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M. André ZAOUI Président
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ABSTRACT

ON THE EFFECTIVE BEHAVIOR, MICROSTRUCTURE EVOLUTION,

AND MACROSCOPIC STABILITY OF ELASTOMERIC COMPOSITES

Oscar Lopez-Pamies

Pedro Ponte Castañeda

Elastomeric composites are currently used in numerous commercial applications and have

shown great promise for utilization in new technologies. This raises the practical—as well

as theoretical—need to understand the connection between the underlying microstruc-

ture of elastomeric composites and their mechanical and physical properties, and how

the latter may be enhanced with changes in the former. In this connection, the prin-

cipal aim of this thesis is the development of an analytical, nonlinear homogenization

framework for determining the overall response of elastomeric composites subjected to

finite deformations. The framework accounts for the evolution of the underlying mi-

crostructure, which results from the finite changes in geometry induced by the applied

loading. This point is essential as the evolution of the microstructure can have a sig-

nificant geometric softening (or stiffening) effect on the overall response of the material,

which, in turn, may lead to the possible development of macroscopic instabilities. The

main concept behind the proposed nonlinear homogenization method is the construction

of suitable variational principles utilizing the idea of a “linear comparison composite,”

which ultimately allow for the conversion of available linear homogenization estimates

into analytical estimates for the large-deformation overall response of the nonlinear elas-

tomeric composites. This thesis includes applications of the proposed theory to various

classes of reinforced and porous elastomers with random and periodic microstructures.

A comprehensive analysis of the effective behavior, the microstructure evolution, and the

development of macroscopic instabilities is provided for all these applications.
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Chapter 1

Introduction

Elastomeric materials are used pervasively in industry. Applications include rubber tires, shoes, flex-

ible tubes and catheters, cable coatings, conveyor and transmission belts, balloons, shock absorbers,

floatation devices, insulators, fire retardants, packaging and cushioning materials, noise abating

structures, etc. In many of these applications, the elastomers are reinforced with particles and/or

fibers to improve their mechanical properties and, in particular, their overall stiffness. In contrast,

there are also numerous situations in which light weight and high compliance are desirable. The

elastomeric materials used for such applications are then weakened with voids or softer materials.

The standard example of a reinforced elastomer is that of a rubber tire, which derives its black

color from the presence of carbon-black particles that are distributed randomly in a matrix of a

synthetic rubber (see, for instance, the monograph by Mark et al., 2005 and the references therein).

At a larger length scale, rubber tires are also reinforced with steel or other types of fibers. Other

commonly used micron- and nano-sized fillers include silica, mica, talc, clay, calcium carbonate

particles, as well as carbon nanotubes. In addition, there is a large class of thermoplastic polymers,

which exhibit rubber-like behavior, namely, thermoplastic elastomers (TPEs). These materials are

block copolymers where the “hard” glassy blocks self-aggregate into an “inclusion” phase that is

embedded in a “matrix” of the “soft” rubbery blocks, thus leading to a “particulate” microstructure

with an overall rubbery response (Honeker and Thomas, 1996). The hard blocks, which can appear

in the form of particles (Prasman and Thomas, 1998), fibers (Honeker et al., 2000), interconnected

networks (Dair et al., 1999), or layers (Cohen et al., 2000), are distributed in a periodic arrangement,

and play the role of the reinforcing phase. They are increasingly being used in industry—where they

are replacing standard cross-linked rubbers in many technological applications—due to their superior

mechanical and recycling properties.

The standard example of a weakened elastomer is that of (elastomeric) foams (see the monograph

by Gibson and Ashby, 1997 and the references therein). These materials are essentially made out

of an elastomeric matrix in which there is a distribution—usually random—of vacuous or gas-filled

inclusions. Foams can be found in an “open cell” form, in which the (vacuous) inclusions are

interconnected, as in an absorbent sponge, or in a “closed cell” form, in which all the inclusions are

completely surrounded by matrix phase, as in a car seat. In addition to the just-described foams,

in which the vacuous of gas-filled inclusions are deliberately introduced in elastomers as part of

the manufacturing process, there also other elastomeric materials in which a significant amount of
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porosity may be introduced unintentionally via defects or forming processes.

In many of the above-mentioned applications, the composite elastomers are subjected to large

deformations. It is therefore of practical—as well as of theoretical—interest to develop constitu-

tive models for the mechanical behavior of elastomeric composites under such loading conditions.

Ideally, these models should be accurate and relatively simple, so that they are amenable to direct

implementation into standard finite element packages for solving structural problems of interest.

This presents a substantial challenge for at least three reasons. First, there is the strong material

nonlinearity that is present in constitutive models for pure, or “neat” elastomers. Second, the me-

chanical behavior of elastomeric composites is known to depend critically on their underlying initial

microstructure, which is by and large very complex. Indeed, more often than not, the distribution

of the constituents (e.g., particles, fibers, voids) is random. Also, depending on the application,

the relative proportions of the various phases may range from very small to very large, which ev-

idently leads to a vast range of diverse behaviors. Finally, there is the additional complication of

the evolution of the microstructure due to the finite changes in geometry induced during loading.

Presumably because of the technical difficulties associated with modeling this complex behavior,

most of the work in the literature to date has been based on empirical or ad hoc models. In the next

two paragraphs, we briefly enumerate previous attempts to model the effective behavior of reinforced

and porous elastomers. The list is by no means exhaustive, but merely aims to provide an overview

of available methods.

In the context of reinforced elastomers, most of the modeling work has been focused on “partic-

ulate” microstructures where the reinforcing phases are particles of various shapes, or long cylindri-

cal fibers. Micromechanics-based approaches for particle reinforced elastomers include, for instance,

models that make use of the notion of a strain-amplification factor (Mullins and Tobin, 1965; Treloar,

1975; Meinecke and Taftaf, 1988; Govindjee and Simo, 1991, Bergström and Boyce, 1999). More

specifically, these models make use of the idea that the average strain in the elastomeric matrix phase

of filled elastomers is larger than the applied macroscopic strain in the composite (simply because the

fillers are much stiffer than the elastomeric matrix). Having selected a strain measure and determined

a phenomenological amplification factor to multiply it with, the model for the reinforced elastomer is

then given essentially by that of the corresponding matrix phase evaluated at the selected amplified

strain. There are also recent two-dimensional (2D) numerical simulations based on unit-cell compu-

tations (Lahellec et al., 2004), or for systems with more complex microstructures (Govindjee, 1997;

Bergström and Boyce, 1999). In addition, also in the context of 2D numerical simulations, there

is the recent work of Triantafyllidis et al. (2006) which—based on earlier work of Triantafyllidis

and co-workers (see, e.g., Triantafyllidis and Maker, 1985; Geymonat et al., 1993)—provides an in-

depth analysis of the stability of reinforced elastomers at a microscopic, as well as at a macroscopic

level. In connection with the above simulations, it is important to emphasize that, on one hand,

they correspond to rigorous results, but that, on the other hand, they are computationally very

intensive. In terms of approaches based on homogenization, there is the Voigt-type upper bound

(Ogden, 1978), as well as some non-trivial Reuss-type lower bounds (Ponte Castañeda, 1989). Un-

fortunately, these bounds are microstructure-independent, and therefore not very useful in general.
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An exact result has been generated recently (deBotton, 2005) for hyperelastic composites with a

very special type of microstructure known as sequentially laminated microstructures. The drawback

of this result is that it is not clear whether, or not, it corresponds to filled elastomers with more

realistic types of microstructures. For fiber reinforced elastomers, there is a voluminous literature on

phenomenological constitutive models. In a pioneering contribution, Spencer (1972) idealized fibers

as inextensible material line elements to develop a simple theory for incompressible fiber-reinforced

materials that permitted the analytical treatment of numerous boundary value problems. Other

(less idealized) phenomenological models are based on the idea of augmenting existing isotropic

stored-energy functions with additional terms—which depend on the invariants associated with the

fiber direction (Spencer, 1984)—that penalize deformation in a particular direction (see, e.g., Qiu

and Pence, 1997; Merodio and Ogden, 2005; Horgan and Saccomandi, 2005). The main appeal of

these phenomenological models is that they are simple. In addition, they can be “calibrated” to

become macroscopically unstable—via loss of strong ellipticity—for loading conditions where such

instabilities are expected to occur from physical experience (Triantafyllidis and Abeyaratne, 1983).

In spite of these desirable features, the predictive capabilities of phenomenological models for the

general response of actual fiber-reinforced elastomers remain limited. Following a micromechanics

approach, Guo et al. (2006) have recently proposed a hyperelastic model with incompressible Neo-

Hookean matrix phases. In addition, there is also a number of numerical studies based on (2D)

periodic microstructures which include the stability analyses of these materials (Triantafyllidis and

Maker, 1985; Triantafyllidis and Nestorvić, 2005). In terms of homogenization-based methods, in

addition, of course, to the microstructure-independent Voigt-type (Ogden, 1978) and Reuss-type

(Ponte Castañeda, 1989) bounds, there is a recent estimate due to deBotton et al. (2006) for

fiber-reinforced elastomers with incompressible Neo-Hookean phases and the Composite Cylinder

Assemblage (CCA) microstructure of Hashin (1962). One of the strengths of this model is that it is

exact for axisymmetric and out-of-plane shear loading conditions. Moreover, it should be recorded

that He et al. (2006) have recently provided a set of non-trivial conditions—in terms of the local

material properties and the applied loading conditions—for which the Voigt-type bound is attained

in fiber-reinforced elastomers. Finally, it should be mentioned that constitutive models for hyper-

elastic solids with orthotropic material symmetry have also been developed (Bischoff et al., 2002)

from a statistical mechanics approach.

In the context of porous elastomers, most of the modeling efforts have been devoted to high-

porosity elastomers (or low-density foams). Indeed, ever since the pioneering work of Gent and

Thomas (1959), there have been numerous contributions concerning the modeling of the mechan-

ical behavior of low-density foams under large deformations (see Gibson and Ashby, 1997 and

the references therein). In contrast, the study of porous elastomers with low to moderate lev-

els of porosity has not been pursued to nearly the same extent. Phenomenological approaches

for this class of materials include, for instance, the model of Blatz and Ko (1962), which was

motivated by experimental work on polyurethane rubber with a random and isotropic distribu-

tion of pores of about 40µ in diameter and an approximate volume fraction of about 50%. The
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predictive capabilities of this model for the response of actual porous elastomers is limited. How-

ever, the Blatz-Ko material does have a very appealing physical property: it loses strong ellip-

ticity at sufficiently large compressive deformations (Knowles and Sternberg, 1975). This prop-

erty is in agreement with experimental evidence, as well as with numerical results (Abeyaratne

and Triantafyllidis, 1984), suggesting that porous elastomers can develop macroscopic bands of

strain localization at sufficiently large deformations, which correspond to buckling of the matrix

ligaments at the micro scale. Homogenization approaches include the microstructure-independent

Voigt-type bound (Ogden, 1978), some rigorous estimates for special microstructures and load-

ing conditions (Hashin, 1985), and various ad hoc approximations (Feng and Christensen, 1982;

Levin et al., 2000). There is also a recently proposed estimate by Danielsson et al. (2004) for

isotropic porous elastomers with incompressible, isotropic matrix phases. In fact, this estimate—as

it will be discussed in Chapter 5—can be shown to be a rigorous upper bound for porous elas-

tomers with incompressible matrix phases and the Composite Sphere Assemblage (CSA) microstruc-

ture (Hashin, 1962). In this regard, it should be noted that—admittedly a very special class of

microstructure—the CSA can be considered as a fair approximation to actual microstructures in

actual porous elastomers.

In this thesis, our proposal for generating homogenization estimates in finite elasticity is based on

an appropriate extension of the “second-order” homogenization method proposed by Pedro Ponte

Castañeda (2001; 2002a) in the context of nonlinear dielectrics and viscoplastic materials. This

technique has the capability to incorporate statistical information about the microstructure beyond

the volume fraction of the phases and can be applied to large classes of elastomeric composites,

including reinforced and porous elastomers, as well as other heterogeneous elastomeric systems,

such as the TPEs introduced above. The main concept behind the second-order method is the

construction of suitable variational principles utilizing the idea of a “linear comparison composite.”

The first attempt along these lines for hyperelastic composites was carried out by Ponte Castañeda

and Tiberio (2000) (see also Willis, 2000 and Lahellec et al., 2004), who made use of the so-called

“tangent” second-order variational procedure, initially proposed for viscoplastic materials by Ponte

Castañeda (1996). While the resulting estimates certainly had some desirable properties, such as the

ability to account for the stiffness of the phases, their shape, concentration and distribution, they also

had some shortcomings. Thus, for example, they were able to recover only approximately the overall

incompressibility constraint associated with rigidly reinforced elastomers with an incompressible

matrix phase (typical of rubbers). In retrospect, this was not too surprising in view of the strong

nonlinearity associated with the incompressibility constraint on the determinant of the deformation.

Here, use will be made of an improved second-order method, also—as already stated—first developed

in the context of viscoplastic composites (Ponte Castañeda, 2002a), which makes use of the local

field fluctuations in the determination of the relevant linear comparison composite. An application of

a preliminary extension of this method to particle-reinforced rubbers with isotropic microstructures

was carried out by Lopez-Pamies and Ponte Castañeda (2004a). It was found to provide much more

accurate estimates satisfying exactly the overall incompressibility constraint for rigidly reinforced

elastomers with an incompressible matrix phase. In this work, we will develop a full extension of
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the “second-order” homogenization method to general elastomeric composites. For simplicity, we

will ignore hysteresis, temperature and rate-dependent effects, which can be important for these

materials (Bergström and Boyce, 1998; Khan and Lopez-Pamies, 2002), as well as particle/matrix

interface effects (Ramier, 2004) and the possible development of damage, through particle debonding

at interfaces. However, it should be emphasized that the methods to be developed here apply to

elastomeric composites with general microstructures and arbitrary hyperelastic constituents. In

addition, it is believed that a suitably generalized version of the methods to be developed in this

work could incorporate dependence on all of the above-mentioned effects, as discussed further in the

closure of this thesis.

This thesis in organized into chapters whose main contents correspond to articles that have been

published, or are in preparation to be submitted for publication. For convenience, the list of such

articles is provided at the end of this introduction. Next, a brief description of the main contents of

each chapter is provided.

The next chapter (Chapter 2), which corresponds to references 1, 2 and 4 in the list of publi-

cations, deals with the theoretical aspects regarding the overall behavior of elastomeric composites.

In particular, the mathematical formulation of effective properties for hyperelastic composites is

introduced. This includes the definitions of suitably selected macroscopic variables, as well as the

definitions of microscopic and macroscopic instabilities. Having set the problem on a solid mathe-

matical foundation, the notions of bounds and estimates are then presented. This is followed by the

main result of this thesis, namely, the derivation of the “second-order” homogenization method for

hyperelastic composites. In this connection, it is emphasized that a preliminary attempt to generate

such method was carried out by Lopez-Pamies and Ponte Castañeda (2004a). For completeness, this

article has been included as Appendix A. Within the general second-order formulation—motivated

by experimental findings evidencing that rubber-like solids are isotropic relative to the undistorted

state—special attention is dedicated to hyperelastic composites with isotropic phases. For such a

class of composites, sufficient conditions are provided for the second-order estimates to satisfy overall

objectivity and material symmetry requirements. In addition, for such a class of composites, further

specialization of the second-order estimates is provided for the case of two-phase composites with

“particulate” (random and periodic) microstructures—the motivation for such specialization being

practical interest. Chapter 2 finally presents the consistent identification of microstructural vari-

ables, as well as the required formulae to estimate their evolution along a given macroscopic loading

path.

Chapter 3, which corresponds to reference 3 in the list of publications, is the first of three

chapters dealing with the application of the theoretical framework developed in Chapter 2 to porous

elastomers. The specific problem that is addressed in Chapter 3 is that of the in-plane effective

behavior of a porous elastomer consisting of aligned cylindrical voids with initially circular cross

section that are distributed randomly and isotropically in the undeformed configuration. As it turns

out, this is a very useful model problem that includes all the main features concerning the mechanical

response of porous elastomers subjected to finite deformations, and, at the same time, is amenable to

a more transparent mathematical treatment. In this chapter, second-order estimates are generated
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for materials with compressible and incompressible, isotropic matrix phases. In particular, it should

be emphasized that the estimates generated for porous elastomers with incompressible matrix phases

are ultimately given in closed form. Corresponding estimates derived with the earlier “tangent”

second-order method of Ponte Castañeda and Tiberio (2000) are also generated for comparison

purposes. The chapter concludes with the presentation and discussion of representative results for

the effective stress-strain relation, microstructure evolution, and macroscopic instabilities of porous

elastomers for a wide range of loading conditions and values of initial porosity.

Chapter 4 is—in a sense—a natural continuation of Chapter 3. The problem of interest in this

chapter is also that of the in-plane effective behavior of porous elastomers consisting of aligned

cylindrical voids with initially circular cross section, but the distribution of the voids here is periodic

(as opposed to random). In particular, two types of periodic microstructures are considered: (i)

square and (ii) hexagonal arrangements of pores. The interest to consider such microstructures is

essentially twofold. First, it provides the means to asses the accuracy of the second-order method

through comprehensive comparisons with more accurate FEM calculations available for periodic

microstructures. Second, it allows to study the influence of the initial distribution of pores on the

overall behavior and stability of porous elastomers.

Chapter 5, which corresponds to references 6 and 7, is concerned with the application of the the-

oretical framework developed in Chapter 2 to generate a homogenization-based constitutive model

for porous elastomers consisting of a random and isotropic distribution of initially spherical, polydis-

perse pores in an isotropic, elastomeric matrix. Unlike the microstructures considered in Chapters 3

and 4, this microstructure—though idealized—can be considered as a fair approximation to actual

microstructures in real porous elastomers. For comparison purposes, a brief review is provided at

the beginning of the chapter summarizing earlier estimates available for the effective behavior of

overall isotropic porous elastomers. This is followed by the derivation of the second-order estimates

for porous elastomers with compressible and incompressible matrix phases. Finally, illustrative re-

sults are presented and discussed for the effective stress-strain relation, microstructure evolution,

and onset-of-failure surfaces—in stress and strain space—for a wide range of loading conditions and

values of initial porosity.

Chapters 6 and 7—in contrast to Chapters 3 through 5, which deal with porous elastomers—are

concerned with the application of the theory developed in Chapter 2 to reinforced elastomers. In

particular, Chapter 6, which corresponds to reference 9 in the list of publications, deals with the

effective behavior of reinforced elastomers with a very special class of microstructures: laminates.

This microstructure has repeatedly proved of great theoretical importance, especially in the context

of the classical theory of linear elasticity (see Chapter 9 in Milton, 2002 and the references therein).

In addition, laminates are also of increasing practical interest, as they have been observed to appear

in a number of elastomeric systems such as thermoplastic elastomers. To date, the effective behavior

and stability of hyperelastic composites with layered microstructures have been studied in relative

depth (see, e.g., Triantafyllidis and Maker, 1985; Triantafyllidis and Nestorvić, 2005). However, it

seems that no connection has been ever made between the evolution of the underlying microstruc-

ture (induced by the applied finite deformations) and the effective behavior and stability of these
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materials. To establish this connection is precisely one of the main aims of Chapter 6. In addition,

being a limiting-type microgeometry, the results for laminates will be used in the following chapter

to validate the results for more general microstructures.

Chapter 7, which corresponds to reference 5, addresses the problem of in-plane effective be-

havior of elastomers reinforced with aligned cylindrical fibers of elliptical cross section distributed

randomly—with elliptical symmetry—in the undeformed configuration. The main results of this

chapter include closed-form, analytical expressions for the homogenized stored-energy function of

an incompressible rubber reinforced by rigid fibers, as well as corresponding expressions for the

in-plane rotation of the fibers, under general plane-strain conditions. The transparency of these

expressions allows to gain precious insight regarding the subtle interplay between the evolution of

the underlying microstructure and the overall behavior and stability of fiber-reinforced elastomers,

which is comprehensively studied in this chapter.

Finally, Chapter 8 provides a brief summary of the main findings of this work together with some

concluding remarks, as well as some prospects for future work.
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9. Lopez-Pamies, O., Ponte Castañeda, P., 2007. Macroscopic behavior and microstructure evo-

lution in composite elastomers with layered microstructures. In preparation.
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Chapter 2

Theory

This chapter deals with the development of an analytical framework for determining the overall

constitutive response of elastomeric composites subjected to finite deformations, with special inter-

est in two-phase elastomers with “particulate” microstructures. The framework accounts for the

evolution of the underlying microstructure, which results from the finite changes in geometry that

are induced by the applied loading. This point is essential, as the evolution of the microstructure

provides geometric softening/hardening mechanisms that may have a very significant effect on the

overall behavior and stability of elastomeric composites. The theory is founded on a recently de-

veloped “second-order” homogenization method (Ponte Castañeda, 2002a), which is based on the

construction of suitable variational principles utilizing the idea of a “linear comparison composite.”

The theory developed in this chapter will be applied in subsequent chapters to elastomeric systems

of theoretical and practical interest, including various classes of reinforced and porous elastomers.

2.1 Hyperelastic composites and effective behavior

2.1.1 Hyperelastic materials

Consider a material made up of N different (homogeneous) phases that are distributed, either ran-

domly or periodically, in a specimen occupying a volume Ω0, with boundary ∂Ω0, in the reference

configuration, in such a way that the characteristic length of the inhomogeneities (e.g., voids, par-

ticles, etc.) is assumed to be much smaller than the size of the specimen and the scale of variation

of the applied loading.

Material points in the solid are identified by their initial position vector X in the reference

configuration Ω0, while the current position vector of the same point in the deformed configuration

Ω is given by

x = χ(X). (2.1)

The deformation gradient tensor F at X, a quantity that measures the deformation in the neighbor-

hood of X, is defined as:

F(X) =
∂χ

∂X
(X). (2.2)

Note that F is not necessarily continuous across interphase boundaries in the composite, but in this

work we assume that the various phases are perfectly bonded so that χ is everywhere continuous.
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Furthermore, in order to satisfy global material impenetrability, the mapping χ is required to be

one-to-one on Ω0. Thus, for all points X and X′ ∈ Ω0,

χ(X′) = χ(X) if and only if X′ = X. (2.3)

The local form of (2.3) is

detF(X) 6= 0 ∀ X ∈ Ω0. (2.4)

However, in this work we are interested in physically plausible deformation paths with starting point

F(X) = I ∀ X ∈ Ω0, where I denotes the identity operator in the space of second-order tensors.

Thus, by continuity, if follows from (2.4) that

detF(X) > 0 ∀ X ∈ Ω0. (2.5)

Note that this condition would be automatically satisfied for incompressible materials, where detF

is required to be identically 1.

The constitutive behavior of the phases is characterized by stored-energy functions W (r) (r =

1, ..., N), which are taken to be non-convex functions of the deformation gradient tensor F. Thus,

the local stored-energy function of the hyperelastic composite is expressible as:

W (X,F) =
N∑

r=1

χ(r)(X) W (r)(F), (2.6)

where the characteristic functions χ(r), equal to 1 if the position vector X is inside phase r (i.e.,

X ∈ Ω(r)
0 ) and zero otherwise, describe the distribution of the phases (i.e., the microstructure) in

the reference configuration. Note that in the case of periodic distributions, the dependence of χ(r)

on X is completely determined once a unit cell D0 has been specified. In contrast, for random

distributions, the dependence of χ(r) on X is not known precisely, and the microstructure is only

partially defined in terms of n−point statistics. The stored-energy functions of the phases are, of

course, taken to be objective, in the sense that

W (r)(QF) = W (r)(F) (2.7)

for all proper orthogonal Q and all deformation gradients F. Making use of the right polar de-

composition F = RU, where R is the macroscopic rotation tensor and U denotes the right stretch

tensor, it follows, in particular, that W (r)(F) = W (r)(U). Moreover, to try to ensure material

impenetrability, the domain of W (r) is taken to be the set of all second-order tensors with positive

determinant: {F|detF > 0}. Further, W (r) are assumed to satisfy the condition:

W (r)(F) →∞ if detF → 0 + . (2.8)

It is thus seen that W (r) are indeed non-convex functions of F since their domain, {F| detF > 0},
is not convex.1

1This is easy to check by constructing an example where the sum of two distinct second-order tensors F and F′,
with detF > 0 and detF′ > 0, does not have positive determinant (see, e.g., Chapter 31 in Milton, 2002).
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Assuming sufficient smoothness for W on F, it is now useful to define the local constitutive

functions

S(X,F) =
∂W

∂F
(X,F) and S(r)(F) =

∂W (r)

∂F
(F), (2.9)

as well as

L(X,F) =
∂2W

∂F∂F
(X,F) and L(r)(F) =

∂2W (r)

∂F∂F
(F). (2.10)

It then follows that the local or microscopic constitutive relation for the composite is given by:

S(X) = S(X,F), (2.11)

where S denotes the first Piola-Kirchhoff stress tensor2. Furthermore, note that the local elasticity,

or tangent modulus tensor of the material is given by (2.10)1.

2.1.2 Effective behavior

Following Hill (1972) and Hill and Rice (1973), under the hypothesis of statistical uniformity and

the above-mentioned separation of length scales, the effective stored-energy function W̃ of the hy-

perelastic composite is defined by:

W̃ (F) = min
F∈K(F)

〈W (X,F)〉 = min
F∈K(F)

N∑
r=1

c
(r)
0 〈W (r)(F)〉(r), (2.12)

where K denotes the set of kinematically admissible deformation gradients:

K(F) = {F |∃ x = χ(X) with F = Grad χ(X) in Ω0, x = FX on ∂Ω0}. (2.13)

In the above expressions, the brackets 〈·〉 and 〈·〉(r) denote volume averages—in the undeformed

configuration—over the composite (Ω0) and over the phase r (Ω(r)
0 ), respectively, so that the scalars

c
(r)
0 = 〈χ(r)〉 represent the initial volume fractions of the given phases. Note that W̃ physically

represents the average elastic energy stored in the composite when subjected to an affine displacement

boundary condition that is consistent with 〈F〉 = F. Note further that, from the definition (2.12)

and the objectivity of W (r), it follows that W̃ is objective, and hence that W̃ (F) = W̃ (U). (For

completeness, the proof of this result is given in Appendix I.) Here, U represents the macroscopic

right stretch tensor associated with the macroscopic polar decomposition F = R U, with R denoting

the macroscopic rotation tensor (of course, 〈U〉 6= U and 〈R〉 6= R).

In analogy with the local expressions (2.9) and (2.10), and assuming sufficient smoothness for W̃

on F, it is convenient to define the following effective quantities:

S̃(F) =
∂W̃

∂F
(F), (2.14)

and

L̃(F) =
∂2W̃

∂F∂F
(F). (2.15)

2Recall that S is related to the Cauchy stress tensor T by S = det(F)TF−T .
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It then follows that the global or macroscopic constitutive relation for the composite—that is, the re-

lation between the macroscopic first Piola-Kirchhoff stress and the macroscopic deformation gradient

tensor—is given by (see Appendix II):

S = S̃(F), (2.16)

where S = 〈S〉 is the average first Piola-Kirchhoff stress in the composite. Furthermore, the effective

tangent modulus tensor is given by (2.15).

Having defined the local and effective behavior of hyperelastic composites, it is now in order to

make pertinent remarks regarding the existence and uniqueness of minimizers for W (X,F) in the

definition (2.12) for the effective stored-energy function W̃ .

2.1.3 Constitutive hypotheses

As is well known, imposing the constitutive requirement that W (X,F) be strictly convex in F for

all X ∈ Ω0, namely,

W (X, tF + (1− t)F′) < tW (X,F) + (1− t)W (X,F′) (2.17)

for all t ∈ [0, 1] and all pairs F and F′, together with suitable smoothness and growth conditions,

ensures that the solution of the Euler-Lagrange equations associated with the variational problem

(2.12) exists, is unique, and gives the minimum energy (see, e.g., Hill, 1957; Beju, 1971). However,

as explicitly stated above, W (X,F) has been taken to be non-convex with respect to F and cannot

satisfy (2.17). This is because—motivated by material impenetrability requirements—the domain

{F| detF > 0} of W (X,F) is not convex, and further, W (X,F) is required to satisfy the condition

(2.8). Moreover, motivated by experimental evidence, it is also recognized that W (X,F) needs to

be non-convex in F in order not to rule out bifurcation phenomena such as buckling. In short, some

other constitutive condition on W—less restrictive than convexity—is required to guarantee the

existence of minimizers in (2.12) without necessarily guaranteeing the uniqueness of the associated

Euler-Lagrange equations.

Ball showed in his celebrated paper in 1977 that if the stored-energy function W (X,F) is (strictly)

polyconvex, namely,

W (X,F) = f(X,F,Fadj , detF) (2.18)

with f(X, ·, ·, ·) (strictly) convex for each X and Fadj = det(F)F−T , and if certain growth hypotheses

are satisfied, then there exist minimizers for (2.12). Ball’s remarkable existence theorem applies to

compressible materials that satisfy the physical condition (2.8), as well as to incompressible materials,

which require the constraint detF = 1 (which also poses technical difficulties). It should be noted

that even though the constitutive restriction of polyconvexity (2.18) has yet to be given strict

physical meaning, is general enough as to include many of the more commonly used hyperelastic

stored-energy functions such as the Neo-Hookean, Gent, Arruda-Boyce, Mooney-Rivlin, and Ogden

materials.

A less restrictive constitutive condition than polyconvexity is that of quasiconvexity, which was

introduced by Morrey in 1952. In this celebrated article, Morrey provided (see also Acerbi and Fusco,
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1984) a theorem for the existence of minimizers in problems of the type (2.12) by making use of the

constitutive hypothesis of quasiconvexity together with certain growth conditions. Unfortunately,

the growth hypotheses are too stringent and prohibit the condition (2.8). Thus, as they stand, the

existence theorems for minimizers of integrals of general quasiconvex functions do no apply to finite

elasticity (Ball, 2002). However, it has been suggested (see, e.g., Ball and Murat, 1984 and Ball,

2002) that quasiconvexity might be the more appropriate constitutive requirement—less restrictive

than polyconvexity—for existence of energy minimizers in finite elasticity. That such suggestion

is actually correct remains a fundamental open problem in finite elasticity. A key difficulty in

proving this result is that there is no known useful characterization of quasiconvexity, other than its

definition, which is nonlocal.

Finally, it is fitting to spell out an even less restrictive constitutive condition than quasiconvexity,

namely, rank-one convexity. Thus, the stored-energy function W (X,F) is said to be rank-one convex

if it satisfies the Legendre-Hadamard condition, namely, if it satisfies:

B(X,F) ≡ min
‖m‖=‖N‖=1

{miNjLijkl(X,F)mkNl} ≥ 0, (2.19)

where it is recalled that L is given by (2.10)1 and indicial notation has been used to indicate precisely

the products involved. (In the absence to explicit notice to the contrary, Latin indices range from

1 to 3, and the usual summation convention is employed). Note that the strict inequality in (2.19)

(i.e., strict rank-one convexity) corresponds to strong ellipticity, whose physical meaning is that the

hyperelastic composite never admits solutions with discontinuous deformation gradients within the

given phases (see, e.g., Knowles and Sternberg, 1977; Hill, 1979). In this connection, it is important

to remark that other types of singular solutions, such as cavitation, are not precluded by strong

ellipticity. The interested reader is referred to Ball (1982) for a detailed discussion of such material

instabilities. On the practical side, for many of the cases considered in this work, it should be

mentioned that void nucleation is not expected to occur (Ball, 1982).

The conditions of convexity, polyconvexity, quasiconvexity, and rank-one convexity introduced

above satisfy the following chain of implications (see, e.g., Dacorogna, 1989):

Convexity ⇒ Polyconvexity ⇒ Quasiconvexity ⇒ Rank−One Convexity. (2.20)

As explained above, convexity is not a valid assumption for materials in finite elasticity. On the

other hand, polyconvexity, for which Ball’s existence theorems apply, is valid for many common

non-linear elastic materials. In addition, polyconvexity—as opposed to quasiconvexity and rank-one

convexity—is a relatively easy assumption to impose in practice (at least for isotropic materials).

Hence, in this work we will adopt the constitutive assumption of polyconvexity for the local behavior

of hyperelastic materials. More specifically, we will insist in local strict polyconvexity. In this

connection, it is convenient to record that (see, e.g., Marsden and Hughes, 1983)

Strict Convexity ⇒ Strict Polyconvexity ⇒ Strict Rank−One Convexity. (2.21)

This chain of implications, together with (2.20), entails that strictly polyconvex hyperelastic mate-

rials are also quasiconvex and strongly elliptic. In this regard, it is important to make the following
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remark. In spite of the fact that the local behavior is assumed to be locally strongly elliptic, the

effective stored-energy function W̃ may lose strong ellipticity. This can be seen by recognizing that

W̃ , as defined by (2.12), is quasiconvex and therefore—according to (2.20)—rank-one convex, but

not necessarily strictly so (Geymonat et al., 1993). One of the issues of interest in this work is

establishing under what conditions the overall behavior of the composite can lose strict rank-one

convexity, that is, under what conditions

B̃(F) ≡ min
‖m‖=‖N‖=1

{miNjL̃ijkl(F)mkNl} > 0 (2.22)

ceases to hold true. Recall that in this last expression L̃ is given by (2.15).

Specific stored-energy functions for the phases

In subsequent chapters dealing with applications to specific material systems, we will restrict at-

tention to a special class of stored-energy functions W (r) for the phases of hyperelastic composites.

In particular, motivated by experimental evidence indicating that elastomers are normally isotropic

with respect to the undistorted state, special attention will be given to isotropic stored-energy

functions W (r).

Recall that the restriction of isotropy (together with that of objectivity) implies that the stored-

energy functions W (r) of the material constituents can be expressed as functions of the principal

invariants of the right Cauchy-Green deformation tensor C = FT F:

I1 = trC = λ2
1 + λ2

2 + λ2
3,

I2 =
1
2

[
(trC)2 − trC2

]
= λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1,

I3 =
√

detC = λ1λ2λ3, (2.23)

or, equivalently, as symmetric functions of the principal stretches λ1, λ2, λ3 associated with F.

Namely, W (r) may be written as:

W (r)(F) = ϕ(r)(I1, I2, I3) = Φ(r)(λ1, λ2, λ3), (2.24)

where Φ(r) are symmetric. A fairly general (and relatively simple) class of stored-energy functions

(2.24), which has been found to provide good agreement with experimental data for rubberlike

materials, is given by:

W (r)(F) = g(r)(I) + h(r)(J) +
κ(r)

2
(J − 1)2, (2.25)

where I ≡ I1 and J ≡ I3 have been introduced for convenience. The parameter κ(r) corresponds

to the three-dimensional3 bulk modulus of phase r at zero strain, and g(r) and h(r) are twice-

differentiable, material functions that satisfy the conditions: g(r)(3) = h(r)(1) = 0, g
(r)
I (3) =

µ(r)/2, h
(r)
J (1) = −µ(r), and 4g

(r)
II (3) + h

(r)
JJ (1) = µ(r)/3. Here, µ(r) denotes the shear modulus

of phase r at zero strain, and the subscripts I and J indicate differentiation with respect to these

invariants. Note that when these conditions are satisfied W (r)(F) = (1/2)(κ(r) − 2/3µ(r))(trε)2 +

3In terms of the Lamé moduli, µ′(r) and µ(r), κ(r) = µ′(r) + 2/3µ(r).
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µ(r)trε2 + o(ε3), where ε is the infinitesimal strain tensor, as F → I, so that the stored-energy func-

tion (2.25) linearizes properly. Furthermore, note that to recover incompressible behavior in (2.25),

it suffices to make the parameter κ(r) tend to infinity (in which case W (r)(F) = g(r)(I) together

with the incompressibility constraint J = 1).

Experience suggests that “neat” elastomers normally do not admit localized deformations. Within

the context of the material model (2.25), this property can be easily enforced by simply insisting that

g(I) and h(J)+ κ
2 (J − 1)2 be strictly convex functions of their arguments, which renders the stored-

energy function (2.25) strictly polyconvex, and in turn—according to (2.21)—strongly elliptic. Note

also that the stored-energy function (2.25) is an extension of the so-called generalized Neo-Hookean

(or I1-based) materials to account for compressibility. It includes constitutive models widely used

in the literature such as the Neo-Hookean, Arruda-Boyce 8-chain (Arruda and Boyce, 1993), Yeoh

(Yeoh, 1993), and Gent (Gent, 1996) models.

In the sequel, we will consider a number of applications in the context of plane-strain deforma-

tions. For this type of loading conditions, the problems at hand will be essentially two-dimensional

(2D). In this regard, for such problems, it will prove more helpful to work with the 2D form of (2.25)

rather than with (2.25) itself. Thus, by fixing—without loss generality—λ3 = 1 and defining the

in-plane principal invariants of C = FT F as:

Ǐ = λ2
1 + λ2

2, and J̌ = λ1λ2, (2.26)

the stored-energy function (2.25) under plane-strain conditions can be conveniently rewritten as:

W (r)(F) = ǧ(r)(Ǐ) + ȟ(r)(J̌) +
κ̌(r) − µ(r)

2
(J̌ − 1)2, (2.27)

where now the parameter κ̌(r) corresponds to the two-dimensional4 bulk modulus of phase r at zero

strain, and ǧ(r) and ȟ(r) are such that: ǧ(r)(2) = ȟ(r)(1) = 0, ǧ
(r)

Ǐ
(2) = µ(r)/2, ȟ

(r)

J̌
(1) = −µ(r), and

4ǧ
(r)

Ǐ Ǐ
(2)+ ȟ

(r)

J̌J̌
(1) = µ(r). Here, similar to (2.25), the subscripts Ǐ and J̌ indicate differentiation with

respect to these invariants. Further, the above conditions make the stored-energy function (2.27)

linearized correctly in the limit of small deformations. In the sequel, the above-utilized check mark

“ˇ ” to denote 2D quantities will be dropped if there is no potential for confusion.

2.1.4 Macroscopic and microscopic instabilities

Next, it is important to recall that more mathematically precise definitions of the effective energy W̃ ,

other than (2.12), have been given by Braides (1985) and Müller (1987) for periodic microstructures.

Such definitions generalize the classical definition of the effective energy for periodic media with

convex energies (Marcellini, 1978), by accounting for the fact that, in the non-convex case, it is not

sufficient to consider one-cell periodic solutions, as solutions involving interactions between several

unit cells may lead to lower overall energies. Physically, this corresponds to the possible development

of “microscopic” instabilities in the composite at sufficiently large deformation (see Appendix III

for a more precise definition of microscopic instabilities). In this connection, it is important to

4In terms of the Lamé moduli, µ′(r) and µ(r), κ̌(r) = µ′(r) + µ(r).
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remark that Geymonat et al. (1993), following earlier work by Triantafyllidis and Maker (1985)

for laminated materials, have shown rigorously that loss of strong ellipticity in the homogenized

behavior of the composite corresponds to the development of long-wavelength (i.e., “macroscopic”)

instabilities in the form of localized shear/compaction bands. Furthermore, the “failure surfaces”

defined by the loss of strong ellipticity condition of this homogenized behavior provide upper bounds

for the onset of other types of instabilities.

In view of the difficulties associated with the computation of the microscopic instabilities men-

tioned in the previous paragraph, especially for composites with random microstructures, a more

pragmatic approach will be followed here. By assuming—for consistency with the classical theory

of linear elasticity—that W (r) = 1
2ε · L(r)

linε + o(ε3) as F → I, where ε denotes the infinitesimal

strain tensor and L(r)
lin are positive-definite5, constant, fourth-order tensors, it is expected (except

for very special cases) that, at least in a neighborhood of F = I, the solution of the Euler-Lagrange

equations associated with the variational problem (2.12) is unique, and gives the minimum energy.

As the deformation progresses into the nonlinear range, the composite material may reach a point

at which this “principal” solution bifurcates into lower-energy solutions. This point corresponds

to the onset of a microscopic instability beyond which the applicability of the “principal” solution

becomes questionable. However, it is still possible to extract useful information from the principal

solution by computing the associated macroscopic instabilities from the loss of strong ellipticity of

the homogenized behavior. This means that, in practice, we will estimate the effective stored-energy

function (2.12) by means of the stationary variational statement:

Ŵ (F) = stat
F∈K(F)

N∑
r=1

c
(r)
0 〈W (r)(F)〉(r), (2.28)

where it is emphasized that the energy is evaluated at the above-described “principal” solution of

the relevant Euler-Lagrange equations. From its definition, it is clear that W̃ (F) = Ŵ (F) up to

the onset of the first microscopic instability. Beyond this point, and up to the onset of the first

macroscopic instability, W̃ (F) ≤ Ŵ (F). The point is that while the microscopic instabilities are

difficult to compute, the macroscopic instabilities are easy to estimate from Ŵ (F). Furthermore, it is

often the case (Geymonat et al., 1993; Triantafyllidis et al., 2006) that the first instability is indeed

a long-wavelength instability, in which case W̃ (F) = Ŵ (F) all the way up to the development

of a macroscopic instability, as characterized by the loss of strong ellipticity of the homogenized

moduli associated with Ŵ (F). More generally, the first instability is of finite wavelength (i.e., small

compared to the size of the specimen), but even in this case, it so happens, as we have already

mentioned, that the loss of strong ellipticity of the homogenized energy Ŵ (F) provides an upper

bound for the development of microscopic instabilities. In other words, the composite material

will become unstable before reaching the “failure surface” defined by the macroscopic instabilities.

Furthermore, recent work (Michel, 2006) suggests that the macroscopic instabilities may be the more

relevant ones for random systems, since many of the microscopic instabilities in periodic systems

tend to disappear as the periodicity of the microstructure is broken down.

5This condition can be relaxed to include composites with voids, in which case L
(r)
lin = 0.
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2.2 Bounds and estimates

Following up on the preceding framework, the primary objective of this work is to generate estimates

for the effective stored-energy function Ŵ of hyperelastic composites subjected to finite deformations.

A second objective is to study the evolution of the underlying microstructure, as well as the possible

onset of macroscopic instabilities—as measured by loss of strong ellipticity of the homogenized

behavior—in these materials. This is an extremely difficult problem, because it amounts to solving

a set of highly nonlinear partial differential equations with oscillatory coefficients. As a consequence,

there are precious few analytical estimates for W̃ . Ogden (1978) noted that use of the trial field

F = F in the definition (2.12) for W̃ leads to an upper bound analogous to the well-known Voigt

upper bound (Voigt, 1889) in linear elasticity, namely

W̃ (F) ≤ W̃V (F) .=
N∑

r=1

c
(r)
0 W (r)(F). (2.29)

Note that this rigorous upper bound depends only on the initial volume fractions of the phases, and

contains no dependence on higher-order statistical information about the microstructure. Under ap-

propriate hypotheses on W , ensuring the existence of a principle of minimum complementary energy,

Ogden (1978) also proposed a generalization of the Reuss lower bound (Reuss, 1929). However, the

required constitutive hypothesis on W was too strong and excluded the majority of physically sound

hyperelastic materials used in the literature. For this reason, Ponte Castañeda (1989) proposed an

alternative generalization of the Reuss lower bound, exploiting the polyconvexity hypothesis. For

polyconvex materials of the type:

W (X,F) = f(X,F,Fadj ,detF), (2.30)

where f is convex in F, Fadj(= detF F−T ), and detF, this lower bound takes the form:

W̃ (F) ≥ W̃PC(F) .= (f
∗
)∗(F,F

adj
, detF). (2.31)

Note that—due to the lack of convexity of the function W—this lower bound is much sharper (see

Ponte Castañeda, 1989) than the bound that would be obtained by means of the standard Legendre-

Fenchel transform applied directly to the function W , which would lead to a bound of the type
(
W ∗)∗ (F). Note further that, similar to (2.29), the rigorous lower bound (2.31) is microstructure

independent (but see Ponte Castañeda, 1989 to incorporate higher-order statistical information).

As stated in the Introduction, there are also numerous estimates for special microstructures

and special loading conditions, as well as empirically based and ad hoc estimates for various spe-

cial systems, including the cases of reinforced rubbers (see, e.g., Mullins and Tobin, 1965; Treloar,

1975; Meinecke and Taftaf, 1988; Govindjee and Simo, 1991; Bergström and Boyce, 1999; de-

Botton, 2005; deBotton et al., 2006) and porous elastomers (see, e.g., Gent and Thomas, 1959;

Feng and Christensen, 1982; Hashin, 1985; Danielsson et al., 2004). Our aim here is to de-

velop a general class of analytical estimates that are based on homogenization theory and that

are applicable to large classes of composite systems, including reinforced rubbers, porous elas-

tomers and other heterogeneous elastomeric systems, such as TPEs. Such estimates should allow
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for the incorporation of statistical information beyond the phase volume fractions, thus allowing

for a more precise characterization of the influence of microstructure on effective behavior. Some

progress along these lines has already been accomplished (Ponte Castañeda and Tiberio, 2000;

Lahellec et al., 2004) with the extension of the “tangent” second-order nonlinear homogenization

technique (Ponte Castañeda, 1996) to finite elasticity.

2.3 Second-order homogenization method

Our proposal for generating homogenization estimates in finite elasticity is based on an appropriate

extension of the “second-order” homogenization procedure that has been recently developed by

Ponte Castañeda (2001; 2002a) in the context of nonlinear dielectrics and viscous composites with

convex, nonlinear potentials. This new method is in turn a generalization of the “linear comparison”

variational method of Ponte Castañeda (1991) in a way that incorporates many of the desirable

features of an earlier version of the second-order method (Ponte Castañeda, 1996; Ponte Castañeda

and Willis, 1999), including the fact that the estimates generated should be exact to second order

in the heterogeneity contrast (Suquet and Ponte Castañeda, 1993). It is relevant to mention in this

context that earlier works (e.g., Talbot & Willis 1985, Ponte Castañeda 1991) delivered bounds that

are exact only to first order in the contrast. Next we give the description of the proposed method.

For completeness, the descriptions of (relevant) earlier versions of the method have been included

in Appendix V.

The main idea behind the second-order homogenization theory is the construction of a fictitious

linear comparison composite (LCC) with the same microstructure as the nonlinear composite (i.e.,

the same χ(r)). Thus, the local stored-energy function of the LCC may be written as:

WT (X,F) =
N∑

r=1

χ(r)(X)W
(r)
T (F), (2.32)

where the quadratic functions W
(r)
T are given by the second-order Taylor approximations of the

nonlinear stored-energy functions W (r) about some reference deformation gradients F(r):

W
(r)
T (F) = W (r)(F(r)) + S(r)(F(r)) · (F− F(r)) +

1
2
(F− F(r)) · L(r)(F− F(r)). (2.33)

Here, it is recalled that S(r) are given by expression (2.9)2, and the L(r) are fourth-order tensors

with major symmetry to be determined later. Note that, in general, L(r) 6= L(r).

Next, “corrector” functions V (r) are introduced such that:

V (r)(F(r),L(r)) = stat
F̂(r)

[
W (r)(F̂(r))−W

(r)
T (F̂(r))

]
. (2.34)

These functions, which are multiple-valued depending on the parameters F(r) and L(r), serve to

measure the nonlinearity of the phases of the original material, so that, under appropriate hypotheses

(essentially, when the functions V (r) are smooth with respect to the moduli L(r)), the local stored-

energy functions of the phases of the nonlinear composite may be written as:

W (r)(F) = stat
L(r)

{
W

(r)
T (F) + V (r)(F(r),L(r))

}
, (2.35)
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for any choice of the reference deformations F(r). In connection with this expression, it should be

emphasized that the appropriate branches of the functions V (r) must be chosen in order to recover

the equality. Note that this relation may still be used in an approximate sense, even when the local

potentials are such that the equality in relation (2.35) does not hold strictly.

Now, by making use of (2.35) in expression (2.28), it follows that the effective stored-energy

function Ŵ of the nonlinear composite may be expressed as:

Ŵ (F) = stat
F∈K

stat
L(s)(X)

N∑
r=1

c
(r)
0

〈
W

(r)
T (F) + V (r)(F(r),L(r))

〉(r)

, (2.36)

which after interchanging the stationarity operations with respect to F and L(r) may be recast as

Ŵ (F) = stat
L(s)(X)

{
ŴT (F;F(s),L(s)) +

N∑
r=1

c
(r)
0

〈
V (r)(F(r),L(r))

〉(r)
}

. (2.37)

In this last expression, use has been made of the fact that the corrector functions V (r) do not depend

on F(X), and

ŴT (F;F(s),L(s)) = stat
F∈K

〈WT (X,F)〉 = stat
F∈K

N∑
r=1

c
(r)
0

〈
W

(r)
T (F)

〉(r)

(2.38)

is the effective stored-energy function associated with the LCC defined by relations (2.32) and (2.33).

It is important to emphasize at this point that expression (2.37) provides a variational principle

for the effective stored-energy function Ŵ of the elastomeric composite, where the relevant trial

fields are the modulus tensors L(s)(X) of the N phases in the LCC. The main advantage of this

variational principle over the original form (2.28) is that the trial fields L(s)(X) do not need to satisfy

any differential constraints, such as the compatibility requirement. Of course, for the resulting

estimates to make sound physical sense, the compatibility requirement must be, and indeed is,

enforced through the use of the LCC with effective stored-energy function ŴT given by (2.38). In

this context, it is natural to exploit the variational structure of (2.37) by restricting our attention

to constant-per-phase trial fields L(s) in order to generate the following estimate for Ŵ :

Ŵ (F) ≈ stat
L(s)

{
ŴT (F;F(s),L(s)) +

N∑
r=1

c
(r)
0 V (r)(F(r),L(r))

}
, (2.39)

where the stat(ionary) condition in this last expression is now over constant-per-phase, fourth-order

tensors L(s).

Next, it is relevant to spell out the stationarity conditions in expressions (2.34) and (2.39). They

read as follows:

S(r)(F̂(r))− S(r)(F(r)) = L(r)(F̂(r) − F(r)), (2.40)

and
∂ŴT

∂L(r)
+ c

(r)
0

∂V (r)

∂L(r)
= 0, (2.41)

respectively. But using the facts that:

∂ŴT

∂L(r)

∣∣∣∣∣
F(r)

=
c
(r)
0

2
〈(F− F(r))⊗ (F− F(r))〉(r), (2.42)
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and
∂V (r)

∂L(r)

∣∣∣∣
F(r)

= −1
2
(F̂(r) − F(r))⊗ (F̂(r) − F(r)), (2.43)

where the notation .|F(r) has been used to emphasize that the derivatives with respect to L(r) are

taken with F(r) fixed, the stationary condition (2.41) can be rewritten in the form:

〈(F− F(r))⊗ (F− F(r))〉(r) = (F̂(r) − F(r))⊗ (F̂(r) − F(r)), (2.44)

or, equivalently, as:

C(r)
F = (F̂(r) − F(r))⊗ (F̂(r) − F(r))− (F

(r) − F(r))⊗ (F
(r) − F(r)), (2.45)

where F
(r) .= 〈F〉(r) and C(r)

F
.= 〈(F − F

(r)
) ⊗ (F − F

(r)
)〉(r) have been introduced to denote the

average and covariance tensor of the fluctuations of the deformation gradient over phase r in the

linear comparison composite. Thus, expression (2.45) can be seen to provide a set of conditions on

the fluctuations of the deformation-gradient fields in the phases of the LCC. It is important to realize

that these conditions are overly constraining, in general, as they would require that the fourth-order

tensors 〈(F − F
(r)

) ⊗ (F − F
(r)

)〉(r) be of rank 2. This suggests that it may not be possible to

optimize with respect to completely general tensors L(r) in the variational statement (2.39). As will

be discussed in more detail in the next subsection, one possible way out of this problem is to optimize

with respect to suitably chosen subclasses of tensors L(r). In this case, the optimality conditions

with respect to the L(r) would still be of the form (2.41), where the derivatives would be taken with

respect to the appropriate components of the L(r) in the relevant subclass. But the form (2.45) of

these conditions would need to be replaced by suitable traces of these expressions, depending on the

specific form selected for the L(r).

By making use of conditions (2.40) and (2.41), the general second-order estimate (2.39) may be

shown to reduce to:

Ŵ (F) =
N∑

r=1

c
(r)
0

[
W (r)(F̂(r))− S(r)(F(r)) · (F̂(r) − F

(r)
)
]
. (2.46)

It is interesting to remark that relation (2.46) depends directly on the average deformation gradients

F
(r)

in the phases of the LCC. In addition, expression (2.46) also exhibits an explicit dependence on

the variables F̂(r), which are associated with the field fluctuations of the deformation fields in the

phases of the LCC through relations of the type (2.45). Moreover, the estimate (2.46) can be shown

to be exact to second order in the heterogeneity contrast, provided that the corresponding estimates

for the LCC are also taken to be exact to second order in the contrast, and that the reference

variables F(r) be assumed to tend to the macroscopic average F in the small-contrast limit.

In connection with the general second-order estimate (2.46), it should be emphasized that this

estimate is, in principle, valid for any choice of the reference deformation gradients F(r), which

suggests optimizing with respect to these variables. However, it has been found (Lopez-Pamies and

Ponte Castañeda, 2004a) that the result of such an optimization appears to be inconsistent with

conditions of the type (2.45) on the field fluctuations. As a consequence, it becomes necessary to

appeal to other physically based considerations to make a choice for the variables F(r). Among such
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considerations is the requirement of objectivity of the effective stored-energy function Ŵ . Indeed,

this is a non-trivial requirement in the context of the second-order variational estimate (2.46), which

makes use of a LCC with local stored-energy functions W
(r)
T , defined by (2.33), that are a priori not

objective (i.e., W
(r)
T (QF) 6= W

(r)
T (F), for all proper orthogonal Q). However, remarking that the

reference variables F(r), as well as the modulus tensors L(r), ultimately depend on the macroscopic

deformation gradient F, it follows that these tensors must be objective quantities in order to ensure

the objectivity of the effective stored-energy function: Ŵ (QF) = Ŵ (F) for all proper orthogonal

tensors Q. Therefore, it will be required here that the tensors F(r) and L(r) satisfy the following

invariance relations under the change of observer (frame) defined by the rotation tensor Q:

F
(r)
ij −→ Qik F

(r)
kj , and L

(r)
ijkl −→ QipQkqL

(r)
pjql, (2.47)

where indicial notation has been used to indicate precisely the products involved in the second

relation for the L(r). Parenthetically, it is interesting to remark that, under conditions (2.47), the

effective stored-energy function ŴT of the LCC can also be shown to be an objective scalar function

of F, even though, again, the constituent phases W
(r)
T are locally not objective.

Similarly, the stored-energy function Ŵ of the composite must satisfy the overall symmetry

requirements of the system, that is, Ŵ (FK) = Ŵ (F) for all orthogonal, second-order tensors K

belonging to the symmetry group of the material, G. For instance, for a composite with isotropic

constituents and an isotropic distribution of the phases, the symmetry group G would correspond

to the full orthogonal group. In this work, attention will be focused on composite elastomers with

isotropic phases, but with anisotropic distribution of the phases. For this class of materials, it can

be shown that requiring the variables F(r) and L(r) to be invariant under each of the transformations

(changes of reference configuration defined by) K ∈ G leads to estimates (2.46) for the stored-energy

function that satisfy the overall symmetry requirements of the material. Hence, it will be required

here that the tensors F(r) and L(r) satisfy the following invariance relations:

F
(r)
ij −→ F

(r)
ik Kkj , and L

(r)
ijkl −→ L

(r)
ipkq KpjKql, (2.48)

for all symmetry transformations defined by orthogonal, second-order tensors K ∈ G.

In essence, conditions (2.47) and (2.48) provide general invariance requirements that must be

satisfied by the reference deformation gradients F(r) and the modulus tensors L(r) in the phases of

the LCC. In practice, however, enforcing conditions (2.47) and (2.48) is not a simple matter because

of the implicit manner in which F(r) and L(r) enter the stationary conditions (2.40) and (2.41). In

the next subsection, we provide specific choices (motivated by the local isotropy of the phases) for

F(r) and L(r) that satisfy the invariance requirements (2.47) and (2.48).

2.3.1 On the specific choice of the variables F(r) and L(r) for isotropic

phases

It is clear from the expressions (2.33) for the stored-energy functions W
(r)
T of the phases in the LCC

that requiring the variables F(r) and L(r) be isotropic functions of the local deformation gradient F

would be sufficient to ensure the isotropy of these linear phases. However, given the approximation



2. Theory 22

(2.39) for Ŵ , the variables F(r) and L(r) are constant per phase, and therefore it is not possible

to choose them in this manner. On the other hand, recalling that the “generalized secant” tensors

L(r) provide a generalization of the tangent moduli tensors L(r)(F(r)), it is sensible to require L(r)

to satisfy the same objectivity and material symmetry restrictions, with respect to F(r), as those

satisfied by L(r)(F(r)). In the particular context of phases that are characterized by objective and

isotropic stored-energy functions W (r), the corresponding tangent moduli tensors L(r)(F(r)) must

satisfy the following conditions:

L(r)
ijkl(QF(r) Q′) = QimQkn L(r)

mpnq(F
(r))Q′

pjQ
′
ql, (2.49)

for all proper orthogonal, second-order tensors Q and Q′. In other words, the L(r)(F(r)) are objective

and isotropic tensor functions of the variables F(r).

Next, note that the “reference” deformation gradient tensors F(r) may be expressed in the form:

F(r) = R(r) U(r) = R(r) Q(r) D(r) (Q(r))T , (2.50)

where R(r) and U(r) correspond, respectively, to the “rotation” and the “right stretch” tensors

associated with the polar decomposition of F(r), D(r) is a symmetric, second-order tensor with matrix

representation (relative to the laboratory frame of reference) D(r) = diag (λ(r)
1 , λ

(r)
2 , λ

(r)
3 ), with λ

(r)
1 ,

λ
(r)
2 , and λ

(r)
3 denoting the principal stretches of U(r), and (Q(r))T is the proper orthogonal, second-

order tensor describing the orientation of the principal axes of U(r) relative to the laboratory frame

of reference. It then follows from conditions (2.49) that:

L(r)
ijkl(F

(r)) = Q(r)
rmQ

(r)
jn Q(r)

sp Q
(r)
lq R

(r)
ir R

(r)
ks L(r)

mnpq(D
(r)), (2.51)

where it is noted that L(r)
mnpq(D(r)) will exhibit orthotropic symmetry—characterized by 12 indepen-

dent principal components6 —with respect to the laboratory frame of reference. Since, as already

stated, the generalized moduli tensors L(r) are expected to also be objective and isotropic tensor

functions of F(r), it is reasonable to prescribe the following requirement for the functional dependence

of the moduli tensors L(r) on the variables F(r):

L
(r)
ijkl(F

(r)) = Q(r)
rmQ

(r)
jn Q(r)

sp Q
(r)
lq R

(r)
ir R

(r)
ks L(r)

mnpq(D
(r)), (2.52)

where the L∗(r) .= L(r)(D(r)) will be assumed to be orthotropic, fourth-order tensors with respect to

the laboratory frame of reference. Thus, since R(r) and Q(r) can be readily determined from F(r),

it is seen that prescription (2.52) reduces the number of independent components of L(r) from 45

to only 12, namely, the 12 independent components of the orthotropic tensor L
∗(r)
mnpq. At this stage

it is useful to note that relation (2.44) (or (2.45)) can be thought of as a set of equations for the 9

components of the second-order tensor F̂(r) (for each r = 1, ..., N). Therefore, the simplest way to

generate a consistent system of equations out of relation (2.44) is to further reduce the number of

independent components of L
∗(r)
mnpq to 9. (Recall that our objective in the present work is not to obtain

the best possible results.) In this case, only 9 equations will be generated by differentiating with
6Recall that an orthotropic fourth-order tensor with only major symmetry has 15 independent principal compo-

nents. However, tangent modulus tensors derived from isotropic stored-energy functions contain only 12 independent
principal components.



2. Theory 23

respect to these 9 independent components, which will involve only certain traces of the fluctuations

tensors C(r)
F , as will be seen below. Prescriptions of the type (2.52), as it will be seen in more detail

in the applications presented in the sequel, turn out to be consistent with the physical requirements

of objectivity (2.47)2 and overall material symmetry (2.48)2.

Having established the result (2.52) for the modulus tensors L(r) for composite elastomers with

isotropic phases, it remains to establish a consistent prescription for the variables F(r). The sim-

plest prescription satisfying the objectivity and overall material symmetry requirements, (2.47)1 and

(2.48)1, as well as the requirement that the reference variables F(r) tend to the macroscopic average

F in the small-contrast limit, is, of course,

F(r) = F, (2.53)

An alternative prescription, also satisfying these requirements, would be to set F(r) = F
(r)

, as

initially proposed by Lopez-Pamies and Ponte Castañeda (2004a).7 However, it has been shown

that for certain limiting cases, the prescriptions F(r) = F
(r)

lead to inconsistencies (see Appendix

VI). For this reason, in this work, dealing with general elastomeric systems, use will be made of the

prescription (2.53), which has been found to lead to more physically consistent results. However,

it should be re-emphasized that it is not yet known what the best prescription for the reference

variables F(r) is.

In the next section, we will make use of conditions (2.53) for the F(r) and of conditions (2.52) for

the L(r) to specialize the general second-order estimate (2.46) to the case of two-phase elastomeric

composites with “particulate” microstructures, where both the matrix and the inclusion phase will

be taken to be isotropic.

2.4 Effective behavior of two-phase hyperelastic composites

with “particulate” microstructures

In this section, we specialize the general second-order estimate (2.46) for the effective stored-

energy function Ŵ to the specific case of two-phase composites consisting of ellipsoidal parti-

cles,8 with given initial volume fraction c
(2)
0 = c0 and characterized by the isotropic stored-energy

function W (2), which are distributed either randomly with “ellipsoidal symmetry” (Willis, 1977;

Ponte Castañeda and Willis, 1995) or periodically (Nemat-Nasser et al., 1982; Suquet, 1990) in a

compressible elastomeric matrix with isotropic stored-energy function W (1) (see Fig. 2.1).

2.4.1 Classical bounds

Before proceeding with the specialization of the second-order estimates, it is important to make cer-

tain remarks with regard to the classical Voigt upper bound (2.29) and the Reuss-type polyconvex

lower bound (2.31), which depend only on the initial volume fractions of the phases. (The special-

izations of these bounds to the case of two-phase elastomers with hyperelastic matrix phase W (1)

7This article has been included as Appendix A at the end of this thesis.
8This assumption could be relaxed to admit other particle shapes, but, for conciseness, this will not be done here.
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(a) (b)

Figure 2.1: Schematic representation of the “particulate” microstructures considered in this work. (a)
Ellipsoidal particles distributed randomly with “ellipsoidal symmetry;” the solid ellipsoids denote the inclu-
sions, and the dashed ellipsoids, their distribution. (b) Ellipsoidal particles distributed periodically ; the solid
ellipsoids denote the inclusions, and the dashed parallelepipeds, their distribution.

and inclusion phase W (2) are straightforward and therefore will not be detailed here.) First, note

that in the limit when the inclusion phase is made rigid, the Voigt upper bound becomes infinite.

Although rigorously an upper bound, the Voigt estimate is physically unrealistic in this limiting

case, as it would suggest that the addition of any fraction (even infinitesimal) of rigid reinforce-

ment into an elastomeric matrix would result in a rigid material, which is in contradiction with

experimental evidence. On the other hand, the polyconvex lower bound remains finite in this limit,

and therefore it can be of use. However, it should be recalled that this bound does not linearize

properly (Ponte Castañeda, 1989), i.e., it does not reduce to the classical Reuss lower bound for

infinitesimal deformations. Second, note that in the limit when the inclusion phase becomes vacu-

ous (i.e., W (2) = 0) and the matrix phase is incompressible (typical of rubbers), the Voigt bound

becomes unbounded for all loadings, except for isochoric deformations. That is, the Voigt bound

suggests that a porous elastomer with incompressible matrix phase is itself incompressible, which

is in contradiction with experience. Moreover, the polyconvex lower bound vanishes identically in

the limit when the inclusion phase becomes vacuous. The corresponding failures of the Voigt upper

bound and the polyconvex lower bound can be used as motivation for generating the new type of

estimates that we propose to develop in this work. Although, they are less rigorous in the sense

that they are not bounds, they will be much more accurate, providing more realistic predictions,

especially, for cases when the inclusion phase is significantly stiffer or softer than the matrix phase.

2.4.2 The linear comparison composite

The computation of the second-order estimates for two-phase elastomeric composites requires the

determination of the effective stored-energy function associated with a fictitious linear comparison

composite (LCC) with the same microstructure as the original elastomer, as well as the corresponding

phase averages F
(r)

and fluctuations C(r)
F (r = 1, 2). It is remarked that the LCC problem at hand

involves non-symmetric measures of “stress” and “strain” and hence a suitable generalization of the
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classical problem is required. This generalization is straightforward and it was carried out by Ponte

Castañeda and Tiberio (2000) in the broader context of N -phase “thermoelastic” composites. The

general expressions will not be repeated here, instead, only the relevant results specialized to two-

phase systems will be considered. In this regard, it is recalled that great simplification of the general

relations for thermoelastic composites is available for the special class of two-phase composites.

Thus, making use of an appropriate generalization of the Levin relations (Levin, 1967), the effective

stored-energy function ŴT for the two-phase LCC may be written simply as:

ŴT

(
F

)
= f̃ + T̃ · F +

1
2

F · L̃F, (2.54)

where f̃ = f + 1
2 (4L)−14T ·

(
L̃− L

)
(4L)−14T, T̃ = T +

(
L̃− L

)
(4L)−14T are effective

“specific-heat” and “thermal stress” quantities, depending on the effective modulus tensor L̃, which

is characterized in more detail further below. Also, in these expressions, f (r) = W (r)(F(r)) −
T(r) · F(r) − 1

2F
(r) · L(r)F(r), T(r) = S(r)(F(r)) − L(r)F(r) (r = 1, 2), and 4L = L(1) − L(2),

4T = T(1) − T(2). Furthermore, f , T, and L are the volume averages of f , T, and L. Note that

the effective stored-energy function ŴT is completely determined in terms of L̃.

In the above relations, L̃ is the effective modulus tensor of the two-phase, linear-elastic compar-

ison composite with modulus tensors L(1) and L(2), and the same microstructure, in its undeformed

configuration, as the nonlinear hyperelastic composite. A reasonably good estimate for the type of

“particulate” microstructures considered in this section is the generalized estimate of the Hashin-

Shtrikman (HS) type (Willis, 1977):

L̃ = L(1) + c0

[
(1− c0)P− (4L)−1

]−1
. (2.55)

Here, P is a microstructural tensor that depends on the size, shape and orientation of the inclu-

sions, as well as on their spatial distribution. In particular, the tensor P depends on whether the

distribution of the inclusions is random (Willis, 1977; Ponte Castañeda and Willis, 1995), or periodic

(Nemat-Nasser et al., 1982; Suquet, 1990). In passing, it is appropriate to remark that the HS-type

estimate (2.55) reduces to the classical result in the limit of small deformations (see Appendix IV

for details). Furthermore, the estimate (2.55) is known to be accurate for small to moderate initial

volume fractions of inclusions, c0, and that it may become inaccurate for large c0, when the inter-

actions among the particles become especially strong. Since the volume fraction of inclusions, as

well as their shape, orientation, and distribution, in a elastomeric composite can evolve (see Section

2.5) as a function of finite deformation histories, this has the practical implication that the second-

order estimates of the HS type may become inaccurate once the volume fraction, or other relevant

microstructural variables, reach values approaching the percolation limit (as explained in detail in

Section 2.5). However, it should be emphasized that the second-order estimates (2.46) could still be

used beyond this range, provided that a more sophisticated estimate was used for the LCC. Next,

we provide explicit expressions for P for the random and periodic microstructures considered in this

work.

