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Abstract

Since the 1990’s, Zeilberger’s method of creative telescoping has played an important role

in the automatic verification of special-function identities. The long-term goal initiated in this

work is to obtain fast algorithms and implementations for definite integration and summation in

the framework of this method. Our contributions include new practical algorithms, complexity

analyses of algorithms, and theoretical criteria for the termination of existing algorithms.

On the practical side, we present a new algorithm for computing minimal telescopers for

bivariate rational functions. This algorithm is based on Hermite reduction. We also improve

the classical Almkvist and Zeilberger’s algorithm for rational-function inputs. The Hermite-

reduction based algorithm and improved Almkvist and Zeilberger’s algorithm are analyzed in

terms of field operations. Both complexity analysis and experimental results show that our

algorithms are superior to other known ones for rational-function inputs.

On the theoretic side, we present a structure theorem for multivariate hyperexponential-

hypergeometric functions. This theorem is based on (multivariate) Christopher’s theorem for

hyperexponential functions, the Ore-Sato theorem for hypergeometric terms, and our generaliza-

tion of a recent result by Feng, Singer, and Wu on compatible bivariate continuous-discrete ratio-

nal functions. The structure theorem allows us to decompose a hyperexponential-hypergeometric

function as a product of a rational function, several exponential and power functions, and fac-

torial terms. Furthermore, we derive two criteria for the existence of telescopers for bivariate

hyperexponential-hypergeometric functions: one is with respect to the continuous variable, and

the other with respect to the discrete one. The two criteria solve the termination problem of the

continuous-discrete analogue of Zeilberger’s algorithms.
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Chapter 1

Introduction

As most special-function integrals and sums cannot be expressed in closed form, their evalua-

tion cannot be based on table look-ups only. Even when closed forms are available, they may

prove to be intractable in further manipulations. In both cases, the difficulty can be mitigated

by representing functions by annihilating differential and difference operators. This motivated

Zeilberger to introduce a method now known as creative telescoping [95], which applies to a large

class of special functions. Zeilberger’s method has been used extensively in the automatic proofs

of special-function identities.

Let us illustrate the basic idea of Zeilberger’s method by proving the identity

+∞∑

n=0

f(x, n) =
1√

1 − 4x
, where f(x, n) =

(
2n

n

)
xn and x ∈ [0, 1/4). (1.1)

Let Dx and ∆n denote the derivation with respect to x, and the difference operator with respect

to n, respectively. The first step is to find a differential equation satisfied by the sum on the

left-hand side of (1.1). To this end, we try to find a nonzero operator L ∈ Q(x)〈Dx〉 such that

L(x,Dx)(f) = ∆n(g), (1.2)

where g is a function in x and n. Moreover, the method requires that the ratio between g and f is

a rational function. For this specific example, we have

L = 2 − (1 − 4x)Dx and g =
n

x
· f = nxn−1

(
2n

n

)
.
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Note that taking sums with respect to n commutes with the application of L(x,Dx) and, addi-

tionally, that
+∞∑

n=0

∆n(g) = 0.

This implies that the sum on the left-hand side of (1.1) satisfies

2y(x) − (1 − 4x)
dy(x)

dx
= 0.

It is easy to verify that the function on the right-hand side of (1.1) also satisfies the above

differential equation. Moreover, the identity holds when x = 0. By Cauchy’s theorem, the

identity (1.1) holds for all well-defined values x ∈ [0, 1/4). The operator L in (1.2) is called a

telescoper for f with respect to n, and g the certificate of L for f .

This thesis focuses on the bivariate case, in which there are four kinds of telescoping problems

related to different integration and summation problems.

∫
/
∑

problems Telescoping equations

(P1)
∫ b

a
f(x, y) dy L(x,Dx)(f) = Dy(g)

(P2)
∫ b

a
f(n, y) dy L(n, Sn)(f) = Dy(g)

(P3)
∑b

m=a f(m,x) L(x,Dx)(f) = ∆m(g)

(P4)
∑b

m=a f(n,m) L(n, Sn)(f) = ∆m(g)

Table 1.1: Four telescoping problems

1.1 Motivation

Since the 1990’s, Zeilberger’s method has been extensively studied in the literature [95, 96, 15,

92, 63, 6, 7, 65, 28, 16]. The main focus of those studies is on the efficiency and termination of

creative-telescoping algorithms.

Related to efficiency, progress and improvements have since been made by Abramov [7],

Apagodu [16], Chyzak [35, 33], Le [63, 46, 65], Takayama [85], etc. However, very little is known

about the complexity of creative-telescoping algorithms. We believe that complexity analysis

helps us understand algorithms, and indicates good ways of improving and implementing them.
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This is one of the motivations for Chapter 3. The existing algorithms bind the construction of

telescopers with certificates. In certain applications, only telescopers are needed. For bivariate

rational-function inputs, our complexity analysis shows that the arithmetic size of certificates

is asymptotically larger than that of telescopers. So the complexity could be lower if one can

avoid the calculations for certificates in certain applications. This motivates us to find a way

in which one could choose to compute or not to compute the certificates according to the user

requirements.

By the functionality of Zeilberger-style algorithms, their termination is equivalent to the ex-

istence of telescopers. In his pioneering work [95], Zeilberger has proved that telescopers exist

for holonomic functions. In particular, Wilf and Zeilberger [92] have presented an elementary

and constructive proof of the existence of telescopers for proper hyperexponential-hypergeometric

functions by basing on ideas of Fasenmyer [40] and Verbaeten [89]. By a proper hyperexponential-

hypergeometric function, we mean a function that can be written as a product of a polynomial,

exponential functions, power functions, and factorial terms. Properness can be detected from the

certificates of a hyperexponential-hypergeometric function. Moreover, Wilf and Zeilberger con-

jectured in [92, page 585] that a hyperexponential-hypergeometric function is holonomic if and

only if it is proper. If this conjecture were verified, then one could algorithmically detect the holo-

nomicity of hyperexponential-hypergeometric functions. In the case of several discrete variables,

a slightly modified version of the conjecture has been proved independently by Payne in his Ph.D.

thesis [73] and by Abramov and Petkovšek [14]. In particular, the case of two variables has also

been shown by Hou [54, 55] and by Abramov and Petkovšek [12]. However, holonomicity is only a

sufficient condition for the existence of telescopers. In fact, Chyzak, Kauers, and Salvy [34] have

listed certain classes of functions that are not holonomic but still have telescopers. Therefore,

the challenge is to find theoretical criteria that enable us to algorithmically detect the existence

of telescopers.

In view of the theoretical difficulty, special attention has been focused mainly on the sub-

class of hyperexponential-hypergeometric functions. In the continuous case, the works by Bern-

stein [17] and Lipshitz [67] show that every hyperexponential function has a telescoper. This

implies that Zeilberger’s algorithm always succeeds on those inputs. However, the situation in

other cases turns out to be more involved. In the discrete case and its q-analogue, the first com-
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plete solution to the termination problem is Abramov and Le’s criterion [64, 9], which decides

whether telescopers exist for a given bivariate rational function in the discrete variables m and n.

According to their criterion, the rational function

f =
1

m2 + n2

has no telescoper. Soon, the criterion was extended to the general case of bivariate hypergeo-

metric terms by Abramov [5, 6]. Basically, Abramov proves that a hypergeometric term can be

written as a sum of a hypergeometric-summable term and a proper one if it has a telescoper [6,

Theorem 10]. Similar results have been obtained in the general q-shift case by Chen, Hou and

Mu [28]. These results are fundamental for predicting the termination of Zeilberger’s algorithm.

A continuous-discrete analogue of Zeilberger’s algorithm was presented by Almkvist and

Zeilberger [15]. This analogue has been shown to be very useful in the study of orthogonal poly-

nomials [60, Chapters 10–13]. In this setting, not all hyperexponential-hypergeometric functions

have telescopers. For example, we will show in this thesis that the rather simple rational function

in the continuous variable x and the discrete variable n

f =
1

x + n

has no telescoper with respect to either the continuous variable x or the discrete variable n.

Therefore, an existence criterion is also needed in this mixed setting.

1.2 Main results

For a bivariate rational function, we present a new algorithm to compute its minimal telescoper,

which is based on Hermite reduction. We also obtain some improvements over the classical

algorithm by Almkvist and Zeilberger by extending the idea of Geddes and Le to general rational-

function inputs. Moreover, we give the first proof of a polynomial complexity (in terms of field

operations) for creative telescoping on this specific class of inputs. Our algorithms are proved to

be faster concerning both theoretical complexity and actual performance.

Motivated by a conjecture of Wilf and Zeilberger [92, page 585], we study the possible form

of a multivariate hyperexponential-hypergeometric function. For such a function, we prove a

structure theorem for its certificates, which generalizes a recent result by Feng, Singer, and

12



Wu [42, Proposition 5]. Combining our result with the result on multivariate hyperexponential

functions in [29, 97] and the Ore-Sato theorem on multivariate hypergeometric terms, we obtain a

structure theorem for multivariate hyperexponential-hypergeometric functions, which says that a

multivariate hyperexponential-hypergeometric function can be written as a product of a rational

function, an exponential function, power functions and factorial terms.

With the help of the result by Feng, Singer, and Wu [42, Proposition 5], we derive two criteria

for the existence of telescopers for bivariate hyperexponential-hypergeometric functions. We show

that a hyperexponential-hypergeometric function can be written as a sum of a hypergeometric-

summable, resp. hyperexponential-integrable, function and a proper one if it has a telescoper

with respect to the discrete, resp. continuous, variable. Our criteria are based on standard

representations and the two adapted additive decompositions. With them, we can decide in ad-

vance the termination of the continuous-discrete analogue of Zeilberger’s algorithm for bivariate

hyperexponential-hypergeometric functions.

1.3 Outline

In this section, we provide the reader with an outline of this thesis.

Chapter 2. We recall basic notation and facts on differential rings, difference rings and Ore

polynomials. Our new algorithm for the construction of minimal telescopers will be based on the

Hermite reduction for the integration of the rational function. So we review the classical algo-

rithms for rational-function integration, including Hermite reduction, Ostrogradsky–Horowitz’s

method, and Rothstein–Trager’s algorithm. We also summarize some complexity results for later

use.

Chapter 3. We focus on deriving a fast algorithm for computing minimal telescopers for bi-

variate rational functions. First, we present an optimal algorithm for the Hermite reduction

over k(x) by fast evaluation-interpolation strategy. Second, we present a new algorithm for com-

puting the minimal telescoper of a bivariate rational function, based on a bivariate extension

of Hermite reduction. Moreover, some improvements over the classical method by Almkvist

and Zeilberger [15] are achieved in this chapter. We also analyze the arithmetic complexity of

those algorithms. Third, we adapt and slightly extend the arguments by Lipshitz [67] and by

13



Bostan and others [20] to derive smaller total degree sizes of telescopers. At last, we describe

our implementation and show experimental results.

Chapter 4. We first present an algebraic setting for hyperexponential-hypergeometric functions.

After that, we review various normal forms of rational functions and introduce a new kind of

rational normal forms, which enables us to extend the existing results to multivariate continuous-

discrete setting. Our main result is Theorem 4.4.6 on the structure of certificates of a multivariate

hyperexponential-hypergeometric function. This result is a generalization of a result by Feng,

Singer, and Wu [42, Proposition 5]. At last, we describe a multiplicative form of multivariate

hyperexponential-hypergeometric functions.

Chapter 5. We study the existence of telescopers for hyperexponential-hypergeometric functions

of one continuous variable and one discrete variable. First, we review the construction of a ring of

sequences from [41, 43], which allows us to study the existence problem in an algebraic manner.

After that, we introduce standard representations for bivariate hyperexponential-hypergeometric

functions and then adapt two additive decompositions [13, 47] to bivariate hyperexponential-

hypergeometric functions described by their standard representations. At last, we describe our

existence criteria and its algorithmic description with examples.

Chapter 6. We present some conclusions and propose some topics for future work.

1.4 Notation

We shall use the letters C, N, Q, R, and Z to denote the set of complex numbers, non-negative

integers, rational numbers, real numbers, and integers, respectively. For a field F , we denote its

algebraic closure by F .

14



Chapter 2

Preliminaries

In this chapter, we recall basic notation and facts on differential and difference rings and Ore

polynomials from [56, 21, 70]. Moreover, we review classical techniques for rational-function

integration and background on complexity analysis.

2.1 Differential and difference rings

Let R be a commutative ring. A map δ : R → R is said to be a derivation on R if

δ(a + b) = δ(a) + δ(b), δ(ab) = δ(a)b + aδ(b) for all a, b ∈ R.

The pair (R, δ) is called a differential ring . Moreover, if R is a field, R is called a differential

field . An element c ∈ R is called a constant with respect to δ if δ(c) = 0. All constants with

respect to δ form a subring of R, denoted by Cδ,R. If R is a field, Cδ,R is also a field. Some

basic facts concerning derivations are collected in the next lemma whose proof can be found in

any book about differential algebra, e.g. [21]

Lemma 2.1.1. Let (R, δ) be a differential ring. For a, b ∈ R and n ∈ N, we have

(i) δ(1) = 0;

(ii) δ(an) = nan−1δ(a);

(iii) If b is invertible, then

δ
(a

b

)
=

δ(a)b − aδ(b)

b2
.

15



(iv) Logarithmic derivative identity: if a and b are invertible, then

δ(ambn)

ambn
= m

δ(a)

a
+ n

δ(b)

b
for all m,n ∈ Z.

Let σ : R → R be a monomorphism on R. Then the pair (R,σ) is called a difference ring .

Moreover, if R is a field, R is called a difference field . An element c ∈ R is called a constant with

respect to σ if σ(c) = c. All constants with respect to σ form a subring of R, denoted by Cσ,R.

If R is a field, Cσ,R is also a field. The triple (R, δ, σ) is called a differential-difference ring .

(R, δ, σ) is said to be orthogonal [62] if the derivation δ commutes with the monomorphism σ.

Unless otherwise specified, all fields in the thesis are of characteristic zero and all differential-

difference rings are orthogonal.

2.2 Ore polynomials

Ore polynomials are a common abstraction for linear differential operators, linear difference

operators, shifts, and q-shifts [70, 23]. Let (F, δ, σ) be a differential-difference field. The ring

of Ore polynomials F [x; δ, σ] over F is the univariate polynomial ring with indeterminate x,

addition defined as usual, and multiplication being associative, distributive, and satisfying the

commutation rule:

xf = σ(f)x + δ(f), for any f ∈ F . (2.1)

By the commutation rule (2.1), the product of two polynomials in F [x; δ, σ] can be decided by

association and distribution.

Example 2.2.1. Let F (t) be the univariate rational-function field in t over F .

(i) The usual polynomial ring F (t)[x] on which δ is the zero map and σ is the identity map.

(ii) The ring of differential operators F (t)[x; d/dt, 1], where 1 is the identical map.

(iii) The ring of recurrence operators F (t)[x; 0, σ], where σ(f(t)) = f(t + 1) for any f ∈ F (t).

(iv) The ring of difference operators F (t)[x;∆, σ], where ∆ = σ − 1.

In this thesis, we also denote the ring of differential operators over F (t) by F (t)〈Dt〉 and the

ring of difference operators over F (t) by F (t)〈St〉.
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If σ is an automorphism, we can perform both left and right Euclidean division on the

ring F [x; δ, σ] [70], that is, for any f, g ∈ F [x; δ, σ], there exist q, r ∈ F [x; δ, σ] such that f = qg+r

or f = gq + r, where deg(r) < deg(g). This implies that F [x; δ, σ] is a left and right principal

ideal domain. A multivariate extension of Ore polynomials is studied in [35, 32, 93].

2.3 Integration of rational functions

Symbolic evaluation of integrals is an active research domain of computer algebra, which revives

the study of the integration problems from the algorithmic point of view. The first landmark

algorithm, designed by Risch [77, 78] in the late 1960’s, can decide whether indefinite integrals

of elementary functions are elementary or not. State of the art about integrating transcendental

functions has been presented in Bronstein’s book [21]. For later use, we review some basic

methods for rational-function integration. For more intensive presentations, see the books [21,

Chapter 2], [45, Chapter 11], and [90, Chapter 22].

In this section, let F be a field of characteristic zero and F (x) be the rational-function field

in x over F . On the field F (x), the derivation δ is defined by setting δ(x) = 1 and δ(c) = 0 for

all c ∈ F . In most undergraduate calculus textbooks, we can find that any rational function f ∈
C(x) over the field C of complex numbers has an elementary integral of the form

∫
f dx = g +

n∑

i=1

βi log(x − αi) (2.2)

where g ∈ C(x) and αi, βi ∈ C for i = 1, . . . , n. Here, we call g the rational part of the integral

and the sum of logarithms the logarithmic part of the integral. In this analytic setting when

the ground field is the algebraically closed field C, the problem of rational function integration

is well-understood. However, the algorithmic question becomes more involved when the ground

field is not algebraically closed. Over an arbitrary field F , one may need to compute objects

over an algebraic extension of F . In this case, the method in calculus books has many practical

difficulties. For any rational function f ∈ F (x), it has been shown by Hermite [52] that the

rational part of the integral
∫

f dx still lies in F (x) and he presented a method to compute this

part without introducing any algebraic extension of F . His method is named Hermite reduction

in [21, 45, 90]. For the logarithmic part, in general it is required to introduce algebraic extensions

of F and then the question is how to compute the minimal algebraic extension of F that is
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sufficient to express the integral. This question has been independently solved by Trager [87]

and Rothstein [80].

2.3.1 Hermite reduction

Hermite reduction is a practical method for computing the rational part, which uses the method

of integration by parts in order to reduce the denominator of the integrand to a square-free

polynomial. More explicitly, Hermite reduction decomposes f ∈ F (x) into

f = δ(g) +
a

b
, (2.3)

where g ∈ F (x) and a, b ∈ F [x] with deg(a) < deg(b) and b squarefree. Such a pair (g, a/b)

in (2.3) is called an additive decomposition for f (with respect to x). The rational functions g

and a/b are called the rational and logarithmic parts of f , respectively.

We summarize the idea of Hermite reduction following the treatment in [21, Chapter 2.2].

Write the integrand as f = A/D with A,D ∈ F [x] and gcd(A,D) = 1. Let D = D1D
2
2 . . . Dn

n

be the squarefree factorization of D. By computing the partial fraction decomposition for f , we

have

f = P +

n∑

i=1

Ai

Di
i

(2.4)

where P and the Ai’s are in F [x] and deg(Ai) < deg(Di
i) for each i. By the linearity of δ, it is

sufficient to consider the same decomposition problem for any fraction of the form

P

Qm
∈ F [x], with m > 1, deg(P ) < m deg(Q) and Q squarefree.

The square-freeness of Q implies the existence of a Bézout relation

Sδ(Q) + TQ = 1, (2.5)

where S, T ∈ F [x] can be obtained by the extended Euclidean algorithm. Furthermore, upon

multiplication and division with remainder, we get

P = SPδ(Q) + TPQ = (GQ + B)δ(Q) + TPQ = Bδ(Q) + CQ (2.6)

where C = Gδ(Q) + TP with deg(C) < (m − 1) deg(Q). Now, integration by parts yields

P

Qm
=

Bδ(Q) + CQ

Qm
= δ

(−(m − 1)−1B

Qm−1

)
+

C + (m − 1)−1δ(B)

Qm−1
(2.7)
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where deg(C + (m − 1)−1δ(B)) < (m − 1) deg(Q) since deg(B) < deg(Q) and deg(C) < (m −
1) deg(Q). This process is repeated until the denominator is square-free.

In 1975, Mack [69] introduced a variant of Hermite reduction that requires neither partial

fraction decomposition nor squarefree factorization, but only extended GCD computation.

The following lemma due to Ostrogradsky [71] shows the uniqueness (up to an additive

constant) of additive decompositions. For proofs, one can follow the argument in [45, Theorem

11.4].

Lemma 2.3.1. Let f = a/b be a nonzero rational function in F (x) such that a, b ∈ F [x],

gcd(a, b) = 1, deg(a) < deg(b), and b is squarefree. Then there is no g ∈ F (x) such that f = δ(g).

Corollary 2.3.2. Let f be a rational function in F (x). Then the pair (g, a/b) satisfying (2.3)

for f is unique up to adding a constant to g.

Proof. Assume that (g1, a1/b1) and (g2, a2/b2) are two additive decompositions for f with a1/b1 6=
a2/b2. The difference of logarithmic parts can be written as

0 6= a1/b1 − a2/b2 =
A

B
, where A,B ∈ F [x], gcd(A,B) = 1, and deg(A) < deg(B).

Since both b1 and b2 are squarefree and B divides lcm(b1, b2), B is also squarefree. However,

A

B
= δ(g2 − g1),

which contradicts Lemma 2.3.1. So a1/b1 equals a2/b2 and then g1 and g2 differ by an additive

constant.

For later use, we recall a fact on the logarithmic derivatives of rational functions.

Lemma 2.3.3. Let f = a/b ∈ F (x) be such that a, b ∈ F [x] and gcd(a, b) = 1, then

δf

f
=

p

a∗b∗
,

where a∗ and b∗ are, respectively, the squarefree parts of a and b, and p ∈ F [x] with deg(p) <

deg(a∗b∗) and gcd(p, a∗b∗) = 1.
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Proof. Let a = a1a
2
2 · · · am

m and b = b1b
2
2 · · · bn

n be the squarefree factorizations of a and b, respec-

tively. Then a∗ = a1a2 · · · am and b∗ = b1b2 · · · bn. By Lemma 2.1.1 (iv), we have

δf

f
=

p

a∗b∗
, where p = b∗

m∑

i=1

iδ(ai)a
∗

ai
− a∗

n∑

j=1

jδ(bj)b
∗

bi
∈ F [x].

It is easy to see that deg(p) < deg(a∗b∗). Since the ai’s and bj’s are squarefree and pairwise

coprime, we have

gcd

(
a∗,

m∑

i=1

iδ(ai)a
∗

ai

)
= gcd


b∗,

n∑

j=1

jδ(bj)b
∗

bi


 = 1,

which further implies gcd(p, a∗b∗) = 1. This completes the proof.

The following lemma will be useful to verify uniqueness properties, in particular, in the proofs

of Theorem 4.4.4 and Lemma 4.3.10.

Lemma 2.3.4. Assume that f is a rational function in F (x), p1, . . . , pn are pairwise coprime

polynomials in F [x], and c1, . . . , cn are constants in F . If

δ(f) =

n∑

i=1

ci
δ(pi)

pi
,

then f ∈ F and either ci = 0 or pi ∈ F for all i such that 1 ≤ i ≤ n.

Proof. Let p∗i be the squarefree part of pi for all i such that 1 ≤ i ≤ n. By Lemma 2.3.3, we have
n∑

i=1

ci
δ(pi)

pi
=

n∑

i=1

ci
qi

p∗i
=:

a

b
,

where a, b ∈ F [x] with gcd(a, b) = 1 and the qi’s are polynomials in F [x] with gcd(qi, p
∗
i ) =

1 and deg(qi) < deg(p∗i ). Since the pi’s are pairwise coprime, so are the p∗i ’s. Hence, the

denominator b is squarefree and deg(a) < deg(b). By Lemma 2.3.1, a/b must be equal to

zero and then f ∈ F . By the uniqueness of squarefree partial fraction decomposition, all the

fractions ciqi/p
∗
i are equal to zero. This implies that either ci = 0 or pi ∈ F for each i such

that 1 ≤ i ≤ n.

Corollary 2.3.5. Let c1, . . . , cn ∈ F be linearly independent over Z. If there exist rational

functions f1, . . . , fn ∈ F (x) such that
n∑

i=1

ci
δ(fi)

fi
= 0,

then f1, . . . , fn belong to F .
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Proof. Since every element of F is a constant with respect to δ, we may suppose that none

of f1, . . . , fn belongs to F , and look for a contradiction. Under this assumption, the sum can be

rewritten as
m∑

j=1

c̄j
δ(pj)

pj
= 0

where c̄j is a Z-linear combination of c1, . . . , cn, and the pj ’s are nontrivial distinct irreducible

factors of the denominators of the δ(fi)/fi. Since every c̄j is nonzero, Lemma 2.3.4 implies that

every pj is in F , which is a contradiction.

2.3.2 Ostrogradsky and Horowitz’s method

Ostrogradsky and Horowitz’s method [71, 53] computes the additive decomposition of a rational

function by solving a linear system. Although this method has asymptotically higher complexity

than that of Hermite reduction [90, Section 22.2], it is useful for our complexity analyses in the

sequel.

Let f = P/Q ∈ F (x) be such that P,Q ∈ F [x] and gcd(P,Q) = 1. After reading out the poly-

nomial part of f , we further assume that deg(P ) < deg(Q). Let Q∗ be the squarefree part of Q

and Q− = Q/Q∗. Denote d∗x = degx(Q∗) and d−x = degx(Q−). According to the functionality of

Hermite reduction, one can find two unique polynomials A and a in F [x] with degx A < deg(Q−)

and degx a < deg(Q∗) such that
P

Q
= δ

(
A

Q−

)
+

a

Q∗
. (2.8)

Note that A and a satisfy (2.8) if and only if they satisfy the equation

P = δ(A)Q∗ − AQ̃ + aQ−, (2.9)

where Q̃ = Q∗δ(Q−)/Q− is a polynomial in F [x] of degree deg(Q∗) − 1. Now, equation (2.9)

can be solved by the method of undetermined coefficients. Write P =
∑d∗x+d−x −1

l=0 Plx
l and

set A =
∑d−x −1

i=0 Aix
i, a =

∑d∗x−1
j=0 ajx

j with undetermined coefficients Ai and aj . Then (2.9)

holds if and only if

(
A

d−x −1, . . . , A0, ad∗x−1, . . . , a0

)
M =

(
P

d∗x+d−x −1, . . . , P0

)
, (2.10)

where M is a deg(Q) × deg(Q) matrix over F obtained by equating the likewise powers of x
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in (2.9). By the uniqueness of A/Q− and a/Q∗, the system (2.10) has a unique solution, which

leads to the following lemma.

Lemma 2.3.6. The matrix M in (2.10) is invertible over F .

We call the linear system (2.10) the Ostrogradsky–Horowitz system and M the Ostrogradsky–

Horowitz matrix associated with Q. Note that M is uniquely determined by Q. So we denote

this matrix by M(Q).

2.3.3 Residues and Rothstein–Trager resultants

After additive decomposition, the integration problem of rational functions is reduced to com-

puting the integrals of the form
∫

a

b
dx, where a, b ∈ F [x] with gcd(a, b) = 1, deg(a) < deg(b) and b squarefree. (2.11)

Over the algebraic closure F of F , the rational function a/b above decomposes into

a

b
=

n∑

i=1

βi

x − αi
, where αi, βi ∈ F and b(αi) = 0 for 1 ≤ i ≤ n.

Consequently, the integral of a/b can be expressed by
∫

a

b
dx =

n∑

i=1

βi log(x − αi).

By convention, the value βi is called the residue of a/b at the point x = αi. According to the

Lagrange formula ([44, page 38] or [45, Exercise 11.8]), the residue of a/b at αi is

βi =
a

δ(b)
(αi) ∈ F (αi). (2.12)

So we can always express the integrals in (2.11) over the splitting field of the denominator b.

However, it is not necessary to compute splitting fields for obtaining the integrals. For instance,

the integral below can be expressed without any algebraic extension:
∫

2x

x2 − 2
dx = log(x +

√
2) + log(x −

√
2) = log(x2 − 2).

