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Résumé

Cette thèse est une contribution à la compréhension de certains phénomènes d’ondes de surface
sur des problèmes d’intérêts actuels. Des résultats significatifs ont été obtenus grâce à une nou-
velle technique de mesure de la surface libre qui a été mise au point pour ces études.

Cette technique de profilométrie optique consiste à projeter un réseau de franges sinusoïdales
de caractéristiques connues sur la surface libre et à observer l’image projetée depuis une autre di-
rection. La déformation de la surface, ainsi que la perspective introduisent une modulation locale
de fréquence du réseau de franges. L’analyse de l’image déformée et sa comparaison avec une
image de référence permet de reconstruire la déformation de la surface libre. En particulier, cette
technique à l’avantage de déterminer le profil de la surface étudiée à partir de l’acquisition d’une
seule image, ce qui permet l’étude des écoulements en temps réel et des processus dynamiques
fortement non-stationnaires. La haute résolution spatiale et temporelle atteinte permettent pour
la première fois l’exploration d’une grande variété de phénomènes à la surface d’un liquide.

Principalement deux études expérimentales sur des ondes de surface ont été effectuées. Dans
la première, nous nous concentrons sur l’étude des résonances d’ondes de surface autour d’un
cylindre circulaire de rayon a dans un guide d’onde de largeur 2d (modes piégés). Les paramètres
adimensionnels pertinents sont, d’une part la fréquence des ondes kd (k étant le nombre d’onde)
et, d’autre, le rapport d’aspect a/d entre le cylindre et le guide. Dans le cadre de cette étude, un
grand nombre de rapports d’aspect ont été explorées.

Ce travail fournit la première caractérisation expérimentale complète des modes piégés dans
l’espace des fréquences ainsi qu’une analyse détaillée de leur structure spatiale. Cette caractérisa-
tion a été obtenue en décomposant le champ de déformation de la surface libre en harmoniques
du forçage, ce qui nous a permis d’évaluer la contribution relative des modes linéaires et non-
linéaires. Nos résultats montrent que la composante linéaire est dominante dans nos expériences,
ce qui valide les approches théoriques basées sur la théorie linéaire des ondes de surface. Une
décomposition de la partie linéaire du champ de déformation de la surface libre en fonction des
symétries naturelles du problème permet, pour la première fois, la mise en évidence expérimen-
tale de la structure spatiale des modes piégés. Ils se manifestent comme des oscillations non prop-
agatives de la surface libre, antisymétriques par rapport à l’axe longitudinal du guide, confinées
au voisinage du cylindre. Deux types de modes piégés ont été observés : symétriques et anti-
symétriques perpendiculairement à l’axe du canal. Alors que le premier type de mode est toujours
présent, le second n’a été observé que dans le cas des plus grands rapports d’aspect. Nos résultats
sur la structure spatiale de ces modes confirment les prédictions théoriques issus d’une méthode
d’expansion en multipôles.

La caractérisation en fréquence des modes piégés a été obtenue par une analyse en champ
lointain plus précise qu’une simple mesure locale. En introduisant des coefficients de réflexion
et de transmission pour les perturbations antisymétriques dans le guide, nous avons pu constru-
ire des courbes de résonance pour chacun des rapports d’aspect a/d étudiés. Sur ces courbes,
l’apparition des modes piégés est mise en évidence par la présence d’un ou de deux pics de réso-
nance.

Une forte asymétrie est observée dans ces courbes, qui ne s’ajustent pas au modèle classique
de Breit-Wigner. Cette asymétrie a été aussi mise en évidence dans une étude numérique complé-
mentaire. Afin de pouvoir décrire correctement ce comportement, nous avons proposé un modèle
qui tient compte de la proximité de la fréquence de coupure du guide. Ce modèle nous a per-
mis de reproduire l’asymétrie de nos courbes de résonance et a été validé expérimentalement par
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nos résultats. Les résultats de cette étude sont synthétisés sur une courbe maîtresse qui illustre
la dépendance de la fréquence adimensionnelle kd avec le rapport d’aspect a/d . Cette courbe
est composée, comme attendue, de deux branches, qui correspondent aux deux types de modes
piégés observés. Ces résultats montrent un excellent accord avec les prédictions théoriques exis-
tantes dans la littérature.

Dans la seconde étude expérimentale conduite dans cette thèse, la turbulence des ondes de
flexion sur une plaque élastique mince est étudiée. Dans ce cas, des mesures de la déformation
de la plaque (intégralement résolue dans l’espace et le temps) ont été utilisées pour déterminer,
pour la première fois, le spectre tridimensionnel d’énergie de la turbulence d’ondes. L’analyse
de ce spectre met en évidence la présence d’une cascade turbulente d’énergie : les petits nom-
bres d’ondes étant caractérisés par une forte anisotropie associée au forçage, tandis que les grands
nombres récupèrent l’isotropie. D’autre part, l’analyse du spectre tridimensionnel montre aussi
que l’énergie est concentrée au voisinage d’une surface 2D, qui représente une relation de dis-
persion faiblement non-linéaire. Ce résultat expérimental indique la persistance de la structure
spatio-temporelle des ondes dans la plaque.

Notre approche expérimentale de la turbulence d’onde a aussi révélé les principales carac-
téristiques des ondes faiblement couplées qui peuvent être comparées avec les prédictions de la
théorie de la turbulence faible. Cette étude a confirmé et quantifié le comportement faiblement
non linéaire des ondes composant la cascade turbulente. En outre, nos résultats ont confirmé que
la puissance fournie et le spectre d’énergie suivaient la même loi d’échelle. Nous avons montré un
bon accord entre les résultats expérimentaux et la théorie de la turbulence faible.

D’autres études préliminaires sont brièvement évoquées concernant le retournement tem-
porel d’ondes de surface et l’évolution spatio-temporelle de la déformation de la surface d’une
couche mince de liquide après l’impact d’une goutte.



Abstract

This thesis represents a contribution to the understanding of certain water wave phenomena of
interest in current research. A number of significant results have been obtained by means of a new
free-surface measuring technique that has been developed for such studies.

This optical profilometric technique consists in projecting a sinusoidal-profile fringe pattern of
known characteristics onto the free surface and in observing the projected images from a different
direction. The surface deformation, as well as the perspective, introduce a local frequency mod-
ulation of the fringe pattern. Analysis of the deformed image and its comparison with a reference
image allow for the reconstruction of the free-surface deformation. In particular, this technique
presents the advantage of determining the surface’s profile from only one image, which allows the
study of highly unstationary surface flows. The high spatio-temporal resolution achieved allow, for
the first time, the exploration of a vast variety of water wave phenomena.

Two major experimental studies on surface waves have been carried out during the course of
this thesis. In the first one, we focused on the study of water wave resonances around a circular
cylinder of radius a placed symmetrically between the parallel walls of a waveguide of width 2d
(trapped modes). The relevant dimensionless parameters in this case are the frequency of waves
kd (k being the wavenumber), and a/d , the aspect ratio between the cylinder and the waveguide.
In the framework of this study, several values of the aspect ratio have been explored.

This work provides the first complete experimental characterization of trapped modes in the
frequency space, as well as a detailed analysis of their spatial structure. This caracterization has
been obtained by decomposing the free surface deformation field in harmonics of the driving fre-
quency, which has allowed us to evaluate the relative contribution of linear and non-linear modes.
Our results show that the linear component is dominant in our experiences, therefore validating
the theoretical approaches based on the linear theory of water waves. A decomposition of the lin-
ear deformation field in terms of the natural symmetries of the problem enables us, for the first
time, to provide experimental evidence of the spatial structure of trapped modes. These manifest
in the form of non-propagative oscillations of the free surface, antisymmetric with respect to the
longitudinal axis of the waveguide, confined to the vicinity of the cylinder. Two different types of
trapped modes have been observed: either symmetric or antisymmetric with respect to a line per-
pendicular to the walls passing through the center of the cylinder. While the first type of trapped
mode is always present, the second type has only been observed in the case of the largest aspect
ratios. Our results regarding the spatial structure of the trapped modes confirm the theoretical
predictions arising from a multipole expansion method.

The frequency characterization of the trapped modes has been obtained by the analysis of the
problem in the far field. By introducing reflection and transmission coefficients for the antisym-
metric perturbations inside the waveguide, we were able to build resonance curves for every value
of the aspect ratio a/d considered. On this curves, the occurrence trapped modes is evidenced by
the presence of one or two resonance peaks.

A marked asymmetry is observed on these curves, which cannot be properly described by the
classical Breit-Wigner shape. This asymmetry has been also found in a complementary numerical
study. In order to describe adequately this behaviour, we have proposed a model which takes into
account the proximity to the waveguide’s threashold for propagation. This model allowed us to
reproduce the asymmetry of the resonance curves and was successfully validated with the experi-
mental results. Finally, all the experimental results are summarized on master curve, depicting the
dependence of the trapped mode frequency kd with the aspect ratio a/d . This curve is composed,
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as expected, by two branches, corresponding to the two types of trapped modes observed. This
results show an excellent agreement with the predictions available in the literature.

The second experimental study conducted in the frame of this thesis regards the turbulence of
bending waves in a thin elastic plate. In this case, fully space-time resolved measurements of the
plate deformation have been employed to determine, for the first time, the three-dimensional en-
ergy spectrum of wave turbulence. Analysis of this spectrum shows the presence of a turbulent en-
ergy cascade: low wavenumbers are characterized by a strong anisotropy associated to the forcing,
the isotropy being recovered at large wavenumbers. Moreover, analysis of the three-dimensional
spectrum leads to the observation that the energy is mainly concentrated in the vicinity of a 2D
surface, representing a weakly non-linear dispersion relation. This experimental result confirms
the persistence of the spatio-temporal structure of waves comprising the turbulent cascade.

Our experimental approach for wave turbulence revealed also the principal characteristics of
the weakly coupled waves that can be usefully compared with the predictions of weak turbulence
theory. This study confirms and quantifies the weakly non-linear behaviour of the waves in the
turbulent cascade. Furthermore, our results confirmed that the scaling law in the supplied power
is the same for the energy spectrum. We have shown a bon accord between experimental results
and weak turbulence theory.

Two other preliminary studies are briefly mentioned, regarding the time-reversal of water waves
and the spatio-temporal evolution of the free surface after the impact of a drop.
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1
INTRODUCTION

1.1 Free surface phenomena and water waves

Free surface flows are among the most rich and complex hydrodynamical phenomena commonly
found in nature. It is perhaps the mesmerizing charm found in the refined balance between beauty
and complexity that has amazed and captivated scientists from the very birth of physics [16]. It is
indeed surprising to discover that personalities such as Newton, Laplace, Lagrange, Poisson and
Cauchy (to name a few) were deeply involved in the early advances made in the understanding of
free-surface phenomena, setting the scene for subsequent work in this area.

Presently, more than two hundred years after those pionneering efforts, free-surface phenom-
ena still enjoys an unceasing interest from both the scientific and engineering communities. In
particular, the last five decades have brought a renewed focus on free-surface flows, motivated by
scientific and technological developments in closely related fields.

Some of the most prominent advances in this domain concern the interaction of surface waves,
either with flow singularities or mutual. In the following paragraphs, we present some of these
advances along with a discussion on their scope, limitations, and open questions that still remain
to be attended.

The study of the interaction between surface waves and flow singularities can be further clas-
sified according to the nature of the singularities, either passive or active. By the term ’passive’, we
mean an object (or a set of objects) whose presence modifies the original wave field but which does
not react to the flow; e.g., a fixed obstacle facing surface waves. Active singularities amount to flow
structures such as a vortex, a jet or a floating structure, whose dynamics results from a significative
energy exchange with the incident wave field.

The occurrence of trapped modes in water wave theory is one of the most important and strik-
ing recent results in the study of the interaction between waves and flow singularities. Consider,
for example, the problem of the interaction of linear water waves with a freely-floating structure in
open water. In the framework of the classical theory of water waves, this problem is conventionally
treated in the frequency domain, where it is decomposed in the so-called scattering and radiation

11



12 Chapter 1. Introduction

problems. In the scattering problem, the structure is held fixed in the incident wave field at its
prescribed frequency, whereas in the radiation problem the structure is forced to oscillate in the
same frequency but in the absence of waves. Both problems are closely related by the equations of
motion for the freely-floating structure, differring only in the boundary condition imposed on the
surface of the structure which holds the information regarding the forcing.

Solutions to these scattering and radiation problems have been studied since the 50’s and, al-
though no proof was available at the time, most researchers in the field believed that such solu-
tions were unique (for a given structural geometry and for every frequency). However, this belief
was overthrown by the discovery of trapped modes. A trapped mode is a finite-energy free oscil-
lation of the fluid localized in the vicinity of the fixed structure and corresponds to bound states
occurring in many situations in physics. For a given structure, trapped modes may exist only at
discrete frequencies.

It was later observed that, whenever such modes exist for a particular structure (or array of
structures), forcing at the trapped modes eigenfrequency leads to particularly sharp resonances.
The implications of this property of trapped modes are multiple, and whether they represent an
exploitable feature or are considered to be an inconvenience varies according to the particular
problem under study.

For instance, high quality factors in trapped modes resonances are decisive for the design of
the so-called metamaterials, whose remarkable properties, such as negative refraction index and
cloacking, rely on the resonant nature of their response.

Within the framework of environmental engineering and renewable energy development, in
which much effort is being directed towards the design of systems capable of harnessing the en-
ergy from the ocean, the occurrence of trapped modes could indeed be the basis of an effective
hydroelectrical power device. In assessing the feasibility of such a device, two crucial concerns
arise. The first one is whether the bandwidth around a trapped mode frequency is substantially
different from that of the near-resonant motions already familiar to designers of wave-power de-
vices. The degree of spatial localization of the energy, as well as its dependency with the structure’s
characteristics, constitutes the second regard. Although a large literature exists covering many the-
oretical aspects of the occurrence of trapped modes, these questions still remain as open subjects
which evidence the need of a more detailed study on both the frequency and spatial characteristics
of the trapped modes.

In the case of marine and coastal engineering, where large off-shore structures based on piles
are being built (such oil rigs and stockage platforms, airports and breakwaters), the occurrence
of such resonances results in the presence of large loads on the individual elements of the array,
and could eventually lead to structural damage. For this reason, their study is of fundamental
importance to ensure the successful and safe design of these structures.

Incidentally, another reason the existence of trapped modes should be of concern to engineers
steams from the fact that standard numerical methods commonly employed in the design and
analysis of structures in interaction with fluid flows will inevitably fail at, or very close to, a trapped
mode frequency.

Turning to the interaction of water waves with active singularities, the scattering of surface
waves by a (vertical) vortex is a case of particular importance. In the first place, the study of the
multiple aspects of this interaction serves as a building block in the understanding of more general
and encompassing problems like the scattering of sound by complex vortical structures and the
propagation of sound through turbulent flows. In this case, and despite the large amount of data



1.1. Free surface phenomena and water waves 13

available from both theoretical and experimental studies, many basic questions such as the re-
spective contributions of large structures of the mean flow in the scattering process are not clearly
established and need further consideration.

Moreover, there is another aspect of this system that renders it attractive to theoretical physi-
cists. This steams from the fact that wave–vortex interactions constitute a classical analogue of
the Aharonov–Bohm effect, in which the dynamics of a charged quantum particle is affected by
the electromagnetic potential even in regions where the associated field vanishes. However, and
as opposed to the quantum case, wavefront dislocations arising from this interaction are physi-
cally observable. In this sense, the study of the water wave case could shed some light into more
fundamental aspects of the quantum interaction that are not always abordable experimentally.

As we have stated before, the study of the diverse mechanisms of mutual interaction between
surface waves is another prominent field that has renewed the interest of the scientific community
in free surface flows. In the framework of this general problem, wave turbulence is perhaps the
area in which most significant advances have been made in the last few years.

Wave turbulence is a non-equilibrium state of waves in non-linear interaction; the case of grav-
ity waves at the surface of the ocean being the archetypal example. Many other systems belong
to this class and wave turbulence have been observed in a variety of contexts including capillary
waves, atmospheric waves, superfluids, elasting bending waves in plates, non linear optical waves
and Alfvén waves in solar winds.

In a manner that is similar to the phenomenological theory of hydrodynamic turbulence, the
so-called weak-turbulence theory for wave turbulence predicts a Kolmogorov-Zakharov energy
cascade. This analytical theory assumes the persistence of the space-time structure of the linear
waves through the dispersion relation. In spite of the large amount of theoretical advances, very
few experimental studies have taken place and available results only show partial agreement with
the theoretical predictions. This is related to the fact that almost none of these experiments look
beyond the analysis of measurements at a single point, which also implies the use of a ‘wave tur-
bulence equivalent’ for the Taylor hypothesis in hydrodynamic turbulence in order to relate space
scales to time scales (and viceversa).

Beyond the framework of surface wave interaction, the study of the interaction of isolated co-
herent structures, such as jets, vortices and vortex rings with a free surface is of particular interest
to free-surface turbulence, as it constitutes a very valuable departure point in illustrating the con-
nection between columnar vortices in the fluid and the surface dimples above their low-pressure
cores.

Free-surface turbulence is primarily concerned with the state of a free surface above a turbu-
lent flow. In this area, the driving question is how the statistical properties of the turbulent crispa-
tions of the surface are linked to those of the turbulent velocity field beneath it. This is a matter
of particular importance, for example, in understanding the exchange of heat and mass between
the atmosphere and the ocean, which is determined by the small-scale roughness of the ocean’s
surface. These transport processes are crucial for the global distribution of momentum, heat and
chemical species.

One of the most stricking recent experimental results regarding this problem is related to the
validity of Taylor’s frozen turbulence hypothesis, i.e., that the eddies are essentially fixed and do
not change considerably as they are advected by the flow. This hypothesis, applicable to the mea-
surement of the turbulent velocity field with a relatively large mean velocity, allows measured time
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Figure 1.1: Photograph of the free surface deformation generated by a pinned vertical vortex in fast
rotation as observed in our experiments (zoom). The vortex core is clearly discernible, and a spiral
wave originating at its center can be observed as well. The smallest yet most interesting details of
the free surface deformation, such as those connected to the interaction between emitted waves,
are hardly visible to the naked eye, and have been enhanced for this particular visualization by the
use of grazing light. [In this image, the vortex core is of about 3 cm in diameter.]

series recorded at a fixed point to be interpreted as fluctuations along a line in the mean flow direc-
tion. It has been shown that, while Taylor’s hypothesis works for a turbulent velocity field, the same
statement does not hold for its free surface due to the emergence of relatively fast capillary–gravity
waves.

Moreover, although homogeneous and isotropic turbulence is well documented and its inter-
action with a free surface has been explored numerically, there are still some basic yet highly non-
trivial questions that need to be addressed. For instance, one of such questions is how the spatial
energy spectrum of the subsurface turbulent velocity field is reflected in the surface. It is worth
noting that the answer to this question is still unknown even for the case in which surface defor-
mations are not very strong, not to mention much more spectacular manifestations of free-surface
turbulence, such as breaking and frothing of the surface.

1.2 The need for an experimental technique

Further progress in the understanding of the problems previously discussed strongly depends on
the availability of experimental results, from which theories could be built and predictions com-
pared, and to which numerical models could be validated. Indeed, due to the complexity of the
phenomena involved, theoretical tractability is not always assured (e.g., the condition at the line
of contact between the free surface and any surface-piercing body when surface tension effects
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are not negligible) or is limited to some particular regime or approximation (e.g., trapped modes
within the linear theory of waves, sound–vortex interaction in the low-Mach-number regime). In
the case of numerical studies, the application of realistic boundary conditions on the free surface
makes simulating the free surface a daunting task. In addition, such studies are further constrained
by often prohibitely high computational costs (notably in the cases of wave or free-surface turbu-
lence).

In that sense, almost every open question in these areas seems to bring to our attention the
need for an appropriate experimental technique, capable of performing whole-field fully resolved
space-time measurements of the free surface deformation and evolution.

In light of this, many novel techniques have been developed in the last years for the measure-
ment of the free surface deformation. Laser surface scanning, diffusing light photography, stereo-
scopic topography, free-surface gradient detection and digital image correlation constitute exam-
ples of such endeavours. Unfortunately, most of the available techniques are problem-specific,
and rapidly face difficulties to adapt to other slightly different physical systems. Moreover, some of
them are restricted to the measurement of stationary or periodic processes, or limited to thin layers
of fluid. In any case, these and other deficiencies and limitations render them rather inadequate
for studying the free surface phenomena of interest to the present work.

This concise description (which will be discussed in further detail in Chapter 2) represents a
snapshot of the state-of-the-art of the measurement techniques available for the topography and
time-tracking of the free surface as it was at the beginning of this thesis. In the aim of overcoming
this lack, our primary efforts during the course of this work were pointed towards the development
of a novel experimental technique that would allow for space-time resolved measurements of the
free surface.

1.3 Topography of the free surface: a not so superficial study

In addition to the intrinsic value that all topographic studies hold, the measurement of the detailed
state and time-evolution of a free surface offers another profitable aspect that is worth mention-
ing. Indeed, and although the study of the free surface deformation is of interest per se, under
certain conditions, such a characterization could also lead to valuable information regarding other
hydrodynamical variables of the flow beneath the surface.

For instance, in the case of stationary, planar and inviscid flow with negligible surface tension,
it could be shown that the surface gradient field, ∇h(x), equals the normalized convective acceler-
ation, i.e., ∇h =− (u ·∇)u/g ; u being the velocity field and g the acceleration of gravity.

Another example regards the study of the interaction between underlying coherent structures
and the free surface, and is of particular relevance to free-surface turbulence. For low Froude num-
bers1, Dommermuth et al. [19] showed that the equations of motion for the fluid can be reduced
to a form in which, in the absence of atmospheric pressure, surface elevation is hydrostatically
balanced by the vortically induced pressure. This allows the indirect determination of the pressure
field near the surface through the measurement of the free surface deformation.

1The Froude number (named after William Froude (1810-1879), english engineer and hydrodynamicist), is a dimen-
sionless number comparing the potential energy due to gravity to the kinetic energy in the flow.
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Connections between the deformation of the free surface and other subsurfacic hydrodynami-
cal variables of the flow are of particular interest in those cases for which theoretical results regard
only in-flow quantities. Whenever such links can be established, the measurement of the free sur-
face deformation allows the contrast of existing theoretical predictions without resorting to direct
bulk measurements which are not always accessible to the experimenter.

1.4 Organization of this thesis

The first two chapters of this thesis are devoted to the detailed description of our profilometric
measurement technique. The first chapter presents the technique as well as the measuring system,
along with an experimental validation and numerical tests. Finally, some illustrative examples of
the application of this measuring system are presented, depicting its potentialities over a variety
of fluid dynamics’ scenarios.

The second chapter introduces the exact theoretical derivation of the techniques’ reconstruc-
tion formulas, together with corrections to errors found in the existing literature regarding fringe
projection profilometry. These theoretical results extend beyond a particular experimental setup
to include all the possible configurations and geometries of the profilometric system introduced
in the first chapter. These derivations are sucessfully validated by means of a joint experimental
study.

One of the most important experimental results obtained during the course of this thesis con-
cerns an extensive experimental study on water-wave trapped modes, which is the subject of Chap-
ter 4. We present there the first experimental evidence for the existence of trapped modes around
an obstacle in a water wave channel. This extensive study, made possible by the development of
our profilometric measuring technique, includes the detailed characterization of the spatial struc-
ture and eigenfrequencies of the observed trapped modes, which are successfully compared to the
theoretical predictions available in the literature.

Chapter 5 deals with the experimental study of wave turbulence in a slightly different physical
system: bending waves in a thin elastic plate. In this case, our optical profilometric technique
is employed to measure the dynamics of the plate’s deformation in a large portion of its surface,
leading to the first experimental observation of a full space-time spectrum. Experimental results
are discussed and compared to the predictions of weak turbulence theory.



1.4. Organization of this thesis 17

(a) top view

(b) perspective view

Figure 1.2: Photographs of the free surface deformation resulting from the interaction of plane
surface waves with a pinned vertical vortex as observed in our experiments. In this visualization,
plane waves travel from left to right, and the vortex rotates counterclockwise. Both photographs
reveal the presence of a dislocation line in the wavefront past the vortex position. [In this image,
the vortex core is of about 2 cm in diameter.]
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(a) top view

(b) perspective view

Figure 1.3: Photograph of the free surface deformation resulting from the interaction of plane sur-
face waves with a pinned vertical vortex in fast rotation as observed in our experiments. In this
visualization, plane waves travel from left to right, and the vortex rotates clockwise. This visualiza-
tion shows a strong interaction, evidenced by the richness of features in the free surface. [In this
image, the vortex core is of about 3 cm in diameter.]
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(a) perspective view

(b) close-up on the region near the obstacle

Figure 1.4: Photograph of the setup employed in this thesis for the study of trapped modes. Panel
(a) shows a perspective view of the setup, depicting our wave tank, the waveguide and the surface-
piercing cylinder place symmetrically between its walls. The wavemaker is visible at the left of the
picture. An asymmetric perturbation is observed in the vicinity of the obstacle, indicative of the
presence of a trapped mode. Panel (b) illustrates such asymmetric perturbation with a close-up
on the region of interest. In this photographs, a pattern of parallel red and white lines is projected
onto the surface of interest in order to enhance the visualization of its deformation. [Water height
at rest: 5 cm; waveguide’s width: 100 mm; obstacle’s diameter: 50 mm. Photograph taken at the
experimentally determined trapped mode (eigen)frequency for this configuration.]
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GLOBAL MEASUREMENT OF WATER WAVES

BY FOURIER TRANSFORM PROFILOMETRY

This chapter is composed by an article published in Experiments and Fluids [10]. It describes in
detail the optical profilometric technique that I have set up during the first year of my thesis and
subsequently employed for the measurement of free-surface deformation fields. The development
of this technique, which allows for single-shot, global and non-intrusive measurement of free sur-
face deformations over large areas, represents the foundations onto which the subsequent experi-
mental studies performed during the course of this thesis are built.

Standard fluid measuring techniques for free-surface deformations are usually limited to a
few point measurements, employing either one or an array of synchronized sensors. Further-
more, many of those methods involve the use of surface-piercing elements (such as resistive- or
capacitive- probes) which are intrinsically intrusive. In any case, such methods only allow for a
small number of discrete localized measurements, so that the information on the detailed spatial
aspects of the free-surface deformation and the propagation of disturbances is incomplete. These
limitations have led us to develop a novel technical technique for the accurate measurement and
tracking of the three-dimensional topography of free-surface deformations.

The optical profilometric technique that we developed is based on the principle employed in
fringe projection profilometry. A fringe pattern of known spatial frequency is projected onto the
free surface and its image is recorded by a camera. The topography of the surface introduces a
frequency modulation in the observed pattern, which is also modified by the perspective due to
the relative positioning and orientation of the projection–recording system. The deformed fringe
pattern is later compared to the undeformed (reference) one, leading to a phase map from which
the free surface can be reconstructed.

In order to be able to project images onto the liquid surface, its light diffusivity is enhanced
by the addition of a white liquid dye. Although the use of dye renders the liquid opaque, preclud-
ing the simultaneous use of introspective optical techniques (e.g., Particle Image Velocimetry and
Laser Doppler Velocimetry), bulk measurements are still possible using acoustic techniques (such
as Ultrasonic Doppler Velocimetry).

Fringe projection onto the surface is achieved by the use of a high-resolution videoprojector,
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22 Chapter 2. Global measurement of water waves

allowing for the projection of wavelength-controlled sinusoidal-profile fringe patterns, which con-
siderably increases the overall performance of the technique and the quality of the reconstruction.
Moreover, as the technique poses no restrictions on the time-tracking of the free-surface defor-
mation (other than that arising from the exposure time), the obtention of time-resolved measure-
ments of the surface’s evolution is only limited by the capturing system’s acquisition rate.

Among the examples of the application of this measuring technique to fluid dynamics prob-
lems presented in this chapter, the measurement of small-amplitude surface waves emitted by a
pinned vortex is perhaps the most eloquent. In this case, we studied the non-stationary emission
of weak amplitude spiral surface waves from the core of a vortex in fast rotation. Although the wave
amplitude is weak in comparison to the vortex core even near the source (the waves ware barely
noticeable to the naked eye even in grazing light) we show that the technique is able to detect
and reconstruct remarkably well the smallest structures, discerning perturbations of amplitudes
throughout more than two orders of magnitude in a single-shot measurement.