For a random, “ellipsoidal” distribution of ellipsoidal inclusions, the microstructural tensor P
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can be written as (Willis, 1977; 1982):

P =
1

4π det(Z0)

∫

|ξ| = 1
H(ξ)

(
Z−1

0 ξ · Z−1
0 ξ

)−3/2
dS. (2.56)

In this relation, Hijkl(ξ) = K−1
ik ξjξl, with Kik = L

(1)
ijklξjξl, and the symmetric second-order tensor Z0

serves to characterize the “ellipsoidal symmetry” of the microstructure in the reference configuration.

More specifically, the tensor Z0 serves to define the shape and orientation of the ellipsoidal particles,

as well as the “shape” and “orientation” of their two-point correlation function, which are assumed

to be initially identical to those of the particles. (This assumption could be relaxed by allowing

the shapes and orientations of the particles and of their distribution functions to be different (Ponte

Castañeda and Willis, 1995), but this is not done here as it would necessitate the use of two different

P tensors.) For later use, it will prove convenient to spell out three limiting cases of practical interest

in expression (2.56). The first one corresponds to an isotropic distribution of spherical particles,

and is simply obtained by setting Z0 = I in (2.56). The second limiting case corresponds to aligned

cylindrical fibers distributed with “elliptical” symmetry in the plane transverse to the fiber direction,

and can be obtained by setting Z0 = diag(1/z0
1 , 1/z0

2 , ε) in (2.56) and taking the limit ε → 0. The

analysis of this limit is given in Appendix V, but the final expression for the tensor P can be written

as follows:

Pijkl =
ω0

2π

∫

ξ2
1+ξ2

2=1

Hijkl(ξ1, ξ2, ξ3 = 0)
ξ2
1 + ω2

0 ξ2
2

dS. (2.57)

Here, it should be noted that the components in (2.57) are relative to the principal axes of Z0, as

defined by the rectangular Cartesian basis {ei}. Moreover, in expression (2.57), ω0 = z0
2/z0

1 and the

fibers have been aligned—without loss of generality—in the e3 direction. Finally, the third limiting

case corresponds to layers forming a laminate, and can be obtained by setting Z0 = diag(1/z0
1 , ε, ε)

in (2.56) and taking the limit ε → 0, or, equivalently, by taking the limit ω0 → ∞ (or ω0 → 0)

in (2.57). The analysis of this limit is also included in Appendix V, but the corresponding final

expression for the tensor P characterizing a laminate microstructure reads as follows:

P = H(N), (2.58)

where N denotes the direction of lamination in the undeformed configuration.

For a periodic distribution of ellipsoidal inclusions, the microstructural tensor P can be written

as (Suquet, 1990):

P =
c0

1− c0

∑

ξ∈R∗−{0}
H(ξ)GI(−ξ)GI(ξ), (2.59)

where H(ξ) has already been defined above, GI(ξ) = 3(sin η−η cos η)/η3 with η =
(
Z−1

0 ξ· Z−1
0 ξ

)1/2
,

and R∗ denotes the reciprocal periodic lattice (i.e., in Fourier space). Note that here, similar

to (2.56), the tensor Z0 characterizes the shape and orientation of the ellipsoidal particles in the

undeformed configuration. On the other hand, the initial distribution of the (center of the) particles

is completely characterized by R∗ (see, e.g., Chapter 2 in Kittel (1968)). Finally, it is worth noticing

that the computation of (both, (2.56) and (2.59), tensors) P depends on the anisotropy of the

modulus L(1), which in turn depends on the functional form of the potential W (1), as well as the

particular type of loading, as determined by F.
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Next, it can be shown (see, for example, Ponte Castañeda and Suquet, 1998) that the average

deformations F
(1)

and F
(2)

in the matrix and inclusion phase of the LCC can be conveniently

determined from the overall average deformation condition, together with the stored-energy function

(2.54), through the relations:

F
(1)

=
1

1− c0

(
F− c0F

(2)
)

, and F
(2)

=
1
c0

∂(ŴT − f)
∂T(2)

∣∣∣∣∣
L(2)

, (2.60)

respectively. Note that the derivative of ŴT −f with respect to T(2) in the second of relation (2.60)

must be carried out with L(2) held fixed.

Furthermore, the fluctuations C(1)
F and C(2)

F in the matrix and inclusion phase of the LCC can

be readily determined through the relations:

C(1)
F =

2
1− c0

∂ŴT

∂L(1)

∣∣∣∣∣
F(1)=F

(1)

, and C(2)
F = 0, (2.61)

respectively. Note that the derivative of ŴT with respect to L(1) in the RHS of (2.61)1 must be

carried out with F(1) held fixed. Moreover, the vanishing of the fluctuations in the inclusions,

as stated by (2.61)2, is a direct consequence of the use of the HS-type estimates (2.55) in the

homogenization process.

2.4.3 Second-order homogenization estimates: compliant particles

In this subsection, we specialize the general second-order estimate (2.46) to the case of the two-phase,

particulate, elastomeric composites introduced above. For later use, it is convenient to present the

development for a general reference deformation gradient F(1). On the other hand, in view of the

fact that the fluctuations associated with the HS-type estimate for the LCC vanish identically in

phase 2, it proves computationally simpler to set the reference deformation gradient F(2) = F
(2)

.

It is emphasized that any other prescription (satisfying the conditions of objectivity (2.47)1 and

overall material symmetry (2.48)1) for F(2) would lead to exactly the same second-order estimate

(as a consequence of the use of the HS-type estimates (2.55) for the LCC). Thus, the second-order

estimate for two-phase elastomeric materials simplifies to:

Ŵ (F) = (1− c0)
[
W (1)(F̂(1))− S(1)(F(1)) · (F̂(1) − F

(1)
)
]

+ c0 W (2)(F
(2)

). (2.62)

Here, F
(1)

, F
(2)

, F̂(1), F̂(2), together with the modulus tensors L(1) and L(2), need to be made

explicit. To this end, it is important to realize that by setting F(2) = F
(2)

it follows (from the

appropriate specialization of equations (2.40) and (2.41)) that F̂(2) = F
(2)

, and that the modulus

tensor of the inclusion phase in the LCC reduces to L(2) = ∂2W (2)(F
(2)

)/∂F2. Next, it is noted

that the average deformation gradient F
(1)

in the matrix phase of the relevant LCC is determined,

in terms of the applied macroscopic loading F and the average deformation gradient F
(2)

in the

inclusion phase of the LCC, from the overall average deformation condition (2.60)1.

Now, with the above simplifications, equation (2.60)2 leads to:

F
(2)

= F− 1
c0

(4L)−1(L̃− L̄)(4L)−1
[
4S + L(1)(F− F(1))

−L(2)(F− F
(2)

)
]
, (2.63)
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where 4S = S(1)(F(1))− S(2)(F
(2)

). Making use of the HS estimate (2.55), this expression can be

shown to simplify to:

F− F
(2)

= (1− c0)P
[
L(1)

(
F(1) − F

(2)
)
− S(1)(F(1)) + S(2)(F

(2)
)
]
, (2.64)

which can be seen to constitute a system of 9 nonlinear algebraic equations for the 9 components of

the average deformation gradient F
(2)

. Note that these equations depend directly on the modulus

tensor L(1) of the matrix phase, but, remarkably, not on the modulus tensor L(2) of the inclusion

phase.

Next, the generalized secant condition (2.40) for the matrix phase provides an equation for the

variable F̂(1), which is given by:

S(1)(F̂(1))− S(1)(F(1)) = L(1)(F̂(1) − F(1)). (2.65)

This relation can interpreted as a set of 9 nonlinear algebraic equations for the 9 components of

F̂(1).

As discussed in the previous section, the modulus tensor L(1) for the isotropic matrix phase will

be taken to be of the form (2.52), which is now written as:

L
(1)
ijkl = Q(1)

rmQ
(1)
jn Q(1)

sp Q
(1)
lq R

(1)
ir R

(1)
ks L∗mnpq, (2.66)

where the notation L∗ijkl = L
(1)
ijkl(D

(1)) has been introduced for convenience. It is recalled that L∗

should be assumed to have orthotropic symmetry relative to the laboratory frame of reference. In

order to avoid the potential inconsistencies associated with equation (2.45) for the second moments

of the deformation gradient field in the matrix phase of the LCC, the tensors L∗ will be chosen

here to have only 9 independent components, instead of the 12 components that would normally

be associated with orthotropic symmetry (for fourth-order tangent modulus tensors derived from

isotropic stored-energy functions). As it will be seen in the applications to follow, the choice of the

9 independent components of L∗ is somewhat arbitrary, and depends on the specific constitutive

behavior of the hyperelastic matrix phase. However, at this stage, it is only important to recognize

that the restriction to 9 independent components for L∗ will translate into internal constraints among

the 12 standard components of the orthotropic tensor L∗. Then, denoting by `∗α (α = 1, 2, ..., 9)

the 9 independent components of L∗, and repeating the procedure that led from the stationarity

condition (2.41) to expression (2.44) now gives:

(
F̂(1) − F(1)

)
· ∂L(1)

∂`∗α

(
F̂(1) − F(1)

)
=

2
1− c0

∂ŴT

∂`∗α

∣∣∣∣∣
F(1)

. (2.67)

In this expression, ŴT is the stored-energy function of the relevant LCC given by (2.54) with

F(2) = F
(2)

, and L(2) = ∂2W (2)(F
(2)

)/∂F2. Thus, the right-hand side of this equation can be

computed by performing the indicated derivatives with respect to the moduli `∗α. The resulting

expressions, which involve suitable traces of the fluctuation tensor C(1)
F , are rather complicated, but

can be simplified dramatically by repeated use of the expression (2.64) for F
(2)

. In the end, the
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equations (2.67) can be rewritten in the simple form:

(
F̂(1) − F(1)

)
· ∂L(1)

∂`∗α

(
F̂(1) − F(1)

)
=

1
1− c0

(
F− F(1)

)
· ∂L(1)

∂`∗α

(
F− F(1)

)

− c0

1− c0

(
F(1) − F

(2)
)
· ∂L(1)

∂`∗α

(
F(1) − F

(2)
)

− c0

(1− c0)2
(
F− F

(2)
)
·P−1 ∂P

∂`∗α
P−1

(
F− F

(2)
)

.

(2.68)

They constitute a system of 9 scalar equations for the 9 scalar variables `∗α, which, remarkably, are

also independent of the modulus tensor L(2) of the inclusion phase. (Recall that F
(2)

, as determined

by equation (2.64), is independent of L(2).)

The only variable that remains to be specified is the reference deformation gradient F(1), which

in this work will be set equal to F (i.e., F(1) = F). Therefore, in conclusion, equations (2.64), (2.65),

and (2.68) constitute a closed system of 27 nonlinear algebraic equations for the 27 scalar unknowns

formed by the 9 components of F
(2)

, the 9 components of F̂(1), and the 9 independent components

of L(1) (i.e., the 9 independent components of L∗, denoted by `∗α), which, in general, must be solved

numerically. Having computed the values of all the components of F
(2)

, F̂(1), and L(1) for a given

loading F, the values of the components of F
(1)

can be readily determined using relation (2.60)1. In

turn, the second-order estimate for the effective stored-energy function Ŵ for two-phase, particulate,

elastomeric composites can now be computed, from relation (2.62), using these results. It should

be emphasized that the resulting estimate is objective, as will be seen in more detail in subsequent

chapters of this work.

To conclude, it interesting to remark that the just-defined system of equations defining the ef-

fective stored-energy function Ŵ for a general, two-phase, hyperelastic composite with particulate

microstructure does not depend explicitly on the modulus tensor L(2) of the inclusion phase (al-

though, of course, it does depend on the behavior of the hyperelastic inclusion phase through the

energy function W (2)). This unexpected result is a consequence of the use of the HS-type estimate

(2.55), which implies vanishing fluctuations in the inclusion phase of the LCC. In any event, the in-

dependence of the second-order estimate (2.62) (together with expressions (2.64), (2.65), and (2.68))

on L(2) will greatly facilitate the computation of the limiting cases of vacuous inclusions and rigid

particles, which are considered next.

2.4.4 Second-order homogenization estimates: porous elastomers

The specialization of the second-order estimate (2.62) for general two-phase elastomers with partic-

ulate microstructures to porous elastomers can be simply obtained by setting W (2) = 0. The result

reads as follows:

Ŵ (F) = (1− f0)
[
W (1)(F̂(1))− S(1)(F) · (F̂(1) − F

(1)
)
]
, (2.69)

where f0 = c0 for consistency with later chapters, and the variables F
(1)

, F̂(1), and L(1) are deter-

mined by suitably specializing the relations (2.60)1, (2.64), (2.65), and (2.68), and eliminating the
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variable F
(2)

in these equations in favor of F
(1)

. Thus, having set F(1) = F, the resulting equa-

tions are (2.65), which does not change, the following explicit equation for the average deformation

gradient F
(1)

in the matrix phase:

F
(1)

= F− f0

(
E(1)

)−1

S(1)(F), (2.70)

where

E(1) = P−1 − (1− f0)L(1) (2.71)

is a fourth-order tensor with major symmetry depending only on L(1), and the field-fluctuations

equation:

(F̂(1) − F) · ∂L(1)

∂`∗α
(F̂(1) − F) =

1
f0

(
F− F

(1)
)
· ∂E(1)

∂`∗α

(
F− F

(1)
)

. (2.72)

In short, equations (2.65) and (2.72) constitute a closed system of 18 nonlinear, algebraic equa-

tions for the 18 unknowns formed by the 9 components of F̂(1) and the 9 independent components

of L(1) (i.e., the parameters `∗α). Having computed all the components of F̂(1) and L(1), for a given

loading F and initial microstructure, the components of F
(1)

can be readily obtained from (2.70).

In turn, these results can be used to finally compute the second-order estimate (2.69)

Finally, it is worth mentioning that the above-developed expressions are equivalent to those given

in Section 4.3 of Lopez-Pamies and Ponte Castañeda (2004b) (for version 3 of the second-order

estimates) for porous elastomers, but the expressions given here are more explicit (and therefore

easier to implement).

2.4.5 Second-order homogenization estimates: rigid particles

In this subsection, we specialize further the general second-order estimate (2.62) to the limiting case

when the particles are taken to be rigid. To this end, for simplicity and without loss of generality,

the following choice is made for the stored-energy function of the inclusion phase:

W (2)(F) =
µ(2)

2
(F · F− 3)− µ(2) ln(detF) (2.73)

where the shear modulus µ(2) will be taken to tend to infinity in order to model rigid behavior. Note

that this form for W (2) is objective and consistent with the requirement that the deformation gradient

F within the particles should tend to an orthogonal tensor R (i.e., the particles should undergo a

rigid body rotation) in the limit µ(2) → ∞. Based on this choice for the stored-energy function of

the inclusion phase, an expansion for the average deformation gradient F
(2)

in the particles of the

LCC is attempted in the limit as µ(2) →∞ of the following form:

F
(2)

= R
(2)

+ εF
(2)

1 + O(ε2), (2.74)

where ε = 1/µ(2) is a small parameter, and R
(2)

and F
(2)

1 are second-order tensors to be determined

from the asymptotic analysis that follows. As suggested by (2.73), R
(2)

is assumed to be orthogonal.

It is now relevant to spell out the asymptotic expansions for the stored-energy function W (2), as
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well as for the associated stress S(2), evaluated at the average deformation gradient (2.74) in the

limit as ε → 0. The results read as follows:

W (2)(F
(2)

) = 0 + O(ε), S(2)(F
(2)

) =
∂W (2)

∂F
(F

(2)
) = S(2)

o + O(ε), (2.75)

where the second-order tensor S(2)
o is given by:

S(2)
o = F

(2)

1 + R
(2)

(F
(2)

1 )T R
(2)

. (2.76)

We remark, for later use, that

(R
(2)

)T S(2)
o = (S(2)

o )T R
(2)

. (2.77)

Although this identity can be easily verified algebraically, it is a simple consequence of the objectivity

of the stored-energy function (2.73).

Now, using F(1) = F for the reference deformation, it follows from the above asymptotic results

that the leading-order term in equation (2.64) can be written in the form:

E(1)(F−R
(2)

) + (1− c0)
[
S(1)(F)− S(2)

o

]
= 0, (2.78)

where E(1) and S(2)
o are given, respectively, by expressions (2.71) and (2.76).

The expression (2.78), which is a full second-order tensorial relation (i.e., it contains 9 indepen-

dent scalar equations), can be used to generate an equation for the rotation tensor R
(2)

, which has

only 3 independent components, by first left-multiplying expression (2.78) by (R
(2)

)T , extracting

the skew-symmetric part of this expression, and making use of the identity (2.77). The resulting

equation for the average rigid rotation R
(2)

of the particles may be written in the form:
(
R

(2)
)T [

E(1)
(
F−R

(2)
)]
−

[
E(1)

(
F−R

(2)
)]T

R
(2)

+(1− c0)
[(

R
(2)

)T

S(1)(F)−
(
S(1)(F)

)T

R
(2)

]
= 0, (2.79)

which provides a set of 3 independent equations for the 3 components of R
(2)

. It should be clear

from the derivation that this equation is independent of the form of the constitutive behavior (2.73)

assumed for the inclusion phase, since the only property that we have really used is the objectivity

of W (2).

Having determined R
(2)

from equation (2.79), it is now a simple matter to obtain F
(1)

with the

help of relation (2.60)1. The result is:

F
(1)

=
1

1− c0

(
F− c0R

(2)
)

+ O(ε). (2.80)

The generalized secant modulus expression (2.65) remains unchanged in the limit as ε → 0, but

the expression (2.68) involving the field fluctuations can be easily shown to reduce to:

(
F̂(1) − F

)
· ∂L(1)

∂`∗α

(
F̂(1) − F

)
=

c0

(1− c0)2
(
F−R

(2)
)
· ∂E(1)

∂`∗α

(
F−R

(2)
)

. (2.81)

Finally, making use of expressions (2.75)1 and (2.80) in (2.62), it is easy to show that the second-

order estimate for the effective behavior of elastomers reinforced with rigid particles reduces to:

Ŵ (F) = (1− c0)W (1)(F̂(1)) + S(1)(F) ·
[
F− c0R

(2) − (1− c0)F̂(1)
]
. (2.82)
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In summary, equations (2.65), (2.79) and (2.81) constitute a closed system of 21 nonlinear alge-

braic equations for the 21 scalar unknowns formed by the 3 components of R
(2)

, the 9 components of

F̂(1), and the 9 components of L(1) (i.e., the independent components `∗α), which, in general, must

be solved numerically. Having computed all the components of R
(2)

, F̂(1), and L(1), for a given

loading F and initial microstructure, the second-order estimate (2.82) for the effective stored-energy

function Ŵ of the rigidly reinforced elastomers can be readily obtained.

In passing, it is noted that the above results for rigidly reinforced elastomers provide a general-

ization of the earlier results of Ponte Castañeda and Tiberio (2000) and Lopez-Pamies and Ponte

Castañeda (2004a), where, on account of the considered isotropic symmetry of the microstructure,

it was sufficient to set the average rigid rotations for the rigid inclusions equal to the identity (i.e.,

R
(2)

= I).

2.5 Microstructure evolution

When a composite material is subjected to finite deformations on its boundary, its microstructure

will not remain fixed, but instead will evolve at every step of the deformation. In general, the

problem of characterizing the evolution of the microstructure in a detailed manner is a hopelessly

difficult task, due to the large number of microstructural variables that would be involved. However,

for special classes of microstructures, such as the “particulate” microstructures discussed above, it

is possible to develop consistent models for the evolution of suitably chosen microstructural vari-

ables. For viscoplastic composites, such types of models have been proposed by Kailasam and Ponte

Castañeda (1998), the central idea being that the evolution of the size, shape and orientation of the

inclusions should be controlled—on the average—by the average strain-rate and spin fields in the

inclusion phase, essentially generalizing notions introduced by Eshelby (1957) for linearly viscous

composite systems with dilute concentrations of inclusions. Thus, for the viscoplastic composites

with particulate microstructures, the relevant microstructural variables were identified to be the

volume fraction of the inclusion phase, and the average aspect ratios and orientation angles of the

inclusions, and evolution laws for these variables were generated combining basic kinematics prin-

ciples with nonlinear homogenization estimates for the average strain-rate and spin fields in the

inclusion phase. For non-dilute systems, additional microstructural variables were also identified

(Ponte Castañeda and Willis, 1995) serving to characterize the “distribution” of the inclusions in

the matrix phase, and evolutions laws for these variables have also been proposed (Kailasam et al.,

1997).

For the viscoplastic composites mentioned in the previous paragraph, the development of evo-

lution laws for the relevant microstructural variables was essential to be able to describe the con-

stitutive response of these materials under finite-deformation histories. Given that the constitutive

behavior of these materials is most naturally characterized by means of a Eulerian description of

the kinematics, the relevant homogenization procedure is carried out by taking a snapshot of the

microstructure at the current instant of time and generating an estimate for the instantaneous con-

stitutive response of the material. This means that this snapshot homogenization process must be
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supplemented by appropriate laws serving to characterize the evolution of the microstructure from

one instant to another instant in time.

In the present work, the interest is on hyperelastic composites, which are characterized, as we

have seen, by a Lagrangian description of the kinematics. This means that—unlike the example

of viscoplastic composites—the evolution of the microstructure resulting from the finite changes in

geometry is already accounted for in the homogenized constitutive description, given by equations

(2.16) with (2.12) for these materials. In other words, it is not necessary to obtain additional equa-

tions to characterize the evolution of the microstructure in these systems. Indeed, the minimizing

solution in expression (2.12) for the effective stored-energy function of the composite elastomer con-

tains implicitly all the necessary information to describe how every point in the specimen moves,

and therefore, also how the microstructure evolves. Nevertheless, even if it is not necessary to know

how the microstructure evolves in order to determine the effective behavior of a composite elas-

tomer, it is still of interest to have access to this information, as it will be useful to develop a better

understanding of the constitutive response of composite elastomers. As will be seen in the context

of the applications in the sequel, the evolution of the microstructure plays a critical role in the

determination of the overall response of composite elastomers, in general, and of their macroscopic

stability, in particular.

For simplicity, the focus here will be on composite elastomers with the “particulate” microstruc-

tures described in the preceding section. These are two-phase composite systems comprised of

an elastomeric matrix phase reinforced (or weakened) with ellipsoidal inclusions, which are all

taken to be identical in shape and orientation, and are described by a “characteristic ellipsoid”

E0 = {X |X ·
(
Z0

T Z0

)
X ≤ 1} in the reference configuration. The symmetric second-order ten-

sor Z0
T Z0 has principal values 1/(z0

1)2, 1/(z0
2)2, and 1/(z0

3)2, defining two initial aspect ratios

ω0
1 = z0

3/z0
1 and ω0

2 = z0
3/z0

2 , and principal directions defining a rectangular Cartesian basis {ei}.
In addition, the inclusions are assumed to be distributed either randomly or periodically (see Fig.

2.2). In the former case, it is further assumed that the inclusions are distributed with “ellipsoidal

symmetry” with the same aspect ratio and orientation as the inclusions in the reference configura-

tion, hence the use of only one microstructural tensor P in (2.56) (see Ponte Castañeda and Willis,

1995).

Given the significant nonlinearities involved in these hyperelastic composites, the deformation-

gradient field F will not be uniform inside the inclusions, even for dilute concentrations (c0 << 1).

This means that the initially ellipsoidal inclusions will deform into inclusions with shapes that will

not, except in the small-deformation domain, continue to be ellipsoidal. However, consistent with

the general aims of homogenization, where the interest is not in the details of the deformation

fields, but only on average information on these fields, our objective here will be to characterize

the evolution of the “average” size, shape and orientation of the inclusions, as determined by the

average deformation gradient F
(2)

in the inclusion phase. It is important to mention in this context

that this approximation is entirely consistent with the use of the estimates of the HS-type described

in the previous section, since the deformation gradient field F in this type of approximation turns

out to be constant inside the inclusions, and therefore, such that F(X) = F
(2)

for X ∈ Ω(2)
0 .
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Figure 2.2: Schematic representation of two-phase, “particulate” composites in the undeformed configura-
tion identifying the initial state of the various microstructural variables. (a) Random, ellipsoidal distribution.
(b) Periodic distribution.

Under these hypotheses, the material inside an inclusion centered at Xc in the undeformed

configuration, which is defined by the ellipsoid:

Ec
0 = {X | (X−Xc) · Z0

T Z0 (X−Xc) ≤ 1}, (2.83)

will deform according to: x−xc = F
(2)

(X−Xc), where xc denotes the center of the inclusion in the

deformed configuration. It then follows that the inclusion defined by (2.83) evolves into the ellipsoid:

Ec = {x | (x− xc) · ZT Z (x− xc) ≤ 1}, (2.84)

in the deformed configuration, where Z = Z0(F
(2)

)−1. The symmetric, second-order tensor ZT Z

has principal values 1/(z1)2, 1/(z2)2, and 1/(z3)2, which serve to define the two current aspect

ratios ω1 = z3/z1 and ω2 = z3/z2 for the inclusions (in the deformed configuration). Similarly,

the principal directions of ZT Z, denoted here by the rectangular Cartesian basis {e′i}, define the

principal directions of the inclusion in the deformed configuration. The evolution of the average

shape and orientation of the inclusions can thus be characterized—through the tensor Z—from the

knowledge of the average deformation gradient F
(2)

in the inclusion phase, together with the initial

shape and orientation of the inclusions in the reference configuration, as determined by Z0.

Next, note that the current volume fraction of the inclusions in the deformed configuration is

given by:

c
.=

∫
Ω(2) dv∫
Ω

dv
=

∫
Ω

(2)
0

detFdV
∫
Ω0

detFdV
=
〈detF〉(2)
〈detF〉 c0 =

〈detF〉(2)
detF

c0, (2.85)
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where Ω and Ω(2) denote the volume of the specimen and inclusion phase in the deformed con-

figuration, respectively, and use has been made of the fact that detF is a null-Lagrangian. Now,

recalling that within the context of the HS-type estimates (2.55), used in the homogenization pro-

cess for the above-described composites, the fields in the inclusion phase are constant, it follows

that 〈detF〉(2) = det〈F〉(2) = detF
(2)

, so that the current volume fraction of the inclusions in the

deformed configuration can be written as:

c =
detF

(2)

detF
c0, (2.86)

which may be readily computed in terms of the available estimate, F
(2)

, for the average deformation

gradient in the inclusion phase, and the known, initial volume fraction, c0, of the inclusions in the

reference configuration.

The above results simplify considerably for the case when the particles are taken to be rigid. In

this case, the inclusions are constrained to undergo an average rigid rotation F
(2)

= R
(2)

. This im-

plies that detF
(2)

= 1, so that the current volume fraction of particles in the deformed configuration

simplifies to:

c =
c0

detF
. (2.87)

When the matrix phase is further assumed to be incompressible, detF = 1, the expression (2.87)

for the current value of the volume fraction of the inclusion phase further reduces to c = c0, as

expected on physical grounds. Moreover, in this case, the tensor ZT Z characterizing the shape and

orientation of the particles in the deformed configuration reduces to:

ZT Z = R
(2)

Z0
T Z0(R

(2)
)T . (2.88)

From this result, it is evident that for rigid particles the principal values of ZT Z are equal to

those of Z0
T Z0. This implies that the shape of the particles will remain fixed upon deformation

(i.e., ω1 = ω0
1 and ω2 = ω0

2), which is, of course, consistent with the particles being rigid. On the

other hand, the rotation tensor R
(2)

serves to characterize the reorientation of the principal axes of

ZT Z with respect to those of Z0
T Z0.

In short, it has been shown that the evolution of the volume fraction, the average shape, and

the average orientation of the inclusions in the type of reinforced elastomers considered in this work

can be consistently estimated from the knowledge of the average deformation gradient F
(2)

in the

particles, which, in turn, can be readily obtained from the homogenization estimates of the previous

section.

Next, we address the evolution of the distribution of the inclusions (i.e., the relative motion of the

center of the underlying particles) as a function of the applied deformation F. For (simple) periodic

microgeometries, it can be shown rigorously that the relative motion of the centers of the underlying

inclusions are governed by the macroscopic deformation gradient F (and not by the average field

F
(2)

in the inclusion phase), at least up to the onset of the first instability. On the other hand, for

composite elastomers with random microstructures, the situation is less clear. Indeed, the author

is not aware of any rigorous result regarding the evolution of the distribution of the underlying
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inclusions in elastomers with this type of microgeometries. However, it has been suggested (Lopez-

Pamies and Ponte Castañeda, 2006a) that in this case the inclusions might also move—on the

average—with the macroscopic flow, as determined by F. Accordingly, for all microgeometries

studied in this work (periodic, as well as random), the evolution of the distribution of the inclusions

is taken to be controlled by the macroscopic deformation gradient F. In particular, this implies that

an inclusion centered at Xc in the undeformed configuration will move according to: xc = F Xc.
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Figure 2.3: Schematic representation of the evolution, from the undeformed to the deformed configuration,
of the microstructure in two-phase, “particulate” composites. Part (a) shows the evolution of a typical

inclusion (denoted by the color ellipsoid)—as determined by F
(2)

—and of its random, ellipsoidal distribution
(denoted by the dashed ellipsoid)—as determined by F. Part (b) shows analogous results for the periodic
distribution.

At this stage, it proves useful to illustrate the above-stated results pictorially. Fig. 2.3 shows a

schematic representation of a typical inclusion and of its distribution with the various microstruc-

tural variables, before and after deformation. Part (a) illustrates the random microstructure, and

part (b), the periodic one. (Note that, for clarity, the periodic microstructure has been depicted as

a simple cubic distribution; however, it is emphasized that use could have been made of any other

periodic distribution.) Fig. 2.3(a) depicts how a typical, initially ellipsoidal inclusion deforms into

another ellipsoid, with current aspect ratios ω1 = z1/z3, ω2 = z2/z3, and with current orientation

characterized by the three Euler angles φ1, φ2, φ3, as determined by F
(2)

. This figure also illus-

trates how the initially ellipsoidal distribution of inclusions in the undeformed configuration evolves
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to another ellipsoidal distribution—controlled by F—in the deformed configuration. Fig. 2.3(b)

shows analogous features for the periodic microstructure. Thus, similar to Fig. 2.3(a), Fig. 2.3(b)

shows the evolution of the initially ellipsoidal particle into another ellipsoid, as determined by F
(2)

.

Moreover, this figure illustrates how the initially periodic cubic distribution of inclusions in the un-

deformed configuration evolves to a parallelepiped distribution—controlled by F—in the deformed

configuration.

We conclude this section by making an important connection between the microstructure evolu-

tion results discussed in this section, and the Hashin-Shtrikman (HS) estimates (2.55) used in the

context of the linear comparison composite (2.54) associated with the second-order estimate (2.62).

2.5.1 Range of validity of the HS-type second-order estimates

Recall from Section 2.4.2 that the Hashin-Shtrikman (HS) estimates (2.55) have been established to

be accurate for small to moderate volume fractions of inclusions, but that they become increasingly

inaccurate and ultimately meaningless near the percolation limit, when the interactions among the

inclusions become especially strong. By combining this fact together with the above discussion on

microstructure evolution, it is plain that the second-order estimates of the HS type (2.62) may not

be used once the relevant microstructural variables (which evolve along the loading path of choice)

reach values approaching the percolation limit.

For the random microgeometry, following Ponte Castañeda and Willis (1995), the HS-type

second-order estimates utilized in this work are taken to become unsound whenever the under-

lying inclusions penetrate the “security” distributional ellipsoids surrounding them. More precisely,

making contact with Fig. 2.3(a), the HS-type second-order estimates for two-phase, particulate,

composite elastomers with the random “ellipsoidal” microgeometry first become invalid whenever

the deformed ellipsoidal inclusion comes into contact with the surrounding “ellipsoid” serving to

characterize the distribution of the inclusions in the deformed configuration. In line with this defi-

nition of rigorous validity, it is important to note that the second-order estimates of the HS type for

the random microgeometry become invalid before percolation (i.e., before adjacent ellipsoids coming

into contact lead to a percolating network of inclusions) actually takes place, in general.

For the periodic microgeometry, similar to the random one, the HS-type second-order estimates

become unsound whenever the underlying inclusions penetrate the distributional shapes surrounding

them. For instance, making contact with Fig. 2.3(b), the HS-type second-order estimates for two-

phase, particulate, composite elastomers with the periodic cubic microgeometry first become invalid

whenever the deformed ellipsoidal inclusion comes into contact with the surrounding parallelepiped

serving to characterize the distribution of the inclusions in the deformed configuration. Again, it

should be noted that, consistently with the above definition of rigorous validity, the second-order

estimates of the HS type for the periodic microgeometry become invalid before percolation actually

takes place, in general.
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2.6 Macroscopic stability

As already stated in Section 2.1, a comprehensive analysis of the development of instabilities in the

type of composite elastomers under investigation in this work is exceedingly complicated, especially

for composite elastomers with random microstructures (see Appendix III for composites with periodic

microstructures). Nevertheless, following Geymonat et al. (1993), it is possible to identify the

onset of macroscopic instabilities (i.e., instabilities with wavelengths comparable to the size of the

specimen) with the loss of strong ellipticity of the homogenized constitutive relation for the composite

elastomer, which can be efficiently estimated by means of the second-order method developed in

Section 2.3. In this connection, we state next the conditions for strong ellipticity of the second-order

estimate (2.46) for Ŵ . Thus, a homogenized elastomeric composite characterized by the effective

stored-energy function Ŵ is said to be strongly elliptic if and only if its associated acoustic tensor

is positive definite, namely, if and only if

K̂ikmimk = L̂ijklNjNlmimk > 0, (2.89)

for all m⊗N 6= 0. Here, K̂ik = L̂ijklNjNl is the effective acoustic tensor and L̂ = ∂2Ŵ/∂F
2

is the

effective incremental elastic modulus characterizing the overall incremental response of the material.

Note that when condition (2.89) is satisfied, the associated macroscopic equilibrium equations form

a system of strongly elliptic partial differential equations.

In connection with the condition (2.89), it should be remarked that, in general, L̂ 6= L̃. That

is, the incremental elastic modulus associated with the effective stored-energy function Ŵ of the

elastomeric composite does not correspond exactly to the effective modulus of the auxiliary linear

comparison composite (LCC). This raises the possibility that the LCC may lose strong ellipticity

before the actual nonlinear composite. Given that the LCC is a fictitious material whose main role

is to allow the estimation of the effective behavior of the actual nonlinear composite, in this work,

we will insist on strong ellipticity of the incremental modulus L̂, and not on strong ellipticity of the

effective modulus L̃ of the LCC. In passing, it is recalled that the condition of ellipticity requires

the acoustic tensor to be merely non-singular and not necessarily positive definite. Hence, strong

ellipticity implies ellipticity, but the converse is not true in general. However, the interest here is in

the determination of the loss of strong ellipticity of homogenized materials that are strictly convex,

and therefore strongly elliptic, for infinitesimal deformations. Then, elliptic regions containing the

point F = I, by continuity, will necessarily also be strongly elliptic. Thus, for the cases of interest

here, the elliptic and strongly elliptic regions coincide.

In general, the detection of loss of strong ellipticity requires a tedious, but straightforward,

scanning process (i.e., a numerical search of unit vectors N and m for which condition (2.89) ceases

to hold true). Incidentally, for certain particular cases, including when Ŵ is objective and isotropic

(i.e., Ŵ (Q
′
FQ) = Ŵ (F) for all F, and all proper, orthogonal, second-order tensors Q

′
, Q), it

is possible to write necessary and sufficient conditions for the strong ellipticity of Ŵ exclusively

in terms of the material properties (i.e., in terms of the components of L̂). The relevant specific

conditions will be spell out in the subsequent chapters as needed. For studies on sufficient and

necessary conditions for strong ellipticity see Knowles and Sternberg (1977), Hill (1979), Simpson
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and Spector (1983), Zee and Sternberg (1983), Silhavy (1999), and Dacorogna (2001).

2.7 Concluding remarks

In this chapter, we have developed a homogenization-based framework for estimating the macro-

scopic behavior of general elastomeric composites subjected to finite deformations. The main idea

behind the framework—which is based on an appropriate extension of the “second-order” homoge-

nization method developed by Ponte Castañeda (2002a) in the context of viscoplastic materials—is

the construction of suitable variational principles utilizing the concept of “linear comparison com-

posite” (LCC). Ultimately, this allows the conversion of available linear homogenization estimates

into analytical estimates for the large-deformation overall response of elastomeric composites. Moti-

vated by most applications of practical interest, special attention has been given to elastomers with

isotropic phases and “particulate” microstructures. For this class of materials, estimates have also

been derived for the evolution of suitably identified microstructural variables. In addition, the pro-

posed estimates for the overall behavior, which were enforced to satisfy overall objectivity, can also

be used to obtain estimates—in a rather efficient manner—for the onset of macroscopic instabilities,

through loss of ellipticity of the effective incremental moduli of the composite (Geymonat et al.,

1993).

In this chapter, specific results have been provided for non-dilute concentrations of aligned el-

lipsoidal particles of arbitrary shape and compliance dispersed randomly or periodically in an elas-

tomeric matrix with general isotropic, hyperelastic constitutive behavior. However, more general

micro-geometries could be easily considered, including multiple families of aligned inclusions, as well

as randomly oriented fibers, by exploiting more general versions of the Willis (Ponte Castañeda and

Willis, 1995) and Suquet (Suquet, 1990) estimates for the LCC.

The limiting cases of vacuous and ideally rigid inclusions, which are of particular practical im-

portance to model porous and reinforced rubbers, were also considered in detail, and it was found

that the resulting estimates simplified considerably. In particular, it was found that for the rigid

case, the deformation of the inclusions reduced to a pure rotation, as expected on physical grounds.

This is a remarkable result that bodes well for the power of the method: even though the homoge-

nization is carried out at the level of a linear (comparison) composite, the method has the capability

of accounting for the nonlinear kinematics involved in the actual behavior of the composite elas-

tomer. Another example of the strength of the method developed in this work will be discussed in

subsequent chapters, where estimates will be obtained for rigidly reinforced and porous elastomers

with incompressible matrix phases. For the case of rigidly reinforced elastomers, the incompressibil-

ity of both phases, which translates into a kinematical constraint on the determinant of the local

deformation, dictates overall incompressibility for the composite. Thus, it will be seen in Chapters

6—7 that the method is indeed able to recover overall incompressibility for the composite (at least

for the particular cases considered), in spite of the strong nonlinearity associated with the local

incompressibility constraint for the phases. For the case of porous elastomers, the incompressibility

of the matrix phase dictates the evolution of the porosity. As it will be seen in Chapters 3—5, the
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method is also able to recover (exactly in 2D and approximately in 3D) the evolution of porosity.

Furthermore, in the sequel, it will also be seen that the method is able to predict macroscopic in-

stabilities of the shear/compaction-band type for elastomeric composites, even when the behavior

of the constituent phases is itself strongly elliptic, and therefore excludes such types of instabilities

at the local level.

Finally, it should be emphasized that the method proposed here for composite elastomers is

still not fully optimized. In particular, it is not yet clear what the best choice is for the reference

deformation variables F(r), nor it is yet known what the optimal form is for the modulus tensors L(r)

of the LCC. But, as it will be demonstrated in the chapters that follow, even at its current stage of

development, the method is already capable of providing physically meaningful estimates for a large

class of composite elastomers in the finite-deformation regime. To the best of the author’s knowledge,

there are no other analytical methods available in the literature with comparable capabilities in terms

of accuracy and generality.
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2.8 Appendix I. Overall objectivity of W̃

In this appendix we show that the stored-energy function W̃ , as defined by

W̃ (F) = min
F∈K(F)

〈W (X,F)〉 = min
F∈K(F)

N∑
r=1

c
(r)
0 〈W (r)(F)〉(r), (2.90)

with the kinematically admissible set K given by:

K(F) = {F |∃ x = x(X) with F = Gradx in Ω0, x = FX on ∂Ω0}, (2.91)

and objective local phases:

W (r)(QF) = W (r)(F) ∀ Q ∈ Orth+, (2.92)

is objective. In this last expression, Orth+ denotes the proper orthogonal group.

First, let us consider the slightly different problem

W̃ (QF) = min
F∈K(QF)

N∑
r=1

c
(r)
0 〈W (r)(F)〉(r), (2.93)

with

K(QF) = {F |∃ x = x(X) with F = Gradx in Ω0, x = QFX on ∂Ω0}, (2.94)

where Q is an arbitrary, proper orthogonal, second-order tensor. Now, by introducing the following

change of variables:

x = Qx′, (2.95)

it follows that

F =
∂x
∂X

= Q
∂x′

∂X
= QF′. (2.96)

In turn, by exploiting local objectivity, it follows that

W (r)(F) = W (r)(QF′) = W (r)(F′). (2.97)

Finally, by making use of (2.95)–(2.97), the problem (2.93) can be rewritten as:

W̃ (QF) = min
F′∈K(F)

N∑
r=1

c
(r)
0 〈W (r)(F′)〉(r), (2.98)

with the kinematically admissible set K given by:

K(F) = {F′ |∃ x′ = x′(X) with F′ = Gradx′ in Ω0, x′ = FX on ∂Ω0}. (2.99)

It is then concluded that

W̃ (QF) = W̃ (F) ∀ Q ∈ Orth+. (2.100)
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2.9 Appendix II. On the relation S = ∂W̃/∂F

In this appendix, we provide a proof for the relation

S .= 〈S〉 = S̃(F) .=
∂W̃

∂F
(2.101)

Here, it is recalled that S denotes the first Piola-Kirchhoff stress tensor in the hyperelastic composite,

F denotes the applied macroscopic deformation gradient tensor, and W̃ stands for the effective

stored-energy function of the composite, as defined by expression (2.12) in the main body of the

text.

The proof is as follows (in component form).

∂W̃

∂F ij

=
1
|Ω0|

∫

Ω0

∂W

∂Fkl

∂Fkl

∂F ij

dV (by the ChainRule)

=
1
|Ω0|

∫

Ω0

Skl
∂2xk

∂F ij∂Xl

dV

=
1
|Ω0|

∫

∂Ω0

Skl
∂xk

∂F ij

Nl dS (by the DivergenceTheoremand Equilibrium)

=
1
|Ω0|

∫

∂Ω0

Sil Xj Nl dS (from the Boundary Conditions)

=
1
|Ω0|

∫

Ω0

∂ (Sil Xj)
∂Xl

dV (by the DivergenceTheorem)

=
1
|Ω0|

∫

Ω0

Sij dV (from theEquilibrium Equations)

= 〈Sij〉. (2.102)

2.10 Appendix III. Microscopic and macroscopic instabilities

in periodic elastomers

In this appendix, following the work of Triantafyllidis and co-workers (see, e.g., Triantafyllidis and

Maker, 1985; Geymonat et al., 1993; Triantafyllidis et al., 2006; Michel, 2006), we recall the precise

definitions of microscopic and macroscopic instabilities in periodic, hyperelastic composites subjected

to finite deformations, and detail their connection.

Consider an elastomeric composite whose periodic, stress-free state is used as the undeformed

reference configuration. Without loss of generality, the solid can be thought as resulting by periodic

repetition along each coordinate direction of a fundamental building block D0 (with boundary ∂D0),

which is termed the unit cell. Without loss of generality D0 is assumed to be a parallelepiped of

dimension Li in the direction ei. Then, the distribution of the material is characterized by D0-

periodic characteristic functions

χ(r)(X1 , X2 , X3) = χ(r)(X1 + k1L1 , X2 + k2L2 , X3 + k3L3 ) , (2.103)

where k1, k2, k3 are arbitrary integers, and L1 , L2, L3, the unit cell dimensions.

For hyperelastic composites with periodic microstructure, it is known (Braides, 1985; Müller,

1987) that the computation of the effective stored-energy function W̃ , as determined by relation
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(2.12) in the main body of the text, cannot be simplified further, as a consequence of the lack of

convexity of the local stored-energy function W . (Recall that, for a periodic medium, the computa-

tion of the effective stored-energy function W̃ , as determined by relation (2.12), can be reduced to

a computation on the unit cell, provided that the local stored-energy function W be convex (Mar-

cellini, 1978).) However, as will be discussed in further detail below, it is still useful in this context

to define the one-cell effective energy function Ŵ# via the expression:

Ŵ#(F) = min
u′∈D#

{
1
|D0|

∫

D0

W (X,F +∇u′)dX
}

, (2.104)

where by D# is denoted the set of all D0-periodic fluctuation functions u′ with
∫

D0
∇u′dX = 0.

Note that, since the macroscopic deformation gradient is given by F, the local fluctuation field is

given in terms of the deformation field by: u′ = x− FX. Attention is focused only on macroscopic

deformations F for which such a fluctuation field, denoted by u′
F
, exists and corresponds to a stable

equilibrium solution of the unit-cell deformation problem:
∫

D0

∂W

∂Fij
(X,F +∇u′

F
)δui,jdX = 0 , (2.105)

β
D0
≡ min

u′∈D#
{
∫

D0

∂2W

∂Fij∂Fkl
(X,F +∇u′

F
)u′i,ju

′
k,ldX/

∫

D0

u′i,ju
′
i,jdX} > 0 , (2.106)

where δu is any arbitrary D0-periodic fluctuation field. The first of the above equations indicates

that u′
F

is an extremum of the unit-cell energy Ŵ#(F), and the second that it corresponds to a local

minimum of this energy.

Although—by assumption—the material is at each point strongly elliptic, this property does not

usually hold for the homogenized solid. The search for the macroscopic deformations F for which the

homogenized solid characterized by Ŵ#(F) loses its strict rank-one convexity is addressed next. To

this end, one needs to investigate the one-cell homogenized moduli tensor L̂#(F), which is defined

by

L̂#(F) ≡ ∂2Ŵ#

∂F∂F
(F) , Ŵ#(F) =

1
|D0|

∫

D0

W (X,F +∇u′
F
)dX. (2.107)

When an explicit expression for Ŵ# exists, the homogenized moduli are calculated by taking the

second derivative with respect to F of Ŵ# given in (2.107). For the case of regular microgeometries

where the unit-cell problem — as defined in (2.105) — is solved numerically using an F.E.M. tech-

nique, a different calculation strategy, which is based on the interchange between the homogenization

and linearization steps, is employed.

Thus, for a solid with a linearized response characterized by its tangent moduli L(X), where L
is a D0-periodic function of X, the homogenized tangent modulus tensor LH is uniquely defined by:

GijLH
ijklGkl = min

u′∈D#
{ 1
|D0|

∫

D0

Lijkl(X)(Gij + u′i,j)(Gkl + u′k,l)dX} , (2.108)

where G is an arbitrary second-order tensor. A formal calculation based on (2.108) shows that the

components of the homogenized tangent moduli are given by:

LH
pqrs =

1
|D0|

∫

D0

Lijkl(X)(δipδjq +
pq
χ i,j)(δkrδls +

rs
χ k,l)dX , (2.109)
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where the characteristic functions
pq
χ ∈ D# are D0-periodic fluctuations defined by:

∫

D0

Lijkl(X)(δipδjq +
pq
χ i,j)δuk,ldX = 0 , (2.110)

for arbitrary variations δu ∈ D#. A formal calculation of L̂# based on (2.107), which makes use

of (2.105), shows that the above-defined linearization and homogenization operations commute, and

therefore,

L̂# = LH . (2.111)

It also follows that the characteristic functions
pq
χ (defined in (2.110)) involved in the determination

of LH are the F derivatives of the fluctuation functions u′
F
, namely,

pq
χ =

∂u′
F

∂F pq

. (2.112)

By definition, the one-cell homogenized energy Ŵ# (of course) requires minimization of the

energy over a single unit cell. However, it is possible that, by minimizing the energy over larger

domains containing several unit cells, a lower value can be found for the energy per volume of these

larger samples. The corresponding fluctuation fields are periodic over much larger (possibly infinite)

domains kD0, where kD0 denotes a super-cell of dimensions kiLi in each direction. Hence, a fully

consistent definition (see Müller, 1987) of the homogenized energy W̃ requires the consideration

of fluctuations u′ that are kD0-periodic. Thus, for a periodic hyperelastic medium, the general

expression (2.12) specializes to:

W̃ (F) ≡ inf
k∈N3

{ min
u′∈kD#

{ 1
|kD0 |

∫

kD0

W (X,F +∇u′)dX}} , (2.113)

From the definitions in (2.104) and (2.113), one can easily conclude that W̃ (F) ≤ Ŵ#(F). The

equality holds when the infimum is a minimum occurring at k = (1, 1, 1), i.e., when the one-cell

minimizing fluctuation displacement u′
F

is also the minimizing fluctuation displacement for any

super-cell kD0.

For small strains (near F = I), one expects that W̃ (F) = Ŵ#(F), but as the macroscopic

strain increases, eventually, W̃ (F) < Ŵ#(F). It is always possible to calculate, exactly, as well as

approximately, the one-cell homogenized energy Ŵ#(F) and the corresponding macroscopic moduli

L̂#(F). However, it is practically impossible to calculate the correct homogenized energy W̃ (F),

in view of the infinity of the required domain of its definition (kD0 with ‖k‖ → ∞). Therefore,

it is important to establish the region of macroscopic strain space where the one-cell homogenized

energy is the correct one (Ŵ#(F) = W̃ (F)). To this end, and in an analogous way to (2.106), one

can define the coercivity constant β(F) for the infinite domain (Ω0 = R3):

β(F) ≡ inf
k∈N3

βkD0
(F) ,

βkD0
(F) ≡ min

u′∈kD#

{
∫

kD0

∂2W

∂Fij∂Fkl
(X,F +∇u′

F
)u′i,ju

′
k,ldX/

∫

kD0

u′i,ju
′
i,jdX}.

(2.114)
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As shown by Geymonat et al. (1993), a necessary condition for W̃ (F) = Ŵ#(F) is that β(F) > 0.

Fortunately, unlike the computation of W̃ (F), the determination of the coercivity constant β(F)

requires only calculations on the unit cell D0, as will be seen next. Thus, using the Bloch-wave

representation theorem (Bloch, 1928), it was proved by Geymonat et al. (1993) that the eigenmode

v corresponding to β(F) can always be put in the form:

v(X) = u′(X) exp (iωkXk) , u′ ∈ D# ;

ω ≡ (ω1, ω2, ω3) , 0 ≤ ω1 L1, ω2 L2, ω3 L3 < 2π , (2.115)

and hence that the coercivity constant β(F) is determined from:

β(F) ≡ inf
ω
{ min
u′∈D#

{
∫

D0

∂2W

∂Fij∂Fkl
(X,F +∇u′

F
)v?

i,jvk,ldX/

∫

D0

v?
i,jvi,jdX}} , (2.116)

with v given by (2.115). Here, v? is the complex conjugate of the field v. Of particular interest here

is β0(F), the long-wavelength limit (ω → 0) of the above expression (2.116), defined as:

β0(F) ≡ lim inf
ω→0

{ min
u′∈D#

{
∫

D0

∂2W

∂Fij∂Fkl
(X,F +∇u′

F
)v?

i,jvk,ldX/

∫

D0

v?
i,jvi,jdX}} , (2.117)

which, as will be subsequently discussed, when it vanishes, signals the loss of strict rank-one convexity

of the one-cell homogenized stored energy Ŵ#(F).

The use of lim infω→0 in the above expression merits further explanation. As seen from (2.115)

two different types of eigenmodes exist in the neighborhood of ω = 0; the strictly D0-periodic ones,

for which ω = 0, and the long-wavelength modes, for which ω → 0. Depending on the case, the

lowest value of the integral can occur for long wavelength modes, in which case the limit ω → 0

is a singular one depending on the ratio of the ω components, thus justifying the notation used in

(2.117).

Finally, and in analogy with the effective coercivity constant defined in (2.22), a macroscopic

one-cell coercivity constant B̂# is defined by:

B̂#(F) ≡ min
‖m‖=‖N‖=1

{miNjL̂# ijkl(F)mkNl} . (2.118)

With the definition of the three coercivity (also, and equivalently, termed “stability constants”),

B̂#(F), β0(F) and β(F), for the macroscopic loading F, the stage has been set for discussing the

stability of the porous solid at that load level. It follows from the definitions of these three coercivity

constants (see Geymonat et al., 1993) that the following relation holds for arbitrary vectors m and

N:

miNjL̂# ijkl(F)mkNl ≥ β0(F)‖m‖2‖N‖2 ≥ β(F)‖m‖2‖N‖2 =⇒ B̂#(F) ≥ β0(F) ≥ β(F) .

(2.119)

More specifically, the above relations indicate that when the one-cell based homogenized energy is

the correct one (i.e., β(F) > 0 in which case W̃ (F) = Ŵ#(F)), the homogenized energy function

is strictly rank-one convex. Moreover, microscopic stability (β(F) > 0, which means from (2.117),

that the solid is stable to bounded perturbations of arbitrary wavelength ω) implies macroscopic
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stability (B̂#(F) > 0, which means that the corresponding one-cell based homogenized moduli L̂#

are also strongly elliptic).

Finding the domain in macroscopic strain (F) space for which the material is locally stable, i.e.,

β(F) > 0, although feasible thanks to (2.116), requires tedious and time consuming calculations since

one has to scan using a fine grid the (0, 2π)× (0, 2π)× (0, 2π) domain in Fourier (ω) space. On the

other hand, finding the larger domain in the same macroscopic strain (F) space for which the one-cell

homogenized solid Ŵ#(F) is macroscopically stable, i.e., B̂#(F) > 0, is a rather straightforward

calculation since it only requires the determination of the homogenized moduli L̂#(F) at each

macroscopic deformation F.

An interesting observation about the loss of macroscopic stability is in order at this stage. It

has been shown by Geymonat et al. (1993) that B̂#(F) and β0(F) always vanish simultaneously,

i.e., if β0(F) = 0, then it implies that B̂#(F) = 0. This means from (2.119) that the onset of a

long-wavelength instability (ω → 0 — the wavelength of the eigenmode is much larger compared to

the cell size) is always detectable as a loss of strong ellipticity of the homogenized moduli. Therefore,

the following remark can be made about the first (in a monotonic loading process) loss of microscopic

stability (β(Fc) = 0) in a microstructured elastic solid at some critical macroscopic deformation Fc:

if β0(Fc) = β(Fc), the wavelength of the first instability encountered is much larger than the unit

cell size and hence the instability can be macroscopically detected as a loss of strong ellipticity of

the homogenized moduli L̂# since B̂#(Fc) = 0. For the case when β0(Fc) > β(Fc) = 0, the first

instability encountered in the loading process has a finite wavelength, and from that point on the

one-cell homogenization is no longer adequate and Ŵ# cannot provide any useful information about

the solid. Henceforth a tedious numerical process that follows the bifurcated equilibrium solutions

is required to determine the response of the solid under the macroscopic strains in the neighborhood

of Fc and beyond.

2.11 Appendix IV. On the limit of L̃ as F → I

In this appendix, we show that—in the context of two-phase, particulate composites consisting of el-

lipsoidal particles distributed (randomly with ellipsoidal symmetry or periodically) in an elastomeric

phase—the expression (2.55) for the effective modulus tensor L̃ of the LCC auxiliary problem, re-

peated here for convenience:

L̃ = L(1) + c0

[
(1− c0)P− (4L)−1

]−1
, (2.120)

reduces to the classical result—with major and minor symmetries—in the limit of small deformations

(i.e., in the limit as F → I).

First, recall from Section 2.4 that the modulus tensors L(1) and L(2) (and therefore the mi-

crostructural tensor P, as defined by (2.56) and (2.59)) are ultimately functions of the macroscopic

deformation gradient tensor F. In particular, in the limit as F → I, these tensors are of the form:

L(r) = L(r)
0 + εL(r)

1 + o(ε2) (2.121)
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(r = 1, 2) and

P = P0 + εP1 + o(ε2), (2.122)

where ε = ||F− I|| is a small parameter. The leading–order terms in expressions (2.121) have both,

major (i.e., L
(r)
0ijkl = L

(r)
0klij) and minor (i.e., L

(r)
0ijkl = L

(r)
0jikl = L

(r)
0ijlk) symmetries. On the other

hand, the leading–order term in expression (2.122) for the expansion of the microstructural tensor

P—as determined by (2.56) and (2.59)—has major, but not minor symmetry.

Next, recall that the inverse operation in expression (2.120) is defined by

Aijmn A−1
mnkl = A−1

ijmn Amnkl = Iijkl = δikδjl ; (AA−1 = A−1 A = I), (2.123)

where A is an arbitrary fourth-order tensor and A−1 denotes its inverse. (For convenience, the

symbol I has been introduced in (2.123) to denote the identity operator in the space of fourth-order

tensors.)

Having spelled out the asymptotic behavior of L(1), L(2), and P, as well as having recalled the

precise definition of the inverse operation, we turn next to compute the limit of (2.120) for L̃ as

F → I. To this end, we first consider the term (∆L)−1, needed in the computation of (2.120).

In this regard, it is important to recognize that—because L(r)
0 does have minor symmetries—the

leading-order term of ∆L: ∆L0
.= L(1)

0 − L(2)
0 is singular in the sense of (2.123) (i.e., there is no

fourth-order tensor (∆L0)−1 such that ∆L0 (∆L0)−1 = (∆L0)−1∆L0 = I). To better understand

“how singular” ∆L0 is, it proves useful to compute its null space; that is, the set of second-order

tensors that ∆L0 maps to the zero (second-order) tensor:

null ∆L0 = {G |∆L0G = 0}. (2.124)

Thus, by solving

∆L0 G = 0 (2.125)

for G it is seen that

null ∆L0 = span{W1,W2,W3}, (2.126)

where {W1,W2,W3} denotes an orthogonal basis for the set of skew-symmetric second-order ten-

sors. To be precise, Wi + WT
i = 0 (i = 1, 2, 3) and Wi ·Wj = 0 (i 6= j). Now, by making use of

(2.126), together with the definition of inverse (2.123), we have that in the limit as F → I:

(∆L)−1 = ε−1∆Mε + ∆M0 + o(ε), (2.127)

where

∆Mε =
3∑

i=1

1
Wi ·∆L1Wi

Wi ⊗Wi. (2.128)

Further, ∆Mε and ∆M0 satisfy the following conditions:

∆L0∆Mε = ∆Mε∆L0 = 0 (2.129)

and

∆L0∆M0 + ∆L1∆Mε = ∆M0∆L0 + ∆Mε∆L1 = I. (2.130)
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In these last expressions, ∆L1 = L(1)
1 − L(2)

1 has been introduced to denote the second-order term

in the expansion of ∆L in the limit as F → I.

Having specified the expansion of (∆L)−1, we next consider the expansion of the term [(1− c0)P−
(∆L)−1

]−1, also needed in the computation of (2.120). Thus, by making use of the preceding de-

velopment, it follows that in the limit as F → I:
[
(1− c0)P− (∆L)−1

]−1
=

[−ε−1∆Mε + (1− c0)P0 −∆M0 + o(ε)
]−1

= N0 + εN1 + o(ε2), (2.131)

where N0 and N1 satisfy the following relations:

∆MεN0 = N0∆Mε = 0 (2.132)

and

((1− c0)P0 −∆M0)N0 −∆MεN1 = N0 ((1− c0)P0 −∆M0)−N1∆Mε = I. (2.133)

Note that equation (2.132) simply states that N0 must be a fourth-order tensor with major and

minor symmetries. The complete determination of N0 requires some more work. Thus, by right

multiplying relation (2.133) with ∆L0, noticing from (2.130) that ∆M0 ∆L0 = I −∆Mε ∆L1, and

making use of (2.132), can be shown to lead to the following equation for N0:

(1− c0)N0P0∆L0 −N0 = ∆L0. (2.134)

At this point, it is useful to exploit the fact that N0 and ∆L0 have major and minor symmetries,

so that relation (2.134) can be rewritten as:

N0 [(1− c0)P
sym
0 ∆L0 − I sym] = ∆L0, (2.135)

where Psym
0 is the symmetric part of P0:

P sym
0ijkl =

1
4

(P0ijkl + P0jikl + P0ijlk + P0jilk) (2.136)

and I sym is the identity operator in the space of fourth-order tensors with minor symmetries:

I sym
ijkl =

1
2

(δikδjl + δjkδil) . (2.137)

Equation (2.135) can now be readily solved for N0 to render:

N0 =
[
(1− c0)P

sym
0 − (∆L0)−1sym

]−1sym

. (2.138)

Here, the symbol “−1sym” denotes the inverse operation in the space of fourth-order tensors with

minor symmetries:

BijmnB−1sym

mnkl = B−1sym

ijmn Bmnkl = I sym
ijkl ; (BB−1sym

= B−1sym

B = I sym), (2.139)

where B is an arbitrary fourth-order tensor with minor symmetries (i.e., Bijkl = Bjikl = Bijlk).

Finally, by making use of the above results, it is easy to see that in the limit as F → I:

L̃ = L(1)
0 + c0

[
(1− c0)P

sym
0 − (∆L0)−1sym

]−1sym

+ o(ε), (2.140)

which is precisely the classical result in the context of linear elasticity where the effective modulus

tensor L̃ has both, major and minor symmetries.
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2.12 Appendix V. Earlier versions of the second-order ho-

mogenization method

In this appendix, we provide a brief outline of earlier versions of the second-order method. For

more general treatments see Ponte Castañeda (1996), Ponte Castañeda and Willis (1999), Ponte

Castañeda and Tiberio (2000), Lopez-Pamies and Ponte Castañeda (2003), and Lopez-Pamies and

Ponte Castañeda (2004a). Recall that this last reference has been included as Appendix A at the

end of this thesis for completeness.

2.12.1 Tangent second-order estimates

As stated in Section 2.3 in the main body of the text, relations (2.33) and (2.34) can be combined

to approximate the local stored-energy functions of the phases of the hyperelastic composite. To be

precise,

W (r)(F) ≈ W
(r)
T (F) + V (r)(F(r),L(r)). (2.141)

By making use of (2.141), the effective stored-energy function (2.28) of the nonlinear composite may

be correspondingly approximated as

Ŵ (F) ≈ ŴT (F;F(s),L(s)) +
N∑

r=1

c
(r)
0 V (r)(F(r),L(r)), (2.142)

where ŴT , which denotes the effective stored-energy function associated with the linear comparison

composite (LCC) defined by relations (2.32) and (2.33), is given by expression (2.38) in the main

body of the text.

Note that the approximation (2.142) is valid for any reference deformation gradients F(r) and

modulus tensors L(r), which suggests its optimization with respect to these variables. In fact, the

solution of this optimization problem for the variables F(r) and L(r) in the estimate (2.142) for Ŵ

depends on the solution of the stationary problems (2.34) defining the “corrector” functions V (r).

In this regard, it is recalled from Section 2.3 that the stationarity with respect to the variables F̂(r)

in (2.34) leads to the conditions:

S(r)(F̂(r))− S(r)(F(r)) = L(r)(F̂(r) − F(r)), (2.143)

which can be trivially satisfied by letting F̂(r) tend to F(r). Note that this choice makes the corrector

functions V (r) vanish identically. In this connection, optimality of the reference deformations F(r)

in (2.142) leads to the prescriptions:

F(r) = F
(r)

= 〈F〉(r), (2.144)

where, for convenience, it has been recalled that F
(r)

denotes the average deformation gradient

field over phase r in the LCC. As shown by Ponte Castañeda and Tiberio (2000), under the above

conditions, the general estimate (2.142) leads to the following tangent second-order estimate:

Ŵ (F) =
N∑

r=1

c
(r)
0

[
W (r)(F

(r)
) +

1
2
S(r)(F

(r)
) · (F− F

(r)
)
]

. (2.145)
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A key disadvantage of the estimate (2.145) is that by setting F̂(r) = F(r), the optimality conditions

for the moduli L(r) in expression (2.142), which for this case specialize to:

〈(F− F(r))⊗ (F− F(r))〉(r) = 0, (2.146)

where it is recalled that F = F(X) is the solution of the LCC problem (2.38), cannot be satisfied

in general (Ponte Castañeda and Willis, 1999). Parenthetically, it is interesting to remark that

condition (2.146) is actually exact for laminate microstructures. For this reason, as it will be shown

more explicitly in Chapter 6, the tangent second-order estimate (2.145) is able to recover the exact

effective stored-energy function for hyperelastic laminates (with constant deformation gradients in

the phases). Thus, instead of insisting on (2.146), the physically motivated prescription:

L(r) = L(r)(F
(r)

) =
∂2W (r)

∂F∂F
(F

(r)
), (2.147)

which is entirely consistent with the limit F̂(r) → F(r) in (2.143), is imposed to close the problem.

It is important to remark here that while the resulting tangent second-order estimate (2.145) cer-

tainly has some desirable properties, such as the ability to account for the stiffness, concentration,

and distribution of the given phases in a hyperplastic composite, it also has some shortcomings.

Thus, for example, the tangent second-order estimate (2.145) is able to recover only approximately

the overall incompressibility constraint associated with rigidly reinforced elastomers with an incom-

pressible matrix phase (typical of rubbers) (see, e.g., Ponte Castañeda and Tiberio, 2000; Lahellec

et al., 2004). Furthermore, for porous elastomers with incompressible matrix phases, the estimate

(2.145) fails to recover the exact evolution of the porosity (see Lopez-Pamies and Ponte Castañeda,

2004b and Chapter 3). The new second-order estimates derived in Section 2.3 will be shown—in the

subsequent chapters—to circumvent such shortcomings.

2.12.2 Second-order estimates with fluctuations: F(r) = F
(r)

As already discussed in Section 2.3 in the text, the general second-order estimate (2.46) is valid for

any choice of the reference deformation F(r). Lopez-Pamies and Ponte Castañeda (2004a) originally

proposed to set

F(r) = F
(r)

= 〈F〉(r). (2.148)

This prescription has the advantage that it makes stationary (with respect to F(r)) the stored energy

W̃T , given by expression (2.38), of the LCC. Making use of (2.148) in (2.46) leads to the following

second-order estimate:

W̃ (F) =
N∑

r=1

c(r)
[
W (r)(F̂(r))− S(r)(F

(r)
) · (F̂(r) − F

(r)
)
]
. (2.149)

The estimate (2.149) has been found to be superior to the earlier tangent second-order estimate

(2.145). In particular, in the context of (2D) reinforced elastomers, it has been shown by Lopez-

Pamies and Ponte Castañeda9 (2004a) that (2.149), unlike (2.145), does recover the exact incom-

pressibility constraint in the limit as the composite becomes incompressible. In spite of the improve-

ment over earlier estimates, (2.149) has been shown to lead to inconsistencies for certain limiting
9Recall that this article has been included as Appendix A at the end of this thesis.
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cases. For instance, when applied to (2D) porous elastomers with incompressible matrix phases, the

second-order estimate (2.149) ceases to be well defined for hydrostatic loading (unpublished work).

More specifically, in this case, the computation of (2.149) reduces to solving a system of two distinct

equations for only one unknown, which is, of course, ill posed.

2.13 Appendix VI. The tensor P for cylindrical fibers and

laminates

This Appendix deals with the computation of the tensor P, defined by expression (2.56), in the limit

as the ellipsoidal inclusions, as characterized by the tensor Z0, tend to cylindrical fibers and layers.