In fact, Rothstein [80] and Trager [87] have shown that the minimal algebraic extension of F for

expressing the integrals is the splitting field of the following polynomial

R(z) = resultantx(b, a − z · δ(b)) ∈ F [z]. (2.13)
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In the literature, R(z) above is called the Rothstein–Trager resultant of a/b with respect to x,

denoted henceforth by RTx(a/b). By the formula (2.12), all the residues of a/b at its poles

are the roots of R(z). Moreover, we have the following lemma, which appears implicitly in the

literature [45, 21, 90].

Lemma 2.3.7. Let a, b ∈ F [x] be such that deg(a) < deg(b), gcd(a, b) = 1 and b is squarefree

in F [x]. Let R(z) be the Rothstein–Trager resultant of a/b with respect to x. Then we have

(i) all roots of R(z) are nonzero;

(ii) if α1 and α2 are two distinct roots of R(z), then p1 and p2 are coprime over F , where

pi = gcd(b, a − αiδ(b)) ∈ F (αi)[x], for i = 1, 2.

Proof. The first assertion follows from the fact that gcd(a, b) = 1. For the second one, we suppose

p1 and p2 are not coprime over F . Then there exists β ∈ F such that p1(β) = p2(β) = 0. By

the definition of p1 and p2, b(β) = 0 and (a − αiδ(b))(β) = 0 for i = 1, 2. Since b is squarefree

in F [x], δ(b)(β) 6= 0, which implies

α1 = α2 =
a

δb
(β),

which is a contradiction with α1 6= α2.

The next theorem is fundamental to design the algorithm for computing the logarithmic part

of the integral of a rational function. For proofs, see [21, Theorem 2.4.1] or [90, Theorem 22.8].

Theorem 2.3.8 (Rothstein and Trager’s theorem). Let a, b ∈ F [x] be such that deg(a) < deg(b),

gcd(a, b) = 1 and b is squarefree in F [x]. Let R(z) be the Rothstein–Trager resultant of a/b with

respect to x. Then the integral of rational function a/b can be expressed as
∫

a

b
dx =

n∑

i=1

ci log(gi),

where c1, . . . cn ∈ F are the distinct roots of R(z) and gi = gcd(b, a − ciδ(b)) ∈ F (ci)[x] for

all 1 ≤ i ≤ n. Moreover, if E is an algebraic extension of F such that we have
∫

a

b
dx =

m∑

i=1

c̃i log(g̃i),

where c̃1, . . . , c̃m ∈ E\{0} and g̃1, . . . , g̃m ∈ E[x]\E are monic, squarefree, and pairwise coprime,

then E contains all the roots of R(z).
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We conclude this section by the following theorem on the integration of rational functions.

Theorem 2.3.9. Let f be a nonzero element in F (x). Then there exist g ∈ F (x), nonzero

elements cj ∈ F and pj ∈ F (cj)[x] \ F (cj) for j = 1, . . . , n such that

f = δ(g) +

n∑

j=1

cj
δ(pj)

pj
.

Moreover, pj and pj∗ are coprime over F whenever j 6= j∗.

Proof. By Hermite reduction, there exist f ∈ F (x), a, b ∈ F [x] with deg a < deg b, gcd(a, b) = 1

and b being squarefree such that

f = δ(g) +
a

b
.

If a is zero, then there is nothing to prove. Assume that a is nonzero and let Λ be the set of

distinct roots of the Rothstein-Trager resultant R(z) of a/b. By Lemma 2.3.7 (i), all elements

in Λ are nonzero. By Theorem 2.3.8,

f = δ(g) +
∑

λ∈Λ

λ
δ(pλ)

pλ

,

where pλ = gcd(b, a − λδb) ∈ F (λ)[x] \ F (λ). By Lemma 2.3.7 (ii), pλ and pµ are coprime if λ

and µ are two distinct elements of Λ. This completes the proof.

2.4 Background on complexity

In this section, we recall basic notation and complexity results from [90]. These results are useful

to analyze algorithms in Chapter 3. The complexity results are expressed using the “big Oh"

notation [90, Section 25.7]. For instance, we say that the Karatsuba algorithm for multiplying

two polynomials in Q[x] of degree at most n takes O(nlog2 3) arithmetic operations in Q. Further-

more, we use the notation Õ(·) to indicate cost estimates with hidden logarithmic factors [90,

Definition 25.8].

Let k be a field of characteristic zero. Unless otherwise specified, all complexity estimates are

given in terms of arithmetic operations in k, which we denote by “ops”. Let k[x]m×n
≤d be the set of

m×n matrices with coefficients in k[x] of degree at most d. Let ω ∈ [2, 3] be a feasible exponent

of matrix multiplication, so that two matrices from kn×n can be multiplied using O(nω) ops.
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Facts 2.4.1 and 2.4.2 below show the complexity of multi-point evaluation, rational interpo-

lation, and algebraic operations on polynomial matrices using fast arithmetic. For proofs, see

[90, Corollaries 10.8, 5.18, 11.6] and [84, Theorem 7.3].

Fact 2.4.1. For a polynomial p ∈ k[x] of degree less than n, pairwise distinct u0, . . . , un−1 in k,

and v0, . . . , vn−1 ∈ k, we have:

(i) Fast evaluation: evaluating p at the ui’s takes Õ(n) ops.

(ii) Fast interpolation: for m ∈ {1, . . . , n}, constructing f = s/t ∈ k(x) with degx(s) < m and

degx(t) ≤ n − m such that t(ui) 6= 0 and f(ui) = vi for 0 ≤ i ≤ n − 1 takes Õ(n) ops.

Fact 2.4.2. For M in k[x]m×n
≤d with d > 0, we have:

(i) If M =
(
M1 M2

)
is an invertible n × n matrix with Mi ∈ k[x]n×ni

≤di
, where i = 1, 2 and

n1 + n2 = n, then the degree of det(M) is at most n1d1 + n2d2.

(ii) If M =
(
M1 M2

)
is not of full rank and with Mi ∈ k[x]m×ni

≤di
, where i = 1, 2 and n1+n2 =

n, then there exists a nonzero u ∈ k[x]n with coefficients of degree at most n1d1 +n2d2 such

that Mu = 0.

(iii) The rank r and a basis of the null space of M can be computed using Õ(nmrω−2d) ops.

The complexity in terms of arithmetic operations in k of Hermite reduction has been analyzed

by Yun in [94] and also [90, Theorem 22.7].

Lemma 2.4.3 (Yun, 1977). Let f be a nonzero rational function in k(x) of degree at most n

in x, then Hermite reduction on f can be performed using Õ(n) operations in k.
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Chapter 3

Hermite Reduction for

Rational-Function Telescoping

3.1 Introduction

Although creative-telescoping algorithms have been now used extensively in modern computer

algebra, very little is known about their complexity: some related results seem to be the com-

plexity analyses of an algorithm for hyperexponential indefinite integration in [49], of algorithms

for rational and hypergeometric summation in [50, 19], and of an algorithm by Takayama for

finding a recurrence for hypergeometric series of a special form in [86]. In order to get complex-

ity estimates, we simplify the problem by restricting to a smaller class of inputs, namely that of

bivariate rational functions. Therefore, our goal reads as follows.

Problem 1. Given a rational function f ∈ k(x, y) \ {0}, find a nonzero operator L in k(x)〈Dx〉
and a rational function g in k(x, y) such that

L(x,Dx)(f) = Dy(g). (3.1)

Here, L is called a telescoper for f with respect to y and g the certificate of L for f . Since Dy

commutes with any element in k(x)〈Dx〉, we can always choose telescopers with polynomial

coefficients in k[x].

By considering this constrained class of inputs, we are indeed able to blend the general

method of creative telescoping with the well-known Hermite reduction [52]. Although restricted,
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this class already has many applications. In 1827, Abel observed that an algebraic function

satisfied a linear differential equation [1]. The annihilating differential equations are important

in the study of algebraic functions [37, 30, 31]. In [20], it was shown that differential equations for

algebraic functions can be computed via rational-function telescoping. In combinatorics, many

nontrivial problems are encoded as diagonals of rational formal power series [83, 74]. Differential

equations for diagonals of a bivariate rational function can also be constructed via rational-

function telescoping.

Essentially two algorithms for computing telescopers of minimal order can be found in the

literature: the classical way [15] is to apply a differential analogue of Gosper’s indefinite summa-

tion algorithm [51], which reduces the problem to solving an auxiliary linear differential equation

for polynomial solutions. An algorithm developed later in [46] (see also [63]) performs Hermite

reduction on f to get an additive decomposition of the form

f = Dy(g) +
m∑

i=1

ui

vi
,

where the ui and vi are in k(x)[y] and the vi are squarefree. Then, the algorithm in [15] is applied

to each ui/vi to get a minimal telescoper Li for it. The least common left multiple of the Li’s

is proved to be a minimal telescoper for f . This algorithm performs well only for specific inputs

(both in practice and from the complexity viewpoint), but it inspired our improvements over

Almkvist and Zeilberger’s method.

Our contribution. For bivariate rational functions, we present a new and provably faster

algorithm for computing minimal telescopers, which is based on Hermite reduction. Over the

classical method by Almkvist and Zeilberger, we make some improvements avoiding unnecessary

resultant calculations and integer-root finding. We derive complexity estimates of all algorithms

described in Figure 3.1, showing that our approach is faster. These complexity results give the

first proof of a polynomial complexity (in terms of field operations) for creative telescoping on

bivariate rational-function inputs. In the computer algebra system Maple, we have implemented

our algorithms for rational-function telescoping, which has been integrated into the existing

Maple library Algolib 13.0 (for Maple 13). Our experimental results show that the Hermite-

reduction based algorithm outperforms all other known algorithms concerning both the worst-

case complexity and the actual timings of implementations.
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Algorithms degDx
(L) degx(L) degx(g) degy(g) Complexity

HermiteTelescoping ≤ dy O(dxd2
y) O(dxd2

y) O(d2
y) Õ(dxdω+3

y )

RationalAZ ≤ dy O(dxd2
y) O(dxd2

y) O(d2
y) Õ(dxd2ω+2

y )

Table 3.1: Complexity for rational-function telescoping

The rest of this chapter is organized as follows. In Section 3.2, we recall notation about

bivariate polynomials and set some hypotheses used in this chapter. We study Hermite reduction

over k(x) in Section 3.3, proving tight output degree bounds and an optimal algorithm via fast

evaluation and interpolation. We present a Hermite-reduction based algorithm for minimal

telescopers and some improvements over the classical method in Section 3.4. In Section 3.5,

we show the existence of telescopers and estimate their order bounds. At last, we describe in

Section 3.6 an implementation and show some experimental results.

The work in this chapter is published in [18], which is a joint work with Alin Bostan, Frédéric

Chyzak and Ziming Li.

3.2 Notation and hypotheses

In this section, we review some basic notation and introduce some hypotheses for later use.

Let Q be a bivariate polynomial in k[x, y]\k[x]. The squarefree factorisation of Q with respect

to y is the unique product qQ1Q
2
2 · · ·Qm

m where q ∈ k[x] and Qi ∈ k[x, y] satisfying degy(Qm) > 0

and such that the Qi’s are primitive, squarefree, and pairwise coprime. The squarefree part Q∗

of Q with respect to y is the product Q1Q2 · · ·Qm. Let Q− denote the polynomial Q/Q∗, and

lcy(Q) the leading coefficient of Q with respect to y. The following two formulas about Q, Q∗,

and Q− can be proved by mere calculations.

Fact 3.2.1. Let Q̂i denote Q∗/Qi. Then we have

(i) Q∗Dy(Q
−)/Q− =

∑m
i=1(i − 1)Q̂iDy(Qi) ∈ k[x, y];

(ii) Dy(Q)/Q− =
∑m

i=1 iQ̂iDy(Qi) ∈ k[x, y].
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Let f = P/Q be a nonzero element in k(x, y), where P,Q are two coprime polynomials

in k[x, y]. The degree of f in x is defined to be max{degx(P ),degx(Q)}, and denoted by degx(f).

The degree of f in y is defined similarly. The bidegree of f is the pair (degx(f),degy(f)), which

is denoted by bideg(f). The bidegree of f is said to be bounded (above) by (α, β), written

bideg(f) ≤ (α, β), when degx(f) ≤ α and degy(f) ≤ β.

We say that f = P/Q is proper if the degree of P in y is less than that of Q. For creative

telescoping, we may always assume w.l.o.g. that f = P/Q is proper. If not, rewrite f = Dy(p)+ f̄

with p ∈ k(x)[y] and f̄ proper. A telescoper L for f̄ with certificate ḡ is a telescoper for f with

certificate L(p) + ḡ. So we introduce the following hypothesis.

Hypothesis (H) From now on, P and Q are assumed to be nonzero polynomials in k[x, y]

such that degy(P ) < degy(Q), gcd(P,Q) = 1, and Q is primitive with respect to y.

Notation From now on, we write (dx, dy), (d∗x, d∗y), and (d−x , d−y ) for the bidegrees of Q, Q∗,

and Q−, respectively.

Sometimes, we use the following hypothesis in order to make estimates concise.

Hypothesis (H’) Hypothesis (H) and degx(P ) ≤ dx.

3.3 Hermite reduction for bivariate rational functions

In this section, we will apply Hermite reduction to a bivariate rational function of k(x, y) with

respect to y. We present a quasi-optimal algorithm to perform the Hermite reduction by using

a fast evaluation-interpolation approach.

3.3.1 Output size estimates

In order to use the evaluation-interpolation strategy, we first derive an upper bound on the

degrees of the outputs of the Hermite reduction on a rational function. To this end, we will use

the linear system introduced in Ostrogradsky and Horowitz’s method.

After reading out the polynomial part, we may assume that f = P/Q ∈ k(x, y) with P and Q

in k[x, y] such that gcd(P,Q) = 1 and degy(P ) < degy(Q). Let Dx and Dy denote the usual

derivations ∂/∂x and ∂/∂y on k(x, y), respectively. Recall that Q∗ denotes the squarefree part

30



of Q with respect to y and Q− = Q/Q∗. Set

d∗x = degx(Q∗), d∗y = degy(Q
∗), d−x = degx(Q−), and d−y = degy(Q

−).

According to Ostrogradsky and Horowitz’s method, we make the ansatz

P

Q
= Dy

(
A

Q−

)
+

a

Q∗
, (3.2)

where A, a ∈ k(x)[y] with degy(A) < d−y and degy(a) < d∗y. In order to bound the bidegrees of

A and a, we reformulate (3.2) into the equivalent form

P = Q∗Dy(A) −
(

Q∗Dy(Q
−)

Q−

)
A + Q−a, (3.3)

where Q̃ = Q∗Dy(Q
−)/Q− is a polynomial in k[x, y] of bidegree at most (d∗x, d∗y−1) by Fact 3.2.1.

Viewing A and a as polynomials in k(x)[y] with undetermined coefficients, we form the following

Ostrogradsky–Horowitz system,

M


Â

â


 = P̂ , (3.4)

where M is the Ostrogradsky–Horowitz matrix associated to Q and Â, â, and P̂ are the coefficient

vectors of A, a, and P with sizes d−y , d∗y, and dy, respectively. From equation (3.3), the matrix M

is of the form
(
M1 M2

)
, where M1 ∈ k[x]

dy×d−y
≤d∗x

and M2 ∈ k[x]
dy×d∗y

≤d−x
.

Let ∆ be the determinant of M , so that degx(∆) ≤ µ := d∗xd−y + d−x d∗y by Fact 2.4.2(i). For

later use, we also define ∆′ as the determinant of M(Q∗2), so that degx(∆′) ≤ µ′ := 2d∗xd∗y by

Fact 2.4.2 (i) and since (Q∗2)− = Q∗.

Lemma 3.3.1. Let f = P/Q ∈ k(x, y) with P,Q ∈ k[x, y], gcd(P,Q) = 1 and degy(P ) <

degy(Q). Then there exist B, b ∈ k[x, y] with degy(B) < d−y and degy(b) < d∗y, and such that:

(i) f = Dy

(
B

∆Q−

)
+ b

∆Q∗ ;

(ii) degx(B) ≤ µ − d∗x + degx(P ) and degx(b) ≤ µ − d−x + degx(P ).

Proof. Applying Cramer’s rule to (3.4) leads to the first assertion. The second assertion follows

by determinant expansions.
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Algorithm HermiteEvalInterp

Input: P,Q ∈ k[x, y] satisfying Hypothesis (H).

Output: (A, a) ∈ k(x)[y]2 solving (3.2).

1. Compute Q− := gcd(Q,Dy(Q)) and Q∗ := Q/Q−;

2. Set λ := 2(d∗xd−y + d∗yd
−
x ) + degx(P ) − min{d−x , d∗x};

3. Set S to the set of λ + 1 smallest nonnegative integers that are lucky for Q;

4. For each x0 ∈ S, compute (A0, a0) ∈ k[y]2 such that

P (x0, y)

Q(x0, y)
= Dy

(
A0

Q−(x0, y)

)
+

a0

Q∗(x0, y)

using Hermite reduction over k;

5. Compute (A, a) ∈ k(x)[y] by rational interpolation and return this pair.

Figure 3.1: Hermite reduction over k(x) via evaluation and interpolation.

In what follows, we shall encounter proper rational functions with denominator Q satisfy-

ing Q = Q∗2. The following lemma is an easy corollary of Lemma 3.3.1 for such functions.

Corollary 3.3.2. Assume that Q = Q∗2 additionally in Lemma 3.3.1. Then there exist B, b ∈
k[x, y] with degy(B) and degy(b) less than d∗y, and such that

(i) P
Q∗2 = Dy

(
B

∆′Q∗

)
+ b

δ′Q∗ ;

(ii) degx(B) and degx(b) are bounded by µ′ − d∗x + degx(P ).

3.3.2 Algorithm by evaluation and interpolation

We observe that an asymptotically optimal complexity can be achieved by evaluation and in-

terpolation at each step of Hermite reduction over k(x). This inspires us to adapt Gerhard’s

modular method [48, 49] to k(x, y). For simplicity, we further assume that Q ∈ k[x, y] is nonzero

and primitive over k[x].

Definition 3.3.3. An element x0 ∈ k is said to be lucky if lcy(Q)(x0) 6= 0 and the degree in y

of gcd(Q(x0, y),DyQ(x0, y)) is equal to degy(Q
−).
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Lemma 3.3.4. There are at most dx(2d∗y − 1) unlucky points.

Proof. Let σ ∈ k[x] be the d−y th subresultant with respect to y of Q and Dy(Q). By Corollary

5.5 in [49], all unlucky points are in the set U = {x0 ∈ k | σ(x0) = 0 }. By Corollary 3.2 (ii)

in [49], degx(σ) ≤ dx(2d∗y − 1).

Lemma 3.3.5. Let B, b, and ∆ be the same as in Lemma 3.3.1, and let x0 ∈ k be lucky. Then

∆(x0) 6= 0 and (B(x0, y), b(x0, y)) is the unique pair such that

P (x0, y)

Q(x0, y)
= Dy

(
B(x0, y)

∆(x0)Q−(x0, y)

)
+

b(x0, y)

∆(x0)Q∗(x0, y)
. (3.5)

Proof. By the luckiness of x0, degy(Q(x0, y)) = dy and Q(x0, y)− = Q−(x0, y). Then we

have Q(x0, y)∗ = Q∗(x0, y). This implies M(Q)(x0, y) = M(Q(x0, y)), which, by Lemma 2.3.6,

is invertible over k(x). Hence ∆(x0) 6= 0, and the evaluation at x = x0 of the equality in

Lemma 3.3.1 (i) is well-defined. Thus, (B(x0, y), b(x0, y)) is a solution of (3.5). Uniqueness

follows from Corollary 2.3.2.

Theorem 3.3.6. Algorithm HermiteEvalInterp in Figure 3.1 is correct and takes Õ(dxd2
y +

degx(P )dy) operations in k.

Proof. Set ν to dx(2d∗y − 1). Lemma 3.3.4 implies that the λ+1 lucky points found in Step 3 are

all less than λ+ν+1. By Corollary 2.3.2 and 3.3.1 (i), A = B/∆ and a = b/∆. By Lemma 3.3.5,

A0 = B(x0, y)/∆(x0) and a0 = b(x0, y)/∆(x0). By Lemma 3.3.1 (ii) and since degx(∆) ≤ µ,

it suffices to rationally interpolate A and a from values at λ + 1 lucky points. This shows the

correctness. The dominant computation in Step 1 is the gcd, which takes Õ(dxdy) ops by Corol-

lary 11.9 in [90]. For each integer i ≤ λ + ν, testing luckiness amounts to evaluations at x0

and computing gcd(Q(x0, y),Dy(Q(x0, y))), which takes Õ(dy) ops by Fact 2.4.1 (i) and Corol-

lary 11.6 in [90]. Then, generating S in Step 3 costs Õ((λ + ν + 1)dy) ops. By Fact 2.4.1 (i),

evaluations in Step 4 take Õ((λ + 1)dy) ops. For each x0 ∈ S, the cost of the Hermite reduction

in Step 4 is Õ(dy) ops by Lemma 2.4.3. Thus, the total cost of Step 4 is Õ((λ + 1)dy) ops. By

Fact 2.4.1(ii), Step 5 takes Õ((λ + 1)dy) ops. Since λ ≤ 2dxdy + degx(P ) and ν ≤ 2dxdy, the

total cost is as announced.

Remark 3.3.7. As the generic output size of Hermite reduction is proportional to λdy, which is

equal to O((dxdy + degx(P ))dy), Algorithm HermiteEvalInterp has quasi-optimal complexity.
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3.4 Minimal telescopers for bivariate rational functions

Since the 1990’s, the main emphasis in existing works [95, 15, 46, 63] has been on finding tele-

scopers of order minimal over all telescopers for f , which are called minimal telescopers. For

a rational function f ∈ k(x, y), all its telescopers form a left ideal If in the left principal ideal

domain k(x)〈Dx〉. So a minimal telescoper is a generator of If and two minimal telescopers

differ by a multiplicative left factor in k(x). Therefore, a rational function has a unique monic

minimal telescoper. In this section, we present a new method for computing minimal telescop-

ers for rational functions in k(x, y), which is based on Hermite reduction. Also, we make some

improvements over the classical method by Almkvist and Zeilberger. We will show that the

arithmetic complexity of Hermite reduction approach is lower than that of the classical one.

3.4.1 Hermite-reduction based method

In some applications, we only need to compute telescopers without certificates. In the next

section, we will show that the arithmetic size of certificates is asymptotically larger than that

of telescopers. This motivates us to find a way in which one could choose to compute or not

to compute the certificates according to the user requirements. To this end, we design a new

algorithm, presented in Figure 3.2, to compute minimal telescopers for rational functions by

basing on Hermite reduction.

For f = P/Q ∈ k(x, y) and i ∈ N, Hermite reduction decomposes Di
x(f) into

Di
x(f) = Dy(gi) + ri, (3.6)

where gi, ri ∈ k(x, y) are proper. Since the squarefree part of the denominator of Di
x(f) di-

vides Q∗, so does the denominator of ri. The following lemma shows that (3.6) recombines into

telescopers and certificates; next, Lemma 3.4.2 implies that the first pair obtained in this way

by Algorithm HermiteTelescoping in Figure 3.2 yields a minimal telescoper.

Lemma 3.4.1. The rational functions r0, . . . , rd∗y
are linearly dependent over k(x).

Proof. The constraints on ri imply degy(riQ
∗) < d∗y for all i ∈ N, from which follows the existence

of a nontrivial linear dependence among the ri’s over k(x).
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Algorithm HermiteTelescoping

Input: f = P/Q ∈ k(x, y) satisfying Hypothesis (H).

Output: A minimal telescoper L ∈ k[x]〈Dx〉 with certificate g ∈ k(x, y).

1. Apply HermiteEvalInterp to f to get (g0, a0) such that f = Dy(g0) + a0/Q
∗.

If a0 = 0, return (1, g0).

2. For i from 1 to degy(Q
∗) do

(a) Apply HermiteEvalInterp to −ai−1Dx(Q∗)/Q∗2 to express it as Dy(g̃i)+ ãi/Q
∗.

(b) Set gi = Dx(gi−1) + g̃i and ai = Dx(ai−1) + ãi.

(c) Solve
∑i

j=0 ηjaj = 0 for ηj ∈ k(x) using [84, Algorithm Nullspace].

If there exists a nontrivial solution, then set (L, g) :=
(∑i

j=0 ηjD
j
x,
∑i

j=0 ηjgj

)
,

and break.

3. Compute the content c of L and return (c−1L, c−1g).

Figure 3.2: Creative telescoping by Hermite reduction

Lemma 3.4.2. An integer ρ is minimal such that
∑ρ

i=0 ηiri = 0 for η0, . . . , ηρ ∈ k(x) not all

zero if and only if
∑ρ

i=0 ηiD
i
x is a minimal telescoper for f with certificate

∑ρ
i=0 ηigi.

Proof. Multiplying (3.6) by ηi before summing yields

L(f) = Dy

( ρ∑

i=0

ηigi

)
+

ρ∑

i=0

ηiri for L :=

ρ∑

i=0

ηiD
i
x,

where the sum
∑ρ

i=0 ηiri is a proper fraction in y with a squarefree denominator with respect

to y. Thus, by Corollary 2.3.2, L is a telescoper of order ρ for f with certificate
∑ρ

i=0 ηigi if and

only if
∑ρ

i=0 ηiri = 0 with ηρ 6= 0. The lemma follows.

Remark 3.4.3. In the algorithm HermiteTelescoping described in Figure 3.2, one can choose not

to compute the certificate g, because the minimal telescoper and this corresponding certificate are

computed separately.
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Order bounds for minimal telescopers

Lemmas 3.4.1 and 3.4.2 combine into a tight upper bound on the order of minimal telescopers

for f .

Corollary 3.4.4. Minimal telescopers have order at most d∗y.

We also derive a lower bound on the order of the minimal telescoper, to be used as an

optimisation trick in our implementation. First, we choose a lucky element x0 ∈ k, and then

apply Hermite reduction in k(y) to Di
x(f)(x0, y), we get

Di
x(f)(x0, y) = Dy(g0,i) + r0,i, (3.7)

where g0,i, r0,i ∈ k(y) are proper and the denominator of r0,i divides Q∗(x0, y). Let ρ0 be the

smallest integer such that r0,0, . . . , r0,ρ0
are linearly dependent over k.

Lemma 3.4.5. A minimal telescoper has order at least ρ0.

Proof. We first claim that r0,i = ri(x0, y), for ri as in (3.6). Note that the squarefree part with

respect to y of the denominator of Di
x(f) divides Q∗ for all i ∈ N. By Corollary 5.5 in [49],

x0 is lucky for the denominator of Di
x(f) for all i ∈ N. Then the claim on r0,i follows from

Lemma 3.3.5 applied to Di
x(f). Let ρ be the minimal order of a telescoper, then r0, . . . , rρ

are linearly dependent over k(x) by Lemma 3.4.2. Thus the rational functions r0,0, . . . , r0,ρ are

linearly dependent over k, which implies ρ0 ≤ ρ.

Degree bounds for minimal telescopers

To derive degree bounds for gi and ri in (3.6), let ∆, ∆′, µ, and µ′ be defined as in the paragraph

before Lemma 3.3.1, and set µ′′ = µ + µ′ − 1.

Lemma 3.4.6. Let W be in k[x, y] with degy(W ) < d∗y. Then, for all i ∈ N, there exist B, b ∈
k[x, y] with both bideg(B) and bideg(b) bounded by (degx(W ) + µ′′, d∗y − 1), such that

Dx

(
W

∆i+1∆′iQ∗

)
= Dy

(
B

∆i+2∆′i+1Q∗

)
+

b

∆i+2∆′i+1Q∗
.

