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R�esum�e

L'�egalisation pour les syst�emes monoporteuses est un vieux domaine qui parâ�t peu su-

jet �a des innovations. Cependant, on peut se demander si la s�eparation fonctionnelle entre

�egalisation, d�ecodage et estimation de canal est pertinente [40][37]. En e�et, les traite-

ments it�eratifs faisant dialoguer plusieurs entit�es d'une même châ�ne de communication se

sont av�er�es extrêmement fructueux dans le domaine du codage et, plus r�ecemment, dans le

domaine de l'estimation de canal et de l'�egalisation. Le sujet de cette th�ese est, en fonc-

tion des param�etres du syst�eme �etudi�e (typiquement la taille de l'entrelacement, le type de

canal radio mobile), d'essayer de combiner ces trois tâches de la fa�con la plus performante

(la retransmission �etant trait�ee comme une forme de codage canal). L'approche propos�ee

ne s'attache pas seulement aux performances obtenues mais aussi au souci de complexit�e,

a�n de viser des applications industrielles. Trois contextes sont particuli�erement �etudi�es:

les r�eseaux radio haut d�ebits du type ATM sans �l, le CDMA haut d�ebit avec faible fac-

teur d'�etalement, les syst�emes TDMA avanc�es (EDGE) avec modulation d'ordre �elev�e et/ou

antennes d'�emission et de r�eception multiple. A�n de conserver le crit�ere Maximum A Pos-

teriori (MAP), tout en gardant une complexit�e abordable, les techniques d̂�tes de traitement

par survivant (sur treillis r�eduits) sont exhaustivement d�ecrites et mises en pratiques pour

les contextes pr�ec�edemment cit�es. Il est notamment d�emontrer que la g�en�eralisation du

traitement par survivant, consistant tr�es simplement �a garder plus d'un survivant par noeud

du treillis r�eduit, est tr�es robuste �a la propagation d'erreur même en presence de canaux �a

phase non minimale. Cette g�en�eralisation fut originellement introduite par Hashimoto [61]

sous le nom d' algorithme de Viterbi g�en�eralis�e (GVA), la technique elle même �etant dans

cette th�ese d�enomm�ee traitement par survivant g�en�eralis�e.
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Chapter 1

Introduction

Equalization for single carrier wireless systems may appear at �rst sight as a worn out �eld,

where few innovations remain to be done. However, one can wonder if the strict functional

split between equalization, decoding and channel estimation that exists nowadays in classical

receivers is judicious [40] [37]. Indeed, iterative processing making several entities of the same

communication chain communicate was proved to be very pro�table in the coding domain

and more recently in the channel estimation and equalization domains. The topic of this

thesis is to combine these reception basic tasks in the most eÆcient way taking into account

the studied system constraints, i.e., interleaving size, wireless mobile channel type, and

channel coding. The proposed approaches not only optimize the performance but also the

complexity in order to aim at industrial applications.

Three main contexts are studied in this thesis:

� wireless Local Area Network (LAN) with very high data rate and granularity con-

straints,

� high data rate CDMA with low spreading factor,

� advanced wireless TDMA systems with high order modulation and/or Multiple Input

Multiple Output channel.

In the second chapter, we analytically derive the performance of optimal receivers

over wireless mobile channels. The chosen approach is the Matched Filter Bound (being

a lower bound under idealized conditions, in particular perfect channel estimation and no

Inter-Symbol Interference) for multichannel diversity over frequency selective Rayleigh fad-

ing mobile channels. It allows a better understanding of the diversity concept, which is

important for mobile radio interface design; and to quantify, to a certain extent, the gains

related to di�erent diversity sources (i.e., antenna diversity, multipath diversity, and time

diversity) that can be expected for a given set of system parameters such as the modulation
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characteristics, the data rate, the radio channel properties. It also helps to explain the per-

formance degradation due to InterSymbol Interference (ISI) and to identify sub-optimality

in the receiver design. This bound serves as a valuable benchmark throughout this thesis.

The third chapter deals with wireless LAN, that is to say systems that have strong

granularity constraints and no time diversity at all due to very high data rates, i.e, the chan-

nel coherence time is by far larger than the permitted interleaving size (e.g., much larger

than an ATM cell length). A joint equalization and decoding approach without interleav-

ing seems to be the most appropriate one for single carrier radio interfaces. However, the

major problem lies here in the receiver complexity which increases exponentially with data

rates. This chapter is, thus, naturally oriented towards suboptimal trellis search techniques

applied to joint equalization and decoding that enable to reduce signi�cantly the receiver

trellis complexity. Finally, a new low-complexity receiver is proposed based on Generalized

Per Survivor (GPSP) Processing technique derived from the Generalized Viterbi Algorithm

(GVA). This technique revealed particularly robust to error propagation even in the case of

non-minimum phase channels.

The fourth chapter looks into the gains brought by iterative processing or by the

"turbo principle" applied to advanced TDMA systems with high order modulation and

channel interleaving. We tried to include as many entities as possible into one iteration. A

low complexity trellis based receiver is proposed, performing iteratively channel estimation,

equalization and decoding.

The turbo detection/equalization scheme is original in the sense that it stands out from

the classical approaches based on Decision Feedback Equalizers (DFE) or Maximum A Poste-

riori (MAP) equalizers. Here, we used a Soft-In Soft-Out (SISO) Decision Feedback Sequence

Estimation (DFSE) equalizer with pre�ltering to turn the channel into minimum phase.

Concerning channel re-estimation, many di�erent methods can be used to tackle this

issue. Once again in order to keep the receiver complexity as low as possible, we chose one

of the simplest: a linear approach derived from the so-called bootstrap technique (using a

Least Square (LS) estimator, often refers as LS-based channel re-estimation). A Cramer Rao

bound is also presented and gives insights about its performance.

The �fth chapter deals with CDMA systems using low spreading factor or equivalently

spreading sequences with bad correlation properties. It is well known that the Rake receiver

performance degrades signi�cantly for spreading factor lower then 16 entailing the need of an

Interference canceller at its output. Fortunately, the Rake output can be formally identi�ed

to a convolution product enabling the transposition of the di�erent techniques developed in

the previous chapter to that context (i.e, Rake followed by SISO-DFSE).
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The use of a low spreading factor also degrades the performance of the conventional

channel estimator which relies heavily on spreading sequence properties. This issue is also

addressed in this chapter by suggesting a new channel estimation algorithm that takes into

account the ISI structure.

The sixth chapter aims at generalizing the previous approaches to a Multiple Input

Multiple Output (MIMO) channel for TDMA systems. A reduced-complexity trellis-based

receiver performing iteratively channel estimation, multilayer detection/equalization and

channel decoding is derived. The SISO multilayered data detector/equalizer is based on

the GPSP technique already introduced in the third chapter. Indeed this technique is well

adapted to this context since a pre�lter turning every single channel into minimum phase

does not exist. The channel re-estimation is based on the generalization of the bootstrap

technique of chapter 4.

Our approach presents two-fold advantages. It enables to cope with severe MIMO channel

ISI and allows to use more transmit antennas than receive antennas. Focusing on the case of

N transmit antennas and one receive antenna, which is particularly interesting for handset

mobile at the receiver end, the equivalence in terms of data rate and receiver complexity

between one 2N -order modulation and N parallel transmitted BPSK is pointed out.

The seventh chapter investigates Iterative Decoding of Serially Concatenated Multi-

layered Trellis-Coded Modulations in a MIMO frequency selective radio channel . It can be

viewed as an extension of chapter 3 and 6 in order to increase the spectral eÆciency and the

robustness of the GPSP-based sub-optimal receiver to strong ISI.
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Chapter 2

Matched Filter Bound for

Multichannel Diversity over

Frequency-Selective Rayleigh-Fading

Mobile Channels.

2.1 Introduction

In modern time-division multiple-access (TDMA) digital mobile radio systems, data signals

are transmitted in bursts. If the channel can be assumed time invariant for the burst dura-

tion (slow fading channel) then the optimum L-channel diversity receiver is the Maximum

Likelihood Sequence Estimation (MLSE) receiver [69]. The performance of such a receiver

is given by averaging the error probability on all possible channel outcomes. For a given

channel outcome the error probability (in white Gaussian noise) is assessed by the minimum

Euclidian distance between all possible received sequences. This quantity is very diÆcult to

calculate for arbitrary dispersive channels, so that only numerical performance results can

be obtained via error trellis method [77, page 420].

A much simpler measure of performance can be obtained by neglecting the e�ect of

Inter-Symbol-Interference (ISI) and deriving the Bit Error Probability (BEP) when a single

symbol is transmitted over a perfectly known channel. In this way, an absolute BEP per-

formance lower bound is obtained, which is commonly known as the Matched Filter Bound

(MFB). Surprisingly, the MFB gives in many cases the same performances as the error treillis

method, meaning that within a multiplicative constant the error probability of the MLSE is

essentially the same as the MFB even in presence of ISI [77, page 448]. For Direct-Sequence

Spread-Spectrum (DSSS) systems, the classical RAKE receiver approaches the MFB at the

expense of very low symbol rate [92]. As a consequence, matched �lter bounds (being lower
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bounds under idealized conditions, in particular perfect channel estimation and no ISI) are

very attractive because they are more easily derived in analytical form, and also because

these bounds are generally found to be tight enough (in comparison with MLSE optimum

receiver or RAKE receiver) to make them serve as valuable benchmarks for system design

and evaluation.

In this chapter, a matched �lter bound of the error probability for an L-branches diversity

system that uses any linear modulation over multipath frequency-selective fading channels

is derived. On the receiver side, it is assumed that L branches of diversity are obtained

by the use of L distinct antennas. The lower bound is based on the principles of matched

�lter and Maximal Ratio Combining (MRC). Performance bounds have already been derived

for several systems in the past [63], [4], [5], [98], [127],[66], [100], [78], [129], [35], [46]. For

example, in [98] the problem has been formulated in its most general form, but only for the

case of ideal linear equalization, while [66] treats the case of a single multipath Rayleigh

fading channel with independent taps only.

In [35] the matched �lter bound is calculated in the frequency domain for L uncorre-

lated diversity branches via a continuous Karhunen Lo�eve transformation which allows both

continuously dispersive channels and discrete multipath channels to be taken into account.

Moreover [35] considers colored noise but having the same power spectral density on all

branches. Finally, in [46], the matched �lter bound results for uncorrelated L diversity

branches are extended to Trellis Coded Modulation with perfect interleaving.

Our formulation is the �rst one which accounts at the same time for the following aspects:

pulse shape, channel taps correlation, any number of diversity branches, power mismatch

of the di�erent branches (especially useful for polarization diversity), envelope correlation

between the signals on di�erent branches, and white noise with di�erent power spectral

density on each branch. Moreover, the presented matched �lter bound derivation is the

most straightforward as it relies on a unique Karhunen-Lo�eve expansion. In comparison,

the approach considered in [78] is composed of two successive transformations as it needs an

extra Cholesky decomposition to take into account any kind of correlation. In this respect,

it is shown here that the compactness of our analytical formulation allows us to get more

insight in important issues related to antenna diversity, such as polarization diversity gain.

In Section 2.2, the considered system model is presented and the theoretical error proba-

bility lower bound using Karhunen-Lo�eve expansion is derived, together with the asymptotic

expression of the BER for BPSK. This result, already known for 
at fading channels [101],

is thus shown to apply for the more general case of frequency-selective fading channels.

In Section 2.3, with the use of our model, any unitary transformation on taps of equal

delay is shown to leave the diversity gain unchanged for antenna diversity systems having the

same noise spectral density on each branch. This is particularly interesting for polarization
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diversity as it is shown that rotating the base station antennas represents a special case

of unitary transformation. Thus, the widespread belief of added diversity gain for slanted

antennas at the receiver is proven to be wrong from the matched �lter bound point of

view. In addition, by extending the work of Vaughan [117], the same result was numerically

con�rmed. Polarization diversity gain is invariant vs. antennas rotation.

In Section 2.4, polarization diversity is overviewed as there is a renewed interest for

this kind of diversity, especially in mobile radio systems. Additionally, with the use of our

theoretical model, the spatial and polarization dual-diversity gains for Global System for

Mobile communication (GSM) [82] and Interim Standard 95 (IS-95 downlink) [114] mobile

systems are compared in various cellular environments.

Finally, in section 2.5 the coded Matched Filter Bound is presented.

2.2 General Approach

In this section we give a detailed presentation of the system model and the computation of

the matched �lter error probability bound.

2.2.1 System Model

The considered base-band system model is depicted inFig.2.1. It consists of a one dimensional

(complex or real) linear modulation with a pulse shape �lter g(t) at the transmitter side. The

transmitted signal passes through L time-varying multipath channels hi(t; �) (i = 1; :::; L),

assumed to be perfectly known, and is received by L di�erent antennas corresponding to L

diversity branches. Each channel is modeled by a discrete Ki-taps time varying response

hi(t; �) =

KiX
j=1

cij(t)Æ(� � �ij); (2.1)

where each cij(t) is a zero mean complex Gaussian random variable (Rayleigh fading). The

additive white Gaussian noise (AWGN) of the i -th branch ni(t) has a power spectral density

Ni. The L di�erent noise signals are assumed to be uncorrelated. In the sequel, cij and cij(t)

will be indistinctly used as the channel is assumed to be invariant for a symbol duration.

The channel taps cij of the L branches can be arranged in the following vector form

x = [c11:::c1K1c21:::c2K2:::cL1:::cLKL
]T : (2.2)

The covariance matrix Kx of the vector x is given by Kx = E(xxy), where y denotes the
conjugated transpose operator. It is important to note that, unlike previously published

results [4] [5], [98], [127],[66], [100], [78], [129], [35], [46], no particular restriction on Kx
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is considered. This allows to treat, in the same framework, the most general case of tap

correlation within one branch as well as between di�erent branches.

As the matched �lter bound is considered, only one symbol is transmitted and received [5].

In this case, for the i -th diversity branch the matched �lter for each transmitted symbol |say

a| is in fact matched to Mi(t; �) = g(�)�hi(t; �) where * denotes the convolution operator.
The optimal way to combine the L branches is to perform Maximal Ratio Combining (MRC).

Therefore, as the noise signals of the branches have di�erent 
at power spectral densities Ni,

any branch i must be weighted by a factor 1=Ni, [101]. Then the outputs of the L matched

�lters are sampled at the symbol rate (perfect synchronization is supposed). We then obtain

the samples

yi =
a

Ni
kMi(t; �) k2 + bi ; (2.3)

where bi is the Gaussian noise sample of the i -th branch output and kMi(t; �) k2 is the total
energy of Mi(t; �) given by

kMi(t; �) k2 =
Z
d�

"
KiX
j=1

cij(t)
?g?(� � �ij)

#"
KiX
k=1

cik(t)g(� � �ik)
#
: (2.4)

De�ning the autocorrelation function of g(t) as

�g(�) =

Z
g?(t� �)g(t)dt ; (2.5)

yi can now be written

yi =
a

Ni

KiX
j=1

KiX
k=1

c?ij�g(�ij � �ik)cik + bi : (2.6)

Let ci = [ci1; ci2; :::; ciKi
]T , then we have

yi = aci
yAici + bi ; (2.7)

where Ai is a Ki �Ki matrix with elements Ai
jk = �g(�ij � �ik)=Ni.

The L samples yi are added together to give the �nal decision variable u

u =
LX
i=1

yi = az + b (2.8)

with

z =
LX
i=1

ci
yAici (2.9)

and

b =
LX
i=1

bi : (2.10)
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Recalling (2.2), it is easily observed that (2.9) can be expressed as

z = xyHx (2.11)

where the matrix H is de�ned as

H =

0BBBB@
A1 0 0 � � � 0

0 A2 0 � � � 0
...

...
...

...
...

0 0 0 � � � AL

1CCCCA : (2.12)

Consequently, the �nal decision variable is equal to the transmitted symbol a scaled by

the coeÆcient z and added to a Gaussian noise sample b. The instantaneous signal-to-noise

ratio (SNR) of the combiner output (i.e. the variable u), for given values of ci, is equal to


 =
jE(u)j2

E(ju� E(u)j2) � (2.13)

Let us verify that the receiver really implements MRC combining. As b is a zero mean

Gaussian noise, and assuming that E(jaj2) = 1 we have

jE(u)j2 =
 

LX
i=1

kMi(t; �) k2
Ni

!2

: (2.14)

The noise sample bi at the output of i-th branch is expressed as

bi =
1

Ni

Z
d� ni(�)M

�
i (t; �) : (2.15)

As a result the variance of the decision variable u can be written

E(ju� E(u)j2) = 1

NiNj

LX
i=1

LX
j=1

Z Z
du dvE[ni(u)� n�j(v)]M�i (t; u)Mj(t; v) : (2.16)

Using the properties of the noise signals, we have

E (ni(u)� nj�(v) ) = NiÆ(u� v)Æij : (2.17)

Thus we can write

E(ju� E(u)j2) =
LX
i=1

kMi(t; �) k2
Ni

� (2.18)

Equations (2.13), (2.14) and (2.18) yield


 =
LX
i=1

kMi(t; �) k2
Ni

� (2.19)
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Finally, using (2.3) and (2.8), one can easily verify that


 = z =
LX
i=1


i (2.20)

where 
i =k Mi(t; �) k2 =Ni = Ei
s=Ni is the instantaneous signal-to-noise ratio of the i-th

branch (Ei
s is the instantaneous received symbol energy for the i-th branch). Thus, adding

the samples is equivalent to performing MRC of the diversity branches [101]. Therefore, the

combination of ideal matched �lters and MRC leads to the best theoretical performance,

meaning that it corresponds to the lowest bound of the error probability that a real life

receiver can attain. However, as underlined before, this bound is very close to the optimum

receiver performance.

2.2.2 Error Probability Lower Bound

As the autocorrelation function �g(t) has an Hermitian symmetry and is non-negative def-

inite, it follows that matrix Ai is Hermitian non-negative de�nite. By extension, matrix

H is also Hermitian non-negative de�nite, and of dimension K � K where K =
PL

i=1Ki.

Therefore,
p
H exists so that z can be written z = vyv, where v =

p
Hx.

Knowing that x is circularly symmetric (i.e., E(xxT ) � E(x)E(xT ) = 0, T denoting

the transpose operator) and that its covariance matrix is real (see Appendix A), v is also

circularly symmetric as it is obtained by a linear transformation of x. Using the results of

Appendix B, v can be written as

v =
KX
i=1

qiui ; (2.21)

where qi are complex circularly symmetric random variables with variances the eigenvalues

of Kv = E(vvy), and ui are complex mutually orthonormal vectors. As a result, z can be

written in the simple form

z =
KX
i=1

jqij2 ; (2.22)

where jqij2 are independent chi-square random variables with means the eigenvalues �i (i =

1; :::; K) of Kv =
p
HKx

p
H or equivalently of HKx, Kx = E(xxy) being the covariance

matrix of x. Note that the matrix H takes into account the pulse shape characteristics in

combination with the channel delay spread, whereas the matrix Kx combines the e�ects of

the power pro�les of the L channels, the correlations (between taps of one branch as well as

taps of di�erent branches), and the power mismatch among the L branches.

In case of unequal eigenvalues, the probability distribution of z is given by

pz(z) =
KX
i=1

�i
�i
e
� z
�i (2.23)
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where �i are the residues ( �i =
Q

k 6=i
�i

�i��k
).

More generally, some eigenvalues may be equal, which is the case for instance when treat-

ing independent diversity branches having the same channel pro�le. This case was examined

extensively in many papers such as [100]. Alternatively, one can arti�cially separate the

equal eigenvalues by a very small amount. In this way, the distribution (2.23) can still be

used and yields results very close to the exact approach.

We know from (2.20) that the instantaneous signal-to-noise ratio of the decision variable

u is 
 = z. Moreover, using (2.22), the mean signal-to-noise ratio when considering the

channel variations is simply �
 = �z =
P

i �i. Then the average error probability versus �
 can

be obtained as

Pe(�
) =

Z 1
0

dz pz(z)P0(z) (2.24)

where P0(
) is the error probability of the chosen modulation in AWGN channel.

For BPSK modulation, (2.24) can be solved analytically, so the matched �lter bound

error probability can be expressed as [66], [100], [78]

Pe(�
) =
1

2

KX
i=1

�i

�
1�

r
�


�
 + 1=�i

�
(2.25)

where �i = �i=
P
�i are the normalized eigenvalues.

One can check that in a 
at Rayleigh fading channel (K = 1) the BER reduces to the

well known equation [92]

Pe(�
) =
1

2

�
1�

r
�


�
 + 1

�
: (2.26)

2.2.3 Asymptotic Behavior

It is well known, in the case of K branches diversity with 
at Rayleigh fading, that for large

signal-to-noise ratio �
, the BER behaves as �
�K. The order of diversity thus is said to be K.

Moreover, when the signals on the branches are correlated or have di�erent energy levels,

the BER will still have the same asymptotic slope but su�ers a degradation in SNR given

by the amount of signal correlation and/or energy mismatch [101].

Our goal is to extend this notion to the general case of frequency-selective Rayleigh

fading channels. The asymptotic error probability of BPSK for large SNR can be obtained

by developing (2.25) in the following manner

Pe(�
) =
1

2

1X
n=1

(�1)Cn
� 1

2
Un

1

�
n
(2.27)

where

Un =
KX
i=1

�i
�in

(2.28)
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and

Ck
q =

q(q � 1) � � � (q � k + 1)

k!
� (2.29)

It is demonstrated in [14] (see Appendix C) that8><>:
Un = 1 n = 0

Un = 0 n = 1; :::; K � 1

Un = (�1)K+1

QK
i=1 �i

n = K

(2.30)

Thus, for suÆciently large �
, (2.27) can be well approximated by its �rst non-zero term

Pe(�
) ' (�1)K
2

CK
� 1
2

�
K
QK

i=1 �i
(2.31)

or in a more simple form

Pe(�
) ' CK
2K�1QK

i=1(4�
�i)
� (2.32)

Note that
QK

i=1 �i is proportional to det(HKx). Of course, even in the presence of

multipath, the asymptotic order of diversity remains equal to the total number of paths

K (of the L branches), regardless of their relative time delays and power levels. More

interesting, the product
QK

i=1 �i is suÆcient to determine the asymptotic SNR degradation

caused by the pulse shape autocorrelation (via H), the taps correlations, and the power

mismatch between branches (via Kx). The product of normalized eigenvalues appearing in

(2.31) con�rms the intuition that for diversity, it is better to have many small eigenvalues

than a few large ones. The highest diversity gain is obtained when
Q
�i is maximized, that

is for �i = 1=K (
PK

k=1 �k = 1), in which case (2.31) reduces to the well known asymptotic

error probability for K independent equal energy diversity branches [92]

Pe(�
) =

�
K

4�


�K

CK
2K�1 � (2.33)

Unfortunately some very small eigenvalues often appear in the Karhunen-Lo�eve expan-

sion, making this asymptotic limit valid only for extremely high SNR values, far away from

the range observed in practice (10 to 30 dB).

2.3 Unitary Transformation E�ect In Micro-Diversity

Micro-diversity means that the antenna spacing is small enough to consider that the channels

on the L branches have the same delay pro�le, i.e. Kj = K0 and �ij = �j. This is actually

the case for all multichannel diversity systems with antennas located in the same site (few

wavelengths separation). As a consequence, the matrices Ai de�ned in Section 2.2 (i denotes
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the diversity branch number) will be all identical, i.e. Ai = A. It is also assumed that the

noise signals have the same spectral density, which is the case for polarization and spatial

diversity, most of the time.

In this section, it is shown that applying the same unitary matrix transformation on

each of the K0 L-taps vectors (each vector contains the taps of the same index) leaves the

diversity gain unchanged.

Let U be a unitary transformation matrix of dimension L � L (i.e. UyU = I, where I

denotes the identity matrix), and ti = [c1ic2i � � � cLi]T be a vector of the L taps of the same

delay �i.

ti
0 = Uti (2.34)

By noting from (2.2) that the taps in x are arranged on a branch by branch basis, the new

taps y can be deduced from x by an equivalent LK0 � LK0 unitary transformation �

y = �x (2.35)

where � is a block matrix of the form

� =

266664
�11 �12 � � � �1L

�21 �22 � � � �2L

...
...

...

�L1 �L2 � � � �LL

377775 (2.36)

and �ij are K0 �K0 diagonal matrices related to the transformation U by

�ij = Uij � I : (2.37)

By substituting y as given in (2.35) into (2.11), we easily show that z becomes

z = xy�yH�x: (2.38)

Finally, referring to (2.12), H is a block matrix of the form

H =

266664
A 0 � � � 0

0 A � � � 0
...

...
...

...

