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Introduction

Today, without any doubt nanotechnology is a hot spot in scienti�c research. Exponential

growth of indexed scienti�c publications devoted to nano-science from the end of the eight-

ies is a proof. Importance of the nanoscale in the technology can be summarized in some

words of the Nobel Physics laureate (1998) Horst Störmer, who mentioned that nanoscale

is the �rst step where we can assemble something useful. Belonging to this widespread

nano-world, carbon nanotubes (CNTs) are an illustration, as well as graphene, whose dis-

covery has recently meant the Physics Nobel Prize in 2010. In fact, a CNT is a cylindrical

structure constituted essentially by rolled-up graphene sheets with diameters going from

0.4 nm to several nanometres and lengths up to some fractions of millimeter [1]. This

particular structure confers to CNTs an extraordinary compromise between mechanical,

thermal and electrical properties.

Pristine CNTs exhibit very strong tube-tube Van der Waals forces that produce their

natural agglomeration in bundles. In consequence, solubilisation of CNTs as individual en-

tities is di�cult and remains the main obstacle to develop their industrial applications [2].

To solve this problem, chemical modi�cation of the tube side-wall by covalent functional-

ization has been one of the most extended attempts to enhance the dispersion of CNTs [3].

A large range of the applications of CNTs requires a transformation processing in

liquid phase. For such reason, CNTs are usually suspended into a Newtonian �uid or a

viscoelastic matrix (for instance, a melted polymer). Control and optimization of those

transforming processes, based on the �ow of such suspensions, need a deep comprehension

of their rheology [4]. On the other hand, characterisation of CNT-based suspensions, which

is found very di�cult due to high variety of factors determining their physical properties,

is strongly supported on the rheological behaviour of those complex �uids [5]. Hence, it is

imperative that rheology of CNT suspensions is deeply studied in order to have a consistent

development of the CNT-based technological applications. However, it has been recently

pointed out as very surprising the little development of the rheological science devoted to

the CNT suspensions [6]. This thesis constitutes a contribution to close some gaps in the

understanding of the physical phenomena behind the rheological behaviour exhibited by

CNT suspensions.

Experimental rheology data on CNT suspensions is extensive, a large range of visco-

elastic phenomena have been observed and quanti�ed from the dilute regime to the con-

centrated one. Nevertheless, due to the inconsistent nature of CNTs (diversity in lengths,

1



2 INTRODUCTION

diameters, chiralities, impurities, defects, surface-treatments) and the variety of factors

controlling the physico-chemical interactions with a given suspending medium, rheological

data of CNT suspensions are quite di�cult to reproduce and, even, sometimes contradic-

tory results can be found between di�erent researchers [5]. Hence, research on the physical

basis behind the rheological response of a CNT suspension based exclusively on exper-

imental facts is a very di�cult task. In that context, computational rheology appears

as powerful tool, �rstly, for �ltering the increasing database on rheological characterisa-

tion of CNT suspensions and, secondly, for validating the physical hypothesis explaining

the dynamic behaviour of CNT suspensions. For instance, the dynamics of an individual

CNT within a suspending medium currently lacks of uni�ed physical explanation. This

work uses a Brownian dynamics (BD) approach with the purpose of elucidate the physical

phanomena behind the rheological behaviour of dilute CNT suspensions.

The modelling in this thesis is applied to the shear-rheological behaviour in the linear

regime of surface-treated single-walled CNTs (SWNTs) dilute suspensions within a New-

tonian solvent. This framework is not restrictive; on the contrary it looks for tackling

directly the intrinsic dynamic mechanical behaviour of a CNT, which is the natural base

for explaining the rheological responses of more complex CNT suspensions. On the other

hand, this modelling framework is not fortuitous; in fact, it is strongly inspired by the

polymer kinetic theory, whose cornerstone models were initially developed to explain the

dynamic behaviour of linear polymer chains in dilute solution.

Particular interest in the �uid dynamics of SWNT suspensions is also well ground. For

instance, SWNTs are considered as a perfect constituent material for obtaining very strong

and ultra light electro-mechanical components based on nano-�laments [7, 8], carbon �bres

[9] and transparent �lms [10]. Additionally, SWNTs have a great biomedical potential as

an e�ective gene and drug delivery system through cell membranes [11, 12].

This document is organized in three main chapters. Chapter 1 contains the introduction

material of this research work. An overview about the structure, the properties and the

applications of CNTs is presented in the opening section (�1.1). Next section 1.2 deals

with CNT suspensions. An analysis on the key factors controlling the physical properties of

CNT suspensions (suspending medium, �ller aspect ratio, concentration regime, dispersion

state and surface-treatment of CNTs) is established in the light of the recent publications.

Subsequently, a summary of the state-of-the-art in rheology of CNT suspensions is given

in �1.3 covering all the concentration regimes. Key �ndings on the rheological behaviour of

CNT suspensions are distinguished in function of the concentration; going from the dilute

to the highly concentrated regime. Particularly, �1.3.2 is devoted to a detailed review of

the literature concerning the experimental characterisation and modelling approaches in

shear-rheology of diluted suspensions of treated SWNTs within a Newtonian solvent, which

actually constitutes the framework of the modelling developed in this dissetation. Special

attention is paid to the linear viscoelastic responses under dynamic and relaxation test

functions, because at present there is not consensus explaining the physical origin of those

rheological responses. In other words, looking for a uni�ed physical basis explaining the
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rheological signatures obtained in small-amplitude oscillatory deformation tests and small

shear-strain step tests constitutes the main motivation of this thesis.

After the scope of the modelling is de�ned, Chapter 2 illustrates extensively the BD

modelling approach, which constitutes the numerical methodology used in this work.

Choice of the BD approach is in phase with the several analogies made between the rheolog-

ical behaviour of CNT suspensions and that one of rigid rod-like polymer solutions [13, 14].

BD simulations have demonstrated to be useful for developing and enriching the micro-

mechanical models proposed to mimic the structure of polymer molecules in the framework

of kinetic theory. For the previous reason, the BD approach is more than suitable for testing

the dynamic response of a coarse-grained physical model intended to mimic the structure

of an individual SWNT. In sections 2.1 and 2.2 a close relation between the kinetic the-

ory, intended to explain the rheology of complex �uids, and the stochastic approach is

established. The general principles behind the BD technique and the arguments justifying

the use of the stochastic approach, in spite of the computational cost associated with, are

discussed. Readers will �nd in �2.3 more concrete descriptions of the BD algorithms em-

ployed throughout this thesis for simulating a small-amplitude oscillatory deformation test

and a small shear-strain step test, in the framework of linear viscoelasticity. In the last

two sections of the chapter (�2.4 and �2.5), a deep examination about the implementation

of a BD simulation in linear viscoelasticity of diluted suspensions is tackled at the light

of the classical bead-rod-spring models encountered in computational rheology. Kinematic

formulations, integration schemes and expressions to calculate the stress tensor are revised

for several representative models: Rouse and Zimm theories, freely-jointed multi-bead-rod

models and semi-�exible �laments. In �2.4 and �2.5, the implemented BD technique is, on

the one hand, validated in front of the analytical or exact numerical solutions known for

some classical kinetic theory models; and, on the other hand, is control-set thanks to the

analysis of the main numerical issues involved in a BD simulation.

Finally, Chapter 3 establishes the point of convergence of the two �rst chapters and,

at the same time, constitutes a compilation of all the original contributions obtained in

this research work to the �eld of the numerical simulation of the rheological properties

of SWNTs suspensions. Based on a meticulous analysis of the structure of the SWNTs

and the experimental evidence about their dynamic behaviour in solution, an equivalent

micro-mechanical model intended to mimic the dynamics of a SWNT in dilute suspension

is proposed in the initial section �3.1. This physical model is supported basically on two

facts: the existence of topological defects in the graphitic-like walls that are intrinsically

associated with some CNT structural instabilities and bent junctions [15, 16] and, the

bendable nature of SWNTs, which has been demonstrated to play a fundamental role

on their dynamic behaviour in liquids [17]. In the subsequent sections, from 3.2 to 3.4,

with the aim of evaluate the consistence of the proposed micro-mechanical model, the

BD framework developed in the second chapter is employed to simulate the linear visco-

elastic response of the SWNT-model in dilute solution under dynamic and relaxation test

functions. Comparisons with the available experimental data of SWNT dilute suspensions
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are satisfactory and promising.

Conclusions, remaining challenges and perspectives of this research work are summa-

rized in a separated concluding chapter.

In addition, an extended abstract of this dissertation in French language can be found

in Appendix B.



Chapter 1

Carbon Nanotubes, Suspensions, and

Rheology

1.1 Carbon Nanotubes

1.1.1 Structure

Carbon nanotubes (CNTs) constitute an allotropic form of carbon. In CNTs the four

valance electrons of each carbon atom are localized in three hybrid orbitals 2sp2 and

one orbital 2p. Due to this electronic con�guration carbon atoms are covalently bonded

(∼119 kcal mol−1 [18]) in one plan forming a hexagonal honeycomb-like lattice. A single-

walled carbon nanotube (SWNT) can be �gured out by rolling-up one graphite-like lattice

and closing it to form a cylindrical structure, often closed at each end by a fullerene-like

cap. On the other hand, a multi-walled carbon nanotube (MWNT) can be imagined as

several SWNTs stacked one inside the other as Russian puppets [19].

Since the beginning of the 70s, the existence of carbon �lament structures with diame-

ters of the order of nanometers was known [20]. However, it was only until the beginning

of the 90s that those structures were observed and recognized as a new allotropic form

of carbon. In 1991 Iijima observed by transmission electron microscopy (TEM) a deposit

of MWNTs, each of one was formed by 2 to 50 concentric cylinders with a central tube

diameter between 2.2 nm and 4.8 nm and an inter-tube distance of 0.34 nm [21]. Length of

MWNTs is about several hundreds of nanometers, but millimetre-long MWNTs have been

reported [1]. Sometimes, MWNTs are not constituted by perfectly parallel graphitic walls

and other kinds of stacking are possible: for instance, bamboo and conic caps. SWNTs

were observed two years after the �rst image of MWNTs [22, 23]. SWNT diameters have

been reported between 0.4 nm and 5.0 nm [19].

CNT structure is also determined by helicity. For each individual nanotube, helicity is

given by the rolling-up vector of the graphitic lattice. This rolling-up vector de�nes three

kinds of conformations: zigzag, armchair and chiral [24]. According to the helicity, CNT

can be electrically semi-conducting or metallic-like.

5



6 CHAPTER 1. CARBON NANOTUBES, SUSPENSIONS, AND RHEOLOGY

CNTs are usually assembled in aligned bundles following a hexagonal stacking. Nor-

mally each bundle is formed by 10 to 15 CNTs, whose diameters and helicities are not

necessarily the same. In the same way, bundles can be associated between them to form

bigger structures [19].

1.1.2 Properties

Interest in CNTs lies in the compromise between their unique structure and their impres-

sive physical properties. In the last decades, classical measurement methods have been

progressively readapted to the nano-scale in order to estimate experimentally the prop-

erties of CNTs. Prediction of CNT properties by computer-assisted modelling has been

employed to adjust those experimental methods. For that reason is not surprising that the

actual database of CNT properties is referred to experimental and modelling sources.

First estimations on CNT properties were obtained by molecular dynamics (MD).

Force-�eld [25, 26], bond order [27, 28, 29], Lennard-Jones [30, 31] and local density ap-

proximation [32] have been the empirical bonding potential models employed in the MD

simulations predicting properties of CNTs.

Tensile sti�ness in CNTs is relatively high due to the cylindrical-packed molecular struc-

ture and the strong covalent bonding C-C. On the other hand, possibility of re-hybridation

of the most outer orbitals of the carbon atoms in the graphitic lattice confers to CNTs

a high bending �exibility. According to the MD estimations compiled by [24] the Young

modulus of CNTs can vary between 0.6 TPa and 5.5 TPa. Dispersion in the MD pre-

dictions is mainly attributed to the choice of the bonding potential and the de�nition of

the geometry. Experimental measurements of the Young modulus are coherent with theo-

retical predictions, but data are also wide dispersed. Dispersion in this case is explained

by the variability in experimental methodologies, CNT diameters and synthesis processes

[19]. CNT's Young modulus has been measured by micro-Raman spectroscopy, classical

tensile tests, atomic force microscopy (AFM) and scanning electronic microscopy (SEM).

It has been shown also that the electric arc produced CNTs are almost two-fold sti�er

than those produced by hydrocarbon decomposition [33]. Experimental Young modulus

has been found between 0.3 TPa and 3.6 TPa for SWNTs [34, 35, 36] and between 0.3 TPa

and 2.4 TPa for MWNTs [34, 37, 33].

Experimental measurements of the tensile strength of CNTs have demonstrated indi-

rectly the existence of structural defects because the measured values are quite lower than

the theoretical predictions for a perfect CNT. Experimental evidence also showed a high

correlation between defects concentration and synthesis process. Even if tensile strength of

CNTs is not as high as the theoretical expectations, it is not negligible because it is 10-100
times higher than the strongest steel. Measured values of tensile strength for SWNTs have

been found between 13 GPa and 55 GPa [35, 38, 39]. MWNTs have showed experimental

tensile strengths from 2 GPa to 63 GPa [37, 40]. On the other hand, MD simulations

taking into account the presence of defects in the CNT structure have predicted slightly
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higher tensile strengths: from 93 GPa to 150 GPa [41, 42].

Additional to their good mechanical performance, CNTs have exceptional electrical

properties. Helicity is the physical factor controlling the nature of the electrical conduc-

tivity in CNTs: going from semi-conducting to metallic [43]. Electrical current densities of

about 109 A cm−2 have been measured in metallic CNTs, 1000 times higher than copper

for example [44, 45]. Given the high electrical conductivity, CNTs exhibit also excellent

�eld-emission properties. For example, a �eld-emission threshold between 4 V µm−1 and

7 V µm−1 is required to reach a stable current of 10 mA cm−2 by tunnel e�ect in a

SWNT [46].

Due to the high density of free electrons and the high aspect ratio of CNTs, this

material experiments ballistic conduction along its axis. This fact is re�ected in a high

thermal conductivity; for instance, 3500 W m−1 K−1 for a SWNT [47].

1.1.3 Applications

The unique structure of CNTs and the varied properties of this new material have inspired

a large range of applications going from the electronics to the medical �eld. Given their

adjustable electrical properties, CNTs are envisaged as one of the new materials required

to reduce the size of electronic circuits. CNTs can be imagined as a simple transmission

element (quantum wire) or as component of more complex electrical devices [48]; for in-

stance, diodes [49], single-electron transistors [50], �eld-e�ect transistors [51], logic gates

[52] and even memories [53, 54]. Field-emission properties have been used to conceive emis-

sion sources for di�erent applications: electronic microscopes [55], luminescent devices [56],

�at-panel displays [57] and portable X-ray tubes [58]. High aspect ratios combined with

an elevated mechanical strength make of CNTs an ideal candidate for producing nano-

probes for near-�eld microscopes as, for example, atomic force and scanning tunnelling

microscopes [59]. High resolution detectors for di�erent gaseous molecules have been de-

signed taking advantage of the diminution of the electrical conductivity in a CNT caused

by the adsorption of volatile molecules on its outer-wall [60, 61]. Thanks to the feasibility

of chemically modify their surface, CNTs have been imagined as e�cient drug and gene

delivery systems [62, 63]. Nevertheless, a discussion remains open in order to determine if

CNTs are completely innocuous or not [64].

Due to the ability of tailoring the physical properties of CNTs there is a growing in-

terest in develop CNT-based composites. Research community has particularly focused

on polymer matrix nano-composites. However, some attempts have been made to ob-

tain CNT-based composites with metallic and ceramic matrices. Because of the ex-

pected high strength properties, spinning of CNT-based �bers have received special at-

tention [65, 9, 66]; nevertheless, there are several open-challenges in order to improve

the manufacturing process and the �nal rope properties. High mechanical performance

CNT-based composites have been developed and characterised, for instance: poly(methyl

methacrylate)/MWNT [67], polystyrene/SWNT [68], polycarbonate/MWNT [69, 70, 71],
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epoxy/MWNT [72, 73, 74, 75], polyimide/MWNT [76], latex/MWNT [77], poly(propylene

fumarate)/SWNT [78], poly(ethylene oxide)/MWNT [79], melanine-formaldehyde/MWNT

[80], polyetherimide/MWNT [81], ethylene vinyl acetate/MWNT [82]. Load transfer be-

tween matrix and CNT appears to be the critical factor controlling the mechanical per-

formance of the CNT-based composites. Thanks to the high electrical conductivity, CNTs

are being used as electrostatic dissipating �ller in automotive plastics parts [83]. CNTs

have been incorpored also in polymer matrix in order to improve their �ame-retardant

properties [84, 5, 82].

A large range of the previously mentioned applications of CNTs requires a transfor-

mation processing in liquid phase. For such reason, CNTs are usually suspended into a

Newtonian �uid or a viscoelastic matrix (e.g. melted polymer). Control of those trans-

forming processes needs a deep understanding of the rheology of CNT suspensions [4].

1.2 Key Variables in CNT Suspensions

Disperse CNTs into a liquid media is frequently a required step for their processing and

the implementation of a large range of their applications. Even more, puri�cation and

chemical modi�cation of CNTs usually happen in solution. In consequence, the amount

of conceivable CNT applications is as large as the variety of CNT suspensions. It is the

author belief that a formal approach to the rheology of CNT suspensions requires �rst a

deep understanding of the key variables controlling their properties.

1.2.1 Suspending Medium

Suspension properties are dictated by the physicochemical interactions between the sus-

pending medium and the CNTs. Usually, suspending medium is chosen preferably in

function of the envisaged application, but CNTs are very di�cult to solubilise and often

suspending medium is selected speci�cally for dispersing the CNTs. In fact, pristine CNTs

tend to form bundles, due to the strong cohesive energy between tubes (> 0.5 eV nm−1)

coming from Van der Waals forces, and solvents are called to overcome those attracting

inter-tube forces [85]. For instance, pristine SWNTs have been dissolved at high concen-

trations up to 10 wt.% in a strong acid mixture (sulphuric acid, SO3, chlorosulfonic acid

and tri�ic acid) in order to facilitate the manufacture of macroscopic CNT-based �bres.

SWNTs are highly solubilised thanks to the acid-driven protonation of the nanotube wall

that counteracts the tube-tube Van der Waals interactions [14, 13]. An analogue electri-

cal stabilization mechanism was suggested to explain the uniform distribution of chemical

vapour deposition (CVD)-grown MWNTs within a bisphenol-A resin [72].

Another approach suggests the addition of a coupling agent promoting an e�ective

wetting between solvent and CNTs. For example, polymer wrapping by poly-electrolyte

dispersants has been employed to stabilize oxidized-surface CVD-grown MWNT in aqueous

slurries [86] and surfactant-stabilization, assisted by low-power high frequency sonication,
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has been used to exfoliate SWNTs in water [87]. However, addition of surfactants in CNT

suspensions has been found uninteresting because the obtained �ller loadings are low, the

intrinsic CNT properties can be degraded and usually surfactants require to be separated

from the �nal composite in an additional downstream operation [5].

In terms of polymer/CNT composites, it has been demonstrated by force-�eld-based

molecular-mechanics calculations that the binding energies and frictional forces between

CNTs and a varied range of polymer matrices have only a limited in�uence in deter-

mining the interface strength. Apparently, the mechanical transfer in the CNT/polymer

interface strongly depends on the helical conformation of the polymer chain around the

nanotube [88].

On the other hand, �ow behaviour of a given suspension strongly depends on the

rheological character of the suspending medium (Newtonian liquid or viscoelastic matrix)

and, in consequence, control and optimization of the processes involving CNT suspensions

are largely in�uenced by the choice of the solvent.

1.2.2 Filler Aspect Ratio

Intrinsically, aspect ratio of an individual CNT is given by the number of constitutive

walls, a priori SWNTs exhibit higher aspect ratios than MWNTs.

Synthesis processes have also a direct impact on the aspect ratio of individual CNTs.

Defects during CNT growth often lead to shorten the e�ective nanotube length. CNTs syn-

thesised in gas-phase, by CVD or catalytic growth from carbon monoxide, account fewer

defects and are usually longer than CNTs produced by laser ablation or arc-discharge pro-

cesses [89]. On the other hand, dimensions of CNTs can be controlled by the parameters

of the synthesis process. For example, diameter, length and alignment of CVD-grown

MWNTs have been controlled by varying the temperature, the catalyst concentration and

the reaction time in a CVD reaction furnace with adjustable catalyst-to-carbon ratio injec-

tion system [90, 91]. In other example case, adjusting the thickness of the catalyst layer,

CNT diameter has been e�ectively controlled during a plasma-enhanced CVD process [92].

Puri�cation, mixing operations and surface-oxidation processes have also showed to

cause damages on the nanotube structure, re�ected directly in a shortening of the individual

CNTs. Control of the length reduction has been achieved when dispersing CNTs with high

shear �ow processors for example [93]. CNTs dispersed by ultrasound have also showed an

increment of defects [94] and long sonication times have resulted in intensive shortening

[95]. On the other hand, controlled shortening of MWNT has been reported by chemical

treatment with bromine [96]. Recently, it was suggested that MWNT length reduction can

be predicted by controlling temperature and reaction time of the surface-modi�cation by

acid treatment [97].

In suspensions, e�ective �ller aspect ratio is function of the dispersion state and the

concentration regime that dictate if CNTs are found as isolated tubes, bundles, agglom-

erates, networks or more frequently a mixture of the previously mentioned states. Using
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scattering methods it has been demonstrated that CNTs in suspension are present in var-

ied morphologies as isolated rod-like tubes, ropes, bundles, fractal networks of CNT ropes,

agglomerates [98, 99] and, in consequence, a wide range of e�ective aspect ratios can be

deployed.

1.2.3 Concentration Regime

Diverse concentration regimes can be obtained in CNT suspensions in function of the

e�ective aspect ratio and the volumetric content of the �ller. Given the high aspect ratio

and elevated tensile rigidity, CNTs have been extensively tackled as classical rigid rods

when they are in suspension. In fact, di�erent rigid-rod theories have been employed

to discuss and analyse the physical properties of CNT suspensions and CNT/polymer

composites [95, 100]. For example, based on the tube model of Doi and Edwards, it is

possible to de�ne three concentration regimes for a suspension of randomly oriented rigid

rod-like �bres within a viscous medium: dilute, semi-dilute (or semi-concentrated) and

concentrated [101]. In that context, supposing a slender �bre of length 2l, diameter d

and e�ective �ller aspect ratio R = l/d, diluteness condition is given when ϕ < R−2,

where ϕ is the volume fraction of �bres. In dilute suspensions, the dynamics of each rod

is totally independent from the others, in other words, no physical interaction between

suspended rods is supposed. A suspension is said semi-dilute (or semi-concentrated) when

the rotation of rods is hindered by the presence of other rods in the system; the respective

concentration range is given by R−2 < ϕ < R−1. At higher concentrations, suspension

is considered concentrated, where liquid crystal phases can be developed. At this state,

rotation and translation of each rod is inhibited by the presence of the other rods in the

suspension [102, 14].

Most of the organic-based CNT suspensions and surfactant-aided aqueous CNT sus-

pensions reported in the literature qualify from a rheological point of view as dilute or

semi-dilute [103]. Some exceptions can be found, for instance, the concentrated suspension

of HiPCO1 SWNTs within super-acids, where transition from an isotropic to a lyotropic

nematic liquid crystal phase has been observed [14].

On the other hand, throughout the semi-dilute concentration range, the apparition

of an interconnecting CNT network has been particularly studied because of the interest

on the associated mechanical and electrical applications. The characteristic concentration

of this microstructure is known as the rheological percolation threshold. In function of

the type of CNT (aspect ratio, physical properties, surface-treatment) and the suspending

medium, rheological percolation thresholds have been found varying from 0.1 wt.% to

10 wt.% [70, 74].

1High-Pressure CO Conversion
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1.2.4 Dispersion State

In function of the physicochemical interactions nanotube/suspending-medium and the con-

centration regime, a large variety of microstructures can be found in the CNTs suspensions.

Isolated tubes, bundles, random agglomerates, networks and even isotropic and nematic

phases can be enumerated between the morphological states reported in the literature.

The morphologies of SWNTs within quiescent polyelectrolyte-assisted aqueous suspen-

sions have been studied using light and X-ray scattering methods. According to such

techniques, no rod-like character was identi�ed in a length scale going from 10 Å to 50 µm.

On the contrary, a fractal network structure made of ropes (bundles of aligned SWNT)

was observed. It was also showed that employing a speci�c ultrasound mixing protocol is

possible to obtain isolated rod-like morphology within the suspension [98]. On the other

hand, small angle neutron scattering (SANS) has been also used to identify the morpholo-

gies of puri�ed SWNTs dispersed in D2O with the aid of an ionic surfactant. In function

of the surfactant employed and the concentration of SWNTs, di�erent scattered signals

were observed. For suspensions said well dispersed, SANS pro�les showed the presence

of isolated rigid rods and loose SWNT three-dimensional networks. Less e�cient surfac-

tants generated a mixed morphology constituted probably by isolated tubes, bundles, large

agglomerates and even a three-dimensional network of ropes [99].

Rheological measurements have also used for identifying and characterizing the mi-

crostructures developed in quiescent CNT suspensions and in the presence of external

�elds. For example, measurements of reduced viscosity have been employed to identify the

morphological transitions from the dilute rigid-rod to the semi-dilute rigid-rod condition

and from the latter to the concentrated rigid-rod condition for a suspension made of pris-

tine SWNTs within a super-acids mixture. Rheological signatures were suitable for mor-

phological characterisation because the phase behaviour of the SWNT/super-acid system

exhibits many parallels with that one of a rod-like polymer solution. In addition, optical

microscopy was employed to characterise the di�erent morphologies developed in the con-

centrated regime: a biphasic state composed of an isotropic random phase in equilibrium

with a self-assembled SWNT-ropes phase (called by the authors as SWNT spaghetti) and

a single nematic liquid crystal phase [14].

Stability is another aspect controlling the properties of CNT suspensions. Determining

how the dispersion state of CNT suspensions evolves in time is crucial for monitoring their

processing and tailoring their �nal applications. For example, monitoring the stability of

bare MWNT suspended in uncured poly di-methyl siloxane can be carried out by following

the rheological signature of the suspension. In fact, there is a critical mixing time (given

by the concentration and the mixing shear stress) marking the limit between unstable

and stable suspension. Beyond such critical mixing time the rheological signature of the

suspension remains invariable in time and is characteristic of a satisfactory dispersion of

highly entangled MWNTs agglomerates. On the contrary, at shorter mixing times, the

rheological signature of the suspension is variable and erratic due to the random jamming
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of dense nanotube clusters in the system. Moreover, aging by re-aggregation of MWNTs

is particularly important at concentrations higher than the rheological percolation thresh-

old [104].

1.2.5 Surface Treatment

As a mean promoting the dispersion of CNTs as individual tubes into the suspending

medium, CNTs can be chemically modi�ed on the outer surface in order to overcome the

intrinsic attractive forces between CNTs and enhance the compatibility with the suspending

medium.

One of those methods of CNT chemical modi�cation is the surface oxidation by acid

treatment. Re�ux of a strong acids mixture on pristine MWNT introduces phenolic, car-

boxylic and lactonic groups on the outer-surface of the nanotube. It has been demonstrated

by rheological measurements that those surface groups are able to stabilize MWNT aque-

ous suspensions at higher concentrations than those achieved with non-oxidized MWNT

[105].

Previous oxidative route has been employed for further and enhanced surface chemical

modi�cations. Di�erent open-end functions can be attached to the nanotube by standard

condensation reactions onto the carboxylic surface groups. For example, SWNTs can be

e�ciently dispersed in chloroform by covalent functionalization with pyrrolidine via an

amidation reaction [106]. A large compendium of the chemical protocols employed to

modify the CNT surface by open-end functionalization is available in the literature [107].

Given that open-end functionalization is preceded by an oxidative treatment, this chemical

modi�cation is known for shorten and damage CNTs [5]. An alternative surface chemical

modi�cation, less destructive, is the side-wall covalent functionalization. Aryl-diazonium

salts have been e�ciently reacted with ionic-surfactant-coated-SWNTs in aqueous medium.

