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Prof. Michel Jezequel, Télécom Bretagne
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Abstract

Iterative decoding techniques for modern capacity-approaching codes are
currently dominating the choices for forward error correction (FEC) in a
plethora of applications. Turbo codes, proposed in 1993 [1], triggered the
breakthrough in channel coding techniques as these codes approach the
Shannon capacity limit. This was followed by the rediscovery of low-density
parity-check (LDPC) codes in the 1990s, originally proposed by Gallager [2]
in 1963. These codes are presently ubiquitous in the context of mobile wire-
less communications among other application domains.

In this dissertation, we focus on the aspects and challenges for conceiving
energy efficient VLSI decoders aimed at mobile wireless applications. These
nomadic devices are typically battery-operated and demand high energy
efficiency along with high throughput performance on the smallest possible
footprint. Moreover, these iterative decoders are typically one of the most
power intensive components in the baseband processing chain of a wireless
receiver.

We address the aspects for designing energy efficient LDPC decoders.
At the algorithmic level we investigate the tradeoff among error-correction
performance, energy efficiency and implementation area for different choices
of message computation kernels. We identify the opportunities for energy
savings that are enabled by the Self-Corrected Min-Sum (SCMS) kernel at
three different levels: convergence speed, reduction on the number of active
nodes and an efficient stopping criterion. At this level we also propose a
technique to evaluate the syndrome of the code in on-the-fly fashion that
offers a speedup on the decoding task.

At the architectural level we focus on the memory subsystem design of
an LDPC decoder since this module is responsible for the majority of the
implementation area and power consumption. We propose a methodology
for data partitioning and allocation within a flexible memory subsystem that
reconciles design cost, energy consumption and task latency. Furthermore,
we study the impact of interleaving the memories for the posterior messages
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ii Abstract

in order to resolve conflicts. With the results from our studies at both
the algorithmic and architectural levels we present the implementation of
a multi-mode decoder for the quasi-cyclic LDPC codes defined in IEEE
802.11n/16e.

At the system level we propose dynamic power management strategies
that rely upon iteration control and workload prediction. For iteration con-
trol we propose a control law that is aided by two decision metrics that follow
the dynamics of the decoding task. Regarding workload prediction, we pro-
pose a control law that adjusts online a power manageable iterative decoder
that guarantees a task deadline while minimizing energy expenditure.
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Notations

Generally, boldface upper-case letters denote matrices and boldface lower-
case letters denote vectors (unless stated otherwise). Calligraphic upper-case
letters denote sets. The superscript T stands for transpose.

| · | absolute value
⌈·⌉ ceil operation
⌊·⌋ floor operation
argmin argument function of the minimum
Eb (information) bit energy
Fq finite (Galois) field with q elements
fclk clock frequency of a synchronous circuit
G generator matrix
H parity-check matrix
IK K ×K identity matrix
L(·) log-likelihood ratio
max maximum of following expression
min minimum of following expression
mod modulo operation
N0 one-sided noise power spectral density
P (·) probability of argument
p(·) probability density function
sign(·) sign of argument
t continuous time
xi The ith element of vector x, if the latter is defined

\ set element exclusion
∝ left side is proportional to the right side
⊆ subset
∞ infinity

xv
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χ(G) chromatic number of graph G
⊕ sum in F2

δ intrinsic message vector
γ posterior message vector
λ extrinsic message vector
Λ newly generated extrinsic message vector
ρ prior message vector
ci degree of row i in H

κ corrected prior message vector
I number of iterations
ic index of block-column
Ii set of ci elements from row i in H

m horizontal interleaving degree
mb number of block-rows in a structured parity-check matrix
N codeblock length
nb number of block-columns in a structured parity-check matrix
P number of processing units in a semi-parallel architecture
R code rate
s vertical interleaving degree in Chapter 5, circulant shift value in

Chapter 6
Z expansion factor in a structured parity-check matrix



Chapter 1

Introduction

1.1 Motivation

Iterative decoding techniques for modern capacity-approaching codes are
currently dominating the choices for forward error correction (FEC) in a
plethora of applications. Turbo codes, proposed in 1993 [1], triggered the
breakthrough in channel coding techniques as these codes approach the
Shannon capacity limit. This was followed by the rediscovery of low-density
parity-check (LDPC) codes in the 1990s, originally proposed by Gallager [2]
in 1963.

Modern wireless communication standards have already adopted these
types of codes for FEC and channel coding applications. For example, the
Turbo codes are used in the 3GPP Universal Mobile Telecommunications
System (UMTS) [3] and its Long Term Evolution (LTE) [4] system. On
the other hand, LDPC codes can be found in applications ranging from
wireless Local/Metropolitan Area Networks (LAN/MAN) (IEEE 802.11n
[5] and 802.16e [6]) and high-speed wireless personal area networks (PAN)
(IEEE 802.15.3c [7]) to Digital Video Broadcast (DVB-S2 [8]). Furthermore,
these codes are currently being proposed for next generation cellular and
mobile broadband systems as defined by the ITU-R to comply with the
IMT-Advanced radio interface requirements: IEEE 802.16m [9] and 3GPP
LTE-Advanced [10].

In Figure 1.1, we show the evolution and characteristics of various wire-

1
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Figure 1.1: Evolution of wireless networks.

less communication standards for cellular networks, personal area networks
and broadband networks. It can be observed how the data throughput and
round-trip time requirements are pushed constantly to higher levels.

Nomadic devices targeted for mobile wireless communications present
the challenge to use low-power computing architectures that provide high
throughput and low latency performance. Moreover, these devices must pro-
vide a level of flexibility as they are set to support various communication
standards in order to provide a seamless transition within different networks
depending upon physical location, moving speed and required services. In a
modern baseband computing device the use of these capacity-approaching
codes represents one of the main sources for processing latency, power con-
sumption and implementation area. Therefore, it is desirable to explore the
available opportunities to enhance energy efficiency when targeting battery-
powered mobile terminals.

Portable consumer electronics used within these technologies are battery-
operated and the computation complexity performed by them is increased
according to more robust signal processing techniques incorporated on each
network technology. In Figure 1.2, we show the gap between battery te-
chnology enhancements and chip power demand for ASIC/SoC consumer
portable products. This data is taken from [11] [12]. The maximum ba-
ttery capacity shows an increase of 10-15% per year whereas the chip power
requirement increases much faster at 35-40% per year. It is clear that cu-
rrent battery technology cannot cope with the demands for the ever in-
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Figure 1.2: Battery power and chip power demand.

creasing complexity required for consumer electronics that execute complex
signal processing tasks required by current and future network technologies.
Therefore, there is a constant need to design for better energy efficiency.
The design parameters and different components that have more impact on
system power consumption must be identified and optimized in order to
minimize their influence.

1.2 Research Contributions

In this dissertation, we focus on the design aspects for Very-Large-Scale In-
tegration (VLSI) architectures of LDPC decoders with the goal to achieve
high energy efficiency and flexibility in the sense that various codes may be
supported. Our contributions are mainly distributed among three abstrac-
tion levels:

• Algorithmic level: We investigate the energy efficiency of VLSI de-
coders based upon the turbo-decoding message-passing (TDMP) [13]
strategy using several message computation kernels. We perform a
design-time exploration in order to assess the trade-offs between energy
consumption, error-correction performance and implementation area.
In particular, we concentrate on the Self-Corrected Min-Sum (SCMS)
[14] kernel and show the advantages it brings from an energy efficiency
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perspective. In addition, we present an optimization to the syndrome
verification in order to speedup the decoding task.

• Architecture level: We consider the design issues of the memory sub-
system for a flexible quasi-cyclic (QC) LDPC decoder. We present
a flexible memory subsystem whose data organization and partition
enable a low complexity shuffling network for message distribution.
Furthermore, we investigate the impact of interleaving the memories
in order to resolve access conflicts. The implementation of an energy
efficient multi-mode decoder is presented along with comparisons to
decoders from the previous art. By applying the proposed optimiza-
tions interesting gains in energy efficiency and implementation area
are obtained.

• System level: We propose power management strategies for iterative
decoders that rely upon laws that seek to control the iterative nature
of the task and adjust the power level of a power manageable device.
We apply the latter strategy to both LDPC and Turbo decoding and
show notorious gains in energy efficiency.

As a final point and also to lay down the possibilities for future work
within this research we consider the design of a unified decoder that supports
both Turbo and LDPC codes. We focus on how to maximize the memory
subsystem reuse and the selection aspects of the computation kernels.

The contributions of this research have been presented in the following
publications:

• E. Amador, R. Pacalet and V. Rezard. ”Optimum LDPC Decoder:
A Memory Architecture Problem”. In Proc. of the 46th Annual
ACM/IEEE Design Automation Conference, pp. 891-896, July 2009.

• E. Amador, V. Rezard and R. Pacalet. ”Energy Efficiency of SISO
Algorithms for Turbo-Decoding Message-Passing LDPC Decoders”.
In Proc. of the 17th IFIP/IEEE International Conference on Very
Large Scale of Integration, October 2009.

• E. Amador, R. Knopp, V. Rezard and R. Pacalet. ”Dynamic Power
Management on LDPC Decoders”. In Proc. of IEEE Computer So-
ciety Annual Symposium on VLSI, pp. 416-421, July 2010.

• E. Amador, R. Knopp, R. Pacalet and V. Rezard. ”On-the-fly Syn-
drome Check for LDPC Decoders”. In Proc. of the 6th Interna-
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tional Conference on Wireless and Mobile Communications, pp. 33-37,
September 2010.

• E. Amador, R. Knopp, R. Pacalet and V. Rezard. ”Hybrid Itera-
tion Control on LDPC Decoders”. In Proc. of the 6th International
Conference on Wireless and Mobile Communications, pp. 102-106,
September 2010.

• E. Amador. ”Method and Device for Decoding Data”, US Patent
Application No. 12/961,645, filed on December 2010.

• E. Amador, R. Knopp, R. Pacalet and V. Rezard. ”Dynamic Power
Management for the Iterative Decoding of LDPC and Turbo Codes”.
Submitted to IEEE Transactions on Very Large Scale Integration, Ja-
nuary 2011.

• E. Amador and D. Guenther. ”Design of Interleaved Memory Archi-
tectures for QC-LDPC Decoders”. Submitted to ACM Transactions
on Design Automation of Electronic Systems, February 2011.

• E. Amador, R. Knopp, R. Pacalet and V. Rezard. ”An Energy Effi-
cient Multi-Mode LDPC Decoder for IEEE802.11n/16e Applications”.
Submitted to ACM Transactions on Embedded Computing Systems,
February 2011.

• E. Amador, R. Knopp, R. Pacalet and V. Rezard. ”High Throughput
and Low Power Enhancements for LDPC Decoders”. Accepted for
publication on the International Journal on Advances in Telecommu-
nications, April 2011.

1.3 Outline

This dissertation is organized as follows:

Chapter 2: Iterative Decoding

This chapter briefly introduces the topic of iterative decoding and the
best-known codes that approach the limits set within information theory:
Turbo and LDPC codes. The building blocks for this topic such as channel
coding, optimal decoding and component codes are introduced serving as a
background for the rest of the dissertation. A brief historic perspective on
the developments of the field of channel coding and the evolution of wireless
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networks is presented in order to support the quest for energy efficient and
high throughput modems in general.

Chapter 3: Decoding of LDPC Codes

A specific instance of LDPC codes that are amenable for hardware im-
plementations are presented in this chapter. Structured LDPC codes are
addressed in the hardware architecture aspects of this work since these class
of codes are preferred by the different standardization bodies as their hard-
ware complexity is highly reduced. This is followed by an overview of the de-
coding algorithms and computation kernels for soft-decision decoding. This
overview is not a comprehensive one since we focus our attention on the
TDMP decoding proposed by Mansour et al [13] and low complexity com-
putation kernels based upon variants of the min-sum (MS) algorithm.

Chapter 4: LDPC Decoder Architecture

An overview of the canonical decoding architecture for LDPC codes is
presented in this chapter. This is followed by a comparison among several
computation kernels in terms of performance, energy efficiency and imple-
mentation area. This comparison justifies the selection of the kernel used
in the remaining chapters of this work. Our study reveals several properties
of the SCMS kernel that can be exploited in order to achieve high error-
correction performance, low implementation area and high energy efficiency.
Finally, we propose an optimization in order to speedup the decoding task
by modifying the syndrome verification. We provide insights into the im-
pacts of this speedup at the levels of performance and implementation.

Chapter 5: Memory Architecture Design

This chapter outlines the design aspects for the memory subsystem of
flexible QC-LDPC decoders. We formalize the design tasks of data parti-
tioning and allocation with the goal of minimizing implementation area and
providing sufficient flexibility. For the purpose of minimizing access laten-
cies, we look into the topic of memory interleaving. Explorations of different
memory configurations and decoding use cases serve to justify the relevance
of this subsystem by comparing metrics like area per bit and average energy
per iteration.

Chapter 6: Implementation of a Multi-mode LDPC Decoder

The work presented in Chapters 4 and 5 is used to implement a multi-
mode decoder for IEEE 802.11n/16e applications. Architectural aspects are
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detailed in this chapter including the memory subsystem, processing units
and shuffling networks. Detailed breakdowns of the implementation area
and energy consumption per use case are provided in order to justify the fo-
cus of our design approach. Furthermore, this implementation is compared
with representative works from the previous art.

Chapter 7: Power Management for Iterative Decoders

In this chapter, we focus on two aspects of power management for these
decoders: iteration control and workload prediction. For the former we
propose a control law that relies upon two decision metrics in order to pro-
vide better energy gains on the average decoding task. The latter aspect is
used to propose an online algorithm in order to adjust the power mode of
a decoder such that a timing deadline is guaranteed for an energy efficient
decoding task. Furthermore, we apply our work on dynamic power manage-
ment to the decoding of Turbo codes. Implementation results of this work
are provided for both LDPC and Turbo decoders.

Chapter 8: Unified Decoders and Future Work

Future work is aimed at the topic of unified decoding architectures for
both Turbo and LDPC decoding. We present a brief state-of-the-art on
such architectures and point out specific aspects that can be addressed for
the purpose of designing energy efficient decoders based upon the different
contributions presented in this dissertation.

Finally, in Chapter 9, concluding remarks are given.
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Chapter 2

Iterative Decoding

In this chapter, we summarize a background for iterative channel decoding
within digital communications. We present a brief historic perspective on
error correcting codes that justifies the efforts on this research in order to
achieve energy efficient and flexible VLSI decoders.

2.1 Digital Communications

The progress achieved in microelectronics allows the implementation of com-
plex algorithms in an economic way. Essentially because of this reason today
all major communication systems are used in the digital domain. Further-
more, the advances in circuit design, power management and fabrication
technologies have allowed digital communication devices to achieve bit rates
close to the limits defined by information theory.

A communication model is used to understand and disclose the challenges
involved in the transmission of information between a source and one or
several end points. Figure 2.1 shows the basic model used in information
theory. Source symbols from an alphabet are mapped to a sequence of
channel symbols x = [x1, . . . , xn], this sequence goes through a channel that
produces the sequence y = [y1, . . . , yn]. Each channel sequence is assigned to
a particular continuous-time waveform, this is performed by the modulator.
Prior to this a channel encoder introduces redundancy to a sequence that is
used by a receiver in order to recover the sequence despite errors introduced

9
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by the channel. At the receiver side the processing modules are applied in
reverse fashion in order to estimate and recover the transmitted message.

encoder

Channel

Source

decoder

Source

Output
Y

Demodulator

Modulator

Channel

decoder

Channel
encoder

Source
X

Figure 2.1: Basic communication model.

Information theory aims to answer two fundamental questions: which
is the ultimate data compression? And, which is the ultimate transmission
rate of information? Each module in the above figure contributes to the
performance of the communication system as a whole. In this dissertation,
we concentrate on the channel decoder, in particular to a type of high per-
formance codes and the aspects involved in the implementation of VLSI
architectures of high energy efficiency and low complexity.

2.2 Channel Coding

Channel coding refers to a set of techniques or signal transformations de-
signed to achieve a reliable communication between two entities, namely a
transmitter and a receiver. The communication between these entities is
affected by various channel impairments like noise, interference and fading.
These techniques offer a tradeoff between error performance and bandwidth.

Claude Shannon introduced the formalisms used to model and under-
stand the communication problem in his celebrated paper in 1948 [15]. In-
deed, information theory and coding were born with his seminal work. He
showed how the communication problem can be separated into a source
coding and a channel coding problem. Furthermore, he showed the limits
at which error-free communication can be established over a noisy channel.
More precisely, if the rate of transfered data is lower than a theoretical limit
known as channel capacity it is possible to make the probability of error
arbitrarily small at the receiver.

