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Résumé

Cette these est motivée par les problemes induits par la corrélation des défauts
dans les produits dérivés de crédit. La these contient deux parties. La premiere est
consacrée a analyser théoriquement les défauts successifs. On propose une nouvelle
approche, basée sur la densité des probabilités conditionnelles de survie, pour traiter
ce qui se passe apres le premier défaut en déterminant les compensateurs des défauts
successifs et en calculant les espérances conditionnelles par rapport a la filtration du
marché. Dans la deuxiéme partie, on présente une méthode d’approximation pour
calculer les prix des CDOs en utilisant la méthode de Stein et la transformation de
zéro biais. On obtient un terme correcteur explicite pour I'approximation gausienne
et on estime la vitesse de convergence. Les tests numériques montrent 'efficacité de
cette méthode par rapport aux méthodes classiques. On établit aussi des résultats
similaires pour 'approximation poisonnienne en appuyant sur des variantes discretes
de la méthode. Enfin, pour les fonctions plus régulieres, on propose des correcteurs
d’ordres supérieurs.

Abstract

The thesis is motivated by the problems related to the defaults correlation in the
portfolio credit derivatives. The thesis contains two parts. The first one is devoted
to the analysis of successive defaults. We propose a new approach, based on the
density of the conditional survival probabilities, to study the phenomena after the
first default by determining the compensators of successive defaults and by calculating
the conditional expectations with respect to the global filtration of the market. In
the second part, we present an approximation method the evaluate the CDOs, using
the Stein’s method and the zero bias transformation. We obtain a correction term
for the normal approximation and we estimate the convergence speed. Numerical tests
show the efficiency of this method compared to the classical methods. We also establish
similar results for Poisson approximation by adopting a discrete version of the method.
Ar last for more regular functions, we proposer high-ordered corrections.
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Notations

Part I

(2,6, (Gt)t>0,P) is a filtered probability space which represents the market and the
filtration (G¢)¢>0 represents the global market information, denoted by G.

The single-credit case
- 7 is a G-stopping time.
- D = (Dyt)i>0 is the filtration defined by Dy = o(lf,<4,5 < ).
- F = (F)t>0 is a sub-filtration of G.
- A is the G-compensator process of 7; AF is the F-predictable process which coincides
with A on {7 > t}.
- G is the F-survival process defined by Gy = P(7 > t|F).
- GY is the process of the conditional survival probability defined by G¢ = P(t > 0|F;).
- £(X) is the Doléans-Dade exponential of the semi-martingale X.
- a4(0) is the density of GY.
- q¢ is the Fi-measure defined by ¢.(f) = E[f(7)|Fi].

The two-credits case
- (11, 72) is a family of two G-stopping times.
-T=T1NTo, 0 =71V To.
- D!, D2, D7 and D7 are natural filtrations associated to the processes associated with
G-stopping times 71, 179, 7 and o.
-D=D'vD? D" =D" vD°.
- [ is a sub-filtration of G such that G=DV F.
-G'=FvD.
-G"T=D"VF, G =D"? VF.
- A (resp. A7, A9) is the G-compensator process of 7; (resp. T, 0);
- Hy=P(o > t|G]), HY =P(c > 0|G]).
- p¢ is the density of the joint conditional probability P(1 > u,o > v|F}).
- oy is the density of the joint conditional probability P(71 > t1, 70 > to|F;).



Part 11

- L7 is the cumulative loss up to time T

- Y is the common factor and Y; is the individual factor.

- X* represents a r.v. having the X-zero bias distribution where X is a zero-mean r.v..
-W=X1+---+ X, where Xj is a zero-mean r.v. (i =1,--- ,n).

- Z represents a zero-mean normal r.v..

- ®,(h) = E[h(Z)] where Z ~ N(0,02).

- fn and f3 , represent the solution of the Stein’s equation.

- fh and fh,a represent the solution of the decentralized Stein’s equation.

- Ia(ﬂj‘) = ﬂ{zga}-

-C(z)=(xz —k)*.

- NT represents the non-negative integer set.

- py, and py, , represent the solution of the Stein’s Poisson equation.

- py and pj, » represent the solution of the decentralized Stein’s Poisson equation.

- 0(N, f, X,Y) represents the remaining term of the N th order Taylor’s formula in the
expectation form.

-¢(N, f, X,Y) represents the remaining term of the N order reversed Taylor’s formula
in the expectation form.



Introduction de la these

0.1 Introduction

Cette these est motivée par des problemes liés a la modélisation du risque de crédit dans
un univers qui concerne plusieurs entreprises. La grande question posée par le marché
est la corrélation entre les faillites des diverses entreprises. C’est un sujet de grande
importance en finance de marché car le risque de crédit est un risque systématique qui
dépend du cycle économique; en particulier, les défauts des entreprises dans le méme
secteur ou dans la méme région géographique sont fortement corrélés. On peut trouver
dans la littérature sur le risque de crédit (Bruyere et al.[13], Duffie et Singleton [30] et
Bluhm, Overbeck et Wagner[10], etc.), une étude général de probleémes associés a ce
theme. Pour rendre possible une gestion plus flexible et efficace de ce type de risque,
des instruments financiers basés sur un panier de crédits ont été proposés. Ils peuvent
en gros étre classés dans deux catégories : les “basket default swaps” et les “collater-
alized debt obligations (CDO)”.

Récemment, des indices de portefeuilles de crédit synthétiques ont été introduits, per-
mettant aux investisseurs d’avoir plus de liquidité et plus d’instruments pour se couvrir.

Différents types de problémes mathématiques se posent pour étudier le risque induit
par la corrélation de défauts. Deux d’entre eux sont traités dans cette these : le
premier est I’analyse de ce qui se passe apres le premier défaut pour un portefeuille
comprenant plusieurs entreprises; le deuxieme est de donner une méthode numérique
rapide et robuste pour évaluer les CDOs.

Une grande famille de modeles de défaut repose sur une représentation de la loi con-
ditionelle du temps de défaut. La modélisation du temps de défaut a été tres étudiée,
voir par example Bélanger, Shreve et Wong [8], Elliott, Jeanblanc et Yor [31], Jean-
blanc et Rutkowski [55], Zhou [82], ainsi que la monographie de Bielecki et Rutkowski
[9]. La littérature sur les multi-défauts, comportant en particulier Schénbucher et
Schubert [74] et Lando [59] ne présente pas une modélisation dans un cadre général,
ce probléme étant plus complexe a étudier.

Quand on considere un portefeuille qui contient des actions émises par plusieurs
entreprises susceptibles de faire faillite dans ce cadre de modélisation, une question
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posée par les praticiens est la suivante : puisqu’on observe dans le marché essentielle-
ment le premier défaut, peut-on considérer que les défauts futurs vont garder une loi
de la méme famille, mais dont le parameétre dépend du temps d’observation.

La premiere partie de cette these est motivée par cette question. On rappelle d’abord
certains résultats obtenus dans ’approche de type intensité, en faisant une présentation
adaptée aux extensions au cas multi-crédits; on introduit une condition un peu plus
générale sur les filtrations concernées comme dans Jeulin et Yor [57] et Jacod [49] ou
proposée dans Guo, Jarrow et Menn [44] and Guo et Zeng [46]. En particulier, on
s’intéresse a la décomposition multiplicative de la surmartingale dite “processus de
survie” qui nous permet d’obtenir des développements de type HJM, sous une prob-
abilité bien choisie. Tous ces résultats permettent de caractériser les probabilités de
survie avant le défaut. L’étude de ce qui se passe apres le défaut est présenté dans
Bielekie, Jeanblanc et Rutkowski [79]. Nous avons mené une étude exhaustive de cet
aspect a partir de la loi Fy-conditionnelle de survie restreinte a [0,¢]. Cela permet de
représenter les martingales de la tribu minimale engendrée par l'information a priori
et le défaut avant ¢, soit t A 7.

Dans le chapitre suivant, nous revenons a la question des praticiens, en proposant
un modele simple dans un cadre d’intensités déterministes pour étudier le probléme;
on montre que la propriété proposée par les practiciens ne peut avoir lieu que sous
des hypotheses tres particulieres. La distribution jointe et la copule associée sont
treés différentes de celles utilisées en général sur le marché. Nous montrerons les
conséquences pratiques que cela induit.

Dans le cas ou les intensités sont stochastiques, on ne peut pas généraliser facilement
le point de vue du marché, qui correspond donc a une intuition erronée. Par con-
tre, on peut montrer comment l'intensité du deuxieme défaut va dépendre de celle du
premier, et donner quelques propriétés caractéristiques. Méme avec seulement deux
noms, les calculs sont vite trés compliqués. Pourtant, en adoptant le cadre général
introduit dans le premier chapitre, en prenant comme filtration de 'information celle
générée par l'information a priori et celle additionnelle due a I'observation du défaut,
nous pouvons étudier le processus d’intensité du deuxieme défaut. Les résultats de ce
chapitre sont nouveaux. Une hypothese importante permet de mener ’étude jusqu’au
bout, c’est celle qui dit que la loi conditionnelle du défaut avant ¢t admet une densité
par rapport a la mesure de Lebesgue.

Concernant les produits de grande taille comme les CDOs, la recherche d’une
méthode numérique efficace reste priviligiée. Sur le marché, les practiciens adoptent
une approche simplifiée ou les temps de défauts sont supposés étre corrélés par un seul
facteur commun, et conditionnellement a ce facteur, les défauts sont indépendants.
Alors, la perte cumulative, qui est le terme clé pour évaluer une tranche de CDO, peut
étre calculée en deux étapes dans ce contexte : on calcule d’abord la perte condition-
nelle qui peut s’écrire comme la somme des variables aléatoires indépendantes, et puis
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en prenant ’espérance de fonctions de la perte conditionelle, on obtient le prix de ce
produit financier. Dans le cadre du modele de facteur, ’approximation normale, qui
est un résultat direct du théoréme de la limite centrale, est proposée par Vasicek [80]
et Shelton [75]. L’estimation de la vitesse de convergence est un probleme classique
dans I'étude du théoreme de la limite centrale, voir par exemple 'inégalité de Berry-
Esseen. Mais la difficulté majeure, dans le monde de crédit, est que 'on rencontre
souvent des probabilités tres petites pour lesquelles 'approximation normale ne peut
plus étre robuste. Plusieurs travaux récents de Antonov, Mechkov et Misirpashaev
[2], Dembo, Deuschel et Duffie [24], Glasserman, Kang et Shahabuddin [36] sont con-
sacrés a la question d’améliorer la qualité de 'approximation en utilisant des différentes
méthodes (les grandes déviations, la méthode du col, etc.). Des tests numériques ont
montré une amélioration par rapport a I’approximation gaussienne classique, pourtant,
les estimations des erreurs de ces approximations ne sont pas discutées. Par ailleurs,
elles sont parfois assez couteuses en temps de calcul.

Dans cette these, on propose une autre approche pour traiter ce probleme en utilisant
la méthode de Stein, qui est une méthode tres puissante pour étudier la différences des
espérances d’une méme fonction par rapport a deux lois différentes, notamment quand
I'une des lois est normale ou poissonnienne. En combinant la méthode de Stein avec la
technique de zéro-biais transformation proposée par Goldstein et Reinert [39], on ob-
tient, en faisant un développement autour de la perte totale, un terme de correction a
I’approximation normale classique de ’espérance d’une fonction d’une somme directe de
variables aléatoires indépendantes. En exprimant l'erreur de 'approximation gaussi-
enne d’une fonction réguliere de la perte comme une différence entre les espérances
d’une méme fonction auxilliaire pour la distribution de la somme de variables aléatoires
et pour sa transformation de zéro-biais, on trouve un terme correcteur a I’approximation
gaussienne et on obtient 'ordre d’erreur corrigée (d’ordre O(1/n) pour le cas ho-
mogene). Pour certaines fonctions moins régulieres, comme la fonction (x — k)™ qui
est tres importante en finance, la démonstration de ce résultat est plus délicate, et
demande d’établir des inéqualités de concentration ainsi qu’une technique d’espérance
conditionelle. Cette correction est aussi efficace quand les probabilités sont tres petites
que pour le cas symétrique. De plus, elle est valable pour le cas ou les variables ne
sont pas nécessairement de type Bernoulli et pas identiquement distribuées. D’autre
part, ce terme de correction peut s’écrire sous la forme de 'espérance du produit de
la fonction considérée et d’'un polynome, pour la loi gaussienne. Cela rend le cal-
cul du correcteur explicite et rapide, surtout lorsqu’on considére ’approximation de
I’espérance d’une fonction de la somme de variables aléatoires indépendantes de lois
éventuellement différentes. Des tests numériques sont effectués et on constate une
amélioration significative de la qualité de 'approximation. Par rapport a la méthode
classique de Monte Carlo, le temps de calcul est réduit substantiellement en gardant une
trés bonne précision. Les résultats sont comparables & ceux obtenus par la méthode



du col, mais plus facile & implémenter. On analyse enfin 'impact du parametre de
corrélation sur l'effet de la correction.

Sur le plan théorique, on propose une formule du développement asymptotique
pour l'espérance d’une fonction plus réguliere de la somme de variables aléatoires
indépendantes. Les termes successifs dans le développement consistent en les espérances
des fonctions sous la distribution gaussienne ou poissonnienne, ainsi que les moments
des variables. Il existe une littérature vaste sur ce theme et les méthodes utilisées sont
variées: des fonctions caractéristiques dans Hipp [48], G&tze et Hipp [42], la méthode
de Stein combinant avec 'expansion de Edgeworth dans Barbour [3], Barbour [4], la
méthode de Lindeberg dans Borisov et Ruzankin [11]. En particulier, Barbour a utilisé
une approche basée sur la méthode de Stein pour traiter le cas normal et le cas pois-
sonnien par des techniques similaires dans [3] et [4]. On emploie dans cette these la
transformation de zéro-biais et on estime ’erreur d’approximation en faisant référence
au cas du premier ordre. Plus précisément, en observant I’expansion du premier ordre
qui demande l'existence de la dérivée d’ordre deux de la fonction, et qui s’applique
éventuellement sur la fonction call, on déduit la relation entre la régularité de la fonc-
tion considérée et 1'ordre effectif (c’est-a-dire, 'ordre jusqu’auquel on peut améliorer le
grandeur de la vitesse de convergence) des développements asymptotiques et on donne
les conditions nécessaires sur la fonction pour assurer ’existence du développement
jusqu’a l'ordre IV, ou N est un entier positif. Toujours dans le cadre de la méthode de
Stein, on établit aussi un développement asymptotique de I’approximation poissonni-
enne par des techniques analogues. Concernant 'application financiére, la correction
de lordre supérieur permet encore d’améliorer 'approximation normale, ce qui est

clairement montré par des tests numériques.

0.2 Structure de la these et résultats principaux

Sur le premier temps de défaut et apres

Le premier chapitre commence par une revue des résultats principaux dans I’approche
d’intensité, d’un point de vue plus général et mieux adapté aux extensions dans le
cas multi-dimensionnel. Dans le premier paragraphe, on rappelle des notions et des
propriétés basiques des processus prévisibles pour étudier, dans le paragraphe suivant,
le G-compensateur d’'un G-temps d’arrét 7, qui est en fait la projection duale prévisible
du processus (1 (r<t}>t 2 0). On s’intéresse au calcul du compensateur et on étudie
deux exemples simples mais importants: un dans le cas déterministe et I’autre avec
I'hypothese (H), qui est une hypothese souvent supposée dans la modélisation de crédits
et qui est équivalente a I'indépendance conditionelle de G; et F, sachant F;.

Dans le troisieme paragraphe, on propose un cadre général sous lequel on travaillera
ensuite. L’hypothese importante est celle proposée sur les filtrations G et F: pour tout
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t > 0ettout U € Gy, il existe V € Fy, tel que UN{T >t} = VN{r > t} (cette hypothese
a été utilisée par Guo, Jarrow et Menn [44]). Cette condition permet de traiter un seul
temps de défaut et le premier temps de défaut d’'un portefeuille de la méme maniere
sans ajouter la moindre difficulté. On rappelle ensuite un résultat classique, a savoir
qu'il existe un processus F-prévisible AF qui coincide avant T avec le G-compensateur
de 7 et que AF est calculable & partir d’une surmartingale G = (P(1 > t|.F;),t > 0), dit
“processus de survie”, qui joue un role essentiel dans la suite. De plus, par la méme
méthode, on montre que le processus A%F, qui coincide avant 7 avec le G-compensateur
d’un autre temps d’arrét o est donné par I'équation dBy F = Gy dAg’IF, ot BF est le
compensateur du processus V7 = (P(o > 7 A t|Ft),t > 0).

En tant qu’une F-surmartingale, G admet une décomposition multiplicative

G =ET) = EMY)E(—AD),

qui nous permet d’introduire un changement de probabilité par rapport auquel on
peut généraliser les développements de type HJM, faits d’habitude sous I'’hypothese
(H); c’est 'objet du quatrieme paragraphe. On traite le probléme d’une fagon similaire
a celle des taux d’intérét et on compare avec les résultats dans Schonbucher [72] par
un changement de probabilité. Enfin, on conclut qu’il suffit de connaitre le processus
G pour déduire les probabilités conditionnelles de survie P(7 > T'|G;).

Pour traiter le cas apres le défaut, on étudie dans le cinquieme paragraphe les prob-
abilités de survie conditionnelle a t, restreinte a [0,¢] pour en déduire les espérances
conditionelles en sachant que le défaut a eu lieu. On développe dans les trois sous-
paragraphes respectivement le cas avec I’hypothese (H), le cas plus général sans ’hypothese
(H) mais ou P(7 > 0|F;) avec § > 0 admet une densité, et puis enfin le cas général.
Dans le cas avec densité, on montre que les espérances conditionelles peuvent étre
calculées explicitement par

EY(T,7)|G| 1754 = EL, }}(OZ’OZ)(TL)TCEZMU']:J | PR

et
E[Y (T,7)|G] 1 (r<py = E|Y(T. s)z::—((j)) 7] L:T“ frty-

Dans ce cas-la, le processus compensateur du temps de défaut 7 est donné par la

formule 0 0
ot oy (t
dA; =1 t)——=dt =1 t) s———dt.
t }O,T]( ) G, }O,T]( )ftoo at(u)du
Dans le cas général, on introduit la notion de Fy-mesure q.(f) = E[f(7)|F] et
on montre que 'espérance conditionelle peut étre calculée par une dérivée au sens de

Radon-Nikodym.



Le deuxieme chapitre est consacré a I’étude de plusieurs temps de défauts. Le pre-
mier paragraphe a pour objectif de répondre a la question posée par les praticiens du
marché mentionnée précédemment. On développe un modele simple déterministe de
deux temps de défaut, basé sur '’hypothese suivante : les probabilités de survie indi-
viduelles suivent des lois de type exponentiel avant le premier défaut ou les parametres
dépendent de observation du marché, soit P(r; > T|r > t) = e #' O T (j =1, 92).
On montre alors que la probabilité jointe est déterminée complétement par les fonctions

i

J

t1 to
P(ry > t1, 72 > t2) = exp ( - / p(s Ato)ds — / 12 (s A tl)ds).
0 0

Ce résultat contredit I'hypothese standard que la fonction de copule ne dépend pas
de distributions marginales. Par ailleurs, cette probabilité jointe correspond a une
fonction de copule spécifique C~’(u,v) = uv,o(ul{l—(g), %) si u,v > 0 et 5(u,v) =0
siu = 0 ou v = 0, qui ne ressemble pas & une forme utilisée habituellement sur le
marché. On déduit ensuite respectivement la loi conditionelle du crédit qui survit et
du deuxieme temps de défaut et on observe que la propriété proposée par le marché
n’est pas satisfaite dans ce cas et que les calculs deviennent vite compliqués. Donc on
montre par ce modele simple que 'intuition du marché est fausse et la corrélation de

défaut demande une étude rigoureuse déja dans le cas de deux temps de défaut.

Dans le deuxieme paragraphe, on traite deux temps de défaut dans le cadre général.
Duffie [27] montre que, sous certaine condition, le compensateur du premier temps de
défaut est égal a la somme des compensateurs arrétés a 7 de chaque temps de défaut.
Pour le deuxieme temps de défaut o, en appuyant sur les résultats obtenus dans le
premier chapitre, on obtient son processus de compensateur :

pt(Tv t)
dA =1 t)—————dt
[T’U} ( ) ftOO D (T, 'U)d’l) ’

ou p(u,v) est la densité de la probabilité conditionnelle jointe P(7 > u,0 > v|Fy)
qui joue un role essentiel. Cette approche peut étre étendue facilement en cas général
pour les défauts successifs. Dans le dernier sous-paragraphe, on étend la méthode pour
calculer les espérances conditionelles dans le chapitre précédent au cas de deux et de
plusieurs crédits respectivement. En introduisant une famille de F;-mesures associées
a chaque scénario de défaut, on calcule les espérances conditionelles par rapport a Gy
comme des dérivées de type Radon-Nikodym. Cette méthode propose une possibilité
de traiter le multi-crédits en ramenant aux calculs sur les espérances conditionelles par
rapport aux tribus dans la filtration F que 'on pourrait éventuellement supposer étre
engendrée par un mouvement Brownien.



L’approximation de la perte cumulative

Le troisieme chapitre de cette theése traite le probleme de I'approximation de la perte
cumulative, qui est naturellement motivé par le besoin d’évaluer des produits dérivés
de grande taille. Le premier paragraphe commence par une breve introduction au
probleme. On présente d’abord le modele a facteur et puis I’étude des sommes de
variables aléatoires indépendantes qui est ’objet principal a étudier dans ce contexte.
Ensuite, on fait un rappel de la littérature sur la méthode de Stein et sur la transfor-
mation de zéro-biais, qui sont les outils que nous utiliserons pour traiter le probleme
de I'approximation.

Le deuxieme paragraphe du chapitre est consacré a la transformation de zéro-
biais et ses propriétés fondamentales. On rappelle d’abord les définitions et quelques
résultats dis & Goldstein et Reinert [39], puis on présente un exemple important pour la
suite : les variables aléatoires d’espérance nulle qui suivent la distribution de Bernoulli
asymétrique B(q, —p). Ensuite, on montre que si X est une variable aléatoire et si X*
est une autre variable aléatoire indépendante de X suivant sa loi de zéro-biais, alors
on peut calculer explicitement ’espérance d’une fonction g de la différence entre X et
X* lorsque la fonction g est paire et est localement intégrable (cf. Proposition 3.2.6):

1

E[g(X* - X)] = @E[XSG(XS)].

Ce résultat s’applique donc aux fonctions E[|X* — X|] pour mesurer la distance entre
X et X* avec la norme L'. Dans le cas ou W est la somme de variables aléatoires
indépendantes X1, --, X, si pour tout entier 1 < % < n on note X une variable
aléatoire independante des X1, --- , X, suivant la loi de zéro-biais de X, alors la vari-
able aléatoire W* définie par W* = W) + X7 suit la loi de zéro-biais de W, ou I
est un indice, indépendant des X; et des X, a valeur dans {1,--- ,n} et dont la loi
est déterminée par les variances des X; (cf. [39]). Le point important est que dans
ce cas on n’a plus l'indépendance entre W et W*. Cette difficulté est levée en mon-
trant que les covariances des quantités a estimer ne dépendent que de la variance de
I'espérance contionnelle de (X; — X7) sachant ()—(2, }*) qui est d’un ordre inférieure a
celle de (X7 — X7). On donne une estimation importante dans la proposition 3.2.16 de
la covariance de deux variables aléatoires dont I'une est une fonction de W et l'autre
est une fonction de X7 et de X7:

ELf(W)g(X1, X7)] — ELF(W)|Elg(X/, X))

- VarlF(W)]3 (3 otVarla(x;, X7))) .
=1

< poy
w

On remarque que 'utilisation directe de I'inégalité de Cauchy-Schwarz ne permet pas
de trouver l'estimation suffisamment précise pour notre application. Il faut prendre
I’espérance conditionnelle avant d’appliquer I'inégalité de Cauchy-Schwarz.
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Le troisieme paragraphe consiste a introduire I’équation de Stein associée a une
fonction et & étudier les solutions de cette équation. Si h est une fonction réguliere,
I’équation de Stein associée a h est par définition

@ fr(x) = ofy fi (@) = h(x) = Poy ().
Par abus de language, on utilisera fj,(z) pour désigne la solution de I’équation de Stein
qui croit le moins vite a l'infini.
En combinant ceci avec la définition de transformation de zéro-biais, I’équation de
Stein donne

E[R(W)] = oy, (h) = E[W fu(W) = aiy f1(W)] = o ELfr (W) = f(W)].
Ceci rameéne 1’étude sur l'erreur de lestimation gausienne de E[h(W)] & une étude
sur la différence des espérances de la méme fonction f; en deux variables aléatoires
différentes (mais tres similaires).

L’estimation de ’erreur de ’approximation gaussienne repose donc sur ’estimation
de la distance entre les variables aléatoires W et W* qui a été discutée dans le para-
graphe précédent et sur le controle des croissances des dérivées de la fonction f,.

On développe deux méthodes dont 'une est inspirée par Barbour [3] pour estimer
les croissances des dérivées de la fonction f; (comme par exemple la norme sup des
fonctions | f7 |, |z f;], |z f;|, etc.) pour une certaine fonction h. En particulier, on étudie
le cas ou h est la fonction indicatrice ou la fonction call.

Ayant obtenu les estimations nécessaires dans les deux paragraphes précédents, on
démontre dans le paragraphe 3.4 les résultats principaux du chapitre. Tout d’abord,
les estimations du premier ordre sont données pour des fonctions avec différentes con-
ditions de régularité et diverses vitesses de croissance: le lemme 3.4.1 concerne des
fonctions h dont les dérivées sont bornées et le lemme 3.4.2 traite des fonctions h dont
les dérivées sont a croissance linéaire. La proposition 3.4.6 s’intéresse au cas ou h est
une fonction indicatrice, la preuve est basée sur I'inéqualité de concentration inspirée
par Chen and Shao [17]. Ensuite, le théoreme principal (Théoréeme 3.4.8) est établi
pour le cas ou la fonction h est lipschitzienne et la dérivée d’ordre trois de f}, existe et
est bornée — on propose une amélioration de ’approximation gaussienne en ajoutant
un terme correcteur

1 x?
Ch = —E[X}]®s,, <<—2 - 1)xh(w)> .
O‘W 3oy
L’estimation de I'erreur corrigée est donnée par

[BAW)] = @ayy (k) = G

<500 | 35 Rl +—1ZEX3
=1

3

2_: [1x3 %]
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Les variables aléatoires X; sont indépendantes, mais ne sont pas nécessairement iden-
tiquement distribuées. Dans le cas ou tous les X; suivent la loi de Bernoulli asymétrique
du méme parametre, la borne de lerreur est de 'ordre O(1/n). Cette correction est
intéressante notamment pour des petites (ou grandes) probabilités car elle permet de
trouver la méme vitesse de convergence que dans le cas symétrique (lorsque tous les
X; suivent la loi Bernoulli symétrique) ou la correction est automatiquement nulle.

Ce théoreme, pourtant, ne peut pas s’appliquer & la fonction qui nous intéresse:
la fonction call, car elle ne possede pas de dérivée d’ordre deux, et par conséquent la
solution de I’équation de Stein associée ne possede pas de dérivée d’ordre trois. Ce
probleme est résolu dans la Proposition 3.4.15 en utilisant 1’inégalité de concentration.
On montre que C}, donné au-dessus reste valable dans le cas de la fonction call, et
lerreur de 'approximation corrigée est de bon ordre:

[E[(W = k)*] = @y (2 = k)*) = Clampys |
1

S (EIXOT L sy

< % Z: (T + o, E[| X/ ])
%

- s (2 B[ X5 (Z;";l UiEHXfP])

+ oo 2 Bl ]( 3 - > )
Tw i Ty V2032,
n 1 n n

" 1 6\ 2 1 5|3 c 53

—I—Var[fok(W)b(i:l of)* + o7 2Bl |(BOV.E) + o7 ;E[IXZI ).

La suite de ce paragraphe est consacrée aux tests numériques. Des comparaisons
sont faites sur des portefeuilles homogenes et non-homogenes ot les variables aléatoires
suivent des lois de Bernoulli identiques ou non-identiques respectivement. Des résultats
numériques montrent une amélioration substantielle de la qualité de 'approximation
gaussienne.

On compare numériquement notre méthode a la méthode du col. Notre méthode
conduit a une précision meilleure que la correction du premier ordre de la méthode de
col. Bien que I'estimation gaussienne corrigée au deuxiéme ordre de la méthode de col
soit plus précise que la noétre, il faut noter que notre formule est beaucoup plus facile
a calculer, surtout dans le cas non-homogene.

Dans le dernier paragraphe du chapitre, on étudie I'impact du facteur commun.
Des tests numériques permettent de conclure que la correction est efficace lorsque la
corrélation est peu importante. Dans le cas ou la corrélation est forte, apres avoir
intégré par rapport au facteur, 'approximation normale reste robuste par effet de
compensation.

11



Développements asymptotiques pour la distribution gaussienne et poisson-
nienne

Le quatriéme chapitre est consacré a I’étude du développement asymptotique de E[h(TV)],

ou W est la somme de variables aléatoires indépendantes. C’est une extension des
résultats obtenus dans le troisieme chapitre. Rappelons que I’'on peut améliorer I’approximation
gaussienne de E[h(TV)] en ajoutant un terme de correction lorsque h possede certaines
propriétés de régularité. Il est donc naturel d’espérer que lorsque h a des dérivées
d’ordres supérieurs, on peut obtenir des termes de correction d’ordres correspondants.

En développant des techniques dans le cadre de la méthode de Stein et de la trans-
formation de zéro-biais, on propose une nouvelle approche pour traiter ce probleme
classique. Plus précisément, on peut résumer notre résultats en les trois points suivants:

1) On propose une “formule de Taylor” spéciale ayant deux versions — continue et
discréte — qui permet d’obtenir des résultats similaires dans le cas normal et le cas
poissonnien, respectivement;

2) Dans le cas normal, on donne les conditions nécéssaires sur la régularité et la crois-
sance a 'infini de la fonction A qui permettent d’obtenir le développement d’ordre
supérieur, en s’appuyant sur la “formule de Taylor” que I'on introduit. On dis-
cute estimation de ’erreur apres correction et on en déduit que la convergence de
I’approximation corrigée est de bon ordre.

3) Dans le cas poissonnien, on étend la notion de la transformation de zéro-biais aux
variables aléatoires prenant valeurs dans NT. En utilisant la version discréte de la
“formule de Taylor” on obtient le développement complet qui est similaire a celui
obtenu dans le cas gaussien.

Le chapitre commence par un bref rappel sur les résultats de la littérature. Dans le
paragraphe 4.2, on propose d’abord la premiéere méthode utilisant la version classique
de la formule de Taylor. Nous observons que dans le développement de Taylor de
E[fn(W)] ou de E[f,(W*)], les termes E| ff(Lk)(W(i))] apparaissent naturellement pusique
W@ est indépendant de X; ou de X7. 1l est donc possible de remplacer ces termes
par leurs approximations gaussiennes, corrigées par le correcteur du premier ordre.
On obtient ainsi un terme de correction d’ordre 2. En itérant le procédé ci-dessus,
on obtient par récurrence une formule de développement a l'ordre quelconque, si la
régularité de h est suffisamment forte. Pourtant, dans chaque étape de récurrence,
on élimine une composante dans W, par exemple, au lieu d’approcher ’espérance
d’une fonction de W, on estime E| }Ek)(W(i))] dans la premiere étape. Par conséquent,
dans la formule de développement, il apparait des sommes partielles de variables qui
compliquent les calculs.

Une fagon de se débarraser de la difficulté ci-dessus est de remplacer E[f }(Lk)(W(i))]
par une formule ou il n’intervient que les espérances de fonctions de W. Comme
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WO = W — X;, il est naturel de penser & réutiliser la formule de Taylor classique
sur W. Auparavant, quand on applique ’espérance sur cette formule de Taylor, on ne
peut pas obtenir la forme souhaitée car W et X; ne sont plus indépendantes. Il est
donc nécessaire de proposer une nouvelle formule pour approximer I’espérance d’une
fonction de W@ & Pordre quelconque, telle que, dans la formule, il apparaisse seulement
les espérances de fonctions de W.

La formule ci-dessous est la formule clé du dernier chapitre:

E[f(X)] = Ef(X4+V)+> (-D)* S EfPD(X+Y)] (H >+5Nf,X Y),
d>1 J=(j;)eNd =
[JI<N
ou |J| = j1 + -+ + jq pour tout J = (5;) € N% Cette formule est une variante

rétrograde de la formule de Taylor. Le terme d’erreur € peut étre calculé a partir
des termes d’erreur de la formule de Taylor classique, appliquée sur f (k)(X +Y) (le
développement est en X ). Plus précisément, si on désigne par 6(N, f, X,Y’) le nombre
défini par ’égalité

Y E[YH (k)
Ef(X+Y)] =) E[f"(X)] + (N, [, X,Y),
alors on a la relation

eN£.XY) == (- > a3, x ) [ E[i./,jl]

1
>0 g=(jend =/
1J|<N

Intuitivement, sous des conditions convenables sur f, X et Y, e(N, f, X,Y) doit avoir
le méme ordre que §(N, f, X,Y).

En prenant f = f*/, X = W et Y = X;, cette formule clé donne une estima-
tion de E| f}(lk)] ou apparaissent des expressions de la forme EJ f,(ll)(W)] et E[Y™]. La
méthode de récurrence présentée ci-dessus complétée par ce procédé technique donne
I'estimation suivante de E[h(W)], qui est de 'ordre N quelconque (cf. Théoreme 4.2.5):

Si N est un entier positif, on peut écrire E[h(WW)] sous la forme E[h(W)] = C(N, h)+
e(N, h), ou

1) C(0,h) = @4y, (h) et e(0,h) = E[L(W)] — Dy, (h);

2) et par récurrence, pour tout N > 1,

C(N,h):(I)aw(h)Jrzn:afZ(—l)d‘l S o -3, 7Y

=1 d>1 J=(ji)eNd
R

TEXM (EX)] EX
(H J! )( gt gd )

=1

\_/
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e(N, h)

n d—1 i N Jd
:ZUEZ(_l)d—l Z e(N— |J|,f]§|J|+1 (H [X;] ) ( [(Xz) ] . E[Xz ])

! |
i=1  d>1 J=(j,)eNd =1 Jd: Jd:
[JI<N
n N E
(k+1)
+ZafZ SV = kWL X) £ 37 (N £ W0, X7)
=1 =1

En particulier, si N = 1, on retrouve le terme correcteur que l'on obtient dans le
premier chapitre.

Des tests numériques montrent que I’approximation corrigée a l'ordre deux est de
méme précision que celle de la méthode de col, lorsque W est la somme de variables
aléatoires indépendantes suivant la méme loi de Bernoulli asymétrique et lorsque h est
la fonction call.

L’erreur de 'approximation est estimée dans le sous-paragraphe 4.2.3. Si on développe
la formule de récurrence qui définit C(V, h), les dfivées d’ordres supérieurs de la solu-
tion de I’équation de Stein associée vont apparaitre. Par conséquent, pour que C' (N, h)
soit bien défini, il faut que la fonction h soit dans un espace de fonctions sur lequel toute
composée de longueur convenable d’opérateurs de la forme ¢ +— fs(pl) est bien définie.
En particulier, h doit étre suffisamment réguliere, et la croissance de h a linfini ne
doit pas étre trop grande. La premiere partie du sous-paragraphe consiste a définir les
espaces de fonctions avec lesquels on va travailler et a discuter des propriétés agissant
sur ces espaces de fonctions. C’est une préparation & l’estimation du terme d’erreur
qui se trouve & la fin du sous-paragraphe.

La difficulté majeure de 'estimation du terme d’erreur est déja apparue dans le

chapitre précédent. Ici la vitesse de croissance de A,ENH)

joue un roéle crucial pour le
développement de l'ordre N (rappelons que dans le chapitre précédent avec N =1, le
comportement de la fonction ];23) était essentiel pour 'estimation du terme d’erreur).
L’un des objectifs de la deuxiéme partie du sous-paragraphe 4.2.3 est de proposer des

conditions sur h avec lesquelles on peut obtenir les propriétés désirées de A}EN”).

Enfin, l'estimation de lerreur est donnée par une formule de récurrence (cf. Propo-
sition 4.2.23). Avec ceci on montre aisément que (cf. Proposition 4.2.25), dans le cas
de Bernoulli asymétrique ou les variables aléatoires sont identiquement distribuées,
Pordre de lerreur est donné par :

e(N,h) ~ O ((%)NH> .
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Dans la section 4.3, on applique la méthode précédente sur la loi de Poisson en
proposant une variante discrete de la “formule de Taylor” rétrograde (4.55):

E[f(X)] =B[f(X +Y)]+ > (-1 > BAPf(X + ) HE[( )]
=1

d>1 J= (jl)GNd
J<N

+e(N, f,X,Y)

oit |J| = j1 + - + jq pour tout J = (j;) € N¢,
La forme de la formule de développement ainsi que la démonstration sont tres

similaires a celles dans le cas normal. Si N est un entier positif, alors on peut écrire
E[h(W)] sous la forme E[h(W)] = C(N,h) + e(N,h), ou

1) C(0,h) = Py, (h) et e(0,h) = E[L(W)] — Py, (h),
2) et par récurrence, pour tout N > 1,
C( P)\W + Z Ai Z -t Z C(N - ’J|7 A‘J‘ph(l’ + 1))

=t d=zl J=(ji1)eNd
[JI<N

[ >]> )-0)

e(N, h)
n d—1
X; X X;
Yt 3 av-plafes o [Te|(5)] [ (57) - ()]
; ;( ) Z de( |J] pn(z ))1:[ i ia s
= = J:(JZ)EN* =1
[JI<N

n N X* n
+3 N\ E[( i)]sN—k,A’f c4+1), WD X))+ > NN, pp(x+1), WO X5,
; kZ:O h ( Ph( ) ) ; (N, pa( ) )
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On the First Default and
Afterwards
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Chapter 1

Study on a general framework of
credit modelling

The modelling of default time is the key problem for the pricing and the risk manage-
ment of credit derivatives. Generally speaking, two principal approaches, the structural
approach and the reduced form approach, are proposed to model the default mecha-
nism. One important difference between the two approaches is the predictability of
the default time with respect to the background filtration.

