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À ma mère





Remerciement

Je voudrais exprimer toute ma gratitude à Nicole El Karoui, ma directrice de thèse,
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Je remercie vivement Monique Jeanblanc pour l’intérêt qu’elle a porté sur mon
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pratique du marché pendant ce stage.
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Résumé

Cette thèse est motivée par les problèmes induits par la corrélation des défauts

dans les produits dérivés de crédit. La thèse contient deux parties. La première est

consacrée à analyser théoriquement les défauts successifs. On propose une nouvelle

approche, basée sur la densité des probabilités conditionnelles de survie, pour traiter

ce qui se passe après le premier défaut en déterminant les compensateurs des défauts

successifs et en calculant les espérances conditionnelles par rapport à la filtration du

marché. Dans la deuxième partie, on présente une méthode d’approximation pour

calculer les prix des CDOs en utilisant la méthode de Stein et la transformation de

zéro biais. On obtient un terme correcteur explicite pour l’approximation gausienne

et on estime la vitesse de convergence. Les tests numériques montrent l’efficacité de

cette méthode par rapport aux méthodes classiques. On établit aussi des résultats

similaires pour l’approximation poisonnienne en appuyant sur des variantes discrètes

de la méthode. Enfin, pour les fonctions plus régulières, on propose des correcteurs

d’ordres supérieurs.

Abstract

The thesis is motivated by the problems related to the defaults correlation in the

portfolio credit derivatives. The thesis contains two parts. The first one is devoted

to the analysis of successive defaults. We propose a new approach, based on the

density of the conditional survival probabilities, to study the phenomena after the

first default by determining the compensators of successive defaults and by calculating

the conditional expectations with respect to the global filtration of the market. In

the second part, we present an approximation method the evaluate the CDOs, using

the Stein’s method and the zero bias transformation. We obtain a correction term

for the normal approximation and we estimate the convergence speed. Numerical tests

show the efficiency of this method compared to the classical methods. We also establish

similar results for Poisson approximation by adopting a discrete version of the method.

Ar last for more regular functions, we proposer high-ordered corrections.
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Notations

Part I

(Ω,G, (Gt)t≥0,P) is a filtered probability space which represents the market and the

filtration (Gt)t≥0 represents the global market information, denoted by G.

The single-credit case

- τ is a G-stopping time.

- D = (Dt)t≥0 is the filtration defined by Dt = σ(11{τ≤s}, s ≤ t).

- F = (Ft)t≥0 is a sub-filtration of G.

- Λ is the G-compensator process of τ ; ΛF is the F-predictable process which coincides

with Λ on {τ > t}.
- G is the F-survival process defined by Gt = P(τ > t|Ft).

- Gθ is the process of the conditional survival probability defined by Gθ
t = P(τ > θ|Ft).

- E(X) is the Doléans-Dade exponential of the semi-martingale X.

- αt(θ) is the density of Gθ
t .

- qt is the Ft-measure defined by qt(f) = E[f(τ)|Ft].

The two-credits case

- (τ1, τ2) is a family of two G-stopping times.

- τ = τ1 ∧ τ2, σ = τ1 ∨ τ2.
- D1, D2, Dτ and Dσ are natural filtrations associated to the processes associated with

G-stopping times τ1, τ2, τ and σ.

- D = D1 ∨ D2, Dτ,σ = Dτ ∨ Dσ.

- F is a sub-filtration of G such that G = D ∨ F.

- Gi = F ∨ Di.

- Gτ = Dτ ∨ F, Gτ,σ = Dτ,σ ∨ F.

- Λi (resp. Λτ , Λσ) is the G-compensator process of τi (resp. τ , σ);

- Ht = P(σ > t|Gτ
t ), Hθ

t = P(σ > θ|Gτ
t ).

- pt is the density of the joint conditional probability P(τ > u, σ > v|Ft).

- αt is the density of the joint conditional probability P(τ1 > t1, τ2 > t2|Ft).
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Part II

- LT is the cumulative loss up to time T .

- Y is the common factor and Yi is the individual factor.

- X∗ represents a r.v. having the X-zero bias distribution where X is a zero-mean r.v..

- W = X1 + · · · +Xn where Xi is a zero-mean r.v. (i = 1, · · · , n).

- Z represents a zero-mean normal r.v..

- Φσ(h) = E[h(Z)] where Z ∼ N(0, σ2).

- fh and fh,σ represent the solution of the Stein’s equation.

- f̃h and f̃h,σ represent the solution of the decentralized Stein’s equation.

- Iα(x) = 11{x≤α}.
- Ck(x) = (x− k)+.

- N+ represents the non-negative integer set.

- ph and ph,σ represent the solution of the Stein’s Poisson equation.

- p̃h and p̃h,σ represent the solution of the decentralized Stein’s Poisson equation.

- δ(N, f,X, Y ) represents the remaining term of the N th order Taylor’s formula in the

expectation form.

- ε(N, f,X, Y ) represents the remaining term of theN th order reversed Taylor’s formula

in the expectation form.
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Introduction de la thèse

0.1 Introduction

Cette thèse est motivée par des problèmes liés à la modélisation du risque de crédit dans

un univers qui concerne plusieurs entreprises. La grande question posée par le marché

est la corrélation entre les faillites des diverses entreprises. C’est un sujet de grande

importance en finance de marché car le risque de crédit est un risque systématique qui

dépend du cycle économique; en particulier, les défauts des entreprises dans le même

secteur ou dans la même région géographique sont fortement corrélés. On peut trouver

dans la littérature sur le risque de crédit (Bruyère et al.[13], Duffie et Singleton [30] et

Bluhm, Overbeck et Wagner[10], etc.), une étude général de problèmes associés à ce

thème. Pour rendre possible une gestion plus flexible et efficace de ce type de risque,

des instruments financiers basés sur un panier de crédits ont été proposés. Ils peuvent

en gros être classés dans deux catégories : les “basket default swaps” et les “collater-

alized debt obligations (CDO)”.

Récemment, des indices de portefeuilles de crédit synthétiques ont été introduits, per-

mettant aux investisseurs d’avoir plus de liquidité et plus d’instruments pour se couvrir.

Différents types de problèmes mathématiques se posent pour étudier le risque induit

par la corrélation de défauts. Deux d’entre eux sont traités dans cette thèse : le

premier est l’analyse de ce qui se passe après le premier défaut pour un portefeuille

comprenant plusieurs entreprises; le deuxième est de donner une méthode numérique

rapide et robuste pour évaluer les CDOs.

Une grande famille de modèles de défaut repose sur une représentation de la loi con-

ditionelle du temps de défaut. La modélisation du temps de défaut a été très étudiée,

voir par example Bélanger, Shreve et Wong [8], Elliott, Jeanblanc et Yor [31], Jean-

blanc et Rutkowski [55], Zhou [82], ainsi que la monographie de Bielecki et Rutkowski

[9]. La littérature sur les multi-défauts, comportant en particulier Schönbucher et

Schubert [74] et Lando [59] ne présente pas une modélisation dans un cadre général,

ce problème étant plus complexe à étudier.

Quand on considère un portefeuille qui contient des actions émises par plusieurs

entreprises susceptibles de faire faillite dans ce cadre de modélisation, une question
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posée par les praticiens est la suivante : puisqu’on observe dans le marché essentielle-

ment le premier défaut, peut-on considérer que les défauts futurs vont garder une loi

de la même famille, mais dont le paramètre dépend du temps d’observation.

La première partie de cette thèse est motivée par cette question. On rappelle d’abord

certains résultats obtenus dans l’approche de type intensité, en faisant une présentation

adaptée aux extensions au cas multi-crédits; on introduit une condition un peu plus

générale sur les filtrations concernées comme dans Jeulin et Yor [57] et Jacod [49] ou

proposée dans Guo, Jarrow et Menn [44] and Guo et Zeng [46]. En particulier, on

s’intéresse à la décomposition multiplicative de la surmartingale dite “processus de

survie” qui nous permet d’obtenir des développements de type HJM, sous une prob-

abilité bien choisie. Tous ces résultats permettent de caractériser les probabilités de

survie avant le défaut. L’étude de ce qui se passe après le défaut est présenté dans

Bielekie, Jeanblanc et Rutkowski [79]. Nous avons mené une étude exhaustive de cet

aspect à partir de la loi Ft-conditionnelle de survie restreinte à [0, t]. Cela permet de

représenter les martingales de la tribu minimale engendrée par l’information a priori

et le défaut avant t, soit t ∧ τ .
Dans le chapitre suivant, nous revenons à la question des praticiens, en proposant

un modèle simple dans un cadre d’intensités déterministes pour étudier le problème;

on montre que la propriété proposée par les practiciens ne peut avoir lieu que sous

des hypothèses très particulières. La distribution jointe et la copule associée sont

très différentes de celles utilisées en général sur le marché. Nous montrerons les

conséquences pratiques que cela induit.

Dans le cas où les intensités sont stochastiques, on ne peut pas généraliser facilement

le point de vue du marché, qui correspond donc à une intuition erronée. Par con-

tre, on peut montrer comment l’intensité du deuxième défaut va dépendre de celle du

premier, et donner quelques propriétés caractéristiques. Même avec seulement deux

noms, les calculs sont vite très compliqués. Pourtant, en adoptant le cadre général

introduit dans le premier chapitre, en prenant comme filtration de l’information celle

générée par l’information a priori et celle additionnelle due à l’observation du défaut,

nous pouvons étudier le processus d’intensité du deuxième défaut. Les résultats de ce

chapitre sont nouveaux. Une hypothèse importante permet de mener l’étude jusqu’au

bout, c’est celle qui dit que la loi conditionnelle du défaut avant t admet une densité

par rapport à la mesure de Lebesgue.

Concernant les produits de grande taille comme les CDOs, la recherche d’une

méthode numérique efficace reste priviligiée. Sur le marché, les practiciens adoptent

une approche simplifiée où les temps de défauts sont supposés être corrélés par un seul

facteur commun, et conditionnellement à ce facteur, les défauts sont indépendants.

Alors, la perte cumulative, qui est le terme clé pour évaluer une tranche de CDO, peut

être calculée en deux étapes dans ce contexte : on calcule d’abord la perte condition-

nelle qui peut s’écrire comme la somme des variables aléatoires indépendantes, et puis
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en prenant l’espérance de fonctions de la perte conditionelle, on obtient le prix de ce

produit financier. Dans le cadre du modèle de facteur, l’approximation normale, qui

est un résultat direct du théorème de la limite centrale, est proposée par Vasicek [80]

et Shelton [75]. L’estimation de la vitesse de convergence est un problème classique

dans l’étude du théorème de la limite centrale, voir par exemple l’inégalité de Berry-

Esseen. Mais la difficulté majeure, dans le monde de crédit, est que l’on rencontre

souvent des probabilités très petites pour lesquelles l’approximation normale ne peut

plus être robuste. Plusieurs travaux récents de Antonov, Mechkov et Misirpashaev

[2], Dembo, Deuschel et Duffie [24], Glasserman, Kang et Shahabuddin [36] sont con-

sacrés à la question d’améliorer la qualité de l’approximation en utilisant des différentes

méthodes (les grandes déviations, la méthode du col, etc.). Des tests numériques ont

montré une amélioration par rapport à l’approximation gaussienne classique, pourtant,

les estimations des erreurs de ces approximations ne sont pas discutées. Par ailleurs,

elles sont parfois assez couteuses en temps de calcul.

Dans cette thèse, on propose une autre approche pour traiter ce problème en utilisant

la méthode de Stein, qui est une méthode très puissante pour étudier la différences des

espérances d’une même fonction par rapport à deux lois différentes, notamment quand

l’une des lois est normale ou poissonnienne. En combinant la méthode de Stein avec la

technique de zéro-biais transformation proposée par Goldstein et Reinert [39], on ob-

tient, en faisant un développement autour de la perte totale, un terme de correction à

l’approximation normale classique de l’espérance d’une fonction d’une somme directe de

variables aléatoires indépendantes. En exprimant l’erreur de l’approximation gaussi-

enne d’une fonction régulière de la perte comme une différence entre les espérances

d’une même fonction auxilliaire pour la distribution de la somme de variables aléatoires

et pour sa transformation de zéro-biais, on trouve un terme correcteur à l’approximation

gaussienne et on obtient l’ordre d’erreur corrigée (d’ordre O(1/n) pour le cas ho-

mogène). Pour certaines fonctions moins régulières, comme la fonction (x − k)+ qui

est très importante en finance, la démonstration de ce résultat est plus délicate, et

demande d’établir des inéqualités de concentration ainsi qu’une technique d’espérance

conditionelle. Cette correction est aussi efficace quand les probabilités sont très petites

que pour le cas symétrique. De plus, elle est valable pour le cas où les variables ne

sont pas nécessairement de type Bernoulli et pas identiquement distribuées. D’autre

part, ce terme de correction peut s’écrire sous la forme de l’espérance du produit de

la fonction considérée et d’un polynôme, pour la loi gaussienne. Cela rend le cal-

cul du correcteur explicite et rapide, surtout lorsqu’on considère l’approximation de

l’espérance d’une fonction de la somme de variables aléatoires indépendantes de lois

éventuellement différentes. Des tests numériques sont effectués et on constate une

amélioration significative de la qualité de l’approximation. Par rapport à la méthode

classique de Monte Carlo, le temps de calcul est réduit substantiellement en gardant une

très bonne précision. Les résultats sont comparables à ceux obtenus par la méthode
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du col, mais plus facile à implémenter. On analyse enfin l’impact du paramètre de

corrélation sur l’effet de la correction.

Sur le plan théorique, on propose une formule du développement asymptotique

pour l’espérance d’une fonction plus régulière de la somme de variables aléatoires

indépendantes. Les termes successifs dans le développement consistent en les espérances

des fonctions sous la distribution gaussienne ou poissonnienne, ainsi que les moments

des variables. Il existe une littérature vaste sur ce thème et les méthodes utilisées sont

variées: des fonctions caractéristiques dans Hipp [48], Götze et Hipp [42], la méthode

de Stein combinant avec l’expansion de Edgeworth dans Barbour [3], Barbour [4], la

méthode de Lindeberg dans Borisov et Ruzankin [11]. En particulier, Barbour a utilisé

une approche basée sur la méthode de Stein pour traiter le cas normal et le cas pois-

sonnien par des techniques similaires dans [3] et [4]. On emploie dans cette thèse la

transformation de zéro-biais et on estime l’erreur d’approximation en faisant référence

au cas du premier ordre. Plus précisément, en observant l’expansion du premier ordre

qui demande l’existence de la dérivée d’ordre deux de la fonction, et qui s’applique

éventuellement sur la fonction call, on déduit la relation entre la régularité de la fonc-

tion considérée et l’ordre effectif (c’est-à-dire, l’ordre jusqu’auquel on peut améliorer le

grandeur de la vitesse de convergence) des développements asymptotiques et on donne

les conditions nécessaires sur la fonction pour assurer l’existence du développement

jusqu’à l’ordre N , où N est un entier positif. Toujours dans le cadre de la méthode de

Stein, on établit aussi un développement asymptotique de l’approximation poissonni-

enne par des techniques analogues. Concernant l’application financière, la correction

de l’ordre supérieur permet encore d’améliorer l’approximation normale, ce qui est

clairement montré par des tests numériques.

0.2 Structure de la thèse et résultats principaux

Sur le premier temps de défaut et après

Le premier chapitre commence par une revue des résultats principaux dans l’approche

d’intensité, d’un point de vue plus général et mieux adapté aux extensions dans le

cas multi-dimensionnel. Dans le premier paragraphe, on rappelle des notions et des

propriétés basiques des processus prévisibles pour étudier, dans le paragraphe suivant,

le G-compensateur d’un G-temps d’arrêt τ , qui est en fait la projection duale prévisible

du processus (11{τ≤t}, t ≥ 0). On s’intéresse au calcul du compensateur et on étudie

deux exemples simples mais importants: un dans le cas déterministe et l’autre avec

l’hypothèse (H), qui est une hypothèse souvent supposée dans la modélisation de crédits

et qui est équivalente à l’indépendance conditionelle de Gt et F∞ sachant Ft.

Dans le troisième paragraphe, on propose un cadre général sous lequel on travaillera

ensuite. L’hypothèse importante est celle proposée sur les filtrations G et F: pour tout
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t ≥ 0 et tout U ∈ Gt, il existe V ∈ Ft, tel que U∩{τ > t} = V ∩{τ > t} (cette hypothèse

a été utilisée par Guo, Jarrow et Menn [44]). Cette condition permet de traiter un seul

temps de défaut et le premier temps de défaut d’un portefeuille de la même manière

sans ajouter la moindre difficulté. On rappelle ensuite un résultat classique, à savoir

qu’il existe un processus F-prévisible ΛF qui cöıncide avant τ avec le G-compensateur

de τ et que ΛF est calculable à partir d’une surmartingale G = (P(τ > t|Ft), t ≥ 0), dit

“processus de survie”, qui joue un rôle essentiel dans la suite. De plus, par la même

méthode, on montre que le processus Λσ,F, qui cöıncide avant τ avec le G-compensateur

d’un autre temps d’arrêt σ est donné par l’équation dBσ,F
t = Gt−dΛ

σ,F
t , où Bσ,F est le

compensateur du processus V σ = (P(σ > τ ∧ t|Ft), t ≥ 0).

En tant qu’une F-surmartingale, G admet une décomposition multiplicative

G = E(Γ̃) = E(M̃Γ)E(−ΛF),

qui nous permet d’introduire un changement de probabilité par rapport auquel on

peut généraliser les développements de type HJM, faits d’habitude sous l’hypothèse

(H); c’est l’objet du quatrième paragraphe. On traite le problème d’une façon similaire

à celle des taux d’intérêt et on compare avec les résultats dans Schönbucher [72] par

un changement de probabilité. Enfin, on conclut qu’il suffit de connâıtre le processus

G pour déduire les probabilités conditionnelles de survie P(τ > T |Gt).

Pour traiter le cas après le défaut, on étudie dans le cinquième paragraphe les prob-

abilités de survie conditionnelle à t, restreinte à [0, t] pour en déduire les espérances

conditionelles en sachant que le défaut a eu lieu. On développe dans les trois sous-

paragraphes respectivement le cas avec l’hypothèse (H), le cas plus général sans l’hypothèse

(H) mais où P(τ > θ|Ft) avec θ ≥ 0 admet une densité, et puis enfin le cas général.

Dans le cas avec densité, on montre que les espérances conditionelles peuvent être

calculées explicitement par

E[Y (T, τ)|Gt]11{τ>t} =
E
[ ∫∞

t Y (T, u)αT (u)du|Ft

]
∫∞
t αt(u)du

11{τ>t}

et

E[Y (T, τ)|Gt]11{τ≤t} = E
[
Y (T, s)

αT (s)

αt(s)

∣∣Ft

]∣∣∣
s=τ

11{τ≤t}.

Dans ce cas-là, le processus compensateur du temps de défaut τ est donné par la

formule

dΛt = 11]0,τ ](t)
αt(t)

Gt
dt = 11]0,τ ](t)

αt(t)∫∞
t αt(u)du

dt.

Dans le cas général, on introduit la notion de Ft-mesure qt(f) = E[f(τ)|Ft] et

on montre que l’espérance conditionelle peut être calculée par une dérivée au sens de

Radon-Nikodym.
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Le deuxième chapitre est consacré à l’étude de plusieurs temps de défauts. Le pre-

mier paragraphe a pour objectif de répondre à la question posée par les praticiens du

marché mentionnée précédemment. On développe un modèle simple déterministe de

deux temps de défaut, basé sur l’hypothèse suivante : les probabilités de survie indi-

viduelles suivent des lois de type exponentiel avant le premier défaut où les paramètres

dépendent de l’observation du marché, soit P(τi > T |τ > t) = e−µi(t)·(T−t), (i = 1, 2).

On montre alors que la probabilité jointe est déterminée complètement par les fonctions

µi:

P(τ1 > t1, τ2 > t2) = exp
(
−
∫ t1

0
µ1(s ∧ t2)ds−

∫ t2

0
µ2(s ∧ t1)ds

)
.

Ce résultat contredit l’hypothèse standard que la fonction de copule ne dépend pas

de distributions marginales. Par ailleurs, cette probabilité jointe correspond à une

fonction de copule spécifique C̃(u, v) = uvρ
(

ln u
µ1(0) ,

ln v
µ2(0)

)
si u, v > 0 et C̃(u, v) = 0

si u = 0 ou v = 0, qui ne ressemble pas à une forme utilisée habituellement sur le

marché. On déduit ensuite respectivement la loi conditionelle du crédit qui survit et

du deuxième temps de défaut et on observe que la propriété proposée par le marché

n’est pas satisfaite dans ce cas et que les calculs deviennent vite compliqués. Donc on

montre par ce modèle simple que l’intuition du marché est fausse et la corrélation de

défaut demande une étude rigoureuse déjà dans le cas de deux temps de défaut.

Dans le deuxième paragraphe, on traite deux temps de défaut dans le cadre général.

Duffie [27] montre que, sous certaine condition, le compensateur du premier temps de

défaut est égal à la somme des compensateurs arrêtés à τ de chaque temps de défaut.

Pour le deuxième temps de défaut σ, en appuyant sur les résultats obtenus dans le

premier chapitre, on obtient son processus de compensateur :

dΛσ
t = 11[τ,σ](t)

pt(τ, t)∫∞
t pt(τ, v)dv

dt,

où pt(u, v) est la densité de la probabilité conditionnelle jointe P(τ > u, σ > v|Ft)

qui joue un rôle essentiel. Cette approche peut être étendue facilement en cas général

pour les défauts successifs. Dans le dernier sous-paragraphe, on étend la méthode pour

calculer les espérances conditionelles dans le chapitre précédent au cas de deux et de

plusieurs crédits respectivement. En introduisant une famille de Ft-mesures associées

à chaque scénario de défaut, on calcule les espérances conditionelles par rapport à Gt

comme des dérivées de type Radon-Nikodym. Cette méthode propose une possibilité

de traiter le multi-crédits en ramenant aux calculs sur les espérances conditionelles par

rapport aux tribus dans la filtration F que l’on pourrait éventuellement supposer être

engendrée par un mouvement Brownien.
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L’approximation de la perte cumulative

Le troisième chapitre de cette thèse traite le problème de l’approximation de la perte

cumulative, qui est naturellement motivé par le besoin d’évaluer des produits dérivés

de grande taille. Le premier paragraphe commence par une brève introduction au

problème. On présente d’abord le modèle à facteur et puis l’étude des sommes de

variables aléatoires indépendantes qui est l’objet principal à étudier dans ce contexte.

Ensuite, on fait un rappel de la littérature sur la méthode de Stein et sur la transfor-

mation de zéro-biais, qui sont les outils que nous utiliserons pour traiter le problème

de l’approximation.

Le deuxième paragraphe du chapitre est consacré à la transformation de zéro-

biais et ses propriétés fondamentales. On rappelle d’abord les définitions et quelques

résultats dûs à Goldstein et Reinert [39], puis on présente un exemple important pour la

suite : les variables aléatoires d’espérance nulle qui suivent la distribution de Bernoulli

asymétrique B(q,−p). Ensuite, on montre que si X est une variable aléatoire et si X ∗

est une autre variable aléatoire indépendante de X suivant sa loi de zéro-biais, alors

on peut calculer explicitement l’espérance d’une fonction g de la différence entre X et

X∗ lorsque la fonction g est paire et est localement intégrable (cf. Proposition 3.2.6):

E
[
g(X∗ −X)

]
=

1

2σ2
E
[
XsG(Xs)

]
.

Ce résultat s’applique donc aux fonctions E[|X ∗ −X|] pour mesurer la distance entre

X et X∗ avec la norme L1. Dans le cas où W est la somme de variables aléatoires

indépendantes X1, · · · , Xn, si pour tout entier 1 ≤ i ≤ n on note X∗
i une variable

aléatoire independante des X1, · · · , Xn suivant la loi de zéro-biais de Xi, alors la vari-

able aléatoire W ∗ définie par W ∗ = W (I) + X∗
I suit la loi de zéro-biais de W , où I

est un indice, indépendant des Xi et des X∗
i , à valeur dans {1, · · · , n} et dont la loi

est déterminée par les variances des Xi (cf. [39]). Le point important est que dans

ce cas on n’a plus l’indépendance entre W et W ∗. Cette difficulté est levée en mon-

trant que les covariances des quantités à estimer ne dépendent que de la variance de

l’espérance contionnelle de (XI −X∗
I ) sachant (

−→
X,

−→
X ∗) qui est d’un ordre inférieure à

celle de (XI −X∗
I ). On donne une estimation importante dans la proposition 3.2.16 de

la covariance de deux variables aléatoires dont l’une est une fonction de W et l’autre

est une fonction de XI et de X∗
I :

∣∣∣E[f(W )g(XI , X
∗
I )] − E[f(W )]E[g(XI , X

∗
I )]
∣∣∣

≤ 1

σ2
W

Var[f(W )]
1
2

( n∑

i=1

σ4
i Var[g(Xi, X

∗
i )]
) 1

2
.

On remarque que l’utilisation directe de l’inégalité de Cauchy-Schwarz ne permet pas

de trouver l’estimation suffisamment précise pour notre application. Il faut prendre

l’espérance conditionnelle avant d’appliquer l’inégalité de Cauchy-Schwarz.
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Le troisième paragraphe consiste à introduire l’équation de Stein associée à une

fonction et à étudier les solutions de cette équation. Si h est une fonction régulière,

l’équation de Stein associée à h est par définition

xfh(x) − σ2
W f ′h(x) = h(x) − ΦσW

(h).

Par abus de language, on utilisera fh(x) pour désigne la solution de l’équation de Stein

qui crôıt le moins vite à l’infini.

En combinant ceci avec la définition de transformation de zéro-biais, l’équation de

Stein donne

E[h(W )] − ΦσW
(h) = E[Wfh(W ) − σ2

Wf ′h(W )] = σ2
W E[f ′h(W ∗) − f ′h(W )].

Ceci ramène l’étude sur l’erreur de l’estimation gausienne de E[h(W )] à une étude

sur la différence des espérances de la même fonction f ′
h en deux variables aléatoires

différentes (mais très similaires).

L’estimation de l’erreur de l’approximation gaussienne repose donc sur l’estimation

de la distance entre les variables aléatoires W et W ∗ qui a été discutée dans le para-

graphe précédent et sur le contrôle des croissances des dérivées de la fonction fh.

On développe deux méthodes dont l’une est inspirée par Barbour [3] pour estimer

les croissances des dérivées de la fonction fh (comme par exemple la norme sup des

fonctions |f ′h|, |xf ′h|, |xf ′′h |, etc.) pour une certaine fonction h. En particulier, on étudie

le cas où h est la fonction indicatrice ou la fonction call.

Ayant obtenu les estimations nécessaires dans les deux paragraphes précédents, on

démontre dans le paragraphe 3.4 les résultats principaux du chapitre. Tout d’abord,

les estimations du premier ordre sont données pour des fonctions avec différentes con-

ditions de régularité et diverses vitesses de croissance: le lemme 3.4.1 concerne des

fonctions h dont les dérivées sont bornées et le lemme 3.4.2 traite des fonctions h dont

les dérivées sont à croissance linéaire. La proposition 3.4.6 s’intéresse au cas où h est

une fonction indicatrice, la preuve est basée sur l’inéqualité de concentration inspirée

par Chen and Shao [17]. Ensuite, le théorème principal (Théorème 3.4.8) est établi

pour le cas où la fonction h est lipschitzienne et la dérivée d’ordre trois de fh existe et

est bornée — on propose une amélioration de l’approximation gaussienne en ajoutant

un terme correcteur

Ch =
1

σ2
W

E[X∗
I ]ΦσW

(( x2

3σ2
W

− 1
)
xh(x)

)
.

L’estimation de l’erreur corrigée est donnée par

∣∣∣E[h(W )] − ΦσW
(h) − Ch

∣∣∣

≤
∥∥f (3)

h

∥∥

 1

12

n∑

i=1

E
[
|Xs

i |4
]
+

1

4σ2
W

∣∣∣
n∑

i=1

E[X3
i ]
∣∣∣

n∑

i=1

E
[
|Xs

i |3
]
+

1

σW

√√√√
n∑

i=1

σ6
i


 .

10



Les variables aléatoires Xi sont indépendantes, mais ne sont pas nécessairement iden-

tiquement distribuées. Dans le cas où tous lesXi suivent la loi de Bernoulli asymétrique

du même paramètre, la borne de l’erreur est de l’ordre O(1/n). Cette correction est

intéressante notamment pour des petites (ou grandes) probabilités car elle permet de

trouver la même vitesse de convergence que dans le cas symétrique (lorsque tous les

Xi suivent la loi Bernoulli symétrique) où la correction est automatiquement nulle.

Ce théorème, pourtant, ne peut pas s’appliquer à la fonction qui nous intéresse:

la fonction call, car elle ne possède pas de dérivée d’ordre deux, et par conséquent la

solution de l’équation de Stein associée ne possède pas de dérivée d’ordre trois. Ce

problème est résolu dans la Proposition 3.4.15 en utilisant l’inégalité de concentration.

On montre que Ch donné au-dessus reste valable dans le cas de la fonction call, et

l’erreur de l’approximation corrigée est de bon ordre:

∣∣E[(W − k)+] − ΦσW
((x− k)+) − C(x−k)+

∣∣

≤ 1

σ2
W

n∑

i=1

(E[|Xs
i |4]

3
+ σiE[|Xs

i |3]
)

+
1

4σ2
W

n∑

i=1

E[|Xs
i |3]
(2
∑n

i=1 E
[
|Xs

i |3
]

σ3
W

+

(∑n
i=1 σiE[|Xs

i |3]
) 1

2

√
2σ2

W

)

+ Var[f ′′Ck
(W )]

1
2

( n∑

i=1

σ6
i

) 1
2

+
1

4σ2
W

n∑

i=1

E[|Xs
i |3]
(
B(W,k) +

c

2σ2
W

n∑

i=1

E
[
|Xs

i |3
])
.

La suite de ce paragraphe est consacrée aux tests numériques. Des comparaisons

sont faites sur des portefeuilles homogènes et non-homogènes où les variables aléatoires

suivent des lois de Bernoulli identiques ou non-identiques respectivement. Des résultats

numériques montrent une amélioration substantielle de la qualité de l’approximation

gaussienne.

On compare numériquement notre méthode à la méthode du col. Notre méthode

conduit à une précision meilleure que la correction du premier ordre de la méthode de

col. Bien que l’estimation gaussienne corrigée au deuxième ordre de la méthode de col

soit plus précise que la nôtre, il faut noter que notre formule est beaucoup plus facile

à calculer, surtout dans le cas non-homogène.

Dans le dernier paragraphe du chapitre, on étudie l’impact du facteur commun.

Des tests numériques permettent de conclure que la correction est efficace lorsque la

corrélation est peu importante. Dans le cas où la corrélation est forte, après avoir

intégré par rapport au facteur, l’approximation normale reste robuste par effet de

compensation.
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Développements asymptotiques pour la distribution gaussienne et poisson-
nienne

Le quatrième chapitre est consacré à l’étude du développement asymptotique de E[h(W )],

où W est la somme de variables aléatoires indépendantes. C’est une extension des

résultats obtenus dans le troisième chapitre. Rappelons que l’on peut améliorer l’approximation

gaussienne de E[h(W )] en ajoutant un terme de correction lorsque h possède certaines

propriétés de régularité. Il est donc naturel d’espérer que lorsque h a des dérivées

d’ordres supérieurs, on peut obtenir des termes de correction d’ordres correspondants.

En développant des techniques dans le cadre de la méthode de Stein et de la trans-

formation de zéro-biais, on propose une nouvelle approche pour traiter ce problème

classique. Plus précisément, on peut résumer notre résultats en les trois points suivants:

1) On propose une “formule de Taylor” spéciale ayant deux versions — continue et

discrète — qui permet d’obtenir des résultats similaires dans le cas normal et le cas

poissonnien, respectivement;

2) Dans le cas normal, on donne les conditions nécéssaires sur la régularité et la crois-

sance à l’infini de la fonction h qui permettent d’obtenir le développement d’ordre

supérieur, en s’appuyant sur la “formule de Taylor” que l’on introduit. On dis-

cute l’estimation de l’erreur après correction et on en déduit que la convergence de

l’approximation corrigée est de bon ordre.

3) Dans le cas poissonnien, on étend la notion de la transformation de zéro-biais aux

variables aléatoires prenant valeurs dans N+. En utilisant la version discrète de la

“formule de Taylor” on obtient le développement complet qui est similaire à celui

obtenu dans le cas gaussien.

Le chapitre commence par un bref rappel sur les résultats de la littérature. Dans le

paragraphe 4.2, on propose d’abord la première méthode utilisant la version classique

de la formule de Taylor. Nous observons que dans le développement de Taylor de

E[fh(W )] ou de E[fh(W ∗)], les termes E[f
(k)
h (W (i))] apparaissent naturellement pusique

W (i) est indépendant de Xi ou de X∗
i . Il est donc possible de remplacer ces termes

par leurs approximations gaussiennes, corrigées par le correcteur du premier ordre.

On obtient ainsi un terme de correction d’ordre 2. En itérant le procédé ci-dessus,

on obtient par récurrence une formule de développement à l’ordre quelconque, si la

régularité de h est suffisamment forte. Pourtant, dans chaque étape de récurrence,

on élimine une composante dans W , par exemple, au lieu d’approcher l’espérance

d’une fonction de W , on estime E[f
(k)
h (W (i))] dans la première étape. Par conséquent,

dans la formule de développement, il apparait des sommes partielles de variables qui

compliquent les calculs.

Une façon de se débarraser de la difficulté ci-dessus est de remplacer E[f
(k)
h (W (i))]

par une formule où il n’intervient que les espérances de fonctions de W . Comme
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W (i) = W − Xi, il est naturel de penser à réutiliser la formule de Taylor classique

sur W . Auparavant, quand on applique l’espérance sur cette formule de Taylor, on ne

peut pas obtenir la forme souhaitée car W et Xi ne sont plus indépendantes. Il est

donc nécessaire de proposer une nouvelle formule pour approximer l’espérance d’une

fonction deW (i) à l’ordre quelconque, telle que, dans la formule, il apparaisse seulement

les espérances de fonctions de W .

La formule ci-dessous est la formule clé du dernier chapitre:

E[f(X)] = E[f(X+Y )]+
∑

d≥1

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N

E[f (|J|)(X+Y )]
( d∏

l=1

E[Y jl ]

jl!

)
+ε(N, f,X, Y ),

où |J| = j1 + · · · + jd pour tout J = (jl) ∈ Nd
∗. Cette formule est une variante

rétrograde de la formule de Taylor. Le terme d’erreur ε peut être calculé à partir

des termes d’erreur de la formule de Taylor classique, appliquée sur f (k)(X + Y ) (le

développement est en X). Plus précisément, si on désigne par δ(N, f,X, Y ) le nombre

défini par l’égalité

E[f(X + Y )] =

N∑

k=0

E[Y k]

k!
E[f (k)(X)] + δ(N, f,X, Y ),

alors on a la relation

ε(N, f,X, Y ) = −
∑

d≥0

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N

δ(N − |J|, f (|J|), X, Y )

d∏

l=1

E[Y jl ]

jl!
.

Intuitivement, sous des conditions convenables sur f , X et Y , ε(N, f,X, Y ) doit avoir

le même ordre que δ(N, f,X, Y ).

En prenant f = f
(k)
h , X = W (i) et Y = Xi, cette formule clé donne une estima-

tion de E[f
(k)
h ] où apparaissent des expressions de la forme E[f

(l)
h (W )] et E[Y m]. La

méthode de récurrence présentée ci-dessus complétée par ce procédé technique donne

l’estimation suivante de E[h(W )], qui est de l’ordre N quelconque (cf. Théorème 4.2.5):

SiN est un entier positif, on peut écrire E[h(W )] sous la forme E[h(W )] = C(N,h)+

e(N,h), où

1) C(0, h) = ΦσW
(h) et e(0, h) = E[h(W )] − ΦσW

(h);

2) et par récurrence, pour tout N ≥ 1,

C(N,h) = ΦσW
(h) +

n∑

i=1

σ2
i

∑

d≥1

(−1)d−1
∑

J=(jl)∈Nd
∗

|J|≤N

C(N − |J|, f (|J|+1)
h )

(
d−1∏

l=1

E[Xjl

i ]

jl!

)(
E[(X∗

i )jd ]

jd!
− E[Xjd

i ]

jd!

)
,
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e(N,h)

=

n∑

i=1

σ2
i

∑

d≥1

(−1)d−1
∑

J=(jl)∈Nd
∗

|J|≤N

e
(
N − |J|, f (|J|+1)

h

)
(

d−1∏

l=1

E[Xjl

i ]

jl!

)(
E[(X∗

i )jd ]

jd!
− E[Xjd

i ]

jd!

)

+

n∑

i=1

σ2
i

N∑

k=0

E[(X∗
i )k]

k!
ε
(
N − k, f

(k+1)
h ,W (i), Xi

)
+

n∑

i=1

σ2
i δ
(
N, f ′h,W

(i), X∗
i

)

En particulier, si N = 1, on retrouve le terme correcteur que l’on obtient dans le

premier chapitre.

Des tests numériques montrent que l’approximation corrigée à l’ordre deux est de

même précision que celle de la méthode de col, lorsque W est la somme de variables

aléatoires indépendantes suivant la même loi de Bernoulli asymétrique et lorsque h est

la fonction call.

L’erreur de l’approximation est estimée dans le sous-paragraphe 4.2.3. Si on développe

la formule de récurrence qui définit C(N,h), les dŕivées d’ordres supérieurs de la solu-

tion de l’équation de Stein associée vont apparâıtre. Par conséquent, pour que C(N,h)

soit bien défini, il faut que la fonction h soit dans un espace de fonctions sur lequel toute

composée de longueur convenable d’opérateurs de la forme ϕ 7→ f
(l)
ϕ est bien définie.

En particulier, h doit être suffisamment régulière, et la croissance de h à l’infini ne

doit pas être trop grande. La première partie du sous-paragraphe consiste à définir les

espaces de fonctions avec lesquels on va travailler et à discuter des propriétés agissant

sur ces espaces de fonctions. C’est une préparation à l’estimation du terme d’erreur

qui se trouve à la fin du sous-paragraphe.

La difficulté majeure de l’estimation du terme d’erreur est déjà apparue dans le

chapitre précédent. Ici la vitesse de croissance de f̃
(N+2)
h joue un rôle crucial pour le

développement de l’ordre N (rappelons que dans le chapitre précédent avec N = 1, le

comportement de la fonction f̃
(3)
h était essentiel pour l’estimation du terme d’erreur).

L’un des objectifs de la deuxième partie du sous-paragraphe 4.2.3 est de proposer des

conditions sur h avec lesquelles on peut obtenir les propriétés désirées de f̃
(N+2)
h .

Enfin, l’estimation de l’erreur est donnée par une formule de récurrence (cf. Propo-

sition 4.2.23). Avec ceci on montre aisément que (cf. Proposition 4.2.25), dans le cas

de Bernoulli asymétrique où les variables aléatoires sont identiquement distribuées,

l’ordre de l’erreur est donné par :

e(N,h) ∼ O

(( 1√
n

)N+1
)
.
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Dans la section 4.3, on applique la méthode précédente sur la loi de Poisson en

proposant une variante discrète de la “formule de Taylor” rétrograde (4.55):

E[f(X)] = E[f(X + Y )] +
∑

d≥1

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N

E[∆|J|f(X + Y )]

d∏

l=1

E

[(Y
jl

)]

+ ε(N, f,X, Y )

où |J| = j1 + · · · + jd pour tout J = (jl) ∈ Nd
∗.

La forme de la formule de développement ainsi que la démonstration sont très

similaires à celles dans le cas normal. Si N est un entier positif, alors on peut écrire

E[h(W )] sous la forme E[h(W )] = C(N,h) + e(N,h), où

1) C(0, h) = PλW
(h) et e(0, h) = E[h(W )] −PλW

(h),

2) et par récurrence, pour tout N ≥ 1,

C(N,h) = PλW
(h) +

n∑

i=1

λi

∑

d≥1

(−1)d−1
∑

J=(jl)∈Nd
∗

|J|≤N

C(N − |J|,∆|J|ph(x+ 1))

(
d−1∏

l=1

E

[(
Xi

jl

)])
E

[(
X∗

i

jd

)
−
(
Xi

jd

)]
,

e(N,h)

=

n∑

i=1

λi

∑

d≥1

(−1)d−1
∑

J=(jl)∈Nd
∗

|J|≤N

e(N − |J|,∆|J|ph(x+ 1))

d−1∏

l=1

E

[(
Xi

jl

)]
E

[(
X∗

i

jd

)
−
(
Xi

jd

)]

+
n∑

i=1

λi

N∑

k=0

E

[(
X∗

i

k

)]
ε(N − k,∆kph(x+ 1),W (i), Xi) +

n∑

i=1

λiδ(N, ph(x+ 1),W (i), X∗
i ).
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Part I

On the First Default and
Afterwards
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Chapter 1

Study on a general framework of
credit modelling

The modelling of default time is the key problem for the pricing and the risk manage-

ment of credit derivatives. Generally speaking, two principal approaches, the structural

approach and the reduced form approach, are proposed to model the default mecha-

nism. One important difference between the two approaches is the predictability of

the default time with respect to the background filtration.

The structural approach is based on the work of Merton [63] where a firm defaults

when its asset value process, often supposed to be represented in terms of a Brownian

motion, passes below a certain threshold. This approach provides suitable financial

interpretation. However, since the default time is predictable when the asset process

approaches the barrier, its disadvantage is also obvious from the modelling point of

view. The reduced form approach allows for more “randomness” of the default time.

The initial idea comes from the reliability theory where the default is modelled as the

first jump of a point process. In this case, the default time is not predictable. The

general framework of the reduced form approach has been presented in Jeanblanc and

Rutkowski [55] and Elliott, Jeanblanc and Yor [31]. The notion of intensity have often

been discussed in this approach. From the mathematical point of view, the intensity

process of a stopping time is related to its compensator process, which is a basic notion

in the general theory of processes developed in the 1970’s. When the compensator

satisfies some regularity conditions, the intensity process exists. However, this is not

the case in general (see for example Giesecke [34], Guo and Zeng [46]). The gap

between the structural approach and the reduced-form approach has been shortened

by recent studies of Duffie and Lando [28], Çetin, Jarrow, Protter and Yıldırım [14],

Collin-Dufresne Goldstein and Helwege [20], Jeanblanc and Valchev [56] and Guo,

Jarrow and Zeng [45], etc. on the impact of information modelling. By specifying

certain partial observation hypotheses on the filtrations in the structural approach

based models, the default is no longer predictable and the intensity can be calculated
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in these models.

In this chapter, we review some of the results in the intensity approach from a more

general point of view based on the general theory of processes. For theoretical back-

ground, one can refer to Dellacherie and Meyer [22], Jacod [49], Protter [67]. However,

our objective here is to reinterpret some existing results in the credit modelling using

the classical notions without entering in the theoretical details. We are in particular

interested in the compensator process of a stopping time τ and in its calculation. An

important hypothesis, the (H)-hypothesis, is discussed and a classical example where

this hypothesis holds is revisited along this chapter. Instead of the minimal filtration

expansion condition often adopted in the credit modelling, we propose to work with

a more general condition presented in Jeulin and Yor [57] and discussed in the credit

case by Guo, Jarrow and Menn [44], which can be adapted directly to study the first

default time in the multi-credits case. Then we are interested in the pricing of the

defaultable zero coupon and hence in the calculation of the conditional survival prob-

abilities with respect to the global filtration. To this end, we study the multiplicative

decomposition of the so-called “survival process” which is a supermartingale. This

leads to a generalization of the classical HJM type model discussed in Schönbucher

[72] and we show that the survival process is the key term in determining the condi-

tional survival probabilities. For pricing purposes, especially when there are several

credits, it’s important to study the case after the default. This is the main issue of the

last subsection which consists our main original contribution. We propose a systematic

method to calculate the conditional expectations and we point out that the family of

conditional survival probabilities P(τ > θ|Ft) where θ ≥ 0 plays the crucial role. We

discuss successively the special case where the (H)-hypothesis holds, the case where

the survival probability admits a density, and then the general case.

1.1 Stopping time and intensity process: a general frame-
work

We first summarize some general definitions and properties on stochastic processes

which are very useful in the following.

