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Chapter 1

Introduction

1.1 Introduction

The field of laser physics has seen tremendous growth since the first practical realization of

laser light in 1960 [9]. The first laser pulses were produced by gain switching and Q-switching

also known as giant pulse formation. In the following years lasing action was reported from He-

Ne gas mixture [6] and from Nd3+-doped solid state laser material [15]. Population inversion

in semiconductor materials was also demonstrated in GaAs-junctions in 1962 [3]. Shorter

pulses were later produced by mode-locking techniques with dye lasers. These lasers were later

replaced by Ti:sapphire laser [11]. This material proved to be one of the best amplifying media

at 800 nm: it combines a high damage threshold and a high fluence saturation with excellent

thermal conductivity and a very large gain bandwidth (650 nm 1100 nm). The characteristics

of this material together with the possibility of Kerr lens ”magic”mode-locking allow generating

and amplifying ultra-short pulses at a high repetition rate. Another important breakthrough

towards the generation of ultra-intense pulses has been the introduction in 1985 by D. Strickland

and G. Mourou of the Chirped Pulse Amplification (CPA) [16]. This technique enables working

at a high fluences, for a good extraction of the energy while minimizing the intensity to avoid

nonlinear effects, destructive for the amplifier and optics. The idea is to generate an initial

ultra-short pulse with a low energy, to stretch it in temporal domain with a spectral phase

modulation and then to amplify it keeping the intensity low enough to avoid nonlinear effects.

The pulse is finally recompressed compensating the spectral phase modulation. (Fig. 1.1)
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Figure 1.1: Illustration of the CPA principle: the pulse is at first stretched by adding a spectral

phase modulation, then it is amplified and finally it is compressed by adding a spectral phase

modulation opposite to the initial one. Reprinted from [2]

A CPA laser system can then be decomposed in four parts: a laser oscillator, a stretcher,

one or more amplifying stages and a compressor. Most currently operating high-intensity laser

systems use this technique which allows reaching a peak power of hundreds of Terawatts (1

TW=1012W ) with a relatively compact system. Fig. 1.2 shows the evolution of the focused

intensity together with the different kind of laser-matter interaction regimes.

Figure 1.2: Chronology of the temporal intensity after the invention of the laser and corre-

sponding focused intensity for the more powerful installations. Reprinted from [17]
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Even with the combination of the CPA technique and the Ti:sapphire lasing medium the

shortest pulse duration obtained at the mJ level is around 18 fs [14, 4, 21, 20]. This is due to

the gain narrowing during pulse amplification which reduces the spectral bandwidth and thus

increases the temporal duration. To obtain shorter pulses down into the few-cycle regime (one

optical cycle is equal to 2.6 fs at 800 nm) various techniques based on nonlinear effects have

been used: gas filled hollow-core fiber [13], filamentation [5] or Optical Parametric Chirped

Pulse Amplification (OPCPA) [18].

During my Ph.D I concentrated on the hollow-core fiber technique. State of art pulse shortening

in hollow-core fibers enables the generation of pulses as short as 3.8 fs [1]. This corresponds

practically to the optical cycle of the infrared radiation. To decrease the pulse duration further

the central wavelength needs to be shifted to the XUV. This is possible by generating high order

harmonics (HHG) of the fundamental frequency in a gas target [10] or by relativistic reflection

from an overdense plasma [19]. The generation and phase matching of these harmonics allows

generating pulses with temporal duration in the attosecond regime (1 as=10−18s) which can

then be used to probe ultra-fast dynamic of matter [7]. According to the laws of quantum

mechanics the classical motion of an electron corresponds to the temporal evolution of a coherent

superposition of electronic atomic states. When the electron is in a non-stationary state, the

corresponding wave function shows an evolution with a time scale ranging from attoseconds to

microseconds (in the case of Rydberg states). For example, if the 1s electron of an hydrogen

atom is partially excited to the 2s state, a coherent superposition of the two states can be

generated. The corresponding electron density oscillates between the two states with a period

T = 2π}
∆E

= 0.4 fs (∆E = 10.2 eV is the energy difference between the 1s and 2s states).

On the basis of this argument, it can be concluded that the essence of attosecond science

is the investigation of the electronic processes on the atomic time scale. Fig. 1.3 shows the

evolution over time of the pulse duration down to the attosecond regime. In the last few years

a dramatic progress has been achieved in the field of attosecond technology, mainly because of

the breakthroughs in laser science and due to the introduction of new techniques for temporal

characterization of XUV attosecond pulses.
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Figure 1.3: Evolution of the pulses temporal duration function of time. Reprinted from [8]

Harmonics generated from a multi-cycle pulse (for example with a temporal duration of

25 fs) correspond in time domain to a train of attosecond pulses. For many applications it is

important to have a single attosecond pulse. Using a few-cycle pulse a single attosecond pulse

can be generated. When the incident pulse is short enough, the highest frequency component

is generated only at the highest peak power, where the intensity is significantly higher than the

other part of the pulse. Filtering out the highest frequency part of the spectrum will lead to

a single attosecond pulse. Theoretical simulations also show that there is a particular regime,

named λ3, which occurs when few-cycle pulses are focused into a focal spot with dimensions

close to the laser wavelength [12]. All the laser energy is therefore concentrated inside a vol-

ume corresponding to the cube of the wavelength. In this regime single attosecond pulses are

reflected by the overdense plasma with an efficiency that can reach 10−1.

The ”Physique du Cycle Optique” (PCO) group at the Laboratoire d’Optique Appliquée (LOA,

Palaiseau, France) was created just before the beginning of my Ph.D to study this λ3 regime

and in general the possibility of building a kHz, attosecond source based on HHG from solid

targets. To reach this goal it is necessary to have a laser source that delivers few-cycle pulses

with an energy ≥ 1 mJ. The 1 kHz repetition rate of the laser facilitates detection and char-

acterization of the generated harmonics. This source must also satisfy two other important

requirements. The first is the temporal contrast (section 2.2.2) which needs to be high enough

to prevent uncontrolled pre-ionization of the solid target. The second is the stabilization of

the carrier envelope phase (CEP) between successive pulses. The CEP is the shift between

the electric field and the envelope of the pulse and influences highly nonlinear effects like HHG

process. This kind of source was not commercially available at the beginning of my thesis.
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The work during my Ph.D was articulated around these requirements. It consisted of using

nonlinear pulse shaping to generate high-contrast, few-cycle pulses and to develop new solutions

for the CEP stabilization at high energy. The results of this work, done in collaboration with

several laser companies like Fastlite, Amplitude Technologies and Femtolasers, are presented in

the following chapters. After an introduction to ultra-short pulses and their characterization

(chapter 2), in chapters 3, 4 and 5 I present theoretical and experimental results on the third

order non linear process called cross-polarized wave (XPW) generation. This nonlinear process

is used for generating high contrast, ultra-short pulses. Chapter 6 deals with the development

of the CEP stabilized, few-cycle, mJ level laser source (Salle Noire). In chapter 7 I present how

this source can be used for high order harmonic generation. In the last chapter (8) I give the

prospects for future laser developments in ”Salle Noire” with the integration of an XPW filter

in a double CPA configuration and the generation of high contrast, few-cycle, mJ level, CEP

stabilized laser pulses.
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Chapter 2

Introduction to ultra-short pulses

2.1 Introduction

I start this chapter by giving an introduction to the basic concepts relative to ultra-short pulses.

In particular I define the concepts of temporal contrast and Carrier Envelope Phase that are

fundamental to understand the work presented in this manuscript. I then introduce the main

techniques for the temporal characterization of ultra-short pulses such as second order autocor-

relation, SPIDER and FROG. I also introduce a new pulse characterization device (Phazzler)

that combines, in a same instrument, all these characterization techniques. I conclude this

chapter by presenting the third order correlation technique that is used to characterize the

pulses with a high temporal dynamic range.

2.2 Ultra-short laser pulses

The electric field of a linearly polarized optic wave is a real function varying with time, solution

of the Maxwell equations. This function E(t) can be decomposed into frequencies by making a

Fourier transform to obtain:

Ẽ(ω) =

+∞∫
−∞

E(t)exp(iωt)dt. (2.1)

A complex temporal analytic signal can also be defined as:

E(t) = 2

+∞∫
0

Ẽ(ω)exp(−iωt)
dω

2π
, (2.2)

with an associated Fourier transform spectral decomposition:

Ẽ(ω) =

+∞∫
−∞

E(t)exp(iωt)dt =
∣∣∣Ẽ(ω)

∣∣∣ exp(iϕ(ω)) (2.3)

This field is zero for negative frequencies and equal to 2Ẽ(ω) for positive frequencies. The

basic idea behind working with analytic signals is that the negative frequency components of the
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Fourier transform (or spectrum) of a real-valued function are superfluous, due to the Hermitian

symmetry of such a spectrum. They can be discarded with no loss of actual information. The

quantity I(ω) = ε0c
2

∣∣∣Ẽ(ω)
∣∣∣2 is the spectral intensity and ϕ(ω) is the spectral phase. The spectral

phase is typically expanded in a Taylor series around the central frequency ω0:

ϕ(ω) =
n∑

k=0

ϕ(k)

k!
(ω − ω0)

k (2.4)

Where ϕ(2) is the linear chirp (also named Group Delay Dispersion GDD or second-order phase

dispersion) and ϕ(3) the quadratic chirp. In the temporal domain a temporal phase ϕ(t) is also

defined and the complex temporal field is written as: E(t) = |E(t)| exp(i(ϕ0 + ϕ(t) − ω0t)).

|E(t)| is the temporal envelope. Assuming ϕ(0) = 0, ϕ0 is the phase shift between the electric

field and the envelope. This term is also called carrier envelope phase (CEP). I(t) ∝ |E(t)|2 is

the cycle-averaged radiation intensity. For a Gaussian pulse the intensity is I(t) = E0exp
(
−2t2

τ2

)
with τ the width at 1/e2 in intensity. The Full Width at Half Maximum (FWHM) in intensity,

∆t, is related to τ by: ∆t = τ
√

2ln(2). Fig. 2.1 shows the electric field (red) and the envelope

(blue) for two pulses having a FWHM of 25 fs and 5 fs at a central wavelength of 800 nm.

Pulses as short as 5 fs contain just 3 optical cycles at λ = 800nm.

Figure 2.1: Electric field (red) and associated temporal intensity (blue) for pulses with a FWHM

of: 25 fs (a) and 5 fs (b)
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2.2.1 CEP and its stabilization

A more detailed description of the CEP measurement and stabilization in a laser system with a

fast and a slow feedback loop is given with the description of the development of the laser source

(chapter 6). Here I just want to derive the CEP off-set between successive output pulses of an

oscillator and how to stabilize it. Inside the laser cavity, together with the Ti:sapphire crystal,

there are other dispersive elements. All together they are responsible for the variation of the

off-set between the carrier wave and the envelope of the pulses. This variation is caused by the

difference between the phase velocity vf = ω
k0

(where k0 = 2π/λ is the constant of propagation)

of the carrier wave and the group velocity vg = ∂ω
∂k0

of the pulse envelope. In dispersive media

the group and phase velocity are different and there is a shift between the envelope and the

carrier inside the cavity. The consequence is that the CEP varies between successive pulses at

the output of the oscillator. Without any perturbation the CEP, ϕ0, varies by a fixed quantity

∆ϕ0 between two successive pulses. This phase difference contains typically some hundreds of

times 2π, plus a significant term between 0 and 2π. This value is defined ∆ϕ0 [1]. Considering

a cavity length L, ∆ϕ0 is given by the expression:

∆ϕ0 = 2π

2L∫
0

dn(z)

dλ0

dz (2.5)

where n(z) is the index of refraction of the materials inside the cavity. In reality ϕ0 varies

between successive pulses by the quantity ∆ϕ0 plus a random variation due to perturbations

of the laser cavity and fluctuations of the energy of the pump pulses.

The variation of the CEP, ∆ϕ0, is the quantity that can be experimentally measured and used

for the stabilization. The stabilization is realized in frequency domain. In frequency domain,

the frequency comb of the oscillator is shifted compared to the repetition frequency, frep, by an

offset frequency, fceo, which is a direct function of ∆ϕ0 (Fig. 2.2). The value of fceo is given by

the relation:

fceo = (∆ϕ0/2π)frep (2.6)

Measuring fceo and making it constant implies that successive pulses of the cavity have a fixed

∆ϕ0. A self-referenced interferometer for measuring fceo is presented in section 6.2.1
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Figure 2.2: Correspondence between the temporal and frequency domain. (a) In the temporal

domain ϕ0 varies by a quantity ∆ϕ0. (b) In the frequency domain there is a frequency comb

with a frequency frep. This comb is translated by the integer multiple frequencies by an offset

fceo. Its amplitude is given by the Fourier transform of the temporal amplitude of the pulse at

ω0. Reprinted from [1]

2.2.2 Temporal contrast of a short pulse

Every process of amplification introduces a certain amount of noise on the amplified signal and

causes some distortion. This is true for electronic amplification and it is also verified for optical

amplification. For ultra-intense sources, the temporal quality of the pulses and, in particular,

the ratio between the peak intensity and the intensity at a delay ∆t, is defined as the temporal

contrast of the pulses at this delay. This quantity has a fundamental importance in laser-

matter interaction. Focusing a 25 fs pulse with an energy > 1 mJ in a spot size of 1 µm (limit

of diffraction at 800 nm) produces a peak intensity higher than 1018W/cm2. With a temporal

contrast of 6 orders of magnitude the intensity of the background pedestal, ≈ 1012W/cm2, is

high enough to pre-ionize the target (for example fused silica) before the arrival of the main,

ultra-short pulse [15]. If the plasma is generated before the main pulse arrives, it will expand

hydrodynamically and the main pulse will no longer interact with a clean, steep plasma density.

This deformation of the plasma-vacuum interface has a strong influence on processes such as

high-order harmonic generation from solid surfaces [17] and ion acceleration [7]. To better

understand the concept of contrast Fig. 2.3 shows, on logarithmic scale, the typical temporal

profile of a short pulse. Four types of contributions can be distinguished:

• A long pedestal (>100ps);

• A short pedestal (some tens of time the pulse duration);
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• pre-pulses: replicas situated in front of the pulse

• post-pulses: replicas situated after the pulse.

These structures have different physical origins. The long pedestal corresponds to the

incoherent noise introduced by the amplified spontaneous emission (ASE) and for this rea-

son it is called incoherent contrast. The ASE is mainly generated in the first, high gain,

amplification stages. The short pedestal comes from an imperfect recompression after the

stretcher/compressor and amplification and is called the coherent contrast. Finally pre-pulses

and post-pulses are replicas of the main pulse due to reflection or diffusion from optical surfaces

and from non linear effects such as four-wave mixing [9].

Figure 2.3: Typical temporal profile of the output pulse of a (CPA) laser. Aside from the main

pulse, it generally has pre- and post-pulses. The underlying pedestal comes from ASE (ns) and

imperfect compression (ps). Reprinted from [12]

2.3 Temporal characterization of femtosecond pulses

This section presents a brief review of the main solutions for the temporal characterization of

femtosecond pulses. As discussed in the previous section, imperfections in the temporal com-

pression influence not only the temporal width of the pulse but also affect its coherent contrast.

During my Ph.D I contributed to the development of a temporal characterization device named

Phazzler (Fastlite) that makes it possible to carry out several temporal characterization tech-

niques using the same instrument. A presentation of this device is given at the end of this

section.
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2.3.1 Second order autocorrelator

One of the first techniques for the temporal characterization of femtosecond pulses is the second

order autocorrelation [2]. For some particular temporal profiles, the FWHM of the temporal

intensity and of the autocorrelation are linked. With an assumption of the temporal profile, the

corresponding FWHM is retrieved measuring the FWHM of the second order autocorrelation.

A schematic of this device is shown in Fig. 2.5. The input pulse is split into two temporally

delayed replicas in a Michelson interferometer and the two replicas are focused into a non

linear crystal. The signal is detected with a photodiode or a photomultiplier and visualized

with an oscilloscope. The result of the nonlinear interaction of the beams from the two arms

depends on the delay. This signal is named autocorrelation function. There are two types of

autocorrelations:

• Interferometric autocorrelation: when the beams incident on the crystal are collinear (can

not be distinguished).

• Intensity autocorrelation: for non collinear beams.

Interferometric autocorrelator

For the interferometric autocorrelator the measured signal is given by the expression:

Scol(τ) ∝
∫ +∞

−∞

∣∣∣(E(t) + E(t− τ))2
∣∣∣2 dt (2.7)

where τ is the delay between the pulses. This signal is the sum of three components function

of τ : Scol(τ) ∝ Iback + Iint(τ) + Iω(τ) + I2ω(τ) with:

Iback =
∫ ∞

−∞
(|E(t− τ)|4 + |E(t)|4)dt = 2

∫ ∞

−∞
I2(t)dt (2.8)

Iint(τ) = 4
∫ ∞

−∞
(|E(t− τ)|2 |E(t)|2 = 4

∫ ∞

−∞
I(t− τ)I(τ)dt (2.9)

Iω(τ) = 4
∫ ∞

−∞
Re[(I(t) + I(t− τ))E∗(t)E(t− τ)exp(iω0τ)]dt, (2.10)

I2ω(τ) = 2
∫ ∞

−∞
Re[(E(t)2(E∗(t− τ))2exp(i2ω0τ)]dt (2.11)

Iback is a background signal independent of τ , Iint(τ) is the intensity autocorrelation, Iω(τ)

and I2ω(τ) are named coherence term oscillating respectively at ω0 and 2ω0. There is a ratio

8 between the maximum (τ = 0) and the minimum signal. When the delay is large enough to

avoid temporal overlap between the pulses the measured signal is twice the one measured with

a single beam. When the delay is zero the signal is equal to 24 = 16. The ratio between the

two is then equal to 8. An example of an interferometric trace is shown in Fig. 2.5. Even if

there are algorithms for extracting the spectral phase from an interferometric trace, for example

PICASO, (Phase and Intensity from Cross Correlation and Spectrum Only) this reconstruction

is not robust and does not always converge.
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Figure 2.4: Calculated interferometric autocorrelation for a 10 fs pulse

Figure 2.5: Schematic of a second order autocorrelator. The detector can be a photomultiplier

(MHz detection) or a photodiode (kHz detection). Reprinted from [4]

Intensity autocorrelator

For the intensity autocorrelator the measured signal is given by the expression:

Snon−col(τ) = Iint(τ) ∝
∫ +∞

−∞
|E(t)E(t− τ)|2 dt =

∫ +∞

−∞
I(t)I(t− τ)dt (2.12)

The signal is measured in the direction corresponding to the addition of the wave vec-

tors of the two arms. The intensity autocorrelation does not contain full information about

21



the electric field of the pulse, since the phase of the pulse in the time domain is completely

lost. The only information that can retrieved is the FWHM and basic shape of the input pulses.

Two main techniques have been developed to measure the spectral phase of femtosecond pulses:

SPIDER and FROG.

2.3.2 SPIDER technique

Spectral Phase Interferometry for Direct Electric-field Reconstruction (SPIDER) [6, 5] uses

spectral shearing interferometry to retrieve the spectral phase of an incident pulse. This form

of interferometry measures the interference between two pulses separated in time which are

identical except for their central frequencies. This pulse pair is said to be spectrally sheared.

Nonlinear optics provides a general approach to globally shearing two pulses by a frequency

Ω. This can be done by sum frequency generation between a monochromatic frequency, Ω,

and the field we want to shear, Ẽ(ω), resulting in a sheared field, Ẽ(ω + Ω). It is convenient

to obtain the monochromatic frequency from a strongly chirped ultrashort pulse for which the

instantaneous frequency, which is approximately a linear function of time, does not vary during

the nonlinear interaction with the short pulse(Fig. 2.6). The magnitude of the spectral shear

generated in this manner is then a function of two parameters: the delay between the pulses and

the amount of chirp of the stretched pulse. The exact value of the shear is equal to: Ω = − τ
2ϕ2

where τ is the delay between the pulses and ϕ2 is the second order dispersion present on the

chirped pulse.

The interference of the two sheared pulses (SPIDER signal) is given by:

ISPIDER(ω) =
∣∣∣Ẽ(ω)

∣∣∣2+
∣∣∣Ẽ(ω + δω)

∣∣∣2+2
∣∣∣Ẽ(ω)Ẽ(ω + δω)

∣∣∣×cos(φ(ω+δω)−φ(ω)+ωτ) (2.13)

The phase difference between the two spectrally sheared replicas can be extracted alge-

braically using methods taken from Fourier Transform Spectral Interferometry (FTSI) [14].

The extraction of the phase difference φ(ω + δω)−φ(ω)+ωτ is performed using a Fast Fourier

Transform, a filtering of one of the interference terms, and a Fast Fourier Transform back to

the initial experimental points.

A possible schematic of a SPIDER device is presented in Fig. 2.7. The pulse to be charac-

terized is separated into two replicas with different intensities. The first arm (low intensity) is

composed of an interferometer for producing and delaying two replicas by τ . The second arm

(high intensity) is constituted of a device for introducing a fixed amount of dispersion in order

to stretch the pulse. The beams from the two arms are focused into a non linear crystal (BBO)

for the sum frequency generation (SFG). The SPIDER signal is measured with a spectrometer.
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Figure 2.6: Generation of two sheared replicas of the input pulse by non-linear interaction with

a chirped pulse. Reprinted from [3]

Figure 2.7: Example of SPIDER schematic. SF 10: glass block, BS: beam splitter, τ : adjustable

delay between unchirped replica, τSHG: delay between unchirped pulses and strongly chirped

pulse, RO: focusing lens, TO: collecting lens

2.3.3 FROG technique

Another technique for the complete pulse characterization is the FROG (Frequency Resolved

Optical Gating) [8, 16]. This technique can be understood as a spectrally resolved autocorre-

lation. The result of the measurement is a time-frequency spectrogram and the spectral phase
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and amplitude is extracted using an iterative algorithm. A schematic of a FROG device is

shown in Fig. 2.8. The FROG measurement can use second or third order nonlinearity. The

pulse to be measured with an electric field E(t) interacts, in the non linear medium, with a

temporal gate G(t − τ), being τ the delay between the pulses. The signal generated by the

nonlinear interaction can be expressed as: Esignal(t, τ) = E(t)G(t− τ). A spectrometer enables

to measure the spectral intensity IFROG(ω) for different delays τ . The mathematical expression

of the measured spectrogram is:

IFROG(ω, τ) =

∣∣∣∣∣∣
+∞∫
−∞

E(t)G(t− τ)exp(−iωt)dt

∣∣∣∣∣∣
2

(2.14)

Considering the case with SHG (non collinear geometry) as the nonlinear process, the gate

function is the pulse to be measured delayed by τ . The FROG trace (Fig. 2.9) can then be

expressed as:

I
SHG

FROG(ω, τ) =

∣∣∣∣∣∣
+∞∫
−∞

E(t)E(t− τ)exp(−iωt)dt

∣∣∣∣∣∣
2

(2.15)

With an iterative algorithm the spectral phase and amplitude is extracted from the trace.

Figure 2.8: Schematic of a typical FROG (multishot SHG) setup.
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Figure 2.9: Example of a measured SHG FROG trace. The spectral phase and amplitude is

extracted from this trace with an iterative algorithm

2.3.4 Phazzler

All the previous solutions for characterizing ultra-short pulses are made up by the same blocks.

A linear interferometer, a non linear process and a detector. In particular it can be demonstrated

that for the measurement of a pulse with an integrating detector (it is always the case for fs

pulses) a non linear process is needed. As it will be shown in section 6.2.3, an Acousto-

Optical Programmable Dispersive Filter (AOPDF, Dazzler) acts as a linear filter. In particular

if
∣∣∣Ẽin(ω)

∣∣∣ is the input spectral amplitude of an optical pulse, the spectral amplitude at the

output of the programmable dispersive filter,
∣∣∣Ẽout(ω)

∣∣∣, is equal to the product of
∣∣∣Ẽin(ω)

∣∣∣ with

the spectral transfer function H(ω):

∣∣∣Ẽout(ω)
∣∣∣ = H(ω)

∣∣∣Ẽin(ω)
∣∣∣ (2.16)

The AOPDF can then substitute the linear interferometer of a pulse measurement device.

This idea is implemented in the device for pulse shaping and characterization named Phazzler

(Fastlite) [11] (Fig. 2.10). The main advantage of this solution is the extreme flexibility of

the device: a FROG, a SPIDER and an autocorrelation measurement can be done with the

same device without changing the elements inside and the alignment. Furthermore working in a

collinear configuration makes the alignment extremely easy (there are two external pin-holes for

the alinement). Generating two delayed replicas of the pulse with the pulse shaper opens also

some new interesting features [10]. For example, scanning the delay between the two replicas

can be realized, first, by shifting simultaneously the envelope and CEP as is the case for a

mechanical delay line (for example moving one arm of a Michelson interferometer). In this case

the spectral transfer function is H(ω) = exp(i(ω − ω0)τ), with ω0 the carrier frequency. We
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define this optical delay. The second option is to shift only the envelope keeping the CEP fixed.

In this case the spectral transfer function is H(ω) = exp(i(ωτ)) and we define this pure delay.

Any intermediate carrier envelope phase shift between the two extremes is also possible.

The spectral transfer function to produce to replicas delayed by τ (symmetric respect to

t=0) is than given by the expression:

H(ω) =
1

2
(exp(i(ω − (1− γ)ω0))τ/2 + exp(−i(ω − (1− γ)ω0)τ/2 (2.17)

The CEP remains unchanged for γ = 1 (pure delay) and shifts together with the envelope

for γ = 0 (optical delay).

When the two delayed pulses are generated for an interferometric autocorrelation measure-

ment, changing the value of γ changes the period of oscillation of the trace. In particular for

γ = 1 the trace presents no oscillations and only the envelope is visible. This may seem sur-

prising given the fact that the two wave propagate collinearly, but beautifully demonstrates the

ability to control the CEP. This control of the CEP with the Dazzler will be discussed more

precisely in section 6.9. When γ = 1 we define this as a base-band measurement. For γ < 1

oscillations appear and their periodicity can be adjusted at will through a choice of γ. While

for γ = 0 the oscillation frequency matches the carrier frequency, for γ = 0.5 the oscillation

frequency is reduced by a factor of two. For this reason this interferometric autocorrelation

made with the Phazzler is called Pseudo Interferometric Autocorrelation (PIAC).

Figure 2.10: CAD drawing of the internal view of the Phazzler optical module. Reprinted

from [11].

Phazzler FROG

I have previously presented that a SHG FROG measurement is a frequency resolved interfero-

metric autocorrelator. The expression for the FROG trace with collinear beams gives [13]:
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I
SHG

iFROG(ω, τ) =

∣∣∣∣∣∣
+∞∫
−∞

(E(t) + E(t− τ))2exp(−iωt)dt

∣∣∣∣∣∣
2

(2.18)

The Phazzler configuration for a FROG measurement is shown in Fig. 2.11. Changing the

value of γ affects the FROG trace. In particular when γ = 1 we obtain a baseband FROG

trace (Fig. 2.12) and when γ < 1 an interferometric FROG trace (Fig. 2.13). As for a standard

FROG, the spectral phase and amplitude are extracted from the FROG traces with an iterative

algorithm.

Figure 2.11: Schematic of a Phazzler FROG measurement
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Figure 2.12: Experimental baseband (γ = 1) SHG FROG trace measured with the Phazzler.

The pulse duration is 100 fs

Figure 2.13: Experimental interferometric (γ = 0.75) SHG FROG trace measured with the

Phazzler. The pulse duration is 100 fs

Until now I have only considered SHG FROG. Using this nonlinear effect has the drawback

that there is an ambiguity in the temporal axis of the reconstructed temporal pulse and it

is not possible to distinguish between the front and the back of the pulse. To avoid this

ambiguity several third order non linear processes have been used (third harmonic generation,

self diffraction, polarization gating...). XPW generation can also be a good candidate because

it is a collinear process and the generated beam is easily separable from the fundamental using
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a polarizer. As it will be clearly presented later, XPW generation has the other advantage of

being achromatic and degenerate in wavelength. This means that the generated pulse is at the

same wavelength as the fundamental. This is very important if we want to measure pulses in the

UV where generating multiples of fundamental frequency (second, third harmonic generation)

is not possible. The application of an XPW FROG for measuring UV pulses is one of the

motivations for extending the study of the XPW process to shorter wavelengths(section 4.10).

A Phazzler for measuring UV pulses using the XPW generation as a nonlinear process is under

development. Fig. 2.14 shows an example of a baseband XPW FROG trace for a compressed

pulse at 800 nm. The mathematical expression of the FROG trace in that case is given by:

I
XPW

iFROG(ω, τ) =

∣∣∣∣∣∣
+∞∫
−∞

(E(t) + E(t− τ))3exp(−iωt)dt

∣∣∣∣∣∣
2

(2.19)

Figure 2.14: Experimental baseband (γ = 0) XPW FROG trace measured with the Phazzler

Phazzler SPIDER

Working with a pulse shaper as a substitute for the linear interferometer has several advantages

also concerning the SPIDER measurement. The technique can be made totally collinear, the

interpulse delay is accurately known (without any need for external calibration), the spectral

shear is also known with an accuracy equal to the spectral resolution of the pulse shaper and all

the parameters can be changed at will. When a type I SHG crystal is used this measurement is

called a phase cycling SPIDER (cSPIDER). This variant is multi-shot (as it will be clear later

4 shots are needed for the reconstruction) but the optical setup is single beam and reduced to

the same number of elements : the AOPDF, a type I SHG crystal and the spectrometer.

In this variant of the SPIDER there is a combination of three collinear pulses in the same
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polarization state: two well separated time-delayed replicas (E(t − τ/2), E(t + τ/2)) and one

chirped pulse with the time-dependent complex envelope F (t):

E++(t) = E(t− τ/2) + E(t + τ/2) + F (t) (2.20)

In time domain and for perfect phase matching over the full spectrum, the type I SHG signal

is proportional to the square of E++(t). If the interpulse delay τ is much larger than the pulse

duration, the cross-terms between the pulse replicas vanishes and the only remaining cross-term

corresponds to the SPIDER signal. Unfortunately, the only physical quantity experimentally

accessible is the spectral intensity of the SHG spectrum I++(ω), that is the square modulus of

the Fourier Transform of E
2

++(t). As a result, the experimental signal contains several parasitic

signals together with the SPIDER signal. Phase cycling can be used to eliminate the parasitic

terms by linear combination of several measurements. More precisely, given the SHG signals of

the four following pulse combinations (obtained by changing the sign of the transfer function

of the AOPDF):

E++(t) = ±E(t− τ/2)± E(t + τ/2) + F (t) (2.21)

the SPIDER signal is extracted by the following combination:

ISPIDER(ω) = I++(ω) + I++(ω)− I+−(ω)− I−+(ω) (2.22)

The input spectral phase is retrieved from this SPIDER signal with the same method pre-

sented in section 2.3.2.