The structural approach is based on the work of Merton [63] where a firm defaults
when its asset value process, often supposed to be represented in terms of a Brownian
motion, passes below a certain threshold. This approach provides suitable financial
interpretation. However, since the default time is predictable when the asset process
approaches the barrier, its disadvantage is also obvious from the modelling point of
view. The reduced form approach allows for more “randomness” of the default time.
The initial idea comes from the reliability theory where the default is modelled as the
first jump of a point process. In this case, the default time is not predictable. The
general framework of the reduced form approach has been presented in Jeanblanc and
Rutkowski [55] and Elliott, Jeanblanc and Yor [31]. The notion of intensity have often
been discussed in this approach. From the mathematical point of view, the intensity
process of a stopping time is related to its compensator process, which is a basic notion
in the general theory of processes developed in the 1970’s. When the compensator
satisfies some regularity conditions, the intensity process exists. However, this is not
the case in general (see for example Giesecke [34], Guo and Zeng [46]). The gap
between the structural approach and the reduced-form approach has been shortened
by recent studies of Duffie and Lando [28], Cetin, Jarrow, Protter and Yildirim [14],
Collin-Dufresne Goldstein and Helwege [20], Jeanblanc and Valchev [56] and Guo,
Jarrow and Zeng [45], etc. on the impact of information modelling. By specifying
certain partial observation hypotheses on the filtrations in the structural approach
based models, the default is no longer predictable and the intensity can be calculated
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in these models.

In this chapter, we review some of the results in the intensity approach from a more
general point of view based on the general theory of processes. For theoretical back-
ground, one can refer to Dellacherie and Meyer [22], Jacod [49], Protter [67]. However,
our objective here is to reinterpret some existing results in the credit modelling using
the classical notions without entering in the theoretical details. We are in particular
interested in the compensator process of a stopping time 7 and in its calculation. An
important hypothesis, the (H)-hypothesis, is discussed and a classical example where
this hypothesis holds is revisited along this chapter. Instead of the minimal filtration
expansion condition often adopted in the credit modelling, we propose to work with
a more general condition presented in Jeulin and Yor [57] and discussed in the credit
case by Guo, Jarrow and Menn [44], which can be adapted directly to study the first
default time in the multi-credits case. Then we are interested in the pricing of the
defaultable zero coupon and hence in the calculation of the conditional survival prob-
abilities with respect to the global filtration. To this end, we study the multiplicative
decomposition of the so-called “survival process” which is a supermartingale. This
leads to a generalization of the classical HIM type model discussed in Schénbucher
[72] and we show that the survival process is the key term in determining the condi-
tional survival probabilities. For pricing purposes, especially when there are several
credits, it’s important to study the case after the default. This is the main issue of the
last subsection which consists our main original contribution. We propose a systematic
method to calculate the conditional expectations and we point out that the family of
conditional survival probabilities P(7 > 6|F;) where 6 > 0 plays the crucial role. We
discuss successively the special case where the (H)-hypothesis holds, the case where
the survival probability admits a density, and then the general case.

1.1 Stopping time and intensity process: a general frame-
work

We first summarize some general definitions and properties on stochastic processes
which are very useful in the following.

1.1.1 Preliminary tools on predictable processes

In the following, let (£2,G,P) be a complete probability space and G = (G¢)¢>0 be a
filtration of G satisfying the usual conditions, that is, the filtration G is right-continuous
and Gy contains all null sets of G,,. The probability space represents the market and
the filtration represents the global market information.

The basic results on optional or predictable processes and their dual counterpart
may be found in Dellacherie and Meyer [22].
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Recall that the G-predictable o-algebra is the o-algebra P on R, x Q generated by
the following processes: L;p1x 4 Where A € Gy and 1y, (x4 Where A € G, or by left-
continuous adapted processes. Any PC-measurable process is said to be G-predictable.
A stopping time o is said to be a predictable stopping time if the process (ﬂ{ogt},t >0)
is G-predictable.

It is possible to define a kind of universal conditional expectation with respect to
the predictable o-field in the following sense: for any bounded measurable process X,
there exists a G-predictable process PX, unique up to undistinguishable sense, such
that for any G-predictable stopping time o,

E[Xo 1 octoct] = EPXo T {o< oo} ]-

The process PX is called the G-predictable projection of X.

Now, if A is a right-continuous increasing bounded process (not necessary adapted),
then there exists a G-predictable increasing process AP, unique in undistinguishable
sense, such that for any bounded measurable process X, we have

E[ /[O’M[Xsd/vg} :E[ /[07+m[stdAs].

The process AP is called the dual G-predictable projection of A. In particular, if X is

G-predictable, then
E[/{O’JFOO[XSCZAZS’} :E[/{O#m[xsdAs].

If A is G-adapted, the process AP is also the unique increasing predictable process such
that the process A — AP is a G-martingale (cf. [22]).

1.1.2 Compensator process of a stopping time

The first step in the intensity approach of the credit modelling is to precisely define
the notion of the intensity process of a default time. Since we are concerned with the
multi-credits framework, the variable of interest is not necessarily the default time of
one credit, but for example the first default time of a portfolio of credits. It is enough
to assume that this time is a G-stopping time. In the following, we consider only
stopping times which are strictly positive and finite.

Definition 1.1.1 Let 7 (0 < 7 < 400) be a finite G-stopping time. The G-compensator
A of 7 is the dual G-predictable projection of the G-adapted process (1 {,<¢y,t > 0).
The predictable process A is also characterized by the martingale property: A is a
predictable process such that the process (N; = ey — Mgyt > 0) is a G-martingale.
If A is absolutely continuous, the G-predictable process A such that A; = fg Asds 18
called the G-intensity process ([31], p.180).
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We have the following useful properties of A:

1) For any non-negative or bounded G-predictable process H, we have E[H ;] = E [ f[ H sdAs] .

0,00]
2) The process A is stopped at time 7, i.e. Ay = Aypr.
To see that, we observe that the process (]l{TSt},t > 0) is stopped at 7, and that
(1L (r<ty — Aenr,t > 0) is a martingale. Then both predictable increasing processes

(A¢,t > 0) and (A¢ar,t > 0) are undistinguishable.

3) The process A is continuous if and only if 7 is a totally inaccessible G-stopping time
([23] p-151), that is, for any G-predictable stopping time o, P(7 = o) = 0.
The jumps of A occur at predictable stopping times u such that AA, < 1. More-
over, if AA, =1, then u =7, a.s..

4) The G-survival process S, defined by Sy = 1 (r>t} = 1= 1<y, is aright-continuous
supermartingale, which satisfies the following equation

dS; = Sy_(—dN; — dA;)

since S;— = 11754 . This equation will be discussed later.

1.2 Classical frameworks with closed formulae for the com-
pensator processes

One important objective now is to calculate the compensator process A of 7. We now
present two examples where this computation is done in an explicit way.

1.2.1 The smallest filtration generated by 7

In this example, the filtration is generated by the process associated with random vari-
able 0 < 7 < co. This is a classical but important case which has been largely studied
in the single credit modelling (e.g. Elliott, Jeanblanc and Yor [31]) where 7 represents
the default time of one credit.

Let D = (D¢)i>0 be the usual augmentation ([22] p.183) of the right-continuous fil-
tration generated by the process (1 (r<iy; b 2> 0). Then D is the smallest filtration
satisfying the usual conditions such that 7 is a D-stopping time. Any random variable
X is Dy-measurable if and only if

X = f]l{7_>t} + :L’(T)]l{TSt} (1.1)

where 7 is a constant and x is some Borel function. In particular, the restriction of
Dy on {T > t} is trivial. Predictable processes, stopped at time 7 are deterministic
function of t A 7.
To explicitely calculate AP, the D-compensator of 7, we use the cumulative distribution
function F of 7, i.e. F(t) =P(r <t) and the survival function G(t) = P(1 > t).

The following property has been discussed in [31] and [55]:
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Proposition 1.2.1 Let r be the first time such that G(r) =0 (or F(r) =1). For any
sufficiently small positive real number €, we have on [0,7 A (r — €)],

~p  dF(s) B dG(s)
Ay = 1-F(s—)  G(s—)

Proof. By definition of the compensator process, for any bounded Borel function h,

E[h() Lo rn—0)()] = E] /[Om_e] h() 2 dAT] (1:2)
= s s) = s)G(s— dF(s) _ s s dF(s)
= [ weare) = [ weaege S =B [ memen()g )

The last equality is because G(s—) = P(1 > s). O

1.2.2 Conditional independance and (H)-hypothesis

An example of stopping time

An important example of default time is given below, which has been discussed by many
authors (see Lando [59], Schonbucher and Schubert [74] or Bielecki and Rutkowski [9]
for example). The financial interpretation of this model is from the structural approach,
at the same time, by introducing a barrier which is independent with the filtration gen-
erated by the background process, the intensity of the default time can be calculated.
So the two credit modelling approaches are related in this model. Moreover, it has
become a standard construction of the default time when given an F-adapted process
where F = (F})¢>0 is an arbitrary filtration on the probability space (Q2,G,P).

Let (2,G,P) be a probability space and F be a filtration of G. Let ® be an F-
adapted, continuous, increasing process with &y = 0 and P, := tligl ®; = Ho0.
— 100

Let £ be a G-measurable random variable following exponential law with parameter 1
which is independent of F.,. We define the random time 7 by

T=inf{t >0: P, > ¢}

Then we can rewrite 7 as 7 = inf {t >0:e %< U} where U = e~ ¢ is a uniform
random variable on [0, 1]. So, the conditional distribution of 7 given F, is given by

P(T > t|Foo) = P(®y < €| Fo) = e~ = P(1 > t|F;) =: Gy (1.3)
Let us introduce the new filtration G = (G¢);>0 as the minimal extension of F for
which 7 is a stopping time, that is G; = F; V D;, where Dy = o(l,<5,s < t). In
particular, any G;-measurable random variable coincides with an F;-measurable r.v.

on {7 > t}. Based on this observation, we obtain the following characterization of the
G-compensator process of 7. Note that ® is not necessarily continuous here.
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Corollary 1.2.2 Let G = F VvV D be the filtration previously defined. Let us assume
that the conditional distribution of T given Fao is given by P(1T > t|Foo) = e~ ®t where
® is an F-adapted increasing process. Then, the G-compensator of T is the process

S

tAT
AS = / e®t=d(—e )
0

When ® is differentiable, with derivative A\y = 0;P¢, then dA(tG’ = Il{TZt})\tdt.

Proof. Since on {7 > t}, any G;-measurable random variable coincides with a Fy-
measurable random variable, the G-martingale property of Ny = <y — AP may be
expressed as, for any A € 7,

t+h
E[ﬂAf(NtJrh - Nt)] =0=E [ﬂA]f(]l{zKrgt-‘rh} - /t ﬂ{t<s§7—}dA(§):|'

Using the conditional distribution of 7 given F,, we have

E|:]1A]f]1{t<7-§t+h}] = E[HAEE /tHh d(—e_ét)}-

In order to reintroduce the indicator function 1 (4 whose F conditional expectation

is e~®*~ we rewrite the right-hand side of the above equality as

t+h t+h
E |:]1A%‘ /t d(—e_q)t)} =E [IlAItF /t ]1{723}6(1)**(1(—6_%)]

By uniqueness of the dual predictable decomposition, we know that the corollary holds.
O

The process G defined by Gy = P(7 > t|F;) is called the F-survival process . In this
framework, G is a decreasing F-adapted process. However, this is not true in general,
as we will see in the following section. We note that this example is from the “filtration
expansion” point of view, that is, the filtration G is set to be the “minimal expansion”
of F as been discussed in Mansuy and Yor [62].

About the (H)-Hypothesis.

We now introduce the (H)-hypothesis first introduced in filtering theory by many
authors, see Brémaud and Yor [12] for instance.

Hypothesis 1.2.3 We say that the (H)-hypothesis holds for (F,G), or equivalently,
we say that a sub-filtration F of G has the martingale invariant property with respect
to the filtration G or that I is immersed in G, if any F square-integrable martingale
is a G-martingale.
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For the credit modelling purpose, it has been studied by Kusuoka [58] and Jeanblanc
and Rutkowski [55]. Note that the (H)-hypothesis is often supposed in the credit mod-
elling, since it is equivalent to conditional independence between the o-algebras G; and
Foo given F (see [22]) as in the above example.

We give some equivalent forms below (cf. [22]). The (H)-hypothesis for (F,G) is
equivalent to any of the following conditions:

(H1) for any ¢ > 0 and any bounded G;-measurable r.v. Y we have E[Y |F] = E[Y|F];

(H2) for any t > 0, any bounded Gi;-measurable r.v. Y and any bounded Foo-
measurable r.v. Z, we have E[Y Z|F] = E[Y|FR|E[Z|F].

Remark 1.2.4 The main disadvantage of the (H)-hypothesis is that it may fail to
hold under a change of probability. Kusuoka [58] provided a counter example to show
this property. One can also refer to Bielecki and Rutkowski [9] and Jeanblanc and
Rutkowski [55] for a detailed review.

1.3 General framework for credit modelling with two fil-
trations

In this subsection, we present our framework which is an extension of the classical
frameworks in the credit modelling. Recall that the filtration G represents the global
information on the market. We now make our main assumption introduced by Jeulin
and Yor [57] in 1978 and Jacod [49] in 1979. This assumption has been discussed
recently in Guo, Jarrow and Menn [44] and Guo and Zeng [46] (2006) as a general
filtration expansion condition. We are from another point of view. Our reference
filtration is the global one G.

Main Assumption

Hypothesis 1.3.1 (Minimal Assumption) Let F be a subfiltration of the general
filtration G and let 7 (0 < 7 < 00) be a G-stopping time. We say that (F, G, 7) satisfy
the Minimal Assumption (MA) if for any ¢ > 0 and any U € G, there exists V € F;
such that

Un{r>tl=vn{r>th (1.4)

Obviously the filtrations introduced in the previous example, F and G = F Vv D, verify
this assumption, since the filtration I is trivial on {7 > ¢}. The Hypothesis 1.3.1 and
the framework we shall introduce is quite general, and well-adapted to study what
happen before the first default time in the multi-credits case. We shall show that the
first default time can be treated in almost the same way as for one default time in the
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single-credit case.
We first give some consequences of the Minimal Assumption on G-predictable processes
in [57].

Proposition 1.3.2 Assume that Gy = Fo, and that (F,G, 1) satisfy the Minimal As-
sumption 1.3.1.

Then for any G-predictable process HC, there exists an F-predictable process HY such
that

Hi sy = Hi grsyy.- (1.5)

Proof. The G-predictable o-algebra on [0,00[x(2 is generated by the following two
types of subsets: {0} x A with A € Gy and |s, 0] x A with A € G,, r < s. For processes
such that H® = 1 {0}xA» the property holds automically since the hypothesis Fo = Gy
implies that H® is F-predictable.

We now need to prove (1.5) when H® = I} 00xa for any s > 0 and any A € G;.
We know that there exists A¥ € F, such that AN {r > s} = A¥ N {r > s}. Let
HF = 1ly5 o) x ¥ Then, we have (1.5).

Od

F-survival process and G-compensator

The above proposition enables us to calculate the process HF. In fact, by taking
conditional expectations, we have

HF]P)(T > t|F-) = E[Hl(fG]l{TZt}‘ft_]' (1.6)

As in the example, the F-conditional probability P(r > ¢|F;—) plays an important role
in different calculations.

Definition 1.3.3 The F-survival process G is the right continuous supermartingale
The point 0 is absorbing for this nonnegative supermartingale.

Note that G is the Azéma supermartingale ([62], p.13) of 7.

The following theorem enables us to calculate the G-compensator process via the pro-
cess G. The first result is a classical one which has been given in [31]. The second
result is an extension which shall be useful in the multi-credits case.

Theorem 1.3.4 We assume that Hypothesis 1.5.1 holds.
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1) Let G = M — A be the Doob-Meyer decomposition of the survival process G, where
M is a martingale and A is an increasing F-predictable process.
On {Gi— > 0}, we have the following representation of the G-compensator process
A® of 7.

dA
L=l dAY (1.8)

AT = Ty (t) G

2) More generally, let o be another G-stopping time with G-compensator A°. Then
there erists an increasing F-predictable process A®F such that AJ,, = Ata,’\IFT. Let
BT be the F-predictable increasing process in the Doob-Meyer decomposition of
the supermartingale V. = P(oc > 7 A t|F;), or in other words, V° + B%F is an
F-martingale. Then

dBY" = Gy_dAT"

Proof. 1) The G-predictable process A is stopped at 7, i.e. Ay = Aypr. Hence, under
hypothesis 1.3.1, there exists an F-predictable process A such that A; = Ajr, = A} Ar-
On the other hand, A admits a dual F-predictable projection, which coincides with the
F-predictable increasing process A in the Doob-Meyer decomposition of G. Since we
have supposed that 7 < 400 a.s., for any bounded F-predictable process Y,

E[Y,] :E[ /[O#OO[YtdAt} :E[ /[OHFOO[Y;dAt}.

On the other side, since A; = AE,, by hypothesis, we know that

E| /[O#OO[YtdAt] ~E| /[O 7+oo[ﬂ{7>t}YtdAf] ~E| /[07+oo[}@Gt_dAf].

The last equality is because G- = E[ll{;>4|F]. Since Y is arbitrary, we know that
dA, = Gy_dAT.

2) By definition, (AJ,;,t > 0) is the compensator of the process (1 {o<;rn,t > 0).
Therefore, for any bounded F-predictable process Y,

E[/[‘O*OO[ Ytdﬂ{agw\t}} -k [ /[‘O,-i-OO[ YtdAg/\t] =E [ /[0,+oo[ Ythta} =E [ /[0,+oo[ Ytng’F .

The last two equalities come from the definition of V7 and B¥. Since AZ,, = Afft,
similarly as in 1), we have E[f[o,+oo[ndA:ft} = E[f[0,+oo[Yth—dA?’F]v which ends
the proof.

]
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Multiplicative decomposition of G

In addition to the additive decomposition of the F-survival process G which is an F-
supermartingale, there exists a multiplicative decomposition of G, very useful in the
following. This property has been discussed in Jeanblanc and LeCam [53]. For sim-
plicity, we introduce the following assumption.

Hypothesis 1.3.5 We assume that Gy > 0 a.s. for any ¢ > 0.

However, certain results hold without this hypothesis before the first time that G
attains zero as shown by Theorem 1.3.4.

To deduce the explicit form of the multiplicative decomposition of (G, we introduce
the Doléans-Dade exponential of a semimartingale Z which is the unique solution of
the stochastic differential equation

dX, = X,_dZ,, Xo=1,

which is given by

EZ)y =exp (Zy — Zo — L (Z)7) H {(1 + AZS)e_AZS}. (1.9)

2 0<s<t
Observe that if Z is a local martingale, then £(Z) is also a local martingale, and
that if B is a predictable increasing process such that AB < 1, then £(—B) is a
predictable decreasing process. Note that the Doléans-Dade exponential does not
satisfy the standard exponential calculation property. In fact, for any semimartingales
X and Y, we have E(X +Y + [X,Y]) = E(X)EY).
We are looking for a multiplicative decomposition of the positive supermartingale G

as
G=LD (1.10)

where L is an F-local martingale and D is an F-predictable decreasing process.
We start with the Doob-Meyer decomposition of G as G = M — A where M is an
F-local martingale and A is an F-predictable increasing process. Then we have

dG dM, dA F
s _ s 5 _ MF _ A[F
Gs- G- Gs- AM = dhs

where dMT := dM /G_. Assume AF to be continuous. Then, the additivity property
holds for the Doléans-Dade exponentials of the processes M T and —AE, that is,

G = &M — AF) = £(MT) exp(—AF)

and the multiplicative decomposition is obvious.

In the general case, the problem is much more complicated and less intuitive. The
good answer, as proposed by Jacod (Corollary 6.35 in [49]), Meyer [64] and Yoeurp
[81] is given in the following proposition.
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Proposition 1.3.6 Let ft = InGy + fg ?;ij and ft = Mtf — A]f be its Doob-Meyer
decomposition. Assume that AAF # 1.
Then G admits a multiplicative decomposition as

G = &(T) = E(MD)E(—AF) (1.11)
where the F-local martingale ML s defined by dMth = ﬁthf.

In other words, the martingale part L of the multiplicative decomposition of G is the
Doléans-Dade exponential of the modified martingale M' and the predictable decreasing
process D is the Doléans-Dade exponential of —AF.

Proof. 1t suffices to check that the right hand side of (1.11) is the needed decompo-
sition. We know that S(W)S(—A]F) = E(J\,Z/f —AF + [W, —AF]) and we shall prove
that []\7/1: ,—AF ] is a pure jump martingale. It suffices to prove that for any predictable
process Z%, I = E[ZS ZEA]TJJ; AAISF] = 0. Recall that the F-predictable projection
of the martingale ML s m and that MT has no predictable jumps. Since AF is a
increasing predictable process, we know that I = E[>"_ Zf(]\fzf_ — J\AE_)AA]E] = 0.
Moreover, the other purely jumps martingale N = M T b + [m , AF] has no jump
since

B S ANF
1—AAF 1 - AAF
Therefore, the martingale NNV is identically equal to 0. That ends the proof.

AN =AM (1

) =0

1.4 Defaultable zero coupon and conditional survival prob-
abilities

We are now interested in the evaluation of the defaultable zero coupon. A defaultable
zero coupon is the financial product where an investor receives 1 monetary unit at
maturity T if no default occurs before T' and 0 otherwise. Here, we don’t take into
account the discounting impact and the risk-neutral evaluation. Hence the conditional
probability P(7 > T'|G;) is the key term to evaluate. By previous discussions, we know
that this G-martingale coincides on the set {7 > ¢} with some F-adapted process and
it can be calculated by

P(r > T|F) E[Gr|Fi]

P(r > T|G;) = ﬂ{r>t}m =1an G,

= 1oy GT,

where GT = E[Gr|F]/G;. Here the intensity is not the suitable tool to study the
problem.
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1.4.1 General Framework and abstract HIM

The multiplicative decomposition of G = L D in terms of the F-local martingale L =
E(MT) and the F-predictable decreasing process D = £(—AF) is the natural tool to
study G¥ under the following assumption:

Hypothesis 1.4.1 Assume that AAF = 1, and that the exponential martingale L =
E(MV) is strictly positive on [0, 7]. Then, the change of probability measure

dQt' =Ly dP on Fr (1.12)
is well-defined.

Remark 1.4.2 When the (H)-hypothesis holds between the filtrations F and G, the
F-survival process G is the exponential of an adapted decreasing process —®. So we
can work directly under the initial probability measure P, that is Ly = 1.

Forward hazard process

We now study properties of étT in both directions, as a function of T" or as a semi-
martingale on t. Given the multiplicative decomposition of G, we have
ar _ E[Gr|F]  E[Lr Dr|F]

t Gt = Lt Dt = EQL [DTAE]

where Dr; = %f is Fp-measurable. Since D is the Doléans-Dade exponential of

—AF | under our hypothesis, D is decreasing, and we can introduce another predictable
increasing process £F such that

exp(—L}) = E(—AT) = Dy.

By analogy with zero-coupon modelling, we introduced the process I'! defined as
the parallel of the logarithm of “defaultable zero-coupon bond”. This process is known
as the forward hazard process

I'T=—1In étT = —InEge [exp ( — (55 — ﬁf))|.7'—t] (1.13)

Then we have the abstract version of HJM framework for the G-survival probability
before the default time.

Proposition 1.4.3 (Abstract HIM) We take previous notations.
1) For any t < T, the process (P(r > T|G;) = ]l{T>t}e_FtT,t > 0) is a G-martingale.

2) If A is continuous, then the process (]1{7>t}eAt = ]1{T>t}eAItFM,t > 0) is a G-
martingale.
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3) The process GT defined by GT = exp —(LF +T7) = Eqc[Dr|F] is a Q-martingale
on [0,T] with respect to the filtration F.

4) Assume the process AF to be absolutely continuous, with F-intensity process \ reqular
enough to make valid differentiation under QY expectation.
Then the semimartingale process T'T is also absolutely continuous with respect to
T. Its “derivative” process is the F-forward intensity process (t,T) such that
(exp ( - fOT ()\uﬂ[o,t] (u) + (¢, w) Wy 7y (u))du) > 0) is an F-martingale on [0, T]

with respect to the Q' probability measure.

Proof. 1) is obvious by definition.

2) By the multiplicative decomposition, Sy = T~y = E(—A)E(—N;) where A is the
G-compensator process of 7 and N is the G-martingale in the Doob-Meyer decomposi-
tion of S. If A is continuous, then £(—A;) = exp(—A¢). So (]1{T>t}eAt =E&(—Ny),t > 0)
is a G-martingale.

3) is direct by (1.13).

4) Since AF is absolutely continuous and is of density A, £(—Af) = exp ( — fot Audu).
Then by definition, I'/ = —In Eqe [e_ I )‘“d“|.7-"t] is absolutely continuous with respect
to T. If we denote by 7(t,T) the F-forward intensity process — the derivative of I'}
with respect to 7', then the process defined in 3) is nothing but CAJT, which implies the
desired result. O

1.4.2 HJM model in the Brownian framework

As been shown above, the zero coupon prices gives us the necessary information on
the G-conditional probability P(7 > T'|G;) for all T > t. We now explicate this point
in the classical context of the HJIM model. In the following of this subsection, we
assume that the filtration F is generated by a Q¥ Brownian motion W and that the
F-predictable process AF is absolutely continuous. In this case, the process G and its
martingale part L are continuous. In addition, we suppose that the Hypothesis 1.3.1
holds for the filtrations (F,G).

HJM approach was first developed by Heath, Jarrow and Morton [47] to describe
the dynamics of the term structure of interest rate. Modelling the whole family of
interest rate curves for all maturities appears to be a difficult problem with infinite
dimension. While in fact under the condition of absence of arbitrage opportunity, the
dynamics of the forward rate is totally determined by the short-term rate today and
the volatility coefficient. Application of this approach on the credit study is introduced
by Jarrow and Turnbull [50], Duffie [26] and Duffie and Singleton [29]. In Schénbucher
[72] and Bielecki and Rutkowski [9], one can find related descriptions of this approach
applied to the defaultable term structure and defaultable bond of a single credit.
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Schénbucher [72] used the HIM framework to represent the term structure of the
defaultable bond and give the arbitrage-free conditions. In the following, we proceed
from a different point of view. First, we work under the modified probability Q%.
Thus we proceed similarly as in the interest rate modelling. On the other hand,
as mentioned above, the only difference when the (H)-hypothesis holds is that there
is no need to change the probability. Therefore, we can deal with the general case
without extra effort than in the special case with (H)-hypothesis. Second, instead of
supposing the dynamics of the forward rate, we here suppose to know the dynamics of
the F-martingale GT under the probability QF. This is exactly as in the interest rate
modelling where the discounted zero coupon price has a martingale representation.
We deduce the HIM model under the probability Q. Then it’s easy to obtain GtT by
multiplying the discounted factor D;. We then deduce the dynamics of the F-survival
process G and thus the G-conditional probability P(7 > T'|G;).

Proposition 1.4.4 Assume that for any T > 0, the process (étT,O <t <T) satisfies
the following equation:
dGT
Gl

= U(t,T)dW, (1.14)

where (U(t,T),t € [0,T]) is an F-adapted process which is differentiable with respect

—

to T and W is a Brownian motion under the probability QF. If, in addition, ¢(t,T) =

0
a—T\I/(t,T) is bounded uniformly on (t,T), then we have

1)

t ¢
GT = Gl exp {/ U (s, T)dWs — %/ ‘\I/(S,T)Qd8:| (1.15)
0 0

2)
a(t,T)za(o,T)—/O w(s,T)d/m?s+/0 W(s, T)WU(s, T)*ds. (1.16)

3) We have ¥(u,u) =0 and
N t
Gt = exp [—/ ;y\(s,s)ds] . (1.17)
0

4) . N .
a(t,T):a(T,TH/t 1p(s,T)dWs—/t (s, T)U(s, T)*ds. (1.18)

Proof. 1) The first equation is the explicit form of the solution of equation (1.14).
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2) By definition, 7(¢,T) is obtained by taking the derivative of —In (A;tT with respect
to T'. Then combining (1.15), we get

~ _ 8 T a t = ]. t 2
’y(t,T)——a—Tl nGj ~a7 [lnGO —i—/o \I’(S,T)dWs—§/0 |W (s, T)] ds]

t
=7(0,T) — / P(s, T)dWs + / (s, T)V(s,T)"ds.
0 0
3) Equality (1.15) implies that

A [ = 1
in Gy =10 G+ [ W(s, O, — 5 [ w(s,0)ds
0 0

. . o (1.19)
:—/ ?(0,s)ds+/ \If(s,t)dWs——/ W (s, £)[2ds.
0 0 2 Jo
Moreover, we have from equation (1.16) that
t
/?(s s)ds
/ Osds—/ds/ﬂ)ude—l-/dS/wus (u, s)*du
:/ (O,s)ds—/(\II(u,t) U, u))diW, + / 10 (u, 1) / 10 (u, )
0 0
(1.20)

Combining (1.19) and (1.20) we get

t t - t
G, = exp [—/ ?(s,s)ds+/ \I/(u,u)qu—%/ |\I/(u,u)|2du]
0 0 0

On the other side, G=Disa decreasing process, so its martingale part vanishes,
which implies that W(¢,¢) = 0 for any ¢ > 0.
4) is a direct result from 2). O

Remark 1.4.5 The above result can be applied directly to the first default time in the
multi-credits case since the condition we need for the filtrations (F,G) is the general
Hypothesis 1.3.1 which is fulfilled in this case.

1.5 After the default event

This section is devoted to the study on the period after the default. The point of view
and the results presented below are extension of the work of Bielecki, Jeanblanc and
Rutkowski [79]. We have studied, in the previous section, the G-survival probability
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P(r > T|G;) for all T > t. It is shown that the knowledge on the process G enables
us to calculate this conditional survival probability since it equals zero on the set
{7 < t}. For pricing purposes, we are now interested in the calculation of the general G-
conditional expectations. However, we shall distinguish two cases before and after the
default in the general case. Before the default, that is, on the set {r > t}, we know from

previous discussions that the calculation is easy. Recall that for any Gp-measurable

E[YT{ 545
P(r>t|Ft)

the important role played by the process G. In addition, for computation purposes,

random variable Y, we have E[Y|G;|T1;s = I{7~4. We observe again
we need a martingale characterization of the F-martingale of the form E[Y'1l (4 |F].
This is one issue we shall study in this section.

Moreover, if we consider a single default, it suffices to consider the case on {7 > t}.
That’s what many models on the market study. However, to extend our framework
to several default times, we have to understand what occurs after the default, that is,
on the set {7 < t}. This is of great importance while studying CDS prices, or k'-to-
default products. We begin our discussion by a special case where the (H)-hypothesis
holds.

1.5.1 A special case with (H)-hypothesis

We now revisit the example where (H)-hypothesis holds for (F,G) and we suppose that
® is absolutely continuous. With the notation of the previous section, for any T > t,
we have

T
G :=P(r > T|F) =exp ( - /0 (Asﬂ{sgt} + ~(t, s)]l{s>t})ds).

We now consider the conditional probability P(7 > s|F;) where s < ¢, which is
important for the case after the default. By property of the (H)-hypothesis, we have
P(r > t|F) = P(7 > t|Fs). Hence, for any T > t, we have P(7 > t|Fr) = Gy, which
implies immediately that

P(r > s|Fy) = P(1 > s|Fx) = Gs = exp ( - / Audu).
0

Combining the two cases, we obtain P(7 > 0| F;) = G?

ing for any 6 > 0. This conditional

probability admits a density «;(#) given by

~reexp (= fY Audu), o<t
a(6) = {fy(t,e) exp (0— fot Apdu — fte fy(t,u)du), 0>t (121)

such that P(7 > 0|F;) = [~ aw(u)du.

Remark 1.5.1 The density o;(#) does not depend on t for ¢ > 6 when the (H)-
hypothesis holds, which simplifies sometimes the calculation.
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In the evaluation problem, it’s very important to calculate the conditional expec-
tation of a Gpr-measurable random variable with respect to G; where T is the maturity
and t is the evaluation date. In the following, we consider the random variable of the
form Y (T, 7) where for any s > 0, Y(T', s) is Fr-measurable and for any w € Q, Y/(T, s)
is a Borel function of s. Notice that any Gr-measurable random variable can be writ-
ten in this form. However Y (7, 7) can represent a larger set of random variables. The
following result holds for all Y (7', 7) defined above. However, for pricing purposes, we
are only interested in Gp-measurable random variables.

Using the density a;(#) allows us to calculate the G-conditional expectations.

Proposition 1.5.2 We assume that the (H)-hypothesis holds. Let Y (T,7) be a ran-
dom variable as above. Then we have

1)
E[[> Y (T, u)ar(u)du|F]
ftoo ay(u)du

E[Y/(T,7)|Ge| 175y = Tgrsgy- (1.22)
2)
E[Y (T, 7)|Gi U r<y = E[Y (T, 8)|F]|,_ Mir<sy- (1.23)

Proof. 1) We know that E[Y (T, 7)|G:] equals E[Y (T, 7)|F:]/P(T > t|F;) on {T > t},
which implies immediately (1.22) by the definition of a(#).

2) It suffices to prove for any Y (7, 7) of the form Y (7T,7) = Yg(7) where Y is an
Fr-measurable random variable and g is a Borel function. We need to verify that for
any bounded G;-measurable random variable Z, we have

E[Z1r<EY 9(r)|G:)] = E[ZE[Y|F]g(r)Lirey]. (1.24)

By definition of conditional expectation, the left side of (1.24) equals to E[Z1 (<Y g(7)].
On the other hand, (H)-hypothesis implies the independence between Fo, and G; con-
ditioned on F;. So we have

EY[RIE[Zg(T)L <y |Fe] = E[Y Zg(7)1 (7 <y | )

Therefore E[ZE[Y|F)g(T)Li;<pn | = E[Z1 ;<Y g(7)], which proves (1.24). O

Remark 1.5.3 We observe that the density () is the key term for the calculation.
The knowledge on the this density enables us to construct the conditional survival
probability P(7 > 6|F;), which is our main tool to study G-conditional expectations.
Note that we have discussed the case where 6 > t using the process (G. Here we need
also to study the case where 0 < t.
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1.5.2 The general case with density

In this subsection, we suppose no longer that (H)-hypothesis holds. Instead, we in-
troduce the following hypothesis that the conditional survival probability G¢ admits a
density, which permits us to conduct explicit calculations. Indeed, it’s convenient to
work directly with the density ay(6) instead of the intensity process as shown by the
case with the (H)-hypothesis. The results of the previous subsection can be recovered
in this case.

Hypothesis 1.5.4 For any ¢,0 > 0, we assume that

1. the F-martingale (GY = P(7 > 0|F;),t > 0) admits a strictly positive density, that
is, for any 6 > 0, there exists a strictly positive F-adapted process (a(0),t > 0)
such that

G?:/ v (u)du;
0

2. the process (a4(0),t > 0) is an integrable F-martingale on [0, 7).

The notion of the density a;(#), which can be viewed as some martingale density,
plays the crucial role in our further discussions. Furthermore, it provides a general
method which adapts without any difficulty in the multi-credits to study the successive
defaults.

By introducing this density, we can calculate the G-conditional expectations, even
on {7 < t}, where the explicit form contains the quotient of two densities. The general
formula is given in Theorem 1.5.5. Moreover, we obtain the compensator process
explicitly in Theorem 1.5.7. The martingale density is an efficient tool to study the
case after the default. In fact, by comparing (1.25) and (1.26), we observe some
similitude between the two formulae, which shows that we can study the cases before
and after the default in the same framework we introduce.

Theorem 1.5.5 Let Y(T,7) be an integrable Gr-measurable random variable. Then
forany 0 <t < T,

1)

E[ [ Y (T, w)ar(u)du| F] 1 _ E[ [ Y (T, w)ar(u)du| F] 1
ftoo o (u)du {r>t} G, {r>t}-
(1.25)

EY/(T,7)|G] 75y =

2) Recall that we have supposed that c(0) > 0. Then

E [Y(T, s)aT(s)|.7:t]
au(s)

E[Y(T,7)|Gi] ;< =E [Y(T7 s) Lgr<yy

S=T

(1.26)

ar(s) _
Oét(S) ‘Ft} ‘s:T]].{TSt} N
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The density (o (60),t > 0) is an F-martingale and a(6) = 0 implies that ar(8) =0 for
any T > t.

Proof. 'We here only give the proof of 2). In fact, it suffices to verify for Y(T, ) of the
form Y(T,7) = Yg(r AT) where Y is an integrable Fr-measurable random variable
and ¢ is a bounded Borel function. The proof is similar to that of Proposition 1.5.2.
We shall verify, for any bounded G;-measurable random variable Z, that

ar(s)

E[ZE[Y ¢(7)|G]1(r<py] = E [ZIE [YT(S)‘ 7

9T ey |-

s=T

Since Gy = F; V Dy, there exists a bounded B(R;) ® Fi-measurable function F' on
Ry x Q such that Z = F(7 A t,w),

E[ZE[Y g(7)|Gi]1(r<1)] = E[EIZY g(r)1 (< | Fr]] = E|Y /0 F(s,w)g(s)ar(s)ds|.

On the other hand,

E[ZE [Y(;T((;)” 7] L:TQ(T)H {Tgt}} - E[ /0 tF(s,w)E[Yg(s)iZ((j)) 7] at(s)ds}

_E| /0 F(s,0)E[Y g(s)ar(s)| Filds] = E[Y /0 F(s,w)g(s)ar(s)ds].

Remark 1.5.6 In the first equality of (1.26), we deal with ap(0)/a4(0), which is
the quotient of martingale densities. With this quantity, we can calculate the G-
expectation for a r.v. Y of interest. In the second equality of (1.26), we first take
conditional expectation and we deal with the quotient of another F-martingale with
respect to a;(f). The second way is less convenient for calculation. However, it can be
extended to the case without density.

Since (a¢(f),t > 0) is a uniformly integrable martingale, we consider the change of
probability defined by dQ® = ap(s)dP on Fr, then (1.26) implies that

E[Y(T7 T)|gt]]l{7'§t} = EQS [Y(T7 8)|ft] |5=T]l{7'§t}'

This is similar with the discussion on the process GG in the previous chapter with
the change of probability QF, where we interpret the relationship between the (H)-
hypothesis. Note that when the (H)-hypothesis holds, we have (1.23), which is of the
same form as the above formula under the initial probability. So there is no need
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to change the probability measure under the (H)-hypothesis. In addition, we can
rewritten (1.25) as follows.

JEE[Y (T, w)ar (u)|F] du

T T)‘gt]ﬂ{wt} B foo o (u)du Lirsty
¢
[ B [Y(T,u)| Fi o (w)du
B [ o (u)du {r>t}

The following result deals with the calculation of the compensator process A of 7.
By Theorem 1.3.4, we know that we need to find the Doob-Meyer decomposition of
the process G. We now treat the case with density.