1.1.1 Preliminary tools on predictable processes

In the following, let (Ω,G,P) be a complete probability space and G = (Gt)t≥0 be a

filtration of G satisfying the usual conditions, that is, the filtration G is right-continuous

and G0 contains all null sets of G∞. The probability space represents the market and

the filtration represents the global market information.

The basic results on optional or predictable processes and their dual counterpart

may be found in Dellacherie and Meyer [22].
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Recall that the G-predictable σ-algebra is the σ-algebra PG on R+×Ω generated by

the following processes: 11{0}×A where A ∈ G0 and 11]s,∞[×A where A ∈ Gs, or by left-

continuous adapted processes. Any PG-measurable process is said to be G-predictable.

A stopping time σ is said to be a predictable stopping time if the process (11{σ≤t}, t ≥ 0)

is G-predictable.

It is possible to define a kind of universal conditional expectation with respect to

the predictable σ-field in the following sense: for any bounded measurable process X,

there exists a G-predictable process pX, unique up to undistinguishable sense, such

that for any G-predictable stopping time σ,

E[Xσ11{σ<+∞}] = E[pXσ11{σ<+∞}].

The process pX is called the G-predictable projection of X.

Now, if A is a right-continuous increasing bounded process (not necessary adapted),

then there exists a G-predictable increasing process Ap, unique in undistinguishable

sense, such that for any bounded measurable process X, we have

E

[ ∫

[0,+∞[
XsdA

p
s

]
= E

[ ∫

[0,+∞[

pXsdAs

]
.

The process Ap is called the dual G-predictable projection of A. In particular, if X is

G-predictable, then

E

[ ∫

[0,+∞[
XsdA

p
s

]
= E

[ ∫

[0,+∞[
XsdAs

]
.

If A is G-adapted, the process Ap is also the unique increasing predictable process such

that the process A−Ap is a G-martingale (cf. [22]).

1.1.2 Compensator process of a stopping time

The first step in the intensity approach of the credit modelling is to precisely define

the notion of the intensity process of a default time. Since we are concerned with the

multi-credits framework, the variable of interest is not necessarily the default time of

one credit, but for example the first default time of a portfolio of credits. It is enough

to assume that this time is a G-stopping time. In the following, we consider only

stopping times which are strictly positive and finite.

Definition 1.1.1 Let τ (0 < τ < +∞) be a finite G-stopping time. The G-compensator

Λ of τ is the dual G-predictable projection of the G-adapted process (11{τ≤t}, t ≥ 0).

The predictable process Λ is also characterized by the martingale property: Λ is a

predictable process such that the process (Nt = 11{τ≤t} − Λt, t ≥ 0) is a G-martingale.

If Λ is absolutely continuous, the G-predictable process λ such that Λt =
∫ t
0 λsds is

called the G-intensity process ([31], p.180).
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We have the following useful properties of Λ:

1) For any non-negative or bounded G-predictable processH, we have E[Hτ ] = E
[ ∫

[0,∞[HsdΛs

]
.

2) The process Λ is stopped at time τ , i.e. Λt = Λt∧τ .

To see that, we observe that the process (11{τ≤t}, t ≥ 0) is stopped at τ , and that

(11{τ≤t} − Λt∧τ , t ≥ 0) is a martingale. Then both predictable increasing processes

(Λt, t ≥ 0) and (Λt∧τ , t ≥ 0) are undistinguishable.

3) The process Λ is continuous if and only if τ is a totally inaccessible G-stopping time

([23] p.151), that is, for any G-predictable stopping time σ, P(τ = σ) = 0.

The jumps of Λ occur at predictable stopping times u such that ∆Λu ≤ 1. More-

over, if ∆Λu = 1, then u = τ , a.s..

4) The G-survival process S, defined by St = 11{τ>t} = 1−11{τ≤t}, is a right-continuous

supermartingale, which satisfies the following equation

dSt = St−(−dNt − dΛt)

since St− = 11{τ≥t}. This equation will be discussed later.

1.2 Classical frameworks with closed formulae for the com-

pensator processes

One important objective now is to calculate the compensator process Λ of τ . We now

present two examples where this computation is done in an explicit way.

1.2.1 The smallest filtration generated by τ

In this example, the filtration is generated by the process associated with random vari-

able 0 < τ <∞. This is a classical but important case which has been largely studied

in the single credit modelling (e.g. Elliott, Jeanblanc and Yor [31]) where τ represents

the default time of one credit.

Let D = (Dt)t≥0 be the usual augmentation ([22] p.183) of the right-continuous fil-

tration generated by the process (11{τ≤t}; t ≥ 0). Then D is the smallest filtration

satisfying the usual conditions such that τ is a D-stopping time. Any random variable

X is Dt-measurable if and only if

X = x̃11{τ>t} + x(τ)11{τ≤t} (1.1)

where x̃ is a constant and x is some Borel function. In particular, the restriction of

Dt on {τ > t} is trivial. Predictable processes, stopped at time τ are deterministic

function of t ∧ τ .
To explicitely calculate ΛD, the D-compensator of τ , we use the cumulative distribution

function F of τ , i.e. F (t) = P(τ ≤ t) and the survival function G(t) = P(τ > t).

The following property has been discussed in [31] and [55]:
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Proposition 1.2.1 Let r be the first time such that G(r) = 0 (or F (r) = 1). For any

sufficiently small positive real number ε, we have on [0, τ ∧ (r − ε)],

dΛ̃D
s =

dF (s)

1 − F (s−)
= − dG(s)

G(s−)
.

Proof. By definition of the compensator process, for any bounded Borel function h,

E

[
h(τ)11[0,τ∧(r−ε)](τ)

]
= E

[ ∫

[0,r−ε]
h(s)11{τ≥s}dΛ

D
s

]
(1.2)

=

∫

[0,r−ε]
h(s)dF (s) =

∫

[0,r−ε]
h(s)G(s−)

dF (s)

G(s−)
= E

[ ∫

[0,r−ε]
h(s)11[0,τ ](s)

dF (s)

G(s−)

]
,

The last equality is because G(s−) = P(τ ≥ s). 2

1.2.2 Conditional independance and (H)-hypothesis

An example of stopping time

An important example of default time is given below, which has been discussed by many

authors (see Lando [59], Schönbucher and Schubert [74] or Bielecki and Rutkowski [9]

for example). The financial interpretation of this model is from the structural approach,

at the same time, by introducing a barrier which is independent with the filtration gen-

erated by the background process, the intensity of the default time can be calculated.

So the two credit modelling approaches are related in this model. Moreover, it has

become a standard construction of the default time when given an F-adapted process

where F = (Ft)t≥0 is an arbitrary filtration on the probability space (Ω,G,P).

Let (Ω,G,P) be a probability space and F be a filtration of G. Let Φ be an F-

adapted, continuous, increasing process with Φ0 = 0 and Φ∞ := lim
t→+∞

Φt = +∞.

Let ξ be a G-measurable random variable following exponential law with parameter 1

which is independent of F∞. We define the random time τ by

τ = inf{t ≥ 0 : Φt ≥ ξ}.

Then we can rewrite τ as τ = inf
{
t ≥ 0 : e−Φt ≤ U

}
where U = e−ξ is a uniform

random variable on [0, 1]. So, the conditional distribution of τ given F∞ is given by

P(τ > t|F∞) = P(Φt ≤ ξ|F∞) = e−Φt = P(τ > t|Ft) =: Gt (1.3)

Let us introduce the new filtration G = (Gt)t≥0 as the minimal extension of F for

which τ is a stopping time, that is Gt = Ft ∨ Dt, where Dt = σ(11{τ≤s}, s ≤ t). In

particular, any Gt-measurable random variable coincides with an Ft-measurable r.v.

on {τ > t}. Based on this observation, we obtain the following characterization of the

G-compensator process of τ . Note that Φ is not necessarily continuous here.
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Corollary 1.2.2 Let G = F ∨ D be the filtration previously defined. Let us assume

that the conditional distribution of τ given F∞ is given by P(τ > t|F∞) = e−Φt where

Φ is an F-adapted increasing process. Then, the G-compensator of τ is the process

ΛG
s =

∫ t∧τ

0
eΦt−d(−e−Φt)

When Φ is differentiable, with derivative λt = ∂tΦt, then dΛG
t = 11{τ≥t}λtdt.

Proof. Since on {τ > t}, any Gt-measurable random variable coincides with a Ft-

measurable random variable, the G-martingale property of Nt = 11{τ≤t} − ΛG
t may be

expressed as, for any AF
t ∈ Ft,

E

[
11AF

t
(Nt+h −Nt)

]
= 0 = E

[
11AF

t
(11{t<τ≤t+h} −

∫ t+h

t
11{t<s≤τ}dΛ

G
s )
]
.

Using the conditional distribution of τ given F∞, we have

E

[
11AF

t
11{t<τ≤t+h}

]
= E

[
11AF

t

∫ t+h

t
d(−e−Φt)

]
.

In order to reintroduce the indicator function 11{τ≥t} whose F∞ conditional expectation

is e−Φt− , we rewrite the right-hand side of the above equality as

E

[
11AF

t

∫ t+h

t
d(−e−Φt)

]
= E

[
11AF

t

∫ t+h

t
11{τ≥s}e

Φt−d(−e−Φt)
]

By uniqueness of the dual predictable decomposition, we know that the corollary holds.

2

The process G defined by Gt = P(τ > t|Ft) is called the F-survival process . In this

framework, G is a decreasing F-adapted process. However, this is not true in general,

as we will see in the following section. We note that this example is from the “filtration

expansion” point of view, that is, the filtration G is set to be the “minimal expansion”

of F as been discussed in Mansuy and Yor [62].

About the (H)-Hypothesis.

We now introduce the (H)-hypothesis first introduced in filtering theory by many

authors, see Brémaud and Yor [12] for instance.

Hypothesis 1.2.3 We say that the (H)-hypothesis holds for (F,G), or equivalently,

we say that a sub-filtration F of G has the martingale invariant property with respect

to the filtration G or that F is immersed in G, if any F square-integrable martingale

is a G-martingale.
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For the credit modelling purpose, it has been studied by Kusuoka [58] and Jeanblanc

and Rutkowski [55]. Note that the (H)-hypothesis is often supposed in the credit mod-

elling, since it is equivalent to conditional independence between the σ-algebras Gt and

F∞ given Ft (see [22]) as in the above example.

We give some equivalent forms below (cf. [22]). The (H)-hypothesis for (F,G) is

equivalent to any of the following conditions:

(H1) for any t ≥ 0 and any bounded Gt-measurable r.v. Y we have E[Y |F∞] = E[Y |Ft];

(H2) for any t ≥ 0, any bounded Gt-measurable r.v. Y and any bounded F∞-

measurable r.v. Z, we have E[Y Z|Ft] = E[Y |Ft]E[Z|Ft].

Remark 1.2.4 The main disadvantage of the (H)-hypothesis is that it may fail to

hold under a change of probability. Kusuoka [58] provided a counter example to show

this property. One can also refer to Bielecki and Rutkowski [9] and Jeanblanc and

Rutkowski [55] for a detailed review.

1.3 General framework for credit modelling with two fil-
trations

In this subsection, we present our framework which is an extension of the classical

frameworks in the credit modelling. Recall that the filtration G represents the global

information on the market. We now make our main assumption introduced by Jeulin

and Yor [57] in 1978 and Jacod [49] in 1979. This assumption has been discussed

recently in Guo, Jarrow and Menn [44] and Guo and Zeng [46] (2006) as a general

filtration expansion condition. We are from another point of view. Our reference

filtration is the global one G.

Main Assumption

Hypothesis 1.3.1 (Minimal Assumption) Let F be a subfiltration of the general

filtration G and let τ (0 < τ <∞) be a G-stopping time. We say that (F,G, τ) satisfy

the Minimal Assumption (MA) if for any t ≥ 0 and any U ∈ Gt, there exists V ∈ Ft

such that

U ∩ {τ > t} = V ∩ {τ > t}. (1.4)

Obviously the filtrations introduced in the previous example, F and G = F∨ D, verify

this assumption, since the filtration D is trivial on {τ > t}. The Hypothesis 1.3.1 and

the framework we shall introduce is quite general, and well-adapted to study what

happen before the first default time in the multi-credits case. We shall show that the

first default time can be treated in almost the same way as for one default time in the
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single-credit case.

We first give some consequences of the Minimal Assumption on G-predictable processes

in [57].

Proposition 1.3.2 Assume that G0 = F0, and that (F,G, τ) satisfy the Minimal As-

sumption 1.3.1.

Then for any G-predictable process HG, there exists an F-predictable process HF such

that

HG
t 11{τ≥t} = HF

t 11{τ≥t}. (1.5)

Proof. The G-predictable σ-algebra on [0,∞[×Ω is generated by the following two

types of subsets: {0}×A with A ∈ G0 and ]s,∞]×A with A ∈ Gr, r < s. For processes

such that HG = 11{0}×A, the property holds automically since the hypothesis F0 = G0

implies that HG is F-predictable.

We now need to prove (1.5) when HG = 11]s,∞]×A for any s ≥ 0 and any A ∈ Gs.

We know that there exists AF ∈ Fs such that A ∩ {τ > s} = AF ∩ {τ > s}. Let

HF = 11]s,∞]×AF. Then, we have (1.5).

2

F-survival process and G-compensator

The above proposition enables us to calculate the process HF. In fact, by taking

conditional expectations, we have

HF
t P(τ ≥ t|Ft−) = E[HG

t 11{τ≥t}|Ft−]. (1.6)

As in the example, the F-conditional probability P(τ ≥ t|Ft−) plays an important role

in different calculations.

Definition 1.3.3 The F-survival process G is the right continuous supermartingale

Gt = P(τ > t|Ft). (1.7)

The point 0 is absorbing for this nonnegative supermartingale.

Note that G is the Azéma supermartingale ([62], p.13) of τ .

The following theorem enables us to calculate the G-compensator process via the pro-

cess G. The first result is a classical one which has been given in [31]. The second

result is an extension which shall be useful in the multi-credits case.

Theorem 1.3.4 We assume that Hypothesis 1.3.1 holds.
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1) Let G = M −A be the Doob-Meyer decomposition of the survival process G, where

M is a martingale and A is an increasing F-predictable process.

On {Gt− > 0}, we have the following representation of the G-compensator process

ΛG of τ .

dΛG
t = 11]0,τ ](t)

dAt

Gt−
= 11]0,τ ]dΛ

F
t (1.8)

2) More generally, let σ be another G-stopping time with G-compensator Λσ. Then

there exists an increasing F-predictable process Λσ,F such that Λσ
t∧τ = Λσ,F

t∧τ . Let

Bσ,F be the F-predictable increasing process in the Doob-Meyer decomposition of

the supermartingale V σ
t = P(σ > τ ∧ t|Ft), or in other words, V σ + Bσ,F is an

F-martingale. Then

dBσ,F
t = Gt−dΛ

σ,F
t

Proof. 1) The G-predictable process Λ is stopped at τ , i.e. Λt = Λt∧τ . Hence, under

hypothesis 1.3.1, there exists an F-predictable process ΛF such that Λt = Λt∧τ = ΛF
t∧τ .

On the other hand, Λ admits a dual F-predictable projection, which coincides with the

F-predictable increasing process A in the Doob-Meyer decomposition of G. Since we

have supposed that τ < +∞ a.s., for any bounded F-predictable process Y ,

E[Yτ ] = E

[ ∫

[0,+∞[
YtdΛt

]
= E

[ ∫

[0,+∞[
YtdAt

]
.

On the other side, since Λt = ΛF
τ∧t by hypothesis, we know that

E

[ ∫

[0,+∞[
YtdΛt

]
= E

[ ∫

[0,+∞[
11{τ≥t}YtdΛ

F
t

]
= E

[ ∫

[0,+∞[
YtGt−dΛF

t

]
.

The last equality is because Gt− = E[11{τ≥t}|Ft]. Since Y is arbitrary, we know that

dAt = Gt−dΛF
t .

2) By definition, (Λσ
τ∧t, t ≥ 0) is the compensator of the process (11{σ≤τ∧t}, t ≥ 0).

Therefore, for any bounded F-predictable process Y ,

E
[ ∫

[0,+∞[
Ytd11{σ≤τ∧t}

]
= E

[ ∫

[0,+∞[
YtdΛ

σ
τ∧t

]
= −E

[ ∫

[0,+∞[
YtdV

σ
t

]
= E

[ ∫

[0,+∞[
YtdB

σ,F
t

]
.

The last two equalities come from the definition of V σ and Bσ,F. Since Λσ
τ∧t = Λσ,F

τ∧t,

similarly as in 1), we have E
[ ∫

[0,+∞[ YtdΛ
σ,F
τ∧t

]
= E

[ ∫
[0,+∞[ YtGt−dΛ

σ,F
t

]
, which ends

the proof.

2
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Multiplicative decomposition of G

In addition to the additive decomposition of the F-survival process G which is an F-

supermartingale, there exists a multiplicative decomposition of G, very useful in the

following. This property has been discussed in Jeanblanc and LeCam [53]. For sim-

plicity, we introduce the following assumption.

Hypothesis 1.3.5 We assume that Gt > 0 a.s. for any t ≥ 0.

However, certain results hold without this hypothesis before the first time that G

attains zero as shown by Theorem 1.3.4.

To deduce the explicit form of the multiplicative decomposition of G, we introduce

the Doléans-Dade exponential of a semimartingale Z which is the unique solution of

the stochastic differential equation

dXt = Xt−dZt, X0 = 1,

which is given by

E(Z)t = exp
(
Zt − Z0 −

1

2
〈Z〉ct

) ∏

0<s≤t

[(
1 + ∆Zs

)
e−∆Zs

]
. (1.9)

Observe that if Z is a local martingale, then E(Z) is also a local martingale, and

that if B is a predictable increasing process such that ∆B < 1, then E(−B) is a

predictable decreasing process. Note that the Doléans-Dade exponential does not

satisfy the standard exponential calculation property. In fact, for any semimartingales

X and Y , we have E(X + Y + [X,Y ]) = E(X)E(Y ).

We are looking for a multiplicative decomposition of the positive supermartingale G

as

G = LD (1.10)

where L is an F-local martingale and D is an F-predictable decreasing process.

We start with the Doob-Meyer decomposition of G as G = M − A where M is an

F-local martingale and A is an F-predictable increasing process. Then we have

dGs

Gs−
=
dMs

Gs−
− dAs

Gs−
= dM

eΓ
s − dΛF

s

where dM
eΓ := dM/G−. Assume ΛF to be continuous. Then, the additivity property

holds for the Doléans-Dade exponentials of the processes M
eΓ and −ΛF

s , that is,

G = E(M
eΓ − ΛF) = E(M

eΓ) exp(−ΛF)

and the multiplicative decomposition is obvious.

In the general case, the problem is much more complicated and less intuitive. The

good answer, as proposed by Jacod (Corollary 6.35 in [49]), Meyer [64] and Yoeurp

[81] is given in the following proposition.
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Proposition 1.3.6 Let Γ̃t = lnG0 +
∫ t
0

dGs

Gs−
and Γ̃t = M

eΓ
t − ΛF

t be its Doob-Meyer

decomposition. Assume that ∆ΛF 6= 1.

Then G admits a multiplicative decomposition as

G = E(Γ̃) = E(M̃
eΓ)E(−ΛF) (1.11)

where the F-local martingale M̃
eΓ is defined by dM̃

eΓ
t = 1

1−∆ΛF
t

dM
eΓ
t .

In other words, the martingale part L of the multiplicative decomposition of G is the

Doléans-Dade exponential of the modified martingale M̃
eΓ and the predictable decreasing

process D is the Doléans-Dade exponential of −ΛF.

Proof. It suffices to check that the right hand side of (1.11) is the needed decompo-

sition. We know that E(M̃
eΓ)E(−ΛF) = E

(
M̃

eΓ − ΛF + [M̃
eΓ,−ΛF]

)
and we shall prove

that [M̃
eΓ,−ΛF] is a pure jump martingale. It suffices to prove that for any predictable

process ZF, I = E
[∑

s Z
F
s ∆M̃

eΓ
s ∆ΛF

s

]
= 0. Recall that the F-predictable projection

of the martingale M̃
eΓ is M̃

eΓ
− and that M̃

eΓ
− has no predictable jumps. Since ΛF is a

increasing predictable process, we know that I = E[
∑

s Z
F
s (M̃

eΓ
s− − M̃

eΓ
s−)∆ΛF

s ] = 0.

Moreover, the other purely jumps martingale N = M
eΓ − M̃

eΓ + [M̃
eΓ,ΛF] has no jump

since

∆N = ∆M
eΓ(1 − 1

1 − ∆ΛF
+

∆ΛF

1 − ∆ΛF
) = 0

Therefore, the martingale N is identically equal to 0. That ends the proof.

2

1.4 Defaultable zero coupon and conditional survival prob-

abilities

We are now interested in the evaluation of the defaultable zero coupon. A defaultable

zero coupon is the financial product where an investor receives 1 monetary unit at

maturity T if no default occurs before T and 0 otherwise. Here, we don’t take into

account the discounting impact and the risk-neutral evaluation. Hence the conditional

probability P(τ > T |Gt) is the key term to evaluate. By previous discussions, we know

that this G-martingale coincides on the set {τ > t} with some F-adapted process and

it can be calculated by

P(τ > T |Gt) = 11{τ>t}
P(τ > T |Ft)

P(τ > t|Ft)
= 11{τ>t}

E[GT |Ft]

Gt
= 11{τ>t}G̃

T
t ,

where G̃T
t = E[GT |Ft]/Gt. Here the intensity is not the suitable tool to study the

problem.
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1.4.1 General Framework and abstract HJM

The multiplicative decomposition of G = LD in terms of the F-local martingale L =

E(M̃
eΓ) and the F-predictable decreasing process D = E(−ΛF) is the natural tool to

study G̃T
t under the following assumption:

Hypothesis 1.4.1 Assume that ∆ΛF 6= 1, and that the exponential martingale L =

E(M̃
eΓ) is strictly positive on [0, T ]. Then, the change of probability measure

dQL = LT dP on FT (1.12)

is well-defined.

Remark 1.4.2 When the (H)-hypothesis holds between the filtrations F and G, the

F-survival process G is the exponential of an adapted decreasing process −Φ. So we

can work directly under the initial probability measure P, that is LT = 1.

Forward hazard process

We now study properties of G̃T
t in both directions, as a function of T or as a semi-

martingale on t. Given the multiplicative decomposition of G, we have

G̃T
t =

E
[
GT |Ft

]

Gt
=

E
[
LT DT |Ft

]

LtDt
= EQL

[
DT,t|Ft

]

where DT,t = DT

Dt
is FT -measurable. Since D is the Doléans-Dade exponential of

−ΛF, under our hypothesis, D is decreasing, and we can introduce another predictable

increasing process LF such that

exp(−LF
t ) = E(−ΛF

t ) = Dt.

By analogy with zero-coupon modelling, we introduced the process ΓT
t defined as

the parallel of the logarithm of “defaultable zero-coupon bond”. This process is known

as the forward hazard process

ΓT
t = − ln G̃T

t = − lnEQL

[
exp

(
− (LF

T −LF
t )
)
|Ft

]
. (1.13)

Then we have the abstract version of HJM framework for the G-survival probability

before the default time.

Proposition 1.4.3 (Abstract HJM) We take previous notations.

1) For any t ≤ T , the process
(
P(τ > T |Gt) = 11{τ>t}e

−ΓT
t , t ≥ 0

)
is a G-martingale.

2) If Λ is continuous, then the process
(
11{τ>t}eΛt = 11{τ>t}eΛ

F
t∧τ , t ≥ 0

)
is a G-

martingale.
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3) The process ĜT defined by ĜT
t = exp−(LF

t +ΓT
t ) = EQL[DT |Ft] is a QL-martingale

on [0, T ] with respect to the filtration F.

4) Assume the process ΛF to be absolutely continuous, with F-intensity process λ regular

enough to make valid differentiation under QL expectation.

Then the semimartingale process ΓT is also absolutely continuous with respect to

T . Its “derivative” process is the F-forward intensity process γ(t, T ) such that(
exp

(
−
∫ T
0

(
λu11[0,t](u) + γ(t, u)11[t,T ](u)

)
du
)
, t ≥ 0

)
is an F-martingale on [0, T ]

with respect to the QL probability measure.

Proof. 1) is obvious by definition.

2) By the multiplicative decomposition, St = 11{τ>t} = E(−Λt)E(−Nt) where Λ is the

G-compensator process of τ and N is the G-martingale in the Doob-Meyer decomposi-

tion of S. If Λ is continuous, then E(−Λt) = exp(−Λt). So (11{τ>t}e
Λt = E(−Nt), t ≥ 0)

is a G-martingale.

3) is direct by (1.13).

4) Since ΛF is absolutely continuous and is of density λ, E(−ΛF
t ) = exp

(
−
∫ t
0 λudu

)
.

Then by definition, ΓT
t = − ln EQL

[
e−

R T

t
λudu

∣∣Ft

]
is absolutely continuous with respect

to T . If we denote by γ(t, T ) the F-forward intensity process — the derivative of ΓT
t

with respect to T , then the process defined in 3) is nothing but ĜT , which implies the

desired result. 2

1.4.2 HJM model in the Brownian framework

As been shown above, the zero coupon prices gives us the necessary information on

the G-conditional probability P(τ > T |Gt) for all T > t. We now explicate this point

in the classical context of the HJM model. In the following of this subsection, we

assume that the filtration F is generated by a QL Brownian motion Ŵ and that the

F-predictable process ΛF is absolutely continuous. In this case, the process G and its

martingale part L are continuous. In addition, we suppose that the Hypothesis 1.3.1

holds for the filtrations (F,G).

HJM approach was first developed by Heath, Jarrow and Morton [47] to describe

the dynamics of the term structure of interest rate. Modelling the whole family of

interest rate curves for all maturities appears to be a difficult problem with infinite

dimension. While in fact under the condition of absence of arbitrage opportunity, the

dynamics of the forward rate is totally determined by the short-term rate today and

the volatility coefficient. Application of this approach on the credit study is introduced

by Jarrow and Turnbull [50], Duffie [26] and Duffie and Singleton [29]. In Schönbucher

[72] and Bielecki and Rutkowski [9], one can find related descriptions of this approach

applied to the defaultable term structure and defaultable bond of a single credit.
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Schönbucher [72] used the HJM framework to represent the term structure of the

defaultable bond and give the arbitrage-free conditions. In the following, we proceed

from a different point of view. First, we work under the modified probability QL.

Thus we proceed similarly as in the interest rate modelling. On the other hand,

as mentioned above, the only difference when the (H)-hypothesis holds is that there

is no need to change the probability. Therefore, we can deal with the general case

without extra effort than in the special case with (H)-hypothesis. Second, instead of

supposing the dynamics of the forward rate, we here suppose to know the dynamics of

the F-martingale ĜT under the probability QL. This is exactly as in the interest rate

modelling where the discounted zero coupon price has a martingale representation.

We deduce the HJM model under the probability QL. Then it’s easy to obtain GT
t by

multiplying the discounted factor Dt. We then deduce the dynamics of the F-survival

process G and thus the G-conditional probability P(τ > T |Gt).

Proposition 1.4.4 Assume that for any T > 0, the process (ĜT
t , 0 ≤ t ≤ T ) satisfies

the following equation:

dĜT
t

ĜT
t

= Ψ(t, T )dŴt (1.14)

where (Ψ(t, T ), t ∈ [0, T ]) is an F-adapted process which is differentiable with respect

to T and Ŵ is a Brownian motion under the probability QL. If, in addition, ψ(t, T ) =
∂

∂T
Ψ(t, T ) is bounded uniformly on (t, T ), then we have

1)

ĜT
t = ĜT

0 exp

[∫ t

0
Ψ(s, T )dŴs −

1

2

∫ t

0
|Ψ(s, T )|2ds

]
(1.15)

2)

γ̂(t, T ) = γ̂(0, T ) −
∫ t

0
ψ(s, T )dŴs +

∫ t

0
ψ(s, T )Ψ(s, T )∗ds. (1.16)

3) We have Ψ(u, u) = 0 and

Ĝt = exp

[
−
∫ t

0
γ̂(s, s)ds

]
. (1.17)

4)

γ̂(t, T ) = γ̂(T, T ) +

∫ T

t
ψ(s, T )dŴs −

∫ T

t
ψ(s, T )Ψ(s, T )∗ds. (1.18)

Proof. 1) The first equation is the explicit form of the solution of equation (1.14).
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2) By definition, γ̂(t, T ) is obtained by taking the derivative of − ln ĜT
t with respect

to T . Then combining (1.15), we get

γ̂(t, T ) = − ∂

∂T
ln ĜT

t = − ∂

∂T

[
ln ĜT

0 +

∫ t

0
Ψ(s, T )dŴs −

1

2

∫ t

0
|Ψ(s, T )|2ds

]

= γ̂(0, T ) −
∫ t

0
ψ(s, T )dŴs +

∫ t

0
ψ(s, T )Ψ(s, T )∗ds.

3) Equality (1.15) implies that

ln Ĝt = ln Ĝt
0 +

∫ t

0
Ψ(s, t)dŴs −

1

2

∫ t

0
|Ψ(s, t)|2ds

= −
∫ t

0
γ̂(0, s)ds+

∫ t

0
Ψ(s, t)dŴs −

1

2

∫ t

0
|Ψ(s, t)|2ds.

(1.19)

Moreover, we have from equation (1.16) that

∫ t

0
γ̂(s, s)ds

=

∫ t

0
γ̂(0, s)ds −

∫ t

0
ds

∫ s

0
ψ(u, s)dŴu +

∫ t

0
ds

∫ s

0
ψ(u, s)Ψ(u, s)∗du

=

∫ t

0
γ̂(0, s)ds −

∫ t

0
(Ψ(u, t) − Ψ(u, u))dŴu +

1

2
(

∫ t

0
|Ψ(u, t)|2 −

∫ t

0
|Ψ(u, u)|2)du.

(1.20)

Combining (1.19) and (1.20) we get

Ĝt = exp

[
−
∫ t

0
γ̂(s, s)ds+

∫ t

0
Ψ(u, u)dŴu − 1

2

∫ t

0
|Ψ(u, u)|2du

]
.

On the other side, Ĝ = D is a decreasing process, so its martingale part vanishes,

which implies that Ψ(t, t) = 0 for any t ≥ 0.

4) is a direct result from 2). 2

Remark 1.4.5 The above result can be applied directly to the first default time in the

multi-credits case since the condition we need for the filtrations (F,G) is the general

Hypothesis 1.3.1 which is fulfilled in this case.

1.5 After the default event

This section is devoted to the study on the period after the default. The point of view

and the results presented below are extension of the work of Bielecki, Jeanblanc and

Rutkowski [79]. We have studied, in the previous section, the G-survival probability
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P(τ > T |Gt) for all T ≥ t. It is shown that the knowledge on the process G enables

us to calculate this conditional survival probability since it equals zero on the set

{τ ≤ t}. For pricing purposes, we are now interested in the calculation of the general G-

conditional expectations. However, we shall distinguish two cases before and after the

default in the general case. Before the default, that is, on the set {τ > t}, we know from

previous discussions that the calculation is easy. Recall that for any GT -measurable

random variable Y , we have E[Y |Gt]11{τ>t} =
E[Y 11{τ>t}|Ft]

P(τ>t|Ft)
11{τ>t}. We observe again

the important role played by the process G. In addition, for computation purposes,

we need a martingale characterization of the F-martingale of the form E[Y 11{τ>t}|Ft].

This is one issue we shall study in this section.

Moreover, if we consider a single default, it suffices to consider the case on {τ > t}.
That’s what many models on the market study. However, to extend our framework

to several default times, we have to understand what occurs after the default, that is,

on the set {τ ≤ t}. This is of great importance while studying CDS prices, or k th-to-

default products. We begin our discussion by a special case where the (H)-hypothesis

holds.

1.5.1 A special case with (H)-hypothesis

We now revisit the example where (H)-hypothesis holds for (F,G) and we suppose that

Φ is absolutely continuous. With the notation of the previous section, for any T > t,

we have

GT
t := P(τ > T |Ft) = exp

(
−
∫ T

0

(
λs11{s≤t} + γ(t, s)11{s>t}

)
ds
)
.

We now consider the conditional probability P(τ > s|Ft) where s < t, which is

important for the case after the default. By property of the (H)-hypothesis, we have

P(τ > t|Ft) = P(τ > t|F∞). Hence, for any T ≥ t, we have P(τ > t|FT ) = Gt, which

implies immediately that

P(τ > s|Ft) = P(τ > s|F∞) = Gs = exp
(
−
∫ s

0
λudu

)
.

Combining the two cases, we obtain P(τ > θ|Ft) = Gθ
t∧θ for any θ ≥ 0. This conditional

probability admits a density αt(θ) given by

αt(θ) =

{
λθ exp

(
−
∫ θ
0 λudu

)
, θ ≤ t

γ(t, θ) exp
(
−
∫ t
0 λudu−

∫ θ
t γ(t, u)du

)
, θ > t

(1.21)

such that P(τ > θ|Ft) =
∫∞
θ αt(u)du.

Remark 1.5.1 The density αt(θ) does not depend on t for t ≥ θ when the (H)-

hypothesis holds, which simplifies sometimes the calculation.
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In the evaluation problem, it’s very important to calculate the conditional expec-

tation of a GT -measurable random variable with respect to Gt where T is the maturity

and t is the evaluation date. In the following, we consider the random variable of the

form Y (T, τ) where for any s ≥ 0, Y (T, s) is FT -measurable and for any ω ∈ Ω, Y (T, s)

is a Borel function of s. Notice that any GT -measurable random variable can be writ-

ten in this form. However Y (T, τ) can represent a larger set of random variables. The

following result holds for all Y (T, τ) defined above. However, for pricing purposes, we

are only interested in GT -measurable random variables.

Using the density αt(θ) allows us to calculate the G-conditional expectations.

Proposition 1.5.2 We assume that the (H)-hypothesis holds. Let Y (T, τ) be a ran-

dom variable as above. Then we have

1)

E[Y (T, τ)|Gt]11{τ>t} =
E[
∫∞
t Y (T, u)αT (u)du|Ft]∫∞

t αt(u)du
11{τ>t}. (1.22)

2)

E[Y (T, τ)|Gt]11{τ≤t} = E[Y (T, s)|Ft]
∣∣
s=τ

11{τ≤t}. (1.23)

Proof. 1) We know that E[Y (T, τ)|Gt] equals E[Y (T, τ)|Ft]/P(τ > t|Ft) on {τ > t},
which implies immediately (1.22) by the definition of αt(θ).

2) It suffices to prove for any Y (T, τ) of the form Y (T, τ) = Y g(τ) where Y is an

FT -measurable random variable and g is a Borel function. We need to verify that for

any bounded Gt-measurable random variable Z, we have

E
[
Z11{τ≤t}E[Y g(τ)|Gt]

]
= E

[
ZE[Y |Ft]g(τ)11{τ≤t}

]
. (1.24)

By definition of conditional expectation, the left side of (1.24) equals to E[Z11{τ≤t}Y g(τ)].
On the other hand, (H)-hypothesis implies the independence between F∞ and Gt con-

ditioned on Ft. So we have

E[Y |Ft]E[Zg(τ)11{τ≤t}|Ft] = E[Y Zg(τ)11{τ≤t}|Ft].

Therefore E
[
ZE[Y |Ft]g(τ)11{τ≤t}

]
= E[Z11{τ≤t}Y g(τ)], which proves (1.24). 2

Remark 1.5.3 We observe that the density αt(θ) is the key term for the calculation.

The knowledge on the this density enables us to construct the conditional survival

probability P(τ > θ|Ft), which is our main tool to study G-conditional expectations.

Note that we have discussed the case where θ ≥ t using the process G. Here we need

also to study the case where θ < t.
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1.5.2 The general case with density

In this subsection, we suppose no longer that (H)-hypothesis holds. Instead, we in-

troduce the following hypothesis that the conditional survival probability Gθ
t admits a

density, which permits us to conduct explicit calculations. Indeed, it’s convenient to

work directly with the density αt(θ) instead of the intensity process as shown by the

case with the (H)-hypothesis. The results of the previous subsection can be recovered

in this case.

Hypothesis 1.5.4 For any t, θ ≥ 0, we assume that

1. the F-martingale (Gθ
t = P(τ > θ|Ft), t ≥ 0) admits a strictly positive density, that

is, for any θ ≥ 0, there exists a strictly positive F-adapted process (αt(θ), t ≥ 0)

such that

Gθ
t =

∫ ∞

θ
αt(u)du;

2. the process (αt(θ), t ≥ 0) is an integrable F-martingale on [0, T ].

The notion of the density αt(θ), which can be viewed as some martingale density,

plays the crucial role in our further discussions. Furthermore, it provides a general

method which adapts without any difficulty in the multi-credits to study the successive

defaults.

By introducing this density, we can calculate the G-conditional expectations, even

on {τ ≤ t}, where the explicit form contains the quotient of two densities. The general

formula is given in Theorem 1.5.5. Moreover, we obtain the compensator process

explicitly in Theorem 1.5.7. The martingale density is an efficient tool to study the

case after the default. In fact, by comparing (1.25) and (1.26), we observe some

similitude between the two formulae, which shows that we can study the cases before

and after the default in the same framework we introduce.

Theorem 1.5.5 Let Y (T, τ) be an integrable GT -measurable random variable. Then

for any 0 ≤ t ≤ T ,

1)

E[Y (T, τ)|Gt]11{τ>t} =
E
[ ∫∞

t Y (T, u)αT (u)du|Ft

]
∫∞
t αt(u)du

11{τ>t} =
E
[ ∫∞

t Y (T, u)αT (u)du|Ft

]

Gt
11{τ>t}.

(1.25)

2) Recall that we have supposed that αt(θ) > 0. Then

E[Y (T, τ)|Gt]11{τ≤t} = E

[
Y (T, s)

αT (s)

αt(s)

∣∣Ft

]∣∣∣
s=τ

11{τ≤t} =
E
[
Y (T, s)αT (s)

∣∣Ft

]

αt(s)

∣∣∣
s=τ

11{τ≤t}.

(1.26)
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The density (αt(θ), t ≥ 0) is an F-martingale and αt(θ) = 0 implies that αT (θ) = 0 for

any T > t.

Proof. We here only give the proof of 2). In fact, it suffices to verify for Y (T, τ) of the

form Y (T, τ) = Y g(τ ∧ T ) where Y is an integrable FT -measurable random variable

and g is a bounded Borel function. The proof is similar to that of Proposition 1.5.2.

We shall verify, for any bounded Gt-measurable random variable Z, that

E
[
ZE[Y g(τ)|Gt]11{τ≤t}

]
= E

[
ZE
[
Y
αT (s)

αt(s)

∣∣Ft

]∣∣∣
s=τ

g(τ)11{τ≤t}
]
.

Since Gt = Ft ∨ Dt, there exists a bounded B(R+) ⊗ Ft-measurable function F on

R+ × Ω such that Z = F (τ ∧ t, ω),

E
[
ZE[Y g(τ)|Gt]11{τ≤t}

]
= E

[
E[ZY g(τ)11{τ≤t}|FT ]

]
= E

[
Y

∫ t

0
F (s, ω)g(s)αT (s)ds

]
.

On the other hand,

E

[
ZE
[
Y
αT (s)

αt(s)

∣∣Ft

]∣∣∣
s=τ

g(τ)11{τ≤t}
]

= E

[ ∫ t

0
F (s, ω)E

[
Y g(s)

αT (s)

αt(s)
|Ft

]
αt(s)ds

]

= E
[ ∫ t

0
F (s, ω)E[Y g(s)αT (s)|Ft]ds

]
= E

[
Y

∫ t

0
F (s, ω)g(s)αT (s)ds

]
.

2

Remark 1.5.6 In the first equality of (1.26), we deal with αT (θ)/αt(θ), which is

the quotient of martingale densities. With this quantity, we can calculate the G-

expectation for a r.v. Y of interest. In the second equality of (1.26), we first take

conditional expectation and we deal with the quotient of another F-martingale with

respect to αt(θ). The second way is less convenient for calculation. However, it can be

extended to the case without density.

Since (αt(θ), t ≥ 0) is a uniformly integrable martingale, we consider the change of

probability defined by dQs = αT (s)dP on FT , then (1.26) implies that

E[Y (T, τ)|Gt]11{τ≤t} = EQs

[
Y (T, s)|Ft

]∣∣
s=τ

11{τ≤t}.

This is similar with the discussion on the process G in the previous chapter with

the change of probability QL, where we interpret the relationship between the (H)-

hypothesis. Note that when the (H)-hypothesis holds, we have (1.23), which is of the

same form as the above formula under the initial probability. So there is no need
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to change the probability measure under the (H)-hypothesis. In addition, we can

rewritten (1.25) as follows.

E[Y (T, τ)|Gt]11{τ>t} =

∫∞
t E

[
Y (T, u)αT (u)|Ft

]
du∫∞

t αt(u)du
11{τ>t}

=

∫∞
t EQs

[
Y (T, u)|Ft

]
αt(u)du∫∞

t αt(u)du
11{τ>t}.

The following result deals with the calculation of the compensator process Λ of τ .

By Theorem 1.3.4, we know that we need to find the Doob-Meyer decomposition of

the process G. We now treat the case with density.

Theorem 1.5.7 Assume that (F,G, τ) satisfy MA.

We suppose that Hypothesis 1.5.4 holds. Then the G-compensator process Λ of τ is

given by

dΛt = 11]0,τ ](t)
αt(t)

Gt
dt = 11]0,τ ](t)

αt(t)∫∞
t αt(u)du

dt. (1.27)

Proof. We first notice that (At =
∫ t
0 αv(v)dv, t ≥ 0) is the increasing F-predictable

process of the Doob-Meyer decomposition ofG. Or in other words, (Gt+
∫ t
0 αv(v)dv, t ≥

0) is an F-martingale. To prove this, it suffices to verify that

E
[
GT −Gt +

∫ T

t
αv(v)dv|Ft

]
= E

[ ∫ ∞

T
αT (v)dv −

∫ ∞

t
αt(v)dv +

∫ T

t
αv(v)dv|Ft

]

= E
[
−
∫ T

t
αt(v)dv +

∫ T

t
αv(v)dv|Ft

]
= 0.

The last equality is due to the F-martingale property of (αt(θ), t ≥ 0). In addition,

since G is continuous, then Theorem 1.3.4 implies immediately (1.27). 2

Remark 1.5.8 1. Notice that

−∂θ lnP(τ > θ|Ft)
∣∣
θ=t

= −∂θ

(
ln

∫ ∞

θ
αt(u)du

)∣∣∣
θ=t

=
αt(t)∫∞

t αt(u)du
,

which is of form of a “real intensity” if we adopted the exponential notation.

2. Since both the Minimal Assumption and Hypothesis 1.5.4 can be generalized to

the multi-credits case, we shall see in the next chapter that, thanks to the notion

of the martingale density, the above theorem can be extended easily to study the

successive defaults.
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We now revisit the multiplicative decomposition of the process G. Notice that the

process Λ is continuous here. In addition, using the forward intensity, this decompo-

sition implies a HJM type result similar with (1.17) without the hypothesis that F is

generated by a Brownian motion.

Corollary 1.5.9 We use the notations of Proposition 1.3.6. Under Hypothesis 1.5.4,

the multiplicative decomposition of G is given by

Gt = E(M̃
eΓ
t ) exp

(
−
∫ t

0
γ(s, s)ds

)
(1.28)

where γ(t, T ) is the F-forward intensity of τ .

Proof. By proposition 1.3.6 and Theorem 1.5.7, we know that

Gt = E(M̃
eΓ
t ) exp

(
−
∫ t

0

αs(s)

Gs
ds
)
.

On the other hand, γ(t, T ) = −∂T lnGT
t = αt(T )

GT
t

, which implies directly (1.28). 2

1.5.3 The general case without density

We have supposed until now the hypothesis that the density αt(θ) exists and is strictly

positive. Note that the density αt(θ) is related to the conditional survival probability.

In this subsection, we show that by adopting the point of view of some “random mea-

sure” to represent the conditional expectation, the above hypotheses are not necessary.

Definition 1.5.10 We define an Ft-measure qt to be the continuous linear application

from Mb(R+) to L1(Ft) such that

qt(f) = E[f(τ)|Ft] (1.29)

where Mb(R+) is the set of all bounded Borel functions on R+.

Remark 1.5.11 1) In the case with density, we have

qt(f) =

∫

R+

f(θ)αt(θ)dθ.

