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Résumé (Algorithmes de �ltrage et systèmes avioniques pour véhicules aériens
autonomes)
L'essor récent des mini-véhicules aériens autonomes (ou mini-drones) est intrasèquement

lié au développement des di�érentes composantes des systèmes avioniques embarqués
(capteurs, calculateurs et liaison de données), à la fois au niveau de leur coût, de leur
poids, de leurs dimensions et de leurs performances. Ces engins volants doivent en e�et
répondre à un cahier des charges spéci�que très exigeant: être capable d'accomplir des
missions de surveillance ou de poursuite de manière autonome, tout en étant léger (<2kg),
de petite envergure (<1m) et assez �bon marché�. L'avionique embarquée, dite �bas-
coûts�, doit elle-même satisfaire ces contraintes: elle ne peut contenir que des systèmes
aux performances médiocres (e.g. mesures des capteurs fortement biaisées ou bruitées,
calculateur peu puissant), qui doivent alors être compensés par des algorithmes de fusion
de données et de contrôle �intelligement� pensés et implémentés.
Le travail présenté dans ce mémoire concerne le développement théorique et la valida-

tion expérimentale d'algorithmes de fusion de données originaux pour mini-drones, dé-
passant les limitations des estimateurs communément utilisés. En e�et, les observateurs
usuels (e.g. le Filtre de Kalman Etendu ou les �ltres particulaires) possèdent plusieurs
inconvénients: leur convergence, même au premier ordre, est di�cile à prouver, leur com-
portement local est souvent mal appréhendé et leur réglage est délicat (de nombreux
coe�cients sont à régler). Ils sont de plus gourmand en calculs (nombreuses opérations
matricielles), ce qui les empêchent d'être implémentés sur des calculateurs bon marché et
donc peu puissants. Ce mémoire présente des solutions alternatives à ces �ltres, remédiant
aux défauts précédents et pouvant être implémentés aisément et e�cacement dans une
avionique bas-coûts.
Nous proposons tout d'abord des observateurs invariants �génériques�, préservant les

symétries naturelles du système physique. Ces observateurs fusionnent les mesures de
capteurs bon marché usuels (tels qu'inertiels, magnétomètres, GPS ou baromètre) a�n
d'estimer avec précision l'état de l'appareil (angles d'attitude et de cap, vitesse et posi-
tion). Ils possèdent un large domaine de convergence; ils sont également faciles à régler
et très économiques en temps de calcul. Ils ne supposent pas de modèle connu de l'engin
(hormis les lois cinématiques habituelles) et peuvent donc être adaptés à toute plateforme
mobile.
Puis nous développons des observateurs �spéci�ques�, adaptés au type de véhicule aérien

considéré, en l'occurence un mini-quadrotor. Nous décrivons tout d'abord son modèle
physique, tenant compte explicitement de la traînée de rotor. Ce modèle nous permet
alors de contruire des observateurs estimant la vitesse du quadrotor à partir de mesures
uniquement inertielles, menant à un contrôle en vitesse de l'appareil. Cette approche est
validée par des vols stabilisés autonomes.
En�n, nous présentons en détails l'intégration du système avionique bas-coûts utilisé,

composé de capteurs �bruts� et d'un microcontrôleur sur lequel sont implémentés les
observateurs précédents. Nous validons ces algorithmes en comparant leurs estimations
avec ceux fournit par un produit commercial coûteux, mettant ainsi en évidence leur
excellent rapport �qualité/prix�.
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CHAPTER 1

PROBLEM POSITION

Dans ce chapitre introductif nous présentons la problématique des algorithmes de �l-

trage pour mini-drones, mettant en perspective certains travaux menés dans ce domaine,

ainsi que les di�érents types de capteurs et systèmes de navigation commerciaux util-

isés. Nous faisons également un rappel de la théorie des observateurs invariants, élément

essentiel à la construction des estimateurs �génériques� développés par la suite.

1.1. Roles of the embedded avionics system

The mini-Unmanned Aerial Vehicles (or mini-UAVs) have been subject to an exponen-

tial growth for the past 15 years, created to satisfy �rst military and then civilian needs.

There is a wide variety of mini-UAV shapes and con�gurations, but they all share several

common characteristics:

� they are small (<1m), light (<2kg) and low-cost

� they can be autonomous and accomplish many tasks (hovering, following waypoints,...)

by themselves

� they can be remotely controlled by a non-specialist pilot giving high-level orders (e.g.

go forward, go left, take o�)

� they should be able to �y in many di�erent environments: indoor/outdoor, in pres-

ence of wind, obstacles,...

In order to meet these very demanding requirements, an embedded avionics system is

used: it is composed of a computational board that is interfaced with the sensors, the

actuators, and the communication devices. This system must accomplish two main tasks:
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� �lter role: it must estimate the state of the �ying system, i.e. its orientation, its

velocity, and its position,

� controller role: it must send the proper commands to the actuators as a function of

the reference (provided by the pilot for instance) and the vehicle state estimated by

the �ltering algorithm.

Both roles (�lter and controller) are crucial for the safety of the mini-UAV and the success

of its mission, and both raise theoretical and experimental deep questions. Nevertheless,

linear control laws are often su�cient if an accurate estimate of the vehicle state is pro-

vided by the �ltering algorithm, and especially for near-hovering �ights and non-aggressive

maneuvers. Therefore, the study we present in this thesis focuses on the �ltering task of

the embedded avionics system. Many expressions exist for the name of the algorithm ded-

icated to this task, depending on the scienti�c community that uses it: �ltering algorithm,

observer or estimator. We consider here that they are all equivalent.

1.2. Challenges of the �ltering algorithms

1.2.1. Two di�erent strategies. � The role of the observer is to give an estimate

of the vehicle state that is �good� enough (accurate, with a high update rate and a

low latency) for the �user�, which is almost always the control algorithm in the case of

mini-UAVs. To get this estimate, the various measurements provided by the sensors are

�merged" with some �ltering algorithm. This �lter can be based on two di�erent strategies

� generic observer : this kind of �lter uses the general kinematic laws applied to the

moving body. Therefore it can be used for any platform, whatever the structure of

the mini-UAV is (even for a bigger UAV or a car for instance), since no study of the

mechanical and aerodynamical forces and torques applied to the system is required.

This �lter allows then a gain of time (and money).

� speci�c observer : this kind of �lter uses a physical model of the vehicle (written from

the dynamics laws), so it may have a better performance than the generic observer.

However it needs more time to be built: the model needs to be identi�ed and the

algorithm needs to be implemented and tuned for each kind of UAV.

The generic observer, often called �Attitude and Heading Reference System� (AHRS) or

�aided Attitude and Heading Reference System� (aided AHRS) as we will detail it later,

has been the subject of numerous studies (see for instance the references in the survey [26]

and the recent works [52, 71] for the AHRS, the recent results in [5, 50, 24, 38, 86]

for the aided AHRS). This kind of �ltering algorithm is also used in commercial devices
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that can be mounted on any UAV (i.e. the MIDG II from Microbotics, the MTi from

Xsens, the 3DM-GX1 from Microstrain or the GuideStar from Athena). On the contrary,

few works developed speci�c observers since much more e�ort in the system modeling is

required (see for instance [87, 88]).

1.2.2. The challenges to face. � The �ltering algorithm for mini-UAV must meet

the following requirements

� large domain of convergence: the domain of convergence should be as large as possible.

At least, the local convergence around the most common trajectories followed by the

mini-UAV (and then not only around the stationary point, e.g. an hovering �ight) is

highly desired

� sensible local behavior : once the estimations have converged to their true value (e.g.

after a bad initialization), we can consider only the local behavior of the �lter. There-

fore it is important for the local behavior to be coherent with some physical consid-

erations

� easy to tune: from a practical viewpoint, it is a great advantage if there are only a

few number of coe�cients to dial, and if this tuning is easy to do.

Due to the very demanding requirements in terms of weight, dimensions and price, the

whole avionics system can only contain low-cost systems. Then the �ltering algorithm

must also face two challenges speci�c to the mini-UAV application:

� use of low-cost sensors : the observer must cope with the imperfections of the em-

bedded low-cost sensors, especially the intrinsic time-varying biases in some mea-

surements and the possible in�uence of the �environment� on the measurements (e.g.

presence of buildings or parasite magnetic �eld from the motors) must be taken into

account

� use of low-cost computational board : the �ltering algorithm must be implemented on

a low-cost microcontroller, with a limited computational power.

The usual �ltering techniques commonly applied on larger UAVs (and on ground vehi-

cles), such as Extended Kalman Filter ([8, 29]), Sigma-point Kalman �ltering ([24, 82]),

particle �ltering ([21]), unscented �ltering ([25]), adaptative �ltering ([22, 37, 75]) or ge-

netic algorithm ([70]), give great results when they are properly tuned. Nevertheless, they

do not really match with the preceding requirements. Especially it is di�cult to prove the

convergence of the �lters (even at the �rst order) and it is not easy to tune the numerous

parameters (e.g. the coe�cients of the covariance matrices). Furthermore, these �lters

require too much computation to be implemented on low-cost microcontrollers.
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In order to bypass these limitations, many nonlinear �ltering algorithms have been

developed, for AHRS (see [35, 52, 55, 67, 81, 26, 53, 54, 73]) as well as for aided

AHRS (see [84, 86, 3, 85]). Another approach has been recently proposed, introducing

nonlinear �lters preserving by construction the natural symmetries of the considered sys-

tem. Therefore they are often called �invariant� or �symmetry-preserving� observers. A

theoretical investigation of such �lters is presented in [11, 12, 13, 46, 47, 48], including

the de�nition of invariance properties and a systematic method to construct the invariant

�lters. A brief recall of the main results is given in section 1.4. The majority of the

observers we develop in this thesis is based on this approach.

1.3. Sensors and commercial navigation systems

The �ltering algorithms we present in this thesis handle with measurements from the

most usual low-cost sensors embedded on a mini-UAV. We present here their character-

istics (price (in e), weight (in g), dimensions (in mm), update rate (in Hz)), as well as

an �inertial class� inertial measurement unit (IMU) Sigma 30 from Sagem and the two

commercial devices used to validate the estimations given by our algorithms (the MIDG II

from Microbotics and the 3DM-GX1 from Microstrain). For clarity, we divide the sensors

into two groups: the sensors that give measurements in the Body-�xed frame and those

that give measurements in the Earth-�xed frame.

1.3.1. Sensors providing Body-�xed measurements. � The following strapdown

sensors provide measurements with respect to the body-�xed coordinates. Unlike �inertial

class� systems, the low-cost sensors are based on the Micro-Electro-Mechanical Systems

(MEMS) technology, allowing them to be very small and light, but less accurate.

� (�inertial class�) inertial measurement unit={accelerometers+gyroscopes}: an IMU

contains two kind of sensors: a tri-axial accelerometer that measures the speci�c

acceleration vector, i.e. the linear acceleration minus the gravity vector, and a tri-

axial gyroscope that measures the instantaneous angular velocity vector. An �inertial

class� IMU, such as Sigma 30 from Sagem (see Figure 1.1), provides very accurate

measurements at a high update rate. Nevertheless, it is very expensive, big and heavy

(20kg), then it is not possible to use it on a mini-UAV.

� (low cost) inertial measurement unit : our IMU is an ADIS16355 from Analog Devices

(see Figure 1.2). It contains low-cost a tri-axial accelerometer and gyroscope. Slowly

time-varying biases exist in the measurements.
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Figure 1.1. �Inertial class� IMU Sigma 30

Cost Weight Size Update rate

300 25 23,32,23 100

Figure 1.2. Inertial measurement unit ADIS16355

� (low cost) magnetometers : our tri-axial magnetometer is a Micromag3 from PNI (see

Figure 1.3). It measures the magnetic �eld, which then may be subject to magnetic

disturbances (in urban areas for instance).

� (low cost) air velocity sensor : we use the D6FW-04A1 from Omron that measures

the air �ow (see Figure 1.4).
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Cost Weight Size Update rate

40 20 25,25,19 50

Figure 1.3. Magnetometer Micromag3

Cost Weight Size Update rate

120 15 30,30,3 50

Figure 1.4. Air �ow sensor D6FW-04A1

1.3.2. Sensors providing Earth-�xed measurements. � The following strapdown

sensors provide measurements with respect to the Earth-�xed coordinates:

� (low cost) GPS module: our GPS is an LEA-4T from u-blox (see Figure 1.5). Its

navigation solutions give the position and velocity vectors. It provides measurements

at a lower update rate than the other sensors, and can be used only outdoors. Its

accuracy (and especially the Circular Error Probable in position) depends on the
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Cost Weight Size Update rate

60 20 17,22,3 4

Figure 1.5. GPS module LEA-4T

�environment�: building locations around the system, satellite con�guration in the

sky,... It is important to note that the velocity measurements are much more accurate

than the position measurements, since the GPS velocity is obtained from the carrier

phase and/or Doppler shift data, and not by di�erentiating the GPS position.

� (low cost) barometer : our barometer is a MS-5534 from Intersema (see Figure 1.6).

It measures the pressure and temperature, which are used to calculate the standard

altitude.

� (low cost) sonar : we use the sonar SRF10 from Devantech (see Figure 1.7). It

measures the relative distance to the ground. It is more accurate than the barometer

(because independent of the environmental changes such as wind and temperature),

but is limited in altitude (<2m). The update rate of the measurements varies as a

function of the relative distance to the ground.

1.3.3. Commercial navigation systems. � Commercial devices have already pack-

aged low-cost sensors and �ltering algorithms. They provide the raw measurements and

the vehicle state estimate, often computed by some EKF (according to the user manuals).

Therefore they are very useful for comparison and validation purposes.
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Cost Weight Size Update rate

10 10 9,9,2 20

Figure 1.6. Barometer MS-5534

Cost Weight Size Update rate

40 10 32,15,10 40

Figure 1.7. Sonar SRF10

� inertial navigation systems : this kind of system contains tri-axial accelerometer, gy-

roscope and magnetometer. We use the 3DM-GX1 from Microstrain (see Figure 1.8).

� aided inertial navigation systems : this kind of system contains tri-axial accelerometer,

gyroscope and magnetometer, with some additional sensors: GPS, barometer,... We

use the MIDG II from Microbotics, which has a GPS antenna (see Figure 1.9).
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Cost Weight Size Update rate

1000 40 40,50,20 50

Figure 1.8. Inertial navigation system 3DM-GX1

Cost Weight Size Update rate

3500 50 38,40,22 50

Figure 1.9. GPS Aided - Inertial navigation system MIDG II

1.4. Symmetry-preserving observers theory

The construction of the generic observers described in Chapters 3 and 4 comes directly

from the symmetry-preserving (or invariant) observer theory introduced in [12]. We
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brie�y recall here the main ideas and de�nitions of this previous work, completed with an

additional result (for further details, see [12]).

1.4.1. Invariant systems and equivariant outputs. �

De�nition. � Let G be a Lie Group with identity e and Σ an open set (or more generally

a manifold). An action of a transformation group (φg)g∈G on Σ is a smooth map

(g, ξ) ∈ G× Σ 7→ φg(ξ) ∈ Σ

such that:

� φe(ξ) = ξ for all ξ

� φg2 ◦ φg1(ξ) = φg2g1(ξ) for all g1, g2, ξ.

By construction φg is a di�eomorphism on Σ for all g. The transformation group is

local if φg(ξ) is de�ned only for g in a neighborhood of e. In this case the transformation

law φg2 ◦ φg1(ξ) = φg2g1(ξ) is de�ned only when it makes sense. We consider only local

transformation groups. �For all g� thus means �for all g around e�, and �for all ξ� means

�for all ξ in some neighborhood�.

Consider now the smooth output system

ẋ = f(x, u)(1)

y = h(x, u)(2)

where x belongs to an open subset X ⊂ Rn, u to an open subset U ⊂ Rm and y to an

open subset Y ⊂ Rp, p ≤ n.

We assume the signals u(t), y(t) to be known (y is measured, and u is measured or

known as a control input).

Consider also the local group of transformations on X × U de�ned by (X,U) =(
ϕg(x), ψg(u)

)
, where ϕg and ψg are local di�eomorphisms.

De�nition. � The system ẋ = f(x, u) is G-invariant if

f
(
ϕg(x), ψg(u)

)
= Dϕg(x) · f(x, u) for all g, x, u.

With (X,U) =
(
ϕg(x), ψg(u)

)
, the property also reads Ẋ = f(X,U), i.e., the system is

left unchanged by the transformation.

De�nition. � The output y = h(x, u) is G-equivariant if there exists a transformation

group (ρg)g∈G on Y such that h
(
ϕg(x), ψg(u)

)
= ρg

(
h(x, u)

)
for all g, x, u.

With (X,U) =
(
ϕg(x), ψg(u)

)
and Y = %g(y), the de�nition reads Y = h(X,U).
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1.4.2. Invariant preobservers. �

De�nition (Preobserver). � The system ˙̂x = F (x̂, u, y) is a preobserver of the sys-

tem (1)-(2) if F
(
x, u, h(x)

)
= f(x, u) for all x, u.

An observer is then a preobserver such that x̂(t)→ x(t) (possibly only locally).

De�nition. � The preobserver ˙̂x = F (x̂, u, y) is G-invariant if

F
(
ϕg(x̂), ψg(u), ρg(y)

)
= Dϕg(x̂) · F (x̂, u, y) for all g, x̂, u, y.

The property also reads
˙̂
X = F (X̂, U, Y ), i.e., the system is left unchanged by the

transformation.

The key idea to build an invariant preobserver is to use an invariant output error.

De�nition. � The smooth map (x̂, u, y) 7→ E(x̂, u, y) ∈ Y is an invariant output error

if

� the map y 7→ E(x̂, u, y) is invertible for all x̂, u

� E
(
x̂, u, h(x̂, u)

)
= 0 for all x̂, u

� E
(
ϕg(x̂), ψg(u), ρg(y)

)
= E(x̂, u, y) for all x̂, u, y

The �rst and second properties mean E is an �output error", i.e. it is zero if and

only if h(x̂, u) = y; the third property, which also reads E(X̂, U, Y ) = E(x̂, u, y), de�nes

invariance.

Similarly, the key idea to study the convergence of an invariant preobserver is to use

an invariant state error.

De�nition. � The smooth map (x̂, x) 7→ η(x̂, x) ∈ X is an invariant state error if

� it is a di�eomorphism on X × X
� η(x, x) = 0 for all x

� η
(
ϕg(x̂), ϕg(x)

)
= η(x̂, x) for all x̂, x.

We now state the two main results �based on the Cartan moving frame method� in

the special case where g 7→ ϕg(x) is a free and transitive action, see [12] for the general

case. The moving frame x 7→ γ(x) is obtained by solving for g the so-called normalization

equation ϕg(x) = c for some arbitrary constant c; in other words ϕγ(x)(x) = c. The func-

tion ψg may also be used in the normalization equation
(
ϕg(x), ψg(u)

)
= c, as illustrated

in section 4.3.
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Theorem. � The general form of any invariant preobserver is

F (x̂, u, y) = f(x̂, u) +
n∑
i=1

(
Li(E, I) · E

)
wi(x̂),

where:

� wi,i = 1, . . . , n, is the invariant vector �eld de�ned by

wi(x̂) =
[
Dϕγ(x̂)(x̂)

]−1 · ∂
∂xi

,

with ∂
∂xi

the ith canonical vector �eld on X ,
� E is the invariant error de�ned by

E(x̂, u, y) = ργ(x̂)

(
h(x̂, u)

)
− ργ(x̂)(y),

� I is the (complete) invariant de�ned by

I(x̂, u) = ψγ(x̂)(u),

� Li, i = 1, . . . , n, is a 1 × p matrix with entries possibly depending on E and I, and

can be freely chosen.

Theorem. � The error system reads η̇ = Υ(η, I) for some smooth function Υ, where η

is the invariant state error de�ned by

η(x̂, x) = ϕγ(x)(x̂)− ϕγ(x)(x).

This result greatly simpli�es the convergence analysis of the preobserver, since the error

equation is autonomous but for the �free� known invariant I. Indeed for a general nonlinear

(not invariant) observer the error equation depends on the trajectory t 7→
(
x(t), u(t)) of

the system, hence is in fact of dimension 2n+m, whereas the dimension of the invariant

state error equation is only 2n + m − dim(G). To simplify, we will use from now on the

term �observer� instead of �preobserver�.

1.5. Thesis outline

The thesis contains three main parts:

� in Chapters 3, 4 and 5, we propose symmetry-preserving generic nonlinear observers

for a moving body, and validate them through experimental comparisons with a

commercial device. In Chapter 2, we present an discuss the moving body models

that we considered to build these observers.
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� in Chapter 6, we construct speci�c observers for a mini-quadrotor based on the rotor

drag, and validate them through �ight tests

� in Chapter 7, we present the real-time implementation of the preceding observers on

a �home-built� low-cost embedded prototype system.

In Chapter 2, we �rst introduce di�erent models used in the navigation systems and

highlight the di�erences between �true inertial navigation� based on the Schuler e�ect

thanks to very accurate inertial sensors, and the low-cost navigation systems based on

a �at Earth assumption. These low-cost navigation systems are called �Attitude and

Heading Reference Systems� (AHRS) when they use only inertial sensors (often completed

by magnetometers), and they are called �aided Attitude and Heading Reference Systems�

(aided AHRS) when they have additional velocity and/or position sensors. Then we

construct invariant (or symmetry-preserving) nonlinear observers for AHRS in Chapter 3

(see [60, 62]), and for aided AHRS in Chapter 4 (see [61, 64, 63]): by preserving

the geometrical properties of the system, they bypass the limitations of the usual �ltering

methods. Especially we study their nice �rst-order behavior (even in presence of magnetic

disturbances), their large convergence domain and their easy tuning. We validate these

�lters by comparing their estimations with those provided by commercial devices. We also

present the Invariant Extended Kalman Filter in Chapter 5 (see [14]), which combines

the EKF approach and the advantages of the invariant observers. Especially we extend

the Multiplicative Extended Kalman Filter (MEKF), commonly used in avionics systems.

In Chapter 6, we �rst give the physical model of the mini-quadrotor: in this model,

we consider especially the rotor drag that comes in addition to the usual thrust and drag

torques (see [59]). Then we construct a speci�c observer based on this model, which

estimates the velocity of the quadrotor with only inertial sensors measurements. This

allows to control the quadrotor velocity thanks to a linear control laws and to achieve

a hovering �ight with only inertial sensors. We validate this model trough experimental

�ights, giving by the way new perspectives in the mini-quadrotor modeling and control.

Moreover, it gives a new interpretation of the usual approach followed by the previous

researches in this area, which assume a small linear acceleration to estimate the attitude

angles thanks to the accelerometer. measurementsor which use commercial AHRS.

In Chapter 7, we �rst implement the generic observers of Chapters 3 and 4 on a cheap

8-bit microcontroller, highlighting their computational e�ciency compared to the usual

�ltering algorithms. Then we detail the hardware and software architecture of the embed-

ded avionics system we developed, which contains low-cost sensors and microcontroller

and can be easily mounted on any kind of mini-UAV. We validate the preceding �lters on
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this prototype system by comparing the estimations given by our generic observers with

those provided by commercial devices (see [66, 65, 61]).



CHAPTER 2

MODELS FOR NAVIGATION SYSTEMS

Dans ce chapitre, nous présentons les di�érents modèles génériques, principalement

fonctions du type et de la nature des capteurs embarqués, utilisés habituellement dans

les systèmes de navigation. Dans la section 2.1, nous rappelons l'e�et Schuler, basé sur

un modèle de terre ronde, et dont on peut béné�cier lorsque l'on a accès à des capteurs

inertiels haut de gamme. Seuls des capteurs bas-coûts sont utilisés sur un mini-drone,

nous ne pouvons donc pas béne�cier de l'e�et Schuler, et le modèle de terre plate décrit

dans la section 2.2 est amplement su�sant. Nous présentons alors les modèles utilisés par

la suite pour construire les �ltres des �Attitude and Heading Reference Systems� (section

2.4) et des �aided Attitude and Heading Reference Systems� (section 2.4). Les propriétés

d'invariance des di�érents modèles sont présentées dans la section 2.5.

2.1. Round Earth model and �true inertial navigation�

2.1.1. Earth and moving rigid body models. � The �true� inertial navigation

is mainly based on measurements provided by two �strap-down� high-precision sensors:

a tri-axial accelerometer that measures the speci�c acceleration vector, i.e. the linear
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acceleration minus the gravity vector, and a tri-axial gyroscope that measures the angular

velocity vector. These measurements are given in the body-�xed frame and are very

accurate (small and very time-stable biases, small noise). An accurate model of the Earth

is used in the observer algorithm: it is considered as a rotating ellipsoid with a gravity

vector depending on the altitude. To illustrate the bene�ts of this kind of system, and

especially the �Schuler e�ect�, we consider for simplicity a 3-dimensional non-rotating

round Earth (radius R): indeed the main conclusions depend only on the roundness of

the Earth and its gravity vector varying with the altitude. A more detailed study of the

Schuler e�ect can be found in [28, 23, 31, 6, 76, 30, 19].

We de�ne the three following frames:

� the body-�xed frame: Rb = (
−→
ib ,
−→
jb ,
−→
kb )

� the local North-East-Down frame: Rl = (
−→
il ,
−→
jl ,
−→
kl )

� the Earth-�xed frame: Re = (
−→
ie ,
−→
je ,
−→
ke)

For a 3×1 vector
−→
P we de�ne

−→
P |i as the projection of

−→
P on the frame Ri and the matrix

Mi/j as the rotation matrix from the frame Rj to the frame Ri, where i, j ∈ {b, l, e}. For
instance

−→
P |b = Mb/l

−→
P |l. We de�ne also the instantaneous angular velocity vector

−→
Ω i/j

of the frame Ri with respect to the frame Rj. For more details in the de�nition of the

di�erent frames we use, see [28, 23, 79, 69].

The motion equations of a moving rigid body are

−̇→
V = −→g +−→a(3)

−̇→
X =

−→
V(4)

where:

�
−→
V is the velocity vector of the center of mass with respect to the Earth-�xed frame

� −→g is the gravitational acceleration vector

� −→a is the speci�c acceleration vector

�
−→
X is the position vector of the center of mass
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We de�ne the following projected vectors

V =
−→
V |l = (VN , VE, VD)

v =
−→
V |b

Xe =
−→
X |e = (x0, y0, z0) with the altitude h de�ned by R + h =

√
x2

0 + y2
0 + z2

0

A = −→g |l = (0, 0, g(h))

a = −→a |b
ωb/l =

−−→
Ωb/l|b

ωb/e =
−−→
Ωb/e|b

Ωl/e =
−−→
Ωl/e|l = (

VE
R + h

,
−VN
R + h

,
−VE
R + h

tanλ) where λ is the latitude.

To be coherent with the North-East-Down frame we de�ne z = −h. For a vector

P = (P1, P2, P3) we de�ne P× the skew-symmetric matrix

P× =

 0 −P3 P2

P3 0 −P1

−P2 P1 0

 .

Let (φ, θ, ψ) the usual Euler angles (roll, pitch, yaw). Then the rotation matrix Mb/l

writes (cθ = cos θ and sθ = sin θ)

Mb/l =

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 .

The projected motion equations write

Ṁb/l = Mb/lω
×
b/l = Mb/l(ω

×
b/e −Mb/lΩ

×
l/e)(5)

V̇ = −Ωl/e × V + A+Ml/ba(6)

ż = VD.(7)

We suppose that the gravity varies with altitude according to the inverse square law:

g(z) =
g0

(1− z
R

)2
.

We use 2 kinds of sensors: a tri-axial gyroscope measures ωm (= ωb/e if perfect) and

a tri-axial accelerometer measures am (= a if perfect). Even if very accurate sensors are
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used in �true� inertial navigation, some imperfections still remain in their measurements,

and especially biases. With such high-precision sensors, their biases are small and very

stable in time. Then we consider that the gyroscope measures ωm = ωb/e + ωb and the

accelerometer measures am = a+ ab, where ωb and ab are constant biases.

Considering these imperfections in the measurements, the system (5)�(7) becomes

Ṁb/l = Mb/l((ωm − ωb)× −Mb/lΩ
×
l/e)(8)

V̇ = −Ωl/e × V + A+Ml/b(am − ab)(9)

ż = VD(10)

ω̇b = 0(11)

ȧb = 0.(12)

2.1.2. Can we estimate the state?� To estimate the state of the moving rigid body,

we must construct an observer based on Equations (8)�(12). The correction terms of

the estimator depend on the estimations and the measurements that are considered as

outputs of the system.

The 6 measurements provided by the inertial sensors are the inputs of the system (8)�

(12). So this system has no output, and then it is not observable. The only way to

estimate the state is writing an observer as just a copy of the nonlinear system (8)�

(12). Since the observer has no correction terms, we need to �gure out the behavior of

the estimated state in the presence of errors: does the system diverge or not? It is an

analysis of its detectability. We �rst study the system linearized around the equilibrium

point(Mb/l, V , z, λ, ωb, ab)

δṀb/l = δMb/l((ωm − ωb)× −Mb/lΩl/e
×

) +Mb/l((δωm − δωb)× −Mb/lδΩ
×
l/e − δMb/lΩl/e

×
)

δV̇ = −Ωl/e × δV − δΩl/e × V + A+Ml/b(δam − δab) + δMl/b(am − ab)
δż = δVD

δω̇b = 0

δȧb = 0.

For simplicity, we consider the �nominal� equilibrium point

(Mb/l, V , z, λ, ωb, ab) = (I3, 0, z, λ, ωm, am + A).

The linearized system splits into three decoupled subsystems and one cascaded subsystem:
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� the lateral subsystem

δφ̇ = − δVE
R− z

− δωb1 + δωm1

δV̇E = g(z)δφ− δab2 + δam2

δω̇b1 = 0

δȧb2 = 0

� the longitudinal subsystem

δθ̇ =
δVN
R− z

− δωb2 + δωm2

δV̇N = −g(z)δθ − δab1 + δam1

δω̇b2 = 0

δȧb1 = 0

� the vertical subsystem

δV̇D =
2g(z)

R− z
δz − δab3 + δam3

δż = δVD

δȧb3 = 0

� the heading subsystem (cascaded with the lateral subsystem)

δψ̇ =
tanλ

R− z
δVE − δωb3 + δωm3

δω̇b3 = 0.