To obtain cylindrical fibers we set, without loss of generality, Z0 = diag(1/z0
1 , 1/z2

2 , ε) in the

general expression (2.56) and take the limit ε → 0. Here, ε = 1/z0
3 , where z0

3 denotes the length

of the principal semi-axis of the ellipsoidal inclusion in the e3 direction, so that ε → 0 corresponds

to the inclusion becoming infinitely long in that direction. Thus, writing the components of (2.56),

with respect to the principal axes of the ellipsoidal inclusion, in polar cylindrical coordinates:

ξ1 =
√

1− z2 cos θ, ξ2 =
√

1− z2 sin θ, ξ3 = z, (2.150)

leads to

Pijkl =
z0
1z0

2ε−1

4π

∫ 2π

0

∫ 1

−1

Hijkl(ξ1, ξ2, ξ3)[
(1− z2)

(
(z0

1)2 cos2 θ + (z0
2)2 sin2 θ

)
+ ε−2 z2

]3/2
dz dθ. (2.151)

By changing variables to

z′ =
z
ε

(2.152)

we can rewrite the integral (2.151) as

Pijkl =
z0
1z0

2

4π

∫ 2π

0

∫ 1/ε

−1/ε

Hijkl(ξ1, ξ2, ε z)
[
(1− ε2z′ 2)

(
(z0

1)2 cos2 θ + (z0
2)2 sin2 θ

)
+ z′ 2

]3/2
dz′ dθ. (2.153)

Carrying out now the limit ε → 0 in (2.153) leads to

Pijkl =
z0
1z0

2

4π

∫ 2π

0

∫ ∞

−∞

Hijkl(ξ1, ξ2, 0)
[
(z0

1)2 cos2 θ + (z0
2)2 sin2 θ + z′ 2

]3/2
dz′ dθ, (2.154)

which upon integrating in z′ yields finally

Pijkl =
z0
2

2πz0
1

∫ 2π

0

Hijkl(ξ1, ξ2, 0)
cos2 θ + (z0

2/z0
1)2 sin2 θ

dθ. (2.155)

Note that the integral in (2.155) is nothing more than an integral over the unit circle, so that it can

be rewritten more generally as expression (2.57) in the main body of the text.

To generate layers, we start out from (2.155) and take the limit as the length z0
2 of the principal

semi-axis of the cylindrical fibers in the e2 direction tends to infinity. (Note that taking the limit

z0
1 → ∞ would lead exactly to the same final result, but with the lamination direction parallel to
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the e2 direction as opposed to the e1.) In this case, it proves more convenient to use Cartesian

coordinates. Thus, rewriting (2.155) in Cartesian coordinates:

ξ1 =





ξ+
1 =

√
1− y2 if 0 ≤ θ ≤ π/2 and 3π/2 ≤ θ ≤ 2π

ξ−1 = −
√

1− y2 if π/2 ≤ θ ≤ 3π/2
, ξ2 = y, (2.156)

can be shown to lead to

Pijkl =
z0
1z0

2

2π

∫ 1

0

Hijkl(ξ+
1 , ξ2, 0) + Hijkl(ξ−1 , ξ2, 0)

(z0
1)2(1− y2) + (z0

2)2y2

1√
1− y2

dy

+
z0
1z0

2

2π

∫ 1

0

Hijkl(ξ+
1 ,−ξ2, 0) + Hijkl(ξ−1 ,−ξ2, 0)
(z0

1)2(1− y2) + (z0
2)2y2

1√
1− y2

dy. (2.157)

By defining ∆ .= 1/z0
2 and changing variables to

y′ =
y

∆
, (2.158)

the integrals (2.157) can be rewritten as follows

Pijkl =
z0
1

2π

∫ 1/∆

0

Hijkl(ξ′1, ∆ y′, 0) + Hijkl(−ξ′1,∆ y′, 0)
(z0

1)2(1−∆2y′ 2) + y′ 2
1√

1−∆2y′ 2
dy′

+
z0
1

2π

∫ 1/∆

0

Hijkl(ξ′1,−∆ y′, 0) + Hijkl(−ξ′1,−∆ y′, 0)
(z0

1)2(1−∆2y′ 2) + y′ 2
1√

1−∆2y′ 2
dy′,

(2.159)

where ξ′1 =
√

1−∆2 y′2. Carrying out now the limit ∆ → 0 in (2.159) leads to

Pijkl =
z0
1

π

∫ ∞

0

Hijkl(1, 0, 0) + Hijkl(−1, 0, 0)
(z0

1)2 + y′ 2
dy′. (2.160)

which upon integrating in y′ finally renders

Pijkl = Hijkl(1, 0, 0). (2.161)

Thus, in the limit as the ellipsoidal inclusions become layers, the microstructural tensor P simply

reduces to H(N), where N denotes the direction of lamination in the undeformed configuration.
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Chapter 3

Porous elastomers: cylindrical voids,

random microstructure

In the preceding chapter, we developed a homogenization framework for determining the overall

behavior, the evolution of the underlying microstructure, and the onset of macroscopic instabilities

in hyperelastic composites subjected to finite deformations, with special interest in two-phase, par-

ticulate microstructures. In the present and subsequent chapters, we make use of this framework to

study the behavior of specific material systems.

This is the first of two chapters dealing with the overall behavior of porous elastomers consisting

of aligned cylindrical voids in an isotropic elastomeric matrix phase subjected to plane-strain load-

ing conditions. This application proves general enough to contain all the essential features of the

problem, including the subtle interplay between the evolution of the underlying microstructure and

the effective behavior and stability of porous elastomers. At the same time, this application is simple

enough to allow for a transparent mathematical analysis—to the extent that it leads to analytical

solutions. In particular, explicit results are provided for the case when the cylindrical voids are dis-

tributed randomly and isotropically in the plane of deformation and the isotropic elastomeric matrix

is taken to be incompressible and strongly elliptic. In spite of the strong ellipticity of the matrix

phase, the homogenized second-order estimates for the overall behavior of the porous elastomer are

found to lose strong ellipticity at sufficiently large compressive deformations corresponding to the

possible development of shear-band type instabilities. The reasons for this result are linked to the

evolution of the microstructure, which, under appropriate loading conditions, can induce geometric

softening leading to overall loss of strong ellipticity.

3.1 Plane-strain loading of transversely isotropic, random

porous elastomers

In this chapter, as already stated above, we study the problem of plane-strain loading of porous

elastomers, with initial porosity f0, consisting of cylindrical voids with initially circular cross-section,

and aligned in the e3 direction. In addition, the in-plane distribution of the pores is random and

isotropic (see Fig. 3.1).
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Figure 3.1: Reference configuration depiction of the random, isotropic arrangement of circular voids.

Following Section 2.1.3, the elastomeric matrix phase is taken to be characterized by the (2D)

isotropic stored-energy function:

W (1)(F) = W (F) = Φ(λ1, λ2) = g(I) + h(J) +
κ− µ

2
(J − 1)2, (3.1)

where the superscript “(1),” denoting matrix phase quantities, has been dropped for ease of notation,

and it is recalled that g and h are material functions of their arguments: I = λ2
1 +λ2

2 and J = λ1λ2.

Furthermore, κ denotes the two-dimensional bulk modulus of the material at zero strain, while µ

denotes the corresponding shear modulus. A relatively simple model of the general type (3.1), which

captures the limiting chain extensibility of elastomers, is the Gent model (Gent, 1996):

W (F) = −µJm

2
ln

[
1− I − 2

Jm

]
− µ ln J +

(
κ− µ

2
− µ

Jm

)
(J − 1)2 , (3.2)

where the parameter Jm is the limiting value for I − 2 at which the material locks up. Note that

(3.2) reduces to the compressible Neo-Hookean material:

W (F) =
µ

2
(I − 2)− µ ln J +

κ− µ

2
(J − 1)2 , (3.3)

upon taking the limit Jm → ∞. It is important to recall here from Section 2.1.3 that most stored-

energy functions of the form (3.1) describe best the actual behavior of elastomers when “calibrated”

to be strongly elliptic. For example, the compressible Gent material, characterized by the stored-

energy function (3.2), is strongly elliptic under plane-strain deformations if (but not only if) µ > 0,

Jm > 0, and κ > 2µ/Jm + µ. Note that for a Neo-Hookean elastomer, these sufficient conditions

simplify to µ > 0 and κ > µ. In fact, for realistic elastomers, µ > 0, Jm > 0, and κ is several

orders of magnitude larger than µ, namely, κ/µ ≈ 104. Consequently, the Gent elastomers utilized

in this work to model the matrix behavior of the porous elastomers will be assumed to be strongly

elliptic for all deformations. As a parenthetical remark, it is worth mentioning that having strict

convexity in the linearized region, i.e., µ > 0 and κ > 0 in the limit λ1 → 1 and λ2 → 1, does not

ensure strong ellipticity of a Gent material for all deformations. The analysis to be developed below
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will be carried out for general stored-energy functions of the form (3.1). However, for definiteness,

results will be illustrated for porous elastomers with matrix phase characterized by the stored-energy

functions (3.2) and (3.3).

By virtue of the overall objectivity and in-plane isotropy of the porous elastomers at hand, it

suffices to confine attention to (in-plane) diagonal pure stretch loadings. Thus, making contact with

the decompositions F = RU and U = QDQ
T

used in the context of expression (2.66), we will

consider:

F = D = diag(λ1, λ2) and R = Q = I, (3.4)

where λ1 and λ2 denote the principal stretches of the macroscopic right stretch tensor U.

Having specified the initial microstructure, local constitutive behavior, and loading conditions,

we next spell out the specialization of the second-order estimates (2.69) to the class of porous

elastomers of interest in this chapter.

3.1.1 Second-order homogenization estimates

Compressible matrix

In order to carry out the computation for the HS-type second-order estimates (2.69) for porous

elastomers with matrix phase (3.1) under plane strain conditions, it suffices to confine the analysis

to in-plane quantities. Thus, it suffices to consider the in-plane components of the modulus tensor

L(1) = L of the matrix phase of the LCC, defined by expression (2.66). Making use of the applied

conditions (3.4)2, it follows from (2.66) that L = L∗, where it is recalled that L∗ is taken to be

orthotropic. Therefore, the relevant in-plane components of the modulus tensor L of the matrix

phase of the linear comparison composite can be expediently represented as a matrix in <4×4 as

follows: 


L∗1111 L∗1122 0 0

L∗1122 L∗2222 0 0

0 0 L∗1212 L∗1221
0 0 L∗1221 L∗2121




, (3.5)

where use has been made of major symmetry (i.e., Lijkl = Lklij) and it is emphasized that L

possesses 6 independent components, namely, L∗1111, L
∗
1122, L∗2222, L∗1212, L∗1221, and L∗2121. For

simplicity, guided by the fact that the tensor F̂(1) has at most 4 independent components (F̂ (1)
11 ,

F̂
(1)
22 , F̂

(1)
12 , F̂

(1)
21 ), it is expedient to reduce the number of independent components of (3.5) to just 4,

with respect to which E(1) = E will be differentiated in (2.72) to generate 4 consistent equations for

the components of F̂(1). Thus, the following constraints are imposed among the components of L:

L∗2121 = L∗1212, and L∗1221 =
√

(L∗1111 − L∗1212) (L∗2222 − L∗1212)− L∗1122. (3.6)

The motivation for the choices (3.6) is twofold: (i) the components of the tangent modulus of a

Neo-Hookean material, expressed relative to the corresponding Lagrangian principal axes, satisfy1

1In fact, (3.6)1 is consistent with the tangent modulus of any isotropic hyperelastic material of the form (3.1).
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(3.6); and (ii) the conditions (3.6) simplify significantly the computations involved. In particular,

they simplify the expressions for the microstructural tensor P (see Appendix I).

Now, using the facts that F = D = diag(λ1, λ2) and L = L∗, it follows from (2.70) that the

average deformation gradient in the matrix phase of the LCC, needed in the computation of the

second-order estimate (2.69) for Ŵ , is of the form F
(1)

= diag(λ
(1)

1 , λ
(1)

2 ), where the average principal

stretches λ
(1)

1 and λ
(1)

2 in the matrix phase are given explicitly by:

λ
(1)

1 = λ1 − f0 A1111

[
2gIλ1 +

(
hJ + (κ− µ)(J − 1)

)
λ2

]

−f0 A1122

[
2gIλ2 +

(
hJ + (κ− µ)(J − 1)

)
λ1

]
,

λ
(1)

2 = λ2 − f0 A1122

[
2gIλ1 +

(
hJ + (κ− µ)(J − 1)

)
λ2

]

−f0 A2222

[
2gIλ2 +

(
hJ + (κ− µ)(J − 1)

)
λ1

]
. (3.7)

In these expressions, gI = gI(I), hJ = hJ(J) have been introduced for convenience, and A = E−1

where it is recalled from Eq. (2.71) in Section 2.4.4 that E = P−1 − (1 − f0)L. The explicit

expressions for the relevant components of the microstructural tensor P are given in Appendix I.

Having determined F
(1)

, we proceed next to compute the variable F̂(1), also needed in the

computation of Ŵ . Thus, with the choice (3.6) for the components (3.5) of L = L∗, and making use

of the identifications `∗1 = L∗1111, `∗2 = L∗2222, `∗3 = L∗1212, and `∗4 = L∗1122, Eq. (2.72) can be seen to

reduce to 4 consistent equations for the 4 in-plane components of F̂(1), which are of the form:

(
F̂

(1)
11 − λ1

)2

+ 2f1F̂
(1)
12 F̂

(1)
21 = k1,(

F̂
(1)
22 − λ2

)2

+ 2f2F̂
(1)
12 F̂

(1)
21 = k2,(

F̂
(1)
12

)2

+
(
F̂

(1)
21

)2

+ 2f3F̂
(1)
12 F̂

(1)
21 = k3,(

F̂
(1)
11 − λ1

)(
F̂

(1)
22 − λ2

)
− F̂

(1)
12 F̂

(1)
21 = k4. (3.8)

Here, f1 = ∂L∗1221/∂L∗1111, f2 = ∂L∗1221/∂L∗2222, f3 = ∂L∗1221/∂L∗1212, and

k1 =
1
f0

(
D− F

(1)
)
· ∂E
∂L∗1111

(
D− F

(1)
)

,

k2 =
1
f0

(
D− F

(1)
)
· ∂E
∂L∗2222

(
D− F

(1)
)

,

k3 =
1
f0

(
D− F

(1)
)
· ∂E
∂L∗1212

(
D− F

(1)
)

,

k4 =
1

2 f0

(
D− F

(1)
)
· ∂E
∂L∗1122

(
D− F

(1)
)

. (3.9)

Although nonlinear, equations (3.8) can be solved in closed form to yield two distinct solutions for

F̂
(1)
11 and F̂

(1)
22 , in terms of which F̂

(1)
12 and F̂

(1)
21 may be determined. Note, however, that the variables

F̂
(1)
12 and F̂

(1)
21 only enter the equations through the combinations F̂

(1)
12 F̂

(1)
21 and (F̂ (1)

12 )2 + (F̂ (1)
21 )2,

and hence, only these combinations will be determined from (3.8). The two solutions for F̂
(1)
11 and

F̂
(1)
22 are as follows:

F̂
(1)
11 − λ1 = ± 2f1k4 + k1√

4f2
1 k2 + 4f1k4 + k1

, F̂
(1)
22 − λ2 = ± 2f1k2 + k4√

4f2
1 k2 + 4f1k4 + k1

, (3.10)
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where it must be emphasized that the positive (and negative) signs in the roots for F̂
(1)
11 and F̂

(1)
22

go together. The corresponding solution for the remaining combinations are given by:

F̂
(1)
12 F̂

(1)
21 = (F̂ (1)

11 − λ1)(F̂
(1)
22 − λ2)− k4,

(
F̂

(1)
12

)2

+
(
F̂

(1)
21

)2

= k3 − 2f3F̂
(1)
12 F̂

(1)
21 . (3.11)

Next, each of the two distinct roots of (3.10) can be substituted into the generalized secant

condition (2.65) to obtain a system of 4 equations for the 4 unknowns L∗1111, L∗2222, L∗1122, and

L∗1212, which must be solved numerically. Having computed the values of all the components of L

for a given initial porosity (f0), given material behavior (g, h, κ, and µ), and given loading (λ1 and

λ2), the values of the components of F
(1)

and F̂(1) can be readily determined using relations (3.7)

and (3.10), respectively. In turn, the second-order estimate (2.69) for the effective stored-energy

function Ŵ = Φ̂ for (in-plane) isotropic porous elastomers can be computed using these results. At

this point, it should be noted that the two above roots lead to very similar results for the effective

behavior of the porous elastomer when small values of κ are considered (i.e., for κ of the order of µ).

However, for larger values of κ, the estimates produced by the two distinct roots are very different.

In fact, as explained in more detail in the following subsection, it can be shown that for large values

of κ only one of the two roots provides physically meaningful results. Consequently, this is the root

that should be chosen to compute the effective behavior of the porous elastomer.

We conclude this subsection by spelling out the evolution of the relevant microstructural vari-

ables associated with the second-order estimate (2.69) developed here. Following Section 2.5, the

appropriate microstructural variables in the present context are the current porosity, f , and the

current average aspect ratio of the pores, ω—as determined by the average deformation gradient

in the porous phase F
(2)

, by means of the tensor Z = F
(2)−1

. (No reference is made here to the

evolution of the orientation and distribution of the pores since they can be readily computed from

the macroscopic deformation F). In short, within the present context, the current porosity and

current average aspect ratio of the voids in the deformed configuration are given, respectively, by:

f =
λ

(2)

1 λ
(2)

2

λ1λ2

f0 and ω =
λ

(2)

1

λ
(2)

2

, (3.12)

where λ
(2)

1 = (λ1 − (1− f0)λ
(1)

1 )/f0 and λ
(2)

2 = (λ2 − (1− f0)λ
(1)

2 )/f0 denote the principal stretches

associated with F
(2)

, and it is recalled that the variables λ
(1)

1 and λ
(1)

2 are given by expression (3.7).

Incompressible matrix

The above expressions can be simplified considerably in the limit of incompressibility of the matrix

phase (i.e., κ → ∞). As already stated, this limit is interesting from a practical perspective, given

that actual elastomers exhibit a nearly incompressible behavior (i.e., they usually exhibit a ratio

between the bulk and shear moduli of the order of 104). In this regard, it is important to realize that

the asymptotic behavior of one of the two above roots leads to nonphysical predictions in the limit as

κ becomes unbounded. More specifically, for deformations satisfying e1 + e2 ≤ 0 only the “positive”

(+) root provides physically reasonable predictions, whereas for deformations with e1 + e2 ≥ 0,

only the “negative” (−) root has the physically plausible asymptotic behavior; here, the logarithmic
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strains e1 = ln(λ1) and e2 = ln(λ2) have been introduced for convenience. Taking this observation

into account, it can be shown that the second-order estimate (2.69) for the effective stored-energy

function of a porous elastomer with an incompressible isotropic matrix phase may be written as:

Ŵ I
(
F

)
= Φ̂I

(
λ1, λ2

)
= (1− f0) g(Î(1)), (3.13)

where Î(1) = Î(1) (α, β, γ), and α, β, γ are the solution to three nonlinear algebraic equations, not

shown here for their bulkiness, which can be solved for in terms of the initial porosity f0, given

material behavior g, and given loading λ1 and λ2. In general, it is not possible to solve these equations

in closed form. However, for the particular case of a porous elastomer with an incompressible Neo-

Hookean matrix phase, the general estimate (3.13) can be shown (see Appendix II) to reduce to:

Φ̂I(λ1, λ2) =
(1− f0)µ

2

[
p4v

4 + p3v
3 + p2v

2 + p1v + p0

(q2v2 + q1v + q0)
2 − 2

]
, (3.14)

where v is the solution of the quartic polynomial:

r4v
4 + r3v

3 + r2v
2 + r1v + r0 = 0, (3.15)

Here, the coefficients p0, p1, p2, p3, p4, q0, q1, q2, r0, r1, r2, r3 and r4, which depend on f0, µ, λ1 and

λ2, are given in explicit form in Appendix III. Since the estimate (3.14) depends effectively on the

solution of the quartic polynomial equation (3.15), it may be written in closed form. However, for

all practical purposes, it is simpler to solve (3.15) numerically. In this regard, it is emphasized that

only one of the 4 roots2 of (3.15) gives the correct linearized behavior for the effective response of

porous materials; this is indeed the root that should be chosen.

It is useful, for comparison purposes, to spell out the simplification of the second-order estimate

(3.14) for the case of in-plane hydrostatic loading, i.e., λ1 = λ2 = λ. The result reads as follows:

Φ̂I(λ, λ) =
2µ

1− f0

[
(1 + f0)λ

2
+ f0 − 1− 2λ

√
f0(λ

2
+ f0 − 1)

]
. (3.16)

For later use, it is noted that the average deformation field in the matrix phase associated with the

stored-energy function (3.16) is given by:

F
(1)

= λ
I
I, (3.17)

where

λ
I

=

√
f0(λ

2
+ f0 − 1)− λ

f0 − 1
. (3.18)

Finally, it is emphasized that the result (3.18) holds true, not only for a porous elastomer with

incompressible Neo-Hookean matrix, but in fact for a porous elastomer with general incompressible

isotropic matrix phase.

3.1.2 Tangent second-order homogenization estimates

In this section, for comparison purposes, we make use of the tangent second-order method of Ponte

Castañeda and Tiberio (2000) to generate estimates for the above-defined type of porous elastomers.
2The correct root linearizes as v = 2µ + O(λ1 − 1) + O(λ2 − 1).
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It should be remarked that tangent second-order estimates have already been computed for reinforced

elastomers by a number of authors (see, e.g., Ponte Castañeda and Tiberio, 2000 and Lahellec et

al., 2004), but no such results have been generated so far for porous elastomers.

Compressible matrix

Under the given plane-strain loading conditions and matrix material behavior (3.1), the tangent

second-order estimate (see Section 3.1 in Lopez-Pamies and Ponte Castañeda, 2004b) for the effective

stored-energy function Ŵ of the type of porous elastomers defined above can be written as follows:

Ŵ (F) = Φ̂(λ1, λ2) = (1− f0)
[
W (F

(1)
) +

1
2
S(F

(1)
) · (F− F

(1)
)
]

, (3.19)

where the nontrivial components of the average deformation gradient F
(1)

11 = λ
(1)

1 , F
(1)

22 = λ
(1)

2 (the

other in-plane components are identically zero) of the average deformation F
(1)

in the matrix phase

of the relevant linear comparison composite are the solution to the following system of nonlinear,

algebraic equations:

f0(λ
(1)

2 − λ2) (L1122P1111 + L2222P1122) +

+(λ
(1)

1 − λ1) [(L1122P1122 − 1)(1 + (f0 − 1)L1122P1122)−
−(f0 − 1)(L2222 + L2

1122P1111 − L1111L2222P1111)P2222 +

+ L1111(P1111 − (f0 − 1)L2222P
2
1122)

]

−f0

(
P1111 − (f0 − 1)L2222P

2
1122 + (f0 − 1)L2222P1111P2222

) S̄(1)
11 −

−f0

(
P1122 + (f0 − 1)L1122P

2
1122 − (f0 − 1)L1122P1111P2222

) S̄(1)
22 = 0,

f0(λ
(1)

1 − λ1)(L1122P2222 + L1111P1122) +

+(λ
(1)

2 − λ2) [(L1122P1122 − 1)(1 + (f0 − 1)L1122P1122)−
−(f0 − 1)(L1111 + L2

1122P2222 − L2222L1111P2222)P1111 +

+ L2222(P2222 − (f0 − 1)L1111P
2
1122)

]

−f0

(
P2222 − (f0 − 1)L1111P

2
1122 + (f0 − 1)L1111P2222P1111

) S̄(1)
22 −

−f0

(
P1122 + (f0 − 1)L1122P

2
1122 − (f0 − 1)L1122P2222P1111

) S̄(1)
11 = 0.

(3.20)

In these equations, S(1)

ij = ∂W (F
(1)

)/∂Fij and Lijkl = ∂2W (F
(1)

)/∂Fij∂Fkl, so that

S̄(1)
11 = 2ḡ

(1)
I λ

(1)

1 + h̄
(1)
J λ

(1)

2 + (κ− µ)
(
λ

(1)

1 λ
(1)

2 − 1
)

λ
(1)

2 ,

S̄(1)
22 = 2ḡ

(1)
I λ

(1)

2 + h̄
(1)
J λ

(1)

1 + (κ− µ)
(
λ

(1)

1 λ
(1)

2 − 1
)

λ
(1)

1 ,

and

L1111 = 2ḡ
(1)
I + 4

(
λ

(1)

1

)2

ḡ
(1)
II +

(
h̄

(1)
JJ + κ− µ

)(
λ

(1)

2

)2

,

L2222 = 2ḡ
(1)
I + 4

(
λ

(1)

2

)2

ḡ
(1)
II +

(
h̄

(1)
JJ + κ− µ

)(
λ

(1)

1

)2

,

L1122 = h̄
(1)
J − (κ− µ) +

(
4ḡ

(1)
II + h̄

(1)
JJ + 2(κ− µ)

)
λ

(1)

1 λ
(1)

2 .
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Here, use has been made of the notation ḡ(1) = g
(
Ī(1)

)
and h̄(1) = h

(
J̄ (1)

)
, where Ī(1) =

(
λ

(1)

1

)2

+
(
λ

(1)

2

)2

and J̄ (1) = λ
(1)

1 λ
(1)

2 denote the principal invariants associated with F
(1)

. Furthermore, the

explicit expressions for P1111, P2222, and P1122 are given—in terms of the in-plane components of

the modulus tensor L—by expression (3.36) in Appendix I.

Incompressible matrix

The limit when the matrix phase is made incompressible (i.e., κ →∞) in (3.19) is considered next.

Due to the cumbersomeness of the final expressions, the asymptotic analysis of the incompressible

limit involving the general stored-energy function (3.1) will not be included here. Instead, for

illustrative purposes, only the particular case of a Neo-Hookean matrix phase will be discussed. The

details of the relevant asymptotic analysis are given in Appendix IV, but the final expression for

the tangent second-order estimate for the effective stored-energy function of a porous elastomer with

incompressible Neo-Hookean matrix phase may be written as:

Ŵ I(F) = Φ̂I(λ1, λ2) =
(1− f0)

2u
µ

[
(u2 − 1)(λ1 − λ2)+

(1 + u2)
(
λ2u

2 − 2u + λ1

) (
(1 + f0)u2 + (λ2 − λ1)u− 1− f0

)

u(λ1 − λ2u2)

]
.

(3.21)

In this expression, u is the solution of the equation:
(
λ

2

2 + f2
0 − 1

)
u4 + 2

(
λ1 + (f0 − 1)λ2

)
u3 +

(
λ

2

2 − λ
2

1

)
u2

−2
(
(f0 − 1)λ1 + λ2

)
u + 1− f2

0 − λ
2

1 = 0, (3.22)

which can be determined explicitly as a function of f0, µ, λ1, and λ2. Note that (3.22) is a quartic

polynomial equation and hence it may be solved in closed form. However, for practical purposes,

it proves helpful to solve (3.22) numerically. In this regard, it is emphasized that only one of the 4

roots3 of (3.22) gives the correct linearized behavior for the effective response of porous materials;

this is indeed the root that should be chosen.

For the special case of in-plane hydrostatic loading, i.e., λ1 = λ2 = λ, the second-order estimate

(3.21) can be shown to further reduce to:

Φ̂I(λ, λ) = 2µ
(1− f0)

(
λ− 1

)2

f0 + λ− 1
. (3.23)

For later use, it is also noted that the average deformation field in the matrix phase associated with

the stored-energy function (3.23) is given by:

F
(1)

= I. (3.24)

Finally, it is noted that the result (3.24) holds true, not only for a porous elastomer with incom-

pressible Neo-Hookean matrix, but for a porous elastomer with a general incompressible isotropic

matrix phase.
3The correct root linearizes as u = 1 + O(λ1 − 1) + O(λ2 − 1).
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3.1.3 Comparisons with exact results

Hydrostatic Loading

With regard to porous elastomers subjected to finite deformations, there are very few exact results

available. For the special case of hydrostatic loading, Hashin (1985) obtained an exact equilibrium

solution by making use of the idea of the Composite Spheres Assemblage. Following that work, it

is straightforward to show that an exact result for the effective stored-energy function of a porous

elastomer with incompressible, isotropic matrix W (F) = Φ (λ1, λ2) and the Composite Cylinder

Assemblage (CCA) microstructure subjected to in-plane hydrostatic loading (λ1 = λ2 = λ) is given

by:

Ŵ I(F) = Φ̂I(λ, λ) = 2
∫ 1

√
f0

Φ
(
λ, λ−1

)
R dR, (3.25)

where

λ =

√
1 +

λ
2 − 1
R2

. (3.26)

The corresponding exact average deformation in the matrix phase reads as:

F
(1)

= λ
I
I, (3.27)

with

λ
I

=

√
f0(λ

2
+ f0 − 1)− λ

f0 − 1
, (3.28)

where λ must be greater than
√

1− f0.

In general, the integral in (3.25) cannot be computed analytically; however, for the particular

case of a porous elastomer with incompressible Neo-Hookean matrix phase, the exact stored-energy

function may be expressed as:

Φ̂I(λ, λ) =
µ

2

(
λ

2 − 1
) [

ln

(
λ

2
+ f0 − 1

f0

)
− ln

(
λ

2
)]

(3.29)

It can thus be seen that the two versions of the second-order estimates, as defined by (3.16)

and (3.23), do not recover the exact result (3.29) for the effective stored-energy function of porous

elastomers with incompressible Neo-Hookean matrix phase subjected to general in-plane hydrostatic

finite deformations. Nonetheless, both estimates can be shown to be exact to third order in the

infinitesimal strain (i.e., up to O(λ− 1)3). For larger finite deformations, however, the behavior of

both estimates is very different. As it will be seen in the following section, whereas the expression

(3.16), which takes into account the field fluctuations, provides estimates that are in very good

agreement with the exact result, the corresponding tangent expression (3.23) delivers estimates that

deviate drastically from (3.29). This disparity is mainly due to the difference in the prediction of the

evolution of the microstructure. In fact, while the average deformation gradient in the matrix phase

(3.24) predicted by the tangent second-order theory is exactly equal to the identity, the corresponding

F
(1)

(3.17) predicted by the second-order method with fluctuations is consistent with the exact result

(3.27). This is a remarkable result. Indeed, by taking into account the fluctuations, the second-

order estimate (2.69) is able to improve on the earlier tangent second-order estimate (3.19) in that it
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recovers the exact average deformation fields in a porous elastomer with an incompressible isotropic

matrix under finite in-plane hydrostatic loading.

General Loading

For more general loadings, there are no other known exact solutions for the finite deformation

of porous elastomers. However, for incompressible matrix phase materials, a simple kinematical

argument allows for the determination of the exact evolution of the porosity f as a function of

deformation. The result is as follows:

f =
〈detF〉(2)
〈detF〉 f0 =

〈detF〉 − (1− f0)〈detF〉(1)
f0〈detF〉 f0 = 1− 1− f0

detF
, (3.30)

where use has been made of the fact that detF is a null Lagrangian. It can be shown that the

estimate for the porosity associated with the second-order estimate (3.13) for porous elastomers

with incompressible isotropic matrix phases is in exact agreement with the exact result (3.30). The

proof of this is sketched out for the particular case of a Neo-Hookean porous material at the end

of Appendix II. On the other hand, the corresponding estimate for the porosity arising from the

tangent second-order estimate (3.21) deviates radically from (3.30) for large deformations, as will

be shown explicitly in the next section.

In summary, the second-order estimate (3.13), unlike the tangent second-order estimate (3.21),

is able to predict the exact evolution of the porosity for general finite loading, and consequently the

exact average deformation fields for hydrostatic loading, for a porous elastomer with incompressible

isotropic matrix phase. This is a nontrivial result, since the actual fields in a deformed porous

elastomer are highly heterogeneous. However, it appears that the “generalized secant” linearization

together with the incorporation of field fluctuations leads to improved approximations capable of

capturing better the heterogeneity of these fields in order to deliver the exact results mentioned

above.

3.1.4 Loss of strong ellipticity

For the particular case of plane-strain deformations at hand, the general strong ellipticity condition

(2.89) can be written more explicitly, especially in the context of in-plane isotropic materials. In

fact, under plane-strain deformations, necessary and sufficient conditions for strong ellipticity of the

effective constitutive behavior of the class of (in-plane) isotropic porous systems considered here can

be shown (Knowles and Sternberg, 1977; Hill, 1979) to reduce to:

L̂1111 > 0, L̂2222 > 0, L̂1212 > 0, L̂2121 > 0, and

L̂1111L̂2222 + L̂1212L̂2121 − (L̂1122 + L̂1221)2 > −2
√
L̂1111L̂2222L̂1212L̂2121,

(3.31)
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where

L̂iijj =
∂2Φ̂

∂λi∂λj

,

L̂ijij =
1

λ
2

i − λ
2

j

(
λi

∂Φ̂
∂λi

− λj
∂Φ̂
∂λj

)
i 6= j,

L̂ijji =
1

λ
2

i − λ
2

j

(
λj

∂Φ̂
∂λi

− λi
∂Φ̂
∂λj

)
i 6= j, (3.32)

(i, j = 1, 2) are the components of the modulus L̂ written in the Lagrangian principal axes. Note

that the third and fourth conditions in (3.31) are equivalent and that for loadings with λi = λj

(i 6= j), suitable limits must be taken for some of the components in (3.32). In particular, equations

(3.32)2 and (3.32)3 transform into:

L̂ijij =
1
2

(
L̂iiii − L̂iijj +

1
λi

∂Φ̂
∂λi

)
i 6= j,

L̂ijji =
1
2

(
L̂iiii − L̂iijj − 1

λi

∂Φ̂
∂λi

)
i 6= j, (3.33)

respectively.

In the next section, the second-order estimates developed in this chapter will be used to generate

predictions for the strongly elliptic domains of random porous elastomers with incompressible Gent

and Neo-Hookean matrix phases subjected to plane-strain deformations. It will be shown that even

though the behavior of the matrix phase is strongly elliptic, the homogenized behavior of the porous

elastomer can lose strong ellipticity. This is consistent with the earlier observations of Abeyaratne

and Triantafyllidis (1984) for porous elastomers with periodic microstructures.

3.2 Results for plane-strain loading: random porous elas-

tomers

This section presents results associated with the second-order estimates developed in the preceding

sections for the in-plane hydrostatic, uniaxial, and pure shear loading of porous elastomers with

incompressible Gent and Neo-Hookean matrix phases. Henceforth, for consistency with (Lopez-

Pamies and Ponte Castañeda, 2004b), the second-order estimates (3.14) will be denoted as Version

3, and the tangent second-order estimates (3.21), as Version 1. Results are given for µ = 1 and various

levels of initial porosity f0, and were computed up to the point at which the effective incremental

moduli were found to lose strong ellipticity, or truncated at some sufficiently large strain if no such

loss was found. For clarity, the points at which loss of strong ellipticity occurred are denoted with

the symbols “¤” and “◦” for Version 1 and 3, respectively. The characterization of the strongly

elliptic domains is given in the last subsection. It is further noted that exact results and bounds are

presented when available.
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Figure 3.2: Comparisons of the second-order estimates (Version 1 and 3) with the exact results for the
effective response of a porous rubber subjected to in-plane hydrostatic loading (λ2 = λ1 = λ). The results
correspond to an incompressible1 Neo-Hookean matrix phase with various initial concentrations f0 of aligned
cylindrical voids, and are shown as a function of the logarithmic strain e = ln(λ). (a) The stored-energy

function Φ̂I ; and (b) the corresponding stresses S = ∂Φ̂I/∂λ1 = ∂Φ̂I/∂λ2.

3.2.1 Hydrostatic loading

Figure 3.2 presents the comparison between the effective behavior as predicted by Version 1 (HS1)

and 3 (HS3) of the second-order method and the “exact” result (for CCA microstructures), for

a Neo-Hookean porous elastomer with incompressible matrix phase (κ → ∞) under hydrostatic

loading with λ2 = λ1 = λ. Results are shown for initial porosities of 30, 50, and 70% as a function

of the logarithmic strain e = ln(λ) for both: (a) the effective stored-energy function Φ̂I ; and (b)

the associated stress S = ∂Φ̂I/∂λ1 = ∂Φ̂I/∂λ2. Recall that closed-form expressions for the effective

stored-energy functions shown in Figure 3.2(a) are given by (3.16), (3.23), and (3.29) for Version 3,

Version 1, and the exact result, respectively.

The main observation that can be made from Figure 3.2 is that Version 3 of the second-order

variational procedure provides estimates for the effective constitutive behavior which are in excellent

agreement with the exact result. Version 1 also delivers estimates that compare reasonably well with

the exact result for compressive loadings. However, the predictions by Version 1 deviate significantly

from the exact behavior for large tensile deformations. It is also seen that both versions of the second-

order method predict loss of strong ellipticity of the homogenized porous elastomer under in-plane

hydrostatic compression, while no such behavior is observed under in-plane hydrostatic tension.

Moreover, both second-order estimates for the effective behavior exhibit a better agreement with

the exact result for higher values of f0. Finally, it is interesting to note from Figure 3.2(b) that the

overall constitutive behavior of the composite consistently exhibits hardening under compression

and softening under tension. This feature will be shown shortly to be due partially to a geometric

effect caused by the evolution of the porosity.

Figure 3.3 provides plots associated with the results shown in Figure 3.2 for: (a) the porosity

1For consistency with Lopez-Pamies and Ponte Castañeda (2004b), µ′ →∞, as opposed to κ →∞, is used in all
figures in this chapter to indicate the incompressibility of the matrix phase.
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Figure 3.3: In-plane hydrostatic loading (λ2 = λ1 = λ) of a porous rubber with an incompressible, Neo-
Hookean matrix phase with various initial concentrations f0 of aligned cylindrical voids. (a) The evolution
of porosity f as predicted by Versions 1 and 3 of the second-order method compared with the exact result
as a function of the logarithmic strain e = ln(λ). (b) The critical stretches λcrit at which the loss of strong
ellipticity of the homogenized elastomer takes place as a function of initial porosity f0. (This last plot also
includes the critical loads for the first two buckling modes (n = 2, and 3) of a cylindrical shell (Wang and
Ertepinar, 1972).)

as a function of the logarithmic strain e = ln(λ); and (b) the critical stretch λcrit at which the loss

of strong ellipticity of the homogenized elastomer takes place, as a function of initial porosity f0.

First, a key point to be drawn from Figure 3.3(a) is that the porosity decreases for compressive

deformations and increases for tensile ones. This entails a geometric hardening/softening on the

overall response of the porous elastomer which is entirely consistent with the hardening/softening

exhibited by the effective constitutive behavior observed in Figure 3.2(b). Moreover, the porosity

predicted by Version 3 of the second-order method reduces to the exact result, as already pointed

out in the previous section (see expressions (3.17) and (3.27)). On the other hand, the porosity

delivered by Version 1 deviates from the exact evolution for large finite deformations, especially for

tensile hydrostatic loading. In fact, under hydrostatic tension, Version 1, which does not take into

account information about the field fluctuations, predicts unrealistic values for the porosity (i.e.,

greater than unity). This explains the extremely soft effective constitutive behavior observed in

Figure 3.2 for Version 1 of the second-order method under hydrostatic tension. Also, in accordance

with the trend discerned from Figure 3.2, it appears that the porosity evolution predicted by Version

1 gets worse with decreasing initial porosity.

The main observation with regard to Figure 3.3(b) is the somewhat counterintuitive result that

the porous material becomes more stable (λcrit smaller) with increasing initial values of the porosity.

In this connection, it is relevant to remark that while exact results are available for the effective

stored-energy function and porosity evolution for the in-plane hydrostatic loading of composite

cylinders (with incompressible matrix phase), the exact loss of strong ellipticity of these structures

has not been studied. However, Wang and Ertepinar (1972) did study the stability of an isolated

cylindrical Neo-Hookean shell under in-plane hydrostatic loading. Of course, the buckling behavior
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Figure 3.4: Version 1 and 3 estimates of the second-order method for the effective response of a porous
rubber subjected to uniaxial loading (λ2 = 1 and λ1 = λ). The results correspond to an incompressible
Neo-Hookean matrix phase with various initial concentrations f0 of aligned cylindrical voids, and are shown
as a function of the logarithmic strain e = ln(λ). (a) The stress component S11 = ∂Φ̂I/∂λ1. (b) The stress

component S22 = ∂Φ̂I/∂λ2.

of an isolated shell cannot be rigorously identified with the buckling instabilities that would take

place in an actual composite cylinder system, except possibly in the dilute limit, when no interaction

among pores is expected. In this connection, we have included in Figure 3.3(b) the results of Wang

and Ertepinar (1972) for the buckling flexural modes n = 2, which corresponds to the collapse to an

oval shape, and n = 3, for reference purposes. Remarkably, these results are in good agreement with

the second-order estimates in the small porosity regime, where the comparisons may be relevant. In

addition, for large initial porosities it is noted that the second-order predictions bound the buckling

modes for an isolated cylindrical shell. Figure 3.3(b) also shows that for the interval 0 < f0 < 0.4 the

λcrit predicted by Version 3 is slightly smaller than the one obtained from Version 1. In contrast, for

initial porosities higher than 0.4, the prediction of λcrit by Version 1 becomes smaller than the one

computed from Version 3. The difference between the results of these two versions becomes more

pronounced in the limit f0 → 1, where λcrit → 0.73 and λcrit → 0 for Versions 1 and 3, respectively.

We expect the estimate for the critical stretch associated with Version 3 to be more accurate, but

we do not have an explanation for its relatively low values at high porosities. However, it should

be kept in mind that it is expected that other (smaller wavelength) instabilities would take place

before reaching the loss of ellipticity condition.

3.2.2 Uniaxial loading

In Figure 3.4, plots for the effective stress-strain behavior associated with Versions 1 and 3 are

presented for a Neo-Hookean porous elastomer with incompressible matrix phase (κ → ∞) under

uniaxial loading with λ2 = 1, λ1 = λ. The results for the stress components S11 = ∂Φ̂I/∂λ1 and

S22 = ∂Φ̂I/∂λ2 are presented in parts (a) and (b), respectively, for values of f0 = 30, 50, and 70%,

as functions of the logarithmic strain e = ln(λ). Similar to the case of in-plane hydrostatic loading,
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Figure 3.5: Version 1 and 3 estimates of the second-order method for the effective response of a porous
rubber subjected to uniaxial loading (λ2 = 1 and λ1 = λ). The results correspond to an incompressible
Neo-Hookean matrix phase with various initial concentrations f0 of aligned cylindrical voids, and are shown
as a function of the logarithmic strain e = ln(λ). (a) The evolution of the porosity f compared with the
exact result. (b) The evolution of the average aspect ratio of the voids ω.

the results for compressive (tensile) deformations shown in Figure 3.4 exhibit a clear hardening

(softening) behavior with increasing deformation, but less pronounced than the corresponding results

for in-plane hydrostatic loading. From Figure 3.4(a) it is seen that the effective constitutive behavior

for S11 obtained from Version 1 is significantly softer than the one obtained from Version 3. This

is also the case for the component S22 as shown by Figure 3.4(b). In fact, the prediction for

this component of the stress by Version 1 is not only much softer than the corresponding stress

predicted by Version 3, but it even decreases for tensile loadings reaching negative values, which is

physically unrealistic. This suggests that the predictions of Version 1 could be too soft for large

finite deformations, especially for tensile loadings. Furthermore, as it was the case for hydrostatic

loadings, loss of ellipticity was found for compressive loadings but not for tensile ones.

Figure 3.5 provides corresponding results for: (a) the porosity f ; and (b) the average aspect ratio

of the pores ω, as function of the logarithmic strain e = ln(λ). Recall from (3.12)2 that the aspect

ratio has been defined as ω = λ
(2)

1 /λ
(2)

2 , with λ
(2)

1 and λ
(2)

2 denoting the principal stretches associated

with the average deformation gradient tensor of the vacuous phase F
(2)

, so that ω > (<)1 correspond

to an oblate (prolate) average shape of the pores. As it was the case for hydrostatic loading, it is seen

from Figure 3.5(a) that the porosity decreases for compressive deformations and increases for tensile

ones. In turn, this can be related to the aforementioned hardening/softening trend exhibited by the

effective stress-strain behavior in Figure 3.4. As already anticipated in Section 5.1.4, Figure 3.5(a)

also shows that the prediction for the evolution of the porosity by Version 3 of the second-order

method is in agreement with the exact result, whereas the prediction by Version 1 deviates from

the correct behavior for large deformations. This deviation, which is much more drastic for tensile

loadings and lower values of f0, helps explain the unphysical behavior observed in Figure 3.4(b) for

S22. In particular, it is seen that S22 tends to negative values whenever f approaches one. Figure

3.5(b) shows that both versions of the second-order method give similar predictions for the average
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Figure 3.6: Version 3 estimates of the second-order method for the effective response of a porous rubber
subjected to pure shear loading (λ1 = 1/λ2 = λ). The results correspond to an incompressible Gent matrix
phase with given initial porosity f0 = 0.1 and various values of the material parameter Jm, and are shown
as a function of the logarithmic strain e = ln(λ). (a) The effective stored-energy function Φ̂I compared with
the Voigt upper bound. (b) The evolution of the aspect ratio ω.

aspect ratio of the pores. Note that in compression the changes in aspect ratio are more rapid for

smaller f0.

It is concluded from the observations made in the context of these figures for uniaxial stretch,

as well as the earlier figures for hydrostatic deformation, that Version 3 of the second-order method

leads to more consistent predictions for the overall behavior and microstructure evolution of the

porous elastomers, and therefore it should be preferred over Version 1. For this reason, in the

following sections only results associated with Version 3 will be presented.

3.2.3 Pure shear loading

Figure 3.6 provides Version 3 second-order estimates for a Gent porous elastomer with incompressible

matrix phase under pure shear (λ1 = 1/λ2 = λ). Results are shown for an initial porosity of 10%

and values of the lock-up parameter Jm = 42, 100, and Jm → ∞ as functions of the logarithmic

strain e = ln(λ) for: (a) the effective stored-energy function Φ̂I compared with the Voigt upper

bound; and (b) the evolution of the aspect ratio ω. First, it is observed from Figure 3.6(a) that the

Version 3 estimates for the effective stored-energy function satisfy the rigorous Voigt upper bound.

It is emphasized again that this bound is only helpful when considering isochoric loadings, like the

one considered in this section, since it becomes unbounded otherwise. Note that no loss of ellipticity

was detected at any level of deformation. In connection with the evolution of the microstructure, it

is remarked that the porosity does not evolve under pure shear deformations. On the other hand,

as clearly shown by Figure 3.6(b), the aspect ratio of the pores does increase fairly rapidly with

increasing strains. Furthermore, note that ω appears to be insensitive to the value of the material

parameter Jm.

Figure 3.7 presents plots of the corresponding results for the stress components: (a) S11; and
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Figure 3.7: Version 3 estimates of the second-order method for the effective response of a porous rubber
subjected to pure shear loading (λ1 = 1/λ2 = λ). The results correspond to an incompressible Gent matrix
phase with given initial porosity f0 = 0.1 and various values of the material parameter Jm, and are shown
as a function of the logarithmic strain e = ln(λ). (a) The stress component S11 = ∂Φ̂I/∂λ1. (b) The stress

component S22 = ∂Φ̂I/∂λ2.

(b) S22. One of the main points that can be drawn from Figure 3.7 is the strong dependence of

the effective stress-strain relation of the porous rubber on the lock-up parameter Jm of the matrix

phase. Interestingly, it can also be deduced from these figures that the evolution of the aspect ratio

appears to have little effect on the effective constitutive behavior of the porous elastomer under pure

shear.

3.2.4 Failure surfaces

Figure 3.8 displays the strongly elliptic (and non-elliptic) domains for the 2-D porous elastomer

with incompressible Neo-Hookean matrix phase, subjected to in-plane deformations. The results are

shown in the plane (e1 − e2) for: (a) Version 1 and 3 estimates for initial porosities f0 = 30, 50,

and 70%; and for (b) Version 3 estimates for initial porosities f0 = 10, 20, and 30%. In order to aid

the discussion of the results, the boundary at which the porosity vanishes has also been included in

Figure 3.8. Note that once the zero-porosity boundary is reached, further compressive deformation

(with J < 1) of the material is not possible.

An interesting observation that can be made from Figure 3.8 is that the loci of points describing

loss of strong ellipticity satisfy e2+e1 < 0, which implies that a necessary condition for loss of strong

ellipticity to occur is the existence of a compressive component in the state of deformation. Also,

note that the predictions from both versions of the second-order method have roughly the same

qualitative behavior; however, the results of Version 1 appear to be more restrictive than those of

Version 3 for all initial values of porosity and loadings, with the exception of cases satisfying f0 < 0.3,

e1 < 0, and e2 < 0, for which the onset of loss of strong ellipticity of Version 3 precedes that one of

Version 1. Furthermore, it is interesting to note that the strongly elliptic (and non-elliptic) domains

shown in Figure (3.8) are similar to the results obtained by Abeyaratne and Triantafyllidis (1984) for
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Figure 3.8: Domains of strong ellipticity on the (e1 − e2)-plane for a porous elastomer with incompress-
ible, Neo-Hookean, matrix phase and various levels of initial concentrations f0 of aligned cylindrical voids, as
determined by Version 1 and 3 of the second-order variational procedure. The dotted lines denote the bound-
ary at which the level of zero porosity has been reached upon compressive deformation. (a) Comparisons
between the Version 1 and 3 estimates; and (b) Version 3 estimates for low initial porosity.

the loss of strong ellipticity of periodic porous elastomers with a nearly incompressible Neo-Hookean

matrix phase. However, their results appear to be more restrictive than the ones obtained here. In

particular, these investigators did find loss of strong ellipticity for deformations with e2 + e1 > 0,

which includes pure shear loading. These discrepancies seem to be consistent with their periodic

microstructure, as it is more susceptible to instabilities than the random microstructure utilized in

this work. This point will be elaborated further in the next chapter, where we will consider porous

elastomers with periodic microstructures in full detail. Another important point that deserves further

comment is the trend followed by the onset of loss of ellipticity as a function of initial porosity.

In effect, Figure 3.8 suggests that a Neo-Hookean porous elastomer with random and isotropic

microstructure becomes more stable with increasing values of initial porosity. This is in contrast

to the behavior followed in stress space—not shown here for conciseness—where higher values of

initial porosity do lead to smaller critical stresses at loss of strong ellipticity. For convenience, a

detailed discussion of this intricate behavior will not be given here, but, instead, it will be postponed

until Chapter 5. Finally it is interesting to remark that it was through the failure of the third

(and equivalently fourth) condition of (3.31) that the porous elastomer with incompressible Neo-

Hookean matrix phase lost strong ellipticity systematically. Indeed, whereas the evolution of the

microstructure for compressive loadings led to the already-mentioned hardening of some of the

components of the effective incremental modulus, it also led to the softening of the shear component

L̂1212, which resulted in the overall loss of ellipticity of the porous elastomer.

For completeness, it is noted that the corresponding domains of strong ellipticity for porous

elastomers with incompressible Gent matrix phases are essentially identical to those shown in Figure

3.8. Indeed, the results predicted by the second-order theory indicate that the value of the lock-up

parameter Jm does not play a major role in estimating the onset of loss of ellipticity of porous

elastomers with random and isotropic microstructures. This is consistent with the fact that loss
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of strong ellipticity takes place under compressive deformations at which the lock-up effect, as

characterized by Jm, is not “felt.”

In summary, the second-order estimates for the homogenized constitutive behavior of porous

elastomers with isotropic, strongly elliptic, matrix phases have been found to admit loss of strong

ellipticity at reasonable levels of deformation. This behavior has been linked to the evolution of

the microstructure under finite deformations, which, depending on the specific loading conditions,

was found to induce hardening or softening behavior resulting in the loss of strong ellipticity for the

porous elastomer.

3.3 Concluding remarks

In this chapter, analytical estimates have been derived for the in-plane effective behavior of trans-

versely isotropic porous elastomers with random microstructures subjected to finite deformations,

by means of the homogenization framework developed in Chapter 2.

As already discussed in the preceding chapter, a key ingredient in the general framework of the

second-order variational procedure proposed in this work is the scheme employed for the linearization

of the constitutive relation of the hyperelastic phases in the composite. Thus, while the earlier

tangent linearization proposed by Ponte Castañeda and Tiberio (2000) results in estimates for the

effective constitutive behavior which depend exclusively on the average fields of the constituent

phases, the estimates associated with the generalized secant linearization scheme proposed here not

only depend on the average fields, but also exhibit a direct dependence on the field fluctuations. The

difference between these two approaches has already been shown to be significant in the context of

reinforced incompressible elastomers, where the incorporation of field fluctuations proved necessary

to obtain the correct overall incompressibility constraint for these materials (see Lopez-Pamies and

Ponte Castañeda, 2004a). Within the richer class of porous elastomers presented in this chapter, the

direct incorporation of field fluctuations into the computation of the effective behavior has turned

out to be essential as well.

Thus, by incorporating field fluctuations, the second-order method has been shown to lead to the

exact evolution of the porosity in porous elastomers with incompressible, isotropic, matrix phases,

under general plane strain loading. This is a remarkable result in view of the strong nonlinearity of

the problem. Furthermore, for the particular case of hydrostatic loading, the effective constitutive

estimates exhibit excellent agreement with the available exact result. This can be related to the

correct prediction of the porosity evolution. Unfortunately, no other exact results are available for the

effective constitutive behavior of porous elastomers. However, based on the comparisons presented,

it seems plausible that the second-order variational procedure should be also able to deliver accurate

estimates for the homogenized behavior of porous elastomers for more general loading conditions. In

the next chapter, where second-order estimates will be compared with FEM calculations, this will

be shown to be indeed the case.

On the contrary, the tangent second-order method, which only makes use of the average fields,

delivers predictions for the evolution of the microstructure that deviate rapidly from the expected
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behavior for finite deformations, especially for tensile loadings. The negative consequences of this

deviation were put in evidence by the comparisons with the exact result for hydrostatic loading,

where the tangent second-order estimates, even though exact to third order in the infinitesimal

strain, break down under large tensile deformations.

A major result of this work is the strong influence of the microstructure evolution on the overall

behavior of porous elastomers, in particular, through geometric hardening/softening mechanisms

arising as a consequence of the evolution of the pore microstructure during a finite-deformation

history. Indeed, it was seen that the decrease of the porosity during compressive deformations

results in a significant hardening of the effective constitutive behavior of the porous elastomer.

On the other hand, the increase of the porosity associated with tensile deformations leads to a

pronounced softening.

Finally, it has been shown that loss of strong ellipticity, corresponding to the possible development

of shear-band instabilities, can take place in porous elastomers with random microstructures at

physically realistic levels of compressive deformation. This is consistent with earlier findings by

Abeyaratne and Triantafyllidis (1984) for porous systems with periodic microstructures. Indeed, in

this work, we have been able to relate softening mechanisms associated with the evolution of the

microstructure under finite deformations with the possible onset of macroscopic instabilities, even

for materials with strongly elliptic matrix phases.
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3.4 Appendix I. In-plane components of the tensor P for

cylindrical inclusions with circular cross-section

In this appendix, we provide explicit expressions for the (relevant) in-plane components of the tensor

P associated with a random and isotropic distribution of aligned cylindrical fibers with circular cross

section in a matrix material with orthotropic modulus tensor L, with matrix representation



L1111 L1122 0 0

L1122 L2222 0 0

0 0 L1212 L1221

0 0 L1221 L1212




. (3.34)

In this case, having set the initial aspect ratio of the pores ω0 = 1, the general expression (2.57) for

P simplifies to:

Pijkl =
1
2π

∫ 2π

0

(Limkn ξm ξn)−1
ξj ξl dθ, (3.35)

where ξ1 = cos θ, ξ2 = sin θ, and ξ3 = 0. Carrying out the appropriate integrals leads to the following

expressions:

P1111 =
(L1122 + L1221)

2 + (L2222 − L1212)
(
Q2 −

√
L1111
L1212

√
Q1

)
√

L1111
L1212

Q3

,

P2222 =
(L1122 + L1221)

2 + (L1111 − L1212)
(
Q2 −

√
L2222
L1212

√
Q1

)
√

L2222
L1212

Q3

,

P1122 =
(L1122 + L1221)

(√
Q1 −

√
L1111 L1212 −

√
L1212 L2222

)

Q3
, (3.36)

where

Q1 =
(√

L1111L2222 + L1212

)2

− (L1122 + L1221)2,

Q2 = L1212 +
√

L1111L2222,

Q3 =
(
(L1122 + L1221)2 − (L1111 − L1212)(L2222 − L1212)

)√
Q1. (3.37)

At this point, it should be remarked that no allusion is made to the remaining non-zero, in-plane

components of the tensor P: P1212, P2121, and P1221, simply because they do not enter in the

homogenization process of the plane-strain loading of transversely isotropic elastomeric composites.

Next, we spell out the simplification of expressions (3.36) when specialized to a modulus L that

satisfies the constraints (3.6) given in the main body of the text. Note that under such constraints

Q3 = 0, so that suitable limits must be taken in relations (3.36). The final expressions read as

follows:

P1111 =
1 + L2222

L1212
+ 2

√
L2222
L1111

2L1111

(
1 +

√
L2222
L1111

)2 ,

P2222 =
1 + L1111

L1212
+ 2

√
L1111
L2222

2L1111

(
1 +

√
L2222
L1111

)2 ,
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P1122 =
− (L1221 + L1122)

2L1111L1212

(
1 +

√
L2222
L1111

)2 . (3.38)

3.5 Appendix II. Second-order estimates for transversely isotropic

porous elastomers with incompressible Neo-Hookean ma-

trix phase

In this appendix, a brief outline of the asymptotic analysis corresponding to the incompressibility

limit associated with the second-order estimate (2.69) for a transversely isotropic porous elastomer

with a Neo-Hookean matrix phase is presented. As discussed in the main body of the text, only one

of the roots derivable from the second-order method has a physically consistent asymptotic behavior

in the limit of incompressibility. The limit associated with this root is the one presented here. It is

noted that the results obtained from the following asymptotic analysis have been checked to be in

agreement with the full numerical solution.

Based on numerical evidence from the results for general κ, an expansion for the unknowns in

this problem, i.e., L∗1111, L∗2222, L∗1122, L∗1212, is attempted in the limit as κ → ∞ of the following

form:

L∗1111 =
a1

∆
+ a2 + a3∆ + O(∆2),

L∗2222 =
b1

∆
+ b2 + b3∆ + O(∆2),

L∗1122 =
c1

∆
+ c2 + c3∆ + O(∆2),

L∗1212 = d2 + O(∆), (3.39)

where, ∆ .= 1/κ is a small parameter and a1, a2, a3, b1, b2, b3, c1, c2, c3, and d2 are unknown

coefficients that ultimately depend on the applied loading λ1, λ2, the initial concentration of voids

f0, and the material parameter µ. For later use, it proves helpful to spell out the corresponding

expansion for the constrained component L∗1221 in the limit as κ →∞. Thus, introducing (3.39) in

(3.6) can be shown to lead to:

L∗1221 =
√

a1b1 − c1

∆
+

a2b1 + a1b2 − (a1 + b1)µ

2
√

a1b1

− c2 + O(∆). (3.40)

Now, it is important to remark that for the particular case of a Neo-Hookean matrix phase one of

the generalized secant equations (2.65) can be solved exactly for the variable L∗1212 in terms of the

other components of the modulus L. This can be shown to result into the following simplifications:

L∗1212 = d2 = µ. (3.41)
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Next, introducing relations (3.39)—(3.41) in the general expressions (3.10) and (3.11) for the com-

ponents of F̂(1) − F can be shown to lead to the following expansions:

F̂
(1)
11 − λ1 = x1 + x2∆ + O(∆2),

F̂
(1)
22 − λ2 = y1 + y2∆ + O(∆2),

F̂
(1)
12 F̂

(1)
21 = p1 + p2∆ + O(∆2),

(F̂ (1)
12 )2 + (F̂ (1)

21 )2 = s1 + s2∆ + O(∆2). (3.42)

The explicit expressions for the coefficients of these expansions have not been included here for their

bulkiness; however, it is useful to spell out their dependence on the variables introduced in (3.39).

Thus, the coefficients of first order x1, y1, p1, and s1 exhibit dependence on a1, b1, c1, a2, b2, and

c2, whereas, the second order terms x2, y2, p2, and s2 are functions of a1, b1, c1, a2, b2, c2, a3, b3,

and c3.

In connection with relations (3.42), it is necessary to clarify that the asymptotic expressions for

the combinations F̂
(1)
12 F̂

(1)
12 and (F̂ (1)

12 )2 + (F̂ (1)
12 )2 have been specified in (3.42), rather than those

for the independent components F̂
(1)
12 and F̂

(1)
12 , since, as discussed previously, they are the relevant

variables in this problem.

Now, by introducing expressions (3.39), (3.40), and (3.42) into the three reduced (recall that

L∗1212 = d2 = µ) generalized secant equations (2.65), a hierarchical system of equations is obtained

for the remaining unknown coefficients introduced in (3.39). Thus, the equations of first-order

O(∆−1) lead to the following results:

b1 =
λ

2

1

λ
2

2

a1,

c1 =
λ1

λ2

a1, (3.43)

whereas the equations of second-order O(∆0), by making use of (3.43), can be shown to render the

following relations:

b2 =
λ

2

1

λ
2

2

a2 − (λ1 − λ2)(λ1 + λ2)

λ
2

2

µ, (3.44)

a1 =
λ2(λ1λ2 − 1)

(
q2n

2
2 + q1n2 + q0

)

2f0λ1 (z2n2
2 + z1n2 + z0)

, (3.45)

r4n
4
2 + r3n

3
2 + r2n

2
2 + r1n2 + r0 = 0, (3.46)

where n2 = λ1a2 − λ2c2,

z2 = (f0 − 1)λ1,

z1 = µ
[
(3− 2f0)λ

2

1 + 2λ1λ2 + λ
2

2

]
,

z0 = µ2(λ1 + λ2)
[
(f0 − 2)λ

2

1 − (1 + f0)λ1λ2 − λ
2

2

]
, (3.47)

and q2, q1, q0, r4, r3, r2, r1, and r0 have been given in Appendix III.
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Prescriptions (3.43) through (3.47) can be shown to be sufficient to fully determine the first-order

terms of all of the components of F̂(1) − F and F
(1)

. The final expressions may be written as:

x1 = −λ1

λ2

y1 − (J̄ − 1)λ2

a1
,

y1 = −
λ2

[
a1f0µ(λ

2

2 − λ
2

1) + λ2(λ1λ2 − 1)
(
(f0 − 1)n2 + 2µ(λ1 + λ2)

)]

a1

[
2(f0 − 1)n2λ1 − µ(λ1 + λ2)

(
(f0 − 3)λ1 − (1 + f0)λ2

)] ,

p1 = x1y1 + λ2x1 + λ1y1 + λ1λ2 − 1,

s1 =
µ(λ1 − λ2)2(λ1 + λ2)2

a2
1f0λ1

[
2(f0 − 1)n2λ1 − µ(λ1 + λ2)

(
(f0 − 3)λ1 − (1 + f0)λ2

)]2

× (a1f0µ(λ1 + λ2)2 + (f0 − 1)λ2(λ1λ2 − 1)(n2 − µ(λ1 + λ2)))

× (
2a1f0λ1 + λ2(1 + f0 − (1 + f0)λ1λ2)

)
+

(
λ1

λ2

+
λ2

λ1

)
p1, (3.48)

and

λ
(1)

1 = x1 + λ1 + O(∆),

λ
(1)

2 = y1 + λ2 + O(∆). (3.49)

At this point, it is important to remark that relations (3.48) and (3.49), by means of (3.45), ultimately

depend on the variable n2, which can be determined in closed form by solving the fourth-order

polynomial equation (3.46). This is precisely the same equation as (3.15) given in the main body of

text, where for clarity of notation n2 was relabelled as v. Under the above development, it is then

straightforward to show that the leading order term of the expansion of the second-order estimate

(2.69) in the limit of incompressibility may be expressed in closed form, as it ultimately depends on

the coefficient n2. The final explicit expression (in terms of the variable n2 = v) is given by (3.14)

in the text.

Next, it is shown that the porosity associated with the second-order estimate (3.14) for a porous

elastomer with an incompressible Neo-Hookean matrix phase reduces to the exact result (3.30).

Given that a HS-type approximation is utilized in the homogenization process, the fields in the

porous phase are assumed constant. This implies that the average change in volume of the porous

phase is simply given by:

J̄ (2) = 〈detF〉(2)

= det〈F〉(2)

=

(
f0λ1 − (1− f0)x1

) (
f0λ2 − (1− f0)y1

)

f2
0

, (3.50)

where use has been made of the relation F = (1 − f0)F
(1)

+ f0F
(2)

. Expression (3.50) can now be

used to compute the porosity associated with the second-order estimate (3.14) through the relation:

f =
J̄ (2)

J̄
f0, (3.51)

which, after some simplification, can be shown to reduce to the exact result (3.30). Finally it should

be emphasized that this result has been proven to hold not only for Neo-Hookean porous elastomers,

but more generally, for porous elastomers with incompressible isotropic matrix phases.
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3.6 Appendix III. Coefficients associated with the incom-

pressible limit for the second-order estimate of Neo-Hookean

porous elastomers

This appendix provides, in terms of λ1, λ2, f0, and µ, the explicit expressions for the coefficients

introduced in relations (3.14) and (3.15). They read as follows:

p4 = (f0 − 1)2(1 + f0)λ
2

1

(
λ

2

1 + λ
2

2

)
,

p3 = −4(f0 − 1)µλ
2

1

(
(−1 + f2

0 )λ
3

1 − (1 + f0)λ
2

1λ2+

+ (−1 + (f0 − 4)f0)λ1λ
2

2 − (1 + f0)λ
3

2

)
,

p2 = 2µ2λ1

(
3(f0 − 1)2(1 + f0)λ

5

1 + (5 + (4− 7f0)f0)λ
4

1λ2+

+ 2(2 + f0(13 + (−12 + f0)f0))λ
3

1λ
2

2 + 4(1− 2(−2 + f0)f0)λ
2

1λ
3

2 −
− (1 + f0)(−1 + (f0 − 4)f0)λ1λ

4

2 − (1 + (f0 − 4)f0)λ
5

2

)
,

p1 = −4µ3λ1(λ1 + λ2)
(
(f0 − 1)2(1 + f0)λ

5

1 − (−1 + f0(−5+

+ f0(3 + f0)))λ
4

1λ2 + (f0 − 4)(−3 + f0)f0λ
3

1λ
2

2 − (f0 − 4)f0 ×
× (1 + f0)λ

2

1λ
3

2 + (−1 + 3f0)λ1λ
4

2 + (f0 − 1)λ
5

2

)
,

p0 = µ4(λ1 + λ2)2
(
(f0 − 1)2(1 + f0)λ

6

1 − 2f0(−5 + f0(2 + f0))λ
5

1λ2+

+ (−1 + f0(11 + 2(f0 − 1)f0))λ
4

1λ
2

2 − 2f0(−2 + (−3 + f0)f0)λ
3

1λ
3

2 +

+ (−1 + f0(5 + (f0 − 1)f0))λ
2

1λ
4

2 + 2f0(1 + f0)λ1λ
5

2 + (1 + f0)λ
6

2

)
,

q2 = (f0 − 1)2λ1,

q1 = 2(f0 − 1)µλ1

(
λ1 − f0λ1 + λ2

)
,

q0 = µ2
(
(f0 − 1)2λ

3

1 − (1 + f0)2λ1λ
2

2 − (1 + f0)λ
3

2 + λ
2

1(λ2 − 3f0λ2)
)

,

r4 = −(−1 + f0)3λ
2

1(−1 + f0 + λ1λ2),

r3 = −4(−1 + f0)2µλ
2

1(λ1 − f0λ1 + λ2)(−1 + f0 + λ1λ2),

r2 = −2(−1 + f0)µ2λ1

(
3(−1 + f0)3λ

3

1 + (−1 + f0)λ
2

1(5− 7f0+

+ 3(−1 + f0)λ
2

1)λ2 − λ1(1− 3f0 + f2
0 + f3

0 + (−5 + 7f0)λ
2

1)λ
2

2 −
− (−1 + f2

0 + (−1 + f0(4 + f0))λ
2

1)λ
3

2 − (1 + f0)λ1λ
4

2

)
,
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r1 = 4µ3λ1(λ1 + λ2)
(
(−1 + f0)3λ

4

1λ2 + λ1λ
2

2(−1 + f2
0 + (1 + f0 + f2

0 )λ
2

2)+

+ λ
3

1((−1 + f0)4 − (1 + f0(−4 + f0 + f2
0 ))λ

2

2) + λ
3

2(−1 + f0(f0 + λ
2

2)) +

+ λ
2

1λ2(1 + λ
2

2 − f0(4− 4f0 + f3
0 + (−3 + f0)λ

2

2))
)

,

r0 = −µ4(λ1 + λ2)2
(
(−1 + f0)4λ

4

1 − (−1 + f0)2λ
3

1(2f0(1 + f0)−

− (−1 + f0)λ
2

1)λ2 + λ
2

1(−2 + f0(2 + 3f0 + f3
0 − 2(−3 + f2

0 )λ
2

1))λ
2

2 +

+ λ1(2f0(1 + f0)2 + (2 + f0(4 + f0 + f2
0 ))λ

2

1)λ
3

2 +

+ (1 + f0)(1 + f0 + 2f0λ
2

1)λ
4

2 + (−1 + f0)λ1λ
5

2

)
.