0 0 � � � A

377775 (2.39)

It can be easily veri�ed that H and � commute. Using the fact that � is a unitary trans-

formation we �nally get

z = xyHx: (2.40)

Equation 2.40 is identical to 2.11, thus the quadratic form z remains unchanged, and

consequently the diversity gain is invariant by any unitary transformation applied on taps of
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the same index. In Section 2.4.4 we point out the fact that antenna rotation for polarization

diversity is a particular case of such unitary transformation, and thus that it does not provide

any additional gain.

2.4 Polarization vs. Spatial Micro-Diversity

In this section, the case of dual-diversity (L = 2) for both polarization and space diversity

techniques is considered. It is assumed that the AWGN has the same power spectral density

for the 2 branches (this is the case for almost all pratical systems). The subject of space

diversity has been widely studied for the past several decades [64], [101]. In general, the

main disadvantage of space diversity is the existence of a non-negligible correlation between

the di�erent branches especially when the multipath angular spread of the channel is very

narrow [1], [2]. However, the local mean power is generally the same on the two branches.

2.4.1 Polarization Diversity

Although polarization diversity has been well known for over 20 years [76], [117], [64],

[101],[1], [2], space diversity schemes have been preferred as polarization diversity su�ers

from a strong imbalance between the local mean powers received on its two branches. This

imbalance is commonly referred to as cross-polar-discrimination (XPD, denoted by � here-

after) and is the ratio of the received vertical and horizontal polarization power. However,

two main arguments can explain the increasing popularity of polarization diversity nowa-

days. First of all, the miniaturization of base stations makes the antenna spacing required

by space diversity both costly and inconvenient. Secondly, polarization diversity is very at-

tractive with handheld portables as their moving antennas are on the average closer to the

horizontal, which decreases the XPD.

The nature of polarization diversity relies on the elementary processes responsible for

the depolarization of electromagnetic waves. Three di�erent processes are responsible for

depolarization: scattering from rough surfaces, di�raction [124], and Fresnel re
ection. As

the later has the greatest impact in mobile channels, we will brie
y present it.

Two Fresnel re
ection coeÆcients R? and Rk are de�ned in reference to local axes.

� the orthogonal polarization (?) is de�ned by the electric �eld component included in

the plane de�ned by the normal to the obstacle and the propagation vector,

� the parallel polarization (k) is the electric �eld component parallel to the plane tangent
to the obstacle.
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In general, the propagation occurs mainly in the horizontal plane, either in microcells

(where the antenna is well under roof tops) or in macrocells [64]. On the other hand,

the scatterers are mainly vertical (especially in urban environments). In Fig. 2.2 it is

obvious that the polarization parallel to the obstacle is less attenuated, therefore the vertical

polarization is strongly favored at the expense of the horizontal one. This explains why the

vertical polarization remains the strongest even when the portable mobile antenna is inclined

at 700 from the vertical [79].

Moreover, the phase di�erence introduced by Fresnel coeÆcients between vertical and

horizontal polarization (Fig. 2.2) ensures that the received horizontal and vertical polarized

signals are merely uncorrelated [76]. Indeed, experimental results show an envelope correla-

tion around 0.2 [76], [79]. It is well known that a correlation coeÆcient under 0.5 has small

impact on diversity [64], [101], [1].

2.4.2 Kx Matrix for Space/Polarization Dual-Diversity

As shown in Section 2.2, the matched �lter bound performance is given by the eigenvalues

of the matrix HKx. The exact structure of matrix Kx for both space/polarization dual-

diversity is

Kx =

"
C1 �

� C2

#
: (2.41)

Assuming that the taps of each channel are uncorrelated, C1, C2 and � are K0 � K0

diagonal matrices with diagonal elements C1i = E(jc1ij2), C2i = E(jc2ij2) = �2iE(jc1ij2), and
�i = E(c1ic

?
2i) = �i�iE(jc1ij2) respectively. The coeÆcient �i2 denotes the power mismatch

between the i-th taps of the 2 channels, whereas �i represents the correlation coeÆcient of

those same taps.

Obviously, (2.41) covers the most general situation where power mismatch and correla-

tion vary from one tap to another. Unfortunately, no such �ne channel measurements are

available, neither for space nor for polarization diversity. However, when the number of

scatterers is relatively high and all the channel taps are Rayleigh fading, it is safe to consider

these coeÆcients as constants |say � and �| for all the K0 taps.

Space diversity presents no power mismatch between branches, thus �2 = 1. Inversely,

polarization diversity exhibits power mismatch between its two branches |as previously

highlighted| given in terms of XPD � (dB). This means that �2 = 10��=10 for polarization

diversity.

Finally, note that only the envelope correlation �env is available experimentally. However,

it is shown in [101] that � is very close to
p
�env. From now on, all results will be given in

terms of �env � �2.
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2.4.3 Space/Polarization Diversity for GSM and IS-95

The GMSK modulation used in GSM is well approximated by binary linear modulation

with the �rst pulse shape of Laurent development [75]. However the Minimum-Shift Keying

(MSK) approximation is practically suÆcient. MSK can be modeled as a linear OQPSK

(O�set Quadrature Phase-Shift Keying) with a pulse shape �lter g(t) = cos( �t
2Tb

) of time

duration 2� Tb, where Tb is the bit duration [88]. Indeed, in the range of the common delay

spread of mobile radio channels, the autocorrelation function of the �rst Laurent pulse shape

is very close to that of the MSK.

On the other hand, the IS-95 system uses a Raised-Cosine pulse shape g(t) with a roll-o�

factor � = 0:33 and a binary modulation in downlink, at a chip rate of 1.2288 Mcps. Note

that we do not consider power control for the IS-95 downlink. Ideally, it is assumed that the

spreading sequences ensure a perfect Dirac Æ(�) autocorrelation function, and that interfering

users can be modeled by additive Gaussian noise (an acceptable approximation except for

very low number of interferers). In this case, the performances are uniquely determined by

the autocorrelation function �g(�) of the pulse shape, which is known to be [92]

�g(�) =
sin(��=Tc)

��=Tc

cos(���=Tc)

1� 4�2� 2=T 2
c

� (2.42)

Although many authors still use the cumulative probability distribution of the received

energy (i.e. the probability of the energy being greater than a given threshold) to evaluate the

diversity gain [76], [117], we prefer to compare the polarization and space diversity schemes

on the basis of the gain obtained for a given bit error probability. In fact, the later gain is

much more relevant than the former in the case of digital systems [101]. In this respect, we

consider that for uncoded bits (class II bits of the GSM frame) a BER equal to 5� 10�3 is

enough to ensure a good speech quality. The same value will be considered in the case of

IS-95 in order to compare the two systems.

It is emphasized here that the relevant antenna diversity gain G2 is the one obtained at

5� 10�3 BER after excluding the inherent multipath diversity gain G1 due to the multipath

channel (as depicted in Fig. 2.3).

Experimental measurements showed that the average value of XPD in urban and subur-

ban environments is between 1 and 10 dB with an average value of 6 dB [79], [76], and in

rural environments (e.g. Hilly Terrain) that XPD is very high, ranging from 10 to 18 dB.

This can be understood by the fact that a very small amount of energy is transposed from

one polarization to another due to the lack of scatterers in rural areas (scatterers are re-

sponsible for depolarization via Fresnel coeÆcient, see Section 2.4.1). Polarization diversity

is then uninteresting for this type of channel. In the following, a typical envelope correlation

of 0.2 is considered for polarization diversity. Polarization and space dual diversity gains

for various normalized mobile channels [36] are plotted in Figs. 2.4 and 2.5 respectively for
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GSM, and in Figs. 2.6 and 2.7 for IS-95. As a reference, the diversity gain for a 
at fading

(1 tap) Rayleigh channel is plotted in each �gure. The antenna diversity gain is the highest

for this channel, which has no intrinsic multipath diversity.

One general observation is that antenna diversity gain is high when the multipath di-

versity gain is low and vice-versa. Note that multipath diversity gain is small either if the

channel has a low intrinsic diversity, or if its diversity has not been exploited by the pulse

shape. For IS-95, the multipath diversity is well resolved by the relatively short duration of

the pulse g(t) which makes antenna diversity useless in practice as its gain rarely exceeds

1 dB. However, multiple antennas are always useful for interference reduction [127], beside

that of increasing the average signal to noise ratio.

Furthermore, our results show that the two branch polarization diversity gain is almost

equivalent to that of spatial diversity in all urban/suburban environments. Spatial diversity

clearly outperforms polarization diversity only in rural environments (e.g. Hilly Terrain HT).

2.4.4 Rotating the Base Station Antennas

The possible improvement of polarization diversity gain through spatial rotation of the two

receiver's antennas is now analysed. In fact, slanted antenna polarization diversity is very

popular nowadays [79], [117]. A great number of manufacturers claim that it achieves more

diversity gain (up to 1.5 dB extra gain) than ordinary vertical/horizontal polarized antennas,

the main reason advanced being the improvement of power balance between the two diversity

branches.

The new XPD after rotation is �rst derived together with the new correlation coeÆcient

after a rotation of the base station antennas by an angle � from the vertical (Fig. 2.8).

Let the horizontal and vertical received electric �elds be respectively

Ex1 = jx1j cos(!t+ �1) (2.43)

Ex2 = jx2j cos(!t+ �2) (2.44)

where x1 = jx1jej�1 and x2 = jx2jej�2 are two correlated circularly symmetric complex

Gaussian variables with an XPD equal to �1 and correlation coeÆcient �1.

After rotation the electric �eld received on the two rotated antennas, Ey1 and Ey2 , can

be deduced from Ex1 and Ex2 by a rotation matrix. By linearity, the relation between the

complex envelopes is the same. As a result, antenna rotation is equivalent to a rotation of

any 2 channel taps of the same index. In a generic way, we have"
y1

y2

#
=

"
cos� � sin�

sin� cos�

#"
x1

x2

#
(2.45)
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where (x1; x2) denotes the pair of initial taps, and (y1; y2) the pair of rotated taps. This

transformation is a particular unitary transformation for L = 2 which has been shown not

to have any impact on diversity gain (Section 2.3). Therefore, the widespread belief of added

diversity gain is completely false from the matched �lter bound point of view. It turns out

that polarization diversity gain is invariant by antenna rotation.

Considering now the argument of a more balanced power distribution between the di-

versity branches, one should note that in reality there is a tradeo� between the power level

balance and the correlation of the two branches. After rotation, the new taps exhibit new

XPD and cross-correlation coeÆcients �2 and �2 that are functions of the initial ones �1, �1

and of the rotation angle �.

We must evaluate

�2 =
E(jy2j2)
E(jy1j2) (2.46)

and

�2 =
E(y1y

?
2)p

E(jy1j2)E(jy2j2)
� (2.47)

After a straightforward development it is found

�2 =
f1(�1; �1; �)

f2(�1; �1; �)
(see Fig. 2.9) (2.48)

�2 =

��(1� �1) tan� + �1
p
�1(1� tan2 �)

��p
f1(�1; �1; �) f2(�1; �1; �)

(see Fig. 2.10) (2.49)

where f1(�1; �1; �) = tan2 �+�1+2�1
p
�1 tan� and f2(�1; �1; �) = 1+�1 tan

2 ��2�1 tan�p�1 .
These results extend those of [117], where the e�ect of rotating the base station antennas

was also studied but in the special case of independent Rayleigh fading signals (�1 = 0).

By using (2.48) and (2.49) for various combinations of channel type, initial XPD, and

initial correlation coeÆcient, to evaluate the diversity gain as before, it was noticed that the

gain remained unchanged for whatever rotation angle � considered. This result con�rms the

one obtained above using the property of unitary transformations.

Consequently, even if the reported extra gains are valid, they should not be attributed to

diversity itself, but rather to some imperfection or sub-optimality of the considered receivers

which may be more sensitive to the power imbalance than to branch correlation. We be-

lieve that the measured diversity gain would be practically the same for vertical/horizontal

and slanted polarization if the receiver is well designed. We conclude that the question of

system performance with polarization diversity should not be limited to the study of signal

propagation aspects (attenuation, spatial correlation, power mismatch), but should rather

include the receiver signal processing algorithms. For instance, there may be some advan-

tage for rotated antennas in systems where the receiver algorithms are constrained to be very
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simple, and therefore far from optimal. To the best of our knowledge, no such combined

investigations are available in the literature.

2.5 Coded Matched Filter Bound

This section is very inspired by [46] where the MFB is derived for trellis coded modulation.

Consider the transmission of trellis coded symbols a corresponding to a particular path

through the code trellis. An error event of length T of the decoded sequence ea is taken

to start with symbol a1 6= ~a1 and end with symbol aT 6= ~aT . Along the error path, the

T � T nonzero branch metrics d2i = jai � ~aij2 are accumulated leading to the Euclidian

distance d2(T ) =
PT

i=1 d
2
i , in the case of static channels, the error event with minimal

euclidian distance d2min is dominant but in fading environment the e�ective code length Tmin

(minimum number of branches with non-zero branch metrics) may be more important. Let

consider an error event of length T , the individual SNR 
i along the error path are to be

weighted by d2i and sum to form the e�ective SNR which enables to obtain the performances

after the decoder. The e�ective SNR (at the output of the decoder) becomes


e =

TminX
i=1

d2i � 
i (2.50)

One can see that the probability distribution of 
e is easily derivable only in the two following

cases:

� the 
i are independent variables,

� the 
i are completely correlated (i.e. 8i; 
i = 
 ), this is typically the situation of

chapter 3.

These cases correspond to either no interleaving or perfect interleaving. Unfortunately, the

reality lies always between these two cases. This is the reason why we preferred to focus on

the uncoded MFB which is independent of the interleaving scheme. Moreover, simulations

Fig. 2.11 show that the uncoded MFB is very close to reality for GSM and IS95 systems . As

stated in the introduction, the MFB does not take into account the ISI. If the Uncoded MFB

is attained at the output of the equalizer then it can only means that the distribution of the

minimum distance associated to each channel outcome, has a large peak at the Gaussian

distance (no ISI). This is particularly interesting to identify suboptimality in the receiver

design (see chapter 4).
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2.6 Conclusion

In this chapter, the matched �lter and MRC bound for L-branch antenna diversity and linear

modulation over frequency-selective Rayleigh fading multipath channels has been derived

using a novel compact approach. The comparison of the space/polarization diversity gains

for GSM and downlink IS-95 systems (binary modulation in both cases) shows that there is a

trade-o� between multipath diversity gain and antenna diversity gain. Polarization diversity

has also been shown to provide almost the same gain as spatial diversity, especially in urban

environments. Moreover, with the help of our general model, it has been possible to prove for

the �rst time that polarization diversity gain is invariant by rotation of the receiver antennas,

which is in contradiction with general belief. Some consideration were also given concerning

the MFB extended to trellis coded modulation. It was �nally concluded that the uncoded

MFB was of more practical interest since the uncoded MFB is relatively tight to existing

system performance (e.g., GSM and IS95) and is very useful to identify suboptimality in the

receiver design independently of the channel coding scheme.
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Figure 2.1: System model with L diversity branches.

Figure 2.2: Fresnel coeÆcient for vertical and horizontal polarization for cement.
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Chapter 3

Joint Equalization and decoding using

the Generalized Viterbi for

broadband wireless applications.

3.1 Introduction

The optimal way to decode trellis encoded signals transmitted on InterSymbol Interference

(ISI) Channels is to use the Maximum Likelihood (ML) "supertrellis", a combination of ISI

and error-control code trellises, whose state complexity is the product of both [34]. Unfortu-

nately, for frequency selective radio channels, the number of states of the ISI trellis increases

exponentially with the bit rate, which precludes this approach for broadband wireless radio

interfaces. As a consequence, a lot of work has been done on sub-optimal receivers for Trellis

Coded Modulation (TCM) in the presence of ISI [34], [126], [38], [44]. In [34], a systematic

method is developed for lowering the state complexity of the supertrellis. An interesting

case arises when the receiver trellis is reduced to the code trellis [34], [126], [38], [44], whose

complexity does not depend on bit rate. The ISI due to the channel is not taken into ac-

count in the trellis states but in the edge metric, as done in a classical Decision Feedback

Equalizer (DFE). It follows that such a receiver, commonly called Parallel Decision Feedback

Decoding (PDFD), inherently su�ers (as the DFE) from error propagation, especially in the

case of non minimum phase channels. Therefore, PDFD receiver needs pre-�ltering to turn

the channel into minimum phase. This pre-�ltering is cumbersome and increases the overall

receiver complexity. Besides, error propagation still remains.

In parallel, many e�orts have been devoted to improve sub-optimal equalization tech-

niques for broadband wireless channels. Once again, the issue is the complexity of the ML

ISI trellis. In [38], [61] a method is proposed to reduce the ML ISI trellis. In [61], it is shown

that the GVA, which retains more than one survivor per state, is a very eÆcient algorithm
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to �ght against error propagation.

The proposed receiver combines the PDFD algorithm with the GVA. Simulations prove

that the GVA makes the PDFD receiver very robust to error propagation (even in the case of

non minimum phase channels) for a reasonable complexity increase. It is even shown that in

most cases the ML optimal performance is attained with only four survivors per state. The

paper is organized as follows. Section 3.2 describes in details the proposed algorithm for any

error-control code trellis. In Section 3.3 some possible applications together with simulation

results are presented for cyclic block codes, convolutional codes, for static and time-varying

multipath Rayleigh channels. Notably, the algorithm was proved to perform well for simple

convolutional codes, in the context of Broadband Radio mobile channels.

3.2 Proposed Algorithm

The discrete time equivalent structure of the proposed communication model is shown in

Fig. 3.1. The data signals are transmitted in bursts containing N coded data symbols

and a known training sequence (located at the beginning of the burst) used both for channel

estimation and algorithm initialization. Let the estimated (symbol spaced) impulse response

of the convolution of the transmitter �lter, the receiver �lter and the radio-mobile channel,

be denoted

fhlgl; l 2 [0; K � 1] ; (3.1)

where K is the channel constraint length.

Note that the overall channel does not need to be minimum phase [29, page 78]. The

receiver �lter should ensure however that noise samples at the symbol rate Rs are uncorre-

lated at its output, which is the case for a squared-root raised cosine �lter for example. The

output of the received �lter at timing instant t is given by

yt = h0xt + bt + It; (3.2)

where xt is the current coded data symbol to be received, bt is a Gaussian noise sample,

and It is the ISI contribution term with

It =
K�1X
l=1

hlxt�l (3.3)

We de�ne the error-correcting code C in a general sense, seeing it as a time-variant Markovian

process. The coded symbols xt are then related to the incoming binary sequence by a time-

variant relationship of the form

xt = 	(ut; ut�1;��� ;ut�Lt); (3.4)
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taking into account encoding and bit mapping operations, where Lt is the instantaneous

code constraint length at time t. In the general case, for both block and convolutional codes,

the coded sequences produced by C can be described by an irregular trellis T (V;E; #) of

rank N where V and E respectively denote the vertex and edge spaces and # the set of edge

multivaluations. We also introduce Vt and Et the vertex and edge subspaces at time index

t of complexities jVtj and jEtj. With those notations, we have

jV j =
NX
t=1

jVtj jEj =
NX
t=1

jEtj W = max
0�t�N

jVtj : (3.5)

For time-invariant Markovian processes, such as convolutional codes, or linear cyclic block

codes, the (regular) trellis can be brought back to a single section.

The PDFD evaluates the ML metric

� =
NX
t=1




yt � h0xt � bIt


2 ; (3.6)

on the full C trellis, where bIt is the estimated ISI evaluated, as in the DFE, by the use of

a traceback array of size in O(jV j) that saves the path leading to a given survivor [126] at

every time t < N . A path is a succession of edges, each one carrying the input bit #(1) = ut,

the output produced symbol #(2) = xt, and the departure and arrival vertices.

The novelty in the proposed algorithm consists in combining classical PDFD and GVA,

thus keeping at each vertex the S best incoming paths instead of a single one, and storing

them in a generalized traceback array � of size in O(S � jV j).
Let �ti denote a vertex of label i, 0 � i � jVtj � 1, at time t, 0 � t � N , and et�1;ti�!j the

edge associated with transition �t�1i �! �tj . Let also Mk(�
t
i ) be the accumulated vertex

metric (or path metric) at termination vertex �ti of the survivor of rank k; 0 � k � S � 1 .

We de�ne

�k(e
t�1;t
i�!j) =





yt � h0xt �dI(k)t





2 (3.7)

the edge metric for the transition et�1;ti�!j associated with the kth survivor stored at time

t� 1 .

The so-called Generalized Parallel Decision-Feedback Decoder (GPDFD) can be recur-

sively described as follows

Generalized Joint Equalizer and Decoder (GPDFD)

� Initialization step: At time t0, initialize all the path metrics to in�nity except M0(�
0
0)

which is set at 0 (assuming the code C starts from all-zero state). The trace back

Theta array is empty.
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� 1) Path extension step: Go through the trellis section at time t and compute, for all

S � jEtj possible extended paths, the new candidate path metrics

M�(�
t
j) =Mk(�

t�1
i ) + �k(e

t�1;t
i�!j); i 2 Vt�1; j 2 Vt; k 2 [0; S � 1] ; (3.8)

using the generalized traceback array � .

� 2) Path selection step: Classify the candidate path metricsM�(�
t
j) at each vertex j 2 Vt

and keep the S best ones. Simultaneously update the section t� 1 of the generalized

traceback array �.

� 3) Final step: Go up the best path from the �nal all-zero state using the complete

ful�lled �. Read the input bits from the stored edges among the path.

It is to be underlined that the GPDFD comes down to the PDFD algorithm in the case of

S=1. Simulation results, hereafter, always include that simple case in order to enable the

comparison of this two algorithms.

3.3 Applications

3.3.1 Application 1: Cyclic block codes, joint equalization and

decoding on various full code trellises

In this section, we show that the proposed receiver also works for block encoded signals. The

TCM code trellis used by the GPDFD can be designed in several ways. The �rst way aims

at optimizing the receiver decoding complexity, which is in O(jEj). The problem consists

in searching eÆcient time axis orderings, leading to reduced trellises. Optimal minimal

Kschichang-Sorokine (KS) trellises have been found via simulated annealing based heuristic

[70],[18]. The code is used in its systematic form for encoding step, but codewords are

permuted according to optimal exhibited orderings, before BPSK mapping and transmission

over ISI channel.

The second approach aims at introducing a natural QPSK mapping, as done in appli-

cation 3.3.3. The receiver is then applied on sectionalized trellises. By sectionalization, we

mean the choice of a symbol alphabet at each time index. For a given code of time axis

� , the sectionalization e�ectively shrinks � at the expense of increasing the code alphabet

and the trellis vertices out-degrees. For example, binary extended Hamming codes of length

n = 2n0 can be thought as quaternary codes of length n0 by grouping pairs of consecutive

coded bits together. Such an operation substantially a�ect the edge and vertex complexities

of the minimal code trellis. Optimal sectionalized trellises may be found by implementing

the Vardy-Lafourcade algorithm described in [73].
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A third approach would aim at establishing a connection between block and convolutional

encoded signals by means of tail-biting trellises. Some results are presented in [32], where

it is shown that unwrapping a tail-biting representation of a good block code, such as the

extended Golay code, can produce a good convolutional code.

We �nally focus on a fourth approach and investigate the performance of the GPDFD

when applied on the regular trellis of any binary polynomial block code of generators

g(x) =
n�kX
i=0

gix
i (3.9)

Such a trellis is directly designed using the shift register which would perform the non-

systematic polynomial encoding operation. As explained in [115], a systematic encoding

must be realized for the purpose of optimizing the �nal BER on message bits. At reception,

the GPDFD is applied onto the regular trellis associated with the non-systematic code

version. A convolution between the non-systematic decoded message sequence bu0(x) and
g(x) is performed for recovering the �nal decoded message bu(x) which consists of the k last

symbols of the produced codeword. By way of an illustration, Fig. 3.2 shows the performance

in terms of BER of the GPDFD used for decoding a TCM made of an expurgated binary

BCH code (31; 25; dmin = 4) mapped onto a simple BPSK constellation and transmitted

through the worst static 6-taps ISI channel [92]

H(z) = 0:23 + 0:42z�1 + 0:52z�2 + 0:52z�3 + 0:42z�4 + 0:23z�5 (3.10)

whose ISI theoretical loss is 7 dB . The regular code trellis section has an overall state

complexity of

w = 231�25 = 64: (3.11)

Considering the optimal MAP detection performance of uncoded BPSK signals as a reference,

the TCM gain provided by this 1-error correcting code is weak compared to the gain provided

by convolutional TCM presented in section 3.3.3. We also observe that error propagation is

completely eliminated for S=2.