We construct the corresponding linearized observer:

� the lateral subsystem

δ
˙̂
φ = − δV̂E

R− z
− δω̂b1 + δωm1

δ
˙̂
VE = g(z)δφ̂− δâb2 + δam2

δ ˙̂ωb1 = 0

δ ˙̂ab2 = 0
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� the longitudinal subsystem

δ
˙̂
θ =

δVN
R− z

− δω̂b2 + δωm2

δ
˙̂
VN = −g(z)δθ̂ − δâb1 + δam1

δ ˙̂ωb2 = 0

δ ˙̂ab1 = 0

� the vertical susbsytem

δ
˙̂
VD =

2g(z)

R− z
δẑ − δâb3 + δam3

δ ˙̂z = δV̂D

δ ˙̂ab3 = 0

� the heading subsystem

δ
˙̂
ψ =

tanλ

R− z
δV̂E − δω̂b3 + δωm3

δ ˙̂ωb3 = 0.

We de�ne the linearized error δxe = δx̂− δx. For instance δθe = δθ̂ − δθ. We �nd the 4

error subsystems:

� the lateral error subsystem

δφ̇e = − δV e
E

R− z
− δωeb1

δV̇ e
E = g(z)δφe − δaeb2

δω̇eb1 = 0

δȧeb2 = 0

� the longitudinal error subsystem

δθ̇e =
δV e

N

R− z
− δωeb2

δV̇ e
N = −g(z)δθe − δaeb1

δω̇eb2 = 0

δȧeb1 = 0
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� the vertical error subsystem

δV̇ e
D =

2g(z)

R− z
δze − δaeb3

δże = δV e
D

δȧeb3 = 0

� the heading error subsystem

δψ̇e =
tanλ

R− z
δV e

E − δωeb3
δω̇eb3 = 0.

We de�ne ωs =
√

g(z)
R−z and τ =

√
R−z
2g(z)

. Initialization errors in the estimation cannot be

avoided in real systems, so we consider for each error δxe(t = 0) = δxe0. We �nd the

following expressions of the linearized errors

� the lateral error subsystem

δφe(t) =
1

g(z)

(
−(δV e

E0ωs +
g(z)

ωs
δωeb10) sin(ωst) + (δφe0 −

δaeb20

g(z)
) cos(ωst) + δaeb20

)
(13)

δV e
E(t) = (δV e

E0 +
g

ω2
s

δωeb10) cos(ωst) +
g(z)

ωs
(δφe0 −

δaeb20

g(z)
) sin(ωst)−

g

ω2
s

δωeb10

δωeb1(t) = δωeb10

δaeb2(t) = δaeb20

� the longitudinal error subsystem

δθe(t) = − 1

g(z)

(
−(δV e

N0ωs +
g(z)

ωs
δωeb20) sin(ωst) + (δθe0 −

δaeb10

g(z)
) cos(ωst) + δaeb10

)
(14)

δV e
N(t) = (δV e

N0 +
g(z)

ω2
s

δωeb20) cos(ωst) +
g(z)

ωs
(δθe0 −

δaeb10

g(z)
) sin(ωst)−

g

ω2
s

δωeb20

δωeb2(t) = δωeb20

δaeb1(t) = δaeb10



24 CHAPTER 2. MODELS FOR NAVIGATION SYSTEMS

� the vertical error subsystem

δV e
D(t) =

δV e
D0 + τδV̇ e

D0

2
exp

t

τ
+
δV e

D0 − τδV̇ e
D0

2
exp− t

τ
+ δV e

D0

δze(t) = τ(
δV e

D0 + τδV̇ e
D0

2
exp

t

τ
− δV e

D0 − τδV̇ e
D0

2
exp− t

τ
) + δaeb30

δaeb3(t) = δab30

� the heading error subsystem

δψe(t) =
tanλ

R− z
( 1

ωs
(δV e

E0 +
g

ωs
δωeb10) cos(ωst) +

δV̇ e
E0

ω2
s

(− cos(ωst) + 1)− g

ω2
s

δωeb10t
)

+ δψe0

δωeb3(t) = δωeb30.

Even in presence of biases on the accelerometer and gyroscope measurements, the errors

in the horizontal subsystems, and especially the velocity estimations errors, are bounded:

they oscillate with the �Schuler� pulsation ωs. On the contrary the heading estimation

diverges linearly in time and the altitude estimation exponentially diverges with a time

constant τ . So the horizontal subsystems are detectable: non observable but stable. On

the contrary the vertical and heading subsystems are not detectable: non observable and

unstable (see [28, 23, 31] for further details).

2.1.3. Nonlinear observer and error equations. � Since the system has no output,

the nonlinear observer is just a copy of the nonlinear system itself:

˙̂
Mb/l = M̂b/l((ωm − ω̂b)× − M̂b/lΩ̂

×
l/e)

˙̂
V = −Ω̂l/e × V̂ + A+ M̂l/b(am − âb)
˙̂z = −V̂D

˙̂ωb = 0

˙̂ab = 0.

Considering the error state 
M e

b/l

V e

ze

ωeb
aeb

 =


M̂b/lM

−1
b/l

V̂ − V
ẑ − z
ω̂b − ωb
âb − ab





2.1. ROUND EARTH MODEL AND �TRUE INERTIAL NAVIGATION� 25

the linearized error equations, and thus the conclusions, are the same as in the preceding

section. Even if we cannot conclude directly about the behavior of the non linear observer,

further analysis would lead to the same conclusion on the detectability -or not- of the

estimated variables.

2.1.4. Conclusion. � The �rst conclusion is that the biases cannot be estimated. It

is straightforward since our observer has no correction terms. An accurate initialization

is hence necessary when the vehicle is at rest. Once it is done, the sensors high-quality

implies that the bias error remains small.

Although the gyroscope and accelerometer biases cannot be estimated, the errors corre-

sponding to the horizontal subsystems are bounded due to the model of a round Earth, so

called the �Schuler e�ect�. Indeed the attitude angles and the horizontal velocities errors

oscillate with an undamped natural �Schuler� pulsation ωs =
√

g(z)
R−z = 2π

Ts
.

On the contrary the heading subsystem diverges linearly in time and the vertical sub-

system error exponentially diverges with a time constant τ =
√

R−z
2g(z)

, due to a gravity

model dependent of the altitude.

If the system is moving at low altitude (z << R), we �nd Ts ' 84 minutes and τ ' 14

minutes.

To illustrate the �Schuler e�ect�, let consider only initialization errors in the gyroscope

measurements. Then the roll and pitch errors equations (13)�(14) write

δφe(t) = −δω
e
b10

ωs
sin(ωst)(15)

δθe(t) =
δωeb20

ωs
sin(ωst).(16)

The high-precision inertial sensors that are used for �true� inertial navigation systems

have a gyro drift rate less than ωb = 0.01◦/hour and very stable in time. From Equa-

tions (15)�(16), the pitch and roll errors oscillate with a very small amplitude of

∆φe = ∆θe = 2
ωb
ωs

= 0.0045◦.

On the contrary, if we use low-cost inertial sensors that have a gyroscope bias usually

around ωb = 0.3◦/s, the amplitude of the pitch and roll angles errors is

∆φe = ∆θe = 2
ωb
ωs

= 481◦.
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So we de�nitely cannot use the Schuler e�ect with low-cost inertial sensors: the amplitude

of the oscillations of the estimations becomes too important too quickly. Then we need

correction terms in our observer, and thus additional measurements or assumptions.

2.2. Flat Earth model

Since low-cost sensors are embedded on a mini-UAV, we cannot bene�t from the Schuler

e�ect. So a �at Earth model is su�cient, which is equivalent for the Earth radius to tend

to in�nity (R → ∞) in the model equations (5)�(7). Re (≡ Rl from now on) de�nes an

inertial frame and the gravity vector A = ge3 is constant (the unit vectors e1, e2, e3 point

respectively North, East, Down). Since the frames Rl and Re are the same, we introduce

ω = ωb/l and X =
−→
X |l = (x, y, z). The system (5)�(7) becomes

Ṁb/l = Mb/lω
×(17)

V̇ = A+Ml/ba(18)

Ẋ = V,(19)

and if we consider the same imperfections in the accelerometer and gyroscope measure-

ment as in section 2.1, the system (8)�(12) writes (slightly generalized in position)

Ṁb/l = Mb/l(ωm − ωb)×(20)

V̇ = A+Ml/b(am − ab)(21)

Ẋ = V(22)

ω̇b = 0(23)

ȧb = 0.(24)

Alternatively we can write the velocity equation in the body-�xed frame and it leads to

the following system:

Ṁb/l = Mb/l(ωm − ωb)×

v̇ = v × (ωm − ωb) +Mb/lA+ am − ab
Ẋ = Ml/bv

ω̇b = 0

ȧb = 0.
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In order to compare the �at Earth model with the round Earth model of section 2.1, we

consider only the altitude z and measurements provided by the tri-axial accelerometer and

gyroscope. As in the preceding section, the inertial measurements are seen as the input

of the system (20)�(24). Since the system (20)�(24) has no output, the corresponding

observer will be just a copy of the equations, without correction terms. We therefore

analyze the detectability of the linearized system to conclude about the behavior of the

estimated variables. The linearized system around the equilibrium point(Mb/l, V , z, ωb, ab)

write

δṀb/l = δMb/l(ωm − ωb)× +Mb/l(δωm − δωb)×

δV̇ = A+Ml/b(δam − δab) + δMl/b(am − ab)
δż = δVD

δω̇b = 0

δȧb = 0.

Considering the �nominal� equilibrium point

(Mb/l, V , z, ωb, ab) = (I3, 0, z, ωm, am + A),

the linearized system leads to the four decoupled linearized error systems

� the lateral error subsystem

δφ̇e = −δωeb1
δV̇ e

E = gδφe − δaeb2
δω̇eb1 = 0

δȧeb2 = 0

� the longitudinal error subsystem

δθ̇e = −δωeb2
δV̇ e

N = −gδθe − δaeb1
δω̇eb2 = 0

δȧeb1 = 0

� the heading error subsystem

δψ̇e = −δωeb3
δω̇eb3 = 0
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� the vertical error subsystem

δV̇ e
D = −δaeb3

δże = δV e
D

δȧeb3 = 0.

Errors in the initialization of the estimated variables cannot be avoided in real systems. If

we de�ne as in section 2.1 the linearized error δxe = δx̂− δx, we obtain the four following

error subsystems

� the lateral error subsystem

δφe(t) = −δωeb10t+ δφe0

δV e
E(t) = −g

2
δωeb10t

2 − δaeb20t+ δV e
E0

δωeb1(t) = δωeb10

δaeb2(t) = δaeb20

� the longitudinal error subsystem

δθe(t) = −δωeb20t+ δθe0

δV e
N(t) =

g

2
δωeb20t

2 − δaeb10t+ δV e
N0

δωeb2(t) = δωeb20

δaeb1(t) = δaeb10

� the heading error subsystem

δψe(t) = −δωeb30t+ δψ0

δωeb3(t) = δωeb30

� the vertical error subsystem

δV e
D(t) = −δab30t+ δV e

D0

δze(t) = −δab30

2
t2 + δV e

D0t+ δze0

δaeb3(t) = δab30

Conclusion As expected considering a �at Earth model, we lose the Schuler e�ect bene�t

since all the estimation errors now diverge. Therefore the observer cannot be just a copy of

the dynamic of the system: it needs correction terms. To construct it, it is then necessary

to use other sensors or to make other assumptions.
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If we do not have measurements from other sensors (giving information of the velocity

or position of the vehicle, for instance), the additional assumption we make is that the

linear acceleration is small, i.e. V̇ = 0. Then we can construct an observer that estimates

the attitude angles despite sensors biases. To also estimate the yaw angle, a tri-axial

magnetometer is usually used as well, leading to an �Attitude and Heading Reference

System� (AHRS).

On the contrary, if we have additional measurements (velocity, position, altitude), the

�aided Attitude and Heading Reference Systems� (aided AHRS) can estimate the whole

sate without making the preceding assumption.

Quaternion representation

To study the AHRS and aided AHRS, we will use the quaternion representation instead

of the matrix representation from now on. Indeed it is customary to use quaternions

instead of Euler angles (and rotation matrices) since they provide a global parametrization

of the body orientation, and are well-suited for calculations and computer simulations.

For more details see [79], and section 2.6 for useful formulas used in this paper.

Using the quaternion representation, the system (17)�(19) becomes

q̇ =
1

2
q ∗ ω(25)

V̇ = A+ q ∗ a ∗ q−1(26)

Ẋ = V,(27)

where q is the unit quaternion representing the orientation of the body with respect to

the Earth-�xed frame. We can also consider v the projection of the velocity vector in the

body-�xed frame, which writes v = q−1 ∗ V ∗ q. Then the motion equations write

q̇ =
1

2
q ∗ ω

v̇ = v × ω + q−1 ∗ A ∗ q + a

Ẋ = q ∗ v ∗ q−1.
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We now linearize the system (25)�(27) around the equilibrium point (q, ω = 0, V = 0, X).

Since a = −q1 ∗ A ∗ q, the linearized equation (26) writes

δV̇ = δq ∗ (−q−1 ∗ A ∗ q) ∗ q−1 + q1 ∗ δa ∗ q + q ∗ (−q−1 ∗ A ∗ q) ∗ (−q−1 ∗ δq ∗ q−1)

= −(δq ∗ q−1) ∗ A+ A ∗ (δq ∗ q−1) + q−1 ∗ δa ∗ q
= 2A× (δq ∗ q−1) + q ∗ δa ∗ q−1.

Then the system (25)�(27) linearized around the equilibrium point (q, ω = 0, V = 0, X)

writes

δq̇ =
1

2
q ∗ δω

δV̇ = 2A× (δq ∗ q−1) + q ∗ δa ∗ q−1

δẊ = δV.

Let us de�ne the following vectors
eq
eV
eX
ea
eω

 =


δq ∗ q−1

δV

δX

q ∗ δa ∗ q−1

q ∗ δω ∗ q−1

 ,

where eq, eV , eX are linearized errors and ea, eω are vectors expressed in a new frame. The

linearized error equations writes

ėq =
1

2
∗ eω

ėV = 2A× eq + ea

ėX = eV .

What is noticeable is that we obtain the same linearized error system whatever the value

of q is. This notion of �invariance� by rotation will be detailed further.

2.3. Model for AHRS

2.3.1. Measurements and motion equations. � In an Attitude and Heading Ref-

erence System, we do not have any velocity or position measurements: we generally use

only three triaxial sensors providing nine scalar measurements: a triaxial gyroscope mea-

sures ωm (= ω if perfect); a triaxial magnetometer measures the magnetic �eld in the



2.3. MODEL FOR AHRS 31

body-�xed frame yB = q−1 ∗B ∗ q (if perfect), where B = B1e1 +B3e3 is the Earth mag-

netic �eld in North-East-Down (NED) coordinates ; a triaxial accelerometer measures am
(= a if perfect). In an AHRS, we assume that the linear acceleration V̇ is small, hence

we approximate the speci�c acceleration vector (see Equation (26)) by a = −q−1 ∗ A ∗ q.
If the accelerometer measurements are perfect yA = am = −a = q−1 ∗ A ∗ q (the sign is

reversed for convenience).

Then the physical system (25)�(27) becomes

(28) q̇ =
1

2
q ∗ ω,

with the output (
yA
yB

)
=

(
q−1 ∗ A ∗ q
q−1 ∗B ∗ q

)
.(29)

2.3.2. Observability analysis of the measurements imperfections. � The sen-

sors we use are low-cost and therefore they have imperfections. We do a simple �rst-order

observability analysis, i.e. an analysis of the observability of the linearized system, to know

how we can model these imperfections. For simplicity, we linearize the system (28)�(29)

around (q, ω) = (1, 0) (linearizing around any q leads to the same conclusion):

δq̇ =
1

2
δω,

with the output

(
δyA
δyB

)
=

(
2A× δq
2B × δq

)
=



−2gδq2

2gδq1

0

−2B3δq2

2(B3δq1 −B1δq3)

2B1δq2


.

There is some freedom when modeling the sensors' imperfections. We see that up to six

unknown constants can be estimated. We �rst consider as usual a constant vector bias ωb
on the gyroscopes measurements. Beside it, it is possible to estimate two imperfections

on yB and one on ya, or one on yB and two on ya. Nevertheless it is impossible to model

three imperfections on ya: in particular if we write ya = am = −a− ab, with ab a constant
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vector bias, only two components of ab are observable. Indeed considering ab leads to

δyA =

−2gδq2 − δab1
2gδq1 − δab2
−δab3

 .

So we can get δq2, δab3, δab1 from the equations

δq2 =
1

2B1

δyB3

δab3 = −δyA3

δab1 = −2gδq2 − δyA1

but δab2 and δq3 cannot be recovered since there is only one relationship:

δab2 =
g

B3

(δyB2 +B1δq3)− δyA2.

On the other hand it is also impossible to estimate the three components of the magnetic

�eld B, but only the North and Down components.

2.3.3. Magnetic disturbances considerations. � In an AHRS, it is usually desir-

able to use the magnetic measurements to estimate the heading only, so that a magnetic

disturbance does not a�ect the estimated attitude, which is more critical than the esti-

mated yaw angle for the mini-UAV safety. Only one imperfection on am can be estimated

without relying on the possibly disturbed magnetic measurements, so we consider a scal-

ing factor as on the accelerometers measurements: am = yA = asq
−1 ∗ A ∗ q. We will see

the heading decoupling can be achieved by considering yC = yA × yB and C = A × B,
rather than the direct measurement yB. Notice that 〈yA, yC〉 = 〈A,C〉 = 0, so that we

are left with 8 independent measurements; as a consequence only �ve unknown constants

can now be estimated. This is not a drawback and is even bene�cial since the observer

will then not depend on the latitude-varying B3. Then yC = csq
−1 ∗ C ∗ q, where cs > 0.

So we consider that 3 gyros measure ωm = ω + ωb, where ωb is a constant vector bias;

3 accelerometers measure am = yA = asq
−1 ∗ A ∗ q, where as > 0 is a constant scaling

factor; 3 magnetometers measure yB = bsq
−1 ∗ B ∗ q, where bs > 0 is a constant scaling

factor which is transformed into yC = csq
−1 ∗ C ∗ q, where cs > 0 is a constant scaling

factor. All the nine measurements are of course also corrupted by noise.
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2.3.4. The model in an AHRS. � To design our observer we thus consider the

system

q̇ =
1

2
q ∗ (ωm − ωb)(30)

ω̇b = 0(31)

ȧs = 0(32)

ċs = 0,(33)

with the output

(34)

(
yA
yC

)
=

(
asq
−1 ∗ A ∗ q

csq
−1 ∗ C ∗ q

)
.

This system is observable since all the state variables can be recovered from the known

quantities ωm, yA, yC and their derivatives: from Equation (34), as = 1
g
‖yA‖ and cs = 1

B1g
‖yC‖;

hence we know the action of q on the two independent vectors A and C, which completely

de�nes q as a function of yA, yC , as, cs. Finally Equation (30) yields ωb = ωm − 2q−1q̇.

2.4. Model for aided AHRS

2.4.1. Measurements and motion equations. � In addition to the three triaxial

sensors used in an AHRS, for an aided AHRS other sensors give velocity vector (V or v)

and may also give the position vector (X). They are usually provided by the navigation

solutions yX and yV of a GPS engine giving a measure of X and V , or by some air-data

system providing a measure of v, yv. A barometric sensor may also provide a measurement

of the altitude yh = 〈X, e3〉.
We consider the system described by Equations (35)�(37) where the velocity is expressed

in the Earth-�xed frame

q̇ =
1

2
q ∗ ω(35)

V̇ = A+ q ∗ a ∗ q−1(36)

Ẋ = V(37)
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or the system described by Equations (38)�(40) where the velocity is expressed in the

body-�xed frame

q̇ =
1

2
q ∗ ω(38)

v̇ = v × ω + q−1 ∗ A ∗ q + a(39)

Ẋ = q ∗ v ∗ q−1,(40)

the input is the inertial sensors' measurement (a and ω) and the output


yV
yv
yX
yh
yB

 =


V

v

X

〈X, e3〉
q−1 ∗B ∗ q

 .(41)

We have some freedom to express the velocity in the Earth-�xed frame of body-�xed

frame, since yV = V = q−1 ∗ v ∗ q and yv = v = q−1 ∗ V ∗ q.

2.4.2. Imperfections of the measurements. � As in section 2.3, a simple �rst-order

observability analysis reveals that up to thirteen unknown constants can be estimated.

There are many ways to model the eight additional imperfections on the measurements.

We choose to use only �ve extra constants to model imperfections: we consider here

3 biases on the gyroscope, one scaling factor on the accelerometer and one bias on the

altitude measurement, in order to ensure that the estimated velocity equals the measured

velocity (see �4.1.5.2) during level �ight. The barometric sensor thus provides a measure

of the altitude yh = 〈X, e3〉−hb, where hb is a constant scalar bias. All these measurements

are of course also corrupted by noise.
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2.4.3. The considered system. � To design our observers, we therefore consider the

system

q̇ =
1

2
q ∗ (ωm − ωb)(42)

V̇ = A+
1

as
q ∗ am ∗ q−1(43)

Ẋ = V(44)

ω̇b = 0(45)

ȧs = 0(46)

ḣb = 0(47)

where ωm and am are seen as known inputs, together with the measured output
yV
yv
yX
yh
yB

 =


V

v

X

〈X, e3〉 − hb
q−1 ∗B ∗ q

 .(48)

This system is observable provided B × (q ∗ am ∗ q−1) 6= 0 since all the state variables

can be recovered from the known quantities ωm, am, yV , yX , yh, yB and their derivatives.

Indeed from Equation (43), as = ‖am‖
‖ẏV −A‖

and am

‖am‖ = q−1 ∗ ẏV −A
‖ẏV −A‖

∗ q. We thus know the

action of q on the two known vectors B and ẏV −A, which are independent by the above

assumption; this completely de�nes q as a function of yB, ẏB, am. Finally ωb = ωm−2q−1q̇

is determined from Equation (42) and hb = 〈yX , e3〉 − yh from Equation (48).

2.5. Invariance properties of the �at Earth model

The generic observers we construct in this thesis are based on the invariance prop-

erties of the considered system. So we are looking for frame changes that leave the

system (35)�(41) unchanged. For simplicity, we consider here only ideal measurements:

the imperfections of the sensors will be taken into account in the next chapters. Several

transformations will be considered:

� a right rotation: de�ned by the unit quaternion q0 and the relationship q → q ∗ q0

� a left rotation: de�ned by the unit quaternion p0 and the relationship q → p0 ∗ q
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� a translation in the body-�xed frame: de�ned by the 3 × 1 vector v0 and the rela-

tionship v → v + v0

� a translation in the Earth-�xed frame: de�ned by the 3 × 1 vector V0 and the rela-

tionship V → V + V0

We do not �rst consider the position variable X, since some additional di�culties appear

as we will see later. So we consider the systems

(49)
q̇ =

1

2
q ∗ ω

V̇ = A+ q ∗ a ∗ q−1
and

q̇ =
1

2
q ∗ ω

v̇ = v × ω + q−1 ∗ A ∗ q + a.

A global transformation of the variables (q, V ) and (q, v) is a combination of the four

preceding transformations. We de�ne the group composition law ? by(
p0

V0

)
?

(
p1

V1

)
=

(
p0 ∗ p1

V0 + p0 ∗ V1 ∗ p−1
0

)
.

A global coordinate change of (q, V ) is the transformation group action de�ned by

ϕ(p0,q0,V0,v0)(q, V ) =

(
q̃

Ṽ

)
=

(
p0

V0

)
?

(
q

V

)
?

(
q0

v0

)
=

(
p0 ∗ q ∗ q0

V0 + p0 ∗ (V + q ∗ v0 ∗ q−1)p−1
0

)
where p0, q0 are unit quaternions and V0, v0 are vectors in R3. This transformation group

consists of the mix of left and right multiplication by ?, i.e. the mix of rotations and

translations in the Earth-�xed and the body-�xed frames. The associated group law is
p0

q0

V0

v0

 �

p1

q1

V1

v1

 =


p0 ∗ p1

q0 ∗ q1

V0 + p0 ∗ V1 ∗ p−1
0

v1 + q1 ∗ v0 ∗ q−1
1

 .

It is indeed a transformation group since

ϕ(p1,q1,V1,v1) ◦ ϕ(p0,q0,V0,v0)

(
q

V

)
= ϕ(p1,q1,V1,v1)�(p0,q0,V0,v0)

(
q

V

)
.

In the considered system (49), other vectors must be taken into account in addition to

(q, V ) in order to have a transformation group action on the complete set of variables.
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Indeed, the vectors (ω, a,A) must be changed into

ω̃ = q0 ∗ ω ∗ q−1
0

ã = q−1
0 ∗ (a+ ω × v0) ∗ q0

Ã = p0 ∗ A ∗ p−1
0

if we want the system (49) to be invariant by a transformation group action. Therefore,

a global coordinate change of (q, ω, V, a, A) is the transformation group action de�ned by

ϕ(p0,q0,V0,v0)(q, ω, V, a, A) =


q̃

ω̃

Ṽ

ã

Ã

 =


p0 ∗ q ∗ q0

V0 + p0 ∗ (V + q ∗ v0 ∗ q−1) ∗ p−1
0

q−1
0 ∗ ω ∗ q0

q−1
0 ∗ (a+ ω × v0) ∗ q0

p0 ∗ A ∗ p−1
0

 .

The system (49) is invariant by this transformation group since

˙̃q =
˙︷ ︸︸ ︷

p0 ∗ q ∗ q0 = p0 ∗ q̇ ∗ q0 =
1

2
(p0 ∗ q ∗ q0) ∗ (q−1

0 ∗ ω ∗ q0) =
1

2
q̃ ∗ ω̃

˙̃V =
˙︷ ︸︸ ︷

V0 + p0 ∗ (V + q ∗ v0 ∗ q−1) ∗ p−1
0

= p0 ∗ V̇ ∗ p−1
0 + p0 ∗ q̇ ∗ v0 ∗ q−1 ∗ p−1

0 − p0 ∗ q ∗ v0 ∗ q−1 ∗ q̇ ∗ q−1 ∗ p−1
0

= p0 ∗ A ∗ p−1
0 + p0 ∗ q ∗ a ∗ q−1 ∗ p−1

0 + p0 ∗ q ∗ (ω × v0) ∗ q−1 ∗ p−1
0

= p0 ∗ A ∗ p−1
0 + p0 ∗ q ∗ q0 ∗ (q−1

0 ∗ (a+ ω × v0) ∗ q0) ∗ (p0 ∗ q ∗ q0)−1

= Ã+ q̃ ∗ ã ∗ q̃−1.

When we consider imperfections on the measurements, the global transformation group

needs to be completed. The choice of the values of the parameters (p0, q0, V0, v0) depends

on the considered output (since the output must also be left unchanged by the transforma-

tion group) and on the position X considered or not in the equations (it is impossible then

to consider a translation in the body-�xed frame in the transformation group: v0 would

be automatically set to 0). Therefore the value of some parameters will be automatically

de�ned in order to preserve invariance properties:

� in Section 3 (inertial and magnetic measurements): p0 = V0 = v0 = 0 and any q0

� in Section 4.1 (inertial, magnetic and Earth-�xed velocity measurements): p0 = v0 = 0

and any q0, V0

� in Section 4.2 (inertial, magnetic, Earth-�xed velocity and position measurements):

v0 = V0 = 0 and any p0, q0
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� in Section 4.3 (inertial, magnetic, Earth-�xed and body-�xed velocity measurements):

v0 = V0 = 0 and any p0, q0.

2.6. Quaternions

Thanks to their four coordinates, quaternions provide a global parametrization of the

orientation of a rigid body (whereas a parametrization with three Euler angles necessarily

has singularities). Indeed, to any quaternion q with unit norm is associated a rotation

matrix Rq ∈ SO(3) by

q−1 ∗ ~p ∗ q = Rq · ~p for all ~p ∈ R3.

A quaternion p can be thought of as a scalar p0 ∈ R together with a vector ~p ∈ R3,

p =

(
p0

~p

)
.

The (non commutative) quaternion product ∗ then reads

p ∗ q ,

(
p0q0 − ~p · ~q

p0~q + q0~p+ ~p× ~q

)
.

The unit element is e ,

(
1
~0

)
, and (p ∗ q)−1 = q−1 ∗ p−1.

Any scalar p0 ∈ R can be seen as the quaternion

(
p0

~0

)
, and any vector ~p ∈ R3 can

be seen as the quaternion

(
0

~p

)
. We systematically use these identi�cations in the thesis,

which greatly simplify the notations.

We have the useful formulas

p× q , ~p× ~q =
1

2
(p ∗ q − q ∗ p)

(~p · ~q)~r = −1

2
(p ∗ q + q ∗ p) ∗ r.

If q depends on time, then q̇−1 = −q−1 ∗ q̇ ∗ q−1.

Finally, consider the di�erential equation q̇ = q ∗ u+ v ∗ q where u, v are vectors ∈ R3.

Let qT be de�ned by

(
q0

−~q

)
. Then q ∗ qT = ‖q‖2. Therefore,

˙︷ ︸︸ ︷
q ∗ qT = q ∗ (u+ uT ) ∗ qT + ‖q‖2 (v + vT ) = 0
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since u, v are vectors. Hence the norm of q is constant.





CHAPTER 3

SYMMETRY-PRESERVING OBSERVERS FOR

ATTITUDE AND HEADING REFERENCE

SYSTEMS

Dans ce chapitre nous nous intéressons aux observateurs pour les �Attitude and Heading

Reference Systems�, dans lesquels seuls des capteurs bas-coûts inertiels et magnétiques

sont utilisés. Le �ltre présenté est un observateur nonlinéaire invariant, qui préserve

certaines symétries naturelles et propriétés physiques du système considéré. Le choix

des termes de correction permet d'assurer un large domaine de convergence, ainsi qu'un

découplage intéressant d'estimations des angles d'attitude et de lacet. Ce dernier sera

alors le seul vraiment a�ecté par une perturbation magnétique tandis que les estimations

d'angles d'attitude, plus importantes pour le contrôle d'un mini-drone, restent très bonnes.

Il est également facile à régler grâce à un nombre réduit de paramètres à choisir.

3.1. Nonlinear observer

3.1.1. Model of the rigid body. � Attitude and Heading References Systems rely

on low-cost inertial and magnetic sensors. Therefore we consider the system (30)�(34)
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described in section 2.3 and repeated here for convenience:

q̇ =
1

2
q ∗ (ωm − ωb)(50)

ω̇b = 0(51)

ȧs = 0(52)

ċs = 0(53)

with the output

(54)

(
yA
yC

)
=

(
asq
−1 ∗ A ∗ q

csq
−1 ∗ C ∗ q

)
.

