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Abstract

High resolution remote sensing images allow discriminating between different objects that
compose a scene. However, due to the large quantities of information it is difficult to
differentiate the meaningful characteristics or regions necessaries for the description of the
scene. Thus, the interpretation of these image requires the introduction of new tools which
allows us to distinguish the objects of interest from the rest of the image.

First we study the spatial relations which can be useful for the interpretation of satellite
images. We focused on the following spatial relations: surround, relations between linear
objects and regions, alignment and parallelism. For each of these relations we developed
formal models within the fuzzy set framework, which take into account the semantics, the
perception and the context of use of these relations. These relations were evaluated on real
objects, obtaining satisfaction degrees which fit well with the intuition, even in the case of
complex objects.

Then we propose an application of spatial relations for higher level tasks. We intro-
duce an interpretation system which is capable of finding the instantiations of an structural
model in an image. The interpretation problem is described as a flexible constraint sat-
isfaction problem. We proposed adapted propagation algorithms for flexible constraint
satisfaction problems in order to cope with complex relations and to take into account
the difficulties of properly detecting the objects in the image. We tested our algorithm in
scenes containing harbors and airports and the results show the interest of incorporating
this methodology in a more complete image interpretation system.
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Résumé

L’amélioration de la résolution des images satellites optiques permet de distinguer les
différents objets qui composent une scène. Néanmoins il reste difficile d’extraire les caracté-
ristiques ou les régions qui sont pertinentes pour la description d’une scène. L’interprétation
de ce type de données requiert donc l’introduction d’outils qui permettent de discriminer
les objets d’intérêt du reste de l’image. Dans cette thèse nous proposons des outils de
raisonnement spatial qui aident à l’interprétation des images satellites.

D’abord nous nous intéressons aux relations spatiales qui peuvent être utiles pour
l’interprétation des images satellites. Nous nous concentrons sur les relations spatiales sui-
vantes : entourer, alignement, parallélisme et des relations entre lignes et régions. Pour
chacune de ces relations nous introduisons des modèles formels, qui considèrent la séman-
tique des relations et le leur contexte d’utilisation.

Ensuite nous proposons une utilisation des modèles de relations spatiales pour des
tâches de haut niveau : nous introduisons un système d’interprétation qui est capable de
trouver les instanciations d’un modèle structurel dans une image. Le problème d’interpré-
tation d’une image est formulé comme un problème de satisfaction de contraintes floues.
Nous proposons des algorithmes de propagation adaptés aux relations complexes telles que
l’alignement, et qui prennent en compte les difficultés de détection des objets dans les
images. Ce système a été testé sur des scènes contenant des ports et des aéroports et les ré-
sultats montrent l’intérêt d’incorporer cette méthodologie dans un système d’interprétation
d’image plus complet.
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Résumé des travaux

Introduction

L’amélioration de la résolution des images satellites optiques, telles que celles obtenues
par le capteur Quickbird et bientôt par le capteur Pléiades, permet d’identifier des objets
qui font partie d’un objet complexe. Les objets complexes sont caractérisés par un ensemble
d’objets qui satisfont des relations spatiales entre eux et qui forment une structure, par
exemple les aéroports, les ports et les gares. Bien que l’image porte beaucoup d’information
qui permet la reconnaissance d’objets complexes, il reste difficile d’extraire les caractéris-
tiques ou les régions qui sont pertinentes pour la description d’une scène. L’interprétation
de ce type de données requiert donc l’introduction d’outils qui permettent de discriminer
les objets d’intérêt du reste de l’image.

Dans cette thèse nous proposons des outils de raisonnement spatial qui aident à l’in-
terprétation des images satellites. Dans une première partie nous nous intéressons aux
relations spatiales qui se trouvent dans les images satellites. Nous faisons une étude des
relations spatiales qui sont utilisées en traitement d’images et dans d’autres domaines liés
à l’imagerie satellitaire, tels que la cartographie. Nous avons déterminé un ensemble de
relations, avec les modèles formels correspondants, qui sont utiles pour l’interprétation des
images. Cet ensemble comporte des relations qui existent déjà dans la littérature, ainsi que
des relations et modèles originaux que nous introduisons, qui sont bien adaptés aux images
satellites.

Dans une deuxième partie nous proposons une utilisation des modèles de relations
spatiales introduits pour des tâches de haut niveau. Cette application consiste en la pro-
position d’un système d’interprétation qui est capable de trouver les instanciations d’un
modèle structurel dans une image, en lui donnant une quantité de connaissance minimale
sur l’extraction des objets du modèle. Ce système a été testé sur des images réelles.

Chapitre 2 : Les relations spatiales dans des images de télé-
détection

Pour déterminer les relations spatiales entre des objets dans des images satellites, nous
considérons les relations spatiales qui ont été proposées dans les domaines de l’intelligence
artificielle, l’interprétation des images, les systèmes d’information géographique (GIS en
anglais) et la généralisation cartographique. Ces domaines nous intéressent car ils contri-
buent à produire des modèles pour des relations que l’on peut observer dans des images
qui prennent en compte l’intuition. Les domaines des systèmes d’information géographique
et de la généralisation cartographique s’intéressent à l’utilisation des relations spatiales
pour décrire l’agencement des objets géographiques. Cependant il y a des relations pour
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lesquelles il n’existe pas de modèles ou les modèles proposés ne s’adaptent pas à la nature
des images.

Les relations spatiales entre des objets dans des images satellites peuvent être réparties
en trois familles :

Relations topologiques : dans cette famille la relation d’adjacence est très importante
en analyse d’images. La figure 1.6 illustre les relations de cette famille.

Relations métriques : cette famille est composée des relations de distance telle que
« proche », « loin », et des relations de direction comme « au nord ». La figure
1.15 illustre l’ensemble des relations qui appartiennent à cette famille.

Relations de groupement : ce type de relations est utilisé dans la généralisation carto-
graphique [Steiniger and Weibel, 2007]. Cette famille fait référence aux relations qui
forment des motifs entre plusieurs objets, par exemple les alignements d’objets, les
objets qui sont agencés en forme d’étoile comme les rues dans un carrefour.

Différents auteurs [Rosenfeld and Klette, 1985, Bloch, 2005, Aksoy et al., 2003, Miya-
jima and Ralescu, 1994a, Takemura et al., 2005] se sont intéressés à la modélisation des re-
lations topologiques et des relations métriques pour l’interprétation et l’analyse des images.
Lorsque l’on veut représenter une relation spatiale entre des objets de l’image il faut prendre
en compte les imprécisions dues aux traitements de bas niveau et au processus d’acquisi-
tion, ainsi que les imprécisions liées à la sémantique de la relation. Par exemple la relation
« proche » est par nature imprécise. La logique floue est bien adaptée pour la modélisation
des relations spatiales car elle permet de prendre en compte ces imprécisions. Dans le cadre
des relations spatiales floues, deux questions peuvent se poser par rapport à une relation
[Bloch, 2005] :

(i) quel est le degré de satisfaction de la relation entre deux objets ?

(ii) étant donné un objet de référence, quelle est la région de l’espace (paysage flou) où
la relation est satisfaite (et à quel degré) ?

Selon la question à laquelle on veut répondre, la relation est modélisée d’une façon diffé-
rente. L’avantage de modéliser une relation qui répond à la deuxième question est que, à
partir d’un objet de référence A, on peut construire une région d’intérêt pour chercher des
objets qui sont en relation avec A. Un autre avantage est que pour répondre à la première
question, il suffit de trouver le paysage flou une seule fois et après on peut évaluer le degré
de satisfaction avec plusieurs objets. Nous proposons des relations qui répondent à la pre-
mière question et d’autres à la seconde. Dans la suite nous allons présenter les principales
caractéristiques des modèles des relations que nous avons construits.

Chapitre 3 : Nouvelles relations spatiales

« Entourer »

La relation « entourer » est fréquemment trouvée dans des images satellites, par
exemple entre des structures dans la mer et la mer. Pour définir cette relation, nous allons
dire qu’un objet A est « entouré » par un objet B si l’objet A est observé par l’objet B
dans presque toutes les directions. [Rosenfeld and Klette, 1985] et [Miyajima and Ralescu,
1994b] ont proposé des approches pour modéliser cette relation qui sont en accord avec la
relation que nous voulions définir. Ces deux approches proposent un modèle qui détermine
le degré de satisfaction de la relation A est « entouré » par B, en utilisant des mesures
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de couverture angulaire des points de A par les points de B. Par rapport aux approches
de [Rosenfeld and Klette, 1985] et [Miyajima and Ralescu, 1994b], nous proposons une
définition de la relation comme une région floue de l’espace où la relation est satisfaite
pour un objet de référence donné. Les avantages de cette approche ont été soulignés dans
la section précédente. De plus, notre définition prend en compte la morphologie de l’objet
de référence ainsi que la notion de distance par rapport à l’objet cible.

Lorsqu’un objet B « entoure » un objet A, il y a une portion de la frontière de B
qui contourne A. [Mathet, 2000] suggère que la relation « un chemin C contourne un
objet A » est satisfaite si et seulement si C n’intersecte pas A et l’enveloppe convexe de
C intersecte A. Cette définition a été conçue en considérant les aspects linguistiques de la
relation. Donc en prenant en compte la définition de la relation « contourner » on peut
dire que la relation « entouré » a un sens uniquement dans le cas où l’objet de référence
a des concavités. Nous utilisons donc les points de la frontière de B qui se trouvent dans
une concavité pour déterminer si A est vu par B dans presque toutes les directions. Nous
nous appuyons sur le travail de [Rosenfeld and Klette, 1985, Miyajima and Ralescu, 1994b]
pour définir la notion de visibilité dans « presque toutes » les directions. Nous définissons
la couverture angulaire d’un point p par les points qui se trouvent dans les concavités de
∂B, la frontière de B, comme :

θcoverage_CH(B, µn)(p) =

∫ 2π

0
r̃θ(B)(p)dθ (1)

où r̃θ(B) : I→ [0, 2π] est une fonction qui détermine s’il existe un point dans une concavité
de B qui voit p dans la direction θ, c’est-à-dire :

r̃θ(B)(p) =

{

1 si ∃b ∈ ∂B \ ∂CH(B) tel que ∠(~pb, ~ux) = θ et [p, b[∩B = ∅,
0 sinon.

(2)

où ∠(~pb, ~ux) représente l’angle entre le vecteur ~pb, joignant p et b et le vecteur unitaire
dans la direction de l’axe x.

Maintenant que nous avons défini la couverture angulaire, la région de l’espace qui est
« entourée » par un objet B est définie par l’ensemble flou µsurround(B) : I→ [0, 1] :

µsurround(B)(p) = f(θcoverage_CH(B)(p)) (3)

où f : [0, 2π] → [0, 1], f(0) = 0 et f(2π) = 1. L’objectif de la fonction f est de définir
la fonction d’appartenance de la variable linguistique « presque tous » de la couverture
angulaire. La figure 2.5 montre la région floue où la relation « entourer » est satisfaite
en utilisant comme objets de référence ceux de la figure 2.3. Les points qui se trouvent
à l’intérieur des concavités de l’objet de référence ont un fort degré d’appartenance à
µsurround(B).

La définition de l’équation 3 est bien adaptée si l’on considère que les objets visés par la
relation ont une taille comparable à celle des concavités de l’objet de référence. Néanmoins
quand le point q dans les concavités de ∂B qui voit l’objet cible A dans une direction θ
est très « loin » de A, tout se passe comme si q ne le voyait pas. La notion de « loin » est
étroitement liée aux caractéristiques intrinsèques de A, comme la taille de A [Hernandez
et al., 1995]. Maintenant, nous considérons la fonction d’appartenance de « entourer » par
B en prenant en compte la distance, pour cela nous avons besoin uniquement d’adapter
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l’équation 2 selon :

r̃θ(p, B, µn) =

{

µn(dE(p, q)) si ∃q ∈ ∂B \ ∂CH(B) tel que ∠( ~pq, ~ux) = θ et [p, q[∩B = ∅,
0 sinon.

(4)
où µn(dE(p, q)) est une fonction de R+ dans [0, 1] qui représente la notion de « près »
selon l’objet cible.

L’extension de ces définitions au cas flou est faite de manière directe en utilisant la
méthode de traduction formelle. La définition de « entourer » de l’équation 3 est un cas
particulier de la définition qui prend en compte la distance quand µn est une fonction
constante égale à 1. La définition de « entourer » est invariante par rapport aux trans-
formations géométriques (pour les homothéties, cela suppose que µn soit invariant). La
définition de « entourer » est croissante par rapport à µn.

Les deux définitions (avec et sans prise en compte de la distance) ont été testées dans
des images réelles pour les objets de la figure 2.7 en utilisant les différentes fonctions de
distance µn de la figure 2.8. Les résultats se trouvent dans la figure 2.9. Ils montrent que
quand on considère la fonction de distance on peut obtenir des régions plus précises. Les
régions obtenues sont en accord avec l’intuition.

« Alignement »

La relation d’alignement est souvent observée dans des images satellites pour des objets
construits par l’homme. Par exemple dans les aires de stationnement telles que stationne-
ments de voitures, aéroports, ports ou stationnements de camions, les véhicules forment
des ensembles alignés. Ainsi l’identification des ensembles de véhicules alignés peut aider à
l’identification de ces objets. De plus trouver les ensembles d’objets alignés peut aider à la
réduction de l’information qui se trouve dans les images. Par exemple, pour une cartogra-
phie il est nécessaire d’identifier les ensembles de bâtiments alignés pour la généralisation
des cartes [Steiniger and Weibel, 2007]. Donc les alignements donnent de l’information
structurelle qui peut être utilisée pour l’identification des zones urbaines, rurales ou rési-
dentielles.

En vision l’alignement entre points ou segments a été largement étudié [Lowe, 1987,
Christophe and Ruas, 2002, Ortner et al., 2007, Likforman-Sulem and Faure, 1994, De-
solneux et al., 2008, Ralescu and Shanahan, 1999] car il correspond à des caractéristiques
saillantes pour l’interprétation des images conformément à la théorie de la Gestalt. Dans
[Desolneux et al., 2003, Christophe and Ruas, 2002] l’extension aux objets a été faite en
regardant si leurs centres de masse sont alignés. Cette méthode est appropriée pour détermi-
ner les groupes d’objets qui sont alignés par leur centre de masse, mais il y a d’autres types
d’alignement, comme l’alignement par rapport aux extrémités, qui sont moins étudiés. Par
rapport aux travaux existants nous proposons une approche qui utilise des mesures de
positions relatives où l’objet n’est pas réduit à un seul point, comme son centre de masse,
mais tout l’objet est pris en considération. Dans l’exemple de la figure 2.10 nous montrons
un exemple d’objets réels qui sont alignés et pourtant leurs centres de masse ne le sont
pas. L’algorithme que nous proposons permet d’identifier des ensembles d’objets qui sont
alignés même si les objets ont des tailles différentes ou des formes complexes, ce que ne
permet pas un algorithme qui s’appuie sur l’alignement des centres de masse.

Nous disons qu’un ensemble d’objets est aligné s’il a au moins trois éléments et s’il
existe un angle θ pour lequel chaque membre du groupe est capable de voir les autres
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membres du groupe dans une direction θ ou θ + π. Pour mesurer la direction entre objets
nous définissons l’histogramme d’orientations qui est fondé sur l’histogramme d’angles de
[Miyajima and Ralescu, 1994a]. Étant donné deux objets A et B dans I, l’histogramme
d’orientation est :

O(A, B)(θ) =
|1{(p,q)∈A×B|mod(∠( ~pq,~ux),π)=θ}|

maxφ∈[0,π) |1{(p,q)∈A×B|mod(∠( ~pq,~ux),π)=φ}|
, (5)

où 1X est la fonction indicatrice de l’ensemble X, ∠( ~pq, ~ux) est l’angle entre le vecteur
joignant p et q et le vecteur ~ux qui représente l’orientation de l’axe x. L’histogramme
d’orientations est un ensemble flou de [0, π[ qui représente l’orientation entre deux objets.
Il correspond à un histogramme d’angles [Miyajima and Ralescu, 1994a] où les angles sont
calculés modulo π, il préserve les mêmes propriétés que l’histogramme d’angles, et de plus
il est symétrique.

Nous définissons la similarité entre deux histogrammes d’orientations O(A, B) et
O(C, D) comme le maximum de l’intersection de Dµ0(O(A, B)) et Dµ0(O(C, D)), où
Dµ0(O(X, Y )) est une dilatation morphologique floue de O(X, Y ) par un élément structu-
rant flou µ0 [Bloch and Maître, 1995]. Dans notre cas µ0 représente l’imprécision attachée
à la comparaison d’angles qui sont presque égaux, et cette fonction peut être modélisée par
une fonction en trapèze.

Pour déterminer les ensembles d’objets qui sont alignés nous déterminons d’abord les
ensembles d’objets qui sont alignés localement, et ces ensembles vont être les candidats
pour les ensembles d’objets alignés, que nous appelons alignés globalement. Étant donné un
ensemble d’objetsA = {a1, . . . an}, nous construisons un graphe de voisinage GN = {V, E},
où les nœuds représentent les objets de l’ensemble, et il y a une arête entre deux nœuds si et
seulement si les objets correspondants sont voisins selon une relation de voisinage (Voronoï,
distance tronquée). Chaque arête est attribuée avec l’histogramme d’orientations entre les
deux objets qui sont représentés par les nœuds de ses extrémités. A partir du graphe
de voisinage nous construisons son graphe dual. Le graphe dual est noté G̃N = {Ṽ , Ẽ}.
Chaque nœud Ṽi ∈ Ṽ représente une arête du graphe GN . Il existe une arête entre deux
nœuds Ṽi et Ṽj de G̃N s’il y a un nœud commun de GN entre les arêtes correspondantes
de GN . Chaque arête ẽij est étiquetée avec la valeur de similarité entre les histogrammes
d’orientation de Ṽi and Ṽj (équation 5). La figure 2.20 montre un exemple de graphe de
voisinage et son graphe dual. Dans le graphe dual il est possible de comparer directement
les orientations entre paires d’objets avec un objet en commun : les arêtes du graphe
dual qui ont une valeur haute (respectivement faible) représentent des triplets d’objets
d’orientations similaires (respectivement différentes).

Nous disons alors qu’un ensemble est localement aligné avec un degré α, si pour le
sous-ensemble Ã ⊆ Ṽ correspondant à G̃N toutes les arêtes qui relient ses nœuds ont une
valeur supérieure à α.

Un groupe localement aligné A = {A0, . . . , An} est un candidat pour être globalement
aligné. Pour déterminer s’il est globalement aligné nous considérons le groupe comme un
tout. Nous définissons le degré d’alignement global par la valeur de similarité entre les histo-
grammes d’orientation O(Ai,A\Ai), pour i = 0, . . . , n, où O(Ai,A\Ai) est l’histogramme
d’orientations entre Ai et le reste du groupe.

Cette méthode nous permet d’obtenir les ensembles d’objets alignés dans une image
satellite d’une façon originale. Les figures 3.3 et 3.5 montrent des applications de cette
relation pour la classification des morphologies urbaines et pour la désambiguïsation de
l’information dans la détection de routes et de bâtiments.
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« Parallélisme »

Comme l’alignement, la relation de parallélisme est importante lorsque nous considé-
rons des structures qui ont été faites par l’homme. Dans le cadre de la vision, le parallélisme
entre segments et lignes a été largement étudié [Lowe, 1987, Kang and Walker, 1992, Rouco
et al., 2007, Ralescu and Shanahan, 1999, Toh, 1992]. Néanmoins le parallélisme entre un
groupe d’objets alignés et un objet linéaire ou un autre groupe d’objets alignés a été moins
étudié. De plus, les relations d’alignement et de parallélisme se trouvent fréquemment en-
semble. Nous proposons une définition du parallélisme qui est bien adaptée pour évaluer le
parallélisme quand l’objet de référence ou l’objet cible de la relation est un groupe d’objets
alignés ou un segment flou. Notre définition repose aussi sur la notion de visibilité (floue)
et pas uniquement sur l’orientation comme dans la plupart des travaux de la littérature.

Dans le contexte de cette thèse nous considérons que la relation de parallélisme n’est
pas symétrique, car les longueurs des objets dans l’image sont finies et peuvent être diffé-
rentes. Lorsque l’on veut évaluer la relation de parallélisme entre des objets de différentes
longueurs, comme A et B de la figure 2.24(a), la propriété de symétrie est discutable. La
relation « B est parallèle à A » peut être considérée comme vraie : pour tous les points de
la frontière de B qui sont en face de A, il est possible de voir (dans la direction normale
à l’axe principal de A) un point de A, et les orientations de A et B sont similaires. En
revanche la relation « A est parallèle à B » est ambiguë par rapport à la position dans
A : depuis le point d il est possible de voir un point de B dans la direction normale à l’axe
principal de B, alors que depuis le point c nous ne verrons aucun point de B. Cet exemple
permet d’illustrer aussi que la relation de « parallélisme » doit être évaluée comme une
relation floue plutôt que par une réponse oui/non. Dans ce cas, la relation « B est paral-
lèle à A » aura une plus forte valeur de satisfaction que « A est parallèle à B ». Avec des
argumentes similaires nous pouvons montrer aussi que la relation n’est pas transitive.

Nous traitons d’abord le cas de parallélisme entre objets linéaires flous. Soient A et B
deux objets linéaires flous avec des orientations θA et θB, respectivement. Soit ~uθA+π

2
le

vecteur normal à l’axe principal de A. Donc, le degré de satisfaction « A est parallèle à
B » dépend des conditions suivantes :

(i) Il y a une grande proportion de la frontière de A qui voit B dans la direction ~uθA+π
2
.

(ii) L’orientation de A et l’orientation de la frontière de B qui est en face de A et qui
est vue par A dans la direction ~uθA+π

2
sont similaires.

Ces deux conditions sont reliées à la notion de visibilité. Le sous-ensemble de X qui est
visible par Y dans la direction θ est défini comme un ensemble flou avec la fonction d’ap-
partenance suivante :

µXvis(Y,θ)(x) = µX(x) ∧Dνθ
(µY )(x). (6)

où Dνθ
(µY )(x) est la dilation directionnelle morphologique [Bloch, 1999] et ∧ est une t-

norme. Cette notion est illustrée dans la figure 2.26. En utilisant la définition de visibilité
et en traduisant les conditions de parallélisme, nous définissons le degré de satisfaction de
la relation « A est parallèle à B » comme :

µparallel(A, B) =
Vn(µAvis(B,θA−π

2
))

Vn(µA)

∧

ν0(θδBvis(A,θA+π
2
) − θA), (7)

où la première partie utilise l’hyper-volume flou Vn [Bloch, 2005] pour mesurer la proportion
de A qui voit B. Dans la deuxième partie nous évaluons si l’orientation de A et celle de la
frontière de B vue par A dans la direction ~uθA+π

2
sont similaires, pour cela nous utilisons

une fonction ν0 qui évalue si les deux angles sont égaux.
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Considérons que l’objet de référence est un groupe d’objets alignés S = {A0, . . . , AN}
et que l’objet cible est un objet linéaire B. Pour évaluer les conditions de visibilité nous
utilisons S ∪ βS , où βS est la région « entre » deux éléments consécutifs du groupe. En
prenant en compte βS pour l’évaluation de la visibilité nous considérons le groupe comme
un objet linéaire qui peut être facilement remplacé par A dans l’équation 7 :

µparallel(S, B) =
Vn(∨iµAivis(B,θs−

π
2
))

Vn(∨µAi
)

∧

ν0(θδBvis(βs∪S,θs+
π
2
) − θS), (8)

où θS correspond à l’angle d’alignement du groupe par rapport à l’axe x. De façon similaire
nous étendons la définition du parallélisme pour traiter les cas où l’objet cible est un groupe
aligné ou ceux où les deux objets impliqués dans la relation sont des groupes alignés. Les
figures 3.3 et 3.5 montrent des exemples d’évaluation de la relation entre deux groupes
alignés et entre un groupe et une ligne.

Relations entre lignes et régions

Les images satellites comportent une grande quantité d’objets linéaires (réseaux routiers
et fluviaux), et nous nous sommes donc intéressés aux relations spatiales entre une région
et un objet linéaire. Nous les appelons « relations entre lignes et régions ». Ces relations
ont été étudiées dans la communauté des SIG [Roussopoulos et al., 1988, Egenhofer and
Herring, 1990, Mark and Egenhofer, 1994a, Shariff et al., 1998, Kurata and Egenhofer,
2007, Schwering, 2007] et dans le domaine de la cognition [Landau and Jackendoff, 1993,
Talmy, 1983, Herskovits, 1997]. Dans le domaine des SIG, plusieurs modèles binaires ont
été proposés pour ce type de relations. Ces modèles sont très limités, car il est par exemple
difficile de dire si un chemin traverse ou pas une région quand la région a une forme
complexe. Par rapport aux travaux précédents nous nous sommes attaché à modéliser
les relations qui prennent en compte l’imprécision par rapport à la relation elle-même et
certains des modèles que nous proposons sont valables pour des régions floues.

Nous considérons quatre types de relations : « traverser », « rentrer », « longer » et
« éviter ». Trois de ces relations ont été identifiées comme les plus significatives des relations
entre lignes et régions [Landau and Jackendoff, 1993, Schwering, 2007]. [Takemura et al.,
2005] propose un modèle pour la relation « longer » qui prend en compte les imprécisions
et qui est bien adapté à nos besoins. La relation « éviter » peut être vue comme un
cas particulier de la relation « entourer » (présentée précédemment), pour un objet de
référence linéaire. Ainsi nous nous concentrons uniquement sur la modélisation des relations
« traverser » et « rentrer ».

D’abord nous étudions la relation « traverser ». Pour mieux comprendre sa sémantique,
nous avons effectué une étude sur 32 personnes. Dans cette étude nous avons montré les 8
situations de la figure 2.31 aux sujets, qui devaient indiquer si, selon eux, le chemin traverse
ou pas la région. Nous avons laissé un espace pour faire des commentaires. A partir des
résultats nous observons que la relation a trois types de sens :

(i) la ligne rentre et après sort de la région ;
(ii) les points par lesquels la ligne rentre et sort de la région sont localisés sur des bords

opposés de la région ;
(iii) la ligne rentre et après sort de la région, et elle s’enfonce vers le centre de la région.

Ces trois types de sens montrent que la relation « traverser » ne peut pas être définie
comme une relation binaire, car elle est très ambiguë. Le premier sens est très permissif,
il prend en compte uniquement les aspects topologiques de la relation. Néanmoins dans
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[Talmy, 1983] et [Mark and Egenhofer, 1994a] la similitude entre les relations « passe
par » (« go through » en anglais) et « traverser » (« go across » en anglais) est discutée.
Elles sont même parfois utilisées comme des synonymes. Cependant, la relation « passe
par » est fondée sur des contraintes topologiques : « entrer et sortir d’un milieu » [Talmy,
1983], tandis que la relation « traverser » prend en compte des aspects géométriques.
C’est pourquoi nous avons choisi d’appeler le premier sens « passe par », et les deux
autres « traverser (i) » et « traverser (ii) », respectivement.

Pour la définition de « passe par » nous nous appuyons sur la définition proposée
par [Mark and Egenhofer, 1994a]. Un objet linéaire L « passe par » une région R si ses
extrémités La et Lb n’intersectent pas l’intérieur de la région R◦, et L intersecte R◦ :

µgo_through(L, R) = t (µint(L, R ◦), µqint(La ∪ Lb, R
◦)) . (9)

où µint et µqint sont des degrés d’intersection et non-intersection [Bloch, 2005].
Pour la définition « traverser (i) » nous avons étudié la signification de « aller d’un côté

à l’autre » d’un point de vue cognitif. Nous nous appuyons sur les travaux de [Herskovits,
1997, Landau and Jackendoff, 1993] pour définir quand deux points p et q sur la frontière
de R sont sur des côtés différents de R. Si p et q ne sont pas dans une concavité de R,
alors nous allons dire qu’ils sont sur des côtés opposés de R si leurs vecteurs tangents
sont déphasés d’environ 180◦. Supposons que p se trouve dans une concavité, dans ce
cas nous ne regardons pas son vecteur tangent mais le vecteur tangent du segment qui
ferme la concavité dans laquelle se trouve p, dans l’enveloppe convexe (voir la figure 2.33).
Finalement, le degré de satisfaction de « L traverse R » en utilisant la notion d’aller d’un
côté à l’autre est :

µgo_across1(L, R) = t
(

µgo_through(L, R), µR
opposite_sides(p1, p2)

)

(10)

où p1 et p2 sont les points de L qui intersectent la frontière de R et µR
opposite_sides(p1, p2)

est une fonction floue qui mesure le degré avec lequel p1 et p2 sont sur des côtés opposés,
en s’appuyant sur l’argumentation exposée auparavant.

Dans la définition de « traverser (ii) » nous nous intéressons à la notion de « s’enfon-
cer ». Pour cela nous proposons une définition fondée sur la morphologie mathématique.
Le degré avec lequel une « ligne s’enfonce dans une région R » est mesuré en regardant
à quel point la ligne passe près d’un point d’érosion ultime de la région. Finalement la
définition de « traverser (ii) » est donnée par la conjonction du degré avec lequel la ligne
« passe par » la région et du degré avec lequel elle s’enfonce dans la région.

En utilisant les outils définis pour la création des modèles de « traverser (ii) » et
« passe par » nous proposons deux définitions pour la relation « rentre ». Une première
définition que nous appelons « rentrer » exprime uniquement les contraintes topologiques :
il y a au moins une extrémité de la ligne qui n’intersecte pas la région, et la ligne intersecte
l’intérieur de la région. Une deuxième définition que nous appelons « pénétrer » tient
compte des contraintes géométriques : elle repose sur la conjonction du degré avec lequel
la ligne « rentre » dans la région et le degré avec lequel la ligne s’enfonce dans la région.

Les modèles de relations entre lignes et régions sont illustrés dans la figure 2.38 et le
tableau 2.5. Ces résultats montrent que les modèles représentent bien les définitions que
nous proposons. Nous avons comparé les résultats de l’enquête avec les modèles, montrant
ainsi que les modèles que nous avons proposés sont conformes à la perception des relations.

Les relations spatiales qui sont fréquentes dans les images satellites vont être utiles pour
définir un vocabulaire des relations spatiales pour décrire le contenu des images. La plupart
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des modèles que nous avons choisis ou proposés reposent sur des éléments du langage
naturel. Donc ils peuvent être utilisés par des personnes non-expertes en interprétation des
images.

Chapitre 4 : Raisonnement spatial

Nous pouvons combiner les relations spatiales en utilisant des opérateurs de fusion floue.
Cela nous permet de faire des requêtes comme « où se trouve la région qui est proche et
au nord de A ? ». Néanmoins les requêtes que nous pouvons faire de cette façon restent
très simples, donc il est nécessaire d’utiliser des systèmes à base de connaissances pour
permettre des requêtes plus complexes. Dans la deuxième partie de la thèse nous proposons
un système d’interprétation qui a l’architecture d’un système à base de connaissances.

Chapitres 5 et 6 : Interprétation des images satellites

L’interprétation des images satellites est une tâche difficile même lorsqu’elle est effectuée
par une personne. Il existe plusieurs facteurs qui peuvent donner lieu à des interprétations
différentes :

– le niveau conceptuel de connaissance de la personne influence le niveau de détail ou
la différenciation de différents objets dans l’image ;

– l’information contextuelle, c’est-à-dire l’information qui n’est pas observable dans
l’image. Cette information permet de mieux comprendre les situations observées et
peut ajouter des éléments dans la description ;

– le vocabulaire utilisé détermine les mots de la description ;
– l’objectif de la description oblige à la focalisation sur certaines caractéristiques ou

certains endroits de l’image.
Lorsque nous voulons interpréter une image d’une façon automatique il est donc nécessaire
de donner toutes ces connaissances pour pouvoir obtenir l’interprétation désirée. Dans
cette thèse nous utilisons la connaissance sur l’agencement spatial d’un objet complexe
pour l’identifier dans une image satellite. L’architecture que nous utilisons est un système
à base de connaissances. Un système à base de connaissances (KBS) a trois composantes
[Le Ber et al., 2006] :

La base de connaissances : contient tout les connaissances sur le domaine. Dans notre
cas, cette base contient trois types des connaissances :

Connaissances de traitement d’images : elles sont utilisées pour extraire et dé-
crire les primitives de bas niveau, par exemple les régions ;

Connaissance du domaine : c’est la connaissance par rapport à la sémantique du
domaine ;

Connaissance pour lier les primitives de l’image aux concepts du domaine :
c’est la connaissance permettant d’établir la correspondance entre les primitives
de bas niveau de l’image et les concepts du domaine.

La base d’observations : elle contient les données qui caractérisent le problème que
nous voulons résoudre. Dans notre cas cette base contient l’image.

Un moteur d’inférence : il est en charge de traiter l’information de la base d’observa-
tions en utilisant la base de connaissances pour résoudre le problème.
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L’utilisation d’un KBS implique la simplification de l’information, ce qui donne lieu à
des imperfections de l’information. Dans le cas particulier où nous représentons l’informa-
tion spatiale pour l’interprétation d’images, il y a plusieurs types d’imperfections qu’il faut
considérer :

Imprécision des relations spatiales : comme nous l’avons vu précédemment il existe
plusieurs relations spatiales qui sont par nature imprécises, par exemple la relation
« entourer ».

Imprécision des objets dans l’image : le processus de la création de l’image et les
traitements utilisés pour extraire des objets dans l’image conduisent à des frontières
d’objets mal définies.

Incertitude par rapport à l’étiquetage de régions : l’étiquetage des régions après
un processus de segmentation peut être entaché d’incertitude.

Incertitude par rapport au modèle : nous ne savons pas si tous les objets et relations
qui apparaissent dans le modèle sont présents dans l’image.

Méconnaissance de nombre d’instanciations : dans le cas particulier des images sa-
tellites, le nombre de fois où un modèle ou les objets du modèle apparaissent dans
l’image est inconnu.

Dans un KBS le moteur d’inférence doit être adapté pour prendre en compte ces imper-
fections. Dans le domaine de l’interprétation des images utilisant un modèle structurel, les
travaux prennent en compte, en général, un ou deux types de ces imperfections. [Deruy-
ver and Hodé, 1997, Perchant, 2000, Saathoff and Staab, 2008] proposent des méthodes
pour trouver dans l’image des structures décrites par un modèle. Pour cela ils partent d’une
(sur)segmentation de l’image et ils étiquettent les régions en s’appuyant sur la connaissance
spatiale. Ces méthodes considèrent l’incertitude par rapport à l’étiquetage. Récemment le
travail de [Deruyver and Hodé, 1997] a été élargi pour prendre en compte l’incertitude par
rapport au modèle [Deruyver et al., 2009]. Dans les travaux de [Bloch et al., 2003, Colliot
et al., 2006, Nempont, 2009] dans le domaine médical, la segmentation et l’interprétation
sont faites de façon simultanée en prenant en compte les imprécisions liées aux relations
spatiales et à l’extraction d’objets dans l’image. Cette approche évite de se poser la ques-
tion sur l’incertitude par rapport à l’étiquetage de régions. Néanmoins il est compliqué de
la mettre en œuvre pour l’interprétation des images satellites, à cause de l’hypothèse de
monde ouvert dans ces images.

Nous proposons un système d’interprétation fondé sur l’étiquetage de régions issues
d’une segmentation. Ce système prend en compte l’imprécision liée aux relations spatiales,
l’incertitude par rapport à l’étiquetage de régions et l’ignorance du nombre d’instancia-
tions, et nous donnons quelques idées afin d’adapter le système pour prendre en compte
l’incertitude par rapport au modèle. Avant d’entrer dans les détails du système, nous allons
présenter le modèle utilisé pour décrire l’agencement spatial.

Représentation du modèle

Le modèle de la scène qui nous intéresse dans l’image doit permettre la représentation
de relations d’arité supérieure à deux aussi bien que des groupes d’objets alignés. Pour
la représentation des groupes d’objets les considérations suivantes doivent être prises en
compte :

– le nombre d’objets dans le groupe est en général inconnu ;
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– le groupe peut satisfaire des relations avec d’autres objets (par exemple un groupe
d’arbres alignés qui est parallèle à une route) ;

– il peut y avoir des relations spatiales entre chaque membre du groupe et d’autres
objets (par exemple un groupe de maisons où chaque maison a une relation spatiale
avec son ombre) ;

– il peut y avoir des relations spatiales entre les membres du groupe. Par exemple, les
objets qui sont consécutifs dans un groupe doivent être « proches ».

Par suite le formalisme de représentation utilisé pour représenter le modèle doit permettre
la représentation de toutes ces situations. Parmi les divers formalismes de représentation des
connaissances (graphe d’adjacence attribué, réseaux sémantiques, frames, ...), les logiques
de description et les graphes conceptuels peuvent être généralisés pour gérer ces contraintes.

Nous avons choisi les graphes conceptuels pour leur simplicité et leur représentation
graphique. Plus particulièrement, nous utilisons des graphes conceptuels emboîtés pour
représenter les structures qui contiennent un groupe. Un graphe conceptuel est un graphe
bipartite où un ensemble de nœuds, appelés nœuds concepts, représente des entités et
l’autre ensemble de nœuds, appelés nœuds relations, représente les relations entre les nœuds
concepts. Dans notre cas les nœuds concepts sont les objets du modèle et les nœuds rela-
tions correspondent aux relations spatiales. Les concepts et les relations qui sont utilisées
dans le graphe viennent d’une hiérarchie de concepts et de relations, respectivement. Dans
un graphe conceptuel emboîté un nœud concept peut contenir un graphe conceptuel à
l’intérieur, qui sert à représenter des groupes d’objets (pas forcement alignés). Ces nœuds
sont appelés nœuds emboîtés. Un exemple de graphe conceptuel est illustré dans la figure
5.2. Comme nous ne connaissons pas a priori le nombre d’éléments d’un groupe d’objets
alignés, nous posons par convention qu’un groupe d’objets alignés est représenté par trois
éléments et pour chaque nœud emboîté nous assignons une propriété qui indique si le
groupe est aligné ou pas. Pour représenter des relations entre les nœuds à l’intérieur d’un
nœud emboîté et des nœuds à l’extérieur nous utilisons des liens de coréférence.

Système d’interprétation des images satellites

Le système que nous proposons est présenté dans la figure 5.19. Les entrées du système
sont :

– l’image initiale I que nous voulons interpréter ;
– le graphe conceptuel G qui contient le modèle que nous cherchons dans l’image ;
– la hiérarchie de concepts HC sur laquelle est construit le graphe conceptuel. Pour

chaque concept de la hiérarchie il y a un champ qui qualifie la taille de l’objet en
utilisant des valeurs linguistiques telles que « petite », « grande », etc. ;

– les fonctions floues qui définissent les variables linguistiques de « taille ». Ces fonctions
dépendent de la sémantique du domaine.

La procédure d’interprétation est composée des étapes suivantes :

(1a) Une étape de segmentation où nous faisons une segmentation multi-échelles en uti-
lisant un algorithme de « mean-shift » hiérarchique. Cette étape nous permet d’ex-
traire des régions de différentes tailles et homogénéités.

(1b) Nous extrayons de l’image les classes des objets dans HC pour lesquels nous connais-
sons un algorithme d’extraction. Nous ne connaissons pas forcément toutes les mé-
thodes d’extraction pour toutes les classes de la hiérarchie. Par exemple, supposons
que les classes « végétation » et « jardin » se trouvent dans HC . Nous savons com-
ment extraire la végétation en utilisant des indices de radiométrie, mais ne nous ne
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pouvons pas extraire la classe « jardin » car nous ne connaissons pas une méthode
pour l’extraire directement.

(2) Pour chaque nœud concept nc de G nous construisons une fonction d’appartenance µc

sur le domaine des régions obtenues à l’étape (1a). La fonction µc indique quel est
le degré avec lequel une région appartient à la classe de l’objet de nc. Pour chaque
région r, la valeur de µc(r) est égale à la conjonction du degré de satisfaction de la
fonction de taille correspondant à la taille de l’objet représenté par nc et les degrés
de satisfaction des classes de Hc qui contiennent le concept de nc. Par exemple si G
contient un objet de la classe « jardin », nous utilisons la connaissance que « jardin »
appartient à la classe « végétation » dans HC et que les « jardins » ont une taille
« petite ».

(3) Pour chaque nœud concept nc de G nous réduisons les domaines en éliminant les
régions qui ne satisfont pas les relations spatiales qu’elles devraient satisfaire selon
G.

(4) Nous trouvons les régions qui satisfont le mieux le modèle G.

Les étapes (1a) et (1b) peuvent être réalisées en parallèle, puis les autres étapes sont faites
de manière séquentielle. Dans la suite nous allons expliquer plus en détail les étapes (3)
et (4).

Réduction des domaines

En nous inspirant du travail fait dans le domaine des graphes conceptuels pour trouver
les homomorphismes entre graphes [Chein and Mugnier, 2008], nous formulons le problème
de trouver des régions dans l’image qui correspondent aux objets décrits par un graphe
conceptuel comme un problème de satisfaction de contraintes floues (FCSP) [Dubois et al.,
1996]. Tout d’abord nous allons traiter uniquement le cas où le graphe conceptuel n’a
pas de nœuds concepts emboîtés, puis nous traiterons ce cas. Pour cela nous donnons la
définition d’un FCSP P = {X ,D, C} où [Dubois et al., 1996] :

– X = {x1, x2, . . . , xn} est un ensemble de n variables ;
– D = {D1, D2, . . . , Dn} est un ensemble de n domaines. Chaque domaine Di est

associé à une variable xi et représente l’ensemble de valeurs que xi peut prendre ;
– C = {C1, . . . , Ct} est un ensemble de t contraintes floues. Chaque contrainte floue Ck

est définie par une paire 〈Rk, Sk〉 où Sk ⊂ X est l’ensemble de variables impliquées
dans Ck, et Rk est une relation floue sur le produit cartésien des domaines Dk1 ×
. . . × Dkn

entre les variables de Sk. Rk est défini par sa fonction d’appartenance
µRk

: Dk1 × . . .×Dkn
→ [0, 1].

Le degré de « consistance » d’un FCSP P est donné par :

Cons(v1, . . . , vn) = min
C̃k∈C

µRk
((v1, . . . , vn) ↓Sk

) (11)

où (v1, . . . , vn) ↓Sk
représente la projection de (v1, . . . , vn) sur l’ensemble des variables Sk.

Un des problèmes associés à un FCSP P est de trouver les sous-ensembles des ensembles
de D qui maximisent le degré de consistance (équation 11).

Dans notre cas X représente les nœuds concepts du graphe conceptuel, chaque Di ∈ D
représente l’ensemble de régions obtenues après la segmentation pour lesquelles la valeur
d’appartenance à la classe représentée par xi est supérieure à 0, et C représente les nœuds
relations. Donc, si {v1, . . . , vn} sont des régions de l’image, la valeur Cons(v1, . . . , vn) déter-
mine le degré avec lequel les régions {v1, . . . , vn} satisfont le modèle G. Malheureusement
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le problème de trouver les sous-ensembles de D qui ont un degré de consistance supérieur
à zéro est un problème NP complet. Cependant, il existe des algorithmes qui permettent
de réduire les domaines de D en appliquant des critères de consistance locale. Une fois que
les ensembles de D sont réduits, il est possible de chercher les solutions de P. Donc, nous
utilisons la consistance locale.

Il existe plusieurs critères de consistance locale, et nous avons décidé d’utiliser le critère
de consistance d’arc car il permet de bien réduire les domaines et il est facile à calculer.
La définition de consistance d’arc existait uniquement pour des contraintes binaires floues,
alors nous l’avons étendue pour des contraintes floues de n’importe quelle arité. Nous disons
que P est arc-consistant si pour chaque contrainte Ck, chaque xi ∈ Sk et chaque v ∈ Di

satisfont :

µxi
(v) ≤ sup

A=(ak1
,...,akn ):A↓i=v

min[µRk
(ak1 , . . . , akn

), min
j=k1,...,kn

µxj
(akj

)]. (12)

où µxi
(u) indique le degré avec lequel u ∈ Di est approprié pour représenter xi. Nous disons

qu’une contrainte est arc-consistante si ses variables satisfont l’équation 12 pour chaque
valeur dans son domaine. Pour trouver la fermeture arc-consistante de P l’algorithme FAC-
3 est couramment utilisé, néanmoins cet algorithme traite uniquement des contraintes
binaires. Donc nous l’étendons pour traiter le cas des contraintes avec n’importe quelle
arité. Essentiellement, l’algorithme modifie de façon itérative les fonctions µxi

et réduit les
domaines Di jusqu’à ce que chaque contrainte Ck soit arc-consistante.

Si le graphe conceptuel a des nœuds concepts emboîtés il faut modifier le formalisme
des FCSP pour prendre en compte les groupes d’objets. Nous proposons de voir les nœuds
concepts emboîtés de manière duale, car ils peuvent être vus comme des objets ou comme
des relations. Quand ils sont considérés comme des objets ils peuvent avoir des relations
spatiales avec d’autres objets, et quand ils sont vus comme des relations nous évaluons
les propriétés spatiales que doit satisfaire le groupe, par exemple l’alignement. Donc nous
proposons de représenter des groupes dans le formalisme des FCSP à la fois comme une
variable et comme une contrainte. Un groupe a deux fonctions d’appartenance sur l’en-
semble des groupes de régions : une fonction qui indique le degré avec lequel un groupe
représente bien les propriétés internes du groupe, et l’autre fonction qui indique le degré des
propriétés internes et externes. Les propriétés internes traitent les degrés avec lesquelles les
propriétés spatiales du groupe sont satisfaites (cette fonction d’appartenance est utilisée
quand le groupe est vu comme une contrainte). L’autre fonction d’appartenance indique
à quel degré un groupe représente bien le groupe vu comme un objet dans le modèle, et
la valeur de cette fonction prend en compte le degré de satisfaction des relations spatiales
avec d’autres objets, ainsi que les propriétés internes. Nous proposons un algorithme pour
trouver la consistance d’arc d’un problème représentant un graphe emboîté. Cet algorithme
considère la relation entre les deux fonctions d’appartenance qui caractérisent les nœuds
concepts emboîtés.

Trouver une solution

Une fois que nous avons utilisé la consistance d’arc pour réduire les domaines, nous
utilisons un algorithme de « back-tracking » pour trouver les solutions. Nous utilisons
l’ordre leximin pour ordonner les résultats en partant du résultat qui satisfait le mieux
le graphe. Cet ordre a été utilisé par [Fargier, 2006, Möller and Näth, 2008, Saathoff and
Staab, 2008] et il maximise le nombre des contraintes qui sont satisfaites.
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Conclusions

Dans la première partie de cette thèse nous avons introduit de nouvelles relations
spatiales pour l’interprétation des images. Ces relations ont été modélisées dans le cadre
de la logique floue, afin de bien représenter leur sémantique.

Dans une deuxième partie nous avons proposé un système d’interprétation qui s’appuie
principalement sur la connaissance spatiale. Les principales contributions dans cette partie
sont :

– Nous avons adapté le modèle de graphe conceptuel pour permettre la représentation
de groupes d’objets alignés.

– Dans le cadre des FCSP nous avons deux contributions :
– l’extension de la définition de consistance d’arc pour des contraintes avec une arité

supérieure à 2,
– la proposition d’un algorithme pour déterminer la fermeture d’arc pour les pro-

blèmes qui représentent un graphe conceptuel avec des nœuds concepts emboîtés.

Ce travail ouvre plusieurs perspectives. Dans le court terme les perspectives sont :
– Voir comment il est possible d’étendre les définitions des relations entre lignes et

régions pour pouvoir les appliquer aux cas où nous appliquons les relations sur un
groupe aligné au lieu d’une ligne.

– Considérer l’incertitude par rapport au modèle dans le système d’interprétation.
– Optimiser l’algorithme de la fermeture d’arc pour les problèmes représentant un

graphe conceptuel avec des nœuds concepts emboîtés.
– Utiliser les connaissance des autres ontologies (par exemple celles du projet Differen-

tial and Formal Ontology Editor 1) dans l’étape (2) du système d’interprétation.
Dans le long terme les perspectives sont :

– L’intégration du système d’interprétation à une plateforme de requêtes qui utilise
une boucle de pertinence avec un utilisateur. L’idée est de créer une plateforme où
l’utilisateur donne un graphe qui décrit la scène qu’il veut trouver dans l’image. A
partir du résultat l’utilisateur pourra ajouter de nouvelles relations spatiales ou de
nouveaux objets pour mieux cibler sa requête.

– Étudier différentes façons de créer automatiquement des modèles de graphes concep-
tuels à partir d’une base d’images étiquetées. Pour cela il faut étudier quelles sont
les relations spatiales qui sont les plus pertinentes pour une description d’une classe
d’objets complexes.

1http://dafoe4app.fr/

http://dafoe4app.fr/
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Introduction

The apparition of high resolution remote sensing (HRRS) images opens new challenges to
the satellite image interpretation domain. HRRS images have more details than low reso-
lution images, making it difficult to distinguish useful details from trivial ones. Therefore
low level features such as texture or edges are not sufficient to identify a complex scene.
Complex scenes are characterized by a group of objects having a spatial structure that
is ruled by its function. Some examples of complex scenes are airports, harbors, train
stations, malls and toll gates.

Considering only individual objects is not sufficient to determine the semantic of a
complex scene. To describe, interpret and recognize a complex scene the spatial arrange-
ment of these objects has to be considered, and thus it is necessary to make use of spatial
structural representations. In the area of human cognition, a spatial representation is com-
posed of two parts [Landau and Jackendoff, 1993]: what and where. The what deals with
the geometric properties of the objects, such as shape, color, texture. The where deals
with the position and spatial distribution of objects, represented as spatial relations. This
representation is used to understand how humans encode a spatial description of an en-
vironment. When adapting this model for image description, imprecision and uncertainty
should be considered, and more precisely, the imprecision of images due to acquisition
processes and processing steps for object extraction, as well as the imprecision associated
to the semantics of the spatial relations (such as “near”, “east of”) [Bloch, 2005], and the
uncertainty of giving the correct label to a region.

