDPC codes by using 
a Fast Hadamard Transform (FHT) in the proposed decoding rule. 

The complexity of the decoding algorithm for q-ary LDPC codes scales as q2. This 
complexity is reduced to qlogq using our decoding rules especially with FHT of the probabilities. 
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8.2.3 Simulations Result 
 

Davey in his thesis suggests that carefully constructed non-binary LDPC codes are likely to 
outperform their binary counterparts. 

For evaluation, we have applied the decoding rule to: 

• We choose three LDPC codes of rate R=1/3 over fields GF(2), GF(4) and GF(8) over 
binary Gaussian channel. Note that these codes have a block length of 18000 bits. For 
comparison we include the performance of a rate 1/3 turbo code with the same block 
length. 

• q-ary LDPC codes (q=4, 8, 16, 64 and 256) and compared these to their binary equivalent 
LDPC with q-QAM modulation, we take the same rate 1/2 for regular (3, 6) codes and the 
same block length N=4000 in term of bits, we include the performance of turbo code. 

 
The results in Fig. 8.4 show that LDPC codes over higher order fields (GF(4) and GF(8)) can 

significantly outperform binary LDPC codes of similar block length (N=18000 bits). At 10-4, an 
improvement of 0.35 dB is shown for the rate R=1/3 code moving from binary to GF(8) 
construction, halving the distance to the 16-state turbo code performance over a Binary Gaussian 
Channel. 

 
Figure 8.4: Comparison of LDPC codes over a Binary Gaussian Channel over GF(2) "Binary", 

GF(4) and GF(8). 
 

Next, we will take an AWGN channel, the LDPC codes like the q-ary LDPC codes are rate 
1/2 regular (3, 6) codes, and the UMTS turbo code used is rate 1/2. We compare q-ary LDPC 
codes of block length N symbols over GF(q) , i.e., length 1000 symbols over GF(16), with binary 
LDPC codes of length 4000 bits. Modulation used is q-QAM, i.e., with a code over GF(16) 16-
QAM modulation is used. 
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Figure 8.5: Performances of q-ary LDPC vs LDPC in 4, 8 and 16QAM modulation over AWGN 

channel. 
 

 
Figure 8.6: Performances of QLDPC vs LDPC in 64 and 256QAM modulation over AWGN 

channel. 
 

Fig. 8.5 and 8.6 compare the performance of QLDPC codes over GF(4), GF(8), GF(16), 
GF(64), and GF(256) with LDPC codes. We note that QLDPC codes outperform LDPC codes 
practically in all the cases and when q grows the improvement increase highly. For q=4, we 
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practically don't obtain any gain, for q=8, we gain more than 0.75dB at 10-4. This gain increases 
with q, up to 2 dB for q=256. 

 

 
Figure 8.7: Performances of 4-ary LDPC vs Turbo Code in 4QAM modulation over AWGN 

channel. 
 

 
Figure 8.8: Performances of 16-ary LDPC vs Turbo Code in 16QAM modulation over AWGN 

channel. 
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Figure 8.9: Performances of 64-ary LDPC vs Turbo Code in 64QAM modulation over AWGN 

channel. 
 

Fig. 8.7 shows that over GF(4), the turbo code outperforms the QLDPC code by up to 0.6 dB 
at 10-4, which mean that we have to try to change the characteristics of QLDPC or used an 
irregular q-ary LDPC. In return, in Fig. 8.8 (resp. 8.9), the q-ary LDPC codes over GF(16) (resp. 
GF(64)) are better than the turbo codes by up to 0.6 dB (resp. by 0.8 dB), despite that the binary 
LDPC code is worth than the turbo code. 

 
 
8.3 Adaptive LDPC Codes 
 

 
High speed wireless data transmission requires robust and spectrally efficient communication 

techniques for flat-fading channels. When the channel can be estimated and this estimate sent 
back to the transmitter, the transmission scheme can be adapted relative to the channel 
characteristics. 

Most modulation and coding techniques do not adapt to fading conditions. These non 
adaptive methods require a fixed link margin to maintain acceptable performance when the 
channel quality is poor. Thus, these systems are effectively designed for the worst case channel 
conditions, resulting in insufficient utilization of the full channel capacity. Adapting to the signal 
fading allows the channel to be used more efficiently since power and rate (only the power in our 
case) can be allocated to take advantage of favorable channel conditions. 

Many AMC techniques have been presented in the literature. In the following, we provide a 
brief description of some of these papers that are more relevant to this section. Readers are 
referred to [78] for a more detailed list of references on this topic. 

_____________________________________________________________________________________________________________________ 

 



100                                                  Decoding of Non Binary and Adaptive LDPC Codes 

Adaptive transmission, which requires accurate channel estimates at the receiver and a 
reliable feedback path between the receiver and transmitter, was first proposed in the late 1960’s 
[80]. Interest in these techniques was short lived, perhaps due to hardware constraints, lack of 
good channel estimation techniques, and/or systems focusing on point-to-point radio links 
without transmitter feedback. The fact that these issues are less constraining in current systems, 
coupled with the growing demand for spectrally efficient communication, has revived interest in 
adaptive modulation methods. The basic idea behind adaptive transmission is to maintain a 
constant by varying the transmitted power level [80], symbol transmission rate [81], constellation 
size [82]–[84], coding rate/scheme [85], or any combination of these parameters [86]–[88]. Thus, 
without sacrificing bit-error rate (BER), these schemes provide high average spectral efficiency 
by transmitting at high speeds under favorable channel conditions, and reducing throughput as 
the channel degrades. The performance of these schemes is further improved by combining them 
with space diversity [89], [93]. Adaptive techniques are also used for high-speed modems [90], 
satellite links [91]. Our approach is novel relative to all of these adaptive techniques in that we 
optimize both the transmission rate and power to maximize spectral efficiency, while satisfying 
average power and BER constraints. 

In [79] and [92], various rate and power adaptation schemes are investigated. The power 
adaptation policy found is essentially a water-filling formula in time. In [92], a variable-power 
variable-rate modulation scheme using M-ary Quadrature Amplitude Modulation (M-QAM) is 
proposed. The presented results show that the proposed technique provides a 5-10 dB gain over 
variable-rate fixed-power modulation using channel inversion and truncated channel inversion 
(where the received power is maintained constant), and up to 20 dB gain over the non adaptive 
modulation. In [79], the optimal adaptive transmission scheme which achieves the Shannon 
capacity of a fading channel was derived. In this work, we develop practical variable-rate 
variable-power MQAM modulation techniques for fading channels inspired by the capacity 
results in [79]. In [93], the channel capacity of various adaptive transmission techniques is 
examined. The performance of these techniques employed with space diversity is also 
investigated. It is shown that the spectral efficiency for a fading channel can be improved by 
adaptive transmission techniques in conjunction with space diversity. It is also found that when 
the transmission rate is varied continuously according to the channel condition, varying the 
transmit power at the same time has minimal impact. In [94], the adaptation technique from [79] 
and [92] is modified to take into account the effect of constrained peak power. Simulation results 
show that with a reasonable peak power constraint, there is a small loss in spectral efficiency as 
compared to the unconstrained case. In [95], an AMC scheme is proposed based on the variable-
power variable-rate technique from [79] and [92]. This technique superimposes a trellis code on 
top of the uncoded modulation. Simulation results show that with a simple four-state trellis code, 
an effective coding gain of 3 dB can be realized. 

 
 

8.3.1 Adaptive Modulation and Coding 
 

A baseband system model for the problem is shown in Fig. 8.10. The independent and 
identically distributed (IID) sequence ( )ib  is the stream of information bits to be transmitted over 

the channel, and ( is the corresponding stream of information bit estimates at the output of the )îb
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receiver. Each information bit is assumed to be equally likely to be 0 or 1. The fading is modeled 
as a complex multiplier , thus implying a frequency non-selective channel appropriate for a 
narrowband wireless channel or a single subchannel of a multicarrier system. The channel is 
modeled as a Rayleigh fading channel, which is appropriate for narrowband mobile systems or 
indoor systems without a line-of-sight component. If there is a line of-sight component, the 
fading in indoor systems is Rician, but it will be clear from the characterization of the effects of 
the channel variation that extensions to the Rician case are trivial. Furthermore, it can be shown 
that when there is uncertainty about the value of the Rician factor, the Rayleigh assumption will 
lead to signaling for the worst case. It is believed that this assumption will be true in any system 
where the use of adaptive coding is considered; however, as in the consideration of Rician fading, 
the modifications when this assumption is altered are conceptually minimal. Coherent reception 
with perfect carrier phase estimation and perfect fading value estimation at the receiver is 
assumed throughout this work. 

( )h t

 

Transmitter Channel Receiver 
ib  

( )x t  ( )y t  
îb  

( ) ( ) ( ) ( )y t h t x t n t= +  

( ) ( ) ( )( )†

2 1
ˆ ˆ ˆ ˆ,..., ,Nh h t h t h tτ τ τ= − − −  

Figure 8.10: The baseband Adaptive system model. 
 

The key difference between the system model of Fig. 8.10 and that of a standard 
communication system is the availability at the transmitter of the vector ĥ of channel fading 
estimates, where 1 ,i i iτ τ+ > ∀ . The availability of true channel estimates as opposed to estimates 
of a filtered version of the channel is based on the assumption that the channel varies slowly 
enough to be assumed constant over the duration of a symbol (and thus estimation) period. These 
fading estimates can be obtained via literal feedback of measured fading values from the receiver 
or can be estimated using any signal sent from the current receiver to the current transmitter: a 
pilot signal at the end of initial handshaking, packet acknowledgment signals, or data sent from 
the current receiver during the previous slot in a time-division duplex (TDD) system. 

The detailed system model is illustrated in Fig. 8.11. We assume that an estimate ( )ĥ t  of the 

channel power gain at time t is available to the receiver after an estimation time delay of ( )h t iτ  
and that this same estimate is available to the transmitter after a combined estimation and 
feedback path delay. We assume that the feedback path does not introduce any errors, which can 
be assured by increasing its delay time and using an ARQ transmission protocol. The availability 
of channel information at the transmitter allows it to adapt its transmission scheme relative to the 
channel variation. The rate of channel variation will dictate how often the transmitter must adapt 
its rate and/or power. 

For a specific example of such an adaptive system, consider the transmission of data from a 
mobile terminal to the access point in a wireless local area network (WLAN) that employs a 
multicarrier strategy. The system protocol generally involves handshaking that ends with the 
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access point sending the mobile terminal a message that informs the mobile terminal that it can 
begin to send data. The mobile terminal can use this message sent from the access point to 
measure the current fading on each subcarrier and to prepare its transmitted signal. The mobile 
terminal then codes the (now outdated) channel measurements for each subcarrier with a non 
adaptive code, interleaves the resulting coded bits across subcarriers to obtain frequency diversity, 
and sends the resulting bits as a prelude to the actual coded data. 

