Télécom ParisTech, LTCI, CNRS
TSI Departement
13 January 2011

CENTRE NATIONAL D'ÉTUDES SPATIALES

PhD Defense

Spatial Relations and Spatial Reasoning for the Interpretation of Earth Observation Images Using a Structural Model.

Maria Carolina Vanegas Orozco

Advisors: Isabelle Bloch
Jordi Inglada

atellite computer vision surround ext graphs knowledge vocabulan moncepts airplane strip buildings Nitound what telecommunication loning logic artificial letted

Using knowledge

- Model describing the spatial organization of the scene
- Spatial relations
- Objects
- Knowledge for the extraction of objects
- Image processing methods
- Mapping between low level features and high level concepts

Representing knowledge

Uncertainty with respect to the model

Representing knowledge

Uncertainty with respect to the model

Representing knowledge

Uncertainty with respect to the model

Representing knowledge

Uncertainty with
 respect to the model

Uncertainty with
labeling the objects in the image

Unknown number of instantiations

Representing knowledge

Imprecision of spatial relations

Imprecision of objects in the image

Representing knowledge

Uncertainty with respect to the model

Uncertainty with
labeling the objects in the image

Unknown number of instantiations

Imprecision of spatial relations

Imprecision of objects in the image

Representing knowledge

Uncertainty with respect to the model

Yy[Benz et al, 2004]
[Saathoff and Staab, 2008]
Uncertainty with labeling the objects in the image
[Perchant, 2000]
Imprecision of spatial relations

Imprecision of objects in the image

Representing knowledge

Uncertainty with respect to the model

Representing knowledge

Representing knowledge

Uncertainty with
labeling the objects in the image

Unknown number of instantiations

Imprecision of spatial relations

Our Objective

1. What are the spatial relations that we can find in Earth observation images ?
2. How can we represent them ? (model + image)
3. How can we reason with them to find the instantiations of the model in the image?

Outline

- Spatial relations
- State of the art
- Contribution
- Example
- Interpretation of satellite images using a structural model (concepts + spatial relations)

Conclusions and perspectives

Modeling of Spatial Relations

- Some spatial relations are by nature imprecise (ex: surround)
- Fuzzy logic is an appropriate tool
- Two ways of modeling spatial relations [Bloch, 2006]

1. Given two objects, assess the degree to which the relation is satisfied
2. Given one reference object, define the area of space in which the relation is satisfied to some degree (fuzzy landscape)

Spatial Relations (state of the art)

Original image

Spatial Relations (contribution)

Alignment

Alignment

- Alignment of points
- Determine if a group of objects is aligned by observing its barycenters [Christophe and Ruas, 2002]

Alignment

- Alignment of points
- Determine if a group of objects is aligned by observing its barycenters [Christophe and Ruas, 2002]

Original image

Segmented boats

Barycenters

Alignment

- Alignment of points
- Determine if a group of objects is aligned by observing its barycenters [Christophe and Ruas, 2002]

Original image

Segmented boats

Barycenters

- Consider the whole object to determine if a group of objects is aligned
- Use relative position measures

Alignment (preliminary concepts)

- Measure the relative position between two objects
- Orientation histogram (based on [Miyajima and Ralescu, 1994])

$$
O(A, B)(\theta)=\frac{\left|\left\{(p, q) \in A \times B \mid \bmod \left(\angle\left(\overrightarrow{p q}, \vec{u}_{x}\right), \pi\right)=\theta\right\}\right|}{\max _{\phi \in[0, \pi)}\left|\left\{(p, q) \in A \times B \mid \bmod \left(\angle\left(\overrightarrow{p q}, \vec{u}_{x}\right), \pi\right)=\phi\right\}\right|}
$$

Alignment (preliminary concepts)

- Measure the relative position between two objects
- Orientation histogram (based on [Miyajima and Ralescu, 1994])

$$
O(A, B)(\theta)=\frac{\left|\left\{(p, q) \in A \times B \mid \bmod \left(\angle\left(\overrightarrow{p q}, \vec{u}_{x}\right), \pi\right)=\theta\right\}\right|}{\max _{\phi \in[0, \pi)}\left|\left\{(p, q) \in A \times B \mid \bmod \left(\angle\left(\overrightarrow{p q}, \vec{u}_{x}\right), \pi\right)=\phi\right\}\right|}
$$

Alignment (preliminary concepts)

- Measure the relative position between two objects
- Orientation histogram (based on [Miyajima and Ralescu, 1994])

$$
O(A, B)(\theta)=\frac{\left|\left\{(p, q) \in A \times B \mid \bmod \left(\angle\left(\overrightarrow{p q}, \vec{u}_{x}\right), \pi\right)=\theta\right\}\right|}{\max _{\phi \in[0, \pi)}\left|\left\{(p, q) \in A \times B \mid \bmod \left(\angle\left(\overrightarrow{p q}, \vec{u}_{x}\right), \pi\right)=\phi\right\}\right|}
$$