In this thesis we address the problem of applying spatial reasoning for the interpreta-
tion of Earth observation images. To accomplish this objective we focus on the following
questions:

1. What are the relations we can find in Earth observation images?

2. How can we represent the spatial knowledge in the image?

3. How can we represent the spatial structure of a complex scene?

4. How can we reason with the spatial knowledge to validate it ?

The first question deals with the domain of representation. To answer this question
we determine the spatial relations that take place among objects in satellite images and
which can be useful for their interpretation. The second question addresses the problem
of properly representing the spatial relations in the image, and to capture their semantics.
The third question searches for an appropriate structure to represent the spatial knowledge
of the scene, and the last question deals with the use of spatial reasoning techniques over
the image to eliminate inconsistencies in its interpretation. We concentrate on applying
spatial reasoning on the problem of object recognition using a model. The model describes
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the spatial arrangement of the objects of the scene that we want to find in the image. To
represent this knowledge we propose to use a conceptual graph which allows to represent
relations for groups of objects like alignment which cannot be simply represented in a
graph. We formulate the problem of finding the instantiations of a model in an image as
a graph homomorphism, which is further modeled as a fuzzy Constraint Satisfaction Net-
work. We extend the algorithms for determining the arc-consistency closure of a Constraint
Satisfaction Network to cope with complex relations and take into account the difficulties
of properly detecting the objects on the image. Finally, we test the proposed algorithm in
scenes containing harbors and airports, obtaining satisfying results.

This thesis was performed at the TSI department at Telecom ParisTech in collaboration
with the French Spatial Agency (CNES). This work was done within the Center of Com-
petence on Information Extraction and Image Understanding for Earth Observation(CoC)
involving CNES, DLR and Telecom ParisTech. It also contributed to the ANR project
DAFOE.

Document structure

This document is divided into two parts: in the first one we concentrate on the definition
of spatial relations, and in the second part we apply these relations for the interpretation
of satellite images using a model.

Chapter 1 studies in detail the spatial relations which are found in Earth observation
images. For each relation we present the definitions which have been proposed in the
literature, in the case where they exist, focusing primarily on the definitions which have
been defined within the fuzzy set framework and allows capturing the imprecision in the
semantics of the relations. At the end of the chapter we present a hierarchy of spatial
relations which summarizes the spatial relations, which are then used for the description
of Earth observation images in this thesis.

Some of the relations presented in Chapter 1 are not well adapted for Earth obser-
vation satellite images, or have not been defined. Thus, in Chapter 2 we concentrate on
these relations. These relations include the relations “surround”, “alignment”, “parallelism”
(involving groups of aligned objects) and relations between linear objects and regions. For
all these relations we study in detail their semantics, and propose definitions which are in
accordance with the intuition.

To conclude this part, in Chapter 3, we present some of the reasoning methods which
can be used to reason with the spatial relations presented in the preceding chapters, in order
to combine, detect inconsistencies or acquire new spatial knowledge. We finish this chapter
by presenting an example, where we combine several spatial relations by using simple rules.
Nevertheless, when we want to find a complex scene containing several spatial relations
among its parts, it is necessary to structure that knowledge, which is the aim of the second
part of the thesis.

In Chapter 4 we review knowledge based systems, which allow to structure the knowl-
edge needed for the task of image interpretation. We review the problems which have to
be considered for automating the image interpretation task, in particular the image inter-
pretation of Earth observation images. We detail some of the works which addressed the
problem of image interpretation by considering the spatial relations between the objects,
and moreover which consider the possible sources of information imperfections which can
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be present in this type of task.
Finally, in Chapter 5 we develop a formal framework for performing satellite image

interpretation using a model which describes the spatial structure of the scene. The model
extends nested conceptual graphs to allow us to represent all the relations defined in
Chapter 2. To solve the mapping problem we propose new reasoning tools based on fuzzy
constraint satisfaction problem approaches. Some examples illustrate the interest of the
proposed approach for complex interpretation in high resolution satellite images.

Description of the image base

The algorithms proposed in this thesis were tested on images of an image base of QuickBird
images created for the ORFEO project. The images base is constituted of fused multispec-
tral very high resolution images of 61cm, obtained from the fusion of panchromaric images
of 0.61m and multispectral (red, blue, green and near infrared bands) of 2.44m resolution.
The image base contains images from Arles, Boumerdès, Boigneville, Marseille, Cannes,
Cevennes, Durance, Genève, Saint Gilles, Massif de Maures, Peyrat le Château, Salon de
Provence, Villamblain and Yard.
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Part I

Spatial representations and reasoning
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Chapter 1

Spatial relations for satellite image

interpretation: state of the art

Semantical scene understanding involves the assessment of the spatial arrangement of ob-
jects. Using spatial relations does not only help us to discriminate the objects in the scene
[Bloch, 2005], it also allows us to distinguish between different interpretations of two scenes
with similar objects having different spatial arrangements [Aksoy et al., 2003]. Spatial re-
lations are used in several applications in various domains: in medical images to recognize
different brain structures [Bloch et al., 2003, Colliot et al., 2006], in image interpretation
to provide linguistic scene descriptions [Keller and Wang, 2000], in remote sensing images
mining of different types of objects or landcover [Aksoy et al., 2003, Guo et al., 2009], in
Geographical Information Systems (GIS) applications to monitor land use [Mota et al.,
2009] and cover changes [Le Ber and Napoli, 2002], and in robotics [Kuipers, 1978]. Their
importance in describing the spatial organization of objects has been highlighted in several
works. When developing a theory of spatial relations it is necessary to determine the min-
imal set of spatial relations needed to describe the spatial organization of objects [Abler,
1987]. In [Freeman, 1975] a set of fundamental relations for image interpretation is pro-
posed: “left of”, “right of”, “beside”, “above”, “below”, “behind”, “in front of”, “near”, “far”,
“touching”, “between”, “inside” and “outside”. Although this set of relations is appropriate
for describing the content of an image, when considering spatial relations that take place
among objects extracted from a satellite image, we should have in mind that we are ob-
serving geographical objects from above, and relations such as “below” should be redefined
within this context or should not even be considered. The definition of an adequate set
of spatial relations is important for defining a vocabulary to be used for the description of
images’ contents. By defining a set of relations, we mean establishing the relations that
take place among objects in satellite images and also developing models which are adapted
to the images. The evaluation of spatial relations that take place among objects in an
image should consider the intrinsic imprecision of images due to acquisition processes and
processing steps for object extraction, as well as the imprecision associated to the seman-
tics of the spatial relations (such as “near”) [Bloch, 2005]. The fuzzy set framework is
appropriate for modeling spatial relations since it is able to capture these imprecisions.

Spatial relations should be modeled in such a way that they are able to answer one of
the following questions [Bloch, 2005]:

(i) which is the region of space where the relation is satisfied?

(ii) to which degree is the relation between two objects satisfied?



341. Spatial relations for satellite image interpretation: state of the art

According to the question that one wants to answer, the relation is modeled in a different
manner. In section 1.3, we show how this issue has been addressed in literature. Besides
the mathematical aspects, the cognitive, psychological and linguistic considerations must
also be examined when developing models for spatial relations [Egenhofer and Franzosa,
1991].

In summary, to describe the spatial organization of objects it is necessary to specify
the set of spatial relations that take place among objects in satellite images. In addition,
models of spatial relations should consider the inherent imprecision of them and of images.
Therefore, the primary goal of this chapter is to introduce the models of the spatial relations
that we consider useful for satellite image interpretation. We focus mainly on the spatial
relations that are usually used in image interpretation, and in geography, particularly in
the fields of cartographic map generalization and of GIS, since satellite images contain a
huge amount of geographical information. We would like to present the spatial relations
in an structured manner as a hierarchy that can be further used for reasoning. First, in
Section 1.1, we give an overview of some of the cognitive aspects of spatial relations. Then
in Section 1.2, we discuss the different ways in which spatial relations have been classified
in the literature, and finally we present some relations in Section 1.3.

1.1 Cognitive aspects of spatial representations

One of the branches of linguistics has focused on the link between language and spatial
representations. In this section, we draw on the works of [Landau and Jackendoff, 1993,
Talmy, 1983, Mathet, 2000]. This section is devoted to present some of the considerations
that should be raised when dealing with the spatial representation in a general sense. We
briefly examine these considerations and explain their link with computer vision. According
to [Landau and Jackendoff, 1993] a spatial representation is composed of two parts:

what: deals with the geometric properties of objects,

where: deals with the spatial relations among objects.

In the following we will explain the characteristics of these parts.

The what

In language, objects are described using nouns. Among the objects properties, shape
is one of the most characteristic ways to describe an object. This is translated in the
computer vision domain by a large number of works dealing with finding an appropriate
way to describe shape. Shape is usually described by a decomposition of an object into
simpler parts. For instance Marr’s representation of objects is based on a decomposition
into several cones [Marr, 1982], or a boundary can be described by means of Freeman’s
chain code [Freeman, 1961, 1974]. The what has been an extensively studied problem in
the computer vision community, and for which cognitive aspects have been considered.

The where

On the other hand, the where is a less mature problem which has not been extensively
studied in computer vision. The where deals with objects’ position. This position is defined
using three elements [Talmy, 1983]:
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1. the object to be located, that we refer to as target objects,

2. the reference object, and

3. the spatial relation.

Usually, spatial relations are encoded using spatial prepositions. Table 1.1 1 shows some
of the common prepositions used in English. It is surprising to realize that the number
of prepositions in English is almost negligible with respect to the number of nouns. This
would imply that we need much less words to describe the where than the what. [Landau
and Jackendoff, 1993] suggest that one of the possibilities for this difference is that most
of the spatial relations do not encode shape properties of the target nor the reference
objects within the relation. This can explain why there are certain relations which are
by nature ambiguous, for instance “near” or “between”, and the evaluation of which differs
according to the shape or the size of the reference and/or target objects [Mathet, 2000].
The spatial relations which are restricted to target and/or reference objects of certain shape
are for example the relations “along” or “across” which require that the reference objects
are elongated [Landau and Jackendoff, 1993, Talmy, 1983]. However, for the case of the
relations “across”, there are several possibilities of evaluation according to the shape of the
target object [Landau and Jackendoff, 1993].

about behind during off till
above below except on to
across beneath for onto toward
after beside from out under

against between in outside underneath
along beyond inside over until
among but into past up
around by like since upon

at despite near through with
before down of throughout within

Table 1.1: Common English prepositions, spatial prepositions are in bold letters.

One might think that the use of target and reference objects is symmetrical in a binary
relation. Nevertheless if we exchange the roles of reference and target objects in a phrase
involving a symmetrical relation, then the sentence produces a strange phrase, for example
[Talmy, 1983]:

(a) The bike is near the house.

(b) The house is near the bike.

The second sentence sounds odd, since the reference object is an object which is moving,
while the house has a permanent location. [Talmy, 1983] argues that reference objects
should be larger, easy to characterize and easy to perceive. This coincides with the ap-
proach in computer vision suggested by [Fouquier, 2010] for guiding the interpretation of
an image, where the saliency as defined by [Itti et al., 2002] is used as a criterion for
choosing the reference objects for the evaluation of the spatial relations.

1Taken from http://www.englishlanguageguide.com/english/grammar/preposition.asp

http://www.englishlanguageguide.com/english/grammar/preposition.asp
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However, we should have in mind that the relations presented in this section are suffi-
cient for expressing position in every day language, but when considering spatial relations
that take place among objects extracted from a satellite image other relations should be
considered. Nevertheless, the remarks about the separation of the what and where, and
their characteristics, are still applicable.

1.2 Classification of spatial relations

A variety of spatial relations can be grouped into two families [Kuipers, 1978, Kuipers and
Levitt, 1988]:

• topological relations which are invariant under topological transformations of the
reference objects [Egenhofer and Herring, 1990, Randell et al., 1992], and

• metric relations in terms of distance and direction [Bloch and Ralescu, 2003, Krish-
napuram et al., 1993, Bloch, 1999].

These categories have been used in the ontology of spatial relations proposed by [Hudelot
et al., 2008] for image interpretation, and in [Kuipers, 1978] for navigation. The ontology of
spatial relations for image interpretation of [Hudelot et al., 2008] gives a generic framework
for spatial relations that appear in images. The models proposed in this ontology are
adapted to represent structural knowledge in medical images. They are presented as fuzzy
representations which allow considering the imprecision of the objects in the images as
well as of the semantics of the relations. However, when dealing particularly with satellite
images, these relations are not sufficient for describing the spatial distribution of objects,
since there are relations which are very common among geographical objects which were
not considered in the ontology, for instance alignment. Therefore, it is necessary to consider
other relations which are dedicated only to geographical objects, for instance in the areas
of map generalization or GIS.

Figure 1.1: Example of structural relations,
image taken from [Steiniger and Weibel,
2007].

In [Steiniger and Weibel, 2007] a classi-
fication of relations that appear among ob-
jects in a map is proposed. The objective
of this enumeration is to determine the re-
lations used in the process of map gener-
alization. This work does not present any
model of the proposed relations, neverthe-
less it includes an interesting catalog of re-
lations. The relations used for map gen-
eralization can be seen as relations which
try to extract the meaningful information
of the spatial structure of the objects, since
when passing from one cartographic scale
to a smaller one, the map should remain
equally informative. Among the proposed relations the authors dedicate a category to
structural relations. Structural relations describe patterns that are perceived in maps,
such as star-like or grid patterns (see Fig. 1.1). They can be considered as an extension of
simple directional relations of two objects to more complex spatial relations. They are ap-
propriate for describing man-made structures which appear in satellite images and should
be considered for their interpretation.
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Figure 1.2: Main categories of spatial relations.

In the area of GIS [Liu et al., 2008b, Mark and Egenhofer, 1995] and in the area
of linguistics [Mathet, 2000], relations have been discriminated according to the shape of
their reference and target objects. As highlighted by [Landau and Jackendoff, 1993, Talmy,
1983] there are relations for which it only makes sense to evaluate them when the reference
object is linear, for example “go across”, “go into”, “parallel to”. In satellite images there
is a strong presence of linear structures such as rivers or transport networks which makes
spatial binary relations between a linear object and a region very frequent. Therefore, a
classification of spatial relations for satellite image interpretation should also consider this
category of relations.

A number of classifications have been proposed in the areas of artificial intelligence,
GIS and map generalization. Each of these classifications has proved to be adapted to its
targeted applications. Spatial relations which have been proposed for image interpretation
consider the imprecision inherent to images and propose models for the relations. They
have been applied in the area of medical images obtaining satisfying results for the segmen-
tation and interpretation of brain images. However, the classification does not consider the
structural patterns that appear in satellite images, nor the relations that only take place
among objects of a particular shape. The spatial relations proposed for map generaliza-
tion are meant to be identified by humans, and therefore they are not rigorously defined
[Steiniger and Weibel, 2007]. In GIS we observe the introduction of relations depending on
the shape of the objects involved in the relation. These types of relations do not appear
in the previous classifications, since they are very specific to geographical objects. Hence,
it is necessary to adapt and fuse the previously proposed classifications to derive a new
classification which is adapted to satellite image interpretation. In the remainder of this
chapter we present such a set of relations and their formal models when they exist.

1.3 The set of relations

We propose the classification shown in Fig. 1.2 which integrates the classification used
in image interpretation by [Hudelot et al., 2008] and the structural relations of [Steiniger
and Weibel, 2007]. In each of the categories we add the relations considering the kinds
of objects (line or region). We dedicate a subsection to each of these categories where we
present the relations and the models that have been proposed in the literature, and make
a selection of them according to our needs. In the following, I represents the image space
and A, B denote two objects defined by two regions in I.
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1.3.1 Topological relations

1.3.1.1 Region connection calculus RCC

Topological relations deal with the connection between two objects. Randell et al. [1992]
defined the region connection calculus (RCC). The RCC8 framework is composed of 8
jointly exhaustive and pairwise disjoint (JEPD) base topological relations between two
spatial regions A and B. These relations are based on the binary primitive C(A, B), which
means A is connected to B. In the RCC8 context, C(A, B) is interpreted as being true when
the closure of A and B share a point, where A and B are viewed as sets of points. The only
requirement for the relation C is that it is reflexive and symmetric. Using C(A, B) a large
number of relations can be defined [Cohn et al., 1997]. Table 1.2 contains some of these
relations. The set of eight relations {DC,EC,PO,EQ,TPP,NTPP,TPPi,NTPPi}
constitutes the set of the RCC8 relations (see Fig. 1.3). They are invariant with respect to
geometric transformations. It is possible to add more expressiveness to the RCC relations
by introducing additional primitives. In [Cohn et al., 1995] 23 relations are defined by
adding the convex hull as another primitive. This extension allows distinguishing different
types of “inside” a region. In the context of [Cohn et al., 1995], a region is said to be inside
another one when it is connected to its convex hull, but the regions do not overlap. This
type of “inside” should not be confused with the “inside” of the 9-intersection model of
[Egenhofer and Herring, 1990] that is presented in Section 1.3.1.2.

Relation Interpretation Definition of R(A,B)
DC(A,B) A is disconnected from B qC(A,B)
P(A,B) A is a part of B ∀D[C(D,A)→ C(D,B)]
PP(A,B) A is a proper part of B P(A,B)∧qP(B,A)
EQ(A,B) A is identical with B P(A,B) ∧P(B,A)
O(A,B) A overlaps B ∃D[P(D,A) ∧P(D,B)]
DR(A,B) A is discrete from B qO(A,B)
PO(A,B) A partially overlaps B O(A,B)∧qP(A,B)∧qP(B,A)
EC(A,B) A is externally connected to B C(A,B)∧qO(A,B)
TPP(A,B) A is a tangential proper part of B PP(A,B) ∧ ∃D[EC(D,A) ∧EC(D,B)]
NTPP(A,B) A is a non-tangential proper part of B PP(A,B)∧q∃D[EC(D,A) ∧EC(D,B)]
TPPi(A,B) B is a tangential proper part of A PP(B,A) ∧ ∃D[EC(D,B) ∧EC(D,A)]
NTPPi(A,B) B is a non-tangential proper part of A PP(B,A)∧q∃D[EC(D,B) ∧EC(D,A)]

Table 1.2: Some of the relations defined by C(A, B), taken from [Cohn et al., 1997].

The RCC relations are defined as crisp relations between crisp regions. However, in
the context of geographical regions, as in satellite images, it is possible to have a region
with imprecise boundaries, for example a city. Moreover, there are situations where two
relations, for instance EC and DC, are difficult, or even undesirable to differentiate. This
happens when the two regions are very close together, even though the two relations are
mutually exclusive. Thus, in such cases, it is desirable to have a gradual transition from
EC to DC. Several works have been dedicated to the extension of these relations to fuzzy
relations. [Clementini and Felice, 2001, Cohn and Gotts, 1996] represent an imprecise
region A by two sets of crisp regions; A consisting of the points which definitely belong
to the region and A for the other points of the region. Then the topological relations
between two objects A and B are obtained by observing the RCC8 relations for crisp
objects between the pair of regions A and B, A and B, A and B, and A and B. Giving a
total of 44 crisp RCC relations, the resulting relations do not have a semantic meaning and
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DC(A,B) EC(A,B) PO(A,B) EQ(A,B)

Disjoint Meet Overlap Equal

TPP(A,B) NTPP(A,B) TPPi(A,B) NTPPi(A,B)

Covered by Inside Covers Contains

Figure 1.3: Illustration of the eight JEPD topological relations between two objects pro-
posed by Randell et al. [1992] and Egenhofer and Herring [1990]. In the first row, a diagram
of the relation is displayed (each image represents a different granularity of connection be-
tween two regions), with its corresponding RCC8 relation in the second row and the 9
intersection model of Egenhofer and Herring [1990] relation in the third row.
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only deal with the imprecision of the objects, but relations are still crisp with an abrupt
passage between them. Other approaches search to extend the relations as fuzzy ones.
[Schockaert et al., 2008] extended the relations by defining a fuzzy connection relation
µC(A, B) between two regions A and B (which can be fuzzy or not). Such a connection
relation should satisfy the requirement of being reflexive and symmetric. The obtained
relations have the same properties as the RCC8 relations, which can be further used for
spatial reasoning (see Chapter 3).

1.3.1.2 Interior, boundary and complement

Alternatively, in the area of GIS, Egenhofer and Herring [1990] also developed topologi-
cal relations by observing the intersection between the interior, the complement and the
boundary of the two objects. Each relation is uniquely identified through an intersection
matrix. This matrix is called the 9-intersection matrix and is defined as:

R(A, B) =





A ◦ ∩B ◦ A ◦ ∩ ∂B A ◦ ∩Bc

∂A ∩B ◦ ∂A ∩ ∂B ∂A ∩Bc

Ac ∩B ◦ Ac ∩ ∂B Ac ∩Bc



 (1.1)

where A ◦, ∂A and Ac represent the interior, the boundary and the complement of the region
A, respectively. In the following, we refer to these relations as the 9-intersection model
relations. Figure 1.3 shows the corresponding matrices for each relation for simple regions
with no holes. Notice that these relations have a semantical meaning, which makes them
suitable for a description. In total there are 512 matrices of 3×3, with elements belonging
to {0, 1}. However, there are only 8 possible combinations of the R(A, B) matrices which
can be realized between simple regions with no holes in 2D. These matrices correspond
to the same relations as the ones defined by the RCC8 model. By redefining the concept
of region in this model it is possible to define other sets of JEPD relations. For example
there are 33 relations between two lines, 2 between two points, 3 between a point and a
line, and 31 between a line and a 2D region [Egenhofer and Herring, 1990]. Unlike the
original 9-intersection model relations (the ones shown in Fig. 1.3), the set of relations
obtained between two lines or a line and a 2D region do not have a semantical meaning;
therefore they cannot be used for image interpretation. There was an effort in [Mark and
Egenhofer, 1994b] to obtain semantic relations between lines and 2D regions by adding
metrical measures to the topological relations. The relations between lines and regions will
be further discussed in Chapter 2.

In [Hudelot et al., 2008] the following fuzzy set theoretical relations have also been
proposed as topological relations for image processing and interpretation: “degree of inter-
section”, “degree of non-intersection” and “degree of inclusion”. The “degree of intersection”
corresponds to the topological “connection”, the “degree of non-intersection” to “outside”,
and the “degree of inclusion” to “inclusion”. For a complete review on these relations, refer
to [Bloch, 2005]. Aside from observing if two fuzzy objects intersect, defining a degree of
intersection is of great importance for image interpretation, since it can be used to define
other relations. It can be often applied as a fusion operator, used as a measure of conflict
or information, which are important components for spatial reasoning [Bloch, 2005]. The
fuzzy intersection is directly extended from the crisp case. The degree of intersection be-
tween two fuzzy sets A and B with the membership functions µA and µB, respectively, is
for instance given as:

µint(A, B) = sup
x∈I

t [µA(x), µB(x)] , (1.2)



41

where t is a t-norm, and I represents the image domain. This degree of intersection cor-
responds to the maximum of the intersection between two fuzzy sets, which is represented
as a t-norm [Dubois and Prade, 1980]. The degree of intersection defined in Equation 1.2
does not account for different overlapping situations. To take into account the notion of
spatial overlapping the following degree is proposed:

µint(A, B) =
Vn [t (µA(x), µB(x))]

min{Vn(µA), Vn(µB)} , (1.3)

where Vn(µA) is the fuzzy hyper-volume of µA defined as: Vn(µA) =
∑

x∈I µA(x).
Using the degree of intersection, the degree of non-intersection can be obtained as the

fuzzy complementation of the degree of intersection:

µqint(A, B) = c [µint(A, B)] , (1.4)

where c is a fuzzy complementation, for example c(x) = 1− x.
The degree of inclusion µinclusion(A, B) can be defined as:

µinclusion(A, B) = µqint(µA, c(µB)), (1.5)

which expresses a degree of non intersection between A and the fuzzy complement of B.
This forbids the intersection between A and the exclusion of B, as in the crisp case. In
[Bloch, 2006] the author uses mathematical morphology to define the boundary and the
interior of an object (fuzzy or not). Moreover the author shows how it is possible to
extend the 9-intersection model relations by performing a conjunction of the constraints of
intersection and non-intersections of the terms in the 9-intersection model. In this approach
an extension of the relation set is performed which can be used in several applications, and
can be used to construct new spatial relations. One very useful and interesting application
is their use as comparison measures of a fuzzy set µB with a fuzzy set µR by using fuzzy
pattern matching [Dubois et al., 1988]. The comparison is given by two values: a possibility
degree Π, and a necessity degree N :

Π(µB, µR) = µint(µB, µR) (1.6)

N(µB, µR) = µinclusion(µB, µR) (1.7)

These measures have been used in the evaluation of directional relations in [Bloch, 1999,
Bloch and Ralescu, 2003] which will be presented in Section 1.3.2.1.

1.3.1.3 Adjacency

(a) (b) (c)

Figure 1.4: Illustrations where the relations of adjacency should be considered as a matter
of degree.
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In computer vision the adjacency relation is of great importance. This relation corre-
sponds to the topological relation “meet”. Two regions A and B are adjacent in an image
if they do not intersect and if there exists at least a pixel of A which is a neighbor of a
pixel of B. Thus, for the adjacency relation to be satisfied between two sets A and B, it is
only necessary that there is one point in A which is a neighbor of a point in B. However,
sometimes it is more appropriate to express the adjacency relation as a matter of degree.
For example, one may want to give a higher degree to the situation shown in Fig. 1.4(b)
than to the one in Fig. 1.4(a), since the common boundary is larger in the first case, and
the relation does not depend on only one point. Moreover, in the situation shown in Fig.
1.4(c) one would like to say that the regions are almost adjacent, even if they do not touch.
This remark led to a fuzzy definition of adjacency by [Rosenfeld and Klette, 1985] which
depends on how nearly the borders of the two objects touch and for how long they do so.
To do this [Rosenfeld and Klette, 1985] first introduced the notion of admissible segments.
A line segment ]c, d[ is admissible with respect to the crisp objects A and B if:

c ∈ ∂A and d ∈ ∂B and ]c, d[⊆ (A ∪B)c, (1.8)

where ∂A corresponds to the boundary of A. Let lc be the shortest length of the admissible
segment having c ∈ ∂A as endpoint (if such a segment does not exist then lc =∞), and let
ADMIA,B denote the set of admissible segments from A to B, then a degree of adjacency
between A and B can be defined as:

µadj(A, B) =

{

1
|∂A|

∑

d∈∂A
1

ld+1 if ADMIA,B 6= ∅,
0 otherwise.

(1.9)

This definition was extended to fuzzy regions in [Rosenfeld and Klette, 1985]. Unfortu-
nately this definition is not symmetrical, and furthermore it is equal to zero only when
A ⊆ B, which is not always desired. Another possibility is to express the degree of adja-
cency considering the intersection between boundaries. In [Bloch et al., 1997] the adjacency
condition is expressed by means of morphological dilation:

A ∩B = ∅ and DVc(A) ∩B 6= ∅ and DVc(B) ∩A 6= ∅, (1.10)

where DVc(A) denotes the morphological dilation of A by the structuring element Vc. The
first condition implies that both regions do not intersect. The neighborhood constraint
of the adjacency definition is represented by the last two conditions, and the structuring
element is chosen so that it represents the connectivity between the pixels. The last condi-
tion ensures the symmetry of the relation for the cases when the center of the structuring
element Vc does not belong to Vc. This definition is directly extended to a fuzzy defini-
tion [Bloch et al., 1997], where the degree of adjacency is given as a conjunction of the
constraints of Definition (1.10):

µadj(A, B) = t [µqint(µA, µB), µint(DVc(µA), µB), µint(DVc(µB), µA)] . (1.11)

When Equations 1.2 or 1.3 are used as degrees of intersection, the obtained relation is
symmetric, consistent with the crisp definition, decreasing with respect to the distance
between both sets, and invariant to geometrical transformations. One advantage of this
definition is its flexibility to allow different representations by using different definitions of
µint or different structuring elements. For instance, by using a fuzzy structuring element
one can represent the spatial imprecision and have a degree greater than zero when the
objects are very close to each other [Bloch, 2005]. By using the hyper-volume of the
intersection as µint (Equation 1.3) overlap between the intersecting sets is considered.
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1.3.1.4 Topological surround

The topological relations of the 9-intersection model are two point-based relations. This
means that they can only be computed between regions that can intersect. They can be
used in multi-scale analysis in image processing, for example [Inglada and Michel, 2009],
or when objects are extracted in an independent manner. However, when dealing with
regions that cannot intersect, for example when objects are extracted from a partition of
an image, the only two 9-intersection model relations that can take place are “disjoint”
and “meet”. [Aksoy et al., 2003] developed spatial relations based on the intersection of
the boundary of the objects to quantify the different possibilities of “meet”. These re-
lations are referred to as “perimeter class” relations and correspond to the following set
{BORDERING, INVADED_BY, SURROUNDED_BY} (see Fig. 1.5). These relations
are characterized by fuzzy membership functions over the domain of rij , where rij corre-
sponds to the ratio of the common perimeter of both regions over the perimeter of the
reference region. [Liu et al., 2008a] compared the “perimeter class” and the 9-intersection
model relations. The only relations for which there is a one to one correspondence are
the relations “inside” and “contains” of the 9-intersection model which correspond to “sur-
rounded by” and “surrounds” of “perimeter class”, respectively.

Figure 1.5: Perimeter relations taken from [Aksoy et al., 2003].

From the degree of adjacency of Equation 1.11, it is possible to think of an extension of
“surrounds” and “surrounded by” relations for fuzzy objects. The ratio rij of the “perimeter
class” relations can be redefined as:

rij =
Vn[t(DVc(µA), µB)]

Vn[t(DVc(µA), c(µA))]
, (1.12)

where the numerator represents the volume of the intersection between the dilation of µA

and µB , which can be considered as their common boundary. The denominator represents
the volume of the boundary of µA. The “surrounded by” relation is defined through a



441. Spatial relations for satellite image interpretation: state of the art

membership function:

µSURROUNDS : [0, 1] → [0, 1]

rij 7−→ f(rij)

where f is an increasing function of [0, 1] into [0, 1], such that f(1) = 1 and f(0) = 0,
for instance a trapezoid function. We refer to this type of surroundness as “topological
surround” that should not be confused with the “topological surroundedness” of [Rosenfeld
and Klette, 1985]. Among the relations presented by [Aksoy et al., 2003], we decided to
only extend the “surrounded by” relation as a fuzzy relation, since it is the only one for
which there is a one to one correspondence with the 9-intersection model relations.

1.3.1.5 Discussion

We have presented the topological relations from the perspective of computer vision and
from the one of GIS. Figure 1.6 presents a hierarchy of topological relations which are
suitable for satellite image interpretation. This hierarchy is based on the hierarchy proposed
in [Hudelot et al., 2008], which includes the RCC8 topological relations as well as the
relations used for image processing. In addition we incorporate the refinement of the
adjacency relation, the “surrounded by” relation proposed by [Aksoy et al., 2003], and add
a class of line region topological relations that will be studied in Chapter 2.

Figure 1.6: Topological relations.

In the following chapters we will use the models used in [Hudelot et al., 2008] for
topological relations of intersection, interior and complement, because their extension to
fuzzy objects is natural, and in the case of crisp objects the result is the same as for the
RCC8 relations.

1.3.2 Metric relations

Metric relations are divided into two classes: distance, and directional relations. Unlike
topological relations which express the position of an object with respect to another one,
the metrical relations express the position of one object with respect to another one within
a reference frame. For expressing a metric relation it is thus necessary to specify the
reference frame. Three types of reference frames are distinguished [Retz-Schmidt, 1988,
Hernandez et al., 1995]:
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intrinsic reference frame: the orientation or distance is given by some internal property
of the reference object, like its topology, size or shape,

extrinsic reference frame: the orientation or distance is determined by an external fac-
tor like motion, arrangement of objects,

deictic reference frame: the orientation or distance is given by an external point of
view.

In the following we see that according to the reference frame different spatial relations can
be specified.

1.3.2.1 Directional relations

The directional relations express the orientation of one object with respect to another one
within a reference frame. When it is possible to differentiate the three axes of the reference
object which define its orientation, one can use an intrinsic reference frame and distinguish
directional relations such as: “to the left of”, “to the right of”, “behind of’, “in front of”,
“above”, and “below”. However, in the case of satellite images, due to the point of view from
which objects are observed it is often difficult to identify the intrinsic reference frame of
them. These relations are therefore not very frequently used. In the context of geographic
space it is common to use the extrinsic reference frame of cardinal directions: “North of”,
“East of” “South of”, and “West of”. Another possibility is to express direction by using the
reference frame of the observer of the image, a deictic reference frame, and have directional
relations as “to the left of”, “to the right of”, “behind of’, “in front of’, “above”, and “below”.
As highlighted by [Retz-Schmidt, 1988] the same vocabulary of relations is used when
using a deictic or an intrinsic reference frame, therefore it is necessary to clearly state the
reference frame to avoid confusions.

Despite of the reference frame, directional relations are by nature imprecise [Miyajima
and Ralescu, 1994a, Bloch and Ralescu, 2003]. In the following we define and give examples
of directional spatial relations using the reference frame of the observer. Nevertheless these
relations can be defined in any of the three frames just by specifying how the orientation
is measured.

The three situations illustrated in Fig. 1.7 satisfy the relation “B is to the right of
A”. If we consider the two objects in Fig. 1.7(a) it is easy to identify that “B is to the
right of A” since all the points of B are to the right of the points of A. However, in the
situation presented in Fig. 1.7(b) the object B is still “to the right of A”, but it can also
be considered to be to some extent “above”A. Finally, for the third case, B is strongly
“to the right of” A and “above” A. This example shows that even when the objects are
crisp, the evaluation of the directional relations is ambiguous. It illustrates the interest of
evaluating the directional relations by a degree of satisfaction (through a fuzzy definition)
rather than a crisp evaluation. In the following we only review the fuzzy definitions of the
directional relations.

Angle histograms
Angle histograms were introduced in [Miyajima and Ralescu, 1994a]. They can be inter-
preted as a function that captures the directional position between two objects. The angle
histogram from A to B is obtained by computing, for each pair of points pa ∈ A and
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(a) (b) (c)

Figure 1.7: Ambiguity of the relation “B is to the right of A” (adapted from [Miyajima
and Ralescu, 1994a, Bloch and Ralescu, 2003]).

pb ∈ B, the angle between the segment joining them and the horizontal axis. Angles are
organized in a histogram normalized by the largest frequency:

HA(B)(θ) =

∑

pa∈A,pb∈B|∠( ~papb,~ux)=θ 1

maxφ∈[0,2π)

∑

pa∈a,pb∈b|∠( ~papb,~ux)=φ 1
. (1.13)

where ~ux is an unitary vector in the direction of the x-axis, ~papb is the vector between pa

and pb, and ∠( ~papb), ~ux) denotes the angle between them. To determine if an object A
is in a given direction with respect to an object B (for example “to the left of”), we can
compute the angle histogram HA(B) and compare it with a template for the relation “to
the left of”. This can be done by using the compatibility between the computed histogram
and the template [Miyajima and Ralescu, 1994a], or by using a fuzzy pattern matching
approach [Bloch, 2005] and give the evaluation as a necessity(N)/ possibility (Π) pair (see
Equations 1.6 and 1.7). Figure 1.8(a) shows an example of membership functions to define
the directional relations. Figures 1.8(b), 1.8(c), and 1.8(d) show the angle histograms for
the objects in Fig. 1.7. The angle histograms can be viewed as possibility functions which
express the relative position between objects. For Fig. 1.7(a) the angle histogram has a
well defined maximum with a strong main direction in accordance with the definition of
“to the right of”. The angle histogram for Fig. 1.7(b) still fits with the definition “to the
right of”, however it shows a tendency towards the function “above”. The angle histogram
for Fig. 1.7(c) shows the strong presence of both directions.

Angle histograms are also formalized for fuzzy objects. Given two fuzzy objects A
and B defined through their membership functions µA : I → [0, 1] and µB : I → [0, 1],
respectively, it is possible to define the angle histogram between A and B by considering
the membership of each point to the fuzzy set:

HA(B)(θ) =

∑

pa,pb∈I|∠( ~papb,~ux)=θ t [µA(pa), µB(pb)]

maxφ∈[0,2π)

∑

pa,pb∈I|∠( ~papb,~ux)=φ t [µA(pa), µB(pb)]
. (1.14)

When µA and µB are crisp, Equations 1.14 and 1.13 are equivalent. Angle histograms
are invariant to simultaneous translation, scaling and rotation of both objects. They
are not symmetrical, but they satisfy: HA(B)(θ) = HB(A)(θ + π). In addition, they
have proved to be an adequate way for evaluating the directional spatial relation between
two objects [Miyajima and Ralescu, 1994a] since they take into account the shape of the
regions. However, angle histograms do not consider the distance between the points during
the computation. [Matsakis and L.Wendling, 1999] developed the notion of histogram of
forces which takes into account the distance information.
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(a) Definition of directional relations.
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(b) HA(B) for Fig. 1.7(a).
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(c) HA(B) for Fig. 1.7(b).
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(d) HA(B) for Fig. 1.7(c).

Figure 1.8: Angle histograms for objects in Fig. 1.7.

Angle histograms allow us to answer the question of to which degree two objects A
and B satisfy one of the directional relations. They can also be used to characterize the
relative direction between two objects, and to define more complex spatial directions as
“between” or “alignment”. In the next section we present an approach that allows us to
define the region of space where a directional relation is satisfied.

Fuzzy directional dilations
Fuzzy directional dilations were proposed by [Bloch, 1999] to construct a fuzzy landscape.
A fuzzy landscape is defined as a fuzzy set in I which represents for each pixel the degree of
satisfaction of the directional relation with respect to a reference object A. Let ~uθ denote
the normal unitary vector representing the direction of interest. The fuzzy landscape
representing the objects is computed by performing a fuzzy morphological dilation of the
object A by a fuzzy structuring element νθ chosen so that its has a high membership values
in the direction ~uθ. Its value at a point x = (r, α) (in polar coordinates) is a decreasing
function of |θ − α| modulo 2π, for example:

∀p ∈ I, νθ(p) = max

[

0, 1− 2

π
arccos

~op · ~uθ

‖ ~op‖

]

, (1.15)

where ~op is the vector between the center of the structuring element o and the point p.
Figure 1.9 shows the structuring element defining the relation “to the right of” and the
corresponding fuzzy landscape when the object A of Fig. 1.7 is used as reference object.
From Fig. 1.9(b) it is possible to see how the obtained region which represents “to the
right of” A is in accordance with the intuition.

The evaluation of to which degree an object B satisfies a directional spatial relation is
done by comparing how well B matches the region having a high membership value in the
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(a) Structuring
element.

(b) Fuzzy landscape.

Figure 1.9: Structuring element and fuzzy landscape representing the direction “to the
right of” object A of Fig. 1.7.

fuzzy landscape. Several measures can be used for this comparison (see [Bouchon-Meunier
et al., 1996] for a complete review on comparison measures for fuzzy sets). [Bloch, 1999]
proposes to use a necessity(N)/ possibility (Π) pair (see Equations 1.6 and 1.7) or a mean
measure given by:

M(B, R) =

∑

p∈I t [µB(p), µR(p)]
∑

p∈I µB(p)
(1.16)

where µR represents the fuzzy landscape and µB represents the membership function of
B. In the case where B is a crisp object, then µB is an indicator function.

Representing a relation by a fuzzy set in the image has several advantages. For instance,
if we need to evaluate a spatial relation between a reference object A and several objects
{B1, . . . , Bn} it is necessary to compute the fuzzy landscape one time, and evaluate the
compatibility of the fuzzy landscape with every object. Another advantage is that it is
possible to combine various relations which can be represented in this manner by fusioning
their fuzzy landscapes (see Chapter 3).

The above presented methods allow us to represent the directional position of an object
with respect to another one. However, if we are searching for a structural pattern in a
satellite image and an extrinsic reference frame is used, the information of “object A is to
the North of object B” does not give a lot information. Since most of the times spatial
structures are orientation independent. For instance, in an airport, the oil storage zone can
be to the North, East, South or West of the runaway. If we use a deictic reference frame,
the directional relations “object A is to the right object B”, has the same inconvenient as
the cardinal relations, since it does not express a particular arrangement. However, we
can use the directional relations by not using the common directions, but as “object A is
to a degree α of object B, with respect to the x-axis”. These kinds of relations are useful
for identifying shadows of objects, since we know a priori the angle of the direction in
which the shadow is projected (see Fig. 1.10). Similarly, as mentioned at the beginning of
this section, in the case of satellite images, it is very difficult to distinguish the intrinsic
reference frame of the reference object. However, in the case of elongated objects, we can
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(a) Original image. (b) Building with fuzzy
landscape.

(c) Building and shadow
(in blue) with fuzzy land-
scape.

Figure 1.10: Illustration of the relation “object A is in a direction α of object B, with
respect to the x-axis” where α is equal to the angle of direction to which the shadow is
projected. The shadow in (c) intersects the regions of the fuzzy landscape which have a
high membership degree.

distinguish their sides from their ends, and then it is possible to express relations such as
“on one side of”. This relation is obtained by computing the orientation θ of the principal
axis of the reference object with respect to the horizontal and performing two directional
dilations, in the directions θ + π

2 and θ − π
2 (see Fig. 1.11). Notice that this relation

produces two fuzzy landscapes R1 and R2. To evaluate if a target object B is “on one side
of” an elongated reference object A, we evaluate to the degree to which B matches one of
the two fuzzy landscapes. For instance if we use a mean measure (Equation 1.16), then
the degree of satisfaction is given by:

M(B, {R1, R2}) = T [M(B, R1), M(B, R2)] . (1.17)

This equation represents a disjunction (performed with a t-conorm T) of the degrees to
which the object B intersects the fuzzy landscape R1 or the fuzzy landscape R2.

(a) (b) (c)

Figure 1.11: (a) Reference object. (b) and (c) correspond to the two fuzzy landscapes
representing the relation “on one side of”.

Between
The spatial relation “between” can have several meanings and can vary depending on the
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shape of the object. In [Bloch et al., 2006] several definitions for the relation “between”
are proposed, given as “fuzzy landscapes”. In this section we only discuss some of these
definitions.

Figure 1.12: Illustration of the “between” relation based on dilation by a structuring
element derived from the angle histogram (Equation 1.18). Objects A1 and A2 are displayed
in red, and the membership values to β(A1, A2) vary from (white) 0 to (black) 1. The angle
histogram is shown on the right. Figure taken from [Bloch et al., 2006].

Let A1 and A2 be the reference objects. When A1 and A2 do not have concavities,
or concavities which are not “facing each other”, a definition based on directional dilation
can be used. Let ν1(θ) be the angle histogram HA1(A2)(θ) computed using Eq. 1.14 and
let ν2(θ) = HA2(A1)(θ) (remember that according to the properties of angle histograms
HA1(A2)(θ) = HA2(A1)(θ + π)). Then ν1(θ) and ν2(θ) represent the main directions
between A1 and A2 and vice-versa. The region between A1 and A2 is given by:

βdil1(A1, A2) = Dν2(A1) ∩Dν1(A1) ∩Ac
1 ∩Ac

2, (1.18)

where Dν2(A1) represents the directional dilation of A1 by the structuring element ν2, and
Ac

1 represents the complement of A1, and ∩ is an intersection which can be modeled by
a t-norm. Equation 1.18 represents the intersection of the region which is at the same
direction of A1 as is A2, the region which is in the same side of A2 as is A1 and the
complement of A1 ∪A2. Figure 1.12 shows an illustration of this definition. When objects
have concavities that are not “facing each other” , these concavities can be removed by
using the following definition:

βdil2(A1, A2) =Dν2(A1) ∩Dν1(A1) ∩Ac
1 ∩Ac

2

∩ [Dν1(A1) ∩Dν1(A2)]
c

∩ [Dν2(A1) ∩Dν2(A2)]
c ,

(1.19)

where the first line represent the region of (1.18) which is intersected with the regions
corresponding to the complements of the concavities, represented in the second and third
lines. Definition (1.19) is able to deal with simple convex objects and at the same time
deal with complex objects having several concavities. The computational complexity is of
the order of O(NNν + N1N2) where N denotes the image space, N1 and N2 denote the
cardinality of A1 and A2 respectively, and Nν denotes the cardinality of the support of the
structuring elements ν1 and ν2.

Another definition proposed in [Bloch et al., 2006] is based on the concept of admis-
sibility segments (see Section 1.3.1.3). This definition is appropriate to deal with objects
having concavities. The region between A1 and A2 is defined as the union of the admissible



51

segments. However the obtained region is very restricted, therefore the notion of admis-
sible segments is extended to fuzzy semi-admissible segments to obtain a more flexible
definition. This definition also deals with convex and complex objects, however the com-
putational time is O(NN1N2). Therefore, in our work we use Equation 1.19 to define the
region between A1 and A2 when they are convex or complex objects. Furthermore, from
Equation 1.18 one can think of the relation “on the same side”, which can be seen as a sort
of inverse of the relation “between”. The fuzzy landscape γ(A1, A2) corresponding to the
relation “on the same side of A1 as A2” can be constructed by performing a morphological
dilation of A1 by ν2(θ), and intersecting it with the complement of A1:

γdil1(A1, A2) = Dν2(A1) ∩Ac
1. (1.20)

To extend this definition to the case where A1 has concavities, we can simply eliminate
the concavities of A1 from the region γ as in Equation 1.19:

γdil2(A1, A2) = Dν2(A1) ∩Ac
1

∩ [Dν1(A1) ∩Dν1(A2)]
c .

(1.21)

The definition of the relation “between” presented in Equation 1.19 is inappropriate
when one of the reference elements has an infinite size with respect to the other one, such
as the region that is found between a house and a road. Suppose A2 has an infinite size
with respect to A1, then the region “between” A1 and A2 should be formed by the region
between A2 and the part of A1 which is the closest to A2. This region is obtained by
approximating the part of A2 which is closest to A1 by a segment denoted by ~u, and
performing a fuzzy directional dilation of A1 in the direction orthogonal to ~u (see Figure
1.13).

Figure 1.13: Illustration of the region between A1 and A2, when A2 has very large size
with respect to A1. Figure taken from [Bloch et al., 2006].

One should notice that the relation “between” is independent of the reference frame.

Along
In [Takemura et al., 2005] a definition for the along relation is proposed, based on the
relation “between”. The “along” relation is evaluated by measuring the degree of elongation
of the region between the target and the reference objects. To measure the degree of
elongation several definitions are proposed according to the distance between the objects
or their parts and the shape of the region between the objects. This approach gives
satisfying results for objects with simple shapes.
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1.3.2.2 Distance relations

Several works have addressed distances between fuzzy sets. The definitions can be classified
into two classes [Bloch, 1999]:

• distances that compare membership functions, and

• distances that combine the membership functions and spatial distances.

The second type of distances is more appropriate to describe the spatial arrangement be-
tween objects in an image. In this section we only focus on the second type of distances.
For a complete review refer to [Bloch, 1999]. [Bloch, 1999] proposes to use fuzzy mathe-
matical morphology to construct the fuzzy landscape representing the satisfaction of the
relations: “at a distance less than d”, “at a distance greater than d”, and “at a distance
between d1 and d2”. The fuzzy landscape corresponding to the relation “at a distance be-
tween d1 and d2” is constructed by defining a membership function µn over R+ with core
equal to [d1, d2], for example a trapezoid function. From this membership function two
fuzzy structuring elements are defined:

ν1(x) =

{

1− µn(dE(x, 0)) if dE(x, 0) ≤ d1,

0 otherwise.
(1.22)

ν2(x) =

{

1 if dE(x, 0) ≤ d2,

µn(dE(x, 0)) otherwise.
(1.23)

where dE is the Euclidean distance in I and dE(x, 0) is the Euclidean distance between
x and the origin of the structuring element. Finally, the fuzzy landscape representing the
relation “at a distance between d1 and d2 from A” is defined as:

µdistance(x) = t [Dν2(µA), 1−Dν1(µA)] , (1.24)

which is the conjunction of a distance inferior to d2 represented by the first term and a
distance greater than d1 represented by the second term. The distance greater than d1 is
expressed as the complement of a distance inferior to d1. Figure 1.14 shows an example of
the relation “at a distance less than d” by replacing d1 by 0, and d2 by d in Equations 1.22
and 1.23.

Distance relations can also be named with respect to a granularity of the space. For
example, we can define values of d1 and d2 in Equations 1.22 and 1.23 to define distances
such as “near” or “far” as in [Hudelot et al., 2008]. This type of relations are referred to
as qualitative distance relations [Hernandez et al., 1995]. For these distances [Hernandez
et al., 1995] makes the distinction of the different ways of how “near” and “far” can be
defined according to the reference frame which is used. In the context of distances, in
an intrinsic reference frame, the distance is determined by the intrinsic characteristics of
the reference objects. For example, distance can be defined as a function of the size of
the reference object. In an extrinsic reference frame, the distance is determined by some
external factor. For instance, in a subway system, we may say that two metro stops are
close if the time from going to one station to the other one is less than 2 minutes. In
a deictic reference frame a distance "near" can make reference to a mental map of the
observer. In the context of satellite image interpretation, it is not always possible to have
information to construct an extrinsic or deictic reference frame to define the relation “near”.
Therefore we will use only the intrinsic reference frame, where the parameters d1 and d2

used to construct the membership function µn are proportional to the size of the reference
object.



53

(a) Function µn over R+. (b) Structuring element ν1(x)
over I.

(c) Fuzzy landscape.

Figure 1.14: Representation of the fuzzy relation “at a distance less than d” with d = 0.1.
Image taken from [Hudelot et al., 2008].

1.3.2.3 Discussion

Figure 1.15 shows the hierarchy of metric relations. This hierarchy has the standard
classification distance vs. directional relations. For the distance relations we add the two
distance relations initially presented in [Freeman, 1975] as well as the relation “at a distance
between d1 and d2 from A”, which allow us to cover different spatial configurations. The
proposed directional relations do not include the cardinal relations, which are frequently
used in GIS, because they cannot be used to discriminate a specific spatial arrangement.
The directional relations which use an intrinsic or deictic reference frame such as “to the
left of” are not considered because they depend on the objects’ reference system which
is usually unknown. Nevertheless, we include relations such as “at an angle of” or “on
one side” which can be seen as different interpretations of classical directional relations
and are better adapted to the satellite image interpretation context. The spatial relations
“parallelism”, “across” and “surround” are introduced in Chapter 2.

Metric Relations

Directional

Ternary

Distance

BinaryFar NearBetween a distance 

d1 and d2 of

Between On the same 

side as

At an angle

of

SurroundsLine region

dir. relations

Parallel

On one 

side
Along Go

across

Figure 1.15: Metric relations.
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1.3.3 Structural relations

Structural relations have not been used so far in image interpretation, although they can
play an important role in image description. The structural relations which are proposed in
[Steiniger and Weibel, 2007] are grid-like, star-like and alignment. In the following chapter
we will concentrate on the definition of the alignment relation within the context of image
interpretation, the other two relations will not be treated in this work. Although they are
important relations, they are less frequent than the alignment relation.