The ”noisy channel coding theorem” asserts that the capacity C of a
band-limited additive white Gaussian noise (AWGN) channel with band-
width B is given by
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C = B log2(1 + SNR) = B log2

(

1 +
Ps

Pn

)

bit/s , (2.1)

where the signal-to-noise ratio (SNR) is the ratio of the power at the
transmitter Ps and the power of the noise Pn from the channel.

Shannon showed that for any transmission rate R less or equal to C there
exists a coding scheme that accomplishes highly reliable communication or
an arbritarily small probability of error. Equation (2.1) can be rewritten
in different ways in order to provide bounds of different nature. The power
at the transmitter is given by Ps = Eb · R, where Eb is the energy per
information bit. The power of the noise can be expressed by Pn = N0 · B,
where N0 is the one-sided noise power spectral density. The capacity can
now be expressed by

C = B log2

(

1 +
R · Eb

B ·N0

)

= B log2

(

1 + η
Eb

N0

)

bit/s , (2.2)

where η is the spectral efficiency expressed in bits/s/Hz. From (2.2) for
a given spectral efficiency, Eb/N0 is lower bounded by

Eb/N0 >
2η − 1

η
. (2.3)

In a similar way, the spectral efficiency is upper bounded by

η < log2(1 + SNR) . (2.4)

Shannon showed the existance of capacity-approaching codes by using
random codes whose encoding/decoding complexity is intractable. Follo-
wing his work, the coding research has focused on finding codes with simple
structure but with enough ”randomness” that allows near-capacity perfor-
mance.

2.2.1 Error Correcting Codes

Error correcting codes typically add redundancy systematically to a message
so that a receiver can determine the message with high probability despite
the impairments of a noisy channel. These codes are used for Forward Error
Correction (FEC), this gives the receiver the ability to correct errors without
the need of a reverse channel to request retransmissions.

In coding theory two well-defined paradigms have dominated the design
and construction of error correcting codes. Algebraic coding is concerned
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with linear block codes that maximize the minimum distance, this is the
minimum number of code symbols in which any two codewords differ. On
the other hand, probabilistic coding is concerned with classes of codes that
optimize average performance as a function of complexity. In Figure 2.2,
we show the timeline1of some key progresses in coding theory and their
applications.

Linear block codes and hard-decision decoding dominated the early de-
cades after Shannon’s seminal work. Even though these codes provide a
good performance in the sense of coding gains they were not designed in the
spirit of Shannon’s idea of ’random-like’ codes. It is with the use of soft-
decision decoding and the introduction of Turbo codes by Berrou et al [1]
that the limits set by Shannon became within reach. This breakthrough trig-
gered a new paradigm for designing practical capacity-approaching codes.
Moreover, the codes proposed by Gallager in 1963 [2], known as low-density
parity-check (LDPC) codes, were rediscovered by MacKay [16] as he showed
empirically that near-Shannon-limit performance was obtained with long
block lengths and iterative decoding. The notion of iterative decoding from
the work by Berrou et al was based upon the observation that a soft-input
soft-output (SISO) decoder could be viewed as an SNR amplifier. A tho-
rough account of the history of coding theory can be found in [17].

In this work, we focus on LDPC codes and their iterative decoding.
Nevertheless, we include Turbo codes and their iterative decoding in some
sections to illustrate the portions of this research that can be applied to
iterative decoding in a broader sense. These codes are formed by the con-
catenation of simpler codes called component codes. In the following, we
summarize some basic definitions and notations used throughout this work.

A code C of length N and cardinality M over a finite field Fq is a col-
lection of M elements called codewords from F

N
q . N is called the block

length. Since a codeword is decodable by definition, in some sections we use
the more general term codeblock when referring to instances of the decoding
task that reach or not convergence.

An (N,K) binary linear block code is a set of codewords that forms a
K−dimensional subspace in a N−dimensional vector space over F2. Since in
this work we use binary codes, the field F2 is simply written as F. The code
can be represented by the row space of a generator matrix G that produces
a codeword x from an information word u ∈ F

N :

1Main source taken from Lecture Notes on Theory and Design of Turbo and Related

Codes, Forschungszentrum Telekommunikation Wien, 2004.
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C = {x : x = uG} . (2.5)

Alternately, the code can be represented as the null space of a parity-
check matrix H:

C = {x : HxT = 0} . (2.6)

The matrix H has dimensions N ×M where M = N −K. The rate of
the code is given by

R = 1−
M

N
. (2.7)

A single parity-check code of length N is defined by a parity-check matrix
of dimensions N × 1 of elements in F.

A convolutional code is generated when passing an information sequence
through a linear finite-state shift register. The shift register in general con-
sists of k stages and n linear algebraic function generators. The input se-
quence is shifted k bits at a time generating n outputs, in this way the rate
is given by R = k/n. The constraint length of the code is K = k + 1 and
it describes the maximum number of information bits that contribute on
the output of the encoder. The code may be described by a semi-infinite
generator matrix or by the generating functions using a delay operator D.

Both Turbo and LDPC codes are constructed by a concatenation of
simpler component codes like the ones mentioned above. In Section 2.3, we
briefly introduce these codes.

2.2.2 Channel Abstraction and Optimal Decoding

The channel or link between transmitter and receiver is usually modeled as a
non-deterministic mapping between an input x and an output y where a con-
ditional probability density function p(y|x) characterizes this mapping. The
inputs and outputs of the channel can be modeled as discrete values belon-
ging to a specific alphabet and/or continuous values. Well-known channel
models include the binary erasure channel, the binary symmetric channel
and the binary input additive white Gaussian noise channel, [18].

The purpose of the decoder is to compute the most probable transmitted
message x after it has been distorted by the channel. The decoded message
x̂ can be estimated using two techniques depending upon the format of
the messages taken from the channel output: hard-decision decoding uses
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binary-decision values while soft-decision decoding uses non-binary-decision
values.

The most probable codeword x̂ for a given received block y is estimated
by maximizing the a-posteriori probability, this is known as the maximum
a-posteriori (MAP) decoder:

x̂ = argmin
x′∈C

P (x = x′|y) . (2.8)

Provided all codewords are equally probable and using Bayes’ rule the
conditional probability in (2.8) can be expressed by

x̂ = argmin
x′∈C

p(y|x = x′) , (2.9)

this is known as the maximum likelihood (ML) decoder. Optimum MAP
decoding involves testing each codeword from a total of 2N for a code in the
binary field F. More precisely, a decoder chooses the codeword in C whose
metric is closer to the received block y. In the case of hard-decision decoding
the metric is the Hamming distance whereas for soft-decision decoding the
Euclidean distance is used. The Viterbi algorithm [19] provides an efficient
block decoding, this minimizes the block or frame error rate (FER).

For the case of symbol by symbol (bitwise) decoding the optimum deco-
ding rule to estimate each code symbol in x̂ = [x1, . . . , xN ] is

x̂n = argmin
x′∈F

P (xn = x′|y) . (2.10)

The BCJR algorithm [20] is an efficient symbol MAP decoder, indeed
it minimizes the symbol or bit error rate (BER). Decoders for capacity-
approaching codes typically use soft-decision kernels known as soft-input
soft-output (SISO) decoders. The decoding kernels usually operate with
soft-messages in the form of log-likelihood ratios (LLR). LLR messages are
commonly used since the LLR-arithmetic [21] exhibits very low complexity
(e.g., additions instead of multiplications). Furthermore, LLRs enable de-
coding strategies that are not restricted to a specific output alphabet of the
channel model. For every received code symbol x the corresponding LLR is
given by:

L(x) = log
P (x = 0)

P (x = 1)
(2.11)

where P (A = y) defines the probability that A takes the value y. LLR
values with a positive sign would imply the presence of a logic 0 whereas a
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negative sign would imply a logic 1. The magnitude of the LLR provides a
measure of reliability for the hypothesis regarding the presence of a logic 0
or 1. Considering the messages involved in the decoding process, the LLR
of an information bit x is given by:

L(x) = Lc(x) + La(x) + Le(x) (2.12)

where Lc(x) is the intrinsic message received from the channel, La(x) is
the a-priori value and Le(x) is the extrinsic value estimated using the code
characteristics and constraints. L(x) is the a-posteriori value and a hard-
decision upon it, i.e., extraction of the mathematical sign, is used to deduce
the binary decoded value.

2.3 Capacity-approaching Codes

The best-known codes that perform close to the Shannon limit are Turbo
and LDPC codes. Both types of codes achieve such performance when itera-
tive soft-decoding is used. Even though these codes have some fundamental
differences, e.g., their component codes, it has been shown that these codes
belong to a superset known as codes on sparse graphs. Wiberg showed in
1995 [22] that these codes are instances of codes defined over sparse graphs,
and that their iterative decoding algorithms are instances of a general ite-
rative algorithm called sum-product. Tanner introduced in 1981 [23] the
bipartite graph used to model LDPC codes, his work along with the contri-
butions by Wiberg are consolidated in what is known as factor graphs and
the sum-product algorithm [24]. Indeed, modern coding theory relies upon
graphical models and variants of the sum-product algorithm, [18].

Factor graphs essentially represent the factorization of a function. It has
been shown how different applications can be naturally described within the
framework of factor graphs, some of which include important applications
in statistical inference like the Viterbi algorithm, the forward/backward al-
gorithm and the Kalman filter, [24] [25].

The factor graph representation of a multivariate function enables the
computation of marginals with respect to any variable by passing messages
along the nodes of the graph. The sum-product algorithm describes how to
compute marginals along a factor graph, these marginals can be shown to
be exact provided the graph is cycle free, i.e., the graph is a tree. For the
case where cycles are present the algorithm naturally iterates. Nevertheless,
if cycles present in the graph are not too short the algorithm performs quite
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Figure 2.3: General structure of a Turbo decoder.

well. In coding theory this paradigm is used to model the a-posteriori and
likelihood functions, equations (2.8) and (2.9) respectively.

2.3.1 Turbo Codes

Turbo codes consist of the parallel concatenation of two convolutional en-
coders separated by an interleaver. The codes are typically systematic and
their error-correction performance depends in great part upon the charac-
teristics of the interleaver. The decoding strategy for these codes consists of
the decoding of the individual component codes and an iterative exchange
of extrinsic information between the two decoders. SISO decoders are used
and typically execute MAP decoding [20] in the logarithmic domain along
the code trellis, a time-evolved graphical representation of the states of a
convolutional encoder. The general structure of a Turbo decoder is shown
in Figure 2.3. Intrinsic messages (δs for systematic bits and δp1,p2 for pa-
rity bits) in the form of LLRs are distributed in non-interleaved/interleaved
form to two MAP decoders that generate and exchange extrinsic information
(λ1,2) in an iterative fashion. Each decoding round performed by a MAP
unit constitutes a half-iteration. Iterations are performed until convergence
is achieved or a maximum number of iterations is completed.

2.3.2 Low-Density Parity-Check Codes

Binary LDPC codes are linear block codes described by a sparse parity-check
matrix HM×N over F2. This matrix defines M parity constraints over N
code symbols. The number of non-zero elements per row define the degree
of the row. A codeword c satisfies the condition:

HcT = S = 0 , (2.13)
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Figure 2.4: LDPC code graph example.

where S is referred to as the syndrome when this inner product is non-
zero. Furthermore, the code can be represented by a bipartite graph in which
rows of H are mapped to check nodes and columns to variable nodes. The
non-zero elements in H define the connectivity between the nodes. Figure
2.4 shows an example matrix (non-sparse) and the corresponding code graph
representation.

LDPC codes can be decoded iteratively by the sum-product algorithm,
a so-called message-passing algorithm. This algorithm achieves MAP de-
coding performance provided the code graph is cycle-free. Even though
there are hard-decision decoding algorithms based upon Gallager’s work [2]
and various bit-flipping algorithms used for different high-speed applications
they are not treated in this work. The sum-product algorithm is applied to
the code graph where check nodes and variable nodes exchange messages
that essentially carry extrinsic reliability values associated with each code
symbol.

1
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Figure 2.5: Example message exchange on the nodes of a code graph.

Figure 2.5 illustrates the message exchange between nodes. Each me-
ssage Li is a function of the incoming messages at a node but excluding the
ith edge of the node. This guarantees that a newly generated message is
independent from its previous value, this is the so-called extrinsic principle.
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Message generation is performed at each node, for the case of a variable
node a message is generated by

Li = Lch +
∑

j 6=i

Lj , (2.14)

where Lch is an initial message taken from the channel observations. On
the other hand, a check node generates a message by

Li = 2 · tanh−1
(

∏

j 6=i

tanh
Lj

2

)

. (2.15)

Notice that the mentioned node operations correspond to the sum-product
algorithm applied to the code graph of a binary LDPC code. In the succee-
ding chapters, we will concentrate on the alternatives for message compu-
tation that feature low complexity. The expression in (2.13) is evaluated
to indicate when convergence has been achieved and is used to stop the
decoding task. Otherwise, a maximum number of iterations is completed.

2.3.3 Performance of Iterative Decoding

Iterative decoding techniques on Turbo and LDPC codes show a characte-
ristic behavior on the error rate as a function of SNR. Figure 2.6 shows the
typical error rate curve exhibited on these codes. There is a clear distinction
between three regions on this curve:

• Non convergence: the decoder shows low efficiency in the low SNR
region, even an increase on the number of iterations would not improve
much the performance.

• Waterfall region: the error rate improves substantially with small in-
crements on the SNR at mid to high SNR values. The performance
improves in this region with an increase of the number of iterations.

• Error floor region: in this region the error rate slope dramatically
changes and the performance gains are limited despite the increase in
signal energy.

The error floors occur typically at low error rates and in general do not
present problems for applications that require moderately low bit error rates
like wireless communications. However, for applications that require low bit
error rates like magnetic storage and optical communications these floors are
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Figure 2.6: Typical behavior of error probability on iterative decoding algo-
rithms.

problematic. In Section 6.1.3, we outline the reasons for this phenomenon
for the LDPC case, even though in general the main cause being the distance
properties of the code.

2.4 Conclusion

Shannon gave birth to the field of information theory and proved the exis-
tance of coding schemes that can achieve highly reliable communication
below the channel capacity. In the search for such codes, coding theory has
explored several paradigms including algebraic codes and codes described on
sparse graphs along with their iterative decoding. Turbo codes and LDPC
codes are formed by the concatenation of simpler codes that are combined
in a random-like fashion, i.e., an interleaver in the Turbo case and the sparse
nature of H in the LDPC case. Optimum decoding is realized by the MAP
algorithm and is typically performed with soft-decision messages.



Chapter 3

Decoding of LDPC Codes

The random-like nature of LDPC codes makes their encoding/decoding task
a complex one due to the connectivity within the code graph. Moreover, the
sparse characteristic of the parity-check matrix increases the complexity of
a decoder that may support various codes. In this chapter, we describe
codes that enforce a particular structural property which greatly simplifies
the encoding/decoding task and enables semi-parallel architectures. Fur-
thermore, we review the decoding algorithm for these codes and various
message computation kernels.

3.1 Structured Codes

LDPC codes meet outstanding performance for large block lengths [16], but
this results in large parity-check and generator matrices. The generator
matrix of an (N,K) systematic linear block code can be expressed in the
form G = [IK | P] provided the sparse parity-check matrix H is transformed
to the form [PT | I]. IK is the K×K identity matrix and P is a K×(N−K)
matrix. P is in general not sparse rendering the complexity of the encoding
task quite high. From the side of the decoder, the random position of the
non-zero elements in H translates into a complex interconnection network.

LDPC codes used in communication standards adopt some structural
characteristics that circumvent the complexities just mentioned. Architecture-
aware [13] codes and quasi-cyclic LDPC [26] codes achieve almost linear

21
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encoding complexity in the block length and enable a grouping of edges and
nodes within the code graph. A quasi-cyclic (QC) LDPC code is obtained
if H is formed by an array of sparse circulants of the same size, [26]. If
H is a single sparse circulant or a column of sparse circulants this results
in a cyclic LDPC code. These codes are composed of several layers of non-
overlapping rows that enable the concurrent processing of subsets of rows
without conflicts.