3.7 Appendix IV. Tangent second-order estimates for trans-

versely isotropic porous elastomers with incompressible

Neo-Hookean matrix phase

In this appendix some details are presented concerning the incompressibility limit associated with

the tangent second-order estimate (3.19) for a porous elastomer with Neo-Hookean matrix. The

asymptotic solution resulting from this heuristic derivation has been checked to be in agreement

with the full numerical results.

Motivated by the observed properties of the numerical solution for general κ, an expansion for

the unknowns in this problem, i.e., λ
(1)

1 and λ
(1)

2 , is attempted in the limit as κ →∞ of the following

form:

λ
(1)

1 = α1 + α2∆ + α3∆2 + O(∆3),

λ
(1)

2 = β1 + β2∆ + β3∆2 + O(∆3), (3.52)

where, ∆ .= 1/κ is a small parameter, and α1, α2, α3, β1, β2, and β3 are unknown coefficients

which ultimately depend on the applied loading λ1, λ2, the initial concentration of voids f0, and the

material parameter µ.

By making use of expressions (3.52) in relation (3.20), a hierarchical system of equations is

obtained for the coefficients α1, α2, α3, β1, β2, and β3. The leading order terms O(∆−1) of these

equations can be shown to lead to the following relationship:

β1 = 1/α1, (3.53)

which implies that the determinant of F
(1)

, denoted by J̄ (1), is exactly equal to one in the incom-

pressible limit.

Next, under condition (3.53), the equations of order O(∆0) yield the relationship:

α2 + α2
1β2 =

(1 + α2
1)

(−1− f0 + (1 + f0)α2
1 + (λ2 − λ1)α1

)
µ

λ1 − α2
1λ2

, (3.54)

which determines the combination α2 + α2
1β2 in terms of α1.
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Finally, the equations of order O(∆) derived from (3.20) are considered. Making use of relations

(3.53) and (3.54) in these equations can be shown to lead to the following expressions:

α3 + G1(α1, α2)β3 = G2(α1, α2), (3.55)

and

(
λ

2

2 + f2
0 − 1

)
α4

1 + 2
(
λ1 + (f0 − 1)λ2

)
α3

1 +
(
λ

2

2 − λ
2

1

)
α2

1

−2
(
(f0 − 1)λ1 + λ2

)
α1 + 1− f2

0 − λ
2

1 = 0, (3.56)

where G1 and G2 are (known functions of their arguments) too cumbersome to be included here.

It is noted that (3.55) establishes a linear relationship between β3 and α3 analogous to the one

established by equation (3.54) between β2 and α2. More importantly, (3.56) provides a fourth-

order polynomial equation for the coefficient α1 in terms of the initial concentration of pores f0,

the material parameter µ, and the applied loading as determined by λ1 and λ2. This equation is

precisely the equation (3.22) given in the main body of the text, where for clarity of notation α1 was

denoted as u. It turns out that the leading order term of the effective energy (3.19) in the limit of

incompressibility may eventually be characterized entirely in terms of the coefficient α1. The final

result is given by expression (3.21) in the text, where, as already pointed out, u must be identified

with α1.

It is noted that for the particular case of hydrostatic loading, i.e. λ2 = λ1 = λ, a suitable limit

must be taken in the above expressions. For this type of deformation, it is straightforward to show

that λ
(1)

2 = λ
(1)

1 , and hence that, β1 = α1, β2 = α2, and β3 = α3. Now, making use of these relations

together with the equation of order O(∆−1) given by (3.53) leads to α1 = 1. In turn, this result for

α1 makes the equation (of order O(∆0)) (3.54) be satisfied trivially, whereas the one of order O(∆1)

can be shown to render the following identities:

α2 =
λ− 1

λ + f0 − 1
µ,

α3 =
(λ− 1)

(
3− 5f0 + 2f2

0 + (7f0 − 6)λ + 3λ
2
)

2(λ + f0 − 1)3
µ2. (3.57)

Recognizing now that under expression (3.52), hydrostatic loading, and α1 = 1, the expansion of

the second-order estimate (3.19) in the incompressibility limit can be written, to first order, as:

Ŵ I(F) = Φ̂I(λ, λ) = 2(1− f0)
(
λ− 1

)
α2 + O(∆), (3.58)

together with (3.57)1, leads to the final result (3.23).
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Chapter 4

Porous elastomers: cylindrical voids,

periodic microstructure

This chapter—as the preceding one—is concerned with the overall, plane-strain behavior of porous

elastomers consisting of aligned cylindrical voids in an isotropic elastomeric matrix subjected to

finite deformations. Unlike in Chapter 3, however, the distribution of the pores here is taken to be

periodic. This provides the means to achieve the two main objectives of this chapter: (i) to asses

the accuracy of the second-order estimates through comprehensive comparisons with more accurate

FEM calculations available for periodic microstructures, and (ii) to study the influence of the initial

microgeometry of porous elastomers on the overall behavior and stability of these materials.

Many thanks are due to Jean–Claude Michel (LMA, Marseille) and Nicolas Triantafyllidis (Uni-

versity of Michigan, Ann Arbor) for allowing me to use some of their FEM simulation results in

advance of their publication. For a detailed description of the FEM calculations the reader is referred

to Triantafyllidis et al. (2006).

4.1 Plane-strain loading of periodic porous elastomers

In the present chapter, as already stated above, we study the problem of plane-strain loading of

porous elastomers consisting of cylindrical voids perpendicular to the plane of deformation and

aligned in the e3 axis direction. The voids are taken to have initially circular cross section and initial

volume fraction f0. Moreover, two types of pore distributions—in the reference configuration—are

considered: (a) periodic square and (b) periodic hexagonal arrangements, as depicted in Figure 4.1.

For definiteness, the elastomeric matrix phase is taken to be characterized by the (2D) compress-

ible Neo-Hookean material with stored-energy function (3.3), repeated here for convenience:

W (F) =
µ

2
(I − 2)− µ ln J +

κ− µ

2
(J − 1)2 . (4.1)

Recall that in this expression, I = λ2
1 + λ2

2, J = λ1λ2, and µ and κ denote, respectively, the shear

and bulk modulus of the material at zero strain.

In contrast to the in-plane isotropic distribution of voids considered in Chapter 3, the pore

distributions studied in this chapter are anisotropic. As a result, the overall in-plane response of
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(a)
e1

e2

e1

e2

(b)

L2 = L1

L1

L1

L2 = ◊3L1

Figure 4.1: Reference configuration depiction of the various microgeometries investigated: (a) periodic
square, and (b) periodic hexagonal arrangement of circular voids.

the class of porous elastomers considered here is anisotropic. In this regard, attention cannot be

restricted only to pure stretch diagonal loadings, as it was done in Chapter 3, but, instead, general

in-plane loadings need to be considered. Thus, by exploiting the objectivity of Ŵ—namely, by

setting R = I—and by making use of the decomposition U = Q D Q
T
, we will consider (in-plane)

macroscopic deformation gradients F of the form1:

F ij = U ij =


 cos θ − sin θ

sin θ cos θ





 λ1 0

0 λ2





 cos θ sin θ

− sin θ cos θ


 . (4.2)

In this last expression, λ1 and λ2 denote the in-plane macroscopic principal stretches, and θ serves

to characterize the orientation (in the anticlockwise sense relative to the fixed laboratory frame

of reference) of the macroscopic, in-plane, Lagrangian principal axes (i.e., the principal axes of

U). For convenience, the coordinates {ei} defining the solid’s axes of orthotropy in the reference

configuration (see Fig. 4.1) will be identified here as the fixed laboratory frame of reference. In the

sequel, the components of any tensorial quantity will be referred to {ei}.
Having specified the initial microstructure, the constitutive behavior of the matrix phase, and

the applied loading conditions, we next detail the specialization of the second-order estimate (2.69)

to the class of porous elastomers of interest in this chapter.

4.1.1 Second-order homogenization estimates

The computation of the second-order estimate (2.69) for the class of periodic porous elastomers

defined above, though similar, is considerably more involved—due to the anisotropic distribution of
1Here and subsequently in this chapter, Latin indices range from 1 to 2.
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the pores—than that of random, isotropic porous elastomers given in Section 3.1.1. First, following

similar arguments to those given in Section 3.1.1, it suffices to consider the in-plane components of

the modulus tensor L(1) = L of the matrix phase of the linear comparison composite, which may be

conveniently expressed as a matrix in <4×4:



L1111 L1122 L1112 L1121

L1122 L2222 L2212 L2221

L1112 L2212 L1212 L1221

L1121 L2221 L1221 L2121




, (4.3)

where, once again, for notational simplicity, the superscript ‘(1)’ has been suppressed for L(1) and

its components, and use has been made of major symmetry (i.e., Lijkl = Lklij). Further, recalling

that L∗ has been taken to be orthotropic, it follows that it may be written in the form:



L∗1111 L1122 0 0

L∗1122 L∗2222 0 0

0 0 L∗1212 L∗1221
0 0 L∗1221 L∗2121




. (4.4)

Since R and Q are known quantities, the prescription (2.66), together with (4.4), entails that L

possesses 6 independent components, namely, L∗1111, L
∗
2222, L

∗
1122, L

∗
1212, L

∗
2121, and L∗1221. Following

similar arguments to those given in Section 3.1.1—namely, guided by the fact that under plane-strain

conditions the tensor F̂(1) has at most 4 independent components (F̂ (1)
11 , F̂

(1)
22 , F̂

(1)
12 , F̂

(1)
21 ) which should

be determined from equation (2.72)—it is expedient to reduce the independent components of (4.4)

from 6 to just 4. To this end, we impose the constraints (3.6), repeated here for convenience:

L∗2121 = L∗1212, and L∗1221 =
√

(L∗1111 − L∗1212) (L∗2222 − L∗1212)− L∗1122, (4.5)

among the components of (4.4). Recall that the motivation for the choices (4.5) is twofold: (i) the

principal components of the tangent modulus of a Neo-Hookean material satisfy (3.6); and (ii) the

conditions (4.5) simplify considerably the computations involved.

Now, making use of the above results, the average deformation gradient F
(1)

in the matrix

phase of the LCC, needed in the computation of Ŵ , can be readily computed from (2.70) in terms

of the applied loading F, the initial porosity f0, the matrix material parameters µ, κ, and the 4

unknowns L∗1111, L∗2222, L∗1122, and L∗1212. Note from the RHS of (2.70) that F
(1)

depends also on

whether the underlying pores are distributed with square (see Fig. 4.1(a)) or hexagonal (see Fig.

4.1(b)) arrangement, since it depends directly on the microstructural tensor P, via E(1) = E =

P−1 − (1− f0)L. In this connection, it is noted that the explicit expressions for the components of

the tensor P for the two types of periodic microstructures considered in this chapter are given in

Appendix I.

Having specified the variable F
(1)

, we next turn to determining F̂(1), also needed in the computa-

tion of Ŵ . With conditions (4.5) for the components (4.4) of L∗, and making use of the identifications

`∗1 = L∗1111, `∗2 = L∗2222, `∗3 = L∗1212, and `∗4 = L∗1122, the equations (2.72) can be seen to reduce to 4
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consistent equations for the 4 components of F̂(1). These equations are more conveniently expressed

in terms of the variable Y:

Y = Q
T
R

T
(
F̂(1) − F

)
Q, (4.6)

which leads to the expressions:2

(Y11)
2 + 2f1Y12Y21 = k1,

(Y22)
2 + 2f2Y12Y21 = k2,

(Y12)
2 + (Y21)

2 + 2f3Y12Y21 = k3,

Y11Y22 − Y12Y21 = k4, (4.7)

where f1 = ∂L∗1221/∂L∗1111, f2 = ∂L∗1221/∂L∗2222, f3 = ∂L∗1221/∂L∗1212, and

k1 =
1
f0

(
D− F̆(1)

)
· ∂E∗

∂L∗1111

(
D− F̆(1)

)
,

k2 =
1
f0

(
D− F̆(1)

)
· ∂E∗

∂L∗2222

(
D− F̆(1)

)
,

k3 =
1
f0

(
D− F̆(1)

)
· ∂E∗

∂L∗1212

(
D− F̆(1)

)
,

k4 =
1

2 f0

(
D− F̆(1)

)
· ∂E∗

∂L∗1122

(
D− F̆(1)

)
. (4.8)

In relations (4.8), F̆(1) = Q
T

R
T

F
(1)

Q and E∗ = (P∗)−1 − (1− f0)L∗ with P∗ such that

Pijkl = QrmQjnQspQlqRirRksP
∗
mnpq, (4.9)

have been introduced for ease of notation.

In spite of the fact that equations (4.7) are nonlinear, they can be solved in closed form to yield

two distinct solutions for Y11 and Y22 and the combinations Y12Y21 and (Y12)2 + (Y21)2. The two

solutions are as follows:

Y11 = ± 2f1k4 + k1√
4f2

1 k2 + 4f1k4 + k1

, Y22 = ± 2f1k2 + k4√
4f2

1 k2 + 4f1k4 + k1

,

Y12Y21 = Y11Y22 − k4, Y 2
12 + Y 2

21 = k3 − 2f3Y12Y21, (4.10)

where it must be emphasized that the positive (and negative) signs must be chosen to go together

in the roots for Y11 and Y22.

Next, using the relation F̂(1) = R QYQ
T

+ F, each of the two distinct roots for Y may be

substituted into expression (2.65). The resulting relation forms a system of 4 nonlinear algebraic

equations for the 4 scalar unknowns L∗1111, L∗2222, L∗1122, and L∗1212, which must be solved numerically.

It is worth mentioning that by exploiting the objectivity and isotropy of the Neo-Hookean stored-

energy function (4.1), the equations obtained from (2.65) may be finally cast into a rather simple

form. Having computed the values of all the components of L for a given initial porosity f0, given

material parameters µ and κ, and given loading F, the values of the components of F
(1)

and F̂(1) can

be readily determined using relations (2.70) and (4.10), respectively. In turn, these results may be

2Note that the algebraic system of equations (4.7) is mathematically equivalent to (3.8) (which appeared in the
context of the random, isotropic microstructure).
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used to compute the second-order estimate (2.69) for the effective stored-energy function Ŵ of the

porous elastomers. In this connection, it should be noted that, similar to the random case discussed

in the previous chapter, there is only one root, between the two possible choices in (4.10), that leads

to physically sound, superior estimates for Ŵ . The criterion is as follows: (i) the “positive” (+) root

in (4.10) should be selected for deformations satisfying e1 + e2 ≤ 0 ; (ii) the “negative” (−) root in

(4.10) should be selected for deformations satisfying e1 + e2 ≥ 0, where it is recalled that ei = ln λi.

To conclude this section, it proves expedient for later use to write down the evolution of the

relevant microstructural variables in this problem. Thus, following Section 2.5, the current porosity

and current average aspect ratio of the underlying pores in the deformed configuration are given,

respectively, by:

f =
λ

(2)

1 λ
(2)

2

λ1λ2

f0 and ω =
λ

(2)

1

λ
(2)

2

. (4.11)

In these expressions, λ
(2)

1 and λ
(2)

2 denote the principal stretches associated with the average defor-

mation gradient tensor F
(2)

in the porous phase, which can be readily computed from knowledge of

F
(1)

, by making use of the macroscopic average condition: F
(2)

= 1/f0(F− (1− f0)F
(1)

).

4.1.2 Loss of strong ellipticity

As already stated in the preceding chapter, the general strong ellipticity condition (2.89) can be

written down more explicitly for the particular case of plane-strain deformations. Indeed, it can be

shown that, under plane-strain conditions, loss of strong ellipticity is first attained along a given

loading path (with origin at F = I) whenever the fourth-order polynomial equation:

det

[
L̂i1k1

(
N1

N2

)2

+ (L̂i1k2 + L̂i2k1)
N1

N2
+ L̂i2k2

]
= 0 (4.12)

admits one or more real roots N1/N2. In this expression, it should be recalled that N1 and N2 denote

the direction cosines of the normal N to the characteristic direction in the undeformed configuration,

and that L̂ = ∂2Ŵ/∂F
2
. Explicit (but cumbersome) conditions on the components of L̂ may be

written down in order for the quartic equation (4.12) to posses complex roots. However, in general,

it is simpler to determine the loss of strong ellipticity by monitoring the 4 roots of (4.12), which are

known in closed form, along the loading path of interest, and detecting at which point at least one

of these 4 roots becomes real.

For later use, it proves helpful to record here the simplification of condition (4.12) for the cases

in which the loading is aligned with the microstructure (i.e., for θ = 0 and θ = π/2 in (4.2)). For

such cases, (4.12) can be shown to reduce to

L̂1111L̂2121

(
N1

N2

)4

+
(
L̂1111L̂2222 + L̂1212L̂2121 − (L̂1122 + L̂1221)2

) (
N1

N2

)2

+L̂2222L̂1212 = 0. (4.13)

Interestingly, the conditions on the components of L̂ for (4.13) to have complex roots—as opposed
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to those needed for the more general polynomial (4.12)—are rather simple. They read as follows:

L̂1111 > 0, L̂2222 > 0, L̂1212 > 0, L̂2121 > 0, and

L̂1111L̂2222 + L̂1212L̂2121 − (L̂1122 + L̂1221)2 > −2
√
L̂1111L̂2222L̂1212L̂2121.

(4.14)

Note that conditions (4.14) are identical to those encountered for porous elastomers with random,

isotropic microstructures, given by (3.31) in Chapter 3. However, it should be remarked that while

the third and fourth conditions in (3.31) are equivalent to each other—due to the fact that for

isotropic materials L̂2121 = L̂1212—the third and fourth conditions in (4.14) are not correlated.

4.2 Results for plane-strain loading: periodic porous elas-

tomers

In this section, the above-developed second-order estimates are compared with FEM calculations

for the effective stress-strain, the microstructure evolution, and the macroscopic stability of periodic

porous elastomers with compressible Neo-Hookean matrix phases subjected to various types of finite

plane-strain deformations. Special attention is given to hydrostatic and aligned (i.e., θ = 0 in (4.2))

uniaxial loading conditions, as well as to macroscopic failure surfaces—as determined by loss of

strong ellipticity—in both, strain and stress space. Results are given for µ = 1, κ = 10, and various

values of initial porosity f0, and are computed up to the point at which either the effective behavior

is found to lose strong ellipticity, or, alternatively, the porosity vanishes or percolation takes place.

The computation of the latter phenomenon is explained in Appendix II.

4.2.1 Hydrostatic loading

Figures 4.2 and 4.3 present comparisons between the second-order estimate (SOE) and FEM cal-

culations for the effective behavior of periodic porous elastomers subjected to in-plane hydrostatic

compression (λ1 = λ2 = λ ≤ 1). Figure 4.2 displays results for an initial square (SQ) arrangement

of pores with initial porosities of 10,20, 30, 40, and 50% as a function of the logarithmic strain

e = ln λ, while Figure 4.3 displays corresponding results for an initial hexagonal (HX) arrange-

ment of pores with initial porosities of 10, 30, and 50%. Parts (a) show the macroscopic stress

S = ∂Ŵ/∂F 11 = ∂Ŵ/∂F 22 = ∂Ŵ/∂F 33, and parts (b), the evolution of the porosity f .

The main observation from Figures 4.2 and 4.3 is that the second-order estimates are in excellent

agreement with the FEM results for all values of initial porosity f0 considered. It is also interesting

to remark that both microgeometries, SQ and HX, lead to very similar results for the stress-strain

relations as well as for the evolution of the porosity. This suggests that the initial distribution

of pores does not play a major role in the overall behavior of porous elastomers. In fact, as it

will be shown more explicitly further below, this is partially true. More precisely, the initial pore

distribution will be shown to have a “mild” influence on the effective stress-strain response of porous
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Figure 4.2: Comparisons of the effective response, as predicted by the second-order estimate (SOE), with
FEM calculations of a porous elastomer with compressible Neo-Hookean matrix phase subjected to hydro-
static compression (λ1 = λ2 = λ ≤ 1). Results are shown for a periodic square (SQ) distribution of voids
and various values of initial porosity f0, as a function of the logarithmic strain e = ln λ. (a) The macroscopic

stress S = ∂Ŵ/∂F 11 = ∂Ŵ/∂F 22 = ∂Ŵ/∂F 33. (b) The evolution of the porosity f .

elastomers. However, it will be seen that it does play a major role in the development of instabilities

in these materials. Next, it is noted that—in accord with the results found in the preceding chapter

dealing with random, isotropic porous elastomers—the effective behavior of the porous elastomer is

softer for higher values of f0. Note further that the porosity decreases with increasing compressive

strain, which induces geometrical hardening on the overall response of the material. Finally, it should

be remarked that, both, the SOE and the FEM predictions lose strong ellipticity at finite levels of

compressive strain. A quantitative comparison between both these predictions will be carried out

at the end of this section.

4.2.2 Aligned uniaxial loading

Figure 4.4 provides comparisons between the second-order estimate (SOE) and FEM calculations for

the effective behavior of periodic porous elastomers subjected to aligned (θ = 0) uniaxial compression

(λ2 = 1, λ1 ≤ 1). Results are shown for a square (SQ) arrangement of pores with initial porosities

of 10,20, 30, 40, and 50% as a function of the logarithmic strain e1 = ln λ1. Part (a) shows the

macroscopic stress component S11 = ∂Ŵ/∂F 11, and part (b), the stress component S22 = ∂Ŵ/∂F 22.

As for the previous case dealing with hydrostatic compression, the second-order estimates are in

excellent agreement with the FEM results for all values of initial porosity f0 considered. In addition,

and also similar to hydrostatic compression, the effective response of the porous elastomer is seen to

be softer for higher values of f0. Finally, note that the SOE and FEM results lose strong ellipticity

under uniaxial compression.

Figure 4.5 provides comparisons between the second-order estimate (SOE) and FEM calculations

for the evolution of the microstructural variables associated with the results shown in Figure 4.4.
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Figure 4.3: Comparisons of the effective response, as predicted by the second-order estimate (SOE), with
FEM calculations of a porous elastomer with compressible Neo-Hookean matrix phase subjected to hydro-
static compression (λ1 = λ2 = λ ≤ 1). Results are shown for a periodic hexagonal (HX) distribution of
voids and various values of initial porosity f0, as a function of the logarithmic strain e = ln λ. (a) The

macroscopic stress S = ∂Ŵ/∂F 11 = ∂Ŵ/∂F 22 = ∂Ŵ/∂F 33. (b) The evolution of the porosity f .

Part (a) shows the evolution of porosity f , and part (b), the evolution of the average aspect ratio

of the pores ω. Again, note that the agreement between the SOE and FEM predictions is good,

especially for f . The SOE predictions for ω tend to slightly overestimate the corresponding FEM

results. As expected on physical grounds, Figure 4.5(a) illustrates that the porosity decreases with

increasing compressive strain. In addition, it is seen from Figure 4.5(b) that the aspect ratio decreases

with the applied loading, which implies that the initially circular pores evolve—on average—into

elliptical pores with the semi-minor axes aligned with the direction of applied compression.

Figures 4.6 and 4.7 illustrate analogous results to those shown in Figures 4.4 and 4.5 for a

hexagonal (HX)—as opposed to square—arrangement of the pores. The agreement between the

SOE and FEM predictions is very good. This is particularly true for the two smallest initial porosities

(i.e., for f0 = 10 and 30%). For f0 = 50%, the agreement is good but it gets worse progressively

with increasing compressive strain. This is consistent with the fact that the Hashin-Shtrikman

estimate (2.55) utilized in the computation of the second-order estimates is expected to become

more inaccurate for higher values of f0. Furthermore, as for the SQ microgeometry, the SOE and

FEM results shown in Figures 4.6 and 4.7 lose strong ellipticity. Finally, note that the HX results

shown in Figures 4.6 and 4.7 are very similar (quantitatively) to the corresponding SQ results shown

in Figures 4.4 and 4.5. This fact corroborates the above-stated remark that the initial distribution

of pores does not affect significantly the overall stress-strain relation and microstructural evolution

of porous elastomers.

In summary, the above results indicate that the second-order method provides remarkably ac-

curate estimates for the effective stress-strain relation and the microstructure evolution of periodic

porous elastomers with small to moderate levels of initial porosity. It should be noted, however, that
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Figure 4.4: Comparisons of the effective response, as predicted by the second-order estimate, with FEM
calculations of a porous elastomer with compressible Neo-Hookean matrix phase subjected to aligned uniaxial
compression (λ1 = λ, λ2 = 1, θ = 0). Results are shown for a periodic square (SQ) distribution of voids and
various values of initial porosity f0, as a function of the logarithmic strain e = ln λ. (a) The macroscopic

stress S11 = ∂Ŵ/∂F 11. (b) The macroscopic stress S22 = ∂Ŵ/∂F 22.

all the results presented above correspond to compressive deformations, under which the porosity

decreases. As explained in Section 2.5.1, this has the direct implication that the (Hashin-Shtrikman-

type) second-order estimates become more accurate with the applied deformation. Comparisons be-

tween the SOE predictions and FEM calculations for tensile deformation—under which the porosity

increases—have been also carried out, but the results will not be included here for brevity. For

such tensile deformations, the SOE results compare well with the FEM calculations for small to

moderate deformations, but, as expected, they deteriorate significantly for very large deformations,

when the porosity reaches values near percolation. In this regard, it should be re-emphasized that

this failure is due to the use of the HS estimates (2.55) for the LCC, and not to the second-order

method itself. As pointed out in Section 2.5.1, this problem could be circumvented by using a more

accurate estimate for the effective behavior of the linear comparison composite.

4.2.3 Failure surfaces

This subsection presents results for the macroscopic onset-of-failure surfaces (Triantafyllidis et al.,

2006)—as determined by loss of strong ellipticity—for the class of periodic porous elastomers under

consideration in this chapter. Results are provided in both, strain and stress space. In addition,

special attention is given to aligned (i.e., θ = 0) loading conditions, but some representative results

are also presented for “misaligned” deformations (i.e., θ 6= 0).

Figure 4.8 illustrates the macroscopic failure surfaces, as determined by the second-order esti-

mate (SOE) and FEM calculations, for a porous elastomer with an initially periodic square (SQ)

distribution of circular voids and initial porosities of f0 = 10, 30, and 50%. The results correspond

to aligned (i.e., θ = 0) plane-strain deformations. Part (a) shows failure surfaces in the III-quadrant
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Figure 4.5: Aligned uniaxial compression (λ1 = λ, λ2 = 1, θ = 0) of a porous elastomer with compressible
Neo-Hookean matrix phase and various values of initial porosity f0. The results are shown for a periodic
square (SQ) distribution of voids, as a function of the logarithmic strain e = ln λ. Comparisons between the
second-order estimates and FEM calculations for (a) the evolution of the porosity f ; and (b) the evolution
of the average aspect ratio of the pores ω.

(i.e., e1 ≤ 0 and e2 ≤ 0) in strain space, and part (b), the corresponding failure surfaces in stress

space. First, it is observed from Figure 4.8 that the SOE predictions are in remarkably good agree-

ment with the FEM results near hydrostatic compression (i.e., near e2 = e1), especially for f0 = 10

and 30%. For the remaining loadings in the III-quadrant, the agreement between the SOE and

FEM results remains excellent for the case of f0 = 30% but deteriorates considerably for f0 = 10%.

For f0 = 50%, the SOE predictions can be seen to be qualitatively identical to the corresponding

FEM results, but quantitatively more stable—in the sense that the SOE onset of instability occurs

at larger compressive strains and stresses. Interestingly, the FEM results shown in Figure 4.8(a)

indicate that the porous elastomer with f0 = 10% is more unstable than the one with f0 = 30% near

hydrostatic compression in strain space (since loss of strong ellipticity occurs at smaller compressive

strains). For loadings near uniaxial compression (i.e., near e1 = 0 and e2 = 0), higher values of

f0 lead consistently to a more unstable behavior. In contrast, Figure 4.8(b) shows that in stress

space, higher values of initial porosity systematically lead to more unstable behavior, regardless of

the loading conditions.

Figure 4.9 provides analogous results to those given in Figure 4.8 for a hexagonal (HX)—as

opposed to square—distribution of pores. In this case, the comparisons between the SOE predictions

and the FEM calculations are less favorable than those found in Figure 4.8 (for the square pore

distribution). The reasons for this disparity are not entirely clear, but they might be associated

with the fact that certain shear moduli of the HS estimate (2.55) turn out to be less accurate for the

hexagonal distribution than for the square one. In any case, the SOE predictions are qualitatively

similar to the FEM results. In quantitative terms, it is seen that the second-order estimates lose

strong ellipticity at larger compressive strains and stresses. Interestingly, Figure 4.9(a) shows that
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Figure 4.6: Comparisons of the effective response, as predicted by the second-order estimate, with FEM
calculations of a porous elastomer with compressible Neo-Hookean matrix phase subjected to aligned uniaxial
compression (λ1 = λ, λ2 = 1, θ = 0). Results are shown for a periodic hexagonal (HX) distribution of voids
and various values of the initial porosity f0 as a function of the logarithmic strain e = ln λ. (a) The

macroscopic stress S11 = ∂Ŵ/∂F 11. (b) The macroscopic stress S22 = ∂Ŵ/∂F 22.

both, the SOE and FEM results, indicate that the porous elastomer is more stable with increasing

initial porosity in strain space, provided that f0 ≤ 50%. In stress space, on the other hand, the porous

elastomer is seen to be more unstable—systematically—for higher values of f0. Thus, combining this

result together with the corresponding results shown in Figures 4.8 (for square pore distribution)

and 3.8 (for random, isotropic distribution), we conclude that, regardless of the initial distributions

of the pores, porous elastomers are more unstable in stress space—in the sense that they lose of

strong ellipticity at smaller stresses—for higher values of initial porosity f0. In contrast, in strain

space, there is no such monotonicity and the trend followed by the failures surfaces with increasing

f0 depends very critically on the initial distribution of pores. In particular, the results presented

here suggest that as the distribution of the pores tends to be more random and isotropic (i.e.,

SQ → HX → random), the porous elastomer tends to lose strong ellipticity at larger strains for

higher values of initial porosity.
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Figure 4.7: Aligned uniaxial compression (λ1 = λ, λ2 = 1, θ = 0) of a porous elastomer with compressible
Neo-Hookean matrix phase and various values of initial porosity f0. The results are shown for a periodic
hexagonal (HX) distribution of voids as a function of the logarithmic strain e = ln λ. Comparisons between
the second-order estimates and FEM calculations for (a) the evolution of the porosity f ; and (b) the evolution
of the average aspect ratio of the pores ω.
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Figure 4.8: Macroscopic onset-of-failure surface, as determined by the loss of strong ellipticity of the second-
order estimate and FEM calculations, for a porous elastomer with periodic square (SQ) arrangement of voids
and compressible Neo-Hookean matrix phase. (a) The results in the e1–e2 plane in strain space; and (b) the
corresponding results in stress space.
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Figure 4.9: Macroscopic onset-of-failure surface, as determined by the loss of strong ellipticity of the second-
order estimate and FEM calculations, for a porous elastomer with periodic hexagonal (HX) arrangement of
voids and compressible Neo-Hookean matrix phase. (a) The results in the e1–e2 plane in strain space; and
(b), the corresponding results in stress space.
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second-order estimate and FEM calculations, for a porous elastomer with periodic square (SQ) arrangement
of voids and compressible Neo-Hookean matrix phase. The results are shown in principal strain space e1–e2.
The onset of percolation, as predicted by the second-order estimate, has also been included in the figure for
completeness.

-2

-1

0

1

2

3

-2 -1 0 1 2 3

Percolation

Zero Porosity

10κ =

1µ =

0 0.2f =
 

1e

2e

HX

SOE

Figure 4.11: Macroscopic onset-of-failure surface, as determined by the loss of strong ellipticity of the
second-order estimate, for a porous elastomer with periodic hexagonal (HX) arrangement of voids and
compressible Neo-Hookean matrix phase. The results are shown in principal strain space e1–e2. The onset
of percolation and pore closure, as predicted by the second-order estimate, have also been included in the
figure for completeness.

Figure 4.10 illustrates the macroscopic failure surfaces, as determined by the second-order esti-

mate (SOE) and FEM calculations, for a porous elastomer with an initially periodic square (SQ)

distribution of circular voids and initial porosity of f0 = 20%. The results correspond to aligned

(i.e., θ = 0) plane-strain deformations and are displayed in the entire strain space. The onset of

percolation (dotted line), as predicted by the second-order estimate (see Appendix II), has also

been included in the figure for completeness. The main observation from Figure 4.10 is the overall

excellent agreement between the SOE and the FEM results, even at extremely large deformations

(recall that ei are logarithmic strains). The sole region that the second-order estimates fail to predict

accurately corresponds to loadings near hydrostatic tension (i.e., near e1 = e2 > 0). This is due to
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Figure 4.12: Macroscopic onset-of-failure surface, as determined by the loss of strong ellipticity of the
second-order estimate, for a porous elastomer with random, isotropic distribution of voids and compressible
Neo-Hookean matrix phase. The results are shown in principal strain space e1–e2. The boundary at which
the porosity vanishes, as predicted by the second-order estimate, has also been included in the figure for
completeness.

the fact that for hydrostatic tensile deformations the porosity increases the fastest and hence—as

already remarked above—the use of the HS estimate (2.55) for the linear comparison composite

problem result in inaccurate second-order estimates. Another important observation from Figure

4.10 is that loss of strong ellipticity is more susceptible to occur under compressive strains.

Figure 4.11 provides analogous results to those shown by Figure 4.10 for an initially hexago-

nal (HX) distribution of pores. Unfortunately, no FEM results were available for this case, and

hence attention has been restricted to second-order estimates. First, note that the results shown in

Figure 4.11 are not symmetric around the line e2 = e1. The reasons for this asymmetry are due

the evolution of the underlying microstructure. To be precise, the porous elastomer with hexag-

onal microgeometry considered here is isotropic in the small deformation regime, but because the

underlying microstructure itself is not isotropic, different loading conditions lead to different mi-

crostructure evolutions, which, in turn, lead to overall anisotropic behavior, as manifested in Figure

4.11. Interestingly, Figure 4.11 also indicates that porous elastomers with HX pore distribution are

more stable than those with SQ distribution (see Figure 4.10).

To try to complete the understanding of the effect of the initial distribution of pores on the

onset-of-failure surfaces of porous elastomers, Figure 4.12 illustrates the corresponding results to

those shown in Figures 4.10 and 4.11 for an initially random, isotropic distribution of pores. (Note

that the results shown in Figure 4.12 correspond to a compressible Neo-Hookean matrix phase

(with κ = 10), whereas the results given in Figure 3.8 in the preceding chapter correspond to an

incompressible matrix phase (with κ = ∞).) An important conclusion to be drawn from Figure

4.12 is that loss of strong ellipticity persists even when the microstructure is random. In addition,

the results shown in Figure 4.12 also confirm the tendency of porous elastomers to be more stable

whenever the periodicity of the microstructure is broken down.

All the results up to this point have been concerned with loading conditions where the macro-

scopic Lagrangian principal axes are coaxial with the axes of orthotropy (θ = 0) of the material. In
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rithmic strain space, for a Neo-Hookean elastomer with an initial square (SQ) distribution of pores subjected
to macroscopic loadings that are aligned (θ = 0) and at an angle (θ = 10o) with respect to the principal
axes of the microstructure.

order to acquire a representative notion of the effect of loading orientation on the development of

instabilities in porous elastomers, Figure 4.13 compares the macroscopic failure surfaces for macro-

scopic loadings with principal strain axes aligned (θ = 0) and at an angle (θ = 10o) with respect

to the initial axes of orthotropy. The results correspond to a porous elastomer with Neo-Hookean

matrix phase, an initially periodic square (SQ) distribution of circular voids, and initial poros-

ity of f0 = 20%. The onset of pore closure and of percolation (dotted line), as predicted by the

second-order estimate, have also been included in the figure for completeness.

Note that outside the biaxial compression range (III-quadrant), a slight change in the orientation

of the loading has a very significant effect on the stability of the porous elastomer. In particular,

the loss of strong ellipticity in the II and IV quadrant almost disappears, leading to a more stable

behavior. On the other hand, in the III-quadrant, the change in the orientation of the loading

appears to have no effect on the development of instabilities.

4.3 Concluding remarks

In this chapter, second-order estimates have been generated and compared with FEM calculations

for the in-plane effective behavior of porous elastomers with two types of periodic microstructures

subjected to finite deformations.

The second-order estimates have been shown to compare remarkably well—qualitatively as well

as quantitatively—with the FEM results not only for the effective stress-strain relation of porous

elastomers under various types of loading conditions, but also for the evolution of the underlying

microstructure, as well as the development of macroscopic instabilities in these materials. In view

of the strong geometric and constitutive nonlinearities inherent in the problem, this, indeed, is a

remarkable result. Further, it indicates that the proposed second-order method proves extremely

promising as a first order approximation for modeling the complex behavior of elastomeric composites
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in general.

The second main conclusion of this chapter is that while the initial distribution of pores plays

a minor role in the overall stress-strain relations of porous elastomers, it does have, however, a

dramatic influence on the development of macroscopic instabilities in these materials. In particular,

it has been shown that as the periodicity of the microstructure is broken down, the stability of

porous elastomers improves. This is consistent with the fact that by breaking down the periodicity

of the system, we are effectively reducing the number of symmetries that can be broken, and, hence,

reducing the number of potential instabilities that might develop.
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4.4 Appendix I. Expressions for the microstructural tensor

P

In this appendix, we provide explicit expressions for the in-plane components of the tensor P, which

serves to characterize the two types of microstructures (in the reference configuration) considered in

this work: (i) periodic square, and (ii) periodic hexagonal distribution of aligned cylindrical pores

with initial circular cross section.

Periodic square distribution

The microstructural tensor P for the square distribution of cylindrical fibers with circular cross

section may be written as (see Suquet, 1990):

Pijkl =
1

π(1− f0)

+∞∑
p=−∞

+∞∑
q=−∞

−{p = q = 0}

(Limkn ξm ξn)−1
ξj ξl

J2
1

(
2
√

πf0

√
p2 + q2

)

p2 + q2
, (4.15)

where ξ1 = p, ξ2 = q, and J1(·) is the Bessel function of first kind.

Periodic hexagonal distribution

The microstructural tensor P for the hexagonal distribution of cylindrical fibers with circular cross

section may be written as (see Suquet, 1990):

Pijkl =
√

3
2π(1− f0)

+∞∑
p=−∞

+∞∑
q=−∞

−{p = q = 0}

(Limkn ξm ξn)−1
ξj ξl

J2
1

(
23/2

31/4

√
πf0

√
p2 − p q + q2

)

p2 − p q + q2
, (4.16)

where ξ1 = p, ξ2 =
√

3/3(2q − p), and J1(·) is the Bessel function of first kind.

4.5 Appendix II. Onset of percolation

In this appendix, we provide explicit conditions, in terms of the current porosity f and current

average aspect ratio ω, under which the underlying pores in the type of porous elastomers considered

in this chapter first come in contact when subjected to aligned loading conditions (i.e., for θ = 0 and

θ = π/2 in (4.2)). In this connection, it should be recalled from Section 2.5.1 that, in general, the

Hashin-Shtrikman-type second-order estimates (2.69) utilized here are expected to become unsound

before percolation actually takes place. However, it is not difficult to check that, for periodic square

and hexagonal microgeometries (see Fig. 4.1) and aligned loading conditions, percolation coincides

identically with the limit of validity of the second-order estimates.

Periodic square distribution

Percolation, as predicted by the HS-type second-order estimates, in porous elastomers with the

periodic square microgeometry subjected to aligned loading conditions first takes place whenever
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one of the following equalities holds:

(i) f =
π

4 ω

λ1

λ2

, (ii) f =
πω

4
λ2

λ1

. (4.17)

For clarity, it is recalled here that ω = λ
(2)

1 /λ
(2)

2 , where λ
(2)

i (i = 1, 2) denote the principal stretches

associated with F
(2)

. It is interesting to note that in the undeformed configuration (i.e., for λ1 =

λ2 = 1) ω = 1 and percolation occurs at a porosity of f = f0 = π/4 (which agrees with the exact

result).

Periodic hexagonal distribution

Percolation, as predicted by the HS-type second-order estimates, in porous elastomers with the

periodic hexagonal microgeometry subjected to aligned loading conditions first takes place whenever

one of the following equalities holds:

(i) f =
π

2
√

3
λ1

λ2

ω−1, (ii) f =
π

8
√

3

(
3ω

λ2

λ1

+
λ1

λ2

ω−1

)
, (4.18)

where ω is defined as above. Similar to the previous case, it is noted that in the undeformed

configuration percolation take place at a porosity of f = f0 = π/(2
√

3) (which agrees with the exact

result).
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Chapter 5

Porous elastomers: spherical voids

The preceding two chapters, Chapters 3 and 4, have provided much insight regarding the overall be-

havior of porous elastomers subjected to finite deformations. Indeed, even though two-dimensional

(2D), the applications presented in those chapters were general enough as to contain all the essential

features concerning porous elastomers, including the subtle interplay between the evolution of the

underlying microstructure and the effective behavior and stability of these materials. The results

presented in Chapters 3 and 4 have also served to establish the accuracy of the second-order homog-

enization method, which has been shown to deliver accurate estimates not only for the macroscopic

constitutive behavior, but also for the more sensitive information on the possible development of

macroscopic instabilities in porous elastomers with random and periodic microstructures. These en-

couraging results for 2D microstructures strongly suggest that the second-order theory should also

be able to deliver accurate estimates for the effective behavior, as well as for the onset of macroscopic

instabilities, of porous elastomers with more realistic, three-dimensional (3D) microstructures. The

objective of this chapter pertains precisely to the application of the second-order homogenization

method to porous elastomers consisting of random and isotropic distribution of polydisperse pores in

an isotropic, elastomeric matrix phase. This microstructure—though idealized—can be considered

as a fair approximation to actual microstructures in real porous elastomers. In this connection, it

should be remarked that while for 3D periodic microstructures results can be computed numeri-

cally (in spite of intensive computations), for the random case this approach would be exceedingly

intensive from a computational point of view, and the analytical approach proposed here—though

approximate—is perhaps more appropriate.

5.1 Overall behavior of isotropic porous elastomers

In this chapter, we make use of the second-order estimate (2.69) to develop a homogenization-based

constitutive model for the effective mechanical response of isotropic porous elastomers subjected

to finite deformations. More specifically, the type of porous elastomers of interest are made up of

initially spherical, polydisperse, vacuous inclusions distributed randomly and isotropically—in the

undeformed configuration—in an isotropic elastomeric matrix. In particular, following Section 2.1.3,
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the elastomeric matrix phase is taken to be characterized by stored-energy functions of the form:

W (1)(F) = W (F) = g(I) + h(J) +
κ

2
(J − 1)2, (5.1)

where the superscript “(1)” has been dropped for ease of notation, and it is recalled that g and h are

material functions of their arguments: I = λ2
1 + λ2

2 + λ2
3, J = λ1λ2λ3. Furthermore, κ denotes the

three-dimensional bulk modulus of the material at zero strain. The analysis to be developed below

will be carried out for general stored-energy functions of the form (5.1). However, for definiteness,

results will be illustrated for porous elastomers with specific matrix phases. In particular, we will

make use of the three dimensional version of the Gent material (3.2) utilized in Chapter 3, which

can be written as:

W (F) = −Jm µ

2
ln

[
1− I − 3

Jm

]
− µ ln J +

(
κ

2
− Jm + 3

3 Jm
µ

)
(J − 1)2 . (5.2)

In this expression, it is recalled that µ denotes the shear modulus of the material at zero strain

and the parameter Jm indicates the limiting value for I − 3 at which the elastomer locks up. Note

that the stored-energy function (5.2) is strongly elliptic for all deformations provided that µ > 0,

Jm > 0, and κ > 2µ/Jm + 2/3µ, which will be assumed here. Note further that upon taking the

limit Jm →∞ in (5.2), the Gent material reduces to the compressible Neo-Hookean solid:

W (F) =
µ

2
(I − 3)− µ ln J +

(κ

2
− µ

3

)
(J − 1)2 . (5.3)

Moreover, in order to recover incompressible behavior in (5.2), it suffices to take the limit κ → ∞,

in which case (5.2) reduces to:

W (F) = −Jm µ

2
ln

[
1− I − 3

Jm

]
, (5.4)

together with the incompressibility constraint J = 1.

By virtue of the overall objectivity and isotropy of the porous elastomers at hand, it suffices to

confine attention to diagonal pure stretch loadings. Thus, making contact with the decompositions

F = RU and U = QDQ
T

used in the context of expression (2.66), this implies that:

F = D = diag(λ1, λ2, λ3) and R = Q = I, (5.5)

where λ1, λ2, λ3 denote the principal stretches of the right stretch tensor U.

Having specified the initial microstructure, the constitutive behavior for the elastomeric matrix

phase, and the loading conditions, we next spell out the specialization of the second-order estimates

(2.69) to the class of porous elastomers of interest in this chapter. Before proceeding with the second-

order estimates, however, it proves useful, for comparison purposes, to recall earlier estimates for

the effective behavior of porous elastomers. For clarity, this will be done only in the context of Gent

matrix phases (5.2) and (5.4) (and not more generally for stored-energy functions (5.1)).

5.1.1 Earlier estimates

Voigt bound

As pointed out in Chapters 1 and 2, there are very few homogenization-based estimates for the

effective behavior of porous elastomers subjected to finite deformations. The most basic one is the
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Voigt upper bound due to Ogden (1978). When specialized to porous elastomers with initial porosity

f0 and Gent matrix phases of the form (5.2), this bound leads to:

Ŵ (F) = Φ̂(λ1, λ2, λ3) = (f0 − 1)
[
Jm µ

2
ln

[
1− I − 3

Jm

]
+ µ ln J

−
(

κ

2
− Jm + 3

3 Jm
µ

) (
J − 1

)2
]

, (5.6)

where I = tr(F
T
F) = λ

2

1 + λ
2

2 + λ
2

3, and J = detF = λ1λ2λ3 stand for, respectively, the first

and third invariants associated with the macroscopic deformation gradient tensor F. The rigorous

upper bound (5.6) depends only on the initial value of the porosity, f0, and contains no dependence

on higher-order statistical information about the microstructure. Moreover, in the limit when the

elastomeric matrix phase becomes incompressible (i.e., for κ →∞), expression (5.6) can be seen to

become infinite for all deformations, except for isochoric loading paths (i.e., for loading paths with

J = 1), for which it reduces to:

Ŵ I(F) = Φ̂I(λ1, λ2, λ3) = (f0 − 1)
Jm µ

2
ln

[
1− I − 3

Jm

]
. (5.7)

In other words, the Voigt bound suggests that a porous elastomer with incompressible matrix phase is

itself incompressible, which is in contradiction with experimental evidence. Finally, it is interesting

to remark that—also in disagreement with experience—the Voigt bounds (5.6) and (5.7) remain

strongly elliptic for all deformations, provided that µ > 0, Jm > 0, and κ > 2µ/Jm + 2/3µ, which

has been assumed here.

Hashin estimate

In addition, an exact result has been given by Hashin (1985) for hydrostatic loading (λ1 = λ2 =

λ3 = λ) of porous elastomers with incompressible, isotropic matrix phase and the Composite Sphere

Assemblage (CSA) microstructure (Hashin, 1962). When specialized to porous elastomers with

incompressible Gent matrix phases of the form (5.4), the result reads as follows:

Ŵ I(F) = Φ̂I(λ, λ, λ) = −3Jmµ

2

1∫

f
1/3
0

ln
[
1− I − 3

Jm

]
R2 dR, (5.8)

where I = 2λ2 +λ−4 with λ = (1+(λ
3−1)/R3)1/3. The integral (5.8) can be computed analytically,

but the final expression is too cumbersome to be included here. Instead, for illustrative purposes, we

include the specialization of (5.8) to the simpler, limiting case of Neo-Hookean matrix phase (i.e.,

Jm →∞):

Ŵ I(F) =
3µ

2

(
f0 − 1− λ

−1
+ 2λ

2
+ f

4/3
0 (λ

3
+ f0 − 1)−1/3

−2f
1/3
0 (λ

3
+ f0 − 1)2/3

)
. (5.9)

The Danielsson-Parks-Boyce model

Finally, Danielsson et al. (2004) have recently provided a model, henceforth referred to as the

DPB model, for isotropic porous elastomers with incompressible, isotropic matrix phases. When
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specialized to porous elastomers with incompressible Gent matrix phases of the form (5.4), the DPB

estimate reads as follows:

Ŵ I(F) = −3Jmµ

8π

1∫

f
1/3
0

2π∫

0

π∫

0

ln
[
1− I − 3

Jm

]
R2 sinΘ dΘ dΨ dR. (5.10)

In this expression,

I =
1

J
2/3

[
ψ2I +

1
R2

(
λ

2

1X
2
1 + λ

2

2X
2
2 + λ

2

3X
2
3

)(
1
ψ4

− ψ2

)]
, (5.11)

where I and J have already been defined above, ψ = (1 + (J − 1)/R3)1/3, and X1 = R sinΘ sin Ψ,

X2 = R sinΘ cosΨ, and X3 = R cosΘ. In the limiting case of Neo-Hookean matrix phases (i.e.,

Jm → ∞), it is possible to integrate (5.10) in closed form. Following Danielsson et al. (2004)

(Section 3.2), the corresponding final expression can be written as follows:

Ŵ I(F) =
µ

2

(
2− 1

J
− f0 + 2(J − 1)

J
2/3

η1/3

)
I − 3

2
(1− f0)µ, (5.12)

where η = 1 + (J − 1)/f0.

At this point, it is important to remark that the DPB model is in fact a generalization of both, the

Voigt bound and the Hashin estimate, in the sense that it reduces to the Voigt bound for isochoric

deformations and it recovers Hashin’s exact solution for hydrostatic loading. This can be verified

directly from relation (5.10). Indeed, it is easy to check that for J = λ1λ2λ3 = 1, the DPB estimate

(5.10) reduces to the Voigt bound (5.7), and for λ1 = λ2 = λ3 = λ, to the Hashin estimate (5.8). For

more general loadings, the DPB estimate can be shown to be actually a rigorous upper bound for

porous elastomers with incompressible matrix phases and the Composite Sphere Assemblage (CSA)

microstructure. The reasons for this result rely on the fact that the DPB model is constructed

by making use of a kinematically admissible field in a spherical volume element (Danielsson et al.,

2004). Then, by well known arguments (Hashin, 1962; Herve et al., 1991), it follows that the

resulting estimate is an upper bound for porous elastomers with the CSA microstructure, much like

the Gurson model (Gurson, 1977) is an upper bound for porous metals with ideally plastic matrix

phase and the CSA microstructure. In conclusion, the DPB model is expected to be too “stiff”—

given that it is an upper bound for the CSA microstructure—for general loading conditions, with

the exception of hydrostatic loading, for which it should be very accurate (in fact, it is exact for the

CSA microstructure).

5.1.2 Second-order homogenization estimates

Compressible matrix

In this subsection, we specialize the second-order estimate (2.69) for the effective stored-energy func-

tion Ŵ to porous elastomers with initial porosity f0 and compressible, isotropic, elastomeric matrix

phase characterized by the stored-energy function (5.1). In addition, we spell out the expressions for

the evolution of the associated microstructural variables. The detailed derivation of the results is
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given in Appendix I, but the final expression for the effective stored-energy function may be written

as:

Ŵ (F) = Φ̂(λ1, λ2, λ3)

= (1− f0)
[
g(Î(1)) + h(Ĵ (1)) +

κ

2
(Ĵ (1) − 1)2

−
(
F̂

(1)
11 − λ

(1)

1

) (
2gIλ1 + hJλ2λ3 + κ(J − 1)λ2λ3

)

−
(
F̂

(1)
22 − λ

(1)

2

) (
2gIλ2 + hJλ1λ3 + κ(J − 1)λ1λ3

)

−
(
F̂

(1)
33 − λ

(1)

3

) (
2gIλ3 + hJλ1λ2 + κ(J − 1)λ1λ2

)]
, (5.13)

where gI = gI(I), hJ = hJ (J) have been introduced for convenience, and it is recalled that I =

λ
2

1 + λ
2

2 + λ
2

3, and J = λ1λ2λ3 .

Further, in the estimate (5.13), the variables λ
(1)

1 , λ
(1)

2 , λ
(1)

3 , which correspond to the principal

stretches associated with the phase average deformation gradient F
(1)

defined by expression (2.70),

are given explicitly by expression (5.31) in Appendix I. They depend ultimately on the applied

loading, λ1, λ2, λ3, the initial porosity, f0, the constitutive functions, g, h, κ, characterizing the

elastomeric matrix phase, as well as on the 7 variables `∗α (α = 1, 2, ..., 7) that are the solution of

the nonlinear system of equations (5.36) in Appendix I. Similarly, the variables F̂
(1)
11 , F̂

(1)
22 , F̂

(1)
33 ,

given explicitly by (5.34), as well as the variables Î(1) and Ĵ (1), given explicitly by (5.38), can be

seen to depend ultimately on the applied loading, λ1, λ2, λ3, the initial porosity, f0, the constitutive

functions, g, h, κ, and the 7 variables `∗α (α = 1, 2, ..., 7).

Thus, in essence, the computation of the second-order estimate (5.13) amounts to solving a

system of 7 nonlinear, algebraic equations—provided by relations (5.36). In general, these equations

must be solved numerically, but, depending on the functional character of g and h, and the applied

loading conditions, possible simplifications may be carried out.

Next, we spell out the expressions for the evolution of the relevant microstructural variables

associated with the second-order estimate (5.13). To this end, recall from Section 2.5 that the

appropriate microstructural variables in the present context are the current porosity, f , the current

average aspect ratios, ω1, ω2, and the current orientation of the underlying voids in the deformed

configuration—as determined from the average deformation gradient in the porous phase F
(2)

, by

means of the tensor Z = F
(2)−1

defined by (2.84). (No reference is made here to the evolution of the

distribution of pores, since it is assumed to be controlled by the applied macroscopic deformation

F.) Recall as well that, by employing overall objectivity and isotropy arguments, attention has

been restricted (without loss of generality) to diagonal loadings (5.5). It then follows that within

the framework of the second-order estimate (5.13), the current porosity and current average aspect

ratios of the voids in the deformed configuration are given, respectively, by:

f =
λ

(2)

1 λ
(2)

2 λ
(2)

3

λ1λ2λ3

f0, (5.14)

and

ω1 =
λ

(2)

1

λ
(2)

3

, ω2 =
λ

(2)

2

λ
(2)

3

, (5.15)
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where λ
(2)

i = (λi − (1 − f0)λ
(1)

i )/f0 (i = 1, 2, 3) denote the principal stretches associated with F
(2)

and the variables λ
(1)

i are given by expression (5.31) in Appendix I. In the context of relations (5.14)

and (5.15), it is important to recognize that λ
(2)

i (i = 1, 2, 3) depend ultimately on the same variables

that the stored-energy function (5.13).

Finally, it remains to point out that under the applied, diagonal, loading conditions (5.5), the

average orientation of the pores does not evolve with the deformation, but instead it remains fixed.

In this connection, it is important to remark that in the present context the average deformation

gradient in the pores, F
(2)

, can be shown to be an objective and isotropic tensor function of the ap-

plied deformation gradient F (i.e., F
(2)

(KFK
′
) = KF

(2)
(F)K

′
for all F, and all proper, orthogonal,

second-order tensors K, K
′
). As a result, from the general loading F = RQDQ

T
used in the context

of expression (2.66), it follows that F
(2)

(F) = RQF
(2)

(D)Q
T
. In turn, it follows that the tensor

ZT Z in (2.84) can be simply written as ZT Z = HAHT , where A = diag(λ
(2)

1

−2

, λ
(2)

2

−2

, λ
(2)

3

−2

)

in the frame of reference of choice and H = RQ. In essence, this result reveals that for a general

applied deformation F, the current, average orientation of the pores is characterized explicitly by

H = RQ, where it is recalled that R is the macroscopic rotation tensor in the polar decompo-

sition of F, and Q is the proper-orthogonal, second-order tensor describing the orientation of the

macroscopic Lagrangian principal axes.

Incompressible matrix

As already stated through this work, elastomers are known to be essentially incompressible, since

they usually exhibit a ratio between the bulk and shear moduli of the order of 104. Accordingly,

it is of practical interest to generate estimates for the effective behavior of porous elastomers with

incompressible matrix phases. This can be efficiently accomplished by taking the limit κ →∞ in the

second-order estimate (5.13). The corresponding asymptotic analysis has been included in Appendix

II, but the final result for the effective stored-energy function Ŵ I for the class of porous elastomers

considered in this work, with elastomeric matrix phase characterized by the stored-energy function

(5.1) (with κ = ∞), reduces to the form:

Ŵ I(F) = Φ̂I(λ1, λ2, λ3) = (1− f0)g(Î(1)), (5.16)

where Î(1) is given by expression (5.52) in Appendix II. Here, it should be emphasized that Î(1)

depends ultimately on the applied loading, λ1, λ2, λ3, the initial porosity, f0, the constitutive

function, g, as well as on the 7 variables uα (α = 1, 2, ..., 7) defined by (5.50), that are the solution

of the system of 7 nonlinear equations formed by relations (5.47) and (5.48) in Appendix II. Thus,

similar to its compressible counterpart (5.13), the computation of the second-order estimate (5.16) for

the effective stored-energy function of porous elastomers with incompressible matrix phases amounts

to solving a system of 7 nonlinear, algebraic equations.

In general, it is not possible to solve these equations in closed form. However, for certain applied

deformations, the estimate (5.16) may be written down more explicitly. For instance, for the case
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of hydrostatic loading λ1 = λ2 = λ3 = λ, the expression (5.52) for Î(1) can be shown to simplify to:

Î(1) =
λ

2
[
9u2f0 − 6uf0λ

(
λ

3 − 1
)

+ (2 + f0) λ
2
(
λ

3 − 1
)2

]

3u2f0
, (5.17)

where the variable u satisfies the following condition:

27f0
3
2 u3 − 27f0

3
2 λ

4
u2 + 9 (f0 − 1)

√
f0

(
λ

3 − 1
)

λ
5
u−

(√
f0 − 1

)2 (
2 +

√
f0

)(
λ

3 − 1
)2

λ
6

= 0. (5.18)

Of course, the solution to the cubic equation (5.18) may be worked out in closed form. However, for

all practical purposes, it is simpler to solve (5.18) numerically. In this regard, it is emphasized that

only 1 of the 3 roots1 of (5.18) leads to the correct linearized behavior; hence, this is the root that

should be selected.

We conclude this subsection by noticing that expressions (5.14) and (5.15) continue to apply for

determining the current porosity, f , and the current aspect ratios, ω1, ω2, of the underlying voids

in porous elastomers with incompressible matrix phases, provided that the leading-order terms in

expression (5.42) in Appendix II be used for the stretches λ
(1)

i (i = 1, 2, 3). In this light, f , ω1, ω2,

are seen to depend ultimately on the same variables as the effective stored-energy function (5.16).

5.1.3 Small-strain elastic moduli

In the limit of small strains, the estimates (5.13) and (5.16) linearize properly, and therefore recover

the classical Hashin-Shtrikman (HS) upper bounds for the effective shear and bulk moduli of the

composite. To be precise, the estimate (5.13) with compressible matrix phases linearizes to Ŵ (F) =

1/2(κ̃ − 2/3µ̃)(trε)2 + µ̃trε2 + o(ε3), as F → I, where ε = 1
2 (F + F

T − 2I) is the macroscopic,

infinitesimal strain tensor, and

µ̃ =
(1− f0)(9κ + 8µ)µ

(9 + 6f0)κ + 4(2 + 3f0)µ
, κ̃ =

4(1− f0)κµ

3f0κ + 4µ
, (5.19)

are the effective shear and bulk moduli, respectively. Similarly, the estimate (5.16) with incom-

pressible matrix phases linearizes to Ŵ I(F) = 1/2(κ̃I − 2/3µ̃I) (trε)2 + µ̃Itrε2 + o(ε3), as F → I,

where

µ̃I =
3(1− f0)
3 + 2f0

µ, κ̃I =
4(1− f0)

3f0
µ. (5.20)

It should be recalled that the HS effective moduli (5.19) and (5.20) are actually exact results in the

limit of dilute concentration of spherical voids (i.e., for f0 → 0). Moreover, the effective moduli

(5.19) and (5.20) are known to correlate well with experimental results for the elastic constants

of isotropic porous rubbers with small and moderate initial porosities (see, e.g., O’Rourke et al.

(1997)).

1The correct root linearizes as u = 1 + (1 + 3f0)/f0(λ− 1) + O(λ− 1)2.
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5.1.4 Exact evolution of porosity

For later use, we recall that for porous elastomers with incompressible matrix phase, it is possible

to compute—from a simple kinematical argument—the exact evolution of the porosity in terms of

the applied macroscopic deformation. The result—already stated in Chapter 3—is repeated here for

convenience:

f = 1− 1− f0

detF
. (5.21)

In contrast to its two-dimensional counterpart (3.12)1, the specialization of the second-order estimate

(5.14) for f to porous elastomers with incompressible matrix phases does not recover the exact result

(5.21). Nonetheless, expression (5.14), when specialized to incompressible matrix phases, can be

shown to be exact up to second order in the strain (i.e., up to O(ε2)). For larger finite deformations,

as shown in the results section, relation (5.14) provides estimates that are in very good agreement

with the exact result (5.21), except for the limiting case of large hydrostatic tension together with

small initial porosities.

5.1.5 Loss of strong ellipticity

In general, the detection of loss of strong ellipticity in three dimensions requires a tedious, but

straightforward, scanning process (i.e., a numerical search of unit vectors N and m for which condi-

tion (2.89) ceases to hold true). Incidentally, for the particular case when Ŵ is objective and isotropic

(i.e., Ŵ (Q
′
FQ) = Ŵ (F) for all F, and all proper, orthogonal, second-order tensors Q

′
, Q), it is

possible to write necessary and sufficient conditions for the strong ellipticity of Ŵ (F) = Φ̂(λ1, λ2, λ3)

exclusively in terms of the material properties (i.e., in terms of the components of L̂). These con-

ditions, first provided in 3 dimensions by Simpson and Spector (1983) (see also Zee and Sternberg,

1983 and Dacorogna, 2001), may be written as follows:

L̂iiii > 0, i = 1, 2, 3, (5.22)

L̂ijij > 0, 1 ≤ i < j ≤ 3, (5.23)

L̂iiiiL̂jjjj + L̂2
ijij −

(
L̂iijj + L̂ijji

)2

+ 2L̂ijij

√
L̂iiiiL̂jjjj > 0, 1 ≤ i < j ≤ 3,

(5.24)

and either

mδ
12

√
L̂3333 + mδ

13

√
L̂2222 + mδ

23

√
L̂1111 +

√
L̂1111L̂2222L̂3333 ≥ 0 (5.25)

or

detM δ > 0 (5.26)

where M δ =
(
mδ

ij

)
is symmetric and

mδ
ij =





L̂iiii if i = j

L̂ijij + δiδj

(
L̂iijj + L̂ijji

)
if i 6= j

(5.27)

for any choice of δi ∈ {±1}.
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Here,

L̂iijj =
∂2Φ̂

∂λi∂λj

,

L̂ijij =
1

λ
2

i − λ
2

j

(
λi

∂Φ̂
∂λi

− λj
∂Φ̂
∂λj

)
i 6= j,

L̂ijji =
1

λ
2

i − λ
2

j

(
λj

∂Φ̂
∂λi

− λi
∂Φ̂
∂λj

)
i 6= j, (5.28)

(i, j = 1, 2, 3) are the components of the effective incremental elastic modulus L̂ written with respect

to the macroscopic Lagrangian principal axis (i.e., the principal axis of U). Note that for loadings

with λi = λj (i 6= j), suitable limits must be taken for the shear components in (5.28), namely,

equations (5.28)2—(5.28)3 reduce to

L̂ijij =
1
2

(
L̂iiii − L̂iijj +

1
λi

∂Φ̂
∂λi

)
i 6= j,

L̂ijji =
1
2

(
L̂iiii − L̂iijj − 1

λi

∂Φ̂
∂λi

)
i 6= j, (5.29)

respectively. Furthermore, note that there are 3 conditions in (5.22), 3 in (5.23), 3 in (5.24), and,

due to all possible signs, 4 in (5.25) or in (5.26). Thus, there is a total of 13 conditions.

In the next section, it will be shown that even in the case when the behavior of the elastomeric

matrix phase is chosen to be strongly elliptic, the homogenized behavior of the porous elastomer

can lose strong ellipticity. This result for 3D, random, porous elastomers parallels those previously

found for porous elastomers with 2D periodic (Abeyaratne and Triantafyllidis, 1984; Michel, 2006)

and 2D random (Lopez-Pamies and Ponte Castañeda, 2004b) microstructures.

5.2 Results and discussion

In this section, the constitutive models (5.13) and (5.16) are used to study the effective stress-strain

response, the microstructure evolution, and the macroscopic stability of porous elastomers with Gent

matrix phases under different types of finite deformations. Results are given for various values of

the compressibility ratio κ/µ and lock-up parameter Jm, as well as various values of initial porosity

f0, and are computed up to the point at which either the associated effective incremental modulus

is found to lose strong ellipticity, or, alternatively, the porosity is found to vanish. If neither of these

phenomena occurs, the results are truncated at some sufficiently large value of the deformation.

For clarity, the points at which the homogenized material loses strong ellipticity are indicated with

the symbol “◦” in the figures, whereas the symbol “¦” is utilized to indicate the vanishing of the

porosity.

The results presented in this section are organized as follows. First, we address the effective

response of Gent porous elastomers subjected to axisymmetric loading conditions. Special attention

is given to hydrostatic, biaxial, and uniaxial tension/compression loadings, which, beyond providing
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Figure 5.1: Comparisons of the effective response, as predicted by the second-order estimate (SOE) (5.16),
with the exact results (Hashin, 1985), of a porous elastomer with incompressible matrix phase subjected to
hydrostatic tension and compression (λ1 = λ2 = λ3 = λ). The results correspond to a material with Neo-
Hookean matrix phase and various values of initial porosity f0, and are shown as a function of the logarithmic
strain e = ln λ. (a) The normalized macroscopic stress S/µ = µ−1∂Φ̂I/∂λ1 = µ−1∂Φ̂I/∂λ2 = µ−1∂Φ̂I/∂λ3.
(b) The evolution of the porosity f .

comprehensive physical insight and contributing to establish the accuracy of the proposed mod-

els through comparisons with the available exact results, happen to correspond to actual loading

conditions easily achievable with standard experimental equipment. Following the axisymmetric

subsection, we provide representative results for the overall behavior of Gent porous elastomers sub-

jected to plane-strain loading conditions. In particular, we focus on pure shear and in-plane uniaxial

tension/compression loadings. The corresponding macroscopic failure surfaces, as determined by

the loss of strong ellipticity of the homogenized behavior of the material, are presented—in principal

strain and stress spaces—and discussed for the axisymmetric, as well as for the plane-strain loading

conditions.