One important characteristic of the structural relations is that they describe a group
of objects satisfying a spatial property, which in turn can satisfy a spatial relation as a
group.

1.4 Conclusion

In this chapter we presented a hierarchy of spatial relations which can be used for the
interpretation of satellite images. A schema of the hierarchy is illustrated in Fig. 1.16.
This selection of relations considered the relations necessary for the image interpretation
taking into account the geographical nature of the objects which are observed in this type of
images. Although there has been a large amount of work devoted to the formal definitions
of spatial relations, in the crisp case and for fuzzy objects, some complex relations, that
are useful for satellite image interpretation have not been addressed and require specific
developments. This is a contribution of this Thesis, detailed in Chapter 2.

Spatial Relations

Structural

Section 2.3.3

Topological

Section 2.3.1

Fig. 2.6

Metric

Section 2.3.2

Fig. 2.15

Figure 1.16: Hierarchy of spatial relations

In chapter 3 we present some mechanisms used to perform spatial reasoning with the
presented relations. In part II we present an application of how these relations can be used
for image interpretation.
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Chapter 2

New spatial relations

In the previous chapter we presented a set of spatial relations that are of interest in satellite
images. Some of the presented relations have not been addressed in the literature, or the
models which have been proposed are not well adapted to the context of satellite image
interpretation. Hence, in this chapter we propose to model some of these relations. In
Section 2.1, we study the directional relation “surround”. Then in Section 2.2 we study the
structural relation of “alignment” and we study its link with parallelism, which is further
developed in Section 2.3. Finally in Section 2.4 we study the line-region relations.

2.1 Surround

In satellite images it is frequent to observe that one object is surrounded by another one.
For example, the structures on the sea are surrounded by the sea (see Fig. 2.1). We
can say that “A is surrounded by B” if A is able to see B in almost all the directions.

Figure 2.1: Example of surround.

The notion of B being in almost all
directions with respect to A is by defini-
tion imprecise. It is imprecise in the sense
that “almost all” is not a well defined quan-
tity. Additionally, as explained in Sec-
tion 1.3.2.1, the notion of being “in a di-
rection α” from another object is also im-
precise. Therefore, the fuzzy set theory is
appropriate for modeling this relation.

In Section 2.1.1 we review some of the
definitions proposed in the literature for the
surround relation. Then, inspired by some of these works, we propose a novel definition of
fuzzy surround in Section 2.1.2. The contributions are twofold: first we propose a definition
as a spatial fuzzy set (a fuzzy landscape), which defines the degree of satisfaction of the
relation to a reference object for each point of the space; secondly, we propose to include
several important pieces of information in the definition, such as the potential imprecision
of the objects (i.e. dealing with fuzzy sets), the distance to the target object, and shape
information. In Section 2.1.5 an example with a complex shaped reference object illustrates
that the proposed definition provides adequate results, in accordance with intuition.
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2.1.1 Related work

[Rosenfeld and Klette, 1985] distinguish between two types of fuzzy surround: visual and
topological surround. These definitions are extensions of the crisp definition of surround-
edness. In the crisp case, a region A is surrounded by a region B if for every point p ∈ A
all the linear paths from p to the background (the background is considered as the outside
of the image) intersect B. It is equivalent to say that B separates A from the background.

One extension of surroundedness proposed by [Rosenfeld and Klette, 1985] is the topo-
logical surroundedness. This definition is first proposed for a point and then extended to
the case of objects. The degree to which a point p is topologically surrounded by an object
B depends on the angular change followed by a path from p to the background. [Rosenfeld
and Klette, 1985] give as an example a point which is in the center of a spiral, so the point
is “topologically surrounded by” the spiral. This notion is extended to the case of objects,
by considering the “topological surroundedness” of the points on the boundary of the target
object. The degree to which “A is topologically surrounded by B” is equal to the infimum
of the degree of “p is topologically surrounded by B” for all the p ∈ ∂A, where ∂A is the
boundary of A. Nevertheless, this definition of fuzzy surroundedness does not express the
relation we want to define mainly because it is a crisp notion which is not flexible enough.
Fig. 2.2(a) shows a situation for which a point is not topologically surrounded by an object,
although we would like to have a high degree of “surround”.

(a) Topological surroundedness
is not satisfied.

(b) Visual surroundedness has a
non-zero degree of satisfaction.

Figure 2.2: (a) In red a direct path from the point to the background is shown, demonstrat-
ing that the topological surroundedness is not satisfied. (b) In green the angular interval
ϕ for which rθ(p, B) = 0.

The other extension of surround proposed by [Rosenfeld and Klette, 1985] is better
adapted to our needs. The visual surroundedness deals with the angular coverage of p by
a set B. [Rosenfeld and Klette, 1985] first introduce the function rθ:

rθ(p, B) =

{

1 if ∃b ∈ B such that ∠(~pb, ~ux) = θ,

0 otherwise.
(2.1)

where ~ux is the unitary vector in the direction of the x-axis, and ∠(~pb, ~ux) denotes the
angle between the segment [p, b] and x-axis. The function rθ(p, B) is equal to one, if there
exists a ray from p in the direction θ which intersects B. The degree to which a point p is
visually surrounded by an object B is then given by:

µvisual_surround(p, B) =
1

2π

∫ 2π

0
rθ(p, B)dθ (2.2)
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This degree measures the portion of angular coverage of p by B. Fig. 2.2(b) shows the
same situation which did not satisfy the topological surroundedness, and we see that for the
visual surroundedness the degree of satisfaction is µvisual_surround(p, B) = 1 − ϕ

2π , where
ϕ is equalt to the angular interval for which rθ(p, B) is equal to zero. The extension to see
whether an object A is surrounded by an object B is straightforward:

µvisual_surround(A, B) = min
p∈∂A

µvisual_surrounds(p, B) (2.3)

The definition of visual surroundedness is in agreement with the relation we want to define.
If an object A sees B in almost all directions, then there is a large angular coverage of A
by B and therefore µvisual_surround(A, B) is high. However, the extension to non punctual
objects is not a trivial task.

[Miyajima and Ralescu, 1994b] propose a definition of surround also based on the
angular coverage. To evaluate the degree to which an object A is surrounded by B the
maximum angle ϕ between two tangent lines of B passing through a point of A is computed
(this angle is the same as the one illustrated in green in Fig. 2.2(b)). The degree of
satisfaction of the relation decreases as ϕ gets larger. So the membership function defining
the surround relation is expressed by:

µsurrounds(ϕ) =

{

cos2
(ϕ

2

)

if 0 ≤ ϕ ≤ π,

0 otherwise.
(2.4)

Then the degree to which a region B surrounds a region A is obtained by the center of
gravity of the compatibility distribution of the angle histogram HB(A) (Equation 1.13) and
µsurrounds(ϕ). This definition is also in agreement with the definition of surroundedness.
A high satisfaction value is obtained for the situation shown in Fig. 2.2(b).

[Matsakis and Andréfouet, 2002] also present a definition of surround based on angle
calculation. The normalized angle or force histogram HA(B) is computed. Then for every
α-cut HA(B)α of HA(B) the angle z1 is defined as the largest angle interval which is not
included in HA(B)α. The degree of surround for an α-cut is given by a decreasing function
of z1, and in [Matsakis and Andréfouet, 2002] the function max(0, 1− z1

π ) is used. Finally,
the degree of surround is given by an integration over all the α-cuts. This approach does
not measure the angle coverage, but it only observes the largest angular interval which is
not covered. For instance, if B is a disconnected object composed of three points which
are arranged to form an equilateral triangle, and A is just a point located in the center of
the triangle, then for every α-cut the angle z1 is equal to π

3 and the degree of surround is
0.67. This degree is not in accordance with the definition of surroundedness we want to
define, since B only sees A in very few directions.

Other works define surroundedness as a conjunction of the degrees of relative position
in all the directions [Bloch, 1999, Miyajima and Ralescu, 1994b]. These approaches assume
that an object is in all directions with respect to the other object. The relation which we
want to define here does not satisfy this condition, since we are interested in “almost” all
directions.

The surround relations studied in [Miyajima and Ralescu, 1994b, Rosenfeld and Klette,
1985] are in agreement with the relation which we want to define. However, these definitions
have focused on assessing the degree to which the relation is satisfied between two objects.
Here we concentrate on defining a region of space, as a fuzzy landscape, where the relation
is satisfied. The advantages of using this approach were highlighted in Section 1.3.2.1 when
directional relations were introduced. Moreover, in order to deal with complex shapes, we
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propose as an additional contribution to include information on the morphology of the
objects as well as their distance to the target objects, which were not directly taken into
account in existing definitions.

2.1.2 Definition of surroundedness as a fuzzy landscape

We first define the relation for a crisp reference object, and then we extend it to the case
of fuzzy objects.

2.1.2.1 Crisp reference object

Using the same idea as the visual surroundedness of [Rosenfeld and Klette, 1985], we define
the angular coverage of a point by a region B. For every point p /∈ B the angular coverage
is equal to the total angular length of the angular intervals for which p is able to see B,
that is:

θcoverage(B)(p) =

∫ 2π

0
rθ(p, B)dθ (2.5)

The region representing “surrounded by B” can then be defined as a fuzzy region of
space with membership function equal to:

µsurround(B)(p) = f(θcoverage(B)(p)) (2.6)

where f : [0, 2π] → [0, 1], f(0) = 0 and f(2π) = 1. The purpose of f is to define the
membership function defining the semantics of “almost all” for the angular coverage.

Figure 2.3 shows some examples of this definition of surroundedness applied to synthetic
objects. In these examples f was defined as:

f(x) =















1 if x ≥ 5π
4

x−π
2

3π
4

if π
2 ≤ x < 5π

4

0 if x < π
2

(2.7)

(a) (b) (c) (d)

Figure 2.3: Fuzzy landscapes obtained with the definition of Equation 2.6 when the blue
object is used as reference object. The brightest grey level corresponds to the higher
membership values. We note grey levels “around” the objects which do not correspond to
the wanted property “to be surrounded by” the object.

The results shown in Figure 2.3 are not in complete agreement with the notion of
angular coverage. Some non zero membership areas appear around convex parts of objects,
which is counter-intuitive (see e.g. the convex object in Figure 2.3(b)), since a convex object
cannot surround another object.
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On the other hand, one can interpret the surround relation by considering that A
is “surrounded by” B, if there is a portion of the boundary of B that goes around A.
In [Mathet, 2000] the linguistic aspects of the relation “go around” are analyzed, which
leads to consider that a path C “goes around” an object A if A and C do not intersect,
and if A intersects the convex hull of C. Consequently, the “surround” relation should only
take place when the reference object has concavities. Moreover, the portion of boundary
belonging to the concavities is the one which “goes around” the other object. As a result,
the angular coverage should be computed only using the points on the boundary of B
which lie in a concavity. A point lies in a concavity if it is in ∂B \∂CH(B), where CH(B)
and ∂B are the convex hull and boundary of B, respectively. A point b that lies in a
concavity sees p if the segment [p, b[ does not intersect B. Thus, to take into account the
concavities as well as the notion of visibility, we redefine the function rθ(p, B) of [Rosenfeld
and Klette, 1985] (Equation 2.1). We only consider the segments which have an endpoint
in ∂B\∂CH(B) and do not intersect B, using the same idea as for the admissible segments
of [Rosenfeld and Klette, 1985]:

r̃θ(p, B) =











1 if ∃b ∈ ∂B \ ∂CH(B) such that

∠(~pb, ~ux) = θ and [p, b[∩B = ∅,
0 otherwise.

(2.8)

Figure 2.4 shows an example of the angular interval where rθ(p, B) = 0 and r̃θ(p, B) = 0.
We can see that ϕ < ϕ̃, and therefore it is necessary to add the notion of visibility to
penalize the points which are not really seen by a concavity.

(a) (b)

Figure 2.4: In orange the angular interval ϕ and ϕ̃ for which rθ(p, B) = 0 in (a) and
r̃θ(p, B) = 0 in (b).

As a result, the angular coverage should be computed using r̃θ:

θcoverage_CH(B)(p) =

∫ 2π

0
r̃θ(p, B)dθ (2.9)

Again the fuzzy landscape representing the region surrounded by B is obtained by apply-
ing f(θcoverage_CH) to each point in I, where f has the same properties as the function
presented in Equation 2.6:

µsurround(B)(p) = f(θcoverage_CH(B)(p)) (2.10)

Figure 2.5 shows the fuzzy landscapes for the reference objects in Figure 2.3. These fuzzy
landscapes have high membership values for the points which are in the interior of the
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concavities of the reference object and lower ones for the points which are away from the
concavities. Clearly, there is no region of space which satisfies the surrounded relation
when the reference object is convex (Figure 2.5(b)).

(a) (b) (c) (d)

Figure 2.5: Fuzzy landscapes obtained with Equation 2.10. The defect presented in Figure
2.3 no longer exists.

Similarly to the metric relations defined through fuzzy landscapes in Section 1.3.2, we
can evaluate the degree of satisfaction to which an object is surrounded by B by using a
necessity(N)/ possibility (Π) pair (see Equations 1.6 and 1.7) or a mean measure M (see
Equation 1.16).

2.1.2.2 Considering the distance to target object

The fuzzy landscape defined by Equation 2.10 is adequate when the size of the target
object is comparable to the size of the concavity. However, when this is not the case, the
obtained fuzzy landscape is not appropriate. For instance, if B is the reference object in
Figure 2.6(a), A1 should have a high satisfaction degree for the relation surrounded, since
there is a portion of the boundary of ∂B\∂CH(B) which goes around the object and which
is close to it. On the contrary, intuitively, the object A2 should not have a high satisfaction
degree of the relation surround. Even if there is a portion of the boundary of ∂B\∂CH(B)
which goes around the object, some of the points belonging to this portion of boundary are
so “far” from A2, that they are not considered visible from A2. The interpretation of “far”
and “near” according to an object can depend on its intrinsic characteristic, for instance
on its size [Hernandez et al., 1995].

The second and third columns of Table 2.1 show the results of evaluating the relation
“surround by” using Equation 2.10. Both the [N, Π] and the M measures give similar
results for A2 and A1, although, intuitively, A1 should better satisfy the relation since it
is more inside the concavity of B (hence more surrounded).

µsurround(B) µsurround(B,µn)
Target Equation Equation
object 2.10 2.13

[N,Π] M [N,Π] M

A1 [1.0,1.0] 1.0 [1.0,1.0] 1.0
A2 [0.73,1.0] 0.85 [0.21,0.64] 0.48

Table 2.1: Evaluation of the surround relation using Equations 2.10 and 2.13, for objects
in Figure 2.6(a).

In order to include the “near” relation of the target object with respect to the reference
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(a) (b) (c)

Figure 2.6: Illustration of the fuzzy landscapes when not considering the distance of the
target object and when considering it. (a) The reference object is denoted by B, and two
target objects by A1 and A2. (b) µsurround(B) using Equation 2.10. (c) µsurround(B, µn)
using Equation 2.13.

object, the measure of angular coverage should be modified. Let p ∈ A and α an angle in
[0, 2π[. Suppose that there exists q ∈ ∂B \ ∂CH(B) which intersects the ray emanating
from p in the direction α. However, if q is not “near” p according to A, then it should be
considered as if there was no point in ∂B \ ∂CH(B) in the direction α.

Let µn be a function over R+ which represents the “near” distance according to the
target object. It can defined as a trapezoid function, where the parameters are adjusted
according to the size of the target object. If we want to evaluate the relation for several
target objects of comparable size, then we can define µn according to this size. As a result,
we define the function r̃θ(p, B, µn) as:

r̃θ(p, B, µn) =











µn(dE(p, q)) if ∃q ∈ ∂B \ ∂CH(B) such that ∠( ~pq, ~ux) = θ

and [p, q[∩B = ∅,
0 otherwise.

(2.11)

The function r̃θ(p, B, µn) is equal to the membership value of the “near” relation of the
point in ∂B \ ∂CH(B) which lies on the ray emanating from p in the direction θ. The
point in ∂B \ ∂CH(B), which satisfies this, is uniquely defined. Using r̃θ(p, B, µn) we can
define the angular coverage which takes into account the size of the desired target object
or objects, as well as considering the points of the convex hull of the reference object B:

θcoverage_CH(B, µn)(p) =

∫ 2π

0
r̃θ(p, B, µn)dθ. (2.12)

Finally, the degree of surround is given by:

µsurround(B, µn)(p) = f(θcoverage_CH(B, µn)(p)). (2.13)

Figure 2.6(c) shows the fuzzy landscape defined by Equation 2.13. For this experiment we
modeled µn as a trapezoid function:

µn(x) =











1 if x ≤ d1

d2−x
d2−d1

if d1 < x ≤ d2

0 otherwise

(2.14)
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The parameters d1 and d2 are associated with the imprecision of defining the relation
“near”. For instance we can use a very restrictive function were:

d1 = 4laverage (2.15)

d2 = 5laverage (2.16)

where laverage is equal to the average of the lengths of the maximum diameter. In this
particular case, laverage = 25.3, and so d1 = 101.2 and d2 = 126.5. We have chosen these
parameters just to illustrate the influence of considering the distance when evaluating the
“surround” relation. However, for a real application these parameters can be learned. The
fuzzy landscape of Figure 2.6(c) has high membership values in the regions where the
concavities are small, and can go around an object of the same size as A1 or A2. The
last two columns of Table 2.1 show the results of evaluating the satisfaction of the relation
“surrounded by” defined by Equation 2.13. Both the mean and the necessity/possibility
measures give results which fit with the intuition, indicating that A1 completely satisfies
the relation, while A2 has a much lower satisfaction, as expected.

Attaching the fuzzy landscape of surround to the characteristics of the target object,
such as size, might seem very restrictive, since one of the advantages of computing a fuzzy
landscape is that one has to compute the landscape only once, and then it can be used to
evaluate the relation for several objects. However, other advantages of the fuzzy landscape,
such as determining the region of space where it is possible to find a particular target object
that satisfies the relation, remain to be valid. Other applications, such as evaluating the
relation for several objects of similar size can also be envisaged.

2.1.2.3 Extension to fuzzy objects

When B is a fuzzy object with membership µB, the function r̃θ(p, B, µn) and the notion
of angular coverage should be changed. When B is a fuzzy set, their corresponding convex
hulls are also a fuzzy set. The α-cuts of a fuzzy set µ are nested, as well as its convex hulls.
So, the convex hull of a fuzzy set can be defined as the convex hull of its α-cuts [Bloch
et al., 2006]:

(CH(µB))α = CH((µB)α) (2.17)

Then the notion of angular coverage θcoverage_CH(B, µn)(p) is directly extended by
replacing ∂B \ ∂CH(B) by the fuzzy set µ∂B\∂CH(B) defined as:

µ∂B\∂CH(B)(p) = t
[

µ∂B(p), c(µ∂CH(B)(p))
]

(2.18)

Where c denotes a fuzzy complementation and µ∂B represents the fuzzy boundary of µB,
which can be computed as in [Bloch, 2006] by using mathematical morphology. For in-
stance, the membership function of the internal boundary of a fuzzy set µX is defined
as:

µ∂X(p) = t[DVc(c(µX))(p), µX(x)] (2.19)

where Vc is a fuzzy structuring element representing the notion of neighborhood, as the
one used in Equation 1.11.

Now the function r̃θ(p, B, µn) is adapted for the case where B is fuzzy:

r̃θ(p, B, µn) = max
{q∈I|∠( ~pq,~ux)=θ}

t
[

µn(dE(p, q)), µ∂B\∂CH(B)(q), µinclusion([p, q[, Bc)
]

(2.20)
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where µinclusion corresponds to the degree of inclusion of Equation 1.5. Let I represent the
image domain, then for every q ∈ I, for which the segment [p, q] makes an angle θ with the
horizontal axis, we take the value which better satisfies conjunctively the three conditions
used for the definition of this function in the crisp case. The first condition refers to the
fact that p and q should be “near” according to the function µn. The second one establishes
that q should belong to B and finally the third one states that the segment [p, q[ should
be included in the fuzzy complement of B. When B is crisp, Equations 2.20 and 2.11 give
the same result.

To extend the definition in Equation 2.10, where the distance to the target object is
not taken into account, the function r̃θ(p, B) is changed to:

r̃θ(p, B) = max
{q∈I|∠( ~pq,~ux)=θ}

t
[

µ∂B\∂CH(B)(q), µinc([p, q[, Bc)
]

(2.21)

As for the aforementioned case, this function represents the conjunction of the two condi-
tions which define r̃θ(p, B) in the crisp case.

2.1.3 Properties

The fuzzy landscape obtained by the definition for surround that does not take into account
the distance to the object (Equation 2.10) is particular case of the definition that takes
into account the distance to the object (Equation 2.13). Indeed, for every x ∈ I and
µn, µsurround(B)(x) ≥ µsurround(B, µn)(x) with equality when µn is the constant function
equal to 1. It follows that all the properties that are satisfied by µsurround(B, µn), are also
satisfied by µsurround(B).

The proposed surround relation is invariant with respect to the geometrical transfor-
mations of translation and rotation. It is invariant with respect to scaling if and only if µn

is invariant with respect to scaling.
The membership function of surround is increasing with respect to µn. For ev-

ery µn1, µn2 such that µn1(x) ≤ µn2(x) for every x ∈ I, then µsurround(B, µn1)(x) ≤
µsurround(B, µn2)(x).

2.1.4 Computational complexity

Assume that the image is a square with sides
√

N with N the number of points. Let NB

be the number of points in the reference object and Nd the length of the core of µn. The
complexity of computing the convex hull is O(NB log NB)1. The complexity of computing
the function r̃θ(p, B) of Equation 2.9 is of the order of N2. Therefore the complexity of
computing µsurround(B) defined by Equation 2.10 is O(NB log NB + N2).

The complexity of computing µsurround(B, µn) defined by Equation 2.13 is
O(NB log NB + NdN), since the complexity of computing the function r̃θ(p, B, µn) is of
the order of NdN .

2.1.5 Illustrative example

In this section we present an example to illustrate the defined relation. We compute the
fuzzy landscapes for the relation surround using the sea, as reference object, shown in Fig.
2.7(b). This reference object is a fuzzy region, where the white region represents the points
of space with a high membership value, while the black region represents the points with

1We assume that the q-hull algorithm is used for computing the convex hull [Barber et al., 1996].
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(a) Original image. (b) Reference object: the sea white region.
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(c) Target objects. (d) Target objects superimposed on the
original image.

Figure 2.7: Reference and target objects used to evaluate the relation surround.

low membership value. The target objects are the boats shown in Fig. 2.7(c). The sizes
of the target objects are comparable, therefore the relation can be evaluated by using the
same fuzzy landscape for all objects.
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Figure 2.8: Membership functions for µn.

To observe the influence of the distance relation involved in the computation of
µsurround, we used different membership functions to represent the “near” notion. The
membership functions for the “near” functions are illustrated in Fig. 2.8. There are four
membership functions representing different degrees of permissiveness of “near”. The func-
tion µn1 is very strict. The functions µn2 and µn3 are more in accordance with the size of the
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target objects, since the average lengths of the object’s main directions is laverage = 10.3.
Finally, µn4 is a constant membership function equal to one, which gives a fuzzy landscape
equivalent to the one in Equation 2.10.

(a) µsurround(B, µn1) (b) µsurround(B, µn2)

(c) µsurround(B, µn3) (d) µsurround(B, µn4)

Figure 2.9: Fuzzy landscapes representing the relation surround for different distance mem-
bership functions shown in Fig. 2.8. (a) Using µn1. (b) Using µn2. (c) Using µn3. (d) Using
µn4.

The corresponding fuzzy landscapes are shown in Fig. 2.9 and the evaluation for the
target objects is shown in Table 2.2. The fuzzy landscape of Fig. 2.9(a) is very restrictive,
and it is not well adapted to evaluate the relation for the selected target objects. It
represents a situation where the target objects should be very small, and the reference
object must be almost touching them. This fuzzy landscape does not allow us to cope
with the imprecision linked to the segmentation of the reference object. The restrictions
imposed by the function “near” are not appropriate for the situation. For instance, in
the evaluation of the yellow boat (6), the large interval [N, Π] exhibits an ignorance with
respect to the satisfaction of the relation. Even though there is no ambiguity that this
boat is surrounded by the sea.

The second and third landscapes (Figs. 2.9(b) and 2.9(c)) are more suitable for evalu-
ating the relation. We obtain high satisfaction degrees for all the boats, except the green
(5) and the orange (3) ones, as expected. The satisfaction values obtained for this relation
are in better accordance with the intuition. The intervals [N, Π] are shorter, showing less
ambiguity in the satisfaction of the relation for these target objects. Moreover, the fuzzy
landscape of Fig. 2.9(b) corresponds to the µn obtained using the parameters of Equations
2.15 and 2.16. This suggests that these parameters are an appropriate choice.

The last fuzzy landscape (Fig.2.9(c)) is very permissive. According to the first property
listed in Section 2.1.3, this fuzzy landscape corresponds to the case where the size of the
targets is not taken into account. The results obtained for this situation are not really
significant, since a high satisfaction degree M is obtained for all the target objects, while,
intuitively, the green (5) and orange (3) boats should have a low satisfaction value.

In this example we showed the influence of the notion of “near” introduced in the
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µsurround(B, µn1) µsurround(B, µn2) µsurround(B, µn3) µsurround(B, µn4)
Target Objects Fig. 2.9(a) Fig. 2.9(b) Fig. 2.9(c) Fig. 2.9(d)
Fig. 2.7(c) [N, Π] M [N, Π] M [N, Π] M [N, Π] M

1 (red) [0.4, 1] 0.75 [0.4, 1] 0.91 [0.4, 1] 0.91 [0.4, 1] 0.91
2 (pink) [0.29, 0.83] 0.54 [0.5, 0.90] 0.72 [0.5, 1] 0.94 [0.5, 1] 0.95
3 (orange) [0, 0] 0.00 [0, 0] 0.00 [0, 0.28] 0.09 [0.68, 0.90] 0.81
4 (purple) [0.6, 1] 0.98 [0.6, 1] 0.98 [0.6, 1] 0.98 [0.6, 1] 0.98
5 (green) [0, 0] 0.00 [0, 0] 0.00 [0, 0] 0.00 [0.82, 0.89] 0.86
6 (yellow) [0.37, 1] 0.78 [0.7, 1] 0.94 [0.7, 1] 0.96 [0.7, 1] 0.96
7 (blue) [0.6, 1] 0.94 [0.6, 1] 0.94 [0.6, 1] 0.94 [0.6, 1] 0.94
8 (cyan) [0.7, 1] 0.96 [0.7, 1] 0.96 [0.7, 1] 0.96 [0.7, 1] 0.96

Table 2.2: Results obtained for the target objects shown in Fig. 2.7(c) with respect to the
reference objects of Fig. 2.7(b), using the membership function distance of Fig. 2.8.

definition of Equation 2.13. We demonstrated the limitations of using very strict or loose
functions. The examples in Figs. 2.9(b) and 2.9(c) show fuzzy landscapes which are in
accordance with the situation. These two situations exhibit similar results, showing that
there continues to be a flexibility in the decision of the function used to represent the
notion of “near”. Moreover, this function could be learned as in [Colliot et al., 2006]. This
would allow an automated use of this approach.

2.1.6 Discussion

In this section we have presented a fuzzy definition of the relation “surround”. We first
presented a definition that only considered the morphology of the reference objects. How-
ever, we saw that this definition is not adapted to evaluate the relation when the target
objects are much smaller than the concavities and far of them. Therefore, we adapted
this definition to take into account the shape of the reference object, as well as the size
of the target objects and their distance to the concavities of the reference object. The
proposed definition has nice geometric properties, it is in accordance with the intuition
and is modeled as a fuzzy landscape which has shown interesting properties for image
interpretation.

2.2 Alignment

Determining the groups of aligned objects is crucial for image interpretation. According
to the Gestalt theory, the human perceptual vision system groups objects together using
certain rules. Among these rules there is one called continuity of direction which groups
together objects in the same direction, and one particular case is the constancy of direction
that refers to alignments [Desolneux et al., 2008]. An aligned group of objects has the
characteristic that it should be seen as a whole, since, if its elements are observed in an
independent manner, then the alignment property is lost. However, having to look it as a
whole makes alignment detection a difficult task.

Identifying the aligned groups of objects in satellite images is important for several
applications. Satellite images provide a huge amount of geographical information, and
aligned groups of objects can be seen as a way to reduce this information in a meaningful
way. For example in cartography, it is necessary to find groups of aligned buildings for map
generalization [Steiniger and Weibel, 2007]. Observing if a group of buildings is aligned
can give information about the structure of their arrangement, and whether they belong
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to a urban, rural or residential area [Dogrusoz and Aksoy, 2007]. In object detection,
complex semantic classes such as parking areas (car parking lots, ports, truck parkings lots
or airports) comprise aligned groups of transport vehicles. Therefore, the identification
of aligned groups of transport vehicles can be useful for detecting instantiations of these
complex classes, and is meaningful for the description of this kind of scenes.

This section is organized as follows. Section 2.2.1 reviews some of the models of align-
ment. In Section 2.2.2, we discuss some properties our model should satisfy. Section 2.2.3
introduces the definitions of local alignment and global alignment. A method for extracting
the locally aligned groups is then proposed. In this method we construct a neighborhood
graph of the objects of the image, and its dual graph where we incorporate information
about the relative direction of the objects, evaluated using fuzzy measures of relative po-
sition. The groups of objects satisfying the fuzzy criterion of being locally aligned are
extracted from the dual graph. These groups are the candidates for being globally aligned.
In Section 2.2.4 we discuss the behavior of the method with respect to segmentation errors.
In Section 2.2.5 we discuss its computational complexity. Part of the work presented in
this section was presented in [Vanegas et al., 2010a,b].

2.2.1 Related work

Alignment between low level features has been widely studied in computer vision. For
instance, alignment between groups of points [Desolneux et al., 2008, Ortner et al., 2007]
and alignments between linear segments [Lowe, 1987, Desolneux et al., 2008] as collinearity
on digital images. Most of these works are inscribed within the framework of perceptual
organization. Their first objective is to find how to organize low level features, such as edge
segments, into groups, such as aligned segments. The groups are evaluated according to
their perceptual significance based on the grouping laws of the Gestalt theory [Wertheimer,
1938, Koffka, 1935]. Their second objective is to differentiate the groupings that arise from
the structure of a scene from those that arise due to accidents of view point or position
[Lowe, 1987]. The objective of perceptual organization in computer vision and our objective
are different. Perceptual organization deals with how these relations take place among
low level features and their meaningfulness according to the image’s structure, while we
are interested in defining these relations for objects in the image taking into account their
semantics. Nevertheless, it is important to review the work that has been done on studying
these relations as grouping laws between low level features in digital images, in order to
understand how these relations have been modeled.

Several methods to determine the alignment between points methods relying on the
Hough transform [Desolneux et al., 2008] or the Radon transform [Likforman-Sulem and
Faure, 1994] have been proposed. Other examples are the identification of aligned seg-
ments which have the same orientations as the alignment [Desolneux et al., 2008, Ortner
et al., 2007, Ralescu and Shanahan, 1999, Lowe, 1987, Kang and Walker, 1994]. However,
alignment extraction as a high level feature has been less studied. One example is the work
of [Christophe and Ruas, 2002], where an algorithm to detect aligned groups of buildings in
maps is presented. In this algorithm buildings with aligned barycenters are extracted, and
the quality of the alignments is evaluated based on the criteria of proximity and similarity
laws of Gestalt theory.

The above mentioned methods for determining alignment focused on extracting groups
of objects with aligned barycenters. When these methods are applied to a group of het-
erogeneous objects (according to shape and size) we obtain an alignment of barycenters
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which does not correspond to the perceived alignment of the group, since neither the size
nor the shape of the objects are considered. An example of this is given in Section 2.2.2.1.
Also, the previously proposed alignment relations have not been extended to deal with
fuzzy objects.

Alignment in computer vision has been studied to organize low level features but it has
not been combined with other spatial relations. However, when dealing with objects and
observing these relations as spatial relations, it is interesting to combine alignment with
other relations, for instance to determine when two groups of aligned objects are parallel, or
when a group of aligned objects is parallel to another object. These kinds of combinations
give us more information about the scene and can be meaningful for the description. This
point will be further developed in Section 2.3.

2.2.2 Considerations for modeling alignment

Alignment can be defined as the spatial property possessed by a group of objects arranged
in a straight line2. As it was highlighted by the Gestalt theory, alignment should be seen as
a whole [Desolneux et al., 2008]: if we observe each element of the group individually, then
the alignment property is lost. Having to look at it as a whole makes alignment detection
a difficult task, since in order to detect an aligned group of objects we have to identify its
members, but to know if an object belongs to an aligned group the alignment has to be
already identified. In the following we study the different approaches to model alignment,
and introduce the notions of local and global alignment.

2.2.2.1 Different approaches to model alignment

For the case of a group of points in R2 there are two equivalent strategies for verifying
whether they are aligned. Let A = {a1, . . . , an} be a group of points in R2. A is aligned
if and only if:

(i) there exists a line L that intersects all the points, or

(ii) there exists an angle θ ∈ [0, π) such that for every pair of points ai and aj (i 6= j),
aj is located in direction θ or θ + π from ai with respect to the horizontal axis.

The first strategy is a linear regression problem and it has been used to identify if a
group of points is aligned in an image, by considering that points should fall into a strip
[Desolneux et al., 2003], the thinner the strip the better the alignment. Extending the first
definition to identify a group of aligned objects can be done by using objects’ barycenters.
Unfortunately this will only be appropriate for objects of similar sizes (see Figure 2.10) and
approximately convex. Another possibility is to search a thin strip where all the objects
fall into, but the width of the strip will depend on the objects’ sizes. Thus the notion of
falling into a thin strip is not appropriate for objects with different sizes.

The difficulty of extending the second strategy comes from determining the angle be-
tween two objects. One alternative, which is the one proposed in this work, is to use
measures of relative position used in spatial reasoning. Before entering into the details
of the method, we introduce the notion of orientation histogram, inspired by the angle
histogram (see Section 1.3.2.1). This notion is a fundamental concept for our method. In
the following sections we present two definitions of alignment and an algorithm to extract

2Definition taken from ThinkMap Visual Thesaurus http://www.visualthesaurus.com/
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(a) Original image. (b) Segmented objects. (c) Barycenters of objects in (b).

Figure 2.10: Example of an aligned group of objects of different sizes and with non-aligned
barycenters. However, this objects are aligned according to their lower boundaries

these alignments which is flexible enough to extract groups of aligned object which are not
only aligned by their barycenters.

2.2.2.2 Orientation histograms

To measure the orientation between two objects, we define the orientation histogram, which
is simply an angle histogram where the angles are computed modulo π and its support has
a length equal to π. The orientation histogram between two fuzzy objects A and B, with
membership function µA and µB is given by:

O(A, B)(θ) =

∑

p,q∈I|mod(∠( ~pq,~ux),π)=θ µA(p) ∧ µB(q)

maxφ∈[0,π)

∑

p,q∈I|mod(∠( ~pq,~ux),π)=φ µA(p) ∧ µB(q)
, (2.22)

where ∠( ~pq, ~ux) is the angle between the vector joining p and q, and the vector ~ux, which
represents the orientation of the x-axis. The orientation histogram is a fuzzy subset of
[0, π[ that represents the orientation between two objects. It preserves the same properties
as the angle histogram and, in addition, is symmetrical.

Similarity degree for orientation histograms There are several ways to define a
degree of similarity between orientation histograms. One possibility is to interpret the
orientation histograms as fuzzy sets and use similarity measures based on aggregation
[Zwick et al., 1987]. Another possibility is to interpret the orientation histogram as a
function and use a similarity degree based on distance between functions. We use here a
simple similarity degree based on intersection, but other similarity measures are possible.
More information on distances between histograms and similarity measures between fuzzy
sets can be found in [Zwick et al., 1987, Bloch, 1999, Rabin et al., 2008].

A degree of similarity between two orientation histograms can be defined as the maxi-
mum height of the fuzzy intersection of the two orientation histograms [Zwick et al., 1987].
Let O(A, B) and O(C, D) be two orientation histograms. The degree of similarity between
them is given by:

sim(O(A, B), O(C, D)) = max
θ∈[0,π)

[O(A, B)(θ) ∧O(C, D)(θ)] . (2.23)

In this measure, the possibility for each angle is aggregated in a conjunctive way, and we
take its maximum value. In the case were the orientation histograms do not intersect then
the similarity value is 0.

Figure 2.11(b) shows the two orientation histograms computed for the objects of Figure
2.11(a). Both histograms have a well defined maximum, showing a strong main orientation,
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Figure 2.11: (a) Objects. (b) Orientation histograms of the objects in (a).

and these maximum values are close to each other. Therefore a high similarity value is
expected. However, if the min operator is used as a t-norm in Equation 2.23, the similarity
value between the two histograms is 0.67. This non-high value is due to the comparison of
the value for each angle separately, since the aggregation is done for every angle. However,
in this context referring to an orientation equal to an angle θ actually represents the
quantity “approximately θ”. Therefore, in order to compare if two orientation histograms
are similar, it is important to consider the imprecision that is linked to the comparison
of two angles that are approximately the same. When a fuzzy morphological dilation
is performed on an orientation histogram using a structuring element ν0, then the high
values of the histogram will be propagated to the similar angle values according to ν0. The
structuring element ν0 is designed such that ν0(θ − θ̃) represents the degree to which θ̃
and θ are “approximately” equal, and in our experiments we modeled ν0 as a trapezoid
function:

ν0(θ) =











1 if |θ| ≤ t1
t2−|θ|
t2−t1

if t1 < |θ| ≤ t2

0 if |θ| > t2,

(2.24)

where t1 and t2 represent the parameters of a trapezoid function. The parameters t1 and
t2 are related to the imprecision linked to computing angles in a discrete grid, as is the
case for images. This imprecision is a function of the distance between the points for which
the angle is computed: the greater the distance between the points, the more precise is
the calculation. However, in our experiments, since most of the time we are dealing with
objects which have a similar distance between them, we have chosen to use:

t1 = arcsin

(

1

0.5daverage

)

(2.25)

t2 = arcsin

(

1

0.25daverage

)

(2.26)

where daverage is the average distance in pixels between the barycenters of “neighboring”
objects. This values have been used in all experiments, and did not require any fine tuning
of the parameters.
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By performing a morphological dilation of O(A, B) with the structuring element ν0 we
introduce the imprecision to all the angles in O(A, B) (as in [Bloch et al., 1996]). For this
reason, the similarity should be computed using the dilated orientation histograms, and
Equation 2.23 becomes:

sim(O(A, B), O(C, D)) = max
θ∈[0,π)

[Dν0(O(A, B))(θ) ∧Dν0(O(C, D))(θ)] , (2.27)

where Dν0(O(X, Y )) is the dilation of O(X, Y ) by a structuring element ν0.
Figure 2.12(a) shows the result of performing a morphological dilation of the orientation

histograms of Figure 2.11(b). The parameters of Equations 2.25 and 2.26 are t1 ≈ 0.07
and t2 ≈ 0.12 for the structuring element. The similarity value between the histograms
obtained with Equation 2.27 is 0.93 which is more consistent with the perceived orientation
of the objects than the value obtained by applying Equation 2.23.
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Figure 2.12: (a) Orientation histograms of the objects in Figure 2.11(a) and dilated orien-
tation histograms. (b) Structuring element used for the dilation.

When orientation histograms are not similar (see Figure 2.13) we obtain a zero simi-
larity value, as desired.

This measure of similarity can be extended to compare several orientation histograms.
Let {O(Ai, Aj)}Ni=0,j 6=i be a set of orientation histograms, the similarity degree between
them is equal to:

sim(O(A0, A1), . . . , O(Ai, Aj), . . . O(AN , AN−1)) = max
φ∈[0,π[

N
∧

i=0,j 6=i

Dν0(O(Ai, Aj))(φ)

(2.28)

2.2.3 Definition and identification of aligned groups of objects

We consider a set of objects A = {A0, . . . , An} and want to determine the subsets of
aligned groups of A. For the sake of clarity we will call them globally aligned groups. First
we identify the locally aligned groups (defined in Section 2.2.3.2), and the set of locally
aligned groups will be denoted by L. For each locally aligned group Si ∈ L we measure the
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Figure 2.13: (a) Objects. (b) Orientation histograms of the objects (a) and dilated orien-
tation histograms.

degree of global alignment (defined in Section 2.2.3.1). If this degree is lower than a user
acceptance value α, then elements of the group will be deleted until the degree is equal or
greater than α or until the group has less than 3 elements. In the case where the degree
is greater than α, the group Si will be added to the set of aligned groups G. A last step
of addition and fusion of the groups is done to obtain the largest possible globally aligned
groups. This method is illustrated in Figure 2.14. In the following sections we detail each
step of the method.
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Figure 2.14: Proposed method for determining aligned groups of objects.

2.2.3.1 Globally aligned groups

Before defining a globally aligned group of objects, we define two preliminary concepts.
Let S be a group of objects, and A, B ∈ S, we define the Neigh(A, B) relation as
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being satisfied if and only if B ∩ A = ∅ and B ∩ N(A) 6= ∅ where N(A) is defined
as a neighborhood of A. One possible choice for the neighborhood of an object is
N(A) = Nd(A) where Nd(A) is the Voronoi neighborhood constrained by a distance d.
Other possible choices are discussed in Section 2.2.3.3.

Definition 2.1. A group S is called connected by the Neigh relation if for every A, B ∈ S,
there exist C0, . . . CM objects in S, such that C0 = A, CM = B and for every m =
0, . . . , M − 1, the relation Neigh(Cm, Cm+1) is satisfied.

Returning to the discussion of Section 2.2.2.1, the group S is globally aligned if the
following conditions are satisfied:

(i) S is connected by the Neigh relation,

(ii) |S| ≥ 3, and

(iii) there exists θ ∈ [0, π[ such that for every A, B ∈ S, A is able to “see” B in direction
θ or θ + π with respect to the horizontal axis.

The first condition ensures that the group is not “divided”, for instance the red objects
in Figure 2.15(a) do not satisfy this condition and can be considered as two groups. The
second condition states that an aligned group should have at least 3 elements. To verify the
third condition it would be necessary to compare all the orientation histograms between
any two objects of S. Unfortunately, this measure is very restrictive, and a more flexible
measure is to consider that all the orientation histograms of O(Ai,S \ {Ai}) are similar
for all Ai ∈ S. Figure 2.16 shows the dilated orientation histograms Dν0(O(Ai,S \ {Ai}))
and the dilated orientation histograms between every pair of objects of the group in Figure
2.15(b). For each orientation histogram we used the same structuring element ν0. We can
notice that for the dilated histograms Dν0(O(Ai,S \ {Ai})) it is possible to see a tendency
towards a similar angle, while for the dilated orientation histograms Dν0(O(Ai, Aj)) this
is not the case. This is reflected when histograms are aggregated using the Lukasiewicz t-
norm in Figure 2.16(c) where the aggregation of Dν0(O(Ai,S \{Ai})) results in a function
with a maximum of 0.81, while the aggregation of Dν0(O(Ai, Aj)) produces a constant
function equal to zero, which is not meaningful here. One should notice that when using
the conjunction of the dilated orientation histograms Dν0(O(Ai, Aj)), if two pairs of objects
do not have a similar orientation then the whole conjunction is equal to zero. However,
when using the dilated histograms Dν0(O(Ai,S \ {Ai})) the dissimilarity between the
orientations of two pairs of objects will not affect the whole conjunction, since it is a
comparison between the orientations of the whole group with respect to its members.

(a) Groups should be connected, the red
group should be considered as two groups.

(b) An object of the group should see the
other members in the alignment orientation.

Figure 2.15: Considerations for an aligned group.

Thus, it is possible to define the degree of global alignment as follows:
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Figure 2.16: Dilated orientation histograms for objects of Figure 2.15(b) and their aggre-
gation using Lukasiewicz t-norm.

Definition 2.2. Let S = {A0, . . . , AN}, with N ≥ 3, be a group of objects in I, connected
by the Neigh relation. Then, the degree of global alignment of S is given by:

µALIG(S) = sim (O(A0,S \ {A0}), . . . , O(AN ,S \ {AN})) . (2.29)

Notice that the measure of global alignment presented above is independent of the order
since the function used to measure the similarity between several orientation histograms
(Equation 2.28) is symmetric.

2.2.3.2 Locally aligned groups

We can say that a group S is locally aligned if it satisfies:

(i) for every A ∈ S the elements in the neighborhood N(A) in S are aligned, and

(ii) it is connected by the Neigh relation.

For the first condition, we will only verify for simplicity that for every pair of elements
B, C ∈ S belonging to N(A), the orientations O(A, B) and O(A, C) are similar. Thus, we
can define the degree of locally alignment as follows:

Definition 2.3. Let S = {A0, . . . , AN}, with N ≥ 3, be a group of objects in I, connected
by the Neigh relation. The degree of locally alignment of S is given by:

µLA(S) = min
X,Y,Z:Neigh(X,Y )∧Neigh(Y,Z)

sim(O(X, Y ), O(Y, Z)). (2.30)
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We will say that a group of objects S is locally aligned to a degree β if µLA(S) ≥ β.
The preceding definition can be summarized by saying that a group S with |S| ≥ 3 is
locally aligned to a degree β if it satisfies the following relations:

R1 : ∀X, Y, Z (Neigh(X, Y ) ∧Neigh(Y, Z))⇒ (sim(O(X, Y ), O(Y, Z)) ≥ β) (2.31)

R2 : ∀A, B, ∃X0, . . . , Xm such that X0 = A, Xm = B and

(

m−1
∧

i=0

Neigh(Xi, Xi+1)

)

(2.32)

2.2.3.3 Other neighborhood choices

The choice Nd(A) in Section 2.2.3.1 as the Voronoi neighborhood of A constrained by a
distance d was motivated by the fact that in a group, any subgroup of aligned objects
should be “consecutive” (see Figure 2.17), and that successive objects should be close to
each other. Nevertheless, there are other possibilities for choosing the neighborhood N(A).
For instance, we can consider the neighborhood of objects that are “near” A using the notion
of a distance “less than d” (Equation 1.24). For a fixed d the neighborhood N(A) is also

Figure 2.17: Illustration of a non-consecutive group. In a consecutive group their should
be a succession of elements, which is not the case for the blue group, since the yellow object
breaks the succession.

univocally defined. This choice gives a more restrictive condition of locally alignment since
the neighborhood contains more objects that should verify the alignment conditions, and
it can also be used in the case where A and B are fuzzy objects. In the following of this
subsection we assume that we are dealing with fuzzy objects A and B defined through
their membership functions µA and µB , since all equations that will be presented are valid
for crisp and fuzzy objects. When considering a fuzzy neighborhood, the Neigh relation
becomes also fuzzy, and we denote by µNeigh(A, B) its degree of satisfaction. Similarly to
the degree of adjacency (Equation 1.11), the degree of µNeigh is defined as a conjunction
of the degree of intersection between µA and µN(B), and µB and µN(A). Therefore, the
degree of neighborhood is defined by:

µNeigh(A, B) = µqint(µA, µB) ∧ µint(µN(A), µB) ∧ µint(µN(B), µA) (2.33)

where µint and µqint are a degree of intersection and non-intersection (Equations 1.2 and
1.4. To have a symmetrical relation we consider the intersection between µA and µN(B),
and between µB and µN(A).
Consequently, the relation “connected by Neigh” also becomes a fuzzy relation denoted
by µconn and the degree of connectedness in a group S between two objects A, B in S is
defined as in [Rosenfeld, 1979] by:

µconn(A, B) = max
P∈PAB

[

min
1≤i≤lp

µNeigh(C
(p)
i−1, C

(p)
i )

]

(2.34)

where P denotes a list of objects 〈C(p)
0 = A, C

(p)
1 , . . . , C

(p)
lp

= B〉 in S, called path, and
PAB is the set of all the paths from A to B in S. The degree of connectedness of a group
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can be defined as the minimum degree of connectedness between its elements:

µconn(S) = min
A,B∈S

µconn(A, B) (2.35)

When using a fuzzy neighborhood, the definitions of globally aligned and locally aligned
have to be revised. The degree of global alignment of a group of objects S = {A0, . . . , AN}
and with N ≥ 3 becomes:

µALIG(S) = µconn(S) ∧ sim (O(A0,S \ {A0}), . . . , O(AN ,S \ {AN})) (2.36)

This definition represents a conjunctive combination of the condition of being connected
by the neighborhood relation and the similarity among the orientation histograms. When
using a crisp neighborhood this definition is equivalent to the one given in Definition 2.1,
where the condition of satisfying the relation of connection by the neighborhood is implicit
in the definition.
In a similar way, it is possible to extend the definition of local alignment to:

µLA(S) = µconn(S) ∧
[

min
X,Y,Z

(sim(O(X, Y ), O(Y, Z)) ∧ µconn({X, Y, Z}))
]

. (2.37)

Again, the equation represents the conjunction of combining two conditions, the first one
is the condition of being connected and the second one represents that objects X and
Z belong to the neighborhood of Y , and that the orientation histograms O(X, Y ) and
O(Y, Z) should be similar. In the case where a crisp neighborhood is used, we obtain the
same degree as in Definition 2.3.

2.2.3.4 Identification of locally aligned groups

In this section we explain how it is possible to extract the locally aligned subgroups from
a group of objects. For clarity purposes we first use a crisp neighborhood, and in the next
section we explain how the algorithm is extended to cope with fuzzy neighborhoods.
As discussed in Section 2.2.3.2, the notion of local alignment strongly depends on the
notion of neighborhood, since an aligned group should be connected by the Neigh relation.
Therefore, we propose to construct a neighborhood graph GN to obtain the information of
which objects are connected via the Neigh relation. In a neighborhood graph GN = (V, E)
the vertices represent the objects of the group, and there is an edge between two vertices
if and only if the corresponding objects are neighbors. Notice that only the connected
subsets of three vertices X, Y and Z in GN which share a common vertex, for example Y ,
satisfy:

Neigh(X, Y ) ∧Neigh(Y, Z) (2.38)

These connected subsets are called triplets. According to R1, only the triplets {X, Y, Z}
that satisfy (2.27):

sim(O(X, Y ), O(Y, Z)) ≥ β (2.39)

are aligned and can belong to a group which is locally aligned to a degree β. Triplets can
be easily identified as the edges of the dual graph, when the dual graph is constructed in
the following manner. The dual graph is denoted by G̃N = {Ṽ, Ẽ} where each vertex Ṽi

represents an edge in the graph GN . An edge exists between two vertices Ṽi and Ṽj of G̃N

if the two corresponding edges of the graph GN have a common vertex. If, additionally,
we attribute to each edge (i, j) the similarity degree between the orientation histograms
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of Ṽi and Ṽj that we denote by s̃ij , then it is possible to verify if relation R1 holds for its
corresponding triplet. Figure 2.18 shows an example of a neighborhood graph and its dual
graph. Notice that the edges of G̃N with a high value represent the triplets of objects with
a similar orientation histograms. For instance, in the dual graph the edge between the
nodes (1 - 2) and (2 - 3) has a similarity value of 1, this edge corresponds to the objects
labeled 1, 2 and 3 of Figure 2.18(a). In a similar way, edges with a low value represent
objects which are not aligned, for example in the dual graph the edge between the nodes
(1 - 2) and (6 - 2) has a similarity value of 0.11 and corresponds to the objects labeled 1,
2 and 6, which do not form a globally aligned triplet.
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(a) Labeled objects.
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Figure 2.18: Neighborhood graph and dual graph of a group of objects.