In this way, a stable SWNT aqueous suspension with unbundled nanotubes was obtained

[108]. The yield of the side-wall functionalization protocol has been showed to be elevated;

one in nine carbon atoms on the CNT outer-wall was shown to be attached to an organic

addend [109]. On the other hand, SWNTs functionalized with phenyl groups have been

highly sulfonated with the purpose of produce stable aqueous suspensions [110].

Anyway, an obstacle for the extended use of surface treatment protocols is the fact

that each chemical modi�cation scatters free electrons in the CNT structure and, in con-

sequence, the high-performance electronic properties of CNTs are compromised [5].

1.3 Rheology of CNT Suspensions

From the previous overview is clear that properties of CNT suspensions depend on several

factors coming �rstly from the intrinsic characteristics of the �ller and the suspending

medium. In addition, when put together CNTs and suspending medium, an additional

dimension of strongly inter-dependent factors appears determining the properties of the
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suspension. Nowadays, in spite of the continuous improvement of the measuring techniques

and processing methods, all those factors remain extremely variables; a fact explaining

many of the apparent inconsistencies reported in the literature of CNT suspensions [5].

Hence, special care must be taken into account when discussing the physical basis behind

the properties of CNT suspensions. In this context, rheological behaviour has been pro�led

as a powerful tool for properly analysing the bulk microstructure and the mechanical

properties of CNT suspensions [105, 68, 69, 14, 111, 112, 70, 113, 114, 115, 116].

On the other hand, transport and processing of CNT suspensions require a deep com-

prehension of their �ow behaviour. In this case again, rheological characterization is a

suitable tool for understand the dynamic behaviour of CNT suspensions and correctly

predict their processing at large scale [4, 117, 118, 119].

Given the facts, the importance of the study of the rheological behaviour of CNT

suspensions is largely justi�ed. In what follows, the most important �ndings of the state-

of-the-art concerning the rheology of CNT suspensions are reviewed.

1.3.1 An Overview by Concentration Regime

At the beginning of 2010 Hobbie published an interesting overview of the shear rheology

of CNT suspensions; his paper looks for establishing a parallel with the polymer solu-

tions rheology and, to do it properly his review was presented in terms of concentration

regime [6]. Given the importance of the �ller volume fraction on the rheological behaviour

of CNT suspensions, this section will be structured in the same way as the Hobbie's paper.

The Dilute Regime

Dynamics of a rigid rod-like �bre in dilute suspension is supposed to be independent of

any other �bre within the suspending medium. In other words, excluding imposed external

�elds, the kinematics of the �bre is driven exclusively by its intrinsic structure. In this

context, a dilute suspension is an ideal modelling framework to reveal the physics behind

the dynamics of an individual �bre. CNTs are supposed to behave as rigid rod-like high-

aspect ratio �llers in suspension when they are dispersed in form of individual CNTs or

aligned bundles of CNTs. For a given CNT-based rod-like structure of length 2l, diameter

d and e�ective �ller aspect ratio R = l/d, the limit of the diluted regime is reached when

the �ller volume is equal to R−2.

Not astonishingly, shear viscosity is found proportional to the CNT-based slender �ller

concentration. In other words, curves of the suspension intrinsic viscosity in function of

the shear rate are independent of CNT concentration [14, 104]. Based on the theory of

rigid rod-like suspensions and the measurement of the zero-shear viscosity in dilute CNT

suspensions, a method for determining approximately the length distribution of SWNTs

has been proposed [120].

Dilute CNT suspensions have consistently showed a shear thinning behaviour. Re-

laxation time associated with the beginning of the shear thinning has been satisfactorily
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Small-Amplitude Oscillatory Deformation

In both theories, for �bre suspensions and polymer solutions, it is usually supposed that

the total shear-stress τ is the sum of the contribution from the solvent τ s and, another τ p,

coming from the suspended entities (�bres or polymer molecules) [141, 102]. Presuming

the same for the treated SWNT-epoxy resin system, the contribution of the suspended

SWNTs to the complex modulus of the suspension, G∗ = G
′
+ iG

′′
, can be calculated as

follows:

G
′
p = G

′ −G′s (1.1)

G
′′
p = G

′′ −G′′s = G
′′ − ηsω (1.2)

where G
′
is the storage modulus, G

′′
is the loss modulus, p refers to the suspended

particles (in this case the SWNTs), s refers to the solvent, ηs is the solvent viscosity and

ω is the angular frequency.

When the functionalized SWNT suspensions presented in Fig. 1.1 were submitted to

a small-amplitude oscillatory deformation a non-negligible elastic dynamic response was

identi�ed in the tested frequency range. Based on Eqs. (1.1) and (1.2), Figs. 1.2 and 1.3

show the contribution of functionalized SWNTs to the storage and loss modulus of those

SWNT-epoxy resin suspensions.

Figure 1.2: Contribution of treated SWNTs to the storage modulus of three di�erent dilute
and semi-dilute suspensions within an epoxy resin. Isothermal test at 25◦. Epoxy resin is
supposed to be Newtonian, so G

′
s ∼ 0. Courtesy of Dr. Anson Ma (Rice University)
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A constant-slope evolution for the storage and loss modulus was observed in the tested

frequency range. This kind of rheological behaviour was found characteristic of the SWNT

suspensions in dilute and semi-dilute concentration regime. Those linear viscoelastic data

were �tted with the FP-based orientation model (satisfactory in the steady shear scenario),

but using an empirical relationship for the rotary di�usion coe�cient that depends on the

applied frequency. In other words, a more detailed physical model is required [122].

At present, several hypotheses for explaining this interesting linear viscoelastic response

have been postulated as, for example, the existence of a weak SWNT network [112], the

electrostatic interactions between surface-treated SWNTs [122] and the bending dynamics

of individual SWNTs [142]; however the debate about the physical origins of this mild

elasticity in the linear viscoelasticity spectra of dilute SWNT suspensions is far from be

closed.

Figure 1.3: Contribution of treated SWNTs to the loss modulus of three di�erent dilute
and semi-dilute suspensions within an epoxy resin. Isothermal test at 25◦. Epoxy resin is
supposed to be Newtonian (ηs = 10 Pa s). Courtesy of Dr. Anson Ma (Rice University)

Rheological behaviour of CNT suspensions is supposed to be strongly in�uenced by the

recoverable bending of the CNT structure [6]. For instance, it has been conjectured that

an elastic dumbbell model is more successful than a rigid dumbbell model for capturing

the linear viscoelastic response of treated sonicated carbon nano�ber suspensions given

the fact that the former model can incorporate the recoverable bending of the individual

carbon nano�bers [140]. Moreover, structure of CNTs has been recurrently mimicked as a

mesoscale parallel of the structure of rigid rod-like polymer molecules [14, 121, 125, 6], that

usually have been modelled as semi-�exible �laments or worm-like chains [143]. In fact,

Brownian dynamics (BD) simulations of small-amplitude dynamical solicitations on dilute
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solutions of semi-�exible chains have showed a mild elastic response in the intermediate

and high frequency range [144].

Relaxation after Shear-Strain Step

Shear-stress relaxation tests are intended to provide additional information about the spec-

tra of characteristic-times associated to the mechanical response of a viscoelastic system

during a transient solicitation. Figure 1.4 presents the shear-stress relaxation signatures

after a shear-strain step of 1%, applied to two di�erent concentrated suspensions of treated

SWNT (0.1 wt.% and 0.2 wt.%) within an epoxy resin. Relaxation modulus for the solvent

alone is also showed for comparison.

Figure 1.4: Shear-stress relaxation modulus of an epoxy resin and two di�erent dilute
suspensions of functionalized SWNT within an epoxy resin. Response after a 1% shear-
strain step. Isothermal test at 25◦. Courtesy of Dr. Anson Ma (Rice University)

Shear-strain of 1% is within the linear viscoelastic region according to the strain sweep

test carried out on the two dilute treated SWNT suspensions showed in Fig. 1.4 [134].

A very fast relaxation process is observed for the two suspensions, even masked by the

motor response time of the rheometer. The shear-stress relaxation is very close to that one

exhibited by the solvent alone, which in fact corresponds with a completely viscous-fashion

response.

Theoretically, existence of a weak SWNT network would be revealed by measuring, at

least, a residual shear-stress after the stepper motor response time, but the stress relaxation

observed is practically instantaneous.
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Research Motivation

From the previous overview about the linear viscoelastic response (in dynamic and transient

modes) of dilute and low semi-dilute suspensions of treated SWNT within a Newtonian

solvent, it is clear that at present there is a lack of comprehension on the dynamics of an

individual SWNT surrounded by small solvent molecules, which is the physics supposed

to govern the mechanical response of dilute and low semi-dilute suspensions, where no

inter-tube interactions are presumed to exist. On the other hand, a deep comprehension

of the dynamics of the SWNT structure as individual entity appears absolutely pertinent

before trying to model the rheological behaviour of more concentrated suspensions. In that

context, the main goal of the current dissertation is to propose a more detailed physical

model of the SWNT structure and to validate it by simulating the linear viscoelastic

response of dilute SWNT suspensions (in dynamic and transient mode) by using a BD

approach.



Chapter 2

Brownian Dynamics and Rheological

Modelling

Analogies between CNTs and polymers have been supported on the similarities observed

in the rheological behaviour of their suspensions. For instance, an entanglement-like tran-

sition re�ected in an abrupt enhancement of the apparent viscosity in function of the

concentration has been noticed in aqueous MWNT suspensions and polymer solutions

[105, 96]. Moreover, a parallel between the SWNT/super-acid suspensions and the sti�-

chain polymer solutions has been clearly established in terms of rheological behaviour and

morphological transitions [13]. In fact, regarding the mechanical structure, it has been

claimed that an individual SWNT can be thought as a meso-scaled rod-like polymer with

a higher persistent length (1-2 orders of magnitude) [14]. Those comparisons have led to

describe the dynamics of SWNTs, short DNA, collagen �brils, F-actin, xanthan, poly(-

benzil-L-glutamate) and, even, rod-like viruses in dilute and semi-dilute suspensions by

mimicking their structure via a slender semi-�exible �lament model [142].

The semi-�exible �lament makes part of a series of coarse-grained models developed

in the framework of the kinetic theory describing the rheological behaviour of polymer

solutions. Brownian dynamics (BD) simulations have been recursively employed to study

the dynamic response of more detailed versions of the kinetic-theory models, as a numerical

alternative when the analytical treatment becomes complex. In this context, BD appears

as a convenient modelling approach for enriching the current physical models proposed to

mimic the SWNT structure in dilute suspension.

Given the horizon of the modelling challenge of this dissertation, this chapter deals

with the numerical tool to be employed for achieving the task. In the �rst section, the

relation between the polymer kinetic theory and the stochastic approach is illustrated.

Subsequently, a general introduction of the BD modelling �eld is presented, emphasizing

on its stochastic nature. Finally, from �2.3 to �2.5, a detailed application of this numerical

technique is exposed within the framework of the linear viscoelastic behaviour of dilute

suspensions of bead-rod-spring chains. Bead-rod-spring chains constitute the cornerstone

of the coarse-grained models developed in polymer kinetic theory and their constitutive

23
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equations have been solved analytically. Bead-rod-spring models are simulated in this

chapter in order to, �rstly, validate the implemented BD algorithms and, secondly, optimize

some numerical aspects that will be used in the simulations devoted to the SWNT case in

the next chapter.

2.1 Rheology of Polymer Liquids and Kinetic Theory Models

A comprehensive theoretical modelling of the problems in �uid dynamics requires a suitable

formulation of the constitutive equation for the momentum �ux or stress tensor. Flow

of complex �uids di�ers from that one occurring in classical Newtonian �uids because it

cannot be described by using a simple viscous constitutive equation. In fact, the mechanical

response of a complex �uid to a given deformation appears to be viscoelastic, in other

words, the complex �uid exhibits a mechanical behaviour intermediate between a perfect

elastic solid and a perfect viscous liquid. Two viscoelastic regimes can be identi�ed in

function of the imposed strain. If the viscoelastic response is independent of the applied

strain, then we assist to the linear viscoelastic behaviour. This mechanical regime is

typically associated with very small deformations. On the other hand, when the viscoelastic

response depends on the applied strain, then we fall in the non-linear viscoelastic regime.

This work is focused on linear viscoelasticity because this mechanical regime constitutes

the natural �rst approach in a rheological-modelling framework.

The main aim of rheology consists to establish a suitable constitutive equation that

relates stress and strain tensors for a given �uid and, sometimes, for a particular kind

of �ow. Kinetic theory in complex �uids is an exhaustive mathematical framework that

looks for explaining the bulk �ow phenomena based on the molecular structure of the

�uid system. In that sense, kinetic theory is one of the tools employed by rheologists for

generating suitable constitutive equations for non-Newtonian �uids. Formal framework in

kinetic theory is built on coarse-grained representations of the molecular structure involved

in the �ow phenomena. Historically, the former coarse-grained molecular models appeared

to emulate the polymer molecular structure. That explains why frequently the literature

makes reference to polymer kinetic theory.

The coarse-grained molecular models in kinetic theory constitute a �rst attempt to

relate the molecular structure to the bulk �ow mechanics. Basic coarse-grained models

emulate the most relevant characteristics of the molecular structure using beads, rods and

springs as constitutive blocks. In what follows, an overview about the origins of the multi-

bead-rod and the multi-bead-spring models is illustrated, based on the descriptions made

by Bird et al. elsewhere [141].

2.1.1 Bead-Rod Models

Multi-bead-rod models were proposed to emulate the structure of linear polymer chains.

The �rst natural representation consisted in neglecting the pendant atoms or groups linked
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to the central chain and replacing this central chain by a series of beads and mass-less rods,

where beads represent the constitutive atoms of the central chain and rods represent the

chemical bonds between them. At this level of representation, the stochastic nature of the

coarse-grained model emerges because all possible thermal interactions with the solvent

molecules are reduced to an instantaneous stochastic force acting on each bead. Adjacent

bonds in a linear polymer chain are restricted to very narrow intervals of solid angle values

due to sterical hindering [145]. Based on this physical argument, the bead-rod chain model

with �xed solid angles and restricted bond-rotation was proposed.

A simpler model considers that the rotational hindrances can be neglected, but the solid

angles between adjacent rods are maintained. This representation is known as the freely-

rotating chain model. A complete series of articles about the non-equilibrium dynamics of

the freely rotating chain model has been published [146].

An even coarse-grained multi-bead-rod model neglect any rotating and bending hin-

dering between adjacent rods. This model is known as the freely-jointed bead-rod chain

or, simply, the Kramers chain model. In this case, beads do not represent central chain

atoms, but a portion of the polymer chain, typically 10-20 monomer units. In short, a

Kramers chain can be described as an ensemble of n beads linked by n− 1 rods of length

a (see 2.1), where each bead is characterised by a drag coe�cient ζ.

Figure 2.1: Freely-jointed multi-bead-rod model composed of n beads and n − 1 rods of
length a

It has been demonstrated that supposing a random-walk distribution for the Kramers

chain con�guration, the mean-square end-to-end distance at equilibrium writes (see for

example [139]):

〈
r2
〉
eq

= a2 (n− 1) (2.1)

On the other hand, using a thermodynamic approach it was shown that the average

tension in a Kramers chain suspended in a solvent bath at temperature T and extended



26 CHAPTER 2. BROWNIAN DYNAMICS AND RHEOLOGICAL MODELLING

to a �xed end-to-end vector r (whose norm does not exceed one-half of the contour length

of the multi-bead-rod chain) writes as follows:

F(c) (r) =
3kBT

a2 (n− 1)
r (2.2)

It is important to point out that previous expression is only exact when supposing

a random-walk distribution for the con�guration distribution function of the constitutive

rods. In fact, this condition is only true for a large number of beads n. Equation (2.2)

means that a three-dimensional freely-jointed multi-bead-rod model behaves mechanically

as a Hookean spring of null-equilibrium-length with a spring constant H equals to:

H =
3kBT

a2 (n− 1)
=

3kBT
〈r2〉eq

(2.3)

2.1.2 Bead-Spring Models

Based on the characteristics of the mechanical behaviour of a freely-jointed multi-bead-rod

chain, it seemed natural to propose another up-level of coarse-graining for representing the

structure of linear polymer chains. Actually, a linear polymer chain can be modelled as

a series of springs, representing several hundreds of central chain atoms, linked by beads

that concentrate the masses and the friction e�ects associated to the replaced central chain

atoms. This model is called the freely-jointed multi-bead-spring chain (see 2.2). Several

disadvantages appear at this level of coarse-graining: contour length is no more constant

and, furthermore, if the spring potential is supposed Hookean, the chain can be in�nitely

extended, something that is physically unrealistic.

Figure 2.2: Freely-jointed multi-bead-spring model composed of n beads and n− 1 springs

Considering a freely-jointed multi-bead-spring chain constituted of n beads linked by

n− 1 springs, it results not surprising that the average end-to-end distance at equilibrium
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be an extension of the analogue expression derived for the freely-jointed multi-bead-rod

model:

〈
r2
〉
eq

=
3kBT (n− 1)

H
(2.4)

In spite of the multi-bead-rod-spring models were initially developed in the framework

of polymer kinetic theory, those coarse-grained representations has been extended to model

a vast kind of systems, including proteins, DNA, virus and CNTs.

One can consider two di�erent approaches when tackling with kinetic theory models:

a deterministic and a stochastic one. On the one hand, the deterministic approach deals

with the classical resolution of the di�usion equation (or FP equation), which represents

the evolution of the probability density function (description of the con�gurational space)

of a given coarse-grained model. On the other hand, the stochastic approach proposes

following the motion of a representative population of coarse-grained models and estimating

macroscopic properties by properly averaging the physical state of the population under

consideration. The BD modelling used in this thesis is in phase with this latter approach.

2.2 The Brownian Dynamics (BD) Approach

2.2.1 Principles

A mathematical representation of all physical phenomena ocurring in the physical world

cannot be treated e�ciently using only one kind of model. In general, the choice of a given

modelling approach depends on the time and length scales involved in the phenomenon.

For example, quantum mechanics is a suitable model for representing the physical phe-

nomena occurring at the level of quantum particles and atomic sub-particles, but probably

the quantum mechanics framework is not the more convenient choice to model a tensile re-

laxation test in a polyethylene �lm. Today, quantum mechanics is the �nest description of

the physical behaviour of matter. Going up in length and time scales of modelling requires

di�erent mathematical formulations with the aim of encapsulate the phenomena occurring

at �ner scales. For example, between the molecular and macroscopic scales, models must

contain a mathematical architecture taking into account the rapid oscillations occurring at

lower scales (i.e. atoms, smaller molecules or particles). BD is precisely one of the mathe-

matical frameworks employed for representing the physics at the micro-meso scale (1 nm

- 10 µm). In BD the rapid thermal oscillations at lower scales are tackled as a stochastic

variable [147].

The historical motivation that inspired the development of the BD framework was

the publication of the Robert Brown's observations about the random motion of pollen

particles in water. The irregular path described by those pollen particles was explained
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afterwards as the result of random thermal collisions between pollen particles and water

molecules. By the way, a mathematic formalism describing the motion of a particle sub-

mitted to stochastic forces was introduced by the French physicist Paul Langevin [148].

In fact, a general di�erential stochastic equation is also known as a Langevin equation.

Considering a Brownian particle (in the large sense, i.e. a discrete portion of matter sub-

mitted to stochastic forces coming from the surrounding homogeneous media) of mass M ,

the instantaneous general Langevin equation of motion writes:

M r̈ = −∇U (r)− ςM ṙ + ςMκ (r) + F(b) (2.5)

where r is the particle position, ς is the speci�c friction coe�cient, κ (r) is the ho-

mogenous velocity gradient at the position of the particle, U is the sum of all the particle

interaction potentials (e.g. mechanical, electrostatic, magnetic) and F(b) is the Brown-

ian force acting on the particle. This last variable confers to the di�erential equation its

stochastic nature. Keeping in mind that F(b) is originated from independent thermal col-

lisions with the surrounding particles; the central limit theorem would conduct intuitively

to think that F(b) behaves following a Gaussian process. In fact, a formal de�nition of F(b)

in coherence with the stochastic calculus framework writes as follows:

F(b)
t =

√
2kBTςM

dWt

dt
(2.6)

where kB is the Boltzman's constant, T is the absolute temperature and Wt is a Wiener

process. Wt is a well-de�ned Gaussian process itself, hence can be de�ned by the �rst and

second moments of its distribution:

〈Wt〉 = 0 (2.7)

〈Wt1 ⊗Wt2〉 = min (t1, t2) δ (2.8)

In a BD simulation, one is rather interested in the numerical implementation of a multi-

dimensional increment of a Wiener process, ∆Wtt′ = Wt −Wt′ . Using the central limit

theorem, it can be demonstrated that those increments are independent and follow also a

Gaussian distribution with the next moments:

〈Wt −Wt′〉 = 0 (2.9)

〈(Wt −Wt′)⊗ (Wt −Wt′)〉 =
∣∣t− t′∣∣ δ (2.10)

When implementing an explicit integration of a D-dimensional Wiener process (de�ned

in orthogonal basis) in the time interval [0, tn], equi-partitioned in n intervals of size ∆t =
ti− ti−1; it is just necessary to de�ne the initial value of the Wiener process, W0 = 0, and

calculate iteratively the function as follows: Wti = Wti−1 + ∆Wti , where each component
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of ∆Wti is obtained from an independent one-dimensional normal distribution N (0,∆t).

De�nition of the stochastic Brownian force given in Eq. (2.6) is coherent with the

principle of equi-partition of energy, the �uctuation-dissipation theorem (in the sense that

frictional force depends only on the instantaneous local velocity) and the formalisms of

stochastic calculus [149].

BD is a limit case of the Langevin dynamics framework. In BD the inertial e�ects are

neglected; in other words, BD supposes that no average acceleration takes place on the

Brownian particle. In some physical sciences BD is also known as overdamped Langevin

dynamics. Non-inertia assumption is justi�ed in the insigni�cance of the inertial forces

coming from small-mass particles in front of the viscous and thermal forces acting on the

same particle. BD equation of motion for a Brownian particle writes therefore as follows:

0 = −∇U (r)− ςM ṙ + ςMκ (r) +
√

2kBTςM
dWt

dt
(2.11)

De�ning ζ = Mς as the friction coe�cient andD = kBT/ζ as the di�usion coe�cient of

the particle, the instantaneous velocity of the Brownian particle can be written as follows:

ṙ =
−∇U (r)

ζ
+ κ (r) +

√
2D

dWt

dt
(2.12)

BD simulations have been used intensively to study the physics of di�erent kind of

macromolecules and soft matter systems [150] as, for example, the rheological behaviour

of polymer [151, 152, 153, 154, 155, 156], the dynamics of proteins and DNA [157, 158,

159, 160], the �ow behaviour of colloids [161, 162, 163, 164, 165, 166, 167], the structural

dynamics of liquid-crystals [168, 169] and the dynamics of CNTs [170, 171, 17].

2.2.2 The Interest of the Stochastic Approach in Rheology

A natural question that appears when studying the dynamics of complex �uids is why to

prefer using an extensive (and probably more costly) method for integrating the classical

di�usion equation describing the evolution of the probability density function related to

the con�gurational space of a given molecular model. In the conventional framework of

the kinetic theory, the equations of motion of the di�erent constitutive blocks in a given

coarse-grained model (beads, rods, springs) added to the continuity equation for the con-

�gurational distribution function are used to build a Fokker-Planck (FP) equation. The

FP equation is a deterministic partial di�erential equation describing the evolution of the

probability density function associated with the con�gurational space of a given coarse-

grained model. The common utility of this deterministic di�usion equation consists in

recover the exact physical response of the system when submitted to a given external �eld

by integrating the FP equation in the con�gurational space and in the time (if looking

for dynamic properties) in order to develop constitutive equations. Normally, those con-

stitutive equations are employed a posteriori to calculate more complex �ows by using a

continuum mechanics framework.
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The crucial point in the previously described process lies on the mathematical method

employed for integrating the di�usion equation given its multidimensional character. FP

equation is a multidimensional function that depends on time and all the space coordinates

chosen to de�ne the con�guration of a given coarse-grained molecular model. It is necessary

to point out that there is a vast collection of numerical strategies developed to solve this

problematic integration [172, 173, 174, 175, 176, 177, 178, 179].

However, it appears that more and more the stochastic approach of the kinetic theory

is employed for solving the dynamics of coarse-grained models for complex �uids. In this

case, the stochastic di�erential equation of motion for each coarse-grained system is tackled

directly. In order to evaluate a given physical property, an average over a �nite population

of model systems has to be performed (equivalent to the integration of the FP equation

in the con�gurational space) . The main di�culties emerging with this approach are: the

associated stochastic noise, the low convergence order and the computational cost required

to overcome the �rst two mentioned obstacles. In the way of thinking of the author this

growing-up leaning for tackling the stochastic approach is due mainly to three reasons:

i) the enhanced possibility of enrich a given coarse-grained molecular model by analyzing

its con�gurational evolution under designed �ow conditions, ii) the raising capacities of

the computational tools that reduce the simulation times, and iii) the interesting idea

of resolving viscoelastic-�ow engineering problems without resorting to closed-forms of

the constitutive equations for the stress tensor. This last idea means to establish micro-to-

macro simulations where the con�guration state of a population of coarsed-grained systems

lets to calculate the stress �eld, allowing to compute the evolution of the �ow �eld and,

subsequently, to update the con�gurational space of coarse-grained models by solving the

stochastic di�erential equations of motion [180, 181, 182, 183, 184, 185, 186, 187].

2.3 BD Simulations of Linear Viscoelasticity Tests

Once established the close relation between the BD approach and the modelling of the rhe-

ology of complex �uids, the concrete implementation of a BD simulation in the framework

of linear viscoelasticity is tackled now.

From now on an extensive BD modelling approach is systematically used to predict the

rheological response of a given micro-mechanical model highly diluted within a Newtonian

solvent. Two classical tests used in linear viscoelasticity are simulated: a dynamic test

given by a small-amplitude oscillatory deformation and a relaxation test obtained after a

rapid shear-strain step.

In both simulation tests, suspension is supposed con�ned between two parallel in�nite-

plates (in the case of three-dimensional simulations, see Fig. 2.3) or between two parallel

in�nite-bars (in the case of bi-dimensional simulations).

Di�erent strain functions can be imposed by tailoring the relative sliding motion of

the plates (or bars); inducing a homogeneous deformation within the suspension con�ned

between the plates (or bars). In both simulation tests, rheological response is supposed
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Figure 2.3: Parallel in�nite plates where BD simulations in shear rheology are carried out.
Upper plate slides in relation to the lower one along the x- axis for homogeneously shearing
the �uid con�ned in between

coming mainly from the bulk of the suspension, therefore wall and free-surface e�ects

are ignored. Rheological properties are calculated from a properly de�ned average over

N micro-mechanical models, where N can be considered as the base-number of degrees

of freedom in the BD approach or, simply, the size of the simulation system. As the

suspension is supposed highly diluted, no interaction e�ects are considered between micro-

mechanical systems and, hence, no computational storage of the relative positions between

micro-mechanical models is necessary. In what follows, more detailed descriptions of the

global algorithms employed to simulate each rheological test are presented.

2.3.1 Small-Amplitude Oscillatory Deformation Test

A general �owchart of the algorithm intended to simulate a frequency sweep test in linear

regime is presented in Fig. 2.4.

The �rst step consists to obtain a con�guration in thermal equilibrium. No external �ow

is imposed. Con�guration of the BD system (N micro-mechanical models) evolves in time

under the action of the forces coming from the friction with the solvent, the internal energy

potentials and the thermal interaction with the solvent molecules (Brownian stochastic

potential). Time integration in this equilibrium stage is carried out until at least one of

two criteria is satis�ed: stabilization of the stored internal energy or integration during

three times the longest characteristic time associated with the micro-mechanical model.

Once the equilibrium con�guration of the BD system has been obtained, the dynamic

strain function γ = γ0 sinωt can be applied, where γ0 is a deformation within the linear

regime. Frequency sweep test is carried out on a �nite number of frequencies homoge-

neously distributed in logarithmic scale between the lowest frequency ω1 and the highest

frequency ωn. The BD prediction of the complex modulus at each tested frequency is com-

posed of two steps. First, a dynamic stabilisation of the BD system is carried out during
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Figure 2.4: Flowchart of the general BD algorithm for simulating a small-amplitude oscil-
latory deformation test

three times the longest characteristic time before starting the second stage, called analyt-

ical step, in which the BD-calculated shear-stress signal is stored during one-and-a-half

periodic oscillations. This signal is used as entry variable in a �tting toolbox with the aim

of determine the parameters (τ0, δ) of a smooth shear-stress function τ = τ0 sin (ωt+ δ)
by using a Newton-based error-minimization methodology. Dynamic complex modulus at

each frequency is then computed easily in the next way:

G∗ (ω) = G′ (ω) + iG′′ (ω) =
τ0

γ0
cos δ + i

τ0

γ0
sin δ (2.13)

where G′ is the storage modulus and G′′ is the loss modulus.