2.3.5 Third order correlator

In section 2.2.2 I showed that to characterize the temporal quality of a femtosecond pulse it is

not sufficient to measure its temporal duration but also its temporal contrast. The device used

to measure this temporal contrast with a high dynamic range (>10 orders of magnitude) is a

third order correlator. The schematic of this measurement is shown in Fig. 2.15. In this device

the beam passes thought a variable attenuator and is then separated into two different paths.

In the first the beam is frequency doubled. In the other the fundamental beam passes through

a motorized delay line. The fundamental and the second harmonic interact in a BBO crystal

for the generation of the third harmonic by sum frequency generation. The third harmonic is

then separated from the other pulses and is detected with a photomultiplier. The third order

correlation signal is given by the expression:

S3ω(τ) =
∫ +∞

−∞
I2ω(t)Iω(t− τ)dt (2.23)

The temporal contrast of the input beam is estimated by measuring the temporal con-

trast of the correlation trace. This trace has a high temporal dynamic because the parasitic

sources of third harmonic are limited to the third harmonic generation generated directly by

the fundamental beam.
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Figure 2.15: Schematic for a high dynamic third order correlator

Bibliography

[1] A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W.
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Chapter 3

Theoretical introduction to

cross-polarized wave generation

3.1 Introduction

This paragraph introduces theoretically the process of cross-polarized wave generation. An

historical introduction is presented in section 4.3.

XPW generation is a four-wave mixing process, governed by the anisotropy of the real part

of the crystal third-order nonlinearity tensor χ(3), where an intense linearly polarized incident

wave generates a new linearly polarized wave in the orthogonal direction. This process has im-

portant applications as a nonlinear filter to increase the temporal contrast of ultra-short laser

pulses and to broaden their spectrum (section 4.2).

In the first section I derive the system of differential equations governing XPW generation

and analyze the contribution from different terms. Due to the fact that this nonlinear process

is generated in a crystal lattice, these terms depend on the angles of propagation of the waves

with respect to the crystal axis. This analysis continues in the second section with the deriva-

tion of the system in Hamiltonian form and the analysis of the trajectories in phase space. All

these results are derived for monochromatic plane waves. This analysis is then extended for

ultra-short pulses. One of the most interesting properties of XPW generation is that the process

is automatically phase-matched and is therefore adapted for applications involving ultra-short

pulses. For this kind of pulses temporal compression is not trivial and it is interesting to un-

derstand the influence of quality of the recompression on the efficiency of the process and on

the generated spectrum. This will be presented in the third section for pulses as short as 10 fs.

To describe correctly the process for sub-10 fs pulses the propagation in the crystal needs to

be taken into account. In this case a system of nonlinear partial differential equations needs to

be solved. This is done using a numerical method called the split-step Fourier method and it

is the subject of the fourth section.
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3.1.1 Cross-polarized wave generation

I start the theoretical description of XPW generation with the wave propagation equation in a

dielectric, linearly isotropic, non-magnetic nonlinear medium [12].

∆~E − n2

c2

∂2~E
∂t2

= µ0
∂2 ~PNL

∂t2
, (3.1)

where ~E is the electric field, n the linear index of refraction, c is the vacuum speed of light,

µ0 vacuum permittivity, and ~PNL
(
~E
)

= ε0χ
(2)~E ~E + ε0χ

(3)~E ~E ~E + · · · is the nonlinear dielectric

polarization. Only the contribution of the third-order susceptibility tensor χ(3) is considered to

obtain:

~PNL
(
~E
)

= ε0χ
(3)~E ~E ~E . (3.2)

In a Cartesian coordinate system for a plane wave traveling in z-direction it results:

∂2Ei

∂z2
− n2

c2

∂2Ei

∂t2
= ε0µ0

∂2

∂t2
∑
j,k,l

χ
(3)
ijklEjEkEl, (3.3)

where indices i, j, k, l take x, y, z-values. The plane wave for linearly isotropic medium (kx = ky = kz ≡ k)

in complex notation is written as

Ei (z, t) =
1

2
Ei (z) exp [−i (ωt− kz)]

+
1

2
E∗

i (z) exp [+i (ωt− kz)] . (3.4)

From Eqs. (3.3) and (3.4) and using the slowly-varying envelope approximation the following

system of ordinary differential equations can be derived

dEi (z)

dz
= i

2π

8nλ

z∑
j,k,l=x

χ
(3)
ijkl[Ej (z) Ek (z) E∗

l (z)

+ Ej (z) E∗
k (z) El (z) + E∗

j (z) Ek (z) El (z)]. (3.5)

In Eq. (3.5) terms corresponding to third harmonic generation are omitted since I consider

degenerate third order processes (the other processes are not phase matched and therefore with

a very low efficiency). The relation 2π/nλ = ε0µ0ω
2/k is used. The third-order susceptibility

χ
(3)
ijkl is a fourth-rank tensor and has in general 81 elements. Due to the symmetries of the

medium most of these terms vanish. The crystals used for XPW generation are cubic crystals

(BaF2, CaF2, LiF) with m3m cubic symmetry. It is also assumed that the photon energy is

below the half band-gap and the two-photon absorption is then neglected. In this case χ
(3)
ijkl is

a purely real tensor. The χ
(3)
ijkl-components are usually given in a coordinate system connected

with crystalline axes so we assume that (x, y, z) coincide with the corresponding crystalline

axes. Components of the electric field of a wave that propagates in the k-direction are however

given in a different Cartesian coordinate system (A, B, k). In general (A, B, k) does not coincide

with (x, y, z) basis. For definition of angles between the axes of the two coordinate systems

see Fig. 3.1. Further I shall refer to the wave EA with polarization along A-axis as pump or
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Figure 3.1: Definition of angles. (x, y, z) – basis of the nonlinear crystal, (A, B, k) – light

propagation basis. The coordinate system (A, B, k) can be obtained from (x, y, z) by rotating

(x, y, z) first around the z-axis by an angle ϕ, then around the new y axis by θ, and finally by

β around the k-axis.

fundamental wave (FW), and to the wave EB polarized along B-axis (orthogonal to A) as probe

wave or XPW. Transformation of coordinates from (x, y, z) to (A, B, k) is given by
EA

EB

Ek

 = T (ϕ, ϑ, β)


Ex

Ey

Ez

 , (3.6)

where the transformation matrix T (ϕ, ϑ, β) is

T (ϕ, ϑ, β) =


cos β cos ϑ cos ϕ− sin β sin ϕ cos β cos ϑ sin ϕ + sin β cos ϕ − cos β sin ϑ

− sin β cos ϑ cos ϕ− cos β sin ϕ − sin β cos ϑ sin ϕ + cos β cos ϕ sin β sin ϑ

sin ϑ cos ϕ sin ϑ sin ϕ cos ϑ

 .

(3.7)

First, using the inverse matrix T−1, the components of EA and EB waves are derived in (x, y, z)-

basis by 
Ex

Ey

Ez

 = T−1 (ϕ, ϑ, β)


EA

EB

Ek

 (3.8)

and then are substituted in the right-hand side of Eq. (3.5). There is no k-component of the

field thus Ek = 0 is set. Next, using Eq. (3.7) the derivatives in the left-hand side of Eq. (3.5)
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are combined to get back to the system connected with EA and EB waves. The following system

of differential equations is obtained:

dA (ζ)

dζ
= iγ1AAA∗ + iγ2AAB∗ + 2iγ2ABA∗

+ 2iγ3ABB∗ + iγ3BBA∗ + iγ4BBB∗, (3.9a)

dB (ζ)

dζ
= iγ5BBB∗ + iγ4BBA∗ + 2iγ4ABB∗

+ 2iγ3ABA∗ + iγ3AAB∗ + iγ2AAA∗. (3.9b)

ζ is the longitudinal coordinate in the light propagation direction ~k. Polarization of the medium

along the k-axis does not generate an electromagnetic wave therefore in Eqs.(3.9) the expression

for dEk/dζ is omitted. In Eqs. (3.9) EA and EB are denoted simply as A and B, respectively.

The γ-coefficients in Eqs. (3.9) depend on the orientation and on the components of the χ(3)-

tensor. In the case of crystals with m3m cubic symmetry there are only two independent

components [10]: χ(3)
xxxx and χ(3)

xxyy. The relation between them is usually defined [10] as σ =(
χ(3)

xxxx − 3χ(3)
xxyy

)
/χ(3)

xxxx and is referred to as the anisotropy of the χ(3)-tensor. For z-orientation,

due to the symmetry with respect to rotation around z-axis, there are only three independent

nonlinear coupling coefficients since γ5 = γ1 and γ4 = −γ2. For arbitrary orientation of the

nonlinear crystal such relations between coefficients are no longer valid. Instead, the following

general relations for the coefficients in the full system (9) may be written

γ5 (β, ϕ, ϑ) = γ1 (β + π/2, ϕ, ϑ) , (3.10a)

γ4 (β, ϕ, ϑ) = −γ2 (β + π/2, ϕ, ϑ) . (3.10b)

The above expressions (3.10) do not convey new physical information. They simply mean that

rotating β by 90◦, the B-wave would become A, and the A-wave would become B. They could

thus serve as a check for the correctness of the derivation of γ coefficients.

Coefficients γ1 and γ5 are responsible for self-phase modulation, γ3 for cross-phase modula-

tion and γ2 and γ4 govern the XPW conversion process from A to B and from B to A waves

through the last terms in (3.9b) and (3.9a), respectively. This will be shown more clearly in

the next section using an Hamiltonian formalism for the XPW generation equations. Note that

generally self-phase modulation and XPW generation are not the same for the A and B waves

except for z crystallin orientation.

Even in the relatively simple case of cubic crystals explicit expressions for the γ-coefficients

as a function of β, ϕ, and ϑ are quite cumbersome. Here I prefer to take advantage of the

transformation matrix T given in Eq. (3.7) and its inverse matrix T−1 to give more compact

expressions for the γ-coefficients:

γ1 = γ0

3∑
j,k=1

[δjk + (1− δjk) (1− σ)]T1jT
−1
j1

(
T−1

k1

)2
, (3.11a)

γ2 = γ0

3∑
j,k=1

[δjk + (1− δjk) (1− σ)]T2jT
−1
j1

(
T−1

k1

)2
, (3.11b)
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γ3 = γ0

3∑
j,k=1

{[
δjk +

2

3
(1− δjk) (1− σ)

]
Tj2T

−1
k1 T−1

k2

+
1

3
(1− δjk) (1− σ) T−1

j1

(
T−1

k2

)2
}

T1j, (3.11c)

γ4 = γ0

3∑
j,k=1

[δjk + (1− δjk) (1− σ)]T1jT
−1
j2

(
T−1

k2

)2
, (3.11d)

γ5 = γ0

3∑
j,k=1

[δjk + (1− δjk) (1− σ)]T2jT
−1
j2

(
T−1

k2

)2
, (3.11e)

where γ0 = 6πχ(3)
xxxx/8nλ. δjk is the Kronecker delta-symbol.

Investigation of Eq. (3.11b) shows that γ2 (β, ϕ, ϑ) reaches its global maxima (with equal

absolute values of γ2) when ϕ = 2nπ/4 and ϑ = 2 (m + 1) π/4, or when ϕ = 2 (n + 1) π/4

and ϑ = 2mπ/4 where m, n = 0, 1, . . .. This means that, to reach the maximum of |γ2| for

specific values of β-angle, the light propagation direction k should lie in the (x, y), (x, z), or

(y, z) plane just between (at 45 degrees) the corresponding crystalline axes. In this respect

there are twelve equivalent optimal orientations of the NLC: [110], [1̄10], [11̄0], [1̄1̄0], [101],

[1̄01], [101̄], [1̄01̄], [011], [01̄1], [011̄], and [01̄1̄], also known as holographic-cut orientations.

For the eight equivalent to [111] propagation directions γ2 = γ4 = 0 for any angle β and the

orthogonal generation term is always zero regardless of the polarization state or orientation,

and the medium shows isotropic behavior.

3.1.2 Numerical results

In the non-depleted regime, the efficiency of XPW generation is proportional to the square of γ2

([8, 9]). The dependence of this coefficient on angle β is plotted on Fig. 3.2 for three orientations:

the most efficient one [101] (holographic-cut), [001] (z-cut), and for the polarization preserving

orientation [111] (Fig. 3.3). In calculations γ0 = 1 and σ = −1.2 (typical values for the BaF2

anisotropy [6]) were used. All the firsts experiments of XPW generation were done using z-cut

crystals. This was an academic choice because in this case the k-axis is along the z or equivalent

axis. This theoretical analysis demonstrates that the maximum absolute value of γ2 for [101]-

cut is 12% greater than the maximum for z-cut and this corresponds to an almost 26% increase

in the XPW efficiency. This advantage does not depend on the particular choice of the values

of γ0 and σ since γ2 depends linearly on them for arbitrary crystal orientation i.e γ2 ∝ γ0σ.

Calculated values for the coefficients γ1 and γ5 for z-cut and holographic-cut crystals are

presented in Fig. 3.4. Knowing these coefficients is important since the phase mismatch induced

by self-phase modulation impedes efficient XPW generation.

In order to determine the XPW-generation efficiency, the system of differential equations

(3.9) is numerically solved. This can be done using standard programs like Matlab, Mathe-

matica, Maple. Analytical information from the equations will be extracted in the next section

looking for the trajectories in phase space. In the case of plane-wave propagation the efficiency

is defined as the ratio of the intensities of the XPW and the input fundamental wave. The

37



Figure 3.2: Calculated values of γ2 as function of angle β for different crystal orientations.

σ = −1.2 and γ0 = 1.

Figure 3.3: Representation of the three different orientations in BaF2 crystal

38



Figure 3.4: Calculated values of γ1 and γ5 as function of angle β for z-cut ([001]) and

holographic-cut ([101]) crystal orientations. σ = −1.2 and γ0 = 1.

calculated XPW efficiencies for the [101]-cut and for the [001]-cut (z-cut) are shown in Fig. 3.5

along with phase shifts between the fundamental wave and the generated XPW. The dimension-

Figure 3.5: Numerically calculated plane-wave XPW efficiency (right scale, thick lines), and

phase shift between the fundamental and XPW (left scale, thin lines) for [001] (z-cut) and [101]

(holographic-cut) directions of light propagation. σ = −1.2; β = 22.5◦ for [001] and β = 115.5◦

for [101]-orientation, respectively.

less argument S = γ0 |A0|2 L, where A0 = A (ζ = 0) and L is the crystal length, is proportional

to the product of nonlinearity × input intensity × crystal length. The initial condition for the

39



B-wave is B (0) = 0. β-angles used in calculations correspond to the angles at which |γ2| is

maximum for each cut (see Fig. 3.2). These angles are optimal for XPW generation at low

input intensity.

For z-cut crystals the optimum β depends on the input intensity[9]. This is illustrated in

Fig. 3.6(a). At first, it should be noticed that for z-cut crystals there are eight equal maxima

Figure 3.6: Plane-wave XPW efficiency η: (a) for [001]-orientation, and (b) for [101]-orientation

as function of angle β for different input intensities. See text for definition of S. σ = −1.2.

of the generated XPW within 360◦ rotation of input linear polarization. For any other crystal

orientation there are still eight maxima but they are no longer equal – two higher are succeeded

by two lower. From Fig. 3.6 it is visible that increasing the input intensities up to S ≈ 5, the

optimal β is shifted by as much as 13 degrees for the z-cut while, for the higher maxima of

the [101]-cut, this shift does not exceed 5 degrees. At a slightly lower intensity the shift for

[101]-cut becomes very small. The origin of this shift is that the phase mismatch between the

fundamental and XPW beam induced by SPM is partly compensated by the shift of β. The
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practical experimental limit for the S parameter, S ≈ 5, [7] can be estimated considering a BaF2

crystal of few millimeters and a maximum intensity I0 of 1012W/cm2. This maximum intensity

corresponds to the threshold for white-light continuum generation [11] for numerical apertures

< 0.05 (typical experimental condition). In conclusion, with holographic-cut orientation, the

optimum β is almost insensitive to the changes in the intensity for the whole reasonable range

of input intensities, which is in contrast to the strong dependence observed with the z-cut.

This feature of the holographic-cut orientation together with the higher efficiency make this

orientation the most suitable for applications.

The insensitivity of optimum β to the input intensity for holographic-cut orientation is

explained by the fact that, compared to the z-cut case, the phase matching conditions for

optimal phase shift between the two waves (π/2) are maintained over a bigger range of input

intensities (see Fig. 3.5 left scale, thin lines). The deviation from the optimal phase shift for

the holographic-cut is less than π/2 up to S = 6, while at the same conditions the deviation

from the optimal phase shift for z-cut is almost π. This insensitivity also means less distortions

of the temporal and spatial pulse shape.

Efficiencies shown in Fig. 3.6 are obtained by direct solution of the system (3.9) and are

relevant to monochromatic plane waves only. In experiments Gaussian femtosecond pulses are

used. Considering the temporal and spatial shapes enables to obtain the energy efficiency of

the XPW process. The input beam is assumed with Gaussian spatial and temporal profiles

of the form A (r, t, ζ = 0) = A0 exp (−r2) exp (−t2). Diffraction, dispersion, and self-focusing

propagation effects are not included in the model. The results for XPW energy efficiencies

for [001] and [101] cuts are shown in Fig. 3.7. These curves confirm the advantage of the

Figure 3.7: XPW efficiencies (right scale) for [001] and [101] orientations assuming Gaussian

spatial and temporal profiles of the input beam. Angle β is always optimized for maximum

efficiency. The shift of optimum β from its value β0 for very low input intensity is also shown

(left scale). β0 is 22.5◦ for [001] and 64.5◦ for [101] orientation, respectively, and σ = −1.2.
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holographic cut over the z-cut. The ratio of [101] XPW efficiency to [001] XPW efficiency in

the range S = 1 . . . 5 is between 1.24 and 1.29, reaching the maximum for S ≈ 1.9. On the

same figure the shift of optimum β from the low-intensity value is also shown. With S = 5 an

XPW efficiency of more than 30 % can be obtained with the [101] cut. As it will discussed in

section 4.4, this efficiency cannot be achieved experimentally in a single crystal but with a two

crystals configuration.

3.2 Hamiltonian approach

3.2.1 Introduction

The motivation behind this alternative formulation of the XPW generation system of equations

is to extract as much information as possible from the system without solving it numerically.

The approach is to start from the general complex system of XPW equations (3.9)(or some

simplified version) and to separate the real and imaginary part to obtain the real evolution

equations for the amplitude of the two waves and their phase difference. From this system

of equations we can derive two quantities that are conserved (first integrals) which are the

energy and the momentum. These conserved quantities can be used to solve the problem

analytically with some simplifying hypothesis. The conserved momentum is the Hamiltonian of

the system and so the real XPW system can be expressed in Hamiltonian form for two conjugate

quantities. This is very useful because, as in classical mechanics, the Hamiltonian can be plotted

in phase space to derive topological information about the solutions of the differential system

of equations without solving it. Furthermore an arbitrary polarization state can be considered.

A comparison between z-cut and holographic cut is then made.

3.2.2 Simplified version : only γ2

I start working with a simplified version of the system (3.9) where I consider just γ2. In this

approximation I just allow the conversion of energy from the fundamental to the XPW beam

without any contribution of the self and cross phase modulation ( γ1, γ5, γ3). Neglecting γ4 the

system is made fundamentally asymmetric because there is no energy flux if the fundamental is

initially zero (no back conversion). Even if this system is simplified it is close to the experimental

condition at low intensity (initial condition with just the fundamental beam as input, thin

crystals) and the form of the equation is very similar to that used to treat three-wave interactions

hence a comparison can be made [2, 4, 3, 5]. To obtain a real system of equations I define the

input field A and the XPW field B as: A = r1e
iϕ1 , B = r2e

iϕ2 and θ = ϕ1 − ϕ2. Substituting

in (3.9) and considering just γ2 it results:

.
r1 = r2

1r2γ2sin(θ)
.
r2 = −r3

1γ2sin(θ)
.

θ = 3γ2r1r2cos(θ)−
r3
1

r2

γ2cos(θ) (3.12)
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with the notation dri

dζ
= ṙi. This system of equation has two constants: the first r2

1 +

r2
2 = const is the Manley-Rowe relation and it expresses the conservation of the photon flux.

Working with normalized quantities the constant is equal to 1. The second is the Hamiltonian

of the system Γ = γ2r
3
1r2cos(θ). Here and in the following calculations the expression for the

Hamiltonian is obtained starting with a guess expression and than verifying that the condition
.

Γ = 0 is satisfied. The use of the term ’Hamiltonian’ immediately suggests that the conserved

quantity is energy, as in classical mechanics. However an analogy is being used when the

coupling equations are recognized as being in ”Hamiltonian form”: the space variable ζ here

plays the role of time in the classical mechanics formalism. Since time invariance leads to

conservation of energy, it is not surprising that the Hamiltonian in this case is momentum

since the conservation of momentum is related to system property invariance in the spatial

coordinate [1].

The most typical configuration for XPW generation consists of a single beam (fundamental

beam) incident on the nonlinear medium (cubic crystal). In this case the initial condition is

r2
1 = 1 and r2

2 = 0 and so Γ = 0. But Γ = 0 is a first integral of the system so it will remain

zero also when r2
1 and r2

2 will be different from zero. The consequence is that θ = ±π/2. In

this case sin(θ) = ±1 and the system (3.12) can be further simplified:

.
r1 = r2

1r2γ2 (3.13)
.
r2 = −r3

1γ2 (3.14)

and has solutions of the form: r1(ζ) ∝
√

1

1 + ζ2
and r2(ζ) ∝

√
ζ2

1 + ζ2
. These solutions, derived

analytically, have the same asymptotic behavior as the well-known hyperbolic tangent and

secant solutions for the SHG process in the case of perfect phase matching. (Fig. 3.8) [2].

Figure 3.8: Aperiodic energy exchange between the fundamental (blue) and cross-polarized

beam (green)
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The equation for θ can be expressed using Γ to obtain:

.

θ = 3γ2
Γ

r2
1

− γ2
Γ

r2
2

(3.15)

and so for Γ = 0, confirmation is given that θ(ζ) = const = ±π/2. There is an aperiodic transfer

of energy between the fundamental and the XPW beam with constant phase difference. The

same occurs for r2
1 and r2

2 different from zero and θ = ±π/2. For a more general situation the

system (3.12) can be written in the form :

ζ =

r2
2(ζ)∫

r2
2(0)

d(r2
2)

(r2
2(1− r2)3 − Γ2)1/2

(3.16)

which is an elliptical integral of the first type. The solutions can be expressed in terms of Jacobi

elliptic function and are in general periodic (we have seen previously a particular situation

where this is not true). It is not very interesting to enter into the mathematical details of these

solutions because more can be understood by working with the system in Hamiltonian form.

Defining η = r2
1 and using the Manley-Rowe relation (const=1) the system (3.12) is written in

Hamiltonian form:

dη

dz
= −2

∂Γ

∂θ
(3.17)

dθ

dz
= 2

∂Γ

∂η
(3.18)

with Γ = γ2η
3/2(1 − η)1/2cos(θ). η and θ are conjugate variables and a phase space can be

defined (Fig. 3.9). For this plot it is assumed a propagation with an angle β corresponding to

a maximum of γ2 at low intensity. The observation of the trajectories in phase space highlights

some of the more general properties of the solutions. No information function of z can be

extracted because the differential system of equations is not solved. Due to the Manley-Rowe

relation, information about the XPW signal is directly extracted from the variation of η (r2
2 =

1−η). We see that in phase space there are two separatrix (vertical trajectories) for θ = ±π/2;

these correspond to the solutions we have derived in the case of η = 1 as input, where there

is an exchange of energy between the two waves with constant phase difference. Separatrix

illustrate the aperiodic nature of the conversion. Between this two separatrix we have closed

orbits where η and θ are periodic functions. These correspond to the Jacobi elliptical functions.

The center of the closed orbits are points where both η and θ remains constant, these are the

eigensolution of the system and they can be obtained by imposing
dη

dz
=

dθ

dz
= 0.
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Figure 3.9: Hamiltonian in phase space for the simplified system ( just γ2). Trajectories

Γ(η, θ) = const in phase space correspond to solutions of the differential system of equations

for XPW generation.

3.2.3 Extension of the analysis

This analysis can then be extended including one by one the missing terms for the complete

description of the XPW process. The first step is to work with a symmetric system and so

consider the presence of both γ2 and γ4. Repeating the same procedure described in the previous

section the same system of equations (3.18) is obtained with: Γ = γ2η
3/2(1 − η)1/2cos(θ) +

γ4η
1/2(1− η)3/2cos(θ).

I start the phase space analysis of the trajectories by considering XPW generation in Z-cut

crystals where γ4 = −γ2. As it can be seen from the trajectories reported in fig. 3.10 the form

of the solution is equal to what I have discussed in the previous paragraph except from the fact

that now the problem is perfectly symmetric between the fundamental and the XPW beam and

only half of the energy can be at maximum transferred. When there is just one input beam,

Γ = 0, and the solution moves along the separatrix with constant phase difference. Circular

polarization (η = 0.5, θ = ±π/2) is an eigensolution of the system because it corresponds to a

saddle point in phase space. Fig. 3.11 shows the trajectories in phase space for XPW generation

in holo cut crystals γ4 6= −γ2. As in the previous plot the propagation is assumed with an angle

beta which maximizes γ2 (this angle is different from previous one). The type of trajectories is

the same that for Z-cut with the exception that circular polarization is not an eigensolution of

the system. Furthermore the energy transfer between the to beam can reach 65%.
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Figure 3.10: Hamiltonian in phase space and corresponding orbits for the system with γ2 and

γ4 (Z-cut β = π/8).

Figure 3.11: Hamiltonian in phase space and corresponding orbits for the system with γ2 and

γ4 (Holo-cut β = (115.5).

Including self-phase modulation of the fundamental beam means considering also the pres-

ence of γ1 in the XPW system of equations. The Hamiltonian in this case is:

Γ = γ2η
3/2(1− η)1/2cos(θ) + γ4η

1/2(1− η)3/2cos(θ) +
γ1

4
η2 (3.19)

Because there is no substantial difference between different cuts of the crystal, results about

Z-cut only are presented. This problem can be solved analytically by neglecting depletion of

the fundamental [9]. Fig. 3.12 shows the trajectories in phase space. There are two kind of

trajectories: the closed orbits where the amplitude and the phase difference is periodic and

the open orbits where the amplitude is periodic but the phase is not periodic. This new kind

of solution is allowed in the system due to the presence of self phase modulation and this is
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exactly the solution we have in practical experimental XPW generation at high intensity(just

one input beam, θin = −π/2). There is no longer the presence of separatrix and so transfer

of energy with constant phase difference is not possible anymore. Comparing the Hamiltonian

(3.19) to the one that can be derived for a Hamiltonian treatment of three-wave mixing, it is

evident that the γ1 term in XPW generation acts like the phase matching terms (except that

here η is squared) with the generation of open orbits in phase space.
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Figure 3.12: Hamiltonian in phase space and corresponding orbits for the system with γ2 and

γ4 and γ1 (Z-cut β = π/8).

The solutions of the complete problem expressed in (3.9) can now be addressed. The proce-

dure to obtain the hamiltonian of the system consists, as previously presented, in obtaining the

real system of equations starting from the complex system (separating the real and imaginary

parts) and then finding the first integral (constant of motion) of the problem. The Hamiltonian

is:

Γ = γ2η
3/2(1− η)1/2cos(θ) + γ4η

1/2(1− η)3/2cos(θ) +

+γ3η(1− η)cos(2θ)/2 +
γ1

4
η2 − γ3

2
(1− η)2 − γ3

2
η2 +

γ5

4
(1− η)2 (3.20)

where I have kept separated the contributions from different gamma. The plot of the trajectories

in phase space is reported in Fig. 3.13 Fig. 3.14 for Z-cut and holo cut respectively. The

same type of trajectories that I have discussed for the previous cases is present. In particular,

depending on the relative (amplitude/phase) relation between the two orthogonal input waves,

there are closed orbits with periodic oscillation of the amplitude and open orbits with periodic

amplitude but not periodic phase. There are also different eigensolutions of the system (constant

amplitude and phase) that can be divided into stable and unstable. Finding the stability of

an eigensolution directly from the phase space plot is another advantage of the Hamiltonian

approach. For example we can see that circular polarization is an eigensolution for Z-cut also

in the presence of self and cross phase modulation but that this solution is unstable (saddle
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point in phase space). For Holo cut we have the same kind of trajectories as discussed for Z-cut

(but with a different angle β) and, due to the asymmetry in the η axis, circular polarization is

not an eigensolution of the system.
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Figure 3.13: Hamiltonian in phase space and corresponding orbits for the complete system of

equations and for Z-cut (β = π/8).
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Figure 3.14: Hamiltonian in phase space and corresponding orbits for the complete system of

equations and for Holo-cut (β = (3/8− 0.0168)π).
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[3] A. Bandilla, G. Drobný, and I. Jex. Phase-space motion in parametric three-wave inter-

action. Optics Communications, 128(4-6):353 – 362, 1996.
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3.3 XPW for short pulses

Introduction

In the previous sections XPW generation is treated in the time domain and using monochro-

matic plane waves equations. For the applications of this process as a contrast filter it is

interesting to extend this analysis to ultra-short pulses. The quality of temporal pulse com-

pression for ultra-short pulses is typically given in the frequency domain as a residual spectral

phase that is expanded in a Taylor series around the central frequency. As is known for other

nonlinear effects this spectral phase affects the output (efficiency, spectral width and spectral

shape) of the process. It is thus interesting to express and solve the envelope equations of the

process in the frequency domain. This is done by making some simplifications and is presented

in the next sections. Before entering this subject I want to have a brief discussion about the re-

sponse time of XPW generation. For optical frequencies non resonant with the optical medium,

the response time of the nonlinear susceptibility is given by the time needed for an electron,

excited by an oscillating electric field, to come back to the equilibrium position. If 4ω defines

the difference in energy between the electromagnetic pulsation and the conduction band (or

more generally the energy of the first ionization threshold), the life time τ of the electron out

of equilibrium is given by the uncertainty relation:

∆Eτ v } (3.21)

For all crystals used for XPW generation, 4E ≈ 10eV (4EBaF2 = 9.21 eV, 4ECaF2 = 9.92

eV, 4ELiF = 11.6 eV). It results that τ is <1 fs and thus much shorter than few-cycle optical

pulses. XPW generation is then always considered an instant process.