2) By definition, we have E[qT (f)|Ft] = qt(f). For simplicity, we denote by E[qT |Ft] =

qt. Hence, (qt, t ≥ 0) is a measure-valued F-martingale in the sense that for any

f ∈Mb(R+), (qt(f), t ≥ 0) is an F-martingale.
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When calculating the conditional expectations on {τ ≤ t} in Proposition 1.5.5, the

key term is αT (s)/αt(s) which is the ratio of two densities. This kind of ratio appears

naturally in the comparison of two measures on R+ having densities. In the general

case, we can also compare two measures by the Radon-Nikodym theorem.

By Definition 1.5.10, we have defined a general measure qt without density. If

we draw some analogy with Proposition 1.5.5, we are interested in the comparison

of measures dqT /dqt instead of αT (s)/αt(s). However, we here encounter techni-

cal difficulty since qT is a FT -measure and qt is a Ft-measure. We hence propose

an alternative method which consists of comparing two Ft-measures (analogous with

E[Y (T, s)αT (s)|Ft] and αt(s) in (1.26)).

Similarly with Definition 1.5.10, we now define qY
t , for any integrable G-measurable

random variable Y , to be a continuous linear application from Mb(R+) to L1(Ft) such

that

qY
t (f) = E[Y f(τ)|Ft]. (1.30)

The explicit form of qY depends on the measurability of Y . Under certain condition,

it can be determined by the martingale measure (qt, t ≥ 0). For example, if Y is

FT -measurable, we have

qY
t (f) = E[Y qT (f)|Ft].

In addition, in the case with density, we have qY
t (f) = E

[
Y
∫

R+
f(θ)αT (θ)dθ|Ft

]
if Y

is FT -measurable.

As suggested by (1.26), we would like to prove a result of the form

E[Y g(τ)|Gt]11{τ≤t} =
dqY

t

dqt
(τ)g(τ)11{τ≤t}

and in the case with density, we shall have

dqY
t

dqt
(s) = E

[
Y
αT (s)

αt(s)

∣∣Ft

]
.

There are two major difficulties: 1) what is the analogy of the absolute continuity of an

Ft-measure with respect to another; 2) how to define the Radon-Nikodym derivative

for dqY
t /dqt.

To interpret dqY
t /dqt as the classical Radon-Nikodym derivative, we introduce some

classical measures on the product space (R+ × Ω,B(R+) ⊗ Ft) for any F ∈ Mb(R+ ×
Ω,B(R+) ⊗Ft):

µt(F (s, ω)) = E
[
F (τ(ω), ω)

]
and µY

t (F (s, ω)) = E
[
Y F (τ(ω), ω)

]
,

which can be viewed as the conditional expectation with respect to σ(τ) ∨ Ft.
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If Y is FT -measurable, then µt and µY
t can be determined by the martingale mea-

sure (qt, t ≥ 0) under some conditions. For example, when F (s, ω) = f(s)Z(ω) with f

a Borel function on R+ and Z an Ft-measurable r.v., we have

µt(F ) = E[Zqt(f)] and µY
t (F ) = E[Y ZqT (f)].

In general, for any function in Mb(R+×Ω,B(R+)⊗Ft), we only need to consider linear

combinations of functions of the above form.

Lemma 1.5.12 For any t ≥ 0, we have µY
t � µt.

Proof. For any F ≥ 0 such that E[F (τ, ω)] = 0, we have F (τ, ω) = 0 a.s.. Then

E[Y F (τ, ω)] = 0. 2

Proposition 1.5.13 Let Y be an integrable G-measurable random variable and let g

be a bounded Borel function. Then for any t ≥ 0,

E[Y g(τ)|Gt]11{τ≤t} =
dµY

t

dµt
(τ, ω)g(τ)11{τ≤t} .

Proof. For any bounded Gt-measurable random variable Z = F (τ ∧ t, ω), where F is

a bounded B(R+) ⊗Ft-measurable on R+ × Ω, we have

E[ZY g(τ)11{τ≤t} ] =

∫

[0,t]×Ω
F (s, ω)g(s)dµY

t (s, ω)

=

∫

[0,t]×Ω

dµY
t

dµt
(s, ω)F (s, ω)g(s)dµt(s, ω) = E

[
F (τ, ω)

dµY
t

dµt
(τ, ω)g(τ)11{τ≤t}

]

= E

[
Z
dµY

t

dµt
(τ, ω)g(τ)11{τ≤t}

]
.

2

Remark 1.5.14 In the case with density, dµY
t /dµt can be calculated explicitly as

dµY
t

dµt
=
∂sE[Y 11{τ>s}|Ft]

∂sE[11{τ>s}|Ft]
.

In this case, µt is absolutely continuous with respect to the canonical measure on

(R+ × Ω,B(R+) ⊗ Ft) and the function E[11{τ<s}|Ft] is absolutely continuous on s.

Moreover, the result of the Proposition 1.5.13 can be written as

E[Y g(τ)|Gt]11{τ≤t} =
∂sE[Y 11{τ>s}|Ft]

∂sE[11{τ>s}|Ft]

∣∣∣
{s=τ}

g(τ)11{τ≤t}. (1.31)
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Chapter 2

The multi-defaults case

This chapter is motivated by some practical concern of the practitioners on the market:

when managing a portfolio which contains several defaultable credits, one observes es-

sentially the occurrence of the first default. Hence, to study the successive defaults in

the intensity approach, can one suppose that the further defaults preserve the probabil-

ity law of the same family (usually the exponential family in practice) with nevertheless

parameters depending on the market data of the observation time?

We develop a simple deterministic model of two-credits to study this problem and

we show that this kind of properties hold only in very special cases and the associated

copula function depends on the dynamic of the marginal distributions. We deduce

the distribution of the second default time and observe that the calculations become

complicated and the result is not clear to interpret. Hence, we find the intuition of the

market is inappropriate to model the multi-credits case.

In the second section, we study two default times in the general framework which

we proposed in the previous chapter. We deduce the compensator process of the

second default time with respect to the first one and we show that the result can be

extended without difficulty to the successive defaults. Hence, instead of the classical

procedure where we treat first the marginal distributions of each credit and then their

joint distribution, we propose an original method which concentrates on the successive

defaults.

2.1 An illustrative model

2.1.1 Model setup

In this subsection, we present a very simple model from the practical point of view.

On the market, the practitioners adopt more intensity models than structural models

because the intensity models fit easily to the daily data of CDS spreads. A simplified

but largely used version of the intensity model is the exponential model where the
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default or survival probability of one credit is calculated by an exponential distribution

with parameters being calibrated from the CDS market. The computation is repeated

each day with daily CDS data.

Using this procedure, the practitioners adopt some time stationary property. This

idea is extended to the portfolio case. That is, when we consider a portfolio containing

several credits, we suppose that each credit satisfies the exponential distribution hy-

pothesis. What we need to specify is the observable information. In the single credit

case, we observe the default-or-not event of the credit concerned. When the default

occurs, there will be no need to calculate the conditional survival probability of course.

However, in the multi-credit case, after the first default, we shall calculate the survival

probabilities of the other credits conditionned on this event. Before the first default,

each credit satisfies the exponential hypothesis. For this practical reason, we introduce

an hypothesis on the joint law given by (2.1). Moreover, in practice, it is often sup-

posed that the surviving credits still satisfy this condition after the first default occurs,

once the parameters having been adjusted to the “contagious jump” phenomenon. We

shall discuss this argument in subsection 2.1.3.

In the following, we consider two credits and we suppose that the available infor-

mation is whether the first default occurs or not. Denote by τ1 and τ2 the default

times of each credit and let τ = min(τ1, τ2). Each default time is supposed to follow an

exponential type distribution of parameter µi(t) before the first default occurs. That

is, for any T > t, we suppose

P(τi > T | τ > t) = e−µi(t)·(T−t), (i = 1, 2). (2.1)

Notice that µi(t) is a deterministic function. In fact, before the first default, we are

in the deterministic context and all the conditional expectations can be calculated

explicitly with conditional probabilities. By letting t = 0, we have

P(τi > T ) = e−µi(0)T . (2.2)

At the initial time, each credit follows the exponential law with intensity µi(0). At

time t, µi(t) is renewed with observed information. When τ1 and τ2 are independent,

it’s easy to calculate the joint probability

P(τ1 > t1, τ2 > t2) = P(τ1 > t1)P(τ2 > t2) = e−µ1(0)t1−µ2(0)t2 .

Then we obtain immediately µi(t) = µi(0), which means µi(t) remains constant in the

independent case.

Hypothesis (2.1) shows the stationary property of the individual default distribu-

tion. Notice that µi(t) = − 1
T−t ln P(τi > T |τ > t) can be viewed as the implied hazard

rate (cf. [73]) without interest rate and recovery rate. In this model, (2.1) implies that

this forward rate does not depend on T .
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2.1.2 The joint distribution

In this subsection, we show that the joint probability distribution can be determined

explicitly in this model. To show the relationship between the joint and the marginal

distributions, we write the joint probability P(τ1 > t1, τ2 > t2) as the product of two

marginal probabilities and a function ρ(t1, t2) which represents the correlation between

them, i.e.,

P(τ1 > t1, τ2 > t2) = P(τ1 > t1)P(τ2 > t2)ρ(t1, t2). (2.3)

Note that contrary to the linear correlation parameter which takes value in [0, 1],

the function ρ(t1, t2) can take any strictly positive real value. In addition, we have

ρ(0, t) = ρ(t, 0) = 1 for any t ≥ 0. In particular, for any t1, t2 > 0, if ρ(t1, t2) = 1, then

there is independence.

In fact, (2.3) defines a unique copula function for any t1 and t2 by the Sklar’s

theorem. Let C̃(u, v) with (u, v) ∈ [0, 1]2 be the survival copula function such that the

joint probability defined by (2.3) can be written as

C̃(P(τ1 > t1),P(τ2 > t2)) = P(τ1 > t1)P(τ2 > t2)ρ(t1, t2).

By letting u = P(τ1 > t1) and v = P(τ2 > t2) and by using (2.2), we get

C̃(u, v) =

{
uvρ

(
ln u

µ1(0)
, ln v

µ2(0)

)
, if u, v > 0;

0, if u = 0 or v = 0.

Hence C̃ is a special copula function which depends on the initial values of µi(t) and

the function ρ. We are interested in the form of the function ρ since it implies directly

the joint survival probability function.

In the standard copula model, the joint probability function depends on µi through

the marginal probability which is a uniform variable P(τi > ti) = e−µi(0)ti , that is, only

the initial values µ1(0) and µ2(0). In the following, we show that because of the function

ρ which can be deduced explicitly by hypothesis (2.1), the joint probability in this case

depends not only the initial values, but on the functions µ1(t) and µ2(t).

Proposition 2.1.1 If ρ(t1, t2) ∈ C1,1, then the joint survival probability is given by

P(τ1 > t1, τ2 > t2) = exp
(
−
∫ t1

0
µ1(s ∧ t2)ds−

∫ t2

0
µ2(s ∧ t1)ds

)
. (2.4)

Proof. From (2.1), we have P(τ1 > T, τ2 > t) = P(τ1 > t, τ2 > t)e−µ1(t)(T−t) for any

T > t. Combining the definition (2.3), we obtain

ρ(T, t)

ρ(t, t)
= e−(µ1(t)−µ1(0))(T−t).
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Then ∂T ln ρ(T, t) = −(µ1(t) − µ1(0)). By symmetry, we also have ∂T ln ρ(t, T ) =

−(µ2(t)−µ2(0)). Taking the sum, we get d
dt ln ρ(t, t) = −(µ1(t)−µ1(0))−(µ2(t)−µ2(0))

and then

ln ρ(t, t) = −
∫ t

0
(µ1(s) − µ1(0)) + (µ2(s) − µ2(0))ds.

Therefore, ln ρ(T, t) = µ1(0)T+µ2(0)t−µ1(t)(T−t)−
∫ t
0 (µ1(s)+µ2(s))ds and ln ρ(t, T )

is obtained by symmetry. Then for any t1, t2 ≥ 0,

ln ρ(t1, t2) = µ1(0)t1 + µ2(0)t2 −
∫ t1

0
µ1(s ∧ t2)ds−

∫ t2

0
µ2(s ∧ t1)ds,

which implies (2.4). 2

Remark 2.1.2 The above proposition shows that the joint probability function P(τ1 >

t1, τ2 > t2) depends on the marginal distributions through (µ1(t), t ≤ t1) and (µ2(t), t ≤
t2), which means that it depends on all the marginal dynamics.

Proposition 2.1.3 If ρ(t1, t2) ∈ C2 and if µ1(t), µ2(t) ∈ C1, then

µi(t) = µi(0) −
∫ t

0
ϕ(s)ds (2.5)

where

ϕ(t) =
∂2

∂t1∂t2

∣∣∣∣
t1=t2=t

ln ρ(t1, t2).

In addition, we have

P(τ1 > t1, τ2 > t2) = exp
(
− µ1(0)t1 − µ2(0)t2 +

∫ t1∧t2

0
ϕ(s)(t1 + t2 − 2s)ds

)
. (2.6)

Proof. Notice that when t1 ≤ t2, ∂
2
t1,t2 ln ρ(t1, t2) = −(µ2)′(t1) and when t1 ≥ t2,

∂2
t1,t2 ln ρ(t1, t2) = −(µ1)′(t2). Then

∂2
1,2|{t1=t2=t} ln ρ(t1, t2) = −(µ1)′(t) = −(µ2)′(t).

By the definition of ϕ(t), we have (µ1)′(t) = (µ2)′(t) = −ϕ(t), which implies immedi-

ately (2.5). By replacing µi(t) in equation (2.4) with the integral form (2.5) and taking

integration by part, we get (2.6). 2

Remark 2.1.4 1) In the above proposition, (2.5) is rather astonishing at the first

sight because it means that µ1(t) and µ2(t) are identical apart from their initial

values. The point lies in the stationary property implied by (2.1) and the fact that

the information flow is symmetric for the two credits before the first default.
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2) We obtain, as a direct consequence of (2.6), the explicit form of ρ(t1, t2) given by

ρ(t1, t2) = exp
( ∫ t1∧t2

0 ϕ(s)(t1 + t2 − 2s)ds
)
. Therefore, the function ϕ plays an

important role in determining the correlation structure of default times.

Mathematical criteria are required to well define (2.6).

i) the survival probability should be decreasing with respect to time, which implies

∂

∂ti
ln P(τ1 > t1, τ2 > t2) ≤ 0, ∀t1, t2 ∈ [0, T ];

ii) the probability density function should be positive, which implies

∂2

∂t1∂t2
P(τ1 > t1, τ2 > t2) ≥ 0.

Therefore, the function ϕ satisfies the following conditions:
{
−µ1(0) +

∫ t2
0 ϕ(s ∧ t1)ds ≤ 0

−µ2(0) +
∫ t1
0 ϕ(s ∧ t2)ds ≤ 0

(2.7)

and

ϕ(t1 ∧ t2) ≥ −
(
µ1(0) −

∫ t2

0
ϕ(s ∧ t1)ds

)(
µ2(0) −

∫ t1

0
ϕ(s ∧ t2)ds

)
. (2.8)

We notice that condition (2.8) is always satisfied when ϕ ≥ 0. When ϕ = 0, there

is independence since P(τ1 > t1, τ2 > t2) = P(τ1 > t1)P(τ2 > t2). In addition, the

function µi(t) remains constant as the initial value.

Remark 2.1.5 If i) and ii) are satisfied, then the right-hand side of (2.6) defines a joint

probability distribution on R2. Denote by G(t1, t2) = P(τ1 > t1, τ2 > t2). In fact, it’s

not difficult to verify that G(0, 0) = 1 and lim
t1→+∞

G(t1, t2) = lim
t2→+∞

G(t1, t2) = 0. Since

by i), G(t1, t2) is decreasing with respect to t1 and to t2, lim
t1→+∞,t2→+∞

G(t1, t2) = 0.

Moreover, for any 0 ≤ x1 ≤ x2 and 0 ≤ y1 ≤ y2, we have

P(x1 < τ1 ≤ x2, y1 < τ2 ≤ y2) = G(x1, y1) −G(x2, y1) −G(x1, y2) +G(x2, y2)

=

∫ x2

x1

∫ y2

y1

∂2
1,2G(x, y)dxdy.

2.1.3 First default and contagious jumps

In this subsection, we study the first default and its impact. First, we can easily obtain

the probability distribution of the first default time by (2.4) and (2.6),

P(τ > t) = exp
(
−
∫ t

0
µ1(s) + µ2(s)ds

)

= exp
(
−
(
µ1(0) + µ2(0)

)
t+ 2

∫ t

0
ϕ(s)(t − s)ds

)
.

(2.9)
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Note that the first default time also follows an exponential law and µ1(t) + µ2(t) can

be viewed as some intensity parameter.

When the first default occurs, the following result of Jeanblanc [52] (see also [79])

enables us to calculate conditional probability of the surviving credit.

Proposition 2.1.6 Let Dt = D1
t ∨D2

t where Di
t = σ(11{τi≤s}, s ≤ t) (i = 1, 2). Denote

by G(x, y) = P(τ1 > x, τ2 > y). If G(x, y) ∈ C1,1 on R2, then

11{τ≤t}E[11{τ1>T} | Dt] = 11{τ2≤t,τ1>t}
∂2G(T, τ)

∂2G(t, τ)
, (2.10)

Proof. First, we have for any s ≤ t that

E[11{τ2>s}11{τ≤t}E[11{τ1>T} | Dt]] = P(τ1 > T, s < τ2 ≤ t) = G(T, s) −G(T, t). (2.11)

In addition, since ∂2
x,yG(x, y) is the probability density function of τ1 and τ2, we have

E

[
11{τ2>s}11{τ2≤t,τ1>t}

∂2G(T, τ)

∂2G(t, τ)

]
=

∫ t

s

∫ ∞

t

∂2G(T, y)

∂2G(t, y)

∂2

∂x∂y
G(x, y)dxdy

= −
∫ t

s
∂2G(T, y)dy = G(T, s) −G(T, t).

Then by the definition of conditional expectation, we get (2.10). 2

Combining the above proposition and (2.6), we get the marginal conditional prob-

abilities.

Proposition 2.1.7 For any t ≥ 0 and T > t, the conditional survival probability of

the credit i is given by

E[11{τi>T} | Dt] = 11{τ>t} exp

(
−
(
µi(0) −

∫ t

0
ϕ(s)ds

)
(T − t)

)

+ 11{τi>t,τj≤t} exp

(
−
(
µi(0) −

∫ τ

0
ϕ(s)ds

)
(T − t)

)
· µ

j(0) − ϕ(τ)(T − τ) −
∫ τ
0 ϕ(s)ds

µj(0) − ϕ(τ)(t − τ) −
∫ τ
0 ϕ(s)ds

.

(2.12)

Proof. We write E[11{τi>T}|Dt] = 11{τ>t}E[11{τi>T}|Dt] + 11{τi>t,τj≤t}E[11{τi>T}|Dt]. To

calculate the first term, it suffices to recall µi(t) given by (2.5). For the second term,

we calculate the conditional expectation by (2.11) in the above proposition and the

joint survival probability function given by (2.6). 2

Remark 2.1.8 1. Notice that E[11{τi>T}|Dt] can be viewed as a defaultable zero

coupon price. The two terms at the right-hand side of (2.12) represents respec-

tively the price before and after the default of the other credit. By comparing
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the two terms, we observe the so-called “contagious default” phenomenon since

the survival probability of the ith-credit has a jump downward at τ given the

default of the other credit if ϕ > 0.

This phenomenon has been discussed by Jarrow and Yu [51] where the authors

supposed that the intensity process have a positive jump when the other credit

defaults.

2. After the first default, the surviving credit satisfies no longer the exponential

stationary property by the form of the conditional probability in (2.12). So in

general, we can not expect to proceed in a recursive way since the basic hypothesis

is no longer valid.

We are now interested in the properties of the second default time with respect to

the first one. We denote by

σ = max(τ1, τ2).

Let us define the filtration Dτ = (Dτ
t )t≥0 associated with the first default time τ where

Dτ
t = σ(11{τ≤s}, s ≤ t).

Proposition 2.1.9 For any t ≥ 0 and T ≥ t, we have

E[11{σ>T}|Dτ
t ]

= 11{τ>t}
[
exp

(
− µ1(t)(T − t)

)
+ exp

(
− µ2(t)(T − t)

)
− exp

(
−
∫ T

t

(
µ1(s) + µ2(s)

)
ds
)]

+ 11{τ≤t}

[
exp

(
− µ1(τ)(T − τ)

)µ2(0) −
∫ T
0 ϕ(τ ∧ s)ds

µ1(τ) + µ2(τ)

+ exp
(
(−µ2(τ)(T − τ)

)µ1(0) −
∫ T
0 ϕ(τ ∧ s)ds

µ1(τ) + µ2(τ)

]
.

(2.13)

In particular,

E[11{σ>t}|Dτ
t ] = 11{τ>t} + 11{τ≤t}

[
exp

(
− µ1(τ)(t− τ)

)µ2(0) −
∫ t
0 ϕ(τ ∧ s)ds

µ1(τ) + µ2(τ)

+ exp
(
− µ2(τ)(t− τ)

)µ1(0) −
∫ t
0 ϕ(τ ∧ s)ds

µ1(τ) + µ2(τ)

]
.

(2.14)

Proof. By (1.31), we have

E[11{σ>T}|Dτ
t ] = 11{τ>t}

P(σ > T, τ > t)

P(τ > t)
+ 11{τ≤t}

∂sP(σ > T, τ > s)

∂sP(τ > s)

∣∣
s=τ

. (2.15)
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Since P(σ > T, τ > s) = P(τ1 > T, τ2 > s) + P(τ1 > s, τ2 > T ) − P(τ1 > T, τ2 > T ), by

applying (2.6) and (2.9), we obtain the proposition. 2

Remark 2.1.10 By (2.13), we notice that conditioned on the first default, the second

default time follows no longer an exponential distribution in general. The conditional

probability is a linear combination of two exponential functions multiplied by some

associated functions. Under very special condition that τ1 and τ2 follows independent

identical law, i.e. µ1(0) = µ2(0) and ϕ = 0, the second default time still follows the

exponential law. Hence, we see that it is inappropriate to suppose the exponential

stationary property to study successive defaults.

2.1.4 Explicit examples and numerical results

In this subsection, we study two explicit examples of the above illustrative model.

We present some numerical results to show explicitly the correlation between the two

defaults and the contagious jumps after the first default. Recall that the function ϕ

characterizes the correlation between two credits.

For each example, we present two figures. The first figure shows the linear correla-

tion between 11{τ1>T ∗} and 11{τ2>T ∗}, i.e.

ρ =
cov
[
11{τ1>T ∗}, 11{τ2>T ∗}

]
√

Var
[
11{τ1>T ∗}

]√
Var
[
11{τ2>T ∗}

] .

The second figure shows the contagious jump phenomenon. The reported quantity is

the “jump” size of the so-called implied hazard rate bi(t, T ) of the surviving credit

when there is no interest rate and no recovery rate. To be more precise,

bi(t, T ) = − 1

T − t
ln E[11{τi>T}|Dt]

= µi(0) −
∫ t∧τ

0
ϕ(s)ds− 11{τ≤t}

1

T − t
ln

(
1 − ϕ(τ)(T − t)

µj(0) − ϕ(τ)(t− τ) −
∫ τ
0 ϕ(s)ds

)
.

(2.16)

Before the first default, it equals µi(t). After the first default occurs, by (2.7), we

observe that if ϕ > 0, there exists a positive jump at the first default time t = τ since

0 < ϕ(τ)(T−τ)
µj(0)−

R τ

0 ϕ(s)ds
≤ 1, which implies that

∆bi(τ, T ) = − 1

T − τ
ln

(
1 − ϕ(τ)(T − τ)

µj(0) −
∫ τ
0 ϕ(s)ds

)
> 0.

In the following, we fix µ1(0) = µ2(0) = 0.01, T ∗ = 5 years.
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Example 2.1.11 ϕ(t) = α where α is a constant. By (2.6),

P(τ1 > t1, τ2 > t2) = exp
(
−µ1(0)t1 − µ2(0)t2 + αt1t2

)
.

where α satisfies by (2.7) and (2.8)

−µ1(0)µ2(0) ≤ α ≤ min(µ1(0), µ2(0))

T ∗ .

The implied hazard rate is given by

bi(t, T ) = µi(0) − α(t ∧ τ) − 11{τj≤t}
1

T − t
ln
(
1 − α(T − t)

µj(0) − αt

)

and the “jump” at the default is given by

∆bi(τ, T ) = − 1

T − τ
ln
(
1 − α(T − τ)

µj(0) − ατ

)
.

Figure 2.1 illustrates Example 2.1.11. α satisfies −0.01% ≤ α ≤ 0.2%. In this example,

the jump size increases with the correlation, also with the first default time. Of the

two results, the former is quite natural. We explain the latter by a compensation effect

since µi(t) decreases with time when there is no default event. We notice in addition

that the correlation ρ is a linear function w.r.t. α.

Example 2.1.12 ϕ(t) = α exp(−αt)min(µ1(0), µ2(0)), where α is a constant param-

eter. Then, when α 6= 0,

ln P(τ1 > t1, τ2 > t2) = −(µ1(0)t1 + µ2(0)t2)

+ (µ1(0) ∧ µ2(0))

(
−e−α(t1∧t2)|t1 − t2| + (t1 + t2) +

2

α
(e−α(t1∧t2) − 1)

)

When α→ 0, we take the limit and get

lim
α→0

ln P(τ1 > t1, τ2 > t2) = −µ1(0)t1 − µ2(0)t2,

which corresponds to the independence case. By (2.16), we have

bi(t, T ) = µi(0) − (µ1(0) ∧ µ2(0))(1 − e−αt)

− 11{τj≤t}
1

T − t
ln

(
1 − (T − t)αe−αt(µ1(0) ∧ µ2(0))

µj(0) − (µ1(0) ∧ µ2(0))[e−ατ (αt− ατ − 1) + 1]

)

and

∆bi(τ, T ) = − 1

T − τ
ln

(
1 − (T − τ)αe−ατ (µ1(0) ∧ µ2(0))

µj(0) − (µ1(0) ∧ µ2(0))[1 − e−ατ ]

)

Notice that when µ1(0) = µ2(0), the jump size ∆bi(τ, T ) = − 1
T−τ ln

(
1 − α(T − τ)

)
.
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Figure 2.1: The contagious jump and the linear correlation in Example 2.1.11 with
µ1(0) = µ2(0) = 0.01, T ∗ = 5 years.

We now search for the bounds for α. Suppose first that α ≥ 0, in this case, we

need only check the criterion (2.7). Since
∫ t
0 ϕ(s)ds ≤

∫ T
0 ϕ(s ∧ t)ds, it suffices that α

satisfies ∫ T

0
ϕ(s ∧ t)ds ≤ min(µ1(0), µ2(0)), ∀0 ≤ t ≤ T ∗,

which implies
∫ T ∗

0 ϕ(s∧0)ds ≤ min(µ1(0), µ2(0)) since ϕ(t) is decreasing. We then get

α ≤ 1

T ∗ .

When α is negative, (2.7) is always true. We shall check (2.8). Notice that for any

α < 0, the left side of (2.8), i.e. αe−α(t1∧t2) min(µ1(0), µ2(0)) is fixed when given t1∧t2.
However, the larger the value of t1∨ t2, the smaller becomes the right side. So we need

only consider the case where t1 = t2. We may suppose that µ1(0) = min(µ1(0), µ2(0)),

then,

µ1(0)αe−αt ≥ −µ1(0)

(
1 − α

∫ t

0
e−αsds

)(
µ2(0) − αµ1(0)

∫ t

0
e−αsds

)

which follows

α = −(µ2(0) + µ1(0)(e−αt − 1)) ≥ −µ2(0).
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By symmetry, we also have α ≥ −µ1(0). Combining the two cases, we obtain α satisfies

−max(µ1(0), µ2(0)) ≤ α ≤ 1

T ∗ .

Figure 2.2: illustrates example (2.1.12), α satisfies −1% ≤ α ≤ 20%. We note that ρ
reaches an upper limit of about 74% in this case.

To compare the contagious jumps obtained by the Gaussian copula function. We

present Figure 2.3 which shows the jump size of the defaultable bond price of the

surviving credit at the first default time calculated by the Gaussian copula model.

We notice that for a given correlation level, the jump size is decreasing with respect

to the first default time. The practitioners find no obvious reason to support this

phenomenon. In fact, Rogge and Schönbucher [70] has pointed out this disadvantage

of the Gaussian copula. The authors propose to use Archimedean type copula functions

to avoid this undesired property.

Table 2.1.13 Comparison of the joint survival probabilities by Example 2.1.11, Ex-

ample 2.1.12 and the Gaussian copula. In each of the following table, the reported

quantities are the joint probability

pij = P(τ1 ∈]ti, ti+1], τ2 ∈]tj, tj+1]), (i, j = 0, 1, ..., T ∗).
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Figure 2.3: Contagious jumps after the first default by the Gaussian copula model.
µ1(0) = µ2(0) = 0.01, T ∗ = 5.

In the three cases, we suppose that the individual default times follow the exponen-

tial distribution with parameters µ0
1 = 10% and µ0

2 = 1%, which means that the

sum of one column or one line in the three matrix are the same. The correlation

parameters are chosen as follows. Let α = 0.1% in Example 2.1.11, we then obtain

the first matrix with P(τ1 > 5, τ2 > 5) = 0.59, which implies the linear correlation

ρ = ρ(11{τ1>T ∗}, 11{τ2>T ∗}) = 13.88% in the Gaussian copula model. Then we choose

parameter in Example 2.1.12 to match this value of ρ.

Results by Example 2.1.11, α = 0.1%:

0.184% 0.182% 0.179% 0.177% 0.174% 8.621%
0.158% 0.156% 0.154% 0.152% 0.150% 7.839%
0.136% 0.134% 0.132% 0.131% 0.129% 7.129%
0.116% 0.115% 0.113% 0.112% 0.111% 6.483%
0.098% 0.098% 0.097% 0.096% 0.095% 5.895%
0.303% 0.301% 0.299% 0.298% 0.297% 59.156%

Results by Example 2.1.12, α = 12.12%:
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0,199% 0,194% 0,191% 0,189% 0,186% 8,558%
0,168% 0,158% 0,154% 0,152% 0,150% 7,829%
0,144% 0,133% 0,125% 0,122% 0,121% 7,146%
0,122% 0,114% 0,106% 0,099% 0,097% 6,511%
0,103% 0,097% 0,091% 0,084% 0,079% 5,924%
0,258% 0,289% 0,308% 0,319% 0,323% 59,156%

Results by Gaussian copula, ρ = 13, 88%:

0.352% 0.282% 0.253% 0.233% 0.218% 8.177%
0.165% 0.157% 0.151% 0.145% 0.141% 7.851%
0.110% 0.111% 0.110% 0.107% 0.106% 7.247%
0.078% 0.083% 0.084% 0.084% 0.083% 6.636%
0.059% 0.065% 0.066% 0.067% 0.067% 6.056%
0.230% 0.287% 0.312% 0.328% 0.341% 59.156%

Remark 2.1.14 1. From the above tables, we see the different correlation structure

in the three cases. In some way, our method can be viewed as a copula method

because a particular form of joint probability matrix is specified.

2. From the bold part of each matrix, we can derive the conditional probabilities,

for example, for any i, j ≥ 1,

P
(
τ1 ∈ (ti, ti+1], τ2 ∈ (tj, tj+1] | τ1 ≥ 1, τ2 ≥ 1

)
=

P
(
τ1 ∈ (ti, ti+1], τ2 ∈ (tj, tj+1]

)

P(τ1 ≥ 1, τ2 ≥ 1)
.

and then P(τk ≤ T |τ1 ≥ 1, τ2 ≥ 1), (k = 1, 2) for integers 2 ≤ T ≤ T ∗. With

a simple calculation, we see that the conditional marginal distribution remains

in the exponential family with our model. However, this is not the case with

the Gaussian copula model, which means that the correlation structure obtained

today is not coherent with the conditional probability of tomorrow. Therefore,

it’s impossible to achieve a robust hedging strategy with the Gaussian copula

model.

2.2 Default times in the general framework: the case of
two credits

2.2.1 Compensator processes

Notations

We now consider the two-credits case in the general framework. Recall that the global

information is represented by the filtration G. Let τ1 and τ2 be two G-stopping times
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representing two default times. We denote by D1 (resp. D2) the filtration generated

by the default process of τ1 (resp. τ2) as previously defined and by D = D1 ∨ D2. Let

F be a subfiltration of G such that G = F ∨ D.

For convenience of writing, we introduce Gi = F ∨ Di. We also consider the ordered

default times. Let

τ = min(τ1, τ2) and σ = max(τ1, τ2).

We define the associated filtrations Dτ and Dσ respectively. Denote by Gτ = F ∨ Dτ

and by Gτ,σ = F ∨ Dτ ∨ Dσ.

The first default

It’s convenient to work with the Minimal Assumption in the multi-credits case. It

is clear that (F,Gτ , τ) satisfies MA. Therefore, almost all the results deduced in the

previous chapter can be applied directly to the first default time τ .

We know that the G-compensator process Λi (i = 1, 2) of τi exists and is unique.

We now consider the G-compensator Λτ of the first default time τ , which is stopped at

τ . The following result has been given in Duffie [27] and been discussed in Jeanblanc

and Rutkowski [54].

Proposition 2.2.1 Let Λ1,Λ2 and Λτ be the G-compensator processes of τ1, τ2 and τ

respectively. Suppose that P(τ1 = τ2) = 0, then

Λτ
t = Λ1

t∧τ + Λ2
t∧τ .

Moreover, there exists F-predictable processes Λi,F such that Λi
τ∧t = Λi,F

τ∧t. Let Λτ,F =

Λ1,F + Λ2,F, then (Λτ,F
τ∧t, t ≥ 0) coincide with the compensator process of τ .

Proof. We first notice the equality 11{τ≤t} = 11{τ1≤τ∧t} +11{τ2≤τ∧t}− 11{τ1=τ2≤t}. Since

11{τ1=τ2} = 0 a.s., we know that 11{τ≤t} = 11{τ1≤τ∧t} + 11{τ2≤τ∧t} a.s.. On the other

hand, (11{τ1≤τ∧t} − Λ1
τ∧t, t ≥ 0) and (11{τ2≤τ∧t} − Λ2

τ∧t, t ≥ 0) are G-martingales, by

taking the sum, we have
(
11{τ≤t}−(Λ1

τ∧t +Λ2
τ∧t), t ≥ 0

)
is also a G-martingale. Finally,

it suffices to note that (F,G, τ) satisfies MA to end the proof. 2

Remark 2.2.2 With the same method, we can recover the result of [27] which con-

firms that for G-stopping times τ1, · · · , τn and τ = min(τ1, · · · , τn) whose G-compensator

are Λ1, · · · ,Λn and Λτ respectively, if P(τi = τj) = 0 for any 1 ≤ i < j ≤ n, then

Λτ
t =

∑n
i=1 Λi

τ∧t. In addition, we can relax the condition to be P(τ = τi = τj) = 0.
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The second default

To study the compensator process of the second default time σ, we shall use some

results already established in the previous chapter. In fact, since Gτ,σ = Gτ ∨ Dσ, we

know that MA also holds for (Gτ ,Gτ,σ, σ). This observation enables us to deduce some

properties of the second default time with the filtration generated by the first default

time Gτ . In particular, we know that there exists some Gτ -predictable process Λσ,Gτ

which coincides with the Gτ,σ-compensator process Λσ of the second default time σ,

i.e. Λσ
t = Λσ,Gτ

σ∧t . The calculation of Λσ is easy on {τ > t}. In fact, we have the

following result.

Proposition 2.2.3 Let σ = max(τ1, τ2) and let Λσ be the Gτ,σ-compensator process

of σ. If P(τ1 = τ2) = 0, then Λσ
τ∧t = 0.

Proof. By definition, (11{σ≤t} − Λσ
t , t ≥ 0) is a G-martingale. Then (11{σ≤τ∧t} −

Λσ
τ∧t, t ≥ 0) is also a G-martingale. Since P(σ = τ) = 0, we know that 11{σ≤τ∧t} = 0,

a.s., which implies that Λσ
τ∧t = 0. 2

The calculation of Λσ on {τ ≤ t} is more complicated. We first recall that in the

single-credit case, the process G and its Doob-Meyer decomposition plays an important

role. By analogy, we now introduce the process H defined by Ht = P(σ > t|Gτ
t ) and we

shall discuss its property. By condition MA and applying directly Theorem 1.3.4, we

have the following result and we know thatH is important to calculate the compensator

process of σ.

Proposition 2.2.4 Let Ht = P(σ > t|Gτ
t ) and H = MH −AH be the Doob-Meyer de-

composition of H where MH is a Gτ -martingale and AH is an increasing Gτ -predictable

process. Then we have

dAH
t = Ht−dΛ

σ,Gτ

t .

By discussions on the case before and especially after the stopping time τ in the

previous chapter, H can be calculated explicitly. The only hypothesis we need is that

the conditional joint probability has a density, as introduced below.

Hypothesis 2.2.5 We suppose that the conditional joint probability P(τ > u, σ >

v|Ft) of the ordered default times τ and σ admits a density pt, that is

P(τ > u, σ > v|Ft) =

∫ ∞

u
dθ1

∫ ∞

v
dθ2pt(θ1, θ2). (2.17)

Remark 2.2.6 Note that
∫∞
θ pt(θ, v)dv = ατ

t (θ) where ατ
t (θ) is the density of Gθ

t =

P(τ > θ|Ft).
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For the above joint probability, we only need to consider the case where u < v

since τ ≤ σ. Otherwise, it suffices to consider the marginal conditional probability

Gu
t = P(τ > u|Ft) characterized by its density ατ

t (θ), i.e. P(τ > u|Ft) =
∫∞
u ατ

t (θ)dθ.

Moreover, for any θ1 > θ2, we have pt(θ1, θ2) = 0. We shall see in the following that

using the martingale density pt(θ1, θ2), many calculations are similar as in the previous

chapter.

Proposition 2.2.7 We assume that Hypothesis 2.2.5 holds. Then the Gτ -supermartingale

H is calculated by

Ht = 11{τ>t} + 11{τ≤t}

∫∞
t pt(τ, v)dv

ατ
t (τ)

= 1 −
∫ t
τ∧t pt(τ ∧ t, v)dv

ατ
t (τ ∧ t) . (2.18)

In addition, H is continuous.

Proof. It is obvious that Ht11{τ>t} = 11{τ>t}. Using (1.31) and the density pt(θ1, θ2),

we have

E[11{σ>t}|Gτ
t ]11{τ≤t} =

∂sP(σ > t, τ > s|Ft)

∂sP(τ > s|Ft)

∣∣∣
s=τ

11{τ≤t} =

∫∞
t pt(τ, v)dv∫∞
τ pt(τ, v)dv

,

which implies (2.18). Moreover, Hτ = 1, which means that H is continuous. 2

We also consider the family of the Gτ -martingales

(
Hθ

t = P(σ > θ|Gτ
t ), t ≥ 0

)
for any θ ≥ 0.

Both cases where θ ≥ t or θ < t are important here. The calculation of H θ is also

similar by using (1.31) and the result is given below.

Proposition 2.2.8 Under Hypothesis 2.2.5, we have

Hθ
t = 11{τ>t}

P(τ > t, σ > θ|Ft)

P(τ > t|Ft)
+ 11{τ≤t}

∂sP(σ > θ, τ > s|Ft)

∂sP(τ > s|Ft)

∣∣∣∣
s=τ

= 11{τ>t}

∫∞
t du

∫∞
θ∨u pt(u, v)dv∫∞

t du
∫∞
u pt(u, v)dv

+ 11{τ≤t}

∫∞
τ∨θ pt(τ, v)dv∫∞
τ pt(τ, v)dv

(2.19)

In particular, we have for any T > t,

HT
t = 11{τ>t}

∫∞
t du

∫∞
T∨u pt(u, v)dv∫∞

t du
∫∞
u pt(u, v)dv

+ 11{τ≤t}

∫∞
T pt(τ, v)dv∫∞
τ pt(τ, v)dv

As an immediate consequence of MA and the above proposition, we have the fol-

lowing result.
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Corollary 2.2.9 For any T > t, the process defined by

(
11{τ>t}

∫∞
t du

∫∞
T∨u pt(u, v)dv∫∞

t du
∫∞
u pt(u, v)dv

+ 11{τ≤t,σ>t}

∫∞
T pt(τ, v)dv∫∞
t pt(τ, v)dv

, t ≥ 0

)

is a Gτ,σ-martingale.

Proof. It suffices to note that under MA for (Gτ ,Gτ,σ, σ), the conditional survival

probability is given by P(σ > T |Gτ,σ
t ) = 11{σ>t}

HT
t

Ht
, which follows immediately the

corollary by (2.18) and (2.19). 2

Remark 2.2.10 If the filtration F is trivial, or in other words, if G = D, then the

density function p(θ1, θ2) does not depend on t. Hence

Ht = 11{τ>t} + 11{τ≤t}

∫∞
t p(τ, v)dv∫∞
τ p(τ, v)dv

is absolutely continuous. SinceH is a Dτ -supermartingale, it is decreasing. Proposition

2.2.4 implies that the Dτ -compensator process Λσ,Dτ

is given by Λσ,Dτ

t = − lnHt. The

general case is discussed below.

The following theorem is the main result of this section which gives the compensator

process of σ. We see that Theorem 1.5.7 can be applied without much difficulty to the

multi-credits case. One important point to note is that (Gτ ,Gτ,σ, σ) satisfy MA.

Theorem 2.2.11 We assume that Hypothesis 2.2.5 holds. Then

1) the process (Hθ
t = P(σ > θ|Gτ

t ), t ≥ 0) admits a density (ασ
t (θ), t ≥ 0), i.e. Hθ

t =∫∞
θ ασ

t (s)ds, which is given by

ασ
t (θ) = 11{τ>t}

∫∞
t dupt(u, θ)∫∞

t du
∫∞
u pt(u, v)dv

+ 11{τ≤t}
pt(τ, θ)

ατ
t (τ)

; (2.20)

2) the Gτ,σ-compensator process Λσ of σ is given by

dΛσ
t = 11[τ,σ](t)

pt(τ, t)∫∞
t pt(τ, v)dv

dt. (2.21)

Proof. 1) We obtain directly ασ
t (θ) by taking derivative of Hθ

t given by (2.19) with

respect to θ.

2) Similar as in Theorem 1.5.7, we notice that the process

(
Ht +

∫ t

0
ασ

v (v)dv = Ht +

∫ t

0
11[τ,∞[(v)

pv(τ, v)

ατ
v(τ)

dv, t ≥ 0
)

(2.22)
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is a Gτ -martingale, which implies that dAH
t = 11{τ≤t}

pt(τ,t)
ατ

t (τ) . Since H is continuous, we

obtain 2) directly by Proposition 2.2.4. 2

Remark 2.2.12 1. It’s not difficult to see that the framework we propose above

can be extended directly to study the successive defaults. A natural application

will be on the dynamic portfolio losses modelling in the pricing of CDO tranches

since under standard market assumptions, the loss on a portfolio is determined by

the number of defaulted credits. The key term is the conditional joint probability

of the ordered default times with resepct to the filtration F.

2. Indeed, we here propose an original point of view for the credit correlation anayl-

ysis: to study the ordered default times rather than the individual default times

and their joint distribution by the copula models. The difficulty of the latter ap-

proach lies in the incompatibility between the dynamic property of the marginal

distributions and the static property of the copula functions, which has been

shown in the illustrative example. On the contrary, for the ordered-defaults,

we deduce in the general way and we think it’s a promising framework which

deserves further studies.

2.3 Appendix

2.3.1 Copula models

In this section, we review the copula model which are widely used in the credit correla-

tion modelling by the market practitioners. Li [61] first introduced the copula method

to the credit dependency analysis. Schönbucher and Schubert [74] studied the dynam-

ics properties implied by the copula model. The copula model are often combined

with the reduced form approach to characterize the default correlation. The method

is static, that is, the model is applied at each time for a given maturity. Then the

procedure is repeated the next day.

We recall the definition of the copula function. For a detailed introduction to this

method, we send the readers to the monograph of Nelsen [65].

Definition 2.3.1 A n-dimensional copula C is a function defined on [0, 1]n and valued

in [0, 1] which satisfies the following properties:

1) for any (u1,1, · · · , un,1) and (u1,2, · · · , un,2) with uk,1 ≤ uk,2, k = 1, · · · , n, we have

2∑

i1=1

· · ·
2∑

in=1

(−1)i1+···+inC(u1,i1 , · · · , un,in) ≥ 0;
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2) C(1, · · · , 1, u, 1, · · · , 1) = u.