2.3.2 Relaxation Test after a Shear-Strain Step

A �owchart of the algorithm employed to predict the relaxation shear-modulus after a

shear-strain step is presented in Fig. 2.5.

As in the dynamic test, simulation requires a BD system (N micro-mechanical models)

in thermal equilibrium before applying the material strain function. An equilibrium stage

(i.e. with no external �ow) is carried out until one of two criteria is satis�ed: stabilization

of the stored internal energy or integration during three times the longest characteristic

time associated with the micro-mechanical model.
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Figure 2.5: Flowchart of the general BD algorithm for simulating a shear-strain step test

Once an equilibrium con�guration has been obtained for the BD system, the shear-

strain function γ = γ̇0t is applied. During the shear-strain step a constant shear-strain

rate γ̇0 is imposed during a total charging time tc and the BD-calculated shear-stress and

internal-energy signals are stored. It is important to point out that the shear-strain at the

end of the shear-strain step, i.e. γ0 = γ̇0 · tc is required to be within the linear regime of

deformation.

At the end of the charging time, shear-strain function is turned-o� to zero and the BD

system is let to relax. BD-calculated shear-stress and internal-energy signals are stored

in time until at least one of two criteria is satis�ed: stabilization of the stored internal

energy during one-half of the longest characteristic time of the micro-mechanical model or

integration during three times the same longest characteristic time of the micro-mechanical

model.

The theoretical basis and the main numerical issues associated with a BD simulation in

linear viscoelasticity will be illustrated in the context of the more basical polymer kinetic

theory models: the multi-bead-spring chain and the multi-bead-rod chain. Validation and

optimization of the BD numerical approach is feasible thanks to the well-known exact solu-

tions of the constitutive equations for dilute suspensions of some classical Bead-Rod-Spring

chain models: the multi-bead-Hookean-spring model without hydrodynamic interaction

(Rouse theory), the multi-bead-Hookean-spring model with equilibrium-averaged hydro-

dynamic interaction (Zimm theory) and the freely-jointed (three-bead)-(two-rod) chain

(trimer system).
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2.4 BD of Bead-Spring Models

Even though the multi-bead-rod model appeared chronologically earlier than the multi-

bead-spring model, this latter is tackled preliminarily here because it o�ers a simpler

mathematical structure that is re�ected immediately on the simplicity of the BD numerical

methods associated with. In addition, due probably to the simpler mathematic formalisms,

the multi-spring-bead model has been more recurrently employed to model the dynamics

of complex �uids.

2.4.1 Kinematic Formulation

Let consider the multi-bead-spring chain model in Fig. 2.2. In what follows, a multi-

bead-spring chain is constituted of n beads joined by n − 1 non-bendable springs. The

instantaneous position of each bead is de�ned in a coordinate reference system by the vector

ri. An alternative way for describing the position and the orientation of the multi-bead-

spring chain is possible de�ning the centre of masses of the chain, rc and the connector

vector Qi between consecutive beads:

rc =
1
n

n∑
i=1

ri (2.14)

Qi = ri+1 − ri (2.15)

Multi-bead-spring chain is supposed suspended into a solvent at temperature T . Solvent

is considered a Newtonian �uid with viscosity ηs. Concentration of the multi-bead-spring

chain is de�ned in terms of the number of density, c chains per volume unit. As the solution

is supposed highly diluted no interaction between multi-bead-spring chains is considered.

Moreover, �ow �eld in the overall suspension is supposed homogeneous, in the meaning

that the rate-of-strain tensor is the same in all points of the �ow �eld or, at least, in the

scale of twice the contour length of the multi-bead-spring chain [141].

In the kinematic formulation of this kind of coarse-grained model is presumed that all

changes of momentum are concentrated on beads. Furthermore, an assumption of inertia-

less is employed; due to the insigni�cance of inertial forces (small masses) in front of the

friction and thermal forces acting on them. In what follows a detailed description of the

forces acting on beads is presented.

Hydrodynamic drag force acting on bead i, F(h)
i

This force describes the resistance experienced by the bead as it moves through the �uid.

One of the simplest ways to express this force is given by the Stoke's law, which considers

the hydrodynamic drag force proportional to the di�erence between the �uid velocity at

the bead position and the averaged bead velocity. A more general expression takes into

account a hydrodynamic interaction component that comes from the physical perturbation
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of the local �ow �eld due to the global chain movement. Hydrodynamic drag force acting

on bead i writes as follows:

F(h)
i = ζ

(
κ (ri) · ri + v

′
i − ṙi

)
(2.16)

where ζ is a second-order friction tensor, κ is the gradient of the bulk velocity �eld

and ṙi is the averaged instantaneous bead velocity. On the other hand, v
′
i accounts for the

variation in the local �ow �eld around ri due to the motion of the other beads in the same

chain.

In polymer kinetic theory, Rouse model neglects this intra-molecular interaction (i.e.

v
′
i = 0); resorting to the well-known free draining motion hypothesis [188]. On the other

hand, theories taking into account the hydrodynamic interaction suppose that the bead

velocity v
′
i depends linearly on the hydrodynamic forces acting on the others beads inside

the chain:

v
′
i = −

∑
j

Ωij · F(h)
j (2.17)

where Ωij is the Oseen-Burgers hydrodynamic interaction tensor. Say that the pertur-

bation of a velocity �eld in a given point of the space depends linearly on the hydrodynamic

forces acting in the surroundings of that point presupposes a Maxwellian velocity distri-

bution [141]. Oseen-Burgers hydrodynamic tensor writes as follows:

Ωij =
1

8πηsrji

(
δ +

rji ⊗ rji
r2
ji

)
(2.18)

where rji = √rji · rji and δ is the unit tensor. Zimm model, in the context of

polymer kinetic theory, takes into account the hydrodynamic interaction e�ect using the

equilibrium-averaged Oseen-Burgers tensor:

〈Ωij〉eq =
1− δij
6πηs

〈
1
rji

〉
eq

δ (2.19)

Intra-molecular force acting on bead i, F(φ)
i

This force corresponds to the sum of all the spring forces acting on bead i. In a multi-

bead-spring chain, total intra-molecular force on bead i writes as follows:

F(φ)
i =

n−1∑
j=1

(δi,j − δi,j+1) F(c)
j (2.20)

where F(c)
j = ∂φj/∂Qj is the connector force acting on bead j along spring j, de�ned

as the gradient of the spring potential energy φj . Linear force law is the simplest connector
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force:

F(H)
i =

∂φ
(HOOK)
i

∂Qi
=

∂

∂Qi

(
1
2
H
(√

Qi ·Qi

)2
)

= HQi (2.21)

Previous Hookean-type law force is based on the entropic analysis over a tighten

random-walk polymer chain. H is a Hookean spring constant that can be related to

temperature and some molecular structural parameters (see �2.1.1). The linear law force

is only valid for large polymer chains and small strain regimes. Hence, Hookean law force

is inadequate for processes involving large deformations. This fact motivated the use of

non-linear force laws, for instance:

• Finite extensible non-linear elastic (FENE) force law [189]

F(FENE)
i =

HQi

1− (Qi/Qi,0)2 (2.22)

where Qi,0 is the maximal extension of the spring.

• Inverse Langevin (IL) force law [190]

F(IL)
i =

kBT

a
L−1

[
Qi

Qi,0

]
(2.23)

where a is typically twice the persistent length lp and the Langevin function L is given

by L (x) = cothx−x−1. Persistent length in a polymer molecule is a measure of the

�exibility of the chain; in other terms, the direction of the chain-axis in a quiescent

polymer molecule is uncorrelated only along contour length distances equal or higher

than 2lp.

• Worm-like chain (WLC) force law [191]

F(WLC)
i =

kBT

a

[
1
2

1
(1−Qi/Qi,0)2 −

1
2

+
2Qi
Qi,0

]
Qi

Qi,0
(2.24)

A comparison of the various spring-force laws is presented in Fig. 2.6. Observe that

FENE-like force laws are linear at small extensions and tends to in�nite when extension

approaches the �nite maximal length.

Brownian force acting on bead i, F(b)
i

The Brownian force accounts for the change of momentum at each bead (supposed as

Brownian particles) due to the ensemble of instantaneous collisions of the solvent molecules

against it. In nature, those collisions are faster than the bead motion, that is why Brownian

forces are considered as stochastic variables in the BD time scale. Due to the isotropic

condition of those collisions, Brownian force is treated mathematically as a quantity with
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Figure 2.6: Curves of the spring connector force
∣∣F(c)

∣∣ in function of the reduced spring
extension for several spring force laws employed in polymer kinetic theory

zero mean in time and space (ergodicity principle). On the other hand, the second-moment

of a the distribution of Brownian forces must to equilibrate the dissipative forces [149]. In

short, an �instantaneous� Brownian force distribution in a BD simulation is characterised

as a Gaussian process with the next �rst and second moments:

〈
F(b)
i (t)

〉
= 0 (2.25)

〈
F(b)
i (t)⊗ F(b)

j (t+ ∆t)
〉

=
2kBT

∆t
ζ (2.26)

where ∆t is a discrete approximation of a di�erential in time and 〈. . .〉 represents an en-

semble average. It is important to mention that in an orthogonal basis of D dimensions the

multi-dimensional Gaussian process can be decoupled in D independent uni-dimensional

Gaussian processes [149].

External forces acting on bead i, F(e)
i

Gravitational and electromagnetic �elds can induce non-negligible external forces over the

beads of the system. These forces are not considered here.
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Taking into account that beads are considered as Brownian particles, the inertial e�ects

are neglected. In such context, the force balance must to be satis�ed at each time at each

bead i:

F(h)
i + F(φ)

i + F(b)
i + F(e)

i = 0 (2.27)

Using the de�nition of the hydrodynamic drag force, previous di�erential stochastic

equation can be transformed to explicit the bead velocity:

dri
dt

= v
′
i + [κ (ri) · ri] + ζ−1F(φ)

i + ζ−1F(b)
i + ζ−1F(e)

i (2.28)

Integration in time of previous stochastic equation governs the kinematic evolution of

the bead-spring system. As any numerical method, in a BD simulation time is treated as

a discrete variable and, hence, di�erent numerical integration schemes can be proposed.

2.4.2 Integration Schemes

Given the structure of Eq. (2.28) a simple explicit integration scheme inspired by the

numerical resolution of ordinary di�erential equations appears as a natural integration

scheme. In fact, the Euler-Maruyama method is the simplest way to integrate numerically

Eq. (2.28). Given an initial con�guration at time t, ri, t, is possible to estimate ri, t+∆t by

using the next formula:

ri, t+∆t = ri, t +
(
v
′
i + [κ (ri) · ri] + ζ−1F(φ)

i

)
t
∆t+

(√
2kBTζ−1

)
∆Wi (2.29)

where ∆W is a random increment following a multi-dimensional Wiener process. This

random Wiener process follows a normal distribution with the next �rst and second mo-

ments:

〈∆Wi〉 = 0 (2.30)

〈∆Wi, t ⊗∆Wj, t+∆t〉 = ∆tδ (2.31)

Rewriting Eq. (2.29) only in terms of the time step ∆t we have:

ri, t+∆t = ri, t +
(
v
′
i + [κ (ri) · ri] + ζ−1F(φ)

i

)
t
∆t+

(√
2kBTζ−1∆t

)
∆Ni (0, 1) (2.32)

where ∆Ni (0, 1) is a multi-dimensional Gaussian increment of mean 0 and variance 1.
Performance of the Euler-Maruyama method is extremely sensitive to the time step em-

ployed. In fact, convergence of the integration scheme is only guaranteed when ∆t → 0
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[192]. Suppose a stochastic di�erential equation with the next general form:

dX = A (X) dt+B (X) dW (2.33)

An integration scheme converges strongly with order υ at time tmax if the next condition

is satis�ed:

〈
|X (tmax)−Xtrue (tmax)|2

〉1/2
≤ C (∆t)υ (2.34)

for all time step lengths equal or inferior to ∆t and being C a positive constant. It has

been proven that the Euler-Maruyama method exhibit a low order of strong convergence

υ = 1/2 [149]. Identi�cation of the maximal time step satisfying the strong convergence

criteria for a speci�c C value is normally done by trial and error and plotting the error

in function of the time step. In spite of the low order of convergence, when the drift and

di�usive coe�cients (A (X) and B (X) in Eq. (2.32) respectively) are almost constants,

the Euler-Maruyama method is the most frequently used integration scheme. Thus, this

explicit integration scheme is widely used in BD simulations for bead-spring systems with

Hookean-springs.

Now, when the drift and di�usion coe�cients become more complex, the fully explicit

method is not satisfying and high order integration schemes are required. Such is the case

when non-linear spring potentials are employed to guarantee a �nite spring extensibility.

In fact, the main di�culty appearing with the numerical temporal integration of this kind

of bead-spring systems is that the bead displacements have to be bounded in order to

not exceed the maximal spring extension. For describing those high-order integration

algorithms is better to express the bead-spring chain dynamics (given in the Eq. 2.28) in

terms of the connector vector Qi:

dQi

dt
=
(
v
′
i+1 − v

′
i

)
+ [κ (ri) ·Qi] + ζ−1

(
F(φ)
i+1 − F(φ)

i

)
+ ζ−1

(
F(b)
i+1 − F(b)

i

)
(2.35)

A �rst approximation to solve the previous equation containing non-linear spring forces

consists in use a conventional explicit scheme (Euler-Maruyama or Picard's method) and

just reject the updating step that produces a not-physical displacement (maximal spring

extension exceeded). Some practical rejection criteria and useful advices for the choice of

the time step are given elsewhere [149].

More appropriate methods to integrate Eq. (2.35) are based on implicit schemes. For

example, Somasi et al. [193] proposed a fully implicit scheme inspired in the two-step

semi-implicit algorithm proposed by Öttinger for FENE dumbbells [149]. In general, at

each time step, those implicit methods are composed of a predictor step followed by a

corrector one. Given a bead-spring con�guration at the time t, Qi, t, the con�guration

after one time step is generated as follows:

• Predictor step. Using a conventional explicit scheme an arti�cial con�guration Q∗i is
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calculated as follows:

Q∗i = Qi, t +

 (v
′
i+1, t − v

′
i, t

)
+ [κ (ri) ·Qi, t] +

ζ−1
(
F(φ)
i+1, t − F(φ)

i, t

)
+ ζ−1

(
F(b)
i+1, t − F(b)

i, t

) ∆t (2.36)

• Corrector step. Rewriting the spring potential forces in terms of the connector vectors

and using the trial con�guration obtained in the predictor step to average the �ow-

�eld contribution to the drag forces is possible to write an updating time step as

follows:

Qi + 2ζ−1
(
∂φi
∂Qi

)
∆t = Qi, t + 1

2 [κ (ri) ·Qi, t + κ (ri) ·Q∗i ] ∆t+

ζ−1

(
n−1∑
j=1

(δi,j+1 + δi+1,j)
(
∂φj
∂Qj

))
∆t+ ζ−1

(
F(b)
i+1, t − F(b)

i, t

)
∆t

(2.37)

The left member of previous equation depends exclusively on the connector vector

Qi. By selecting the connector forces treated implicitly in the right side of Eq. (2.37)

it is possible to reorder the expression to obtain a cubic equation for the magnitude

of Qi. By choosing an appropriate root (inferior to the maximal spring extensibility)

for such equation, the non-implicit spring forces (function of the connector vectors)

can be updated and an iterative process can be formulated (doing Q∗i equal to Qi

from the previous iteration) until di�erence between consecutive solutions is inferior

to a speci�ed tolerance ε:

√√√√n−1∑
i=1

(
Qi −Q∗i

)2 ≤ ε (2.38)

Once the iterative process converges, Qi is said to be the spring con�guration at

time t + ∆t, Qi, t+∆t, with the guarantee that the lengths of the connector vectors

are allowed physical ones.

In spite of the heavier calculus involved at each time step in relation to the explicit

algorithm, the advantage of the implicit schemes is that larger time steps can be employed.

For such reason, each modelling requires a particular analysis for determining which inte-

gration method produces a more e�cient BD simulation.

Several studies about the numerical integration of non-linear stochastic equations and

time step width control are found elsewhere, as well as, relevant examples of BD simulations

of bead-spring systems with �nite-extensibility spring potentials [194, 195, 196].

2.4.3 Stress Tensor Calculation

In order to obtain the rheological behaviour of any coarse-grained molecular model it is

necessary to extract the stress tensor information from its mechanical balance at each
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instant. Total shear-stress tensor τ in a suspension is supposed to be the sum of the

contribution coming from the solvent τ s and another one coming from the suspended

entities τ p (in this case, the multi-bead-spring chains) [141]:

τ = τ s + τ p (2.39)

It is important to notice that at equilibrium (i.e. no external forces and no external-�ow

�eld), the total shear stress tensor τ is zero. Assuming that the solvent is a Newtonian

�uid, then previous Eq. (2.39) can be rewritten as follows:

τ = ηsγ̇ + τ p (2.40)

where ηs is the solvent viscosity and γ̇ is the homogeneous rate-of-strain tensor. Any-

way, to model the intrinsic rheological response of the bead-spring chain, one is particularly

interested on the shear stress contribution coming from the suspended particles τ p. In the

early literature of polymer kinetic theory there are several formal derivations of expressions

accounting for the shear stress tensor contribution coming from multi-bead-spring chains

suspended in a liquid media [197, 198]. According to those developments in a bead-spring

chain there are three principal physical e�ects contributing to the total shear stress tensor:

(1) the intra-molecular forces across the connector vectors; (2) the external forces acting on

beads and (3) the transport of momentum caused by the displacement of the beads. Those

are not the only sources contributing to the physical mechanical state of the system, but in

the framework of a standard rheological test those described mechanisms are de�nitively

the most important.

Based on this deduction guideline, the Kramers expression for the shear-stress tensor

contribution coming from a multi-bead-spring chain writes as follows:

τ p = c
n−1∑
k=1

〈
Qk ⊗ F(c)

k

〉
− c

n∑
v=1

n−1∑
k=1

Bvk

〈
Qk ⊗ F(e)

v

〉
− (n− 1) ckBTδ (2.41)

where 〈. . .〉 represents an average in the con�gurational space and Bvk is a linear op-

erator relating the distance between a bead v and the centre of mass of the chain rc with

the connector vectors as follows:

rv − rc =
∑
k

BvkQk (2.42)

The matrix elements of the matrix Bvk are de�ned by [141]:

Bvk =

{
k
n k < n

−
[
1− k

n

]
k ≤ n

(2.43)

In the right side of Kramers expression in Eq. (2.41) are easily identi�able the three
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mentioned physical e�ects contributing to the shear-stress tensor: the �rst term corre-

sponds to the intra-molecular forces contribution, the second one represents the contri-

bution of the external forces and the third one accounts for the momentum transfer of

beads. This last term is an isotropic contribution to the shear stress tensor based in the

supposition of a Maxwellian velocity distribution.

Kramers expression can be slightly transformed by writing the spring-bead chain confor-

mation in terms of the distance of each bead to the centre of mass of the chain, Rv = rv−rc,

and by using the expression relating the intra-molecular force acting on bead v, F(φ)
v ,

with the connector force F(c)
k associated to spring k (Eq. 2.20). Such form is known as

the modi�ed-Kramers expression for the shear-stress tensor contribution of a bead-spring

chain:

τ p = −c
n∑
v=1

〈
Rv ⊗

(
F(φ)
v + F(e)

v

)〉
− (n− 1) ckBTδ (2.44)

Now, combining previous equation with the bead force balance in a multi-bead-spring

chain given in Eq. (2.27) and neglecting any external force a much simpler expression for

the shear stress tensor can be obtained:

τ p = c

n∑
v=1

〈
Rv ⊗ F(h)

v

〉
(2.45)

where the result
n∑
v=1

〈
Rv ⊗ F(b)

v

〉
= (n− 1) kBTδ has been employed supposing again

a Maxwellian velocity distribution. Shear-stress tensor contribution in Eq. (2.45) is known

as the Kramers-Kirkwood expression [197, 146].

2.4.4 The Rouse Model

Rouse model is a polymer kinetic theory model that mimics the structure of a linear

polymer chain using a multi-bead-spring chain, where intra-molecular interactions are ne-

glected. Springs in the Rouse model follows a Hookean law, based on the results of the

end-to-end entropic tension experimented by a freely-jointed Kramers chain (following a

Gaussian distribution con�guration) suspended in an isothermal solvent bath (see �2.1.1).

No external forces are considered. A formal compendium of the theory can be found in

the recognized publication of Rouse in 1953 [188].

The Hookean-Dumbbell

The simplest version of the Rouse model is the (two-bead)-(one-spring) system or, better

known as, the elastic-dumbbell model. It has been found that the mechanical response

of the dumbbell model is equivalent to that one of a Maxwell element (spring-dashpot in

series) used by rheologists to model a general linear viscoelastic material [199].

Given the simplicity of the dumbbell model, it will be used to study the main numerical
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issues of the BD simulations for bead-spring models. An explicit integration scheme has

been employed in a three-dimensional BD simulation. First, the equilibrium properties are

analysed and, secondly, the dynamic behaviour is presented.

Equilibrium properties

A (two-bead)-(Hookean-spring) system at thermal equilibrium and in absence of an

external-�ow �eld has an average square end-to-end distance
〈
r2
〉
eq

equal to:

〈
r2
〉
eq

=
3kBT
H

(2.46)

An important aspect in BD simulations is the number of entities (or trajectories) re-

quired to converge to the central values with satisfactory statistics. In Fig. 2.7 the BD

performance to estimate the square end-to-end distance in function of the population con-

sidered is presented.

Figure 2.7: Statistics of the square end-to-end distance of a Hookean dumbbell in thermal
equilibrium (during 1500 time steps) in function of the BD population. H = ζ = kBT = 1
are the simulation parameters. Square end-to-end distance at equilibrium is equal to 3
according to the kinetic theory. A time step equal to ∆t = λH/250 has been employed

The simulated Hookean dumbbell has a square end-to-end distance at equilibrium equal

to 3 (given by Eq. 2.46) and a relaxation time of λH = 0.25 according to the kinetic theory

framework. A short time step (equivalent to ∆t = λH/250) was employed in the simulation

in order to marginalize the e�ect of the integration scheme convergence. BD performance

is measured as the dispersion of the average square end-to-end distance (95% of con�dence)

for 1500 time steps once the system has reached an equilibrium con�guration (i.e. after
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at least 3 times the relaxation time). A reduction of the relative dispersion with respect

to the central value is observed from 18.5% for a population of 102 dumbbells to 1.1%
for a population of 104 dumbbells. As expected, a linear evolution of the computational

time (Intel R© CoreTM T7300 2.00 GHz) in function of the number of dumbbells simulated

is noticed. For this particular case, a good compromise between simulation accuracy and

computational time is obtained for populations between of 103 and 5× 103 dumbbells.

Another important issue in BD simulations, especially when employing an explicit in-

tegration scheme, is the time step. In Fig. 2.8 the in�uence of the time step on the

convergence of the integration scheme is revealed. In this case a population of 104 dumb-

bells is employed with the aim of attenuate the noise coming from the random number

generation of statistical distributions and isolate the e�ects originated by the integration

scheme.

Figure 2.8: Evolution of the reduced square end-to-end distance of a dumbbell after sudden
thermal activation for di�erent time steps in the BD simulation. H = ζ = kBT = 1 are
the simulation parameters. Square end-to-end distance is made dimensionless using the
equilibrium value given by the kinetic theory. A population of 104 dumbbells has been
employed

In the Fig. 2.8 the evolution of the squared end-to-end distance of a Hookean dumbbell,

after a sudden thermal activation, is presented for di�erent time steps. In absence of

temperature, the end-to-end distance of a dumbbell is null. That is the reason why all

curves begin at the origin. According to the kinetic theory, a time equal to four times

the relaxation time is enough for a Hookean dumbbell model to reach the equilibrium

end-to-end distance at constant temperature. From Fig. 2.8, a complete divergence of

the integration scheme is observed when a time step bigger than the main relaxation time
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is employed. For a time step equal to the relaxation time and equal to a quarter of

the relaxation time a convergence of the integration scheme can be appreciated, but the

convergence values are inaccurate regarding the kinetic theory values. On the other hand,

a �ner convergence towards the central values is observed as the time step gets smaller

than a tenth of the relaxation time.

At thermal equilibrium, the shear-stress tensor is zero, so for a Hookean dumbbell

Kramers expression (Eq. 2.41) writes:

τ p, eq = c
〈
Q⊗ F(c)

〉
− ckBTδ = 0 (2.47)

which could be written also as: 〈
Q⊗ F(c)

〉
eq

kBT
= δ (2.48)

Using a time step equal to λH/100 and an equilibrated population of 103 dumbbells

(i.e. a BD system equilibrated during a time equal to three times the main relaxation

time), the simulation produces a stable shear stress tensor. Third of the trace of the tensor

in the left member of Eq. (2.48) has a mean value equal to 0.99 ± 0.03 (95% con�dence)

during 600 times steps. On the other hand, the out-of-diagonal components of the same

tensor have an absolute mean value equal to 0.005 ± 0.063 (95% con�dence) during 600
realisations.

Dynamic Properties

The linear viscoelastic behaviour of a Hookean-dumbbell dilute solution can be obtained

analytically. The constitutive equation of such system has a well-known solution, that

results to be the same of a convected Je�reys model, also known as the Oldroyd-B model

[141]. Using such constitutive equation, the complex modulus of a Hookean-dumbbell

dilute solution writes as follows:

G′ =
ckBTλ

2
Hω

2

1 + (λHω)2 (2.49)

G′′ − ηsω =
ckBTλHω

1 + (λHω)2 (2.50)

The BD algorithm employed to estimate the dynamic response of a suspension submit-

ted to a small-amplitude oscillatory strain was previously described in �2.3.1. An explicit

integration scheme is implemented in the BD simulation and the Kramers expression is

employed to compute the shear stress tensor. Using a time step equal to λH/100 and a

population of 103 dumbbells (convergent simulation parameters at no-�ow conditions), the

BD performance is checked in Fig. 2.9 by plotting the loss modulus at the characteristic

frequency (ω = λ−1
H ) in function of the maximal imposed strain.
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Figure 2.9: BD prediction of the loss modulus at the characteristic frequency for a Hookean
dumbbell model in function of the maximal shear strain applied. Maximal shear strain is
normalized by the equilibrium end-to-end distance of a Hookean dumbbell model. H =
ζ = kBT = 1 are the simulation parameters. A population of 103 dumbbells and a time
step equal to λH/100 have been employed
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Bead-spring models are not able to describe the decrease of viscosity when shear rate

is enhanced [141]. This fact is con�rmed by Fig. 2.9 where the BD estimation of the loss

modulus at the characteristic frequency appears independent of the maximal shear strain

applied. However, a huge numerical dispersion is observed at low strains. This numerical

noise is given by the stochastic nature of the Brownian potential when the magnitude

of the Brownian forces is equal or higher than the magnitude of the �ow-induced forces.

A narrower dispersion can be obtained by the implementation of a more precise random

number generation algorithm.

At low frequencies the convergence of the integration scheme is guaranteed by the cri-

teria obtained for the no-�ow conditions. That is truth because at low frequencies, system

motion is controlled essentially by the thermal activity. At high frequencies, nevertheless,

additional considerations are needed in order to satisfy the convergence of the integration

scheme. In fact, at higher frequencies than the characteristic one, �ow-induced forces be-

come the controlling factor of the kinematics of the system and the relative importance

of the stochastic forces is progressively reduced. For that reason at high frequencies, as

the intensity of the �ow �eld increases time step must to be gradually re�ned in order to

guarantee convergence towards the central values. To show this fact, in Fig. 2.10 the BD

convergence at two high frequencies (ωR = 10 and ωR = 102) is deployed by plotting the

relative error of the loss modulus estimation for a population of 103 dumbbells with respect

to the time step implemented.

From Fig. 2.10, at a reciprocal frequency equal to 101, a diminution of the relative error

from 16% to 0.7% is appreciated when the time step is reduced from λH/100 to λH/104.