Alignment (preliminary concepts)

- Similarity measure between two orientation histograms
- the imprecision of comparing two angles is modeled through ν_{0}

$$
\operatorname{sim}(O(A, B), O(C, D))=\max _{\theta \in[0, \pi)}\left[D_{\nu_{0}}(O(A, B))(\theta) \wedge D_{\nu_{0}}(O(C, D))(\theta)\right]
$$

Global Alignment

A group S is globally aligned if the following conditions are satisfied:
(i) The consecutive members of S are neighbors,
(ii) $|S| \geq 3$, and
(iii) there exists $\theta \in\left[0, \pi\left[\right.\right.$ such that $A_{i}, A_{j} \in \mathcal{S}, A_{i}$ is able to see A_{j} in direction θ or $\theta+\pi$ with the horizontal axis.

$$
\mu_{A L I G}(S)=\operatorname{sim}\left(O\left(A_{0}, \mathcal{S} \backslash\left\{A_{0}\right\}\right), \ldots, O\left(A_{n}, \mathcal{S} \backslash\left\{A_{n}\right\}\right)\right)
$$

Local Alignment

A group S is locally aligned if the following conditions are satisfied:
(i) The consecutive members of S are neighbors,
(ii) $|S| \geq 3$, and
(iii) for every $A_{i}, A_{j}, A_{k} \in \mathcal{S}$ such that A_{j} and A_{k} are neighbors of A_{i}, the orientations $O\left(A_{i}, A_{k}\right)$ and $O\left(A_{i}, A_{j}\right)$ are similar.

$$
\mu_{L A}(S)=\min _{A_{i}, A_{j}, A_{k}: \operatorname{Neigh}\left(A_{i}, A_{j}\right) \wedge \operatorname{Neigh}\left(A_{i}, A_{k}\right)} \operatorname{sim}\left(O\left(A_{i}, A_{j}\right), O\left(A_{i}, A_{k}\right)\right)
$$

Local Alignment (underlying idea)

Objects

Neighborhood graph

RI $\forall X, Y, Z(N e i g h(X, Y) \wedge N \operatorname{eigh}(Y, Z))$

$$
\Rightarrow \operatorname{sim}(O(X, Y),(Y, Z) \geq \beta)
$$

R2 $\forall A, B \exists X_{0}, \ldots X_{m}$ for $m>1$ such that $X_{0}=A$,

$$
X_{m}=B \text { and } \wedge_{\substack{i=0 \\ 21}}^{m-1} N e i g h\left(X_{i}, X_{i+1}\right)
$$

Local Alignment (underlying idea)

$\operatorname{RI} \forall \tilde{V}_{i}, \tilde{V}_{j} \operatorname{Conn}\left(\tilde{V}_{i}, \tilde{V}_{j}\right) \Rightarrow\left(\tilde{s}_{i j} \geq \beta\right)$

R2 $\forall \tilde{V}_{i}, \tilde{V}_{j} \exists \tilde{U}_{0}, \ldots, \tilde{U}_{K}$ for $K>1$ such that $\tilde{U}_{0}=\tilde{V}_{i}$,

$$
\tilde{U}_{K}=\tilde{V}_{j} \wedge_{22} \wedge_{k=0}^{K} \operatorname{Conn}\left(\tilde{U}_{k}, \tilde{U}_{k+1}\right)
$$

Local Alignment (underlying idea)

Neighborhood graph

Dual graph
$\operatorname{RI} \forall \tilde{V}_{i}, \tilde{V}_{j} \operatorname{Conn}\left(\tilde{V}_{i}, \tilde{V}_{j}\right) \Rightarrow\left(\tilde{s}_{i j} \geq \beta\right)$

R2 $\forall \tilde{V}_{i}, \tilde{V}_{j} \exists \tilde{U}_{0}, \ldots, \tilde{U}_{K}$ for $K>1$ such that $\tilde{U}_{0}=\tilde{V}_{i}$,

$$
\tilde{U}_{K}=\tilde{V}_{j 2} \wedge_{k=0}^{K} \operatorname{Conn}\left(\tilde{U}_{k}, \tilde{U}_{k+1}\right)
$$

Local Alignment (underlying idea)

The locally aligned groups to a degree β correspond to the clusters in the dual graph which have a degree greater or equal to β.

From local to global alignment

- The locally aligned groups are candidates to global aligned groups.
- If $\mu_{A L I G}(\mathcal{S})<\beta$ then the vertices of the dual graph with the minimum degree are eliminated.