3.3.2 Application 2: cyclic block codes, joint equalization and de-

coding on reduced code trellises

In this second application, we employ the GPDFD to decode more powerful binary BCH

codes. Even reduced by eÆcient time axis orderings, trellises of such codes are usually

prohibitive in state complexity [18]. To thwart this problem, we investigate and compare

several GVA-based algorithms employing polynomial block codes reduced-states trellises.
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Algorithm 1:

This algorithm is inspired by a procedure, �rst described in [80]. Let C be an expurgated

t-correcting binary BCH code of primitive length n , of designed distance Æ = 2t + 2 and

generator polynome

g(x) = (1 + x)m�(x)| {z }
eg(x)

(
tY

j=2

m�ij (x)

)
| {z }

g(x)

(3.12)

where m�(x) is the primitive minimal polynome corresponding to the primitive nth root of

unity �. Finally, we also introduce the check polynome of C

h(x) =
(xn � 1)

g(x)
(3.13)

Let T be the optimal minimal trellis of C . A father code eC of C is a code which contains all

codewords of C. Typically, expurgated Hamming codes are father codes of more powerful

expurgated BCH codes of same length. Let eT be the trellis of eC directly constructed from

the generator polynome eg(x). Such a trellis, even in its regular non-reduced form, is far

smaller than T . At emission, we encode the message sequence u(x) systematically using the

generator polynome g(x). Let

c(x) = r(x) + u(x)xn�k = u0(x)g(x) (3.14)

be the produced systematic codeword where r(x) is equal to u(x)xn�k modulo g(x). Given

the received word, the GPDFD performs joint equalization and decoding, working on the

regular trellis section eT , and produces in parallel a list of the S best message sequencesbeu01(x); beu02(x); � � � ;cfu0S(x); (3.15)

which all are under the form beu0i = bu0i(x)g(x); (3.16)

and which would generate the best father codewords

bec1(x); bec2(x); � � � ; becS(x); (3.17)

naturally classi�ed with respect to an increasing path metric order. To explicitly obtain the

list bec1(x); bec2(x); � � � ; becS(x), each estimated message sequence
beu0i is re-encoded by a simple

convolution with eg(x). A simple syndrome computation is sequentially performed using the

check polynome h(x) on each of the candidate father codewords. The �nal decision delivered

by algorithm 1 is the message sequence bu(x) corresponding to the �rst candidate codeword
in the list, for which bec(x)h(x) = 0mod xn � 1: (3.18)
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As an example, we have tested algorithm 1 for an expurgated BCH code (31; 20; dmin = 6)

decoded on the trellis of the father expurgated Hamming code (31; 25; dmin = 4). Perfor-

mance in terms of BER is shown on Fig. 3.3, considering a transmission over the worst static

6-taps ISI channel. When choosing S = 8 , a slight degradation of 0,4 dB occurs compared

to the optimal case.

Algorithm 2:

In this new scenario, the GPDFD is applied on a code sub-trellis, obtained by reducing the

state space of the original polynomial code C. As illustrated on Fig. 10, only the L� 1 �rst

input symbols of the full trellis states fut�1; ut�2; � � � ; ut�n+kg are retained for constituting

trellis sub-states or labels. The label constraint length L usually satis�es inequality

L << n� k + 1: (3.19)

Residual input symbols involved in edge metric computation are evaluated by per-survivor

processing. Keeping a suÆcient number of survivors per label prevents error propagation

caused by overall trellis reduction (ISI and code states space), as shown by simulation results.

Algorithm 2 has been tested on the same expurgated BCH code (31; 20; dmin = 6). The

GPDFD is applied on a 16-state sub-trellis, corresponding to a label constraint length L = 5.

Performance in terms of BER is shown on Fig. 3.4 , considering a transmission over the

worst static 6-taps ISI channel.

3.3.3 Application 3: Convolutionnal encoded signals, joint equal-

ization and decoding process for broadband wireless appli-

cations.

Although the proposed receiver works with any trellis (TCM, block code, etc...), rate 1/2

convolutional codes and QPSK mapping appear to be the best trade o� between performance

and complexity in the context of broadband wireless channels. For that reason, all simula-

tions hereafter are based on the simple convolutional code used in GSM. We recall that the

GSM convolutional code is a half-rate non-recursive non-systematic 16-state convolutional

code with polynomial generators

g1(D) = 1 +D +D2 +D4 g2(D) = 1 +D3 +D4: (3.20)

The TCM reduces to coded bits attacking a gray QPSK mapping. The signal to noise ratio

given in abscissa takes into account the code rate, the modulation and the training sequence

(when involved).
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For the case of time varying multipath Rayleigh channels (paragraph 3.3.3 and 3.3.3),

the transmit and receive �lters are root raised cosine �lters with roll-o� 0.22.

We take advantage of the Constant Amplitude Zero Autocorrelation (CAZAC) binary

sequence properties to estimate the channel [128]. For sake of simplicity, we chose to place

the training sequence at the beginning of the burst. The training sequence consist of K � 1

preamble and P midamble binary symbols. The P midamble are chosen as a CAZAC se-

quence, whereas the preamble sequence consists of the repetition of the last K � 1 symbols

of the CAZAC sequence. The channel estimation is always linear and derived from the Least

Square (LS) criteria . Thus, the given training sequence enables to estimate K channel co-

eÆcients (assuming symbol synchronization) whose variances are equal to the noise variance

of bt divided by P [67]. In all the simulations, the synchronization is assumed to be perfect,

the K channel coeÆcients (derived from a training sequence consisting of K � 1 preamble

symbols) are kept and fed to the equalizer. As a result of very high bit rate and low speed

the quasi-static assumption (the channel is assumed to be stationary over the duration of

each data packet) is supposed to be valid.

Static channel

The �gure 3.5 shows the performance in terms of Bit Error Rate (BER) of the proposed

receiver for the worst 6-tap static ISI channel (whose ISI theoretical loss is 7 dB [92]). It

shows that, with S=4, the proposed receiver nearly reaches the optimal.

Typical Urban Wireless channel.

The �gure 3.6 gives the performance in term of Frame Error Rate (FER) for a time varying

and frequency selective GSM Typical Urban channel whose delay pro�le in microsecond and

power pro�le in [dB] are respectively [0.0, 0.2, 0.5, 1.6, 2.3, 5.0]�s and [-3.0, 0.0, -2.0, -6.0,

-8.0, -10.0] dB at low speed and at 2Mbit/s user bit rate. The (noisy) channel estimation

is done with a BPSK-modulated training sequence of length 120 symbols, consisting of 20

preamble and 100 midamble symbols. The coded data part of the burst contains 800 QPSK

symbols, which correspond to 796 uncoded data bits taking into account the tail bits (to

close the code trellis into all zero state).

Of course any number of diversity can be used, for two branch diversity with Maximal

Ratio Combining. the metric becomes [69]

� =
NX
t=1




y1t � h10xt � bIt


2 + 


y2t � h20xt � bIt


2 (3.21)

where y�t and fh�l gl are respectively the received samples and channel coeÆcient of diversity

branch � 2 [1; 2]. The curve Fig.3.7 corresponds to the same simulation assumptions as
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curve Fig. 3.6 but with 2 diversity branches. Again, S = 4 seems to be a good trade o�

between performance and complexity.

Broadband Radio Access Network channels.

A set of indoor channel models which was de�ned, at Broadband Radio Access Network

(BRAN) eight meeting, was to be used for High Performance Radio Local Area Network 2

(HIPERLAN/2) simulations. A tapped delay line type of model, which is basically described

in [41], has been chosen. In order to reduce the number of taps needed, the time spacing is

non uniform. For shorter delays, a more dense spacing is used. The average power decreases

exponentially with time. Except for the �rst tap, which can have a Ricean factor of 10, all

taps have Rayleigh fading statistics. A classical (Jake's) Doppler spectrum corresponding

to a terminal speed of 3 m/s is assumed for all taps. Five models, A, B, C, D and E, have

been compiled. Model A corresponds to a typical oÆce environment. Model B corresponds

to a typical large open space environment with NLOS conditions or an oÆce environment

with large delay spread. Models C and E correspond to typical large open space indoor and

outdoor environments with large delay spread. Model D corresponds LOS conditions in a

large open space indoor or an outdoor environment.

The goal (in order to select a radio interface, OFDM was �nally retained) was a spectral

eÆciency of 1 bit/Hz/s, which is roughly the case for a QPSK modulation with rate 1/2

convolutional code (despite the training sequence and the transmitter �lter that decreases

slightly the spectral eÆciency). The targeted Frame Error Rate (FER) for the Radio Link

Control layer was 1% without transmission diversity or reception diversity.

We chose to present simulation results only for model C and model E that are the most

diÆcult to equalize (i.e., where a simple PDFD algorithm performs very poorly). the delay

pro�le given in nanosecond of model C and model E are respectively [0, 10, 20, 30, 50, 80,

110, 140, 180, 230, 280, 330, 400, 490, 600, 730, 880, 1050]ns and [0, 10, 20, 40, 70, 100, 140,

190, 240, 320, 430, 560, 710, 880, 1070, 1280, 1510, 1760]ns whereas the power pro�les given

in dB are respectively [-3.3, -3.6, -3.9, -4.2, 0.0, -0.9, -1.7, -2.6, -1.5, -3.0, -4.4, -5.9, -5.3, -7.9,

-9.4, -13.2, -16.3, -21.2] dB and [-4.9, -5.1, -5.2, -0.8, -1.3, -1.9, -0.3, -1.2, -2.1, 0.0, -1.9, -2.8,

-5.4, -7.3, -10.6, -13.4, -17.4 -20.9] dB.

The Performance hereafter are given in term of FER at 25Mbit/s user bit rate. The

(noisy) channel estimation is done for model C, as before, with a BPSK-modulated training

sequence of length 120 symbols, consisting of 20 preamble and 100 midamble symbols. The

coded data part of the burst contains 800 QPSK symbols. The channel model E, due to a

very long delay spread, needs a longer channel estimate (of 50 coeÆcients). To keep the same

ratio between the number of data symbols and the number of training symbols, we chose a

BPSK-modulated training sequence of length 149 symbols (consisting of 49 preamble and
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100 midamble symbols) and coded data length of 1000 QPSK symbols. We checked that the

quasi static assumption is valid for these system parameters (i.e data rate, speed and burst

length). As before, S = 4 seems to be a good trade o� between performance and complexity

for the BRAN context.

3.4 Conclusions

In this chapter, we have described a new joint equalization and decoding process based on the

GVA and we presented some broadband wireless applications. This receiver is suitable for

severe ISI channels and does not need minimum phase pre-�ltering. As shown by simulations,

its performance is closed to the optimal ML one with a reasonable complexity increase.

Besides, in the context of high bit rate packet wireless transmissions, granularity constraints

do not allow interleaving on more than one cell. Since the proposed process does not require

any kind of interleaving, it appears as a natural candidate technique for such applications.

This approach could appear as a competitor for turbo-detection[39], [8] where, on the

contrary, coding and interleaving (time) diversity is fully exploited. However, it exists a

possible bridge when considering serially concatenated TCM (SCTCM) over ISI channels.

A classical serial concatenation of two error-control codes and an ISI channel is used as the

simpler concatenation of two codes only; the outer error-control code and an inner code

obtained from the combination of the second error-control code and the ISI channel. Our

joint detection technique is a possible candidate for decoding the inner box in such serial

concatenations [19].

A very interesting direction for 4G-TDMA systems seems to be the generalization of such

an approach to Multiple Input Multiple Output channel for transmitted Multilayered Trellis

Coded Modulations as described in chapter 7.
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Figure 3.1: Structure of the discrete time equivalent communication system.
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Figure 3.2: BER over the worst static 6-taps ISI channel, BCH (31,20,dmin=6) code, BPSK

mapping, algorithm 1.



48
Joint Equalization and decoding using the Generalized Viterbi for broadband

wireless applications.

0 2 4 6 8 10 12 14
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0

B
E

R no ISI       
Algo1 S=1    
Algo1 S=4    
Algo1 S=8    
Optimal joint

Figure 3.3: BER over the worst static 6-taps ISI channel, BCH (31,20,dmin=6) code, BPSK

mapping, algorithm 1.
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Figure 3.5: BER over the worst static 6-taps ISI channel, rate-1/2 16-state convolutional

code, QPSK mapping.

Figure 3.6: FER over Typical Urban channel, rate-1/2 16-state convolutional code, QPSK

mapping.
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Figure 3.7: FER over Typical Urban channel with two-branch diversity, rate-1/2 16-state

convolutional code, QPSK mapping.

Figure 3.8: FER over channel model C, rate-1/2 16-state convolutional code, QPSK map-

ping.
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Figure 3.9: FER over channel model E, rate-1/2 16-state convolutional code, QPSKmapping.
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Chapter 4

Iterative Equalization and Estimation

for Advanced TDMA Systems

4.1 Introduction

A general problem of reliable data transmission over channels with intersymbol interference

(ISI) includes joint estimation, detection and decoding, and as a whole it is non-tractable

because of tremendous complexity involved. A suboptimal method to solve this problem is to

split the processing into tractable sub-blocks, and then iteratively exchange locally processed

information among sub-blocks. For example, decoding of celebrated turbo codes is based

on iterative information update among relatively simple decoders [17]. The same principle

applied to channel equalization leads to a turbo equalization scheme [39] that recently has

gained a lot of interest [91], [53], [8], [9], [10], [51], [107], [54], [50], [21], [118], [22], [93]. This

technique performs iterative ISI removal, where iterations proceed between a detector and

a channel decoder relying on channel estimates that usually are obtained based on a known

training sequence. On the other hand, in practice channel estimates may have rather poor

quality that in turn deteriorates the eÆciency of equalization. This fact motivated us to

consider a decision-directed channel estimation similar to [102], [33]. The principle of turbo

equalization applied to channel estimation leads to iterative (turbo) estimation schemes

[99],[84],[108]. Following [85] in this chapter we extend this approach and include iterative

channel estimation (ICE) into turbo detection loop. Furthermore, we show that iterative

data processing applied for Incremental Redundancy (IR), the sophisticated retransmission

scheme retains for EDGE, can favorably bene�t from such a receiver.

In this chapter we propose a generic TDMA receiver that performs iterative equalization

and estimation in a joint/iterative fashion. Although this receiver design can be used for any

TDMA system, it is particularly interesting for high order modulation such as 8-PSK adopted

in EDGE standard [52]. The maximum-likelihood (ML) detection of 8 PSK modulated
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symbols in the presence of ISI is too complex for mobile communications, so to keep the

overall receiver complexity low a sub-optimal equalizer has to be introduced. In particular,

we introduce a low complexity suboptimal SISO equalizers based on the Decision Feedback

Sequence Estimation (DFSE) [45],[38] that as such can be used in conventional receiver

without iterative data processing. Next, we present its modi�cations suitable for turbo

equalization, which as it is shown in [51], [22], [93] brings a substantial gain in EDGE

environment. To keep the receiver complexity low we also suggest a simple method of

updating channel estimate that includes the decoder outputs into the iteration process and

also may be coupled with iterative detection.

To study receiver performance-complexity trade-o� we consider di�erent iterative estimation-

equalization scenarios for GSM/EDGE packet data services. In particular, we consider Gen-

eral Packet Radio Service (GPRS) and Enhanced GPRS (EGPRS) where enhanced packet

data services in GSM environment will be provided by 8PSK modulation used instead of

binary GMSK modulation [52].

The chapter is organized as follows. In Section 2, we introduce notations and an overview

of the conventional receivers. In Section 3, we discuss reduced complexity SISO equalizers.

Notably, two di�erent soft output computation methods are compared based on forward

backward recursion and forward only recursion. Next, in Section 4, we consider turbo-

detection for Q-ary modulation and propose a combined iterative estimation - equalization

scheme. Application of turbo-equalization for retransmission schemes is addressed in the

same section. Trade-o� between performance gain and receiver complexity in (E)GPRS

under di�erent scenarios is addressed in Section 5, with conclusions following in Section 6.

4.2 System Model

4.2.1 Notation

Let us consider a digital communication system with a block diagram depicted in �gure

4.1.A data sequence u�01 = (u1; :::;u�0)
> of �0 symbols enters an encoder Co which outputs

a coded sequence c�01 = (c1; :::; c�0)
> = � u�01 . Each data symbol un = (un;1; :::; un;k0)

>

contains k0 bits, whereas each coded symbol cn = (cn;1; :::; cn;n0)
> contains n0 bits. Coded

bits are interleaved by an interleaver � and punctured to match data rates to a transmitted

format. Resulting bits are grouped into Q-ary symbols and then are allocated into N bursts.

Each burst consists of � symbols a�1 = (a1; :::; a� )
>, and it includes known symbols for

channel estimation and synchronization purposes together with tail and guard symbols. Let

m denote a training sequence consisting of L preamble and P midamble symbols. The

resulting data burst a�1 of length � is formed by sub-blocks, a�1 = (d>1 ;m
>;d>2 )

>, where

d1 = a
�0=2
1 ;m = a

�0=2+L+P
�0=2+1

;d2 = a��0=2+L+P . To each symbol an = (an;1; :::; an;q)
>, a Q = 2q-
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ary signal mapper 	 associates a complex-valued symbol zn. The transmitter produces the

complex base-band waveform:

wx(t) =
X
n

znhx (t� nT ) (4.1)

where hx (t) denotes the base-band complex impulse response of the low-pass equivalent

transmitter �lter and 1
T
is the symbol rate. At reception, the received base-band signal is

given by:

wr (t) =
X
n

zng (t� nT ) + �0 (t) (4.2)

where the complex impulse response g (t) takes into account the transmitter and receiver

�lters, together with the dispersive channel. �0(t) denotes the convolution of the complex

zero-mean Gaussian noise � (t) (of single-sided power spectral density N0) with the receiver

�lter hr (t). The signal is then sampled at rate 1
T
to yield the non-quantized sequence

y�1 = (y1; :::; y� )
> = y:

4.2.2 The equivalent discrete-time channel model

The equivalent discrete-time channel model is made of an encoder Co with associated punc-

turing schemes, an interleaver �, a signal mapper 	, and a transversal �lter with �c + 1

complex coeÆcient vector h= (h0; h1; :::; h�c)
>, see �gure 4.2. At the output of the equiva-

lent discrete-time channel (including transmit and receive �lters), received samples are given

by:

yn = h0zn +
�cX
k=1

hkzn�k + wn (4.3)

or in the matrix form

y = Zh +w (1)

where
P�c

k=1 hkzn�k corresponds to the ISI introduced by the channel and wn is a circularly

symmetric complex Gaussian variable of variance 2�2 (i.e., its real and imaginary parts are

uncorrelated and of same power �2 = N0=2). Beside, we considered that the noise samples

wn are independent identically distributed (iid) in the following (even if the receive �lter

does not comply with the Nyquist criterion, the performance degradation involved by such

an approximation is rather small in practice). Here and below capital bold letters are used

both for vectors and matrices.

For AWGN the autocorrelation matrix R of the noise vector w is considered R = 2�2I

with I being the (� � �) dimensional unit matrix.
As well known, the equivalent discrete-time ISI channel can be regarded as a non-recursive

non-systematic rate-1 convolutional code with memory �c, whose single complex-valued gen-

erator polynomial may vary in time. The time progression of the states, as well as the
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possible transitions can be presented by a regular trellis diagram. We denote by Sn and Bn

state and branch spaces at trellis section n; respectively. Due to time-invariant property, the

state and the branch space complexities satisfy:

jSnj = Q�c, 8n 2 [0; � ] and jBnj = Q�c+1, 8n 2 [1; � ] (2)

The ML symbol by symbol detection may be performed by the BCJR algorithm [3],[8], which

operates on the full ISI channel trellis with complexity O (jBj).

4.2.3 Conventional receiver

We de�ne yN�
1 as the received samples of N consecutively transmitted bursts aN�

1 , and hN1 as

the set of channel coeÆcient vectors corresponding to N bursts. For the sake of simplicity,

we use thereafter the simpli�ed notations u for u�01 and c for c�01 :

According to the ML criteria applied to minimize block error rate for data block u, the

optimal receiver is to �nd

bu = argmax
hN1 ,u

Pr(yN�
1

��hN1 ; aN�
1 ) = argmax

hN1 ,u
Pr(yN�

1 jhN1 ;mN
1 ;�u;�) (3)

The optimal solution of (3) is prohibitively complex, and in practice (3) is split into several

problems, which are then considered separately. Separating channel equalization (detection)

and decoding, and taking into account that the training sequence is known, a suboptimal

solution for (3) may be presented as

âN�
1 = arg max

hN1 ;aN�
1

Pr(yN�
1 jhN1 ; aN�

1 ) =) ĉ = argmax
hN1 ,c

Pr(yN�
1 jhN1 ; c) (4)

û = argmax
u

Pr(ĉju) (5)

The optimal solution requires a search over all possible c and hN1 that is impractical

for realistic values of �0; N; �c. A typical suboptimal solution of (4) is to separate channel

estimation and equalization and perform them burst by burst, i.e.

ĥ = argmax
h

Pr(y�1 jm;h) (6)

â�1 = argmax
a�1

Pr(y�1 jĥ; a�1) (7)

In particular, assuming a linear channel with time-invariant CIR during a transmitted

block, a received block can be presented as

y = Zh +w =
�
y>1 y>m y>2

�>
where Z is � � (L+1) block matrix formed by data d1;d2 and training sequence m mapped

into Q-ary symbols; Z =
�
Z>1 M> Z>2

�>
.
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In a conventional receiver the channel estimation is made based on received symbols

ym =Mh +w, and the ML channel estimate [67]

ĥML = argmax
h

Pr(ymjM;h) = C(ĥML)R
�1MHym (8)

where C(ĥML) = (MHR�1M)�1 is a covariance matrix of the estimate.

Given ĥ, one of equalization algorithms is applied to remove ISI and obtain ĉ. Finally, a

decoder recovers transmitted information û.

4.3 Low Complexity Q-ary SISO Equalizer

4.3.1 Decision Feedback Soft-In Soft-Out (DF-SISO) equalizer

Depending on the optimization criteria, the detection (7) may be implemented by BCJR

algorithm [3] or Viterbi algorithm (VA) for max a posteriori (APP) or MLSE criteria, re-

spectively. Both algorithms operate on the full ISI channel trellis with complexity of O (jBj).
For 8-PSK modulation adopted in EDGE and a typical GSM channels the optimal equalizer

currently seems unacceptable for complexity reasons.

To reduce the equalizer complexity a number of suboptimal schemes have been proposed.

Among the set of trellis-based Reduced-States Sequence Estimators (RSSE) [45], the Decision

Feedback Sequence Estimators (DFSE) [38] seem to be the most suitable candidate providing

acceptable performance at moderate complexity [54]. To provide soft decision outputs that

are necessary for the decoding di�erent methods may be applied. In particular, a soft output

equalizer based on MMSE [107], and the DFSE where soft decisions are formed using neural

networks approach [55] are recently introduced. In this chapter we consider the trellis-based

equalizers and present the DFSE modi�cations of di�erent complexity to provide soft decision

outputs.

The main idea of RSSE [45] and DFSE [38] is to operate on a reduced complexity trellis

�, where only �r symbols (related to �r channel taps) form the trellis state space S, and the

other �c � �r symbols are used through the embedded decision-feedback structure.

Let's de�ne Sn and Bn as state and branch spaces at nth section (time instant) of a

reduced trellis �. For a positive integer �r , we say that a trellis input sequence an1 ends at

a sub-state s 2 Sn if an1 terminates with the substring s = ann��r+1. At any trellis depth n,

the sub-state space Sn coincides with the full BCJR trellis state space if �r = �c. In a case

where �r < �c; the state space S is reduced to a subset made of all possible sub-states s

derived from full states trellis, so that:

jSnj = Q�r , 8n 2 [0; � ] and jBnj = Q�r+1, 8n 2 [1; � ] (9)
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Any trellis branch bn 2 Bn at depth n of a sub-trellis � is characterized by three �elds,

bn = fsn�1; sn;Ang :

� a starting state sn�1 2 Sn�1;

� an arrival state sn 2 Sn;

� a label An representing an input symbol an, where An = fAn;1;An;2; :::An;qg is the
binary presentation of an

The above formalism de�nes a reduced trellis �(S;B) on which the DFSE algorithm

proceeds. Each trellis path is a set of edges fb1; b2; :::; b�g starting from state Æ at time n = 0

and terminating at state � at time n = � . At each trellis section n 2 [1; � ] and for all bit

indices j 2 [1; q], an optimal symbol by symbol algorithm is to compute the log a posteriori

ratio (LAPPR):

� (an;j) = ln
Pr
�
an;j = 1

���y�1 ; bh�
Pr
�
an;j = 0

���y�1 ; bh� (10)

It is assumed that channel taps ĥ are estimated by some channel estimator using the training

sequence m before the equalization process. In the following derivation the conditioning by

ĥ is implicit and omitted for the ease of expressions.