Theorem 1.5.7 Assume that (F,G, 1) satisfy MA.
We suppose that Hypothesis 1.5.4 holds. Then the G-compensator process A of T is
given by

0el0) gy — 1yt (t) =t (127)

"=

Proof. We first notice that (A4; = fo ay(v)dv,t > 0) is the increasing F- predlctable
process of the Doob-Meyer decomposition of G. Or in other words, (G¢+ fo ay(v)dv, t >

dAt = ]]']O,T]( ) G

0) is an F-martingale. To prove this, it suffices to verify that

oo

i aT(v)dv_/tooat(v)var/tTau(v)dv!ft}

=E[- /tT ay(v)dv + /tT oy (v)dv|Fy] = 0.

E[Gr — G, + /tT a(0)doF] = E[/

The last equality is due to the F-martingale property of («(6),t > 0). In addition,
since G is continuous, then Theorem 1.3.4 implies immediately (1.27). g

Remark 1.5.8 1. Notice that

(677 (t)

[ ap(u)du’

which is of form of a “real intensity” if we adopted the exponential notation.

—0gInP(r > 0|F) ‘9 t 89(111/6 at(u)du)‘ezt -

2. Since both the Minimal Assumption and Hypothesis 1.5.4 can be generalized to
the multi-credits case, we shall see in the next chapter that, thanks to the notion
of the martingale density, the above theorem can be extended easily to study the
successive defaults.
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We now revisit the multiplicative decomposition of the process GG. Notice that the
process A is continuous here. In addition, using the forward intensity, this decompo-
sition implies a HJM type result similar with (1.17) without the hypothesis that F is
generated by a Brownian motion.

Corollary 1.5.9 We use the notations of Proposition 1.53.6. Under Hypothesis 1.5.4,
the multiplicative decomposition of G is given by

Gy = E(]\Zf) exp ( = /Ot v(s, s)ds) (1.28)

where y(t,T) is the F-forward intensity of T.

Proof. By proposition 1.3.6 and Theorem 1.5.7, we know that

as(s)
e ds).

t

Gy = (M) exp (-

On the other hand, v(t,T) = —0rIn G} = “é@, which implies directly (1.28). O
t

1.5.3 The general case without density

We have supposed until now the hypothesis that the density ay(#) exists and is strictly
positive. Note that the density a;(0) is related to the conditional survival probability.
In this subsection, we show that by adopting the point of view of some “random mea-
sure” to represent the conditional expectation, the above hypotheses are not necessary.

Definition 1.5.10 We define an F;-measure g; to be the continuous linear application
from M,(R,) to LY(F;) such that

q:(f) = E[f(7)|F] (1.29)

where My(R;) is the set of all bounded Borel functions on R.

Remark 1.5.11 1) In the case with density, we have

a(f)= [ f(0)a(0)ds.

Ry

2) By definition, we have E[qr(f)|F:] = ¢:(f). For simplicity, we denote by E[gr|F;] =
q:- Hence, (qt,t > 0) is a measure-valued F-martingale in the sense that for any
fe M,(Ry), (¢(f),t > 0) is an F-martingale.
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When calculating the conditional expectations on {r < ¢} in Proposition 1.5.5, the
key term is avp(s)/ay(s) which is the ratio of two densities. This kind of ratio appears
naturally in the comparison of two measures on R, having densities. In the general
case, we can also compare two measures by the Radon-Nikodym theorem.

By Definition 1.5.10, we have defined a general measure g; without density. If
we draw some analogy with Proposition 1.5.5, we are interested in the comparison
of measures dqr/dg; instead of arp(s)/ai(s). However, we here encounter techni-
cal difficulty since ¢ is a Fp-measure and ¢; is a JFi-measure. We hence propose
an alternative method which consists of comparing two Fy-measures (analogous with
E[Y/(T, s)ar(s)|F:] and ay(s) in (1.26)).

Similarly with Definition 1.5.10, we now define ¢}, for any integrable G-measurable
random variable Y, to be a continuous linear application from M;(Ry) to L'(F;) such
that

g (f) =E[Y f(r)|F]. (1.30)

The explicit form of ¢* depends on the measurability of Y. Under certain condition,
it can be determined by the martingale measure (q;,¢ > 0). For example, if Y is
Fr-measurable, we have

@ (f) =E[Yqr(f)|F].

In addition, in the case with density, we have ¢} (f) = E[Y fR+ f(@)ar(0)dd|F,] if Y
is Fr-measurable.
As suggested by (1.26), we would like to prove a result of the form

dq)
E[Y ()G {r<sy = d—qt(T)g(T)]]'{TSt}

and in the case with density, we shall have

day”
dqy

(s) = E[YO‘ () |ft].

T
ay(s)

There are two major difficulties: 1) what is the analogy of the absolute continuity of an
Fi-measure with respect to another; 2) how to define the Radon-Nikodym derivative
for dq} /dg;.

To interpret dqf /dg; as the classical Radon-Nikodym derivative, we introduce some
classical measures on the product space (Ry x €, B(Ry) ® F;) for any F' € My(R4 x
Q, B(R+) & ft):

(P (s,0)) = E[F(r(@),w)] and ) (F(s,w)) = E[Y F(r(w),w)],
which can be viewed as the conditional expectation with respect to o(7) V Fy.
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If Y is Fp-measurable, then p; and i) can be determined by the martingale mea-
sure (g¢,t > 0) under some conditions. For example, when F(s,w) = f(s)Z(w) with f
a Borel function on R4 and Z an F;-measurable r.v., we have

u(F) =E[Zq(f)] and p) (F) =E[Y Zqr(f)]-

In general, for any function in M,(R4 x Q, B(R1)® F;), we only need to consider linear
combinations of functions of the above form.

Lemma 1.5.12 For any t > 0, we have u) < juiz.

Proof. For any F > 0 such that E[F(7,w)] = 0, we have F(7,w) = 0 a.s.. Then
E[YF(r,w)] = 0. O

Proposition 1.5.13 Let Y be an integrable G-measurable random variable and let g
be a bounded Borel function. Then for any t > 0,

dpy
E[Yg(7)|Gi|{r<sy = d—m(ﬂw)g(ﬂﬂ{fgt}-

Proof. For any bounded G;-measurable random variable Z = F (7 A t,w), where F' is
a bounded B(R;) ® Fi-measurable on R x €2, we have

EZY ()1l pep] = /[0 o P01 (5.0

:/ %(3 w)F(s,w)g(s)dp(s,w) =E|F (1 w)%(r w)g(T){7< ]
04x0 At ’ ’ T dpy tr=tt
A

=E [Zd—m(T’ w)g(T)ll{TSt}} :

Remark 1.5.14 In the case with density, d,uf /dus can be calculated explicitly as

d,uz/ . 85E[Y]l{7>s}‘ft]
due  OsE[Lgrsgy|F]

In this case, p; is absolutely continuous with respect to the canonical measure on
(Ry x Q,B(Ry) ® F¢) and the function E[1l (.4 |F;] is absolutely continuous on s.
Moreover, the result of the Proposition 1.5.13 can be written as

OsE[Y 15 6| Fi
T) e
85E[]]'{7’>5}|‘7:t] {SZT}g( ) {r=}

E[Y g(7)|Gi| N {r<sy = (1.31)
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Chapter 2

The multi-defaults case

This chapter is motivated by some practical concern of the practitioners on the market:
when managing a portfolio which contains several defaultable credits, one observes es-
sentially the occurrence of the first default. Hence, to study the successive defaults in
the intensity approach, can one suppose that the further defaults preserve the probabil-
ity law of the same family (usually the exponential family in practice) with nevertheless
parameters depending on the market data of the observation time?

We develop a simple deterministic model of two-credits to study this problem and
we show that this kind of properties hold only in very special cases and the associated
copula function depends on the dynamic of the marginal distributions. We deduce
the distribution of the second default time and observe that the calculations become
complicated and the result is not clear to interpret. Hence, we find the intuition of the
market is inappropriate to model the multi-credits case.

In the second section, we study two default times in the general framework which
we proposed in the previous chapter. We deduce the compensator process of the
second default time with respect to the first one and we show that the result can be
extended without difficulty to the successive defaults. Hence, instead of the classical
procedure where we treat first the marginal distributions of each credit and then their
joint distribution, we propose an original method which concentrates on the successive
defaults.

2.1 An illustrative model

2.1.1 Model setup

In this subsection, we present a very simple model from the practical point of view.
On the market, the practitioners adopt more intensity models than structural models
because the intensity models fit easily to the daily data of CDS spreads. A simplified
but largely used version of the intensity model is the exponential model where the
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default or survival probability of one credit is calculated by an exponential distribution
with parameters being calibrated from the CDS market. The computation is repeated
each day with daily CDS data.

Using this procedure, the practitioners adopt some time stationary property. This
idea is extended to the portfolio case. That is, when we consider a portfolio containing
several credits, we suppose that each credit satisfies the exponential distribution hy-
pothesis. What we need to specify is the observable information. In the single credit
case, we observe the default-or-not event of the credit concerned. When the default
occurs, there will be no need to calculate the conditional survival probability of course.
However, in the multi-credit case, after the first default, we shall calculate the survival
probabilities of the other credits conditionned on this event. Before the first default,
each credit satisfies the exponential hypothesis. For this practical reason, we introduce
an hypothesis on the joint law given by (2.1). Moreover, in practice, it is often sup-
posed that the surviving credits still satisfy this condition after the first default occurs,
once the parameters having been adjusted to the “contagious jump” phenomenon. We
shall discuss this argument in subsection 2.1.3.

In the following, we consider two credits and we suppose that the available infor-
mation is whether the first default occurs or not. Denote by 79 and 75 the default
times of each credit and let 7 = min(7y, 72). Each default time is supposed to follow an
exponential type distribution of parameter u‘(t) before the first default occurs. That
is, for any T > t, we suppose

P(r;>T|7>t)=e#OT-0 ;=1 2) (2.1)

Notice that pi(t) is a deterministic function. In fact, before the first default, we are
in the deterministic context and all the conditional expectations can be calculated
explicitly with conditional probabilities. By letting ¢ = 0, we have

P(r; > T) = e #OT, (2.2)

At the initial time, each credit follows the exponential law with intensity u%(0). At
time ¢, p'(t) is renewed with observed information. When 7 and 75 are independent,
it’s easy to calculate the joint probability

P(Tl > 11,79 > tQ) = ]P)(Tl > tl)P(TQ > tg) = e_ul(o)tl_“2(o)t2.

Then we obtain immediately p?(t) = u*(0), which means u*(¢) remains constant in the
independent case.

Hypothesis (2.1) shows the stationary property of the individual default distribu-
tion. Notice that p'(t) = —7= InP(r; > T|r > t) can be viewed as the implied hazard
rate (cf. [73]) without interest rate and recovery rate. In this model, (2.1) implies that
this forward rate does not depend on T'.
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2.1.2 The joint distribution

In this subsection, we show that the joint probability distribution can be determined
explicitly in this model. To show the relationship between the joint and the marginal
distributions, we write the joint probability P(7; > t1,75 > t3) as the product of two
marginal probabilities and a function p(t1,t2) which represents the correlation between
them, i.e.,

P(Tl > 11,79 > tQ) = ]P)(Tl > tl)P(TQ > tg)p(tl,tg). (2.3)

Note that contrary to the linear correlation parameter which takes value in [0, 1],
the function p(t1,t2) can take any strictly positive real value. In addition, we have
p(0,t) = p(t,0) = 1 for any ¢t > 0. In particular, for any tq,ts > 0, if p(t1,%2) = 1, then
there is independence.

In fact, (2.3) defines a unique copula function for any ¢; and to by the Sklar’s
theorem. Let C(u,v) with (u,v) € [0,1]2 be the survival copula function such that the
joint probability defined by (2.3) can be written as

C(]P)(Tl > tl),P(TQ > tg)) = P(Tl > tl)P(TQ > tg)p(tl,tg).

By letting v = P(1; > t1) and v = P(1» > t3) and by using (2.2), we get

Inwu Inv . )
5(u U) _ UUP(HI(O)’ “2(0)), if U, v > 0,
07 lf u:O or UZO.

Hence C is a special copula function which depends on the initial values of u%(t) and
the function p. We are interested in the form of the function p since it implies directly
the joint survival probability function.

In the standard copula model, the joint probability function depends on u’ through
the marginal probability which is a uniform variable P(7; > t;) = e_“i(o)ti, that is, only
the initial values x!(0) and £2(0). In the following, we show that because of the function
p which can be deduced explicitly by hypothesis (2.1), the joint probability in this case
depends not only the initial values, but on the functions u!(¢) and p?(t).

Proposition 2.1.1 If p(t1,t2) € CYL, then the joint survival probability is given by

t1 to
P(r1 > t1, 72 > t2) = exp ( - / it (s Ato)ds — / 12 (s A tl)ds). (2.4)
0 0

Proof. From (2.1), we have P(1; > T, 1y > t) = P(ry > t, 75 > t)e * DT~ for any
T > t. Combining the definition (2.3), we obtain

PTY) =t )(T—t)
p(t,1)
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Then Orlnp(T,t) = —(u'(t) — ut(0)). By symmetry, we also have Orlnp(t,T) =
—(p?(t)—p2(0)). Taking the sum, we get & Inp(t,t) = —(u' (t)—p' (0)) - (1* (t) - *(0))
and then

Inp(t,t) = —/O (' (s) = 1(0)) + (1*(s) — 1*(0))ds.

Therefore, In p(T,t) = ! (0)T +p2(0)t —pu fo (s))ds and In p(t,T)
is obtained by symmetry. Then for any tl, tg 2 0,

t1 to
In p(t1,te) = pt(0)t1 + p2(0)ts — / pl(s Aty)ds — / p2(s Aty)ds,
0 0
which implies (2.4). O
Remark 2.1.2 The above proposition shows that the joint probability function P(r; >

t1, 72 > t3) depends on the marginal distributions through (u!(t),t < t1) and (u2(t),t <
t2), which means that it depends on all the marginal dynamics.

Proposition 2.1.3 If p(t1,t2) € C? and if u*(t), p?(t) € C1, then

¢
H) =)~ [ o) (2.5)
0
where
> In p(t1,t2)
t) = n ,t9).
o(t) D00t |,y s pt1, 12
In addition, we have
t1Ato
P(Tl > 11,79 > t2) = exp ( — MI(O)tl t2 + / tl + to — 2S)d8) (2.6)
0
Proof. Notice that when ¢1 < t3, 97 ;, Inp(t1,t2) = —(u?)'(t1) and when t1 > to,

0,1, n plt1,t2) = — (1)’ (12). Then
ai2|{t1:t2=t} Inp(ty, t2) = —(u')'(t) = —(u?)'(t).

By the definition of ¢(t), we have (u!)(t) = (u?)'(t) = —¢(t), which implies immedi-
ately (2.5). By replacing ;i(¢) in equation (2.4) with the integral form (2.5) and taking
integration by part, we get (2.6). O

Remark 2.1.4 1) In the above proposition, (2.5) is rather astonishing at the first
sight because it means that p!(t) and p?(t) are identical apart from their initial
values. The point lies in the stationary property implied by (2.1) and the fact that
the information flow is symmetric for the two credits before the first default.

46



2) We obtain, as a direct consequence of (2.6), the explicit form of p(¢1,t2) given by

p(t1,t2) = exp ( OthQ ©(s)(t1 + t2 — 2s)ds). Therefore, the function ¢ plays an

important role in determining the correlation structure of default times.
Mathematical criteria are required to well define (2.6).

i) the survival probability should be decreasing with respect to time, which implies

0
glnP(T1>t1,T2>t2)§0, th,tQE [O,T];

ii) the probability density function should be positive, which implies
2

———P(1y > t1, 79 > t9) > 0.
Bt,0%5 (11 >t1, 12 > t2) >

Therefore, the function ¢ satisfies the following conditions:

_Ml(o) + fotQ p(s At1)ds <0 (2.7)
S0 + o olo nips <0 |

and

)= (w0 - | ® s A was) (10 - | " s A wis). ey

We notice that condition (2.8) is always satisfied when ¢ > 0. When ¢ = 0, there
is independence since P(71 > t1,70 > to) = P(11 > ¢1)P(12 > t2). In addition, the
function pf(t) remains constant as the initial value.

Remark 2.1.5 Ifi) and ii) are satisfied, then the right-hand side of (2.6) defines a joint
probability distribution on R2. Denote by G(t1,t2) = P(1y > t1,72 > t3). In fact, it’s
not difficult to verify that G(0,0) = 1 and lim G(t1,t2) = lim G(t1,t2) = 0. Since
t1—-+o0 to—-+00
by i), G(t1,t2) is decreasing with respect to t; and to ta, lim G(t1,t2) = 0.
t1—+00,ta—+00

Moreover, for any 0 < x1 < x9 and 0 < y1 < 9, we have

Pz <71 < 29,51 < T2 <o) = Gz, y1) — G(x2, 1) — G(21,92) + G(22,92)

T2 [y2
= / 8%2G($, y)dxdy.
1 Jy

2.1.3 First default and contagious jumps

In this subsection, we study the first default and its impact. First, we can easily obtain
the probability distribution of the first default time by (2.4) and (2.6),

P(r >t) =exp ( — /Ot,ul(s) + uz(s)ds)
= exp ( - (,ul(o) + /f(O))t + 2/0t o(s)(t — s)ds).
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Note that the first default time also follows an exponential law and p'(t) + p2(t) can
be viewed as some intensity parameter.

When the first default occurs, the following result of Jeanblanc [52] (see also [79])
enables us to calculate conditional probability of the surviving credit.

Proposition 2.1.6 Let Dy = D} V D? where D} = o(l{;,<sy,s <t) (i =1,2). Denote
by G(z,y) = P(ry > 2,79 > y). If G(x,y) € CY on R?, then

RG(T,T)
W< B[l omy [ Dy] = ﬂ{TQSt,T1>t}W? (2.10)

Proof. First, we have for any s <t that
E[]l{7—2>s}]1{7—§t}E[]1{7—1>T} | Dt“ = P(Tl >T s <19 < t) = G(T, S) — G(T, t). (2.11)
In addition, since 8%73/6’(3:, y) is the probability density function of 71 and 75, we have

E [1(oq1 G(T,7) _/t X hG(T,y) 0°
{ro>s} {2 <t,r1 >t} 82G(t,7') B o Ji 82G(t,y) dzdy

G(z,y)dzdy

= — /t WG (T, y)dy = G(T,s) — G(T,1).

Then by the definition of conditional expectation, we get (2.10). O

Combining the above proposition and (2.6), we get the marginal conditional prob-
abilities.

Proposition 2.1.7 For any t > 0 and T > t, the conditional survival probability of
the credit i is given by

E[l{7,>7) | D] = Lrsyy exp (— (1'(0) — /0 ¢(s)ds) (T — t))

17 (0) = o(r)(T — 1) — [ @(s)ds
1 (0) — () (t — 1) — [ @(s)ds
(2.12)

L e (~(00) - [ elasT 1)

Proof.  We write B[1Li-, > 7y |Di] = Wirony B[ 7 omy D] + Lir s 7y <y B[ >y [ Dr]. To
calculate the first term, it suffices to recall p'(t) given by (2.5). For the second term,
we calculate the conditional expectation by (2.11) in the above proposition and the
joint survival probability function given by (2.6). O

Remark 2.1.8 1. Notice that E[ll(,,~7}|D;] can be viewed as a defaultable zero
coupon price. The two terms at the right-hand side of (2.12) represents respec-
tively the price before and after the default of the other credit. By comparing
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the two terms, we observe the so-called “contagious default” phenomenon since
the survival probability of the i*'-credit has a jump downward at 7 given the

default of the other credit if ¢ > 0.

This phenomenon has been discussed by Jarrow and Yu [51] where the authors
supposed that the intensity process have a positive jump when the other credit
defaults.

2. After the first default, the surviving credit satisfies no longer the exponential
stationary property by the form of the conditional probability in (2.12). So in
general, we can not expect to proceed in a recursive way since the basic hypothesis
is no longer valid.

We are now interested in the properties of the second default time with respect to
the first one. We denote by
o = max(7y, 7).

Let us define the filtration D™ = (D] );>( associated with the first default time 7 where
'Dz— = U(H{TSS},S < t).

Proposition 2.1.9 For anyt >0 and T > t, we have
E[lsry|Df]
2 T 2
= Ny [ exp (= p'O(T = 1)) +exp (= ()T ~ 1)) —exp ( ~ / (' (3) + 12(s))ds )|
t

12(0) = Jy p(r A s)ds
(1) + (1)
p1(0) = [ o(r A s)ds
W@+ |

exp (— ' (1)(T — 7))

+ 1r<ny

+exp ((=p*(r)(T = 7))
(2.13)

In particular,

p2(0) = [y p(r A s)ds
1)+ 70)

Ell (oo} |D7] = Wirngy + Lirepy [eXP (—p' ()t —7))

pt(0) — fg o(T A s)ds]

+exp (— pA(r)(t - 7)) p () + p2(7)

(2.14)
Proof. By (1.31), we have

]P)(O'>T,T>t)+]1 85]P’(0>T,7'>s)|
P(r > t) =079 p(r >s5) =

Elomy D] = Lrony (2.15)
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Since P(c > T, 7> s)=P(n1 >T, 72> s)+P(r1 >, >T)—P(ry >T,72>T), by
applying (2.6) and (2.9), we obtain the proposition. O

Remark 2.1.10 By (2.13), we notice that conditioned on the first default, the second
default time follows no longer an exponential distribution in general. The conditional
probability is a linear combination of two exponential functions multiplied by some
associated functions. Under very special condition that 7; and 7 follows independent
identical law, i.e. pu'(0) = p?(0) and ¢ = 0, the second default time still follows the
exponential law. Hence, we see that it is inappropriate to suppose the exponential
stationary property to study successive defaults.

2.1.4 Explicit examples and numerical results

In this subsection, we study two explicit examples of the above illustrative model.
We present some numerical results to show explicitly the correlation between the two
defaults and the contagious jumps after the first default. Recall that the function ¢
characterizes the correlation between two credits.

For each example, we present two figures. The first figure shows the linear correla-
tion between 1, >7+y and L., ~7+y, i.e.

o= COV [ﬂ{7'1>T*}7 ]1{7'2>T*}]
\/Var [ﬂ{n >T*}] \/Var [ﬂ{T2>T*}]

The second figure shows the contagious jump phenomenon. The reported quantity is

the “jump” size of the so-called implied hazard rate b’(t,T) of the surviving credit
when there is no interest rate and no recovery rate. To be more precise,

bi(th) == 1HIE[IL{77>T}|,Dt]

T—1

e()(T —t) >
1 (0) — ()t —7) = [y (s)ds )
(2.16)

) tAT 1

Before the first default, it equals pu’(t). After the first default occurs, by (2.7), we
observe that if ¢ > 0, there exists a positive jump at the first default time ¢ = 7 since

o(r)(T'—7) ich i i
0< IO < 1, which implies that

i _ 1 p(r)(T —7)
Ab (T,T)——T_Tln <1— ,uj(O)—fOTQO(S)dS> > 0.

In the following, we fix 1'(0) = p2(0) = 0.01, T* = 5 years.
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Example 2.1.11 ¢(t) = o where « is a constant. By (2.6),
P(Tl > 11,79 > tg) = exp (—,ul(O)tl — /L2(0)t2 + Oétltg) .

where « satisfies by (2.7) and (2.8)

min(ye!(0), 5(0))

—11(0)p(0) < < T

The implied hazard rate is given by

a(T —t) )

i ( —1
06, T) = p*(0) —alt AT) = Ly In (1_ 1#I(0) —at

and the “jump” at the default is given by

In (1— M)

: 1
Ab(r,T) = —
b(nT) T wi(0) — ar

-7

Figure 2.1 illustrates Example 2.1.11. « satisfies —0.01% < a < 0.2%. In this example,
the jump size increases with the correlation, also with the first default time. Of the
two results, the former is quite natural. We explain the latter by a compensation effect
since p'(t) decreases with time when there is no default event. We notice in addition
that the correlation p is a linear function w.r.t. a.

Example 2.1.12 ¢(t) = aexp(—at) min(u!(0), u?(0)), where « is a constant param-
eter. Then, when o # 0,

InP(r > t1, 79 > to) = —(u(0)t1 + 12(0)t)
RO AR (e ]+ (1 1) + 20 )
When a — 0, we take the limit and get
lim InP(ry > t1, 73 > ta) = —u(0)t; — p2(0)ty,

which corresponds to the independence case. By (2.16), we have

b (t,T) = u'(0) — (1 (0) A p?(0))(1 — ™)

A (T = Hae= (4 (0) A 42(0))
Moo ! (1 1700) — (1 (0) A p2O)[e ™ (at —ar — 1) + 11>

and

N P <1 e r)ae " (11(0) A u(0)) >

-7 (0) = (u'(0) A p?(0))[1 — e7o7]
Notice that when p!'(0) = £2(0), the jump size Ab'(T,T) = —=—1n (1 — o(T — 7)).

T
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Figure 2.1: The contagious jump and the linear correlation in Example 2.1.11 with

11 (0) = 12(0)

0.01, T* =5 years.
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We now search for the bounds for «. Suppose first that o > 0, in this case, we
t
0

need only check the criterion

. . . . . . . . .
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satisfies

)

VO<t<T*

(1(0), 12(0)),

ds < min

e(s A t)

T

J

p1(0), 1%(0)) since ¢(t) is decreasing. We then get

(

ds < min

*

which implies [; ¢(sA0)

— &
VI

When « is negative, (2.7) is always true. We shall check (2.8). Notice that for any

o < 0, the left side of (2.8), i.e. ae=

tAL2) min(pt (0), 42(0)) is fixed when given ¢ Ats.

However, the larger the value of t1 V to, the smaller becomes the right side. So we need

min (" (0), 1%(0)),

L (0)ae=t > — i (0) <1 _a /0 t e_asds> <u2(0) — i (0) /0 t e_asds>

which follows

= t3. We may suppose that p!(0) =

only consider the case where t;

then,

a=—(p*(0) + ! (0)(e™ = 1)) = —u*(0).
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By symmetry, we also have a > —p!(0). Combining the two cases, we obtain « satisfies

1

—max(p'(0),1%(0)) < @ < .

Figure 2.2: illustrates example (2.1.12), « satisfies —1% < o« < 20%. We note that p
reaches an upper limit of about 74% in this case.

Relation entre alpha et corr : varphi = alpha exp(—alpha T)
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To compare the contagious jumps obtained by the Gaussian copula function. We
present Figure 2.3 which shows the jump size of the defaultable bond price of the
surviving credit at the first default time calculated by the Gaussian copula model.
We notice that for a given correlation level, the jump size is decreasing with respect
to the first default time. The practitioners find no obvious reason to support this
phenomenon. In fact, Rogge and Schonbucher [70] has pointed out this disadvantage
of the Gaussian copula. The authors propose to use Archimedean type copula functions
to avoid this undesired property.

Table 2.1.13 Comparison of the joint survival probabilities by Example 2.1.11, Ex-
ample 2.1.12 and the Gaussian copula. In each of the following table, the reported
quantities are the joint probability

pij = P(11 €]ti, tiv1], 72 €Jt;,t541]), (4,5 = 0,1,...,T7).
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Figure 2.3: Contagious jumps after the first default by the Gaussian copula model.
pt(0) = p%(0) = 0.01, T* = 5.
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In the three cases, we suppose that the individual default times follow the exponen-
tial distribution with parameters p{ = 10% and pd = 1%, which means that the
sum of one column or one line in the three matrix are the same. The correlation
parameters are chosen as follows. Let a = 0.1% in Example 2.1.11, we then obtain
the first matrix with P(7; > 5,79 > 5) = 0.59, which implies the linear correlation
p = p(liz spey, Lgryspey) = 13.88% in the Gaussian copula model. Then we choose
parameter in Example 2.1.12 to match this value of p.

Results by Example 2.1.11, o = 0.1%:

0.184%  0.182%  0.179%  0.177%  0.174% 8.621%
0.158% 0.156% 0.154% 0.152% 0.150%  7.839%
0.136% 0.134% 0.132% 0.131% 0.129%  7.129%
0.116% 0.115% 0.113% 0.112% 0.111%  6.483%
0.098% 0.098% 0.097% 0.096% 0.095%  5.895%
0.303% 0.301% 0.299% 0.298% 0.297% 59.156%

Results by Example 2.1.12, a = 12.12%:
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0,199%  0,194%  0,191%  0,189%  0,186% 8,558%
0,168% 0,158% 0,154% 0,152% 0,150%  7,829%
0,144% 0,133% 0,125% 0,122% 0,121% 7,146%
0,122% 0,114% 0,106% 0,099% 0,097% 6,511%
0,103% 0,097% 0,091% 0,084% 0,079%  5,924%
0,258% 0,289% 0,308% 0,319% 0,323% 59,156%

Results by Gaussian copula, p = 13,88%:

0.352%  0.282%  0.253%  0.233%  0.218% 8.177%
0.165% 0.157% 0.151% 0.145% 0.141% 7.851%
0.110% 0.111% 0.110% 0.107% 0.106%  7.247%
0.078% 0.083% 0.084% 0.084% 0.083%  6.636%
0.059% 0.065% 0.066% 0.067% 0.067%  6.056%
0.230% 0.287% 0.312% 0.328% 0.341% 59.156%

Remark 2.1.14 1. From the above tables, we see the different correlation structure
in the three cases. In some way, our method can be viewed as a copula method
because a particular form of joint probability matrix is specified.

2. From the bold part of each matrix, we can derive the conditional probabilities,

for example, for any 7,7 > 1,

P(r1 € (i tin], 72 € (8, t41])
]P)(Tl > 177-2 > 1)

]P(Tl S (ti,tH_l],Tg S (tj,tj+1] ’ T >1,179> 1) =

and then P(r, < T|my > 1,79 > 1),(k = 1,2) for integers 2 < T < T*. With
a simple calculation, we see that the conditional marginal distribution remains
in the exponential family with our model. However, this is not the case with
the Gaussian copula model, which means that the correlation structure obtained
today is not coherent with the conditional probability of tomorrow. Therefore,
it’s impossible to achieve a robust hedging strategy with the Gaussian copula

model.

2.2 Default times in the general framework: the case of
two credits

2.2.1 Compensator processes

Notations

We now consider the two-credits case in the general framework. Recall that the global
information is represented by the filtration G. Let 71 and 7 be two G-stopping times
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representing two default times. We denote by D! (resp. D?) the filtration generated
by the default process of 71 (resp. 72) as previously defined and by D = D! v D?. Let
F be a subfiltration of G such that G =F v D.

For convenience of writing, we introduce G' = F vV D!. We also consider the ordered
default times. Let

7 =min(7,72) and o = max(7,72).

We define the associated filtrations D™ and D7 respectively. Denote by G™ = F v D7
and by G™? =Fv D" vID°.

The first default

It’s convenient to work with the Minimal Assumption in the multi-credits case. It
is clear that (F,G",7) satisfies MA. Therefore, almost all the results deduced in the
previous chapter can be applied directly to the first default time 7.

We know that the G-compensator process A® (i = 1,2) of 7; exists and is unique.
We now consider the G-compensator A7 of the first default time 7, which is stopped at
7. The following result has been given in Duffie [27] and been discussed in Jeanblanc
and Rutkowski [54].

Proposition 2.2.1 Let A1, A% and A7 be the G-compensator processes of T1, To and T
respectively. Suppose that P(y = 1) =0, then

T _ Al 2
t — At/\T + At/\T’

Moreover, there exists F-predictable processes AF such that AL,, = Ai’ft. Let ATF =
AL+ A2F then (A:’ft,t > 0) coincide with the compensator process of T.

Proof.  We first notice the equality 1<y = Ly <rnpy + Liry<rnsy — L —ry<s)- Since
I -y = 0 as., we know that I« = Ly <rngy + Lgr<rngy a.8.. On the other
hand, (g, <;np — Alyg,t > 0) and (g, < p — A2,,,t > 0) are G-martingales, by
taking the sum, we have (IL;<; — (AL, +AZ,;),t > 0) is also a G-martingale. Finally,
it suffices to note that (I, G, 7) satisfies MA to end the proof. O

Remark 2.2.2 With the same method, we can recover the result of [27] which con-

firms that for G-stopping times 7y, - - - , 7, and 7 = min(7y, - - - , 7, ) whose G-compensator

are A',--- /A" and A" respectively, if P(r; = 7j) = 0 for any 1 < i < j < n, then
7=>",A%,,. Inaddition, we can relax the condition to be P(r = 7, = 7;) = 0.
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The second default

To study the compensator process of the second default time o, we shall use some
results already established in the previous chapter. In fact, since G™ = G™ Vv D?, we
know that MA also holds for (G™,G™?,0). This observation enables us to deduce some
properties of the second default time with the filtration generated by the first default
time G”. In particular, we know that there exists some G -predictable process A%C"
which coincides with the G™?-compensator process A of the second default time o,
ie. A = AgﬁT. The calculation of A is easy on {r > t}. In fact, we have the
following result.

Proposition 2.2.3 Let 0 = max(7m1,72) and let A% be the G™7-compensator process
of o. If P(11 = 12) =0, then AZ,, =0.

Proof. By definition, (1y,<;y — A7, > 0) is a G-martingale. Then (Ljo<rpy —
A7t > 0) is also a G-martingale. Since P(o = 7) = 0, we know that 1< ny = 0,
a.s., which implies that AZ,, = 0. O

The calculation of A? on {7 < t} is more complicated. We first recall that in the
single-credit case, the process G and its Doob-Meyer decomposition plays an important
role. By analogy, we now introduce the process H defined by H; = P(c > t|G]) and we
shall discuss its property. By condition MA and applying directly Theorem 1.3.4, we
have the following result and we know that H is important to calculate the compensator
process of o.

Proposition 2.2.4 Let H; = P(o > t|G]) and H = M — A" be the Doob-Meyer de-
composition of H where M is a G™-martingale and A" is an increasing G -predictable
process. Then we have

dAM = H,_d\7®".

By discussions on the case before and especially after the stopping time 7 in the
previous chapter, H can be calculated explicitly. The only hypothesis we need is that
the conditional joint probability has a density, as introduced below.

Hypothesis 2.2.5 We suppose that the conditional joint probability P(t > u,o >
v|Ft) of the ordered default times 7 and o admits a density p¢, that is

Plr > u,0 > 0|F) :/ d91/ 03y (61, 02). (2.17)

Remark 2.2.6 Note that [, p,(0,v)dv = of (0) where o] (f) is the density of GY =
P(T > 0|ft)

57



For the above joint probability, we only need to consider the case where v < v
since 7 < 0. Otherwise, it suffices to consider the marginal conditional probability
Gi = P(r > u|F;) characterized by its density of (9), i.e. P(7 > ulF;) = [ af (0)d6.
Moreover, for any 6 > 65, we have p;(61,602) = 0. We shall see in the following that
using the martingale density p;(61, ), many calculations are similar as in the previous
chapter.

Proposition 2.2.7 We assume that Hypothesis 2.2.5 holds. Then the G™ -supermartingale
H is calculated by

ftoo pi(7,v)dv B thAt pe(T At,v)dv

YA O R ey

Hy =gy + Lrcy (2.18)

In addition, H is continuous.

Proof. 1t is obvious that Hyll;~; = 1;~. Using (1.31) and the density p(61,62),
we have

OsP(o > t, 7 > s|F) 1 B ftoo pi(T,v)dv
OsP(1 > s|Fy) gmp TSR fTOO pe(T,v)dv’

E[l{on |97 Lr<sy =
which implies (2.18). Moreover, H, = 1, which means that H is continuous. O

We also consider the family of the G"-martingales
(Hf =P(c > 6|G]),t > 0) forany 6>0.

Both cases where § > t or # < t are important here. The calculation of H 9 is also
similar by using (1.31) and the result is given below.

Proposition 2.2.8 Under Hypothesis 2.2.5, we have

P(r >t,0>0|R) 1 OsP(o > 0,7 > s|Fy)
P(r > t|F;) < P(r > | A

= gy e By i ) AR
{r>t} ftoo du fuoo pt(% v)dv } f;o pt(T, v)dv

Hte = ]1{7'>t}

= (2.19)

+ Mr<

In particular, we have for any T > t,

ftoo du f;f/u pe(u, v)dv N f;o pe(7,v)dv
[ du [ pe(u, v)do <ty [ pe(r,v)dv

HtT = ]1{7'>t}

As an immediate consequence of MA and the above proposition, we have the fol-
lowing result.
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Corollary 2.2.9 For any T > t, the process defined by

ftoo duf;f/ pe(u,v)dv f:ﬁopt(T, v)dv )
1 T o0 oou + 1 7<t,o oo /. N7 0 t Z 0
< {r>t} [ du [ pe(u,v)do {r=t, >t}ft p(7,v)dv

is a G™?-martingale.

Proof. Tt suffices to note that under MA for (G™,G™7,0), the conditional survival
T

probability is given by P(oc > T|G;7) = ]l{0>t}%, which follows immediately the

corollary by (2.18) and (2.19). O

Remark 2.2.10 If the filtration F is trivial, or in other words, if G = D, then the
density function p(6i,62) does not depend on ¢. Hence

I p(r,v)dv
Hy =10 + 15 7foo (7 0)dv

is absolutely continuous. Since H is a D7-supermartingale, it is decreasing. Proposition
2.2.4 implies that the D™-compensator process A%P" is given by AtU’DT = —In H;. The
general case is discussed below.

The following theorem is the main result of this section which gives the compensator
process of o. We see that Theorem 1.5.7 can be applied without much difficulty to the
multi-credits case. One important point to note is that (G7,G™7, o) satisfy MA.

Theorem 2.2.11 We assume that Hypothesis 2.2.5 holds. Then

1) the process (HY = P(o > 0|G]),t > 0) admits a density (af(0),t > 0), i.e. H =
[ af(s)ds, which is given by

ftOO dupt(uv 6) pt(7-7 0)
7(9) = 1 L ke Lgpap 22 2.20
Oét( ) {T>t}ft du fu pt(u,v)dv + {r<t} Oéz—(’r) ( )
2) the G™7-compensator process A of o is given by
t
_p(nt) (2.21)

dAg = ]1[7',0} (t) foo

. pe(T,v)dv

Proof. 1) We obtain directly af(#) by taking derivative of Hf given by (2.19) with
respect to 6.
2) Similar as in Theorem 1.5.7, we notice that the process

(Ht + /O t a% (v)dv = H, + /O t ll[f,oo[(v)p;gf;) dv, t > o) (2.22)
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is a GT-martingale, which implies that dA/ = 1 (r<t} Z}(Z;t)). Since H is continuous, we
- t

obtain 2) directly by Proposition 2.2.4. O

Remark 2.2.12 1. It’s not difficult to see that the framework we propose above
can be extended directly to study the successive defaults. A natural application
will be on the dynamic portfolio losses modelling in the pricing of CDO tranches
since under standard market assumptions, the loss on a portfolio is determined by
the number of defaulted credits. The key term is the conditional joint probability
of the ordered default times with resepct to the filtration F.