3.1.2. Invariance of the system equations. � We presented in section 2.5 a global

transformation group on the variables (q, ω, V, a, A) depending on the parameters p0, q0,

v0, V0. We adapt this transformation to our system (with no velocity) and therefore we

consider only the quaternion transformation. We also extend this transformation to the

new state variables. All the measurements are expressed in the body-�xed frame. From a

physical and engineering viewpoint, a sensible observer using these measurements should

not be a�ected by the actual choice of body-�xed coordinates, i.e. by a constant rotation in

the body-�xed frame. Similarly, a translation of the gyro bias by a vector that is constant

in the body-�xed frame and a scaling of the output should not a�ect the observer. We

therefore consider the transformation group generated by constant rotations, translations

in the body-�xed frame and scaling (i.e. de�ned by constant parameters)

ϕ(q0,ω0,a0,c0)


q

ωb
as
cs

 =


q ∗ q0

q−1
0 ∗ ωb ∗ q0 + ω0

a0as
c0cs


ψ(q0,ω0,a0,c0)(ωm) = q−1

0 ∗ ωm ∗ q0 + ω0

ρ(q0,ω0,a0,c0)

(
yA
yC

)
=

(
a0q
−1
0 ∗ yA ∗ q0

c0q
−1
0 ∗ yC ∗ q0

)
,
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where q0 is a unit quaternion, ω0 a vector in R3 and a0, c0 > 0. It is indeed a transformation

group since

ϕ(q1,ω1,a1,c1) ◦ ϕ(q0,ω0,a0,c0)


q

ωb
as
cs

 = ϕ(q1,ω1,a1,c1)�(q0,ω0,a0,c0)


q

ωb
as
cs


ψ(q1,ω1,a1,c1) ◦ ψ(q0,ω0,a0,c0)(ωm) = ψ(q1,ω1,a1,c1)�(q0,ω0,a0,c0)(ωm)

ρ(q1,ω1,a1,c1) ◦ ρ(q0,ω0,a0,c0)

(
yA
yC

)
= ρ(q1,ω1,a1,c1)�(q0,ω0,a0,c0)

(
yA
yC

)
,

where the group composition law � is de�ned by
q1

ω1

a1

c1

 �

q0

ω0

a0

c0

 =


q0 ∗ q1

q−1
1 ∗ ω0 ∗ q1 + ω1

a1a0

c1c0

 .

The system (50)-(53) is of course invariant by the transformation group since

˙︷ ︸︸ ︷
q ∗ q0 = q̇ ∗ q0 =

1

2
(q ∗ q0) ∗

(
(q−1

0 ∗ ωm ∗ q0 + ω0)− (q−1
0 ∗ ωb ∗ q0 + ω0)

)
˙︷ ︸︸ ︷

q−1
0 ∗ ωb ∗ q0 + ω0 = q−1

0 ∗ ω̇b ∗ q0 = 0

˙︷︸︸︷
a0as = a0ȧs = 0

˙︷︸︸︷
c0cs = c0ċs = 0,

whereas the output (54) is equivariant since(
(a0as)(q ∗ q0)−1 ∗ A ∗ (q ∗ q0)

(c0cs)(q ∗ q0)−1 ∗ C ∗ (q ∗ q0)

)
= ρ(q0,ω0,a0,c0)

(
asq
−1 ∗ A ∗ q

csq
−1 ∗ C ∗ q

)
.

3.1.3. Construction of the general invariant observer. � We solve the normal-

ization equations for (q0, ω0, a0, c0)

q ∗ q0 = 1

q−1
0 ∗ ωb ∗ q0 + ω0 = 0

a0as = 1

c0cs = 1
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to �nd the moving frame

γ(q, ωb, as, cs) =


q−1

−q ∗ ωb ∗ q−1

1
as
1
cs

 .

We then get the 6-dimensional invariant output error(
EA(q̂, ω̂b, âs, ĉs, yA)

EC(q̂, ω̂b, âs, ĉs, yC)

)
= ργ(q̂,ω̂b,âs,ĉs)

(
âsq̂
−1 ∗ A ∗ q̂

ĉsq̂
−1 ∗ C ∗ q̂

)
− ργ(q̂,ω̂b,âs,ĉs)

(
yA
yC

)
=

(
A− 1

âs
q̂ ∗ yA ∗ q̂−1

C − 1
ĉs
q̂ ∗ yC ∗ q̂−1

)
(55)

and the 3-dimensional complete invariant

I(q̂, ω̂b, âs, ĉs, ωm) = ψγ(q̂,ω̂b,âs,ĉs)(ωm) = q̂ ∗ (ωm − ω̂b) ∗ q̂−1.

It is straightforward to check that EA, EC and I are indeed invariant. For instance,

EA(q̂ ∗ q0, q
−1
0 ∗ ω̂b ∗ q0 + ω0, a0âs, c0ĉs, a0q

−1
0 ∗ yA ∗ q0)

= A− 1

a0âs
(q̂ ∗ q0) ∗ (a0q

−1
0 ∗ yA ∗ q0) ∗ (q̂ ∗ q0)−1

= A− 1

âs
q̂ ∗ yA ∗ q̂−1

= EA(q̂, ω̂b, âs, ĉs, yA).

To �nd the invariant vector �elds, we solve the 8 vector equations for w(q, ωb, as, cs)Dϕγ(q,ωb,as,cs)


q

ωb
as
cs


 · w(q, ωb, as, cs) =


ei
0

0

0

 ,


0

ei
0

0

 ,


0

0

1

0

 or


0

0

0

1

 , i = 1, 2, 3,

where the ei's are the canonical basis of R3 (we have identi�ed the tangent space of the

unit norm quaternions space to R3). SinceDϕ(q0,ω0,a0,c0)


q

ωb
as
cs


 ·

δq

δωb
δas
δcs

 =


δq ∗ q0

q−1
0 ∗ δωb ∗ q0

a0δas
c0δcs

 ,
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this yields the 8 independent invariant vector �elds
ei ∗ q

0

0

0

 ,


0

q−1 ∗ ei ∗ q
0

0

 ,


0

0

as
0

 and


0

0

0

cs

 , i = 1, 2, 3.

It is easy to check that these vector �elds are indeed invariant. For instance,Dϕ(q0,ω0,a0,c0)


q

ωb
as
cs


 ·

ei ∗ q

0

0

0

 =


(ei ∗ q) ∗ q0

0

0

0

 =


ei ∗ (q ∗ q0)

0

0

0

 .

The general invariant observer then reads

˙̂q =
1

2
q̂ ∗ (ωm − ω̂b) +

3∑
i=1

(LAiEA + LCiEC)ei ∗ q̂

˙̂ωb =
3∑
i=1

q̂−1 ∗ (MAiEA +MCiEC)ei ∗ q̂

˙̂as = âs(NAEA +NCEC)

˙̂cs = ĉs(OAEA +OCEC),

where the LAi, LCi,MAi,MCi's, NA, NC , OA, OC are arbitrary 1×3 matrices with entries

possibly depending on EA, EC , and I. Noticing

3∑
i=1

(LAiEA)ei =

LA1

LA2

LA3

EA = LAEA,

where LA is the 3× 3 matrix whose rows are the LAi's, and de�ning LB, MA and MB in

the same way, we can rewrite the observer as

˙̂q =
1

2
q̂ ∗ (ωm − ω̂b) + (LAEA + LCEC) ∗ q̂(56)

˙̂ωb = q̂−1 ∗ (MAEA +MCEC) ∗ q̂(57)

˙̂as = âs(NAEA +NCEC)(58)

˙̂cs = ĉs(OAEA +OCEC).(59)



46 CHAPTER 3. SYMMETRY-PRESERVING OBSERVERS FOR AHRS

Only 5 of the 6 possible projections are independent since 〈A,C〉 = 0 and 〈yA, yC〉 = 0

imply

(60) 〈EA, EC〉 = 〈A,EC〉+ 〈EA, C〉.

So we de�ne the invariant output error E, 5× 1 vector,

(61) E =
(
〈EA, e1〉, 〈EA, e2〉, 〈EA, e3〉, 〈EC , e1〉, 〈EC , e2〉

)T
made up of the projections of the vectors EA and EC .

The general invariant observer thus writes

˙̂q =
1

2
q̂ ∗ (ωm − ω̂b) + (LE) ∗ q̂(62)

˙̂ωb = q̂−1 ∗ (ME) ∗ q̂(63)

˙̂as = âsNE(64)

˙̂cs = ĉsOE.(65)

L,M are 3× 5 matrices and N,O are 1 × 5 matrices with entries possibly depending

on the components of E and on the complete invariant I.

It is easy to check this observer is invariant. Notice also the built-in desirable geometric

feature: the norm of q̂ is left unchanged by Equation (62), i.e. ‖q̂(t)‖ = ‖q̂(0)‖ = 1, since

LE is a vector of R3 (see section 2.6).

3.1.4. The invariant error system. � The invariant state error is given by


η

β

α

γ

 = ϕγ(q,ωb,as,cs)


q̂

ω̂b
âs
ĉs

− ϕγ(q,ωb,as,cs)


q

ωb
as
cs

 =


q̂ ∗ q−1 − 1

q ∗ (ω̂b − ωb) ∗ q−1

as

âs
cs
ĉs

 .

It is in fact more natural �though completely equivalent� to take η = q̂ ∗ q−1 (rather

than η = q̂ ∗ q−1 − 1), so that η(x, x) = 1, the unit element of the group of quaternions.
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Therefore,

η̇ = ˙̂q ∗ q−1 − q̂ ∗ (q−1 ∗ q̇ ∗ q−1) = (LE) ∗ η − 1

2
η ∗ β

β̇ = q ∗ ( ˙̂ωb − ω̇b) ∗ q−1 + q̇ ∗ (ω̂b − ωb) ∗ q−1 − q ∗ (ω̂b − ωb) ∗ q−1 ∗ q̇ ∗ q−1

= (η−1 ∗ I ∗ η)× β + η−1 ∗ (ME) ∗ η

α̇ = −as
˙̂as
â2
s

= −αNE

γ̇ = −cs
˙̂cs
ĉ2
s

= −γOE.

Since E is obtained from

EA = A− as
âs
q̂ ∗ (q−1 ∗ A ∗ q) ∗ q̂−1 = A− αη ∗ A ∗ η−1(66)

EC = C − γη ∗ C ∗ η−1(67)

we �nd as expected that the error system

η̇ = (LE) ∗ η − 1

2
η ∗ β(68)

β̇ = (η−1 ∗ I ∗ η)× β + η−1 ∗ (ME) ∗ η(69)

α̇ = −αNE(70)

γ̇ = −γOE(71)

depends only on the invariant state error (η, β, α, γ) and the �free� known invariant I, but

not on the trajectory of the observed system (50)�(53). This property greatly simpli�es

the convergence analysis of the observer.

The linearized error system around the no-error equilibrium point (η, β, α, γ) = (1, 0, 1, 1)

then reads

δη̇ = LδE − 1

2
δβ(72)

δβ̇ = I × δβ +MδE(73)

δα̇ = −NδE(74)

δγ̇ = −OδE,(75)
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where δE is the 5× 1 vector(
〈δEA, e1〉, 〈δEA, e2〉, 〈δEA, e3〉, 〈δEC , e1〉, 〈δEC , e2〉

)T
= g
(
−2δη2, 2δη1,−δα, 2B1δη3,−B1δγ

)T
made up from the projections of the vectors

δEA = A ∗ δη − δη ∗ A− δαA = 2A× δη − δαA
δEC = 2C × δη − δγC.

3.2. Design of the observer gain matrices

Up to now, we have only investigated the structure of the observer. We now must choose

the gain matrices L,M,N,O to meet the following requirements:

� the error must converge to zero, at least locally

� the local error behavior should be easily tunable, if possible with a clear physical

interpretation

� the magnetic measurements should not a�ect the attitude estimate, but only the

heading

� the behavior of the �lter under acceleration and/or magnetic disturbances should be

sensible and understandable.

3.2.1. Local design. � It turns out that the previous requirements can easily be met

locally around every trajectory by taking

L =
1

2g

0 −l1 0 0 0

l2 0 0 0 0

0 0 0 − 1
B1
l3 0

 M =
1

2g

 0 m1 0 0 0

−m2 0 0 0 0

0 0 0 1
B1
m3 0

(76)

N =
1

g

(
0 0 −n 0 0

)
O =

1

B1g

(
0 0 0 0 −o

)
(77)

for any constant l1, l2, l3,m1,m2,m3, n, o > 0. This will follow from the very simple form

of the linearized error system (72)�(75). We insist that it is not usually obvious to come

up with a similar convergence result for an EKF.



3.2. DESIGN OF THE OBSERVER GAIN MATRICES 49

Indeed, Equations (72)�(75) now read

δη̇ = Dlδη −
1

2
δβ(78)

δβ̇ = Dmδη + I × δβ(79)

δα̇ = −nδα(80)

δγ̇ = −oδγ(81)

where

Dl =

 −l1 0 0

0 −l2 0

0 0 −l3

 and Dm =

 m1 0 0

0 m2 0

0 0 m3

 .

When I = 0 (i.e. the system is at rest) the system completely decouples into:

� the longitudinal subsystem(
δη̇1

δβ̇1

)
=

(
−l1 −1

2

m1 0

)(
δη1

δβ1

)
� the lateral subsystem (

δη̇2

δβ̇2

)
=

(
−l2 −1

2

m2 0

)(
δη2

δβ2

)
� the heading subsystem (

δη̇3

δβ̇3

)
=

(
−l3 −1

2

m3 0

)(
δη3

δβ3

)
� the scaling subsystem

δα̇ = −nδα
δγ̇ = −oδγ.

When I 6= 0 the longitudinal, lateral and heading subsystems are slightly coupled by the

biases errors δβ.

We now prove the local asymptotically convergence around every trajectory of the ob-

server (62)�(65) with the preceding choice of correction terms, i.e. (δη, δβ, δα, δγ)→ (0, 0, 0, 0),

whatever (l1, l2, l3,m1,m2,m3, n, o) > 0.
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Theorem 1. � Consider the physical system (50)�(53) with the measurements (54).

Consider the nonlinear invariant observer de�ned by

˙̂q =
1

2
q̂ ∗ (ωm − ω̂b) + (LE) ∗ q̂

˙̂ωb = q̂−1 ∗ (ME) ∗ q̂
˙̂as = âsNE

˙̂cs = ĉsOE

with the expression of the output errors given by Equations (55) and (61), and the gain

matrices given by Equations (76)�(77), and assume ω(t) = ωm(t)− ωb is bounded, which
is physically sensible. Then for any value (l1, l2, l3,m1,m2,m3, n, o) > 0, the solution

(q̂(t), ω̂b(t), âs(t), ĉs(t)) locally asymptotically converges to (q(t), ωb, as, cs) around every

trajectory.

Proof 1. � Proving the asymptotic local convergence of the observer around every trajec-

tory means proving (δη, δβ, δα, δγ)→ (0, 0, 0, 0) whatever (l1, l2, l3,m1,m2,m3, n, o) > 0,

i.e. the convergence of the preceding longitudinal, lateral, heading, and scaling subsystems.

The scaling subsystem obviously converges. For the other variables we consider the

candidate Lyapunov function

V =
l1
2
δη2

1 +
l2
2
δη2

2 +
l3
2
δη2

3 +
1

4
‖δβ‖2.

Di�erentiating V and using 〈δβ, I × δβ〉 = 0, we get

V̇ =− (l1m1δη
2
1 + l2m2δη

2
2 + l3m3δη

2
3) ≤ 0.

Since V is bounded from below, this implies that V (δη(t), δβ(t)) converges when t → ∞.

Since

lim
t→∞

∫ t

0

V̇ (δη(τ), δβ(τ))dτ = lim
t→∞

V (δη(t), δβ(t))− V (δη(0), δβ(0)),

we conclude limt→∞
∫ t

0
V̇ (δη(τ), δβ(τ))dτ exists and is �nite. On the other hand, V̇ ≤ 0

also implies

0 ≤ V (δη(t), δβ(t)) ≤ V (δη(0), δβ(0)).

Therefore δη(t) and δβ(t) are bounded. Equation (78) implies that δη̇(t) is bounded too,

and �nally that V̈ is bounded. Hence V̇ is uniformly continuous and by Barbalat's lemma

V̇ → 0 ⇒ δη → 0.
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Integrating Equation (78), we get∫ t

0

δη̇(τ)dτ = δη(t)− δη(0) =

∫ t

0

(Dlδη(τ)− 1

2
δβ(τ))dτ .

Since δη(t)→ 0, it follows

lim
t→∞

∫ t

0

(Dlδη(τ)− 1

2
δβ(τ))dτ = −δη(0).

We assumed ω is bounded, so I is bounded too. Since δη(t) and δβ(t) are bounded,

Dlδη̇(t)− 1
2
δβ̇(t) is bounded too. Hence Dlδη(t)− 1

2
δβ(t) is uniformly continuous. Ap-

plying Barbalat's lemma once again yields

lim
t→∞

(Dlδη(t)− 1

2
δβ(t)) = 0.

Since δη → 0, we conclude δβ → 0, which ends the proof.

3.2.2. Global design. � The tuning in the previous section ensures local convergence

around every trajectory of the system, which is already a very strong property. It is

possible to further improve the convergence domain by modifying the correction terms at

higher-order. Consider the new vector yD := yC × yA = q−1 ∗D ∗ q, where D := C×A =

g2B1e1, and the associated invariant error

ED := D − 1

âsĉs
q̂ ∗ yD ∗ q̂−1.

Of course ED carries no new information since by construction D − ED = (C − EC) ×
(A− EA). But it is a convenient means to express the observer matrices; a related trick

is used in [67]. De�ne now L,M,N,O by

LE :=
la
g2
A× EA +

lc
(B1g)2

C × EC +
ld

(B1g2)2
D × ED

ME := −σLE

NE :=
n

la + ld

(
la〈EA, EA − A〉

g2
+
ld〈ED, ED −D〉

(B1g2)2

)
OE :=

o

lc + ld

(
lc〈EC , EC − C〉

(B1g)2
+
ld〈ED, ED −D〉

(B1g2)2

)
with la, lc, ld, σ, n, o > 0. LE is the same as in Section 3.2.1 up to �rst order with

(l1, l2, l3) = 2(la+ lc, la+ ld, lc+ ld); so isME with (m1,m2,m3) = 2σ(la+ lc, la+ ld, lc+ ld).
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the �rst order expansion of the new tuning thus gives a special case of (78)-(79). As

for (80)-(81), they become coupled since

NδE = −n
g

(
0 0 1 0 ld

(la+ld)B1

)
δE

OδE = −o
g

(
0 0 ld

(lc+ld)B1
0 1

B1

)
δE.

This choice of matrices provides a Lyapunov function that guarantees a large domain

of convergence, while essentially preserving the nice local behavior of the error dynamics,

as described in the previous section. Indeed, time di�erentiating the function

W := ‖β‖2 +
σla
g2
‖EA‖2 +

σlc
(B1g)2

‖EC‖2 +
σld

(B1g2)2
‖ED‖2

and using ĖA = (A−EA)NE+ (A−EA)× (2LE−β) and similar expressions for ĖC , ĖD
yields

Ẇ = −2(LE)2 − 2
la + ld
n

(NE)2 − 2
lc + ld
o

(OE)2 ≤ 0.

Therefore W is a Lyapunov function which globally decreases for all la, lc, ld, σ, n, o > 0.

Though it ensures a large domain of convergence, it is not clear it is enough for global

convergence; see [52] for a convergence result in a simpler case (only gyro biases).

Notice the Lyapunov function V used in Section 3.2.1 can be seen as a low-order

approximation of W since

ma

g2
‖δEA‖2 +

mc

(B1g)2
‖δEC‖2 +

md

(B1g2)2
‖δED‖2 + ‖δβ‖2

= V +maδα
2 +mcδγ

2 +md(δα + δγ)2.

The tuning proposed in Section 3.2.1 is very simple and ensures the observer converges

locally around every trajectory. This is already a very strong property, but there is no

guarantee regarding a larger convergence domain. The tuning proposed in this section is

computationally slightly more complicated. It also ensures a nice local behavior, though

with less freedom: since there are now only 4 parameters (instead of 6) for (78)-(79), the

longitudinal, lateral and heading subsystems may have di�erent settling times but must

have the same damping; the scaling subsystem (80)-(81) is now coupled but still has 2

tuning parameters. The guaranteed domain of convergence is much larger. Also notice

the observer structure is �exible enough to accommodate yet other tunings.
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3.3. E�ects of disturbances

Two main disturbances may a�ect the model. When V̇ 6= 0, the accelerometers measure

in fact asq
−1 ∗ A∗ ∗ q where A∗ = −V̇ +A. Magnetic disturbances will also change B into

some B∗. For simplicity we consider that A∗, B∗ are constant. The measured outputs

now become (
yA∗

yC∗

)
=

(
asq
−1 ∗ A∗ ∗ q

csq
−1 ∗ C∗ ∗ q

)
.

The error system is unchanged but E is now the 5× 1 vector

E =
(
〈EA, e1〉, 〈EA, e2〉, 〈EA, e3〉, 〈EC , e1〉, 〈EC , e2〉

)T
made up of the projections of the vectors

EA = A− 1

âs
q̂ ∗ yA∗ ∗ q̂−1 and EC = C − 1

ĉs
q̂ ∗ yC∗ ∗ q̂−1.

Let us de�ne the points (η, β, α, γ) as follows

β = 0

η ∗ A∗ ∗ η−1 = (0 0 ‖A∗‖)
η ∗ C∗ ∗ η−1 = (0 ‖C∗‖ 0)

α =
‖A∗‖
‖A‖

and γ =
‖C∗‖
‖C‖

Doing the frame rotation de�ned by η we can de�ne the new variables

η̃ = η ∗ η−1 β̃ = η ∗ β ∗ η−1

α̃ = αα γ̃ = γγ.

The error system with these new variables writes

˙̃η = −1

2
η̃ ∗ β̃ + (L̃Ẽ) ∗ η̃

˙̃β = (η̃−1 ∗ Ĩ ∗ η̃)× β̃ + η̃−1 ∗ (M̃Ẽ) ∗ η̃
˙̃α = −α̃ÑẼ
˙̃γ = −γ̃ÕẼ

where the new output error Ẽ is made up of the projections of the vectors

ẼA = A− α̃η̃ ∗ A ∗ η̃−1 and ẼC = C − α̃η̃ ∗ C ∗ η̃−1.
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So (η̃, β̃, α̃, γ̃) satisfy the same error system as (η, β, α, γ). In the new frame (A∗, C∗) play

the same role as (A,C). All the properties of the observer are therefore preserved in the

new frame.

An important case is when only the magnetic �eld is perturbed, where we consider

A and C∗ = (C∗1 C
∗
2 0) (instead of C = (0 gB1 0)). Writing the new equilibrium point

(η, β, α, γ) of the error system explicitly it can be seen that

φ = θ = 0 and ψ = arctan
C∗1
C∗2

β = α = 0 and γ =
‖C∗‖
‖C‖

,

where (φ, θ, ψ) are the Euler angles corresponding to η. In particular only the yaw angle

ψ and γ are a�ected by the magnetic disturbance.

3.4. Experimental validation

We now compare the behavior of our observer with the commercial Microbotics MIDG II

system used in Vertical Gyro mode. The following results have been obtained with the

observer

˙̂q =
1

2
q̂ ∗ (ωm − ω̂b) + (LE) ∗ q̂ + k(1− ‖q̂‖2)q̂(82)

˙̂ωb = q̂−1 ∗ (ME) ∗ q̂(83)

˙̂as = âsNE(84)

˙̂cs = ĉsOE,(85)

and the choice of matrices de�ned by the parameters below. Compared to the observer

(62)�(65), the added term k(1− ‖q̂‖2)q̂ is a well-known numerical trick to keep ‖q̂‖ = 1.

Notice this term is also invariant.

We feed the observer with the raw measurements from the MIDG II gyroscopes, ac-

celerometers and magnetic sensors. The observer is implemented in Matlab Simulink and

its values are compared to the MIDG II results (computed according to the user manual

by some Kalman �lter). In order to have similar behaviors between MIDG II �lter and
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the invariant observer, we have chosen

la = 6e− 2 lc = 1e− 1 ld = 6e− 2

ma = 3.2e− 3 mc = 5.3e− 3 md = 3.2e− 3

n = 0.25 o = 0.5.

3.4.1. Comparison with a commercial device (Figure 3.1). � We �rst want to

illustrate the di�erent invariant observer properties mentioned in Section 3.2. Therefore

we performed a long-lasting experiment, which can be divided into 3 parts:

� for t < 240s the system is left at rest until the biases reach constant values. Fig-

ure 3.1(a) highlights the importance of the correction term in the angle estimation:

without correction the estimated roll angle diverges with a slope of −0.18◦/s (bot-

tom plot), which is indeed the �nal value of the estimated bias (middle plot) (Fig-

ures 3.1(a) and 3.1(b)).

� for 240s < t < 293s we move the system in all directions. The observer and the

MDG II give very similar results (Figure 3.1(c)).

� at t = 385s the system is motionless and a magnet is put close to the sensors for 10s.

As expected only the estimated yaw angle is a�ected by the magnetic disturbance

(Figure 3.1(d)); the MIDG II exhibits a similar behavior.

3.4.2. In�uence of the observer correction terms (Figure 3.2). � We have cho-

sen the correction terms so that the magnetic measurements correct essentially the yaw

angle and its corresponding bias, whereas the accelerometers measurements act on the

other variables. We highlight this property on the following experiment (Figure 3.2).

Once the biases have reached constant values, the system is left at rest during 35 minutes:

� for t < 600s the results are very similar for the observer and the MIDG II.

� at t = 600s the �magnetic correction terms" are switched o�, i.e. the gains lc,ld,mc,md

and o are set to 0. The yaw angle estimated by the observer diverges because the cor-

responding bias is not perfectly estimated. Indeed, these variables are not observable

without the magnetic measurements. The other variables are not a�ected.

� at t = 1300s the �accelerometers correction terms" are also switched o�, i.e. la,ma

and n are set to 0. All the estimated angles now diverge.

3.4.3. Acceleration disturbance: V̇ 6= 0 (Figure 3.3). � The hypothesis V̇ = 0

may be wrong. In this case the observer does not converge to the true values anymore.

Indeed we illustrate this point on Figure 3.3 by comparing the roll angle estimated by
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Figure 3.1. Experimental validation using Matlab

our observer and the roll angle estimated by the MIDG II in INS mode (in this mode the

attitude and heading estimates are aided by a GPS engine, hence are close to the �true�

values).
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CHAPTER 4

SYMMETRY-PRESERVING OBSERVERS FOR

AIDED ATTITUDE AND HEADING REFERENCE

SYSTEMS

Dans ce chapitre nous nous intéressons aux observateurs pour les �aided Attitude and

Heading Reference Systems�, dans lequels des capteurs de vitesse (dans le repère engin ou

terre) et éventuellement de position (GPS ou baromètre) sont utilisés en plus des capteurs

inertiels et magnétiques. Les �ltres présentés sont des observateurs nonlinéaires invari-

ants, préservant les symétries naturelles du système considéré. Le choix des termes de

corrections permet d'assurer une convergence locale autour des trajectoires usuelles (non

aggressives) des mini-drones. Comme pour les estimateurs présentés dans le Chapitre 3,

ces �ltres permettent également un découplage intéressant des angles d'attitude et de

lacet, a�n de limiter les conséquences d'une perturbation magnétique sur le mini-drone,

tout en étant facile à régler grâce à un découplage naturelle en sous-systèmes et à un

nombre réduit de paramètres à choisir.

4.1. Earth-velocity-aided AHRS

4.1.1. The considered system. � Attitude and Heading References Systems rely on

low-cost inertial and magnetic sensors, aided by velocity or/and position sensors. In
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this section, we consider only velocity measurements in Earth-�xed coordinates (e.g.

from a GPS engine) coming in addition to the accelerometers, gyroscopes and magne-

tometers measurements. Therefore we consider the following system, coming from Equa-

tions (42),(43),(45),(46) described in Section 2.4

q̇ =
1

2
q ∗ (ωm − ωb)(86)

V̇ = A+
1

as
q ∗ am ∗ q−1(87)

ω̇b = 0(88)

ȧs = 0,(89)

where ωm and am are seen as known inputs, together with the output(
yV
yB

)
=

(
V

q−1 ∗B ∗ q

)
.(90)

4.1.2. Invariance of the system equations. � The physical system is obviously un-

a�ected by a constant velocity translation in the Earth-�xed frame and a constant rotation

of the body-�xed frame. It is natural to expect a similar behavior from an observer. We

therefore consider the following transformation group generated by rotations, translations

and scaling

ϕ(q0,V0,ω0,a0)


q

V

ωb
as

 =


q ∗ q0

V + V0

q−1
0 ∗ ωb ∗ q0 + ω0

asa0


ψ(q0,V0,ω0,a0)

(
ωm
am

)
=

(
q−1

0 ∗ ωm ∗ q0 + ω0

a0q
−1
0 ∗ am ∗ q0

)
ρ(q0,V0,ω0,a0)

(
yV
yB

)
=

(
yV + V0

q−1
0 ∗ yB ∗ q0

)
.

There are 3 + 2 ∗ 3 + 1 = 10 parameters: the unit quaternion q0, the R3-vectors V0, ω0 and

the positive scalar a0. The group composition law � is given by
q1

V1

ω1

a1

 �

q0

V0

ω0

a0

 =


q0 ∗ q1

V0 + V1

q−1
1 ∗ ω0 ∗ q1 + ω1

a0a1

 .
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The system (86)�(89) is of course invariant by the transformation group since

˙︷ ︸︸ ︷
q ∗ q0 = q̇ ∗ q0 =

1

2
(q ∗ q0) ∗

(
(q−1

0 ∗ ωm ∗ q0 + ω0)− (q−1
0 ∗ ωb ∗ q0 + ω0)

)
˙︷ ︸︸ ︷

V + V0 = V̇ = A+
1

asa0

(q ∗ q0) ∗ (asq
−1
0 ∗ am ∗ q0) ∗ (q ∗ q0)−1

˙︷ ︸︸ ︷
q−1

0 ∗ ωb ∗ q0 + ω0 = q−1
0 ∗ ω̇b ∗ q0 = 0

˙︷︸︸︷
asa0 = ȧsa0 = 0,

whereas the output (90) is equivariant since(
V + V0

(q ∗ q0)−1 ∗B ∗ (q ∗ q0)

)
= ρ(q0,V0,ω0,a0)

(
V

q−1 ∗B ∗ q

)
.

4.1.3. Construction of the general invariant observer. � We solve for (q0, V0, ω0, a0)

the normalization equations

q ∗ q0 = 1

V + V0 = 0
and

q−1
0 ∗ ωb ∗ q0 + ω0 = 0

asa0 = 1

to �nd the moving frame

γ(q, V, ωb, as) =


q−1

−V
−q ∗ ωb ∗ q−1

1/as

 .