Finally, the system has the additional advantage of being easily scalable, so that it can be
adapted for any specific application, ranging from small or medium scale laboratory experiments
to large applications such as those considered in hydraulic engineering.
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Abstract In this paper, we present an optical profilo-

metric technique that allows for single-shot global

measurement of free-surface deformations. This system

consists of a high-resolution system composed of a vid-

eoprojector and a digital camera. A fringe pattern of known

characteristics is projected onto the free surface and its

image is registered by the camera. The deformed fringe

pattern arising from the surface deformations is later

compared to the undeformed (reference) one, leading to a

phase map from which the free surface can be recon-

structed. Particularly, we are able to project wavelength-

controlled sinusoidal fringe patterns, which considerably

increase the overall performance of the technique and the

quality of the reconstruction compared to that obtained

with a Ronchi grating. In comparison to other profilometric

techniques, it allows for single-shot non-intrusive mea-

surement of surface deformations over large areas. In

particular, our measurement system and analysis technique

is able to measure free surface deformations with sharp

slopes up to 10 with a 0.2 mm vertical resolution over an

interrogation window of size 450 9 300 mm2 sampled

on approximately 6.1 9 106 measurement points. Some

illustrative examples of the application of this measuring

system to fluid dynamics problems are presented.

1 Introduction

Free-surface water waves phenomena enjoys an unceasing

interest from both the fluid scientists and engineering

communities. In general, the defining characteristic of free-

surface flows is the presence of a deformable interface,

which by itself provides for an interaction mechanism

between the base flow and the external environment. For a

vast variety of cases, this interaction is far from being

negligible, and often its effects can lead to a drastic change

in the hydrodynamical characteristics and time evolution of

the flow. In such flows, the interaction between the inter-

face and the underlying flow is made evident in the form of

deformations of the free surface. The detailed shape of

these deformations is determined by a delicate balance

between the local pressure below the surface and its ver-

tical acceleration, on one hand, and gravity and interfacial

tension (associated with the surface’s local curvature), on

the other.

Therefore, the experimental study of free-surface defor-

mation (herein referred to as FSD) in free-surface flows

constitutes the keystone to understanding the complex

mechanisms that govern its interaction with the underlying

near-surface flow. In recent years, many theoretical,

numerical and experimental studies on free surface defor-

mation were conducted to understand its interaction with a

vast variety of basic flows, such as vortices and vortex rings

(Ruban 2000; Gharib 1994; Gharib and Weigand 1996), as

well as jets (see, e.g., Walker et al. 2006), as well as with
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turbulent flows (Savelsberg et al. 2006; Savelsberg and van

de Water 2008).

Although much work has been done to aid our under-

standing of FSD, it is clear that both theoretical predictions

and numerical results still need detailed experimental val-

idation through a suitable measuring technique.

Standard measuring techniques for FSD in fluid flows

are usually to a few point measurements, employing either

one or an array of gauges. These methods only allow for

discrete localized measurements, so that the information on

the 2D aspects of FSD and disturbances’ propagation is

incomplete. These limitations and deficiencies led fluid

experimentalists to the development of novel optical

techniques for the accurate measurement and tracking of

the 3D-topography of FSDs.

Cox (1958) determined the surface elevation by the

refraction of light through the free-surface. A light source

of spatially linearly-varying intensity was placed at the

bottom of a water tunnel and a telescope imaged one point

on the water surface into a photocell. The intensity of the

light recorded by the photocell is related to one component

of the slope of the free-surface. This technique is com-

monly known as ‘‘refractive mode’’ since the light rays are

refracted through the surface. Likewise, a technique known

as ‘‘reflective mode’’ permits observation of the free sur-

face by illumination of the liquid surface from above.

Zhang and Cox (1994) and Zhang et al. (1994) devised a

technique for measuring the FSD by using a free-surface

gradient detector (FSGD). The principle behind this

method is to color-code the surface slopes (for further

details on the technique, see Zhang et al. 1996; Zhang

1996). This technique was later combined with digital

particle image velocimetry (Dabiri and Gharib 2001;

Dabiri 2003) to study near-surface flows by constructing

correlations between small-sloped FSDs and near-surface

velocities.

Diffusing light photography was employed by Wright

et al. (1996) to study FSD under fully developed isotropic

ripple turbulence, and later on for the imaging of inter-

mittency (Wright et al. 1997). In their technique, the fluid

is illuminated from below with a 10-lm light flash that

diffuses through the liquid as a result of multiple scat-

tering from a diluted suspension of 1-lm-polystyrene

spheres. Light intensity reaching the air–liquid interface

depends on the local depth, so that less light penetrates

deeper regions. Calibrating the transmission of light as a

function of fluid depth leads to the instantaneous height of

the fluid surface, even when it presents large variations in

height and curvature. This technique works for light

transport mean free paths (i.e., the distance over which a

ray scatters through a large angle) larger than the surface

displacement but smaller than the fluid depth. Although

precise, this technique is very delicate to implement

particularly due to the constraints imposed on particle

concentration control. For measuring the global FSD

caused by the interaction of surface waves impinging on a

single fixed vortex, Vivanco and Melo (2004) scanned the

whole surface measuring at each point the deflection of a

reflected laser beam. Although the method provides for a

measure of the amplitude and phase of the surface

deflection, its range of application is limited to stationary

or periodic processes. Tsubaki and Fujita (2005) and

Benetazzo (2006) presented two different stereoscopic

methods for measuring 2D water surface configurations.

Their method consists on using a pair of sequential

images captured by two cameras arranged in stereo

position. This method is suitable for the accurate mea-

surement of both small-amplitude waves and surface

discontinuities. Recently, Moisy et al. (2008) proposed an

optical technique based on digital image correlation. A set

of random points printed at the bottom of a channel is

observed through the deformed surface. The apparent

displacement field observed between the refracted and the

reference images allows for the determination of the local

surface slope. Being a refractive technique, the main

limitation of the method is due to caustics generated by

strong curvature or large surface-pattern distance.

Fringe projection profilometry was first employed by

Grant et al. (1990) to measure the FSD associated to water

waves using the projection moiré method (see e.g. Patorski

1993). However, wave probes had to be used to resolve the

ambiguity associated to the polarity of the fringes (i.e.,

which fringes represent peaks and which represent

throughs) and to obtain an absolute measure of elevation

above the mean water level. Zhang and Su (2002) proposed

a particular fringe projection profilometric technique

commonly known as Fourier transform profilometry (FTP)

(see Takeda et al. 1982; Takeda and Mutoh 1983; Su and

Chen 2001) for the measurement of FSDs and presented

experimental results on a vortex’ shape at a free surface.

Recently, Cochard and Ancey (2008) developed a mea-

suring system based on Phase Shifting and FTP applied to

the dam-break problem (i.e., the sudden release of a vol-

ume of liquid down a slope) and measured the time-

evolution of the flow.

In order to further our understanding of FSD mecha-

nisms, this paper presents an optical profilometry technique

that allows for high-resolution 3D whole-field reconstruc-

tion of time-dependent FSD fields. Our technique is based

on fringe projection profilometry, which has been suc-

cessfully employed for the topography of solid surfaces in

a wide variety of fields, such as 3D sensing systems,

mechanical engineering, machine vision, robotic control,

industry monitoring and quality assesment, biomedicine,

etc. In this work, we propose both the liquid surface

extension of this technique along with several significant
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improvements in the optical setup as well as in the signal

processing algorithm.

Our presentation is organized in five sections as follows.

Section 2 briefly summarizes the principle of FTP, upon

which our measuring technique is based. In Sect. 3, we

describe both the complete experimental system, mea-

surement protocol and data processing algorithm

developed to measure the liquid’s free-surface deforma-

tion. Limitations of the method, such as maximum range of

measurement, system’s resolution and accuracy are dis-

cussed as well. Section 4 is divided into three sections

providing diverse illustrative applications of our measuring

technique. Finally, the last section presents concluding

remarks.

2 Principle of the method

Although there exists a vast variety of implementations of

fringe projection profilometry, the underlying principle

common to all of them is very simple. In its more ele-

mentary form, a typical fringe projection profilometry

setup consists of a projection device and an image

recording system. A fringe pattern of known characteris-

tics is projected onto the test object and the resulting

image is observed from a different direction. Since pro-

jection and observation directions are different, the

registered fringe pattern is distorted according to the

object’s profile and perspective. From the point of view of

information theory, we could say that the object’s depth

information is encoded into a deformed fringe pattern

recorded by the acquisition sensor, allowing it to be

measured by comparison to the original (undeformed)

grating image. It is therefore the phase shift between the

reference and deformed images which contains all the

information of the deformed object.

In this paper, we present an improvement of both the

measuring system and the analysis algorithm based on a

particular fringe projection profilometry known as FTP,

first introduced by Takeda et al. (1982).

In its simplest formulation, and without entering into the

details of the associated experimental setups (which we

will address in Sect. 3), the principle of the method can be

explained as follows, where we distinguish the optical

principle from the signal processing algorithm.

2.1 Optical principle

Figure 1 shows the optical setup: the camera and the pro-

jector are chosen to be arranged in the parallel–optical-axes

geometry, i.e., their optical axis are parallel to each other

and separated by a length D. They are perpendicular to the

reference plane (Oy), which corresponds to the undeformed

surface. In addition, their entrance pupils are located at the

same height L1.

We start from the simple configuration where (Oy) is a

reflecting surface. From a periodic pattern with pp-period on

(Y), the projector forms2 a p-periodic pattern on (Oy), with a

magnification a(p = app, a[ 1). Then, the pattern on (Oy)

is seen by the camera that restitutes a pcperiodic pattern on

(Y0), with a magnification b(pc = bp, b\ 1). This two-step

process can be described using rays: the ray coming from A

on (Y) [with some intensity level, or ‘‘phase’’ u(A)] goes to

a on (Oy), afterwards it enters the camera reaching (Y0) at a

point A0. Since the intensity level is conserved along the ray

path, the phase at A on the projector, the phase on the

undeformed surface at a, and the phase at A0 on the camera

are equal, i.e., u0(A) = u0(a) = u0(A
0). The phase on the

camera is called u0 when the reflecting surface is unde-

formed (Oy) and u when the reflective surface is deformed

(S). In the latter case, although the reflecting surface does

not coincide with (Oy), the same analysis holds but

u(A0) = u0(A
0). Indeed, A0 is now the image formed by the

ray that enters the camera coming from b: u(A0) = u(b).

The phase at b is the same as the phase of point B on (Y) that

differs from A, thus u(A0) = u(b) = u(B).
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. ..A'
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Fig. 1 Optical configuration scheme and ray tracing for the projec-

tion and imaging system. Parallel–optical-axes geometry is adopted:

both optical axes are coplanar and parallel to each other, separated by

a distance D, while the entrance pupils are positioned at the same

height, L over the undeformed reference surface. [The point of

coordinates (x0, y0, h) in the figure corresponds to (x ? dx, y ? dy, h)

in the notation used for the text]

1 As a matter of fact, these conditions are not necessary but strongly

simplify the equations. Moreover, Chan et al. (1994) have showned

that the parallel–optical-axes geometry provides a wider range of

measurement.
2 In the case of a transparent liquid, projection onto its free surface is

attained by the addition of dye. See Sect. 3.1. for further details.
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Measuring the deformed surface implies not only to

calculate the height h(b), as usually only done, but also

calculating the corresponding position (x ? dx,y ? dy)

where it is indeed measured (Fig. 1).

Elementary geometrical optics can be used to get (see

Takeda and Mutoh 1983; Rajoub et al. 2007; Maurel et al.

2009)

h ¼
DuL

Du� 2p=p D
; ð1Þ

dy ¼
D� y

L
h; ð2Þ

dx ¼
x

L
h; ð3Þ

where DuðYÞ � uðYÞ � u0ðYÞ: Then the measurement of

the height distribution h and the corresponding positions

(x ? dx,y ? dy) of the deformed surface consists of

determining this phase-shift.

Intermediate, but useful relations are the intensities

(gray scales) recorded by the camera I0 and I when the

reflecting surfaces are, respectively, (Oy) and (S) and for a

sinusoidal fringe pattern (see also Sects. 3.1, 3.4).

I0ðX; YÞ ¼ cosð2p=pcY þ u0ðYÞÞ; u0 ¼ �
2p

p
D

IðX; YÞ ¼ cosð2p=pcY þ uðYÞÞ; u ¼ �
2p

p

D

L� h
;

ð4Þ

These four last relations are the ones proposed by Takeda

et al. (1982) using f0 � 2p=p:

2.2 Signal processing

The camera records the intensity signals I(X, Y) and I0(X,

Y). These signals differ from the simplified form given by

Eq. 5 mainly because of two sources of unwanted intensity

variations. The first consists of illumination inhomogenei-

ties or background variations over the field of view B; and
is made evident when no grating pattern is used. In that

case, the intensity registered by the camera can therefore be

expressed as

IrefðX; YÞ ¼ BðX; YÞ: ð5Þ

These inhomogeneities remain present when the fringe

pattern is projected, as well as when the reflecting surface

is deformed, as an additive variation. The second source of

unwanted intensity variation is typically due to a

modulation on the intensity of the projected pattern of

fringes. This modulation, corresponding to a local surface

reflectively, is denoted A; and remains the same (or almost

the same) whatever being the height of the reflecting

surface. These result in the general form of the recorded

intensities as

I0ðX; YÞ ¼ AðX; YÞ cosð2p=pcY þ u0ðYÞÞ þ BðX; YÞ;

IðX; YÞ ¼ AðX; YÞ cosð2p=pcY þ uðYÞÞ þ BðX; YÞ;

ð6Þ

Basically, the signal treatment can be divided in two steps.

Step 1 mainly consists in the suppression of the additive

background in both the reference and deformed image, and

is given by the following equations:

HðI0 � IrefÞ ¼ AðX; YÞ expfið2p=pcY þ u0ðYÞÞg; ð7Þ

HðI � IrefÞ ¼ AðX; YÞ expfið2p=pcY þ uðYÞÞg; ð8Þ

where HðFÞ denotes the Hilbert transform of F and i stands

for the imaginary unit. It has been assumed that the typical

length of variation in A is large compared to the wave-

length p of the projected pattern (in our case, p = 2 mm

against typical 10 cm variation length for A).

Step 2 allows us to recover the phase shift Du between

the two images just by taking the imaginary part of

log HðI � IrefÞ � H�ðI0 � IrefÞ
� �

¼ log jAj2 þ iDu: ð9Þ

Hence, these two steps allow to extract Du(X,Y) com-

pletely isolated from the background variation AðX; YÞ and

the reflectivity BðX; YÞ: Then the height distribution h and

the associated positions (y ? dy) are calculated by means

of the Eqs. (1) and (2).

3 Experimental setup

In this section, we describe both the experimental setup and

the data processing technique employed in the experiments

shown in Sect. 4. A discussion on the limitations of the

method in terms of maximum range of measurement and

resolution is presented as well.

3.1 Optical set-up

The complete experimental setup devised for our high-

resolution surface deformation mapping technique is

shown schematically in Fig. 2.

A Plexiglas channel with a test section of 1.5 m long,

0.5 m wide and 0.15 m high was built to hold the liquid

whose free surface is to be studied.

In our experiments, water is employed as working

liquid. In order to be able to project images onto the water

surface the liquid’s light diffusivity is enhanced by the

addition of a white liquid dye (an standard, highly

concentrated titanium dioxide pigment paste, commonly

used for tinting water-based paints) which does not

affect water’s hydrodynamical properties. The optimum

concentration level was established experimentally as a

compromise between diluteness and high fringe contrast.
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A concentration of 0.5% v/v, associated with a Michelson

luminance contrast exceeding the threshold value of 0.85

was used in our experiments. It should be noted that this

concentration value is well below the saturation point of

10% v/v, which assures that phase separation (either in the

form of coexisting phases or suspension) cannot occur.

Note that dye makes the liquid opaque, thus bulk mea-

surements are possible using acoustical techniques (such as

Ultrasonic Doppler Velocimetry) but not optical techniques

(Particle Image Velocimetry, Laser Doppler Velocimetry).

Fringe pattern projection onto the free-surface is

achieved by means of a computer-controlled digital vid-

eoprojector with a high resolution of 1,920 9 1,080 px2,

and 12-bit-depth per color. An important improvement

arising from the use of a digital videoprojector is that we

are able to project sinusoidal fringe patterns with a con-

trolled wavelength (see Fig. 3). Usually, the projected

pattern is a square profile (Ronchi grating), extremely

unadapted for Fourier analysis. Indeed, the use of a sinu-

soidal grating strongly increases the quality of the filtering

process as well as the phase recovering. Another important

improvement with a videoprojector compared to a slide-

projector usually employed is that a videoprojector can

project an image on a surface shifted with respect to its axis

(see Fig. 2) and hence more centered to the camera axis.

The videoprojector allows a correction of the projected

image so that the image is not distorted and keeps the

fringes’ wavelength constant all over the image and

maintains the original sharpness. However, due to the fact

that the projected pattern varies discretely in space and is

digitized in intensity, the video projector’s resolution is

lower than that of a slide projector.

For a given projection distance, the size of the projected

optical field can be adjusted (by means of the projector

zoom optics) to cover either a small or a relatively large

area of the liquid’s surface. In particular, we employed a

projection distance of L = 1 m, which allowed us to work

with projection windows of sizes ranging from approxi-

mately 36 9 20 to 80 9 45 cm2 (covering roughly the

channel’s width).

The fringe patterns projected onto the liquid’s free

surface were recorded by a Fujifilm Finepix S2 Pro SRL-

type digital still camera, with a 3,024 9 2,016 px2 CCD

and a color depth of 16-bits per color. In order to avoid any

artifact from the camera’s preprocessing algorithm (such as

those coming from quantization, compression, color depth

reduction, etc.) we worked with raw images which were

later developed into portable pixmap (PPM) format at full

color depth.

Fig. 2 Complete experimental setup
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Fig. 3 a Sample image of the fringes projected onto an undeformed liquid surface as registered by the camera. b Intensity profile along the

horizontal segment shown in black over the image a
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The whole fringe projection and image capturing system

is held over the channel supported by a mobile structure

that allows for precise alignement and repositioning of the

optical devices.

3.2 Wave and vortex generators

The channel is further equipped with two mechanisms to

produce both global and localized controlled deformation

of the liquid’s surface (Fig. 2). On one end of the

channel, a wave paddle system driven by a motor is

employed to create plane sinusoidal surface waves with

frequencies and amplitudes ranging from 1–500 Hz to 0.1

to 2 cm, respectively. At the opposite side of the channel,

an inclined styrofoam beach of 1:3 slope acts as an

absorber, avoiding unwanted surface wave reflections.

Localized surface deformation is introduced in the form

of a pinned vortex created by a 3 cm diameter rotating

disk placed at the bottom of the basin, along the chan-

nel’s longitudinal centerline. The disk, equipped with

four plastic curved blades, is driven by a computer

controlled servomotor in direction and speed up to

3,500 rpm.

An example of the free surface deformations that can

be introduced by these two mechanisms is illustrated in

Fig. 4. In the figure, plane surface waves coming from

the left are deformed by the presence of the vortex

(located in the center of each figure) and the occurrence

of dislocations (Zhang et al. 1994; Vivanco and Melo

2004) on the wavefront is observed. In Sect. 4.2, a

sample measurement of the FSD associated with this

interaction obtained with the proposed technique is

shown and discussed.

3.3 Signal processing details

We describe in this section the signal processing details

employed to accomplish the two steps described in the set

of Eqs. (7–9). Step 1 is performed to eliminate the additive

deviation B from I and I0. Step 2 is then carried out in a

procedure that slightly differs from the Hilbert transform

described in Sect. 2.2, because the intensity of the pro-

jected fringes is not perfectly sinusoidal. Instead, a Fourier

transform of (I0 - Iref) and (I - Iref) is performed. Then

each Fourier spectrum is filtered out to extract the xc

neighbourhood of the frequency 2p/pc which contains the

height information. For the filtering, a gaussian window of

adjustable size centered at that frequency is employed. The

phases of the inverse Fourier transforms are then calculated

to get u0(Y) and u(Y). Finally, as the phases are determined

modulo 2p, phase unwrapping is needed to obtain the

continuous phase-shift over the image. For a comparison of

several unwrapping algorithms applied to FTP, the reader

is referred to Ghiglia and Pritt (1998) and to the recent

reviews by Su and Chen (2004) and Zappa and Busca

(2008) and references therein.

It is worth noting that, although FTP theory is based on

continuous signals and a continuous Fourier transform,

their experimental counterparts are inherently discrete.

This induces an error in the recovered phase, particularly

relevant for surface deformations of the highest spatial

frequencies (e.g., high-frequency waves). However, Chen

et al. (1999) have shown that this error can be minimized

(as compared to the other experimental uncertainties) by an

appropriate choice of the sampling frequency.

3.4 Error and limitations

In this section, we discuss (1) the error on the measured

heights and (2) the maximum local slope measurable by

this technique.

3.4.1 Uncertainties in the reconstructed height profiles

The relative error on the measured height can be written

from Eq. (1)

Dh

h
¼

DðDuÞ

Du
þ
DL

L
þ
DD

D
þ
Dp

p
; ð10Þ

where we have used Du � pD=p: The uncertainty on h is

therefore determined by the errors in the measured phase as

well as those associated with the determination of the

geometrical parameters (L, D, p) of the experimental setup.

These two sources of uncertainty contribute differently to

the final error on Dh, according to their nature. On the one

hand, the contribution due to Du is mainly associated with

statistical fluctuations such as electronic noise and signal

Fig. 4 FSD due to the interaction of the surface waves created by the

paddle and the vortex generated by the rotating disk. This visuali-

zation has been created using grazing light in order to emphasize the

texture of the surface. For reference, the field of view is approxi-

mately 50 9 30 cm2 (Shutter speed 1/4,000 s)
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processing (Fourier transform, filtering). Therefore, it

produces a zero mean contribution whose standard devia-

tion is responsible for an irreducible contribution to the

uncertainty in h. On the other hand, the systematic errors

associated with the determination of the geometrical

parameters can be eliminated by calibrating the optical

setup.

Calibration prior to laboratory testing can be carried out

using any two points of known height. In our case, this was

achieved by vertically displacing the reference (plane)

surface by a fixed height, although it could also be done

using a calibrated surface. Then, the geometrical parame-

ters L and D are adjusted to obtain an optimum agreement

between the original and the reconstructed profile.

Once calibrated, the system was tested in laboratory

using a triangular prism of known characteristics. Figure 5

shows a superposition of several height profiles measured

for the test object (corresponding to different positions on

the perpendicular direction), as well as a zoomed view

over a 1 mm region of those reconstructed profiles. In the

figure, the profiles obtained with our measurement system

are also compared to those given by a standard point laser

displacement sensor (OptoNCDT 1401-50 by Micro-

Epsilon), capable of measuring distances up to 50 mm

with a (dynamic) resolution of 25 lm at a 1 kHz sampling

rate. The residual fluctuations in this figure, with an

amplitude of Dh� 0:2 mm; give the precision of our

method, i.e., the minimum height difference the method is

able to detect for this interrogation area. Note that

the 0.2 mm corresponds as well to the size of the pro-

jected pixel and thus appears as a reasonable technical

limitation.

3.4.2 Typical length of variation of the measured height

There exists a limitation in the maximum slope this method

is able to measure. This is because a sharper profile gives a

larger Fourier spectrum (a limit being a delta function in

the physical space that gives a constant Fourier transform).

Thus, the error coming from the filtering increases when

the slope of the profile increases. Although the filtering

algorithm could be improved, a limitation exists given by

the physical size of the projected pixels.

In order to estimate the error associated with the filtering

process, we have conducted a numerical test on our data

processing algorithm. For that, a gaussian-shaped height

profile given by h(y) = exp{y2/s2} was chosen, which

physically represents a localized deformation of width s on

the surface under study. A projected fringe pattern of

wavelength p was assumed and, using Eqs. (1–4), two

synthetical images I0 and I, corresponding respectively to

the reference (plane) and deformed surfaces, were gener-

ated. It is worth noting that electronic noise present in the

experiments was not considered in this study.

These two images were then processed by our algorithm

(as described in Sect. 3.3), using a unitary gaussian filter

of size rf centered at the projection (spatial) frequency

kc = 2p/pc, ultimately leading to a reconstructed height

profile hr. Finally, the relative error in the reconstruction

imposed by the filtering process, defined as e �
P

jhr �
hj=

P

jhj;was calculated. This process was then repeated for

different widths of the filter windowrf/kc, and for varying s/p

ratios.

Figure 6a illustrates the dependence of e on the ratio

s/p, for three particular values of rf/kc, namely: 1/6, 1/3 and
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Fig. 5 a Several height profiles measured for the triangular prism

used for laboratory testing. b Zoom over a portion of the

reconstructed profiles showing the precision of the method. In both

cases, dots indicate the object’s profile measured by a 25-lm

resolution (point) laser displacement sensor, whereas continuous lines

denote reconstructed profiles. Note that the weak fluctuations (of peak

amplitude lower than 0.2 mm) observable at the flat regions next to

the triangular profile are due to the abrupt change in slope, a feature

which is not present in the case of most liquid surfaces
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1/2 (upper, middle and lower curves, respectively). This

figure shows that the relative error effectively depends on

the size of the filter window, assuming values lower than

10-2 for s/p[ 1 and rf/kc[ 1/6 (typically, 1/3 9 2p/pc is

used for the illustrative examples shown in Sect. 4). For a

fixed value of the ratio s/p = 0.1, Fig. 6b shows three

reconstructed profiles corresponding to points A, B and C

in Fig. 6a, compared to the original gaussian-shaped

profile S. Note that in this case, we have chosen a bad-

case scenario (in which the characteristic width of the

deformation is ten times smaller than the projected pat-

tern’s wavelength) in order to be able to show differences

between the original and the reconstructed profiles. For

s=p� 1; however, these deviations from the original

profile S are not discernible at the figure’s resolution

(e� 10�2%).

4 Some illustrative applications

In this section, the performance of the developed measur-

ing system and analysis technique is illustrated with two

experimental examples, showing its potential applicability

to a vast variety of free-surface flows.

All the examples shown in this section have been

measured using a projection distance L = 1 m, a projec-

tor–camera distance D = 0.1 m (thus, L/D = 10) and a

fringe pattern of wavelength p = 2 mm. The shutter speed

value employed in all cases is 1/4,000 s.

4.1 Spiral surface waves emitted by a vortex

The first example of application of this technique to free-

surface flow measurements in our experimental set-up is

devoted to the non-stationary emission of spiral surface

waves from a vortex core. For a 3.5-cm depth liquid layer

and a relatively high rotating speed (400 rpm) of the disk, a

strong and fixed vertical vortex is created which, in addi-

tion, ocassionally emits weak amplitude spiral surface

waves. These surface waves are barely noticeable to the

naked eye. We present what is, to our knowledge, the first

reported measurement of spiral waves emitted by a vortex

available in the literature.

Figure 7 shows a sample free-surface reconstruction for

the case of spiral waves emitted by a vortex obtained using

the proposed technique. Note that this technique allows

for the measurement of both the deep vortex core and the

weak spiral waves over an interrogation area of size

30 9 45 cm2. Although the wave amplitude is weak even

near the source in comparison to the vortex core (25 mm in

depth), the figure shows that the technique is able to detect

and reconstruct remarkably well waves of amplitudes down

to 0.2 mm. It is worth noting that this technique can discern

perturbations of amplitudes throughout more than two

orders of magnitude in a single shot measurement.

Qualitatively, similar spiral waves were theoretically

predicted by Umeki and Lund (1997) in the shallow water

regime and for penetrable boundary conditions at the

vortex core. Moreover, Vivanco and Melo (2000) has
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Fig. 6 Error associated to the data filtering and processing algorithm.

a shows the error e (as defined in the text) as a function of the

dimensionless space variable defined as the ratio of the filter size to

the period of the projected pattern. Each of the three curves shown

corresponds to a particular value of the filter width (1/6, 1/3 and

1/2 9 2p/pc for the upper, middle and lower curves, respectively).

b Shows three reconstructed profiles corresponding to the same value

s/p = 10-1 over each curve in the a, compared to the original

gaussian profile (shown in black). Color correspondence between

curves in both panels has been conserved for reference purposes. Note

that b shows a bad-case scenario to illustrate the influence of the filter

width on the quality of the reconstruction; however, in practice, a set

of parameters ensuring an error less than 10-4 % was used
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visualised spiral waves in an comparable experimental

situation where they appear to be the natural solutions for a

plane surface waves background flow in the presence of a

vortex. An experimental study on these spiral waves is

currently progress.