3.4 Theoretical considerations: Spectral approach

3.4.1 Notations

For practical reasons linked to the fact that the XPW process leads to a strong pulse reshaping,

the XPW spectrum is characterized by its statistic moments rather than central wavelength and

FWHM spectral width. The following formulas are used to evaluate respectively the energy,

spectral width and center of mass of a given spectral distribution I(ω):

EI =
∫

R
I(ω)dω σ2

I =

∫
R (ω− < ω >I)

2 I(ω)dω∫
R I(ω)dω

< ω >I=

∫
R ωI(ω)dω∫
R I(ω)dω

(3.22)

These parameters are not only universal and easy to define but also of first interest from an

experimental point of view: the efficiency of the nonlinear process defines the output energy,

the standard deviation defines the minimum available transform limited pulse duration and

the spectral center of mass shift indicates whether the XPW spectrum still lies within the

amplification bandwidth of a laser amplifier. More generally, the mean value of the spectral
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function f(ω) with respect to the intensity I(ω) is defined by:

< f(ω) >I=

∫
R f(ω)I(ω)dω∫

R I(ω)dω
(3.23)

3.4.2 Propagation equation

The effect of spectral phase on a nonlinear process has been extensively studied theoretically

for χ(2) processes [15, 16, 17, 18, 19]. In this section this study is extended to χ(3) processes

and more specifically to XPW generation. The starting point is the plane wave propagation

equations describing XPW generation (3.9) considering just the influence of γ2. As previously

ω0 stands for the central angular frequency of the input pulse (fundamental pulse), n for the

refractive index of the cubic crystal at ω0, χ(3) for the third order susceptibility tensor, β for

the angle between the input polarization direction and the crystallographic axis x, A(z, t) and

B(z, t) for the respective complex amplitude envelopes of the fundamental and XPW electric

fields, IA(z, ω) and IB(z, ω) for the respective spectral intensity of the fundamental and XPW

electric fields. Here the anisotropy factor of the third order susceptibility tensor is defined σx to

avoid confusion with the second order momentum of a Gaussian function. The spectral phase

function of the fundamental pulse will be referred as ϕ(ω) and, when required, ϕ(ω) will be

expanded in a Taylor series around ω0:

ϕ(ω) =
n∑

k=0

ϕ(k)

k!
(ω − ω0)

k . (3.24)

In the frame of the moving pulse, the slowly varying envelope approximation leads to the

following propagation equation for the complex amplitude of the XPW field:

∂B(z, t)

∂z
= iγ2A(z, t)A∗(z, t)A(z, t) (3.25)

with γ2 = −3

8

ω0

n0c
χ(3)

xxxx

σx

4
sin(4β) (3.26)

Using the standard Fourier transform B(z, t) =
∫
R B̃(z, ω) exp(iωt)dω and A(z, t) =

∫
R Ã(z, ω) exp(iωt)dω

and applying the reverse convolution theorem we obtain the following equation for the complex

spectral amplitude of the XPW pulse:

∂B̃(z, ω)

∂z
= −iγ2

∫∫
R2

Ã(z, ω1)Ã(z, ω2)Ã
∗(z, ω1 + ω2 − ω)dω1dω2 (3.27)

Equation (3.27) highlights the frequency-mixing process occurring during XPW generation:

the XPW signal at a given angular frequency is proportional to some third order spectral

autocorrelation function of the fundamental pulse. In the approximation of small conversion

efficiency (undepleted regime) and of negligible dispersion, the fundamental pulse propagates

unchanged (A(z, t) = A(0, t) = A(t)) and equation (3.27) can be solved analytically:

B̃(L, ω) = −iγ2L
∫∫

R2
Ã(ω1)Â(ω2)Ã

∗(ω1 + ω2 − ω)dω1dω2 (3.28)
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3.4.3 Gaussian pulse with quadratic phase

For a fundamental pulse of Gaussian spectral intensity, the spectral amplitude is:

Ã(ω) = Ã0 exp

(
−(ω − ω0)

2

2σ2

)
exp [iϕ(ω)] (3.29)

with the spectral phase defined as in (3.24). The right hand side of equation (3.28) can be solved

analytically for the specific case of a quadratic phase. The result for the spectral intensity in

this case is:

IB(L, ω) =
(
2πσ2Ã3

0γ2L
)2

exp

− (ω−ω0)2

3σ2

(
1+σ4(ϕ(2))

2
)

(
1+σ4(ϕ(2))

2
/9

)
√(

1 + σ4 (ϕ(2))
2
) (

9 + σ4 (ϕ(2))
2
) . (3.30)

This analytical result shows that for Fourier-transform limited input pulse (ϕ(2) = 0) the

XPW spectrum is
√

3 times broader than that of input pulse. For chirped pulses however

(ϕ(2) 6= 0), the XPW spectral width narrows with increasing ϕ(2) and is 1/
√

3 smaller than the

input spectrum for a high spectral chirp. Integrating (3.30) over the frequency domain, one can

also obtain the dependence of the XPW pulse energy on the input second order spectral phase

coefficient ϕ(2):

EXPW(L, ϕ(2)) =
EXPW,0(

1 + σ4 (ϕ(2))
2
) (3.31)

where EXPW,0 is the XPW energy of the pure Fourier transform limited pulse. As can be seen,

this dependence is Lorentzian. From Eq. (3.30) the spectral center of mass is calculated. Ap-

plying Eq. (3.22), leads to < ω >XPW= ω0, demonstrating that there is no spectral shift.

From the previous results, two critical second order coefficient values can be defined corre-

sponding respectively to the following conditions: the XPW efficiency is equal to half of the

maximum conversion efficiency, the XPW spectrum is equal to the input spectrum. For a

Gaussian input pulse, these critical coefficients are given by:

ϕ
(2)
cr,Energy =

√
3/σ2 (3.32)

ϕ
(2)
cr,Width = 1/σ2 (3.33)

For a Gaussian pulse of minimal pulse duration τ0 = 30 fs the spectral width at 1/e is

σ = 55.5THz and the corresponding critical second order phase coefficients are 325 fs2 and

562 fs2 respectively.

For the more general case of an input polynomial phase, the integration in Eq. (3.27) needs

to be solved numerically. This is presented in section 3.4.5. Before doing this a simplified

analytical model is derived to understand more easily some aspects of the solutions.

3.4.4 Asymptotic shapes and expressions for the XPW spectrum

Assuming a sufficiently regular and smooth input spectrum (i.e. not necessarily a Gaussian

pulse), some features of the XPW spectrum can be described by applying the stationary phase
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theorem to expression (3.28). This theorem leads, as I will discuss later, to two different results

with two different and complementary ranges of validity. The goal of this model is to understand

in a simple way the influence of the residual phase on the XPW spectrum and so to extract

information about this phase from the shape of the spectrum. The results of the asymptotic

model are confirmed more quantitatively by the numerical calculation. Before entering the

heart of the matter, I recall the stationary phase theorem applied to a bidirectional complex

function of modulus a(x, y) and phase φ(x, y). According to the stationary phase theorem, the

main contribution terms of the integral∫
R2

a(x, y)eiφ(x,y)dxdy (3.34)

come from the angular frequencies x0 and y0 for which the phase of the integrand is locally

stationary. If such stationary point exists in the [x0, y0] ensemble for a particular value of ωc,

then the XPW spectrum will exhibit a local maximum at angular frequency ωc. What is more,

the theorem also gives the following asymptotic formula when the phase is locally stationary

(φ′(x0, y0) = 0) but not critical (φ′′(x0, y0) 6= 0):

∫
R2

a(x, y)eiφ(x,y)dxdy = 2π
a(x0, y0)e

iφ(x0,y0)√
|φx,xφy,y − φx,yφy,x|

ei π
4

sign φ′′(x0,y0) + O
(
h2
)

(3.35)

with φi,j i,j=x,y are partial derivative evaluated at (x0, y0) = 0. Moreover, in this and in the

following sections, the central angular frequency and spectral width of the cube of the input

spectral intensity will be noted < ω >I3
A

and σI3
A

respectively.

Spectral phase with critical points

Mathematically, the stationary phase condition applied to the integrand of the right hand side

of equation (3.28) is:

∃ (ω1, ω2) |
d

dω1,2

[ϕ(ω1) + ϕ(ω2)− ϕ(ω1 + ω2 − ω)] = f1,2(ω) (3.36)

where f1,2(ω) are two real functions. This condition of local maximum has a more natural

expression using the group delays: τ(ω1)− τ(ω1 + ω2 − ω) = f1(ω)

τ(ω2)− τ(ω1 + ω2 − ω) = f2(ω)
(3.37)

Although the exact set of solutions of this equation system is unknown in the general case, there

is one obvious solution: ω1 = ω2 = ω. If this solution is the only solution, then, an asymptotic

expression of the XPW spectrum is:

IB(ω) ' IA(ω)3

|ϕ”(ω)|2
(3.38)

From a mathematical point of view, the range of validity of the stationary phase is limited to

high phase values, that is to say for input pulses which are far from the Fourier-transform limit.
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Nevertheless, this approximation proves to be useful. If the fundamental spectral phase exhibits

a critical point (ϕ”(ωc) = 0), then the phase function of equation (3.28) is also critical at ωc

and formula (3.38) cannot be applied around ωc, which is obvious since the formula diverges

at ωc. However, in such a case, the XPW spectrum can still be described by the sum of two

contributions: a ”local” contribution given by expression (3.38) (away from ωc) and a ”critical”

contribution corresponding to a peak distribution located at ωc.

An example of this is a spectral phase well described by a third order Taylor expansion

around ω0, then the XPW spectrum is expected to exhibit a maximum at the angular frequency

which is solution of:

ϕ′′(ω) = ϕ(2) + ϕ(3) (ω − ω0) = 0 (3.39)

This analytical approach enables us to predict the following spectral behavior of the XPW

spectrum: when there are strong residual second and third order phases on the fundamental

pulse, the XPW spectrum is no longer symmetric even for a symmetric input. What is more,

the XPW spectrum is the sum of the cube of the input spectrum and a peak at the position:

ω = ω0 −
ϕ(2)

ϕ(3)
(3.40)

Since the peak distribution is weighted by the amplitude factor I3
A, the spectral center of mass

is therefore expected to behave as follows:

< ω >XPW= ω0 −
ϕ(2)

ϕ(3)
I3
A(ω0 − ϕ(2)/ϕ(3))/I3

A(ω0) (3.41)

In this particular case, the range of validity of this approximation can be defined as σ3
IA
|ϕ(3)| >>

1 and |ϕ(2)| < |ϕ(3)σ|.

Spectral phase without critical points

The stationary phase theorem gives also some asymptotic expressions for the XPW spectrum

when there are no critical points for the fundamental pulse. More precisely, if the group delay

of the input pulse is monotonic (this is the case if the spectral phase is predominantly quadratic

or quartic for example) and if the duration of the fundamental pulse is much longer than its

transform-limit, then the XPW modulus of the spectral amplitude is approximately given by

the solution in (3.38), over the whole spectral range.

From this result, one can compute, to the first order, the spectral center of mass and spectral

width of the XPW spectrum for a chirped input pulse to which a perturbative third order phase

has been added:

< ω >XPW = ω0 − 2
ϕ(3)

ϕ(2)
σ2

I3
A

(3.42)

σ2
XPW = σ2

I3
A
− 2

ϕ(3)

ϕ(2)
< (ω − ω0)

3 >I3
A

(3.43)

Applying this result to a linearly chirped pulse (ϕ(3) = 0), leads to the same results found in

section 3.4.3 for large chirps: the spectrum is narrowed by a factor
√

3, the conversion efficiency
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decreases with 1/
(
ϕ(2)

)2
. With a perturbative third order phase, the spectral center of mass

is shifted proportionally to the ϕ(3) value. As far as the spectral width is concerned, it remains

unchanged to the first order if the spectrum is symmetric with respect to the spectral center

of mass. If the spectrum is not symmetric, then the spectrum may be broadened or narrowed

depending on the relative signs of the phase coefficients.

Again, the range of validity of these approximations needs to be specified. The above

results only apply for strongly chirped pulses. For a general cubic phase function, this means

σ2
IA
|ϕ(2)| >> 1 and |ϕ(2)| >> |ϕ(3)σIA

|.

Synthesis

This simplified model predicts that, for a sufficiently regular spectrum with a large general

cubic phase, the spectral center of mass varies linearly with ϕ(3) for large and constant values of

ϕ(2) and linearly with ϕ(2) for large and constant values of ϕ(3). Such features are characteristic

of a hyperbolic parabola surface, more widely known as a horse saddle surface and will be

obtained experimentally in section 4.6. The saddle point is centered on ϕ(2) = ϕ(3) = 0 and can

be implicitly defined by the equation ϕ(2)ϕ(3) = const.

The spectral width of the XPW spectrum is expected to be almost constant whenever the

effects of ϕ(2) or ϕ(3) are dominant. In the first case, the spectral width is equal to that of

the cube of the input spectrum. In the second case, it is related to the spectral width of the

”critical” contribution. Last, this model confirms a general Lorentzian dependance of the XPW

intensity as a function of ϕ(2).

3.4.5 Numerical calculation

In this paragraph I directly solve Eq. (3.28) and compute the XPW spectral intensity without

any other assumptions than those stated in section 3.4.2. In order to verify the previous theo-

retical work, the effect of combined second and third order spectral phases are simulated. The

input spectrum is Gaussian with a spectral width corresponding to a Fourier transform limited

pulse of 30 fs. The energy, center of mass and spectral width of the XPW spectrum are shown

in Fig. 3.15 and Fig. 3.16. For all these scans we choose approximatively 4ϕ(2) = σ2
IA
4ϕ(3)

to have the same temporal effect for both phase terms.

The main conclusion from Fig. 3.15 is that the plots are symmetric with respect to the

point where ϕ(2) = ϕ(3) = 0. At this point the XPW generation process exhibits maximum

efficiency and the broadest spectrum without spectral shift. Efficiency and broadening decrease

with residual spectral phase and one obtains numerically the same values for ϕ
(2)
cr,Energy and

ϕ
(2)
cr,Width been derived analytically previously. As expected, the spectral center of mass of

the XPW spectrum (Fig. 3.16 (a)) shifts when the contributions of second and third order

phase coefficients are of the same order of magnitude. The numerical calculation provides

realistic spectral shifts that can be used to compare with experimental data. For comparison,
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Fig. 3.16 (b) presents the spectral shift behavior extracted from the analytical model for the

same spectral phase range as Fig. 3.16 (a). They both behave the same, but the numerical

calculation provides realistic spectral shifts for Gaussian laser spectra compared to the analytical

model. Furthermore the analytical model is not valid at the saddle point in the center of the

graph.
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Figure 3.15: (a) normalized theoretical XPW efficiency function of the second and third order

spectral phase for a 30 fs input pulse. The value 1 corresponds to a XPW efficiency of 5%.

(b) theoretical prediction of XPW spectral width as a function of the second and third order

spectral phases for a 30 fs pulse. The spectral width values are normalized to the XPW width

value for the case of transform limited input pulse.
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Figure 3.16: (a) theoretical prediction of the XPW spectral center of mass shift (in nm) as

a function of the second and third order spectral phases for a 30 fs input pulse. (b) validity

range of the two approximations in the
(
ϕ(2)(ω0), ϕ

(3)(ω0)
)

plane for the analytical model. The

arrows show the direction of the spectral center of mass shift for a cubic spectral phase.

These theoretical predictions are verified experimentally in section 4.6.
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3.4.6 XPW generation for sub-10 fs pulses

In the previous derivation the pulse dispersion during the propagation in the nonlinear medium

has been neglected. For pulses shorter than 10 fs this is not valid anymore because dispersion

and nonlinearity act together during propagation. This implies solving a nonlinear partial

differential system of equations instead of a system of ordinary differential equations. The

split-step Fourier method provides an approximate solution of this system by assuming that

in propagating the optical field over a small distance h, the dispersive and nonlinear effects

can be considered to act independently of each other. More specifically, propagation from

z to z+h is carried out in two steps. In the first step the nonlinearity acts alone and the

coupled nonlinear equations (3.9) are solved in time domain. In the second step dispersion

acts alone and the spectral phase from material dispersion is applied in the frequency domain.

Fig. 3.17 illustrates the dynamics of the XPW conversion process for three selected values for

the residual chirp at the entrance of the crystal (1 mm) : 0 (a,b,c), -25 fs2 (d,e,f), -60 fs2

(g,h,i). Fig. 3.17 (a,d,g) shows the evolution of the temporal shape of the fundamental as it

propagates through the crystal. For a short input pulse (8 fs in the simulation), the extremely

wide bandwidth (we used a spectrum typical for spectral broadening in a hollow fiber) of the

pulse results in a rapid broadening, even though the crystal is quite thin (Fig. 3.17a). For

a slight negative input chirp (−25f 2), the pulse is temporally focused near the center of the

crystal(Fig. 3.17d). If the input chirp is further decreased, the pulses compresses in the last 200

µm of the crystal(Fig. 3.17g). As the pulse compresses, the central wavelength of the shortest

part of the pulse varies, resulting in a shift in the pulse peak, since the temporal window of the

calculation moves at the group velocity of the 800 nm pulse. The moderate input intensity and

rapid pulse broadening gives little self-phase modulation on the input spectrum. The remaining

panels in Fig. 3.17 show the evolution of the XPW signal in the temporal (Fig. 3.17(b,e,h))

and spectral domains (Fig. 3.17(c,f,i)). The corresponding beam-integrated output spectra

are shown in Fig. 3.18. Since the XPW pulse is initially quite short, it broadens over a very

short distance (Fig. 3.17(b,e)). For the short pulse input, the conversion starts early in the

crystal, and by the middle of the crystal the spectrum is very broad and smooth (Fig. 3.17(c)).

Subsequent conversion takes place with a positively chirped pulse, leading to the evolution

of the double humped output spectrum (Fig. 3.18). For a negatively-chirped input pulse,

the pulse is temporally focused in the center of the crystal, there is some initial conversion

on the initially chirped pulse, allowing a greater portion of the output energy to result from

conversion of the short pulse. This results in a smoother output spectrum and better energy

conversion (Fig. 3.17(f)). With the greater value of negative chirp (−60fs2) (Fig. 3.17(i)) such

that the temporal focus is near the exit face of the crystal, the output spectrum is somewhat

narrower and the conversion efficiency is greatly reduced (Fig. 3.18). In this case, most of

the conversion occurs with a negatively chirped pulse. Fig. 3.18 also shows the ideal output

spectrum for dispersion free conversion calculated with a flat input spectral phase. Clearly

the output spectra are limited by the crystal dispersion. Such very broad spectrum could be

produced by using very thin crystals (< 100 µm), at the expense of the conversion efficiency.
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The calculations suggest that a crystal thickness of 300-500 µm would give a good compromise

between output spectrum and conversion efficiency.

Figure 3.17: Calculated dynamics of XPW generation process. The temporal evolution of the

fundamental (resp.XPW) pulse when propagating through the crystal is represented in Figs

(a,d,g)(resp.(b,e,h). Figures (c,f,i) display the spectral evolution of the XPW signal within

the crystal. Temporal and spectral intensities are normalized. The black arrows localize the

area in the crystal where the fundamental beam is temporally the shortest. Panels (a,b,c) are

calculated for no residual chirp (0 fs2) at the entrance of the crystal. -25 fs2 input chirp is

taken into account for figures (d,e,f), and -60 fs2 input chirp for figures (g,h,i). This values

of the residual chirp are typical after hollow fiber spectral broadening and compression and

comparison with experiments can thus be done.
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Figure 3.18: Calculated XPW spectra (extracted from Fig. 3.17(a,f,i)) for selected values of

the input chirp. The experimental hollow fiber spectrum used for calculations is also shown

(grey area, lower panel). The calculated XPW spectrum for a dispersion free conversion and

flat input spectral phase is plotted in the lower panel (black line)

Up to now, all the theoretical equations discussed in this chapter have the SVEA approxi-

mation as a starting point. For short pulses this approximation implies that the envelope varies

slowly over an optical cycle and this is certainly not verified for few-cycle pulses. For such

short pulses it is not even evident that the separation of the electric field in a carrier and an

envelope is acceptable. The validity of this assumption together with the slowly evolving wave

approximation (SEWA) was discussed by Brabec and Krausz in [23]. In this approximation

there are no conditions specifying the slowness of the temporal change of the envelope compared

with the optical cycle time but it is required that the wave packet has small changing along

a propagation distance equal to the wavelength. This can be extended to nonlinear frequency

mixing as long as the difference between phase and group velocities of the waves involved in

the interaction is small compared to the phase (or group) velocity of the fundamental. This is

verified in the case of XPW generation. Within this approximation, a first-order propagation

equation for the wave envelope, valid to the single cycle regime, is given by the expression:

59



[∂z − ik(ω)] Ẽ(r, ω) =
i

2k(ω)
∇2

⊥Ẽ(r, ω)− iω

2ε0n(ω)c
F̂
[
P̃nl(r, t)

]
(3.44)

Compared with the equation derived with SVEA it contains new terms which are respon-

sible for effects like self-steepening and space-time focusing. This equation with the nonlinear

contribution from XPW generation can be solved using the Fourier split step method presented

previously. This falls within the frame of further investigations.
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Chapter 4

Experimental results on XPW

generation

4.1 Introduction

In this chapter I present my experimental results about XPW generation and I compare them

with the theory I derived. Before entering the heart of the matter I start giving a brief overview

of the different non linear processes that can be used for the contrast cleaning together with an

introduction of what where the results about XPW generation when I started my Ph.D.

4.2 Contrast filtering techniques

With the rapid increase of the achievable peak intensity at the output of table top TW laser

systems, the temporal contrast of the generated pulses started to attract interest. The Euro-

pean research program named SHARP (Suppression over High dynamic range of ASE at the

Rising edge of ultra intense femtosecond pulses) started for the theoretical and experimental

investigation of the different solutions for measuring and increasing the temporal contrast in ns

regime. This temporal contrast is determined by the ASE, mainly generated in the first, high

gain, amplification stage (section 2.2.2).

All the filters that enhance the temporal contrast use a non linear process to exploit the different

intensity between the main pulse and the background. A non linear filter is characterized by a

relation: Iout = f(In
in), with n ≥ 2. Considering for example a relative ASE level of 10−6 and a

second order nonlinear filter, the transmitted intensity is squared and the ASE pedestal is then

rejected to a relative intensity of 10−12. The transmitted pulse needs then to be discriminated

from the input pulse using for example a difference in wavelength, polarization or phase.

Several nonlinear filters were tested and can be classified by their position in the laser system.
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Filters at the beginning or in the middle of the laser system

When the filter is implemented inside the laser system the main non linear effects used are:

nonlinear polarization rotation (NER) [9, 11] and cross-polarized wave (XPW) generation [6].

To work correctly these filters have to be seeded with a sufficiently intense, compressed pulse.

This means to amplify the pulses in a first CPA to the > 100µJ level, to clean the pulses after

the first compression and then to stretch them again for a further amplification that keeps the

ASE constant (using low gain amplifiers).

If the XPW filter is implemented at lower energy, the first CPA can be substituted by

an amplification in the fs regime and compensation of the dispersion accumulated during this

amplification [1].

Another kind of filter uses a saturable absorber [5] to increase the temporal contrast of the

pulse amplified in fs regime without the need to recompress it. This filter can not be applied

to repetition rates higher than 10 Hz due to thermal problems.

Filters at the output of the laser system

The second solution is to clean the pulses directly at the the output of the CPA laser. This

requires filters with a high transmission efficiency to limit the energy losses in the filtering

process. The first non linear process that satisfies this requirement is SHG [13]. Furthermore

SHG, dividing by two the wavelength, make it possible to focus the output beam into a smaller

focal spot and thereby to maintain the same focused intensity with a lower input energy. The

second process is ionization on a dielectric material. In this case the filter is named plasma

mirror. Details of this filter will be given in section 7.5. Its drawback is that it is destructive

and therefore not well adapted at high repetition rates.

4.3 Historical development of XPW generation

In general, light propagation through nonlinear crystals experiences nonlinear polarization ro-

tation and induced ellipticity (XPW generation). Restricting the analysis to a nonlinear change

of the polarization state in non-gyrotropic (without spatial dispersion of the χ(3) optical nonlin-

earity) crystals, experiments and theoretical results showed that nonlinear polarization rotation

is proportional the imaginary part of the χ(3) anisotropy ,σ, whereas XPW generation is due to

the real part [2, 12, 15, 3, 4]. XPW generation was observed in a range of highly transparent

alkali-halide crystals of the m3m group namely NaCl, KBr2, KCl, LiF, BaF2. In their trans-

parency range these crystals have Im[σ] = 0 and Re[σ] 6= 0.

XPW generation attracted at first interest as a nonlinear process for measuring the magnitude

and sign of non linearity tensor’s components and its anisotropy in crystals [14]. This non linear

process was then extended at the end of the SHARP program as a technique for filtering con-

trast, in particular through the work of A. Jullien and O. Albert from LOA and N. Minkowski,

S. Kourtev and S. Saltiel from the University of Sofia [6].
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XPW generation benefits from several advantages in its implementation as a contrast filter:

it is a third order nonlinear optical effect degenerate with respect to all frequencies and non

degenerate with respect to the polarization vectors of the interacting waves. This means that

the generated wave is at the same wavelength as the fundamental and can easily be discrim-

inated using a polarizer with the optical axes orthogonal compared to the input beam. The

increase in temporal contrast is defined by the extinction ratio of the polarizers (5-6 orders of

magnitude). An impressive measurement of the temporal contrast before and after the XPW

filter is shown in Fig. 4.1. Furthermore, as it is a third order nonlinear process, the temporal

intensity of the XPW pulse is proportional to the cube of the input pulse intensity. This cor-

responds, in frequency domain, to a spectral broadening by a factor
√

3 (for Fourier transform

Gaussian pulses). This can be very useful for the compensation of gain narrowing in the second

CPA. Residual second order spectral phase decreases this broadening and the XPW spectrum

becomes 1/
√

3 narrower than the input one for large values of the second order phase [10]. This

confirms the need to seed the XPW filter with adequately compressed pulses.

Figure 4.1: Temporal contrast before and after the XPW filter

4.3.1 Design of an efficient XPW generation

Several crystals were tested for efficient XPW generation. A good XPW crystal has to satisfy the

following requirements. First it needs to have at least one isotropic plane in linear optics. This

corresponds to cubic or tetragonal crystal symmetry. Along this plane the two orthogonally

polarized waves propagate with the same group velocity. Crystals with cubic symmetry are

preferred because in tetragonal crystals not all planes are isotropic. If the incident wave does

not propagating exactly along the z axis of the crystal, a parasitic signal, generated by linear

birefringence, is added to the XPW signal. The crystal needs also to be transparent from UV

to IR, i.e. with a band-gap larger than 4 eV. This rules out the semiconductors and other
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crystal like the Potassium Dihydrogen Phosphate (KDP) or the rutile TiO2. For cubic crystals

XPW generation efficiency depends on the product of the χ(3)
xxxx component, the crystal length

L, the input intensity and the anisotropy of χ(3) -tensor, σ = (χ(3)
xxxx−3χ(3)

xxyy)/χ
(3)
xxxx. Ideally an

XPW crystal needs to have a high anisotropy for optimizing XPW generation efficiency and a

small non linear index to limit SPM. In Tab. 4.2 I report a list of crystals with χ(3) anisotropy

that can be used for XPW generation. Following the previous considerations, the best crystals

for XPW generation are BaF2, CaF2 and LiF. In particular, the best crystal for the infrared

and visible is the BaF2, while CaF2 and LiF are more convenient in the UV (larger band-gap)

where two-photon absorption starts to play an important role.

Figure 4.2: Table of candidate crystals for XPW generation

The firsts implementations of XPW generation were done using a single [100] (z-cut) crystal

cut with a thickness of 1 or 2 mm. In this case the maximum efficiency saturates around 10

%. Increasing the thickness of the crystal does not increase the global efficiency. When the

crystal is thicker than ≈ 3mm, due to self-focusing in the crystal, the threshold for white-light

continuum generation is reached before an efficient XPW generation. Furthermore the crystal

needs to be thinner than the Rayleigh range of the focusing optics.

From the beginning intense research was made for increasing the efficiency of the process and

thus the transmission of the XPW filter. A two-crystal setup was developed that enables

reaching an overall efficiency higher than 20 % [8, 7]. The principle of this solution is to

use the Kerr lensing in the first crystal in order to refocus the beam into the second crystal.

Thanks to the different accumulation of the Gouy phase between the fundamental and the

XPW waves by propagation in the space between the crystals, the XPW signals generated in

the two crystals can interfere constructively and thus increase the efficiency. This two-crystal

solution developed in LOA was patented together with Thales Laser (Patent, French, European

and US- # 20060170858).
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During my Ph.D I continued the development of the XPW filter with a particular interest in

the following goals:

• to further increase the transmission efficiency

• to extend this process to shorter input pulse durations down to the < 10 fs regime.

• to extend this process to shorter wavelengths.

In chapter 3 I demonstrated that the global efficiency depends on the cut of the crystal. In

particular it has been predicted theoretically that the [110] cut is the most efficient orientation.

This will be confirmed experimentally in the third section of this chapter. Results with a two-

crystal scheme to further increase the global efficiency are also presented.

The XPW filter needs to be implemented on compressed pulses. For pulse duration below

30 fs the presence of residual uncompensated higher order spectral phase terms after the first

compression can no longer be neglected. It is important to quantify their effect on the XPW

spectrum and efficiency. This systematic study is the subject of the fourth section. The

extension of this study for sub-10 fs pulses is presented in the fifth section.

The spectrum corresponding to <10 fs pulses can extend over more than one octave and has

tails down into the U.V. In all theoretical considerations I assumed a χ(3) tensor independent

of λ. This assumptions is no longer valid on such broad spectral ranges where the photon

energy approaches half the band-gap. This motivated the study of the XPW generation in UV

presented in the last section.
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4.4 Holocut vs z-cut

The theoretical analysis presented in chapter 3 shows that for cubic crystals the holographic cut

ensures the highest efficiency with the added advantage that the position of optimal polarization

of the fundamental beam is less sensitive to changes in the input intensity. The purpose of this

section is:

• to present the experimental results for XPW generation with [011]-cut samples showing

an increase in efficiency;

• to show the decreased sensitivity to the orientation of the fundamental beam polarization

at high intensity;

The schematic of the set-up with a single BaF2 situated between crossed polarizers is shown

in Fig. 4.3. The derived system of two plane wave equations for the two interacting waves is:

dA (ζ)

dζ
= iγ1AAA∗ + iγ2AAB∗ + 2iγ2ABA∗

+ 2iγ3ABB∗ + iγ3BBA∗ + iγ4BBB∗, (4.1a)

dB (ζ)

dζ
= iγ5BBB∗ + iγ4BBA∗ + 2iγ4ABB∗

+ 2iγ3ABA∗ + iγ3AAB∗ + iγ2AAA∗. (4.1b)

where A and B denote the amplitudes of the fundamental and cross-polarized waves, respec-

tively. The γ coefficients derived for both cuts are summarized in Tab. 4.5. The last line in

the table I gives the orientations of input polarization βzero for which the XPW signal is zero.