Equation (10) can be rewritten as follows:

�(an;j) = ln

P
a�1 ;an;j=1

p (a�1; y
�
1)P

a�1 ;an;j=0
p (a�1; y

�
1)

(11)

where p (a�1 ; y
�
1) = p(y�1 ja�1 ) Pr(a�1):

Based on the approximation

ln

 X
i

exp (�i)

!
� max

i
�i; (12)

the approximated soft decision output is de�ned as:

�eq(an;j) = max
a�1 ;an;j=1

fln p (a�1 ; y�1)g � max
a�1 ;an;j=0

fln p (a�1 ; y�1)g (13)

or equivalently:

�eq(an;j) = min
a�1 ;an;j=0

f� ln p (a�1 ; y
�
1)g � min

a�1 ;an;j=1
f� ln p (a�1; y

�
1)g (14)
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where f� ln p (a�1; y
�
1)g corresponds to the trellis path metric associated with symbol sequence

a�1 . In trellis terminology, �eq(an;j) is the algebraic di�erence at time instant n between the

path metric associated with the best trellis path that decodes a bit 0 at position j and the

path metric associated with the best trellis path that decodes a bit 1 at position j.

Let �$(bn) be the accumulated metric of the best path starting from state s0 = Æ ,

terminating at state s� = �, and passing by transition bn = fsn�1; sn;Ang at trellis section
n. The DF-SISO equalizer soft output can be equivalently rewritten as:

�eq(an;j) = min
bn2Bn;An;j=0

�$(bn)� min
b2Bn;An;j=1

�$(bn); (15)

where �$(bn) may be presented in the form

�$(bn) = �!(sn�1) + 
(bn) + � (sn); (16)

� �!(sn�1) is the accumulated metric of the best subpath starting from state s0 = Æ and

terminating at state sn�1;

� � (sn) is the accumulated metric of the best subpath starting from state sn and

terminating at state s� = �;

� 
(bn) is the (approximated) edge metric associated with bn. For any state sn 2 Sn

at time n the metric �!(sn) can be recursively computed using the forward recursion

similar to [3]:

�!(sn) = min
bn2Bn

f�!(sn�1) + 
(bn)g (17)

with a boundary conditions �!(s0 = Æ) = 0 and �!(s0 6= Æ) =1 at time n = 0:

At each section (time instant n) of the trellis � and for all transitions, the edge metric

computation involves a convolution of discrete-time CIR with a sequence of �c already esti-

mated symbols. The �rst �r estimated symbols of that sequence are derived based on the

current trellis branch bn of the sub-trellis �. The remaining part is evaluated by per-survivor

processing [38]. In particular, for the existing transitions the edge metric expression used in

the DF-SISO is


 (bn) =
1

2�2




rn � bh0zn � I(1)n � bI(2)n




2 (18)

where:

� I(1)n is the �rst part of ISI contribution term

I(1)n =
�rX
k=1

bhk	(an�k) ; (19)

which involves the sequence ân�1n��r of Q-ary symbols contained in the trellis state sn�1;
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� bI(2)n is the second part of ISI contribution term

bI(2)n =
�cX

k=�r+1

bhk	 �basn�1n�k

�
); (20)

which involves the sequence an��r�1n��c of Q-ary symbols estimated by reading o� the

survivor path terminating at sn�1.

Similarly, for any state sn 2 Sn at time n the metric � (sn) can be recursively

computed using the backward recursion:

� (sn) = min
bn+12Bn+1

f� (sn+1) + 
(bn+1)g (21)

with boundary condition � (s� = �) = 0 and � (s� 6= �) =1 at time, n = � .

Since only the �rst �r channel taps form the trellis structure, it is bene�cial for decision

feedback equalizers to have the minimum phase CIR [125] . To meet this requirement the

usual practice is to put a pre-�lter before the equalizer. That pre-�lter provides the minimum

phase CIR for the forward recursion, while it is not true for the backward recursion. To avoid

this problem it is suggested to perform �rst the forward recursion and to keep all associated

edge metrics 
 (bn) calculated according to (18). Then the stored edge metrics are used for

the backward recursion (21).

Finally, the LAPPR on bit an;j at the DF-SISO equalizer output

�eq(an;j) = min
bn2Bn;An;j=0

f�!(sn�1) + 
(bn) + � (sn)g� min
bn2Bn;An;j=1

f�!(sn�1) + 
(bn) + � (sn)g
(22)

It must be emphasized that the above minimization operation, as well as the metric

expressions are exact if and only if �r = �c. In that case, the DF-SISO becomes formally

equivalent to the max-log-MAP algorithm applied for the full ISI channel trellis. For the

reduced-state trellis the estimated sequences taken from the path history and involved in

edge metric derivations inevitably introduce a degradation in performance due to a possible

error propagation e�ect.

4.3.2 DF-SISO equalizer with forward recursion

Described above DF-SISO performs the forward-backward recursions to provide bit-wise soft

decisions. To reduce the equalizer complexity we can exclude the backward recursion which

results to the original DFSE performing VA with only forward recursion. Recall that VA

provides MLSE solution (i.e. only hard decisions), and to form bit-wise soft decisions for

the DFSE one may follow the SOVA approach [60] [6]. Soft values in SOVA are obtained

by comparing only two of the most likely sequences with di�erent bits at a particular time
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instant. According to SOVA the soft decisions are calculated via recursive updating of

soft values within the VA decision delay window D (typically D=5vc). Further complexity

reduction may be provided by soft-output Viterbi equalizer (SOVE) [68], where only a few

operations are added to the VA to form soft decisions. The simpli�cation is obtained by

omitting recursive update and shortening the VA decision delay (D = vc) that results in a

small degradation (0.2 dB) compared to the SOVA [95]. This degradation may be practically

eliminated by expanding the decision delay D = vc + 2 [83].

Speci�cally, soft decisions in SOVE may be obtained if we set � (sn) = 0 in (16), skip

the backward recursion (21) and perform only the forward recursion according to (17)-(22).

Finally, the LAPPR on bit an�D;j at time instant n delivered by DF-SISO with forward-only

recursion is:

�eq(an�D;j) = min
bn2Bn;An�D;j=0

f�!(sn�1) + 
(bn)g � min
bn2Bn;An�D;j=1

f�!(sn�1) + 
(bn)g (23)

On the other hand, the original forward-only SOVA [60][6] may be easily modi�ed to

approach performance of max-log-MAP with only minor increase of complexity [49]. Hence,

the forward only approach provides a number of low complexity solutions to approach max-

log MAP performance.

To compare the forward-backward and the forward-only DF-SISO equalizers we con-

sidered their performance in static channels without pre�ltering and with ideal channel

estimates (see �gure 4.3 ). We found that for the static channel CIR1=f0.5,0.71.0.5g the
performance of the two considered DF-SISO equalizers with vc=2 is very close when compar-

ing their hard decision outputs. To evaluate the quality of soft decisions for both algorithms

we include the strongest EGPRS coding scheme MCS5 which is based on a rate 1/3 con-

volutional code with constraint length 7. Simulation results presented in �gure 4.3 show

that DF-SISO with forward-backward recursions provides some gain (0.3 dB at BER=10�3)

compared to the forward-only DF-SISO equalizer. On the other hand, this gain is not as

visible (0.1 dB at BER=10�3) for a minimum phase channel with CIR2=f0.77,0.55,0.33g.
We consider below only the DF-SISO equalizer with forward-backward recursion.

4.3.3 Minimum-phase pre-�ltering

If the main part of the ISI is contained in the last �c��r taps, the degradation in performance
might be important compared to the Min-Log-BCJR ISI decoder. This happens when some

roots of the equivalent discrete-time �lter H (z) are outside the unit circle. To assure an

average error rate close to optimal performance, a correcting-phase pre-�ltering must be

�tted just before the SISO-DDFSE. This pre-�lter turns the discrete-time channel impulse

response into minimum phase, concentrating energy in the �rst taps, and thus, improving

the accuracy of DDFSE branch metrics dramatically. Many algorithms exist to practically



62 Iterative Equalization and Estimation for Advanced TDMA Systems

construct the minimum-phase �lter, the most straightforward being based on root �nding.

Because of its prohibitive complexity however, the CEPSTRE principle has been preferred

here for an eÆcient calculation [125]. A low-complexity turbo detector is depicted on �gure

4.5.

4.4 Iterative Receiver for EDGE

4.4.1 Turbo detection principle

One of the solutions related to DFSE is the method of turbo equalization [39]. This method is

based on iterations between detection and decoding stages and attempts to �nd ML solution

û over a combined trellis formed by a multipath channel and encoder, i.e.

û = argmax
u

Pr(yN�
1 jĥN1 ;mN

1 ;�u;�) (24)

An iterative receiver with turbo equalization is outlined in �gure 4.4. The SISO equalizer

delivers bit-wise LAPPR on bits an;j that can be split into two (called intrinsic and extrinsic)

parts

�eq(an;j) = �a (an;j) + �exteq (an;j): (25)

After de-interleaving ��1, the sequence of extrinsic LAPPR, �exteq (a
N�
1 ), becomes a sequence

of log a priori probability ratios �a (c) on coded bits for the decoder. Similarly at the output

of the SISO decoder, the LAPPR on coded bit �d (cn;j) can be split into an intrinsic and

an extrinsic parts. The latter can be computed by bit-wise substraction of the a priori

information �a (cn;j) at the input of the decoder from the corresponding LAPPR �d (cn;j) at

the output,

�extd (cn;j) = �d (cn;j)� �a (cn;j) : (26)

Sequence of extrinsic LAPPRs on coded bits �extd (c) is re-interleaved by � and passed to

the SISO detector as a new sequence of log a priori probability ratios �a (a�1) for the next

detection attempt.

4.4.2 Q-ary turbo-detection with DF-SISO equalizers

The transition metric in the presence of independent a priori information on the transmitted

symbol, Pr (an = An), for DF-SISO equalizers is given by


a (bn) =
1

2�2




rn � bh0zn � I(1)n � bI(2)n




2 � lnPr (an = An) (27)



4.4 Iterative Receiver for EDGE 63

Assuming perfect decorrelation between symbols bits fan;jg ; j 2 [1; q] ; n 2 [1; � ] after

re-interleaving � of the encoded sequence c:

Pr (an = An) =

qY
j=1

Pr (an;j = An;j) (28)

Since it is always possible to write:

qY
j=1

Pr (an;j = An;j) = Pr (an;j = An;j)

qY
l=1
l 6=j

Pr (an;l = An;j) (29)

then Pr (an;j = "jy�1) ; " 2 f0; 1g at the equalizer output can be presented as

� lnPr (an;j = " jy�1 ) = min
bn2B

L�1
n ;An;j="

f�!(sn�1) + 
a (bn) + � (sn)g

= min
bn2B

L�1
n ;An;j="

�
�!(sn�1) + 
ext(bn) + � (sn)

	� lnPr(an;j = ") (30)

where:


ext (bn) =
1

2�2




rn � bh0zn � I(1)n � bI(2)n




2 � qX
l=1
l 6=j

lnPr (an;l = An;j) (31)

Finally, the LAPPR on the bit an;j, �eq(an;j), at the output of Q-ary SISO equalizer

�eq(an;j) = ln
Pr (an;j = 1 jy�1 )
Pr (an;j = 0 jy�1 )

= �a(an;j) + �exteq (an;j) (32)

where �a(an;j) is the log a priori probability ratio on the bit an;j provided by SISO decoder

�a(an;j) = ln
Pr (an;j = 1)

Pr (an;j = 0)
; (33)

and the incremental knowledge on bit an;j brought by detection process (the extrinsic infor-

mation) is

�exteq (an;j) = min
bn2Bn;An;j=0

�
�!(sn�1) + 
ext(bn) + � (sn)

	
� min

bn2Bn;An;j=1

�
�!(sn�1) + 
ext(bn) + � (sn)

	
(34)

In the similar way, the extrinsic information for forward-only DF-SISO equalizer is formed

as



64 Iterative Equalization and Estimation for Advanced TDMA Systems

�exteq (an�D;j) = min
bn2Bn;An�D;j=0

�
�!(sn�1) + 
ext(bn)

	� min
bn2Bn;An�D;j=1

�
�!(sn�1) + 
ext(bn)

	
(35)

Note that the e�ect of a priori information Pr (an = An) onQ-ary turbo-detection is twofold.

First, it is accumulated during forward-backward recursions in �!(sn) and �
 (sn) due to

the usage of 
a (bn) instead of 
 (bn) in (17),(21). Second, it explicitly presents in (31),(34)

as
Pq

l=1
l 6=j

lnPr (an;l = An;j) : In case of binary modulation (e.g., GMSK, q=1) the second term

is not present. Hence, turbo-equalization is expected to provide more gain for schemes with

high level modulation. Simulation results presented below con�rm this conjecture.

4.4.3 Iterative (turbo) channel estimation

In the turbo detection scheme (24) the iteration proceeds only between the signal detector

and channel decoder assuming a known channel state ĥ during iterations. Given a known

training sequence m, the channel estimate may be obtained by (8) based on the data ym.

However, in many cases the accuracy of channel estimate, which is based only on a relatively

short training sequence m, may be rather low. That in turn may cause a signi�cant perfor-

mance degradation at the receiver that cannot be fully compensated by the turbo detection.

This fact motivated us to use a decision-directed adaptive channel estimation method during

the iteration process similar to [102],[33]. The idea is to feed back the decoded symbols to

the channel estimator and update previous channel estimates assuming that the whole burst

is now known by the receiver (�gure 4.7 ) [99], [84], [85], [108]. Hence, the receiver relies

on the hard decoded data symbols �c�01 and the known training sequence m to form a new

channel estimate. In other words, the receiver iteratively updates the channel estimate based

on an "extended" training sequence. In particular, after decoding procedure the data û are

re-encoded as �c = �û interleaved and then combined with the training sequence m, forming

a new "extended" training sequence �a�1 of length �: If we would use all available data a�1 as

the known training sequence, then the ML channel estimate in AWGN channel is

bhextend = C(bhextend)ZHy (36)

where the covariance matrix of the new "extended" estimate is

C(bhextend) = (ZHZ)�1 = (ZH
1 Z1 +MHM + ZH

2 Z2)
�1 (37)

and matrix Z is formed by all data a�1 [84].

The variance of the "extended" estimate bhextend may be bounded by Cramer-Rao lower

bound (CRLB) [67] (see appendix A)
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var(ĥ
extend

i ) >
�2

P +
(� � L� P )�2
4p� 4p2 + �2

(38)

where p is bit error probability for bits �c forming the extension of the training sequence m.

As an illustration the bounds (A.1),(A.5) are visualized at �gure 4.6 for parameters P=20

and Nd=58 accepted in GSM.

As can be seen from (38), in case of minimum variance unbiased channel estimator the

variance of the "extended" estimate is always lower than one calculated only from the training

sequence, i.e. var(ĥ
extend

i ) 6 var(ĥextendi ) < var(ĥi) for p > 0: It can be explained by an

observation that by extending training sequence even with unreliable symbols, in average we

make covariance matrix (37) more diagonal dominant, and that �nally improves the channel

estimate. Another point to mention is that the gain from the "extended" training sequence

is mainly visible at low signal/noise ratios (SNR) and practically disappears at high SNR

where the initial estimate is already rather accurate.

As it follows from (36)-(37), the channel re-estimation includes the inverse of matrix built

for every transmitted block. To avoid heavy computation of the matrix inverse a suboptimal

methods based on Toeplitz presentation is proposed in [99]. However, this method seems

still rather complex, and in this chapter we suggest an adaptive algorithm to update the

estimate. In particular, we applied stochastic adaptation of the estimate [85] based on the

LMS algorithm [67]

bh(k+1) = bh(k) � �(Ẑ(k))H(Ẑ(k)bh(k) � y) (39)

where bh(k) is a vector of channel coeÆcients estimated at kth iteration, Ẑ(k) is an estimated

data matrix containing all (data+training) symbols known at kth iteration, y is the received

vector and � is a step size of the iterative algorithm. At the initial round the channel

estimate could be based on some conventional method, e.g., one-shot ML estimate (8) which

exploits only the known training sequence.

4.4.4 Combined iterative estimation-equalization

Iteratively updating channel estimate and decoded symbols (turbo-estimation) on one hand,

and detected and decoded symbols (turbo-equalization) on the other hand, we actually

attempt to �nd a solution to the general problem (3). The block diagram of the suggested

iterative receiver is presented at �gure 4.7. The proposed algorithm may be described as

follows [85]:

Initialization (conventional receiver):
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1. Make an initial channel estimate based on the known training sequence. The initial

channel estimate could be based on some conventional method, e.g. one-shot estimate,

ĥ(0)
a = (MHM)�1MHym

2. Calculate the pre�lter coeÆcients and the resulting minimum phase channel bh(0),

based on channel estimate ĥ
(0)
a .

3. Given a channel estimate ĥ(0), detect a sequence ĉ(0)

ĉ(0) = argmax
c

Pr(yN�
1 jĥ(0); c)

Reliability for detected bits may be calculated according to (22) or (23).

4. Decode detected symbols

û(0) = argmin
u



ĉ(0) � �u


2 = 
(ĉ(0))

In case of turbo-equalization a SISO decoder should be used.

Iterations (iterative receiver)

5. Based on decoded symbols make re-encoding operation, �c(k) = �û(k) = �
(ĉ(k)) for

the kth iteration.

6. Rebuild the matrix Ẑ(k) based on the updated �c(k) ( ĉ(k) for uncoded data).

7. Update channel estimate using some adaptation rule, e.g. the LMS:bh(k+1)
a = bh(k)

a � �(Ẑ(k))H(Ẑ(k)bh(k)
a � y)

8. Recalculate the pre�lter coeÆcients and the resulting minimum phase channel bh(k+1),

based on channel estimate bh(k+1)
a .

9. Given channel estimate bh(k+1), update detected sequence ĉ(k+1) and its bit-wise like-

lihoods �eq(an;j) (e.g., according to (22),(23)). In case of turbo-equalization the extrinsic

information from the decoder �extd (�cn) is to be interleaved, �
a(an) = ��extd (�cn); and then to

be used as a priori information at the detection stage (27).

10. Update decoded symbols û(k+1) = 
(ĉ(k+1)). In case of turbo-equalization a SISO

decoder is to provide the soft outputs �d(�cn).

11. Iterate between steps 5-10 (ICE) or/and between steps 9-10 (turbo-equalization) as

needed.

The France Telecom receiver including turbo estimation and turbo detection is depicted

�gure 4.7.

4.4.5 Turbo equalization for retransmission schemes

EÆciency of iterative data processing in schemes presented above clearly depends on the

used channel coding scheme (CS). In modulation-coding schemes (MCS) where the coding

rate is one (e.g., the coding rates for CS4/GPRS and MCS9/EGPRS [42]) a gain from turbo-

equalization is not expected (in reality, the presence of a coded packet header brings some

gain). To meet quality of service (QoS) requirements the (E)GPRS relies on retransmissions.

This mechanism can be favorably exploited by an iterative receiver even in the case of
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uncoded transmission. A simple way to couple the turbo-equalization/turbo-estimation with

retransmissions is presented below.

Let c(k) denotes the kth re-transmitted coded block. Retransmitted blocks may be re-

peated (e.g., GPRS) or di�er in applied puncturing patterns (e.g., EGPRS). Let �ext;k;nkeq be

a sequence of extrinsic probability ratios (LEPR) on a coded block c(k) at the output of the

equalizer, nk is a number of turbo-equalization/estimation iterations performed for the kth

retransmitted block. If puncturing is applied then zeros are inserted instead of punctured

bits. The proposed algorithm is the following:

k=0

while QoS not satis�ed

k=k+1

Request (re-)transmission

for i = 1::nk

Perform channel (re-)estimation

Perform SISO detection

Update LEPR for decoder (bitwise sum)

�ext;k;idet  �ext;k;idet + �
ext;k�1;nk�1
det

Perform SISO decoding

end for

Store �ext;k;nkdet

Test QoS

end while

4.5 Simulation Results

4.5.1 Turbo detection without channel re-estimation

Figures 4.8 and 4.9 show simulation results for a time-varying and frequency-selective GSM

Typical Urban (TU) channel at low speed (the channel is assumed to be stationary over the

duration of each radio burst de�ned as in [42]) and ideal frequency hopping (the channel is

independent from burst to burst). The equalizer is fed with perfect channel estimate. The

structure of the communication chain is given �gure 4.1 and the turbo-detector is based on

�gure 4.4 (channel re-estimation is not included in the iterative loop). The channel coding

is based on a RSC code of rate 1
2
and generator polynomials

�
1; 1+D2

1+D+D2

�
. We use 6-taps LS

estimator (8) (the LMS adaptation rule (39) gives the same results), the DF-SISO equalizer

(vr=2) with the forward-backward recursion (23) and max-log-MAP decoder to provide soft
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decision outputs. Figure 4.8 is for 8-PSK with interleaving depth of 2784 bits and 64-state

SISO-DDFSE (�r = 2), the transmitter �lter being the linearized GMSK pulse shape and

the receiver �lter a root raise cosine �lter with roll-o� 0:5. Figure 4.9 is for GMSK with

interleaving depth of 928 bits and 32-state MLSE (�r = 5), the receiver �lter being a 6-pole

butterworth with BT = 0:6. In chapter 1, we already pointed out that the uncoded MFB was

reached for GSM systems in Urban environment, to �nally conclude that the distribution of

the minimum distance associated to each channel outcome, has a large peak at the Gaussian

distance (no ISI). Turbo detection is of interest to �ght the ISI degradation thanks to the

interleaving scheme and the decoder, but is powerless against the channel fadings. Hence, it

is no surprise that �gure 4.9 exhibits very poor gains at each iteration.

4.5.2 Turbo detection and LS-based channel re-estimation

Same assumptions as before, except that real channel estimates, obtained (at �rst iteration)

from the 26-symbol CAZAC training sequence of the GSM burst[42], are fed to the equalizer.

Subsequently, LS-based channel re-estimation is included into the iterative loop.

The full turbo-detector is based on �gure 4.7. Figure 4.10 is for 8-PSK and �gure 4.11

is for GMSK. The relative gain due to Turbo-detection and Turbo-estimation are compared

in [86]. It is shown moreover that, for the Modulation scheme MCS5 of EGPRS and a high

number of iterations, channel re-estimation accelerates the convergence of turbo detection

more than it improves its gain .

Our approach, on the contrary, was to consider that channel re-estimation added into

the turbo detection loop did not bring much complexity to the receiver.

To validate our approach another channel re-estimation method based on the Expectation

Maximization (EM) algorithm described in [21] should have been compared to the scheme

presented here. This is for further study.

However, we are convinced that the proposed architecture is a good trade-o� between

complexity and performance for TDMA packet-switched transmission (we shared that view

with another team).

4.5.3 application of the Turbo equalization to GSM EDGE Radio

Access Network

From the simulations shown above, iterative Equalization and estimation for Advanced

TDMA Systems, seems to be of great interest. However, gains remains to be assessed

for existing standard. We proposed here after to evaluate the potential gain of a full turbo

receiver as described in 4.7 both for GPRS and all the more for the 8-PSK coding scheme

of EDGE standard.
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As a practical testbed we consider performance of iterative receivers for (E)GPRS in typ-

ical mobile radio channels. In particular, we present results for schemes with the strongest

channel coding CS1/GPRS and MCS5/EGPRS that employ a 1/2-rate and a 1/3-rate con-

volutional codes [42], respectively. Rectangular interleaving over 4 bursts is used in all cases.

We use 6-taps LS estimator (8) (the LMS adaptation rule (39) gives the same results) ,

the DF-SISO equalizer (vr=2) with the forward-backward recursion (23) and max-log-MAP

decoder to provide soft decision outputs. Quality of service in packet data transmission is

characterized by block error rate (BLER).

As expected, turbo detection on top of channel re-estimation brings few gain for GPRS,

this is due to the GSM modulation as previously discussed, see �gure 4.12 .

However, for the Modulation and Coding Scheme based on 8-PSK of the EGPRS stan-

dard, the gain of turbo detection worth the added complexity of SISO decoder. Figures

4.13-4.17 shows the potential gain of adopting such a receiver for that standard. As ex-

pected, the gain decreases as the coding rate increases. Table 4.1 is a recapitulating table of

the gain obtained at a BLER of 10% for MCS59.

Coding scheme MCS5 MCS6 MCS7 MCS8 MCS9

Code rate 0.37 0.49 0.76 0.92 1.0

TE gain 2iter (4iter) 2.2 (3.2) 2.1 (3.1) 1.9 (2.4) 0.9 (1.7) 0.7 (1.4)

Table 4.1: EGPRS: Turbo-equalization (TE) gain in [dB] for MCS5-9 at BLER=10�1

The EGPRS standard de�nes a sophisticated re-transmission scheme known as Incre-

mental Redundancy (IR) [42]. According to the IR scheme each MCS has three disjoint

puncturing patterns which are taken cyclically for retransmissions. Simulation results for

MCS9/EGPRS are shown at 4.18 for �rst, second and third re-transmissions with number

of iterations: (n1 = 1; n2 = 0; n3 = 0), (n1 = 1; n2 = 1; n3 = 0), (n1 = 1; n2 = 1; n3 = 1),

(n1 = 1; n2 = 2; n3 = 1) and �nally (n1 = 1; n2 = 2; n3 = 2). As one can see the pro-

posed scheme provides 1.8dB gain at BLER 10�2 if we compare retransmissions without

(n1 = 1; n2 = 1; n3 = 1) and with (n1 = 1; n2 = 2; n3 = 2) turbo-equalization.