For example, the QC-LDPC codes defined in IEEE 802.11n [5] and IEEE
802.16e [6] consist of layers formed by Z×Z sub-matrices. Z is an expansion
factor that shows the degree of available parallelism as Z non-overlapping
rows can be processed concurrently. Each of these sub-matrices can be either
an all-zeroes matrix or a circularly shifted identity matrix. Furthermore,
these codes are constructed such that their encoding process exhibits linear
complexity in the length of the code. For these codes (systematic) H is
typically partitioned in two parts: a random part H i for the systematic
information and a prearranged part Hp for the parity information. Figure
3.1 shows the H matrix and the bipartite graph of an example structured
code where HM×N = [H i

n×k|H
p
n×n], with M = n and N = n + k. Indeed,

H consists of an array mb × nb of Z × Z blocks.

The graph representation in Figure 3.1b contains edges of width Z that
group Z nodes into clusters. This grouping enables the possibility to instan-
tiate a subset of the processing nodes. This represents a clear advantage
in terms of flexibility and implementation area as well as a reduction of
the complexity of the interconnection network (edge permutations). Such
characteristics are indeed exploited under semi-parallel architectures.

3.2 Decoding Algorithms

As mentioned in Section 2.3.2, LDPC codes are typically decoded itera-
tively using a two-phase message-passing algorithm, the sum-product algo-
rithm [24]. Each decoding iteration consists of two phases: variable nodes
update and send messages to the neighboring check nodes, and check nodes
update and send back their corresponding messages. Node operations are
in general independent and may be executed in parallel. This allows the
possibility to use different scheduling techniques that may impact the con-
vergence speed of the code and the storage elements requirements. The
algorithm initializes with intrinsic channel reliability values and iterates un-
til hard-decisions upon the accumulated resulting posterior messages satisfy
equation (2.13). Otherwise, a maximum number of iterations is completed.
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Figure 3.1: Structured LDPC code example.

The work in [27] presented a generalization for the decoding of sparse
parity-check matrix codes. This work consolidated several concepts that
have greatly optimized the decoding process, such as a merger of messa-
ges to save on memory requirements and a layered-scheduling that exploits
architecture-aware codes. The decoding algorithm for sparse parity-check
matrix codes is generalized in [27] in what is referred to as the turbo-
decoding message-passing (TDMP) algorithm. In TDMP decoding the check
nodes are evaluated sequentially updating and propagating more reliable me-
ssages along the code graph, consequently achieving convergence in a faster
way (twice as fast as the two-phase schedule). At the core of TDMP deco-
ding lies a SISO message computation kernel that corresponds to the check
node operation in the code graph.

In the following, we summarize this algorithm from [27]. Let the vector
δ = [δ1, . . . , δN ] denote the intrinsic channel observations per code symbol
as log-likelihood ratios, and a vector γ = [γ1, . . . , γN ] denote the sum of
all messages generated in the rows of H for each code symbol (posterior
messages). Let us define as well a vector λi = [λi

1, . . . , λ
i
ci

] for each row i
in H that contains the ci extrinsic messages generated after each decoding
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round where ci is the degree of the row. Let Ii define the set of ci non-zero
values in row i such that the ci elements of γ and δ that participate in row
i are denoted by γ(Ii) and δ(Ii) respectively. Furthermore, let the vector
ρ define the prior messages. The decoding of the ith row is outlined in
Algorithm 1.

Algorithm 1 TDMP Decoding

Initialization
λi ← 0

γ(Ii)← δ(Ii)
For each iteration:

1. Read vectors γ(Ii) and λi

2. Generate prior messages: ρ = γ(Ii)− λi

3. Process ρ with a soft-input soft-output (SISO)
algorithm: Λ = SISO(ρ)

4. Writeback vectors:
λi ← Λ

γ(Ii)← ρ + Λ

The process iterates until a stopping criterion is satisfied. The optimal
stopping criterion corresponds to the syndrome check condition shown in
equation (2.13). Nevertheless, there are several proposed stopping criteria
(refer to Chapter 7) in order to detect early the possibility for an undeco-
dable block. Hard-decisions are taken by slicing the vector γ to obtain the
decoded message. TDMP decoding offers two advantages when compared
to the traditional two-phase algorithm: a reduction of the memory require-
ments due to the merging of check and variable messages and a reduction
in the number of iterations by up to 50%.

3.2.1 Message Computation Kernels

The processing complexity of the decoding task resides in the operations
performed in the variable and check nodes of the code graph. Essentially
the operation at the variable node is an addition of the incoming messages,
whereas the operation at the check node involves more operations and it is
where the tradeoff of performance and complexity takes place. In the context
of TDMP the check node operation takes place on Step 3 of Algorithm
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1. We refer to this step as message computation for generating the vector
Λ = SISO(ρ) from the prior messages ρ. The optimal message computation
is performed by the Sum-Product (SP) algorithm by:

Λj = ψ−1
(

∑

n∈Ii\j

ψ(ρn)
)

, (3.1)

where (following the definitions in [13])

ψ(x) = −
1

2
log(tanh(

x

2
)) = ψ−1(x) . (3.2)

Implementing (3.2) is highly complex mainly due to the effects of quan-
tization and the non-linearity of the function. Along with the TDMP sche-
dule, the authors in [13] proposed the computation of messages by using a
simplified form of the BCJR algorithm [20] to process the 2-state trellis of
each single parity-check constraint of the code. Indeed, this approach views
an LDPC code as the parallel concatenation of single parity-check codes.
A detailed analysis on this can be found in [13] [27]. The computation of
messages is performed by:

Λj = Q[j](. . . (Q(Q(ρ1, ρ2), ρ3), . . .), ρci
) , (3.3)

where

Q(x, y) = max(x, y) + max
(

5
8 −

|x−y|
4 , 0

)

−

max
(

5
8 −

|x+y|
4 , 0

)

−max(x+ y, 0) (3.4)

is the so-called max-quartet function and the subscript [j] denotes the
index of the variable to exclude from the computation.

The Min-Sum (MS) algorithm [28] approximates the operation in (3.1)
with less complexity but at the cost of error-correction performance. The
MS operation computes messages by:

Λj =
(

∏

n∈Ii\j

(sign(ρn))
)

· min
n∈Ii\j

|ρn| . (3.5)

Several correction methods have been proposed to recover the perfor-
mance loss of the MS operation, such as the Normalized-MS (NMS) and
Offset-MS (OMS) algorithms [28]. These correction methods essentially
downscale the check node messages, which are overestimated in the first
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place in MS. NMS computes messages by scaling equation (3.5) by a factor
α:

Λj = α ·
(

∏

n∈Ii\j

(sign(ρn))
)

· min
n∈Ii\j

|ρn| , (3.6)

whereas OMS computes messages by:

Λj =
(

∏

n∈Ii\j

(sign(ρn))
)

·max

(

min
n∈Ii\j

|ρn| − β, 0

)

, (3.7)

where β is an offset value.
It has been argued in [14] that the sub-optimality of MS decoding is not

due to the overestimation of the check node messages, but instead to the loss
of the symmetric Gaussian distribution of these messages. This symmetry
can be recovered by eliminating unreliable variable node messages or clea-
ning the inputs of the check node operation. In [14] the Self-Corrected MS
(SCMS) decoding is introduced. This kernel exhibits quasi-optimal error-
correction performance with the same low-complexity found in the other
MS-based kernels. An input to the check node operation is identified as
unreliable if it has changed its sign with respect to the previous iteration.
In Algorithm 2, we show how to integrate the SCMS kernel to the TDMP
decoding of a row i.

The vector κ = [κ1, . . . , κci
] corresponds to the corrected inputs for the

MS operation. Steps 3 and 4 correspond to the main features of the SCMS
algorithm where unreliable variable messages are identified and erased. In
this way unreliable values are no longer propagated along the code graph.

The SCMS kernel is said to have quasi-optimal performance since it
approaches the optimal SP kernel. Figure 3.2 shows the simulated bit error
rate (BER) for the mentioned kernels for coding rate 1/2 over the additive
white Gaussian noise (AWGN) channel with quadrature phase-shift keying
(QPSK) modulation for the code of length 1944 in IEEE 802.11n [5]. A
maximum of 60 decoding iterations were used, where the NMS kernel used
a normalization factor of 0.8 and the OMS kernel used an offset factor of 0.35.
The SP kernel is taken to be the optimal one, its behavior is closely followed
by the BCJR kernel. The MS kernel exhibits a considerable performance loss
that is somehow recovered by its variants (NMS and OMS). The interesting
observation is the performance of the SCMS kernel. This kernel exhibits
a lower error floor (similar results were obtained for other codes and use
cases). This behavior is mainly due to the mitigation of the effects of cycles
in the code when erasing unreliable messages.
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Algorithm 2 TDMP-SCMS

Initialization
λi ← 0

γ(Ii)← δ(Ii)
At iteration k 6= 0:

1. Read vectors γ(Ii), λi and ρi
old

2. Generate new prior messages: ρi
new = γ(Ii)− λi

3. Generate MS input κ such that:

for all j ∈ ci do

if sign(ρi
newj

) 6= sign(ρi
oldj

) then

κj = 0
else

κj = ρi
newj

end if

end for

4. Generate MS output Λ = MS(κ):

Λj =
(

∏

n∈Ii\j

(sign(κn))
)

· min
n∈Ii\j

|κn| (3.8)

5. Writeback vectors:
λi ← Λ

ρi
old ← ρi

new

γ(Ii)← ρi
new + Λ
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Figure 3.2: Bit error rate performance

3.3 Conclusion

Structured LDPC codes reduce the complexity of the encoding/decoding
tasks. Furthermore, these codes enable the use of semi-parallel architectures
that are inherently flexible. There are several kernels for message computa-
tion to be used for LDPC decoding. These kernels provide each a tradeoff
between error-correction performance and computational complexity. In the
succeeding chapter these kernels will be compared from the perspectives of
energy efficiency and implementation area.
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LDPC Decoder Architecture

In this chapter, we focus on the architecture for LDPC decoding hardware
based upon the TDMP decoding strategy presented in the previous chapter.
The selection of a message computation kernel is based upon comparisons in
performance, energy efficiency and implementation area. Finally, we present
an optimization to speedup the decoding task by partitioning the code syn-
drome verification.

4.1 Decoding Architectures

The decoding algorithm for LDPC codes exhibits a high amount of paralle-
lism that may be exploited in order to achieve high decoding throughput.
Nevertheless, exploiting this parallelism has several challenges mainly due
to the irregularity within the connectivity of the code. A fully parallel im-
plementation like the one in [29] exhibits a high throughput advantage and
a reduction in power consumption due to a rapid convergence, but suffers
from a complex network of message wires and lacks flexibility. In the disser-
tation by Guilloud [30] a generic framework for analyzing LDPC decoding
architectures is provided.

The codes shown in Section 3.1 exploit the regularity of the code struc-
ture and enable the instantiation of a subset of the processing nodes for
so-called partially-parallel or semi-parallel architectures. Furthermore, the
interconnection complexity between processing nodes is reduced since se-

29
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veral edges of the code graph can join clusters of nodes. These architec-
tures are inherently flexible and may support several types of codes. By
flexibility we refer to the capability of an architecture to be used in diffe-
rent contexts, [31]. Such goal can be achieved by making an architecture
adaptable, reconfigurable or parameterizable. In order to address flexibility
software-based implementations for FEC processing have been proposed in
the context of application-specific instruction-set processors (ASIP) with
works in [32] [33] as the most prominent ones. This strategy nonetheless is
not yet as efficient with respect to a dedicated hardware design in terms of
power and energy expenditure due to the memory-intensive nature of this
application.

Most of the literature on LDPC decoders shows a clear trend that favors
semi-parallel architectures. Numerous works have proposed semi-parallel
architectures that are optimized in different ways in order to conceive energy
and area efficient designs. For example, for multi-mode decoders, authors in
[34] proposed a reconfigurable network for message distribution and authors
in [35] relied upon an early termination scheme and memory banking to
reduce power consumption. The work presented in [36] divides the decoder
operation in several tasks and arranges their order such that the challenges
due to flexibility may be solved. Similarly, in [37] the authors proposed a
memory-bypassing scheme where the order of the processing layers is altered
such that energy consumption is minimized. The work in [38] addresses as
well the topic of task rearrangement and optimizes the message quantization
as well as their storage scheme. In Chapter 6, we compare some of these
cited works with the implemented decoder presented in this dissertation.

4.2 Decoder Overview

The decoder architecture follows from the description in Algorithm 1. The
required storage elements are: a posterior messages memory (γ), which
holds the N code symbol LLR messages; and an extrinsic messages memory
(λ), whose size corresponds to the number of edges of the code graph. It is
important to note that as described in [27] with TDMP decoding the vector
γ is initialized with the intrinsic channel observations δ. Consequently, δ

does not play a role in the iterative process other than during initialization.
Besides these memories storage is required for the structure of the parity-
check matrices, this involves the location of the non-zero sub-matrices and
their corresponding shift value.

Figure 4.1 shows the top level view of the proposed decoder architecture.
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A read-only memory (ROM) stores the control information from the struc-
ture of the section H i

n×k in the parity-check matrix corresponding to the
systematic part of the code. Shuffling units π and π−1 are used to distribute
posterior messages to and from a set of P processing units. The processing
units exploit the parallelism offered by the structure in H such that up to
P rows can be decoded concurrently.

4.2.1 Processing Unit

The processing units execute the message computation kernel of choice, this
could be any of the alternatives described in Section 3.2.1. Figure 4.2 shows
the data flow for this unit.

The selection of the computation kernel impacts a portion of the memory
subsystem (this is addressed in Chapter 5) but also the architecture of the
processing unit could be impacted. Among the previously discussed kernels,
only an SCMS-based processing unit would deviate from the one shown in
Figure 4.2. The MS-based kernels fundamentally perform a running com-
parison of magnitudes and a sign calculation. The processing unit for SCMS
requires a pre-computation block for performing Step 3 from Algorithm 2.
Figure 4.3 shows the top level view of a processing unit for SCMS message
computation.
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4.2.2 Shuffling Networks

Message distribution within LDPC decoding architectures is typically ca-
rried out by shuffling or interconnection networks. These components per-
form the operation of the code graph edges. It is straightforward to observe
that their complexity is a function of the structure of the parity-check ma-
trix, i.e., the position of the non-zero elements in H. These networks in fact
are equivalent to the interleavers used within Turbo decoding.

The structure of architecture-aware and quasi-cyclic codes reduces the
complexity of these networks. Since these codes are processed in clusters or
subsets of rows in H that belong to a circulant submatrix the data (posterior
messages) within said circulant is rotated according to the shift value of
the submatrix. Consequently, the architectures for these interconnection
networks typically rely upon configurable barrel-shifters, crossbar switches
or non-blocking switching networks like Banyan and Benes̆ networks [39]. In
Section 6.3, we provide a brief description of representative state-of-the-art
shuffling network architectures.

The shuffling networks act as links between the memories and the pro-
cessing nodes within a semi-parallel architecture. Therefore, the structure
of the networks depends upon the memory subsystem structure and the or-
ganization of the data. In Chapter 6, we present a low-complexity shuffling
network that is the direct outcome of a particular memory organization and
partition proposed in this dissertation.

4.3 Energy Efficient Computation Kernel

The message computation kernels described in Section 3.2.1 have different
characteristics and impacts on a VLSI implementation. Energy expenditure
and implementation area are the most critical issues for efficient mobile
wireless modems. In this section, we look mainly into the energy efficiency
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of these kernels.

We implemented at the register-transfer level (RTL) the kernels for
message computation in order to observe the costs previously mentioned.
Postlayout netlists were used along with annotated switching activity in
order to estimate the energy consumption. The tools used were Design
Compiler R© and PrimeTime PX R© by Synopsys, Inc. In Figure 4.4, we show
the cell area per kernel of a serial SISO unit with a message quantization
of 6-bits on a CMOS technology process of 65nm and the average energy
consumed per iteration per kernel when decoding the code in IEEE 802.11n
of length 1944 and rate 1/2.

The BCJR kernel has the most complex data path and clearly its imple-
mentation area surpasses the other kernels, its cost on energy expenditure
per iteration is as well the highest one. On the other hand, the MS ker-
nel represents the simplest kernel with the smallest footprint. The variants
of the MS kernel that resize the output messages raise both the area and
energy cost. On the other hand, the SCMS kernel presents a 7% increase in
area compared to the MS kernel and it slightly outperforms the MS kernel
in energy consumption. In the following, we elaborate on the energy effi-
cient characteristics offered by the SCMS kernel as an integral component
for efficient decoders.
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4.3.1 Convergence Rate

Iterative decoding comprises a dynamic task as the number of iterations
depends upon factors like the SNR and channel quality. The message cal-
culation clearly affects the convergence speed since reliable and unreliable
messages are propagated along the code graph after each iteration. In this
sense one kernel might converge faster or slower than others, nevertheless
from an energy efficiency perspective it is compelling to compare the net
consumption from each kernel. Figure 4.5 shows the comparison of message
kernels1in terms of convergence speed and net energy consumption. These
figures correspond to the simulation of the code in IEEE 802.11n of length
1944 and rate 1/2 with the same scenario from Figure 3.2. The energy va-
lues for Figure 4.5b are taken from the data in Figure 4.4. Notice that the
SP kernel is not implemented as we focus on kernels with reduced comple-
xity but we provide the SP convergence rate as it represents a performance
bound.