4.2 Vortex–surface–wave interaction

Free surface deformation due to water waves–vortex

interaction is the subject of the second example of appli-

cation shown in this section. The interest on the

experimental study of such interactions is many fold. For

instance, and from a fundamental point of view, Berry

et al. (1980) have shown that wave–vortex interactions

constitute an analogue in the frame of classical mechanics

of the Aharonov–Bohm effect (Aharonov and Bohm 1959),

in which the dynamics of a charged quantum particle is

affected by the vector potential even in regions where the

associated field vanishes. As opposed to the quantum case,

the wavefront dislocations arising from the interaction are

physically measurable. A detailed theoretical and numeri-

cal study of the scattering of dislocated wavefronts by

vorticity structures and its relation with the Aharonov–

Bohm effect was presented by Coste et al. (1999) and

Coste and Lund (1999) for shallow water and dispersive

waves, respectively.

Figure 8a shows a typical FSD field produced by the

strong interaction between plane surface waves and a

vortex as measured with the present technique. As in

Fig. 4, incident waves propagate from left to right,

impinging on the counterclockwise-rotating vortex and

giving rise to strong deformations in the wavefronts. In this

case, the depth of the liquid layer was set to 3 cm, and the

disk rotates at 200 rpm. The associated vortex core is

approximately 5 mm in depth, and the incident waves are

characterized by a wavelength k & 6 cm. The interroga-

tion area over the surface is roughly 30 9 40 cm2.

Both Fig. 8a and b show the same reconstructed FSD,

only the range of the color palette is dilated in the latter to

heights in the region [1.3] mm to emphasize the difference

between hills and valleys, demonstrating the occurrence of

dislocations in the wavefront.

A detailed study on the free surface deformations due to

the interaction of water waves and a vertical vortex using

this topographic technique is already underway and will be

the subject of a following publication.

5 Concluding remarks

In order to accurately measure global time-evolving free-

surface deformations we have adapted and strongly

improved a measuring system and data processing tech-

nique based on FTP to the case of a liquid surface. The

overall performance of the technique and the quality of the

reconstruction have been greatly enhanced by the ability to

project high-resolution sinusoidal fringe patterns (instead

of using a Ronchi grating) controlled in wavelength.

Careful reconstruction of the free-surface deformations was

attained by considering the set of equations for h, dy and dx

(corrections due to the last two equations being rarely taken

into account in the literature).

Fig. 7 Free surface

deformations measured with the

proposed technique, showing a

set of spiral waves emitted by a

vortex. Note the different height

scales the method is able to

discern: the vortex core is

25 mm in depth while the

detectable amplitude for the

spiral waves on the surface goes

down to 0.2 mm. The overall

interrogation area is

30 9 45 cm2 in size
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This experimental system is capable of measuring small

perturbations over a large area; e.g., heights in the range

from 0.2 to 100 mm, with a 0.2 mm vertical resolution

over an interrogation window of 450 9 300 mm2 sampled

with an spatial resolution of 0.1 mm. As mentioned in

Sect. 3.4, this absolute vertical resolution corresponds to

the size of the projected pixel and thus depends, for a given

projector’s resolution, on the size of the sampled window

over the surface under study.

It has the additional advantage of being easily scalable,

so that it can be adapted for a specific application, ranging

from small or medium scale laboratory experiments to

large applications such as those considered in hydraulic

engineering.

Finally, the application examples presented in this work

demonstrate the large scope of applicability of this tech-

nique, which we believe constitutes a very useful and

efficient tool to measure free-surface deformations on a

vast variety of fluid dynamics’ scenarios.

References

Aharonov Y, Bohm D (1959) Significance of electromagnetic

potentials in the quantum theory. Phys Rev 115:485–491. doi:

10.1103/PhysRev.115.485

Benetazzo A (2006) Measurements of short water waves using stereo

matched image sequences. Coast Eng 53:1013–1032

Fig. 8 FSD measured for the

water wave–vortex interaction

1046 Exp Fluids (2009) 46:1037–1047

123

32



Berry MV, Chambers RG, Large MD, Upstill C, Walmsley JC (1980)

Wavefront dislocations in the Aharonov–Bohm effect and its

water wave analogue. Eur J Phys 1:154–162

Chan P-H, Bryanston-Cross PJ, Judge TR (1994) Studies of Fourier

transform profilometry. In: Moorhead RJ, Silver DE, Uselton SP

(eds) Proceedings of SPIE, visual data exploration and analysis,

vol 2178, pp 165–176

Chen W, Hu Y, Su X, Tan S (1999) Error caused by sampling in

Fourier transform profilometry. Opt Eng 38:1029–1034

Cochard S, Ancey C (2008) Tracking the free surface of time-

dependent flows: image processing for the dam-break problem.

Exp Fluids 44:59–71

Coste C, Lund F (1999) Scattering of dislocated wave fronts by

vertical vorticity and the Aharonov–Bohm effect. II. Dispersive

waves. Phys Rev E 60:4917–4925. doi:10.1103/PhysRevE.

60.4917

Coste C, Lund F, Umeki M (1999) Scattering of dislocated wave

fronts by vertical vorticity and the Aharonov–Bohm effect.

I. Shallow water. Phys Rev E 60:4908–4916. doi:10.1103/

PhysRevE.60.4908

Cox CS (1958) Measurement of slopes of high-frequency wind

waves. J Mar Res 16(9):199–225

Dabiri D (2003) On the interaction of a vertical shear layer with a free

surface. J Fluid Mech 480:217–232

Dabiri D, Gharib M (2001) Simultaneous free-surface deformation

and near-surface velocity measurements. Exp Fluids 30:381–390

Gharib M (1994) Some aspects of near surface vortices. Appl Mech

Rev 47:157–162

Gharib M, Weigand A (1996) Experimental studies of vortex

disconnection and connection at a free surface. J Fluid Mech

321:59–86

Ghiglia DC, Pritt MD (1998) Two-dimensional phase unwrapping:

theory, algorithms and software. Wiley, New York

Grant I, Stewart N, Padilla-Perez IA (1990) Topographical measure-

ments of water waves using the projection moire method. Appl

Opt 29:3981–3983

Maurel A, Cobelli P, Pagneux V, Petitjeans P (2009) Experimental

and theoretical inspection of the phase-to-height relation in

Fourier transform profilometry. Appl Opt 48(2):380–392.

doi:10.1364/AO.48.000380

Moisy F, Rabaud M, Salsac K (2008) Measurement by digital image

correlation of the topography of a liquid surface. Exp Fluids

(submitted)

Patorski K (1993) Handbook of the Moire fringe technique. Elsevier,

Amsterdam

Rajoub BA, Lalor MJ, Burton DR, Karout SA (2007) A new model

for measuring object shape using non-collimated fringe-pattern

projections. J Opt A Pure Appl Opt 9:66. doi:10.1088/1464-

4258/9/6/S10

Ruban VP (2000) Interaction of a vortex ring with the free surface

of an ideal fluid. Phys Rev E 62:4950–4958. doi:10.1103/

PhysRevE.62.4950

Savelsberg R, van de Water W (2008) Turbulence of a free surface.

Phys Rev Lett 100(3):034501. doi:10.1103/PhysRevLett.100.

034501

Savelsberg R, Holten A, van de Water W (2006) Measurement of the

gradient field of a turbulent free surface. Exp Fluids 41:629–640.

doi:10.1007/s00348-006-0186-x

Su X, Chen W (2001) Fourier transform profilometry: a review. Opt

Lasers Eng 35:263–284

Su X, Chen W (2004) Reliability-guided phase unwrapping algo-

rithm: a review. Opt Lasers Eng 42:245–261

Takeda M, Mutoh K (1983) Fourier transform profilometry for the

automatic measurement of 3-D object shapes. Appl Opt 22:

3977–3982

Takeda M, Ina H, Kobayashi S (1982) Fourier-transform method of

fringe-pattern analysis for computer-based topography and

interferometry. J Opt Soc Am (1917–1983) 72:156

Tsubaki R, Fujita I (2005) Stereoscopic measurement of a fluctuating

free surface with discontinuities. Meas Sci Technol 16:1894–

1902. doi:10.1088/0957-0233/16/10/003

Umeki M, Lund F (1997) Spirals and dislocations in wave–vortex

systems. Fluid Dyn Res 21:201–210

Vivanco F, Melo F (2000) Surface spiral waves in a filamentary

vortex. Phys Rev Lett 85:2116–2119. doi:10.1103/PhysRevLett.

85.2116

Vivanco F, Melo F (2004) Experimental study of surface waves

scattering by a single vortex and a vortex dipole. Phys Rev E

69(2):026307. doi:10.1103/PhysRevE.69.026307

Walker DT, Chen C-Y, Willmarth WW (2006) Turbulent structure

in free-surface jet flows. J Fluid Mech 91:223. doi:10.1017/

S0022112095002680

Wright WB, Budakian R, Putterman SJ (1996) Diffusing light

photography of fully developed isotropic ripple turbulence. Phys

Rev Lett 76:4528–4531. doi:10.1103/PhysRevLett.76.4528

Wright WB, Budakian R, Pine DJ, Putterman SJ (1997) Imaging of

Intermittency in ripple-wave turbulence. Science 278:1609

Zappa E, Busca G (2008) Comparison of eight unwrapping

algorithms applied to Fourier-transform profilometry. Opt Lasers

Eng 46:106–116

Zhang X (1996) An algorithm for calculating water surface elevations

from surface gradient image data. Exp Fluids 21:43–48

Zhang X, Cox CS (1994) Measuring the two-dimensional structure of

a wavy water surface optically: a surface gradient detector. Exp

Fluids 17:225–237. doi:10.1007/BF00203041

Zhang Q-C, Su X-Y (2002) An optical measurement of vortex shape

at a free surface. Opt Laser Technol 34:107–113

Zhang X, Dabiri D, Gharib M (1994) A novel technique for free-

surface elevation mapping. Phys Fluids 6(9):S11–S11

Zhang X, Dabiri D, Gharib M (1996) Optical mapping of fluid density

interfaces: concepts and implementations. Rev Sci Instrum

67:1858–1868

Exp Fluids (2009) 46:1037–1047 1047

123

33





C
H

A
P

T
E

R

3
EXPERIMENTAL AND THEORETICAL INSPECTION

OF THE PHASE-TO-HEIGHT RELATION

IN FOURIER TRANSFORM PROFILOMETRY

This chapter is composed by an article published in Applied Optics [64]. This article is of a more
technical nature than the one described in the precedent chapter, although they both serve the
common purpose of describing the details of our optical profilometric technique.

In general, the procedure by which profilometric techniques based on fringe projection achieve
the reconstruction of the surface topography can be divided in four steps. The first one regards
the projection of a structured light pattern (using either collimated or non-collimated projections)
onto the surface under study and the capture of the light intensity variations of the projected pat-
tern by a camera. The topography of the surface introduces a frequency modulation in the ob-
served pattern, which is also modified by the perspective due to the relative positioning and orien-
tation of the projection–recording system. The second step consists in demodulating the registered
pattern in order to obtain a phase map of the surface depicting, at every sampled point, the relative
phase between deformed and reference patterns. The level of complexity involved in the determi-
nation of this phase map strongly depends on the type of fringe projection technique employed.
For instance, in the case of the phase-shifting methods (such as the phase-stepping or integrating-
bucket techniques), where the fringe pattern is phase stepped a known amount between intensity
measurements, the phase map is simply obtained by an algebraic combination of several deformed
patterns taken at the same surface state (see, for example, Ref. [81]). Unfortunately, from an experi-
mental standpoint, the price paid to take profit from this computational advantage is prohibitively
high, as the projection–recording system has to be able to precisely shift the projected pattern
and capture the corresponding deformed images before the surface state changes significantly,
rendering it almost impracticable for the measurement of time-dependent free-surface deforma-
tion fields. In contrast, our profilometric technique requires only one image to be taken (besides
the reference image, of course) in order to obtain the surface phase map, which is demodulated
from each deformed fringe pattern by filtering in Fourier space. However, a common point to all
fringe projection techniques, arising from the fact that they are intrinsically demodulating tech-

35



36 Chapter 3. Phase-to-height relation in FTP

niques, is that the resulting phase map is calculated modulo π (the phase is said to be ‘wrapped
around’). As a consequence, the phase map often presents spurious discontinuities correspond-
ing to phase jumps and other ambiguities. Therefore, the third step in the surface reconstruction
process involves the so-called ‘phase unwrapping’, a complex problem whose study has evolved
and grown to become a domain of its own. Once unwrapped, the last remaining step consists in
relating the phase map to the surface height, through an equation often termed ‘phase-to-height
relation’, derived by considering the particular geometry employed for the projection–capturing
system (collimated or non-collimated projection, parallel- or crossed-optical-axes).

This chapter focuses on the last link in this chain of processes, particularly in the derivation of
the phase-to-height conversion relation. The usually cited relation for the case of non-collimated
projection is due to Takeda and Mutoh [97]. Recently, in a very didactic paper, Rajoub et al. [85]
showed that this reference relation given by Takeda and Mutoh is erroneous. The experimental and
theoretical studies presented in this chapter follow from Rajoub’s study. The results obtained for
the phase concern both collimated and non-collimated projectios for both parallel- and crossed-
optical-axes geometries, and agree with Rajoub’s findings. Moreover, experimental evidence of the
error in Takeda and Mutoh’s formula is shown and the origin of the error in Takeda and Mutoh’s
derivation is explained. Incidentally, it is shown that Rajoub et al.’s argument regarding Takeda
and Mutoh’s error is not correct.

Two additional results arising from this work concern the derivation of the varying fringe spac-
ing in the crossed-optical-axes configuration and the derivation of the phase-to-height relation
for collimated projection in the parallel-optical-axes geometry. Both derivations have also been
successfully validated experimentally within the framework of this study.

In the past ten years, the need for performing accurate non-contact measurements has moti-
vated studies on signal processing, such as phase unwrapping algorithms and filtering techniques,
in the aim of enhancing the quality of the reconstruction provided by fringe projection profilome-
try methods. Among these efforts, the contribution made in this study provides for an exact (within
the paraxial approximation of geometrical optics) and experimentally validated phase-to-height
relation which constitutes a solid departure point to any further improvement and refinement of
the technique.
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The measurement of an object’s shape using projected fringe patterns needs a relation between the mea-
sured phase and the object’s height. Among various methods, the Fourier transform profilometry
proposed by Takeda andMutoh [Appl. Opt. 22, 3977–3982 (1983)] is widely used in the literature. Rajoub
et al. have shown that the reference relation given by Takeda is erroneous [J. Opt. A. Pure Appl. Opt. 9,
66–75 (2007)]. This paper follows from Rajoub’s study. Our results for the phase agree with Rajoub’s
results for both parallel- and crossed-optical-axes geometries and for either collimated or noncollimated
projection. Our two main results are: (i) we show experimental evidence of the error in Takeda’s formula
and (ii) we explain the error in Takeda’s derivation and we show that Rajoub’s argument concerning
Takeda’s error is not correct. © 2009 Optical Society of America

OCIS codes: 080.0080, 120.2650.

1. Introduction

The Fourier transform profilometry proposed by
Takeda et al. in the 80s [1,2] has achieved great suc-
cess and is now one of the reference techniques for
three-dimensional (3D) shape measurement [3–14]
(see also a review in [15]). This method uses noncol-
limated projections of a structured light pattern onto
an object (for a review on structured lighting techni-
ques, see [16,17]). The intensity variations of the pro-
jected pattern are captured by a camera; afterward, a
conversion of themeasured phase to the object height
is needed. The usually cited phase-to-height relation
for noncollimated projection is from Takeda and

Mutoh [2] (both in the parallel- and in the crossed-
optical-axes geometries):

hðyÞ ¼
LΔφðyÞ

ΔφðyÞ − ω0D
; ð1:1Þ

where y is the coordinate in the field of view of the
camera (see Fig. 1). In that relation, ΔφðyÞ is the
phase difference when the camera captures the in-
tensity variations over a reference plane and over
the surface of a two-dimensional (2D) object (the x
direction is not considered) whose height h has to
be determined. D is the distance between the projec-
tor and the camera and ω0 ≡ ωp cos θ=Gp, with ωp as
the frequency of the fringes on the projector’s grating
and Gp as the magnification factor of the projector
(ω0 is the frequency of the fringes on the projector

0003-6935/09/020380-13$15.00/0
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image plane). Also, the derivation is performed
assuming the camera and the projector that produces
the intensity variations are at the same distance L
from the reference plane.
In a very didactic paper, Rajoub et al. [17] have

shown that this relation is incorrect. These authors
propose a complete calculation relaxing the hypoth-
esis that the camera and the projector are at the
same distance from the reference plane. They pro-
pose an explanation of the error in Takeda’s formula,
which they attribute to an unjustified hypothesis of
collimated projection. Also, in a previous paper [16],
the same authors have derived the phase-to-height
relation for collimated projection. Incidentally, note
that these authors propose a relation between the
height of the object h and the phase φ stored by
the camera when capturing the intensity variations
over the object surface, instead of using the usual
phase difference Δφ.
Our paper follows from Rajoub’s study. Our deriva-

tions concern both collimated and noncollimated
projection for parallel- and crossed-optical-axes
geometries. When we assume that the camera and
the projector are at the same distance L from the re-
ference plane, we find,

– for noncollimated projection in parallel-optical-
axes geometry,

hðx0; y0Þ ¼
LΔφ

Δφ − ω0D
; ð1:2Þ

where

x0 ¼ x −
h

L
x; y0 ¼ y −

h

L
y; ð1:3Þ

– for noncollimated projection in crossed-optical-
axes geometry,

hðx0;y0Þ ¼
LΔφð1þ sin2θy=DÞ2

Δφð1þ sin2θy=DÞ½1− sin2θð1− y=DÞ� −ω0D
;

ð1:4Þ

– for collimated projection in parallel-optical-
axes geometry,

hðx0; y0Þ ¼ −
LΔφ

ω0y
; ð1:5Þ

– for collimated projection in crossed-optical-axes
geometry,

hðx0; y0Þ ¼
LΔφ

ω sin θðL − cot θyÞ
: ð1:6Þ

In the above expressions,Δφ stands for ΔφðX 0;Y 0Þ or
Δφðx; yÞ, with ðX 0;Y 0Þ and ðx; yÞ being, respectively,
the coordinates in the image plane of the camera
and the coordinates in the field of view of the camera
(thus X 0 ¼ −Gcx and Y 0 ¼ −Gcy, with Gc the magnifi-
cation factor of the camera).

Throughout this paper, we will compare our
expressions in Eqs. (1.2), (1.3), (1.4), (1.5), and (1.6)
with the expressions existing in the literature.

In this paper, we show experimental measure-
ments performed using a calibrated object only in
the case of noncollimated projection (Section 3).
Our phase-to-height relations in Eqs. (1.2) and (1.4),
together with Eq. (1.3), are shown to give a good de-
termination of the object shape and the errors due to
the use of Takeda’s relation [Eq. (1.1)] are exempli-
fied and discussed (Section 4).

The main contribution of our paper concerns non-
collimated projection (as a consequence, the calcula-
tions concerning collimated projection are collected
in Appendix B). On the one hand, we give a more
tractable phase-to-height relation than that in
[17], useful for direct application to real experiments.
Notably, our Eqs. (1.2), (1.3), and (1.4) concern the
phase difference Δφ (instead of the absolute phase
φ in [16,17]) that is known to compensate unwanted
defects in the projection process [2]. In addition, we
give experimental evidence of the validity of our ex-
pressions. On the other hand, we show that the error
in Takeda’s result is due to an erroneous manipula-
tion of the phases φ (for projection on to the object)
and φ0 (for projection on to the reference plane).
Otherwise, Takeda’s calculations are correct. Our
conclusion differs from Rajoub’s argument, which im-
plies an erroneous use of collimated projection.

Incidentally, some new results in our paper con-
cern: the derivation of the varying fringe spacing
in the crossed-optical-axes configuration and the de-
rivation of the phase-to-height relation for collimated
projection in the parallel-optical-axes geometry.

The paper is organized as follows: in Sec-
tion 2, the phase-to-height relations are derived for

Fig. 1. Reproduction of Takeda’s representation in crossed-
optical-axes geometry. A fringe pattern is projected onto a refer-
ence surface (as point a) and on a deformed surface (point b).
The corresponding phase variation in the intensity recorded by
the camera is ΔφðyÞ (2D object analysis is presented in Takeda’s
paper [2]).
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noncollimated projection. The cases of the parallel-
and the crossed-optical-axes geometries are then
considered as particular cases of this general result.
The comparison with Takeda’s relation is presented.
Section 3 exemplifies our results with experimental
data collected both in the parallel- and crossed-
optical-axes configurations. A discussion on the
obtained phases φ0 and φ is presented, notably, the
change in the fringe spacing in the crossed-optical-
axes geometry (see also Appendix A). In Section 4,
the derivation performed in Ref. [2] is analyzed
and the error that leads to Eq. (1.1) is demonstrated.
Finally, we collect in two appendices the derivation of
the fringe spacing in the crossed-optical-axes geome-
try for noncollimated projection (Appendix A) and
the derivation of the phase-to-height relations for
collimated projection (Appendix B).

2. Derivation of the Phase-to-Height Relations

We consider the configuration of Fig. 2. With the only
exception of this section, all the results presented in
this paper concern the usual configuration, where
the projector and the camera are at the same dis-
tance from the reference plane R (thus Lp ¼ Lc).
In the following, we define the magnification fac-

tors for the projector Gp and for the camera Gc as
for simple lenses with respective focal lengths f p
and f c (positive magnification factors are considered,
it being known that images through lenses are in-
verted): Gp ¼ Lp=ðcos θf pÞ and Gc ¼ f c=Lc.
We also define ωp as the fringe frequency in projec-

tor’s grating (XY plane), ω ¼ ωp=Gp as the fringe fre-
quency in the image plane of the projector (I plane),
and ωc ≡ ω=Gc. We denote Σ as the surface whose
height hðx; yÞ with respect to the reference surface
R is measured.
The image captured by the camera on the ðX 0Y 0Þ

plane is a pattern of gray levels corresponding to
intensity variation IðX 0;Y 0Þ:

IðX 0;Y 0Þ ¼ 1þ cosφðX 0;Y 0Þ: ð2:1Þ

When the fringes are projected onto the reference
planeR, the intensity, or gray level, observed at point
A0ðX 0;Y 0Þ is due to the ray AaA0, whose intensity is
imposed by the intensity at the point A on the projec-
tor grating. Assuming a sinusoidal fringe projection
(with the fringes oriented along the X axis), we have

φ0ðX
0;Y 0Þ ¼ ωpYA: ð2:2Þ

For any reflecting surface Σ different from R, the in-
tensity observed at point A0 changes, because the ray
arriving at A0 is now the ray BbA0. This ray holds the
intensity of the point B on the projector grating.
Thus,

φðX 0;Y 0Þ ¼ ωpYB: ð2:3Þ

By definition, the phase difference ΔφðX 0;Y 0Þ≡
φðX 0;Y 0Þ − φ0ðX

0;Y 0Þ is a measure of the change in
intensity observed on A0.

Thus, the task is to determine the geometric rela-
tions between ðX 0;Y 0Þ on the camera grating and YA

or YB on the projector grating. The derivation is per-
formed in the case of the ray BbA0, propagating from
BðX ;YÞ to bðx0; y0;hÞ on any surface Σ and arriving at
A0ðX 0;Y 0Þ to produce the phase φðX 0;Y 0Þ. Then,
φ0ðX

0;Y 0Þ is deduced for R, being the reflecting
surface (thus, h ¼ 0).

To do that, we use the following geometric rela-
tions. On Fig. 3, we project, along the Ox axis in
the plane x ¼ 0, the rays Cb and bC0 to produce
Cb0 and b0C

0 with b0 ¼ ð0; y0;hÞ. The angles α and

β measure, respectively, the angles ð dOCb0Þ and

ð dOC0b0Þ in the plane x ¼ 0. The angle θ ¼ ð dcCOÞ
measures the inclination of the projector’s axis with
respect to the camera’s axis.

Then, the angle α measures the position of the
point B on the projector grating: tan α ¼ −YB=f p.
On the other hand, in the triangle Ccb0, we have
tanðθ þ αÞ ¼ ðDþ y0Þ=ðLp − hÞ. We get

tan α ¼ −
YB

f p
¼

ðDþ y0Þ − tan θðLp − hÞ

tan θðDþ y0Þ þ Lp − h
; ð2:4Þ

which is the first relation YBðy
0Þ. Then, the angle β is

a measure of the position A0 on the camera grating:
tan β ¼ −Y 0=f c. In the triangle C0c0b0, the angle β is
involved as well and we get

tan β ¼ −
Y 0

f c
¼

y0

Lc − h
: ð2:5Þ

This gives us the second relation, namely y0ðY 0Þ.
Eliminating y0 from the relations in Eqs. (2.4) and
(2.5), we deduce YBðY

0Þ:Fig. 2. Optical setup.
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YB ¼ −f p
D − ðLc − hÞY 0=f c − tan θðLp − hÞ

Lp − hþ tan θ½D − ðLc − hÞY 0=f c�
; ð2:6Þ

and finally, the Eqs. (2.2) and (2.3) are

φðX 0;Y 0Þ

¼
ωc

cos θ

ð1 − h=LcÞY
0 þGc½ðLp − hÞ tan θ −D�

ð1 − h=LpÞ − tan θL−1
p ½ð1 − h=LcÞY

0=Gc −D�
;

φ0ðX
0;Y 0Þ ¼

ωc

cos θ

Y 0 þGc½Lp tan θ −D�

1 − tan θL−1
p ½Y 0=Gc −D�

: ð2:7Þ

The above relation for φðX 0;Y 0Þ is in agreement
with Rajoub’s result, Eq. (36) in [17] (see also the note
in [18]).

To conform with most of the literature, we express
φ as a function of ðx; yÞ owing to x ¼ −X 0=Gc,
y ¼ −Y 0=Gc:

φðx;yÞ

¼ −
ω

cosθ

y−Lp tanθþDþh=LcðLc tanθ−yÞ

1þ tanθðDþyÞ=Lp −h=Lpð1þ tanθy=LcÞ
;

φ0ðx;yÞ ¼−
ω

cosθ

y−Lp tanθþD

1þ tanθðDþyÞ=Lp

: ð2:8Þ

Finally, it is important to note that the shift in the
position is given by δx≡ x0 − x and δy≡ y0 − y, since
the height h is measured at ðx0; y0Þ and not at
ðx; yÞ. The shift in y is directly obtained from
tan β ¼ y=Lc ¼ y0=ðLc − hÞ. The shift in x is easily
obtained by using the property that the ray bC0 coin-
cides with the ray aC0 (Fig. 3 and see the note in [19]).
We get

x0 ¼ x −
h

Lc

x; y0 ¼ y −
h

Lc

y; ð2:9Þ

with h ¼ hðx0; y0Þ.
In the following, we inspect the case of the usual

configurations of parallel- and crossed-optical-axes
geometry. Also, we consider now L ¼ Lc ¼ Lp (Fig. 4).

A. Parallel-Optical-Axes Geometry

This case Fig. 4(a) is deduced from the preceding
relations in Eq. (2.8) with L ¼ Lc ¼ Lp and θ ¼ 0,
leading to

Fig. 3. In general, the rays Cb and bC0 are not in a vertical plane.
We define b0ð0; y

0;hÞ as the projection of bðx0; y0;hÞ in the plane x ¼

0 (which contains O, C, and C0). In this vertical plane x ¼ 0, the
angles α and β, respectively, measure ð dOCb0Þ and ð dOC0b0Þ. These
angles measure also the positions of B and A0 on the projector and
on the camera grating. The angle θ ¼ ðdcCOÞ measures the inclina-
tion of the projector’s axis with respect to the camera’s axis.

Fig. 4. Optical setup for the projector and the camera at the same distance L from the reference plane R, (a) in the parallel- and (b) in the
crossed-optical-axes geometries.
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φðx; yÞ ¼ −ωy − ωD
L

L − hðx0; y0Þ
;

φ0ðx; yÞ ¼ −ωy − ωD:

ð2:10Þ

Thus,

Δφðx; yÞ ¼ −ωD
hðx0; y0Þ

L − hðx0; y0Þ
: ð2:11Þ

This relation is in agreement with the relation de-
rived by Takeda (Eq. (1.1) with ω0 ¼ ω here). How-
ever, the h value is measured at the ðx0; y0Þ
position, not at the ðx; yÞ position, as assumed by
Takeda. This shift in the position is (δx ¼ x0 − x ¼
−h=Lx; δy ¼ y0 − y ¼ −h=Ly). Experimental evidence
of this discrepancy is presented in Subsection 3.C.
As expected in that configuration, φ0ðx; yÞ is p

periodic along y ðp ¼ 2π=ωÞ since the image plane
of the projector I and the object plane of the camera
R coincide.