5.2.1 Axisymmetric loadings

Hydrostatic tension/compression

Figure 5.1 presents the comparison between the effective behavior as predicted by the second-order

estimate (SOE) (5.16) and the “exact” (Hashin, 1985) estimate (5.9) for a porous elastomer with

incompressible Neo-Hookean matrix phase under hydrostatic loading (λ1 = λ2 = λ3 = λ). Recall

that the DPB model (5.12) coincides identically with the exact result (5.9) in this case. Results

are shown for initial porosities of 10, 30, and 50% as a function of the logarithmic strain e =

ln(λ). Part (a) shows the normalized macroscopic stress S/µ = µ−1∂Φ̂I/∂λ1 = µ−1∂Φ̂I/∂λ2 =

µ−1∂Φ̂I/∂λ3, and part (b), the associated evolution of the porosity f . It is observed from Fig.

5.1(a) that the SOE predictions are in very good agreement with the exact result. Note that the
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agreement improves for higher values of initial porosity f0. It is also discerned from Fig. 5.1(a)

that the effective behavior of the material is softer for higher values of f0, as expected on physical

grounds. Interestingly, it is further recognized from Fig. 5.1(a) that the overall response of the

porous elastomer under hydrostatic compression exhibits very significant stiffening, but that, under

hydrostatic tension, the behavior gets more compliant with increasing strain. In this connection,

we note from Fig. 5.1(b) that the porosity decreases for compressive deformations and increases

for tensile ones. This entails a geometric stiffening/softening mechanism that is entirely consistent

with the stress-strain results shown in Fig. 5.1(a). With regard to the remaining microstructural

variables, it should be realized that they do not evolve under hydrostatic loading, that is, the

initially spherical shape and distribution of the underlying pores remain—on average—spherical for

all applied hydrostatic deformations. Turning back to Fig. 5.1(b), we remark that the predictions

for the evolution of the porosity f as determined by the SOE are in very good agreement with

the exact result (5.21) for the cases of 30 and 50 % initial porosity. The agreement between the

prediction and the exact result for the case of f0 = 10% is excellent for hydrostatic compression,

but it deteriorates appreciably for tensile hydrostatic deformations larger than e = ln λ = 0.2. This

has the effect of slightly exaggerating the geometric softening in tension for f0 = 10%, leading to

slightly softer predictions than the Hashin estimate. Finally, it should be noticed from Fig. 5.1 that

the homogenized response of the porous elastomer, as predicted by the SOE, becomes unstable—

through loss of strong ellipticity—under hydrostatic compression (denoted by the symbol “◦”), while

it remains strongly elliptic under hydrostatic tension. This result is investigated in more detail in

the context of the next two figures.

Figure 5.2 provides results associated with those shown in Fig. 5.1 for the components2 of

the normalized effective incremental modulus L̂ = µ−1∂2Ŵ I/∂F
2

of a porous elastomer with in-

compressible, Neo-Hookean matrix phase and initial porosity of 30% under hydrostatic loading

(λ1 = λ2 = λ3 = λ). Part (a) shows results for hydrostatic compression (λ ≤ 1), and part (b),

for hydrostatic tension (λ ≥ 1). Fig. 5.2(a) illustrates that—in accord with the stress-strain re-

sults shown in Fig. 5.1(a)—the normal components L̂1111, L̂2222, and L̂3333, as predicted by the

second-order estimate (SOE) (5.16), increase rapidly with the applied compressive strain. That

is, the porous elastomer stiffens very significantly in the “direction” of the applied loading. On

the other hand, the effective incremental shear response of the porous elastomer, as measured3 by

L̂1212, L̂1313, and L̂2323, is seen to soften with the applied hydrostatic compression to the point

that L̂1212 = L̂1313 = L̂2323 = 0 at some critical finite stretch λcrit. This critical stretch corre-

sponds to the point at which the porous elastomer loses strong ellipticity. In this connection, it

should be remarked that the combinations L̂iiiiL̂jjjj + L̂2
ijij − (L̂iijj + L̂ijji)2 + 2L̂ijij

√
L̂iiiiL̂jjjj

(i, j ∈ {1, 2, 3}, i 6= j, no summation) also vanish at λcrit. Thus, making contact with Section 5.1.5,

this means that conditions (5.23) and (5.24) cease to hold true. Physically, this implies that the

porous elastomer may develop localized deformations in planar zones with arbitrary normals N.

Furthermore, the deformation in these zones localizes in shear, since m ⊥ N. (Recall from Section

2Here and subsequently, the components of the effective incremental modulus L̂ are referred to the macroscopic

Lagrangian principal axes, i.e., the principal axes of F
T
F.

3Recall that for isotropic materials L̂ijij = L̂jiji (i, j ∈ {1, 2, 3}, i 6= j, no summation).
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Figure 5.2: Effective response, as predicted by the second-order estimate (SOE) (13) and the DPB model
(5.12), of a porous elastomer with incompressible matrix phase subjected to hydrostatic loading (λ1 = λ2 =
λ3 = λ). The results correspond to a material with Neo-Hookean matrix phase and initial porosity of
f0 = 30%, and are shown as a function of the logarithmic strain e = ln λ. (a) The non-zero components

(i, j ∈ {1, 2, 3}, i 6= j, no summation) of the effective incremental modulus L̂—written with respect to
the Lagrangian principal axes—for hydrostatic compression (λ ≤ 1). (b) The corresponding results for
hydrostatic tension (λ ≥ 1).

2.6 in Chapter 2 that m denotes the eigenvector corresponding to the zero eigenvalue of the acoustic

tensor associated with N, so that it characterizes the type of deformation within the localized band.)

This remarkable behavior predicted by the SOE is consistent with numerical simulations (Michel,

2006), as well as with physical evidence (see, e.g., Kinney et al., 2001; Gong and Kyriakides, 2005).

Indeed, local buckling of matrix ligaments is anticipated to occur in porous elastomers subjected to

compressive states of deformation. In turn, connected networks of buckled ligaments that extend

throughout the entire specimen correspond to bands of localized deformation at the macroscopic

level. The development of these macroscopic bands of localized deformation corresponds precisely

to the loss of strong ellipticity of the homogenized behavior of the material (Geymonat et al., 1993).

Comparing now the SOE with the DPB predictions in Fig. 5.2(a), it is observed that the normal

components L̂1111, L̂2222, and L̂3333 of both models are in very good agreement. In contrast, the

effective incremental shear moduli L̂1212, L̂1313, and L̂2323 predicted by the DPB model are much

stiffer than the corresponding SOE results. In fact, they exhibit different trends: while the SOE

shear moduli decrease with the applied loading, the DPB shear moduli increase, which ultimately

entails that the DPB model remains strongly elliptic for all applied hydrostatic compression (in

disagreement with numerical results and physical experience). Turning now to Fig. 5.2(b), it is

noticed that—in accord with the stress-strain results shown in Fig. 5.1(a)—the normal components

L̂1111, L̂2222, and L̂3333 decrease very distinctly with the applied hydrostatic tension. That is, the

porous elastomer softens in the “direction” of loading with the applied tensile strain. Conversely,

the effective incremental shear moduli L̂1212, L̂1313, and L̂2323 are seen to increase—though very
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Figure 5.3: Hydrostatic compression (λ1 = λ2 = λ3 = λ ≤ 1) of a porous elastomer with incompressible,
Neo-Hookean matrix phase. (a) The critical stretch λcrit at which the second-order estimate (5.16) loses
strong ellipticity as a function of initial porosity f0. (b) The associated normalized critical stress Scrit/µ.
The isolated data points in the plots correspond to experimental results for the critical buckling of spherical
shells under hydrostatic compression (Wesolowski, 1967).

slightly. Furthermore, Fig. 5.2(b) also shows more explicitly the fact (already mentioned above)

that there is no loss of strong ellipticity for hydrostatic tension. Note that—as opposed to hydro-

static compression—the SOE and DPB predictions in Fig. 5.2(b) are in very good agreement for

the normal, as well as for the shear effective moduli. Note finally that the results shown in Fig.

5.2 for f0 = 0.3 are representative for all values of initial porosity, since the trends followed by the

components of L̂ for all values of f0 are similar to those displayed in Fig. 5.2. The precise effect of

f0 on the effective incremental behavior and stability of porous elastomers subjected to hydrostatic

loading will be addressed in detail in the context of the next figure.

In short, Fig. 5.2 puts into evidence the subtle influence of the evolution of the underlying mi-

crostructure on the effective behavior and stability of porous elastomers subjected to finite deforma-

tions. Indeed, the stiffening of the effective incremental normal response of the porous elastomer—as

measured by L̂1111, L̂2222, and L̂3333—when subjected to hydrostatic compression (see Fig. 5.2(a)) is

entirely consistent with the decrease of porosity illustrated in Fig. 5.1(b). However, as shown in Fig.

5.2(a), the decrease of porosity does also lead to the geometric softening of the effective incremental

shear response of the material—as measured by L̂1212, L̂1313, and L̂2323—which eventually leads to

the loss of strong ellipticity of the porous elastomer at some finite stretch (in spite of the fact that the

elastomeric matrix phase is strongly elliptic). Analogously, the softening of the effective incremental

normal response of the porous elastomer when subjected to hydrostatic tension (see Fig. 5.2(b)) is

entirely consistent with the increase of porosity illustrated in Fig. 5.1(b). Further, the increase of

porosity does also lead to the (slight) geometric stiffening of the effective incremental shear response

of the material, which, in some sense, prevents the porous elastomer from losing stability.

Figure 5.3 provides plots associated with the results shown in Figs. 5.1 and 5.2 for: (a) the critical
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stretch, λcrit, and (b) the normalized critical stress, Scrit/µ, at which the second-order estimate

(5.16) loses strong ellipticity under hydrostatic compression as a function of the initial porosity f0.

Fig. 5.3 exhibits two distinct regimes: the “dilute,” or small-porosity regime (0 < f0 < 0.1), and

the “finite,” or large-porosity regime (0.1 < f0 < 1). Interestingly, for 0 < f0 < 0.1, Fig. 5.3 shows

that the porous elastomer becomes more stable, in both, strain and stress space, with increasing

initial porosity. That is, in the small-porosity regime, the material loses strong ellipticity at smaller

stretches λcrit (larger compressive strains) and larger compressive stresses Scrit/µ, for higher values

of the initial porosity f0. In passing, we remark that this rather counterintuitive result has already

been observed in 2D porous elastomers with random and periodic microstructures (Lopez-Pamies

and Ponte Castañeda, 2004b; Michel, 2006). In contrast, for 0.1 < f0 < 1, the porous elastomer

continues to improve its stability with increasing porosity in strain space; however, in stress space,

the trend is reversed and the material is seen to become more unstable for higher values of f0. The

fact that for the range of initial porosities 0.1 < f0 < 1 the critical stretch λcrit exhibits a different

trend than Scrit/µ can be understood by recognizing that the stress-strain relation of the porous

elastomer under hydrostatic compression softens drastically with increasing f0 in this regime (see

Fig. 5.1(a)). This implies that even though |Scrit/µ| decreases with increasing f0, the corresponding

stretches λcrit required to reach such critical stresses may, and in fact do, decrease with increasing

f0. In connection with the results shown in Fig. 5.3, it is important to recall that, unlike for small

and moderate values of porosity, the SOE predictions are not expected to be accurate—except for

the CSA microstructure—for very large f0, as discussed in Section 2.5.1. Whatever the case may

be, it is interesting to note that, according to the SOE results, Scrit/µ → 0 as f0 → 1, as it may be

expected on physical grounds.

At this stage, it is important to remark that while the work of Hashin (1985) provides exact

results for the effective stored-energy function, Ŵ , and the porosity evolution, f , for the hydrostatic

loading of porous elastomers with incompressible, isotropic matrix phase and the Composite Sphere

Assemblage (CSA) microstructure, it contains essentially no information about the macroscopically

stability of these materials. This is simply due to the fact that the exact results of Hashin are given for

a fixed loading path—namely, λ1 = λ2 = λ3—and therefore, the corresponding effective incremental

modulus L̂, needed for detecting loss of strong ellipticity, cannot be computed. On the other hand,

it is possible to compute the effective incremental modulus associated with the DPB model (5.12),

which as already stated agrees with the Hashin estimate for hydrostatic loading, and check for

loss of strong ellipticity. It turns out, however, that—unlike the second-order estimate (5.16)—

the DPB model (5.12) remains strongly elliptic for all hydrostatic deformations, in contradiction

with physical experience. More precisely, under this type of loading conditions—as illustrated in

Fig. 5.2—the effective incremental effective incremental modulus L̂ associated with the DPB model

not only remains strongly elliptic, but stiffens significantly with increasing strain. This overly stiff

behavior seems to be consistent with the fact that the DPB model is a rigorous upper bound for

CSA microstructures. Finally, it is fitting to mention that there have been a number of experimental

and analytical studies (see, e.g., Wesolowski, 1967; Wang and Ertepinar, 1972) on the stability of

isolated spherical shells under hydrostatic loading. Of course, the buckling instabilities of an isolated
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Figure 5.4: Effective response, as predicted by the second-order estimate (5.16), of a porous rubber sub-

jected to biaxial tension and compression (λ2 = λ3 = λ, S11 = ∂Φ̂I/∂λ1 = 0), as a function of the
logarithmic strain e = ln λ. The results correspond to a material with incompressible, Gent matrix with
lock-up parameter Jm = 50 and various values of initial porosity f0. (a) The normalized macroscopic stress

Sbi/µ = µ−1∂Φ̂I/∂λ2 = µ−1∂Φ̂I/∂λ3. (b) The lateral strain elat = ln λ1.

shell cannot be identified with the buckling instabilities that would take place in an actual porous

elastomer with the CSA microstructure, except possibly in the dilute limit, when no interaction is

expected among the pores. In this connection, we have included in Fig. 5.3 the experimental findings

of Wesolowski (1967) comprising the critical stretches and pressures at which a Neo-Hookean, thick-

walled, spherical shell first buckles as function of initial porosity (i.e., the cube of the ratio of

inner to outer radius of the shell in the undeformed state). Remarkably, the experimental results

of Wesolowski (1967) in strain space agree extremely well with the SOE predictions in the small-

porosity regime, where the comparisons between the isolated shell and the porous elastomer may be

relevant. For large values of initial porosity, it is interesting to observe that the SOE results provide

a bound for the experimental “failure surface” characterized by the stretches and stresses at which

the isolated shell first buckles.

Biaxial tension/compression

Figure 5.4 presents the SOE predictions for the effective response of a porous elastomer with in-

compressible Gent matrix phase under biaxial loading (λ2 = λ3 = λ, S11 = ∂Φ̂I/∂λ1 = 0). Results

are shown for a matrix lock-up parameter of Jm = 50 and initial porosities of f0 = 0, 10, 30 and

50% as a function of the logarithmic strain e = ln λ. Part (a) shows the normalized macroscopic

“biaxial” stress Sbi/µ = µ−1∂Φ̂I/∂λ2 = µ−1∂Φ̂I/∂λ3, and part (b), the associated “lateral” strain

elat = ln λ1. Similar to hydrostatic loading and as expected on physical grounds, Fig. 5.4(a) shows

that the effective response of the porous elastomer is softer for higher values of the initial poros-

ity f0. Furthermore, for biaxial tension, as well as for compression, the material is seen to stiffen
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Figure 5.5: Biaxial tension and compression (λ2 = λ3 = λ, S11 = ∂Φ̂I/∂λ1 = 0) of a porous elastomer with
incompressible, Gent matrix phase with lock-up parameter Jm = 50 and various values of initial porosity f0.
(a) The evolution of porosity f , as predicted by the second-order estimate (5.16), compared with the exact
result. (b) The evolution of the aspect ratios ω1 and ω2 as predicted by the second-order estimate (5.16).

very significantly with increasing strain. In spite of this similarity, the porous elastomer is seen

to become unstable—through loss of strong ellipticity—under biaxial compression, while it remains

stable under biaxial tension. This disparity will be shown shortly to be due to differences in the

evolution of the underlying microstructure. Turning now to Fig. 5.4(b), we notice that the volume

of the porous elastomer increases (decreases) when subjected to biaxial tension (compression), that

is, ln
(
detF

)
= elat + 2 e > (<) 0. Since the elastomeric matrix phase is incompressible, this has

the direct implication that the porosity increases (decreases) with the applied tensile (compressive)

deformation. In this connection, it is interesting to remark further from Fig. 5.4(b) that for biaxial

tension (compression) the porous elastomer undergoes a larger volume increase (decrease) for higher

values of initial porosity f0.

Figure 5.5 provides corresponding results for: (a) the evolution of the porosity f ; and (b) the

evolution of the average aspect ratios ω1 and ω2. Fig. 5.5(a) shows that the SOE predictions for the

evolution of the porosity f virtually coincide with the “exact” result for all values of initial porosities

considered. In this regard, we should make the following parenthetical clarification. As discussed in

Section 5.1.4, the evolution of porosity in porous elastomers with incompressible matrix phase can

be computed exactly through expression (5.21), provided that the determinant of the macroscopic

deformation gradient, detF, is known. For displacement boundary conditions, detF is of course

known since it is prescribed. On the other hand, for traction and mixed boundary conditions, such

as the one considered in this subsection, detF is not known a priori and must be computed from the

material response. In this connection, we remark that what we have denoted by “exact” porosity in

Fig. 5.5 corresponds to the porosity generated by expression (5.21) evaluated at the detF predicted

by the second-order estimate (5.16). Having clarified this point we next note that Fig. 5.5(a)
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Figure 5.6: Effective response, as predicted by the second-order estimate (13), of a porous elastomer with

incompressible matrix phase subjected to biaxial tension and compression (λ2 = λ3 = λ, S11 = ∂Φ̂I/∂λ1 =
0). The results correspond to a material with Gent matrix phase (Jm = 50) and initial porosity of f0 = 30%,
and are shown as a function of the logarithmic strain e = ln λ. The normal and shear principal components
of the effective incremental modulus L̂ for: (a) biaxial compression (λ ≤ 1), and (b) biaxial tension (λ ≥ 1).

illustrates explicitly the fact already pointed out in Fig. 5.4(b) that the porosity increases for tensile

loadings and decreases for compressive ones. The former mechanism induces geometric softening

and the latter, stiffening. With regard to the evolution of the aspect ratios, we first notice from

Fig. 5.5(b) that the average aspect ratio ω2 remains identically equal to one throughout the entire

loading process, as a result of the imposed macroscopic biaxial state of deformation (i.e., λ2 = λ3).

On the other hand, the aspect ratio ω1 is seen to decrease (increase) very significantly for tensile

(compressive) loadings, entailing that the pores evolve on average into oblate (prolate) spheroids. In

short, the pore ovalization resulting from the applied biaxial compression induces geometric softening

on the overall stress-strain relation of the porous elastomer, while the development of “pancake”

shapes for the pores resulting from tension induces geometric stiffening. Thus, in summary, the

results illustrated in Fig. 5.5 make it plain that the evolution of the underlying microstructure is

very different for biaxial compression than for tension. This is consistent with the fact that the

porous elastomer loses strong ellipticity under biaxial compression and not under biaxial tension.

In order to gain further insight on the results shown in Figs. 5.4 and 5.5, Fig. 5.6 provides results

for the normal (L̂1111, L̂2222, L̂3333) and shear (L̂1212, L̂1313, L̂2323) components of the normalized

effective incremental modulus L̂ = µ−1 ∂2Ŵ I/∂F
2

of a porous elastomer with Gent matrix phase

(Jm = 50) and initial porosity of 30% under biaxial loading (λ2 = λ3 = λ, S11 = ∂Φ̂I/∂λ1 = 0).

Part (a) shows results for biaxial compression (λ ≤ 1), and part (b), for biaxial tension (λ ≥ 1).

Fig. 5.6(a) shows that—in agreement with the stress-strain results shown in Fig. 5.4(a)—the

normal components L̂2222 = L̂3333 increase monotonically with the applied compressive strain. Note

also that the normal component L̂1111 increases monotonically as well. In contrast, the effective

shear moduli L̂1212, L̂1313, L̂2323 are seen to decrease with increasing biaxial compression, especially
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L̂2323 which vanishes at some critical finite stretch λcrit. This stretch corresponds precisely to the

point at which the material loses strong ellipticity. In this connection, similar to the hydrostatic

loading case, it should be noted that the combination L̂2222L̂3333 + L̂2
2323 − (L̂2233 + L̂2332)2 +

2L̂2323

√
L̂2222L̂3333 does also vanish at λcrit. Making contact with Section 5.1.5, this means that

conditions (5.23)3 and (5.24)3 cease to hold true. This implies that the porous elastomer may

develop localized deformations in bands with normals N ∈ Span{u2,u3}, where u2 and u3 denote

the unit vectors defining the macroscopic Lagrangian principal axes associated with the principal

stretches λ2 and λ3, respectively. Moreover, the vector m associated with a given N is such that

m ⊥ N, so that the deformation localizes in shear within the bands. In other words, when subjected

to biaxial compression, the porous elastomer may become infinitesimally soft under incremental

shear deformations in planes with normals defined by the Lagrangian principal axes associated with

the smallest principal stretches (which correspond to the largest compressive strains). As for the

hydrostatic loading case, it should be emphasized that this behavior is rather subtle. Indeed, Fig.

5.5(a) shows that, under biaxial compression, the porous elastomer stiffens in the “direction” of

the applied loading (i.e., L̂2222 = L̂3333 increase with the applied stretch). However, its incremental

shear response (in the u2–u3–plane) softens to the point that the material loses strong ellipticity at

some finite critical stretch λcrit (at which L̂2323 = L̂3232 = L̂2222L̂3333 + L̂2
2323 − (L̂2233 + L̂2332)2 +

2L̂2323

√
L̂2222L̂3333 = 0). Turning now to Fig. 5.6(b), it is observed that—in accord with the stress-

strain results shown in Fig. 5.4(a)—the incremental normal moduli L̂2222 = L̂3333 initially decrease

and then increase, as a function of the applied biaxial strain. On the other hand, the effective

incremental shear moduli L̂1212, L̂1313, L̂2323 increase monotonically with the applied tensile strain,

improving the stability of the porous elastomer. Even though the results illustrated in Fig. 5.6

correspond to f0 = 0.3, they are representative of results for porous elastomers with any value of

initial porosity f0. A more detailed investigation of the effect of f0 on the effective incremental

behavior and stability of porous elastomers subjected to biaxial loading will be addressed in the

context of the next figure. As a final remark, it is appropriate to emphasize that the DPB model

(5.12) (with Neo-Hookean matrix phase) can be shown to remain strongly elliptic for all biaxial

tension/compression loading. This implies that the corresponding DPB estimate with Gent matrix

phase (5.10) remains strongly elliptic for all biaxial tension/compression loading as well. This is easy

to check by realizing that a Gent material is a stiffer than a Neo-Hookean material for all modes of

deformation.

Figure 5.7 presents plots associated with the results shown in Figs. 5.4, 5.5, 5.6 for: (a) the

critical stretch, λcrit, and (b) the normalized critical stress, Scrit/µ, at which the second-order

estimate (5.16) loses strong ellipticity under biaxial compression as a function of the initial porosity

f0. Fig. 5.7(a) illustrates that the stability of the porous material improves in strain space with

increasing initial porosity, in accord with the results found for hydrostatic compression (see Fig.

5.3(a)). Notice, however, that the stretches λcrit in Fig. 5.7(a) are significantly smaller than those

in Fig. 5.3(a). In particular, it is observed that λcrit → λ
0

crit with λ
0

crit ≈ 0.78 as f0 → 0 for biaxial

compression, whereas, for hydrostatic compression, λcrit → 1 as f0 → 0. This implies that for biaxial

compression λcrit has a discontinuity at f0 = 0, since for this type of loading λcrit = 0 at f0 = 0 (due
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Figure 5.7: Biaxial tension and compression (λ2 = λ3 = λ, S11 = ∂Φ̂I/∂λ1 = 0) of a porous elastomer with
incompressible, Neo-Hookean matrix phase with various values of initial porosity f0. (a) The critical stretch
λcrit at which the second-order estimate (5.16) loses strong ellipticity as a function of initial porosity f0. (b)
The corresponding critical stress Scrit/µ.

to the fact that the matrix phase is strongly elliptic for all isochoric deformations). Physically, this

result suggests that the addition of even a small proportion of pores can have a dramatic effect on

the overall stability of porous elastomers with incompressible, strongly elliptic matrix phases under

certain type of finite deformations. In contrast to the results found for hydrostatic compression, Fig.

5.7(b) shows that, in stress space, the porous elastomer becomes more unstable with increasing initial

porosity throughout the entire physical domain 0 < f0 < 1. That is, |Scrit| decreases monotonically

with increasing f0.

Uniaxial tension/compression

Figure 5.8 shows the SOE predictions for the effective response of a porous elastomer with incom-

pressible Gent matrix phase under uniaxial loading (λ1 = λ, S22 = ∂Φ̂I/∂λ2 = S33 = ∂Φ̂I/∂λ3 = 0).

Results are depicted for a matrix lock-up parameter of Jm = 50 and initial porosities of f0 = 0, 10, 30

and 50% as a function of the logarithmic strain e = ln λ. Part (a) shows the normalized macroscopic

“uniaxial” stress Suni/µ = µ−1∂Φ̂I/∂λ1, and part (b), the associated “lateral” strain elat = ln λ2 =

ln λ3. A glance at Fig. 5.8 suffices to remark its many similarities with Fig. 5.4 (for biaxial loading).

Indeed, Fig. 5.8 shows that the effective stress-strain behavior of the porous elastomer is softer for

higher values of the initial porosity f0 and exhibits a very substantial stiffening for tension as well as

compression. Additionally, the volume of the porous elastomer increases under uniaxial tension and

decreases under uniaxial compression. That is, in the present context, ln
(
detF

)
= 2 elat + e > 0

for e > 0 and 2 elat + e < 0 for e < 0. There are, however, two major differences worth of notice.

First, we remark that while for biaxial tension (compression) the underlying pores evolve into oblate

(prolate) spheroids, the opposite is true for uniaxial tension (compression). This has an important
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Figure 5.8: Effective response, as predicted by the second-order estimate (5.16), of a porous rubber subjected

to uniaxial tension and compression (λ1 = λ, S22 = ∂Φ̂I/∂λ2 = S33 = ∂Φ̂I/∂λ3 = 0), as a function of
the logarithmic strain e = ln λ. The results correspond to a material with incompressible, Gent matrix
phase with Jm = 50 and various values of initial porosity f0. (a) The normalized macroscopic stress

Suni/µ = µ−1∂Φ̂I/∂λ1. (b) The lateral strain elat = ln λ2 = ln λ3.

effect on the overall behavior and, especially, on the stability of the porous elastomer. In this con-

nection, we note that, as opposed to biaxial compression, no loss of strong ellipticity takes place

under uniaxial compression. In fact, the SOE predicts that for uniaxial compression the porosity

will vanish at some finite stretch (denoted with the symbol “¦” in the plots) before any macroscopic

instabilities take place.

For completeness, Fig. 5.9 illustrates the evolution of the relevant microstructural variables

associated with the results shown in Fig. 5.8. Part (a) shows the evolution of the porosity f

and part (b), the evolution of the aspect ratios ω1 and ω2, as a function of the logarithmic strain

e = ln λ. First, note that the porosity f , as predicted by the second-order estimate (5.16), is

in excellent agreement with the “exact” result (as computed from expression (5.21) evaluated at

the detF predicted by (5.16)). Note further that the aspect ratio ω2 is identically equal to one

throughout the entire loading process, as a consequence of the resulting macroscopic uniaxial state

of deformation (i.e., λ3 = λ2 since S33 = S22). On the other hand, ω1 > (<)1 for e > (<)0, so

that the initially spherical pores deform on average into prolate (oblate) spheroids under uniaxial

tension (compression), corroborating the comments in the previous paragraph. In summary, the

above-presented results for uniaxial loading induce similar geometric stiffening/softening effects to

those found for biaxial loading. Namely, under uniaxial tension, the increase of porosity induces

geometric softening and the pore ovalization, stiffening. Conversely, under uniaxial compression, the

decrease of porosity induces geometric stiffening and the pore ovalization, softening.
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Figure 5.9: Uniaxial tension and compression (λ1 = λ, S22 = ∂Φ̂I/∂λ2 = S33 = ∂Φ̂I/∂λ3 = 0) of a porous
elastomer with incompressible, Gent matrix phase with Jm = 50 and various values of initial porosity f0.
(a) The evolution of porosity f , as predicted by the second-order estimate (5.16), compared with the exact
result. (b) The evolution of the aspect ratios ω1 and ω2 as predicted by second-order estimate (5.16).

Macroscopic failure surfaces

Figure 5.10 illustrates the macroscopic failure surfaces, as determined by the loss of strong ellipticity

of the second-order estimate (5.16) (denoted by LOE in the plots). Results are given for a porous

elastomer with incompressible Neo-Hookean matrix phase and initial porosities of f0 = 10, 30, and

50%. Part (a) shows failure surfaces for applied axisymmetric deformations (e3 = e2) in strain space,

and part (b), for applied axisymmetric stresses (S33 = S22) in stress space. For completeness, the

boundary at which the porosity vanishes has also been included (dotted lines) in Fig. 5.10. Note

that once the pore-closure boundary is reached, no further compressive (with J < 1) deformation is

possible.

Before proceeding with the bulk of the discussion, it is helpful to identify in Fig. 5.10 the loading

paths considered in the three previous subsections. Thus, we note that the line e2 = e1 in Fig.

5.10(a), as well as the line S22 = S11 in Fig. 5.10(b), correspond precisely to hydrostatic loading,

which was considered in detail in Figs. 5.1–5.3. Moreover, the lines S11 = 0 and S22 = 0 in Fig.

5.10(b), correspond to biaxial and uniaxial tension/compression, respectively. These loading paths

were considered in detail in Figs. 5.4–5.7 and Figs. 5.8–5.9.

A key feature to remark from Fig. 5.10(a) is that the loci of points at which loss of strong

ellipticity occurs satisfy the condition: ln(detF) = e1 + e2 + e3 = e1 + 2e2 < 0. Thus, according to

the second-order estimate (5.16), loss of strong ellipticity occurs necessarily under volume-reducing

deformations. Or, in other words, the development of macroscopic instabilities may take place

exclusively at “sufficiently” large compressive deformations. Another interesting point that deserves

further comment is the trend followed by the onset of loss of strong ellipticity as a function of the

initial porosity f0. In effect, the porous elastomer becomes more stable—in the sense that it loses
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Figure 5.10: Macroscopic onset-of-failure surface, as determined by the loss of strong ellipticity of the
second-order estimate (5.16), for a porous elastomer with incompressible, Neo-Hookean matrix phase and
various values of initial porosity. Part (a) illustrates the results for applied axisymmetric deformations
(e3 = e2) in the e1–e2–plane in strain space. Part (b) shows corresponding results for applied axisymmetric
stresses (S33 = S22) in the S11–S22–plane in dimensionless stress space.

strong ellipticity at larger strains—with increasing initial porosity. Recall that this behavior has

already been observed in the context of hydrostatic and biaxial compression (see Fig. 5.3(a) and

Fig. 5.7(a)). Fig. 5.10(a) illustrates, thus, that this counterintuitive trend applies more broadly to

general axisymmetric loading conditions.

In parallel with Fig. 5.10(a), Fig. 5.10(b) shows that a necessary condition for loss of strong

ellipticity to occur is the existence of a compressive component in the state of stress. Fig. 5.10(b)

also illustrates that the porous elastomer becomes more unstable—in the sense that it loses strong

ellipticity at smaller stresses—with increasing initial porosity f0. This trend is in contrast to that

one observed in strain space. The explanation for such disparity follows that one given in the context

of Fig. 5.3 (for hydrostatic compression). That is, given the drastically softer stress-strain relations

of the porous elastomer for larger values of initial porosity, the strains required to reach the critical

stresses happen to be larger for larger initial porosities.

Figure 5.11 provides analogous results to those shown in Fig. 5.10 for a porous elastomer with

an initial porosity of f0 = 30% and Neo-Hookean matrix phase with compressibility ratios κ/µ = 10

and κ →∞. Part (a) shows the macroscopic failure surfaces for applied axisymmetric deformations

(e3 = e2) in strain space, and part (b), for applied axisymmetric stresses (S33 = S22) in stress space.

The main observation that can be made from Fig. 5.11 is that the effect of compressibility of the

matrix phase, as measured by the bulk modulus κ, on the overall stability of porous elastomers

is opposite to that of the initial porosity f0. Namely, in strain space, the porous elastomer loses

strong ellipticity at smaller strains for larger bulk modulus. On the other hand, in stress space, the

porous elastomer loses strong ellipticity at larger stresses for larger bulk modulus. In this regard,

we notice that by increasing the bulk modulus of the matrix phase we are effectively constraining
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Figure 5.11: Macroscopic onset-of-failure surface, as determined by the loss of strong ellipticity of the
second-order estimates (5.13) and (5.16), for a porous elastomer with Neo-Hookean matrix phase and two
values of compressibility ratio of the matrix phase. Part (a) illustrates the results for applied axisymmetric
deformations (e3 = e2) in the e1–e2–plane in strain space. Part (b) shows corresponding results for applied
axisymmetric stresses (S33 = S22) in the S11–S22–plane in dimensionless stress space.

the matrix material to deform isochorically. This results in an overall stiffening of the matrix phase,

and therefore, also of the porous elastomer. In turn, the critical stresses at which the material loses

strong ellipticity increase, while the corresponding critical strains decrease, with increasing κ.

Finally, it is appropriate to mention that the Neo-Hookean results shown in Figs. 5.10 and

5.11 are representative of results for Gent porous elastomers with any value of the material lock-up

parameter Jm. Indeed, according to the SOE predictions, the lock-up parameter Jm has virtually

no effect on the onset of loss of strong ellipticity. This is consistent with the fact that loss of strong

ellipticity occurs mostly at compressive states of deformation, at which the effect of Jm is not “felt”.

5.2.2 Plane-strain loadings

Pure shear

In Figure 5.12, SOE predictions are given for the pure shear loading (λ1 = λ, λ2 = λ
−1

, λ3 = 1)

of a porous elastomer with incompressible Gent matrix phases. Results are shown for an initial

porosity of f0 = 10% and matrix lock-up parameters of Jm = 50 and Jm → ∞, as a function

of the logarithmic strain e = ln λ. First, we note from Fig. 5.12(a) that the SOE predictions

satisfy the rigorous Voigt upper bound (5.7). Recall that this bound is only helpful for isochoric

deformations (i.e., deformations with detF = 1), like the one considered in this subsection, since it

becomes unbounded otherwise. Recall as well that the DPB model (5.12) coincides exactly with the

Voigt bound (5.7) in this case. In connection with the evolution of the microstructure, it should be

remarked that the porosity does not evolve under pure shear deformations (i.e., f = f0). On the

other hand, as shown by Fig. 5.12(b), the aspect ratios, ω1 and ω2, of the underlying pores do evolve
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Figure 5.12: Effective response of a porous rubber with an incompressible, Gent matrix phase subjected to

pure shear (λ1 = λ, λ2 = λ
−1

, λ3 = 1), as a function of the logarithmic strain e = ln λ. (a) The normalized

effective stored-energy function Φ̂I/µ as predicted by the second-order estimate (5.16) and the Voigt bound
(5.7). (b) The evolution of the aspect ratios of the underlying pores, ω1 and ω2. Part (b) also includes the
aspect ratios as predicted by the DPB model (5.12).

substantially with increasing strain. In particular ω1 increases while ω2 decreases with increasing

e. It is also interesting to observe that the evolution of the aspect ratios appears to be practically

insensitive to the value of the matrix lock-up parameter Jm. For comparison purposes, we have

included in Fig. 5.12(b) the evolution of the aspect ratios ω1 and ω2 as predicted by the DPB model

(5.12) for the case of Jm →∞. In this regard, it is noticed that the DPB result for ω2 is very similar

to the corresponding SOE prediction. On the other hand, the aspect ratio ω1, as computed from the

DPB model, is largely below the SOE result. This has the direct implication that, in the direction of

the applied tensile stretch λ1 = λ, the DPB model should exhibit a weaker geometric stiffening—due

to pore ovalization—than the SOE. By the same token, it should also exhibit a stronger geometric

stiffening in the direction of the applied compressive stretch λ2 = λ
−1

. As a final point, it should

be remarked that no loss of ellipticity is observed for any level of pure shear deformation from any

of the models.

Figure 5.13 provides corresponding results for the normalized stress components: (a) S11/µ and

(b) S22/µ as a function of the logarithmic strain e = ln λ. SOE predictions are given for values of the

matrix lock-up parameter of Jm = 50 and Jm → ∞. DPB predictions are given only for Jm → ∞.

Fig. 5.13 clearly shows that the material parameter Jm has a strong effect on the behavior of the

porous elastomer. This is not surprising since the response of the matrix phase is itself also highly

dependent on Jm. Furthermore, we notice that both stress components exhibit substantial stiffening

with the applied stretch. In this regard, we remark that (for Jm →∞) the SOE prediction for the

component S11/µ is much stiffer than the corresponding DPB estimate, while the opposite is true

for the component S22/µ. This behavior is entirely consistent with the observations made in Fig.

5.12(b), where it was concluded that the pore ovalization predicted by the DPB model induces a
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Figure 5.13: Effective response of a porous rubber with an incompressible Gent matrix phase subjected to

pure shear (λ1 = λ, λ2 = λ
−1

, λ3 = 1), as a function of the logarithmic strain e = ln λ. (a) The normalized
macroscopic stress S11/µ. (b) The normalized macroscopic stress S22/µ.

stronger geometric softening (stiffening) in the direction of the tensile (compressive) stretch λ1 = λ

(λ2 = λ
−1

) than the one predicted by the SOE.

In-plane uniaxial tension/compression

Figure 5.14 provides results for the overall response of a porous elastomer with incompressible Neo-

Hookean matrix phase under plane-strain tension (λ1 = λ ≥ 1, λ3 = 1 , S22 = ∂Φ̂I/∂λ2 = 0).

Results are shown for the second-order (5.16) and the DPB (5.12) estimates, and Finite Element

(FEM) calculations (from Danielsson et al., 2004) for initial porosities of 5, 15, and 25% as a

function of the logarithmic strain e = ln(λ). Part (a) shows the normalized macroscopic Cauchy

stress T/µ = µ−1(1/λ2)∂Φ̂I/∂λ1, and part (b), the associated lateral strain elat = ln λ2.

Before proceeding with the discussion of Fig. 5.14, it is necessary to make the following clar-

ifications. First, the FEM results illustrated in Fig. 5.14 correspond to the effective response of

a multi-void cell model consisting of a random assembly of cubes that are either solid or contain

an initially spherical void. (For further details on the cell model see Danielsson et al., 2004.) The

microstructure of this multi-void cell model is thus monodisperse, in contrast to the polydisperse

microgeometry assumed by the SOE and the DPB models. Nevertheless, for the small and moderate

values of porosity considered in the results shown in Fig. 5.14, the dispersion in the size of pores is

not expected to be of critical importance on the overall response of the material. Second, it should be

mentioned that the Cauchy stress T/µ = µ−1(1/λ2)∂Φ̂I/∂λ1, as opposed to the first Piola-Kirchhoff

stress S/µ = µ−1∂Φ̂I/∂λ1, is shown in Fig. 5.14(a) for two reasons: the FEM results were originally

provided for this variable in (Danielsson et al., 2004), and it brings out more clearly the differences

among the two compared estimates with the FEM results.

Figure 5.14 shows that the SOE predictions are in excellent agreement with the FEM calculations.
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Figure 5.14: Effective response of a porous rubber subjected to plane-strain tension (λ1 = λ ≥ 1, S22 =

∂Φ̂I/∂λ2 = 0, λ3 = 1), as a function of the logarithmic strain e = ln λ. Comparisons between the SOE
predictions, the Danielsson-Parks-Boyce model (DPB), and FEM results for a material with incompressible,
Neo-Hookean matrix phase and various values of initial porosity f0. (a) The normalized macroscopic Cauchy

stress T/µ = µ−1(1/λ2)∂Φ̂I/∂λ1. (b) The lateral strain elat = ln λ2.

Interestingly, the DPB model delivers estimates that are in very good agreement with the numerical

calculations for the case of f0 = 5%, but, for larger initial porosities, the agreement between the

DPB predictions and the FEM (and hence the SOE) results deteriorates noticeably, especially for

larger initial porosities f0. It is also noted that the stress-strain curves in Fig. 5.14(a) exhibit a

pronounced stiffening with increasing strain. With regard to Fig. 5.14(b), we notice that all three

estimates indicate that the volume of the porous elastomer increases when the material is subjected

to plane-strain tension, that is, e + elat > 0. (The line e + elat = 0, which corresponds to f0 = 0,

has been included in Fig. 5.14(b) for reference purposes.) Again, since the elastomeric matrix

phase is incompressible, this has the direct implication that the porosity increases with the applied

deformation.

Figure 5.15 provides analogous results to those shown in Fig. 5.14 for plane-strain compression

(λ1 = λ ≤ 1, λ3 = 1 , S22 = ∂Φ̂I/∂λ2 = 0). Unfortunately, no FEM results were reported in

(Danielsson et al., 2004) for this loading, and hence, attention is confined to the SOE and the DPB

predictions. Fig. 5.15(a) shows that the predictions from the DPB model are much stiffer than the

corresponding SOE results. This disparity, as it will be explained in more detail in the discussion

of Fig. 5.16, is due to different predictions of the evolution of microstructure. Next, note that both

models predict that the porous elastomer remains stable for all applied plane-strain compression.

However, while the SOE predicts that the porosity will vanish at some finite compressive strain

(indicated with the symbol “¦” in the plots), the DPB model predicts that zero porosity is never

reached under plane-strain compression. We conclude by remarking from Fig. 5.15(b) that the

volume of the porous elastomer decreases with the applied plane-strain compression, that is, e+elat <

0. (Similar to Fig. 5.14(b), the line e + elat = 0, denoting the response of the incompressible
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Figure 5.15: Effective response of a porous rubber subjected to plane-strain compression (λ1 = λ ≤
1, S22 = ∂Φ̂I/∂λ2 = 0, λ3 = 1), as a function of the logarithmic strain e = ln λ. Comparisons between the
SOE and the Danielsson-Parks-Boyce (DPB) predictions for a material with incompressible, Neo-Hookean
matrix phase and various values of initial porosity f0. (a) The normalized macroscopic Cauchy stress

T/µ = µ−1(1/λ2)∂Φ̂I/∂λ1. (b) The lateral strain elat = ln λ2.

elastomeric matrix, has been included in Fig. 5.15(b) for references purposes.)

Figure 5.16 provides plots associated with the results shown in Fig. 5.14 and Fig. 5.15 for

the effective behavior of a porous elastomer with incompressible Neo-Hookean matrix phase under

plane-strain loading (tension and compression). Part (a) shows the evolution of the porosity f for

initial porosities of f0 = 5, 15, and 25% as a function of the applied strain e = ln λ. Part (b) shows

the evolution of the aspect ratios ω1 and ω2 for an initial porosity of f0 = 25% as a function of

the applied strain e = ln λ. Fig. 5.16(a) shows that while the SOE predictions for the evolution

of the porosity under plane-strain tension are in good agreement with the FEM calculations, the

DPB predictions deviate significantly. Moreover, Fig. 5.16(a) illustrates explicitly the fact already

revealed within the discussion of Fig. 5.14(b) and Fig. 5.15(b) that the porosity increases for plane-

strain tension and decreases for plane-strain compression. In this regard, we note that the porosity

predicted by the DPB model is always larger than the one predicted by the second-order estimate

(5.16), which entails that for plane-strain tension (e > 0) the DPB model predicts a larger geometric

softening due to changes in porosity than the SOE, and, by the same token, a weaker geometric

stiffening for plane-strain compression (e < 0). Furthermore, as already remarked in Fig. 5.15, it

is seen that under plane-strain compression the DPB porosity does not vanish at a finite strain as

the SOE predicts, but instead, reaches a horizontal asymptote. To conclude with Fig. 5.16(a), we

remark that the evolution of the porosity f , as determined from the second-order estimate (5.16),

is in excellent agreement with the “exact” result, as computed from expression (5.21) (evaluated

at the detF predicted by (5.16)). Turning now to Fig. 5.16(b), we notice that the aspect ratio ω1

increases while ω2 decreases for plane-strain tension. The opposite trend is observed for plane-strain

compression. We also recognize that while the DPB predictions are similar to the SOE results for
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Figure 5.16: Plane-strain tension and compression (λ1 = λ, S22 = ∂Φ̂I/∂λ2 = 0, λ3 = 1) of a porous
elastomer with incompressible, Neo-Hookean matrix phase with various values of initial porosity f0. Com-
parisons between the SOE and the Danielsson-Parks-Boyce (DPB) predictions for: (a) the evolution of
porosity f , and (b) the evolution of the aspect ratios ω1 and ω2.

tension, they deviate significantly for compression. In this connection, note that the DPB prediction

for ω1 under plane-strain compression is largely above the corresponding SOE result, which is seen

to vanish at some finite strain. In view of the fact that the decrease of ω1 induces geometric softening

in the present context, this strong disparity contributes to explain why the DPB predictions for the

stress-strain relations in Fig. 5.15(a) are stiffer than the corresponding SOE results.

Macroscopic failure surfaces

Figure 5.17 shows the macroscopic failure surfaces, as determined by the loss of strong ellipticity of

the second-order estimate (5.16), for a porous elastomer with incompressible, Neo-Hookean matrix

phase and initial porosities of f0 = 10, 30 and 50% under plane-strain loading (e3 = 0). Part (a)

shows the results in strain space, and part (b), in stress space. For completeness, the boundary at

which the porosity vanishes has also been included in Fig. 5.17.

Similar to Fig. 5.10(a) for axisymmetric loading, Fig. 5.17(a) shows that loss of strong ellipticity

can only take place for volume-reducing deformations. More specifically, in the present context,

the loci of points at which loss of strong ellipticity occurs satisfy the condition: ln(detF) = e1 +

e2 + e3 = e1 + e2 < 0. Also in accord with Fig. 5.10(a), Fig. 5.17(a) depicts that Neo-Hookean

porous elastomers subjected to plane-strain loadings improve their stability in strain space with

increasing initial porosity. As a final remark, it is interesting to note that the results shown in Fig.

5.10(a) are qualitatively similar to those previously found for porous elastomers with 2D random,

isotropic microstructures (see Figure 7 in Lopez-Pamies and Ponte Castañeda, 2004b). However, in

quantitative terms, the 3D-microstructure material is more unstable (in strain space) than the 2D

one, as loss of strong ellipticity occurs at smaller strains.
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Figure 5.17: Macroscopic onset-of-failure surface, as determined by the loss of strong ellipticity of the
second-order estimate (5.16), for a porous elastomer with incompressible, Neo-Hookean matrix phase and
various values of initial porosity under plane-strain loading (e3 = 0). (a) Failure surface in strain space. (b)
The corresponding failure surface in dimensionless stress space.

Consistent with all previous results, Fig. 5.17(b) shows that a necessary condition for loss of

strong ellipticity to occur is the existence of a compressive component in the state of stress. In

fact, note that for f0 < 0.5 both components of the stress must be compressive. In this regard, it is

emphasized that the corresponding stress S33 (not shown in the figure) is positive. (Recall that the

results correspond to plane-strain conditions, i.e., e3 = 0.) This is in accord with the results shown

in Fig. 5.13(b) for axisymmetric loading, where loss of strong ellipticity could occur at states with

two components of stress being compressive (with the other component being tensile). Moreover, it

is observed that in stress space the porous elastomer is more unstable for larger values of the initial

porosity, in accord with preceding results. The reasons for this behavior parallel those given in the

context of Fig. 5.10 (for axisymmetric loading conditions).

5.3 Concluding remarks

In this chapter, we have made use of the framework developed in Chapter 2 to generate a homogenization-

based constitutive model for the finite-deformation response of isotropic porous elastomers with

random microstructures. In turn, we have made use of the proposed model to generate compre-

hensive predictions for the stress-strain relation, the evolution of microstructure, and the onset of

macroscopic instabilities in Gent porous elastomers under a wide range of loading conditions and

values of initial porosity.

In accord with the 2D porous elastomers studied in Chapters 3 and 4, the predictions generated

in this chapter indicate that the evolution of the underlying microstructure has a significant effect

on the mechanical response of isotropic porous elastomers. In particular, it has been observed that

the decrease of porosity—induced by macroscopic, volume-reducing loadings—produces geometric
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stiffening of the effective incremental response of the material in the “direction” of the applied

loading. At the same time—and rather interestingly—the decrease of porosity does also lead to

the geometric softening of the effective incremental shear response of the material. Similarly, the

change in shape of the underlying pores, as measured by the their average aspect ratios, has also

been identified as a geometric mechanism that can produce stiffening of the effective incremental

response of the porous elastomer in some directions, and softening in others.

An important consequence of the aforementioned softening mechanisms is that the “second-order”

estimates for the effective behavior of porous elastomers can lose strong ellipticity, even in the case

when the underlying matrix phase material is taken to be strongly elliptic. Thus, in this work, loss of

strong ellipticity has been found to occur under sufficiently large macroscopic, compressive stresses

and strains. In other words, according to the predictions, the onset of macroscopic instabilities—as

determined by loss of strong ellipticity—for the class of porous elastomers under consideration in this

chapter is driven by the applied compressive loading. In this connection, it is worth remarking that

the recent model of Danielsson et al. (2004), which is based on a generalization of the earlier Voigt

bound (Ogden, 1978) and Hashin’s estimate (Hashin, 1985), is strongly elliptic for all deformations,

and is thus unable to capture the expected development of instabilities under compressive loading.

Finally, the results generated in this chapter have been shown to be in good agreement with

exact and numerical results available from the literature for special loading conditions, and gen-

erally improve on existing models for more general loading conditions. In particular—as already

stated—the new model proposed here predicts the development of macroscopic instabilities for load-

ing conditions where such instabilities are expected to occur from numerical simulations (Michel,

2006), as well as from physical evidence (Kinney et al., 2001; Gong and Kyriakides, 2005). This is

in contrast with prior homogenization- and micromechanics-based models that fail to predict the

development of such instabilities. Thus, although somewhat more difficult to implement than earlier

homogenization estimates and micromechanics models, which make use of simpler trial fields and

micromechanical hypotheses, the second-order method could prove to become a very useful tool in

the development of accurate—but still computationally tractable—models for porous, as well as for

other types of elastomeric composites.
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5.4 Appendix I. Second-order estimates for isotropic porous

elastomers with compressible matrix phases

In this appendix, we spell out the analysis corresponding to the computation of the second-order

estimate (2.69) for the effective stored-energy function Ŵ of porous elastomers consisting of initially

spherical, polydisperse, vacuous inclusions distributed randomly and isotropically (in the undeformed

configuration) in a compressible, isotropic matrix phase characterized by the stored-energy function

(5.1).

As a result of the restriction to pure stretch loadings (5.5), the modulus L defined by expression

(2.66) of the matrix phase in the linear comparison composite (LCC) reduces to L = L∗, where

it is recalled that L∗ is orthotropic and possesses, at most, 9 independent components. In this

work, we introduce further constraints among the components of L∗ in order to reduce them to 7

independent components, denoted by the parameters `∗α (α = 1, 2, ..., 7). Thus, the independent

principal components of L∗ are chosen to be L∗1111 = `∗1, L∗2222 = `∗2, L∗3333 = `∗3, L∗1122 = `∗4,

L∗1133 = `∗5, L∗2233 = `∗6, L∗1212 = `∗7, while the other non-zero components

L∗2121 = L∗1313 = L∗3131 = L∗2323 = L∗3232 = `∗7,

L∗1221 =
√

(`∗1 − `∗7)(`
∗
2 − `∗7)− `∗4,

L∗1331 =
√

(`∗1 − `∗7)(`
∗
3 − `∗7)− `∗5,

L∗2332 =
√

(`∗2 − `∗7)(`
∗
3 − `∗7)− `∗6, (5.30)

are dependent. The motivation for the constraints (5.30) is twofold:4 (i) relations (5.30) are con-

sistent with the tangent modulus of Neo-Hookean materials; and (ii) conditions (5.30) simplify

considerably the computations involved. It should be emphasized, however, that other choices are

possible in principle.

Now, using the facts that F = diag(λ1, λ2, λ3) and L = L∗, it follows from (2.70) that the

average deformation gradient in the matrix phase of the LCC, needed in the computation of Ŵ , is

of the form F
(1)

= diag(λ
(1)

1 , λ
(1)

2 , λ
(1)

3 ), where the average principal stretches λ
(1)

i (i = 1, 2, 3) in the

matrix phase are given by:

λ
(1)

1 = λ1 − f0 E1111

[
2gIλ1 +

(
hJ + κ(J − 1)

)
λ2λ3

]

−f0 E1122

[
2gIλ2 +

(
hJ + κ(J − 1)

)
λ1λ3

]

−f0 E1133

[
2gIλ3 +

(
hJ + κ(J − 1)

)
λ1λ2

]
,

λ
(1)

2 = λ2 − f0 E1122

[
2gIλ1 +

(
hJ + κ(J − 1)

)
λ2λ3

]

−f0 E2222

[
2gIλ2 +

(
hJ + κ(J − 1)

)
λ1λ3

]

−f0 E2233

[
2gIλ3 +

(
hJ + κ(J − 1)

)
λ1λ2

]
,

λ
(1)

3 = λ3 − f0 E1133

[
2gIλ1 +

(
hJ + κ(J − 1)

)
λ2λ3

]

−f0 E2233

[
2gIλ2 +

(
hJ + κ(J − 1)

)
λ1λ3

]

−f0 E3333

[
2gIλ3 +

(
hJ + κ(J − 1)

)
λ1λ2

]
. (5.31)

4These conditions are the 3D version of (3.6).
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In these expressions, it is recalled that E =
(
P−1 − (1− f0)L

)−1, gI = gI(I), and hJ = hJ(J), with

I = λ
2

1 + λ
2

2 + λ
2

3, J = λ1λ2λ3. Note that relations (5.31) provide explicit expressions for the non-

zero components of F
(1)

in terms of the applied loading, F, the initial porosity, f0, the constitutive

functions, g, h, κ, of the elastomeric matrix phase, as well as of the independent components of L,

i.e., `∗α (α = 1, 2, ..., 7).

Having determined F
(1)

, we proceed next to compute the variable F̂(1), also needed in the

computation of Ŵ . By again making use of the identity L = L∗, together with conditions (5.30),

equations (2.72) can be seen to reduce to 7 nonlinear, algebraic equations for 7 combinations of the

components of F̂(1), namely:

(F̂ (1)
11 − λ1)2 + 2 f1 F̂

(1)
12 F̂

(1)
21 + 2 f2 F̂

(1)
13 F̂

(1)
31 = k1 ,

(F̂ (1)
22 − λ2)2 +

1
2 f1

F̂
(1)
12 F̂

(1)
21 + 2 f3 F̂

(1)
23 F̂

(1)
32 = k2 ,

(F̂ (1)
33 − λ3)2 +

1
2 f2

F̂
(1)
13 F̂

(1)
31 +

1
2 f3

F̂
(1)
23 F̂

(1)
32 = k3 ,

(F̂ (1)
11 − λ1)(F̂

(1)
22 − λ2)− F̂

(1)
12 F̂

(1)
21 = k4/2 ,

(F̂ (1)
11 − λ1)(F̂

(1)
33 − λ3)− F̂

(1)
13 F̂

(1)
31 = k5/2 ,

(F̂ (1)
22 − λ2)(F̂

(1)
33 − λ3)− F̂

(1)
23 F̂

(1)
32 = k6/2 ,

(F̂ (1)
12 )2 + (F̂ (1)

21 )2 + (F̂ (1)
13 )2 + (F̂ (1)

31 )2 + (F̂ (1)
23 )2 + (F̂ (1)

32 )2

+2 f4 F̂
(1)
12 F̂

(1)
21 + 2 f5 F̂

(1)
13 F̂

(1)
31 + 2 f6 F̂

(1)
23 F̂

(1)
32 = k7 . (5.32)

Here, f1 = ∂L∗1221/∂`∗1, f2 = ∂L∗1331/∂`∗1, f3 = ∂L∗2332/∂`∗2, f4 = ∂L∗1221/∂`∗7, f5 = ∂L∗1331/∂`∗7,

f6 = ∂L∗2332/∂`∗7, and

kα =
1
f0

(F− F
(1)

) · ∂E−1

∂`∗α
(F− F

(1)
) (α = 1, 2, ..., 7). (5.33)

It is not difficult to check that the nonlinear system of equations (5.32) may be solved explicitly to

yield two distinct solutions for x
.= (F̂ (1)

11 − λ1), y
.= (F̂ (1)

22 − λ2), z
.= (F̂ (1)

33 − λ3) in terms of which

the combinations p1
.= F̂

(1)
12 F̂

(1)
21 , p2

.= F̂
(1)
13 F̂

(1)
31 , p3

.= F̂
(1)
23 F̂

(1)
32 , and s

.= (F̂ (1)
12 )2 +(F̂ (1)

21 )2 +(F̂ (1)
13 )2 +

(F̂ (1)
31 )2 + (F̂ (1)

23 )2 + (F̂ (1)
32 )2 may be uniquely determined. The two solutions for x, y, and z are as

follows:

x = (F̂ (1)
11 − λ1) = ± (k1 + f1 k4 + f2 k5)

√
C1 C2

C2

√
C3

,

y = (F̂ (1)
22 − λ2) = ± (k4 + 4 f1(k2 + f3 k6)) C2

2
√

C1C2

√
C3

,

z = (F̂ (1)
33 − λ3) = ± (f3 k5 + f2 (4 f3 k3 + k6))

√
C3√

C1C2

, (5.34)

with C1 = f2(4f1k2 + k4) + 4f1f
2
3 (4f2k3 + k5) + 2f3(k1 + f1k4 + f2k5 + 4f1f2k6), C2 = f2(4f1k2 +

k4 + 2f2k6) + 2f3(k1 + f1k4 + 2f2(2f2k3 + k5 + f1k6)), C3 = k1 + f2k5 + 2f1(4f2f3k3 + k4 + f3k5 +

f2k6) + 4f2
1 (k2 + f3k6), where it must be emphasized that the positive (and negative) signs must

be chosen to go together in the roots for x, y, and z. The corresponding final expressions for the

remaining combinations read as:

p1 = xy − k4/2, p2 = xz − k5/2, p3 = yz − k6/2, and

s = k7 − 2(f4p1 + f5p2 + f6p3). (5.35)
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At this point, it is important to emphasize that relations (5.34) and (5.35) provide explicit

expressions for 7 combinations of the components of F̂(1) in terms of the applied loading F, the

initial porosity f0, the constitutive functions g, h, κ of the elastomeric matrix phase, and the moduli

`∗α (α = 1, 2, ..., 7). Note, however, that the variable F̂(1) has 9 components, so that two more

relations would be needed to entirely characterize F̂(1), as it will be seen further below.

Each of the two distinct roots (5.34) for the combinations x, y, z, p1, p2, p3, s may be substituted

in the generalized secant condition (2.65) to yield a system of 9 scalar equations for the 9 variables

constituted by the 2 combinations of F̂(1): p4 = F̂
(1)
23 F̂

(1)
31 F̂

(1)
12 , p5 = F̂

(1)
32 F̂

(1)
13 F̂

(1)
21 , and the 7 moduli

`∗α. Algebraic manipulation of the resulting system reveals that one equation is satisfied trivially,

and the remaining 8 equations may be cast in the following form:

`∗1x + `∗4y + `∗5z = 2ĝI(x + λ1) +
[
ĥJ + κ(Ĵ (1) − 1)

] (
(y + λ2)(z + λ3)− p3

)

− 2gIλ1 −
(
hJ + κ(J − 1)

)
λ2λ3,

`∗4x + `∗2y + `∗6z = 2ĝI(y + λ2) +
[
ĥJ + κ(Ĵ (1) − 1)

] (
(x + λ1)(z + λ3)− p2

)

− 2gIλ2 −
(
hJ + κ(J − 1)

)
λ1λ3,

`∗5x + `∗6y + `∗3z = 2ĝI(z + λ3) +
[
ĥJ + κ(Ĵ (1) − 1)

] (
(x + λ1)(y + λ2)− p1

)

− 2gIλ3 −
(
hJ + κ(J − 1)

)
λ1λ2,

L∗1221p1 =
[
ĥJ + κ(Ĵ (1) − 1)

] (
p4 − p1(z + λ3)

)
,

L∗1331p2 =
[
ĥJ + κ(Ĵ (1) − 1)

] (
p4 − p2(y + λ2)

)
,

L∗2332p3 =
[
ĥJ + κ(Ĵ (1) − 1)

] (
p4 − p3(x + λ1)

)
,

`∗7 = 2ĝI , (5.36)

and

p4 = p5. (5.37)

In these relations, ĝI = gI(Î(1)), ĥJ = hJ (Ĵ (1)), with

Î(1) = F̂(1) · F̂(1) = (x + λ1)2 + (y + λ2)2 + (z + λ3)2 + s,

Ĵ (1) = det F̂(1)

= (x + λ1)(y + λ2)(z + λ3)− p1(z + λ3)− p2(y + λ2)− p3(x + λ1)

+2p4, (5.38)

and it is recalled that L∗1221, L∗1331, L∗2332 are given, respectively, by expressions (5.30)2, (5.30)3,

(5.30)4. The fact that one of the generalized secant equations (2.65) is satisfied trivially has the

direct implication that F̂(1) enters the above equations only through 8 (instead of 9) traces, namely, x,

y, z, p1, p2, p3, s, p4. As described below, these are the only traces needed in the computation of the

second-order estimate (2.69) for Ŵ . Now, by recalling the definitions p1 = F̂
(1)
12 F̂

(1)
21 , p2 = F̂

(1)
13 F̂

(1)
31 ,

p3 = F̂
(1)
23 F̂

(1)
32 , and p4 = F̂

(1)
23 F̂

(1)
31 F̂

(1)
12 , p5 = F̂

(1)
32 F̂

(1)
13 F̂

(1)
21 , it is seen that equation (5.37) can be

solved in closed-form to render

p4 = ±√p1p2p3. (5.39)
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Each of the two distinct roots (5.39) for p4 may be substituted back in equations (5.36) to finally

generate a closed system of 7 nonlinear, algebraic equations for the 7 independent moduli `∗α. These

equations must be solved numerically.

Having computed from (5.36) the values of all 7 independent components of L (i.e., `∗α) for a

given initial porosity (f0), given material behavior (g, h, κ), and given loading (λ1, λ2, λ3), the

values of the non-zero components of F
(1)

(i.e., λ
(1)

1 , λ
(1)

2 , λ
(1)

3 ) and the relevant combinations of

F̂(1) (i.e., x, y, z, p1, p2, p3, s, p4) may be readily determined using relations (5.31), (5.34), (5.35),

and (5.39). In turn, these results can be used to compute the second-order estimate (2.69) for the

effective stored-energy function Ŵ of isotropic porous elastomers. The final expression for Ŵ is

given by (5.13) in the text.

In connection with these results, it is important to remark that there are 4 possible combinations

of the roots introduced in (5.34) and (5.39), which lead to 4 different estimates for Ŵ . In the case

when the bulk modulus of the material (at zero strain) κ is of the order of the shear modulus (at zero

strain) µ, all 4 root combinations lead to very similar results for the effective stored-energy function

Ŵ . However, when the bulk modulus is significantly larger that the shear modulus, i.e., κ À µ,

the estimates produced by the 4 distinct combinations are very different. In fact, for κ À µ, it

will be shown in the next appendix that only one root combination generates physically meaningful

estimates that are superior to the other three possibilities.

5.5 Appendix II. Second-order estimates for isotropic porous

elastomers with incompressible matrix phases

In this appendix, we outline the derivation of the second-order estimate (2.69) for the effective stored-

energy function Ŵ I of porous elastomers consisting of initially spherical, polydisperse, vacuous inclu-

sions distributed randomly and isotropically (in the undeformed configuration) in an incompressible

matrix phase (5.1) with κ = ∞.

In the approach that follows, we start out with the results presented in Appendix I for the

second-order estimate (5.13) for porous elastomers with compressible matrix phases and carry out

the asymptotic analysis corresponding to the incompressible limit κ → ∞. In this context, it is

important to realize that 2 root combinations among the 4 possible ones described in Appendix I

lead to estimates for Ŵ that become unbounded in the limit as κ → ∞. More precisely, for J > 1

(J < 1) the “positive” (+) (“negative” (−)) root in (5.34) results in estimates for Ŵ that blow up

as κ → ∞, regardless of the choice of roots for p4 in expression (5.39). (For J = 1 the asymptotic

behavior of the roots is different and it will be addressed below.) These estimates suggest that a

porous elastomer with an incompressible matrix phase would be itself incompressible, which is in

contradiction with experimental evidence. Moreover, the 2 estimates associated with each of the

roots in (5.39) for Ŵ that remain finite in the limit of incompressibility of the matrix phase are

considerably different, in general. In order to discern which one of them is the better estimate, we

make contact with the evolution of the microstructure. First, we recall that the evolution of porosity
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in porous elastomers with incompressible matrix phases can be computed exactly and the result is

given by (5.21) in the text. In this regard, we note that the evolution of porosity associated with

the 2 above finite estimates can be shown to be exact up to second order in the strain (i.e., up

to (λi − 1)2). However, for larger deformations, the porosities associated with these 2 roots differ

significantly from each other with the choice p4 = sign
(
(λ

(1)

1 − λ1) (λ
(1)

2 − λ2)(λ
(1)

3 − λ3)
)√

p1p2p3

in (5.39) leading to a better approximation to the exact result (5.21) than the alternative root.

Thus, based on the above-presented physical arguments, there is only 1 root combination among

the 4 possible choices that lead to physically meaningful, superior estimates in the limit as κ →∞,

namely, for J < 1 (for J > 1), the “positive” (+) (“negative” (−)) root in (5.34) with the choice

p4 = sign
(
(λ

(1)

1 − λ1) (λ
(1)

2 − λ2)(λ
(1)

3 − λ3)
)√

p1p2p3 in (5.39). Regarding these combinations, it

is important to make the following two remarks. First, both these combinations can be shown to

generate estimates for deformations with J = 1 that are superior to the other two alternatives.

Moreover, the full numerical solution suggests that these two superior choices, (+) and (−) in (5.34)

with the p4 = sign
(
(λ

(1)

1 − λ1) (λ
(1)

2 − λ2)(λ
(1)

3 − λ3)
)√

p1p2p3 in (5.39), lead in fact to the same

estimate for Ŵ when J = 1. This is difficult to verify analytically, however, since the equations

associated with the (+) root develop a singularity as κ → ∞ when approaching J = 1. Second,

the asymptotic analysis associated with the superior root for deformations with J < 1 leads exactly

to the same expression for the effective stored-energy function Ŵ I as the one obtained from the

analysis associated with the superior root for deformations with J > 1. In conclusion, the stored-

energy function Ŵ I can be written as a single expression valid for all values of J (> 0). Next, we

sketch out the derivation of such expression.

Based on numerical evidence from the results for finite κ, an expansion for the unknowns in this

problem, i.e., `∗α (α = 1, 2, ...7), is attempted in the limit as κ →∞ of the following form:

`∗1 = a1∆−1 + a2 + a3∆ + O(∆2),

`∗2 = b1∆−1 + b2 + b3∆ + O(∆2),

`∗3 = c1∆−1 + c2 + c3∆ + O(∆2),

`∗4 = d1∆−1 + d2 + d3∆ + O(∆2),

`∗5 = e1∆−1 + e2 + e3∆ + O(∆2),

`∗6 = m1∆−1 + m2 + m3∆ + O(∆2),

`∗7 = n2 + n3∆ + O(∆2), (5.40)

where ∆ .= 1/κ is a small parameter and a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3, e1, e2, e3, m1, m2,

m3, n2, and n3 are unknown coefficients to be determined from the asymptotic analysis that follows.