An even more pronounced e�ect of the time step is observed for a reciprocal frequency of

102, given the high sensitivity of the sine function around zero (phase angle tends to zero

as frequency increases). In that case, a diminution of the relative error from 84% to 4% is

checked for the same re�ning of the time step. On the other hand, storage modulus is much

less sensitive to the time step than the loss modulus in the high frequency regime because

of the less variability of the cosine function with respect to the sine function around zero.

For example, at ωR = 102, a reduction of the relative error going from 1.6% to less than

0.1% is observed when the time step is diminished from λH/100 to λH/104.

In Fig. 2.11 the global BD performance to predict the complex modulus in a frequency

sweep test within a representative frequency interval is presented.

BD performance is depicted by plotting the mean relative error for the storage and

loss modulus for 34 frequencies homogenously distributed within an interval of reduced

frequencies going from 10−2 to 102 in function of the time step. A population of 5000
dumbbells is used in the BD simulations. In all the sweep frequency tests a practically

constant mean relative error for the storage modulus is obtained (∼ 2%). This inaccu-

racy in the prediction of the storage modulus is coming mainly from the low frequencies

regime (10−2 ≤ ωR ≤ 10−1) given the high variability of the cosine function approach-

ing π/2 (phase angle tends to this value as frequency diminishes). No improvement in

convergence to the central values is appreciated when re�ning the time step because the
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Figure 2.10: Relative error of the BD prediction for the loss modulus at high frequencies
in function of the time step. H = ζ = kBT = 1 are the simulation parameters. A
population of 103 dumbbells has been employed. Relative error is de�ned as follows:
|(logG′′BD (ωR)− logG′′th (ωR)) / log Θ|, where Θ = G′th

(
ωR = 102

)
/G′′th

(
ωR = 102

)
is the

maximal interval of complex modulus variation in the tested frequency interval



2.4. BD OF BEAD-SPRING MODELS 49

Figure 2.11: Mean relative error of the BD prediction of the storage and loss modu-
lus (for a Hookean dumbbell model) and total computational time in function of the
time step implemented. Mean relative errors are calculated as the average of 34 points
distributed homogenously in a reduced frequency range going from 10−2 to 102. Rel-
ative error is de�ned as follows: |(logG′BD (ωR)− logG′th (ωR)) / log Θ|, where Θ =
G′th

(
ωR = 102

)
/G′th

(
ωR = 10−2

)
is the maximal interval of complex modulus variation

in the tested frequency interval. H = ζ = kBT = 1 are the simulation parameters. A
population of 5000 dumbbells has been employed
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origin of the dispersion is not associated with the integration scheme, but with the nat-

ural �uctuations of the stochastic forces that control the kinematics of the dumbbell at

low velocities. Implementation of a more sophisticated algorithm for generating random

numbers is required to improve the convergence of the storage modulus at low frequencies.

In fact, the list of pseudo-random numbers generators is continuously growing as re�ect

of the remaining challenges in this computational art [149, 200]. On the contrary, a con-

siderable improvement in the loss modulus prediction is checked as smaller time steps are

employed. A reduction of the mean relative error from 3.0% to 0.6% is obtained when time

step is shortened from λH/100 to λH/103. This improvement in convergence for the loss

modulus is related directly to the better accuracy at high frequencies, as showed before in

Fig. 2.7. As expected, a linear increment on the computational time (4× Intel Itanium R©
2 Monticito 1400 MHz) is observed as the time step is shortened.

The Multi-Bead-Spring Chain

The analytical expression of the constitutive equation for the Rouse model (composed of

n − 1 Hookean springs) is well-known. It results to be the linear superposition of n − 1
Hookean dumbbells with a spectrum of relaxation times λj following the next normal

modes [141]:

λj =
ζ/2H

4 sin2 (jπ/2n)
(2.51)

When a dilute solution of Rouse chains is submitted to a small-amplitude oscillatory

deformation test, the complex modulus contribution given by the chains writes as follows:

G′ = ckBT
n−1∑
j=1

λ2
jω

2

1 + (λjω)2 (2.52)

G′′ − ηsω = ckBT

n−1∑
j=1

λjω

1 + (λjω)2 (2.53)

In principle, the numerical considerations extracted from the BD simulations with

Hookean-dumbbells can be extrapolated to the BD simulations of multi-bead-spring chains.

In Figs. 2.12 and 2.13 the BD predictions for the complex modulus of Rouse chains with 1,
10 and 50 springs are compared. All BD simulations are carried out using a population of

5000 chains, a number proved to provide a good compromise between prediction accuracy

and computational time (see Fig. 2.7). A frequency sweep test is carried out on 34 points

homogeneously distributed in a reciprocal frequency interval going from 10−1 to 102. A

constant time step equal to λn−1/500 was implemented, where λn−1 is the shortest time

of the relaxation times spectra. This length of the time step was demonstrated to provide

also a good compromise between accuracy and computational cost (see Fig. 2.8).

From Fig. 2.12 is observed that the prediction of the storage modulus is less accu-

rate at low frequencies. It was already mentioned that the inaccuracy at low frequencies
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comes from the random number generation; hence improvement in the accuracy of the BD

prediction is subjected to the implementation of more sophisticated algorithms of random

number generation. Quality of the random number generation is only re�ected at low

frequencies because, at this regime of �ow, the dynamics of the multi-bead-spring chain

is governed by the randomizing thermal forces; whereas at high frequencies the statistical

errors of the computational random number generation are masked by the e�ects of the

external-imposed �ow-�eld.

Figure 2.12: BD prediction of the storage modulus in function of the reduced frequency for
three Rouse chains: 1-spring, 10-springs and 50-springs. Analytical curves are represented
by solid lines. H = ζ = kBT = 1 are the BD simulation parameters. A population of 5000
chains has been employed

Mean relative errors for the BD prediction of the storage modulus are 0.9%, 0.2%
and 0.1% for the Hookean dumbbell, the 10-springs and the 50-springs chain respectively.

BD simulations are capable to predict the apparition of new relaxation processes when

increasing the number of springs. Notice the elastic enhancement at high frequencies,

going from the characteristic plateau of the Hookean dumbbell model to non-zero slopes of

the storage modulus in function of the frequency; for instance 0.6 for the 10-springs and 50-
springs chain around a reduced frequency of 10. It is worth to mention that Rouse theory

predicts a storage modulus evolving with ω0.5 for very long chains (n > 300). Tendency

towards this limiting value has been registered by the BD simulations; a slight reduction

of the storage modulus slope in the high frequency range is appreciated when going from

0.65 for the 10-springs chain to 0.61 for the 50-springs one.

In Fig. 2.13 the BD predictions of the loss modulus in function of the frequency are
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plotted for the same Rouse chains presented in the Fig. 2.12. For the Hookean dumbbell

system, inaccuracy in the BD prediction is concentrated at high frequencies, on the con-

trary of the storage modulus. In this case, given the low values of loss modulus at high

frequencies, error is coming from a bad resolution of the integration scheme when the phase

angle approaches 0. Shorter time steps are required in this frequency window (101 to 102),

but it is important to say that the model response at those frequencies lacks of physical

meaning too.

Figure 2.13: BD prediction of the loss modulus in function of the reduced frequency for
three Rouse chains: 1-spring, 10-springs and 50-springs. Analytical curves are represented
in solid lines. H = ζ = kBT = 1 are the BD simulation parameters. A population of 5000
chains has been employed

BD simulations are able to correctly predict the evolution of the loss modulus in the

high frequency range. Observe, for instance, the linear decrease of the loss modulus for

the dumbbell system and the linear increases of the loss modulus for the 10-springs and
50-springs chains at high frequencies. In the high frequency range, the predicted slopes of

0.42 and 0.49 for the 10-springs and 50-springs chains respectively, are also consistent with
the maximal limiting value of 0.5 given by the Rouse theory. BD simulations show that

when increasing the number of springs, storage and loss moduli tend converging towards

the same values in the high frequency range, as predicted by Rouse theory for large number

of springs (n > 300).

Mean relative errors for the loss modulus prediction are 1.6%, 0.3% and 0.7% for the

Hookean dumbbell, the 10-springs and the 50-springs chain respectively. CPU1 time (4×

1Central Processing Unit
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Intel Itanium R© 2 Monticito 1400 MHz) goes up from 15 minutes to 10 hours when passing

from 1-spring to 10-springs, an impressive increment of the computational cost. This fact

is explained by the longer main relaxation times when dealing with bigger number of

springs that are traduced in longer stabilization steps in the BD algorithm given in �2.3.1,

specially in the high frequency range. Additionally, the short time steps required in an

explicit integration scheme imply longer analytical steps in the implemented BD algorithm,

specially in the low frequency range.

2.4.5 The Zimm Model

Unlike the Rouse model, in Zimm theory hydrodynamic interaction is taken into account.

From a formal point of view, the kinematic description is exactly the same as that one

of the Rouse model, except for the hydrodynamic drag force, where an additional term is

considered to account for the local variation in the bulk �ow �eld caused by the motion

of the other beads in the multi-bead-spring chain. Pioneer works on hydrodynamic inter-

action inside �exible macromolecules are attributed to Kirkwood and Riseman [201, 146].

Zimm adapted the Kirkwood's results in hydrodynamic interaction to the multi-bead-

spring model in order to estimate the viscoelastic, birefringence and dielectric properties

of dilute polymer solutions. Zimm found the analytical solution of the model by using a

transformation to normal coordinates [202].

In the Zimm model, the local interaction term depends linearly on the hydrodynamic

forces acting on the other beads of the chain. The equilibrium-averaged Oseen-Burgers

hydrodynamic tensor (see �2.4.1) is the linear operator employed and is de�ned as follows

[202]:

〈Ωij〉eq =
1− δij
6πηs

√
2H

πkBT |i− j|
δ (2.54)

The particularities of the implementation of a BD simulation for the Zimm model

can be revealed by transforming the general expression for the bead velocity given in Eq.

(2.28). Considering that in Zimm theory external forces are neglected and an isotropic

friction tensor is supposed, the generalized stochastic di�erential equation in Eq. (2.27)

can be rewritten as follows:

dri
dt

= −
∑
j

〈Ωij〉eq · F
(h)
j + [κ (ri) · ri] +

F(φ)
i

ζ
+

F(b)
i

ζ
(2.55)

where the local hydrodynamic interaction term v
′
i has been approximated by using the

equilibrium-averaged Oseen-Burgers hydrodynamic tensor. As the balance of forces over

each bead is zero (inertialess Langevin equation) the hydrodynamic force in Eq. (2.55) can
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be written in terms of the other forces:

dri
dt

=
∑
j

〈Ωij〉eq ·
[
F(φ)
j + F(b)

i

]
+ [κ (ri) · ri] +

F(φ)
i

ζ
+

F(b)
i

ζ
(2.56)

Reordering and bringing together common terms:

dri
dt

= [κ (ri) · ri] +
1
ζ

∑
j

HIij · F(φ)
j +

1
ζ

∑
j

HIij · F(b)
j (2.57)

where HIij = δij + ζ 〈Ωij〉eq is called the Zimm hydrodynamic interaction tensor. Fi-

nally, based on the conditions imposed by the �uctuation-dissipation theorem, the stochas-

tic di�erential Eq. (2.57) for the bead velocity in a Zimm chain takes the form [147]:

dri
dt

= [κ (ri) · ri] +
1
ζ

∑
j

HIij · F(φ)
j +

√
2kBT
ζ

∑
j

Cij ·
dWj

dt
(2.58)

where the symmetric Zimm hydrodynamic interaction tensor has been decomposed

according to HIij =
∑
k

Cik ·CT
jk. Usually, component ij of the Zimm hydrodynamic

interaction matrix is expressed also using the next formula:

HIij = δij + (1− δij)h∗
√

2
|i− j|

(2.59)

where h∗ is the hydrodynamic interaction parameter according to Thurston and Peterlin

[203]:

h∗ =
ζ

ηs

√
H

36π3kBT
(2.60)

where ζ is the bead friction coe�cient, ηs is the solvent viscosity and H is the Hookean-

spring constant. The hydrodynamic interaction parameter h∗ can be understood also as

the ratio of the bead radius to the root-mean-square distance between two beads linked by

a spring at equilibrium. In that context, it is expected that h∗ is lower than 0.5 [149]. From

a practical point of view, experimental viscoelastic data for several polymer solutions are

generally well represented by Zimm chains of several hundreds of beads with hydrodynamic

interaction parameters between 0.1 and 0.2 [204].

From a numerical point of view (BD approach) integration of the stochastic di�erential

equation for a Zimm chain (Eq. 2.58) does not represent an additional cost with respect

to the Rouse chains (Zimm hydrodynamic interaction matrix is constant). In addition,

equations employed to describe the kinematics and to compute the shear-stress tensor are

quite similar for both models. Hence, the numerical considerations about the number

of trajectories required and the time step (in an explicit integration scheme) inferred for

Rouse chains can, in principle, be extended to the BD simulations of Zimm chains.

It seems that the calculation of the matrix Cij has a numerical relevance when general
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hydrodynamic interaction (i.e. based on the general expression of the Oseen-Burgers ten-

sor) for chains with large number of beads (n > 300) is considered, owing to the fact that

the hydrodynamic interaction matrix is recalculated at each time step. Classical Cholesky

decomposition is expensive, scaling with the cube of the number of beads [147]. In response,

Fixman proposed two alternative numerical methods to calculate the square-root of the hy-

drodynamic interaction matrix: one by Newton iteration and the other one by Chebyshev

polynomial decomposition [205]. Implementation of the last polynomial approximation for

the square-root of the hydrodynamic interaction matrix in a BD framework is detailed

elsewhere [147]; this method roughly scales with n9/4 per time step. In any case, previous

numerical issue has a reduced impact on the BD simulation of Zimm chains due to the

fact that the equilibrium-averaged hydrodynamic interaction matrix is constant and the

required decomposition is carried out just one time for all the simulation.

Given the fact that hydrodynamic interaction is approximated by the equilibrium av-

eraged Oseen-Burgers tensor, a close-form of the constitutive equation can be derived for

the Zimm model with the same form of the Rouse model one [141, 149]. For that reason,

expressions for the contribution of Zimm chains to the complex modulus of their diluted

suspensions have the same form that the equations for Rouse chains (Eqs. 2.52 and 2.53):

G′ = ckBT

n−1∑
j=1

λ̃2
jω

2

1 +
(
λ̃jω

)2 (2.61)

G′′ − ηsω = ckBT

n−1∑
j=1

λ̃jω

1 +
(
λ̃jω

)2 (2.62)

The only di�erence lies on the relaxation time spectra. In the Zimm model the time

constants are dictated by:

λ̃j =
ζ

2Hãj
(2.63)

where ãj are the Eigen-values of the modi�ed Rouse matrix Ãij given by:

Ãij =
∑
v

∑
u

B̄ivHIvuB̄ju (2.64)

and the component vu of the matrix B̄vu follows the next formula:

B̄vu = δv+1, u − δv, u (2.65)

This analytical solution allows us to evaluate easily the performance of the BD sim-

ulation predicting the linear viscoelastic behaviour of multi bead-spring systems with

equilibrium-averaged hydrodynamic interaction. Figures 2.14 and 2.15 compare the BD

predictions of the complex modulus for a 50-springs Zimm chain with two di�erent hy-

drodynamic interaction parameters. A frequency sweep test is carried out over 25 points
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homogeneously distributed in a reciprocal frequency interval going from 10−1 to 102.

Figure 2.14: BD prediction of the storage modulus in function of the reciprocal frequency
for two 50-springs Zimm chains with high hydrodynamic interaction (h∗ = 0.303) and
very low hydrodynamic interaction (h∗ = 0.003). Analytical curves are represented in
solid lines. H = ζ = kBT = 1 are the BD simulation parameters. A population of 104

dumbbells has been employed

From Fig. 2.14 is observed that the BD prediction of the storage modulus is more

accurate for the high hydrodynamic interaction case than the low one. In fact, the mean

relative error for the low value of h∗ is about 2.7% in comparison with the mean relative

error of 0.8% for the case of high h∗. The main source of inaccuracy is coming from the

low frequency range. This is explained, as in the BD simulations with Rouse chains, by

the statistical deviations originated in the numerical computation of the stochastic forces

coupled with the relative dominance of the thermal forces as driving mechanism of the

chain kinematics in the low frequency range. In consequence, improvement of the accuracy

at low frequencies depends on the implementation of more sophisticated random numbers

generators.

On the other hand, BD simulations correctly predict the evolution of the storage mod-

ulus at high frequencies. Figure 2.14 shows the increase of the slope of G′ going from 0.5
for the low hydrodynamic interaction case (h∗ = 0.003) to 0.7 for the high hydrodynamic

interaction case (h∗ = 0.303), within the reduced frequency interval between 101 and 102.

In Fig. 2.15 the BD prediction of the loss modulus versus the frequency is plotted

for the same Zimm chains presented in Fig. 2.14. As in the storage modulus prediction,

a better accuracy is obtained for the high hydrodynamic interaction case. We found a
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mean relative error for the low value of h∗ equal to 1.6% and a mean relative error near to

0.3% for the high value of h∗. Again, inaccuracy is coming mainly from the low frequency

regime. The same reasons invoked to explain the inaccuracy in the prediction of the storage

modulus prediction are attributable to the loss modulus case.

Figure 2.15: BD prediction of the loss modulus in function of the reciprocal frequency for
two 50-springs Zimm chains with high hydrodynamic interaction (h∗ = 0.303) and very low
hydrodynamic interaction (h∗ = 0.003). Analytical curves are represented in solid lines.
H = ζ = kBT = 1 are the BD simulation parameters. A population of 104 dumbbells has
been employed

BD performance at high frequencies is quite better. Simulations are able to correctly

predict the change in the loss modulus slope when varying the relative importance of

the hydrodynamic interaction. At low hydrodynamic interaction a Rouse-type slope is

observed, whereas at high hydrodynamic interaction (h∗ = 0.303), the slope of the loss

modulus reaches a maximal value of 0.64 around a reduced frequency of 10. This prediction
is consistent with the Zimm theory, where the maximal slope for the loss modulus is 2/3
[206]. It is worth to say that for very long chains (i.e. n > 300) with high hydrodynamic

interaction (for instance, h∗ = 0.3) Zimm theory predicts a storage and loss moduli evolving

with ω2/3 and a constant ratio (G′′ − ηsω) /G′ =
√

3 in the high frequency range.

2.5 BD of Bead-Rod Models

The fundamental di�erence between the bead-rod model and the bead-spring model lies

in that the former has a �nite contour length. This simple, but important fact is traduced
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directly in di�erent rheological responses. On the other hand, a physical model with a

�nite contour length imposes subtle, but important numerical issues that are re�ected in

the BD implementation.

As mentioned in �2.1.1, historically bead-rod models were �rst proposed to emulate

the structure of linear polymers in a coarse-grained fashion. Bead-rod model with �xed

adjacent angles (as proposed by Flory [145]) constitute the �rst stage of coarse-graining

in kinetic theory. In that model, rods are supposed to represent the bond length between

two consecutive atoms in the backbone of the polymer chain. Simpler representations with

fewer degrees of freedom have been extensively proposed. For instance, some polymer

chains are quite bendable along certain number of monomer units, in those cases from

3 to 5 monomer units can be replaced by one non-bendable rod. Polymer �exibility is

then mimicked by introducing some kind of bending potential between consecutive rods.

Continuous version of this model is known as the worm-like chain, in which the thermal

equilibrium con�guration is a perfect straight �lament. An even coarser model replaces

from 10 to 20 monomer units by one rigid-rod; any notion of �exion hindering at this rod-

scale is lost and the polymer chain is represented then by a freely-jointed multi-rod chain

[141]. An ultimate scale in the coarse-graining process replaces a hundred of backbone

atoms (or a ten of rods from the freely-jointed multi-rod model) by an entropic spring,

so mechanical behaviour of the macromolecule is represented by a multi-bead-spring chain

model (showed in the previous section �2.4). Despite that the historical motivation for the

bead-rod model is linked to the polymer science, this representation has been extensible

applied to emulate the mechanical behaviour of other structures as short DNA, rod-like

virus, collagen �brils, synthetic polymers and CNTs.

Bead-rod models have escaped from a deeply development in the kinetic theory frame-

work with respect to the bead-spring counterparts because the inextensibility condition

imposes the use of generalized coordinates [207]. This mathematical complexity explains

why only some results in zero-shear, steady and linear unsteady �ows have been obtained

for this model [208, 209].

In the case of bead-rod models, BD simulations appear as an interesting alternative ap-

proach to by-pass the complex mathematical-treatment of the di�usion equation. Anyway,

the use of constraints also implies to be careful during a BD implementation, particularly

in terms of the integration scheme and the stochastic forces generation.

Bead-rod models have been particularly studied for approaching the mechanical be-

haviour of bead-spring chains with very sti� Fraenkel-type springs (non-zero natural

length). Intuitively a very sti� Fraenkel spring could be replaced by a rigid rod for the

sake of mathematical simplicity. However, it is found that this limit is a very singular

one. In fact, bead-rod chains and bead-spring chains di�er even in the limit of in�nitely

sti� springs. For instance, the con�gurational distribution of a freely-jointed multi-bead-

rod chain at thermal equilibrium is found to be di�erent from a random-walk distribu-

tion, which is typical for a freely-jointed multi-bead-spring chain [141]. This di�erence

has been con�rmed by molecular and Brownian dynamics simulations [210, 211, 212, 151]
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and statistical mechanics calculations [213, 214]. On the other hand, it has been showed

that introducing a corrective potential force (function of the chain con�guration) into the

multi-bead-rod chain formulation is possible to mimic the behaviour of multi-bead-spring

chains [213, 215]. This result strongly promoted the use of BD simulations for studying the

dynamical behaviour of polymers by using the multi-bead-rod model and the corrective

potential approach [196, 205, 216, 217, 218, 144, 142]. In this work, the intrinsic behaviour

of multi-bead-rod models is tackled; the bead-spring chain statistics is not intended to be

mimicked.

In what follows, the basis for a BD implementation of a �exible multi-bead-rod chain

with an isotropic friction tensor and in absence of hydrodynamic interaction is presented.

Numerical issues are analysed by simulating the freely-jointed (three-bead)-(two-rod) chain

or trimer system.

2.5.1 Kinematic Formulation

Constraints can be tackled mathematically in a generalized coordinate system (based on

the con�guration of the chain) or in a Cartesian coordinate system, case in whiwh con-

straint forces are required to complement the kinematic description. Going and coming

back between those two frameworks requires a lot of care in order to conserve a proper

equivalence at the levels of the FP equation and the di�erential stochastic equation [149].

From a formal point of view a general, expression of the FP equation for a multi-bead-

rod model, including hydrodynamic interaction and anisotropic friction tensor, was given

by Curtiss using generalized coordinates [141]. This di�usion equation is coherent with

the equilibrium statistical mechanics for a real bead-rod chain with equal bead masses; in

other words, this di�usion equation describes the intrinsic dynamical behaviour of a multi-

bead-rod chain. A detailed description of the development of an equivalent stochastic

di�erential equation in the strong sense was given by Öttinger [149]. He also showed

a particular transformation of that di�erential stochastic equation from generalized to

Cartesian coordinates. In doing so, not only an explicit de�nition of the rod inextensibility

is required, but also a metric potential force, depending on the chain con�guration, has to

be considered in order to respect the equivalence (at least in a weak sense) with the FP

equation developed by Curtiss. Interestingly, it is found that the negative of such metric

force is equal to the corrective potential force added in the BD numerical algorithms of

multi-bead-rod chains intended to mimic the behaviour of multi-bead-spring chains.

For the sake of simplicity, the BD implementation in a Cartesian coordinate system

is tackled in this thesis. Metric potential forces are neglected without incurring in error

because, in one hand, the drag acting on the simulated multi-bead-rod chain is supposed

characterized by an isotropic friction tensor and, on the other hand, no hydrodynamic

interactions are considered. A particular time-integration algorithm, described further on,

is required in order to consistently neglect the metric potential forces. Otherwise, potential

metric forces cannot be ignored if one wants that the BD simulation re�ects the intrinsic
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behaviour of multi-bead-rod chains. So, let us consider the multi-bead-rod chain model

showed in Fig. 2.16. Multi-bead-rod chain is constituted of n beads joined by n − 1
non-bendable rigid rods of length a.

Figure 2.16: Non-freely jointed multi-bead rod model composed of n beads and n− 1 rods
of length a. Bending potential between rods in the multi-bead-rod chain model is mimicked
with a hypothetical torsion spring

Position of the bead-rod chain can be instantaneously de�ned in a Cartesian reference

system by the ensemble of bead positions ri and the centre of mass of the chain rc (see Eq.

2.14). Orientation of each rod is given by the vector uj , which is a unit vector collinear to

the rod connecting beads j and j + 1. uj is de�ned as follows:

uj = (rj+1 − rj) /a (2.66)

Rods are supposed in�nitely rigid. Physical length of the system is equivalent to the

total length of the multi bead-rod model (n−1)a. Existence of an internal bending poten-

tial, coming from an hypothetical torsion spring between each pair of rods, is considered

with the aim of mimic the bending �exibility of the �lament-like physical system. On

the other hand, multi-bead-rod chains are supposed suspended into a Newtonian solvent

(viscosity ηs) at temperature T . Concentration of the multi-bead-rod chains is de�ned in

terms of c chains per volume unit. High dilution hypothesis is made, so no inter-chain in-

teractions are considered. Moreover, �ow �eld acting on the overall suspension is supposed

homogeneous. Beads are considered the centres of hydrodynamic resistance; so all forces

are concentred on beads. In what follows, forces acting on the multi-bead-rod chain are

described in more detail.

Hydrodynamic drag force acting on bead i, F(h)
i

Physical origin and mathematical description of this force are the same given for the

multi-bead-spring model (see �2.4.1). As mentioned before, hydrodynamic interaction is
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neglected and an isotropic friction coe�cient is supposed in order to avoid the calculation

of metric potential forces.

Constraint forces acting on bead i, F(λ)
i

This force takes into account the sum of rod tensions acting on each bead i. Rod tension λj
corresponds to the module of the instantaneous force emerging on bead j for maintaining

the distance between beads j and j + 1 at a constant value a. This force is transmitted

along the rigid-rod and is manifested on bead j+1 with an opposite sign. Mathematically,

total constraint force on bead i can be expressed as follows:

F(λ)
i = −

n−1∑
j=1

nijλj (2.67)

where nij is a linear operator de�ned as follows:

nij = uj (δi,j+1 − δi,j) (2.68)

Internal bending potential force acting on bead i, F(φ)
i

Based on the viscoelastic theory of concentrated solutions of semi-�exible polymers [143],

Pasquali and Morse de�ned a discrete bending potential for a multi-bead-rod model based

on the worm-like chain continuous model [218]:

φ=− Kb

a

n−1∑
i=2

ui · ui−1 (2.69)

where φ is the internal-bending potential and Kb is a bending rigidity constant. The

bending potential de�ned in Eq. (2.69) can be understood as coming from the mechanical

action of a torsion spring between two consecutive rods. In this case, local bending energy

is proportional to the cosine of the internal angle between two consecutive rods. In other

words, minimal internal bending energy state is achieved when all rods are completely

aligned. Usually, this linear relationship is restricted to small �exion angles. Obviously,

de�nitions of non-linear bending potentials are required for large deformation scenarios.

Bending force acting on bead k can be obtained as the derivate of the bending potential

in Eq. (2.69) with respect to the position of bead k:

F(φ)
i = − ∂φ

∂rk
=
Kb

a

n−1∑
i=2

∂ (ui · ui−1)
∂rk

(2.70)

To simplify the derivate on the right side of Eq. (2.70), next identity is employed [218]:

∂

∂rk
ui =

1
a

(δk,i+1 − δk,i) (δ − ui ⊗ ui) (2.71)
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Brownian force acting on bead i, F(b)
i

As in all coarse-grained models, Brownian forces approach the change of momentum of

a bead i coming from the thermal activity of the solvent molecules surrounding bead i.

Accounting for faster processes than the coarse-grained model motion, Brownian forces are

computed as an stochastic process. In a model without constraints (free particles, bead-

spring chains), Brownian forces follow a normal distribution with �rst and second moments

de�ned previously by Eqs. (2.25) and (2.26), respectively. However, as the generalized

friction of the bead-rod system is modi�ed by the presence of constraints, random forces

must re�ect the inextensibility of rods [217]. To show this, let us take the example of one

single rigid-rod embedded into a solvent at temperature T , no external �ow is imposed.