Proof. A straightforward calculation leads to

Dx

(
W

∆i+1∆′iQ∗

)
=

W̃

∆i+2∆′i+1Q∗
− 1

∆i+1∆′i

WDx(Q∗)

Q∗2 ,
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where bideg(W̃ ) ≤ (degx(W ) + µ′′, d∗y − 1). By Corollary 3.3.2, there exist B̃, b̃ ∈ k[x, y] such

that
1

∆i+1∆′i

WDx(Q∗)

Q∗2 =
1

∆i+2∆′i+1

(
Dy

(
∆B̃

Q∗

)
+

∆b̃

Q∗

)
,

where bideg(B̃) and bideg(b̃) are bounded by (degx(W ) + µ′ − 1, d∗y − 1). The proof is completed

by setting (B, b) = (−∆B̃, W̃ − ∆b̃).

Lemma 3.4.7. For i ∈ N, there exist Bi, bi ∈ k[x, y] such that

Di
x(f) = Dy

(
Bi

∆i+1∆′iQ∗iQ−

)
+

bi

∆i+1∆′iQ∗
. (3.8)

Moreover, bideg(Bi) ≤ (degx(P )+ µ + iµ′′ + (i− 1)d∗x, id
∗
y + d−y − 1) and bideg(bi) ≤ (degx(P )+

µ + iµ′′ − d−x , d∗y − 1).

Proof. We proceed by induction on i. For i = 0, the claim follows from Lemma 3.3.1. Assume

that i > 0 and that the claim holds for the values less than i. For brevity, we set γ = degx(P )+µ,

Fi−1 = Bi−1/(∆
i∆′i−1Q∗i−1Q−), and Gi−1 = bi−1/(∆

i∆′i−1Q∗). The induction hypothesis

implies

Di
x(f) = DyDx(Fi−1) + Dx(Gi−1),

with bidegree bounds on Bi−1 and bi−1. Fact 3.2.1(i) implies that Q̃ := Q∗Dx(Q−)/Q− is in

k[x, y], with bideg(Q̃) ≤ (d∗x − 1, d∗y). Hence Dx(1/Q−) = −Q̃/Q. This observation and an easy

calculation imply that

Dx(Fi−1) =
B̃i−1

∆i+1∆′iQ∗iQ−
,

where B̃i−1 ∈ k[x, y] and degx(B̃i−1) ≤ degx(Bi−1) + µ′′ + d∗x. Furthermore, by Lemma 3.4.6

there are B̄i, b̄i ∈ k[x, y] with bidegrees at most (degx(bi−1) + µ′′, d∗y − 1), such that

Dx(Gi−1) = Dy

(
B̄i

∆i+1∆′iQ∗

)
+

b̄i

∆i+1∆′iQ∗
.

Setting Bi = B̃i−1 + B̄iQ
∗i−1Q− and bi = b̄i, we arrive at (3.8). It remains to verify the degree

bounds. The induction hypothesis implies that both degx(B̄i) and degx(bi) are bounded by γ +

iµ′′−d−x . It follows that degx(B̄iQ
∗i−1Q−) is bounded by γ+iµ′′+(i−1)d∗x. Similarly, degx(B̃i−1)

is bounded by γ+iµ′′+(i−1)d∗x, and so is degx(Bi). The bounds on degrees in y are obvious.
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We next derive degree bounds for the minimal telescopers obtained at an intermediate stage

of HermiteTelescoping; refined bounds on the output will be given by Theorem 3.4.16.

Lemma 3.4.8. Under (H’), Step 2(c) of Algorithm HermiteTelescoping computes a minimal

telescoper L ∈ k[x]〈Dx〉 with order ρ and a certificate g ∈ k(x, y) for P/Q with degx(L) ∈
O(dxdyρ

2) and bideg(g) ∈ O(dxdyρ
2) ×O(dyρ).

Proof. By Lemma 3.4.2, we exhibit a minimal telescoper by considering the first nontrivial linear

dependence among the ai’s in (3.8). Let M be the coefficient matrix of the system in (ηi) obtained

from
∑ρ

i=0 ηiai = 0. By Lemma 3.4.7, M is of size at most (ρ + 1) × d∗y and with coefficients of

degree at most σ := dx + µ + ρµ′′ − d−x in x. Hence, there exists a solution (η0, . . . , ηρ) ∈ k[x]ρ+1

of degree at most σρ in x by Fact 2.4.2(ii). Since µ, µ′′ ∈ O(dxdy) and d∗y ≤ dy, the degree

estimates of L and g are as announced.

Complexity estimates

We proceed to analyse the complexity of the algorithm in Figure 3.2.

Theorem 3.4.9. Under Hyp. (H’), Algorithm HermiteTelescoping in Figure 3.2 is correct and

takes Õ(ρω+1dxd2
y) ops, where ρ is the order of the minimal telescoper.

Proof. The formulas in Step 2(a) create the loop invariant Di
x(f) = Dy(gi)+ai/Q

∗. Correctness

then follows from Lemmas 3.4.1 and 3.4.2. Step 1 takes Õ(dxd2
y) ops by Theorem 3.3.6 under (H’).

By Lemma 3.4.7, degx(−ai−1Dx(Q∗)) ∈ O(idxdy). So the cost for performing Hermite reduction

on −ai−1Dx(Q∗)/Q∗2 in Step 2(a) is Õ(idxd2
y) ops by Theorem 3.3.6. The bidegrees of gi and

ai in Step 2(b) are in O(idxdy) × O(idy) by Lemma 3.4.7. Since adding and differentiating

have linear complexity, Step 2(b) takes Õ(i2dxd2
y) ops. For each i, the coefficient matrix of

∑i
j=0 ηjaj = 0 in Step 2(c) is of size at most (i + 1)× d∗y and with coefficients of degree at most

degx(ai) ∈ O(idxdy). Moreover, the rank of this matrix is either i or i+1. Then, Step 2(c) takes

Õ(iωdxd2
y) ops by Fact 2.4.2(iii). Computing the content and divisions in Step 3 has complexity

Õ(dxdyρ
3). If the algorithm returns when i = ρ, then the total cost is in

ρ∑

i=0

Õ(i2dxd2
y) +

ρ∑

i=1

Õ(iωdxd2
y) ⊂ Õ(ρω+1dxd2

y) ops, (3.9)

which is as announced.
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An optimisation, based on Lemma 3.4.5, consists in guessing the order ρ so as to perform

Step 2(c) a few times only: As a preprocessing step, choose x0 ∈ k lucky for Q, then detect linear

dependence of {r0,0, . . . , r0,j} in (3.7). The minimal j with dependence is a lower bound ρ0 on ρ.

So Step 2(c) is then performed only when i ≥ ρ0. In practice, the lower bound ρ0 computed in

this way almost always coincides with the actual order ρ. So normalising the gi’s becomes the

dominant step, as observed in experiments. We analyse this optimisation by first estimating the

cost for computing ρ0.

Lemma 3.4.10. Under Hypothesis (H’), computing a lower order bound ρ0 for minimal tele-

scopers takes Õ(dxdyρ
3
0) ops.

Proof. Since differentiating has linear complexity, the derivative Di
x(f) takes Õ(i2dxdy) ops. By

Fact 2.4.1(i), the evaluation Di
x(f)(x0, y) takes as much. The cost of Hermite reduction on

Di
x(f)(x0, y) is Õ(idy) ops by Lemma 2.4.3. By Fact 2.4.2(iii) with d = 1, computing the rank

of the coefficient matrix of
∑i

j=0 ηjr0,j , with r0,j as in (3.7), takes Õ(dyi
ω−1) ops. Thus, the cost

for computing a lower bound on ρ0 is
∑ρ0

i=0 Õ(i2dxdy) ∈ Õ(dxdyρ
3
0) ops.

Corollary 3.4.11. Assume that ρ0 = ρ−O(1). Then the previous optimisation of HermiteTele-

scoping takes Õ(ρ3dxd2
y) ops.

Proof. In view of Lemma 3.4.10, the estimate (3.9) becomes

Õ(dxdyρ
3
0) +

ρ∑

i=0

Õ(i2dxd2
y) +

ρ∑

i=ρ0

Õ(iωdxd2
y),

which is Õ(ρ3dxd2
y) + Õ((ρ − ρ0)ρ

ωdxd2
y) ops, whence the result.

3.4.2 Improved Almkvist and Zeilberger’s method

We analyse the complexity of Almkvist and Zeilberger’s algorithm [15] when restricted to bi-

variate rational functions. In order to get a telescoper whose order ρ is minimal, the resulting

algorithm, denoted RationalAZ, solves the telescoping equation

ρ∑

i=0

ηiD
i
x(f) = Dy(g)
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for increasing, prescribed values of ρ until it gets a solution (η0, . . . , ηρ, g) ∈ k(x)ρ+1 × k(x, y)

with the ηi’s not all zero. For the analysis, we start by studying the parametrisation of the

differential Gosper algorithm of [15] under the same restriction to k(x, y).

Definition 3.4.12 ([49]). Let K be a field and a, b ∈ K[y] be nonzero polynomials. A triple

(p, q, r) ∈ K[y]3 is said to be a differential Gosper form of the rational function a/b if

a

b
=

Dy(p)

p
+

q

r
and gcd(r, q − τDy(r)) = 1 for all τ ∈ N.

For hyperexponential f , a key step in [15] is to compute a differential Gosper form of the

logarithmic derivative of F =
∑ρ

i=0 ηiD
i
x(f), where the ηi’s are undetermined from k(x). In

the analogue RationalAZ, this form is predicted by Lemma 3.4.13 below, which is a technical

generalisation of a result by Le [63] on F when f has a squarefree denominator.

For f = P/Q, write Q = t(y)T (x, y), splitting content and primitive part with respect to x.

By an easy induction, Di
x(f) = Ni/(QT ∗i) for Ni ∈ k[x, y]. For this section, set

F =

ρ∑

i=0

ηiD
i
x(f), N =

ρ∑

i=0

ηiNiT
∗ρ−i, and H = −Dy(Q)/Q− − ρt∗Dy(T

∗).

Lemma 3.4.13. If F is nonzero, the triple (N,H,Q∗) is a differential Gosper form of Dy(F )/F .

Proof. First, observe F = N/(QT ∗ρ) and Q∗ = t∗T ∗. Next, Dy(F )/F = Dy(N)/N −Dy(Q)/Q−
ρDy(T

∗)/T ∗ is Dy(N)/N +H/Q∗. It remains to prove gcd(Q∗,H−τDy(Q
∗)) = 1, for any τ ∈ N.

Recall that the squarefree part Q∗ of Q is the product Q1Q2 · · ·Qm and that Q̂i denotes Q∗/Qi.

By Fact 3.2.1(ii),

Z := H − τDy(Q
∗) = −ρt∗Dy(T

∗) −
m∑

i=1

(i + τ)Q̂iDy(Qi).

If Qj divides t∗, Z reduces to −(j + τ)Q̂jDy(Qj) modulo Qj . If not, it reduces to −(j +

τ)Q̂jDy(Qj)− ρt∗(Dy(Qj)T
∗/Qj), which rewrites to −(j + τ + ρ)Q̂jDy(Qj) modulo Qj . In both

cases, Z is coprime with Q∗, as j > 0, τ ≥ 0, and ρ ≥ 0.

By induction, we have bideg(Ni) ≤ (degx(P ) + idegx(T ∗) − i, dy + idegy(T
∗) − 1), so that

bideg(N) ≤ (degx(P ) + ρdegx(T ∗) − ρ, dy + ρdegy(T
∗) − 1).

40



Algorithm RationalAZ

Input: f = P/Q ∈ k(x, y) satisfying Hypothesis (H).

Output: A minimal telescoper L ∈ k[x]〈Dx〉 with certificate g ∈ k(x, y).

1. Compute Q− = gcd(Q,Dy(Q)), Q∗ = Q/Q−, and T , T ∗ primitive parts of Q, Q∗

with respect to x, respectively;

2. Set (Ñ ,N, β,H) to (P,P, d−y ,−Q∗Dy(Q)/Q);

3. For ℓ = 0, 1, . . . do

(a) Set z to
∑β

j=0 zjy
j, extract the linear system M

(
ηi zj

)T

= 0 from (3.10)

(for ρ = ℓ) and compute a basis S of the null space of M by [84].

(b) If S contains a solution (η0, . . . , ηℓ, s) such that η0, . . . , ηℓ are not all nonzero,

then set (L, g) :=
(∑ℓ

i=0 ηiD
i
x, s/(Q−T ∗ℓ)

)
, and go to Step 4;

(c) Update Ñ := Dx(Ñ)T ∗ − Ñ
(
T ∗Dx(T )/T + iDx(T ∗)

)
, N := NT ∗ + ηℓ+1Ñ ,

β := β + degy(T
∗), and H := H − t∗Dy(T

∗).

4. Compute the content c of L and return (c−1L, c−1g).

Figure 3.3: Improved Almkvist–Zeilberger algorithm

The next step in RationalAZ is, for fixed ρ, to reduce (3.1) by the change of unknown g =

z/(Q−T ∗ρ), so as to determine all (ηi) ∈ k(x)ρ+1 for which the differential equation in z

ρ∑

i=0

ηiNiT
∗ρ−i = Q∗Dy(z) + (Dy(Q

∗) + H) z (3.10)

has a polynomial solution in k(x)[y]. For later use, we recall the following consequence of Corol-

lary 9.6 in [49].

Lemma 3.4.14. Let a, b ∈ K[y] be such that β = −lcy(b)/lcy(a) is a nonnegative integer and

degy(b) = degy(a)− 1. Let c ∈ K[y] be such that β ≥ degy(c)− degy(a) + 1. If u is a polynomial

solution of aDy(z) + bz = c, then degy(u) ≤ β.

The following lemma generalizes Lemma 2 in [63] to present a degree bound for z.
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Lemma 3.4.15. If u ∈ k(x)[y] is a solution of (3.10) for (ηi) ∈ k(x)ρ+1, then degy(u) is bounded

by β = d−y + ρdegy(T
∗).

Proof. Let a = Q∗ and b = Dy(Q
∗) + H. By the definition of H, b = −Q∗Dy(Q

−)/Q− −
ρt∗Dy(T

∗). Fact 3.2.1(i) implies that lcy(b) = −(d−y + ρdegy(T
∗))lcy(a). Therefore,

β = −lcy(b)/lcy(a) = d−y + ρdegy(T
∗).

As degy(N) < dy + ρdegy(T
∗) and dy = d∗y + d−y , β ≥ degy(N) − d∗y + 1. The lemma holds by

Lemma 3.4.14.

We end the present section using the approach of Almkvist and Zeilberger to provide tight

degree bounds on the outputs from Algorithms HermiteTelescoping and RationalAZ.

Theorem 3.4.16. Under Hypothesis (H’), there exists a minimal telescoper L ∈ k[x]〈Dx〉 with

certificate g ∈ k(x, y) with degx(L) ∈ O(dxdyd
∗
y) and bideg(g) ∈ O(dxdyd

∗
y) ×O(dyd

∗
y).

Proof. By Corollary 3.4.4, there exists a smallest ρ ∈ N at most d∗y, for which (3.1) has a solution

with the ηi’s not all zero. For this ρ, we estimate the size of the polynomial matrix M derived

from (3.10) by undetermined coefficients. By the remark on N after Lemma 3.4.13, we have

bideg(N) ≤ (nx, ny) where nx := dx + ρdegx(T
∗)− ρ ∈ O(ρdx) and ny := dy + ρdegy(T

∗)− 1 ∈
O(ρdy). The matrix M contains two blocks M1 ∈ k[x]

(ny+1)×(ρ+1)
≤nx

and M2 ∈ k[x]
(ny+1)×(β+1)
≤dx

,

where β ∈ O(ρdy) is the same as in Lemma 3.4.15. By the minimality of ρ, the dimension

of the null space of M is 1. So there exists u ∈ k[x]ny+1 with coefficients of degree at most

nx(ρ + 1) + dx(β + 1) ∈ O(dxdyd
∗
y) in x such that M

(
η z

)T

= 0, which implies degree bounds

in x for L and g. The degree bound in y for g is obvious.

We now analyse the complexity of the algorithm in Fig. 3.3.

Theorem 3.4.17. Under Hypothesis (H’), Algorithm RationalAZ in Figure 3.3 works correctly

and takes Õ(dxdω
y ρω+2) ops, where ρ is the order of the minimal telescoper.

Proof. By the existence of a telescoper, Corollary 3.4.4, and Lemma 3.4.15, the algorithm al-

ways terminates and returns a minimal telescoper L, of order ρ at most d∗y. Gcd computations

dominate the cost of Steps 1 and 2, which take Õ(dxd2
y) ops. For each ℓ ∈ N, the dominating
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cost in Step 3 is computing the null space of M. Let ny = dy + ℓdegy(T
∗) − 1 ∈ O(ℓdy) and

nx = dx + ℓdegx(T ∗) ∈ O(ℓdx). By the same argument as in the proof of Theorem 3.4.16, the

matrix M is of size at most (ny +1)×(ℓ+β+2) and with coefficients of degree at most nx. Let r

be the rank of M, which is either ℓ+β +2 or ℓ+β +1 by construction. Thus, a basis of the null

space of M can be computed within Õ(nx(ny + 1)(ℓ + β + 2)rω−2) ops by Fact 2.4.2(iii). Since

β ∈ O(ℓdy), Õ(nx(ny + 1)(ℓ + β + 2)rω−2) is included in Õ(dxdω
y ℓω+1). Since Step 3 terminates

at ℓ = ρ, the total cost of the algorithm is
∑ρ

ℓ=0 dxdω
y ℓω+1 ops. This is within the announced

complexity, Õ(dxdω
y ρω+2) ops.

Corollary 3.4.18. Algorithms HermiteTelescoping and RationalAZ in Figures 3.2 and 3.3 both

output the primitive minimal telescoper L together with its certificate g, which satisfy degDx
(L) ≤

d∗y, degx(L) and degx(g) ∈ O(dxdyd
∗
y), and degy(g) ∈ O(dyd

∗
y).

Proof. Both algorithms output the primitive minimal telescoper, as they compute a minimal

telescoper at an intermediate step, and owing to their last step of content removal. Bounds

follow from Corollary 3.4.4 and Theorem 3.4.16.

3.5 Non-minimal telescopers for bivariate rational functions

In this section, we trade the minimality of telescopers for smaller total output sizes. To this end,

we adapt and slightly extend the arguments in [67] and [20, Section 3].

Let f = P/Q be a nonzero element in k(x, y) such that P,Q ∈ k[x, y] and gcd(P,Q) = 1.

Denote dx = max{degx(P ),degx(Q)} and dy = max{degy(P ),degy(Q)}. Our next goal is to find

a nonzero operator A(x,Dx,Dy) in k[x]〈Dx,Dy〉 such that A(f) = 0. To this end, we consider

the k-vector space WN generated by the set {xiDj
xDℓ

y | i + j + ℓ ≤ N } over k. By an easy

combinatorial counting, the dimension of WN is
(
N+3

3

)
over k. Furthermore, for any (i, j, ℓ) ∈ N3,

a direct calculation yields

xiDj
xDℓ

y(f) =
Pi,j,ℓ

Qi+j+ℓ+1
, (3.11)

where Pi,j,ℓ ∈ k[x, y] with degx(Pi,j,ℓ) ≤ (i + j + ℓ + 1)dx + i and degy(Pi,j,ℓ) ≤ (i + j + ℓ + 1)dy .

So the set WN (f) is included in the set

VN = spank

{
xiyj

QN+1
| i ≤ (N + 1)dx + N, j ≤ (N + 1)dy

}
,
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where the dimension of VN is (N + 1)(dx + 1)((N + 1)dy + 1) over k. Define a linear map φ :

WN → VN by φ(L) = L(f) for any L ∈ WN . Choosing N = 6(dx + 1)(dy + 1) yields the

inequality (
N + 3

3

)
> (N + 1)(dx + 1)((N + 1)dy + 1),

which implies the kernel of φ is nontrivial whenever N ≥ 6(dx + 1)(dy + 1). Therefore, there

exists a nonzero operator A in k[x]〈Dx,Dy〉 with total degree at most 6(dx +1)(dy +1) in x, Dx,

and Dy that annihilates f . Moreover, A can be found by solving a linear system of size O((dxdy)
3)

over k. The following lemma shows that one can construct a telescoper for f from any y-free

annihilator A(x,Dx,Dy) of f .

Lemma 3.5.1. Let f be a nonzero rational function in k(x, y) and A ∈ k[x]〈Dx,Dy〉 be a nonzero

operator such that A(f) = 0. Then there exists a nonzero operator L(x,Dx) in k[x]〈Dx〉 such

that L(f) = Dy(g) for some g ∈ k(x, y).

Proof. Since Dy commutes with x and Dx, we can write A = Dm
y (L(x,Dx)+DyM), where m ∈ N,

M ∈ k[x]〈Dx,Dy〉, and L is a nonzero operator in k[x]〈Dx〉. By a differential extension of a

“non-commutative” trick, used by Wegschaider in [91, Theorem 3.2], there exist w ∈ k[y] and

nonzero r ∈ k such that

wDm
y = DyQ + r, (3.12)

where Q ∈ k[y]〈Dy〉. In particular, r = (−1)mm! 6= 0 if we take w = ym. Using the fact rDy =

Dyr and (3.12), we find

ym

(−1)mm!
A = L + DyG, where G ∈ k[x, y]〈Dx,Dy〉.

Since A(f) = 0, L(f) = Dy(−G(f)). Note that g = −G(f) is still in k(x, y). This completes

the proof.

From Lipshitz’s argument, we see that there exists a telescoper of order in O(dxdy). Now,

we slightly extend the argument in [20, Section 3] to show that a telescoper of order linear in dy

exists. Instead of taking total degree, set WNx,N∂
to the k-vector space

WNx,N∂
= spank

{
xiDj

xDℓ
y | i ≤ Nx, j + ℓ ≤ N∂

}
.
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where the dimension of WNx,N∂
is (Nx + 1)

(
N∂+2

2

)
over k. By (3.11), the set WNx,N∂

(f) is

included in the set

VNx,N∂
= spank

{
xiyj

QN+1
| i ≤ (N∂ + 1)dx + Nx, j ≤ (N∂ + 1)dy

}
.

where the dimension of VNx,N∂
is ((N∂ + 1)dx + Nx + 1)((N∂ + 1)dy + 1) over k. Choosing Nx =

3dxdy and N∂ = 6dy yields the inequality

(Nx + 1)

(
N∂ + 2

2

)
> ((N∂ + 1)dx + Nx + 1)((N∂ + 1)dy + 1).

Therefore, there exists a nonzero operator A in k[x]〈Dx,Dy〉 with degree at most 3dxdy in x and

total degree at most 6dy in Dx and Dy that annihilates f . Again, A can be found by solving a

linear system, but of smaller size O(dxd3
y) over k. By the construction in Lemma 3.5.1, the order

of L is bounded by 6dy, which is linear in dy.

Remark 3.5.2. The bound 6dy has been shown in [20] for rational functions yDy(Q)/Q with Q ∈
k[x, y]. Apagodu and Zeilberger [16] obtain a similar bound for a class of nonrational hyperexpo-

nential functions, but their proof does not seem to apply to rational functions, as it heavily relies

on the presence of a nontrivial exponential part.

3.6 Implementation and experiments

We describe in this section an implementation of algorithms HermiteTelecoping and RationalAZ,

and compare ours with Maple’s routine.

3.6.1 Implementation and examples

The evaluation-interpolation algorithm HermiteEvalInterp for Hermite reduction in Figure 3.1

does not perform well, mainly because Maple’s rational interpolation routines are far too slow.

We thus implemented Algorithm HermiteReduce (original version) in [21, Section 2.2] (carefully

avoiding redundant extended gcd calculations), and noted that it performs better. We then

implemented a variant of Algorithm HermiteTelescoping in Figure 3.2, using HermiteReduce in

place of HermiteEvalInterp, and including the optimisation at the end of § 3.4.1, refined by ad-

ditional modular calculations. The improved Almkvist-Zeilberger’s algorithm RationalAZ is also

implemented. Those functions form the module RationalCT.
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> eval(RationalCT);

module()

exportSquareFreeParFrac , HermiteReduce , HermiteTelescoping , RationalAZ ;

option package ;

description “Computing the minimal telescoper for a rational function” ;

end module

The function SquareFreeParFrac is used to compute the partial fraction decomposition of

a rational function with respect to the squarefree factorization of its denominator.

> f :=1/(x^3+5*x^2+8*x+4);

f :=
1

x3 + 5x2 + 8x + 4

> SquareFreeParFrac(f, x, ’pfd’);

1, [x, 0, [[x + 2, [1, −1], [1, −1]], [x + 1, [1, 1]]]]

> pfd;

− 1

x + 2
− 1

(x + 2)2
+

1

x + 1

The function HermiteReduce returns the additive decomposition of a rational function with

respect to the specific variable.

> f := 1/(-y+y^2+x)^2;

f :=
1

(−y + y2 + x)2

> HermiteReduce(f, y);

[
−1 + 2 y

(4x − 1) (−y + y2 + x)
,

2

(4x − 1) (−y + y2 + x)
]

In Maple, the function for computing minimal telescopers is DEtools[Zeilberger], which

works for any hyperexponential inputs.

> f := 1/(-y+y^2+x);

f :=
1

−y + y2 + x

> DEtools[Zeilberger](f, x, y, Dx);

[2 + Dx (4x − 1), − −1 + 2 y

−y + y2 + x
]

Our implementation of the algorithms HermiteTelescoping and RationalAZ is as follows.
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> HermiteTelescoping(f, x, y, Dx);

[2 + Dx (4x − 1), − −1 + 2 y

−y + y2 + x
]

> HermiteTelescoping(f, x, y, Dx, ’No_Certificate’);

2 + Dx (4x − 1)

> RationalAZ(f, x, y, Dx);

[2 + Dx (4x − 1), − −1 + 2 y

−y + y2 + x
]

3.6.2 Experimental results

Now, we show some timings by our implementation and others.

Random rational functions

We use the function randpoly in Maple to generate the numerator P and the denominator Q of a

testing rational function with P and Q having the same degree in x and y. We test the following

set of rational functions:

f =
P

Q
, d = degx(P ) = degy(P ) ∈ {1, 2, . . . , 7}.

For brevity, we denote

• AZ: the function DEtools[Zeilberger] in Maple 13;

• Hermite: Hermite-reduction based method;

• RatAZ: improved Almkvist–Zeilberger algorithm.

d 1 2 3 4 5 6 7

AZ 0.054 0.158 2.731 64.75 619.0 > hr > hr

RatAZ 0.019 0.059 0.402 4.461 34.13 220.5 792.1

Hermite 0.016 0.057 0.398 2.664 18.80 106.2 422.5

Table 3.2: Timings on random examples (in seconds)
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Differential equations for algebraic functions

Let α(x) be a univariate algebraic function over k(x) with minimal polynomial P in k[x, y]. The

following lemma shows that one can compute differential equations for algebraic functions via

rational-function telescoping. For the proof, see [20, Proposition 2].

Lemma 3.6.1. If L is a telescoper for yDy(P )/P with respect to y, then L(α(x)) = 0.

In the next table, we show the timings on a set of polynomials in Z[x, y], which are also

generated by the function randpoly. Let d denote the total degree of a polynomial in x and y.

The column gfun (Maple 13) shows the timing by the function algeqtodiffeq in Maple package gfun

and gfun (Algo) by the one in the updated Algolib 13.0 of INRIA Algorithms project.

d 4 5 6 7 8 9 10

RatAZ 0.30 1.05 4.90 21.6 69.5 237. 846.