Example: Urban morphologies

Quickbird image:Toulouse

Example: Urban morphologies

Extracted buildings [Poulain et al. 2008]

Some globally aligned buildings to a degree greater than $\beta=0.85$

Example: Urban morphologies

Outline

- Spatial relations
- State of the art
- Contribution
- Example
- Interpretation of satellite images using a structural model (concepts + spatial relations)

Conclusions and perspectives

Structural model

The structural model is represented as a nested conceptual graph:

- allows to represent groups of objects
- graphical representation
- built over a vocabulary

Structural model

The structural model is represented as a nested conceptual graph:

- allows to represent groups of objects
- graphical representation
- built over a vocabulary

Structural model

The structural model is represented as a nested conceptual graph:

- allows to represent groups of objects
- graphical representation
- built over a vocabulary

Structural model

The structural model is represented as a nested conceptual graph:

- allows to represent groups of objects
- graphical representation
- built over a vocabulary

Interpretation using a model

- To find the instantiations of the model in the image, we find the homorphisms from the conceptual graph onto the image's regions.
- multiple and unknown number of instantiations

Interpretation using a model

- To find the instantiations of the model in the image, we find the homorphisms from the conceptual graph onto the image's regions.
- multiple and unknown number of instantiations

Interpretation using a model

- To find the instantiations of the model in the image, we find the homorphisms from the conceptual graph onto the image's regions.
- multiple and unknown number of instantiations

Interpretation using a model

- To find the instantiations of the model in the image, we find the homorphisms from the conceptual graph onto the image's regions.
- multiple and unknown number of instantiations

FCSP [Dubois et al., 1996]

- Fuzzy Constraint Satisfaction Problem $\mathcal{P}=\langle\mathcal{X}, \mathcal{D}, \mathcal{C}\rangle$
- $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ a set of n variables, representing a concept node of the graph.
- $\mathcal{D}=\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$ a set of n domains. Each domain D_{i} is associated with a variable x_{i}. Represents the regions on the image (membership functions)
- $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{t}\right\}$ a set of t fuzzy constraints, representing the relations on the conceptual graph.

FCSP [Dubois et al., 1996]

- Fuzzy Constraint Satisfaction Problem $\mathcal{P}=\langle\mathcal{X}, \mathcal{D}, \mathcal{C}\rangle$
- $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ a set of n variables, representing a concept node of the graph.
- $\mathcal{D}=\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$ a set of n domains. Each domain D_{i} is associated with a variable x_{i}. Represents the regions on the image (membership functions)
- $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{t}\right\}$ a set of t fuzzy constraints, representing the relations on the conceptual graph.

- Fuzzy Constraint Satisfaction Problem $\mathcal{P}=\langle\mathcal{X}, \mathcal{D}, \mathcal{C}\rangle$
- $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ a set of n variables, representing a concept node of the graph.
- $\mathcal{D}=\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$ a set of n domains. Each domain D_{i} is associated with a variable x_{i}. Represents the regions on the image (membership functions)
- $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{t}\right\}$ a set of t fuzzy constraints, representing the relations on the conceptual graph.

- Fuzzy Constraint Satisfaction Problem $\mathcal{P}=\langle\mathcal{X}, \mathcal{D}, \mathcal{C}\rangle$
- $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ a set of n variables, representing a concept node of the graph.
- $\mathcal{D}=\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$ a set of n domains. Each domain D_{i} is associated with a variable x_{i}. Represents the regions on the image (membership functions)
- $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{t}\right\}$ a set of t fuzzy constraints, representing the relations on the conceptual graph.

Arc-consistency

- A FCSP is arc-consistent if for every constraint involving x_{i} and x_{j}, if for every $a_{i} \in D_{i}$ we have that

$$
\mu_{x_{i}}\left(a_{i}\right) \leq \sup _{\left(a_{i}, b_{j}\right) \in D_{i} \times D_{j}} \min \left[\mu_{R_{k}}\left(a_{i}, b_{j}\right), \mu_{x_{j}}\left(b_{j}\right)\right]
$$

敂
$D_{\text {house }}$
$D_{\text {garden }}$
$D_{\text {pool }}$

Arc-consistency

- A FCSP is arc-consistent if for every constraint involving x_{i} and x_{j}, if for every $a_{i} \in D_{i}$ we have that

$$
\mu_{x_{i}}\left(a_{i}\right) \leq \sup _{\left(a_{i}, b_{j}\right) \in D_{i} \times D_{j}} \min \left[\mu_{R_{k}}\left(a_{i}, b_{j}\right), \mu_{x_{j}}\left(b_{j}\right)\right]
$$

Arc-consistency

- A FCSP is arc-consistent if for every constraint involving x_{i} and x_{j}, if for every $a_{i} \in D_{i}$ we have that

$$
\mu_{x_{i}}\left(a_{i}\right) \leq \sup _{\left(a_{i}, b_{j}\right) \in D_{i} \times D_{j}} \min \left[\mu_{R_{k}}\left(a_{i}, b_{j}\right), \mu_{x_{j}}\left(b_{j}\right)\right]
$$

$D_{\text {house }}$
$D_{\text {garden }}$

$D_{\text {pool }}$

Arc-consistency

- A FCSP is arc-consistent if for every constraint involving x_{i} and x_{j}, if for every $a_{i} \in D_{i}$ we have that

FAC-3
Recursively check each constraint and reduce the membership in order to make it arc-consistent does not work for groups!