From these figures it is observed how SCMS is the slowest kernel to
converge, this is expected as it provides the fewest number of messages per
iteration. Nevertheless, it is for this same reason that it consumes less energy
per iteration, rendering the overall decoding task more efficient.

4.3.2 Active Nodes Reduction

The number of nodes in the code graph that are active during each decoding
iteration impacts the energy consumption. In [40], the authors proposed to
deactivate the variable nodes that have converged to a strong belief after
a few iterations. This condition is detected when the summation of all
incoming messages surpasses a given threshold. The error-correction perfor-
mance is affected by the value of this threshold. Furthermore, this criterion
adds a compare operation per variable node.

The SCMS kernel enables a simple criterion to disable a check node on a
given iteration. The concept of erasing messages avoids the propagation of
unreliable messages along the code graph. If there are two or more erased
messages per row (Step 3 in Algorithm 2) that particular check node is
effectively rendered useless for the decoding task as all its output values
would have magnitude zero. Although there is a similar argument for any
MS-based kernel (two or more zero magnitude input messages) the SCMS
kernel benefits from the fact that the minimum finders are not used. De-
tecting this condition allows to save the processing required along with the

1NMS with normalization factor of 0.8 and OMS with offset factor of 0.35.
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Figure 4.5: Decoding speed and energy consumption of computation kernels.
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writeback of messages to the memories. Moreover, this criterion does not
introduce any performance losses. Notice that this technique for power re-
duction can be viewed as an instance of the RTL-level optimization for low
power known as pre-computation originally proposed in [41].

Figure 4.6 shows the percentage of disabled check nodes per iteration
for two instances of a decoding task for a code in IEEE 802.11n (N=1944,
R=1/2) and IEEE 802.16e (N=2304, R=1/2) at an SNR of Eb/N0 = 1dB. In
Chapter 6, we present a decoder implementation that with this optimization
alone achieved an average of 10% of energy savings among various use cases.

4.3.3 Stopping Criterion

Iteration control oversees that only the necessary number of iterations are
executed for both successful and unsuccessful decoding. This indeed trans-
lates into energy savings since unnecessary decoder operation is avoided. In
Chapter 7, we elaborate on a proposed control law for early stopping of the
iterative decoding of LDPC codes aided by a decision metric extracted from
the SCMS kernel.

4.4 Decoders Comparison

We performed an estimation on the decoders implementation area and energy
consumption of the individual components shown in the architecture of
Figure 4.1, using three computation kernels for the test case of the code
N = 1944, R = 1/2 in [5]. Benes̆ networks were used as shuffling units [42],
and low-power dual-port RAMs for the required memories providing a band-
width of 12 samples/cycle to three processing units in all decoders. Even
though the design parameters of the decoders will become evident in Chap-
ters 5 and 6 in terms of memory requirements we present in this section
this comparison in order to provide a complete perspective on the kernels
comparison.

In Figure 4.7, we show the implementation area and energy breakdown
for decoders using the BCJR, SCMS and OMS (with offset value of 0.35)
kernels with a message quantization of 6-bits in CMOS 65nm technology.
The energy breakdown corresponds to the average energy expenditure per
iteration for the previously mentioned test case at Eb/N0 = 1dB. To have a
fair comparison all decoders used the syndrome check as stopping criterion
and all nodes were activated at run-time. On all decoders at least 70% of
the energy is consumed on the memory subsystem, this shows the relevance
of the optimization that can be exploited by the SCMS kernel mentioned
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Figure 4.6: Inactive check nodes in SCMS decoding.
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in Section 4.3.2 and the importance of the memory subsystem design pre-
sented in Chapter 5. The MS-based kernels consume less energy than the
BCJR kernel on the extrinsic messages memories. Nonetheless, the SCMS
kernel consumes more on this same memory when compared to the OMS
kernel since it requires to store a reduced context from the previous iteration
(this is further elaborated in Section 6.2.2). Furthermore, in this figure it
can be observed how the SCMS kernel reduces the overall energy expendi-
ture mainly due to the reduction in energy consumption at the level of the
processing units.

In order to compare the decoders independently from use cases and ite-
rations a frequently used figure of merit is the energy efficiency normalized
to bits and iterations. In Table 4.1 we show the energy efficiency for the
implemented decoders.

Table 4.1: Energy efficiency of SISO decoders.

Energy efficiency BCJR OMS NMS SCMS
[pJ/bit/iteration] 64.87 46.98 47.61 43.61
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4.5 Decoding Speedup

In this section, we present an optimization to the decoding algorithm for
the purpose of speeding up the average decoding task. Syndrome check
or verification is performed in order to confirm the validity of the obtained
codeblock and hence decide whether to continue or halt the decoding process.
This task corresponds to the evaluation of all the parity-check constraints
imposed by the parity-check matrix. We propose to perform this check on-
the-fly so that a partially unsatisfied parity-check constraint can disable a
potential useless syndrome verification on the entire parity-check matrix. We
identify as benefits from this technique the elimination of several hardware
elements, a reduction on the overall task latency and an increase on system
throughput.

Similar ideas of the proposed technique have been shown in [43] [44]
[45] for the purpose of improving the energy efficiency of the decoder by
reducing the average number of iterations. Nevertheless, these techniques
are sub-optimal in the error-correcting sense as they introduce undetected
codeblock errors. We analyze the performance of the proposed technique
and elaborate on the recovery of the performance loss. Additionally, we
quantify the impact of this proposal on a VLSI implementation.

4.5.1 On-the-fly Syndrome Check

A hard-decision vector on the posterior messages is required after each de-
coding iteration in order to calculate the syndrome. Syndrome calculation
involves the product in equation (2.13), but this is equivalent to evaluate
each parity-check constraint (each row in H) with the corresponding code
symbols. Figure 4.8 shows an example correspondence between the code
symbols, the parity-check matrix and the parity-check constraints.

The parity-check constraints are of even parity and the ⊕ operation
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Figure 4.9: LLRs magnitude evolution as a function of decoding iterations.

corresponds to the modulo-2 addition. The arguments of each constraint
correspond to the hard-decision of each LLR. A non-zero syndrome would
correspond to any parity-check constraint resulting in odd parity. This con-
dition suggests that a new decoding iteration must be triggered. The calcu-
lation of the syndrome in this way is synonymous to the verification of all
parity-check constraints and indeed we refer to this as syndrome check.

The typical syndrome check requires a separate memory for the hard-
decision symbols, a separate unit for the syndrome calculation (or verifi-
cation of parity-check constraints) and indeed consumes time in which no
decoding is involved. In this context, we use the word typical in two senses:
one referring to the calculation of the syndrome with stable values and the
other referring to the evaluation of the syndrome after the end of a decoding
iteration.

In [46] [47] it has been shown how the LLR values evolve within the
decoding process. Depending upon the operating SNR regime these values
will initially fluctuate or enter right away a strictly monotonic behavior.
Figure 4.9 shows the simulated LLRs magnitude evolution of an instance of
decoding the QC-LDPC code defined in IEEE 802.11n for code length 648
and coding rate 1/2 over the AWGN channel at an SNR Eb/N0 = 1.5dB.

Based upon the behavior of the LLRs we propose to perform the syn-
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drome check on-the-fly in the following way: each parity-check constraint is
verified right after each row is processed. Algorithm 3 outlines the proposed
syndrome check within one decoding iteration for a parity-check matrix with
M rows.

Algorithm 3 On-the-fly syndrome check

1. Decode each row i (or a plurality thereof for parallel architectures)
2. Evaluate each parity-check constraint PCi by performing the ⊕ ope-
ration on the hard-decision values
3. Verification:
if (PCi = 1) then

Disable further parity-checks verification
else

if (i = M) then

Halt decoding: valid codeblock found
end if

end if

Because of the structure of architecture-aware LDPC codes [13] and QC-
LDPC codes it is possible to process several rows of H in parallel. For the
proposed syndrome check there are two extreme cases regarding the latency
between iterations. The worst-case scenario corresponds to the case when
all individual parity-checks are satisfied but at least one from the last batch
to process fails, in which case a new decoding iteration is triggered. The
best-case scenario is when at least one of the first rows’ parity-check fails,
this disables further rows’ parity-check verification and the next decoding
iteration starts right after the end of the current one. The difference with
the typical syndrome check is that it is always performed and it necessarily
consumes more time as it involves the check of the entire H. Figure 4.10
shows the timing visualization of these scenarios and the evident source for
latency reduction of the decoding task.

The notion of typical syndrome check that we use might appear rather
naive at first glance, but notice that among all the published works on
decoder architectures the way the syndrome is verified is consistently ne-
glected. It could be argued that the syndrome of an iteration can be verified
concurrently with the decoding of the following iteration. This indeed would
belittle our claim on task speedup but nevertheless the on-the-fly syndrome
check hardware would still be of considerable lower complexity than said
alternative mainly due to the lack of memories to save the hard decisions of
the previous iteration.



42 Chapter 4 LDPC Decoder Architecture

ro
w

s
 p

ro
c

e
s

s
in

g

ro
w

s
 p

ro
c

e
s

s
in

g
ro

w
s

 p
ro

c
e

s
s

in
g

ro
w

s
 p

ro
c

e
s

s
in

g
ro

w
s

 p
ro

c
e

s
s

in
g

fa
ile

d

ro
w

s
 p

ro
c

e
s

s
in

g

o
n

−
th

e
−

fly
 S

C

w
o

rs
t c

a
s

e

o
n

−
th

e
−

fly
 S

C

b
e

s
t c

a
s

e

s
y

n
d

ro
m

e
−

c
h

e
c

k

ty
p

ic
a

l

d
e

la
y

 to
 s

ta
rt a

 ro
w

 p
a

rity
 c

h
e

c
k

in
d

iv
id

u
a

l ro
w

’s
 p

a
rity

 c
h

e
c

k
s

o
n

 p
ro

c
e

s
s

in
g

 u
n

its

...

...

...

...

o
n

e
 d

e
c

o
d

in
g

 ite
ra

tio
n

tim
e

o
n

e
 o

f th
e

 ro
w

’s
 p

a
rity

 c
h

e
c

k
 fa

ile
d

−
>

 re
m

a
in

in
g

 p
a

rity
 c

h
e

c
k

s
 a

re
 d

is
a

b
le

d

...
s

y
n

d
ro

m
e

 c
h

e
c

k

fa
ile

d

la
te

n
c

y
 re

d
u

c
tio

n
...

...
...

p
a

rity
 c

h
e

c
k

s

p
a

s
s

e
d

... fa
ile

d

...

F
igu

re
4.10:

T
im

in
g

v
isu

alization
for

tw
o

con
secu

tiv
e

d
eco

d
in

g
iteration

s.



4.5 Decoding Speedup 43

Table 4.2: Decision outcomes of the proposed syndrome check.

On-the-fly Typical Outcome
syndrome check syndrome check decision

Pass Pass Hit

Pass Fail False Alarm

Fail Pass Miss

Fail Fail Hit

A closer examination of the proposed syndrome check reveals the possi-
bility for special scenarios. Indeed, the proposed syndrome check does not
correspond to equation (2.13) since the parity-check constraints are evalu-
ated sequentially and their arguments (LLR sign) could change during the
processing of the rows. Consequently, there is a possibility that the deci-
sion taken by the on-the-fly strategy might not be the correct one at the
end of the decoding process. Table 4.2 shows the possible outcomes of the
decision taken by the proposed strategy in contrast to the typical syndrome
check. A Pass condition is synonymous to the condition S = 0. A false
alarm outcome corresponds to the case when all parity-check constraints
were satisfied, indeed halting the decoding task during any iteration as a
valid codeblock has been identified (when in fact a final typical syndrome
check would fail). On the other hand, a miss outcome takes place when
during the last iteration (maximum iteration limit) a single parity-check
constraint fails rendering the codeblock as invalid (when in fact the typical
syndrome check would pass). Both outcomes are the result of at least one
LLR sign change right before the last row processing.

From this set of possible outcomes the probability PH for the proposed
syndrome check to be correct can be expressed by:

PH = 1− (PFA + PM )

= 1− (PPPCBE + (1− PP )(1− PCBE)) , (4.1)

where PFA is the probability of a false alarm, PM is the probability of a
miss , PCBE is the probability of a codeblock error and PP is the probability
of the proposed syndrome check to pass.

Based upon the analysis and observations in [46] [47] the LLRs mono-
tonic behavior is guaranteed for the high SNR regime, in this regime the
outcome decision would be a hit with probability 1. Nevertheless, as the
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SNR degrades the inherent fluctuations of the LLRs at the beginning of the
decoding process may cause the decision to be a miss or a false alarm with
non-zero probability. In Figure 4.11, we show the outcome of the decoding
of 105 codeblocks using the code length of 1944 and two code rates in IEEE
802.11n in order to observe the rate at which a miss and a false alarm may
occur on the low SNR regime.

Even though the hit rate is shown to be empirically greater than a miss
or a false alarm it is important to address the occurrence of such anomalies.
A miss result would trigger an unnecessary retransmission in the presence
of an ARQ protocol, while a false alarm result would introduce undetected
codeblock errors. This indeed represents some concerns that must be ana-
lyzed on an application-specific context, as for example a wireless modem
for [5] [6] is not likely to operate at such low SNR because of the required
minimum packet-error rate performance.

The error-correction performance is affected by the false alarm outcomes.
In Figure 4.12, we compare the simulated BER and FER of the typical
syndrome check and the proposed method, this corresponds to the same
simulation scenario from Figure 4.11a. The performance loss is evident,
therefore we address the ways in which this situation can be circumvented.

Detection of the miss and false alarm outcomes can be performed in two
ways:

1. Validating the result provided by on-the-fly syndrome check by calcu-
lating the typical syndrome check.

2. Allowing an outer coding scheme to detect such conditions, e.g., a
cyclic redundancy check (CRC) that typically follows a codeblock de-
coding.

We propose to detect both miss and false alarm outcomes by validating
the final calculated syndrome (in on-the-fly fashion) while executing the first
iteration of the following codeblock. Figure 4.13 depicts both situations.
The syndrome calculation for a codeblock CB[n] is validated during the first
decoding iteration of codeblock CB[n+1]. In this way an ARQ protocol can
react to a false alarm and also avoid an unnecessary retransmission under
the presence of a miss outcome. The performance is fully recovered, shown
in Figure 4.12 as validated on-the-fly syndrome check.

The implementation of the proposed syndrome check involves the addi-
tion of marginal components to each processing unit. Figure 4.14 shows the
serial SISO processing unit from Figure 4.2 along with the added syndrome
check capability. Synthesis results on CMOS 65nm technology showed that
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Figure 4.11: Decision outcome rates from the proposed syndrome check for
N=1944.



46 Chapter 4 LDPC Decoder Architecture

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No in dB

B
E

R
/F

E
R

 

 

Typical syndrome check

On−the−fly syndrome check

Validated on−the−fly syndrome check

Figure 4.12: Error-correction performance of on-the-fly syndrome check.

the area overhead due to the syndrome check capability is only 0.65% for a
BCJR-based processing unit (the SISO kernel is the modified BCJR algo-
rithm described in [27] and Section 3.2.1).

The main benefit of the proposed syndrome check is the speedup of the
overall decoding task. The processing latency per decoding iteration for P
processing units is given in number of cycles by

τc = mb ×
Z

P
× Lc , (4.2)

where a quasi-cyclic LDPC code defines H as an array of mb block-rows
of Z rows. In this case P rows are processed concurrently. Lc is the number
of cycles consumed during the decoding task where decoding and syndrome
verification take place. This value depends upon the number of arguments
to process per row, memory access latencies and syndrome verification dura-
tion. It is the latter time duration where our proposal exhibits advantages
in terms of speedup. A reduction in the overall task latency improves as
well the decoder throughput provided the frames input rate can guarantee
a 100% decoder utilizaton. The throughput is given by
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Figure 4.14: Processing unit with syndrome check option.