It proves useful to spell out the corresponding expansions of the constrained moduli L∗1221, L∗1331,

L∗2332, as well as those for (the non-zero components of F
(1)

) λ
(1)

1 , λ
(1)

2 , λ
(1)

3 and the combinations

(of the components of F̂(1)) x, y, z, p1, p2, p3, p4, and s, in the limit as κ →∞. Thus, substituting

expressions (5.40) in relations (5.30) for the components L∗1221, L∗1331, L∗2332 can be shown to lead
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to the following expansions:

L∗1221 =
(√

a1b1 − d1

)
∆−1 +

a2b1 + a1b2 − (a1 + b1)n2

2
√

a1b1

− d2 + O(∆),

L∗1331 = (
√

a1c1 − e1)∆−1 +
a2c1 + a1c2 − (a1 + c1)n2

2
√

a1c1
− e2 + O(∆),

L∗2332 =
(√

b1c1 −m1

)
∆−1 +

b2c1 + b1c2 − (b1 + c1)n2

2
√

b1c1

−m2 + O(∆). (5.41)

Similarly, substituting (5.40) in relations (5.31) leads to:

λ
(1)

1 = λ̊
(1)

1 + λ̆
(1)

1 ∆ + O(∆2), λ
(1)

2 = λ̊
(1)

2 + λ̆
(1)

2 ∆ + O(∆2),

λ
(1)

3 = λ̊
(1)

3 + λ̆
(1)

3 ∆ + O(∆2). (5.42)

The explicit form of the coefficients λ̊
(1)

i , λ̆
(1)

i (i = 1, 2, 3) in these last expressions is too cumbersome

to be included here. In any case, at this stage, it suffices to remark that they are known in terms

of the coefficients a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3, e1, e2, e3, m1, m2, m3, n2, and n3

introduced in (5.40). Finally, substituting (5.40) in relations (5.34), (5.35), and (in the appropriate

root of) (5.39) leads to:

x = x1 + x2∆ + O(∆2),

y = y1 + y2∆ + O(∆2),

z = z1 + z2∆ + O(∆2),

p1 = p̊1 + p̆1∆ + O(∆2),

p2 = p̊2 + p̆2∆ + O(∆2),

p3 = p̊3 + p̆3∆ + O(∆2),

p4 = p̊4 + O(∆) = sign
[
(̊λ

(1)

1 − λ1)(̊λ
(1)

2 − λ2)(̊λ
(1)

3 − λ3)
] √

p̊1p̊2p̊3 + O(∆),

s = s1 + O(∆), (5.43)

where, similar to (5.42), the coefficients in these expressions are (known functions of the coefficients

defined in (5.40)) too cumbersome to be included here. For later use, it is convenient to introduce

the expansion of Ĵ (1) = det F̂(1):

Ĵ (1) = Ĵ
(1)
1 + Ĵ

(1)
2 ∆ + O(∆2), (5.44)

where, making contact with (5.43), we note that Ĵ
(1)
1 = (x1 + λ1)(y1 + λ2)(z1 + λ3)− p̊1(z1 + λ3)−

p̊2(y1 + λ2) − p̊3(x1 + λ1) + 2p̊4. In addition, it will also prove useful to introduce the following

notation for the expansions of the derivatives of the constitutive functions g and h characterizing

the elastomeric matrix phase in the limit as κ →∞:

ĝI = ĝ′1 + ĝ′2∆ + O(∆2),

ĥJ = ĥ′1 + ĥ′2∆ + O(∆2), (5.45)

where it is recalled that ĝI = gI(Î(1)), ĥJ = hJ(Ĵ (1)), and Î(1) and Ĵ (1) are given by (5.38).
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Next, by making use of expressions (5.40) through (5.45) in (5.36), a hierarchical system of

equations is obtained for the unknown coefficients introduced in (5.40). The first set of equations,

of order O(∆−1), can be shown to yield the following non-trivial relations:

b1 =
λ

2

1

λ
2

2

a1, c1 =
λ

2

1

λ
2

3

a1, d1 =
λ1

λ2

a1, e1 =
λ1

λ3

a1, m1 =
λ

2

1

λ2λ3

a1, (5.46)

and

(x1 + λ1)(y1 + λ2)(z1 + λ3)− p̊1(z1 + λ3)− p̊2(y1 + λ2)− p̊3(x1 + λ1)

+2p̊4 = 1. (5.47)

Note that equations (5.46) correspond actually to explicit expressions for the unknowns b1, c1, d1,

e1, and m1 in terms of the coefficient a1. On the other hand, equation (5.47)—which can also be

written as Ĵ
(1)
1 = 1—is an implicit equation that ultimately involves the coefficients a1, a2, b2, c2,

d2, e2, m2, and n2. Now, by making use of (5.46) and (5.47), the second hierarchy of equations, of

order O(∆0), can be shown to ultimately yield the following relations:

a2x1 + d2y1 + e2z1 + a1

(
x2 +

λ1

λ2

y2 +
λ1

λ3

z2

)
= 2ĝ′1(x1 + λ1) +

(
ĥ′1 + Ĵ

(1)
2

) [
(y1 + λ2)(z1 + λ3)− p̊3

]− 2gIλ1 − hJλ2λ3,

d2x1 + b2y1 + m2z1 + a1
λ1

λ2

(
x2 +

λ1

λ2

y2 +
λ1

λ3

z2

)
= 2ĝ′1(y1 + λ2) +

(
ĥ′1 + Ĵ

(1)
2

) [
(x1 + λ1)(z1 + λ3)− p̊2

]− 2gIλ2 − hJλ1λ3,

e2x1 + m2y1 + c2z1 + a1
λ1

λ3

(
x2 +

λ1

λ2

y2 +
λ1

λ3

z2

)
= 2ĝ′1(z1 + λ3) +

(
ĥ′1 + Ĵ

(1)
2

) [
(x1 + λ1)(y1 + λ2)− p̊1

]− 2gIλ3 − hJλ1λ2,

1
2

(
λ1

λ2

a2 +
λ2

λ1

b2

)
− λ

2

1 + λ
2

2

2λ1λ2

n2 − d2 =
(
ĥ′1 + Ĵ

(1)
2

) [
p̊4

p̊1
− (z1 + λ3)

]
,

1
2

(
λ1

λ3

a2 +
λ3

λ1

c2

)
− λ

2

1 + λ
2

3

2λ1λ3

n2 − e2 =
(
ĥ′1 + Ĵ

(1)
2

) [
p̊4

p̊2
− (y1 + λ2)

]
,

n2 = 2ĝ′1,

(5.48)

and

ĥ′1 + Ĵ
(1)
2 =

[
p̊4

p̊3
− (x1 + λ1)

]−1
(

1
2

(
λ2

λ3

b2 +
λ3

λ2

c2

)
− λ

2

2 + λ
2

3

2λ2λ3

n2 −m2

)
.

(5.49)

Solving (5.49) for Ĵ
(1)
2 , the second term in the expansion (5.44), and substituting the result in

equations (5.48), can be shown to ultimately lead to a system of 7 nonlinear equations—formed by

Eqns. (5.47) and (5.48)—for the 7 unknowns:

u1
.= a1, u2

.= n2, u3
.= λ

2

1 b2 − λ
2

1 a2, u4
.= λ

2

3 c2 − λ
2

1 a2,

u5
.= λ2 d2 − λ1 a2, u6

.= λ3 e2 − λ1 a2, u7
.= λ2 m2 − λ3 c2. (5.50)
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Here, the primitive coefficients a1 and n2 have been relabelled as u1 and u2, respectively, for consis-

tency of notation.

At this point, it is important to recognize that knowledge of the 7 variables (5.50), as determined

by the system of 7 equations (5.47)—(5.48), suffices to determine the leading-order terms (of the

components of F
(1)

) λ̊
(1)

1 , λ̊
(1)

2 , λ̊
(1)

3 , in (5.42) and (of the combinations of the components of F̂(1)) x1,

y1, z1, p̊1, p̊2, p̊3, p̊4, and s1, in (5.43), as well as the second-order traces λ̆
(1)

1 λ2λ3+λ̆
(1)

2 λ1λ3+λ̆
(1)

3 λ1λ2

and x2λ2λ3+y2λ1λ3+z2λ1λ2. The corresponding final expressions are too cumbersome to be written

down here, however, they do satisfy certain interesting, simple relations which worth recording,

namely:

x1 = λ̊
(1)

1 + λ1, y1 = λ̊
(1)

2 + λ2, z1 = λ̊
(1)

3 + λ3,

p̊1 =
1
f0

(
λ̊

(1)

1 − λ1

)(
λ̊

(1)

2 − λ2

)
, p̊2 =

1
f0

(
λ̊

(1)

1 − λ1

)(
λ̊

(1)

3 − λ3

)
,

p̊3 =
1
f0

(
λ̊

(1)

2 − λ2

)(
λ̊

(1)

3 − λ3

)
,

λ̆
(1)

1 λ2λ3 + λ̆
(1)

2 λ1λ3 + λ̆
(1)

3 λ1λ2 = x2λ2λ3 + y2λ1λ3 + z2λ1λ2. (5.51)

Finally, by making use of the above results, it can be shown that the leading-order term of the

second-order estimate (5.13) in the limit of incompressibility is given by (5.16) in the text, where

Î(1) = (x1 + λ1)2 + (y1 + λ2)2 + (z1 + λ3)2 + s1. (5.52)

In this relation, it should be emphasized again that the expressions for x1, y1, z1, and s1 are

known—but not shown here for their bulkiness—explicitly in terms of the applied loading, λ1, λ2,

λ3, the initial porosity, f0, the constitutive function, g, and the 7 variables uα, defined by (5.50),

that are the solutions to the system of the 7 nonlinear, algebraic equations formed by (5.47) and

(5.48).
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Chapter 6

Hyperelastic laminates

This and the following chapter—in contrast to Chapters 3, 4, and 5, which have dealt with porous

elastomers—are concerned with the application of the theoretical framework developed in Chapter

2 to reinforced elastomers. The present chapter deals with reinforced elastomers with laminate

microstructures. In particular, the focus is on the evolution of the underlying microstructure and

its connection with the overall stress-strain relation and the development of instabilities in these

materials. More specifically, it is shown that the rotation of the layers—induced by the applied finite

deformations—generates substantial geometric softening in the overall mechanical response of the

composite. In addition, in spite of the fact that the local behavior is assumed to be strongly elliptic,

the homogenized behavior of the laminate is found to lose strong ellipticity at sufficiently large

deformations. To be precise, when the laminate is loaded in compression along the layers, a certain

type of “kink-band” instability is detected corresponding to the material becoming infinitesimally

soft to incremental shear deformations in the lamination direction.

Before proceeding with the development of the results, it is important to recall that laminates

are one of the very few special microgeometries for which an exact solution may be computed (see,

e.g., Triantafyllidis and Maker, 1985; Geymonat et al., 1993; Triantafyllidis and Nestorvić, 2005).

Such an exact solution is essentially constructed by setting piecewise-constant fields in the different

layers and solving for the corresponding jump conditions. As it will be discussed in detail in this

chapter, the second-order estimates recover such exact solution. That is, the results presented in

this chapter correspond to rigorous estimates. As such, they will be useful in the context of the

subsequent chapter for validating results for more general microgeometries (for which there are not

exact solutions available).

6.1 Effective behavior of hyperelastic laminates

In this chapter, we study the problem of the effective behavior of two-phase, hyperelastic laminates

with isotropic phases, characterized by the stored-energy functions W (1) and W (2), subjected to finite

deformations. As already discussed in Section 2.4.2, a laminate is a limiting case of “particulate”

microstructures (see Fig. 6.1), in which both phases play the roles of matrix and inclusion at the

same time. In the analysis that follows, for consistency with earlier notation, we denote by “matrix”
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phase, the softest of the two layers, and by “inclusion” phase, the stiffest one.

Figure 6.1: Reference configuration depiction of a laminate with lamination direction N = e1 relative to
the fixed laboratory frame of reference {ei}.

Of course, an exact solution for the effective behavior for the class of elastomeric laminates of

interest in this chapter can be readily computed by assuming piecewise-constant fields in the different

layers and solving for the corresponding jump conditions—exactly as is done in the context of linear

elasticity. However, here, we will follow a different route. In particular, we will make use of the

“tangent” second-order method of Ponte Castañeda and Tiberio (2000). This method will be shown

to recover the exact solution with piecewise-constant fields in the phases. In addition, the use of

this method will prove helpful to obtain further insight on the behavior of hyperelastic laminates. In

this connection, it should be noted that the earlier tangent second-order method, as opposed to the

new second-order method proposed in this work, is utilized here for mere computational simplicity,

since both methods can be shown to lead exactly to the same estimates and provide the same insight

for the special case of laminate microstructures. The reason for this agreement is that both—the

tangent and the new—second-order methods are able to recover the exact result whenever there are

no field fluctuations within the given phases of the composite (see Ponte Castañeda, 1996 and Ponte

Castañeda, 2002a for further details).

6.1.1 Tangent second-order homogenization estimates

In this subsection, for convenience and clarity, general expressions are provided for tangent second-

order estimates for the effective behavior of two-phase elastomeric composites with general “partic-

ulate” microstructures. These general expressions are then utilized to generate rigorous estimates

for the class of laminate microstructures of interest in this chapter.

Following Ponte Castañeda and Tiberio (2000) (see also Appendix IV in Chapter 2), the tangent

second-order estimate for the effective stored-energy function Ŵ of two-phase elastomers consisting

of inclusions, with given initial volume fraction c0 and characterized by the isotropic stored-energy

function W (2), in an elastomeric matrix phase with isotropic stored-energy function W (1), may be
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written as follows:

Ŵ (F) = (1− c0)
[
W (1)(F

(1)
) +

1
2
S(1)(F

(1)
) · (F− F

(1)
)
]

+c0

[
W (2)(F

(2)
) +

1
2
S(2)(F

(2)
) · (F− F

(2)
)
]

. (6.1)

In this expression, F
(1)

and F
(2)

denote, respectively, the average deformation gradients in the

matrix and inclusion phases of a two-phase, “linear comparison composite” (LCC) with the same

microstructure—in the undeformed configuration—as the original hyperelastic composite and with

local stored-energy functions given by:

W
(r)
T (F) = W (r)(F

(r)
) + S(r)(F

(r)
) · (F− F

(r)
) +

1
2
(F− F

(r)
) ·L(r)(F

(r)
)(F− F

(r)
). (6.2)

In the sequel, for ease of notation, the arguments of S(r) and L(r) will be omitted.

The variables F
(1)

and F
(2)

—needed in the computation of the tangent second-order estimate

(6.1)—can be expediently computed from the effective stored-energy function ŴT of the above-

defined LCC. By making use of the general results developed in Section 2.4.2, such an effective

stored-energy function can be written as follows

ŴT

(
F

)
= f̃ + T̃ · F +

1
2

F · L̃F, (6.3)

where f̃ = f + 1
2 (4L)−14T ·

(
L̃−L

)
(4L)−14T, T̃ = T +

(
L̃−L

)
(4L)−14T are effective

quantities depending on the effective modulus tensor L̃, which is specified further below. Also,

in these expressions, f (r) = W (r)(F
(r)

) − T(r) · F(r) − 1
2F

(r) · L(r)F
(r)

, T(r) = S(r) − L(r)F
(r)

(r = 1, 2), and 4L = L(1) −L(2), 4T = T(1) −T(2). Furthermore, f = (1− c0)f (1) + c0f
(2), T =

(1−c0)T(1) +c0T(2), and L = (1−c0)L(1) +c0L(2). Finally, in the above relations, L̃ is the effective

modulus tensor of the two-phase, linear-elastic comparison composite with modulus tensors L(1) and

L(2), and the same microstructure, in its undeformed configuration, as the nonlinear, hyperelastic

composite. As already discussed in Section 2.4.2, an accurate estimate for L̃ for composites with

“particulate” microstructures is the generalized estimate of the Hashin-Shtrikman (HS) type given

by expression (2.55), and repeated here for convenience:

L̃ = L(1) + c0

[
(1− c0)P− (4L)−1

]−1
. (6.4)

Recall that in this expression, the microstructural tensor P serves to characterize the size, shape and

orientation of the inclusions, as well as their spatial distribution. In passing, it should be noted that

the estimate (6.4) is not only accurate for general “particulate” microgeometries, but it is actually

exact for the class of laminate microstructures of interest in this chapter.

Having determined the relevant effective stored-energy function ŴT for the auxiliary LCC prob-

lem, it follows from relations (2.60) that the phase average deformation gradients F
(1)

and F
(2)

can

be readily computed from the tensorial equation:

F− F
(1)

= P
[
L(1)

(
F− F

(1)
)

+ c0

(
S(1) − S(2)

)]
, (6.5)
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and the global average condition:

F
(2)

=
1
c0

(
F− (1− c0)F

(1)
)

, (6.6)

respectively. It is thus seen that for a given loading, as determined by F, and given microstructure,

as determined by c0 and P, the computation of the tangent second-order estimate (6.1) for the effec-

tive stored-energy function of two-phase elastomeric composites with “particulate” microstructures

ultimately amounts to solving the system of 9 nonlinear, scalar equations (6.5) for the 9 unknowns

formed by the 9 components of F
(1)

.

For the particular class of laminate microstructures of interest here, the microstructural tensor

P is given (in component form) by (see Section 2.4.2):

Pijkl = K−1
ik NjNl = (L(1)

ipkqNpNq)−1NjNl, (6.7)

where Kik = L(1)
ipkqNpNq, the unit vector N denotes the direction of lamination in the undeformed

configuration (see Fig. 6.1), and indicial notation has been employed for clarity. Expression (6.7)

can now be substituted in equation (6.5) to yield the following system of equations for F
(1)

ij :

F ij − F
(1)

ij = K−1
ik

[
L(1)

klpq

(
F pq − F

(1)

pq

)
Nl + c0

(
S(1)

kl − S(2)
kl

)
Nl

]
Nj . (6.8)

At this point, it is convenient to recast equation (6.8) in a simpler form. To this end, it proves

helpful to identify, without loss of generality, the direction of lamination N with the laboratory

basis vector e1, namely, N = e1 (see Fig. 6.1). In addition, for clarity of notation, it proves also

helpful to define the unit vectors N⊥2 .= e2 and N⊥3 .= e3, such that N⊥2 · N = N⊥3 · N = 0.

Having defined these variables, it is now easy to see that multiplying equation (6.8) with N⊥2
j and

N⊥3
j leads to the following two relations:

[
F− F

(1)
]
N⊥2 = 0 and

[
F− F

(1)
]
N⊥3 = 0. (6.9)

Note that conditions (6.9) are actually the exact jump conditions across the layer interfaces required

to ensure continuity of the deformation vector field in the LCC. Further, an immediate implication

of conditions (6.9) is that the average deformation gradient tensor F
(1)

is of the form:

F
(1)

= F + a⊗N, (6.10)

where a is, at this stage, an arbitrary vector (with three independent unknown components). In

other words, conditions (6.9) constitute a system of 6 linear, algebraic equations for 6 components

of the average deformation gradient tensor F
(1)

. The remaining 3 components needed to completely

specify F
(1)

must be determined from the 3 remaining equations in (6.8). To this end, use is made

of (6.10) in (6.8) and the result multiplied with Nj . The resulting equation reads as follows:

ai = K−1
ik

[
L(1)

klpqNlNqap − c0

(
S(1)

kl − S(2)
kl

)
Nl

]
. (6.11)

Next, by left-multiplying (6.11) with K, the following equation is obtained:

Kijaj = L(1)
imjnNmNnaj = L(1)

ilpqNlNqap − c0

(
S(1)

il − S(2)
il

)
Nl, (6.12)
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which after a trivial simplification can be finally rewritten as
[
S(1) − S(2)

]
N = 0. (6.13)

Note that condition (6.13) constitutes precisely a system of 3 nonlinear, algebraic equations for the

remaining 3 components of F
(1)

. Note further that condition (6.13) is nothing more than the exact

jump condition across the layer interfaces required to ensure static equilibrium in the LCC.

In summary, 6 out of the 9 scalar equations contained in (6.8) have been recast as a system

of 6 linear equations, given by relations (6.9). These equations can be solved in closed form for 6

components of F
(1)

. The remaining 3 equations in (6.8), which have been conveniently rewritten as

(6.13), constitute a closed system of nonlinear equations for the remaining 3 components of F
(1)

.

In general, these 3 equations must be solved numerically, but depending on the particular forms of

the stored-energy functions W (1) and W (2), possible simplifications might be carried out. Having

computed the values of all the components of F
(1)

for a given F, the values of the components of F
(2)

can be readily determined using the global average condition (6.6). In turn, the tangent second-order

estimate for the effective stored-energy function Ŵ of elastomeric laminates can then be computed,

from expression (6.1), using these results. In this connection, it is important to recognize that the

stored-energy function (6.1) simplifies eventually to

Ŵ (F) = (1− c0)W (1)(F
(1)

) + c0W
(2)(F

(2)
). (6.14)

This is easy to see from the fact that F
(1)

(as well as F
(2)

) is of the form (6.10) and the stress

quantities S(1) and S(2) must satisfy condition (6.13).

The effective stress associated with the stored-energy function (6.14) is given by

S =
∂Ŵ

∂F
= (1− c0)S(1) ∂F

(1)

∂F
+ c0S(2) ∂F

(2)

∂F
, (6.15)

which, upon use of the average condition (6.6) once again, may be rewritten as follows:

S = (1− c0)
(
S(1) − S(2)

) ∂F
(1)

∂F
+ S(2). (6.16)

Expression (6.16) can be simplified further by recognizing from (6.10) that the partial derivative of

F
(1)

with respect to F is of the form

∂F
(1)

ij

∂F kl

= δikδjl +
∂ai

∂F kl

Nj , (6.17)

where δij is the Kronecker delta, and indicial notation has been employed for clarity. It then follows

immediately from (6.17) and (6.13) that the macroscopic stress can be ultimately written as:

S = (1− c0)S(1) + c0S(2). (6.18)

From a computational point of view, it should be emphasized that expression (6.18) is significantly

simpler than (6.16), since (6.18) depends only on the variable F
(1)

—which is defined by a set on

nonlinear algebraic equations—whereas (6.16) depends not only on F
(1)

, but also on its partial

derivative with respect to F.
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At this stage, it is fitting to point out—and straightforward to see—that the tangent second-

order estimates for the effective stored-energy function (6.14) and macroscopic stress (6.18) coincide

identically with the exact results for the effective behavior of two-phase, hyperelastic laminates

(with constant deformation gradients in the phases). Indeed, conditions (6.9) correspond to nothing

more than the exact jump conditions across the layer interfaces required to ensure continuity of the

deformation vector field in the hyperelastic composite. Similarly, condition (6.13) is nothing more

than the exact jump condition across the layer interfaces required to ensure static equilibrium. In

this regard, it is worth noticing that the linear comparison composite, defined by (6.2) and (6.3), is,

actually, entirely equivalent to the nonlinear elastomeric composite.

Effective incremental modulus tensor L̂

For later use in the analysis of the macroscopic stability of elastomeric laminates, it proves now

convenient to compute the effective incremental modulus tensor L̂ associated with the exact estimate

(6.14). Thus, taking the partial derivative of S in (6.18) with respect to the macroscopic deformation

gradient F and making use of (6.6) can be shown to lead to:

L̂ =
∂2Ŵ

∂F∂F
= (1− c0)

(
L(1) −L(2)

) ∂F
(1)

∂F
+ L(2), (6.19)

where it is recalled that L(r) = ∂2W (r)(F
(r)

)/∂F2 denote the tangent moduli of the phases evaluated

at the phase average deformation gradients. At this point, it is interesting to notice the parallel

between expression (6.19) for the effective incremental modulus L̂, and expression (6.16) for the

macroscopic stress S. Note, however, that in contrast to (6.16)—which could be ultimately rewritten

as (6.18) by making use of the functional form of ∂F
(1)

/∂F given by (6.17)—expression (6.19)

requires knowledge of the entire explicit dependence—not only the functional form—of ∂F
(1)

/∂F

on F
(1)

in order to be simplified further. This is simply because the difference (L(1) − L(2))—as

opposed to (S(1) − S(2))—need not satisfy any jump conditions.

Next, we generate an explicit expression for ∂F
(1)

/∂F in terms of F
(1)

. To this end, we first take

the partial derivative of equations (6.9) and (6.13) with respect to F. The resulting equations can

be conveniently written (in component form) as follows:

∂F
(1)

ij

∂F kl

N⊥2
j = δikδjl N⊥2

j ,

∂F
(1)

ij

∂F kl

N⊥3
j = δikδjl N⊥3

j ,

(
c0L(1)

ijkl − (1− c0)L(2)
ijkl

) ∂F
(1)

kl

∂Fmn

Nj = L(2)
ijmn Nj . (6.20)

Now, it is noted that relations (6.20) constitute a system of 81 linear equations for the 81 compo-

nents of the fourth-order tensor ∂F
(1)

/∂F. (Of course, 36 out of these 81 equations are redundant

since ∂F
(1)

/∂F has major symmetry.) Finally, upon solving these equations, the following explicit

expression for ∂F
(1)

/∂F in terms of F
(1)

is obtained:

∂F
(1)

∂F
=

1
1− c0

I +
c0

1− c0

(
L(1) −L(2)

)−1
[
(1− c0)P−

(
L(1) −L(2)

)−1
]−1

, (6.21)
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where I denotes the identity operator in the space of fourth-order tensors with major symmetry

only (i.e., Iijkl = δikδjl), and it is recalled that P is given by expression (6.7).

Having determined ∂F
(1)

/∂F, it is now straightforward to show that the effective incremental

modulus (6.19) may be finally written as follows:

L̂ = L(1) + c0

[
(1− c0)P−

(
L(1) −L(2)

)−1
]−1

. (6.22)

In connection with expression (6.22), there are a two remarks which worth recording. First, similar

to the effective stored-energy function (6.14) and macroscopic stress (6.18), the computation of the

incremental modulus tensor (6.22) amounts, plainly, to solving the 6 linear equations provided by

conditions (6.9), together with the 3 nonlinear equations provided by condition (6.13), for the 9

components of F
(1)

. Second, the incremental modulus tensor (6.22) coincides identically with the

Hashin-Shtrikman estimate (6.4) for the effective modulus tensor of the relevant linear comparison

composite. As already discussed in Section 2.6, the effective incremental modulus associated with

the second-order estimate is not equal, in general, to the effective modulus of the auxiliary linear

comparison composite (i.e., L̂ 6= L̃). However, for the special case of laminate microstructures,

the linear comparison composite, defined by (6.2) and (6.3), is exactly equivalent to the nonlinear

composite and thus, L̂ = L̃.

6.1.2 Microstructure evolution

The previous subsection has provided rigorous estimates for the mechanical response of hyperelastic

laminates subjected to finite deformations. In this subsection, in an attempt to gain further under-

standing on the effective behavior of these materials, we identify relevant microstructural variables

and work out explicit expressions for their evolution along a given macroscopic loading path.

Recall from Section 2.5 that the appropriate microstructural variables for “particulate” mi-

crostructures are the current volume fraction, c, the current aspect ratios, ω1, ω2, and the current

orientation of the particles in the deformed configuration—as determined from the average defor-

mation gradient in the “inclusion” phase F
(2)

, by means of the tensor Z = Z0 F
(2)−1

defined by

expression (2.84). For the special class of laminate microstructures of interest here, Z0 = N⊗N, so

that the aspect ratios of the particles, ω1, ω2, are initially unbounded, i.e., the particles are really

layers (see Section 2.4.2 for further details). As it will be seen more explicitly below, ω1 and ω2

remain also unbounded in the deformed configuration. Thus, in the context of laminates, there are

only two relevant microstructural variables: (i) the current volume fraction c, and (ii) the current

orientation of the layers in the deformed configuration. The former can be simply computed via

c =
detF

(2)

detF
. (6.23)

The latter requires the consideration of the microstructural tensor ZT Z, which in the present context

is given by:

ZT Z = F
(2)−T

N⊗ F
(2)−T

N. (6.24)

Expression (6.24) clearly indicates that the symmetric, quadratic form ZT Z has two zero eigenvalues.

This has the direct implication—already mentioned above—that the aspect ratios of the “particles”,
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ω1, ω2, are unbounded in the deformed configuration. More importantly, expression (6.24) indicates

that the direction of lamination N in the undeformed configuration evolves into

n = ||F(2)−T

N||−1 F
(2)−T

N (6.25)

in the deformed configuration (see Fig. 6.2). This last relation is nothing more than Nanson’s

formula. It essentially states that layer interfaces (with reference normal N) are material surface

elements that evolve as such. In connection with expression (6.25), it is also expedient to recognize

that—by making use of the jump conditions (6.9) together with the average condition (6.6)—the

transpose of the inverse of F
(2)

can be written as follows:

F
(2)−T

=
c0 − 1

c0 + (c0 − 1)F
−1

a ·N

[
c0

c0 − 1
F
−T

+
(
F
−1

a ·N
)
F
−T − F

−T
N⊗ F

−1
a
]

. (6.26)

It is then a matter of straightforward algebra to conclude that expression (6.25) can be recast as the

following purely kinematical relation:

n = ||F−T
N||−1 F

−T
N. (6.27)

That is, the evolution of the lamination direction along a given macroscopic loading path is entirely

characterized by the macroscopic deformation gradient tensor F.

Figure 6.2: Schematic representation of the evolution of the direction of lamination along a loading path
with macroscopic deformation gradient F.

6.2 Plane-strain loading of Neo-Hookean laminates

The results developed in the preceding section are general as far as the elastomeric phases, W (1)

and W (2), and the loading conditions are concerned. In this section, attention is restricted to

specific stored-energy functions for the phases, as well as to specific loading conditions, in order to

illustrate—in a transparent manner—the effective behavior of hyperelastic laminates subjected to

finite deformations. Of special interest is to bring out the effect of the heterogeneity contrast and

microstructure evolution on the overall response and stability of these materials. Thus, attention

will be restricted to Neo-Hookean stored-energy functions of the form

W (r) =
µ(r)

2
(F · F− 3)− µ(r) ln(detF) +

(
κ(r)

2
− µ(r)

3

)
(detF− 1)2, (6.28)
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(a) (b)

Figure 6.3: Schematic representation of: (a) the applied boundary conditions, and (b) the evolution of the
lamination direction. In (b), the colored rectangle represents a typical layer with normal N in the undeformed
configuration; the dashed rectangle corresponds to the same layer in the deformed configuration, with current
lamination direction n.

where the material parameters µ(r) and κ(r) denote, respectively, the shear and (three-dimensional)

bulk moduli of phase r at zero strain. Furthermore, attention will be restricted to isochoric, plane-

strain loading conditions of the form (see Fig. 6.3(a))

F = U =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1







λ 0 0

0 λ
−1

0

0 0 1







cos θ sin θ 0

− sin θ cos θ 0

0 0 1


 , (6.29)

where λ and λ
−1

denote the in-plane principal stretches associated with F, while θ characterizes

the orientation (in the anticlockwise sense relative to the fixed laboratory frame of reference) of the

in-plane Lagrangian principal axes.

The restriction (6.29) to macroscopic plane-strain deformations has the direct implication that

the current direction of lamination in the deformed configuration, n, as determined by expression

(6.27), remains in the 1-2-plane (see Fig. 6.3(b)). In this connection, it proves expedient to introduce

the scalar variable φ as the (in-plane) angle—measured in the anticlockwise sense—that characterizes

the relative orientation of n with respect to the lamination direction in the undeformed configuration

N (see Fig. 6.3(b)). More precisely, making use of (6.27) and (6.29),

φ = cos−1




√
2

(
cos2 θ + λ

2
sin2 θ

)
√

1 + λ
4 − (λ

4 − 1) cos 2θ


 . (6.30)

6.3 Results and discussion

In this section, results are provided for the in-plane effective behavior of elastomeric laminates

with compressible Neo-Hookean phases characterized by stored-energy functions of the form (6.28),

subjected to a wide range of loading conditions of the form (6.29). Results are given for µ(1) = 1,

κ(1) = 100, various values of heterogeneity contrast, t = µ(2)/µ(1) = κ(2)/κ(1), and initial volume
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Figure 6.4: Effective behavior of a hyperelastic laminate with compressible Neo-Hookean phases subjected
to aligned pure shear loading (θ = 90◦). (a) The macroscopic stress dŴ/dλ for various values of initial
volume fraction of the stiffer phase, c0, as a function of the logarithmic strain e = ln λ. (b) The critical
stretch, λcrit, at which the homogenized laminate loses strong ellipticity for various values of the contrast
t = µ(2)/µ(1) = κ(2)/κ(1), as a function of the initial volume fraction c0.

fraction, c0, of the stiffer phase (i.e., phase 2). For clarity, the points at which loss of strong ellipticity

is encountered are denoted with the symbol “◦” in the plots.

6.3.1 Aligned pure shear

Figure 6.4 presents the effective behavior of a hyperelastic laminate with compressible Neo-Hookean

phases subjected to aligned pure shear loading with θ = 0 in (6.29). Note that in this case, λ ≥ 1

in (6.29) corresponds to compression along the layers, and λ ≤ 1, to tension. Part (a) shows the

effective stress dŴ/dλ for a contrast of t = µ(2)/µ(1) = κ(2)/κ(1) = 20 and initial volume fractions of

the stiffer phase of c0 = 10, 30, 50%, as a function of the logarithmic strain e = ln λ. Part (b) shows

the critical stretch, λ
−1

crit, at which the homogenized response of the laminate loses strong ellipticity

for contrasts t = 5, 20, and 100, as a function of the initial volume fraction c0.

It is observed from Figure 6.4(a) that the effective behavior of the hyperelastic laminate is

harder for higher values of the initial volume fraction of the stiffer phase c0, as expected on physical

grounds. More importantly, it is recognized from Figure 6.4(a) that the overall response of the

elastomeric laminate under “tension” along the layers (i.e., for λ ≤ 1) is radically different from its

response under “compression” (i.e., for λ ≥ 1). Indeed, under “tension,” the material is seen to

remain stable for all applied deformations. On the other hand, under “compression,” the material

becomes unstable through loss of strong ellipticity at relatively small values of strain. This is due

to the vanishing of the effective incremental shear modulus L̂1212 and implies that the homogenized

material may develop localized shear deformations in planar zones with normal—in the deformed

configuration—e2, and in the direction e1 (see Fig. 6.3). This behavior is consistent with the

development of kink bands, which have been observed to appear in various types of stratified media
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Figure 6.5: Effective behavior of a hyperelastic laminate subjected to pure shear loading at various angles θ
(in the large deformation regime). The results correspond to compressible Neo-Hookean phases with contrast
t = µ(2)/µ(1) = κ(2)/κ(1) = 20, initial volume fraction of the stiffer phase c0 = 30%, and are shown as a

function of the macroscopic stretch λ. (a) The macroscopic stress dŴ/dλ. (b) The angle of rotation of
layers φ.

(see, e.g., Kyriakides et al., 1995).

A key observation that should be made from Figure 6.4(b) is that, under pure shear “compres-

sion,” the elastomeric laminate becomes unstable at larger stretches λ
−1

crit (i.e., smaller compressive

strains) for higher values of the contrast t. In fact, it can be shown that λ
−1

crit → 1 as t → ∞.

That is, for the case when the stiffer layers are taken to be rigid (i.e., for t = ∞), the laminate is

already unstable at zero strain when subjected to pure shear compression. Of course, an elastomer

reinforced with rigid layers is itself rigid under loading conditions that require deformation of the

layers, such as aligned pure shear. The issue here is that in spite of being rigid, the material is

actually unstable when subjected to aligned pure shear compression.

Figure 6.4(b) shows further that λ
−1

crit → 0 as c0 → 0. This is consistent with the fact that the

elastomeric “matrix” phase of the material is strongly elliptic, so that in the absence of reinforcing

phase (i.e., for c0 = 0) the material remains stable for all deformations. As the initial volume

fraction of the stiffer layers c0 is increased from zero, the critical stretch at which the material loses

strong ellipticity λ
−1

crit increases monotonically up to c0 = 50% at which λ
−1

crit reaches a maximum.

After this point, further increase in c0 results in the monotonic decrease of λ
−1

crit. This behavior is

simply due to the fact that the reinforcing phase—similar to the “matrix” phase—is strongly elliptic,

so that in the limit as c0 → 1, λ
−1

crit → 0. In this connection, it should be noted that the results

shown in Figure 6.4(b) for λ
−1

crit are completely symmetric about c0 = 50%, the point at which the

material is most unstable. Finally, it should be pointed out that results similar to those shown in

Figure 6.4(b) were first obtained by Triantafyllidis and Maker (1985).
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6.3.2 Pure shear at an angle

Figure 6.5 provides plots for the effective behavior of Neo-Hookean laminates subjected to pure shear

loading at the fixed angles θ = 0, 20◦, 40◦, 45◦, 50◦, 70◦, and 90◦. Results are shown for a contrast

of t = µ(2)/µ(1) = κ(2)/κ(1) = 20 and initial volume fraction of c0 = 30%, as a function of the

macroscopic stretch λ. Part (a) shows the effective stress dŴ/dλ, and part (b), the angle of rotation

of the layers φ.

An important observation from Figure 6.5(a) is that for sufficiently large deformations, except

for the case with θ = 0, the elastomeric laminate consistently shows a stiffer response for higher

angles of loading, with the stiffest behavior being attained at θ = 90◦. The macroscopic stress for

exactly θ = 0—though slightly below—is essentially equal to that for θ = 90◦. In this connection,

it is appropriate to remark that for the case of incompressible laminates, the effective stress-stretch

relation for θ = 0 is exactly identical to that for θ = 90◦. In view of the relatively high values of

the bulk moduli of both phases, κ(1) = 100 and κ(2) = 20× 100 = 2000, this explains the agreement

between the θ = 0 and θ = 90◦ results shown in Figure 6.5. It is further noted from Figure 6.5(a)

that loss of strong ellipticity takes place only for the loadings with the two smallest angles: θ = 0

and θ = 20◦. Thus, it is seen that in spite of exhibiting practically identical stress-stretch relations,

the behavior for the loadings with θ = 0 and θ = 90◦ are actually very different in terms of stability.

Indeed, while the behavior for pure shear with θ = 0, which corresponds to compression along the

layers, loses strong ellipticity, the behavior for pure shear with θ = 90◦, which corresponds to tension

along the layers, remains stable for all applied deformations.

Figure 6.5(b) illustrates that the layers rotate clockwise (with respect to the fixed frame of

reference) aligning themselves with the principal direction of tensile loading1 (i.e., φ → θ − 90◦ as

λ → ∞), for all loadings, except at θ = 0, for which the layers do not rotate, but instead remain

fixed for all applied stretches. That is, for aligned loadings, namely, θ = 0 and θ = 90◦, there is

no evolution of the orientation of the layers. On the other hand, for misaligned loadings, the layers

undergo a total rotation equal to the complementary angle of θ as λ → ∞. Making contact with

the stress-stretch relations displayed in Figure 6.5(a), this behavior suggests that the rotation of the

layers is actually a softening mechanism, since, as shown by Figure 6.5, larger rotations correspond

to softer overall stress-stretch relations. This point is corroborated in the context of the next figure.

Figure 6.6 provides plots for a blow up in the small deformation regime of the results shown

in Figure 6.5. Figure 6.6 shows that loadings at complementary angles lead to identical effective

responses in the small deformation regime, in accordance with the linear theory. In addition, it is

observed from Figure 6.6(a) that—in the range from θ = 0 to θ = 45◦—the effective stress-stretch

relations in the small deformation regime are softer for larger angles of loading, attaining the softest

response at θ = 45◦. As the deformation progresses in the finite deformation regime, the effective

responses at complementary angles deviate from each other, due to the difference in the evolution

of microstructure. Indeed, as already pointed out in the previous figure and as shown in Figure 6.6,

larger layer rotation consistently leads to softer stress-stretch relations. It is thus concluded that

the rotation of the layers, which depends critically on the loading conditions, is indeed a softening
1This can be readily seen analytically by taking the limit λ →∞ in the equation (6.30) for φ.
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Figure 6.6: Effective behavior of a hyperelastic laminate subjected to pure shear loading at various angles
θ (in the small deformation regime). The results correspond to compressible Neo-Hookean phases with
contrast t = µ(2)/µ(1) = κ(2)/κ(1) = 20, initial volume fraction of the stiffer phase c0 = 30%, and are shown

as a function of the macroscopic stretch λ. (a) The macroscopic stress dŴ/dλ. (b) The angle of rotation of
layers φ.

mechanism.

With regard to the above discussion, it is important to make the following remark. In view of

the fact that smaller loading angles θ lead to larger layer rotations, and hence, to softer effective

responses of the laminate at large deformations, the softest response will be generated at θ = 0+ (i.e.,

an infinitesimal misalignment from θ = 0). For such loading, the layers will undergo (essentially) a

total rotation of φ = 90◦. This is in contrast to the behavior at exactly θ = 0, for which there is

not evolution of the layer orientation and the effective response of the laminate, together with the

one at θ = 90◦, is the stiffest. This singularity at θ = 0 is entirely consistent with the emergence

of kink-band-type instabilities discussed in the context of Figure 6.4 for compressive loadings along

the layers.

Figure 6.7 illustrates the effects of the loading angle, θ, and the heterogeneity contrast, t =

µ(2)/µ(1) = κ(2)/κ(1), on the onset of instabilities in elastomeric laminates subjected to pure shear.

Results are shown for Neo-Hookean phases with initial volume fraction of the stiffer phase of c0 =

30%. Part (a) shows the critical stretch, λcrit, at which the homogenized laminate loses strong

ellipticity for contrasts of t = 5, 20, and 100, as a function of the loading angle θ. Part (b) displays

corresponding results for λcrit for loading angles of θ = 0, 10◦, and 20◦, as a function of the contrast

t.

It is observed from Figure 6.7(a) that the laminate becomes more stable with increasing values

of the loading angle θ. In fact, Figure 6.7(a) shows that there is a threshold (depending on the

contrast t) in θ, beyond which the material remains stable for all applied deformations. Note also

that the laminate is more unstable for higher values of the contrast t. This dependence is more

clearly illustrated by Figure 6.7(b). Interestingly, Figure 6.7(b) also shows that for aligned loadings
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Figure 6.7: Pure shear loading of Neo-Hookean laminates. (a) The critical stretch, λcrit, at which loss of
strong ellipticity takes place for various values of the contrast t = µ(2)/µ(1) = κ(2)/κ(1), as a function of
the loading angle θ. (b) The corresponding results for λcrit for various values of the loading angle θ, as a
function of the contrast t.

(i.e., for θ = 0), λcrit has a vertical asymptote at t = 1. That is, under aligned pure shear loading

with compression along the layers, the existence of even an infinitesimal heterogeneity contrast (i.e.,

t 6= 1) between the layers will result in the material losing strong ellipticity at some finite stretch.

Of course, at exactly t = 1 the laminate corresponds to a homogeneous strongly elliptic material,

so that λcrit = ∞. For misaligned loadings, there are no vertical asymptotes, but, instead, there

are thresholds (depending on θ) in t, beyond which the material remains stable for all applied

deformations. Note further that for all three loading angles, θ = 0, 10◦, and 20◦, λcrit → 1 as

t →∞, indicating that in the limiting case of rigid layers, the material loses strong ellipticity at zero

strain. In summary, the above results indicate that compressive loading along the layers, together

with heterogeneity contrast between the phases, are two major factors in the possible development

of macroscopic instabilities in elastomeric laminates.

6.4 Concluding remarks

In this chapter, use has been made of the tangent second-order method of Ponte Castañeda and

Tiberio (2000) to develop exact estimates for the effective behavior of hyperelastic laminates sub-

jected to finite deformations. It is emphasized that the new second-order estimates proposed in

this work reduce to the earlier tangent second-order method for the particular case of laminate

microstructures, and that the latter has been utilized here for mere computational simplicity.

In this work, an explicit expression for the evolution of the orientation of the underlying layers

in elastomeric laminates has been derived. Interestingly, this expression depends exclusively on the

applied macroscopic deformation, and not on the constitutive behavior of the phases, nor on their

volume fractions. Furthermore, it has been established that the rotation of the layers in elastomeric
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laminates subjected to finite deformations provides a softening mechanism on the overall behavior

of these materials.

Another main result of this chapter is that elastomeric laminates may develop kink-band-type

instabilities when subjected to sufficiently large compression along the underlying layers, provided

that there is a sufficiently large heterogeneity contrast between them. The development of these

instabilities have been related to the evolution of the microstructure, in particular, to the rotation

of the layers.

Finally, it should be re-emphasized that the results presented in this chapter are exact. In this

connection, they will be of great use in order to understand and validate the results presented in the

next chapter, where more general microstructures—which include laminates as a limiting case—are

considered.
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Chapter 7

Reinforced elastomers: cylindrical fibers,

random microstructure

This chapter is concerned with the effective behavior of fiber-reinforced elastomers. In particular,

attention will be restricted to the in-plane response of an isotropic elastomer reinforced with aligned

cylindrical fibers with elliptical cross-section. For the special case of rigid fibers and incompressible

matrix phase, closed-form, analytical results are obtained. The results indicate—in accord with

the findings of previous chapters—that the evolution of the microstructure has a dramatic effect

on the effective response of the composite, and, in particular, on its stability. More specifically,

it is found that the rotation of the fibers—induced by the applied finite deformations—generates

significant geometric softening in the composite. Moreover, in spite of the fact that both the matrix

and the fibers are assumed to be strongly elliptic, the homogenized behavior is found to lose strong

ellipticity at sufficiently large deformations. In particular, when the reinforced elastomer is loaded

in compression along the long, in-plane axis of the fibers, a certain type of “flopping” instability is

detected, corresponding to the composite becoming infinitesimally soft to rotation of the fibers.

7.1 Plane-strain loading of fiber-reinforced, random elastomers

In this section, we study the problem of plane-strain deformations of fiber-reinforced elastomers

where the cylindrical fibers, which are perpendicular to the plane of the deformation, are aligned

in the e3 direction. Moreover, the fibers have an initial volume fraction c0 and are taken to have

an initially elliptical cross section of aspect ratio ω0, and to be initially distributed with “elliptical

symmetry,” involving equal aspect ratios and orientations for all the fibers, in the plane of deforma-

tion. For simplicity and without loss of generality, ω0 will be taken greater than or equal to one in

the development that follows. Note that the applied deformation F here is entirely characterized by

the 4 in-plane components: F 11, F 22, F 12, and F 21, since the out-of-plane components are known:

F 13 = F 23 = F 31 = F 32 = 0, and F 33 = 1 (see Figure 7.1(a)).

Recalling the section on microstructure evolution from Chapter 2, the relevant microstructural

variables, in the context of plane-strain loading for the type of fiber-reinforced elastomers considered

here, are the current value of the volume fraction, c, the average in-plane aspect ratio, ω, and the

average in-plane orientation of the fibers, φ. Figure 7.1(b) shows an schematic representation of the
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Figure 7.1: Schematic representation of the microstructure of a fiber-reinforced elastomer, depicting the
applied loading and the various microstructural variables. (a) The 1-2 cross section of the composite together
with the applied loading conditions. (b) The shaded ellipse represents the 1-2 cross section of a typical fiber
with initial aspect ratio ω0 = z0

2/z0
1 in the reference configuration; the dashed ellipse corresponds to the

1-2 cross-section of the same fiber in the deformed configuration, with current aspect ratio ω = z2/z1 and
current orientation relative to the fixed laboratory frame given by φ.

cross section in the plane of deformation of a typical fiber with the various microstructural variables.

In this figure, the shaded ellipse represents the 1-2 cross section of a typical fiber with initial aspect

ratio ω0 = z0
2/z0

1 in the reference configuration, with the rectangular Cartesian basis {ei} denoting

its principal directions. The dashed ellipse represents the 1-2 cross section of the same fiber in the

deformed configuration. In this connection, the current average aspect ratio of the fiber is denoted

by ω = z2/z1 and the corresponding average principal directions are denoted by the rectangular

Cartesian basis {e′i}, whose orientation relative to {ei} is determined by the angle φ (which is

measured in the anticlockwise sense). (Note that the initial orientation of the fibers corresponds to

φ0 = 0.) For convenience, the basis {ei} defining the principal direction of the inclusions in the

reference configuration will be identified here with the fixed laboratory frame of reference. In the

rest of this chapter, the components of any tensorial quantity will be referred to {ei}.
Following Section 2.1.3, the elastomeric matrix and fiber phases are taken to be characterized by

(2D) isotropic stored-energy-functions of the form:

W (r) (F) = g(r) (I) + h(r) (J) +
κ(r) − µ(r)

2
(J − 1)2 , (7.1)

where it is recalled that g(r) and h(r) are material functions of their arguments: I = λ2
1 + λ2

2 and

J = λ1λ2. Furthermore, the parameters µ(r) and κ(r) denote the initial shear and in-plane bulk

moduli of phase r, respectively. The analysis that follows will be carried out for general stored-energy

functions of the form (7.1); however, for definiteness, results will be illustrated for Gent materials

with stored-energy function (3.2), repeated here for convenience:

W (F) = −µJm

2
ln

[
1− I − 2

Jm

]
− µ ln J +

(
κ− µ

2
− µ

Jm

)
(J − 1)2 , (7.2)

Recall that in this expression, the parameter Jm is the limiting value for I− 2 at which the material
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locks up. Recall as well that the stored-energy function (7.2) is strongly elliptic provided that µ > 0,

Jm > 0, and κ > 2µ/Jm + µ, which will be assumed here.

Next, making contact with the decompositions F = RU and U = QDQ
T

used in the context

of expression (2.66), it is convenient for later use to introduce angles ψ and θ, serving to quantify

the macroscopic rotation (or “continuum spin”) R, and the orientation (in the anticlockwise sense

relative to the fixed laboratory frame) of the in-plane Lagrangian principal axes (or “loading angle”)

Q, via the expressions:

R =


 cosψ − sin ψ

sin ψ cosψ


 and Q =


 cos θ − sin θ

sin θ cos θ


 . (7.3)

The principal values of U are, of course, the macroscopic principal stretches λ1 and λ2. Thus, the

4 independent loading parameters ψ, θ, λ1 and λ2 are entirely equivalent to the 4 parameters F 11,

F 22, F 12, and F 21.

Having specified the initial microstructure, the constitutive behavior of the matrix and fibers,

and the applied loading conditions, we next compute the specialization of the second-order estimate

(2.62) to the class of reinforced elastomers of interest in this chapter.

7.1.1 Second-order homogenization estimates: compliant fibers

Some of the algebraic manipulations that were utilized in the computation of the second-order esti-

mate (2.69) for 2D periodic, porous elastomers in Chapter 4 prove equally helpful in the computation

of the second-order estimate (2.62) for fiber-reinforced elastomers under plane-strain deformations.

Thus, it suffices to consider the in-plane components of the modulus tensor L(1) of the matrix phase

of the linear comparison composite, which may be conveniently expressed as a matrix in <4×4:



L1111 L1122 L1112 L1121

L1122 L2222 L2212 L2221

L1112 L2212 L1212 L1221

L1121 L2221 L1221 L2121




, (7.4)

where, for notational simplicity, the superscript ‘(1)’ has been suppressed for the components of

L(1), and use has been made of major symmetry (i.e., Lijkl = Lklij). Recalling that L∗ has been

taken to be orthotropic, it follows that it may be written in the form:



L∗1111 L1122 0 0

L∗1122 L∗2222 0 0

0 0 L∗1212 L∗1221
0 0 L∗1221 L∗2121




. (7.5)

Since R and Q can be readily computed from F, prescription (2.66) entails that L(1) possesses 6 in-

dependent components, namely, L∗1111, L
∗
2222, L

∗
1122, L

∗
1212, L

∗
2121, and L∗1221. For the reasons already

explained in preceding chapters, the following constraints are imposed among the components of

(7.5):

L∗2121 = L∗1212, and L∗1221 =
√

(L∗1111 − L∗1212) (L∗2222 − L∗1212)− L∗1122. (7.6)



7. Reinforced elastomers: cylindrical fibers, random microstructure 155

Next, with the choice (2.66) for the modulus L(1) of the matrix phase of the LCC, the conditions

(7.6) for the components (7.5) of L∗, and making use of the identifications `∗1 = L∗1111, `∗2 = L∗2222,

`∗3 = L∗1212, and `∗4 = L∗1122, the equations (2.68) can be seen to reduce to 4 consistent equations for

the 4 components of F̂(1). These equations are more conveniently expressed in terms of the variable

Y:

Y = Q
T
R

T
(
F̂(1) − F

)
Q, (7.7)

which leads to the expressions:

(Y11)
2 + 2f1Y12Y21 = k1,

(Y22)
2 + 2f2Y12Y21 = k2,

(Y12)
2 + (Y21)

2 + 2f3Y12Y21 = k3,

Y11Y22 − Y12Y21 = k4, (7.8)

where f1 = ∂L∗1221/∂L∗1111, f2 = ∂L∗1221/∂L∗2222, f3 = ∂L∗1221/∂L∗1212, and

k1 =
c0

(1− c0)2
(
D− F̆(2)

)
· ∂E∗

∂L∗1111

(
D− F̆(2)

)
,

k2 =
c0

(1− c0)2
(
D− F̆(2)

)
· ∂E∗

∂L∗2222

(
D− F̆(2)

)
,

k3 =
c0

(1− c0)2
(
D− F̆(2)

)
· ∂E∗

∂L∗1212

(
D− F̆(2)

)
,

k4 =
c0

2(1− c0)2
(
D− F̆(2)

)
· ∂E∗

∂L∗1122

(
D− F̆(2)

)
. (7.9)

In relations (7.9), F̆(2) = Q
T

R
T

F
(2)

Q and E∗ = (P∗)−1 − (1− c0)L∗ with P∗ such that

Pijkl = QrmQjnQspQlqRirRksP
∗
mnpq, (7.10)

have been introduced for ease of notation. Moreover, the tensor P in these expressions is given

by (2.57), which can be integrated analytically. However, the final explicit expressions will not be

included here for their bulkiness.

Equations (7.8) can be shown to yield two distinct solutions for Y11 and Y22, in terms of which

the combinations Y12Y21 and Y 2
12 + Y 2

21 may be determined. The two solutions read as follows:

Y11 = ± 2f1k4 + k1√
4f2

1 k2 + 4f1k4 + k1

, Y22 = ± 2f1k2 + k4√
4f2

1 k2 + 4f1k4 + k1

,

Y12Y21 = Y11Y22 − k4, Y 2
12 + Y 2

21 = k3 − 2f3Y12Y21, (7.11)

where it is emphasized that the positive (and negative) signs must be chosen to go together in the

roots for Y11 and Y22.

Next, using the relation F̂(1) = R QYQ
T

+ F, each of the two distinct roots for Y may be

substituted into expression (2.65). The resulting relation, together with expression (2.64), form

a system of 8 nonlinear algebraic equations for the 8 scalar unknowns F
(2)

11 , F
(2)

22 , F
(2)

12 , F
(2)

21 , L∗1111,

L∗2222, L∗1122, and L∗1212, which must be solved numerically. It is worth mentioning that by exploiting

the objectivity and isotropy of the stored-energy functions of the phases of the composite, the

equations obtained from (2.65) and (2.64) may be finally cast into a rather simple form. Having
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computed the values of all the components of F
(2)

and L(1) for a given initial fiber concentration

c0 and aspect ratio ω0, given material behavior g(r), h(r), and κ(r), and given loading F, the values

of the components of F
(1)

and F̂(1) can be readily determined using relations (2.60)1 together

with (2.64) and (7.11), respectively. In turn, these results may be used to compute the second-order

estimate (2.62) for the effective stored-energy function Ŵ of the fiber-reinforced elastomers. Also, the

evolution of the microstructural variables c, ω, and φ may be determined from the estimate for F
(2)

,

by means of the tensor Z = Z0 F
(2)−1

, as discussed in Section 2.5. Thus, letting ZT Z = KWKT ,

where W is a diagonal tensor with components z−2
1 and z−2

2 , such that ω = z2/z1, the orthogonal

tensor K defines the fiber-orientation angle φ (see Figure 7.1(b)) via the relation:

K =


 cos φ − sinφ

sin φ cosφ


 . (7.12)

In connection with these results, it is important to remark that the two above-mentioned roots

lead to very similar results for the effective behavior of fiber-reinforced elastomers when both κ(r)

(r = 1, 2) and ω0 are finite (of the same order as µ(1)). However, in the limiting case when the

microstructure approaches a simple laminate with compressible phases, i.e., for ω0 >> 1 with κ(r)

and µ(1) finite, there is only one root that is superior to the alternative choice, since only one

root recovers the exact effective behavior of simple laminates. The choice of such root depends

on the loading conditions. For instance, for aligned—with θ = 0—loading conditions with λ1 ≥ 1

(λ1 ≤ 1), only the “positive” (“negative”) root recovers the exact behavior of simple laminates. On

the other hand, for the case when the bulk modulus of the phases is large, and the aspect ratio

of the fibers is finite, i.e., for κ(r) >> 1 and ω0 finite, it can be shown that only the “negative”

root generates physically meaningful estimates—regardless of the loading conditions. (However, in

the incompressible limit, κ(r) = ∞, both roots recover the exact result for the laminate, ω0 = ∞.)

Consequently, given that the primary interest here is in rubbers (which are known to be nearly

incompressible) reinforced with fibers of finite aspect ratio, the “negative” root should be used in the

computation of the second-order estimates for the effective behavior of fiber-reinforced elastomers.

7.1.2 Second-order homogenization estimates: rigid fibers

Compressible matrix

The computation of the second-order estimates (2.82) for the effective behavior of compressible elas-

tomers reinforced with rigid fibers parallels that given in Section 7.1.1 for the elastomers reinforced

by compliant fibers. Indeed, prescribing the same restrictions (7.6) for the modulus tensor L(1) of the

matrix phase of the linear comparison composite, equation (2.81) can be seen to provide 4 consistent

equations for the 4 components of F̂(1). These equations have the same form (7.8) introduced in

Section 7.1.1 in terms of the variable Y, defined by relation (7.7), where now the corresponding f1,

f2, f3, k1, k2, k3, k4 are functions of L∗1111, L∗2222, L∗1122, L∗1212, F, R
(2)

, as well as c0, ω0, and the

matrix constitutive functions, g(1), h(1), and κ(1). (Recall that for rigid fibers ω = ω0.)

Next, each of the two distinct roots of equations (7.8) may be substituted into the generalized

secant equation (2.65), using the expression F̂(1) = R QYQ
T

+F. The resulting equation, together
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with the expression (2.79) for the orthogonal tensor R
(2)

characterizing the average rotation of the

fibers φ (note that K = R
(2)

in this case), form a system of 5 nonlinear algebraic equations for

the 5 scalar unknowns φ, L∗1111, L∗2222, L∗1122, and L∗1212, which must be solved numerically. Having

computed the values of these variables, for given fiber concentration c0 and aspect ratio ω, given

matrix behavior, g(1), h(1), and κ(1), and given loading F, the values of the components of F̂(1)

can be readily determined using relation (7.11). In turn, these results can be used to compute

the second-order estimate (2.82) for the effective stored-energy function Ŵ of the rigidly reinforced

elastomers. Finally, the same comments apply as in the previous subsection concerning the selection

of the roots in expressions (7.7).

Incompressible matrix

The above expressions can be simplified considerably in the limit of incompressible behavior for

the matrix phase, i.e., κ(1) → ∞. In this context, it is recalled that the asymptotic behavior of

the two above-mentioned “roots” is quite different for large values of κ(1). More specifically, in the

limit κ(1) → ∞, the second-order estimates associated with the “negative” root can be shown (see

Appendix I) to be consistent with the exact overall incompressibility constraint:

C(F) = detF− 1 = 0, (7.13)

whereas the estimates associated with the “positive” root lead to a different constraint, and are

therefore inconsistent with the physics of the problem. Having clarified this point, it is noted that

under plane-strain conditions the macroscopic incompressibility constraint (7.13) implies that the

principal stretches can be written in the form λ1 = λ and λ2 = 1/λ, where λ ≥ 1, so that there

is only one loading parameter in this case (apart from the loading angle θ). It then follows (see

Appendix I) that the second-order estimate (2.82), associated with the “negative” root, for the

effective stored-energy function of an incompressible, isotropic elastomer reinforced with aligned,

rigid fibers of elliptical cross section, in volume fraction c = c0, and with aspect ratio ω = ω0,

(ω ≥ 1), reduces to:

Ŵ I(F) = Ŵ I(U) = W̆ (λ, θ) = (1− c) g(1)(Î(1)), (7.14)

where

Î(1) =
c
(
1 + λ

2
)2

+
[
1 + 2 (c− 2) cλ

2
+ λ

4
]
ω + c

(
1 + λ

2
)2

ω2

(1− c)2λ
2
ω

−
c
(
λ

4 − 1
)

(ω − 1)

(1− c)2λ
2
ω

sin (ϕ) sin
(
ϕ− 2 θ

)

−
2 c

(
1 + λ

2
)

(1 + ω2)

(1− c)2λω
cos (ϕ) . (7.15)

In this relation, the angle ϕ is given by

ϕ = φ− ψ, (7.16)
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and satisfies the kinematical relation:

2 λ (1 + ω2) sin (ϕ)−
(
λ

2 − 1
)

(ω2 − 1) sin
[
2(ϕ− θ)

]
= 0. (7.17)

Thus, the angle ϕ serves to describe the evolution of the particle orientation φ = ϕ+ψ, as a function

of the loading parameters λ and θ, for a given value of the fiber aspect ratio ω, via the remarkably

simple relation (7.17).

There are several important remarks that should be made in the context of expression (7.14)

for the effective stored-energy function of the incompressible reinforced elastomer. First, this es-

timate linearizes properly, and therefore recovers the correct linearized moduli of the composite,

in agreement with the Willis estimates for incompressible, rigidly reinforced, elastic materials, at

small deformations. Second, this estimate can be seen to be consistent with overall objectivity,

Ŵ I(F) = Ŵ I(U), in view of the dependence on the rotation of the particles through the differ-

ence between the “macroscopic” rotation angle ψ and the “microstructural” rotation angle φ. This

difference is what is known in plasticity as the “plastic spin.” Finally, it should be remarked that

the stored-energy function (7.14) has been shown to satisfy the polyconvex, lower bound (Ponte

Castañeda, 1989). For conciseness, the corresponding details will be omitted here. The Voigt upper

bound (Ogden, 1978) becomes +∞ in this context, so that it is trivially satisfied by (7.14).

There are also several interesting remarks that may be made on the context of expression (7.17)

for the relevant microstructural variable, φ = ψ +ϕ, the average rotation angle of the fibers. (Recall

that in this case the volume fraction, c, and aspect ratio, ω, of the fibers remain fixed, irrespectively

of the applied deformation.) First, it is interesting to remark that the misalignment angle ϕ depends

exclusively on the applied strain (λ and θ) and the shape of the fibers (ω), but not on the constitutive

behavior of the matrix phase, nor on the volume fraction of fibers. Second, it can be shown from

(7.17), that ϕ → θ − π/2 as λ → ∞, for all θ ∈ (0, π). That is, as λ increases, the fibers tend to

orient themselves in such a way that their longest in-plane axes tend to become aligned with the

tensile loading axis. Note that this behavior is in accord with the behavior of laminates presented in

the preceding chapter. Further, for the special value of θ = 0, when the fibers are already (initially)

aligned with the loading axes, the fibers do not rotate, but instead, remain fixed in orientation.

In particular, this implies that the large-deformation behavior of ϕ has a discontinuity at θ = 0,

corresponding to the situation when the fibers are aligned with the compressive axis, since in this case

ϕ → −π/2 (π/2) as λ →∞, for θ = 0 + (0−), but ϕ = 0, ∀ λ, for θ = 0. In the results section, this

behavior will be related to the possible development of symmetry-breaking, macroscopic instabilities,

for loading conditions involving compression along the long axes of the fibers.

Incompressible matrix: special cases

The second-order estimate (7.14) is valid for arbitrary fiber cross section. This includes two inter-

esting extreme cases: ω →∞, corresponding to a laminated material, and ω = 1, corresponding to

an isotropic distribution of circular fibers.

For the laminate case (ω → ∞), the stored-energy function (7.14) can be shown to become

unbounded for all deformations except for simple shear “parallel” to the layers, i.e., F = I+γ e2⊗e1,
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where γ is the amount of macroscopic shear. This is consistent with the fact that this type of

deformation is the only one that may be achieved without deforming the rigid phase. It is easy to

show that for ω →∞ and F = I + γ e2 ⊗ e1, expression (7.15) reduces to:

Î(1) =
γ2

(1− c)2
+ 2. (7.18)

Also, in this case, as ω →∞, equation (7.17) simplifies to:

2 λ sin (ϕ)−
(
λ

2 − 1
)

sin
[
2(ϕ− θ)

]
= 0. (7.19)

Now, recalling that for the special case of laminates the effective behavior can be computed

exactly by making use of the fact that the fields are constant in the phases, it is straightforward to

show that the exact result for the effective stored-energy function of the type of laminates considered

here is given by Ŵ I(U) = (1−c)g(1)(I
(1)

), where I
(1)

is the first invariant of the right Cauchy-Green

deformation tensor associated with the exact average deformation gradient in the soft phase of the

laminate, namely, I
(1)

= F
(1) · F(1)

. Recognizing now that under simple shearing “parallel” to the

layers the rotation of the rigid phase R
(2)

= I, the average deformation gradient in the soft phase

may be computed exactly to yield F
(1)

= I + γ/(1 − c) e2 ⊗ e1. Thus, it can be deduced that

Î(1) = I
(1)

, so that the second-order estimate (7.14) recovers the exact result in the limit as ω →∞.

It is also a matter of straightforward algebra to show that for F = I + γ e2 ⊗ e1, expression (7.19)

yields ϕ = − arcsin(γ/
√

4 + γ2) = −ψ, so that the angle of rotation of the rigid phase as predicted

by the second-order estimate reduces to the exact result φ = 0.

On the other hand, for the isotropic case (ω = 1), it is easy to show that Î(1) reduces to:

Î(1) =
1 + 2 c− 4 cλ + 2 c2λ

2 − 4 cλ
3

+ (1 + 2 c)λ
4

(1− c)2 λ
2 . (7.20)

Note that Î(1) depends on the principal stretch λ (but not on the loading angle θ), so that the

corresponding stored-energy function (7.14) is isotropic (in the plane of deformation). There are,

unfortunately, no exact results available for the effective behavior of isotropic, rigidly reinforced,

incompressible elastomers to which to compare (7.20). But it is easy to see from (7.17) that the

second-order estimates predict that ϕ should be exactly zero, so that the particles rotate precisely

with the applied macroscopic rotation, i.e., φ = ψ, which is entirely consistent with the in-plane

isotropic symmetry of the reinforcement and its distribution.

We conclude this section by remarking that we are not aware of any results in the literature con-

cerning the rotation of rigid fibers in (incompressible) hyperelastic materials under finite-deformation

conditions. Thus, the relation (7.17), which appears to be physically consistent, at least from low

to moderate concentration of fibers, and remarkably simple in character, is the first of its type.