B. Crossed-Optical-Axes Geometry

In that case [Fig. 4(b)], the relations in Eq. (2.8) are
used owing to L ¼ Lc ¼ Lp and tan θ ¼ D=L. We get

φðx; yÞ ¼ −ω cos θ

×
yþ hðx0; y0Þ=LðD − yÞ

1þ sin2θy=D − hðx0; y0Þ=L½1 − sin2θð1 − y=DÞ�
;

φ0ðx; yÞ ¼ −ω cos θ
y

1þ sin2θy=D
: ð2:12Þ

As expected, φ0ðx; yÞ is not periodic along y since the
image plane of the projector I and the object plane of
the camera R do not coincide. Note that the expres-
sion of φ0ðx; yÞ in Eq. (2.12) differs from the usually
cited relation for the varying frequency f ðyÞ≡
φ0ðx; yÞ=ð2πyÞ when fringe pattern is projected on
the reference plane [12,13,20]:

φ0Sðx; yÞ ¼ −ω cos θ½1 − 2 sin θ cos θy=L�: ð2:13Þ

This error has been analyzed in [17] and it can be
seen here that the expression is not valid, even in the
approximation y=L ≪ 1, as used in [20]. Experimen-
tal evidence of this error is shown in the forthcoming
Fig. 8, Section 3. We get

Δφðx; yÞ ¼ −ω0

Dhðx0; y0Þ

ð1þ sin2θy=DÞ½1þ sin2θy=D − hðx0; y0Þ=Lð1 − sin2θð1 − y=DÞÞ�
; ð2:14Þ

where we have defined, following Takeda’s notation,
ω0 ≡ ω cos θ (p0 ¼ 2π=ω0 is the periodicity of the
fringes when projected in the image plane I of the
projector).

The relation between the measured unwrapped
phase distribution Δφ to the object height h in
Eq. (2.14) clearly differs from Takeda’s relation

ΔφTðx; yÞ ¼ −ω0

Dhðx; yÞ

L − hðx; yÞ
: ð2:15Þ

The source of the error in Takeda’s derivation is
discussed in Section 4 and exemplified in Subsection
3.C. However, many studies using Takeda’s law have
obtained good results [5,6,12,13], suggesting that the
error might be negligible. It is easy to see that

Δφ ¼ ΔφTCðθ;h=L; y=DÞ; ð2:16Þ

where

Cðθ;h=L; y=DÞ ¼

�
1þ sin2θ

�
y

D
−

h

L − h

��
−1

×

�
1þ sin2θ

y

D

�
−1

: ð2:17Þ

The function C ∼ 1 for (i) the angle θ ≪ 1 and (ii)
h=L ≪ 1, y=D ≪ 1. These conditions are often
fulfilled in the referenced studies: for instance,
θ ∼ 0:19 rad, h=L∼ 0:07, and y=D∼ 0:3 in [14], or
θ ∼ 0:3 rad., h=L∼ 0:0045, and y=D∼ 0:2 in [6]. This
explains the agreement with Takeda’s law presented
in the literature. To summarize, the error in Takeda’s
law is

Δφ ¼ ΔφT ½1þOðθ2h=L; θ2y=DÞ�: ð2:18Þ

However, it is now evident that this error proves to
be very important in the case of short-range profilo-
metry, where h=L∼ 1, and in large-field profilometry,
in which the object’s size is comparable to the
camera–projector distance.

3. Experimental Results

In this section, we inspect experimentally the recon-
struction of h on the basis of Eqs. (2.11) and (2.14)
together with Eq. (2.9). To do that, we carried out
the following experiment. The measured object is a
triangular prism with base line 6 cm and height
3 cm. The prism is placed on the reference plane R
(Fig. 5) at a distance y0 of the camera axis (the trian-
gle is symmetric with respect to the y ¼ y0 axis).
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Thus, the surfaceΣ differs from the reference planeR
only in a region −3 cm < y − y0 < 3 cm, hereafter re-
ferred to as the T region. The height hðx; yÞ is invar-
iant along the x direction, perpendicular to the plane
of Fig. 5. Otherwise, L ¼ 105:2 cm, θ can vary, and,
for θ ¼ 0 (parallel-optical-axes configuration), we
have D ¼ 18 cm.
A sinusoidal fringe pattern is projected onto the ob-

ject and a CCD camera is used to record the deformed
fringe of the object. Details on the optical devices are
given below; afterward, the results are presented and
analyzed.

A. Optical Devices

Fringe-pattern projection is achieved by means of a
computer-controlled digital videoprojector with a
high resolution of 1920pixels × 1080pixels and
12 bit depth per color. An important improvement
arising from the use of a digital video projector is that
we are able to project sinusoidal fringe patterns with
a controlled wavelength. Usually, the projected pat-
tern is a square profile (Ronchi grating), extremely
unadapted for Fourier analysis. Indeed, the use of
a sinusoidal grating strongly increases the quality
of the filtering process as well as the phase recover-
ing. Another important improvement with a video
projector compared to a slide-projector usually em-
ployed is that a video projector can project an image
on a surface shifted with respect to its axis and,
hence, more centered to the camera axis. The video
projector allows a correction of the projected image so
that the image is not distorted and keeps the fringes’
wavelength constant all over the image and main-
tains the original sharpness. However, due to the fact
that the projected pattern varies discretely in space
and is digitized in intensity, the video projector’s
resolution is lower than that of a slide projector.

For a given projection distance, the size of the pro-
jected optical field can be adjusted (by means of the
projector zoom optics) to cover either a small or a re-
latively large area of the surface. In particular,we em-
ployed aprojection distance ofL ¼ 1m,which allowed
us to work with projection windows of sizes ranging
from approximately 36 cm × 20 cm to 80 cm × 45 cm.

The fringe patterns projected onto the object were
recorded by a Fujifilm Finepix S2 Pro SRL-type digi-
tal still camera, with a 3024 pixel × 2016pixel CCD
and a color depth of 16 bits per color. To avoid any
artifact from the camera’s preprocessing algorithm
(such as those coming from quantization, compres-
sion, color depth reduction, etc.) we worked with
raw images that were later developed into portable
pixmap (PPM) format at full color depth.

The whole fringe-projection and image-capturing
system isheld over the channel, supportedbyamobile
structure that allows for precise alignment and repo-
sitioning of the optical devices. The whole setup has
been tested and validated in a previous study [21].

B. Intensity Variations Captured by the Camera

Figures 6 show the intensity variations Iðx; yÞ on the
surface Σ recorded by the camera (as previously said,
h and thus I are invariant along the x direction). The
cases of the parallel- and the crossed-optical-axes
geometries (with θ ¼ 33:9°, thus D ¼ 70:7 cm in that
case) are shown. Figure 7 shows the corresponding
curves IðyÞ, averaged over the x direction.

Several remarks can be made regarding these
figures. In the case of parallel optical axes, the T
region, where a change in height occurs, is well re-
solved on both sides. Outside of this region, the
fringes are regularly spaced (with period p≃

0:27 cm invariant from left to right). In the T region,
h linearly increases for −3 cm < y < 0 and then line-
arly decreases for 0 < y < 3 cm. From the expression
of φðx; yÞ in Eq. (2.10), it is easy to see that h ¼ ay
leads to an apparent frequency ωa ≃ ωð1þ aD=LÞ
and fringe spacing of pa ≃ p=ð1þ aD=LÞ. In our ex-
periments, a ¼ �1 and D=L ¼ 0:171 give pa ¼
0:24 cm and pa ¼ 0:34 cm as observed in Figs. 6(a)
and 7(a) (see also Appendix A.

In the crossed-optical-axes geometry (here, for
θ ¼ 33:9°), the T region is badly resolved for 0 < y <
3 cm because of the projected shadow. Outside of this
region, the fringes are not regularly spaced because
the image plane I of the projector does not coincide
with the reference plane. The fringe spacing varies
from roughly 0.35 to 0:4 cm from left to right. This
increase in the spacing pn (n ¼ 0 at the origin O)
is as expected: pn ¼ pI= cos θ½1 − n sin θp0=L�
−1½1 − ðn − 1Þ sin θpI=L�

−1, where pI is the fringe spa-
cing observed on the image plane of the projector I
(see Appendix A). Here, pI can be deduced from p ow-
ing to the invariant pp=f p ¼ p=L ¼ pI cos θ=L; thus,
pI ≃ 0:325 cm. Finally, as in the parallel-optical-
axes geometry, a successive decrease and increase
in the fringe spacing in observed in the T region.
From Eq. (2.12), pa ≃ pI=½cos θð1þ a tan θÞ� gives

Fig. 5. Experimental configuration: Σ is at distance hðyÞ from the
reference plane R with hð0 < y − y0 ≤ −3 cmÞ ¼ y, hð0 < y − y0 ≤

3 cmÞ ¼ −y zero, otherwise. I is the image plane of the projector.
In the experiments, L ¼ 105:2 cm and θ can vary, and for θ ¼ 0°
(parallel-optical-axes geometry), D ¼ 18 cm.
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pa ¼ 0:23 cm and pa ¼ 1:19 cm. The agreement is
good (see the Appendix A). Finally, Fig. 8 shows
the unwrapped phase φ0ðyÞ (see [22]) deduced from
I0ðyÞ when projected onto the reference plane in
the absence of the triangle (I0ðyÞ corresponds to
the average of I0ðx; yÞ in the x direction). It can be
seen that our expression in Eq. (2.12) accurately fits
the experimental points while the expression given
in [12,13,20] [see Eq. (2.13)] significantly fails to
reproduce the data.

C. Phase-to-Height Inversion

In this section, from the experimental curves of I0ðyÞ
and IðyÞ, we deduced the unwrapped phase differ-
ence ΔφðyÞ. Then, we use the inversion of Eqs. (2.11)
and (2.14) together with Eq. (2.9) to get the height
hðyÞ. The comparison with Takeda’s law is presented.

1. Parallel-Optical-Axes Geometry

Figures 9 illustrate the phase-to-height inversion
(the additional dependence of ΔφðyÞ on x is omitted
because of the aforementioned invariance along x in

our experiments): from IðyÞ and I0ðyÞ [Fig. 9(a)], we
extract the phase difference ΔφðyÞ. This is done by
filtering the 2D Fourier transform of IðI0Þ around
the main frequency ω (in the present case, a simple
Gaussian filter of width ω=2 is used). The inverse
Fourier transform is a complex signal whose un-
wrapped phase is φðyÞ (correspondingly, φ0ðyÞ), and
then Δφ ¼ φ − φ0 [Fig. 9(b)]. In the parallel-optical-
axes geometry, the inversion of ΔφðyÞ gives, both
in our approach and in Takeda’s approach,

hðy0Þ ¼
LΔφðyÞ

ΔφðyÞ − ω0D
; ð3:1Þ

with y0 ¼ yþ δy and δy ¼ −yh=L. Figure 9(c) shows
the reconstructed height; here the shift in position
δy is visible: Δφ reaches its extremum at y∼
−25 cm while h reaches its maximum at
y ¼ y0 ¼ −24 cm. The agreement between the recon-
structed shape and the real shape is good, very
comparable to the results obtained in a similar
experiments [10].

Fig. 6. Experimental intensity variations Iðx; yÞ captured by the camera (a) in the parallel-optical-axes geometry with D ¼ 18 cm and
L ¼ 105:2 cm and (b) in the crossed-optical-axes geometry with D ¼ 70:7 cm (θ ¼ 33:9°), L ¼ 105:2 cm, and y0 ¼ 0.

Fig. 7. Intensity variations IðyÞ in (a) the parallel- and (b) the crossed-optical-axes geometries. The curves correspond to the averages over
the x direction of the 3D plot in Fig. 6.
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The error in Takeda’s approach consists of
neglecting the spatial shift of the sampling points
introduced by the object’s height profile.
Figure 10 presents a comparison between the

reconstructed heights h and hT , obtained using
Eq. (3.1), including or omitting, respectively, the shift
δy for various y0 values. As expected, the error in hT

increases when y0 increases. The maximum error in
the shift is δymax ¼ y0hmax=L (thus, a constant rela-
tive error δy=y0 ¼ hmax=L ¼ 2:85%), which leads to,
for y0 ¼ −8 cm, δymax ¼ 0:23 (0.2 experimentally
obtained); for y0 ¼ −16 cm, δymax ¼ 0:456 (0.4 experi-
mentally obtained); and, for y0 ¼ −24 cm, δymax ¼
0:684 (0.66 experimentally obtained).

2. Crossed-Optical-Axes Geometry

The same experiments have been performed in the
crossed-optical-axes geometry. In that case, the
inversion is, from Eq. (2.14),

hðy0Þ ¼
LΔφðyÞð1þ sin2θyÞ2

ΔφðyÞð1þ sin2θy=DÞ½1− sin2θð1− y=DÞ�−ω0D
:

ð3:2Þ

The position of the triangular prism y0 and the angle
between the optical axes θ have been varied. The pro-
cedure to derive ΔφðyÞ is the same as in the parallel-

optical-axes geometry, but a wider filter has been
used (of width around ω) to account for the change
in the frequency in the nonperiodic signal. The peak
in the Fourier transform corresponds in that case
to the mean fringe periodicity. Figure 11(a) shows
the results obtained varying y0 for θ ¼ 33:9° and
Fig. 11(b) shows the results obtained varying θ for
y0 ¼ −16 cm. Both figures exemplify the error due
to the use of Takeda’s result, while our present inver-
sion gives a good height reconstruction. Note that
Takeda’s expression of the height hT in Eq. (1.1) is
given as a function of h by

hTðyÞ ¼
hðy0Þ

A2 þ ðABþ hðy0ÞÞhðy0Þ=L
; ð3:3Þ

with A≡ 1þ sin2θy=D and B≡ cos2θ − sin2θy=D.

4. On Takeda’s Calculation

In [16], it is said that Takeda’s approach uses an un-
justified hypothesis of collimated projection. We will
show that this is not the case. Actually, the expres-
sions of the phases φ and φ0 are correct in [2] but
an erroneous subtraction of the two phases leads
to an error in the phase difference.

Let us recall the meaning of the phase difference φ:
it corresponds to the change in intensity at a given

Fig. 8. (a) Intensity variations I0ðyÞ for fringe projection onto the reference plane in the absence of the triangular prism and (b) the
corresponding unwrapped phase φ0ðyÞ (see [23]). Experiments correspond to θ ¼ 33:9° with L ¼ 105:2 cm. The points are the experimental
data (only one point of each 150 points is indicated for visibility), the solid curve corresponds to our Eq. (2.12) and the dashed curve
corresponds to Eq. 2.13 from [12,13,20].

Fig. 9. (a) Signals I0ðyÞ and IðyÞ for fringe projections on the reference planeR and on the Σ plane. (b) Unwrapped phase differenceΔφðyÞ
and (c) reconstructed height hðyÞ using Eqs. (2.9) and (2.11). The experiment is conducted in the parallel-optical-axes geometry with
L ¼ 105:2 cm, D ¼ 18 cm, and y0 ¼ −24 cm.
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pixel of the camera (A0 in Fig. 2) for a change in the
reflecting surface (say R and Σ). The intensity at this
pixel changes because the rays arriving at A0 come
from two different points of the projector grating
(A and B in Fig. 2).
Takeda’s geometrical representation [reproduced

in Fig. 12(a), for reference] is different from our Fig. 2.
Two rays coming from the same point B of the pro-
jector grating are considered: the ray BaA0 for a re-
flecting surface being R and the ray BbB0 for a
reflecting surface being Σ. Of course, these two rays
produce the same intensity, either on A0 or on B0 in
the camera. When R is the reflecting surface, the
ray BA0 is seen as coming from a on R, when Σ is
the reflecting surface, the ray BB0 is seen as coming
from ba on R [Fig. 12(b)]. Again, the two rays hold the
same intensity:

φ ¼ ωpYB: ð4:1Þ

Following Takeda, geometric considerations allow
expressing the phases φ0 and φ. First, from Figs. 12,

XB ¼ ðf p cos θ=LÞOb0, with b0 as the point intercept-

ing I along the ray Bb. Thus, we have φ ¼ ωOb0,
where ω ¼ ωp=Gp is the frequency of the fringes on
the plane I (the fringes are regularly spaced on that
plane). We can now define ω0 ¼ ω cos θ as in
Takeda’s paper and we get, introducing ba as the
point intercepting R along the ray bB0,

φ ¼ ωOb0 ¼ ω0Oba þ ω0

�
Ob0

cos θ
−Oba

�
: ð4:2Þ

The point b0 is the point intercepting Rwith b0b0 par-
allel to the projector’s axis CO. It is sufficient to re-

mark that Ob0 ¼ Ob0= cos θ (since the triangle Ob0b
0

is a rectangle at b0 by construction of the point b0). We
deduce, as Takeda,

φðyÞ ¼ ω0yþ ω0bab0; ð4:3Þ

where it has been implicitly defined that y ¼ Oba.
The following step in Takeda’s approach is to con-

sider the same ray coming fromBwhen the reflecting
surface is R (the Oy plane). In that case, the ray is
reflected on R at point a. The same geometric consid-
erations can be done: we have a0 ¼ b0 and a0 ¼ b0 be-
cause the ray Ba used to define a0 and a0 is the same
as the ray Bb, and we have aa ¼ a. We get

φ0ðy
0Þ ¼ ω0y

0 þ ω0ab0; ð4:4Þ

but here, y0 ¼ Oa.
Both expressions in Eqs. (4.3) and (4.4) are correct.

The error in Takeda’s approach is to buildΔφðyÞ from
the difference between both expressions, considering
y0 ¼ y: Takeda’s phase difference is ΔφTðyÞ ¼
φðy0 ¼ yÞ − φ0ðyÞ. This erroneous subtraction gives

Fig. 10. Height reconstruction hðyÞ for various y0 values. Solid
curves correspond to our phase-to-height relation and dashed
curves correspond to Takeda’s phase-to-height relation. The
experimental configuration is the same as in Fig. 9.

Fig. 11. Reconstructed height hðyÞ in the crossed-optical-axes geometry (a) for θ ¼ 33:9° and varying the y0 position of the triangle and
(b) for y0 ¼ −16 cm and varying θ ¼ 0, 18.1 and 41°. Solid curves correspond to our height reconstruction from Eq. (3.3) with Eq. (1.2).
Dashed curves are the height reconstructed using Takeda’s relation Eq. (1.1).
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ΔφTðyÞ ¼ ω0baa ¼ −ω0

hD

L − h
: ð4:5Þ

When considering the correct definitions of y and y0,

the terms ω0ðy
0
− yÞ remain (with y ¼ Oba and

y0 ¼ Oa) and we get

Δφ ¼ ω0ðOba −OaÞ þ ω0ðbab0 − ab0Þ ¼ 0; ð4:6Þ

which is expected, since the two rays hold the same
intensity !
However, with φ0ðyÞ and φðy0Þ being correctly de-

rived, it is easy to correct the last erroneous opera-
tion. We keep the same expression for φðyÞ (the
ray is BbB0). To derive φ0, we consider the ray
AaB0, with a ¼ ba that is seen by the camera as com-
ing from ba, as illustrated on Fig. 13. We have

YA=f p ¼ Oa0 cos θ=L, but now, a0 differs from b0

(and a0 ≠ b0). We have now a unique definition of y ¼
Oba ¼ Oa and

φðyÞ ¼ ω0yþ ω0ab0; ð4:7Þ

φ0ðyÞ ¼ ω0yþ ω0aa0; ð4:8Þ

from which we deduce

ΔφðyÞ ¼ ω0a0b0: ð4:9Þ

This expression is correct and equivalent to our ex-
pression in Eq. (2.11) for θ ¼ 0 and to our expression
in Eq. (2.14) for D ¼ L tan θ (see the note in [23]).

5. Concluding Remarks

We have inspected the 3D phase-to-height relation-
ship used in fringe-projection profilometry in the
cases of collimated and noncollimated projection.
In the past ten years, the need for performing
accurate noncontact measurements has motivated
studies on signal processing, such as unwrapping
phase algorithms [5,14,15] or filtering techniques
[8–11]. The goal is to enhance the quality of the
height reconstruction in these methods. Thus, it is
important that the basic phase-to-height relation
is exact (at least in the geometric optics approxima-
tion). We have confirmed the relation first given by
Rajoub et al. [17] and we have given experimental
evidence of this analytical prediction. Also, the
error due to the usually cited phase-to-height
relation in Eq. (1.1) is explained and experimentally
exemplified.

Fig. 12. (a) Reproduction of Takeda’s representation and (b) the same representation including useful additional points: b0 is the point of
the ray Bb on the plane I, ba is the point of ray bB0 on the plane RðOyÞ, and b0 is the point on plane R with b0b

0 parallel to the projector’s
optical axis CO. Similar construction is used to define aa, a0, and a0.

Fig. 13. Same representation as in Fig. 12(b) considering the ray
AaB0 instead of the ray BaA0. Now the ray AB0 is seen by the cam-
era as coming from point a ¼ ba. Otherwise, the same definitions
for the points a0; b0 and a0;b0 as in Fig. 12(b) are used.
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Appendix A: On the Fringe Spacing in Crossed-Optical-

Axes Geometry

The object of this appendix is to derive Eq. (A5),
which gives the change in the fringe spacing on
the reference plane R in the crossed-optical-axes
geometry.
We report in Fig. 14 the figure used in [17]. On the

projector grating, we consider the rays rn with 2nπ
phase difference with the ray CO. rn forms an angle
αn with CO. The two successive rays rn and rnþ1 have
2π phase difference.
The conjugate image of the projector’s grating is

formed on the plane I, with a regular spacing pI,
and we denote wn as the point of rn on I.
The fringe spacing on the reference plane R varies

along y and we denote pnþ1 ≡ ynþ1 − yn with yn as
the point of rn on R. The aim of this appendix is to
derive pn.
On I, we have

tan αn ¼
Own

L= cos θ
; Own ¼ npI; ðA1Þ

where the last relation is drawn from the fact that I
is the conjugate plane of the projector image plane.
On R, we have

tanðθ þ αnÞ ¼
C0yn
L

: ðA2Þ

With C0yn ¼ L tan θ þ yn, we get

pnþ1 ¼ L½tanðθ þ αnþ1Þ − tanðθ þ αnÞ�; ðA3Þ

which simplifies in

pnþ1 ¼
L

cos2θ

tan αnþ1 − tan αn
ð1 − tan θ tan αnÞð1 − tan θ tan αnþ1Þ

:

ðA4Þ

With tan αn ¼ npI cos θ=L from Eq. (A1), we get

pnþ1 ¼
pI

cos θ

1

ð1 − n sin θpI=LÞ½1 − ðnþ 1Þ sin θpI=L�
:

ðA5Þ

The above formula is exact and can be easily
calculated in practice.

From our experimental configuration described in
Subsection 3.B, we can deduce the fringe spacing pI

on I from the fringe spacing p obtained in the paral-
lel-optical-axes configuration: pI ¼ p= cos θ. We have
p≃ 0:27 cm from Fig. 7(b) outside the T region; thus,
pI ≃ 0:325 cm. Then, pn is calculated from Eq. (A5).
Figure 15 shows the fringe spacing experimentally
deduced from Fig. 7, both in the parallel- and in
the crossed-optical-axes geometries. The apparent
frequency is given as well in the T region (for a linear
increase or decrease of the height hðyÞ with slopes
�1). In the parallel-optical-axes geometry, pa ≃

p=ð1�D=LÞ (in the referred experiments, D ¼
18 cm and L ¼ 105:2 cm) and, in the crossed-
optical-axes geometry, p0

a ≃ pI=½cos θð1� tan θÞ� (in
the referred experiments, θ ¼ 33:9°.). Note that a
reasonable fit of the experimental data are obtained
in the crossed-optical-axes geometry using pI∼

0:313 cm, suggesting an error of around 3% either
in the angle θ or in the position of the plane I.

Rajoub et al. [17] show that the derivation of pn in
[20] is inexact and propose the approximate expres-
sion (Eq. (20) in [17]). Unfortunately, their derivation
contains a mistake from his Eq. (15) to Eq. (16),
where they have used wn ¼ ywn

cos θ instead of using
wn ¼ ywn

= cos θ. Owing to this correction, we get a
modified version of his Eq. (20) (replacing simply
ywn

by ywn
=cos2θ):

pn ≃
p0

cos θ

1þ sin θ cos θynþ1=L

1 − tan θywn
=L

; ðA6Þ

Fig. 14. System geometry used to calculate the fringe spacing pn

in the crossed-optical-axes geometry.

Fig. 15. Open circles, experimental fringe spacing deduced from
Fig. 7 in the parallel- and the crossed-optical-axes geometries (the
crossed-axes geometry gives higher fringe spacing). The solid
curves correspond to our expression in Eq. (A5) and in the body
of the text.
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where it has been assumed that the linear dimension
of the illuminated area, Ownþ1, is small compared to
the projection distance L= cos θ, thus, αn is small.
Rajoub concludes, however, that the above expres-
sion contains two unknowns ynþ1 and ywn

. They
are actually known; owing to ynþ1 ¼ L½tanðθ þ
αnþ1Þ − tan θ� and ywn

¼ np0 cos θ (the triangle
Ownywn

is rectangle at ywn
), we get

pn ≃
p0

cos θ

1þ sin θ cos θ½tanðθ þ αnþ1Þ − tan θ�

1 − sin θ cos θnp0=L
; ðA7Þ

which simplifies exactly in the same expression as
our Eq. (A1) (suggesting that the assumption of small
αn angles is not necessary in [17]).

Appendix B: The Case of Collimated Projection

In this appendix, we derive the expression of the
phase difference Δφ for collimated projection (inci-
dentally, it will be seen that Takeda’s result does
not correspond to that case). The corresponding
configuration is in Fig. 16. For collimated projection,
the fringes are regularly spaced on any plane
because the beam coming from the projector is a
parallel beam.
We give here a 2D construction. The 3D construc-

tion is deduced from the 2D one owing to XB ¼
−Gpx, X ¼ −Gcx.
As previously, the calculation of the phase φðx; yÞ is

performed considering the surface Σ as reflecting
surface; afterward, φ0ðx; yÞ is deduced for the surface
R (h ¼ 0 in this case). The ray BbA0 is considered,
with

φðx; yÞ ¼ ωpYB; ðB1Þ

where YB ¼ OcB on the projector grating.

In the crossed-optical-axes geometry [Fig. 16(a)],
we define b0 as the point of the ray Bb intercepting
the plane R and b1 as the vertical projection of

b onto R. It is easy to see that Ob0 cos θ ¼ OcB
and b1b0 ¼ h tan θ (also, Ob1 ≡ y0). We deduce
that φðx; yÞ ¼ ωp cos θOb0 ¼ ωp cos θðy

0 þ h tan θÞ, and
thus

φðx; yÞ ¼ ωp cos θyþ ωp sin θhð1 − cot θy=LÞ: ðB2Þ

It follows that

φ0ðx; yÞ ¼ ωp cos θy ðB3Þ

and the phase difference is

Δφðx; yÞ ¼ ω sin θhð1 − cot θy=LÞ; ðB4Þ

where ω ¼ ωp cos θ is the frequency of the regularly
spaced fringes on R. On a point A0 of the camera
grating, the intensity is given by the intensity of
the point A on the projector grating with
y=L ¼ −YA=f c. We still have h ¼ hðx0; y0Þ with x0 ¼ x −
xh=L and y0 ¼ y − yh=L.

Note that our expression of the phase φðx; yÞ in
Eq. (B2) agrees with that of Rajoub (Eq. (9) in
[16]) and with [24,25]. In these references, the phase
difference Δφ is not considered. Also, in [24,25], ad-
ditional hypothesis are considered (φðx; yÞ ≫ ωpy
and y=L ≪ 1). Finally, our Eq. (B4) agrees with [26].

In the case of parallel-optical-axes geometry
[Fig. 16(b)], the relation between YB and y0 is
YB ¼ Dþ y0ðYA ¼ Dþ yÞ; thus, the phases are

φ0ðx; yÞ ¼ ωpðDþ yÞ; φðx; yÞ ¼ ωpðDþ y0Þ; ðB5Þ

from which we deduce (with x0 ¼ x − xh=L and
y0 ¼ y − yh=L)

Fig. 16. Collimated projection in the (a) crossed- and (b) parallel-optical-axes geometries.
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Δφðx; yÞ ¼ −ω
hðx0; y0Þ

L
y: ðB6Þ

Note that the case of parallel-optical-axes geometry
cannot be deduced from the calculations in [16].
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4
EXPERIMENTAL STUDY ON

WATER-WAVE TRAPPED MODES

This chapter presents the results arising from an experimental study on water wave trapped modes
around an obstacle placed symmetrically between the walls of a water-wave channel. It is com-
posed by a brief article published in Europhysics Letters [11] and a second, more detailed article
currently under consideration for publication in the Journal of Fluid Mechanics.