$D_{\text {house }} \quad D_{\text {garden }} \quad D_{\text {pool }}$

Interpretation using a model (outline)

Construction of initial membership functions

Original image

Construction of initial membership functions

Construction of initial membership functions

Construction of initial membership functions

Large concrete surfaces

Reduction of domains (modified FAC-3 algorithm)

- The FAC-3 algorithm is not adapted to deal with groups of objects

Reduction of domains (modified FAC-3 algorithm)

- The FAC-3 algorithm is not adapted to deal with groups of objects

constraint
- relations inside
- alignment
variable
-group seen as an object

Reduction of domains (modified

 FAC-3 algorithm)- The FAC-3 algorithm is not adapted to deal with groups of objects

constraint
- relations inside
- alignment
variable
-group seen as an object
- When evaluating the arc-consistency condition in a group the domains of the group and the objects inside the group can be modified.

Reduction of domains

36

Reduction of domains

Before evaluating arc-consistency

scale 2

Reduction of domains

After evaluating arc-consistency

scale 2

Reduction of domains

Before evaluating arc-consistency

39

Reduction of domains

Reduction of domains

Before evaluating arc-consistency

Reduction of domains

Reduction of domains

Reduction of domains

Reduction of domains

Aligned group

(inside
group)

45 scale 0
scale I
scale 2

Finding a solution

Which is (are) the best instantiation(s) ?
Use the consistency value of each instantiation (all relations are satisfied)

$$
\operatorname{Cons}(V)=\min _{\tilde{C}_{k} \in \mathcal{C}} \mu_{R_{k}}\left(V \downarrow_{S_{k}}\right)
$$

- Very strict:

Sol 1	0.40	0.55	0.42	0.62
Sol 2	0.40	0.89	0.92	0.87
	$\mu_{R_{1}}$	$\mu_{R_{2}}$	\cdots	

Finding a solution

Organize according to leximin order:

Sol 1		0.40 0.55 0.42 0.62		
Sol 2			0.89	0.92
0.87				

Finding a solution

Organize according to leximin order:

Finding a solution

Organize according to leximin order:

Finding a solution

Example harbor

Original image

Example harbor

Concept hierarchy

Conceptual graph

Example harbor

Example harbor

Example harbor

\square Water
\square Dock
\square Boat
\square Other

Example harbor

Example harbor

\square Water
\square Dock
\square
Boat
Other

Example harbor

Example harbor

\square Water
\square Dock
\square
Boat
\square
Other

Outline

- Spatial relations
- State of the art
- Contribution
- Example
- Interpretation of satellite images using a structural model (concepts + spatial relations)
- Conclusions and perspectives

Conclusions

- We proposed novel definitions for spatial relations
- Take into account imprecision
- Are in accordance with perception
- Proposed an extension of nested conceptual graphs to allow the representation of aligned groups of objects (complex concept nodes).

Conclusions

- Extension of fuzzy CSP
- Extension of arc-consistency algorithm for constraints with arity greater than 2 .
- Determine the arc-consistency closure of a network containing complex concept nodes.
- Proposed a methodology for image interpretation using a structural model.
- Spatial relations and interpretation system implemented in OTB (Orfeo Toolbox)

Perspectives (short term)

- Introduction of uncertainty of the model into the interpretation method
- Optimization of the algorithm for determining the arcconsistency closure of nested constraint networks with complex concept nodes
- Ordering of constraints
- Extraction of initial regions and labeling
- More appropriate segmentation algorithms [Bin, 2007], [Guigues et al. , 2003]
- Corine landcover

Perspectives (long term)

- Integration of the interpretation system into a query based architecture with relevance feedback

Perspectives (long term)

- Integration of the interpretation system into a query based architecture with relevance feedback
- Several models can describe the same scene

56

Perspectives (long term)

- Integration of the interpretation system into a query based architecture with relevance feedback
- Several models can describe the same scene
- Study of the relevance of spatial relations for describing a scene
- relevance in language description [Dessalles, 2008]

Perspectives (long term)

- Integration of the interpretation system into a query based architecture with relevance feedback
- Several models can describe the same scene
- Study of the relevance of spatial relations for describing a scene
- relevance in language description [Dessalles, 2008]
- Automatic creation of the structural models