2. Indeed, we here propose an original point of view for the credit correlation anayl-
ysis: to study the ordered default times rather than the individual default times
and their joint distribution by the copula models. The difficulty of the latter ap-
proach lies in the incompatibility between the dynamic property of the marginal
distributions and the static property of the copula functions, which has been
shown in the illustrative example. On the contrary, for the ordered-defaults,
we deduce in the general way and we think it’s a promising framework which
deserves further studies.

2.3 Appendix

2.3.1 Copula models

In this section, we review the copula model which are widely used in the credit correla-
tion modelling by the market practitioners. Li [61] first introduced the copula method
to the credit dependency analysis. Schonbucher and Schubert [74] studied the dynam-
ics properties implied by the copula model. The copula model are often combined
with the reduced form approach to characterize the default correlation. The method
is static, that is, the model is applied at each time for a given maturity. Then the
procedure is repeated the next day.

We recall the definition of the copula function. For a detailed introduction to this
method, we send the readers to the monograph of Nelsen [65].

Definition 2.3.1 A n-dimensional copula C is a function defined on [0, 1] and valued
in [0, 1] which satisfies the following properties:

1) for any (w11, - ,up1) and (w12, ,Un2) With up1 <wugo, k=1,--- ,n, we have
2 2
Z Z (=)t HnCluy 4 g g,) > 0
i1=1 =1
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We see that a copula function defines a multi-dimensional probability distribution
function whose marginal distributions are uniform on [0, 1]. Moreover, for a family of
one-dimensional distribution functions (Fi(zy),---,Fi(zy,)) € [0,1]", (1, ,2n) —
C(Fi(z1),--- ,Fn(zy)) is a cumulative distribution function on R". The relationship
between the marginal distributions and their joint distributions is given by the Sklar’s
theorem.

Theorem 2.3.2 (Sklar) Let F' be an n-dimensional distribution function with contin-
uous margins Iy, ..., F,. Then F has a unique copula representation:

F(z1,..zn) =C(Fi(z1), ..., Fn(zp)).

The popularity of the copula model lies in its efficiency to analyze separately the
marginal distributions and the joint distribution and thus to deal with large size port-
folios. In fact, from the Sklar’s theorem, we deduce immediately a two-steps procedure
to obtain the joint distribution function.

1) calculate the marginal survival probabilities P(r; > T7*) with the quoted CDS
spreads;

2) choose a copula function to obtain the joint survival distribution P(7; > T7,--- , 7, >
T7) which satisfies some empirical conditions.

The Sklar’s theorem implies the possibility to capture the “real” structure of the port-
folio dependence by selecting a suitable copula. Moreover, the standard assumption
is that the choice of the copula function is independent of the marginal distributions.
Therefore, most discussions concentrate on the choice of a particular copula function.
Frey and McNeil [33] studied the impact of different types of copula functions on the
default correlation. Among the others, Rogge and Schénbucher [70] proposed the t-
student or the Archimedean copula. We shall also note the one-factor Gaussian copula
model by Andersen, Sidenius and Basu [1] which are used for the CDO pricing.

One important point of [74] is the analysis of the dynamic properties of the survival
probabilities implied from a given copula function. In their model, the default is
constructed as in the example presented previously where the (H)-hypothesis holds,
7 = inf{t : &} > &} (i = 1,--- ,n) where ®° is an F-adapted, continuous, increasing
processes satisfying ®} = 0 and &’ = +o0. and {1, -+ - , &, are i.i.d exponential random
variables with parameter 1 which are independent with the o-algebra F.,. Recall
the survival probability ¢;(t) := P(r; > t|Fs) = P(r; > t|F1) = e ®. This model
has also been discussed by Bielecki and Rutkowski [9] as an example of conditionally
independent default times.
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The correlation of defaults is imposed by introducing an n-dimensional copula
function C(x1,--- ,x,). The authors suppose that the choice of the copula function is
independent of the marginal probability ¢; and the joint survival probability is given
by

G(tr, - tn) =P(m1 > 1, ;70 >t | Foo) = Clq1(ta), -+, qn(tn))-

The main result of [74] shows that at any time ¢t > 0, we can deduce, from the ini-
tial joint survival probability G(t1,--- ,t,), the conditional probabilities on all default
scenarios, i.e. P(7; > T|Foo V Dy) for any T > t. Hence, by choosing a static copula
function, one obtains the dynamics of the conditional probabilities.

Remark 2.3.3 The idea of using the F-copula function to calculate G-conditional
probabilities is similar with ours. However, our method is much more general. We
don’t need the (H)-hypothesis and by working with a martingale measure, we can
calculate all G-conditional expectations with explicite formulae.

62



Part 11

Asymptotic Expansions by
Stein’s Method: A finance

concerned result and a
theoretical result
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Chapter 3

Approximation of Large Portfolio
Losses by Stein’s Method and
Zero Bias Transformation

The calculation of cumulative losses on large portfolios is a classical problem in the
insurance and in the risk management to measure the counterpart risks in an aggregate
way. Recently, it attracts new attentions of the market practitioners who search for
pricing portfolio credit products such as CDOs. This problem is particularly difficult
when the size of the portfolio is large, since in the high-dimensional case, the exact
modelling of correlation structure is beyond analytical tractability. Therefore, both an
acceptable modelling approach and rapid numerical simulations bring real challenges.

The market adopts a simplified approach, the factor models, to describe the cor-
relation structure between the defaults, as proposed in Andersen, Sidenius and Basu
[1] and Gregory and Laurent [43]. To be more precise, the cumulative loss L7 before
a fixed date T is the sum of all individual losses, i.e. Ly =Y " | L;Z;(T) where L; is
the loss given default of each credit and Z;(T') = 1y, <7y indicates the occurrence of
default of credit i before T'. In the factor models, Z;(T') are supposed to be correlated
through a common factor Y and conditioned on this factor, the defaults are supposed
to be independent. From the theoretical point of view, we are hence interested in the
sum of independent random variables, which is one of the most important subject in
the probability theory. We know from the central limit theorem (CLT) that the total
loss converges in law to the normal distribution when the size of the portfolio is large
enough.

To the finance concern, Vasicek [80] first applies the normal approximation to an
homogeneous portfolio of loans to achieve faster numerical computation. This method
is extended to CDOs loss calculation by Shelton [75] for the non-homogeneous portfo-
lios where the individual loss distribution is not necessarily identical, and eventually
to CDO? portfolios where each component is also a CDOs tranche. The method of
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[75] is based on the normal approximation by replacing the total loss of an exogenous
portfolio by a normal random variable of the same expectation and the same variance.
Some improvements have been proposed, including the large-deviations approxima-
tion by Dembo, Deuschel and Duffie [24] and by Glasserman, Kang and Shahabuddin
[36]. Glasserman [35] compares several methods including the saddlepoint and Laplace
approximations. In Antonov, Mechkov and Misirpashaev [2], the authors provide ap-
proximation corrections to the expectation of the CDOs payoff function using the
saddle-point method, which consists of writing the expectation as the inverse Laplace
transform and expanding the conditional cumulant generating function at some well-
chosen saddle point. This method coincides with the normal approximation when
taking expansion at one particular point and show in general better approximation
results.

In the above papers, the authors give financial applications, but no discussion on
the estimation of approximation errors is presented. The rate of convergence of CLT is
given by the Berry-Esseen inequality. For example, for the binomial random variables,
the rate of convergence is of order ﬁ for a fixed probability p. However, in the credit
analysis. the approximation accuracy deserves thorough investigation since the default
probabilities are usually small and the normal approximation fails to be robust when
the size of portfolio n is fixed. This is the main concern of our work.

In this chapter, we provide, by combining the Stein’s method and the zero bias
transformation, a correction term for the normal approximation. The Stein’s method,
which is a powerful tool in proving the CLT and in studying the related problems,
shall be presented in Subsections 3.1.3 and 3.3.1. The error estimation of corrected
approximation is obtained when the solution of the associated Stein’s equation has
bounded third order derivative. In the binomial case, the error bound is of order O( %)
It is shown that the corrector vanishes for symmetrically distributed random variables.
For asymmetric cases such as the binomial distribution with very small probability, we
obtain the same accuracy of approximation after correction. In addition, the summand
variables are not required to be identically distributed. The result is then extended to
the “call” function which is essential to the CDOs evaluation. Since this function is
not second-ordered derivable, the error estimation is more complicated. The principal
tool is a concentration inequality.

We then apply the result to calculate the conditional losses of the CDOs tranches
and numerical tests preform well in comparison with other approximations available.
The impact of correlation and the common factor is studied. Our method gives better
approximations when the correlation parameter is small. The method is less efficient
when the defaults are strongly correlated, which means, in the normal factor model
framework, that the conditional loss calculation is almost normal distributed. In this
case, there is effectively no need of correction.

This chapter is organized as follows. We first review briefly some convergence
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results for the sum of independent random variables and the literature dedicated to
the Stein’s method and the zero bias transformation. Section 3.2 and Section 3.3 are
devoted to estimations results in these two contexts respectively. Section 3.2 gives
estimation on the difference between the sum random variable and its zero bias trans-
formation. Section 3.3 deals with the growing speed of the auxiliary function which is
the solution of the Stein’s equation. The main results are given in Section 3.4 where we
present an approximation corrector and we estimate the approximation error. The call
function has been studied in particular since it lacks regularity. Numerical examples
are presented to show the approximation result. The last section concentrates on the
application to the CDO loss approximation.

3.1 Introduction

In this introductory section, we first present the CDO and the factor model which
is the basic model in the following this chapter. Second, We give a brief review of
the sum of independent random variables and some well-known results concerning the
convergence in the central limit theorem. This is of course a classical subject. However,
we shall re-discuss it in our conditional loss context. Finally, we give an overview of
literature of the Stein’s method, which is, combined with the zero bias transformation,
our main tool to treat the problem. Some useful properties shall be developed in the
next section.

3.1.1 Factor models for CDOs

A CDO is a special transaction between investors and debt issuers through the inter-
vention of a special purposed vehicle (SPV). The CDO structure serves as an efficient
tool for banks to transfer and control their risks as well as decrease the regulatory
capital. On the other hand, this product provides a flexible choice for investors who
are interested in risky assets but have constrained information on each individual firm.
A CDO contract consists of a reference portfolio of defaultable assets such as bonds
(CBO), loans (CLO) or CDS (synthetic CDO). A CDO contract deals in general with
large portfolios of 50 to 500 firms. Instead of the individual assets of the portfolio,
one can invest in the specially designed notes based on the portfolio according to his
own risk preference. These notes are called tranches. There exist in general the eq-
uity tranche, the mezzanine tranches and the senior tranche, and we suppose that the
nominal amounts of tranches are denoted by Ng, Ny; and Ng. The cash-flow of a
tranche consists of interest and principal repayments which obey prioritization policy:
the senior CDO tranche which carries the least interest rate is paid first, then follow
the lower subordinated mezzanine tranches and at last the equity tranche which carries
excess interest rate. More precisely, the repayment depends on the cumulative loss of
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the underlying portfolio which is given by L; = > 7 Ni(1 — R;)1 <,y where Nj is
the nominal value of each firm. If there is no default, all tranches are fully repayed.
The first defaults only affect the equity tranche until the cumulative loss has arrived
the total nominal amount of the equity tranche and the loss on the tranche is given by

LY = Ll ny) (Le) + NpLjny 4oof(Le) (3.1)

Notice that LE = L, — (Ly — Ng)™, which is the difference of two “call” functions with
strike values equal 0 and Ng. The following defaults will continue to hit the other
tranches along their subordination orders. The loss on the mezzanine tranche and the
senior tranche is calculated similarly as for the equity tranche. Hence, for the pricing
of a CDO tranche, the call function plays an important role.

On the other hand, the market is experiencing several new trends recently, such as
the creation of diversified credit indexes like Trac-X, iBoxx etc. A Trac-X index consists
in general of 100 geographically grouped entreprises while each one is equally weighted
in the reference pool. All these credits are among the most liquid ones on the market,
so the index itself reflects flexibility and liquidity. The derivative products based on
this index are rapidly developed. The CDOs of Trac-X are of the same characteristics
of the classical ones with standard tranches as [3%, 6%, [6%, 9%], [9%, 12%], [12%, 1],
(or [12%, 22%], [22%, 1]) and the transaction of single tranche is possible.

We now present the factor model, which has become the standard model on the
market for CDOs. The one-factor normal model has been first proposed by Andersen,
Sidenius and Basu [1] and Gregory and Laurent [43]. It is a copula model which we
introduce in Subsection 2.3.1.

We consider a static context and we neglect the filtration. The time horizon is fixed
to be T'. The default times 7q,--- , 7, are defined as a special case in the Schénbucher
and Schubert’s model with the filtration I being trivial. To be more precise, the default
time is defined as the first time that g;(¢) reaches a uniformly distributed threshold U;
on [0, 1], i.e.

T = inf{t . qi(t) § Ui},

where ¢;(t) is the expected survival probability up to time ¢. Clearly, ¢;(0) = 1 and
gi(t) is decreasing. Moreover, ¢;(t) can be calibrated from the market data for each
credit.

The characteristic of the factor model lies in the correlation specification of the
thresholds U;. Let Y7, ---,Y, and Y be independent random variables where Y repre-
sents a common factor characterizing the macro-economic impact on all firms and Y;
are idiosyncratic factors reflecting the financial situation of individual credits. Let

Xi = oY +/1-pYi

be the linear combination of Y and Y;. The coefficient p; is the weight on the common
factor and thus the linear correlation between X; and X; is , /p;p;. The default thresh-

68



olds are defined by U; = 1 — F;(X;) where F; is the cumulative distribution function
of X;. Then
ry=inf{t s VAY +/T— s < FLmi(0)}
where p;(t) = 1 — ¢;(t) is the expected default probability of credit ¢ before the time t.
It is obvious that conditioned on the common factor Y, the defaults are independent.
The survival probability is

P(r; > t) = P(/piY + /1 — p;Y; > F 7 (pi(1)) = pi(t).

Conditioned on the common factor Y, we have P(r; < t|Y) = FZ-Y(%M)
where FiY is the distribution function of Y;. In particular, in the normal factor case
where Y and Y, are standard normal random variables, X; is also a standard normal

random variable, then we have

(3.2)

pitlY)=P(r; <t|Y)=N (N‘1<pz-<t)> — mY> |

VI=pi
We note that although the Gaussian factor model is very popular among the practi-
tioners, it can be extended without much difficulty to models containing several factors
which can follow any distribution.

Each default before the maturity 7" brings a loss to the portfolio. Then the total
loss on the portfolio at maturity is given by

Ly = Z Ni(1 = Ri)Ur, <7y, (3.3)
=1

where N; is the notional value of each credit ¢ and R; is the recovery rate. In the
following, we suppose R; is constant. Conditional on the common factor Y, we can
rewrite

n

Lt = ZNz(l - Ri)]l{y_<Fi—1(pi(T))—\/p7Y}'

=1 = Vi-r;
Hence, the conditional total loss Lp on the factor Y can be written as the sum of
independent Bernoulli random variables, each with probability p;(Y) = p;(T|Y). In
particular, for an homogenous portfolio where N;, R; and p;(Y) are equal, Ly is a
binomial random variable.

The common factor Y follows certain distribution. Denote by F(y) = P(Y < y)

the distribution function of Y. Then for any function h, if we denote by H(Y) =
E[h(L7)|Y], we have

EWMN=AH@M@)

That is to say, we can study E[h(L7)] in two successive steps. First, we consider the
conditional expectation E[h(L7)|Y] and second, we study the role played by the factor
Y.
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We recall that for a CDO tranche with the lower and upper barriers of the tranche
A and B, the evaluation is determined by the loss on the tranche

Lr(A,B) = (Lt — A" — (Ly - B)™. (3.4)

Notice that Ly (A, B) is the call spread, i.e. the difference between two European call
functions. Hence, we are interested in calculating the expectation of the call function
h(z) = (z — k)™ .

3.1.2 Sum of independent random variables

As shown above, under the factor model framework, our first objective is to study
the conditional losses. Since the defaults are conditionally independent, this step is
equivalent to calculating the expectation of the call function for sum of independent
Bernoulli random variables.

The sum of independent random variables is a very classical subject in the proba-
bility theory which is related to the law of large numbers and the central limit theorem.
The most simple case is the sum of i.i.d. Bernoulli random variables which follows the
Binomial distribution. Let S;, be a Binomial random variable with parameters (n, p)
where n > 1 is a integer. Historically, Laplace proved that when n — +o0,

_ b
Pla<-—2n—"P —>L/ e 37 .
vnp(l = p) V21 Ja

In other words, the sequence of random variables ( Sn—np

iz

standard normal distribution. This is the original form of central limit theorem.

converges in law to a

The result of Laplace can be stated in the following way: Let (£;);>1 be a sequence
of i.i.d. random variables of Bernouilli distribution with parameter p. Then S, has the
same law as &1 + -+ - + &,. For any integer 1 <1i <mn, let X,,; = (& — p)//np(1 — p).
Notice that (X, ;)1<i<n are i.i.d random variables. Denote by W, = X, 1 +--- 4+ X, .
Then the sequence (W,),>1 converges in law to the standard normal distribution.
We observe immediately that the behavior of sum of independent random variables,
notably its “distance” to the standard normal distribution play an important role in
the classical central limit theorem.

A quite natural generalization to the classical central limit theorem is to study the
asymptotic behavior of sum of independent random variables which are not necessary of
Bernoulli’s type (eventually not identically distributed). More precisely, for any integer
n > 1let (X, ;)1<i<n be a collection of independent random variables, and let W,, =
Xni+-+,Xnn We want to study the convergence (in law) of the sequence (Wp,)n>1
and the limit distribution if we have the convergence. The possible limit distribution of
the sequence (W,,),>1 must be an infinitely divisible distribution. Criteria have been
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given to the convergence of (Wp,)n>1 to some infinitely divisible laws such as Normal
laws, Poisson laws, or Dirac distributions. Interested reader can refer to Petrov [66]
for a detailed review.

The convergence speed of central limit theorems has been largely studied. In gen-
eral, the speed of convergence may be arbitrary slow. However, if we suppose the
existence of certain order moments of X, ;, we have more precise estimation of the
convergence speed. The Berry-Esseen inequality states as follows.

Theorem 3.1.1 (Berry-Esseen) Let Xy, -+, X, be independent zero-mean random
variables having third order moment, W = X1 + --- + X,,. Denote by 0? = Var(X;),

0‘2,[, =Var(W)=>1", o? and F(z) = }P’(% < a:), then

A n
sup | F(z) = N(@)] < =5 STEIXGP,
z€R W im
where N is the distribution function of standard normal distribution, A is an absolute
constant.

Theorem 3.1.1 gives a uniform upper bound of normal approximation error for the
distribution function. For an arbitrary function h, the approximation error can be es-
timated by the Lindeberg method which consists of comparing two sum of independent
random variables. More precisely, let W = X;+---4+ X, and S =& +---+ &, be two
sums of independent random variables. If we write for any 0 < k <n

k n
Up=> &G+ > X (3.5)
i=1

j=k+1

then we have Uy = W and U,, = S, and the difference h(W) — h(S) is written as
> p—1 h(Ug—1) — h(Ug). Therefore

n

[ER(W)] - ER(S)]| < > [ERU-1)] - ER(UL)]|
k=1

Since Uy and U1 only differ by & — X}, it is easier to estimate ‘E[h(Uk_l)]—E[h(Uk)] ‘

3.1.3 Stein’s method and zero bias transformation

The Stein’s method was first introduced by Stein [76] in 1972 to study the conver-
gence rate of CLT for the standard normal distribution. Chen [15] extended it to the
Poisson approximation. The method has then been developed by many authors and
it provides a powerful tool for normal, Poisson and other approximations, in one and
high dimensional cases, for independent or dependent random variables, or even for
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stochastic processes. The basic approach has been introduced in the monograph of
Stein [77] himself. One may also consult Raic [68], Chen [16] or Chen and Shao [18]
for a more detailed review. The Poisson approximation is comprehensively introduced
in Barbour, Holst and Janson [7].

The zero biasing, or the zero bias transformation, is introduced by Goldstein and
Reinert [39] in the framework of the Stein’s method. In [39], the authors use the
technique of zero bias transformation on functions satisfying certain moment conditions
to derive the bounds of the approximation error. Some further development has been
carried out by Goldstein [38] and Goldstein and Reinert [40]. This approach has many
interesting properties. In particular, it provides a concise presentation which largely
simplifies the writings and calculations. However, we surprisingly find that the usage
of this method remains limited in the literature.

In the following, we begin our presentation of the zero bias transformation in Section
3.2 and we then discuss the Stein’s method in Section 3.3.

3.2 Zero bias transformation and Gaussian distribution

In this section, we introduce the zero bias transformation and we present some esti-
mation results in the normal approximation context. Two main results of the section
are

1) Proposition 3.2.6 which enables us to calculate the expectation of functions on the
difference between one random variable and its zero bias transformation when they
are independent with an exact formula;

2) Proposition 3.2.16 which gives the estimations of the product of two functions where
the variables are not independent. Instead of decomposing the sum variable into
two independent parts, we use conditional expectations to estimate a covariance
function and we obtain error bounds of one order higher than doing the estimation
directly. This is the key argument we shall use in the following.

3.2.1 Definition and some known properties

The zero-bias transformation associated with a zero-mean, square integrable random
variable is given as follows. In the following of this chapter, the symbol Z refers to a
central normal variable, while X denotes a general central random variable.

Definition 3.2.1 (Goldstein and Reinert) Let X be a random variable with zero ex-
pectation and finite non-zero variance Var(X) = o2. We say that a random variable
X* has the X-zero biased distribution, or that X* is a zero bias transformation of X,
if for any function f of C'-type, whose derivative has compact support, we have

E[X f(X)] = o”E[f'(X")]. (3.6)
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The basic idea is based on the observation made by Stein in 1972 on the normal
distribution: a random variable Z has the central normal distribution N(0,0?) if and
only if for any absolutely continuous function f such that E[f’(Z)] is well defined, we
have

E|Zf(Z)] = o°E[f'(Z)). (3.7)

We observe that the zero biased distribution of the central normal distribution is itself.
Therefore, it is natural to measure the distance between an arbitrary distribution and
the central normal distribution by the distance between the given distribution and its
zero biased distribution. If it’s close to the normal distribution, then it should also be
close to its zero biased distribution.

Another similar notion which inspired the zero bias transformation is the size bias
transformation for nonnegative variables, which is defined, for any random variable
X > 0 with E[X] = g < oo and any function f such that E[X f(X)] exists, by
E[X f(X)] = uE[f(X®#°)]. We say also that X®*® has the X-size biased distribution.
This notion and its relation between the Stein’s method are discussed in Stein [78]
and Goldstein and Rinott [41]. There are many similitudes between these two notions.
However, as we are interested in the closeness of one distribution with the normal
distribution, it’s unnatural that we exclude symmetric random variables since X is
required to be positive here. Hence it’s more practical to work directly with the zero
mean random variable by the zero bias transformation.

The existence of a random variable with zero bias distribution is given in [39] by
providing the density function. In addition, as mentioned above, the Z-zero biased
distribution associated with a random variable Z of the zero-mean normal distribution
N(0,0?) is the normal distribution N(0,02) itself. We here give the proof of the
converse property.

Theorem 3.2.2 (Goldstein and Reinert) Let X be a zero-mean random variable with
finite variance o > 0.

1) A random variable X* with the following density px~(x) with respect to the Lebesgue
measure has X -zero biased distribution.

px+(x) = 0’ E[X x50, (3.8)

2) If Z and Z* have the same distribution, then Z is a centered Gaussian variable.
Proof. 'We proceed by verification after having established the identity (3.8).

i) It is obvious that px» > 0if z > 0. If z is negative, using the assumption E[X] = 0,
we rewrite px= as

px+(z) = 0 PE[X x5y — X] = 0 *E[-X1{_x>_,] > 0.
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ii) Let g be a bounded Borel function with compact support, and G(z) = [ g(t)dt
be a primitive function of g. Then G is bounded, and XG(X) is integrable. On
the other hand, we have by Fubini’s theorem

0_2/Rg(3:)IE[X]1{X>x}]d:E:a_zE[/Rg(az)X]l{X>x}dw}

= 0 ’E[XG(X)] = ¢(g).

(3.9)

Since ¢ is a positive fonctional on the space of continuous functions of compact
support, by Riesz’s theorem, it’s a Radon measure on R. Moreover, (3.9) means
that ¢ has density o ?E[X1{x+,}]. Finally, we verify that ¢(R) = 0 2E[X?] = 1.
Hence ¢ is a probability measure.

iii) If a random variable Z has the same distribution of Z*, then Z admits a density
function p, and this density function satisfies

p(z) =02 /OO tp(t)dt, or zp(x)—o’p(x)=0.

The solutions of this differential equation are proportional (up to a constant) to
2

x
o (= 50).

Remark 3.2.3 Note that the equality (3.6) is valid for a larger set of functions f. In
fact, if suffices that f is an absolutely continuous function such that E[f/(X™*)] is well
defined. Then in (3.9), E[ [; [f/(2)X1{x>4|dz] < co. By the Fubini’s theorem, we
obtain equation (3.6).

The following example is fundamental in what follows. It studies the Bernoulli
random variable of zero mean and its zero bias transformation. Note here that we
do not work directly with the standard Bernoulli variable of default indicator, but a
normalized random variable taking two real values different from 0 and 1. In fact,
for any random variable, we can apply the transformation to the centered variable
X — E[X]. This so-called asymmetric Bernoulli random variable satisfies the zero
mean condition in the zero bias transformation and its two possible values are one
positive and one negative since the expectation equals zero.

Example 3.2.4 (Asymmetric Bernoulli) Let X be a zero-mean asymmetric Bernoulli
random variable taking two values « =¢=1—pand f = —p, (0 <p,¢ < 1)in [-1,1],
with probabilities P(X = ¢) = p and P(X = —p) = ¢ = 1 — p respectively. Then the
first two moments of X are

E(X)=0, and Var(X)=pq¢*+qp°=pq.
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We denote this distribution by B(q, —p). Moreover, for any differentiable function f,

X C0) = o (paf@) = apf() = S0~ f(p) = [ 0

o

which implies by Definition 3.2.1 that the zero bias distribution exists and is the
uniform distribution on [—p, q].

More generally, any zero-mean asymmetric Bernoulli random variable can be written as
a dilatation of B(gq, —p) by letting o = v ¢ and 3 = —v p, which we denote by B,(q, —p).
If X follows B,(q,—p), then Var(X) = v2pq and its X-zero bias distribution is the
uniform distribution on [~ p,vq].

3.2.2 Properties and estimations

In this subsection, we shall present some useful results of the zero bias transformation.
Let X be a zero-mean square integrable random variable with finite variance o2 > 0
and X* be a random variable having the X-zero biased distribution and independent
to X. We are particularly interested in the estimation of functions on | X — X*|, the
quantity which is important in the normal approximation. Proposition 3.2.6 is based
on the fact that X* and X are independent.

Proposition 3.2.5 If X has (k+2)"-order moments, then X* has k*-order moments.
Furthermore, we have the following equalities

1 EHX]M'Q] 1 E[Xk—i-z]
L2 *\k -
BIX P = - B = 5 (3.10)
Proof. Let
1
F(z) = ¥
(@) = ol

then its derivative function F’(z) = |z|*. If E[|X|¥*2] exists, then E[X F(X)] is well
defined, and so is E[F'(X*)]. By definition, we have E[|X*|*] = LE[XF(X)] =
mEHX |*+2]. For the same reason, the second equality also holds. a

We shall often encounter, in the following, the calculation concerning the difference
X — X*. The estimations are easy when X and X* are independent by using a
symmetrical term X® = X — X, where X is an independent duplicate of X.

Proposition 3.2.6 Let X and X* be a pair of independent random variables, such
that X* has the X-biased distribution. Let g be a locally integrable even function and
G be its primitive function defined by G(z) = [ g(t)dt. Then

1

E[g(X" — X)] = . 5E[X°G(X*)] (3.11)
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In particular,

i} 1
B[X" - X| =

o2

. 1
E[XP], E[X*—X["] =

WE[\XS\W]. (3.12)

Proof. By definition, for any real number K, we have
o’Elg(X* — K)] = E[XG(X — K)].

Since X* is independent of X, let X be a random variable having the same distribution
and independent of X, then

Elg(X* — X)] = E[XG(X - X)].
G is an odd function as g is even, then
EXG(X — X)] = E[XG(X — X)] = —E[XG(X — X)],

which follows (3.11). To obtain (3.12), it suffices to let g(z) = |z| and g(z) = |z|*
respectively.
O

If X is a zero-mean asymmetric Bernoulli random variable which follows B.,(q, —p)
as in Example 3.2.4, that is X = g with probability p and X = —vp with probability
q = 1 — p, the symmetrized random variable X® takes the values 0 with probability
p? 4+ ¢> = 1 — 2pq, and the values v or —y with probability pg. Thus we have

1 1

1
gk +1

k41

E[IX* — X|"] " 22pq i
Remark 3.2.7 Equation (3.12) enables us to obtain an equality which is very useful
in the estimation of error bounds. For example, in [39], E[|X — X*|] is bounded by

E[|X]+ |X*|]. Our result enables to obtain a sharper bound.

Similar calculation yields estimates for the P(|X — X*| < ¢), giving a measure of
the spread between X and X*.

Corollary 3.2.8 Let X and X* be independent variables satisfying the conditions of
Proposition 3.2.6. Then, for any € > 0,

E[IX*] (3.13)

€ 1
Pl X —X*| <)< —Al, PIX -X*>e)<
( |_€)_\/§cr/\7 ( |_€)_4a2€

Proof. Let us observe that the second inequality is immediate from the classical
Markov inequality

1
P(IX - X*| > &) < ZE[|X - X"[).
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To obtain the first inequality, we apply Proposition 3.2.6 to the even function g(z) =
1{z|<e} and its primitive G(x) = sign(z) (|z] A€). So,

P(X ~ X*| < ) = 5 B[ X°|(|X"] A0) (3.14)

Since | X®| Ae < e and IE“XSH2 < E[|X*?] =202, we get
€

g
P(X — X*| <e&) < — (202)1/2 = —_
(I I_E)_202(0) Tao

Remark 3.2.9 The first inequality of Corollary 3.2.8 makes sense when ¢ is small,
otherwise, the probability is always bounded by 1.

In particular, if X follows B, (g, —p), then we can calculate P(|.X — X*| < ¢) explicitly.
In fact, we have by (3.14)

1 ly| A e
P(IX — X" <¢) = 2pqly|(|y| Ne) = .
(I | <e) % (v Ae) m

3.2.3 Sum of independent random variables

A typical example which concerns the sum of independent random variables deserves
special attention. In fact, this example has been largely discussed in the Stein’s method
framework. The problem is relatively simple when we restrict to the most classi-
cal version where all variables are identically distributed. However, this elementary
case can be extended to non-identically distributed variables. Goldstein and Reinert
[39] give an interesting construction of zero bias transformation for the sum variable
W = X + --- + X, by replacing one single summand by its independent zero bias
transformation variable. Such construction is informative since W and W* differs only
slightly. We now introduce the construction of zero biased distribution as in Gold-
stein and Reinert [39] for the sum of several independent non-identically distributed
variables.

Proposition 3.2.10 (Goldstein and Reinert) Let X; (i = 1,--- ,n) be independent
zero-mean random variables of finite variance O‘ZZ > 0 and X be random variables of
the X;-zero biased distribution. Denote by (?, )_(Z*) = (X1, -, Xpn, X{, -, X}y) which
are independent random variables.

Let W = X| + --- 4+ X,, be the sum variable, and 0‘2,[, = O‘% + -+ G% be its variance.
We also use the notation W =W — X;.

Let us introduce a random choice I of the index i such that P(I = i) = 02/0%,, and
assume I independent of ()_5, )_f*)

Then the random variable W* = W) + X7 has the W-zero biased distribution.
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Proof. Let f be a continuous function with compact support and F' be a primitive
function of f. Then,

E[WF(W)] = Z E[X; F(W)]
_ZEXF ZUQE @+ Xx7)]
since X; is independent of W . On the other hand, since I is independent of W,
o ELf (WY + X7)] Z GIE[f(WD + X)),

By comparing the above two equations, we know that W* = W) + X7 has the W-zero
biased distribution. O

Remark 3.2.11 1. From the above construction, W* has the W-zero biased distri-
bution, but is not independent of W. However the difference W —W* = X; — X7
is easy to study, since X7 and X; are conditionally independent given 1.

2. If X; are identically distributed, the probability of choosing a certain variate for
the random index I is equal to 1/n. Therefore, let I = 1, then W* = w4+ X7
has the W-zero biased distribution. However, for technical reasons, we insist on
the usage of the random index representation W* = W) + X7 where the random
variable X7 = 13" | X* follows the same law with X7}.

3. In particular, if Xq,---,X,, are i.i.d. zero-mean asymmetric Bernoulli random
variable which follow B,(q,—p), the sum W follows an asymmetric binomial
distribution. Let the variance ‘712/11 of W be fixed, then the dilatation parameter

is given by v = \;’nipq

The above proposition facilitates our study of the sum variable through the individ-
ual summand variables. We now extend the estimation results in the last subsection to
the sum variable. In brackets, we show the moment order in the asymmetric binomial
case.

Corollary 3.2.12 With the notation of Proposition 3.2.10, we have

E[X}) = QQZM?’ (~o(=):
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and
E[(X})?Y] = ﬁ ZE[X?] ( ~ 0(%))

and the following estimations

I < 1 =

E[W* —W|| = — > E[|X;]*], E[W*-WF] = — ) E[X7"].

I | = o, LEIFL E R D
(3.15)

In particular, for the asymmetric binomial case, we have
1 k
E[W* = W] = = (———) . (3.16)
k+13y/np(1—p)

Proof. 1In fact, the above results are obvious by using the definition of the zero bias
transformation and the construction of W*, together with previous estimations. O

We have in addition the estimation of the probability terms from the Corollary
3.2.8.

Corollary 3.2.13 For any postive constant €, we have

€ - 1 -
P(W* —W|<e¢) < o) A1, P(W*—W|>e) < E[| X))
( I_)_(\/%%V; ) ( 126) < g BN
(3.17)
Proof. Proposition 3.2.10 and Corollary 3.2.8 imply immediately (3.17). a

Notice that X; and X7 are not independent of W and W*. However, we know the
— —
conditional expectation of X; and X; given (X, X*). This observation enables us to
obtain some useful estimations which shall play an important role in the following.

Proposition 3.2.14 We have the conditional expectation given by

n 2 n 6
o o

E(X/| X1, Xn] =) —Xi E[E[X/| X1, Xa] =) i (3.18)
i=1 W i=1 W

Remark 3.2.15 We note that E[E[X/|X1, -, X,]?] is of order O(-), which is sig-
nificantly smaller than E[X?] which is of order O(%) In the homogenous case, if we
take W = W) + X7}, the above property no longer holds since E[X?] ~ O(%) This
fact justifies the efficiency of the random index construction of W*.
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Proposition 3.2.16 Let f : R — R and g : R? — R be two functions such that the
variance of f(W) exists, and that for all i =1,--- ,n, the variance of g(X;, X}) exist,
then

|[E[f(W)g(X1, X7)] — E[f (W)|E[g(X1, X7)]|

< %Varwwn%(Za;*Var[g(Xi,Xf)D%- (319)
=1

—

Proof. We first notice that E[f(W)g(X, X7)] = E[f(W)IE[g(XI,X}kﬂX,}*]] since
W is the sum of Xy, --- , X,,. Therefore,

E[f(W)g(X1, X7)] = E[f (W)|E[g(X1, X})] + cov(f(W), Elg(X1, X})| X, X*]).

On the other hand, since (X;, X) are mutually independent, we have

cov(f(W), Elg(X7, X)X, X*])

N|=

< Var[f(W)]3 Var [E[g(X;, X7)| X, X*]]

< %Var[f(W)]%(ZU?VM[Q(XuX;)D%'
=1

Ow

Remark 3.2.17 Similar as in Remark 3.2.15, we here obtain the estimation of one
order higher by using the conditional expectation than applying directly the Cauchy-
Schwarz inequality. This is one of the key points in the estimations afterwards. The
result holds when we replace W by W* in (3.19).

We now apply the above proposition to obtain a useful estimation.

Corollary 3.2.18 For any € > 0, we have

1 o; s 3
|cov (M tasw<sy Mg ixr—x,1<e}) | < 575 ( Z E[X; |3]) . (3.20)
i=1
Proof. By Proposition 3.2.16, we get by using the conditional expectation that

1 - 1
|cov (L asw<ny L ixr—x;1<e}) | < JTVar[ﬂ{agwgb}]% (> o Var[lgxs_x, 1<) -
w i=1

We have
Var[]l{agwgb}] =Pla<W<bh)(1-Pla<W<D) <

|
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And we use Corollary 3.2.8 to get

1
Var[ll g x-_x,|<e}] < —==E[|X?7?],
[Lgxr—x,)< }]_4\/503 [1X71°]

)

which follows (3.20). O

Remark 3.2.19 Notice here the error bound of (3.20) does not depend on the value
of €. This property is useful when we prove the concentration inequality in Proposition
3.4.4.

3.3 Stein’s equation

3.3.1 A brief review

We recall briefly the framework of the Stein’s method. Consider a zero-mean random
variable W of finite variance 012/11 > 0, which is the sum of n independent variables. Let
Z ~ N(0,0%,). We are interested in the error of the normal approximation E[h(W)] —
E[h(Z)] where h is some given function. Denote by ®,,, (h) = E[h(Z)]. The Stein’s
method consists of associating this difference term with some auxiliary function by

E[h(W)] = @4y, (h) = E[W f(W) — oy f'(W)] (3.21)

where f is the solution of the Stein’s equation defined as the following differential
equation

zf(x) — o f (x) = h(z) — Dy(h). (3.22)

Stein [77] studied some properties of the function f and gave estimations of |f|, |z f]
and [f’| for the indicator function h(z) = 1 {,<4. He mainly used inequalities of the
Gaussian functions. We here need to consider the case when h is the call function.