Hermite 0.21 0.94 4.53 20.5 84.7 231. 864.

gfun (Maple 13) 0.14 0.75 6.92 79.6 1661 > hr > hr

gfun (Algo) 0.10 0.46 2.44 12.2 52.7 157. 464.

Table 3.3: Timings on computing differential equations for algebraic functions (in seconds)

Differential equations for diagonals

For a bivariate rational power series

f =
∑

i,j≥0

fi,jx
iyj ∈ k(x, y) ∩ k[[x, y]],

define its diagonal by

diag(f) :=

∞∑

i=0

fi,ix
i.

The following lemma shows that one can compute differential equations for diagonals of bivariate

rational functions via rational-function telescoping. For the proof, see [67].

Lemma 3.6.2. If L is a telescoper for f(y, x/y)/y with respect to y, then L(diag(f)) = 0.
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First, we compare the various algorithms on an example borrowed from [74]:

f =
1

1 − x − y − xy(1 − xd)
, where d ∈ N.

d 8 9 10 11 12 13 14 15

AZ 3.53 6.33 13.6 38.5 68.1 145. 263. 368.

RatAZ 5.27 4.63 8.72 16.9 36.1 55.4 99.4 352.

Hermite 2.33 4.52 8.71 18.6 36.1 65.3 121. 169.

Table 3.4: Timing on Pemantle and Wilson’s example (in seconds)

The next test is on an example from Stanley’s book [83] related to the plane walks. Let Sd =

{(i, j) ∈ N2|i + j = d}, consider

f(x, y, d) =
1

1 −∑(i,j)∈Sd
xiyj

, where 11 ≤ d ≤ 20.

From the table 3.5, we observed that the order of minimal telescopers is d/2 when d is even.

d 11 12 13 14 15 16 17 18 19 20

AZ 48.7 5.72 144. 12.4 400. 23.9 1016. 46.7 > hr. 81.2

RatAZ 43.8 5.61 129. 11.8 269. 27.9 663.4 45.8 2976. 88.4

Hermite 11.7 2.55 31.9 5.71 91.3 12.8 227.8 21.1 617.9 40.3

Order 11 6 13 7 15 8 17 9 19 10

Table 3.5: Timings on the plane walk examples (in seconds)

We conjecture that this pattern is true for all even d and expect a combinatorial explanation.
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Chapter 4

Structure of Multivariate

Hyperexponential-Hypergeometric

Functions

4.1 Introduction

Multivariate hyperexponential-hypergeometric functions are a generalization of usual exponen-

tial functions and hypergeometric terms. In their paper [92], Wilf and Zeilberger observed

that a large class of identities on special functions are related to the integrals or sums of

proper hyperexponential-hypergeometric functions. Moreover, they have shown that elegant and

computer-constructible proofs for those identities can be obtained efficiently via Zeilberger’s

method of creative telescoping. Hyperexponential-hypergeometric functions also play an impor-

tant role in factoring modules over Laurent-Ore algebras [93].

Motivation. It is useful to decompose a hyperexponential-hypergeometric function as a product

of “simpler” functions of the same kind. For example, Christopher [29] decomposes a hyperex-

ponential function and uses its multiplicative form to compute Liouvillian first integrals [29].

The Ore-Sato theorem [70, 81], which describes the multiplicative structure of hypergeometric

terms, is rediscovered and used by Payne [73], Hou [54], Abramov, and Petkovšek [14] to prove

that Wilf and Zeilberger’s conjecture holds for hypergeometric terms. Feng, Singer, and Wu
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present a multiplicative form for bivariate hyperexponential-hypergeometric function to study

Liouvillian solutions of linear difference-differential equations [43, 42]. We will decompose a mul-

tivariate hyperexponential-hypergeometric function in the hope of studying the general Wilf and

Zeilberger’s conjecture.

Our contribution. We decompose a multivariate hyperexponential-hypergeometric function

into a product of a rational function, a hyperexponential function, a hypergeometric term and

some “simpler” functions. Our result is a generalization of a result by Feng, Singer and Wu [42,

Proposition 5]. Combining this result with multivariate extension of Christopher’s theorem [29,

97] and the Ore-Sato theorem, we present a structure theorem for multivariate hyperexponential-

hypergeometric functions.

The rest of this chapter is organized as follows. We describe in Section 4.2 an algebraic setting

for hyperexponential-hypergeometric functions. Two rational normal forms are reviewed and a

new one is introduced in Section 4.3. We describe a structure of compatible rational functions

in Section 4.4. Based on this structure, we obtain a multiplicative form of hyperexponential-

hypergeometric functions in Section 4.5.

An earlier version of this chapter can be found in [27], which is a joint work (in progress)

with Ziming Li.

4.2 Algebraic setting

We describe an algebraic setting for hyperexponential-hypergeometric functions, which is intro-

duced and used in [62, 22, 93, 66]. We will regard hyperexponential-hypergeometric functions as

elements in some differential-difference extensions over the field of multivariate rational functions.

4.2.1 Hyperexponential-hypergeometric functions

Let A be a commutative ring. Recall that a derivation δ on A is an additive map from A to itself

satisfying the Leibniz rule

δ(ab) = aδ(b) + δ(a)b for all a, b ∈ A.

52



Let ∆ be a finite set of derivations and automorphisms from A to itself. The pair (A,∆) is

called a differential-difference ring, or ∆-ring for short. If the maps in ∆ commute pairwise,

then (A,∆) is said to be orthogonal [62].

Let k be a field of characteristic zero. For brevity, we let x stand for the continuous vari-

ables (x1, . . . , xm) and y for the discrete variables (y1, . . . , yn). Let k(x,y) be the field of rational

functions in x1, . . . , xm and y1, . . . , yn over k. On the field k(x,y), the derivations δi (1 ≤ i ≤ m)

and shift operators σj (1 ≤ j ≤ n) are defined for all f ∈ k(x,y) by

δi(f) =
∂f

∂xi
and σj(f) = f(x, y1, . . . , yj−1, yj + 1, yj+1, . . . , yn).

Put ∆ = {δ1, . . . , δm, σ1, . . . , σn} and note that the elements of ∆ commute pairwise over k(x,y).

So the pair (k(x,y),∆) is a ∆-field.

A ring R is called a ∆-extension of the field k(x,y) if R contains k(x,y), all derivations

can be extended to R, all the shift operators can be extended to monomorphisms to R, and the

extended operators also commute pairwise over R. The set of all extended derivations and shift

operators is still denoted by ∆. The ring R is said to be simple if it contains no ideal closed

under all maps in ∆ except the zero ideal and the whole ring. An element c of R is called a

constant with respect to a derivation δ ∈ ∆ if δ(c) = 0 and a constant with respect to a shift

operator σ ∈ ∆ if σ(c) = c. An element c of R is called a constant if it is a constant with respect

to all operators in ∆. The set of all constants of R, denoted by CR, is a subring of R. The

ring CR is a subfield if R is a field.

Definition 4.2.1. Let R be a ∆-extension of k(x,y). A nonzero element h of R is said to be

hyperexponential-hypergeometric over k(x,y) if there exist a1, . . . , am, b1, . . . , bn ∈ k(x,y) such

that b1 · · · bn 6= 0 and

δ1(h) = a1h, . . . , δm(h) = amh, and σ1(h) = b1h, . . . , σn(h) = bnh. (4.1)

The rational functions ai and bj above are called the certificates of h with respect to xi and yj,

respectively.

According to the definition above, it is easy to see that derivatives, shifts, and products of

hyperexponential-hypergeometric functions are also hyperexponential-hypergeometric. If R is

simple, then any hyperexponential-hypergeometric element in R is invertible [66, Lemma 2.1].
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Since all elements in ∆ commute pairwise, the certificates ai’s and bj ’s in Definition 4.2.1 satisfy

three sets of integrability conditions:

δi(aj) = δj(ai) for 1 ≤ i < j ≤ m, (4.2)

σi(bj)bi = σj(bi)bj for 1 ≤ i < j ≤ n, (4.3)

δi(bj)

bj
= σj(ai) − ai for 1 ≤ i ≤ m and 1 ≤ j ≤ n. (4.4)

In the discrete case, rational functions b1, . . . , bn ∈ k(y) in [14] are said to be compatible if they

satisfy the integrability conditions (4.3). We follow this and call a1, . . . , am, b1, . . . , bn in k(x,y)

compatible if they satisfy the integrability conditions (4.2), (4.3), and (4.4). As opposed to the

treatment in [14], we regard the discrete variables y1, . . . , yn as indeterminates, and, thus, the

function h = |y1 − y2| is excluded in the thesis.

4.2.2 First-order fully integrable systems

A ∆-extension of k(x,y) may not be an integral domain in general. For this reason, we need to

construct a simple ∆-ring, in which any hyperexponential-hypergeometric element is invertible.

We specialize the construction in [22, Section 3] for finitely many first-order systems.

Definition 4.2.2. Let a1, . . . , am, b1, . . . , bn be rational functions in k(x,y). A first-order system

δ1(z) = a1z, . . . , δm(z) = amz, σ1(z) = b1z, . . . , σn(z) = bnz, (4.5)

is said to be fully integrable over k(x,y) if b1 · · · bn 6= 0 and a1, . . . , am, b1, . . . , bn are compatible.

According to Theorem 2 in [22], given a finite number of first-order fully integrable sys-

tems, there exists a simple differential-difference extension R of k(x, n) such that R contains

a nonzero solution of each system. Moreover, the subring of constants in R is equal to k if k

is algebraically closed. Let H(a,b) denote the solution space of the first-order fully integrable

system (4.5) in such an extension R. By Theorem 2 in [22], H(a,b) is one-dimensional over k

if k is algebraically closed. In the rest of this chapter, hyperexponential-hypergeometric func-

tions will be regarded as elements in such an extension R. Therefore, it is legitimate to add,

multiply and invert hyperexponential-hypergeometric functions. Following Definition 2 in [14],

two hyperexponential-hypergeometric functions are said to be conjugate if they have the same
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Function Expression Conjugates given by H(a,b)-Notation

exponential exp(f) H(δ1(f), . . . , δm(f), 1, . . . , 1)

constant power βλ H(λ δ1β
β

, . . . , λ δmβ
β

, 1, . . . , 1)

symbolic power βyj H
(
yj

δ1β
β

, . . . , yj
δmβ

β
, 1, . . . , 1, β, 1, . . . , 1

)

factorial (λ)e·y H
(
0, . . . , 0,

∏e1−1
ℓ=0 (e · y + λ + ℓ), . . . ,

∏en−1
ℓ=0 (e · y + λ + ℓ)

)

(In the table above, f, β ∈ k(x), λ ∈ k, and e ∈ Zn.)

Table 4.1: Familiar functions and their H(a,b)-representations

certificates. Two conjugate functions can only differ by a nonzero multiplicative element in k if k

is algebraically closed.

The following lemma shows some basic properties of the space H(a,b). They are derived

directly from the definition.

Lemma 4.2.3. (i) For any hyperexponential-hypergeometric function g over k(x,y), we have

gH(a1, . . . , am, b1, . . . , bn) = H
(

a1 +
δ1(g)

g
, . . . , am +

δm(g)

g
, b1

σ1(g)

g
, . . . , bn

σn(g)

g

)
.

(ii) H(a,b)H(ã, b̃) = H(a + ã,bb̃), where a + ã and bb̃ are defined termwise.

(iii) δi(H(a,b)) = aiH(a,b) for 1 ≤ i ≤ m and σj(H(a,b)) = bjH(a,b) for 1 ≤ j ≤ n.

Some examples for hyperexponential-hypergeometric functions are listed in Table 4.1.

4.3 Rational normal forms

In this section, we review two normal forms for univariate rational functions in [13, 10, 47]. Those

normal forms have played an important role in the minimal decompositions of hyperexponential

and hypergeometric functions [47, 12, 13, 10]. In order to study the compatible multivariate

rational functions in the next sections, we introduce a new kind of rational normal forms for the

continuous-discrete rational functions in k(x,y).
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4.3.1 Differential and shift rational normal forms

Let F be a field of characteristic zero. The field F (z) of univariate rational functions is equipped

with both differential and difference structures by

δ(f(z)) =
d(f(z))

dz
and σ(f(z)) = f(z + 1) for all f ∈ F (z) .

A polynomial P ∈ F [z] is said to be squarefree with respect to z over F if gcd(P, δ(P )) = 1.

It is said to be shift-free if gcd(P, σi(P )) = 1 for all i ∈ Z \ {0}. In other words, any two

roots of a shift-free polynomial have a non-integer distance. In the following, we collect basic

facts concerning rational functions whose denominators are squarefree or shift-free, which has

appeared implicitly in the literature [2, 71, 52, 53].

Lemma 4.3.1. Let f = P/Q be in F (z) with gcd(P,Q) = 1 and deg(P ) < deg(Q). Then

(i) If Q is squarefree and f = δ(g) for some g ∈ F (z), then f = 0.

(ii) If Q is shift-free and f = σ(g) − g for some g ∈ F (z), then f = 0.

Definition 4.3.2 (Differential-reduced, shift-reduced). A rational function f = P/Q ∈ F (z)

with gcd(P,Q) = 1 is said to be differential-reduced with respect to z over F if

gcd(Q,P − iδ(Q)) = 1, for all i ∈ Z.

It is said to be shift-reduced with respect to z over F if

gcd(P, σi(Q)) = 1, for all i ∈ Z.

The following lemmas show basic properties of differential-reduced and shift-reduced rational

functions, respectively. Those results are seemingly classical in [51, 15, 47, 13], but we still

present their proofs for completeness.

Lemma 4.3.3. Let f = P/Q ∈ F (z) be differential-reduced with respect to z, where P,Q ∈ F [z]

and gcd(P,Q) = 1. If f = δ(g)/g for some g ∈ F (z), then g ∈ F and f = 0.

Proof. Suppose that g ∈ F (z) \ F . Then

f =
δ(g)

g
=

s∑

i=1

mi

z − αi
, where mi ∈ Z and αi ∈ F for all i with 1 ≤ i ≤ s.

By Theorem 2.3.8, the mi’s are roots of RTz(f). So gcd(Q,P −miδ(Q)) 6= 1, which contradicts

the assumption that f is differential-reduced. So g ∈ F and therefore f = 0.
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Lemma 4.3.4. Let f ∈ F (z) be shift-reduced with respect to z over F . If f = σ(g)/g for

some g ∈ F (z), then g ∈ F and f = 1.

Proof. Let g = a/b with a, b ∈ F [z] and gcd(a, b) = 1. Suppose that g is not in F . Then

either a or b has a positive degree. Assume that the degree of a is positive. Then there exists an

element α ∈ F such that α is a root of a, but α− 1 is not. Moreover, there exists a nonnegative

integer ℓ such that α + ℓ is a root of a but α + ℓ + 1 is not.

Set β = α + ℓ. Since f = σ(g)/g,

f =
σ(a)b

aσ(b)
.

We have that α − 1 is a root of σ(a), but not a root of aσ(b) by the definition of α and

since gcd(σ(a), σ(b)) = 1. Similarly, β is a root of a, but not a root of σ(a)b by the definition

of β and since gcd(a, b) = 1. It follows that α−1 is a root of the numerator of f , while β is a root

of the denominator of f . Since β − (α − 1) is an integer, f is not shift-reduced, a contradiction.

Hence, a belongs to F . In the same vein, b belongs to F .

Definition 4.3.5 (Differential rational normal form). For f ∈ F (z), call a pair (K,S) ∈ F (z)2

a differential rational normal form (abbreviated as DRNF) of f if f = K + δ(S)/S and K is

differential-reduced with respect to z over F . If, in addition, the denominators of K and S are

coprime, then the pair (K,S) is said to be a strict DRNF of f .

Definition 4.3.6 (Shift rational normal form). For f ∈ F (z), call a pair (K,S) ∈ F (z)×F (z) a

shift rational normal form (abbreviated as SRNF) of f if f = K · σ(S)/S and K is shift-reduced

with respect to z over F . Let k1 = num(K), k2 = den(K), s1 = num(S) and s2 = den(S). If,

furthermore,

gcd(k1, σ(s2)s1) = gcd(k2, σ(s1)s2) = 1,

then the pair (K,S) is said to be a strict SRNF of f .

Both strict DRNF’s and strict SRNF’s exist and can be computed efficiently [47, 13]. Let h(z)

be a hyperexponential or hypergeometric function over F (z) with certificate f in F (z). Any

differential or shift rational normal form (K,S) of f leads to a multiplicative factorization of h

in the form

h(z) = Sh′, where the certificate of h′ is K.
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From this factorization, one can perform two kinds of minimal decompositions on h, which will

be reviewed in the next chapter.

4.3.2 Y-rational normal forms

We introduce a new normal form for rational functions in k(x,y), which will help us derive the

structure of certificates in the continuous-discrete setting.

For brevity, we set Fi = k(x1, . . . , xi−1, xi+1, . . . xm,y) for all i ∈ {1, . . . ,m}, and abbreviate

“irreducible partial fraction decomposition” as IPFD.

For a nonzero element r ∈ k(x,y), its IPFD with respect to xi can be written as

r = p0 +
ℓ∑

i=1

ni∑

j=1

pij

qj
i

where p0, pij , qi are in Fi[xi] such that degxi
(pij) < degxi

(qi) and qi is monic and irreducible.

Let Y be the additive group generated by 1, y1, . . . , yn. Let r and its IPFD with respect to xi

be given above. We define rS to be the sum of all fractions of the form pi,1/qi with the following

two properties

(i) pi,1 = yδi(qi) for some nonzero element y ∈ Y, and

(ii) ni = 1, that is, q2
i does not divide the denominator of r.

Furthermore, set rK = r − rS. We call rK the Y-kernel, and rS the Y-shell of r with respect

to xi. For completeness, the Y-kernel and Y-shell of zero are both defined to be zero.

Note that a Y-shell with respect to xi can be written as

rS =
δi(f)

f
+

n∑

j=1

yj
δi(uj)

uj

for some f, uj ∈ k(x,y). Moreover, the denominators of the Y-kernel and Y-shell of a nonzero

rational function are coprime.

Lemma 4.3.7. Let r be a nonzero rational function in k(x,y) with Y-kernel rK and Y-shell rS

with respect to xi. Let g = yδi(q)/q, where y is a nonzero element of Y, and q is a monic and

irreducible polynomial in Fi[xi] with positive degree.

58



(i) If q is a divisor of the denominator of rK , then the Y-kernel and Y-shell of r+g are rK +g

and rS, respectively.

(ii) If q is not a divisor of the denominator of rK , then the Y-kernel and Y-shell of r+g are rK

and rS + g, respectively.

Proof. Since the denominator q of g is irreducible, it suffices to look at q-expansions of r instead

of its IPFD. The q-adic expansion of r with respect to xi can be written as:

r =
pℓ

qℓ
+ · · · + p2

q2
+

p1

q
+ higher terms, (4.6)

where pℓ, . . . , p2, p1 ∈ Fi[xi] with degrees less than the degree of q in xi. It follows that the q-adic

expansion of r + g with respect to xi is

r + g =
pℓ

qℓ
+ · · · + p2

q2
+

p1 + yδ(q)

q
+ higher terms. (4.7)

Assume that q is a divisor of the denominator of rK . Then one of p1, p2, . . . , pℓ is nonzero. If

one of p2, . . . , pℓ is nonzero, then there is no fraction with denominator q appearing in the IPFD

of the Y-shell of r + g. The first assertion holds. If p2, . . . , pℓ are all equal to zero, then p1 is

nonzero. By the definition of Y-shells, p1 is not a product of δ(q) and a nonzero element in Y,

and nor is p1 + yδi(q). Hence, the fraction (p1 + yδi(q))/q appears in the IPFD of the Y-kernel

of r + g. The first assertion holds again.

Assume that q is not a divisor of the denominator of rK . Then p1 in (4.6) is of the form y′δi(q)

for some y′ ∈ Y (noting that y′ may possibly be zero). Moreover, all p2, . . . , pℓ are equal to zero.

Hence, (4.7) becomes

r + g = (y′ + y)
δi(q)

q
+ higher terms.

It follows that the Y-shell of r + g is equal to rS + g.

We now define five additive subgroups of k(x,y) in order to suppress complicated expressions

that would appear. Let

Li =

{
δi(f)

f
| f ∈ k(x,y), f 6= 0

}
,

Mi =

{
n∑

ℓ=1

yℓ
δi(uℓ)

uℓ

| uℓ ∈ k(x), uℓ 6= 0

}
,
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and

Mi,j =





j−1∑

ℓ=1

yℓ
δi(vℓ)

vℓ
+

n∑

ℓ=j+1

yℓ
δi(vℓ)

vℓ
| vℓ ∈ k(x, yj), vℓ 6= 0



 .

Moreover, let Ni = Li + Mi + k(x) and Ni,j = Li + Mi,j + k(x, yj).

Remark 4.3.8. Let G be one of the subgroups Li,Mi, Ni,Mi,j , Ni,j . If r belongs to G, so does

every fraction appearing in the IPFD of r with respect to xi.

The next lemma is rather technical. It tells us how the Y-shell and Y-kernel of an element

in Ni,j look like.

Lemma 4.3.9. Let i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. Let a be a nonzero element of Ni,j

with Y-kernel aK and Y-shell aS with respect to xi. Then there exists u ∈ k(x, yj) such that

aK ≡ 0 mod Mi,j + k(x, yj) and aS ≡ yj
δi(u)

u
mod Li + Mi,j .

Proof. Without loss of generality, assume that i = 1 and j = n. All the IPFD’s, Y-kernels and

Y-shells in the proof are with respect to x1. Our goal is to show that

aK ≡ 0 mod M1,n + k(x, yn) and aS ≡ yn
δ1(u)

u
mod L1 + M1,n (4.8)

for some u ∈ k(x, yn).

Since a ∈ N1,n, there exists r ∈ k(x, yn) such that

a ≡ r mod L1 + M1,n.

Assume that rK and rS are the Y-kernel and Y-shell of r, respectively. Then

rK ∈ k(x, yn) and rS =
δ1(f)

f
+ yn

δ1(u)

u
.

where f, u ∈ k(x, yn). Using congruences, we have

rK ≡ 0 mod M1,n + k(x, yn) and rS ≡ yn
δ1(u)

u
mod L1 + M1,n (4.9)

To proceed, we denote by p the denominator of rK , which is viewed as a polynomial in x1

over k(x2, . . . , xm, yn). Let b = a − r, which is in L1 + M1,n. If b = 0, then there is nothing to

prove. Assume that b 6= 0, and that g is a fraction appearing in the IPFD of b. By the definitions
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of L1 and M1,n, we have that g = yδ1(q)/q, where y is a nonzero element in Y free of yn, and q is

a monic and irreducible polynomial in x1 over k(x2, . . . , xm,y). We now make a case distinction.

Case 1. If q is a divisor of p, then we set r′K = rK + g and r′S = rS .

Case 2. If q is not a divisor of p, then we set r′K = rK and r′S = rS + g.

Let r′ = r′K +r′S. By Lemma 4.3.7, r′K and r′S are the Y-kernel and Y-shell of r′, respectively.

In Case 1, q is a factor of p. So q is in k(x, yn). Accordingly, g is in M1,n + k(x, yn). It follows

from (4.9) that

r′K ≡ 0 mod M1,n + k(x, yn) and r′S ≡ yn
δ1(u)

u
mod L1 + M1,n.

By Remark 4.3.8, g is in L1 + M1,n, which, together with (4.9), implies that the above two

congruences also hold in Case 2.

Since a − r′ = a − r − g and g ∈ L1 + M1,n, we have

a ≡ r′ mod L1 + M1,n.

Let b′ = a − r′. Then the number of fractions in the IPFD of b′ is less than that in the IPFD

of b. Repeating the same argument on b′, we see that (4.8) follows from an easy induction.

The lemma below is useful to generalize Proposition 5 in [42].

Lemma 4.3.10. Let i ∈ {1, . . . ,m} and p, q ∈ {1, . . . , n} with p 6= q. Then

Ni,p ∩ Ni,q = Ni.

Proof. Without loss of generality, we assume that i = 1, p = 1, q = n and n > 1. Since

M1 ⊂ M1,1 + k(x, y1) and M1 ⊂ M1,n + k(x, yn),

we have N1 is included in the intersection N1,1 and N1,n by definition. It suffices to show

the opposite inclusion. Assume that a is a nonzero element in the intersection of N1,1 and N1,n.

Let aS and aK be, respectively, the Y-shell and Y-kernel of a with respect to x1. By Lemma 4.3.9,

the Y-shell of a with respect to x1 is of the form

aS =
δ1(f1)

f1
+

n∑

j=1

yj
δ1(vj)

vj
=

δ1(f
′
1)

f ′
1

+

n∑

j=1

yj

δ1(v
′
j)

v′j
,
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where f1, f
′
1 ∈ k(x,y), vj ∈ k(x, y1) and v′j ∈ k(x, yn) for all j with 1 ≤ j ≤ n. Since the

elements 1, y1, . . . , yn are Z-linearly independent constants with respect to δ1, Corollary 2.3.5

implies that
δ1(f1)

f1
=

δ1(f
′
1)

f ′
1

and
δ1(vj)

vj
=

δ1(v
′
j)

v′j

for all j with 1 ≤ j ≤ n. Since the differential equation

δ1(z) =
δ1(v

′
j)

v′j
z

has a solution vj ∈ k(x, y1) and its coefficients belong to k(x, yn), it must have a solution uj

in k(x). Hence,

aS =
δ1(f1)

f1
+

n∑

j=1

yj
δ1(uj)

uj
∈ N1.

It remains to show that the Y-kernel of a with respect to x1 belongs to N1. By Lemma 4.3.9,

the Y-kernel of a is of the form

aK = yn
δ1(wn)

wn
+

n−1∑

ℓ=2

yℓ
δ1(wℓ)

wℓ

+ s = y1
δ1(w

′
1)

w′
1

+
n−1∑

ℓ=2

yℓ

δ1(w
′
ℓ)

w′
ℓ

+ s′,

where w2, . . . , wn, s ∈ k(x, y1) and w′
1, . . . , w

′
n−1, s

′ ∈ k(x, yn). Note that aK is a polynomial

in y1 over k(x, y2, . . . , yn) whose degree (in y1) is less than or equal to 1 by the second equality

given above. So w2, . . . , wn in the first equality can be taken as elements in k(x). For, otherwise,

the denominator of aK would involve y1, a contradiction. It follows that

s = cy1 + d,

where c, d ∈ k(x). In the same vein, we have

aK = y1
δ1(w

′
1)

w′
1

+

n−1∑

ℓ=2

yℓ

δ1(w
′
ℓ)

w′
ℓ

+ c′yn + d′,

where w′
1, . . . , w

′
n−1, and c′, d′ are chosen to be in k(x). It follows that c = δ1(w

′
1)/w

′
1. Conse-

quently,

aK = y1
δ1(w

′
1)

w′
1

+

n∑

ℓ=2

yℓ
δ1(wℓ)

wℓ
+ d,

which belongs to N1. We have proved that both aS and aK are in N1, and so is a.

The lemma below can be viewed as a discrete analogue of Lemma 4.3.10.
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Lemma 4.3.11. Let p, q ∈ {1, . . . ,m} with p 6= q, and j ∈ {1, . . . , n}. If a nonzero rational

function b ∈ k(x,y) can be written as

b =
σj(fp)

fp
βpαp =

σj(fq)

fq
βqαq (4.10)

for some fp, fq ∈ k(x,y), βp, βq ∈ k(x), αp ∈ k(xp,y) and αq ∈ k(xq,y), then there exist f ∈
k(x,y), α ∈ k(y), and β ∈ k(x) such that

b =
σj(f)

f
βα.