The access point decodes the channel measurements for each subcarrier, determines the sizes 
of the signal sets employed on each subcarrier at each delay by running an algorithm on the 
channel measurements identical to that being employed at the mobile terminal, and then decodes 
the data. 

Adaptive 
Modulation  
and Coding 

Power 
Control ib  

Transmitter 

( )h t  ( )n t  

Channel estimate 
Delay: iτ  

Demodulation 
And Decoding 

Channel 

Delay iτ  

îb  

( )y t  

( )x t

( )ĥ t
 

( )ĥ t  

Receiver 

 
 
 

Feedback Channel  
Figure 8.11: Detailed system model. 

 
 
8.3.2 Adapting constellation in the encoder   
 

Until this section, we spooked about adapting constellation set in the modulator. Here, we 
will propose to adapt the constellation set in the encoder. The new adaptive modulation and 
coding is illustrated in Fig. 8.12 by the dotted line. This proposition can be done with any block 
linear code, in our case; we choose an LDPC code named adaptive LDPC codes. Since, we adapt 
the constellation set before the construction of matrix HLDPC, this solution is much more 
important in the case of static channel (Non varying channel). 

 
A. Design Rules 
 

Assume for illustrative purposes that the set of candidate signal sets are BPSK (binary data 
transmitted or 2-QAM), 4-QAM, 8-QAM, 16-QAM, 64-QAM and 256-QAM with two-
dimensional Gray mapping. Here, we will explain a simple design rule, we can find more 
complex in the literature and we present another design rule in Appendix E. 

This design rule is based on the value of the capacity, we will considered the channel divided 
to Nc OFDM subcarriers (Here 256 subcarriers) where we have to compute the channel frequency 
response of each subcarrier 
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Where l is the length of channel or the number of taps, iΔ  is the physical delay of the channel. f 
depends on Nc and we consider that it varies from –0.5 to 0.5 with a step equal to 1/Nc.  

Next, we compute the complex square modulus ( ) 2
H f  the value of the capacity over each 

subcarrier on a certain SNR 
 ( )( )2

2log 1 .10SNR
hC H f= +  (8.18) 

And we compare it to the coding rate multiplied to the number of bit in a modulation, i.e. in the 
case of 4-QAM, the capacity is compared to 2*coding rate, for 8-QAM, the capacity is compared 
to 3*coding rate and so on. 

Coding Modulation 
ib  ( )x t

ĥ  

Adaptive Modulation and 
Coding 

 
Figure 8.12: Diagram block of AMC, Solid line correspond to adapting in the modulator and 

Dotted line to adapting in the encoder (Proposed). 
 

To give an example we choose the 12-tap urban area channel from GSM specifications, the 
number of taps is 12 and it is represented by table 8.1 where the physical delay of each tap in 
multiple of 0.1 microseconds and the power of each tap in dB.  

   

Tap index 1 2 3 4 5 6 7 8 9 10 11 12 

Delays 0 1 3 5 8 11 13 17 23 31 32 50 

Powers -4 -3 0 -2.6 -3 -5 -7 -5 -6.5 -8.6 -11 -10 
Table 8.1: Urban area channel characteristics 

 
The table 8.2 represents the number of subcarriers for each modulation at SNR=7dB and 

rate=0.5 computed by applying the simple design rule explains below. 
  

Coding 
Rate=0.5 

N2         
"2-QAM" 

N4        
"4-QAM"

N8         
"8-QAM" 

N16         
"16-QAM" 

N64         
"64-QAM" 

N256        
"256-QAM"

SNR=7dB 35 25 35 80 50 24 
Table 8.2: Number of subcarriers for each modulation at SNR=7dB and Rate=0.5. 
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These numbers are considered in the construction of the adaptive LDPC where they 
correspond to the number of columns, where i is number of bits in the modulation. 

2iN
 

B. Matrix HLDPC Construction 
 

In the case of adaptive LDPC codes, the construction of the matrix HLDPC is one of the 
problems to take care. Here, we will enumerate and explain some of construction conditions and 
rules. An example of adaptive LDPC matrix is presented in Fig 8.13. 

 
 The subchannels are distributed on the columns of the matrix, which mean that the 

nonzero elements on each column belong to the same Galois Field. From the point of 
view of "tanner graph", each variable node belongs to one of the selected Galois field. 
The length of code N will be divided to several set of columns, where i is the number 
of bits in the modulation.  

2iN

 
 In the "tanner graph", on each check node the computing will be done in a Galois field, 

which means that we can't mix any two Galois fields. It is necessary that the Galois fields 
mixed in each check node respect the following condition: the largest Galois field is an 
extension of the other. From the point of view of the matrix HLDPC, the nonzero elements 
on each row belong to the larger Galois field of this row. For example, GF(2), GF(4), 
GF(16) and GF(256) together. Or GF(2), GF(8) and GF(64) together. 

 
( ) ( ) ( ) ( ) ( ) ( )2 4 8 16 64 25

0 3 0 13 0 123

0 0 5 0 33 0
1 1 0 11 0 99

1 2 0 9 0 53
1 0 3 0 25 0

LDPC

GF GF GF GF GF GF

H

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

6

 

GF(4), GF(16), GF(256)

GF(2), GF(4), GF(16), GF(256)

GF(8), GF(64)

Figure 8.13: An example of adaptive LDPC matrix. 
 GF(2), GF(8), GF(64)

 
State Variable Nodes 
 

For these conditions and to avoid the case where we obtain several subgraphes disconnected 
between them, we will define some state variable nodes which are binary variable nodes used to 
connect the subgraphes and not transmitted over the channel, in a way that is look like a 
puncturing. At the receiver, the observations of these state variable nodes are considered equal to 
0.5. The number of state variable nodes depends on the distribution degree (dv, dc).  

Next, we use the integer linear programming to compute the number of check nodes belong to 
each Galois field, by forcing some constraints to the linear programming. 
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For the example of urban area channel defined in table 8.1, with rate 0.5 and distribution 
degree (3, 6), the number of state variable nodes is equal to 36. And the following table presents 
the number of check nodes belong to each Galois field 

2iL computing by integer linear 
programming. 
 

L2  
"GF(2)" 

L4  
"GF(4)" 

L8  
"GF(8)" 

L16  
"GF(16)" 

L64  
"GF(64)" 

L256  
"GF(256)" 

0 16 24 54 34 14 
Table 8.3: Number of check nodes for each Galois field at SNR=7dB, Rate=0.5 and (3, 6). 

 
C. Adaptive LDPC Encoding 
 

The Encoding will be done with the binary equivalent matrix HbLDPC of the original adaptive 
LDPC matrix HLDPC, so first we have to calculate HbLDPC: (to remind, we consider 6 subchannels 
and the selected constellation sets are 2-QAM, 4-QAM, 8-QAM, 16-QAM, 64-QAM and 256-
QAM)  
 
If N is the number of columns of the original LDPC matrix, K is the size of the adaptive LDPC 
code, and the number of adaptive matrix rows L=N-K. The number of columns of the equivalent 
binary matrix is:  

  (8.19) 
8

2
1

5,7

ib
i

i

N i N
=
≠

= ×∑

Where is the number of columns which contain the Galois field GF(2
2iN i), i is the number of bits 

in the GF(2i) symbol, the GF(2i) means that we have selected the constellation set 2i-QAM. 
The number of binary equivalent matrix rows is: 

 
8

2
1,
5,7

ib
i

i

L i L
=
≠

= ×∑  (8.20) 

2iL is the number of rows where the larger Galois field is GF(2i). 
The size of the binary equivalent LDPC code is: 
 b bK N Lb= −  (8.21) 
The rate of the Adaptive LDPC code is: 

 b
b

b

K KR
N N

= ≠  (8.22)   

The binary equivalent matrix HbLDPC is obtain with replacing the nonzero elements of GF(2i) 
in the original adaptive matrix HLDPC by a matrix (i x i) and filling the rest by zeros. 

 
The matrix HLDPC is not in systematic form and is therefore reduced to the form 
 

bLDPC LH P I⎡ ⎤= ⎣ ⎦  (8.23) 

 
Using Gaussian elimination where 

bLI is the LbxLb identity matrix and P has dimensions 
LbxKb. The KbxNb generator matrix can now be expressed as 
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bLDPC KG I P⎡ ⎤′= ⎣ ⎦  (8.24) 

 
The encoding reaches to the encoding of simple binary LDPC codes. 

 
D. Adaptive LDPC Decoding 
 

For the adaptive LDPC decoding, we use the same algorithm used in the non binary LDPC 
decoding case (see section 8.2.2). We don't have to change anything, but we have to make 
attention that we work with several Galois fields. 
 
E. Toy Example 
 

To test the adaptive LDPC, the matrix or the graph construction and above all, the use of state 
variable nodes in this construction, we take an example which we will call it a Toy example. 

In this Toy example, we will compare three codes represented in Fig. 8.14: first a little 4-ary 
code ζ4(N4=3, L4=2, K4=1), second a little 8-ary code ζ8(N8=3, L8=2, K8=1), and finally a little 
adaptive code ζAdap which links the previous two codes, seeing that GF(4) and GF(8) are 
incompatible we decide to use N2=2 state variable nodes which are linked to both 4-ary check 
nodes and 8-ary check nodes and linked between them by L2=1 binary check node, like it is 
presented in Fig. 8.14. 
 
 

 
Figure 8.14: The Tanner graph of the Toy Example. 
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The rate of ζ4 is equal to the rate of ζ8 equal to 1/3. For the adaptive code ζAdap: 
 

2 4 82 3 2 6 9bN N N N= + ∗ + ∗ = + + =17

11

 

2 4 82 3 1 4 6bL L L L= + ∗ + ∗ = + + =  

17 11 6b b bK N L= − = − =  

2

6 60.353 0.4
17 15

b b
c eff

b b

K KR R
N N N

= = = ⇒ = = =
−

 

4 8
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0 1 3 0 5 6
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0 1 0 0 0 0 5 6

AdapH H H

⎛ ⎞
⎜ ⎟
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⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 
 

To compare those three codes, we simulate them over an AWGN channel and we show in Fig. 
8.15 the BER performances of those codes where we easily remark that the adaptive code 
improve the performances of the two non binary codes, ζ8 makes up to 1 dB at BER=10-4 in 
relation to ζ4 by linking those two non binary codes in a one adaptive code ζAdap, we obtain a 
important gain equal to more than 0.25 dB at BER=10-4 in relation to ζ8. 