Returning to the conditions of local alignment R1 (2.31) and R2 (2.32), the first one
states that triplets should be globally aligned, and the second one that the group should
be formed by connected objects according to the Neigh relation. Then a group S satisfies
these relations if and only if the subset S̃ ⊆ Ṽ which represents the dual of S satisfies the
following relations:

R̃1 : ∀Ṽi, Ṽj Connected(Ṽi, Ṽj)⇒ (s̃ij ≥ β) (2.40)

R̃2 : ∀Ṽi, Ṽj ∃Ũ0, . . . ŨK for K ≥ 1 such that Ũ0 = Ṽi, ŨN = Ṽj

and
K−1
∧

k=0

Connected(Ũ0, Ũk),
(2.41)

where Connected(Ũ , Ṽ ) is true if there exists an edge between Ũ and Ṽ . Condition R̃2
expresses that S̃ should be connected, since if S̃ is not connected then S is not connected.
Therefore, a locally aligned group is a subset S ⊆ V for which its dual set S̃ ⊆ Ṽ is
connected in G̃ and the value of all the edges joining the vertices within S̃ is greater than
or equal to β.
Algorithm 1 can be used to extract the S̃i ⊂ Ṽ corresponding to the dual sets of the locally
aligned sets Si ⊂ V. First the connected components of a graph G̃TH are computed and
stored in C. G̃TH is a non-attributed graph containing the same vertices as G̃ and there
is an edge between two vertices if the edge in G̃ has a degree greater than or equal to β.
Then, for each component Ck we obtain the minimum value of its edges in G̃ that we call
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consistency degree of Ck and is denoted by cons(Ck):

cons(Ck) = min{s̃ij |Ṽi, Ṽj ∈ Ck}

If cons(Ck) < β then Ck does not satisfy R̃1, thus vertices are removed until cons(Ck) ≥ β.
If in the process of vertex removal Ck becomes disconnected, then each of the connected
components of Ck is treated separately. The vertices which are removed are the ones having
more conflict with their neighbors in Ck. We say that two connected vertices Ṽi and Ṽj are
in conflict if s̃ij is close to zero, that is if the corresponding orientation histograms of both
vertices are not similar. The conflict of a vertex Ṽt with its neighbors in Ck is measured
by using what we call the degree of the vertex in Ck:

deg(Ṽt) =

∑

Ṽj∈Ck
s̃tj

|{(i, j)|Ṽj ∈ Ck}|
. (2.42)

This degree represents the average edge value over all the edges connected to Ṽt. It is clear
that if Ṽt is in conflict with several of its connected vertices in Ck then deg(Ṽt) will be close
to 0, and it will be close to 1 if there is no conflict. Then the conflict of a vertex will be
given by 1− deg(Ṽt).

Figure 2.19 shows an example where there is a conflict between the vertices of a con-
nected component for β = 0.8. Figure 2.19(b) shows the dual graph of the objects, and
Figure 2.19(c) shows the thresholded graph, where there is a connected component with
three vertices that we denote by C0. The consistency degree of C0 is cons(C0) = 0.05,
which is inferior to β. The conflict of the nodes (1-2), (2-3) and (2-4) are 0.64, 0.49 and
0.08, respectively. Therefore, the nodes (1-2) and (2-3) have a conflict with their neighbors
in C0. To reduce the conflict we remove the node (1-2) since it is the one having the higher
conflict. By removing this edge the conflict is solved and the consistency degree of C0

becomes cons(C0) = 0.89, which is higher than β.
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Figure 2.19: (b) Dual graph of objects in (a). (c) Thresholded dual graph for β = 0.8. (d)
Vertices of the connected component of G̃TH seen by G̃.

2.2.3.5 Extension for fuzzy neighborhoods

If instead of having a crisp Neigh relation, we have a fuzzy relation µNeigh, the procedure
should be adapted for the extraction of the locally aligned groups.
When constructing the neighborhood graph GN each edge should be attributed the degree
of satisfaction of µNeigh. The notion of triplets also becomes fuzzy, and the degree to
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Input: Dual graph G̃, β
Output: L

Create G̃TH = (Ṽ, ẼTH) where ETH = {(i, j) ∈ E|ẽij ≥ β};1

Find C the set of connected components of G̃TH ;2

foreach Ck ∈ C do3

Let cons = min{s̃ij |Ṽi, Ṽj ∈ Ck} ;4

while cons < β and |Ck| ≥ 2 do5

foreach Ṽt ∈ Ck do6

degt =

P

Ṽj∈Ck
s̃ij

|{(i,j)|Ṽj∈Ck}|
;

7

end8

Delete from Ck the Ṽj for which Ṽj = minṼi∈Ck
degi;9

if Ck is disconnected in G̃TH then10

Let D = {D0, . . . ,DL} the connected components of Ck ;11

Ck = D0 ;12

for l = 1 to L do13

Add Dl to C;14

end15

Update cons = min{s̃ij |Ṽi, Ṽj ∈ Ck};16

end17

end18

if cons ≥ β then19

Add Ck to L;20

end21

end22

Algorithm 1: Algorithm for finding locally aligned groups L from G̃.

which three vertices X, Y and Z form a triplet is given by the degree of connectedness of
{X, Y, Z} using Equation 2.35.
The degree of connectedness is taken into account in the construction of the dual graph G̃N ,
and only the triplets with a connectedness value greater than the user defined acceptance
value β will be considered. Each edge (i, j) between the vertices Ṽi and Ṽj of the dual
graph will be attributed with the degree:

s̃ij = sim(O(X, Y ), O(Y, Z)) ∧ µconn({X, Y, Z}), (2.43)

where X, Y and Z build the vertices triplet represented by the vertices Ṽi and Ṽj .

The extraction of locally aligned groups is performed by applying Algorithm 1 on the
dual graph. Let S be a resulting group. Due to the choice of construction of the dual
graph, we can guarantee that, for every pair of elements A, B ∈ S the degree µNeigh(A, B) is
greater than β, since only the edges satisfying this condition were used for the construction
of the dual graph. Therefore, the degree of connectedness of the group is µconn(S) ≥ β. It
is straightforward to see that S satisfies the second condition of Equation 2.37 since this
condition is imposed by the choice of s̃ij . Hence, the resulting groups are locally aligned
to a degree greater than β according to Equation 2.37.
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2.2.3.6 Candidates for globally aligned groups

The locally aligned groups L to a degree β are the possible candidates for being globally
aligned groups to a degree α, for α ≤ β. The evaluation is performed by measuring the
degree of global alignment using Equation 2.30. Usually the locally aligned groups are
globally aligned. However there are cases as the one shown in Figure 2.20 where a locally
aligned group is not globally aligned.
To increase the degree of global alignment of a group S we divide the group by eliminating
the vertices in S̃ with the minimum vertex degree (Equation 2.42) in S̃, we repeat this step
until µALIG(S) ≥ α. If the degree of all vertices in S̃ is equal to one, and µALIG(S) < α
it means that a lot of imprecision was introduced for the similarity computation, and the
measurement of similarity is very permissive, thus the whole process should be repeated
using a ν0 with a tighter support in Equation 2.28.

(a) Locally aligned group, that is not
globally aligned.

(b) Corresponding
dual graph.

(c) Resulting groups after group division.

Figure 2.20: (a)Locally aligned group which is not globally aligned. (b) Its dual graph,
where the objects are labeled from 1 to 7 (left to right). (c) Resulting groups obtained
after solving the conflict.

2.2.3.7 Adding more elements to the group

Once the globally aligned groups of objects are identified it is possible to add new objects
to the group or fuse two globally aligned groups to obtain a larger globally aligned group.
For each group Si we perform two morphological directional dilations of the group in
the directions θ and θ + π, where θ is the orientation of the alignment (the angle which
maximizes the conjunction of the orientation histograms O(Ai,S \ {Ai})). These dilations
will be denoted by Dνθ

(Si) and Dνθ+π
(Si). The directional dilation of a fuzzy set µ in a

direction ~uθ is defined in Section 1.3.2.1.
The fuzzy sets Dνθ

(Si) and Dνθ+π
(Si) represent the regions of space that are in direction θ

and θ+π of Si. An object A which satisfies the Neigh relation with one of the members of
Si and which is included in Dνθ

(Si) or Dνθ+π
(Si) with a degree greater than or equal to β

(that is µinclude(A, Dνθ
(Si) ∪Dνθ+π

(Si)) ≥ β, where µinclude denotes a degree of inclusion
of Equation 1.5) is added to Si, since is in the same direction as the orientation alignment
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and it is connected to the group. If a whole group Sj is included in Dνθ
(Si) or Dνθ+π

(Si)
with a degree greater than β and one of the elements of Si is connected to one of the
members Sj and both groups have a similar orientation, then both groups are fused into
one.

(a) (b) (c) (d)

Figure 2.21: (a) Labeled image. (b) Locally aligned group. (c) The region seen by the
group of (b) in the direction of the alignment (white = high value of visibility). (d) Group
obtained after adding new elements.

Figure 2.21 shows an example of extracting the locally aligned groups of Figure 2.21(a).
The resulting group is locally aligned to a degree 0.9, and it is globally aligned to a degree
0.85. This group is extended to add more elements to the group resulting in a larger group
with a degree of global alignment of 0.8.

2.2.4 Stability with respect to segmentation errors

One interesting feature of our approach is that it is robust to the quality of the segmentation
of the objects. This property is particularly important in real applications where it is
difficult to guarantee that all objects have been segmented and that the segmentation is
accurate. Figure 2.22 shows two examples of the stability of the algorithm with respect to
segmentation errors such as the absence of an object, or the merging of an undesired region
to one of the objects. Figure 2.22(b) shows a segmentation of the houses of Figure 2.22(a),
which is almost correct, except for some false detections and a missing house. Two of the
aligned groups of objects extracted from this segmentation are shown in Figure2.22(c).
Actually more groups are extracted by the algorithm but for the sake of clarity only a
few groups are shown. Figure 2.22(d) shows another segmentation which was manually
modified to introduce errors: two missing houses, and one of the houses is merged with
other regions. Figure 2.22(e) shows two of the retrieved aligned groups, which correspond
to the groups found in Figure2.22(c). We can see that the blue group in Figure 2.22(e)
is retrieved even with the absence of two objects, and that the orange group is retrieved
although the center of mass of one of its members has been displaced.

For this example we used a Voronoi neighborhood constrained by a distance d, where
d was larger than the separation between the objects. However, if we had used a smaller
distance, then the algorithm would not have retrieved the blue group, since there would
have been a disconnection between the upper and the lower part of the blue group of Figure
2.22(e), and therefore only the lower part of the group would have been retrieved. This is
an expected behavior.

In both experiments we used the same parameters for the extraction of the locally
aligned groups, which are β = 0.8 and d = 50 pixels. The degrees of global alignment in
both cases are very similar, for the blue groups the degree was µALIG = 1.0 in the two
cases, and for the orange groups it was µALIG = 1.0 in Figure 2.22(c), and µALIG = 0.94
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in Figure 2.22(e). The degrees of global alignment remained almost the same, since the
missing objects and the modification of the object are local changes which do not affect
the global orientation of the groups. Nevertheless if one of the objects is severely modified
as in Figure 2.22(f) then it is not possible to retrieve the same aligned groups as before,
which is again an expected behavior.

(a) (b) (c)

(d) (e) (f)

Figure 2.22: (a) Original image. (b) Segmented houses (red) using algorithm from [Poulain
et al., 2009]. (c) Some of the extracted globally aligned groups from objects of (b). (d)
Segmented houses with errors of missing objects and some merged regions. (e) Some of
the extracted globally aligned groups from objects of (d). (f) Segmented houses with errors
that do not allow the recovery of the globally aligned groups.

2.2.5 Complexity analysis

In this section we deal with the cost of the basic operations of the algorithm for extracting
locally aligned groups and globally aligned groups.
First, we consider the complexity of extracting locally aligned groups. Consider we have
N objects each with at most no points. The complexity of the algorithm is O(N2) since
most of steps of the algorithm deal with operations over the graph or its dual. It should be
noticed that the step which corresponds to the construction of the orientation histograms
has a complexity of O(N2n2

o), since there are at most N(N − 1) edges in the graph and
for each edge an orientation histogram is constructed with a complexity of O(n2

o).
The complexity of finding a globally aligned group from a locally aligned group with NA

elements each having at most no points lies in the following steps. The first step consists
in evaluating the degree of global alignment and division of the group in the case where
it is not aligned, and this step has a complexity of O(N2

An2
o). The second step consists

in performing the morphological directional dilations of the group in the directions of
alignment θ and θ + π, and has a complexity of O(NI) [Bloch, 1999], where NI is the
number of points in the image (see [Bloch, 1999] for the implementation of the directional



83

morphological dilation using a propagation method). Finally, the complexity of the step
of evaluating the degree of inclusion of each object not belonging to the group into the
directional dilations of the group is O((N−NA)n2

o), where N is the total number of objects.
Hence, summing the three steps we obtain that the total complexity is O(N2

An2
o + NI).

2.2.6 Discussion

In this section we have introduced the definitions of globally aligned groups and locally
aligned groups of objects, and gave a method to extract alignments from an image of
labeled objects. Both definitions are appropriate to determine alignments of objects of
different sizes. Therefore, the extraction method can be used to find alignments of objects
of the same type or class, for instance buildings in a urban scene, since all the objects do
not necessarily have the same size. However, not all the obtained groups are meaningful for
the description of the scene, since the subsets which are found only satisfy the conditions
of alignment. For example Figure 2.23 shows two globally aligned subsets of airplanes
extracted using the proposed algorithm, the group of Figure 2.23(c) is globally aligned but
does not give any information about the arrangement of the airplanes, while the group of
Figure 2.23(d) gives us more information about the arrangement of the airplanes. Hence
it is necessary to use additional information to put the aligned groups into context, for
example find whether the alignments are parallel between them or parallel to a linear
structure. In the case of Figure 2.23 it would be interesting to find the alignment parallel
to the buildings. This point will be further discussed in the next section.

(a) (b)

(c) (d)

Figure 2.23: (a) Airport image. (b) Manually segmented airplanes (green). (c) Extracted
globally aligned group in red with degree 0.97. (d) Extracted globally aligned group in red
with degree 0.99.

The proposed method for alignment extraction is very flexible. One should notice that
it is possible to incorporate more information according to the type of alignment. For
instance, if we are searching for an alignment where the objects of the alignment have the
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same orientation as the alignment, this could be incorporated in the weight s̃ij attributed
to the edges of the dual graph. The new weight s̃ij of the edge between the vertices Ṽi and
Ṽj , which represents a triplet {X, Y, Z}, is given by a conjunction combining the condition
that O(X, Y ) and O(Y, Z) should be similar, and the condition that every member of the
triplet should have a similar orientation to the orientation histograms between itself and
the other members of the triplet which are connected to it. For instance, the condition for
Y is expressed as:

sim(O(X, Y ), δθY
) ∧ sim(O(Z, Y ), δθY

),

where δθY
is the Dirac function at the angle θY which represents the orientation of Y .

For X and Z the condition is verified by observing the degree of sim(O(X, Y ), δθX
) and

sim(O(Z, Y ), δθZ
), respectively. Since X and Z are connected to Y in the triplet, and the

only histograms that involve them are O(X, Y ) and O(Z, Y ), respectively. Finally, when
combining all the conditions the weight s̃ij is given by:

s̃ij =sim(O(X, Y ), O(Y, Z))∧
[min [sim(O(X, Y ), δθY

) ∧ sim(O(Z, Y ), δθY
), sim(O(X, Y ), δθX

), sim(O(Z, Y ), δθZ
)]]

(2.44)

In this equation we use the min to ensure that the second condition is satisfied by all the
members of the triplet.

In Chapter 3 we will present a reasoning example using the alignment relation, that
can be used to better illustrate this relation.

2.3 Parallelism

Assessing the parallelism between objects is an important issue when considering man-
made objects such as buildings, roads, etc. Parallelism takes place among linear objects.
Furthermore it can be evaluated between a linear object and a group of aligned objects,
or even between groups of aligned objects.

This section is structured as follows. In Section 2.3.1 we discussed some considerations
that should be taken into account when modeling the parallel spatial relation. Section
2.3.2 reviews some of the previous works on parallelism. A model for fuzzy segments
is proposed in Section 2.3.3 this model considers the imprecision of the objects as well
as the imprecision of the relation. The relation is modeled based in two condition the
“visibility” of the target object to the reference object and a similar orientation of both
objects. Considering the “visibility” yields a non-symmetric relation which is appropriate
for defining situations such as “the house is parallel to the road” which is not equivalent
to the situation described by “the road is parallel to the house”. This non-symmetric
relation is well adapted to the semantics of the parallel relation. The properties of this
non-symmetric relation are discussed in Section 2.3.4, as expected this properties differ
from the properties of the parallelism defined in geometry. A model for globally aligned
groups is presented in Section 2.3.5. Part of this work was presented in [Vanegas et al.,
2009b].

2.3.1 Considerations

For linear objects to be parallel, we expect a constant distance between them, or that they
have the same normal vectors and the same orientation. Although classical parallelism in
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Euclidean geometry is a symmetric and transitive relation, these properties are subject to
discussion when dealing with linear objects of finite length. When objects have different
extensions as in Figure 2.24(a), where B can be a house, and A a road, the symmetry
becomes questionable. The statement “B is parallel to A” can be considered as true, since
from every point on the boundary of B that faces A it is possible to see (in the normal
direction to A’s principal axis) a point of A, and the orientations of A and B are similar.
On the other hand, the way we perceive “B parallel to A” will change depending on our
position: from point d it is possible to see a point of B in the normal direction of B, while
this is not possible from point c. In both cases (symmetrical and non symmetrical ones)
the transitivity is lost. For example, in Figure 2.24(b) and 2.24(c) the statements “A is
parallel to B” and “B is parallel to C” hold, but “A is not parallel to C” since it is not
possible to see C from A in the normal direction to C. This example also illustrates the
interest of considering the degree of satisfaction of the relation instead of a crisp answer
(yes/no). Then the relation “B parallel to A” will have a higher degree than “A parallel
to B” in Figure 2.24(a).
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(b)

A

B C

(c)

Figure 2.24: Examples where parallelism should preferably be considered as a matter of
degree, and should not be necessarily symmetrical and transitive.

The parallel relation can also be considered between a group of objects A = {Ai} and
an object B, typically when the objects in the group are globally aligned and B is elongated.
For example a group of boats and a deck in a port. When evaluating the relation “A is
parallel to B”, we are actually evaluating whether the whole set A and the boundary of
B that faces A have a similar orientation, and whether there is a large proportion of ∪iAi

that sees B in the normal direction to the group. Similar considerations can be derived
when considering the relation “B is parallel to A” or the relation between two groups of
objects. All these considerations form the basis for the formal models provided in this
section.
For “A to be parallel to B” it is only necessary that A is a linear object, while B can be
a non linear object, and in this case A would be parallel to the boundary of B which is
facing A. The same idea is also applicable for the parallelism between a globally aligned
group of objects parallel to an object (see Figure 2.25).

Figure 2.25: A group of globally aligned objects parallel to a non-linear object.
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2.3.2 Related work

In the same case as for the alignment relation, the parallel relation also been widely studied
in computer vision, as a low level feature operator. Parallelism between two linear segments
is usually modeled as a relation that should satisfy three constraints. The first one is
that both segments should have a small angular difference. The second one is that the
perpendicular distance between the two segments should be small and the last one is that
there should be a high overlap between them [Mohan and Nevatia, 1989]. There exist
different approaches to integrate these three constraints into a model and measure the
meaningfulness of the relation. Lowe [Lowe, 1987] was one of the first to model parallelism
to perform perceptual grouping: for every couple of linear segments having a perpendicular
separation d and an angular difference θ, he assigns a significant value to establish that
it has not been originated by an accident of viewpoint. The significant value is used
to determine the expected number of lines for a given perpendicular separation and an
angular difference. In fact, this value is proportional to the prior probability of appearance
and it is inversely proportional to the angular difference and the perpendicular separation.
In [Mohan and Nevatia, 1989] the constraint about overlapping is introduced and it is
determined by the orthogonal projection of one segment over the other and vice-versa. The
meaningful segments are then obtained by applying a threshold on the measured values of
the constraints. Fuzzy approaches have been proposed in [Kang and Walker, 1992, 1994,
Rouco et al., 2007, Ralescu and Shanahan, 1999, Toh, 1992], leading to a measure of the
degree of parallelism between two linear segments, in which trapezoid type functions are
used to evaluate to which degree the three constraints are satisfied. The three degrees are
combined in a conjunctive way.

Parallelism between curves has been modeled as a type of symmetry [Kang and Walker,
1992, Mohan and Nevatia, 1992]. In [Mohan and Nevatia, 1992] the authors consider that
two curves are parallel if their respective orthogonal distances from the symmetry axis are
almost equal. In [Ip and Wong, 1997] and [Shen et al., 1999] parallelism is modeled as a
matching problem where two curves are parallel if there is a point-wise correspondence. In
both works the parallelism is treated as a shape matching problem.

Previous works focused on parallelism between crisp linear segments. However, when
dealing with objects extracted from images, it is important to consider parallelism between
fuzzy linear objects. Indeed, the object extraction processes can introduce imprecision, and
therefore we are not always dealing with crisp linear objects or segments. In Section 2.3.3
we will give some definitions about parallelism between fuzzy linear objects. The definitions
of parallelism presented in this work differ from those of the previous works in the sense
that we are defining the relation considering its semantics, and we are not worried about
whether or not the detected parallelism is an accident of the view point or position. We
are interested in the conditions that have to be satisfied to decide whether two objects are
parallel or not.

2.3.3 Parallelism with (fuzzy) linear objects

In this section we propose a definition of parallelism between a fuzzy linear object3 and a
fuzzy object, including the particular case of crisp linear segments, and taking into account

3We consider that an object is linear if the ratio of its principal axis given by
cyy+cxx−

√
(cxx+cyy)2−4(cxxcyy−c2xy)

cyy+cxx+
√

(cxx+cyy)2−4(cxxcyy−c2xy)
where C =

„

cxx cxy

cyx cyy

«

corresponds to the second inertial mo-

ments matrix, is high [Peura and Iivarinen, 1997].



87

the above mentioned considerations. Suppose A is a linear object and B an object that is
not necessarily linear, let θA be the orientation of A and ~uθA+π

2
be the normal unit vector

to the principal axis of A. Then, according to the considerations of the previous section,
the degree of satisfaction of the relation “A is parallel to B” depends on two conditions:

(i) There should be a large proportion of A that sees B in the direction ~uθA+π
2
.

(ii) The orientation of A and the orientation of the boundary of B that is facing A and
that is seen by A in the direction ~uθA+π

2
should be similar.

Both conditions deal with the notion of visibility. Let p be a point, X be a fuzzy object
with membership function µX and ~uθ a vector with angle θ with respect to the x-axis.
Then the subset of X that is seen by p in the direction ~uθ , that we denote by Xvis(p,θ), is
equal to the intersection of X with the visual field of p, when p observes in the direction ~uθ.
The visual field is represented as a morphological directional dilation in the direction θ of
p. The set Xvis(p,θ) is a fuzzy set with membership function µXvis(p,θ), where µXvis(p,θ)(x)
represents the degree to which x is in X and is seen by p in the direction ~uθ:

µXvis(p,θ)(x) = µX(x) ∧Dνθ
(p)(x), (2.45)

where Dνθ
(p)(x) is the morphological directional dilation defined in Section 1.3.2.1.

Let Y be a fuzzy object with membership function µY not intersecting X. We denote by
Xvis(Y,θ) the subset of X that is seen by the points on the boundary of Y , i.e the subset of
X that is seen by Y , and it is defined by:

µXvis(Y,θ)(x) = µX(x) ∧Dνθ
(µY )(x). (2.46)

Figure 2.26 shows two objects A and B, and Bvis(A,θA+π
2
), where θA is the orientation of

A. When A and B are linear segments, Avis(B,θA+π
2
) can be interpreted as the projection

of B onto A.

B

A

(a) Objects (b) DνθA+ π
2
(A)

(c) µBvis(A,θA+ π
2

)

Figure 2.26: Illustration of the notion of visibility for the objects A and B of (a). (b)
Visual field of A in the direction of θA + π

2 (the white pixels have a high membership value
of being observed by A in the direction θA). (c) Membership function of Bvis(A,θA+π

2
). The

white pixels are the points which have a high membership value.

For the first condition of parallelism, we are interested in the proportion of A that sees
B in the direction ~uθA+π

2
. This subset is equivalent to Avis(B,θA−π

2
), since the degree to

which a point x ∈ A sees B in the direction ~uθA+π
2

is equivalent to the degree to which
the point is seen by B in the direction ~uθA−π

2
. Therefore, the proportion of A that sees

B in the normal direction ~uθA+π
2

is equal to the fuzzy hypervolume of Avis(B,θA−π
2
) over
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the fuzzy hypervolume of A, where the fuzzy hypervolume Vn of a fuzzy set µ is given by:
Vn(µ) =

∑

x∈I µ(x) [Bloch, 2005]. Hence, the proportion is equal to:

Vn(µAvis(B,θA−π
2
))

Vn(µA)

For the second condition we are interested only in the subset of the boundary of B that
faces A and that is seen by the boundary of A in the direction θA. The boundary of B
which faces an object A corresponds to the points on the boundary of B that delimit the
region between A and B, and are defined as the extremities of the admissible segments
[Bloch et al., 2006]. These are the points b ∈ B for which there exists a point a ∈ A such
that the segment ]a, b[ is included in AC ∩BC . In the case were A and B are fuzzy objects,
we will be interested in the points which are the extremities of a segment with a high degree
of admissibility [Bloch et al., 2006]. Therefore, the subset of the boundary of B that faces
A and that is seen by the boundary of A in the direction θA + π

2 is a fuzzy subset were the
membership of a point x ∈ I is equal to the conjunction between its membership to B, the
degree of being the extremity of an admissible segment and the degree of being seen by A.
We denote this subset by δBvis(A,θA+π

2
) and its membership function by µδBvis(A,θA+π

2
):

µδBvis(A,θA+π
2
)(x) = µadm(x) ∧ µBvis(A,θA+π

2
)(x) (2.47)

where µadm represents the degree of being the extremity of an admissible segment.
The relation “A is parallel to B” is given by the following measure:

µparallel(A, B) =
Vn(µAvis(B,θA−π

2
))

Vn(µA)

∧

ν0(θδBvis(A,θA+π
2
) − θA), (2.48)

where ν0(θ) is the same as in Equation 2.24 and it evaluates the degree to which
θδBvis(A,θA+π

2
), the normal angle to δBvis(A,θA+π

2
), and θA are “approximately” equal.

In some contexts a symmetrical relation is needed (for example in perceptual organiza-
tion), and is then expressed as “A and B are parallel”. In such cases, we verify that at least
one of the sets is visible from the other in the normal direction and that the orientations
of both sets are similar. Then, the degree of satisfaction of the symmetrical relation, “A
and B are parallel” is expressed by:

µparallelS (A, B) =

[

Vn(µAvis(B,θA−π
2
))

Vn(µA)

∨ Vn(µBvis(A,θB−π
2
))

Vn(µB)

]

∧

ν0(θδBvis(A,θA+π
2
) − θA)

∧

ν0(θδAvis(B,θB+π
2
) − θB)

(2.49)

2.3.4 Properties

Both relations (Equations 2.48 and 2.49) are invariant with respect to geometric transfor-
mations (translation, rotation, scaling). None of the relations is transitive, as discussed
previously. However, if A, B, C are linear crisp segments, and if µparallel(A, B) = 1 ,
µparallel(B, C) = 1 and θA = θB = θC , then µparallel(A, C) = 1. This result shows that in
the crisp case we have transitivity. To have the transitivity property, it is necessary that
θA = θB = θC , since ν0(θA−θB) = 1 and ν0(θB−θC) = 1 do not imply ν0(θA−θC) = 1 due
to the tolerance value t1 of the function ν0 (see Equation 2.24). To have the transitivity
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without imposing the condition θA = θB = θC , it is necessary that ν0 is a linear function
(i.e. t1 = 0). But this is restrictive.

It is clear that both relations are reflexive. However, depending on the context we
may not want to consider intersecting objects as parallel. In this case, it is necessary to
combine in a conjunctive way the previous degree (Equations 2.48 or 2.49) with a degree
of non-intersection between the two sets.

2.3.5 Parallelism with a globally aligned group of objects

When considering parallelism with a globally aligned group of objects, the group has a
similar role as the linear object in the definitions introduced in the previous section. When
defining the relation with a group there is a modification, with respect to the case of a
linear object, in the way the visibility constraint is computed, this modification will be
discussed in the following.

2.3.5.1 A group of globally aligned objects parallel to an object

Let S = {A0, . . . , AN} be a group of globally aligned objects, as defined in Section 2.2.3.1,
and let B be another object. For S to be parallel to B it is necessary that there is a large
portion of S that sees B, and this is computed in the same way as for the case of parallelism
between a linear object and an object. For the second condition we need to create the fuzzy
set βS which is composed of the union of the regions between two consecutive elements of
S. βS can be constructed using the definition that involves the convex hull presented in
[Bloch et al., 2006]. In Figure 2.27(b) an example of the region βS of a group S is shown in
light purple. From Figure 2.27(a) we can see that the boundary of B that faces S and that
is visible by S depends on the separation between the members of the group. However,
it is desirable that the degree of parallelism of a group to an object is independent of the
separation of its members, since if we add more elements to a group without changing its
orientation or its extension the degree of alignment to the object should remain the same.
Therefore, in order to have a degree of parallelism independent of the separation of the
members of the group we should use βS in the second condition of parallelism. Then, the
second condition becomes that the boundary of B that faces S and that is visible by βS or
by S should have the same orientation as the orientation of the alignment of S. Finally,
the degree of satisfaction of the relation “S is parallel to B” is given by:

µparallel(S, B) =
Vn(∨iµAivis(B,θs−

π
2
))

Vn(∨µAi
)

∧

ν0(θδBvis(βs∪S,θs+
π
2
) − θS), (2.50)

where θs is the orientation of the alignment of the group S. In this definition, the first
part of the equation represents that there should be a large portion of the union of all
the Ai ∈ S that see B, and the second part evaluates the degree of similarity between
the orientation of the group and the orientation of the boundary of the object seen by the
group in the direction θs + π

2 .

2.3.5.2 A linear object parallel to a globally aligned group of objects

Using the same notations as above, suppose B is a fuzzy linear object. Then for “B is
parallel to S ” to be true, it is necessary that B has a similar orientation to the orientation
of the alignment of S, and that there is a large proportion of B that sees the group of
objects or βS . As in Equation 2.50 it is necessary to use S ∪ βS in order to assure that
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(a) (b)

Figure 2.27: (a) Visibility field of the group of objects S, and the boundary of the object
facing S (in black). (b) Visibility filed of the region between two consecutive members of
the group βS (light purple) and the group S, and the boundary of B facing S ∪ βS (in
black).

the parallel relation is independent of the separation of the element of S. The degree of
satisfaction of the relation “B is parallel to S” is given by:

µparallel(B,S) =
Vn(∨iµBvis(S∪βS ,θB−π

2
))

Vn(∨µB)

∧

ν0(θS − θB), (2.51)

where θB is the orientation of B.

2.3.5.3 Parallelism between two globally aligned groups of objects

Using the same notation as in Equation 2.51, we can define the parallelism between two
globally aligned of fuzzy sets S = {A0, . . . , AN} and T = {B0, . . . , BM} . The degree of
satisfaction of the relation “S is parallel to T ” is given by:

µparallel(S, T ) =
Vn(∨iµAivis(T ∪βT ,θs−

π
2
))

Vn(∨µAi
)

∧

ν0(θT − θS), (2.52)

where βT is the region formed between two consecutive elements of T and θT is the orien-
tation of alignment of the group T .

2.3.6 Discussion

In this section we discussed the considerations that should be taken into account when
modeling the parallel relation. We highlighted that the parallel relation should be modeled
as a fuzzy relation represented as the conjunction of two conditions, one dealing with
visibility and the other with similarity of orientation. Using the directional morphological
dilation to model the visibility condition allows us to identify the region on the image
where it is possible to find objects to which the object of interest or groups of objects are
parallel to. We presented a definition of parallelism between two fuzzy linear objects, and
between globally aligned groups.

In Chapter 3 we illustrate an example of combining parallelism and alignment for spatial
reasoning.

2.4 Line-region relations

This section is motivated by the importance of the relations between linear objects and
regions when creating natural language descriptions of spatial scenes of satellite images.
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These types of relations are frequently observed between linear structures such as rivers
or roads and spatial regions such as cities, agricultural fields, water surfaces, etc. Some
examples of these relations are “to go across”, “to go through”, “to bypass”, “to intersect”,
“to go along”, “to enter”, “to go into”, etc. These relations depend on the shape of the
region and their definition can be sometimes vague or imprecise [Herskovits, 1997]. For
instance the relation “to go across” can have the following meaning: a line goes across
a region if it goes from one side of the region to the opposite one. However, when the
region has a complex shape or imprecise boundaries, the notion of opposite side becomes
vague. Figure 2.28 exemplifies a case where the house settlement has a complex shape,
and therefore it is difficult to say which are the routes that “go across” it. Thus, the fuzzy
sets framework is appropriate for modeling these kinds of relations since it captures the
imprecision inherent to the spatial information and to the semantics of the relations.

(a) (b)

Figure 2.28: Illustration of when the notion of across is not well defined by a crisp relation.
If we want to determine if the roads in (a) go across the house settlement shown in (b), then
it would be difficult to give an answer due to the complex shape and the fuzzy boundaries
of the region shown in (b).

In this section we concentrate on the binary spatial relations between a region and a
linear object. For simplicity we refer to these relations as “line-region” relations. By linear
object we mean an elongated structure. To determine whether an object is elongated we
can measure its elongation4.

In Section 2.4.1 we briefly present the “line-region” relations which have been studied
in the literature. From these relations we have chosen 4 relations which are studied in the
following sections ( “go across” and “go through” in Section 2.4.2, “enter” and “go into” in
Section 2.4.3) and are included in the classification of Figure 1.16.

2.4.1 Set of line-region relations

Relations between linear objects and regions have been studied in the framework of spatial
relations for GIS [Roussopoulos et al., 1988, Egenhofer and Herring, 1990, Mark and Egen-
hofer, 1994a, Shariff et al., 1998, Kurata and Egenhofer, 2007] and in the spatial cognition
community [Landau and Jackendoff, 1993, Talmy, 1983].

4The elongation can be measured by using E = P2

A
, where A is the area and P is the geodesic diameter
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[Roussopoulos et al., 1988] proposed six relations that can take place among a region
and a line: “intersect”/ “not-intersect”, “within”/ “not within” and “cross”/ “not cross”.
However, the first two pairs of relations can take place among any two types of entities,
they are not exclusive to the line-region configuration. Moreover, there is no definition
given in [Roussopoulos et al., 1988].

[Egenhofer and Herring, 1990] focused on the topological properties of the relations.
They proposed 19 spatial relations between a region and a line using the 9-intersection
model (Section 1.3.1.2). However, these relations are not directly linked to natural-language
expressions, and therefore they cannot be easily used for image interpretation. In [Mark
and Egenhofer, 1994a] the link between topological constraints and natural language ex-
pressions is studied. The authors conclude that topology alone is not sufficient to define
the relations between a linear object and a region. [Shariff et al., 1998] incorporated met-
rical properties to the topological models and suggested 59 crisp natural language spatial
relations. The model of each relation is obtained by first extracting the topological relation
between the line and the region using the 9-intersection model. Afterwards it is refined by
adding measurements of metric properties. The metric properties which are measured are:

Splitting: determines how a region’s interior, boundary and exterior are divided by a
line’s interior and boundary, and vice-versa.

Closeness: determines how far the region’s boundary is apart from the line.

Approximate alongness: assesses the length of the section where the line’s interior runs
parallel to the region’s boundary. It is a combination of the closeness and splitting
measures.

Figure 2.29 shows a schema of the measures used. Basically, the measures refer to
ratios of distances, length or size differences of the region and the line intersections. For
each model of each relation, the values of these measures were calibrated from the results
obtained from a human experiment. Despite of using human studies to define the models,
the proposed relations do not consider the shape of the region.

Among the 59 relations proposed by [Shariff et al., 1998], there are relations which can
be applied to any two kinds of objects, such as “in”. Additionally, several relations share the
same model, for instance “go across”, “cut across”, “split” and “divide”. This indicates that
within the 59 relations there are terms that correspond to synonyms. In [Schwering, 2007]
a subset of these relations is automatically grouped into three clusters using a similarity
measures among the models. To evaluate the validity of the clusters a human experiment
was conducted. The following list shows some of the members of each cluster:

1. “split”, “traverse”, “cross”, “intersect”, “bisect”,

2. “in”, “inside”, “within”, “enclosed by”

3. “avoids”, “bypass”, “along edge”, “near”,

Apart from these clusters, there is the “enter” relation, which did not fit into any of the
clusters, since there was a disagreement between the results obtained from the automatic
clustering and the human experiment. From the work of [Schwering, 2007] we can conclude
that it is possible to simplify the set of 59 relations to only 4 relations (the three clusters
and the “enter” relation).
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Figure 2.29: Measures of the metric properties used in [Shariff et al., 1998]. The left box
represents the measures used for the splitting property. The upper right box contains
the measures for the closeness property, and the lower right box the measures for the
approximate alogness property. Images taken from [Shariff et al., 1998].

In the cognition area, [Landau and Jackendoff, 1993] identified four English preposi-
tions which express the relations between a reference region and a linear structure. These
prepositions are: “along”, “in line with”, “across” and “around”. Notice that the three clus-
ters identified by [Schwering, 2007] coincide with three of these relations. The relation
“in line with” requires that the linear object is a straight line and that the region is also
linear, therefore it does not fit exactly into the category of line - region relations.

Taking into account the relations listed by [Shariff et al., 1998] and [Landau and Jack-
endoff, 1993] we decided to concentrate on the following relations: “go across”/ “go through”,
“enter”/ “go into”, “along” and “around”. The relation “go across”, “along” and “around”
where identified by [Landau and Jackendoff, 1993] and are present in two of the clusters
proposed by [Schwering, 2007]. The relation “enter” was the relation which did not fit into
any cluster in [Schwering, 2007]. The other cluster of relations proposed by [Schwering,
2007], which includes the relation “inside” is not studied since it is not exclusive to the case
of “line-regions”, moreover it can computed by using a degree of inclusion (see Equation
1.5).

This group of relations includes the significant relations found in the cognitive area and
in GIS, as well as the relation “enter”. Nevertheless, this set of relations is not exhaustive.

First, we study the “go across” relation (Section 2.4.2) because it is one of the most
complex relations in our list. To model this relation we require to introduce notions that
are useful for the definition of the models of the relations “enter” and “go into”. These
two relations are studied in Section 2.4.3. Finally, we discuss the models of the relations
“along” that are found in the literature, and make the connection with “around” and the
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relation “surround” studied in Section 2.1. This work was presented in [Vanegas et al.,
2009a].

In the following L is a linear object represented by its skeleton. The extremities of L
are noted La and Lb.

2.4.2 Go Across

The relation “go across” has been studied in different contexts, producing different mean-
ings. In GIS, the relation proposed by [Shariff et al., 1998] satisfied two topological condi-
tions; the line should intersect the interior of the region, and its extremities should intersect
the exterior of the region. The metrical properties which are measured are the splitting
and the closeness. The splitting is measured through the interior area splitting (see Figure
2.29). The interior area splitting is based on the proportion between the area obtained
by the division of the region and the original region. It is calculated as the ratio of the
smallest area in which the line splits R, and the total area of R. In [Shariff et al., 1998], the
relation is considered as satisfied if this value is inside the interval [0.18, 0.5]. Nevertheless,
this value is not informative, since this measure has a range of [0,0.5]. The outer closeness
measure is based in the distance between the endpoints of the line and the boundary of the
region. However, this measure is not critical, since the importance of the relation depends
on the way the line “moves” inside the region as we will see in the following paragraphs.
Therefore, none of the measures are significant. Thus, from this definition we can only
retain the topological constraints.

[Tellex and Roy, 2006] use the relation “go across” to guide the movement of a robot in
a room. The relation is satisfied when the trajectory of the robot goes from a point on the
boundary of the region to another point on the boundary following a straight path which
intersects the region’s center of mass. This interpretation of the relation deals with the
center of mass. It is also more flexible in the topological constraints, since the extremities
of L are allowed to be on the boundary of the region.

In the spatial cognition community this relation has been studied by [Landau and
Jackendoff, 1993, Talmy, 1983, Herskovits, 1997]. [Landau and Jackendoff, 1993, Talmy,
1983, Herskovits, 1997] highlighted that the preposition is linked with the notion of going
from “side to side” of the reference object. For [Talmy, 1983] the reference object must be
ribbonal in order to have sides. For [Landau and Jackendoff, 1993] the reference object must
be a surface with sides, so that we can go across “from one side to the other”. The definition
proposed by [Herskovits, 1997] is more flexible and allows reference objects to have any
shape. The notion of “opposite sides” is further discussed in Section 2.4.2. Additionally,
[Herskovits, 1997] proposed 4 other configurations for the preposition “across”. Some of the
5 configurations have a three-way distinction between motion, target object’s disposition
and vantage point, giving a total of 10 definitions. Figure 2.30 shows the senses of “across”
according to [Herskovits, 1997]. From the ten definitions that are proposed, we are only
interested in the senses that involve target’s disposition, since it is the only one that takes
place in the context of satellite image interpretation. However, in [Herskovits, 1997] only
the definitions dealing with the motion sense are discussed. The first configuration is the
one concerning the notion of going from “side to side”. Additionally the line’s path must
be close to a straight line. The second configuration takes place when the reference object
is an unbounded region and the linear object has salient segments of a straight line. For
instance, “they walked across the sand for hours”. The third configuration refers to a
reference object with an intrinsic directionality, and the target object “goes across” if it
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Figure 2.30: The senses of across according to [Herskovits, 1997]. Figure adapted from
[Herskovits, 1997].

moves in an orthogonal direction to it. For example, “swimming across the flow”. The
fourth and fifth configurations refer to the relation “all over”, in “across” the target object
is a linear object distributed all over the reference object. For example, “For a whole
year, I traveled across Colombia”. In the fifth configuration the target object is a set of
“points”. Not all the configurations can be used in the sense of target’s position in image
interpretation. Additionally, we are interested in studying the relation “go across”, which
refers to the French verb “traverser”. Only the first configuration is applicable to the our
context. The third one involves the motion of the reference object, which is not possible
in the case of satellite images. The fourth and fifth configurations refer to the relation “all
over” which is out of the scope of the relation that we want to study, and differs from the
French meaning. The second definition proposed by [Herskovits, 1997] means “à travers”
in French, which is also different from the relation we want to study.

The relation “across” has several definitions, and concerns notions which are imprecisely
defined. Therefore, to better understand the relation, we conducted an experiment with
several volunteers.

The experiment
To understand the usual perception of the considered relation, 8 line-region configura-

tions were proposed to 32 French-speaking persons. The configurations are shown in Figure
2.31. Each configuration had a different shape and the line had a different trajectory. The
persons were asked if they agree or disagree with the statement “the line goes across the
region”5. Some space was left for comments.

Results
The obtained results were very different across the subjects, showing that it is difficult

to achieve a unique consensus for this relation. This confirms the idea that it is more
appropriate to evaluate it as a matter of degree rather than a crisp relation.

There were 14 persons, who agreed with the statement in all the eight cases. These
persons made comments like “for me, to go across is to enter and then to exit”, “In all the
8 cases the road enters into the region and then exits”.

5equivalent to “La ligne traverse la région”
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.31: Configurations used in the experiment.

To analyze the answers we observed the answer for each question separately, taking
into account the comments made by the subjects. Table 2.3 shows the results for each
configuration with their respective comments.

From the results we observe a three typed meaning for the relation “go across”.

(i) The line enters and then leaves the region.

(ii) The points on which the line enters and leaves region are located on “opposite” sides.

(iii) The line enters and leaves the region and its trajectory goes deeply into the region.

The first meaning comes from the fact that 43.8% of the persons answered this way. The
second meaning was obtained from the acceptance of the configurations of Figures 2.31(a),
2.31(d) and 2.31(e), and the disagreement of 2.31(b) and 2.31(g). The third meaning is
obtained because of the agreement with Figure 2.31(g) and the disagreement with Figures
2.31(c), 2.31(f) and 2.31(h). Figure 2.31(g) has a high acceptance of going across, even if
the trajectory of the path is not straight, contrary to what was suggested by [Herskovits,
1997].

The first meaning is very permissive. It only takes into account the topological aspects
of the relation. However, taking into account the remarks of [Talmy, 1983] and [Mark
and Egenhofer, 1994a], the relation “to go through” and “to go across” are very similar.
In some dictionaries they are even used as synonymous. However, “go through” relies on
topological aspects, it refers to entering and leaving a medium [Talmy, 1983], while “go
across” or “cross” have a more geometrical aspect: go from one side to the other. Therefore
we are going to call the first model “to go through”. The other two meanings are called
“to go across (i)” and “to go across (ii)”. It is not surprising to specify the relation using
different definitions, since as we saw in the work of [Herskovits, 1997], this relation can
have more than one sense.

“Go through” model
This model is based on topological constraints. It verifies that there is an intersection

between the interior of the region and the linear object, and that the linear object does not
start nor ends inside the region. This definition is similar to the one proposed by [Mark
and Egenhofer, 1994a], the only difference is that we admit that the extremities of the
linear object are on the edge of the region. The degree to which L “goes through” R is
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Figure Agree % Agree Comments Disagree Comments
2.31(a) 87 • The line goes across two times.
2.31(b) 90 • It is acceptable, due to the shape of

the region.
• The line starts and ends on the same
side.

• The areas on the right and on the left
of the line are almost the same.

• The entering and exiting vectors are
not collinear.

2.31(c) 74 • I agree even if the region is not split
into two regions of comparative size.

• The line does not meet the center of
the region.

• Although the part that is crossed by
the line is small, the line touches two
segments that are almost opposite.

• It superficially goes across.

• The line passes but does not go across.
2.31(d) 58 • The line touches two segments which

are almost opposite, even if the part
that is crossed by the line is small.

• It superficially goes across.

• The line goes across an arm of the
region.

• The line does not meet the center.

• The line goes across a part of the re-
gion, but does not go across the whole
region.
• The line passes but it does not go
across.

2.31(e) 94 • It goes across even if it is not straight. • The line explores the region.
• The line goes from one end to the
other despite the sinusoidal movement.

2.31(f) 58 • It superficially goes across.
• The line goes along or tangent to the
region.
• The line passes by the region.
• The part that is crossed by the line is
not significant enough.

2.31(g) 65 • It is similar to case 2.31(c) but the
line enters more deeply into the region.

• It does not go across since the line
does not arrive at the other side of the
region.

• It is sufficient at sight, even if it does
not split the region into comparable
parts.

• The entering and exiting vectors are
not collinear.

2.31(h) 52 • It superficially goes across.
• The line passes, or goes along the re-
gion.
• The line does not introduce enough
into the region.
• The part that is crossed by the line is
not significant enough.

Table 2.3: Table showing the answers and the comments of the questionnaire.

given by:
µgo_through(L, R) = t (µint(L, R ◦), µqint(La ∪ Lb, R

◦)) . (2.53)

where R◦ is the interior of R.
This definition is composed of a conjunction, expressed as a t-norm, of a degree of

intersection µint of L and R◦ and a degree of non intersection µqint between the endpoints
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of L and R◦. For the degree of intersection and non intersection we used the definitions
introduced in Section 1.3.1.2. R◦ can be expressed as a fuzzy set, in order to take into
account the imprecision on defining the boundaries of the region. This allows a more
flexible definition. Using fuzzy mathematical morphological operators, the membership
function of R◦ denoted as µR◦ is given by:

µR◦(x) = Eν(µR)(x) = inf
x∈I

T [c(ν(y − x)), µR(y)] (2.54)

where T is a t-conorm, c is a fuzzy complementation function, ν is a fuzzy structuring
element and µR represents the membership function of R (when R is crisp µR is the
indicator function of R). The structuring element ν is chosen in a way that it represents
the imprecision that we want to model. For example, it can be chosen to represent a fuzzy
neighborhood, as in the definition of fuzzy adjacency (Equation 1.11).

“Go across” from one side to the other
For the “go across (i)” relation the “go through” relation should be satisfied and in

addition the linear object should go from one side to the other one. There are three
approaches for defining what is meant by opposite sides using the studies developed in
the area of spatial cognition. The first approach is the one from [Talmy, 1983], where the
opposite sides of a region are defined only when the region is ribbonal. In that case the
opposite sides are the two parallel sides that define the region. Another approach is based
on the studies of Williams cited in [Landau and Jackendoff, 1993]. An adult considers that
a linear object “goes from one side to the other”, if it goes through two different segments
of the boundary region. These two segments can be the consecutive sides of a rectangle
or two segments of the boundary of a circle. This definition is more permissive than the
one suggested by Talmy, and agrees with the acceptance of the relation of Figure 2.31(c)
in the experiment. Finally, [Herskovits, 1997] proposes a definition to determine whether
two points of the boundary of a regular region, without concavities, are on “opposite sides”.
The two points are on “opposite sides” of the region if the angle between the tangents is
180 degrees (when all the tangents are oriented counterclockwise). As the angle decreases,
the relation is no longer satisfied.