We then get the 6-dimensional invariant error(
EV
EB

)
= ργ(q̂,V̂ ,ω̂b,âs)

(
ŷV
ŷB

)
− ργ(q̂,V̂ ,ω̂b,âs)

(
yV
yB

)
=

(
ŷV − yV

B − q̂ ∗ q−1 ∗B ∗ q ∗ q̂−1

)
=

(
ŷV − yV

B − q̂ ∗ yB ∗ q̂−1

)
(91)

and the 6-dimensional complete invariant(
Iω
Ia

)
= ψγ(q̂,V̂ ,ω̂b,âs)

(
ωm
am

)
=

(
q̂ ∗ (ωm − ω̂b) ∗ q̂−1

1
âs
q̂ ∗ am ∗ q̂−1

)
.

Notice that Iω,Ia,EV and EB are functions of the estimates and the measurements. Hence

they are known quantities which can be used in the construction of the observer. It is
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straightforward to check they are indeed invariant. For instance,

EB(q̂ ∗ q0, V̂ + V0, q
−1
0 ∗ ω̂b ∗ q0 + ω0, âsa0, q

−1
0 ∗ yB ∗ q0)

= B − (q̂ ∗ q0) ∗ (q−1
0 ∗ yB ∗ q0) ∗ (q̂ ∗ q0)−1

= B − q̂ ∗ yB ∗ q̂−1

= EB(q̂, V̂ , ω̂b, âs, yB).

To �nd invariant vector �elds, we solve for w(q, V, ωb, as) the 10 vector equationsDϕγ(q,V,ωb,as)


q

V

ωb
as


 · w(q, V, ωb, as) =


ei
0

0

0

 ,


0

ei
0

0

 ,


0

0

ei
0

 ,


0

0

0

e10

 , i = 1, 2, 3,

where the ei's are the canonical basis of R3 (we have identi�ed the tangent space of the

unit norm quaternions space to R3). SinceDϕ(q0,V0,ω0,a0)


q

V

ωb
as


 ·

δq

δV

δωb
δas

 =


δq ∗ q0

δV

q−1
0 ∗ δωb ∗ q0

a0δas

 ,

this yields the 10 independent invariant vector �elds
ei ∗ q

0

0

0

 ,


0

ei
0

0

 ,


0

0

q−1 ∗ ei ∗ q
0

 ,


0

0

0

ase10

 , i = 1, 2, 3.

These vector �elds are invariant. Indeed for instance,Dϕ(q0,V0,ω0,a0)


q

V

ωb
as


 ·

ei ∗ q

0

0

0

 =


(ei ∗ q) ∗ q0

0

0

0

 =


ei ∗ (q ∗ q0)

0

0

0

 .
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The general invariant observer then reads

˙̂q =
1

2
q̂ ∗ (ωm − ω̂b) +

3∑
i=1

(LV iEV + LBiEB)ei ∗ q̂

˙̂
V = A+

1

âs
q̂ ∗ am ∗ q̂−1 +

3∑
i=1

(MV iEV + LBiEB)ei

˙̂ωb =
3∑
i=1

q̂−1 ∗ (NV iEV +NBiEB)ei ∗ q̂

˙̂as = âs(OVEV +OBEB),

where the LV i, LBi,MV i,MBi, NV i, NBi, OV , OB are arbitrary 1×3 matrices with entries

possibly depending on EV , EB, Iω and Ia. Noticing

3∑
i=1

(LV iEV )ei =

LV 1

LV 2

LV 3

EV = LVEV ,

where LV is the 3 × 3 matrix whose rows are the LV i's, and de�ning LB, MV , MB, NV

and NB in the same way, we can rewrite the observer as

˙̂q =
1

2
q̂ ∗ (ωm − ω̂b) + (LVEV + LBEB) ∗ q̂(92)

˙̂
V =

1

âs
q̂ ∗ am ∗ q̂−1 + A+ (MVEV +MBEB)(93)

˙̂ωb = q̂−1 ∗ (NVEV +NBEB) ∗ q̂(94)

˙̂as = âs(OVEV +OBEB).(95)

As a by-product of its geometric structure, the observer automatically has a desirable

feature: the norm of q̂ is left unchanged by Equations (92), since LVEV + LBEB is a

vector in R3 (see section 2.6).

4.1.4. The invariant error system. � The invariant state error is given by
η

ν

β

α

 = ϕγ(q,V,ωb,as)


q̂

V̂

ω̂b
âs

− ϕγ(q,V,ωb,as)


q

V

ωb
as

 =


q̂ ∗ q−1 − 1

V̂ − V
q ∗ (ω̂b − ωb) ∗ q−1

âs

as
− 1

 .
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As in section 3.1, we consider η = q̂ ∗q−1 (rather than η = q̂ ∗q−1−1), so that η(x, x) = 1,

the unit element of the group of quaternions. In the same way, we take α = âs

as
to keep α

in R+. Hence,

η̇ = ˙̂q ∗ q−1 + q̂ ∗ (−q−1 ∗ q̇ ∗ q−1) = −1

2
η ∗ β + (LAEA + LCEC) ∗ η

ν̇ =
˙̂
V − V̇ = Ia − αη−1 ∗ Ia ∗ η + (MVEV +MBEB)

β̇ = q̇ ∗ (ω̂b − ωb) ∗ q−1 − q ∗ (ω̂b − ωb) ∗ q−1 ∗ q̇ ∗ q−1 + q ∗ ( ˙̂ωb − ω̇b) ∗ q−1

= (η−1 ∗ Iω ∗ η)× β + η−1 ∗ (NVEV +NBEB) ∗ η

α̇ =
˙̂as
as

= α(OVEV +OBEB).

Since we can write

EV = ν and EB = B − η ∗B ∗ η−1,

we �nd that the error system

η̇ = −1

2
η ∗ β + (LAEA + LCEC) ∗ η(96)

ν = Ia − αη−1 ∗ Ia ∗ η + (MVEV +MBEB)(97)

β̇ = (η−1 ∗ Iω ∗ η)× β + η−1 ∗ (NVEV +NBEB) ∗ η(98)

α̇ = α(OVEV +OBEB)(99)

depends only on the invariant state error (η, ν, β, α) and the �free� known invariants Iω
and Ia, but not on the trajectory of the observed system (86)�(89).

The linearized error system around (η, ν, β, α) = (1, 0, 0, 1), i.e. the estimated state

equals the actual state, is given by

δη̇ = −1

2
δβ + (LV δEV + LBδEB)

δν̇ = −2Ia × δη − δαIa + (MV δEV +MBδEB)

δβ̇ = Iω × δβ + (NV δEV +NBδEB)

δα̇ = (OV δEV +OBδEB),
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where

δEV = δν

δEB = −δη ∗B ∗ η−1 − η ∗B ∗ (−η−1 ∗ δη ∗ η−1)

= 2(η ∗B ∗ η−1)× (δη ∗ η−1) = 2B × δη.

4.1.5. Design of the observer gain matrices. �

4.1.5.1. Choice of the gain matrices. � The linearized error system without correction

terms turns out to be decoupled into 4 independent subsystems when Ia is constant and

Iω = 0 (in particular when the aircraft is in level �ight). To make sure tuning remains

simple, the gain matrices should respect this decoupling. On the other hand, the Earth

magnetic �eld is quite perturbed in urban areas, which are usual areas of operation for

a small UAV. We do not want these magnetic disturbances � which unavoidably corrupt

the heading estimate � to a�ect the attitude and velocity estimates too much. The idea

is thus to rely on the magnetic measurement yB as little as possible. Therefore we choose

LVEV = −lV Ia × EV LBEB = lB〈B × EB, Ia〉Ia(100)

MVEV = −mVEV MBEB = 0(101)

NVEV = nV Ia × EV NBEB = −nB〈B × EB, Ia〉Ia(102)

OVEV = oV 〈Ia, EV 〉 OBEB = 0(103)

with (lV , lB,mV , nV , nB, oV ) > 0.

4.1.5.2. Equilibrium points of the observer equations. � When the observer has con-

verged, the last two equations of the observer write

NVEV +NBEB = 0 and OVEV = 0.

With the choice of gain matrices above it leads to

Ia × EV = 0 and 〈Ia, EV 〉 = 0.

So even if the model is wrong, for example if the Earth magnetic �eld is perturbed,

the observer equations ensure V̂ = V once it has converged. This important property

is satis�ed because we considered the scaling on the accelerometers measurements as in

addition to the usual gyroscopes biases ωb. A similar conclusion is not possible with the

Euler angles even if we consider additional biases: EB = 0 does not ensure that the yaw

angle, for example, is correctly estimated.
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4.1.5.3. First-order approximation and coordinate change. � Considering the gain matri-

ces described above, the linearized error equations around the equilibrium point (1, 0, 0, 1)

write

δη̇ = −1

2
δβ − lV Ia × δEV + lB〈B × δEB, Ia〉Ia

δν̇ = −2Ia × δη − δαIa −mV δEV

δβ̇ = Iω × δβ + nV Ia × δEV − nB〈B × δEB, Ia〉Ia
δα̇ = oV 〈Ia, δEV 〉

with δEV = δν and δEB = 2B × δη.
We change the coordinate so that the estimated speci�c acceleration vector Ia is vertical.

Let η0 be this frame rotation de�ned by

η−1
0 ∗ Ia ∗ η0 = −kA, where k > 0(104)

η−1
0 ∗B ∗ η0 = B̃ with B̃ = (B̃1 0 B̃3).(105)

It follows

η̃ = η−1
0 ∗ η ∗ η0 ν̃ = η−1

0 ∗ ν ∗ η0

β̃ = η−1
0 ∗ β ∗ η0.

The error system then becomes

δ ˙̃η = 2δη̃ × (η−1
0 ∗ η̇0)− 1

2
δβ̃ + klVA× δẼV + k2lB〈B̃ × δẼB, A〉A

δ ˙̃ν = 2δν̃ × (η−1
0 ∗ η̇0) + 2kA× δη + kδαA−mV δẼV

δ ˙̃β = 2δβ̃ × (η−1
0 ∗ η̇0) + Ĩω × δβ̃ − knVA× δẼV − k2nB〈B̃ × δẼB, A〉A

δα̇ = −oV k〈A, δẼV 〉

with δẼV = δν̃ and δẼB = 2B̃ × δη̃.
We suppose now that the system is moving along a �smooth� trajectory, i.e the magni-

tudes of η̇0, İa, and Iω are negligible. All the terms of the form ·×(η−1
0 ∗ η̇0) then disappear

and k is now constant. The error system splits into three decoupled subsystems and one

cascaded subsystem:
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� the longitudinal subsystemδ ˙̃η2

δ ˙̃ν1

δ ˙̃β2

 =

 0 klV g −1
2

−2kg −mV 0

0 −knV g 0

δη̃2

δν̃1

δβ̃2


� the lateral subsystemδ ˙̃η1

δ ˙̃ν2

δ ˙̃β1

 =

 0 −klV g −1
2

2kg −mV 0

0 knV g 0

δη̃1

δν̃2

δβ̃1


� the vertical subsystem (

δ ˙̃ν3

δα̇

)
=

(
−mV kg

−kgoV 0

)(
δν̃3

δα

)
� the heading subsystem(

δ ˙̃η3

δ ˙̃β3

)
=

(
−2k2g2lBB̃

2
1 −1

2

2k2g2nBB̃
2
1 0

)(
δη̃3

δβ̃3

)
+

(
2k2g2lBB̃3B̃1

−2k2g2nBB̃3B̃1

)
δη̃1.

Thanks to this decoupled structure, the convergence of each subsystem, and then the

local convergence of the invariant observer, is straightforward, and leads to Theorem 2.

Theorem 2. � Consider the physical system (86)�(89) with the measurements (90).

Consider the nonlinear invariant observer de�ned by

˙̂q =
1

2
q̂ ∗ (ωm − ω̂b) + (LVEV + LBEB) ∗ q̂

˙̂
V =

1

âs
q̂ ∗ am ∗ q̂−1 + A+ (MVEV )

˙̂ωb = q̂−1 ∗ (NVEV +NBEB) ∗ q̂
˙̂as = âs(OVEV ),

with the expression of the output errors given by Equation (91) and the gain matrices given

by Equations (100)�(103). Then for any value (lV , lB,mV , nV , nB, oV ) > 0, the solution

(q̂(t), V̂ (t), ω̂b(t), âs(t)) locally asymptotically converges to (q(t), V (t), ωb, as) around every

�smooth� trajectory, i.e when η̇0, İa, and Iω can be neglected (�rst order terms).

We insist that it is not usually obvious to come up with a similar convergence result for

an EKF. The gains lV , lB,mV , nV , nB, oV are also easy to tune, since the behaviors of each
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subsystem are independent. Moreover the lateral, longitudinal and vertical subsystems

do not depend on the magnetic measurements, so they are not a�ected if the magnetic

�eld is perturbed.

4.1.5.4. In�uence of magnetic disturbances on static behavior. � We now investigate

how the equilibrium point (1, 0, 0, 1) is modi�ed when the magnetic �eld is (statically)

perturbed. We show that only the yaw angle ψ is a�ected while all the other variables,

in particular the attitude angles φ, θ, remain unchanged. Here the Euler angles φ, θ, ψ

correspond to the error quaternion η̃ in the new frame described by Equations (104)-(105).

The equilibrium points (η̃, ν̃, ω̃, α̃) are de�ned by

(lV kA× ν̃ + lB〈B̃ × ẼB, kA〉kA) ∗ η̃ − 1

2
η̃ ∗ β̃ = 0

−kA+ αη̃
−1 ∗ kA ∗ η̃ −mV ν̃ = 0

η̃
−1 ∗ (−nV kA× ν̃ − nB〈B̃ × ẼB, kA〉kA) ∗ η̃ + (η̃

−1 ∗ Ĩω ∗ η̃)× β̃ = 0

oV 〈kA, ν̃〉α = 0.

We ensure β̃ = 0 by choosing LVEV + LBEB colinear to NVEV +NBEB, that is
nV

lV
= nB

lB
, σ. This implies ν̃ = 0, αη̃ ∗ A ∗ η̃−1 − A = 0 and 〈B̃ × ẼB, kA〉 = 0.

Finally (η̃, ν̃, β̃, α̃) = (η̃, 0, 0, 1); moreover φ = θ = 0 and ψ is determined by 〈B̃ × ẼB, kA〉 = 0,

where the Euler angles φ, θ, ψ correspond to the error quaternion η̃.

4.1.6. Simulation results. � We �rst use simulations to illustrate the behavior of the

invariant observer

˙̂q =
1

2
q̂ ∗ (ωm − ω̂b) + (LVEV + LBEB) ∗ q̂ + λ(1− ‖q̂‖2)q̂

˙̂
V =

1

âs
q̂ ∗ am ∗ q̂−1 + A+ (MVEV +MBEB)

˙̂ωb = q̂−1 ∗ (NVEV +NBEB) ∗ q̂
˙̂as = âs(OVEV +OBEB)

with the choice of gain matrices described in �4.1.5.1.
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We choose here time constants around 10s by taking lV = nV = 4e− 2, lB = nB =

2e− 3, mV = 5, oV = 1e− 2 and λ = 1. The system follows the trajectory de�ned by

as = 1.1 ωb =

 .01

−.012

.08


V =

 3− 2 cos(.3t)

3− 2.8 cos(.25t+ π/4)

−1− 1.7 sin(.3t)

 ωm =

 sin(.5t)

sin(.3t)

− sin(.5t)

 ,

in SI units, which is quite representative of a small UAV �ight. The states are initialized

far from their true values.

At t = 30s, the magnetic �eld is changed from B = (1 0 1)T (roughly the value in

France) to B = (1 0.4 1)T .

Though we have no proof of convergence other than local, the domain of attraction

seems to be quite large, see Figure 4.1. As expected, only the estimated yaw angle ψ is

strongly a�ected by the magnetic disturbance. Because of the coupling terms Ĩw and Ia,

there is some dynamic in�uence on the other variables.

4.1.7. Experimental results. � We now compare the behavior of our observer with

the commercial INS-GPS device MIDG II from Microbotics Inc. We feed the observer

with the raw measurements from the MIDG II gyroscopes, accelerometers and magnetic

sensors, and the velocity provided by the navigation solutions of its GPS engine. The

estimates of the observer are then compared with the estimates given by the MIDG II

(computed according to the user manual by some Kalman �lter). We have chosen lV =

2.8e− 3, lB = 7e− 3, nV = 4e− 5, nB = 1e− 4, mV = 0.9, oV = 9.4e− 5 and λ = 1.

4.1.7.1. Dynamic behavior (Figure 4.2). � We wait a few minutes until the biases reach

constant values, then move the system in all directions. Our observer and the MIDG II

give very similar results (Figures 4.2(a) and 4.2(b)).

4.1.7.2. Usefulness of the observer terms (Figure 4.3). � As explained in �4.1.5.1 we

have chosen the correction terms so that the magnetic measurements essentially correct

the yaw angle and its corresponding bias, whereas the velocity measurements act on the

other variables.

We highlight this property as well as the importance of correction terms on the following

experiment. Once the biases have reached constant values, the system is left at rest during

50 minutes:
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Figure 4.1. Simulation validation using Matlab

� for t < 700s provided by the observer are very similar to those provided by the

MIDG II (Figures 4.3(a) and 4.3(b))

� at t = 700s the �magnetic correction terms� are switched o�, i.e. the gains lB and

nB are set to 0. The yaw angle estimated by the observer diverges because the

corresponding bias is not perfectly estimated. Indeed, these variables are not ob-

servable without the magnetic measurements. The other variables are not a�ected

(Figures 4.3(a) and 4.3(b))
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Figure 4.2. Experimental validation using Matlab

� at t = 1700s the �velocity correction terms� are also switched o�, i.e. lV , mV , nV and

oV are set to 0. All the estimated angles and velocities now diverge (Figures 4.3(a)

and 4.3(b)). Zooming around t = 1700s, we see on Figure 4.3(d) that the estimated

pitch angle diverges with a slope corresponding to the almost-constant di�erence

between the estimated and actual pitch angular rate biases. This explains why the

estimated velocity Vx diverges quadratically in time.
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Figure 4.3. Usefulness of the correction terms (experiment)

4.1.7.3. In�uence of magnetic disturbances (Figure 4.4). � Once the biases have reached

constant values, the system is left motionless for 60s. At t = 13s a magnet is put close to

the sensors for 10s. As expected only the estimated yaw angle is a�ected by the magnetic

disturbance (Figures 4.4(a)- 4.4(b)); the MIDG II exhibits a similar behavior.
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Figure 4.4. In�uence of magnetic disturbances (experiment)

4.2. Earth-velocity-and-position-aided AHRS

4.2.1. The considered system. � In this section, we add position measurements in

Earth-�xed coordinates, provided, for instance, by a GPS engine and a barometer. We

therefore consider the following system, described in details in section 2.4

q̇ =
1

2
q ∗ (ωm − ωb)(106)

V̇ = A+
1

as
q ∗ am ∗ q−1(107)

Ẋ = V(108)

ω̇b = 0(109)

ȧs = 0(110)

ḣb = 0(111)

where ωm and am are seen as known inputs, together with the output
yV
yX
yh
yB

 =


V

X

〈X, e3〉 − hb
q−1 ∗B ∗ q

 .(112)
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4.2.2. Invariance of the system equations. � The considered transformation gen-

erated by constant rotations and translations in the earth-�xed and body-�xed frame

ϕ(p0,q0,X0,ω0,a0,h0)



q

V

X

ωb
as
hb


=



p0 ∗ q ∗ q0

p0 ∗ V ∗ p−1
0

p0 ∗ (X +X0) ∗ p−1
0

q−1
0 ∗ ωb ∗ q0 + ω0

asa0

hb + h0



ψ(p0,q0,X0,ω0,a0,h0)


ωm
am
A

B

 =


q−1

0 ∗ ωm ∗ q0 + ω0

a0q
−1
0 ∗ am ∗ q0

p0 ∗ A ∗ p−1
0

p0 ∗B ∗ p−1
0



ρ(p0,q0,X0,ω0,a0,h0)


yV
yX
yh
yB

 =


p0 ∗ yV ∗ p−1

0

p0 ∗ (yX +X0) ∗ p−1
0

yh − h0 + 〈X0, e3〉
q−1

0 ∗ yB ∗ q0



is easily seen to be a transformation group. There are 2∗3+2∗3+2∗1 = 14 parameters:

the two unit quaternion p0, q0, the R3-vectors X0, ω0 and the two scalars a0, h0. So the

transformation group has one fewer dimension than the system (106)�(111). We could

add another scaling v0 for the transformation on V , which would lead only to a kind of

gain normalization, and then will not be considered here. The group law � is given by



p1

q1

X1

ω1

a1

h1


�



p0

q0

X0

ω0

a0

h0


=



p1 ∗ p0

q0 ∗ q1

X0 + p−1
0 ∗X1 ∗ p0

q−1
1 ∗ ω0 ∗ q1 + ω1

a1a0

h1 + h0


.
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The system (106)�(111) is indeed invariant by the transformation group since

˙︷ ︸︸ ︷
(p0 ∗ q ∗ q0) = p0 ∗ q̇ ∗ q0 =

1

2
(p0 ∗ q ∗ q0) ∗

(
(q−1

0 ∗ ωm ∗ q0 + ω0)− (q−1
0 ∗ ωb ∗ q0 + ω0)

)
˙︷ ︸︸ ︷

p0 ∗ V ∗ p−1
0 = p0 ∗ V̇ ∗ p−1

0

= p0 ∗ A ∗ p−1
0 +

1

asa0

(p0 ∗ q ∗ q0) ∗ (asq
−1
0 ∗ am ∗ q0) ∗ (p0 ∗ q ∗ q0)−1

˙︷ ︸︸ ︷
(q−1

0 ∗ ωb ∗ q0 + ω0) = q−1
0 ∗ ω̇b ∗ q0 = 0

˙︷ ︸︸ ︷
(asa0) = ȧsa0 = 0

˙︷ ︸︸ ︷
(hb + h0) = ḣb = 0,

whereas the output (112) is equivariant since
p0 ∗ V ∗ p−1

0

p0 ∗ (X +X0) ∗ p−1
0

〈p0 ∗ (X +X0) ∗ p−1
0 , p0 ∗ e3 ∗ p−1

0 〉 − (hb + h0)

(p0 ∗ q ∗ q0)−1 ∗ (p0 ∗B ∗ p−1
0 ) ∗ (p0 ∗ q ∗ q0)

 = ρ(p0,q0,X0,ω0,a0,h0)


V

X

〈X, e3〉 − hb
q−1 ∗B ∗ q

 .

Velocity measurements yv in the body-�xed frame can commonly be provided by an

air-data system (or a Doppler radar on bigger UAV or aircraft). Since yv = q−1 ∗ V ∗ q
this new output is also equivariant:

(p0 ∗ q ∗ q0)−1 ∗ (p0 ∗ V ∗ p−1
0 ) ∗ (p0 ∗ q ∗ q0) = ρ(p0,q0,X0,ω0,a0,h0)

(
q−1 ∗ V ∗ q

)
.

Thus the nonlinear observer we construct can be adapted to also use measurements in

the body-�xed frame. For simplicity's sake, air data probe measurements will not be

considered in this section, but only in Section 4.3.

Notice also that from a physical and engineering viewpoint, it is perfectly sensible for

an observer using measurements expressed in the body-�xed frame not to be a�ected

by the actual choice of coordinates, i.e. by a constant rotation in the body-�xed frame.

Similarly, a translation of the gyro bias by a vector constant in the body-�xed frame and

a translation of the position measurements by a constant vector in the Earth-�xed frame

should not a�ect the observer.
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4.2.3. Construction of the general invariant observer. � In this section we detail

the steps to construct the general invariant observer, which consists of a generalization of

the observer described in Ref. [10].

We solve for (p0, q0, X0, ω0, a0, h0) the normalization equations

p0 ∗ q ∗ q0 = 1

p0 ∗ ei ∗ p−1
0 = ẽi

p0 ∗ (X +X0) ∗ p−1
0 = 0

q−1
0 ∗ ωb ∗ q0 + ω0 = 0

asa0 = 1

hb + h0 = 0

to �nd the moving frame γ(q,X, ωb, as, hb, e1, e2, e3) de�ned by the equations

q0 = q−1 ∗ p−1
0

X0 = −X
ω0 = −p0 ∗ q ∗ ωb ∗ q−1 ∗ p−1

0

h0 = −hb + 〈X, e3〉

where p0 represents the rotation between the two frames (e1, e2, e3) and (ẽ1, ẽ2, ẽ3).

We can then �nd the 10 scalar invariant errors which correspond to the projections of

the output error

ργ(q̂,X̂,ω̂b,âs,ĥb,e1,e2,e3)

ŷVŷX
ŷB

− ργ(q̂,X̂,ω̂b,âs,ĥb,e1,e2,e3)

yVyX
yB


on the new frame (ẽ1, ẽ2, ẽ3) and to the output error related to yh which is directly invari-

ant. We get

EV i = 〈ŷV − yV , ei〉
EXi = 〈ŷX − yX , ei〉

Eh = 〈X̂ −X, e3〉 − ĥb + hb

EBi = 〈B − q̂ ∗ yB ∗ q̂−1, ei〉,
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where i = 1, 2, 3. We detail for instance how to get EV i:

〈ργ(q̂,X̂,ω̂b,âs,ĥb,e1,e2,e3)

(
ŷV
)
− ργ(q̂,X̂,ω̂b,âs,ĥb,e1,e2,e3)

(
yV
)
, ẽi〉 = 〈p0 ∗ ŷV ∗ p−1

0 − p0 ∗ yV ∗ p−1
0 , ẽi〉

= 〈ŷV − yV , p−1
0 ∗ ẽi ∗ p0〉

= 〈ŷV − yV , ei〉.

We get also the 9 scalar complete invariants which correspond to the projections of

φγ(q̂,X̂,ω̂b,âs,ĥb,e1,e2,e3)

(
V̂
)

and ψγ(q̂,X̂,ω̂b,âs,ĥb,e1,e2,e3)

(
ωm
am

)
on the new frame (ẽ1, ẽ2, ẽ3). We �nd

IV̂ i = 〈V̂ , ei〉
Iωi = 〈q̂ ∗ (ωm − ω̂b) ∗ q̂−1, ei〉

Iai = 〈 1

âs
q̂ ∗ am ∗ q̂−1, ei〉 with i = 1, 2, 3.

Notice that IV̂ i, Iωi, Iai, EV i, EXi, EBi's and Eh are functions of the estimates and the

measurements. Hence they are known quantities which can be used in the construction

of the observer. It is straightforward to check they are indeed invariant. For instance,

EBi(p0 ∗ q̂ ∗ q0, p0 ∗B ∗ p−1
0 , q−1

0 ∗ yB ∗ q0) = 〈p0 ∗B ∗ p−1
0

− (p0 ∗ q̂ ∗ q0) ∗ (q−1
0 ∗ yB ∗ q0) ∗ (p0 ∗ q̂ ∗ q0)−1, ẽi〉

= 〈B − q̂ ∗ yB ∗ q̂−1, ei〉
= EBi(q̂, B, yB).

To �nd invariant vector �elds, we solve the 14 vector equations (i = 1, 2, 3) in the

unknown w(q, V,X, ωb, as, hb)
Dϕγ(q,X,ωb,as,hb,e1,e2,e3)



q

V

X

ωb
as
hb




·w(q, V,X, ωb, as, hb) =



ẽi
0

0

0

0

0


,



0

ẽi
0

0

0

0


,



0

0

ẽi
0

0

0


,



0

0

0

ẽi
0

0


,



0

0

0

0

e13

0


,



0

0

0

0

0

e14


.
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Since


Dϕ(p0,q0,X0,ω0,a0,h0)



q

V

X

ωb
as
hb




·



δq

δV

δX

δωb
δas
δhb


=



p0 ∗ δq ∗ q0

p0 ∗ δV ∗ p−1
0

p0 ∗ δX ∗ p−1
0

q−1
0 ∗ δωb ∗ q0

a0δas
δhb


,

this yields the 14 independent invariant vector �elds



ei ∗ q
0

0

0

0

0


,



0

ei
0

0

0

0


,



0

0

ei
0

0

0


,



0

0

0

q−1 ∗ ei ∗ q
0

0


,



0

0

0

0

ase13

0


,



0

0

0

0

0

e14


, i = 1, 2, 3.

Indeed for instance the equations p0 ∗ δq ∗ q0 = ẽi gave us

δq = p−1
0 ∗ ẽi ∗ q−1

0 = (p−1
0 ∗ ẽi ∗ p0) ∗ (q0 ∗ p0)−1 = ei ∗ q.

It is easy to check that these vector �elds are indeed invariant.
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The general invariant observer then reads

˙̂q =
1

2
q̂ ∗ (ωm − ωb) +

3∑
i=1

( 3∑
j=1

(lV ijEV j + lXijEXj + lBijEBj) + lhiEh
)
ei ∗ q̂

˙̂
V = A+

1

âs
q̂ ∗ am ∗ q̂−1 +

3∑
i=1

( 3∑
j=1

(mV ijEV j +mXijEXj +mBijEBj) +mhiEh
)
ei

˙̂
X = V̂ +

3∑
i=1

( 3∑
j=1

(nV ijEV j + nXijEXj + nBijEBj) + nhiEh
)
ei

˙̂ωb = q̂−1 ∗
( 3∑
i=1

( 3∑
j=1

(oV ijEV j + oXijEXj + oBijEBj) + ohiEh
)
ei
)
∗ q̂

˙̂as = âs
( 3∑
j=1

(rV jEV j + rXjEXj + rBjEBj) + rhEh
)

˙̂
hb =

3∑
j=1

(sV jEV j + sXjEXj + sBjEBj) + shEh,

where the lV ij, lXij, lBij, lhi, mV ij, mXij, mBij, mhi, nV ij, nXij, nBij, nhi, oV ij, oXij, oBij,

ohi, rV j, rXj, rBj, sV j, sXj, sBj's, rh and sh are arbitrary scalars which possibly depend

on EV i, EXi, EBi, Eh, IV̂ i, Iωi and Iai's. Noticing

3∑
i=1

( 3∑
j=1

(lV ijEV j)
)
ei = LVEV

where EV = V̂ − V and LV is the 3 × 3 matrix whose coe�cients are the lV ij's, and

de�ning EX , EB, LX , Lh, LB, MV , MX , Mh, MB, NV , NX , Nh, NB, OV , OX , Oh, OB,

RV , RX , RB, Rh, SV , SX , Sh and SB in the same way, we can rewrite the observer as
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˙̂q =
1

2
q̂ ∗ (ωm − ωb) + (LVEV + LXEX + LhEh + LBEB) ∗ q̂(113)

˙̂
V = A+

1

âs
q̂ ∗ am ∗ q̂−1 + (MVEV +MXEX +MhEh +MBEB)(114)

˙̂
X = V̂ + (NVEV +NXEX +NhEh +NBEB)(115)

˙̂ωb = q̂−1 ∗ (OVEV +OXEX +OhEh +OBEB) ∗ q̂(116)

˙̂as = âs(RVEV +RXEX +RhEh +RBEB)(117)

˙̂
hb = (SVEV + SXEX + ShEh + SBEB),(118)

where LV , LX , LB, MV , MX , MB, NV , NX , NB, OV , OX , OB are 3 × 3 matrices, RV ,

RX , RB, SV , SX , SB are 1 × 3 matrices, Lh, Mh, Nh, Oh are 3 × 1 matrices and Rh, Sh
are scalars whose coe�cients possibly depend on EV , EX , EB, Eh, IV̂ , Iω and Ia with the

invariant output

EV = V̂ − yV(119)

EX = X̂ − yX(120)

EB = B − q̂ ∗ yB ∗ q̂−1(121)

Eh = 〈X̂, e3〉 − ĥb − yh(122)

and the complete invariant

IV̂ = V̂

Iω = q̂ ∗ (ωm − ω̂b) ∗ q̂−1

Ia =
1

âs
q̂ ∗ am ∗ q̂−1.