Γ =
N ×R× fclk

I × τc

=
(nb −mb)× P

I ×mb × Lc
× fclk , (4.3)

where I is the total number of iterations, R the coding rate, N the block
length and fclk the operating frequency.

The main benefit from the proposed strategy is the reduction in the time
consumed during the syndrome check when the decoding process is far from
reaching convergence. It could be argued that the syndrome check may very
well be disabled during a preset number of initial iterations, but still this
tuning must be done offline or shall depend upon extraneous variables as
the SNR. Estimating these variables provides sensible overheads. Figure
4.15 shows the obtained average latency reduction of the syndrome check
process compared to the typical one as a function of operating SNR. A total
of three use cases with different code lengths are shown, for a code rate of
1/2 in Figure 4.15a and code rate 5/6 in Figure 4.15b. The low SNR re-
gion provides the best opportunities for syndrome check latency reduction
since the LLRs fluctuate quite often in this region, i.e., a higher decoding
effort renders useless the initial syndrome verification. Moreover, since in
this region the latency is reduced around 90% the performance of the de-
coder could potentially be enhanced by increasing the number of iterations.
Notice though that such optimization might be enabled only if channel state
information is readily available.

Indeed, what this strategy is doing is speeding up a portion of the de-
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Figure 4.15: Average latency reduction for the syndrome check process and
overall decoding task speedup.
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coding task. With the use of Amdahl’s law [48] it is possible to observe
the overall speedup of the decoding task based upon the obtained latency
reduction of the syndrome check. The overall speedup is a function of the
fraction Penhanced of the task that is enhanced and the speedup Senhanced of
such fraction of the task:

Soverall =
1

(1− Penhanced) + Penhanced

Senhanced

(4.4)

Figure 4.15 shows as well the average speedup obtained as a function
of operating SNR for the same test cases, these results consider that the
syndrome check process corresponds to 35% of the overall decoding task per
iteration. Amdahl’s law provides an upper bound for the achievable overall
speedup, 1.53 for this setup. The average speedup is higher for the code rate
1/2 case since the parity-check matrix contains more rows than the code rate
5/6. For the former case the achieved speedup ranged from 84% to 96% of
the maximum achievable bound, this corresponds to enhancing the decoder
throughput by a factor of 1.28 and 1.48 respectively.

4.6 Conclusion

We presented top level views for the LDPC decoder and processing units
used along our research. Low-complexity message computation kernels were
studied at the level of energy efficiency performance and implementation
area. The results of this study are used in Chapter 6 as we present an
energy efficient decoder architecture. Finally, we presented an optimization
that allows a speedup of the decoding task by partitioning the syndrome
verification. Results from a decoder for the codes defined in IEEE 802.11n
provided a speedup of up to a factor of 1.48 at a cost of less than 1% in logic
area overhead for a 65nm CMOS process.



Chapter 5

Memory Architecture Design

Decoding of LDPC codes comprises a memory intensive kernel, this is a
straight observation from the nature of the message-passing decoding algo-
rithms and the relatively simple data-path involved in the processing nodes.
The memory architecture for semi-parallel decoders represents both the bo-
ttleneck for performance and the main source of power consumption. Fur-
thermore, memory partitioning is often used in semi-parallel architectures
in order to provide the flexibility needed to support several codes. For such
approach the alignment of data is important since it may cause conflicts and
therefore introduce stall cycles during the decoding task execution. Works
like [49] [50] have revealed the challenges of the memory subsystem design
in terms of data alignment, partitioning and allocation. In [51] a memory
optimization for FPGA implementations was proposed based upon vectori-
zation and folding techniques in order to improve the decoder throughput.
The authors in [37] proposed to reduce the power consumption of a decoder
by reducing the number of memory accesses when altering the order of pro-
cessing within the code parity-check matrix. The work in [52] addresses
the issue of memory conflicts for pipelined architectures by reordering the
parity-check matrix and by careful scheduling.

In the following, we show a design methodology for a flexible memory
subsystem that reconciles design cost, energy consumption and required

51
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latency. In addition, we utilize memory interleaving to avoid conflicts and
investigate the conditions through which interleaving may allow a reduction
in the memory read operation latency.

5.1 Memory Subsystem Overview

The structure of the memory subsystem is as well a consequence of the
decoding algorithm. From Algorithm 1 in Chapter 3 it is clear that the
following storage elements are required: posterior messages memory (γ) and
extrinsic messages memory (λ). Extrinsic messages are generated after each
decoding round per row, this is information that has no dependence on any a-
priori knowledge of the same message. The posterior messages are generated
by accumulating the information that is generated per iteration accounting
for all rows and code symbols, these messages exhibit the reliability of each
code symbol within the block. Both these types of messages arise from
equation (2.12) in Chapter 2.

The structure within QC-LDPC codes impacts the posterior messages
memory, this refers to the way in which the data is accessed and consequently
how the data is allocated and partitioned. For the case of the extrinsic
messages memory the use of MS-based kernels is advantageous since the
size requirements are considerably less in comparison to the other processing
kernels.

5.2 Posterior Messages Memory

This memory is initialized with the log-likelihood ratio values taken from
the channel observations and updated after each row processing. This me-
mory contains as many values as the codeword length. Hard decisions on
the stored vector produce a valid codeword after successful decoding. One
property provided by the structure of the codes is that when processing each
block-row of H only a subset of the block-columns is used.

5.2.1 Data Mapping and Allocation

This memory is partitioned and dimensioned according to the structure of
the codes. We define two types of data organization and placement based
upon the structure of the QC-LDPC codes:

1. Micro-organization: This is provided by the shifted identity ma-
trices in H. Consecutive rows can be processed in parallel by distributing
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adjacent posterior messages to parallel processing units. From this it follows
that P messages may be grouped together to provide full bandwidth to P
units.

2. Macro-organization: On each block-row processing up to ci block-
columns are used. From this observation we define the macro-organization
as the mapping of block-columns to memory banks such that the required
blocks are all accessible per read operation.

...

...

... ... ...... ... ...

0 1943324 40480 ... ...codeblock

symbol

block−row  n+1

block−row  n

......
block−column

@x+26

@x+1
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404403402
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326

328327
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o1 o2 o24o6

o1 o2 o5

o3 o15 o11

o12 o20o24

macro-organization

Figure 5.1: Posterior messages organization example.

Figure 5.1 shows these organization levels for P = 3 and Z = 81 for
one block-column (symbols {324, 325, . . . , 404}) of the use case N = 1944,
R = 1/2 from IEEE 802.11n. The read messages are distributed by a shu-
ffling unit to the processing units. The macro-organization corresponds to
the mapping of the set of objects O = {o1, o2, . . . , o24} (block-columns) to
memory banks.

The macro-organization constitutes a problem of allocating static ob-
jects (block-columns) to memory banks. As shown in [53], this problem is
NP-complete and it maps naturally onto the well-known graph colouring
problem. This introduces another dimension to the design criteria to orga-
nize the memory architecture since not only does the bandwidth have to be
achieved but the data allocation required has to be possible. This situation
is formalized as follows: a set of static objects O = {o1, o2, . . . , o24} is to
be mapped to a set of memory banks B. Objects in O conflict when they
need to be accessed at the same time. The memory allocation problem is
solved by finding an allocation function alloc : O → B that avoids as
much conflicts as possible. A conflict represents a loss in execution speed,
introducing stall cycles and bubbles into a pipelined implementation.
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Figure 5.2: Macro-organization by conflict graphs.

Throughout this work we refer to a use case as a particular code to be
supported by the decoder, these use cases are specified by a coding rate and
a block length. For each use case of decoder operation we define a set of
conflict graphs G = (V,E), where V is the set of vertices representing the
block-columns used on a given block-row and E is the set of edges between
the nodes of V that incur in a conflict. The chromatic number χ(G) of a
conflict graph determines the minimum number of colours needed such that
all vertices of the graph are coloured and adjacent vertices do not share the
same colour. In other words, the chromatic number determines the mini-
mum number of memories needed to provide the required bandwidth. There
should be as many conflict graphs as block-rows in H but the bandwidth re-
quirement and the degree of the rows along with the cycle budget should be
used to formulate the mapping problem. For example, in Figure 5.2 we show
conflict graphs and colouring for the first block-rows of the use case R = 1/2
and N = 1944 from the codes in IEEE 802.11n for a memory bandwidth
of 12 samples/cycle. In this example, 3 rows are processed every 2 cycles,
this suggests that as many as 4 block-columns are accessed per read access.
This produces 2 conflict graphs per block-row, where the chromatic number
is bounded, χ(G) ≤ 4. In this way the partition of the posterior messages
memory consists of B = 4 memory banks that provide a bandwidth of 12
samples/cycle to P = 3 processing units.

This mapping is performed offline and is solvable by the well-known
graph colouring techniques. By analyzing the parity-check matrix the con-
flict graphs can be constructed and coloured such that the block-columns
are allocated to the memory banks and the number of conflicts is reduced or
even avoided. Notice that the macro-organization is required only when se-
veral block-columns are accessed at the same time. From this it follows that
for serial processing units this level of organization would not be exploited.
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5.2.2 Design Space Exploration

One important parameter for the cost of a memory architecture is the area
per bit. By reducing the number of banks also interconnection links and
control circuitry are reduced. This impacts not only cost but also power
consumption, so it is fundamental to perform a study on the memory archi-
tecture candidates to achieve an efficient and economical design. From the
area/bit point of view there are two extreme cases: using one single large
memory or a maximum number of memories that guarantees the required
number of parallel accesses. Compared to small memories, large memories
consume more energy per access because of the longer word and bit lines.
But distributing the data along several small memories leads also to a rela-
tively high energy consumption due to the added interconnection lines and
decoding circuitry overhead.

It is known that partitioning a memory into several banks in order to
resolve conflicts or provide higher access bandwidth has costs. In Figure 5.3,
we show the characteristics of a dual-port memory (clocked at 400MHz with
1.1V) of size [1024x64] cut into several banks, this corresponds to a CMOS
technology of 40nm. Area, leakage (static) power and average dynamic
power per memory access operation1are shown. As this figure shows, it is
relevant to consider an exploration of the possibilities to divide a physical
memory space to assess both advantages and disadvantages. We prioritize
then to minimize the number of memory cuts while providing the required
bandwidth.

We performed an exploration of several memory partitions where the
data mapping has been shown to be possible for a multi-mode decoder for
the codes in IEEE 802.11n and IEEE 802.16e. The target technology is
a 65nm CMOS process with Vdd = 1.32V . The exploration is carried out
with a memory design tool provided by Intel Mobile Communications. We
explored several configurations for bandwidths of 12 and 32 samples/cycle
using low power dual-port SRAMs clocked at 648MHz and 243MHz respec-
tively. The corner use cases explored are characterized by the number of
memory accesses, which depends upon the degree of the block-rows. For
example the case R = 1/2 and N = 2304 in 802.16e requires 76 accesses per
decoding iteration to the 24 blocks of 96 samples each stored in this memory.
Figure 5.4 shows the average energy consumed per iteration in this memory
for several partitions. For both use cases shown we can observe that the
configurations for 32 samples/cycle are more energy efficient than the 12
samples/cycle ones, but more costly in terms of area/bit.

1Average power on write and read operations with all data and addresses switching.
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Figure 5.3: Area and power overhead associated with memory partitioning.
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Figure 5.5: Interleaved memory with m=5, s=2 and k=3.

5.2.3 Memory Interleaving

In this section, we refer again to Figure 5.1 where the two levels of memory
organization are shown. For this example, it is required to provide a full
bandwidth of 3 samples per cycle to all P units when reading a block-matrix
or circulant. As can be seen, this is only possible if there is a full alignment
between the samples placement and the shift value of the block-matrix.
For a shift value of 2 in the given figure, fetching samples {326, 327, 328}
would require 2 read cycles; whereas for a shift of 0 samples {324, 325, 326}
would require 1 read cycle. Due to the structure in H each block-matrix
is processed in

⌈

Z
P

⌉

processing steps. Each of these steps ideally requires
as many read operations with a bandwidth of P samples each. In order
to ensure the latter we propose to further subdivide the memory space by
interleaving the memories both horizontally and vertically. By horizontal
interleaving we mean distributing each object oi ∈ O among m banks, and
by vertical interleaving we further partition each bank into s sub-banks.
Each memory word has a width of k = P/m. Figure 5.5 shows an example
of an interleaved memory architecture with m = 5, k = 3 and s = 2.

There are two different kinds of conflicts when accessing the posterior
messages memory. The first can occur during the initial block-matrix pro-
cessing step. In the following, shift refers to the shift value defined for each
circulant in a structured parity-check matrix. If shift mod k = 0 reading
starts at the leftmost code symbol within a memory word and then conti-
nues rightwards. As P/m is an integer, reading stops at the rightmost code
symbol after reading m memory words from m memory banks. However,
if shift mod k 6= 0 reading does not start at a leftmost code symbol and
therefore m + 1 read operations are required to read all P code symbols.
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Figure 5.6: Posterior messages memory map and data allocation.

This causes a conflict when re-accessing the memory bank holding also the
leftmost symbol. The symbols from the (m+ 1)th read operation that were
not used in the current processing step can be stored in a register bank or
FIFO for later usage, similar to the proposals in [49] [52], so that this kind of
conflict does not occur again. Still, it is unavoidable in the first processing
step. The second type of conflict occurs at a block-matrix line break, the
point in which the matrix wraps around due to the shift value. There is
such line break once per every block-matrix with shift 6= 0.

In Figure 5.6, we show an exemplary memory partition and data allo-
cation (each sample number corresponds to a code symbol) for a decoder
with P = 15, m = 5 and k = 3 with no further sub-banking (s = 1). The
memory map refers to a virtual ordering of all the samples depending upon
the use case of code length N . We show as well an example block-matrix
to be read from the memory. In this case 81 samples are required by 15
processing units, ideally 15 samples should be read at each cycle. With the
shift value of 73 the matrix line break presents a conflict of the second type
previously mentioned. Figure 5.7 shows that when reading the first 15 sam-
ples {559−566, 486−492} the memory banks M2 and M3 must be accessed
twice. Notice though, that bank addresses before the matrix line break are
odd while the ones after are even. If memory banks were sub-divided with
s = 2 (as shown in Figure 5.5) memory accesses would be conflict-free for
this example.

Conflicts occur either in the first processing step or at a matrix line break.
The first conflict type is resolved by using an arbitrary number of memory
banks with interleaving degree s ≥ 2. This is justified by the data allocation
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among the memory banks. During the processing step of a block-row with
shift mod k 6= 0 the (m+1)th memory access re-accesses a certain memory
bank, but the data request goes to a bank address which is incremented by
one compared to the previous access and therefore is located in a different
sub-bank.

To explain the mitigation of matrix line break conflicts the concept of
access patterns is introduced. The rightmost m memory accesses delivering
the last P symbols before a matrix line break will access certain sub-banks
of the m memory banks. The subset of sub-banks accessed is called an
access pattern. Due to the data allocation the m memory accesses to the
left will use a different sub-set of sub-banks forming another access pattern
and so forth, until s access patterns have been performed and the first access
pattern occurs again (this happens every s× P symbols). Figure 5.8 shows
an example of access patterns for the configuration shown in Figure 5.5.

If Z is a multiple of P a memory access is always conflict-free provided
shift mod k = 0. Because of the data allocation, going back a multiple of
P code symbols at a matrix line break will access the same memory bank as
when going one symbol forward, which is conflict-free. If Z is no multiple of
P the leftmost access pattern has a reduced width of r = Z mod P , whose
size has an impact on memory conflicts.

With s alternating access patterns in a block-matrix the first condition
for a conflict-free memory access is that there are different access patterns at
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the beginning and the end of a block-matrix. This translates to the following
condition for s for a given Z and P :

⌈

Z

P

⌉

mod s 6= 1 (5.1)

However, conflicts can still occur if reading from the beginning of the
block-matrix comes across the same access pattern that was accessed before
the matrix line break (access pattern overlap). This is indicated by:

⌈

Z

P

⌉

mod s = s− 1 (5.2)

Figure 5.9a illustrates the general situation where reading starts from
an arbitrary position a within an access pattern. The symbols numbering is
relative to the start of an access pattern before the matrix line break. The
shaded areas correspond to two different access patterns as shown in Figure
5.8. The last symbol to be accessed during the current step has the index
a+ P − 1. The memory bank accessed for a is identified by

⌊

a
k

⌋

. To avoid
that the same bank is accessed twice the last bank that may be accessed
after the line break should have the index

⌊

a
k

⌋

− 1. This is to say that the
re-accessed region must not reach the scope of the bank accessed prior to
the line break. The following condition ensures the latter observation:

a+ P − 1 < P + r +
(a

k
− 1

)

· k (5.3)

Reducing such expression to r and k and substituting their values with
the architecture parameters leads to:

P

m
≤ Z mod P (5.4)

This suggests that the P symbols of the re-accessed pattern must be
divided into sufficiently small partitions by m.