We see that a copula function defines a multi-dimensional probability distribution

function whose marginal distributions are uniform on [0, 1]. Moreover, for a family of

one-dimensional distribution functions (F1(x1), · · · , F1(xn)) ∈ [0, 1]n, (x1, · · · , xn) →
C(F1(x1), · · · , Fn(xn)) is a cumulative distribution function on Rn. The relationship

between the marginal distributions and their joint distributions is given by the Sklar’s

theorem.

Theorem 2.3.2 (Sklar) Let F be an n-dimensional distribution function with contin-

uous margins F1, ..., Fn. Then F has a unique copula representation:

F (x1, ...xn) = C(F1(x1), ..., Fn(xn)).

The popularity of the copula model lies in its efficiency to analyze separately the

marginal distributions and the joint distribution and thus to deal with large size port-

folios. In fact, from the Sklar’s theorem, we deduce immediately a two-steps procedure

to obtain the joint distribution function.

1) calculate the marginal survival probabilities P(τi > T ∗
i ) with the quoted CDS

spreads;

2) choose a copula function to obtain the joint survival distribution P(τ1 > T ∗
1 , · · · , τn >

T ∗
n) which satisfies some empirical conditions.

The Sklar’s theorem implies the possibility to capture the “real” structure of the port-

folio dependence by selecting a suitable copula. Moreover, the standard assumption

is that the choice of the copula function is independent of the marginal distributions.

Therefore, most discussions concentrate on the choice of a particular copula function.

Frey and McNeil [33] studied the impact of different types of copula functions on the

default correlation. Among the others, Rogge and Schönbucher [70] proposed the t-

student or the Archimedean copula. We shall also note the one-factor Gaussian copula

model by Andersen, Sidenius and Basu [1] which are used for the CDO pricing.

One important point of [74] is the analysis of the dynamic properties of the survival

probabilities implied from a given copula function. In their model, the default is

constructed as in the example presented previously where the (H)-hypothesis holds,

τi = inf{t : Φi
t ≥ ξi} (i = 1, · · · , n) where Φi is an F -adapted, continuous, increasing

processes satisfying Φi
0 = 0 and Φi

∞ = +∞. and ξ1, · · · , ξn are i.i.d exponential random

variables with parameter 1 which are independent with the σ-algebra F∞. Recall

the survival probability qi(t) := P(τi > t|F∞) = P(τi > t|Ft) = e−Φi
t . This model

has also been discussed by Bielecki and Rutkowski [9] as an example of conditionally

independent default times.
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The correlation of defaults is imposed by introducing an n-dimensional copula

function C(x1, · · · , xn). The authors suppose that the choice of the copula function is

independent of the marginal probability qi and the joint survival probability is given

by

G(t1, · · · , tn) = P(τ1 > t1, · · · , τn > tn | F∞) = C(q1(t1), · · · , qn(tn)).

The main result of [74] shows that at any time t > 0, we can deduce, from the ini-

tial joint survival probability G(t1, · · · , tn), the conditional probabilities on all default

scenarios, i.e. P(τi > T |F∞ ∨ Dt) for any T > t. Hence, by choosing a static copula

function, one obtains the dynamics of the conditional probabilities.

Remark 2.3.3 The idea of using the F-copula function to calculate G-conditional

probabilities is similar with ours. However, our method is much more general. We

don’t need the (H)-hypothesis and by working with a martingale measure, we can

calculate all G-conditional expectations with explicite formulae.
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Part II

Asymptotic Expansions by
Stein’s Method: A finance

concerned result and a
theoretical result
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Chapter 3

Approximation of Large Portfolio
Losses by Stein’s Method and
Zero Bias Transformation

The calculation of cumulative losses on large portfolios is a classical problem in the

insurance and in the risk management to measure the counterpart risks in an aggregate

way. Recently, it attracts new attentions of the market practitioners who search for

pricing portfolio credit products such as CDOs. This problem is particularly difficult

when the size of the portfolio is large, since in the high-dimensional case, the exact

modelling of correlation structure is beyond analytical tractability. Therefore, both an

acceptable modelling approach and rapid numerical simulations bring real challenges.

The market adopts a simplified approach, the factor models, to describe the cor-

relation structure between the defaults, as proposed in Andersen, Sidenius and Basu

[1] and Gregory and Laurent [43]. To be more precise, the cumulative loss LT before

a fixed date T is the sum of all individual losses, i.e. LT =
∑n

i=1 LiZi(T ) where Li is

the loss given default of each credit and Zi(T ) = 11{τi≤T} indicates the occurrence of

default of credit i before T . In the factor models, Zi(T ) are supposed to be correlated

through a common factor Y and conditioned on this factor, the defaults are supposed

to be independent. From the theoretical point of view, we are hence interested in the

sum of independent random variables, which is one of the most important subject in

the probability theory. We know from the central limit theorem (CLT) that the total

loss converges in law to the normal distribution when the size of the portfolio is large

enough.

To the finance concern, Vasicek [80] first applies the normal approximation to an

homogeneous portfolio of loans to achieve faster numerical computation. This method

is extended to CDOs loss calculation by Shelton [75] for the non-homogeneous portfo-

lios where the individual loss distribution is not necessarily identical, and eventually

to CDO2 portfolios where each component is also a CDOs tranche. The method of
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[75] is based on the normal approximation by replacing the total loss of an exogenous

portfolio by a normal random variable of the same expectation and the same variance.

Some improvements have been proposed, including the large-deviations approxima-

tion by Dembo, Deuschel and Duffie [24] and by Glasserman, Kang and Shahabuddin

[36]. Glasserman [35] compares several methods including the saddlepoint and Laplace

approximations. In Antonov, Mechkov and Misirpashaev [2], the authors provide ap-

proximation corrections to the expectation of the CDOs payoff function using the

saddle-point method, which consists of writing the expectation as the inverse Laplace

transform and expanding the conditional cumulant generating function at some well-

chosen saddle point. This method coincides with the normal approximation when

taking expansion at one particular point and show in general better approximation

results.

In the above papers, the authors give financial applications, but no discussion on

the estimation of approximation errors is presented. The rate of convergence of CLT is

given by the Berry-Esseen inequality. For example, for the binomial random variables,

the rate of convergence is of order 1√
n

for a fixed probability p. However, in the credit

analysis. the approximation accuracy deserves thorough investigation since the default

probabilities are usually small and the normal approximation fails to be robust when

the size of portfolio n is fixed. This is the main concern of our work.

In this chapter, we provide, by combining the Stein’s method and the zero bias

transformation, a correction term for the normal approximation. The Stein’s method,

which is a powerful tool in proving the CLT and in studying the related problems,

shall be presented in Subsections 3.1.3 and 3.3.1. The error estimation of corrected

approximation is obtained when the solution of the associated Stein’s equation has

bounded third order derivative. In the binomial case, the error bound is of order O( 1
n).

It is shown that the corrector vanishes for symmetrically distributed random variables.

For asymmetric cases such as the binomial distribution with very small probability, we

obtain the same accuracy of approximation after correction. In addition, the summand

variables are not required to be identically distributed. The result is then extended to

the “call” function which is essential to the CDOs evaluation. Since this function is

not second-ordered derivable, the error estimation is more complicated. The principal

tool is a concentration inequality.

We then apply the result to calculate the conditional losses of the CDOs tranches

and numerical tests preform well in comparison with other approximations available.

The impact of correlation and the common factor is studied. Our method gives better

approximations when the correlation parameter is small. The method is less efficient

when the defaults are strongly correlated, which means, in the normal factor model

framework, that the conditional loss calculation is almost normal distributed. In this

case, there is effectively no need of correction.

This chapter is organized as follows. We first review briefly some convergence

66



results for the sum of independent random variables and the literature dedicated to

the Stein’s method and the zero bias transformation. Section 3.2 and Section 3.3 are

devoted to estimations results in these two contexts respectively. Section 3.2 gives

estimation on the difference between the sum random variable and its zero bias trans-

formation. Section 3.3 deals with the growing speed of the auxiliary function which is

the solution of the Stein’s equation. The main results are given in Section 3.4 where we

present an approximation corrector and we estimate the approximation error. The call

function has been studied in particular since it lacks regularity. Numerical examples

are presented to show the approximation result. The last section concentrates on the

application to the CDO loss approximation.

3.1 Introduction

In this introductory section, we first present the CDO and the factor model which

is the basic model in the following this chapter. Second, We give a brief review of

the sum of independent random variables and some well-known results concerning the

convergence in the central limit theorem. This is of course a classical subject. However,

we shall re-discuss it in our conditional loss context. Finally, we give an overview of

literature of the Stein’s method, which is, combined with the zero bias transformation,

our main tool to treat the problem. Some useful properties shall be developed in the

next section.

3.1.1 Factor models for CDOs

A CDO is a special transaction between investors and debt issuers through the inter-

vention of a special purposed vehicle (SPV). The CDO structure serves as an efficient

tool for banks to transfer and control their risks as well as decrease the regulatory

capital. On the other hand, this product provides a flexible choice for investors who

are interested in risky assets but have constrained information on each individual firm.

A CDO contract consists of a reference portfolio of defaultable assets such as bonds

(CBO), loans (CLO) or CDS (synthetic CDO). A CDO contract deals in general with

large portfolios of 50 to 500 firms. Instead of the individual assets of the portfolio,

one can invest in the specially designed notes based on the portfolio according to his

own risk preference. These notes are called tranches. There exist in general the eq-

uity tranche, the mezzanine tranches and the senior tranche, and we suppose that the

nominal amounts of tranches are denoted by NE , NM and NS . The cash-flow of a

tranche consists of interest and principal repayments which obey prioritization policy:

the senior CDO tranche which carries the least interest rate is paid first, then follow

the lower subordinated mezzanine tranches and at last the equity tranche which carries

excess interest rate. More precisely, the repayment depends on the cumulative loss of
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the underlying portfolio which is given by Lt =
∑n

i=1Ni(1 − Ri)11{τi≤t} where Ni is

the nominal value of each firm. If there is no default, all tranches are fully repayed.

The first defaults only affect the equity tranche until the cumulative loss has arrived

the total nominal amount of the equity tranche and the loss on the tranche is given by

LE
t = Lt11[0,NE ](Lt) +NE11]NE ,+∞[(Lt) (3.1)

Notice that LE
t = Lt − (Lt −NE)+, which is the difference of two “call” functions with

strike values equal 0 and NE. The following defaults will continue to hit the other

tranches along their subordination orders. The loss on the mezzanine tranche and the

senior tranche is calculated similarly as for the equity tranche. Hence, for the pricing

of a CDO tranche, the call function plays an important role.

On the other hand, the market is experiencing several new trends recently, such as

the creation of diversified credit indexes like Trac-X, iBoxx etc. A Trac-X index consists

in general of 100 geographically grouped entreprises while each one is equally weighted

in the reference pool. All these credits are among the most liquid ones on the market,

so the index itself reflects flexibility and liquidity. The derivative products based on

this index are rapidly developed. The CDOs of Trac-X are of the same characteristics

of the classical ones with standard tranches as [3%, 6%], [6%, 9%], [9%, 12%], [12%, 1],

(or [12%, 22%], [22%, 1]) and the transaction of single tranche is possible.

We now present the factor model, which has become the standard model on the

market for CDOs. The one-factor normal model has been first proposed by Andersen,

Sidenius and Basu [1] and Gregory and Laurent [43]. It is a copula model which we

introduce in Subsection 2.3.1.

We consider a static context and we neglect the filtration. The time horizon is fixed

to be T . The default times τ1, · · · , τn are defined as a special case in the Schönbucher

and Schubert’s model with the filtration F being trivial. To be more precise, the default

time is defined as the first time that qi(t) reaches a uniformly distributed threshold Ui

on [0, 1], i.e.

τi = inf{t : qi(t) ≤ Ui},
where qi(t) is the expected survival probability up to time t. Clearly, qi(0) = 1 and

qi(t) is decreasing. Moreover, qi(t) can be calibrated from the market data for each

credit.

The characteristic of the factor model lies in the correlation specification of the

thresholds Ui. Let Y1, · · · , Yn and Y be independent random variables where Y repre-

sents a common factor characterizing the macro-economic impact on all firms and Yi

are idiosyncratic factors reflecting the financial situation of individual credits. Let

Xi =
√
ρiY +

√
1 − ρiYi

be the linear combination of Y and Yi. The coefficient ρi is the weight on the common

factor and thus the linear correlation between Xi and Xj is
√
ρiρj. The default thresh-
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olds are defined by Ui = 1 − Fi(Xi) where Fi is the cumulative distribution function

of Xi. Then

τi = inf{t :
√
ρiY +

√
1 − ρiYi ≤ F−1

i (pi(t))}
where pi(t) = 1− qi(t) is the expected default probability of credit i before the time t.

It is obvious that conditioned on the common factor Y , the defaults are independent.

The survival probability is

P(τi > t) = P(
√
ρiY +

√
1 − ρiYi ≥ F−1

i (pi(t))) = pi(t).

Conditioned on the common factor Y , we have P(τi ≤ t|Y ) = F Y
i

(F−1
i (pi(t))−√

ρiY√
1−ρi

)

where F Y
i is the distribution function of Yi. In particular, in the normal factor case

where Y and Yi are standard normal random variables, Xi is also a standard normal

random variable, then we have

pi(t|Y ) = P(τi ≤ t | Y ) = N
(N−1(pi(t)) −

√
ρiY√

1 − ρi

)
. (3.2)

We note that although the Gaussian factor model is very popular among the practi-

tioners, it can be extended without much difficulty to models containing several factors

which can follow any distribution.

Each default before the maturity T brings a loss to the portfolio. Then the total

loss on the portfolio at maturity is given by

LT =
n∑

i=1

Ni(1 −Ri)11{τi≤T}, (3.3)

where Ni is the notional value of each credit i and Ri is the recovery rate. In the

following, we suppose Ri is constant. Conditional on the common factor Y , we can

rewrite

LT =

n∑

i=1

Ni(1 −Ri)11{
Yi≤

F
−1
i

(pi(T ))−√
ρiY√

1−ρi

}.

Hence, the conditional total loss LT on the factor Y can be written as the sum of

independent Bernoulli random variables, each with probability pi(Y ) = pi(T |Y ). In

particular, for an homogenous portfolio where Ni, Ri and pi(Y ) are equal, LT is a

binomial random variable.

The common factor Y follows certain distribution. Denote by F (y) = P(Y ≤ y)

the distribution function of Y . Then for any function h, if we denote by H(Y ) =

E[h(LT )|Y ], we have

E[h(LT )] =

∫

R

H(y)dF (y).

That is to say, we can study E[h(LT )] in two successive steps. First, we consider the

conditional expectation E[h(LT )|Y ] and second, we study the role played by the factor

Y .
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We recall that for a CDO tranche with the lower and upper barriers of the tranche

A and B, the evaluation is determined by the loss on the tranche

LT (A,B) = (LT −A)+ − (LT −B)+. (3.4)

Notice that LT (A,B) is the call spread, i.e. the difference between two European call

functions. Hence, we are interested in calculating the expectation of the call function

h(x) = (x− k)+.

3.1.2 Sum of independent random variables

As shown above, under the factor model framework, our first objective is to study

the conditional losses. Since the defaults are conditionally independent, this step is

equivalent to calculating the expectation of the call function for sum of independent

Bernoulli random variables.

The sum of independent random variables is a very classical subject in the proba-

bility theory which is related to the law of large numbers and the central limit theorem.

The most simple case is the sum of i.i.d. Bernoulli random variables which follows the

Binomial distribution. Let Sn be a Binomial random variable with parameters (n, p)

where n ≥ 1 is a integer. Historically, Laplace proved that when n→ +∞,

P

(
a ≤ Sn − np√

np(1 − p)
≤ b

)
−→ 1√

2π

∫ b

a
e−

1
2
x2
dx.

In other words, the sequence of random variables
( Sn−np√

np(1−p)

)
n≥1

converges in law to a

standard normal distribution. This is the original form of central limit theorem.

The result of Laplace can be stated in the following way: Let (ξi)i≥1 be a sequence

of i.i.d. random variables of Bernouilli distribution with parameter p. Then Sn has the

same law as ξ1 + · · · + ξn. For any integer 1 ≤ i ≤ n, let Xn,i = (ξi − p)/
√
np(1 − p).

Notice that (Xn,i)1≤i≤n are i.i.d random variables. Denote by Wn = Xn,1 + · · ·+Xn,n.

Then the sequence (Wn)n≥1 converges in law to the standard normal distribution.

We observe immediately that the behavior of sum of independent random variables,

notably its “distance” to the standard normal distribution play an important role in

the classical central limit theorem.

A quite natural generalization to the classical central limit theorem is to study the

asymptotic behavior of sum of independent random variables which are not necessary of

Bernoulli’s type (eventually not identically distributed). More precisely, for any integer

n ≥ 1 let (Xn,i)1≤i≤n be a collection of independent random variables, and let Wn =

Xn,1 + · · · , Xn,n. We want to study the convergence (in law) of the sequence (Wn)n≥1

and the limit distribution if we have the convergence. The possible limit distribution of

the sequence (Wn)n≥1 must be an infinitely divisible distribution. Criteria have been
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given to the convergence of (Wn)n≥1 to some infinitely divisible laws such as Normal

laws, Poisson laws, or Dirac distributions. Interested reader can refer to Petrov [66]

for a detailed review.

The convergence speed of central limit theorems has been largely studied. In gen-

eral, the speed of convergence may be arbitrary slow. However, if we suppose the

existence of certain order moments of Xn,k, we have more precise estimation of the

convergence speed. The Berry-Esseen inequality states as follows.

Theorem 3.1.1 (Berry-Esseen) Let X1, · · · , Xn be independent zero-mean random

variables having third order moment, W = X1 + · · · +Xn. Denote by σ2
i = Var(Xi),

σ2
W = Var(W ) =

∑n
i=1 σ

2
i and F (x) = P

(
W
σW

≤ x
)
, then

sup
x∈R

|F (x) −N (x)| ≤ A

σ3
W

n∑

i=1

E|Xi|3,

where N is the distribution function of standard normal distribution, A is an absolute

constant.

Theorem 3.1.1 gives a uniform upper bound of normal approximation error for the

distribution function. For an arbitrary function h, the approximation error can be es-

timated by the Lindeberg method which consists of comparing two sum of independent

random variables. More precisely, let W = X1 + · · ·+Xn and S = ξ1 + · · ·+ ξn be two

sums of independent random variables. If we write for any 0 ≤ k ≤ n

Uk =

k∑

i=1

ξi +

n∑

j=k+1

Xj , (3.5)

then we have U0 = W and Un = S, and the difference h(W ) − h(S) is written as∑n
k=1 h(Uk−1) − h(Uk). Therefore

|E[h(W )] − E[h(S)]| ≤
n∑

k=1

∣∣∣E[h(Uk−1)] − E[h(Uk)]
∣∣∣.

Since Uk and Uk−1 only differ by ξk−Xk, it is easier to estimate
∣∣E[h(Uk−1)]−E[h(Uk)]

∣∣.

3.1.3 Stein’s method and zero bias transformation

The Stein’s method was first introduced by Stein [76] in 1972 to study the conver-

gence rate of CLT for the standard normal distribution. Chen [15] extended it to the

Poisson approximation. The method has then been developed by many authors and

it provides a powerful tool for normal, Poisson and other approximations, in one and

high dimensional cases, for independent or dependent random variables, or even for
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stochastic processes. The basic approach has been introduced in the monograph of

Stein [77] himself. One may also consult Raic [68], Chen [16] or Chen and Shao [18]

for a more detailed review. The Poisson approximation is comprehensively introduced

in Barbour, Holst and Janson [7].

The zero biasing, or the zero bias transformation, is introduced by Goldstein and

Reinert [39] in the framework of the Stein’s method. In [39], the authors use the

technique of zero bias transformation on functions satisfying certain moment conditions

to derive the bounds of the approximation error. Some further development has been

carried out by Goldstein [38] and Goldstein and Reinert [40]. This approach has many

interesting properties. In particular, it provides a concise presentation which largely

simplifies the writings and calculations. However, we surprisingly find that the usage

of this method remains limited in the literature.

In the following, we begin our presentation of the zero bias transformation in Section

3.2 and we then discuss the Stein’s method in Section 3.3.

3.2 Zero bias transformation and Gaussian distribution

In this section, we introduce the zero bias transformation and we present some esti-

mation results in the normal approximation context. Two main results of the section

are

1) Proposition 3.2.6 which enables us to calculate the expectation of functions on the

difference between one random variable and its zero bias transformation when they

are independent with an exact formula;

2) Proposition 3.2.16 which gives the estimations of the product of two functions where

the variables are not independent. Instead of decomposing the sum variable into

two independent parts, we use conditional expectations to estimate a covariance

function and we obtain error bounds of one order higher than doing the estimation

directly. This is the key argument we shall use in the following.

3.2.1 Definition and some known properties

The zero-bias transformation associated with a zero-mean, square integrable random

variable is given as follows. In the following of this chapter, the symbol Z refers to a

central normal variable, while X denotes a general central random variable.

Definition 3.2.1 (Goldstein and Reinert) Let X be a random variable with zero ex-

pectation and finite non-zero variance Var(X) = σ2. We say that a random variable

X∗ has the X-zero biased distribution, or that X∗ is a zero bias transformation of X,

if for any function f of C1-type, whose derivative has compact support, we have

E[Xf(X)] = σ2E[f ′(X∗)]. (3.6)
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The basic idea is based on the observation made by Stein in 1972 on the normal

distribution: a random variable Z has the central normal distribution N(0, σ2) if and

only if for any absolutely continuous function f such that E[f ′(Z)] is well defined, we

have

E[Zf(Z)] = σ2E[f ′(Z)]. (3.7)

We observe that the zero biased distribution of the central normal distribution is itself.

Therefore, it is natural to measure the distance between an arbitrary distribution and

the central normal distribution by the distance between the given distribution and its

zero biased distribution. If it’s close to the normal distribution, then it should also be

close to its zero biased distribution.

Another similar notion which inspired the zero bias transformation is the size bias

transformation for nonnegative variables, which is defined, for any random variable

X ≥ 0 with E[X] = µ < ∞ and any function f such that E[Xf(X)] exists, by

E[Xf(X)] = µE[f(Xsize)]. We say also that X size has the X-size biased distribution.

This notion and its relation between the Stein’s method are discussed in Stein [78]

and Goldstein and Rinott [41]. There are many similitudes between these two notions.

However, as we are interested in the closeness of one distribution with the normal

distribution, it’s unnatural that we exclude symmetric random variables since X is

required to be positive here. Hence it’s more practical to work directly with the zero

mean random variable by the zero bias transformation.

The existence of a random variable with zero bias distribution is given in [39] by

providing the density function. In addition, as mentioned above, the Z-zero biased

distribution associated with a random variable Z of the zero-mean normal distribution

N(0, σ2) is the normal distribution N(0, σ2) itself. We here give the proof of the

converse property.

Theorem 3.2.2 (Goldstein and Reinert) Let X be a zero-mean random variable with

finite variance σ2 > 0.

1) A random variable X∗ with the following density pX∗(x) with respect to the Lebesgue

measure has X-zero biased distribution.

pX∗(x) = σ−2E[X11{X>x}]. (3.8)

2) If Z and Z∗ have the same distribution, then Z is a centered Gaussian variable.

Proof. We proceed by verification after having established the identity (3.8).

i) It is obvious that pX∗ ≥ 0 if x ≥ 0. If x is negative, using the assumption E[X] = 0,

we rewrite pX∗ as

pX∗(x) = σ−2E[X11{X >x} −X] = σ−2E[−X11{−X≥−x}] ≥ 0.
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ii) Let g be a bounded Borel function with compact support, and G(x) =
∫ x
−∞ g(t)dt

be a primitive function of g. Then G is bounded, and XG(X) is integrable. On

the other hand, we have by Fubini’s theorem

σ−2

∫

R

g(x)E[X11{X>x}]dx = σ−2E

[ ∫

R

g(x)X11{X>x}dx
]

= σ−2E[XG(X)] = ϕ(g).

(3.9)

Since ϕ is a positive fonctional on the space of continuous functions of compact

support, by Riesz’s theorem, it’s a Radon measure on R. Moreover, (3.9) means

that ϕ has density σ−2E[X11{X>x}]. Finally, we verify that ϕ(R) = σ−2E[X2] = 1.

Hence ϕ is a probability measure.

iii) If a random variable Z has the same distribution of Z ∗, then Z admits a density

function p, and this density function satisfies

p(x) = σ−2

∫ ∞

x
t p(t) dt, or x p(x) − σ2p′(x) = 0.

The solutions of this differential equation are proportional (up to a constant) to

exp
(
− x2

2σ2

)
.

2

Remark 3.2.3 Note that the equality (3.6) is valid for a larger set of functions f . In

fact, if suffices that f is an absolutely continuous function such that E[f ′(X∗)] is well

defined. Then in (3.9), E
[ ∫

R
|f ′(x)X11{X>x}|dx

]
< ∞. By the Fubini’s theorem, we

obtain equation (3.6).

The following example is fundamental in what follows. It studies the Bernoulli

random variable of zero mean and its zero bias transformation. Note here that we

do not work directly with the standard Bernoulli variable of default indicator, but a

normalized random variable taking two real values different from 0 and 1. In fact,

for any random variable, we can apply the transformation to the centered variable

X − E[X]. This so-called asymmetric Bernoulli random variable satisfies the zero

mean condition in the zero bias transformation and its two possible values are one

positive and one negative since the expectation equals zero.

Example 3.2.4 (Asymmetric Bernoulli) LetX be a zero-mean asymmetric Bernoulli

random variable taking two values α = q = 1− p and β = −p, (0 < p, q < 1) in [−1, 1],

with probabilities P(X = q) = p and P(X = −p) = q = 1 − p respectively. Then the

first two moments of X are

E(X) = 0, and Var(X) = p q2 + q p2 = pq.
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We denote this distribution by B(q,−p). Moreover, for any differentiable function f ,

1

σ2
E[Xf(X)] =

1

p q

(
p qf(q) − q pf(−p)

)
= f(q) − f(−p) =

∫ q

−p
f ′(t)dt,

which implies by Definition 3.2.1 that the zero bias distribution exists and is the

uniform distribution on [−p, q].
More generally, any zero-mean asymmetric Bernoulli random variable can be written as

a dilatation of B(q,−p) by letting α = γ q and β = −γ p, which we denote by Bγ(q,−p).
If X follows Bγ(q,−p), then Var(X) = γ2 pq and its X-zero bias distribution is the

uniform distribution on [−γ p, γq].

3.2.2 Properties and estimations

In this subsection, we shall present some useful results of the zero bias transformation.

Let X be a zero-mean square integrable random variable with finite variance σ2 > 0

and X∗ be a random variable having the X-zero biased distribution and independent

to X. We are particularly interested in the estimation of functions on |X −X ∗|, the

quantity which is important in the normal approximation. Proposition 3.2.6 is based

on the fact that X∗ and X are independent.

Proposition 3.2.5 If X has (k+2)th-order moments, then X∗ has kth-order moments.

Furthermore, we have the following equalities

E[|X∗|k] =
1

σ2

E[|X|k+2]

k + 1
, E[(X∗)k] =

1

σ2

E[Xk+2]

k + 1
. (3.10)

Proof. Let

F (x) =
1

k + 1
|x|kx,

then its derivative function F ′(x) = |x|k. If E[|X|k+2] exists, then E[XF (X)] is well

defined, and so is E[F ′(X∗)]. By definition, we have E[|X∗|k] = 1
σ2 E[XF (X)] =

1
σ2(k+1)

E[|X|k+2]. For the same reason, the second equality also holds. 2

We shall often encounter, in the following, the calculation concerning the difference

X − X∗. The estimations are easy when X and X∗ are independent by using a

symmetrical term Xs = X − X̃, where X̃ is an independent duplicate of X.

Proposition 3.2.6 Let X and X∗ be a pair of independent random variables, such

that X∗ has the X-biased distribution. Let g be a locally integrable even function and

G be its primitive function defined by G(x) =
∫ x
0 g(t)dt. Then

E
[
g(X∗ −X)

]
=

1

2σ2
E
[
XsG(Xs)

]
(3.11)
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In particular,

E[|X∗ −X|] =
1

4σ2
E
[
|Xs|3

]
, E[|X∗ −X|k] =

1

2(k + 1)σ2
E
[
|Xs|k+2

]
. (3.12)

Proof. By definition, for any real number K, we have

σ2E[g(X∗ −K)] = E[XG(X −K)].

Since X∗ is independent of X, let X̃ be a random variable having the same distribution

and independent of X, then

E[g(X∗ −X)] =
1

σ2
E[X̃G(X̃ −X)].

G is an odd function as g is even, then

E[X̃G(X̃ −X)] = E[XG(X − X̃)] = −E[XG(X̃ −X)],

which follows (3.11). To obtain (3.12), it suffices to let g(x) = |x| and g(x) = |x|k
respectively.

2

If X is a zero-mean asymmetric Bernoulli random variable which follows Bγ(q,−p)
as in Example 3.2.4, that is X = γq with probability p and X = −γp with probability

q = 1 − p, the symmetrized random variable X s takes the values 0 with probability

p2 + q2 = 1 − 2pq, and the values γ or −γ with probability p q. Thus we have

E[|X∗ −X|k] =
1

2γ2pq

1

k + 1
|γ|k+22p q =

1

k + 1
|γ|k.

Remark 3.2.7 Equation (3.12) enables us to obtain an equality which is very useful

in the estimation of error bounds. For example, in [39], E[|X − X ∗|] is bounded by

E[|X| + |X∗|]. Our result enables to obtain a sharper bound.

Similar calculation yields estimates for the P(|X − X ∗| ≤ ε), giving a measure of

the spread between X and X∗.

Corollary 3.2.8 Let X and X∗ be independent variables satisfying the conditions of

Proposition 3.2.6. Then, for any ε > 0,

P(|X −X∗| ≤ ε) ≤ ε√
2 σ

∧ 1, P(|X −X∗| ≥ ε) ≤ 1

4σ2 ε
E
[
|Xs|3

]
(3.13)

Proof. Let us observe that the second inequality is immediate from the classical

Markov inequality

P(|X −X∗| ≥ ε) ≤ 1

ε
E
[
|X −X∗|].
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To obtain the first inequality, we apply Proposition 3.2.6 to the even function g(x) =

11{|x|≤ε} and its primitive G(x) = sign(x)
(
|x| ∧ ε

)
. So,

P(|X −X∗| ≤ ε) =
1

2σ2
E
[
|Xs|

(
|Xs| ∧ ε)

]
(3.14)

Since |Xs| ∧ ε ≤ ε and E
[
|Xs|

]2 ≤ E
[
|Xs|2

]
= 2σ2, we get

P(|X −X∗| ≤ ε) ≤ ε

2σ2
(2σ2)1/2 =

ε√
2 σ

2

Remark 3.2.9 The first inequality of Corollary 3.2.8 makes sense when ε is small,

otherwise, the probability is always bounded by 1.

In particular, if X follows Bγ(q,−p), then we can calculate P(|X −X∗| ≤ ε) explicitly.

In fact, we have by (3.14)

P(|X −X∗| ≤ ε) =
1

2γ2pq
2pq|γ|(|γ| ∧ ε) =

|γ| ∧ ε
|γ| .

3.2.3 Sum of independent random variables

A typical example which concerns the sum of independent random variables deserves

special attention. In fact, this example has been largely discussed in the Stein’s method

framework. The problem is relatively simple when we restrict to the most classi-

cal version where all variables are identically distributed. However, this elementary

case can be extended to non-identically distributed variables. Goldstein and Reinert

[39] give an interesting construction of zero bias transformation for the sum variable

W = X1 + · · · + Xn by replacing one single summand by its independent zero bias

transformation variable. Such construction is informative since W and W ∗ differs only

slightly. We now introduce the construction of zero biased distribution as in Gold-

stein and Reinert [39] for the sum of several independent non-identically distributed

variables.

Proposition 3.2.10 (Goldstein and Reinert) Let Xi (i = 1, · · · , n) be independent

zero-mean random variables of finite variance σ2
i > 0 and X∗

i be random variables of

the Xi-zero biased distribution. Denote by (
−→
X,

−→
X ∗) = (X1, · · · , Xn, X

∗
1 , · · · , X∗

n) which

are independent random variables.

Let W = X1 + · · · +Xn be the sum variable, and σ2
W = σ2

1 + · · · + σ2
n be its variance.

We also use the notation W (i) = W −Xi.

Let us introduce a random choice I of the index i such that P(I = i) = σ2
i /σ

2
W , and

assume I independent of (
−→
X,

−→
X ∗).

Then the random variable W ∗ = W (I) +X∗
I has the W -zero biased distribution.
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Proof. Let f be a continuous function with compact support and F be a primitive

function of f . Then,

E[WF (W )] =

n∑

i=1

E[XiF (W )]

=

n∑

i=1

E[XiF (W (i) +Xi)] =

n∑

i=1

σ2
i E[f(W (i) +X∗

i )]

since Xi is independent of W (i). On the other hand, since I is independent of W ,

σ2
W E[f(W (I) +X∗

I )] =

n∑

i=1

σ2
i E[f(W (i) +X∗

i )].

By comparing the above two equations, we know that W ∗ = W (I)+X∗
I has the W -zero

biased distribution. 2

Remark 3.2.11 1. From the above construction, W ∗ has the W -zero biased distri-

bution, but is not independent of W . However the difference W −W ∗ = XI −X∗
I

is easy to study, since X∗
I and XI are conditionally independent given I.

2. If Xi are identically distributed, the probability of choosing a certain variate for

the random index I is equal to 1/n. Therefore, let I = 1, then W ∗ = W (1) +X∗
1

has the W -zero biased distribution. However, for technical reasons, we insist on

the usage of the random index representation W ∗ = W (I)+X∗
I where the random

variable X∗
I = 1

n

∑n
i=1X

∗
i follows the same law with X∗

1 .

3. In particular, if X1, · · · , Xn are i.i.d. zero-mean asymmetric Bernoulli random

variable which follow Bγ(q,−p), the sum W follows an asymmetric binomial

distribution. Let the variance σ2
W of W be fixed, then the dilatation parameter

is given by γ = σW√
npq .

The above proposition facilitates our study of the sum variable through the individ-

ual summand variables. We now extend the estimation results in the last subsection to

the sum variable. In brackets, we show the moment order in the asymmetric binomial

case.

Corollary 3.2.12 With the notation of Proposition 3.2.10, we have

E[X∗
I ] =

1

2σ2
W

n∑

i=1

E[X3
i ]

(
∼ O

( 1√
n

))
,
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and

E[(X∗
I )2] =

1

3σ2
W

n∑

i=1

E[X4
i ]

(
∼ O

( 1

n

))

and the following estimations

E
[
|W ∗ −W |

]
=

1

4σ2
W

n∑

i=1

E[|Xs
i |3], E

[
|W ∗ −W |k

]
=

1

2(k + 1)σ2
W

n∑

i=1

E
[
|Xs

i |k+2
]
.

(3.15)

In particular, for the asymmetric binomial case, we have

E
[
|W ∗ −W |k

]
=

1

k + 1

( σW√
np(1 − p)

)k
. (3.16)

Proof. In fact, the above results are obvious by using the definition of the zero bias

transformation and the construction of W ∗, together with previous estimations. 2

We have in addition the estimation of the probability terms from the Corollary

3.2.8.

Corollary 3.2.13 For any postive constant ε, we have

P(|W ∗ −W | ≤ ε) ≤
( ε√

2σ2
W

n∑

i=1

σi

)
∧ 1, P(|W ∗ −W | ≥ ε) ≤ 1

4σ2
W ε

n∑

i=1

E[|Xs
i |3].

(3.17)

Proof. Proposition 3.2.10 and Corollary 3.2.8 imply immediately (3.17). 2

Notice that XI and X∗
I are not independent of W and W ∗. However, we know the

conditional expectation of XI and X∗
I given (

−→
X,

−→
X ∗). This observation enables us to

obtain some useful estimations which shall play an important role in the following.

Proposition 3.2.14 We have the conditional expectation given by

E[XI |X1, · · · , Xn] =

n∑

i=1

σ2
i

σ2
W

Xi, E[E[XI |X1, · · · , Xn]2] =

n∑

i=1

σ6
i

σ4
W

. (3.18)

Remark 3.2.15 We note that E[E[XI |X1, · · · , Xn]2] is of order O
(

1
n2

)
, which is sig-

nificantly smaller than E[X2
I ] which is of order O

(
1
n

)
. In the homogenous case, if we

take W = W (1) +X∗
1 , the above property no longer holds since E[X2

1 ] ∼ O( 1
n). This

fact justifies the efficiency of the random index construction of W ∗.
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Proposition 3.2.16 Let f : R → R and g : R2 → R be two functions such that the

variance of f(W ) exists, and that for all i = 1, · · · , n, the variance of g(Xi, X
∗
i ) exist,

then
∣∣E[f(W )g(XI , X

∗
I )] − E[f(W )]E[g(XI , X

∗
I )]
∣∣

≤ 1

σ2
W

Var[f(W )]
1
2
( n∑

i=1

σ4
i Var[g(Xi, X

∗
i )]
) 1

2 .
(3.19)

Proof. We first notice that E[f(W )g(XI , X
∗
I )] = E

[
f(W )E[g(XI , X

∗
I )|−→X,−→X ∗]

]
since

W is the sum of X1, · · · , Xn. Therefore,

E[f(W )g(XI , X
∗
I )] = E[f(W )]E[g(XI , X

∗
I )] + cov(f(W ),E[g(XI , X

∗
I )|−→X,−→X ∗]).

On the other hand, since (Xi, X
∗
i ) are mutually independent, we have

cov(f(W ),E[g(XI , X
∗
I )|−→X,−→X ∗])

≤ Var[f(W )]
1
2 Var

[
E[g(XI , X

∗
I )|−→X,−→X ∗]

] 1
2

≤ 1

σ2
W

Var[f(W )]
1
2
( n∑

i=1

σ4
i Var[g(Xi, X

∗
i )]
) 1

2 .

2

Remark 3.2.17 Similar as in Remark 3.2.15, we here obtain the estimation of one

order higher by using the conditional expectation than applying directly the Cauchy-

Schwarz inequality. This is one of the key points in the estimations afterwards. The

result holds when we replace W by W ∗ in (3.19).

We now apply the above proposition to obtain a useful estimation.

Corollary 3.2.18 For any ε > 0, we have

∣∣cov
(
11{a≤W<b}, 11{|X∗

I
−XI |≤ε}

)∣∣ ≤ 1

2σ2
W

( n∑

i=1

σi

4
√

2
E[|Xs

i |3]
) 1

2
. (3.20)

Proof. By Proposition 3.2.16, we get by using the conditional expectation that

∣∣cov
(
11{a≤W<b}, 11{|X∗

I
−XI |≤ε}

)∣∣ ≤ 1

σ2
W

Var[11{a≤W≤b}]
1
2

( n∑

i=1

σ4
i Var[11{|X∗

i −Xi|≤ε}]
) 1

2 .

We have

Var[11{a≤W≤b}] = P(a ≤W ≤ b)(1 − P(a ≤W ≤ b)) ≤ 1

4
.
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And we use Corollary 3.2.8 to get

Var[11{|X∗
i −Xi|≤ε}] ≤

1

4
√

2σ3
i

E[|Xs
i |3],

which follows (3.20). 2

Remark 3.2.19 Notice here the error bound of (3.20) does not depend on the value

of ε. This property is useful when we prove the concentration inequality in Proposition

3.4.4.

3.3 Stein’s equation

3.3.1 A brief review

We recall briefly the framework of the Stein’s method. Consider a zero-mean random

variable W of finite variance σ2
W > 0, which is the sum of n independent variables. Let

Z ∼ N(0, σ2
W ). We are interested in the error of the normal approximation E[h(W )]−

E[h(Z)] where h is some given function. Denote by ΦσW
(h) = E[h(Z)]. The Stein’s

method consists of associating this difference term with some auxiliary function by

E[h(W )] − ΦσW
(h) = E[Wf(W ) − σ2

W f ′(W )] (3.21)

where f is the solution of the Stein’s equation defined as the following differential

equation

xf(x) − σ2f ′(x) = h(x) − Φσ(h). (3.22)

Stein [77] studied some properties of the function f and gave estimations of |f |, |xf |
and |f ′| for the indicator function h(x) = 11{τ≤t}. He mainly used inequalities of the

Gaussian functions. We here need to consider the case when h is the call function.

The connection between the zero bias transformation with the Stein’s method is

evident by its definition. The difference between two expectations of a given function

h for a zero-mean variable W and one central normal variable Z can be written as

E[h(W )] − ΦσW
(h) = E[Wf(W ) − σ2

Wf ′(W )] = σ2
W E[f ′(W ∗) − f ′(W )]. (3.23)

Therefore, for the normal approximation, it is equivalent to study E[f ′(W ∗)− f ′(W )],

which is the difference of two expectations of the same function f ′ on W and on W ∗.
Recall W ∗ = W (I) +X∗

I in Proposition 3.2.10, we have intuition that W should not be

“far” from W ∗. In fact, compared to the Lindeberg method in which we change the

summand variables successively, this method consists of changing the variable XI to

X∗
I .
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We have discussed in the previous section the estimations concerning |W −W ∗|. In

the following of this section, we concentrate on the estimation concerning the function

f . We propose two methods in Subsection 3.3.2 and Subsection 3.3.3 respectively.

The first one is to extend the method used by Stein. Since the derivative of the

call function is an indicator function, the techniques are similar. The second method

consists of rewriting, by the Stein’s equation, the auxiliary function as that of another

function which is of slower growing speed. The method is efficient for polynomially

growing functions and can be adapted to estimate high order expansions in Chapter 4.

We now give some properties of the solution of (3.22).

Proposition 3.3.1 (Stein) If h(t) exp(− t2

2σ2 ) is integrable on R, then one solution of

(3.22) is given by

f(x) =
1

σ2φσ(x)

∫ ∞

x
(h(t) − Φσ(h))φσ(t)dt, (3.24)

where φσ(x) is the density function of the normal distribution N (0, σ2) or equivalently

by

f(x) =

√
2π

σ
E
[
h̄(Z + x)e−

Zx

σ2 11{Z>0}
]
, (3.25)

where h̄(t) = h(t) − Φσ(h) and Z ∼ N(0, σ2).

Proof. Multiplying by σ−2 exp(− x2

2σ2 ) on the two sides of (3.22), it’s easy to obtain a

global solution

f(x) =
1

σ2
exp

( x2

2σ2

) ∫ x

−∞
(Φσ(h) − h(t))e−

t2

2σ2 dt (3.26)

when h(t) exp(− t2

2σ2 ) is integrable. In addition, by definition, Φσ(h) =
∫∞
−∞ h(t)φσ(t)dt,

which implies (3.24). We write (3.24) as

f(x) =
1

σ2
exp

( x2

2σ2

) ∫ ∞

x
(h(t) − Φσ(h))e−

t2

2σ2 dt.

Then by a change of variable u = t− x, we get

f(x) =

√
2π

σ

∫ ∞

0
h̄(u+ x)e−

ux

σ2 φσ(u)du,

which implies immediately (3.25). 2

Hence, by replacing x with W and σ with σW in equation (3.22) and taking expec-

tations on the two sides, we verify that f is the solution of (3.21). Furthermore, we

denote by Nσ(x) the distribution function of N(0, σ2), then another alternative form

of a solution is given by f(x) = 1
σ2φσ(x)

(
Nσ(x)Φσ(h) − E[h(Z)11{Z≤x}]

)
.
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In the following, we shall denote by fh,σ the solution (3.24) of the equation (3.22).

When there is no ambiguity, we write simply fh instead of fh,σ. Clearly fh is linear on

h. From the Proposition 3.3.1, the integral form (3.24) shows that the function fh is

once more differentiable than h. The equation (3.22) was first discussed by Stein for the

case σ = 1. The expectation form is introduced in Barbour [3] with which he deduces

some estimations for the derivatives. In the following, we shall use different methods to

estimate the derivatives of fh according to the two forms (3.24) and (3.25) respectively.

Furthermore, comparing (3.24) and (3.26), we have the equality fh(−x) = −fh(−t)(x)

which will sometimes simplify the discussion.

3.3.2 Estimations with the expectation form

It is shown in the above that the normal approximation error is related to the auxiliary

function fh. Hence, we are interested in some bound estimations concerning the func-

tion fh. In this subsection, we shall give estimations based on the expectation form

of fh where h is the indicator function and the call function. The method used here

was presented in Stein [77]. The more general case was studied in Barbour [3] to get

higher order estimations. In the next subsection, we propose a new method based on

the integral form of fh.