4.6 Conclusions

In this chapter a receiver concept that includes channel estimation, detection and channel

decoding into a common iterative process is presented. In order to keep the receiver com-

plexity low (which is especially important for high level modulation) suboptimal DF-SISO

equalizers and its modi�cations suitable for turbo equalization are derived. It is shown that

turbo-equalization provides more gain for high level modulation schemes such as 8-PSK.
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To further improve the radio-link performance we include decoder into the ICE procedure

and suggest a simple method to update channel estimates. We also propose a simple way

to embed the iterative detection into retransmission schemes. Evaluation of the combined

iterative receiver in the context of GSM EDGE Radio Access Network (GERAN) third gen-

eration TDMA system shows that the suggested approach provides a signi�cant performance

improvement.
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Figure 4.1: Block diagram of communication system

Figure 4.2: Equivalent discrete-time model.
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Figure 4.3: DF-SISO performance in static channels with CIR1=f0.5, 0.71, 0.5g,
CIR2=f0.77, 0.55, 0.33g.

Figure 4.4: Block diagram of iterative receiver

Figure 4.5: Block diagram of iterative receiver
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Figure 4.6: Variance of estimate (simulation from nokia)

Figure 4.7: Full Turbo receiver (with Bootstrap channel re-estimation).
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Figure 4.8: Low-complexity turbo-detector (rate 1/2 16-state RSC outer code, 8-PSK, TU

channel pro�le) with SISO-DDFSE (�r = 2).

Figure 4.9: turbo-detector (rate 1/2 16-state RSC outer code, GMSK, TU channel pro�le)

with SISO-MLSE.
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Figure 4.10: Low-complexity full turbo-detector (rate 1/2 16-state RSC outer code, 8-PSK,

TU channel pro�le) with SISO-DDFSE (�r = 2) and Bootstrap channel re-estimation.

Figure 4.11: Low-complexity full turbo-detector (rate 1/2 16-state RSC outer code, GMSK,

TU channel pro�le) with SISO-DDFSE (�r = 5) and Bootstrap channel re-estimation.
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Figure 4.12: Performance of GPRS iterative receiver (simulation from Nokia)

Figure 4.13: EGPRS: Performance of turbo-equalization for MCS-5; TU3 channel, iFH.
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Figure 4.14: EGPRS: Performance of turbo-equalization for MCS-6; TU3 channel, iFH.

Figure 4.15: EGPRS: Performance of turbo-equalization for MCS-7; TU3 channel, iFH.
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Figure 4.16: EGPRS: Performance of turbo-equalization for MCS-8; iFH.

Figure 4.17: EGPRS: Performance of turbo-equalization for MCS-9; iFH.
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Figure 4.18: Performance of turbo-equalization combined with incremental redundancy.
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Chapter 5

Iterative Low-Complexity Receiver

for High Bit Rate CDMA

5.1 Introduction

In the UMTS speci�cations [58], the transmitted data rate is increased by using small spread-

ing factors. For such services, the spreading sequences have bad autocorrelation properties

causing the appearance of InterSymbol Interference (ISI). The study of the Rake receiver

performance degradation due to ISI was developed in [28]. This study showed that some

equalization techniques must be used when the spreading factor is smaller than 16.

ISI reduction was studied only for the downlink since the uplink su�ers more from the

MultiUser Interference (MUI) due to the Near-Far problem and also because high data rate

services are expected to be asymmetric towards the downlink. Most of the conventional

equalization techniques, used in TDMA systems, were adapted to the UMTS downlink.

Two interesting solutions were previously proposed. The use of a Linear Minimum Mean

Square Error (LMMSE) chip equalizer was introduced [56] [62] in order to reduce both the

ISI and the MUI. Note that in the downlink, the MUI is due to the multipath channels

since the spreading sequences between di�erent users are orthogonal (spatially white). This

solution showed a very interesting MUI reduction compared to the Rake receiver. However,

this approach does not reduce much of the ISI because of the linear characteristic of the

equalizer. It is well known that a close to optimal approach (optimal for sequence detec-

tion) for ISI reduction is the Maximum likelihood Sequence Estimation(MLSE). The use of

this kind of equalizer following the classical rake receiver was recently proposed in [109],

the whole receiver structure was called Rake-MLSE receiver. The performance obtained in

the case of perfect channel knowledge was very near to the Matched Filter Bound (MFB).

However, the complexity of this approach increases exponentially with the channel delay

spread, and the constellation size. Furthermore, the performance degradation due to mis-
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match channel estimation as well as channel coding was not taken into account. The use

of higher constellation cardinality than the actual one (MDP4) is subject to recent study

in the UMTS working groups [57]. A new mode called High Speed Downlink Packet Ac-

cess (HSDPA) characterized by the giving up of closed loop power control, link adaptation

using variable constellations (QPSK,MAQ16,MAQ64), and low spreading factor is ongoing

standardization. The Rake-MLSE would be to complex to implement for that particular

mode.

In this chapter, we use a Decision Feedback Sequence Estimator (DFSE) equalizer [7] at

the Rake receiver output (Rake-DFSE). This approach consists in reducing the trellis state

complexity thanks to the so-called Per Survivor Technique (see Chapter 4). For TDMA

systems this approach su�ers from error propagation that entails the use of a pre-�lter

beforehand to turn the equivalent discrete time channel into minimum phase . In the CDMA

context, such an approach is impossible as the equivalent channel model at the RAKE output

varies from symbol to symbol. Fortunately, we witness that in most cases equivalent channels

originating from a Rake receiver output do not involve too much of error propagation in the

DFSE. This holds for a spreading factor as low as 4 and a trellis state complexity reduced

up to the studied constellation cardinality.

Mobile radio interfaces include channel coding and their performance should be assessed

after the decoding. It is also well known that the performance of the decoder are improved

if fed with soft value. Therefore, we extend our receiver to deliver a posteriori probability

(APP) ratios on coded bits to the decoder (Rake Soft-In Soft-Out DFSE) [121]. Moreover,

some sub-optimality results from performing equalization and decoding separately. A way to

recover from that sub-optimality is to perform equalization and decoding iteratively [121].

An iterative Receiver based on the Rake Soft-In Soft-Out (SISO) DFSE equalizer is also

introduced.

We then focus on alleviating the mismatched channel estimation impairment. First, we

noticed that conventional channel estimates su�er from ISI so that the performance of the

equalizer degrades signi�cantly. Hence, we propose to use the knowledge of the structure

of the ISI in order to construct a Minimum Mean Square Error (MMSE) channel estimate.

Moreover, when the number of pilot symbols is not suÆcient, we also propose to insert in

the turbo-detection loop a data aided channel estimation process known also as bootstrap

[28]. This iterative process consists in making a �rst decoding based on channel estimates

obtained from the pilot symbols. Then, we use the estimated data, at the output of the

channel decoder, to reduce channel estimation noise for the next iteration. It is to be

stressed that the re-estimated channel coeÆcients are used both by the Rake and the DFSE

via the equivalent channel model

This chapter is organized as follows. The next section describes the system model. Section
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5.3 describes the equivalent channel model at the Rake receiver output. In section 5.4 the

structure of the proposed low complexity iterative receiver is described. For conveniences,

we called it turbo Rake SISO DFSE. Note that this structure includes the Rake-MLSE

receiver. Section 5.5, proposes a new channel estimator as well as a data aided approach for

re-estimation. Section 5.6, gives some simulation results. Finally, section 5.7 concludes.

5.2 System model

The transmitted signal is depicted in Fig. 5.1. A data sequence u�01 = (u1; :::;u�0)
> of �0 sym-

bols enters an encoder Co which outputs a coded sequence c
�0
1 = (c1; :::; c�0)

>. Each data sym-

bol un = (un;1; :::; un;k0)
> contains k0 bits, whereas each coded symbol cn = (cn;1; :::; cn;n0)

>

contains n0 bits. Coded bits are interleaved by an interleaver � and punctured to match

data rates to a transmitted format (i.e., frames of length � including pilot symbols for chan-

nel estimation) Resulting bits are grouped into Q = 2q-ary symbols ak = (ak;1; � � � ; ak;q)>
containing q bits. Each symbol ak �nally pilots a Q = 2q-ary modulator that transmit the

corresponding modulated symbol s(k).

In the presence of multipath propagation, the received signal at the input of a spread

spectrum receiver at time t can be written as

r(t) =
LX
l=1

fl(t)
X
k

s(k) ek(t� kTs � �l(t)) + w(t); (5.1)

where ek(t) =
PN�1

q=0 ekN+q g(t� qTc) is the spreading waveform for the Q� ary modulated
symbol s(k), eq is the spreading sequence, N is the spreading factor, Tc and Ts are respectively

the chip and symbol periods, g(t) is a square root raised cosine �lter with roll-o� 0.22, L is

the number of paths, fl(t) and �l(t) are respectively the complex amplitude and the delay of

the l-th path and w(t) is a white Gaussian noise with one-sided power spectral density N0.

5.3 Equivalent channel Model at the Rake receiver out-

put

The despread signal over the j-th �nger and the k-th symbol can be written as

zk(�j) = skfj +
X
i6=j

fi

(k+1)N�1X
n=kN

e�ndn+�ji + wk(�j): (5.2)

where dk is the product of the spreading sequence by the transmitted symbols and �ji =

(�j � �i)=Tc.
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By using the results of [28], we can easily show that the output of the Rake receiver bok
can be written as

bok = LX
j=1

f �j zk(�j) =
L0X

l=�L0

gl(k)sk�l + wk; (5.3)

where

wk =
LX
j=1

f �jwk(�j); (5.4)

gl(k) is the l-th amplitude of the equivalent model of the Rake receiver output, (2L0 + 1) is

the number of taps in the equivalent model.

If we suppose that path delays are separated by a multiple of the chip period, the pa-

rameters of this equivalent model are given by

L0 = 1 +max
nj�ij

N

ko
; (5.5)

g0(k) =
LX
j=1

jfjj2 +
X

�1<
�ji
N

<1

f �j fi

"+ij(k)X
n="�ij(k)

e�nen+�ji ; (5.6)

gl(k) =
X

l�1<
�ji
N
�l

f �j fi

kN��ji�1�(l�1)NX
n=kN

e�nen+�ji (5.7)

+
X

l<
�ji
N

<l+1

f �j fi

(k+1)N�1X
n=kN��ji�lN

e�nen+�ji ; 81 � l � L; (5.8)

g�l(k) =
X

�l�
�ji
N

<�(l�1)

f �j fi

(k+1)N�1X
n=(k+1)N��ji+(l�1)N

e�nen+�ji (5.9)

+
X

�l�1<
�ji
N

<�l

f �j fi

(k+1)N��ji+lNX
n=kN

e�nen+�ji ; 81 � l � L; (5.10)

"�ij(k) = max (kN � �ji; kN) ; (5.11)

and

"+ij(k) = min ((k + 1)N � �ji; (k + 1)N) : (5.12)
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5.4 Low-complexity iterative Receiver

5.4.1 Turbo Rake SISO DFSE receiver

A delay is introduced after the Rake receiver in order to make the equivalent channel model

causal. Let yk be the delayed samples

yk = z�L
0bok = 2L0X

l=0

hl(k)sk�l + wk (5.13)

where hl(k) = gl�L0(k � L0).
The output of the Rake receiver being modeled as a simple convolution of the emitted

symbol with an equivalent channel that varies from symbol to symbol, a SISO DFSE equalizer

(as described in chapter 4) can by used for ISI removal with the modi�ed metric:


a (bn) =
1

2�2






yn � bh0(n)sn �
�rX
k=1

bhk(n)sn�k � 2L0X
k=�r+1

bhk(n)bsn�k






2

�
qX

l=1

lnPr (an;` = bH` )

This gives rise in its iterative extension to the receiver depicted in �g. 5.2. As we

already pointed out in chapter 4, Per Survivor Processing (PSP) technique used by the DFSE

equalizer can introduce a degradation in performance, due to error propagation. However,

as noted in the introduction, it appears that equivalent channels at the Rake output does

not induce signi�cant error propagation into the DFSE structure for spreading factor as low

as 4. As a result, the choice of �r = 1 seems to be suÆcient in most cases.

5.5 Channel estimation improvement

5.5.1 MMSE channel estimates

The performance of the conventional channel estimates, which are obtained by correlating

and averaging over pilot symbols, degrades at low spreading factors because of the ISI. In

this section, we propose to improve channel estimation quality by using the knowledge of

the ISI structure. If we suppose that path delays are separated by a multiple of the chip

period and that the delay spread is less than the symbol period, the conventional channel

estimates are given by

bf = � bf1; � � � ; bfL�T =Mf + n; (5.14)



86 Iterative Low-Complexity Receiver for High Bit Rate CDMA

where

M = [Mji]0�j;i�L�1 ; (5.15)

Mii = 1; 0 � i � L� 1; (5.16)

Mji =
P�1X
p=0

s�p

jspj2

264sp+b �jiN c
(p+1)N�1��ji+Nb �jiN cX

n=pN

e�nen+�ji (5.17)

+sp+b �jiN c+1
(p+1)N�1X

n=(P+1)N��ji+Nb �jiN c
e�nen+�ji

375 ; if �j > �i (5.18)

Mji =
P�1X
p=0

s�p

jspj2

264sp+b �jiN c+1
(p+1)N�1X

n=pN��ji+Nb �jiN c
e�nen+�ji (5.19)

+s
p+b �jiN c

pN�1��ji+Nb �jiN cX
n=pN

e�nen+�ji

375 ; if �j < �i (5.20)

P is the number of pilot symbols, f = (f1; � � � ; fL)T being the perfect channel coeÆcients

(without noise) , n is the channel estimation noise which is assumed to have a variance equal

to N0=Epilot and Epilot is the energy of the pilot symbols. MMSE channel estimates are given

by bfMMSE = LHbf ; (5.21)

where

L = argmin



bfMMSE � f




 : (5.22)

By using (5.14), we deduce

bfMMSE =MH

�
MMH +

N0

Epilot

IL

��1bf : (5.23)

A Least Square estimate can also be used, which is

bfLS =
�
MHM

��1
MHbf : (5.24)

The LS estimate does not take into account the noise power and thus gives slightly worse

performance at low signal to noise ratio than the MMSE estimate. However, simulation will

show that a classical channel estimate only based on correlation with pilot symbols gives bad

performance with low spreading factor. The structure of the ISI must be taken into account

thanks to the LS or MMSE estimator presented above.
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5.5.2 iterative (turbo) channel estimation

Once an iterative receiver has been built for joint equalization and decoding, it is very

tempting to add in the turbo detection loop channel re-estimation. This iterative channel

estimation consists in making a �rst decoding based on channel estimates obtained from

the pilot symbols. Then, we use the estimated data, from the channel decoder, to reduce

channel estimation noise for the next iteration. The full turbo receiver including channel

re-estimation and turbo detection is described in �gure 5.3. This very simple approach

is inspired by the well-known bootstrap technique. Instead of considering estimated data

symbols after the Rake SISO DFSE, however, decisions are taken after re-interleaving of

soft-output sequence on c�01 . Thus, the so-called bootstrap re-estimation bene�ts from time

diversity brought by interleaving and from channel decoding eÆciency.

5.6 Simulation results

Simulations were performed for a spreading factor of four and EQ-4 wireless channel which

consists of four taps of equal power separated by the chip period. The spreading sequence

results from the superposition of a Walsh sequence and a gold sequence as de�ned in the

UMTS standard [58]. Each tap is a circularly complex Gaussian variable, i.e. follows a

Rayleigh fading. We suppose that the channel is constant during a burst but varies inde-

pendently from slot to slot (quasi-static assumption). The outer code is a 16-state Recursive

systematic code of rate 1/2 and generator polynomials (1; 1+D
3+D4

1+D+D4 ) generating a pre-encoded

sequence c of size 15 � 636� 2 = 19080 bits (including tail). The outer encoded sequence

c is sent to a pseudo-random interleaver � and divided into 15 slots of length 640 QPSK

symbols including four pilot symbols at their start. The state complexity of the DFSE trellis

is only of 4 states.

Fig. 5.4 considers an uncoded transmission and perfect channel estimation at the receiver.

It shows that the Rake SISO DFSE (with four states) outperforms by far the LMMSE

approach [62] and keeps close to the Rake SISO MLSE.

Fig. 5.5 gives simulation results based on the receiver of Fig. 5.2. It shows that the

soft output of the Rake-DFSE is as good as the one the Rake SISO MLSE. Indeed, the

performance of the Rake SISO DFSE are close to the ones of Rake SIOS MLSE with max-

log MAP soft algorithm. Unfortunately, for the simulation parameter chosen, iteratively

equalizing and decoding does not bring substantial gain. This quite understandable as

at the �rst iteration the Rake SISO DFSE and Rake-MLSE are very close to the coded

Matched �lter (MF). Nonetheless, we do think that turbo-detection in other context (higher

modulation, more selective wireless channel) would bring substantial gain as witnessed in

TDMA for the EDGE standard [121].
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Finally, �g. 5.6 shows that for the simulation parameters chosen iterative channel estima-

tion brings substantial gain i.e. more than 1 dB. Moreover, the proposed channel estimate

taking into account the ISI structure is of paramount importance for the �rst iteration per-

formance.

5.7 Conclusion

In this chapter, a low complexity iterative receiver for high bit rate CDMA is derived. Adding

a SISO DFSE equalizer at the Rake receiver output for spreading factor as low as 4 is shown

to give close to optimal performance with reasonable complexity.

The use of a low spreading factor not only degrades the Rake receiver performance but

also the conventional channel estimator one. This is understandable as both the Rake re-

ceiver and the conventional channel estimator rely heavily on spreading sequence correlation

properties. Hence a new channel estimator is also proposed that takes into account the

residual ISI structure .

Finally, the so-called "turbo principle" was transposed to that context using the algo-

rithms and approaches of chapter 4 with mitigated success. For the chosen Monte Carlo

simulation parameters (QPSK modulation, spreading factor of four and EQ-4 channel) only

the turbo channel estimation brings substantial gains, on the other hand performing itera-

tively equalization and decoding was proved to be useless. This is not surprising since the

system performance (for that given set of parameters) with perfect channel estimation is

very close to the coded Matched Filter Bound at �rst iteration.

Nevertheless, the overall receiver structure is foreseen as very attractive for the High

Speed Downlink Packet Access (HSDPA) mode of UMTS release 5.



5.7 Conclusion 89

Figure 5.1: transmitted signal.

Figure 5.2: Turbo-Detection using a SISO Rake-DFSE for low spreading factor CDMA.

Figure 5.3: full turbo receiver for low spreading factor CDMA.
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Chapter 6

Iterative Receivers for Bit-Interleaved

Coded Modulation over Wireless

Frequency-Selective Channels

6.1 Introduction and motivations

Based on Ungerboeck's paradigm of jointly adapting coding with bitwise set partitioning

requirements, Trellis Coded Modulation (TCM) was considered for a long time as the most

eÆcient way of combining modulation and channel coding operations. Thanks to an ex-

haustive maximization of the minimum Euclidean distance between produced coded signals,

Ungerboeck succeeded in exhibiting powerful TCM for the Gaussian channel [116]. Later,

because of a growing interest in mobile-radio applications, TCM was naturally transposed

on 
at Rayleigh fading channels, and a symbol-based interleaving of depth greater than the

channel coherence time was introduced to exploit the intrinsic time-diversity of the fading

process [26] [65]. The code diversity order was proved to be the smallest number of di�erent

channel symbols between any two possible coded sequences.

Ten years after Ungerboeck's TCM breakthrough, Zehavi demonstrated that the code

diversity order over a 
at Rayleigh fading channel could be improved up to the Hamming

distance by replacing the conventional symbol interleaving at the encoder output with an

interleaver operating on the bit level, and by using an appropriate bitwise soft-decision met-

ric as an input to the Maximum A Posterior (MAP) decoder [130]. Recognizing Zehavi's

idea, referred to as Bit-Interleaved Coded Modulation (BICM), comes down to admitting

that breaking the Ungerboeck's fundamental concept of modulation and coding coupling can

lead to much better results for transmissions over time-varying wireless channels. Potential

gain of BICM over TCM as well as information-theoretical background have been recently

expounded in [31]. It is also interesting to note that BICM, treating coding and modulation
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as two serially concatenated entities, lends itself to iterative decoding. The corresponding

Soft-in Soft-out (SISO) demodulation and decoding modules can be distinguished and ac-

tivated sequentially at the receiver side. An iterative exchange of bitwise soft information

between them alleviates part of the sub-optimality which would normally result from their

separation.

In parallel, promising performance of radio interfaces based on Multiple-Input Multiple-

Output (MIMO) wireless channel has motivated a huge amount of both theoretical and

practical implementation studies. In particular, it has been proved that the so-called outage

capacity of a MIMO channel increases linearly with the number of transmit antennas pro-

vided that the number of receive antennas remain greater or equal [113] [47]. On frequency

selective channels however, an increasing channel memory leads to a roughly logarithmic

growth of the channel capacity [12].

Since, for single-antenna systems, BICM was proved to be very robust to the wireless

channel, an attractive idea consists in investigating how it behaves in an equivalent, but

MIMO context [27]. Several attempts have already been realized on that topic. In [105], a

binary encoder is concatenated with N memoryless modulators with various constellation

sizes, through a bit-interleaver. The produced coded modulated streams are sent onto static

block 
at Rayleigh fading channels. It is clearly demonstrated that BICM involving simple

time turbo-encoders performs signi�cantly better than best found space-time trellis codes

[110] even for short (equivalent) block lengths. Conserving a similar communication model,

[74] describes an improved iterative strategy for decoding BICM. In addition, the problem

of mismatched channel estimation was treated using the Expectation-Maximization (EM)

algorithm embedded in the iterative structure (see also reference [30]). The successful results

that have been obtained in those aforementioned contributions strongly encourage us to

pursue that direction.

Still, the most recent space-time layered coding structures [112], [111], [105], [74], have

been essentially designed for a 
at fading process, i.e., considering a delay spread small

compared to the symbol period. When the delay spread becomes too large on the channel

link connecting any two elements of the considered antenna network, a severe degradation in

terms of performance is observed, entailing the need for multilayer (coded) data detection.

This issue was �rst treated in [13] for space-time trellis codes, using a MAP multilayer data

detector, whose complexity becomes quickly prohibitive for more than two transmit antennas

and channel memory greater than 1.

This chapter is organized as follows. In section 6.2, we present a generic model for

BICM over wireless frequency selective MIMO channel, that basically extends the system

model described in [105], [74] to the presence of InterSymbol Interference (ISI). A reduced-

complexity trellis-based receiver performing iteratively channel estimation, multilayer data



6.2 Communication model 95

detection and channel decoding is derived in both sections 6.3 and 6.4. Section 6.3 details

the low-complexity SISO multilayer data detector with perfect channel knowledge. Section

6.4 suggests a simple algorithm for channel estimation and re-estimation purpose. Finally,

section 6.5 shows by Monte-Carlo simulations that our approach can dramatically improve

the downlink performance of existing Time Division Multiple Access (TDMA) systems using

high order modulation, keeping a reasonable complexity at the receiver side.

6.2 Communication model

The transmitted signal is depicted on Fig. 6.1. An outer binary data sequence d =

fd1; :::; dKo
g is encoded by a channel encoder Co, made of one single constituent trellis

code (punctured or not), or, more generally, of a trellis code combination. The outer coded

stream c = fc1; :::; cNog enters a pseudo-random interleaver � operating on bit level. The in-

terleaved binary stream is then scattered onto NT di�erent transmit layers (each layer being

connected to one single transmit antenna in this model). Transmit antennas are separated

by more than a wavelength for channel decorrelation purpose.

On layer t 2 [1; NT ], each frame is itself split into B bursts fat1; :::; at�g of � bit-labeled

symbols atn = fatn;1; :::; atn;qlg (including tail, training sequence, and guard time). Note that

the training sequence is preferably placed in the middle of the burst to guarantee a channel

estimation more robust to time variation. Each burst enters a Qt-ary modulator (Qt = 2qt)

which associates, to any input symbol atn a complex valued symbol ztn = 	t(a
t
n). Although

the mapping function 	t could be of any type, the Gray mapping provides good performance.

In practice, the same signal mapping rule is used for each layer. However, this degree of

freedom could be used favorably for introducing Unequal Error Protection (UEP) between

data streams.

Due to multipath propagation and mobility, a time-varying frequency selective wireless

channel links the transmit antenna of any layer t 2 [1; NT ] to any receive antenna r 2 [1; NR].