Supposing an isotropic friction coe�cient, force balances on the two mass-less beads write:

−ζ ṙ1 − n11λ1 + F(b)
1 = m1r̈1 = 0 (2.72)

−ζ ṙ2 − n21λ1 + F(b)
2 = m2r̈2 = 0 (2.73)

On the other hand, with the purpose of satisfy the inextensibility of the rigid-rod, next

condition has to be imposed over the bead velocities:

0 =
2∑
i=1

ṙi · ni1 = (ṙ2 − ṙ1) · u1 (2.74)

Placing the bead velocities from Eqs. (2.72) and (2.73) into Eq. (2.74) we obtain:

1
ζ

(
−λ1u1 + F(b)

2 − λ1u1 − F(b)
1

)
· u1 = 0 (2.75)

Equation 2.75 can be rewritten also as follows:

2λ1 =
2∑
i=1

F(b)
i · ni1 =

(
F(b)

2 − F(b)
1

)
· u1 (2.76)

Previous equation resumes the conditions imposed over the Brownian forces in order

to satisfy the inextensibility condition. Two numerical algorithms dedicated to the ran-

dom forces generation can be considered at this point. The �rst takes into account the

contribution of random forces to the rod tensions and implies to calculate λ1 at each time

step from Eq. (2.76). In the second, contributions of random forces to the rod tension are

neglected (λ1 = 0) and unconstrained random forces have to be projected in order to sat-

isfy 0 =
2∑
i=1

F(b)
i · ni1. Last supposition has no consequences on the rod kinematics because

rod velocity depends exclusively on the orthogonal component of the Brownian forces with

respect to the rod orientation-vector. In order to obtain projected random forces F(b)′

i , it

is necessary to substrate the �hard� component of the unconstrained Brownian forces η̂1
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along the rod direction as follows:

F(b)′

i = F(b)
i − ni1η̂1 (2.77)

The �hard� component of the unconstrained Brownian forces can be obtained from the

solution of the next equation:

Ĝη̂1 = F(b)
i · ni1 (2.78)

where Ĝ = ni1 · ni1 = 2. From Eqs. (2.76) and (2.78) is easily inferred that η̂1 = λ1.

Hence, projected Brownian forces are F(b)′

1 = F(b)
1 +λ1u1 and F(b)′

2 = F(b)
2 −λ1u1. A graphic

example of this projection in a bi-dimensional case is showed in Fig. 2.17. Extension of

previous algorithm for a multi-bead-rod case is straightforward and has been detailed

elsewhere [216, 217].

Figure 2.17: Example of the geometrical projection of Brownian forces in a quiescent bi-
dimensional single rigid-rod (no external-�ow). An isotropic friction coe�cient is supposed.
In the upper rod no geometrical projection has been carried out, hence tension force is
considered. In the lower rod, geometrical projection of Brownian forces absorbs the rod
tension; observe that hydrodynamic forces are not modi�ed

Geometrical projection of random forces on multi-bead-rod chains is absolutely required

when the multi-bead-spring statistics want to be mimicked (use of corrective potential

forces) or an anisotropic friction tensor is considered [142].

External forces acting on bead i, F(e)
i

As mentioned before, gravitational and electromagnetic forces can be considered in function

of the particular scenario of modelling. In this work, external forces are neglected.
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Taking into account that inertia is neglected, forces balance on each bead i writes:

F(h)
i + F(λ)

i + F(φ)
i + F(b)′

i + F(e)
i = 0 (2.79)

Given the de�nition of the hydrodynamic drag force, an explicit stochastic expression

for the bead velocity can be obtained:

dri
dt

= [κ (ri) · ri]−
1
ζ


n−1∑
j=1

nijλj

− F(φ)
i − F(b)′

i − F(e)
i

 (2.80)

Geometrical projected random forces guarantee the inextensibility condition when no

external �elds are imposed. In other scenario, constraints on the rod lengths have to be

considered. For instance, in a Cartesian coordinates system we have:

0 =
n∑
i=1

ṙi · nij for j = 1 : n− 1 (2.81)

Putting together Eqs. (2.80) and (2.81) a linear system of equations describing the

kinematics of a non-freely-jointed multi-bead-rod model is constituted, where the unknown

variables are n bead velocities ṙi and n− 1 rod tensions λj .

2.5.2 Integration Schemes

Several numerical integration schemes have been proposed to integrate the di�erential

stochastic equation equivalent to the FP equation given by Curtiss for the general multi-

bead-rod chain in both generalized coordinate systems and Cartesian reference systems. In

the case of generalized coordinates, the task is feasible if the number of degrees of freedom

is small, otherwise the numerical complexity makes this option impractical [149]. Some

simulations at equilibrium using a numerical integration in generalized coordinates were

made by Pear and Weiner [212, 151]. The possibilities for integrating numerically in a

Cartesian space are more varied and, in principle, the numerical methods employed for the

bead-spring models are applicable, but additional controls are required for satisfying the

constraints rigorously, specially in simulations for large time intervals [149].

Another integration numerical method for systems including constraints was given by

Allison and McCammon under the name of SHAKE-HI algorithm [219]. In the general

form of the algorithm, bead positions are calculated in two steps: an unconstrained step

followed by a constrained one. It is the opinion of the author that two particular versions of

the SHAKE-HI algorithm are the most cited numerical schemes employed to integrate the

di�erential stochastic equation for a multi-bead-rod model in a Cartesian space: the mid-

point stepping scheme proposed by Fixman [213, 216] and the predictor-corrector scheme

developed by Liu [207, 193].
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Mid-Point Algorithm

In 1978 Ermak and McCammon showed that the gradient of the di�usivity must to be

incorporated into a BD algorithm when the bead di�usivity depends on the con�guration

of the Brownian system [220]. It has been shown that the di�usivity of a multi-bead-rod

chain is variable because of the presence of rigid constraints and, also, as consequence of

considering hydrodynamic interaction [216]. A clever way to counteract the wrong drift

produced by the variable di�usivity in a BD algorithm was proposed by Fixman [213].

He suggested employing a second-order time step to integrate the stochastic di�erential

equation. In fact, any higher order time step is able to handle correctly the variable

di�usivity. In this numerical algorithm the use of potential metric forces F(m)
i is required

and has to be added to the left term of Eq. (2.79). From a global point of view, this

algorithm is able to deal with hydrodynamic interaction and anisotropic friction tensors.

Now, for the particular multi-bead-rod chain tackled in this work, the di�erential stochastic

equation required for the mid-step scheme writes as follows:

ṙi =
1
ζ

(
F(λ)
i + F(uc)

i + F(b)′

i

)
(2.82)

where F(uc)
i = ζ [κ (ri) · ri] + F(φ)

i + F(e)
i + F(m)

i . Keeping in mind that hydrodynamic

interaction is neglected and an isotropic friction tensor is supposed, then a single time step

[t, t+ ∆t] for the mid-step algorithm is constituted by the following sub-steps:

1. Generation of geometrical projected random forces at the beginning of the time

step F(b)′

i (t) following the complete algorithm describe by Hinch and co-workers

[215, 216, 217].

2. Calculate the mid-step position as follows:

ri

(
t+

∆t
2

)
= ri (t) + ṙi (t)

∆t
2

(2.83)

where the initial-step velocity ṙi (t) is calculated neglecting the constraints on the

rod lengths:

ṙi (t) =
1
ζ

(
F(uc)
i (t) + F(b)′

i (t)
)

(2.84)

3. Calculate the end-step position by using the next equation:

ri (t+ ∆t) = ri (t) + ṙi (∗) ∆t (2.85)

where the mid-step velocity is obtained from the solution of the linear system:

ṙi (∗) =
1
ζ

[
F(λ)
i

(
t+

∆t
2

)
+ F(uc)

i

(
t+

∆t
2

)
+ F(b)′

i (t)
]

(2.86)
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0 =
n∑
i=1

ṙi (∗) · nij
(
t+

∆t
2

)
(2.87)

where ṙi (∗) is the constrained bead velocity at the mid-step, but calculated with

the random stochastic forces generated at the beginning of the time step. This

procedure is coherent with the Stratonovich interpretation of the stochastic random

forces [149, 221]. This algorithm does not guarantee an invariable rod length at

the end of the time step, for that reason a truncation error is employed. Once the

rod length at the end of a given time step exceeds certain tolerance, the inter-bead

distances are reset to the constant value, conserving the rod orientations.

Predictor-Corrector Scheme

The predictor-corrector scheme is a singular and limiting case of the SHAKE-HI algorithm.

One can say that is singular because it requires absolutely neglecting the hydrodynamic

interaction and dealing with an isotropic friction tensor. On the other hand, this algo-

rithm is limiting because the two-step procedure is merged in an iterative single-step.

The predictor-corrector scheme was employed by Liu for simulating the dynamics of a

Kramers chain submitted to steady potential �ows [207]. Doyle demonstrated that both

the predictor-corrector scheme and the Fixman's mid-step algorithm generate the same

trajectories for a dilute Kramers bead-rod chain with an isotropic friction tensor and in

absence of hydrodynamic interaction [221]. It is emphasized that neglecting the hydrody-

namic interactions, supposing an isotropic friction tensor and employing this limiting case

of the SHAKE-HI algorithm are necessary conditions for eliminating the metric potential

forces from the di�erential stochastic equation in Cartesian coordinates without incurring

in deviations from the FP equation for the multi-bead-rod model [149].

For a time step [t, t+ ∆t], displacement of bead i is obtained in two stages. The �rst

one, called predictor step, is given by an unconstrained movement:

r∗i (t+ ∆t) = ri (t) + ṙi (t) ∆t (2.88)

where ṙi (t) = 1
ζ

(
F(uc)
i (t) + F(b)′

i (t)
)
and F(uc)

i = ζ [κ (ri) · ri] + F(φ)
i + F(e)

i . Subse-

quently, an iterative corrector step is required for taking into account the inextensibility

of rods:

ri (t+ ∆t) = r∗i (t+ ∆t) +
1
ζ
F(λ)
i ∆t (2.89)

where F(λ)
i is given by Eq. (2.67). The Langrange multipliers (rod tensions) λj are

calculated so that inter-bead distances are satis�ed within a certain tolerance:

(ri+1 (t+ ∆t)− ri (t+ ∆t))2 − a2 = ε2 (2.90)
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Combining Eqs. (2.89) and (2.90), a system of quadratic equations for λj is generated.

This system has the general form:

2∆t
ζ bi ·

(
λ

(n)
i−1ui−1 − 2λ(n)

i ui + λ
(n)
i+1ui+1

)
= a2 + φ2−

bi · bi −
(

∆t
ζ

)2 (
λ

(n−1)
i−1 ui−1 − 2λ(n−1)

i ui + λ
(n−1)
i+1 ui+1

)2 (2.91)

where bi = r∗i+1 − r∗i . Previous set of non-linear equations can be resolved iteratively

by a Picard's method by supposing the non-linear term (last term on the right-hand side)

to be small in comparison with the linear terms (left-hand side). The iterative procedure

is initiated with λ(0)
i = 0 and is executed until the constraints are satis�ed with regard to

a certain truncation error ε2. Once the iterative procedure has �nished, the bead positions

at the end of the time step are corrected using Eq. (2.89).

Additional to the Picard's method invoked to solve Eq. (2.91), an iterative Newton's

method can converge faster than the Picard's one, but involving the calculation of a Jaco-

bian matrix at each iteration [193].

2.5.3 Stress Tensor Calculation

From a formal point of view, deduction of a stress formula for bead-rod chains is not as

straightforward as in the case of bead-spring models, where the physical con�guration is

an intimate re�ect of the instantaneous mechanical state of the system. In the case of

bead-rod chains, the pictorial arguments used for the bead-spring models are not enough

and, in consequence, a deeper physical explanation is required.

There is a general consensus accepting that the modi�ed Kramers expression (Eq. 2.45)

accounts for the contribution to the total shear stress coming from a diluted model system

whose total change in momentum can be discretized on certain points, as is the case for a

general bead-rod-spring model. A detailed derivation of this stress tensor formula using a

general phase-space kinetic theory can be examined in [141].

Care must be taken also when calculating numerically the stress tensor for systems

containing constraints. Given the numerical singularities originated by the presence of

constraints, one is particularly interested in the correct implementation of a stress tensor

formula into the BD algorithm. It is found that a correct estimation of the stress tensor

must to be closely linked to the integration scheme used in the simulation.

One can recognize two main contributions to the stress tensor coming from bead-rod

chains: one given by the random forces and another one given by the viscous e�ects. In

order to account rigorously for the Brownian contribution, the algorithm estimating the

stress tensor must to consider the discontinuity of the Brownian forces during a given time

step [217, 221], specially when no-�ow conditions are being simulated. To do this, the

modi�ed Kramers formula has to be interpreted as an average in time. For a mid-step

algorithm, for example, the average has to be carried out using the beginning and the end
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of the time step [222]:

τ p (t) =
c

2

n∑
v=1

〈
Rv (t)⊗ F(h)

v (t) + Rv (t+ ∆t)⊗ F(h)
v (t+ ∆t)

〉
(2.92)

Doyle demonstrated that two iterations of the predictor-corrector scheme producing an

increment of ∆t are equivalent to one time-step of the mid-step algorithm [221]. Based on

the previous fact, it can be easily showed that Eq. (2.92) is also a correct interpretation

of the virial tensor for the predictor-corrector algorithm.

An alternative way to correctly account for the Brownian contribution in a �rst or-

der integration scheme (as the predictor-corrector algorithm), considering a �long-lasting�

action of the random forces, can be envisaged using the next algorithm:

1. Update the bead-rod position by executing one explicit time step from t to t+ ∆t.

2. Using the same Brownian forces used at time t, recalculation of the hydrodynamic

drag forces F̃(h)
v (t+ ∆t) with the updated con�guration at t+ ∆t.

3. Determination of the shear-stress tensor at time t by computing:

τ p (t) = c
∑
v

〈
Rv (t+ ∆t)⊗ F̃(h)

v (t+ ∆t)
〉

(2.93)

Giesekus formula for the stress tensor has also been recursively used in the BD simu-

lations of multi-bead-rod models [207, 193]:

τ p (t) = −cζ
2

∑
v

〈Rv (t)⊗Rv (t)〉(1) (2.94)

where the quantity 〈. . .〉(1) denotes the convected derivative de�ned as follows:

X(1) =
d

dt
X−

{
κT ·X + X · κ

}
(2.95)

However, it has been showed that the usefulness of this expression is restricted to the

equilibrium and steady-�ow conditions [221, 193].

2.5.4 The Trimer Chain

In order to study the generalities of the BD simulations for multi-bead-rod models it was

decided to use the freely-jointed (three-bead)-(two-rod) model, also known as the trumbbell

or trimer system. This model is composed of three beads with isotropic friction coe�cient ζ

connected by two freely jointed rigid mass-less rods of length a. Hydrodynamic interaction

is neglected.

Trimer chain is a better testing model than the rigid dumbbell because a more rigor-

ously evaluation of the integration algorithms can be carried out given the presence of two

adjacent constraints. On the other hand, an exact numerical expression for the dynamic
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response of a dilute solution of trimer systems was obtained separately by Fixman and

Hassager [223, 208]. This numerical solution is in coherence with the FP equation for a

multi-bead-rod chain in polymer kinetic theory [197, 141], actually deviated from that one

for multi-bead-spring chains [211]. In the Hassager's solution, dynamic modulus of the

trimer system is described using four relaxation times of which the longest one writes:

τ1 =
ζa2

5.4376kBT
(2.96)

With the aim of compare properly with the BD predictions, time for the theoretical

data is rescaled using the main relaxation time found by Hassager.

Given that hydrodynamic interaction is neglected and an isotropic friction tensor is sup-

posed, a �rst-order integration scheme in coherence with the predictor-corrector algorithm

is implemented and the shear-stress tensor contribution is estimated with the modi�ed

Kramers-Kirkwood expression using the �long-lasting� Brownian forces algorithm. In this

context, metric potential forces are not required for maintaining the coherence with the FP

equation for Kramers chains. A bi-dimensional modelling is used with the aim of reduce the

computational cost. Distance between beads a is employed as the characteristic length of

the problem. Time scale in the BD simulations is made dimensionless using the longest re-

laxation time (or rotational di�usion time) of an equal-length multi-bead rigid-rod system

given by [141]:

λn =
ζL2n (n+ 1)

72 (n− 1) kBT
(2.97)

It means that for a trimer system, where n = 3, time is scaled using λ3 = ζa2/3kBT .
Time step, instead, needs to be scaled with regard to the fastest relaxation time; in the

case of bead-rod chains, the bead di�usion time is normally used, λbead = ζa2/kBT .

As showed in the analysis of the Hookean-dumbbell model (�2.4.4), the BD consider-

ations when estimating the equilibrium properties (in absence of �ow) are analogues to

those ones obtained under linear dynamic solicitation at the characteristic frequency, i.e.

at ωR = 1. For that reason, no-�ow properties are skipped and the linear dynamic response

of the system is tackled directly.

BD simulations of the small-amplitude oscillatory deformation tests are carried out

according to the algorithm explained in �2.3.1. First of all, the limit of the linear vis-

coelastic regime needs to be determined. In order to extract this information from the BD

simulations, the norm of the complex modulus at the characteristic frequency is plotted

in function of the maximal applied strain. In order to marginalize the numerical issues of

the BD simulation, a population 104 chains and a time step equivalent to λbead/105 are

employed.

Figure 2.18 shows that the limit of the linear viscoelastic regime for a dilute solution

of trimer systems corresponds to a maximal deformation γ0 ≈ 1.33a. At lower values,

dynamic moduli obtained by BD simulations are independent of the maximal deformation
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imposed. On the other hand, Fig. 2.18 evidences that multi-bead-rod models exhibit a

shear-thinning behaviour, contrary to the multi-bead-spring counterparts. Using a constant

BD population (104 trimers) and a constant time step (λbead/105), computational time (2×
Quad-Core AMD OpteronTM 2376 (2300 MHz)) employed to predict the complex modulus

at ωR = 1 was found 8.7 times longer than the computational time used at ωR = 102. This

fact is explained by the longer analytical steps required at low frequencies for determining

the maximal shear-stress and phase angle between the strain and stress signals.

Figure 2.18: Identi�cation of the limit of the linear viscoelastic regime for a dilute suspen-
sion of trimers by BD simulation. Absolute value of the complex modulus in function of
the maximal deformation applied for two reduced frequencies: ωR = 1 (on the left y-axis)
and ωR = 102 (on the right y-axis). Horizontal pointed lines correspond to the theoretical
values calculated by Hassager. Dashed vertical line marks the limit of the linear viscoelastic
regime

In the current BD approach, a �rst-order integration scheme was implemented and,

therefore, time step strongly in�uences the convergence of the simulation towards the

central values. In Fig. 2.19 the e�ect of the time step on the convergence of the BD

simulation is presented (from now on, imposed maximal deformation is chosen inside the

linear viscoelastic regime). 104 trimers were employed as BD system in order to reduce the

distortions coming from the random number generation. Convergence of the BD simulation

is tested in three di�erent �ow scenarios: ωR = 1, which is representative of the thermal-to-

�ow induced transition, ωR = 102, which is characteristic of the mild �ow-induced regime,

and, ωR = 103, which is typical of a strongly �ow-induced regime.

In Fig. 2.19 is clearly observed the strong in�uence of the length of the time step in
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Figure 2.19: Mean relative error of the BD prediction for the complex modulus (left y-
axis) and CPU time (right y-axis) in function of the time step. Mean relative error is the
average of the relative errors for storage and loss modules. Relative error is de�ned as
follows: |(logG′BD (ωR)− logG′th (ωR)) / log Θ|, where Θ = G′′th

(
ωR = 103

)
/G′th (ωR = 1)

is the maximal interval of complex modulus variation in the tested frequency interval. CPU
time corresponds to the total simulation time required to predict the complex modulus for
the three tested frequencies. A population of 104 trimers has been employed
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the convergence of the explicit integration scheme at high frequencies. At low frequencies

(ωR = 1), characteristic of the thermal-induced regime, BD performance (relative error

∼ 3%) is nearly independent of the length of the time step. In this regime, convergence of

the integration scheme is guaranteed with a time step equal to λbead ·10−3. Error obtained

at this �ow regime is mainly coming from the random number generation algorithm; im-

plementation of a more sophisticated generator is necessary to reduce this noise. When

increasing the frequency, BD performance is progressively more a�ected by the integra-

tion scheme. As showed for the multi-bead-spring models, at higher frequencies than the

characteristic one, the �ow-induced forces control the kinematics of the system; for that

reason, higher velocities require smaller time steps in order to guarantee a correct numeri-

cal integration. This fact is clearly captured in Fig. 2.19: in the mild �ow-induced regime,

i.e. ωR = 102, mean relative error of the BD prediction goes from 1% to 12% when the

length of the time step is enlarged from λbead · 10−5 to λbead · 10−3. On the other hand,

in the strong �ow-induced regime, i.e. ωR = 103, mean relative error of the BD prediction

explodes from 2% to more than 20% when the length of the time step is augmented just in

one-half order of magnitude from λbead · 10−5. Simulation time is proportionally reduced

as the length of the time step is enlarged. It is more valuable to mention that the com-

putational time devoted for a given frequency strongly depends on the position inside the

frequency spectra; for example, the relative contributions to the total simulation times in

Fig. 2.19 are 61%, 8% and 31% for the predictions at the reduced frequencies of 1, 102 and

103 respectively. Simulation at the characteristic frequency has the biggest computational

cost because it requires the longest analytical stage. On the other hand, simulation at the

highest frequency is also time-consuming because the stabilization stage requires a re�n-

ing of the nominal time step in order to guarantee a stable dynamic con�guration before

beginning the analytical step.

In what follows, an extended sweep test over 21 frequencies homogeneously distributed

within an interval of reduced frequencies going from 10−2 to 103 was used to evaluate

the global performance of the implemented BD simulation predicting the linear dynamic

response of a trimer system in dilute solution. A time step equal to λbead · 10−5 has been

employed with the purpose of guarantee the best convergence of the integration scheme

inside the simulated frequency range. In Fig. 2.20 the Hassager's numerical solution

is properly compared with the BD predictions for the frequency sweep test. Hassager's

complex modulus is presented in a reduced frequency scale ωR = ωτ1, and BD results are

plotted in a reduced frequency scale ωR = ωλ3, where λ3 is the rotational di�usion time

for a (three-bead)-(rigid-rod) system of equal length.

It is observed in Fig. 2.20 that the BD algorithm yielded a complex modulus in good

agreement with the Hassager's numerical solution of the trimer system. On the other

hand, this large-sweep simulation demonstrated that the bi-dimensional modelling is co-

herent with the Hassager's results and, therefore, it was not necessary to implement the

three-dimensional modelling, which would be more expensive in computational time. Two

di�erent regions are clearly di�erentiated in the dynamic response of a freely-jointed (three-
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Figure 2.20: Dynamic modulus of a freely jointed (three-bead)-(two-rod) system in a proper
reduced frequency scale: comparison between the Hassager's numerical solution and the
current BD simulation. τ1 is the main relaxation time in the Hassager's solution and
λ3 is the rotational di�usion time of a (three-bead)-(rigid-rod) system of equal length.
c = a = ζ = 1, kBT = 0.1, and Kb = 0 are the BD parameters
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bead)-(two-rod) system: a low frequency regime exhibiting a typical Maxwell terminal

behaviour, where the thermal activity (or Brownian forces) drives the kinematic of the

system; and a high frequency regime, where the domination of �ow forces over the di�u-

sivity terms produces a plateau for the storage modulus and a limiting constant viscosity

(G (ω) /ω)−ηs larger than zero. The existence of a non-zero limiting viscosity is physically

more coherent than the classical responses of multi-bead-spring chains, where the model

contribution to the dynamic viscosity disappears at high frequencies.

As already mentioned in the section devoted to the bead-spring models, the number of

entities (or trajectories) plays a fundamental role in the performance of the BD simulations.

Performance of the global simulation in function of the BD population is presented in Fig.

2.21. The performance of the BD simulation is measured in terms of the mean of the

relative errors for 17 storage modulus values homogeneously distributed in an interval of

reduced frequencies going from 10−2 to 102. Loss modulus signature was found practically

insensitive to the BD population; mean relative error for the loss modulus signal was equal

to 0.3%.

Figure 2.21: Mean relative error of the storage modulus prediction (for a trimer sys-
tem) and total computational time in function of the BD population. Mean relative
errors are calculated as the average of 17 points distributed homogenously in a re-
duced frequency range going from 10−2 to 102. Relative error is calculated as follows:
|(logG′BD (ωR)− logG′th (ωR)) / log Θ|, where Θ = G′′th

(
ωR = 102

)
/G′th

(
ωR = 10−2

)
is

the maximal interval of complex modulus variation in the tested frequency interval

As expected, a linear evolution of the computational time (2 × Quad-Core AMD

OpteronTM 2376 (2300 MHz)) in function of the number of trimers simulated is checked. It

was corroborated that a population of 104 systems guarantees a good compromise between

computational time and rheological prediction performance.



Chapter 3

BD on Linear Viscoelasticity of

SWNT Suspensions

This chapter constitutes the meeting point of the two �rst ones. On the one hand, in Chap-

ter 1 the necessity of enrich the physical description of the models employed at present for

mimicking the mechanical structure of individual single-walled CNTs (SWNTs) in dilute

solution was highlighted, given the lack of understanding for explaining the linear viscoelas-

tic behaviour of dilute suspensions of treated SWNTs within a Newtonian solvent. On the

other hand, in Chapter 2 the validation of a Brownian dynamics (BD) approach for simu-

lating the linear viscoelastic response of a dilute suspensions of a given micro-mechanical

model has prepared the modelling framework for evaluating a more realistic physical model

of a functionalized SWNTs in dilute solution.

Hence, in the current chapter a coarse-grained model is formulated for a SWNT based

mainly in two physical aspects: structural topological defects and bending �exibility; con-

sidered by the author as key factors controlling the dynamic response of an individual

SWNT. Some details concerning the implementation of a BD simulation for this particular

model are also exposed. Finally, a complete analysis of the BD-simulated linear viscoelastic

response of diluted suspensions of treated SWNTs is deployed in two classical strain func-

tion scenarios: small-amplitude oscillatory deformation and relaxation after a shear-strain

step.

3.1 A Coarse-Grained Model for a SWNT

SWNTs can contain naturally topological defects [224]. Several studies have showed the

existence of those defects by using Fresnel projection microscopy [225], scanning tun-

nelling microscopy (STM) [226] and voltage-contrast scanning electron microscopy (VC-

SEM) [227]. Most common topological defects in SWNTs are due to the existence of

a non-hexagonal carbon ring (e.g. pentagon-heptagon defect) in middle of the classical

honeycomb-like lattice structure of a CNT. Molecular dynamics (MD) is largely employed

to identify the structural consequences of this kind of defects. For example, it has been

75
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demonstrated that a bent structure is thermodynamically more stable than a straight one

once a localized topological defect appears in the SWNT growth [228]. Additionally, it has

been shown that a single pentagon-heptagon pair can bend the SWNT tubular structure

forming a localized junction [229] with angles varying from 0◦ to 34◦ [230, 231], depending
on the distance between the pentagon and heptagon pair defect [232].

Persistent length lp considerations are necessary when modelling high aspect ratio

systems that exhibit a very important resistance to tangential extension or compression

[143, 144]. In absence of external forces (e.g. a �ow �eld), persistent length is a character-

istic length that relates the bending rigidity of the system to the thermal energy around it.

In practice, this parameter determines a length scale over which the high aspect ratio sys-

tem presents signi�cant curvature due to the thermal interactions with the surroundings.

In consequence, a system of total length L where L/lp << 1 can be considered as a simple

rigid rod and a system where L/lp >> 1 can be considered as a �exible �lament. Tradi-

tionally, individual SWNTs have been modelled as Brownian rigid-rods [14, 233, 171, 122].

Nevertheless, there are experimental results that lead to think that treated SWNTs

can be considered as other than rigid-rod systems. Using a near-infrared �uorescence

technique, thermal SWNT-shape �uctuations have been observed into a diluted SWNT

aqueous suspension [234]. Additionally, the observed bending dynamics was accurately

correlated with a semi-�exible �lament model (L ∼ lp), where lp scales with the d3 (d:

diameter of SWNT) [17].