   
 

 
Figure 8.15: The BER performances of the Toy example. 
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F. Simulation Results 
 

Fig. 8.16 and 8.17 show the BER end FER performances of an adaptive LDPC code by 
considering an OFDM system with N=300 subcarriers which are divided to N2=75 and 5 equal 
number  where i =2, 3, 4, 6 and 8 and is the number of subchannels which allow a 
GF(2

2
45iN =

2iN
i) symbol. The LDPC code is adapted to have N2=75 bit nodes and  variable nodes 

from each remaining Galois field. For the moment we consider that we don't have a state variable 
node which means that all variables are transmitted over the channel. 

2
45iN =

For this adaptive LDPC code, the number L2=0 of binary check nodes and the numbers 
2iL  of 

2i-ary check nodes are equal to 30 for i =2, 3, 4, 6 and 8 computing with integer linear 
programming, this imply that the characteristics of this adaptive LDPC are:  
and   

1110, 690b bN L= =
0.4.cR

   

 
Figure 8.16: The BER performances of adaptive LDPC code over an OFDM channel with 300 

subcarriers. 
 

We compare this adaptive LDPC code with the systems where we use a binary LDPC code 
and an adaptive modulation. The binary LDPC codes considered have coding rate equal to 0.5, 
0.4 and 0.25. We remark by Fig. 8.16 and 8.17 that the adaptive LDPC code improves the 
performance by up to 1dB at BER=10-4 in relation to binary LDPC code with rate 0.4 and also 
approaches closely to one with rate 0.25. The gain when we compare the FER performances. 

The performances of the adaptive LDPC codes approach at high SNR to those of binary 
LDPC code with rate 0.4. We think that the reason is, at high SNR, the hamming distance of the 
binary variables dominates the others.      
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Figure 8.17: The FER performances of adaptive LDPC code over an OFDM channel with 300 

subcarriers. 
 
 
8.4 Conclusion 
 
 

We have presented a symbol-by-symbol decoding rule for non binary codes, and the 
performance obtained basis on symbol-error-rate. Simulation results for the white Gaussian 
channel suggest that the non binary LDPC (resp. SPC) encoding and decoding outperforms the 
binary LDPC (resp. SPC) especially when the modulation is not binary, and prove that even when 
the turbo code outperforms the binary LDPC, the q-ary LDPC codes can recover this loss and go 
beyond. The q-ary LDPC (resp. q-ary SPC) with this decoding rule outperforms the LDPC (resp. 
SPC) code by more than 2 dB (resp. 1dB) over GF(256), despite that they can't outperform LDPC 
(resp. SPC) over GF(4), and this gain increases with the length of the Galois Field, i.e. the size of 
the modulation.  

Next, we have shown that the q-ary LDPC code outperforms the UMTS turbo code over 
GF(q>4) by 0.6 dB or 0.8 dB depending on q.  

Considering the complexity, the decoding rule is practical for high rate, applicable to non 
binary LDPC codes and reduces enormously the complexity by using the duality properties and 
accelerates the computation buy using the FHT. The complexity of the decoding rule for an (n, k) 
linear code is comparable to the complexity of a Viterbi decoder for the (n, n-k) dual code. 

Finally, we proposed for OFDM system, adaptive LDPC codes which can be easily decoded 
by the decoding rule presented in this chapter. Despite that the performances of the adaptive 
LDPC codes approach at high SNR in some cases to binary LDPC, it remains a very attractive 
subject to the future research. 
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Chapter 9 
Iterative OS Technique with Non Binary LDPC 
Codes  
 
 

For Inter Symbol Interference (ISI) channels, various outer codes have been considered for 
use in turbo equalization, including parallel turbo codes [96] [97], convolutional codes (also 
known as serial turbo equalization) [98], parity check codes [99] and most recently LDPC codes 
[100] [101]. 

Low Density Parity Check (LDPC) codes are strong codes which have excellent performance 
on a variety of channels, and when decoding on the ISI channel, bit-error rates can be improved 
further by using turbo equalization.  

Sequences of LDPC codes that achieve the capacity of the binary-input additive white 
Gaussian noise (AWGN) channel under iterative decoding were constructed by Chung in [34]. 
Since then, density evolution (DE) [60] has been used to optimize LDPC codes for a variety of 
memoryless channels (e.g., [102]), and the results suggest, for each channel, that sequences of 
iteratively decoded LDPC codes can indeed achieve the channel capacity. In fact, the discovery 
of a channel whose capacity cannot be approached by LDPC codes would be more surprising 
than a proof that iteratively decoded LDPC codes can achieve the capacity of any binary-input 
symmetric channel (BISC). 

Like we have seemed, the idea of decoding a code transmitted over a channel with memory 
via iteration was first introduced by Douillard in the context of turbo codes and is known as turbo 
equalization. This approach can also be generalized to LDPC codes by constructing one large 
graph which represents the constraints of both the channel and the code. This idea was 
investigated for partial-response channels by Kurkoski, Siegel, and Wolf in [104]. 

Until recently, it was difficult to compare the performance of turbo equalization with channel 
capacity because the binary-input capacity of the channel was unknown. Recently, a new method 
has gained acceptance for estimating the achievable information rates of finite state channels 
(FSCs), and a number of authors have begun designing LDPC based coding schemes which 
approach the achievable information rates of these channels [103][105]. The main topics 
presented in [103] are:  

1. Concentration theorems for Gallager codes and the sum–product message-passing 
decoder over binary ISI channels;  

2. A density evolution method for computing the thresholds of “zero-error” performance 
over these channels;  
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3. Theorems establishing that the asymptotic performance of Gallager codes using the sum–
product algorithm is upper-bounded by the symmetric information rate and the i.i.d. 
capacity;  

4. And the computation of the BCJR-once bound, which is the limit of “zero-error” 
performance of the sum–product algorithms if the trellis portion of the algorithm is 
executed only once. 

As is the case with DE for general BISCs, the evaluation of code thresholds and the 
optimization of these thresholds are done numerically. For FSCs, the analysis of this system is 
quite complex because the BCJR algorithm is used to decode the channel. 

Since the capacity of a channel with memory is generally not achievable via equiprobable 
signaling, one can instead aim for the symmetric information rate (SIR) of the channel. The SIR 
is defined as the maximum information rate achievable via random coding with equiprobable 
input symbols. Since linear codes use all inputs equiprobably, the SIR is also the maximum rate 
directly achievable with linear codes.  

In this chapter, we focus on developing LDPC codes for channels with non binary inputs and 
ISI memory. We are concerned with finding LDPC-turbo equalization which produces the lowest 
possible bit-error rate for a minimum amount of complexity. 
  
 
9.1 The OS Technique with LDPC Codes 
 
9.1.1 Bit or Symbol LDPC Coded Modulation Transmitter 
 

Bit (resp. Symbol) LDPC Coded Modulation BLCM (resp. SLCM) can be modeled as a serial 
concatenation of a binary (resp. non binary) LDPC encoder, and a 16-QAM modulator as shown 
in Fig. 9.1.  
 

Data 

AWGN 

kx
n nb or sBinary or Non binary 

LDPC Encoder   
16-QAM 

Modulator 

Training Sequence

 ISI  
Channel 

kw

ky

 
Figure 9.1: Bit/Symbol LDPC Coded Modulation Transmitter with ISI channel. 

 
For error correction we use binary or non binary LDPC codes [3] whose code graph chosen 

uniformly at random from the ensemble of regular graphs. The ISI coefficients are assumed to be 
real. 

At the transmitter, we will consider three cases: 

1. Bit Turbo Coded Interleaved Modulation (BTCIM) where the information bits are 
encoded by a Turbo encoder (ζ) before being bitwise interleaved. Next, 4 consecutive bits 
bn of the interleaved coded sequence are grouped to form a channel symbol and a 16-
QAM modulator maps this channel symbol to a complex transmitted symbol xk . 
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2. Bit LDPC Coded Modulation (BLCM) where the information bits are encoded by a binary 
LDPC encoder (ζ), here the bitwise interleaver is in the structure of the graph of binary 
LDPC codes. Next, we group and maps like in the case 1. 

3. Symbol LDPC Coded Modulation (SLCM) where the information bits are first grouped 
by 4 to form a channel symbol which will be encoded by a non binary LDPC encoder (ζ) 
by consequence a GF(16) LDPC encoder, here the interleaver is symbolwise and included 
in the structure of the graph of non binary LDPC codes. Next, a 16-QAM modulator maps 
the coded symbol to a complex transmitted symbol xk . 

 
We assume an ISI channel, the received discrete-time base band signal can be written as eq. (5.5) 

  (9.1) 
1

0
 ,    [1, 1]

l

k i k i k
i

y h x w k N l
−

−
=

= + ∀ ∈ +∑ −

Where xk are the complex coded symbols in a block with k=1,…, N, (xk=0 for k>N), N is the 
block length, wk are white Gaussian noise samples. The l complex taps hi represent the equivalent 
discrete overall channel impulse response. We consider that we have Nt training sequence 
symbols located. 
 
 
9.1.2 Joint Iterative LDPC Decoding and detection with OS technique 
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Data 
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Non binary 
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Figure 9.2: Turbo Equalization with LDPC Decoder and OS Technique. 

 
Joint equalization and decoding schemes are described for Inter Symbol Interference (ISI) 

channels in chapter 4. Equalization is performed using Interference Cancellation (IC) criterion 
and estimation uses the OS technique explained in chapter 5. Binary and non binary LDPC 
decoders are represented in details in chapter 7 and 8. 

In the system represented in Fig. 9.2, we consider a fairly standard for the joint iterative 
decoding of an LDPC code and a channel ISI with memory. The turbo equalizer consists of an IC 
symbol detector and a binary or non binary LDPC decoder. The first half of decoding iteration 
entails running the symbol detector on using the feedback symbols from the LDPC decoder 
returned in a hard or soft form. The second half of decoding iteration corresponds to executing 
LDPC iterations using internal edge messages from the previous iteration and the observation of 
the symbol detector output. 

In other words, the equalizer sends the symbol detected to compute metric block which 
compute the observation on each bit (in the case 1 and 2) and on each symbol (in the third case). 
Then these observations are sent to the turbo decoder (case 1), to the binary LDPC decoder (case 
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2), or to the non binary LDPC decoder (case 3) which uses it as a priori information and 
performs a fixed number of sum-product message-passing iterations before passing its extrinsic 
information to the 16-QAM modulator. This modulator calculates a hard 16-QAM symbol from a 
soft input and passing them to equalizer. This process is continued until the receiver converges or 
a maximum number of iterations is exhausted. 
 
 
9.2 The Effect of the Distribution Degree 
 
9.2.1 Description of simulation experiments 
 

Having constructed a non binary parity check matrix, we test its performance by numerical 
simulation. We simulate a non variant two taps ISI channel and turbo equalization with OS 
technique as described in chapter 5, and we examine the success of detection and decoding 
several million blocks. Each block of 250 q-ary symbols is transmitted per channel use, and the 
likelihood of each corresponding noise symbol depends on equalization outputs. 