The connection between the zero bias transformation with the Stein’s method is
evident by its definition. The difference between two expectations of a given function
h for a zero-mean variable W and one central normal variable Z can be written as

E[h(W)] = oy, (h) = E[W f(W) = ofy f (W)] = o B[f (W) = f'(W)].  (3.23)

Therefore, for the normal approximation, it is equivalent to study E[f/(W™*) — f/(W)],
which is the difference of two expectations of the same function f’ on W and on W*.
Recall W* = W) + X7 in Proposition 3.2.10, we have intuition that W should not be
“far” from W*. In fact, compared to the Lindeberg method in which we change the
summand variables successively, this method consists of changing the variable X; to
X7.

81



We have discussed in the previous section the estimations concerning [W —W*|. In
the following of this section, we concentrate on the estimation concerning the function
f. We propose two methods in Subsection 3.3.2 and Subsection 3.3.3 respectively.
The first one is to extend the method used by Stein. Since the derivative of the
call function is an indicator function, the techniques are similar. The second method
consists of rewriting, by the Stein’s equation, the auxiliary function as that of another
function which is of slower growing speed. The method is efficient for polynomially
growing functions and can be adapted to estimate high order expansions in Chapter 4.

We now give some properties of the solution of (3.22).

Proposition 3.3.1 (Stein) If h(t) exp(—%) is integrable on R, then one solution of
(3.22) is given by

1 [e.e]
T)=—-— h(t) — ®,(h))p,(t)dt, 3.24
1@) = s || (00) = @) () (324)
where ¢ () is the density function of the normal distribution N'(0,02) or equivalently
by
V2T - _Zz
f(z) = TE[h(Z +x)e o2 ]l{Z>0}], (3.25)

where h(t) = h(t) — ®,(h) and Z ~ N(0,02).

Proof. Multiplying by o~ exp( ) on the two sides of (3.22), it’s easy to obtain a
global solution

1 2 v _ 2

F@) = e (5g) [ (@) = he)e™ s (3.26)

when h(t) exp(— ) is integrable. In addition, by definition, ®,(h) = [*_h(t)ds(t)dt,

which implies (3. 4). We write (3.24) as
22

+2

Fz) = % exp (o) /oo(h(t) By (h))e mEdt,

Then by a change of variable u =t — z, we get

N

flx) = (u+z)e 02¢0()u,

which implies immediately (3.25). O

Hence, by replacing = with W and o with oy in equation (3.22) and taking expec-
tations on the two sides, we verify that f is the solution of (3.21). Furthermore, we
denote by N, (z) the distribution function of N(0,0?), then another alternative form

of a solution is given by f(z) = m (Na(a:)CI)U(h) — E[h(Z)ﬂ{ng}D-
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In the following, we shall denote by f}, , the solution (3.24) of the equation (3.22).
When there is no ambiguity, we write simply f}, instead of fj, ,. Clearly fj, is linear on
h. From the Proposition 3.3.1, the integral form (3.24) shows that the function fy, is
once more differentiable than h. The equation (3.22) was first discussed by Stein for the
case 0 = 1. The expectation form is introduced in Barbour [3] with which he deduces
some estimations for the derivatives. In the following, we shall use different methods to
estimate the derivatives of fj, according to the two forms (3.24) and (3.25) respectively.
Furthermore, comparing (3.24) and (3.26), we have the equality fn(—x) = —fjy ()
which will sometimes simplify the discussion.

3.3.2 Estimations with the expectation form

It is shown in the above that the normal approximation error is related to the auxiliary
function f,. Hence, we are interested in some bound estimations concerning the func-
tion fp. In this subsection, we shall give estimations based on the expectation form
of fj, where h is the indicator function and the call function. The method used here
was presented in Stein [77]. The more general case was studied in Barbour [3] to get
higher order estimations. In the next subsection, we propose a new method based on
the integral form of fy,.

For any real number « let I, be the indicator function I(z) = lj,<4}, and let
Cyo = (x — a)4 be the “Call” function. We first recall the inequality concerning the
normal distribution functions, which can be found in Stein [77] and Chen and Shao
[18].

Proposition 3.3.2 Denote by ¢, (x) the density function and N,(x) the cumulative
distribution function of the central normal distribution N(0,02), then

1—Ng(:r)<%, x>0
Ny(z) < R x < 0.
Proof. We first consider the case where z > 0. Notice that ¢y, (z) = — ¢, (z), then
direct calculation gives that
00 02 0.2
1—Ny(z) = —/ —dpy(t) < — o ().
z U x
The case where x < 0 is similar. O

For technical reason, we introduce the following notation: for any function A such
that h¢, is integrable on (—oo, —x) U (x, +00) for any « > 0, let fj, , be the function
defined over R\ {0} by

Fro(a) = {#@:) 2 h(t) o (t)dt, o0

~ 570w S oo M) b (t)dt,  x <. (3.28)
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We write EL instead of fh,g when there is no ambiguity. We also give the expectation

form of EL:
_Zx

Falz) = {@E[h(z +r)e” 2 lizay], >0

. 3.29)
VER(W(Z 4 2)e  Dipegy], @ <0 (

where Z ~ N(0,02). Notice that in general, fh can not be extended as a contin-
uous function on R. if E[|h(Z)|] < +oo, we have fu(0—-) = —@E[h(Z)ﬂ{Z@}]
and f,(0+) = @E[h(Z)]l{Zw}]. The two limits are equal if and only if ®,(h) =
E[h(Z)] = 0. Furthermore, if ®,(h) = 0, then fn coincides with the solution f), of the
Stein’s equation.

We introduce the definition set & of EL as below and we only study h € & in the
following. Let & be the set of functions g defined on R\ {0} taking values on R such
that ¢ is locally of finite variation and has finite number of jump points and that ¢
satisfies [ |g(2)]¢o (2)1fjz>qydz < 0o for any a > 0. It’s evident that (3.28) is well
defined for any h € &. In fact, the above condition specifies the regularity of functions

we are interested in and we exclude the “irregular” functions which are not contained
in &.

Proposition 3.3.3 We have following properties of fh for any x € R\ {0}:
1. fp(z) = f,;(:n) where h = h — ®,(h);
2. fu(—=2) = = fun(@);
3. fh s one solution of the following equation

zfp(x) — o fl(z) = h(z). (3.30)

Proof. 1) and 2) are directly by definition. For 3), it is easy to verify that fh defined
by (3.28) is one solution of the differential equation (3.30). O

Remark 3.3.4 We call (3.30) the decentralized Stein’s equation. It is useful to intro-
duce fj, since by taking derivatives, we shall often work with non-centralized functions.
Moreover, by 1) of Proposition 3.3.3, the properties of f;, can be deduced directly.

We first give some simple properties of the function fh

Proposition 3.3.5 1) Let hy and hy be two functions and a1 and az be two real
numbers. Then fo,n+ashy = @1 fn, + a2 fn,-

2) If |h(x)| < g(x), then | fu] < |f,|-
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3) If |h(x)| < g(x) and if % is decreasing when x > 0 and is increasing when x < 0,
then | fi(z)| < |22,
Proof. 1) and 2) are evident by definition.

For 3) we first study the case where z > 0. By definition of fh, we know that
| fn () f t)dt. Notice that ¢ (r) = —5ds(x), then

| fn(@)| < —¢Ul(x) /OO @dqsa(t).

is decreasing, we get the inequality. When = < 0, the proof is similar. O

Since g( )

Corollary 3.3.6 We have |z f)(z)| < 1.

Proof. 1t is a direct consequence of Proposition 3.3.5 applied to h =g = 1. O

The following two propositions allow us to estimate the derivatives of f; in the
expectation form. The argument is based on the fact that the polynomial functions
increase slower than the exponential functions.

Proposition 3.3.7 Let Z ~ N(0,02%). Then for any non-negative integers l, m satis-
fying Il < m and for any x > 0,
1

lo? el
5 () E[lZ. (3:31)

Z
E[ﬂ{z>0}l’z e o ] <
Where, by convention, 0° = 1.

Proof. Consider the function f(y) = yle_a%, it attains the maximum value at y = lo2,

then |f(y)| < (%)l Then the lemma follows immediately. O

Proposition 3.3.8 Let Z ~ N(0,02). Then for any x > 0 we have

ch

2E[Lzs0pe o7 ] < (3.32)

ﬁ\q
3

Proof. 1If suffices to observe that a:]E[]l{Z>0}e_%] = \/Lﬁmfl(a:) Then applying Corol-
lary 3.3.6 gives (3.32). O

Remark 3.3.9 For the case z < 0 in (3.31) and (3.32), we can obtain by symmetry
the following inequalities for any integers 0 <1 < m:

m_ — <5 1 102 : m—I
Elll{z<|zl'|Z| ]§§ e E[|Z|™]
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_Zs
and E[l{z.oy|zle” -*] < \/L2—7r
Corollary 3.3.10 For any z € R, |f1(z)] < g

Proof. Since lirg+ﬁ($) = V27 /20, liI?(()l fi(z) = —V271/20, and  lim fi(z) = 0,

|| =00
we only need to prove that f; is decreasing when = > 0 and when = < 0 respectively.
In fact, by Corollary 3.3.6, we have fi(z) = %(xfl(a:) —1) <0 for any x > 0 and
fl(@) = =& (1 —axfi(x)) <0 for any z < 0. O

By Proposition 3.3.5 2), we can give the upper bound of EL and }’;’L for all bounded
functions h by Corollary 3.3.6 and Corollary 3.3.10 as below.

Proposition 3.3.11 Let h be a bounded function on R and let cy = ||h]|, then
1) |fn(@)| < V27co /20,
2) 1fi(@)] < 200/0,

Proof. 1) is direct by Proposition 3.3.5 since |h(z)| < ¢¢ for any z € R.
2) By Stein’s equation, f;(z) = 25 (zfh(x) — h(x)). Notice that for any = € R,

@ fu(@)] < leozfi(@)] < o, [B(@)] < co.
So |} (x)| < 2¢o/0?. 0
The indicator function satisfies the boundedness condition with ¢g = 1. So Propo-
sition 3.3.11 applies directly. Let Io(7) = ;<. We now give the estimation for

T f}a. For technique reasons, we consider a small lag of § where 0 < 3 < 1. Then
0 < |I, — B8] <1 and we shall see that the bound is uniform on £.

Proposition 3.3.12 For any real number [ € [0,1],

~ V2r ol
/
|z f1,—p(x)] < 50e T o2

Proof. First we consider the case x > 0, by definition,

Zx

Froms@) = VTR oy (o + 2) - B )
Then

7 V 27T _Zx 1 1327o¢2
ro—ple) = ——3 Ellizs0y(la(z + Z) = f)Ze” 2]+ Lpcay 5 27
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Using Proposition 3.3.7 with | = m = 1 and the fact that ||[I, — 5] < 1 we get

[\

Zx

rE[Lz50)(la(z + Z) — B)Ze #%]| <

Sk

and
ERC

xﬂ{mga}ﬁe 202 < 5

o
So combining the two terms, we have

ver ol

< 20e 02

[ f1,—p(@)

By a similar calculation for x < 0, we get the proposition. O

We can now resume the estimations of fr, by using f[a for the indicator function.
Corollary 3.3.13 Let Io(7) = Nly<qy- Then

v2m , 2
< Z
Il < 5= Il <

and
2
var e

~ 20e 0?2’

zf1,] <

Proof. By Proposition 3.3.3, fr, = fl'a where I, = I, — P(Z < a) = I, — N,(a).
Since |I,| < 1, we can apply Proposition 3.3.11 to obtain the first two inequalities.
Proposition 3.3.12 implies the third one. O

We have presented above a quite formal way to estimate EL and its derivatives and
the method is easy to apply. However, the bound estimation we get is not always
optimal. Stein [77] gave the following estimations for the indicator function:

(5

0 < |f1.(2)| < min —
||

1
) <=

Compared to the constants obtained by Stein, those in Corollary 3.3.13 are twice larger.
In the following, we consider the functions with bounded derivatives. The increasing
speed of these functions are at most linear. The call function satisfies this property.

Proposition 3.3.14 Let h be an absolutely continuous function on R.
1) Let ¢1 = |h(0)| and suppose that ¢y = ||W']] < +o0, then

\/ TC ~ V2me c
T o, 1) < I (145 )+ 5

[fa(x)| <

87



2) If, in addition, ca = ||h|| < 400, then

[ fh(2)] < co+

vV 271'62
20e

3) If, in addition to the hypotheses of 1), we assume that h' € &. Let h' = g1 + go,
where gy 1s the continuous part of h' and go is the pure jump part of h' of the
following form

N
= Zﬁi(IM
i=1

We assume that c3 = ||g1|| < +00 and cs = g1, then

oo < e Y20 +Z\ Ny L, 2y

o2

Proof. Clearly we have |h(x)| < ¢1 + ¢olz| for any x € R. By a symmetric argument
it suffices to prove the inequalities for x > 0.
1) As |h(x)| < ¢1 + ¢o|z|, we have

NoT: 22
Fa(@)] < Bl zaoy (e + 0Z +co)e” o

Then inequalities (3.31) and (3.32) yield

V2r

~ C1 C() Ccoo \/ﬁcl
@) < 7|5+ JEIZ+ ] < S5+ 20

since E[|Z]] = \3—2"_” Taking the derivative,

T V21 _Zz V2T _Zz
fi(x) = TE[]I{Z>O}h’(Z +ax)e o] — 71@[11{Z>0}Zh(z +x)e 2] (3.33)

Notice that the first term is ﬁ/(m) with i’ being bounded and the second term can be
estimated as above. So

~ vV 271'60 \/ _Zz
| fr(2)] < 5 U—E[H{Z>O}Z(COZ +coz +c1)e %]
V2me V27 repo? ool c1o V2me 1 c
<P A (2 + ) = 2 1+ o) v o
20 o 2 2e N/ 2 o 2e o

2) If, in addition, A itself is bounded by ca, we apply the above method by using
(3.33) to get

~ V2mey
zfi(x)| < eo + .
e Fh(@)] < eo+ L
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3) By (3.33),

Vor

o Lz 2
V= T = T B a0 ZH(Z + 2)e )4 YIr

_Zz
?E[H{Z>O}Z2h(z —+ .'13)6 o2 ]

By the linearity of fh with respect to h, we know that

N
f];/ = f{/h + Zﬁif}ui_ﬂi.

=1

So Proposition 3.3.12 and 2) imply that

N N
= = V2wl V2mey V2 |l
/ / (2 1
[z fr ()| < |2 fy, ()] + ;:1 |ez|< e + 2 ) <cs3+ Soc + izél |€z‘|<—20_€ + p )

The other two terms are estimated by (3.31) and (3.32) as above,

2

’ _Zx Coo'
‘xE[ﬂ{Z>0}Zh (Z +x)e "7]‘ S e
4 4 3
9 _Zz coo 2coo c10
(m[n{bo}z WZ +a)e ]| < 5+ = —

So we get finally

N
7 V2me V2 : 1 /c 2V/2re
|2 fi ()] < es + 7T4+§ |5z'|<—7r+wé‘)+_<_l+v27wo+ WO).
oe — 20¢ eoc\o

2 o e

For the call function, we apply directly the above Proposition.

Corollary 3.3.15 Let Cy, = (x — k)T, then

V2r

<2
el <2+ 3

C1
where c1 = |(=k)T — ¢ and ¢ = ®,((x — k)") = 02po (k) — k(1 — O, (k)).
I < (14 L) 4 4

and

" 1 k| 2v2rm ( 1)
<a M 1+ 7).

AR e T2t e e
Iz“oof. We have fc, = j%k where Cj, = C} — ¢. In addition, ||C,| = 1 and ¢; =
|Cr(0)| = |(=k)™ — €. Applying Proposition 3.3.14, we get the first inequalities. And

if suffices to notice c3 = 0 and ¢4 = 1 to end the proof. O
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3.3.3 Estimations with the integral form

In this subsection, we give another method to estimate the derivatives of f; which is
based on the integral form (3.24). The idea is to work with another function whose
growing speed is one degree less than h and to deduce by a recurrence procedure.

The following lemma shows that to study fh, we can work with a more smooth
function by the zero bias transformation.

Proposition 3.3.16 Let h be a given function and H be one primitive function of h.
Then
for(x) = H + 0% fu(2). (3.34)

Moreover, ﬂH(w) = 2 fu(z).

Proof. In fact, it’s easy to verify that the right side of (3.34) is the solution of the

equation zf,p(x) — o2 Z g(@) = xH(xz). Then taking derivative gives immediately
! g(m) = h+ o’ f] (x) = zfn(z). O

Corollary 3.3.17 Let h be a function such that E[h(W™)] exists, then
E[R(W*)] = E[W* fiu(W*) = W fi(W)].

Proof. Let H be a primitive function of h, then E[h(W*)] = U%E[WH(W)}, which
w

from the decentralized Stein’s equation (3.30), equals U%E[wa (W) — G%Vfg’c g (W)].
Then from the above Lemma, we have v

E[R(W*)] = E[fLug(W*) = fog(W)] = E[W* f(W*) — W fr(W)].

a

The following corollary gives a reverse version of Proposition 3.3.16 by letting
g =xH. Then h = (@),. This writing facilitates the calculation and provides a
useful method of estimation when z is not around zero. In the estimations afterwards,
we shall distinguish this case. Usually we consider the cases when |z| > 1 and when
|x| <1 respectively.

Let g be an absolutely continuous function and we define the operator I'(g) for any

x # 0 by
I'(g) = (@)/- (3.35)

In the following, we suppose that I'(g) € &, which means that g is a function such that
¢ € & and that the function ‘(@)’Mg(:r) is integrable on (—oo, —a) U (a, +00) for
any a > 0.
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Corollary 3.3.18 Let g be a function such that I'(g) € &, then

folz) = —égl + 0% fr(g)(x) (3.36)
and E(m) = xfp(g) (z).
Proof. The corollary is a direct result of Proposition 3.3.16. O

We notice that in equation (3.28), we write fh as an integral function of &, while in
(3.36), fh contains the derivative of h. The two expressions concerns different aspects:
the smoothness and the growth rate of the functions. In fact, the previous expression
concerns working with a more smooth function while in the Corollary 3.3.18, we are
interested in a function with lower growth rate of g, whose auxiliary function is easier
to estimate. The following simple estimation is useful.

Corollary 3.3.19 For any integer | > —1, we have

< 1
= x|+t

f

S‘fL

la|!

(3.37)

1

2l

Proof.  3) of Proposition 3.3.5 implies directly (3.37). O
We now consider function with bounded derivatives.

Proposition 3.3.20 If h has bounded derivative, i.e. ||h'|| < ¢, then |h(z)| < c|x|+c1
where ¢ and ¢, are some constants. Then we have following estimations:

~ c1 ~ V2mey
@) < et fnll <c+ :
|| 20
~ 2c c1 ~ 2c+c1 V2w
/ /
|fh(x)|§m+|x|27 ||fh($)||§max (26+Clv o2 + 253 )
and
~ 1 2¢1 ~ 4c+2c; 1 2c+c1 V2mer V2w
n "
F@) < et 7)< mas (=570 e =57+ 572 570 ).

Proof. 1) By Proposition 3.3.5 1) 2) and Corollary 3.3.19, we have
[Fa(@)] < el fia(@)] + |fer (@)] < e+ | fer (@)].

From Corollary 3.3.10, we know that | f,, (z)| = c1|f1(z)| < %
2) By Corollary 3.3.18, | f; (x)| < |z|| frn)(z)|. Since

R(x) h(x) < 2c

T'(h)| = =
T = =7 - <t



by Proposition 3.3.5 2) and (3.37), we have

C1

|Fhl < :
| | TR

So when |z| > 1, |f}’l( )] < 2¢+ ¢1. When |z| < 1, we use the equality f,’l(:n) =
(@ fa(x) = ) to get

Tl < 5 (F@)]+ @) < — )

3)It suffices to notice EZ(&:) = U—lz(ﬁ(a:) +xf;’1(x) — h/(z)) and combine 1) and 2) to
complete the proof. O

V2
(26 +c1 + a
20

We consider the function Cj, = C}, — & where C}, is the call function Cj, = (x — k)T

and ¢ = ®,(Cy). Clearly C}, satisfies the conditions of Proposition 3.3.20 with [|C7|| =
1. So we have ¢ = 1 and ¢; = |Ck(0)| = |(—k)* — &. In addition, we give in the
following the estimation for |z f(, |.

Corollary 3.3.21 Let C = (x — k)™, then

\/27’[’61
<1
2+Cl \/27['
/
I fo, || < max (2—1—01, 7 + 5,3 cl)
and
1 2+01 27‘(‘61
o) < e [ 5 (10 257 Y21 ), e k] .

Proof. We need only to prove the last inequality. Since fh =z fp(h), we have x fgk =

r 2
zfrgy T 1/“(0 ) where

—~ (a—k)T-c Lpspmyk +¢
T(Cr) = ( x ) x2
For the first term,
~ ~ |k + ¢
|fr@y! < |f\k;;a|| < .

so when |z| > 1, \x}}(gkﬂ < k 4+ ¢. For the second term, we have by integration by
part

27 _3(7F o (k) o (k)
v fF(Uk) - (f—ﬂ{zzk}z—ﬁ + 202¢, (x) Lik>a>0y — 2020, (x) Il{1€S96<0})

where By similar arguments as in Proposition 3.3.20, we get |:c2]?£ | < Slk‘ + 7,

which implies \xzfé | < 3|k| + ‘2 when |z| > 1. When |z| < 1, it sufﬁces to notice

/e, < lfe, - O
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3.3.4 Some remarks

Our objective is to estimate the derivatives of the function f; and the products of
the form z™ f}(f). Of the two methods, the first one consists of deriving directly the
expectation form fp(x) = @E [h(Z + x)e_% I{z~0}] and estimating the expectation
of functions of the derivatives of h. The difficulty is that, since h(Z —i—:n)e_% is of form
of a product, taking derivatives increases each time the terms to estimate and it soon
becomes cumbersome for higher order estimations. The second method, as we have
mentioned previously, proposes to treat the problem by reducing the growth order of
the function A. This method shall be discussed in a more systematic way in Chapter
4.

In this subsection, we present some other properties related to the function f. In
the literature, the discussions mainly concentrate on the case where o = 1. However,
these results can be extended to the general case without much difficulty. The following
property shows the relationship between the particular case and the general case.

Lemma 3.3.22 For o >0, let hy, = %(h o0), then

Jho(x) = fhg,l(g)- (3.38)

Proof. Notice first that for any function g such that ®,(g) exists, the following equality
holds

CE

1 2
@a’ = 202 d — - 2 d — @ _ (I) ‘
(9) 27ra/Re g(w)dw = /27r/ g(oy)dy = @1 (g(oy)) 1(goo)
(3.39)
Let = oy, equation (3.22) implies oy fj, o(0y) — O—Qf;w(o—y) = h(oy) — ®,(h), which
follows

Wi ©0) ) —0(fho 00)y) = ~(h00)) — @1 (2(ho0)).

In addition, notice that (fs ,00) = U(f;w oo), then we can rewrite the above equation
as

y9(y) — g () = ho(y) — ®1(he)

and we know that its solution is g = f}, , 0o. Therefore, we have f;, 1 = fro00. O

The above result enables us to obtain some estimations directly. For example, Stein
[77] has proved that || f} ;|| < 2|[A/[| if & is absolutely continuous. We will extend this
result to fj, » by using Lemma 3.3.22.

Proposition 3.3.23 For any absolutely continuous function h, the solution f, , sat-
isfies
1 fholl < 2||h'||- (3.40)
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Proof. Since fno, = fn,10 (¢71), we have ff,w = a‘l(ff’hﬁ1 o a‘l) and f;L”U =
a_z(f}’la 1 oa_l). Then

1 _ 1 2 2
1ol = 518100 070 = A1 all < S5 1Al = S IR

a

In the normal approximation, we need to calculate the expectations of functions for
normal random variables. In our case, we encounter functions of the form x™ f,(ll) which
are not always simple and explicit to calculate. Thanks to the invariance property
of normal distribution under the zero bias transformation, we here present a result
which will facilitate the calculation by writing the expectation of functions containing
derivatives of fj, as some polynomial functions containing h.

Proposition 3.3.24 Let m,l be positive integers. If the 1"-order derivative of fj,
exists, then

&, (2" (1)) = B (Pt (2)1() + Quns ()

where Py, and Qm, are polynomial functions. When | = 0,

Dy (h) +1 ‘o s -
Py o(x) = 1 —_— O olz) = —mxm . when m is impair,
’ o?(m+1) ’ ’ 0, when m is pair.
(3.41)
For anyl > 1,

1 1
P = ;Pm—i-l,l—l —mPp_11-1, Qmi= ﬁQm-l—Ll—l —MQm—1,-1, (m > 0) (3.42)
1 1
Py = §P1,l—1 and Qo = ;Ql,l—l- (3.43)

Proof. First, when [ = 0, we have from (3.24),

By (2" f) = — /+OO (mn /x (¢U(h)—h(t))e—%dt)dx.

a2
270 J_o \O° J_xo

Since for any polynomial function P(x), we have

lim_ P(@) / ;(fbg(h) — h(t))e 2T dt = 0.

Then by integration by part

X

Oy (2™ fr(z)) = o (m

(hz) = o())),
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which implies (3.41). In particular, when m is pair, @, 0 = 0.
When [ > 0, we proceed by induction. We write :Umf,g) = (asz,(ll_l))’—ma:m_l }(ll_l).
Moreover, note that for any derivable function g, we have

2o (g/ (1)) = — o (29(x). (3.44)
Then
Do(a™ f1)) = B (@ £ VY) = @ (ma™ 1Y)
= ) < (e )
and we obtain (3.42). When m = 0, equation (3.44) implies directly the result. O

3.4 Normal approximation for conditional losses

In this section, we present our main result. We begin by some first order estimations.
This has been discussed by many authors such as Stein [77], Chen [17] and Goldstein
and Reinert [39]. We first revisit some of these results in our context of zero bias
transformation for some regular functions and then for the indicator function. In the
second subsection, we give a correction term for the normal approximation and we
estimate the approximation error. In the binomial case, the error bound is of order
O(%) after the correction. We then discuss the call function which demands more
effort to prove since it does not possess second order derivative. Some numerical tests
are presented to show the correction results. At last, we introduce and compare the
saddle point method.

We recall the notation which shall be used in this section. Let X; (1 < i < n)
be independent zero-mean random variables with variance 02 > 0 and W = X +
.-« + X,, with finite variance ‘712/11' We know that W* = W) 4+ X7 has the zero
biased distribution where I is a random index taking values in {1,--- ,n} and X} is
independent of all Xy, -+, X,,. We denote by ()—f,)—()*) = (Xy, -, Xpn, X7, -+, X)),
by )Afz an independent duplicate of X; and let X; = X; — )Z'Z We also denote by
In = Fhow-

3.4.1 Some first-ordered estimations

With the equality (3.23), the error estimation of the normal approximation can be ob-
tained by direct Taylor expansion. However, the estimation is related to the regularity
of the function f;. In the following, we give the first ordered estimation for functions
with different properties.
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3.4.1.1 The regular functions

We now give first-ordered estimation for derivable functions. Proposition 3.2.6 enables
us to provide a sharper bound than in Goldstein and Reinert [39].

Lemma 3.4.1 If h has bounded derivative, then

|[E[R(W)] = @4y, (h)] <

P <
202” > E[x;1P. (3.45)
W =1

Proof. We have by direct Taylor expansion
[E[R(W)] = @y ()] = 0B E[|F1 (W) — f1(W)]] < o || £H[[E[W* - W).

Recall that H I H and IE“W* — W|] have been estimated previously and we have
1) < QCI,IT:V” (cf. Proposition 3.3.23) and E[[W* — W|] = ﬁ S, E[|X7[%], which
follows (3.45). O

The condition in the previous lemma can be relaxed. Instead of the boundedness
condition of h’, we now suppose that h’ increases linearly.

Lemma 3.4.2 If the derivative of h is of linear increasing order, i.e., |h'(z)| < a|z|+b,
then

EIR(V)) ~ @0y, ()] < S BN +arody [ 2 SOEIXG] ~ O

1
i=1 i=1 \/ﬁ

@y 5|4 ~ ot

where a1 and by are some constants.

Proof. Since h' is of linear increasing order, f} is also of linear increasing order and
there exist some constants a; and by such that |f}/(z)| < a1]x| 4 b1. Hence

E[[(W) = gy, (W)]] < oy B f5/ (W +€(X7 — X1)(X] = XJ)]]
< B[l (W + €(X] = X)) + bal|X] = Xi]]
< ofy (wEIWIIXG - Xl + SEIX] - X0)%) + biE[IXF - Xi]).

We estimate the first term by the Cauchy-Schwarz inequality,

BIWIIX; - X1l < VEDVEBIXG - X1 = || ¢ S BIXH

The other terms are easily estimated by Proposition 3.2.6. O
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Remark 3.4.3 1. Lemma 3.4.2 requires the existance of the fourth order moment
of X;. This is due to the linear increasing property of the derivative of h.

2. Lemma 3.4.2 can be extended to the case where h’ is of polynomial increasing
order, that is, if there exist 29 > 0 and some constant ¢ such at h'(x) < ¢|z|™ for
|x| > z¢. However, it’s necessary that higher moments of X; exist.

3.4.1.2 The indicator function

The approximation error of the indicator function 1y,<y is estimated by the Berry-
Esseen inequality. We here introduce a method based on the Stein’s method and the
zero bias transformation to obtain the estimation. The key tool is a concentration
inequality of Chen and Shao [17], which is also essential for the estimation of the call
function whose derivative is the indicator function. We give a proof of the concentration
inequality by writing the zero bias transformation, which is coherent in our context.
Our objective here is not to find the optimal estimation constant.

To prove the concentration inequality, the idea is to majorize P(a < W < b) by
Pla —e <W* <b+¢€) up to a small error with a suitable ¢.

Proposition 3.4.4 (Chen and Shao) For any real a and b, we have

1
n o; s 2
b— nE[XPE] (X BEIXF
Pla < W <b) < o iz 3[| z|]+( LA ) |
ow Tw 203,

Proof. Let f’ be the indicator function f'(x) = lj,_cp4q(x) where ¢ is a positive
constant. One primitive function is given by f(z) = [, (Z +1)/2 f!(t)dt, which is bounded

by |f(x)| <e+ b_Ta. Using the zero bias transformation, we have

OBl ()] = EWS(W)] < (e + 5 2).

On the other hand,
Pla—e<W*<b+e)>Pla<W <b,|X;—X|<¢)

P
Pla <W < b)P(|XT — Xi| <€) + cov(Ljacw<o}, Lyxy—x1<e})-

AS shown by (320),
C (ﬂ{ <W<b} Il{\X* X< }) > ! ( ; : E[|4<s|3])é
OV a 9 — i}
- - 1 Ti=e 20‘;24/ i=1 4\/5 ‘

Therefore, we get the following inequality

n

b—a 1 o} 3\ 2
- > < < r_ <g)— — 5 . .
e+ Ty 2 owB(a < W S HP(X] -~ Xi <€)~ 5 ( ;:1: Vol ]) (3.46)
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Denote by A. = owP(| X} — X/| < ¢),

1 g; s %
B = m(z 4\/§E[|X¢ %))

i=1

and C. = ¢+ b_Ta, we can rewrite the above inequality as P(a < W < b)A. < B+ C.

and we are interested in majorizing Bj—ECE.
In fact, by Corollary 3.2.13,
n
A > ow — E[| X%
e Z OW owe Zz:; H 7,| ]

EX;P) _ 1,2

So we shall choose ¢ such that C; is of the same order of B. Let )\ | = SO

That is,
1 < 3
= — E[|X?]°].
<= g L)
So A. > 7 and

b—a  TiiEIX;)

C. =
: 2 208,

which follows

1

n T; s 2

b— n E[xsP] (s BEIXGP)

pa < <py< oty SiaEl ] i )
ow O-W ZO'W

|

In the following, we shall use sometimes the upper bound of P(a < W@ < b). Since
W also the sum of several random variables, the above proposition applies of course
directly to W by removing the variate i in the sum terms of the right-hand side.
However, for the simplicity of writing, we prefer keep all the summand terms. To this
end, we shall use the independence property between W@ and X, X7 to get another
concentration inequality. Here again, our objective is not the optimal estimation.

Corollary 3.4.5 For any real a and b, we have

1
' - 53 Yoy EE[X:%)
P(GSW(Z)Sb)ﬁl((b—a)+4ai)+22Z:11§[|Xl|]+( LA )
ow UW O'W

Proof. For any € > 0, we have P(a < W® < b, |X;| <e) <Pla—e <W < b+e),
then by Markov’s inequality and the independence between W #) and X;,

Pla—ec<W <b+e)

] _ EIX]

il
€

P(a < W9 <b) <

98



We choose ¢ = 2E[| X;|] and apply Proposition 3.4.4 to end the proof. a

Now we give the approximation estimation of the indicator function. The difficulty
lies in the irregularity of the function. We shall use, on one hand, the nearness between
W and W* and on the other hand, the fact that the zero bias transformation enables
us to work with a more regular function.

Proposition 3.4.6 Let I, = 1{,<,y, then

n

C i 0'3 5|3
B (W)] ~ Ny (0)] < o BN+ D0 220 (FEE )

40124, P = oW 4013
1 (3.47)
o E[xsP] (S SEIX)
+ 3 + 2
Tw Tw
where ¢ = || fr, || + |z f7 |-
Proof. We write Io(W) — Ny, () as the sum of two difference terms, i.e.
In(W) = Ny, (@) = (Ia(W) — Ia(W*)) + (Ia(W*) — &,y (a)).
We shall estimate the two terms respectively. For the first term, since
Liaty<a) = Lateca} = La-max(ys)<a<a—min(y.2)} (3.48)

then
E[I,(W® + X;) — I,(WD + X)) = P(a — max(X;, X}) < W < o — min(X;, X})).

Since W® and X;, X/ are independent, using Corollary 3.4.5, we obtain

n 0‘3 s|3
B[|L(W) — (v <3 22 (E[gQ ]

+ 4)
=1 ‘W

(NI

j=1 Ow Ow

For the second term, by the zero bias transformation

Denote the primitive of I, by Gr(z) = —(a — )" and by G;(z) = 2G(z). Then we
shall estimate

o (EIGHV) 0, (Gr) = ELf, (W) = 15, (V)



Notice that I, = F(é;), then by Corollary 3.3.18, we have f’é = xfr,. Hence
I
|fé~; (@) < |fr.| + |zf; | < ¢, where ¢ is estimated in Corollary 3.3.13 and ¢ <
I «@

g(% + 1) + % Then

E[fL, (W*) — & (W)] < cE[[W* - Z 131

We complete the proof by combining the estimations of the two terms. O

Combining the above results for the regular function case and the indicator function
case, we can estimate the approximation error for a larger class of functions of finite
variation under some conditions.

Proposition 3.4.7 If the function h is of local finite variation with the derivative of
the continuous part hi of linear increasing order and the pure jump part having finite
total jumps, then

[E[R(W)] = @0y ()] < Y |AR(E |ZB W,t;)

teR
b n
+ IZE\XHMNW GZErXSH T O EIX:I
=1 =1 =1

where B(W,t;) is the normal approzimation error bound in equation (3.47) for the
indicator function 1y <,y with t; being the jump points of the function h and a1 and
by are constants such that |f} (z)| < a1]z|+ br.

Proof. We write the function h as

h=hy+Y» Ah(t)

t<z

where h; is absolutely continuous and Ah(t) = h(t+) — h(t—). By the linearity of
., (h), we have

E[R(W)] = gy, (h)] < [E[1(W)] = @oy, (ha)] + Y [ARD|ELgw<iy] — Noy, (1)]-
teR

Then it suffices to apply Lemma 3.4.2 and Proposition 3.4.6. O

100



3.4.2 Correction for asymmetric normal approximation

We now propose a first order approximation correction to improve the approximation
accuracy.

Theorem 3.4.8 Let X1, -+, X, be random variables such that E[X}] (i = 1,--- ,n)
exist. If the function h is Lipschitz and if fp, has bounded third order derivative, then
the normal approzimation @4, (h) of E[h(W)] has corrector

Cp = %E[X}]@UW ((% - 1)xh(x)> . (3.49)

Recall that E[X}] = # S E[X?]. The corrected error is bounded by
w
[EIR(W)] = By (h) = Ci

SMW'%EM' —42Eﬁ Bx ]+ - za

Proof. The normal approximation error is given by equation (3.23). Then taking first

order Taylor expansion, we have

E[h(W)] = @4y, (h) = oy ELfL (W) — fr(W)]

= UI%I/E[ B (W)Y (W™ —W)] + U%;VE[ f(L3) (fW +(1- £)W*)§(W* _ W)Q. (3.50)

where £ is a uniform variable on [0, 1] independent of all X; and X . First, we notice
that the remaining term is bounded by

(3)
E||£7 (W + (L= W)W —w)?] < 11 g g~y
Then we have by Corollary 3.2.12
O‘W‘E[ NEW + (1= OW*)eW™ — W) } ‘ < H Z [1x214] (3.51)

Second, we consider the first term of equation (3.50). Since X7 is independent of W,
we have

E[fy (W)(W* = W)] = E[f; (W)(X] — X1)] = E[XT]E[fy (W)] - E[f (W)X/]. (3.52)
For the second term E[f;/(W)X/] of (3.52), we have by Proposition 3.2.16

ELV)X1]| < — Va7 00)]
w

(3.53)
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Notice that Var[f}/(W)] = Var[f{/(W) — f(0)] < E[(f/(W) — f7(0)?] < | 17|20
Therefore

3)
ow

n
6
Z g
=1

For the first term E[X|E[f;/(W)] of (3.52), we write it as the sum of two parts

E[XTIE[f; (W)] = E[X[]®oy, (fr) + BIXTIELf (W) = Poy, (f3)]-

We apply Lemma 3.4.1 to the second part and get

(3) n n
[ELXH (ELAH V)] = @a (1) | < ‘%M SOELG)| D E[XF]. (354
=1 i=1

Then, it suffices to write

BlI(w)] — By (0) = o (ELXG)@0ry (1) + ELXT)[BLF W] — @iy (7)) — BLA (W) X))

+ J%VE[ G (eW + (1 — W)W — W)Q]
(3.55)

Combining (3.51), (3.53) and (3.54), we deduce the error bound. Finally, we apply
Proposition 3.3.24 to obtain

2

Ch = oA ELX] @ (1) = — E[X] 100, (o — Doh(z)).
w w

Remark 3.4.9 1. We notice that C}, contains two parts. On one hand, E[X 7] de-
pends only on the variables X1, -+, X,. On the other hand, the term containing
®,,,, depends only on the function A itself. Hence we can study the two parts
separately. Moreover, it is worth noting that both terms are easy to calculate.