Application to rigidly reinforced, incompressible, Gent elastomers

In this subsection, for definiteness, we specialize the general result (7.14) to the particular case of

rigidly reinforced, incompressible, Gent elastomers. Thus, making use of relations (7.2) and (7.14),

the effective stored-energy function for incompressible Gent elastomers reinforced with aligned rigid
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fibers of elliptical cross section, with volume fraction c and aspect ratio ω, (ω ≥ 1), may be written

as:

Ŵ I(U) = (c− 1)
µ(1)Jm

2
ln

[
1− Î(1) − 2

Jm

]
, (7.21)

where Î(1) is given by (7.15). It then follows that the corresponding result for rigidly reinforced

elastomers with incompressible Neo-Hookean matrix phases may be readily obtained upon taking

the limit Jm →∞ in (7.21). The result reads as:

Ŵ I(U) = (1− c)
µ(1)

2
(Î(1) − 2). (7.22)

The above expressions can be written more explicitly in the limit of in-plane isotropic symmetry

of the reinforcement. In this context, Î(1) is given by (7.20) so that the expression (7.21) may be

shown to reduce to:

Ŵ I(U) = (c− 1)
µ(1)Jm

2
ln


1−

(λ− 1)2
[
(λ + 1)2 + 2 c (λ

2
+ 1)

]

Jmλ
2
(1− c)2


 . (7.23)

Similarly, (7.22) reduces to:

Ŵ I(U) =
µ(1)(λ− 1)2

[
(λ + 1)2 + 2 c (λ

2
+ 1)

]

2λ
2
(1− c)

. (7.24)

It is interesting to note that the effective stored-energy function (7.21) for reinforced Gent elas-

tomers locks up when the condition Î(1) = Jm + 2 is satisfied. In order to get a representative

notion of the behavior of this condition it is best to consider the simpler case of in-plane isotropic

symmetry. For this case, it is straightforward to show that the stretch at which the material locks

up is given by:

λlock = p1 +

√
1
2

+ p2
1 − p2 +

√
p1

(
2 p1 +

√
2 + 4 p2

1 − 4 p2

)
− p2 − 1

2
. (7.25)

Here p1 = c/(1 + 2 c) and p2 = (4 c− 2− (1− c)2Jm)/(4 + 8 c). For comparison purposes, it is noted

that the associated matrix phase material locks up at:

λ
matrix

lock =

√
2 + Jm +

√
Jm (4 + Jm)

√
2

. (7.26)

It is not difficult to check from (7.25) that λlock is a monotonically decreasing function of c in the

physical interval c ∈ [0, 1], taking the values λlock = λ
matrix

lock at c = 0 and λlock = 1 at c = 1.

In other words, reinforced Gent elastomers lock up at smaller finite stretches than the associated

matrix phase materials. This is consistent with the fact that, on average, the deformation in the

matrix phase of a rigidly reinforced material is larger than the macroscopic applied deformation

(since the rigid phase does not deform), leading then to an overall smaller lock-up stretch.

As a final remark, it is noted that a result similar to (7.23) has been obtained (unpublished work)

from an earlier version of the second-order estimate used in Lopez-Pamies and Ponte Castañeda

(2004a) for the same type of Gent elastomeric composite. The two estimates, even though identical
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up to third order in the infinitesimal strain (i.e., up to O(λ−1)3), are significantly different for large

values of the matrix lock-up parameter Jm and high concentration of fibers c, at large deformations.

This disparity is due to the difference in the limiting lock-up behavior of both estimates as Jm →
∞. Indeed, unlike expression (7.25), which becomes unbounded as Jm → ∞, the lock-up stretch

computed from the earlier second-order estimate yields λlock = 1/c as Jm → ∞. In essence, both

types of estimates indicate that the presence of rigid particles enhances the lock-up effect, which

is physically expected. However, we believe that the new predictions may be more realistic for

composites with random microstructures, for which the addition of rigid particles would enhance

the lock-up effect, provided that it is already present in the matrix phase.

7.1.3 Loss of strong ellipticity

In this subsection, the specialization of the strong ellipticity condition (see Chapter 2, Section 2.6):

K̂ikmimk = L̂ijklNjNlmimk > 0 (7.27)

for all m⊗N 6= 0 with L̂ = ∂2Ŵ/∂F
2
, will be spelled out for the second-order estimates for the ef-

fective constitutive behavior of the compressible and incompressible reinforced elastomers developed

in this section. To this end, and for simplicity in the incompressible case, it proves useful to choose

the current configuration of the material as the reference state. Thus, recalling that (Chadwick and

Ogden, 1971) L̂ijkl = J F
−1

jr F
−1

ls L̂c
irks, where the superscript ‘c’ denotes evaluation in the current

configuration, the strong ellipticity condition (7.27) may be rewritten as:

K̂c
ikmiml = L̂c

ijklnjnlmiml > 0, (7.28)

for all n⊗m 6= 0. Here, K̂c
ik = L̂c

ijklnjnl is the acoustic tensor corresponding to the situation when

the current and reference configuration coincide, and use has been made of the fact that J > 0. In

this work, we are mainly interested in determining the boundary of the domain in deformation space,

containing F = I, at which strong ellipticity fails. (Recall that the type of reinforced elastomers

considered here are characterized by strictly convex, and therefore strongly elliptic, effective stored-

energy functions in the neighborhood of F = I.) Then, it is clear that condition (7.28) will first

cease to hold true away from F = I whenever the acoustic tensor K̂c becomes singular. For plane-

strain deformations, this amounts to the existence of real roots n1/n2 in the fourth-order polynomial

equation:

det

[
L̂c

i1k1

(
n1

n2

)2

+ (L̂c
i1k2 + L̂c

i2k1)
n1

n2
+ L̂c

i2k2

]
= 0, (7.29)

where n1 and n2 denote the direction cosines of the normal n to the characteristic direction in the

deformed configuration. Explicit (but cumbersome) conditions on the components of the incremental

modulus L̂c
may be written down in order for the quartic equation (7.29) to possess complex roots.

However, in general, it is simpler to determine the onset of loss of strong ellipticity by monitoring

the four roots of (7.29), which are known in closed form, along the loading path of interest, and

detecting at which point at least one of these 4 roots becomes real. Once the real roots n1/n2 are
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detected, they can be substituted in expression (7.28) in order to compute the associated eigenvectors

m corresponding to the zero eigenvalues of the acoustic tensor.

The loss-of-ellipticity condition (7.29) cannot be applied directly for incompressible reinforced

elastomers. This is because the effective stored-energy function Ŵ becomes unbounded for all

deformations not satisfying the incompressibility constraint detF = 1, which implies that some of

the components of the corresponding incremental modulus tensor L̂c
become unbounded as well.

Consequently, the condition (7.29) must be suitably adapted for incompressible elastomers. Noting

that the incompressibility constraint detF = 1 implies that the vectors n and m in expression (7.28)

must be such that n ·m = 0, it can be shown from (7.28) that, under plane-strain conditions, the

loss of strong ellipticity is first attained away from F = I, whenever the fourth-order polynomial

equation:

L̂c
2121

(
n1

n2

)4

− 2
(
L̂c

1121 − L̂c
2221

) (
n1

n2

)3

+
[
L̂c

1111 + L̂c
2222

− 2
(
L̂c

1122 + L̂c
1221

)] (
n1

n2

)2

+ 2
(
L̂c

1112 − L̂c
2212

) n1

n2
+ L̂c

1212 = 0 (7.30)

admits one or more real roots n1/n2. It should be emphasized that the coefficients of the quartic

equation (7.30), which correspond to projections of the acoustic tensor K̂c onto the space of iso-

choric deformations, have finite values. Similar to the previous case of compressible materials, the

loss of strong ellipticity of homogenized incompressible elastomers can be determined efficiently by

monitoring the four roots of equation (7.30), which are available in closed-form, along the loading

path of interest, and detecting at which point at least one of these 4 roots becomes real. For later

use, it is helpful to record here the simplification of condition (7.30) for the situations in which the

loading is aligned with the microstructure (i.e., without loss of generality, for θ = 0 and θ = π/2).

Then, the odd terms disappear and we are led to:

L̂c
2121

(
n1

n2

)4

+
[
L̂c

1111 + L̂c
2222 − 2

(
L̂c

1122 + L̂c
1221

)] (
n1

n2

)2

+ L̂c
1212 = 0. (7.31)

Moreover, simple conditions (on the components of L̂c
) may be written down in order for the fourth-

order polynomial equation (7.31) to possess complex roots. Indeed, it is straightforward to show

(see, e.g., Hill, 1979) that necessary and sufficient conditions for the quartic equation (7.31) to have

complex roots are expressible as:

(i) L̂c
1212 > 0, (ii) L̂c

2121 > 0,

(iii)
√
L̂c

1212L̂c
2121 − (L̂c

1122 + L̂c
1221) +

L̂c
1111 + L̂c

2222

2
> 0. (7.32)

Thus, under aligned plane-strain deformations, loss of strong ellipticity of homogenized, incompress-

ible, reinforced elastomers will first take place at the point at which one of the inequalities in (7.32)

fails to hold true.

Finally, it should be mentioned that the traces of the effective incremental modulus L̂c
that

appear in the above conditions for the loss of strong ellipticity of incompressible, rigidly reinforced

elastomers under plane-strain deformations may be conveniently written in terms of the effective
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Figure 7.2: Effective response, as predicted by the second-order (SOE) and the exact result for sequentially
laminated materials (deBotton), of a rigidly reinforced elastomer subjected to pure shear loading. The
results correspond to an incompressible Neo-Hookean matrix phase and various values of the reinforcement
concentration c, and are shown as a function of a the principal macroscopic stretch λ. (a) The effective

stored-energy function Ŵ . (b) The corresponding stress S = dŴ/dλ.

stored-energy function W̆ , given by expression (7.14), and its first and second derivatives with

respect to its arguments λ and θ. For brevity, the final expressions are not included here.

7.2 Results for plane-strain loading: random reinforced elas-

tomers

This section presents results associated with the second-order estimates for general plane-strain

loading of fiber-reinforced elastomers with Gent and Neo-Hookean phases. Results are given for

µ(1) = 1 and various initial volume fractions, c0, and aspect ratios, ω0, of the fibers, and were

computed up to the point at which the effective incremental moduli were found to lose strong

ellipticity, or truncated at some sufficiently large strain if no such loss was found. For clarity, the

points at which loss of strong ellipticity is encountered are denoted with the symbol “◦” in the

plots. The results and discussion for pure shear loading of (in-plane) isotropic (i.e., ω = 1), rigidly

reinforced, incompressible, Neo-Hookean and Gent elastomers are presented first. They are followed

by the results for pure shear loading of compressible and incompressible Gent and Neo-Hookean

elastomers reinforced with fibers of elliptical cross section (i.e., ω > 1). Finally, results for simple

shear of rigidly reinforced, incompressible, Neo-Hookean elastomers are discussed. The idea behind

the choice of these results is to bring out the effect of the microstructure evolution, which depends

critically on the boundary conditions, on the overall response and stability of the material.
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7.2.1 Pure shear: circular rigid fibers and incompressible matrix

Figure 7.2 illustrates results for the effective behavior, as predicted by the second-order method, of

an incompressible Neo-Hookean elastomer (κ(1) → ∞) reinforced with rigid fibers of circular cross

section (ω = 1) under pure shear loading (λ1 = λ
−1

2 = λ). In particular, results are shown, as a

function of the macroscopic stretch λ, for: (a) the effective stored-energy function Ŵ , and (b) the

associated stress S = dŴ/dλ, for fiber concentrations of 10, 20, and 30%. (Note that the closed-form

expression for the effective (SOE) stored-energy function shown in Figure 7.2(a) is given by (7.24).)

As stated above, there are no exact solutions for the effective behavior of isotropic, incompressible

elastomers reinforced with a random, isotropic distribution of circular, rigid fibers to which to com-

pare the results displayed in Figure 7.2. However, there is an exact result due to deBotton (2005) for

the in-plane effective behavior of two-phase, transversely isotropic sequentially laminated composites

with incompressible Neo-Hookean (matrix and inclusion) phases. Such an exact result (with rigid

inclusion phase) has been included in Figure 7.2 for comparison purposes. It is observed that the

agreement between the SOE and deBotton’s results is good, especially for smaller volume fractions

of the rigid phase. The agreement is also seen to improve for smaller values of the applied stretch. In

fact, it can be shown that the second-order estimate (7.24) reduces identically to deBotton’s result

(see Eq. (56) in deBotton, 2005) up to third order in the strain (i.e., up to O
(
(λ− 1)3

)
). An inter-

esting remark regarding the rather good agreement between the second-order estimate (7.24) and

deBotton’s result for sequentially laminated composites is now in order. Recall that the second-order

estimate (7.24) has been developed for Neo-Hookean elastomers reinforced by circular, rigid fibers,

as schematically depicted in Fig. 7.1(a). However—given that use has been made of the HS-type

estimate (2.55) to solve the LCC auxiliary problem—expression (7.24) can also be reinterpreted

as an estimate for the effective stored-energy function of isotropic, rigidly reinforced Neo-Hookean

materials with other microstrucutres for which (2.55) is a good approximation (when the phases are

taken to be linearly elastic). In this regard, it so happens that the exact overall modulus tensor

of two-phase, linear composites with the sequentially laminated microstructure proposed by deBot-

ton (2005) is precisely the HS-type estimate (2.55). Thus, expression (7.24) can be interpreted as

the second-order estimate for the effective stored-energy function of rigidly reinforced Neo-Hookean

elastomers with the sequentially laminated microstructure of deBotton (2005). This explains the

good agreement between the SOE and deBotton’s results in Figure 7.2. To conclude this discussion,

it is interesting to note that—given that for the sequentially laminated microstructure, the homog-

enization step in the second-order procedure is carried out exactly—the discrepancies between the

SOE and deBotton’s results illustrated in Figure 7.2 constitute a measure of the accuracy of the

linearization process in the second-order method.

Figure 7.3 presents the effective behavior as predicted by the second-order method for an incom-

pressible Gent1 elastomer (κ(1) → ∞) reinforced with rigid fibers of circular cross section (ω = 1)

under pure shear loading (λ1 = λ
−1

2 = λ). Results are shown for fiber concentrations of 10, 20

and 30%, and a value of the matrix lock-up parameter Jm = 50, as a function of the macroscopic
1Unlike for Neo-Hookean composites, there are no exact results available for sequentially laminated composites

with Gent phases.
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Figure 7.3: Second-order estimates for the effective behavior of elastomers reinforced with rigid fibers of
circular cross section subjected to pure shear loading. The results correspond to an incompressible Gent
matrix phase with given matrix lock-up parameter Jm = 50 and various values of the fiber concentration c,
and are shown as a function of the principal macroscopic stretch λ. (a) The effective stored-energy function

Ŵ . (b) The corresponding stress S = dŴ/dλ.

stretch λ. Part (a) shows the effective stored-energy function, and part (b), the associated stress

S = dŴ/dλ. Note that the closed-form expression for the effective stored-energy function shown

in Figure 7.3(a) is given by (7.23). A major observation that can be made from Figure 7.3 is the

increasing reinforcement effect of the elastomeric matrix with the addition of rigid fibers, which is

consistent with experimental observations. It is also interesting to remark that the stretch at which

the elastomeric composite locks up depends very strongly on the concentration of fibers. Indeed, it is

observed that the composite locks up at smaller stretches with increasing values of c, as anticipated

in the previous section.

Figure 7.4 shows corresponding plots for the effective behavior of an incompressible Gent elas-

tomer reinforced with 30% of rigid fibers of circular cross section under pure shear loading for values

of the matrix lock-up parameter Jm = 50, 100, 500, and Jm →∞, as a function of the macroscopic

stretch λ. Part (a) shows the effective stored-energy function, and part (b), the associated stress

S = dŴ/dλ. It is observed from Figure 7.4 that the overall response of the reinforced elastomer is

strongly dependent on the matrix lock-up parameter Jm, which is not surprising since the response

of the matrix itself is also highly dependent on Jm. It is further noted from this figure that the

second-order estimate for the effective behavior of a rigidly reinforced Neo-Hookean elastomer (i.e.,

Jm →∞) does not exhibit lock-up at finite stretch, as already discussed in the context of equation

(7.25). This is in contrast to the previous result obtained by Lopez-Pamies and Ponte Castañeda

(2004a) with an earlier version of the second-order method, where lock-up was found to be attained

at λ = 1/c for reinforced Neo-Hookean elastomers. For the reasons stated in Section 7.1.2, we be-

lieve that the new predictions are more accurate in the present context of composites with random

microstructures.
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Figure 7.4: Second-order estimates for the effective behavior of elastomers reinforced with rigid fibers of
circular cross section subjected to pure shear loading. The results correspond to an incompressible Gent
matrix phase with c = 30% and various values of the matrix lock-up parameter Jm, and are shown as
a function of the principal macroscopic stretch λ. (a) The effective stored-energy function Ŵ . (b) The

corresponding stress S = dŴ/dλ.

Figure 7.5 provides plots associated with the results shown in Figures 7.3 and 7.4 for the macro-

scopic stretch λlock at which a rigidly reinforced, incompressible, Gent elastomer locks up. Part

(a) shows λlock for values of the matrix lock-up parameter Jm = 50, 100, and 500, as a function of

the fiber concentration c. Part (b) shows λlock for fiber concentrations of 0, 10, 20, and 30%, as a

function of Jm. Recall that the closed-form expression for the stretch λlock shown in Figure 7.5 is

given by (7.25). The key point to be drawn from Figure 7.5 is that the elastomeric composite (c > 0)

locks up at a smaller stretch than the corresponding matrix phase (c = 0). In fact, Figure 7.5(a)

shows that λlock decreases monotonically from the lock-up of the matrix phase (λlock = λ
matrix

lock at

c = 0) to that of the rigid phase (λlock = 1 at c = 1) with increasing c, as previously discussed.

In addition, Figure 7.5(b) shows that the influence of the matrix lock-up parameter Jm on λlock

weakens monotonically as Jm increases.

Finally, it is important to stress from the above results that (in-plane) isotropic (ω = 1), rigidly

reinforced, incompressible, Gent elastomers, which are strongly elliptic in the pure state, remain

strongly elliptic for all deformations.

7.2.2 Aligned pure shear: rigid fibers and incompressible matrix

Figure 7.6 presents the effective behavior as predicted by the second-order method for an incom-

pressible, Neo-Hookean elastomer reinforced with rigid fibers of elliptical cross section under aligned

pure shear loading with θ = 0◦, i.e., compression along the longest in-plane axis of the fibers. Results

are shown for fiber aspect ratios of 1, 2, 5, and 10, and fiber concentration of 30%, as a function of

the macroscopic stretch λ. Part (a) gives the effective stored-energy function, and part (b), the as-

sociated stress S = dŴ/dλ. Note that the expression (7.22) for the effective stored-energy function
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Figure 7.5: Second-order estimates for the macroscopic stretch λlock at which an (in-plane) isotropic rigidly
reinforced incompressible Gent elastomer locks up. (a) λlock as a function of fiber concentration c for various
values of the matrix lock-up parameter Jm. (b) λlock as a function of Jm for various values of c.

shown in Figure 7.6(a) simplifies even further by recognizing, from (7.17), that for aligned pure shear

loadings ϕ = 0◦. Also note that for this type of loading, the macroscopic rotation tensor R = I,

which together with the fact that ϕ = 0◦, implies that the fibers do not rotate, namely, φ = 0◦. Sim-

ilar to the case of pure shear loading of in-plane, isotropic, rigidly reinforced elastomers, the results

shown in Figure 7.6 exhibit a significant reinforcement effect undergone by the elastomeric matrix

with the addition of rigid fibers. The reinforcement is more pronounced for higher values of the

aspect ratio. This is consistent with the fact that in the limit ω →∞ (as the microstructure tends

to a laminate) the material becomes rigid under the given loading conditions. Moreover, Figure 7.6

shows that the second-order method predicts loss of strong ellipticity of the homogenized behavior

of reinforced elastomers under aligned pure shear loading with θ = 0◦ for fiber aspect ratios ω > 1.

More particularly, it is observed that loss of strong ellipticity takes place at smaller stretches for

higher ω. That is, under the type of deformation considered here, the composite stiffens, but also

becomes more unstable with increasing values of the aspect ratio of the fibers.

Figure 7.7 provides plots associated with the results shown in Figure 7.6 for the critical stretch

λcrit at which the loss of strong ellipticity occurs for the homogenized behavior of rigidly reinforced,

incompressible, Neo-Hookean elastomers. Part (a) shows λcrit for concentration of fibers of 1, 10, 20,

and 30%, as a function of the aspect ratio ω, and part (b), λcrit for aspect ratios of 2, 5, and 10, as a

function of the concentration of fibers c. It is seen from Figure 7.7(a) that, as already mentioned in

the context of Figure 7.6, elastomers reinforced with fibers of higher aspect ratio lose strong ellipticity

at smaller stretches. Another key point to be drawn from Figure 7.7(a) is that λcrit has a vertical

asymptote at ω = 1. This entails that (in-plane) isotropic, rigidly reinforced, incompressible, Neo-

Hookean elastomers remain strongly elliptic under all deformations, in agreement with the results

shown in the preceding subsection. However, as soon as the isotropic symmetry is perturbed, the

homogenized material loses strong ellipticity at some large, but finite, stretch. Note that λcrit → 1



7. Reinforced elastomers: cylindrical fibers, random microstructure 168

0

0.5

1

1.5

2

1 1.2 1.4 1.6 1.8 2

Matrix

1 1( )µ =

0 3.c =

λ

1ω =

2ω =

5ω =
10ω =

(1)κ → ∞

0oθ =

Ŵ
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Figure 7.6: Second-order estimates for the effective behavior of rigidly reinforced elastomers subjected to
aligned pure shear loading (θ = 0◦). The results correspond to an incompressible, Neo-Hookean matrix
phase with given fiber concentration c = 30%, and various values of the fiber aspect ratio ω, and are shown
as a function of the principal macroscopic stretch λ. (a) The effective stored-energy function Ŵ . (b) The

corresponding stress S = dŴ/dλ.

as ω → ∞, in agreement with the exact result for the corresponding laminate. Also note that

λcrit is smaller for higher values of the concentration of fibers, so that reinforced elastomers with a

higher content of fibers are more unstable. This point is more clearly illustrated by Figure 7.7(b).

In addition, we remark from Figure 7.7(b) that λcrit tends to a finite value as c → 0. In this

connection, recall that the Neo-Hookean elastomer utilized here for the matrix phase is a strongly

elliptic material for all deformations. This implies that λcrit has a singularity at c = 0, namely,

λcrit = ∞ at c = 0, but λcrit → λ
0

crit as c → 0, where 0 < λ
0

crit < ∞. Physically, this result suggests

that the addition of even a small proportion of aligned, elliptical, rigid fibers can have a dramatic

effect on the overall stability of an incompressible, strongly elliptic elastomer at some sufficiently

large, but finite, compressive stretch along the longest in-plane axes of the fibers.

Finally, it is important to note that it was through failure of the condition (i) in (7.32) that

strong ellipticity was systematically lost in the results shown in Figure 7.7. Within the context of

condition (7.31), the fact of having the incremental effective modulus L̂c
1212 vanish implies that the

normal to the characteristic direction in the deformed configuration is given by n = e2, so that, by

virtue of the incompressibility constraint, m = e1. That is, the homogenized material may develop

localized shear deformations in the plane determined by the normal e2, and in the direction e1.

Making contact with the microstructure, the condition L̂c
1212 = 0, under the given type of loading,

would correspond to the possible flopping of the fibers, which is a physically plausible instability

mechanism for these materials.

Figure 7.8 presents additional results for the critical stretch λcrit for rigidly reinforced elastomers,

with a fiber concentration of 30%, subjected to aligned pure shear loading with θ = 0◦, as a function
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Figure 7.7: Aligned pure shear loading (θ = 0◦) of a rigidly reinforced, incompressible, Neo-Hookean
elastomer. (a) The critical stretch λcrit at which loss of strong ellipticity of the homogenized elastomer
takes place for various fiber concentrations as a function of the aspect ratio of the fibers ω. (b) The critical
stretch λcrit for various aspect ratios as a function of the concentration of fibers c.

of the aspect ratio ω. Part (a) gives results for incompressible, Gent elastomers with matrix lock-

up parameters Jm = 50 and 100, and part (b), for compressible, Neo-Hookean elastomers with

bulk moduli κ(1) = 11, 101, and κ(1) → ∞. From Figure 7.8(a) it is discerned that the matrix

lock-up parameter Jm has essentially no effect on the onset of loss of strong ellipticity of rigidly

reinforced, incompressible, Gent elastomers. As a matter of fact, λcrit is completely independent

of Jm up to the point at which the material locks up. (Note that the stretch at which lock-up

takes place has been included in 7.8(a) for reference purposes.) The main point that can be drawn

from Figure 7.8(b) is that the loss of strong ellipticity of rigidly reinforced elastomers is very much

dependent on the compressibility of the matrix phase. Indeed, it is found from this figure that

rigidly reinforced, Neo-Hookean elastomers become more unstable with increasing incompressibility

of the matrix phase (i.e., for higher values of κ(1)). This trend is consistent with the numerical

results obtained by Triantafyllidis et al. (2006) for the loss of ellipticity of reinforced elastomers

with periodic microstructures. It should be mentioned that, similar to the results shown in Figure

7.7, all the results for loss of strong ellipticity displayed in Figure 7.8 are due to the vanishing of

the effective incremental shear modulus L̂c
1212, which, again, corresponds to a possible flopping-type

instability.

7.2.3 Pure shear at an angle: rigid fibers and incompressible matrix

Figure 7.9 presents the effective behavior, as predicted by second-order estimate (7.22), for an

incompressible, Neo-Hookean elastomer reinforced with rigid fibers of elliptical cross section under

pure shear loading at the fixed angle θ = 20◦. Results are shown for a fiber concentration of 30%

as a function of the macroscopic stretch λ. Part (a) gives the effective stress S = dŴ/dλ for fiber

aspect ratios of ω =1, 2, 5, 10, and part (b), the average angle of rotation of the fibers φ, for fiber
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Figure 7.8: Aligned pure shear loading (θ = 0◦) of rigidly reinforced elastomers. (a) The critical stretch
λcrit at which loss of strong ellipticity of a rigidly reinforced, incompressible, Gent elastomer takes place
for various values of the lock-up parameter Jm as a function of the aspect ratio of the fibers ω. (b) The
corresponding critical stretch λcrit for a rigidly reinforced, compressible, Neo-Hookean elastomer, at various
values of the bulk modulus κ(1), as a function of the aspect ratio of the fibers ω.

aspect ratios of ω =1, 1.1, 1.5, 2, 5, and ω → ∞. Note that for the given type of loading, the

macroscopic rotation tensor R is exactly equal to the identity so that the angle defined by equation

(7.17), ϕ, corresponds to the angle of rotation of the fibers, namely, φ = ϕ. Similar to the previous

cases, Figure 7.9(a) shows a significant reinforcement effect of the matrix phase with the addition

of rigid fibers. However, unlike the results for aligned pure shear loading with θ = 0◦, where higher

values of the aspect ratio of the fibers were found to consistently provide a higher reinforcement

effect, higher aspect ratios of the fibers lead here to a stiffer behavior of the composite only for small

deformations, whereas for large stretches the opposite is true. Furthermore, only the elastomer with

ω = 10 in Figure 7.9(a) is found to lose strong ellipticity. This behavior is also different from what it

was observed for aligned pure shear loading with θ = 0◦, where the break of isotropic symmetry (i.e.,

ω > 1) was shown to lead systematically to loss of strong ellipticity of the homogenized elastomer

at some finite stretch. The above-mentioned disparities will be shown shortly to be linked to the

evolution of the microstructure.

Figure 7.9(b) shows that circular fibers (ω = 1) do not rotate under pure shear at a fixed angle, as

previously discussed. On the other hand, elliptical fibers (ω > 1) do rotate clockwise (with respect

to the fixed frame of reference) under the present loading conditions, aligning their longest in-plane

principal axes with the tensile axis, that is, for this case, ϕ → −70◦ as λ →∞. It is also interesting

to observe that fibers with higher aspect ratio rotate faster. In this regard, it is noted that the

angle of rotation for the limiting case ω →∞ has been included in Figure 7.9 for reference purposes.

However, it must be recalled that the composite behaves rigidly for ω →∞ under the given loading

conditions. In view of the results for the overall constitutive response shown in Figure 7.9(a) and

the evolution of the associated underlying microstructure shown in Figure 7.9(b), it is inferred that

the rotation of the fibers constitutes, in the present context, a softening mechanism—in accord with
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Figure 7.9: Second-order estimates for the effective behavior of rigidly reinforced elastomer subjected to
pure shear loading at a fixed angle (θ = 20◦). The results correspond to an incompressible, Neo-Hookean,
matrix phase with given fiber concentration c = 30%, and various values of the fiber aspect ratio ω, and are
shown as a function of the principal macroscopic stretch λ. (a) The effective stress S = dŴ/dλ. (b) The
angle of rotation of the fibers φ.

the findings in Chapter 6 for laminate materials. Physically, the rigid rotations of the fibers serve to

“accommodate” part of the applied macroscopic loading, which hinders the hardening of the matrix

phase of the material. Given that fibers with larger aspect ratios rotate faster, they are able to

“accommodate” a larger amount of the applied macroscopic deformation. This leads to a stronger

softening effect which is consistent with the results shown in Figure 7.9(a) at large stretches.

Figure 7.10 provides plots for the effective behavior as predicted by the second-order method

for an incompressible, Neo-Hookean elastomer reinforced with rigid fibers of elliptical cross section

under pure shear loading at the fixed angles θ = 0◦, 5◦, 30◦, 50◦, 70◦, and 90◦. Results are shown for

a fiber aspect ratio of 2 and fiber concentration of 30%, as a function of the macroscopic stretch λ.

Part (a) shows the effective stress S = dŴ/dλ, and part (b), the average angle of rotation of the

fibers φ. As for the preceding results, R = I, so that φ = ϕ. A key observation that can be made

from Figure 7.10(a), besides the clear reinforcement effect undergone by the matrix phase with the

addition of rigid fibers, is that for large deformations, except for the case with θ = 0◦, the reinforced

elastomer consistently shows a stiffer response for higher angles of loading, with the stiffest behavior

being attained at θ = 90◦. For exactly θ = 0◦, the effective response coincides with that for θ = 90◦

for all stretches. This can be easily verified from (7.15) by noting, from (7.17), that for aligned

loadings (i.e., for θ = 0◦ and θ = 90◦) ϕ is exactly equal to 0◦, as it has already been pointed out.

It is further noted from Figure 7.10(a) that loss of strong ellipticity of the homogenized elastomer

takes place for pure shear with θ = 0◦, which corresponds to compression along the longest in-plane

axes of the fibers. On the other hand, for the pure shear loading with θ = 90◦, which corresponds

to tension along the longest in-plane axes of the fibers, the homogenized elastomer does not lose

strong ellipticity. This result might seem inconsistent at first. However, it should be recalled that

the overall behavior of the material is anisotropic, and that even though the stress-stretch relations
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Figure 7.10: Second-order estimates for the effective behavior of rigidly reinforced elastomer subjected to
pure shear loading at various angles θ (in the large deformation regime). The results correspond to an
incompressible, Neo-Hookean matrix phase with given fiber concentration c = 30% and aspect ratio ω = 2,
and are shown as a function of the principal macroscopic stretch λ. (a) The effective stress S = dŴ/dλ. (b)
The average angle of rotation of the fibers φ.

(in the loading direction) are identical for both pure shear deformations with θ = 0◦ and θ = 90◦,

the corresponding incremental moduli are in fact different. In this regard, it is evoked that the loss

of strong ellipticity of the homogenized elastomer under pure shear with θ = 0◦ is due to the fact

that L̂c
1212 = 0 at λcrit, which physically is associated with a possible flopping instability of the

fibers. On the other hand, for the case of θ = 90◦, the effective shear modulus L̂c
1212 is not only

positive, but it increases with the applied stretch.

Figure 7.10(b) shows that the elliptical fibers with ω = 2 do rotate clockwise (with respect

to the fixed frame of reference) aligning their longest in-plane principal axes with the principal

direction of tensile loading (namely, φ → θ − 90◦ as λ → ∞), for all loadings, except at θ = 0◦,

for which, again, the fibers do not rotate, but instead, remain fixed with their longest in-plane

principal axes aligned with the principal direction of compressive loading. In essence, for aligned

pure shear loadings (i.e., θ = 0◦ and θ = 90◦) there is no evolution of the orientation of the fibers.

On the contrary, for “misaligned” deformations, the fibers do undergo a total rotation equal to the

complementary angle of θ as λ → ∞, in agreement with the discussion of the large-deformation

behavior of equation (7.17) in Section 7.1.2. This entails that reinforced elastomers deformed at

smaller loading angles θ are able to “accommodate” a larger portion of the applied macroscopic

loading by rigid rotation of the underlying fibers, which has already been identified as a softening

mechanism. This is entirely consistent with the fact that the effective stress-stretch relations shown

in Figure 7.10(a) are systematically stiffer for higher θ (with the exception of θ = 0◦), in the finite-

deformation regime.

Figure 7.11 provides plots for a blow up in the small deformation regime of some of the results

shown in Figure 7.10. Figure 7.11(a) corresponds to a blow up of Figure 7.10(a) for the cases of

θ = 00, 30◦, 60◦, and 90◦. It can be seen from this figure that loadings at complementary angles
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Figure 7.11: Second-order estimates for the effective behavior of rigidly reinforced elastomer subjected to
pure shear loading at various angles θ (in the small deformation regime). The results correspond to an
incompressible, Neo-Hookean matrix phase with given fiber concentration c = 30% and aspect ratio ω = 2,
and are shown as a function of the principal macroscopic stretch λ. (a) The effective stress S = dŴ/dλ. (b)
The average angle of rotation of the fibers φ.

produce an identical effective response of the material in the small deformation regime, in accordance

with the linear theory. For sufficiently large deformations, the effective responses at complementary

angles deviate from each other, due to the difference in the evolution of the microstructure, as

already discussed. Figure 7.11(b) corresponds to a blow up of Figure 7.10(b) for the cases of θ = 0◦

and θ = 5◦ in which the results for θ = 0.1◦, 0.5◦, 1◦, 2◦, and 3◦ have been included in order to

aid the discussion. In the previous section (as well as in some of the preceding results discussed

in this section), it was observed that the fibers in the type of rigidly reinforced elastomers studied

here do not rotate when subjected to pure shear deformations at exactly θ = 0◦. However, an

infinitesimal misalignment of this loading angle was shown to result into a 90◦ rotation of the fibers

as the applied stretch λ was increased. In this connection, Figure 7.11(b) clearly shows that loadings

at small angles θ can lead to large rotations of the fibers. Interestingly, this figure shows that for

relatively small loading angles θ, the corresponding rotation of the fibers develops a highly nonlinear

evolution as a function of the applied macroscopic stretch λ. Indeed, as θ approaches 0◦, φ remains

small initially as λ increases up to certain finite stretch at which it undergoes a dramatic increase. In

essence, by making use of the established fact that larger fiber rotations potentially lead to a softer

overall constitutive response, it is seen that a slight misalignment (about θ = 0◦) in the applied

loading can result into a drastically different, much softer, effective response of the material at large

deformations. This is entirely consistent with the emergence of flopping-type instabilities at θ = 0◦.

Figure 7.12 shows the effect of the loading angle θ on the critical stretch λcrit for rigidly reinforced,

incompressible, Neo-Hookean elastomers subjected to pure shear. Results are shown for a fiber

concentration of 30%. Part (a) gives λcrit for loading angles of θ = 0◦, 2◦, and 5◦, as a function

of the fiber aspect ratio ω, and part (b), λcrit for fiber aspect ratios of 2, 5, and 10, as a function

of θ. An important observation that can be made from Figure 7.12(a) is that, irrespectively of
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Figure 7.12: Pure shear loading of rigidly reinforced elastomers. (a) The critical stretch λcrit at which loss
of strong ellipticity of a rigidly reinforced, incompressible, Neo-Hookean elastomer takes place for various
loading angles θ, as a function of the aspect ratio of the fibers ω. (b) The corresponding results for λcrit for
various values of the aspect ratio of the fiber as a function of the angle of loading θ.

the loading angle, elastomers reinforced with fibers of higher aspect ratio are more unstable. Note

also that unlike the λcrit for θ = 0◦ which exhibits a vertical asymptote at ω = 1, the λcrit for

misaligned loadings (i.e., θ 6= 0◦) reaches a maximum finite value at a certain ω > 1 beyond which

no loss of ellipticity is detected. It is further noted from this figure that the homogenized material

becomes unstable at larger stretches with increasing values of the loading angle. This point is more

clearly illustrated by Figure 7.12(b). In fact, Figure 7.12(b) shows that beyond a certain threshold

(depending on the aspect ratio ω) in θ, the homogenized elastomer does not lose strong ellipticity.

Physically, the results shown in Figure 7.12 for rigidly reinforced, incompressible elastomers indicate

that the compressive component of the applied loading along the longest in-plane axes of the fibers,

together with the fiber aspect ratio, are the two major elements governing the macroscopic stability

of the material. Indeed, the higher the aspect ratio and the higher the compressive deformation

along the longest in-plane axes of the fibers, the more unstable the material is.

7.2.4 Aligned pure shear: compliant fibers and compressible matrix

Figure 7.13 presents the effective behavior as predicted by the second-order method for a compress-

ible, Neo-Hookean elastomer reinforced with stiffer Neo-Hookean fibers of initially elliptical cross

section under aligned pure shear loading with θ = 0◦. The fibers and the matrix are characterized

by Neo-Hookean stored-energy functions such that µ(2)/µ(1) = κ(2)/κ(1) = t, with t denoting the

contrast. Results are shown for an initial fiber concentration of c0 = 30%. Part (a) shows the

effective stress S = dŴ/dλ for a contrast of t = 10 and initial fiber aspect ratios of ω0 =1, 2, 5, and

10, as a function of the macroscopic stretch λ, and part (b), the critical stretch λcrit at which the

homogenized elastomer loses strong ellipticity for initial fiber aspect ratios of ω0 =3, 5, and 10, as

a function of the contrast t. First, note the parallel between Figure 7.13(a) and 7.6(b). (Recall that
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Figure 7.13: Second-order estimates for the effective behavior of reinforced elastomers subjected to aligned
pure shear loading (θ = 0◦). The results correspond to a compressible, Neo-Hookean matrix reinforced with
an initial volume fraction of 30% of stiffer, Neo-Hookean fibers of initially elliptical cross section. (a) The

effective stress S = dŴ/dλ for contrasts of t = µ(2)/µ(1) = κ(2)/κ(1) = 10 and various aspect ratios, as
a function of the applied stretch λ. (b) The critical stretch λcrit at which loss of strong ellipticity of the
homogenized reinforced elastomer takes place for various fiber aspect ratios, as a function of the contrast t.

the fibers were taken to be rigid in Figure 7.6(b).) Observe that the results shown in Figure 7.13(a)

exhibit a significant reinforcement effect with the addition of stiffer fibers, but less pronounced than

that one observed in Figure 7.6(b). Also, unlike the results shown in Figure 7.6(b), where higher

values of the aspect ratio of the fibers consistently led to a stiffer overall behavior, higher aspect

ratios of the fibers lead here to a stiffer overall behavior of the material only for small deformations,

whereas the opposite is true for large stretches. Furthermore, unlike the results shown in Figure

7.6(b), where loss of strong ellipticity of the homogenized elastomer was always detected at some

finite stretch for any aspect ratio ω > 1, the results shown in Figure 7.13(a) are found to lose el-

lipticity only for sufficiently large initial aspect ratios (ω0 = 5 and 10). These discrepancies will be

shown to be connected with the evolution of the microstructure. In Figure 7.13(b), it is seen that,

under the given loading conditions, the type of reinforced elastomers considered here become more

unstable with increasing stiffness of the fibers. In fact, for small values of ω, loss of strong ellipticity

is detected only for sufficiently large values of t. This figure also shows that, similar to the results

for rigidly reinforced elastomers, higher initial fiber aspect ratios lead to a more unstable overall

behavior. Finally, it should be remarked that the loss of strong ellipticity shown in Figure 7.13(b)

is due to the vanishing of the effective shear modulus L̂c
1212 in condition (7.29), corresponding, once

again, to the possible “flopping” of the fibers.

Figure 7.14 provides plots associated with the results shown in Figure 7.13(a) for the evolution

of the underlying microstructure in compressible, Neo-Hookean elastomers reinforced with stiffer

Neo-Hookean fibers of contrast t = 10. Results are shown for an initial fiber volume fraction of

c0 = 30%, and initial fiber aspect ratios of ω0 =1, 2, 5, and 10, as a function of the applied stretch

λ. Part (a) shows the evolution of the volume fraction of the fibers c, and (b), the evolution of
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Figure 7.14: Aligned pure shear loading (θ = 0◦) of a compressible, Neo-Hookean elastomer reinforced
with stiffer Neo-Hookean fibers of initially elliptical cross section. Results are shown for a contrast of
t = µ(2)/µ(1) = κ(2)/κ(1) = 10, various initial fiber aspect ratios, and initial fiber concentration of 30%, as a
function of the applied stretch λ. (a) The evolution of the volume fraction of the fibers. (b) The evolution
of the aspect ratio of the fibers.

the aspect ratio ω. It is evident from Figure 7.14(a) that the volume fraction of the fibers does

not change significantly under aligned pure shear deformations, irrespectively of the initial aspect

ratio of the fibers. This result is due to the facts that the macroscopic deformation applied here

is isochoric, and that both, the matrix and the fibers, were taken to be fairly incompressible (i.e.,

κ(1) = 11 and κ(2) = 110). More insightful are the results shown in Figure 7.14(b), where it is seen

that the aspect ratio of the fibers decreases significantly as a function of the macroscopic applied

stretch λ, as it might be expected on physical grounds since compression is being applied along the

longest in-plane axes of the fibers. It is also worthwhile to remark from this figure that aspect ratios

with a higher initial value exhibit a higher rate of decrease as a function of λ. Recall now that

the amount of compressive loading along the longest in-plane axes of the fibers, together with the

fiber aspect ratio, have been established to be the two major elements governing the macroscopic

instabilities of the type of rigidly reinforced elastomers of interest in this work. This statement holds

true more generally for elastomers reinforced with stiffer fibers of finite stiffness. In this regard, it

is relevant to remark that for the cases shown in Figure 7.14(b) the microstructure evolves into a

more stable configuration, as the aspect ratio of the fibers decreases with increasing λ. In particular,

note that for the case of ω0 = 2, the current aspect ratio ω evolves into values smaller than unity

for sufficiently large stretches. Once ω < 1, the longest axes of the fibers become aligned with

the principal direction of tensile loading, a configuration for which the material remains strongly

elliptic. This is in contrast to the results presented in Figure 7.6(b) for rigid fibers with ω = 2,

which were found to admit loss of strong ellipticity at finite stretch. Evidently, in this latter case,

the aspect ratio of the rigid fibers remained fixed along the deformation path, thus constraining the

microstructure from evolving into a more stable configuration. Note that for the cases of ω0 = 5

and ω0 = 10 in Figure 7.14(b) loss of strong ellipticity takes place before the current aspect ratio
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Figure 7.15: Second-order estimates for the effective behavior of rigidly reinforced elastomers subjected
to simple shear “perpendicular” to the fibers. The results correspond to an incompressible, Neo-Hookean,
matrix phase with fiber concentration c = 30% and various values of the fiber aspect ratio ω, and are shown
as a function of the applied macroscopic shear γ. (a) The effective stress τ = dŴ/dγ. (b) The average angle
of rotation of the fibers φ.

reaches 1.

7.2.5 Simple shear: rigid fibers and incompressible matrix

Figure 7.15 presents second-order estimates for the effective behavior of an incompressible, Neo-

Hookean elastomer reinforced with rigid fibers of elliptical cross section under simple shear loading

“perpendicular” to the fibers, i.e., F = I + γ e1 ⊗ e2. Results are shown for fiber aspect ratios

of 1, 2, 5, 10, and 100, and fiber concentration of 30%, as a function of the applied macroscopic

shear γ. Part (a) shows the effective stress τ = dŴ/dγ, and (b), the average angle of rotation

of the fibers φ. Note that in this case the applied macroscopic rotation tensor is given by R =

1/
√

4 + γ2(2(e1 ⊗ e1 + e2 ⊗ e2) + γ (e1 ⊗ e2 − e2 ⊗ e1)) so that ψ = − arcsin(γ/
√

4 + γ2). It is

observed from Figure 7.15(a) that, similar to all previous cases, the addition of rigid fibers into

the elastomeric matrix produces a significant reinforcement effect on the overall response of the

material. Furthermore, this reinforcement effect becomes more pronounced for higher values of the

fiber aspect ratio. This is consistent with the fact that in the limit ω → ∞ (as the microstructure

tends to a simple laminate) the material becomes rigid under simple shear “perpendicular” to the

fibers. Figure 7.15(b) shows that all fibers, irrespectively of their aspect ratio, undergo a monotonic

clockwise rotation (relative to the fixed frame of reference) with φ → −90◦ as γ → ∞, tending

to align their longest in-plane axes with the principal tensile direction of the right stretch tensor

U. As it was the case for pure shear at a fixed angle, fibers with higher aspect ratio rotate faster.

In this regard, it is noted that the result for ω → ∞ has been included in Figure 7.15(b) only for

reference purposes. (Recall that the material behaves rigidly in this limit under the present loading

conditions.) Finally, it is interesting to remark that no loss of strong ellipticity was found to take



7. Reinforced elastomers: cylindrical fibers, random microstructure 178

0

10

20

30

40

0 5 10 15 20
γ

Matrix

1 1( )
µ =

0 3.c =

1ω =

2ω =

τ
ω → ∞

5ω =

(1)
κ → ∞

(a)

0

20

40

60

80

0 5 10 15 20
γ

1 1( )µ =

0 3.c =
1ω =

5ω =

1 5.ω =

ω → ∞

2ω =

(1)κ → ∞

φ

(b)

Figure 7.16: Second-order estimates for the effective behavior of rigidly reinforced elastomers subjected
to simple shear “parallel” to the fibers. The results correspond to an incompressible Neo-Hookean matrix
phase with fiber concentration c = 30% and various values of the fiber aspect ratio ω, and are shown as a
function of the applied macroscopic shear γ. (a) The effective stress τ = dŴ/dγ. (b) The average angle of
rotation of the fibers φ.

place in these materials under the given loading conditions.

Figure 7.16 presents similar results for simple shear loading “parallel” to the fibers, i.e., F = I+

γ e2⊗e1. In this case, the applied macroscopic rotation tensor is given by R = 1/
√

4 + γ2(2(e1⊗e1+

e2⊗e2)+γ (e2⊗e1−e1⊗e2)) so that ψ = arcsin(γ/
√

4 + γ2). Similar to Figure 7.15(a), the results

presented in Figure 7.16(a) show a reinforcement effect with the addition of rigid fibers. However,

unlike Figure 7.15(a), Figure 7.16(a) shows that this reinforcement effect is more pronounced for

lower values of the fiber aspect ratio. Indeed, it is seen that the reinforcement effect decreases

monotonically with increasing aspect ratio, attaining the stiffest behavior at ω = 1, and the softest

one at ω →∞. (Recall that simple shear “parallel” to the fibers is the only admissible deformation

for ω → ∞ in the context of rigid fibers.) Interestingly, this is exactly the same trend followed in

the infinitesimal strain regime, where higher fiber aspect ratios lead to softer overall responses of the

material. Figure 7.16(b) shows that circular fibers rotate with the applied macroscopic rotation, that

is, φ = ψ, and hence they undergo an anticlockwise monotonic rotation (relative to the fixed frame of

reference) with φ → 90◦ as γ →∞. On the other hand, elliptical fibers initially rotate anticlockwise,

reaching a maximum value at certain shear γ after which they rotate clockwise asymptotically

tending to 0◦, thus aligning their longest in-plane axes with the principal tensile direction of the

right stretch tensor U. Note that φ = 0◦ for all γ for the limiting case ω → ∞, in agreement with

the exact result (for a laminate). Finally, akin to simple shearing “perpendicular” to the fibers, no

loss of strong ellipticity was found to take place in these materials under the given conditions.
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7.3 Concluding remarks

In this chapter, analytical estimates have been derived for the in-plane effective behavior, the mi-

crostructure evolution, and the onset of macroscopic instabilities in fiber-reinforced elastomers with

random microstructures subjected to finite deformations, by making use of the framework developed

in Chapter 2.

A major result of this work is the strong influence of the evolution of the microstructure on the

overall behavior of reinforced elastomers. Indeed, in the specific context of elastomers reinforced

with rigid fibers (of elliptical cross section), the rotation (in the plane of the deformation) of the

fibers when the composite is subjected to finite stretches has been identified as a potential softening

mechanism. Physically, the fibers can “accommodate” some of the applied macroscopic deformation

through rigid rotations, tending to align themselves with the tensile loading axis, which induces

softer modes of deformation in the matrix phase. As a consequence, the overall response of the

composite under loadings that promote large rotations of the underlying fibers tend to be much

softer than those associated with loadings inducing smaller rotations (or no rotations at all).

Perhaps more significantly, the microstructure evolution not only has implications for the effec-

tive behavior, but also for the overall stability of the composite. In this regard, it has been shown

that loss of strong ellipticity, corresponding to the possible development of shear-band type insta-

bilities at a macroscopic length scale, can take place in strongly elliptic elastomers reinforced with

stiff fibers (of elliptical cross section) at physically realistic levels of deformation. The underlying

microscopic mechanism driving these macroscopic instabilities has been identified with the possible

“flopping” of the fibers, due to a sufficiently large compressive component of the applied deformation

along the long (in-plane) axes of the fibers. More specifically, in spite of the randomness, the as-

sumed “elliptical symmetry” of the microstructure exhibits a preferred microstructural orientation.

Thus, the “flopping” of the fibers provides a symmetry breaking mechanism leading to the possible

development of a macroscopic instability. Indeed, in the limit as the fibers (and their two-point

correlation function) are taken to be circular, so that the composite becomes isotropic, no loss of

strong ellipticity is detected, as there are no symmetries to be broken.

Another important conclusion of this work is that the addition of rigid inclusions in an elastomer

enhances the “lock-up” effect in the material due to the stretching of the polymer chains, provided

that it is already present in the matrix phase. From the continuum point of view, this is consistent

with the fact that, on average, the deformation in the matrix phase of a rigidly reinforced material

is larger than the applied macroscopic deformation (since the rigid phase does not deform), leading

then to a smaller overall lock-up stretch. Physically, the effect of introducing rigid inclusions into an

elastomer would make the polymeric chains wrap around the particles, which would be consistent

with a smaller overall lock-up stretch upon deformation of the composite.
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7.4 Appendix I. Incompressibility limit for rigidly reinforced

elastomers: cylindrical fibers

In this appendix, we sketch out the asymptotic analysis corresponding to the incompressible limit

associated with the second-order estimate (2.82) for elastomers with isotropic matrix phases of the

form (7.1) reinforced with rigid fibers of volume fraction c and aspect ratio ω. As already discussed in

the main body of text, only one of the two possible roots associated with the second-order estimates

developed in this work provides physically sound results. Hence, only the limit associated with this

root is presented here. It must be emphasized that the results generated by the following asymptotic

analysis have been checked to be in agreement with the full numerical solution.

Based on numerical evidence from the results for finite κ(1), an expansion for the unknowns

(i.e., L∗1111, L
∗
2222, L

∗
1122, L

∗
1212, and φ) in this problem is attempted in the limit as κ(1) →∞ of the

following form:

L∗1111 = a1∆−1/3 + a2 + a3∆1/3 + O(∆2/3),

L∗2222 = b1∆−1/3 + b2 + b3∆1/3 + O(∆2/3),

L∗1122 = d1∆−1/3 + d2 + d3∆1/3 + O(∆2/3),

L∗1212 = e2 + e3∆1/3 + e4∆2/3 + O(∆),

φ = φo + φ1∆1/3 + O(∆2/3), (7.33)

where ∆ = 1/κ(1) is a small parameter and a1, a2, a3, b1, b2, b3, d1, d2, d3, e2, e3, e4, φo, and φ1 are

unknown coefficients to be determined from the asymptotic analysis that follows. It will prove useful

to spell out the corresponding expansions for the constrained components L∗2121 and L∗1221, as well as

those for the components of Y = Q
T
R

T
(
F̂(1) − F

)
Q, in the limit as κ(1) →∞. Thus, introducing

(7.33) in relations (7.6) for the components L∗2121 and L∗1221 can be shown to lead to the following

expansions:

L∗2121 = e2 + e3∆1/3 + O(∆2/3),

L∗1221 =
(√

a1b1 − d1

)
∆−1/3 +

a2b1 + a1b2 − (a1 + b1)e2

2
√

a1b1

− d2 + O(∆1/3).

(7.34)

Similarly, introducing (7.33) in relations (7.11) for the components of Y leads to:

Y11 = x1 + x2∆1/3 + x3∆2/3 + x4∆ + O(∆4/3),

Y22 = y1 + y2∆1/3 + y3∆2/3 + y4∆ + O(∆4/3),

Y12Y21 = p1 + p2∆1/3 + p3∆2/3 + p4∆ + O(∆4/3),

Y 2
12 + Y 2

21 = s1 + O(∆1/3). (7.35)

The explicit form of the coefficients in these expressions are too cumbersome to be included here. In

any case, at this stage, it suffices to note that they are known in terms of the variables introduced

in (7.33) (and higher-order correcting terms). In connection with the relations (7.35), it is necessary
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to remark that the asymptotic expressions for the combinations Y12Y21 and Y 2
12 + Y 2

21 have been

specified, instead of those for the independent components Y12 and Y21, since, as discussed in the

main body of the text, they are the relevant variables in this problem. For later use, it will also prove

helpful to introduce the notation for the expansions of the constitutive function g(1) characterizing

the matrix phase in the limit κ(1) →∞:

g(1)(Î(1)) = ĝ = ĝo + ĝ1∆1/3 + ĝ2∆2/3 + O(∆),

g
(1)
I (Î(1)) = ĝI = ĝ′o + ĝ′1∆

1/3 + ĝ′2∆
2/3 + O(∆),

g(1)(I) = g,

g
(1)
I (I) = gI , (7.36)

where Î(1) = F̂(1) · F̂(1), Ĵ (1) = det F̂(1), and appropriate smoothness has been assumed for g(1).

Analogous expressions are defined for the material function h(1).

Now, by introducing expressions (7.33)–(7.36) in the generalized secant equation (2.65), as well

as in the equation (2.79) for the rigid rotation of the fibers, a hierarchical system of equations

is obtained for the unknown coefficients in (7.33) and higher-order correcting terms. Thus, the

equations of first order O(∆−1) can be shown to yield the following relations:

J = λ1λ2 = 1, λ2x1 + λ1y1 + x1y1 − p1 = 0, e2 = 2ĝ′o. (7.37)

Here, it is important to remark that condition (7.37)1 is nothing more than the exact incom-

pressibility constraint (7.13) specialized to plane-strain deformations. Moreover, it is noted that

conditions (7.37)2 and (7.37)3 establish relations among the unknowns a1, a2, b1, b2, d1, d2, e2, and

φo. Next, by making use of (7.37), the equations of second order O(∆−2/3) can be shown to ulti-

mately render the conditions:

λ2x2 + λ1y2 + x1y2 + x2y1 − p2 = 0, e3 = 2ĝ′1, (7.38)

which establish further relations among a1, a2, a3, b1, b2, b3, d1, d2, d3, e2, e3, and φo. Making use

now of (7.37) and (7.38) in the equations of third order O(∆−1/3) gives:

b1 = λ
4

1a1,

y1λ
4

1a1 + x1λ
2

1a1 + λ1

(
λ

2

1a1 − d1

)
= 0,

λ2x3 + λ1y3 + x1y3 + y1x3 + x2y2 − p3 = d1 − λ
2

1a1,

e4 = 2ĝ′2,

φo = ϕ + ψ, (7.39)

where

cosϕ =
(c− 1)d1

cλ1(1 + λ
2

1)a1

+
(1 + c)λ1

c(1 + λ
2

1)
, (7.40)

and ψ denotes the angle associated with the macroscopic rotation tensor R.
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Finally, with the help of relations (7.37) through (7.40), the equations of fourth order O(∆) can

be shown to yield:

b2 − λ
4

1a2 =
2(1− λ

4

1)

d1 − λ
2

1a1

(
d1ĝ

′
o + a1(ĝ′o − 2gI)λ

2

1

)
,

2a2
1λ

4

1(a1λ
2

1 − d1)(λ2x2 + λ1y2)− d2
1(a2 − 2ĝ′o)λ

2

1

−2a2
1λ1

[
d2λ

3

1 + 2(ĝ′o − gI)(λ
5

1 + x1(λ
4

1 − 1)) + µ(1)λ
3

1

]

+2a1d1

[
g′I(2− 4λ

4

1) + 2ĝ′o(λ
4

1 − 1) + λ
2

1(d2 + a2λ
2

1 + µ(1))
]

= 0,

λ2x4 + λ1y4 + x1y4 + y1x4 + x2y3 + x3y2 − p4 = d2 + µ(1)

−2−1λ
−2

1

(
b2 + a2λ

4

1 − 2ĝ′o(λ
4

1 + 1)
)

,

e5 = 2ĝ′3,

cos φ1 = G(a1, d1, a2, d2) sin φo, (7.41)

where G is (a known function of its arguments) too cumbersome to be included here, and use has

been made of the facts that ĥo = h = 0 and ĥ′o = hJ = −µ(1).

Although the above system of algebraic, nonlinear equations is not closed (i.e., there are more

unknowns than equations), it is possible to solve for the appropriate combinations of coefficients

introduced in (7.33), which allows the determination of the leading order term of φ, as well as the

leading order term of the components of Y in the limit κ(1) →∞. The results read as follows:

φo = ϕ + ψ, (7.42)

x1 =
c

1− c

(
λ− cos ϕ

)
,

y1 =
c

1− c

(
λ
−1 − cosϕ

)
,

p1 =
c

λ(1− c)2

(
(2− c)λ− (λ

2
+ 1) cos ϕ + cλ cos2 ϕ

)
,

s1 =
c

2 ω (1− c)2 λ
2

[
−4 (1 + (ω − 1) ω)

(
λ + λ

3
)

cos(ϕ)

+2
(

ω (c− 4) λ
2

+
(
1 + λ

2
)2

+ ω2
(
1 + λ

2
)2

− ω c λ
2

cos(2 ϕ)
)

−2
(
ω2 − 1

) (
λ

4 − 1
)

cos(2 θ) sin(ϕ)2

+
(
ω2 − 1

) (
λ

4 − 1
)

sin(2 θ) sin(2 ϕ)
]
, (7.43)

respectively, where the angle ϕ satisfies expression (7.17) given in the text. Here, λ = λ1 = λ
−1

2 ,

and θ denotes the orientation of the in-plane principal axes of U in agreement with the notation

employed in Section 7.1.2.

Finally, it is straightforward to show that the leading order term of the expansion of the second-

order estimate (2.82) in the limit of incompressibility may be ultimately written in terms of the

leading order term of φ (7.42) and Y (7.43). The final explicit expression is given by (7.14) in the

text.
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Chapter 8

Closure

In this thesis, an analytical, nonlinear homogenization framework has been developed for elastomeric

composites subjected to finite deformations. The framework has the ability to account for the initial

stiffness, volume fraction, shape, orientation, and distribution of the phases in a given elastomeric

composite, as well as for the evolution of these parameters along a given macroscopic loading path.

This last feature is essential in order to endow the framework with the ability to predict the possible

development of macroscopic instabilities in finite deformations.

The proposed theory is based on an appropriate extension of the “second-order” homogenization

method developed by Ponte Castañeda (2002a) in the context of viscoplastic composites. The

key idea of this method is the construction of variational principles making use of the notion of

a “linear comparison composite.” This construction ultimately allows to convert available linear

homogenization estimates into estimates for the nonlinear response of elastomeric composites. An

important point to emphasize here is that, in spite of the fact that the homogenization is carried

out at the level of a linear comparison composite, the method has the capability to account for the

nonlinear kinematics inherent in finite elasticity. Thus, for instance, the method can be ensured to

satisfy overall objectivity requirements.

Motivated by most applications of interest, special attention has been given to elastomers with

“particulate” microstructures and isotropic phases. In particular, general expressions have been

derived for the effective stored-energy function and the microstructure evolution of two-phase com-

posites consisting of ellipsoidal isotropic particles distributed either randomly or periodically in a

compressible isotropic elastomer. Note that the use of ellipsoidal particles includes—as limiting

cases—spherical particles, cylindrical fibers, as well as laminates. Within this class of composite

elastomers, further specialization of the general expressions have been provided for the cases when

the particles are either vacuous or rigid. These idealizations—useful to model actual porous and

reinforced elastomers—simplify considerably the computation of the estimates. In particular, it is

found that for the rigid case, the deformation of the particles reduces to a pure rigid rotation, as

expected on physical grounds. This remarkable result exemplifies once again that even though the

method makes use of a linear comparison composite to carry out the homogenization process, it

does so taking into account the nonlinear kinematics involved in the actual behavior of composite

elastomers.

The theoretical framework developed in this thesis has been employed to generate estimates



8. Closure 184

for the effective stress-strain relation, microstructure evolution, and macroscopic onset-of-failure

surfaces—as determined by the loss of strong ellipticity of the homogenized behavior (Geymonat et

al., 1993)—for various classes of porous and reinforced elastomers. These applications have been

discussed in Chapters 3 through 8. To be precise, Chapters 3 through 5 have dealt with porous

elastomers, while Chapters 6, 7, and 8 have dealt with reinforced elastomers. Next, we summarize

the main findings in these chapters.

Chapter 3 has addressed the problem of the in-plane effective behavior of porous elastomers

consisting of aligned cylindrical voids distributed randomly and isotropically in an isotropic, strongly

elliptic matrix phase. One of the main results of this chapter was that the second-order estimates

proposed in this work are superior to the “earlier” tangent second-order estimates of Ponte Castañeda

and Tiberio (2000). The most distinctive difference was the fact that the new—unlike the earlier

tangent—second-order estimates were shown to recover the exact evolution of the porosity in the

case when the matrix phase of the porous elastomer was taken to be incompressible. In terms of

effective behavior, the second-order estimates were shown to satisfy the Voigt bound1 as well as to

be in very good agreement with the exact result available for hydrostatic loading. More remarkably,

the second-order estimates were found to admit loss of strong ellipticity under sufficiently large

compressive deformations, in spite of the fact that the elastomeric matrix phase was taken to be

strongly elliptic. The reasons for this behavior were linked to the evolution of the microstructure.

In particular, it was observed that the decrease of porosity—induced by compressive loading—led

to the softening of the effective incremental shear moduli of the composite, which, in turn, led (in

some cases) to the loss of strong ellipticity of the porous elastomer.

Chapter 4 has also addressed the problem of the in-plane effective behavior of porous elastomers

consisting of aligned cylindrical voids in an isotropic, strongly elliptic matrix phase, but the distribu-

tion of the voids was taken to be periodic—as opposed to random, like in Chapter 3. One of the main

aims of Chapter 4 was to carry out comprehensive comparisons between second-order estimates and

FEM calculations available for periodic microstructures. In this regard, the second-order estimates

were shown to deliver remarkably accurate results not only for the effective stress-strain relation of

porous elastomers, but more generally, for the evolution of the underlying microstructure, as well

as for the onset of macroscopic instabilities in these materials. Another important result of this

chapter was that the initial distribution of voids did not have a significant influence on the effective

stress-strain relation of porous elastomers. However, it did play a major role in the development

of macroscopic instabilities in these materials. In particular, it was shown that as the distribution

of the pores tended to be more random and isotropic, the porous elastomer tended to be relatively

more stable. In this connection, it should be re-emphasized that in the limit as the distribution of

the pores is completely random and isotropic, the development of macroscopic instabilities does not

vanish, but, instead, it persists, as discussed in Chapter 3.

In contrast to Chapters 3 and 4—where two-dimensional (2D) model problems were studied to

1Recall that for the case when the matrix phase is incompressible, the Voigt bound is only non-trivial for isochoric
deformations.
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gain insight on the behavior of porous elastomers, as well as to establish the accuracy of the second-

order method—the main objective of Chapter 5 was to develop homogenization-based constitutive

models for porous elastomers with more realistic, three-dimensional (3D) microstructures. Thus,

the type of porous elastomers considered in Chapter 5 were made up of initially spherical, polydis-

perse, vacuous inclusions distributed randomly and isotropically—in the undeformed configuration—

in a compressible, and incompressible, isotropic elastomeric matrix. This microstructure—though

idealized—could be considered as a fair approximation to actual microstructures in actual porous

elastomers. One of the strengths of the second-order estimates derived in Chapter 5 was their relative

simplicity. Indeed, in spite of incorporating fine microstructural information, the estimates reduced

to solving a system of 7 nonlinear, algebraic equations. In addition, the estimates derived in Chapter

5 were shown to be in good agreement with exact and numerical results available from the literature

for special loading conditions. For more general conditions, however, the second-order estimates

were seen to be drastically different from existing models. In particular, similar to their 2D counter-

parts discussed in Chapter 3, the proposed estimates were found to admit loss of strong ellipticity

for loading conditions where such instabilities were expected to occur from experimental evidence

(i.e., mostly for compressive loadings). This was in contrast with all existing (micromechanics- and

homogenization-based) models, which failed to lose strong ellipticity, and, instead, remained stable

for all applied loading conditions. The reasons for this result, once again, were discussed to be essen-

tially due to the ability of the second-order method to capture more accurately the subtle influence

of the evolution of the microstructure on the mechanical response of elastomeric composites.

Chapter 6 has dealt with the effective behavior of reinforced elastomers with layered microstruc-

tures. The motivation to consider such special class of microgeometries was twofold. First, exact

estimates could be computed quasi-analytically, which allowed to gain precious insight on the effec-

tive behavior of reinforced elastomers subjected to finite deformations. Second, there was a practical

interest to generate a preliminary understanding of the overall behavior of block copolymers with

layered microstructures. The main result of this chapter was to establish that the rotation of the

underlying layers—induced by the applied finite deformations—generated substantial geometric soft-

ening in the overall mechanical response of laminates. Moreover, in spite of the fact that, locally,

the material was assumed to be strongly elliptic, the homogenized behavior of the laminate was

found to lose strong ellipticity at sufficiently large deformations. In particular, when the laminate

was loaded in compression along the layers, a certain type of “kink-band” instability was detected

corresponding to the material becoming infinitesimally soft to incremental shear deformations in the

lamination direction.

Chapter 7 was concerned with the in-plane effective behavior of elastomers reinforced with aligned

cylindrical fibers of initially elliptical cross section. Further, the fibers were distributed randomly

with elliptical symmetry in the undeformed configuration. A major result of this chapter was the

strong influence of the evolution of the microstructure on the overall behavior of reinforced elas-

tomers. Indeed, in the specific context of elastomers reinforced with rigid fibers (of elliptical cross

section), the rotation (in the plane of the deformation) of the fibers when the composite was sub-

jected to finite stretches was identified as a potential softening mechanism, in accord with the
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findings of Chapter 6 (for laminates). Physically, the fibers could “accommodate” some of the ap-

plied macroscopic deformation through rigid rotations, hence inducing softer modes of deformation

in the matrix phase. In addition, the microstructure evolution not only had implications for the ef-

fective behavior, but also for the overall stability of the composite. In this regard, it was shown that

loss of strong ellipticity could take place in strongly elliptic elastomers reinforced with stiff fibers

(of elliptical cross section) at physically realistic levels of deformation. The underlying microscopic

mechanism driving these macroscopic instabilities was identified with the possible “flopping” of the

fibers, due to a sufficiently large compressive component of the applied deformation along the long

(in-plane) axes of the fibers. More specifically, in spite of the randomness, the assumed “elliptical

symmetry” of the microstructure exhibited a preferred microstructural orientation. Thus, the “flop-

ping” of the fibers provided a symmetry breaking mechanism leading to the possible development of

a macroscopic instability. Indeed, in the limit as the fibers (and their two-point correlation function)

were taken to be circular, so that the composite became isotropic, no loss of strong ellipticity was

detected, as there were no symmetries to be broken.

In summary, all the elastomeric systems studied in this thesis have revealed that there is a

very important and subtle interplay between the evolution of the underlying microstructure and

the overall behavior and stability of elastomeric composites. Moreover, it has been shown that

the second-order method proposed in this work is powerful enough as to capture this interplay

in order to deliver accurate estimates not only for the effective stress-strain relation, but also for

the microstructure evolution, as well as for the onset of macroscopic instabilities of elastomeric

composites subjected to finite deformations. In addition to its accuracy, the second-order method

has been shown to ultimately lead to remarkably simple estimates, which could be easily implemented

in standard finite element packages for solving structural problems of interest.

At this stage, it is important to make a few remarks regarding future directions in connection

with the results presented in this work. First of all, it should be recalled that in this thesis the

mechanical behavior of “neat” elastomers has been approximated as purely elastic. While this

might be a good approximation for certain ranges of loading-rate conditions and temperatures,

more elaborated approximations should be assumed in general. Indeed, elastomers are known to

exhibit hysteretic effects, as well as rate and temperature dependence (Bergström and Boyce, 1998;

Khan and Lopez-Pamies, 2002) that may be of great importance for certain applications. A future

objective, then, would be to develop a homogenization framework to model the viscoelastic response

of elastomeric composites under large deformations.