For Monte Carlo simulations, these radio channels are modeled as multipath Rayleigh fading

channels with classical Doppler pro�le as de�ned in [36]. The independence between the radio

channels seen by any receive antenna is ensured by a suÆcient separation of the transmit

antennas. This is of tremendous importance for joint multilayer coded data detection. On

the other hand, the independence between the channels seen by di�erent receive antennas is

preferable of course, in order to maximize the overall diversity order [120], but not necessary.

After synchronization and channel estimation the convolution of the transmit and receive

�lter, together with the radio channel linking transmit antenna t with receive antenna r gives

rise to an equivalent base-band discrete-time channel impulse response ht;r = [ht;r0 ; :::; h
t;r
� ]T

where � denotes the channel memory and [:]T the transpose operator. All channels ht;r
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8t 2 [1; NT ], r 2 [1; NR] are supposed to have the same memory. As mentioned in [13],

this assumption is reasonable because the number of individual multipath components is

predominantly dictated by large structures and re
ecting objects.

At the input of the receiver, after synchronization and channel estimation, received sam-

ples for antenna r are given by:

yrn =

NTX
t=1

�X
i=0

ht;ri z
t
n�i + �rn (6.1)

where �rn represents the (considered uncorrelated) zero-mean complex Gaussian noise

samples of variance 2�2. �rn is a circularly symmetric complex Gaussian variable (i.e., its real

and imaginary parts are uncorrelated and of same power �2).

6.3 Iterative multilayer data detection and channel de-

coding

One of the main idea of the proposed receiver consists in iteratively performing joint mul-

tilayer coded data detection and outer channel decoding. Indeed, the iterative structure

enables the multilayer detector to exploit both time and space diversities of the radio chan-

nels via the prior knowledge on bits of coded data symbols that the decoder feeds back.

6.3.1 SISO joint multilayer data detection

For the purpose of iterative decoding, we aim at computing log A Posterior Probability

(APP) ratios on each bit of each coded data symbol atn at any time n 2 [1; � ] and for each

layer t 2 [1; NT ]. This can be optimally accomplished (in sense of Maximum A Posterior

(MAP) criterion) by applying the well-known BCJR algorithm [3] on the full multilayer

combined ISI trellis made of the cartesian product of all compound ISI trellises. The compu-

tation and storage requirements of such an optimum algorithm is roughly linear in the trellis

edge complexity of the whole multilayer structure, so that this approach becomes quickly

prohibitive in complexity and has to be discarded. One possible way to alleviate the com-

plexity burden consists in restricting all full elementary combined trellises to sub-trellises,

by truncating the e�ective overall channel memory � to an arbitrary value �t in [0; �] (which

could vary from one layer to another) and recovering the resulting sub-optimality thanks

to Per Survivor Processing (PSP) [38], [94]. Since reduction factors on state complexities

of elementary combined trellises multiply, the resulting state complexity of the multilayer

combined ISI trellis can be considerably lowered by such a truncating process.
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6.3.2 A generalized reduced-state SOVA-like algorithm

As well known the reduction of trellis complexity by PSP induces error propagation. We

witnessed that Generalized Per Survivor Processing (GPSP), which basically consists in

keeping more than one survivor per state, was a very eÆcient method to �ght back that

impairment even in the case of non-minimum phase channels (see [61], [119] and references

therein). It is all the more important in the MIMO context as a pre-�lter turning every single

channel into minimum phase does not exist [13]. The GPSP is well adapted to forward-only

recursion for soft computation. Hence, we chose to extend the Soft-Output Viterbi Algorithm

(SOVA) [60][6] [23] to GPSP. In the following derivation, we employ �, 
 letters to mimic

BCJR formalism [3], �, 
 notations refering to logarithmic approximated probability density

functions. Let us assume that, at any time section n 2 [1; � ], to each departure sub-state s0

are attached:

� an ordered list f�n�1;! (s0) , ! 2 [1;
]g of the 
 best forward accumulated sub-state

metrics;

� an ordered list
�ban�1i=n���1

s0

! = fban���1 s0

! ;ban�� s0

! ; :::;ban�1 s0

! g; ! 2 [1;
]
	
of the 
 cor-

responding survivor paths (of length �) terminating in s. Note that ban s0

! denotes the

estimate of ban associated with the departure sub-state s0 and rank !.

� an ordered list
�
Ln�1
i=n���1

s0

! =
�
Ln���1

s0

! ;Ln��
s0

! ; :::;Ln�1
s0

!

	
; ! 2 [1;
]

	
of the 


bitwise unsigned soft sequences (of length �) associated with survivors.

The one-way generalized SOVA-like algorithm performs a forward recursion. It computes

at depth n, for each termination sub-state s, and for all transitions b terminating at s, and

for all ranks ! 2 [1;
], the new accumulated sub-state metrics:

�n;! (s) = �n�1;! (s
0) + 
n;! (b) . (6.2)

The transition metric 
n;! (b) is expressed as:


n;! (b) =
1

2�2

NRX
r=1






yrn �
NTX
t=1

(
�X
i=0

ht;ri z
t
n�i

b
! +

�X
i=�+1

ht;ri bztn�i b!
)






2

�
X
(t;j)

lnPr
�
atn;j
�

(6.3)

where bztn b
! denotes the estimate of the transmitted symbol ztn that has been recovered by

GPSP using the path survivor of rank ! which terminates in sub-state s0 of branch b at

section n. Also, atn;j stands for the j
th bit of the tth estimated coded data sequence at time

n.
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Those metrics are then classi�ed by increasing order (the smallest has �rst rank). This

recursion is carried out with respect to the boundary conditions:

�0;1 (0) = 0 �0;! (0) =1 for ! > 1 , (6.4)

�0;! (s) =1, 8s 6= 0, ! 2 [1;
] . (6.5)

Only the 
 best ones will be stored at sub-state s for next section step.

Simultaneously, the past survivor paths are extended according to existing transitions.

The new potential survivor paths are temporarily stored and sorted in compliance with

the rank of their associated metrics, but only the 
 best ones (in metric sense) will be

actually used for next section step. Similarly to path survivors, the past bitwise unsigned

soft sequences Ln�1
i=n���1

s0

! , ! 2 [1;
], are �rst extended according to existing transitions.

The new potential unsigned soft sequences are temporarily stored and sorted in compliance

with the rank of the corresponding path metrics. For each layer t 2 [1; NT ] and for each

input bit j 2 [1; qt], estimated unsigned soft values are initialized in accordance with:

Lt
n;j

s
! =1 . (6.6)

Again, only the 
 best unsigned soft sequences need to be stored for next section step. Now

comes the soft-deciding updating part of the algorithm.

For each sub-state s, for each layer t 2 [1; NT ], for each input bit j 2 [1; qt], and for each

rank ! 2 [1;
], bitwise unsigned soft sequences Ln
i=n��

s
! are updated from depth i = n� 1

down to depth i = n� Æ according to:

Lt
i;j

s
! = f

�
Lt
i;j

s
! ;�

t
n;j

s
!

�
(6.7)

where f (:) is an updating function, and where:

�m
n;j

s
! = �n;e!ti;j (s)� �n;! (s) , (6.8)

with: e!t
i;j = min

�
& � 
 + 1, bati;j s

& 6= bati;j s
!

	
. (6.9)

Following [60][6], the updating function f (:) in (6.7) is de�ned as:

f
�
Lt
i;j

s
! ;�

t
n;j

s
!

�
= ln

1 + exp
�
Lt
i;j

s
! +�t

n;j
s
!

�
exp

�
Lt
i;j

s
!

�
+ exp

�
�t

n;j
s
!

� (6.10)

and may be approximated by:

f
�
Lt
i;j

s
! ;�

t
n;j

s
!

� � min
�
Lt
i;j

s
! ;�

t
n;j

s
!

	
. (6.11)



6.4 Iterative channel estimation 99

If n � �, the algorithm delivers bitwise signed soft decisions on atn��. Those signed bitwise

soft values:

�a
�
atn��;j

�
=
�
2� batn��;j sbest

1 � 1
�� Lt

n��;j
sbest
1 (6.12)

are calculated for t 2 [1; NT ], j 2 [1; qt] using the �rst rank survivor path bani=n�� sbest
1 and the

corresponding bitwise unsigned soft sequence Ln
i=n��

sbest
1 , which both terminate, at section

n, into the sub-state sbest de�ned as:

sbest = argmin
s
f�n;1 (s)g . (6.13)

Finally, useful approximated log extrinsic probability ratios on bits atn��;j are computed

by bitwise subtracting log prior probability ratios �p
�
atn��;j

�
coming from the outer channel

decoder to produce signed soft values:

�"
�
atn��;j

�
= �

�
atn��;j

�� �p �atn��;j� (6.14)

as described in Fig. 6.2. For convenience, let us call this algorithm Multilayer Generalized

Soft Viterbi Equalizer (MGSVE).

6.4 Iterative channel estimation

Until now, the multilayer turbo-detector has been presented assuming that the channel coef-

�cients were perfectly known. Here, a simple algorithm for practical channel (re)estimation

is introduced. It is applied both for the initial (mismatched) channel estimation using train-

ing sequences and for subsequent channel re-estimations which take bene�t from the log

APP on coded bits delivered by the outer channel decoder.

6.4.1 Initial channel estimation

This section presents a simple Least Square (LS) estimator for channel estimation. Classi-

cally, the �rst channel estimation relies on the training sequences embedded in the trans-

mitted data streams. A common approach to training sequence design based on a Minimum

Mean Squared Error (MMSE) criterion, is also presented and �nally used to derive 3 se-

quences of 26-symbol length.

Assuming NT transmit antennas and training sequences consisting of p preamble and m

midamble symbols (p � � and the preamble being the repetition of the p last symbols of the

midamble), then the vector of received samples at the rth receive antenna, denoted by yr,

can be written as:
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yr = Shr + �r (6.15)

where hr = [h1;r0 : : : h1;r� : : : hNT ;r
0 : : : hNT ;r

� ]T is the stacked vector of channel impulse responses

assuming channel memory �, �r = [�rp : : : �
r
m+p�1]

T is a noise vector assumed to represent

white Gaussian noise and S is an m � NT (� + 1) block-toeplitz matrix consisting of the

training symbols. The de�nition of the block-matrix S can be given in terms of NT correlation

matrices of dimension m� (� + 1):

S =
�
S1 S2 � � � SNT

�
(6.16)

where St(i; j) = st(p+(i� j) mod m), 8t 2 [1; NT ], 8i 2 [0; m� 1], 8j 2 [0; �] with mod the

modulo operator and st the tth training sequence.

The Least Square (LS) channel estimate is then given by:

bhr = argmin
hr

kyr � Shrk2 = �SyS��1 Syyr (6.17)

where y denotes the transpose conjugate operator. Optimal training sequences can be

searched for which minimize the MSE:

min
n
E
h
hr � bhrLSio (6.18)

where E [:] denotes the expectation operator. It can be shown that the MMSE criterion

(6.18) can be achieved by choosing training sequences that minimize:

m

NT (� + 1)
tr
h�
SyS

��1i
(6.19)

where the operator tr[:] denotes the trace of a matrix. In fact, the average degradation

in [dB] compare to ideal sequences, perfectly white and spatially uncorrelated, amounts

to 10 log
n

m
NT (�+1)

tr
h�
SyS

��1io
. Using (6.19) and restricting ourselves to Binary Shift

Keying (BPSK) modulation (0 correspond to BPSK symbol -1.0 and 1 to 1.0), we found by

exhaustive search that the following three sequences of length 26 symbols (p = 6 preamble

and m = 20 midamble symbols respectively) were close to optimal in order to estimate 18

channel coeÆcients. The degradation compared to ideal sequences is only of 0:427 dB in

average :

s1 = [01001100000001100101010011];

s2 = [00000001100101010011000000];

s3 = [01100101010011000000011001]:
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Note that those three sequences are actually derived from a single one [00000001100101010011].

The building of NT sequences from a single one in order to estimate NT (� + 1) coeÆcients

is well described in [106] and allows to reduce drastically the range of the exhaustive search.

All simulations presented hereafter are for the case of NT = 3 and use these three sequences

for initial channel estimation.

6.4.2 LS-based turbo channel estimation

This very simple approach is inspired by the well-known bootstrap technique. Instead of con-

sidering the estimated symbols after the multilayer coded data detector, however, decisions

are taken at the output of the channel decoder. The turbo channel estimation thus bene�ts

from additional time and spatial diversities brought by channel pre-coding and interleaving

operations.

We now describe the sequencing:

1. Hard decisions on bits of the codeword c are derived from the log APP ratios available

at the output of the decoder. The estimated codeword bc is then re-interleaved and the

produced binary stream split into NT sub-streams corresponding to the NT transmit

layers. From those sub-streams, emitted bursts are reconstituted, so that estimates

of all complex-valued emitted symbols are available (tail symbols, guard symbols, and

symbols of the three training sequences are known a prior).

2. The matrix system is formed:

yr = A�h
r + �r (6.20)

where yr is the vector of observed symbols, hr is the unknown stacked vector of channel

coeÆcients, and A� = [A1
� A2

� � � � ANT
� ] is a block-Toeplitz matrix whose complex

coeÆcients are made of estimated symbols of bzt�;n at iteration �. More precisely, assum-

ing that � guard symbols are inserted at the end of the burst, the � � (� + 1) matrices

At
� are de�ned as At

�(i; j) = bzt�;(i�j)mod � , 8t 2 [1; NT ], 8i 2 [0; � [, 8j 2 [0; �].

3. A solution minimizing the error probability (or, equivalently, the Euclidean distance,

�r being a circularly complex Gaussian random vector with identity covariance matrix)

correspond to the LS estimate already described in section 6.4.1:bhr� = �Ay�A�

��1
Ay�y

r . (6.21)

Matrix system (6.21) can be solved by a Choleski decomposition. An adaptive algo-

rithm to update the estimate can be chosen to avoid the Choleski decomposition as

described in [86].

A summary diagram is shown on Fig. 6.2 for the turbo-MGSVE receiver incorporating

the LS-based turbo channel estimator.
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6.5 Performance analysis

Although a generic model has been derived for any number of transmit and receive an-

tennas, Monte-Carlo simulations have been realized for NT = 3 and NR = 1. Of course,

adding diversity branches at the receiver improves performance. However, it is diÆcult for

a mobile handset to carry more than one antenna. Noticing the equivalence in terms of

data rate between a 2NT -order modulation and NT BPSK transmitted in parallel, we aim at

demonstrating that our approach can be used to improve the downlink radio performance

of existing TDMA systems, notably Enhanced GPRS (EGPRS) [52], without signi�cantly

increasing the complexity of the receiver.

6.5.1 Optimal receiver

Figs. 6.3, 6.4 and 6.5 show the Bit Error Rate (BER) performance of an optimal (BCJR-

based) receiver in the context of a time-varying EQ-3 MIMO ISI channel. Each basic EQ-3

ISI channel is made of 3 coeÆcients that are circularly complex Gaussian variables of equal

power, separated by the symbol period. All channels are spatially independent, constant

during the burst duration, and change independently from burst to burst (quasi-static as-

sumption). The channel code is a 16-state recursive sytematic convolutional code of rate 1=2

and generator polynomials (23; 35) generating a pre-encoded sequence c of size No = 1536

bits (including tail). The outer encoded sequence c is sent to a pseudo-random interleaver

�: The interleaved bit stream is scattered onto 3 distinct streams of size 512 bits, corre-

sponding to NT = 3 distinct transmit layers (or transmit antennas). On each layer t 2 [1; 3],

the binary stream is segmented into B = 4 bursts, which all include the training sequence st

de�ned in 6.4.1. Bursts enter a BPSK modulator before transmission over the time-varying

EQ-3 MIMO ISI channel. Fig. 6.3 shows the performance of the described system when

perfect channel knowledge is available. On the contrary, Fig. 6.4 illustrates the 2:4 dB of

degradation due to a practical channel estimation based on the training sequences derived

in section 6.4.1. As depicted on Fig. 6.5, the proposed LS-based turbo channel estimation

enables to recover about 1 dB from that loss at third iteration.

6.5.2 Reduced-complexity multilayer data detector

As a second step, we now evaluate the hard-output quality of the reduced-state SOVA-

like multilayer data detector. On each layer t 2 [1; 3], a burst of 128 bits enters a BPSK

modulator before transmission over the time-varying EQ-3 MIMO ISI channel. Fig. 6.6

depicts the BER performance of the MGSVE. Simulations are carried out with parameters

NT = 3, NR = 1, �t = 1, 8t 2 [1; NT ] (8-state multilayer ISI trellis), � = Æ = 20, and various


. For comparison purpose, the performance of the BCJR algorithm processing on the full
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512-state multilayer combined trellis is also plotted. We observe that the MGSVE is less

than 0:5 dB away from the optimal receiver with 
 = 4.

6.5.3 Reduced-complexity receiver and its application to GERAN

The GSM EDGE Radio Access Network (GERAN) is ongoing standardization e�ort, and

aims at evolving the GSM and IS-136 system towards 3G in their respective allocated fre-

quency bands. The EGPRS will supply the GERAN radio bearers for Non Real Time

services. It de�nes 9 Modulation and Coding Schemes [52]. The MCS from 5 to 9 are

based on a new introduced modulation, namely the 8-Phase Shift Keying (8-PSK). This new

modulation precludes an optimal receiver, and thus some low complexity receivers and their

turbo extension has been recently suggested [86][121].

Here, we propose to replace the 8-PSK modulation of the EGPRS standard by three

BPSK modulations in parallel keeping all the other system parameters unchanged. In order

to point out the advantages of such an approach, we introduced below the two di�erent

schemes A and B that have roughly the same complexity. Scheme A is exhaustively described

in [86][121], the coding and modulation as well as the transmit �lter follow closely the �fth

Modulation and Coding Scheme (MCS5) detailed in the EGPRS standard. The receive

�lter is a Root Raised Cosine (RRC) with roll-o� 0:5 and bandwithd 180 kHz. The radio

channel is Typical Urban at 3 km/h (TU3) [36], ideal frequency hoping is assumed (iFH).

The receive �lter is matched to the transmit �lter. The channel estimation and sample

synchronisation (prior symbol synchronization is assumed) is based on LS estimator (using

the 26-symbol training sequence placed in each burst) that feeds the turbo-detector 6 channel

coeÆcients. The receiver (excluding �rst channel estimation and synchronization) is a turbo-

DFSE detector with bootstrap channel re-estimation [121]. The equalizer is composed of

a pre-�lter to turn the channel into minimum phase followed by a 64-state trellis DFSE.

The outer coding of scheme B is inherited from MCS5 of the EGPRS standard, but the

encoded sequence (derived fom a punctured NRNSC code of rate 1=3) instead of being 8-

PSK modulated is demultiplexed into three streams. Each stream has its own allocated

training sequence chosen from the three proposed in section 6.4.1 and is divided into four

GSM bursts. Each burst is then modulated in BPSK, oversampled (an oversampling factor

of 8 was chosen) and �ltered by a RRC �lter with roll-o� 0:22 . Each modulated stream is

then sent from a di�erent antenna, all three antennas are supposed to be separated enough

to ensure perfect decorrelation of the radio channels at the receiver. The radio channel

model is MIMO TU3 [36] with iFH. The receive �lter is matched to the transmit �lter. The

channel estimation and sample synchronization (prior symbol synchronization is assumed)

is based on a LS estimator described in 6.4.1 that feeds to the multilayer data detector 18

channel coeÆcients (each channel has a constraint length of 6). The receiver (excluding �rst
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channel estimation and synchronization) is a reduced-complexity multilayer turbo-detector

with LS-based channel turbo estimation. We use the MGSVE as multilayer data detector

with parameters �t = 1, 8t 2 [1; NT ] (8-state multilayer ISI trellis), 
 = 2 (two survivors

per state) and � = Æ = 20.

Fig. 6.7, related to scheme B, con�rms that the choice of a 8-state reduced trellis, and


 = 2 survivors per state for the MGSVE is a good trade o� between BER performance

versus co-channel interference and computational complexity. Fig. 6.8 compares scheme A

to scheme B in terms of BER performance versus co-channel interference. It shows that

scheme B outperforms scheme A by more than 4 dB at fourth iteration for BER 10�2.

It also shows that the degradation due to mismatched channel estimation (with bootstrap

channel re-estimation) is around 2 dB compare to perfect channel estimation for scheme B

at third iteration (Scheme B, #3 perf). Figs. 6.9, 6.10 looks into Block Error Rate (BLER)

performance. Again, scheme B outperforms scheme A of nearly 5 dB at fourth iteration

and BLER 10�2 with a complexity that is somehow similar. Those impressive results can

be explained by the fact that scheme B uses a much more robust modulation and has a

diversity order 3 times higher than scheme A. It is also worth noting that the sophisticated

re-transmission scheme retained for EGPRS (i.e, Incremental Redundancy) can favourably

bene�t from such iterative receivers as described in [86] [121].

6.6 Conclusion

In this chapter, a generic model of BICM over multipath Rayleigh fading MIMO channel was

derived. A practical low complexity trellis-based receiver realizing iteratively channel estima-

tion, multilayer coded data detection and channel decoding was introduced. Our approach,

which employs an eÆcient reduced-state trellis-search algorithm to perform multilayer data

detection, presents two-fold advantages. It enables to cope with severe MIMO channel ISI

and allows to use more transmit antennas than receive antennas. Focusing on the case of

NT transmit antennas and one receive antenna, the equivalence in terms of data rate and

receiver complexity between one 2NT -order modulation and NT BPSK transmitted in parallel

was pointed out. Providing that the NT channels are independent (i.e., transmit antennas

separated by more than the wavelength), the latter scheme seems to be more interesting

as it uses more robust modulation and its diversity order is intrinsically NT times higher.

This was assessed for NT = 3 in the context of third generation TDMA system GERAN for

existing channel coding.
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Figure 6.1: Transmitter.

Figure 6.2: Iterative multilayer coded data detector with LS-based turbo channel estimation.
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Figure 6.3: Optimal receiver for EQ-3 MIMO ISI channel, perfect channel estimation.

Figure 6.4: Optimal receiver for EQ-3 MIMO ISI channel, noisy channel estimation.
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Figure 6.5: Optimal receiver for EQ-3 MIMO ISI channel, with LS-based turbo channel

estimation.

Figure 6.6: Comparison between the optimal receiver and the MGSVE for di�erent values

of parameter 
 and EQ-3 MIMO ISI channel.
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Figure 6.7: Trade o� between receiver complexity and performance related to scheme B.

Figure 6.8: Comparison of BER versus C/Ico between scheme A and B.
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Figure 6.9: Comparison of BLER versus C/Ico between scheme A and B.

Figure 6.10: performance in terms of BLER versus C/Ico of scheme B.



110
Iterative Receivers for Bit-Interleaved Coded Modulation over Wireless

Frequency-Selective Channels



Chapter 7

Iterative Decoding of Serially

Concatenated Multilayered

Trellis-Coded Modulations in

Multipath Rayleigh Fading

Environment.

7.1 Introduction

7.1.1 Wireless tranmission context

The growing demand of reliable high data rates transmissions over wireless channels has

motivated quite intensive research in the design of future generation TDMA mobile systems.

As well known, wireless channels are both frequency selective and time-varying. The time

variation stems from the mobility of the user and the environment. The frequency selectivity

stems from multipath propagation and destructive superposition of received signals coming

from di�erent paths. It is responsible of intersymbol interference (ISI). The ISI and the

receiver complexity, increase with the data rate. These general charateristics of wireless

channels have always driven the design of radio interface and made it particulary diÆcult,

all the more for high data rate and high spectral eÆciency. Nonetheless, the frequency

selectivity and the time variation, initially impairements, can favourably be exploited via

the diversity concept (see [120] and references therein).
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7.1.2 EÆciency and limits of full turbo detection

Since their �rst presentation in 1993, turbo-codes [17] have renewed interest in iterative

techniques both from theoretical and practical points of view. Battail �rst foresaw the three

keys of their astonishing success : randomlikeness, concatenation of several low complexity

compounds codes, and iterative soft-in soft-out MAP decoding of each constituent code using

available information from all others [7]. By extending those concepts, a new approach, called

"turbo-principle" has recently emerged in communication theory, as a way of recursively up-

dating randomized a posterior information on data/coded symbols among all concatenated

functions in the reception chain. Turbo-detection [39] appears as a promising application

of the turbo-principle, for the purpose of �ghting against the ISI produced by the wireless

channel. By modeling the ISI structure as a time-varying non-recursive non-systematic con-

volutional code of rate unity, data detection and channel decoding can be formally identi�ed

to a serial concatenation of two trellis codes. Optimal maximum-likelihood decoding of the

ensemble, conditionned by perfect channel knowledge, is thus reachable through an iterative

process similar to [15].