These angles, derived from γ2(β) = 0, are different for the two cuts and this can be used to

test the correct orientation of the [011]-cut sample. The NLC used in the experiments are 2

Figure 4.3: Schematic of the XPW generation experiment

mm thick z-cut and [011]-cut BaF2 crystals. The BaF2 sample is placed between two calcite

Glan polarizers with an extinction ratio better than 4 orders of magnitude. Both the BaF2
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samples and the polarizers are un-coated. The β-dependence measurements were performed

with the second harmonic of a Colliding Pulse Mode Locked (CPM) dye-laser (620 nm, 100 fs,

10 Hz-Salle Rose). The pulses with an energy up to 20 µJ were focused with a f = 500 mm lens

into the NLC. Fig. 4.4 shows the experimental β dependence of XPW generation in the [011]-

cut sample. The theoretical curves (lines) for Gaussian/Gaussian shapes for spatial/temporal

modulation of the fundamental radiation are obtained by numerically solving the system 3.9.

The agreement with experiment is good. The angles βzero for which the XPW signal is minimal

correspond to the values listed in Tab. 4.5. As predicted, the two main β position maxima for

the holographic cut are insensitive to changes in input energy.

Figure 4.4: XPW signal as a function of angle β for [011] orientation for two different input

energies. The lines are theoretical curves.

XPW generation efficiency measurements were done with a commercial femtosecond laser

(Femtopower PRO CEP, Femtolasers GmbH) delivering up to 1 mJ, 30 fs pulses at 1 KHz. The

fundamental beam spatial shape is very close to Gaussian as shown in the inset of Fig. 4.6. The

pulse-to-pulse stability of the laser used in the experiment is below 1% ensuring a very small er-

ror ( 3%) in the efficiency measurements. Measured conversion efficiencies (without corrections

for losses) for experiments with a single BaF2 crystal are shown in Fig. 4.6. The pulses are

focused with a f = 500 mm lens into the NLC. The efficiency with [011]-cut sample saturates

at 11.4%. This value can be compared with the maximum efficiency of 10% measured with a

single crystal (Fig. 4.6). Accounting for losses of the output Glan and the NLC, an internal

efficiency of 15% is obtained. This efficiency saturates earlier than in the simulation because

in the theoretical model we neglect diffraction and self-focusing. It is very important to note

that the efficiency curve for the [001]-cut (circles) in Fig. 4.6 was obtained with reoptimization

of angle β, while for experiment with the [011]-cut (squares) such a reoptimization was not

necessary as predicted by the model.
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Figure 4.5: Nonlinear coupling coefficients both for z-cut and holographic cut. D stands for:

1 + (3σ/16)cos4β − 7σ/16, γ0 = 6πχ(3)
xxxx/8nλ

Figure 4.6: XPW generation efficiencies for the two cuts. Insets:input fundamental beam spatial

shape.

As XPW filtering is useful at higher energy in a double CPA scheme, we also tested a

two crystals scheme [1, 8] for XPW generation using two holographic cut BaF2 crystals. The

fundamental beam with a diameter of 7 mm was focused with a f = 5 m lens. The two crystals

were set ≈ 50 cm apart, in accordance with the experimental dependence pointed out in [10].

The obtained XPW energy and efficiency are shown Fig. 4.7. The output spectrum has a near

Gaussian shape with 80 nm FWHM (for an input width of 50 nm). The maximum obtained
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efficiency of 29 % for a 190 µJ input pulse energy yields a 55 µJ XPW pulse energy. It is

the highest XPW energy efficiency recorded so far with this kind of set up. This value is in

fact 1.3 times higher than the previously published values obtained with z-cut crystals (see [8,

?, 9]) which is in accordance with the prediction of the model. Considering the output pulse

shortening obtained via XPW generation this result corresponds to a 50% intensity conversion

from one polarization to another. Highest efficiencies are obtained for an input energy just

below the continuum generation threshold.

Figure 4.7: XPW generation energy (circle) and efficiency (square) for two crystal scheme with

two holografic cut BaF2 crystals. Insets: output XPW spatial shape

4.5 Conclusions

Record efficiencies for XPW generation using holographic ([011])-cut BaF2 crystals (and Gaus-

sian beams) have been demonstrated thereby confirming the theoretical predictions. I also

demonstrated that when [011]-cut crystals are used for XPW generation, intensity dependent

β compensation of the phase mismatch is not required. This feature makes the holographic cut

easier to use for all XPW generation applications.
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4.6 Effect of the spectral phase on XPW generation

In this section I present the first comprehensive study of the role of spectral phase on XPW

generation using sub-30 fs laser pulses. For durations comprised between 30 and 10 fs the

presence of residual uncompensated higher order spectral phase terms after the first compression

can no longer be neglected and it is important to quantify their effect on the XPW spectrum

and efficiency. For those short pulses, compression is achieved after measurement of the spectral

phase with a SPIDER or a FROG. For a 30 fs pulse measurement precision is on the order of

100 fs2 and 10000 fs3 for the second and third order of the spectral phase [12, 13, 14]. As it will

be demonstrated, within this range of residual spectral phase the XPW output spectrum can

be significantly modified, especially with residual higher order spectral phase. I will also derive

the maximum acceptable value of residual phase for a given initial pulse duration in order to

efficiently drive the XPW process for pulse shortening and contrast improvement.

The XPW experimental setup is shown in Fig. 4.8. We use a commercial femtosecond laser

(Femtolasers GmbH) delivering 1mJ, 30 fs pulses at 1 kHz. The spectral phase of the compressed

pulses was measured with an homemade SPIDER [20] and corrected using an acousto-optical

programmable dispersive filter (AOPDF, Dazzler™ [21]) inserted into the chirped pulse ampli-

fier. By doing so we have noticed that we removed ϕ(4) ∼ −2.106 fs4 and ϕ(5) ∼ 50.106 fs5.

Furthermore, in order to test the effect of remaining spectral phase higher order terms, we can

cancel the Dazzler correction and make experiment with known ϕ(4) and ϕ(5) values.

To study experimentally the effect of the spectral phase on the XPW process, I used a

second AOPDF (25mm TeO2 crystal) as a versatile and precise way to tune the spectral phase

on demand. This AOPDF is placed between the laser and the XPW setup. To avoid damaging

the AOPDF, only 1µJ is used from the total laser energy for our experiments. The diffracted

output of the AOPDF is focused by a 40 mm focal length achromatic lens into a 1 mm thick

BaF2 crystal, the XPW beam is selected through a polarizer and focused onto the entrance

slit of a spectrometer (Avantes). Both AODPF and spectrometer were synchronized with the

laser pulses. The spectral phase from the laser was considered flat, except for the cases when

we deliberately introduce the known higher order residual phase. The AOPDF was first set to

compensate both its own dispersion and that of the focusing lens in a static way. We then use

the AOPDF to add to the optical pulse some user-defined spectral phase. In the experiments

presented we added the following spectral phases:

δϕ(ω) = ϕ(2) (ω − ω0)
2 /2 + ϕ(3) (ω − ω0)

3 /6 (4.2)

Both coefficients ϕ(2) and ϕ(3) were automatically scanned between -2000 fs2 and +2000 fs2 for

ϕ(2) (32 points) and between -60000 fs3 and +60000 fs3 for ϕ(3) (16 points). For each δϕ(ω),

a different acoustic wave was loaded into the AOPDF generator and the XPW spectrum was

recorded and processed. With this setup, a systematic experimental analysis of the effect of

cubic spectral phase on the XPW spectrum and efficiency was made possible.

74



Figure 4.8: Experimental setup.

4.6.1 XPW efficiency

The first dependence considered is the influence of spectral phase on XPW efficiency. As

the input energy is constant, the XPW efficiency is proportional to the XPW output energy.

Therefore, the XPW efficiency is obtained by integrating every acquired XPW spectrum over

the whole spectral range. Fig. 4.9 shows the obtained experimental efficiency map that should

be compared with the theoretical map shown in Fig. 3.15. In both cases there is a global

maximum of the efficiency corresponding to ϕ(2) = ϕ(3) = 0 . This is due to the fact that XPW

(as all nonlinear effects) is highly sensitive to peak intensity and the highest peak intensity is

obtained for a pulse with a flat spectral phase. Fig. 4.10 presents cross sections of this map

for ϕ(3) = 0 fs3 and for ϕ(2) = 0 fs2. The theoretical curves are obtained from the same

cross sections of Fig. 3.15. As predicted, the efficiency decreases with second order phase with

a Lorentzian dependence. In particular the experimental ϕ
(2)
cr,Energy = +350 fs2 corresponds to

the theoretical one. As a reminder ϕ
(2)
cr,Energy is the value of the second order dispersion for which

the XPW efficiency is equal to half of the maximum conversion efficiency. The variation of the

XPW efficiency with third order spectral phase fits also with the numerical calculation. The

difference between the two curves is due to the imprecision of the measurement and correction

from high order spectral phase terms.

In the case of a laser pulse with a residual spectral phase (ϕ(4) ∼ −2.106 fs4 and ϕ(5) ∼
50.106 fs5) the efficiency dependence on ϕ(2) and ϕ(3) becomes asymmetric (Fig. 4.11.a). This

behavior can be reproduced numerically (Fig. 4.11.b). To center the map, both coefficients ϕ(2)

and ϕ(3) were scanned between -1500 fs2 and +4000 fs2 for ϕ(2) and between -80000 fs3 and

+80000 fs3 for ϕ(3). The asymmetry can be explained intuitively. When ϕ(2) reaches a value

corresponding to the opposite of the residual ϕ(4) value, the effect of both phase terms mutually
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compensate, yielding better efficiency. When ϕ(2) and ϕ(4) have the same sign the effect of

both phase terms sum up. This gives the vertical asymmetry in Fig. 4.11.a,b. The horizontal

asymmetry is due to the same combination of effects between ϕ(3) and ϕ(5). Furthermore,

maximum efficiency (which is less than in the case of a perfect flat phase) is reached at a

non-zero [ϕ(2),ϕ(3)] where the input spectral phase is the flattest.
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Figure 4.9: Experimental 2D plot of the normalized XPW efficiency versus ϕ(2) and ϕ(3) after

compensation of the higher order spectral phase terms. The maximum signal corresponds to

an XPW efficiency of 5%.
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Figure 4.10: Left: normalized experimental (points), (dashed line) and theoretical Lorentzian

(solid line) XPW efficiency as a function of ϕ(2) for ϕ(3) = 0. Right: normalized experimental

points and theoretical (solid line) XPW efficiency as a function of ϕ(3) for ϕ(2) = 0

4.6.2 Spectral width

Fig. 4.12 shows the map displaying the spectral width of the previously acquired spectra. These

data have been obtained with a laser pulse uncorrected for higher order spectral phase terms,

so the theoretical curve in Fig. 4.12 is calculated using ϕ(4) ∼ −2.106 fs4 and ϕ(5) ∼ 50.106 fs5.

It can be noticed again that there is a global maximum of the spectral width when the

total spectral phase is almost flat since both the efficiency and the spectral width reach their
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Figure 4.11: Experimental (a) and theoretical (b) 2D plot of the normalized XPW efficiency

versus ϕ(2) and ϕ(3) with known residual ϕ(4) and ϕ(5).

maximum for the same (ϕ(2),ϕ(3)). The asymmetry of the maps 4.12 is very similar to that

already discussed for the efficiency map. As previously presented this can be explained by the

presence of residual higher order spectral phase. These experiments confirm the sensitivity of

the XPW spectral width to the initial spectral phase. In particular there is spectral broadening

of the XPW spectrum compared to the fundamental spectrum for a limited range of ϕ(2),ϕ(3).

These values for ϕ
(2)
cr,Width and ϕ

(3)
cr,Width derived experimentally are comparable to the numerical

prediction.
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Figure 4.12: Experimental (a) and theoretical (b) 2D plot of the XPW pulse spectral width ver-

sus ϕ(2) and ϕ(3). The spectral width values are normalized to the maximum (best compression

of the input pulse) of the 2D plot.
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4.6.3 Spectral shift

The last parameter considered is the shift of the center of mass of the XPW spectrum.

Fig. 4.13(a) shows the center of mass shift of the XPW spectrum as a function of [ϕ(2), ϕ(3)] in

the case of uncompensated higher order spectral phase terms. This map is in agreement with

the hyperbolic parabola derived in the case of a pure ϕ(2), ϕ(3) scan. The analytical model

derived in the theoretical section shows that for a residual ϕ(2) and ϕ(3) the spectrum becomes

asymmetric. It also indicates that for a fixed and large value of ϕ(3), the center of mass shifts

linearly with ϕ(2). The sign of the slope of this curve depends on the sign of ϕ(3). This is

confirmed by experiments (Fig. 4.14) in the zone where this approximation is valid. It can

also be noticed that this linear shift does not continue indefinitely for larger values of ϕ(2).

By changing the input cubic spectral phase a global shift of the center of mass is obtained

which is at maximum 1/3 of the spectral bandwidth. The shift of the XPW spectral center of

mass function of ϕ(2) for two symmetrical values of ϕ(3) is not perfectly symmetric (for example

Fig. 4.14) due to the higher order residual phase terms.

Comparing Fig. 3.16(a) and fig. 4.13(a) around the zone of optimum input pulse compression

(center of the map, saddle point) it is visible that the experimental map has an additional shift

towards shorter wavelengths (the color is light blue) compared to the theoretical one (where

the color is yellow (Fig. 3.16a)). Simulations with the residual ϕ(4) and ϕ(5) spectral phase

mentioned previously, reproduce this spectral shift as shown in Fig. 4.13(b). The center of

mass of the XPW spectrum is visibly influenced by the higher order spectral phase also near

ϕ(2) = ϕ(3) = 0 with a shift towards shorter wavelengths when ϕ(4) and ϕ(5) are of opposite

sign and towards longer wavelengths when they are of the same sign. Therefore, higher order

spectral phase terms have an influence on the XPW signal for any values of [ϕ(2),ϕ(3)]. They

shift the central wavelength, and influence the XPW efficiency and spectral width for higher

values of ϕ(2) and ϕ(3).

4.7 Practical experimental conditions for XPW genera-

tion

This systematic theoretical and experimental analysis gives a general idea of the role of the

spectral phase on the XPW nonlinear process. In particular it is possible to extract experi-

mentally the maximum tolerable values of residual spectral phase for an input pulse of 30 fs. I

have demonstrated that it is fundamental to compensate at least a pure second order spectral

phase to a residual value lower than ±325 fs2 and the pure third order phase to a residual

value lower than ±17500 fs3 to obtain half of the maximum XPW efficiency. In this range the

XPW spectrum is broadened and the center of mass is shifted at maximum by 4 nm compared

to the fundamental which is perfectly adapted for amplification in a Ti:Sa amplifier. These

values of spectral phase are slightly increased (±500 fs2and ±25000 fs3) when residual higher
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Figure 4.13: Experimental (a) and theoretical (b) 2D plot of XPW spectra center of mass shift

(in nm) versus ϕ(2) and ϕ(3) with known residual ϕ(4) and ϕ(5).

order spectral phase terms are present. This can be understood as, for a spectral phase with

some residual higher order terms, the XPW signal is lower than the one obtained for a perfectly

compressed pulse. Those spectral phase higher order terms can be compensated by a wide

combination of second and third order terms. Therefore, it broadens the region for which the

XPW efficiency is kept above half of the maximum efficiency. In this case there is a shift of the

center of mass even with perfect compensation of ϕ(2) and ϕ(3) terms. These values agree with

the numerical simulations.

For a given stretcher compressor system, those ϕ(2) and ϕ(3) values can be correlated to

a range of acceptable grating spacing variation and a range of incident angle variations that

preserve an efficient XPW generation. Those ranges can also be seen as the degree of precision

needed for the given stretcher compressor system to allow an efficient XPW generation.

As this range of ϕ(2) and ϕ(3) values for efficient XPW generation is of the same order of

magnitude as the measurement precision obtained with a FROG or a SPIDER, the best ap-

proach is to tune the stretcher compressor system to the optimum and then tune the compressor

slightly to optimize the XPW generation efficiency without spectral shift.

We can next generalize this analysis to shorter input pulse durations. This is important as it

allows to know in general, when the input pulse can be defined as “Fourier limited”with respect

to the XPW generation process. Fig. 4.15 (a) shows the [ϕ(2),ϕ(3)] area for which efficiency is

reduced by less than half calculated for 30, 20 and 10 fs pulses. The elongated peanut shape of

these areas is due to partial compensation between ϕ(2) and ϕ(3) which induces a partially flat
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Figure 4.14: Shift of the XPW spectra center of mass as a function of ϕ(2) for ϕ(3) =

−20000 fs3(red) and ϕ(3) = +20000 fs3(blue). These curves are obtained from cross-sections

of Fig. 4.13(a)

spectral phase preventing excessive stretching of the pulse. Higher order phase terms break the

symmetry of these plots and can also be evaluated theoretically. This figure confirms how fast

the acceptable area decreases decreasing input pulses duration.

As demonstrated in [10] the chirp of the generated XPW pulse is reduced up to nine times

compared to the incident pulse chirp. This improvement is less increasing input chirp and

reaches a value equal to the input one for large values of input chirp. This behavior can be

extended for higher order phase terms as has been done for second order nonlinearities [19].

Therefore we can predict that the spectral phase of the XPW pulse is flattened for the values

of ϕ(2) and ϕ(3) yielding good XPW efficiency (i.e. in the area defined by Fig. 4.15 (a)). This

area is the one typically used for contrast improvement with XPW, and corresponds to the area

where XPW also improves the coherent contrast of the pulse [4]. Outside this area the XPW

spectral phase corresponds to the input pulse spectral phase.

Fig. 4.15 (b) shows the [ϕ(2),ϕ(3)] area that preserves the initial spectral width of the laser

for the same input pulse durations. This area is broader than the area for efficient XPW

generation (Fig. 4.15 a). XPW spectra generated for a couple [ϕ(2),ϕ(3)] at the border of this

area are modulated by the coupling of the input pulse spectral phase to the spectral amplitude of

the XPW through the nonlinear process. This effect could allow approximate spectral tailoring

in some coherent control experiments. This is emphasized by the fact that the main feature of

the tailoring using the spectral phase is a controllable central wavelength shift.
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Figure 4.15: (a) Contour line representing the maximum values of ϕ(2)and ϕ(3) to obtain half

of the maximum XPW efficiency for respectively 30 fs (blue), 20 fs (red) and 10 fs (purple)

input pulse duration. (b) Contour line representing the maximum values of ϕ(2)and ϕ(3) to

obtain ∆λXPW = ∆λlaser for respectively 30 fs (blue), 20 fs (red) and 10 fs (purple) input pulse

duration (b). The range of both axis is different for the two figures i.e. the areas on (a) are

broader that the corresponding areas on the (b).
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Figure 4.16: Spectrum of the input pulse (black) and of the XPW generated pulse (red). The

XPW spectrum is Gaussian, broadened by a factor
√

3 and centered at the same wavelength

than the input pulse giving a FWHM of about 85 nm. The input pulse is optimally compressed

with a Dazzler.
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4.8 Conclusions

In this section I demonstrate the importance of controlling the spectral phase of the input pulse

for a correct generation of Cross-Polarized Wave with sub-30 fs pulses and how to optimize the

pulse compression after the first CPA directly with the nonlinear effect of the XPW filter. With

this control the XPW filter maintains all its benefits (increasing of ns and ps temporal contrast,

spectral broadening) for pulses as short as 10 fs.

Fig. 4.16 shows a 85 nm XPW spectrum obtained from a 47 nm input spectrum. The com-

pression of the input pulse was optimized with the Dazzler to obtain a transform limited pulse.

The XPW spectrum is Gaussian, broadened by a factor
√

3 and centered at the same wave-

length as the input pulse. Following the discussion presented in this section this demonstrates

the optimal compression of the input beam. It is important to notice that, due to the spectral

filtering, the XPW spectrum is Gaussian even with a modulated input spectrum. This feature

can be very useful for sub-10 fs and is discussed in the next section.
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4.9 XPW sub-10 fs pulses

4.9.1 Introduction

From the results presented in section 4.6 it is evident that, with correct control of the input

spectral phase, the XPW pulses are not only spectrally broadened but also spectrally cleaned

compared to the input pulses. Sub-10 fs pulses often present poor coherent temporal quality.

A pedestal, whose relative intensity can reach 10−3 on a picosecond timescale, surrounds the

main pulse [7, 8]. As discussed in section 2.2.2 degraded coherent contrast is partly due to

imperfect compensation of high-order spectral phase, but also to strong modulations and sharp

features of the spectral amplitude. This last characteristic is typical of ultra-broadband spectra

generated through hollow-fiber and filamentation compression techniques [14, 22], or amplified

in either saturated or non-saturated OPCPA stages. Even with ideal flat phase compression,

modulated spectra lead to broad wings in the temporal domain [10]. It is therefore interesting to

demonstrate the capability of XPW generation to clean the strong modulations of ultra-broad

spectra. These experiments were done in collaboration with the former ”Etudes des Lasers

Femtosecondes” (ELF) group in LOA. The results are compared to the theoretical predictions

presented in section 3.4.6.

4.9.2 Experimental setup and results

The experimental setup is shown in Fig. 4.17.

800 !J, 20 fs, 
10 Hz

Hollow-core fiber 56 cm, 250 !m, Neon 2,2 bar

Chirped 
mirrors

400 !J, 8 fs

  1 mm  BaF2 
  

f = 2m

f = 2m

Thin glass plates

f = 1.5m

polarizer

analyzer

XPW 
pulse

Figure 4.17: Experimental setup

The laser source is a Ti:Sa laser generating 1mJ pulses, with a duration of 20 fs at 10Hz

repetition rate. To obtain pulse compression in the sub-10 fs range, 800µJ pulses are focused

to a hollow-core fiber (56 cm length, 250 µm inner diameter) filled with neon (2.2 bar) [14]. The

transmission of the fiber is 50%. After propagation in the nonlinear medium, the spectrum is

significantly broadened (600 nm - 950 nm) and exhibits strong modulations inherent to SPM

and self-steepening processes (Fig. 4.18(a)). Chirped mirrors then provide adequate dispersion

compensation(−200 fs2). A FROG measurement estimated the pulse duration to 8 fs (Fig.

4.18(b)) [15] which is close to the Fourier transform limit. These ultra-short pulses are sent in

the XPW filter device, composed of one thin (1 mm) BaF2 crystal ([101]) [16]) placed between

crossed Glan polarizers. The first polarizer is placed at the entrance of the hollow fiber, where

its intrinsic dispersion can be easily pre-compensated by the laser compressor adjustment. The
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analyzer follows the nonlinear crystal to discriminate between the fundamental and XPW waves.

The XPW filter contrast enhancement has been shown to be limited by the whole polarizing

setup. We obtain 10−3 in our experiment. The BaF2 crystal is placed close to the focus of a

2m focal length mirror. When focused, the beam emerging as a single-mode from the hollow

fiber presents an excellent spatial quality (Fig. 4.18(c)) which is favorable to get high XPW

conversion efficiency. Moreover, the seeded energy of the 8 fs-pulses is reduced to 170 µJ to

avoid additional nonlinear effects in air. This experiment is therefore a proof of principle.
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Figure 4.18: (a) Initial laser spectrum (black line) and spectrum measured after propagation

in the hollow fiber (shaded area). (b) Pulse duration measurement after the hollow fiber by

FROG technique (∼8 fs). (c) Spatial beam profile measured in the BaF2 crystal plane (∼300 µm

FWHM).

Filtering more energetic pulses would require the use of a vacuum or He-filled chamber.

For such short pulses, one has to take into account the linear dispersion introduced by air and

by the nonlinear crystal itself (380 fs2/cm). For this reason, the chirp is over-compensated at

the output of the fiber by two additional bounces on the chirped mirrors (total introduced

dispersion:−300 fs2). Thin BK7 plates (700µm and a variable number of 150µm plates) are

inserted to optimize the degree of pulse compression for the XPW process.
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Figure 4.19: Experimental XPW spectra measured for various values of the residual chirp at

the entrance of the crystal (values are relative to each other). The spectrum registered at

the output of the hollow fiber is shown for comparison (grey area, lower panel). ϕ0 is the

residual input chirp, absolute value unknown, leading to the highest transmission efficiency of

the process (10%) and providing a clean spectral quality. The corresponding output spectrum

(red area) is fitted by a Gaussian shape (260 nm at 1/e2, dashed red line). The efficiency values

are uncorrected from losses on the nonlinear crystal.

4.9.3 Analysis of the results

The experimental XPW spectral behavior as a function of residual second-order spectral phase

is summarized in Fig. 4.19. The chirp compensation yielding the highest conversion efficiency is

considered as the optimal pulse compression state accessible under our experimental conditions.

The transmission of this single-crystal scheme is then slightly higher than 10% (uncorrected
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for energy losses on the uncoated crystal faces). The residual input chirp in that case cannot

be experimentally determined with accuracy and is simply labeled ϕ0. The theoretical analysis

presented in section 3.4.6 suggests that this residual input chirp corresponds to a slightly neg-

ative chirp (−25f 2). The optimized configuration also reveals the remarkable spectral cleaning

effect of the process, as illustrated by the experimental output XPW spectrum plotted in Fig.

4.19 (XPW ϕ0 fs2). The input spectral bandwidth is preserved and the output spectrum has a

smooth nearly-Gaussian shape. All the sharp features and fast modulations are eliminated.

XPW spectra registered for variable residual chirp (relatively to ϕ0) at the entrance of the

crystal show that the window for optimized compression is extremely narrow (< 16 fs2, ∼40µm

of glass) (Fig. 4.19). They also show an asymmetry between the behavior for positive and neg-

ative input chirp. This asymmetry is correlated to the pulse dispersion during propagation in

the crystal and was predicted theoretically in section 3.4.6. When the residual chirp is negative

compared to ϕ0, the available spectral bandwidth is narrower than that of the fundamental

wave (Fig. 4.19 (XPW (ϕ0 − 10) fs2, XPW (ϕ0 − 22) fs2 and XPW (ϕ0 − 30) fs2)), which is

prohibitive. This is due to the fact that most of the conversion occurs with a negatively chirped

pulse. The conversion efficiency in this regime is around 5%. On the other hand, if the residual

chirp is positive compare to ϕ0, the transmission becomes very weak (a few %). Despite being

broader, the output spectrum is strongly modulated with sharp edges and a double-humped

structure similar to the input spectrum (Fig. 4.19 (XPW (ϕ0 + 6) fs2 and XPW (ϕ0 + 13) fs2)).

As predicted by the numerical simulations, in this case the conversion starts early in the crystal,

and by the middle of the crystal the spectrum is very broad and smooth. Subsequent conversion

takes place with a positively chirped pulse, leading to the evolution of a double humped output

spectrum. These experimental results agree with the theory presented in section 3.4.6. We

can then conclude that for this duration, (8 fs), the SVEA approximation is still acceptable.

4.9.4 Conclusion

With these experiments we have demonstrated the possibility of XPW filtering for sub-10 fs

pulses. The energy conversion is acceptable for a single-crystal scheme (10%) and could be

improved by using a two crystals configuration. We have also confirmed the influence of the

dispersion in the non linear crystal. Very thin (< 100 µm) or less dispersive (CaF2, LiF )

crystals are needed to generate spectrally cleaned and broadened XPW pulses.
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4.10 XPW in UV

In all previous sections XPW generation has been studied in the visible/infrared region. In

this section, I present an experimental investigation of the efficiency of XPW generation in the

near UV region. These experiments have been done in collaboration with S. Kourtev and N.

Minkowki from the Sofia University ”St. Kliment Ohridski” (Bulgaria).

There are several motivations to extend the XPW process to shorter wavelength:

first femtosecond excimer laser amplifiers are being developed as ultra-intense femtosecond

UV laser sources and they could be advantageous in many applications (material processing,

biomedicine, laser fusion, etc.). Contrast improvement of these sources is of importance since

ASE in the UV is directly absorbed during laser–matter interaction. Avoiding pre–plasma for-

mation requires the ASE level in the UV region to be kept even lower than in the infrared.

Second XPW generation can be used as the nonlinear effect in diagnostics for the characteriza-

tion of UV short pulses (section 2.3.4). It complies with the requirements of a useable nonlinear

effect: it is efficient, achromatic, presents intrinsic phase matching, generates a measurable sig-

nal wavelength (identical to the input one) easily discriminated from the input pulses through

its polarization. So it should be compared to several other methods used to measure the tem-

poral profile or the temporal contrast of UV pulses (two-photon fluorescence in alkali-earth

fluoride crystals [6, 7], self-diffraction or cross-phase modulation). A first demonstration of an

XPW FROG in the visible (400nm) is reported in [8].

The last motivation is that few-cycle pulses consist of an ultra-broad spectrum spanning from

the IR down to the U.V. Until now I have always assumed that the χ(3) tensor is constant

with wavelength. This is not verified anymore for photon energies approaching half the crystal

band-gap. In this section, I present an experimental investigation of the efficiency of XPW

generation in the near UV region (310 nm). By comparing XPW efficiency at 310 and 620 nm

an estimate of the dispersion of χ(3) in BaF2 is obtained.

4.10.1 Experimental setup

The experimental setup is shown in Fig. 4.20. The pumping source is a CPM dye laser

frequency-doubled in a 3 mm type I KDP crystal (λ = 310 nm after the doubling, τ ≈ 100 fs,

repetition rate 10 Hz). The pulses are focused (f = 300 mm) into a 2 mm z-cut BaF2 crystal

placed between crossed, high extinction ratio, calcite UV grade polarizers (transparency range

0.22-2.3 µm). BaF2 is highly transparent in the UV as it presents a cut-off at 150 nm and the

losses due to two-photon absorption (TPA) are small (Fig. 4.21). To compare XPW generation

in the UV with XPW generation behavior in the visible, measurements are also performed at

the fundamental laser wavelength λ = 620 nm by removing the KDP doubling crystal and

UV filter and using a focal length of 450 mm.
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Figure 4.20: Schematic of the XPW experiment in UV region. BaF2 it’s a z-cut sample. β is

the angle between the x-axis of the crystal and the polarization plane of the input beam.

Figure 4.21: Transmission of BaF2 crystal function of the wavelength λ (Saint-Gobain.)

4.10.2 Experimental results

XPW experiments in the UV immediately prove that XPW generation is not only possible at

those wavelength but also that it is more efficient than in visible. To quantify the increase in

XPW generation efficiency in the UV we did two type of experiments. We measured, both in the

UV and the visible, the XPW intensity as a function of input intensity and crystal orientation.

This gives two independent methods to measure the efficiency increase in the UV, which can

then be compared to a theoretical model.