Using the same idea as in [Herskovits, 1997, Landau and Jackendoff, 1993], we define
the degree to which two points of the boundary of a region are on opposite sides. Let
p1, p2 ∈ ∂R, and θ1, θ2 ∈ [0, 2π] be the orientation of the vector defining the tangent of
the boundary at p1 and p2, respectively. Then the degree to which p1 and p2 belong to
opposite sides is given by:

µR
opposite_sides(p1, p2) = f(|θ1 − θ2|), (2.55)

where f is a continuous function such that f : [0, 2π] → [0, 1],
f(0) = f(2π) = 0 and f(π) = 1. The value f(|θ1 − θ2|) repre-
sents the tolerance of considering θ1 and θ2 as “approximately” opposite.

Figure 2.32: Inconvenient
of Equation 2.55 for objects
with concavities.

This definition is appropriate when the region is convex. How-
ever, when the region is not convex then we can accept cases
as the one shown in Figure 2.32. In this example, the line
does not go across since intuitively it does not go from one
side to the opposite one, but according to Equation 2.55 the
intersection points of the line with the boundary of the region
are on opposite sides. When objects have concavities we use
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the convex hull of the object to determine if the line goes from
one side to the other one. The convex hull of a region is the
intersection of the minimum set of half planes that include
the object. In the 2D space, if p1 or p2 are in a concavity,
then there is a linear segment which closes that concavity. We use the orientation of that
segment, instead of the orientation of the tangent at the point to determine if the points are
on opposite sides. We refer to this segment as the closest segment of CH(R) to the points.
Let p ∈ ∂R, to find the closest segments of CH(R) to p we represent CH(R) as a polygon.
If p coincides with one of the vertices of the polygon, then there are two segments. These
segments correspond to the two segments adjacent to the vertex. Else if p is not a vertex
of the polygon, then there is only one segment close to it. This segment corresponds to the
segment which bounds the portion of ∂B that contains p. In the following we formalize
the concept of closest segment in the case of a 2D crisp region.

Let R be a 2D region, and CH(R) be its convex hull. Let V and E be the set of vertices
and edges corresponding to the polygon which represents CH(R). V = {C1, . . . , Cn} and
E = {(Ci, Ci+1)|i = 1, . . . , n− 1} ∪ (Cn, C1), where Ci ∈ ∂R for i = 1, . . . , n. For p ∈ ∂R
the closest segments of CH(R) to p are defined as:

(i) If p ∈ V :

– If ∃i ∈]1, n[ such that p = Ci. Then the closest segments are: (Ci−1, Ci) and
(Ci, Ci+1).

– If p = C1, then the closest segments are: (Cn, C1) and (C1, C2).

– If p = Cn, then the closest segments are: (Cn−1, Cn) and (Cn, C1).

(ii) If p 6∈ V .
Let a, b ∈ R and φ(t) : [a, b] → R2 be the continuous curve that describes ∂R,
such that φ(a) = C1 and φ(b) = C1. Let t1 ∈]a, b[ such that φ(t1) = p. Define
i = min{j ∈ [1, n] : t < t1 and φ(t) = Cj}:

– If i ∈ [1, n[, then the closest segment is: (Ci, Ci+1)

– If i = n, then the closest segment is: (Cn, C1)

Figure 2.33 shows an illustration of the definition of closest segments. Figure 2.33(a)
shows a region R and two points p1 and p2 on its boundary, for which we want to find
the closest segments. Figure 2.33(b) shows the convex hull of R represented as a polygon,
with vertices V = {C1, . . . , C10}. For the point p2 the closest segments are (C10, C1) and
(C1, C2) because p2 = C1. The point p1 only has one closest segment, corresponding to
segment (C4, C5).

To determine whether two points on the boundary of a region are on opposite sides we
observe the difference of orientation of their closest segments of CH(R). When one of the
points has more than one closest segment, then the degree of opposite sides is calculated
as the disjunction of the different orientations of all its segments with the segments of
the other point. Let p1, p2 ∈ ∂R, and {θ1i

}N1
i=1, {θ2j

}N2
j=1 be the orientations of the closest

segments of CH(R) to p1 and p2 respectively, where N1 and N2 are the numbers of closest
segments to p1 and p2. Then the degree to which p1 and p2 belong to opposite sides of R
is given by:

µR
opposite_side(p1, p2) = Ti≤N1,j≤N2f(|θ1i

− θ2j
|). (2.56)

where f is the same as in Equation 2.55 and T is a t-conorm.
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(a) Region and points (b) In red polygon representing
CH(R)

Figure 2.33: Illustration of definition of closest segments of CH(R) to p1 (segments (C1, C2)
and (C10, C1))and p2 (segment (C4, C5)).

The degree of satisfaction of the relation “L goes across R” using the meaning of going
from one side to the opposite one is defined as:

µgo_across1(L, R) = t
(

µgo_through(L, R), µR
opposite_sides(p1, p2)

)

(2.57)

where p1 and p2 are the entering and exiting points.
This definition is adequate to represent the membership function of going across in the

sense of going from one side to the other. This definition takes into account the shape of
R. However, in the case where the region has a significant linear elongation, the sides are
distinguished from the ends [Landau and Jackendoff, 1993]. Moreover, the relation only
involves the sides, and if the linear object goes from one end to the other end of the region,
then it is more appropriate to describe the relation as going along.

“Go across” model (ii)
A first approach to the idea of going deeply into a region is to think of passing near

the center of mass of the region, like in [Tellex and Roy, 2006]. However, the center of
mass can be outside the region, as in Figure 2.31(b). Therefore, it is more convenient
to perceive how deep does the line “go into” a region by observing how far it is from the
boundary. Hence, if we construct the distance map of the complement of the region, then
the point which has the maximum value in the distance map is the deepest point of the
region. Therefore, it is better to consider the ultimate erosion points (UEP) rather than
the center of mass. The UEP are defined as the local maxima of the distance map in the
interior of the region. To determine how deeply a line goes into a region we will measure
how close it passes to one UEP. A region can have several UEPs. For instance Figure 2.34
shows a region and its UEPs. The UEP labeled with a is closest to the boundary of R than
the one labelled c. Thus it is necessary to also consider how deep is the UEP according to
the maximum possible depth.

First, we define a measure to determine whether L goes deep into R. Let S =
{p1, . . . , pn} be the set of UEPs of the region R. Let V or(S) be the Voronoi partition
associated to S. Let J be the set of indices of the Voronoi polygons that are intersected
by the line. Let DM be the distance map defined in the interior of the region, where for
each p ∈ R, DM(p) = dist(p, Rc). Then the degree to which the line goes deeply into the
region is given by:
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(a) Original object (b) Internal distance map (c) Ultimate erosion points

Figure 2.34: Ultimate erosion points. For visualization purposes we dilated the ultimate
erosion points.

µdeep(L, R) = max
j∈J

{

g

(

DM(pj)− dist(L, pj)

DM(pj)

)

g

(

DM(pj)

Mmax

)}

(2.58)

where Mmax is the maximum value of the distance map for all the UEPs, that is
Mmax = maxpi∈S DM(p). g is an increasing function from [0, 1] to [0, 1]. The role of
function g(x

y ) is to evaluate to which degree the quantity x is almost equal to y, by observing
its ratio. Equation 2.58 is composed of two terms. The first one indicates how close does
the line pass to a UEP. The second one measures if the chosen UEP is close to the deepest
point of the region. We decided to use two terms since we want to evaluate the two
conditions. They are not grouped into one term because the function g might not be
necessarily linear.

The degree of satisfaction of the relation “L goes across R” using the meaning of going
deeply into the region is then defined as the conjunction of the relations “going through”
the region and of the line “going deep” into the region:

µgo_across2(L, R) = t
(

µgo_through(L, R), µdeep(L, R)
)

(2.59)

To avoid situations where the line goes deeply into the region and returns basically
using the same path we can combine in a conjunctive way Eq. 2.59 with Eq. 2.56, or
measure that the angle made between the entering point, the closest UE and the leaving
point is not acute.

When R is a fuzzy set, it can be envisaged to build the UEPs as fuzzy sets by using
a morphological approach. Further we can consider a fuzzy Voronoi partition as the one
proposed in [Jooyandeh et al., 2009] which is adapted to fuzzy objects. And then think of
a fuzzy distance measure that can help us to quantify the degree to which the line passes
close to a UEP and how this UEP is close to the deepest part of the region. A review on
fuzzy distance measures is given in [Bloch, 1999]. This is just a possibility for extending
the relation, however it has to be further investigated.

2.4.2.1 Computational complexity

Let N denote the number of points in the image, NR the number of points in the region,
N∂R the number of points in the boundary of R, and NL the number of points in the
line. The complexity of computing µgo_through(L, R) is O(NL + NkNR), where Nk is
the size of the structuring element used to compute the interior of R. The complexity
of computing µgo_across1(L, R) is O(NL + NkNR + N∂R log N∂R). The most consuming
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computation step in µgo_across1 is the computation of the convex hull which is of the order
of O(N∂R log N∂R)6.

The computation of µgo_across2(L, R) is obtained through several steps: first the com-
putation of µgo_through(L, R) which is O(NL + NkNR); then the complexity of computing
the distance map is of O(N)7. The complexity of computing the UEPs using the distance
map is O(NNV ), where NV is the size of the neighborhood that is used to determine
the regional maxima of the distance map, where NV = 4 or 8. Computing the Voronoi
partition from the UEPs is of the order of Nu log Nu

8, where Nu is the number of UEPs.
Moreover, the maximum number of UEPs in an object with NR points, is less or equal than
NR. Therefore the Voronoi computation is O(NR log NR), and finally finding the polygons
of the Voronoi partition which intersect L is O(NL). Hence, the computational complexity
of µgo_across2(L, R) is O(2NL + NR(Nk + NV + log NR) + N∂R).

2.4.2.2 Discussion

We proposed three fuzzy models to represent the natural language relations of “to go across”
and “to go through”. These models are based on the results of a human subject test. They
consider the perception of the relation. The three models are invariant with respect to
geometrical transformations.

Depending on the form of the region or on the context, it can be more appropriate to
use one of the models rather than another one. Subjects use different criteria to evaluate
the degree depending on the region. Therefore, the question is to know which model to use
in which situation. Unfortunately, this question remains open, and it should be necessary
to perform more experiments to help answering this question, but this is out of the scope
of this thesis.

We briefly discussed some extensions of these relations to the case where R is a fuzzy
set, but there is still a lot of work to do on this subject.

We performed an evaluation of the three models for the synthetic figures used in the
questionnaire and compared them with the human subject tests. The results are shown in
Table 2.4. For these experiments we used the following function:

f(x) =











0 if x < π
4

4x−π
2π if π

4 ≤ x < 3π
4

1 if x ≥ 3π
4

(2.60)

in Equation 2.56 to quantify when two angles are considered in opposite directions. For
the function g in Equation 2.58 we used:

g(x) =











1 if x ≥ 0.8
x−0.5

0.3 if 0.5 ≤ x < 0.8

0 if x < 0.5

(2.61)

We can see how the three models coincide with a high membership in the configurations
which had a high acceptance for most observers (Figures 2.31(b) and 2.31(e)). The “go
through” model has a satisfaction degree of 1, since in all the cases the line enters and the

6Using qhull algorithm [Barber et al., 1996]
7Using Danielsson’s algorithm [Danielsson, 1980]
8Using Fortune’s algorithm [Fortune, 1987]
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exits. The “go across 1” model has high membership values for the cases 2.31(a), 2.31(d)
and 2.31(e), this coincides with the experiment that we performed. In a similar way, the
model “go across 2” has a high membership value for the cases 2.31(e) and 2.31(g), as
expected. More examples of these relations are given in Section 2.4.4.

Model Figure Figure Figure Figure Figure Figure Figure Figure
2.31(a) 2.31(b) 2.31(c) 2.31(d) 2.31(e) 2.31(f) 2.31(g) 2.31(h)

“go through” 1 1 1 1 1 1 1 1

“go across (i)” 1 0.2 0.33 1 1 0.33 0.2 0.53

“go across (ii)” 0.7 1 0.68 0.32 1 0 1 0

“human-subject test” .87 0.9 0.74 0.58 0.94 0.58 0.65 0.52

Table 2.4: Results of the three models evaluated on the 8 configurations of Figure 2.31.
Where “human-subject test” refers to the percentage of subjects which answered “yes”.

2.4.3 “Enter”

In [Shariff et al., 1998] the relation “enters” is also considered, producing two different
models. The topological constraints satisfied by the first model are that the interior of the
line should not intersect the exterior of the region, and that the boundary of the linear
object should intersect the boundary of the region. In the second model, the linear object
should intersect the boundary of the object and the interior of the linear object should
intersect the interior of the object. Additionally, there should be a large distance between
the extremity of the line that is inside the region and the boundary of the region. This is
measured using the inner nearness measure (see Figure 2.29), which is the ratio between
the area of the eroded region until it reaches the end point of the line and the area or the
region. Also, the line cannot be completely inside nor outside the region. This suggests
that the line should go deeply into the region. Figure 2.35 shows two examples of the
definitions proposed in [Shariff et al., 1998].

(a) Model 1 (b) Model 2

Figure 2.35: Example of models of the relation “enters” proposed by Shariff et al. [1998].

As for the relation “go across” we can think of two meanings for the relation “enters”.
The first one is based on topological constraints and the second one is more restrictive
than the definition proposed by [Shariff et al., 1998].
A first meaning is based on the idea that, to enter a region, a line should go from the
exterior or the boundary of the region to its interior. A second meaning is that the
line should also satisfy the toplogical constraints but additionally it should penetrate the
region. This second meaning is useful since it helps us to describe, for instance, the
relation between artificial man made structures constructed in sea (See Figure 2.36(a)) or
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the relation between the boarding bridges of an airport’s terminal and the parking zone
(see Figure 2.36(b)).

(a) (b)

Figure 2.36: Structures that can be described using the relation “enters”. (a) Artificial
construction “entering” the sea. (b) Boarding bridges “entering” the parking zone.

Our proposed meanings are very close to those proposed by [Shariff et al., 1998]. To
be consistent with the work performed for the relation “go across”, this definition is based
on the functions defined in Section 2.4.2. The second proposed meaning coincides better
with the relation “go into” rather than with the relation “enter”. Therefore, in the following
paragraphs we will refer to the relation “go deep into” for this second meaning.

The “enters” model
The first meaning needs to satisfy the two following topological constraints: one of the

extremities of the linear object should not intersect the interior of the region, and the
interior of the linear object should intersect the interior of the object. These conditions
are more general that the ones proposed by [Shariff et al., 1998], since it does not require
that the line ends inside the region. This relation is formalized as:

µenter(L, R) = t(µint(L, R◦), T (µqint(La, R
◦), µqint(Lb, R

◦))) (2.62)

As for the relation “go through”, the interior of the region can be computed as a fuzzy
region. This definition is well adapted to fuzzy regions.

The “go deep into” model
We consider two possible cases for this model: when the region and the linear object

have comparable dimensions, and when the region has an infinite size compared to the
linear object. To determine whether the region R has an infinite size compared to the
line L, we compute the ratio between the length of the linear object and the length of the
minimal bounding box of R. If this ratio tends to zero, then R has an infinite size with
respect to L, otherwise, we would say that they have comparable sizes.

For the first situation, the relation “go into” the region has the same sense as going
deeply into the region for the model (ii) of the relation go across (see Section 2.4.2).
Therefore it is directly computed as:

µgo_deep_into(L, R) = t(µenter(L, R), µdeep(L, R)) (2.63)

This definition is composed of two parts, one is the satisfaction of the “enter” relation
and the second one measures how deep into the region does the line reach.
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For the second situation the degree to which a linear object L “goes into” R is related
to how far away from the boundary is the extremity of L with respect to where it can
possibly be. Let DM be the distance map defined in the interior of the region, where for
each p ∈ R, DM(p) = dist(p, Rc). Let Dmax be the maximum distance from the boundary
of R reached by L in the interior of R, that is Dmax = maxx∈L{DM(x)}. We define Xdeep

as the set of points of L which reach Dmax:

Xdeep = {x ∈ L|DM(x) = Dmax}. (2.64)

Then the degree of satisfaction of the relation “L goes into R” is obtained by measuring
how straight is the trajectory from the entering point to the points in Xdeep:

µgointo(L, R) = min
x∈Xdeep

h

(

l(x, p0)

Dmax

)

, (2.65)

where l(a, b) for a, b ∈ L measures the length of the line between the points a and b, and
p0 is the entering point. If there are several points satisfying this condition, then Equation
2.65 is tested with the point that is the closest (according to the curvilinear axis) to the
end point of the line that is in the interior of R. h is a real increasing function such that
h : R→ [0, 1] such that h(0) = 0 and h(1) = 1. The objective of function h is to measure
how straight the trajectory of the line is. Figure 2.37 shows an illustration of the measures
involved in this definition.

Figure 2.37: Definition of going deep into when the region has an infinite size with respect
to the linear object. x represents the point in Xdeep and p0 is the entering point.

2.4.4 Illustrative example

The above presented relations were evaluated in two cases, one for ten different paths and
a region (Figure 2.38) and the other one for 6 paths and a region (Figure 2.39, where paths
are named using their starting and ending points). For the function f and g of Equations
2.56 and 2.58, we used the same functions as in Equations 2.60 and 2.61.

The results are presented in Table 2.5 and in Table 2.6, respectively. In both cases, we
observe that the obtained results agree with the perception of the relations. The relation
“to go through” verifies the intersection with the interior and the boundaries, and the
greater degrees were obtained for the paths that started and ended at the border of the
region. Higher values were obtained for the degree of satisfaction of the relation “to go deep
into” as the paths went deeply into the region (paths 4−8 in Figure 2.39 and all the paths
in Figure 2.39 except path BC). The notion of opposite sides fits with the intuition. Points
situated on “opposite sides” obtained high membership values. The results reflect the need
of using two different definitions for the relation “to go across” since in ambiguous cases
(for example paths 1 and 10 in Figure 2.38 or path AB in Figure 2.39) it is not possible to
reach a consensus.
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(a) (b)

Figure 2.38: Image for evaluating the “go across”, “go into” and “enter” relations. (a)
Original image and region. (b) Ten quasi-linear paths.

Path µenter µgo_deep_into µgo_through µgo_across1 µgo_across2

1 1.00 0.14 1.00 0.92 0.14
2 1.00 0.53 1.00 1.00 0.53
3 1.00 0.96 1.00 1.00 0.96
4 1.00 1.00 0.00 0.00 0.00
5 1.00 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00 1.00
7 1.00 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.00 1.00
9 1.00 0.97 1.00 0.97 0.97
10 1.00 0.50 1.00 0.97 0.50

Table 2.5: Results of the relations’ models evaluated on the paths and region of Figure
2.38.

From Table 2.5 we can observe that for all the paths the relation “enter” is satisfied,
since they intersect at least one point of the boundary of the region. The paths that are
closer to the borders of the region (paths 1, 2 and 10) have lower degrees of satisfaction
for the relation “go into”, and therefore have a low value for the relation “go across 2”. All
the paths that “go through” the region have a high degree of satisfaction for the relation
“go across 1”, since all the paths go from one side to the other.

A B

C

D

(a) (b)

Figure 2.39: (a) Original image. (b) Paths and region.
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Path µenter µgo_deep_into µgo_through µgo_across1 µgo_across2

Path AB 1.00 1.00 1.00 0.00 1.00
Path AC 1.00 1.00 1.00 0.86 1.00
Path AD 1.00 1.00 1.00 0.95 1.00
Path BC 1.00 0.53 1.00 0.86 0.53
Path BD 1.00 1.00 1.00 0.95 1.00
Path CD 1.00 1.00 1.00 1.00 1.00

Table 2.6: Results of the relations’ models evaluated on the paths and region of Figure
2.39.

2.4.5 Comments about “along” and “go around”

The relation “along” was studied in [Takemura et al., 2005] where the target and the
reference regions can have any shape, in particular a line. One particular case of the
relation along is the parallel relation, that was studied in Section 2.3.
For the case where L and R are crisp and L is not rectilinear, we use the definition
proposed by [Takemura et al., 2005]. To compute the degree to which L goes along R, we
first compute the region:

βt =
⋃

{[a, b], a ∈ L, b ∈ R, DLR(a) < t, DLR(b) < t

and ]a, b[ is admissible with respect to L and R }
(2.66)

where DLR(x) = d(x, R) + d(x, L), and d(x, R) is the Euclidean distance between the
point x and R. To definition of admissible segments is given by Equation 1.8 . The
region βt corresponds to the region between L and R and the segments of L and R which
are adjacent to the region between them, these segments are called admissible arcs. To
construct the region βt only the points which are at a distance inferior to t from L and
R. To determine the degree to which L is “along” R, we have to measure the degree of
elongation of βt. Several measures of elongation are proposed in [Takemura et al., 2005].
Among the proposed measures, there is one measure that considers that the region should
be elongated in the direction where L and R are adjacent, that is:

µalong(L, R) = fa

(

l2(βt)

S(βt)

)

, (2.67)

where l(βt) corresponds to the length of the admissible arcs of βt, S(βt) corresponds to
the area of βt, and fa is an increasing function, which tends to one when βt is elongated.
In [Takemura et al., 2005] a sigmoid function is proposed for fa: fa(x) = 1−exp(−ax)

1+exp(−ax) . This
measure can be used to evaluate the relation when only certain parts of L are along R.
Table 2.7 shows the evaluation results of the relation “along” between the path labeled P1

and the lakes L1, L2, L3 and L4 of Figure 2.40 when using t = 30 pixels ≃ 21m and a
sigmoid function as fa with a = 0.075. Figures 2.40(c) and 2.40(d) show the regions βt

for the four situations. From the table we can see that in the four cases there is a high
satisfiability value for the relation “along”, which correctly represents the four situations.

See [Takemura et al., 2005] for an extension of this definition when L or R are fuzzy.

The “go around” relation is a particular case of the surround relation when the reference
object is a linear object. Therefore, for the “go around” relation we can use the definitions
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(a) Original image. (b) Segmented objects.

(c) Regions βt in gray and black, used
for the evaluation of µalong(P1, L1) and
µalong(P1, L3), respectevely.

(d) Regions βt in gray, and black, used
for the evaluation of µalong(P1, L2) and
µalong(P1, L4), respectevely.

Figure 2.40: Illustration of the definition of the relation "along".

L1 L2 L3 L4

µalong(P1, x) 0.86 0.98 0.84 0.97

Table 2.7: Satisfaction values for µalong.

introduced in Section 2.1. To determine if a line “goes around” a region, we must compute
the region which is surrounded by L and the degree is obtained by comparing how well
R matches the region defined by µsurround(L). Depending on the size of the region with
respect to the curves of L we can use either Equation 2.13 or Equation 2.10 to construct
the fuzzy landscape.

2.4.6 Discussion

We have presented several models for the relations “go through”, “go across”, “enter” and
“go deep into”. The models of “enter” and “go through” just consider the topological
constraints of the relations, while the models for the relations “go across” and “go into”
take into account the shape of the object, and in the case of “go into” it gives different
alternatives according to the dimensions of the line with respect to the region.

Our definitions satisfy the relations of subsumption between the relations “go across”,
“go through”, “enter” and “go into” which can be organized in a tree as shown in Figure
2.41.

This hierarchical organization can be useful to reason with the relations, and it can be
easily introduced in the hierarchy proposed in Figure 1.16.

The models presented in Sections 2.4.2 and 2.4.3 have topological constraints which
are two-point based relations. However, when dealing with regions which cannot intersect,
these relations can still be evaluated. Let R be the region composed of disjoint parts, and
let L be the linear object with approximate width w. Therefore, it is possible to perform a
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Figure 2.41: Organization of the line region relations.

morphological closing using an structuring element of size w
2 in order to construct a region

R̃ which can intersect L. Then the evaluation can be performed using R̃ instead of R.
In the Section 2.2 we studied the alignment relation, followed by the parallel relation.

When we studied the parallelism which involved a group of aligned objects, we were basi-
cally considering the group of aligned objects as if they were a line. This was highlighted
by [Herskovits, 1997], “an alignment is an idealization of a line”. Moreover, we would like
to notice that sometimes the line-region relations that we presented can take place with
a group of objects, for instance “the trees along the road”, in that case the trees are seen
as a group which can have the same behavior as line. In particular, if the road is straight
then the group of trees forms an alignment which is parallel to the road. Other examples
are “the houses that go around the lake”, then the group of houses are organized in such a
way that they form a ribbon, which goes around the lake. This property of being able to
assimilate a group of objects as a line was defined as polymorphism in [Mathet, 2000], and
it depends on the configuration of the group. Figure 2.42 shows an example of polymor-
phism of a group of points seen as a linear object. Therefore it is possible to evaluate the
relations presented in this section with a group of aligned objects. To evaluate the relation
between a group A and a region, we evaluate the relation between A ∪ βA as it was the
case for the parallel relation (see Section 2.3).

(a) Group of objects. (b) Linear object.

Figure 2.42: Representation of polymorphism between a group of objects and a linear
object.

2.5 Conclusion

In this chapter we have proposed original representations of the spatial relations: surround,
alignment, parallelism and line region relations. As it was highlighted at the beginning
of each section, each of these relations is frequently found on satellite images, and their
modeling is interesting for satellite image interpretation.
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For the definitions of all the relations we proposed fuzzy models which allow us to take
into account the imprecision in their semantics. Moreover, for some of these relations we
proposed or discussed how they can be extended to the case of fuzzy objects which allows
considering the imprecision inherent to images and to the segmentation process.

The examples on real objects extracted from satellite images have shown the usefulness
and power of the proposed models for scene understanding. We also highlighted how these
relations can be used as intermediary steps for extracting objects in images.

In Chapter 1 and in this chapter, we have concentrated on the representations of the
relations presented in Figure 1.16. Now that we have a model for each of these relations we
can reason about them. In the next chapter we present some of the reasoning techniques
and some examples using these relations.
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Chapter 3

Spatial reasoning

In the previous two chapters we have presented a collection of spatial relations. In this
chapter we discuss how to reason with these relations in the context of object recognition
in images. Spatial reasoning deals with the processes used to combine, verify or infer new
spatial information. For instance, let O be a set of objects, and R a set of binary spatial
relations. To denote that x ∈ O is the reference object of a relation r ∈ R, and y ∈ its
target object we write r(x, y). For a, b, c ∈ O and r1, r2, r3 ∈ R, some of the questions
which spatial reasoning aims to answer are:

(i) If r1(a, b) and r2(b, c), then what is the relation satisfied between a and c ?

(ii) Which are the objects x ∈ O which satisfy r1(x, a) and r2(b, x) and r3(c, x). In the
case where the relations are modeled as fuzzy ones, we can ask to what degree does
the conjunction of the three relations is satisfied, or to find the object in O which has
the highest degree of satisfaction for the three relations.

(iii) Are there objects x, y, z ∈ O which satisfy r1(x, y) and r2(y, z) and r3(z, x)? In the
case where the relations are modeled as fuzzy ones, we can ask to what degree does
these objects satisfy these relations.

(iv) When the spatial relations are modeled as fuzzy landscapes, we can ask which is the
(possibly fuzzy) region of space which defines the area where r1 is satisfied with a
as reference object, and r2 with b as reference object and r3 with c as its reference
object.

For simplicity, we have chosen only binary spatial relations and a combination of a maxi-
mum of three relations, in the above discussion. Nevertheless, spatial reasoning aims also
at answering these questions for relations of a higher arity, and we can combine more than
three relations. In the context of using spatial reasoning for object recognition these four
questions can be used in different ways. The first question is useful for computational
purposes, since by computing two relations we could have the information about a third
relation, and therefore more information to help recognizing the objects of interest. The
second and third questions are asked to detect inconsistencies or to complete incomplete
information. The forth question is particularly useful when extracting objects in an image
since it allows us to delimit a region of interest where it is possible to find an object.

According to the type of relations, the representation used and the question to be an-
swered, there are different formalisms to perform spatial reasoning. We give a quick insight
into the methods used for qualitative spatial reasoning in Section 3.1. These methods are
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briefly discussed since qualitative spatial relations are not included in our catalog of rela-
tions. In Section 3.2 we present the formalisms that have been used to reason with fuzzy
spatial relations. Finally, in Section 3.3 we present two illustrative examples in object
recognition reasoning with fuzzy spatial relations.

3.1 Qualitative spatial reasoning (QSR)

Qualitative spatial reasoning addresses the reasoning with qualitative relations. The rea-
soning is performed in a symbolic way without numerical computations. Qualitative spatial
relations are ususally expressed in a crisp way often using logical formalisms. One of the
most common examples of qualitative spatial relations are the RCC8 topological relations
introduced in Section 1.3.1.1. In this section we only concentrate on the reasoning mech-
anisms introduced for the RCC8 relations. Nonetheless, other types of qualitative spatial
reasoning have been developed for other types of spatial relations, for instance, [Freksa,
1992] for directional relations between objects, [R. Moratz and Freksa, 2003, Moratz and
Ragni, 2008, Liu, 1998] for directional relations between points, [Guesgen and Albrecht,
2000] to reason with relative distance, [Clementini et al., 1997] for directional and dis-
tance relations. Qualitative spatial reasoning is used to answer questions (i), (ii) and (iii)
discussed in the introduction.

A very common reasoning mechanism is to encode spatial relations using a logical
formalism, and use the reasoning mechanism of the logical formalism. The RCC8 relations
were constructed as an axiomatized first order logic theory, based on a single primitive:
Connection (see Section 1.3.1.1). However, first order logic is undecidable, thus there is no
effective method to answer questions (i), (ii) and (iii). Nevertheless, [Bennett, 1996, Cohn,
1993] encoded the RCC8 relations in propositional and modal logics which are decidable.

Representing RCC8 as a modal logic allows automatically constructing the composition
table of RCC8 relations [Cohn et al., 1997]. Composition tables aim at solving the inference
problem proposed by question (i). The RCC8 composition table is shown in Figure 3.1.
Composition tables can also be obtained by representing the RCC8 as a lattice of relations
[Randell et al., 1992], since this structure allows making inferences about the composition
of relations. From the composition table, we can see that the composition of two relations
is sometimes unknown, for instance from DC(a, b) and DC(b, c), then it is not possible
to know what is the relation between a and c. For other relations there can be several
possibilities, for instance if EC(a, b) and TPP−1(b, c) then we can have that DC(a, c) or
EC(a, c). Therefore, it is not always possible to answer question (i), nonetheless we can use
composition tables to help reducing the possibilities for determining the relations between
a and c.

To answer questions (ii) and (iii) the RCC8 relations are represented as relational
algebra [Bennett et al., 1997] and QSR can be seen as a qualitative Constraint Satisfaction
Problem (CSP) [Davis et al., 1999, Condotta and Würbel, 2007]. The local consistency is
tested by using a path consistency algorithm based on the RCC8 composition table.

Other representations of the RCC8 relations is by using a Galois lattice [Le Ber et al.,
2001]. This type of representation is further discussed in Section 4.2.3.3.
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Figure 3.1: Composition table of RCC8 relations. The symbol * stands for no information.
Taken from [Renz, 2002]. (cf Figure 1.3 for definition of the relations.)

3.2 Reasoning with fuzzy spatial relations based on fusion
operators

We can reason over fuzzy spatial relations to answer questions (ii), (iii) and (iv) discussed
in the introduction. Reasoning with spatial relations in images addresses the problem of
combining spatial information coming from several sources, which can be formulated as a
fusion problem.

In spatial reasoning we use spatial reasoning to combine spatial information. For in-
stance, if we want to answer question (iv) it is necessary to combine the fuzzy landscapes
defining each of the regions which represent the regions where the relations are satisfied.
Let I be the image space. Suppose that the fuzzy landscape that defines the relation r1

with reference object a is given by the membership function µr1 over I, and that µr2 is the
membership function over I defining the region of space which satisfies relation r2 when
b is its reference object. Then to determine the region of space where both relations are
satisfied we can use a fusion operator F , such that the region of space satisfying both
relations noted as µr is defined as µr(x) = F (µr1(x), µr2(x)).

There are several possibilities for choosing F . The fusion operators can be classified
into three classes according to their behavior [Bloch, 1996]:

Conjunctive operators: they satisfy F (α, β) ≤ min(α, β) which correspond to a severe
behavior.



114 3. Spatial reasoning

Disjunctive operators: they satisfy F (α, β) ≥ max(α, β) which correspond to an indul-
gent behavior.

Compromise operators: they satisfy min(α, β) ≤ F (α, β) ≤ max(α, β) which represent
a cautious behavior.

In fuzzy logic, conjunctive operators are expressed as t-norms, disjunctive operators as
t-conorms and there is a variety of choices for the compromise operators, for instance the
arithmetic mean (see [Bloch, 1996] for a complete review of fusion operators).Other op-
erators have a variable behavior, depending on the values of α and β. Figure 3.2 shows
an example of fusioning the two spatial relations “Surrounded by a” and “Near b” using
a conjunctive and a disjunctive fusion operators. The region of space with satisfies “Sur-
rounded by a” and “Near b” is shown in Figure 3.2(d), which corresponds to the fusion
using a conjunctive operator. The region which satisfies “Surrounded by a” or “Near b” is
shown in Figure 3.2(d), which corresponds to the fusion using a disjunctive operator.

(a) Original objects. (b) “Surrounded by a”. (c) “Near b”.

(d) Fusion using min operator. (e) Fusion using max operator.

Figure 3.2: Illustration of fusion between spatial relations. (d) and (e) correspond to the
fusion of the relations represented by (b) and (c), using a conjunctive and a disjunctive
operator, respectively.

In images, fusion can be performed at object level or at pixel level. Figure 3.2 shows
an example of fusion at pixel level. Given a set of objects represented by regions, we
can perform fusion at object level. To determine for an object c the degree to which it
satisfies a combination of two relations, we need to perform fusion between the degrees of
satisfaction of each relation. For instance, the degree of satisfaction to which an object c
satisfies a relation r1 when a is the reference object, or a relation r2 when b is the reference
object, is given by:

µra
1∨rb

2
(c) = T (µr1(a, c), µr2(b, c))

where T is a t-conorm representing a disjunctive operator. Two examples of fusion at
object level are illustrated in Section 3.3.

Thus we can conclude, that fusion of spatial relations can be used to address questions
(ii), (iii) and (iv) discussed at the beginning of the chapter. There are other tools to reason
with fuzzy spatial relations, these tools also make use on fusion. For instance in [Bloch,
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2006] the fuzzy spatial relations which are defined through mathematical morphology are
encoded in modal logics using erosion and dilation as modal operators, this formalism
allows to reason on the spatial relations. In [Nempont, 2009] reasoning is performed as a
CSP, also involving fusion of spatial relations.

3.3 Illustrative examples: Spatial reasoning for object recog-
nition

In this section we present two examples of how we can combine spatial relations in order to
extract patterns on images. This combination is done through fusion of spatial relations,
as described in Section 3.2.

The first example deals with urban patterns, in particularly, the detection of residential
areas composed of organized houses. In these areas the following spatial relations are
satisfied:

• Houses belong to aligned groups of houses.

• The aligned group of houses is parallel and near another group of aligned houses.

Therefore, to determine the residential areas we propose to determine the groups of aligned
houses using the algorithm presented in Section 2.2, then for each group we evaluate the
degree to which it is “parallel to” and “near” another group by using a t-norm to fusion the
satisfaction degrees of both spatial relations.

The method for determining the globally aligned groups of objects was applied on the
segmented buildings of Figure 3.3. The buildings were obtained by using the method
described in [Poulain et al., 2009]. For the extraction we used a β = 0.85 and a Voronoi
neighborhood constrained by a distance of 30 pixels equivalent to approximately 21 m,
since we are interested in residential areas, where houses are usually close to each other.
Some of the globally aligned groups of houses are shown in Figure 3.3(c). It is not possible
to show all the aligned groups found by the algorithm since there are objects which belong
to more than one group. The obtained groups contain few elements due to the small
neighborhood used to extract them.

From the obtained globally aligned groups of houses we extracted the groups which are
“parallel to” and “near” another group or which have a group “parallel to” and “near” it
with a degree greater than or equal to 0.8. We modeled the “near” relation by constructing
a fuzzy landscape using Equation 1.24 using d1 = 0 and d2 = 50 pixels ≃ 35m.
The groups of houses that are aligned, which are “parallel to” and “near” another group are
shown in Figure 3.3(d). This example demonstrates that by making a conjunctive fusion
of three spatial relations it is possible to find the pattern that we searched on the image.

The second example deals with the elimination of false detections of roads in urban areas
obtained from a road extractor [Poulain et al., 2010]. Figure 3.4(a) shows the result of a
road detection algorithm. Some of the obtained roads are false detections. To eliminate
them, we use the following spatial knowledge: in residential areas, aligned groups of houses
are “near” and “parallel to” roads. Thus, we first extract the groups of globally aligned
houses and for each road we evaluate the degree to which a group of aligned houses is
“near” and “parallel to” the road. However, some of the roads extracted in Figure 3.4(a)
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(a) (b)

(c) (d)

Figure 3.3: (a) Original image. (b) Segmented buildings. (c) Some of the globally aligned
subsets of houses found by the algorithm with a degree of alignment greater than 0.85. (d)
Clusters of houses belonging to globally aligned groups which are “parallel to” and “near”
other groups with a degree greater than or equal to 0.8.

correspond to roads segments, thus we are also interested in finding the roads which are
“near” and “parallel to” an aligned group of houses. Therefore combine in a disjunctive way
the degree to which a road is parallel and near an aligned group of houses and the degree
to which a road has an aligned group of houses “parallel to” and “near” it. Notice that the
two conditions are not the same due to the non symmetry of the “parallel to” relation.

Considering that the groups of aligned buildings which are parallel to roads do not
have to satisfy the constraint of buildings being “near” each other, we extracted the groups
of aligned buildings using β = 0.85 and a Voronoi neighborhood constrained by a distance
of 70 pixels equivalent to approximately 49 m. Some of the obtained groups of aligned
buildings are shown in Figure 3.4(b). If we compare the results of Figure 3.4(b) and of
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Figure 3.3(c) we can see that we obtain longer groups, and some of the groups of Figure
3.3(c) are included in Figure 3.4(b). However, when allowing a larger distance between the
members of an aligned group, we are more permissive and therefore we can obtain groups
such as the green group on the bottom right part of the image, which is an aligned group
made of distant objects, and does not represent a meaningful alignment for the description
of the scene.

The resulting roads which are “near” and “parallel to” an aligned group of objects and
which are parallel to the group or which have a group parallel to them are shown in Figure
3.4(c)(we call the conjunction of these two conditions the constraint of parallelism). We are
interested only in the roads on residential areas, since the hypothesis of the constraint of
parallelism is only valid for these areas. Figure 3.5 shows a subregion of the image showing
roads which satisfy the constraint of parallelism. We note that most of the roads which
have a low degree of satisfaction of this constraint are the roads which can be classified
as false detections. However on the bottom of the image we see three false detections
that continue to be detected with a high degree. This is due to the fact that there exist
groups such as the green aligned group in Figure 3.3(c) for which these roads are parallel.
Although there are still some false detections, we can observe that their number has been
significantly reduced. Determining the roads which satisfy the constraint of parallelism can
be seen as an intermediary step for a road and building extraction method. We can further
think of combining the parallel and the alignment relations, with the relation “between” to
determine the region between two parallel groups of aligned buildings where it is possible
to find a road.

Both examples demonstrated that by fusing spatial relations it is possible to extract
high level concepts or improve the results of an algorithm. Moreover, they show the
usefulness of the “alignment” and “parallel” relations.

3.4 Conclusion

In this chapter we have presented some of the tools used to perform spatial reasoning.
We mainly focus on using fusion to combine different spatial relations. We presented two
examples of how it is possible to combine spatial relations by using simple rules such as
“in residential areas houses belong to aligned groups of houses which are parallel to and
near each other”. However, when we have to determine the collection of objects which
need to satisfy a combination of several spatial relations it is necessary to structure that
knowledge, in order to combine all the relations in an efficient manner. In the next part
we focus on knowledge based systems used for image interpretation. These systems rely
on a structured representation of the spatial relations that the objects in the image should
satisfy, and allow us to reason about that knowledge.
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(a) (b)

(c)

Figure 3.4: (a) Original roads. (b) Some of the globally aligned subsets of houses found
by the algorithm with a degree of alignment greater than 0.85. (c) Obtained roads, after
eliminating the roads which were not parallel to a group or did not have a group parallel
to them. The green roads represent the roads which satisfy the constraint of parallelism
with a degree between 0.3 and 0.5, the blue roads between a degree 0.5 and 0.8 and the
red roads between a degree of 0.8 and 1.0.
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(a) (b)

Figure 3.5: (a) Original roads of a subregion of Figure 3.4(a). (c) Obtained roads, after
eliminating the roads which were not parallel to a group or did not have a group parallel
to them. The green roads represent the roads which satisfy the constraint of parallelism
with a degree between 0.3 and 0.5, the blue roads between a degree 0.5 and 0.8 and the
red roads between a degree of 0.8 and 1.0.
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Part II

Satellite image interpretation
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Chapter 4

Knowledge based image

interpretation: an overview

One of the main problems studied in computer vision is the description of the content of
images. This problem has been addressed for different types of images: natural, medical
and Earth observation images, among others. In this chapter we introduce what is image
interpretation within the context of this thesis (Section 4.1), focusing particularly on the
main related issues encountered in the interpretation of Earth observation images. Finally
we present some of the methods proposed in the literature for image interpretation.

4.1 Introduction

Image interpretation can be defined as the extraction of semantics from an image. This
means recognizing the different parts which compose the scene, understanding their spatial
organization and constructing a description of it1. The description of the scene does not
necessarily comprise all the objects nor all the spatial relations that appear in the image,
but only the ones which carry a meaningful information about it. Deciding whether a piece
of information is meaningful or not depends on the objective of the description.

Image interpretation is easily performed by humans, nonetheless the details and the
level of the description depend on several factors which are extrinsic to the image. We
explain some of these factors using the image in Figure 4.1, as an example:

Conceptual levels of knowledge: The knowledge of the person allows him to differenti-
ate objects at different detail. For instance, a person who has knowledge in geography
can describe the image as “a satellite image containing an industrial and urban area”.
While a person who does not have this knowledge can describe it as “a satellite image
containing buildings and green zones”.

Contextual information: It refers to the information which it is not observable in the
image but which is relevant for its interpretation [Neumann and Moller, 2008]. For
example, if we know that the image shows a part of London, then we can describe it
as “An image of London and part of the Heathrow airport”.

The vocabulary: Using a different vocabulary to describe the image can result in a dif-
ferent interpretation. For instance, if we have a very basic vocabulary we can describe

1http://www.irit.fr/ACTIVITES/EQ_TCI/EQUIPE/dalle/interpretation.html

http://www.irit.fr/ACTIVITES/EQ_TCI/EQUIPE/dalle/interpretation.html
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Figure 4.1: Example of different interpretations. Image taken from Google Earth.

it as “an image containing buildings, roads, green zones and a part of an airport”.

The objective of the description The vocabulary and the level of detail used to de-
scribe an image will depend on its objective. For instance if the objective of the
description is to show the effects of the airport’s expansion in its surrounding areas,
then the description can be “an image showing the runway of Heathrow’s airport
close to a residential area”.

All these factors demonstrate that on image can have innumerable interpretations. The
difficulty of image interpretation lies in all the imprescindible information beyond the image
which is necessary to perform this task. Thus, even for humans who are able to recognize
objects in an image, the task of image interpretation can be subjective.

To automate the image interpretation task in a system, it is necessary to represent
all the knowledge that is involved when this task is performed by humans. Due to vast
number of factors involved in the image interpretation task, the automation of this process
is limited to a specific domain, and even to particular applications. The knowledge that is
represented in the system should include the contextual information as well as the different
sources of knowledge used to answer the following questions: which are the objects of
interest? how to identify these objects or their parts? and how are these objects or parts
related?
The acquisition, representation and application of these sources of knowledge are what
makes the automatic image interpretation problem very complex, and have led to the use
of knowledge based systems as explained in Section 4.2.

In addition to the difficulties encountered in image interpretation, each domain of
application has its particular characteristics that should be taken into account in the
interpretation. So let us now concentrate on the specific issues encountered on Earth
observation images.
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Characteristics of earth observation images

Earth observation images contain a large amount of information, which is the outcome
of the combination of many different intensities that can represent natural concepts such
as vegetation, geomorphological and hydrological concepts, objects constructed by humans
such as buildings and roads, and artifacts caused by variations in illumination of the terrain
by the Sun, such as shadows [Sowmya and Trinder, 2000]. Due to the diversity of objects
found in Earth observation images, there are different conceptual levels to describe an
image [Guo et al., 2009]:

• individual objects, for instance a house, a tree, a road segment,

• land cover type, for instance water, bare land, vegetation,

• complex or composite objects, which consist of several spatially related individual
objects which form a new semantic concept, for instance an airport, or a harbor.

The conceptual level used to describe the image depends on the objective of the description
as well as the resolution of the image. Moreover, Earth observation images contain objects
of different sizes. Figure 4.2 illustrates the variety of objects which are found in a satellite
image, according to their semantic level and size. The variable size of concepts in an Earth
observation makes it unfeasible to analyze all the concepts of the image at a same scale.
For instance, a building can be identified at a very high resolution using its shape, a city
is better identified at a lower resolution as a texture. Therefore, according to the level of
concept we are interested in, we should choose a better scale of observation. By making a
multi-resolution analysis of the image it is possible to observe different concepts at different
scales, we are interested in the interpretation of very high resolution remote sensing images.
These types of images allow us to distinguish more details than in lower resolution images.

Figure 4.2: Illustration of the different concepts found in satellite images. Image inspired
from [Bordes, 2009].

For instance, high resolution remote sensing images allow us to discriminate individual
objects that make part of complex concepts. However, determining important details to
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extract these objects is a difficult task. Traditional methods using spectral or texture
features in the images are not enough to extract the individual objects. Therefore, these
types of images require to use spatial relations among the parts of the complex concepts,
in order to distinguish the individual parts of complex objects, and eventually the complex
objects themselves.

4.2 Knowledge based systems (KBS)

The important role played by knowledge in image interpretation explains the large devel-
opment of knowledge based systems (KBS) in this domain. Some examples of KBS in
image interpretation are given Section 4.2.3. A review of these types of systems is given
in [Crevier and Lepage, 1997, Sowmya and Trinder, 2000, Le Ber et al., 2006].

KBS are inspired by human reasoning, and consist of representing and modeling the
knowledge relative to a domain. The objective of a KBS is to reason on this knowledge in
order to solve a problem. Some of the problems which are solved by KBS are identifica-
tion, recognition, classification, diagnosis, configuration and planification problems, among
others [Le Ber et al., 2006]. These systems are usually composed of three parts:

Knowledge base: It is a substitute to represent a particular domain. The knowledge of
the domain is represented, as well as the conclusions which can be drawn. The knowl-
edge represented in the knowledge base consists of lexical or ontological knowledge
which includes: the symbols allowed in the representation, the constraints represent-
ing the structural arrangement of symbols and how they are connected, and rules
which represent implicit or general knowledge. There are several knowledge repre-
sentation schemes (see Section 4.2.1) which can be used to represent these types of
knowledge.

Observation base: It contains the data that characterizes the actual problem. It can be
represented using a knowledge representation scheme.

Reasoning components: Process the information of the observation base using the
knowledge base to solve a problem.

In image interpretation we distiguish three types of knowledge that have to be repre-
sented in the system [Matsuyama and Hwang, 1990]:

The image processing knowledge: is used to extract the low level features from the
image and their numerical description, so that they can help identifying the objects
of interest in the image.

The domain knowledge: concerns knowledge about the semantics of the domain of the
image.

Knowledge about the mapping between image features and concepts: it is the
knowledge used to make the correspondence or mapping between the low level fea-
tures into high level concepts of a domain of interest. It is the link between the two
previous types of knowledge. The mapping problem is also known as the semantic
gap [Hudelot et al., 2005].

The advantage of using knowledge based systems is that it is possible to separate all
these types of knowledge or subproblems as it is done in [Matsuyama, 1988, Garnesson
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et al., 1989, Benz et al., 2004, Hudelot, 2005, Maillot, 2005], allowing an application in-
dependent system. It contains knowledge which can be reused to solve other problems.
It allows to have different specialists involved to specify different types of knowledge used
for the interpretation. For instance, the specialist of the domain of application does not
need to have knowledge about the image processing tools used to extract the objects of
the scene.

Other systems such as [Draper et al., 1989] combine these types of knowledge, where the
representation of the objects of a domain also contains knowledge about their extraction.
By combining these types of knowledge we obtain a less complex system. However, this
system is dedicated to only one type of problem. Moreover, it is complicated to add new
concepts to the system, since it is necessary to know the relation between the new concept
and the concepts that already belong to the knowledge base, and the way to extract this
object. Therefore, the systems which combine the different types of knowledge are not
easily expandable to include more information.

In the following we explain in more detail some knowledge representation schemes.

4.2.1 Knowledge representation schemes

Semantic networks and attributed relational graphs: Semantic networks were in-
troduced by [Quillian, 1985]. They consist of a diagram representing connections
(binary relations) between concepts which are represented as nodes. The most com-
mon links are “Is-A” and “A-Kind-Of” between two concepts and “property” link
which assigns a property to a concept. The inference is done by following the links,
which makes it intractable, since sometimes in order to answer a query it is necessary
to consider each node of the semantic network.
Attributed relational graphs are graphs where each edge has a binary attribute and a
value attached to it. The attribute and the value represent the relation between the
objects represented by the nodes and the value of the relation. These types of graphs
have been frequently used to represent spatial knowledge in an image, for example
in [Aksoy, 2006, Petrakis et al., 2002].

Frames: Frames were introduced by [Minsky, 1974]. The objective of frames is to group
all the information concerning a concept. These approaches are closely connected
to object oriented programming. Each frame is a collection of slots, where each slot
contains a value of a characteristic of the object or a pointer to another frame, for
example to specify relations or subparts. The slots can even contain a procedure.
For instance in [Clément and Thonnat, 1990] a network of frames is used to represent
the image processing knowledge.

Semantic networks and frames are not based on logic. This was a criticism to both rep-
resentation schemes [Woods, 1978] because of the lack of precise semantics which leads to
several interpretations that can cause misunderstandings.