Proof. Without loss of generality, we may assume that both αp and αq are shift-reduced with

respect to yj. Suppose that
αp

αq
=

σj(g)

g

1

u
, (4.11)

in which (g, 1/u) is a shift rational normal form of αp/αq with respect to yj . Then g belongs

to k(y), because xp and xq are two distinct indeterminates, and αp, αq are shift-reduced. It

follows from (4.10) and (4.11) that
σj(w)

w
=

βq

βp
u,

where w = gfp/fq. Since u is shift-reduced with respect to yj , and βp, βq ∈ k(x), the above

equation and Lemma 4.3.4 imply that σj(w) = w, and

βq

βp
u = 1,

and, hence, u ∈ k(x). By (4.11), αp ∈ k(xp,y) is a product of an element in k(y), an element

in k(x), and αq in k(xq,y). By the uniqueness of the factorization of rational functions, αp can

be written as a product cd for some c ∈ k(xp) and d ∈ k(y). Setting f = fp, β = βpc, and αp = d

yields the lemma.

4.4 Structure of compatible rational functions

The goal of this section is to show the following theorem, which describes the structure of

compatible rational functions. To this end, let us recall a useful notation from Payne’s thesis [73].

For any integers a, b ∈ Z and a sequence of expressions Ai, define

∏b

a
i

Ai =





∏b−1
i=a Ai, if b > a;

1, if b = a;

1/
∏a−1

i=b Ai, if b < a.
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Theorem 4.4.1. Assume that a1, . . . , am, b1, . . . , bn ∈ k(x,y) are m + n rational functions such

that b1 · · · bn 6= 0, and that all the equalities in (4.2), (4.3) and (4.4) hold. Then there exist f ∈
k(x,y), univariate rational functions rv ∈ k(z) for each v in a finite set V ⊂ Zn, c1, . . . , cL ∈ k̄,

g0, β1, . . . , βn ∈ k(x), and g1, . . . , gL ∈ k̄(x) such that

ai = δi(g0) +
δi(f)

f
+

L∑

ℓ=1

cℓ
δi(gℓ)

gℓ
+

n∑

j=1

yj
δi(βj)

βj
for all i with 1 ≤ i ≤ m, (4.12)

and

bj =
σj(f)

f
βj

∏

v∈V

∏vj

0
p

rv(y · v + p) for all j with 1 ≤ j ≤ n. (4.13)

where y · v denotes the inner product y1v1 + . . . + ynvn.

Before proving this theorem, we review two special cases in Sections 4.4.1 and 4.4.2.

4.4.1 The Ore-Sato theorem

The structure of rational solutions of the recurrence equation

R1(m,n + 1)R2(m,n) = R1(m,n)R2(m + 1, n)

has been described by Ore [70]. The multivariate extension of Ore’s theorem was obtained by

Sato [81] in the 1960s when he developed the theory of prehomogeneous vector spaces. In the pro-

cess of proving the discrete case of Wilf and Zeilberger’s conjecture on holonomic hypergeometric

terms, the Ore-Sato theorem was discovered and proved again by Payne in his Ph.D. thesis [73]

and independently by Abramov and Petkovšek [14]. In particular, the case of two variables has

also been shown by Hou [54, 55] and by Abramov and Petkovšek [12]. Their results reveal a

multiplicative structure of the certificates b1, . . . , bn of a hyperexponential-hypergeometric func-

tion from its integrability conditions (4.3). The following presentation of the Ore-Sato theorem

is taken from Payne’s thesis [73, Theorem 2.8.4].

Theorem 4.4.2 (Ore-Sato theorem). Let b1, . . . , bn ∈ k(y) be nonzero rational functions such

that

biσi(bj) = bjσj(bi), for 1 ≤ i < j ≤ n.
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Then there exist a rational function f ∈ k(y), a finite set V ⊂ Zn, and univariate rational

functions rv in k(z) for each v ∈ V such that for all j with 1 ≤ j ≤ n,

bj =
σj(f)

f

∏

v∈V

∏vj

0
p

rv(y · v + p),

where y · v denotes the inner product y1v1 + . . . + ynvn.

4.4.2 Alternative proof of multivariate Christopher’s theorem

A multivariate hyperexponential function h(x) is a nonzero solution of the first-order fully inte-

grable system

δ1(z) = a1z, . . . , δm(z) = amz,

where a1, . . . , am are compatible rational functions in k(x), i.e., they satisfy the integrability

conditions (4.3). In his refinement of Singer’s theorem [82] on Liouvillian first integrals, Christo-

pher [29] has described a possible form for those compatible ai’s in the bivariate case.

Theorem 4.4.3 (Christopher, 1999). Any bivariate hyperexponential function h(x1, x2) over the

field C(x1, x2) can be written as

exp(f)

L∏

ℓ=1

gcℓ

ℓ , where f, gℓ ∈ C(x1, x2) and cℓ ∈ C.

Consequently, the two certificates a1 and a2 of h(x1, x2) can be written as

ai = δi(f) +

L∑

ℓ=1

cℓ
δi(gℓ)

gℓ
, for i = 1, 2.

Zoladek [97] has shown the multivariate extension of Christopher’s theorem by using a result

in Cerveau and Mattei’s book [25]. We offer an alternative proof involving only rational functions.

Theorem 4.4.4 (Multivariate Christopher’s theorem). Let a1, . . . , am ∈ k(x) be rational func-

tions such that

δi(aj) = δj(ai), for 1 ≤ i < j ≤ m.

Then there exist f ∈ k(x), nonzero elements cℓ ∈ k, and gℓ ∈ k(cℓ)(x) for 1 ≤ ℓ ≤ n such that

ai = δi(f) +

n∑

ℓ=1

cℓ
δi(gℓ)

gℓ
, for i = 1, . . . ,m.
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The proof proceeds by induction on m. To this end, we first present a lemma for the induction

step. In the proof of the lemma below, we use the formula:

δi

(
δj(f)

f

)
= δj

(
δi(f)

f

)
for all nonzero f ∈ k(x) and 1 ≤ i < j ≤ m. (4.14)

Lemma 4.4.5. Let K denote k(x2, x3, . . . , xm) and a1, . . . , am ∈ k(x) be rational functions such

that

δi(aj) = δj(ai) for all i, j with 1 ≤ i < j ≤ m.

Then there exist f ∈ k(x), Aℓ ∈ K with ℓ = 2, . . . ,m, nonzero elements cj ∈ k and pj ∈
K(cj)[x1] \ K(cj) with 1 ≤ j ≤ n for some finite n ∈ N such that δi(Aj) = δj(Ai) for all i, j

with 2 ≤ i < j ≤ m, and

a1 = δ1(f) +

n∑

j=1

cj
δ1(pj)

pj
,

aℓ = δℓ(f) +

n∑

j=1

cj
δℓ(pj)

pj
+ Aℓ for ℓ = 2, . . . ,m.

Moreover, the pj’s are pairwise coprime polynomials over K(c1, . . . , cn).

Proof. Lemma 2.3.9 asserts that the theorem holds for m = 1. Applying Lemma 2.3.9 to a1 ∈
K(x1) yields that there exist f ∈ k(x), nonzero elements cj ∈ K and pj ∈ K(cj)[x1] \ K(cj)

with 1 ≤ j ≤ n for some n ∈ N such that

a1 = δ1(f) +

n∑

j=1

cj
δ1(pj)

pj
. (4.15)

Moreover, the cj ’s are the distinct roots of the Rothstein-Trager resultant of the logarithmic

part A/D of a1 with respect to x1 and pj = gcd(D,A − cjδ1(D)). So the pj’s are pairwise

coprime polynomials over K(c1, . . . , cn) by Lemma 2.3.7.

We show that all the cj’s are in k. For all ℓ with 2 ≤ ℓ ≤ m, the commutative formula (4.14)

implies

δℓ(a1) = δ1(δℓ(f)) + δ1




n∑

j=1

cj
δℓ(pj)

pj


 +

n∑

j=1

δℓ(cj)
δ1(pj)

pj
.

Now, it follows from the integrability condition δℓ(a1) = δ1(aℓ) that

δ1


aℓ − δℓ(f) −

n∑

j=1

cj
δℓ(pj)

pj


 =

n∑

j=1

δℓ(cj)
δ1(pj)

pj
.

66



Since pj ∈ K(cj)[x1] \K(cj), we have δ1(pj) 6= 0. By Lemma 2.3.4, for all ℓ with 2 ≤ ℓ ≤ m, we

have δℓ(cj) = 0 and

aℓ = δℓ(f) +

n∑

j=1

cj
δℓ(pj)

pj
+ Aℓ, for some Aℓ ∈ K(c1, . . . , cn).

So the cj ’s are in k by Lemma 3.3.2 in [21]. Moreover, for all ℓ with 2 ≤ ℓ ≤ m, the sum

n∑

j=1

cj
δℓ(pj)

pj

is in k(x), because the cj ’s are distinct roots of some Rothstein-Trager resultant with coefficients

in k(x2, . . . , xm) and the sum above is invariant under every permutation of the cj’s. This implies

the Aℓ’s are in K. The integrability conditions δi(aj) = δj(ai) imply that δi(Aj) = δj(Ai) for

all i, j with 2 ≤ i < j ≤ m. This completes the proof.

Now, we present the proof of Theorem 4.4.4.

Proof. We proceed by induction on m. Lemma 2.3.9 asserts the theorem holds for the base

case m = 1. We assume that m ≥ 2 and that the theorem holds for m − 1. Let K de-

note k(x2, x3, . . . , xm). By Lemma 4.4.5, there exist f ∈ k(x), Aℓ ∈ K for ℓ = 2, . . . ,m, nonzero

elements cj ∈ k and pj ∈ K(cj)[x1] \ K(cj) with 1 ≤ j ≤ n for some finite n ∈ N such that

δi(Aj) = δj(Ai), for all i, j with 2 ≤ i < j ≤ m, and

a1 = δ1(f) +
n∑

j=1

cj
δ1(pj)

pj
,

aℓ = δℓ(f) +

n∑

j=1

cj
δℓ(pj)

pj
+ Aℓ, for ℓ = 2, . . . ,m.

By the induction hypothesis, for the m − 1 rational functions Aℓ, there exist f̄ ∈ K, nonzero

elements c̄j ∈ k and p̄j ∈ K(cj) for j = 1, . . . , n̄ such that

Aℓ = δℓ(f̄) +
n̄∑

j=1

c̄j
δℓ(p̄j)

p̄j
, for all ℓ with 2 ≤ ℓ ≤ m.

Since the f̄ and p̄j’s are free of x1, we have

ai = δi(f + f̄) +
n∑

j=1

cj
δi(pj)

pj
+

n̄∑

j=1

c̄j
δi(p̄j)

p̄j
, for all i with 1 ≤ i ≤ m.

This completes the proof.
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4.4.3 Multivariate extension of Feng-Singer-Wu’s lemma

In the bivariate continuous-discrete case, Feng, Singer, and Wu [42, Proposition 5] have shown

that there exist f ∈ k(x1, y1), α ∈ k(y1), and β, γ ∈ k(x1) such that

a1 =
δ1(f)

f
+ y1

δ1(β)

β
+ γ and b1 =

σ1(f)

f
βα.

These two equalities are used to develop algorithms for computing Liouvillian solutions of prime-

order linear difference-differential equations in [42]. We generalize Feng-Singer-Wu’s result to the

multivariate case.

Theorem 4.4.6. Assume that a1, . . . , am, b1, . . . , bn are in k(x,y) with b1 · · · bn 6= 0. If all

the equalities in (4.2), (4.3) and (4.4) hold, then there exist f ∈ k(x,y), β1, . . . , βn ∈ k(x),

γ1, . . . , γm ∈ k(x) and α1, . . . , αn ∈ k(y) such that

ai =
δi(f)

f
+

n∑

j=1

yj
δi(βj)

βj
+ γi for all i with 1 ≤ i ≤ m, (4.16)

and

bj =
σj(f)

f
βjαj for all j with 1 ≤ j ≤ n. (4.17)

Moreover, all the equalities in (4.2), (4.3) and (4.4) remain valid if ai is replaced by γi and bj is

replaced by αj for all i with 1 ≤ i ≤ m and j with 1 ≤ j ≤ n.

Before presenting a proof of the theorem, we look at a few special cases. If n = 0, then we

may set f = 1 and γi = ai for all i with 1 ≤ i ≤ m. Similarly, if m = 0, then we set f = 1,

βj = 1 and bj = αj for all j with 1 ≤ j ≤ n. Hence, the theorem holds if either n = 0 or m = 0.

If m = n = 1, then the theorem holds by Proposition 5 in [42]. Note that k is assumed to

be algebraically closed in [42]. But the proposition holds without this assumption when one

reads their proof carefully. Hence, it suffices to show the theorem when m > 1 and n ≥ 1 or

when m ≥ 1 and n > 1.

The proof proceeds by induction on m and n. To this end, we first show that Theorem 4.4.6

holds for m = 1 and n arbitrary.

Lemma 4.4.7. Let a, b1, . . . , bn be rational functions in k(x,y) such that b1, . . . , bn satisfy the

integrability condition (4.3), b1 · · · bn 6= 0 and

δ(bj)

bj
= σj(a) − a for all j with 1 ≤ j ≤ n, (4.18)
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where δ = d/dx. Then there exist f ∈ k(x,y), α1, . . . , αn ∈ k(y), β1, . . . , βn ∈ k(x), and γ ∈ k(x)

such that

a =
δ(f)

f
+

n∑

j=1

yj
δ(βj)

βj
+ γ and bj =

σj(f)

f
βjαj for 1 ≤ j ≤ n. (4.19)

Moreover, the αi’s also satisfy (4.3).

Proof. We proceed by induction on n. If n = 1, then the lemma follows from Proposition 5

in [42]. Assume that n is greater than 1, and the claim holds for the values lower than n. Re-

gard a, b1, . . . , bn as rational functions in x, y1, . . . , yn−1 over k(yn). By the induction hypothesis,

there exist f̃ in k(x,y), β̃1, . . . , β̃n−1 in k(x, yn) and γ̃ in k(x, yn) such that

a =
δ(f̃ )

f̃
+ y1

δ(β̃1)

β̃1

+ · · · + yn−1
δ(β̃n−1)

β̃n−1

+ γ̃.

Similarly, regarding a, b1, . . . , bn as rational functions in x, y2, . . . , yn over k(y1), we have

a =
δ(f ′)

f ′
+ y2

δ(β′
2)

β′
2

+ · · · + yn
δ(β′

n)

β′
n

+ γ′,

where f ′ is in k(x,y), β′
2, . . . , β

′
n are in k(x, y1), and γ′ is in k(x, y1). It follows from Lemma 4.3.10

that there exist f ∈ k(x,y) and β1, . . . , βn, γ ∈ k(x) such that

a =
δ(f)

f
+

n∑

j=1

yj
δ(βj)

βj
+ γ. (4.20)

Assume that, for j with 1 ≤ j ≤ n,

bj =
σj(f)

f
βjαj (4.21)

for some αj ∈ k(x,y). By (4.20),

σj(a) − a =
σj(δ(f))

σj(f)
− δ(f)

f
+

δj(β)

β
,

and, by (4.21),
δ(bj)

bj
=

δ(σj(f))

σj(f)
− δ(f)

f
+

δ(βj)

βj
+

δ(αj)

αj
.

These two equalities, the integrability condition (4.18), and the commutativity of δ and σj imply

δ(αj)

αj
= 0.

Consequently, αj belongs to k(y). By (4.3), the αj’s in the above proof satisfy

σq(αj)

αj
=

σj(αq)

αq

for all j, q with 1 ≤ j < q ≤ n. This completes the proof.
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Now, we present a proof of Theorem 4.4.6.

Proof. We proceed by induction on m with Lemma 4.4.7 as our induction base. Let n be a fixed

positive integer, and assume that the theorem holds for the values lower than m. Consider the

continuous variables x1, . . . , xm−1 and the discrete ones y1, . . . , yn over k(xm). We have, for

all j with 1 ≤ j ≤ n, there exist f̃j ∈ k(x,y), β̃j ∈ k(x) and α̃j ∈ k(xm,y) such that

bj =
σj(f̃j)

f̃j

β̃jα̃j .

Consider the continuous variables x2, . . . , xm and the discrete ones y1, . . . , yn over k(x1). We

have that for all j with 1 ≤ j ≤ n, there exist f̂j ∈ k(x,y), β̂j ∈ k(x) and α̂j ∈ k(x1,y) such

that

bj =
σj(f̂j)

f̂j

β̂jα̂j .

By the above two equalities and Lemma 4.3.11, there exist f ′
j ∈ k(x,y), β′

j ∈ k(x), α′
j ∈ k(y)

such that

bj =
σj(f

′
j)

f ′
j

β′
jα

′
j for all j with 1 ≤ j ≤ n. (4.22)

Now, we claim that there exist f ∈ k(x,y), β1, . . . , βn ∈ k(x) and α1, . . . , αn ∈ k(y) such that

bj =
σj(f)

f
βjαj for all j with 1 ≤ j ≤ n.

We prove the claim by induction on n. If n = 1, then the claim is true by (4.22). Assume that

the claim holds for ℓ < n, and that

bℓ+1 =
σℓ+1(f)

f
u (4.23)

for some u ∈ k(x,y). By (4.3),

σ1(u) =
σℓ+1(α1)

α1
u, . . . , σℓ(u) =

σℓ+1(αℓ)

αℓ

u.

Since α1, . . . , αℓ ∈ k(y),

u = vw,

where v ∈ k(x, yℓ+1, . . . , yn) and w ∈ k(y). By (4.22) and (4.23),

σℓ+1(f)

f
vw =

σℓ+1(f
′
ℓ+1)

f ′
ℓ+1

β′
ℓ+1α

′
ℓ+1. (4.24)
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From the equality (4.24), it follows that

v =
σℓ+1(p)

p
β′

ℓ+1q, (4.25)

where p = f ′/f and q = α′
ℓ+1/w. Since k is of characteristic zero, there exist c1, . . . , cℓ ∈ k

such that the denominators and numerators of p and q evaluated at y1 = c1, . . . , yℓ = cℓ are all

nonzero. Substituting c1, . . . , cℓ for y1, . . . , yℓ, respectively, into (4.25), we see that

v =
σℓ+1(g)

g
β′

ℓ+1r,

where g ∈ k(x, yℓ+1, . . . , yn) and r ∈ k(yℓ+1, . . . , yn). Setting βℓ+1 = β′
ℓ+1 and αℓ+1 = rw, we see

that

bℓ+1 =
σℓ+1(fg)

fg
βℓ+1αℓ+1.

Moreover, since g is a constant with respect to σ1, . . . , σℓ,

bj =
σj(fg)

fg
βjαj for all j with 1 ≤ j ≤ ℓ.

The claim holds for ℓ + 1 when we replace f by fg.

It remains to obtain the form for the ai’s. Assume that, for all i with 1 ≤ i ≤ m,

ai =
δi(f)

f
+

m∑

j=1

yi
δi(βj)

βj
+ γi,

where γi ∈ k(x,y) is to be determined. Using the integrability conditions in (4.4), and performing

a calculation similar to that below (4.21) in the proof of Lemma 4.4.7, we find that

σj(γi) = γi for all j with 1 ≤ j ≤ n,

which implies that γi belongs to k(x). Moreover, for all 1 ≤ i < p ≤ m,

δi(γp) = δp(γi).

By the integrability conditions (4.3)

σj(αq)

αq
=

σq(αj)

αj

for all j, q with 1 ≤ j < q ≤ n. This completes the proof of Theorem 4.4.6.

Remark 4.4.8. Applying Theorem 4.4.2 and Theorem 4.4.4 to the γi’s and αj ’s in Theo-

rem 4.4.6, respectively, we readily see that the structure Theorem 4.4.1 holds.
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4.5 Multiplicative structure

In this section, we assume that k is algebraically closed. We derive a multiplicative form of a

hyperexponential-hypergeometric function from the structure of its certificates.

Let h(x,y) be a hyperexponential-hypergeometric function over k(x,y) with m+n certificates

a1, . . . , am, b1, . . . , bn such that the product b1 · · · bn is nonzero. Then (4.2), (4.3) and (4.4)

hold. By Theorem 4.4.6, there exist f ∈ k(x,y), β1, . . . , βn ∈ k(x) \ {0}, γ1, . . . , γm ∈ k(x)

and α1, . . . , αn ∈ k(y) such that

ai =
δi(f)

f
+

n∑

j=1

yj
δi(βj)

βj
+ γi

for all i with 1 ≤ i ≤ m, and

bj =
σj(f)

f
βjαj

for all j with 1 ≤ j ≤ n. Moreover,

γ1, . . . , γm, α1, . . . , αn

satisfy the integrability conditions (4.2), (4.3) and (4.4). By Theorem 2 in [22], there exists a

simple differential-difference extension R of k(x,y) containing functions h, βyi , and any h′ ∈
H(γ1, . . . , γm, α1, . . . , αn). Every hyperexponential-hypergeometric element in R is invertible,

since R is simple. Moreover, two hyperexponential-hypergeometric elements having the same

certificates differ by a multiplicative constant in k. It is straightforward to verify that h and

fβy1

1 · · · βyn
n h′ have the same certificates. Therefore,

h = cfβy1

1 · · · βyn
n h′,

where c ∈ k and the certificates of h′ are γ1, . . . , γm, α1, . . . , αn. Note that the γi’s are functions

in x, and the αj ’s are functions in y. Then we have the factorization

H(γ1, . . . , γm, α1, . . . , αn) = H(γ1, . . . , γm, 1, . . . , 1)H(0, . . . , 0, α1, . . . , αn).

By Theorem 4.4.4, any element he ∈ H(γ1, . . . , γm, 1, . . . , 1) is conjugate to

exp(g0)
L∏

ℓ=1

gcℓ

ℓ ,
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where c1, . . . , cL ∈ k and g0, g1, . . . , gL ∈ k(x). By Corollary 3.7.3 in [73] or Corollary 4 in [14],

any element hg ∈ H(0, . . . , 0, α1, . . . , αn) is conjugate to

f̃(y)T (y),

where f̃ ∈ k(y) and T (y) is a factorial term in y (see [73, Definition 3.5.1] or [14, Definition 5]).

We summarize the above discussion by the following theorem.

Theorem 4.5.1. If k is algebraically closed, then any hyperexponential-hypergeometric function h

over k(x,y) is conjugate to a function

r(x,y) exp(g0(x))
L∏

ℓ=1

gℓ(x)cℓ

n∏

j=1

βj(x)yj T (y) (4.26)

where r ∈ k(x,y), g0, g1, . . . , gL, β1, . . . , βn ∈ k(x), cl, . . . , cL ∈ k, and T (y) is a factorial term.

Example 4.5.2 (Jacobi polynomials).

P (m1,m2)
n (x) =

∑

ℓ

h(x, ℓ, n,m1,m2),

where h is a hyperexponential-hypergeometric function over k(x, ℓ, n,m1,m2) with certificates:

a =
2ℓ + nx − n

x2 − 1
, b1 =

(x − 1)(n − ℓ)(n + m2 − ℓ)

(m1 + ℓ + 1)(ℓ + 1)(x + 1)
,

b2 =
(x + 1)(n + m2 + 1)(n + m1 + 1)

2(n − ℓ + 1)(n + m2 − ℓ + 1)
, b3 =

n + m1 + 1

m1 + ℓ + 1
, b4 =

n + m2 + 1

n + m2 − ℓ + 1

According to Theorem 4.4.6, we write (a, b1, b2, b3) as

a = ℓ
δ(x−1

x+1 )
x−1
x+1

+ n
δ(x + 1)

x + 1
, b1 =

x − 1

x + 1
· (n − ℓ)(n + m2 − ℓ)

(m1 + ℓ + 1)(ℓ + 1)
,

b2 = (x + 1) · 1

2
· (n + m2 + 1)(n + m1 + 1)

(n − ℓ + 1)(n + m2 − ℓ + 1)
, b3 =

n + m1 + 1

m1 + ℓ + 1
, b4 =

n + m2 + 1

n + m2 − ℓ + 1

Then h is a hyperexponential-hypergeometric function with a multiplicative form

h =

(
x − 1

x + 1

)ℓ

(x + 1)nh′, where h′ =
1

2n

(
n + m1

n − ℓ

)(
n + m2

ℓ

)
.

Definition 4.5.3 (Properness). A hyperexponential-hypergeometric function over k(x,y) is said

to be proper if it is conjugate to a function

p(x,y) exp(g0(x))

L∏

ℓ=1

gℓ(x)cℓ

n∏

j=1

βj(x)yj T (y) (4.27)
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where p is a polynomial in k[x,y], g0, g1, . . . , gL, β1, . . . , βn ∈ k(x), c1, . . . , cL ∈ k, and T (y) is a

factorial term over k(y).

By Definition 4.5.3 and Theorem 4.4.4, we obtain the following result.

Corollary 4.5.4. Any multivariate hyperexponential function H(x) over k(x) is proper.

In their paper [92], Wilf and Zeilberger have listed several familiar special functions which

are proper hyperexponential-hypergeometric functions.
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Chapter 5

Existence of Telescopers for

Hyperexponential-Hypergeometric

Functions

5.1 Introduction

The termination problem of Zeilberger’s algorithms for creative telescoping has been extensively

studied in the last two decades. The algorithms terminate if the existence of telescopers is

guaranteed. Zeilberger [95] has shown that holonomicity guarantees the success of his algo-

rithms. In particular, Wilf and Zeilberger have provided an elementary proof, based on the ideas

of Fasenmyer [40] and Verbaeten [89], that telescopers always exist for proper hyperexponential-

hypergeometric functions [95, 92]. However, holonomicity is only a sufficient condition, i.e.,

there are cases in which the input functions are not holonomic but Zeilberger’s algorithm still

terminates [34]. Therefore, one challenge is to find theoretical criteria which enable us to algo-

rithmically detect the existence of telescopers.

In view of the theoretical difficulty, special attention has been focused on the subclass of

hyperexponential-hypergeometric functions. In the continuous case, the work by Bernstein [17]

and Lipshitz [67] shows that every hyperexponential function has a telescoper. This implies that

Zeilberger’s algorithm always succeeds on those inputs. However, the situation in other cases
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turns out to be more involved. In the discrete case and its q-analogue, the first complete solution

to the termination problem is Abramov and Le’s criterion [64, 9], which decides whether tele-

scopers exist for a given bivariate rational function in the discrete variables m and n. According

to their criterion, the rational function

f =
1

m2 + n2

has no telescoper. Soon, the criterion was extended to the general case of bivariate hypergeo-

metric terms by Abramov [5, 6]. Basically, Abramov proves that a hypergeometric term can be

written as a sum of a hypergeometric-summable term and a proper one if it has a telescoper [6,

Theorem 10]. Similar results have been obtained in the general q-shift case by Chen, Hou and

Mu [28]. These results are fundamental for detecting the termination of Zeilberger’s algorithm.

The continuous-discrete analogue of Zeilberger’s algorithm is presented by Almkvist and Zeil-

berger [15]. This analogue has been shown to be useful in the study of orthogonal polynomials [60,

Chapters 10–13].

Motivation. In the bivariate mixed case, not all hyperexponential-hypergeometric functions

have telescopers. For example, we will show in this chapter that the simple rational function

f =
1

x + n

has no telescoper with respect to either the continuous variable x or the discrete variable n.