XPW generation efficiency measurements as a function of input intensities and wavelength

are presented in Fig. 4.22. To estimate the input intensity, the spot surfaces of the input beams
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(UV and VIS) were carefully measured. The ratio of spot surfaces (VIS/UV) was found to be

2.17 . Furthermore, the pulse durations were found to be identical for both wavelengths due to

second harmonic generation (SHG) experimental conditions. The KDP crystal thickness is such

that the difference in group velocities causes narrowing of the SHG spectrum that counterparts

the
√

2 broadening due to the SHG process.

The slope of the XPW generation efficiency as a function of the input pulse intensity follows

a quadratic law as it should be for any cubic nonlinear process. For a given input intensity,

XPW efficiency is 6 times higher in UV than in visible when XPW generation is unsaturated.

As seen from Fig. 4.22 in the saturation regime, XPW efficiency is the same in the visible and

in the UV.

Figure 4.22: Comparison of XPW efficiencies at 310 nm and 620 nm. The solid lines represents

quadratic dependence.

XPW efficiency being linked to χ(3) anisotropy, it is strongly dependant on crystal axes

orientation with respect to the input pulse polarization. The measured angular dependence

of the XPW efficiency at λ=310 nm and λ=620 nm (pulse energies of 15.5 µJ and 56 µJ

respectively) are presented in Fig. 4.23. β is the angle between the input polarization plane

and the crystal axis x. The two energies correspond to intensities of 465 GW/cm2 ± 10% at

310 nm and to 780 GW/cm2 ± 10% at 620 nm, respectively.
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Figure 4.23: XPW generation efficiency as a function of angle β for (a) 620 nm and (b) 310 nm

fundamental wavelengths. Each of the experimental curves is normalized to the average value

of the maxima. The lines are theoretical curves for Gauss/Gauss shapes for spatial/temporal

modulation of the fundamental radiation for (a) F=3.6 and (b) F=5.76. The theoretical model

used takes into account SPM and depletion of the fundamental wave. The vertical solid lines

indicate optimal β position for low input intensities when F << 1

4.10.3 Analysis of the results

From the results shown on Fig. 4.22 and 4.23 we can estimate the increase in third order

nonlinearity at 310 nm with respect to 620 nm. In the undepleted regime the XPW efficiency

η is given by:

η =
IXPW

I0

=
2

εocn
[(σ/4)γoIosin(4β)L]2 (4.3)

where I0 is input intensity, γ0 = 6πχ(3)
xxxx/8nλ; L is the crystal length; σ is the anisotropy

of χ(3) -tensor σ = (χ(3)
xxxx− 3χ(3)

xxyy)/χ
(3)
xxxx. Therefore, η varies with λ for two reasons. First it

presents a 1/λ2 dependance due to the dispersion of γ0. Second it is sensitive to the dispersion

of χ(3). As there is no data on the dispersion of σ we are able to measure the dispersion of

|σχ(3)
xxxx| and assume that the dispersion of σ is negligible compare to the dispersion of χ(3).

From measurements presented in Fig. 4.22, and using Eq. (4.3), we obtain a value of |σχ(3)|
xxxx

which is 1.22 times higher at 310 nm than at 620 nm.

This is confirmed by the β scan analysis. XPW generation with high efficiency presents a

β dependency that varies with F = (2/εocn)σγoIoL. The F parameter is the S parameter

already defined multiplied by the anisotropy. When F << 1 the position of the maxima are at

βopt = m.22.5o with m integer. These positions are marked with vertical solid lines in Fig. 4.23.
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At higher values of F the maxima are shifted from the low intensity positions. The bigger

is the F parameter the bigger is the shift of βopt from its low intensity position. Using F as

a fitting parameter theoretical dependencies are plotted on Fig. 4.23. The corresponding F

fitting parameters for both β experimental curves are F620 = 3.6 for the 620 nm experiment

and F310 = 5.76 for the 310 nm experiment. Using the ratio F310/F620 = 1.60 and the ratio

Io,310/Io,620 = 0.60 we obtain that the product |σ(χ(3)
xxxx| is 1.33 times higher at 310 nm than

that at 620 nm.

The main source of error in both intensity and beta dependence measurements is the input

intensity measurement uncertainty. We then may conclude that the two estimations for the

ratio (σχ(3)
xxxx)310/(σχ(3)

xxxx)620 are in accordance with each other giving an overall:

σχ(3)
xxxx)310/(σχ(3)

xxxx)620 = 1.28± 0.10 (4.4)

χ(3)
xxxx dispersion of BaF2 as a function of the wavelength has been previously experimentally

investigated by De-Salvo et al [9] using a Z-scan measurement at 1064 nm, 532 nm, 355 nm

and 266 nm. Interpolating data in ref [9] one can estimate κ = (χ(3)
xxxx)310/(χ

(3)
xxxx)620 ≈ 1.4.

This ratio is comparable to the one reported in this section. Furthermore, we can also conclude

that the dispersion of σ, the anisotropy of χ(3) , in the spectral range investigated is small and

does not exceed the dispersion of χ(3)
xxxx.

Theoretical model

The method of Boling-Glass-Owyoung [10] is frequently used to theoretically derive the cubic

nonlinearities of materials from their optical index. Furthermore, using the Sellmeier equation

for optical index dispersion with this model, the dispersion of χ(3)
xxxx for BaF2 is given by:

χ(3)
xxxx(λ) = χ(3)

xxxx(λo)
n(λ)[n(λ)2 + 2]2[n(λ)2 − 1]2

n(λo)[n(λo)2 + 2]2[n(λo)2 − 1]2
(4.5)

Applying this equation (4.5) to the wavelengths relevant to this experiment we obtain κ =

(χ(3)
xxxx)310/(χ

(3)
xxxx)620 ≈ 1.17 ± 0.20 This estimation is also consistent with the measured value

from this section enforcing the hypothesis that σ presents little dispersion with wavelength.

4.10.4 Conclusion

In conclusion, with these experiments we have demonstrated XPW generation in UV region

and that this process, outside saturation, is 6 times more efficient than in the visible. Efficiency

dependence with input wavelength from λo to λ, in the visible and near UV region, can be

described by the following relation:

η(λ) = η(λo)(κ
λo

λ
)2 (4.6)

The value reported here for κ is in accordance with what has been previously reported. The

results presented here will be useful for extending the XPW nonlinear filter in the UV region and
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for developing new applications as, for example, pulse characterization and temporal contrast

filtering of femtosecond UV pulses. Similar results obtained with LiF crystal at 310 nm shows

that XPW can be extended to wavelength as low as 266 nm (cut-off frequency at 100 nm).
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4.11 High energy XPW

4.11.1 Introduction

I have previously shown that, working in a double, holo-cut crystal configuration, XPW gener-

ation efficiency close to 30 % in energy can be reached (Fig. 4.7). In this configuration the first

crystal is placed in the far field (at the focus) to have a good spatial profile and the position

of the second crystal is optimized to maximize the overall efficiency. With this solution we

obtained 55 µJ for an input energy of 190 µJ .

Today the most common front-ends of high intensity laser systems deliver mJ level, ≈ 30 fs

pulses. This is for example the case of the LOASIS laser system presented in chapter 5 and of

the ”salle noire” laser system (the front-end is a commercial Femtopower CEP from Femtolasers

GmbH) presented in chapter 6. The Femtopower system is also used as the front-end of the 100

TW laser system produced by Thales Laser (Alpha 10). The only solution at the moment, for

implementing an XPW filter after the front-end is to decrease the input pulse energy. The con-

sequence is that only several tens of µJ of XPW signal are obtained and an additional booster

stage may be necessary before injecting into the low gain amplifiers. Furthermore, with the

constant increase in focused intensity on target (PetaWatt class lasers), pulses with a temporal

contrast higher than 10 orders of magnitude are needed. This implies injecting > 100 µJ , ultra

high contrast pulses into the second CPA. There is therefore a big interest in trying to extend

the high efficiency demonstrated at the hundreds of µJ level to higher input energy and, in

particular, to the mJ level.

Several difficulties limit this extension. First, working in the far field and increasing the in-

put energy (keeping the intensity on the crystal below the white-light generation threshold

(1012W/cm2)), implies using very long focal lengths. The focal length for filtering 200 µJ , with

an input beam diameter of 7 mm, is already 4 meters. The second problem is linked to the

two-crystal configuration. Fig. 4.24 shows the optimal distance between the two crystals as a

function of the focal length squared. The input beam diameter is 5 mm. The distance between

the crystals increases linearly with the square of focal length and so with the input energy.
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Figure 4.24: Summary of published optimal distances with two crystal schemes for XPW gen-

eration obtained with different focusing of the fundamental beam on the two crystal setup. The

dashed lines corresponds to the theoretically predicted slope of 1.

Just as an example, in order to filter 1 mJ, 30 fs pulses, in the double crystal configuration,

the second crystal needs to the located at more than 1 meter from the first. This also implies

that several meters of propagation need to be put under vacuum to avoid any temporal and

spatial distortion caused by SPM. These distances can be reduced by entering with a smaller

beam size but this complicates the beam propagation and implies re-expanding the beam to

avoid damaging the output polarizer.

The simplest solution to bypass these scaling effects consists in using a relatively short focal

length (for example 1 m) and putting the crystal in the near field (out of focus). To circumvent

the problem of poor spatial quality in the near field, a hard aperture can be placed in the

focus to act as a spatial filter. The first results with this configuration were obtained after the-

front end of a commercial 200 TW laser system (Amplitude Technologies) and are presented in

the next section. This type of front-end was chosen because, thanks to the amplification in a

regenerative amplifier, the M2 is very close to 1 and the good spatial profile is maintained out of

focus. Furthermore pulses with an energy higher than 10 mJ are available. With a conversion

efficiency of 10 % in a single crystal configuration, XPW pulses approaching the 1 mJ level can

be expected. This also makes it possible to measure, with high dynamic range, the temporal

contrast directly after the XPW filter.

4.11.2 Experiments at Amplitude Technologies

The 200 TW Pulsar laser system (from Amplitude Technologies, France) is a CPA femtosecond

laser source providing more than 5 J pulse energy at 10Hz repetition rate, with a peak power of

200 TW. It consists of a fully integrated Ti:Sa oscillator with a diode pumped solid state pump
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laser, a stretcher, a regenerative amplifier, three multi-pass amplifiers pumped by Nd:YAG lasers

and a vacuum compressor. The experiments described here were performed using the front-end

only, limiting the energy and allowing pulse compression in air. With the gain narrowing control

performed with an Acousto-Optic Programmable Gain Control Filter (AOPGCF, Mazzler) [2],

spectra as wide as 80 nm are typically generated, only limited by the stretcher and mirrors

bandpass. Due to the square shape of those spectra, the corresponding measured pulse durations

is < 25 fs. The system overall spectral phase is carefully and actively controlled using a feedback

loop between a spectral phase retrieval device, a commercial APE Spider, and the Dazzler.

Using this technique, deviations from a flat spectral phase of less than 0.5 rad are achievable

over about 100 nm spectral range.

To test the new XPW configuration the ≈ 25fs, multi-mJ pulses, compressed after the front-

end, pass through a variable neutral density filter for energy tuning and are focused with a

1 meter focal lens onto a 300 µm iris. The focal spot matches the sizes of the iris. A single

BaF2 1 mm, [101]-cut crystal is placed after the focus at a correct distance to stay just below

the white-light generation threshold. The iris and the crystal are placed under vacuum in a

plexiglass tube (Fig. 4.25). The transverse position of the iris and the longitudinal position

of the crystal can be optimized by keeping the system under vacuum. The position of the

single crystal is optimized to saturate the XPW effect without distortion of the spectrum. The

generated XPW beam is selected with a, high extinction ratio, calcite Glan polarizer. The

maximum output XPW energy we obtained is ≈ 1 mJ for an input of 10 mJ yielding an

overall efficiency of 10 % (considering the losses through the iris) and a good spatial quality.

The measured spectrum (Fig. 4.27 black line) is well fitted by a Gaussian and has a FWHM

larger than 100 nm corresponding to sub-10 fs Fourier transform pulses. The actual temporal

duration is > 100 fs due to the dispersion (550 fs2) added by the output Glan polarizer. This

dispersion can be compensated with multiple bounces on broadband chirped mirrors. These

mirrors were not available for the current experiment. The XPW spectrum is broadened and

not shifted compared to the fundamental. As explained in section 4.6 this is an indication

of the good compression of the input beam. The XPW energy stability function of time is

shown in Fig. 4.26 while Fig. 4.28(black line) shows the high dynamic temporal contrast of the

filtered pulses measured with a third order correlator (Sequoia, Amplitude Technologies). The

dispersion added by the output window of the vacuum tube and the thick Glan polarizer is not

compensated. The Sequoia measurement dynamic range is close to 12 orders of magnitude for

a 1 mJ input pulse. To make the increase in temporal contrast clearly visible we started with

the laser with a low temporal contrast (< 105 red line). An increase in temporal contrast of 5

orders magnitude is visible in the ns (ASE) and ps (coherent contrast) zone. This enhancement

is determined by the ratio between the two components of the input linear polarization. These

experiments confirm the resulted presented in [1] but with a scaling of the output energy by

almost a factor 10.
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Figure 4.25: Schematic of the setup. An iris is placed in the focus to act as a spatial filter. The

position of the crystal is optimized to have a good efficiency without distortion of the generated

XPW spectrum. A maximum output energy of 850 µJ has been obtained.
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Figure 4.26: Energy of the XPW pulses function of time
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Figure 4.27: Spectrum of the converted XPW pulses(black line) and of the fundamental (red

line)
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Figure 4.28: Third order correlator (Sequoia, Amplitude Technologies) measurement of the

temporal contrast of initial laser (red line) and after the XPW filter (black line). The energy

of the XPW beam was 850 µJ
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4.11.3 Conclusion

In conclusion the results of these preliminary experiments are very promising. The possibility of

obtaining 1 mJ, spectrally cleaned and broadened pulses was demonstrated. Starting with high

contrast input pulses (1010 for a typical Amplitude Technologies system) opens the possibility

for generating sub-20 fs pulses with a temporal contrast higher than 14 orders of magnitude.
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Chapter 5

Implementation of an XPW filter at

the LOASIS laser system

5.1 Introduction

In the third and fourth chapter of this manuscript the nonlinear process of XPW generation

has been introduced theoretically and experimentally. In the present chapter all the results and

conclusions that have been reached so far are used for the practical implementation of an XPW

contrast filter to improve the temporal contrast of the Lasers, Optical, Accelerator Systems In-

tegrated Studies (LOASIS) laser facility at the Lawrence Berkeley National Laboratory (LBNL)

in Berkeley (Ca, USA). This work was done in collaboration with O. Albert who spent one year

as a visiting scientist in the LOASIS group lead by Dr. Wim Leemans. My collaboration with

LOASIS was part of my Ph.D grant (Bourse Monge, Ecole Polytechnique). This grant involves

spending 6 weeks as a visiting scientist in a foreign laboratory.

5.2 Influence of the temporal contrast on electron accel-

eration

In chapter 2 I explained the importance of a high temporal contrast for avoiding pre-ionization

of matter, in particular for high order harmonic generation on solid target. Solid targets are also

used for proton acceleration and a high temporal contrast of the pulses is needed for efficient

acceleration with thin targets [4]. The temporal quality of the pulses is also important in the

interaction of a high intensity pulse with a gas jet as is the case for electron acceleration [8, 5].

Laser-based wakefield electron accelerators recently become the subject of vigorous investiga-

tion in many laboratories, mostly because of their potential as compact sources of high energy

electron beams and bright, ultra-short pulse light sources for fundamental studies [1, 3, 7, 2, 6].

It has been revealed that the fine details of the optical properties of the driving laser pulses,

such as pulse shape [5] and pre-pulse contrast [8], have significant effects on the properties and

usability of the generated electron beams. In particular, the forward-running part of a high
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intensity, ultrashort laser pulse, (pre-pulse or ASE pedestal) could start ionizing (or at least

start modifying the index of refraction) the interaction medium in a plasma accelerator and

eventually disturb the plasma wake generation process.

As presented in section 2.2.2, pulses with a temporal (ns) contrast of 6-7 order of magni-

tude with possible pre-pulses are typical in most CPA laser systems. Therefore, in order to

improve the stability of laser plasma accelerators, there is a strong need to improve the contrast

of the driver laser pulses. The solution selected for improving the contrast of the LOASIS laser

facility is the implementation of an XPW contrast filter in a double CPA configuration.

5.3 Implementation of the XPW filter at the LOASIS

laser system

The first implementation of an XPW filter in a double CPA configuration was realized at the

Laboratoire d’Optique Appliquée. The XPW filter was designed to filter 1 mJ pulses in a

double crystal configuration (two [100] BaF2 crystals of 2 mm, first crystal in the focus), with

an expected output energy of several hundreds of µJ . These filtered pulses are then stretched

and amplified in several multi-pass amplifiers up to the joule level. The schematic of this filter

is shown in Fig. 5.1. The practical realization of this filter has demonstrated several limitations

in daily operation. First, the distance between the two crystals to avoid white-light generation

or damaging in the second crystal was underestimated. Therefore, to keep the distance between

the crystals acceptable for the vacuum chamber, the input energy is limited to 300 µJ with

an output of just some tens of µJ . The distance between the crystals for filtering 1 mJ at

30 fs with the current input beam size is 1 meter. Second the size of the vacuum chamber

(all the system is under vacuum) and the weight of the cover make the system not easy for

daily alignment. Starting with these considerations it was decided, for the implementation in

the LOASIS laser, to limit the input energy to 300 µJ and to work in air. Working in air is

favorable in this case due to the relatively long duration of the pulses (45 fs) injected into the

filter. A single double-passed [101]-cut BaF2 crystal located in the focus is used for maximizing

the efficiency and to make the system more robust to variations of the input intensity.

The LOASIS laser before the upgrade is presented in Fig. 5.2 top. The inclusion of the XPW

pre-pulse filter required the installation of 4 new building blocks into the existing CPA laser

chain (Fig. 5.2 bottom):
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Figure 5.1: Schematic of the XPW filter installed at LOA (salle jaune) for the contrast en-

hancement in a double CPA configuration

Figure 5.2: Front end of the LOASIS CPA system with the new components (see text for

details)
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Figure 5.3: Schematic of the XPW filter implemented at the LOASIS laser facility. It comprises

of the two, high extinction ratio ( 105) crossed polarizers, three curved optics forming a 4 m

focal length focusing telescope in order to appropriately match the beam size in the BaF2

nonlinear crystal, and a folding mirror to provide double path in the nonlinear crystal and also

helping to maintain a compact foot-print (1.5 x 0.2 m2) for the whole setup. All components

are situated in air

• XC: XPW compressor. For the correct functioning of the filter the normally stretched

pulse ( 220 ps) needs to be compressed. A compressor part of a commercial (New-

port/Spectra Physics) Stretcher/Compressor system with 1500 line/mm groove density

and with a matched angle of incidence to the LOASIS CPA system was used.

• XF: The XPW filter itself (Fig. 5.3). It consists of two, high extinction ratio ( 105),

calcite crossed polarizers, two curved optics forming a 4 m focal length focusing telescope

in order to appropriately match the beam size in the BaF2 nonlinear crystal (located in

the focus), and a folding mirror to provide double passing of the nonlinear crystal and

also help maintain a compact foot-print (1.5 x 0.2 m2) for the whole setup. After the

second pass in the crystal the beam is collimated with a f=+1500 mm focusing mirror

• XS: XPW stretcher. The filtered pulse has to be stretched again back to 220-250 ps to

be ready for further amplification in the CPA chain. Here we used the stretcher part of a

commercial (Newport/Spectra Physics) Stretcher/Compressor system with 1100 line/mm

groove density and matched angle of incidence to the LOASIS CPA system.

• XA: XPW amplifier. This is a multipass booster amplifier, that makes up the losses in

the previous three components, and brings back up the energy of the pulses from 30 µJ

to 1 mJ, the same energy level, as before the insertion of the XPW filter system. In order

to preserve the achieved contrast enhancement in the XF and to avoid ASE build-up
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during the amplification process, the pump fluence in the Ti:Sa amplifier crystal is kept

below 1.4 J/cm2 and the number of passes was also kept low. A balanced 4-pass system

was designed using the Frantz-Nodvik laser amplifier model. A flashlamp pumped and

intracavity doubled, 10 Hz, 300 mW average power Nd:YAG laser (’ULTRA’ from Big

Sky Lasers) was used as the pumping source. The actual pump fluence was controlled by

an external polarizer/waveplate setup.

The cleaned pulses are re-amplified to 40 mJ, then split to seed three independent amplifiers

forming a multiple second CPA. The beam energy of the first power amplifier reaches 1 J, while

the second amplifier’s output (0.9 J) is split again to provide independently compressed beams

for multi-beam plasma channel experiments. The third, cryo-cooled power amplifier produces

3.8 J/pulse at 10 Hz repetition rate, and propagates in vacuum tubes to the radiation shielded

experimental area for final compression (35 fs). This beam is used in a capillary discharge

plasma target area

The summary of the energy and spectral parameters of the laser beam measured after the

installation of the XPW filter are:

• input/output energy to/from XPW filter (XF): 250-300 µJ/ 30-70 µJ .

• input/output optical spectrum FWHM at XPW filter: 46 nm/53 nm (Fig. 5.5a).

The contrast enhancement factor, at different time regions before the arrival of the main

pulse, was measured using a commercial third-order cross-correlator device (’Sequoia’ from

Amplitude Technologies, Inc.). The first measurement (Fig. 5.4) was performed inside the

laser chain after the booster amplifier (energy 1 mJ). To make this measurement possible

the stretched beam (220 ps) is roughly compressed in a gratings compressor. The second

measurement (Fig. 5.5b) was performed at the output of the 100 TW system. In the first

measurement an increase in incoherent contrast by at least 3 orders of magnitude is visible.

This is less than the extinction ratio of the crossed polarizers. We believe that this is due to a

stress induced linear birefringence in the BaF2 crystal. From the correlation trace the coherent

pedestal due to the imperfect compression is also clearly visible. The coherent contrast is

cleaned just after XPW and this residual spectral phase is due to the rough compression. This

coherent contrast can be reduced by an accurate compression and by measuring accurately the

spectral phase at the end of the laser chain and, with a feedback loop, compensate it with a

pulse shaper. This issue will be addressed in section 6.3. At the output of the laser chain

(Fig. 5.5b) the contrast enhancement is from 10−6 to 10−9 for the pedestal region, and from

10−4 to 10−8 for the prepulses at -5 ps time delay. The decrease in incoherent contrast compared

to the measurement inside the laser system is due to the further amplification to the joule level.
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Figure 5.4: Sequoia measurement just after the XA amplifier and a rough recompression

(a) (b)

Figure 5.5: (a): Optical spectrum measured by an Ocean Optics 4000 USB spectrometer. The

narrow, black curve is the input, and the broader, red curve represents the output of the XPW

filter. Dashed lines are Gaussian fits to determine FWHM values. (b): Sequoia measurement

data. The upper, red curve is the input, and the lower, blue curve represents the output of the

XPW filter.

5.4 Improvements after the installation of the XPW fil-

ter

After the installation of the XPW filter, significant improvements of various characteristics of

the laser beam along the amplifier chain and that of the generated electron and secondary

radiation beams have been observed. Here I present two particular examples:
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• enhanced yield and more stable THz emission from gas jet e-beam/THz experiments

performed at the 10 TW laser beam line

• improved pointing and amplitude stability of the main 100 TW laser (’TRex’) beam

line used to generate GeV electron beams in capillary guided laser plasma accelerator

experiments

5.4.1 Improvements of THz emission

As one of the potential future applications of laser wakefield accelerators, LWFAs, and also

as a useful diagnostic tool for the accelerated electron bunches of these same LWFAs, the

LOASIS group has extensively studied the intense THz emission phenomenon observed at the

exit boundary of the plasma region in a typical gas-jet style LWFA experiment [9]. The laser

pulses interacting with the plasma create accelerated electrons, which upon exiting the plasma

emit THz pulses via transition radiation. Because these electron bunches are ultrashort (<50

fs), they can radiate coherently (coherent transition radiation - CTR) over a wide bandwidth

(1 - 10 THz) yielding high intensity THz pulses [9]. In addition to providing a non-invasive

bunch-length diagnostic and thus feedback for the LWFA, these high peak power THz pulses

are suitable for high field (MV/cm) pump-probe experiments. In order to further understand

the physical processes taking place in the interaction region, stable laser and electron beams

are necessary for detailed parameter-scan experiments. For example, a typical, widely used

scan is the ”compressor scan”, in which the grating separation of the last compressor is changed

to tune the temporal duration of the compressed pulses. Fig. 5.6 shows an example of this

scan where the total electron bunch charge is measured as a function of the grating separation.

The two curves correspond to before (red) and after (blue) the installation of the XPW filter.

An increase (4 times) of the total electron bunch charge is visible after the installation of the

filter. Furthermore, the relative fluctuation of the charge (represented by the error bars) has

also improved, resulting in dramatic improvements in the THz signal amplitude stability. The

shot-to-shot variation, which were at the 100 % level prior to XPW implementation, decreased

to the 10 % level. Similar improvements were observed for the gamma and neutron yields,

constantly monitored during the experiments for radiation protection purposes.
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Figure 5.6: Comparison of total emitted bunch charge in a LWFA experimental compressor scan

before (lower, red curve) and after (upper, blue curve) the installation of the XPW prepulse

filter

5.4.2 Laser beam stability improvements

Since the XPW filtering process effectively improves both the spatial mode profile and spectral

stability one can expect an overall improvement of the statistical parameters of the CPA laser.

The amplitude and pointing stability variations of the laser beam have been recorded in the

TRex (nominal 100 TW) laser beam line. A 3% RMS. energy variation was measured in a

set of 200 shots at 1.5 J average energy on target in each pulse, and 2.5 µrad RMS pointing

stability in a f = 2 m focusing geometry with 25 µm focal spot (Fig. 5.7). (Previous values

were 5% energy stability and 10 µrad r.m.s pointing stability.) These improvements are crucial

for production of stable GeV electron in capillary discharges.
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Figure 5.7: Horizontal (a) and vertical(b) pointing stability of the 100 TW beam line after

installation of the XPW filter
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Chapter 6

Development of 1 kHz, few-cycle, mJ

level CEP stabilized laser source

6.1 Introduction

In this chapter I present the development of a laser system (Salle Noire) delivering CEP sta-

bilized, 1 mJ, few-cycle pulses at 1 kHz repetition rate. In order to generate such pulses, a

multi-mJ, CEP-stable front-end laser system, providing relatively short pulse duration (sub-

30 fs), is necessary due to the current limitations of post-compression techniques used to get

into the few-cycle regime (section 6.11). The high energy few-cycle pulses can then be used

to drive attosecond pulse generation on solid target. At the beginning of my Ph.D there were

no commercially available systems having the required characteristics. In particular the CEP

stabilization was guaranteed for pulses with an energy lower than 1 mJ. Achieving a long term

stabilization of the CEP at the multi-mJ level imposes various constraints on the design of laser

system. Furthermore we wanted to build a laser source with a simple and robust architecture

for daily operation.

The chosen configuration was:

• a broadband oscillator, CEP stabilized

• a stretcher composed of a block of glass and an AOPDF

• a first commercial mJ amplifier

• a second home-made amplifier for boosting the energy up to several mJ

• a hybrid compressor (prisms + chirped mirrors) or (transmission gratings + chirped mir-

rors)

• a hollow fiber for the compression down to the few-cycle regime

• a commercial device for stabilizing CEP at the kHz repetition rate.
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We decided not to build the oscillator and the first amplification stage. The purchased front-

end is a Femtopower Compact Pro CEP (Femtolasers GmbH) commercial system. This system

delivers 1 kHz, CEP stabilized pulses with a temporal duration < 30 fs and a compressed energy

of 1 mJ. The CEP is stabilized with a commercial stabilizing device (Menlo-system GmbH). We

modified the system to accommodate an AOPDF pulse shaper between passes 4 and 5 to control

dynamically the spectral phase of the system. The output of this first amplifier is injected into

a home made three-pass amplifier boosting the energy up to the multi-mJ level. A single pump

laser is used for pumping both amplification stages. The pulses are finally compressed in a

hybrid compressor. The first configuration we tested was a combination of a prism compressor

and chirped mirrors. Although pulses as short as 22 fs with an energy of 4 mJ was obtained with

this configuration, we observed a substantial degradation of the spatial profile after compression

due to inhomogeneities in the prisms. Furthermore CEP measurement of the output pulses

has underlined the impossibility in achieving CEP stabilization in this configuration. For these

reasons we tested a second hybrid compression scheme using a transmission gratings compressor

and chirped mirrors. In this configuration we obtain daily 25 fs, 2.2 mJ, CEP stabilized pulses.

6.2 22 fs, 4 mJ 1 kHz source

I will now review more specifically the main components of the laser source starting with the

configuration using the prism compressor and chirped mirrors.

6.2.1 CEP stabilized oscillator

The oscillator is a Kerr lens mode locking Rainbow CEP type (femtolasers GmbH) [1]. It

delivers pulses with an energy of 2.5 nJ at a repetition of 80 MHz. The schematic of the cavity

is presented in Fig. 6.1. The spectrum emitted by the oscillator is shown in Fig. 6.2. The FWHM

is 220 nm corresponding to a transform limited duration of 6.8 fs. A nonlinear interferometer

is implemented after the oscillator for the stabilization of the CEP with a fast loop. The pulses

are focused with a concave mirror in a PPLN (Periodically Poled Lithium Niobate) crystal. The

intensity in the crystal is high enough to broaden the spectrum by SPM and to generate intra-

pulse difference frequency generation (DFG) between the high frequency and low frequency

part of the spectrum [2]. Interference between lower frequencies of the fundamental spectrum

and the difference frequency signal yields a beating at the frequency fceo. This signal is directed

with a dichroic mirror to a frequency meter and a feedback electronic loop for the stabilization

of the CEP (section 2.2.1). When the feedback loop is activated the electronic part of the

stabilizing system controls an acousto-optic modulator that modulates the pump power of the

oscillator. The resulting variation in intensity of the pulse inside the cavity forces fceo to be

equal to frep/4. Forcing the two signals to oscillate in phase gives ∆ϕ0 = 2π/4, so that every

4 pulses exiting the cavity have identical CEP ϕ0. For the correct operation of the system the

frequency fceo must be detected with a signal to noise ratio (SNR) higher than 30 dB.

114



The oscillator pulses then go through an optical isolator and are stretched in a 20 cm block of

glass (SF7).

Figure 6.1: Schematic of the Rainbow CEP (Femtolasers GmbH). M1-M2 sub-cavity mirrors.

CM1-CM2 chirped mirrors for the compensation of the intra-cavity GVD.