Description logics (DL) and Ontologies: Description logics evolved from the seman-
tic networks, frames and predicate logics. They have two components: the TBox,
and the ABox. The TBox concerns the terminological knowledge, that is, the classes
and relations of the domain represented as concepts and roles (equivalent to the
knowledge base). The ABox contains the assertional knowledge about the individ-
uals in terms of the vocabulary of the TBox, where the individuals correspond to
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an instance of a concept (equivalent to the fact base). Let us consider an example
of the type of representations which are possible using DL, presented in [Baader,
2009]: in a conference domain, we may have classes (concepts) like Person, Speaker,
Author, Talk, Participant, PhD_student, Workshop, Tutorial; relations (roles) like
gives, attends, attended by, likes; and objects (individuals) like Richard, Frank and
DL_Tutorial. We can define a speaker as a person that gives a talk, that is:

Speaker ≡ Person ⊓ ∃gives.Talk,

we can say that Frank is a speaker and attends the DL tutorial using the assertions:

Speaker(FRANK), attends(FRANK, DL_TUTORIAL), Tutorial(DL_TUTORIAL),

and state the constraints that tutorials are only attended by PhD students:

Tutorial ⊑ ∀attended_by.PhD_student

and that the relation “attended by” is the inverse of the relation “attends”:

attended_by ≡ attends−1

DL is a very rich representational language that allows defining the classes, relations
and objects of the domain using concepts, roles, and individuals. Moreover, it per-
mits to state constraints using roles and concepts, and to deduce consequences such
as subclass and instance relationships from the definitions and constraints. These
characteristics have led to the popularity of DL in many applications, for instance
the semantic web [Fensel et al., 2005], or image interpretation [Neumann and Moller,
2008]. In particular the specification of ontologies was developed in several domains,
for instance ontologies on medical data [Horrocks et al., 1996, Rosse et al., 2003], on
spatial relations [Hudelot et al., 2008, Schulz and Hahn, 2001], and in multimedia
concepts [Naphade et al., 2006], among others.
Ontologies are defined as a specification of a domain knowledge [Gruber et al., 1995].
The role of an ontology is two-fold [Bateman and Farrar, 2004]: (i) to set a consistent
and well-specified general modeling of the domain, (ii) to support problem solving
and inference within the domain of concern. These objectives are achieved by orga-
nizing the sets containing all the concepts and relations of the domain using a partial
ordering on the concepts and in the relations. Thus, the concept and relation sets
are organized in hierarchies, which allow us to infer knowledge from classes to the
subclasses.

Conceptual graphs: Conceptual graphs were proposed by [Sowa, 1984] and later their
expressiveness was enriched by [Chein and Mugnier, 2008]. Here we will give a quick
overview of conceptual graphs as they are introduced in more detail in Chapter
5. Conceptual graphs are built over a vocabulary V = (TC , TR, I), where TC and
TR correspond to the ontologies representing the set of relations and concepts in the
domain, respectively. The set I which corresponds to a set of names, called individual
markers, is used for denoting specific objects or entities.
A conceptual graph is defined as a bipartite graph G = (NC ,NR, E , l) where NC

denotes the concept nodes, NR denotes the relation nodes, and E is the set of edges.
Relation and concept nodes are labeled by types from TC and TR using the function
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Figure 4.3: A conceptual graph. Image taken from [Chein and Mugnier, 2008].

l. One can indicate that a concept node refers to a specific entity by adding an
individual marker to its label.
An example of a conceptual graph is given in Figure 4.3 (the vocabulary is not
shown). This example was taken from [Chein and Mugnier, 2008]. The concepts of
this graph (represented as squares) are Girl, Boy and Car; the relations (represented
as ovals) are smile, playWith, and sisterOf, and there is an individual Mary which
is represented inside the square after “:”. The graph asserts that: Mary (who is a
girl) and her brother are playing with a car, and that Mary is smiling. Notice that
in a conceptual graph we can use entities which do not have a specific name, as for
example Car and Boy. Additionally, we are allowed to represent relations of any
arity.
The core reasoning operator of conceptual graphs is the subsumption relation between
graphs. It is based on the notion of graph homomorphism. A graph G subsumes
a graph H if there exists a mapping from the nodes of G to the nodes of H, that
preserves the relationships between entities of G, and specializes the labels of entities
and relationships. The notion of graph homomorphism is defined in Chapter 5.
Moreover, the semantics of the conceptual graphs can be mapped into that of First
Order Logic (FOL) [Chein and Mugnier, 2008]. We can describe the conceptual graph
of Figure 4.3 using the following formula:

Φ(G) =∃x∃y(Girl(Mary) ∧Boy(x) ∧ Car(y) ∧ smile(Mary)

∧ sisterOf(Mary, x) ∧ playWith(Mary, y) ∧ playWith(x, y))

Conceptual graphs correspond to a fragment of FOL without functions. Furthermore,
[Chein and Mugnier, 1992, Sowa, 1984] demonstrated that homomorphism is sound
and complete with respect to FOL semantics. However, the decision problem in
this fragment of FOL is NP-complete, and therefore deciding whether a graph G
subsumes a graph H is NP-complete [Chein and Mugnier, 2008]. Nevertheless, it has
been shown that this problem is polynomially equivalent to other problems such as
constraint satisfaction problem [Chein and Mugnier, 2008]. Hence, it is possible to use
algorithms of exponential complexity to determine graph subsumption in practical
applications.
Conceptual graphs have the great advantage of having a graphical representation
which makes them user friendly. Additionally they are logically founded, and this
gives them an intrinsic reasoning mechanism.
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Both DL and conceptual graphs have formal semantics which make them not only appro-
priate for representing knowledge but also to reason about it. In DL we can determine
whether a concept is subsumed by another concept or check whether the knowledge repre-
sented in the ABox is consistent with the one of the TBox. In conceptual graphs we can
reason to decide whether a graph G is subsumed by a graph H or whether a graph G is
valid. Other types of knowledge are the rules.

Rules: They are of the form IF-THEN where the hypothesis IF part is represented as
an aggregation of statements, and THEN represents the consequence. Rule-based
knowledge representation systems are especially suitable for reasoning about concrete
instance data. Complex sets of rules can efficiently derive implicit facts from explicitly
given ones.

We would like to highlight that although we presented the ontologies and the descrip-
tion logics together, we can use other representation schemes to represent the ontological
knowledge. For instance the hierarchies used in the vocabulary of the conceptual graphs de-
scribe ontological knowledge and they are not represented in a DL formalism. In [Dupin de
Saint-Cyr and Prade, 2008] ontologies are presented as graph formulas of proposition logic.
In [Bordes, 2009] the ontological knowledge is represented as a semantic network.

We have presented several representation schemes. Most of them have fuzzy exten-
sions, which allows representing imprecise knowledge. The fuzzy attributed relational
graphs [Chan and Cheung, 2002] are an extension of attributed relational graphs. In this
graph the value of an attribute can be represented as the membership to a fuzzy set.
For DL, the fuzzy DL extension [Straccia, 2006] allows defining fuzzy/vague/imprecise
concepts, and reasoners have been developed, which are able to cope with this impreci-
sion [Konstantopoulos and Apostolikas, 2007, Bobillo and Straccia, 2008, Lukasiewicz and
Straccia, 2008].
Conceptual graphs are extended to fuzzy conceptual graphs [Thomopoulos et al., 2003a,b]
that allow representing fuzzy concepts and markers. Notions such as fuzzy specialization
are used to define the homomorphism between two fuzzy conceptual graphs.

4.2.2 Sources and types of information imperfections

In the context of scene description guided by a model, the different types of knowledge
are subject to information imperfections. We enumerate some of these information imper-
fections which are present in image interpretation problems. We only concentrate on the
cases where a model is used to represent the objects and the spatial relations that should
appear in the scene.

Uncertainty with respect to the model: We are not certain that all the relations
and the objects in the model are always valid. Therefore, there can be missing objects in
the image or objects in the model which do not belong to a real situation. This situation
can be very frequent in models designed to interpret satellite images or natural images,
since there is a variability in the relations and in the objects contained in a complex scene.
Moreover, even if all the objects in the model appear in the image, we are not certain with
respect to the number of instantiations of the objects in the image. For instance, suppose
that we want to find the instantiations of the model in Figure 4.4(a) in Figure 4.4(b). The
model describes the situation of a house adjacent to a road, however due to the shadows
we are not certain that the relation of adjacency is satisfied between the house and road.
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(a) (b)

?

(c) (d)

(e)

Figure 4.4: Examples of sources of information imperfection: (b)Situation where we are
not certain that the objects in the model of Figure (a) appear in the model. (c) Example
of uncertainty with labeling the objects in the image after a segmentation. (d) Example
of uncertainty with respect to the number of instantiations, the situation described by the
model of Figure (a) appears several times in the image. (e) Example of imprecision of
objects.
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This type of situation is also encountered when the knowledge base contains several models
and there is uncertainty with respect to which model better corresponds to the image.

Uncertainty with labeling objects in the image: When labeling the objects in the
image after a segmentation, there can be uncertainty with respect to the label given to a
region of the image. For example, after we perform a segmentation as in Figure 4.4(c) we
can be uncertain on the label that is given to a region.

Imprecision of spatial relations: As discussed in part I, many spatial relations can
be imprecise by nature. Their satisfaction can depend on the context or even on the size
of the objects.

Imprecision of objects in the image: We can find imprecision of the objects on the
images due to the discretization of space (passing form a continuous scene to a digital
image), or due to the processing levels (segmentation). For example, in Figure 4.4(e) a
zoom in the boundary of the building is performed showing that the boundary of the
building is not clearly defined, the pixels bordering the object contain partial volume.

Unknown number of instantiations When we try to instantiate a model in a satellite
image it is very common that the pattern described by the model appears an unknown
number of times on the image. For example, the situation described by the model of Figure
4.4(a) appears several times in Figure 4.4(d).

4.2.3 Reasoning under imperfections

Usually the reasoning strategy depends on the knowledge representation scheme. However,
in the context of scene description guided by a model which describes the spatial structure
of the scene, spatial reasoning should also be considered. Moreover, the reasoning strategies
have to be adapted to deal with the imperfections described above. In the following, we
present some methods for reasoning under uncertainty in the spatial domain. The reasoning
strategies and how the imperfections are represented are discussed. Some of the presented
works can deal with more than one type of imperfection. This is not an exhaustive survey
of the knowledge base image interpretation systems, but the aim here is to give a few
relevant examples.

4.2.3.1 Mapping regions into the concepts of the model

First, we discuss the works that address the problem of mapping regions extracted from
a segmentation into the concepts of the models. This type of approaches should consider
uncertainty with respect to the label given to a region of the image.
[Saathoff and Staab, 2008] developed a system to label regions obtained from a segmenta-
tion of a natural image based on several models. Each model is composed of binary spatial
relations between two concepts representing a typical arrangement of objects in a natural
image, for instance “the sky is above the sea”. The problem of representing the uncertainty
of giving the correct label to a region issued from the segmentation is addressed by defining
a membership function over the set of regions for each concept in the model. The mem-
bership value of each region is set according to the score of a classification. The labeling
problem is formulated as a fuzzy constraint satisfaction problem where the spatial relations
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represent the constraints, the concepts, the variables, and the domain of the variables is
constituted by the image regions. The reasoning is performed by propagation of constraints
(representing the spatial relations) which progressively eliminate the set of possible instan-
tiations for each concept. The spatial relations are represented as crisp spatial relations.
This approach assumes that the initial segmentation is correct. However, using a generic
segmentation is very restrictive since we are considering that it is possible to extract the
objects of interest by just using a generic partition criterion such as homogeneity, regularity
or coherence in their texture. Moreover, these generic criteria do not allow discriminating
between objects belonging to different semantic concepts. For instance, the roof of a build-
ing is more homogeneous than a forest when observed in a satellite image. Thus the object
of interest can be divided into several regions or two objects can be included in the same
region. Therefore, it is unfeasible to extract objects having different visual attributes, as is
the case of objects belonging to semantic concepts, by just considering a generic criteria.
To overcome the problems yielded by a generic segmentation it is possible to: (i) include
high level knowledge in the segmentation, (ii) use a multi-scale segmentation or (iii) con-
sider an over-segmentation of the image where a concept of the model is represented by
several regions. The first possibility is discussed later when we address the systems which
address the problem of image segmentation and mapping.
Using a multi-scale segmentation allows to have several segmentations of the same image,
where each one considers different values of the partition criteria. For example, this allows
extracting a stack of regions corresponding to different homogeneity criteria. Thus the
regions obtained correspond to regions satisfying different visual attributes, and therefore
they can correspond to objects belonging to different semantic concepts.
The system eCognition [Benz et al., 2004] has adopted this approach. An initial multi-scale
segmentation through region merging is performed, where the merging criterion is based on
homogeneity, shape regularity and size. A fuzzy classification is used to label the regions.
This classification is performed by the application of fuzzy rules, for instance “if feature x
is low then the region should be assigned to landcover type W”. Where “low” is defined by a
fuzzy set over the domain of the feature x. The feature x can be a spectral index or a shape
feature. Once all the classification rules have been applied, each region is assigned with
the label for which it has the highest membership value. Then it is possible to apply rules
containing crisp spatial relations to refine the classification results. For example in [Liu
et al., 2008b] the system is used to identify cars on a road, so first the road and the cars are
identified by using their shape, and then, rules like “cars are adjacent to the road” or “cars
are surrounded by road” were used to refine the classification. This approach considers the
inconvenients of using a generic segmentation and performs a multi-scale segmentation.
The uncertainty of giving the correct label to the regions of the image is also considered.
However, decisions about the classification are made very quickly, since the uncertainty of
the objects is not considered when performing the spatial reasoning.
The other alternative to get around the generic segmentation problems is to perform an
over-segmentation of the image. By performing an over-segmentation, the correspondence
between the model and the regions of the image is not one to one, but a group of regions
can represent an instantiation of a concept. This approach was studied in [Deruyver and
Hodé, 1997, Deruyver et al., 2009, Perchant, 2000]. [Perchant, 2000] proposes to use a
fuzzy homomorphism between a graph model represented as an ARG and the graph rep-
resenting the regions obtained from the over-segmentation. The regions of the image are
represented by a fuzzy attributed relational graph which includes information about the
satisfiability of the spatial relations represented as fuzzy relations between the regions and
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the membership of belonging to a class of objects. The fuzzy homomorphism allows a node
in the graph model to correspond to several regions in the image. Different optimization
methods were proposed to obtain the homomorphism, such as genetic algorithms [Perchant
et al., 1999], estimation of distribution algorithms [Bengoetxea et al., 2002] or tree search
[Cesar et al., 2005].
[Deruyver and Hodé, 1997, Deruyver et al., 2009] proposes to represent the knowledge
about the model and the regions obtained from the over-segmentation of the image as
conceptual graphs. The spatial relations are represented as crisp ones. The problem of
labeling the regions in the case where there is complete certainty about the concepts and
relations which appear in the model is discussed in [Deruyver and Hodé, 1997]. The map-
ping between the concept nodes of the model and the regions is an homomorphism which is
determined by formulating the problem as a CSP. However, when modeling the problem as
a CSP it is not possible to instantiate a concept node of the conceptual graph as a group of
regions. Therefore, they introduced the bi-level constraints in which one level contains the
classical constraints between the nodes of the graph that should be satisfied by the objects,
and the other level contains the intra-node constraints describing the relations between the
subparts of the objects. An extension for solving CSPs with a bilevel approach is proposed
in [Deruyver and Hodé, 1997]. In [Deruyver et al., 2009] an interesting representation of
uncertainty with respect to the model is proposed. This uncertainty is studied in three
cases:

1. It is known that there are data (objects or relations) that are missing in the image.

2. It is known that there are additional data in the image.

3. It is not known whether there are missing or additional data in the image.

To deal with these situations two weak arc consistency notions are introduced: quasi-
arc consistency and indirect arc consistency. When there is knowledge about missing
data in the image, a constraint relaxation is proposed leading to the quasi-arc consistency
definition. This relaxation is introduced by adding a function Relax defined over the
concept nodes of the model graph. For every conceptual node i in the graph, the value
Relax(i) represents the number of allowed relaxations of constraints associated to the node
i, that is, the number of constraints which are not satisfied. The second case is handled
under the hypothesis that the insertion of new data has a minimum effect on the initial
graph, and that the new relations are linked to at least one of the initial conceptual nodes.
This leads to the notion of indirect-arc consistency. In the algorithm used to solve this
type of constraints it is observed whether the regions or groups of regions representing two
concepts i and j which are related in the conceptual graph are directly related or indirectly
related through an object k. Two nodes i and j are indirectly related by a node k if i is
related to k and j is related to k. Finally, the third case is handled by increasing the
Relax value of each concept node iteratively until a solution is obtained. The uncertainty
with respect to the model is considered in the reasoning by the introduction of the Relax
function and the indirect arc-consistency. The representations proposed in this work allow
to make the decision even when there are objects missing in the image, or when there is
an unexpected object in the image. In the case where there is an unexpected object in the
image it is not necessary to specify any information about the object.
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4.2.3.2 Image processing and mapping problems

In [Bloch et al., 2003, Colliot et al., 2006, Nempont, 2009] the segmentation and interpreta-
tion problems are addressed simultaneously, and the information from the spatial relations
is directly used to help the segmentation process. The imprecision of the spatial relations
is considered by representing them as fuzzy landscapes (see Chapter 1). In [Bloch et al.,
2003, Colliot et al., 2006], the knowledge is represented as a hierarchical ARG and the
interpretation/segmentation are performed by a sequential search. Starting from a struc-
ture which is relatively easy to identify, the method searches another structure using its
geometric properties and the spatial relations with the previously recognized objects. This
method is performed iteratively. Unfortunately, the order of recognition in this method is
done empirically depending on the difficulty of recognizing a structure, and it is possible
that the information to recognize a structure is not sufficient. An extension of this ap-
proach consists of learning the order in a graph reasoning scheme [Fouquier et al., 2008].
In [Nempont, 2009], the model is also given as an ARG and the imprecision on objects
is taken into account. The problem is expressed as a Constraint Satisfaction Network,
and it is assumed that all the objects that appear in the model also appear in the image.
Every object is represented by means of two regions in the image, the upper region which
represents the possibility and the lower set which represents the necessity. The set interval
formed by the upper and lower sets is reduced using local consistency techniques by taking
into account the fuzziness of the spatial relations. By expressing the problem as a Con-
straint Satisfaction Network not only the knowledge about the spatial disposition about
the objects in the image and their properties are taken into account to solve the problem,
but also the structure of the whole network.
These approaches are innovative in the sense that they use the spatial relations as another
source of information to guide the segmentation and not only to verify at the end if the
segmentation is correct. Moreover, they consider the imprecision with respect to spatial
relations as well as the imprecision of objects in the image.

4.2.3.3 Categorization problems

In this section we discuss some of the classifications where there are several models in the
knowledge base and the objective is to determine which is the model that better describes
the situation.

In [Hudelot et al., 2005, Maillot and Thonnat, 2008] the problem of image interpre-
tation is represented by using the following three levels: the image processing problem,
the mapping, and the semantic interpretation problem. In [Maillot and Thonnat, 2008]
the problem of isolated objects categorization is treated. For this, a visual concept ontol-
ogy is proposed. This ontology contains visual descriptors such as geometric properties of
objects, texture, color, and spatial relations. This ontology allows describing the domain
concepts in terms of visual descriptors. A learning stage is performed to learn these visual
descriptors in the image, using machine learning techniques. This makes a link between
low level descriptors and high level ones. The categorization of a new image is done by
segmenting the image and trying to classify a subpart of the object. An initial hypothesis
about the subpart of the object is made and tested by evaluating the attributes corre-
sponding to the visual descriptors, and a probability of matching a subpart is obtained.
Then, a global matching is performed by considering the probability of matching the sub-
part. If the global matching fails, then the hypothesis is dropped and a new hypothesis is
proposed, otherwise it tries to identify the other subparts of the object. In this approach
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the spatial relations are used to verify the hypothesis of the objects. However they do not
guide the recognition procedure. In [Hudelot et al., 2005] a similar system is proposed to
perform scene analysis. In this system two ontologies are used to communicate between
the image processing level and the semantic interpretation level. One of the ontologies is
the visual concept ontology of [Maillot and Thonnat, 2008] and the other one is an image
processing ontology. The link between the visual concepts and the image low level features
is done by using fuzzy sets describing the linguistic variables which evaluate the visual
concept. This allows to consider the imprecision of describing the visual attributes of a
concept. However, the spatial relations are still modeled as crisp ones. The interpretation
is performed by making a fuzzy matching between a hypothesis and the model, and finally
by verifying the spatial relations. Using a fuzzy matching between the visual concepts and
the objects allows considering the imperfections with respect to the model. These two
approaches have the originality of introducing the visual concept ontology to reduce the
semantic gap. Both approaches use the spatial relations for verification in the last steps.

[Le Ber and Napoli, 2002] presents a system which recognizes and analyzes spatial
structures on satellite images, by performing a match between the labeled image regions
and the models of landscapes stored in its knowledge base. The knowledge base contains
the vocabulary of a spatial relation hierarchy and a concept object hierarchy organized
using the subsumption relation, and the models of landscapes described in an extension of
DL, which allows relation quantification. The models can represent information like: the
objects of class x satisfy a relation r with exactly one object of the class y, or it satisfies a
relation with at least one object of the class y, or with all the objects of the class y. This
type of knowledge representation is appropriate for describing objects in satellite images
because sometimes the number of times a relation can take place is unknown. The RCC-8
relations (see Section 1.3.1.1) are used to describe the spatial structures. The matching
between the models and the regions is performed using the reasoning mechanisms as in
DL, however in their framework, there are three types of concept specialization which take
into account the subsumption of spatial relations:

• Adding a relation: the class X is specialized into X − EC − Y or X −DC − Y .

• Specializing a relation: the class X − PP − Y specialized into X − TPP − Y .

• Specializing the range of a relation X−PP−Y specialized into X−PP−Y −EC−Z

where EC, DC, PP, TPP correspond to instantiations of RCC-8 relations. The novelty
of this approach is the reification of the spatial relations to reason with them. A similar
approach was used in [Hudelot et al., 2008] when creating a spatial relation ontology,
where spatial relations are considered as concepts. Theoriginal contribution of this work is
that the ontology is enriched with fuzzy representations of concepts, where the connection
between the fuzzy representation of the spatial relations and the linguistic concepts is
explicitly made, allowing to define the semantics of the relations, and therefore to the
reduction of the semantic gap.

4.3 Discussion

We have presented different approaches which address the problem of image interpretation
considering the spatial relations between the objects and taking into account different types
of information imperfections.
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The approaches which perform the tasks of segmentation/interpretation simultaneously
are not directly confronted with the problem of correctly labeling a region. Moreover,
these approaches obtain better results than the ones which separate the problem into a
segmentation followed by an interpretation, because all the spatial information as well
as the geometry and intensity are considered for making the decision, i.e. segment and
recognize a structure. These types of approaches have been applied to the interpretation of
brain and thorax images, which are strongly structured scenes and for which is is possible
to have in advance knowledge about the types of objects that appear in it. Hence, it is
possible to construct models containing all the structures that appear in the scene (in
the case of pathologies can be included in the model too [Atif et al., 2007]), as well as the
relations between them, and therefore allow a very constrained formulation of the problem.

However, in Earth observation images there are several objects which appear in the
scenes and which cannot be predicted and therefore cannot be easily considered in the
model. For instance, if we want to construct a model of an airport, there are airports
which have satellite terminals, other which do not, an airplane can be near a terminal or
on a runaway, according to the size of the airport there can or cannot be an oil storage in
the airport; thus all these variations make the models of structures in Earth observation
images less constrained. Moreover, the number of instantiations of an object in an image
is unknown, for example the number of terminal buildings in an airport is unknown. Thus
if we try to formulate the problem of interpretation using a similar approach as in [Bloch
et al., 2003, Colliot et al., 2006, Nempont, 2009], it is possible that for a given object in the
model, the region of space which represents the conjunction of the relations that should be
satisfied by this object, according to the model, is not sufficiently restricted to contribute
to the segmentation of the object.

An interesting possibility could be to combine the knowledge of extracting several
structures, for instance using an approach as the one proposed in [Hudelot et al., 2005,
Maillot and Thonnat, 2008], and use a segmentation/interpretation approach to extract the
other structures. Although this proposal is a promising approach, knwoledge acquisition
and performing a knwoledge based segmentation is out of the scope of this thesis.

The approaches which perform an over-segmentation of the image, and use spatial rea-
soning to bring together regions to form objects, also need a very constrained formulation
of the model and furthermore they have a high computational cost.

Thus, an intermediary solution is to perform a multi-scale segmentation which allows
to have regions which can be candidates for objects in the scene. It is then not necessary
to have a lot of knwoledge with respect to their extraction procedure. This solution is
subject to the uncertainty of properly labeling the objects in the image, which can be
overcome by using membership functions over the set of regions for each concept in the
model, as in [Saathoff and Staab, 2008]. The membership function can be constructed
using information from a classification procedure or knwoledge about the radiometry of
the concepts. In this thesis, we adopted this type of approach, which is further presented
in the next chapter.

4.4 Conclusion

In this chapter we have presented the notion of image interpretation in the context of this
thesis. Our objective is, giving a model, to determine which are the instantiations of the
model in the image. We highlighted the importance of knowledge in the task of image
interpretation, and the particular difficulties which are encountered in satellite images.
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We presented the main components on a KBS, and focused particularly on the knowledge
representation schemes, and we will refer to these schemes in the following Chapter when
we describe our choice of representation scheme.

We have reviewed some systems which consider spatial organization for the interpre-
tation, and presented how they represent and use this information and the information
imperfections that can take place in the problem. In the following chapter we propose an
approach which takes into account the uncertainty of correctly labeling the regions in the
image, the imprecision linked to the spatial relations and we discuss how to deal with the
uncertainties in the model.
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Chapter 5

A new mapping approach for

satellite image interpretation using a

structural model

A complex scene, as observed in satellite images, is defined as a set of spatially related
objects which have a structural arrangement, and which together form a high level object.
Some examples of complex scenes include functional complex objects, which impose a given
spatial arrangement, such as airports, harbors, train stations, nuclear power plants, toll
gates, stadiums, etc. Other examples concern urban morphologies which can be generally
described as repetitive patterns. Thus, it is possible to describe the spatial arrangement
of these complex objects using a model, which can be used to identify and interpret these
complex objects and their parts.

To interpret a complex scene it is not sufficient to recognize the individual objects that
belong to the scene. The spatial relations are also of prime importance. Furthermore, some
objects in a complex scene cannot always be recognized individually, and often require the
recognition of other objects having a spatial relation with them, and then use the spatial
relation to identify them. The use of spatial relations allows for instance disambiguating the
objects [Rosenfeld et al., 1976]. Moreover, there exist several pattern recognition techniques
which allow us to identify certain classes of objects in the images, for instance vegetation,
water, shadows, buildings, etc. Then, it is interesting to use the spatial relations which are
found in satellite images with respect to these classes (see Part I) to identify the objects
belonging to classes which cannot be easily detected. For instance in a harbor scene, the
sea can be easily identified and we can use this knowledge to identify the boats.

Our objective in this chapter is to use a model which represents the spatial arrangement
of objects in a complex scene in order to detect the scene in the image, and in the case when
it exists, be able to detect its components and identify them using semantical concepts.

In this chapter we focus on satellite image interpretation using such a model. As
mentioned in the previous chapter, the problem of image interpretation can be separated
into several subproblems. Here we only concentrate on the mapping problem and on the
knowledge representation problem. In order to demonstrate that the spatial relations that
we introduced are of interest for solving the problem of satellite image interpretation, we
developed an interpretation system that is presented in the following sections.

In Section 5.1 we introduce the main sources of knowledge of the system and its rep-
resentation. Section 5.2 deals with the mapping problem, in particular we address the
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problem of reasoning in the presence of information imperfections.

5.1 Structural model representation

The scene that we want to find in the image is going to be described through a structural
model containing the spatial arrangement of objects. The representation scheme used for
the structural model should be flexible enough to allow us to represent relations of any arity
as well as groups of aligned objects. For the representation of groups of aligned objects
the following considerations should be taken into account:

• The number of objects in the alignment is usually unknown.

• The group can satisfy spatial relations with other objects, for example a group of
aligned trees parallel to a road.

• Each element of the group can have a relation with other elements. For instance
in the case of a group of aligned houses, each house has a spatial relation with its
shadow.

• There can be spatial relations among the objects of the group. According to the
alignment definition presented in Section 2.2 the consecutive members of the group
have to be “near” each other, thus they are always linked by a distance relation.

Due to these specificities, taking into account groups of aligned objects in the proposed
model will call for specific developments.

5.1.1 Choice of the representation framework: conceptual graphs vs.
description logics

Among the knowledge representation schemes presented in Section 4.2.1, both conceptual
graphs and DL allow us to represent spatial relations of any arity (for the case of DL, we
have to consider spatial relations as a type of concept, as in [Hudelot et al., 2008]). In the
following we present two possible extensions to allow the representation of aligned groups
of objects.

Extending the formalism proposed in [Hudelot et al., 2008] it is possible to represent the
structural model using DL. The main concepts used in [Hudelot et al., 2008] are illustrated
in Figure 5.1. There are two main concepts: SpatialObject and SpatialRelation. For every
object that we want to represent in the model, there exists a corresponding concept which
is a type of SpatialObject, and all the spatial relations that appear in the model are a type
of SpatialRelation. To introduce the notion of groups of aligned objects we first add the
concept SpatialObjectGroup to represent the groups of objects. Then we add the concept
SpatialAlignedObjectGroup which is a type of SpatialObjectGroup. Then to specify the type
of members of the group we introduce the role hasMember. So, for instance, if we suppose
that the concept House has already been defined, then we could define a group of aligned
houses as:

SpatialAlignedHouses ⊑ SpatialAlignedObjectGroup ⊓ ∃hasMember.House

It is possible to add more concepts and roles to this representation to be able to represent
all the considerations that should be taken into account when representing all the possible
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Figure 5.1: Representation of the main concepts of the spatial relation ontology proposed
in [Hudelot et al., 2008] as a Venn diagram. This diagram illustrates the different concepts
and how they are related. “A” is a SpatialObject, it is the ReferenceObject of the Spatial-

RelationWith concept “RightOf_A”. “D” is a SpatialObject which has the property of has
SpatialRelation which is here the relation “RightOf_A”. Image reproduced from [Hudelot
et al., 2008].

situations which can involve a group of aligned objects. However, this construction can be
time-consuming.

On the other hand, conceptual graphs make a clear distinction between factual and
ontological knowledge. The vocabulary of the CG represents the ontological knowledge,
while the sets of graphs represent the facts [Chein and Mugnier, 2008]. Therefore we can
construct a hierarchy of concepts specifying the “is-a” relation between the concepts and
a hierarchy of spatial relations specifying the “is-a” relation between the spatial relations.
Hence, for every structural model that we want to search in an image, we can just create
a graph which represents its structure, using the concepts and spatial relations of the hi-
erarchies. This practical aspect of the conceptual graphs is what made us use them as the
representation scheme for the structural models. Moreover, with respect to representation
issues, DL does not adequately represent objects which are related in a non-tree model,
and therefore are not appropriate for representing objects containing an embedded struc-
ture [Motik et al., 2008], while conceptual graphs do not have any limitation in the shape
of the relational structure of the model. For a complete review about the relations between
conceptual and DL, one can refer to [Chein and Mugnier, 2008, Baader et al., 1999].

5.1.2 Nested conceptual graphs

In Section 4.2.1 we discussed the definition of conceptual graphs. Let us give a proper
definition of conceptual graphs. Conceptual graphs are built over a vocabulary:

Definition 5.1 (Vocabulary [Chein and Mugnier, 2008]). A vocabulary is a triplet
(TC , TR, I) where:

• TC and TR are pairwise disjoint sets, corresponding to a concept and relation hierar-
chies;
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• TC and TR are partially ordered by a KindOf relation and each one has a greatest
element denoted by ⊤;

• in TR we can find relations with an arity greater than or equal to one. Any two
relations with different arity are not comparable;

• I is the set of individual markers, which is disjoint from TC and TR. The symbol ∗
denotes the generic marker.

Definition 5.2 (Conceptual Graph (CG)[Chein and Mugnier, 2008]). A conceptual graph
is a bipartite graph denoted by G = {NC ,NR, E , l} where:

• NC and NR are the concept node and relation node sets, respectively. The set of
nodes of G is equal to NC ∪NR,

• E is the family of edges,

• l is a labeling function of the nodes and edges of G which satisfies:

– A concept node c ∈ NC is labeled by l(c) = (type(c), marker(c)), where type(c) ∈
TC and marker(c) ∈ I ∪ {∗}.

– A relation node r ∈ NR is labeled by l(r) ∈ TR. l(r) is also called the type of r
and is denoted by type(r).

– The degree of a relation node r is equal to the arity of type(r).

– Edges incident to a relation node r are totally ordered and they are labeled from
1 to arity(type(r)).

This definition of conceptual graphs allows us to represent relations of any arity be-
tween the nodes representing the concepts, which is useful to represent ternary relations
such as “between”. The set I is used to represent specific instantiations of the concepts.
However, if we do not want to specify a particular instantiation then it is possible to use
the generic marker.
These types of graphs are appropriate to represent the spatial relations between objects.
However, they cannot represent hierarchically structured knowledge. In [Sowa, 1984] con-
ceptual graphs are extended to nested conceptual graphs which allow representing this type
of knowledge. In this type of graphs, it is possible to represent internal and external infor-
mation, zooming, partial description of an entity, or specific contexts. In a nested concept
graph, the concept nodes can have a conceptual graph contained in them. So, for instance,
if we want to represent a house that is adjacent to a road, and we also want to consider
that the house has a shadow located in a direction of 30◦ with respect to the horizontal
axis, then there are two cases:

1. the shadow can be falling onto the road, and maybe it would not be possible to
distinguish that the house and the road are adjacent. Nevertheless, it is possible to
distinguish that the shadow is adjacent to the road;

2. the shadow does not fall onto road, and in then is possible to distinguish that the
house and the road are adjacent.

Therefore, this knowledge can be represented as a node which represents the group contain-
ing the house and its shadow with their respective relation, and a road which is adjacent
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Figure 5.2: Example of nested graph.

to the group as in the conceptual graph of Figure 5.2. The group is drawn as a box. This
representation covers the two situations, since a group is adjacent to an object if either of
its elements is adjacent to the object.

We will refer to nodes which contain a conceptual graph inside them as complex concept
nodes. To specify that a node is a complex concept node, a third field is added to each
conceptual node, called description. Concept nodes which are not complex will have an
empty description field noted by **.

Definition 5.3 (Nested Conceptual Graph (NCG)). A nested conceptual graph is a bipar-
tite graph denoted by G = {NC ,NR, E , l} where:

• NC and NR are the concept node and relation node sets, respectively. The set of
nodes of G is equal to NC ∪NR,

• E is the family of edges,

• l is a labeling function of the nodes and edges of G which satisfies:

– A concept node c ∈ NC is labeled by l(c) = (type(c), marker(c), description(c)),
where type(c) ∈ TC , marker(c) ∈ I∪{∗} and decription(c) ∈ {∗∗}∪Desc. Desc
is a set containing the labels of the descriptions.

– A relation node r ∈ NR is labeled by l(r) ∈ TR.

– Edges incident to a relation node r are totally ordered and they are labeled from
1 to arity(type(r)).

The set of complex concept nodes of a conceptual graph is denoted by D(G). The
nodes inside a complex concept nodes are called child nodes. A nested conceptual graph
can be recursively defined from a basic conceptual graph (Definition 5.2) by adding the
field of description to the labeling of the concept nodes. Another representation for nested
conceptual graphs is a tree of basic conceptual graphs (Refer to [Chein and Mugnier, 2008]
for more information about these representations). The label of a simple node c is written
as type(c) : marker(c), and when the marker of a node is the generic marker ∗ then, for
simplicity the node is labeled as type(c).

To represent the relations between objects inside a complex concept node and concept
nodes outside it we can use a coreference concept. Coreference concepts represent two
concepts which are equivalent and represent the same entity, and they are joined by a
coreference link. It is necessary to use coreference concepts since the knowledge inside
the complex node is contextualized by the hierarchical structure representing the group.
For instance, in Figure 5.3 we added to the representation of Figure 5.2 that the house is
between a green zone and a parking area.

Therefore, we can use nested conceptual graphs to represent groups of objects as com-
plex concept nodes, as well as the relations between them and with objects outside the
group.
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Figure 5.3: Example of nested graph with coreference links, represented as dotted lines.

The connections between a concept node and a relation node are always represented
by an arrow even when the relation is symmetric.

Representation of groups of aligned objects in nested conceptual graphs

We propose to represent a group of aligned objects as a complex concept node with the
description AlignedGroup. In a nested conceptual graph, the number of concepts nodes
inside a complex concept node is known. However, when representing a group of aligned
objects we face the difficulty that the number of objects in an alignment is unknown.
Therefore we propose to represent an aligned group as a complex concept node containing
three distinct elements which are related by a distance relation. For instance, Figure 5.4
represents a group of aligned trees parallel to a road. To represent that they are different
elements we use a different marker to label each element. We use only three elements
to represent a group because every group of aligned objects is composed of subgroups of
three aligned objects. Moreover, the reasoning mechanism of conceptual graphs relies on
graph homomorphisms (see Definition 5.4). Therefore a group of three aligned objects can
be mapped to any subgroup of an aligned group. The distance relation that joins two
elements of the group corresponds to the distance relation used in the alignment definition
(see Section 2.2).

Figure 5.4: Example of a nested conceptual graph representing a group of aligned trees
which is parallel to a road.

To represent a relation between the elements of the group and other objects we use
coreference links. There are two possible types of relation between an object inside a group
and another object outside the complex concept node:

(i) Each element has a relation with another object, for example each tree in Figure 5.4
can have a shadow in a direction of 40◦ with the horizontal, therefore for each tree
there is a shadow.

(ii) All the elements of the group can have a relation with another element, for instance
all trees are topologically surrounded by a region of soil.
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Both cases are shown in Figure 5.5. The first case is represented by using a different
concept node to represent the shadow of each object. For the second case all the objects
are related to one node.

Figure 5.5: Example of a nested conceptual graph representing a group of aligned objects
where the members of the group are in relation with other objects.

In conclusion, the nested conceptual graphs are well adapted to our needs. Moreover,
they allow us to represent groups of objects (which are not aligned) as the one in Figure
5.3. These groups can be also used in the structural models. As we saw in Definition
5.3 the nested conceptual graphs are built over a vocabulary. In the following section we
specify the vocabulary.

5.1.3 Vocabulary

The vocabulary is composed of three parts: concept, relation hierarchies and individual
marker sets.
For our application the concept hierarchy consists of a hierarchy containing the objects
that are found in the scene and which we want to recognize. This hierarchy depends on
the scene that we want to interpret, and will be specified for each scene.

The relation hierarchy consists of a hierarchy of spatial relations (See Figure 5.6). This
hierarchy is based on the hierarchy of spatial relations used in the ontology presented in
[Hudelot et al., 2008], and extended to include the spatial relations that were introduced
in Part I. It does not include the grouping relations, since we proposed to represent
alignment as a group property, and therefore alignment is not considered as a possible
label for a relation node.

Although the group of aligned objects can be related to other objects or groups of
objects, it cannot be the reference object of the “topological surround” and “surround”
relations because it is considered as having a linear shape without concavities. These two
relations require that the reference object has concavities in order to have a satisfaction
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degree greater than zero. Even though the aligned group of objects can be the target
object of a topological line-region relation, we do not consider these relations for these
groups since we have only discussed their extension, but it has not been properly defined
yet. In a similar way, we do not consider topological surround as a relation in which a
group of objects is its target object.

Figure 5.6: Spatial relation hierarchy.

The marker set includes the element ∗ and other markers to represent different objects.
Now that we have presented the representation scheme, we address, in the next section,
the problem of how to map a conceptual graph to an image.

5.2 Mapping a conceptual graph to an image: general prin-
ciple

Figure 5.7: Hypotheses used in the following sections for the mapping problem. The disks
represent the hypotheses for the model and the spatial relations between the objects of
the image. In the left handside we show the situations where we assume that we have a
labeled image and in the right hand side we have an unlabeled image. The methods used
for the unlabeled image case are also valid for the labeled image case.
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To explain the reasoning module of our system we first introduce a solution for a
simple problem with very strong hypotheses and then introduce a more complex problem
by considering more realistic hypotheses. Figure 5.7 shows a schema of the development of
this section, showing different hypotheses that are considered in each subsection. In Section
5.3 we assume that we have a model, for which we are certain that all the relations and
objects of the model appear together. Additionally, we have a labeled image and the scene
is described as a basic conceptual graph (no complex concept nodes) where the relations
between the objects of the image are evaluated as crisp binary or ternary relations. This
section is illustrative, and its objective is to introduce the tools used to solve the mapping
problem. In Section 5.4 we change the hypothesis of crisp relations to relations which
are represented using fuzzy models. Also, the structural model of the scene is a nested
conceptual graph with complex concept nodes. These hypotheses are more realistic and
consider the imprecision attached to the semantics of the relations. In Section 5.5 we
consider an even more realistic situation where all the above hypotheses about the spatial
relations and the model continue to be valid, and additionally we suppose that we have an
unlabeled image. When having an unlabeled image one of the difficulties lies in properly
segmenting the image and correctly labeling each region. Therefore, once we overpass
this difficulty the problem is similar to the one when we have a labeled image. Finally,
in Section 5.6 we consider the uncertainties with respect to the model. This is of prime
importance as discussed in Section 4.2.2. Figure 5.7 illustrates the fact that these problems
are nested: the methods used to solve the mapping problem for an image with unlabeled
objects are also valid for labeled ones, similarly the ones used for an uncertain model can
be used for a model where there is certainty, and the ones for the case where only fuzzy
relations take place can be used for the crisp ones, since the crisp case is a particular case
of the fuzzy one.

5.3 Simple case

Suppose that we have a basic conceptual graph GM = (NCM
,NRM

, EM , lM ) , composed of
simple concept nodes over the vocabulary V = (TR, TC , {∗}) and a segmented image IL. Let
PL be the set of regions on IL. Suppose that every region Ri ∈ PL is labeled with a concept
type from the hierarchy TC . Our objective is to determine which regions of PL satisfy the
spatial constraints imposed by GM . Using the models of spatial relations it is possible
to represent the spatial knowledge of IL as a conceptual graph GL = (NCL

,NRL
, EL, lL)

constructed over the vocabulary V = (TR, TC ,PL). For the sake of simplicity we assume
that the relations between the objects of the image are represented by crisp models1.

Let Figure 5.8(a) be the image we want to interpret, and Figure 5.8(b) its labeled image
L. Let Figure 5.8(c) be the concept hierarchy TC of the vocabulary V used to construct the
graph GL shown in Figure 5.8(d) which represents the spatial arrangement of some regions
of L. The regions considered in this excerpt of GL are marked in Figure 5.8(b). Notice
that each concept node c of GL is labeled as type(c) : marker(c) where type(c) ∈ TC and
marker(c) ∈ PL. In the example, the elements of PL are labeled as Ri for i = 0, . . . , |PL|.
The mapping problem can be seen as finding the interpretations of GM in GL. Therefore
using GL we can find the instantiations of GM in IL. In the conceptual graph literature,
this is called finding a graph homomorphism or projection. A graph homomorphism is
defined in the following way:

1This can be done by only considering the relations which are satisfied above a threshold for instance
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(a) Example image. (b) Labeled image: The blue regions represent the
sea, the red and orange represent ships or boats and
the yellow regions represent the docks.

(c) Concept hierarchy TC in the context of
harbors.

(d) Conceptual graph representing the spatial orga-
nization of some elements of Figure 5.8(b).

Figure 5.8: Image, concept hierarchy and conceptual graph used in the interpretation
example.

Definition 5.4 (Graph homomorphism [Chein and Mugnier, 2008]). Let GT =
(NCT

,NRT
, ET , lT ) and GH = (NCH

,NRH
, EH , lH) be two conceptual graphs defined over

the same vocabulary V = (TR, TC , I). An homomorphism π from GT to GH is a mapping
from NCT

∪NRT
to NCH

∪NRH
, which satisfies:

• ∀(r, i, c) ∈ GT , (π(r), i, π(c)) ∈ GH ,

• ∀e ∈ NCT
∪NRL

, lH(π(e)) ≤ lT (e).

where (r, i, c) ∈ G represents the edge labeled i between a relation r and a concept c, which
means that c is the i-th argument of r.

The first condition of Definition 5.4 ensures that if a node c is a reference element of
a relation r, then its image denoted by π(r), is the reference of the relation π(r), which is
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the image of the relation r. The same happens for the target objects. This also guarantees
that relation nodes are mapped to relation nodes and concept nodes are mapped to concept
nodes.
The second condition establishes that the label of a concept of GT should be greater than
or equal to the label of its corresponding concept in GH , the order used in this comparison
being the order of the hierarchy TC . This condition must be also satisfied by the relation
nodes with respect to the order of TR. The homomorphism emphasizes the use of a
vocabulary, the second condition depends on the order used over TC and TR. To apply a
graph homomorphism in our case, it requires that both conceptual graphs are built over
the same vocabulary, that is V = (TR, TC , {∗} ∪ PL).

Figure 5.9 shows a graph model GM (on the left) and the conceptual graph of Figure
5.8(d) (on the right). This figure illustrates that there are three possible graph homomor-
phisms.

Boat:R2Boat:R4

Ship:R3

Dock:R5

Sea:R1

AdjacentAdjacent

Adjacent

AdjacentAdjacent

Adjacent

Dock:R6

Go Into

Surround
Ship:*

Dock:*

Sea:*

Adjacent

Adjacent

Boat:R7Adjacent

Figure 5.9: Illustration of graph homomorphism. Each color represents a graph homomor-
phism from GM to GL.

Using homomorphisms to map the two graphs permits one graph model to be mapped
to several instantiations of the image. This is very useful in the case of satellite images,
since most of the time the number of instantiations of a concept in an image is unknown.
For instance, in the harbor scene, we do not know in advance the number of docks which
are present in the image. Thus, it allows us to represent the spatial structural knowledge
without the need of specifying the number of instantiations.

Notice that in this approach we use two types of reasoning. The first one is the spatial
reasoning used over the image to determine and represent its spatial knowledge. The
second one is over the hierarchies TC and TR by using the relation IS-A-KIND-OF. This
second type of reasoning allows to replace a concept or a relation by its descendants in the
hierarchy. This type of reasoning is used when reasoning with ontologies or hierarchies as
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in [Dupin de Saint-Cyr and Prade, 2008, Metzger et al., 2003].
To find a graph homomorphism there are several algorithmic possibilities (see [Chein

and Mugnier, 2008] for a review). One possibility is to express the problem as a Constraint
Satisfaction Problem (CSP), where the relations represent the constraints and the concept
nodes represent the variables of the CSP, and the values of the CSP are the regions of the
image. By representing the graph homomorphism problem as a CSP we can take advantage
of all the work that has been developed to find a solution of a CSP in an optimal way. In
Section 5.3.1 the CSP and their solving strategies are introduced.

5.3.1 Constraint Satisfaction Problems (CSP)

Constraint Satisfaction Problems are a generic framework for expressing and solving prob-
lems whose aim is to find one or all solutions to a set of constraints. A constraint represents
a relation, and a constraint satisfaction problem states which relations should hold among
a given set of decision variables. A solution of a CSP is an assignment of values to all the
variables that satisfy all the constraints. The CSP framework has been used to represent
real world problems in different application areas, such as artificial intelligence, operations
research, scheduling, supply chain management, graph algorithms, computer vision and
computational linguistics, among others. For instance, in computer vision [Waltz, 1975,
Rosenfeld et al., 1976] the problem of annotating geometrical figures according to a graph
model is implicitly formulated as a CSP, where the checking of local consistencies led to the
removal of inconsistent annotations. Other examples are [Tenenbaum and Barrow, 1977,
Deruyver et al., 2009, Saathoff, 2006, Dasiopoulou et al., 2008, Saathoff and Staab, 2008]
where a CSP is used to label the regions of an image according to a model. [Nempont,
2009] uses a CSP formalism to determine the region of an image where it is possible to
find a region representing an object of a model.
A CSP is defined by a triplet P = 〈X ,D, C〉 [Bessiere, 2006] where:

• X = {x1, x2, . . . , xn} is a set of n variables. Each variable represents a characteristic
of the objects of the real problem;

• D = {D1, D2, . . . , Dn} is a set of n domains. Each domain Di is associated with the
variable xi and represents the set of values or states which can be assigned to xi.
The size of the largest domain of D is denoted by d;

• C = {C1, C2, . . . , Ct} is a set of t constraints. A constraint Ck is defined through a
pair 〈Rk, Sk〉, where Rk is a subset of the Cartesian product of the domain of the
variables in Sk ⊆ X . The arity of a constraint Ck is equal to the number of variables
involved in it. We denote by r the maximum arity of the constraints of P.

The CSP with r = 2 are called binary CSP, and are frequently represented as a graph,
where the edges of the graph represent the constraints and the vertices the variables. We
call A = {a1, a2, . . . , an} a solution of a CSP P if every ai ∈ Di and for each Cj ∈ C its
corresponding relation Rj holds on the projection of A onto Sj . We denote the projection
of A onto a variable i by A ↓i and onto a set of variables S by A ↓S . The set of all solutions
of a P is denoted by SolP . We say that P is consistent if SolP 6= ∅.

Different problems can be associated to a CSP P = 〈X ,D, C〉, some of them are:

(i) Determine whether P is consistent.

(ii) Search a solution to P, that is search A ∈ SolP .



151

(iii) Find the number of solutions.

(iv) Find the set of solutions SolP .

Determining whether a CSP is consistent is an NP-complete decision problem, and
finding a solution is NP-hard. The size of the research space of a CSP is equal to Π1≤i≤n|Di|
[Condotta and Würbel, 2007]. The problem of consistency is usually relaxed by defining
local consistencies, and this methodology is used in the filtering strategies, as we will see
in the following paragraphs.

To find a solution to a CSP there are two basic types of procedures:

Search procedures: They consist of exploring one by one every combination of the do-
main of each variable and rejecting those combinations which do not satisfy one of the
constraints. They are usually solved using backtracking and/or branch and bound
algorithms. The conjunctive nature of the CSP ensures that this type of procedure
always finds a solution when there exists one.

Inference or filtering: They correspond to algorithms used to simplify the CSP and to
reduce the number of unnecessary explorations in the search procedures. They consist
of reducing the domain of the variables by applying local consistency algorithms.

Usually a filtering procedure is applied followed by a search procedure.
In the following we describe in more detail the different types of local consistencies and
some of the algorithms that have been proposed to solve them.