Several domains of interest rise up from past studies on turbo-detection. One of them

deals with mismatched channel estimation [10], and has been at least partially solved by

designing a "full turbo" receiver [21]. The basic idea consists on superimposing to the turbo-

detector architecture an iterative channel reestimation process, which takes advantage of

available information on symbols after channel decoding. Another variant of turbo-detection

consists in reinforcing the ISI inner code by introducing a trellis coded modulation (TCM),

as suggested in [21] [19]. Such a serially concatenated TCM scheme has proved to provide at

least two bene�ts: �rst, the decoding may start earlier, compared to classical turbo-detection,

and the performance is asymptotically better. Second, the computational complexity can

be reduced by realizing joint SISO data detection and TCM decoding on the reduced-state

TCM trellis only.

Quite by essence, turbo-detection fully exploits (time) coding/interleaving diversity, and

consequently, performance is strongly related to interleaver depth. If the concept proves to

be eÆcient even on the worst static ISI con�gurations, it may not be especially �tted to

typical wireless pro�les [43], where most of the channel outcomes are easy to equalize, but

characterized by deep fades. When the channel impairment caused by time-varying energy

distribution overcomes the frequency selective dispersion, turbo-detection remains powerless

[93], especially under the constraint of delay sensitive applications. This is the reason why,

in order to ensure the best possible performance, TDMA advanced mobile systems should be

designed to both �ght ISI [19] and encompass other forms of diversity, i.e, antenna diversity.

To bene�t from spatial diversity via Space-Time encoding techniques [110] while per-

forming turbo-detection, the basic proposed communication model involves an outer code
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(an essential element for the turbo-detection process) interleaved with a space-time trellis

coded modulation (ST-TCM). In fact, this model should be generically regarded as a serially

concatenated space-time trellis coded modulation. It keeps the fundamental advantage to al-

low joint equalization and inner space-time decoding with sub-optimum low-complexity SISO

algorithms, by opposition to the alternative quite complex approach described in [13], where

data detection and space-time decoding are performed separetely in an iterative fashion.

7.1.3 Improving spectral eÆciency of serially concatenated space-

time trellis coded modulation

To much of our knowledge, there are only four ways to improve the spectral eÆciency of a

serially concatenated ST-TCM:

� the �rst one consists in increasing the coding rate as much as possible of both inner

and outer codes;

� the second one consists in increasing the modulation order within the ST-TCM;

� the third one consists in multiplexing several users (or equivalently several distinct data

streams) in the same TDMA time-slot, i.e., introducing multi-user communications

[72];

� the fourth one consists in demultiplexing one single pre-encoded data stream onto sev-

eral transmit antennas, conformly to BLAST (Bell Labs Layered Space-Time) approach

[48].

Unfortunatly, increasing the coding rate of the outer code yields poor turbo-detection

performance. Indeed, the extrinsic information provided by the outer code is not suÆciently

reliable, and may degrade subsequent inner decoding soft decisions. Similarly, increasing the

modulation order over 4, by employing the best known ST-TCM designs, proposed in [110],

yields a great loss in performance of the inner code, which results in the combination of

the ST-TCM with the ISI code. Since, however, serially concatenated TCM schemes made

of simple half-rate trellis coded QPSK modulators prove to be very eÆcient in various ISI

environments [21], the natural following step is to multiplex them in di�erent manners for

the purpose of increasing the overall spectral eÆciency of the system. One �rst strategy

consists in modeling multi-user communication by multiplexing several purely independent

ST-TCM schemes, considering each distinct input data stream as one particular user. It

will be veri�ed that such a scheme does not eÆciently exploit diversity. Consequently, this

chapter rather focuses on a second scenario, called serially concatenated multilayered ST-

TCM, where one single pre-encoded data stream is divided onto an arbitrary �xed number of
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elementary space-time trellis coded modulators, which all operate and transmit in parallel.

This architectural idea, already studied by [111] in conjunction with a new array processing

decoding technique, certainly recalls the BLAST approach, apart from the crucial fact that

the iterative receiver proposed here is able to cope with severe ISI. Thus, our contribution

will be mainly focused on low complexity receiver designs rather than eÆcient trellis code

constructions for wireless frequency selective channels.

7.1.4 Chapter organization

This chapter is organized as follows. In section 2, a very generic serially concatenated

multilayered space-time trellis coded modulation scheme is carefully described, as well as

its iterative decoding. In section 3, we focus on the inner part of the scheme and analyse

the discrete-time �nite-state Markov model as well as the associated possibly reduced-state

trellis. In section 4, we derive a sub-optimal SISO algorithm for the purpose of performing

joint multilayer data detection and inner decoding. In section 5, simulation results are

presented and discussed for various cases of our generic comunication model. Finally, section

6 is devoted to concluding remarks and future research topics.

7.2 Serially concatenated multilayered space-time trel-

lis coded modulation

7.2.1 Communication model

A binary data vector d of length �o is encoded by an outer channel encoder Co of rate Ro,

made of one single constituent code or, by extension, a code combination (for example, a

turbo-code). The produced codeword c of length �o
Ro

is sent into a pseudo-random interleaver

� operating on bit level. The resulting interleaved binary stream is then demultiplexed into

NL binary frames, one for each of the NL stages of the inner multilayered encoding structure.

Each frame is itself split into B bursts.

On layer l 2 [1; NL], each burst enters a N (l)

T -order space-time encoder �l. We shall

assume a convolutional time encoding, even though cyclic block encoding could be employed

as well. The time encoder in �l associates to any input symbol a coded symbol, whose Nl

consituent bits are scattered according to some internal given law and spread by groups of

ql;t bits onto N
(l)

T distinct transmit branches, so that, at any given time instant:

Nl =

N
(l)
TX

t=1

ql;t : (7.1)
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Assuming a family of N (l)

T Ql;t-ary modulators 	l;t (:), with Ql;t = 2ql;t, each group of ql;t

bits on each transmit branch t 2 �1; N (l)

T

�
�nally enters a modulator producing a complex-

valued symbol zl;tn . Note that, in the most general case, neither ST-TCM �l for all layers

l 2 [1; NL], nor employed modulators within one particular ST-TCM are necessarily the same,

allowing interesting encoding irregularities and, hence, possible unequal error protection

(UEP) of data streams. The transmission part of the communication model is depicted on

Fig. 7.1.

The resulting multilayered inner ST-TCM is connected to a network of N
T
transmit

antennas and NR received antennas, where:

NT =

NLX
l=1

N (l)

T (7.2)

and where the fundamental BLAST constraint NR � NT is not required.

Due to multipath propagation and mobility, a distinct time-varying frequency selective

wireless channel, modeled by an equivalent discrete-time channel impulse response hl;t;r (in-

cluding transmit and received pulse shaping �lters), links any transmit antenna t 2 �1; N (l)

T

�
of any layer l 2 [1; NL] to any receive antenna r 2 [1; NR]. Let H simply denotes the set of

all NT �NR combined discrete-time channel vectors hl;t;r. All channels are supposed to have

the same memory �c. As mentionned in [13], the assumption is reasonable because the num-

ber of individual multipath components is predominantly dictated by large structures and

re
ecting objects. We consider burst per burst transmission. The channels are static under

the duration of a burst and change independently from one burst to another. This describes

a suitable model for slow (quasi-static) multipath block fading and frequency hopping. All

channel taps
n
hl;t;ri

o
are independent complex Gaussian random variables with zero mean

and equal mean power, satisfying the normalization constraint:

�cX
i=0

E

�


hl;t;ri




2� = 1 : (7.3)

At the output of the equivalent discrete-time model, received samples for antenna r are

given by:

yrn =

NLX
l=1

N
(l)
TX

t=1

�cX
i=0

hl;t;ri zl;tn�i + �rn ; (7.4)

where �rn represents the (considered uncorrelated) zero-mean complex Gaussian noise

samples of variance 2�2. �rn is a circularly symmetric complex Gaussian variable (i.e., its real

and imaginary parts are uncorrelated and of same power �2).
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7.2.2 Iterative decoding

The main idea of the proposed receiver consists in iteratively performing joint multilayer

coded data detection and inner space-time decoding, together with outer decoding. At �rst

iteration, the SISO joint multilayer data detector and inner ST decoder, processing on each of

the B groups of NL bursts, computes the corresponding sequences of log extrinsic probability

ratios on each bit of each input symbol, given the set of the B complex-valued observed

sequences fyr1; :::; yr�gNR

r=1 of length � , on the NR receive antennas, and given an estimate bH
of the coeÆcients of the channels from all transmit antennas to all receive antennas. This

computation is done without any prior information. Produced sequences are gathered by

frames, multiplexed and de-interleaved. The new sequence acts as a sequence of log intrinsic

probability ratios on coded bits for the outer decoder. The latter (BCJR algorithm, log-

domain) evaluates the sequence of log extrinsic probability ratios on each bit of each outer

coded symbol, which, after re-interleaving �, frame demultiplexing, and burst segmentation,

is passed to the SISO joint multilayer data detector and inner ST decoder as B sets of NL

sequences of log prior probability ratios on bits of input symbols (one for each burst of each

layer). This completes an iteration of the data detection and decoding part in the receiver.

A recapitulative diagram is shown on Fig. 7.2. We point out that an iterative estimation

of all distinct ISI channel coeÆcients can be naturally embedded in the framework of the

multilayer turbo data detector, bringing reasonable overhead to the receiver complexity [21]

[122].

7.3 Discrete-time �nite-state Markov model and asso-

ciated possibly-reduced trellis

7.3.1 Discrete-time �nite-state Markov model for elementary ST-

TCM

Let us now consider the discrete-time �nite-state Markov process made of the lth N (l)

T -order

elementary ST-TCM followed by N (l)

T transversal �lters, �c + 1 coeÆcients each. At time n,

given the input symbol uln =
�
ul1; :::; u

l
Kl

	
of Kl bits, the inner time encoder �l of memory

�l produces a coded symbol xln =
�
xl1; :::; x

l
Nl

	
of Nl bits which are scattered into N (l)

T bit-

labeled symbols
�
al;tn
	N(l)

T

t=1
and sent in parallel on the N (l)

T transmit branches. On transmit

branch t 2 �1; N (l)

T

�
, the bit-labeled symbol al;tn is mapped into a complex-valued symbol

zl;tn according to the mapping rule 	l;t (:). Hence, the set of transmit symbol
�
zl;tn
	N(l)

T

t=1
is a

function of the time encoder state eln and the input sequence uln, i.e.,
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�
zl;tn
	N(l)

T

t=1
=  

�
eln;u

l
n

�
: (7.5)

The states of the �nal combined Markov model are given by:

sln =

(n
zl;tn��c ; :::; z

l;t
n�1

oN(l)
T

t=1
; eln

)
; (7.6)

where the set of complex-valued symbol sequences :n
zl;tn��c; :::; z

l;t
n�1

oN(l)
T

t=1
(7.7)

corresponds to a path which takes the combined Markov process from a previous state

sln��c to the present state s
l
n in accordance with time encoding laws:

eln = �le
�
eln�1;u

l
n

�
; (7.8)

xln = �lx
�
eln�1;u

l
n

�
: (7.9)

In the rest of the chapter, encoding laws are supposed to be time-invariant for the sake

of simplicity (as it is for convolutional codes). Generalization to time-variant encoding laws

is straightforward however. Furthermore, between discrete time n � 1 and discrete time n,

transitions bln of the combined Markov model are expressed as:

sln�1 : u
l
n 7�! sln (7.10)

and lead to the transmit symbol set
�
zl;tn
	N(l)

T

t=1
.

Now, thanks to 7.8 and 7.9, the combined state can be expressed in terms of the output

coded symbol sequence
�
xln��c ; :::;x

l
n�1

	
as:

sln =
��
xln��c; :::;x

l
n�1

	
; eln
	

(7.11)

or, equivalently, in terms of the input symbol sequence
�
uln��c ; :::;u

l
n�1

	
as:

sln =
�
eln��c;

�
uln��c; :::;u

l
n�1

		
: (7.12)

The functioning of the time encoder may also be described by introducing reduced states

eln which consist in memory truncation of the full state eln. Let �l < �l denote the reduced

memory of the time encoder. The time encoding laws can be rewritten as:

eln = 'le
�
e
l
n�1�(�l�vl)

;
�
uln�(�l�vl); :::;u

l
n

	�
; (7.13)
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xln = 'lx
�
e
l
n�1�(�l�vl)

;
�
uln�(�l�vl); :::;u

l
n

	�
: (7.14)

Again, thanks to 7.13 and 7.14, the combined state can be expressed in terms of the

input symbol sequence
n
uln��c�(�l�vl); :::;u

l
n�1

o
as :

sln =
�
e
l
n��c�(�l�vl)

;
�
uln��c�(�l�vl); :::;u

l
n�1

		
: (7.15)

7.3.2 Combined trellis associated with elementary ST-TCM

The time progression of the state sequences produced by the combined Markov process

descrived above can be visualized by a trellis diagram Tl whose states and transitions, at

any depth or section n, correspond to states and branches sln and bln de�ned above. Let Sl

and Bl denote the state and branch spaces of Tl. Let also Sln and Bl
n denote the state and

branch spaces at depth and section n respectively. Note that when the trellis is regular, as

supposed here, any trellis section Bl
n is suÆcient to describe the Markov process evolution

from discrete time n � 1 to discrete time n. Moreover, at any depth n of the trellis time

axis, state space Sln can also be identi�ed to one single �nite state space, made of all possible

states of the combined Markov process. Finally, let j:j denote the space cardinality. Since,
at each depth n, 2Kl:�c ISI states are combined with each encoder state, the combined trellis

state complexity is given by:

��Sln�� = 2Kl:�c
��Sl;stcn

�� (7.16)

where Sl;stcn is the state space of the lth ST-TCM trellis. Moreover, since, from each state

emerge exactly 2Kl transitions, the combined trellis branch complexity, at each section n, is

equal to:

��Bl
n

�� = 2Kl
��Sln�� = 2Kl(�c + 1)

��Sl;stcn

�� : (7.17)

7.3.3 Multilayer discrete-time Markov model and multilayer com-

bined trellis

Extending the previous reasoning to the entire multilayer structure is straightforward. States

and input sequences of the combined Markov model are simply the concatenation of states or

input sequences of the elementary combined Markov processes modeling ST-TCM followed

by sub-groups of corresponding ISI channels. The corresponding multilayer combined trellis

T� is simply the Cartesian product � of the NL combined trellises fTlgLl=1. Hence, the

related complexity measures are given by:
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��S�n �� = NLY
l=1

��Sln�� ; (7.18)

��B�n �� = ��S�n �� : NLY
l=1

2Kl ; (7.19)

where S�n ; B
�

n ; S
l
n and B

l
ndenote the state and branch spaces of T� and Tl, at any section

n 2 [1; � ].

7.3.4 Reduced-state multilayer combined trellis

For the purpose of iterative decoding, we aim at computing log a posterior probability

(APP) ratios on each bit of each input symbol uln at any time n 2 [1; � ] and for each layer

l 2 [1; NL]. This can be optimally accomplished by applying the BCJR algorithm [3] on

the full multilayer combined trellis T�
�
S�;B�

�
. The computation and storage requirements

of such an optimum algorithm being roughly linear in
��B���, this maximum a posterior

(MAP) approach becomes quickly prohibitive in complexity and has to be discarded. One

possible way to alleviate the complexity burden consists in restricting all full elementary

combined trellises Tl to sub-trellises Tl(Sl; Bl), by truncating the e�ective overall channel

memory �c to an arbitrary value vc in [0; �c] (which could vary from one layer to another)

[45] [34] [94]. Since reduction factors on state complexities of elementary combined trellises

multiply, the resulting state complexity of the multilayer combined trellis can be considerably

lowered by such a process. A particular case we are interesting in is the choice vc = 0, for

which elementary combined trellises are restricted to ST-TCM trellises [126]. A further

desirable reduction can even be achieved by shortening time encoder memories themselves,

as suggested above. Elementary combined trellises are then reduced up to sub-trellises of

ST-TCM trellises.

7.4 SISO joint multilayer data detection and inner de-

coding

7.4.1 Reduced-state trellis search and generalized per-survivor

processing

Since only part of the memory of the channels and elementary ST-TCM is kept into the

multilayer combined trellis sub-states, transmitted modulated signals involved in Euclidean

branch metrics and which are not directly accessible have to be explicitely re-computed
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by per-survivor processing (PSP) [94]. In order to limit the well known resulting error

propagation e�ect, the PSP technique requires that the channels from all transmit antennas

to all receive antennas be mimimum-phase [34].

In 1987, Hashimoto has proposed a list-type reduced-constraint generalization of the

Viterbi algorihm (GVA), which in fact, constitutes a broad class of algorithms , including,

among others, the most structured Viterbi algorithm and the less structured M -algorithm

[61]. The basic idea of the GVA is to compensate the PSP induced performance degradation

by retaining 
 > 1 survivor paths per substate. We call this algorithmic property generalized

per-survivor processing (GPSP). When applied to joint data detection and channel decoding,

the GVA has proved to be very robust to error propagation [123]. In particular, GPSP

approach makes the use of a minimum-phase pre�ltering super
uous. It is all the more

important in the MIMO channel context since a pre�lter turning every single ISI channel into

minimum-phase does not exist [13]. We now describe a one-way SISO algorithm designed

to perform joint multilayer data detection and space-time decoding, the last two taking

advantage of the generalized per-survivor concept.

7.4.2 A generalized reduced-state SOVA-like algorithm

This section describes the way to extend the Soft-Output Viterbi Algorithm (SOVA) [60][6]

to GPSP. In the following derivations, we employ �, 
 Greek letters to mimic the BCJR

formalism [3], �, 
 notations referring to logarithmic approximated probability density func-

tions. Let us assume that, at any time section n 2 [1; � ], to each departure sub-state s, are

attached:

� an ordered list f�n�1;! (s) , ! 2 [1;
]g of the 
 best forward accumulated sub-state

metrics;

� an ordered list
�bun�1i=n���1

s
! , ! 2 [1;
]

	
of the 
 corresponding survivor pathsbun�1i=n���1

s
! =

�bun���1 s
! ; :::; bun�1 s

!

	
terminating in s. Recall that un denote the set

of the NL concatenated input sequences u1
n; :::;u

NL
n entering each ST-TCM at time n.

� an ordered list
�
Ln�1
i=n���1

s
! , ! 2 [1;
]

	
of the 
 bit-wise unsigned soft sequences

Ln�1
i=n���1

s
! =

�
Ln���1

s
! ; :::;Ln�1

s
!

	
associated with survivors.

The one-way generalized SOVA-like algorithm performs one single forward recursion.

At section n 2 [1; � ], for each branch b 2 B�n , and for each rank ! 2 [1;
], it computes

non-classi�ed accumulated sub-state metrics as:

� ln�b
�

n;!

�
b+
�
= � ln�n�1;!

�
b�
�� ln 
n;! (b) : (7.20)
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Recursion 7.20 is carried out with respect to the boundary conditions:

� ln�0;1 (0) = 0 � ln�0;! (0) =1 for ! > 1 ; (7.21)

� ln�0;! (s) =1, 8s 6= 0, 8! 2 [1;
] : (7.22)

All sub-state metrics �b
�

n;! (b
+) such that b+ = s 2 S�n are then gathered and classi�ed

by increasing order (the smallest the �rst rank). Again, let:

�� ln�n;! (s) , ! 2
�
1; 2K


�	
, K =

NLX
l=1

Kl (7.23)

denote the temporay set of ordered metrics attached to sub-state s 2 S�n . Only the 


best forward accumulated sub-state metrics are actually stored for the next section step.

Simultaneously, the past survivor paths are extended according to existing transitions. The

new potential survivor paths are temporarily stored and sorted in compliance with the rank

of their associated metrics, but only the 
 best ones (in metric sense) will be actually used

for constructing the generalized survivor map. Similarly to the path survivors, the past

bitwise unsigned soft sequences are extended according to existing transitions. The new

potential unsigned soft sequences are temporarily stored, sorted in compliance with the rank

of the corresponding survivor path metrics, and updated. After soft updating, only the 


best unsigned soft sequences need to be stored for next section step.

Now comes the soft updating part of the algorithm. At depth n, at each sub-state s, at

each rank ! 2 [1;
], for each layer l 2 [1; NL], and for each input bit j 2 [1; Kl], unsigned

soft values are initialized as:

Ll
n;j

s
! =1 : (7.24)

Bitwise unsigned soft sequences Ln
i=n��

s
! are then updated from depth i = n � 1 down

to depth i = n� Æ according to:

Ll
i;j

s
! = f

�
Ll
i;j

s
! ;�

l
n;j

s
!

�
; (7.25)

where f (:) is the updating function, and where:

�l
n;j

s
! = � ln�n;e!li;j (s) + ln�n;! (s) ; (7.26)

with: e!l
i;j = min

�
& � 
 + 1, buli;j s

& 6= buli;j s
!

	
: (7.27)

Following [60][6], the updating function f (:) in 7.25 is de�ned as:
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f
�
Ll
i;j

s
! ;�

l
n;j

s
!

�
= ln

1 + exp
�
Ll
i;j

s
! +�l

n;j
s
!

�
exp

�
Ll
i;j

s
!

�
+ exp

�
�l

n;j
s
!

� (7.28)

and may usually be approximated by:

f
�
Ll
i;j

s
! ;�

l
n;j

s
!

� � min
�
Ll
i;j

s
! ;�

l
n;j

s
!

	
: (7.29)

If n � �, the algorithm delivers approximated log APPs on uln��, l 2 [1; NL]. Those approx-

imated log APPs expressed as:

�
�
uln��;j

�
=
�
2� buln��;j sbest

1 � 1
�� Ll

n��;j
sbest
1 (7.30)

are calculated for l 2 [1; NL], j 2 [1; Kl] using the �rst rank survivor path buni=n�� sbest
1 and the

corresponding bitwise unsigned soft sequence Ln
i=n��

sbest
1 , which both terminate, at depth n,

into the sub-state sbest de�ned as:

sbest = arg min
s2S�n

f� ln�n;1 (s)g : (7.31)

Finally, useful approximated log extrinsic probability ratios on bits uln��;j, l 2 [1; NL],

j 2 [1; Kl], are computed by bitwise subtracting log prior probability ratios �p
�
uln��;j

�
coming from outer decoder to approximated log APPs:

�"
�
uln��;j

�
= �

�
uln��;j

�� �p �uln��;j� : (7.32)

7.5 Performance analysis

7.5.1 Serially concatenated TCM (non minimum-phase time-invariant

channel)

We �rst aim at investigating the bene�t we get by replacing a conventional modulator by

a ST-TCM, assuming constant spectral eÆciency. This bene�t, expressed both in terms

of complexity reduction and performance improvement was already pointed out in [19] [21]

for minimum-phase ISI channels and simple half-rate QPSK-based TCM. Here, we extend

it to non minimum-phase (highly) frequency selective ISI channels and various ST-TCM.

In communication model A, we employ an outer 4-state recursive systematic convolutional

(RSC) code Co of rate Ro =
1
2
and generator polynomials (7; 5), which generates an encoded

sequence c of size 2048 bits (including tail). The inner coding part of model A is introduced

through the use of a coded QPSK-based TCM �, whose time encoder consists in a 4-state
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non-recursive non-systematic (NRNS) convolutional code of rate R = 1
2
and generator poly-

nomials (7; 5). Produced coded bits xn=(xn;1; xn;2) directly pilot a 4-ary signal mapper

	 (:) (Gray mapping). Note that � appears as a trivial ST-TCM where space dimension is

restricted to 1 (i.e., NT = 1). The outer encoded sequence c is sent to a pseudo-random in-

terleaver �. The interleaved bit stream enters the inner TCM �, which produces a sequence

of 2048 symbols, segmented into B = 16 bursts of 128 QPSK symbols each. �c tail symbols

are added to all bursts before their transmission. The spectral eÆciency is 0:5 bit/s/Hz. At

reception, channel coeÆcients are supposed to be perfectly known.

The Bit Error Rate (BER) performance of the overall turbo-receiver has been validated

by Monte-Carlo simulation on the worst 6-taps time-invariant ISI channel [92, p. 601]. Fig.

7.3 isolates the BER performance of the inner TCM. The optimal BCJR algorithm processing

on a full 128-state combined trellis is confronted with the reduced-state SOVA-like algorithm

processing on the much simpler 4-state NRC code trellis. The performance of the latter is

dramatically improved by increasing 
 parameter values. For 
 = 4, the reduced-state

SOVA-like algorithm is only 1:2 dB away from the optimal joint detection and decoding

at BER 10�5, whereas 
 = 8 provides almost optimal performance. In that last case, the

reduction in terms of computational complexity reaches a factor 4 compared to optimal

BCJR approach. Note that, even with higher memory, a simple SISO Parallel Decision-

Feedback Decoder (PDFD) [19] [21] [123] performs extremely bad on such a non-minimum

phase ISI channel, highlighting the crucial necessity of GPSP. In order to test the soft

quality of the outputs (both log APPs ratios and log extrinsic probability ratios) delivered

by the reduced-state SOVA-like algorithm, we have to consider the BER performance of the

concatenated system. Fig. 7.4 reveals that, at BER 10�5, the generalized reduced-state

SOVA-like algorithm, processing on the 4-state NRC code trellis, is only 1:2 dB away from

the optimal joint detection and inner decoding performance for 
 = 8 and � = Æ = 30.