Figure 6.2: (a) Output spectrum of the oscillator (FWHM 220 nm), (b) corresponding Fourier

transform temporal profile (temporal duration 6.8 fs).
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Figure 6.3: Schematic of the principle for the generation of the beat signal at the frequency

fCEO with a device using the difference frequency generation in a PPLN crystal. The pulse is

focused in the crystal. new spectral components are generated by SPM. In this crystal there is

a nonlinear process of difference frequency generation (DFG) between the high frequency and

low frequency part of the spectrum [2]. Interference between low frequency of the fundamental

spectrum and the DF signal yields a beating at the frequency fceo

6.2.2 Multi-pass amplifier

The commercial multi-pass amplifier (10 passes) delivers pulses with an energy of 2 mJ at 1

kHz (Fig. 6.4). The pump laser is a Nd:YLF (PI, Photonics Industries) delivering 1 kHz, 50

mJ (50 W) pulses at 527 nm. Only 11 W are used for pumping this amplification stage. In

the first 8 passes the energy goes from few nJ to 400 µJ . After the fourth pass the beam goes

through the AOPDF (HR800) and a Pockels cell for the selection of a train of pulses at 1 kHz.

These pulses are further amplified to an energy of 2 mJ. The ASE level estimated by blocking

the injection in the amplifier is around 40 µJ . The choice of the location of the AOPDF in

the amplifier is original. We chose this configuration because, due to the gain narrowing in the

first 4 passes, the spectral bandwidth injected into the the AOPDF is reduced compared to the

case where it is placed after the oscillator. As a consequence, the diffraction efficiency of the

AOPDF is higher, and thus the pulses can be amplified to the mJ level in the following passes

while maintaining a good temporal contrast (108 at the output of the Femtopower).
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Figure 6.4: Schematic of the commercial amplification system. It is a ten-pass amplifier with

an output pulse energy of 2 mJ at 1 kHz repetition rate(uncompressed). The crystal is pumped

with 11 W (at 527 nm) and cooled at 193 K with a cryostat (XTAL). The Dazzler and the

pockels cell are placed after the fourth pass.

6.2.3 AOPDF (Dazzler)

During all my Ph.D I used several times the AOPDF [3] for the pulse shaping and characteri-

zation. I give here a brief introduction of this device. It is constituted of a TeO2 crystal which

is optically and acoustically birefringent. An acoustic wave is launched by a transducer excited

by an electronic signal. The acoustic wave propagates with a velocity V along the z axis and

hence reproduces spatially the temporal shape of the rf signal. Two optical polarization modes

can be coupled efficiently by the acousto-optic interaction only when some phase matching

condition is achieved. If there is locally only one spatial frequency in the acoustic grating, then

only one optical frequency can be diffracted at a position along z. The incident optical short

pulse is initially in mode 1. Every frequency ω travels a certain distance before it encounters a

phase-matched spatial frequency of the acoustic wave. At this position z(ω), part of the energy

is diffracted into mode 2. The pulse leaving the device in mode 2 will be made up of all the

spectral components that have been diffracted at various positions z(ω). Since the velocities of

the modes are different, each frequency will experience a different time delay. The amplitude of

the output pulse, or diffraction efficiency, is controlled by the acoustic power at position z(ω).

The optical output Eout(t) of the AOPDF is a function of the optical input Ein(t) and of the

electric signal H(t). More precisely, it has been shown to be proportional to the convolution of

the optical input and the scaled electric field:

Eout(t) ∝ Ein(t)⊗H(t/α) (6.1)
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where the scaling factor, α = ∆n(V/c), is the ratio of the speed of sound to the speed of light

times the index difference between the ordinary and extraordinary polarizations. α is the ratio

of the acoustic frequency. Relation (6.1) can be written in the frequency domain as:

Ẽout(ω) ∝ Ẽin(ω)H(αω) (6.2)

In this formulation H(t/α) appears as the impulse response of a filter applied to the input

optical pulse. By generating a proper function S(t) one can achieve any arbitrary convolution

with a temporal resolution given by the inverse of the available filter bandwidth.

Figure 6.5: Schematic representation of the Acousto-Optic Dispersive Programmable Filter

6.2.4 Home made amplifier

The second amplifier is a home made three-pass amplifier. A schematic of this amplifier is

shown in Fig. 6.6. The Ti:Sa crystal, cut at Brewster angle, is under vacuum and cooled at

195 K. The pump beam is down collimated by a (3:1) telescope and is then focused with a lens

(L2) on the crystal. The power of the pump is 25 W. The absorbtion of the crystal is 75 %

and the transmitted beam is refocused with a concave mirror (M1). The injection beam passes

through an optical isolator to avoid any return into the first amplifier. A mirror telescope and

a focusing lens (L1) are used to achieve the correct beam size on the crystal. After each pass

the beam is re-imaged using concave dielectric mirrors (M2-M3) in order to have for each pass

the correct beam size on the crystal. The diameter at 1/e2 in intensity of the infrared beam is

roughly 1 mm for each pass. The geometrical focus for each pass is located before the crystal

to have a slightly divergent beam to compensate the thermal lens in the crystal. The beam

focus is inside the vacuum chamber to avoid any nonlinear effects in air. The output energy is

6 mJ. The total gain of the amplifier is 7.5.
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Figure 6.6: Schematic of the home made amplifier. L1:converging lens f=1500 mm.

L2:converging lens f=700 mm. M1: dielectric mirror treated for 527 nm

The number of passes in this amplifier is limited to three due to the high B integral value

(1.35 rad). This value needs to be added to the 3.5 radians already accumulated in the first

amplifier. A total B integral higher than 4 radians is typically considered too high for the

correct functioning of a CPA laser. As shown in the next section, the DazScope technique

enables to measure and pre-compensate this nonlinear phase and therefore to achieve near

perfectly compressed pulses. The high B integral of this chain originates from the small pulse

stretching (10 ps). This choice is motivated by the fact that a small stretching factor enables

the use of prism or very compact gratings compressors with increased insensitivity to dispersion

fluctuations. This is of fundamental importance for achieving a good CEP stability.

6.2.5 Hybrid compressor: prism + chirped mirrors

The calculations for the design of the prism compressor were made by A. Trisorio from the

PCO group. The values of dispersion added by this compressor are shown in Tab.1 together

with the overall dispersion of the laser system Tab.2. The picture of the prisms and a schematic

of the prism compressor are shown in Fig. 6.9 and Fig. 6.10
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Figure 6.7: Parameter and dispersion introduced by the prisms

Figure 6.8: Dispersion introduced by the different elements of the laser chain. This dispersion

corresponds to 10 ps stretched pulses
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Figure 6.9: Picture of the prisms used in the hybrid compressor.

Figure 6.10: 3 D modeling of the prism compressor with Zeemax.

To limit SPM in the last prism, the temporal compression is ended by 32 reflections on two

negatively dispersive chirped mirrors (Fig. 6.11). The characteristics of these chirped mirrors

are:

• reflectivity higher than 99.5 % for a spectral range between 760 and 840 nm

• a damage threshold of 400 mJ/cm2
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• a second order dispersion of -200 fs2 per bound with an angle of incidence of 15°

The pulse duration after the prism compressor is roughly 1 ps and is reduced to 22 fs after

the 32 reflections (The total dispersion introduced by the chirped mirrors is -6400 fs2).

Figure 6.11: Photos of the chirped mirrors used in the hybrid compressor. The pulses are

reflected 32 times on the mirrors to end the compression

The temporal duration has been optimized using a closed feedback loop (Dazscope), that is

presented in the next section, and measured with a home made SPIDER. The compressed pulse

energy is 4 mJ with an efficiency of the compressor of 67 %. The temporal contrast has also

been measured in order to access the temporal quality of the pulses. This is shown in Fig. 6.12.

The contrast is 5 ∗ 105 at a delay of 3 ps and 3 ∗ 107 for a delay of 15 ps. The ASE level is 107

at 40 ps. With a fast photodiode and a digital oscilloscope we measured the energy stability of

the output pulses. The standard deviation of the energy fluctuations is 2.6 % over 10 minutes.

This is due to the fact that the second amplifier is not saturated.

To test the quality of the beam we measured with a CMOS camera the far field spatial profile

(f=1.5 m) at different z positions on either sides of the beam waist. From this measurement the

M2 factor can be calculated. In particular we obtain M2
x = 1.9 for the x axis and M2

y = 2 for

the y axis. The spatial quality is not excellent and this is due to the relatively high B integral

of our laser and to degradation of the spatial profile in the prism compressor. This is not too

problematic because the spatial profile is cleaned with the propagation in the hollow-core fiber.

Pre-compensation of nonlinear spectral phase with the pulse shaper and spatial cleaning in the

hollow fiber enable us to avoid the main problems of a high B integral.
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Figure 6.12: High dynamic range third order correlation (Sequoia, Amplitude Technologies)

measurement of the pulses compressed in the hybrid compressor (prisms+chirped mirrors).The

contrast is 5 ∗ 105 for a delay of 3 ps and 5 ∗ 107 for a delay of 15 ps.

Figure 6.13: Measurement of the intensity profile focused with a f=1.5 m concave mirror for

different position before and after the waist. (a) Radius at 1/e2, Wx in intensity measured along

the x axis and fitting curve from the formula. (b) Radius at 1/e2, Wy in intensity measured

along the y axis and fitting curve from the formula.
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6.3 DazScope

6.3.1 Introduction

In this chapter I present the local spectral compression technique for the closed-loop optimiza-

tion of the temporal duration, commercialized under the name DazScope™. I developed this

technique in collaboration with FASTLITE. The starting point of this development was the

study of the effect of the spectral phase on the XPW generation presented in section 4.6. From

the results presented in this section there is a clear correlation between the shape of the XPW

spectrum and the spectral phase of the input pulse. In particular, I have shown how the combi-

nation of second and third order spectral phase shifts the barycenter of the spectrum generated

by the nonlinear process. This is even more evident using second harmonic generation (SHG)

as the nonlinear effect. Fig. 6.14 shows for example the evolution of the SH spectrum function

of ϕ(2) (x axis ±2500fs2) for different fixed values of ϕ(3) (±35000fs3). The first figure on the

left of the first line (figure 1) corresponds to ϕ(3) = −35000fs3. The second figure of this line

(figure 2) corresponds to ϕ(3) = −30625fs3. The last figure on the right of the last line (figure

16) corresponds to ϕ(3) = 35000fs3. From the different scans it is easy to see that the third

order spectral phase passes through ϕ(3) = 0 between picture 8 and 9 (respectively last figure of

the second line and first figure of the third line) where the barycenter function of ϕ(2) changes

the sign of the slope. For a single scan there is an absolute maximum of the SHG energy when

ϕ(2) = 0. Starting with this consideration it is important to see if, looking at the spectrum

generated in the nonlinear process for different values of an added ϕ(2), enables the extraction

of the spectral phase of the input pulses. This is demonstrated theoretically in the next section.

The experimental results are then presented.
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Figure 6.14: Evolution of the SH spectrum (y axis 370 nm<λ<430 nm) function of ϕ(2) (x axis

±2500fs2) for different fixed values of ϕ(3) (±35000fs3). This graph needs to be read following

the lines from the top two the bottom (like a text). The first figure on the left of the first line

(figure 1) corresponds to ϕ(3) = −35000fs3. The second figure of this line (figure 2) corresponds

to ϕ(3) = −30625fs3. Between each figure there is a fixed increment of the third order spectral

phase ϕ(3) = +4375fs3. The last figure on the right of the last line (figure 16) corresponds to

ϕ(3) = 35000fs3.

6.3.2 Theoretical introduction

The starting point of this analysis is the equation:

IB(ω) ∝ IA(ω)3

|φ′′(ω)|2
(6.3)

that has been derived for XPW generation using the stationary phase approximation. This

formula, valid for sufficiently chirped pulses (|φ′′(ω)| > 1/∆ω2, ∆ω spectral bandwidth), states

that the intensity of the spectrum of the cross-polarized wave IB(ω) can be linked to the

intensity of the spectrum of the fundamental pulse I(ω) and its spectral phase second order

derivative φ
′′
(ω). The corresponding expression for second harmonic generation is:

ISHG(2ω) ∝ I2(ω)

|φ′′(ω)|
(6.4)

The validity of (6.4) can be confirmed by recording the SHG spectrum of a near Fourier-

transform limited pulse to which a purely parabolic phase ϕ(2)(ω − ω0)
2/2 is added. In this

case, the asymptotic expression of the SHG spectrum is a hyperbolic function of the second

order phase ϕ(2) since the expected SHG spectrum is, according to (6.4):

ISHG(2ω) ∝ I2(ω)

ϕ(2)
(6.5)
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Fig. 6.15 shows some typical experimental SHG signal recorded, at a given pulsation, as a

function of the second order phase. A Lorentzian fit confirms the validity of (6.4), hyperbolic

at large chirps.

When a set of purely linear chirps, ϕ(2), is added to the the spectral phase, ϕ(ω), of an input

pulse, the total spectral phase becomes φ(ω) = ϕ(ω) + ϕ(2)(ω − ω0)
2/2 and equation (6.4)

predicts, for a given frequency, symmetric and hyperbolic decays of the SHG intensity with large

positive and large negative ϕ(2) values, these decays being symmetric with respect to ϕ
′′
(ω).

The algorithm consists in finding the optimal hyperbolic fit at large chirps and returning, for

every frequency, the value of ϕ
′′
(ω) (the local chirp). The pulse spectral phase is then retrieved

by a double integration.

Figure 6.15: Left:typical Lorentzian fit (solid line) to the experimental data (dotted line)at a

given wavelength. Right: map of the SHG spectra as function of frequency and added second

order phase coefficient.

6.3.3 Examples

To illustrate the efficiency and accuracy of this method I have simulated the SHG spectrum

obtained for a chirp scan from −3000fs2 to +3000fs2 for four different input pulses:

- Fourier transform ( 6.16.a),

- pure second order phase of +1000fs2( 6.16.b),

- pure third order phase of +50000fs3( 6.17.a)

- sinusoidal phase ( 6.17.b).

The pictures also show the fitted value of ϕ
′′
(ω) (the local chirp) with a white dotted line. In
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the case of a pure second order phase, ϕ
′′
(ω) = const; the constant giving the value of the initial

chirp. For the purely third order spectral phase pulse, the image corresponds to linear chirp

optimization vs wavelength, as the local chirp of a third order is linear. For a more complex

phase, the image is distorted but still gives for each wavelength the local chirp.

Figure 6.16: SHG spectrum obtained for a chirp scan from −3000fs2 to +3000fs2 for a Fourier

transform limited input pulse (a), for an input pulse with a pure Chirp (b)

Figure 6.17: SHG spectrum obtained for a chirp scan from −3000fs2 to +3000fs2 for an input

pulse with pure third order (a), and for an input pulse with a SPM oscillatory phase (b)

6.3.4 Experimental results

In the previous section it is demonstrated theoretically how the spectral phase can be measured

using a ϕ(2) scan. This scan is experimentally done with an AOPDF. This measured phase can

then be automatically compensated with the same AOPDF. Therefore, both phase measurement

and correction are done in a single AOPDF. This closed-loop optimization has been implemented

for the first time in the the ”salle noire” laser system. I have previously shown that, due

to the small stretching factor, the B integral of this source is quite high (B > 3). I now

demonstrate that the AOPDF can be used to measure the spectral phase induced by SPM

and then compensate for the measured phase distortion. For the pulse measurement, a small

fraction of the output energy (< 1 µJ) is selected with a beam splitter and focused with a f=500

mm focal length lens into a 50 µm type-I BBO crystal. The generated SHG is separated from

the fundamental and collected with a commercial spectrometer (AvaSpec-3648 from Avantes).

Fig. 6.18a,b and Fig. 6.19c,d show the SHG spectra versus chirp traces together with the

extracted local chirp function (white line) for four states: initial state at low energy (Fig. 6.18a),
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optimized pulse at low energy (Fig. 6.18b), pulse at high energy with the same phase settings

(Fig. 6.19c), optimized pulse at high energy (Fig. 6.19d).

Figure 6.18: Chirp scan of a non compressed pulse (a), Chirp scan after optimization of the

polynomial phase (b)

Figure 6.19: Chirp scan under the same conditions then Fig. 6.18b but with increased seed

energy into the second amplifier (c), Chirp scan after correction of the nonlinear phase at high

energy (d)

Fig. 6.18a shows an input spectral phase mainly dominated by a residual second and third

order spectral phase resulting from imperfect optimization of the compressor. This phase is

automatically compensated after a polynomial fit to the third order. The resulting trace after

this compensation is shown in Fig. 6.18b. From this measurement it is visible that the remaining

phase is oscillatory and can not be fitted with a low order polynomial. Fig. 6.19c clearly

indicates that, changing the seeding of the second amplifier from 600 to 900 µJ , dramatically

changes the spectral phase of the amplified pulses, in particular increasing the amplitude of the

oscillations of the local chirp. Due to the small stretching of our pulse (10 ps) the B-integral

of our laser system is estimated to be about 4-5 rad for the high energy seed. When a pulse

is sufficiently chirped as in a CPA stretcher, the temporal profile corresponds to the spectral

profile and so the nonlinear phase corresponds to the the spectral shape: ϕnl ∝ n2I(t) ∝
n2I(ω) (where I(ω) is typically a Gaussian). When we compensate the polynomial spectral

phase of the stretcher/compressor pair the residual phase comes from nonlinear effects in the

amplification crystal and the local chirp is then the second order derivative of a Gaussian

function. This correspond to the oscillatory trace measured in Fig. 6.18b, Fig. 6.19c. In

particular at high energy there is a large oscillation of period 50nm (12.5nm on the SHG
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spectrum) with amplitude of about ±900fs2. As predicted theoretically in [1], this phase can be

pre-compensated numerically with the pulse shaper. Naturally this assumes that the non linear

phase is small compared to the stretching factor and this is still valid in our case. Fig. 6.19d

shows experimentally the effect of the pre-compensation. The residual phase measured after

optimization is less than 0.5 rad which corresponds to the typical measurement precision of

SPIDER[3] or FROG[4] devices. The pulse temporal duration, measured with an home made

SPIDER, is shown in Fig. 6.20.

Figure 6.20: Temporal measurement and spectrum and phase after DazScope optimization.

6.3.5 Discussion

Compared to standard pulse measurement technique like FROG or SPIDER, the DazScope

technique is a phase-only method and strictly speaking, is not a pulse measurement technique.

For example a double structure pulse will not be measured. As a phase-only technique it can

be compared to the Multiphoton Intrapulse Interference Phase Scan (MIIPS) [2, 5, 6, 7]. The

DazScope technique is really adapted for the characterization and optimization of the output

pulses of a CPA laser where an AOPDF is present. In these cases it has several advantages:

the traces are very visual and in particular any residual linear chirp translates to a relative

shift to the zero added second order phase. There is no ambiguity on the sign of this chirp.

This technique is also very sensitive to the high order terms of the spectral phase. We have

seen previously how it has been used for measuring and pre-compensating the non linear phase

induced by SPM during amplification. We have also discussed in the introduction how the

residual spectral phase affects the temporal quality of pulses at the output of a CPA laser and

is responsible for the coherent (ps) contrast. Finally the measuring setup is extremely simple

consisting of just a BBO crystal and the spectrometer. It can be placed as close as possible to

the experiment even inside the interaction chamber.
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6.4 CEP

Up to now I have demonstrated the generation of 4 mJ, 21 fs pulses at 1 kHz. I have also

presented how the pulses at the output of the oscillator are CEP stabilized. This is not enough

for having CEP stable pulses at the output of the laser. All the optical elements after the

oscillator introduce some phase fluctuations ∆ϕ0. The fluctuations in the multi-pass amplifier

are caused by variations of the non linear index of the crystal. These variations are induced by

fluctuations in the intensity of the pulses due to the fluctuations of the pump intensity. The

CEP fluctuations in the strecther/compressor originate from dispersion fluctuations caused for

example by a variations of beam pointing or beam path. The CEP noise thus originates from

the oscillator, laser amplifiers and the compressor. In particular the main contribution comes

from the oscillator. In the oscillator the repetition rate is 80 MHz compared to the kHz of the

amplified pulses. There is therefore an accumulation of the variations of ∆ϕ0 over a period of

1 ms. In conclusion, to build a CEP stabilized system, it is necessary to have:

• a device for fixing the value ∆ϕ0. This is realized using two wedges inside the oscillator

cavity. These wedges can be finely moved.

• a first feedback loop after the oscillator for actively stabilizing ∆ϕ0.

• a second feedback loop just at the end of the laser chain.

Although the measurement of ∆ϕ0 for the both loops is based on nonlinear interferometry,

they are different because the first uses MHz low energy pulses from the oscillator and the

second uses the amplified high energy, kHz pulses. The first loop is called fast loop and the

second is called slow loop. In the commercial Menlo-system the two feedback loops generate

two error signals that are treated to generate a single error signal. The feedback control is

based on the modulation of the non linear dispersion of the Ti:Sa crystal of the oscillator.

This is tuned by changing the intensity of the pump laser with an acousto-optical modulator.

I have already discussed the scheme for measuring ∆ϕ0 after the oscillator (section 2.2.1). I

now present the setup for measuring the slow changes of the CEP. This device is named an

f-2f interferometer. The schematic is reported in Fig. 6.21. A beam splitter selects low energy

pulses that are focused in a sapphire plate. This step is needed for broadening the spectrum

to one octave. They are then focused on a BBO crystal, phase matched for converting the

infrared side of the spectrum. The SHG and the fundament signal are cross-polarized and have

a certain delay τ0. These two signals pass then through a polarizer with the transmission axes

at 45 degrees compared to the polarization signal of the two beams to make them interfere.

The signal measured with the spectrometer presents many spectral fringes (Fig. 6.22). The

CEP drift is extracted by the shift of these fringes as a function of time. In particular the

spectrometer signal is given by the equation:

I(ω) ∝

∣∣∣∣∣∣
+∞∫
−∞

[EF (t + τ0) + ESH(t)] exp(−iωt)dt

∣∣∣∣∣∣
2

(6.6)
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that can be expressed in the form:

I(ω) ∝ IF (ω) + ISH(ω) + 2
√

IF (ω)ISH(ω)cos [((ϕ0 + ΦSH(ω)− ΦF (ω) + ωτ0)] (6.7)

where IF (ω) and ISH(ω), (ΦSH(ω) and ΦF (ω)) are the respective spectral intensity (spectral

phases) of the fundamental and the SH. ϕ0 is the input CEP phase. The argument of the cosine

is extracted with the Fourier Transform Spectral Interferometry (FTSI) algorithm. As it was

presented in the case of a SPIDER measurement this algorithm consists of making a Fourier

transform to get into the time domain, to apply a band pass filter around τ0 and to make

another Fourier transform back in the frequency domain. It is then possible to measure the

CEP variation between successive pulses. A tension signal proportional to the CEP variation

is then sent to the acousto-optic RF driver for the CEP stabilization.

Figure 6.21: f-2f interferometer for measuring the CEP shift of the pulses at the output of the

laser chain
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Figure 6.22: Typical spectrum measured after the f-2f interferometer. The CEP drift is ex-

tracted by the shift of these fringes as a function of time.
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6.5 CEP after prism + chirped mirrors compressor

The commercial Femtopower front-end of the laser system is CEP stabilized. The initial CEP

drift with the fast and slow feedback active was measured to be 176 mrad for a time of 30

minutes. The integration time on the spectrometer was 1 ms, 20 consecutive spectra are

averaged for CEP measurement. After reducing the jitter of the acoustic wave of the AOPDF

in the laser system (see next section) we decreased this noise to 100 mrad for a measurement

of several hours Fig. 6.23.

Figure 6.23: Measurement of the CEP drift at the output of the Femtopower. The integration

time for each acquisition is 1 ms, 20 consecutive spectra are averaged for CEP measurement.

The same measurement was repeated to characterize the CEP drift between the 4 mJ pulses

with the fast loop activated. The measurement trace presented frequent random jumps of the

CEP and it was impossible to stabilize the CEP drift with the slow feedback loop. These random

variations of the CEP between pulses can not be compensated with the slow feedback loop. We

believe that this CEP drift was added by the compressor and in particular by the prisms (the

chirped mirrors have been tested separately after the Femtopower without degradation of the

CEP). Due to its large dimension (3 meters between the two triplets of prism) the compressor

was not sufficiently isolated from the dispersion fluctuation caused by the movement of air

between the prism. Probably with a correctly designed cover this problem can be solved. We

did not continued in this direction because the propagation in the prisms also strongly degrades

the spatial quality of the beam and thus its M2. We thus tried a second configuration where

the amplified pulses are compressed in a hybrid compressor consisting of transmission gratings

and chirped mirrors. The good CEP stabilization we obtained in this configuration and its

robustness convinced us to adopt this solution.
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6.6 Transmission grating + chirped mirror compressor

The laser setup with the transmission gratings + chirped mirrors compressor is shown in

Fig. 6.24. The compressor is composed of two 600 lines/mm, fused silica holographic gratings

(Wasatch Photonics). Substituting the prisms with the gratings implies some changes in the

laser configuration, primarily due to the fact that the stretcher and compressor are not matched

anymore. The prism compressor introduces negative third order dispersion (−95760fs3) and

this compensates the positive third order dispersion of the bulk stretcher and the material in

the amplifier (91064fs3). In the case of a grating compressor, the third order dispersion is

positive and it is therefore added to the value of the stretcher and the material in the amplifier.

Furthermore the value of the third order dispersion is directly proportional to the value of the

second order dispersion. We decided to compensate all the third order phase with the Dazzler.

This is possible only making a trade-off with the negative chirp introduced by the compressor.

With a distance between the gratings of 70 mm for an angle of incidence of 13.9 °, the spectral

phase added by the compressor is ϕ(2) = −50000fs2 and ϕ(3) = 70000fs3. Again the final

compression is then achieved after 32 bounces through the negatively chirped mirrors pair.

The pulses are thus initially stretched to 7 ps. Decreasing the pulse stretching compared to the

previous configuration limits the output pulse energy to 4 mJ. The spectral phase added by

the Dazzler in the two compression configurations is reported in Tab. 6.25. The overall trans-

mission of the compression stage is 53 % (60 % for the gratings compressor). Using grooved

gratings instead of holographic gratings this efficiency can be increased to 83 %. Temporal

and spectral characterization of the 2.1 mJ output pulses was achieved using an home made

SPIDER, Fig. 6.26(a),(b), after a DazScope optimization. The spectrum does not exhibit any

significant distortions over 100 nm bandwidth. The measured spectral duration is 25 fs, close to

the Fourier transform limit. Furthermore, the proposed compression scheme preserves a good

spatial quality. (M2 = 1.2). The Gaussian spatial intensity distribution of the focused beam is

represented in Fig. 6.26(c).

A few µJ are split off and sent into the collinear f-2f interferometer APS 800, Menlo System to

monitor the relative CEP drift of the amplified pulses. Fig. 6.27(a) represents single shot fringe

pattern registered at the output of the interferometer (2000 shots, the integration time of the

spectrometer is 1 ms). No feedback loop is activated for this acquisition. The visible and well-

contrasted interference figure demonstrates the effective CEP stabilization of the laser pulses.

This observation is corroborated by the measurement of the corresponding CEP drift on a short

time scale (one minute) (Fig. 6.27(b)). The parameters of the APS are: acquisition time=1 ms,

cycle loop time =100 ms, 20 consecutive spectra are averaged for CEP measurement. To eval-

uate the long term stability, the slow drift introduced by the amplifier is then pre-compensated

by a feedback loop to the oscillator locking electronics using the measured CEP. Fig. 6.27(c)

shows the typical CE phase stabilization of the system with feedback control. The RMS phase

error over tens of minutes is 250 mrad. Furthermore we discovered that part of this noise was

added by the jitter of the acoustic-wave of the Dazzler (section 6.9). The added CEP noise is

in fact linearly proportional to the acoustic wave jitter. In this first configuration the acoustic

136



rms jitter was measured to be 180-300 ps with a corresponding added CEP noise of 120-220

mrad. Decreasing the acoustic rms jitter to 70 ps noise reduces the added rms phase noise to

less than 50 mrad. In this second configuration the measured RMS phase error is 180 mrad

(Fig. 6.28) for a measurement of several (3) hours. Comparing this result to the measurement

just after the Femtopower (after the Dazzler upgrading) we see that an additional CEP noise

close to 80 mrad is added by the second amplifier and the grating compressor.

Small distance between the gratings reduces the sensitivity to beam pointing and air currents in

the compressor. In our case, the reduced groove density of gratings and the lower incident angle

decrease CEP fluctuations associated with variations of gratings separation (thermal of mechan-

ical drift). Previous studies have theoretically and experimentally demonstrated that the CEP

drift stabilization in gratings-based setup may require interferometric control of the effective

gratings separation, which nevertheless this introduce additional experimental complexity. In

our configuration we overcome this limitation.

Figure 6.24: Schematic of the 2 mJ, 25 fs, 1 kHz, CEP stable CPA system with transmission

gratings and chirped mirror compressor
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Figure 6.25: Spectral phase added by the Dazzler for the two compressions schemes

Figure 6.26: Temporal and spatial characterization of the compressed 2.1 mJ pulses. (a) Spec-

tral intensity (solid line) and phase (dashed line) obtained from SPIDER measurement. (b)

Temporal intensity profile (SPIDER measurement). (c) Spatial intensity distribution in the

far-field (the 7 mm-diameter output beam is focused by a 1 m lens). Vertical and horizontal

profiles are fitted by a Gaussian distribution (white lines). The measured value of M2 factor is

about 1.2
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Figure 6.27: CEP stability measurements (spectrometer integration time: 1 ms). (a) Single shot

fringe pattern from the collinear f-2f interferometer for 2000 consecutive shots. For illustration

one shot is shown in the inset. (b) Measured relative CEP drift of amplified pulses without

feedback loop. (c) Measured stabilized CEP drift of amplified pulses with feedback control over

15 minutes (250 mrad RMS). The stabilization of the CEP over an hour has been measured

with a RMS error of 290 mrad
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Figure 6.28: Measured stabilized CEP drift of amplified pulses after reduction of the jitter of

the acoustic wave of the Dazzler.

6.7 Influence of the B integral on the CEP

The drawback of the small stretching factor of the pulses in the laser system, is the accumulation

of a nonlinear phase induced by SPM during amplification. This nonlinear phase is evaluated

measuring the B integral of the laser chain. I have shown in section 6.3 how the AOPDF can

be used to measure and pre-compensate this spectral phase (DazScope) to avoid its adverse

effect on the pulse compression. The B integral is also correlated to the added CEP noise.