Therefore, an Abramov-like criterion is also needed in this mixed case.

Our contribution. The main contribution in this chapter is two criteria for the existence

of telescopers for bivariate hyperexponential-hypergeometric functions. Our criteria are of the

same type as Abramov’s, which says that a hyperexponential-hypergeometric function can be

written as a sum of a hypergeometric-summable (integrable) function and a proper one if it has a

telescoper with respect to the discrete (continuous) variable. The key ingredients of our proof are:

standard representations of bivariate hyperexponential-hypergeometric functions in [42], and two

additive decompositions: one is the Abramov-Petkovšek algorithm [11, 13] with respect to the

discrete variable; and the other is the Hermite-like reduction [47] with respect to the continuous

one.
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The rest of this chapter is organized as follows. We describe an algebraic setting for bivariate

hyperexponential-hypergeometric functions in Section 5.2. We discuss on the existence of tele-

scopers in Section 5.3. A standard representation of hyperexponential-hypergeometric functions

is introduced in Section 5.4. The Abramov-Petkovšek decomposition and the Hermite-like reduc-

tion are adapted to the continuous-discrete setting in Section 5.5. Our criteria for the existence

of telescopers are presented in Section 5.6.

An earlier version of this chapter can be found in [26], which is a joint work (in progress)

with Frédéric Chyzak, Ruyong Feng, and Ziming Li.

5.2 Preliminaries

In his papers [77, 78], Risch based his algorithm on Ritt’s theory of differential fields and their

extensions. From then on, differential algebra [79, 56, 61] has been the algebraic foundation

of symbolic integration [21]. The analog investigation [57, 58] has been carried out for sum-

mation problems via difference algebra [36]. In this section, we describe an algebraic setting

for hyperexponential-hypergeometric functions, which permits us to deal with the telescoping

problem in an algebraic way.

In the rest of this chapter, let k be an algebraically closed field of characteristic zero,

and k(x, n) be the field of rational functions in x and n over k. We view x as the continu-

ous variable and n as the discrete variable. On the field k(x, n), the derivation δ and the shift

operator σ are defined as

δ(f(x, n)) =
∂f

∂x
and σ(f(x, n)) = f(x, n + 1)

for all f ∈ k(x, n), respectively.

5.2.1 Ring of sequences

We recall the ring of sequences defined in [41, 43] and regard a hyperexponential-hypergeometric

function as an element in that ring.

Let K be the universal Picard-Vessiot field [88, Chapter 10] of the field k(x). Then (K, δ) is

a differential field extension of (k(x), δ). Furthermore, the constants in K with respect to δ are
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exactly the elements of k, since k is algebraically closed. Let KN be the ring of infinite sequences

over K, where the addition and multiplication of sequences are defined termwise. For a sequence

s = (s0, s1, s2, . . .)

in KN, define

δ′(s) = (δ(s0), δ(s1), δ(s2), . . .).

Then δ′ is a derivation operator on KN. Let I ⊂ KN be the ideal consisting of sequences with

finitely many nonzero terms. Since I is closed under δ′, the quotient ring S = KN/I is a

differential ring whose derivation δ̄ is induced by δ′. In other words:

δ̄(s + I) = δ′(s) + I.

We define a map σ̄ : S → S by sending

s + I 7→ (s1, s2, s3, . . .) + I.

It is easy to verify that σ̄ is a well-defined automorphism, and δ̄ and σ̄ commute with each other.

We now embed the field k(x, n) of rational functions into S. For an element f ∈ k(x, n),

there exists m ∈ N such that f(x, i) is well-defined when i ≥ m. Define a map φ : k(x, n) → S
by sending

f(x, n) 7→ (0, . . . , 0︸ ︷︷ ︸
m

, f(x,m), f(x,m + 1), f(x,m + 2), . . .) + I.

By the definition of I, φ is a well-defined monomorphism such that φ◦δ = δ̄◦φ and φ◦σ = σ̄◦φ.

Let us identify k(x, n) with φ(k(x, n)). Then δ̄ and σ̄ can be viewed as extensions of δ and σ,

respectively. Hence, we may also identify δ̄ with δ, and σ̄ with σ. Consequently, S is a differential-

difference ring extension of k(x, n), and k is the set of constants in S.

Lemma 5.2.1. Let a and b be in k(x, n) with b 6= 0 and

δ(b)

b
= σ(a) − a. (5.1)

Then there exists an invertible hyperexponential-hypergeometric function in S such that its x-

certificate is equal to a and its n-certificate is equal to b.
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Proof. View a and b as rational functions in n. Let N be a sufficiently large integer such that

for any j ≥ N , a(x, j) and b(x, j) are well-defined and b(x, j) 6= 0. There exists a nonzero

element v ∈ K such that

δ(v) = a(x,N)v.

Let hi = 0 for all i with 0 ≤ i ≤ N − 1, hN = v, and hi+1 = b(x, i)hi for all i > N . We claim

that

h = (h0, h1, . . . , hN , hN+1, . . .) + I

is an invertible element. Furthermore, its x-certificate and n-certificate are a and b, respectively.

Invertibility follows from the fact hi 6= 0 for all i ≥ N . We now verify that σ(h) = bh by the

following calculation:

σ(h) = (0, . . . , 0︸ ︷︷ ︸
N−1

, hN , hN+1, hN+2, · · · ) + I

= (0, . . . , 0︸ ︷︷ ︸
N−1

, hN , b(x,N)hN , b(x,N + 1)hN+1, · · · ) + I

= (0, . . . , 1︸ ︷︷ ︸
N

, b(x,N), b(x,N + 1), · · · )(0, . . . , 0︸ ︷︷ ︸
N−1

, hN , hN , hN+1, · · · ) + I

= bh.

Next, we verify that δ(hi) = a(x, i)hi for i ≥ N , which implies δ(h) = ah. When i = N , the

equality holds by the definition of hN . Assume that the equality holds for all i with N ≤ i ≤ ℓ.

By (5.1), we have

δ(b(x, ℓ)) = a(x, ℓ + 1)b(x, ℓ) − a(x, ℓ)b(x, ℓ).

It follows that

δ(hℓ+1) = δ(b(x, ℓ)hℓ) = δ(b(x, ℓ))hℓ + b(x, ℓ)δ(hℓ)

= (a(x, ℓ + 1)b(x, ℓ) − a(x, ℓ)b(x, ℓ))hℓ + b(x, ℓ)a(x, ℓ)hℓ

= a(x, ℓ + 1)b(x, ℓ)hℓ = a(x, ℓ + 1)hℓ+1.

The claim is proved for ℓ + 1, and so is the lemma by induction.
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Example 5.2.2. Assume that β(x) is a nonzero element of k(x). Then the pair
(
n δ(β)

β
, β
)

satisfies (5.1). It follows that
(
1, β, β2, . . .

)
+ I

is a hyperexponential-hypergeometric function in S with certificates nδ(β)/β and β. For later

convenience, this element is denoted as βn.

Let a and b be the same as in Lemma 5.2.1, and assume that (5.1) holds. Recall that

H(a, b) , {h ∈ S | δ(h) = ah and σ(h) = bh}.

Proposition 5.2.3. The set H(a, b) is a one-dimensional vector space over k, in which every

nonzero element is invertible in S.

Proof. By Lemma 5.2.1, H(a, b) contains an invertible element, say h. Let g be another element

of H(a, b). Then δ(gh−1) = 0 and σ(gh−1) = gh−1 by a straightforward calculation. Hence, gh−1

is a constant. The lemma follows from the fact that k is the set of constants in S.

This proposition implies that every first-order fully integrable system over k(x, n) has a one-

dimensional solution space over k. For later use, we specialize the three formulas in Lemma 4.2.3

for H(a, b).

Corollary 5.2.4. (i) For any hyperexponential-hypergeometric function g ∈ S, we have

gH(a, b) = H
(

a +
δ(g)

g
, b

σ(g)

g

)
;

(ii) For all a, b, a′, b′ ∈ k(x, n) with bb′ 6= 0 such that both (a, b) and (a′, b′) satisfy (5.1), we

have

H(a, b)H(a′, b′) = H(a + a′, bb′);

(iii) δ(H(a, b)) = aH(a, b) and σ(H(a, b)) = bH(a, b).

From now on, we assume that all hyperexponential-hypergeometric functions belong to S,

unless otherwise stated.
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5.2.2 Ring of differential-recurrence operators

Let k(x, n)〈Dx, Sn〉 be the ring of differential-recurrence operators whose commutation rules are

SnDx = DxSn, Dxf = fDx + δ(f), and Snf = σ(f)Sn,

for all f ∈ k(x, n). In this ring, we denote ∆n the forward difference operator Sn − 1. For

every s ∈ S, define two actions: Dx(s) = δ(s) and Sn(s) = σ(s). Then S becomes a left

module over k(x, n)〈Dx, Sn〉. Assume that h is a hyperexponential-hypergeometric function

with x-certificate a and n-certificate b. Then the integrability condition (5.1) can be rewritten

as SnDx(h) = DxSn(h).

Two hyperexponential-hypergeometric functions h1 and h2 are said to be similar if the ra-

tio h1/h2 is in k(x, n). It is easy to verify that similarity is an equivalence relation among

hyperexponential-hypergeometric functions.

Lemma 5.2.5. Let h1 and h2 be two hyperexponential-hypergeometric functions over k(x, n).

If h1 and h2 are similar, then

(i) h1 + h2 is either equal to zero or similar to h1;

(ii) L(h1) is either equal to zero or similar to h1 for any L ∈ k(x, n)〈Dx, Sn〉.

Proof. Let r ∈ k(x, n) be the nonzero ratio h1/h2. Then the first assertion follows from the

equality h1 + h2 = (1 + 1/r)h1. Since h1 is hyperexponential-hypergeometric over k(x, n),

successive derivatives and shifts of h1 are all similar to h1. By the first assertion, the second one

follows.

5.2.3 Split polynomials

For a nonzero element f ∈ k(x, n), the denominator and numerator of f are denoted by den(f)

and num(f), respectively. den(f) and num(f) are two coprime polynomials in k[x, n]. We

introduce the definition below to describe a standard form of rational functions in k(x, n).

Definition 5.2.6. A polynomial p ∈ k[x, n] is said to be split if it is of the form p1(x)p2(n) with

p1 ∈ k[x] and p2 ∈ k[n].
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A rational function f can be decomposed as f1(x)f2(n)f3(x, n), where f1 ∈ k(x), f2 ∈ k(n)

and both num(f3) and den(f3) have no split factors. The product f1f2 is called the split part

of f .

Algorithms for computing rational solutions of linear differential and difference equations with

polynomial coefficients have been presented by Abramov [3, 8, 4]. The lemma below concerns the

shape of denominators of rational solutions of linear differential and difference equations with

the leading coefficients split.

Lemma 5.2.7. Let L be an operator either in k[x, n]〈Dx〉 or in k[x, n]〈Sn〉 and let p be a

polynomial in k[x, n]. If the leading coefficient of L is split, so is the denominator of rational

solutions of L(y(x, n)) = p.

Proof. Let f ∈ k(x, n) be any rational solution of L(y(x, n)) = p and q ∈ k[x, n] be the leading

coefficient of L. If L is in k[x, n]〈Dx〉, the splitness of den(f) follows from the well-known fact

that any root of den(f) in k(n) is also a root of q, see [3]. If L is in k[x, n]〈Sn〉, the denominator

of f is a divisor of the product Q(x, n) := q(x, n)q(x, n − 1) · · · q(x, n − d) for some finite d ∈ N

according to Abramov’s algorithm for computing a denominator bound in [4]. If q is split, so is

the product Q. Therefore, den(f) is split in both cases.

5.3 Existence problems

The fact that differential and difference cases can be treated in similar-looking ways has been

observed for a long time in mathematics. Once a result is obtained in one side, it can often be

analogized in the other one. In the sequel, our presentation will reflect the symmetry between

the two counterparts of differential and difference variables.

The method of differencing under the integral sign was first formulated by Almkvist and

Zeilberger in [15], which can be used to find a linear recurrence equation for the integral (if

exists)

H(n) :=

∫ +∞

0
h(x, n) dx,

where h(x, n) is a hyperexponential-hypergeometric function over k(x, n). Here, we suppose

integrals are well-defined over k, say C. The key step of Almkvist and Zeilberger’s algorithm
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tries to find a nonzero linear recurrence operator L(n, Sn) in k(n)〈Sn〉 such that

L(n, Sn)(h) = Dx(g), (5.2)

for some hyperexponential-hypergeometric function g over k(x, n).

Definition 5.3.1. Let h be a hyperexponential-hypergeometric function over k(x, n). A nonzero

linear recurrence operator L(n, Sn) ∈ k(n)〈Sn〉 is called a telescoper for h with respect to x if

there exists another hyperexponential-hypergeometric function g such that (5.2) holds.

After that, applying the integral sign to both sides of (5.2) yields

L(n, Sn)(H(n)) = g(+∞, n) − g(0, n).

This further implies that L(n, Sn) is indeed the recurrence relation satisfied by H(n) under

certain nice boundary condition, say g(+∞, n) = g(0, n). For example, consider the integral

A(n) =

∫ +∞

0
xn−1 exp(−x) dx.

Almkvist and Zeilberger’s algorithm returns a pair (L, g) with

L = Sn − n and g = −xn exp(−x).

Note that g(+∞, n) = g(0, n) = 0, which implies that L(A(n)) = A(n + 1) − nA(n) = 0. So we

recognize that A(n) = (n − 1)! since the value A(1) is equal to 1.

The differential analogue of Almkvist and Zeilberger’s algorithm tries to construct a linear

differential equation L(x,Dx) ∈ k(x)〈Dx〉 such that

L(x,Dx)(h) = ∆n(g), (5.3)

for some hyperexponential-hypergeometric function g over k(x, n).

Definition 5.3.2. Let h be a hyperexponential-hypergeometric function over k(x, n). A nonzero

linear differential operator L(x,Dx) ∈ k(x)〈Dx〉 is called a telescoper for h with respect to n if

there exists another hyperexponential-hypergeometric function g such that (5.3) holds.
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Both the g’s in (5.2) and (5.3) are either zero or similar to h by Lemma 5.2.5. This analogue

can be used to construct a linear differential equation for the sum

H(x) :=

+∞∑

n=0

h(x, n).

For more interesting examples, see the appendix of [15] or Koepf’s book [60, Chapters 10–13].

As in the discrete case, not all hyperexponential-hypergeometric functions have telescopers

with respect to x or n. That is, Almkvist and Zeilberger’s algorithm does not terminate on all

hyperexponential-hypergeometric inputs.

Example 5.3.3. The non-existence phenomenon is well illustrated by the rational function

f =
1

x + n
.

Let us show that f has no telescoper with respect to either x or n.

Differential case: Suppose that f has a telescoper with respect to x, i.e., there exists a nonzero

operator L in k(n)〈Sn〉 such that L(f) = Dx(g) for some g ∈ k(x, n). Write L =
∑ρ

i=0 ℓi(n)Si
n

with ρ ∈ N and ℓi ∈ k(n). Then we have

L(f) =

ρ∑

i=0

ℓi(n)Si
n

(
1

x + n

)
=

ρ∑

i=0

(
ℓi(n)

x + n + i

)
=

A

D
,

where D divides the product (x + n)(x + n + 1) · · · (x + n + ρ), which is squarefree with re-

spect to x, and A ∈ k(n)[x] with degx(A) < degx(D) and gcd(A,D) = 1 as polynomials in x.

Since A/D = Dx(g), A = 0 by Lemma 4.3.1 (i). So f is a rational solution of the linear differ-

ence equation L(z) = 0. By Lemma 5.2.7, the denominator of f should be split in k[x, n] since

the leading coefficient of L is free of x, but x + n is not split, a contradiction.

Difference case: Suppose that f has a telescoper with respect to n, i.e., there exists a nonzero

operator L in k(x)〈Dx〉 such that L(f) = ∆n(g) for some g ∈ k(x, n). Write L =
∑ρ

i=0 ℓi(x)Di
x

with ρ ∈ N and ℓi ∈ k(x). Then we have

L(f) =

ρ∑

i=0

ℓi(x)Di
x

(
1

x + n

)
=

ρ∑

i=0

(
(−1)iℓi(x)

(x + n)i+1

)
=

A

D
,
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where D is a factor of (x + n)ρ+1, which is shift-free with respect to n, and A ∈ k(x)[n]

with degn(A) < degn(D) and gcd(A,D) = 1 as polynomials in n. Since A/D = ∆n(g), A = 0

by Lemma 4.3.1 (ii). So f is a rational solution of the linear differential equation L(z) = 0. By

Lemma 5.2.7, the denominator of f should be split in k[x, n] since the leading coefficient of L is

free of n, but x + n is not split, a contradiction.

In this chapter, we solve the following problem, which is equivalent to the termination problem

of Almkvist and Zeilberger’s algorithm.

Problem 5.3.4. Given a hyperexponential-hypergeometric function h(x, n) over k(x, n), decide

whether h has a telescoper with respect to x or n.

5.4 Standard representations

We derive a standard representation of hyperexponential-hypergeometric functions, based on [42,

Proposition 5], i.e., the bivariate case of Theorem 4.4.6.

Lemma 5.4.1. Let a and b be two nonzero rational functions in k(x, n) such that the integrability

condition (5.1) holds. Then there exist f ∈ k(x, n) whose split part is trivial, α ∈ k(n), and β, γ ∈
k(x) such that

a =
δ(f)

f
+

δ(β(x))

β(x)
n + γ(x) and b =

σ(f)

f
α(n)β(x). (5.4)

Proof. By Proposition 5 in [42], there exist f ∈ k(x, n), α ∈ k(n), and β, γ ∈ k(x) such that (5.4)

holds. Write f as f1f2f3 where f1 ∈ k(x), f2 ∈ k(n), and f3 ∈ k(x, n) whose split part is trivial.

Replacing f by f3, γ by γ + δ(f1)/f1, and α by ασ(f2)/f2 in (5.4) yields the lemma.

By Lemma 5.4.1, any hyperexponential-hypergeometric function can be written in a unique

multiplicative form.

Proposition 5.4.2. Let h be a hyperexponential-hypergeometric function. Then there exist f ∈
k(x, n) with trivial split part, α ∈ k(n) with monic numerator and denominator, and β, γ ∈ k(x)

such that

h ∈ f(x, n)β(x)nH(γ(x), α(n)). (5.5)
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Moreover, if

h ∈ f ′(x, n)β′(x)nH(γ′(x), α′(n))

where f ′ ∈ k(x, n) with trivial split part, α′ ∈ k(n) with monic numerator and denominator, and

β′, γ′ ∈ k(x), then f/f ′ ∈ k, α = α′, β = β′, and γ = γ′.

Proof. Let a and b be the x-certificate and n-certificate of h, respectively. By Lemma 5.4.1,

there exist f ∈ k(x, n) with trivial split part, α ∈ k(n), and β, γ ∈ k(x) such that (5.4). By a

straightforward calculation, h and a nonzero element of fβnH(γ, α) have the same certificates.

Hence, (5.5) holds by Proposition 5.2.3. Assume that h belongs to f ′(x, n)β′(x)nH(γ′(x), α′(n)),

as given in the statement of the proposition. Then the x-certificate and n-certificate of every

nonzero element in f ′(x, n)β′(x)nH(γ′(x), α′(n)) are a and b, respectively. It follows that

δ(f)

f
+

δ(β(x))

β(x)
n + γ(x) =

δ(f ′)

f ′
+

δ(β′(x))

β′(x)
n + γ′(x), (5.6)

and
σ(f)

f
α(n)β(x) =

σ(f ′)

f ′
α′(n)β′(x). (5.7)

Consequently,
δ(f)

f
=

δ(f ′)

f ′
,

δ(β(x))

β(x)
=

δ(β′(x))

β′(x)
, and γ(x) = γ′(x)

by (5.6), the uniqueness of the partial fraction decomposition of a, and the assumption that

both f and f ′ have trivial split parts. Hence, f = cf ′ and β = c′β′ for some c, c′ ∈ k(n). Again,

by the assumption on f and f ′, c belongs to k. Since β and β′ are free of n, so is c′. It follows

from (5.7) that α(n) = c′α(n). Thus, c′ is equal to 1 since the numerators and denominators

of α(n) and α′(n) are assumed to be monic.

Definition 5.4.3. Let h(x, n) ∈ H(a, b) be a hyperexponential-hypergeometric function. We say

that a quadruple (f(x, n), α(n), β(x), γ(x)) ∈ k(x, n)4 is the standard representation of h if f ∈
k(x, n) with trivial split part, α ∈ k(n) with monic numerator and denominator, β, γ ∈ k(x),

and (5.5) holds.

By the definition in [92] or Definition 4.5.3 in Chapter 4, a bivariate hyperexponential-

hypergeometric function is proper if its standard representation is

(p(x, n), α(n), β(x), γ(x)), (5.8)
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where p ∈ k[x, n], α ∈ k(n), and β, γ ∈ k(x).

Proposition 5.4.4. Let h ∈ f(x, n)β(x)nH(γ(x), α(n)) with f ∈ k(x, n), α ∈ k(n), and β, γ ∈
k(x). If the denominator of f is split, then h is proper.

Proof. Write f = p/q with p, q ∈ k[x, n] and gcd(p, q) = 1. Since q is split, q = A(x)B(n) for

some A ∈ k[x] and B ∈ k[n]. By Corollary 5.2.4 (i), we have

h ∈ p(x, n)β(x)nH
(

γ(x) − δ(A(x))

A(x)
, α(n)

B(n)

σ(B(n))

)
.

Therefore, h is proper by definition.

5.5 Two additive decompositions

For a bivariate hyperexponential-hypergeometric function h(x, n) in the continuous variable x

and the discrete one n, we can perform two kinds of complete additive decompositions: one is with

respect to the continuous variable, obtaining h = Dx(h1) + h2, and the other is with respect to

the discrete variable, obtaining h = ∆n(h1)+h2. The h1’s and h2’s above are hyperexponential-

hypergeometric functions with h2 minimal in some sense. Algorithms for complete additive de-

compositions generalize the capability of Gosper’s algorithm [51] and its differential analogue [15].

That is, it returns h2 = 0 if h = Dx(g) or h = ∆n(g) for some g hyperexponential-hypergeometric.

In this section, we adapt the two additive decompositions to hyperexponential-hypergeometric

functions described by their standard representations.

Notation. In what follows, let F be either k(n) if the decomposition is with respect to x or k(x)

if it is with respect to n.

5.5.1 Additive decomposition with respect to x

In Chapter 3, Hermite reduction or Ostrogradsky and Horowitz’s method decomposes a rational

function f ∈ F (x) into f = Dx(g) + r, where r = a/b is minimal in the sense that degx(a) <

degx(b) and b is squarefree, that is, the factors of b have minimal multiplicity. Hermite reduc-

tion was later extended by Davenport [39] and by Geddes, Le and Li [47] with two different

motivations: one is to solve the Risch differential equation

Dx(y) + fy = g, where f and g are in F (x),
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and the other is to solve the decomposition problem of hyperexponential functions. We will

use the latter to compute additive decompositions of hyperexponential-hypergeometric functions

with respect to x. To this end, we first recall some terminology from [47].

Definition 5.5.1 (GLL triple). Let u, v ∈ F [x] and w ∈ F (x). We call (u, v,w) a Geddes–Le–Li

triple, in short GLL triple, if the following conditions are satisfied:

(i) gcd(u, v) = 1;

(ii) u is squarefree with respect to x;

(iii) w is differential-reduced with respect to x;

(iv) gcd(u,den(w)) = 1.

Definition 5.5.2 (Hyperexponential-integrable). A hyperexponential function h over F (x) is

said to be hyperexponential-integrable if there exists a hyperexponential function g such that h =

Dx(g).

Note that the function g in the above definition is similar to h if it exists.

Definition 5.5.3 (Additive decomposition with respect to x). Let h be in H(a, b) with a, b ∈
F (x). An additive decomposition of h with respect to x is of the form

h = Dx(h1) + h2,

where h1 is hyperexponential-hypergeometric over F (x), and either h2 is zero or

h2 ∈ v

u
· H(a2, b2), where b2 ∈ F (x) and (u, v, a2) is a GLL triple.

Such a decomposition is said to be complete if h2 = 0 whenever h is hyperexponential-integrable.

Remark 5.5.4. In the sequel we never use complete additive decompositions. In fact, the h1

and h2 above are similar to h by the same argument as in [75, Proposition 5.6.2].
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Geddes–Le–Li’s algorithm

We recall the algorithm from [47] to perform additive decompositions with respect to x. View

a hyperexponential-hypergeometric function h ∈ H(a, b) as a hyperexponential function with x-

certificate a ∈ F (x). Let (K,S) ∈ F (x)× F (x) be a strict DRNF of a, that is, K is differential-

reduced with respect to x and

a = K +
δ(S)

S
, where gcd(den(K),den(S)) = 1.

Immediately, the additive form above for a leads to a multiplicative form for h, that is,

h = S · h̃, where h̃ ∈ H
(

K, b
S

σ(S)

)
.

Now comes the Hermite-like reduction: Theorem 2 in [47] shows that there exists S1 ∈ F (x) such

that

S = δ(S1) + KS1 +
v

u · den(K)i
, (5.9)

where i ∈ {0, 1} and (u, v,K) is a GLL triple. Since Dx(h̃) = Kh̃, the decomposition for S

in (5.9) further implies that

h = Dx(S1h̃) +
v

u · den(K)i
h̃,

In order to get a complete additive decomposition for h, we still need to decide whether

h2 =
v

u · den(K)i
h̃ (5.10)

is hyperexponential-integrable or not. A necessary condition is as follows.

Lemma 5.5.5 (Geddes–Le–Li, 2004). Let h be a hyperexponential function over F (x). If h is

hyperexponential-integrable, and

δ(h)

h
= w +

δ(v/u)

v/u
,

where v, u ∈ F [x], w ∈ F (x), and (u, v,w) is a GLL triple, then u is in F .

Proof. For the proof, see [47, Theorem 4].
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Additive decompositions with respect to x from standard representations

Let (f(x, n), α(n), β(x), γ(x)) be the standard representation of h ∈ H(a, b), that is,

h ∈ f(x, n)β(x)nH(γ(x), α(n)),

where f ∈ k(x, n) with trivial split part, α ∈ k(n) with monic numerator and denominator,

and β, γ ∈ k(x). We show how to obtain an additive decomposition of h with respect to x from

its standard representation.

First, we compute a strict DRNF for a from the standard representation of h. The following

lemma helps us decide whether certain rational functions are differential-reduced.

Lemma 5.5.6. Let

g =
p

q
+ n

s

t
+

u

v
,

where p, q, s, t, u, v ∈ k[x] with gcd(p, q) = gcd(s, t) = gcd(u, v) = 1. Assume that v | t. Then

(i) the denominator of g is the least common multiple of q and t;

(ii) if p/q is differential-reduced, so is g;

(iii) if p/q + ns/t is differential-reduced, so is g.

Proof. Let M = lcm(q, t), w1 = M/q and w2 = M/t. We first show the following claim.

Claim. If w is a nontrivial irreducible factor of

gcd(M,sw2n + r), where r is an element in k[x],

then w divides w2, r and q, but does not divide w1.