If we are considering now the action of an external �ow �eld and the natural existence

of a bent structure in SWNTs, due to the presence of side-wall defects, the concept of

persistent length requires a more precise de�nition. In any case, those new considerations

can only reduce the length scale of observable bending relative to the thermal classical

persistent length and, hence, in this work a semi-�exible �lament is supposed to be a good

equivalent micro-mechanical model for describing the dynamics of an individual SWNT

submitted to a homogeneous external-�ow �eld.

In this context, emphasis is made on considering that a SWNT contains naturally side-

wall defects producing a deviation from the perfectly straight structure; i.e. the pristine

SWNT has a slightly curved structure. This assumption is supported on two main facts:

1. Even if there is a large discussion about the in�uence of sample preparation on the

observed structure of CNTs, there are numerous images taken by SEM, STM, atomic

force microscopy (AFM) and transmission electron microscopy that reveal clearly

a natural bent structure in some CNT samples [235, 226, 236, 237, 238, 227]. For

example, in Fig. 3.1 an image taken by AFM of surface-treated SWNTs protruding

from a photo-cured acrylic surface is presented; the bent structure of the SWNTs is

easily appreciable.

2. The natural existence of topological defects that plays an important role in the me-

chanical and thermo-electrical properties of CNTs [24]. A clear relationship between

those CNT structural instabilities (pentagon/heptagon defect, for example) and the
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intrinsic curvature of CNT structures has been established [15, 16, 229, 230, 235, 232,

239, 231, 228].

Figure 3.1: AFM image of SWNTs protruding from a photo-cured acrylic surface (Image
area corresponds to a 5 µm-side square). Courtesy of Dr. Anson Ma (Rice University),
Dr. Loren Picco (Bristol University) and Pr. Mervyn Miles (Bristol University)

In order to test the dynamic mechanical response of this physical model in a BD

approach, the semi-�exible �lament is discretized in a non-freely jointed multi-bead-rod

model as showed in Fig. 3.2. This multi-bead-rod model is composed of n beads with

positions ri, connected by n − 1 rods of length a, where a approaches theoretically the

persistence length under �ow conditions of the system. The physical length of the SWNT

is given by the total length of the multi-bead-rod model: (n − 1)a. Beads are considered
the centres of hydrodynamic resistance, as usual for all the mechanical models in polymer

kinetic theory [141], and also mark the existence of a bent topological defect. On the other

hand, rods are supposed in�nitely rigid. The existence of an internal bending potential

that mimics the SWNT bending �exibility is taken into account. Bending potential is

given by the action of a hypothetical torsion spring between each pair of rods.

Given the sti�er bending rigidity of the CNT structure in comparison with the rigid rod-

like polymers, which are mimicked by a similar micro-mechanical model, the modelling of

a SWNT is supposed to be restricted to a low number of rods (n < 10). Current modelling

approach supposes also an isotropic friction tensor.
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Figure 3.2: Non-freely jointed multi-bead rod model composed of n beads and n− 1 rods
of length a. Bending potential between rods in the multi-bead rod model is mimicked with
a hypothetical torsion spring. An equivalent continuous semi-�exible �lament is depicted
below the discritized model

3.2 BD Issues of the Modelling of SWNT Suspensions

Simulation of the linear viscoelastic response for a dilute suspension of non-freely jointed

multi-bead-rod chains is subjected to the next hypotheses:

• Rheological tests occur at constant temperature.

• Individual SWNTs are embedded into a Newtonian matrix of viscosity ηs.

• Suspension is supposed to be diluted, in consequence, no physical interaction between

SWNTs is considered.

• Applied �ow �eld is considered homogeneous at the scale of the multi-bead-rod chain,

i.e. rate-of-strain tensor is supposed constant at length scales below twice the contour

lenght of the chain.

• Due to the small deformations involved in the linear viscoelastic regime and the

relative high bending sti�ness of a SWNT, no hydrodynamic interaction is taken

into account.

• No external forces (e.g. electrostatic, magnetic or gravitational) play a role in the

dynamics of the suspension. For instance, electrostatic interactions between surface-

treatment groups are neglected because it was demonstrated that those repulsion

forces do not produce an increment of the storage modulus at high frequencies [126].

Formal kinematic formulation for this micro-mechanical model was already given in

�2.5.1. The only precision required is concerning the internal bending-potential forces

because a rede�nition of the energy-potential is necessary for taking into account the

natural bent con�gurations.

Bending potential de�ned in Eq. (2.69) is based on the worm-like chain continuous

model. It this model, the equilibrium con�guration corresponds to a perfectly straight
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chain; in other words, the minimum value of bending potential energy is associated with

a multi-bead-rod chain whose unitary rod vectors uj are all the same. Bending potential

force acting on bead k can be easily deduced as the derivative of the discrete bending

potential with respect to the position of bead k (Eq. 2.70). Appendix A shows that the

total bending force acting on bead k only depends on the local chain con�guration and

that this force can be interpreted as the sum of independent contributions coming from all

the two-rod sub-sections containing bead k.

However, in the current modelling, a SWNT is supposed to be a �nite-contour-length

high-aspect-ratio systems with non-straight con�gurations at equilibrium and, therefore, a

rede�nition of the discrete bending potential taking into account a natural bent con�gura-

tion is required. In this context, a suitable rede�nition of the discrete bending potential for

a multi-bead-rod model with a naturally bent con�guration at equilibrium can be expressed

in the next way:

φ=− Kb

a

n−1∑
i=2

Ziui · ui−1 = −Kb

a

n−1∑
i=2

u′i · ui−1 (3.1)

where Zi is a linear operator that counter-rotates vector ui of ∆θ0
i,i−1 (interior angle

between ui and ui−1 at the equilibrium con�guration) and u′i is the rotated vector Ziui.

In an analogous way with the straight case, bending force coming from the potential in

Eq. (3.1) takes the next form:

Fφ
k = − ∂φ

∂rk
=
Kb

a

n−1∑
i=2

∂ (u′i · ui−1)
∂rk

(3.2)

Considering that the total bending force in Eq. (3.2) can also be interpreted as the sum

of independent contributions coming from all the two-rod sub-sections containing bead k,

as shown in Appendix A, the next algorithm is proposed for computing the total bending

forces in coherence with the naturally bent con�guration:

1. Decomposition of the multi-bead-rod (n beads) system into n− 2 sub-section of two

consecutive rods as shown in Fig. 3.3 (Note that sub-section p is composed by beads

p, p+ 1 and p+ 2).

2. Calculation of the non-zero contributions to the bending forces over all beads com-

posing each sub-section p as follows:

• Bending force on bead p of sub-section p as:

F(φ)
p,p = −Kb

a2
(δ − up ⊗ up) · u′p+1 (3.3)

• Bending force on bead p+ 2 of sub-section p as:

F(φ)
p+2,p = Z−1

p+1 ·
[
Kb

a2

(
δ − u′p+1 ⊗ u′p+1

)
· up
]

(3.4)
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Figure 3.3: Multi bead-rod model of n beads (in black) decomposed in n− 2 sub-sections
p constituted by two consecutive rods (in gray)

Bending force on bead p + 2 of sub-section p has been rotated back (operator

Z−1
p+1) in order to correct the direction of the force, that must to be in coherence

with the actual bent con�guration.

• As the bending potential in each sub-section is locally independent of the adja-

cent sub-sections, it must to satisfy mechanical equilibrium and, hence, bending

force on bead p+ 1 of sub-section p writes:

F(φ)
p+1,p = −F(φ)

p,p − F(φ)
p+2,p (3.5)

3. Finally, total bending force acting on bead k is calculated as follows:

F(φ)
k =

n−2∑
p=1

F(φ)
k,p (3.6)

Given that hydrodynamic interaction is neglected and an isotropic friction tensor is

supposed, BD simulation is implemented with a �rst-order integration scheme in coher-

ence with the predictor-corrector algorithm. Shear-stress tensor contribution coming from

the micro-mechanical model is calculated with the modi�ed Kramers-Kirkwood expression

using the �long-lasting� Brownian forces algorithm. A bi-dimensional modelling is used

because it was previously validated in the case of a freely-jointed (three-bead)-(two-rod)

chain model (see �2.5.4).

As in the BD simulations of general multi-bead-rod chain models, distance between

beads a is employed as the characteristic length of the system. Time scale in the BD

simulations is made dimensionless using the longest relaxation time (or rotational di�usion

time) of an equal length multi-bead rigid-rod given before in Eq. (2.97).

In what follows, an analysis of the BD predictions is presented for the two simulated

tests in linear viscoelasticity: small-amplitude osciallatory deformation and relaxation test
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after a shear-strain step.

3.3 Small-Amplitude Oscillatory Deformation Test

BD simulation previously described was implemented in the general algorithm given in

�2.3.1 for predicting the dynamic response of a non-freely jointed multi-bead-rod system

with a natural bent con�guration, which is the physical model intended to emulate the

mechanical response under �ow conditions of a SWNT that contains bendable junctions.

In the �rst stage, let us to analyze the simplest case, i.e. the (three-bead)-(two-rod)

system. BD simulation for the freely-jointed version of this model (i.e. with Kb = 0) was
presented in �2.5.4. In a general way, two di�erent regions are clearly di�erentiated in

the dynamic response of a freely-jointed (three-bead)-(two-rod) system: a low frequency

regime exhibiting a typical Maxwell terminal behaviour, where the thermal activity (or

Brownian forces) drives the kinematic of the system; and a high frequency regime, where

the domination of �ow forces over the di�usivity terms produces a plateau for the storage

modulus and a limiting constant viscosity larger than zero.

Considering the existence of the bending potential, i.e. a non-freely jointed (three-

bead)-(two-rod) system, a large range of dynamic responses is deployed in function of

the equilibrium con�guration and the bending rigidity constant. To explain this fact, in

Fig. 3.4 the dynamic responses of a freely-jointed system, two non-freely jointed systems

with natural straight con�guration and a non-freely jointed system with a naturally bent

con�guration are compared. Rod misalignment (i.e. the natural bent SWNT con�guration)

is generated following the next formula:

θ0
i = θ0

i−1 −∆θmax + U (0, 1) · 2∆θmax (3.7)

where θ0
i is the equilibrium director angle of rod i, ∆θmax is the maximal misalignment

between two consecutive rods and U (0, 1) is a continuous uniform random distribution

function de�ned between 0 and 1. In a general way, when the bending rigidity constant Kb

is equal or greater than the thermal coe�cient kBT , the loss modulus is enhanced over the

entire frequency range and the storage modulus is increased in the low frequency regime.

Otherwise, if the bending rigidity constant is much lower than the thermal coe�cient

(Kb << kBT ), a dynamic response similar to that one of a freely jointed system is obtained,

showing just one dominant relaxation time associated with the thermal-to-�ow induced

motion transition.

Additionally, in Fig. 3.4 the apparition of new relaxation processes when the bending

rigidity constant is considerably greater than the thermal coe�cient (i.e. Kb >> kBT ) is

observed. For instance, the activation of a mild elasticity at intermediate frequencies is

clearly noticed in the dynamic response of the non-freely jointed (three-bead)-(two-rod)

system with bending rigidity constantKb = 10. When comparing the straight con�guration

with the bent one, even though the loss modulus responses are similar, an interesting
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Figure 3.4: BD predicted complex modulus of di�erent (three-bead)-(two-rod) systems:
freely jointed, non-freely jointed with natural straight con�guration (Kb = 0.1 and Kb =
10) and non-freely-jointed with natural bent con�guration (Kb = 10 and ∆θmax = 30◦).
n = 2, c = a = ζ = 1, and kBT = 0.1 are the BD parameters. λ3 is the rotational di�usion
time of a (three-bead) rigid-rod system of equal length
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di�erence in the storage modulus is appreciated. In fact, on the one hand the activation

of the mild elasticity for the system with a natural bent con�guration is observed at a

lower characteristic frequency than the system with a straight con�guration; on the other

hand, a more steeped mild elasticity is noticed for the bent system in comparison with

the straight one. In front of this qualitative feature the appropriateness of considering a

natural bent con�guration for a SWNTs is a priori justi�ed when analyzing its dynamic

response under �ow.

Figure 3.5: BD predicted complex modulus of a non-freely jointed (three-bead)-(two-rod)
system with a natural bent con�guration (maximal misalignment angle ∆θmax = 30◦) for
di�erent values of the bending rigidity constant Kb. Freely-jointed system (Kb = 0) is
presented as reference. n = 2, c = a = ζ = 1, and kBT = 0.1 are the BD parameters. λ3

is the rotational di�usion time of a (three-bead) rigid-rod system of equal length

In Fig. 3.5 the BD predictions of the complex modulus for a non-freely jointed (three-

bead)-(two-rod) system with a natural bent con�guration for di�erent values of the bending

rigidity constant are presented. In Fig. 3.5 the typical thermal-to-�ow induced relaxation

process occurring around the rotational di�usion time λ3 (as in the equivalent straight

systems) is easily identi�able. Additionally, an interesting second relaxation process (as

showed before) activating a mild elasticity at intermediate frequencies is again appreciated

for the natural bent systems. BD simulations have showed that the characteristic frequency

of this relaxation process and the magnitude of the storage modulus enhancement are

function of the bending rigidity constant. The activation frequency of this mild elasticity

is increased as the bending rigidity constant is increased as well. This feature is physically
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coherent taking into account that a higher energy input (i.e. solicitation frequency) is

required for activate the �rst bending mode of a sti�er system. On the other hand, it is

also noticed that the storage modulus enhancement and the frequency range associated to

those new relaxation processes also rises as the bending rigidity increases. This qualitative

feature can be physically explained considering that the stored internal energy associated

with a given bending mode is directly proportional to the bending rigidity constant.

Predictions of the storage modulus of non-freely jointed multi-bead-rod systems with

a natural bent con�guration for di�erent number of rods (n = 3, n = 5 and n = 10) are
showed in Fig. 3.6. As in a Kramers chain, in the present modelling the number of rods

re�ects the �exibility of the bead-rod system, but in addition it captures the density of

bent defects in the SWNT structure. In other words, this parameter is directly related to

the SWNT persistent length under �ow conditions that, at the same time, is suggested to

strongly depend on the presence of bent defects in the SWNT structure. For information,

an example of the equilibrium internal angles (∆θ0
i,j = θ0

i − θ0
j ) between consecutives rods

used for the simulations in Figs. 3.6 and 3.7 is presented in Table 3.1. Di�erences in

the dynamic responses are only appreciable in the �ow-induced regime, i.e. at frequencies

greater than the characteristic relaxation frequency of an equivalent rod system. In other

words, di�erent relaxation processes at intermediate frequencies are activated in function

of the number of rods, leading invariably to di�erent curves of the storage modulus. An

enhancement of the elastic response when increasing the number of rods is observed and

di�erent slopes for the storage modulus in function of the frequency are obtained (from

0.5 for n = 3 to 1.2 for n = 10 at reduced frequencies between 101 and 102). This mild

elasticity can be explained by the coupled contribution of the tension forces required for

maintaining the inextensibility condition (as in the Kramers chain) and the forces coming

from the torques activated by the bending of the system.

Table 3.1: Internal angles between consecutives rods (∆θ0
i,j = θ0

i − θ0
j ) of the multi-bead-

rod systems with natural bent con�gurations presented in Figs. 3.6 and 3.7
∆θ0

2,1 ∆θ0
3,2 ∆θ0

4,3 ∆θ0
5,4 ∆θ0

6,5 ∆θ0
7,6 ∆θ0

8,7 ∆θ0
9,8 ∆θ0

10,9

3 rods 18.9 24.3
5 rods −22.4 24.8 7.9 −24.1
10 rods −13.3 2.8 27.4 27.9 −20.5 28.2 27.4 −0.9 18.0

On the other hand, in Fig. 3.7 the signatures of the reduced loss modulus for the

same systems deployed on Fig. 3.6 are presented. In the low frequency regime the typical

thermal motion response is observed for the three systems, i.e. a loss modulus evolving

proportional with frequency. As in the storage modulus case, di�erences between the loss

modulus responses for the three multi-bead-rod systems (n = 3, n = 5 and n = 10) are only
appreciable in the high frequency range. Di�erences are quite less important than those

found for the storage modulus because just light variations in the slopes were encountered

(from 0.7 for n = 3 to 0.8 for n = 10 in the reduced frequency interval between 101 and

102).
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Figure 3.6: Predictions of the storage modulus of a non-freely jointed multi-bead-rod
system with a natural bent con�guration (maximal misalignment angle ∆θmax = 30◦) for
di�erent number of rods n. c = a = ζ = Kb = 1, and kBT = 0.1 are the BD parameters.
Storage modulus is scaled with the value of storage modulus at the unit reduced frequency.
λn is the rotational di�usion time of a multi-bead rod system of equal length. Vertical
pointed line represents the transition between the thermal-induced to the �ow-induced
regime
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Figure 3.7: Predictions of the loss modulus of a non-freely jointed multi-bead-rod system
with a natural bent con�guration (maximal misalignment angle ∆θmax = 30◦) for di�erent
number of rods n. c = a = ζ = Kb = 1, and kBT = 0.1 are the BD parameters. Loss
modulus is scaled with the value of storage modulus at the unit reduced frequency. λn is
the rotational di�usion time of a multi-bead rod system of equal length. Vertical pointed
line represents the transition between the thermal-induced to the �ow-induced regime
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In order to properly compare the experimental results on Figs. 1.2 and 1.3 with the

BD simulations, experimental data were rescaled using a dimensionless scale. To do so, an

estimation of the equivalent rotational di�usion time for the actual surface-treated SWNT

is needed. In the expression of the rotational di�usion time for a multi-bead rigid-rod (Eq.

2.97), the isotropic bead friction coe�cient ζ is a simple discretization of the bulk friction

coe�cient ζbulk = nζ. The bulk friction coe�cient for a rigid rod system of length L and

diameter d can be calculated following the next equation [171]:

ζbulk =
2πηsL

log [L/d]
(3.8)

Rheological tests presented in Figs. 1.2 and 1.3 were e�ectuated at 25◦ C using a

suspension of HiPCO SWNTs (Nanocomposites, Houston, TX, USA) within an epoxy

resin with a Newtonian viscosity of 10 Pa s. Length of HiPCO SWNTs largely depends on

factors such as whether the tubes have been functionalized and how long they have been

sonicated for. HiPCO SWNTs average lengths reported in the literature range from 400 nm

to 700 nm and their diameters vary between 0.8 nm and 1.3 nm [120, 171, 17]. Using mean

values for the physical dimensions of HiPCO SWNTs and employing Eqs. (2.97) and (3.8),

equivalent rotational di�usion times for a SWNT were found ranging from 5.5 s for n = 10
to 9.0 s for n = 3.

In Fig. 3.8 the scaled experimental data of a 0.2 wt.% SWNT suspension are compared

with the dynamical response of a naturally bent non-freely jointed multi-bead-rod system

of 5 rods. It appears from Fig. 3.8 that the mild elasticity measured experimentally is a

phenomenon occurring in the intermediate frequency range and that the BD simulation

produces coherent magnitudes. Observe, for example, that the predicted ratio between

G′ and G” at intermediate frequencies is similar to that one encountered in experimental

dynamical tests of SWNT diluted suspensions. A more precise model-�tting will require

identifying experimentally the relaxation time spectra of an individual SWNT and the

dynamical response of the diluted suspension in a higher frequency range. Emphasis at

this point is made on the fact that a bent SWNT structure (due to presence of synthesis

defects) can play an important role in the dynamical response of a SWNT dilute suspension

and constitutes, in consequence, a physical parameter to take into account when modelling

the mechanical behaviour of SWNTs.

3.4 Relaxation Test after a Shear-Strain Step

3.4.1 Validation of the BD Algorithm

With the aim of validate the algorithm proposed to simulate a relaxation test after a

shear-strain step (see �2.3.2), a multi-bead-spring chain model was employed. Given the

fact that an exact integral constitutive equation is known for the dilute solution of multi-

bead-spring chains, the response for the studied solicitation can be derived analytically and

compared directly with the BD simulation results. Let us to tackle the simplest case, i.e.
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Figure 3.8: Comparison in a proper reduced scale of the experimental dynamic response
of a 0.2 wt.% SWNT suspension (from Figs. 1.2 and 1.3) with the BD predicted complex
modulus of a naturally bent non-freely jointed multi-bead-rod system of 5 rods (Figs. 3.6
and 3.7)
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the Hookean-dumbbell model; integral constitutive equation for this model can be found

elsewhere [141]:

τ − ηsγ̇ = −
t∫

−∞

{
ckBT

λH
e−(t−t′)/λH

}
γ[0]

(
t, t′
)
dt′ (3.9)

where γ[0] is a �nite strain tensor de�ned in [141] and λH is the characteristic time of

the Hookean-dumbbell. Signs in Eq. (3.9) are in coherence with the convention where τii
is negative in compression. In that context, when a quiescent dilute solution of Hookean-

dumbbells is submitted to a constant shear-rate γ̇0 from t = 0 during a given charging

time tc, the contribution of the dumbbells to the shear stress has the next form:

[τ − ηsγ̇]xz (t) =
ckBT

λH
γ̇0

(
tλHe

−t/λH + λ2
H − λHe−t/λH (λH + t)

)
(3.10)

Once the shearing step is over, the contribution of the Hookean-dumbbells to the shear

stress is progressively diminished until complete relaxation following the next equation:

[τ − ηsγ̇]xz (t) =
ckBT

λH
γ̇0

(
tcλHe

−t/λH − λHe−t/λH
(
−λHe−tc/λH + λH + tc

))
(3.11)

Hence, comparison of the analytical solution given by Eqs. (3.10) and (3.11) with the

results of an equivalent BD simulation makes possible to determine the validity of the

algorithm given in �2.3.2. In this context, a three-dimensional simulation employing an

explicit integration scheme was implemented to predict the shear-stress contribution of

Hookean-dumbbells during a relaxation test after a shear-strain step. Shear-stress tensor

was calculated using the classical Kramers expression (Eq. 2.41). A BD population of

5000 dumbbells was used in the simulation because this size of degrees of freedom was

shown to exhibit a good compromise between statistical dispersion and computational

cost (see �2.4.4). A time step ∆t = λH/100 was employed during the relaxation stage

given the fact that this length of time step was shown to guarantee convergence of the

numerical integration algorithm in absence of external �ow �elds (see �2.4.4). Figure 3.9

shows the BD prediction of the shear-stress signature of the Hookean-dummbbel (H = 1
and λH = 0.25) suspended in a dilute solution that is submitted to a constant shear-rate

and after is let to relax. Simulation results are plotted together with the analytical solution

for comparison. Simulation presented in Fig. 3.9 was carried out in 6 min (Intel R© CoreTM

T7300 2.00 GHz).

A good agreement between the BD simulation results and the analytical solution given

by the Hookean-dumbbell constitutive equation is observed in Fig. 3.9. BD performance is

con�rmed in both the shearing step and the relaxation step; mean relative errors in linear

scale of 1.2% and 2.1% were obtained in the simulation during the shearing step and the

relaxation stage, respectively. Previous results con�rm, therefore, that the BD algorithm

proposed to mimic a relaxation test after a shear-strain step is consistent.
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Figure 3.9: BD prediction of the shear-stress signature of a Hookean-dumbbell when its
dilute solution is submitted to a constant shear-strain step and after let to relax. Analytical
solution is represented by continuous red lines. A population of 5000 dumbbells and a time
step ∆t = λH/100 were employed in the BD simulation. A total shear-strain γ0 = 10 was
imposed. H = ζ = kBT = c = 1 are the BD parameters. Insert presents a zoom of the
charging step and the early times of the relaxation in logarithmic scale; pointed line marks
the end of the shearing step
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3.4.2 Relaxation of SWNT Dilute Suspensions

The main purpose of this section is to predict the shear-stress relaxation of a non-freely

jointed multi-bead-rod chain with a natural bent con�guration and compare the simulation

results with the experimental counterpart for treated SWNTs diluted within a Newtonian

solvent.

Shear-stress relaxation tests in the linear regime are intended to proportionate detailed

information about the whole spectra of relaxation times associated with the suspended

particles. In fact, as the suspending matrix is a Newtonian liquid, it is supposed to relax

almost instantaneously in a viscous fashion. Therefore, any visco-elastic character observed

during the relaxation would be attributable exclusively to the dynamics of the suspended

particles. Together with the shear-stress signal, it is also valuable to store the internal

energy related to the bending potential. Evolution of the internal bending energy can be

used to distinguish the di�erent relaxation processes observed at intermediate frequencies

in the BD simulations of small-amplitude oscillatory deformation tests and supposed to

be associated with di�erent bending modes. Internal bending energy is calculated using

Eq. (3.1).

In order to guarantee a linear behaviour, total shear-strains γ0 imposed in the current

strain step simulations are within the linear regime determined for the simulations of

small-amplitude oscillatory deformation tests. On the other hand, with the aim of closely

mimic the rapid strain-rates imposed experimentally, the constant shear-rate implemented

in the BD simulations is calculated using a shearing time equal to a quarter of the periodic

oscillation associated with a reduced frequency of ωR = 103. More speci�cally, knowing

that the reference frequency is given by ωλn = 103 and that the period of the oscillation

T related to a given frequency is T = 2π/ω, then shearing time is calculated as follows:

tc =
πλn

2× 103
(3.12)

where λn is the rotational di�usion time of an equivalent multi-bead rigid-rod model

containing n beads. BD simulation of the shear-stress relaxation test was implemented

in a bi-dimensional framework, which was previously proved to be consistent in the sim-

ulations of small-amplitude oscillatory deformation tests (�2.5.4). An explicit integration

scheme was employed in the simulations; a time step ∆t = λbead/105 was implemented for

the sudden shearing step in order to guarantee convergence of the numerical integration

algorithm (see Fig. 2.19) and a two-fold longer time step was used during the relaxation

in order to guarantee a high time-resolution in the early stages of relaxation. Given the

fact that the solicitation regime in a shear-strain step test is analogue with that one found

in the strong �ow-induced range in a dynamic test (i.e. ωR >> 1), a BD population of

5000 entities is enough to obtain convergence to the central values. Any reduction of the

stochastic noise in the relaxation stage requires the implementation of a more sophisticated

random number generator.

Now, let us to study �rst the relaxation behaviour of the simplest multi-bead-rod
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model, i.e. the (three-bead)-(two-rod) system. Figure 3.10 presents the relaxation of the

shear-modulus within the linear regime for the trimer system and two non-freely jointed

(three-bead)-(two-rod) chains with natural straight and natural bent con�guration.

Figure 3.10: BD prediction of the shear-modulus relaxation for di�erent (three-bead)-(two-
rod) systems: freely jointed, non-freely jointed with natural straight con�guration (Kb =
10) and non-freely jointed with natural bent con�guration (Kb = 10 and ∆θmax = 30◦).
Dashed vertical line marks the end of the shearing step. A total shear-strain γ0 = 1 was
imposed. n = 3, c = a = ζ = 1, kBT = 0.1, and Kb = 0 are the parameters of the BD
simulation. λ3 is the rotational di�usion time of a (three-bead) rigid-rod system of equal
length

BD simulations showed that independently of the bending rigidity constant (freely

or non-freely jointed) and the quiescent con�guration (natural straight or non-straight),

the relaxation of the shear-modulus is practically instantaneous, like a perfect viscous

liquid. A drop of the shear-modulus in almost three orders of magnitude is observed for

the trimer system. On the other hand, non-freely jointed systems showed a smaller drop

of approximately two orders of magnitude. At �rst sight, these results seem incoherent

with the presumed existence of a relaxation spectrum for the shear-stress in bead-rod

chains, especially when the bead-spring counterparts exhibit neat visco-elastic relaxation

behaviour under the same conditions. However, testing conditions are precisely the key

to understand the obtained BD results. In fact, as already mentioned the shearing step

currently imposed is analogue with an oscillatory deformation in the high frequency range,

particularly at ωR = 103. From Fig. 3.4 is noticed that at this solicitation frequency

the loss modulus is quite larger than the storage modulus (in more than one order of

magnitude) for all the systems simulated in Fig. 3.10. In other words, below the current
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deformation conditions, the di�erent (three-bead)-(two-rod) models have a preponderant

viscous character, which is naturally manifested during the shear-strain step test by an

quasi instantaneous shear-stress relaxation. In fact, in a viscous liquid shear-stress is

proportional to the shear strain-rate, hence once the shearing is stopped (i.e. shear strain-

rate goes instantaneously to zero) the shear-stress presents a dramatic discontinuity as

well.