The intensity fluctuation of the amplified pulse shifts the CEP due to the nonlinear refractive

index change. This shift can vary randomly from pulse to pulse and therefore can not be
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compensated with an active phase stabilization loop. The refractive index change due to the

nonlinear refractive index (∆n = n2I) is n = n0 + n2I. The length corresponding to a 2π shift

of the CEP is given by:

L2π,nl = 1/(d∆n/dλ) = 1/((dn2/dλ)I). (6.8)

To make the situation simpler, we assume the intensity I constant over the length L; then

the product of the intensity and the length is given by IL=λ n0Btot/2πn2. Where Btot, the B

integral, is given by expression Btot = 2π/(λn0)
∫ L

0 n2Idz. In this case, the CEP shift due to

the nonlinear index is given by:

δθnl = 2πL/L2π,nl =
λn0

n2

(
dn2

dλ

)
Btot. (6.9)

The intensity fluctuation of ∆I results in the fluctuation of the CEP shift of ∆ϕ0 = δθnl∆I.

The list of n0, n2,
dn2

dλ
and δθnl at Btot = 1, and the CEP fluctuation for a 1 % intensity

fluctuation, is given in Tab. 6.29. For 1 % intensity fluctuation, the CEP fluctuation is on the

order of 10−3 rad at Btot = 1.

Figure 6.29: List of the parameters related to the CEP shift due to intensity fluctuations

It is thus interesting to effectively measure the B integral of our chain in order to evaluate

its contribution on the total CEP noise.

6.8 Measuring the B integral

The B integral of a laser chain can be measured by injecting the amplifier with two delayed

pulses and measuring the output replicas of these pulses with a high dynamic range correlator.

To understand how two pulses can generate several replicas after amplification and compression
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I first give here a short theoretical introduction.

The most intuitive way to understand this temporal ”diffraction” is to consider it as a four-wave

mixing (FWM) process [2]. As shown in Fig. 6.30, the delay between pulses is chosen so that the

pulses partially overlap after the stretching. At any particular position in the overlapped part

of the two pulses the instantaneous optical carrier frequencies are ω1 and ω2 (ω1>ω2). Since

the pulses are stretched, the instantaneous carrier frequencies are ω1(τ) = ω0 + b(τ + td/2)

and ω2(τ) = ω0 + b(τ − td/2), where td is the relative delay. The frequency difference is then

δω = ω1 − ω2 = btd. The third order nonlinear polarization,

PNL = χ(3)
[
Ẽ1(ω1) + Ẽ2(ω2)

] [
Ẽ∗

1(−ω1) + Ẽ∗
2(−ω2)

]
×
[
Ẽ1(ω1) + Ẽ2(ω2)

]
(6.10)

gives FWM, SPM and XPM. In particular, the terms Ẽ1(ω1)Ẽ
∗
2(−ω2)Ẽ1(ω1) and Ẽ2(ω2)Ẽ

∗
1(−ω1)Ẽ2(ω2)

are the FWM process of interest, giving the new frequencies 2ω1−ω2, and 2ω2−ω1. We see that

2ω1 − ω2 = ω1 + btd, so it is constantly blue shifted from ω1(τ). Likewise, 2ω2 − ω1 = ω2 − btd

is red shifted from ω2(τ). When the chirped pulses are recompressed in the compressor,

ω1 + δω = ω1 + btd is advanced by td relative to the ω1. Because the unshifted frequencies

ω1 collapse to τ = 0 to form the compressed pulse, the blue shifted frequencies will collapse

at τ = −td to form the pre-pulse. The same applies to the red shifted post-pulse. The partial

overlap causes the bandwidth of the new pulses to be narrower, indeed no time casuality is

violated.

Figure 6.30: Experimental arrangement of nonlinear pulse shaping in a CPA amplifier.

Reprinted from [2]

Another valid approach to understand the process is to look at the process as non linear

propagation of the composite pulse, which contains the beat pattern. In this picture the new fre-

quencies are generated as a result of SPM. The new frequencies are defined by: δω ∝ dI(τ)/dτ .
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Because of the many rapid intensity oscillations due to the beating, new frequencies are gen-

erated efficiently. In particular blue shifted frequencies are generated in the rising fronts and

red shifted frequencies in the decreasing front. All the new frequencies generated will interfere

in the compressor to give the additional pulses. In particular the amplitude of these replicas

compared to the main peak depends of the amount of B integral of the chain. A fit algorithm

can then searches for a B integral parameter that minimizes a least-square error function cal-

culated for the temporal sidebands.

In our case two delayed pulses with the same amplitude are generated using the Dazzler present

in the first amplifier (so strictly speaking we measure the B integral accumulated after the fourth

pass of the first amplifier). The transfer function for generating these pulses is the same as that

the one introduced in section 2.3.4 discussing the Phazzler. To measure the output replicas with

sufficient dynamic range we used a third order correlator (Sequoia, Amplitude Technologies). In

the absence of B-integral, the simulated third order cross correlation shows only three peaks and

the energy ratio between the two pulses drives the symmetry of the resulting trace. This point

is an important experimental control element; in particular, the relative injection-efficiency of

the pulses into the amplifier, whose accurate control is experimentally challenging, can be eval-

uated that way. In the fit, the energy split ratio is adjusted numerically to fit any experimental

asymmetry. In the presence of B-integral, side bands appear and the number and magnitude of

the sidebands is adjusted to match the experimental data, using B as fit parameter. A typical

measured trace is shown in Fig. 6.31. The multiples replicas separated by the temporal delay

Td are clearly visible. An unexpected asymmetry is visible in the recorded traces. A possible

explanation relies on the theory presented previously and is confirmed by the simulation of

the replication process. When the spectrum of each individual pulse is numerically isolated,

one sees that there is a sizeable frequency shift of the replicas when the pulse-to-pulse delay

is comparable to the stretched-pulse width. Experimentally, the delay between the pulses was

set to 1 ps, which leads to a frequency shift of 15 nm between the two first replicas at the two

side of the main pulses. Such a frequency shift certainly impacts on the conversion efficiency of

the measurement setup because of the finite spectral acceptance of the thick frequency mixing

crystals in the cross-correlator. The fitted B integral in this case is 1.5 radians. The output

energy was reduced in this measurement to avoid any damages in the Ti:Sa crystal. We can

then estimate a B-integral of 3 radians at full energy. From Tab. 6.29, the contribution to the

CEP noise considering an intensity fluctuation of 2 % is then < 50 mrad.
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Figure 6.31: Measured high dynamic range correlation (Sequoia) injecting the CPA system with

two temporally delayed (Td) pulses

6.9 Control of the CEP with the Dazzler

Without feedback loop, the CEP drift of the amplified pulses was small enough over several

minutes to demonstrate, for the first time, that CEP control could also be performed using

the AOPDF inserted in the Femtopower. We do this by controlling the CEP of the acoustic

waves in the AOPDF. This first experiment was done before the reduction of the jitter of the

acoustic-wave.

The physics of AOPDF is based on a stringent acousto-optic phase-matching relationship be-

tween the acoustic and optical wave vectors. As for any phase-matching relationship, this

relationship has its counterpart in terms of spectral phase and the acoustic and optical spectral

phases are directly linked by the expression :

ϕopr,in(ωopr) + ϕacc,in(ωacc)− ϕopr,diff (ωopr) = π/2 (6.11)

where, ϕopr,in and ϕopr,diff are the spectral phase of the input and diffracted optical pulses,

and ϕacc,in(ωacc) , is the spectral phase of the acoustic pulse. In this configuration, the electronic

generator of the AOPDF is able to control the absolute phase of the acoustic wave within 160

mrad (rms time jitter between the trigger and the RF clock), which translates into the optical

domain as follows: the CEP of the diffracted pulse can be changed with respect to the CEP of

the input pulse by an arbitrary amount with 160 mrad (π /20) accuracy. Fig. 6.32 shows the

effect of successive CEP jumps of -π, +π, -π, +π/2, +π/2, +π/2, +π/2 applied by the AOPDF,

thereby demonstrating the ability of the AOPDF to exert control over the output CEP. Note

here, that the feedback control was turned off to avoid automatic correction of the CEP jumps
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by the oscillator locking electronics. These phase steps were performed at a low repetition rate,

i.e. not limited by the refresh rate of the AOPDF. By pre-computing and pre-loading a set

of RF waves with different CEP values (e.g. 64 waves covering the 0-2π interval) in SRAM

memories, the RF generator is able to change the CEP phase drift at high repetition rate.

A demonstration of this achievement is shown in Fig. 6.33 which shows the CEP measured

function of time. The word ”LOA-ENSTA” was written changing the CEP between successive

shots. The vertical segments were obtained by choosing random values of CEP. The baseline

(-2.5rad) shows the low CE phase drift of the system during this experiment. This control of

the CEP opens the path to closed-loop CEP drift corrections at high repetition rates without

any moving parts or retroaction on the oscillator. This is the subject of the next section.

Figure 6.32: Measured CEP (red line) of amplified pulses and successive phase steps applied

by the AOPDF (black line). No slow loop feedback was applied
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Figure 6.33: Measured CEP function of time. The CEP is changed with the AOPDF at high

repetition rate to compose the word ”LOA-ENSTA

6.10 Feedback of the CEP phase with the Dazzler

In the discussion about the CEP stabilization I have explained that, for a correct stabilization

of the CEP drift, two feedback loops are needed. A fast feedback loop just after the oscillator

and a slow feedback loop at the output of the system for compensating the slow CEP drift

caused by the amplifier and the compressor. In the commercial Menlo system both feedback

loops act, via an acousto-optical modulator, on the pump intensity of the oscillator. Applying

two feedback signals with different time scales on the same actuator is suspected to increase

the measured RMS noise on the CEP. This can cause the lock to break earlier than in the

undisturbed case producing spikes in the CEP measurement. It is thus interesting to try to

separate the two loops. A solution proposed by C.Li et al [1] is to use the signal measured

with the f-2f of the slow loops to act with a piezoelectric transducer, changing the distance

in the telescope grating of the stretcher. Another solution is to replace the sensitive grating

adjustment by the introduction of dispersive material. In particular the CEP of the ultra-short

amplified pulses can be controlled by slightly changing the dispersion in the pulse stretcher or

compressor, without significantly changing the output pulse duration. In the previous section

we have demonstrated how the CEP of the output pulses can be controlled with the AOPDF.

This device can then be used to stabilize the CEP after the measurement of the slow drift. The

advantage of this solution is the separation of the two loops without any additional elements

into the laser chain. The development of this solution has been done in collaboration with

Fastlite.
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For the CEP stabilization with the AOPDF, like in the commercial APS800 Menlo system,

the information from the f-2f fringes is extracted using the FTSI technique. After choosing a

target CEP, the correction phase is applied with a proportional-integral (PI) feedback controller

with the Dazzler. As discussed previously by pre-computing and pre-loading a set of RF waves

with different CEP values in SRAM memories, the RF generator is able correct for any CEP

phase drift at high repetition rates. The stabilization repetition rate is in fact determined

by the overall loop time. In the case of AOPDF feedback loop this time is 60 ms (10ms

of data acquisition, 30ms of data transfer and computation, 20ms of data transfer to RF

generator) corresponding to a mean stabilization repetition rate >15Hz. Fig. 6.34 shows the

CEP measured with the f-2f interferometer (averaged on 5 shots) before the activation of the

AOPDF feedback (firsts 10 seconds) and after the stabilization (64 acoustic wave were loaded).

The effect of the feedback is clearly visible. The target of the stabilization was also changed

(0,+1,-1,0) to demonstrate the control of the CEP in closed loop. Fig. 6.36 shows the phase

noise (dB, rad2/Hz) for the open loop measurement (blue curve) and after the stabilization

with the AOPDF(red curve). The effect of the correction is clearly visible(the intersection of

the two curves). The rms CEP stability obtained with the AOPDF feedback loop is 144 mrad

(334mrad FWHM) that needs to be compared with the result obtained using the standard

APS800 Menlo system loop (131mrad (290mrad FWHM)). The two results are comparable.

The large discretization level (98mrad for 64 waves loaded) of the CEP correction in the AOPDF

loop is suspected to contribute to the slightly higher rms noise with the AOPDF loop. Future

developments will enable a direct hardware feedback on the AOPDF and an increased number

of memories (256), allowing both faster (500Hz) and finer (<25mrad) feedback.
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Figure 6.34: Single shot CEP measured with the f-2f interferometer before the activation of the

AOPDF feedback (firsts 10 seconds) and after the stabilization. The effect of the feedback is

clearly visible. The target of the stabilization was also changed (0,+1,-1,0) to demonstrate the

control of the CEP in closed loop

Figure 6.35: Phase noise (dB, rad2/Hz) for the open loop measurement (blue curve) and after

the stabilization with the AOPDF(red curve). The effect of the correction is clearly visible to

a frequency of 4 Hz (the intersection of the two curves).
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Figure 6.36: Comparison between closed loop operation using the AOPDF (a) or the Menlo

loop (b) to correct for the CEP drift. Dots: CE phase values used for correction feedback.
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6.11 Hollow Fiber

6.11.1 Introduction

The temporal duration of the pulses that can be generated in a CPA laser system is limited to

approximatively 18 fs [15, 7, 22, 20], for mJ level pulses. This limitation is mainly due to the

gain narrowing during amplification. To balance this spectral narrowing several spectral shaping

techniques have been tested. These solutions make it possible to reach temporal duration shorter

than 15 fs. To generate pulses in the few-cycle regime post-compression spectral broadening

techniques are necessary. The two most common are the propagation in a hollow-core fiber filled

with noble gas [11] and filamentation [9]. Although a higher transmission efficiency and the

possibility of self-compression has been claimed for filamentation [17, 8], the main drawback of

this technique is that the compressed temporal duration varies radially across the beam [6, 21].

This implies that, in order to obtain a sub-10 fs pulse, only the central part of the beam needs

to be selected with a corresponding substantial reduction of the usable energy. Furthermore 5

fs pulses can not be generated in a single filamentation stage. The solution chosen for the ”salle

noire” laser system is spectral broadening in a hollow fiber.

6.11.2 Hollow fiber

Few-cycle pulses can be generated by extra-cavity compression techniques, in which the pulses

are spectrally broadened upon propagation in a suitable nonlinear waveguide and subsequently

compressed in a carefully designed optical dispersive delay line. Spectral broadening of laser

pulses by self-phase modulation in a single mode optical fiber is a well-established technique:

pulses down to 6 fs were obtained in 1987 from 50-fs pulses generated in a mode locked dye

laser [5]. More recently 13-fs pulses from a cavity-dumped Ti:sapphire laser were compressed to

5 fs with the same technique [1]. However, the use of a single-mode fiber limits the pulse energy

to a few nanojoules. A powerful pulse compression technique based on spectral broadening in

a hollow fiber filled with noble gas has demonstrated the capability of handling high energy

pulses (sub-mJ range) [11, 12]. This technique presents the advantages of a guiding element

with a large diameter mode and a fast nonlinear medium with a high threshold for multiphoton

ionization. The theoretical principles of the propagation in a hollow fiber are briefly presented

in the next section. In section 6.11.4 I present results about the generation of few-cycle pulses

(4.3 fs) with an energy of 1 mJ. The CEP stabilization of this pulses is also demonstrated.

149



Figure 6.37: Schematic of the propagation in a hollow-core fiber.

6.11.3 Propagation modes and losses in hollow fibers

The use of hollow fibers permits the exploitation of spatially uniform SPM and overcomes the

limitation imposed on the pulse energy by the small core diameters of single mode fibers. Owing

to the large and scalable mode size, this technique can handle much higher pulse energies than

traditionally used single-mode optical fibers. Wave propagation along a hollow waveguide can

be thought of as occurring by grazing incident reflections at the dielectric inner surface. Since

the losses caused by these multiple reflections discriminate against higher order modes, only

the fundamental mode will be transmitted through a sufficiently long fiber. This offers the

potential for using a large channel diameter without compromising the quality of the output

beam. The modes of hollow cylindrical fibers with diameter much larger than the wavelength

were considered by Marcantili and Schmeltzer. These fibers support three types of modes:

transverse circular electric (TE0m), in which the electric field lines are transverse concentric

circles centered on the propagation axis. Transverse circular magnetic (TM0m), with the electric

field directed radially, and hybrid mode EHpm (|p| ≥ 1) with all the electric and magnetic

components present. For fused silica gas-filled fibers the lowest-loss mode is the EH11 hybrid

mode, whose intensity profile as a function of the radial coordinate r is given by:

I(r) = I0J
2
0 (2.405r/a) (6.12)

where I0 is the peak intensity, J0 is the zero-order Bessel function and a is the capillary

radius. Fig. 6.38 shows the transmission of the fundamental mode EH11 at 780 nm as a function

of hollow fiber length for different values of the capillary radius.
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Figure 6.38: Transmission of the fundamental mode EH11 at 800 nm function of the fiber

lengths and for different internal radius of the fiber. Reprinted from [12].

Another important point is the coupling efficiency of the input power in the fundamental

mode EH11. For maximizing this parameter the size of the beam at the input of the fiber

needs to match the mode we want to couple. A theoretical coupling efficiency of 90 % has been

theoretically demonstrated for a radius between 0.49a and 0.84a. If the modes are not matched

the losses increases and more energy is coupled in the higher order modes. This decreases the

throughput of the fiber and affects the output spatial quality. Working with a correct coupling,

the fiber acts like a spatial filter and the output beam has a very good spatial quality.

The propagation in a hollow fiber is described by the propagation equation I have derived in

the SEWA approximation (section 3.4.6). The two main phenomena governing the propagation

are SPM and GVD. SPM induces the spectral broadening and introduces a nonlinear spectral

phase. The influence of SPM is evaluated defining the non linear length:

Lnl =
1

γP0

(6.13)

where P0 is the peak power of the pulse and γ is the non linear coefficient. γ is defined as:

γ =
n2ω0

cAeff

(6.14)

where ω0 is the laser pulsation, c the speed of light, n2 the non linear index of refraction of

the gaz and Aeff the effective area of the mode.

The influence of the GVD is estimated defining the dispersion length Ld:

Ld =
T 2

0

|β2|
(6.15)

where T0 is the duration (at 1/e2 in intensity) of the input pulse and β2 = ∂2β
∂2ω

is the

dispersion of the group velocity. These two parameters quantify the physical length for the
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contributions of SPM and dispersion. In particular for a good compressibility of the spectrally

broadened pulses there should be an equilibrium between the two phenomena. The optimal

regime is given for a fiber length: Lopt ≥
√

6LnlLd.

6.11.4 Experimental results

Recently, Cavalieri et al. have demonstrated sub-4 fs pulses with 400µJ energy via HCF com-

pression of 1mJ, sub-23 fs pulses [4]. Additional efforts have been made to push the output

energy up to ∼ 1mJ by safely coupling higher energy seed pulses into the fiber [19, 10]. For a

HCF filled with a static gas pressure, however, the achievable output energy becomes quickly

limited by self-focusing and plasma formation due to ionization of the gas, which degrade beam

coupling into the fiber and result in significant energy losses. The use of longer and larger

fiber cores with a pressure gradient helps delay these effects until the pulses are coupled well

into the fiber, thereby making it possible to scale few-cycle pulse production beyond the mJ

level [18, 13, 2].

Spectral broadening in a HCF is strongly dependent on the input pulse parameters such

as duration and energy. A much less explored experimental parameter, however, is laser po-

larization [16]. Changing the polarization state of the laser from linear to circular provides a

simple way of coupling more energy into the fiber since it reduces both the Kerr nonlinearity [3]

and ionization [14] of the gas at equivalent intensities. The solution we tested to increase the

energy out of a statically filled HCF was therefore to seed it with circularly polarized laser

pulses. With this technique, we generated 4.3 fs, 1mJ pulses, compressed from 2.5mJ, 22 fs

seed pulses. A comparison between linear (LP) and circular polarization (CP) shows that the

energy throughput and the long-term spectral stability of the output pulses is significantly

enhanced for CP.

The high-energy seed pulses in our experiments were generated using the ”salle noire” laser

at first with prisms + chirped mirrors compressor. The CEP stability after the hollow fiber for

this high energy seeding has been confirmed after the installation of the transmission gratings

+ chirped mirrors compressor.
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Figure 6.39: Schematic of the statically filled HCF setup seeded with circularly polarized pulses.

WP1,2: broadband zero order quarter wave plates.

In the HCF compression setup, shown in Fig. 6.39, the input beam can be changed from

LP to CP using a zero-order quarter wave plate (WP1). The beam is then loosely focused

into the HCF by a f = 1.5m focusing mirror. The HCF is 1m long with an inner diameter

of 250µm and rests inside a tube filled with a static pressure of Neon gas. The output beam

can then be changed from CP back to LP for measurements downstream using a broadband

zero-order quarter wave plate (WP2). Residual pulse dispersion is finely compensated by a set

of broadband chirped mirrors (CMs) (Femtolasers GmbH) and a pair of fused silica wedges.

Figure 6.40: HCF output pulse energy for CP (black line) and LP (red line) as a function of

Neon pressure, for an input pulse energy of 2.5mJ.
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In the experiment, the difference in output pulse energy and spectral broadening between

LP and CP was measured for the 2.5mJ, 22 fs seed pulses. Fig. 6.40 shows the output pulse

energy after the HCF as a function of gas pressure. A throughput enhancement is already

quite visible for CP even in the case where the remnant gas pressure is very low (<< 1mbar).

For both CP and LP, the output energy decreases with increasing gas pressure but the energy

throughput remains higher for CP. Reduced self-phase modulation due to a diminished Kerr

effect for CP means that spectral broadening is less pronounced for CP at pressures below

∼ 1 bar. At higher pressures, however, pulse broadening for CP becomes comparable to that for

LP, which can be explained by higher ionization losses for LP due to stronger ionization. At an

optimum pressure of ∼ 1.1 bar, the 1.1mJ output energy measured for CP is almost 30% higher

than the 0.85mJ measured for LP. Fig. 6.41 shows the spectral broadening recorded for CP and

LP at the optimum pressure of 1.1 bar. A careful comparison of the two cases reveals that for

CP (black line) a more homogeneous pulse broadening occurs around the central wavelength

(780 nm) together with a clear extension of the spectrum towards shorter wavelengths, which

is more adapted for obtaining cleaner compressed pulses.

Figure 6.41: Broadened HCF spectrum before (black line) and after (red line) the chirped

mirrors for CP and LP before the chirped mirrors (grey line).

At the optimum pressure of∼ 1.1 bar, the broadened spectrum (Fig. 6.41) for CP can support

3 fs transform-limited pulses. The compressed pulse duration is measured after fine compensa-

tion of pulse chirp using a commercial second-order autocorrelator (Femtolasers GmbH) suited

for sub-5 fs pulse characterization. A typical optimized compression result for CP is shown in

Fig. 6.42, showing a very good agreement with the theoretical autocorrelation trace for a 4.3 fs

sech2 pulse at a central wavelength of 780 nm (red filled circle in Fig. 6.42). This pulse duration

corresponds to ∼ 1.6 cycles of the carrier wavelength. The background oscillations present in

the experimental autocorrelation trace are most likely due to satellite pulses resulting from the
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combined effects of residual uncompensated spectral phase and the sharp modulations in the

broadened spectrum. In addition, spectral clipping due to the bandwidth limit of the chirped

mirrors was observed, as shown in Fig. 6.41 (red line), meaning that the compressed pulses

could be shorter. Here, it is worth mentioning that the bandwidth of the zero-order quarter

wave plate after the HCF is broad enough such that no spectral effects were observed.

Figure 6.42: Measured (black line) and fitted (red filled circles) second order autocorrelation

traces of the compressed pulses for CP. The seed energy is 2.5 mJ and the Neon pressure is 1.1

bar.

Although no obvious differences were observed in beam pointing for both polarization states,

we did however observe that CP yields a more stable output spectrum over time. Fig. 6.43 shows

density plots of the output spectra for CP and LP made from 20000 successive shots at the

optimum pressure of 1.1 bar. Here, we observe a significant improvement in stability for CP,

especially at the extremities of the spectrum.
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Figure 6.43: Density plot of the output spectrum of the HCF for CP (a) and LP (b) for a seed

pulse energy of 2.5 mJ and Neon pressure of 1.1 bar. The fluctuations of the spectrum are the

highest where the curve is the broadest

The CEP drift of the compressed pulses was measured with the f-2f interferometer, after the

installation of the transmission gratings + chirped mirrors compressor. In this configuration

we inject the fiber with 2 mJ with an output of 1.1 mJ. The gas pressure in CP is 1.5 barr.

The measured FROG trace of the compressed pulses together with the reconstructed temporal

shape is shown in Fig. 6.44. After the fiber the spectrum is already sufficiently broad to be

doubled directly in the BBO crystal without passing in the sapphire plate. We measured an

RMS CEP drift of 230 mrad (acquisition time 1 ms, averaging on 20 shots) (Fig. 6.45). This

corresponds to an additional noise of 50 mrad compared to the results directly after the hybrid

compressor. This additional noise is due to the intensity fluctuations that are coupled to CEP
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fluctuations by the nonlinear index in the HCF.

Figure 6.44: FROG trace and temporal reconstruction of the compressed pulses after the hollow-

core fiber.

Figure 6.45: Closed loop CEP drift after spectral broadening in a hollow-core fiber and recom-

pression.

6.11.5 Conclusions

In conclusion seeding the hollow fiber with circularly polarized pulses is a good solution to obtain

a significant enhancement in energy throughput together with a notably improved spectral

stability for circularly polarized seed pulses. Using this approach, 1mJ, sub-5 fs pulses could be
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generated, compressed from 2.5mJ, 22 fs. Seeding larger core fibers with circularly polarized

pulses should provide a effective way for generating sub-5fs pulses with even higher (multi-mJ)

energies. This solution is the one adopted in our system for the generation of the energetic few-

cycle pulses. As presented in the introduction the goal of the laser development of my group is

to build an efficient (solid target) single attosecond source at high repetition rate (1 kHz). To

obtain this source it is necessary to dispose of mJ level, CEP stabilized, kHz, few-cycle pulses.

We can now satisfy these requirements. The ASE temporal contrast of our system is 107 which

is enough to avoid pre-ionization of the target at least in the sub-relativistic regime. If the beam

is taken directly after the hybrid compressor we also have a multi-mJ, 25 fs, kHz laser source

for experiments in the multi-cycle regime. In the next chapter, after an introduction of the

different regimes of high order generation on solid target, I will present the first experiments of

laser-matter interaction with the study of the plasma mirror. In the last chapter of this thesis

I present the future development of a double CPA system using an XPW contrast filter for

obtaining ultra-high contrast pulses.

ı̈»¿
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Chapter 7

High order harmonic generation on

solid target

7.1 Introduction

In this chapter, after an historical overview of the high harmonic generation (HHG) on solid

targets, I give a theoretical introduction of the two harmonic generation mechanisms and of the

possibility of obtaining attosecond pulses from these harmonics. I then introduce the plasma

mirror interaction regime that occurs for intensities below the generation of harmonics. This

plasma mirror interaction can be used to increase the temporal contrast of the laser pulses. The

first experiments of laser-matter interaction in this regime are presented in the last section.

7.2 Historical overview

High harmonic generation from solid plasmas was first observed by using high-energy nanosec-

ond pulses from CO2 laser systems [5, 6, 7]. In these experiments pulses with an energy in

the Joule level at 10.6 µJ with ns duration were focused to the intensity of v 1015 Wcm−2,

and harmonics up to 46th order (v 230 nm) were observed. Theoretical studies attributed

the harmonic generation mechanism to the nonlinear restoring force of the plasma and mode

coupling into plasma oscillations [2]. They also predicted that there would be a cut-off in the

harmonic spectrum, whose position is determined by the plasma density. Another decade was

needed until the first observation of harmonics from plasma surfaces using femtosecond pulses

produced by table-top Ti:Sapphire laser systems [25]. Typical parameters were v 100mJ of en-

ergy at v 800nm with v 100fs duration. Although the pulse energy was 3 orders of magnitude

lower than that from CO2 lasers, the pulse duration, being shorter by 4 orders of magnitude,

allowed to achieve the intensity of v 1017Wcm−2. On the other hand, since the relativistic

amplitude scales as a2
L ∝ Iλ2, higher intensity was compensated by shorter wavelength, i.e.,

the value of aL was comparable to that of CO2 lasers. Nevertheless, it was shown that surface

harmonics can be generated with a much smaller, table top laser system. In the meanwhile,

numerical simulations (particle-in-cell PIC simulation code) found that there is no cut-off in
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the spectrum [10], which is in contrast with the prediction from previous studies. Harmonics

beyond the predicted cut-off were also experimentally observed using a high power, picosecond

Nd:glass laser with a focal intensity of v 1019Wcm−2 at 1053 nm [18]. A new theoretical model

was proposed to explain these results, which is known as the oscillating mirror model [14].

The model predicts that the harmonics are generated from fast moving reflective surface [4].

The appearance of the cut-off in the previous mode-coupling picture was attributed to the low

resolution PIC simulations [10]. The oscillating mirror model and the numerical simulations

predicted that the harmonic generation could be extended well beyond the previously expected

cut off by increasing the laser intensity to the relativistic regime [10]. This new prediction

leads to growing interest into harmonic generation from plasma surfaces as a source of coherent

XUV radiation. Many experimental studies have followed. Several investigations have found

that the harmonic generation process is strongly dependent on the plasma scale length [26, 22].

Harmonic generation efficiency was found to have an optimal scale length above zero, and then

drop rapidly as the scale length increases [26, 12]. In fact, improving the temporal contrast of

the incident pulses was found to be beneficial to the harmonics generation process [15]. An-

gular distribution of the generated harmonics was also studied. For picosecond laser pulses,

the angular distribution was found to be near isotropic rather than specular [18], which was

attributed to surface rippling owing to the high ponderomotive pressure. On the other hand,

XUV beam directed in the specular direction was observed for femtosecond laser pulses [22],

where the interaction occurs faster than the plasma expands. The polarization dependence

of the process was studied by several group [18, 22]. The harmonic generation efficiency was

observed to be lower for s-polarization when femtosecond pulses were used [26, 22], which was

consistent with the prediction of the oscillating-mirror model [14].

Theoretical work has pursued the possibility of the harmonic generation process as a source

of attosecond pulses. It was pointed out that harmonics are inherently phase locked and that

leads to a train of attosecond pulses [19]. Another work proposed to focus a few-cycle pulse

into a spot as small as the fundamental wavelength (λ3), which leads to the generation of

an isolated single attosecond pulse in a certain direction [16]. Analytical work similar to the

oscillating-mirror model [11] has revealed that the harmonics spectra scales as a power law:

Iq ∝ q−p, where q is the harmonic order and p is the scaling parameter pv 2.5. From this slow

power-law decay, they predicted that even a train of zeptosecond pulses could be produced.

This scaling was verified by experimental observation of the harmonic spectrum scaling law.

It was also predicted that the cut-off position should scale as v γ3, where γ is the relativistic

γ-factor. This means that the highest harmonics generated from this process scales up very

rapidly when the intensity of the incident field is increased. This scaling of the cut-off was also

confirmed experimentally [8]. One more important thing to be mentioned are the studies on

of harmonic generation in non relativistic regime [20]. They found that there is a harmonic

generation process efficient with non-relativistic intensity, which they named as coherent wake

emission (CWE). The results predicted from their model are similar to the prediction from very

early theoretical models, for example, the observation of the cut-off.
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7.3 Harmonic generation mechanism

Harmonic generation mechanism from solid surfaces is categorized into two different regimes

depending on the incident laser intensity: relativistic regime and non-relativistic regime. The

former is known as relativistic oscillating mirror (ROM) model [14, 25], while the latter is

named as coherent wake emission (CWE) [20].