Proof of the Claim. Since n is an indeterminate over k, w is a factor of sw2. Suppose that w

is not a factor of w2. Then it is a factor of s. Since w is a factor of M , it is a factor of w2t,

and, thus, a factor of t, a contradiction to the assumption that gcd(s, t) = 1. We have concluded

that w is a factor of w2. Consequently, it is a factor of r because n is an indeterminate, but it

is not a factor of w1 because gcd(w1, w2) = 1. Since w divides qw1, it divides q. The claim is

proved.
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To prove the first assertion, we let w3 = M/v, which is a multiple of w2 since t is a multiple

of v. Put W = pw1 + sw2n + uw3. We have g = W/M . It remains to show that gcd(M,W ) = 1.

Set r = pw1 + uw3 and assume that w is an irreducible factor of gcd(M,W ). By the claim, w

divides r and w2, hence, it divides pw1. The claim then implies that w divides p. But w also

divides q by the same claim. Thus, w ∈ k since gcd(p, q) = 1.

To prove the second assertion, we only need to show that gcd(q, p − ℓδ(q)) = 1 implies

that gcd(M,W − ℓδ(M)) = 1. Setting r = −pw1 − uw2 − ℓδ(M), we have

gcd(M,W − ℓδ(M)) = gcd(M,sw2n + r).

Assume that w is an irreducible factor of gcd(M,W −ℓδ(M)). By the claim, w divides r and w2,

therefore, it divides pw1 − ℓδ(M), which is equal to pw1 − ℓw1δ(q)− ℓδ(w1)q. Since w divides q,

it divides (p−ℓδ(q))w1. Again, by the claim, w divides p−ℓδ(q). On the other hand, w divides q

because w | M and w ∤ w1. Hence, w is a factor of gcd(q, p − ℓδ(q)), which is equal to 1,

because p/q is differential-reduced. Consequently, w is in k.

To prove the third assertion, it suffices to show that gcd(M,pw1 + sw2n − ℓδ(M)) = 1

implies gcd(M,W − ℓδ(M)) = 1. Let r and w be defined as above. By the claim, w divides w3

since w2 divides w3. It follows from the definition of r that w divides pw1 + sw2n− ℓδ(M), and,

hence, w is in k.

For later use, we recall the definition of pumps, given in [13, page 533].

Definition 5.5.7 (Pump). Let p, q ∈ F [x] be such that p | q. A factor p̃ of q is said to be the

pump of p in q if gcd(q/p̃, p̃) = 1, p | p̃, and any irreducible factor of p̃ divides p.

Example 5.5.8. Let p1, p2, p3 be in F [x] with positive degrees. Assume that they are pairwise

coprime and p = p1p
2
2p

3
3. Then the pump of p1p

2
3 in p is equal to p1p

3
3.

In other words, a pump of a factor p of q has the same squarefree part as p’s, but each of its

irreducible factors has the maximal multiplicity in q. For a rational function f ∈ k(x, n), denote

by f∗ the squarefree part of num(f) ·den(f). Now, we show how to compute a strict DRNF of a

from that of γ.
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Lemma 5.5.9. Let (f(x, n), α(n), β(x), γ(x)) be a standard representation of a nonzero element

in H(a, b). Let (K̃, S̃) be a strict DRNF of γ. Let u = gcd(den(S̃), β∗) and T the pump of u

in den(S̃). If

K = K̃ + n
δ(β)

β
− δ(T )

T
and S = fS̃T, (5.11)

then (K,S) is a strict DRNF of a with respect to x.

Proof. Let (K̃, S̃) be a strict DRNF of γ(x). Then by definition, we have

a =
δ(f)

f
+ n

δ(β)

β
+ γ =

δ(f)

f
+ n

δ(β)

β
+

δ(S̃)

S̃
+ K̃.

By Lemma 2.3.3, the denominators of δ(β)/β and δ(T )/T are β∗ and T ∗, respectively. By the

definition of pump and u | β∗, u is the squarefree part of T , which implies T ∗ | β∗. Hence, K is

differential-reduced by Lemma 5.5.6 (ii).

It remains to show gcd(den(K),den(S)) = 1. By the definition of pumps, den(S̃) = Tw,

where w ∈ k[x] and gcd(T,w) = 1. On the other hand,

den(S) = den(f)den(S̃T ) = den(f)w,

since num(f)den(f) has only trivial factors in k[x]. It follows that

gcd(den(K),den(S)) = gcd(den(K),den(f)w),

which is equal to gcd(den(K), w) since den(K) ∈ k[x]. So it suffices to show that den(K) and w

are coprime. By Lemma 5.5.6 (i), den(K) = lcm(den(K̃), β∗). So it suffices to show that

gcd(den(K̃), w) = 1 and gcd(β∗, w) = 1.

The first equality is immediate from the assumptions that (K̃, S̃) is a strict DRNF and that w is

a factor of den(S̃). To prove the second, we assume that p is an irreducible factor of gcd(β∗, w).

Then p is a factor of u by the definitions of u and w. Hence, it is a factor of T . Consequently, p

is a common factor of T and w. We conclude that p is in k.

We apply Geddes–Le–Li’s algorithm to a hyperexponential-hypergeometric function described

by its standard representation and obtain a special form of its additive decomposition with respect

to x.
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Theorem 5.5.10. Let (f(x, n), α(n), β(x), γ(x)) be the standard representation of a nonzero el-

ement h in H(a, b). Then one can find a hyperexponential-hypergeometric function h1 and γ̃(x) ∈
k(x) such that

h − Dx(h1) ∈
v

u
· H
(

γ̃ + n
δ(β)

β
, βα

)
(5.12)

where u, v are in k(n)[x] and (u, v, γ̃ + nδ(β)/β) is a GLL triple.

Proof. By Lemma 5.5.9, the x-certificate a of h has a strict DRNF (K,S) of the form
(

K̃ + n · δ(β)

β
− δ(T )

T
, f · S̃ · T

)
,

where (K̃, S̃) is a strict DRNF of γ(x) and T ∈ k[x]. A direct calculation verifies that

h = Sh̃ for some h̃ ∈ H (K,βα).

By (5.9), Hermite-like reduction rewrites S into

S = δ(S1) + S1K +
v

uden(K)i
,

where i ∈ {0, 1}, S1 ∈ k(x, n) and (u, v,K) is a GLL triple. It follows that

h = Dx(S1h̃) +
v

uden(K)i
h̃.

Since den(K) is in k[x] and by Corollary 5.2.4

v

uden(K)i
H(K,βα) =

v

u
H
(

K − δ(den(K)i)

den(K)i
, βα

den(K)i

σ(den(K)i)

)

=
v

u
H
(

K − δ(den(K)i)

den(K)i
, βα

)
.

Setting h1 = S1h̃ and γ̃ = K̃ − δ(T )
T

− δ(den(K)i

den(K)i yields (5.12). It remains to show that the

triple
(
u, v, γ̃ + n δ(β)

β

)
is a GLL triple. Note that

g := γ̃ + n
δ(β)

β
= K − δ(den(K)i)

den(K)i
.

Since K is differential-reduced, so is g by definition. Moreover, u and den(g) are coprime with

respect to x, as u and den(K) are coprime. It follows that (u, v, g) is a GLL triple.

Remark 5.5.11. An additive decomposition with respect to x can be computed by the algorithm

ReducedHyperexp in [47].
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5.5.2 Additive decomposition with respect to n

In the discrete case, the algorithms in [2, 4, 76, 72] decompose a rational function f ∈ F (n)

into f = ∆n(g) + r, where r = a/b is minimal in the sense that degn(a) < degn(b) and b

is shift-free, that is b has minimal dispersion. Those decomposition algorithms are extended

to the case of hypergeometric terms by Abramov and Petkovšek [11, 13]. This extension also

generalizes the capability of the well-known Gosper algorithm [51], which decides whether the

indefinite sum of a hypergeometric term is hypergeometric. More precisely, for a given hypergeo-

metric term H(n) over F (n), Abramov and Petkovšek’s algorithm computes two hypergeometric

terms H1(n) and H2(n) such that H = ∆n(H1) + H2, where H2 is minimal in some sense. In

particular, H2 is identically zero if H(n) has a hypergeometric indefinite sum. Here, we will use

Abramov and Petkovšek’s algorithm to compute additive decompositions of hyperexponential-

hypergeometric functions with respect to the discrete variable n. To this end, we recall some

terminology from [13].

Definition 5.5.12 (AP triple). Let u, v ∈ F [n] and w ∈ F (n). We call (u, v,w) an Abramov–

Petkovšek triple, in short AP triple, if the following conditions are satisfied:

(i) gcd(u, v) = 1;

(ii) u is shift-free with respect to n;

(iii) w is shift-reduced with respect to n;

(iv) gcd(u, σ−ℓ(num(w))) = gcd(u, σℓ(den(w))) = 1 for all ℓ ∈ N.

Definition 5.5.13 (Hypergeometric-summable). A hypergeometric term h over F (n) is said to

be hypergeometric-summable if there exists a hypergeometric function g such that h = ∆n(g).

Note that the g in the above definition is similar to h if it exists.

Definition 5.5.14 (Additive decomposition with respect to n). Let h be in H(a, b) with a, b ∈
F (n). An additive decomposition of h with respect to n is of the form

h = ∆n(h1) + h2,

94



where h1 is hyperexponential-hypergeometric over F (n), and either h2 is zero or

h2 ∈ v

u
· H(a2, b2), where a2 ∈ F (n) and (u, v, b2) is an AP triple.

Such a decomposition is said to be complete if h2 = 0 whenever h is hypergeometric-summable.

Remark 5.5.15. In the sequel we never use complete additive decompositions. In fact, the h1

and h2 above are similar to h by the same argument in [75, Proposition 5.6.2].

Abramov and Petkovšek’s algorithm

We recall the algorithm from [11, 13] to perform additive decomposition with respect to n.

View a hyperexponential-hypergeometric function h ∈ H(a, b) as a hypergeometric term with n-

certificate b ∈ F (n). Let (K,S) ∈ F (n)×F (n) be a strict SRNF of b, that is, K is shift-reduced

with respect to n and

b = K · σ(S)

S
,

where gcd(num(K), σ(den(S)) · num(S)) = gcd(den(K), σ(num(S)) · den(S)) = 1. Immediately,

the multiplicative form above for b leads to a multiplicative form for h, that is,

h = S · h̃, where h̃ ∈ H
(

a − δ(S)

S
,K

)
.

Now comes Abramov and Petkovšek’s reduction: Lemma 9 in [13] implies that there exists S1 ∈
F (n) such that

S = σ(S1)K − S1 +
v

u · (σ−1(k1))i · kj
2

, (5.13)

where i, j ∈ {0, 1}, k1 and k2 are the numerator and denominator of K, respectively, and (u, v,K)

is an AP triple. Since Sn(h̃) = Kh̃, the decomposition for S in (5.13) further implies that

h = ∆n(S1h̃) +
v

u · (σ−1(k1))i · kj
2

h̃.

In order to get a complete additive decomposition of h, we still need to decide whether

h2 =
v

u · (σ−1(k1))i · kj
2

h̃ (5.14)

is hypergeometric-summable or not. A necessary condition is as follows.
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Lemma 5.5.16 (Abramov–Petkovšek, 2002). Let h be a hypergeometric function over F (n). If h

is hypergeometric-summable, and
σ(h)

h
=

σ(v/u)

v/u
w,

where v, u ∈ F [n], w ∈ F (n), and (u, v,w) is an AP triple, then u is in F .

Proof. For the proof, see [13, Theorem 11].

Additive decompositions with respect to n from standard representations

Let (f(x, n), α(n), β(x), γ(x)) be the standard representation of h ∈ H(a, b). We show how to

obtain an additive decomposition of h with respect to n from its standard representation.

The next lemma relates a strict SRNF of the n-certificate b of h to its standard representation.

Lemma 5.5.17. Let (f(x, n), α(n), β(x), γ(x)) be the standard representation of a nonzero ele-

ment in h ∈ H(a, b). If (K̃, S̃) is a strict SRNF of α(n) with respect to n, then (βK̃, f S̃) is a

strict SRNF of the n-certificate a of h.

Proof. Let K = βK̃ and S = fS̃. Since (K̃, S̃) is a strict SRNF of α(n), α = K̃σ(S̃)/S̃. It

follows that

b =
σ(h)

h
= βα

σ(f)

f
= β

(
K̃

σ(S̃)

S̃

)
σ(f)

f
= βK̃ · σ(fS̃)

fS̃
.

The product βK̃ is shift-reduced with respect to n, because K̃ is shift-reduced and β is in k(x).

Write K = k1/k2 and S = s1/s2 with gcd(k1, k2) = gcd(s1, s2) = 1 in k[x, n]. It remains to

verify the GCD condition

gcd(k1, σ(s2)s1) = gcd(k2, σ(s1)s2) = 1 (5.15)

for (K,S). Since β ∈ k(x) and K̃ ∈ k(n), we have

k1 = num(β) · num(K̃) and k2 = den(β) · den(K̃).

Similarly, since S̃ ∈ k(n) and f has a trivial split part, we have

s1 = num(f) · num(S̃), and s2 = den(f) · den(S̃).

Hence, the condition (5.15) holds, because (K̃, S̃) is a strict SRNF, and every nonzero polynomial

in k[n] is coprime with both num(f) and den(f).
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We apply Abramov–Petkovšek’s algorithm to a hyperexponential-hypergeometric function

described by standard representation and obtain a special form of its additive decomposition

with respect to n.

Theorem 5.5.18. Let (f(x, n), α(n), β(x), γ(x)) be the standard representation of a nonzero

element in h ∈ H(a, b). Then one can find γ̃(x) ∈ k(x), α̃ ∈ k(n), and a hyperexponential-

hypergeometric function h1 such that

h − ∆n(h1) ∈
v

u
· H
(

γ̃ + n
δ(β)

β
, βα̃

)

where u, v ∈ k(x)[n] and (u, v, βα̃) is an AP triple.

Proof. By Lemma 5.5.17, the n-certificate b of h has a strict SRNF (K,S) of the form

(
βK̃, f S̃

)
,

where (K̃, S̃) is a strict SRNF of α(n). A direct calculation verifies that

h = Sh̃ for some h̃ ∈ H
(

γ + n
δ(β)

β
,K

)
.

Write K = k1/k2 and S = s1/s2 with gcd(k1, k2) = gcd(s1, s2) = 1 in k[x, n]. Now, Abramov–

Petkovšek’s reduction [13] decomposes S into

S = δ(S1)K − S1 +
v

u(σ−1(k1))ik
j
2

,

where i, j ∈ {0, 1}, S1 ∈ k(x, n) and (u, v,K) is an AP triple. It follows that

h = ∆n(S1h̃) +
v

u(σ−1(k1))ik
j
2

h̃.

Set T = (σ−1(k1))
ikj

2 ∈ k[x, n]. Since K is split in k[x, n], T is split in k[x, n]. By Corollary 5.2.4,

we have

v

u · T h̃ ∈ v

u · T H
(

γ + n
δ(β)

β
,K

)
=

v

u
H
(

γ + n
δ(β)

β
− δ(T )

T
,K

T

σ(T )

)
.

Set h1 = S1h̃, γ̃ = γ − δ(T )
T

, and α̃ = K̃ T
σ(T ) . Since T is split, γ ∈ k(x), and K̃ ∈ k(n), we have

that γ̃ ∈ k(x) and α̃ ∈ k(n) hold. It remains to show that (u, v, βα̃) is an AP triple.
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We only need to verify the last two conditions in Definition 5.5.12. Since i, j ∈ {0, 1}, βα̃ is

in the set {
k1

k2
,
σ−1(k1)

k2
,

k1

σ(k2)
,
σ−1(k1)

σ(k2)

}
.

Then βα̃ is shift-reduced, because K = k1/k2 is. Note that the numerator and denominator

of βα̃ are just some shifts of that of K, respectively. Then the last gcd condition follows from

the assumptions on u and k1, k2.

Remark 5.5.19. An additive decomposition with respect to n can be computed by the algo-

rithm dterm in [13].

5.5.3 Applying operators to additive decompositions

In this section, we apply an operator in k(x)〈Dx〉, resp. in k(n)〈Sn〉, to an additive decom-

position with respect to n, resp. x, and prove that the application results in another additive

decomposition. To this end, we need a simple lemma.

Lemma 5.5.20. Let u and v be in k(x)[n] and let w be any factor of um with m ∈ N. Then

(i) if u is shift-free with respect to n, so is w;

(ii) for all i ∈ Z, if gcd(u, σi(v)) = 1, then gcd(w, σi(v)) = 1.

Proof. A polynomial in k(x)[n] is shift-free with respect to n if and only if the largest integer

distance of its roots is equal to zero [2]. This fact implies the first assertion. For any i ∈ Z,

if gcd(u, σi(v)) = 1, then gcd(um, σi(v)) = 1 for all m ∈ N, which implies gcd(w, σi(v)) = 1.

The second assertion holds.

Proposition 5.5.21. With the assumptions and notation introduced in Theorem 5.5.10, assume

further that h2 = h − Dxh1, and that L belongs to k(n)〈Sn〉 such that L(h2) is nonzero. Set

A2 = γ̃ + n
δ(β)

β
− ρ

δ(den(β))

den(β)
and B2 = βα,

where ρ denotes the order of L. Then

L(h2) ∈
V

U
H(A2, B2)

for some U, V ∈ k(n)[x], and (U, V, A2) is a GLL triple.
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Proof. Setting a2 = γ̃ + nδ(β)/β. we get A2 = a2 − ρδ(den(β))/den(β).

By Theorem 5.5.10, h2 ∈ v
u
· H (a2, B2) . An easy calculation implies

L(h2) =
v′

u′den(β)ρ
· H (a2, B2) ,

where v′ ∈ k(n)[x] and u′ is the least common multiple of u, Sn(u), . . . , Sρ
n(u) in k(n)[x]. Since u

is squarefree with respect to x, so are its shifts. Consequently, u′ is squarefree with respect to x.

Set

U = den(v′/u′) and V = num(v′/u′).

Then L(h2) = (V/U) · H(A2, B2).

It remains to show that (U, V,A2) is a GLL triple. First, U and V are coprime by their

definition. Second, U is squarefree with respect to x, as u′ is squarefree with respect to x. To

verify the third condition in Definition 5.5.1, we observe that the squarefree part of den(β)num(β)

is the denominator of δ(β)/β, and that den(β) is the denominator of ρδ(den(β))/den(β), which

divides the former denominator. This observation enables us to apply Lemma 5.5.6. We conclude

that A2 is differential-reduced by Lemma 5.5.6 (iii) and since γ̃ + n δ(β)
β

is differential-reduced.

At last, we verify that U and den(A2) are coprime over k(n). By Lemma 5.5.6 (i), den(a2) =

den(A2). Since (u, v, a2) is a GLL triple, gcd(u,den(a2)) = 1. It follows from the fact den(a2) ∈
k[x] that

gcd
(
Si

n(u),den(a2)
)

= 1

for all i ∈ N, and, consequently, gcd(u′,den(a2)) = 1. This implies that gcd(U,den(a2)) = 1,

that is, gcd(U,den(A2)) = 1.

Proposition 5.5.22. With the assumptions and notation introduced in Theorem 5.5.18, assume

further that h2 = h − ∆n(h1), and that L belongs to k(x)〈Dx〉 such that L(h2) is nonzero. Set

A2 = γ̃ + n
δ(β)

β
and B2 = βα̃.

Then

L(x,Dx)(h2) ∈
V

U
· H (A2, B2)

for some U, V ∈ k(x)[n], and (U, V,B2) is an AP triple.

99



Proof. By Theorem 5.5.18,

h2 ∈ v

u
H(A2, B2)

for some u, v ∈ k(x)[n] and (u, v,B2) is an AP triple. A straightforward calculation leads to

L(x,Dx)(h2) ∈ (V/U) · H(A2, B2)

for some U, V ∈ k(x)[n] with gcd(U, V ) = 1. By Theorem 5.5.18, den(A2) is in k[x]. It follows

that U is a factor of a power of u in k(x)[n]. Thus, (U, V,B2) is an AP triple by Lemma 5.5.20

and since (u, v,B2) is an AP triple, as stated in Theorem 5.5.18.

5.6 Two existence criteria

The Fundamental Theorem in [92] shows that telescopers exist for proper hyperexponential-

hypergeometric functions. However, properness is just a sufficient condition. For instance, the

rational function f = 1/(x + n)2 is not proper, but it does have a telescoper with respect

to x since f = Dx(−1/(x + n)). On the other hand, Example 5.3.3 indicates that not all

hyperexponential-hypergeometric functions have telescopers. In this section, we present sufficient

and necessary conditions in the following theorems for the existence of telescopers.

Theorem 5.6.1. Let h be a hyperexponential-hypergeometric function over k(x, n) and h =

Dx(h1) + h2 be an additive decomposition of h with respect to x. Then h has a telescoper with

respect to x if and only if h2 is either zero or proper.

Theorem 5.6.2. Let h be a hyperexponential-hypergeometric function over k(x, n) and h =

∆n(h1) + h2 be an additive decomposition of h with respect to n. Then h has a telescoper with

respect to n if and only if h2 is either zero or proper.

Our proofs of these two theorems will be divided into several steps.

5.6.1 Existence of telescopers implies properness

The lemma below shows that the existence problem for h is equivalent to that for h2. The proofs

take the same argument as in [9, page 3].
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Lemma 5.6.3. Let h, h1 and h2 be three hyperexponential-hypergeometric functions in the ring S
of sequences.

(i) Assume that h = Dx(h1) + h2. Then L is a telescoper for h with respect to x if and only

if it is a telescoper for h2 with respect to x.

(ii) Assume that h = ∆n(h1) + h2. Then L is a telescoper for h with respect to n if and only

if it is a telescoper for h2 with respect to n.

Proof. By the commutativity between L(n, Sn) ∈ k(n)〈Sn〉 and Dx, we have

L(n, Sn)(h) = Dx(g) ⇔ L(n, Sn)(h2) = Dx(g − L(h1)).

This implies the first assertion. Similarly, the second one follows from the commutativity be-

tween L(x,Dx) ∈ k(x)〈Dx〉 and ∆n.

Proof of the necessity in Theorem 5.6.1

Proof. Assume that h has a telescoper with respect to x, and that h2 is nonzero. Our goal is to

show that h2 is proper. By Theorem 5.5.10,

h2 =
v

u
H for some H ∈ H (a2, b2) ,

where b2 = βα with β ∈ k(x) and α ∈ k(n), and (u, v, a2) is a GLL triple. Without loss of

generality, we further assume that u is in k[x, n]. To prove that h2 is proper, it suffices to prove

that u is split by Proposition 5.4.4. Let L ∈ k(n)〈Sn〉 be a telescoper for h with respect to x.

By Lemma 5.6.3, L is also a telescoper for h2 with respect to x. Then

L(h2) = L
(v

u
H
)

= Dx(g), (5.16)

for some hyperexponential-hypergeometric function g. Since b2 is split, a direct calculation yields

L(h2) = M
(v

u

)
H (5.17)

for some nonzero element M ∈ k(n, x)〈Sn〉 whose coefficients are split. On the other hand,

Proposition 5.5.21 implies

L(h2) ∈
V

U
H(A2, B2). (5.18)
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where U, V ∈ k(n)[x] and (U, V,A2) is a GLL triple. Since L(h2) is hyperexponential-integrable

by (5.16), it follows from Lemma 5.5.5 that U is free of x.

By Proposition 5.5.21, A2 = a2 − ρδ(den(β))/den(β) and B2 = b2, where ρ denotes the order

of L. It follows from (5.18) and den(β) ∈ k[x] that

L(h2) ∈
V

Uden(β)ρ
H(a2, b2),

which, together with (5.17) and H(a2, b2) = {cH | c ∈ k}, implies that

M
(v

u

)
=

cV

Uden(β)ρ
for some c ∈ k.

Hence, there exist a nonzero operator M ′ ∈ k[x, n]〈Sn〉 with leading coefficient in k[n] and a

rational function g ∈ k(x) such that M ′(gv/u) belongs to k[x, n]. Consequently, u is split by

Lemma 5.2.7, and, hence, h2 is proper.

Proof of the necessity in Theorem 5.6.2

Proof. Assume that h has a telescoper with respect to n, and that h2 is nonzero. Our goal is to

show that h2 is proper. By Theorem 5.5.18,

h2 =
v

u
H for some H ∈ H (a2, b2) ,

where a2 = γ̃ +n δ(β)
β

for some γ̃ ∈ k(x), and (u, v, b2) is an AP triple. Without loss of generality,

we further assume that u is in k[x, n]. To prove that h2 is proper, it suffices to prove that u is

split by Proposition 5.4.4.

Let L ∈ k(x)〈Dx〉 be a telescoper for h with respect to n. By Lemma 5.6.3, L is also a

telescoper for h2 with respect to n. Then

L(h2) = L
(v

u
H
)

= ∆n(g), (5.19)

for some hyperexponential-hypergeometric function g. For all i ∈ N, let fi be the rational

function in k(x, n) such that

Di
x(H) = fiH.

Then den(fi) is in k[x], because den(a2) is in k[x]. It follows from Leibniz’s formula that there

exists Mi ∈ k(x)[n]〈Dx〉 such that

Di
x(h2) = Mi

(v

u

)
H.

102



Moreover, the leading coefficient of Mi is in k. Consequently, there exists M ∈ k(x)[n]〈Dx〉 with

leading coefficient in k(x) such that

L(h2) = M
(v

u

)
H. (5.20)

On the other hand, Proposition 5.5.22 and H(a2, b2) = {cH | c ∈ k} imply,

L(h2) =
V

U
H. (5.21)

where U and V are in k(x)[n], and (U, V, b2) is an AP triple. Since L(h2) is hypergeometric-

summable by (5.19), it follows from Lemma 5.5.16 that U is free of n.

Comparing (5.20) with (5.21), we have that M(v/u) = V/U , which is in k(x)[n]. It follows

that there exists a nonzero operator M ′ ∈ k[x, n]〈Dx〉 with leading coefficient in k[x] such

that M ′(v/u) belongs to k[x, n]. By Lemma 5.2.7, u is split, and then h2 is proper.

5.6.2 Properness implies the existence of telescopers

Wilf and Zeilberger present an elementary proof of the existence of telescopers for proper mul-

tivariate hypergeometric terms [92, Theorem 3.1], and indicate that their argument should be

also valid in the continuous-discrete setting. For the sake of completeness, we elaborate on the

proof of the following theorem.

Theorem 5.6.4. If h is a proper hyperexponential-hypergeometric function over k(x, n), then h

has a telescoper with respect to n and a telescoper with respect to x.

Preparation lemmas

Before the proof of the theorem above, we shall show some lemmas.

Lemma 5.6.5. Let h ∈ H(a, b) be a hyperexponential-hypergeometric function over k(x, n).

(i) If h has a telescoper with respect to n, so does the product Hh for any hyperexponential-

hypergeometric function H with ∆n(H) = 0.

(ii) If h has a telescoper with respect to x, so does the product Hh for any hyperexponential-

hypergeometric function H with Dx(H) = 0.
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Proof. Assume that H is a nonzero element of H(A,B). If ∆n(H) = 0, then B = 1 and a ∈ k(x)

by the integrability condition σ(A)−A = δ(B)/B. It is straightforward to verify that HDx(h) =

(Dx − A)Hh, which, together with an easy induction, implies that

HDi
x(h) = (Dx − A)i(Hh) for all i ∈ N.

Let L ∈ k(x)〈Dx〉 be a telescoper of h. By the equality above,

HL(h) = M(Hh)

where M is obtained by replacing Di
x in L by (Dx − A)i. Since there exists a hypergeometric

function g such that L(h) = ∆n(g) and ∆n(H) = 0, the equality above implies that

M(Hh) = H∆n(g) = ∆n(Hg).

The first assertion is proved.