For any real number α let Iα be the indicator function Iα(x) = 11{x≤α}, and let

Cα = (x − α)+ be the “Call” function. We first recall the inequality concerning the

normal distribution functions, which can be found in Stein [77] and Chen and Shao

[18].

Proposition 3.3.2 Denote by φσ(x) the density function and Nσ(x) the cumulative

distribution function of the central normal distribution N(0, σ2), then
{

1 −Nσ(x) < σ2φσ(x)
x , x > 0

Nσ(x) < σ2φσ(x)
|x| , x < 0.

(3.27)

Proof. We first consider the case where x > 0. Notice that φ′
σ(x) = − x

σ2φσ(x), then

direct calculation gives that

1 −Nσ(x) = −
∫ ∞

x

σ2

t
dφσ(t) <

σ2

x
φσ(x).

The case where x < 0 is similar. 2

For technical reason, we introduce the following notation: for any function h such

that hφσ is integrable on (−∞,−x) ∪ (x,+∞) for any x > 0, let f̃h,σ be the function

defined over R \ {0} by

f̃h,σ(x) =

{
1

σ2φσ(x)

∫∞
x h(t)φσ(t)dt, x > 0

− 1
σ2φσ(x)

∫ x
−∞ h(t)φσ(t)dt, x < 0.

(3.28)
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We write f̃h instead of f̃h,σ when there is no ambiguity. We also give the expectation

form of f̃h:

f̃h(x) =

{√
2π
σ E

[
h(Z + x)e−

Zx

σ2 11{Z>0}
]
, x > 0

√
2π
σ E

[
h(Z + x)e−

Zx

σ2 11{Z<0}
]
, x < 0

(3.29)

where Z ∼ N(0, σ2). Notice that in general, f̃h can not be extended as a contin-

uous function on R. if E[|h(Z)|] < +∞, we have f̃h(0−) = −
√

2π
σ E[h(Z)11{Z<0}]

and f̃h(0+) =
√

2π
σ E[h(Z)11{Z>0}]. The two limits are equal if and only if Φσ(h) =

E[h(Z)] = 0. Furthermore, if Φσ(h) = 0, then f̃h coincides with the solution fh of the

Stein’s equation.

We introduce the definition set E of f̃h as below and we only study h ∈ E in the

following. Let E be the set of functions g defined on R \ {0} taking values on R such

that g is locally of finite variation and has finite number of jump points and that g

satisfies
∫
|g(x)|φσ(x)11{|x|>a}dx < ∞ for any a > 0. It’s evident that (3.28) is well

defined for any h ∈ E . In fact, the above condition specifies the regularity of functions

we are interested in and we exclude the “irregular” functions which are not contained

in E .

Proposition 3.3.3 We have following properties of f̃h for any x ∈ R \ {0}:

1. fh(x) = f̃h̄(x) where h̄ = h− Φσ(h);

2. f̃h(−x) = −f̃h(−t)(x);

3. f̃h is one solution of the following equation

xf̃h(x) − σ2f̃ ′h(x) = h(x). (3.30)

Proof. 1) and 2) are directly by definition. For 3), it is easy to verify that f̃h defined

by (3.28) is one solution of the differential equation (3.30). 2

Remark 3.3.4 We call (3.30) the decentralized Stein’s equation. It is useful to intro-

duce f̃h since by taking derivatives, we shall often work with non-centralized functions.

Moreover, by 1) of Proposition 3.3.3, the properties of fh can be deduced directly.

We first give some simple properties of the function f̃h.

Proposition 3.3.5 1) Let h1 and h2 be two functions and a1 and a2 be two real

numbers. Then f̃a1h1+a2h2 = a1f̃h1 + a2f̃h2.

2) If |h(x)| ≤ g(x), then |f̃h| ≤ |f̃g|.
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3) If |h(x)| ≤ g(x) and if g(x)
|x| is decreasing when x > 0 and is increasing when x < 0,

then |f̃h(x)| ≤
∣∣g(x)

x

∣∣.

Proof. 1) and 2) are evident by definition.

For 3), we first study the case where x > 0. By definition of f̃h, we know that

|f̃h(x)| ≤ 1
σ2φσ(x)

∫∞
x g(t)φσ(t)dt. Notice that φ′σ(x) = − x

σ2φσ(x), then

|f̃h(x)| ≤ − 1

φσ(x)

∫ ∞

x

g(t)

t
dφσ(t).

Since g(x)
x is decreasing, we get the inequality. When x < 0, the proof is similar. 2

Corollary 3.3.6 We have |xf̃1(x)| ≤ 1.

Proof. It is a direct consequence of Proposition 3.3.5 applied to h = g = 1. 2

The following two propositions allow us to estimate the derivatives of fh in the

expectation form. The argument is based on the fact that the polynomial functions

increase slower than the exponential functions.

Proposition 3.3.7 Let Z ∼ N(0, σ2). Then for any non-negative integers l, m satis-

fying l ≤ m and for any x > 0,

E
[
11{Z>0}x

lZme−
Zx

σ2
]
≤ 1

2

( lσ2

e

)l
E
[
|Z|m−l

]
. (3.31)

Where, by convention, 00 = 1.

Proof. Consider the function f(y) = yle−
y

σ2 , it attains the maximum value at y = lσ2,

then |f(y)| ≤ ( lσ2

e )l. Then the lemma follows immediately. 2

Proposition 3.3.8 Let Z ∼ N(0, σ2). Then for any x > 0 we have

xE[11{Z>0}e
−Zx

σ2 ] ≤ σ√
2π
. (3.32)

Proof. If suffices to observe that xE[11{Z>0}e
−Zx

σ2 ] = σ√
2π
xf̃1(x). Then applying Corol-

lary 3.3.6 gives (3.32). 2

Remark 3.3.9 For the case x < 0 in (3.31) and (3.32), we can obtain by symmetry

the following inequalities for any integers 0 ≤ l ≤ m:

E[11{Z<0}|x|l|Z|me−
Zx

σ2 ] ≤ 1

2

(
lσ2

e

)l

E[|Z|m−l]
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and E[11{Z<0}|x|e−
Zx

σ2 ] ≤ σ√
2π

.

Corollary 3.3.10 For any x ∈ R, |f̃1(x)| ≤
√

2π
2σ .

Proof. Since lim
x→0+

f̃1(x) =
√

2π/2σ, lim
x→0−

f̃1(x) = −
√

2π/2σ, and lim
|x|→+∞

f̃1(x) = 0,

we only need to prove that f̃1 is decreasing when x > 0 and when x < 0 respectively.

In fact, by Corollary 3.3.6, we have f̃ ′1(x) = 1
σ2 (xf̃1(x) − 1) ≤ 0 for any x > 0 and

f̃ ′1(x) = − 1
σ2 (1 − xf̃1(x)) ≤ 0 for any x < 0. 2

By Proposition 3.3.5 2), we can give the upper bound of f̃h and f̃ ′h for all bounded

functions h by Corollary 3.3.6 and Corollary 3.3.10 as below.

Proposition 3.3.11 Let h be a bounded function on R and let c0 = ‖h‖, then

1) |f̃h(x)| ≤
√

2πc0/2σ,

2) |f̃ ′h(x)| ≤ 2c0/σ
2,

Proof. 1) is direct by Proposition 3.3.5 since |h(x)| ≤ c0 for any x ∈ R.

2) By Stein’s equation, f̃ ′h(x) = 1
σ2 (xf̃h(x) − h(x)). Notice that for any x ∈ R,

|xf̃h(x)| ≤ |c0xf̃1(x)| ≤ c0, |h(x)| ≤ c0.

So |f̃ ′h(x)| ≤ 2c0/σ
2. 2

The indicator function satisfies the boundedness condition with c0 = 1. So Propo-

sition 3.3.11 applies directly. Let Iα(x) = 11{x≤α}. We now give the estimation for

xf ′Iα
. For technique reasons, we consider a small lag of β where 0 ≤ β ≤ 1. Then

0 ≤ |Iα − β| ≤ 1 and we shall see that the bound is uniform on β.

Proposition 3.3.12 For any real number β ∈ [0, 1],

|xf̃ ′Iα−β(x)| ≤
√

2π

2σe
+

|α|
σ2
.

Proof. First we consider the case x > 0, by definition,

f̃Iα−β(x) =

√
2π

σ
E[11{Z>0}(Iα(x+ Z) − β)e−

Zx

σ2 ].

Then

f̃ ′Iα−β(x) = −
√

2π

σ3
E[11{Z>0}(Iα(x+ Z) − β)Ze−

Zx

σ2 ] + 11{x≤α}
1

σ2
e

x2−α2

2σ2 .
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Using Proposition 3.3.7 with l = m = 1 and the fact that ‖Iα − β‖ ≤ 1 we get

∣∣∣xE[11{Z>0}(Iα(x+ Z) − β)Ze−
Zx

σ2 ]
∣∣∣ ≤ σ2

2e
,

and

x11{x≤α}
1

σ2
e

x2−α2

2σ2 ≤ |α|
σ2
.

So combining the two terms, we have

|xf̃ ′Iα−β(x)| ≤
√

2π

2σe
+

|α|
σ2
.

By a similar calculation for x < 0, we get the proposition. 2

We can now resume the estimations of fIα by using f̃Iα for the indicator function.

Corollary 3.3.13 Let Iα(x) = 11{x≤α}. Then

‖fIα‖ ≤
√

2π

2σ
, ‖f ′Iα

‖ ≤ 2

σ2
,

and

|xf ′Iα
| ≤

√
2π

2σe
+

|α|
σ2
.

Proof. By Proposition 3.3.3, fIα = f̃Īα
where Īα = Iα − P(Z ≤ α) = Iα − Nσ(α).

Since |Īα| ≤ 1, we can apply Proposition 3.3.11 to obtain the first two inequalities.

Proposition 3.3.12 implies the third one. 2

We have presented above a quite formal way to estimate f̃h and its derivatives and

the method is easy to apply. However, the bound estimation we get is not always

optimal. Stein [77] gave the following estimations for the indicator function:

0 < |fIα(x)| ≤ min
(√2π

4σ
,

1

|x|
)
, |f ′Iα

| ≤ 1

σ2
.

Compared to the constants obtained by Stein, those in Corollary 3.3.13 are twice larger.

In the following, we consider the functions with bounded derivatives. The increasing

speed of these functions are at most linear. The call function satisfies this property.

Proposition 3.3.14 Let h be an absolutely continuous function on R.

1) Let c1 = |h(0)| and suppose that c0 = ‖h′‖ < +∞, then

|f̃h(x)| ≤
√

2πc1
2σ

+ 2c0, |f̃ ′h(x)| ≤
√

2πc0
σ

(
1 +

1

2e

)
+
c1
σ2
.
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2) If, in addition, c2 = ‖h‖ < +∞, then

|xf̃ ′h(x)| ≤ c0 +

√
2πc2
2σe

.

3) If, in addition to the hypotheses of 1), we assume that h′ ∈ E . Let h′ = g1 + g2,

where g1 is the continuous part of h′ and g2 is the pure jump part of h′ of the

following form

g2(x) =
N∑

i=1

εi(Iµi
− βi).

We assume that c3 = ‖g′1‖ < +∞ and c4 = ‖g1‖, then

|xf̃ ′′h (x)| ≤ c3 +

√
2πc4
2σe

+

N∑

i=1

|εi|
(√2π

2σe
+

|µi|
σ2

)
+

1

eσ

(c1
σ

+
√

2πc0 +
2
√

2πc0
e

)
.

Proof. Clearly we have |h(x)| ≤ c1 + c0|x| for any x ∈ R. By a symmetric argument

it suffices to prove the inequalities for x > 0.

1) As |h(x)| ≤ c1 + c0|x|, we have

|f̃h(x)| ≤
√

2π

σ
E[11{Z>0}(c1 + c0Z + c0x)e

−Zx

σ2 ].

Then inequalities (3.31) and (3.32) yield

|f̃h(x)| ≤
√

2π

σ

[c1
2

+
c0
2

E[|Z|] +
c0σ√
2π

]
≤

√
2πc1
2σ

+ 2c0

since E[|Z|] = 2σ√
2π

. Taking the derivative,

f̃ ′h(x) =

√
2π

σ
E[11{Z>0}h

′(Z + x)e−
Zx

σ2 ] −
√

2π

σ3
E[11{Z>0}Zh(Z + x)e−

Zx

σ2 ]. (3.33)

Notice that the first term is f̃h′(x) with h′ being bounded and the second term can be

estimated as above. So

|f̃ ′h(x)| ≤
√

2πc0
2σ

+

√
2π

σ3
E[11{Z>0}Z(c0Z + c0x+ c1)e

−Zx

σ2 ]

≤
√

2πc0
2σ

+

√
2π

σ3

(c0σ2

2
+
c0σ

2

2e
+

c1σ√
2π

)
=

√
2πc0
σ

(
1 +

1

2e

)
+
c1
σ2
.

2) If, in addition, h itself is bounded by c2, we apply the above method by using

(3.33) to get

|xf̃ ′h(x)| ≤ c0 +

√
2πc2
2σe

.
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3) By (3.33),

f̃ ′′h = f̃ ′h′ −
√

2π

σ3
E[11{Z>0}Zh

′(Z + x)e−
Zx

σ2 ] +

√
2π

σ5
E[11{Z>0}Z

2h(Z + x)e−
Zx

σ2 ].

By the linearity of f̃h with respect to h, we know that

f̃ ′h′ = f̃ ′g1
+

N∑

i=1

εif̃
′
Iµi

−βi
.

So Proposition 3.3.12 and 2) imply that

|xf̃ ′h′(x)| ≤ |xf̃ ′g1
(x)| +

N∑

i=1

|εi|
(√2π

2σe
+

|µi|
σ2

)
≤ c3 +

√
2πc4
2σe

+

N∑

i=1

|εi|
(√2π

2σe
+

|µi|
σ2

)
.

The other two terms are estimated by (3.31) and (3.32) as above,

∣∣∣xE[11{Z>0}Zh
′(Z + x)e−

Zx

σ2 ]
∣∣∣ ≤ c0σ

2

2e
∣∣∣xE[11{Z>0}Z

2h(Z + x)e−
Zx

σ2 ]
∣∣∣ ≤ c0σ

4

2e
+

2c0σ
4

e2
+

c1σ
3

√
2πe

.

So we get finally

|xf̃ ′′h (x)| ≤ c3 +

√
2πc4
2σe

+
N∑

i=1

|εi|
(√2π

2σe
+

|µi|
σ2

)
+

1

eσ

(c1
σ

+
√

2πc0 +
2
√

2πc0
e

)
.

2

For the call function, we apply directly the above Proposition.

Corollary 3.3.15 Let Ck = (x− k)+, then

‖fCk
‖ ≤ 2 +

√
2π

2σ
c1

where c1 = |(−k)+ − c̄| and c̄ = Φσ((x− k)+) = σ2φσ(k) − k(1 − Φσ(k)).

‖f ′Ck
‖ ≤

√
2π

σ

(
1 +

1

2e

)
+
c1
σ2

and

|xf ′′Ck
| ≤ c1

eσ2
+

|k|
σ2

+
2
√

2π

σe

(
1 +

1

e

)
.

Proof. We have fCk
= f̃Ck

where Ck = Ck − c̄. In addition, ‖C ′
k‖ = 1 and c1 =

|Ck(0)| = |(−k)+ − c̄|. Applying Proposition 3.3.14, we get the first inequalities. And

if suffices to notice c3 = 0 and c4 = 1 to end the proof. 2
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3.3.3 Estimations with the integral form

In this subsection, we give another method to estimate the derivatives of fh which is

based on the integral form (3.24). The idea is to work with another function whose

growing speed is one degree less than h and to deduce by a recurrence procedure.

The following lemma shows that to study f̃h, we can work with a more smooth

function by the zero bias transformation.

Proposition 3.3.16 Let h be a given function and H be one primitive function of h.

Then

f̃xH(x) = H + σ2f̃h(x). (3.34)

Moreover, f̃ ′xH(x) = xf̃h(x).

Proof. In fact, it’s easy to verify that the right side of (3.34) is the solution of the

equation xf̃xH(x) − σ2f̃ ′xH(x) = xH(x). Then taking derivative gives immediately

f̃ ′xH(x) = h+ σ2f̃ ′h(x) = xf̃h(x). 2

Corollary 3.3.17 Let h be a function such that E[h(W ∗)] exists, then

E[h(W ∗)] = E
[
W ∗f̃h(W ∗) −Wf̃h(W )

]
.

Proof. Let H be a primitive function of h, then E[h(W ∗)] = 1
σ2

W

E[WH(W )], which

from the decentralized Stein’s equation (3.30), equals 1
σ2

W

E[Wf̃xH(W ) − σ2
W f̃ ′xH(W )].

Then from the above Lemma, we have

E[h(W ∗)] = E
[
f̃ ′xH(W ∗) − f̃ ′xH(W )

]
= E

[
W ∗f̃h(W ∗) −Wf̃h(W )

]
.

2

The following corollary gives a reverse version of Proposition 3.3.16 by letting

g = xH. Then h =
(g(x)

x

)′
. This writing facilitates the calculation and provides a

useful method of estimation when x is not around zero. In the estimations afterwards,

we shall distinguish this case. Usually we consider the cases when |x| > 1 and when

|x| ≤ 1 respectively.

Let g be an absolutely continuous function and we define the operator Γ(g) for any

x 6= 0 by

Γ(g) =
(g(x)

x

)′
. (3.35)

In the following, we suppose that Γ(g) ∈ E , which means that g is a function such that

g′ ∈ E and that the function
∣∣(g(x)

x )′
∣∣φσ(x) is integrable on (−∞,−a) ∪ (a,+∞) for

any a > 0.
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Corollary 3.3.18 Let g be a function such that Γ(g) ∈ E , then

f̃g(x) =
g(x)

x
+ σ2f̃Γ(g)(x) (3.36)

and f̃ ′g(x) = xf̃Γ(g)(x).

Proof. The corollary is a direct result of Proposition 3.3.16. 2

We notice that in equation (3.28), we write f̃h as an integral function of h, while in

(3.36), f̃h contains the derivative of h. The two expressions concerns different aspects:

the smoothness and the growth rate of the functions. In fact, the previous expression

concerns working with a more smooth function while in the Corollary 3.3.18, we are

interested in a function with lower growth rate of g, whose auxiliary function is easier

to estimate. The following simple estimation is useful.

Corollary 3.3.19 For any integer l ≥ −1, we have

∣∣∣f̃ 1

xl

∣∣∣ ≤
∣∣∣f̃ 1

|x|l

∣∣∣ ≤ 1

|x|l+1
. (3.37)

Proof. 3) of Proposition 3.3.5 implies directly (3.37). 2

We now consider function with bounded derivatives.

Proposition 3.3.20 If h has bounded derivative, i.e. ‖h′‖ ≤ c, then |h(x)| ≤ c|x|+ c1
where c and c1 are some constants. Then we have following estimations:

|f̃h(x)| ≤ c+
c1
|x| , ‖f̃h‖ ≤ c+

√
2πc1
2σ

.

|f̃ ′h(x)| ≤ 2c

|x| +
c1
|x|2 , ‖f̃ ′h(x)‖ ≤ max

(
2c+ c1,

2c+ c1
σ2

+

√
2πc1
2σ3

)

and

|f̃ ′′h (x)| ≤ 1

σ2

(
4c+

2c1
|x|
)
, ‖f̃ ′′h‖ ≤ max

(4c+ 2c1
σ2

,
1

σ2

(
c+

2c+ c1
σ2

+

√
2πc1
2σ

+

√
2πc1
2σ3

))
.

Proof. 1) By Proposition 3.3.5 1) 2) and Corollary 3.3.19, we have

|f̃h(x)| ≤ c|f̃|x|(x)| + |f̃c1(x)| ≤ c+ |f̃c1(x)|.

From Corollary 3.3.10, we know that |f̃c1(x)| = c1|f̃1(x)| ≤
√

2πc1
2σ .

2) By Corollary 3.3.18, |f̃ ′h(x)| ≤ |x||f̃Γ(h)(x)|. Since

|Γ(h)| =
∣∣∣h

′(x)
x

− h(x)

x2

∣∣∣ ≤ 2c

|x| +
c1
x2
,
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by Proposition 3.3.5 2) and (3.37), we have

|f̃ ′h| ≤
2c

|x| +
c1
|x|2 .

So when |x| ≥ 1, |f̃ ′h(x)| ≤ 2c + c1. When |x| < 1, we use the equality f̃ ′h(x) =
1
σ2 (xf̃h(x) − h) to get

|f̃ ′h(x)| ≤ 1

σ2

(
|f̃h(x)| + |h(x)|

)
≤ 1

σ2

(
2c+ c1 +

√
2πc1
2σ

)

3)It suffices to notice f̃ ′′h (x) = 1
σ2 (f̃h(x)+xf̃ ′h(x)−h′(x)) and combine 1) and 2) to

complete the proof. 2

We consider the function Ck = Ck − c̄ where Ck is the call function Ck = (x− k)+

and c̄ = Φσ(Ck). Clearly Ck satisfies the conditions of Proposition 3.3.20 with ‖C ′
k‖ =

1. So we have c = 1 and c1 = |Ck(0)| = |(−k)+ − c̄|. In addition, we give in the

following the estimation for |xf ′′
Ck

|.

Corollary 3.3.21 Let Ck = (x− k)+, then

‖fCk
‖ ≤ 1 +

√
2πc1
2σ

,

‖f ′Ck
‖ ≤ max

(
2 + c1,

2 + c1
σ2

+

√
2π

2σ3
c1

)

and

‖xf ′′Ck
‖ ≤ max

[ 1

σ2

(
1 +

2 + c1
σ2

+

√
2πc1
2σ

(1 +
1

σ2
)
)
, |k + c̄| + 3|k| + |k|

σ2

]
.

Proof. We need only to prove the last inequality. Since f̃ ′h = xf̃Γ(h), we have xf ′′Ck
=

xf̃Γ(Ck) + x2f̃ ′
Γ(Ck)

where

Γ(Ck) =
( (x− k)+ − c̄

x

)
=

11{x≥k}k + c̄

x2
.

For the first term,

|f̃Γ(Ck)| ≤ |f̃ |k+c̄|
x2

| ≤ |k + c̄|
|x|3 ,

so when |x| ≥ 1, |xf̃Γ(Ck)| ≤ k + c̄. For the second term, we have by integration by

part

x2f̃ ′
Γ(Ck)

= x3
(
f−11{x≥k}

3k

x4
+

φσ(k)

k2σ2φσ(x)
11{k≥x>0} −

φσ(k)

k2σ2φσ(x)
11{k≤x<0}

)

where By similar arguments as in Proposition 3.3.20, we get |x2f̃ ′
Γ(Ck)

| ≤ 3|k|
|x|2 + k

σ2 ,

which implies |x2f ′
Γ(Ck)

| ≤ 3|k| + |k|
σ2 when |x| ≥ 1. When |x| < 1, it suffices to notice

|xf ′′Ck
| ≤ ‖f ′′Ck

‖. 2
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3.3.4 Some remarks

Our objective is to estimate the derivatives of the function fh and the products of

the form xmf
(l)
h . Of the two methods, the first one consists of deriving directly the

expectation form fh(x) =
√

2π
σ E

[
h̄(Z+x)e−

Zx

σ2 11{Z>0}
]

and estimating the expectation

of functions of the derivatives of h. The difficulty is that, since h̄(Z+x)e−
Zx

σ2 is of form

of a product, taking derivatives increases each time the terms to estimate and it soon

becomes cumbersome for higher order estimations. The second method, as we have

mentioned previously, proposes to treat the problem by reducing the growth order of

the function h. This method shall be discussed in a more systematic way in Chapter

4.

In this subsection, we present some other properties related to the function fh. In

the literature, the discussions mainly concentrate on the case where σ = 1. However,

these results can be extended to the general case without much difficulty. The following

property shows the relationship between the particular case and the general case.

Lemma 3.3.22 For σ > 0, let hσ = 1
σ (h ◦ σ), then

fh,σ(x) = fhσ,1

(x
σ

)
. (3.38)

Proof. Notice first that for any function g such that Φσ(g) exists, the following equality

holds

Φσ(g) =
1√
2πσ

∫

R

e−
x2

2σ2 g(x)dx =
1√
2π

∫

R

e−
y2

2 g(σy)dy = Φ1

(
g(σy)

)
= Φ1

(
g ◦ σ

)
.

(3.39)

Let x = σy, equation (3.22) implies σyfh,σ(σy) − σ2f ′h,σ(σy) = h(σy) − Φσ(h), which

follows

y(fh,σ ◦ σ)(y) − σ(f ′h,σ ◦ σ)(y) =
1

σ
(h ◦ σ)(y) − Φ1

( 1

σ
(h ◦ σ)

)
.

In addition, notice that (fh,σ ◦σ)′ = σ(f ′h,σ ◦σ), then we can rewrite the above equation

as

yg(y) − g′(y) = hσ(y) − Φ1(hσ)

and we know that its solution is g = fh,σ ◦σ. Therefore, we have fhσ,1 = fh,σ ◦σ. 2

The above result enables us to obtain some estimations directly. For example, Stein

[77] has proved that ‖f ′′
h,1‖ ≤ 2‖h′‖ if h is absolutely continuous. We will extend this

result to fh,σ by using Lemma 3.3.22.

Proposition 3.3.23 For any absolutely continuous function h, the solution fh,σ sat-

isfies

‖f ′′h,σ‖ ≤ 2

σ2
‖h′‖. (3.40)
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Proof. Since fh,σ = fhσ,1 ◦ (σ−1), we have f ′h,σ = σ−1
(
f ′hσ,1 ◦ σ−1

)
and f ′′h,σ =

σ−2
(
f ′hσ,1 ◦ σ−1

)
. Then

‖f ′′h,σ‖ =
1

σ2
‖f ′′hσ,1 ◦ σ−1‖ =

1

σ2
‖f ′′hσ,1‖ ≤ 2

σ2
‖h′σ‖ =

2

σ2
‖h′‖.

2

In the normal approximation, we need to calculate the expectations of functions for

normal random variables. In our case, we encounter functions of the form xmf
(l)
h which

are not always simple and explicit to calculate. Thanks to the invariance property

of normal distribution under the zero bias transformation, we here present a result

which will facilitate the calculation by writing the expectation of functions containing

derivatives of fh as some polynomial functions containing h.

Proposition 3.3.24 Let m, l be positive integers. If the lth-order derivative of fh

exists, then

Φσ

(
xmf

(l)
h (x)

)
= Φσ

(
Pm,l(x)h(x) +Qm,l(x)

)

where Pm,l and Qm,l are polynomial functions. When l = 0,

Pm,0(x) =
1

σ2(m+ 1)
xm+1; Qm,0(x) =

{
− Φσ(h)

σ2(m+1)
xm+1, when m is impair,

0, when m is pair.

(3.41)

For any l ≥ 1,

Pm,l =
1

σ2
Pm+1,l−1−mPm−1,l−1, Qm,l =

1

σ2
Qm+1,l−1−mQm−1,l−1, (m > 0) (3.42)

and

P0,l =
1

σ2
P1,l−1 and Q0,l =

1

σ2
Q1,l−1. (3.43)

Proof. First, when l = 0, we have from (3.24),

Φσ(xnfh) =
1√
2πσ

∫ +∞

−∞

(xn

σ2

∫ x

−∞
(Φσ(h) − h(t))e−

t2

2σ2 dt
)
dx.

Since for any polynomial function P (x), we have

lim
x→±∞

P (x)

∫ x

−∞
(Φσ(h) − h(t))e−

t2

2σ2 dt = 0.

Then by integration by part

Φσ(xmfh(x)) = Φσ

( xm+1

σ2(m+ 1)

(
h(x) − Φσ(h)

))
,
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which implies (3.41). In particular, when m is pair, Qm,0 = 0.

When l > 0, we proceed by induction. We write xmf
(l)
h = (xmf

(l−1)
h )′−mxm−1f

(l−1)
h .

Moreover, note that for any derivable function g, we have

Φσ(g′(x)) =
1

σ2
Φσ

(
xg(x)

)
. (3.44)

Then

Φσ(xmf
(l)
h ) = Φσ

(
(xmf

(l−1)
h )′

)
− Φσ(mxm−1f

(l−1)
h )

=
1

σ2
Φσ(xm+1f

(l−1)
h ) −mΦσ(xm−1f

(l−1)
h )

and we obtain (3.42). When m = 0, equation (3.44) implies directly the result. 2

3.4 Normal approximation for conditional losses

In this section, we present our main result. We begin by some first order estimations.

This has been discussed by many authors such as Stein [77], Chen [17] and Goldstein

and Reinert [39]. We first revisit some of these results in our context of zero bias

transformation for some regular functions and then for the indicator function. In the

second subsection, we give a correction term for the normal approximation and we

estimate the approximation error. In the binomial case, the error bound is of order

O( 1
n) after the correction. We then discuss the call function which demands more

effort to prove since it does not possess second order derivative. Some numerical tests

are presented to show the correction results. At last, we introduce and compare the

saddle point method.

We recall the notation which shall be used in this section. Let Xi (1 ≤ i ≤ n)

be independent zero-mean random variables with variance σ2
i > 0 and W = X1 +

· · · + Xn with finite variance σ2
W . We know that W ∗ = W (I) + X∗

I has the zero

biased distribution where I is a random index taking values in {1, · · · , n} and X ∗
i is

independent of all X1, · · · , Xn. We denote by (
−→
X,

−→
X ∗) = (X1, · · · , Xn, X

∗
1 , · · · , X∗

n),

by X̃i an independent duplicate of Xi and let Xs
i = Xi − X̃i. We also denote by

fh = fh,σW
.

3.4.1 Some first-ordered estimations

With the equality (3.23), the error estimation of the normal approximation can be ob-

tained by direct Taylor expansion. However, the estimation is related to the regularity

of the function fh. In the following, we give the first ordered estimation for functions

with different properties.
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3.4.1.1 The regular functions

We now give first-ordered estimation for derivable functions. Proposition 3.2.6 enables

us to provide a sharper bound than in Goldstein and Reinert [39].

Lemma 3.4.1 If h has bounded derivative, then

∣∣E[h(W )] − ΦσW
(h)
∣∣ ≤ ‖h′‖

2σ2
W

n∑

i=1

E
[
|Xs

i |3
]
. (3.45)

Proof. We have by direct Taylor expansion
∣∣E[h(W )] − ΦσW

(h)
∣∣ = σ2

W E
[
|f ′h(W ∗) − f ′h(W )|

]
≤ σ2

W

∥∥f ′′h
∥∥E
[
|W ∗ −W |

]
.

Recall that
∥∥f ′′h

∥∥ and E
[
|W ∗ − W |

]
have been estimated previously and we have

‖f ′′h‖ ≤ 2‖h′‖
σ2

W

(cf. Proposition 3.3.23) and E
[
|W ∗ −W |

]
= 1

4σ2
W

∑n
i=1 E

[
|Xs

i |3
]
, which

follows (3.45). 2

The condition in the previous lemma can be relaxed. Instead of the boundedness

condition of h′, we now suppose that h′ increases linearly.

Lemma 3.4.2 If the derivative of h is of linear increasing order, i.e., |h′(x)| ≤ a|x|+b,
then

|E[h(W )] − ΦσW
(h)| ≤b1

4

n∑

i=1

E
[
|Xs

i |3
]
+ a1σ

2
W

√√√√1

6

n∑

i=1

E[|Xs
i |4] ∼ O(

1√
n

)

+
a1

12

n∑

i=1

E[|Xs
i |4] ∼ O(

1

n
)

where a1 and b1 are some constants.

Proof. Since h′ is of linear increasing order, f ′′
h is also of linear increasing order and

there exist some constants a1 and b1 such that |f ′′h (x)| ≤ a1|x| + b1. Hence

E[|h(W ) − ΦσW
(h)|] ≤ σ2

W E[|f ′′h (W + ξ(X∗
I −XI))(X

∗
I −XI)|]

≤ σ2
W E
[
|a1(W + ξ(X∗

I −XI)) + b1||X∗
I −XI |

]

≤ σ2
W

(
a1E[|W ||X∗

I −XI |] +
a1

2
E[(X∗

I −XI)
2] + b1E[|X∗

I −XI |]
)
.

We estimate the first term by the Cauchy-Schwarz inequality,

E[|W ||X∗
I −XI |] ≤

√
E[W 2]

√
E[|X∗

I −XI |2] =

√√√√1

6

n∑

i=1

E[|Xs
i |4].

The other terms are easily estimated by Proposition 3.2.6. 2
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Remark 3.4.3 1. Lemma 3.4.2 requires the existance of the fourth order moment

of Xi. This is due to the linear increasing property of the derivative of h.

2. Lemma 3.4.2 can be extended to the case where h′ is of polynomial increasing

order, that is, if there exist x0 > 0 and some constant c such at h′(x) ≤ c|x|n for

|x| > x0. However, it’s necessary that higher moments of Xi exist.

3.4.1.2 The indicator function

The approximation error of the indicator function 11{x≤k} is estimated by the Berry-

Esseen inequality. We here introduce a method based on the Stein’s method and the

zero bias transformation to obtain the estimation. The key tool is a concentration

inequality of Chen and Shao [17], which is also essential for the estimation of the call

function whose derivative is the indicator function. We give a proof of the concentration

inequality by writing the zero bias transformation, which is coherent in our context.

Our objective here is not to find the optimal estimation constant.

To prove the concentration inequality, the idea is to majorize P(a ≤ W ≤ b) by

P(a− ε ≤W ∗ ≤ b+ ε) up to a small error with a suitable ε.

Proposition 3.4.4 (Chen and Shao) For any real a and b, we have

P(a ≤W ≤ b) ≤ b− a

σW
+

∑n
i=1 E

[
|Xs

i |3
]

σ3
W

+

(∑n
i=1

σi√
2
E[|Xs

i |3]
) 1

2

2σ2
W

.

Proof. Let f ′ be the indicator function f ′(x) = 11[a−ε,b+ε](x) where ε is a positive

constant. One primitive function is given by f(x) =
∫ x
(a+b)/2 f

′(t)dt, which is bounded

by |f(x)| ≤ ε+ b−a
2 . Using the zero bias transformation, we have

σ2
W E[11[a−ε,b+ε](W

∗)] = E[Wf(W )] ≤ σW

(
ε+

b− a

2

)
.

On the other hand,

P(a− ε ≤W ∗ ≤ b+ ε) ≥ P(a ≤W ≤ b, |XI −X∗
I | ≤ ε)

= P(a ≤W ≤ b)P(|X∗
I −XI | ≤ ε) + cov(11{a≤W≤b}, 11{|X∗

I
−XI |≤ε}).

As shown by (3.20),

cov(11{a≤W≤b}, 11{|X∗
I
−XI |≤ε}) ≥ − 1

2σ2
W

( n∑

i=1

σi

4
√

2
E[|Xs

i |3]
) 1

2

Therefore, we get the following inequality

ε+
b− a

2
≥ σW P(a ≤W ≤ b)P(|X∗

I −XI | ≤ ε) − 1

2σW

( n∑

i=1

σi

4
√

2
E[|Xs

i |3]
) 1

2
. (3.46)
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Denote by Aε = σW P(|X∗
I −XI | ≤ ε),

B =
1

2σW

( n∑

i=1

σi

4
√

2
E[|Xs

i |3]
) 1

2

and Cε = ε + b−a
2 , we can rewrite the above inequality as P(a ≤ W ≤ b)Aε ≤ B + Cε

and we are interested in majorizing B+Cε

Aε
.

In fact, by Corollary 3.2.13,

Aε ≥ σW − 1

4σW ε

n∑

i=1

E[|Xs
i |3].

So we shall choose ε such that Cε is of the same order of B. Let
∑n

i=1
E[|Xs

i |3]
4ε = 1

2σ
2
W .

That is,

ε =
1

2σ2
W

n∑

i=1

E[|Xs
i |3].

So Aε ≥ σW

2 and

Cε =
b− a

2
+

∑n
i=1 E[|Xs

i |3]
2σ2

W

,

which follows

P(a ≤W ≤ b) ≤ b− a

σW
+

∑n
i=1 E

[
|Xs

i |3
]

σ3
W

+

(∑n
i=1

σi√
2
E[|Xs

i |3]
) 1

2

2σ2
W

.

2

In the following, we shall use sometimes the upper bound of P(a ≤W (i) ≤ b). Since

W (i) also the sum of several random variables, the above proposition applies of course

directly to W (i) by removing the variate i in the sum terms of the right-hand side.

However, for the simplicity of writing, we prefer keep all the summand terms. To this

end, we shall use the independence property between W (i) and Xi, X
∗
i to get another

concentration inequality. Here again, our objective is not the optimal estimation.

Corollary 3.4.5 For any real a and b, we have

P(a ≤W (i) ≤ b) ≤ 2

σW

(
(b− a) + 4σi

)
+

2
∑n

i=1 E
[
|Xs

i |3
]

σ3
W

+

(∑n
i=1

σi√
2
E[|Xs

i |3]
) 1

2

σ2
W

.

Proof. For any ε > 0, we have P(a ≤ W (i) ≤ b, |Xi| ≤ ε) ≤ P(a − ε ≤ W ≤ b + ε),

then by Markov’s inequality and the independence between W (i) and Xi,

P(a ≤W (i) ≤ b) ≤ P(a− ε ≤W ≤ b+ ε)

1 − E[|Xi|]
ε

.
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We choose ε = 2E[|Xi|] and apply Proposition 3.4.4 to end the proof. 2

Now we give the approximation estimation of the indicator function. The difficulty

lies in the irregularity of the function. We shall use, on one hand, the nearness between

W and W ∗ and on the other hand, the fact that the zero bias transformation enables

us to work with a more regular function.

Proposition 3.4.6 Let Iα = 11{x≤α}, then

|E[Iα(W )] −NσW
(α)| ≤ c

4σ2
W

n∑

i=1

E[|Xs
i |3] +

n∑

i=1

2σ3
i

σ3
W

(E[|Xs
i |3]

4σ3
i

+ 4
)

+
2
∑n

i=1 E
[
|Xs

i |3
]

σ3
W

+

(∑n
i=1

σi√
2
E[|Xs

i |3]
) 1

2

σ2
W

(3.47)

where c = ‖fIα‖ + ‖xf ′Iα
‖.

Proof. We write Iα(W ) −NσW
(α) as the sum of two difference terms, i.e.

Iα(W ) −NσW
(α) =

(
Iα(W ) − Iα(W ∗)

)
+
(
Iα(W ∗) − ΦσW

(α)
)
.

We shall estimate the two terms respectively. For the first term, since

11{x+y≤α} − 11{x+z≤α} = 11{α−max(y,z)<x≤α−min(y,z)}, (3.48)

then

E[Iα(W (i) +Xi) − Iα(W (i) +X∗
i )] = P(α− max(Xi, X

∗
i ) < W (i) ≤ α− min(Xi, X

∗
i )).

Since W (i) and Xi, X
∗
i are independent, using Corollary 3.4.5, we obtain

E
[
|Iα(W ) − Iα(W ∗)|

]
≤

n∑

i=1

2σ3
i

σ3
W

(E[|Xs
i |3]

4σ3
i

+ 4
)

+

n∑

j=1

σ2
j

σ2
W

(2
∑n

i=1 E
[
|Xs

i |3
]

σ3
W

+

(∑n
i=1

σi√
2
E[|Xs

i |3]
) 1

2

σ2
W

)
.

For the second term, by the zero bias transformation

E[Iα(W ∗)] = − 1

σ2
W

E[W (α−W )+].

Denote the primitive of Iα by GI(x) = −(α − x)+ and by G̃I(x) = xGI(x). Then we

shall estimate

1

σ2
W

(
E[G̃I(W )] − ΦσW

(G̃I)
)

= E[f ′eGI
(W ∗) − f ′eGI

(W )].
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Notice that Iα = Γ(G̃I), then by Corollary 3.3.18, we have f ′
eGI

= xfIα . Hence

|f ′′eGI

(x)| ≤ |fIα| + |xf ′Iα
| ≤ c, where c is estimated in Corollary 3.3.13 and c ≤

√
2π

2σ

(
1
e + 1

)
+ |α|

σ2 . Then

E[f ′eGI
(W ∗) − f ′eGI

(W )] ≤ cE[|W ∗ −W |] =
c

4σ2
W

n∑

i=1

E[|Xs
i |3].

We complete the proof by combining the estimations of the two terms. 2

Combining the above results for the regular function case and the indicator function

case, we can estimate the approximation error for a larger class of functions of finite

variation under some conditions.

Proposition 3.4.7 If the function h is of local finite variation with the derivative of

the continuous part h1 of linear increasing order and the pure jump part having finite

total jumps, then

|E[h(W )] − ΦσW
(h)| ≤

∑

t∈R

|∆h(t)|
+∞∑

j=1

B(W, tj)

+
b1
4

n∑

i=1

E
[
|Xs

i |3
]
+ a1σ

2
W

√√√√1

6

n∑

i=1

E[|Xs
i |4] +

a1

12

n∑

i=1

E[|Xs
i |4]

where B(W, tj) is the normal approximation error bound in equation (3.47) for the

indicator function 11{W≤tj} with tj being the jump points of the function h and a1 and

b1 are constants such that |f ′′
h1

(x)| ≤ a1|x| + b1.

Proof. We write the function h as

h = h1 +
∑

t≤x

∆h(t),

where h1 is absolutely continuous and ∆h(t) = h(t+) − h(t−). By the linearity of

ΦσW
(h), we have

|E[h(W )] − ΦσW
(h)| ≤ |E[h1(W )] − ΦσW

(h1)| +
∑

t∈R

|∆h(t)||E[11{W≤t}] −NσW
(t)|.

Then it suffices to apply Lemma 3.4.2 and Proposition 3.4.6. 2
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3.4.2 Correction for asymmetric normal approximation

We now propose a first order approximation correction to improve the approximation

accuracy.

Theorem 3.4.8 Let X1, · · · , Xn be random variables such that E[X4
i ] (i = 1, · · · , n)

exist. If the function h is Lipschitz and if fh has bounded third order derivative, then

the normal approximation ΦσW
(h) of E[h(W )] has corrector

Ch =
1

σ2
W

E[X∗
I ]ΦσW

(( x2

3σ2
W

− 1
)
xh(x)

)
. (3.49)

Recall that E[X∗
I ] = 1

2σ2
W

∑n
i=1 E[X3

i ]. The corrected error is bounded by

∣∣∣E[h(W )] − ΦσW
(h) −Ch

∣∣∣

≤
∥∥f (3)

h

∥∥

 1

12

n∑

i=1

E
[
|Xs

i |4
]
+

1

4σ2
W

∣∣∣
n∑

i=1

E[X3
i ]
∣∣∣

n∑

i=1

E
[
|Xs

i |3
]
+

1

σW

√√√√
n∑

i=1

σ6
i


 .

Proof. The normal approximation error is given by equation (3.23). Then taking first

order Taylor expansion, we have

E[h(W )] − ΦσW
(h) = σ2

W E[f ′h(W ∗) − f ′h(W )]

= σ2
W E[f ′′h (W )(W ∗ −W )] + σ2

W E

[
f

(3)
h

(
ξW + (1 − ξ)W ∗)ξ(W ∗ −W )2.

] (3.50)

where ξ is a uniform variable on [0, 1] independent of all Xi and X∗
i . First, we notice

that the remaining term is bounded by

E
[∣∣f (3)

h

(
ξW + (1 − ξ)W ∗)ξ

∣∣(W ∗ −W )2
]
≤
∥∥f (3)

h

∥∥
2

E[(W ∗ −W )2].

Then we have by Corollary 3.2.12

σ2
W

∣∣∣E
[
f

(3)
h

(
ξW + (1 − ξ)W ∗)ξ(W ∗ −W )2

]∣∣∣ ≤
∥∥f (3)

h

∥∥
12

n∑

i=1

E
[
|Xs

i |4
]
. (3.51)

Second, we consider the first term of equation (3.50). Since X ∗
I is independent of W ,

we have

E[f ′′h(W )(W ∗ −W )] = E[f ′′h (W )(X∗
I −XI)] = E[X∗

I ]E[f ′′h (W )] − E[f ′′h (W )XI ]. (3.52)

For the second term E[f ′′
h(W )XI ] of (3.52), we have by Proposition 3.2.16

∣∣∣E[f ′′h (W )XI ]
∣∣∣ ≤ 1

σ2
W

√
Var[f ′′h (W )]

√√√√
n∑

i=1

σ6
i . (3.53)
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Notice that Var[f ′′
h (W )] = Var[f ′′h (W ) − f ′′h (0)] ≤ E[(f ′′h (W ) − f ′′h (0))2] ≤ ‖f (3)

h ‖2σ2
W .