However, despite the extremely rapid relaxation of the shear-modulus, in Fig. 3.10 is

noticed that the freely-jointed system behaves di�erently with respect to the non-freely

jointed ones, especially in the relaxation stage. Moreover, in the very early relaxation

times, a slight distinction can be made between the naturally straight and the naturally

bent non-freely jointed (three-bead)-(two-rod) chains. Those di�erences in the relaxation

spectra of the shear-modulus (blurred due to the stochastic nature of the simulation) can

be attributed to the di�erent contributions given by the internal bending-energy to the

dynamics of the multi-bead-rod model, as conjectured in the BD simulations of dynamical

tests. In fact, this hypothesis is supported also by the curves of stored bending-energy

during the simulated shear-strain step tests, which o�ered more clear information than

the shear-stress signal. Figure 3.11 compares the BD predicted stocked bending-energy

during a shear-strain step test for the two non-freely jointed (three-bead)-(two-rod) chains

simulated in Fig. 3.10: natural straight con�guration versus natural bent con�guration

(∆θmax = 30◦).

A neat increment of the stored bending-energy is observed during the shearing step. At

the end of the shearing step, the naturally bent system stocked 3.2 times more energy than

the naturally straight system; a fact in coherence with the di�erences of storage modules

found in the simulations of dynamic tests (see Fig. 3.4) and that con�rms the hypothesis

suggested to explain the activation of a mild elasticity in the intermediate frequency range.

In Fig. 3.11 a di�erence in the time scale related to the relaxation of the stored bending-

energy is also appreciable. The naturally bent system exhibits a relaxation time that is

almost twofold that one of the natural straight model. That di�erence appears consistent

with the larger values of shear-modulus exhibited by the naturally bent system in the early

relaxation times. On the other hand, in both cases, relaxation of the stored bending-energy

happens in time scales quite more shorter than the characteristic rotational di�usion time

λ3, which also explains why the new relaxation processes observed in the simulations of

dynamic tests appear in the high frequency regime.

At this point, BD simulations demonstrate again that a naturally bent SWNT structure

can exhibit a di�erent bending dynamics in comparison with that one of a perfectly straight

SWNT. This fact corroborates that defects and their structural consequences must be taken

into account when explaining the dynamics of an individual SWNT.

In what follows, e�ect of the bending rigidity constant is tackled comparing the shear-

strain step BD simulations of three non-freely jointed (three-bead)-(two-rod) chains with

natural bent con�gurations for di�erent values of bending rigidity constant. As expected,

based on the di�erent dynamical responses at ωR = 103 (Fig. 3.5), shear-modulus signature
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Figure 3.11: BD prediction of the stored bending-energy during a shear-strain step test for
two di�erent non freely jointed (three-bead)-(two-rod) systems: naturally straight con�g-
uration and naturally bent con�guration (∆θmax = 30◦). Dashed vertical line marks the
end of the shearing step. A total shear-strain γ0 = 1 was imposed. n = 3, c = a = ζ = 1,
kBT = 0.1, and Kb = 0 are the parameters of the BD simulation. Stored bending-energy
is calculated as follows: ∆φ = φ − φmin, where φmin is the minimal value of the bending
potential energy. λ3 is the rotational di�usion time of a (three-bead) rigid-rod system of
equal length
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did not vary with respect to the scenario presented in Fig. 3.10; a practically instantaneous

relaxation of the shear-stress is exhibited indistinctly of the value of the bending rigidity

constant. On the other hand, the BD predicted evolution of the stored bending-energy

during the shear-strain step test is presented in Fig. 3.12 and shows more exploitable

results.

Figure 3.12: BD prediction of the stored bending-energy during a shear-strain step test
for three non-freely jointed (three-bead)-(two-rod) chains naturally bent (maximal mis-
alignement angle ∆θmax = 30◦) with di�erent values of bending rigidity constant. Dashed
vertical line marks the end of the shearing step. A total shear-strain γ0 = 1 was imposed.
n = 3, c = a = ζ = 1, kBT = 0.1, and Kb = 0 are the parameters of the BD simulation.
Stored bending-energy is calculated as follows: ∆φ = φ− φmin, where φmin is the minimal
value of the bending potential energy. λ3 is the rotational di�usion time of a (three-bead)
rigid-rod system of equal length

It appears clear that the internal energy stored by the non-freely (three-bead)-(two-rod)

model during the shearing step is related directly to the rigidity of the chain. This result

is coherent with the increase of the storage modulus in the high frequency range when

enhancing the bending rigidity constant Kb. On the other hand, it is found that as higher

is the bending rigidity shorter is the relaxation time associated with the stored bending

energy. This fact explains why higher solicitation frequencies are required for activating

the mild elasticity in the small-amplitude oscillatory deformation tests when the bending

rigidity of the multi-bead-rod chain is higher.

Signatures of the internal bending energy evolutions during a shear-strain step test

for non-freely jointed multi-bead-rod chains with di�erent number of rods are compared

in Fig. 3.13. As already mentioned, the number of rods in the multi-bead-rod model is
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related directly to the persistent length under �ow conditions (for instance, the shearing

step) and, in addition, is a rough approximation to the linear density of bent junctions in

the SWNT structure.

Figure 3.13: BD prediction of the stored bending-energy during a shear-strain step test
for three non-freely jointed multi-bead-rod chains naturally bent (maximal misalignement
angle ∆θmax = 30◦) with di�erent number of rods. Dashed vertical line marks the end
of the shearing step. A total shear-strain γ0 = 1 was imposed. c = a = ζ = Kb = 1,
and kBT = 0.1 are the parameters of the BD simulation. Stored shear bending-energy is
calculated as follows: ∆φshear = φ− φeq, where φeq is the bending-energy at equilibrium.
λn is the rotational di�usion time of an equivalent multi-bead rigid-rod system of equal
length

For a given value of the bending rigidity constant, an increase in the number of con-

stitutive rods is traduced in an enhancement of the stored bending energy during the

shearing step; an expectable result given the fact that the bending-energy stocking capac-

ity is related directly to the number of torsion springs in the system. Which results more

interesting from Fig. 3.13 are the di�erent energy-relaxation spectra obtained in function

of the number of rods; a fact in coherence with the di�erent curves of storage modulus

simulated in the high frequency regime for systems with di�erent number of rods. On the

other hand, Fig. 3.13 shows that the time scale of the di�erent bending-relaxation modes

is directly related to the number of constitutive rods in the model (note that Fig. 3.13 is

plotted in a reduced time scale); a fact that could explain, under dynamic solicitation, the

increase of the frequency range associated with a mild elastic response when larger number

of constitutive rods are considered in the multi-bead-rod chain model.

Finally, once exposed a representative range of BD simulations of the linear shear-stress
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relaxation for the non-freely multi-bead-rod model, which is intended to mimic the me-

chanical behaviour of an individual treated SWNT in dilute solution; a direct comparison

with the experimental data of shear-strain step tests on dilute and semi-dilute suspensions

of functionalized SWNTs (see Fig. 1.4) can be carried out. A proper comparison requires

that time of simulation and experimental data are plotted in a suitable reduced scale. For

instance, time in BD simulations is made dimensionless using the rotational di�usion time

of a multi-bead rigid-rod model of equal length given by Eq. (2.97). Based on the physi-

cal parameters of the suspension used in the shear-strain step tests presented in Fig. 1.4

(HiPCO treated SWNTs dispersed into a Newtonian epoxy resin with an apparent viscos-

ity of 10 Pa s), di�erent equivalent rotational di�usion times in function of the number of

centres of hydrodynamic resistance (number of beads n) can be obtained as showed in �3.3.

Time in the experimental tests is rescaled then by employing a suitable physically-based

rotational di�usion time.

Figure 3.14: Comparison in a proper reduced time scale of the experimental relaxation of
the shear-modulus exhibited by the SWNTs in a 0.2 wt.% suspensions within an epoxy
resin with the BD predicted relaxation of the shear-modulus of a naturally bent non-freely
jointed multi-bead-rod system of 5 rods

With the aim of correctly compare, experimental shear-modulus plotted in Fig. 3.14

corresponds only to the contribution coming from the suspended SWNTs, which is calcu-

lated by subtracting the solvent contribution to that one of a 0.2 wt.% SWNT suspension

(Gp = G − Gs). Surprisingly, the end of the shearing step for the experimental and sim-

ulation data practically coincides to the same value in the reduced time scale, a fact that

facilitates largely the analysis. Anyway, a direct comparison is only feasible after the step-

motor response time (marked by a vertical dashed line in Fig. 3.14), which guarantees
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no interference of the rheometer in the mechanical response measured for the suspension.

In that context, the window of comparison is restricted to the data placed to the right of

the vertical dashed line in Fig. 3.14; in both cases a relaxation of the shear modulus to

∼ 4− 5% of the maximal shear-modulus (at the end of the shearing step) is observed. In

spite of that evidence, shear-stress signature is not as rich as the bending energy evolution

during a shear-strain step test, as demonstrated by the BD results. The experimental

relaxation of the shear-modulus that is available for comparison is consistent with the BD

simulated response of a non-freely jointed multi-bead-rod model. The proposed physical

model for mimicking the structure of a treated SWNT remains consistent, at least, within

the regime of linear viscoelasticity.



Conclusion

Brownian dynamics (BD) algorithms for simulating a dynamic test in linear viscoelasticity

(small-amplitude oscillatory deformation) and a relaxation test in linear viscoelasticity (af-

ter a shear-strain step) have been developed. The BD approach in linear viscoelasticity for

the multi-bead-spring models was validated in front of the analytical solutions of the Rouse

theory (freely-jointed multi-bead-Hookean-spring chains without hydrodynamic interac-

tion) and Zimm theory (freely-jointed multi-bead-Hookean-spring chains with equilibrium-

averaged hydrodynamic interaction), implementing an explicit time-integration scheme and

using the Kramers expression for calculating the shear-stress tensor. On the other hand, the

BD simulation in linear viscoelasticity for the multi-bead-rod models was validated in front

of exact numerical solution for the freely-jointed (three-bead)-(two-rod) chain given by Has-

sager, implementing an explicit time-integration scheme and using the Kramers-Kirkwood

expression coupled with the �long-lasting� Brownian forces algorithm for calculating the

shear-stress tensor.

Individual functionalized single-walled carbon nanotubes (SWNTs) are modelled as

semi-�exible �laments with an intrinsic bent con�guration considering the natural existence

of topological defects on the graphitic-like wall structure. Continuous semi-�exible �lament

model was discretized as a non-freely jointed multi-bead-rod system with a non-straight

con�guration at equilibrium with the purpose of simulate the linear visco-elastic response

of their diluted suspensions within a Newtonian solvent using the validated BD approach.

In this micro-mechanical model, intended to mimic the structure of a SWNT, the number

of constitutive rods is supposed to be related to the persistent length under �ow conditions

and, also, to the linear density of topological defects forming bent junctions in the CNT

structure. In terms of the numerical implementation of this model inside the BD simulation,

a mechanically coherent re-de�nition of the discretized version of the bending potential,

well-known for natural straight systems, was necessary in order to tackle properly the

cases of bent con�guration. An algorithm by decomposition of the multi-bead-rod chain in

(three-bead)-(two-rod) sub-sections was developed with the aim of calculating the forces

coming from the internal bending potential.

From both BD simulated tests in linear viscoelasticity, non-negligible di�erences in

the rheological responses were found between the natural straight and the naturally bent

models. This fact proved that bent junctions in the structure of a SWNT play an important

role in its dynamic behaviour in dilute solution. On the other hand, this result exhorts
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considering the e�ects of topological defects on the modelling of the mechanical properties

of CNTs in all the scenarios of solicitation.

New relaxation processes in the dynamic mechanical response of a naturally bent sys-

tem were observed in the BD simulations of the small-amplitude oscillatory deformation

tests. Those processes are characterised by the activation of a mild elasticity at intermedi-

ate frequencies (revealed as an enhancement of the storage modulus signature). The level

of enhancement of the storage modulus and the range of frequencies associated with those

new relaxation processes are found to depend directly on the bending rigidity constant or,

in other words, on the local structural sti�ness of the SWNT junctions. Moreover, the sim-

ulated dynamic response of the non-freely jointed multi-bead-rod model is found function

of the persistent length under �ow conditions (i.e. number of rods in the discretized ver-

sion); an augmentation of the storage modulus slope in the intermediate frequency range

is observed when increasing the number of constitutive rods. Comparison with the experi-

mental data for dilute suspensions of functionalized SWNTs within an epoxy resin reveals

that the magnitudes and tendencies of the BD predicted complex modulus are coherent.

Responses in relaxation mode, given by the BD simulations of the shear-strain step

tests, are consistent with the results obtained in dynamic mode. This fact proved the con-

sistence of the non-freely jointed multi-bead-rod chain with naturally bent con�guration in

the framework of linear viscoelasticity. In all the simulations carried out, an instantaneous

relaxation of the shear-stress is veri�ed at the end of the shearing stage. This viscous-like

response is coherent with the non-zero limiting viscosity found in the dynamic response at

high frequencies. Stored bending-energy signatures during the simulations of shear-strain

step tests are found consistent with the new relaxation processes observed in the dynamic

response in the intermediate frequency range. Increment of the bending rigidity constant

is traduced in an enhancement of the stored bending energy during the shearing step, a

result that is in phase with the enhancement of the storage modulus at intermediate fre-

quencies. Additionally, time of relaxation of the stored bending energy after a shear-strain

step shortens as the bending rigidity constant increases. Last fact is in coherence with the

BD simulations of dynamic tests, in which the solicitation frequency required to activate

the mild elasticity increases as the bending rigidity constants increases as well. Finally,

experimental shear-stress relaxation tests on dilute and semi-dilute suspensions of treated

SWNTs within an epoxy resin exhibit a quasi-instantaneous response; a behaviour cor-

rectly predicted by the BD simulations carried out for non-freely jointed multi-bead-rod

systems with a natural bent con�guration diluted within a Newtonian solvent.

Computational results obtained in this work are useful to give richer explanations to

the physical origins of the impressive sti�ening e�ects coming from CNTs on the rheological

behaviour of their dilute, semi-dilute and even concentrated suspensions.

The physical model proposed to mimic the mechanical structure of an individual SWNT

in solution could be applied for simulating non linear regimes, but probably it should be

necessary considering intra- and inter-tube interactions, which can be introduced via the

hydrodynamic interaction hypothesis (as done in polymer kinetic theory) coupled with a
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suitable BD strategy. The analysis of this extended model constitutes a perspective of this

work.

Future modelling e�orts should be pointed to include several issues not covered in this

work: more realistic expressions for the bending potential, poly-dispersed CNT aspect ratio

distributions, non-Newtonian suspending mediums, more realistic structural descriptions

of the topological defects in CNTs and aggregation e�ects for the case of pristine CNTs.

In terms of experimental rheology in phase with the current modelling approach, future

work should be driven towards the identi�cation of the physical parameters considered in

the model and the obtaining of an extended linear viscoelastic database, particularly in

the high frequency regime of dynamic tests.
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Appendix A

Bending Forces in a Multi-Bead-Rod

Chain

Total bending force in a multi-bead-rod system writes:

F(φ)
k = − ∂φ

∂rk
=
Kb

a

n−1∑
i=2

∂ (ui · ui−1)
∂rk

(A.1)

Expanding Eq. (A.1):

F(φ)
k =

Kb

a

(
∂(u2·u1)
∂rk

+ ...+ ∂(uk−1·uk−2)
∂rk

+ ∂(uk·uk−1)
∂rk

+
∂(uk+1·uk)

∂rk
+ ...+ ∂(un−1·un−2)

∂rk

)
(A.2)

F(φ)
k =

Kb

a

(
∂u2
∂rk

u1 + ∂u1
∂rk

u2...+
∂uk−1

∂rk
uk−2 + ∂uk−2

∂rk
uk−1 + ∂uk

∂rk
uk−1+

∂uk−1

∂rk
uk + ∂uk+1

∂rk
uk + ∂uk

∂rk
uk+1 + ...+ ∂un−1

∂rk
un−2 + ∂un−2

∂rk
un−1

)
(A.3)

Equation (A.3) can be evaluated using the identity:

∂

∂rk
ui =

1
a

(δk,i+1 − δk,i) (δ − ui ⊗ ui) (A.4)

Observing identity (A.4) is clear that the derivative ∂
∂rk

ui takes a non-zero value only

when i is k − 1 or k. Hence, considering a bead k in the middle of an in�nite chain, Eq.

(A.3) becomes:

F(φ)
k =

Kb

a

(
∂uk−1

∂rk
uk−2

)
+
Kb

a

(
∂uk
∂rk

uk−1 +
∂uk−1

∂rk
uk

)
+
Kb

a

(
∂uk
∂rk

uk+1

)
(A.5)

Total bending force on bead k, as given in the previous equation, can be interpreted

as the sum of three independent contributions. In order to explain the origin of those

contributions consider a multi-bead-rod system containing n beads decomposed into n− 2
independent sub-sections of two consecutive rods as showed in Fig. 3.3. Taking each
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of those sub-sections as an independent system, the expressions for the bending forces

associated to each sub-section are given by Eq. A.1. For example, sub-section p (composed

by beads p, p + 1 and p + 2) has the associated bending forces F(φ)
p,p , F(φ)

p+1,p and F(φ)
p+2,p,

where �rst sub-index refers to the bead and second sub-index refers to the sub-section.

Mathematically, those bending forces write:

F(φ)
p,p =

Kb

a

∂ (up+1 · up)
∂rp

=
Kb

a

∂up
∂rp

up+1 (A.6)

F(φ)
p+1,p =

Kb

a

∂ (up+1 · up)
∂rp+1

=
Kb

a

∂up+1

∂rp+1
up +

Kb

a

∂up
∂rp+1

up+1 (A.7)

F(φ)
p+2,p =

Kb

a

∂ (up+1 · up)
∂rp+2

=
Kb

a

∂up+1

∂rp+2
up (A.8)

Applying identity (A.4) to the three previous equations we have:

F(φ)
p,p = −Kb

a2
(δ − up ⊗ up) up+1 (A.9)

F(φ)
p+1,p = −Kb

a2
(δ − up+1 ⊗ up+1) up +

Kb

a2
(δ − up ⊗ up) up+1 (A.10)

F(φ)
p+2,p =

Kb

a2
(δ − up+1 ⊗ up+1) up (A.11)

From the previous equations it results clear that bending forces are in mechanical

equilibrium. For this reason:

F(φ)
p+1,p = −F(φ)

p,p − F(φ)
p+2,p (A.12)

Now, using the previous results about the decomposition of a multi bead-rod system is

easy to explain the origin of di�erent contributions in Eq. (A.5) as follows:

F(φ)
k = F(φ)

k,k−2 + F(φ)
k,k−1 + F(φ)

k,k (A.13)

In other words, total bending force on bead k can be interpreted as the sum of all the

independent bending forces coming from sub-sections containing bead k.



Appendix B

Modélisation Rhéologique des

Suspensions de NTC

B.1 Introduction

Les nanotechnologies sont au c÷ur de la recherche dans le monde d'aujourd'hui. L'impor-

tance des developpements à cette échelle nanométrique a été donnée en quelques mots par

Horst Störmer, Prix Nobel de Physique en 1998 : � l'échelle nanométrique constitue le pre-

mier échelon à partir duquel nous pouvons commencer à assembler quelque chose d'utile �.

Les nanotubes de carbone (NTC) en sont une illustration, tout comme le graphène décou-

vert plus récemment et récompensé par les prix Nobel de physique en 2010.

La structure basique des NTC est une maille hexagonale qui se répète périodiquement

dans l'espace. Cette maille de graphène est la structure périodique des feuillets enroulés

sur eux mêmes qui forment les tubes. Leur diamètre varie entre 0.4 nm (pour les NTC

mono-paroi) et 5 nm (pour les NTC multi-parois). Leur longueur est normalement de

l'ordre du micromètre, mais ils peuvent atteindre quelques fractions de millimètre [1].

Leur caractère électrique (conducteur ou semi-conducteur) est déterminé par l'hélicité du

pavé graphitique, associée à la direction du vecteur d'enroulement du feuillet de graphène.

Au niveau structurel, on se trouve, pour la première fois dans l'histoire, face à un matériau

aux dimensions nanométriques et au caractère quasiment unidimensionnel, car son rapport

de forme est élevé.

Les NTC exhibent des performances mécaniques très intéressantes, leurs modules élas-

tiques et leurs résistances à la traction sont comparables avec celles de l'acier. De plus,

leurs propriétés de conduction thermique et électrique sont comparables avec celles du

cuivre. Leurs propriétés à émission de champ attirent aussi l'attention des chercheurs en

physique de champs proches. Les excellentes propriétés des NTC ont poussé à imaginer

une large gamme d'applications technologiques : des composites à haute performance mé-

canique, des composants électromécaniques à taille réduite, des �bres à haute résistance et

des écrans �exibles.

Les NTC purs exhibent des forces très importantes du type Van der Waals qui entraî-
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nent leur agrégation. En conséquence, la dispersion des NTC en tant que tubes individuels

est di�cile et représente le principal obstacle au développement de leurs applications in-

dustrielles [2]. Pour résoudre ce problème, la modi�cation chimique de la paroi extérieure

du NTC est une des approches les plus employés pour augmenter leur dispersion [3].

Une large part d'applications des NTC requiert leur mise en forme en phase liquide.

C'est la raison pour laquelle, on fait souvent appel aux suspensions de ces NTC dans une

matrice newtonienne ou viscoélastique (polymère fondu). Les propriétés des suspensions

de NTC dépendent, d'une part, des facteurs intrinsèques aux NTC (nombre de parois,

longueur, diamètre, traitement surfacique, hélicité, pureté) et au milieu de suspension,

et, d'une autre part, des interactions physico-chimiques entre les NTC et le milieu de

suspension.

La maîtrise, et ultérieurement l'optimisation, des procédés de mise en forme basées sur

l'écoulement de ces suspensions nécessitent une compréhension �ne de leur rhéologie [4].

D'autre part, la caractérisation des suspensions de NTC, qui est souvent complexe due

à la grande variabilité des facteurs déterminant leurs propriétés physiques, est largement

basée sur leur comportement rhéologique [5]. Donc, l'approfondissement de l'étude de la

rhéologie des suspensions de NTC est plus qu'impératif a�n d'aboutir à un développement

réel des applications technologiques des NTC. Cependant, récemment il a été signalé que les

connaissances actuelles sur la rhéologie des suspensions de NTC ne semblent pas consolidées

[6]. Cette thèse cherche à combler certaines lacunes dans la compréhension des phénomènes

physiques gouvernant le comportement rhéologique des suspensions de NTC.

L'étendue des données expérimentales sur la rhéologie des suspensions de NTC est

très vaste, une gamme de phénomènes très variés a été observée dans tous les régimes

de concentration. Cependant, due à la nature très diversi�ée des NTC (longueurs, dia-

mètres, hélicités, impuretés, défauts, traitements super�cielles) et à la grande variété des

paramètres contrôlant leurs interactions avec un solvant donné, les données rhéologiques

sont di�cilement reproductibles et des résultats contradictoires peuvent se trouver dans

la littérature [5]. En conséquence, la recherche des bases physiques expliquant le com-

portement rhéologique des suspensions de NTC est un dé� complexe. Dans ce contexte,

la rhéologie numérique apparaît comme un outil puissant pour, premièrement, �ltrer la

base de données croissante sur le comportement rhéologique des suspensions de NTC, et

deuxièmement, valider les hypothèses physiques cherchant à expliquer le comportement

dynamique des NTC en suspensions. Ce travail se base sur une approche en Dynamique

Brownienne, a�n d'établir une base physique pour décrire le comportement dynamique

d'un NTC immergé dans un solvant, et pour laquelle les explications ne sont aujourd'hui

pas encore très claires.

La modélisation abordée dans cette thèse est consacrée au comportement en viscoélas-

ticité linéaire des suspensions diluées des NTC mono-parois (SWNT)1 fonctionnalisés dans

un solvant newtonien. Ce cadre n'est pas restrictif, au contraire, il a pour but d'aborder

1Single-Walled carbon NanoTube
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directement le comportement mécanique intrinsèque de la structure d'un NTC, qui pa-

rallèlement constitue une base naturelle pour comprendre les comportements rhéologiques

de suspensions de NTC plus complexes. D'autre part, ce cadre de modélisation n'est pas

fortuit, en fait, il est profondément inspiré de la théorie cinétique de polymères, dont les

modèles fondamentaux ont été développés initialement pour expliquer le comportement

dynamique des polymères linéaires en solution diluée.

L'intérêt particulier pour la rhéologie des suspensions de SWNT n'est pas anodin. Les

SWNT sont considérés comme le matériau modèle pour obtenir des composants électromé-

caniques légers et rigides à partir de nano-�laments [7, 8], de �bres de carbones [9] et de

�lms transparents [10]. En plus, les NTC ont un énorme potentiel biomédical en tant que

systèmes de transport et d'inoculation de gènes et médicaments à travers des membranes

cellulaires [11, 12].

Ce résumé du document de thèse est organisé en trois parties, en faisant un parallèle

avec le document principal en langue anglaise. La première partie présente une introduction

du cadre de ce travail de recherche (voir �B.2). Un balayage des facteurs clefs contrôlant

les propriétés physiques des suspensions de NTC est fait a�n d'établir clairement une base

sur laquelle analyser l'état de l'art du comportement rhéologique des suspensions de NTC.

L'accent est mis sur la caractérisation expérimentale et les diverses approches de modélisa-

tion du comportement rhéologique des suspensions diluées de SWNT fonctionnalisés dans

une matrice newtonienne, qui constitue le cadre précis de cette recherche. Une attention

particulière est apportée au comportement en viscoélasticité linéaire lors de sollicitations

dynamiques oscillatoires et d'essais transitoires de relaxation, étant donné qu'il n'existe,

actuellement, pas de consensus pour expliquer l'origine physique des réponses rhéologiques

observées. En d'autres termes, la recherche d'une base physique uni�ée qui soit capable

d'expliquer les réponses rhéologiques obtenues lors d'un cisaillement oscillatoire en pe-

tite déformation et pendant la relaxation de contraintes après un échelon de cisaillement

constitue la motivation principale de cette thèse.

Une fois la portée de la recherche bien établie, la deuxième partie (voir �B.3) présente

une illustration de l'approche de modélisation par Dynamique Brownienne (DB), qui cor-

respond au cadre de modélisation utilisé dans ce travail. Le choix de l'approche par DB

est en phase avec les analogies récurrentes faites entre le comportement rhéologique des

suspensions de NTC et celui de solutions de polymères représentés sous la forme de bar-

res rigides [13, 14]. Les simulations en DB ont démontré être très utiles pour enrichir les

modèles micromécaniques proposés pour décrire la structure des macromolécules dans le

cadre de la théorie cinétique. Pour cette raison, l'approche par DB est tout à fait valable

pour déterminer le comportement dynamique d'un modèle micromécanique censé simuler

la structure d'un SWNT individuel. Cette partie illustre l'étroite relation entre la théorie

cinétique, établie pour expliquer la rhéologie de �uides complexes, et l'approche stochas-

tique. L'implémentation des simulations en DB dans le cadre de viscoélasticité linéaire est

abordée en utilisant les modèles classiques de bille-barre-ressort rencontrés couramment en

rhéologie numérique: les théories de Rouse et de Zimm, les modèles bille-barre en �exion
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libre et le modèle de �lament semi-�exible. La simulation en DB implémentée est, d'une

part, validée grâce aux solutions analytiques ou numériquement exactes pour les modèles

fondamentaux en théorie cinétique de polymères.

Finalement, la troisième partie (voir �B.4) constitue le point de convergence des deux

premières. Basé sur une analyse méticuleuse de la structure des SWNT et des évidences

expérimentales révélant leur comportement dynamique en suspension, un modèle micromé-

canique censé simuler la réponse rhéologique d'un SWNT en suspension est proposé. Ce

modèle est fondé sur deux faits : l'existence de défauts topologiques dans le pavé de

graphène des parois d'un NTC, qui sont intrinsèquement associés avec quelques instabilités

de structure courbée [15, 16], et la nature �exible des NTC, qui joue un rôle prépondérant

dans leur dynamique en solution [17]. En�n, dans le but d'évaluer la cohérence du mo-

dèle physique proposé, l'approche en DB validée dans la deuxième partie est employée a�n

de simuler la réponse en viscoélasticité linéaire d'un SWNT en suspension diluée lorsqu'il

est soumis à des fonctions de sollicitation dynamique et de relaxation. Les comparaisons

avec les données expérimentales des suspensions diluées de SWNT fonctionnalisés sont

satisfaisantes et très prometteuses.