The first section of this chapter is mainly concerned with the most important and striking re-
sults of this study, namely the occurrence of the trapped modes and their eigenfrequency depen-
dence with the geometrical parameters of the problem. Complementarily, a more extensive thor-
ough exposition of the results obtained in this study is carried out in the following sections, where
the detailed spatial structure of these modes is discussed and a comparison is established between
our experimental results and the available theoretical predictions of linear theory.

Trapped modes correspond to localized oscillations in unbounded media, and have been ob-
served and studied in many domains of physics, such as acoustic waves, electromagnetic waves,
elastic waves and water waves. According to the context in which trapped modes are studied,
they are often termed differently, receiving names such as acoustic resonances, Rayleigh–Bloch
waves, edge waves and bound states. In any case, they can be mathematically defined as finite
energy solutions to the appropriate wave equation in an infinite domain with discrete eigenval-
ues embedded in the continuous spectrum of the problem. In this sense, trapped modes have to
be distinguished from scattering states whose eigenvalues are located in the continuous spectrum
and have infinite energy. From a physical standpoint, trapped modes consist on non-propagative
localized oscillation modes of finite energy occurring at some well-defined frequency and which,
in the absence of dissipation, would persist in time even in the absence of external forcing.

Experimentally, trapped modes turn into ‘quasi-trapped’ modes that can be evidenced by scat-
tering resonances. The difference between the two is due to the ever-present deviations in the ex-
periments with respect to the theoretical configuration for which predictions have been made. In
this case, those deviations are linked mainly to two factors: the finite-size effect producing non-
negligible radiation towards infinity and energy leaking due to the presence of dissipative mecha-
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nisms.
Nevertheless, these practical limitations do not cloud the growing interest of the scientific com-

munity in trapped modes, mainly driven by their potential for technological applications. For in-
stance, the high quality factors associated to trapped mode resonances are decisive for the effective
design of metamaterials whose defining properties, such as negative refraction and cloacking, rely
on the resonant nature of their response.

The case of water waves treated in this chapter is, amongst the many physical situations giv-
ing rise to trapped modes, of particular relevance for a variety of reasons. In the first place, water
wave resonances are naturally important to practical applications in naval and coastal engineer-
ing. Moreover, as water waves exhibit properties similar to electromagnetic and microwaves, ef-
fects such as negative refraction and cloacking are also observable within their framework. In light
of this similarity, water waves are attractive since the wave field is the free surface deformation,
already qualitatively accessible to the naked eye.

In marked contrast to the large number of theoretical studies concerned with existence proofs
and numerical algorithms for the computation of trapped modes for different geometries, little at-
tention apears to have been paid to their experimental observation, characterisation and analysis.
More precisely, only one experimental study was reported for the present problem [86], but due to
the single-point nature of the employed measuring technique, no information was available on the
spatial structure of these modes, therefore no measure of the degree of localization of the modes
could be derived.

In this experimental study, we consider water wave trapped modes occurring in the vicinity of
a vertical surface-piercing circular cylinder of radius a placed symmetrically between the parallel
walls of a long water wave channel of width 2d and constant depth h. Within this physical system,
a trapped mode is evidenced by the presence of a non-propagative local oscillation of the free
surface confined to the vicinity of the cylinder. The frequency of this oscillation, termed trapped
mode frequency, depends on the geometry of the system.

It is worth noting that the trapped modes associated with this configuration (and therefore, the
results of the subsequent study) are also of interest to acoustics resonances in waveguides or bound
states in quantum wires, as they also describe resonances associated with a two-dimensional waveg-
uide governed by the Helmholtz equation, after the depth dependence has been separated.

One of the caracteristic properties of waveguides is the occurrence of cut-off frequencies. In
particular, for motions that are antisymmetric about the longitudinal centreline of the guide, the
waveguide presents a cut-off for propagation, i.e., a threshold frequency (corresponding to kd =

π/2) beneath which no wave propagation is possible. As a consequence, inside the waveguide,
antisymmetric1 perturbations characterized by values of kd < π/2 can only exist in the form of
evanescent waves. This is the key feature that enables the existence of trapped modes. Indeed,
if (in the absence of dissipation) an antisymmetric perturbation with a frequency below the cut-
off is excited inside the waveguide, such oscillation will remain ‘trapped’ inside, its escape being
forbidden by the impossibility to propagate down the guide. Moreover, the presence of a finite ob-
stacle inside the guide introduces a change in the geometry of the waveguide, drastically affecting
the propagation conditions in its vicinity. In that region, even though its amplitude is weak, the
evanescent wave is able to interact with the obstacle.

1Herein, and unless explicitly stated otherwise, symmetry statements are to be understood with respect to the lon-
gitudinal centerline of the waveguide.
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The ideas presented in the last paragraph hold the principle to the experimental strategy em-
ployed in this study to excite and observe the associated trapped modes. Acording to this scheme,
the whole waveguide–obstacle system is placed inside a larger wave tank. A monochromatic wave-
maker, inclined with respect to the channel’s centerline, is employed to send an harmonic pertur-
bation of a definite frequency (below the cut-off) containing both a symmetric (propagative) an
antisymmetric (evanescent) component into the waveguide. When excited at the appropriate fre-
quency, the antisymmetric perturbation will be amplified in the vicinity of the obstacle leading to
a large amplitude oscillation of the free surface in that region. This is essentially equivalent to a
resonance study, in which the system’s response to an external driving is characterized within a
given range of frequencies.

There exists, however, a qualitative difference between this case and the usual resonance analy-
sis that is worth highlighting. In the framework of this problem, the perturbation of interest (giving
rise to trapped modes) is instrinsically an evanescent water wave, often considered in theoretical
studies but for the most part discarded in experimental investigations due to the difficulties asso-
ciated with their measurement. Accurately measuring this low-amplitude evanescent wave is par-
ticularly demanding on the experimental technique, specially when considering far-off-resonance
states of the system, in which wave amplitudes are smallest.

The relevant quantities in the characterisation of the trapped mode resonances for the problem
under study are the aspect ratio a/d and the dimensionless frequency parameter kd , where k is
the positive real root of the dispersion relation given by ω

2
= g k tanhkh, and ω denotes the modal

wave angular (driving) frequency. In this configuration, a significative number of values of the
geometrical control parameter a/d were examined. For each of the aspect ratios considered, a
wide range of frequencies around the theoretical trapped mode eigenfrequency was explored.

For a given driving frequency, space-time resolved measurements of the free surface deforma-
tion inside the waveguide were obtained by means of our optical profilometry technique, employ-
ing a high-speed camera to record high-resolution images at an acquisition rate 100 times larger
than the driving frequency. In our measurements, the free surface region inside the waveguide, of
size 10×40 cm2, was sampled at over 680 000 points. This allowed us to properly quantify the to-
tal deformation field, composed of both symmetric (propagative) and antisymmetric (evanescent)
contributions.

Analysis of the total deformation fields led us to the observation of an asymmetric oscillation
well localized in the region near the cylinder, with amplitudes that largely exceed that at the waveg-
uide’s entrance, indicating an amplification of the perturbation. Far from the cylinder, to the con-
trary, our results show only the propagation of a plane, slightly attenuated wave. The rapid recovery
of symmetry observed in this region is consistent with the occurrence of a trapped mode of high
degree of localisation. Nevertheless, the pure antisymmetric form which is characteristic of the
trapped mode is still concealed by the plane wave propagating down the guide.

Taking advantage of the space-time resolved nature of our measurements, we were able to per-
form a decomposition of the free surface deformation in harmonics of the driving frequency for
every (sampled) point over the surface. This allowed the separate analysis of the linear (at the driv-
ing frequency) and non-linear components of the total free-surface deformation. A comparison
showed that the dynamics of the free surface is dominated by the linear contribution, validating
the use of theoretical models based on classical linear wave theory. This also allowed us to con-
centrate on the linear part of the deformation field, to which existing theoretical results can be
contrasted.
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One of the most significant results of this study came from the subsequent separation of the
linear deformation field in terms of the symmetries of the problem. Such separation allowed us
to obtain the full trapped modes’ spatial structure, isolated from any other contribution. This
constitutes, to our knowledge, the first time that the existence of trapped modes in water waves
is experimentally evidenced through the spatial pattern of the purely antisymmetric free-surface
deformation.

The spatial structure of the trapped mode was studied in detail and succesfully compared to
theoretical predictions arising from a multipole expansion method. Moreover, the analysis of the
spatial structure led us to the identification of two different types of trapped modes: one that is
antisymmetric about the longitudinal axis of the channel but symmetric with respect to the other
axis (termed ‘Neumann-symmetric’ or NS-trapped mode in the literature) and another that is an-
tisymmetric with respect to both axis (called ‘Neumann-antisymmetric or NA-trapped mode). The
occurrence of both NS- and NA- trapped modes (at, of course, two different frequencies) was nu-
merically predicted only for aspect ratios satisfying a/d & 0.81; lower values of this parameter
being only associated with a NS-type trapped mode. The range of values of the aspect ratio a/d for
which this second type of trapped mode was observed in our experiences confirms those predic-
tions.

Precise determination of the trapped modes eigenfrequencies is achieved by treating the sys-
tem as a scattering problem in the far field. To this end, one-dimensional reflection and transmis-
sion coefficients are defined, allowing for the construction of resonance curves which characterize
the frequency behaviour of the modes. In these curves, the presence of a trapped mode is evi-
denced by the presence of a peak. Only for the largest aspect ratios a/d these curves show two
peaks, the second one corresponding to NA-type trapped modes. This is consistent with the previ-
ously discussed observation of NA-type trapped modes when analysing the spatial structure of the
modes.

The marked asymmetry of the resonant curves, which cannot be adequately described by the
classical Breit-Wigner formula, constitutes an interesting feature. Having checked numerically this
behaviour, we propose a model for the frequency dependence of the scattering data, influenced
by the proximity of the threshold for propagation of the waveguide. This model allowed us to
theoretically reproduce the asymmetry of the resonance curves, and was successfully validated
with the experimental results.

Finally, all the results of the present study are summarized in a master curve showing the de-
pendence of the trapped mode frequency parameter kd with the aspect ratio a/d . This curve is, as
expected, composed by two branches, corresponding to NS- and NA- type trapped modes. Com-
parison to theoretical predictions available within the frame of the linear theory show excellent
agreement for both branches.

Incidentally, the case for which the cylinder’s diameter coincides with the waveguide’s width,
namely a/d = 1, is of particular interest as no theoretical predictions are available. In this case, our
results show that the trapped mode becomes and edge mode, corresponding to the degeneracy of
the symmetric and antisymmetric trapped modes and thus to the intersection of the two branches
of resonance.

The experimental study presented in this chapter constitutes a significative advance in the un-
derstanding trapped modes in water waves. It is the first one to provide a complete characteriza-
tion of both NS- and NA-type trapped modes in frequency space, as well as to present a detailed
analysis of their spatial structure.
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Abstract. - The fluid around a free surface piercing circular cylinder in a long narrow wave
tank can exhibit a local oscillation that does not propagate down the channel but is confined
to the vicinity of the cylinder. This is a manifestation of the so-called trapped modes, bound
states in the continuum occurring in many situations in physics. In this Letter, using Fourier
Transform Profilometry, fully space time resolved measurements for the free surface deformation
are obtained. The scattering characteristics of the cylinder and consequently the behavior of the
trapped mode frequency are determined.

Trapped modes have been studied in many domains of
physics (for a review, see [1]), elastic waves [2, 3], water
waves [4–8] or electromagnetic waves [9, 10]. They are
finite energy solutions to the wave equation in infinite do-
main with discrete eigenvalues embedded in the continu-
ous spectrum. Trapped modes have to be distinguished
from scattering states whose eigenvalues are in the contin-
uous spectrum and that have infinite energy. Experimen-
tally, trapped modes turn into quasi trapped modes that
can be evidenced by scattering resonances. This is due
to deviations in the experiments with respect to the theo-
retical configuration: finite size effect producing radiation
toward infinity or leaking due to dissipative mechanisms.
However, the study of quality factors of the trapped mode
resonances is of interest. Indeed, high quality factors in
trapped mode resonances are decisive for the design of
metamaterials, whose remarkable properties, such as neg-
ative index or cloaking, are underpinned by the resonant
nature of their response.

Among the physical situations giving rise to trapped
mode resonances, the case of water waves is of particular
interest. Firstly, water wave resonances have many prac-
tical applications in naval and coastal engineering [11,12].
In addition to their own interest, water waves exhibit sim-

ilar properties as electromagnetic and microwaves, e.g.

negative refraction or cloaking [13–15]. From that point
of view, water waves are attractive since the wave field is
the free surface deformation, that is already qualitatively
accessible to the naked eye.

In this Letter, we study experimentally the trapped
mode resonances of water waves interacting with a cylin-
drical obstacle in a waveguide. This configuration has
been studied in linearized water wave theory by [4–7] and
very few experimental results are available [16]. Also, it
corresponds to the problem of an infinite set of cylin-
ders where strong resonances have been numerically ob-
served [12].

Owing to Fourier Transform Profilometry [17–19], we
get a resolution of the surface elevation in time and in
space able to quantitatively describe the trapped mode
resonances, by means of their patterns and by means of the
reflection and transmission coefficients. A model for the
frequency dependance of the scattering data, influenced by
the proximity of the threshold for propagation, is proposed
and compared favorably with the experimental results.

Our experimental set-up consists of a water tank with
constant water level at rest which is chosen to be fixed at
h0 = 5 cm. The system of interest is placed inside the
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camera

videoprojector

beach

wavemaker

paddle

waveguide

wave tank

(a) scheme of the complete experimental setup

(b) camera’s view

Fig. 1: Experimental setup (a). Symmetric and antisym-
metric modes are generated at the entrance of the waveg-
uide by the wavemaker. A free surface piercing circular
cylinder of diameter 2a ∈ [2, 10] cm lies in the center of
the waveguide of width 2d = 10 cm. The measurement
is performed using an optical method (Fourier Transform
Profilometry). A videoprojector projects fringes onto the
free surface and the image is collected by a camera. Anal-
ysis of the fringe displacements allows for the reconstruc-
tion of the surface deformation at each pixel. Panel (b)
presents a sample of the camera’s view showing the free
surface and the projected fringes, the waveguide, the cylin-
der, and a portion of the wavemaker paddle.

tank: a waveguide formed by two parallel vertical walls,
60 cm long, a distance 2d = 10 cm apart, has a free surface
piercing vertical circular cylinder of diameter 2a (a = 1 to
5 cm) located symmetrically between the two walls (Fig.
1). Water waves are generated by a wave maker forming
an angle of around 45◦ with the waveguide axis Ox (so
symmetric and antisymmetric modes are generated at the
entrance of the waveguide) at a frequency f ∈ [2, 3] Hz.

An important specificity in our experiment is the mea-
surement of the surface elevation. This optical method,

termed Fourier Transform Profilometry, is originally due
to [17] and has been described in [18, 19] for application
to water wave measurements. By projecting fringes onto
the free surface and by analyzing the fringe displacement,
we are able to deduce the surface elevation in the work-
ing window. In the present experiment, the window is
40 × 10 cm2 corresponding to 1623 × 421 pixels2. The
width of the pixel, 0.23 mm, sets the spatial resolution
and the resolution on the surface elevation. The tempo-
ral resolution is only limited by the acquisition rate of the
camera since a single picture is needed to get the mea-
surement. In our experiment, a high speed camera is used
with an acquisition rate close to 300 Hz.

Typical free surface deformation fields hT (x, y, t) near
resonance are shown in Fig. 2. The acquisition rate of the
camera is synchronized with the wavemaker in order to get
200 acquisitions hT (x, y, t) over two periods of the water
wave oscillation. For a perfect fluid, in absence of dissipa-
tion, the dispersion relation for the water waves is given
by ω2 = gk tanh kh0 where ω is the driving pulsation, k
the wavenumber and g = 9.81 m.s−2. For the purposes of
this study, the effects of surface tension will be neglected.

A first direct qualitative evidence of the resonance phe-
nomenon can already be obtained from these instanta-
neous fields. The symmetry of the geometry decouples
the fields into two families, even and odd with respect
to y. The wave is always propagative for the first fam-
ily while it has a non zero cut on frequency for the sec-
ond family. This latter gap property enables the existence
of the trapped mode [20]. Fig. 3 shows the odd family,
[hT (x, y, t) − hT (x,−y, t)]/2, for some given y and t as a
function of x and ω. Typical spots are visible that are
indicative of the presence of resonances.

In order to obtain quantitative characterics of the reso-
nance, we extract, at each position, the coefficient h1(x, y)
of the Fourier series

hT (x, y, t) =
∑

n

hn(x, y)einωt. (1)

This is achieved owing to the large sampling rate offered
by the camera. In our experiment, the weight of the non
linearities |hT − h1|/|hT | is less than 15 %. h1 is then
separated into an even part he and an odd part ho. Fig. 4
depicts the typical situation near resonance: the trapped
mode is isolated in the odd part of the field and is localized
in the vicinity of the cylinder. Depending on the geometry,
it is either symmetric with respect to the vertical axis,
as predicted in Ref. [20] or antisymmetric with respect
to the vertical axis as predicted in Ref. [21]. This latter
trapped mode is expected to exist only for a/d & 0.81 [21],
what we experimentally confirm. The even field he makes
the propagative plane mode to appear. This field is used
to get a direct measurement of the wavenumber k. The
agreement with the theoretical dispersion relation is of
about 2 %.

To go further, we want to get a 1D model. With
a constant water level at rest h0, the free surface el-
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Fig. 2: Typical instantaneous fields of the surface elevation
hT (x, y, t), here for a/d = 0.50, kd = 1.32. The scale of
the colorbar is in mm.

evation h1(x, y) is governed by the Helmholtz equation
(∆ + k2)h1(x, y) = 0, with Neumann boundary condition
at the walls, where k is given by the aforementioned dis-
persion relation [22]. Then, in our analysis, the odd part
ho(x, y) of the field h1(x, y) is modelized in a 1D problem
by projecting the 2D field onto the first transverse mode:

ho(x, y) ≃ h(x) sin πy/2d, (2)

outside of the near field of the cylinder (Fig. 5(a)). In the
near field, the higher transverse modes are expected to
contribute to the 2D solution. However, the contribution
of the higher order modes [with sin(2n + 1)πy/2d, n 6=
0 dependance] is less than 7% in our experiments. The
typical behavior of h(x) is shown in Fig. 5(b). Because
we are working below the first cutoff frequency, at π/(2d),
for antisymmetric modes, the solution is sought as

h(x < 0) = A e−αx +AR eαx,
h(x > 0) = AT e−αx,

(3)

with A the amplitude of the incident wave, α the
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Fig. 3: Evidence of the trapped mode resonances:
(hT (x, y, t) − hT (x,−y, t))/2 for some fixed y is displayed
in colorscale as a function of x and ω. (a) for a/d = 0.50,
one resonance is visible near the cylinder and (b) for
a/d = 0.85, in addition to the first resonance, a second
maximum near the cutoff frequency can be seen (the cylin-
der lies at x = 0). The scale of the colorbar is in mm.

wavenumber of the first evanescent mode and (R, T ) the
reflection and transmission coefficients. Such behavior is
illustrated in Fig. 5.

The reflection and transmission coefficients (R, T ) and
α are fitted for each frequency outside the near field re-
gion. The resonance curves are obtained, as exemplified in
Fig. 6 for a/d = 0.50 (the single resonance corresponds to
a trapped mode as in Fig. 4(b)) and for a/d = 0.85 (the
two resonances correspond to the two types of trapped
modes in Fig. 4(b)(d)).

As is evident from these curves, the classical Breit-
Wigner resonance shape is not well suited as it would
be unable to reproduce their clear asymmetry. We have
checked that this asymmetry is not an experimental arti-
fact by computing the transmission and reflection coeffi-
cients numerically (numerical calculations have been per-
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(a) (b)

Fig. 4: Experimental patterns of the two trapped modes, and the associated even parts. (a) even and odd fields of
the linear field h1(x, y), for a/d = 0.40 and kd = 1.46. The even part exhibits the form of the trapped mode localized
in the vicinity of the cylinder. (b) Same representation for a/d = 0.95 and kd = 1.51. The scale of the colorbar is in
mm.
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Fig. 5: Top: The problem reduces to a 1D problem along
the x-axis, by projecting the odd field onto the first trans-
verse mode in sinπy/2d outside the near field region. Bot-
tom: Typical variation of the measured h(x) along the x-
axis: real part of log[h(x)] as a function of x (a.u.) (the
curve has been obtained for a/d = 0.4, kd = 1.47).

formed using the toolbox PDEtool of Matlab; see [23]).
The 1D transmission and reflection coefficients are actu-
ally influenced by the proximity of the cut-off frequency
at kd = π/2. It has been already observed for confined
states in bent waveguides in [24] that proposed the follow-
ing asymmetric shape for T

T =
B

1 − C/(αd)
, (4)

where αd ≡
√

(π/2)2 − (kd)2. This equation has to be
understood in the neighbourhood of the resonance in the
complex plane. The constants B and C have been numer-
ically computed and we have checked that the Eq. (4) is

valid in the complex k-plane. Note that (B,C) are func-
tions of the geometry only. For a/d = 0.50, we have found
B = 1.15 and C = 0.73. For a/d = 0.85, there are two
resonances and the transmission coefficient can be written
as the sum of two shapes Eq. (4) with (B1=1.85, C1 =
0.8325) and (B2 = -1.2, C2 = 0.135).

In the experiment, a small attenuation is present that
is modelized by a small imaginary part of k. This atten-
uation can only be roughly evaluated, because of a low
signal to noise ratio on the imaginary part of α. The ex-
perimental measurements of α gives, through the relation
k =

√

(π/2d)2 − α2, an estimation of Im(k)d ∼ 0.03.

As shown in Fig. 6, a good agreement is observed be-
tween the experiments and the prediction of Eq. (4). For
the case a/d = 0.50 in Fig. 6(a), a constant attenuation
Im(k)d = 0.025 has been used, a value consistent with our
rough experimental estimate. For the case a/d = 0.85 in
Fig. 6(b), the second resonance is visible, a fact that can
be reproduced only assuming a significant decrease in the
attenuation from Im(k)d = 0.033 near the first resonance
to 0.003 near the second resonance.

The behavior of the resonance frequency kcd when
changing the size of the cylinder is shown in Fig. 7.
There are two branches: the first corresponds to trapped
modes symmetric with respect to Oy-axis and the second
to trapped modes antisymmetric with respect to Oy-axis.

The experimental results are compared to the theoreti-
cal predictions of Ref. [20] for the first branch and with the
theoretical predictions of Ref. [21] for the second branch.
The authors in [21] predicted that the resonances of the
second branch exist for a/d & 0.81. This prediction is
confirmed here. An excellent agreement is observed with
the theoretical predictions for both branches. It is worth
noting that this is the case even for the largest values of
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Fig. 6: Resonance curves for (a) a/d = 0.50 and (b) a/d = 0.85, upper panel |R| (plain circle), |T | (open circle) as a
function of the wavenumber kd. Lower panels show the corresponding phases. Plain lines correspond to the results
obtained from numerical calculations, indiscernible from the expression in Eq. (4).
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Fig. 7: Resonance frequencies kcd as a function of a/d.
Open circles are the experimental values deduced from
the resonance curves and plain lines are the theoretical
predictions from [20,21].

a/d, for which the effect of a meniscus in the small region
between the cylinder and the waveguide walls would seem
important. This validates our assumption of negligible ef-
fects due to surface tension.

The case of the totally obstructing cylinder a/d = 1 de-
serves closer inspection. In this case, the trapped mode
becomes an edge mode. It corresponds to the degeneracy
of the symmetric and antisymmetric trapped modes and
thus to the intersection between the two branches of reso-
nance in Fig. 7. Experimentally, the resonance frequency
of the edge mode is found at kd = 1.44. The corresponding
pattern of the edge mode is shown in Fig. 8.

Fig. 8: Edge mode experimentally observed for a/d = 1
and kd = 1.44. The scale of the colorbar is in mm.
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We present an experimental study on the trapped modes occurring around a vertical
surface-piercing circular cylinder of radius a placed symmetrically between the parallel
walls of a long but finite water waveguide of width 2d. A wavemaker placed near the
entrance of the waveguide is used to force an asymmetric perturbation into the guide,
and the free-surface deformation field is measured using a global single-shot optical pro-
filometric technique. In this configuration, several values of the aspect ratio a/d were
explored for a range of driving frequencies below the waveguide’s cutoff. Decomposition
of the obtained fields in harmonics of the driving frequency allowed for the isolation of the
linear contribution, which was subsequently separated according to the symmetries of the
problem. For each of the aspect ratios considered, the spatial structure of the trapped
mode was obtained and compared to the theoretical predictions given by a multipole
expansion method. The waveguide–obstacle system was further characterized in terms of
reflection and transmission coefficients, which led to the construction of resonance curves
showing the presence of one or two trapped modes (depending on the value of a/d), a
result that is consistent with the theoretical predictions available in the literature. The
frequency dependency of the trapped modes with the geometrical parameter a/d was
determined from these curves and successfully compared to the theoretical predictions
available within the frame of linear wave theory.

1. Introduction

In the framework of the classical theory of linearized water waves in unbounded do-
mains, trapped modes consist of non-propagative localized oscillation modes of finite
energy occuring at some well-defined frequency and which, in the absence of dissipation,
persist in time even in the absence of external forcing.

The first theoretical example of such trapping mode in the theory of water waves,
due to Stokes (1846), consists on waves which travel in the long-shore direction over a
uniformly sloping beach and decay to zero in the seaward direction. Such a trapped mode
has often been referred to as an edge wave, as in this case the energy remains trapped near
the shore. (Note that, in this case, finite energy is to be understood in terms of energy
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per unit length along the shore). These localized modes were later generalized by Ursell
(1952) to an infinite set of discrete modes, of which Stokes’ edge waves represent the
fundamental mode. For a recent review on edge waves, the reader is referred to Johnson
(2007) and references therein. Field observations of edge waves have been reported by
Huntley & Bowen (1973). For a description of edge waves in an oceanographic context,
the reader is referred to the work by LeBlond & Mysak (1978).

Ursell (1951) showed that such a trapped mode could also exist in the vicinity of a long
submerged horizontal circular cylinder, in the form of waves travelling along the cylinder
and decaying in a direction normal to the cylinder axis. Although the original proof given
by Ursell (1951) was restricted to sufficiently small cylinders (i.e., of radius smaller than
the wavelength), Jones (1953) showed that the nature of this restriction was not physical.
Indeed, employing a general treatment based on the theory of elliptic partial differential
equations in unbounded domains, this latter author proved that trapped modes exist for
a submerged horizontal cylinder of symmetric but otherwise arbitrary cross-section, both
in finite and infinite depth. Finally, a proof based on Kelvin’s minimum-energy theorem
was provided by Ursell (1987) for the existence of trapped modes in the case of a totally
submerged body without any restriction on its shape and size. Moreover, in a numerical
study, McIver & Evans (1985) showed that there is always at least one trapped mode
above a cylinder of arbitrary size and that further modes are possible as the top of the
cylinder approaches the free surface.

More importantly, Jones’ work proved the existence of trapping modes for problems
governed by the Helmholtz equation in semi-infinite domains, indicating that such bound
states could occur (under certain conditions) in other contexts such as, e.g., acous-
tics. Evans & Linton (1991) described a constructive method for determining trapped
mode frequencies in two specific problems not covered by Jones’ theory in which the
two-dimensional Helmholtz equation is satisfied. One of these problems involves the
free-surface fluid motion in a long waveguide containing a vertical cylinder of uniform
cross-section placed symmetrically between its walls and extending throughout the wa-
ter depth. In this case, separation of the depth dependance leaves out the Helmholtz
equation and the dispersion relation linking the wavenumber and the wave frequency, re-
quired to satisfy the linearized free-surface condition for water waves. Neumann boundary
conditions on the walls set a threshold for the propagation of perturbations which are
antisymmetric with respect to the waveguide’s centerplane. Below this cutoff frequency,
antisymmetric waves cannot propagate, though they may still exist within the guide in the
form of evanescent waves. Although trapped mode solutions, localized within the waveg-
uide and having bounded total energy are not possible below this cutoff, Evans & Linton
(op. cit.) showed that the presence of a symmetrically placed rectangular block satis-
fying a no-flow condition on its sides and having two sides parallel to the waveguide
walls enabled the construction of such solutions, and computed their frequencies. These
modes are characterized by having finite total energy, being localized in the vicinity of
the obstacle and decaying rapidly to zero with distance down the waveguide. Moreover,
the number of such modes increases with the length of the block; conversely, only a single
mode exists for a block shorter than the channel’s width. This work provided numerical
evidence as well as a criterion as to when to expect such modes to occur for this class of
problems and how to compute them.