Therefore
∣∣∣E[f ′′h(W )XI ]

∣∣∣ ≤ ‖f (3)
h ‖
σW

√√√√
n∑

i=1

σ6
i

For the first term E[X∗
I ]E[f ′′h (W )] of (3.52), we write it as the sum of two parts

E[X∗
I ]E[f ′′h (W )] = E[X∗

I ]ΦσW
(f ′′h ) + E[X∗

I ]E[f ′′h (W ) − ΦσW
(f ′′h )].

We apply Lemma 3.4.1 to the second part and get

∣∣∣E[X∗
I ]
(
E[f ′′h (W )] − ΦσW

(f ′′h )
)∣∣∣ ≤

∥∥f (3)
h

∥∥
4σ4

W

∣∣∣
n∑

i=1

E[X3
i ]
∣∣∣

n∑

i=1

E
[
|Xs

i |3
]
. (3.54)

Then, it suffices to write

E[h(w)] − ΦσW
(h) = σ2

W

(
E[X∗

I ]ΦσW
(f ′′h ) + E[X∗

I ]
[
E[f ′′h (W )] − ΦσW

(f ′′h )
]
− E[f ′′h(W )XI ]

)

+ σ2
W E

[
f

(3)
h

(
ξW + (1 − ξ)W ∗)ξ(W ∗ −W )2

]
.

(3.55)

Combining (3.51), (3.53) and (3.54), we deduce the error bound. Finally, we apply

Proposition 3.3.24 to obtain

Ch = σ2
W E[X∗

I ]ΦσW
(f ′′h ) =

1

σ2
W

E[X∗
I ]ΦσW

(
(
x2

3σ2
W

− 1)xh(x)
)
.

2

Remark 3.4.9 1. We notice that Ch contains two parts. On one hand, E[X∗
I ] de-

pends only on the variables X1, · · · , Xn. On the other hand, the term containing

ΦσW
depends only on the function h itself. Hence we can study the two parts

separately. Moreover, it is worth noting that both terms are easy to calculate.

2. For the binomial case, the corrected approximation error bound is of order O( 1
n).

If, in addition, E[X3
i ] = 0 for any i = 1, · · · , n, then the error of the approxi-

mation without correction is automatically of order O( 1
n). This result has been

mentioned in Feller [32] concerning the Edgeworth expansion and has been dis-

cussed in Goldstein and Reinert [39].

3. In the symmetric case, E[X∗
I ] = 0, then Ch = 0 for any function h. Therefore,

the corrector Ch is most effective for the asymmetric case in the sense that

after correction, the asymmetric approximations obtain the same order of the

approximation error as in the symmetric case.
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In some cases, it is difficult to calculate the explicit form of the function f ′′
h and the

expectation Φσ(f ′′h ). However, it is possible to simplify the calculation with different

forms of ΦσW
(f ′′h ) by using the normal function property (3.7) and by the relationship

between the functions h and fh implied by the Stein’s equation.

Corollary 3.4.10 Under the condition of Theorem 3.4.8, we have following equivalent

forms of Ch:

1. Ch = σ2
W E[X∗

I ]ΦσW
(f ′′h );

2. Ch = E[X∗
I ]ΦσW

(xf ′h(x));

3. Ch =
E[X∗

I
]

3

[
1

σ2
W

ΦσW
(x2h′(x)) − ΦσW

(h′)
]
;

4. Ch =
E[X∗

I
]

3 ΦσW
(xh′′(x)).

Proof. 1) is obtained in the proof of Theorem 3.4.8.

2) is direct by 1) using Φσ(g′) = 1
σ2 Φσ(xg) and similarly, 3) is direct by (3.49) and 4)

is by 3). 2

Note that h′′ exists and is bounded since fh has bounded third order derivative.

Hence, we can calculate Ch according to the explicit form of the function h and fh to

simplify the computation.

Remark 3.4.11 The formula 4) of the above corollary shows that if h′′ is an even

function, then ΦσW
(xh′′) = 0 and the corrector Ch vanishes. In particular, for the

polynomial functions of even order h(x) = x2l where l is a positive integer, Ch = 0.

3.4.2.1 Some examples

We now consider W =
∑n

i=1Xi where Xi are independent but non-identical Bernoulli

random variables which follow Bγi
(q,−p). Denote by σ2

i the variance of Xi, then

γi = σi√
p(1−p)

. Here W is a zero-mean random variable with finite variance σ2
W and

E[X∗
I ] =

1

2σ2
W

n∑

i=1

E[X3
i ] =

1

2σ2
W

n∑

i=1

σ3
i

1 − 2p√
p(1 − p)

.

In particular, if X1, · · · , Xn follow identical distribution such that σi = σ√
n
, then W is

a zero-mean binomial random variable and E[X∗
I ] = E[X∗

1 ] = σW (1−2p)

2
√

np(1−p)
, moreover,

Ch =
1

2σW

1 − 2p√
np(1 − p)

ΦσW

(( x2

3σ2
W

− 1
)
xh(x)

)
.

When p = 1
2 , Ch = 0. In addition, for a given p, the corrector is of order 1√

n
.

We give some simple examples of function h.
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Example 3.4.12 h(x) = x2. The corrector Ch = 0 by Corollary 3.4.10. In fact, it is

easy to see that E[W 2] = ΦσW
(h) = σ2

W , so there is no need of correction.

Example 3.4.13 h(x) = x3. The correction is given by

Ch =
E[X∗

I ]

3

[
1

σ2
W

ΦσW
(3x4) − ΦσW

(3x2)

]
=

n∑

i=1

E[X3
i ]. (3.56)

On the other hand, E[W 3]−Φ(h) = E
[
(
∑n

i=1Xi)
3
]
. SinceX1, · · · , Xn are independent,

the corrected approximation is exact.

3.4.3 “Call” function

In this subsection, we concentrate on the “call” function Ck(x) = (x − k)+. This is

a Lipschitz function with C ′
k(x) = 11{x>k}. Notice that C ′′

k exists only in distribution

sense. So we can no longer majorize the error of the the corrected approximation via

the norm ‖f (3)
h ‖. However, we calculate

1

3σ2
W

Φσ

(
11{x≥k}

( x2

σ2
W

− 1
))

=
1

3σ4
W

∫ ∞

k
x2φσ(x)dx− (1 −Nσ(k)) =

k

3
φσ(k),

and the corrector is given by

C(x−k)+ =
1

3
E[X∗

I ]kφσW
(k). (3.57)

In particular, for the homogeneous case,

C(x−k)+ =
σW (1 − 2p)

6
√
np(1 − p)

kφσW
(k).

Remark 3.4.14 When the strike k = 0, the correction disappears, which means that

the error bound of the normal approximation for the function h(x) = x+ is automati-

cally of order O( 1
n). Heuristically, this property can be shown by Remark 3.4.11.

We now provide the error estimation of the corrected normal approximation for

the call function. The following theorem shows that although the conditions of The-

orem 3.4.8 are not satisfied here, (3.57) remains the approximation corrector and the

approximation error is estimated. With the corrector Ch, we are interested in a error

estimation of order O( 1
n) in the binomial case. As we have stated above, the difficulty

is mainly due to the fact that h′′ and f
(3)
h do not exist and that the proof of the Theo-

rem 3.4.8 is no longer valid. We now present an alternative proof for the call function.

In fact, we write f ′′
h as some more regular functions by the Stein’s equation and we

shall use some previously obtained first order estimations.
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Proposition 3.4.15 Let X1, · · · , Xn be independent zero-mean random variables such

that E[X4
i ] (i = 1, · · · , n) exist. Then the error of the corrected normal approximation

for the function Ck(x) = (x− k)+ is bounded by

∣∣E[(W − k)+] − ΦσW
((x− k)+) − C(x−k)+

∣∣

≤ 1

σ2
W

n∑

i=1

(E[|Xs
i |4]

3
+ σiE[|Xs

i |3]
)

+
1

4σ2
W

n∑

i=1

E[|Xs
i |3]
(2
∑n

i=1 E
[
|Xs

i |3
]

σ3
W

+

(∑n
i=1 σiE[|Xs

i |3]
) 1

2

√
2σ2

W

)

+ Var[f ′′Ck
(W )]

1
2

( n∑

i=1

σ6
i

) 1
2

+
1

4σ2
W

n∑

i=1

E[|Xs
i |3]
(
B(W,k) +

c

2σ2
W

n∑

i=1

E
[
|Xs

i |3
])

(3.58)

where c = 2‖f ′Ck
‖ + ‖xf ′′Ck

‖ and B(W,k) is the normal approximation error bound for

the indicator function 11{W≤k}.

Proof. Similar with the equation (3.55), we first decompose the corrected error E[Ck(W )]−
ΦσW

(Ck) − σ2
WΦσW

(f ′′Ck
)E[X∗

I ] as the sum of three terms except that we replace the

third-ordered derivative term, i.e.

E[Ck(W )] − ΦσW
(Ck) − σ2

W E[X∗
I ]ΦσW

(f ′′Ck
)

= σ2
W E[X∗

I ]
(
E[f ′′Ck

(W )] − ΦσW
(f ′′Ck

)
) (3.59)

− σ2
W E[f ′′Ck

(W )XI ] (3.60)

+ σ2
W E[f ′Ck

(W ∗) − f ′Ck
(W ) − f ′′Ck

(W )(X∗
I −XI)]. (3.61)

We then estimate each term respectively.

For (3.59), we use the Stein’s equation f ′
h(x) = 1

σ2
W

(xfh(x) − h̄(x)) to get

f ′′Ck
= σ−2

W (fCk
(x) + xf ′Ck

(x) − C ′
k(x)).

Then

σ2
W |E[f ′′Ck

(W )] − ΦσW
(f ′′Ck

)| ≤ |E[g(W )] − ΦσW
(g)| + |E[11{W≤k}] −NσW

(k)|

where g = fCk
+xf ′Ck

is a derivable function and ‖g′‖ ≤ 2‖f ′Ck
‖+ ‖xf ′′Ck

‖ = c, where c

has estimated in Corollary 3.3.15 and Corollary 3.3.21 by the two methods respectively.

Therefore,

∣∣σ2
W (E[f ′′Ck

(W )] − ΦσW
(f ′′Ck

))
∣∣ ≤ B(W,k) +

c

2σ2
W

n∑

i=1

E[|Xs
i |3].
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The second term (3.60) is bounded by σ2
W E[f ′′Ck

(W )XI ] ≤
√

Var[f ′′Ck
(W )]

√∑n
i=1 σ

6
i

by Proposition 3.2.16. For (3.61), we use again the Stein’s equation to write f ′
Ck

=

σ−2
W (xfCk

− Ck). Denote by G(x) = xfCk
(x). Notice that G is the primitive function

of g, then

σ2
W E[|f ′Ck

(W ∗) − f ′Ck
(W ) − f ′′Ck

(W )(X∗
I −XI)|]

≤ E[|G(W ∗) −G(W ) − g(W )(X∗
I −XI)|]

+ E[|Ck(W
∗) − Ck(W ) − C ′

k(W )(X∗
I −XI)|].

(3.62)

The first term of (3.62) is bounded by cE[(X∗
I −XI)

2]. For the second term of (3.62),

notice that the call function satisfies

|Ck(x+ a) − Ck(x+ b) − (a− b)C ′
k(x+ b)| ≤ 11{k−max(a,b)≤x≤k−min(a,b)}|a− b|

Hence

E[|Ck(W
∗) − Ck(W ) − C ′

k(W )(X∗
I −XI)|]

≤ E[|X∗
I −XI |11{k−max(X∗

I
,XI)≤W (I)≤k−min(X∗

I
,XI)}].

Since W (i) is independent of Xi and X∗
i , we have by using the concentration inequality

that

E
[
|X∗

i −Xi|11{k−max(X∗
i
,Xi)≤W (i)≤k−min(X∗

i
,Xi)}

]

= E
[
|X∗

i −Xi|E[11{k−max(X∗
i
,Xi)≤W (i)≤k−min(X∗

I
,XI)}|Xi, X

∗
i ]
]

≤ E[|X∗
i −Xi|B1(W

i, |X∗
i −Xi|)]

where Bi(W
(i), |X∗

i − Xi|) is the error bound for P(k − max(X∗
i , Xi) ≤ W (i) ≤ k −

min(X∗
i , Xi)). Therefore,

E[|Ck(W
∗) − Ck(W ) − C ′

k(W )(X∗
I −XI)|]

≤ 1

σ2
W

n∑

i=1

(E[|Xs
i |4]

3
+ σiE[|Xs

i |3]
)

+
1

4σ2
W

n∑

j=1

E[|Xs
j |3]
(2
∑n

i=1 E
[
|Xs

i |3
]

σ3
W

+

(∑n
i=1 σiE[|Xs

i |3]
) 1

2

√
2σ2

W

)
.

Finally, combining the three terms, we get the estimation (3.58). 2

Remark 3.4.16 1. In the homogeneous case whereXi are i.i.d asymmetric Bernoulli

variables, the error bound is of order O( 1
n).
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2. The symmetric case when p = 1
2 have been studied by several authors in the

context of computing the call option prices by the binomial tree model. Diener

and Diener [25] and Gobet [37] have proved that the convergence speed towards

the Black-Scholes price is of order O( 1
n). In addition, they pointed out and

discussed the oscillatory behavior when n tends to infinity. Proposition 3.4.15

applied in the homogeneous case provides another proof for the convergence

speed. However, it concerns no explanation of the oscillation.

3.4.3.1 Numerical results

We now provide numerical results of different tests. We take X1, · · · , Xn to be inde-

pendent asymmetric Bernoulli random variables. We shall compare the expectation of

E[h(W )] and its normal approximation with and without our correction. It is shown

that the corrector improves the approximation.

1. Call function: the homogeneous case, (Figure 3.1 and Figure 3.2).

In each of the following two figures, three curves are presented which are

(a) E[(W − k)+] where W = X1 + · · · + Xn is a binomial random variable

of expectation zero and variance 1. More precisely, Xi are identically dis-

tributed asymmetric Bernoulli random variables and X1 ∼ Bγ(1 − p,−p)
such that Var(X1) = γ2p(1 − p) = 1

n . Therefore γ = 1√
np(1−p)

. Or in other

words, let H ∼ B(n, p) be a standard binomial random variable of variance

np(1 − p) = 1, then W = γ(H − np);

(b) its normal approximation Φ1((x− k)+) = E[(Z − k)+] where Z is the stan-

dard normal random variable. Or φ1(k) − k(1 − Φ1(k)) explicitly;

(c) the corrected normal approximation Φ1((x− k)+) + C(x−k)+ .

The expectation is presented as a function of the strike k. We fix the parameter

n = 100 and we compare different values of p. In Figure 3.1, p = 0.01 and

in Figure 3.2, p = 0.1. We remark that the binomial curve is piecewise linear

because of the discretization. The length between two discretization points is γ,

where γ ≈ 1 in the first graph and γ = 1
3 in the second graph. When the value of

p is larger, the normal approximation becomes more robust, which corresponds

to the common rule that when np > 10, we can apply the normal approximation

to the binomial law.

Both graphs show that our correction is effective. In Figure 3.1, it is obvious

that the corrected curve fits better the piecewise binomial curve than the normal

approximation curve without correction. In Figure 3.2, the corrected curve and

the binomial curve almost coincide each other. At last, we note that at the point

k = 0, the two approximative curves meet since there is no correction.
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Figure 3.1: Homogenous call: n = 100, p = 0.01. Here np = 1, the correction is
significant.
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2. Call function: the exogenous case, (Figure 3.3 and 3.4). We repeat the above test

for the exogenous case where Xi are independent but non-identically distributed.

The only difference lies in the calculation of E[X ∗
I ]. We simulate Xi as follows.

Let Yi be standard 0 − 1 Bernoulli random variables of parameter pi and let

Xi = Yi−pi√Pn
l=1 pl(1−pl)

. Then E[Xi] = 0 and Var[Xi] = pi(1−pi)Pn
l=1 pl(1−pl)

and thus the

sum variable W =
∑n

i=1Xi is of expectation zero and of variance 1. We fix

n = 100 as above.

For the first graph, we take pi = 0.02 × Ui where Ui are independent uniform

random variables on [0, 1]. So the mean value of p is equal to 0.01. For the

second graph, we regroup the n = 100 random variables into 10 groups and let

all random variables in one group take a same value of pi. In addition, we take

10 equally spaced values of pi from 0.055 to 0.145 so that their mean value equals

p̄ = 0.1.

Figure 3.3 and Figure 3.4 resembles respectively Figure 3.1 and Figure 3.2 in the

first test. We observe that the correction is notably related to the mean value of

the probability p.

3. Call function: the asymptotic behavior, (Figure 3.5, 3.6 and 3.7). In this test, we

fix the strike value k and we are interested in the asymptotic property concerning

the parameter n. We take i.i.d. random variables Xi and let σW = Var[W ] = 1.
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Figure 3.2: Homogenous call: n = 100 and p = 0.10. The binomial curve is rather
near the normal curve, however, with our correction, the two curves coincide.
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The strike k is set to be 1. The normal approximation in this case is a constant.

Figure 3.5 shows the symmetric case where p = 1
2 . As been pointed out in [25],

we observe oscillations in the binomial curve as a function of the size n of the

portfolio. (In [25], n is the number of the time steps.) When n tends to infinity,

the binomial curve converges to its normal approximation (the Black-Scholes

price in [25]) which is presented as the horizontal line. The correction in this case

is zero, so the corrected curve coincides with the normal curve without correction.

Figure 3.6 and 3.7 show the asymmetric case where p = 0.01 in 3.6 and p = 0.1

in 3.7. In both graphs, we still observe oscillations in the binomial curves. When

the value of p is smaller, the oscillation is slower. In the asymmetric case, there

is a gap between the binomial and the normal curves with the same number of n,

which means that the convergence speed is much slower. However, the binomial

curves oscillate around the corrected curves in the two graphs, which means that

our corrector is very efficient in the asymmetric case. Note that the corrected

curve is situated in the upper part of the binomial curve, which almost serves an

upper envelop of the binomial approximation.

3.4.3.2 The indicator function

The indicator function h(x) = 11{x>k} is less regular than the call function. Its deriva-

tive is a Dirac measure in the distribution sense. We can calculate the corrector Ch
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Figure 3.3: Exogenous call: n=100, pi = 0.02 × Ui, so p̄ = 0.01.
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using Corollary 3.4.10 and get

Ch =
E(X∗

1 )

3

[
1

σ2
Φσ(x2h′(x)) − Φσ(h′)

]

=
(1 − 2p)

6
√
np(1 − p)

[
1

σ2
k2φσ(k) − φσ(k)

]
.

However, we have no estimation for the corrected approximation. The zero correction

points are k = σ or k = −σ. Lacking theoretical result, we shall present numerically

the correction effect.

Figure 3.8 and Figure 3.9 show the tests. In each graph, the reported quantity is the

probability P(W > k) and its normal approximation with and without the correction

term. The probability is presented as a function of the size number n. So we see the

asymptotic behavior and we compare different values of p and k in the four graphs. In

Figure 3.8, p = 0.01 and in Figure 3.9, p = 0.1. The strike values are k = 0 and k = 3.

When k = 3, the two graphs show that our correction is effective, while when k = 0,

it is hard to tell whether the correction improves the approximation quality because

of the discretization effet.

It is well-known that the convergence speed of the indicator function is of order

O( 1√
n
) by the Berry-Esseen inequality. However, with these numerical result, we have

naturally the intuition that after our correction, there exist some non-uniform estima-

tions of the convergence speed according to the values of k. We can not yet explain
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Figure 3.4: Exogenous call: n = 100 and there are 10 random variables which take the
same value of pi. We take 10 value of pi from 0.055 to 0.145 equally dispersed, so that
p̄ = 0.1.
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Figure 3.5: Asymptotic call: k = 1 and p = 0.5.
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Figure 3.6: Asymptotic call: k = 1 and p = 0.01.
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Figure 3.7: Asymptotic call: k = 1 and p = 0.1.
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this phenomenon with the previous discussion. However, we think it’s worth further

study to well understand this problem.

Figure 3.8: Indicator function or the probability function: p = 0.01. The two graphs
are for k = 0 and k = 3.
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3.4.4 Saddle-point method

In Antonov, Mechkov and Misirpashaev [2], the authors propose efficient correction

terms to calculate the conditional expectation E[(W − k)+] using the saddle point

method. This subsection concentrates on this method. We first introduce their results

and we then interpret the main idea from a more probabilistic point of view. We show

that choosing a saddle point can be viewed as a change of probability and we apply

our correction of Theorem 3.4.8 under the new probability measure. We shall compare

the results obtained by our method and by the method in their paper through some

numerical tests.

Our objective is to calculate some expectation functions under a given probability

P. The saddle-point method consists of writing the concerned functions as an integral

of some function of the cumulant generating function K(ξ) = ln EP[exp(ξW )]. For

example,

EP[(W − k)+] = lim
A→+∞

1

2πi

∫ c+iA

c−iA

exp(K(ξ) − ξk)

ξ2
dξ (3.63)

and

P(W ≥ k) = lim
A→+∞

1

2πi

∫ c+iA

c−iA

exp(K(ξ) − ξk)

ξ
dξ.

113



Figure 3.9: Indicator function: p = 0.1, k = 0 and k = 3.
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In general, the expansion of the integrand function is made around its critical point,

the saddle point, where the integrand function decreases rapidly and hence is most

dense. In [2], the saddle point is chosen such that

K′(ξ0) = k.

Making expansion of exp(K(ξ) − ξk) around the saddle point ξ0 in (3.63), the authors

propose to approximate EP[(W − k)+] by the following terms which are of increasing

precision orders:

1. Cs
0 = (E[W ] − k)+,

2. Cs
1 = Cs

0 + eK(ξ0)−ξ0kJ2

(
K′′(ξ0), ξ0

)
,

3. Cs
2 = Cs

1 + 1
6ξ0K(3)(ξ0)e

K(ξ0)−ξ0k

×
(
− 2J0

(
K′′(ξ0), ξ0

)
+ 3ξ0J1

(
K′′(ξ0), ξ0

)
− ξ20J2

(
K′′(ξ0), ξ0

))
.

where 



J0(m, ξ) = 1√
2πm

,

J1(m, ξ) = sign(ξ0)e
1
2
mξ2

0N1(−m|ξ0|),
J2(m, ξ) =

√
m
2π −m|ξ0|e

1
2
mξ2

0N1(−m|ξ0|).

Although numerical results show that these approximations are efficient compared to

the standard normal approximation, no theoretical discussion concerning the estima-

tion errors is mentioned in their paper.
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In the saddle point method, the first step is to find the value of the saddle point

ξ0. This is equivalent to solve the equation K′(ξ) = k, which can be rather tedious

sometimes. In the homogeneous case where Xi follow i.i.d. asymmetric Bernoulli

distributions, we have the explicit solution. Since Xi are identically distributed, then

γ1 = · · · = γn = σW√
npq . Hence

K′(ξ) = n
EP[X1e

ξX1 ]

EP[eξX1 ]
=
σW

√
npq(eξ0γ − 1)

peξ0γ + q
= k.

This equation has a unique solution

ξ0 =

√
npq

σW
ln
(σW

√
npq + kq

σW
√
npq − kp

)
.

In the exogenous case, the cumulant generating function K(ξ) is calculated by

K(ξ) = ln EP[eξW ] =
n∑

i=1

ln EP[eξXi ] =
n∑

i=1

ln(peξγiq + qe−ξγip).

As a consequence,

K′(ξ) =

n∑

i=1

pqγi(e
ξγi − 1)

peξγi + q
, K′′(ξ) =

n∑

i=1

pqγ2
i e

ξγi

(peξγi + q)2
.

Hence, we can obtain ξ0 by solving numerically
∑n

i=1
pqγi(eξγi−1)

peξγi+q
= k. And then the

approximations Cs
1 and Cs

2 can be obtained. Compared to our method, the saddle point

method demands more calculation to get the correction terms, in the homogenous case

and especially in the exogenous case.

Figure 3.10 and 3.11 compare the correction results in the homogenous case by

different methods:

1) the normal approximation,

2) the normal approximation with our correction,

3) the saddle point method with the first correction C s
1 of [2],

4) the saddle point method with the second correction C s
2 of [2].

We repeat the test which produce the Figure 3.6 and 3.7. The strike is fixed to be k = 1

and the asymptotic behavior of the correction is showed for p = 0.01 and p = 0.1. We

observe that our correction is better than the first order correction but is less effective

than the second order correction of the saddle point method.
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Figure 3.10: Saddle point comparison, asymptotic call: p = 0.01.
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3.4.4.1 A probabilistic point of view

We now interpret the saddle point method from a more probabilistic point of view.

First, let us choose the saddle point ξ0 such the K′(ξ0) = k. Second, if we let Q to be

an equivalent probability measure such that

dQ

dP
=

exp(ξ0W )

E[exp(ξ0W )]
,

then

EQ[W ] =
EP[Weξ0W ]

EP[eξ0W ]
= K′(ξ0) = k. (3.64)

That is to say, under the probability measure Q, the expectation of the sum variable

W equals the strike k. Now, consider the expectation of the call function, we have

EP[(W − k)+] = EQ[e−ξ0W+K(ξ0)(W − k)+].

Note that W is no longer of expectation zero under the probability Q. To apply our

previous result, we need to centralize the random variable. Let Ŵ = W − k, then the

above equality can be written as

EP[(W − k)+] = e−ξ0k+K(ξ0)EQ[e−ξ0cW Ŵ+]. (3.65)

Since EQ[Ŵ ] = 0, now the problem is to approximate the function e−ξ0cW Ŵ+ under the

probability Q, where Ŵ is a zero-mean random variable which can be written as the
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Figure 3.11: Saddle point comparison, asymptotic call: p = 0.1.
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sum of independent asymmetric Bernoulli random variables, i.e. Ŵ = X̂1 + · · · + X̂n

where X̂i = Xi − EQ[Xi].

Example 3.4.17 We revisit the example of the asymmetric Bernoulli random vari-

ables. Under the original probability P, Xi ∼ Bγi
(q,−p), i.e. P(Xi = γiq) = p and

P(Xi = −γip) = q where γi = σi√
p(1−p)

. By the change of probability,

Q(Xi = γiq) = EP

[
11{Xi=γiq}

exp(ξ0W )

E[exp(ξ0W )]

]

=
EP[11{Xi=γiq} exp(ξ0Xi)]

EP[exp(ξ0Xi)]
=

p

p+ e−ξ0γiq
,

Similarly, Q(Xi = −γip) = q
peξ0γi+q

and then

EQ[Xi] =
γipq(e

ξ0γi − 1)

peξ0γi + q
.

The centralized random variables X̂i are zero-mean asymmetric Bernoulli random vari-

ables which satisfy

Q

(
X̂i =

γiq

peξ0γi + q

)
=

p

p+ qe−ξ0γi
, Q

(
X̂i = − γipe

ξ0γi

peξ0γi + q

)
=

q

peξ0γi + q
.
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We now apply Theorem 3.4.8 to calculate EQ[e−ξ0cW Ŵ+]. This is a function of

similar property with the call function in the sense that its derivative contains an

indicator function and its second order derivative exists in the distribution sense. We

now give the approximation formula and the correction term.

Proposition 3.4.18 Let hξ0 = e−ξ0xx+. Then the normal approximation of the ex-

pectation EQ[hξ0(Ŵ )] is given by

EQ[e−ξ0ZZ+] = e
1
2
ξ2
0bσ2
(
µ̂
(
1 −N1(−

µ̂

σ̂
)
)

+ σ̂φ1

(
− µ̂

σ̂

))
(3.66)

where Z ∼ N(0, σ̂2), µ̂ = −ξ0K′′(ξ0) and σ̂2 = K′′(ξ0). Moreover, the correction term

is given by

Chξ0
=

1

σ̂2
EQ[X̂∗

I ]EQ

[
e−ξ0Z

((Z+)4

3σ̂2
− (Z+)2

)]
(3.67)

= e
1
2
ξ2
0bσ2 EQ[X̂∗

I ]

σ̂2

(( µ̂4

3σ̂2
+ µ̂2

)(
1 −N1

(
− µ̂

σ̂

))
+
( µ̂3

3σ̂
+

2µ̂σ̂

3

)
φ1

(
− µ̂

σ̂

))

(3.68)

Proof. First, we verify that VarQ[W ] = K′′(ξ0). In fact,

VarQ[W ] = EQ[W 2] − EQ[W ]2 =
EP[W 2eξ0W ]

EP[eξ0W ]
−
(

EP[Weξ0W ]

EP[eξ0W ]

)2

=

(
EP[Weξ0W ]

EP[eξ0W ]

)′
= K′′(ξ0).

Then the normal approximation is Φbσ(hξ0) = EQ[e−ξ0ZZ+] and the corrector (3.67)

is obtained by Theorem 3.4.8. The last step consists of calculating explicitly the

approximation and the correction terms. To this end, we introduce another change of

probability to simplify the computation. Let

dP0

dQ
= e−ξ0Z− 1

2
ξ2
0K′′(ξ0).

Then

EQ[e−ξ0Zf(Z)] = EP0

[
e−ξ0Zf(Z)

dQ

dP0

]
= e

1
2
ξ2
0K′′(ξ0)EP0 [f(Z)]

for any function f such that the quantities of the two sides are well defined. To obtain

(3.66), let f(x) = x+. Notice that under the probability P0, Z is still a normal random

variable with µ̂ = EP0 [Z] = −ξ0K′′(ξ0) and VarP0 [Z] = K′′(ξ0) = σ̂2. Then

EP0 [Z
+] = EP0 [11{bµ+bσZ0≥0}(µ̂+ σ̂Z0)]

= µ̂
(
1 −N1

(
− µ̂

σ̂

))
+ σ̂φ1

(
− µ̂

σ̂

)
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where Z0 ∼ N(0, 1) and (3.66) follows immediately. To obtain (3.68), consider re-

spectively EP0 [(Z
+)2] and EP0 [(Z

+)4]. Combining the invariant property (3.7), we get

similarly as above

EP0 [(Z
+)2] = (µ̂2 + σ̂2)

(
1 −N1

(
− µ̂

σ̂

))
+ µ̂σ̂φ1

(
− µ̂

σ̂

)

and

EP0 [(Z
+)4] = µ̂EP0 [11{bµ+bσZ0≥0}(µ̂+ σ̂Z0)

3] + σ̂EP0 [Z011{bµ+bσZ0≥0}(µ̂+ σ̂Z0)
3]

= µ̂2EP0 [11{bµ+bσZ0≥0}(µ̂+ σ̂Z0)
2] + µ̂σ̂EP0 [Z011{bµ+bσZ0≥0}(µ̂+ σ̂Z0)

2]

+ σ̂EP0 [(11{bµ+bσZ0≥0}(µ̂+ σ̂Z0)
3)′]

= µ̂2EP0E[(Z+)2] + µ̂σ̂E[(11{bµ+bσZ0≥0}(µ̂+ σ̂Z0)
2)′] + 3σ̂2E[(Z+)2]

= (µ̂2 + 3σ̂2)EP0 [(Z
+)2] + 2µ̂σ̂2EP0 [Z

+],

which deduces (3.68). 2

3.5 Application to CDOs portfolios

In this section, we apply the results of the previous section to the evaluation of a CDO

tranche. As mentioned before, we proceed in two steps. The approximation correction

is used to calculate the expectation of the conditional cumulative losses. In the second

step, we integrate the conditional losses function with respect to the density function

of Y and we study the correlation parameter ρ. Two points to be noted are

1) the normalization of the standard 0−1 Bernoulli random variables to the zero-mean

asymmetric Bernoulli random variables.

2) the probability p is now a function of the common factor Y . We shall see that the

form of p(Y ) has an impact on the correction.

In the following of this section, we are under the factor model framework as introduced

in Subsection 3.1.1.

3.5.1 Conditional loss approximation

Consider a CDO portfolio of n credits where the weight of each firm is denoted by

wi = Ni

N and
∑n

i=1wi = 1. The percentage loss is given by

lT =

n∑

i=1

wi(1 −Ri)11{τi≤T}. (3.69)
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We are interested in the conditional expectation E[(lT −K)+|Y ] where K is the tranche

threshold and Y is the common factor. For synthetic CDOs, the threshold values are

fixed to be K = 3%, 6%, 9%, 12%.

Denote by ξi = 11{τi≤T} to be the indicator function of default for each credit. They

are standard 0 − 1 Bernoulli random variables. Moreover, conditional on the factor

Y , they are independent and of probability parameters pi(T |Y ). In the normal factor

case, pi(T |Y ) is given by (3.2), i.e. pi(T |Y ) = N
(N−1(αi)−√

ρiY√
1−ρi

)
where αi = 1 − qi(T )

is the expected default probability of the credit i before the maturity T . In fact, it’s

easy to verify that

E[pi(T |Y )] = P(τi ≤ T ) = αi.

To simplify the notation, in this subsection, we write pi(Y ) instead of pi(T |Y ). In

addition, it is often supposed that ρi are identical, in this case, pi(Y ) = p(Y ) =

N
(N−1(α)−√

ρY√
1−ρ

)
.

Figure 3.12 shows p(Y ) as a function of the factor Y which is decreasing. We

compare different values of ρ and we notice that this correlation parameter plays a

significant role. When ρ approaches zero, p(Y ) converges to a constant which equals

α. When ρ increases, the values of p(Y ) disperse in [0, 1] and when ρ tends to 1, we

observe a concentration of p(Y ) at two values 0 and 1. For simplicity, in the following

of this subsection, we write p instead of p(Y ) since we only consider the conditional

case.

Figure 3.12: The function p(Y ): α = 0.05. Correlation parameters are ρ = 0.01, 0.1,
0.3, 0.5 and 0.9.
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To apply the approximation correction, we first normalize the Bernoulli random

variables to be of expectation zero. In addition, the sum variable should be of finite

variance. We denote the variance of ωi(1 − Ri)11{τi≤T} conditioned on Y by σ2
i =

ω2
i (1 −Ri)

2pi(1 − pi) and let Σ = Var[lT |Y ] =
√∑n

i=1 σ
2
i . Let

Xi =
σi

Σ

ξi − pi√
pi(1 − pi)

,

then E[Xi] = 0 and Var[Xi] = σ2
i /Σ

2. Conditioned on Y , Xi are zero-mean asymmetric

Bernoulli random variables such that Xi ∼ Bγi
(qi, pi) with γi = σi

Σ
1√

pi(1−pi)
. Denote

their sum by W =
∑n

i=1Xi, then E[W ] = 0 and Var[W ] = 1. The percentage loss can

thus be written as lT = ΣW +
∑n

i=1 ωi(1 −Ri)pi and

(lT −K)+ = Σ

(
W − K −∑n

i=1 ωi(1 −Ri)pi

Σ

)+

. (3.70)

Note that the strike KY =
(
K−∑n

i=1 ωi(1−Ri)pi

)
/Σ is a function of pi and eventually

of Y . We can now apply the correction (3.57) to the expectation of (3.70). So the

correction to the normal approximation of E
[
(lT −K)+|Y

]
is given by

1

3
ΣE[X∗

I |Y ]KY φ1(KY ) =
1

6

n∑

i=1

σ3
i

Σ2

1 − 2pi√
pi(1 − pi)

KY φ1(KY ) (3.71)

where pi, σi, Σ and KY are all functions of Y .

In the homogeneous portfolio case where all parameters of each credit are supposed

to be equal, we have ωi = 1
n , Ri = R and pi = p. Then KY = (K−(1−R)p)

√
n

(1−R)
√

p(1−p)
. The

corrector of E[(lT −K)+|Y ] is given by

1 −R

6n
(1 − 2p)KY φ1(KY ). (3.72)

Figure 3.13 show the corrector (3.72) as a function of p when the strike value K is

fixed. The corrector vanishes when KY = 0, which means that the strike K equals

the expected loss, i.e. K = E[lT |Y ] = (1 − R)p. Moreover, the function xφ1(x)

attains its maximum and minimum values at x = 1 and x = −1 respectively, that is

K = (1−R)
(
p±

√
p(1−p)

n

)
, and converges rapidly to zero when the absolute value of x

increases. This is shown by the two graphes where we suppose R = 0. The corrector

equals zero when p = K and attains the extreme values when p is rather near K and

then vanishes rapidly when p moves away from K.

We then compare the approximation results of the conditional expectation of the

call function E[(lT −K)+|Y ] by the normal approximation, saddle point method and

our method. The test is for the homogeneous case where wi = 1
n , Ri = R = 0 and
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Figure 3.13: Conditional Call corrector: α = 0.05, R = 0, n = 100. K = 0.03 and
K = 0.12 respectively.
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pi = p. In the conditional case, the probability p is viewed as a parameter, but not a

function. The comparison baseline is calculated by the direct binomial simulation.

Figure 3.14 shows the approximation errors of E[(lT −K)+|Y ] by different methods.

The reported quantity is the difference between the values obtained by the approxi-

mation methods and the direct binomial simulation. For example, the curve denoted

by normal approximation represents Φ((x−K)+|Y )−E[(lT −K)+|Y ], so do the other

curves. We fix the strike K and the horizontal axis is the probability p. We observe

that both methods are effective compared to the direct normal approximation. All

corrections are concentrated in a neighbourhood interval around the strike point K

and when p = K, the correctors equal zero by the three methods. Our correction ob-

tains the same order of precision with the second order correction of the saddle point

method. We repeat however that the calculations in our case are much easier.

3.5.2 The common factor impact

In this subsection, we calculate the call expectation by integrating E[(lT − K)+|Y ]

with respect to the density function of Y . The approximation of E[(lT − K)+|Y ]

having been discussed previously, the expectation function can be easily obtained by

integrating different approximations of the conditional expectation. We shall compare

these results by numerical tests. In the following, we denote the corrector (3.71) by

Cl(Y ). Since the probability p(Y ) is a function of the correlation parameter ρ, we are

interested in its impact on the approximation result.

We observe from Figure 3.12 and Figure 3.13 that when there is light correlation,
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Figure 3.14: Approximation error of conditional Call function: n = 100, α = 0.05.
K = 0.03 and K = 0.12 respectively.
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that is, when ρ is small, the values of p(Y ) concentrate around the mean value α and

the correction should be significant in this case. On the contrary, when there is strong

correlation with large values of ρ, p(Y ) disperse in [0, 1] and there should be little

correction.

In the normal factor model, Y is a standard normal random variable. We can

calculate the expectation on Y by changing the variable. For example, consider the

corrector function, we have E[Cl(Y )] =
∫ +∞
−∞ Cl(y)dN (y). A change of variable z =

p(y) yields

E[Cl(Y )] = −1 −R

6n

∫ 1

0
(1 − 2z)

(K − z)
√
n√

z(1 − z)
φ1

((K − z)
√
n√

z(1 − z)

)N ′(p−1(z))

p′(p−1(z))
dz.

Since p′(y) = −
√

ρ√
1−ρ

N ′ (N−1(p(y))
)

and p−1(z) = N−1(α)−√
1−ρN−1(z)√
ρ , we have

N ′(p−1(z)) =
1√
2π

exp

(
−(N−1(α) −√

1 − ρN−1(z))2

2ρ

)
,

p′(p−1(z)) = −
√
ρ√

1 − ρ
N ′(N−1(z)) = −

√
ρ√

2π(1 − ρ)
exp

(
−N−1(z)2

2

)
.

Then

E[Ch(Y )] =

∫ 1

0

1

6n

√
1 − ρ

ρ
(1 − 2z)

(K − z)
√
n√

z(1 − z)
φ1

( (K − z)
√
n√

z(1 − z)

)
×

exp

(
− 1

2ρ

(
N−1(α)2 + (1 − 2ρ)N−1(z)2 − 2

√
1 − ρN−1(α)N−1(z)

))
dz.

(3.73)

123



Figure 3.15 and Figure 3.16 show the approximation error of E[(lT − K)+]. For

each curve, the reported quantity is the difference between values of the integrand

function in (3.73) calculated by the direct binomial calculation and the approximation

method. Therefore, the approximation error equals the integral of this difference on

[0, 1], which is represented by the area under the curve. So compared to Figure 3.14,

we are not interested in the absolute value of the function at each point, but the whole

area under each curve.

We compare different values of K and ρ in the following graphs. In Figure 3.15,

K = 0.03, the two graphs are for ρ = 0.2 and ρ = 0.8. In Figure 3.16, K = 0.12 with

the same values of ρ. For both values of K, we observe similar phenomena. When

ρ is small, our method gives the best result since the area of the positive and the

negative values compensate. Although the second order correction of saddle method is

better in the conditional case, since all its values remain positive after integration, the

overall error is nevertheless larger. When the value of ρ increase. This compensation

effect becomes significant in the normal approximation. The correction methods won’t

improve much of the approximation results, which corresponds to our heuristics.

Figure 3.15: Approximation error of Call function: n = 100, α = 0.05. K = 0.03.
ρ = 0.2 and ρ = 0.8 respectively.
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Figure 3.16: n = 100, α = 0.05. K = 0.12. ρ = 0.2 and ρ = 0.8 respectively.
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Chapter 4

Asymptotic Expansions in
Normal and Poisson Limit
Theorem

This chapter is devoted to a theoretical problem: the asymptotic expansions of E[h(W )]

where W is the sum of independent random variables. It’s an extension to Theorem

3.4.8 obtained in the previous chapter. In fact, it is revealed in Chapter 3 that when the

function h has certain regularity (for example, fh has bounded third order derivative),

we can improve the normal approximation of E[h(W )] by proposing a correction term.

It is then natural to expect that when h has higher order derivatives with some regu-

larity properties, we may obtain a corrector of the corresponding order. Theoretically

speaking, this is a classical problem related to the central limit theorem. By developing

some techniques which are based on those in Subsection 3.3.3 in the framework of the

Stein’s method and the zero bias transformation, we propose an original method to

develop the asymptotic expansion. Our main contributions are:

1. We develop a method whose continuous version and discrete version enable re-

spectively to obtain similar results in both the normal and the Poisson context.

2. In the normal case, we give the regularity conditions on h to derive the expan-

sions. For a smooth function, we obtain a full asymptotic expansion. In the

general case, the order of the expansion is determined by the derivative order of

h. We prove that the approximation error is of appropriate order under some

conditions.

3. In the Poisson case, we extend the notion of zero bias transformation to the

Poisson distribution. We provide asymptotic expansion for sum of independent

random variables and in particular, the independent 0 − 1 random variables.
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To the finance concern, we improve the approximation of the call function (of course,

we can treat other functions) by expanding to higher orders. Numerical results com-

pare the approximation by the second order correction with those obtained by other

corrections in the previous chapter and we observe a significant improvement.

One technical difficulty lies in determining the regularity conditions. As we have

observed in the previous chapter, we obtain a first order approximation for a function

h whose auxiliary function fh has bounded third order derivative, which means that h

itself has up to second order derivatives. However, we have proved that the approxi-

mation formula is valid for the call function, which is only absolutely continuous. The

approximation error is of the same order. To prove it, we need some refined techniques

which involve the usage of the Stein’s equation and the concentration inequality. The

key point is that although the derivative of the call function, which is an indicator

function, is not differentiable, it is nevertheless not so “bad” since it contains only

one discontinuous point. In addition to this point, we can obtain the second order

derivative of the call function. Therefore, we can apply the standard procedure except

at this discontinuous point, which we shall treat by using the concentration inequality.

It is similar in the high order case. In the following, we first provide an expansion

formula. We then specify the necessary conditions for the function h when estimating

the approximation error. To obtain an N th order expansion, h should have up to N th

order derivatives. Moreover, the N th order derivative of h is of finite variation and

contains finite number of jump points.

We note that although we obtain a full expansion which merely contains the normal

expectations and the Poisson expectations. The formula is presented in recurrence

form. So for high order approximations, it requires extra calculations to obtain explicit

results. On the other hand, no special effort has been made on the constants of the

error estimates.

The chapter is organized as follows: We begin by a brief review (Section 4.1) of the

existing results and methods in the literature concerning the asymptotic expansions in

the central limit theorem. Section 4.2 and Section 4.3 are devoted respectively to the

normal and the Poisson case.

In Subsection 4.2.1, we propose a direct method by taking the Taylor expansion.

Since W (i) and Xi, X
∗
i are independent, we obtain immediately an expansion formula

in recurrence form by replacing the sum variable W (i) with a normal variable. However,

since we eliminate one summand variable when considering W (i) instead of W , in the

expansion formula, there exist partial sum variables which complicates the calculation.