The performance is gauged by plotting the bit error rate against the signal to noise ratio. In all 
the experiments presented in this chapter, we allow the non binary LDPC decoding algorithm to 
run for a maximum of 100 iterations divided into 4 turbo equalization iterations, in each iteration 
of turbo equalization we perform 25 iterations of non binary LDPC decoding algorithm before 
announcing a decoding failure. The block length of coding is about 1000 q-ary symbols which 
are transmitted into 4 channel blocks.   

In our initial investigations of non binary LDPC codes, we constructed parity check matrices 
defined over field GF(16) with a fixed column and row symbol weight to obtain a coding rate 1/3 
to compare these to simulation results with convolutional code presented in chapter 5 and 
simulation results with UMTS turbo code of rate 1/3, the fixed row symbol weight don't exceed 6 
to not increase the complexity of non binary decoding algorithm. 

 
9.2.2 Surprising and confusing results  
 

The results shown in Fig. 9.3 are, at first sight, rather strange. It show results for codes with a 
fixed column weight of 4 or 2 despite that a binary LDPC code with a fixed column weight of 2 
is the worst LDPC code, and a fixed row weight of 6 or 3 defined over fields GF(16) for rate 1/3. 
We see that LDPC codes in the binary case or the non binary case with row weight 6 and column 
weight 4 are far above 2.5 dB at BER=10-4 from the turbo code performance, despite that the non 
binary LDPC code improves the performance in relation to binary LDPC code by up to 0.5 dB at 
BER=10-4. In comparison with convolutional code used in chapter 5 and 6, the LDPC codes 
improve the performance in high Signal to Noise Ratio (SNR) but it remains unsatisfied. 

 In the case of LDPC codes with row weight 4 and column weight 2, it is clear that the binary 
LDPC code is the worst code, but a little hope appears with the non binary LDPC code because it 
presents very good performances where we obtain a gain up to 0.5 dB at BER=10-4, until SNR=3 
dB where the slope changes its tangent and continues its decline but very slowly, until it joins the 
slope of binary LDPC code performances.  
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What is going on? To answer this we must examine the effect of the distribution degree 
(column and/or row weight) on our system model. 

 
Figure 9.3: Surprising and confusing results on LDPC codes with OS Estimation. 

 
 

9.2.3 Finding better LDPC codes over GF(16) 
 

We present here, the problem of good choice of column and row weight. We can fix the row 
weights which imposes one constraint on the possible column weights. This can define the space 
in which valid column profiles λ are found. We define a function that assigns a performance 
scores to each possible column profile and then extremes this function. Although the method is 
simple, its helps us find parameters for excellent non binary and binary codes. 
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Given a row profile, the column profile is further constrained by the rate R of the code: 

 ( )
1 1

1
b cd d

i
i j

i R jjλ ρ
= =

= −∑ ∑  (9.3) 

Eqs. (9.3) simply reflects the fact that the number of non-zero entries in the columns must 
sum to the number of non-zero entries in the rows. 

We require a function to assess the quality of a given column or row profile and then must 
minimize this function over ( ) ( )2b cd or d− 2− -dimensional manifold. We have tried two 
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numerical functions: one based on empirical decoding trials, the other based on Monte Carlo 
simulation of decoding. We found the empirical function to be the more accurate of the two, 
given sufficient iterations. The Monte Carlo simulations suffered from the fact that finite block 
length effects seem to be more pronounced with the addition of high weight columns or row. 
Thus, the agreement between Monte Carlo simulations and finite codes was not as close as in the 
case of regular codes. 

 
Empirical function 

In this approach it first constructs a code with the desired parameters. It uses the average 
number of iterations required for decoding to estimate the usefulness of the code. The number of 
iterations required varies from block to block, so our estimate of the function is necessarily fairly 
noisy. 

For the average iteration count to be meaningful, it is necessary that all blocks are decoded. 
For this reason we use a variant of the decoding algorithm in which we artificially increase the 
signal to noise level as decoding progresses. This ensures that all blocks can eventually be 
decoded. We keep the noise vector and noise amplitude for each bit fixed, but increases the signal 
amplitude after each iteration. 

 
Monte Carlo function 

We can also score parameters using Monte Carlo methods to simulate an infinite code and 
calculating the average bit entropy of the tentative decoding after a fixed number of iterations of 
the decoding algorithm. 

Care is required when simulating irregular codes. When we choose a noise node our column 
profile tells us with what probability that node has i neighbors. However, when we add a check 
node, the degree of that node must be chosen according to the probability that an edge chosen at 
random is connected to a check node of a given degree. This is not the same quantity as that 
given by the row profile, just as the fraction of passengers who find themselves on crowded buses 
is greater than the fraction of buses that are crowded. 

In finite irregular codes the presence of high weight columns introduces many cycles of 
relatively short length and consequently the Monte Carlo simulations agree less well with the 
empirical results than for regular constructions. 

 
Finding good codes 

Recent work by Richardson, Shokrollahi and Urbanke offers an analytical approach to the 
design of LDPC codes based on density evolution. For given code parameters, the method allows 
the expected fraction of incorrectly determined nodes to be calculated as a function of the 
iteration count. 

Although the method assumes a loop-free graph, they proved that, with probability that 
approaches 1 exponentially fast in the block length, the decoder will not deviate from loop-free 
behavior by more than ε. For a given row/column profile, the supremum over all noise levels for 
which the fraction of incorrectly determined nodes approaches zero is the "cutoff noise level" for 
that profile. This can be used as a function for empirical searches for good profiles. 
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The problem of minimizing a general n-dimensional non linear function is hard. Several 
methods exist that are guaranteed to find a local minimum and simulated annealing may be used 
to help in escaping shallow minima. Our problem is made more acute because not only do we 
lack any gradient information, but also our evaluations of the function itself are noisy, producing 
many false local minima. 

We use the relatively straightforward downhill simplex method. We start by choosing 
 points in the ( -dimensional manifold in which we want to search. These define a 

simplex. We ensure that the simplex encloses a non-zero volume by finding a basis for our 
manifold and placing the vertices in the basis vector directions relative to an interior point. 

( 1bd − ) )2bd −

We evaluate the function at each vertex, and move the vertex with the worst score. Usually 
we reflect it through the centre of the opposite face which means the average of other vertices, 
stretching whenever possible to increase the step size. If this results in a more worst we instead 
shrink the point towards the opposite face. If this also fails we shrink all vertices towards the best 
point. Repeating these steps we converge to a local minimum of the function. To combat the 
effect of noise in the estimation of the function, a new search can be started from the final point 
of the previous search. 
 
 
9.3 Simulations Results  
 
 

We conclude from section 9.2.2 that the column weight db should be between 2 and 4. We 
will try to find the best LDPC code included in this interval. In previous we will call fixed 
column weight when the column weight is fix, and non-integer mean column weight when the 
column weight is not constant for all column but keeping the column weight as uniform as 
possible. For example, a matrix of fixed column weight 3 would have λ=(0, 0, 1) whereas a 
matrix of mean column weight 2.5 might have λ=(0, 0.5, 0.5). Similarly, we define the fixed row 
weight and the non-integer mean row weight. 

To check the effectiveness of our system, the use of non binary LDPC codes over ISI channel 
with OS estimation, we proceed in two times. 
 
 
9.3.1 LDPC codes with fixed column weight 
 

 We leave the column weight fix between 2 and 4 which means that db=3, and we try to find a 
non-integer mean row weight without changing the rate of the code. We will use a row weight 
with mean equal to 4.5. 

These can be compared to the results find with turbo codes and convolutional codes. Fig. 9.4 
shows that the performances of LDPC codes, in binary case as in non binary case, approach the 
performance of turbo code and the loss is decreased to 2 dB for the binary case and to 0.75 dB for 
the non binary case at BER=10-4, which mean that the gain obtained by using the non binary 
LDPC codes in relation to binary LDPC codes increase to 1.25 dB at BER=10-4. The 
performances of LDPC codes are now satisfied in comparison with convolutional codes. 
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Figure 9.4: The performances of LDPC codes with fixed column weight.  

 
 
9.3.2 LDPC codes with non-integer column and row weight 
 

We find that the use of non-integer mean row weight improve the performances of LDPC 
codes in our proposed system, we will try to perform a completely irregular LDPC codes with 
non-integer column and row weight, with keeping the column and row weight as uniform as 
possible. 

We present results for rate 1/3 codes. The best code we have found has a mean column 
weight of 2.4 and a mean row weight of 3.6. The column and row weight are almost uniform. The 
column profile is λ=(0, 0.6, 0.4) and row profile is ρ=(0, 0, 0.7, 0, 0.3). 

Fig. 9.5 shows the performance of the best non binary LDPC codes of rate 1/3 found for 
system over ISI channel with OS estimation. We compare this irregular non binary LDPC code 
with turbo code of rate 1/3 for the same system, and we find that we obtain a gain of 0.5 dB at 
BER=10-4 in relation to turbo code performance which represents already a gain of 2.75 dB in 
relation to the convolutional codes, despite the binary LDPC code with the same column and row 
profile is not as good as possible.  

To gain intuition into these results, consider again the graph based view of the decoding 
algorithm. Ideally a variable node should be connected to many check nodes, to gain most 
information about its state. Conversely, a check node prefers few parents, so that it can provide 
more confident estimates of each parent's state.  
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Figure 9.5: The performance of LDPC codes with non-integer column and row weight. 

 
 
9.4 Conclusion 
 
 

In this Chapter, the observation separation technique on the joint iterative channel estimation 
and symbol detection technique has been considered for a non binary LDPC coded 16-QAM 
systems. We have considered Bit Turbo Coded Interleaved Modulation, Bit LDPC Coded 
Modulation, and Symbol LDPC Coded Modulation at the transmitter. At the receiver, we 
considered the turbo equalization technique with OS estimation in these three cases. And we 
compare their results. The performance obtained is very attractive.  

Our system proposed is realized by associating the non binary (16-ary) LDPC encoding at the 
transmitter and the OS technique with non binary LDPC decoding. We have showed that a good 
choice of distribution degree of non binary LDPC codes leads us to outperform the performances 
of turbo codes; this despite the performance of the binary LDPC codes with the same distribution 
degree is not so good. The drawback is the complexity, but we have presented in chapter 8 a 
decoding rule to reduce the complexity and make faster the algorithm. 

 Depending on the scenario considered, simulation results have shown up to a gain of 0.5 
dB for the non binary LDPC codes with OS technique compared to the turbo codes with OS 
technique, and 3.25 dB in relation to convolutional codes with OS technique at BER=10-4; this is 
very attractive performance. 
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Chapter 10 
Conclusions and Perspectives 
 
 
10.1 Contributions 
 
 

In this thesis, we have proposed and analyzed low-complexity strategies to fight interference 
channel when channel state information is unavailable at the transmitter and estimated at the 
receiver. Furthermore, in the chapter 8 we have introduced the adaptive LDPC codes. These 
strategies are centered on the turbo equalization technique, which cancels channel interference 
from received signals using tentative decisions whose reliability improves with each successive 
iteration. Of the receiver algorithm considered in the past, turbo equalizer can be considered the 
most interesting one in terms of performance, in addition to which the equalizer converges with 
fewer iterations. But it requires initialization by another algorithm to reach good performance. 