McIver (1991) derived the trapped mode frequency for antisymmetric trapped modes
in the vicinity of a vertical cylinder of arbitrary but small cross-section in a water channel
of infinite extent. Similar results were obtained by Evans & McIver (1991) for the trapped
mode frequency close to the cutoff, for the particular case of symmetric thin bodies.

Callan et al. (1991), employing a method due to Ursell (1951), proved the existence of
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a trapped mode for a cylinder of sufficiently small radius placed symmetrically within the
guide. Furthermore, an explicit relation between the cylinder radius, the waveguide width
and the trapped mode frequency was found in this particular case. However, numerical
computations revealed that a single trapped surface wave mode exists irrespective of the
cylinder size. Moreover, it was also shown that, in the general case, the frequency of the
trapped mode oscillation lies below the fundamental cutoff frequency for the channel and
depends only upon the ratio of cylinder radius to waveguide width. This trapped mode,
having a frequency close but below the fundamental cutoff frequency of the channel, is
characterized by being antisymmetric about the centerplane of the guide and symmetric
about a line perpendicular to the waveguide’s walls passing through the cylinder axis
(hereafter termed Neumann–symmetric, or NS-trapped modes). However, no trapped
modes antisymmetric about both lines (Neumann–antisymmetric, or NA-trapped modes)
were found in this study.

In relation to this problem, Linton & Evans (1992) constructed a homogeneous integral
equation for the trapped modes in the case of a cylinder of fairly general cross-section and
showed that the trapped mode frequencies agreed numerically with the previous results
for the circular cross-sections. Finally, Evans et al. (1994) showed that there is at least
one trapped mode antisymmetric about the centerplane of the waveguide, localized near
an obstacle of symmetric but otherwise fairly general shape about the centerline of the
waveguide and decaying with distance down the guide away from the obstacle.

A few years later, Evans & Porter (1999) described a method for constructing trapped
modes antisymmetric about the line through the centre of the cylinder and perpendic-
ular to the channel walls (i.e., NA-trapped modes). Their numerical computations of
such modes established their existence for values of the control parameter in excess of a
numerically determined threshold, corresponding to cylinders of radius 0.81 times larger
than the waveguide’s width.

It is worth noting that the studies cited above systematically neglect surface tension, so
the question arises as to whether its effects might play a relevant role in the observation
of trapped modes, and to whether it is physically realistic to exclude surface tension from
the linear water wave problem. For the problem under consideration here, Harter et al.

(2007) showed (choosing a particular contact-point condition) that the qualitative nature
of the streamline shape is unaffected by the addition of surface tension in the free surface
condition, no matter how large this parameter becomes.

In the last fifteen years, the study of trapped modes has largely developped and di-
versified. McIver (1996) was the first to construct a finite structure supporting a so-
called ‘sloshing’ trapped mode, where the fluid motion is essentially confined to the
region inside the surface-piercing structure. Modifications of the construction method
employed by McIver (op. cit.) have now been used to build a variety of sloshing trap-
ping structures in two and three dimensions, both submerged (see Evans & Porter 2002;
McIver 2000; McIver & Porter 2002) and surface-piercing (see McIver & McIver 1997;
Kuznetsov & McIver 1997; McIver & Newman 2003). Coupled oscillations between a
freely floating structure and the surrounding fluid, termed ‘motion trapped modes’,
were recently obtained by McIver & McIver (2006). As in the case of the sloshing trap-
ping structures, these structures have two surface-piercing elements separated by a por-
tion of the free surface. For more information regarding recents developments in the
study of trapped modes, the reader is referred to the comprehensive review given by
Linton & McIver (2007).

In the framework of the present experimental study, we will focus on the measurement
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and analysis of trapped modes occuring around a vertical surface-piercing circular cylin-
der placed symmetrically between the parallel walls of a long but finite water waveguide.

The trapped modes associated to this configuration are also of interest to acoustics,
as they also describe acoustic resonances associated with a two-dimensional acoustic
waveguide containing a sound–hard (cylindrical) obstacle, by virtue of the separation of
the depth factor in the water-wave problem.

Another aspect of interest regarding this particular configuration arises from the con-
sideration of the Neumann (no-flow) boundary conditions at the waveguide walls. Indeed,
neglecting the effects of the boundary layer, the walls can equally well be thought of as
representing lines of symmetry. Hence these trapped modes also exist in the presence
of an infinite linear array of regularly spaced obstacles, generating very large forces on
the elements of the array (see Maniar & Newman 1997; Evans & Porter 1997a,b). More-
over, Evans & Porter (1999) showed that ‘near-trapping’ could occur between adjacent
elements within a large but otherwise finite array of cylinders. In this case, it was found
that the associated near-trapping frequencies are related to the Rayleigh–Bloch trapped-
wave frequencies for the infinite array. (On the existence of Rayleigh–Bloch waves, see
Linton & McIver 2002). In practice, the occurrence of near-trapped modes is of partic-
ular relevance to offshore structures based on a large number of piles (such as oil rigs,
very-large floating structures and breakwaters) as it implies the presence of very large
loads on individual elements of the array. Recent progress in the understanding of wave
interaction with arrays of offshore structures, resonant effects and their consequences for
finite arrays has been discussed by McIver (2002).

In marked contrast to the large number of theoretical studies concerned with existence
proofs and numerical algorithms for the computation of trapped modes for different
geometries, little attention appears to have been paid to their experimental observation,
characterisation and analysis.

Indeed, the only experimental results available in the literature for the problem under
study are due to Retzler (2001). In this work, the observation of trapped modes around
a vertical surface-piercing circular cylinder placed symmetrically within the walls of an
open channel was reported. The channel was 12.8 m long and 0.427 m wide; water depth
was fixed at 0.7 m. The cylinder was given a step impulse perpendicular to the channel
centerplane from an arbitrary rest position then held with its axis perpendicular to
the waveguide’s bottom. The transient free-surface disturbance was measured by means
of two single-point wave-gauges placed symmetrically at either side of the cylinder, on
a line perpendicular to the guide walls. Using this setup, three values of the control
parameter (ratio of cylinder radius to waveguide’s width) were explored, each of which
was associated with a NS mode of sharply defined frequency within 0.4% of the predicted
trapped mode frequency. However, due to the nature of their measuring technique, no
information was available on the spatial structure of these modes, therefore no measure
of the degree of localization of the modes could be derived. Moreover, the range of
geometries explored precluded the observation of NA-type trapped modes.

The aim of this study is to gain further understanding regarding the occurrence of
trapped modes of both NS- and NA-types, the dependence of their eigenfrequencies with
geometry, and the characterization of their detailed spatial structure.

The paper is organized as follows. In the next section we describe the complete experi-
mental setup employed in this study, along with the optical profilometric system devised
for the measurement of the free surface deformation. Section 3 presents the experimental
results concerning the detailed spatial structure of the trapped modes. Finally, Section 4
comprises the analysis and comparison of our experimental results with the theoretical
predictions available within the frame of the linear theory.
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Figure 1: Scheme of the complete experimental setup, depicting both the wave tank
and the optical measuring system. Inside the wave tank used for our experiments, the
waveguide is placed with its walls parallel to those of the tank. The obstacle is placed
symmetrically between the walls of the waveguide, equidistant from the waveguide’s ends.
The wavemaker is positioned near the waveguide, inclined with respect to its entrance in
order to excite an asymmetric perturbation within it. At the other side of the wavetank,
a sloped beach is used to avoid unwanted wave reflections. Our optical profilometric
measuring system is placed over the channel, and is composed of a high-resolution video-
projector and a high-speed Phantom V9 camera. The videoprojector projects fringes onto
the free surface (shown schematically in the figure) and the camera is used to capture
images of the deformed fringes over the region of interest.

2. Experimental set-up

In this section we describe both the experimental set-up and protocol devised for the
observation and measurement of the trapped modes’ resonances.

Fig. 1 shows the whole system schematically. For the purpose of its description, the
set-up can be divided into two main parts: the channel itself, in which the trapped modes
excitation occurs and the measuring system.

2.1. Channel

The waveguide is formed by two vertical walls made of plexiglass, 60 cm long and 10 cm
high, separated by a distance 2d = 10 cm. A vertical circular cylinder of diameter 2a
is positioned within the guide. Employing this setup, two configurations were explored.
In the first configuration, the cylinder is placed symmetrically between the two walls
and equidistant from the guide’s ends (30 cm) (see Fig. 2(a)). The second configuration
consists on the obstacle located at 3a from the entrance (Fig. 2(b)). For later reference,
these two different obstacle configurations will be termed I and II, respectively.
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a
3a

(a)

a

(b)

Figure 2: Two different obstacle arrangements employed in the present study, hereafter
termed configuration I (a) and II (b).

For each one of these two configurations, obstacles of 12 different sizes (2a = 20, 30,
40, 50, 60, 70, 75, 80, 85, 90, 95, 100 mm) were employed keeping the waveguide walls
fixed at a distance of 2d = 100 mm. In every case, the positioning of both the waveguide
walls and the cylinder within them were assured to a precision of 0.1 mm. For each of
these obstacles, a significative range of frequencies around the theoretical resonance was
explored.

The whole waveguide–obstacle system is placed inside a larger water tank of dimensions
60× 180× 15 cm3. Water was employed as the working fluid, keeping a constant level of
H0 = (5 ± 0.05) cm throughout the experiments.

Special attention was taken in the design of the wavemaker mechanism so that it
would provide a monochromatic sinusoidal mouvement of the paddle plate. To that end,
we designed a bottom-hinged paddle-type wavemaker, with adjustable stroke amplitude
and servo-controlled forcing frequency in the range of 1 to 5 Hz, adjustable in 0.02 Hz
steps. The inner face of the paddle plate is put in contact with a thin circular disk placed
above the water level with its axis perpendicular to the channel’s bottom. In turn, the
disk is attached excentrically to the axis of a rotating motor fixed to the wavemaker
structure. Mechanical contact between the paddle and the disk is assured at all times
by means of an auxiliary spring system. In this way, a constant-speed rotatory motion
of the motor is transferred by the disk through the contact point to the paddle plate
which describes a sinusoidal mouvement. Prior to this study, the monochromaticity of
the wave paddle was checked measuring the spectrum of its oscillatory motion by laser
triangulation. According to this study, the contribution to the first harmonics is less
than -2 dB and that of the the third, less than -4 dB, which renders it an efficient
monochromatic wave paddle for the purposes of this study.

The key factor for achieving the excitation of trapped modes is to send a small anti-
symmetric perturbation inside the guide. As theoretically predicted trapped modes are
known to be antisymmetric with respect to the waveguide longitudinal centerplane, there-
for to be able to excite such trapped modes inside the waveguide, one must be capable
of forcing a perturbation with antisymmetric components at the entrance. From an ex-
perimental standpoint, two practical limitations are naturally imposed to the amplitude
of the antisymmetric perturbation at the entrance of the waveguide. The first constraint
is imposed by the presence of dissipation, which demands the perturbation to be large
enough at the entrance so the amplification around the obstacle could be detected by
our mesuring technique. However, it should also remain small so that the effect of non-
linearities does not become significant. These two constraints led us to a configuration in
which the wavemaker is placed at an angle of around 40◦ with respect to the waveguide
centreline, so that both antisymmetric as well as symmetric components are transmit-
ted down the guide. It should be noticed, however, that these two components travel
differently inside the waveguide. The symmetric part of the perturbation behaves as a
propagating wave for any incident frequency, as both ends of the waveguide are open.
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In contrast, any antisymmetric component with frequencies below the cut-off kd < π/2,
enters the guide as an evanescent wave.

At the other end of the water tank, 60 cm away from the waveguide’s exit, an inclined
beach is disposed in order to mitigate unwanted wave reflections. This wave-absorbing
beach is made of a styrofoam-covered rectangular plastic plate and is placed forming an
angle of approximately 20◦ with the tank’s bottom. In spite of its simplicity, preliminary
tests showed that the reflected-to-incident wave amplitude ratio was slightly less than 5 %,
which renders it a highly efficient absorber for the purposes of this study.

2.2. Optical measuring system

A complete characterization of the water-wave trapped mode resonances requires their
observation and localization in frequency space, as well as a detailed study of their global
spatial structure and time evolution. In order to pursue such an experimental descrip-
tion, the measuring technique should meet several requirements. The first requirement
is that of being non-intrusive, so as not to introduce external perturbations to the sys-
tem under study. To account for the spatial structure of the surface trapped modes the
technique should be global, i.e. able to measure the free surface deformation over an
extended area of the surface. In addition, a high spatial resolution within this interroga-
tion area is demanded so that the smallest significant features of the flow are correctly
detected. In our case, this amounts to wavelengths of the order of the capillary length.
An additional condition arises from the consideration of the measurement range. In gen-
eral, resonant states are characterised by amplitudes which considerably exceed those
associated with far-off-resonance states (in the particular case of this study, as much as
30 times). Therefore, measuring the free surface deformation amplitude consistently as
it approaches the resonant state requires a high vertical resolution throughout a large
vertical measurement range. The last major requirement on the measuring technique
focuses on its temporal resolution. Indeed, short observation times are imperative to ac-
curately follow the dynamics of (local) perturbations in their propagation and spread
along the surface. Therefore, the propagation velocity of surface waves emerges naturally
as a limitating factor which, together with the spatial resolution, sets a threshold for the
observation time.

These requirements have led us to the development of an optical profilometric tech-
nique that allows for high-resolution 3D whole-field reconstruction of time-dependent
free-surface deformation fields. Our technique is based on a particular fringe projection
profilometry method known as Fourier tranform profilometry (herein termed FTP), orig-
inally due to Takeda et al. (1982); Takeda & Mutoh (1983), successfully applied in the
past for the topography of solid surfaces in a variety of fields such as mechanical engi-
neering, machine vision, industry monitoring and quality assessment, etc. The adaptation
and enhancement of this particular technique for the measurement of free-surface defor-
mations were described in by Cobelli et al. (2009) and Maurel et al. (2009), where its
applicability to a variety of fluid dynamics’ scenari was demonstrated.

The operating principle of the FTP method is the following. A fringe pattern of con-
trolled characteristics is projected onto the free surface and its image is registered by a
camera. The deformed fringe pattern due to the surface deformations is later compared
to the undeformed (reference) one, leading to a phase map. A phase-to-height relation
involving the optical system parameters can be derived based on the laws of geometrical
optics, from which the local free-surface height can be reconstructed.

The optical measuring system devised for high-resolution surface deformation map-
ping is also schematically shown in Fig. 1. In our experiments, water was employed as
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the working liquid. In order to be able to project images onto the water surface its light
diffusivity is enhanced by the addition of a white (titanium dioxide-based) liquid dye.
Any potential variation in the surface tension is not expected to affect our results signif-
ficatively as our experimental parameters place us in the gravity surface waves regime.

A computer-controlled digital videoprojector with a resolution of 1, 920×1, 280 px2 and
12-bit-depth is employed for the projection of fringe patterns. This allows us to project
sinusoidal fringe patterns of controlled wavelength, more adapted to Fourier analysis
than the square profile (Ronchi-type) gratings commonly used. This results in an overall
quality gain in both the frequency space filtering process inherent to the technique and in
the phase recovering. Another advantage of this videoprojector system is the possibility
to laterally shift the image with respect to its optical axis, approaching it towards the
camera’s field of view without introducing optical aberrations that would deform the
fringes. Once the projector–free-surface working distance L is set, the size of the projec-
tion window can be adjusted to fit either a small or a relatively large area over the liquid
surface. In this experimental study, we employed a projection distance L = 100.7 cm and
a projection window covering (but not limited to) the entire free-surface (including the
obstacle) within the waveguide, of size 10 × 40 cm2.

The fringe patterns projected onto the liquid’s free surface were recorded by a Phantom
V9 monochrome high-speed camera, with a resolution of 1, 632 × 1, 200 px2 and a color
depth of 10 bits.

The relative positioning of the videoprojector and the camera is as follows. Their optical
axis are perpendicular to the channel’s bottom, parallel to one another, and separated
by a distance D = 35 cm. The entrance pupils of both instruments lie on a plane parallel
to that of the unperturbed surface, a distance L over it.

Data acquired by the camera were later recorded as uncompressed raw tagged image file
format (TIFF) to avoid any artifact from the camera’s firmware preprocessing algorithm,
such as those associated to quantization, compression, color depth reduction, etc.

The whole fringe projection and image capturing system is held over the channel
supported by a structure that allows for precise alignment and relative positioning of the
optical devices.

This technique has a theoretical resolution in the measured surface elevation given
by geometrical optics which is limited by the size of the projected pixel. In the present
experiments, this latter corresponds to 0.23 mm. The attained resolution is exemplified
on Fig. 3 where a comparison with a measurement by laser profilometry (5 µm precision)
has been performed at a particular point in the surface. In this figure, |hFTP − hlaser| ≤
0.2 mm, in agreement with the estimated resolution. This validates our measurements
and fixes the resolution.

2.3. Data acquisition and treatment

For any given values of a/d and driving frequency f , the camera sampling frequency fS

was set at fS = 100f , leading to 100 frames per period. Two periods of oscillation were
registered in each case. For every image in a time series, a free-surface height is obtained
by means of the inversion algorithm used in FTP.

2.3.1. Decomposition in harmonics of the driving frequency

The global nature of our measuring technique allows us to decompose the time evolu-
tion of the free-surface deformation (herein, FSD) hT (x, y, t) in terms of the harmonics
of the driving angular frequency ω = 2πf . The latter can be represented as a complex
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Figure 3: Comparison between two measurements made at the same point with an stan-
dard laser profilometer (plain line) and FTP at the same point (dashed line).

Fourier series expansion in the following form

hT (x, y, t) =
+∞
∑

n=−∞

hn(x, y) einωt, (2.1)

where we have introduced the complex-valued amplitude hn(x, y) associated with the
n-th harmonic. These complex amplitudes hn are obtained from the measured fields that
are, of course, real (h−n = h∗n, where asterisk denotes complex conjugate). To do that we
derive, at each measurement point (x, y), the coefficients of the real Fourier expansion in
time (100 times per period, which allows an accurate integration).

Such a decomposition scheme in terms of harmonics of the driving frequency presents
many advantages for the analysis of the dynamics of the free surface deformation. On
the one hand, separation of the linear part of the free surface deformation from the non-
linear contributions (with frequencies corresponding to 0, 2ω, 3ω, etc.). is straightforward,
which enables a comparison between the two. Furthermore, when complemented by the
global nature of our measuring technique this comparison serves to evaluate the relative
importance of the non-linear components locally within the guide. In the case of this
experimental study, this separation is particularly suitable as it allows us to compare our
results with the predictions from the available linear theories (see Section 4).
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2.3.2. Decomposition in symmetric and antisymmetric parts

Finally, we define two fields, one symmetric and another antisymmetric about the
waveguide’s centerline by means of the usual definitions,

Hs
n(x, y) =

1

2
[Hn(x, y) +Hn(x,−y)] (2.2)

Ha
n(x, y) =

1

2
[Hn(x, y) −Hn(x,−y)] (2.3)

for the symmetric and antisymmetric parts, respectively.

3. Resulting patterns

In this Section we expose the results obtained following the previously described decom-
position from the instantaneous total fields to the harmonics and finally to the symmet-
ric and antisymmetric fields. This latter antisymmetric field corresponds to the trapped
mode that is the main subject of the present study.

3.1. Instantaneous free surface deformation field

Fig. 4 shows a sequence of instantaneous free-surface deformation fields for a/d = 0.5
and f = 2.5 Hz, close to the experimentally determined resonant frequency (see also
Movie 1)†. In practice, this sequence consists on 100 frames registered at an acquisition
rate of 250 Hz. Here, only one over ten fields is shown. For the present figures, the
configuration II was chosen because the cylinder being closer to the entrance makes the
amplitudes larger, rendering the phenomenon more evident.

† The associated video will be available for download at the Journal’s site after publication
of the manuscript.
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Figure 4: Experimental measurements of the instantaneous total free-surface deformation fields. The figure shows a time-sequence of the
evolution of the free surface deformation fields for a particular case of the aspect ratio explored, namely a/d = 0.5. The wave’s incident
frequency corresponds to f = 2.5 Hz. Frames are separated by ∆t = 0.04 s.
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Figure 5: Experimental evidence of the trapped mode resonance: 1/2 · [hT (x, y, t) −
hT (x,−y, t)] for some fixed (y, t) is displayed in color scale as a function of x and ω.
(a) For a/d = 0.5, one resonance is visible near the cylinder, (b) for a/d = 0.85 in ad-
dition to the first resonance a second maximum near the cut-off frequency can be seen.
The cylinder lays at x = 0 mm (configuration I). The scale of the color bar is in mm.

In these figures, local height is linearly color-coded between red and blue, the former
corresponding to elevations and the latter to depressions (with respect to the free-surface
at rest). With this convention, green is associated with undeformed regions. For the sake
of comparison, the same color scale was maintained throughout the sequence.

These snapshots illustrate the dynamics of the free-surface in the presence of a trapped
mode. The region near the obstacle is characterised by an asymmetric oscillation at the
driving frequency, with amplitudes that largely exceed that at the waveguide’s entrance.
In this region the local surface curvature is rather large, as evidenced by the presence of
steep slopes in the vicinity of the obstacle.

In contrast, the region far past the cylinder shows only the propagation of a plane,
slightly attenuated wave. Furthermore, the amplitude of this wave is of the same order as
that of the incident wavefront. Perhaps the most striking feature observed in this region
is the recovery of symmetry.

These observations effectively suggest the existence of an antisymmetric deformation
localised in the vicinity of the obstacle, decaying rapidly with distance. However, and due
to our particular choice of the experimental setup, the theoretically predicted pure anti-
symmetric nature of the trapped mode is still concealed by the plane wave propagating
down the waveguide and by the presence of non-linearities (if any).

From these acquisitions a direct but qualitative evidence of the trapped mode res-
onance can be exhibited. The symmetry of the geometry decouples the fields into two
families, even and odd with respect to y. Figure 5 shows the odd family: 1/2 · [hT (x, y, t)−
hT (x,−y, t)] as a function of x and the driving pulsation ω at some fixed (y, t). One or
two spots with maximum amplitudes are visible in the vicinity of the cylinder at some
particular frequencies, indicative of the presence of resonances.

3.2. Pattern of the harmonics

A time decomposition in harmonics of the driving frequency is calculated from 100 in-
stantaneous FSD fields within one period. The first three Fourier modes obtained with
this decomposition (a/d = 0.5, at the resonance frequency fr = 2.47 Hz) are shown in
Fig. 6 and Fig. 7 for type-I and II configurations, respectively.

For both types of configurations (Figs. 6-7), the linear mode h1(x, y, t) is depicted in
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(a)

(b)

(c)

Figure 6: Experimentally measured free-surface deformation fields decomposed in har-
monics of the driving frequency: Type I configuration for a/d = 0.5. (a) Zeroth order
contribution h0(x, y), (b) linear contribution h1(x, y, t) and (c) first harmonic component
h2(x, y, t) corresponding to a pulsating frequency of 2 ω. The position of the obstacle
within the waveguide is indicated by the black circle. The scale of the colorbar is in mm.

panel (b). The contribution of the antisymmetric trapped mode clearly appears when the
cylinder is near the entrance, overcoming the contribution of the symmetric mode at this
frequency. To the opposite, when the cylinder is farer in the waveguide, the field displays
mainly the propagative plane symmetric mode. This is because the antisymmetric mode
(evanescent) has lost in amplitude when it is trapped in the vicinity of the cylinder.

The panels (a) and (c) show the first two non linear fields h0(x, y, t) and h2(x, y, t) at
ω±ω. The zeroth order contribution, h0(x, y) shown in Fig. 6(a) corresponds to the local
steady deformation of the free surface,representing a distortion to the base flow.

The field h2(x, y, t) corresponds to oscillations of twice the pulsation frequency. In both
cases, the proximity of the cylinder to the entrance clearly amplifies the non linearities.
The symmetric field is not significantly different in the two configurations while the

73



14 P. J. Cobelli, V. Pagneux, A. Maurel and P. Petitjeans

(a)

(b)

(c)

Figure 7: Experimentally measured free-surface deformation fields decomposed in har-
monics of the driving frequency: Type II configuration for a/d = 0.5. (a) Zeroth order
contribution h0(x, y), (b) linear contribution h1(x, y, t) and (c) first harmonic component
h2(x, y, t) corresponding to a pulsating frequency of 2 ω. The position of the obstacle
within the waveguide is indicated by the black circle. The scale of the colorbar is in mm.

antisymmetric fields differ in both configuration by a factor close to 10. This is evidenced
in the Fig. 8. This suggests that the nonlinearities are due mainly to the antisymmetric
contribution. Incidentally, symmetric patterns are used to obtain a direct measurement
of the incident wavelength k (see Section 4.1).

3.3. Trapped mode pattern

Figs. 8(b) and 9(b) show the spatial pattern of a trapped mode for the case a/d = 0.5,
in type I and II geometrical configurations, respectively. In the following, we focus on
the configuration I. This is done in order to be placed in the linear regime, avoiding the
possible influence of nonlinearities on the linear contribution.

The same decomposition for the cases a/d = 0.4, 0.8 and 0.95 is shown in Figs. 10-11.
These figures exemplify the two trapped modes isolated in the antisymmetric part of the
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(a)

(b)

(c)

Figure 8: Linear part of the experimentally measured free-surface deformation: Type
I configuration for a/d = 0.5. Panel (a) shows the linear deformation field H1(x, y)
(same as in ). Panels (b) and (c) presents the symmetric and antisymmetric parts of the
linear mode H1(x, y), respectively. The position of the obstacle within the waveguide is
indicated by the black circle. The scale of the colorbar is in mm.

field. They are well localized in the neighbourhood of the cylinder and are either sym-
metric with respect to the Oy axis, as predicted by Callan et al. (1991), or antisymmetric
with respect to the Oy axis, as predicted in Evans & Porter (1999). This latter trapped
mode is expected to exist for a/d & 0.81, a fact that is experimentally confirmed in this
study.

In the forthcoming section (see Section 4.2) the comparison between the spatial struc-
ture of the experimentally determined ha

1(x, y, t) and the theoretical predictions will be
shown.
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(a)

(b)

(c)

Figure 9: Linear part of the experimentally measured free-surface deformation: Type
II configuration for a/d = 0.5. Panel (a) shows the linear deformation field H1(x, y)
(same as in ). Panels (b) and (c) presents the symmetric and antisymmetric parts of the
linear mode H1(x, y), respectively. The position of the obstacle within the waveguide is
indicated by the black circle. The scale of the colorbar is in mm.

4. Analysis of the experimental results and comparison with the
linear theory

In this section, we will only keep the linear contribution to the free-surface deforma-
tion, discarding higher-order harmonics. The purpose of this data filtering is two-folded.
On one hand, it serves to simplify both the analysis of data and the interpretation of
results. On the other, it allows us to compare our experimental results with the available
theoretical predictions arising from linear theories. Moreover, in light of the experimental
evidence on the preponderance of the linear contribution, which represents 80 % of the
total free-surface deformation, a description of the trapped mode resonance phenomena
in terms of a linear theory is indeed justified.
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(a)

(b)

(c)

(d)

Figure 10: Experimental patterns of the trapped modes and their associated symmetric
parts. Panels (a-b): Symmetric and antisymmetric fields of h1(x, y, t) for a/d = 0.4 and
kd = 1.46, (f = 2.50 Hz). Panels (c-d): Same representation for a/d = 0.80 and kd = 1.33
(f = 2.40 Hz). The position of the obstacle is indicated by the black circle. The scale of
the colorbar is in mm.
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(a)

(b)

Figure 11: Experimental patterns of a second kind of trapped modes and their associated
symmetric part. Panels (a-b): symmetric and antisymmetric fields of h1(x, y, t) for a/d =
0.95 and kd = 1.51 (f = 2.62 Hz). The position of the obstacle is indicated by the black
circle. The scale of the colorbar is in mm.