2. For the binomial case, the corrected approximation error bound is of order O( %)
If, in addition, E[X?] = 0 for any i = 1,--- ,n, then the error of the approxi-
mation without correction is automatically of order O(%) This result has been
mentioned in Feller [32] concerning the Edgeworth expansion and has been dis-
cussed in Goldstein and Reinert [39].

3. In the symmetric case, E[X}] = 0, then C}, = 0 for any function h. Therefore,
the corrector C} is most effective for the asymmetric case in the sense that
after correction, the asymmetric approximations obtain the same order of the
approximation error as in the symmetric case.
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In some cases, it is difficult to calculate the explicit form of the function f; and the
expectation ®,(f;). However, it is possible to simplify the calculation with different
forms of ®,,, (f;/) by using the normal function property (3.7) and by the relationship
between the functions h and f; implied by the Stein’s equation.

Corollary 3.4.10 Under the condition of Theorem 3.4.8, we have following equivalent
forms of Ch:

1. Cp = o EBIXF] o, (f1);
2. Cy, = E[X}]®y,, (xf1(2));

5. O = B [t a29(0) = 0 ()]
E[X7]

4. Cp = =504, (xh"(x)).
Proof. 1) is obtained in the proof of Theorem 3.4.8.
2) is direct by 1) using ®,(g') = 2P, (zg) and similarly, 3) is direct by (3.49) and 4)

is by 3). O

Note that h” exists and is bounded since f}, has bounded third order derivative.
Hence, we can calculate ('}, according to the explicit form of the function h and fj to
simplify the computation.

Remark 3.4.11 The formula 4) of the above corollary shows that if h” is an even
function, then ®,,, (zh”) = 0 and the corrector C}, vanishes. In particular, for the
polynomial functions of even order h(z) = 2% where [ is a positive integer, Cj, = 0.

3.4.2.1 Some examples

We now consider W = Z?Zl X,; where X, are independent but non-identical Bernoulli
random variables which follow B.,(q,—p). Denote by a? the variance of X;, then

¥ = E’ll 5 Here W is a zero-mean random variable with finite variance 0‘2,[, and
p(1-p
1 « 1 « 1—2p
E[X]] = =— E[X?] = — O s
20124/; ' 20%; "Vp(1=p)
In particular, if Xy, .-, X, follow identical distribution such that o; = %, then W is

ow (1-2p)

moreover
2y/np(1—p)’ ’

1 1—2p z? >
Ch = P, —— —1)zh(x) | .
1

When p = %, Cr = 0. In addition, for a given p, the corrector is of order T

a zero-mean binomial random variable and E[X 7] = E[X{] =

We give some simple examples of function h.
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Example 3.4.12 h(x) = 22. The corrector Cj, = 0 by Corollary 3.4.10. In fact, it is
easy to see that E[W?] = @, (h) = o}, so there is no need of correction.

Example 3.4.13 h(z) = 23. The correction is given by

1 n
w =1

On the other hand, E[W?3]—®(h) = E[(}1; X;)?]. Since X1, -+, X, are independent,
the corrected approximation is exact.

3.4.3 “Call” function

In this subsection, we concentrate on the “call” function Cy(z) = (z — k)*. This is

a Lipschitz function with O} (z) = T ;53 Notice that C}/ exists only in distribution

sense. So we can no longer majorize the error of the the corrected approximation via
3)

the norm || f,”||. However, we calculate

1 72 T[>, k
%q)a (ﬂ{z>kz}(% - 1)) - %/I; € ¢0(‘T)dw - (1 _Na(k)) - §¢a(k)7
and the corrector is given by
-
Cla—ry+ = EE[XI]kQSUW(k). (3.57)

In particular, for the homogeneous case,

Uw(l — 2p)

kg (k).
6/np(1 —p) Bow ()

Cla—ry+ =

Remark 3.4.14 When the strike £ = 0, the correction disappears, which means that
the error bound of the normal approximation for the function h(x) = 2 is automati-
cally of order O(%) Heuristically, this property can be shown by Remark 3.4.11.

We now provide the error estimation of the corrected normal approximation for
the call function. The following theorem shows that although the conditions of The-
orem 3.4.8 are not satisfied here, (3.57) remains the approximation corrector and the
approximation error is estimated. With the corrector C'},, we are interested in a error
estimation of order O(%) in the binomial case. As we have stated above, the difficulty
is mainly due to the fact that h” and ff(bg) do not exist and that the proof of the Theo-
rem 3.4.8 is no longer valid. We now present an alternative proof for the call function.
In fact, we write f; as some more regular functions by the Stein’s equation and we
shall use some previously obtained first order estimations.
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Proposition 3.4.15 Let X4,---, X, be independent zero-mean random variables such
that E[X}] (i = 1,--- ,n) exist. Then the error of the corrected normal approximation
for the function Cy(z) = (x — k)™ is bounded by

\E[(W — k)" = oy (2 = B)7) = Claiy+|
< (M + o EX; )
W =
n n 513 %
| ey X (T el P)
+ o 2B (= ; )
UW i=1 JW \/io-W
1 . 3 1 . S 5
+ Var[f, (W))2 (D of) " + — S EIX;) (B, E[1x;])
i=1 W i=1 i=1
(3.58)
where ¢ = 2| f, || + |z fé, || and B(W, k) is the normal approximation error bound for

the indicator function ]1{W§k}

Proof. Similar with the equation (3.55), we first decompose the corrected error E[C,(W')]—
Doy (Cr) — 08 Py ( f¢, )E[XF] as the sum of three terms except that we replace the
third-ordered derivative term, i.e.

E[Cr(W)] = oy, (Cr) — oy E[X]] Py, (fE,)

= ORELX] (ELAA, (V)] — By (12,)) (359
— o ELf, (W) X/] (3.60)
+ B EL1, (W) = 14,(W) = F4, (W)X} = X)) (3.61)

We then estimate each term respectively.
For (3.59), we use the Stein’s equation f; (z) = (a:fh( ) — h(z)) to get

&, = ot (fo (@) + x5, (x) — Cp ().
Then
oty [BLfE, (W)] = Doy, (fE,)] < [E[g(W)] = Doy (9)] + B[y <iy] — Novy (B)]

where g = fc, +xf¢, is a derivable function and ||¢'|| < 2|/ f¢, || + |z f¢, || = ¢, where ¢
has estimated in Corollary 3.3.15 and Corollary 3.3.21 by the two methods respectively.
Therefore,

ERILE

|0ty (B, (W)] = @0y, (fE,))] < BW. k)
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The second term (3.60) is bounded by O‘%VE[ W)X;] < \/\W /ST of

by Proposition 3.2.16. For (3.61), we use again the Stein’s equation to write fok =
aﬁf(wfck — C}). Denote by G(x) = zfc, (x). Notice that G is the primitive function
of g, then

U EN b, (W) = 16, (W) — S, (W)(XG - X1)]
< E[|G(W") = G(W) — g(W)(X] — X)) (3.62)
+ E[|CL(W) — CL(W) — CLW) (X} — X7)]-

The first term of (3.62) is bounded by cE[(X} — X[)?]. For the second term of (3.62),
notice that the call function satisfies

|ka’('r + a) - Ck('r + b) - (a - b)C]/g(ﬂj‘ + b)| < ]1{k—max(a,b)gmgk—min(a,b)}|a - b|

Hence
E[|CL(W") — Cp(W) = CL(W)(X] — X1)]]

S E[XT = X110 max(xs,X)<W O <k—min(x3,x )} -

Since W is independent of X; and X/, we have by using the concentration inequality
that

E“X: - Xi|ﬂ{k—max(X;‘,Xi)SW(i)Sk—min(X* X)}]
= EUX’L* - Xi|E[]1{k—max(X;‘,Xi)§W( ) <k—min(X},X;) }|X27 X H
<E[X; - Xi|B1 (W', | X} — Xi))]

where B;(W®@ |X7 — X;|) is the error bound for P(k — max(X}, X;) < W® < k —
min(X}, X;)). Therefore,

BT < ) = GOV = X0
- Z (BT | o)

. s 250 E[1X0P) (Z?zl UiE[!Xfl?’]f
—I—W;Eﬂxjm( ! + Ny ).

Ow

Finally, combining the three terms, we get the estimation (3.58). O

Remark 3.4.16 1. In the homogeneous case where X; arei.i.d asymmetric Bernoulli
variables, the error bound is of order O(2).
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2. The symmetric case when p = % have been studied by several authors in the
context of computing the call option prices by the binomial tree model. Diener
and Diener [25] and Gobet [37] have proved that the convergence speed towards
the Black-Scholes price is of order O(%) In addition, they pointed out and
discussed the oscillatory behavior when n tends to infinity. Proposition 3.4.15
applied in the homogeneous case provides another proof for the convergence
speed. However, it concerns no explanation of the oscillation.

3.4.3.1 Numerical results

We now provide numerical results of different tests. We take Xq,---, X,, to be inde-
pendent asymmetric Bernoulli random variables. We shall compare the expectation of
E[R(WW)] and its normal approximation with and without our correction. It is shown
that the corrector improves the approximation.

1. Call function: the homogeneous case, (Figure 3.1 and Figure 3.2).

In each of the following two figures, three curves are presented which are

(a) E[(W — k)*] where W = X; + --- + X,, is a binomial random variable
of expectation zero and variance 1. More precisely, X; are identically dis-
tributed asymmetric Bernoulli random variables and X; ~ B, (1 — p,—p)

such that Var(X;) = v%p(1 — p) = 1. Therefore y = ﬁ Or in other
np(1—p

words, let H ~ B(n,p) be a standard binomial random variable of variance
np(l —p) =1, then W = v(H — np);

(b) its normal approximation ®;((z — k)*) = E[(Z — k)T] where Z is the stan-
dard normal random variable. Or ¢1(k) — k(1 — ®1(k)) explicitly;

(c) the corrected normal approximation ®1((x — k)) + Cy_py+-

The expectation is presented as a function of the strike k. We fix the parameter
n = 100 and we compare different values of p. In Figure 3.1, p = 0.01 and
in Figure 3.2, p = 0.1. We remark that the binomial curve is piecewise linear
because of the discretization. The length between two discretization points is -,
where v & 1 in the first graph and v = % in the second graph. When the value of
p is larger, the normal approximation becomes more robust, which corresponds
to the common rule that when np > 10, we can apply the normal approximation
to the binomial law.

Both graphs show that our correction is effective. In Figure 3.1, it is obvious
that the corrected curve fits better the piecewise binomial curve than the normal
approximation curve without correction. In Figure 3.2, the corrected curve and
the binomial curve almost coincide each other. At last, we note that at the point
k = 0, the two approximative curves meet since there is no correction.

107



Figure 3.1: Homogenous call: n = 100, p = 0.01. Here np = 1, the correction is
significant.

p=0.01

—— binomial
normal
— — normal with corrector

\
0350\, B

2. Call function: the exogenous case, (Figure 3.3 and 3.4). We repeat the above test
for the exogenous case where X; are independent but non-identically distributed.
The only difference lies in the calculation of E[X}]. We simulate X; as follows.
Let Y; be standard 0 — 1 Bernoulli random variables of parameter p; and let

o Yi-pi 1= 11— _pill=pi) _
Xi = =iy Then E[Xi] = 0 and VarlXy] = ¢or D45y and thus the

sum variable W = " | X, is of expectation zero and of variance 1. We fix
n = 100 as above.

For the first graph, we take p; = 0.02 x U; where U; are independent uniform
random variables on [0,1]. So the mean value of p is equal to 0.01. For the
second graph, we regroup the n = 100 random variables into 10 groups and let
all random variables in one group take a same value of p;. In addition, we take
10 equally spaced values of p; from 0.055 to 0.145 so that their mean value equals
p=0.1.

Figure 3.3 and Figure 3.4 resembles respectively Figure 3.1 and Figure 3.2 in the
first test. We observe that the correction is notably related to the mean value of
the probability p.

3. Call function: the asymptotic behavior, (Figure 3.5, 3.6 and 3.7). In this test, we
fix the strike value k£ and we are interested in the asymptotic property concerning
the parameter n. We take i.i.d. random variables X; and let oy = Var[W] = 1.
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Figure 3.2: Homogenous call: n = 100 and p = 0.10. The binomial curve is rather
near the normal curve, however, with our correction, the two curves coincide.

p=0.1
0.4

—— binomial
normal
— — normal with corrector

03

02—

The strike k is set to be 1. The normal approximation in this case is a constant.

Figure 3.5 shows the symmetric case where p = % As been pointed out in [25],
we observe oscillations in the binomial curve as a function of the size n of the
portfolio. (In [25], n is the number of the time steps.) When n tends to infinity,
the binomial curve converges to its normal approximation (the Black-Scholes
price in [25]) which is presented as the horizontal line. The correction in this case
is zero, so the corrected curve coincides with the normal curve without correction.
Figure 3.6 and 3.7 show the asymmetric case where p = 0.01 in 3.6 and p = 0.1
in 3.7. In both graphs, we still observe oscillations in the binomial curves. When
the value of p is smaller, the oscillation is slower. In the asymmetric case, there
is a gap between the binomial and the normal curves with the same number of n,
which means that the convergence speed is much slower. However, the binomial
curves oscillate around the corrected curves in the two graphs, which means that
our corrector is very efficient in the asymmetric case. Note that the corrected
curve is situated in the upper part of the binomial curve, which almost serves an
upper envelop of the binomial approximation.

3.4.3.2 The indicator function

The indicator function h(x) = M y,~y is less regular than the call function. Its deriva-
tive is a Dirac measure in the distribution sense. We can calculate the corrector C},
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Figure 3.3: Exogenous call: n=100, p; = 0.02 x U;, so p = 0.01.

p=0.02"U,
0.4 T T T
\ —— binomial
normal

\ — — normal with corrector

using Corollary 3.4.10 and get

) = E(‘;q) [%@U(oﬂh'(x)) - (I)U(h’)]
(1—2p)

Lo
= e [ o) ol
However, we have no estimation for the corrected approximation. The zero correction
points are k = o or k = —o. Lacking theoretical result, we shall present numerically
the correction effect.

Figure 3.8 and Figure 3.9 show the tests. In each graph, the reported quantity is the
probability P(W > k) and its normal approximation with and without the correction
term. The probability is presented as a function of the size number n. So we see the
asymptotic behavior and we compare different values of p and k in the four graphs. In
Figure 3.8, p = 0.01 and in Figure 3.9, p = 0.1. The strike values are k = 0 and k£ = 3.
When k = 3, the two graphs show that our correction is effective, while when k& = 0,
it is hard to tell whether the correction improves the approximation quality because
of the discretization effet.

It is well-known that the convergence speed of the indicator function is of order
O(ﬁ) by the Berry-Esseen inequality. However, with these numerical result, we have
naturally the intuition that after our correction, there exist some non-uniform estima-
tions of the convergence speed according to the values of k. We can not yet explain
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Figure 3.4: Exogenous call: n = 100 and there are 10 random variables which take the
same value of p;. We take 10 value of p; from 0.055 to 0.145 equally dispersed, so that
p=0.1.

p=0.01:0.1; 10 par groupe
T T

0.45 T
—— binomial
normal
0.4 — — normal with corrector | |

Figure 3.5: Asymptotic call: £ =1 and p = 0.5.
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Figure 3.6: Asymptotic call: £k =1 and p = 0.01.

Approximation of E[(Wn—1)+], where p=0.01
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Figure 3.7: Asymptotic call: k=1 and p =0.1.

50

100

150 200 250
n

300

350

Approximation of E[(W, ~1) ], where p=0.1

400

450

500

WWWWWWW

\Nv\/wwvvwmﬁvﬁwwf A

T
binomial

normal approximation
order corr. approx.

1t

50

100

150 200 250
n

112

300

350

400

450

500



this phenomenon with the previous discussion. However, we think it’s worth further

study to well understand this problem.

Figure 3.8: Indicator function or the probability function: p = 0.01. The two graphs
are for k =0 and k = 3.

Approximation of P(W >0), where p=0.01

Approximation of P(Wn>3), where p=0.01
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3.4.4 Saddle-point method
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In Antonov, Mechkov and Misirpashaev [2], the authors propose efficient correction

terms to calculate the conditional expectation E[(W — k)] using the saddle point

method. This subsection concentrates on this method. We first introduce their results

and we then interpret the main idea from a more probabilistic point of view. We show

that choosing a saddle point can be viewed as a change of probability and we apply

our correction of Theorem 3.4.8 under the new probability measure. We shall compare

the results obtained by our method and by the method in their paper through some

numerical tests.

Our objective is to calculate some expectation functions under a given probability

P. The saddle-point method consists of writing the concerned functions as an integral

of some function of the cumulant generating function IC(§) = InEp[exp({W)]. For

example,

and

Ep[(W - k)*] =

1

Iim —

A—+00 2T Jo_in 52

A exp(K(€) — €k)

dg¢ (3.63)

c+iA
POW>k) = lim - / T oK) — k)

A—+oo 271
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Figure 3.9: Indicator function: p =0.1, k =0 and k£ = 3.
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In general, the expansion of the integrand function is made around its critical point,
the saddle point, where the integrand function decreases rapidly and hence is most
dense. In [2], the saddle point is chosen such that

K'(&) = k.

Making expansion of exp(K(£) — k) around the saddle point &p in (3.63), the authors
propose to approximate Ep[(W — k)] by the following terms which are of increasing
precision orders:

1. G5 = (E[W] - k)*,
2. Cf = 08 + e}C(éo)_§OkJ2 (K:”(g())v 50)7

3. C3 = Cj + £6KB3) (&) ele0)—Sok
x (= 20 (K7 (60), o) + 3601 (K" (60). o) — 32 (K" (60), o) )-

where
Jo(m, §) = \/ﬁa
Ji(m, &) = sign(&o)e2™ SN (=ml&)),
To(m, &) = /3% — mlGole2 SN (—mlo]).
Although numerical results show that these approximations are efficient compared to

the standard normal approximation, no theoretical discussion concerning the estima-
tion errors is mentioned in their paper.
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In the saddle point method, the first step is to find the value of the saddle point
€. This is equivalent to solve the equation K'({) = k, which can be rather tedious
sometimes. In the homogeneous case where X; follow i.i.d. asymmetric Bernoulli
distributions, we have the explicit solution. Since X; are identically distributed, then
Y= =Yy = jTqu' Hence
Ep[X1e5X1]  owy/npg(e®” — 1)

Ep[etX1] o pefoY 4 ¢

K'(€)=n =k.

This equation has a unique solution

V/pq I <0w\/npq + kQ)
ow ow/npq — kp/

In the exogenous case, the cumulant generating function k(&) is calculated by

§o =

K(§) =1In EP[GEW] = Z In Ep[egXi] = Zln(pequ + qe—ﬁvip)_
i=1

=1

As a consequence,

“pgyi(e 1), "\ pgyZed
K(e) =S PO =) ey 2§ PO
9=y MY g -y L

i=1 =1

Hence, we can obtain &y by solving numerically Y , %‘2;1) = k. And then the
approximations C7 and C3 can be obtained. Compared to our method, the saddle point
method demands more calculation to get the correction terms, in the homogenous case
and especially in the exogenous case.

Figure 3.10 and 3.11 compare the correction results in the homogenous case by

different methods:

1) the normal approximation,

2) the normal approximation with our correction,

3) the saddle point method with the first correction C7 of [2],
4) the saddle point method with the second correction C§ of [2].

We repeat the test which produce the Figure 3.6 and 3.7. The strike is fixed to be k = 1
and the asymptotic behavior of the correction is showed for p = 0.01 and p = 0.1. We
observe that our correction is better than the first order correction but is less effective
than the second order correction of the saddle point method.
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Figure 3.10: Saddle point comparison, asymptotic call: p = 0.01.
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3.4.4.1 A probabilistic point of view

We now interpret the saddle point method from a more probabilistic point of view.
First, let us choose the saddle point &, such the K'(§p) = k. Second, if we let Q to be
an equivalent probability measure such that

dQ _ exp(§W)
dP  Elexp(&W)]’
then BT o

That is to say, under the probability measure Q, the expectation of the sum variable

=K'(&) = k. (3.64)

W equals the strike k. Now, consider the expectation of the call function, we have
E[(W — k)*] = Egle ®W &) (W — k)*].

Note that W is no longer of expectation zero under the probability Q. To apply our
previous result, we need to centralize the random variable. Let W = W — k, then the
above equality can be written as

Ep[(W — k)] = e Sr+KE@) Ry [e=SW 4], (3.65)

Since Eg [/W] = 0, now the problem is to approximate the function e =W W under the
probability Q, where W is a zero-mean random variable which can be written as the
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sum of independent asymmetric Bernoulli random variables, i.e. W=X 1+ -+ X

Figure 3.11: Saddle point comparison, asymptotic call: p = 0.1.
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where X; = X; — Eg[X,].

Example 3.4.17 We revisit the example of the asymmetric Bernoulli random vari-
ables. Under the original probability P, X; ~ B,,(¢,—p), i.e. P(X; = v;q) = p and

g3

P(X; = —vip) = q where v; = Wt By the change of probability,

Similarly, Q(X; = —vip) =

exp(§oW)
X; = iq) = Ep| Ly, gy 0
Q( Yiq) IP’[ {X; W}E[exp(&)W)]
Bl ewl&X)
Ep[exp(foXi)] p+ e—fo%q7
m and then

. ovi

Yipq(e 1)

EQ[XZ] == £0Yi ’
pesoi 4-q

The centralized random variables X; are zero-mean asymmetric Bernoulli random vari-

ables which satisfy

Q(;{: g ): P @(}?.:— ipeso: ): q
v pe§0’7i + q p + qe_fo"/i ’ v pefo"/z’ + q pefo% + q ’
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We now apply Theorem 3.4.8 to calculate EQ[G_&)WWJF]. This is a function of
similar property with the call function in the sense that its derivative contains an
indicator function and its second order derivative exists in the distribution sense. We
now give the approximation formula and the correction term.

Proposition 3.4.18 Let he, = e $0%g T Then the normal approzimation of the ex-
pectation Eqlhe, (W)] is given by

607 b1 _ 328 (m01 _ nr (PN g (B
Eqle™%%2*] = 347 (i(1 - Mi(=5)) +501( - &) (3.66)
where Z ~ N(0,52), i = —&K" (&) and 52 = K"(&). Moreover, the correction term
s given by
1 o ez ((ZH) +)2
Che, = =3 EalXT]Eq [6 (W -(Z7) )} (3.67)
Y o) N T Y GO VA 10 W O L LA Py
- 52 <3A2 * )(1 M &)) * (3A 3 )¢1( 5)

Proof. First, we verify that Varg[W] = K"(&). In fact,

2eboW eSoW 2
VarQ[W] = EQ[WQ] _ EQ[W]2 _ EP[W ] B <EP[W ])

]E]P’ [efOW] ]E]P’ [efo W]

_ EP[WeﬁoW] /_ "
_<Ewwﬂ>_K@”

Then the normal approximation is ®5(hg,) = Egle %°ZZT] and the corrector (3.67)
is obtained by Theorem 3.4.8. The last step consists of calculating explicitly the
approximation and the correction terms. To this end, we introduce another change of
probability to simplify the computation. Let

dPo _ —coz-1e3K"(60)
dQ
Then 40
Eqgle %7 f(Z)] = Ep, [e 7 f(Z) >
dP
for any function f such that the quantities of the two sides are well defined. To obtain
(3.66), let f(x) = x*. Notice that under the probability Py, Z is still a normal random
variable with 11 = Ep,[Z] = —£K" (&) and Varp,[Z] = K" (&) = 2. Then

] = 36K IRy, [£(2)]

Ero[Z 7] = Epy [1(1520>0y (A + 7 Z0)]

—a(t-M(=5)) +5e (- D)

Q>|t>
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where Zy ~ N(0,1) and (3.66) follows immediately. To obtain (3.68), consider re-
spectively Ep,[(Z1)?] and Ep,[(ZT)%]. Combining the invariant property (3.7), we get
similarly as above

Ep[(27)%) = (i +5%) (1= Mi( -

SURS

) + ()
and
B, [(Z)"] = 1B, (W (1520201 (B + 520)°] + 0B, [Z0 W (ir520>01 (1 + 5 Z0)°)
= W2Ew, [Ljiy520>0) (1 + 5 20)°] + 10, [ Zo W 452050y (i + 5 Z0)°)
+ GEp, [(L(7452050) (1 + 5Z0)°)']
= WPEpE[(Z1)?] + HoE[(L{z452,>01 (B + 5Z0)%)'] + 35°E[(Z1)?]
= (1* + 35°)Ep, [(Z7)*] + 2i°En, [ 2],

which deduces (3.68). O

3.5 Application to CDOs portfolios

In this section, we apply the results of the previous section to the evaluation of a CDO
tranche. As mentioned before, we proceed in two steps. The approximation correction
is used to calculate the expectation of the conditional cumulative losses. In the second
step, we integrate the conditional losses function with respect to the density function
of Y and we study the correlation parameter p. Two points to be noted are

1) the normalization of the standard 0—1 Bernoulli random variables to the zero-mean
asymmetric Bernoulli random variables.

2) the probability p is now a function of the common factor Y. We shall see that the
form of p(Y') has an impact on the correction.

In the following of this section, we are under the factor model framework as introduced
in Subsection 3.1.1.

3.5.1 Conditional loss approximation

Consider a CDO portfolio of n credits where the weight of each firm is denoted by
w; = % and Y ;" ; w; = 1. The percentage loss is given by

Ir =Y wi(l— Ri)lr<7y. (3.69)
=1
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We are interested in the conditional expectation E[(I7 — K)*|Y] where K is the tranche
threshold and Y is the common factor. For synthetic CDOs, the threshold values are
fixed to be K = 3%, 6%, 9%, 12%.

Denote by §; = 1, <1y to be the indicator function of default for each credit. They
are standard 0 — 1 Bernoulli random variables. Moreover, conditional on the factor
Y, they are independent and of probability parameters p;(T|Y"). In the normal factor
case, p;(T|Y") is given by (3.2), i.e. p;(T|Y) = N(%) where o; = 1 — ¢;(T)
is the expected default probability of the credit ¢ before the maturity 7. In fact, it’s
easy to verify that

To simplify the notation, in this subsection, we write p;(Y) instead of p;(T'Y). In

addition, it is often supposed that p; are identical, in this case, p;(Y) = p(Y) =
N N_l(a)—\/EY

( Vip )-

Figure 3.12 shows p(Y) as a function of the factor Y which is decreasing. We

compare different values of p and we notice that this correlation parameter plays a
significant role. When p approaches zero, p(Y') converges to a constant which equals
a. When p increases, the values of p(Y') disperse in [0, 1] and when p tends to 1, we
observe a concentration of p(Y') at two values 0 and 1. For simplicity, in the following
of this subsection, we write p instead of p(Y’) since we only consider the conditional
case.

Figure 3.12: The function p(Y): a = 0.05. Correlation parameters are p = 0.01, 0.1,
0.3, 0.5 and 0.9.
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To apply the approximation correction, we first normalize the Bernoulli random
variables to be of expectation zero. In addition, the sum variable should be of finite
variance. We denote the variance of w;(1 — Ri)ﬂ{T.<T} conditioned on Y by 02-2 =

w?(1 — R;)?pi(1 — p;) and let ¥ = Var[lp|Y] = />, 02. Let

X, =% & —pi 7
% /pi(1—pi)

then E[X;] = 0 and Var[X;] = 0?/%2. Conditioned on Y, X; are zero-mean asymmetric
Bernoulli random variables such that X; ~ B.,(g;,p;) with v; = %ﬁ

pill=pi
their sum by W = >"" | X;, then E[W] = 0 and Var[W] = 1. The percentage loss can
thus be written as Ip = XW + " ; wi(1 — R;)p; and

(Ir — K)* = 2<W S D ;"(1 - Ri)p">+. (3.70)

. Denote

Note that the strike Ky = (K— Yo wi(l —Ri)pi) /% is a function of p; and eventually
of Y. We can now apply the correction (3.57) to the expectation of (3.70). So the
correction to the normal approximation of E[(ip — K)T|Y] is given by

1 o3 1-—2p;
“YE[X7|Y]Ky¢i1(Ky) = Ky ¢1(Ky) (3.71)
3 222 Vv Pi 1_pz)

where p;, 0;, ¥ and Ky are all functions of Y.

In the homogeneous portfolio case where all parameters of each credit are supposed

to be equal, we have w; = =, R; = R and p; = p. Then Ky = % The

corrector of E[(lp — K )ﬂY] is given by

LR oKy i (Ky). (3.72)

Figure 3.13 show the corrector (3.72) as a function of p when the strike value K is
fixed. The corrector vanishes when Ky = 0, which means that the strike K equals
the expected loss, i.e. K = E[lp|Y] = (1 — R)p. Moreover, the function z¢;(z)

attains its maximum and minimum values at * = 1 and x = —1 respectively, that is

K =(1-R) (pj: \/ B (1 L )) and converges rapidly to zero when the absolute value of
increases. This is shown by the two graphes where we suppose R = 0. The corrector
equals zero when p = K and attains the extreme values when p is rather near K and
then vanishes rapidly when p moves away from K.

We then compare the approximation results of the conditional expectation of the
call function E[(I; — K)T|Y] by the normal approximation, saddle point method and
our method. The test is for the homogeneous case where w; = %, R; =R =0 and
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Figure 3.13: Conditional Call corrector: @ = 0.05, R = 0, n = 100. K = 0.03 and
K = 0.12 respectively.
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p; = p. In the conditional case, the probability p is viewed as a parameter, but not a
function. The comparison baseline is calculated by the direct binomial simulation.
Figure 3.14 shows the approximation errors of E[(I7— K)|Y] by different methods.
The reported quantity is the difference between the values obtained by the approxi-
mation methods and the direct binomial simulation. For example, the curve denoted
by normal approximation represents ®((z — K)*|Y) —E[(l7 — K)T|Y], so do the other
curves. We fix the strike K and the horizontal axis is the probability p. We observe
that both methods are effective compared to the direct normal approximation. All
corrections are concentrated in a neighbourhood interval around the strike point K
and when p = K, the correctors equal zero by the three methods. Our correction ob-
tains the same order of precision with the second order correction of the saddle point
method. We repeat however that the calculations in our case are much easier.

3.5.2 The common factor impact

In this subsection, we calculate the call expectation by integrating E[(l;r — K)T|Y]
with respect to the density function of Y. The approximation of E[(i7 — K)T|Y]
having been discussed previously, the expectation function can be easily obtained by
integrating different approximations of the conditional expectation. We shall compare
these results by numerical tests. In the following, we denote the corrector (3.71) by
C1(Y). Since the probability p(Y') is a function of the correlation parameter p, we are
interested in its impact on the approximation result.

We observe from Figure 3.12 and Figure 3.13 that when there is light correlation,
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Figure 3.14: Approximation error of conditional Call function: n = 100, a = 0.05.
K =0.03 and K = 0.12 respectively.
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that is, when p is small, the values of p(Y) concentrate around the mean value o and
the correction should be significant in this case. On the contrary, when there is strong
correlation with large values of p, p(Y) disperse in [0,1] and there should be little
correction.

In the normal factor model, Y is a standard normal random variable. We can
calculate the expectation on Y by changing the variable. For example, consider the
corrector function, we have E[C)(Y)] = fjoooo Ci(y)dN (y). A change of variable z =
p(y) yields

Bl = L [ o BV (K- DV ),

6n  Jo 2(1— 2) 2(1—2)/ P (p~1(2))
Since p'(y) = —%N’ (N (p(y))) and p~1(z) = N_l(a)_\/\/lﬁ__p/v_l(z), we have
ooy - W) = VT = pN T (2))?
N @) = e ( ' ).
(p=1(2)) — — VP n “10,)) — — VP ox _N_l(z)2
PO ) =~ AN W) = p< AN )
Then
A Tay, (K2 (K )

Elel = /0 6n p (1-22) z(1—2) gbl( z2(1—2) )X

exp <—i (N_l(a)2 + (1 =20)N 1 (2)2 —2/1 - pN_l(a)N_l(z))> dz.
(3.73)
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Figure 3.15 and Figure 3.16 show the approximation error of E[(I;7 — K)*]. For
each curve, the reported quantity is the difference between values of the integrand
function in (3.73) calculated by the direct binomial calculation and the approximation
method. Therefore, the approximation error equals the integral of this difference on
[0, 1], which is represented by the area under the curve. So compared to Figure 3.14,
we are not interested in the absolute value of the function at each point, but the whole
area under each curve.

We compare different values of K and p in the following graphs. In Figure 3.15,
K = 0.03, the two graphs are for p = 0.2 and p = 0.8. In Figure 3.16, K = 0.12 with
the same values of p. For both values of K, we observe similar phenomena. When
p is small, our method gives the best result since the area of the positive and the
negative values compensate. Although the second order correction of saddle method is
better in the conditional case, since all its values remain positive after integration, the
overall error is nevertheless larger. When the value of p increase. This compensation
effect becomes significant in the normal approximation. The correction methods won’t
improve much of the approximation results, which corresponds to our heuristics.

Figure 3.15: Approximation error of Call function: n = 100, o = 0.05. K = 0.03.
p = 0.2 and p = 0.8 respectively.
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Figure 3.16: n = 100, o = 0.05. K = 0.12. p = 0.2 and p = 0.8 respectively.
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Chapter 4

Asymptotic Expansions in
Normal and Poisson Limit
Theorem

This chapter is devoted to a theoretical problem: the asymptotic expansions of E[h(W)]
where W is the sum of independent random variables. It’s an extension to Theorem
3.4.8 obtained in the previous chapter. In fact, it is revealed in Chapter 3 that when the
function h has certain regularity (for example, f; has bounded third order derivative),
we can improve the normal approximation of E[h(W)] by proposing a correction term.
It is then natural to expect that when h has higher order derivatives with some regu-
larity properties, we may obtain a corrector of the corresponding order. Theoretically
speaking, this is a classical problem related to the central limit theorem. By developing
some techniques which are based on those in Subsection 3.3.3 in the framework of the
Stein’s method and the zero bias transformation, we propose an original method to
develop the asymptotic expansion. Our main contributions are:

1. We develop a method whose continuous version and discrete version enable re-
spectively to obtain similar results in both the normal and the Poisson context.

2. In the normal case, we give the regularity conditions on h to derive the expan-
sions. For a smooth function, we obtain a full asymptotic expansion. In the
general case, the order of the expansion is determined by the derivative order of
h. We prove that the approximation error is of appropriate order under some
conditions.

3. In the Poisson case, we extend the notion of zero bias transformation to the
Poisson distribution. We provide asymptotic expansion for sum of independent
random variables and in particular, the independent 0 — 1 random variables.
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To the finance concern, we improve the approximation of the call function (of course,
we can treat other functions) by expanding to higher orders. Numerical results com-
pare the approximation by the second order correction with those obtained by other
corrections in the previous chapter and we observe a significant improvement.

One technical difficulty lies in determining the regularity conditions. As we have
observed in the previous chapter, we obtain a first order approximation for a function
h whose auxiliary function fj has bounded third order derivative, which means that h
itself has up to second order derivatives. However, we have proved that the approxi-
mation formula is valid for the call function, which is only absolutely continuous. The
approximation error is of the same order. To prove it, we need some refined techniques
which involve the usage of the Stein’s equation and the concentration inequality. The
key point is that although the derivative of the call function, which is an indicator
function, is not differentiable, it is nevertheless not so “bad” since it contains only
one discontinuous point. In addition to this point, we can obtain the second order
derivative of the call function. Therefore, we can apply the standard procedure except
at this discontinuous point, which we shall treat by using the concentration inequality.

It is similar in the high order case. In the following, we first provide an expansion
formula. We then specify the necessary conditions for the function h when estimating
the approximation error. To obtain an N order expansion, h should have up to Nt
order derivatives. Moreover, the N order derivative of h is of finite variation and
contains finite number of jump points.

We note that although we obtain a full expansion which merely contains the normal
expectations and the Poisson expectations. The formula is presented in recurrence
form. So for high order approximations, it requires extra calculations to obtain explicit
results. On the other hand, no special effort has been made on the constants of the
error estimates.

The chapter is organized as follows: We begin by a brief review (Section 4.1) of the
existing results and methods in the literature concerning the asymptotic expansions in
the central limit theorem. Section 4.2 and Section 4.3 are devoted respectively to the
normal and the Poisson case.

In Subsection 4.2.1, we propose a direct method by taking the Taylor expansion.
Since W@ and X;, X[ are independent, we obtain immediately an expansion formula
in recurrence form by replacing the sum variable W () with a normal variable. However,
since we eliminate one summand variable when considering W ® instead of W, in the
expansion formula, there exist partial sum variables which complicates the calculation.
Subsection 4.2.1 contains a refined method of the first one. The key argument is the so
called reversed Taylor’s formula in the expectation form which allows us to write the
terms containing W) as some functions of W and X;, with which we deduce Theorem
4.2.5. The approximation error is estimated in Section 4.2.3. We first propose an

F(N+2)
h

estimation procedure and we point out that the growing speed of plays a crucial

128



role for an N*"" order expansion. The main objective of Section 4.2.3 is to determine
under which conditions on h we can deduce desired property of A}EN”). We show that
the growing speed of the derivatives is required instead of the boundedness conditions.

In Section 4.3.1, we present the framework of the Stein’s method and the zero bias
transformation for the Poisson distribution. The similitude in the writing inspired us
to study the asymptotic expansion by developing a similar method in the discrete case.
The special case of 0 — 1 summand variables is first discussed in Section 4.3.2 and the
asymptotic expansion is obtained following Lemma 4.3.11. The general case for the
sum of independent random variables is shown in Section 4.3.3.

4.1 Introduction

The Stein’s method provides a very efficient tool in studying the limit theorems and
in developping asymptotic expansions, for both normal and Poisson distributions. For
the discrete case of the Poisson distribution, Deheuvels and Pfeifer [21] study the er-
ror estimates after one and two ordered estimations for 0 — 1 summands by using an
operator technique. Borisov and Ruzankin [11] give full asymptotic Poisson expan-
sion for unbounded functions. The usage of Stein’s method in the Poisson context is
introduced by Chen [15] and is then developed by Barbour and Hall [6], Chen and
Choi [19], and Barbour, Chen and Choi [5] for 0 — 1 independent random variables.
For general nonnegative integer valued summands, Barbour [4] obtains expansions for
polynomially growing functions by applying the Stein’s method.

In the normal context, the classical method used to derive the normal asymptotic
expansions of E[h(WV)] is the Fourier methods as in Hipp [48] and Go&tze and Hipp
[42] by using the Edgeworth’s expansion. Barbour [3] used a similar technique in
the Poisson case [4] by introducing the Stein’s method. This result is extended by
Rinott and Rotar [69] and is reviewed in Rotar [71]. In [3], the author considered
the expansions for functions with high order derivatives. For a (I — 1) times derivable
function g, he wrote the expectation E[IWWg(W)] as a sum of [ terms containing the
cumulant of W and a remaining term, i.e.