The convergence properties of the equalizer, which depend on the channel and the receiver 
SNR, together with the utilized channel code, determine the receiver performance. We have 
demonstrated that the turbo equalization works particularly well when used in conjunction with 
the OS technique in the estimation. To achieve reliable communication at rates up to the mutual 
information of an interference channel, channel coding is required, and a suitable code design can 
optimize the transmission and improve the receiver performance if the channel statistics are 
known or not thanks to OS estimation. 

The observation separation technique on the joint iterative channel estimation and symbol 
detection technique has been considered for the CDMA and the narrowband mobile systems. The 
OS concept corresponds to decouple the observation used for the estimator from the observation 
used for the detector. The performance obtained is very attractive. In this thesis, our OS is 
realized by associating an adaptive IC (or PIC when MAI is presented) structure for the symbol 
detection with a modified pseudo-inverse channel estimation structure for each symbol. 
Nevertheless this realization scheme on the OS concept is not unique and research on a better 
solution is open. We have applied this technique to the 12.2 service of the UMTS-TDD uplink 
system, to the 12.2 service of the associated narrowband system and also to a high level 
modulation M-QAM systems. 

Next, we have analyzed and evaluated a novel approach to the design of BICM-ID for ISI 
channels. By recognizing that the coding and modulation are isolated by the bit interleaver, and 
identifying the impact of iterative decoding on the harmonic mean of the minimum Euclidean 
distance, we have developed a powerful turbo equalization system yet relatively complex. We 
prove that the harmonic mean of the minimum Euclidean distance identified as crucial for BICM, 
can be greatly increased with BICM-ID and the error free feedback assumption. Then a new 
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labeling map optimized under the harmonic mean criterion for 16-QAM is presented. We remark 
that even when the mapping has the best asymptotic performances, it is not necessary that this 
mapping will have the best performance in turbo equalization; some mapping is not adapted to 
turbo equalization like Anti Gray.  

Then we have tried to improve coding and decoding schemes and we have focused on 
receiver systems employing LDPC codes. The performance of the receiver is greatly improved, if 
the estimates of channel transmission coefficients and the noise variances are available at the 
receiver. However for good performance of the receiver we require some iteration on the turbo 
equalization and on the LDPC decoder. 

After, we have presented a symbol-by-symbol decoding rule for non binary LDPC codes. The 
non binary LDPC encoding and decoding outperforms the binary LDPC equivalent especially 
when the modulation is not binary, and we prove that even when the turbo code outperforms the 
binary LDPC, the non binary LDPC can recover this loss and go beyond. Considering the 
complexity, the decoding rule is practical for high rate, applicable to non binary LDPC codes and 
reduces enormously the complexity by using the duality properties and accelerates the 
computation by using the FHT. The complexity of the decoding rule for an (n, k) linear code is 
comparable to the complexity of a Viterbi decoder for the (n, n-k) dual code. 

Finally, the observation separation technique on the joint iterative channel estimation and 
symbol detection technique has been considered for a non binary LDPC coded 16-QAM systems. 
We have compared it to Bit Turbo Coded Interleaved Modulation, Bit LDPC Coded Modulation. 
At the receiver, we considered the turbo equalization technique with OS estimation in these three 
cases. Our proposed system is realized by associating the non binary (16-ary) LDPC encoding at 
the transmitter and the OS technique with non binary LDPC decoding. We have showed that a 
good choice of distribution degree of non binary LDPC codes leads us to outperform the 
performances of turbo codes; this despite the performance of the binary LDPC codes with the 
same distribution degree is not so good. The drawback is the complexity, but we have presented 
in chapter 8 a decoding rule to reduce the complexity and make faster the algorithm. 
 
We discussed in this thesis: 

 In chapter 5, we have introduced the OS technique which partially separates the 
observation used for channel estimation from the observation that allows the symbol 
detection. We apply it to the turbo equalization receivers on a time-invariant ISI channels. 

 In chapter 6, we suggest a design of optimal mapping in BICM-ID scheme to OS channel 
estimation and IC procedure system. We design an optimized binary mapping of the 
QAM constellation, in order to increase coding gain, which assumes perfect a priori 
information. 

 We have discussed the essential properties of LDPC codes in Chapter 7. In Chapter 8, we 
have derived the non binary LDPC codes, adaptive LDPC codes, and the potential 
integration with orthogonal frequency division multiplexing (OFDM). A based system 
with adaptive LDPC codes presented is also another option. 

 In chapter 9, we have applied the knowledge gained in Chapters 7 and 8 to the code 
design and optimization of non binary LDPC codes for the turbo equalization with OS 
estimation over ISI channel.  
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10.2 Future Works 
 
 

Although in earlier chapters we have touched upon possibilities for more research, we now 
discuss some of the potentially more fruitful research directions inspired by this thesis. There are 
many interesting open questions that may attract further research. 
 

The problem of joint detection and decoding warrants further study. At least, we have to try 
to reduce the complexity so that the turbo equalization been more simply implemented. 

We have to do a convergence analysis by using the EXIT chart or any another method, and it 
is unclear whether the optimal preamble placement to minimize the error in the channel 
estimation which help us to accelerate the convergence. This needs to be analyzed further. 

For the LDPC codes, there is much work to be done in generalizing the DE algorithm to more 
general modulated channels in a non binary system, and perhaps to apply the adaptive LDPC 
codes in a turbo equalization system over an ISI channel. 

Finally, all the work in this thesis can be simply extended to MIMO systems which are taken 
an interest in the future wireless generation norm. 
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Appendix A  
Min-Sum Algorithm Apply to linear (7, 4, 2) code 
 
 

The min-sum algorithm applied to a binary linear (7, 4, 2) code, whose Tanner graph is 
shown in A.1. The Likelihood observations are indicated in A.2. A.3–A.7 illustrate the 
computation of the intermediate messages and final results for a few of the variables. In A.8, the 
final results of all variables are shown. 

 
 
 

 

                   

  

   

  A.2

[ ]2, 4[ ]1,5  

[ ]5, 2 [ ]4,1
 

[ ]3, 4  

[ ]3, 4  [ ]2,6  

The channel output after transmitting a 
random codeword. The numbers in the 
variables are the local costs (log-
likelihoods) for assigning “0” or “1” to 
that site. The decoding problem is to 
find a codeword with the smallest 
global cost, defined as the sum of the 
local costs in the variables. 

0 1 

1 1 1 

0 0 A.1

The Tanner graph and a codeword. The 
circles (sites) correspond to the code-
word components and the small dots 
(checks) to the parity-check equations, 
i.e., the three variables connected to 
any check are required to have even 
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[ ]1,5
 

[ ]2,4  

[ ]4,1  

[ ]15,12  

[ ]2, 4  
( )
( )

min 15 2,12 4 ,

min 15 4,12 2

⎡ + +⎣
⎤+ + ⎦

[ ]16,14=

 

The top-left variable receives the 
smallest cost contributions from the 
rest of the graph that results from 
assigning “0” or“1”to that variable. 

A.6 

[ ]4,1
 

( ) ( )4 6 5 , 1 5 6⎡ ⎤+ + + +⎣ ⎦
 [ ]15,12=  

The variable-to-check functions from 
the middle variable to the upper check 
is the smallest possible cost in the 
lower five variables that results from 
assigning “0” or “1” to the middle 
variable; it is computed by adding the 
middle variable’s local costs to the sum 
of the contributions from the two lower 

A.5 

checks. 

[ ]5,6  [ ]6,5  

[ ]4,1
 

[ ]3,5  

( ) ( )4 3 6 5 , 1 5 5 6⎡ ⎤+ + + + + +⎣ ⎦
 [ ]18,17=  decoded to "1" 

Final decision of the middle variable. 
(The two lower checks have computed 
their contributions to the middle 
variable in the same way as was done 
in c.) The global cost of “0” and “1” in 
the middle variable is then just the sum 
of the local costs and the three 
incoming cost contributions. 

A.4 

[ ] [ ]6,5  

[ ]1,5
 

[ ]2,4  

[ ]4,1  

[ ]1,5  [ ]2, 4
 

( ) ( )min 1 2,5 4 , min 1 4,5 2⎡ ⎤+ + + +⎣ ⎦
 [ ]3,5=

 

The check-to-variable functions from 
the upper check to the middle site. For 
each possible value in the middle 
variable, the check finds the smallest 
possible cost contribution from the two 
topmost variables. e.g., for a “0” in the 
middle variables, the patterns “00” and 
“11” are examined. 

A.3 

5,6  
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  A.8

[ ]2, 4[ ]1,5
 

[ ]5, 2 [ ]4,1  [ ]3, 4  

[ ]3, 4  [ ]2,6  

The rest of the Tanner graph is processed 
in the same way, resulting in final costs as 
shown. The resulting optimal codeword 
turns out to be the one shown in a). 

[ ]17,19
 

[ ]18,17
 

[ ]1,5  

[

 
 

[ ]20,17  [ ]18,17
 

[ ]19,17
 

[ ]17,18
 

[ ]17, 20
 

( ) ( )1 16 , 5 14⎡ ⎤+ +⎣ ⎦  
[ ]17,19=  decoded to "0" 

The final function of the upper-left 
variable is the sum of its local costs 
and the cost contributions from its only 
check. The resulting costs are the 
smallest possible global costs that 
result from assigning a “0” or “1” to 
the upper-left variable. 

A.7 

]16,14  
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Appendix B 
Capacity Evaluation with Waterfilling 
 
 

It is assumed that the channel input is real and Gaussian distributed. The channel total 
bandwidth 1/T is decomposed into N equally spaced subbands of width 1/Ti, 

 i
TT
N

=  (B.1) 

Where, T is the symbol period in seconds, Ti is the symbol period for the ith subband, N is the 
number of subbands and i, i=1…N is the subband index. 
 

The baseband power and the bandpass symbol energy are related by 2 sP E= T . The above 
relation is also valid for a subband, i.e. 2i siP E Ti= . The power conservation gives 

  (B.2) 
1 1

N N

i si
i i

P P E N
= =

= ⇒ =∑ ∑ sE×

Where, P is the average transmit total power, Pi is the transmit power in the ith subband, Es is the 
average total energy per signal and Esi is the energy per symbol in the ith subband. 
 
The noise power in a subband is written as  
 ( ) ( )( )2

0 1 1i iN N T H i= × ×  (B.3) 

Where, Ni is the noise power in the ith subband, N0 is the noise power spectral density, ( )H i  is 

the amplitude channel response in the ith subband and ( ) 2
H i  is the power channel response in 

the ith subband. 
 