Les conclusions, les dé�s rémanents et les perspectives futures de ce travail de recherche

sont résumés en conclusion (�B.5).

B.2 Rhéologie des Suspensions de NTC

Entre les paramètres clefs qui jouent un rôle prépondérant dans les propriétés rhéologiques

d'une suspension de NTC on trouve : le milieu de suspension, le rapport de forme, la

concentration, l'état de dispersion et le traitement chimique des NTCs.

La base de données rhéologiques sur les suspensions de NTC est très vaste, mais un

manque de principes physiques uni�és qui l'explique a été souvent relevé. Notons, d'une

part, que la caractérisation rhéologique des suspensions de NTC est di�cilement repro-

ductible, d'autre part, la rhéologie théorique dans le domaine des suspensions de NTC est

en retard par rapport aux mesures et descriptions phénoménologiques de la rhéologie de

ces suspensions. Un exemple concret de cette image est le cas de suspensions diluées de

SWNT fonctionnalisés dans une matrice Newtonienne.

Les courbes expérimentales de la viscosité apparente en fonction du taux de cisaillement

pour des suspensions diluées de SWNT fonctionnalisés à l'intérieur d'une résine époxy

exhibent un comportement rhéo-�uidi�ant (voir Fig. B.1).

Ce comportement classique rhéo-�uidi�ant a été expliqué comme le résultat de deux

phénomènes : l'orientation des SWNTs dans la direction de l'écoulement et l'alignement

aléatoire dû à l'action des forces Browniennes (interaction thermique avec le solvant).

Un modèle d'orientation du type Fokker-Planck a permis de modéliser correctement ce

comportement [122].

Cependant, lorsque la suspension de SWNTs fonctionnalisés est soumise à une défor-

mation oscillatoire de petite amplitude, une réponse élastique non négligeable est observée
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Figure B.1: Viscosité apparente d'une résine époxy et de trois suspensions diluées de SWNT
fonctionnalisés dans une résine époxy. Essais isothermes réalisés à 25◦. Remerciements au
Dr. A. Ma (Rice University) pour la cession des droits de reproduction

à des fréquences intermédiaires (voir Fig. B.2).

Cette réponse rhéologique a pu être modélisée avec le modèle d'orientation Fokker-

Planck, mais en utilisant une relation empirique pour le coe�cient de di�usion qui dépend

de la fréquence appliquée. Il apparaît donc nécessaire d'enrichir le modèle physique. Même

si quelques hypothèses existent pour expliquer cette phénoménologie, tels que l'existence

d'un faible réseau de SWNT [112], l'interaction électrostatique entre SWNT fonctionnalisés

[122] et la nature �exible des SWNT [142] ; l'origine physique de cette contribution élastique

est encore en discussion.

Les essais de relaxation obtenus après application d'un échelon de cisaillement ont été

réalisés a�n de valider l'hypothèse de la présence d'un faible réseau élastique de SWNT à

l'intérieur de la suspension ; la mesure d'une contrainte résiduelle en aurait été la preuve.

Cependant, les résultats expérimentaux ont montré une relaxation quasi-instantanée, même

masquée par le temps de réaction du moteur du rhéomètre (voir Fig. B.3). La courbe du

module de relaxation est très proche de la courbe mesurée pour le solvant seul, qui coïncide

avec la réponse typique d'un �uide considéré comme parfaitement visqueux.

B.3 Validation de l'Approche en Dynamique Brownienne

Les analogies entre NTC et polymères sont, principalement, établies pour les similarités ob-

servées dans leurs comportements rhéologiques en suspension. Par exemple, pour les NTC
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Figure B.2: Contributions des SWNT fonctionnalisés aux modules élastiques de trois dif-
férentes suspensions diluées et semi-diluées dans une résine époxy. Essais dynamiques
réalisés à 25◦. La résine époxy est supposée Newtonienne, donc G

′
s ∼ 0. Remerciements

au Dr. A. Ma (Rice University) pour la cession des droits de reproduction

Figure B.3: Relaxation du module de cisaillement pour une résine époxy et deux di�érentes
suspensions diluées de SWNT fonctionnalisés dans une résine époxy. Réponse obtenue
après l'application d'un échelon de cisaillement de 1%. Essais réalisés à 25◦. Remerciements
au Dr. A. Ma (Rice University) pour la cession des droits de reproduction
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et les polymères représentés sous la forme de barres rigides, une augmentation abrupte

de la viscosité en fonction de la concentration est le re�et d'une transition vers un état

fortement enchevêtré [105, 96]. En fait, en termes de modélisation mécanique, un SWNT

peut être assimilé, à une échelle mésoscopique, à un ensemble de barres rigides avec une

longueur de persistance plus grande [14]. Dans ce contexte, a�n de prédire le comporte-

ment rhéologique de suspensions de NTC, il apparait cohérent d'utiliser les approches de

modélisation largement développées dans le cadre de la science de polymères.

La théorie cinétique des polymères est dé�nie dans un cadre mathématique dans lequel

on cherche à déterminer de lois de comportement pour ces �uides complexes, en se basant

sur la structure moléculaire du polymère en écoulement. Les modèles physiques en théorie

cinétique sont des représentations simpli�és de la structure moléculaire qui prétend mettre

en valeur les caractéristiques mécaniques plus importantes lors de l'écoulement. Les mo-

dèles basiques en théorie cinétique représentent la structure d'un polymère en utilisant des

billes, des ressorts et des barres comme éléments constitutives.

Les équations de comportement de ces modèles micromécaniques ne peuvent être dé-

rivées analytiquement que pour les cas les plus simples comme par exemple le modèle

bille-ressort de Rouse et de Zimm. Pour les modèles micromécaniques plus complexes

ont fait souvent appel à une approche stochastique a�n de connaître leur comportement

rhéologique. La DB fait partie de ces approches stochastiques amplement utilisées dans le

cadre de la rhéologie computationnelle de �uides complexes.

En DB, les interactions thermiques du système micromécanique avec le solvant sont

traités comme une force de type Brownienne, d'où son caractère stochastique. Dans ce

travail, on propose d'utiliser une approche en DB pour simuler le comportement en vis-

coélasticité linéaire de suspensions diluées de SWNT, fonctionnalisés, dans une résine new-

tonienne. Plus spéci�quement, on souhaite simuler deux essais classiques de la rhéométrie

linéaire : le cisaillement oscillatoire en petites déformations et la relaxation après un éche-

lon de cisaillement. La validation des formalismes algorithmiques et mathématiques de ces

simulations en DB a été faite en utilisant quelques modèles micromécaniques classiques de

la théorie cinétique, dont l'équation constitutive a une solution analytique exacte. Ces mo-

dèles sont : la chaine multi-bille-ressort de Hooke en absence d'interaction hydrodynamique

(théorie de Rouse), la chaine multi-bille-ressort de Hooke avec interaction hydrodynamique

moyennée à l'équilibre (théorie de Zimm) et le système (trois-billes) (deux-barres) en �exion

libre, aussi connu comme trimer.

La Fig. B.4 présente les modules de conservation prédits en DB pour trois di�érentes

chaines de Rouse et les compare avec la solution analytique (en ligne continue). Les

inexactitudes à basses fréquences peuvent être atténuées en implémentant un algorithme

plus sophistiqué de génération de nombres aléatoires. En tout cas, l'ensemble de la simula-

tion en DB exhibe une bonne performance. En e�et, elle est capable de prédire l'apparition

de nouveaux processus de relaxation (traduit par une augmentation du module élastique

à des fréquences intermédiaires) en augmentant le nombre de ressorts dans le modèle.

De la même façon, l'approche en DB a été validée dans les cas où les interactions
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Figure B.4: Module de conservation pour trois chaines de Rouse avec di�érent nombre de
ressorts constitutifs : 1 ressort ou Hookean dumbbell, 10 ressorts et 50 ressorts. Compara-
ison entre la simulation en DB et la solution analytique de la théorie de Rouse

hydrodynamiques (interactions entre billes d'un même ensemble) ne sont pas négligées.

Sur la Fig. B.5, une bonne qualité de prédiction est véri�é dans l'intervalle des hautes

fréquences pour deux chaines de Zimm à 50 ressorts avec des paramètres d'interaction

hydrodynamique limites (très basse interaction, h∗ = 0.003, et interaction très élevé,

h∗ = 0.303).

Finalement, l'approche en DB pour les modèles contenant des restrictions physiques

(c'est-à-dire, des barres in�niment rigides), est aussi validée dans le cadre du comporte-

ment dynamique du trimer. L'implémentation d'une simulation en DB pour des modèles

avec des barres est beaucoup plus délicate que celle des modèles à ressorts car la présence

de restrictions physiques oblige à formuler di�éremment les forces Browniennes dans le

système et à considérer des schémas d'intégration temporelle cohérents avec cette nouvelle

dé�nition mathématique du potentiel stochastique. Sur la Fig. B.6, nous constatons que

l'approche en DB a prédit un module complexe en cohérence avec la solution numérique-

ment exacte donné par Hassager pour le modèle trimer. Ce résultat a validé, d'une part, la

formulation bidimensionnelle utilisée dans cette thèse pour les modèles à barres et, d'une

autre part, le schéma d'intégration temporelle de premier ordre couplé avec un algorithme

de forces Browniennes de � longue durée � pour l'estimation du tenseur de contraintes.
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Figure B.5: Module de conservation pour deux chaines de Zimm à 50 ressorts avec di�érents
paramètres d'interaction hydrodynamique : basse interaction h∗ = 0.003 et interaction très
importante, h∗ = 0.303. Comparaison entre la simulation en DB et la solution analytique
de la théorie de Zimm

B.4 Approche en DB aux Suspensions Diluées de SWNT

Une fois la méthode numérique validée, on peut proposer un modèle micromécanique pour

représenter la structure d'un SWNT fonctionnalisé, et ainsi simuler la réponse de leurs

suspensions diluées en viscoélasticité linéaire. La formulation d'un modèle physique de

SWNT a été basée sur deux faits expérimentaux :

1. l'observation directe de la �exion des NTC fonctionnalisés par action thermique à

l'intérieur d'une suspension aqueuse [17], et

2. l'observation fréquente des tortuosités sur les images de NTC prises par di�érents

microscopes à champ proche, qui sont explicables par l'existence naturelle des défauts

topologiques dans la structure des NTC [24, 15, 231, 228].

De cette manière, nous proposons un modèle de �lament semi-�exible avec une con�-

guration d'équilibre non-rectiligne pour représenter les SWNT fonctionnalisés. Pour étudier

la réponse de ce modèle physique en DB, le �lament semi-�exible a été discrétisé en un

système multi-barre composé de n billes à la position ri, connectées par n−1 barres rigides

de longueur a. Les billes sont considérées comme les points de résistance hydrodynamique,

à l'image de la plupart des modèles mécaniques en théorie cinétique de polymères. Les

barres sont supposées in�niment rigides. Un potentiel de �exion inter-barre tient compte

de la raideur en �exion des NTC.
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Figure B.6: Module complexe pour un système (trois-bille)-(deux-barre) en �exion libre
en fonction d'une fréquence réduite. Comparaison entre la simulation en DB et la solution
numériquement exacte donnée par Hassager
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Les contraintes cinématiques du système à billes, traduisant l'inextensibilité des n− 1
barres s'écrivent :

(ṙi − ṙi+1) · ui = 0 (B.1)

où ṙi est la vitesse instantanée de la bille i et ui est un vecteur colinéaire à la barre qui

connecte les billes i et i+ 1 :

uj = (rj+1 − rj) /a (B.2)

L'évolution cinématique du modèle multi-barre est donnée par la solution des n bilans

de forces établis sur chacune des n billes du système :

F(h)
i + F(b)

i + F(φ)
i − nijλj = 0 (B.3)

où F(h)
i est la force hydrodynamique dans la bille i, F(b)

i est la force Brownienne dans la

bille i, F(φ)
i est la force du potentiel de �exion dans la bille i et λj est une force de tension

associée à la barre qui connecte les billes j et j + 1. L'operateur nij est dé�ni par :

nij = uj (δi,j+1 − δi,j) (B.4)

La force hydrodynamique F(h)
i est donné par :

F(h)
i = ζ (κ · ri − ṙi) (B.5)

où ζ est le coe�cient local de friction et κ est le tenseur gradient de vitesses. L'ensemble

de forces stochastiques suit une distribution Gaussienne, dé�nie par les moments suivants :

〈
F(b)
i (t)

〉
= 0 (B.6)

〈
F(b)
i (t)⊗ F(b)

j

(
t′
)〉

=
2ζkBT

∆t
δ (B.7)

La présence de restrictions dans les directions des barres rigides requiert une projection

géométrique des forces générées de façon aléatoire (Eqs. B.6 et B.7) et données par [216,

217] :

0 = F(b)
i · nij (B.8)

Le potentiel de �exion pour une con�guration d'équilibre non-rectiligne présente la

forme suivante :

φ=− Kb

a

n−1∑
i=2

Ziui · ui−1 = −Kb

a

n−1∑
i=2

u′i · ui−1 (B.9)
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où Kb est une constante de rigidité, Zi est un opérateur linéaire de rotation qui aligne

les vecteurs des barres dans la con�guration d'équilibre et u′i est le vecteur ayant subi la

rotation Ziui. En conséquence, l'expression de la force de �exion devient :

F(φ)
k = − ∂φ

∂rk
=
Kb

a

n−1∑
i=2

∂ (u′i · ui−1)
∂rk

(B.10)

Un schéma d'intégration explicite, validé précédemment pour le modèles bille-barre

en �exion libre, est implémenté pour obtenir l'évolution cinématique du modèle multi-

barre en �exion non-libre. La contribution des SWNT au tenseur de contraintes est faite

en utilisant l'expression de Kramers-Kirkwood couplée avec un schéma semi-implicite de

forces Browniennes de � longue durée � :

τ p (t) = c
∑
v

〈
Rv (t+ ∆t)⊗ F̃(h)

v (t+ ∆t)
〉

(B.11)

où c est le nombre de SWNT par volume et Rv = rv − rc est la position relative de la

bille v par rapport au centre de masse rc de la chaine.

Une large gamme de réponses rhéologiques en viscoélasticité linéaire peut être observée

dans les simulations en DB, en variant les con�gurations à l'équilibre, les valeurs de la

constante de rigidité et le nombre de barres constituant le modèle. Dans le cas d'un mo-

dèle à deux barres, les réponses dynamiques d'un système en libre rotation, en rotation

non-libre rectiligne (à l'équilibre) et en �exion non-libre non-rectiligne (à l'équilibre) sont

comparées dans la Fig. B.7. On constate l'apparition de nouveaux processus de relaxation

aux fréquences intermédiaires quand la constante de rigidité est plus importante que le

coe�cient thermique (Kb > kBT ). Par ailleurs, on observe que l'évolution du module de

conservation varie de façon substantielle en fonction de la fréquence selon que la con�gura-

tion est rectiligne, ou pas, à l'équilibre. Ce comportement est cohérent avec la relaxation

de l'énergie interne de �exion dans les simulations en régime transitoire après l'application

d'un échelon de cisaillement (voir Fig. B.8).

Les simulations en DB ont montré que la fréquence caractéristique, à laquelle l'élasticité

intermédiaire est activée, augmente avec l'augmentation de la constante de rigidité. D'autre

part, l'intensité de l'élasticité activée et l'intervalle de fréquences associé varient aussi

de façon directe avec la constante de rigidité. Ces réponses dynamiques sont cohérentes

avec les résultats en relaxation qui montrent une augmentation de l'énergie stockée avec

l'augmentation de la constante de rigidité, pendant l'échelon de cisaillement.

Finalement, nous avons trouvé que le nombre de barres dans le modèle (qui dépend

de la �exibilité et de la densité linéaire de défauts dans la structure du SWNT) modi�e

signi�cativement la réponse dynamique du système, notamment le module de conservation.

Pour un nombre plus important de barres, un incrément plus important de G′ et une pente

supérieure de G
′
en fonction de la fréquence sont obtenus. Une comparaison, en échelle

adimensionnelle, entre les données expérimentales et une prédiction par DB (modèle à 5
barres avec con�guration non-rectiligne à l'équilibre), est présentée dans la Fig. B.9.
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Figure B.7: Prédictions en DB du module de conservation et de perte en fonction de la
fréquence pour des systèmes à deux barres : en �exion libre, en �exion non libre rectiligne
(Kb = 0.1 et Kb = 10) et en �exion non libre non rectiligne (Kb = 10). Paramètres en
DB : kBT = 0.1, ζ = 1, a = 1, c = 1, γ0 = 1
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Figure B.8: Prédiction en DB de l'évolution de l'énergie interne de �exion lors d'un essai de
relaxation par application d'un échelon de cisaillement sur des systèmes à deux barres en
�exion non-libre (Kb = 10) avec deux con�gurations à l'équilibre: droite et non-rectiligne

Figure B.9: Comparaison entre la réponse dynamique expérimentale (0.2 wt.% SWNT) et
celle prédite par DB pour un système à 5 barres en con�guration non-rectiligne à l'équilibre
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B.5 Conclusion

Des algorithmes en DB pour la simulation des essais en viscoélasticité linéaire en mode

dynamique (déformation oscillatoire en petites déformations) et en mode de relaxation

(après un échelon de cisaillement) ont été développés. L'approche par DB en viscoélasticité

linéaire a été validée pour les modèles bille-ressort en comparant les résultats aux solutions

analytiques du modèle de Rouse (chaîne bille-ressort de Hooke en l'absence d'interaction

hydrodynamique) et du modèle de Zimm (chaîne bille-ressort de Hooke avec interaction hy-

drodynamique moyennée à l'équilibre), en implémentant un schéma d'intégration explicite

et l'expression de Kramers pour le calcul du tenseur de contraintes. D'autre part, la simu-

lation de DB en viscoélasticité linéaire pour les modèles bille-barre a été validée en prenant

comme référence la solution numériquement exacte de Hassager pour l'équation constitu-

tive du système (trois-billes) (deux-barres) en �exion libre ; l'implémentation numérique

est basé sur un schéma d'intégration explicite de premier ordre et l'expression de Kramers-

Kirkwood couplée avec l'algorithme de � longue durée � des forces Browniennes pour

l'estimation du tenseur de contraintes.

Les SWNT fonctionnalisés ont été modélisés par des �laments semi-�exibles ayant

une con�guration courbée à l'équilibre ; en considérant l'existence naturelle de défauts

topologiques sur les parois graphitiques d'un NTC. Le modèle continu semi-�exible a été

discrétisé en un système multi-bille-barre en �exion non-libre avec une con�guration non-

droite à l'équilibre ayant pour but de simuler la réponse en viscoélasticité linéaire de leurs

suspensions diluées dans un solvant Newtonien en utilisant l'approche validée en DB.

Dans ce modèle micromécanique imitant la structure d'un SWNT, le nombre de barres

constitutifs est supposé être relié directement à la longueur de persistance en conditions

d'écoulement ainsi qu'à la densité linéaire de défauts topologiques dans la structure d'un

NTC. En termes d'implémentation numérique de ce modèle particulier dans l'approche

en DB, une redé�nition mécaniquement cohérente du potentiel de �exion discrète fut

nécessaire a�n de tenir compte des cas de con�gurations non-droites à l'équilibre. Un

algorithme par décomposition du modèle multi bille-barre en sous-sections (trois-billes)

(deux-barres) a été développé dans le but de calculer les forces provenant du potentiel

interne de �exion.

A partir de la simulation en DB des essais en viscoélasticité linéaire, des di�érences

non-négligeables dans les réponses rhéologiques ont été identi�ées entre les modèles droits

et non-droits à l'équilibre. Ce résultat a prouvé que les défauts à l'intérieur de la structure

d'un NTC jouent un rôle très important dans leur comportement dynamique en solution

diluée. En conséquence, les e�ets de la présence de défauts topologiques des NTC devront

être considérés dans tous les scénarios de modélisation mécanique.

De nouveaux processus de relaxation dans la réponse dynamique des systèmes naturelle-

ment non-droits ont été observés lors des simulations en DB des essais de cisaillement os-

cillatoire en petites déformations. Ces processus sont caractérisés par l'activation d'une

élasticité modérée à des fréquences intermédiaires (révélée par une augmentation du mo-
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dule de conservation). Le taux d'augmentation du module de conservation et l'intervalle de

fréquences associés avec ces nouveaux processus de relaxation sont trouvés dépendants de

la constante de rigidité du potentiel de �exion ou, en d'autres termes, de la rigidité struc-

turale des instabilités courbées dans le SWNT. De plus, la réponse dynamique du système

multi bille-barre en �exion non-libre dépend de la longueur de persistance en conditions

d'écoulement (c'est-à-dire, du nombre de barres dans le modèle). L'augmentation de la

pente du module de conservation dans l'intervalle de fréquences intermédiaires est remar-

quée lorsque le nombre de barres constitutives augmente aussi. La comparaison avec les

données expérimentales pour suspensions diluées de SWNT fonctionnalisés dans une résine

époxy a montré que les amplitudes et les tendances prédites des modules de conservation

et de perte sont cohérentes.

Les réponses rhéologiques en relaxation, données par les simulations en DB des essais de

relaxation après un échelon de cisaillement, sont cohérentes avec les résultats de simulations

en mode dynamique. Face à cette convergence des résultats de simulation, la cohérence du

modèle physique multi bille-barre en �exion non-libre avec une con�guration non-droite à

l'équilibre a été véri�ée dans le cadre de viscoélasticité linéaire. Dans toutes les simulations

réalisées en mode transitoire, une relaxation instantanée de la contrainte de cisaillement

a été observée à la �n de l'échelon de cisaillement. Cette réponse du type visqueux est

en phase avec la viscosité limite non-nulle trouvée dans la réponse dynamique aux hautes

fréquences de sollicitation. Les évolutions de l'énergie interne de �exion pendant les simu-

lations des essais de relaxation sont cohérentes avec les processus de relaxation observés

dans les réponses dynamiques à des fréquences intermédiaires. Une augmentation de la

constante du potentiel de �exion est traduite par une augmentation de l'énergie interne de

�exion lors de l'application de l'échelon de cisaillement, un résultat qui est en phase avec

l'augmentation du module de conservation à des fréquences intermédiaires. Par ailleurs, le

temps de relaxation de l'énergie stockée pendant l'application de l'échelon de cisaillement

diminue lorsque la constante du potentiel de �exion augmente. Ce dernier résultat est

cohérent avec les simulations en DB des essais dynamiques, dans lesquelles la fréquence de

sollicitation requise pour activer le nouvel apport élastique augmente lorsque la constante

du potentiel de �exion augmente aussi. Finalement, les essais expérimentaux de relaxation

sur des suspensions diluées et semi-diluées de SWNT fonctionnalisés dans une résine époxy

montrent une relaxation quasi-instantanée ; un comportement prédit e�ectivement par les

simulations en DB pour les suspensions diluées de systèmes multi bille-barre en �exion

non-libre avec une con�guration non-droite à l'équilibre.

Les résultats de rhéologie numérique obtenus dans cette thèse sont très utiles pour

enrichir les bases physiques expliquant l'impressionnant e�et de renforcement apporté par

les NTC dans le comportement rhéologique de leurs suspensions diluées, semi-diluées et,

même encore, concentrées.

Le modèle physique proposé pour simuler la réponse mécanique d'un SWNT en so-

lution diluée peut être utilisé dans le cadre de simulations en régime non-linéaire ou en

solution semi-diluée, mais il sera probablement nécessaire de considérer les interactions
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intra et inter-tubes, qui peuvent être introduites au travers de l'hypothèse d'interaction

hydrodynamique (comme dans le cadre de théorie cinétique de polymères) couplée avec

une approche de simulation en DB adaptée. L'analyse de ce modèle étendu constitue une

perspective de cette recherche.

L'amélioration du modèle actuel passe par une expression plus ra�née du poten-

tiel de �exion, des populations poly-dispersées en longueurs de NTC, des matrices non-

Newtoniennes, ainsi que par des descriptions plus réelles des défauts topologiques dans la

structure d'un NTC et des e�ets d'agrégation dans le cadre de NTC non fonctionnalisés.

En termes de rhéologie expérimentale en phase avec les approches de modélisation, le

travail futur devra être dirigé vers l'identi�cation des paramètres physiques dans le modèle

et la validation des données en viscoélasticité linéaire dynamique dans le régime des hautes

fréquences de sollicitation.



 



 



 

MODELLING OF RHEOLOGICAL PROPERTIES OF CARBON NANOTUBE 
SUSPENSIONS 

ABSTRACT: Single-walled carbon nanotubes (SWNTs) are frequently diluted in solvents with the 
aim of purify, functionalize and transform them. Control and optimization of those processes in 
liquid phase require a deep understanding of the rheology of SWNT suspensions. However, there is 
no consensus about the physical origin of some rheological signatures exhibited by the SWNT 
suspensions. This thesis is intended to elucidate this question by modelling the linear viscoelastic 
behaviour of SWNT dilute suspensions by using a Brownian Dynamics (BD) approach. Individual 
treated SWNT are modelled as semi-flexible filaments with a naturally curved structure due to the 
existence of side-wall defects. Continuous semi-flexible filament model is discretized as a non-freely 
jointed multi-bead-rod system with a non-straight configuration at equilibrium. A mechanical 
coherent re-definition of the discrete bending potential is proposed in order to tackle the naturally 
bent configurations. The linear viscolastic response of the SWNT-coarse-grained model in dilute 
suspension is BD-simulated under dynamic and relaxation functions. New relaxation processes, 
characterised by the activation of a mild elasticity at intermediate frequencies, are observed in the 
dynamic test mode. On the other hand, a quasi-instantaneous shear-modulus relaxation is obtained 
after the application of a shear-strain step. Bending-energy relaxation spectra are consistent with the 
range of dynamic responses proving the consistence of the model in the linear viscoelastic regime. 
The non-negligeble differences found with respect to the rheological behaviour of naturally straight 
systems demonstrates that the bending flexibility coupled with the presence of structural bent defects 
plays an important role on the dynamics of individual SWNTs in suspension. 

Keywords: carbon nanotubes, topological defects, suspension rheology, linear viscoelasticity, Brownian 
Dynamics, semi-flexible filament 

MODELISATION DES PROPRIETES RHEOLOGIQUES DES SUSPENSIONS DE 
NANOTUBES DE CARBONE 

RESUME : Les nanotubes de carbone mono-paroi (SWNT) sont souvent dilués dans un solvant afin 
de les purifier, les fonctionnaliser ou les transformer. Le contrôle de ces processus requiert une 
compréhension profonde de la rhéologie de leurs suspensions. Cependant, les bases physiques de 
leur comportement rhéologique ne sont pas absolument claires. Cette thèse a permis d’apporter des 
réponses au travers de la modélisation de la viscoélasticité linéaire des suspensions diluées de 
SWNTs en utilisant une approche par la Dynamique Brownienne (DB). Les SWNTs sont modélisés 
par des filaments semi-flexibles dont la configuration est naturellement courbée due à la présence de 
défauts structuraux. Le modèle continu de filament semi-flexible est discrétisé en un système 
multibarre en flexion non-libre ayant une configuration non-droite à l’équilibre. Une redéfinition du 
potentiel de flexion est effectuée afin de prendre en compte les cas des configurations non-
rectilignes. Le comportement en viscoélasticité linéaire de leurs suspensions diluées a été modélisé 
par DB en mode dynamique et de relaxation. Des nouveaux processus de relaxation caractérisés par 
l’activation d’une élasticité à fréquences intermédiaires sont constatés en dynamique. D’autre part, 
une relaxation quasi-instantanée du module de relaxation est obtenue lors de l’application d’un 
échelon de cisaillement. Les spectres de relaxation de l’énergie de flexion sont en accord avec les 
réponses dynamiques, ce qui prouve la cohérence du modèle en viscoélasticité linéaire. Les 
différences non négligeables par rapport au comportement rhéologique des systèmes multibarre 
droits à l’équilibre démontrent que la flexibilité couplée avec la présence de défauts structuraux de 
courbure joue un rôle important dans la dynamique d’un SWNT en suspension. 

Mot clés : nanotubes de carbone, défauts topologiques, rhéologie des suspensions, viscoélasticité linéaire, 
Dynamique Brownienne, filament semi-flexible 
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