-1
EWg(W)) = Y S ElO )] + R
k=1

where &, is the k™' order cumulant of W and R is the remainder. The bound of
the remaining term contains the cumulant of W and the derivative of g. Combing
the equality E[h(W) — h(Z)] = E[W fr(W)] — o&,E[f; (W)], the author obtained by
iteration a (I + 1)-terms expansion of E[h(W) — h(Z)] and then replaced the term W
in the expansion by the normal variable Z. At last, it remains to estimate the error of
the above replacement which consists of analytical estimation of the derivatives of fy,
with respect to those of h.
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From the results of Barbour in [3] and [4], we see that the Stein’s method allows
us to consider the problem of asymptotic expansions in a similar way for both normal
and Poisson approximations. This can also be shown by the results in the following of
this chapter. We shall propose a method which adapts to the two cases respectively.

4.2 Normal approximation

4.2.1 The first method

In this subsection, we introduce a first method to get a recurrence form of the asymp-
totic expansion of E[h(W)]. With the explicit definition of the zero bias transformation,
we propose to deal with the expansion of E[f; (W*) — f; (W)] as a whole. The idea is
based on the comparison between W and W* through their common part W) and
on the independence between W@, X; and X?. To be more precise, we consider the
Taylor expansion of the above difference at W@ and then as in [3], replace the sum
variables by the normal variables. The expansion formula is of an recurrence form and
the proof is proceeded by induction.

We introduce the following notations. Let © be the set of indices, i.e. © =
{1,--- ,n}. For any non-empty subset J C ©, let

WJ:ZXZ'

icJ

and o2 5 = Var[Wy] Za In particular, we denote by W = Wg and oy =

e
oe. Let Iy be a random index of the set J, that is, I; takes value i € J with

probability P(I; = i) = 02/0%. We assume in addition that I, is independent of all
X; and X/ for all i = 1,--- ,n. Denote by J@ = J\ {i}, the subset of J deprived
of 7. From Proposition 3.2.10, we know that W}IJ) + X}‘J has the Wj-zero biased
distribution. In addition, we denote by f ; = fj», the solution of the Stein’s equation
af(x) — 05 f'(x) = h(x) — @4, (h) and by fr = fne-

For any N > 0, we write E[h(W )] as the sum of two terms: the N*'-order estimator
C(J,N,h) and the remaining error term (J, N, h). The following theorem gives the
recurrence formula to obtain C(J, N, h).

Proposition 4.2.1 Let E[h(W ;)] = C(J,N,h) +e(J, N, h). If f has up to (N +2)%
order derivative, then

7

N — &, fTE[(XHE — (X0)F], (4.1)

Mz
??‘|;a

C(J,N,h) =C(J,0,h) + > o}
ied k=1

130



where C(J,0,h) = ®,,(h). In addition,

N
e, N, ) < 3 02 (Z,% N =, fE) B[ (G — (X))
i€J k=1 (4.2)
1A s

e ).

Proof. By Stein’s equation,
W(Wy) = @, (h) = Wy fng(Wy) = 5 (W)
Taking expectation on the two sides, we have

E[h(W))] = @5, (h) + o3ELf, ;(W))] = oFELf; ;(W,))-

By writing the N*"-order Taylor expansion of the last two terms at W JI" )
(4)

order terms vanish. Moreover, since W

, the zero-

is independent of X; and X, we get

E[h(W,)] = ®0,(h) + Y o?E[f1 (WS + X7) — f1 (WS + X;)]
i€J

(h)+ o Z SEL P WINE[XDE - (X4 +8(J, N, h)

icJ
(4.3)

where the remaining term

S N.R) =D mE[ }(L,J w07 (XN - l(z,J W 4 05;) XN,
icJ

Let C(J,0,h) = ®,,(h) and assume we have proved equation (4.1) holds for [ < N,
then we replace E [f(kﬂ (W} ))] in (4.3) by its (N — k)*P-order expansion and get

E(h(Wy))
N
—O(J,o,h)+zafzkc(ﬂ>zv kfth) [(XF)* — (X)F]
ieJ k=1 """
N
FON D) + Y007 S e (0N — kR - (X0
ieJ k=1~

.
m
<
b
Il
—



which means that the N*'-order estimator is also given by equation (4.1) and the error
term is given by
1

e(J,N,h) = 6(J,N,h) + Y _ o7 Zk— N — &, fETOE[(X)F — (XM
ied k=1

Moreover,
2
N+2 *
(T, N, )| < Z GRSV A Mo B IV 4 126N

So again by induction, the error term is bounded by

le(J,N,h)| <> o Z e(JD N — kfhkﬂ IE[](X)F — (X)k|]

ied k 1
(N+2) * | N+1 N+1
+§E; vy M o (B Y + B,
(2

a

It is apparent that (4.1) is tedious to apply in reality. To do the recurrence for the
set J, we need to know the zero order approximation of all its subsets. In addition, we
should calculate the normal expectation where the variance is not the same with the
variance of the Stein’s equation. So Proposition 3.3.24 does not apply here to calculate
@, (2™ fh,o(2)), which makes the calculation become much more complicated.

4.2.2 The second method

In this subsection, we propose a refined method to improve the first one in the previous
subsection. As shown in the previous subsection, since the Taylor expansion is made
around the point W}i), at each step, we have to eliminate one variate and calculate
a normal expectation function with the reduced variance. This increases significantly
the calculation, especially in the exogenous case. Therefore, it’s natural to propose a
solution by changing in (4.3) the term E| (kH)(W} ))] with some expectation function

on Wj;. This procedure introduces an additional error term. So the objective is to

1) find the relationship between E[f(W ®)] and E[f(W)];

2) estimate the error of the above step.

We introduce the following notations. Let X and Y be two independent random
variables and let f be a N + 1 times derivable function. We denote by §(N, f, X,Y")
the error of the N*'-order Taylor’s formula in the expectation form, i.e.

N
E[f(X+Y)] =
k=0

E[Yk]

T ELSPXO] 6N, £, XY, (44)
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Recall the Taylor expansion (in [60] for example)

1 1
fX+Y) Zf(k — + ﬁ/ (1 =)V V(X 41y )y N Har. (4.5)
By taking the expectation of the above formula, we obtain directly (4.4) since X and
Y are independent and we get

1 [l
SN, £.X.Y) = / (1= VE[FVH (X + o)y N, (4.6)
or equivalently

§(N,f,X,Y) = L /1(1—t)N‘1IE[(f(N)(X+tY)—f(N)(X))YN]dt. (4.7)

N =1l J,

We now present the key formula (4.8) of our method which writes the expectation
E[f(X)] as an expansion of E[f(X +Y)] and its derivatives multiplied by expectation
terms containing the powers of Y. We call (4.8) the reversed Taylor’s formula in the
expectation form. The main feature of this formula is that we treat the products of
expectation of functions on random variables X +Y and Y which are not independent.
This property makes (4.8) very different with the standard Taylor’s formula where
(4.4) is obtained by taking expectation of its corresponding form (4.5). However, we
show that the remaining term of (4.8) can be deduced from the remaining terms of
the standard Taylor’s formula.

Proposition 4.2.2 Lete(N, f, X,Y) be the remaining term of the following expansion

d Ji
B/ (0] = ESCOI (00 3 By ([ 2 +e v, £, v),
=1

dz1 J=(j1)eN?
[JI<N
(4.8)
where |J| = j1 + -+ + jq for any J = (5;) € N.&. Then, for any integer N > 1,
d (1)) E[Y7]
e(N£,X,Y)==> (-1 Y sV -3,/ X ][[— (49)
420 J=(ji)eN? o
|J|<N
Proof. Combining (4.4) and (4.8), we have
—EYH L
e(N£.XY)==) = —E[fOX)] - 6N, f,X,Y)
k=1 ’
d J T EY7]
Syt ST Ry T R
=1 I=(en =1



We take the (N — |J|)t"-order Taylor expansion of E[f(?D(X +Y)] to get

> EfP(X +Y)] (E[ )

J=(jy)eNd
= Z (E[f(IJI)(X)] + E[;k]E[f(JM)(X)] +0(N — |J|’f(\J\),X7Y)) (

JI=N
J=(j1)EN? k=1

IJ|<N
(4.10)
d ; d+1 :
E[Y7] / E[Y7]
— (190 (197
> (BA@0) (1] - ) +o3 (B ( 1=
J=(ji)eN? A=l J'=(j;)eNit! A=1
<N <N
d .
E[Y]
+ S(N =13, fID, X,y :
sy (1122
J:(JZ)EN* A=1
IJ|<N
(4.11)
The second term of (4.11) is obtained by regrouping E| ,k} in (4.10) with the product

term and the sum concerning & with the other sums. Multiplying (4.11) by (—1)% and
taking the sum on d, we notice that most terms disappear and we get

d Ji
Syt Y By (H%)

d=1 J=(j;)eNd =
13| <N
d .
; YJ E[Y 7]
_ SR B S(N — 3], D Xy
LTS SED DRI S T S V1
I= 1 J=(j;)eNd A=1

[JI<N

which implies that

(N £, X,Y)==0(N, £,X,Y) =Y (-1 Y o -3, P X ]] E[i./,jl]

1
N =
[JI<N

For simplicity of writing, we write |J| = 0 when “J € N?” by convention. In addition,
for the empty set 0, let [Ip = 1. With these conventions,

S 6V — 131,70, x ) TR s, g, x v,
JeN? =
|J|<N
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Therefore we get (4.9). O

Corollary 4.2.3 With the notations of (4.4) and (4.8), if f has up to (N +1)" order
derivatives and if fN1Y s bounded, then

1)
E[YN‘H]

5V, £, X1 <

LA

2)
e(N, f, X, V)| < |If

d>1 J= (]L)eNdl 1
|[J|=N+1

Proof. 1) is obvious by definition.
2) From 1) and Proposition 4.2.2, we know that

d .
E Y]L
e(NAX Y)Y > eV =13, fP X ) T Y7
420 J=(j,)eNd =1
|J|<N

E[yN—\J|+1] E[Y]l]
(N+1)
SLAP DR vyl
d>0 J= (1) eNd =1
|J|<N

which implies 2) by regrouping the product terms. O

Remark 4.2.4 1. Note that ¢ is relatively easier to study while ¢ is much more
complicated. Therefore, the above proposition facilitates the calculation.

2. The equality (4.8) allows us to write E[f(1W )] as an expansion of functions on
W. In fact, without specifying the explicit form of e, one can always propose
some expansion form with a remaining term which depends on N, X and Y.
The one we propose here is for the purpose to obtain the high order expansion
in Theorem 4.2.5.

Before presenting the theorem, we first explain briefly the idea how to replace the
terms containing f(W @) by those of W. Suppose that E[f(X)] has an expansion

Za] (FLVEfYX +Y)] +e(N, f,X,Y).
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Then by Taylor’s formula, we have

EYH
E[f(X +Y)] =E[f(X)]+>_ o B+ 0N, f, XY
k=1 ’
=E[f(X)] + (N, f,X,Y)
N E[v*] N—k '
+D (> as(rO B (X + 1))+ (N =k, [0, X,7)).
k=1 ’ Jj=0

In the last equality, we only need to make the (N — k)™ -order expansion of E[f k(X )]
to obtain the N*t-order expansion of E[f(X + Y)], . Multiplying by E[Y'*], we get the
sufficient order we need. It follows then

N N—k

E[f(X)] =E[f(X +Y)] - o (f M YE[fE (X + 7))

N
-3 E[Yk]g(]\r —k, f® X, Y) — §(N, f, X,Y).

The right-hand side of the above equation consists of an expansion on X +Y. The next
step is to regroup all the terms of E[f()(X +Y)] for 1 <1 < N to get the expansion.

We now present our main theorem.

Theorem 4.2.5 For any integer N > 0, we can write E[h(W)] = C(N,h) + e(N, h)
where C(0,h) = @4, (h) and e(0,h) = E[L(W)] — @4y, (h), and by induction

O ) = By (1) + S 1 S (v — o, )

=1 dzl J=(ji)eNd
|JI<N (4.12)

T EXM (B EXY
(l[[l Ji! >< Jd! !

and for any N > 1,

e(N,h)
n d—1 . ;
- J EX]']\ (E[(X;)] E[X}
=S 2N )t Y eV 3] ) (H X)) EX
i=1  d>1 J=(j,)eNd =1 Jd: Jd:
|JI<N
n N
—|—ZO‘22E e(N —k, [ W@ x Z (N, £, WD X7)
? h s Jho s <X g
k=0 =1

(4.13)

if all terms in (4.12) and (4.13) are well defined (here we use the conventions proposed
in the proof of Proposition 4.2.2).
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Proof. We deduce by induction. The theorem holds when N = 0. Suppose that
we have proved for 0,--- ,N —1 with N > 1. Recall that E[h(W)] = &4, (k) +

ZE[f(W*)— f1(W)]. We shall rewrite E[f;L(W*)] as an expansion on W. By making
Taylor expansion of E[f} (W) +X?)] at W® and then using (4.8) to write the (N —Fk)*-
order expansion of E| f}(lk+1)(W(i))] as functions of W, we get

E[f; (W + X7)]

=) 7 E[(X])*] + (N, £, WO, X7)
k=0 ’
N d 1
E[(X;)"] (1) (I+41) E[XT]
:Z A E[f +Z Z E[f, H ]ll
k=0 d>1 J=(j,)eN? =1
JI<N—k
+e(N —k, [ WO x) | +6(N, £, WD, X7)
(4.14)

Notice that the first term in the bracket when k = 0 equals E[f; (W)]. For the simplicity
of writing, we define the following notation to add the remaining summands when k > 1
of the first term to the second term as d = 0. To be more precise, let by convention

Z E[f}(l\JHkH)(W)] = E[f*+D(w)]. (4.15)

J=(j;)eN?
I[Nk

Using the above notation, we can rewrite (4.14) by separating the cases when k& = 0
and when k =1,--- | N and the remaining terms as

E[fp (W9 + X7)] — E[f4(W)]
N d j
E[(X;)"] d (131++1) E[X}] 4.16
zzik! St > El, T P (4.16)
k=1 d>0 J=(j;)eN? =1
[J|<N—k
J .
E[ X/
+ SOERTTYIT] [,;] (4.17)
dx1  J=(j)end = "
[JI<N
+Z e(N — k, f&) W@ X)) + (N, £, WO, X7). (4.18)

By interchangmg summations, we have

X* k E le
(4 16 Z Z Z E |J|+k+1)(W)] [( o ) ] H [ 'z ]
d>0 k=1 J=(j,)eNd A
IIEN—k
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E[(X))]
We then regroup =~ with the product term to get

* d ]l
J+1) X ]d+1 E[X
@16)=>"(-n* > E[Tw e
4>0 I (j)endt (Ja+1)! -1 a!
[JI<N
* d—1 ]l
_ JH—l X 3d] EX
:Z(_l)d 1 Z E (‘
dz1 J=(ji)eNd 1=1
[JI<N

Therefore, taking the sum of (4.16) and (4.17), we get
(4.16) + (4.17)

d—1 ; , ,
N qyd- (131+1) EX)T\ (EI(X})Y  E[(X:)]
=2 VT D BT (H i! ) < (Ja)! (Ja)! >

Ji:
dz1 I=(ji)eNd =1
[JI<N

At last, since we have proved the theorem for all N —|J| < N, we replace E| (‘J‘H)(W)]
by its (N — |J[)*® order expansion C'(N — \J|,f,(l|J|+1)) +e(N —1|J|, f(mJrl ) to obtain
(4.12). Finally, it suffices to notice that e(V,h) contains the terms in (4.18) and the
terms in the above replacement of lower orders. O

Corollary 4.2.6 The expansion of the first two orders are given by

1) ,
C(1,h) =, (h) + & ( (= — 2 Vh(z))E[X?
(1.1) = B () + @ (5 = i) JELX
2)
28 5zt ba? .
C(2,h) = C(1,h) + By, <<180§v ot 20%)@(@ - CDUW(h))> E[X;]?
334 .ZUQ
# 5%0 (o — 5 )h(@) ) (BIXG) — ELX7)
(4.19)
Proof. 1) is a direct result of the above proposition.
2) By (4.12),
C(2, 1 )+ Z (e e + o, ) EEE =Xy

Then it suffices to calculate @, ((%
w
O

—2)f) and @4, (fh ) by Proposition 3.3.24.
ow
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Remark 4.2.7 The first order correction given by Theorem 3.4.8 is a special case here
when N = 1.

4.2.2.1 Numerical result

We apply (4.19) to the call function and we present the numerical results for i.i.d.
random variables X;. Figure 4.1 and 4.2 compare the second order approximation
C(2, h) to other approximations: the first order approximation ®,,, (k) + C(1,h), the
first and the second order approximations by the saddle point method. The test is
the same with that for Figure 3.10 and 3.11. We observe that C'(2,h) provides better
approximation quality than C(1,h). It is of the same precision of the second order
saddle-point approximation.

In this case, similar with the first order approximation of the indicator function. We
can not obtain theoretically the approximation error estimation since the call function
is only one time differentiable. The explanation of this improvement should be similar
to that for the indicator function case.

Figure 4.1: Second order expansion for Call function, asymptotic case: p = 0.01, and
kE=1.

Approximation of E[(Wn—1)+], where p=0.01
0.24 T T T T

— binomial
1%t order corr. approx.
second order approx.
0.22 | — saddlet B
| _ saddle2

0.08 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

n

4.2.3 Estimation of the approximation error

In this subsection, we estimate the error bound e(NV, h) given by (4.13). The idea is as
below.
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Figure 4.2: Second order expansion for Call function: p = 0.1 and £ = 1. The second
order approximation of our method and the saddle-point method coincide.
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Procedure to estimate e(N,h):

1) The error term e(N,h) contains two types of terms. The first one consists of the
errors of lower orders e(N — k, ff(LkH)) where K = 1,--- , N. These terms can be
bounded by induction once the estimation has been established for 1,--- N — 1.
The other terms to estimate are 6(N, f;, W® X¥) and e(N — k fU€Jr1 W(Z) X;).
By Proposition 4.2.2,

N *
ZE[(X )*] S(N — &, 75D w0 x,)

0
N * d i
_ Z E[(ij‘ ¥ Z(_l)d Z S(N — 3, f(k-HJH-l (i),Xi) H E[?(!g]

k=0 a0 J=(j;)eNd =1 N
JI<N
d—1
I ) E[X]']\ E[(X})%
=> (=% > S(N — |3, f{THD (H ) [], |
a2l J=(jend =1 «
JJ]<N

Then, it suffices to consider the term 6(N — k, f,(lkJrl),X,Y) where k =0,1,--- ,N
for independent random variables X and Y to estimate the second type of terms.
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2) By the explicit formula (4.6) of 6(N, f, X,Y), we have

1
! /(1—t)N—kE[f,EN“)(X+tY)YN—k+1]dt.

(k+1) .
S(N =k, f X,Y)_i(N_k)! 0

If the growing speed of ff(LN+2) is controlled, then 6(N — k, f(kJrl X,Y) can be
bounded by some quantity containing the moments of X and Y. To be more

(N+2)

precise, if |fy | < c|z|™ + d where ¢ and d are some constants and m is some

integer, then

6N — &, 17V, X,Y)

1 1
M/O (1_t)N_kE[(C|X+tY‘m+d)|Y|N—k+1]dt

- 'Z< > Xy P /1(1 — t)yNhm=l gy
0

<

d 1
I, - YN—k’-i—l / 1—¢ N—kdt
T AR OB
! d
— E Xl]E YN+m—l—k’+1 E YN—k-i—l‘
;l!(N+m—l—k+1)! [XTIELY] gy LR

The last equality is because
1 —DY(N —k)!
| — Nkt .
/0( ) (N+m—-1—-k+1)!

We replace X by W® and Y by X; or X7. The leading order concerning the
moments of |X;| or | X¥| is N —k + 1. Hence if we suppose, in addition, that W

has finite moments up to order m, the estimation is of the right order, that is, the
approximation error of the N*® order expansion is of the same order with E[| X, |V 1]

and E[|X;|V*1], which is O(\/_NH) in the binomial case. Note that the growing

speed m of | fh | intervenes in the moment condition of the sum variable W.
3) Estimate the growing speed of | f,(lN+2)| with respect to that of h.

4) Discuss the first type of terms e(N —k, f }(Lkﬂ)) using estimations in the above steps.

| f,(lN+2)|. We shall develop techniques

Therefore, our main objective is to estimate
which have been introduced in the subsection 3.3.3 and we work with the function
fh defined by (3.28) instead of with f} directly since the derivative functions are not
necessarily centralized.

In the following, we first present the necessary conditions for A under which we can
deduce the N*'-order expansion. We then study respectively the regularity of fh given

A}(LNH) at infinity. At last, we summarize

these result to discuss the estimations of e(N — k, f,(lkﬂ))

the function h and the growing speed of

at the end of this subsection.
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4.2.3.1 Conditions on h for the NtP-order expansion

The objective here is to determine, given an integer N > 0, for which functions h we
can take the N*™-order expansion.

In subsection 3.3.2, we have introduced the vector space & for fh The definition of
this function set specifies in fact the functions we are interested in. We now extend the
notion to a larger context. Let R, = R\ {0} be the set of all non-zero real numbers.
Let ,%’fjo be the vector space of all functions h defined on R, which are locally of finite
variation and have finite number of jumps such that

/|P(:E)h(:n)‘qbg(a:)]1{z>a}d:p < 400

for any polynomial P(z) and any real number a > 0. Notice that #C is a subset of
& and contains all functions in & which are of polynomial increasing speed at infinity.
Obviously, if h € 20, then EL is well defined. Compared to the definition of &, the
additional condition concerning P(z) is for purpose that the increasing speed of the
auxiliary function fh is controlled.

In Theorem 3.4.8, we have supposed the boundedness condition of f f(Lg) to estimate
the first order approximation error. In fact, this condition can be relaxed to the “call

)

function” whose f}(l3 does not exist. This result leads us to propose, in the general

case, for any integer N > 0,
AN = {h | h:R, — R having up to N*® order derivatives such that AN) € 720},

The indicator function I, belongs to 0 and the call function C} belongs to 7.
Heuristically, we shall make N*"-order expansion for functions in the set 7.

4.2.3.2 The regularity of fh

In this subsection, we shall prove that EL € ANTLif h € SN, Then, by definition

of #, we know that A;ENH) has finite number of jumps. Therefore, when |z| is large

enough, f}(LNH) is well defined.
To prove this, the idea is more or less shown in the proof of Proposition 3.3.20. We

now summarize and generalize it as follows.

Procedure to estimate ﬂLN+1).'

i) we generalize Corollary 3.3.18 to write f,(lN) as a function of ]A‘iﬂ(h), fpz(h), cee fi’*N(h),
(Proposition 4.2.10);

ii) we write T'V(h) as a function of h, b/, --- ,hY), (Proposition 4.2.11);

iii) we study ﬁNH) using i) and ii), (Proposition 4.2.13).
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We remark that the above procedure proposes a method which provides the suitable
order of the estimation. No special effort is made to improve the constants in the upper
bound in this chapter.

We first show that ]A‘}N(h) is well defined if h € .

Proposition 4.2.8 For any integer N > 1, we have N C SN"1. Ifh € AN, then
1) fh s well defined;

2) T'(h) € N1,

3) pr(h) is well defined.

Proof. 1f h € N, then V=1 is a continuous function. Let a > 0 be a real number.

Then ANV (z) = W=D (a) + / AN (£)dt for z > a. Let P(z) be any polynomial.

By Fubini’s theorem

/oo|h(N_l( )P (2)|¢g (z)dx

<@ [ 1P@ @z + [ an o) [ 1P@)6 s

By integration by part, there exists another polynomial Q(t) such that

“+oo
/t P(@)[¢0 (@)dz < Q(t)d0 (1)

for any ¢ > a. So we know that [ |WN=D)(2)P(x)| ¢ (2)dx < +o0. Similarly we can
prove that / |P(2) RN (2)|¢p (x)daxr < +00. Therefore f € N1

—00
1) If h € 2N then by the argument above, h € 0. So fy is well defined.
2) By definition, if h has up to N*® order derivatives, then I'(h) has up to (N — 1)
derivatives and

AN N (k)
) V) = (M) =S A

X
k=0

Then for any polynomial P(x),

N
_ N!
/\F(h)(N D () P(x)] 6o () Lyjy)aydo < ZW/\P(@“N 2)| 6o (2) L {js)>ap dz.
k=0
Since h € SN C N~1 C ... C 0, the integral above is finite, therefore I'(h) €
SN,
3) By 2), I'N(h) € £, which deduces 3). O
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Remark 4.2.9 From the proof of Proposition 4.2.8 we observe that if f is a function
in 22N then for any polynomial P(z), P(x)f(z) € . Furthermore f(z)/z € N
and f'(x) € N1,

We have shown in Corollary 3.3.18 that ﬁL(w) = :L‘]A‘}(h) (x) and we’ve remarked
that since I'(h) grows more slowly at infinity than h, this equality enables us to get
the estimations of the right order which are difficult to obtain by using directly the
Stein’s equation. On the other hand, the above equality yields that

n(T) = (l’fr(h)(m)), = $2fr2(h)(33) + frm)(T);
and
3 ~ ~
A;(l (@) = @ fra(ny + 32 frem)
and so on, which suggests the existence of a general formula of f}LN). The following
proposition gives this result.
Proposition 4.2.10 For any h € SN we have the following equality:

[N/2]

N N ok T
@ =3 <2k> 2k — DN fv g (@). (4.20)
k=0
Here we use the convention (—1)!I =1

Proof. The equality (4.20) is clearly true when N = 0. Suppose that we have verified
(4.20) for 0,--- , N, then for N + 1, we have

i ) = (B @) =) @) (2h = DN Fov-ny)

k>0

: (4.21)
=2 @D (2k — DU v ()

k>0
"’Z <;\]7€> (2% — 1)”((]\7_Qk)xN—Qk—lfFN_k(h)) (4.22)

k>0

Changing the index | = k + 1 in (4.22), we get

(4.22) =) (21Ji 2) (21 — 3)!! ((N — 21+ 2)zV —2”12}N4+1(h)).

Hence

(4.21) + (4.22) = 2V frwvia g (@)

3 Kzz]i 2) (20 — 3)(N — 20 +2) + @;) (20 - 1)!!} eV frn i gy (@),

>1
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On the other hand,

<2z]i 2) (20 = 3)(N — 20+ 2) + @) (21 — )N

N! 1 1
- (2z_2)!(N_2z)!(21_3>’<m + 27)
N! N+1 N +1
-G 1)!(N_2z)!(21_ 1)!!m = < ol )(21— .

As a consequence,

~ N+1 r
“;(lN-i-l)(m) _ $N+1er+1(h )+ Z ( + > 1)!!1:N+1—2szN+1fl(h)(a:)

>1
N +1 o
= Z < 9 >(2l — 1)!!1‘N+1 2lf1'\N+1—l(h) (I‘),
1>0
which ends the proof by induction. O

We are now interested in the growing speed of I'V (h) with respect to the derivative
h®V) . By definition,

h(éﬂ))' W(x) _ h(z)

Then

2 x3 zt

[ = ((P(h)(x))) _ W) 3 (@) | 3h(r)

The general formula is given below.

Proposition 4.2.11 For any h € N,

N _
=) (-D)F2k -1 H<N+k>w. (4.23)

2k rN+k
k=0

By convention, (—1)!l = 1.

Proof. We will prove the theorem by induction. When N = 0, the theorem is evident.
Suppose that we have proved for 0,--- , N, then by the linearity of I', we have

2k

- i(—l)k(% — 1) (sz k) (%)'

N (N—k)
TN+ (h) = T(TN () = Z(—l)k(% -1 (N - k>r(h$1\fﬁ)



We write TV+1(h) as the sum of two terms

N (N—=k+1) (4
PY* () =) (~1F(2k - 1)! (N;]: k> thk-i-l() (4.24)
k=0
N _
+ ) (=DM (2K - 1)!!<N2Z k> (N +k+ 1)%. (4.25)
k=0

Changing the index | = k + 1 in (4.25), we obtain

N—+1 _
(4.25) = i(—l)l(m —3)!1<N+l_ 1>(N+l)w'

9l —9 T NFIHT
=1
Then
h(N+l) T h(x
FN+1(h) _ le() + (_1)N+1(2N + 1)”—382](\['22
N
N+l N+1l-1 AV ()
l
+> (1) [(21— 1)!!( o > +(2l—3)”< ol — 9 >(N+l)}w-

=1

Notice that

(21— 1)1 <N2l+ l) (21— 3)! <N2l+$ 1) (N +1)

— (21 - 3)!!(2”!((%3); o (-1 —1+1)+ 2020 - 1)
N+1l+1
:(21-1)!!( N )

Then we get

AN+ (z)  TH N 4141\ A=) ()

N+1 l

IM(h) = —x—+ D _(-1) (21-1)!!( o )W
=1

= Dior (N A1+ D (@)
=2 Ve DTy )

By induction we have proved the theorem. O
Our objective is to estimate A;LN”) for a function h € #N. From Proposition
4.2.10 and Proposition 4.2.11, we can write f}lN) as some linear combination of the

terms f,v-1 wherel =0,1,--- , N. However, we can not estimate these result directly
2 NFI

since we know the properties on AN+ but not on Al

N+2) and there will be one term

we can not study. The solution to this problem is similar with that for the “call”
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1)

function, that is, we calculate f}(lNJr by using Proposition 4.2.10 and Proposition

4.2.11. Then we use the Stein’s equation to get A;LN”). This estimation is given by

Proposition 4.2.17.

Lemma 4.2.12 If h € J#°, then f,, € ).

Proof. By Stein’s equation, f;’L = U%(:rﬁ — h). Since h € 0, we know that f;L is
locally of finite variation and has finite number of jumps. It suffices to verify that
J1P(x)x fr(x)|¢o ()| 1Lfjz)>aydz < co. In fact, by (3.28), for any a > 0,

(e}

| P < [Pl ([ @ientdt)ds
< [ ([ 1P@iar) moionya

We know that there exists some polynomial function @ such that f; |P(x)x|de < Q(t).
Since h € 0, we know that the above integral is finite. The case when a < 0 is
similar, which follows the lemma. O

Proposition 4.2.13 For any h € N, f, € N+,

Proof. We need to prove that ﬁNH) € 0. By using Proposition 4.2.10 and sepa-
rating the first term with the others, we have

[N/2]

- N -
=1

Since I'N(h) € S0, we only need to discuss the derivative of the first term. By Lemma
4.2.12, frnpy) € L. Therefore, f}(LN) € !, which implies that A}(LNH) belongs to
Y. O

(o

Remark 4.2.14 Suppose that h is a function in S#° which agrees with a function in
A} when |z| is sufficiently large. (It is equivalent to suppose that the continuous part
is in 7). Then ﬁL agrees with a function in 7! when |z| is sufficiently large. In
fact, by Stein’s equation, }’;’L = L (zfa(z) — h(z)). Since zfy(z) € H#,}, we know that
f7, agrees with a function in A} when |x| sufficiently large since it is the case for h.

(N)

More generally, if h is a function in 2" such that h"V) agrees with a function in !

(i.e. h agrees with a function in JZN*1) when |z| is sufficiently large, then it is the

same thing for A;LNH) f}(LNH)

. Therefore, we can study the behavior of at infinity.
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F(N+2)
h

4.2.3.3 The growing speed of at infinity

In the following we shall study the increasing speed (the order) of the auxiliary function

A}(LNH) when knowing the order of h and its derivatives. Here we are only interested

in the order of the error estimation, but not the bound constant.

Lemma 4.2.15 Let h € SN such that h\'N) (z) = O(|z|™) (x — o), where m > 0 is
an integer. Then for any integer 0 < k < N,

1) KN=R () = O(|a]™+F);
2) TNH(h)(z) = O(Jz[™~N*2F)

Proof. 1) By induction it suffices to prove that A=Y (z) = O(|z|™*1). In fact, for
any > 1, we have

AN (z) = hV=D(1) + / AN (H)dt = O(z™F).
1

The case when = < —1 is similar.
2) By Proposition 4.2.11 and 1) we know that

Nk (p, _N_ko || R — O(|g | N2k
()= 3 O(|g=rry) = Ol V).
=0

Lemma 4.2.16 Let h € 20 and m be an integer. If h = O(|z|™), then fn =
O(lz[™1).

Proof. By Proposition 3.3.5 we may suppose that h(z) = 2. The lemma holds for
m < 1 by Corollary 3.3.19. When m > 1, suppose that we have proved the lemma for
m < M where M € N, then for any m < M + 2, we have by Stein’s equation

fam (@) = 271 (@™ + 0% flm () = 2™ + 0% fr gy ()
=2 4 0% (m — 1) fym2(z)
=21+ O(|2|™ %) = O(J«|™ ).

|

The following proposition gives the order of the derivatives of fh We treat the
case for fél) where [ = 0,--- , N + 1 and the case for f;NH) differently. The former
is obtained by a standard method combining Proposition 4.2.10 and 4.2.11, together
with Lemma 4.2.15. For the latter, we shall use the Stein’s equation.
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Proposition 4.2.17 Let m be a positive integer. Suppose h € %N agrees with a
function in AN when |x| is large. Suppose in addition that hN+tY = O(|z|™1)
and when m = 0, h®) is bounded. Then

1) for any integer 0 <1 < N +1, ]?;(LNH_Z) _ O(]x|m+l_2);
N+2) .
2) Y2 () = ol ).

Proof. Since we discuss the behavior when |z| is sufficiently large, we may suppose
h € 2N+ and then we can use I'V*1(h) etc.
1) By (4.20) we know that

F(N41-1)
h

N+1-1 ~
( +2k )(2%-1)!!:5N+1—l—2’“fm+1lk(h)(x). (4.26)

Since AN = O(jz[™ 1) and M) = O(|z|™) we know by Lemma 4.2.15 that for
any 0 < k < (N 4+ 1 —1)/2, TNH=I=k(p) = O(|x|mN+2(-:+0)=2)  Therefore by
Lemma 4.2.16, pr+1—l—k(h) = O(|z|m~N+2(k+D=3) " So we know that A(NH D(z) =
O(|jz|™*=2).

2) We let [ = 0 in (4.26) and separate the leading order term with the others to get

(55

N ~ N +1 ok 7

i V(@) = 2N gy + Y < 2k ><2k—1>u:cN+1 F vk (@) (427)
k=1

Deriving the two sides of (4.27) and making a change of indice as in the proof of the
Proposition 4.2.10, we obtain

[+

~ N +2
A;(1N+2) (z) = xN+1f1/'\N+1(h) + (

ok >(2/€ - 1)!!$N+2_2kfr‘N+2—k(h) (x),

B
Il

1

Since AVHD = O(|z|™ 1) and AN = O(|z|™) we know that for any 1 < k < (N+2)/2,

N2k (p) = O(|z|™N+2k—4). Therefore frnsa- wny = O(lz[™™ N+2k=5) " So we know
that iz
N—|— 2 _ e m—
5o (Mo )k = Y sy () = O],
k=1

By Stein’s equation,
- 1/ ~
froneagy = ) (fL“erH(h) - FNH(h))-

By Lemma 4.2.16, we know that the order of ffwﬂ(h) is the same as that of TN *T1(h),
which equals m — N — 2. So finally we get f,(lNH O(|z|™1). O
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Remark 4.2.18 1. When m > 1, AN*D = O(jz|™ 1) implies hY) = O(|z|™)
by Lemma 4.2.15. However, this is not the case when m = 0. Therefore, we
introduce explicitly the condition that A(") is bounded if m = 0.

2. By using the Stein’s equation in the last step, we obtain the order of A;ENH)

which is 2 degrees higher than what would have been obtained by using our
previous procedure if there were enough regularity. This is in fact already shown
by Proposition 3.3.20 where h € 0 and h(x) = O(|z|), that is, N = 0 and
m = 1. Then f' " (z) = O(|z['"1) for 1 = 0,1 and f = O(|z[").

We now specify the conditions on A in Definition 4.2.19 under which we can obtain
error estimation for the N*® order normal expansion of A(W). These conditions specify
the regularity order and the growing speed order of a function h. We note that by
definition of the set #0, h is defined on R, = R\ {0}, therefore, we have to discuss
the point 0 separately.

Definition 4.2.19 Let A : R — R be a function, IV, m be positive integers. We say
that h satisfies the condition P(N, m), denoted by h ~ P(N,m), if

1) h has up to N th_order derivatives in a neighborhood of 0;

(N)

2) h) is locally of finite variation and also is (hio

)/ in a neighborhood of 0;

3) hlg, € N, and B € 0,

cont

4) k™ (z) = O(jz|™) and (h{))) = O(ja|™ ).

cont

In the above definition, the meaning of the integers /N and m have been discussed pre-
viously. We also need some regularity conditions around the point 0 which is specified
by 1) and 2).

To estimate e(N,h), we should be capable to estimate e(N — l,f,(llﬂ)) for I =
1,--- , N. Therefore, we estimate by recurrence and we need to verify that f ,(JH) satis-
fies the above conditions. The following proposition gives parameters in the conditions
satisfied by fj and its derivatives.

Proposition 4.2.20 Let h: R — R be a function such that h ~ P(N,m).
1) For any mi > m, we have h ~ P(N,m1);
2) for any integer 0 < k < N, h®) ~ P(N — k,m);

3) fr~P(N +1,m);
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Proof. The first two assertions follows immediately by definition. For 3), we know by
Stein’s equation that f; = o=%(xfy, — h + ®,(h)). By induction we know that f has
up to (N + 1)th derivatives. In addition, ff(LNH) is locally of finite variation, and the
derivative of its continuous part is also locally of finite variation. So condition 1) and
2) in Definition 4.2.19 is satisfied.

Moreover, notice that f|lr, = ]?B Since h € SN, also is h. So by Proposition
4.2.13, }% € ANTL Since hg)\;)t R, € HC}, by Stein’s equation fé = o 2(xf; — h), we

know that the continuous part of f"}bNH) lies in .#Z!. Finally, by Proposition 4.2.17 and

Remark 4.2.18, we know the growing speed of f}(LNH) and ( f}(LNH))’COm, which follows

that 4) of Definition 4.2.19 is fulfilled. O

4.2.3.4 Estimation of e(NN,h)

We now estimate e(N,h). We shall give estimations of the remaining terms § and &
in Proposition 4.2.21 and Proposition 4.2.23 respectively. Proposition 4.2.25 gives the
estimation of (NN, h) in the recurrence form by summarizing the previous results.