Subsection 4.2.1 contains a refined method of the first one. The key argument is the so

called reversed Taylor’s formula in the expectation form which allows us to write the

terms containing W (i) as some functions of W and Xi, with which we deduce Theorem

4.2.5. The approximation error is estimated in Section 4.2.3. We first propose an

estimation procedure and we point out that the growing speed of f̃
(N+2)
h plays a crucial
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role for an N th order expansion. The main objective of Section 4.2.3 is to determine

under which conditions on h we can deduce desired property of f̃
(N+2)
h . We show that

the growing speed of the derivatives is required instead of the boundedness conditions.

In Section 4.3.1, we present the framework of the Stein’s method and the zero bias

transformation for the Poisson distribution. The similitude in the writing inspired us

to study the asymptotic expansion by developing a similar method in the discrete case.

The special case of 0 − 1 summand variables is first discussed in Section 4.3.2 and the

asymptotic expansion is obtained following Lemma 4.3.11. The general case for the

sum of independent random variables is shown in Section 4.3.3.

4.1 Introduction

The Stein’s method provides a very efficient tool in studying the limit theorems and

in developping asymptotic expansions, for both normal and Poisson distributions. For

the discrete case of the Poisson distribution, Deheuvels and Pfeifer [21] study the er-

ror estimates after one and two ordered estimations for 0 − 1 summands by using an

operator technique. Borisov and Ruzankin [11] give full asymptotic Poisson expan-

sion for unbounded functions. The usage of Stein’s method in the Poisson context is

introduced by Chen [15] and is then developed by Barbour and Hall [6], Chen and

Choi [19], and Barbour, Chen and Choi [5] for 0 − 1 independent random variables.

For general nonnegative integer valued summands, Barbour [4] obtains expansions for

polynomially growing functions by applying the Stein’s method.

In the normal context, the classical method used to derive the normal asymptotic

expansions of E[h(W )] is the Fourier methods as in Hipp [48] and Götze and Hipp

[42] by using the Edgeworth’s expansion. Barbour [3] used a similar technique in

the Poisson case [4] by introducing the Stein’s method. This result is extended by

Rinott and Rotar [69] and is reviewed in Rotar [71]. In [3], the author considered

the expansions for functions with high order derivatives. For a (l − 1) times derivable

function g, he wrote the expectation E[Wg(W )] as a sum of l terms containing the

cumulant of W and a remaining term, i.e.

E[Wg(W )] =

l−1∑

k=1

ξk+1

k!
E[g(k)(W )] +R

where ξk is the kth order cumulant of W and R is the remainder. The bound of

the remaining term contains the cumulant of W and the derivative of g. Combing

the equality E[h(W ) − h(Z)] = E[Wfh(W )] − σ2
W E[f ′h(W )], the author obtained by

iteration a (l + 1)-terms expansion of E[h(W ) − h(Z)] and then replaced the term W

in the expansion by the normal variable Z. At last, it remains to estimate the error of

the above replacement which consists of analytical estimation of the derivatives of fh

with respect to those of h.
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From the results of Barbour in [3] and [4], we see that the Stein’s method allows

us to consider the problem of asymptotic expansions in a similar way for both normal

and Poisson approximations. This can also be shown by the results in the following of

this chapter. We shall propose a method which adapts to the two cases respectively.

4.2 Normal approximation

4.2.1 The first method

In this subsection, we introduce a first method to get a recurrence form of the asymp-

totic expansion of E[h(W )]. With the explicit definition of the zero bias transformation,

we propose to deal with the expansion of E[f ′
h(W ∗) − f ′h(W )] as a whole. The idea is

based on the comparison between W and W ∗ through their common part W (I) and

on the independence between W (i), Xi and X∗
i . To be more precise, we consider the

Taylor expansion of the above difference at W (i) and then as in [3], replace the sum

variables by the normal variables. The expansion formula is of an recurrence form and

the proof is proceeded by induction.

We introduce the following notations. Let Θ be the set of indices, i.e. Θ =

{1, · · · , n}. For any non-empty subset J ⊂ Θ, let

WJ =
∑

i∈J

Xi

and σ2
J = Var[WJ ] =

∑

i∈J

σ2
i . In particular, we denote by W = WΘ and σW =

σΘ. Let IJ be a random index of the set J , that is, IJ takes value i ∈ J with

probability P(IJ = i) = σ2
i /σ

2
J . We assume in addition that IJ is independent of all

Xi and X∗
i for all i = 1, · · · , n. Denote by J (i) = J \ {i}, the subset of J deprived

of i. From Proposition 3.2.10, we know that W
(IJ )
J + X∗

IJ
has the WJ -zero biased

distribution. In addition, we denote by fh,J = fh,σJ
the solution of the Stein’s equation

xf(x) − σ2
Jf

′(x) = h(x) − ΦσJ
(h) and by fh = fh,Θ.

For any N ≥ 0, we write E[h(WJ)] as the sum of two terms: theN th-order estimator

C(J,N, h) and the remaining error term ε(J,N, h). The following theorem gives the

recurrence formula to obtain C(J,N, h).

Proposition 4.2.1 Let E[h(WJ)] = C(J,N, h) + e(J,N, h). If fh has up to (N + 2)th

order derivative, then

C(J,N, h) = C(J, 0, h) +
∑

i∈J

σ2
i

N∑

k=1

1

k!
C
(
J (i), N − k, f

(k+1)
h,J

)
E
[
(X∗

i )k − (Xi)
k
]
, (4.1)
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where C(J, 0, h) = ΦσJ
(h). In addition,

|e(J,N, h)| ≤
∑

i∈J

σ2
i

( N∑

k=1

1

k!

∣∣e
(
J (i), N − k, f

(k+1)
h,J

)∣∣E
[
|(X∗

i )k − (Xi)
k|
]

+
‖f (N+2)

h,J ‖sup

(N + 1)!
E
[
|X∗

i |N+1 + |Xi|N+1
])
.

(4.2)

Proof. By Stein’s equation,

h(WJ) − ΦσJ
(h) = WJfh,J(WJ ) − σ2

Jf
′
h,J(WJ).

Taking expectation on the two sides, we have

E[h(WJ )] = ΦσJ
(h) + σ2

JE[f ′h,J(W ∗
J )] − σ2

JE[f ′h,J(WJ)].

By writing the N th-order Taylor expansion of the last two terms at W
(IJ)
J , the zero-

order terms vanish. Moreover, since W
(i)
J is independent of Xi and X∗

i , we get

E[h(WJ )] = ΦσJ
(h) +

∑

i∈J

σ2
i E
[
f ′h,J(W

(i)
J +X∗

i ) − f ′h,J(W
(i)
J +Xi)

]

= ΦσJ
(h) +

∑

i∈J

σ2
i

N∑

k=1

1

k!
E
[
f

(k+1)
h,J (W

(i)
J )
]
E
[
(X∗

i )k − (Xi)
k
]
+ δ(J,N, h)

(4.3)

where the remaining term

δ(J,N, h) =
∑

i∈J

σ2
i

(N + 1)!
E
[
f

(N+2)
h,J (W

(i)
J + θ1X

∗
i )(X∗

i )N+1 − f
(N+2)
h,J (W

(i)
J + θ2Xi)X

N+1
i

]
.

Let C(J, 0, h) = ΦσJ
(h) and assume we have proved equation (4.1) holds for l < N ,

then we replace E
[
f

(k+1)
h,J (W

(i)
J )
]

in (4.3) by its (N − k)th-order expansion and get

E(h(WJ))

= C(J, 0, h) +
∑

i∈J

σ2
i

N∑

k=1

1

k!
C
(
J (i), N − k, f

(k+1)
h,J

)
E
[
(X∗

i )k − (Xi)
k
]

+ δ(J,N, h) +
∑

i∈J

σ2
i

N∑

k=1

1

k!
e
(
J (i), N − k, f

(k+1)
h,J

)
E
[
(X∗

i )k − (Xi)
k
]

= C(J,N, h) + δ(J,N, h) +
∑

i∈J

σ2
i

N∑

k=1

1

k!
e
(
J (i), N − k, f

(k+1)
h,J

)
E
[
(X∗

i )k − (Xi)
k
]
,
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which means that the N th-order estimator is also given by equation (4.1) and the error

term is given by

e(J,N, h) = δ(J,N, h) +
∑

i∈J

σ2
i

N∑

k=1

1

k!
e(J (i), N − k, f

(k+1)
h,J )E

[
(X∗

i )k − (Xi)
k
]
.

Moreover,

|δ(J,N, h)| ≤
∑

i∈J

σ2
i

(N + 1)!
‖f (N+2)

h,J ‖supE
[
|X∗

i |N+1 + |Xi|N+1
]
.

So again by induction, the error term is bounded by

|e(J,N, h)| ≤
∑

i∈J

σ2
i

N∑

k=1

1

k!

∣∣e(J (i), N − k, f
(k+1)
h,J )

∣∣E
[∣∣(X∗

i )k − (Xi)
k
∣∣]

+
∑

i∈J

σ2
i

(N + 1)!
‖f (N+2)

h,J ‖sup

(
E[|X∗

i |N+1] + E[|Xi|N+1]
)
.

2

It is apparent that (4.1) is tedious to apply in reality. To do the recurrence for the

set J , we need to know the zero order approximation of all its subsets. In addition, we

should calculate the normal expectation where the variance is not the same with the

variance of the Stein’s equation. So Proposition 3.3.24 does not apply here to calculate

Φσ′(xmfh,σ(x)), which makes the calculation become much more complicated.

4.2.2 The second method

In this subsection, we propose a refined method to improve the first one in the previous

subsection. As shown in the previous subsection, since the Taylor expansion is made

around the point W
(i)
J , at each step, we have to eliminate one variate and calculate

a normal expectation function with the reduced variance. This increases significantly

the calculation, especially in the exogenous case. Therefore, it’s natural to propose a

solution by changing in (4.3) the term E[f
(k+1)
h,J (W

(i)
J )] with some expectation function

on WJ . This procedure introduces an additional error term. So the objective is to

1) find the relationship between E[f(W (i))] and E[f(W )];

2) estimate the error of the above step.

We introduce the following notations. Let X and Y be two independent random

variables and let f be a N + 1 times derivable function. We denote by δ(N, f,X, Y )

the error of the N th-order Taylor’s formula in the expectation form, i.e.

E[f(X + Y )] =
N∑

k=0

E[Y k]

k!
E[f (k)(X)] + δ(N, f,X, Y ). (4.4)
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Recall the Taylor expansion (in [60] for example)

f(X + Y ) =

N∑

k=0

f (k)(X)
Y k

k!
+

1

N !

∫ 1

0
(1 − t)Nf (N+1)(X + tY )Y N+1dt. (4.5)

By taking the expectation of the above formula, we obtain directly (4.4) since X and

Y are independent and we get

δ(N, f,X, Y ) =
1

N !

∫ 1

0
(1 − t)NE

[
f (N+1)(X + tY )Y N+1

]
dt, (4.6)

or equivalently

δ(N, f,X, Y ) =
1

(N − 1)!

∫ 1

0
(1 − t)N−1E

[(
f (N)(X + tY ) − f (N)(X)

)
Y N
]
dt. (4.7)

We now present the key formula (4.8) of our method which writes the expectation

E[f(X)] as an expansion of E[f(X + Y )] and its derivatives multiplied by expectation

terms containing the powers of Y . We call (4.8) the reversed Taylor’s formula in the

expectation form. The main feature of this formula is that we treat the products of

expectation of functions on random variables X+Y and Y which are not independent.

This property makes (4.8) very different with the standard Taylor’s formula where

(4.4) is obtained by taking expectation of its corresponding form (4.5). However, we

show that the remaining term of (4.8) can be deduced from the remaining terms of

the standard Taylor’s formula.

Proposition 4.2.2 Let ε(N, f,X, Y ) be the remaining term of the following expansion

E[f(X)] = E[f(X+Y )]+
∑

d≥1

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N

E[f (|J|)(X+Y )]
( d∏

l=1

E[Y jl ]

jl!

)
+ε(N, f,X, Y ),

(4.8)

where |J| = j1 + · · · + jd for any J = (jl) ∈ Nd
∗. Then, for any integer N ≥ 1,

ε(N, f,X, Y ) = −
∑

d≥0

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N

δ(N − |J|, f (|J|), X, Y )

d∏

l=1

E[Y jl ]

jl!
. (4.9)

Proof. Combining (4.4) and (4.8), we have

ε(N, f,X, Y ) = −
N∑

k=1

E[Y k]

k!
E[f (k)(X)] − δ(N, f,X, Y )

−
∑

d≥1

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N

E[f (|J|)(X + Y )]
d∏

λ=1

E[Y jl ]

jl!
.
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We take the (N − |J |)th-order Taylor expansion of E[f (|J|)(X + Y )] to get

∑

J=(jl)∈Nd
∗

|J|≤N

E[f (|J|)(X + Y )]

(
d∏

λ=1

E[Y jl ]

jl!

)

=
∑

J=(jl)∈Nd
∗

|J|≤N

(
E[f (|J|)(X)] +

N−|J|∑

k=1

E[Y k]

k!
E[f (|J|+k)(X)] + δ(N − |J|, f (|J|), X, Y )

)( d∏

λ=1

E[Y jl ]

jl!

)

(4.10)

=
∑

J=(jl)∈Nd
∗

|J|≤N

(
E[f (|J|)(X)]

(
d∏

λ=1

E[Y jl ]

jl!

)
+

∑

J
′=(jl)∈N

d+1
∗

|J′|≤N

(
E[f (|J′|)(X)]

(
d+1∏

λ=1

E[Y jl ]

jl!

)

+
∑

J=(jl)∈Nd
∗

|J|≤N

δ(N − |J|, f (|J|), X, Y )

(
d∏

λ=1

E[Y jl ]

jl!

)

(4.11)

The second term of (4.11) is obtained by regrouping E[Y k]
k! in (4.10) with the product

term and the sum concerning k with the other sums. Multiplying (4.11) by (−1)d and

taking the sum on d, we notice that most terms disappear and we get

∑

d≥1

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N

E[f (|J|)(X + Y )]

(
d∏

λ=1

E[Y jl ]

jl!

)

= −
∑

j≤N

E[f (j)(X)]
E[Y j]

j!
+
∑

d≥1

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N

δ(N − |J|, f (|J|), X, Y )

(
d∏

λ=1

E[Y jl ]

jl!

)

which implies that

ε(N, f,X, Y ) = −δ(N, f,X, Y ) −
∑

d≥1

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N

δ(N − |J|, f (|J|), X, Y )

d∏

l=1

E[Y jl]

jl!
.

For simplicity of writing, we write |J | = 0 when “J ∈ N0
∗” by convention. In addition,

for the empty set ∅, let
∏

∅ = 1. With these conventions,

∑

J∈N0
∗

|J|≤N

δ(N − |J|, f (|J|), X, Y )

0∏

l=1

E[Yjl
]

jl!
= δ(N, f,X, Y ).
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Therefore we get (4.9). 2

Corollary 4.2.3 With the notations of (4.4) and (4.8), if f has up to (N +1)th order

derivatives and if f (N+1) is bounded, then

1)

|δ(N, f,X, Y )| ≤ E[Y N+1]

(N + 1)!
‖f (N+1)‖;

2)

|ε(N, f,X, Y )| ≤ ‖f (N+1)‖
∑

d≥1

∑

J=(jl)∈Nd
∗

|J|=N+1

d∏

l=1

E[Y jl]

jl!
.

Proof. 1) is obvious by definition.

2) From 1) and Proposition 4.2.2, we know that

ε(N, f,X, Y ) ≤
∑

d≥0

∑

J=(jl)∈Nd
∗

|J|≤N

|δ(N − |J|, f (|J|), X, Y )|
d∏

l=1

E[Y jl ]

jl!

≤ ‖f (N+1)‖
∑

d≥0

∑

J=(jl)∈Nd
∗

|J|≤N

E[Y N−|J |+1]

(N − |J | + 1)!

d∏

l=1

E[Y jl ]

jl!

which implies 2) by regrouping the product terms. 2

Remark 4.2.4 1. Note that δ is relatively easier to study while ε is much more

complicated. Therefore, the above proposition facilitates the calculation.

2. The equality (4.8) allows us to write E[f(W (i))] as an expansion of functions on

W . In fact, without specifying the explicit form of ε, one can always propose

some expansion form with a remaining term which depends on N , X and Y .

The one we propose here is for the purpose to obtain the high order expansion

in Theorem 4.2.5.

Before presenting the theorem, we first explain briefly the idea how to replace the

terms containing f(W (i)) by those of W . Suppose that E[f(X)] has an expansion

E[f(X)] =

N∑

j=0

αj(f, Y )E[f (j)(X + Y )] + ε(N, f,X, Y ).
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Then by Taylor’s formula, we have

E[f(X + Y )] = E[f(X)] +
N∑

k=1

E[Y k]

k!
E[f (k)(X)] + δ(N, f,X, Y )

= E[f(X)] + δ(N, f,X, Y )

+

N∑

k=1

E[Y k]

k!

(N−k∑

j=0

αj(f
(k), Y )E[f (k+j)(X + Y )] + ε(N − k, f (k), X, Y )

)
.

In the last equality, we only need to make the (N −k)th-order expansion of E[f (k)(X)]

to obtain the N th-order expansion of E[f(X + Y )], . Multiplying by E[Y k], we get the

sufficient order we need. It follows then

E[f(X)] = E[f(X + Y )] −
N∑

k=1

N−k∑

j=0

E[Y k]

k!
αj(f

(k), Y )E[f (k+j)(X + Y )]

−
N∑

k=1

E[Y k]

k!
ε(N − k, f (k), X, Y ) − δ(N, f,X, Y ).

The right-hand side of the above equation consists of an expansion on X+Y . The next

step is to regroup all the terms of E[f (l)(X + Y )] for 1 ≤ l ≤ N to get the expansion.

We now present our main theorem.

Theorem 4.2.5 For any integer N ≥ 0, we can write E[h(W )] = C(N,h) + e(N,h)

where C(0, h) = ΦσW
(h) and e(0, h) = E[h(W )] − ΦσW

(h), and by induction

C(N,h) = ΦσW
(h) +

n∑

i=1

σ2
i

∑

d≥1

(−1)d−1
∑

J=(jl)∈Nd
∗

|J|≤N

C(N − |J|, f (|J|+1)
h )

(
d−1∏

l=1

E[Xjl

i ]

jl!

)(
E[(X∗

i )jd ]

jd!
− E[Xjd

i ]

jd!

) (4.12)

and for any N ≥ 1,

e(N,h)

=

n∑

i=1

σ2
i

∑

d≥1

(−1)d−1
∑

J=(jl)∈Nd
∗

|J|≤N

e
(
N − |J|, f (|J|+1)

h

)
(

d−1∏

l=1

E[Xjl

i ]

jl!

)(
E[(X∗

i )jd ]

jd!
− E[Xjd

i ]

jd!

)

+
n∑

i=1

σ2
i

N∑

k=0

E[(X∗
i )k]

k!
ε
(
N − k, f

(k+1)
h ,W (i), Xi

)
+

n∑

i=1

σ2
i δ
(
N, f ′h,W

(i), X∗
i

)

(4.13)

if all terms in (4.12) and (4.13) are well defined (here we use the conventions proposed

in the proof of Proposition 4.2.2).
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Proof. We deduce by induction. The theorem holds when N = 0. Suppose that

we have proved for 0, · · · , N − 1 with N ≥ 1. Recall that E[h(W )] = ΦσW
(h) +

σ2
W E[f ′h(W ∗)−f ′h(W )]. We shall rewrite E[f ′

h(W ∗)] as an expansion on W . By making

Taylor expansion of E[f ′
h(W (i)+X∗

i )] atW (i) and then using (4.8) to write the (N−k)th-

order expansion of E[f
(k+1)
h (W (i))] as functions of W , we get

E[f ′h(W (i) +X∗
i )]

=

N∑

k=0

E
[
f

(k+1)
h (W (i))

]

k!
E[(X∗

i )k] + δ(N, f ′h,W
(i), X∗

i )

=

N∑

k=0

E
[
(X∗

i )k
]

k!

[
E[f

(k+1)
h (W )] +

∑

d≥1

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N−k

E
[
f

(|J|+k+1)
h (W )

] d∏

l=1

E[Xjl

i ]

jl!

+ ε(N − k, f
(k+1)
h ,W (i), Xi)

]
+ δ
(
N, f ′h,W

(i), X∗
i

)

(4.14)

Notice that the first term in the bracket when k = 0 equals E[f ′
h(W )]. For the simplicity

of writing, we define the following notation to add the remaining summands when k ≥ 1

of the first term to the second term as d = 0. To be more precise, let by convention
∑

J=(jl)∈N0
∗

|J|≤N−k

E
[
f

(|J|+k+1)
h (W )

]
= E[f (k+1)(W )]. (4.15)

Using the above notation, we can rewrite (4.14) by separating the cases when k = 0

and when k = 1, · · · , N and the remaining terms as

E[f ′h(W (i) +X∗
i )] − E[f ′h(W )]

=
N∑

k=1

E[(X∗
i )k]

k!

∑

d≥0

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N−k

E[f
(|J|+k+1)
h (W )]

d∏

l=1

E[Xjl

i ]

jl!
(4.16)

+
∑

d≥1

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N

E[f
(|J|+1)
h (W )]

d∏

l=1

E[Xjl

i ]

jl!
(4.17)

+
N∑

k=0

E[(X∗
i )k]

k!
ε(N − k, f

(k+1)
h ,W (i), Xi) + δ(N, f ′h,W

(i), X∗
i ). (4.18)

By interchanging summations, we have

(4.16) =
∑

d≥0

(−1)d
N∑

k=1

∑

J=(jl)∈Nd
∗

|J|≤N−k

E[f
(|J|+k+1)
h (W )]

E[(X∗
i )k]

k!

d∏

l=1

E[Xjl

i ]

jl!
.
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We then regroup
E[(X∗

i )k]
k! with the product term to get

(4.16) =
∑

d≥0

(−1)d
∑

J=(jl)∈N
d+1
∗

|J|≤N

E[f
(|J|+1)
h (W )]

E[(X∗
i )jd+1 ]

(jd+1)!

d∏

l=1

E[Xjl

i ]

jl!

=
∑

d≥1

(−1)d−1
∑

J=(jl)∈Nd
∗

|J|≤N

E[f
(|J|+1)
h (W )]

E[(X∗
i )jd ]

(jd)!

d−1∏

l=1

E[Xjl

i ]

jl!

Therefore, taking the sum of (4.16) and (4.17), we get

(4.16) + (4.17)

=
∑

d≥1

(−1)d−1
∑

J=(jl)∈Nd
∗

|J|≤N

E[f
(|J|+1)
h (W )]

(
d−1∏

l=1

E[Xjl

i ]

jl!

)(
E[(X∗

i )jd ]

(jd)!
− E[(Xi)

jd ]

(jd)!

)

At last, since we have proved the theorem for all N−|J| < N , we replace E[f
(|J|+1)
h (W )]

by its (N − |J|)th order expansion C(N − |J|, f (|J|+1)
h ) + e(N − |J|, f (|J|+1)

h ) to obtain

(4.12). Finally, it suffices to notice that e(N,h) contains the terms in (4.18) and the

terms in the above replacement of lower orders. 2

Corollary 4.2.6 The expansion of the first two orders are given by

1)

C(1, h) = ΦσW
(h) + Φ

(( x3

3σ4
W

− x

σ2
W

)
h(x)

)
E[X∗

I ]

2)

C(2, h) = C(1, h) + ΦσW

(( x6

18σ8
W

− 5x4

6σ6
W

+
5x2

2σ4
W

)
(h(x) − ΦσW

(h))

)
E[X∗

I ]2

+
1

2
ΦσW

(( x4

4σ6
W

− 3x2

2σ4
W

)
h(x)

) (
E[(X∗

I )2] − E[X2
I ]
)
.

(4.19)

Proof. 1) is a direct result of the above proposition.

2) By (4.12),

C(2, h) = ΦσW
(h) +

n∑

i=1

σ2
i

(
C(1, f ′′h )E[X∗

i ] + C(0, f
(3)
h )

E[(X∗
i )2 −X2

i ]

2

)
.

Then it suffices to calculate ΦσW

(
( x3

3σ4
W

− x
σ2

W

)f ′′h
)

and ΦσW
(f

(3)
h ) by Proposition 3.3.24.

2
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Remark 4.2.7 The first order correction given by Theorem 3.4.8 is a special case here

when N = 1.

4.2.2.1 Numerical result

We apply (4.19) to the call function and we present the numerical results for i.i.d.

random variables Xi. Figure 4.1 and 4.2 compare the second order approximation

C(2, h) to other approximations: the first order approximation ΦσW
(h) + C(1, h), the

first and the second order approximations by the saddle point method. The test is

the same with that for Figure 3.10 and 3.11. We observe that C(2, h) provides better

approximation quality than C(1, h). It is of the same precision of the second order

saddle-point approximation.

In this case, similar with the first order approximation of the indicator function. We

can not obtain theoretically the approximation error estimation since the call function

is only one time differentiable. The explanation of this improvement should be similar

to that for the indicator function case.

Figure 4.1: Second order expansion for Call function, asymptotic case: p = 0.01, and
k = 1.
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4.2.3 Estimation of the approximation error

In this subsection, we estimate the error bound e(N,h) given by (4.13). The idea is as

below.

139



Figure 4.2: Second order expansion for Call function: p = 0.1 and k = 1. The second
order approximation of our method and the saddle-point method coincide.

0 50 100 150 200 250 300 350 400 450 500
0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

n

Approximation of E[(Wn−1)+], where p=0.1

binomial                  
1st order corr. approx.
second order approx.      
saddle1                   
saddle2                   

Procedure to estimate e(N,h):

1) The error term e(N,h) contains two types of terms. The first one consists of the

errors of lower orders e(N − k, f
(k+1)
h ) where k = 1, · · · , N . These terms can be

bounded by induction once the estimation has been established for 1, · · · , N − 1.

The other terms to estimate are δ(N, f ′
h,W

(i), X∗
i ) and ε(N − k, f

(k+1)
h ,W (i), Xi).

By Proposition 4.2.2,

N∑

k=0

E[(X∗
i )k]

k!
ε
(
N − k, f

(k+1)
h ,W (i), Xi

)

= −
N∑

k=0

E[(X∗
i )k]

k!

∑

d≥0

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N

δ(N − k − |J|, f (k+|J|+1)
h ,W (i), Xi)

d∏

l=1

E[Xjl

i ]

jl!

=
∑

d≥1

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N

δ(N − |J|, f (|J|+1)
h ,W (i), Xi)

( d−1∏

l=1

E[Xjl

i ]

jl!

)E[(X∗
i )jd ]

jd!

Then, it suffices to consider the term δ(N − k, f
(k+1)
h , X, Y ) where k = 0, 1, · · · , N

for independent random variables X and Y to estimate the second type of terms.
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2) By the explicit formula (4.6) of δ(N, f,X, Y ), we have

δ(N − k, f
(k+1)
h , X, Y ) =

1

(N − k)!

∫ 1

0
(1 − t)N−kE[f

(N+2)
h (X + tY )Y N−k+1]dt.

If the growing speed of f
(N+2)
h is controlled, then δ(N − k, f

(k+1)
h , X, Y ) can be

bounded by some quantity containing the moments of X and Y . To be more

precise, if |f (N+2)
h | ≤ c|x|m + d where c and d are some constants and m is some

integer, then

|δ(N − k, f
(k+1)
h , X, Y )|

≤ 1

(N − k)!

∫ 1

0
(1 − t)N−kE

[
(c|X + tY |m + d)|Y |N−k+1

]
dt

≤ c

(N − k)!

m∑

l=0

(
m

l

)
E[|X|l]E[|Y |N+m−l−k+1]

∫ 1

0
(1 − t)N−ktm−ldt

+
d

(N − k)!
E[|Y |N−k+1]

∫ 1

0
(1 − t)N−kdt

=

m∑

l=0

m!c

l!(N +m− l − k + 1)!
E[|X|l]E[|Y |N+m−l−k+1] +

d

(N − k + 1)!
E[|Y |N−k+1].

The last equality is because
∫ 1

0
(1 − t)N−ktm−ldt =

(m− l)!(N − k)!

(N +m− l − k + 1)!
.

We replace X by W (i) and Y by Xi or X∗
i . The leading order concerning the

moments of |Xi| or |X∗
i | is N − k + 1. Hence if we suppose, in addition, that W

has finite moments up to order m, the estimation is of the right order, that is, the

approximation error of the N th order expansion is of the same order with E[|Xi|N+1]

and E[|X∗
i |N+1], which is O

(
1√

n
N+1

)
in the binomial case. Note that the growing

speed m of |f (N+2)
h | intervenes in the moment condition of the sum variable W .

3) Estimate the growing speed of |f (N+2)
h | with respect to that of h.

4) Discuss the first type of terms e(N−k, f (k+1)
h ) using estimations in the above steps.

Therefore, our main objective is to estimate |f (N+2)
h |. We shall develop techniques

which have been introduced in the subsection 3.3.3 and we work with the function

f̃h defined by (3.28) instead of with fh directly since the derivative functions are not

necessarily centralized.

In the following, we first present the necessary conditions for h under which we can

deduce the N th-order expansion. We then study respectively the regularity of f̃h given

the function h and the growing speed of f̃
(N+2)
h at infinity. At last, we summarize

these result to discuss the estimations of e(N −k, f (k+1)
h ) at the end of this subsection.
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4.2.3.1 Conditions on h for the N th-order expansion

The objective here is to determine, given an integer N > 0, for which functions h we

can take the N th-order expansion.

In subsection 3.3.2, we have introduced the vector space E for f̃h. The definition of

this function set specifies in fact the functions we are interested in. We now extend the

notion to a larger context. Let R∗ = R \ {0} be the set of all non-zero real numbers.

Let H 0
σ be the vector space of all functions h defined on R∗ which are locally of finite

variation and have finite number of jumps such that
∫ ∣∣P (x)h(x)

∣∣φσ(x)11{|x|>a}dx < +∞

for any polynomial P (x) and any real number a > 0. Notice that H 0
σ is a subset of

E and contains all functions in E which are of polynomial increasing speed at infinity.

Obviously, if h ∈ H 0
σ , then f̃h is well defined. Compared to the definition of E , the

additional condition concerning P (x) is for purpose that the increasing speed of the

auxiliary function f̃h is controlled.

In Theorem 3.4.8, we have supposed the boundedness condition of f
(3)
h to estimate

the first order approximation error. In fact, this condition can be relaxed to the “call

function” whose f
(3)
h does not exist. This result leads us to propose, in the general

case, for any integer N > 0,

H
N

σ = {h | h : R∗ → R having up to N th order derivatives such that h(N) ∈ H
0

σ }.

The indicator function Iα belongs to H 0
σ and the call function Ck belongs to H 1

σ .

Heuristically, we shall make N th-order expansion for functions in the set H N
σ .

4.2.3.2 The regularity of f̃h

In this subsection, we shall prove that f̃h ∈ H N+1
σ if h ∈ H N

σ . Then, by definition

of H 0
σ , we know that f̃

(N+1)
h has finite number of jumps. Therefore, when |x| is large

enough, f̃
(N+2)
h is well defined.

To prove this, the idea is more or less shown in the proof of Proposition 3.3.20. We

now summarize and generalize it as follows.

Procedure to estimate f̃
(N+1)
h :

i) we generalize Corollary 3.3.18 to write f̃
(N)
h as a function of f̃Γ(h), f̃Γ2(h), · · · , f̃ΓN (h),

(Proposition 4.2.10);

ii) we write ΓN (h) as a function of h, h′, · · · , h(N), (Proposition 4.2.11);

iii) we study f̃
(N+1)
h using i) and ii), (Proposition 4.2.13).
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We remark that the above procedure proposes a method which provides the suitable

order of the estimation. No special effort is made to improve the constants in the upper

bound in this chapter.

We first show that f̃ΓN (h) is well defined if h ∈ H N
σ .

Proposition 4.2.8 For any integer N ≥ 1, we have H N
σ ⊂ H N−1

σ . If h ∈ H N
σ , then

1) f̃h is well defined;

2) Γ(h) ∈ H N−1
σ ;

3) f̃ΓN (h) is well defined.

Proof. If h ∈ H N
σ , then h(N−1) is a continuous function. Let a > 0 be a real number.

Then h(N−1)(x) = h(N−1)(a) +

∫ x

a
h(N)(t)dt for x ≥ a. Let P (x) be any polynomial.

By Fubini’s theorem
∫ ∞

a
|h(N−1)(x)P (x)|φσ(x)dx

≤ |h(N−1)(a)|
∫ +∞

a
|P (x)|φσ(x)dx+

∫ ∞

a
dt|h(N)(t)|

∫ +∞

t
|P (x)|φσ(x)dx.

By integration by part, there exists another polynomial Q(t) such that

∫ +∞

t
|P (x)|φσ(x)dx ≤ Q(t)φσ(t)

for any t ≥ a. So we know that
∫∞
a |h(N−1)(x)P (x)|φσ(x)dx < +∞. Similarly we can

prove that

∫ −a

−∞
|P (x)h(N−1)(x)|φσ(x)dx < +∞. Therefore f ∈ H N−1

σ .

1) If h ∈ H N
σ , then by the argument above, h ∈ H 0

σ . So f̃h is well defined.

2) By definition, if h has up to N th order derivatives, then Γ(h) has up to (N − 1)th

derivatives and

(
Γ(h)

)(N−1)
(x) =

(
h(x)

x

)(N)

=

N∑

k=0

(−1)N−kN !

k!

h(k)(x)

xN−k+1
.

Then for any polynomial P (x),

∫ ∣∣Γ(h)(N−1)(x)P (x)
∣∣φσ(x)11{|x|>a}dx ≤

N∑

k=0

N !

k!aN−k+1

∫ ∣∣P (x)h(N−k)(x)
∣∣φσ(x)11{|x|>a}dx.

Since h ∈ H N
σ ⊂ H N−1

σ ⊂ · · · ⊂ H 0
σ , the integral above is finite, therefore Γ(h) ∈

H N−1
σ .

3) By 2), ΓN (h) ∈ H 0
σ , which deduces 3). 2
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Remark 4.2.9 From the proof of Proposition 4.2.8 we observe that if f is a function

in H N
σ , then for any polynomial P (x), P (x)f(x) ∈ H N

σ . Furthermore f(x)/x ∈ H N
σ

and f ′(x) ∈ H N−1
σ .

We have shown in Corollary 3.3.18 that f̃ ′h(x) = xf̃Γ(h)(x) and we’ve remarked

that since Γ(h) grows more slowly at infinity than h, this equality enables us to get

the estimations of the right order which are difficult to obtain by using directly the

Stein’s equation. On the other hand, the above equality yields that

f̃ ′′h (x) =
(
xf̃Γ(h)(x)

)′
= x2f̃Γ2(h)(x) + f̃Γ(h)(x);

and

f̃
(3)
h (x) = x3f̃Γ3(h) + 3xf̃Γ2(h)

and so on, which suggests the existence of a general formula of f̃
(N)
h . The following

proposition gives this result.

Proposition 4.2.10 For any h ∈ H N
σ we have the following equality:

f̃
(N)
h (x) =

[N/2]∑

k=0

(
N

2k

)
(2k − 1)!!xN−2k f̃ΓN−k(h)(x). (4.20)

Here we use the convention (−1)!! = 1

Proof. The equality (4.20) is clearly true when N = 0. Suppose that we have verified

(4.20) for 0, · · · , N , then for N + 1, we have

f̃
(N+1)
h (x) = (f̃

(N)
h (x))′ =

∑

k≥0

(
N

2k

)
(2k − 1)!!(xN−2k f̃ΓN−k(h))

′

=
∑

k≥0

(
N

2k

)
(2k − 1)!!xN−2k+1f̃ΓN−k+1(h)(x)

(4.21)

+
∑

k≥0

(
N

2k

)
(2k − 1)!!

(
(N − 2k)xN−2k−1f̃ΓN−k(h)

)
(4.22)

Changing the index l = k + 1 in (4.22), we get

(4.22) =
∑

l≥1

(
N

2l − 2

)
(2l − 3)!!

(
(N − 2l + 2)xN−2l+1f̃ΓN−l+1(h)

)
.

Hence

(4.21) + (4.22) = xN+1f̃ΓN+1(h)(x)

+
∑

l≥1

[(
N

2l − 2

)
(2l − 3)!!(N − 2l + 2) +

(
N

2l

)
(2l − 1)!!

]
xN−2l+1f̃ΓN−l+1(h)(x),
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On the other hand,

(
N

2l − 2

)
(2l − 3)!!(N − 2l + 2) +

(
N

2l

)
(2l − 1)!!

=
N !

(2l − 2)!(N − 2l)!
(2l − 3)!

(
1

N − 2l + 1
+

1

2l

)

=
N !

(2l − 1)!(N − 2l)!
(2l − 1)!!

N + 1

2l(N − 2l + 1)
=

(
N + 1

2l

)
(2l − 1)!!.

As a consequence,

f̃
(N+1)
h (x) = xN+1f̃ΓN+1(h)(x) +

∑

l≥1

(
N + 1

2l

)
(2l − 1)!!xN+1−2l f̃ΓN+1−l(h)(x)

=
∑

l≥0

(
N + 1

2l

)
(2l − 1)!!xN+1−2l f̃ΓN+1−l(h)(x),

which ends the proof by induction. 2

We are now interested in the growing speed of ΓN (h) with respect to the derivative

h(N). By definition,

Γ(h) =

(
h(x)

x

)′
=
h′(x)
x

− h(x)

x2
.

Then

Γ2(h) =

((
Γ(h)(x)

)

x

)′

=
h′′(x)
x2

− 3h′(x)
x3

+
3h(x)

x4
.

The general formula is given below.

Proposition 4.2.11 For any h ∈ H N
σ ,

ΓN (h)(x) =

N∑

k=0

(−1)k(2k − 1)!!

(
N + k

2k

)
h(N−k)(x)

xN+k
. (4.23)

By convention, (−1)!! = 1.

Proof. We will prove the theorem by induction. When N = 0, the theorem is evident.

Suppose that we have proved for 0, · · · , N , then by the linearity of Γ, we have

ΓN+1(h) = Γ(ΓN (h)) =

N∑

k=0

(−1)k(2k − 1)!!

(
N + k

2k

)
Γ
(h(N−k)

xN+k

)

=
N∑

k=0

(−1)k(2k − 1)!!

(
N + k

2k

)(h(N−k)(x)

xN+k+1

)′
.
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We write ΓN+1(h) as the sum of two terms

ΓN+1(h) =
N∑

k=0

(−1)k(2k − 1)!!

(
N + k

2k

)
h(N−k+1)(x)

xN+k+1
(4.24)

+
N∑

k=0

(−1)k+1(2k − 1)!!

(
N + k

2k

)
(N + k + 1)

h(N−k)(x)

xN+k+2
. (4.25)

Changing the index l = k + 1 in (4.25), we obtain

(4.25) =
N+1∑

l=1

(−1)l(2l − 3)!!

(
N + l − 1

2l − 2

)
(N + l)

h(N−l+1)(x)

xN+l+1
.

Then

ΓN+1(h) =
h(N+1)(x)

xN+1
+ (−1)N+1(2N + 1)!!

h(x)

x2N+2

+
N∑

l=1

(−1)l

[
(2l − 1)!!

(
N + l

2l

)
+ (2l − 3)!!

(
N + l − 1

2l − 2

)
(N + l)

]
h(N−l+1)(x)

xN+l+1
.

Notice that

(2l − 1)!!

(
N + l

2l

)
+ (2l − 3)!!

(
N + l − 1

2l − 2

)
(N + l)

= (2l − 3)!!
(N + l)!

(2l)!(N − l + 1)!

(
(2l − 1)(N − l + 1) + 2l(2l − 1)

)

= (2l − 1)!!

(
N + l + 1

2l

)
.

Then we get

ΓN+1(h) =
h(N+1)(x)

xN+1
+

N+1∑

l=1

(−1)l(2l − 1)!!

(
N + 1 + l

2l

)
h(N−l+1)(x)

xN+l+1

=
N+1∑

l=0

(−1)l(2l − 1)!!

(
N + 1 + l

2l

)
h(N+1−l)(x)

xN+1+l
.

By induction we have proved the theorem. 2

Our objective is to estimate f̃
(N+2)
h for a function h ∈ H N

σ . From Proposition

4.2.10 and Proposition 4.2.11, we can write f̃
(N)
h as some linear combination of the

terms f̃
h(N−l)

xN+l

where l = 0, 1, · · · , N . However, we can not estimate these result directly

since we know the properties on h(N+1), but not on h(N+2) and there will be one term

we can not study. The solution to this problem is similar with that for the “call”
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function, that is, we calculate f̃
(N+1)
h by using Proposition 4.2.10 and Proposition

4.2.11. Then we use the Stein’s equation to get f̃
(N+2)
h . This estimation is given by

Proposition 4.2.17.

Lemma 4.2.12 If h ∈ H 0
σ , then f̃h ∈ H 1

σ .

Proof. By Stein’s equation, f̃ ′h = 1
σ2 (xf̃h − h). Since h ∈ H 0

σ , we know that f̃ ′h is

locally of finite variation and has finite number of jumps. It suffices to verify that∫
|P (x)xf̃h(x)|φσ(x)|11{|x|>a}dx <∞. In fact, by (3.28), for any a > 0,

∫ ∞

a
|P (x)xf̃h(x)|φσ(x)dx ≤ 1

σ2

∫ ∞

a
|P (x)x|

( ∫ ∞

x
|h(t)|φσ(t)dt

)
dx

≤ 1

σ2

∫ ∞

a

( ∫ t

a
|P (x)x|dx

)
|h(t)|φσ(t)dt.

We know that there exists some polynomial function Q such that
∫ t
a |P (x)x|dx ≤ Q(t).

Since h ∈ H 0
σ , we know that the above integral is finite. The case when a < 0 is

similar, which follows the lemma. 2

Proposition 4.2.13 For any h ∈ H N
σ , f̃h ∈ H N+1

σ .

Proof. We need to prove that f̃
(N+1)
h ∈ H 0

σ . By using Proposition 4.2.10 and sepa-

rating the first term with the others, we have

f̃
(N)
h (x) = xN f̃ΓN (h)(x) +

[N/2]∑

k=1

(
N

2k

)
(2k − 1)!!xN−2k f̃ΓN−k(h)(x).

Since ΓN (h) ∈ H 0
σ , we only need to discuss the derivative of the first term. By Lemma

4.2.12, f̃ΓN (h) ∈ H 1
σ . Therefore, f̃

(N)
h ∈ H 1

σ , which implies that f̃
(N+1)
h belongs to

H 0
σ . 2

Remark 4.2.14 Suppose that h is a function in H 0
σ which agrees with a function in

H 1
σ when |x| is sufficiently large. (It is equivalent to suppose that the continuous part

is in H 1
σ ). Then f̃ ′h agrees with a function in H 1

σ when |x| is sufficiently large. In

fact, by Stein’s equation, f̃ ′h = 1
σ2 (xfh(x) − h(x)). Since xfh(x) ∈ H 1

σ , we know that

f ′h agrees with a function in H 1
σ when |x| sufficiently large since it is the case for h.

More generally, if h is a function in H N
σ such that h(N) agrees with a function in H 1

σ

(i.e. h agrees with a function in H N+1
σ ) when |x| is sufficiently large, then it is the

same thing for f̃
(N+1)
h . Therefore, we can study the behavior of f̃

(N+2)
h at infinity.
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4.2.3.3 The growing speed of f̃
(N+2)
h at infinity

In the following we shall study the increasing speed (the order) of the auxiliary function

f̃
(N+2)
h when knowing the order of h and its derivatives. Here we are only interested

in the order of the error estimation, but not the bound constant.

Lemma 4.2.15 Let h ∈ H N
σ such that h(N)(x) = O(|x|m) (x→ ∞), where m ≥ 0 is

an integer. Then for any integer 0 ≤ k ≤ N ,

1) h(N−k)(x) = O(|x|m+k);

2) ΓN−k(h)(x) = O(|x|m−N+2k)

Proof. 1) By induction it suffices to prove that h(N−1)(x) = O(|x|m+1). In fact, for

any x > 1, we have

h(N−1)(x) = h(N−1)(1) +

∫ x

1
h(N)(t)dt = O(xm+1).

The case when x < −1 is similar.