On Fig. 7.5, iterative decoding performance of various Bit Interleaved Coded Modula-

tions (BICM) is also shown for comparison purpose. The �rst investigated BICM (model

B) involves the best 16-state NRC code Co of rate Ro = 1
4
and generator polynomials

(25; 27; 33; 37) [92, p. 494] whereas the second (model C) uses a serial concatenation Co of

two 4-state RSC codes of rate Ro =
1
2
and generator polynomials (7; 5). In both cases, the

channel interleaver depth equals 4096 bits and the modulation order is increased up to 4 for

achieving spectral eÆciency 0:5 bit/s/Hz. Since optimal turbo-detection is assumed, those

schemes are of pure theoretical interest because of their prohibitive complexity (1024-state

ISI trellis). Surprisingly, the best performance is achieved by model B, although the SCCC

is known to clearly outperform a single convolutional code of same rate on the Gaussian

channel. We believe that the loss in performance (despite 8 iterations !) is essentially due

to the much more pronounced sub-optimality of the iterative decoding process when three
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codes are involved instead of two. Additional investigations will be reported on that par-

ticular topic soon. Note that, from iterative decoding point of view, model A avoids this

drawback as a simpler concatenation of only two encoding/decoding entities.

Another interesting benchmark consists in simulating the performance of a third BICM

(model D) made of the same outer part as model A (i.e., 4-state half-rate RSC code, channel

interleaver depth of 2048 bits) and a BPSK modulator. Again, the spectral eÆciency is 0:5

bit/s/Hz. As observed on Fig. 7.5, a gain of 1:6 dB at BER 10�5 can be reached in favor

of the serially concatenated TCM, the overall decoding complexity being roughly identical

for both schemes. To conclude with, we also underline that the generalized reduced-state

SOVA-like algorithm can be employed in pure BICM context by processing on the ISI trellis

only [90] [23] [122]. A drastic complexity reduction in the data detection process is then

achievable. However, the resulting loss in terms of BER performance makes this approach

for highly frequency selective and long delay spread channels (i.e., very high data rate) less

attractive than model A at �xed overall computational complexity. Indeed, it appears that

the inner Space Time Codes not only improve the performance at low BER (compare to a

pure MIMO BICM of same spectral eÆciency) but also help to �ght back the impairment

resulting from the receiver suboptimality.

7.5.2 Design of inner ST-TCM in concatenated systems

We now introduce space dimension, being especially interested by designing eÆcient inner

ST-TCM for serially concatenated communication models. As an example, we observe that

an outer 4-state RSC code of rate Ro = 2
3
and generator polynomials (3; 7; 2) begins to

decode when fed with an input BER 0:15 (Fig. 7.6). Consequently, the proper criterion

for choosing the inner ST-TCM should be mainly focused on the behavior in the region of

low SNRs. In this section, we confront two types of ST-TCM at �xed number of transmit

antennas, receive antennas, and trellis complexity measures. The �rst one, called �2, is a

multilayered TCM (NL = 2 layers). Simple half-rate coded QPSK-based TCM � (previously

de�ned) are chosen on each layer (N (l)

T = 1 transmit antenna per layer l). The second one,

called �2, is the 4-PSK 16-state 2-order ST-TCM proposed by Tarokh [110]. Those two

ST-TCM are �rst evaluated on a 
at Rayleigh fading channel (perfect CSI), assuming a

BCJR decoding algorithm and NR = 2 antennas at the receiver side. Their performance

is depicted on Fig. 7.7. For both schemes, BCJR algorithm processes on a 16 state trellis.

We observe that ST-TCM �2 performs up to 1 dB better that �2 in the region of low SNRs

(-6 to 3 dB). However, the slope of �2 performance curve is steeper than the one of �2,

thus leading to an intersecting point at Eb=N0 = 3 dB and BER 10�2. Finally, the �2

performance is asymptotically far better than �2 performance. Those observations are not

surprising since �2 has been designed to provide the best tradeo� between data rate, space
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diversity advantage and trellis complexity.

As shown on Fig. 7.8, the same type of behavior is witnessed in a MIMO multiple

ray fading environment, proving that a space-time code designed for a 
at fading channel

continues to perform well (at least asymptotically) in various multiple path environments

under a variety of mobility conditions. The performance analysis is conducted in the case of

a four-ray equally Rayleigh distributed ISI modelization (time-varying EQ-4 ISI channels,

perfect CSI). Again, we assume a BCJR decoding algorithm and NR = 2 antennas at the

receiver side. For both schemes, the combined trellis on which the BCJR algorithm processes

has 1024 states. The performance of �2 is still far better than the one of �2 in the region

of low SNRs (-6 to 5 dB). The slopes of the performance curves are both increased due to

the additional multipath diversity (further investigations have to be done to quantify the

diversity gain). The discrepancy between the two slopes is less pronounced than before,

however, and the intersecting point occurs at Eb=N0 = 5 dB and BER 10�4.

Since we aim at �nding codes that work eÆciently in the region of low SNRs, we con-

clude from this short analysis, that, at �xed transmit and receive antennas number, and

at �xed trellis complexity, it seems preferable to employ multilayer simple 4-state half-rate

QPSK-coded TCM rather than the best ST-TCM found by [110] as inner constituents in

concatenated systems.

7.5.3 Serially concatenated multilayered ST-TCM (BLAST-like

approach)

As a last step, a new scenario (model E) is investigated, assuming transmission over time-

varying EQ-4 ISI channels, antenna diversity, and a targeted spectral eÆciency of 2:0

bits/s/Hz. The outer code is a 4-state RSC code of rate Ro = 2
3
and generator polyno-

mials (3; 7; 2) generating a pre-encoded sequence c of size 3072 bits (including tail). The

inner space-time encoding part is made of a multilayered TCM (NL = 3 layers, N (l)

T = 1

transmit antenna per layer l). At each layer, we keep the simple half-rate coded QPSK-based

TCM �. This particular choice is motivated by the conclusions of the previous section. The

outer encoded sequence c is sent to a pseudo-random interleaver �. The interleaved bit

stream is de-multiplexed into NL = 3 distinct streams of size 1024 bits. Each of them enters

the TCM �, which produces a sequence of 1024 QPSK symbols, segmented into B = 8

bursts. �c tail symbols are added to all bursts before their transmission. At reception, chan-

nel coeÆcients are supposed to be perfectly known. Furthermore, NR = 2 receive antennas

are used, allowing Maximum Ratio Combining (MRC). The turbo-receiver employs the gen-

eralized reduced-state SOVA-like algorithm to perform joint multilayer data detection and

inner decoding. Parameters are 
 = 8 and � = Æ = 20. The multilayered trellis on which

the algorithm processes has been reduced up to 8 states, so that the reduction in terms of
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computational complexity reaches a factor 512 compared to optimal BCJR approach on full

multilayered combined trellis. The performance in terms of BER is plotted on Fig. 7.9. The

performance in terms of Block Error Rate (BLER) is plotted on Fig. 7.10. An impressive

decreasing of both BER and BLER can be observed as iterations advance, proving the va-

lidity of our approach, i.e., the bene�t of mixing antenna diversity, interleaving and coding

diversity, and implicit multipath diversity via the energy detection and equalization.

7.6 Conclusion and future research topics

In this chapter, we have proposed a new reduced-complexity receiver. It is suitable for itera-

tively decoding multilayer trellis-encoded signals transmitted over Multiple-Input Multiple-

Output ISI channels. Indeed, a sub-optimal SISO joint multilayer data detector and space-

time decoder using reduced-state trellis search and GPSP technique was derived. Its sim-

ulated performance is close to optimal, even in the case of highly frequency selective long

delay spread ISI channels and huge complexity reduction.

Theoretical investigations still have to be done to measure the reachable optimum per-

formance of this very general communication model on time-varying ISI channels. Besides,

exhibiting eÆcient high-order space-time inner encoders able to compete with multilayered

ST-TCM could appear as another challenging topic.

Channel estimation and re-estimation is another topic that has not been investigated

here. However, chapter 6, gives already a partial answer to that.
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Figure 7.1: Transmitter.

Figure 7.2: Receiver.
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Figure 7.3: BER performance of inner TCM within scheme A (rate 1=2 4-state QPSK-

coded TCM �, 1 bit/s/Hz, worst 6-tap time-invariant ISI channel, BCJR versus SOVA-like

decoding algorithms, perfect CSI)

Figure 7.4: BER performance of scheme A (rate 1=2 4-state RSC outer code, rate 1=2 4-

state QPSK-coded inner TCM �, 0:5 bit/s/Hz, worst 6-tap static ISI channel, BCJR versus

SOVA-like decoding algorithms, perfect CSI)
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Figure 7.5: BER performance of various communication models (A,B,C,D) over worst 6-tap

time-invariant ISI channel (0:5 bit/s/Hz, NT = NR = 1)

Figure 7.6: BER performance of rate 2=3 4-state RSC code over the AWGN channel
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Figure 7.7: BER performance of ST-TCM �2 (NL = 2, N (l)

T = 1 8l) and �2 (NL = 1, NT = 2)

over static block 
at Rayleigh fading MIMO channel (128 QPSK symbols per block, NR = 2,

2 bits/s/Hz, BCJR decoding algorithm, perfect CSI)

Figure 7.8: BER performance of ST-TCM �2 (NL = 2, N (l)

T = 1 8l) and �2 (NL = 1,

NT = 2) over static block MIMO EQ-4 ISI channel (128 QPSK symbols per block, NR = 2,

2 bits/s/Hz, BCJR decoding algorithm, perfect CSI)
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Figure 7.9: BER performance of model E over static block MIMO EQ-4 ISI channel (128

QPSK symbols per block, NL = 3, N (l)

T = 1 8l, NR = 2, 2 bits/s/Hz, SOVA-like decoding

algorithm, perfect CSI)

Figure 7.10: BLER performance of model E over static block MIMO EQ-4 ISI channel (128

QPSK symbols per block, NL = 3, N (l)

T = 1 8l, NR = 2, 2 bits/s/Hz, SOVA-like decoding

algorithm, perfect CSI)
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Chapter 8

Conclusions

The classical receiver performs separately three tasks, namely, channel estimation, equal-

ization and decoding. The optimal receiver however would treat them jointly but is often

non-tractable due to its tremendous complexity.

Throughout this thesis, we identi�ed contexts where this sub-optimality could entail

substantial performance loss with the help of the Matched Filter Bound (MFB) introduced

in chapter 2 (this is explicitly the case for chapter 4 and 5, on the other hand the MFB for

chapter 6 and 7 was used more as a design tool) .

Three main contexts were pointed out:

� wireless LAN with very high data rate and granularity constraints,

� high data rate CDMA with low spreading factor,

� advanced TDMA systems with high order modulation and/or Mutiple Input Multiple

Output channel.

Once these contexts identi�ed, we then tried to alleviate this impairment by suggesting

low complexity sub-optimal receivers that perform iteratively/jointly channel estimation,

equalization and decoding. In order to tackle the complexity issue while keeping the Max-

imum A Posteriori criterion, eÆcient reduced state trellis search techniques mainly based

on Per Survivor Processing (PSP) were exhaustively described and put into practice for the

aforementioned contexts. A generalization of the well known PSP technique consisting quite

simply in keeping more than one survivor per state was proved to be very robust to error

propagation even in the case of non minimum phase channels. This generalization was �rst

introduced for the Generalized Viterbi Algorithm (GVA) and the technique itself is refereed

as Generalized Per Survivor Processing (GPSP) in this thesis.

In chapter 3, we described a receiver structure for trellis coded signals transmitted

through broadband wireless channels based on the GPSP technique. The proposed receiver
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performs decoding and equalization jointly, such an approach is particularly appropriate

for system where time interleaving is not possible or not needed (very high bit rate and/or

granularity constraint). It is optimal in the sense of the blockwise Maximum A Posteriori

criteria. The simulation results showed that the proposed receiver structure is suitable for

high bit rate wireless applications and gives close to optimal performance with reasonable

complexity.

In chapter 4, we presented an iterative receiver concept that improves the radio link per-

formance of advanced TDMA systems with high order modulation and channel interleaving.

We considered sub-optimal receiver structures comprised of channel estimator, detector and

channel decoder, where the performance was improved by iterative data processing among

the receiver blocks. As a practical example we considered packet data transmission in GSM

and EDGE (Enhanced Data rates for Global Evolution). Low-complexity soft-in-soft-out

(SISO) equalizers for EDGE were introduced and its modi�cations suitable for iterative de-

tection in EDGE were derived. Application of iterative detection and channel estimation

techniques in GSM/EDGE showed a signi�cant performance improvement. Furthermore, we

showed that re-transmission schemes speci�ed for EDGE also bene�ted from iterative data

processing.

In chapter 5, an iterative low-complexity receiver was proposed for Code Division Mul-

tiple Access (CDMA) systems with small spreading factor. The UMTS radio interface based

on CDMA, has been designed to o�er a wide range of data rates using variable spreading

factor. It is ongoing standardization e�ort to include a high data rate packet mode in the

downlink direction. This new mode is called High Speed Downlink Packet Access (HSDPA)

and is characterized by the giving up of close loop power control, link adaptation using

variable constellations (QPSK,MAQ16,MAQ64), and low spreading factor. The proposed

receiver is particularly adapted to HSDPA mode since it gives close to optimal performance

even in the case of high modulation order and low spreading factor while keeping a reasonable

complexity.

In chapter 6, a generic model of Bit-Interleaved Coded Modulation (BICM) on a Multi-

path Rayleigh fading Multiple-Input Multiple-Output (MIMO) channel was derived. A prac-

tical low-complexity trellis-based receiver performing iteratively channel estimation, multi-

layer coded data detection and channel decoding was introduced. The inner multilayer data

detector, employing reduced-state techniques together with GPSP, presents two-fold advan-

tages. It enables to cope with severe channel intersymbol interference and allows to use

more transmit antennas than receive antennas. Simulations showed that our approach can

dramatically improve the downlink performance of Time Division Multiple Access (TDMA)
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systems with high order modulation, such as EDGE [52], keeping a reasonable complexity

at the receiver side.

In chapter 7 a communication model made of an outer code interleaved with a space-

time trellis coded modulation (ST-TCM) was investigated. Such a scheme is very relevant

for highly frequency selective and time-varying channels using turbo-detection at the re-

ceiver side, but inherently su�ers of a low coding rate. One possible solution to alleviate this

impairment (i.e., to increase spectral eÆciency) is to use parallel (or multilayered) trans-

mission as done in recent approaches (BLAST). However, parallel transmission and highly

frequency selective channels involve tremendous complexity at the receiver side. We propose

a low complexity turbo-detector based on reduced-state trellis search and Generalized Per

Survivor Processing that proves to be very eÆcient in this resulting Multiple-input Multiple-

Output (MIMO) ISI channel context. Simulations showed that this scheme is very robust to

highly frequency selective channels for a more reasonable receiver complexity than the one

of a pure MIMO-BICM.

To conclude, simulations tend to show that this approach is very fruitful and can improve

the radio performance of existing (GSM, EDGE and UMTS) as well as future radio interfaces

(MIMO BICM, Mutilayer ST-TCM) dramatically.

Some interesting research directions that have not been fully exploited in this thesis,

notably mentioned in chapter 3 and 7 may serve as a foundation for so-called fourth Gen-

eration radio interfaces and are currently being integrated into the France Telecom fourth

generation radio interface project.
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Appendix A

Wide Sense Stationary (WSS)

Random Processes

Let n(t) = [n1(t)n2(t) � � �nK(t)]T be a vector of wide sense stationary band-pass (with respect

to f0) random processes with zero mean and dimension K. n(t) can be written as n(t) =p
2Re

�
~n(t)ej2�f0t

	
, where ~n(t) = x(t) + jy(t) is a base-band complex random process of

dimension K. First of all, we will demonstrate that E[~n(t)~n(t)T ] = 0 (i.e. ~n(t) is circularly

symmetric). Secondly, we will prove that the circular symmetry of ~n(t) and the wide sense

stationarity of n(t) imply the wide sense stationarity of ~n(t). For our discussion we use the

following notations:

� Kx(t+ �; t) = E
�
x(t + �)xy(t)

	
autocorrelation matrix of any K-dimensional random

process x(t)

� Kxy(t + �; t) = E
�
x(t + �)yy(t)

	
cross-correlation matrix of any K-dimensional ran-

dom processes x(t) and y(t)

Note that if x(t) and y(t) are wide sense stationary then Kx(t + �; t) = Kx(�) and

Kxy(t+ �; t) = Kxy(�). In that case we can de�ne the spectral density matrices Sx and Sxy

which are the Fourier transform with respect to � of Kx(�) and of Kxy(�) respectively.

It is well known that the complex envelope of n(t) can be written ~n(t) =
p
2[h+(t) �

n(t) ]e�j2�f0t where the Fourier transform H+(f) of h+(t) is the step function

8><>:
H+(f) = 1 if f > 0

H+(f) =
1
2

if f = 0

H+(f) = 0 if f < 0

(A.1)
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We then have

E[~n(t)~nT (s)] = 2E
�
[h+(t) � n(t) ]e�j2�f0t[h+(s) � n(s) ]T e�j2�f0s

�
= 2

Z
du dv h+(u)e

�j2�f0tKn(t� u� s+ v)hT+(v)e
�j2�f0s

= 2e�j2�f0(t+s)
Z
dfdf

0

df
00

du dvH+(f
0

)Sn(f)H
T
+(f

00

)ej2�f(t�s)

ej2�(f
0

�f)uej2�(f
00

+f)v

= 2e�j2�f0(t+s)
Z
df H+(f)Sn(f)H

T
+(�f)ej2�f(t�s)

= 0 if Sx(0) is �nite :

Finally

E[~n(t)~nT (s)] = Kx(t; s)�Ky(t; s) + j[Kyx(t; s) +Kxy(t; s)] = 0: (A.2)

Now let us calculate Kn(�)

Kn(�) = E
�
n(t + �)ny(t)

�
= fKx(t+ �; t)�Ky(t+ �; t)g cos(4�f0(t+ �))

+ fKx(t + �; t) +Ky(t+ �; t)g cos(2�f0�)
� fKyx(t + �; t) +Kxy(t+ �; t)g sin(4�f0(t+ �))

� fKyx(t + �; t)�Kxy(t + �; t)g sin(2�f0�):

Using (A.2), we obtain

Kn(�) = 2 fKx(t+ �; t) cos(2�f0�) +Kxy(t+ �; t) sin(2�f0�)g (A.3)

or equivalently

Kn(�) = 2 fKy(t+ �; t) cos(2�f0�)�Kyx(t+ �; t) sin(2�f0�)g : (A.4)

Obviously, for (A.3) and (A.4) to be valid, the wide sense stationarity of n(t) implies

the wide sense stationarity of x and y, and consequently the wide sense stationarity of

~n(t). The circular symmetry of ~n(t) implies useful properties for the correlation between its

components. Considering any two components ~ni(t) = xi(t)+jyi(t) and ~nj(t) = xj(t)+jyj(t),

the circular symmetry (A.2) implies E[xi(t)yi(t)] = 0 and E[xj(t)yj(t)] = 0. It follows that

either E[xi(t)yj(t)] = E[xj(t)yi(t)] = 0 or E[xi(t)xj(t)] = E[yi(t)yj(t)] = 0. The �rst case is

commonly chosen. As a result Kxy = 0 and K~n is real.
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Karhunen-Lo�eve Expansion for

Circularly Symmetric Complex

Variables

This annex follows the problem 4.8 of [63, page 135]. Let v be a K-dimensional circularly

symmetric complex random variable, and V de�ned as V = [Re(v); Im(v)]T . From (A.2),

we have

KV =
1

2

"
Re(Kv) �Im(Kv)

Im(Kv) Re(Kv)

#
(B.1)

Consider any eigenvector U = [ur;ui]
T of KV with eigenvalue �0. F (U) = [�ui;ur]

is another eigenvector, perpendicular to U, having the same eigenvalue �0. Moreover u =

ur + jui is a complex eigenvector of Kv with eigenvalue � = 2�0. It follows that V has a

Karhunen-Lo�eve expansion of the form

V =
KX
k=1

yr;kUk + yi;kF (Uk) (B.2)

where yr;k and yi;k are uncorrelated, and have the same variance �0k. Equation (B.2) can be

written as

v =
KX
k=1

ykuk (B.3)

where uk = ur;k+jui;k are orthonormal complex vectors, and yk = yr;k+jyi;k are uncorrelated

complex random variables of variance Ejykj2 = �k = 2�0k.
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Appendix C

Calculus of Un

We reproduce from a previous work [14] the proof that

Un =
KX
i=1

�i
�ni

(C.1)

has the following properties:8><>:
Un = 1 n = 0

Un = 0 n = 1; : : : ; K � 1

Un =
(�1)K+1

QK
i=1 �i

n = K

(C.2)

Let us introduce g(x) de�ned by

g(x) =
xK�1�nQK
i=1(x� �i)

(C.3)

� Case 1: n � K � 1

g(x) can be decomposed into elementary fractions such as

g(x) =
KX
k=1

ak
x� �k (C.4)

with

ak =
�K�1�nkQK

i=1; i6=k (�k � �i)
� (C.5)

As a result, Un =
PK

k=1 ak can be now evaluated as the following limit

[xg(x)]x!1 =

"
xK�nQK

i=1(x� �i)

#
x!1

=
KX
k=1

ak = Un (C.6)

From the previous expression it is obvious that Un = 1 if n = 0 and Un = 0 if

n = 1; : : : ; K � 1.
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� Case 2: n = K

In this case, we have

g(x) =
b

x
+

KX
k=1

ak
x� �k � (C.7)

As for the previous case, let us multiply g(x) by x and take the limit as x !1. We

obtain

UK =
KX
k=1

ak = �b: (C.8)

The computation of b is

b = [xg(x)]x=0 =
(�1)KQK
i=1 �i

(C.9)

and consequently

UK =
(�1)K+1QK

i=1 �i
� (C.10)
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CRLB for Iterative Channel

Estimation

Let's consider AWGN channel with noise samples wn = N (0; �2n) and a constant variance �2

during the received block ym, i.e. �
2
n = �2; n = 1:::� . The variance of the estimate ĥ based

only on the training sequence m may be bounded by Cramer-Rao lower bound (CRLB) [67]

as var(ĥi) > [I(h)]�1ii , where I(h) = fIijg is the (vc+1)�(vc+1) Fisher information matrix

with elements Iij = �@
2 lnPr(ymjm;h)

@hi@hj
:

In our case CRLB may be written as

var(ĥi) > [MHR�1M]�1ii �
1

PP
n=1

1

�2n

=
�2

P
(A.1)

where i=0:::vc.

For the "extended" training sequence y it gives

var(ĥextendi ) >
�
ZHR�1Z

��1
ii
� 1

�P
n=1

1

�2n

=
1

P

�2
+
� � P � L

�2d

=
�2

P + (� � P � L)�
2

�2d

(A.2)

where �2d is the variance associated with the "extended" data �c provided by the decoder.

To evaluate (A.2) let's denote pn as an error probability for nth complex symbol �zn after

decoding/re-encoding operations, �zn 2 �z, �z = 	(�cn): The probabilities pn are calculated by

averaging over a number of received blocks. Let's consider the antipodal signalling (zn = 1,

�zn = �1), the generalization to Q-ary modulation is straight forward. We can treat symbols

�z forming the extension of training sequence as a set of random variables with the mean and

the variance as follows
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E[�zn] = (1� pn)zn + pn�zn

var[�zn] = E[j�znj2]� jE[�zn]j2 = jznj2 � pn(jznj2 � j�znj2)� (zn � pn(zn � �zn))
2,

where �zn 6= zn.

Assuming a time-invariant channel during the transmitted block (i.e. pn = p, n=0,...,� �
P � L-1) for antipodal signalling it results in

var[�zn] = 4p(1� p) (A.3)

The variance of the "extended" data is

�2d = var[�zn + wn] = var[�zn] + var[wn] + 2cov[�znwn] (A.4)

Taking into account that more errors appear after decoding/re-encoding operations at high

noise levels (i.e. larger �2 results in larger p, and hence, in larger var[�zn]), the correlation

term in (A.4) cov[�znwn] > 0; therefore �2d > var[�zn] + var[wn]. As can be seen from (A.4)

the CRLB (A.2) is a function of cov[�znwn], and it achieves its minimum var(ĥ
extend

i ) if

cov[�znwn] =0. Based on (A.2) and (A.3) this minimum may be presented as

var(ĥ
extend

i ) >
�2

P +
(� � L� P )�2
4p� 4p2 + �2

(A.5)
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