7.3.1 Relativistic oscillating mirror

To understand the physical mechanism of harmonic generation from solid target, we can consider

an electromagnetic wave incident on the surface composed of a number of electrons that can

oscillate around an immovable ion background (Fig. 7.1). The plasma can be directly created

from the solid target by the leading edge of the laser pulse. The plasma electrons are accelerated

along the polarization direction by the electric field and acquire a velocity that is proportional

to the normalized filed amplitude aL:

aL =
eEL

ωLmc
(7.1)

where EL and ωL are the electric field and the laser frequency respectively. As long as the laser

intensity is such that aL << 1, the magnetic field B does not play any relevant role, but it

becomes relevant for aL ≥ 1. In such condition the Lorentz force Fp ∝
−→
B v ILλ2

Lsin(2ωLt)

tends to move the electrons parallel to the laser propagation direction inducing an oscillatory

motion. The interplay between the Lorentz force and the restoring force due to the electrostatic

field induced charge separation, determines an oscillatory motion. Since the incident electro-

magnetic pulse is reflected at the electron surface and this surface is moving relativistically, the

incident field experience an extreme Doppler up shift up to:

Ωmax ≈ 4γ2
maxωL = 4(1 + a2

L)ωL (7.2)
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Figure 7.1: Schematic drawing of oscillating mirror. The electromagnetic field of the incident

pulse drives the plasma-vacuum interface back and forth. The pulse experience a huge Doppler

shift upon reflection on the oscillating surface, which leads to the generation of high frequency

components. Reprinted from [17]

7.3.2 The relativistic γ-spikes model

The oscillating mirror model offers a simple and intuitive picture of the harmonic generation

process for solids, leading to a simple law for the cut-off frequency. However, recent experimental

works have evidenced a different evolution of the cut-off frequency as a function of the maximum

relativistic γmax. The experimental data have been interpreted using a different theoretical

analysis performed by Baeva et al.[1]. This theory allows one to recognize the different behavior

between the plasma electrons and the plasma surface during the interaction with the relativistic

laser pulse. Indeed, whereas the velocity of the electrons are close to the speed of light in all

instants (with a component both normal pn and parallel pτ to the plasma surface), the plasma

boundary behave in a quite different way. Its velocity vs is not ultra-relativistic for most of

the times but smoothly approaches c only when the tangential electron momentum vanishes

(Fig. 7.2(a),(b)). The γ-factor of the surface γs also shows a specific behavior Fig. 7.2(c). It

has sharp peaks at those times for which the velocity of the surface approaches c. Thus, while

the velocity function vs is characterized by its smoothness, the distinctive feature of γs are its

quasi-singularities. When vs reaches its maximum and γs has a sharp peak, high harmonics

of the incident wave are generated and can be seen in the reflected radiation. The temporal

width of this γ spike scale as ∆t ∼ 1/γmax. In other words the duration of the emitted pulse

scales accordingly. Since this pulse is compressed by Doppler shift by a factor 4γ2
max and the

emission of these harmonics is confined to a time interval ∆t/4γ2
max ∼ 1/γ3

max it thus contains

frequencies up to ∼ γ3
max. This theoretical prediction is in agreement with experimental results.

In particular it demonstrates way a universal harmonic spectrum (that does not depend on the

particular surface motion) can be derived. Physically, only the time interval of γ-spiking is
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responsible for harmonic generation. Consequently only region around the maximum velocity

vs corresponds to the harmonic spectrum. As a result, since all smooth functions resemble

parabolas around their maxima, the harmonic spectrum is universal (Fig. 7.3). It contains two

qualitatively different parts: a power low decay (to the spectral cut-off) and an exponential

decay.

Figure 7.2: Schematic view of the principle of the γ spike model. (a) Electron momentum

component parallel to the surface as a function of time; (b) velocity of the plasma surfaces and

(c) γ factor of the surface. Reprinted from [1].
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Figure 7.3: The universal high harmonic spectrum contains power law decay and exponential

decay (plotted in log-log scale).

7.3.3 Coherent wake emission

When the intensity of the incident laser field is not relativistic,the oscillating mirror does not

generate harmonic efficiently and CWE becomes dominant. Fig. 7.4 illustrates the process of

CWE. The CWE is a process associated with plasma wake oscillation. This process occurs for

a p-polarized incident electric field. When a pulse is incident on the surface of the plasma,

the electric field of the pulse pulls electrons out from the plasma. Those electrons, named

Brunel electrons, are driven back into the plasma by the same electric field and absorbed by

the plasma, a process known as vacuum heating [3]. These electrons bunch in the plasma

density gradient and constitute a density wave inside the plasma. As the density wave travels,

it triggers plasma oscillations in its wake. These plasma oscillations are converted back to

electromagnetic waves at the point where the wave front of the wake turn around [21]. As

the generated electromagnetic wave travels along the density gradient, it refracts and comes

out of the plasma in the specular direction of the incident beam. Since this occur within a

fraction of cycle, each wave generated is in a form of a pulse shorter than one optical cycle,

possibly sub-femtosecond. The CWE process has several interesting properties. As apposed

to the ROM harmonic generation, this process is efficient down to the incident intensity of

Iλ2 ∼ 4 × 1015Wcm−2 [20], which corresponds to the normalized amplitude of aL ∼ 0.05.

Therefore, CWE will be the dominant harmonic generation mechanism when the intensity is

non relativistic. Another important feature of CWE is that the harmonic spectra shows a

clear cut-off at the maximum plasma frequency ωp, which is determined by the density of the

plasma. The reason way no harmonics are generated above ωp, is that the generation process

relies on the density wave in the plasma. This is in contrast with the spectra of ROM harmonics,

where it shows a slow roll-over around the frequency
√

8γ3
max. The harmonics and a pulse train

generated from CWE is chirped in two ways. One is a chirp generated within the density
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gradient, because the higher frequency component is generated from the higher-density part in

the plasma and hence needs to travel more to come out of the plasma. The other is a chirp

coming from the velocity of the electrons pulled out into the vacuum. Since the velocity of the

electrons is dependent on the intensity of the incident pulse, the time they require to re-collide

with the plasma surface depends on the intensity. In other words it gains a chirp according to

the intensity envelope of the pulse. The former introduces a chirp in a single attosecond pulse

in a train, which is analogous to an chirp observed in gas HHG [24], while the latter changes

the time spacing between individual pulses in a train, analogous to a harmonic chirp [24]. A

typical CWE spectrum is shown in Fig. 7.5.

Figure 7.4: Schematic illustration of the coherent wake emission. (a) The pulse enter the plasma

density gradient with an oblique incidence. (b) The electric field of the pulse pulls electrons out

from the plasma into the vacuum and then drives them back into the plasma. The plasma gains

the energy through the recollision (vacuum heating) and plasma density wave is generated. (c)

Plasma oscillation in the wake of the density wave generates a pulse back into the vacuum.

Reprinted from [17]
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Figure 7.5: Typical raw harmonic spectrum

7.4 Route to intense attosecond pulses

One of the most appealing aspects of harmonic generation from solid surfaces is its potential

to generate intense attosecond pulses [23]. In fact the predicted harmonic generation efficiency

is several order of magnitude higher than that of gas HHG and thus attosecond with very high

intensity are expected. According to theoretical studies, the surface HHG process is capable of

generating a train of attosecond pulses [19] or an isolated attosecond pulse [23, 16].

7.4.1 Generation of a train of attosecond pulses

When several equidistant frequencies are phase-locked, superposing them will lead to a train

of pulses much shorter than the cycle of the original frequencies. Applying this idea to the

harmonics was proposed to generate a train of attosecond pulses [9]. One of the properties

that makes harmonic generation process suitable for attosecond pulse generation is its broad

spectral span of the generated harmonics. Even for harmonics from a monochromatic wave, the

overall spectral bandwidth is as wide as 4ω v 2Nω, where N is the number of the synthesized

harmonics. The expected pulse duration after the Fourier synthesis is τ v 1/4ω v 1/2Nω.

Note that the factor of 2 appears only for gas HHG, where only odd harmonics are generated.

For example, when a 800 nm fundamental wave (ω = 2.35 × 1015Hz) is used, synthesizing

three harmonic of gas HHG (five for surface HHG) can lead to an attosecond pulse train, where

each pulse is as short as ∼ 100as. Above mentioned analysis assumed that the harmonics

were phase locked which is not necessary the case in reality. In fact, it was found that the

168



individual atoms are not phase locked in the gas HHG process. On the other hand it was

also found that the propagation in the atomic media will results in the phase locking of the

harmonics, which allows the generation of a attosecond pulse train. This have been successfully

experimentally demonstrated. Since the physical origin of harmonic generation from plasma

surfaces is different from that of gas HHG, the same question arise as whether harmonics are

phase locked and attosecond pulses can really be generated. Theoretical studies found that this

is indeed the case and predicted that it is possible to generate a train of attosecond pulses [19].

7.4.2 Generation of isolated attosecond pulses

Although a train of attosecond pulses can be used for applications such as spectroscopy, the

interpretation of the data will be a convolution of information from each pulse in the train.

Therefore, an isolated attosecond pulse would be more desirable. It exists two solutions for

generating these pulses derived from HHG in gases: using few-cycle pulses and polarization

gating. For our system the first solution has been chosen. Fig. 7.6 illustrates the principle of

this method. When the incident pulse is short enough, the highest frequency component is

generated only at the middle of the pulse, where the intensity is significantly higher than the

other part of the pulses. Filtering out that highest frequency part of the spectrum will lead

to a single attosecond pulse. When the incident pulse is longer, on the other hand, the high

frequency component is generated over several cycles, i.e filtering results in a train of attosecond

pulses instead of a single attosecond pulse. It is also important to notice that a shorter incident

pulse can lead to a shorter attosecond pulse, because the threshold intensity at the middle will

be lower and thus the spectral region that can be used synthesize the attosecond pulse will be

broader.
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Figure 7.6: Principle of single attosecond pulse generation by a few cycle pulse. Dashed lines

show the threshold intensity for generating the high frequency component of interest. (a)

When the incident pulse is short, only one cycle contributes to the generation of high frequency

component. (b) When the incident pulse is longer, where the high frequency components is

generated over several cycles, a train of attosecond pulses is generated instead. These are

symbolic drawing to show the idea. In reality, the generation timings of the attosecond pulses

do not necessarily coincide the peaks of the field. Reprinted from [17]

It is possible to apply this method to the surface HHG process directly because the principle

is the same. There is a small difference that the high frequency components is generated twice

per optical cycle for gas HHG, while once per cycle for surface HHG. This difference is actually

advantageous in practice because the condition on the pulse duration is slightly relaxed. One

important thing to consider is the effect of the carrier envelope phase on the harmonic generation

process. In gas HHG, a cosine pulse produces a single attosecond pulse, while a sine pulse

produces two attosecond pulses (Fig. 7.7). For surface HHG, numerical simulations predict an

analogous behavior. Therefore, as I have already introduced, it is necessary to control the CEP

to control the generation of single attosecond pulses.
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Figure 7.7: High order harmonic spectra obtained experimentally in gases with a few cycle

laser. (a) cosine shaped and (b) sine shaped waveform. Reprinted from [13]

7.5 Plasma mirrors

7.5.1 Introduction

I have demonstrated that the ”salle noire” laser system satisfies all the initial prescriptions for

attosecond generation on solid target. The actual temporal contrast of 7 orders of magnitude

in the ns regime is a limitation principally for the ROM harmonics where the highest focused

intensity are needed. A solution to increase the temporal contrast without any major modifi-

cation of the laser system consists of using the plasma mirror technique at the output of the

laser. Studying plasma mirror is also very useful because the rotating/translating target for the
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plasma mirror is the same that the one used for HHG generation and because this is the first

regime of the laser-plasma interaction. Passing from the plasma mirror regime to HHG regime

(CWE and then ROM) implies to increase the focused intensity.

Discussing the contrast filtering techniques I have shown that they are based on the nonlinear-

ity on their response. The ionization of a dielectric material, a very nonlinear phenomena, is

also a good candidate to be used in a contrast filter. Electric insulators have a large band-gap

and are transparent for visible wavelength. However, if the intensity focused on the insulator

is sufficiently intense, electrons are excited from the valence band to the conduction band. If

the density of the excited electrons is higher than the critical density Nc = ε0meω
2
L/e2, the

dielectric will act like a plasma. In particular it will become highly reflective. The ionization

phenomena is also very fast. It can now understood how a plasma mirror works for the contrast

enhancement. If the intensity of the pedestal is below the ionization threshold of the target and

the main pulse ionizes the target due to multi-photon absorbtion and is reflected, the contrast

between the two is increased. This kind of interaction is named plasma mirror. The situation

is depicted in Fig. 7.8.

Figure 7.8: Principle of the plasma mirror (1) The incident pulse is focused onto a transparent

target. (2) The prepulse/pedestal are transmitted through the material. (3) Plasma is generated

by the leading edge of the main pulse. (4) The rest of the pulse is reflected by the generated

plasma. Reprinted from [17]

To be more specific, the pedestal, even below the ionization threshold, will be slightly

reflected. The contrast enhancement is then the ratio between the initial reflectivity seen by

the pedestal and the reflectivity of the plasma generated by the main pulse. It is thus important

to limit the initial reflectivity and to have a high plasma reflectivity for the main pulse. Another

very important issue is that the plasma generated on the surface of the dielectric will cause

a damage in this zone and the next shot needs to illuminate a different point of the target.
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This is why, until now, the plasma mirror technique has been applied mainly in single shot

configuration or at very low repetition rate. To extent this process to the kHz repetition rate

implies working with a rotating and translating target. The development of the target has been

done by A. Borot, another PhD member of the PCO group. A representation of the target

inside the interaction vacuum chamber is shown in Fig. 7.9.

Figure 7.9: Translating/rotating target mounted inside the vacuum chamber. The target is

made by fused silica

7.5.2 Experimental setup and results

For the plasma mirror experiments we used the 25 fs pulses compressed with transmission grat-

ings + chirped mirrors. To further clean the spatial profile the output beam passes through

the hollow fiber without any gas inside to act just as a spatial filter. The positive dispersion
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of the windows is compensated by reflections on the already installed chirped mirrors. The

beam is then expanded by a factor of two with a mirror telescope and passes through a λ/2

and a polarizer. These elements are used to finely tune the fluence on the target. A second

λ/2 is used for changing the polarization state before entering the interaction chamber (under

vacuum). Inside the chamber the beam is focused with a f=300 mm lens on the solid target with

an incident angle of 45°. This super polished fused silica target has an RMS surface flatness of

λ/10 and an anti reflecting coating at 800 nm.

Fig. 7.10 shows the measured time-and space-integrated reflectivity for s and p polarization

function of the input fluence. The maximum fluence corresponds to an input energy of 450 µJ .

The input and reflected beam were measured using two calibrated photodiodes and acquired

digitally. The fluence is calculated by dividing the input energy by the FWHM of the focused

beam which is the same for both polarizations (Fig. 7.11). The highest reflectivity (75 %) is

reached with s-polarization. This is due to the absence of the losses due to resonance absorption

and Brunel absorbtion [3]. These effects are acting with p-polarization and reduce the reflected

energy. On the other hand the reflectivity is higher for s-polarization than for p-polarization

(for p-polarization we are close to the Brewster angle).

In s-polarization we expect an increasing of the temporal contrast of 1 order of magnitude

with a high transmission efficiency. The contrast enhancement can be increased to 2 orders of

magnitude reducing the initial reflectivity with a better anti-reflecting coating.

Generating harmonics after cleaning the temporal contrast with a plasma mirror implies having

two rotating targets. Due to the complexity of this setup at the kHz repetition rate and the loss

in energy we decided, for the future HHG experiments, to start using the current laser source

without any contrast filtering technique. The high contrast (> 1010) pulses will be obtained

integrating an XPW filter in the laser system in a double CPA configuration. The design of

this system is the subject of the next, conclusive chapter.
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Figure 7.10: Measured time- and space-integrated reflectivity for s and p polarization function

of the input fluence. The maximum input energy is 0.45 mJ

Figure 7.11: Focal spot on the target measured with a CCD camera
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Chapter 8

Conclusions and perspective

8.1 Introduction

My Ph.D work focused on the possibility of generating high contrast, ultra-short pulses for doing

high repetition rate relativistic optics. In this manuscript I presented the study of the XPW

contrast filter for obtaining the high contrast pulses and the development of a mJ level, few-

cycle, CEP stabilized source. During this work several devices were developed in collaboration

with the company FASTLITE. Two different hybrid compression schemes were tested and the

solution based on transmission gratings and chirped mirrors was adapted. Some preliminary

results were obtained using the source in laser-matter experiments in the sub-relativistic regime

(plasma mirror regime). To efficiently generate harmonics in the relativistic regime a high

temporal contrast is also needed. In particular recent experiments underline the importance of

a high temporal contrast down to just a few picosecond before the main peak. This implies

to control both the incoherent and coherent contrast. The XPW filter is the chosen solution

that satisfies those requirements. The installation of a XPW filter in the laser system involves

working in a double CPA configuration. The design of this solution is presented in the next

sections.

8.2 Double CPA XPW

The front-end of the ”salle noire” laser is a commercial system (Femtopower CEP) delivering

CEP stabilized, 1 mJ, 30 fs pulses compressed in a prism compressor with a temporal contrast

of 108. This is the first building block (CPA) of the future system. To generate few-cycle, high

contrast pulses there are two possibilities:

• Implement an XPW contrast filter at the output of the Femtopower, seed the second CPA

for re-amplification keeping the high contrast. Broaden the spectrum in the hollow-core

fiber for the generation of few-cycle (high contrast) pulses. (I)

• Broaden the spectrum to the few-cycle regime in the hollow-core fiber directly after the

Femtopower, clean the few-cycle pulses temporally and spectrally with an XPW contrast
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filter and seed in the second CPA. (II)

After the developments done during my Ph.D on XPW generation, the two options above

are feasible. The second solution is scalable to higher energy but will result in a longer pulse

duration due to gain narrowing in the second CPA. Thanks to the XPW spectral cleaning af-

ter the hollow fiber, in the second configuration the spectrum will be less modulated but the

temporal contrast, at least in the nanosecond regime, will be the same for both configurations

(similar injecting energy in the second CPA). The contribution to the coherent contrast due

to the residual spectral phase is defined by the second CPA and so should be the same in the

two configurations. The contribution due to modulations of the spectrum will be smaller in the

second configuration. An experimental implementation similar to the second possibility (except

for the XPW filter) has already been tested [2, 3] with the generation of 3.4 mJ pulses with a

sub-10 fs temporal duration. Implementing an XPW filter after an hollow fiber with a further

amplification in an OPCPA system has also been tested by Tavella et al.

I believe that for our applications the first solution has several advantages in terms of cost,

simplicity and robustness. The sensitivity of the XPW filter to the spectral phase has already

been demonstrated for sub-10 fs pulses. In terms of daily operation (and also for the need of

broadband optics) it is much easier to implement the XPW filter at the 30 fs duration, where

the influence of the phase is less critical, followed by pulse broadening in the hollow fiber at the

end of the system. This solution is the one designed in the following part.

As I have discussed in section 4.11 the two crystals configuration with the first crystal in

focus is not easily scalable to high input energy and short pulse duration. With a reasonable

input beam size, in order to avoid white light generation in crystals, a focal length of 10 meter

is needed with a distance between the crystals of more than 1 meter to filter 1 mJ, 30 fs pulses

(the output of the Femtopower). Furthermore in order to avoid SPM in air, a major part of

the setup should be under vacuum. To dispose of a more compact and user-friendly filter there

are two solutions:

• the first consists in decreasing the input energy to 200 µJ (with a spatial filter) and work

in air with a standard two (holo- cut) crystal setup configuration. In this configuration

we have demonstrated the possibility of generating around 50 µJ with a overall efficiency

near 30 %. To seed the second CPA the beam needs to be stretched again and eventually

passes through another Dazzler. With a 70 % transmission of the stretcher and a 40 %

efficiency of the Dazzler there are 17 µJ to be amplified in the second amplifier.

• The second possibility is to try a high energy XPW configuration, using the whole energy

and focusing it with a short focal length (1 m) in a vacuum chamber with an iris placed at

the focus. The two BaF2 are placed after the focus where the intensity is below the white

light generation threshold. In this configuration a global efficiency (considering also the

losses in the iris) of 10 % is expected with an output energy of 100 µJ. The spatial cleaning
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in the focus is necessary due to the spatial quality of the beam after the Femtopower. 30

µJ are then injected in the second amplifier. In this case the iris for the spatial filtering

and the crystals are placed under vacuum. Due to the limited amount of elements under

vacuum a simple plexiglas tube can be used. The advantage of this configuration is its

compactness and simplicity of alignment.

The increase in temporal contrast after a XPW filter is determined by the extinction ratio

of the polarizers eventually degraded by some linear birefringence of the nonlinear crystals. To

be conservative we can consider an increase in temporal contrast of 3 orders of magnitude.

Furthermore in both the configurations the spectrum is broadened after the XPW filter and a

FWHM >90 nm is expected. Tens of µJ pulses, with a temporal contrast higher than 1010 and

compressible to 15 fs can then be seeded into the second CPA.

The second amplifier stage has been designed using Commod pro in collaboration with B.

Mercier, another member of the PCO group. I assume the pulses stretched to 10 ps. The table

with the energy after each pass for the two XPW filter options and for different sizes of the

pump beam are shown in Tab. 8.1. This table also gives the accumulated B integral after each

pass.

Figure 8.1: amplification for each pass

To obtain the desired energy a 5-pass amplifier is needed. Considering for example a diam-

eter of the pump of 900 µm, pulses with an energy of 4.85 mJ are obtained injecting with 16

µJ (first solution for the XPW filter) and an energy of 5.73 mJ injecting with 32 µJ (second
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solution for the XPW filter). The number of passes is limited to 5 to limit the additional B

integral to 3.2 rad. The B integral accumulated is the first CPA is cleaned in the XPW filter.

As discussed in section 6.3 the Dazscope optimization loop can be used to measure and pre-

compensate the additional spectral phase induced by non linear effects during amplification. In

the actual configuration of our laser system the stretcher and the compressor are not matched

and all the third order spectral phase accumulated in our laser system in compensated by the

AOPDF. The pulse can only be stretched to 7 ps and this limit the output energy. Designing

the second CPA we can choose a gratings solution both for the stretcher and the compressor

and stretch to 10 ps. Using the solution with the hybrid compressor consisting of transmission

gratings and chirped mirrors (new grooved gratings with 83 % efficiency), pulses with energies

> 3.5 mJ can be obtained and compressed to sub-20 fs. These pulses can then be compressed

down to the few-cycle regime in a hollow fiber working with circular polarization. Getting in

the few-cycle regime should be facilitated by the short input pulse duration. In section 6.11 I

have demonstrated the possibility to generate 1 mJ pulses using a hollow fiber with a diameter

of 250 µm. To inject more energy tests are planned using fibers with a 500 µm. The difficulty

with a hollow fiber with a big core diameter is keeping a good spatial profile. Another possi-

bility for increasing the input energy of the fibers is the use of a pressure gradient.

The CEP stabilization of the compressed few-cycle pulses at the output of the ”salle noire” laser

has been demonstrated in section 6.6. The CEP stability directly after the Femtopower has

also been presented. The only new element that can affect the CEP stability of the system in

the double CPA is the XPW filter. The demonstration that the XPW filter does not introduce

significant CEP drift noise into the system is given in the appendix (section 9).

8.3 Conclusion

We can then conclude that, with the design presented in this last chapter, multi-mJ, CEP

stabilized, high contrast (> 1010), few-cycle pulses can be generated at the kHz repetition rate.

A source with these specifications is not currently commercially available but it is realistic to

expect that it will be available in the next years due to the importance of its applications. The

pulses generated with this source, gently focused on a gaz jet or tightly focused on a solid target,

can generate single attosecond pulses. A higher efficiency is expected for the generation on a

solid target. The characterization and applications of these attosecond pulses in pump/probe

experiments will be the subject of the research for the future years and in particular it will

the subject of the experiments with the ”Salle Noire” laser system in a near future. Using a

deformable mirror to focus these pulses down to the limit of diffraction (λ2) [1], intensities in the

relativistic regime can be obtained and attosecond pulses can be generated with the relativistic

oscillating mirror regime or in λ3 regime. An eventual pre-pulse with controlled amplitude and

delay can be added (for example with the AOPDF) to generate a particular plasma density

gradient that maximize the harmonic emission.
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Chapter 9

Appendix

9.1 CEP after XPW

9.1.1 Carrier envelope phase after XPW

When the XPW filter is introduced in the laser system it is important to demonstrate that

it does not deteriorate the CEP stability. This means to demonstrate that the relative CEP

between the fundamental and the generated XPW pulse is constant between successive pulses.

If successive pulses have the same CEP then this is true also for the generated XPW pulses.

Considering again the relation:

B̂(L, ω) = −iγ⊥L
∫∫

R2
Â(ω1)Â(ω2)Â

∗(ω1 + ω2 − ω)dω1dω2 (9.1)

expressing the XPW four-wave mixing process (neglecting SPM and XPM), it results that for a

generated angular frequency ω4 = ω1 + ω2 − ω there is the following relation between the CEP

of the interacting waves :

φω4 = π/2 + φω1 + φω2 − φω (9.2)

This expression describes the buildup of the frequency-independent part of the XPW pulse

phase. The other processes that act together with XPW generation (SPM and XPM) induce

an intensity-induced phase shift but, for a given intensity, the CEP difference between the fun-

damental and the XPW beam remain constant between successive pulses.

In the following part, I give a clear experimental evidence that the CEP is preserved upon

the XPW process. These experiments were done in collaboration with K. Osvay group from

Szeged (Hungary). This group have a long experience with the spectrally and spatially re-

solved interferometry (SSRI). SSRI has been proven to be a powerful technique for dispersion

measurement of various materials and optical elements. It typically consists of a two-beam in-

terferometer, where the phase fronts of the reference and sample beams are tilted with a small

angle, and an imaging spectrograph. The interference pattern is imaged onto the input slit of

the spectrograph, so that spatially (along the slit) and spectrally resolved interference fringes

are formed on the CCD camera inserted at the output plane of the spectrograph (Fig. 8.1 ).
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The slope and the curvature of the interference fringes are characteristic to the dispersion coef-

ficients of the sample such as group delay (GD) or group delay dispersion (GDD). The absolute

spatial position of the fringes is, however, directly and uniquely related to the relative carrier

envelope phase of the sample and reference beams. If the detector is slow or its exposure time

long enough, then it actually captures many subsequent interference patterns on top of each

other. As a result, the visibility of the recorded interference pattern would be substantially

degraded, if there is a change in relative CEP between sample and reference pulses. However,

if there is no relative CEP drift, then the position of the fringes should be maintained and the

visibility of the integrated fringe system is expected to be independent on the exposure time.

Figure 9.1: Experimental setup. The cross polarized pulses interfere with the fundamental

beam in a Mach-.Zehnder interferometer

Figure 9.2: The spatial position y of the SSRI fringes is uniquely determined by the CEP

difference between the sample (i.e. cross polarized) and the reference (i.e. fundamental) pulses.
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Experiments CEP after XPW

In the experiment (Fig. 9.1) the laser source is the ”salle noire” laser system. Due to the

fact that we measure the relative CEP between the fundamental and the XPW beam (and

not between successive pulses) the system does not need to be CEP stabilized. The pulse

energy is considerably attenuated prior to the XPW generation stage that consisted of an

f=1m focal lens and a BaF2 crystal. The generated XPW beam and the rest of the fundamental

pulses are collimated by a second lens. The orthogonally polarized XPW beam is split from

the fundamental beam by a polarizing cube. After adjusting their relative polarization and

timing appropriately, both beams are sent to the input slit of an imaging spectrograph. Two

independent experiments were carried out to measure the relative change in CEP between XPW

and fundamental beams. First the exposure time of the CCD camera was varied from 1 ms to

1000 ms to test the fringe stability over time. Fig. 9.3 shows spatial cross section of the fringes

for three different wavelength function of the exposure time of the CCD camera. As is clear

from the composed images at three different wavelengths, the vertical position of the fringes

(relative CEP) is maintained over the large variation of the exposure time. Moreover, the

position is also independent of the spectral position of the interferograms. This evaluation of

the fringes is restricted to certain wavelengths. We can evaluate the whole interference pattern

(i.e. for each spatial point and for each wavelengths) if we compute the visibility of the fringes

for the entire interferograms. From the captured interferograms the visibility has been also

evaluated, varying from 0.883 to 0.823 when the exposition time was increased from 1ms to 1s.

This small change of visibility is attributed the unavoidable mechanical vibration of the optical

components in the two arms of the interferometer.

Figure 9.3: Spatial cross section of the fringes at three different wavelengths in the function of

the exposure time of the CCD camera. At each exposure time the corresponding slice of nine

independent interferograms are displayed
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Figure 9.4: Change of total CEP of the XPW pulses relative to the sample pulses as a function

of wedge insertion in the XPW beam.

The second experiment yielded an independent proof of CEP preservation during XPW

generation. A pair of fused silica wedges with an apex angle of 10.3 was inserted into the XPW

arm of the interferometer. The change in relative CEP between the XPW and fundamental

beam was measured as a function of the material amount inserted into the XPW beam path

through moving one of the wedges. Nine interferograms were captured at each position of the

traveling wedge moved by a precision translator in 10 µm steps. The variation of the total

spectral phase of the XPW pulses relative to the fundamental beam was calculated at each

subsequent position of the wedge (Fig. 9.4). The rate of phase change for the XPW beam

as a function of wedge insertion was hence measured as 644.6 rad/mm, which is in excellent

agreement with the calculated value of 647.0 rad/mm.

These experiments using the spectrally and spatially resolved interferometry clearly demon-

strate that the relative CEP is maintained between the fundamental and the XPW pulse. The

last check is to measure the CEP drift between successive pulses after XPW. This has been

realized measuring the CEP drift in open loop (just the oscillator stabilized) with the f-2f non-

linear interferometer placed after the XPW filter. This experiment was realized in collaboration

with the O. Gobert and J.Hergott from the Centre Energy Atomic (CEA Saclay). No increas-

ing CEP noise is measured after the filter compared to the output of the laser. We have even

measured a slightly reduction of the CEP noise. We think that the spectral broadening and

the cleaning of the spatial profile has as a consequence the reduction of the noise added by the

white light generation in the bulk sapphire and thus on the measured CEP noise.
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