Consider a CSP P = 〈X ,D, C〉 as defined above. The different types of local consisten-
cies are:

Node consistency: Let Ck denote the unary constraint for the variable xi. Then P is
said to be node consistent if Di ⊆ Rk. A CSP can be made node consistent by
replacing, for each variable xi, the domain Di by Di ∩Rk.

Arc consistency: This is the most common type of consistency. This type of consistency
was first defined for binary CSP. The name “arc” refers to the directed edge in the
constraint graph. Let Ck denote a binary constraint between the variables xi and xj .
We say that the arc (i, j) is consistent if for every ai ∈ Di, there is a corresponding
bj ∈ Dj such that (ai, bj) ∈ Rk. A CSP network is arc-consistent if all its arcs are arc-
consistent. The notion of arc consistency can also be applied to n-ary networks, by
defining arc-consistency on the domains of the variables [Chein and Mugnier, 2008].
Given a n-ary constraint Ck, and a variable xi ∈ Sk, we say that the domain Di of
the variable xi is arc-consistent relative to the constraint Ck, if Di 6= ∅ and for every
v ∈ Di, there exists a tuple A ∈ Rk such that A ↓i= v. A domain Di is arc-consistent
if it is arc-consistent relative to all the constraints in C. P is arc-consistent if all its
domains are arc-consistent.
A CSP P can be made arc consistent by deleting for each variable xi all the elements
v ∈ Di for which there does not exist a corresponding tuple A ∈ Rk such that A ↓i= v.
There are several algorithms for obtaining an arc-consistent CSP; the most simple
one is AC-1 [Mackworth, 1977] which checks all the domains. The AC-2 algorithm
[Mackworth, 1977] consists in removing arc inconsistencies which can never be part
of any global solution. When those inconsistencies are removed they may propagate
in neighboring arcs that were previously consistent. Those inconsistencies are in turn
removed until the algorithm converges. The AC-3 algorithm [Mackworth, 1977] is
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a generalization and simplification of AC-2 algorithm. The AC-4 algorithm [Mohr
and Henderson, 1986] is again a generalization of AC-3 algorithm, it has a better
worst case complexity than AC-3 algorithm, however it always reaches the worst
case situation [Rossi et al., 2006], that is why the AC-3 algorithm continues to be
one of the most used algorithms. Additionally, the AC-3 algorithm has the advantage
of being independent of the data structure, and can be adapted to constraints of any
arity. Algorithm 2 shows the AC-3 algorithm for n-ary constraints proposed by [Chein
and Mugnier, 2008]. The algorithm keeps record of the constraints which have not
yet been checked or must be checked again because the domain of at least one of
their variables has been modified. These constraints are stored in the ToCheck list,
the algorithm ends when ToCheck is empty. The sub-algorithm Revise (Algorithm
3) makes the domain of the variables in a constraint Ck arc-consistent relative to
this constraint and marks the variables whose domain has changed so that they are
considered for the consistency check of the other constraints.

k-consistency: This is the more general type of consistency. A CSP is k-consistent if for
every tuple of k variables (xi1 , . . . , xik) and for every instantiation A = (a1, . . . , ak−1)
of (k − 1) variables (xi1 , . . . , xik−1

). There exists v ∈ Dk, such that (a1, . . . , ak−1, v)
is consistent. The arc-consistency is equivalent to 2-consistency.

Checking for arc-consistency to reduce the domain of variables is a good compromise
between the reduction of the domain and the computational complexity. Only checking
for node consistency does not make significant reduction on the domain, since no inter-
action between the variables is considered. Searching for k-consistency with k > 3 can
considerably reduce the domain, while on the other hand it has a huge computational
complexity.

As in [Chein and Mugnier, 2008] the graph homomorphism problem is solved by rep-
resenting the problem as a CSP and using arc-consistency algorithm to reduce the domain
of the variables, followed by a backtracking search.

Backtracking Once we have performed the reduction of the domains we can perform a
backtrack algorithm to find the solutions to the CSP. The backtrack algorithm basically
consists of extending a partial assignment of a solution by adding new values to the unin-
stantiated variables. If the partial solution cannot be extended because it has reached an
inconsistency, then we reject the value of the last instantiated variable and try another
value for this variable. This process is often represented as a search tree, where each node
(below the root) represents a choice of a value for a variable, and each branch represents
a candidate partial solution [Rossi et al., 2006].

5.3.2 Illustration

Consider the two conceptual graphs GM and GL of Figure 5.9. Suppose that we want to
find the graph homomorphism from GM to GL using the CSP framework. The relation
nodes of GM correspond to the constraints, the concept nodes of GM to the variables,
and concept nodes of GL to the domain of those variables. In our example there are two
constraints representing the two relation nodes of graph GM . One constraint corresponds
to the adjacency relation between the node labeled Sea and the node labeled Ship, which we
call Adjacency1. The other constraint is the adjacency relation between the node labeled
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Input: A constraint network P = (X ,D, C)
Output: Computes the arc-consistent closure of P if it exists, otherwise returns

Failure
ToCheck ←− C ;1

while ToCheck 6= ∅ do2

Select Ck from ToCheck;3

foreach xki
∈ Sk do4

// Marked as false in the vector. Change all the variables

which belong to the domain of Ck

Changed[ki]←− false5

end6

result←− Revise(Ck) ; // see Algorithm 37

if result = EmptyDomain then8

return Failure ;9

if result = Changed then10

foreach Ck 6= Cl such that there is xj ∈ Sk ∩ Sl and Changed[j] = true do11

ToCheck ←− ToCheck ∪ {Cl} ;12

end13

14

end15

Algorithm 2: Basic algorithm used for arc-consistency checking.

as Ship and the one labeled as Dock, which we denote as Adjacency2. The set of variables
is X = {Sea : ∗, Ship : ∗, Dock : ∗} and the initial domains are:

Domain Ship Domain Sea Domain Dock
Boat: R2 Sea: R1 Dock: R5
Ship: R3 Dock: R6
Boat: R4
Boat: R7

The constraints of the problem are:

Constraint Adjacency1 Constraint Adjacency2
Sea Boat Boat Dock

Sea: R1 Boat: R2 Boat: R2 Dock: R5
Sea: R1 Ship: R3 Ship: R3 Dock: R6
Sea: R1 Boat: R4 Boat: R4 Dock: R5
Sea: R1 Boat: R7

This CSP problem is not arc-consistent, since there is no corresponding value in the
domain of Dock : ∗ which is related to Boat : R7. To make the CSP arc consistent we apply
the algorithm AC-3. When we revise the constraint Adjacency2, we remove Boat : R7 from
the Ship : ∗ domain, and then the CSP becomes arc-consistent.

Now that the problem is arc-consistent, we can proceed to find the set of solutions.
This is done by a backtracking procedure. Figure 5.10 illustrates the backtracking search
tree for this example. First, we initialize a partial assignment of a solution by selecting
the region R2 as a possible instantiation of the variable Ship. Then we add R5 for the
instantiation of the variable Dock. The partial solution continues to be consistent, since the
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Input: A constraint Ck

Output: Makes Ck arc-consistent if possible and marks variables whose domain
has changed; returns EmptyDomain if a domain has been emptied,
NoChange if no domain has been modified, otherwise Changed

// Remove from Rk values which have been suppressed from domains

foreach variable xki
∈ Sk do1

remove from Rk every tuple A such that A ↓ki
6∈ Dki

2

end3

// Make domains arc-consistent with respect to Ck

result←− NoChange4

foreach variable xki
∈ Sk do5

foreach v ∈ Dki
do6

if ∄A ∈ Rk such that v = A ↓ki
then // v has no support in Rk7

remove v from Dki
;8

if Dki
= ∅ then9

return EmptyDomain;10

else11

result←− Changed12

Changed[ki]←− true13

14

15

end16

end17

return result;18

Algorithm 3: Revise algorithm, sub-part of algorithm 2.
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Figure 5.10: Backtracking search tree for example CSP.

relation Adjacency2 between R2 and R5 is satisfied. Finally we add R1 as the instantiation
of the Sea variable. This assignment is complete and is consistent, therefore it is one of
the solutions. Now we start another partial assignment by backtracking from the last
solution and keeping all the elements equal to the last obtained solution except the last
assigned variable, which is assigned with another value of its domain. However, since the
Sea domain only consists of one value, there are no other possibilities, so we backtrack
to the second to last assigned value and replace the instantiation of Dock by R6. This
partial assignment is inconsistent since it does not satisfy the Adjacency2 constraint, so the
algorithm backtracks and tries another value for Dock. Since all the domain of dock has
already been explored in this branch, then we backtrack and try another partial solution
using R3 as an instantiation of Ship. This procedure is continued until the backtracking
tree has been revised.

Finally, we obtain that Sol(P) = {{Sea : R1, Boat : R2, Dock : R5}, {Sea : R1, Boat :
R4, Dock : R5}, {Sea : R1, Ship : R3, Dock : R6}}. These three sets of solutions corre-
spond to the configurations of the model. Since the model represented the spatial arrange-
ment of a habor, we can conclude that the image contains a habor.

5.3.3 Discussion

In this section we presented a methodology to find the instantiations of a graph GM in an
image IL based on the work of [Chein and Mugnier, 2008]. This problem was represented
as a CSP, where the set of variables corresponds to the set of concept nodes in GM , the
domain of variables are the regions of the image and the relation nodes are the constraints.
The relation nodes are the spatial relations that we want to verify in the image. For every
variable xi, corresponding to a concept node c, the domain Di is composed of all the regions
which have a label type less than the type of c. These regions are the candidates for being
an instantiation of c.

Due to the CSP formalism it is not necessary to compute the graph of the labeled
image IL, when we want to verify if a constraint Ck, corresponding to a relation node
of GM , is satisfied in the image. We only need to observe if the relation is satisfied
between the domains of the variables involved in the constraint, and these domains are
sets of regions of the image. Thus, it is not necessary to compute all the possible relations
between the regions but only those relations which appear in the graph model GM . For
instance in the situation of Figure 5.9, the relations Surround or GoInto that appear in
the graph GL of our example are not evaluated, since they do not provide any information
to determine the instantiations of GM in IL. Therefore, the CSP formalism allows us to
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find the instantiations of the concepts directly in the image, and it is not necessary to
perform the step of the graph creation representing all the possible relations that appear
between the regions of the image. Computing only the relations which appear in the graph
model is more efficient than computing all the possible relations.

5.4 Including fuzzy spatial relations

As in the previous section, suppose that we have a model GM and a labeled image IL. The
spatial relations that appear among the objects in the image are now represented through
the fuzzy models of Chapters 1 and 2. Also the graph model is a nested conceptual graph
GM , where we can have complex concept nodes representing groups of objects. When the
spatial relations are evaluated as a degree, then determining whether a set of regions of IL

satisfies GM becomes a matter of degree. Therefore, the notions presented in the previous
section need to be revised.

If we continue to represent our problem as a constraint satisfaction problem, we need a
formalism where it is possible to express fuzzy constraints. [Dubois et al., 1996] introduced
the Fuzzy CSP (FCSP) to deal with flexible constraints. Flexible constraints include:
fuzzy relations, soft constraints which express preferences between relations, and prioritized
constraints which express the constraints which can be violated in the case where there
exists a conflict.

The FCSP formalism is well adapted to our problem since it allows us to represent fuzzy
relations. However, the representation of complex concept nodes needs an adaptation of
this formalism that is presented in Sections 5.4.2 and 5.4.3.

5.4.1 Fuzzy constraint satisfaction problems (FCSP)

A FCSP is defined as P = {X ,D, C}, where X and D correspond to a set of variables
and the set of domains, as in a CSP. C = {C1, . . . , Ct} is a set of t flexible constraints.
A flexible constraint Ck is defined through a pair 〈Rk, Sk〉, where Sk ⊂ X is the set of
variables which involve Ck, and Rk is a fuzzy relation over the Cartesian product of the
domains Dk1 × . . . × Dkn

of the variables in Sk. Rk is defined through its membership
function µRk

: Dk1× . . .×Dkn
→ [0, 1] [Dubois et al., 1996]. Moreover, let {vk1 , . . . , vkn

} ∈
Dk1 × . . .×Dkn

, then:

µRk
(vk1 , . . . , vkn

) = 1 means (vk1 , . . . , vkn
) totally satisfies Ck.

µRk
(vk1 , . . . , vkn

) = 0 means (vk1 , . . . , vkn
) totally violates Ck.

0 < µRk
(vk1 , . . . , vkn

) < 1 means (vk1 , . . . , vkn
) partially satisfies Ck.

The consistency of a FCSP is also a matter of degree. Given an instantiation of
{v1, . . . , vn} ∈ D1 × . . . × Dn the degree to which {v1, . . . , vn} satisfies P is given as a
conjunction of the satisfaction of each of its constraints [Dubois et al., 1996]:

Cons(v1, . . . , vn) = min
C̃k∈C

µRk
((v1, . . . , vn) ↓Sk

) (5.1)

where (v1, . . . , vn) ↓Sk
represents the projection of (v1, . . . , vn) onto the set of variables Sk.

The consistency of an instantiation in this context is further discussed in Section 5.4.6.
With the introduction of fuzzy relations in the FCSP model, determining whether a

value v ∈ Di is suitable for representing a variable xi becomes a matter of degree. Then
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we can represent this information as a fuzzy set µxi
over Di:

µxi
: Di −→ [0, 1]

v 7−→ µxi
(v)

where µxi
accounts for the imprecise or incomplete knowledge about xi. The membership

value of v ∈ Di depends on the information that we have about its satisfaction of the
constraints in which it is involved and on its reliability. Initially when we have not verified
which are the constraints that are verified or violated by v, we can consider that µxi

(v) = 1
since we know that v belongs to Di· Subsequently when we have more knowledge about
the degree of satisfaction of the relations which include xi, then the membership function
is affected by this knowledge. We will refer to µxi

as the membership function of the
variables xi.

Most of the definitions of CSP can be extended to FCSP (see [Dubois et al., 1996]).
[Dubois et al., 1996] extend the definition of arc-consistency for binary networks. Given
a FCSP P = {X ,D, C} of binary fuzzy constraints, we say that P is arc-consistent, if for
every constraint Ck involving the variables xi and xj , we have that every u ∈ Di satisfies:

µxi
(u) ≤ sup

(u,v)∈Di×Dj

min[µRk
(u, v), µxj

(v)] (5.2)

This means that the fuzzy set µxi
, representing the possible values of xi, should be included

in the projection on xi of the conjunction of the fuzzy set µRk
with the cylindrical extension

of the fuzzy set µxj
. Alternatively, this can be seen as a translation into fuzzy expressions

of the arc-consistency expression in the crisp case:

∀u ∈ Di ∃v ∈ Dj such that R(u, v)

Moreover, we can also define arc-consistency over the domains, as it was done for CSP
in [Chein and Mugnier, 2008] (see Section 5.3.1). The advantage of defining arc-consistency
over the domains is that it is not only restricted to binary constraints. Let Ck be a n-ary
constraint and xi a variable belonging to Sk. In the crisp case, we say that the domain Di

of the variable xi is arc-consistent relative to the constraint Ck, if Di 6= ∅ and for every
v ∈ Di, there exists a tuple A which satisfies Rk and for which all its members belong to
their respective domains. So we propose to translate this to the fuzzy case as:

µxi
(v) ≤ sup

A=(ak1
,...,akn ):A↓i=v

min[µRk
(ak1 , . . . , akn

), min
j=k1,...,kn

µxj
(akj

)]. (5.3)

The AC-3 algorithm used to compute the arc-consistent closure of a CSP was extended
to the FCSP framework by [Dubois et al., 1996]. However, the algorithm in [Dubois et al.,
1996] only deals with binary constraints. In Algorithms 4 and 5 we propose an extension of
the AC-3 algorithm to deal with fuzzy constraints of any arity. In the following we refer to
this algorithm as FAC-3. This algorithm is based on the algorithms presented in [Dubois
et al., 1996] for FCSP and the algorithm of [Chein and Mugnier, 2008] for CSP containing
constraints of any arity (shown in Algorithm 3). The main algorithm is identical to the one
of [Dubois et al., 1996]. In this algorithm we keep record of the constraints which have not
been revised to ensure that its domains are arc-consistent. When the membership function
of a variable changes, all the constraints related to that variable are added to the check list
so that they can be revised for arc-consistency. The variable ConsSup saves the maximum
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consistency value for a solution of the FCSP P.
We propose a RevisedFuzzyConstraint function which checks constraints of any arity as in
[Chein and Mugnier, 2008] for the crisp case. When calling RevisedFuzzyConstraint(Ck)
the domain of the variables in Sk are made arc-consistent by modifying their membership
functions. For every value v ∈ Di of a variable xi ∈ Sk, the membership value of µxi

(v)
is replaced to the maximum of Equation 5.3. If µxi

(v) is equal to zero then v is removed
from the domain of Di. If µxi

changes, then the variable xi is marked as changed in order
to consider the arc-consistency check with respect to other constraints.

For each variable xi the initial membership function of µxi
is a constant function over

Di equal to one. However, as we have more knowledge about the degree of satisfaction
of a relation which involves xi for the regions in the domain Di, the membership µxi

is
modified to incorporate this new knowledge.

When we evaluate a relation which can be represented as a fuzzy landscape (see Part
I) we will use a mean measure (Equation 1.16) to evaluate the satisfiability of the spatial
relation.

Input: A FCSP P = (X ,D, C)
Output: Computes the arc-consistent closure of P if it exists, otherwise returns

Failure
ConsSup = 11

ToCheck ←− C2

while ToCheck 6= ∅ do3

Select Ck from ToCheck4

foreach xki
∈ Sk do5

Changed[ki]←− false6

end7

result←− ReviseFuzzyConstraint(Ck) ; // see Algorithm 58

if result = EmptyDomain then9

return Failure ;10

if result = Changed then11

foreach Ck 6= Cl such that there is xj ∈ Sk ∩ Sl and Changed[j] = true do12

ToCheck ←− ToCheck ∪ {Cl}13

end14

15

end16

return ConsSup ;17

Algorithm 4: FAC-3 algorithm used for determining the arc-consistency of a FCSP
[Dubois et al., 1996].

The extension of the AC-3 algorithm to fuzzy constraints increases the complexity by a
factor tα, where tα is the number of satisfaction levels used to discretized the interval [0,1]
to represent the satisfaction of the relations and of the membership functions. Therefore
the complexity of FAC-3 is O(tα|C|cdc+2) where d is the maximum length of a domain
and c is the maximum arity of a constraint.
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Input: Ck, Changed, ConsSup
Output: Makes Ck arc-consistent if possible and marks variables whose domain has

changed in the Changed vector
foreach variable xki

∈ Sk do1

remove from Rk every tuple A such that A ↓ki
6∈ Dki

2

end3

Height←− 04

result←− NoChange5

foreach variable xki
∈ Sk do6

foreach v ∈ Dki
do7

newDegree←− 08

foreach tuple A = (ak1 , . . . , akn
) in the domain of Rk such that v = A ↓ki

9

do
eval←− min[µRk

(a1, . . . , akn
), minj=k1,...,kn

µxj
(akj

)]10

height←− max(eval, height)11

newDegree←− max(eval, newDegree)12

end13

end14

if newDegree = 0 then15

Delete v from Dki
16

if Dki
= ∅ then17

return EmptyDomain18

19

if newDegree 6= µxki
(v) then20

Change[ki]←− true21

µxki
(v)←− newDegree22

result←− Change23

24

end25

ConsSup←− min(ConsSup, Height)26

return result27

Algorithm 5: ReviseFuzzyConstraint method.
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(a) Example image. (b) Segmented and manually la-
beled image.

Figure 5.11: Example image and manually labeled image. The labels in Figure (b) are:
green represent the gardens, orange represents the houses, black represents the shadows,
blue the pools, and gray represents the roads.

Illustration of the algorithm
To illustrate how the FAC-3 algorithm works, we are going to search in Figure 5.11(a),

the houses having a pool which is located in the garden at the “back” of the house and
the house has a shadow. There are several ways to describe the spatial organization that
is satisfied between the houses, their shadow, the pool, the garden and the road. One
possible way is given by the conceptual graph shown in Figure 5.12(b), which is built over
the vocabulary shown in Figure 5.12(a). We represented that the pool is at the “back” of
the house through the relation “between”, by saying that the house is “between” the road
and the pool.

(a) Concept hierarchy.

(b) Conceptual graph.

Figure 5.12: Concept hierarchy and conceptual graph describing "the house has a pool in
its garden, the house is between the pool and the road, and the house has a shadow".

To search instantiations of the conceptual graph in the image, we search for the in-
stantiations of the graph on the image shown in Figure 5.11(b) which corresponds to a
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segmentation of Figure 5.11(a) which has been manually labeled. The corresponding CSP
problem is formulated as:

• X = {xshadow, xhouse, xroad, xpool, xgarden} containing the variables representing the
concept nodes of the conceptual graph.

• C = {Cdirection, Cadjacent1 , Cbetween, Cnear, Csurrounds, Cadjacent2}, where Cdirection =

〈µ135̊
direction, {xshadow, xhouse}〉, Cadjacent1 = 〈µadjacent, {xshadow, xhouse}〉, Cbetween =
〈µbetween, {xpool, xroad, xhouse}〉, Cnear = 〈µnear, {xhouse, xpool}〉 , Csurrounds =
〈µsurrounds, {xgarden, xpool}〉 and Cadjacent2 = 〈µadjacent, {xhouse, xgarden}〉. Notice
that there are two constraints representing the spatial relation of adjacency, which
we named Cadjacent2 and Cadjacent1 to differentiate them.

• D = {Dshadow, Dhouse, Droad, Dpool, Dgarden} where Di represents the possible candi-
dates for xi. The regions in each Di are shown in Figure 5.13.

(a) Dhouses (b) Dpool (c) Dshadow

(d) Dgarden (e) Droad

Figure 5.13: Regions in the domains of each variable of the CSP problem representing the
instantiations of the conceptual graph in Figure 5.12 in the image shown in Figure 5.11(b).
(manually labeled)

Table 5.1 shows the evolution of each µxi
over Di for i =

{house, pool, shadow, garden, road} at different iterations after calling ReviseFuzzy-

Constraint. The membership value of a region v ∈ Di is represented by the gray label of
the region. Lighter colors represent a higher membership value.
In the first iteration Cbetween is checked, mainly modifying the membership values of
µxhouses

and eliminating the regions in Dhouse which do not satisfy this constraint. At
iteration 2, the constraint Cdirection is checked, which clearly modifies µshadow. Between
iterations 2 and 7 the constraints Cbetween and Cdirection are rechecked until the mem-
bership values representing the domains of the variables in Sbetween and Sdirection are
arc-consistent with respect to these two constraints. Then in iteration 7 the constraint
Csurrounds is revised which causes the elimination of some elements of Dpool and Dgarden.
The algorithm continues revising all the constraints, until it converges to a solution at
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iteration 32, illustrated in the last row of Table 5.1. µhouses has a high membership value
for those houses which have a pool in the garden at the “back” of the house.

Table 5.1: Evolution of the fuzzy sets µxi
over Di for i =

{houses, pool, shadow, garden, road} when making each Di

arc-consistent.

Iteration µhouses µpool µshadow µgarden µroad

0

1

2

7

10

13

17

24

32
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Algorithm 4 is well adapted to reduce the domains of the variables when we only con-
sider fuzzy relations over simple concept nodes. Nevertheless, when we deal with complex
concept nodes representing groups of regions satisfying certain relations between them, it
is necessary to adapt the FCSP.

The idea of incorporating a formalism to a CSP to deal with groups of objects has
also been discussed in [Deruyver and Hodé, 1997], where the authors propose bi-level
constraints to solve the problem of labelling the regions in an image using a conceptual
graph (only containing simple nodes). In [Deruyver and Hodé, 1997] groups are defined
using an equivalence relation over the set of regions, then each group is a subset of the
members of an equivalence class and each group represents a concept of the conceptual
graph. All the members of a group belong to a same domain. A bi-level constraint consists
of one constraint representing the relations between the groups and a second constraint
representing the equivalence relation between the members of a group. Although the
formalism proposed in [Deruyver and Hodé, 1997] is appropriate for interpreting an image
using a conceptual graph only having simple concept nodes, it cannot be adapted to our
context, because we consider groups of objects which can have several relations between
them and which belong to different domains. Additionally, in [Deruyver and Hodé, 1997],
due to the spatial relations used in their vocabulary, they have the property that a relation
is satisfied between two groups if there exists a member of each group for which the relation
is satisfied. In our case we do not have this property since we are dealing with relations
such as parallelism for which it is necessary to consider the group as a whole, and not
only its members. Therefore, it is necessary to introduce another formalism which is more
appropriate for our context.

We can see the complex concept nodes as having a duality, since they can be seen as a
constraint or as a variable. They are seen as a variable when considered as objects that can
satisfy spatial relations, and they are seen as a constraint when we evaluate the relations or
spatial properties that should be satisfied by the group of objects. Therefore, we propose
to define this constraint/variable by a relation representing the conjunction of all the
conditions that should be satisfied inside the complex concept node, and a membership
degree to the domain of groups which depends on the satisfaction of the conditions inside
the nested node, as well as the satisfaction of the relations of the group with other objects.
In the following, we explain in more detail this conception of the complex concept nodes,
which is an important feature of our contribution. We differentiate between the complex
concept nodes which represent an alignment and those which do not. We refer to the first
ones as alignments and to the latter ones as groups.

5.4.2 Dealing with alignments

For the sake of simplicity, the aligned groups of objects are only considered for objects
belonging to the same concept type. Let xi be the variable representing the type of the
objects involved in the alignment, and let Di be its domain. Let xg denote the variable
which represents the aligned group of objects when seen as a variable, and let Cw represent
the constraint of alignment of the group.

When the group is seen as a variable xg, the domain Dg is a subset of the power set
of Di. For a group V = {v1, . . . , vp} ∈ Dg the membership value µxg(V ) depends on three
factors:
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1. the degree of alignment of V ,

2. the degree of satisfaction of the spatial constraints (spatial relations) that are sup-
posed to be satisfied by xg, and

3. the membership value of its members to Di.

When the groups are extracted we do not have any information about the satisfaction of
the spatial relations which involve V . Therefore, its initial degree of satisfaction is equal
to the conjunction of the condition of being aligned and of the degree of satisfaction that
each vj ∈ V is an instantiation of the concept represented by the variable xi, that is:

µxg(V ) = min[µALIG(V ), min
j=1,...,p

µxi
(vj)] (5.4)

where µALIG is the degree of global alignment given by Equation 2.30. The membership
value µxg(V ) changes as we acquire more information about the membership value of
its members to Di and about the satisfaction degree for V of the relations in which the
instantiations of the variable xg should be involved.

When the group is seen as a constraint Cw, it evaluates the property of alignment of a
group. Remember that every constraint Ck is defined through a pair 〈Rk, Sk〉, where Rk is
the relation that represents the constraint and Sk is set containing the variables involved
in Ck. Usually a relation representing a constraint is defined as a subset of a Cartesian
product of the domains of its variables, and the number of domains and variables is fixed.
However, this is not the case for the constraint Cw, since each group can have a different
number of elements, which is a priori unknown. Therefore, to properly define the relation
representing this constraint, it would be necessary to specify for each n ≥ 3, a relation
with arity n, to define the groups of aligned objects in Dn

i . Due to the lack of knowledge
about the number of elements in a group, we use as a simplification the same notation to
define the relations for each possible arity. Then the degree of satisfaction of the relation
of a tuple (v1, . . . , vn) ∈ Dn

i is equal to the degree of alignment of the set V = {v1, . . . , vn},
and of the conjunction of the degrees µxi

of its elements:

µRw(v1, . . . , vn) = min[µALIG(V ), min
j=1,...,p

µxi
(vj)] (5.5)

where Sw = {xi}, where xi represents the variable of the objects that satisfy the relation
since the relation is only defined over one type of objects. At the beginning both µRw and
µxg are identical. However, as we make Dg arc-consistent with respect to other constraints,
the values of µRw and µxg start to differ. For a group V ∈ Dg, the value µxg(V ) includes
the information regarding the satisfaction of the constraints involving xg, while µRw only
represents the information concerning the satisfaction of the alignment relation and of the
degree of membership of each element v ∈ V to Di. For example Figure 5.14 shows an
example where µRW

= µxg are equal when we do not have any information about the
parallel relation. After we have calculated the degree of parallelism between V and b1, the
value of µxg changes, while µRW

remains the same.
When having a complex concept node representing an aligned group of objects, it is

necessary to consider both degrees µRw and µxg because they represent different types of
information. The membership µRW

remains independent of the relations that the group
satisfies, while the membership value µxg varies according to the interaction of the group
with other elements.
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(a) Conceptual graph. (b) Domains.

Figure 5.14: Illustration of the dual characteristic of the group V of aligned objects.
Let D1 = {v1, v2, v3}, D2 = {b1}. Suppose that for every vj ∈ V we have µx1(vj) =
1.0. Before we have any information about the satisfaction of the parallel relation we
have µx3(V ) = µRaligned

(V ) = 1, where x3 is the variable that represents the group, and
Caligned = 〈Raligned, Saligned〉 is the alignment constraint of the group. Suppose that we
find that µRparallel

(V, b) = 0.3, then the membership value of V belonging to the domain
of x3 becomes µx3(V ) = 0.3, while µRaligned

(V ) = 1.

The dual characteristic of this constraint obliges us to be careful with its evaluation and
it is necessary to evaluate the constraint before it is evaluated as a variable. This precaution
should be considered when searching the arc-consistency closure. Additionally, there are
several considerations that should be taken into account when making Dg arc-consistent.
In the following we discuss these considerations.

Considerations for making the domain of an aligned group arc-consistent

The algorithm presented in Section 2.2 to extract groups of aligned objects allows us
to extract long groups of objects. When we have to determine a group of objects that
satisfies a constraint, we are interested in searching for the longest group satisfying that
constraint. Therefore we propose to find the groups of aligned objects, and, when it is
necessary, to prune the elements of the group, and then find the subgroups which are
aligned until one of these subgroups satisfies the constraint or disappears. If we have a
group of aligned objects V such that µALIG(V ) = α, and suppose we have to eliminate an
element v ∈ V , then an aligned subgroup of V \ {vj} is an aligned group U ⊆ V \ {vj}
such that µALIG(V ) ≤ µALIG(U). We can assume that the orientations of U and V are
very similar.

When considering only some groups of aligned objects to verify the constraints, there
are certain precautions that should be taken into account. First, we will discuss the
considerations dealing with the changes in the membership function µxi

, and then, those
referring to the situation when the group is seen as an object.

A member vj ∈ V no longer belongs to Di

Suppose that there is vj ∈ V which has a zero degree with respect to the membership
function of the variable xi, i.e: µxi

(vj) = 0. By Equation 5.4 we know that this implies
that µxg(V ) = 0. However, it is possible that there is an aligned subgroup U ⊆ V \ {vj}
which is part of a consistent solution. For example, suppose that we want to find the
instantiations of the conceptual graph of Figure 5.15(a) on the image of Figure 5.15(b).
The corresponding CSP problem is formulated as:
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• X = {x1, x2, x3, x4}, where x1, x2 and x3 correspond to the concept nodes of Figure
5.15(a) and x4 corresponds to the alignment variable.

• D = {D1, D2, D3, D4}, where D1 = {v1, v2, v3, v4, v5}, D2 = {b1} D3 = {a1} and
D4 = {V } for V = {v1, v2, v3, v4, v5}.

• C = {Ctopologically_surround, Cparallel_to, Caligned} where Ctopologically_surround =
〈µtopologically_surround, {x3, x1}〉, Cparallel_to = 〈µ||, {x4, x2}〉 and Caligned =
〈µALIG, {x1}〉.

(a) Conceptual graph (b) Domains

Figure 5.15: The element v5 belonging to the group V , formed by V = {v1, v2, v3, v4, v5},
does not satisfy the relation “topologically surrounds” which should be satisfied by all the
members of the group. However, there are subgroups of V which satisfy all the constraints.

Suppose that we follow the same procedure as in the previous section to make the domains
of D arc-consistent. When we check the arc-consistency condition for the domains involved
in Ctopologically_surround we obtain µx1(v5) = 0, and therefore a modification of the fuzzy set
µx1 over D1. Thus, the constraint Caligned has to be checked, because x1 ∈ Saligned. When
we revise Caligned the membership function µx4 is updated, and µx4(V ) = 0. Hence, D4 is
empty and no solution is found. Nevertheless, the group U = {v1, v2, v3, v4} ⊆ V satisfies
the constraints Caligned and Cparallel and all its members satisfy Ctopologically_surround, thus
it makes part of a consistent instantiation. Therefore, eliminating V without considering
if any of its subgroups satisfied the relations was a hurried decision. Therefore, we propose
to add the aligned subgroups of V \{v5} to the domain D4 and reconsider the new domain
for the constraint checking. In this case we obtain a solution.

By starting with a large group V of N elements and reconsidering the aligned subgroups
of V , we have a worst case scenario of O(Nlog(N)) to make Dg arc-consistent. Another
strategy is to consider initially all the aligned subgroups of V for the domain of Dg, then
in a worst case scenario, the size of the domain of the constraint is

∑N
k=3

(

N
k

)

. If we had
followed this second strategy, the result for the example would have been 4 groups of 3
elements and 1 group of 4 elements. But, we are interested in the longest group which
satisfies the constraint, so the result is reduced to the group of 4 elements which is the
same answer as the one we obtain by using the first strategy. The low complexity obtained
when using one group and then prunning it, compared to the strategy of using all the
possible subsets, justifies why it is more efficient to use this first strategy.

The membership function µxi
has changed

Let vj ∈ V be a member of a group. Suppose that the degree of membership of vj
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to its domain Di has decreased after we have checked the arc-consistency condition. The
decrease of µxi

(vj) means that it is less possible that xi takes the value vj than when we
extracted the aligned subsets of Di. To integrate this new information into the membership
function of V i.e. µxg(V ), we propose to continue consider V as a possible candidate of
Dg. However, we propose to add to Dg the groups of aligned objects belonging of V \{vj},
and update µxg . By adding these new groups to Dg, the relations that involve xg have to
be reevaluated, since Dg has changed.

The group V , when seen as a variable, does not satisfy a constraint
Due to the fact that we are considering only certain groups, we need to consider what

happens to the aligned subgroups of a group V when µxg(V ) = 0, that is, when V does
not satisfy a constraint that should be satisfied by the members of Dg.

Let us first remember that when a spatial relation is represented as a fuzzy landscape
(see Part I) we are using a mean measure (Equation 1.16) to evaluate the satisfiability of
the spatial relation with respect to a target object. For instance, suppose that A and B are
two regions of the image and we want to evaluate to what degree A is “near” B. Let γnear

be the membership function representing the fuzzy landscape defining the region “near” B,
then the degree of satisfaction of the relation A is “near” B is given by:

µnear(b, a) =

∑

p∈A γnear(p)

|A|

Now let us consider the situation when xg is the target object of the relation.

Proposition 5.1. Let A = {a1, . . . , an} ∈ Dg be an aligned group and Ct = 〈µRt , St〉 be
a binary constraint, such that St = {xg, xu}. Let m ∈ Du, suppose that xg is the target
object of the relation represented by Ct and that µRt(m, A) = 0. Then for every aligned
subgroup B ⊆ A we have µRt(m, B) = 0.

Proof. We consider each of the possible relations in TR in which an alignment can be
involved.

(a) Let Rt be a relation which produces a fuzzy landscape denoted by γR.
If µRt(m, A) = 0, then it means that for every point p ∈ A we have γR(p) = 0. This
holds in particular for the points p ∈ B ⊂ A, therefore µRt(m, B) = 0.

(b) If Rt corresponds to the adjacency relation, and µadj(m, A) = 0, then it is straightfor-
ward to see that µadj(m, B) = 0. The same is true when xg is the reference object of
the relation because of the symmetry of the relation.

(c) If Rt corresponds to the parallel relation, and µparallel(m, A) = 0, then it is either
because the visibility condition is zero or because the orientations are not similar (see
Section 2.3). If the visibility condition is zero, then this is also true for B for the
same reason as in (a). If the orientations are not similar then the orientation of B is
not similar to the one of m, since the orientation of B can be considered equal to the
orientation of A (see Part I), and therefore µparallel(m, B) = 0

Now, let us consider the case when xg is the reference object of the relation:
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Proposition 5.2. Let A = {a1, . . . , an} ∈ Dg be an aligned group and Ct = 〈µRt , St〉 be a
binary constraint, such that St = {xg, xu}. Let m ∈ Du, suppose that xg is the reference
object of the relation represented by Ct and that µRt(A, m) = 0. Then for every aligned
subgroup B ⊆ A we have that µRt(B, m) = 0.

Proof. (a) If Rt is a relation which produces a fuzzy landscape, then Rt should be one
of the following metric relations: distance relation, “on one side” or “in a direction of
angle α”. All of these relations produce a fuzzy landscape which is increasing with
respect to the reference object. Therefore, the landscape produced by B is contained
by the one produced by A. So, µRt(B, m) = 0.

(b) If Rt is the parallel relation, and µparallel(m, A) = 0, then it means that either the
visibility condition is not satisfied or the orientation condition is not satisfied. In the
case when the visibility condition is not satisfied, then as in previous case it is not
satisfied by B. If the orientation condition is not satisfied then it is not satisfied by B
either.

Using similar arguments we can extend the previous proposition to deal with the ternary
relation “between”:

Proposition 5.3. Let A = {a1, . . . , an} ∈ Dg be an aligned group and Ct be a constraint
representing the “between” relation, such that St = {xg, xu, xv}. Let m ∈ Du, q ∈ Dv, and
suppose that A is one of the reference objects of the relation and that µRt(A, m, q) = 0.
Then for every aligned subgroup B ⊆ A we have µRt(B, m, q) = 0.

Proposition 5.4. Let A = {a1, . . . , an} ∈ Dg be an aligned group and Ct be a constraint
representing the “between” relation, such that St = {xg, xu, xv}. Let m ∈ Du, q ∈ Dv, and
suppose that A is the target object of the relation and that µRt(m, q, A) = 0. Then for
every aligned subgroup B ⊆ A we have µRt(m, q, B) = 0.

We can conclude that when a group V does not satisfy a relation, then none of its
aligned subgroups U ⊆ V satisfies the constraint. Therefore, we can remove V from Dg

without worrying about the subgroups. Notice that the propositions are not guaranteed to
be true if we use other measures to evaluate the relations which are represented as fuzzy
landscapes. For instance, that would be the case if we used the necessity (Equation 1.7).

Using a degree µxg to represent the group as an object, and a degree µRw to represent
it as the spatial property of the group, allows us to identify the above cases and to handle
them in an appropriate way.

5.4.3 Dealing with groups (not necessarily aligned)

The other types of complex concept nodes are the groups which have a conceptual graph
not representing an alignment. Suppose that we want to represent a complex concept
node with child concept nodes represented by the set of variables {xk1 , . . . , xkn

} and child
relations {Rt1 , . . . , Rtp}.

When it is observed as a variable xg its domain is Dg = Dk1 × . . . × Dkn
. Let V =

(vk1 , . . . , vkn
) ∈ Dk1 × . . .×Dkn

, its membership value µxg(V ) depends on:

• the degree of satisfaction of the child relations,
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• the degree of satisfaction of the spatial constraints (spatial relations) that are sup-
posed to be satisfied by xg, and

• the membership value of its members to their respective domains.

Therefore, for the initial membership value µxg(V ) we do not have any information about
the degree of satisfaction of V with other regions, so its initial degree is equal to the
conjunction of the degree of satisfaction of all the child relations with the conjunction of
the respective membership values of all of its members, that is:

µxg(V ) = min





tp
∧

j=t1

µRj
(V ↓Sj

), min
h=k1,...,kn

µxh
(vh)



 (5.6)

When it is seen as a constraint Cw, it evaluates that all the conditions inside the
complex concept node are satisfied. Unlike the alignment case, we know in advance which
are the members inside the complex concept node. Therefore the set of variables in Cw

is Sw = {xk1 , . . . , xkn
}, which is the union of the sets of variables of its child relations:

Sw = ∪tp
j=t1

Sj . For a tuple V = (vw1 , . . . , vwn) ∈ Dw1× . . .×Dwn the degree of satisfaction
of the relation is:

µRw(vw1 , . . . , vwn) = min





tp
∧

j=t1

µRj
(V ↓Sj

), min
h=w1,...,wn

µxh
(vh)



 (5.7)

As for the aligned groups, the degrees µRw(V ) and µxg(V ) are equal at the beginning but
as more information about the satisfaction of the relations between V and the other region
is acquired, the degrees µRw(V ) and µxg(V ) become different.

Behavior of the members of a group, when the group is the target object of a
metric relation

Let V be a group of regions (aligned or not) and B a region. Suppose that A and V
are the reference and target objects of a metric relation Rt which is represented as a fuzzy
landscape. Then we know that the degree of satisfaction of the relation is greater than
zero if and only if at least one member of V satisfies the relation with B. Moreover, if
the members of the group have a high satisfaction degree of Rt, then the group has a high
degree of satisfaction of Rt.

Therefore, assume that the model conceptual graph has a relation node representing
a metric relation Rt where the target objects is a complex concept node representing a
group (aligned or not) and the reference object is another concept node cref (which can be
complex or not), and Rt is modeled as a fuzzy landscape, then we can add a relation node
having the same type as Rt between each concept node inside the complex concept node
and the node cref , as reference. This would help us find an instantiation of the group with
high satisfaction of the relation Rt.

When the model has a complex concept node representing a group of aligned objects,
which is the target object of a relation of type “parallel to” with a concept node cref , then
we can add the relation node of type “on one side”, between each member of the group and
the node cref , because when a group V is “parallel to” a object B. Then all the members
of V area “on one side” of B.

Other relations such as adjacency have a different behavior, and for a group to be
adjacent to an object it is only necessary that one of its members is adjacent to the object.
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5.4.4 Proposed algorithm

In this section, we propose a new algorithm based on the FAC-3 which takes into account
the nested constraints. The set of constraints C is made of the constraints representing
the relation nodes and the complex concept nodes. The representation of the constraints
representing complex concept nodes of the conceptual graph is explained in Sections 5.4.2
and 5.4.3.

Basic algorithm used for arc-consistency checking.
The main algorithm presented in Algorithm 6 has the same structure as the one used

in the original FAC-3 (see Algorithm 4). For each constraint we revise the arc-consistency
condition for each of its domains. If during the checking, the domain of one of the variables
has changed, then all the constraints involving that domain are reconsidered for the arc-
consistency checking procedure. The only difference with respect to the FAC-3 algorithm
is the separation of the revise relation according to the type of the constraint. For the
constraints representing complex concept nodes, we use the functions ReviseGroupConstraint

and ReviseAlignmentConstraint, and for the other constraints ReviseSimpleConstraint. We
refer to these three functions as Revise methods. When updating the ToCheck list (lines
25 to 33 of Algorithm 6) we take into account the duality of the complex concept nodes.
If the domain of a variable which is also a constraint has changed, then the corresponding
constraint should be added to the ToCheck list.

To take into account that the variables which represent a complex concept node are only
instantiated when the respective constraint is evaluated, we use the vector Instantiated
which indicates whether the domain of the variable has been already instantiated or not.
In the Revise methods, we first verify that all the variables involved in the relation have
been instantiated. In the case where they have not been instantiated, the arc-consistency
check is not performed.

ReviseSimpleConstraint

The function ReviseSimpleConstraint in Algorithm 7 is composed of two parts. In the
first part, if the constraint has not been evaluated, then it is evaluated for the first time
and the domain of the relation is created. To create the domain we evaluate the relations
presented in Chapters 1 and 2. If the relation is modeled in such a way that it creates a
fuzzy landscape, we compute the landscape for each of the elements in the reference object’s
domain, and evaluate the relation with all the elements in the domain of the target objects.
Otherwise, we find the satisfaction degree for each possible tuple in the relation domain.
To update the domain we remove the tuples which contain an element which does not
belong to its respective domain. The second part of the function deals with the updating
of the membership function µxi

of each of the variables involved in the constraint. This
part is identical to the Revise function of the FAC-3 algorithm (see Algorithm 5).

ReviseGroupConstraint

The function ReviseGroupConstraint presented in Algorithm 8 is also composed of two
parts. In the first part, we create or update the relation’s domain (Algorithm 9). The
domain of the relation is created by making an exhaustive search of its domain and only
adding the tuples for which the satisfaction degrees of all the child relations of the nested
node are greater than zero. The updating of the relation’s domain is made by eliminating
those tuples for which there is at least one variable which does not belong to the domain.
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Input: A constraint network P = (X ,D, C)
Output: Computes the arc-consistent closure of P if it exists, otherwise returns

Failure
begin1

ToCheck = C2

// Initialize the Instantiated vector, mark as true all the

variables which do not represent a group

foreach variable xi ∈ X do3

if xi does not represent a group then Instantiated[i] = true else4

Instantiated[i] = false
end5

foreach Ck ∈ C do6

FirstEvaluation[k]=false7

end8

while ToCheck 6= do9

Select Ck from ToCheck10

foreach variable xki
∈ Sk do11

Changed[ki] = false12

end13

if Ck represents a group then14

result = ReviseGroupConstraint(Ck) ; // see Algorithm 815

else16

if Ck represents an alignment then17

result = ReviseAlignmentConstraint(Ck) ; // see Algorithm 1018

else19

result = ReviseSimpleConstraint(Ck) ; // see Algorithm 720

21

22

if result = EmptyDomain then23

return Failure24

if result = Changed then25

foreach Cl 6= Ck such that xi ∈ Sl and Changed[i] = true do26

ToCheck = ToCheck ∪ {Cl}27

Change[i]←− false28

end29

if Ck is inside a nested constraint Cl or is related to a variable that30

represents a nested node seen as a constraint Ck then
ToCheck = ToCheck ∪ {Cl}31

32

end33

end34

end35

Algorithm 6: Basic algorithm used for arc-consistency checking in a nested con-
straint network with complex concept nodes.
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Input: a constraint Ck

Output: Makes Ck arc-consistent if possible and marks variables whose domain
has changed; returns EmptyDomain if a domain has been emptied,
NoChange if no domain has been modified, otherwise Changed

begin1

// Verify that all the variables in Sk are instantiated

if Exists xki
∈ Sk such that Instantiated[ki] = false then2

return NoChange3

4

if FirstEvaluation[k] then // Create the domain for Rk5

Let Sk = {xk1 , . . . , xkn
}6

foreach A = (a1, . . . , akn
) ∈ Dk1 × . . .×Dkn

do7

if µRk
(a1, . . . , akn

) > 0 then Add A to the domain of Rk8

end9

FirstEvaluation[k]←− false10

else11

foreach variable xki
∈ Sk do12

remove from the domain of Rk every tuple A such A ↓ki
6∈ Dki

13

end14

15

// Make the domains of the variables in Sk arc-consistent with

respect to Ck

result←− NoChange16

height←− 017

foreach variable xki
∈ Sk do18

foreach v ∈ Dki
do19

NewDegree = 020

foreach A = (ak1 , . . . , akn
) in the domain of Rk such that A ↓ki

= v do21

eval←− min[µRk
(ak1 , . . . , akn

), mins=k1,...,kn
µxs(as)]22

height←− max(eval, height)23

NewDegree←− max(NewDegree, eval)24

end25

if NewDegree = 0 then26

Delete v from Dki
27

if Dki
= ∅ then return EmptyDomain28

if NewDegree 6= µxki
(v) then29

µxki
(v)←− NewDegree30

result←− Changed31

Changed[ki]←− true32

33

end34

end35

return result36

end37

Algorithm 7: ReviseSimpleConstraint: Revise algorithm for constraints which do not
represent alignments nor groups, sub-part of algorithm. 6
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When we update the relation’s domain, the domain of its respective variable is also mod-
ified and is marked as changed in the Changed vector. The second part of Algorithm 8
corresponds to the updating of the domain of the variables representing the child nodes.
We update the value of the membership function of xi by considering the value of the corre-
sponding constraint, since the membership function µxg considers the interactions between
the members of the group as well as the satisfaction of the relations between the group
and other variables, which certainly affect the satisfaction of the membership function of
the child nodes.

ReviseAlignmentConstraint

In the first part of ReviseAlignmentConstraint presented in Algorithm 10, we construct
or update the domain of the constraint and its respective variable in function CreateOrUp-

dateAlignmentDomain (Algorithm 11). To create the domain we search for globally aligned
groups using several satisfaction degrees α. For each α we only consider the subset of
Dki

which has a membership value greater than α. Due to the conjunctive condition of
Equation 5.4, the membership degree of the group µxg is always bounded by the member-
ship degrees of its members, therefore even if the group has a higher value for µALIG, its
membership value µxg would be equal to the membership value µxi

of its members.
When we update the domain Dg we observe for each element aj of each group A if its
membership value µxi

(aj) is equal to zero. In that case we find the aligned subgroups
Bt ⊂ A \ aj and add them to the domain Dg.