The observer is indeed invariant by considering the projection of the output errors EV ,

EX and EB on the frame (e1, e2, e3). As in Section 4.1.3, the norm of q̂ is left unchanged

by Equation (113).
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4.2.3.1. The invariant error system. � The state error is given by



η

ν

χ

β

α

λ


= ϕγ(q,V,X,ωb,as,hb)



q̂

V̂

X̂

ω̂b
âs
ĥb


− ϕγ(q,V,X,ωb,as,hb)



q

V

X

ωb
as
hb


=



q̂ ∗ q−1 − 1

V̂ − V
X̂ −X

q ∗ (ω̂b − ωb) ∗ q−1

âs

as
− 1

ĥb − hb


.

As in Section 4.1.4, we take η = q̂ ∗q−1 and α = âs

as
. As we did in the preceding subsection

it can be easily checked that α, λ and the projections of η, ν, χ and β on the frame

(e1, e2, e3) are invariant. Hence for (i, j) = {1, 2, 3}2,

〈
˙︷ ︸︸ ︷

ηeiη
−1, ej〉 = 〈η̇ ∗ ei ∗ η−1 − η ∗ ei ∗ η−1η̇η−1, ej〉

= 2〈(−1

2
ηβη−1 + LVEV + LXEX + LBEB + LhEh)× (ηeiη

−1), ej〉

〈ν̇, ei〉 = 〈Ia − αη−1 ∗ Ia ∗ η +MVEV +MXEX +MBEB +MhEh, ei〉
〈χ̇, ei〉 = 〈ν +NVEV +NXEX +NBEB +NhEh, ei〉

〈β̇, ei〉 = 〈(η−1Iωη)× β + η−1 ∗ (OVEV +OXEX +OBEB +OhEh) ∗ η, ei〉
α̇ = α(RVEV +RXEX +RBEB +RhEh)

λ̇ = SVEV + SXEX + SBEB + ShEh.

Since we can write

EV = ν

EX = χ

EB = B − η ∗B ∗ η−1

Eh = 〈χ, e3〉 − λ,
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we �nd as expected that the error system

˙︷ ︸︸ ︷
ηeiη

−1 = 2(−1

2
ηβη−1 + LVEV + LXEX + LBEB + LhEh)× (ηeiη

−1)(123)

ν̇ = Ia − αη−1 ∗ Ia ∗ η +MVEV +MXEX +MBEB +MhEh(124)

χ̇ = ν +NVEV +NXEX +NBEB +NhEh(125)

β̇ = (η−1Iωη)× β + η−1 ∗ (OVEV +OXEX +OBEB +OhEh) ∗ η(126)

α̇ = α(RVEV +RXEX +RBEB +RhEh)(127)

λ̇ = SVEV + SXEX + SBEB + ShEh(128)

depends only on the invariant state error (η, ν, χ, β, α, λ) and the �free� known invari-

ants IV̂ , Iω and Ia, but not on the trajectory of the observed system (106)�(111). The

error system (123)�(128) is invariant by considering the projection of the equations (123)�

(126) on the frame (e1, e2, e3).

The linearized error system around (η, ν, χ, β, α, λ) = (1, 0, 0, 0, 1, 0), i.e. the estimated

state equals the actual state, is given by

δη̇ = −1

2
δβ + (LV δEV + LXδEX + LBδEB + LhδEh)

δν̇ = −2Ia × δη − δαIa + (MV δEV +MXδEX +MBδEB +MhδEh)

δχ̇ = δν + (NV δEV +NXδEX +NBδEB +NhδEh)

δβ̇ = Iω × δβ + (OV δEV +OXδEX +OBδEB +OhδEh)

δα̇ = (RV δEV +RXδEX +RBδEB +RhδEh)

δλ̇ = (SV δEV + SXδEX + SBδEB + ShδEh)

where

δEV = δν

δEX = δχ

δEB = −δη ∗B ∗ η−1 − η ∗B ∗ (−η−1 ∗ δη ∗ η−1) = 2(η ∗B ∗ η−1)× (δη ∗ η−1) = 2B × δη
δEh = 〈δχ, e3〉 − δλ.

4.2.4. Design of the observer gain matrices. �

4.2.4.1. Choice of the gain matrices. � The linearized error system without correction

terms turns out to be decoupled into 4 independent subsystems (see �4.2.4.3) when Ia
is constant and Iω = 0 (in particular when the aircraft is in level �ight). To ensure a
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simple tuning, the gain matrices should respect this decoupling. On the other hand, as

previously explained, we do not want these magnetic disturbances � which unavoidably

corrupt the heading estimation � to a�ect the attitude, velocity and position estimates

too much. The idea is thus to rely on the magnetic measurement yB as little as possible.

Therefore we choose

LVEV = −lV Ia × EV LXEX = 0 LBEB = lB〈B × EB, Ia〉Ia LhEh = 0

MVEV = −mVEV MXEX = 0 MBEB = 0 MhEh = −mhEhe3

NVEV = 0 NXEX = −nXEX NBEB = 0 NhEh = −nhEhe3

OVEV = oV Ia × EV OXEX = 0 OBEB = −oB〈B × EB, Ia〉Ia OhEh = 0

RVEV = rV 〈Ia, EV 〉 RXEX = 0 RBEB = 0 RhEh = −rhEh
SVEV = 0 SXEX = 0 SBEB = 0 ShEh = shEh

with (lV , lB,mV ,mh, nX , nh, oV , oB, rV , rh, sh) > 0.

4.2.4.2. Equilibrium points of the observer equations. � When the observer have con-

verged, Equations (126)�(128) of the observer write

OVEV +OBEB = 0

RVEV +RhEh = 0

ShEh = 0.

The choice of gain matrices above leads us to

Ia × EV = 0 and 〈Ia, EV 〉 = 0.

So even if the model is wrong, for example if the Earth magnetic �eld is perturbed, the

observer equations ensure V̂ = V once it has converged. This important property led us

to consider the fourth bias as in addition to the usual biases ωb on the gyros. A similar

conclusion is not possible with the Euler angles even if we consider additional biases:

EB = 0 does not ensure that the yaw angle, for example, is correctly estimated.

4.2.4.3. First-order approximation and coordinate change. � Considering the gain ma-

trices described above, the linearized error equations around the equilibrium point
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(1, 0, 0, 0, 1, 0) write

δη̇ = −1

2
δβ − lV Ia × δEV + lB〈B × δEB, Ia〉Ia

δν̇ = −2Ia × δη − δαIa −mV δEV −mhδEhe3

δχ̇ = δν − nXδEX − nhδEhe3

δβ̇ = Iω × δβ + oV Ia × δEV − oB〈B × δEB, Ia〉Ia
δα̇ = rV 〈Ia, δEV 〉 − rhδEh
δλ̇ = shδEh

with

δEV = δν

δEX = δχ

δEB = 2B × δη
δEh = 〈δχ, e3〉 − δλ.

We change the coordinates in order to have the estimated speci�c acceleration vector

Ia vertical. Let η0 be this frame rotation de�ned by

η−1
0 ∗ Ia ∗ η0 = −kA, where k > 0(129)

η−1
0 ∗B ∗ η0 = B̃ with B̃ = (B̃1 0 B̃3).(130)

It follows that

η̃ = η−1
0 ∗ η ∗ η0 ν̃ = η−1

0 ∗ ν ∗ η0

χ̃ = η−1
0 ∗ χ ∗ η0 β̃ = η−1

0 ∗ β ∗ η0

e
′

i = η−1
0 ∗ ei ∗ η0.
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The error system then becomes

δ ˙̃η = 2δη̃ × (η−1
0 ∗ η̇0)− 1

2
δβ̃ + klVA× δẼV + k2lB〈B̃ × δẼB, A〉A

δ ˙̃ν = 2δν̃ × (η−1
0 ∗ η̇0) + 2kA× δη + kδαA−mV δẼV −mhδẼhe

′

3

δ ˙̃χ = 2δχ̃× (η−1
0 ∗ η̇0) + δν̃ − nXδẼX − nhδẼhe

′

3

δ ˙̃β = 2δβ̃ × (η−1
0 ∗ η̇0) + Ĩω × δω̃ − koVA× δẼV − k2oB〈B̃ × δẼB, A〉A

δα̇ = −rV k〈A, δẼV 〉 − rhδẼh
δλ̇ = shδẼh

with

δẼV = δν̃

δẼX = δχ̃

δẼB = 2B̃ × δη̃

δẼh = 〈δχ̃, e′3〉 − δλ.

We suppose now that the system is moving along a �smooth� trajectory, i.e η̇0, İa and

Iω are negligible (�rst order terms). All the terms of the form ·× (η−1
0 ∗ η̇0) then disappear

and k is now constant. The error system splits into three decoupled subsystems and one

cascaded subsystem:

� the longitudinal subsystemsδ ˙̃η2

δ ˙̃ν1

δ ˙̃β2

 =

 0 klV g −1
2

−2kg −mV 0

0 −koV g 0

δη̃2

δν̃1

δβ̃2


δχ̃1 = δν̃1 − nXδχ̃1

� the lateral subsystemsδ ˙̃η1

δ ˙̃ν2

δ ˙̃β1

 =

 0 −klV g −1
2

2kg −mV 0

0 koV g 0

δη̃1

δν̃2

δβ̃1


δχ̃2 = δν̃2 − nXδχ̃2
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� the vertical subsystem
δ ˙̃ν3

δα̇

δ ˙̃χ3

δλ̇

 =


−mV kg −mh mh

−kgrV 0 −rh rh
1 0 −(nX + nh) nh
0 0 sh −sh



δν̃3

δα

δχ̃3

δλ


� the heading subsystem

(
δ ˙̃η3

δ ˙̃β3

)
=

(
−2k2g2lBB̃

2
1 −1

2

2k2g2oBB̃
2
1 0

)(
δη̃3

δβ̃3

)
+

(
2k2g2lBB̃3B̃1

−2k2g2oBB̃3B̃1

)
δη̃1.

Thanks to this decoupled structure, the convergence of each subsystem, and then the

local convergence of the invariant observer, is straightforward, and leads to Theorem 3.

Theorem 3. � Consider the physical system (106)�(111) with the measurements (112).

Consider the nonlinear invariant observer de�ned by

˙̂q =
1

2
q̂ ∗ (ωm − ωb) + (LVEV + LBEB) ∗ q̂

˙̂
V = A+

1

âs
q̂ ∗ am ∗ q̂−1 + (MVEV +MhEh)

˙̂
X = V̂ + (NXEX +NhEh)

˙̂ωb = q̂−1 ∗ (OVEV +OBEB) ∗ q̂
˙̂as = âs(RVEV +RhEh)

˙̂
hb = (ShEh),

with the expression of the output errors given by Equations (119)�(122) and the gain

matrices given in Section 4.2.4.1. Then for any value

(lV , lB,mV ,mh, nX , nh, oV , oB, rV , rh, sh) > 0, the solution (q̂(t), V̂ (t), X̂(t), ω̂b(t), âs(t), ĥb(t))

locally asymptotically converges to (q(t), V (t), X(t), ωb, as, hb) around every �smooth� tra-

jectory, i.e when η̇0, İa, and Iω are �rst order terms.

We insist that it is not usually obvious to come up with a similar convergence result

for an EKF. The gains lV , lB,mV ,mh, nX , nh, oV , oB, rV , rh, sh are also easy to tune, since

the behaviors of each subsystem are independent. Moreover, the lateral, longitudinal and

vertical subsystems do not depend on the magnetic measurements, so will not be a�ected

if the magnetic �eld is perturbed.
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4.2.4.4. In�uence of magnetic disturbances on static behavior. � We now investigate

how the equilibrium point (1, 0, 0, 0, 1, 0) is modi�ed when the magnetic �eld is (statically)

perturbed. We show that only the yaw angle ψ is a�ected while all the other variables,

in particular the attitude angles φ, θ, remain unchanged. Here the Euler angles φ, θ, ψ

correspond to the error quaternion η̃ in the new frame described by Equations (129)-(130).

The equilibrium points (η̃, ν̃, χ̃, ω̃, α̃, λ̃) are de�ned by

(lV kA× ν̃ + lB〈B̃ × ẼB, kA〉kA) ∗ η̃ − 1

2
η̃ ∗ ω̃ = 0

−kA+ αη̃
−1 ∗ kA ∗ η̃ −mV ν̃ −mh(〈χ̃, e

′

3〉 − λ)e
′

3 = 0

ν̃ − nX χ̃− nh(〈χ̃, e
′

3〉 − λ)e
′

3 = 0

η̃
−1 ∗ (−oV kA× ν̃ − oB〈B̃ × ẼB, kA〉kA) ∗ η̃ + (η̃

−1 ∗ Ĩω ∗ η̃)× ω̃ = 0

rV 〈kA, ν̃〉α− rh(〈χ̃, e
′

3〉 − λ) = 0

sh(〈χ̃, e
′

3〉 − λ) = 0.

We ensure ω̃ = 0 by choosing LVEV + LBEB colinear with OVEV +OBEB, that is
oV

lV
= oB

lB
, σ. This implies ν̃ = 0, αη̃ ∗A ∗ η̃−1−A = 0, 〈B̃× ẼB, kA〉 = 0, 〈χ̃, e′3〉−λ = 0

and χ̃ = 0.

Finally, the new equilibrium points is (η̃, ν̃, χ̃, ω̃, α, λ) = (η̃, 0, 0, 0, 1, 0); moreover φ =

θ = 0 and ψ is determined by 〈B̃×ẼB, kA〉 = 0, where the Euler angles φ, θ, ψ correspond

to the error quaternion η̃.

4.2.5. Simulation results. � We �rst illustrate on simulation the behavior of the

invariant observer

˙̂q =
1

2
q̂ ∗ (ωm − ωb) + (LVEV + LXEX + LhEh + LBEB) ∗ q̂ + ε(1− ‖q̂‖2)q̂(131)

˙̂
V = A+

1

âs
q̂ ∗ am ∗ q̂−1 + (MVEV +MXEX +MhEh +MBEB)(132)

˙̂
X = V̂ + (NVEV +NXEX +NhEh +NBEB)(133)

˙̂ωb = q̂−1 ∗ (OVEV +OXEX +OhEh +OBEB) ∗ q̂(134)

˙̂as = âs(RVEV +RXEX +RhEh +RBEB)(135)

˙̂
hb = (SVEV + SXEX + ShEh + SBEB).(136)

with the choice of gain matrices described in �4.2.4.1.
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We choose here time constants around 10s by taking lV = oV = 4e− 2, lB = oB = 1e− 3,

mV = 5, mh = 0.2, rV = 1e− 2, rh = 8e− 4, nX = 0.8, nh = 0.9, sh = 0.4 and ε = 1. The

system follows the trajectory de�ned by

as = 1.1 and hb = 1 ωb =

 0.01

−0.012

0.08


V =

 3− 4 cos(0.23t)

3− 5.6 cos(0.25t+ π/4)

−1− 3.4 sin(.02t)

 ωm =

 sin(0.5t+ π/5)

sin(0.3t+ π/4)

− sin(0.2t+ π/3)

 ,

in SI units, which is quite representative of a small UAV �ight. The states are initialized

far from their true values. At t = 35s, the magnetic �eld is changed from B = (1 0 1)T

to B = (0.7 0.7 0.8)T .

Though we have no proof of convergence but local, the domain of attraction seems to

be large enough, see Figure 4.5. As expected, only the estimated yaw angle ψ is strongly

a�ected by the magnetic disturbance. Because of the coupling terms Ĩωm and Ia, there is

some dynamic in�uence on the other variables.

4.2.6. Experimental results. � We now compare the behavior of our observer with

the commercial INS-GPS device MIDG II from Microbotics Inc. For each experiment

we �rst save the raw measurements from the MIDG II gyroscopes, accelerometers and

magnetic sensors (at a 50Hz refresh rate), the position and velocity provided by the

navigation solutions of its GPS engine (at a 5 Hz refresh rate) and the raw measure-

ments from a barometer module Intersema MS5534B (at a 12.5 Hz refresh rate). A

microcontroller on a development kit communicates with these devices and sends the

measurements to a computer via the serial port (see Figure 4.6). On Matlab Simulink

we feed the observer with these data o�ine and then compare the estimations of the

observer to the estimations given by the MIDG II. In order to have similar behaviors

and considering the units of the raw measurements provided by the MIDG II, we have

chosen lV = 2.8e− 5,lB = 1.4e− 6, mV = 9e− 3, mh = 5e− 4, nX = 1e− 3, nh = 5e− 2,

oV = 4e− 7, oB = 2e− 8, rV = 9.4e− 11, rh = 1e− 9, sh = 5e− 3 and ε = 1.

4.2.6.1. Dynamic behavior (Figure 4.7). � We wait a few minutes until the biases reach

constant values, then move the system in all directions. The observer and the MIDG II

give very similar results (Figures 4.7(a)�4.7(d)). On Figure 4.7(d) it is in fact hb + 148m

which is represented to plot as and hb on the same axis. We can also notice on Figure 4.7(b)
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Figure 4.5. Observer validation (simulation)

that the estimation of VZ given by our observer seems to be closer to the true value than

the estimation provided by the MIDG II: we know that we leave the system motionless

at t = 42s, which is coherent with our estimated VZ .

4.2.6.2. Usefulness of the observer correction terms (Figure 4.8). � As explained in

�4.2.4.1 we have chosen the correction terms so that:

� the magnetic measurements correct essentially the yaw angle and its corresponding

bias, i.e. the heading subsystem
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Figure 4.6. Experimental protocol

� the GPS measurements correct essentially the horizontal and vertical subsystems

� the barometric measurements correct essentially the vertical subsystem.

We highlight this property as well as the importance of correction terms with the

following experiment. Once the biases have reached constant values, the system is left at

rest during 50 minutes:

� for t < 500s the results are very similar for the observer and the MIDG II (Figure 4.8).

� at t = 500s the �magnetic correction terms� are switched o�, i.e. the gains lB and

oB are set to 0. The yaw angle estimated by the observer diverges because the

corresponding bias is not perfectly estimated. Indeed, these variables are not ob-

servable without the magnetic measurements. The other variables are not a�ected

(Figure 4.8).

� at t = 1250s the �GPS correction terms� are also switched o�, i.e. lV ,mV ,nX ,oV
and rV are set to 0. We consider also that hb is constant since there is no GPS

measurements to correct its estimation. The estimated angles, velocities and positions

of the attitude subsystem now diverge too. Zooming around t = 1250s, we see on

Figure 4.8(d) that the estimated pitch angle diverges with a slope corresponding to

the almost-constant di�erence between the estimated and actual pitch angular rate

biases. This explains why the estimated velocity VX diverges quadratically in time.
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Figure 4.7. Dynamic behavior (experiment)

� at t = 2100s the �barometric correction terms� are also switched o�, i.e. mh,nh,rh
and sh are set to 0. All the estimated angles, velocities and positions now diverge

(Figure 4.8).

4.2.6.3. In�uence of magnetic disturbances (Figure 4.9). � Once the biases have reached

constant values, the system is left motionless for 60s. At t = 16s a magnet is put close to

the sensors for 10s. As expected only the estimated yaw angle is a�ected by the magnetic

disturbance (Figure 4.9); the MIDG II exhibits a similar behavior. For the experiments
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Figure 4.8. Usefulness of correction terms (experiment)

related to Figures 4.9(a)�4.9(c) we used the constant gain values detailed above. We

notice that the yaw angle estimated by our algorithm is more a�ected by the disturbance

than the estimation provided by the MIDG II. Indeed the values of the observer gains

are constant whatever the magnetic �eld is. If the norm of the magnetic measurements

change, which means that there is some magnetic disturbance, we would like this to a�ect

the gain values of the magnetic correction terms. A �rst possibility is to consider the

gains lB,oB divided by ‖yB‖2, supposing ‖yB‖2 6= 0. This gain scheduling scheme has
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Figure 4.9. Magnetic disturbances (experiment)

been implemented, and we see on Figure 4.9(d) that the estimated yaw angle is really less

disturbed, and is now close to the estimation given by the MIDG II.

4.3. General invariant observer for aided AHRS

4.3.1. The considered system. � We now consider body-�xed and Earth-�xed ve-

locity measurements (provided, for instance, by a GPS engine and an air-data system )
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and altitude measurement (provided, for instance, by a barometric module). We therefore

consider the following system, described in details in section 2.4

q̇ =
1

2
q ∗ (ωm − ωb)(137)

v̇ = v × (ωm − ωb) + q−1 ∗ A ∗ q + a(138)

ḣ = 〈q ∗ v ∗ q−1, e3〉(139)

ω̇b = 0(140)

where ωm and a are seen as known inputs, together with the output


yv
yV
yB
yh

 =


v

q ∗ v ∗ q−1

q−1 ∗B ∗ q
h

 .(141)

4.3.1.1. Invariance of the system equations. � We consider the following transformation

group generated by constant rotations and translation in the body-�xed and Earth-�xed

frames

ϕ(p0,q0,h0,ω0)


q

v

h

ωb

 =


p0 ∗ q ∗ q0

q−1
0 ∗ v ∗ q0

h+ h0

q−1
0 ∗ ωb ∗ q0 + ω0

 =


q̃

ṽ

h̃

ω̃b



ψ(p0,q0,h0,ω0)


ωm
a

A

B

 =


q−1

0 ∗ ωm ∗ q0 + ω0

q−1
0 ∗ a ∗ q0

p0 ∗ A ∗ p−1
0

p0 ∗B ∗ p−1
0

 =


ω̃m
ã

Ã

B̃



ρ(p0,q0,h0,ω0)


yv
yV
yB
yh

 =


q−1

0 ∗ yv ∗ q0

p0 ∗ yV ∗ p−1
0

q−1
0 ∗ yB ∗ q0

yh + h0

 =


ỹv
ỹV
ỹB
ỹh

 .
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There are 3 + 3 + 1 + 3 = 10 parameters: the two unit quaternions p0 and q0, the scalar

h0 and the R3-vector ω0. The group law � is given by
p1

q1

h1

ω1

 �

p0

q0

h0

ω0

 =


p1 ∗ p0

q0 ∗ q1

h1 + h0

q−1
1 ∗ ω0 ∗ q1 + ω1

 .

The system (137)�(140) is of course invariant by the transformation group since

˙̃q = p0 ∗ q̇ ∗ q0 = p0 ∗ (
1

2
q ∗ ω) ∗ q0 =

1

2
(p0 ∗ q ∗ q0) ∗ (q−1

0 ∗ ω ∗ q0) =
1

2
q̃ ∗ ω̃

˙̃v = q−1
0 ∗ v̇ ∗ q0

= (q−1
0 ∗ v ∗ q0)× (q−1

0 ∗ ω ∗ q0) + q−1
0 ∗ a ∗ q0 + (p0 ∗ q ∗ q0)−1 ∗ (p0 ∗ A ∗ p−1

0 ) ∗ (p0 ∗ q ∗ q0)

= ṽ × ω̃ + q̃−1 ∗ Ã ∗ q̃ + ã

˙̃h = ḣ = 〈q ∗ v ∗ q−1, e3〉 = 〈q̃ ∗ ṽ ∗ q̃−1, ẽ3〉
˙̃ωb = q−1

0 ∗ ω̇b ∗ q0 = 0,

whereas the output (141) is equivariant since


ṽ

q̃ ∗ ṽ ∗ q̃−1

q̃−1 ∗ B̃ ∗ q̃
h̃

 = ρ(p0,q0,h0,ω0)


v

q ∗ v ∗ q−1

q−1 ∗B ∗ q
h

 .

4.3.2. Construction of the general invariant observer. � We solve for (p0, q0, h0, ω0)

the normalization equations

p0 ∗ q ∗ q0 = 1

p0 ∗ ei ∗ p−1
0 = ẽi with i = 1, 2, 3(142)

h+ h0 = 0

q−1
0 ∗ ωb ∗ q0 + ω0 = 0
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where (ẽ1, ẽ2, ẽ3) de�nes a new orthonormal frame. The moving frame γ(q, h, ωb, e1, e2, e3)

is then de�ned by

q0 = q−1 ∗ p−1
0

h0 = −h
ω0 = −p0 ∗ q ∗ ωb ∗ q−1 ∗ p−1

0

where p0 represents the rotation between the two frames (e1, e2, e3) and (ẽ1, ẽ2, ẽ3). We

generalize the construction in [12] since we normalize not only with respect to ϕ but also

with respect to ψ.

We can then �nd the 10 scalar invariant errors which correspond to the projections of

the output error

ργ(q̂,ĥ,ω̂b,e1,e2,e3)

 ŷvŷV
ŷB

− ργ(q̂,ĥ,ω̂b,e1,e2,e3)

yvyV
yB


on the new frame (ẽ1, ẽ2, ẽ3) and to the output error for yh which is invariant. We get

Evi = 〈q̂ ∗ (ŷv − yv) ∗ q̂−1, ei〉
EV i = 〈ŷV − yV , ei〉
EBi = 〈B − q̂ ∗ yB ∗ q̂−1, ei〉

Eh = ĥ− h,

where i = 1, 2, 3. We detail how to get Evi:

〈ργ(q̂,ĥ,ω̂b,e1,e2,e3)

(
ŷv
)
− ργ(q̂,ĥ,ω̂b,e1,e2,e3)

(
yv
)
, ẽi〉

= 〈p0 ∗ q̂ ∗ ŷv ∗ q̂−1 ∗ p−1
0 − p0 ∗ q̂ ∗ yv ∗ q̂−1 ∗ p−1

0 , ẽi〉
= 〈q̂ ∗ ŷv ∗ q̂−1 − q̂ ∗ yv ∗ q̂−1, p−1

0 ∗ ẽi ∗ p0〉
= 〈q̂ ∗ (ŷv − yv) ∗ q̂−1, ei〉.

We get also the 9 scalar complete invariants which correspond to the projections of

φγ(q̂,v̂,ω̂b,e1,e2,e3)

(
v̂
)

and ψγ(q̂,v̂,ω̂b,e1,e2,e3)

(
ωm
a

)



4.3. GENERAL INVARIANT OBSERVER FOR AIDED AHRS 97

on the new frame (ẽ1, ẽ2, ẽ3). We �nd

Iv̂i = 〈q̂ ∗ v̂ ∗ q̂−1, ei〉
Iωi = 〈q̂ ∗ (ωm − ω̂b) ∗ q̂−1, ei〉
Iai = 〈q̂ ∗ a ∗ q̂−1, ei〉 where i = 1, 2, 3.

Notice that Iv̂i, Iωi, Iai, Evi, EV i, EBi's and Eh are functions of the estimates and the

measurements. Hence they are known quantities which can be used in the construction

of the observer. It is straightforward to check they are indeed invariant. For instance,

〈q̂ ∗ v̂ ∗ q̂−1, ei〉 = 〈p0 ∗ q̂ ∗ v̂ ∗ q̂−1 ∗ p−1
0 , p0 ∗ ei ∗ p−1

0 〉
= 〈(p0 ∗ q̂ ∗ q0) ∗ (q−1

0 ∗ v̂ ∗ q0) ∗ (p0 ∗ q̂ ∗ q0)−1, ẽi〉.

To �nd invariant vector �elds, we solve for w(q, v, h, ωb) the 10 vector equationsDϕγ(q,v,ωb,e1,e2,e3)


q

v

h

ωb


 · w(q, v, h, ωb) =


ẽi
0

0

0

 ,


0

ẽi
0

0

 ,


0

0

e7

0

 ,


0

0

0

ẽi

 i = 1, 2, 3.

Since Dϕ(p0,q0,h0,ω0)


q

v

h

ωb


 ·

δq

δv

δh

δωb

 =


p0 ∗ δq ∗ q0

q−1
0 ∗ δv ∗ q0

δh

q−1
0 ∗ δωb ∗ q0

 ,

this yields the 10 independent invariant vector �elds (i = 1, 2, 3)
ei ∗ q

0

0

0

 ,


0

q−1 ∗ ei ∗ q
0

0

 ,


0

0

e7

0

 ,


0

0

0

q−1 ∗ ei ∗ q

 .

Indeed for instance the equations p0 ∗ δq ∗ q0 = ẽi gave us

δq = p−1
0 ∗ ẽi ∗ q−1

0 = (p−1
0 ∗ ẽi ∗ p0) ∗ (q0 ∗ p0)−1 = ei ∗ q.
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It is easy to check that these vector �elds are invariant. The general invariant observer

then reads

˙̂q =
1

2
q̂ ∗ (ωm − ω̂b) +

3∑
i=1

( 3∑
j=1

(lvijEvj + lV ijEV j + lBijEBj) + lhiEh
)
ei ∗ q̂

˙̂v = v̂ × (ωm − ω̂b) + q̂−1 ∗ A ∗ q̂ + a

+ q̂−1 ∗
( 3∑
i=1

( 3∑
j=1

(mvijEvj +mV ijEV j +mBijEBj) +mhiEh
)
ei
)
∗ q̂

˙̂
h = 〈q̂ ∗ v̂ ∗ q̂−1, e3〉+

3∑
j=1

(nvjEvj + nV jEV j + nBjEBj) + nhEh

˙̂ωb = q̂−1 ∗
( 3∑
i=1

( 3∑
j=1

(ovijEvj + oV ijEV j + oBijEBj) + ohiEh
)
ei
)
∗ q̂,

where the lvij, lV ij, lBij, lhi, mvij, mV ij, mBij, mhi, nvj, nV j, nBj, ovij, oV ij, oBij, ohi's and

nh are arbitrary scalars which possibly depend on Evi, EV i, EBi, Eh, Iv̂i, Iωi and Iai's.