The above relation comes from a product of the bandwidth by the power spectral density. The 
noise power is divided by the channel power response since it is equivalent to multiplying the 
transmit energy Esi by ( ) 2

H i . In other words, the channel with attenuation ( )H i and noise 

power 0 iN T is replaced by an equivalent channel with attenuation 1 and noise power Ni. 
 

Before writing the capacity formula, let us note that 

 
( ) ( )

( ) 2

2
00

2 2i si i si

i i

P E T E H i
N NN T H i

= = ×  (B.4) 
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The partial capacity associated to the ith subband is  

 ( ) 2
2 2

0

21 1log 1 log 1
2 2

i si
i

i

P EC
N N

⎛ ⎞ ⎛
= + = + ×⎜ ⎟ ⎜

⎝ ⎠ ⎝
H i

⎞
⎟
⎠

 (B.5) 

The total capacity in bits per dimension, while keeping in mind that T is constant, is the 
average of the partial capacities, 

 1

N N
i i ii

C T C
C

T N
== =∑ ∑ 1i=  (B.6) 

Once the capacity is computed, the energy per bit is derived by b sE E C= . Thus, it is easy to 
make 0sE N vary from -50 dB to 20 dB, compute the capacity C (in bits/dim) for each SNR 
value and then derive 0bE N . 

Now, let us maximize the total capacity under the constraint that Es has a fixed valued. 
Define { }( )si sF E C Eλ= + . We get  

 { }( ) ( ) 2
2

1 10

21 1 log 1
2

N N
si

si s
i i

EF E H i E
N N

λ
= =

⎛ ⎞ ⎛ ⎞
= + × +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ i  

Derive with respect to Esi, 

 
( )

( )
( )

2
0

2
0

21 1 0
2 log 2 1 2si si

H i NdF
dE N E H i N

λ= × × + =
+

 

From the above equality, we find that 

 
( ) 2

0

2 1siE water level
N H i

θ+ = =  

which is the same as 

 
( ) 2

0

2 1siE
N H i

θ

+
⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 

By using the relation
1

N
sii

E NE
=

=∑ s , we find the important equation giving the value of the 
optimal water level, 

 
( ) 2

1 0

1 2
N

s

i

EN
NH i

θ

+

=

⎛ ⎞
⎜ ⎟− = ×
⎜ ⎟
⎝ ⎠

∑  

The optimal capacity maximized by this strategy is  

 ( )( )2
2

1

1 1 log
2

N

i
C H

N
θ

=

= ∑ i . 
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Appendix C 
Weight Distribution of a Block Code 
 
 

Performances of an Error Corrector Code (ECC) over a soft or a hard output channel depend 
on the weight distribution. For example, the number Ad of codeword situated at a Hamming 
distance d=dHmin from transmitted word assign directly the error probably. The error probability 
increases if the number of neighbours increases. Thus, asymptotically (Eb/N0 >> 1), performances 
are stroked to the minimal distance and the number of neighbours. On the other hand, for medium 
and low Signal to Noise Ratio (SNR), code words situated beyond dHmin also affect the error 
probability. 

For reflect the computing of performances on information bits at the input of the encoder, we 
need a relation between the weight of the output (i.e. weight of code words) and the one of the 
input. We will see that it is very difficult to obtain, except for small codes. Thus, in the case of 
block codes, computing the error probability per codeword is immediate but the error probability 
per information bit will be very approximate. 

In this appendix, we will describe the polynomial weight enumerator of a block code. We 
present the MacWilliams identity which link the weight distribution of the code and the one of its 
dual code. We indicate finally, that distributions of Hamming distance around code words are 
identical when the block code is linear. 
 
 
C.1 The polynomial weight enumerator 
 

The Hamming weight indicates if the symbol is null or not. For precision, it is necessary to 
know the value of the symbol when it is no null (q-1 possible values). The two definitions below 
describe the polynomial Hamming weight enumerator and the polynomial complete weight 
enumerator. 

 
Definition 1 (Hamming Weight Enumerator)   

Suppose ζ(n, k, d) a linear code defined over GF(q). We call polynomial Hamming weight 
enumerator, or polynomial enumerator the following: 

 ( )
0

n
i

i
i

A x A
=

= ∑ x  

Where Ai is the number of code words with weight i. The sum of these coefficients is equal to the 
size of code, 

0

n k
ii

A q
=

=∑ . 
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The power of variable x in A(x) indicates the Hamming weight in the code words (number of non 
null symbols) and the coefficient gives their number. To make A(x) homogeneous, it is possible 
to introduce another variable for the number of null symbols. The polynomial enumerator 
become homogeneous of n degree, ( )0 1 0 10

, n n i i
ii

A x x A x x−
=

=∑ . 

For example, the polynomial enumerator of the Hamming code (7, 4, 3) is written 
, where the coefficients are equals to A( ) 7 4 37 7A x x x x= + + +1 0 = 1, A1 = A2 = 0, A3 = AdHmin = 

7, A4 = 7, A5 = A6 = 0, A7 = 1. We remark the discontinuity and the symmetry of the distribution. 
 
Definition 2 (Complete Weight Enumerator) 

Suppose ζ(n, k, d) a linear code defined over GF(q). We call complete polynomial weight 
enumerator: 
 ( ) ( ) 10 1

0 1 1 0 1 1, ,..., ... qii i
q q

i
A x x x A i x x x −

− −= ∑  

Where A(i), i = (i0, i1, …, iq-1) is the number of code words having i0 null symbols, i1 symbols 
equal to 1, i2 symbols equal to 2, etc … the sum of coefficients is equal to the size of code, 

k
ii

A q=∑ . The sum of power is equal to the code length, i0 + i1 + … + iq-1 = n. 
 

The complete polynomial weight is a polynomial with q variables. The power ij of variable xj 
indicates the number of symbols equal to j, j∈ GF(q). The coefficient A(i), i = (i0, …, ij, …, iq-1) 
give the number of code words having the configuration of vector i. We remark that, the 
definition 2 describe a homogeneous polynomial of n degree. 

 
The polynomial Hamming weight enumerator can be obtain from the polynomial complete 

weight enumerator by forcing x1 = x2 = … = xq-1 = x, x0 = 1 and replacing the sum of integer i0 + 
i1 + … + iq-1 by the only index i. When the code is binary, the complete polynomial weight can be 
written under the form ( ) ( ) 0 1

0 1 0 1 0 1 0 1, , i i n i i
ii i

A x x A i i x x A x x−= =∑ ∑ . It is equivalent to the 
polynomial Hamming weight enumerator. Thus, the complete weight enumeration is interesting 
only in the case of non binary codes (q > 2)  
 
Definition 3 (Input Redundancy Weight Enumerator) 

Suppose ζ(n, k) a binary linear code. We call polynomial input redundancy weight 
enumerator: 
 ( ) ( )

,
, , i j

i j
A x y A i j x y=∑  

Where A(i,j) is the number of code words having the weight of information bits i and the weight 
of parity bits j. The sum of these coefficient is equal to the size of code, ( ),

, 2k
i j

A i j =∑ . 

 
Replacing y by x and the sum i + j by i, we obtain the polynomial weight enumerator A(x) 

from A(x, y).  
It is very difficult to compute the polynomial input redundancy weight enumerator for any 

code. The only method available is to make the list of detailed weight of the code. 
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On other hand, computing the complete polynomial enumerator is sometimes facilitating by 
the application of MacWilliams identity describe below. 
 
Definition 4 (Golay Code) 

The Golay code (23, 12, 7) is a cyclic binary linear code defined by the generator polynomial: 
  ( ) 11 10 6 5 4 2 1g x x x x x x x= + + + + + +

The Golay code (23, 12, 7) is a perfect code, i.e. the Hamming born verify .  1 2 3
23 23 231 2C C C+ + + = 11

 
Definition 5 (Extensive Golay Code) 

The extensive Golay code (24, 12, 8) is a non cyclic linear binary code construct by addition 
one parity bit to the Golay code (23, 12, 7): 

  ( )( )
23

24
1

2i
i

b b sum in GF
=

= ∑
This code is self dual, i.e. ζ⊥ = ζ. 
 
Definition 6 (Primitive Reed Solomon Code)  

The primitive Reed Solomon code is a cyclic linear code defined over the field of GF(2m) 
symbols, with length n = 2m – 1, and correction capacity t, generate by:  
 ( ) ( )( ) ( )2 2... tg x x x xα α α= − − −  

Where α is a primitive element of GF(2m). 
 
The Reed Solomon code is a MDS code because it verify n – k = 2t or dHmin = n – k + 1.  
The Hamming weight distribution of the primitive Reed Solomon code is given by: 

 ( ) ( )
2 1

2 1
1

0
1 1

i t
j i t ji j

i n i
j

A nC C n
− −

− − −
−

=

= − +∑  

 
 
C.2 MacWilliams Identity 
 

Suppose ζ(n, k) a linear code defined over GF(q) and ζ⊥(n, n-k) its dual code. MacWilliams 
Identity allow to compute the complete polynomial enumerator A(x0, x1, …, xq-1) (resp. Hamming 
enumerator A(x)) of ζ in function of two polynomial B(x0, x1, …, xq-1) (resp. B(x)) of the dual code 
ζ⊥. 
 
Theorem 1: Suppose ζ(n, k) a binary linear code. Then the code contains 2k words of even 
weight, or it contains 2k-1 words of even weight and 2k-1 words of odd weight. 
 
Proof: if all the code words have an even weight ( ) 2kCard ζ = ⇒ The first part of the theorem 
is easy. Suppose that the code has at least one code word c of odd weight. Λ is the set of even 
weight code words and Ω is the set of odd weight code words,  ζ = Λ∪Ω  and c∈Ω . 

x c∀ ∈Λ+ , , then . But x∈Ω cΛ+ ⊂Ω ,x x c∀ ∈Ω + ∈Λ because x + c has an even weight. 
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x c x+ ∈Λ ⇒ ∈Λ + c . Then . We prove thatcΩ⊂Λ+ cΛ+ =Ω . We deduce that ( )Card Λ =  

. ( ) ( ) 1/ 2 2kCard Card ζ −Ω = =

 
The theorem 1 indicates that every binary linear code have only even weight code words, if not 
then exactly the half of the code words have an even weight and the other half have an odd 
weight. 
 
Definition 7 (Hadamard Matrix) 

The Hadamard Matrix of order n is a matrix H type n x n constitute from +1 and -1, and 
verifying . † n=HH I
 

The n lines (or the n columns) of a Hadamard matrix are orthogonal, i.e. the matrix is a 
rotation matrix. The n lines form n functions of n samples known under the name of Walsh 
functions. 
 