The second part of ReviseAlignmentConstraint deals with making the domain Di arc-
consistent with respect to Ck. For each value aj ∈ Di we verify that there exists a group
in Dg which contains it. To do this we replace the membership degree of µxi

(aj) by:

µxi
(aj) = max

{V ∈Dg |aj∈V }
µxg(V )
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Input: a constraint Ck

Output: Makes Ck arc-consistent if possible and marks variables whose domain
has changed; returns EmptyDomain if a domain has been emptied,
NoChange if no domain has been modified, otherwise Changed

Let xg be the variable representing the nested group and Dg its domain1

begin2

if Exists xki
∈ Sk such that Instantiated[ki] = false then3

return NoChange4

height←− 05

result←− CreateOrUpdateGroupDomain (Ck, Dg) ; // See Algorithm 96

if Dg = ∅ then7

return EmptyDomain8

9

// Make the domains of the variables in Sk arc-consistent with

respect to Ck

foreach variable xki
∈ Sk do10

foreach v ∈ Dki
do11

NewDegree = 012

foreach A = (ak1 , . . . , akn
) in the domain of Rk such that A ↓ki

= v do13

height←− max(µxg(A), height)14

NewDegree←− max(NewDegree, µxg(A))15

end16

if NewDegree = 0 then17

Delete v from Dki
18

if Dki
= ∅ then19

return EmptyDomain20

21

if NewDegree 6= µxki
(v) then // Update Changed and the22

membership value of v
µxki

(v)←− NewDegree23

result←− Changed24

Changed[ki]←− true25

Changed[g]←− true26

27

end28

end29

return result30

end31

Algorithm 8: ReviseGroupConstraint:Revise algorithm for the constraint which rep-
resents a group, sub-part of algorithm 6.
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Input: A constraint Ck representing a nested group, Dg domain of the
corresponding variable

Output: Creates or updates the domain of Ck and of xg

Let Sk = {xk1 , . . . , xkn
} be the child variables, Tk = {Ck1 , . . . , Ckp

} be the1

constraints representing the child relations.
begin2

if FirstEvaluation[k] then // Create the domain for Rk and xg3

foreach A = (a1, . . . , akn
) ∈ Dk1 × . . .×Dkn

do4

µRk
(a1, . . . , akn

)←− ∧kp

j=k1
µRj

(a1, . . . , akn
)5

if µRk
(a1, . . . , akn

) > 0 then6

Add A to the domain of Rk and to Dg7

µxg(A)←− min [mins=k1,...,kn
µxs(as), µRk

(a1, . . . , akn
)]8

9

end10

FirstEvaluation[k]←− false, Instantiated[g]←− true,11

Changed[g]←− true, result←− Changed
else12

foreach variable xki
∈ Sk do13

remove from the domain of Rk every tuple A such A ↓ki
6∈ Dki

14

end15

foreach A = (a1, . . . , akn
) ∈ Dg do16

//Update the membership value17

NewDegree←− min
[

mins=k1,...,kn
µxs(as), µRk

(a1, . . . , akn
), µxg(A)

]

18

if NewDegree = 0 then19

Delete A from Rk and from Dg20

if NewDegree 6= µxg(A) then // Update Changed and the21

membership value of A
µxg(A)←− NewDegree22

Changed[g]←− true23

result←− Changed24

25

end26

return result27

end28

Algorithm 9: CreateOrUpdateGroupDomain sub-part of algorithm 8.
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Input: a constraint Ck

Output: Makes Ck arc-consistent if possible and marks variables whose domain
has changed; returns EmptyDomain if a domain has been emptied,
NoChange if no domain has been modified, otherwise Changed

Let xg be the variable representing the nested group and Dg its domain1

begin2

if Exists xki
∈ Sk such that Instantiated[ki] = false then3

return NoChange4

height←− 05

result←− CreateOrUpdateAlignmentDomain (Ck, Dg) ; // See Algorithm 116

if Dg = ∅ then7

return EmptyDomain8

9

// Make the domains of the variables in Sk arc-consistent with

respect to Ck

foreach v ∈ Dki
do10

NewDegree = 0 foreach A ∈ Dg such that v ∈ A do11

height←− max(µxg(A), height)12

NewDegree←− max(NewDegree, µxg(A))13

end14

if NewDegree = 0 then15

Delete v from Dki
;16

if Dki
= ∅ then17

return EmptyDomain18

19

if NewDegree 6= µxki
(v) then // Update Changed and the membership20

value of v
µxki

(v)←− NewDegree21

result←− Changed22

Changed[ki]←− true23

Changed[g]←− true24

25

end26

return result27

end28

Algorithm 10: ReviseAlignmentConstraint:Revise algorithm for the constraint which
represent an alignment, sub-part of algorithm 6.
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Input: A constraint Ck representing an aligned group, Dg domain of the
corresponding variable

Output: Creates or updates the domain of Ck and of xg, returns EmptyDomain if
a domain has been emptied, NoChange if no domain has been modified,
otherwise Changed

Let Sk = {xk1} be the variable involved in the alignment.1

begin2

domainStatus←− NoChange3

if FirstEvaluation[k] then // Create the domain for Rk and xg4

// Find the alignments for several satisfaction degrees

for α ∈]0, 1] do5

Find G, the group of globally of aligned groups to a degree α of objects6

belonging to the set {a ∈ Dk1 : µxk1
(a) > α}

foreach A = {a1, . . . , akn
} ∈ G do7

µRk
(a1, . . . , akn

)←− µALIG(A) ; // See Equation 2.308

Add A to Dg and add the tuple (a1, . . . , akn
) to the domain of Rk9

µxg(A)←− min [mins=k1,...,kn
µxs(as), µALIG(A)]10

end11

end12

FirstEvaluation[k]←− false ; Instantiated[g]←− true13

if Dk 6= ∅ then14

Changed[g]←− true ; domainStatus←− Changed15

else return EmptyDomain16

return domainStatus17

else18

// Revise the alignment condition on each group

foreach A = {a1, . . . , akn
} ∈ Dg do19

if There is an element ai ∈ A which no longer belongs to Dk then20

Remove A from Dg and Rk21

for α ∈]0, 1] do22

Find GA, the group of globally of aligned groups to a degree α of23

objects belonging to the A ∩Dk1

foreach B = {b1, . . . , bkm
} ∈ GA do24

µRk
(b1, . . . , bkm

)←− µALIG(B) Add the set B to Dg25

Add the tuple (b1, . . . , bkm
) to the domain of Rk26

µxg(B)←− min [mins=k1,...,kn
µxs(bs), µALIG(B)]27

Changed[g]←− true
domainStatus←− Changed28

Set to true the value of FirstEvaluation for all the29

constraints involving xg

end30

end31

32

end33

34

end35

Algorithm 11: CreateOrUpdateAlignmentDomain sub-part of algorithm 8.
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5.4.5 Complexity and improvements

In this section we study the complexity of the functions of each part of the algorithm
independently. Let d be the size of the largest domain in D, no the maximum number of
points in a region, and N the number of points in the image.

ReviseSimpleConstraint For a constraint Ck the worst case time complexity for calling
ReviseSimpleConstraint(Ck) corresponds to the case where the domain has to be created
and the relation corresponds to the between relation, which is the one with the largest
complexity (see Table 5.2). Creating the domain has a complexity of O(d(d − 1)(NNν +
n2

o) + dno), and Nν corresponds to the size of the structuring elements used in Equation
1.19. When the function ReviseSimpleConstraint(Ck) is called and it only has to verify for
arc-consistency without creating the domain of the relation, then we have to compare every
value in the domains belonging to Sk to each tuple satisfying Ck. In the worst case there
are d3 tuples and d values in the domain, therefore the worst case complexity in this case
is O(d4). In the worst case, the function ReviseSimpleConstraint(Ck) is called tα times for
every value in its domain. We have |Sk| = 3 and so it can be called 3tαd times, where tα
is the number of satisfaction levels in which the interval [0, 1] is discretized.

ReviseGroupConstraint For a constraint Ck representing a group, the function Create-

OrUpdateGroupDomain has a worst case complexity of O(d|Sk|) when the domain is created.
The revision of the arc-consistency condition for this function has a worst case complexity
of O(d|Sk|+1) corresponding to the case where for every value in the domain of Sk we have
to check its existence in every tuple in the domains of the relation, where the maximum
number of tuples is d|Sk|. Using the same arguments as for the ReviseSimpleConstraint

function, this function can be called |Sk|tαd times.

ReviseAlignedConstraint Let Ck be a constraint representing an alignment. The com-
plexity of creating the domain is given by O(d2 + N2

An2
0 + N) where NA is the number

of local alignments (see Section 2.2.5). Let Ng be the number of aligned groups that are
obtained, Ng is bounded by

∑d
j=3

(

d
k

)

, and let No be the maximum number of elements in
a group, which is bounded by d. Then the function ReviseAlignedConstraint can be called
a maximum of O(tαNolog(No)) times.

So the complexity of the whole algorithm is O(|C|ctαdc+2 +N2
An2

0 +N +d2(NNν +n2
o)),

where c = maxk |Sk|. We can see that the computational complexity of the algorithm
can be very high. For the AC-3 algorithm several works [Wallace and Freuder, 1992,
Boussemart et al., 2004, Schulte and Stuckey, 2004] have proposed strategies to sort the
constraints to be revised. We propose to consider the computational time of each constraint
to determine the order, which is one of the strategies also proposed in [Schulte and Stuckey,
2004]. First we revise the constraints which do not represent a complex concept node. The
order in which these constraints are chosen depends on their computational time (see Table
5.2), so we select the constraint in the ToCheck list which has the lowest computational
time. When there are no more constraints representing relation nodes in the ToCheck list
we can proceed to evaluate the constraints representing the complex concept nodes.

It can be interesting to adapt other criteria that have been used to improve the efficiency
of the AC-3 algorithm. For instance, [Wallace and Freuder, 1992, Boussemart et al., 2004,
Schulte and Stuckey, 2004] have proposed to choose the constraint to be checked according



179

Spatial Rela-
tion

Complexity Commentaries

Adjacency O(2NBNν) Nν number of points in the definition of neighbor-
hood, usually 8 or 26.

Topological
surround

O(2NBNν) Nν number of points in the definition of neighbor-
hood, usually 8 or 26.

Distance O(2N) When using crisp objects, the fuzzy landscape rep-
resenting a distance can be constructed by com-
puting a distance map and then applying the
distance function on each point of the distance
map. We can construct a distance map using the
Danielsson map, which has a linear execution time
[Danielsson, 1980].

At an angle
of

O(N(1 + 2Nν)) This complexity is used by using the propagation
method (see [Bloch, 1999]), where Nν number of
points of the considered in the neighborhood, usu-
ally 8 or 26.

On one side
of

O(2N(1 + 2Nν)) This complexity is used by using the propagation
method (see [Bloch, 1999]), where Nν number of
points of the considered in the neighborhood, usu-
ally 8 or 26.

Between O(NNν + 2NB) Nν is the cardinality of the support of the struc-
turing elements used for the computation of the
region.

On the same
side

O(NNν + NB) Nν cardinality of the support of the structuring
elements used for the computation of the region..

Surrounds O(NBlog(NB) +
NdN)

Nd is the number of points used in the near func-
tion.

Go through O(NBNν + NT ) Nν : number of points in the definition of neigh-
borhood.

Go across 1 O(NBNν + NT +
NBlog(NB))

Nν : number of points in the definition of neigh-
borhood, usually 8 or 26.

Go across 2 O(2NB +NB(2Nν +
log(NB))

Nν : number of points in the definition of neigh-
borhood, usually 8 or 26.

Go into O(2NB +NR(2Nν +
log(NR))

Nν : number of points in the definition of neigh-
borhood, usually 8 or 26.

Parallel O(N(1 + 2Nν)) Nν : number of points in the definition of neigh-
borhood, usually 8 or 26.

Alignment O(N2
O+N2

AN2
B+N) NO: number of objects used to find the local align-

ments. NA number of locally aligned groups ob-
tained.

Table 5.2: Computational complexity for each spatial relation. NB refers to the maximum
number of points in objects. For the relations represented as a fuzzy landscape, we assume
that the region where the landscape is computed is a square, with length

√
N and that N

is the number of points in this region.
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to its capability of making a more significant reduction of the domains of the variables,
and therefore reducing the calls of the Revise function. Different heuristics are proposed
to determine this.

5.4.6 Finding a solution

Once we have identified all the regions in the image which can be an instantiation of a
concept node of the model, we have to determine which are the “best” solutions. For this
we need a criterion to determine how to choose a set of instantiations over another.

A first approach is to organize the solutions according to the degree to which they
satisfy all the constraints, i.e. according to the consistency value of each solution:

Cons(V ) = min
C̃k∈C

µRk
(V ↓Sk

) (5.8)

This approach is very severe, and does not let us discriminate between two solutions
which have the same minimum value but different values for other constraints [Dubois
et al., 1996]. For instance, suppose that the we have two instantiations V1 and V2 and
that the satisfaction degrees of the constraints is given by Sat1 = {0.4, 0.55, 0.42, 0.65}
and Sat2 = {0.4, 0.8, 0.97, 0.8}, respectively. Therefore, we would say that V1 and V2

are equally good, since Cons(V1) = Cons(V2), although V2 has a greater than or equal
satisfaction value for all the constraints. Thus, saying that V1 and V2 are equally good is
not very adequate.

A more convenient approach is to aim at maximizing the number of satisfied constraints.
For instance, the solutions can be ordered according to the leximin order as in [Fargier,
2006, Möller and Näth, 2008, Saathoff and Staab, 2008], that is, for every solution Vi ∈
Sol(P) construct a vector Sati containing the satisfaction degrees for each constraint of
C organized from minimum to maximum. The leximin ordering is given by applying the
lexicographic ordering over those vectors. We denote the leximin order by <LEXIMIN .
Using the same example as in the previous paragraph, we have Sat1 = {0.4, 0.42, 0.55, 0.65}
and Sat2 = {0.4, 0.8, 0.8, 0.97}, so Sat1 <LEXIMIN Sat2, and therefore V2 is better than
V1.

The solutions can be represented as two images, one containing the instantiations and
the other containing, for each element, a color representing its position in the order of the
solutions. Figure 5.16 shows the solutions of the example of Figure 5.12. Figure 5.16(a)
shows all the instantiations, Figure 5.16(b) shows the order image. The best solution are
those having a lighter color in the order image.

Illustration In this section we present an example to illustrate the algorithm proposed
in Section 5.4.4 .
Consider again the image in Figure 5.11 and suppose that we want to find the houses which
satisfy the condition: “the houses having a pool which is located in the garden at the “back”
of the house and the houses have a shadow”, but in addition, we want the houses that satisfy
the condition of being neighbor houses in the same road. We represent “neighboring houses
of the same road”, as a group of aligned houses which are near each other. The conceptual
graph in Figure 5.17 shows a possible way to describe the spatial organization of the scene
that we want to find in the image. For simplicity, in the conceptual graph of Figure 5.17
we only draw one of the coreference links to indicate the relations that the houses inside
the group have to satisfy.

The corresponding CSP problem is formulated as:
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(a) Instantiations (b) Order

Figure 5.16: Solutions of example of Figure 5.12.

Figure 5.17: Conceptual graph representing "the group of neighboring houses forming an
aligned group which have a pool located in the garden at the "back" of the house, and
which have a shadow".

• X = {xshadow, xhouse, xroad, xpool, xgarden, xgroup_houses} containing the variables rep-
resenting the concept nodes of the conceptual graph, where xgroup_houses is the vari-
able representing the group of aligned houses.

• C = {Cdirection, Cadjacent1 , Cbetween, Cnear, Csurrounds, Cadjacent2 , Caligned}, where

Cdirection = 〈µ135̊
direction, {xshadow, xhouse}〉, Cadjacent1 = 〈µadjacent, {xshadow, xhouse}〉,

Cbetween = 〈µbetween, {xpool, xroad, xhouse}〉, Cnear = 〈µnear, {xhouse, xpool}〉 ,
Csurrounds = 〈µsurrounds, {xgarden, xpool}〉, Cadjacent2 = 〈µadjacent, {xhouse, xgarden}〉
and Caligned = 〈µALIG, {xhouse}〉.

• D = {Dshadow, Dhouse, Droad, Dpool, Dgarden, Dgroup_houses} where Di repre-
sents the possible candidates for xi. The regions in each Di for i ∈
{shadow, house, road, pool, garden} are shown in Figure 5.13.

Table 5.3 shows the evolution of µxi
for i ∈ {shadow, house, road, pool, garden} and the

domain of xgroup_houses, we only show Dgroup_houses when it has changed. The membership
degree of a region to µxi

for i ∈ {shadow, house, road, pool, garden} is represented by its
gray value. The images representing the groups belonging to Dgroup_houses only show the
elements of Dgroup_houses but the images do not contain information about the membership
values. For illustrative purposes we decided to evaluate the alignment constraint in the
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first iteration in order to show the evolution of Dgroup_houses.
At the first iteration we check Caligned and obtain 17 groups. In iteration 4 the constraint
Cbetween is checked and the domain of xhouses is modified. As Dhouses has been modified
the alignment condition is checked again, and several groups are eliminated. In iteration
15 the constraint Cadjacent2 is checked, and again the domain of xhouses is modified. Hence,
in iteration 16 the Calignment is checked and more groups are eliminated. The final results
are shown in iteration 38, where two groups are obtained. Since one groups is contained
in the other group, this is equivalent as having one only group.

5.4.7 Discussion

We have extended the definition of arc-consistency for fuzzy constraints with an arity
greater than or equal to 2. Using this definition we extended the fuzzy AC-3 algorithm
to deal with these constraints. Furthermore, this new algorithm was adapted to handle
constraints that represented complex concept nodes, such as alignments or groups. To
represent this type of constraints we had to make the algorithm flexible enough to accept
constraints where the number of variables inside the constraint is not defined, for the
alignment relation. We also explored the double nature of such complex concept nodes:
constraint/ variable. Although we adapted the system for handling particular constraints,
the proposed algorithms can be used for any constraint with similar characteristics. For
instance, the bi-level constraints proposed in [Deruyver and Hodé, 1997] can be represented
in the proposed context. The bi-level constraints consist of two levels of constraints: one
dealing with the constraints between the variables and the other between the values of
the variables. To formalize this type of constraints [Deruyver and Hodé, 1997] propose
a binary crisp relation Cmpi which determines whether two values belonging to a same
constraint are compatible. Thus, we can represent the same information of a bi-level
constraint by using a complex concept node where the number of elements inside the node
is not specified and which only needs to satisfy the binary compatibility relation between
them. The constraints between two variables in a bi-level constraint can be represented as
relations between the complex concept nodes.
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Table 5.3: Evolution of the fuzzy sets µxi
over Di for i =

{houses, pool, shadow, garden, road} when making each Di

arc-consistent, and of Dgroup_houses.

Iteration 0
µhouses µshadow µpool µroad µgarden

Iteration 1
µhouses µshadow µpool µroad µgarden

Group domain

Iteration 4
µhouses µshadow µpool µroad µgarden

Iteration 5
µhouses µshadow µpool µroad µgarden

Continued on next page
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Table 5.3 – continued from previous page
Group domain

Iteration 15
µhouses µshadow µpool µroad µgarden

Iteration 16
µhouses µshadow µpool µroad µgarden

Group domain

Iteration 38
µhouses µshadow µpool µroad µgarden

Group domain
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5.5 Interpreting an unlabeled image

When dealing with an unlabeled image, the difficulty lies in adequately creating the domain
of regions which can represent each concept node of the model conceptual graph. This
problem can be divided into two steps: the first one concerning the image partition and
the second one concerning the labeling of the regions.

5.5.1 Image partition

As presented in Section 4.2.3 there are several strategies for determining the initial regions,
two very common ones being:

• Use high level knowledge to guide, tune or improve low level feature extraction and
image segmentation, some examples are [Matsuyama, 1988, Garnesson et al., 1989,
Clement and Thonnat, 1993], or,

• Perform an unsupervised segmentation and label each region according to its char-
acteristics, as in [Benz et al., 2004, Durand et al., 2007, Saathoff and Staab, 2008].

A knowledge based segmentation can correctly extract regions which correspond to
instantiations of the concept nodes of the model. However, in practice these methods are
domain specific, and cannot be easily reused. Moreover, the development of a knowledge
based segmentation is out of the scope of this work. Therefore, we have decided to use a
multi-scale segmentation. Multi-scale segmentation is well adapted to Earth observation
images since it allows us to extract objects of different sizes, which are observed in these
type of images. Moreover, the multi-scale segmentation has an explicit hierarchical orga-
nization of the regions which can be useful for spatial reasoning, as discussed in Section
5.5.3. We used a multi-scale segmentation obtained from a hierarchical Mean Shift [Paris
and Durand, 2007, DeMenthon and Megret, 2002].

When performing a multi-scale segmentation we can assume that the regions obtained
from the segmentation can be candidates of an object. By considering this hypothesis we
do not have to worry about the segmentation problems such as a region containing two
objects or an object split into several regions.

5.5.2 Region labeling

After performing the segmentation we label the regions of the image by using two types of
information;

• the approximate size of objects represented by the concept nodes of the graph, and

• the knowledge about the extraction of certain types of concepts in TC .

For the first type of information, we are going to assume that it is possible to know the
typical sizes of the objects that we are searching, as in [Ciucu et al., 2002]. This information
is given as linguistic terms { very small, small, medium, large, very large }. For each of
these terms we construct a membership function over R, which defines its semantics. The
parameters defining these functions can be learned according to the scene.

For the second type of information, we want to exploit the fact that we know how to
extract certain classes of concepts, for instance:

• water (using Normalized Difference Water Index NDWI [McFeeters, 1996]),
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• vegetation (using Normalized Difference Vegetation Index NDVI [Goward et al.,
1991]),

• shadow (using a hysteresis threshold over the intensity image),

• ...

Let TC be the concept hierarchy of the vocabulary over which the conceptual graph is built.
Let HC be a set representing the classes of concepts that we know how to extract. We
propose to add the concepts of HC to TC , and also add a concept “Other” to represent all
the concept classes which are not “A_KIND_OF” one of the concepts in HC . Figure 5.18
illustrates an example of the concepts of HC added to TC : Figure 5.18(a) illustrates the
initial concept hierarchy, then the modified concept hierarchy of Figure 5.18(b) is obtained
by adding the concepts of HC ∪ ”Other”.

(a) Original TC

(b) Concept hierarchy after adding new concepts

Figure 5.18: Addition of new categories to the concept hierarchy TC , the new concepts are
marked in red.

To label the regions of the images we make use of the inclusion relation between the
categories of TC . First we extract in the image the regions corresponding to the classes of
concepts in HC . Then we compute the “Other” class as the complement of the disjunction
of the known classes. Suppose that we can define every c ∈ HC ∪{”Other”} as a fuzzy set
µc over the image space. Then for every concept node in the conceptual graph, represented
as a variable xi, we construct its membership function over the regions of the image as:

µxi
(v) =





∧

{c∈HC |type(xi)≤c}

F (µc, v)



 ∧ µsizei
(v) (5.9)

where µsizei
represents the membership function corresponding to the size of the objects

represented by xi, and F is a comparison measure which evaluates how well v matches µc.
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For instance, F can be a mean measure (Equation 1.16), a necessity measure (Equation
1.7), a possibility measure (Equation 1.6). The first term of Equation 5.9 is the conjunction
of all the membership values of the classes of HC for which the type of the concept xi is a
sub category.

Now that we have estimated the initial membership functions for the variables that
represent the concept nodes of the model, we can apply Algorithm 6 to find the arc-
consistent domains. The proposed method is illustrated in Figure 5.19.

5.5.3 Spatial reasoning over the tree of regions

In this section we mention some practical issues of how to use the tree of regions gener-
ated by the multi-scale segmentation for spatial reasoning. The result of the multi-scale
segmentation can be represented on a tree structure, where the root node corresponds to
the whole image. Figure 5.20 illustrates an example of a tree.
For a region ri in the image we will denote by the same name the node in the tree which
represents it. Let denote by level(ri) the level in the tree where node ri is situated, with
the level 0 corresponding to the lower level. childl(ri) denotes the set of child nodes of
node ri which are l levels below level(ri). For example in the tree of Figure 5.20, we have
child1(r21) = {r10, r11} and child2(r21) = {r00, r01, r02, r03, r04}.

We have the following properties which are easily proved.

Proposition 5.5. Let ri and rj be two disjoint regions obtained from a multi-scale seg-
mentation, and let RL be a binary relation which is represented as a fuzzy landscape. Then
for every l ∈ N such that 0 < l ≤ level(ri) it is true that:

µRL
(ri, rj) =

∑

k:rk∈childl(rj)
|rk|µRL

(ri, rk)

|rj |
, (5.10)

where µRL
(ri, rj) is the degree of satisfaction (evaluated using a mean) of the relation SL

when ri is the reference object and rj is the target object.

Proposition 5.6. Let ri and rj be two disjoint regions obtained from a multi-scale seg-
mentation. Then for every l ∈ N such that 0 < l ≤ level(ri) it is true that:

µADJ(ri, rj) > 0 if and only if ∃rk ∈ childl(rj)such that µADJ(ri, rk) > 0 (5.11)

where µADJ(ri, rj) is the degree of satisfaction of the adjacency relation between ri and rj.

Therefore, it is only necessary to compute the satisfaction degrees of the relations which
produce a fuzzy landscape for the regions belonging to the lower level of the tree, and we
can obtain the degree of satisfaction of all the other regions by using Proposition 5.5.

5.5.4 Finding a solution

When finding the instantiations of a model in an unlabeled image there can be conflict
among the different instantiations. This information has to be considered when finding the
final solution. Every instantiation can be seen as a source of information. Let V1 and V2

be two instantiations, suppose that according to V1 a region u is of type c1, and according
to V2 it is of type c2. If there is a relation between c1 and c2 in the concept hierarchy TC

and c1 ∧ c2 6= ⊥ then we can combine the information of V1 and V2 and label u with the
type c1∧c2. However, if c1∧c2 = ⊥ then V1 and V2 are in conflict, and to solve the conflict
we eliminate the instantiation with a worst instantiation according to leximin ordering.
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Figure 5.19: Proposed method for determining the model’s instantiations
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Figure 5.20: Tree representation of multiscale segmentation.

5.5.5 Results

In this section we present some experimental results of the proposed method. We apply
the method in two situations: searching for the harbors in an image, and the interpretation
of an image containing an airport.

Finding harbors
We applied the method represented in Figure 5.19 to the image shown in Figure 5.21

to extract the harbors in the image. The conceptual graph that we used to represent
the structure of a harbor is given in Figure 5.8(d) and the concept hierarchy is the one
given in Figure 5.8(c). It was not possible to use a conceptual graph containing complex
concept nodes representing the alignment of the boats because the boats were not appro-
priately segmented; therefore the algorithm extracting the alignments did not had a good
performance.

The size of the image shown in Figure 5.21 is of 5901 × 11801 pixels. To apply the
proposed methodology we divided the image into 72 tiles of approximately 985×985 pixels,
and applied the methodology in each tile. To extract the initial candidate regions for each
domain, we used the set HC containing the known classes was {water, vegetation}, and
in addition we used the fact that docks have a linear structure2. Figure 5.22 shows the
concept hierarchy after adding the new concepts.

For instance, let us observe the results for the image tile shown in Figure 5.23. The
extraction of the known classes is shown in Figure 5.24 and the initial objects in the domain
of each variable are shown in Table 5.4.

2To evaluate if a region is linear we computed the ratio of its largest principal moment by the smallest
principal moment. And we considered that an object was linear if this ratio was equal or greater than 4.
This value was chosen from the experimental results.
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Figure 5.21: Image of a lake.

Figure 5.22: Concept hierarchy after adding new concepts. The new concepts are marked
in red.

Table 5.4: Initial domains for the concept nodes representing
sea, ship and dock.

Dsea

Continued on next page
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Table 5.4 – continued from previous page
Ddock

Dboat

For this tile image, the obtained instantiations and ordering are shown in Figure 5.25.
We can see that the method obtains satisfactory results, it detects most of the configura-
tions of the model in the image. This example shows how by using the spatial relations
it is possible to reduce the domain of the concepts in the conceptual graph to obtain the
desired model.

The instantiations of the graph in the whole image are given in Figure 5.26. We can see
that although we used a very simple graph it was possible to extract the zones of the image
which correspond to the harbors. Table 5.5 shows some examples of the instantiations of
the model. We can see that in the Figures (a) to (h) the harbors are correctly detected.
Even if the harbors of Figures (b), (e) and (h) were very small, the method finds satisfactory
instantiations.

Figure (e), (i), (j), (k) and (l) have some examples of false detections. Most of the cor-
rect instantiations have a higher consistency value (Equation 5.8) than the false detections
of Figures (e), (i), (j) and (k). The result of Figure (l), as well as the missing instantiations
in all of the Figures can be attributed to segmentation errors. This examples brings up
the fact that the results of our methodology depend on the quality of the segmentation.
However, our methodology can be used as an intermediate step in a segmentation chain.
Moreover, the results can be improved by adding more spatial relations which constrained
the model, for instance we can add a constrint which says that the port should be adjacent
to the land.
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Figure 5.23: Image tile example.

(a) Water (b) Vegetation (c) Other

Figure 5.24: Results from the extraction of the known classes.

Table 5.5: Examples of instantiations of the model of Figure
5.8(d) in the image tiles of Figure 5.21.

Original tile Instantiations Original tile Instantiations

(a) (b)
Continued on next page
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Table 5.5 – continued from previous page
Original tile Instantiations Original tile Instantiations

(c) (d)

(e) (f)

(g) (h)

(i) (j)
Continued on next page
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Table 5.5 – continued from previous page
Original tile Instantiations Original tile Instantiations

(k) (l)
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(a) Instantiations (b) Order

Figure 5.25: Solutions obtained for the tile image of Figure 5.23. In green the sea, in red
the boats and in yellow the docks.

Figure 5.26: Instantiations of the model in Figure 5.8(d) in the image in Figure 5.21. In
green the sea, in red the boats and in yellow the docks.

Interpretation of an airport image
The second example addresses the problem of performing the interpretation of the airport

image of Figure 5.27. For this example we used the model in Figure 5.28 which is based
on the concept hierarchy of Figure 5.18(a), using the same concepts of HC as in Figure
5.18(b).

The results of the multiscale segmentation are shown in Figure 5.29. And the initial
domains for each of the concepts of the conceptual graph are shown in Table 5.6. The
initial domain for the green areas inside the alignment and the one outside the alignment
are the same and are equivalent to Dgreen_areas.

The instantiations of the model are shown in Figure 5.30. The instantiations coincide
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Figure 5.27: Airport image.

Figure 5.28: Conceptual graph describing the spatial arrangement of objects in an airport.
Only one of the coreference links between the concrete surface is shown, however this link
is made between every member of the aligned group and the concrete area.

with the airport. There is only one building which was not detected, and this is because
it was separated into two regions in the segmentation and one of the regions satisfies the
condition of being adjacent to its shadow, but they do not satisfy the condition of being
adjacent to the concrete surface.
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Figure 5.29: Results of multiscale segmentation of image in Figure 5.27. For visualization
purposes we rotated the results by an angle of 90 degrees.

Table 5.6: Initial domains for the concept nodes representing
green area, building, shadow and concrete surface.

Dconcreate_surface

Dgreen_area

Dbuilding

Dshadow

Continued on next page
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Table 5.6 – continued from previous page
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Figure 5.30: Instantiations of the conceptual graph of Figure 5.28 in the image of Figure
5.27. In red the aligned green zones, in green the green zone which does not belong to the
aligned group, in blue the concrete area, and in yellow the building and its shadow.

Discussion

Through these two examples we have shown the interest of the proposed approach for
obtaining the instantiations of a complex objects in an image. Even if the segmentations
in both examples were not perfect the methodology was able to detect the instantiations
of the models in the images. Moreover, we were able to extract the instantiations of the
complex objects without the need of specifying a method for extracting each object of the
scene.

The use of homomorphism between the model conceptual graph and the image allows us
to retrieve several instantiations of the objects composing a complex objects, for instance we
were able to retrieve the two groups of aligned green zones in the airport, or different boats
which are adjacent to a dock. Moreover, using the conceptual graphs for the representation
of the desired structure, allow us to represent groups having a relation with other objects
and members of the group having relations with objects outside the group. The richness of
this representation permits us to describe a complex structure like an airport in a simple
way.

In these two examples we used very simple concept hierarchies and only few classes HC

to help us to identify the initial candidates for the instantiations of the concept nodes in
the image. However, as HC has more elements it is possible to have a smaller set for the
initial candidates and the number of false detections can be reduced. The development of
concept hierarchies (ontologies) is one of the objectives of the ANR project DAFOE, thus
integrating the ontologies of DAFOE into our methodology can improve the results.

5.5.5.1 Implementation remarks

The whole methodology was implemented as generic C++ classes for the Orfeo Toolbox
library (http://www.orfeo-toolbox.org/otb/).

http://www.orfeo-toolbox.org/otb/
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5.6 Towards the introduction of priorities and uncertainties

As mentioned in Section 4.2.2 there can be uncertainty with respect to the model. In this
section we discuss this problem of uncertainty.

When dealing with uncertainty in the spatial relations of the model, the question of
how to deal with this uncertainty and how to propagate it in our system is raised. Relying
on the possibility theory is adequate for this type of situations, since it allows to model
the existence and not existence of an instantiation.

Let GM = (NC ,NR, EM , lM} be our model conceptual graph. We can suppose as in
the case of FCSP [Dubois et al., 1996] that there exist several subsets of NR which define
the real situation. Therefore, we could construct a possibility distribution:

πR = 2NR → [0, 1], (5.12)

Where for Q ⊂ NR, the value πR(Q) represents the possibility that the set of relations
Q appear in the image. To construct πR we could think of learning πR from a data base
of labeled images by evaluating the occurrence of each relation. Another alternative is to
construct πR from a priority distribution (given by a user) over NR as in [Dubois et al.,
1996]. Therefore, the user can construct a function:

PrR : NR → [0, 1]

Ri → PrR(Ri)

where PrR(R) indicates the degree to which it is necessary to satisfy the relation R. For
example, if we want to model the relations that take place in a golf field, then the constraint
specifying the relation µSURROUNDED(sand, green_area) will have higher priority than
the relation µNEAR(sand, water) since the first relation is always true, while the second
one is not. If given two relations R1 and R2, we have that PrR(R1) > PrR(R2) then it
means that the satisfaction of R2 is less necessary. Hence, this can express the uncertainty
of the existence of R2.

To consider the priorities in Algorithm 6, the degree of satisfaction of a prioritized
relation R becomes [Dubois et al., 1996]:

µR̃k
(v1, . . . , vn) = max[1− Pr(Rk), µRk

(v1, . . . , vn)] (5.13)

where µRk
(v1, . . . , vn) is the degree of satisfaction of the relation when applied to the set

v1, . . . , vn. Finally, the possibility distribution πR is given by:

πR(Q) = min
{i:Ri /∈Q}

c(PrR(c(µRk
))), (5.14)

where c is a complement function, for example, c(x) = 1 − x. Thus if for every relation
R ∈ NR we use µR̃ rather than µR in the algorithm of FCSP, then we are able to propagate
this uncertainty throughout the system.

If the uncertainty refers to whether an object exists or not in the model then we have
to model it over the set NC of concepts by constructing a possibility distribution over the
concepts. The posssibility distribution over the concepts has to be linked with the one over
the relations. Therefore, we can construct a priority distribution PrC over the concepts,
that will be attached to the priority distribution PrR over the relations. For a binary fuzzy
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relation R over fuzzy variables a and b, we have that for every x in the domain of a, and
every y in the domain of b the following inequality is true:

µR(a,b)(x, y) ≤ min(µa(x), µb(y)).

This inequality can be extended to relations of any arity. Therefore, if we construct a
priority distribution over the concepts PrC then we can modify the priority distribution
over the relations by:

PrR(R) = min(PrR(R), min
Ci∈SR

PrC(Ci)), (5.15)

where SR contains the variables involved in the relation R. The priorities over the concepts
can represent the key concepts in an scene, for example in a model describing a harbor the
concept of water is necessary. The use of priorities on the objects is also used in [Deruyver
et al., 2009] when a degree of freedom of each relation is introduced by using the bi-level
constraints.

5.7 Conclusion

In this chapter we addressed the problem of incorporating complex spatial relations in the
representation of a model which represents a scene that we want to find in an image. For
this, we first adapted a representation scheme to introduce this type of information in a
model, then we addressed the problem of identifying the model in the image, by simulta-
neously considering some of the possible information imperfections which are present in
this type of problem.
The mapping problem was represented as a graph homomorphism which allows us to have
several instantiations of a model in an image. This flexibility is adequate for satellite images
since most of the time the number of instantiations of a model in an image is unknown.

The problem of obtaining the graph homomorphism in an image was formulated as
a CSP, as in [Chein and Mugnier, 2008]. However, due to the imprecision of the spatial
relations, it was necessary to move to a more flexible formalism such as the FCSP. The arc-
consistency algorithm proposed by [Dubois et al., 1996] only deals with binary relations,
thus we adapted this algorithm to deal with relations having an arity greater than 2.
Moreover, we adapted the algorithm to deal with groups of objects which can be aligned
or not.

Finally, we proposed a methodology to find the instantiations of a conceptual graph in
an unlabeled image. Our method was successfully applied in unlabeled images obtaining
adequate results, even if there were segmentation errors. The results demonstrate the
interest of using the spatial relations for the interpretation of images.
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Chapter 6

Conclusion

6.1 Main contributions

This thesis focused in spatial reasoning applied to very high resolution remote sensing
images. The main contributions of this thesis are on one hand the novel definitions of
spatial relations within a fuzzy set framework, and on the other hand the proposition of a
methodology to perform spatial reasoning using the newly defined relations, among others,
applied to the interpretation of Earth observation images using a model. In the following
we discuss these contributions.

6.1.1 Novel definitions of spatial relations

In the first part of the thesis we concentrated on spatial relations present in Earth obser-
vation images. In Chapter 1 we defined a set containing these relations. From this set of
relations we concentrated on 4 types of spatial relations, which had a definition which was
not adapted to this type of images. These relations are:

Surround: We proposed a definition for the relation “surround”, based on the idea of
angular coverage used in the definitions which had been already proposed in the
literature [Rosenfeld and Klette, 1985, Miyajima and Ralescu, 1994b]. However, our
approach differs from previous work in the sense that we propose to model the relation
as a fuzzy landscape. This definition integrates two types of information: the angular
coverage by the concavities of the object (and not the whole object [Rosenfeld and
Klette, 1985]), and the distance to the target object which is linked to the size of the
target object. This second type of information had not been considered previously,
and allow us to give a definition which is adapted the cases where the size of the
object is very small compared to the concavities of he reference object. However,
this second type of information can make the computation of the relation inefficient
when we have to evaluate the relation for several target objects having different
sizes, because it would be necessary to compute one fuzzy landscape for each object.
Thus in such cases we could think of constructing just one fuzzy landscape without
considering the distance information, and add the distance information later.

Alignment and parallelism: We introduced two novel definitions for alignment of ob-
jects: local and global alignment. Both definitions are based on the notion of neigh-
borhood of an object and on relative direction. We proposed an original method for
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extracting the groups of locally and globally aligned objects. The proposed defini-
tions and methods allow us to consider different definitions of the neighborhood of
an object, making them very flexible. These definitions of alignment consider the
object as a whole making them more appropriate for determining the alignment be-
tween objects, than the definitions which simplify the object by reducing it to just
one point.
We studied the parallel relation mainly in the context of determining when a group
of globally aligned objects is parallel to another group or to another group of globally
aligned objects. The combination of parallelism and alignment allows us to describe
complex spatial configurations, which is an important contribution with respect to
previous work.

Line-region relations: We proposed definitions dedicated to the cases where one of the
objects involved in the relation is a linear object. We focused on four relations:
“go through”, “go across”, “go deep into” and “enter”. We defined these relations
using topological and geometrical components. The definitions were based on results
obtained from human-subject tests and provide results in accordance with human
perception. However, there are several aspects of the relations that need a further
study, for instance, what is the perception of the relation when there are considerable
changes in the curvature of the linear object along its curvilinear axis.

All of the proposed definitions were modeled in such a way that they represent the impre-
cision linked to the semantics of the relations. Moreover, we proposed extensions for the
“surround”, “alignment” and “parallel” relations to deal with fuzzy objects.

6.1.2 Spatial reasoning and image interpretation guided by a model

The second part of this thesis concerns the integration of fuzzy spatial relations, in par-
ticular the “alignment” relation, into a system to perform spatial reasoning applied to the
interpretation of images guided by a model. The main contributions concerning this second
part are:

Representation of spatial scenes: We proposed conceptual graphs as models for rep-
resenting the spatial knowledge of a scene. To represent all the spatial relations we
adapted the nested conceptual graphs to represent an aligned group of objects.

Extension of fuzzy CSP: We introduced a formal framework, based on existing fuzzy
CSP of [Dubois et al., 1996], to address the problems of:

(i) Determining arc-consistency closure of a network containing constraints repre-
senting relations of any arity.

(ii) Determining arc-consistency closure of a CSP network representing a concep-
tual graph containing complex concept nodes, with an unspecified number of
elements, and which contains spatial relations or satisfies the spatial property
of alignment.

We addressed the first problem by extending the definition of arc-consistency for fuzzy
binary constraints proposed by [Dubois et al., 1996], to fuzzy n-ary constraints. For
the second problem, we introduced a novel type of constraints which can also been
seen as variables. These constraints/variables are modeled using two different mem-
bership functions: one dealing with the satisfaction of the constraints in the interior
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of the complex node, and the other representing the satisfaction of the relations be-
tween the concept complex node and the other concept nodes, in addition to the
satisfaction of the constraints in the interior of the complex node. This representa-
tion enables the integration of the complex spatial information, represented by the
alignments, into the fuzzy CSP. Moreover, we proposed an algorithm to determine
the arc-consistency closure of a network containing constraints/variables.

We presented the results of the methodology in two examples which demonstrate
the interest of using the proposed spatial relations for the interpretation of com-
plex objects. Moreover, we were able to obtain the desired intantiations despite the
segmentation errors. The methodology was applied on Earth observation images,
nonetheless it can be applied to any type of images.

6.2 Perspectives

6.2.1 Short-term perspectives

Study of the polymorphism between a group of aligned objects and a linear
object

In [Mathet, 2000] the property of treating a group of objects as only one object, and in
particular as a linear object, was discussed. Therefore, it can be interesting to extend the
definitions of line-region relations when observing a group of aligned objects as a linear
object. Moreover, we could use other gestalt laws, apart from alignment, to form groups
which can be seen as an object.

Introduction of the uncertainty of the model into the interpretation method
As it was noted in Chapter 4, one of the difficulties of obtaining the instantiations

of a model in an image is the uncertainty on whether all the objects and relations that
appear in the model are present in the image. This type of situation is very common in
Earth observation images due to the occlusions, and moreover due to the variety of spatial
structures which can form a semantic concept. In Section 5.6 we proposed a way to address
this problem. It would be useful to integrate this proposal into the system.

Optimization of the algorithm for finding the arc-consistency closure of a nested
constraint network with complex concept nodes

In Algorithm 6 the order in which a constraint is chosen, to check the arc-consistency
of its domains, depends on its computation time. We give a higher priority for those con-
straints having a low complexity value. This approach is an efficient way to construct the
domain of each relation in its first evaluation. However, once the domain of the relation has
been created this approach does not contribute to reducing the algorithm’s computational
time. Thus, it would be more convenient to use another strategy. For instance, choosing
the constraints involving a variable for which the domain was considerably reduced, as in
[Boussemart et al., 2004, Nempont, 2009]. The idea behind this strategy is that if the
domain of a variable xi has been reduced, then the domains of the variables related to xi

are also probably reduced.

Extraction of initial regions and information labeling
In the interpretation of an unlabeled image we used a generic multi-scale segmentation.
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However, this type of segmentation does not correctly extract the fine structures of the
image. Hence, it would be more appropriate to use another approach which considers the
geometry of the regions, for example, the cocons model proposed in [Guigues et al., 2003],
or the segmentation proposed in [Bin, 2007]. This method consists in filtering the tree
of shapes of the images, which consists of the boundaries of the level-sets of the image,
using scale and contrast criteria, where the scale depends on the geometry of the region.
These two types of segmentations were conceived for earth observation images, and allow
to recognize linear objects. Furthermore, for the initial labeling of the regions it can be
interesting to incorporate the geometric information included in the scale proposed in [Bin,
2007].

Using ontologies from DAFOE
The DAFOE (Differential and Formal Ontology Editor) platform1 allows the creation

and management of ontologies. An image ontology and a scene ontology for very high
resolution satellite image interpretation were developed in the Competence Center (COC)
CNES/DLR/Telecom ParisTech under the supervision of Marine Campedel. The image
ontology describes the processes used to extract the low level features, and the scene
ontology describes the concepts on the scene. The objective of these two ontologies is to
reduce the semantic gap between the image processing experts and the photo interpreters.
An annotation tool to assist photo interpreters using these ontologies was proposed.
It would be interesting to use the knowledge represented by these ontologies to obtain the
initial candidate regions of our system, and therefore propose an alternative annotation
tool, which allows the photo interpreter to specify the spatial relations between the objects
of interest.

6.2.2 Long-term perspectives

Integration of the system into a query based architecture with user relevance
feedback

When constructing a conceptual graph containing the spatial information of a scene that
we want to search in an image, it can be difficult to consider all the possible relations that
take place among the objects. Thus, we can think of integrating the methodology that
we proposed for the interpretation of images into an architecture which allows the user to
give an initial conceptual graph and the information to extract the scene of interest. The
system will use this information to give a first result. Then the user can add more relations
or concept nodes to the graph in order to obtain the desired result.

Study of the relevance of spatial relations for describing a spatial scene, and
automatic creation of conceptual graphs representing the spatial structure of
a scene

There can be several ways of describing a same scene. For instance, the situation searched
by the conceptual graph of Figure 5.17 can also be described by the conceptual graph
of Figure 6.1. These two conceptual graphs can be used to search for the "the group of
neighboring houses forming an aligned group, which have a pool located in the garden at the
"back" of the house, and which have a shadow". Since both graphs have a different number
of spatial relations and the relations are different, the computational time of the arc-
consistency would be different. Therefore it can be interesting to study which description

1http://dafoe4app.fr/

http://dafoe4app.fr/
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is more relevant and within a description which relations are more relevant. One possibility
for this could be to adapt the relevance measures proposed in [Dessalles, 2008] for natural
language descriptions, to our context. Furthermore, after having a criterion for evaluating
the relevance of a spatial relation in a model it could be interesting to study learning
algorithms which could automatically generate relevant conceptual graphs to describe a
class of complex scenes, from a labeled image base.

Figure 6.1: Alternative conceptual graph for representing "the group of neighboring houses
forming an aligned group, which have a pool located in the garden at the "back" of the
house, and which have a shadow".



208 6. Conclusion



209

Notations

Fuzzy sets, spatial relations, mathematical morphology and
possibility theory

I discrete domain (i.e Z2)
µA : I→ [0, 1] membership function representing a fuzzy set A over I

(µA)α α-cut of µ
µint(A, B) degree of intersection between two fuzzy sets A and B (Equation

1.2)
µqint(A, B) degree of non-intersection between two fuzzy sets A and B

(Equation 1.4)
c fuzzy complementation
µinclusion(A, B) degree of inclusion of A in B (Equation 1.5)
Π possibility degree (Equations 1.6)
N necessity degree (Equation 1.7)
M mean measure (Equation 1.16)
t t-norm
T t-conorm
DVc(A) morphological dilation of A by the structuring element Vc

µadj(A, B) degree of adjacency between A and B (Equation 1.11)
HA(B) angle histogram from A to B (Equation 1.14)
µdistance(A)(x) membership function of the landscape representing “at a dis-

tance between d1 and d2 from A” (Equation 1.24)
Dνθ

(A) directional dilation of a fuzzy set A in a direction ~uθ

µsurround(A)(x) membership function of the landscape representing “surrounded
by A” (Equation 2.10)

µsurround(A, µn)(x) membership function of the landscape representing “surrounded
by A and near” (Equation 2.13)

O(A, B) orientation histogram between A and B
µALIG(S) degree of global alignment of a group of objects S (Definition

2.1)
µLA(S) degree of local alignment of a group of objects S (Definition

2.3)
µparallel(A, B) degree of satisfaction of the relation “A is parallel to B”, where

A and B can represent objects (fuzzy or not), or groups of
globally aligned objects (Section 2.3)

µgo_through(L, R) degree to which L(linear object) “goes through” R (Equation
2.53)

µgo_across1(L, R) degree of satisfaction of the relation “L goes across R” using the
meaning of going from one side to the opposite one (Equation
2.57)
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µgo_across2(L, R) degree of satisfaction of the relation “L goes across R” using the
meaning of going deep into the region (Equation 2.59)

µenter(L, R) degree of satisfaction of the relation “L enters R” (Equation
2.62)

µgo_deep_into(L, R) degree of satisfaction of the relation “L goes deep into R” (Equa-
tion 2.63)

µalong(L, R) degree of satisfaction of the relation “L is along R” (Equation
2.63)

Conceptual graphs and constraint satisfaction problems
V = (TC , TR, I) vocabulary (Definition 5.1) of a conceptual graph, where:

TC concept ontology
TR relation ontology
I set of individual markers

G = {NC ,NR, E , l} conceptual graph (Definition 5.2), where:
NC concept nodes set
NR relation nodes set
E is the family of edges
l is a labeling function

P = 〈X ,D, C〉 contraint satisfaction problem, where:
X set of variables
D set of domains
C set of constraints

Ck = 〈µRk
, Sk〉 fuzzy constraint Ck , where µRk

is the fuzzy relation represent-
ing Ck and Sk is the set containing the variables involved in
Ck

Basic definitions of fuzzy set theory

Let I be the image space, in our case Z2. A fuzzy set A defined over I, is represented
through its membership function µA : I→ [0, 1]. For any point x ∈ I, µA(x) is the degree
to which x belongs A. Let us note by F the set of all fuzzy sets defined on I.
For µA ∈ F we can defined the following crisp sets: its core defined as Core(µA) = {x ∈
I, µA(x) = 1}, its support Supp(µA) = {x ∈ I, µA(x) > 0} and its a-cuts (for α ∈ [0, 1])
(µA)α(x) = {x ∈ I, µA(x) ≥ α}.

Fusion operators [Bloch, 1996]
A t-norm is an operator t from [0, 1]× [0, 1] into [0,1] which is commutative, associative,

increasing in both variables and that admits 1 as unit element. It represents a conjunc-
tion and generalizes intersection and logical “and”. Typical examples are min(A, B), AB,
max(A + B − 1, 0), the last one being known as the Lukasiewicz t-norm. A t-conorm is
an operator T from [0, 1]× [0, 1] into [0, 1] which is commutative, associative, increasing in
both variables and that admits 0 as unit element. It represents a disjunction and general-
izes union and logical “or”. Typical examples are max(A, B), A + B −AB, min(A + B, 1),
the last one being the Lukasiewicz t-conorm.
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List of publications

International Conferences with Peer-review:

• M.C. Vanegas, I. Bloch and J. Inglada, "Detection of Aligned Objects for High Reso-
lution Image Understanding". In Proceedings of the IEEE International Conference
on Geoscience and Remote Sensing (IGARSS 2010), Honolulu, Hawai, USA, July
2010.

• M.C. Vanegas, I. Bloch and J. Inglada, "Searching aligned groups of objects with
fuzzy criteria". In the Proceedings of the International Conference on Information
Processing and Management of Uncertainty in Knowledge Based Systems (IPMU
2010), Dortmund, Germany, June 2010.

• M.C. Vanegas, I. Bloch and J. Inglada, "Fuzzy Spatial Relations for High Resolution
Remote Sensing Image Analysis: The Case of “To Go Across” ". In Proceedings
of the IEEE International Conference on Geoscience and Remote Sensing (IGARSS
2009), Cape Town, South Africa, July 2009.

• M.C. Vanegas, I. Bloch, H. Maître and J. Inglada, "Approximate Parallelism Between
Fuzzy Objects: Some Definitions", In Proceedings of the International Workshop on
Fuzzy Logic and Applications (WILF 2009), Palermo, Italy, June 2009.
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