In Figure 5.9b, an example for a conflict-free setup is shown. M4 has
already been accessed before the line break and the value of k guarantees that
the same access pattern does not access twice the same bank M4. On the
other hand, in Figure 5.9c a conflict occurs at M2 since P is not partitioned
sufficiently by m to satisfy (5.4).
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The memory subsystem for these decoders should be flexible in order
to support various values for Z. If Z/P is an integer all expansion factors
Z1 = nZ with n ∈ N are conflict-free. Otherwise, a sub-set A ⊆ N has
to be found such that for all ñ ∈ A the architecture is still conflict-free for
expansion factors Z1 = ñZ. The following shows the conditions all elements
ñ ∈ A have to fulfill.

It can be shown that for a ceil operation the following holds:

⌈ñ · x⌉ = ñ · ⌈x⌉ − ⌊ñ (⌈x⌉ − x)⌋ (5.5)

Using x = Z/P in (5.5) in order to rewrite (5.1) leads to this condition
for ñ:

⌊

ñ

(⌈

Z

P

⌉

−
Z

P

)⌋

mod s 6= 1 (5.6)

Furthermore, all elements in A have to fulfill (5.4) for Z1 = ñZ. In
Figure 5.10, we generalize these conditions in order to provide a flow to
verify that a design is able to provide conflict-free access.

From the previous discussion it is evident that an interleaved memory
architecture requires a fewer number of cycles to provide the same band-
width than its non-interleaved counterpart. This corresponds to a potential
speedup when applying the interleaving previously described, or the possi-
bility to reduce the frequency of operation for the interleaved design.

In Figure 5.11, we show the frequencies of operation for a non-interleaved
and an interleaved design for several use cases (expansion factors Z and co-
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Figure 5.11: Clock frequencies for interleaved/non-interleaved architectures.

ding rates R) from the codes in 802.11n for a decoder with P = 30 processing
units on a 65nm technology using dual-port SRAMs. The interleaved design
has the configuration m = 3 and s = 3. By using interleaving a reduction of
the clock frequency in the range of 25%-50% was obtained depending upon
the use case. Notice that alternatively the throughput can be enhanced by
this same range if the non-interleaved frequency is maintained.

5.3 Extrinsic Messages Memory

This memory stores the messages that are obtained after each decoding
round per row, and are used as input prior messages to decode subsequent
rows. The dimension of this memory corresponds to the number of non-zero
elements in H, or equivalently to the number of edges in the code graph.
While this is the largest of the two memories it is easier to design. The
data allocation is straightforward from Algorithm 1: the processing of each
row uses always the same values from the same locations. The data does
not have to be neither shifted nor distributed to different processing units
if each row decoding is bound to a specific processing unit.
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Figure 5.12: Extrinsic memory MS-based structure.

5.3.1 MS-based Kernels Data Allocation

The choice of an MS-based SISO kernel has further consequences on this
memory. These kernels take ci (row degree) inputs and produce ci outputs,
with each having a sign and one of two possible magnitudes: the first or
second minimum value out of the ci inputs. So instead of storing ci messages
it is only necessary to store ci signs, two magnitudes and the index where the
first minimum is to be found. Taking as a base the codes in IEEE 802.11n
and IEEE 802.16e this represents a reduction in memory size of up to 65%
with an 8-bits message quantization. Figure 5.12 shows the storage for these
values.

5.3.2 Design Space Exploration

Just like the case for the posterior messages memory we perform an explo-
ration in order to efficiently choose an optimum memory partition for the
extrinsic messages memory in the sense of minimizing energy consumption
per use case and implementation area. The exploration shown in this sec-
tion follows the same case for a multi-mode decoder for IEEE802.11n/16e
applications on CMOS 65nm technology.

The exploration of the extrinsic messages memory involves inquiring
about the possibility of partitioning each of the memories that are bound to
each processing unit. This memory stores the compressed row vector shown
in Figure 5.12. Considering both standardized codes that are supported a
total of 31 use cases originate. The corner cases are defined by the number of
edges in the code graph and the degree of the rows. These requirements are
considered in detail in Chapter 6. In Figure 5.13, we explored the area and
average energy per iteration consumed in the extrinsic messages memory for
the two corner cases (both from 802.16e) and two intermediate cases with
several memory configurations using low power dual-port SRAMs clocked at
648MHz. For the least demanding cases the unused partitions are powered
off. This simple power management strategy allows to observe the energy



5.4 Conclusion 65

Area (mm
2
)

 0

 100

 200

 300

 400

 500

 600

[384x24] [96x24]x4 [48x24]x8 [32x39]x12
 0

 2

 4

 6

 8

 10

 12

 14

E
n
e
rg

y
 u

s
e
 c

a
s
e
s
 1

,2
 (

n
J
)

E
n
e
rg

y
 u

s
e
 c

a
s
e
s
 3

,4
 (

n
J
)

0.253mm
2

0.116mm
2

0.065mm
2

0.037mm
2

1. (16e) N=2304, R=1/2
2. (11n) N=1944, R=1/2

3. (16e) N=576, R=5/6
4. (11n) N=648, R=3/4

Figure 5.13: λ-memory exploration.

cost behavior according to the memory partitions where an optimal configu-
ration exists for a particular use case. Once an optimal choice is taken more
elaborated power management techniques (refer to Chapter 7) can further
improve the energy efficiency.

5.3.3 SCMS Kernel Data Allocation

In the previous section, we have seen how the MS-based kernels have an
advantage from the extrinsic messages perspective as this memory size can
be reduced. Nonetheless, the SCMS kernel requires an additional storage
flag that indicates whether a prior message was deleted or not during the
previous decoding round (erasure flag) or the previous sign of the prior
message. This is observed in Algorithm 2 in Chapter 3. In Chapter 6,
we elaborate on the overheads that arise due to the implementation of the
SCMS kernel.

5.4 Conclusion

The memory subsystem accounts for the majority of implementation area
and power consumption within a VLSI decoder. Designing this subsystem
carefully is hence of great importance for achieving economical and efficient
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decoders. The design of this subsystem entails the allocation and parti-
tioning of data as a function of the required data distribution and data
bandwidth requirement. The memory subsystem provides storage for two
types of messages: posterior and extrinsic messages. The structure em-
bedded in QC-LDPC codes enables two levels of memory organization for
the posterior messages memory. The allocation of the messages within the
physical memory space has consequences on the routing structures used to
distribute the messages to the processing units. Furthermore, the partitio-
ning of the data and the interleaving of memory banks can be designed in
order to provide the required bandwidth within a minimal number of access
cycles. MS-based kernels reduce considerably the size requirements for sto-
ring the extrinsic messages. For flexible decoders it is of interest to explore
the possible memory architecture configurations in order to assess the im-
pact on implementation area and energy consumption as a function of the
use cases to be supported.



Chapter 6

Implementation of a

Multi-mode LDPC Decoder

Numerous works have proposed semi-parallel architectures that are opti-
mized in different ways in order to conceive energy and area efficient designs.
For example, for multi-mode decoders, authors in [34] proposed a reconfi-
gurable network for message distribution and authors in [35] relied upon an
early termination scheme and memory banking to reduce power consump-
tion. The work presented in [36] divides the decoder operation in several
tasks and arranges their order such that the challenges due to flexibility
may be solved. Similarly, in [37] the authors proposed a memory-bypassing
scheme where the order of the processing layers is altered such that energy
consumption is minimized. The work in [38] addresses as well the topic of
task rearrangement and optimizes the message quantization as well as their
storage scheme.

We present an implementation of an energy efficient multi-mode LDPC
decoder for the codes in IEEE 802.11n/16e driven by the SCMS message
computation kernel. A flexible memory subsystem is outlined following the
design issues presented in Chapter 5. The used data allocation and partition
enables a low complexity shuffling network. A VLSI implementation on
CMOS 65nm technology resulted in a 0.95mm2 decoder with an energy
efficiency of 47pJ/bit/iter. Comparisons among representative work reveal
the benefits in energy efficiency for the proposed architecture.

67



68 Chapter 6 Implementation of a Multi-mode LDPC Decoder

6.1 System Design

The multi-mode decoder design must consider the timing deadlines imposed
by the targeted standards. The system must be dimensioned in a way that
guarantees these deadlines and offers the necessary flexibility to support a
variety of use cases. The goal of our approach is to meet these requirements
with a minimal implementation area and an energy efficient design.

6.1.1 Decoder Requirements

The starting point for designing the multi-mode decoder is to analyze the
system requirements along with the characteristics of the codes. The IEEE
802.11n [5] and 802.16e [6] standards define different parity-check matrices
based upon systematic linear block codes for different use cases; a use case
is defined by a codeblock length and a coding rate. In 802.11n there are a
total of 12 matrices for 12 use cases and in 802.16e there are 6 matrices for
19 use cases. The structure of each of these matrices follows the one shown
in Figure 3.1a. HM×N consists of an array mb × nb of Z × Z blocks where
for both standards nb = 24 and mb ∈ {4, 6, 8, 12}. In [5] [6] the parity-
check matrix is generated from a base model matrix Hbm that indicates the
position of the non-zero blocks and the corresponding circular shift value
s. The shift values for the matrices in 802.11n are taken directly from Hbm

while the shift values for 802.16e follow a precalculation dependent upon the
use case. For all cases the shift value s ≤ Z where Z11n ∈ {27, 54, 81} and
Z16e ∈ {24, 28, 32, . . . , 96}.

The decoding task in both standards exhibits demanding timing require-
ments. Table 6.1 shows the main characteristics defined in the standards
for both the most and least demanding use cases. The decoding latency
corresponds to the maximum permissible time in order to complete the de-
coding task such that the baseband processing respects the time allotted for
generating negative or positive acknowledgement messages.

6.1.2 Decoder Overview

The decoder top level view corresponds to the one already presented in
Section 4.2. The use case with the lowest code rate is used to dimension the
decoder since it contains the highest workload (dimensions of H). We refer
to dimensioning to the selection of P and the partitioning of the memory
subsystem. Figure 6.1 shows the number of serial processing units required
to complete the decoding task with a maximum number of I = 8 iterations



6.1 System Design 69

Table 6.1: Specifications for supported LDPC codes.

Use case Most demanding Least demanding

Standard 802.xx 11n 16e 11n 16e

Codeblock length 1944 2304 648 576

Coding rate 1/2 5/6

H dimensions 12x24 12x24 4x24 4x24
(mb × nb)

Z value 81 96 27 24

Latency 8µs 0.25ms 8µs 0.25ms

Row degree ci 7,8 6,7 22 20

Rows in H 972 1152 108 96

Graph edges 6966 7296 2376 1920

at a given operating frequency for several use cases. We show the use cases
with Z = 81 from the 802.11n standard and the use case Z = 96 with
R = 1/2 from 802.16e. Serial processing units offer the most flexibility since
the number of inputs (ci) to process vary according to the use case and mode
of operation of the decoder. The processing units used for this figure are
rather naive in the architectural sense, in the sequel we present an optimized
decoder that achieved a lower frequency than the one suggested from the
figure.

The timing requirement for the decoding task with a deadline d is given
as a function of the code parameters by:

mb ×
Z
P
× Lc × I

fclk
≤ d . (6.1)

6.1.3 Message Quantization

The finite quantization of messages impacts the error-correction performance
of the system as well as the implementation area and power consumption.
Following the quantization scheme outlined in [54], we use a uniform quan-
tization (q,∆) of q bits (sign and magnitude) with a quantization step of
∆ to assess the performance loss. The dynamic range of the messages is
very large as the posterior messages would ideally exhibit an increasing
monotonic behavior. A finite quantization on the messages would imply a
message clipping that affects the propagation of reliable messages along the
code graph. This impacts error-correction performance and the convergence
rate of the code.
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Figure 6.1: Required number of processing units and operating frequency
per use case.

Message quantization on these particular codes has been extensively
studied in the past. Besides the obvious loss in performance due to the finite
precision of the data the most interesting phenomenon is the ocurrence of
an error floor. This floor is typically attributed to the sub-optimality of
iterative decoding techniques on graphs with cycles (refer to Chapter 2) and
to specific pathologies within a code, some of which are:

• Near-codewords [55] or pseudo-codewords [56]. These are sequences
that satisfy almost all of the check equations.

• Trapping-sets [57]. A trapping-set is the set of connected nodes in the
code graph whose variable nodes fail to converge.

• Stopping-sets [58]. A stopping-set is a set of variable nodes whose
adjacent check nodes are connected to at least two different nodes in
that set, these sets are of relevance in the binary erasure channel.

• Absorbing-sets [59]. An absorbing-set is a set of variable nodes where
every variable node has more satisfied than unsatisfied checks.

Figure 6.2a shows the frame-error rate (FER) for floating-point and
fixed-point simulations for the use case of code length 2304 with rate 1/2
over the AWGN channel with QPSK modulation for 802.16e mode, with a
maximum of 60 iterations. Figure 6.2b shows the convergence rate for the
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same scenario. A message quantization of 6-bits showed a performance loss
of 0.05dB at a FER of 10−3, a low error floor and an average decrease of
22% on the convergence speed. Similar results were obtained for the 802.11n
mode. Hereafter, 6-bit messages are used.

6.2 Decoder Architecture

In this section, we describe the architecture of the multi-mode decoder shown
in Figure 4.1. The control structure is provided by a compressed storage of
the parity-check matrices and a configuration register that governs the de-
coder operation. Storage elements comprise the posterior messages memory
and the extrinsic messages memory per processing unit. Shuffling networks
are used to distribute posterior messages from the memory to the processing
units and viceversa.

6.2.1 Control Structure

The operation of the decoder is governed by the structure of the parity-
check matrix and the variables that define a use case, namely the expansion
factor Z and the shift value s of the block-column ic in H to be processed.
As described in Section 3.2, for decoding the ith row it is necessary to
retrieve the set Ii of ci elements from γ. Storing H involves saving the
shift value of the non-zero blocks and the block-column position. Since for
Z rows ci remains constant, the decoding of Z rows involves retrieving ci
shift values from H. These values can be encoded in a read-only memory by
concatenating in one word the shift value and column index. A 12-bit word
can encode both values using 7-bits for the shift and 5-bits for the column
index of each block in H. Figure 6.3 shows the data allocation map for
the parity-check matrices contained in 802.11n and 802.16e for a [512x48]
ROM. Each line in the ROM contains four 12-bit words that indicate a shift
value for a block-column index. The first word of every block-row contains
an all-ones marker in the shift field indicating that the index field contains
the degree of the block-row, in this way all the parity-check information is
properly stored in an efficient compact format. Furthermore, the matrices
can be grouped to better use the memory space and simplify the addressing.
In Figure 6.3, the grouping is done by code rate.

A configuration register, shown in Figure 6.4, contains the specification
of the operating mode and use case for the decoder. The code rate (A/B
types are used in the 802.16e mode), the expansion factor Z and the mode
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Figure 6.3: Parity-check matrices ROM storage.
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Configuration Register

[base address:offset] ROM line

Figure 6.4: Configuration register.

(11n/16e) define a use case. This information is used to localize the corres-
ponding parity-check matrix in the ROM by generating a base address from
the code rate and an offset by the remaining bits.

6.2.2 Memory Subsystem

We target a decoder with 15 processing units and design a posterior me-
ssages memory that can provide the required bandwidth depending upon
the operation mode. Figure 6.5 shows the memory map for the use cases in
802.11n and 802.16e modes as a function of the codeblock length N . This
memory is implemented as an array of 5 dual-port SRAM modules; the data
allocation shown in Figure 6.5 refers to the sample number corresponding
to the N code symbols. In the 802.11n mode three messages are stored
per memory line, whereas for 802.16e four messages are stored instead. In
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the case of 802.11n operation 15 processing units are used, whereas for the
802.16e case only one unit is used.

The extrinsic messages memory is partitioned and bound to the pro-
cessing units following a static allocation of rows to processing units. In
Figure 6.6, we show the map and format for this memory. The ρold portion
of the memory consists of two bits where one denotes the erasure flag and
the remaining one denotes the sign of the corresponding message (both from
the previous iteration).

M1 M2 Index signs

M1 M2 Index signs

ρold0

8

5 22 37 bits

ρold0
...ρold1

2 2 2 44 bits

Format A: R = 1/2

10 5

Format B: all other code rates
10

ρold1
...