4.1. Dispersion relation

From the symmetric part of the field at the driving frequency (as shown in panels (b)
and (d) of Fig. 10 and in panel (b) of Fig. 11), we get a direct measurement of the
wavenumber k. Although there is only few wavelengths in the waveguide, a reasonable
estimate is possible by determining the periodicity of the quantity hs

1×h
s
1
∗ (.∗ denotes the

complex conjugate). Indeed, hs
1 is the sum of an incident wave eikx and of a reflected wave

e−ikx (reflection at the end of the waveguide). Thus, the quantity hs
1×h

s
1
∗ ∝ a+b cos 2kx

can be fitted. Fig. 12 shows the result for all values of the a/d ratio considered in this
study. The resulting values agree with the theoretical prediction given by

ω2 = gk tanh kh0, (4.1)

where g = 9.81 m.s−2 is the gravitational acceleration.
We expect the symmetric propagating mode to experience an attenuation, that is the

wavenumber is

K = k + iǫ(k), (4.2)

with k real and ǫ(k) being the attenuation due to dissipative mechanisms. Because of
the smallness of this attenuation, we have not been able to obtain it from a direct
measurement. In contrast, such a determination was made roughly indirectly (see Section
4.3.2).

4.2. Analysis of the spatial structure of the trapped mode

In this section, the detailed spatial structure of the measured surface-wave trapped mode
is compared to the theoretical predictions based on multipole expansions (Linton & McIver
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Figure 12: Dispersion relation. The point cloud gathers all experimental data points
obtained throughou the experiences. The theoretical dispersion relation given by eq. 4.1,
represented by the continuous line, is shown for comparison purposes.

2001). In this approach, the free surface deformation is represented by a sum of singular-
ities placed within any structures that are present. These singularities, called multipoles,
are constructed in such a way as to satisfy the field equation, the free-surface and bed
boundary conditions, and a radiation condition. A linear combination of these multipoles
is then considered and made to satisfy the appropriate body boundary condition. This
leads to an infinite system of linear algebraic equations for the unknown coefficients of the
multipole expansion which can be solved numerically by truncation. In addition, many
theoretical studies have shown (Callan et al. 1991) that the systems of equations that
result from using a multipole method possess good convergence characteristics and only
a few equations are needed in order to obtain an accurate numerical approximation.

For the case of a surface-piercing vertical circular cylinder placed symmetrically be-
tween the walls of an infinite waveguide, Callan et al. (1991) have shown that the trapped
mode solution can be written as

h(r, θ) =
∞
∑

n=0

an

[

k Y ′

2n+1(ka)
]

−1
ψ2n+1(r, θ), (4.3)

where ψ2n+1(r, θ) are a suitable set of multipoles defined by

ψ2n+1(r, θ) = Y2n+1(r, θ)(kr) sin (2n+ 1) θ +

∞
∑

m=0

AmnJ2n+1(kr) sin (2m+ 1) θ, (4.4)

and an are the expansion coefficients to be determined. In these expressions, the pair
(r, θ) denotes standard polar coordinates; Jν(·) and Yν(·) represent the Bessel functions
of the first and second kind, respectively, and the dash refers to the derivative with
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respect to the argument. In addition, Amn is given by

Amn = −
4

π
(−1)m+n

∫

∞

0

e−γd sinh (2n+ 1) v sinh (2m+ 1) v

cosh (γd)
dv

−
4

π

∫ π

0

tan (βd) cos (2n+ 1)u cos (2m+ 1)u du, (4.5)

where the auxiliary functions

β = k sinh v, (4.6)

γ = k cosu, (4.7)

have been defined to simplify the notation.
Application of the cylinder boundary condition leads to a homogeneous infinite Fredholm

system of equations of the second kind for the coefficients an in the form

am +

∞
∑

n=0

Bmn an = 0, (m = 0, 1, 2, . . .), (4.8)

where

Bmn = Amn
J ′

2m+1(ka)

Y ′

2n+1(ka)
. (4.9)

This system has a non-trivial solution (trapped mode) if and only if its infinite determi-
nant

∆∞ ≡ det (δmn +Bmn(ka, kd)) (4.10)

vanishes for some ka, kd, with 0 < ka < kd < π/2. It has been shown (see Callan et al.

1991, Appendix B and subsequent discussion) that the determinant ∆N associated to
the truncated system at order N converges uniformly to the determinant of the infinite
system ∆∞ as N tends to infinity, so that trapped modes can be obtained numerically
by solving the truncated system up to order N . However, it was found numerically
(Callan et al. 1991) that the value of N required to obtain a given accuracy was strongly
dependent on the value of the ratio a/d.

The numerical calculation scheme is as follows. For a given a/d ratio, we consider the
associated truncated homogeneous system of equations of order N (composed of N + 1
multipoles), i.e.,

am +

N
∑

n=0

Bmn(ka, kd) an = 0, (m = 0, 1, 2, . . . , N). (4.11)

The zero of its determinant, corresponding to the theoretical trapped mode wavenumber
kth, is found numerically using a standard library routine. For this particular wavenum-
ber, the expansion coefficients an are therefore determined by solving the truncated
system up to order N . Now N +1 multipoles are considered, and this scheme is repeated
iteratively until a convergence criteria is achieved for the determination of both the
trapped mode frequency kth and the expansion coefficients an. The integrals involved
in the calculation of Amn (given by eq. (4.5)) are evaluated numerically using a local
adaptive integration strategy. Potential contours and streamlines are also determined
numerically from these results.

A comparison between our experimental measurements and the theoretical predictions
of linear theory for three different obstacle sizes is shown in Fig. 13. The top panel
corresponds to a/d = 0.2, kd = 1.55. The theoretical contours depicted in this panel were
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Figure 13: Experimentally measured trapped modes’ spatial structure as compared to
the theoretical predictions from linear theory. Experimental measurements (continuous
lines) and theoretical predictions (dashed lines) for three a/d ratios at their respective
resonance frequency. Top: a/d = 0.2, kd = 1.55, center: a/d = 0.5, kd = 1.39, and
bottom: a/d = 0.9, kd = 1.33. Theoretical and experimental cases are normalized in this
case to facilitate the comparison.
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built using only 2 multipoles, which assures an error less than 5%. Shows a remarkable
agreement between theory and experiment.

The same comparison is presented in panel (b) for an intermediate case, namely a/d =
0.5, kd = 1.39. The theoretical contours to which our experimental data are compared
were built using a multipole expansion composed of N = 6 multipoles. The agreement
between theory and experimental data is very good in the region near the obstacle, and
slightly differs far from it. Another source of difference between the two can be found
at the walls, as the theoretical model does not take into account the presence of the
meniscus that is evidenced in the experimental case.

Finally, panel (c) shows a third case corresponding to a/d = 0.9, kd = 1.33. Theoretical
contours used for comparison in this case correspond to an expansion built using N = 9
multipoles. Even though the overall agreement is good, our results shows that, for the
largest aspect ratios considered, the multipole expansion method does not reproduce well
the trapped mode’s structure. This is presumably due to the fact that, in those cases,
other factors not considered in the theory (such as surface tension) play a non-negligible
role in determining the spatial shape of the trapped mode.

4.3. Resonance curves

4.3.1. Analysis of the far field: the scattering problem

The process of excitation of the trapped mode can be analysed as follows. Initially, an
antisymmetric wave of amplitude A is sent into the guide. As the associated wavenumber
iα is below the threshold for propagation (αd < π/2), the antisymmetric wave enters
the guide as an evanescent wave, its amplitude decaying exponentially with distance
from the waveguide’s entrance. However, the presence of an obstacle (placed at a finite
distance within the guide) introduces a change in the geometry, drastically affecting the
propagation conditions in its vicinity. In that region, even though its amplitude is weak,
the incident antisymmetric wave interacts with the obstacle.

This interaction gives rise to a reflection and a transmission of the incident evanescent
wave from the obstacle. At the waveguide’s exit there is also a reflection due to the
unmatched impedance. The long distance between the obstacle and the exit makes this
latter reflection negligible.

Because of the Neumann boundary condition on the waveguide’s walls, the anti-
symmetric field can be decomposed onto an infinity of transverse modes of the form
sin(2n + 1)πy/2d. Each one of these transverse modes is associated with an eigenvalue
αn. Again, as we are working below the cut-off frequency, all αn are real or, in other words,
all these modes are evanescent. Among these, the less evanescent mode corresponds to
n = 0.

To go further in our analysis, it is of interest to consider the field Ha
1 (x, y, t) as in a

one-dimensional problem by projecting the 2D field onto this dominant first transverse
mode. Assuming

Ha
1 (x, y, t) ∼ h(x, t) sin

πy

2d
, (4.12)

the one-dimensional field h(x, t) is

h(x, t) =
1

d

∫ d

−d

Ha
1 (x, y, t) sin

πy

2d
dy. (4.13)

Of course, this assumption is expected to hold only in the far field of the obstacle (see
Fig. 14). In the near field region, the higher transverse modes are expected to contribute
to the 2D solution. The typical behaviour of h(x, t) is illustrated on Fig. 14. For the sake
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Figure 14: Top: The problem reduces to a 1D problem along the x-axis, by projecting
the antisymmetric field onto the first transverse mode in sinπy/2d outside the near field
region. Bottom: Typical variation of h(x) along the x-axis: real part of log[h(x)] as a
function of x (a.u.) (the curve has been obtained for a/d = 0.4, kd = 1.47).

of simplicity, the far field can be decomposed into two regions. The first one shows, as
expected, the incident evanescent mode whose amplitude decays as it enters the guide
as well as its reflection due to the presence of the obstacle. On the other side, only
a transmitted mode is found, which decays rapidly away from the obstacle. It is worth
noting that in this case no reflection is observed from the waveguide’s exit, which confirms
our working hypothesis.

4.3.2. Shape of the resonance curves

In the following, we denote by (R, T ) the reflection and transmission coefficients of the
obstacle, respectively. These magnitudes are of interest as they completely characterize
the obstacle as an scatterer, independently of the incident amplitudes which may, exper-
imentally, vary with frequency. Finally, to simplify the notation, the time dependence of
h(x, t) in cos(ωt+ ϕ) is omitted, leading to a one-dimensional profile h(x):

h(x < −δ) = A e−αx + AR eαx, (4.14)

h(x > +δ) = AT e−αx, (4.15)

with A the amplitude of the incident wave, α stands for α1. Experimentally, the profile
h(x) have to be fitted in both regions I and II to get α and (R, T ). Two different strategies
are used in each region. In practice, we begin by adjusting the second region. Here, h(x)
is simply fitted by an exponential decay from which AT and α are calculated.

For region I, owing to the previous determination of α, only two parameters A and R
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are to be fitted. This process can be simplified employing the two combinations given by

2A =

(

h(x) −
h′(x)

α

)

eαx, (4.16)

2AR =

(

h(x) +
h′(x)

α

)

e−αx. (4.17)

Gathering the results from both zones, the parameters R, T and α are obtained for any
value of ω, the driving pulsation.

The uncertainty in the determination of the reflection–transmission pair (R, T ) in these
cases becomes significant, attaining values up to 30%, when the size of the intervals varies
because of the low signal-to-noise-ratio.

For a given obstacle of diameter 2a, a large range of driving frequencies was explored. In
every case, the reflection and transmission coefficients, as well as α, are fitted as described
below. These results led to the construction of the associated resonance curves.

Resonance curves obtained for several aspect ratios a/d considered in this study are
shown in Fig. 15(a)-(h). Each panel shows the absolute values of the reflection (plain
circles) and transmission (open circles) coefficients as a function of the non-dimensional
parameter kd. As can be seen, there’s a resonance visible in every curve (two resonances
for a/d = 0.85, 0.90, 0.95). Nevertheless, the error on these coefficients becomes dramat-
ically important with distance from the resonance. This is because the amplitudes far
from resonance are very weak, near the threshold for resolution of the measuring method
(about 0.1 mm). This is indeed illustrated in Fig. 16: at resonance (plain line), the signal’s
amplitude rests of the order of the millimeter over a large portion of the signal, allow-
ing for a precise adjustment of the data. In contrast, at 15 % away from the resonance
(dashed curve) the amplitude decreases ten times even before attaining the cylinder. This
leaves most of the data below the threshold for detection. The corresponding reflection
and transmission coefficients points have significant error bars but they have nevertheless
been added to the resonance curves to illustrate the fact that they never overcome the
values at resonance.

4.3.3. Numerical study of the resonance

An interesting feature is the marked asymmetry that is present in the resonance curves
around their peak values. This corresponds to a behaviour which cannot be adequately
described by means of the classical Breit-Wigner resonant shape. We have verified that
this is not an experimental artifact by computing these coefficients numerically. For that
purpose, we employed the PDEtools toolbox from MATLABTM(finite difference scheme).
We solve the Helmholtz equation (∇2 + k2)φ = 0 with Neumann boundary conditions
at the boundaries (walls and obstacle). The leading antisymmetric mode (with sinπy/2d
transverse dependance) is imposed at the entrance. Then the transmitted and reflected
wave are collected in the far field of the cylinder. This allows us to recover only the first
evanescent mode, as the others (generated in the near field of the cylinder) decrease more
rapidly with distance.

The asymmetry of the curves is recovered and follows the law given by:

T =
B

1 − C/αd
, (4.18)

where αd ≡
√

(π/2)2 − (kd)2. This relation was proposed by Granot (2002) for bound
states in weakly bent waveguides. This equation has to be understood in the neighbour-
hood of the resonance in the complex k-plane, which means that the parameters B and C
are only functions of the geometry. We have checked numerically that this is indeed the
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Figure 15: Resonance curves for several values of the aspect ratio a/d considered in
this study. Full circles: reflection coeffient R; open circles: transmission coefficient. The
continuous line represents the fit of the experimental data (see text for details).
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Figure 16: Comparison between two typical profiles of h(x) employed for the determina-
tion of the reflection and transmission coefficients leading to the resonance curves shown
in Fig. 15.

case employing different attenuation laws ℑ(k) in numeric calculations. The numerical
curves, undistinguishable from the fitted law (4.18), are shown in plain line in Fig. 15
for each of the aspect ratios explored. For constructing these curves, the attenuation law
must be known.

In the experiments a small attenuation is present that is modelised by a small imagi-
nary part of k. This attenuation can only be roughly evaluated because of a low signal
to noise ratio on the imaginary part of α even at resonance. The experimental measure-
ments of α given through the relation k =

√

(π/2d)2 − α2 an estimate of ℑ(k)d ∼ 0.03.
As shown in Fig. 15 a good agreement is observed between the experimental data and
theoretical prediction given by (4.18), for values of the attenuation coefficient consis-
tent with this estimation for the single-peak resonance curves Figs. 15(a-f). For these
curves the attenuation coefficient ℑ(k)d has been chosen within the range [0.027, 0.03]
for a/d > 0.3, whereas for smallest aspect ratios, ℑ(k)d ∼ 0.01 was observed to provide
better results. For the doubly-peaked resonance curves shown in Fig. 15(g-h), the second
resonance that is visible fact can be reproduced only assuming a significant decrease in
the attenuation of about a factor of ten. Fig. 17 shows the dependence of the parameters
B,C for both resonances as a function of the aspect ratio a/d. A simple fit for B gives
B = 1 + 1.35 (a/d)3.

4.3.4. Dependence on the geometry

In this section we consider the dependance of the resonant trapped mode frequency on
the obstacle’s size. Fig. 18 shows the resonant frequencies kcd for each of the aspect ratios
a/d studied. In the figure, open circles denote the experimental values corresponding to
the maxima of the resonance curves previously obtained. There are two branches: the first
(lower curve) correspond to trapped modes symmetric with respect to the Oy axis and
the second to trapped modes antisymmetric with respect to the Oy axis (upper curve).
The theoretical results are compared to the theoretical prediction by Callan et al. (1991)
for the first branch, and with the theoretical prediction of Evans & Porter (1999) for
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Figure 17: Parameters B,C of the transmission coeffient T in (4.18) at resonance as a
function of a/d. Open circles correspond to the first resonance, whereas full circles denote
the second resonance.
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Figure 18: Variation of the trapped mode frequency parameter kd with a/d, the ratio
of cylinder radius to channel half-width. The continuous line represents the theoretical
predictions by Callan et al. (1991) (for NS-type trapped modes) and Evans & Porter
(1999) (for NA-type trapped modes); dots summarize the experimental results obtained
in this study for the two types of trapped modes observed.

the second branch. Evans & Porter (1999) predicted that the resonances of the second
branch exist for a/d & 0.81. This prediction is confirmed here. An excellent agreement is
observed with the theoretical prediction for both branches.

4.3.5. From trapped to edge mode

The case of the totally obstructing cylinder a/d = 1 deserves closer inspection. In this
case, the trapped mode becomes an edge mode. It corresponds to the degeneracy of the
symmetric and antisymmetric trapped modes and thus to the intersection between the
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Figure 19: Edge mode experimentally observed for a/d = 1 and kd = 144. The position
of the obstacle is indicated by the black circle. The scale of the colorbar is in mm.

two branches of resonance in Fig. 18. Experimentally, the resonance frequency of the
edge mode is found at kd = 1.44. The corresponding pattern is shown in Fig. 19.

5. Summary and conclusions

In this study we have presented experimental evidence of the occurrence of trapped
modes around a vertical surface-piercing circular cylinder placed symmetrically between
the walls of a long but finite water waveguide. Using an optical profilometric technique,
we were able to measure the space-time evolution of the free-surface deformation within
the guide.

By decomposing the surface deformation in term of the harmonics of the driving fre-
quency, we were able to isolate the dominant linear contribution from the higher order
harmonics. Further separation of the free-surface deformation into symmetric and anti-
symmetric parts with respect to the centerplane of the channel led us to the recovery of
the detailed structure of the trapped mode.

The trapped mode spatial structure was determined for several aspect ratios a/d, and
two types of trapped modes were observed. In particular, only one trapped mode of
type NS was observed for each value of a/d explored within the frequency range (always
below the waveguide’s cutoff). A second trapped mode of type NA was observed for
a/d = 0.85, 0.90 and 0.95, consistent with the theoretical predictions.

The detailed spatial structure of the experimentally observed trapped mode was com-
pared to the predictions of a linear multipole expansion method, showing good overall
agreement for various a/d.

For every value of a/d explored, the eigenfrequencies of the trapped modes were de-
termined. To this end, one-dimensional reflection and transmission coefficients within
the guide were introduced, allowing for the construction of resonance curves. It is worth
noting that such a complete characterization of the scatterer system in terms of reflection
and transmission coefficients is rather rare in practice due to the difficulties associated
with their experimental determination. In these curves, the presence of a sharp peak
evidences the occurrence of a trapped mode. Only for the largest cylinders these curves
show two peaks, the second one corresponding to NA-type trapped modes.

Finally, all the results of the present study were summarized in a curve that shows
the dependance of the trapped mode (adimensional) wavenumber kcd on the aspect
ratio a/d. This curve is composed by two branches, corresponding to NS- and NA-type
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trapped modes. Comparison to theoretical predictions available within the frame of the
linear theory show excellent agreement for both branches.

Incidentally, the case for which the cylinder’s diameter coincides with the waveguide’s
width, namely a/d = 1, is of particular interest as no theoretical predictions are available.
In this case, the trapped mode becomes an edge mode, corresponding to the degeneracy
of the symmetric and antisymmetric trapped modes and thus to the intersection of the
two branches of resonance.

This work is supported by the ANR project ANR-08-BLAN-01108 Tourbillonde.
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5
WAVE TURBULENCE IN A VIBRATING PLATE

This chapter is composed by an article submitted to publication in Physical Review Letters [12]. It
concerns an experimental study regarding wave turbulence in a thin elastic plate subject to forced
vibration, carried out in the frame of a joint collaboration with the Laboratoire de Physique Statis-
tique de l’École Normale Supérieure.

Wave turbulence is a state of waves in non-linear interaction that has been observed for a large
variety of physical systems, including (but not limited to) ocean waves, Alfvèn waves in solar winds,
non-linear optics and superfluids. In a manner that is similar to the phenomenological theory of
hydrodynamic turbulence, weak turbulence theory for wave turbulence predicts a Kolmogorov-
Zakharov energy cascade. Moreover, this analytical theory assumes the persistence of the space-
time structure of the linear waves through the dispersion relation.

Very few experimental studies have taken place and available results show only partial agree-
ment with theory. Moreover, almost none of these experiments look beyond the analysis of single-
point measurements, leading to limited statistics in terms of one-point spectrums.

In this study we present the results of an experimental study of wave turbulence of bending
waves on a thin elastic plate subject to forced vibration. By using the optical profilometric tech-
nique developed during the course of this thesis (and described in detail in Chapters 2 and 3), the
deformation of the plate’s surface is measured simultanously in space and time.

The seed result of this chapter, from which all other results are drawn, is the determination of
the 3D wavevector-frequency Fourier spectrum E(k,ω) of the plate’s deformation velocity made
possible by fully resolved space-time measurement of the plate’s deformation. This constitutes, to
our knowledge, the first experimental observation of such a space-time spectrum in wave turbu-
lence.

Detailed analysis of the experimentally obtained 3D spectrum reveals the isotropy at large wave
numbers, whereas the anisotropic response associated to the forcing is apparent at low wave num-
bers. Such a behaviour is expected in the phenomenology of Kolmogorov’s energy cascade and is
evidenced in this study: after a few steps in the cascade, the anisotropy of the forcing is forgotten
down to the smallest scales at which the dissipation mechanisms are dominant.

Moreover, our results show that, in the 3D (k,ω) space, the energy of the motion is concen-
trated on a 2D surface that represents a non-linear dispersion relation, slightly deviated from its
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92 Chapter 5. Wave turbulence in a plate

linear counterpart for the bending waves in the plate. This is interpreted as strong evidence indi-
cating that our system is indeed weakly non-linear. This result leads us to conclude that the quan-
titative disagreement between one-point spectrum and the predictions of the weak turbulence
theory reported by Mordant [76], Boudaoud et al. [5] in previous studies cannot be attributed to
the existence of strongly non linear structures. Instead, we advance the hypothesis that the afore-
mentioned discrepancy could be due to a ‘leakage’ in the Kolmogorov-Zakharov cascade, i.e., the
presence of dissipative mechanisms operating at all scales.

Although some experiments directly measure the space spectrum, in most cases it is the mo-
tion at one given point as a function of time what is measured. In this latter case, only the time
spectrum E(ω) can be calculated, and in order to compare with theoretical results, the space spec-
trum E(k) is determined via the dispersion relation. In contrast, the global nature of our measuring
technique enables us to independently estimate both E(ω) and E(k). Moreover, such advantage al-
lows us to assess the validity of the ‘change of variables technique’ described above (through either
the linear or non-linear dispersion relation). In both cases, we are able to successfully reproduce
the inertial range, with a rather better agreement when employing the non-linear dispersion rela-
tion. Large time and length scales are well reproduced only when using the non-linear relation,
therefore validating the usual change of variables when the non linearities are weak.

Furthermore, the observed localization of the energy in the spectrum allows us to confirm the
premise of weak turbulence theory: the persistence of the space-time structure of waves. In addi-
tion, the study presented in the following chapter confirms and quantifies the weakly non-linear
behaviour of the waves comprising the turbulent cascade. Overcoming the discrepancies between
experiments and theory claimed previously, we show some agreement between experimental re-
sults and wave turbulence theory.

We anticipate that this experiment will allow for precise and quantitative comparisons with
theoretical investigations of wave turbulence of prime importance for the large number of turbu-
lent systems in which extensive measurements are out of reach.

Beyond the results that are valuable to the wave turbulence community, there is another aspect
to this study that is of significant importance in assessing the capabilities of our optical profilomet-
ric measuring technique.

In contrast to the surface waves considered in previous chapters, bending waves in a plate
propagate much faster. In experimental terms, this poses a rather strong restriction on the mea-
surement times, which should be short enough in order to assure that the surface under study
does not evolve significatively in the interval the measurement is performed. Moreover, prelim-
inary experiences showed that the amplitude of the driving vibration must be kept small for the
plate dynamics to remain within the linear regime, otherwise it would rapidly become fully non-
linear. Successfully dealing with this limitation depends on the sensibility of the measuring sys-
tem: it should be capable of detecting such low-amplitude vibrations (of the order of 0.5 mm in
the present case). An additional experimental difficulty arises from the consideration of the wave-
length range physically significative for this problem. The energy cascade’s inertial range corre-
sponds roughly to wavelengths between 5 and 20 cm, therefore requiring the use of an observation
window of at least 402 cm2 so as to capture a minimum of two wavelengths of the largest waves in
the plate.

From these remarks it becomes evident that obtaining space-time resolved measurements of
the waves’ propagation and mutual interaction in the plate represents a true challenge to any ex-
perimental technique. However, by careful selection and precise tunning of the measurement sys-
tem’s parameters (such as the relative positioning of the projection–recording system, the size of
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the projection and observation windows and the spatial frequency of the projected pattern) we
were able to obtain the fully space-time resolved measurements that constitute the keystone of
this study.

In this measurement campaign, the system’s setup employed allowed us to obtain several series
of measurements over large areas on the plate’s surface (between 602 and 702 cm2), using high
spatial resolutions (8002–10002 px2) and at considerably high acquisition rates (1300–2600 fps).

These measurements, and the results derived from them, effectively illustrate the capabilities
of our optical profilometric technique, showing both its versatility for the application to systems
other than water waves and its adaptability to more experimentally demanding scenarios.
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Wave turbulence in a thin elastic plate is experimentally investigated. By using a Fourier trans-
form profilometry technique, the deformation field of the plate surface is measured simultaneously
in time and space. This enables us to compute the wavevector-frequency Fourier (k, ω) spectrum of
the full space-time deformation velocity. In the 3D (k, ω) space, we show that the energy of the mo-
tion is concentrated on a 2D surface that represents a nonlinear dispersion relation. This nonlinear
dispersion relation is close to the linear dispersion relation. This validates the usual wavenumber-
frequency change of variables used in many experimental studies of wave turbulence. The deviation
from the linear dispersion, which increases with the input power of the forcing, is attributed to weak
non linear effects. Our technique opens the way for many new extensive quantitative comparisons
between theory and experiments of wave turbulence.
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Wave turbulence is a state of waves in non-linear inter-
action as observed for a large variety of systems includ-
ing Alfven waves in solar winds [1, 2], ocean waves [3],
non linear optics [4] and superfluids [5]. Similarly to
the phenomenological theory of hydrodynamic turbu-
lence, the so-called weak turbulence (WT) theory for
wave turbulence predicts a Kolmogorov-Zakharov energy
cascade [6]. This analytical weak turbulence theory as-
sumes the persistence of the space-time structure of the
linear waves through the dispersion relation. Very few
experimental studies have taken place and results show
only partial agreement with theory [7–10]. Furthermore,
almost none of these experiments look beyond the analy-
sis of measurement at a single point. Here we report the
analysis of the turbulence of bending waves on a shaken,
thin elastic plate, a phenomenon used in theatres to sim-
ulate the sound of thunder. We are able to measure the
fully resolved space-time dynamics of the deformation of
the plate and we show that the energy is localized on
a line in the wavenumber-frequency plane of the Fourier
spectrum. This confirms the persistence of the space-
time structure of waves which is the premise of weak tur-
bulence theory. In addition, our system displays the phe-
nomenology described by the theory and yet some of its
predictions are not quantitatively fulfilled: the non-linear
shift to the dispersion relation and the power spectrum
do not obey the predicted scaling laws.

The theory of WT relies on the assumption of weak
non linearity of waves. The latter induces a scale sepa-
ration in the time evolution of the wave amplitude com-

pared to the wave period and it provides a natural clo-
sure of the hierarchy of cumulants derived from the wave
equation [6, 11]. In contrast, no such closure can be
exhibited for hydrodynamic turbulence. In particular,
the WT theory of wave turbulence leads to a kinetic
equation for the evolution of the energy spectrum of the
waves. Stationary solutions are exhibited which corre-
sponds to the Rayleigh-Jeans spectrum for systems in
equilibrium and the Kolmogorov-Zakharov energy cas-
cade for non-equilibrium systems. This prediction of the
power spectrum density of the wave amplitude has been
derived in many cases such as non linear optics, super-
fluids, gravity-capillary water waves, sound waves, Alfven
waves, plasmas, oceanography, semiconductor lasers and
bending waves in elastic plates [6, 11, 12]. There are a
paucity of experiments specifically designed for wave tur-
bulence and of those, most concern surface waves on liq-
uids [7, 8]. Our wave system consists of a thin steel plate
on which elastic bending waves are excited by an electro-
magnetic vibrator. The dynamics of the plate follow the
Föppl-Von Karman equations for the deformation:

ρ
∂2ζ

∂t2
= −

Eh2

12(1 − σ2)
∆2ζ + {ζ, χ} (1)

1

E
∆2χ = −

1

2
{ζ, ζ} (2)

where ρ is the density, ζ the plate deformation, E the
Young’s modulus, σ the Poisson ratio, ∆ the Laplacian
operator, χ the stress function and {., .} is a bilinear
differential operator [12]. Linearizing the first equation
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in (1) provides the linear dispersion relation

ωk =

√

Eh2

12ρ(1 − σ2)
k2 . (3)

The non linear term in (1) is due to the stretching of
the plate and it is cubic in the wave amplitude. The
WT theory has recently been applied to this case [12]
and predicts a space Fourier spectrum of the amplitude
of the waves

Eζ(k) = C
P 1/3

(12(1 − σ2))1/6

ln1/3(k⋆/k)
√

E/ρ k3
(4)

where P is the average power input in the system from
the applied forcing, C is a number and k⋆ is a cut-off
frequency. The one-point spectrum of the waves has been
investigated experimentally [9, 10] and has been shown
not to obey the WT prediction in particular in its scaling
in P :

E(k) ∝
P 0.7

k4
(5)

Nevertheless, it displays a turbulent-like behaviour ,
i.e. a broadband spectrum, and the question is raised
whether or not the disagreement with the theory is due
to strongly non linear structures, to boundary condition
effects or to some dissipative mechanism.