Noticing
3∑
i=1

( 3∑
j=1

(lvijEvj)
)
ei = LvEv

where Ev = q̂ ∗ (v̂ − v) ∗ q̂−1 and Lv is the 3 × 3 matrix whose coe�cients are the lvij's,

and de�ning EV , EB, LV , LB, Lh, Mv, MV , MB, Mh, Nv, NV , NB, Nh, Ov, OV , OB and

Oh in the same way, the correction terms can be rewritten with the matrices E,L,M,N

and O such as E = (Ev EV EB Eh)
T and

LvEv + LVEV + LBEB + LhEh = LE,

and the same notation for M,N and O.

Then we can rewrite the observer as

˙̂q =
1

2
q̂ ∗ (ωm − ωb) + (LE) ∗ q̂(143)

˙̂v = v̂ × (ωm − ωb) + q̂−1 ∗ A ∗ q̂ + a+ q̂−1 ∗ (ME) ∗ q̂(144)

˙̂
h = 〈q̂ ∗ v̂ ∗ q̂−1, e3〉+ (NE)(145)

˙̂ωb = q̂−1 ∗ (OE) ∗ q̂.(146)
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The observer is indeed invariant by considering the projection of the output errors Ev,

EV and EB on the frame (e1, e2, e3). As in section 4.1.3, the norm of q̂ is left unchanged

by Equation (143).

4.3.3. The invariant error system. � The state error is given by


η

ν

λ

β

 = ϕγ(q,v,ωb,e1,e2,e3)


q̂

v̂

ĥ

ω̂b

− ϕγ(q,v,ωb,e1,e2,e3)


q

v

h

ωb



=


q̂ ∗ q−1 − 1

q ∗ (v̂ − v) ∗ q−1

ĥ− h
q ∗ (ω̂b − ωb) ∗ q−1

 .

As in Section 4.1.3, we take η = q̂ ∗ q−1. As we did above, it can be easily checked that

λ and the projections of η, ν and β on the frame (e1, e2, e3) are invariant. Hence for

(i, j) = 1, 2, 3,

˙︷ ︸︸ ︷
〈η ∗ ei ∗ η−1, ej〉 = 〈η̇ ∗ ei ∗ η−1 − η ∗ ei ∗ η−1 ∗ η̇ ∗ η−1, ej〉

= 2〈(−1

2
η ∗ β ∗ η−1)× (η ∗ ei ∗ η−1), ej〉+ 2〈(LE)× (η ∗ ei ∗ η−1), ej〉

〈ν̇, ei〉 = 〈(η−1 ∗ Iv̂ ∗ η)× β + η−1 ∗ A ∗ η − A, ei〉+ 〈η−1 ∗ (ME) ∗ η, ei〉

λ̇ =
˙̂
h− ḣ = 〈Iv̂ − η−1 ∗ Iv̂ ∗ η − η−1 ∗ ν ∗ η, e3〉+ (NE)

〈β̇, ei〉 = 〈(η−1 ∗ Iω ∗ η)× β + η−1 ∗ (OE) ∗ η, ei〉.

Since we can write

Ev = η ∗ ν ∗ η−1 EV = Iv̂ − η−1 ∗ Iv̂ ∗ η + ν

EB = B − η ∗B ∗ η−1 Eh = λ,



100 CHAPTER 4. SYMMETRY-PRESERVING OBSERVERS FOR AIDED AHRS

we �nd as expected that the error system

˙︷ ︸︸ ︷
η ∗ ei ∗ η−1 = 2(−1

2
η ∗ β ∗ η−1)× (η ∗ ei ∗ η−1) + 2(LE)× (η ∗ ei ∗ η−1)(147)

ν̇ = (η−1 ∗ Iv̂ ∗ η)× β + η−1 ∗ A ∗ η − A+ η−1 ∗ (ME) ∗ η(148)

λ̇ = 〈Iv̂ − η−1 ∗ Iv̂ ∗ η − η−1 ∗ ν ∗ η, e3〉+ (NE)(149)

β̇ = (η−1 ∗ Iω ∗ η)× β + η−1 ∗ (OE) ∗ η(150)

depends only on the invariant state error (η, ν, λ, β) and the �free� known invariants Iv̂ and

Iω, but not on the trajectory of the observed system (137)�(140). The error system (147)�

(150) is invariant by considering the projection of the equations (147),(148) and (150) on

the frame (e1, e2, e3).

The linearized error system around (η, ν, λ, β) = (1, 0, 0, 0), i.e. the estimated state

equals the actual state, is given by

δη̇ = −1

2
δβ + (LδE)(151)

δν̇ = Iv̂ × δβ + 2A× δη + (MδE)(152)

δλ̇ = 〈−Iv̂ × δη − δν, e3〉+ (NδE)(153)

δβ̇ = Iω × β + (OδE),(154)

where

δEv = δν δEV = δν − 2Iv̂ × δν
δEB = 2B × δη δEh = δλ.

We notice that the normalization equation (142) led us to consider the velocity error ν

in the Earth-�xed frame. Instead, choosing q−1
0 ∗ ei ∗ q0 = ẽi would lead us to a velocity

error ν̃ = v̂− v in the body-�xed frame which seems more �natural" since Equation (138)

is written in body-�xed coordinates. But in this case, the output error δEB would be-

come δẼB = 2(q̂−1 ∗B ∗ q̂)× δν; so the error system, and its convergence behavior, would

depend on the trajectory q̂(t).

4.3.4. Design of the observer gain matrices. � Up to now, we have only inves-

tigated the structure of the observer. We now must choose the gain matrices Lv, LV ,

LB, Lh, Mv, MV , MB, Mh, Nv, NV , NB, Nh, Ov, OV , OB, Oh to meet the following

requirements locally around any trajectory :
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� at a low velocity �normal" �ight, which is common for UAVs in an urban area, i.e. Iv̂
and Iω are �rst order terms: the error must converge to zero and its behavior should

be easily tunable; the magnetic measurements should not a�ect the attitude, velocity

and altitude estimations, but only the heading

� at a level �ight, i.e. Iv̂ = V1e1 + V2e2 + δV3e3 where V1, V2 are constant and Iω, δV3

are �rst order terms, the behavior of the roll angle error towards the direction of Iv̂,

which is the most important estimation for a �ight control, should not be a�ected by

V1,V2,δV3 and any magnetic disturbance.

Therefore we choose

LvEv = lvA× Ev LVEV = lVA× EV
LBEB = lB〈B × EB, A〉A
MvEv = −mvEv MVEV = −mVEV

NhEh = −nhEh
OvEv = −ovA× Ev OVEV = −oVA× EV
OBEB = −oB〈B × EB, A〉A

with (lv, lV , lB,mv,mV , nh, ov, oV , oB) > 0 and the other matrices equal to 0. At a low

velocity �non-aggressive� �ight, the error system (151)�(154) splits into three decoupled

subsystems and two cascaded subsystems:

� the longitudinal subsystemδη̇2

δν̇1

δβ̇2

 =

 0 g ∗ (lv + lV ) −1
2

−2g −(mv +mV ) 0

0 −(ov + oV ) 0

δη2

δν1

δβ2


� the lateral subsystemδη̇1

δν̇2

δβ̇1

 =

 0 −g ∗ (lv + lV ) −1
2

2g −(mv +mV ) 0

0 ov + oV 0

δη1

δν2

δβ1


� the vertical subsystem

δν̇3 = −(mv +mV )δν3

� the heading subsystem(
δη̇3

δβ̇3

)
=

(
−2gB2

1 lB −1
2

2gB2
1oB 0

)(
δη3

δβ3

)
+

(
2gB1B3lB
−2gB1B3oB

)
δη1
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� the altitude subsystem

δλ̇ = −nhδλ− δν3.

Thanks to this decoupled structure, the tuning of the gains lv, lV , lB,mv,mV , nh, ov, oV , oB
and the local convergence of the invariant observer are straightforward. Obviously the

lateral, longitudinal, vertical and altitude subsystems do not depend on the magnetic mea-

surements, so will not be a�ected if the magnetic �eld is perturbed. As in Section 4.2.4.3,

we can also prove that the choice of matrices meets the preceding requirements during a

level �ight, and leads to Theorem 4.

Theorem 4. � Consider the physical system (137)�(140) with the measurements (141).

Consider the nonlinear invariant observer de�ned by

˙̂q =
1

2
q̂ ∗ (ωm − ωb) + (LE) ∗ q̂

˙̂v = v̂ × (ωm − ωb) + q̂−1 ∗ A ∗ q̂ + a+ q̂−1 ∗ (ME) ∗ q̂
˙̂
h = 〈q̂ ∗ v̂ ∗ q̂−1, e3〉+ (NE)

˙̂ωb = q̂−1 ∗ (OE) ∗ q̂,

with the expression of the output errors given in Section (4.3.2) and the gain matrices given

in Section 4.3.4. Then for any value (lv, lV , lB,mv,mV , nh, ov, oV , oB) > 0, the solution

(q̂(t), v̂(t), ĥ(t), ω̂b(t)) locally asymptotically converges to (q(t), v(t), h(t), ωb) around every

trajectory during low velocity �normal� �ight or during level �ight, as previously de�ned.

4.3.5. Simulation results. � We �rst illustrate the behavior of the invariant observer

by means of a simulation

˙̂q =
1

2
q̂ ∗ (ωm − ω̂b) + (LE) ∗ q̂ + α(1− ‖q̂‖2)q̂

˙̂v = v̂ × (ωm − ω̂b) + q̂−1 ∗ A ∗ q̂ + a+ q̂−1 ∗ (ME) ∗ q̂
˙̂
h = 〈q̂ ∗ v̂ ∗ q̂−1, e3〉+ (NE)

˙̂ωb = q̂−1 ∗ (OE) ∗ q̂

with the choice of gain matrices described in section 4.3.4.

We choose here time constants around 20s by taking lv = lV = 1e− 2, lB = 5.2e − 3,

mv = mV = 2.4, nh = 1, ov = oV = 5.3e− 3, oB = 2.8e−3 and α = 1. The system follows
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the trajectory de�ned by

a =

 .4g ∗ sin(t)

.4g ∗ sin(.5t+ pi/4)

−g − .4g cos(.5t)

 , ω =

 .5 sin(.5t)

.9 sin(.3t)

−.5 sin(.25t)

 and ωb =

 .01

.008

−.01

 ,

which is representative of a small UAV �ight. We see on Figure 4.10 the results of the

following experiment:

� for t < 40s the observer converges well. Though we have no proof of convergence

but local, the domain of attraction seems to be large enough since the states are

initialized far from their true values and the system moves quite fast

� at t = 40s the �GPS correction terms� are switched o�, i.e. the gains lV , mV and oV
are set to 0. The observer still behaves well

� at t = 60s the magnetic �eld is changed from B = (1 0 1)T to B = (0.5 − 0.8 0.7)T .

As expected, only the estimated yaw angle ψ is strongly a�ected by the magnetic dis-

turbance. Because of the coupling terms Iv̂ and Iωm , there is some dynamic in�uence

on the other variables as well.

4.3.6. Experimental results. � The experimental setup does not possess yet mea-

surements from an air-data system, so we will use only Earth-�xed velocity, inertial and

magnetic measurements provided by the commercial INS-GPS device MIDG II from

Microbotics Inc and altitude measurements given by the barometer module Intersema

MS5534B. We use the same experimental protocol as in section 4.2.5 (see Figure 4.6).

Considering the units of the raw measurements provided by the MIDG II, we have cho-

sen lV = 2.8e− 5, lB = 1.4e− 6, mV = 9e− 3, nh = 5e− 2, oV = 4e− 7, oB = 2e− 8 and

α = 1 and we have initialized the altitude measurement to 0 at the beginning of the ex-

periment.

4.3.6.1. Dynamic behavior (Figure 4.11). � We wait a few minutes until the biases reach

constant values, then move the system in all directions and orientations. The observer

and the MIDG II give very similar results (Figure 4.11). To do comparison in the same

frame we compare the Earth velocity provided by the MIDG II and V̂ = q̂ ∗ v̂ ∗ q̂−1 given

by our observer. We can notice that the estimation of Vz given by our observer seems to

be closer to the true value than the estimation provided by the MIDG II: we know that

the system was motionless at t = 42s, which is coherent with our estimated V̂z.

4.3.6.2. In�uence of magnetic disturbances (Figure 4.12). � Once the biases have reached

constant values, the system is left motionless for 60s. At t = 72s a magnet is put close
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Figure 4.10. Observer validation (simulation)

to the sensors for 10s. As expected the estimated roll and pitch angles, longitudinal and

lateral velocities are not a�ected by the magnetic disturbance (Figures 4.12(a)�4.12(b));

the MIDG II exhibits a similar behavior. However we notice that the yaw angle estimated

by our algorithm is much more a�ected by the disturbance that the estimation provided

by the MIDG II. And thus the estimated vertical velocity and altitude are also perturbed

(Figures 4.12(a)�4.12(c)). Indeed for the experiments related to Figures 4.12(a)�4.12(c)

we used the gain values detailed above, which are constant whatever the norm of the mag-

netic �eld is. Similarly to Section 4.2.6, we consider the gains lB and oB divided by ‖yB‖2,
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Figure 4.11. Dynamic behavior (experiment)

supposing ‖yB‖ 6= 0, in order to bypass this limitation. This gain scheduling scheme has

been implemented and we see on Figure 4.12(d) that the estimated vertical velocity, alti-

tude and yaw angle are really less disturbed, and are now close to the estimations given

by the MIDG II.
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Figure 4.12. In�uence of magnetic disturbances (experiment)



CHAPTER 5

INVARIANT KALMAN FILTER

Dans ce chapitre nous proposons une nouvelle version du �ltre de Kalman étendu,

l'�Invariant Extended Kalman Filter�, qui tient compte des symétries naturelles du système

dans la construction de ses termes de correction. Les matrices de gains et de covariance de

ce �ltre convergent vers des constantes pour un large éventail de trajectoires, permettant

alors d'espérer une meilleure estimation de l'état qu'en utilisant un �ltre de Kalman

étendu. Nous illustrons l'intérêt de ce �ltre en l'appliquant à un �aided Attitude and

Heading Reference System�.

5.1. Introduction

In the EKF, the system is seen as a stochastic di�erential equation,

ẋ = f(x, u) +Mw(155)

y = h(x, u) +Nv,(156)

where x, u, y belong to an open subset of Rn × Rm × Rp; w, v are independent white

gaussian noises of size n and p with unit power spectral density, and M,N are square
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matrices. The input u and output y are known signals, and the state x must be estimated.

An estimation x̂(t) of x(t) is then computed by the EKF

˙̂x = f(x̂, u) +K
(
y − h(x̂, u)

)
Ṗ = AP + PAT +MMT − PCT (NNT )−1CP,

with K = PCT (NNT )−1, A = ∂1f(x̂, u) and C = ∂1h(x̂, u) (∂i means the partial deriva-

tive with respect to the ith argument). The rationale is to compute the gain K as in a

linear Kalman �lter since the estimation error ∆x = x̂ − x satis�es the linear equation

∆ẋ = (A − KC)∆x up to �rst-order terms. Of course the convergence of the EKF is

not guaranteed in general as in the linear case, see e.g. [78] for some (local) convergence

results.

Another drawback of this �linear� approach is that it does not respect the geometry of

the problem when (part of) the state space is a manifold. This situation frequently arises

e.g. in the context of aerospace engineering, where the attitude of an aircraft is usually

represented by a unit quaternion rather than Euler angles; ad hoc modi�cations of the

EKF are then used, in particular the so-called Multiplicative EKF (MEKF) introduced

in [77, 49, 58].

We propose a modi�cation of the EKF for nonlinear systems that possess symmetries.

Instead of using a linear correction term based on a linear output error, the proposed �lter

uses a geometrically adapted correction term based on an invariant output error; in the

same way the gain matrix is not updated from of a linear state error, but from an invariant

state error. For that to make sense from a stochastic point of view, we assume the driving

and observation noise enter the system in an invariant way. As for the generic observers

we developed in the preceding chapters, this �Invariant EKF� (IEKF) builds on the ideas

developed in [12, 13, 9], see also [56, 46, 52] for related approaches. More generally it

adds to the several attempts to introduce geometry in the problem of nonlinear �ltering,

see e.g. [18, 57, 45].

The main bene�t of the IEKF is that the matrices A and C are constant on a much

larger set of trajectories (so-called �permanent trajectories� [13]) than equilibrium points

as is the case for the EKF. Near such trajectories, we are back to the �true�, i.e. linear,

Kalman �lter where convergence is guaranteed. Informally, this means the IEKF should

in general converge at least around any slowly-varying permanent trajectory, rather than

just around any slowly-varying equilibrium point for the EKF.

We then apply the IEKF to the practically relevant problem of estimating the velocity

and attitude of a moving rigid body, e.g. an aircraft, from velocity, inertial and magnetic
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measurements. We design two di�erent versions (Left and Right IEKF), which can be

seen as extensions of the MEKF. Finally we present experimental and simulation results.

5.2. System with symmetries and Gaussian noises

Consider the system

ẋ = f(x, u) +M(x)w(157)

y = h(x, u) +N(x)v(158)

where x ∈ X an n-dimensional manifold, u ∈ U = Rm, y ∈ Y = Rp, and w, v are

independent white gaussian noises.

The de�nitions recalled in Chapter 1.4 can be easily adapted to the system (157)�

(158) by assuming the noise is turned o�. Then, with the notations given in Section 1.4,

the system (157)-(158) with noise turned o� is left-invariant with equivariant output if

for all g ∈ G it is una�ected by the transformation that changes (u, x, y) into (U,X, Y ):
d
dt
X(t) = f(X,U), Y = h(X,U). We also want the driving noise w and observation noise v

to preserve invariance and extend the de�nitions of recalled in Chapter 1.4.

De�nition. � Consider the change of variables X = ϕg(x), U = ψg(u) and Y =

ρg(y).The system with noise (157)-(158) is invariant with equivariant output and in-

variant noises if for all g, x, u,

f
(
ϕg(x), ψg(u)

)
+M

(
ϕg(x)

)
w = Dϕg(x) ·

(
f(x, u) +M(x)w

)
h
(
ϕg(x), ψg(u)

)
+N

(
ϕg(x)

)
v = ρg

(
h(x, u) +N(x)v

)
,

i.e. if the system (157)-(158) is una�ected by the considered transformation

Ẋ = f(X,U) +M(X)w

Y = h(X,U) +N(X)v.

Moreover, we assume ρg is linear for all g (which is the case in many examples), so that

ρg(y1 + y2) = ρg(y1) + ρg(y2) for all g, y1, y2.

5.3. Invariant Extended Kalman Filter

For simplicity we restrict to the case where the dimension of the group is r = n, and

the action is free and e�ective, so that X can be identi�ed with G (up to a discrete

group action). Then G = X by left translation Lg(x) = gx, i.e. ϕg(x) = Lg(x) = gx.
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An invariant driving noise then reads DLx M(e)w, and an invariant output noise reads

Dρx N(e)v. since DLgM(x) = M(Lg(x))

5.3.1. A symmetry-preserving observer. � As recalled in Chapter 1.4, a symmetry-

preserving observer reads (see [12] for details)

˙̂x = f(x̂, u) +DLx̂K
(
ρx̂−1(y)− ρx̂−1(h(x̂, u))

)
,

where K is a gain which only depends on the invariant Î(x̂, u) = ψx̂−1(u).

5.3.1.1. Error equation. � Instead of the usual state error ∆x = x̂ − x, we use the

invariant error η = x−1x̂. We then have

η̇ = DLηf(e, ψη−1(Î))−DRη(f(e, Î) +M(e)w)

+DLηK[h(η−1, ψη−1(Î))− h(e, ψη−1(Î)) +N(η−1)v]

where Rη denotes the right multiplication by η. A remarkable feature is this equation

only depends on the trajectory via the invariant term Î.

This leads to de�ne a new class of trajectories, so-called �permanent trajectories�. They

are characterized by the fact that I(x, u) is constant over these trajectories. Thus, for

a class of trajectories which can be large, the nonlinear error equation above becomes

completely autonomous, which reminds the linear stationary case.

5.3.1.2. Linearized error equation. � For a small error, i.e. η close to e, the �rst order

approximation of the error equation reads

(159)
ξ̇ = [ξ, f(e, ψx−1(u))]− ∂f

∂u
(e, ψx−1(u))

∂ψ

∂g
(e, ψx−1(u))ξ −M(e)w − r(ξ)M(e)w

−K∂h

∂x
(e, ψx−1(u))ξ + l(ξ)KN(e)v +K

(
N(e)v − d(ξ)N(e)v

)
,

where [ , ] is the Lie bracket of the Lie algebra of G,l, r and d are the derivative at e of

DL, DR and Dρ: l(ξ) = d
ds
DLexp(sξ), r(ξ) = d

ds
DRexp(sξ) and d(ξ) = d

ds
Dρexp(sξ), see [13]

for details.

5.3.2. Equations of the Invariant Extended Kalman Filter. � The Invariant

EKF then reads

˙̂x = f(x̂, u) +DLx̂K
(
ρx̂−1(y)− ρx̂−1(h(x̂, u))

)
K = PCT (NNT )−1

Ṗ = AP + PAT +MMT − PCT (NNT )−1CP
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where

A(Î) : ξ 7→ [ξ, f(e, Î)]− ∂f

∂u
(e, Î)

∂ψ

∂g
(e, Î)ξ

C = Dh(e, I), M = M(e), N = N(e).

It relies on the same ideas as the usual EKF, but instead of using a linear correction term

based on a linear output error, it uses a geometrically adapted correction term based on

an invariant output error; in the same way the gain matrix is not updated from of a linear

state error, but from an invariant state error.

There is nevertheless a slight problem with the linearized invariant error equation (159),

because of the quadratic terms of the type r(ξ)M(e)w which do not appear in the usual

linearized equation of the EKF

d

dt
ξ = (A−KC)ξ −Mw +KNv.(160)

Instead, here the linearized error equation is rather a multiplicative inhomogeneous equa-

tion of the form
d

dt
ξ = A0(t)ξ + αW1(t) + αW2(t)ξ(161)

rather than of the form
d

dt
ζ = A0(t)ζ + αW1(t).(162)

W1 and W2 are time-varying matrices, with entries being linear scalar functions of the

white mutually independent noises w and v (thus 〈W1〉 = 〈W2〉 = 0), and α is a parameter

measuring the magnitude of the noises. Linear multiplicative stochastic equations are

standard in physics and chemistry, but unlike the linear inhomogeneous equations of the

form (162) (as the Langevin equation) it can only be solved in special cases. Nevertheless,

a rather general approach is based on approximations, since the true solution is written

in the form of a series expansion in powers of α [83].

We are going to prove that the average and covariance matrix of the solution of (161) are

solutions to order α2 of the non-stochastic di�erential equations veri�ed by the average

and the covariance of the solution of Equation (162). Then: if the observer made for

Equation (160) is robust, the expectation of ξ (verifying Equation (159)) will also tend

to 0 when t→∞; and the covariance matrix of the solution of Equation (160) will be an

approximation of the covariance of the solution of the true linearized equation (159). This

argument is standard in mathematical physics, since multiplicative noise generally yields

a shift of order α2. For instance, the criterion for energy of the damped random frequency
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oscillator with frequency ω2
0(1 + αw(t)) to tend to zero is that the damping coe�cient,

instead of being only strictly positive, is bounded from below by a linear function of α2

(see [83]).

According to [83] (p403, rigourously proved a few pages later) we see we have for the

solution of Equation (161)

d

dt
〈ξ(t)〉 = [A0(t) + α 〈W2(t)〉+ α2

〈
W2(t)2

〉
] 〈ξ(t)〉+ α2〈W1(t)W2(t)〉+O(α3)

and thus, as 〈W2(t)〉 = 0, the mean values 〈ξ〉 and 〈ζ〉 obey to the same equation up

to terms of order α2. Still using [83] p404 we also see that the covariances obey the

same di�erential equations up to terms of order α2, once again because the α 〈W2〉 term
vanishes.

5.4. Considered system

We now apply the IEKF to the aided AHRS problem, with velocity, inertial and mag-

netic measurements from low-cost sensors. We therefore consider the system presented

in 4.1, i.e.

q̇ =
1

2
q ∗ (ωm − ωb)(163)

V̇ = A+
1

as
q ∗ am ∗ q−1(164)

ω̇b = 0(165)

ȧs = 0,(166)

where ωm and am are seen as known inputs, together with the output(
yV
yB

)
=

(
V

q−1 ∗B ∗ q

)
.(167)

It is reasonable to assume each scalar sensor is corrupted by an additive gaussian white

noise with identical variance for each of the three scalar sensors constituting a triaxial

sensor, and all the noises are mutually independent (this is technologically motivated for

the accelerometers, gyroscopes and magnetic sensors, though much more questionable for

the GPS engine). Hence we can see each triaxial sensor as corrupted by a �coordinate-free

vector noise� whose coordinates are gaussian in the body frame as well as the Earth frame

(or any other smooth time-varying frame). Indeed, the mean and the auto-correlation time

of such a noise is not a�ected by a (smoothly) time-varying rotation.
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5.5. Multiplicative Extended Kalman Filter

We begin with the design of a Multiplicative EKF (MEKF) in the spirit of [77, 49, 58]

(see also [41, 8]), in order to compare the structure and the properties of an IEKF with

the �well-known� MEKF. The idea is to respect the geometry of the quaternion space,

by using for the quaternion estimation a multiplicative correction term q̂ ∗ KqE which

preserves the unit norm, and by computing the error equation with the error q−1 ∗ q̂ (or
equivalently q̂−1 ∗ q = (q−1 ∗ q̂)−1). Notice the standard linear correction term does not

preserve the norm, hence some projection would be needed, whereas the standard linear

error q̂ − q does not really make sense for quaternions.

We assume the noise enters the system as

q̇ =
1

2
q ∗ (ωm − ωb) + q ∗Mqwq(168)

V̇ = A+
1

as
q ∗ am ∗ q−1 + q ∗MVwV ∗ q−1(169)

ω̇b = Mωwω(170)

ȧs = Mawa,(171)

and the output as (
yV
yB

)
=

(
V +NV vV

q−1 ∗B ∗ q +NBvB

)
,(172)

withMq,MV ,Mω, NV , NB diagonal matrices. The driving and observation noises are thus

consistent with a scalar additive noise on each individual sensor. The term q ∗ Mqwq
preserves the norm of the quaternion.

The MEKF then takes the form

˙̂q =
1

2
q̂ ∗ (ωm − ω̂b) + q̂ ∗KqE(173)

˙̂
V = A+

1

âs
q̂ ∗ am ∗ q̂−1 +KVE(174)

˙̂ωb = KωE(175)

˙̂as = KaE.(176)

where the output error is given by

E =

(
ŷV − yV
ŷB − yB

)
=

(
V̂ − V −NV vV

q̂−1 ∗B ∗ q̂ − yB −NBvB

)
.
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We consider the state error µ = q−1 ∗ q̂, ν = V̂ − V , β = ω̂b − ωb and α = âs − as. A
tedious but simple computation yields the error system

µ̇ = −1

2
β ∗ µ+ µ× Ĵω −Mqwq ∗ µ+ µ ∗KqE

ν̇ = Îa −
1

âs − α
q̂µ ∗ am ∗ µ−1 ∗ q̂−1 − µ ∗ q̂ ∗MVwV ∗ q̂−1 ∗ µ−1 +KVE

β̇ = KωE −Mωwω

α̇ = αKaE − αMawa,

where the output error is rewritten as

E =

(
ν −NV vV

ĴB − µ−1 ∗ ĴB ∗ µ−NBvB

)
,

and Ĵω = ωm − ω̂b, Îa = 1
âs
q̂ ∗ am ∗ q̂−1 and ĴB = q̂−1 ∗B ∗ q̂.

We next linearize this error system around (µ, ν, β, α) = (1, 0, 0, 0), drop all the quadratic

terms in noise and in�nitesimal state error according to the approximation in section 5.3.2,

and eventually �nd
δµ̇

δν̇

δβ̇

δα̇

 = (A−KC)


δµ

δν

δβ

δα

−M

wq
wV
wω
wa

+KN

(
vV
vB

)
,

which has the desired form of Equation (160) with

A =


−Ĵω× 033 −1

2
I3 031

2Ĵa×R(q̂) 033 Ĵω× −Ĵa
033 033 033 031

031 031 031 031

 C =

(
033 I3 033 031

−2ĴB× 033 033 031

)

M = Diag(Mq, R(q̂)MV ,Mω,Ma) N = Diag(NV , NB)

K = −(Kq, KV , Kω, Ka)
T .

We have used the matrices I× and R(q) de�ned by I×u = I × u and R(q)u = q ∗ u ∗ q−1

for all for u ∈ R3.

Features of the MEKF

� Sound geometric structure for the quaternion estimation equation: by construction

Equation (178) preserves the unit norm of the estimated quaternion.
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� Possible convergence issues of the error equation (and then of the �lter) in many

situations: indeed, the matrices A and C used for computing the gain matrix K are

constant only in level �ight, i.e. Îω ' 0 and Îa ' −A, because of the trajectory-

dependent terms R(q) in A.

5.6. Left Invariant Extended Kalman Filter

We now design a �rst Invariant Extended Kalman Filter, which can be seen as a gen-

eralization and an improvement of the MEKF. It is a direct application of the method

presented in section 5.3. It is termed �Left IEKF� (LIEKF) because in the transformation

group de�ned below the quaternion q is multiplied on the left by a constant quaternion p0.

5.6.1. Problem setting in terms of transformation groups. � We notice the state

space is a group for the law given by
p0

V0

ω0

a0

 �

q

V

ωb
as

 =


p0 ∗ q

p0 ∗ (V + V0) ∗ p−1
0

ωb + ω0

asa0

 ,

and hence acts on itself (the physical meaning is clear: rotation and translation in Earth

axes, translation in body axes, and scaling). It also yields the transformation groups

ψ(p0,V0,ω0,a0)


ωm
am
A

B

 =


ωm + ω0

a0am
p0 ∗ A ∗ p−1

0

p0 ∗B ∗ p−1
0


ρ(p0,V0,ω0,a0)

(
yV
yB

)
=

(
p0 ∗ (yV + V0) ∗ p−1

0

yB

)
.

The system (163)�(166) is clearly invariant, for instance

˙︷ ︸︸ ︷
p0 ∗ q = p0 ∗ q̇ =

1

2
(p0 ∗ q) ∗

(
(ωm + ω0)− (ωb + ω0)

)
,

whereas the output (167) is equivariant since(
p0 ∗ (V + V0) ∗ p−1

0

(p0 ∗ q)−1 ∗ (p0 ∗B ∗ p−1
0 ) ∗ (p0 ∗ q)

)
ρ(q0,V0,ω0,a0)

(
V

q−1 ∗B ∗ q

)
.
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The complete set of invariants is given by ψx̂−1(u), with x̂−1 = (q̂−1,−V̂ ,−ω̂b, 1
âs

), hence

reads 
Ĵω
Ĵa
ĴA
ĴB

 =


ωm − ω̂b

1
âs
am

q̂−1 ∗ A ∗ q̂
q̂−1 ∗B ∗ q̂

 .