Theorem 2: (Construction of Hadamard matrix) 
(1) Sylvester Construction: if Hn is a Hadamard matrix of order n, then we can construct the 

Hadamard matrix of order 2n: 

 2
n n

n
n n

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

H H
H

H H
 

(2) Suppose that n = 2m. We note u1, u2, …, un the n elements of GF(2)m (all the binary words of 
size m). The binary element obtain by the scalar product of two binary words is defined by 

. Then, the matrix defined by( )1
. m

i j ir jrr
u u u u GF

=
= ∈∑ 2 ijh⎡ ⎤= ⎣ ⎦H , where is a 

Hadamard matrix of n order. 
( ) .1 i ju u

ijh = −

 
Proof: (1) It is easy because H2n satisfy the relation:  †

2n 2n 2n=H H I
           (2) Computing the scalar product between two lines i and k of H. 

  ( ) ( ) ( )( ). .

1 1 1
. 1 1i j k j i k j

n n n
u u u u u u u

i k ij kj
j j j

h h h h +

= = =

= = − − = −∑ ∑ ∑ .1

If i = k the scalar product is equal to n because ui + ui =0. If i ≠ k then there is a line r where ui + 
uk = ur. Now if the weight of ur is w≤ m, ur.uj produce the weight of uj limited by w. Thus, when j 
change from 1 to n = 2m, we obtain 2m-w time the distribution weight of the universal code GF(2)w, 
where the half of words have even weight and the other have odd weight. The scalar product of 
these two lines hi and hk is null.  

 
Definition 8 (Hadamard Transformer) 
(1) Suppose X=(x1, x2, …, xn) a vector ∈ . The Hadamard Transformer (Walsh or Fourier) of 

the real vector X is defined by: 
n

 Y X= H  
(2) Suppose f an application defined in GF(2)n → . Then, the Hadamard Transformer of the 

application f'' defined by: 
k

  ( ) ( ) ( ) ( )
( )

.

2

1 ,
m

u v n

v GF

f u f v u GF
∈

′′ = − ∀ ∈∑ 2
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Lemma 1: Suppose ζ(n, k) a binary linear code. We consider the application f: GF(2)n → , then k

 ( ) ( )1
2k

uu

f u f
ζζ ⊥ ∈∈

u′′=∑ ∑  

 
Proof:  
  ( ) ( ) ( )

( )
( ) ( )

( )

. .

2 2

1 1
n n

u v u v

u u uv GF v GF

f u f v f v
ζ ζ ζ∈ ∈ ∈∈ ∈

′′ = − = −∑ ∑ ∑ ∑ ∑
If v ∈ ζ⊥ the sum is equal to Card(ζ) = 2k because u.v = 0. 
If v ∉ ζ⊥ from theorem 1, u.v take equally 0 and 1 values. In this case, the sum is null.  
Those mean: ( ) ( )2k

u u
f u f

ζ ζ ⊥∈ ∈
′′ =∑ ∑ u   

 
 

Theorem 3: (MacWilliams Identity, Binary Code) 
 Suppose ζ(n, k) a binary linear code and ζ⊥ the dual code. Then the polynomial weight 
enumerator A(x) and B(x) of ζ and ζ⊥: 

 ( ) ( )1 11
2 1

n
k

xB x x A
x

−⎛ ⎞= + ⎜ ⎟+⎝ ⎠
 

   
Proof: we apply Lemma 1 with ( ) ( )w uf u x=  where w(u) is the Hamming weight of u. We obtain 

 ( ) ( ) ( )

( )

.

2

1
n

u v w u

v GF

f u x
∈

′′ = −∑  

Where u = (u1, …, un) and v = (v1, …, vn). Then 

 ( ) ( ) ( )
( )

1 1

1 2

1 1 1
...

0 0 01 12

1 ... 1n n i ii i

n
n

n n
u v u v u vv v

v v vi iv GF

f u x+ +

= = == =∈

′′ = − = −∑ ∑∑ ∑∏ ∏ x  

We know that  
 ( )

1 2 0 1
22

1 2 ...
m

m
i i i

m m

a a am aj aj= +∑ ∑∏ ∏  

Where the index i1, …, im are binary, we can write  

 ( ) ( )
1

01

1 i
n

u w w

wi

f u x
==

′′ = −∑∏  

If ui = 0, the sum is equal to 1 + x. If ui = 1, the sum is equal to 1 – x. Thus we obtain 
  ( ) ( ) ( ) ( ) ( )1 1n w u w uf u x x−′′ = + −
The equation of Lemma 1 became  

 ( ) ( ) ( ) ( ) ( )1 1 1
2

n w u w uw u
k

uu

x x
ζζ ⊥

−

∈∈

= + −∑ ∑ x  

 
 

We remind that ( )mGF q pβ∀ ∈ =  it can be write under the form 
1

0 1 1... m
mβ β β α β α −
−= + + +  or . The element α is the primitive element of ( 0 1 1, ,..., mβ β β β −= )

_____________________________________________________________________________________________________________________ 

 



136                                                                                        Weight Distribution 

GF(q) and the coefficients ( )i GF pβ ∈ , i.e. 0 1i pβ≤ ≤ − . Suppose w the complex 

number ( )2 /j pw e π= , the pth root of unity. 
 
Definition 9 (GF(q) characters) 

( )0 1 1, ,..., m GF qβ β β β −∀ = ∈ ( ) , we define the application ( ):X GF qβ → given by: 

 ( ) 0 0 1 1... m mX wβ γ β γ
β γ − −+ +=  

Where . ( )0 1,..., m GF qγ γ γ −= ∈ ( )
The application X β is named character of GF(q).  
 
The characters of GF(q) verify the below proprieties: 

• ( ) ( ) ( ), ,GF q X Xβ γ .β γ γ∀ ∈ = β  

• ( ) ( ) ( ) ( ), , , .GF q X X Xβ β ββ γ γ γ γ γ γ′ ′∀ ∈ + = ′  

• ( ) ( ) ( ) ( ), , , .GF q X X Xβ β β ββ β γ γ γ γ′ ′+′∀ ∈ =  
 
Lemma 2: ( ) { }0 ,GF qβ∀ ∈ − we have 

 ( )
( )

0
GF q

X β
γ

γ
∈

=∑  

Proof: The sum is equal to 

  
( )

0 0 1 1

11
...

00

j jm m

j

pm

GF q j

w wβ γβ γ β γ

γ γ

− −

−−
+ +

∈ ==

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑∏

 
Seeing that β is non null, there is r where 0rβ ≠ . Then  

 
1 1

0 0

1 0
1

r r

r

pp p
k

k

ww w
w

β γ

γ

− −

= =

−
= = =

−∑ ∑  

 
 
Lemma 3: We consider the Hadamard transformer f" of the application f defined by GF(q)n

 ( ) ( ) ( )
( )n

u
v GF q

f u X v f
∈

′′ = v∑  

Suppose ζ(n, k) a linear code defined in GF(q), then 

 ( ) ( )1
k

uu

f u f
q ζζ ⊥ ∈∈

u′′=∑ ∑  

 
Proof: the proof is identical with the one of Lemma 1 and use the Lemma 2. 
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Appendix D 
New Character in Non binary Case 
 
 
NotationsU:  is a prime number. Usually p=2; ,mq p p=

p
j

e
π

ω
2

= primitive complex pth root of unity; 
 
 
UDefinition 1: A new characters )(γχ β  and )(v

u
χ :  

)(),...,,( 110 qGFm ∈=∀ −ββββ  we define an application )(γχβ :  
( )GF q → :  ).()( γβτ

β ωγχ =

Where )(),...,( 10 qGFm ∈= −γγγ  and 0( )τ β β= .  

( ) ( ) n
nn qGFvvvvuuuu )(,...,,,,...,, 110110 ∈==∀ −−  we define an application )(v

u
χ : 

( )nGF q → : ).()( vu
u

v τωχ =  

Where 0)( uu =τ .  
 
 
UProperties: 

:τ  ', ββ∀ where )(),...,,( 110 qGFm ∈= −ββββ and )(),...,,( 110 qGFm ∈′′′=′ −ββββ ; we have: 
• )'()(')'()'( 000 βτβτββββββτ +=+=+=+   
• )'().('.)'.()'.( 000 βτβτββββββτ ===  

( ) ( ) n
nn qGFvvvvuuuu )(,...,,,,...,, 110110 ∈==∀ −− where ; ( )0 1 0 1,..., , ,...,n nu u v v GF q− − ∈

( ) ( )
( ) ( ) (( )

0 1 1 0 1 1
0 1 1 0 1 1

0 1
0 0 1 1 2 2 0 1 2 1 0 1

. ... . ...

. . . ... . . ... ... . ...

n n
n n

n
n n n n

u v u u u v v v

u v u v u v u v u v u v

α α α α α α

α α

− −
− −

−
− − − −

⎧ ⎫= + + + + + +⎪ ⎪
⎨ ⎬

= + + + + + + + + +⎪ ⎪⎩ ⎭) 1α

01111000 ,...,, −−

 

We have:   
• ( ) ( ) ( )+ ++=+=+ nn vuvuvuvuvuτ ( ) ( )vuvu ττ +=+= 00  
• ( ) ( ) ( )01010000 ...).(...),...,.(....),.(.. +++== −nvuvuvuvuvuτ  
                            )().().(...).( 0000 vuvuvu ττ=≠+=  
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)(γχ β : )(',,', qGF∈∀ γγββ  we have: 

• )()( βχγχ γβ =   proof   { }( . ) ( . )( ) ( )τ β γ τ γ β
β γχ γ ω ω χ β= = =                                      

• )'()()'( γχγχγγχ βββ =+   

proof { }( .( ')) ( . . ') ( . ) ( . ')( ') ( ) ( ')τ β γ γ τ β γ β γ τ β γ τ β γ
β β βχ γ γ ω ω ω ω χ γ χ γ+ ++ = = = =           

• )()()( ')'( γχγχγχ ββββ =+    

proof  { }(( '). ) ( . '. ) ( . ) ( '. )
( ') '( ) ( ) ( )τ β β γ τ β γ β γ τ β γ τ β γ
β β β βχ γ ω ω ω ω χ γ χ γ+ +
+ = = = =           

 
 
Lemma 1:    { } ∑

∈

=⇒−∈∀
)(

0)(0)(
qGF

qGF
γ

β γχβ

Proof: .0
1
1)(

)(

1

0)(

).( =
−
−

===∑ ∑∑
∈

−

=∈qGF

qq

k

k

qGFγ γ

γβτ
β ω

ωωωγχ  

 
 

                                                                                                                                        
Lemma 2: Considering the Hadamard Transform f ′′ of an application defined in GF(q)Pf P

n
PP. 