2) By Proposition 4.2.11 and 1) we know that

ΓN−k(h) =

N−k∑

j=0

O
( |x|m+k+j

|x|N−k+j

)
= O(|x|m−N+2k).

2

Lemma 4.2.16 Let h ∈ H 0
σ and m be an integer. If h = O(|x|m), then f̃h =

O(|x|m−1).

Proof. By Proposition 3.3.5 we may suppose that h(x) = xm. The lemma holds for

m ≤ 1 by Corollary 3.3.19. When m > 1, suppose that we have proved the lemma for

m ≤M where M ∈ N, then for any m ≤M + 2, we have by Stein’s equation

f̃xm(x) = x−1(xm + σ2f̃ ′xm(x)) = xm−1 + σ2f̃Γ(xm)(x)

= xm−1 + σ2(m− 1)f̃xm−2(x)

= xm−1 +O(|x|m−3) = O(|x|m−1).

2

The following proposition gives the order of the derivatives of f̃h. We treat the

case for f̃
(l)
h where l = 0, · · · , N + 1 and the case for f̃

(N+2)
h differently. The former

is obtained by a standard method combining Proposition 4.2.10 and 4.2.11, together

with Lemma 4.2.15. For the latter, we shall use the Stein’s equation.
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Proposition 4.2.17 Let m be a positive integer. Suppose h ∈ H N
σ agrees with a

function in H N+1
σ when |x| is large. Suppose in addition that h(N+1) = O(|x|m−1)

and when m = 0, h(N) is bounded. Then

1) for any integer 0 ≤ l ≤ N + 1, f̃
(N+1−l)
h = O(|x|m+l−2);

2) f̃
(N+2)
h (h) = O(|x|m−1).

Proof. Since we discuss the behavior when |x| is sufficiently large, we may suppose

h ∈ H N+1
σ and then we can use ΓN+1(h) etc.

1) By (4.20) we know that

f̃
(N+1−l)
h (x) =

[N+1−l
2

]∑

k=0

(
N + 1 − l

2k

)
(2k − 1)!!xN+1−l−2k f̃ΓN+1−l−k(h)(x). (4.26)

Since h(N+1) = O(|x|m−1) and h(N) = O(|x|m) we know by Lemma 4.2.15 that for

any 0 ≤ k ≤ (N + 1 − l)/2, ΓN+1−l−k(h) = O(|x|m−N+2(k+l)−2). Therefore by

Lemma 4.2.16, f̃ΓN+1−l−k(h) = O(|x|m−N+2(k+l)−3). So we know that f̃
(N+1−l)
h (x) =

O(|x|m+l−2).

2) We let l = 0 in (4.26) and separate the leading order term with the others to get

f̃
(N+1)
h (x) = xN+1f̃ΓN+1(h) +

[N+1
2

]∑

k=1

(
N + 1

2k

)
(2k − 1)!!xN+1−2k f̃ΓN+1−k(h)(x). (4.27)

Deriving the two sides of (4.27) and making a change of indice as in the proof of the

Proposition 4.2.10, we obtain

f̃
(N+2)
h (x) = xN+1f̃ ′ΓN+1(h) +

[N+2
2

]∑

k=1

(
N + 2

2k

)
(2k − 1)!!xN+2−2k f̃ΓN+2−k(h)(x),

Since h(N+1) = O(|x|m−1) and h(N) = O(|x|m) we know that for any 1 ≤ k ≤ (N+2)/2,

ΓN+2−k(h) = O(|x|m−N+2k−4). Therefore f̃ΓN+2−k(h) = O(|x|m−N+2k−5). So we know

that
[N+2

2
]∑

k=1

(
N + 2

2k

)
(2k − 1)!!xN+2−2k f̃ΓN+2−k(h)(x) = O(|x|m−3).

By Stein’s equation,

f̃ ′ΓN+1(h) =
1

σ2

(
xf̃ΓN+1(h) − ΓN+1(h)

)
.

By Lemma 4.2.16, we know that the order of f̃ ′
ΓN+1(h)

is the same as that of ΓN+1(h),

which equals m−N − 2. So finally we get f̃
(N+2)
h = O(|x|m−1). 2
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Remark 4.2.18 1. When m ≥ 1, h(N+1) = O(|x|m−1) implies h(N) = O(|x|m)

by Lemma 4.2.15. However, this is not the case when m = 0. Therefore, we

introduce explicitly the condition that h(N) is bounded if m = 0.

2. By using the Stein’s equation in the last step, we obtain the order of f̃
(N+2)
h

which is 2 degrees higher than what would have been obtained by using our

previous procedure if there were enough regularity. This is in fact already shown

by Proposition 3.3.20 where h ∈ H 0
σ and h(x) = O(|x|), that is, N = 0 and

m = 1. Then f̃
(1−l)
h (x) = O(|x|l−1) for l = 0, 1 and f̃ ′′h = O(|x|0).

We now specify the conditions on h in Definition 4.2.19 under which we can obtain

error estimation for the N th order normal expansion of h(W ). These conditions specify

the regularity order and the growing speed order of a function h. We note that by

definition of the set H 0
σ , h is defined on R∗ = R \ {0}, therefore, we have to discuss

the point 0 separately.

Definition 4.2.19 Let h : R → R be a function, N , m be positive integers. We say

that h satisfies the condition P(N,m), denoted by h ∼ P(N,m), if

1) h has up to N th-order derivatives in a neighborhood of 0;

2) h(N) is locally of finite variation and also is (h
(N)
cont)

′ in a neighborhood of 0;

3) h|R∗ ∈ H N
σ , and h

(N)
cont

∣∣∣
R∗

∈ H
(1)

σ ;

4) h(N)(x) = O(|x|m) and (h
(N)
cont)

′ = O(|x|m−1).

In the above definition, the meaning of the integers N and m have been discussed pre-

viously. We also need some regularity conditions around the point 0 which is specified

by 1) and 2).

To estimate e(N,h), we should be capable to estimate e(N − l, f
(l+1)
h ) for l =

1, · · · , N . Therefore, we estimate by recurrence and we need to verify that f
(l+1)
h satis-

fies the above conditions. The following proposition gives parameters in the conditions

satisfied by fh and its derivatives.

Proposition 4.2.20 Let h : R → R be a function such that h ∼ P(N,m).

1) For any m1 ≥ m, we have h ∼ P(N,m1);

2) for any integer 0 ≤ k ≤ N , h(k) ∼ P(N − k,m);

3) fh ∼ P(N + 1,m);
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Proof. The first two assertions follows immediately by definition. For 3), we know by

Stein’s equation that f ′
h = σ−2(xfh − h + Φσ(h)). By induction we know that fh has

up to (N + 1)th derivatives. In addition, f
(N+1)
h is locally of finite variation, and the

derivative of its continuous part is also locally of finite variation. So condition 1) and

2) in Definition 4.2.19 is satisfied.

Moreover, notice that fh|R∗ = f̃h̄. Since h ∈ H N
σ , also is h̄. So by Proposition

4.2.13, f̃h ∈ H N+1
σ . Since h

(N)
cont

∣∣
R∗

∈ H 1
σ , by Stein’s equation f̃ ′

h̄
= σ−2(xf̃h̄ − h̄), we

know that the continuous part of f̃
(N+1)

h̄
lies in H 1

σ . Finally, by Proposition 4.2.17 and

Remark 4.2.18, we know the growing speed of f
(N+1)
h and (f

(N+1)
h )′cont, which follows

that 4) of Definition 4.2.19 is fulfilled. 2

4.2.3.4 Estimation of e(N,h)

We now estimate e(N,h). We shall give estimations of the remaining terms δ and ε

in Proposition 4.2.21 and Proposition 4.2.23 respectively. Proposition 4.2.25 gives the

estimation of e(N,h) in the recurrence form by summarizing the previous results.

Proposition 4.2.21 Let g be a function satisfying the condition P(N,m), X and Y

be two independent random variables such that E[|X|(m−1)+ ] is bounded. We suppose

that c and r are two positive constants such that X verifies the concentration inequality

for any real numbers a ≤ b, i.e.

P(a ≤ X ≤ b) ≤ c(b− a) + r.

If 0 ≤ k ≤ N is an integer, then |δ(N − k, g(k), X, Y )| can be bounded by a linear

combination of the form

(m−1)+∑

j=0

U
(k)
j E[|Y |N+1−k+j ] + rV (k)E[|Y |N−k],

where U
(k)
j is a constant which depends on g, c, k and E[|X|(m−1)+−j ], V (k) is a

constant which depends only on g and k.

Proof. By Taylor’s formula 4.7, we have

δ(N−k, g(k), X, Y ) =
1

(N − k − 1)!

∫ 1

0
(1−t)N−k−1E

[(
g(N)(X+tY )−g(N)(X)

)
Y N−k

]
dt.

Since g ∼ P(N,m), let u = g
(N)
cont, v = g(N) − u. We shall discuss the two parts sep-

arately. For the discrete part, by definition, v has finite number of jumps and is of

the form v(x) =
∑M

j=1 εj11(−∞,Kj ](x). By (3.48), we know that v(X + tY ) − v(X) =
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∑M
j=1 εj11{Kj−max(tY,0)<X≤Kj−min(tY,0)}. Moreover, by the concentration inequality hy-

pothesis,

E
[
|v(X + tY ) − v(X)|

∣∣∣ Y
]
≤

M∑

j=1

|εj |
(
ct|Y | + r

)

So there exist two constants A1 and A2 such that

1

(N − k − 1)!

∫ 1

0
(1 − t)N−k−1E

[∣∣v(X + tY ) − v(X)
∣∣|Y |N−k

]
dt

≤ 1

(N − k − 1)!

( M∑

j=1

|εj |
)(
c

∫ 1

0
(1 − t)N−k−1tdtE[|Y |N−k+1] + r

∫ 1

0
(1 − t)N−k−1dtE[|Y |N−k]

)

≤ A1E[|Y |N−k+1] +A2rE[|Y |N−k]

where A1 and A2 depend on the total absolute jump size of the function g and the

integer k. In addition, A1 depends on c and A2 depends on r. For the continuous part,

u is differntiable. Then we get by comparing the remaining terms of (4.6) and (4.7)

1

(N − k − 1)!

∫ 1

0
(1 − t)N−k−1E

[(
u(X + tY ) − u(X)

)
Y N−k

]
dt

=
1

(N − k)!

∫ 1

0
(1 − t)N−kE[u′(X + tY )Y N−k+1]dt.

(4.28)

Since u′(x) = O(|x|m−1), when m ≥ 1, there exist two positive constants A3 and A4

such that

|u′(X + tY )| ≤ A3 +A4

m−1∑

j=0

(
m− 1

j

)
|X|m−1−j |tY |j .

Then

(4.28) ≤ 1

(N − k)!

(
A3

∫ 1

0
(1 − t)N−kdtE[|Y |N−k+1]

+A4

m−1∑

j=0

(
m− 1

j

)∫ 1

0
(1 − t)N−ktjdtE[|X|m−1−j ]E[|Y |N−k+1+j]

)
.

When m = 0, then u is a bounded function. We have

(4.28) ≤ 2‖u‖
(N − k − 1)!

E[|Y |N−k]

∫ 1

0
(1 − t)N−k−1dt.

Combining the above cases, we obtain the proposition.

2
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Remark 4.2.22 We shall replace X by W (i) and the concentration inequality is given

by Corollary 3.4.5. So we know that

r =
8σi

σW
+

2
∑n

i=1 E
[
|Xs

i |3
]

σ3
W

+

(∑n
i=1

σi√
2
E[|Xs

i |3]
) 1

2

σ2
W

.

In the i.i.d. Bernoulli case, this term is of order O( 1√
n
), which ensures that |δ(N −

k, g(k), X, Y )| is of the order O
(
( 1√

n
)N−k+1

)
.

Proposition 4.2.23 With the notation and the conditions of Proposition 4.2.21, we

have

|ε(N, g,X, Y )| ≤
∑

d≥0

∑

J=(jl)∈Nd
∗

|J|≤N

d∏

l=1

E[|Y |jl ]

jl!

( (m−1)+∑

i=0

U
(|J |)
i E[|Y |N+1−|J |+i]+rV (|J |)E[|Y |N−|J |]

)
,

(4.29)

where U
(k)
i and V (k) are the constants in Proposition 4.2.21.

Proof. It is a direct consequence of Proposition 4.2.21 and Proposition 4.2.2. 2

Remark 4.2.24 Proposition 4.2.23 shows that |ε(N, g,X, Y )| is of order O
(
( 1√

n
)N+1

)
.

Using Proposition 4.2.21 and Proposition 4.2.23, we can obtain an upper estimation

bound of e(N,h) given by (4.13). The following result shows that it is of the correct

order in the binomial case.

Proposition 4.2.25 Let h ∼ P(N,m). Suppose that X1, · · · , Xn are i.i.d Bernoulli

random variables and that W = X1 + · · · + Xn is of finite variance, i.e. σW < ∞.

Then

e(N,h) ∼ O

(( 1√
n

)N+1
)
.

Proof. We shall prove by deduction. When N = 0, h ∼ P(0,m). We have |e(0, h)| =

|E[h(W )]−ΦσW
(h)| = σ2

W E
[
|f ′h(W ∗)− f ′h(W )|

]
. By Proposition 4.2.20, fh ∼ P(1,m).

Let u = (f ′h)cont and v = f ′h − u. Then |e(0, h)| ≤ E
[
|u(W ∗) − u(W )|

]
+ E

[
|v(W ∗) −

v(W )|
]
. From Proposition 3.4.6, we know that E

[
|v(W ∗) − v(W )|

]
∼ O

(
1√
n

)
. On the

other hand, u′ = O(|x|m−1),

E
[
|u(W ∗)−u(W )|

]
≤
∫ 1

0
E
[
|u′(W (i)+tX∗

1 )X∗
1 |
]
+E
[
|u′(W (i)+tX1)X1|

]
dt ∼ O

( 1√
n

)
.

Suppose that we have proved for 0, 1, · · · , N −1. Since h ∼ P(N,m), we have fh ∼
P(N + 1,m), which implies that f ′

h ∼ P(N,m) and f
(k+1)
h ∼ P(N − k,m). We apply
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Proposition 4.2.21 and Proposition 4.2.23 to obtain that
∑n

i=1 σ
2
i

∑N
k=0

E[(X∗
i )k ]

k! ε
(
N −

k, f
(k+1)
h ,W (i), Xi

)
and

∑n
i=1 σ

2
i δ
(
N, f ′h,W

(i), X∗
i

)
in (4.13) is of order O

(
( 1√

n
)N+1

)
.

Moreover, we have by recurrence that e
(
N − |J|, f (|J|+1)

h

)
∼ O

(
( 1√

n
)|J |+1

)
, which im-

plies that e(N,h) is of order O
(
( 1√

n
)N+1

)
. 2

4.3 Poisson approximation

This section deals with the asymptotic expansion of E[h(W )] by the Poisson approxi-

mation. We shall show that our method can be adapted without any difficulty in the

Poisson case. The results obtained are very similar with those of the previous section.

4.3.1 Preliminaries

4.3.1.1 Framework

Chen [15] observes that a N+-valued (non-negative) random variable Z follows the

Poisson distribution, i.e. Z ∼ P (λ) if and only if

E[Zf(Z)] = λE[f(Z + 1)]

for any bounded function f . This similarity with the normal case motivates us to

define the zero bias transformation in the Poisson case. In the following of this section,

Z represents a Poisson random variable.

Definition 4.3.1 Let X be a random variable taking non-negative integer values and

E[X] = λ <∞. Then X∗ is said to have the X-Poisson zero biased distribution if for

any function f such that E[Xf(X)] exists, we have

E[Xf(X)] = λE[f(X∗ + 1)]. (4.30)

Example 4.3.2 Let X be a Bernoulli random variable with P(X = 1) = p and P(X =

0) = q = 1 − p. Then
1

p
E[Xf(X)] =

1

p

(
pf(1)

)
= f(1),

which means that X∗ exists and has the Dirac distribution δ0.

Remark 4.3.3 We here consider the standard Bernoulli random variables instead of

the asymmetric ones.
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Proposition 4.3.4 Let X be a random variable taking non-negative integer values

with finite expectation λ > 0. Then there exists X ∗ which has the X-Poisson zero bias

distribution. Moreover, the distribution of X ∗ is unique and is given by

P(X∗ = a) =
a+ 1

λ
P(X = a+ 1), (4.31)

Proof. We first prove the uniqueness. Let f(x) = 11{x=a+1} in (4.30) where a ∈ N,

then we have

λP(X∗ = a) = (a+ 1)P(X = a+ 1).

So the distribution of X∗ is uniquely determined.

Let X∗ be a random variable satisfying (4.31). Then for any N+-valued function f

such that E[Xf(X)] exists, we have

1

λ
E[Xf(X)] =

1

λ

∞∑

a=0

P(X = a)af(a)

=
1

λ

∞∑

a=0

P(X = a+ 1)(a + 1)f(a+ 1) = E[f(X∗ + 1)].

So X∗ has the X-Poisson zero biased distribution. 2

Proposition 4.3.5 1. For any integer k ≥ 1,

E[(X∗)k] =
1

λ
E[X(X − 1)k]. (4.32)

In particular, E[X∗] = E[X2] − 1.

2. Let X∗ be a random variable which has X-Poisson zero bias distribution and is

independent with X. Then for any function f which takes non negative integer

values such that E[|f(X∗ −X)|] < +∞,

E[f(X∗ −X)] =
1

λ
E[Xf(Xs − 1)] (4.33)

where Xs = X − X̃ and X̃ is an independent copy of X. In particular, for any

integer k ≥ 1 such that E[|X∗ −X|k] < +∞,

E
[
|X∗ −X|k

]
=

1

λ
E
[
X|Xs − 1|k

]
. (4.34)

Proof. 1) Let f(x) = (x− 1)k, Then (4.32) follows immediately by definition.

2) For any a ∈ N, we have by (4.30)

E[f(X∗ − a)] =
1

λ
E[Xf(X − a− 1)].

155



Since X∗ and X are independent, we know that

E[f(X∗ −X)] =
1

λ
E[Xf(Xs − 1)],

where X̃ is an independent copy of X. (4.34) is then a direct consequence. 2

The Poisson zero bias transformation for the sum of independent random variables

is given in the same way as in the normal case.

Proposition 4.3.6 Let X1. · · · , Xn be independent random variables with positive ex-

pectations λ1, · · · , λn. Denote by W = X1 + · · · + Xn and λW = E[W ]. Let I be a

random index independent of Xi satisfying

P (I = i) = λi/λW .

Let X∗
i be a random variable having the Xi-Poisson zero bias distribution and inde-

pendent of all Xj and I. Then W (I) +X∗
I have the W -Poisson zero bias distribution

where W (i) = W −Xi.

Proof. The proof is the same with that of Proposition 3.2.10 by replacing the normal

zero bias transformation with the Poisson one. 2

Corollary 4.3.7 With the notation of Proposition 4.3.6, we have

E[|W ∗ −W |k] =
1

λW

n∑

i=1

E[Xi|Xs
i − 1|k]. (4.35)

Proof. (4.35) is direct by (4.34) and Proposition 4.3.6. 2

In the following, we denote by Pλ(h) = E[h(Z)] where Z ∼ P (λ). For any N+-

valued function h such that Pλ(h) is well defined, we introduce the Stein’s Poisson

equation given by Chen [15] as below:

xp(x) − λp(x+ 1) = h(x) −Pλ(h). (4.36)

where p is an auxiliary function. The solution of (4.36) is given by

p(a) =
(a− 1)!

λa

∞∑

i=a

λi

i!

(
h(i) −Pλ(h)

)
. (4.37)

It is unique except at a = 0. However, the value p(0) does not enter into our calculation

afterwards. There exists a recurrence form of the solution given by

p(1) =
Pλ(h) − h(0)

λ
, · · · , p(a+ 1) =

Pλ(h) − h(a) + ap(a)

λ
.
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In the following, we denote by ph,λ or simply by ph when there is no ambiguity the

solution (4.37). Combining (4.30) and (4.36), we obtain, for any random variable W

with expectation λW ≤ ∞,

E[h(W )] −PλW
(h) = λW E[ph(W ∗ + 1) − ph(W + 1)]. (4.38)

4.3.1.2 First order estimation

We obtain immediately a first order estimation under this framework. In fact, Le

Cam (1960) showed that for independent Bernoulli random variables X1, · · · , Xn with

P(Xi = 1) = pi and P(Xi = 0) = 1 − pi, we have

∣∣E[h(W )] −PλW

∣∣ ≤ 2‖h‖
n∑

i=1

p2
i

where W =
∑n

i=1Xi and λW =
∑n

i=1 pi. Chen [15] used the Stein’s method to obtain

a similar result where 2‖h‖ is replaced with 6‖h‖min
(
(λW )−

1
2 , 1
)

since he proved that

‖∆ph‖ ≤ 6‖h‖min
(
(λW )−

1
2 , 1
)
.

Combining (4.38) and (4.35), we obtain immediately that for any N+-valued ran-

dom variables X1, · · · , Xn and any N+-valued function h,

∣∣E[h(W )] −PλW
(h)
∣∣ ≤ λW‖∆ph‖E

[
|W ∗ −W |

]

≤ 6‖h‖min
( 1√

λW
, 1
) n∑

i=1

E
[
Xi|Xi − 1 − X̃i|

] (4.39)

where X̃i is an independent duplicate of Xi. In particular, if Xi is a Bernoulli random

variable of parameter λi = pi, then E
[
|W ∗ −W |

]
= 1

λW

∑n
i=1 p

2
i , which corresponds to

the result of Le Cam and Chen.

4.3.1.3 Some properties in the discrete case

We now present some useful results in the Poisson calculation. On one hand, they are

comparable to those in the Gaussian case. On the other hand, the techniques used are

very different. We first recall the expansion formula of the difference method, which

is analogous with the Taylor expansion in the continuous case. In the following, we

denote by ∆p(x) = p(x+ 1) − p(x).

Proposition 4.3.8 For any integer k ≥ 1 and m ≥ 1, we have

p(x+ k) =
m∑

j=0

(
k

j

)
∆jp(x) +

∑

0≤j1<···<jm+1<k

∆m+1p(x+ j1). (4.40)
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In particular,

p(x+ k) =

k∑

j=0

(
k

j

)
∆jp(x) = (1 + ∆)kp(x). (4.41)

Proof. We shall prove by induction. When m = 0, (4.40) holds since

p(x+ k) − p(x) =
k−1∑

j=0

∆p(x+ j).

Suppose we have proved (4.40) for 0, 1, · · · ,m− 1, then

p(x+ k) =

m−1∑

j=0

(
k

j

)
∆jf(x) +

∑

0≤j2<···<jm+1<k

∆mp(x+ j2)

=

m−1∑

j=0

(
k

j

)
∆jp(x) +

∑

0≤j2<···<jm+1<k

(
∆mp(x) +

j2−1∑

j1=0

∆m+1p(x+ j1)
)

=
m∑

j=0

(
k

j

)
∆jp(x) +

∑

0≤j1<···<jm+1<k

∆m+1p(x+ j1).

In particular, if m > k, {0 ≤ j1 < · · · jm+1 < k} is the empty set and the summation

term equal zero, which follows (4.41). 2

In the discrete case, the difference ∆ replaces the derivative, and in the place of

calculating the normal expectation for functions of the form xmp
(l)
h , we are interested

in writing the Poisson expectation for functions of the form
(

x
m

)
∆lph(x) as that for a

polynomial function of h(x). We first recall two simple results.

Lemma 4.3.9 1. For all positive integers a and b with a > b, we have

(
a

b

)
=

(
a− 1

b

)
+

(
a− 1

b− 1

)
. (4.42)

2. For any functions f and g,

∆(f(x)g(x)) = f(x+ 1)∆g(x) + (∆f(x))g(x). (4.43)

Proof. Direct calculations give immediately (4.42) and (4.43). 2

Proposition 4.3.10 For integers m ≥ 1 and l ≥ 0, suppose that

Pλ

((x
m

)
∆lph(x)

)
= Pλ

(
Pm,l(∆)h(x)

)
,
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then we have the recurrence form

Pm,0(z) =
λm

m ·m!

(
(1 + z)m − 1

)
, Pm,l =

m+ 1

λ
Pm+1,l−1 − Pm,l−1, (4.44)

and the explicit form

Pm,l(z) =
λm

m!

l∑

i=0

(
l

i

)
(−1)l−i

m+ i
((1 + z)m+i − 1). (4.45)

In particular, P1,l(z) = λ
l+1z

l+1.

Proof. When l = 0, we have by definition and (4.37)

Pλ

((
x

m

)
ph(x)

)
=
∑

k≥m

e−λλ
k

k!

(
k

m

)
(k − 1)!

λk

∞∑

i=k

λi

i!

(
h(i) −Pλ(h)

)

=
e−λ

m!

∑

k≥m

(k − 1)!

(k −m)!

∞∑

i=k

λi

i!
(h(i) −Pλ(h))

=
e−λ

m!

∞∑

i=m

i∑

k=m

(k − 1)!

(k −m)!

λi

i!

(
h(i) −Pλ(h)

)
.

By (4.42),

i∑

k=m

(k − 1)!

(k −m)!
=

i−m∑

k=0

(k +m− 1)!

k!
= (m− 1)!

i−m∑

k=0

(
k +m− 1

m− 1

)

= (m− 1)!

i−m∑

k=0

(
k +m

m

)
−
(
k +m− 1

m

)
= (m− 1)!

(
i

m

)
.

Then

Pλ

((x
m

)
ph(x)

)

=
e−λ

m!

∞∑

i=m

(m− 1)!

(
i

m

)
λi

i!

(
h(i) −Pλ(h)

)
=

e−λ

m ·m!

∞∑

i=m

λi

(i−m)!
(h(i) −Pλ(h))

=
e−λ

m ·m!

∞∑

i=0

λi+m

i!
(h(i +m) −Pλ(h)) =

λm

m ·m!

(
Pλ(h(x+m)) −Pλ(h)

)

= Pλ

( λm

m ·m!

(
(1 + ∆)nh(x) − h(x)

))
.

Hence

Pm,0(z) =
λm

m ·m!

(
(1 + z)m − 1

)
.
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We verify that both (4.44) and (4.45) hold for l = 0. We now consider the case when

l > 0. Denote by

∆

(
x

m

)
=

(
x+ 1

m

)
−
(
x

m

)
=

(
x

m− 1

)
,

then we get by (4.43)

(
x

m

)
∆lp(x) = ∆

((
x− 1

m

)
∆l−1p(x)

)
− ∆

(
x− 1

m

)
∆l−1p(x),

On the other hand, by the invariant property of the Poisson distribution under the

zero bias transformation, we have

Pλ(g(x+ 1)) =
1

λ
Pλ(xg(x)), (4.46)

which implies

Pλ(∆g) = Pλ

((x
λ
− 1
)
g(x)

)
.

Then

Pλ

((
x

m

)
∆lp(x)

)
= Pλ

((x
λ
− 1
)(x− 1

m

)
∆l−1p

)
−Pλ

((
x− 1

m− 1

)
∆l−1p

)

Then it suffice to apply again (4.42) to get

Pλ

((
x

m

)
∆lp(x)

)
=

1

λ
Pλ

(
x

(x− 1)!

m!(x− 1 −m)!
∆l−1p

)
−Pλ

((
x

m

)
∆l−1p

)

=
m+ 1

λ
Pλ

((
x

m+ 1

)
∆l−1p

)
−Pλ

((
x

m

)
∆l−1p

)

which means Pm,l = m+1
λ Pm+1,l−1 − Pm,l−1. which proves (4.44). To prove (4.45), we

deduce by induction. Suppose (4.45) is verified for 0, 1, · · · , l − 1. Replacing Pm+1,l−1

and Pm,l−1 in (4.44) by (4.45), we get

Pm,l(z)

=
λm

m!

l−1∑

i=0

(−1)l−1−i

(
l − 1

i

)(
(1 + z)m+1+i − 1

m+ 1 + i
− (1 + z)m+i − 1

m+ i

)
(4.47)

=
λm

m!

(
l−1∑

i=1

(
l

i

)
(−1)l−i

m+ i

(
(1 + z)m+i − 1

)
+

l−1∑

i=0

(
l − 1

i

)
(−1)l−1−i

m+ i+ 1

(
(1 + z)m+1+i − 1

)

+

l∑

i=1

(
l − 1

i− 1

)
(−1)l−1−i

m+ i

(
(1 + z)m+i − 1

)
)

(4.48)
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The last equality is obtained by applying (4.42) to the second term of (4.47). At last,

notice that most terms cancel each other in the second and third terms of (4.48) and

we get (4.45). In particular, when m = 1,

P1,l(z) = λ

l∑

i=0

(
l

i

)
(−1)l−i

i+ 1

(
(1 + z)i+1 − 1

)

=
λ

l + 1

l∑

i=0

(
l + 1

i+ 1

)
(−1)l−i

(
(1 + z)i+1 − 1

)
=

λ

l + 1
zl+1,

which ends the proof. 2

4.3.2 Asymptotic expansion for Bernoulli random variables

In this subsection, we consider the case where X1, · · · , Xn are independent Bernoulli

random variables with P(Xi = 1) = pi and P(Xi = 0) = 1 − pi. Then the expectation

λi = pi and the Poisson zero bias transformation X∗
i follows Dirac distribution.

Lemma 4.3.11 For any integer number m ≥ 0 and any function h such that (4.49)

is well defined, we have

E
[
h(W (i))

]
=

m∑

j=0

λj
i (−1)jE

[
∆jh(W )

]
+ (−1)m+1λm+1

i E
[
∆m+1h(W (i))

]
. (4.49)

Proof. Since Xi is independent of W (i),

E[h(W (i) +Xi)] = piE[h(W (i) + 1)] + (1 − pi)E[h(W (i))],

which follows

E[h(W (i))] = E[h(W )] − piE[∆h(W (i))]. (4.50)

So (4.49) holds for m = 0. Suppose we have proved for 0, 1, · · · ,m− 1, then we apply

(4.50) to the term E[∆mh(W (i))] to obtain that (4.49) holds for m. 2

Proposition 4.3.12 Let E[h(W )] = C(N,h) + e(N,h), then

C(N,h) = C(0, h) +

n∑

i=1

N∑

j=1

(−1)jλj+1
i C

(
N − j,∆jph(x+ 1)

)
(4.51)

where C(0, h) = PλW
(h) and

e(N,h) =

n∑

i=1

N∑

j=1

(−1)jλj+1
i e

(
N−j,∆jph(x+1)

)
+(−1)N+1

n∑

i=1

λN+2
i E

[
∆N+1ph(W (i)+1)

]
.

(4.52)
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Proof. Since X∗
i follows the Dirac distribution δ0 and is independent of W (i),

λW E
[
ph(W ∗ + 1) − ph(W + 1)

]
=

n∑

i=1

λiE
[
ph(W (i) + 1) − ph(W + 1)

]
.

Applying Lemma 4.3.11 to E[ph(W (i) + 1)], the first term when j = 0 cancels with

E[ph(W + 1)], so we get

E[h(W )] −PλW
(h)

=

n∑

i=1

N∑

j=1

(−1)jλj+1
i E

[
∆jph(W + 1)

]
+ (−1)N+1

n∑

i=1

λN+2
i E

[
∆N+1ph(W (i) + 1)

]
.

We then replace E
[
∆jph(W + 1)

]
by its (m − j)th order expansion to get (4.51) and

(4.52). 2

Corollary 4.3.13 The first two orders expansions are given as follows.

C(1, h) = PλW
(h) − 1

2

( n∑

i=1

λ2
i

)
PλW

(∆2h)

and

C(2, h) = PλW
(h) − 1

2

( n∑

i=1

λ2
i

)
PλW

(∆2h) +
1

3

( n∑

i=1

λ3
i

)
PλW

(∆3h)

+
1

8

( n∑

i=1

λ2
i

)2PλW
(∆4h).

Proof. 1) By (4.51), C(1, h) = PλW
(h) −

(∑n
i=1 λ

2
i

)
PλW

(
∆ph(x + 1)

)
. Combining

(4.46) and Proposition 4.3.10 with m = l = 1 follows

PλW

(
∆ph(x+ 1)

)
=

1

λW
PλW

(
x∆ph(x)

)
=

1

2
PλW

(∆2h).

2) The calculation is similar. (4.51) yields

C(2, h) = PλW
(h) −

( n∑

i=1

λ2
i

)
C(1,∆ph(x+ 1)) +

( n∑

i=1

λ3
i

)
C(0,∆2ph(x+ 1)).

Then it suffices to calculate

C(1,∆ph(x+ 1)) = PλW
(∆ph(x+ 1)) − 1

2

( n∑

i=1

λ2
i

)
PλW

(∆p∆ph(x+1)(x+ 1))

=
1

2
PλW

(∆2h(x)) − 1

8

( n∑

i=1

λ2
i

)
PλW

(∆4h)
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and C(0,∆2ph(x+ 1)) = 1
3PλW

(∆3h). 2

The asymptotic expansion in the 0 − 1 case has been discussed by many authors.

The first two orders expansions given in Corollary 4.3.13 corresponds to those in Bar-

bour, Chen and Choi [5]. The second and higher orders expansion have been obtained

by Barbour [4] and Borisov and Ruzankin [11].

4.3.3 The general case

This subsection deals with the general case where X1, · · · , Xn are N+-valued random

variables. Similar as in the normal case, we introduce the following notations. Let

X and Y be two independent N+-valued random variables and p any function on

non-negative integers. Then we denote by δ(N, p,X, Y ) the remaining term of the

N th-order difference expansion of E[p(X + Y )]

E[p(X + Y )] =

N∑

k=0

E

[(Y
k

)]
E[∆kp(X)] + δ(N, p,X, Y ), (4.53)

which implies, by (4.40), that

δ(N, p,X, Y ) = E
[ ∑

0≤j1<···<jN+1<Y

∆N+1p(X + j1)
]
. (4.54)

The following expansion (4.55) gives the reversed Taylor’s formula in the Poisson

case, which enables us to write E[p(W (i))] as an expansion on W . The relationship

between ε et δ is also given below. Compared to (4.8) in the normal case, the form

differs only slightly:

1) the differences replace the derivatives of the same order;

2) the terms E
[(Y

jl

)]
replace E[Y jl ]

jl!
.

Proposition 4.3.14 Let N be a positive integer. Let ε(N, p,X, Y ) be the remaining

term of the following expansion

E[p(X)] = E[p(X + Y )] +
∑

d≥1

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N

E[∆|J|p(X + Y )]

d∏

l=1

E

[(Y
jl

)]

+ ε(N, p,X, Y )

(4.55)

where for any J = (jl) ∈ Nd
∗, |J| = j1 + · · · + jd. Then

ε(N, p,X, Y ) = −
∑

d≥0

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N

δ(N − |J|,∆|J|p,X, Y )

d∏

l=1

E

[(Y
jl

)]
. (4.56)
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Proof. By definition of (4.53) and (4.55),

ε(N, p,X, Y ) = −δ(N, p,X, Y ) −
N∑

k=1

E[∆kp(X)]E
[(Y

k

)]

−
∑

d≥1

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N

E[∆|J|p(X + Y )]

d∏

l=1

E

[(Y
jl

)]
.

(4.57)

On the other hand, taking Taylor expansion of the last term in the above equality gives

∑

J=(jl)∈Nd
∗

|J|≤N

E[∆|J|p(X + Y )]

d∏

l=1

E

[(
Y

jl

)]

=
∑

J=(jl)∈Nd
∗

|J|≤N




N−|J|∑

k=0

E[∆|J|+kp(X)]E

[(
Y

k

)]
+ δ(N − |J|,∆|J|p,X, Y )




d∏

l=1

E

[(
Y

jl

)]

(4.58)

=
∑

J=(jl)∈Nd
∗

|J|≤N

E[∆|J|p(X)]

d∏

l=1

E

[(
Y

jl

)]
+

∑

J
′=(j′

l
)∈N

d+1
∗

|J′|≤N

E[∆|J′|p(X)]

d+1∏

l=1

E

[(
Y

jl

)]

+
∑

J=(jl)∈Nd
∗

|J|≤N

δ(N − |J|,∆|J|p,X, Y )

d∏

l=1

E

[(
Y

jl

)]
.

(4.59)

The equality (4.59) is obtained by writing respectively the term when k = 0 in (4.58)

and the summation term when k ≥ 1. Multiplying (−1)d by (4.59) and taking the sum

on d, most terms cancel and we get

∑

d≥1

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N

E[∆|J|p(X + Y )]
d∏

l=1

E

[(
Y

jl

)]

=
∑

d≥1

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N

δ(N − |J|,∆|J|p,X, Y )

d∏

l=1

E

[(
Y

jl

)]
−
∑

j≤N

E[∆jp(X)]E

[(
Y

j

)]
,

which follows (4.56) by noting
∑

J=(jl)∈N0
∗

|J|≤N

δ(N − |J|,∆|J|p,X, Y ) = δ(N, p,X, Y ). 2

Proposition 4.3.15 With the notation of (4.53) and (4.55), we have
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1.

|δ(N, p,X, Y )| ≤ ‖∆N+1p‖E
[(

Y

N + 1

)]
.

2.

|ε(N, p,X, Y )| ≤ |∆N+1p‖
∑

d≥1

∑

J=(jl)∈Nd
∗

|J|=N+1

d∏

l=1

E

[(
Y

jl

)]
.

Proof. 1) is obvious by definition.

2) By (4.56) and 1),

|ε(N, p,X, Y )| ≤
∑

d≥0

∑

J=(jl)∈Nd
∗

|J|≤N

‖∆N+1p‖E
[(

Y

N − |J| + 1

)]( d∏

l=1

E

[(
Y

jl

)])

≤ ‖∆N+1p‖
∑

d≥1

∑

J=(jl)∈Nd
∗

|J|=N+1

d∏

l=1

E

[(
Y

jl

)]
.

2

The following theorem is also similar with Theorem 4.2.5, both in form and in the

proof method.

Theorem 4.3.16 For any integer N ≥ 0, let E[h(W )] = C(N,h) + e(N,h) with

C(0, h) = PλW
(h) and e(0, h) = E[h(W )] −PλW

(h). Then

C(N,h) = PλW
(h) +

n∑

i=1

λi

∑

d≥1

(−1)d−1
∑

J=(jl)∈Nd
∗

|J|≤N

C(N − |J|,∆|J|ph(x+ 1))

d−1∏

l=1

E

[(
Xi

jl

)]
E

[(
X∗

i

jd

)
−
(
Xi

jd

)]
,

(4.60)

and for any N ≥ 1,

e(N,h)

=

n∑

i=1

λi

∑

d≥1

(−1)d−1
∑

J=(jl)∈Nd
∗

|J|≤N

e(N − |J|,∆|J|ph(x+ 1))

d−1∏

l=1

E

[(
Xi

jl

)]
E

[(
X∗

i

jd

)
−
(
Xi

jd

)]

+

n∑

i=1

λi

N∑

k=0

E

[(
X∗

i

k

)]
ε(N − k,∆kph(x+ 1),W (i), Xi) +

n∑

i=1

λiδ(N, ph(x+ 1),W (i), X∗
i ).

(4.61)
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Proof. We deduce by induction. The theorem holds when N = 0. Suppose that we

have proved for 0, · · · , N − 1 with N ≥ 1. By (4.38),

E[h(W )] = PλW
(h) +

n∑

i=1

λi

(
E[ph(W (i) +X∗

i + 1)] − E[ph(W + 1)]
)
.

Now, we shall rewrite the expectation E[ph(W (i) +X∗
i +1)] as an N th-order expansion

on W . To this end, We take the difference expansion at W (i) and then apply (4.55) to

get

E[ph(W (i) +X∗
i + 1)]

=

N∑

k=0

E

[(
X∗

i

k

)]
E[∆kph(W (i) + 1)] + δ(N, ph(x+ 1),W (i), X∗

i )
(4.62)

=
N∑

k=0

E

[(
X∗

i

k

)](
E[∆kph(W + 1)] +

∑

d≥1

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N−k

E[∆|J|+kph(W + 1)]
d∏

l=1

E

[(
Xi

jl

)]

+ ε(N − k,∆kph(x+ 1),W (i), Xi)

)
+ δ
(
N, ph(x+ 1),W (i), X∗

i

)
.

(4.63)

To get the right order, (4.63) is obtained by making (N−k)th expansion of E[∆kph(W (i)+

1)] in (4.62). The first term in the bracket in (4.63) when k = 0 equals E[ph(W + 1)].

The other summands in the first term when k ≥ 1 can be regrouped with the second

term by introducing the notation

∑

J=(jl)∈N0
∗

|J|≤N−k

E[∆|J|+kph(W + 1)] = E[∆kph(W + 1)].

Then (4.63) yields

E[ph(W (i) +X∗
i + 1)] − E[ph(W + 1)]

=
∑

d≥1

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N

E[∆|J|ph(W + 1)]

d∏

l=1

E

[(
Xi

jl

)]
(4.64)

+
N∑

k=1

E

[(
X∗

i

k

)]∑

d≥0

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N−k

E[∆|J|+kph(W + 1)]
d∏

l=1

E

[(
Xi

jl

)]
(4.65)

+

N∑

k=0

E

[(
X∗

i

k

)]
ε(N − k,∆kph(x+ 1),W (i), Xi) + δ(N, ph(x+ 1),W (i), X∗

i ) (4.66)
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Taking the sum of (4.64) and (4.65), we get

(4.64) + (4.65)

=
∑

d≥1

(−1)d
∑

J=(jl)∈Nd
∗

|J|≤N

E[∆|J|ph(W + 1)]

(
d∏

l=1

E

[(
Xi

jl

)])

+
∑

d≥0

(−1)d
∑

J=(jl)∈N
d+1
∗

|J|≤N

E[∆|J|ph(W + 1)]

(
d∏

l=1

E

[(
Xi

jl

)])
E

[(
X∗

i

jd

)]

=
∑

d≥1

(−1)d−1
∑

J=(jl)∈Nd
∗

|J|≤N

E[∆|J|ph(W + 1)]

(
d∏

l=1

E

[(
X∗

i

jl

)
−
(
Xi

jl

)])
.

By induction, we replace E[∆|J|ph(W + 1)] by its (N − |J|)th order expansion C(N −
|J|,∆|J|ph(x+ 1)) + e(N − |J|,∆|J|ph(x+ 1)) to obtain (4.60) and (4.61). 2

Corollary 4.3.17 We have the first two orders expansions

C(1, h) = PλW
(h) +

λW

2
PλW

(∆2h)E[X∗
I −XI ]

and

C(2, h) = C(1, h) +
λ2

W

8
PλW

(∆4h)
(
E[X∗

I ] − E[XI ]
)2

+
λW

6
PλW

(∆3h)
(

E[X∗
I (X∗

I − 1)] − E[XI(XI − 1)] − 2E[XI ]E[X∗
I −XI ]

)
.

Remark 4.3.18 It is not difficult to verify that the Bernoulli case in the previous

section is a special case of the above corollary.
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170



[24] A. Dembo, J.-D. Deuschel, and D. Duffie, Large portfolio losses, Finance and

Stochastics 8 (2004), no. 1, 3–16.

[25] F. Diener and M. Diener, Asymptotics of price oscillations of a european Call

option in a tree model, Mathematical Finance 14 (2004), no. 2, 271–293.

[26] D. Duffie, Defaultable term structure models with fractional recovery of par, Work-

ing paper, Standford University, 1998.

[27] , First-to-default valuation, Working paper, Standford University, 1998.

[28] D. Duffie and D. Lando, Term structure of credit spreads with incomplete account-

ing information, Econometrica 69 (2001), 633–664.

[29] D. Duffie and K.J. Singleton, Modeling term structures of defaultable bonds, The

review of financial studies 12 (1999), no. 4, 687–720.

[30] D Duffie and K.J. Singleton, Credit risk: pricing, measurement and management,

Princeton University Press, 2003.

[31] R.J. Elliott, M. Jeanblanc, and M. Yor, On models of default risk,, Mathematical

Finance 10 (2000), 179–195.

[32] W. Feller, An introduction to probability and its applications, 2nd ed., Wiley, New

York, 1971.

[33] R. Frey and A.J. McNeil, Modelling dependent defaults, Working paper, 2001.

[34] K. Giesecke, Default and information, Journal of Economic Dynamics and Control,

to appear.

[35] P. Glasserman, Tail approximations for portfolio credit risk, Journal of Derivatives

(2004), 24–42.

[36] P. Glasserman, W. Kang, and P. Shahabuddin, Large deviations of multifactor

portfolio credit risk, Mathematical Finance to appear.

[37] E. Gobet, Analysis of the zigzag convergence for barrier options with binomial
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