16

ρold7

ρold21

Extrinsic messages

memory

44 bits

39 bits

96/1536

Figure 6.6: Extrinsic messages memory format.
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Table 6.2: Row degrees in H according to use case.

Rate 1/2 2/3 3/4 5/6

Z11n = 27 {7, 8} {11} {14, 15} {22}

Z11n = 54 {7, 8} {11} {14, 15} {21, 22}

Z11n = 81 {7, 8} {11} {14, 15} {19, 20}

∀Z16e {6, 7} {10} {14, 15} {20}

Interface
output

input
Processing

core
SRAM

Figure 6.7: Processing unit architecture overview.

The ci elements of each row i in H are stored in this memory following
one of two possible formats (A and B), shown in Figure 6.6, depending
upon the use case code rate. In Table 6.2 the row degrees in H are shown
for each use case code rate, this determines the size requirements for the
extrinsic messages memory. Since the use cases for code rate 1/2 are the
most demanding in the sense that they use the biggest H, the extrinsic
memory format A is used as it guarantees that all the data required to
process one row is accessible within one read operation. For the remaining
use cases format B is used since there is allowable time to access the row
data in two consecutive read operations. These formats represent an efficient
reuse of memory space depending upon the use case and operation mode of
the decoder. All processing units but one contain a [96x44] SRAM for this
memory, the remaining unit uses an SRAM of depth 1536 and width 44 as
only one unit is used for 802.16e operation.

6.2.3 Processing Unit

The processing unit consists of an extrinsic messages memory, an interface
logic and the processing core for the SCMS kernel. This unit is shown in
Figure 6.7, the outputs and inputs correspond to posterior messages coming
from and going to the shuffling networks. The memory/processing core
interface translates and follows the description of the memory map and
formats outlined in the previous section.

The interface, shown in Figure 6.8, operates according to two signals:
a case select signal indicating the special case of code rate 1/2 or the re-
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maining ones and a read/write number signal that describes the format to
read/write a line in the extrinsic messages memory. For the latter signal the
first read/write operation corresponds to the format (M1|M2|Index|signs)
and the second one to the (ρolds) format. Reading from two locations (for-
mat B) is used only for the use cases not involving code rate 1/2, it follows
from this and the architecture of the interface that case select = 0 for code
rate 1/2.

The interface consists of a systematic bit selection and multiplexing that
provides the required extrinsic messages λi and erasure status/sign ρold of
the previous iteration of row i. A counter signal cnt indicates the current
sample (out of a total of ci samples) being read. This signal controls the
selection of the proper bit positions for both read and write operations in
the extrinsic messages memory.

The processing of a row consists of executing the SCMS kernel on the
ci prior messages, as described in Algorithm 2 in Chapter 3, in order to
generate the corrected prior message κ. This is performed by the SCMS
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processing core shown in Figure 6.9. A correction unit is used to generate
the inputs for a MS unit. This unit is shown in Figure 6.10 along with
the format of the ρold information, which stores the sign of the previous
prior message and the erasure status. This information is compared with
the newly generated prior message ρnew sign in order to introduce or not an
all-zeroes message.

The standard MS kernel is applied on κ by means of a serial minimum
finder unit, depicted in Figure 6.11. The registers in this unit are initialized
to infinity and are updated according to the comparators signal. The AND
gates in this figure correspond to the ANDing of a vector with a control
signal coming from a comparator. The index or position of the first minimum
is stored once the first comparator asserts that the value has been updated.
The unit shown only describes the message magnitude calculation within the
MS kernel. The message sign calculation is performed by an XOR operation
between the input message sign and a global sign obtained from the XOR
operation of all input signs.

Implementing the SCMS kernel produces some overheads when com-
pared to the sub-optimal MS kernel that is found in various LDPC decoder
implementations. Firstly, the memory requirements for the extrinsic me-
mory are augmented by the erasure status and the sign of the prior messa-
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Figure 6.11: Minimum finder unit architecture.

ges of the previous iteration. This amounts to an increase of up to 35% in
extrinsic memory requirements when compared to a MS-based implementa-
tion when using the 2-bit format per non-zero element in H shown in Figure
6.10. The second overhead corresponds to the correction unit used to clean
the prior messages for the minimum finders. This unit is relatively small,
for a 65nm CMOS process it represented 2.5% of the cell area of the mini-
mum finders (an MS-based implementation would only require the minimum
finders). These overheads are justified by the gain in error-correction perfor-
mance and the energy reduction techniques enabled by this kernel outlined
in Chapter 4.

The processing unit operates in serial fashion with respect to the ci inputs
when processing row i. As can be seen from the minimum finder macro,
the processing unit is pipelined and is able to process a row of degree ci in
2×ci+3 cycles, accounting for both write and read stages. This corresponds
to the value of Lc from the expression in equation (4.2) in Chapter 4.

6.2.4 Shuffling Networks

In a semi-parallel architecture the connectivity of the code graph is typi-
cally implemented by the reading and writing of the posterior messages that
are distributed to and generated in the processing units. These tasks are
performed by shuffling networks. Evidently, the complexity of the address
generation is affected by the way in which the data is allocated. The data
allocation described in Section 5.2.1 provides a simple address generation
and avoids complex routing networks used in similar works.

The operation of the decoder is block-column-wise with respect to H.
The address generation of the required posterior messages for a block-column
of index ic is given with respect to the memory map and later translated to



6.2 Decoder Architecture 79

the physical memory banks. These addresses are a function of Z, s and a
value K that defines the use case between 802.11n and 802.16e operation.
Relative to the memory map, the first sample required for block-column ic
is given by:

addrstart =
Z

K
× ic + ⌊s/K⌋ , K =

{

3 for 802.11n
4 for 802.16e

(6.2)

If the shift value s is a multiple of K then five read operations are
required to process the remaining part of the block-column, otherwise six
read operations are necessary. In any case, subsequent addresses are given
by:

addr = (addrstart + 1) mod
Z

K
+
Z

K
× ic . (6.3)

These addresses are translated to the physical memory by selecting the
memory module by addr mod 5 and memory row of ⌊addr/5⌋. The read
posterior messages are distributed to the processing units by means of a
shuffling network that consists of two multiplexing stages and a register for
holding values before being redirected. The shuffling network is configurable
depending upon the operation mode of the decoder. In Figure 6.12 the
shuffling network is shown for the 802.11n case where the data-path is 3
messages wide.

The operation of this network is described in Figure 6.13 for a particular
example: processing the block-column of index 4 for the use case of Z = 81
and shift s = 79. The requirement is to provide 81 samples (324 to 404) to
15 processing units. The first required sample (under the assumption that
the block is processed in top-bottom fashion) corresponds to sample 403,
located on the address 134 of the memory map. All required samples can be
provided in six read operations by reading addresses 108 up to 112 after the
first one already mentioned. In Figure 6.13 the hold register is shown with
the values loaded from the memory modules once they have been properly
addressed by translating the memory map addresses. The second multiple-
xing stage is termed hold value select and is configured according to the value
of shift mod 3, this selection forwards the correct sample to a corresponding
processing unit. A boundary register is used to avoid reading twice from a
memory map address by storing the unused samples and reusing them in
subsequent read operations. These values are highlighted in the example.
There are up to ci (22, maximum row degree in 11n mode) individual regis-
ters each holding 2 messages within the boundary register, this corresponds
to the degree of the block-row currently being processed. The hold value
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register contents are shown after each read operation to illustrate how the
required samples are accessed and forwarded to the processing units. For
the case where the shift value is a multiple of 3 the boundary registers are
not used, this follows from the full alignment of the memory organization
for such case.

When operating on the 802.16e mode the decoder uses only one proce-
ssing unit, this reduces the active portion of the shuffling network. In Figure
6.14 the shuffling network is shown configured for this mode of operation.
The data-path is now 4 messages wide (24-bits) and only one hold register
is used. The boundary register contains 20 individual registers (maximum
row degree in 16e mode) each holding 3 messages.

The operation of the network for this mode is shown in Figure 6.15 for an
example case: processing the block-column of index 5 with Z = 24 and shift
s = 14. The samples required are {134, 135, . . . , 147, 120, 121, . . . , 133} in an
ordered sequence. These samples are allocated along addresses 30 to 36 in
the memory map. One difference from the 11n operation mode is that the
hold value select signal is initialized at position shift mod 4 but is cycled
to the right after each read cycle. As shown in the example, one sample is
forwarded to the processing unit P14 on each cycle, the MemoryCS signal
is shown to indicate where the samples that are loaded into the hold register
are coming from. For the case where the shift value is a multiple of 4 the
boundary register is not used, again this is due to the full alignment of the
memory organization.

6.3 Results and Comparisons

The multi-mode decoder has been implemented in a CMOS 65nm techno-
logy process using the quantization scheme (6, 0.5). The posterior messages
memory consists of an array of 5 [136x24] SRAM modules, while 14 pro-
cessing units contain each an extrinsic messages memory of size [96x44].
The remaining processing unit contains an extrinsic messages memory of
size [1536x44]. All SRAM modules are low-power high-density optimized
dual-port memories. The operating conditions for the decoder are 1.32V at
450MHz.

The typical paradigm to design a flexible shuffling network (also known
as message-passing switch network) for LDPC decoding is to assume the
availability of Z messages that have to be shifted and then forwarded to Z
processing units. As discussed in Chapter 5, such assumption usually im-
plies costly designs containing a high number of small memories since fewer
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Figure 6.14: Shuffling network configured for 802.16e mode.

bigger memories are preferable to several small memories for on-chip SRAM.
The work in [42] introduced multi-size circular shifting networks that can ar-
bitrarily shift the data according to the code structure. The authors in [60]
described a self-routing switch network that supports the codes in both
802.11n and 802.16e. In [61] the generation of control signals for reconfigu-
rable barrel shifters is addressed by utilizing small lookup tables. The work
in [62] optimizes a Benes̆ network for the required shift values. While these
works contributed with novel architectures to solve the problem of flexibility
in order to support several values of Z, the memory allocation and level of
parallelism used within the system were not explicitly considered. In this
work, we follow a holistic approach to design the required shuffling network
by considering the memory allocation and placement of data along with the
number of processing units to serve. In Table 6.3, we compare the shuffling
network in this work and the previously cited ones. The proposed shuffling
network requires no complex routing since the memory allocation succesfully
groups consecutive samples that only go through two multiplexing stages to
find their destination. A further consequence of this grouping is the reduced
complexity of the multiplexing stages. Compared to the previous art the
proposed shuffling network requires a fewer number of shift values for the
data, 3 for the 802.11n mode and 4 for 802.16e.
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Table 6.3: Shuffling networks comparison.

Work Proposed [42] [60] [61] [62]

CMOS 65nm 65nm 130nm 180nm 180nm
technology

Message 6-bit 6-bit 6-bit 8-bit 6-bit
length

Area [mm2] 0.0123 0.0226 0.1095 0.722 0.160

Supported 802.11n 802.11n 802.11n 802.11n 802.16e
modes 802.16e 802.16e 802.16e

In Table 6.4, we compare the proposed decoder with representative state-
of-the-art works. The work in [34] is based upon the sub-optimal MS kernel
and exploits the concept of shift-routing networks to offer the flexibility re-
quired to support various codes, while the work in [35] targets very high
throughput and focuses on the implementation of the SP kernel. For single
mode platforms we show the works from [36] [37] [38]. Even though the
cited works and the proposed one are difficult to compare due to the diffe-
rences in CMOS process and message quantization a few conclusions may be
drawn. By applying technology scaling theory [63] it is possible to identify
an advantage in the proposed work with respect to implementation area and
power consumption. The proposed decoder achieves a high energy efficiency
and a small implementation area mainly due to the low-complexity message
kernel and the compact memory design.

The energy consumption per iteration was investigated per component
per use case in order to reveal whether power management techniques may
be applied due to the difference in workload among them. Figure 6.16 shows
the breakdown of implementation area and average energy consumption per
iteration for several use cases. It is evident how LDPC decoding is a memory
intensive application as for all cases at least 80% of the energy is consumed
in the memory subsystem. The processing data-path accounting for the
actual message computation kernel represents only 12.25% of the total im-
plementation area, whereas the overall memory subsystem comprises no less
than 80%. The only power management technique used in this implemen-
tation consisted of power gating the unused processing units between the
operation modes of 11n and 16e. Chapter 7 discusses the topic of power
management in detail. The energy per iteration for the use cases shown
in Figure 6.16b is similar between the cases that use the same coding rate.
This is expected as the dimensions of H for both modes are similar. Ne-
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vertheless, the energy consumption for the cases in 11n is slightly higher
due to the higher consumption on the extrinsic messages memory, which is
distributed along the processing units. In all cases the control section of the
decoder (5.25% of the area) consumed less than 1% of the average energy
expenditure per iteration.

6.4 Conclusion

We presented the design and architecture of a 0.95mm2 multi-mode LDPC
decoder that supports the quasi-cyclic codes described in IEEE 802.11n and
802.16e. The implementation of the high performance SCMS kernel enabled
an energy efficient operation. Furthermore, the design of a compact and
flexible memory subsystem enabled the use of a reduced-complexity shuffling
network. We provided architectural details that revealed an efficient reuse of
hardware components for the supported modes of operation. Comparisons
among representative state-of-the-art revealed the benefits of the proposed
system in terms of implementation area and energy efficiency.
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Chapter 7

Power Management for

Iterative Decoders

So far in this dissertation we have focused on design-time aspects for reali-
zing energy efficient LDPC decoders. In this chapter, we address the aspects
involved in the low power operation of the decoders, namely power mana-
gement techniques to be executed at run-time. LDPC codes are typically
decoded by an iterative message-passing algorithm. Iterations are executed
until a stopping criterion is satisfied or a preset maximum number of itera-
tions is reached. Because of the iterative nature of the decoding algorithms
for Turbo and LDPC codes, iteration control has been a recurrent topic for
reducing the power consumption of these decoders. Iteration control tech-
niques, also known as early stopping or early termination criteria, attempt
to reduce the operational complexity of the decoder by an early detection of
codeblock convergence or lack thereof before the maximum number of itera-
tions is reached. We first address iteration control and propose a control po-
licy that is driven by the combination of two decision metrics. Furthermore,
we show empirically how stopping criteria should be tuned as a function of
false alarm and missed detection rates.

As a second point, we address the problem of reducing the decoder power
consumption from a different perspective. Our approach is based upon the
following observations:

• Practical decoders are dimensioned and designed in order to execute

89
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a maximum number of iterations so that a timing deadline is fulfilled.

• It is well-known that error-free decoding can be achieved with a few
iterations under good channel conditions.

• For bad channel conditions a codeblock might not even be decoded
with the maximum number of iterations.

We argue that by monitoring the dynamics of the iterative decoding pro-
cess it should be possible to control a power manageable decoder such that
energy efficiency is improved. We propose a dynamic power management po-
licy that looks for opportunities to slowdown the system in order to reclaim
the timing slack due to a codeblock that converges before the task deadline.
Based upon a prediction of the workload of the decoding task, we take ad-
vantage of the fact that the decoder is designed for a maximum number of
iterations that should take place within a particular timing deadline that is
usually defined by a latency or a throughput constraint. We formulate an
online algorithm that adjusts the operation mode of a decoder based upon
the characteristic behavior of a convergence metric. Furthermore, we ana-
lyze the feasibility of a VLSI implementation for such algorithm and control
law in a CMOS technology of 65nm. We apply the proposed technique to
both a Turbo (LTE [4] code) and an LDPC (IEEE 802.11n [5] code) decoder.

7.1 LDPC Decoder Iteration Control

Iterative decoding algorithms are inherently dynamic since the number of
iterations depends upon several factors. Proper iteration control policies
should identify decodable and undecodable blocks in order to improve on
energy expenditure and overall task latency. Convergence of a codeword
is detected by verifying equation (2.13) (syndrome verification) while non-
convergence is usually detected by completing a preset maximum number of
iterations.

In this section, we identify a decision metric provided by a specific de-
coding algorithm, the Self-Corrected Min-Sum algorithm [14]. Motivated
by the quasi-optimal error-correction performance of this kernel along with
its low complexity and energy efficiency properties outlined in Chapter 4
we look into the possibilities of this kernel to aid on an iteration control
policy. We propose to combine two decision metrics in order to control the
iterative decoding task. We perform comparisons among the previous art
and the proposed control policy in terms of error-correction performance,
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average number of iterations and false alarm rate. The main advantage our
work shows is the energy efficiency of the proposed policy as it exhibits em-
pirically very low missed detection rates. Furthermore, we argue that the
tuning of parameters of a stopping rule should be done based upon the false
alarm and missed detection rates performance.