Moreover the driving noise as de�ned in Equations (168)�(171) for the MEKF is also

invariant. We �nally de�ne an invariant observation noise by(
yV
yB

)
=

(
V + q ∗NV vV ∗ q−1

q−1 ∗B ∗ q +NBvB

)
.(177)

Notice the noise on yV is di�erent from the noise in Equation (172), which is not invariant:

it is additive in body axes rather than in Earth axes, see section 5.4 for a tentative physical

justi�cation.

5.6.2. Left IEKF equations. � We directly follow section 5.3 to derive the structure

of the LIEKF and the linearized error equation (160) used to compute the gains. The

LIEKF takes the form

˙̂q =
1

2
q̂ ∗ (ωm − ω̂b) + q̂ ∗ (KqE)(178)

˙̂
V = A+

1

âs
q̂ ∗ am ∗ q̂−1 + q̂ ∗ (KVE) ∗ q̂−1(179)

˙̂ωb = KωE(180)

˙̂as = âsKaE,(181)

where the invariant output error is given by

E = ρx̂−1

(
ŷV
ŷB

)
− ρx̂−1

(
yV
yB

)
=

(
q̂−1 ∗ (V̂ − yV ) ∗ q̂
q̂−1 ∗B ∗ q̂ − yB

)
.

Notice Equation (178) and Equation (180) are the same as Equation (173) and Equa-

tion (175) in the MEKF, while Equation (179) and Equation (181) are di�erent from

Equation (174) and Equation (176).
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The invariant state error x−1x̂ reads
µ

ν

β

α

 =


q−1 ∗ q̂

q−1 ∗ (V̂ − V ) ∗ q
ω̂b − ωb

âs

as

 ,

hence we recover the quaternion error used in the MEKF.

The error system is

µ̇ = −1

2
β ∗ µ+ µ× Ĵω −Mqwq ∗ µ+ µ ∗KqE

ν̇ = µ ∗ Ĵa ∗ µ−1 − αĴa + ν × (Ĵω + β)−MVwV + 2ν ×Mqwq + µ ∗KVE ∗ µ−1

β̇ = KωE −Mωwω

α̇ = αKaE − αMawa,

where the invariant output error is rewritten as

E =

(
µ−1 ∗ (ν −NV vV ) ∗ µ

ĴB − µ ∗ ĴB ∗ µ−1 −NBvB

)
.

We then linearize this error system around the group identity element (µ, ν, β, α) =

(1, 0, 0, 1). We drop all the quadratic terms in noise and in�nitesimal state error according

to the approximation in section 5.3.2, and eventually �nd
δµ̇

δν̇

δβ̇

δα̇

 = (A−KC)


δµ

δν

δβ

δα

−M

wq
wV
wω
wa

+KN

(
vV
vB

)
,

which has the desired form of Equation (160) with

A =


−Ĵω× 033 −1

2
I3 031

−2Ĵa× 033 −Ĵω× −Ĵa
033 033 033 031

031 031 031 031

 C =

(
033 I3 033 031

2ÎB× 033 033 031

)

M = Diag(Mq,MV ,Mω,Ma) N = Diag(NV , NB)

K = −(Kq, KV , Kω, Ka)
T .

Features of the LIEKF
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� Symmetry-preserving structure: rotations, translations and scaling in the appropri-

ated frames leave the error system unchanged, which is meaningful from an engineer-

ing point of view.

� Sound geometric structure for the quaternion estimation equation: by construction

Equation (178) preserves the unit norm of the estimated quaternion.

� Larger expected domain of convergence: the matrices A and C used for computing

the gain matrix K are constant not only in level �ight but also on every permanent

trajectory de�ned by constant Ĵω, Ĵa, ĴA, ĴB. This is a much bigger set of trajectories

than for the MEKF, especially if Kq is kept small by choosing a large NB (little

con�dence in the magnetic measurements) so that ĴB does not really matter.

5.7. Right Invariant Extended Kalman Filter

We now design a second Invariant Extended Kalman Filter, with a di�erent trans-

formation group. It is termed �Right IEKF� (RIEKF) because the quaternion q is now

multiplied on the right by a constant quaternion q0.

5.7.1. Problem setting in terms of transformation groups. � The state space is

also a group for the law given by
q0

V0

ω0

a0

 �

q

V

ωb
as

 =


q ∗ q0

V + V0

q−1
0 ∗ ωb ∗ q0 + ω0

asa0

 ,

hence acts on itself (the physical meaning is now: translation in Earth axes, rotation and

translation in body axes, and scaling). It also yields the transformation groups

ψ(q0,V0,ω0,a0)

(
ωm
am

)
=

(
q−1

0 ∗ ωm ∗ q0 + ω0

a0q
−1
0 ∗ am ∗ q0

)
ρ(q0,V0,ω0,a0)

(
yV
yB

)
=

(
yV + V0

q−1
0 ∗ yB ∗ q0

)
.

The system (163)�(166) is invariant and the output (167) is equivariant. The complete

set of invariants, given by ψx̂−1(u) with x̂−1 = (q̂−1,−V̂ ,−q̂ ∗ ω̂b ∗ q̂−1, 1
âs

), reads(
Îω
Îa

)
=

(
q̂ ∗ (ωm − ω̂b) ∗ q̂−1

1
âs
q̂ ∗ am ∗ q̂−1

)
.
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To be invariant the driving noise must enter the system as

q̇ =
1

2
q ∗ (ωm − ωb) +Mqwq ∗ q(182)

V̇ = A+
1

as
q ∗ am ∗ q−1 +MVwV(183)

ω̇b = q−1 ∗Mωwω ∗ q(184)

ȧs = asMawa,(185)

and the observation noise as(
yV
yB

)
=

(
V +NV vV

q−1 ∗ (B +NBvB) ∗ q

)
.(186)

The noise con�guration used here is �dual" to the one used for the LIEKF, with Earth

and body axes exchanged.

5.7.2. Right IEKF equations. � We follow section 5.3 again to derive the structure

of the RIEKF and the linearized error equation (160) used to compute the gains. The

RIEKF takes the form

˙̂q =
1

2
q̂ ∗ (ωm − ω̂b) +KqE ∗ q̂(187)

˙̂
V =

1

âs
q̂ ∗ am ∗ q̂−1 + A+KVE(188)

˙̂ωb = q̂−1 ∗KωE ∗ q̂(189)

˙̂as = âsKaE,(190)

where the invariant output error is given by

E = ρx̂−1

(
ŷV
ŷB

)
− ρx̂−1

(
yV
yB

)
=

(
ŷV − yV

B − q̂ ∗ yB ∗ q̂−1

)
.

The invariant state error x−1x̂ reads
µ

ν

β

α

 =


q̂ ∗ q−1

V̂ − V
q ∗ (ω̂b − ωb) ∗ q−1

âs

as

 .
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The error system is

µ̇ = −1

2
µ ∗ β − µ ∗Mqwq +KqE

ν̇ = Îa − αµ−1 ∗ Îa ∗ µ−MVwV +KVE

β̇ = (µ−1 ∗ Îω ∗ µ)× β + µ−1 ∗KωE ∗ µ+Mqwq × β −Mωwω

α̇ = −αMawa + αKaE.

where the invariant output error is rewritten as

E =

(
ν +NV vV

B − µ ∗ (B +NBvB) ∗ µ−1

)
We linearize this error system around the group identity element (µ, ν, β, α) = (1, 0, 0, 1).

We drop all the quadratic terms in noise and in�nitesimal state error according to the

approximation in section 5.3.2, and eventually �nd
δµ̇

δν̇

δβ̇

δα̇

 = (A−KC)


δµ

δν

δβ

δα

−M

wq
wV
wω
wa

+KN

(
vV
vB

)
,

which has the desired form of Equation (160) with

A =


033 033 −1

2
I3 031

−2Îa× 033 033 −Îa
033 033 Îω× 031

031 031 031 031

 C =

(
033 I3 033 031

2B× 033 033 031

)

M = Diag(Mq,MV ,Mω,Ma) N = Diag(NV , NB)

K = −(Kq, KV , Kω, Ka)
T .

Features of the RIEKF

� Symmetry-preserving structure: rotations, translations and scaling in the appropri-

ated frames leave the error system unchanged, which is meaningful from an engineer-

ing point of view.

� Sound geometric structure for the quaternion estimation equation: by construction

Equation (187) preserves the unit norm of the estimated quaternion.

� Larger expected domain of convergence: the matrices A and C used for computing

the gain matrix K are constant not only in level �ight but also on every permanent

trajectory de�ned by constant Îω, Îa. Since there are less invariant quantities than
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Figure 5.1. Comparison of the estimations (simulation)

in the LIEKF (in particular the gain matrices are independent of ĴB), there are in

consequence more permanent trajectories.

5.8. Numerical results

We illustrate the behavior of the proposed �lters on simulations and experimental data.

The noises wi, vi (in the simulations) are independent normally distributed random 3-

dimensional vectors with mean 0 and variance 1. The tuning of the EKF is made via

the choice of covariance matrices Mq = 0.5I3, MV = 0.01I3, Mω = 0.001I3 , Ma = 0.1,

NV = 0.1I3, NB = 0.1I3. The (scaled) Earth magnetic �eld is taken as B = (1 0 1)T

(roughly the value in France).

For instance for the right IEKF, we take

˙̂q =
1

2
q̂ ∗ (ωm − ω̂b) +KqE ∗ q̂ + λ(1− ‖q̂‖2)q̂.

Notice the correction term λ(1− ‖q̂‖2)q̂ is invariant under both left and right multiplica-

tion by a constant quaternion. We have used λ = 1.

Since the RIEKF behaves slightly better than the LIEKF, we do not show plots with

the RIEKF.

5.8.1. Experimental results. � We �rst brie�y compare the behavior of the RIEKF

with the commercial INS-GPS device MIDG II from Microbotics. The IEKF is fed with
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Figure 5.2. Comparison of the estimated biases and scaling (simulation)

the raw measurements from the MIDG II gyroscopes, accelerometers and magnetic sen-

sors (update rate 50Hz), and the velocity provided by the navigation solutions of its GPS

engine (update rate 4Hz). The IEKF estimations are compared with the MIDG II esti-

mations produced from the same raw data (and computed according to the user manual

by some kind of Kalman �lter).

The experiment consists in keeping the system at rest for a few minutes (for the biases

to converge), and then moving it for about 35s. The IEKF and MIDG II results are very

similar, see Figure 5.3 (only the Euler angles, converted from quaternions, are displayed).

5.8.2. Simulation results: comparison of MEKF and IEKF. � The system fol-

lows a (nearly) permanent trajectory T0, quite representative of a small UAV �ight. The

MEKF and RIEKF are initialized with the same values. Both �lters give correct estima-

tions after the initial transient, see Figures 5.1-5.2.

We now illustrate the invariance property of the IEKF: both IEKF are initialized with

three di�erent initial conditions having the same norms. The MEKF behavior depends

on the initial conditions, while the RIEKF behavior does not, see Figure 5.4 (only the

norm EV = ‖ν‖ of the velocity error is displayed).

Finally we show the RIEKF gain matrix K becomes as expected constant on the per-

manent trajectory T0, while the MEKF gain does not, see Figure 5.5. This is remarkable

since T0 is far from being an equilibrium point.
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CHAPTER 6

SPECIFIC OBSERVER FOR MINI QUADROTOR

Nous nous interessons dans ce chapitre aux mini-drones de type quadrirotors. Nous en

proposons un nouveau modèle prenant en compte des forces aérodynamiques jamais ex-

ploitées dans les travaux réalisés jusqu'à présent sur ce type de drone. Cette force permet

d'estimer la vitesse à travers les mesures fournies par les accéléromètres. Nous constru-

isons alors un observateur �spéci�que� basé sur ce modèle, qui nous permets de contrôler

le quadrotor en vitesse avec uniquement des capteurs inertiels. De plus, cette approche

nous permets de voir d'un oeil neuf les algorithmes de �ltrages et de contrôles habituelle-

ment utilisés sur les quadrotors (contrôle de l'assiette et estimation des angles d'attitude

selon l'hypothèse d'une faible accélération linéaire), justi�ant les résultats expérimentaux

obtenus.

6.1. Introduction

Quadrotor control has been an active area of investigation for several years. On the

one hand the quadrotor has several qualities, among them its very simple mechanical

design, and quali�es as a viable concept of mini Unmanned Aerial Vehicle (UAV) for

real-life missions; on the other hand it is perceived in the control community as a very
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rich case study in theoretical and applied control. The �rst control objective is to ensure

a stable �ight at moderate velocities and in particular in hovering; this fundamental

building block is then used to develop higher-level tasks (e.g. autonomous �ight including

waypoint following, obstacle avoidance, automatic take o� and landing, etc.).

Putting aside purely control-theoretic works focused on the detailed analysis of control

laws without real-world sensors in mind, as well as experiments designed to work only in

the laboratory with an o�-board measuring device (e.g. [20] use an electromagnetic motion

tracking system, with very short range), real quadrotor designs all rely at the heart on

strapdown MEMS inertial sensors (gyroscopes and accelerometers). Such sensors are also

used in �preliminary� experiments where the quadrotor is tethered to a test rig and free

only to rotate [15, 80, 72]. These inertial sensors may be used alone (as far as horizontal

stabilization is concerned) [34], or supplemented by other sensors which provide usually

some position-related information. Representative designs are: 3 ultrasonic rangers [43];

a (simple) GPS module when outdoors and 4 infrared rangers when indoors [74]; a carrier

phase di�erential GPS [40, 89, 39]; a vision system [16, 33, 36, 68]; a laser scanner [2, 1].

Since these extra sensors have inherent drawbacks (low bandwidth, possible temporary

unavailability, etc.), inertial sensors remain essential for basic stabilization.

Nearly all the above-mentioned works rely on essentially the same physical model: only

aerodynamic forces and moments proportional to the square of the propellers angular

velocities are explicitly taken into account. Other aerodynamics e�ects are omitted and

considered as unmodeled disturbances to be rejected by the control law. The alleged rea-

son is that these e�ects are proportional to the square of the quadrotor linear velocity [7],

hence very small near hovering. Few authors explicitly consider other aerodynamic e�ects:

[72] consider aerodynamic stability derivatives, but draw no clear-cut conclusion about

their importance; [27, 51] consider without physical motivations aerodynamic e�ects lin-

ear w.r.t. the quadrotor linear and angular velocities, but propose negligible numerical

values; [40] judge them negligible at low velocities, and focus on nonlinear aspects at

moderate velocities; [17] physically motivates the presence of e�ects nearly linear w.r.t

the quadrotor linear and angular velocities, but provide no experimental data and are

concerned only with the open-loop system.

As for accelerometers, they are usually considered as giving approximately the compo-

nents of gravity in body axes, under the assumption that the quadrotor linear acceleration

is small (as explained in Section 2.3. Accordingly, the pitch and roll angles are estimated

from gyroscope and accelerometer measurements thanks to some sensor fusion algorithm:
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Figure 6.1. Our home-built quadrotor: the �Quadricopter�.

Extended Kalman Filter (EKF) [15]; complementary �lter, linear [80, 74] or nonlin-

ear [33] and Chapter 3 ; unspeci�ed algorithm [34, 16]. Commercial �attitude sensors�

such as the 3DM-GX used in [43] run exactly on the same principles, with some sort

of EKF. Recall that MEMS inertial sensors are not accurate enough for �true� Schuler-

based inertial navigation, see e.g. [32, chap. 5] for details.

With so many theoretical and experimental works, one could think there is little more

to say about such a basic issue as linear control around hovering with inertial sensors. We

nevertheless support a di�erent opinion: the traditional analysis is not quite correct, even

at �rst order. Indeed aerodynamics e�ects proportional to the propeller angular velocity

times the quadrotor linear or angular velocity do appear at �rst order. In particular

the so-called rotor drag must be considered to correctly account for the accelerometer

measurements.

According to Section 1.5, a generic observer is not able to estimate the velocity of the

mini quadrotor using only inertial and magnetic sensors (see for instance the divergence

of the estimated roll angle at V̇ 6= 0 in Section 3.4). Therefore we build speci�c observers

for a mini quadrotor, based on the considered model, which estimate the linear velocity of

the mini UAV, in order to stabilize it. This example highlights the major improvements
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allowable by speci�c observers, which take into account the physical model of the vehicle

(written from the dynamics laws).

6.2. Revisited quadrotor model

6.2.1. Model of a single propeller near hovering. � We �rst consider a single

propeller rotating with angular velocity εiωi around its axis ~kb; ωi is positive, with εi = 1

(resp. −1) for counterclockwise (resp. clockwise) rotation. The geometric center Ai of the

propeller moves with a given velocity ~VAi
while the rotor plane (by de�nition perpendicular

to ~kb) undergoes angular velocity ~Ω; the total angular velocity of the propeller is thus
~Ω + εiωi~kb. Following e.g. [42], the aerodynamic e�orts on the propeller resolve into the

force ~Fi and moment ~Mi at Ai,

~Fi = −aω2
i
~kb − ωi

(
λ1
~V ⊥Ai
− λ2

~Ω× ~kb
)

+ εiωi

(
λ3
~VAi
× ~kb − λ4

~Ω⊥
)

(191)

~Mi = −bεiω2
i
~kb − ωi

(
µ1
~V ⊥Ai

+ µ2
~Ω× ~kb

)
− εiωi

(
µ3
~VAi
× ~kb + µ4

~Ω⊥
)
,(192)

where a, b, the λi's and µi's are positive constants; the projection of a vector ~u on the

rotor plane is

~u⊥ := ~kb ×
(
~u× ~kb

)
= ~u−

(
~u · ~kb

)
~kb.

The above relations rely on classical blade element theory, with two extra simpli�ca-

tions, and (approximately) apply to any propeller, rigid or not:

� higher-order terms in linear and angular velocities have been neglected. This is valid

near hovering, i.e. for small ~VAi
and ~Ω. Here ~VAi

�small� means small with respect to

the propeller tip speed (about 40m/s in our case), so that 5m/s can be considered

small

� linear and angular accelerations have been neglected. Their contribution is small

since the mass of the propeller is in our case very small with respect to the total mass

of the quadrotor.

The velocities in the previous equations are of course velocities with respect to the air

stream, not with respect to the ground. They coincide when there is no wind, which we

assume in the sequel.

The term ωiλ1
~V ⊥Ai

in (191) is often called H-force or rotor drag in the helicopter lit-

erature. Also notice the simpli�ed expressions (191)-(192), though directly based on

textbook aerodynamics, do not seem to appear in the literature under this compact form

very handy for control purposes.
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Figure 6.2. Sketch of the complete quadrotor.

6.2.2. Model of the complete quadrotor. � The quadrotor consists of a rigid frame

with four propellers (directly) driven by electric motors, see Figure 6.2. The structure

is symmetrically arranged, with one pair of facing propellers rotating clockwise and the

other pair counterclockwise. The four propellers have the same axis ~kb; ~ıb :=
~A3A1

‖ ~A3A1‖ ,

~b :=
~A4A2

‖ ~A4A2‖ and ~kb then form a direct coordinate frame. Let A be the geometric center

of the Ai's and l := 1
2

~‖A3A1‖ = 1
2

~‖A2A4‖; clearly,
∑4

i=1
~AAi = 0.

The whole system B, with mass m and center of mass C, thus involves �ve rigid

bodies: the frame/stators assembly B0 and the four propeller/motor assemblies Bi; clearly,
~CA = h~kb for some (signed) length h. Resolved in the (~ıb, ~b, ~kb) frame, the velocity of C

reads ~VC = u~ıb + v~b + w~kb and the angular velocity of B0 reads ~Ω = p~ıb + q~b + r~kb.

We assume the only e�orts acting on B are the weight and the aerodynamic e�orts

created by the propellers as described in the previous section. In particular we neglect

the drag created by the frame, which is quadratic with respect to the velocity, hence small
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at low velocities. Newton's laws for the whole system then read

m~̇VC = m~g +
4∑
i=1

~Fi(193)

~̇σBC =
4∑
i=1

~CAi × ~Fi + ~Mi,(194)

where ~σBC =
∫
B
~CM × ~̇CMdµ(M) is the kinetic momentum of B.

In hovering ~VC and ~Ω, hence ~VAi
are zero; from (191)�(194), see also (196)-(197), this

implies a(ω2
1 + ω2

2 + ω2
3 + ω2

4) = g and ω2
1 − ω2

2 + ω2
3 − ω2

4 = ω2
1 − ω2

3 = ω2
2 − ω2

4 = 0, hence

ωi = ω̄ :=
√

mg
4a
.

For each Bi, we can also write

~̇σBi
Ai
· ~kb = ~Mi · ~kb + εiΓi,(195)

where ~σBi
Ai

=
∫
Bi

~AiM× ~̇AiMdµ(M) is the kinetic momentum of Bi, and Γi is the (positive)

torque created by the motor. For simplicity we have considered Ai as the center of mass

of Bi (in fact the two points are slightly apart). We also consider the Γi's as the control

inputs (it is nevertheless easy to include the behavior of the electric motors both for

modeling and control).

We now evaluate the right-hand sides of (193)-(194)-(195). Since

~VAi
= ~VC + ~̇CA+ ~̇AAi = ~VC + h~Ω× ~kb + ~Ω× ~AAi,

we �nd

λ1
~V ⊥Ai
− λ2

~Ω× ~kb = λ1

(
~V ⊥C +

(
h~Ω× ~kb

)⊥
+
(
~Ω× ~AAi

)⊥)− λ2
~Ω× ~kb

= λ1
~V ⊥C − λ′2~Ω× ~kb − rλ1

~AAi × ~kb

λ3
~VAi
× ~kb − λ4

~Ω⊥ = λ3

(
~VC + h~Ω× ~kb + ~Ω× ~AAi

)
× ~kb − λ4

~Ω⊥

= λ3
~VC × ~kb + λ′4

~Ω⊥ + rλ3
~AAi.
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We have used the fact that ~AAi is colinear to either ~ıb or ~b, and set λ′2 =: λ2 − hλ1 and

λ′4 := λ4 + hλ3. Therefore,

4∑
i=1

~Fi = −a

(
4∑
i=1

ω2
i

)
~kb −

(
4∑
i=1

ωi

)(
λ1
~V ⊥C − λ′2~Ω× ~kb

)
+

(
4∑
i=1

εiωi

)(
λ3
~VC × ~kb − λ′4~Ω⊥

)
+ rλ1

(
4∑
i=1

ωi ~AAi

)
× ~kb + rλ3

(
4∑
i=1

εiωi ~AAi

)
.

Notice the last two lines contain only second order terms: indeed, ~Ω, ~VC ,
∑4

i=1εiωi,∑4
i=1ωi

~AAi and
∑4

i=1εiωi
~AAi all vanish in hovering. Neglecting these terms, we have

4∑
i=1

~Fi ≈ −a

(
4∑
i=1

ω2
i

)
~kb −

(
4∑
i=1

ωi

)(
λ1
~V ⊥C − λ′2~Ω× ~kb

)
.

Likewise,

4∑
i=1

~CA× ~Fi + ~AAi × ~Fi + ~Mi ≈ −a

(
4∑
i=1

ω2
i
~AAi

)
× ~kb − b

(
4∑
i=1

εiω
2
i

)
~kb

− rλ1l
2

(
4∑
i=1

ωi

)
~kb −

(
4∑
i=1

ωi

)(
µ′1
~VC × ~kb + µ′′2

~Ω⊥
)
,

where µ′1 := µ1 − hλ1, µ
′
2 := µ2 − hµ1 and µ′′2 := µ′2 − hλ2.

A further simpli�cation, valid for a rather rigid propeller, is to consider that λ′2 is zero.

Indeed h is by design small, and for a rather rigid propeller so is λ2. This yields

4∑
i=1

~Fi ≈ −a

(
4∑
i=1

ω2
i

)
~kb − λ1

(
4∑
i=1

ωi

)
~V ⊥C .
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Gathering the previous computations, (193)-(194)-(195) now read

m~̇VC = m~g − a
(
ω2

1 + ω2
2 + ω2

3 + ω2
4

)
~kb − λ1(ω1 + ω2 + ω3 + ω4)~V ⊥C(196)

~̇σBC = −b
(
ω2

1 − ω2
2 + ω2

3 − ω2
4

)
~kb + al(ω2

1 − ω2
3)~b − al(ω2

2 − ω2
4)~ıb

− (ω1 + ω2 + ω3 + ω4)
(
µ′1~VC × ~kb + µ′′2~Ω

⊥
)

− rλ1l
2(ω1 + ω2 + ω3 + ω4)~kb(197)

~̇σBi
Ai
· ~kb = εi(Γi − bω2

i ).(198)

We then evaluate the left-hand sides of (193)-(194)-(195). The approach is fairly stan-

dard.

~σBC =

∫
B

~CM × ~̇CMdµ(M)

=

∫
B0

~CM × ~̇CMdµ(M) +
4∑
i=1

∫
Bi

~CM ×
(
~̇CAi + ~̇AiM

)
dµ(M)

=

∫
B0

~CM ×
(
~Ω× ~CM

)
dµ(M) +

4∑
i=1

∫
Bi

~CM ×
(
~Ω× ~CAi +

(
~Ω + εiωi~kb

)
× ~AiM

)
dµ(M)

=

∫
B

~CM ×
(
~Ω× ~CM

)
dµ(M) +

4∑
i=1

∫
Bi

~AiM ×
(
εiωi~kb × ~AiM

)
dµ(M)

= IBC · ~Ω +
4∑
i=1

εiωi

(
IBi
Ai
· ~kb
)

= Ip~ıb + Iq~b +

(
Jr + Jr

4∑
i=1

εiωi

)
~kb,

where I, J, Jr are strictly positive constants. In the last equation we replaced in the com-

putation of the inertia tensors IB, IBi
Ai

the actual propellers by disks with the same masses

and radii, and took advantage of the various symmetries; this �averaging� approximation

is justi�ed by the fact that the propeller angles vary much faster than all the other kine-

matic variables (besides this approximation is already heavily used in the blade element

theory used to derive (191)-(192)).
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Using the same approximation,

~σBi
Ai

=

∫
Bi

~AiM × ~̇AiMdµ(M)

=

∫
Bi

~AiM ×
((
~Ω + εiωi~kb

)
× ~AiM

)
dµ(M)

= IBi
Ai
·
(
~Ω + εiωi~kb

)
= Irp~ıb + Irq~b + Jr(r + εiωi)~kb,

where Ir is a strictly positive constant.

Eventually, 
~̇VC ·~ıb
~̇VC · ~b
~̇VC · ~kb

 =

u̇+ qw − rv
v̇ + ru− pw
ẇ + pv − qu

(199)

~̇σBC ·~ıb~̇σBC · ~b
~̇σBC · ~kb

 =

Iṗ+ (J − I)qr + Jrq
∑4

i=1εiωi
Iq̇ − (J − I)pr − Jrp

∑4
i=1εiωi

Jṙ + Jr
∑4

i=1εiω̇i

(200)

~̇σBi
Ai
· ~kb = Jr(ṙ + εiω̇i), i = 1, 2, 3, 4.(201)

To describe the orientation of the quadrotor we use the classical φ, θ, ψ Euler angles

(quaternions could of course be used). The direction cosine matrix Rφ,θ,ψ to go from Earth

coordinates to aircraft coordinates is then CθCψ CθSψ −Sθ
SφSθCψ − CφSψ SφSθSψ + CφCψ SφCθ

CφSθCψ + SφSψ CφSθSψ − SφSψ CφCθ

 ,

so that

~g = g(−~ıb sin θ + ~b sinφ cos θ + ~kb cosφ cos θ).(202)

Finally the angles and angular velocities are linked by

φ̇ = p+ tan θ(q sinφ+ r cosφ)(203)

θ̇ = q cosφ− r sinφ(204)

ψ̇ =
q sinφ+ r cosφ

cos θ
.(205)

The thirteen equations (196)�(205) form the complete quadrotor model.
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6.2.3. Model of the inertial sensors. � The quadrotor is equipped with strapdown

triaxial gyroscope and accelerometer. Without restriction, we assume the sensing axes

coincide with ~ıb, ~b, ~kb. The gyroscope measures the angular velocity ~Ω, projected on its

sensing axes, i.e. (gx, gy, gz) := (p, q, r); the accelerometer measures the speci�c acceler-

ation ~a := ~̇VP − ~g of the point P where it is located, projected on its sensing axe; see

e.g. Chapter 2 and [32, chap. 4] for details on inertial sensors. Hence by (193) if the

accelerometer is located at the center of mass C, which is the case for most quadrotors,

it measures ~a = ~̇VC − ~g = 1
m

∑4
i=1

~Fi; by (196) the accelerometer thus measures

ax := ~a ·~ıb ≈ −λ1

m
(ω1 + ω2 + ω3 + ω4)u(206)

ay := ~a · ~b ≈ −λ1

m
(ω1 + ω2 + ω3 + ω4)v(207)

az := ~a · ~kb ≈ − a

m

(
ω2

1 + ω2
2 + ω2

3 + ω2
4

)
.(208)

6.2.4. Linearized model. � To highlight the salient features of the revisited model (196)�

(205), it is enough to consider its �rst-order approximation. Suitably putting together

variables, this linearized model splits into four independent subsystems:

� longitudinal subsystem

mu̇ ≈ −mgθ − 4λ1ω̄u

θ̇ ≈ q

Iq̇ ≈ 4µ′1ω̄u− 4µ′′2ω̄q + 2alω̄(ω1 − ω3)

Jr(ω̇1 − ω̇3) ≈ Γ1 − Γ3 − 2bω̄(ω1 − ω3),

with measurements ax ≈ −4λ1ω̄
m
u and gy = q

� lateral subsystem

mv̇ ≈ mgφ− 4λ1ω̄v

φ̇ ≈ p

Iṗ ≈ −4µ′1ω̄v − 4µ′′2ω̄p+ 2alω̄(ω4 − ω2)

Jr(ω̇4 − ω̇2) ≈ Γ4 − Γ2 − 2bω̄(ω4 − ω2),

with measurements ay ≈ −4λ1ω̄
m
v and gx = p
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� vertical subsystem

mẇ ≈ −2aω̄

((
4∑
i=1

ωi

)
− 4ω̄)

)

Jr

(
4∑
i=1

ω̇i

)
≈

(
4∑
i=1

Γi

)
− 2bω̄

(
4∑
i=1

ωi

)
,

with measurement az ≈ −g − 2aω̄
m

(∑4
i=1ωi

)
� heading subsystem

ψ̇ ≈ r

(J − 4Jr)ṙ ≈ −

(
4∑
i=1

εiΓi

)
− 4w̄λ1l

2r(
4∑
i=1

εiω̇i

)
≈ J

Jr(J − 4Jr)

(
4∑
i=1

εiΓi

)
− 2bω̄

Jr

(
4∑
i=1

εiωi

)
+

16λ1ω̄l
2

J − 4Jr
r,

with measurement gz = r.