∑
∈

=′′
nqGFv

u
vfvuf

)(

)()()( χ  

And ζ(n, k) a linear code defined in GF(q), then: 

∑ ∑
⊥∈ ∈

′′=
Cu Cu

k uf
q

uf )(1)(  

 
Proof: ∑ ∑∑∑∑

∈ ∈∈∈∈

==′′
Cu Cu

u
qGFvqGFv

u
Cu

vvfvfvuf
nn

)()()()()(
)()(

χχ . 

If 
( . ). 0 ( . ) 0 1 ( )u v k

u
u C

v u v u v vτζ τ ω χ⊥

∈

∈ ⇒ = ⇒ = ⇒ = ⇒ = q∑  

If . 0 ( )
u

u C
v u v vζ χ⊥

∈

∉ ⇒ ≠ ⇒ =∑ 0   using the Lemma 1. 

Those mean:       ∑∑
⊥∈∈

=′′
Cu

k

Cu
ufquf )()(
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Appendix E 
A Design Rules for Adapted Modulation 
 
 
E.1 Characterization of the channel variation 
 
 

Adaptive signaling employs (perhaps imperfect) knowledge at the transmitter of the current 
fading values to select a signal set from which to draw the current symbol. Consider the choice of 
the signal set for the ith symbol. Recalling the assumption that analysis can assume the channel 
fading is constant over the duration of a single symbol, let ( )ih h iT= s  be the amplitude of the 

fading that multiplies the ith transmitted symbol. Assume temporarily that ( )hR τ is known at the 
transmitter, and let N be the number of outdated estimates employed. Define the N by  
autocorrelation matrix 

N
ĥ

Σ of the real or imaginary component of the vector of outdated channel 
estimates as 
 †

ˆ
ˆ ˆ ˆ ˆ

R R I Ih
E h h E h h†⎡ ⎤ ⎡Σ = = ⎤
⎣ ⎦ ⎣ ⎦  (E.1) 

and the length column correlation vector N ρ as 

 ( ) ( )ˆ ˆ
R R s I I sE h h iT E h h iTρ ⎡ ⎤ ⎡= = ⎤

⎣ ⎦ ⎣ ⎦  (E.2) 

 
Since the focus here is on characterizing the effects of the channel variation independent of 

the channel estimation algorithm employed, assume that the outdated fading estimates are made 
perfectly; that is, . Since ( ) ( )ˆ , 1,...,s j s jh iT h iT j Nτ τ− = − = ( )R sh iT and the variables in are 

jointly Gaussian, is Gaussian when conditioned on 

ˆ
Rh

(R sh iT ) R
ˆ
Rh = with mean and 

variance

† 1
ˆ Rh

ρ −Σ

( )2
ˆ0h h

R † 1σ ρ −= − Σ ρ . Likewise, ( )I sh iT is Gaussian when conditioned on Î Ih = with 

mean † 1
ˆ Ih

ρ −Σ and variance ( )2
ˆ0h h

R † 1σ ρ −= − Σ ρ . Thus, ( )ih h iT= s is Rician when conditioned 

on  with conditional probability density function given by ĥ

 ( ) ( )2 2 22
0ˆ 2 2Pr , 0i

i

h si i
ih h

h h sh e I hσ

σ σ
− + ⎛ ⎞

i= ≥⎜ ⎟
⎝ ⎠

 (E.3) 

Where ( )0 .I is the zeroth-order modified Bessel function and the non centrality parameter is given 

by . Note that ( ) (22 † 1 † 1
ˆ Rh h

s ρ ρ− −= Σ + Σ )2

ˆ I
2σ is the mean squared error of a minimum mean 
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squared error (MMSE) predictor of the in-phase or quadrature fading value of interest, and is 
the sum of the squares of the MMSE prediction of 

2s
( )R sh iT and the MMSE prediction of ( )I sh iT .  

 
For interpretation of Eq. E.3, consider the N=1 case. Defining ( )1hRρ τ= , and normalizing 

such that , one obtains ( )( ) ( )( )2
1R s I sE h iT E h iT⎡ ⎤ ⎡=⎢ ⎥ ⎢⎣ ⎦ ⎣

2 ⎤ =⎥⎦
22 2s ρ= and 2 1 2σ ρ= − . Define the 

specular-to-diffuse component (Rician) factor of (E.3) by ( ) ( )( )22 2 2 22 2 1K s σ ρ ρ= = − . For 

a fixed correlation ρ , the effective channel conditioned on a single outdated fading estimate 
varies from a low-SNR nearly Rayleigh fading channel to a high-SNR strongly Rician fading 
channel, with the type of fading dependent on the value of the outdated estimate. A similar 
interpretation holds for . 1N >
 
 
E.2 Adaptive Coded QAM 
 
 

In this section, strongly robust adaptive coded modulation will be designed. Only the strongly 
robust case will be considered, which requires performance to be guaranteed for all 1N =

[ ]min ,1ρ ρ= , where minρ is the minimum value of ( )1hR τ . 
 
A. Design Rules 
 

Temporarily, no energy adaptation is employed; in other words, the average energy of the 
signal constellation employed will be constant across symbols. Although the standard water-
pouring energy allocation method can be employed. The proposed energy adaptation scheme will 
be presented in Section E.2-B. 

Let be the target bit error probability for the system, which operates at the average received 
signal-to-noise ratio , where 

bP

0/sE N sE is the average received energy per QAM symbol.  
Specification of the adaptive transmitter requires finding ( ) ,M v v∀ where ( )M v is the number 

of signals in the QAM signal set employed when ( )1
ˆ

sh iT vτ− = . If ( )M v is chosen such that  

is maintained for each v 
bP

 ( )
min 1 0

max : sup , ,s
M b

EM v M P v
Nρ ρ

ρ
≤ ≤

P
⎧ ⎫⎛ ⎞⎪ ⎪= ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 (E.4) 

 
Where ( )( 0 , ,M sP E N v )ρ is defined as the bit error probability of the M-QAM signal set at 

average received SNR 0sE N when ( )1hR τ ρ=  and ( )1
ˆ

sh iT vτ− = . Assume that maximum 

likelihood symbol detection given the current channel fading amplitude is employed on the 
samples of the matched filter output at the receiver. Conditioned on the value  of the current ih
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fading amplitude, the probability of bit error for M-QAM (which is upper bounded by the symbol 
error probability), 2M > , is upper bounded as  

 
( )

( )

2 2

0

2

0

34
2 1

32exp
4 1

s s
M i i

s
i

E EP h Q h
N M N

E h
M N

⎛ ⎞⎛ ⎞
≤ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝

⎛ ⎞
≤ −⎜ ⎟⎜ ⎟−⎝ ⎠

0 ⎠  (E.5) 

 

Where ( ) ( ) ( )2 21 2 u

x
Q x e duπ

∞ −

∫ . The fact that the average received energy is twice the 

average transmitted energy has been recalled, and the second inequality is obtained by employing 

the bound ( ) ( )2 21
2

Q e αα −
≤ . Results indicate that employing (E.5) for the calculation of 

( )( 0 , ,M sP E N v )ρ results in very conservative designs, as do the results from employing the 

generally tighter bound ( ) ( ) ( )2 21 2Q αα πα −
≤ e to obtain the analog of (E.5). Thus, the tight 

approximation will be employed for all M for much of the design work for coded systems. 

 
( )

2

0 0

30.2exp
4 1

s 2s
M i

EP h h
N M

⎛ ⎞⎛ ⎞
≈ −⎜⎜ ⎟ ⎜ −⎝ ⎠ ⎝ ⎠

i
E
N

⎟⎟  (E.6) 

Note that (8.22) is not an upper bound in all cases considered as it will be implicitly employed for 
all hi and applied to M = 2. Using (E.6) yields 

 

( )

( ) ( )
( )

( )
( )

( )

2
1

0 0

2 2

2 2

0

2

0

2

0

ˆ, ,

10.2exp 1
2 1 131

2 1
1

131
2 1

30.2exp 1
4 1

s s
M M i s

s

s

s

E EP v E P h h iT v
N N

v

E
N M

if
E
N M

E v if
N M

ρ τ

ρ
ρ ρ

ρ
ρ

ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎧ ⎡ ⎤⎛ ⎞
⎪ ⎢ ⎥⎜ ⎟
⎪ ⎢ ⎥⎜ ⎟− −⎪ ⎢ ⎥⎜ ⎟− −⎪ ⎢ ⎥⎜ ⎟+⎪ ⎜ ⎟⎢ ⎥−⎪ ⎝ ⎠⎣ ⎦≈ <⎨

−⎪ +⎪ −⎪
⎪ ⎛ ⎞
⎪ − =⎜ ⎟⎜ ⎟−⎪ ⎝ ⎠⎩

 (E.7) 

 
Where the approximation is obtained by substituting (E.3) and (E.6) into the equality and 
evaluating the expectation over . ih

From (E.4), (E.7) must be evaluated at its supremum on [ ]min ,1ρ ρ∈ . Since the right side of 
(E.7) is a continuous function on this closed interval, it achieves its maximum on this interval at a 
point which will be denoted *ρ . The following solution is found by standard calculus techniques. 
Let 
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 ( ) ( )2
0

0 2

22 1
1 0

3 2s

v

vM N v
E

ρ

⎧ ≥
⎪⎪= −⎨ ⎛ ⎞−

+ ≤⎪ ⎜ ⎟
⎪ ⎝ ⎠⎩

2≤
 

 
The worst case autocorrelation is then given by 

 
min min

min* 1
1 1

ρ ρ ρ
ρ ρ ρ ρ

ρ

≤⎧
⎪= < <⎨
⎪ ≤⎩

 (E.8) 

 
The signal set is specified using (E.7) and (E.8) in ( ) ( )( ){ }0max : , , *M s bM v M P E N v ρ= ≤ P . 

Note that ( )M v  is not decreasing in v. Thus, the adaptive scheme can be specified by the values 
, m = 2, 4, 8, 16, 64 and 256, where  is defined as the threshold such that , for m-

QAM can be employed. For a fixed
mv mv mv v≥

ρ , (E.7) can be solved explicitly to find , but since mv *ρ  
depends on v, the resulting equation is not useful in general if strong robustness is desired. 
However, in many situations, particularly for small Pb, it can be shown analytically that one need 
only consider minρ ρ= , and thus the thresholds can be found explicitly. 
 
B. Energy Adaptation 
 
The rate of the method of the previous section is limited by the following reason: for all v such 
that , the estimate is more favorable than that required to use m-QAM but not 
favorable enough to use (2m)-QAM. A solution to this problem is to employ energy adaptation. 
First, a signal set is chosen according to the previous section with no energy adaptation. Then 
(E.7) and (E.8) are used to decide the minimum energy required to maintain P

2mv v v< < m

b given the channel 
estimate v, thus employing a method similar to the power-pruning. This minimum energy is 
employed for the current symbol and the remainder of the energy is saved for the next symbol. 
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