To prove the second assertion, assume that H is a nonzero element in H(A,B). If Dx(H)

is equal to 0, then A = 0 and B ∈ k(n) by the integrability condition σ(A) − A = δ(B)/B.

Since HSn(h) = Sn(Hh)/B, we have that, for all i ∈ N,

HSi
n(h) = BiS

i
n(Hh) for some Bi ∈ k(n).

Let L ∈ k(n)〈Sn〉 be a telescoper of h. By the equality above,

HL(h) = M(Hh)

where M is obtained by replacing Si
n in L by BiS

i
n. Since there exists a hypergeometric function g

such that L(h) = Dx(g) and Dx(H) = 0, the equality above implies that

M(Hh) = HDx(g) = Dx(Hg).

The second assertion is proved.

Lemma 5.6.6. Let h1 and h2 be two similar hyperexponential-hypergeometric functions over the

field k(x, n). Let Vn be the vector space spanned by
{
∆i

n(hj) | i ∈ N, j ∈ {1, 2}
}

over k(x), and Vx

be the vector space spanned by
{
Di

x(hj) | i ∈ N, j ∈ {1, 2}
}

over k(n).

1. If both h1 and h2 have telescopers with respect to n, so does any nonzero element in Vn.
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2. If both h1 and h2 have telescopers with respect to x, so does any nonzero element in Vx.

Proof. Assume that there exists a nonzero Lj ∈ k(x)〈Dx〉 such that Lj(hj) = ∆n(gj) for some

hyperexponential-hypergeometric function gj , and for j = 1, 2. Then

Lj(∆
i
n(hj)) = ∆n(∆i

n(gj)).

Hence, every element of
{
∆i

n(hj) | i ∈ N, j ∈ {1, 2}
}

has a telescoper. If two hypergeometric

functions have telescopers with respect to n, say T1 and T2, then their sum, assumed to be

nonzero, also has a telescoper with respect to n, which can be taken as a common left multiple

of T1 and T2. The first assertion then follows from Lemma 5.6.5 (ii). The second assertion can

be proved in the same manner.

In the proof of the Fundamental Theorem [92], Wilf and Zeilberger neglected the case that

the remainder of a nonzero m-free operator P (n, Sn, Sm) ∈ k(n)〈Sn, Sm〉 by Sm − 1 may be

zero. Wegschaider used a “noncommutative trick” to deal with this case. Here, we will apply

Wegschaider’s trick and its differential analogue to transform an x-free or n-free operator to a

telescoper with respect to n or x.

Lemma 5.6.7 (Wegschaider’s trick). Let h be a hypergeometric function over k(x, n).

(i) If there exists a nonzero operator A ∈ k(x)〈Sn,Dx〉 such that A(h) = 0, then h has a

telescoper with respect to n.

(ii) If there exists a nonzero operator A ∈ k(n)〈Sn,Dx〉 such that A(h) = 0, then h has a

telescoper with respect to x.

Proof. Assume that there exists a nonzero operator A in k(x)〈Sn,Dx〉 such that A(h) = 0.

Since ∆n = Sn − 1, we can write A = ∆m
n (L(x,Dx) + ∆nM), where m is in N, L is a nonzero

operator in k(x)〈Dx〉 and M is in k(x)〈Sn,Dx〉. By Wegschaider’s trick in [91, Theorem 3.2],

there exist w ∈ k(n) and r ∈ k with r 6= 0 such that

w∆m
n = ∆nQ + r (5.22)

for some Q ∈ k(n)〈Sn〉. In particular, r = (−1)mm! if we take w = nm. Using the fact r∆n =

∆nr and (5.22), we find

w

r
A = L + ∆nN for some N ∈ k(x, n)〈Dx, Sn〉.
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Hence, L is a telescoper for h with respect to n.

The second assertion can be proved in a similar way. Instead of (5.22), we need to find w ∈
k(x) and r ∈ k \ {0} such that

wDm
x = DxQ + r

for some Q ∈ k(x)〈Dx〉. In particular, r = (−1)mm! if we take w = xm.

Proof of Theorem 5.6.4

Now, we present the proof of Theorem 5.6.4.

Proof. Assume that h is a proper hyperexponential-hypergeometric function. Then the standard

representation of h is of the form

(p(x, n), β(x), γ(x), α(n)),

where p ∈ k[x, n], β, γ ∈ k(x), and α ∈ k(n). Writing p as
∑m

i=0 pi(x)ni with pi ∈ k[x] yields

pβnH(γ, α) =

m∑

i=0

pin
iβnH(γ, α) =

m∑

i=0

βnH
(

γ +
δ(pi)

pi
, α(n)

σ(ni)

ni

)
.

It follows that

h =

m∑

i=0

β(x)nGiHi (5.23)

for some Gi ∈ H
(
γ(x) + δ(pi)

pi
, 1
)

and Hi ∈ H
(
0, α(n)σ(ni)

ni

)
.

First, we show that h has a telescoper with respect to n. Note that each Gi in (5.23) has

n-certificate equal to 1. By Lemmas 5.6.5 and 5.6.6, it suffices to show that a hypergeometric

function ĥ ∈ β(x)n ·H (0, g(n)) with g ∈ k(n) has a telescoper with respect to n. Let s = num(β),

t = den(β), a = num(g) and b = den(g). Moreover, let v = num(δ(β)/β) and w = den(δ(β)/β).

A straightforward calculation yields that the x-certificate and n-certificate of ĥ are, respectively,

nv

w
and

sa

tb
.

Note that s, t, v, w are in k[x], and a, b in k[n].

We claim that there exists a nonzero operator A in k(x)〈Sn,Dx〉 such that A(ĥ) = 0. The

claim will be proved by a well-known argument used in [67]. The first assertion will then follow

from Lemma 5.6.7.
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Let FN be the linear space spanned by {Si
nDj

x | i+j ≤ N} over k(x). Let µ be the maximum

of degrees of a and b in n, and let

WN = spank(x)

{
niĥ

b(n + N − 1) · · · b(n)
| i ≤ (µ + 1)N

}
.

An easy induction on i and j yields

Si
nDj

x(ĥ) =
q(n, x)ĥ

b(n + i − 1) · · · b(n)
, where degn(q) ≤ iµ + j.

Hence, Si
nDj

x(ĥ) belongs to WN if i+j ≤ N . Accordingly, there is a k(x)-linear map φN from FN

to WN that sends L to L(ĥ) for all L ∈ FN . Since the dimension of FN over k(x) is
(
N+2

2

)
,

while that of WN is (µ + 1)N + 1, the kernel of φN is nontrivial when N is sufficiently large.

Any nonzero element in the kernel annihilates ĥ. The claim is established.

Second, we show that h has a telescoper with respect to x. Note that each nonzero element

in H
(
0, α(n)σ(ni)

ni

)
in (5.23) has x-certificate equal to zero. By Lemmas 5.6.5 and 5.6.6, it

suffices to show that any hypergeometric function ĥ(x, n) in the set

β(x)n · H (g(x), 1) with g ∈ k(x)

has a telescoper with respect to x. Let s = num(β), t = den(β),

v = num

(
n

δ(β)

β
+ g

)
and w = den

(
n

δ(β)

β
+ g

)
.

A straightforward calculation yields that the x-certificate and n-certificate of ĥ are, respectively,

v(x, n)

w(x)
and

s(x)

t(x)
.

Note that s, t, and w are in k[x] and v is in k[x, n] with degn(v) = 1.

We claim that there exists a nonzero operator A in k(n)〈Sn,Dx〉 such that A(ĥ) = 0. The

second assertion then follows from Lemma 5.6.7.

Following an argument similar to the one above, we now consider a linear space FN spanned

by {Si
nDj

x | i + j ≤ N} over k(n). Let µ be the maximum of the degrees in x of s, t, v and w,

and let

WN = spank(n)

{
xiĥ

(tw)N
| i ≤ 2µN

}
.
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Algorithm ExistenceContinuous

Input: A hyperexponential-hypergeometric function h ∈ H(a, b) with a, b ∈ k(x, n).

Output: True, if h has a telescoper with respect to x; false, otherwise.

1. Compute a strict DRNF (K,S) of a with respect to x;

2. Apply ReduceCert in [47] to (K,S) to get the decomposition

S = δ(S1) + S1K +
v

uden(K)i
.

3. If u is split, then return true, otherwise, return false.

Figure 5.1: Algorithm for deciding the existence of telescopers with respect to x.

An easy induction on i and j yields

Si
nDj

x(ĥ) =
q(n, x)

tiwj
ĥ, where degx(q) ≤ (i + j)µ.

Hence, Si
nDj

x(ĥ) belongs to WN if i+j ≤ N . Accordingly, there is a k(n)-linear map φN from FN

to WN that sends L to L(ĥ) for all L ∈ FN . Since the dimension of FN over k(n) is
(
N+2

2

)
, while

that of WN is 2µN + 1, the kernel of φN is nontrivial when N is sufficiently large. Any nonzero

element in the kernel annihilates ĥ. The claim is established.

Remark 5.6.8. Theorems 5.6.1 and 5.6.2 hold by the proofs of necessity in Theorems 5.6.1

and 5.6.2, and by Theorem 5.6.4

5.7 Algorithms and examples

5.7.1 Algorithms

According to our criteria, we only use the continuous, resp. discrete, certificate for deciding

the existence of telescopers with respect to the continuous, resp. discrete, variable. Algorithms

in Figures 5.1 and 5.2 are based on strict DRNF and strict SRNF computation, two additive

decompositions, and our criteria.
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Algorithm ExistenceDiscrete

Input: A hyperexponential-hypergeometric function h ∈ H(a, b) with a, b ∈ k(x, n).

Output: True, if h has a telescoper with respect to n; false, otherwise.

1. Compute a strict SRNF (K,S) of b with respect to n;

2. Apply dcert in [13] to (K,S) to get the decomposition

S = σ(S1)K − S1 +
v

u (σ−1(num(K)))iden(K)j
.

3. If u is split, then return true, otherwise, return false.

Figure 5.2: Algorithm for deciding the existence of telescopers with respect to n.

5.7.2 Examples

Example 5.7.1. It is possible that a hyperexponential-hypergeometric function has a telescoper

with respect to one variable but no telescoper with respect to the other variable. Consider the

rational function

h =
1

(x + n)2
.

Applying Hermite reduction to h with respect to x yields

h = Dx

( −1

x + n

)
,

which implies that 1 is a telescoper for h with respect to x. However, h has no telescoper with

respect to n, because (x+n)2 is shift-free with respect to n and it is not split. Similarly, consider

the rational function

h =
1

(x + n)(x + n + 1)
.

Since h = ∆n(−1/(x+n)), 1 is a telescoper for h with respect to n. However, h has no telescoper

with respect to x, because (x + n)(x + n + 1) is squarefree with respect to x and it is not split.

Example 5.7.2. As we know, the properness is only a sufficient condition for the existence of

telescopers. We show a concrete example to illustrate this fact. Consider the hyperexponential-

hypergeometric function

h(x, n) =
−x + 2nx + 2n2

(x + n)2x
· xn · e−x.
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Though h is not proper, it still has a telescoper with respect to x since h can be decomposed into

h = Dx

(
1

x + n
· xn · e−x

)
+ xn−1 · e−x,

where xn−1 · e−x is proper. In fact, our criteria indicate that all nonproper examples are of this

form.
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Chapter 6

Conclusion and Perspectives

In this thesis, we have focused on the practical efficiency, theoretical complexity, and the ter-

mination of creative-telescoping algorithms. For bivariate rational functions, we have managed

to blend the general method of creative telescoping with the Hermite reduction. According

to our complexity analyses and experiments, the Hermite reduction based method has been

proved to outperform the existing methods. In order to study the general case of Wilf and Zeil-

berger’s conjecture, we have presented a structure theorem for multivariate hyperexponential-

hypergeometric functions. With the help of standard representations and two additive decompo-

sitions, we have derived two existence criteria for deciding whether a bivariate hyperexponential-

hypergeometric function has a telescoper with respect to the continuous variable or the discrete

one. Our criteria solve the termination problem of Zeilberger-style algorithms for bivariate

hyperexponential-hypergeometric functions. Still, there are many further studies to be carried

out. In what follows, we would like to mention a few directions for future work.

6.1 Extensions of the Hermite-reduction based method

For the moment, the Hermite-reduction based method only works for bivariate rational-function

inputs. As we have already seen in Chapter 5, Hermite reduction can be extended to hyper-

exponential or hypergeometric cases. So it is natural to wonder whether the approach of the

Hermite-reduction based method can be used to compute the minimal telescopers for bivariate

hyperexponential functions or hypergeometric terms. We have considered two possible exten-
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sions: one is for hyperexponential functions, especially in simple radical extensions; and the

other is for multivariate rational functions. In the multivariate rational case, the corresponding

telescoping problem is as follows.

Problem 6.1.1. Given a rational function f ∈ k(x, y1, . . . , yn), construct a nonzero operator L ∈
k(x)〈Dx〉 such that

L(x,Dx)(f) =

n∑

i=1

Dyi
(gi) for some gi ∈ k(x, y1, . . . , yn).

In order to solve the above problem, we have tried to extend the Hermite reduction to

the multivariate case. That is, we would like to decompose a multivariate rational function f

in k(y1, . . . , yn) into

f = Dy1
(g1) + · · · + Dyn(gn) + r,

where r is minimal in some sense. For a special class of rational functions, we show this can be

obtained.

Let f = P/Qm be a rational function in k(y1, . . . , yn) with m > 1, P,Q ∈ k[y1, . . . , yn],

and gcd(P,Q) = 1. Let I be the ideal generated by Q,Dy1
(Q), . . . ,Dyn(Q) in k[y1, . . . , yn]. We

observe that the ideal I is equal to the ring k[y1, . . . , yn] in certain applications, see examples

gathered in [74]. In the sequel, we proceed the discussion under the above constraints on Q.

Then we can always express P in the form

P = AQ +

n∑

i=1

BiDyi
(Q),

where A,B1, . . . , Bn are polynomials in k(y1, . . . , yn). Now, integration by parts yields

P

Qm
=

AQ +
∑n

i=1 BiDyi
(Q)

Qm
=

n∑

i=1

Dyi

( −Bi

mQm−1

)
+

A + m−1
∑n

i=1 Dyi
(Bi)

Qm−1
.

Repeating the above process at most m − 1 times, we get

P

Qm
=

n∑

i=1

Dyi
(gi) +

P̃

Q
, (6.1)

where gi ∈ k(y1, . . . , yn) and P̃ ∈ k[y1, . . . , yn]. In the univariate case when Q is squarefree, this

is exactly Hermite reduction. When n > 1, the essential difference from the univariate case is

that one cannot make the remaining fraction P̃ /Q proper with respect to all the variables. The
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uniqueness of the decomposition in (6.1) is also not well studied. In the future, we would like to

understand this decomposition better and expect it to be useful to solve the telescoping problem

for multivariate rational functions.

6.2 Existence criteria for telescopers in the q-setting

There are nine termination problems of Zeilberger’s method for bivariate hyperexponential-

hypergeometric functions if telescopers could involve the q-shift operator, denoted by Qn. In

Table 6.1, we mark the solved instances by X and unsolved by ?. In order to solve the remaining

termination problems, we would like to extend Theorem 4.4.1 to the q-shift setting. Moreover,

we expect a unified way to deal with all of the nine cases.

(L, g) Dy Sn − 1 Qn − 1

L(x,Dx) X X ?

L(n, Sn) X X ?

L(n,Qn) ? ? X

Table 6.1: Solved and unsolved termination problems

6.3 Wilf and Zeilberger’s conjecture

We present some remarks on the general case of Wilf and Zeilberger’s conjecture. First, we recall

basic notation about holonomic functions and modules following the presentation in Coutinho’s

book [38]. Let Am denote the m-th Weyl algebra k[x1, . . . , xm]〈D1, . . . ,Dm〉, in which we have

the following multiplication rule: for all 1 ≤ i, j ≤ m,

xixj = xjxi, DiDj = DjDi, and Dixj − xjDi = δij ,

where δij is the Kronecker delta symbol: it equals one if i = j and zero otherwise. A finitely

generated left Am-module is holonomic if it is zero, or if it has Hilbert dimension m [38, Chapter

5]. By Bernstein’s inequality, any finitely generated nonzero left Am-module has dimension

at least m. So holonomicity indicates the minimality of dimension for nonzero Am-modules.
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Let H(x) be a function in a left Am-module of functions. Then one can define the annihilating

ideal of H(x) in Am by

annAm(H) = {p ∈ Am | p · H = 0}.

The function H(x) is said to be holonomic if its annihilating ideal is holonomic as a left Am-

module. When the function H(x) can be viewed as an element in a left module over the

ring k(x1, . . . , xm)〈D1, . . . ,Dm〉 of differential operators, H(x) is said to be D-finite if the vector

space generated by all derivatives Di1
1 · · ·Dim

m (H) over k(x) is finite dimensional over k(x) [67, 68].

In the continuous case, an elementary proof of Kashiwara’s equivalence [59] between holonomic-

ity and D-finiteness was presented by Takayama in [85]. For this reason, we choose the following

definition, used in [24, page 59], for holonomicity of continuous-discrete functions.

Definition 6.3.1. A function h(x,y) is said to be holonomic if its associated generating function

H(x, z) =
∑

y1,...,yn∈N

h(x,y)zy1

1 · · · zyn
n

is a holonomic function in a left module over the ring k(x, z)〈Dx1
, . . . ,Dxm ,Dz1

, . . . ,Dzn〉.

Now, we can describe the conjecture by Wilf and Zeilberger [92, page 585] on holonomic

hyperexponential-hypergeometric functions.

Conjecture 6.3.2 (Wilf and Zeilberger). Let h(x,y) be a hyperexponential-hypergeometric func-

tion over k(x,y). Then h is holonomic if and only if it is proper.

In the case of several discrete variables, a slightly modified version of the conjecture was

proved independently by Payne in his Ph.D. thesis [73] and by Abramov and Petkovšek [14]. In

particular, the case of two variables has also been shown by Hou [54, 55] and by Abramov and

Petkovšek [12]. In the continuous case, any multivariate hyperexponential function is D-finite,

and then holonomic by Kashiwara’s equivalence. By Corollary 4.5.4, it is also proper. Thus,

Wilf and Zeilberger’s conjecture holds naturally in this case.

In the discrete case, the structure theorem on multivariate hypergeometric terms helps us

reduce Wilf and Zeilberger’s conjecture to rational case [73, 14], where one only need to show

that any holonomic rational functions are proper. For the moment, we have not obtained any

complete proof of the general continuous-discrete case of the conjecture. In the future, we would

like to prove the following conjecture on holonomic rational functions in the mixed setting.
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Conjecture 6.3.3. Let f(x,y) be a rational function in k(x,y). Then f is holonomic if and

only if the denominator of f splits into the form

A(x)

L∏

ℓ=1

(vℓ · y + λℓ)

where A ∈ k[x], λ1, . . . , λL ∈ k̄, vℓ ∈ Zn for all ℓ with 1 ≤ ℓ ≤ L, and the vℓ · y means the inner

product of vectors vℓ and y.
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[71] M. V. Ostrogradskĭı. De l’intégration des fractions rationnelles. Bull. de la classe physico-

mathématique de l’Acad. Impériale des Sciences de Saint-Pétersbourg, 4:145–167, 286–300,

1845.

[72] P. Paule. Greatest factorial factorization and symbolic summation. J. Symbolic Comput.,

20(3):235–268, 1995.

[73] G. H. Payne. Multivariate Hypergeometric Terms. PhD thesis, Pennsylvania State Univer-

sity, Pennsylvania, USA, 1997.

[74] R. Pemantle and M. C. Wilson. Twenty combinatorial examples of asymptotics derived from

multivariate generating functions. SIAM Rev., 50(2):199–272, 2008.

[75] M. Petkovšek, H. S. Wilf, and D. Zeilberger. A = B. A K Peters Ltd., Wellesley, MA, 1996.

With a foreword by Donald E. Knuth.

123



[76] R. Pirastu and V. Strehl. Rational summation and Gosper-Petkovšek representation. J.

Symbolic Comput., 20(5-6):617–635, 1995. Symbolic computation in combinatorics (Ithaca,

NY, 1993).

[77] R. H. Risch. The problem of integration in finite terms. Trans. Amer. Math. Soc., 139:167–

189, 1969.

[78] R. H. Risch. The solution of the problem of integration in finite terms. Bull. Amer. Math.

Soc., 76:605–608, 1970.

[79] J. F. Ritt. Differential Algebra. American Mathematical Society Colloquium Publications,

Vol. XXXIII. American Mathematical Society, New York, N. Y., 1950.

[80] M. Rothstein. A new algorithm for integration of exponential and logarithmic functions.

In Proceedings of the 1977 MACSYMA Users Conference (Berkeley, CA), pages 263–274,

Washington DC, 1977. NASA.

[81] M. Sato. Theory of prehomogeneous vector spaces (algebraic part)—the English translation

of Sato’s lecture from Shintani’s note. Nagoya Math. J., 120:1–34, 1990. Notes by Takuro

Shintani, Translated from the Japanese by Masakazu Muro.

[82] M. F. Singer. Liouvillian first integrals of differential equations. Trans. Amer. Math. Soc.,

333(2):673–688, 1992.

[83] R. P. Stanley. Enumerative Combinatorics. Vol. 2, volume 62 of Cambridge Studies in

Advanced Mathematics. Cambridge University Press, 1999.

[84] A. Storjohann and G. Villard. Computing the rank and a small nullspace basis of a polyno-

mial matrix. In ISSAC’05: Proceedings of the 2005 International Symposium on Symbolic

and Algebraic Computation, pages 309–316. ACM, New York, 2005.

[85] N. Takayama. An approach to the zero recognition problem by Buchberger algorithm. J.

Symbolic Comput., 14(2-3):265–282, 1992.

[86] N. Takayama. An algorithm for finding recurrence relations of binomial sums and its com-

plexity. J. Symbolic Comput., 20(5-6):637–651, 1995. Symbolic computation in combina-

torics ∆1 (Ithaca, NY, 1993).

124



[87] B. M. Trager. Algebraic factoring and rational function integration. In SYMSAC’76: Pro-

ceedings of the Third ACM Symposium on Symbolic and Algebraic Computation, pages 219–

226, New York, NY, USA, 1976. ACM.

[88] M. van der Put and M. F. Singer. Galois Theory of Linear Differential Equations, volume

328 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 2003.

[89] P. Verbaeten. The automatic construction of pure recurrence relations. SIGSAM Bull.,

8(3):96–98, 1974.

[90] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press,

Cambridge, second edition, 2003.

[91] K. Wegschaider. Computer Generated Proofs of Binomial Multi-Sum Identities. Master’s

thesis, RISC, J. Kepler University, May 1997.

[92] H. S. Wilf and D. Zeilberger. An algorithmic proof theory for hypergeometric (ordinary and

“q”) multisum/integral identities. Invent. Math., 108(3):575–633, 1992.

[93] M. Wu. On Solutions of Linear Functional Systems and Factorization of Modules over

Laurent-Ore Algebras. PhD thesis, Chinese Academy of Sciences and Université de Nice-

Sophia Antipolis, Beijing, China and Nice, France, 2005.

[94] D. Y. Y. Yun. Fast algorithm for rational function integration. In Information processing

77 (Proc. IFIP Congr., Toronto, Ont., 1977), pages 493–498. IFIP Congr. Ser., Vol. 7.

North-Holland, Amsterdam, 1977.

[95] D. Zeilberger. A holonomic systems approach to special functions identities. J. Comput.

Appl. Math., 32:321–368, 1990.

[96] D. Zeilberger. The method of creative telescoping. J. Symbolic Comput., 11(3):195–204,

1991.

[97] H. Zoladek. The extended monodromy group and Liouvillian first integrals. J. Dynam.

Control Systems, 4(1):1–28, 1998.

125



126



Index

Abramov–Petkovšek triple, 94

additive decomposition, 18

bidegree, 30

certificate, 10

compatible, 54

complete, 88

conjugate, 54

constant, 15

creative telescoping, 9

D-finite, 114

derivation, 15

difference field, 16

difference ring, 16

differential field, 15

differential Gosper form, 40

differential rational normal form, 57

differential ring, 15

differential-difference ring, 16

differential-reduced, 56

existence criteria, 100

fully integrable, 54

Geddes–Le–Li triple, 88

Hermite reduction, 17, 28

holonomic, 113

hyperexponential-hypergeometric, 51

hyperexponential-integrable, 88

hypergeometric-summable, 94

integrability conditions, 54

logarithmic part, 17

lucky, 32

minimal telescoper, 34

orthogonal, 16

Ostrogradsky–Horowitz system, 22

properness, 73

pump, 91

rational part, 17

residue, 22

ring of Ore polynomials, 16

Rothstein–Trager resultant, 23

127



shift rational normal form, 57

shift-reduced, 56

similar, 81

split, 81

squarefree, 56

squarefree factorization, 29

squarefree part, 29

standard representation, 86

strict DRNF, 57

strict SRNF, 57

telescoper, 10

Zeilberger’s method, 9

128



Curriculum Vitae

Personal Data

• Name: Shaoshi Chen

• Gender: Male

• Nationality: Chinese

• Date and place of birth: July 17, 1983, Zhejiang Province, China

• Marital state: Married, no children

Contact

• Email: schen@amss.ac.cn

Education

2001-2005, Studies in mathematics at Jiangsu University, China

2005-2007, Studies in symbolic computation at Key Laboratory of Mathematics Mecha-

nization, Chinese Academy of Sciences.

Supervisor: Ziming Li

2007-2010, Doctorate studies in symbolic computation at Key Laboratory of Mathemat-

ics Mechanization (Chinese Academy of Sciences, China) and Algorithms Project (INRIA-

Rocquencourt, France).

Co-supervisors: Frédéric Chyzak and Ziming Li

Published Papers

129



• A. Bostan, S. Chen, F. Chyzak, and Z. Li. Complexity of creative telescoping for bivariate

rational functions. In Stephen M. Watt, editor, ISSAC 2010 Proc. 2010 Internat. Symp.

Symbolic Algebraic Comput., New York, N. Y., 2010. ACM Press pp. 203-210.

Posters

• S. Chen and Z. Li. On the structure of multivariate hyperexponential-hypergeometric

functions. Poster at the conference DART IV (Beijing, China), 2010.

• A. Bostan, S. Chen, F. Chyzak, and Z. Li. Rational-function telescoping: blending creative

telescoping with Hermite reduction. Poster at the conference ISSAC’09 (Seoul, South

Korea), 2009.

• S. Chen and Z. Li. A speed-up of the Hermite reduction for rational functions. Poster at

the conference ICMM’09 (Beijing, China), 2009.

Preprints

• S. Chen, F. Chyzak, R. Feng and Z. Li. The existence of telescopers for hyperexponential-

hypergeometric functions. MM Research Preprints, KLMM, AMSS, Academia Sinica, Vol.

29, p. 239-267, July 2010

• S. Chen and Z. Li. A note on Ostrogradsky and Horowitz’s method. MM Research

Preprints, KLMM, AMSS, Academia Sinica, Vol. 29, p. 36–47, July 2010.

• S. Chen and Z. Li. A multiplicative form of multivariate hyperexponential-hypergeometric

functions. MM Research Preprints KLMM, AMSS, Academia Sinica, Vol. 29, p. 25–35,

July 2010.

• S. Chen, R. Feng, Z. Li and H. Wang. An exercise on real elementary functions in the

book Symbolic Integration I (second edition). MM Research Preprints KLMM, AMSS,

Academia Sinica, Vol. 26, p. 115–125, January 2008.

130