A sketch of the experimental setup is shown in fig. 1(a).
The plate is made of stainless steel and its size is 2 m by
1 m and 0.4 mm thick. Its is bolted on a I beam by
one short end and is hanging under its own weight. An
electromagnetic vibrator is anchored 40 cm from the bot-
tom of the plate and excites the waves at 30 Hz with a
varying amplitude. The vibrator is fitted with a FGP
sensors force probe and Brüel & Kjaer accelerometer to
measure the input power P . A Fourier transform pro-
filometry technique [13, 14] gives access to the temporal
evolution of the deformation of the plate measured over
a significant portion of its area. The principle is the fol-
lowing: a sine intensity pattern I(x, y) ∝ sin(2πy/p) is
projected on the surface of the plate by a videoprojec-
tor. The pattern is then recorded by a Phantom v9 high
speed camera. The deformation of the plate induces a
phase shift of the pattern recorded by the camera. The
deformation of the plate is recovered by a 2D phase de-
modulation of each image in the movie [13, 14]. Movies
are recorded either with 10002 (resp. 8002) pixels at 1300
(resp. 2600) frames per seconds (fps). The configuration
and the processing is similar to that of Cobelli et al. [13]
with a distance of L = 193 cm from the projector to the
plate and a distance of D = 35 cm between the opti-
cal axes. The normal velocity of the plate is obtained
by differentiating the deformation movie in time. The
field of view is about 712 cm2 at 1300 fps and 622 cm2

at 2600 fps. The spectra are calculated by performing

(a)

(b)

FIG. 1: (a) Sketch of the wave turbulence experiment. The
specifically designed 2D mechanical system is made of a
2 × 1 m2, 0.4 mm thick stainless steel plate held vertically
and set in motion by an electromagnetic vibrator at 30 Hz.
The Fourier Transform profilometry is based on the projection
of a sine intensity pattern by a high definition video projec-
tor. The deformed image is then recorded by a high speed
camera (1300 or 2600 fps). (b) Example of measurement of
the deformation velocity on a 63 cm by 62 cm area.

a multidimensional Fourier transform without applying
any windowing to preserve the localization of the energy
in the Fourier space. An example of the normal velocity
of the plate is displayed in fig. 1.

The full space-time Fourier spectrum (shown in fig.
2(a)) of the deformation E(k, ω) (a function of both the
wave vector k and the frequency ω) is constructed from
the movie of the deformation velocity. The striking fea-
ture is the localization of the energy in the vicinity of a
surface showing that the motion is a non linear superpo-
sition of waves following a dispersion relation ω = f(k),
close to the linear dispersion relation. This is the first
experimental observation of such a space-time spectrum
in wave turbulence. In addition to the full space-time
spectrum, we can analyse the space spectrum E(k), as
displayed in fig. 2(b). The isocontours for large wave
numbers are circles, revealing the isotropy of the spec-
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FIG. 2: (a) Space-time spectrum E(k, ω) of the deformation
velocity (colors are log scaled). The cuts are located at kx = 0,
ky = 0 and ω = 5000 rad/s. The energy is localized on a
surface in the (k, ω) space which confirms that the turbulent
motion is due to a non linear superposition of waves following
a dispersion relation. (b) Spectrum E(k, ω) obtained from
E(k, ω) by integrating over the direction of k. Insert: space
spectrum E(k) computed from E(k, ω) by summing over the
frequencies. Contours are log scaled in both plots.

trum in this regime. The anisotropic response to the
forcing is visible at low wave numbers. This behaviour is
expected in the phenomenology of the Kolmogorov cas-
cade of energy and is evidenced here: After a few steps
in the cascade, the anisotropy of the forcing is forgotten
down to the small scales at which the dissipation is dom-
inant. Owing to the isotropy of the spectrum, in fig. 2(b)
we show the spectrum E(k = ‖k‖, ω) obtained by inte-
grating E(k, ω) over all the directions of the wave vector.
The localisation of the energy appears as a line in the
(k, ω) plane. The width of this line is close to the inverse
of the image size, which indicates that the localization of
the energy in our measurement is actually limited by the
resolution of the Fourier transform due to the finite size
of the plate. At low frequency, the injection of energy

corresponds to a peak on the energy line: even though
the forcing is localized in space, its monochromatic na-
ture (at 188 rad/s) makes it local in the (k, ω) plane. The
forcing operates effectively at low frequency and at low
wavenumber as is expected in the phenomenology of the
Kolmogorov-Zakharov cascade.
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FIG. 3: Non linear dispersion relation ω(k) computed from
the line of maximum energy in the space-time spectrum of
the plate deformation velocity for various input power P of
the forcing (from bottom to top P 1/2 = 1, 2, 3, 4 in arbitrary
units). The dashed line is the linear dispersion relation (3). A
systematic shift is observed which increases with the forcing
power. The top insert shows the deviation from the linear
dispersion. At high wave numbers, the shift is seen to be in-
dependent of k. The bottom insert shows the shift normalized
by P 1/2.

The concentrated line of energy in the spectrum
E(k, ω) allows the dispersion relation to be computed;
it is extracted by computing the position of the crest of
the energy line at each frequency and is displayed in fig. 3
for various values of the forcing P . The dispersion rela-
tion remains close to the linear dispersion relation with a
small but systematic shift. This provides strong evidence
that our system is indeed weakly non linear. Thus, the
quantitative disagreement between the one point spec-
trum and the WT theory prediction [9, 10] cannot be at-
tributed to the existence of strongly non linear structures.
Instead, the disagreement is proposed to be attributed
to the dissipative mechanisms which are believed to ex-
ist at all scales rather than being present at only small
scales; hence the Kolmogorov-Zakharov cascade is “leak-
ing” [15].

Figure 3 allows us to quantify the departure of the ob-
served dispersion relation from the linear one. Notably, it
is shown that the correction increases with the power in-
put P with a behaviour close to P 1/2 behaviour. It is also
observed to be constant at high wavenumbers so that the
various dispersion relations are parallel to one another.
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This behaviour is of particular interest when compared
with the WT prediction. Indeed, it is expected that the
departure of the dispersion relation from the linear one
has a power law scaling in P which is identical to the
scaling for the energy spectrum [16]. Our experimen-
tal measurements confirm this prediction: the exponent
close to 1/2 in P is common to both departure from lin-
earity in the dispersion relation and also to the energy
spectrum.
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FIG. 4: Test of the validity of the change of variable k ↔ ω
using the dispersion relation. Solid blue line: direct mea-
surement of the time spectrum E(ω) – solid red (resp black
dashed) line: E(ω) computed from the space spectrum E(k)
using the nonlinear (resp. linear) dispersion relation to change
variable. Insert: same for the space spectrum E(k). Solid blue
line: direct estimation of E(k) – red (resp black dashed) line:
E(k) computed from E(ω) by the change of variable using the
nonlinear (resp. linear) dispersion relation.

The application of the WT turbulence theory is often
restricted to the prediction of the Kolmogorov-Zakharov
space spectrum E(k). Although some experiments di-
rectly measure the space spectrum [17, 18], it is often
easier to measure the motion at one given point as a
function of time. In that case, only the time spectrum
E(ω) can be estimated. To compare with the theory, the
space spectrum is determined by using the dispersion re-
lation to obtain E(k) from E(ω) [7, 8, 19]. This approach
was used to deduce the law in Eq. (5) [9, 10]. We can in-
dependently estimate both E(ω) and E(k) directly. We
can assess the validity of the change of variables tech-
nique above (via the linear or non linear dispersion rela-
tion). The comparison of the various cases is shown in
fig. 4. Both dispersion relations allow us to reproduce
the inertial range, with a better agreement shown when
using the non linear relation. The large time or length
scales are well reproduced only when using the non lin-
ear dispersion relation. This validates the usual change
of variables when the non linearity is weak.

Our experimental approach of wave turbulence reveals
the main features of the weakly coupled waves that can
be usefully compared with weak turbulence theory. Un-
til now, only the spectrum E(k) has been compared with
theoretical prediction. However, WT theory can go far
beyond spectra predictions: it gives quantitative predic-
tions for multipoint statistics. Our present study con-
firms and quantifies the weakly nonlinear behaviour of
the waves comprising the turbulent cascade. It confirms
that the scaling law in the supplied power P is the same
for the departure from the linear dispersion relation and
also for the energy spectrum. Overcoming the discrep-
ancy between experiments and theory claimed previously,
we have shown some agreement between experimental re-
sults and WT theory. We anticipate that this experiment
will allow precise and quantitative comparisons with the-
oretical investigations of wave turbulence [6, 20, 21] of
prime importance for the large number of turbulent sys-
tems in which extensive measurements are out of reach.
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6
CONCLUSIONS AND PERSPECTIVES

6.1 Summary and conclusions

This thesis presents a contribution to the understanding of water waves phenomena, introducing
a number of results of interest in current research. It is mainly concerned with the experimental
study of wave interaction through the measurement of the free surface deformation both in space
and time.

The first important result arising from this work is the development of a versatile experimental
technique that allows for high-resolution single-shot global measurement and time-tracking of
free surface deformations; overcoming a need which, at the time, appeared as a serious obstacle
imparing further development in this field. This optical profilometric technique is based on the
principle of fringe projection profilometry. A fringe projection pattern of known spatial frequency
is projected onto the liquid’s free surface by means of a digital videoprojector and its image is
recorded by a camera. The topography of the surface introduces a frequency modulation in the
observed pattern, which is also modified by the perspective due to the relative positioning and
orientation of the projection–recording system. The deformed fringe pattern is later compared
to the undeformed (reference) one, leading to a phase map from which the free surface can be
reconstructed by means of a so-called ‘phase-to-height relation’ derived from the system setup
through geometrical optics.

Fringe projection profilometry has been sucessfully employed in the past for the topography of
solid surfaces in a variety of fields, such as 3D sensing systems, mechanical engineering, machine
vision, robotic control, industry monitoring and quality assessment and biomedicine. In this work
we developed the liquid surface extension of this technique, and we introduced several significant
improvements to the optical setup, as well as to the signal processing algorithms.

In order to be able to project images onto the liquid surface, its light difussivity is enhanced
by the addition of a white liquid dye. It is worth highlighting that, even though the use of dye
renders the liquid opaque, precluding the simultaneous use of introspective optical techniques
(such as Particle image Velocimetry and Laser Doppler Velocimetry), bulk measurements are still
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100 Chapter 6. Conclusions and perspectives

possible using acoustic techniques (such as Ultrasonic Doppler Velocimetry). A high-contrast &
high-resolution videoprojector is employed for the projection of fringes onto the surface, allowing
for the projection of wavelength-controlled sinusoidal-profile fringe patterns, increasing consid-
erably the overall performance of the technique and the quality of the reconstruction.

The system’s resolution (both in-plane and vertical) is given by the physical size of the projected
pixel onto the undeformed (reference) surface, a fact that was confirmed experimentally by testing
against an standard point laser displacement sensor.

Another characteristic of this technique lies in the fact that, besides the reference image, only
one image (that of the deformed fringe pattern) is needed to achieve a reconstruction of the asso-
ciated free surface. Through this single-shot feature, the technique poses, bit itself, no restrictions
on the time-tracking of the free-surface deformation (other than that arising from the exposure
time). Therefore, the obtention of time-resolved measurements of the surface’s evolution is only
limited by the capturing system’s acquisition rate.

Moreover, careful consideration of the profilometric reconstruction formulas commonly used
in the literature regarding FTP led us to realize an error in their derivation. This finding motivated
a theoretical and experimental study (described in Chapter 3) in which we were able to confirm
and provide experimental evidence for this error. More importantly, this study was the first to pro-
vide for both exact (within the approximation of geometrical optics) and experimentally validated
reconstruction formulas for the different geometries and configurations in which the system can
be used for the profilometry of the free surface (namely, parallel- and crossed-optical axes; colli-
mated and non-collimated projections). As a final remark, it is worth highlighting that the range
of applicability of these results extends well beyond the limits of FTP, to include all profilometric
methods based on fringe projection.

The development of this experimental technique represented a landmark for all the subse-
quent work carried out in the framework of this thesis. Preliminar applications of this technique to
fluid dynamics’ scenarios of interest in current research include the measurement of spiral waves
spontaneously emitted by a pinned vortex in fast rotation, and the study of the vortex–surface-
wave interaction. The results obtained in these case studies served also as an early illustration of
the large scope of applicability of this technique.

Next, we turned our attention to the study of trapped mode resonances in water waves, a prob-
lem of interest due to its large potential for technological applications, ranging from the design
of metamaterials to coastal engineering. In particular, we considered water wave trapped modes
occurring in the vicinity of a vertical surface-piercing cylinder placed symmetrically between the
parallel walls of a long but otherwise finite water waveguide of constant depth. In this configura-
tion, a significant number of values of the geometrical control parameter of the problem, namely
the aspect ratio between the obstacle’s diameter and waveguide’s width, were explored. Our optical
profilometric technique was used to obtain space-time resolved measurements of the free-surface
deformation within the waveguide excited by (forcing) incident waves. In the context of this study,
we have reached a number of novel results worth highlighting.

Firstly, the occurrence of trapped modes in this water wave scenario was experimentally ob-
served in the form of non-propagative oscillations of the free surface localized in the neighbour-
hood of the cylinder, antisymmetric with respect to the longitudinal axis of the waveguide. De-
composition of the surface deformation in harmonics of the driving frequency for every sampled
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point over the surface allowed for the separate analysis of the linear and non-linear components.
Comparison showed that the dynamics of the free surface is dominated by the linear contribution,
therefore validating the use of theoretical models based on linear water wave theory.

The pure trapped modes’ spatial structure was obtained from by the subsequent separation of
the linear deformation field in terms in terms of the natural symmetries of the problem. The spatial
structure of the trapped mode was studied in detail and successfully compared to the theoretical
predictions arising from a multipole expansion method.

From the analysis of the spatial structure of the trapped mode resonances we were able to iden-
tify two different types of trapped modes: either symmetric (termed NS-type trapped modes) or
antisymmetric (NA-type modes) with respect to an axis perpendicular to the waveguide walls and
passing through the obstacle’s center. Although never observed before, NA-type trapped modes
were numerically predicted to exist only for the largest aspect ratios; lower values being only asso-
ciated with a NS-type trapped mode. The range of values of the aspect ratio for which this second
type of trapped mode was observed in our experiences confirms those predictions.

The trapped modes’ eigenfrequencies were determined by treating the system as a scattering
problem in the far field. The introduction of one-dimensional reflection and transmission coef-
ficients allowed the construction of experimental resonance curves characterising the frequency
behaviour of the modes for every value of the aspect ratio considered. As a side note, it is worth
mentioning that this description of the system in terms of resonance curves amounts to the com-
plete characterization of the system as a scatterer, which is rather rare in practice due to the diffi-
culties associated with their experimental determination.

For a particular frequency, the occurrence of a trapped mode is evidenced in the resonance
curves by a peak in the reflection–transmission coefficients. Only one peak is observed in most res-
onance curves, associated with a NS-type trapped mode. For the largest aspect ratios considered,
the associated resonance curves showed the presence of two peaks, consistent with the additional
occurrence of a NA-type trapped mode. In any case, these curves present a marked asymmetry
around the peak values, which cannot be adequately described by the classical Breit-Wigner for-
mula. In order to reproduce this experimental behaviour, a model is proposed which takes account
of the proximity to the waveguide’s threshold for propagation and its influence on the frequency
dependence of the scattering data. This model enabled us to reproduce the asymmetry of the res-
onance curves and was successfully validated with the experimental results.

Finally, all the experimental results obtained during the course of this study are summarized
in the form of a master curve, depicting the dependence of the trapped mode frequency with the
aspect ratio. Two branches, corresponding to NS- and NA-type trapped modes, are present in
this curve. Comparison to theoretical predictions available (only) within the frame of the linear
theory showed excellent agreement for both branches. Incidentally, our study shows that, when the
cylinder’s diameter equals the waveguide’s width (a case for which no theoretical predictions are
available) the associated trapped mode becomes and edge mode, corresponding to the degeneracy
of the symmetric and antisymmetric trapped modes, i.e., to the intersection of the two branches
of resonance on the master curve.

As a closing remark, we would like to point out that the results obtained in the frame of this
study represent a significant advance in the understanding of trapped modes in water waves. It
constitutes, to our knowledge, the first experimental investigation to provide a complete charac-
terization of the trapped modes in frequency space, as well as to present a detailed analysis of their
spatial structure.
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The last experimental study carried out during the course of this thesis is concerned with wave
turbulence, a state of waves in non-linear interaction that has been observed in a large variety of
physical systems, including gravity-capillary water waves, ocean waves, superfluids, Alfvén waves
astrophysical plasmas, semiconductor lasers and non-linear optics.

As in the case of the phenomenological theory of hydrodynamical turbulence, weak turbulence
theory for wave turbulence predicts a Kolmogorov-Zakharov energy cascade. Moreover, this ana-
lytical theory assumes the persistence of the space-time structure of the linear waves through the
dispersion relation. Contrary to hydrodynamical turbulence (either 2D or 3D), however, only few
experimental studies exist of wave turbulence, and available results only show partial agreement
with theory. Moreover, the vast majority of these experiments are restricted to one- or two-point
measurements, leading to limited statistical descriptions. In particular, prior to the present study,
only the space energy spectrum has been compared with the theory. However, weak turbulence
theory goes well beyond spectral predictions, allowing quantitative determination of multi-point
statistics.

In the framework of this study, we focus on the analysis of turbulence of bending waves on a
shaken, thin elastic steel plate, a phenomenon commonly used in theatres to simulate the sound of
thunder. Our optical profilometric (described in Chapters 2 and 3)technique is used to measure the
plate’s surface deformation in space and time, overcoming the limitations of previous experimental
studies.

The most important result of this study is, without doubt, the experimental determination of
the 3D wavevector-frequency Fourier spectrum of the plate’s deformation velocity, made possible
by the fully resolved space-time measurements of the plate’s deformation provided by our profilo-
metric technique. This constitutes, to our knowledge, the first experimental observation of such a
space-time spectrum in wave turbulence. All other results of this study are drawn from the subse-
quent detailed analysis of this 3D spectrum.

As a first result from its analysis, and consistly with the phenomenology of Kolmogorov’s energy
cascade, the 3D spectrum reveals isotropy at large wave numbers, whereas anisotropy associated
to the forcing is only apparent at low wave numbers.

Furthermore, our results showed that, in the 3D wavenumber-frequency space, the energy of
the motion is concentrated in the vicinity of a 2D surface, confirming the persistence of the space-
time structure of waves. In addition, it was observed that such 2D surface represents a non-linear
dispersion relation slighlty deviated from its linear counterpart for bending waves in the plate.
This weak non-linearity led us to conclude that the quantitative disagreement between one-point
spectrums and the predictions of weak turbulence theory reported in previous studies could not be
attributed, as was proposed, to the presence non-linear structures. Instead, we propose a plausible
alternative explanation of the discrepancy by admitting the existence of dissipative mechanisms
operating at all scales.

It is worth mentioning, however, that although our system displays the phenomenology de-
scribed by the theory, some of its predictions are not quantitatively fulfilled and remain as open
questions to be addressed by subsequent studies. This is the case for the non-linear shift to the
dispersion relation and the power spectrum, which do not obey the predicted scaling laws.

Our experimental approach for wave turbulence successfully revealed the main features of the
weakly coupled waves that can be usefully compared with the predictions of weak turbulence the-
ory. This study confirmed and quantified the weakly non-linear behaviour of the waves comprising
the turbulent cascade. Moreover, our results confirmed that the scaling law in the supplied power
is the same for the departure from linearity and also for the energy spectrum. Overcoming the
discrepancy between experiments and theory claimed in previous studies, we have shown some
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agreement between experimental results and weak turbulence theory.

6.2 Perspectives

The development of the optical profilometric technique for the measurement of the free-surface
deformation presented in this thesis widens the horizon of potential experiences in water waves,
motivating the exploration of a variety of interesting surface phenomena in a manner that was
previously unavailable. Among these, we would like to point out four specific problems that are of
major relevance to current research.

The first of these experimental challenges consists in the study of the time reversal of water
waves using only a single element. Similarily to the experiments performed by Draeger and Fink
[20] in silicon wafers, we propose the water wave analogue by considering a chaotic surface-wave
cavity with negligible absorption. Using our profilometric technique, the deformation of the free
surface within the cavity could effectively be measured and, the time-reversed signal, now avail-
able at any sampled point over the surface, could be reinjected at the same position.

The impact of drops onto thin liquid films constitutes another physical system of interest. In
this case, we are interested in the bowl-shaped thin crown that is formed inmediately after the
impact. This crown subsequently expands outwards and finally breaks. Although our technique
would not be capable of reproducing the splasing phase, it could indeed prove to be very useful in
the characterization of the expansion stage. The first step towards the characterization of this ex-
pansion would therefore involve an experimental determination of the crown’s spreading velocity.

Stimulated by the promising results obtained on the emission of spiral waves a pinned vortex in
fast rotation (shown in Chapter 2), we propose to perform a more detailed characterization of this
phenomenon. Such an experimental investigation could also be complemented with the study of
the interaction of the vortex core with short surface wave trains.

The last problem proposed for future consideration is motivated by the study on wave turbu-
lence described in Chapter 5. In this case, the objective consists in studying the transition between
the monochromatic plane surface-wave regime and Kolmogorov’s turbulent state [52], character-
ized by, among other features, a continuous spectrum. With the ability to perform space-time
measurements of the surface deformation, it could be indeed possible to observe the enrichment
of the spectrum and, hopefully, the emergence of the continuous part. Experimentally, such en-
richment could be easily achieved by progressively increasing the amplitude of the waves, or by
the addition of obstacles and other sources inside the wave tank.
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OTHER EXPERIMENTAL STUDIES

CONDUCTED DURING THE COURSE OF THIS THESIS

This section presents briefly preliminary results of two additional experimental studies carried out
during the course of this thesis. The first one concerns the time reversal of water waves, whereas
the second comprises the study of drop impacts onto thin liquid films.

A.1 Time reversal of water waves

The preliminar results on the experimental study on time reversal of water waves presented in this
section was carried out during the last months of this thesis, with Romain Denèfle in the frame of
his Projet de 3ème année de l’ESPCI on water waves, which I have co-directed.

The experimental setup consists of a water-wave cavity in the form of an irregularily shaped
container of plastic deformable walls filled with water up to a height of 5 cm. A linear motor drives a
rod whose pointy tip is used to tap on the external side of one of the container’s walls, thus creating
a perturbation over the free surface. Fig. A.1(left panel) shows a photograph of the experimental
setup, illustrating the container shape. For reference, its size is approximately 10×10 cm2.

In the framework of these experiments, the perturbation transmitted by rod was chosen to be
a harmonic oscillation convoluted by a Hanning window, as shown in Fig. A.2. The associated free
surface deformation is measured in space and time by means of our optical profilometric tech-
nique, using a Phantom V9 camera employed at an acquisition rate of 200 fps at full resolution
(1200×1600 px2), leading to a resolution in the reconstruction of about 0.1 mm. The evolution of
the surface was registered for a period of over 10 s.

Fig. A.1(right panel) shows an example of a typical experimental measurement of the free sur-
face deformation field inside the cavity, corresponding to early stages in the injection of the pulse.
The reconstruction shows clearly the excitation of a cylindrical surface wave (peak amplitude 2 mm),
originated at the position of injection.

Next, a sampled point over the surface is selected and its amplitude signal is time-reversed
and used as forcing at that point over the surface in a subsequent measurement. The aim of such
a procedure is to observe an spatial reconstruction of the original perturbation. To that end, we
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Figure A.1: Experimental results from a preliminar study on time reversal of water waves. Left
panel: top view of the plastic container of plastic deformable walls filled with water. At the left bor-
der of the image, the rod used to inject a pulsed perturbation can be seen. Incidentally, the fringe
pattern employed by our profilometric measuring technique is recognizable. Right panel: example
of an experimental measurement of the free surface deformation field inside the container, corre-
sponding to early stages in the injection of the pulse. The excitation of a cylindrical surface wave
originated at the position of injection is clearly evidenced.

Figure A.2: Source pulse employed to excite surface waves inside our cavity.

choose an observation point inside the cavity near the point of injection of the original pulse.
The resulting curve, shown in Fig.A.3 corresponding to the measurements by our measuring

technique at that point (in blue in the figure) reproduces well the local surface deformation result-
ing from the source pulse (shown in red). Indeed, a comparison of both curves shows that the key
features of the original deformation are well reconstructed after time-inversion, yet the duration of
the reconstructed pulse seems slightly longer. Whether this is due to the dispersive nature of water
waves or not remains an open question that would need to be addressed in subsequent studies.
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Figure A.3: Time-reversed pulse experimentally observed in water waves. In blue, we show the de-
formation of the free surface at the original injection point (near the wall) corresponding to rein-
jection of the original pulse. In red, the original free surface deformation observed at the injection
point during the injection of the (original) pulse. [Both curves are represented in arbitrary units to
facilitate comparison.]

A.2 Drop impact onto thin liquid films

In parallel to the experimental studies that constitute the main body of this thesis, we have also
obtained promising preliminary results in the study of the drop impact onto thin liquid films.

The experimental protocol is as follows. A drop of about 2.5 mm in diameter is slowly released
from a syringe and falls freely into a container holding a thin (∼10 mm) layer of the same fluid at
rest. The distance between the position of the syringe mouth and the free surface at rest is of ap-
proximately 50 cm. The time-evolution of the free-surface deformation is measured by our optical
profilometric technique by the use of a Phantom V9 high-speed camera employed at an acquisition
rate of 1000 fps at full resolution (1200×1600 px2). One of the most important results of these pre-
liminar tests was the observation that, although the measurement of the free surface shape is not
be possible during the initial instants due to the abrupt splashing of the drop, subsequent stages
are indeed well reconstructed.

Fig. A.4 depicts an example of the typical experimental results obtained in the frame of this
study, corresponding to the space-time evolution of the free surface after the drop’s impact. The
figure is composed by a sequence of 10 selected snapshots equally spaced in time (from a total of
over 2000 obtained for this particular impact) following the evolution of the surface deformation.
In this series of snapshots, time evolves columnwise from top to bottom and from left to right. For
reference, the liquid surface shown in these figures, which is just a portion of the total registered
field, is sampled at a resolution of 800×1000 px2.

Following the initial impact, a jet is observed in the first snapshot as well as a small circular
crown surrounding it. In the following snapshots, the jet sunk into the layer and in its previous
position we find a depression. However, the crown continues to grow and expand, as its lip devel-
ops a number of peaks. During this experiments, we have come to observe, to our surprise, that
this arrangement in the form of peaks around the central dip is quite reproductible, as well as its
discrete symmetry. During the subsequent instants the crown decreses in height as it continues
to expand laterally. A new jet, emerging from its center is observed again. The last five snapshots
show the evolution of the jet as it decreases gradually. Towards the end of the sequence, the surface
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deformation is mainly dominated by the cylindrical surface waves generated by the impact.

The preliminary results presented in this section show that an experimental study of drop im-
pacts onto liquid films can be successfully carried out by means of our optical profilometric tech-
nique. Furthermore, we anticipate that these experiments will allow precise and quantitative com-
parisons with theoretical investigations, providing also a firm ground for the validation of numer-
ical models.
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Figure A.4: Experimental measurements of a drop impact onto a thin liquid film of the same fluid.
In this series of snapshots, time evolves columnwise from top to bottom and from left to right. The
liquid surface shown in these figures is sampled at a resolution of 800×1000 px2, using a high speed
camera. [See text for further details.]
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