In the sequel we concentrate on the longitudinal system, where accelerometer feed-

back is of paramount importance (the lateral subsystem is the same up to sign-reversing

coordinate changes). Setting

(f1, f2, f3, f4, f5) :=
(4λ1ω̄

m
,
4µ′1ω̄

I
,
4µ′′2ω̄

I
,
2alω̄

I
,
2bω̄

Jr

)
and ωq := ω1 − ω3, Γq := Γ1−Γ3

Jr
, it reads

u̇ = −f1u− gθ(209)

θ̇ = q(210)

q̇ = f2u− f3q + f4ωq(211)

ω̇q = Γq − f5ωq,(212)

with measurements ax = −f1u and gy = q.

6.2.5. Departure from literature. � Most authors consider a propeller model with

only the ~kb terms in (191)-(192), i.e. with all λi's and µi's equal to zero. They thus end
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up with the quadrotor model

m~̇VC = m~g − a
(
ω2

1 + ω2
2 + ω2

3 + ω2
4

)
~kb(213)

~̇σC = −b
(
ω2

1 − ω2
2 + ω2

3 − ω2
4

)
~kb + al(ω2

1 − ω2
3)~b − al(ω2

2 − ω2
4)~ıb.(214)

Now a big problem should arise with such a model: indeed ~a = ~̇VC − ~g is now colinear

with ~kb, hence ax = ay = 0, which is certainly not true! Without clearly acknowledging

this paradox, the approximation ~a ≈ −~g is used instead, i.e.

(215) (ax, ay, az) ≈ (g sin θ,−g sinφ cos θ,−g cosφ cos θ).

The alleged motivation is that ~̇VC is small near hovering. This is indeed true if the aircraft

were stabilized by some extraneous means, but a very questionable assumption to use in

a closed-loop perspective. Nevertheless, successful �ights with controllers relying on this

approximation have been reported. We suggest in section 6.4.3 an explanation reconciling

all those facts in the light of the revisited quadrotor model.

The longitudinal subsystem traditionally considered is then

u̇ = −gθ(216)

θ̇ = q(217)

q̇ = f4ωq(218)

ω̇q = Γq − f5ωq,(219)

with measurements ax = gθ and gy = q, to be compared with (209)�(212) with measure-

ments ax = −f1u and gy = q.

6.3. Experimental validation

6.3.1. Experimental setup. � To validate our modeling assumptions, we recorded

�ight data with our home-built �Quadricopter�, see Figure 6.1. Due to limitations of our

experimental setup, we could collect data to validate only the force model (209), but

not the moment model (211); this is nevertheless the most important part of the model

since it accounts for the accelerometer measurements. The quadrotor was �tted with a

MIDG II with its GPS engine and a radio data link towards the ground station. The

raw measurements are �merged� on the onboard computer to provide estimates of the

orientation and of the velocity vector in Earth axes. The MIDG II is an �independent�

device with no knowledge of the speci�c system it is �tted on; it heavily relies on the GPS
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Figure 6.3. Comparison between −ax
f1
, uθ and u.

engine for good dynamic estimates, without using assumption (215). All the data can be

issued at a pace up to 20ms. Due to the low throughput of the radio data link, only the

accelerometer raw measurements axm, aym and the computed quantities φm, θm, ψm and

Vx, Vy, Vz were transmitted to the ground station, at the reduced pace of 40ms.

We �ew the quadrotor in repeated back and forth translations at a (nearly) constant

altitude and recorded one minute of �ight data. Since a GPS module is used the test was

conducted outdoors, on a very calm day to respect the no-wind assumption.

6.3.2. Validation of the force model. � Due to an imperfect mechanical design of

our quadrotor, the MIDG II case is not exactly aligned with the quadrotor frame, but

tilted by the unknown (small) angles φ0, θ0, ψ0. The acceleration and angle data must

be rotated accordingly to be expressed in the quadrotor axes (the velocity data need not

correction, since expressed in Earth axes), that is

(φ, θ, ψ) = (φm − φ0, θm − θ0, ψm − ψ0)
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and axay
az

 = RT
φ0,θ0,ψ0

axmaym
azm

 .

Dropping higher-order terms, this yields

ax ≈ axm − ψ0aym + θ0azm ≈ axm − θ0g

ay ≈ ψ0axm + aym − φ0azm ≈ aym + φ0g.

The velocity vector in quadrotor axes is then obtained byuv
w

 = Rφ,θ,ψ

VxVy
Vz

 ,

and is considered as the �true� reference velocity to validate our modeling assumptions.
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We also want to compute the velocities uθ and vφ predicted by the integration of the

linearized force model (209)

u̇θ = −f1uθ − gθ
v̇φ = −f1vφ + gφ,

with initial conditions uθ(0) := u(0) and vφ(0) := v(0).

The task was then to adjust f1, φ0, θ0, ψ0 to get a good �t between −ax

f1
, u and uθ on

the one hand; and between −ay

f1
, v and vφ on the other hand. Since the accelerometer

data are quite noisy and need some �ltering, the same �lter (5th-order Bessel �lter with

2Hz cuto� frequency) was applied to all the data to preserve the transfer functions among

them.

With (f1, φ0, θ0, ψ0) := (0.25s−1, 1.2◦,−2.4◦, 2◦) the agreement is good, see Figure 6.3

and 6.4, which reasonably validates our force model.

To test the traditional approximation (215) we also plotted (ax, gθ) and (ay,−gφ), see

Figure 6.5 and 6.6. Though the trend is roughly correct, the �t is much worse.
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Figure 6.6. Comparison between ay and −gφ.

6.4. Implications on control schemes

In the sequel we use the numerical values

(f1, f2, f3, f4, f5) = (0.25, 0.76,−9.8, 0.34, 12.74);

f1 was determined from �ight tests, and f4, f5 from static tests on the motor-propeller

subsystems. The aerodynamic coe�cients f2, f3 were analytically derived; their values

are plausible but nevertheless questionable.

6.4.1. Two-time-scale �full-state� feedback. � We �rst assume the whole state is

known, or which turns out to be equivalent, that u and q are measured without noise so

that they can be used in ideal Proportional-Derivative (PD) controllers. It is customary

to design a two-time-scale control law, with a fast inner loop to control q, ωq and a slow

outer loop to control u, θ.

The fast inner loop is the ideal PD controller

Γq = −kp
ε2
q − kd

ε
q̇ +

kp
ε2
qr,
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where qr is the desired pitch rate; kp, kd are the PD gains and ε > 0 is a �small� parameter.

Applying this feedback to (209)-(212) yields

u̇ = −f1u− gθ

θ̇ = q

εq̇ = f4ω̃q +O(ε)

ε ˙̃ωq = −kpq − f4kdω̃q + kpqr +O(ε),

where ω̃q := εωq. From standard arguments of singular perturbations theory [44], the

convergence of the fast variables is up to order ε ruled by the well-known coe�cient f4

and the PD gains; and the behavior of the slow variables u, θ is up to order ε ruled by

the slow approximation

u̇ = −f1u− gθ(220)

θ̇ = qr.(221)

Hence the role of the aerodynamic coe�cients f2, f3 is marginal is the inner loop is fast

enough.

The slow outer loop is the ideal PD controller

qr = k1u+ k2u̇− k1ur,

where ur is the desired velocity, and k1, k2 the PD gains. Applying this feedback to (220)-

(221) yields

u̇ = −f1u− gθ

θ̇ = (k1 − f1k2)u− gk2θ − k1ur,

with characteristic polynomial s2 + (f1 + gk2)s + gk1. A reasonable closed-loop settling

time is about 1s, which requires gk1 = 62 and f1 + gk2 = 6
√

2. This means f1 = 0.25 is

negligible w.r.t to the e�ect of the controller.

We thus see that the revisited moment model (211) does not rely matter if the gyroscope

measurements are good enough for a fast loop, which is usually the case in practice;

nevertheless taking into account f2 and especially f3 may help to design a better inner

loop. As for the force model (209), it does not really matter either, provided a velocity

measurement is available. The importance of f1 is nevertheless paramount to account for

the accelerometer measurements, as will be seen in the following sections.
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Figure 6.7. Traditional interpretation of accelerometer feedback

6.4.2. Traditional interpretation of accelerometer feedback. � Once the inner

loop closed, the traditional slow model is

u̇ = −gθ

θ̇ = qr,

with measurement ax = gθ. Since the velocity u is clearly not observable, the role of the

outer loop is simply to control the measured angle θ. In theory the simple proportional

feedback qr = k(θr − ax

g
) does the trick, but in practice the accelerometer measurements

are too noisy to be directly used (not only because of the intrinsic sensor noise, but also

because of mechanical vibrations). Instead an �angle estimator� is often used, based on the

model θ̇ = q with measurements ax = gθ and gy = q (see Figure 6.7). A more elaborate

estimator, e.g. an EKF or a nonlinear observer, can also be used, see the references in

the introduction; it is then based on the nonlinear kinematic equations (203)�(205), and

relies on the approximation (215). Whatever the �lter, the �rst-order approximation is

essentially the linear observer
˙̂
θ = gy + l(ax

g
− θ̂). The outer loop thus is the controller-

observer

qr = k(θr − θ̂)(222)

˙̂
θ = q + l

(ax
g
− θ̂
)
.(223)
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Applied to the traditional model and de�ning the observation error eθ := θ̂ − θ, it yields
the closed-loop system

u̇ = −gθ

θ̇ = k(θr − θ − eθ)
ėθ = −leθ.

For θr constant, the last two equations have the unique steady state (θ, eθ) = (θr, 0). The

characteristic polynomial is

∆0 := (s+ k)(s+ l),

and the closed-loop transfer functions are

θ =
k

s+ k
θr(224)

u =
−gk

s(s+ k)
θr.(225)

Provided k, l > 0 we have as desired (θ, eθ)→ (θr, 0), while u grows linearly unbounded.

A good tuning of (222)-(223) requires for robustness that the controller and observer act

in distinct time scales (Loop Transfer Recovery), i.e. k � l or l� k. We consider in the

sequel a �slow� observer, which is representative of commercial �angle sensors� such as the

3DM-GX, and a �fast� controller; for a settling time of about 1s, we choose e.g. k := 1
0.3

and l := 1
12
.

We tested this control scheme experimentally, with a rather satisfying result: the angle θ

reaches the desired θr, though the dynamics is somewhat more sluggish than expected.

The traditional analysis could thus be considered as reasonably justi�ed. Nevertheless it

does not account for the following experimental observations already visible to the naked

eye:

� when pushed away from hovering, the quadrotor returns to hovering (of course at a

di�erent position)

� when �ying at a constant velocity u, the angle θ is not zero but approximately

proportional to u

� in response to a constant θr, u does not grow unbounded but reaches a value approx-

imately proportional to θr.

Though these experimental facts are well-known to people in the �eld, they do not seem

to be reported in the literature. The discrepancy is usually attributed to the neglected

second-order aerodynamical drag and the inevitably unperfect experimental conditions.
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Another more subtle discrepancy is that the observer gain l must be smaller than predicted

by the theory to avoid a badly damped transient (e.g. l = 1/3 does not work well in

practice).

As will be seen in the following section, these experimental facts can be explained by

the revisited model.

6.4.3. Revisited interpretation of accelerometer feedback. � We now apply the

controller-observer (222)-(223) to the revisited longitudinal model. The closed-loop sys-

tem is now

u̇ = −f1u− gθ

θ̇ = k(θr − θ − eθ)

ėθ = −l
(f1

g
u+ θ + eθ

)
,

with eθ := θ̂ − θ. For θr constant, the only steady state is (u, θ, eθ) = (− g
f1
θr, θr, 0); the

characteristic polynomial is

∆ = s3 + (k + l + f1)s2 + f1(k + l)s+ f1kl.

If k � l, ∆ ' (s + k)(s2 + f1s + f1l), so that the closed-loop system is stable as soon

as k, l > 0. Hence θ → θr as desired, and eθ → 0 as expected from the observer; u

now tends to the �nite value − g
f1
θr, which is more consistent with experimental tests. If

moreover l� f1,

∆ ≈ (s+ f1)(s+ k)(s+ l) = (s+ f1)∆0.

As a consequence, the closed-loop transfer functions are

θ =
k(s+ f1)(s+ l)

∆
θr ≈ k

s+ k
θr

u =
−gk(s+ l)

∆
θr ≈ −gk

(s+ f1)(s+ k)
θr,

to be compared with (224)-(225): the angle dynamics is nearly the same as the one given

by the traditional interpretation, while the velocity dynamics is dominated by the rotor

drag time constant 1
f1
. De�ning the reference velocity ur := − g

f1
θr, we see the traditional

control scheme, designed as an angle controller, is in fact a velocity controller!

The behavior experienced in practice is qualitatively and quantitatively well predicted

by the revisited model, see Figure 6.8 (�traditional design�) the time response to a −1.5◦

step in θr (i.e. a 1m/s step in ur).



6.4. IMPLICATIONS ON CONTROL SCHEMES 145

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

Step response
V

el
oc

ity
 (

m
/s

)

 

 

0 5 10 15 20 25 30 35 40
−4

−3

−2

−1

0

Time (s)

P
itc

h 
an

gl
e 

(°
)

traditional design
new design #1
new design #2

Figure 6.8. Comparison between control schemes (simulation).

From this analysis, we see the importance of the coe�cient f1 is paramount: the tradi-

tional scheme works reasonably well only because f1 is positive and not too small.

6.4.4. A better control law. � The performance of the traditional control scheme

is limited by the rotor drag time constant 1
f1
. Better performance can be achieved by

considering a controller-observer based on the revisited model (see Figure 6.9),

qr = −k1û− k2θ̂ +
(
k1 −

f1k2

g

)
ur

˙̂u = −f1û− gθ̂ + l1(ax + f1û)

˙̂
θ = gy + l2(ax + f1û),

where ur is the velocity reference; k1, k2 are the controller gains, l1, l2 the observer gains.

Figure 6.8 shows simulation results for the same scenario as before (1m/s reference step

in velocity). Two di�erent tunings were used: in the �rst case (�new design #1�) the

controller is tuned for a settling time of about 12s and the observer for about 48s, so that

the angle and velocity have initial transients similar to the tuning used previously for the

traditional design (and with a similar control e�ort); in the second case (�new design #2�)
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Figure 6.9. Controller-observer based on the revisited model

the controller is made four times faster. Both design were successfully implemented,

resulting in a quadrotor much easier to �y than with the traditional scheme. In practice

it was not really possible to further accelerate the time responses, probably mainly because

of the accelerometer noise.



CHAPTER 7

REAL-TIME IMPLEMENTATION AND LOW-COST

EMBEDDED PROTOTYPE SYSTEM

Dans ce chapitre nous validons l'implémentation des observateurs génériques invariants

pour les �(aided) Attitude and Heading Reference Systems� en temps-réel sur un micro-

contrôleur bon marché, à savoir un ATmega128 de chez Atmel. Nous mettons ainsi en év-

idence une autre propriété très interessante de ces estimateurs par rapport aux techniques

de �ltrage habituelles: ils sont très économiques en temps de calcul, et donc tout-à-fait

adaptés à la problématique des mini-drones. Dans ce chapitre, nous présentons et vali-

dons également notre propre système avionique bas-coûts, composé de capteurs �bruts� et

du microcontrôleur sur lequel sont implantés les observateurs invariants. Nous donnons

l'architecture du code permettant l'interface avec les di�érents capteurs, l'estimation des

variables et l'envoi des estimées via un port série.

7.1. Real-time implementation on a cheap microcontroller

7.1.1. Real-time implementation of invariant observers for AHRS. � In Chap-

ter 3 we developed an invariant nonlinear observer for AHRS. We validated it by using

measurements from a commercial navigation system (MIDG II from Microstrain in Verti-

cal Gyro mode) and by implementing the estimator algorithm (see Equations (82)�(85))
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Figure 7.1. ATmega128 from Atmel

on Matlab. Then we compared our estimations and the estimations given by the MIDG II,

which were very similar. Since the avionics system needs to meet the requirements de-

scribed in Chapter 1.2, the observer needs to be implemented on a low-cost computational

board.

Therefore, we have implemented the algorithm on a low-cost microcontroller Atmel

ATmega128 (see Figure 7.1) with the following main characteristics (for further details,

see [4]):

� 8-bit microcontroller

� a cost of 5e
� a clock frequency up to 16MHz

� computations done in integer (no �oating point coprocessor)

� 128K bytes of reprogrammable �ash

� 4K bytes of SRAM

It is important to notice that it is impossible to run an usual �ltering algorithm (such

as an extended Kalman �lter) on such a microntroller while getting the estimates at a

high update rate (greater than 50Hz). On the contrary, our observers are well adapted to

it.

Since we want to validate only the algorithm itself, we use the ATmega128 on its

development kit STK500/501 for simplicity in the �hardware� interfacing. Indeed, all the
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Figure 7.2. Experimental protocol

pins are easily accessible and a TTL/RS232 converter (i.e. microcontroller/PC serial port)

is built-in. The computations of Equations (82)�(85) are done in C with the standard

�oating point emulation. We have used a simple Euler explicit approximation for the

integration scheme.

The experimental protocol was the following:

1. move the sensors in all directions and save on a computer the MIDG II raw mea-

surements and estimations at 50Hz.

2. use of xPCTarget to feed the ATmega with these data at 50Hz via a serial port and

send to a computer at 50Hz the estimated variables given by the microcontroller.

3. save these estimates.

4. compare o�ine the estimations given by the microcontroller and those given by the

observer written in the Matlab embedded function.

This protocol can be illustrated by the �gure 7.2, where the computer with xPCTarget

has been replaced by the MIDG II. We use xPCTarget instead of feeding directly the

microcontroller with the MIDG II raw data because it allows us to run di�erent algorithms

on the microcontroller with the same set of data (e.g. in order to do some corrections in

the C code).
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We obtain the results displayed on Figure 7.3. The two estimations are very similar,

which validates the real-time implementation of the invariant observer. Notice that we

see on the bottom plot of Figure 7.3 the discretization at 50Hz due to the microcontroller.

7.1.2. Real-time implementation of invariant observers for aided AHRS. �

We want to validate the real-time implementation of the invariant observers for aided

AHRS developed in Chapter 4 on a cheap microcontroller. Since the validation method

is very similar for the three kinds of observers described in Chapter 4, we only detail the

experimental protocol corresponding to the AHRS aided by Earth-�xed velocity and posi-

tion measurements (see 4.2). We use the MIDG II to get the inertial, velocity and position

measurements and the barometer module MS5534B from Intersema to get the altitude.

We implement the equations of the invariant observer (131)�(136) on the ATmega128, as

we did in section 7.1.1.

To validate the algorithm, the experimental protocol was the following:

1. move the sensors in all directions and save on a computer the MIDG II inertial

raw measurements and estimations at 50Hz, the MIDG II velocity and position raw
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measurements (from its GPS engine) at 4 Hz and the Intersema altitude measurement

at 12.5 Hz

2. use of xPCTarget to feed the ATmega128 with these data via a serial port and send

to a computer at 50Hz the estimated variables given by the microcontroller.

3. save these estimates.

4. compare o�ine the estimations given by the microcontroller and those given by the

observer written in the Matlab embedded function.

This protocol can be illustrated by Figure 4.6. The results are the same as in section 7.1.1:

the estimations given by our algorithm and those provided by the MIDG II are very

similar, which validates the real-time implementation of the invariant observer.

7.2. Low-cost embedded avionics system

7.2.1. Creation of the sensors card. � In the preceding chapters, we validated

the invariant observers using raw measurements provided by the commercial navigation

system (MIDG II). Even if this commercial system is small enough to be embedded on a

mini-UAV, using it only to get inertial, magnetic and GPS measurements is not the best

way to develop our own low-cost avionics system. Indeed, this approach su�ers several

drawbacks

� most of the price of the commercial device is in the �ltering algorithm itself, and we

want to replace it by our own invariant observer

� the estimations rate provided by our algorithm is limited by the raw measurements

rate of the commercial AHRS

� we do not know the speci�cations of the used sensors, and we cannot change them

The next step to build our low-cost avionics system is to use our own inertial and magnetic

sensors. Therefore we create a �Sensors Card� (see Figure 14(a)), which contains a tri-

axial inertial sensor (ADIS16355 from Analog Devices), and a tri-axial magnetometer

(Micromag3 from PNI). We also added on the same card the barometric module (MS5534B

from Intersema). The GPS module is still o� this card, but it can be easily inserted on

it. Each kind of sensors has his own speci�cations (communication protocol, dimensions,

voltage...), as we detailed it in Chapter 1.3.

As illustrated by Figure 7.5, we use one single ATmega128 microcontroller

� to interface with all the sensors

� to run the invariant observer algorithm at a 65Hz rate



152 CHAPTER 7. REAL-TIME IMPLEMENTATION

Figure 7.4. Sensors card

Figure 7.5. Several tasks of the central microcontroller

� to send the estimations at a 65Hz rate to a computer via a serial port

The Figures 7.6 and 7.7 summarize the code implemented on the microcontroller. It

gives an overview of the structure of the code:

� main loop: contains the invariant observer algorithm, called every 65Hz
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� interruptions : called when the corresponding external event arises (e.g. when the

microcontroller receives data from the serial port for the GPS or the SPI port for the

inertial sensor)

� initializations : called at the beginning of the program to set the con�guration of the

used registers (e.g. to set the baudrate of the serial port)

Since the microcontroller needs to interface with di�erent peripherals with di�erent

protocol with a clock frequency of only 14.745MHz, it is really crucial that the �ltering

algorithm is computationally economic to get estimates at a high update rate (100 Hz).

As we illustrated it in Section 7.1, it is the case for the invariant observers we propose

in this thesis. It is in fact even one of the motivation of developing this kind of �lters.

For simplicity, we still use the microcontroller on its development kit STK500/501 (see

Figure 7.8).

7.2.2. Validation of the invariant observer for AHRS. � In order to validate the

invariant nonlinear observer for AHRS developed in Chapter 3 (see Equations (82)�(85))

with our own sensors, we feed the microcontroller with the raw measurement provided by

the sensors card. Since this algorithm does not consider velocity and position measure-

ments, we do not use the GPS and the barometric modules. As shown on Figure 7.9, we

put the our system and the MIDG II very close, and we move them in all directions. We

save the estimations given by our system and those given by the MIDG II on a computer

to compare them. On Figure 7.10 we see that the two estimations are very similar, which

validates our avionics system, i.e. the implemented invariant �lter and the sensors card.

On Figure 7.10(b), we notice the discretization at 100Hz.

The Figure 7.11 gives an idea of the time to run the observer equations. Indeed, we put

a �ag in the code that sets the corresponding output pin at a low level at the beginning

of the observer code and sets it at a high level at the end. On Figure 7.11 we measure

a 10ms period of the signal, which corresponds to the 100Hz update rate. Since the

�ltering algorithm only uses 28% of the allowed time (i.e. 2.8ms of the 10ms), it shows

that the implemented invariant observer is computationally really e�cient. It saves time

and computational power to run the rest of the code: sending the estimates to a PC via

a serial port or running the control algorithm.

7.2.3. Validation of the invariant observer for aided AHRS. � In order to

validate the invariant nonlinear observer for aided AHRS developed in Chapter 4 (see

Equations (131)�(136)) with our own sensors, we feed the microcontroller with the raw

measurement provided by the sensors card and the GPS module. As in Section 7.2.2, we
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// Include and definitions 
 
#include <avr/interrupt.h> 
#define LED0on (PORTC &= ~_BV(0)) 
#define CStri_is_on (!(PORTB & _BV(7))) 
#define Do_Xgyro 0 
#define X_axis_finished (!(refreshing & _BV(0))) 
#define SPIF_bas (!(SPSR & _BV(SPIF))) 
 
// Global variables 
 
volatile uint8_t    tab_nboctet[]={21,3,3}; 
volatile uint8_t    tab_octet[]={0x05,0x0F,(1| _BV(5) |_BV(4))}; 
volatile uint8_t       tx_head,tx_tail,tx_buf[ TX_BUF_SIZE ]; 
 
// Fonctions Inline 
 
inline float rotation0 (float Q[],float V0,float V1,float V2) 
{ return ((float)((Q[0]*Q[0]+Q[1]*Q[1]-Q[2]*Q[2]-Q[3]*Q[3])*V0+2*(Q[1]*Q[2]-
Q[0]*Q[3])*V1+2*(Q[0]*Q[2]+Q[1]*Q[3])*V2)); 
} 
 
// Fonctions for data transmission to the ground station 
 
void USART1_Transmission_Init(void) 
{ 
    UCSR1B |= _BV(TXEN);  // Enables the USART1 interruption 
 UBRR1L = 7;     // 115200 bauds at 14.7456MHz 
} 
ISR( SIG_UART1_DATA ) // Interruption when the register is empty 
{ 
uint8_t    tmp_tail; 
tmp_tail = tx_tail + 1; 
UDR1 = tx_buf[tmp_tail]; 
} 
 
// Fonctions to communicate with the sensors 
 
void SPI_MasterInit(void) // Initialization for the SPI comm and the tri-axis 
{  
 DDRB |= _BV(5) | _BV(4) | _BV(2) | _BV(1) | _BV(0) | _BV(7);    // MOSI, SCLK and CS as Output 
 DDRB &= ~_BV(3); // MISO as Input  
 SPCR &= ~_BV(CPOL); 
} 
void Domeasure_mag_init(void)  // Initialization for the magnetometers 
{ 
 spi_buf[(uint8_t)(spi_head+1)]=Do_X_axis; 
 spi_head++; 
 measured_axis=Do_X_axis; 
} 
void Domeasure_word_intersema_init(void)   // Initialization for the barometer 
{ 
 spi_buf[(uint8_t)(spi_head+1)]=Reset_inter;  
} 
 
ISR (SIG_SPI)  // Communication with the sensors via the SPI protocol 
{  
 SPCR |= _BV(CPOL) | _BV(CPHA); 
 SPDR = (tab_octet[spi_buf[spi_tail]]&~_BV(6) & ~_BV(7));  
} 

Figure 7.6. Architecture of the implemented code (page 1)
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ISR( SIG_UART0_RECV ) // Communication with the GPs module via the serial port 
{    
 volatile char  c = UDR0; 
 static uint8_t     bytecounter_ublox;  
    bytecounter_ublox++; 
 if (bytecounter_ublox==(rx_buf_ublox[2]+8)) 
  {rx_buf_ublox[bytecounter_ublox-3]=c;} 
} 
 
// Timer interruption at 65Hz 
 
ISR( SIG_OUTPUT_COMPARE1A) 
{  
 spi_buf[(uint8_t)(spi_head+1)]=Do_Xgyro; 
 spi_head++;  
 do_algo=1; 
} 
 
// Main alogithm 
 
int main(void) 
{ 
 
// Functions and ports initialization 
USART1_Transmission_Init(); 
SPI_MasterInit(); 
DDRC = 0xFF;  // Leds on PORTC 
PORTC=255;  // Leds off at the beginning 
OCR1A = 288;   // timer interruption at 65Hz 
 
// Local variables 
static float q[4];          // quaternion 
q[0]=1,q[1]=0,q[2]=0,q[3]=0; 
static float v[4];          // velocity 
float lv=4e-2f,lb=1e-3f;   // gains 
 
while(1) // main loop 
 { 
 if (do_algo==1) // Every 65Hz 
 {  
  // Error vectors 
  Ev[0]=v[0]-1.0e-2f*(float)(tmp_int16[0]); 
  Eb[0]=vecteur_b[0]-2.0e-
4f*(rotation0(q,(float)(tmp_int16[0]),(float)(tmp_int16[1]),(float)(tmp_int16[2])));  
  Eh=p[2]-hb+0*(1e-2f*(float)(tmp_int16[2])); 
   
  // Ia vector creation 
  Ia[0]=9.81e-3f/as*rotation0(q,(float)(tmp_int16[0]),(float)(tmp_int16[1]),(float)(tmp_int16[2])); 
   
  // State update 

    q[0]=tmp_quat[0]+.02f*(.5f*(prod_pq0(tmp_quat,omega_quat))+(prod_pq0(lvpbh,tmp_quat)) 
  v[0]=tmp_v[0]+.02f*(vecteur_a[0]+Ia[0]+mvpbh[0]); 
   
  // Send data to the ground station 
  tx_buf[1] = 250; // Header 1 
  tx_buf[2] = (uint8_t)(v[0]); 
  UCSR1B |= _BV(UDRIE1); 
 } 
 } 
} 

Figure 7.7. Architecture of the implemented code (page 2)
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Figure 7.8. Interfacing the ATmega128 with the sensors card

put the our system and the MIDG II very close (see Figure 7.12), and we move them in all

directions. We save the estimations given by our system and those given by the MIDG II

on a computer to compare them. As in the preceding experiment, the two estimations are

very similar, which validates our avionics systems with the invariant observer desribed

by Equations (131)�(136). The Figure 7.13 gives an idea of the time to run the observer

equations using the same method as in section 7.2.2. The �ltering algorithm only uses

around 53% of the allowed time (i.e. 5.3ms of the 10ms), which shows again that the

implemented invariant observer is computationally really e�cient.



7.2. LOW-COST EMBEDDED AVIONICS SYSTEM 157

Figure 7.9. Experimental setup (AHRS)
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Figure 7.10. Comparison of our avionics system and the MIDG II estimations (AHRS)

7.2.4. Low-cost embedded avionics system. � The last step before having a really

embedded system is to replace the development kit STK500/501 of the microcontroller

ATmega128 (see Figures 7.9 and 7.12). Indeed, this development kit is is big, heavy,

ant most of the electronics on it are not used in our system. Therefore we replace it by
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Figure 7.11. Time needed for the �ltering algorithm (AHRS)

Figure 7.12. Experimental setup (aided AHRS)
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Figure 7.13. Time needed for the �ltering algorithm (aided AHRS)

our own �microcontroller card�, which contains the ATmega128 microcontroller and the

necessary hardware for interfacing the other parts of the avionics system (the sensors and

the communication devices. On Figure 7.14 we present the two main parts of our low-cost

embedded avionics system:

� the �sensors card� with the accelerometers, the gyroscopes, the magnetometers and

the barometer. A GPS module is also connected if needed (see Figure 7.14(a)).

� the �microcontroller card� with the ATmega128, which does the interface with the

various sensors, runs the algorithm, and sends the estimates at a 100Hz update rate

(see Figure 7.14(b)).

This avionics system can be easily embedded on most of the mini-UAVs.
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(a) Sensors card (b) Microcontroller card

(c) Avionics system

Figure 7.14. Low-cost embedded avionics system
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