Another important effect that has not been addressed in this thesis is that of interphases. It is

well known (see, e.g., Ramier, 2004) that the actual mechanical behavior of reinforced elastomers

is strongly dependent on the reinforcement/matrix interaction. For instance, the stress-stretch re-

sponse of a synthetic rubber reinforced with untreated silica particles may differ by as much as

100% (in the finite deformation regime) from the response of the same synthetic rubber reinforced

with silica that has been treated on the surface (Ramier, 2004). Accordingly, it is crucial to take

into account the essential features characterizing the “interphase” between the reinforcement and

the elastomeric matrix in order to generate robust constitutive models for reinforced elastomers.
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Additionally, the study of such interphases may offer fundamental insight related to other prob-

lems of increasing interest such as damage, and more importantly, polymer nanocomposites, where

interphases play a major role.

Following up on the previous paragraph, a problem of increasing interest is that of the multi-

functional behavior of polymer nanocomposites. Ever since the late 1980’s, numerous experimental

studies have established that a significant enhancement of the mechanical, thermal, electrical, opti-

cal, and other physical properties in polymer-matrix nanocomposites is achievable for special choices

of the microstructure, even for small amounts of inhomogeneities (Bockstaller et al., 2005). For in-

stance, certain nylon-silicate nanocomposites have been shown to exhibit a 50% increase in the

modulus and the tensile strength, together with a 100% increase in the heat distortion temperature,

with only 5% volume fraction of the nanophase (Lagashetty and Venkataraman, 2005). Rubber-

ferrite nanocomposites have proved as very promising materials for flexible magnets, microwave

absorbers, pressure/photo sensors, as well as for other applications (Lagashetty and Venkataraman,

2005). Not surprisingly, all of these multi-functional phenomena are highly dependent on the mi-

crostructure. It seems, thus, that polymer nanocomposites are a fertile soil for developing efficient

modeling tools—in the spirit of the ones developed in this thesis—with the capability not only to

predict the behavior of these materials, but also to determine the specific microstructures that lead

to selected target properties.

Finally, it would also be of interest to consider the problems of semicrystalline polymers, block-

copolymers with polydomains, liquid-crystal elastomers, shape-memory polymers, and soft biological

tissues. It is believed that the ideas developed in this thesis could be used as the foundation for the

modeling of such complex material systems in an efficient manner.
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Appendix A

Second-order homogenization estimates

incorporating field fluctuations in finite

elasticity1

O. Lopez-Pamies and P. Ponte Castañeda

Department of Mechanical Engineering and Applied Mechanics

University of Pennsylvania, Philadelphia, PA 19104-6315, U.S.A.

Dedicated to Ray Ogden on the ocassion of his 60th birthday

Abstract—This paper presents the application of a recently proposed “second-order”

homogenization method (Ponte Castañeda 2002; J. Mech. Phys. Solids 50, 737) to

the estimation of the effective behavior of hyperelastic composites subjected to finite

deformations. The key idea is to introduce an optimally chosen “linear comparison com-

posite,” which can then be used to convert available homogenization estimates for linear

composites directly into new estimates for the nonlinear hyperelastic composites. More

precisely, the method makes use of “generalized” secant moduli that are intermediate

between the standard “secant” and “tangent” moduli of the nonlinear phases, and that

depend not only on the averages, or first moments of the fields in the phases, but also

on the second moments of the field fluctuations, or phase covariance tensors. The use of

the method is illustrated in the context of carbon-black-filled, and fiber-reinforced elas-

tomers, and estimates analogous to the well-known Hashin-Shtrikman and self-consistent

estimates for linear-elastic composites are generated. The new estimates are compared

with corresponding estimates using an earlier version of the method (Ponte Castañeda

and Tiberio 2000; J. Mech. Phys. Solids 48, 1389) neglecting the use of fluctuations,

1This Appendix, as presented, has been published in Lopez-Pamies and Ponte Castañeda, 2004a.
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and the new results are found to be superior. In particular, the new estimates, unlike the

earlier ones, are found to satisfy a rigorous bound, and to give more realistic predictions

in the important limit of incompressible behavior.

A.1 Hyperelastic composites and effective behavior

The objective of this paper is to develop estimates for the effective behavior of hyperelastic composite

materials subjected to finite deformations. The materials are made up of N different (homogeneous)

phases, which are assumed to be distributed randomly in a specimen occupying a volume Ω0 in the

reference configuration. Furthermore, the size of the typical inhomogeneity (e.g., particle, void,

crystal) is much smaller than the size of the specimen and the scale of variation of the loading

conditions. The constitutive behavior of the phases is characterized by stored energies W (r) (r =

1, ..., N) that are nonconvex functions of the deformation gradient F. The local energy function of

the composite may be written

W (X,F) =
N∑

r=1

χ(r)(X) W (r)(F), (A.1)

where the functions χ(r) are equal to 1 if the position vector X is inside phase r (i.e., X ∈ Ω(r)
0 ) and

zero otherwise. The stored-energy functions of the phases are, of course, assumed to be objective in

the sense that W (r)(QF) = W (r)(F) for all proper orthogonal Q and arbitrary deformation gradients

F. Making use of the polar decomposition F = RU, where U is the right stretch tensor and R is

the rotation tensor, it follows, in particular, that W (r)(F) = W (r)(U).

The local or microscopic constitutive relation for the material is given by

S =
∂W

∂F
(X,F), (A.2)

where S denotes the first Piola-Kirchhoff stress tensor. Note that sufficient smoothness has been
assumed for W in F and that F is required to satisfy the material impenetrability condition:

detF(X) > 0 for X in Ω0. For example, this condition would be satisfied for incompressible materi-

als, where detF is required to be exactly 1. For more details on hyperelastic materials, refer to the

monograph by Ogden (1984).

Following the works of Hill (1972), Hill and Rice (1973) and Ogden (1974), the effective stored-

energy function of the composite is defined by

W̃ (F) = inf
F∈K(F)

〈W (X,F)〉 = inf
F∈K(F)

N∑
r=1

c(r) 〈W (r)(F)〉(r), (A.3)

where K denotes the set of admissible deformation gradients:

K(F) = {F | x = χ(X) with F = Gradχ, detF > 0 in Ω0, x = FX on ∂Ω0}. (A.4)

Above, the symbols 〈.〉 and 〈.〉(r) have been introduced to denote volume averages over the composite

(Ω0) and over phase r (Ω(r)
0 ), respectively, so that the scalars c(r) = 〈χ(r)〉 serve to denote the volume

fractions of the given phases.



A. Second-order homogenization estimates in finite elasticity 190

It is noted that W̃ physically corresponds to the average elastic energy that is stored in the

composite when it is subjected to an affine displacement boundary condition with prescribed average

deformation gradient < F >= F. Furthermore, it can be easily shown that W̃ is objective, that is,

W̃ (F) = W̃ (U), where U is the macroscopic right stretch tensor in the polar decomposition of the

macroscopic deformation gradient F = R U, with R denoting the macroscopic rotation tensor.

The usefulness of the definition (A.3) derives from the fact that the average stress, defined by

S =< S >, can be shown to be related to the average deformation gradient F via the relation

S =
∂W̃

∂F
, (A.5)

where, again, sufficient smoothness must be assumed for W̃ . This is the effective or macroscopic

constitutive relation for the nonlinear elastic composite. Of course, the average stress and deforma-

tion gradient must satisfy macroscopic equilibrium and compatibility. In particular, the macroscopic

rotational balance equation S F
T

= F S
T

must be satisfied (Hill, 1972).

It is further recalled that under the hypotheses of polyconvexity of W , together with suitable

growth conditions for W , the infimum in relation (A.3) defining W̃ is known (Ball, 1977) to be

attained when the field x is assumed to be in a suitable functional space. Ogden (1978) proposed

alternative constitutive hypotheses on W ensuring the existence of extremum principles of potential

and complementary energy in finite elasticity. More precise definitions of the effective energy W̃

are available at least for periodic microstructures (Müller 1987; Braides 1985). Such definitions

generalize the classical definition of the effective energy for periodic media with convex energies

(Marcellini, 1978), by allowing for possible interactions between unit cells, essentially by taking

an infimum over the set of all possible combinations of units cells. Physically, this corresponds to

accounting for the possibility of the development of instabilities in the composite at sufficiently high

deformation. In practice, however, the definition (A.3) should provide an adequate measure of the

effective behavior up to the point at which instabilities develop (see Geymonat et al., 1993). Note

that W̃ is essentially the quasiconvexification (or relaxation) of W .

The focus here will be in the characterization of the effective behavior of composites made up of

rubber elastic phases. Given objectivity, isotropy then implies that the stored-energy functions of the

phases can be written as symmetric functions of the principal stretches λ1, λ2, λ3 (i.e., the principal

values of U), so that W (r)(F) = Φ(r)(λ1, λ2, λ3) = Φ(r)(λ2, λ1, λ3), etc. A fairly general class of such

stored-energy functions, which has been found to give good agreement with experimental data for

rubberlike materials, was proposed by Ogden (1972). Although the methods developed in this paper

will apply more generally, for simplicity, the attention here will be focused on polyconvex energy

functions of the type

W (F) = f(F) + g(J), (A.6)

where J = detF = λ1λ2λ3, and f and g are taken to be convex functions of the tensor F and the

scalar variable J > 0, respectively. A simple, special case of this general class of materials, which

will be considered in some detail below is given by the compressible Neo-Hookean material with
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stored-energy function of the form:

W (F) =
µ

2
(
λ2

1 + λ2
2 + λ2

3 − 3
)

+
µ′

2
(J − 1)2 − µ ln J. (A.7)

where the parameters µ > 0 and µ′ > 0 denote the standard Lamé moduli. Note that W (F) ∼
(1/2)µ′(trε)2 + µtrε2, where ε is the infinitesimal strain tensor, as F → I, so that the stored-energy

function (A.7) linearizes properly. In addition, the limit as µ′ →∞ in relation (A.7) corresponds to

incompressible behavior (J → 1).

The objective of this work then becomes to obtain estimates for the effective stored-energy

function W̃ of hyperelastic composites subjected to finite deformations. This is an extremely difficult

problem, because it amounts to solving a set of highly nonlinear partial differential equations with

random coefficients. As a consequence, there are precious few analytical estimates for W̃ . Ogden

(1978) noted that use of the trial field F = F in the definition (A.3) for W̃ leads to an upper

bound analogous to the well-known Voigt upper bound in linear elasticity. Also, under appropriate

hypotheses on W ensuring the existence of a principle of minimum complementary energy, Ogden

(1978) also proposed a generalization of the Reuss lower bound. However, the required constitutive

hypothesis is too strong to include materials such as the compressible Neo-Hookean material defined

by relation (A.7). For this reason, Ponte Castañeda (1989) proposed an alternative generalization

of the Reuss lower bound, exploiting the polyconvexity hypothesis. For polyconvex materials of the

type (A.6), this lower bound takes the form:

W̃ (F) ≥ W̃PC(F) .=
(
f∗

)∗
(F) +

(
g∗

)∗ (detF). (A.8)

Thus, the bound W̃PC reduces to the polyconvex envelope (Dacorogna, 1989) of the function W ,

given by relation (A.6), when the special case of a homogeneous material is considered. Note

that, due to the lack of convexity of the function W , this lower bound is much sharper (see Ponte

Castañeda, 1989) than the bound that would be obtained by means of the standard Legendre-Fenchel

transform applied directly to the function W , which would lead to a bound of the type
(
W ∗)∗ (F).

There are also numerous empirically based, and ad hoc estimates for various special cases, includ-

ing the case of rigidly reinforced rubbers (see (Mullins and Tobin, 1965; Treloar, 1975; Meinecke and

Taftaf, 1988; Govindjee and Simo, 1991; Bergström and Boyce, 1999)). Our aim here is to develop a

general class of analytical estimates that are based on homogenization theory and that are applicable

to large classes of composite systems, including rigidly reinforced rubbers, porous elastomers and

other heterogeneous elastomeric systems, such as nematic elastomers and block copolymers. Such

estimates should allow for the incorporation of statistical information beyond the phase volume frac-

tions, thus allowing for a more precise characterization of the influence of microstructure on effective

behavior. Some progress along these lines has been made recently (Ponte Castañeda and Tiberio,

2000; Lahellec et al., 2004) with the extension of an earlier version of the “second-order” nonlinear

homogenization technique (Ponte Castañeda, 1996) to finite elasticity.
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A.2 The second-order variational procedure

Our proposal for generating homogenization estimates in finite elasticity is based on an appropriate

extension of the “second-order” homogenization procedure that has been recently developed by

Ponte Castañeda (2001; 2002a) in the context of nonlinear dielectrics and viscous composites with

convex, nonlinear potentials. This new method is in turn a generalization of the “linear comparison”

variational method of Ponte Castañeda (1991) in a way that incorporates many of the desirable

features of an earlier version of the second-order method (Ponte Castañeda, 1996; Ponte Castañeda

and Willis, 1999), including the fact that the estimates generated should be exact to second order

in the heterogeneity contrast (Suquet and Ponte Castañeda, 1993). It is relevant to mention in this

context that earlier works (e.g., Talbot & Willis, 1985; Ponte Castañeda 1991) delivered bounds

that are exact only to first order in the contrast. Next we give a brief description of the proposed

method.

Following (Ponte Castañeda, 1996), define a comparison linear “thermoelastic” composite with

potential:

W0(X,F) =
N∑

r=1

χ(r)(X)W
(r)
0 (F), (A.9)

where the quadratic functions W
(r)
0 correspond to second-order Taylor approximations of the non-

linear stored-energy functions W (r) about certain uniform reference deformations F(r):

W
(r)
0 (F) = W (r)(F(r)) + S(r)(F(r)) · (F− F(r)) +

1
2
(F− F(r)) · L(r)

0 (F− F(r)). (A.10)

Here S(r) = ∂W (r)/∂F, and L(r)
0 is a positive definite, constant tensor to be determined later. Then,

S = S(r)(F(r)) + L(r)
0 (F − F(r)) is the stress associated with F in phase r of the linear comparison

composite. Note that the nonlinear stored-energy functions W (r) can then be approximated as:

W (r)(F) = W
(r)
0 (F) + V (r)(F(r),L(r)

0 ). (A.11)

where the V (r) are “error” functions defined by:

V (r)(F(r),L(r)
0 ) = stat

F̂(r)

[
W (r)(F̂(r))−W

(r)
0 (F̂(r))

]
. (A.12)

In these expressions, the optimization operation stat with respect to a variable means differentiation

with respect to that variable and setting the result equal to zero to generate an expression for the

optimal value of the variable.

For later use, let

W̃0(F;F(s),L(s)
0 ) = min

F∈K
〈W0(X,F)〉 = min

F∈K

N∑
r=1

c(r)〈W (r)
0 (F)〉(r) (A.13)

be the effective free-energy density associated with the fictitious linear thermoelastic composite,

which has the same microstructure as the original nonlinear elastic composite. To see this more

explicitly (see, for example, Willis, 1981), note that the Euler-Lagrange equations of the variational

problem for W̃0 are

∇ · (L0∇x−T) = 0 in Ω, x = FX on ∂Ω, (A.14)
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Figure A.1: (a) Sketch of the nonlinear constitutive relation (continuous stress S vs. stretch F curve) and

of its linear approximation (dashed line). (b) Schematic comparison of the “secant” (L
(r)
s ), “tangent” (L

(r)
t )

and new “generalized secant” (L
(r)
0 ) approximations.

where L0 is the elasticity tensor of the linear comparison composite with free energy (A.10), T

denotes a suitably defined thermal stress tensor, and where the temperature and heat capacity

at constant strain are taken to be unity and zero, respectively. Note that this fictitious linear

thermoelastic problem is one involving, in general, non-symmetric “stress” and “strain” measures,

so that suitable generalizations of the classical thermoelastic analyses are required (Ponte Castañeda

and Tiberio, 2000). In particular, estimates of the self-consistent and Hashin-Shtrikman types may

be obtained by appropriate extension of the corresponding methods for linear-elastic composites

(Laws, 1973; Willis, 1981).

Using relations (A.11), averaging the resulting expression for W over Ω0, minimizing over F in

K and optimizing over tensors F(s) and L(s)
0 , it follows that (Ponte Castañeda, 2002a):

W̃ (F) = stat
F(s), L

(s)
0

{
W̃0(F;F(s),L(s)

0 ) +
N∑

r=1

c(r)V (r)(F(r),L(r)
0 )

}
, (A.15)

where the V (r) and W̃0 are defined by relations (A.12) and (A.13), respectively. Here it has been

assumed that the resulting optimal values of F(s) and L(s)
0 are such that the linear comparisons

problem (A.13) is well posed.

It is easy to verify that formally setting the tensors F(s) identically equal to zero leads to estimates

of the type first proposed in (Ponte Castañeda, 1991) for materials with convex energy functions.

In order to do better, it is necessary to consider the definition of the functions V (r) above in more

detail. First note that optimizing with respect to the variables F̂(r) in (A.12) leads to the relations:

S(r)(F̂(r))− S(r)(F(r)) = L(r)
0 (F̂(r) − F(r)), (A.16)

where again sufficient smoothness has been assumed for the W (r). This condition has a nice physical

interpretation as depicted in the one-dimensional sketch shown in Figure A.1a: it corresponds to
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a linear approximation to the nonlinear constitutive relation for the elastic material in phase r

interpolating between the deformations F(r) and F̂(r). Note that this condition does not have

a unique solution, and appropriate choices must be made for the relevant variables. Indeed, as

illustrated in Figure A.1a, there are 3 stationary points (the 3 points where the dashed, straight line

intersects the continuous nonlinear curve), which lead to three different types of approximations.

Thus, as illustrated in Figure A.1b, the “secant” approximation is obtained by setting F(r) = 0,

while the “tangent” approximation is obtained by letting F̂(r) tend to F(r). On the other hand,

when F̂(r) 6= F(r) and F(r) 6= 0, a new type of approximation is obtained, which has been referred

to (Ponte Castañeda, 2002a) as a “generalized secant” approximation.

Under the assumption that F̂(r) 6= F(r), consideration of the optimality conditions with respect

to the variables F(r) and L(r)
0 in expression (A.15) formally leads to the following prescriptions:

F(r) = 〈F〉(r) .= F
(r)

, (A.17)

and

(F̂(r) − F
(r)

)⊗ (F̂(r) − F
(r)

) = 〈(F− F
(r)

)⊗ (F− F
(r)

)〉(r) .= C(r)
F , (A.18)

where use has been made of the relation:

C(r)
F =

2
c(r)

∂W̃0

∂L(r)
0

. (A.19)

In the first relation, the symbol F
(r)

has been used to denote the phase averages of the deformation

field 〈F〉(r). Thus, the reference deformations F(r) have been identified with the phase averages

or first moments of the deformation field F
(r)

. In the second relation, the symbol C(r)
F have been

introduced to denote the covariance tensor of the deformation fluctuations in phase r (e.g., Bobeth

& Diener, 1987). Therefore, the variables F̂(r) have been associated with the second moments of the

deformation field in the phases.

In connection with the above prescriptions, it is necessary to make the following clarifications.

Concerning the prescription (A.17), it should be noted that relation (A.17) only makes stationary

with respect to F(r) the terms arising from the linear comparison energy W̃0. In other words, there

are additional terms arising from the functions V (r), which have been neglected, for simplicity.

Concerning the prescription (A.18), it needs to be emphasized that it is not possible to satisfy

conditions (A.18) in full generality. This is due to the fact that the left-hand of relation (A.18) is a

fourth-order tensor of rank 1, whereas the right-hand side is generally of full rank. This means that

only certain components (or traces) of these expressions can be enforced. This point will be discussed

in more detail in the context of the specific examples considered in the applications section. Generally

speaking, the optimal choice of the variables F(r) and L(r)
0 is still an open problem. However, it

is known at least in the context of plasticity (Ponte Castañeda, 2002b) that conditions (A.17) and

appropriate traces of (A.18) lead to accurate estimates for the effective behavior. This suggests that

even if the prescriptions (A.17) and (A.18) are not strictly optimal, they are still probably not far

from optimal.

It follows from the above prescriptions that the secant-type condition (A.16) specializes to:

∂W (r)

∂F
(F̂(r))− ∂W (r)

∂F
(F

(r)
) = L(r)

0 (F̂(r) − F
(r)

), (A.20)
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and that the expression (A.15) for the effective potential of the hyperelastic composite reduces to:

W̃ (F) =
N∑

r=1

c(r)

[
W (r)(F̂(r))− ∂W (r)

∂F
(F

(r)
) · (F̂(r) − F

(r)
)
]

. (A.21)

In summary, the estimate (A.21) has been generated. Like the earlier “second-order” estimates

(Ponte Castañeda, 1996), it depends on the phase averages F
(r)

of the deformation field in a suit-

ably defined linear “thermoelastic” comparison composite, subject to the self-consistent prescription

(A.17) on the reference variables F(r). However, the new prescription (A.20) for the comparison

moduli L(r)
0 is different from earlier ad hoc choices, being somewhat intermediate between the “se-

cant” (Ponte Castañeda, 1991) and the “tangent” conditions (Ponte Castañeda, 1996). In addition,

the new estimate depends directly on the variables F̂(r), which, in turn, depend on (appropriate

traces of) the “second moments” of the fluctuations C(r)
F of the deformation field in the phases of

the linear comparison composite, as specified by the prescription (A.18). Furthermore, like the ear-

lier “second-order” estimates, they are exact to second-order in the heterogeneity contrast (Suquet

and Ponte Castañeda, 1993).

It is remarked finally that the linear comparison problem (A.13) that needs to be considered for

the determination of the phase averages F
(r)

and fluctuations C(r)
F needed in expression (A.21) for

W̃ is precisely the same that was considered by Ponte Castañeda and Tiberio, 2000 in the earlier

version of the second-order method. These authors provided expressions of the Hashin-Shtrikman

and self-consistent types (Willis, 1981) for the average deformations F
(r)

in the generalized N -

phase “thermoelastic” composites (A.10), from which corresponding estimates may be generated

for the corresponding effective stored-energy functions W̃0, and, in turn, for the fluctuations C(r)
F

via (A.19). For brevity, the relevant general expressions will not be repeated here, and only the

appropriate specialized versions of the results will be quoted in the applications sections for the

special case of rigidly reinforced systems.

A.3 Application to particle-reinforced elastomers

The second-order estimate (A.21) for the effective stored-energy function of hyperelastic composites

applies for N -phase systems, including, with a suitable reinterpretation, polycrystalline aggregates

of anisotropic phases. In this section, the special case of isotropic rigidly reinforced rubbers is

considered. This case has already been considered using the earlier version of the second-order

method (Ponte Castañeda and Tiberio, 2000) and these earlier results will be used here as a reference.

Thus, the focus will be on two-phase composites consisting of rigid, spherical inclusions distributed

isotropically with volume fraction c(2) = c in a hyperelastic matrix with energy function W (1) = W ,

such that the composite is statistically isotropic in the undeformed configuration.

Because of the objectivity of W̃ , it suffices to consider macroscopic stretch loading histories

(i.e., F = U; R = I). Because of the spherical (isotropic) symmetry of the reinforcement and its

distribution, it is expected (Ponte Castañeda and Tiberio, 2000) that the average rotation tensor of

the rigid phase is the identity, so that the average deformation gradient in the inclusion phase is also
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equal to the identity (i.e., F
(2)

= I). It then follows trivially that the average deformation gradient

in the hyperelastic phase is given by:

F
(1)

=
1

1− c

(
U− c I

)
. (A.22)

Note that F
(1)

= U
(1)

, so it is convenient to define the principal stretches associated with U
(1)

via

λ
(1)

i = (λi − c)/(1− c) (i = 1, 2, 3), where λi (i = 1, 2, 3) are the principal stretches associated with

U. The above result would still be expected to apply, up to the onset of some possible instability,

even if the shape or distribution (see Ponte Castañeda and Willis, 1995) of the rigid phase were

not spherical, provided that their symmetry axes were aligned with the principal directions of U.

Otherwise, the reinforcement would undergo an average rigid rotation R
(2)

, which would have to be

determined from the full homogenization procedure described in the earlier sections of this paper.

This would, of course, make the treatment of such cases more complicated. However, such more

general analyses should lead to the result that F
(2)

= R
(2)

= I for the special case considered here

where the reinforcement is isotropically distributed. Lahellec (2004) has pursued this more general

approach in the analogous context of a two-phase, periodic composite loaded symmetrically. (The

case of rigid fibers was approximated by taking the contrast to be sufficiently large.)

A.3.1 Lower bounds

Before proceeding with the second-order estimates, the above-mentioned “polyconvex” lower bounds

of Ponte Castañeda (1989) will be specialized here for later reference. Note that the classical Voigt

upper bound is infinite in this case. It can be shown that specialization of the bound (A.8) to an

isotropic rigidly reinforced elastomer with a compressible Neo-Hookean matrix (A.7) leads to:

W̃PC(U) = (1− c)

[
µ

2

(
F

(1) · F(1) − 3
)

+
µ′

2

(
J̄ − 1
1− c

)2

− µ ln
(

J̄ − c

1− c

)]
, (A.23)

where µ, µ′ are the Lamé moduli of the elastic phase, F
(1)

is given by (A.22), and J̄ = λ1λ2λ3. In

the derivation of this result, it has been assumed that the stored energy W (2) of the rigid phase is

infinite unless F
(2)

= I, in which case it is zero. This assumption is consistent with the hypothesis

that due to the isotropy of the rigid particles and their distribution, the particles do not rotate.

In the incompressible limit, µ′ →∞ the above lower bound reduces to W̃ I
PC(U) = Φ̃I

PC(λ1, λ2, λ3),

where

Φ̃I
PC(λ1, λ2, λ3) = (1− c)

µ

2

[(
λ1 − c

1− c

)2

+
(

λ2 − c

1− c

)2

+
(

λ3 − c

1− c

)2

− 3

]
, (A.24)

whenever J̄ = λ1λ2λ3 = 1 (and ∞ otherwise). Note that this bound is, therefore, consistent with

the “exact” incompressibility constraint

gE(λ1, λ2, λ3) = λ1λ2λ3 − 1 = 0, (A.25)

expected on physical grounds (i.e., a composite with an incompressible matrix and rigid inclusions

should be incompressible). However, this bound does not linearize properly, i.e., it does not reduce
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to the classical Reuss lower bound for infinitesimal deformations. In spite of this fact, this bound will

prove to be useful below in checking the validity of the new second-order estimates to be developed

next.

A.3.2 Second-order estimates

For the above-defined class of rigidly reinforced elastomers, the second-order estimate (A.21) reduces

to

W̃ (U) = (1− c)
[
W (F̂(1))− ∂W

∂F
(F

(1)
) · (F̂(1) − F

(1)
)
]

, (A.26)

where F
(1)

has already been specified in (A.22). It remains to determine the variable F̂(1), as well

as the modulus tensor L0 of the matrix phase in the linear comparison composite, which can be

achieved by means of the relation

∂W

∂F
(F̂(1))− ∂W

∂F
(F

(1)
) = L0(F̂(1) − F

(1)
), (A.27)

together with suitably chosen traces of the relation

(F̂(1) − F
(1)

)⊗ (F̂(1) − F
(1)

) = C(1)
F . (A.28)

In this last relation,

C(1)
F =

2
1− c

∂W̃0

∂L0
(A.29)

is the covariance of the fluctuations in the matrix phase of the linear comparison composite, with

effective stored energy function given by:

W̃0(U) = (1− c)W (F
(1)

) +
1
2
(U− I) ·

(
L̃0 − 1

1− c
L0

)
(U− I). (A.30)

This last relation has been generated by making use of a generalization of Levin’s relation (Levin,

1967) for two-phase thermoelastic composites (see also (Ponte Castañeda and Tiberio, 2000)), letting

phase 2 have the energy function:

W (2)(F) =
1
2
µ

(2)
0 (F− I) · (F− I), (A.31)

and taking the limit as µ
(2)
0 →∞ in the free energy expression (A.13). Again, note that the above

form for W (2) is consistent with the requirement that F
(2)

should tend to I in the limit as µ
(2)
0 →∞.

In expression (A.30), L̃0 thus denotes the effective modulus tensor of a two-phase, linear-elastic

comparison composite consisting of a distribution of rigid inclusions with volume fraction c in a

matrix with elastic modulus L0 and the same microstructure as the nonlinear elastic composite (in

its undeformed configuration).

It is emphasized that the above estimate for W̃ is actually valid for any estimate for the effective

modulus tensor L̃0 of the linear comparison composite. For example, use can be made of the following

isotropic Hashin-Shtrikman and self-consistent estimates for L̃0:




L0 + c
1−cP

−1 HS,

L0 + cP̃−1 SC.
. (A.32)
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where P and P̃ are obtained by setting L(0) equal to L0 and L̃0, respectively, in the expression:

P(0) =
1
4π

∫

|ξ| = 1
H(0)(ξ) dS, (A.33)

with K
(0)
ik = L

(0)
ijkhξjξh , N(0) = K(0)−1

, H
(0)
ijkh(ξ) = N

(0)
ik ξjξh.

While fairly explicit, the above results, in general, require the computation of the tensor P

(or P̃), which depends on the anisotropy of L0 (or L̃0). In turn, the anisotropy of these tensors

depends on the functional form of the stored-energy function W and the loading configuration,

as determined by F = U. In addition, the derivatives of the tensor P with respect to L0 are

needed in the characterization of the fluctuations C(1)
F , which requires further computations. In this

work, which presents the first application of the (improved version of the) second-order method to

finite elasticity, a simple, yet illustrative example, where the computation of the P tensor and its

derivatives is simple, will be worked out in detail. Thus, estimates of the Hashin-Shtrikman type will

be derived for plane strain loading of a two-dimensional fiber-reinforced composite. More general

situations, including uniaxial and shear loading of three-dimensional particle-reinforced composites,

and types of estimates will be presented elsewhere.

However, before specializing to the two-dimensional fiber-reinforced composite, it is noted here

that when used together with the Reuss estimate for the effective modulus tensor (L̃0 = (1−c)−1L0),

the second-order method yields the explicit result:

W̃ (U) = (1− c)W
[

1
1− c

(
U− cI

)] .= W̃R(U). (A.34)

This estimate agrees exactly with the corresponding estimate generated using the earlier version of

the second-order method without fluctuations (Ponte Castañeda and Tiberio, 2000). This is a direct

consequence of the fact that the fluctuations in the Reuss theory are identically zero, so that there

are no differences between the earlier and newer versions of the second-order theory. As already

known (Ponte Castañeda and Tiberio, 2000), the Reuss estimate (A.34) is not necessarily a lower

bound, except for small deformations, when the above result reduces (exactly to second order in the

infinitesimal strain) to the classical Reuss lower bound. It is interesting to note that the estimate

(A.34) was first obtained by Govindjee and Simo (1991) by different means.

When the Reuss estimate (A.34) is specialized to a compressible Neo-Hookean matrix phase with

W given by the relation (A.7), it specializes to:

W̃R(U) = (1− c)
[
µ

2

(
F

(1) · F(1) − 3
)

+
µ′

2

(
J̄ (1) − 1

)2

− µ ln
(
J̄ (1)

)]
, (A.35)

where µ, µ′ are the Lamé moduli of the elastic phase, F
(1)

is given by (A.22), and J̄ (1) = λ
(1)

1 λ
(1)

2 λ
(1)

3

(with λ
(1)

i = (λi − c)/(1− c)).

It is interesting to remark that the Reuss estimate (A.35) differs from the lower bound (A.23)

only through the terms that depend on the determinant. It can be shown that this estimate violates

the bound (A.23) for certain loadings. For example, for loadings such that J̄ (1) = 1, it can be verified

that the Reuss estimate (A.35) actually lies below the bound (A.23).

From the result (A.35) it is possible to generate the corresponding result for an incompressible

Neo-Hookean matrix phase by considering the limit as µ′ tends to infinity. The result may be written
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in the form W̃ I
R(U) = Φ̃I

R(λ1, λ2, λ3), where:

Φ̃I
R(λ1, λ2, λ3) = (1− c)

µ

2

[(
λ1 − c

1− c

)2

+
(

λ2 − c

1− c

)2

+
(

λ3 − c

1− c

)2

− 3

]
. (A.36)

In this expression, the principal stretches λi are required to satisfy the “approximate” incompress-

ibility constraint J̄ (1) = 1, which can be written as

gA(λ1, λ2, λ3) =
(

λ1 − c

1− c

) (
λ2 − c

1− c

)(
λ3 − c

1− c

)
− 1 = 0. (A.37)

While exact to second-order in the infinitesimal strain, this “approximate” macroscopic incompress-

ibility constraint is not identical to the “exact” constraint (A.25). Note that, because of this, the

incompressible Reuss estimate (A.36) is really different from the incompressible polyconvex bound

(A.24).

Thus, it appears that at least for the Reuss-type estimate, where the fluctuations are ignored, the

second-order method yields predictions that are inaccurate in the incompressible limit and have been

shown to violate a rigorous bound more generally. Within the context of the earlier second-order

theory, it was found that even for estimates of the Hashin-Shtrikman type, the incompressible limit

was troublesome, and direct application of the theory led to the same “approximate” macroscopic

incompressibility constraint (A.37). For this reason, an “alternate” approach (see also (Lahellec et

al., 2004) for yet a third approach) was proposed in reference (Ponte Castañeda and Tiberio, 2000)

to avoid this limitation of the earlier version of the second-order theory. This approach consisted in

evaluating the compressible term proportional to µ′ directly. For later reference, the result of this

“alternate” approach is recalled here:

Φ̃A
R(λ1, λ2, λ3) = (1− c)

µ

2

[(
λ1 − c

1− c

)2

+
(

λ2 − c

1− c

)2

+
(

λ3 − c

1− c

)2

− 3− 2 ln
(
J̄ (1)

)]
, (A.38)

where the logarithmic term arises because the exact constraint (A.25) must be enforced (and there-

fore J̄ (1) = (λ1 − c)(λ2 − c)(λ3 − c)/(1− c)3 is not necessarily equal to 1).

Naturally, the hope is that the new version of the second-order theory, incorporating field fluctu-

ations, should lead to better predictions, which should not only yield the “exact” incompressibility

constraint in the limit of an incompressible matrix phase, but should also not violate any known

bounds. This expectation will be explored in the next section in the context of the fiber-reinforced

example mentioned earlier.

A.4 Plane strain loading of transversely isotropic, fiber-reinforced

Neo-Hookean composites

A.4.1 Formulation

In this section, plane strain deformations of a fiber-reinforced composite are considered where the

rigid fibers, which are perpendicular to the plane of the deformation, are aligned in the x3 direction.

The distribution of the reinforcement in the transverse plane is isotropic, so that the hypotheses
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that were made in the derivation of relation (A.26) for W̃ carry over to this special case, with an

appropriate (two-dimensional) modification of the relevant P tensor in the relevant expressions for

L̃0. Here, for simplicity, estimates of the Hashin-Shtrikman (HS) type (A.32)1 will be determined

for the special case of a Neo-Hookean matrix phase with stored-energy function given by (A.7).

The applied deformation F = U in this case is entirely characterized by the two in-plane principal

stretches λ1 and λ2, the out-of-plane principal stretch λ3 being identically 1.

Because of the transverse isotropy of the microstructure and the orthogonal symmetry of the

loading condition, it is reasonable to assume that the linear comparison problem of relevance here

will also exhibit orthotropic symmetry, with the symmetry axes aligned with the applied loading

F = U. For plane strain conditions, it suffices to consider the in-plane components of a general

deformation tensor F relative to the symmetry axes, which for convenience will be written as a

vector in R4:

[F11 F22 F12 F21]
T

. (A.39)

The modulus tensor L0of the linear comparison composite, which is expected to also exhibit or-

thotropic symmetry, will correspondingly be expressed as a matrix in R4×4:



L∗1111 L1122 0 0

L∗1122 L∗2222 0 0

0 0 L∗1212 L∗1221
0 0 L∗1221 L∗2121




. (A.40)

where the diagonal symmetry of the tensor L0 has been used (i.e., Lijkl = Lklij).

Now, given the above assumptions, the tensor F̂(1) is seen to have at most 4 independent com-

ponents (F̂ (1)
11 , F̂

(1)
22 , F̂

(1)
12 , F̂

(1)
21 ,), which must be extracted from relation (A.28). This suggests that

the tensor L0 should have at most 4 independent components, with respect to which W̃0 should be

differentiated to generate 4 relations for the 4 components of F̂(1) using relation (A.29). Carrying

this program out would, in effect, fix the traces of relation (A.28) to be considered. At the present

time, it is not clear what the best choice for the components of L0 (and, therefore, for the traces of

(A.28)) should be. Here, use will be made of the following prescriptions:

L1212 = L2121, and L1221 + L1122 =
√

(L1111 − L1212) (L2222 − L1212), (A.41)

which reduce the components of the L0 to only 4 independent ones (L1111, L2222, L1122, L1212). The

motivations for these choices are: (i) they are consistent with those satisfied by the components of

the tangent modulus of a Neo-Hookean material, expressed relative to the symmetry axes; and (ii)

they simplify considerably the expressions for the tensor P (in fact, they lead to simple analytical

results for all components, which are spelled out in Appendix A).

With these additional hypotheses, the equations (A.28) to (A.30), together with equations

(A.32)1 for the Hashin-Shtrikman estimate for L̃0, can be used to generate 4 equations for the

4 components of F̂(1), which are of the form:

(
F̂

(1)
11 − F̄

(1)
11

)2

+ 2f1F̂
(1)
12 F̂

(1)
21 = k1
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(
F̂

(1)
22 − F̄

(1)
22

)2

+ 2f2F̂
(1)
12 F̂

(1)
21 = k2(

F̂
(1)
12

)2

+
(
F̂

(1)
21

)2

+ 2f3F̂
(1)
12 F̂

(1)
21 = k3(

F̂
(1)
11 − F̄

(1)
11

)(
F̂

(1)
22 − F̄

(1)
22

)
− F̂

(1)
12 F̂

(1)
21 = k4, (A.42)

where f1, f2, f3, k1, k2, k3, k4 are functions of the components of L0 (or, more precisely, of the

3 ratios L1111/L2222, L1122/L2222, and L1212/L2222), as well as of the deformation F and the fiber

concentration c. These equations can be shown to have only two distinct solutions for F̂
(1)
11 and

F̂
(1)
22 , in terms of which F̂

(1)
12 and F̂

(1)
21 may be computed. Note that there are 4 possible solutions

for these last two variables (this is because only the combinations F̂
(1)
12 F̂

(1)
21 and

(
F̂

(1)
12

)2

+
(
F̂

(1)
21

)2

can be determined uniquely from these equations), but for a given root for F̂
(1)
11 and F̂

(1)
22 , they all

give the same predictions for the energy, so that they are all essentially identical. For completeness,

it is noted that the two roots for F̂
(1)
11 and F̂

(1)
22 are given by:

F̂
(1)
11 − F̄

(1)
11 = ± 2f1k4 + k1√

4f12k2 + 4f1k4 + k1
, F̂

(1)
22 − F̄

(1)
2 = ± 2f1k2 + k4√

4f12k2 + 4f1k4 + k1
, (A.43)

where it is emphasized that the positive (and negative) signs in the roots for F̂
(1)
11 and F̂

(1)
22 go

together.

Finally, for each of the two essentially distinct roots for the components of F̂(1) in terms of the

4 independent components of L0, two sets of 4 additional equations are generated for L1111, L2222,

L1122, and L1212 from the generalized secant conditions (A.27). Now, for the particular case of the

Neo-Hookean potential (A.7), one of these equations can be solved exactly for L1212, giving the

result L1212 = µ. The remaining 3 equations must be solved numerically. Having computed the

values of all the components of L0 for a given fiber volume fraction c, given material parameters (µ

and µ′), and given loading (λ1 and λ2), the values of the components of F̂(1) can be computed using

relations (A.43). Then, these results may be used together with the expression (A.22) for F
(1)

to

compute the effective stored-energy function W̃ for the rigidly reinforced composite using relation

(A.26).

Some illustrative results will be presented in the next subsection and compared with earlier

results and bounds. However, before doing this, the incompressible limit (µ′ → ∞) of the effective

stored energy is considered here. (Note that for actual rubbers µ′/µ ≈ 104.) In this context, it

is important to note that the above two distinct roots have very different asymptotic behaviors in

the limit as µ′ increases. The main distinguishing feature of the solutions associated with the two

roots (A.43) of the equations (A.42) is that for one root, which is labeled the “positive” (+) root,

Ĵ (1) = det F̂(1) ≥ J̄ (1) = detF
(1)

, while for the other, labeled the “negative” (−) root, the opposite

is true.

For the negative-root solution, it can be shown that consideration of the incompressible limit

of the energy for W̃ leads to the “approximate” incompressibility constraint (A.37), in agreement

with the corresponding limit obtained from the earlier version of the “second-order” theory (not

incorporating field fluctuations). Because of this negative feature, and for reasons that will be

detailed in the next subsection on results, this solution will not be pursued further here.

On the other hand, for the positive-root solution, it can be shown that the incompressible limit
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of W̃ is consistent with the “exact” incompressibility constraint (A.25), and therefore consistent

with the expected physics of the problem. The mathematical limit is a bit unusual in that some of

the components of L0 (i.e., L1111, L1122, L2222) become unbounded at finite values of µ′, depending

on µ, the loading level and the particle concentration. Further details are given in Appendix B,

but the final result for the effective stored-energy function of the rigidly reinforced composite with

a Neo-Hookean matrix phase may be written:

Φ̃I
HS(λ1, λ2) = Φ̃I

R(λ1, λ2) +
µ

2
c

(1− c)

[(
λ2 − c

) (
λ1 − 1

)2

(
λ1 − c

) +

(
λ1 − c

) (
λ2 − 1

)2

(
λ2 − c

)

+
(
λ1 − λ2

)2
]
, (A.44)

where Φ̃I
R is given by expression (A.36) with λ3 = 1, and it is emphasized that the exact incompress-

ibility constraint (A.25) is satisfied. This result should be compared with the corresponding result

(cf. eqn. (46) in (Ponte Castañeda and Tiberio, 2000)) from the earlier version of the second-order

procedure (without fluctuations), which, unlike (A.44), is inconsistent with the exact incompress-

ibility constraint (A.25).

In the next section, comparisons will be made with the “alternate” version (see Appendix of

(Ponte Castañeda and Tiberio, 2000)) of the old second-order estimate, which also leads to the

exact incompressibility constraint, and is given by:

Φ̃A
OHS(λ1, λ2) = Φ̃A

R(λ1, λ2) +
µ

2

(
c

1− c

) [
1 +

(1− c)2

(λ1 − c)(λ2 − c)

] [(
λ1 − 1

)2
+

(
λ2 − 1

)2
]
. (A.45)

where Φ̃A
R is given by expression (A.38). Briefly, this estimate was generated by applying the old

second-order method to only part of the energy, the additional terms being evaluated by other means.

This required certain manipulations that were difficult to justify. The new estimate (A.44), on the

other hand, is generated directly from the improved version of the second-order method, without

the need of additional assumptions.

A.4.2 Results

Figure A.2 provides a comparison of the new second-order estimates of the HS type with earlier

estimates and bounds for a compressible Neo-Hookean matrix phase with given moduli µ, and µ′,

reinforced with c = 0.30 rigid fibers. Results are shown as function of the applied stretch λ for

two different types of loading: (a) pure shear with λ1 = λ and λ2 = 1/λ, which satisfies the

exact overall incompressibility constraint J̄ = detF = 1; and (b) λ1 = λ and λ2 chosen such

that the “approximate” overall incompressibility constraint J̄ (1) = detF
(1)

= 1 is satisfied. (It is

emphasized that the composite is compressible and therefore should be able to accommodate both

types of deformation conditions.) For completeness, both “roots” are shown for the new second-order

estimates, respectively labelled Φ̃(+)
HS and Φ̃(−)

HS for the above-defined “positive-root” and “negative-

root” solutions. They are compared against the polyconvex lower bound (A.23), denoted Φ̃PC , the

Reuss estimate (A.35), denoted Φ̃R, and the old version (Ponte Castañeda and Tiberio, 2000) of the

second-order HS estimates, labelled Φ̃OHS . The energy function of the matrix phase is also shown

in dashed lines for reference.
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Figure A.2: New second-order and other estimates and bounds for the effective stored energy of a compress-
ible Neo-Hookean rubber reinforced with a fixed concentration (c = 0.3) of aligned rigid fibers, as functions
of the applied stretch λ. (a) Pure shear loading with λ1 = λ and λ2 = 1/λ; and (b) loading with λ1 = λ and

λ2 such that J̄(1) = 1. The labels Φ̃
(+)
HS and Φ̃

(−)
HS correspond to the “positive” and “negative” roots of the

new Hashin-Shtrikman second-order estimates, and the labels Φ̃OHS , Φ̃R, and Φ̃PC correspond respectively
to the old version (Ponte Castañeda and Tiberio, 2000) of the second-order HS estimates, the Reuss estimate
and the polyconvex lower bound, respectively.

The main observation that can be made from Figure A.2(a) is that while the new “positive-root”

estimate Φ̃(+)
HS satisfies the polyconvex lower bound Φ̃PC , both the “negative-root” estimate Φ̃(−)

HS

and the old second-order estimate Φ̃OHS violate this bound at sufficiently large stretches λ. In fact,

it can be seen from this figure that both Φ̃(−)
HS and Φ̃OHS have a seemingly unphysical behavior

since they become lower than the matrix energy for sufficiently large stretches. This anomalous

behavior for Φ̃(−)
HS and Φ̃OHS can be seen to be consistent with the above-mentioned observations

that they both lead to overall incompressibility constraints that are inconsistent with the imposed

deformation (i.e., pure shear). Even though the matrix phase is compressible, the value of µ′ in this

case (µ′ = 9) is sufficiently large to show the effect of the incompressible limit of these estimates,

which again is inconsistent with the applied loading in this case. The implication of all of this is

that the “positive-root” estimate Φ̃(+)
HS must be superior to both the “negative-root” estimate Φ̃(−)

HS

and the old second-order estimate Φ̃OHS , at least for nearly incompressible behavior for the matrix

phase.

However, as shown in Figure A.2(b), the “positive-root” estimate Φ̃(+)
HS also does better than the

other two HS-type estimates when an overall loading condition is imposed that is consistent with

the “approximate” incompressibility constraint (J̄ (1) = detF
1

= 1), so that the “negative-root”

estimate Φ̃(−)
HS and the old second-order estimate Φ̃OHS would not be expected to blow up in the

incompressible limit. (Note that µ′ = 7.5 in this case, which is also a relatively large value.) This

figure also shows that the Reuss estimate (identical for the new and old second-order theories because

of the lack of fluctuations) violates the bound in this case.
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Figure A.3: Plots of the phase fluctuation measures F̂
(1)
11 − F̄

(1)
11 , F̂

(1)
22 − F̄

(1)
22 and Ĵ(1) − J̄(1), versus the

stretch λ for the same reinforced, compressible, Neo-Hookean rubbers considered in the context of Figure
A.2. (a) Pure shear loading with λ1 = λ and λ2 = 1/λ; and (b) loading with λ1 = λ and λ2 such that
J̄(1) = 1.

Putting these observations together with the earlier observations concerning the incompressible

limits, the unescapable conclusion is that the “positive-root” estimate Φ̃(+)
HS must be superior to the

“negative-root” estimate Φ̃(−)
HS , as well as to the old second-order estimate Φ̃OHS . Therefore, the

new theory with fluctuations has been demonstrated to have the capability to give much improved

predictions in finite elasticity, at least relative to the earlier theory (Ponte Castañeda and Tiberio,

2000).

In Figures A.3, the new second-order predictions for the variables F̂
(1)
11 − F̄

(1)
11 and F̂

(1)
22 − F̄

(1)
22 , as

well as for the variable Ĵ (1) − J̄ (1), appropriately normalized by the corresponding phase averages,

are given for compressible Neo-Hookean rubbers reinforced by c = 0.3 of rigid particles. Both the

predictions of the “positive” and “negative” roots are shown for completeness. Figure A.3(a) and (b)

give results for the two loadings identified in the context of Figure A.2: (a) pure shear with λ1 = λ

and λ2 = 1/λ, and (b) λ1 = λ and λ2 chosen such that J̄ (1) = 1. Although the variables F̂
(1)
11 − F̄

(1)
11

and F̂
(1)
22 − F̄

(1)
22 cannot be identified exactly with the fluctuations of the deformation fields F11

and F22 over the matrix phase (because of the complex interactions among the various components

of the deformation field arising from the selected traces of relation (A.28)), they do provide some

measure of the fluctuations of the deformation field in the matrix. The main observation in the

context of these plots is that Ĵ (1) > J̄ (1) for the positive root, which is physically more appealing

than Ĵ (1) < J̄ (1) for the negative root. In addition, it appears that there are considerable differences

between the two roots, for a given loading, and between the predictions of the same root, for the

two different loadings, which is consistent with the observations already made in the context of the

energies.

In Figures A.4, plots are given for the new second-order estimates (“positive root” only) for the

stored-energy function Φ̃I
HS and corresponding stress S = dΦ̃I

HS/dλ, as functions of the applied
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Figure A.4: Plots of the new (positive-root only) and old second-order predictions for the effective response
of an incompressible Neo-Hookean rubber reinforced with various concentrations c of aligned rigid fibers,
and loaded in pure shear with λ1 = λ and λ2 = 1/λ. (a) The stored-energy functions Φ̃I

HS and Φ̃A
OHS ; and

(b) the corresponding stresses S = dΦ̃I
HS/dλ and dΦ̃A

OHS/dλ, both as functions of the applied stretch λ.

stretch λ, for an incompressible Neo-Hookean material reinforced by rigid fibers at various concen-

tration c, subjected to pure shear λ1 = λ and λ2 = 1/λ. These new second-order results were

obtained by making use of the explicit expression (A.44) and are compared with the “alternate”

form of the earlier version (Ponte Castañeda and Tiberio, 2000) of the second-order theory, as given

by expression (A.45) and shown in dotted lines. First of all, note that the behavior of the composite

is quite different from that of the Neo-Hookean matrix phase in that it becomes much stiffer as

the applied stretch λ tends to 1/c, where the composite is found to lock up (i.e., the energy and

the stress blow up). This is an interesting feature that was already predicted by the earlier version

of the theory (Ponte Castañeda and Tiberio, 2000) and is confirmed by the more accurate results

arising from the improved theory incorporating fluctuations. It is also interesting to remark that the

predictions of the new second-order theory are in fact very close to the corresponding predictions of

the “alternate” version of the old second-order theory. The fact that these two estimates, which have

been generated by very different methods, are quite close may suggest that the predictions generated

are fairly accurate in this case. In turn, this similarity in the predictions of the two theories is consis-

tent with the expectation that the most significant nonlinearities giving rise to large fluctuations are

associated with the strongly nonlinear incompressibility constraint. The fact that the fluctuations

are not used in the old second-order theory is compensated in its “alternate” version by the exact

computation of the terms associated with the determinant constraint. The new second-order theory,

using fluctuations, is robust enough to handle the incompressibility constraint directly (without the

need of any special treatment for the determinant terms in the energy expression).

Finally, in Figures A.5, plots are given for the variables F̂
(1)
11 , F̂

(1)
22 , F̂

(1)
12 and F̂

(1)
21 for the in-

compressible Neo-Hookean rubber reinforced with c = 0.3 of rigid fibers. Figure A.5(a) gives the
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Figure A.5: Plots of the phase fluctuations variable F̂(1) versus the stretch λ for an incompressible Neo-
Hookean rubber reinforced with c = 0.3 concentration of aligned rigid fibers, and loaded in pure shear with
λ1 = λ and λ2 = 1/λ. (a) The four non-zero components of F̂(1), as well as Ĵ(1); and (b) the normalized

field fluctuations variables F̂
(1)
11 − F̄

(1)
11 , F̂

(1)
22 − F̄

(1)
22 and Ĵ(1) − J̄(1).

raw values of these variables, which demonstrate that Ĵ (1) = 1, a feature that was critical in the

asymptotic solution for nearly incompressible behavior, as shown in Appendix B. As can be deduced

from equations (A.42), the basic variables in the analysis are F̂
(1)
11 − F̄

(1)
11 and F̂

(1)
22 − F̄

(1)
22 , and the

combinations F̂
(1)
12 F̂

(1)
21 and

(
F̂

(1)
12

)2

+
(
F̂

(1)
21

)2

. These combinations of variables allow the determi-

nation of the effective energy and associated stress in a unique manner, but do not allow the unique

determination of the variables F̂
(1)
12 and F̂

(1)
21 themselves. This is the reason for the multiple labels

on these curves. Figure A.5(b) gives plots of the variables F̂
(1)
11 − F̄

(1)
11 and F̂

(1)
22 − F̄

(1)
22 , normalized

by the corresponding phase averages. Although these variables cannot be identified exactly with the

fluctuations of the deformation fields F11 and F22 over the matrix phase (because of the complex

interactions among the various components of the deformation field arising from the selected traces

of relation (A.28)), they do provide some measure of the fluctuations of the deformation field in

the matrix. With the given normalizations, it is seen that these fluctuation variables preserve the

symmetry of the loading (pure shear) and increase with increasing stretch, blowing up at λ = 1/c.

A scalar measure of the fluctuations, which also incorporates dependence on the variables F̂
(1)
12 and

F̂
(1)
21 , is provided by Ĵ (1)−J̄ (1). This variable also suggests that the fluctuations, suitably normalized

by J̄ (1), increase with λ from zero at λ = 1 to λ = 1/c, when it blows up.

A.5 Concluding remarks

In this paper, the recently proposed “second-order” homogenization method (Ponte Casta-ñeda,

2002a) has been extended to finite elasticity and applied to estimate the macroscopic response of

particle- and fiber-reinforced elastomers subjected to large deformations. The resulting predictions
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appear to be quite good, exhibiting two qualitative features of special note.

First, the predicted constitutive behavior for rigidly reinforced composites with incompressible

Neo-Hookean matrix phases turn out to be incompressible in an overall sense. Simple as this re-

quirement may be from the physical point of view, it is a non-trivial mathematical result due to

the strong nonlinearities associated with the incompressibility of the matrix phase (detF = 1). In

fact, it is known that an earlier version of the method (Ponte Castañeda and Tiberio, 2000), which

neglected the use of the field fluctuations, led to predictions for the overall response of such rigidly

reinforced incompressible elastomers that were not consistent with the overall incompressibility con-

straint, except in the limit of small deformations. The fact that the new second-order estimates

are consistent with the overall incompressibility constraint for arbitrarily large deformations is an

accomplishment for the theory, and serves to provide further evidence that the fluctuations are es-

sential in generating accurate estimates for the effective behavior of nonlinear composites, in general,

especially when such fluctuations are expected to be significant.

Second, the predictions for the effective response of such incompressible elastomers is found to

exhibit a curious “lock-up” phenomenon at a finite stretch, even when the matrix behavior is assumed

to allow arbitrarily large stretches. This interesting feature, which had already been observed in

the context of the earlier version of the theory (Ponte Castañeda and Tiberio, 2000), can only be

explained in terms of the evolution of the microstructure produced by finite changes in geometry,

and serves to provide further evidence of the strength of the second-order homogenization methods

in terms of capturing the effects of these additional nonlinearities in the field equations. A curious

consequence of this lock-up phenomenon is the fact that the overall stress-strain relations for these

materials exhibit a familiar “S” shape, even for relatively small concentrations of the rigid particles.

This is in spite of the fact that the matrix phase, taken to be Neo-Hookean, does not have such a

shape.
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Appendix A

In this appendix, the in-plane components of the tensor P associated with the orthotropic mod-

ulus tensor L0, given by expression (A.40) and subjected to constraints (A.41), are computed for the

special case of cylindrical inclusions with circular cross section. In this case, the general expression

(A.33) for P reduces to:

P =
1
2π

∫

ξ2
1+ξ2

2=1

Hijkl(ξ1, ξ2, ξ3 = 0) dS, (A.46)

where it has been assumed that the fibers are aligned in the x3 direction (note that the “surface”
integral is evaluated over the unit circle).

Now, using the change of variables defined by ξ1 = cos(θ) and ξ2 = sin(θ), it follows that the

non-vanishing (in-plane) components of P can be expressed as:

P1111 =
1
2π

∫ 2π

0

K22 cos2(θ)
detK

dθ =
1 + L2222

L1212
+ 2

√
L2222
L1111

2L1111

(
1 +

√
L2222
L1111

)2
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P2222 =
1
2π

∫ 2π

0

K11 sin2(θ)
detK

dθ =
1 + L1111

L1212
+ 2

√
L1111
L2222

2L1111

(
1 +

√
L2222
L1111

)2

P1122 =
1
2π

∫ 2π

0

−K12 cos(θ) sin(θ)
detK

dθ =
− (L1221 + L1122)

2L1111L1212

(
1 +

√
L2222
L1111

)2

P1212 =
1
2π

∫ 2π

0

K22 sin2(θ)
detK

dθ =
1 + L2222

L1212
+ 2L2222

L1212

√
L1111
L2222

2L1111

(
1 +

√
L2222
L1111

)2

P2121 =
1
2π

∫ 2π

0

K11 cos2(θ)
detK

dθ =
1 + L1111

L1212
+ 2L1111

L1212

√
L2222
L1111

2L1111

(
1 +

√
L2222
L1111

)2

P1221 = P1122. (A.47)

Note that the tensor P exhibits both major symmetry, Pijkl = Pklij , as well as orthotropic

symmetry, consistent with similar requirements for L0. Also note that, due to the symmetry of the

modulus tensor L0 and the type of loading considered in this paper
(
i.e.,F = U;R = I

)
, the only

relevant components that enter in the homogenization process are P1111, P2222, and P1122. The other

components have been included in this appendix for completeness.

Appendix B

In this appendix, additional details are presented on the incompressible limit associated with the

“positive” root of the new second-order method applied to a Neo-Hookean-type material reinforced

with rigid fibers. The asymptotic solution resulting from this heuristic derivation has been checked

to give good agreement with the full numerical solution.

This limit is a bit unusual in the sense that some of the components of the modulus tensor L0

become unbounded at a finite value, µ∗, of the Lamé modulus µ′ of the elastomeric matrix, which

depends on the loading, material parameters, and fiber concentration. Thus, motivated by the

numerical solution for general µ′, an expansion is attempted in the limit as µ′ → µ∗ of the following

form:

L2222 =
1
∆

L1111 =
a1

∆
+ a2 + O(∆)

L1122 =
b1

∆
+ b2 + O(∆)

L1212 =
c1

∆
+ c2 + O(∆)

L1221 =
d1

∆
+ d2 + O(∆), (A.48)

where, by definition, ∆ = 1/L2222 is a small parameter and a1, b1, c1, d1, a2, b2, c2, and d2 are un-

known coefficients (more precisely, they are ratios between the components of L0) that ultimately

depend on the applied loading, the material parameters, and the fiber concentration.

Now, as already mentioned earlier, the constraint (A.41)1, together with the generalized secant

conditions (A.27), can be shown to lead to the exact result that L1212 = µ. In turn, the constraint

(A.41)2 can be used to solve for L1221 in terms of the other components of L. Because of these facts,
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the following simplifications are obtained:

c1 = 0, c2 = µ, d1 =
√

a1 − b1 and d2 =
a2 − µ (a1 + 1)

2
√

a1
− b2. (A.49)

Next, using the relations (A.48) and (A.49), the general expressions (A.43) for the (“positive”

root) components of F̂(1) − F
(1)

lead to expansions of the type:

F̂
(1)
11 − F

(1)

11 = x1(a1) + x2(a1, a2)∆ + O(∆2)

F̂
(1)
22 − F

(1)

22 = y1(a1) + y2(a1, a2)∆ + O(∆2)

F̂
(1)
12 = u1(a1) + u2(a1, a2)∆ + O(∆2)

F̂
(1)
21 = v1(a1) + v2(a1, a2)∆ + O(∆2). (A.50)

The explicit form of the coefficients in these expansions is too cumbersome to be included here.

Instead, only the unknown arguments upon which they depend have been specified. For instance,

note that the leading term of all the components of F̂(1) − F
(1)

depend solely on a1.

At this point, expressions (A.48) and (A.50) can be introduced into the three reduced (i.e., using

L1212 = µ) generalized secant conditions to obtain a hierarchical system of equations. The leading

order terms O(∆−1) of these equations are given by

a1x1 + b1y1 = 0, b1x1 + y1 = 0,
√

a1 − b1 = 0, (A.51)

where the arguments of x1 and y1 have been omitted for brevity. Note that setting the determinant

associated with expressions (A.51)1 and (A.51)2 to zero implies (A.51)3. Furthermore, it can be

shown that the equation system (A.51) can be trivially satisfied by x1 and y1 (i.e., y1 = −√a1x1).

In summary, the terms of order O(∆−1) yield only one new condition, namely that, b1 =
√

a1.

After some simplification, the terms of order O(∆0) in the generalized secant equations can be

shown to reduce to:
√

cµ (1 + b1)
(
λ2 − 1

)− b1

(
λ1 − 1

)
√

2(1− c)a1/4
1

= −λ
(1)

2

ĵ(1)
µ +

µ

λ
(1)

1

+ µ∗λ
(1)

2

(
ĵ(1) − J̄ (1)

)

√
cµ (1 + b1)

(
λ2 − 1

)− b1

(
λ1 − 1

)
√

2(1− c)a3/4
1

= −λ
(1)

1

ĵ(1)
µ +

µ

λ
(1)

2

+ µ∗λ
(1)

1

(
ĵ(1) − J̄ (1)

)

b2 =
a2 − µ(a1 + 1)

2
√

a1
+ µ∗

(
ĵ(1) − 1

)
− µ

ĵ(1)
, (A.52)

where ĵ(1) = (x1 + λ
(1)

1 )(y1 + λ
(1)

2 )− u1v1, which depends exclusively on a1, is the first term in the

expansion of Ĵ (1)
(
i.e., Ĵ (1) = ĵ(1) + O(∆)

)
. It is noted now that (A.52)1 and (A.52)2 constitute

a system of two equations for the two unknowns a1 and µ∗ (with b1 being known in terms of a1).

Furthermore, equation (A.52)3 establishes a relationship between a2 and b2 in an analogous manner

to the relationship established between a1 and b1 by (A.51)3. This structure suggests that the

coefficients ai and bi (i=1,2,3,...), along with the corrections to µ∗, could be determined from the

generalized secant equations of order O(∆i−1) (although this will not be pursued here).

Returning to the problem involving a1 and µ∗, it is easy to show from (A.52)1 and (A.52)2 that

a1 =

(
λ

(1)

2

λ
(1)

1

)2

and µ∗ =

√
cµ(1+

√
a1)(λ2−1)−√a1(λ1−1)√

2(1−c)a
1/4
1

+ λ
(1)
2

ĵ(1) µ− µ

λ
(1)
1

λ
(1)

2

(
ĵ(1) − J̄ (1)

) . (A.53)
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The results given by expressions (A.53) suffice to characterize—through (A.49) and (A.51)—the

leading order terms of the components of L0 and F̂(1) − F
(1)

, as well as the value of µ∗.

Next, the limit µ′ →∞ is considered in the context of expression (A.26) for the effective stored

energy function of the rigidly reinforced, Neo-Hookean, elastomer. In this connection, it is important

to note that the required expression for F̂(1) does not change for values of µ′ greater than µ∗. (F
(1)

is, of course, also independent of µ′.) This means that for sufficiently large values of µ′, the effective

stored energy function takes the form:

W̃ (U) = µ′g
(
λ1, λ2

)
+ Φ̃

(
λ1, λ2

)
, (A.54)

where it is emphasized that Φ̃ is independent of µ′, and

g
(
λ1, λ2

)
=

1
2

(
ĵ(1) − 1

)2

−
(
J̄ (1) − 1

) [
ĵ(1) − λ1λ2 − c

1− c

]
= 0. (A.55)

As already discussed in the body of the text, consideration of the limit as µ′ → ∞ leads to the

overall incompressibility constraint given by g
(
λ1, λ2

)
= 0. On the other hand, using (A.53)1, it

follows from the definition of ĵ(1) that

ĵ(1) =
λ1λ2 − c

1− c
, (A.56)

which, together with (A.55), can be shown to lead to the condition

J̄ = λ1λ2 = 1, (A.57)

which is nothing more than the “exact” incompressibility constraint (A.25), specialized to plane

strain conditions. With this condition, the effective stored energy function for the incompressible,

rigidly reinforced, Neo-Hookean elastomer is generated from the left-over terms, labelled Φ̃ in ex-

pression (A.54). The resulting explicit expression is given by (A.44).

0

50

100

150

200

2 4 6 8 10

2D

λ

µ∗

0.10c =0.30c = 0.20c =

Figure A.6: Plot of µ∗ as a function of the stretch λ for various concentrations c of aligned rigid fibers
under pure shear loading λ1 = λ and λ2 = 1/λ.

It is interesting to remark that the new version of the second-order method predicts incompress-

ible overall behavior even for rigidly reinforced Neo-Hookean rubbers that have sufficiently high (but
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not necessarily infinite) values of µ′ (i.e., for µ′ ≥ µ∗). This type of prediction, although perhaps not

strictly correct, is probably very accurate. Physically, this is related to the fact that the overall in-

compressibility of the composite is expected to increase with increasing values of the volume fraction

of the rigid fibers in the compressible elastomeric matrix. Figure (A.6) shows the limiting values µ∗

at which the second-order method predicts the onset of incompressible behavior as a function of the

deformation for various concentrations c of rigid fibers. Note that µ∗ →∞ as λ → 1 and λ → 1/c.

This asymptotic behavior is consistent with the full numerical solution as well as with small-strain

linearization conditions.

For completeness, the expressions for the leading order terms in the expansions of F̂
(1)
11 −F

(1)

11 and

F̂
(1)
22 − F

(1)

22 , from which the corresponding expressions for F̂
(1)
12 and F̂

(1)
21 can be readily determined

(recall that Ĵ (1) = 1), are given by:

F̂
(1)
11 − F̄

(1)
11 =

√
c

[(
λ

(1)
2

λ
(1)
1

)2 (
λ1 − 1

)2 − (
λ2 − 1

)2

]

√
2(1− c)

[(
λ

(1)
2

λ
(1)
1

)1/2

+
(

λ
(1)
2

λ
(1)
1

)3/2
]

(λ2 − 1)− λ
(1)
2

λ
(1)
1

(λ1 − 1)

F̂
(1)
22 − F̄

(1)
22 =

−√c

(
λ

(1)
2

λ
(1)
1

) [(
λ

(1)
2

λ
(1)
1

)2 (
λ1 − 1

)2 − (
λ2 − 1

)2

]

√
2(1− c)

[(
λ

(1)
2

λ
(1)
1

)1/2

+
(

λ
(1)
2

λ
(1)
1

)3/2
]

(λ2 − 1)− λ
(1)
2

λ
(1)
1

(λ1 − 1)

.

(A.58)
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Bloch, F., 1928. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Physik 52, 555–599.

Bobeth, M., Diener, G., 1987. Static elastic and thermoelastic field fluctuations in multiphase com-

posites. Journal of the Mechanics and Physics of Solids 35, 137–149.

Bockstaller, M.R., Mickiewicz, R.A., Thomas, E.L., 2005. Block copolymer nanocomposites: per-

spectives for tailored functional nanomaterials. Advanced Materials 17, 1331–1349.

Braides, A., 1985. Homogenization of some almost periodic coercive functionals. Rendiconti della

Accademia Nazionale delle Scienze detta dei XL 9, 313–322.



Bibliography 213
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Ponte Castañeda, P., 2001. Second-order theory for nonlinear dielectric composites incorporating

field fluctuations. Physical Review B 64, 214205–1–14.
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