Proposition 4.2.21 Let g be a function satisfying the condition P(N,m), X and Y
be two independent random variables such that E[|X\(m_1)+] s bounded. We suppose
that ¢ and r are two positive constants such that X wverifies the concentration inequality
for any real numbers a < b, i.e.

Pla< X <b)<clb—a)+r.

If0 < k < N is an integer, then |§(N — k,g"®) X, Y)| can be bounded by a linear
combination of the form

(m—1)*
k - ] —
> UPEYVH ) 4 v OE(Y VR,
=0

where U](k) is a constant which depends on g, ¢, k and E[|X|(m—1)+—j], V&) s a
constant which depends only on g and k.

Proof. By Taylor’s formula 4.7, we have

1
S(N—k,g® XY) = ),/ (1—t)N_k_1E[(g(N)(X+tY)—g(N)(X))YN—’“}dt,
- JO

(N k-1

Since g ~ P(N,m), let u = géﬁ)t, v =g

— u. We shall discuss the two parts sep-
arately. For the discrete part, by definition, v has finite number of jumps and is of

the form v(x) = Z]Ail €j (oo, k(). By (3.48), we know that v(X +1tY) —v(X) =
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ij\il €511 K, —max(ty,0)< X< K; —min(£Y,0)} Moreover, by the concentration inequality hy-
pothesis,

E[lo(X + 1Y) —v(X)| | Y] < i 51 (et +7)
j=1

So there exist two constants A, and As such that

1
m /0 (1- t)N_k_lEUv(X +tY) — U(X)|\Y|N_k}dt
M
= m@:} =i1) (¢ /01“ =) B[V T /01(1 — N[y V)

< AE[Y [N+ AgrE[|Y N

where A1 and Ay depend on the total absolute jump size of the function g and the
integer k. In addition, A; depends on ¢ and A, depends on r. For the continuous part,
u is differntiable. Then we get by comparing the remaining terms of (4.6) and (4.7)

1 1
m /0 (1- t)N—k’_lE[(u(X +1tY) — U(X))YN_k}dt
‘ (4.28)
= ﬁ /1(1 — t)N_kE[u'(X i tY)YN_k+l]dt.
— k) Jo

Since v/(z) = O(|z|™™1), when m > 1, there exist two positive constants A3 and A4
such that

m—1

1 . .
|u'(X + tY)| < A3 + A4 Z <m . >|X|m_1_]|tY|J.
=0~/
Then
1 ! _ _
(428) < m(Ag/O (1 —t)N kdﬂEHY’N k+1]
m—1 m—1 1 ) . )
racy (1) [ oY rwamxn gy )

=0

When m = 0, then u is a bounded function. We have

2wl Nk [T ANk
(128) < = FLElY ]/0(1 HNF1gs

Combining the above cases, we obtain the proposition.
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Remark 4.2.22 We shall replace X by W and the concentration inequality is given
by Corollary 3.4.5. So we know that

N

_sou 25BN (2 yEanm)
ow ol o3
In the ii.d. Bernoulli case, this term is of order O(Ln), which ensures that [0(N —
k,g®), X, Y)| is of the order O((ﬁ)N_k“).
Proposition 4.2.23 With the notation and the conditions of Proposition 4.2.21, we

have
d i, (m=D7F
E[[Y]""] (171)
(N, g, X, <> > ] - ( gUDE(|y N1 Ly (DR [y | V- uq)
d>0 J:(jl)eNg =1 =0
JI<N

(4.29)

where Ui(k) and V®) are the constants in Proposition 4.2.21.

Proof. 1t is a direct consequence of Proposition 4.2.21 and Proposition 4.2.2. O

Remark 4.2.24 Proposition 4.2.23 shows that (N, g, X,Y)| is of order O ((ﬁ)NH).

Using Proposition 4.2.21 and Proposition 4.2.23, we can obtain an upper estimation
bound of e(N, h) given by (4.13). The following result shows that it is of the correct
order in the binomial case.

Proposition 4.2.25 Let h ~ P(N,m). Suppose that X1,--- , X, are i.i.d Bernoulli
random variables and that W = X1 + --- + X,, is of finite variance, i.e. ow < 00.

Then 1 N+1
e(N,h) ~ O ((%) > .

Proof. We shall prove by deduction. When N =0, h ~ P(0,m). We have |e(0,h)| =
[E[A(W)] = @, (h)| = o3/ EB[| 1 (W*) = f(W)]]. By Proposition 4.2.20, f, ~ P(1,m).
Let u = (f})cont and v = f; —u. Then [e(0,h)| < E[|u(W*) — u(W)|] + E[[o(W*) —
v(W)|]. From Proposition 3.4.6, we know that E[|v(W*) — v(W)|] ~ O(ﬁ) On the
other hand, u' = O(|z|™ 1),

1
E [Ju(W*) —u(W)]] g/o E[|u’(W(i)+tXf)Xf|]+E[|u’(W(i)+tX1)X1|}dt~O(%).

Suppose that we have proved for 0,1,--- , N — 1. Since h ~ P(N,m), we have fj ~
P(N + 1,m), which implies that f; ~ P(N m) and fth ~P(N — k,m). We apply
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s " . n 2N E[(XH)H]
Proposition 4.2.21 and Proposition 4.2.23 to obtain that Y7, 07 > _o ——¢(N —

B £, WO, X0) and Y, 026(N, £, WO, X7) in (4.13) is of order O((J=)N*Y).

Moreover, we have by recurrence that e(N — |J|, f,(ll']lﬂ)) ~ O((ﬁ)m“), which im-
plies that e(V, h) is of order O((\/I—)NH). 0

n

4.3 Poisson approximation

This section deals with the asymptotic expansion of E[h(W)] by the Poisson approxi-
mation. We shall show that our method can be adapted without any difficulty in the
Poisson case. The results obtained are very similar with those of the previous section.

4.3.1 Preliminaries

4.3.1.1 Framework

Chen [15] observes that a Nt-valued (non-negative) random variable Z follows the
Poisson distribution, i.e. Z ~ P()) if and only if

E[Zf(2)] = AE[f(Z +1)]

for any bounded function f. This similarity with the normal case motivates us to
define the zero bias transformation in the Poisson case. In the following of this section,
Z represents a Poisson random variable.

Definition 4.3.1 Let X be a random variable taking non-negative integer values and
E[X] = XA < co. Then X* is said to have the X-Poisson zero biased distribution if for
any function f such that E[X f(X)] exists, we have

E[X f(X)] = AE[f(X* + 1)]. (4.30)

Example 4.3.2 Let X be a Bernoulli random variable with P(X = 1) = pand P(X =
0) =q=1—p. Then

%E[Xf(X)} - I—l)(pf(l)) ~ 1),

which means that X* exists and has the Dirac distribution dg.

Remark 4.3.3 We here consider the standard Bernoulli random variables instead of

the asymmetric ones.
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Proposition 4.3.4 Let X be a random wvariable taking mon-negative integer values
with finite expectation A > 0. Then there exists X* which has the X-Poisson zero bias
distribution. Moreover, the distribution of X™* is unique and is given by

a+1

P(X*=a)= 3

P(X =a+1), (4.31)

Proof.  We first prove the uniqueness. Let f(z) = 1,411} in (4.30) where a € N,

then we have
AP(X*=a)=(a+1)P(X =a+1).

So the distribution of X* is uniquely determined.
Let X* be a random variable satisfying (4.31). Then for any NT-valued function f
such that E[X f(X)] exists, we have

SEIXF(X)] = 1 SOP(X = a)af(a)
a=0

_ %ZP(X —a+1)(a+1)f(a+1)=E[f(X* +1)].
a=0

So X* has the X-Poisson zero biased distribution. O

Proposition 4.3.5 1. For any integer k > 1,
*\ Kk 1 k
E[(X™)] = XE[X(X —1)"). (4.32)
In particular, E[X*] = E[X?] — 1.

2. Let X* be a random variable which has X-Poisson zero bias distribution and is
independent with X. Then for any function f which takes non negative integer
values such that E[|f(X* — X)|] < +o0,

* ]' S
E[f(X" - X)) = {E[Xf(X* - 1)] (4.33)
where X5 = X — X and X is an independent copy of X. In particular, for any

integer k > 1 such that E[|X* — X |¥] < 400,

E[|X* - X|*] = %E[X|Xs - 1%]. (4.34)

Proof. 1) Let f(z) = (x — 1)*, Then (4.32) follows immediately by definition.
2) For any a € N, we have by (4.30)

E[/(X" — )] = $E[X/(X a1,
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Since X* and X are independent, we know that

* ]' S
E[f(X" - X)) = $EIXS(X* ~ 1),
where X is an independent copy of X. (4.34) is then a direct consequence. O

The Poisson zero bias transformation for the sum of independent random variables
is given in the same way as in the normal case.

Proposition 4.3.6 Let X;.---,X,, be independent random variables with positive ex-
pectations A1, -+ ,An. Denote by W = X1+ -+ + X, and \yy = E[W]. Let I be a
random index independent of X; satisfying

P(I=1i)= X/ \w.

Let X! be a random variable having the X;-Poisson zero bias distribution and inde-
pendent of all X; and I. Then w4 X7 have the W-Poisson zero bias distribution
where W& =W — X;.

Proof. The proof is the same with that of Proposition 3.2.10 by replacing the normal
zero bias transformation with the Poisson one. O

Corollary 4.3.7 With the notation of Proposition 4.3.6, we have

1 n
E[[W* = W[F] = — Y "E[X;| X} — 1]]. (4.35)
Aw S
Proof. (4.35) is direct by (4.34) and Proposition 4.3.6. O

In the following, we denote by Py(h) = E[h(Z)] where Z ~ P(A). For any N*-
valued function h such that Py(h) is well defined, we introduce the Stein’s Poisson
equation given by Chen [15] as below:

zp(z) — Ap(z + 1) = h(z) — Pa(h). (4.36)

where p is an auxiliary function. The solution of (4.36) is given by

p(a) = IS 2 ()~ Pa). (4.37)

i=a
It is unique except at a = 0. However, the value p(0) does not enter into our calculation
afterwards. There exists a recurrence form of the solution given by

p(1) = w’ cpla+1) = Pa(h) = hg\a) ‘Hlp(a).
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In the following, we denote by pj » or simply by p;, when there is no ambiguity the
solution (4.37). Combining (4.30) and (4.36), we obtain, for any random variable W
with expectation Ay < oo,

E[h(W)] = Pry () = AwE[pp(W* + 1) — pp,(W + 1)]. (4.38)

4.3.1.2 First order estimation

We obtain immediately a first order estimation under this framework. In fact, Le
Cam (1960) showed that for independent Bernoulli random variables X1, --- , X,, with
P(X; =1) =p; and P(X; = 0) =1 — p;, we have

[E[L(W)] = Pay | < 201001}

i=1

where W =3"" | X; and Ay = >, ; pi- Chen [15] used the Stein’s method to obtain
a similar result where 2||h|| is replaced with 6//A|| min (()\W)_%, 1) since he proved that
: _1
| Apn| < 6]l min ((Aw)~2,1).
Combining (4.38) and (4.35), we obtain immediately that for any N*-valued ran-
dom variables X1, --- , X,, and any N*-valued function h,

[E[R(W)] = Pryy ()| < Aw || App[E[[W* — W]

' 1 n ~ 4.39
S6Hh”m1n<\/T_W,1)ZE[Xi‘Xi—l_XiH 439
=1

where )Z'Z is an independent duplicate of X;. In particular, if X; is a Bernoulli random
variable of parameter \; = p;, then E [|W* - W|] = ﬁ v p?, which corresponds to
the result of Le Cam and Chen.

4.3.1.3 Some properties in the discrete case

We now present some useful results in the Poisson calculation. On one hand, they are
comparable to those in the Gaussian case. On the other hand, the techniques used are
very different. We first recall the expansion formula of the difference method, which
is analogous with the Taylor expansion in the continuous case. In the following, we
denote by Ap(x) = p(x + 1) — p(x).

Proposition 4.3.8 For any integer k > 1 and m > 1, we have

p(x+ k) = Z <f> Alp(z) + Z ATz + jy). (4.40)

J=0 0<j1 < <Jm+1<k
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In particular,
k
k .
otk =3 (j)%(z) = (1+ A)p(a). (1.41)
=0
Proof. We shall prove by induction. When m = 0, (4.40) holds since

k—1

p(z+k) —p(x) =Y Ap(z +j).
=0

Suppose we have proved (4.40) for 0,1,--- ,m — 1, then

—_

m—

plx+k) = Z <I;> A7 f(x) + Z A"p(x + j2)

j=0 0<j2 < <gm41<k
m—1 k ' J2—1

=Y (Dan@s X (4 X A i)
j=0 J 0<ja< - <jm41<k J1=0

I
NE

(?)N‘pmw S AT ).

0<j1<<Jm41<k

[e=]

<.

In particular, if m >k, {0 < j; < -+ jms1 < k} is the empty set and the summation
term equal zero, which follows (4.41). O

In the discrete case, the difference A replaces the derivative, and in the place of

calculating the normal expectation for functions of the form xmpg), we are interested

in writing the Poisson expectation for functions of the form (:1) Alpy(x) as that for a
polynomial function of h(z). We first recall two simple results.

Lemma 4.3.9 1. For all positive integers a and b with a > b, we have

<Z> - <a21> + (Z: i) (4.42)

2. For any functions f and g,

A(f(z)g(x)) = f(z +1)Ag(x) + (Af(x))g(x). (4.43)

Proof. Direct calculations give immediately (4.42) and (4.43). O

Proposition 4.3.10 For integers m > 1 and [ > 0, suppose that
x
PA(<m> Alpy()) = Pa(Pni(A)R()),
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then we have the recurrence form

)\m
m - m!

m+1
((1 + Z)m - 1), Pm,l = Tpm'f‘lJ—l — Pm,l—l» (444)

Pm,O(z) =

and the explicit form

m ! _1\l—1i )
Poi(z) = %Z <l>( D7 (14 2yt 1), (4.45)

In particular, Py (z) = lilzlﬂ

Proof. When [ = 0, we have by definition and (4.37)

P ((:%)ph(»f)) => G_A)];—]: <k>w g %;(h(i) —Pa(h))

k>m

k—1)! >
N m' Z (k—m) Z: (h))
_)\ 00 7 ) )\
P = {LORED)
i=m k=

Then
PA((Z)%(Q?))
e — i\ A e i
=D 1)l<m>%(h(z) ~PAB) = 2 3 e (hE) = Pa0)
e~ X yi+m AT
= g (h(i +m) — Py(h)) = ! (Pr(h(z +m)) — Pa(h))
=0

= Pa(Fo (1 + A)h(x) — h(x))

Hence \m
Pm,O(Z) ol ((1 + Z) 1)



We verify that both (4.44) and (4.45) hold for [ = 0. We now consider the case when

I > 0. Denote by
2() = ()= ()= G5
m m m m—1
then we get by (4.43)

(= a{ (757 ) 575 o

On the other hand, by the invariant property of the Poisson distribution under the
zero bias transformation, we have

Palgle + 1)) = 1 Pa(eg(@)) (1.46)

which implies
Paag) =Px ((5 —1)9@).
Then

P (()or) =2 (G0 () ) =7 (672 )

Then it suffice to apply again (4.42) to get

(o) - ) (2o
() ) ()5

which means P,,; = mT‘H mt1,1—1 — Pp—1. which proves (4.44). To prove (4.45), we

deduce by induction. Suppose (4.45) is verified for 0,1,--- ,1 — 1. Replacing Py, 41,-1
and Py, ;1 in (4.44) by (4.45), we get

Pml( )

e B = e S ety B
(SO G S () e

=1 =

~ (=1 (=) i
+;<i_1>ﬁ(<”z> ! ‘1))

(4.48)
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The last equality is obtained by applying (4.42) to the second term of (4.47). At last,
notice that most terms cancel each other in the second and third terms of (4.48) and
we get (4.45). In particular, when m = 1,

l 1\I—i ,
P (z) = )\Z <l> (z }F)l (1+2)"" —1)

l
A I+1 L , A
= — —1)((1 i+l 1) = I+1
12 <i+1>( R

which ends the proof. |

4.3.2 Asymptotic expansion for Bernoulli random variables

In this subsection, we consider the case where X,--- , X, are independent Bernoulli
random variables with P(X; = 1) = p; and P(X; = 0) = 1 — p;. Then the expectation
Ai = p; and the Poisson zero bias transformation X follows Dirac distribution.

Lemma 4.3.11 For any integer number m > 0 and any function h such that (4.49)
is well defined, we have

h(W®)] ZAJ DIE[ATR(W)] + (=)™ TIAPHE[A™ (W )], (4.49)

Proof. Since X; is independent of W(i),
E[R(W + X;)] = pER(W D + 1)] + (1 — p)E[R(W )],

which follows
E[R(W®)] = E[L(W)] - pE[ARW )], (4.50)

So (4.49) holds for m = 0. Suppose we have proved for 0,1,--- ,;m — 1, then we apply
(4.50) to the term E[A™h(W )] to obtain that (4.49) holds for m. O

Proposition 4.3.12 Let E[h(W)] = C(N,h) + e(N, h), then

n

N
C(N,h) Z Z INTIC(N — j, Alpy(z + 1)) (4.51)
=1 j=1
where C(0,h) = Py, (h) and

ZZ ])\]+1 N ]7 A]ph(x+1)) ( 1)N+l Z)\f\f-i-?]E [AN+lph(W(l)+l):| .
i=1 j=1 i=1
(4.52)
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Proof. Since X follows the Dirac distribution dp and is independent of W@,
AWE[pr(W* + 1) = pp(W + 1)] ZA E[pn (WO +1) — pu(W +1)].

Applying Lemma 4.3.11 to E[p,(W® 4+ 1)], the first term when j = 0 cancels with
E[pr(W + 1)], so we get

E[h(W)] = Paw (h)

- Z Z J)\]-HE Agp (W + 1)] (— 1)N+1 zn: AfVHIE[ANth(W(i) + 1)]_

=1 j=1 =1

We then replace E[AJp, (W +1)] by its (m — j)*™ order expansion to get (4.51) and
(4.52). O

Corollary 4.3.13 The first two orders expansions are given as follows.

CLR) = Payg () = 5 (30 42) oy (4%0)

i=1

and

C(2.1) = Pay (1) = 53" N) Py (A7) + 3 (32 A Pay (A%)
=1

=1
1, < 2
+§(ZA§) Py (A%R).

i=1
Proof. 1) By (4.51), C(1,h) = Py, (h) — (X1 M) Py (Aps(z + 1)). Combining

(4.46) and Proposition 4.3.10 with m = [ = 1 follows
1 1
Pow (App(z +1)) = WPAW (zApp(z)) = §7>AW(A2h).

2) The calculation is similar. (4.51) yields
C(2,h) = Py, (h Z)\Q (1, App(z + 1)) Z)\?’ (0, A%py (z +1)).

Then it suffices to calculate

O, Apu(ar + 1)) = Payy (Apne + 1)) — 5( 3 NPy, (Bpag, ey +1))
=1

= 5P (A3 = (3P (84)

=1
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and C(0, A?py(z 4 1)) = 1Py, (A3h). O

The asymptotic expansion in the 0 — 1 case has been discussed by many authors.
The first two orders expansions given in Corollary 4.3.13 corresponds to those in Bar-
bour, Chen and Choi [5]. The second and higher orders expansion have been obtained
by Barbour [4] and Borisov and Ruzankin [11].

4.3.3 The general case

This subsection deals with the general case where X1, --- , X, are N*-valued random
variables. Similar as in the normal case, we introduce the following notations. Let
X and Y be two independent NT-valued random variables and p any function on
non-negative integers. Then we denote by §(N,p, X,Y) the remaining term of the
N*'_order difference expansion of E[p(X + Y)]

N Y
B+ 1)) = B[ )| Blatn0n] + . p .1 (1.53)
k=0

which implies, by (4.40), that
§(N,p, X,Y) =E| > ANTIp(X + 51)]. (4.54)
0<j1<<jn41<Y

The following expansion (4.55) gives the reversed Taylor’s formula in the Poisson
case, which enables us to write E[p(W®)] as an expansion on W. The relationship
between ¢ et § is also given below. Compared to (4.8) in the normal case, the form
differs only slightly:

1) the differences replace the derivatives of the same order;

E[Y ]
Ji!

2) the terms E[q)] replace

Proposition 4.3.14 Let N be a positive integer. Let e(N,p, X,Y) be the remaining
term of the following expansion

EBCOI = BpCC+ Y]+ X0t S Ealac v T[] )]

i
d>1 J=(j;)eN? =1 J
|JI<N

(4.55)

+e(N,p, X,Y)

where for any J = (5;) € N¢, |J| = j1 + -+ jq. Then

ENp. X, Y)=-> (-1t Y 6(N—|J],A|J|p,X,Y)HE[<Z>]. (4.56)

20 J=(end =1
[JI<N
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Proof. By definition of (4.53) and (4.55),

k=1
d (4.57)
> =t Ny E[AJP(X+Y)]HE[<Y>
Bl (e = M
TN

On the other hand, taking Taylor expansion of the last term in the above equality gives

> EATp(X +Y) f[E[( >]

J=(j;)eN?

RS

- J:(]Zl:)GNg (NE:JE[AJMP(X)]E K};)] + (N — 3], AVlp, X7Y)) EE [g)]
=N (4.58)

d d+1

5 ()] 5 s
RE ) I;’I<N (4.59)

T omsnanfe(D)]
\J\<N

The equality (4.59) is obtained by writing respectively the term when k = 0 in (4.58)
and the summation term when k > 1. Multiplying (—1)? by (4.59) and taking the sum
on d, most terms cancel and we get

Syt Y EAPx 4 Y)) EE[@

d=1 J=(ji)eN?
=) - X e ()]

E&

|[JISN
=> (D% > (N -13,APp, X, Y)

d>1 J=(j)eNd ! J<N
|JI<N

which follows (4.56) by noting > 5_;yeno 6(N — [J], Alp, X, Y) = 6(N,p, X, Y). O
|J|<N

Proposition 4.3.15 With the notation of (4.53) and (4.55), we have
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Y
< [AN+1 )
[0(N,p, X,Y)| < [[ATT p||IE [<N+1>]

eV.p X, Y) < [ANTp S ST HEK >]

d>1 J=(5,)eNd I=1
|[J|=N+1

Proof. 1) is obvious by definition.
2) By (4.56) and 1),

W XY <D Y AYTIE KN—E!H)] QjE Km)

d20 J=(j;)eN? 1
JI<N

SIS HE[( ik

d>1 J=(5,)eNd I=1
\J\ N+1

d

The following theorem is also similar with Theorem 4.2.5, both in form and in the
proof method.

Theorem 4.3.16 For any integer N > 0, let E[h(W)] = C(N,h) + e(N,h) with
C(0,h) = Py, (h) and e(0,h) = E[h(W)] — Py, (k). Then

C(N,h) = Py, (h +ZA DD N oV = 3], APy (2 + 1))
=1 a>1 J= jl)EN
|J|<N (4.60)

EE[@Z‘)]EK?J-‘E)—(?.J)]’

and for any N > 1,

e(N, h)
g 3 avmsnween i) ()

J3IEN

X* . n ,
+2 N E [( A )] e(N — k, Afpy(z + 1), WO, X5) + 3" Nd(N, pu(a + 1), W, X7).
] =1
(4.61)
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Proof. We deduce by induction. The theorem holds when N = 0. Suppose that we
have proved for 0,--- ;N — 1 with N > 1. By (4.38),

E[R(W)] = Py, (h +Z)\( O 4 X7+ 1)] = Elpu(W +1))).

Now, we shall rewrite the expectation E[p, (W) + X7 +1)] as an N*"-order expansion
on W. To this end, We take the difference expansion at W@ and then apply (4.55) to
get

Elpn(W® + X7 +1)]

N X* ) . 4.62
=) E K )] Afpy (W + 1)) + 6(N, pu (2 + 1), WO, X7) o
k=0
N d
_ 3k Xi
yos ()] (sstmor v S 5 matmor oz ()
1IN K

+e(N — k, AFpp(x + 1),W(i),XZ-)> + (N, pp(z+ 1), WD, X7),

(4.63)

To get the right order, (4.63) is obtained by making (N —k)* expansion of E[AFp;, (W ©) +
1)] in (4.62). The first term in the bracket in (4.63) when k = 0 equals E[p; (W + 1)].
The other summands in the first term when k£ > 1 can be regrouped with the second
term by introducing the notation

> E[ATFFp, (W + 1)) = E[AFp, (W + 1))
J=(ji)eN?
I <Nk
Then (4.63) yields

E[pn (W + X7 +1)] — Elpy,(W +1)]

=> (=" Y EaMp,w +1) zlle [<X>] (4.64)

=1 g=(jend I
|J|<N
N r X - d X
+) E <k> ST > EAPIRp (W 4 1)] HE[( )] (4.65)
k=1 L 1 >0 I=(j,)eNd =1 Ju
|J<N—Fk

N _ .
X* ; '
+ZE ( z> E(N_k’Akph(a:—i—l),W(Z),Xi)+5(Naph(33+1)aW(Z)>X;<) (4.66)
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Taking the sum of (4.64) and (4.65), we get

(4.64) + (4.65)

="t > EAPp,(w +1)] (ﬁE Ki)])

a>1 J:GJ‘QJEVNg =1
+ g(—l)d J:(ﬂ%ﬁfﬂ E[APlp, (W +1)] (EE Kf)]) E Kf)]
“pen, 3 oo ([L=[(5) - ()

By induction, we replace E[APlp, (W +1)] by its (N — |J|)*® order expansion C(N —
\J|, APlpy, (2 4 1)) + e(N — |J|, AFlp, (2 + 1)) to obtain (4.60) and (4.61). O
Corollary 4.3.17 We have the first two orders expansions
h) = B+ Wp (ARE[X] - X
0(17 )_PAW( )+7P>\W( ) [ I— I]
and
)\%/V 4 * 2
C(2,h) = C(1,h) + —=Pay (Ah) (E[X7] - E[X/])
)\W 3 * * *
+ S Pa (A%) (ELXF (X7 — 1)) — B (X; — 1)) — 2E[X/|E[X} - X1]).

Remark 4.3.18 It is not difficult to verify that the Bernoulli case in the previous
section is a special case of the above corollary.

167



168



Bibliography

1]

[2]

[6]

[7]

8]

[9]

[10]

[11]

L. Andersen, J. Sidenius, and S. Basu, All hedges in one basket, Risk 16 (2003),
67-72.

A. Antonov, S. Mechkov, and T. Misirpashaev, Analytical techniques for synthetic
CDOs and credit default risk measures, NumeriX, 2005.

A. D. Barbour, Asymptotic expansions based on smooth functions in the central
limit theorem, Probability Theory and Related Fields 72 (1986), 289-303.

, Asymptotic expansions in the poisson limit theorem, Annals of Probability
15 (1987), 748-766.

A. D. Barbour, L. H. Y. Chen, and K. P. Choi, Poisson approzimation for un-
bounded functions. I. Independent summands, Statistica Sinica 5 (1995), no. 2,
749-766.

A. D. Barbour and P. Hall, On the rate of Poisson convergence, Mathematical
Proceedings of the Cambridge Philosophical Society 95 (1984), no. 3, 473—480.

A. D. Barbour, L. Holst, and S. Janson, Poisson approzimation, Oxford University
Press, 1992.

A. Bélanger, S. E. Shreve, and D. Wong, A general framework for pricing credit
risk, Math. Finance 14 (2004), no. 3, 317-350.

T.R. Bielecki and M. Rutkowski, Credit risk : modeling, valuation and hedging,
Springer-Verlag, 2002.

C. Bluhm, L. Overbeck, and C. Wagner, An introduction to credit risk modeling,
Chapman and Hall / CRC, 2003.

1. S. Borisov and P. S. Ruzankin, Poisson approximation for expectations of un-
bounded functions of independent random variables, Annals of Probability 30
(2002), no. 4, 1657-1680.

169



[12]

[21]

[23]

P. Brémaud and M. Yor, Changes of filtrations and of probability measures,
Zeitschrift fiir Wahrscheinlichkeitstheorie und Verwandte Gebiete 45 (1978), no. 4,
269-295.

R. Bruyere, R. Cont, R. Copinot, L. Fery, C. Jaeck, and T. Spitz, Credit derivatives
and structured credit, John Wiley and sons, Ltd., 2006.

U. Cetin, R. Jarrow, P. Protter, and Y. Yildirim, Modeling credit risk with partial
information, Annals of Applied Probability 14 (2004), no. 3, 1167-1178.

L. H. Y. Chen, Poisson approxzimation for dependent trials, Annals of Probability
3 (1975), 534-545.

, Stein’s method: some perspectives with applications, Probability towards
2000 (New York, 1995), Lecture Notes in Statist., vol. 128, Springer, New York,
1998, pp. 97-122.

L. H. Y. Chen and Q.-M. Shao, A non-uniform Berry-Esseen bound via Stein’s
method., Probability Theory and Related Fields 120 (2001), 236-254.

, Stein’s method for mormal approximation, An Introduction to Stein’s
Method, Lecture Notes Series, IMS, National University of Singapore, vol. 4,
Singapore University Press and World Scientific Publishing Co. Pte. Ltd., 2005,
pp. 1-59.

Louis H. Y. Chen and K. P. Choi, Some asymptotic and large deviation results in
Poisson approzimation, Ann. Probab. 20 (1992), no. 4, 1867-1876.

P. Collin-Dufresne, R. Goldstein, and J. Helwege, Is credit event risk priced?
modelling contagion via the updating of beliefs, (2003), Working Paper, Carnegie
Mellon University.

P. Deheuvels and D. Pfeifer, On a relationship between Uspensky’s theorem and
Poisson approximations, Annals of the Institute of Statistical Mathematics 40
(1988), no. 4, 671-681.

C. Dellacherie and P.-A. Meyer, Probabilités et potentiel, Hermann, Paris, 1975,
Chapitres I & IV, Edition entitrement refondue, Publications de I'Institut de
Mathématique de I'’Université de Strasbourg, No. XV, Actualités Scientifiques
et Industrielles, No. 1372.

, Probabilités et potentiel. Chapitres V a VIII, revised ed., Actualités Scien-

tifiques et Industrielles, vol. 1385, Hermann, Paris, 1980, Théorie des martingales.

170



[24]

[25]

[26]

[27]

[28]

[29]

[36]

[37]

[38]

A. Dembo, J.-D. Deuschel, and D. Duffie, Large portfolio losses, Finance and
Stochastics 8 (2004), no. 1, 3-16.

F. Diener and M. Diener, Asymptotics of price oscillations of a european Call
option in a tree model, Mathematical Finance 14 (2004), no. 2, 271-293.

D. Duffie, Defaultable term structure models with fractional recovery of par, Work-
ing paper, Standford University, 1998.

, First-to-default valuation, Working paper, Standford University, 1998.

D. Duffie and D. Lando, Term structure of credit spreads with incomplete account-
ing information, Econometrica 69 (2001), 633-664.

D. Duffie and K.J. Singleton, Modeling term structures of defaultable bonds, The
review of financial studies 12 (1999), no. 4, 687-720.

D Duffie and K.J. Singleton, Credit risk: pricing, measurement and management,
Princeton University Press, 2003.

R.J. Elliott, M. Jeanblanc, and M. Yor, On models of default risk,, Mathematical
Finance 10 (2000), 179-195.

W. Feller, An introduction to probability and its applications, 2nd ed., Wiley, New
York, 1971.

R. Frey and A.J. McNeil, Modelling dependent defaults, Working paper, 2001.

K. Giesecke, Default and information, Journal of Economic Dynamics and Control,
to appear.

P. Glasserman, Tail approzimations for portfolio credit risk, Journal of Derivatives
(2004), 24-42.

P. Glasserman, W. Kang, and P. Shahabuddin, Large deviations of multifactor
portfolio credit risk, Mathematical Finance to appear.

E. Gobet, Analysis of the zigzag convergence for barrier options with binomial
tree, Prépublication 536, UMR7599 CNRS-Université Paris 6, 1999.

L. Goldstein, Berry-Esseen bounds for combinatorial central limit theorems and
pattern occurrences, using zero and size biasing, Journal of Applied Probability
42 (2005), no. 3, 661-683.

L. Goldstein and G. Reinert, Stein’s method and the zero bias transformation with
application to simple random sampling, Annals of Applied Probability 7 (1997),
935-952.

171



[40]

[47]

[48]

[49]

[50]

, Zero biasing in one and higher dimensions, and applications, Stein’s

method and applications, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap.,
vol. 5, Singapore Univ. Press, Singapore, 2005, pp. 1-18.

L. Goldstein and Y. Rinott, Multivariate normal approximations by Stein’s method
and size bias couplings, Journal of Applied Probability 33 (1996), no. 1, 1-17.

F. Gotze and C. Hipp, Asymptotic expansions in the central limit theorem under
moment conditions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 42 (1978),
no. 1, 67-87.

J. Gregory and J.-P. Laurent, I will survive, Risk 16 (2003), no. 6.

X. Guo, R. Jarrow, and C. Menn, A generalized Lando’s formula: A filtration
expansion perspective, Working Paper, Cornell University, 2006.

X. Guo, R. Jarrow, and Y. Zeng, Information reduction in credit risks, Working
Paper, Cornell University, 2005.

X. Guo and Y. Zeng, Intensity process and compensator: A new filtration expan-
sion approach and the Jeulin-Yor formula, Working Paper, Cornell University,
2006.

D. Heath, R. Jarrow, and A. Morton, Bond pricing and the term structure of
interest rates, Econometrica 60 (1992), 77-106.

C. Hipp, Edgeworth expansions for integrals of smooth functions, Ann. Probability
5 (1977), no. 6, 1004-1011.

J. Jacod, Calcul stochastique et problémes de martingales, Lecture Notes in Math-
ematics, vol. 714, Springer, Berlin, 1979.

R. Jarrow and S. Turnbull, Pricing options on financial securities subject to default
risk, Journal of finance 50 (1995), 53-86.

R. Jarrow and F. Yu, Counterparty risk and the pricing of defaultable securities,
Journal of Finance 56 (2001), no. 5, 1765-1799.

M. Jeanblanc, Credit risk, Lecture notes, 2006.

M. Jeanblanc and Y. LeCam, Intensity versus hazard process, Working paper in
preparation, Université d’Evry, 2006.

M. Jeanblanc and M. Rutkowski, Modelling of default risk: mathematical tools,
Working paper, 2000.

172



[55]

[56]

[57]

, Default risk and hazard process, Mathematical finance—Bachelier
Congress, 2000 (Paris), Springer Finance, Springer, Berlin, 2002, pp. 281-312.

M. Jeanblanc and S. Valchev, Partial information and hazard process, Interna-
tional Journal of Theoretical and Applied Finance 8 (2005), no. 6, 807-838. MR
MR2170231

T. Jeulin and M. Yor, Grossissement d’une filtration et semi-martingale: formules
explicites, Séminaire de Probabilités, XII, Lecture notes in mathematics, 649,
Springer, Berlin, 1978, pp. 78-97.

S. Kusuoka, A remark on default risk models, Advances in Mathematical Eco-
nomics 1 (1999), 69-82.

D. Lando, On Cox processes and credit risky securities, Derivatives Research 2
(1998), 99-120.

F. Laudenbach, Calcul différentiel et intégral, Editions de I'Ecole Polytechnique,
Mars 2005.

D.X. Li, On default correlation: a copula function approach, Working paper,
Credit metrics group, 2000.

R. Mansuy and M. Yor, Random times and enlargements of filtrations in a brow-
nian setting, Springer-Verlag, 2006.

R.C. Merton, On the pricing of corporate debt: the risk structure of interest rates,
Journal of Finance 29 (1974), 449-470.

P. A. Meyer, Un cours sur les intégrales stochastiques, Séminaire de Probabilités,
X (Seconde partie: Théorie des intégrales stochastiques, Univ. Strasbourg, Stras-
bourg, année universitaire 1974/1975), Springer, Berlin, 1976, pp. 245-400. Lec-
ture Notes in Math., Vol. 511. MR MR0501332 (58 #18721)

R. Nelsen, An introduction to copulas, Springer-Verlag, New York, 1999.
V. V. Petrov, Sums of independent random variables, Springer-Verlag, 1975.

P. Protter, Stochastic integration and differential equations, Springer-Verlag,
Berlin, 1990.

M. Raic, Normal approzimations by Stein’s method, Proceedings of the seventh
young statisticians meeting (Andrej Mrvar, ed.), 2003, pp. 71-97.

173



[69]

[82]

Y. Rinott and V. Rotar, On Edgeworth expansions for dependency-neighborhoods
chain structures and Stein’s method, Probability Theory and Related Fields 126
(2003), no. 4, 528-570.

E. Rogge and P.J. Schénbucher, Modelling dynamic portfolio credit risk, Working
paper, 2003.

V. Rotar, Stein’s method, Edgeworth’s expansions and a formula of Barbour,
Stein’s method and applications, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ.
Singap., vol. 5, Singapore Univ. Press, Singapore, 2005, pp. 59-84.

P.J. Schonbucher, Credit risk modelling and credit derivatives, Ph.D. thesis, Uni-
versity of Bonn, 2000.

, Credit derivatives pricing models, models, pricing and implementation,
Wiley, 2003.

P.J. Schoénbucher and D. Schubert, Copula-dependent default risk in intensity mod-
els, Working paper, University of Bonn, 2001.

D. Shelton, Back to normal, Working paper, Citigroup, 2004.

C. Stein, A bound for the error in the normal approximation to the distribution of
a sum of dependent random variables, Proc, Sixty Berkeley Symp. Math. Statist.
Probab., Univ. California Press, Berkeley., 1972, pp. 583-602.

, Approxzimate computation of expectations, IMS, Hayward, CA., 1986.

, A way of using auziliary randomization, Probability Theory (L.H.Y.
Chen, K.P.Choi, K. Hu and J.-H. Lou, edits), De Gruyter, Berlin., 1992, pp. 159
180.

M. Jeanblanc et M. Rutkowski T.R. Bielecki, Hedging of basket credit derivatives
i cds market., 2005.

O. Vasicek, Limiting loan loss probability distribution, Moody’s KMV, 1991.

Ch. Yoeurp, Décompositions des martingales locales et formules exponentielles,
Séminaire de Probabilités, X (Seconde partie: Théorie des intégrales stochas-
tiques, Univ. Strasbourg, Strasbourg, année universitaire 1974/1975), Springer,
Berlin, 1976, pp. 432-480. Lecture Notes in Math., Vol. 511.

C. Zhou, A jump-diffusion approach to modelling credit risk and valuing default-
able securities., Federal reserve board, 1996.

174