7.1.1 Prior Art

Iteration control techniques attempt to detect or predict the convergence or
not of a codeblock and decide whether to halt the decoding task. This deci-
sion is aided by so-called hard or soft decisions. Hard-decision aided (HDA)
criteria are obtained as a function of binary-decision values from the deco-
ding process; on the other hand the soft-decision aided (SDA) criteria use a
non-binary-decision parameter from the decoding process that is compared
against threshold values.

The authors in [64] proposed a termination criterion that detects so-
called soft-word cycles where the decoder is trapped in a continuous repe-
tition without concluding in a codeword. This is achieved by storing and
comparing the soft-words generated after each decoding iteration. This is
carried out by means of content-addressable memories. This criterion saves
on average iterations but clearly introduces storage elements.

In [65] a stopping criterion was proposed based upon the monitoring of
the variable node reliability (VNR), defined as the sum of the magnitudes of
the variable node messages. This decision rule stops the decoding process if
the VNR does not change or decreases within two successive iterations. This
comes from the observation that a monotonic increasing behavior is expected
from the VNR of a block achieving convergence. The criterion is switched
off once the VNR passes a threshold value that is channel dependent.

The criterion proposed in [66] is similar to the one in [65], it monitors the
convergence of the mean magnitude of the variable node reliabilities. The
decision rule uses two parameters tuned by simulations that are claimed to
be channel independent.

The authors in [67] proposed a criterion that uses the number of satisfied
parity-check constraints as the decision metric. Given the syndrome S =
[s1, s2, . . . , sM ]T , the number of satisfied constraints at iteration l is:

N l
spc = M −

M
∑

m=1

sm . (7.1)

The decision rule monitors the behavior of this metric tracking the in-
crements and their magnitudes as well as the persistence of such behavior.
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In this rule three threshold values are used, all claimed to be channel inde-
pendent.

A similar scheme was presented in [68]. This criterion monitors the
summation of the checksums of all parity-checks given by:

Sp =

M
∑

m=1

Pm , (7.2)

where Pm is the checksum of row m as follows:

Pm =
⊕

n∈Im

c(n) , with c(n) =

{

0 if sign(n) > 0
1 otherwise

(7.3)

where c(n) is the hard-decision mapping of a soft-input of a row. This
is indeed the complement of the decision metric used in [67]. The decision
rule monitors this metric and uses two threshold values that are dependent
upon signal-to-noise ratio to make a decision.

In [69] a channel-adaptive criterion was proposed by monitoring the sign-
changing rate of the LLRs per iteration. The control rule uses two threshold
values that are claimed to be channel independent.

The above control policies have been derived based upon the observation
of the characteristic behavior shown by a particular decision metric within
the decoding task. The decision metrics used by these control policies are
characterized by their dependence or not upon extraneous variables. Esti-
mating these variables (e.g., SNR) raises the implementation effort.

7.1.2 Hybrid Control Policy

SCMS decoding introduces the concept of erased messages, messages which
are deemed useless and are discarded after each decoding iteration. A for-
mal treatment behind the concept of erased messages can be found in [14],
but intuitively the number of messages erased per iteration provides some
measure of the reliability (convergence) of the decoding task. For example,
the fewer messages erased, the more reliable the decoding task is. Through
simulations we observed the total number of erased messages per iteration
to identify the possibility to detect earlier an unsuccesful decoding task
and also convergence. In the case of an undecodable block the number of
erased messages fluctuates around a mean value (dependent upon the SNR),
whereas for a decodable block this metric approaches zero relatively fast. In
Figure 7.1, we show how the percentage of erased messages evolves with each
decoding iteration for an instance of a decodable and an undecodable block.
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Figure 7.1: Percentage of erased messages.

This corresponds to the decoding of the code defined in [5] with block length
1944 and coding rate 1/2 over the AWGN channel with QPSK modulation,
with a maximum of 60 decoding iterations at Eb/N0 = 1dB.

By detecting the characteristic monotonic decreasing behavior of the
total number of erased messages when the decoder enters a convergence
state, it is possible to save energy on potential undecodable blocks. The
erased messages metric follows the cumulative quality of the arguments for
the parity-check constraints, allowing in fact to observe the dynamics and
evolution of the decoding process with fine granularity.

In Figure 7.2, we show the average number of decoding iterations as a
function of SNR for the same simulation scenario of Figure 7.1 for several
stopping rules:

1. Syndrome check verification, this corresponds to equation (2.13).

2. Erased messages metric. Decoding is halted when either the number
of erased messages equals zero or a non-convergence condition is satis-
fied. For non-convergence detection we allow only a fixed number of
increments of this metric.

3. Genie. An ideal stopping rule with foreknowledge of the transmitted
block, in this case decoding would not even start on an undecodable
block.
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The syndrome check and the genie criteria correspond to the empiri-
cal bounds of any valid stopping rule. From Figure 7.2 we observe that
the number of erased messages may be used as a decision metric to detect
earlier undecodable blocks, but it is not efficient for the detection of early
convergence since the absence of erased messages within an iteration is not
a necessary condition for convergence, [14].

From these observations we propose to use the erased messages metric to
detect an undecodable block and the syndrome check for decodable blocks.
We devise a stopping rule that follows the evolution of the total number of
erased messages by counting the increments of this metric and halting the
decoding task once the number of increments exceeds a given threshold T .
This threshold is a static parameter that essentially trades error-correction
performance and the average number of iterations. Algorithm 4 outlines the
proposed decision rule. After the decoding of a row m the number of erased
messages ǫm is accumulated per iteration in Sl

ǫ. This sum is compared with
the one from the previous iteration in order to detect the behavior of the
metric as illustrated in Figure 7.1.

The objective of a stopping criterion can be formulated as the detection
of an undecodable block. Thus the possible outcomes of such criterion may
be a hit, a false alarm or a missed detection. A false alarm corresponds to the
halting of the decoding task that would have been successful in the absence
of such stopping rule. This indeed generates unnecessary retransmissions in
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Algorithm 4 Stopping Criterion - SCMS

ǫm: number of erased messages in row m
M: set of check nodes
fs: boolean function for syndrome check, equation (2.13)
count← 0; Sl

ǫ ← 0
for all iterations 1 < l ≤ iterationsmax do

for all rows m ∈M do

Decode row m
Sl

ǫ ← Sl
ǫ + ǫm

end for

if (fs) then

Halt decoding (convergence)
end if

if (Sl
ǫ > Sl−1

ǫ ) then

count← count+ 1
end if

if (count > T ) then

Halt decoding (non-convergence)
end if

end for
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ARQ protocols. On the other hand, a missed detection represents useless
energy expenditure and an unnecessary delay to request a retransmission.
Even though any stopping criteria can be tuned to make arbitrarily small
the average number of iterations this has an impact on the false alarm rate.

In [67] the authors showed empirically how the average number of itera-
tions and the false alarm rate are complementary. We investigated further
by looking at the missed detection rate since this indeed can provide hints
into a criterion’s efficiency. We compare the proposed criterion in Algo-
rithm 4 to the works in [67] (Shin) and [65] (Kienle). In Figure 7.3, we show
the performance comparison in terms of average iterations, false alarm and
missed detection rates. We observed that when tuning the stopping criteria
to have a similar false alarm rate, as shown in Figure 7.3b, the missed detec-
tion rates exhibit different behaviors. In fact the proposed criterion showed
missed detection rates of several orders of magnitude smaller than the other
criteria. The curves for T = 10 and T = 12 of the proposed criterion are
below the value of 10−6, not shown in the figure. These figures pertain to
the simulation scenario used in Figure 7.1.

Since it is possible to monitor several decision metrics we investigated
how a particular combination may impact the tuning and performance of
the resulting hybrid control rule. By assisting the decision process with
several metrics it is possible to tune the control policy to reach better per-
formance in terms of false alarms, missed detections and average number of
iterations. Nevertheless, it was possible to reduce the missed detections only
by using the rule in Algorithm 4. For this reason we propose to enhance the
performance of the previous rules by adding the number of erased messages
per iteration as another decision metric on a SCMS-based LDPC decoder.
Figure 7.4 shows the proposed hybrid iteration control system.

We selected the number of parity-check constraints metric [67] as it offers
less computational complexity than the VNR metric [65]. In Table 7.1, we
compare the cited stopping rules and the one proposed in [69] along with Al-
gorithm 4. The number of operations is given as a function of the dimensions
of the parity-check matrix. N is usually much larger than M (e.g., twice
for a rate 1/2 code), this means that on the number of calculations alone
the criterion by Kienle is the most complex one. Furthermore, the type
of data used by this criterion requires full resolution real quantities, this
indeed imposes a more complex datapath (within a VLSI implementation)
when compared to the other listed criteria.

Therefore, by observing the performance (error-correction, average itera-
tions, false alarm and missed detection rates) of the mentioned stopping cri-
teria we propose the hybrid iteration control policy for SCMS-based LDPC
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Figure 7.4: Hybrid iteration control system.

Table 7.1: Complexity of decision rules.

Criterion
Operations Tuning

Data Type
Compare Add Parameters

Shin [67] 3 M+3 3 Integer

Kienle [65] 1 N 1 Real

Chen [69] 3 N 2 Integer

Algorithm 4 2 M+2 1 Integer

decoders such that two decision metrics are monitored in order to detect
decodable and undecodable blocks. Even though it is possible to monitor
all previously mentioned decision metrics we found out that the erased me-
ssages metric provides the most effective detection for undecodable blocks
(in the sense of exhibiting the lowest missed detection rate). In the follo-
wing, we provide results when utilizing the hybrid technique by using both
Algorithm 4 and the criterion in [67] embodied as shown in Figure 7.4.

7.1.3 Stopping Criteria Comparison

All stopping criteria can reduce the average number of iterations depending
upon the tuning of the decision parameters used within their control po-
licy. This has consequences of different aspects that are worth investigating.
In the following, we tune the stopping criteria in [65] [67] [69] along with
the proposed hybrid control to be used in the SCMS decoding within the
simulation scenario described in the previous section.

Figure 7.5 shows the simulated BER performance for the tested criteria.
The stopping criteria can be tuned to be close in performance, for the case
of the criterion in [67] (Shin) the parameters used were θd = 6, θmax = 4
and θspc = 825; for the criterion in [65] (Kienle) MB = 16 was used; and
for the criterion in [69] (Chen) lte = 6, thr = 9% were used. The proposed
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Figure 7.5: Error-correction performance for stopping criteria.

hybrid criterion uses T = 22 and the same setup just mentioned for [67].

Figure 7.6 shows the average number of iterations for the stopping crite-
ria. The syndrome check and the genie are once again provided to observe
the achievable empirical bounds. Here the tradeoff between average itera-
tions and performance loss (Figure 7.5) is evident. From these figures the
criterion by Kienle shows an advantage for a fewer number of iterations in
the low SNR region with the smallest performance loss, but this criterion
shows the highest false alarm rate (FAR) on the same SNR region.

In Figure 7.7, we show the FAR of the simulated stopping criteria. This
is a relevant figure of merit since the stopping mechanism on its own can
be responsible for unnecessary retransmissions. We can observe how the
criterion by Kienle shows a smaller number of false alarms on the high SNR
region, this is due to the inherent threshold that is used within this criterion
to disable the stopping rule, but on the other hand this criterion shows the
highest false alarm rate for the low SNR region. The comparison between
the proposed criterion and the one by Shin and Chen is much closer and
indeed can be tuned to have a similar performance.

So far we can observe that the criterion by Kienle in the low SNR re-
gion exhibits the lowest average number of iterations but leads to the highest
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Figure 7.8: Miss rate of stopping criteria.

number of retransmissions. In general, the FAR of these criteria is relatively
close, so we proceed to investigate their missed detection performance. In-
deed, the missed detection rate (MDR) can provide further insights into
which criterion is actually saving energy without incurring into any penal-
ties. Figure 7.8 shows the MDR for the investigated criteria. The criterion
by Kienle performs better than Shin for the low SNR region, but this no
longer holds as the SNR increases. The criterion by Chen follows similarly
the criterion by Shin. The most relevant result is that the proposed hybrid
criterion achieved a MDR at least one order of magnitude below the best
of the other ones. Notice that it is patently obvious that stopping criteria
are useful in the range of low to mid SNR values. Their application should
be introduced once the operating regions of a receiver have been properly
defined.

The performance for each stopping criterion depends upon the tuning of
the decision-making parameters. In Figure 7.9, we show the FAR and MDR
for different choices of tuning parameters that result in different average
number of iterations. These results are from the same simulated scenario for
Eb/N0 = 1dB. From this we can observe the tradeoff involving FAR and the
average number of iterations for all criteria. In general the criteria can reduce
the average number of iterations but this would result in a higher FAR,
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this tradeoff must be selected based upon the particular target application
(required throughput and allowable retransmissions). Furthermore, we can
observe the relationship between MDR and average number of iterations. In
this respect the proposed criterion exhibits the best performance. From this
figure we can see how a proper tuning of the parameters for a decision rule
must consider the relationship between FAR and MDR. FAR refers to the
penalty risk introduced by the stopping rule, whereas MDR refers to how
effective the stopping rule is for detecting undecodable blocks.

7.2 Dynamic Power Management

In this section, we refer to both LDPC and Turbo decoders. The iterative
nature of these decoders represents a dynamic workload within the decoding
task: the number of iterations varies according to external factors. More-
over, the decoders are usually designed and dimensioned to complete a preset
maximum number of iterations within a hard timing deadline. This design
paradigm is a pessimistic one as typically codeblocks converge well before
the maximum number of iterations is completed. We present an online dy-
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namic power management strategy for iterative decoders. An algorithm is
proposed to tune online a power manageable decoder according to a pre-
diction of the workload involved within the decoding task. By reclaiming
the timing slack left when operating the decoder at a high power mode, the
proposed algorithm continuously looks for opportunities to switch to a lower
power mode that guarantees the task completion within the timing deadline.
We apply this technique to the iterative decoding of LDPC and Turbo codes
and explore the feasibility of a VLSI implementation on a CMOS technology
of 65nm. Energy savings of up to 54% were achieved with a relatively low
loss in error-correction performance.

7.2.1 Dynamics of the Decoding Task

As discussed in the previous section, it is beneficial to detect early the con-
vergent or divergent behavior of a decoding task for the interest of achieving
energy efficiency. In other words, it is of interest to observe the dynamics
of the decoding process in order to look for opportunities to reduce opera-
tional complexity and power consumption. Figures 7.10 and 7.11 show the
evolution of the posterior messages LLRs for both a converging and a non-
converging codeblock for both types of codes as a function of the decoding
iterations. Figures 7.10a and 7.10b correspond to instances of decoding the
LDPC code defined in [5] with codeblock length of 648 and code rate 1/2
over the AWGN channel with QPSK modulation at an SNR of Eb/N0 = 1dB
with 60 maximum iterations. Figures 7.11a and 7.11b show two instances
of decoding the Turbo code defined in [4] with codeblock length of 6144 and
code rate 2/3, as well through the AWGN channel with QPSK modulation
at Eb/N0 = 1dB with 16 maximum half-iterations.

In the following, we argue that by monitoring the dynamics shown in Fi-
gures 7.10 and 7.11 it should be possible to make predictions on the required
decoder workload. We use the term workload to refer to either iterations or
half-iterations depending upon the code at hand.

Dynamic power management (DPM) refers to a set of techniques used
to achieve energy-efficient operation of a system. This is performed by judi-
ciously adjusting or reconfiguring the system to provide a requested service
and performance level with a minimum energy expenditure based upon run-
time observations. Several techniques exist to achieve this at different levels
(e.g., system and gate levels) such as sleep, slowdown modes and clock ga-
ting. In order to apply DPM usually two premises are considered, [70]: the
system experiences a non-uniform workload during operation time and it is
possible to certain degree to predict the fluctuations of the workload. Usu-
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Figure 7.10: Posterior messages LLRs magnitude evolution on an LDPC
code.
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Figure 7.11: Posterior messages LLRs magnitude evolution on a Turbo code.
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ally, a power manager executes a control procedure known as a policy or
law that is based upon observations of the task workload.

The iterative decoding of LDPC and Turbo codes is inherently dynamic
in the sense that the number of iterations depends upon the reliability of the
decoding process. This is basically determined by the level of noise present
in the received codeblock. This is therefore a task with variable workload.
Typically, these decoders are dimensioned to operate at a high performance
mode in order to complete a maximum number of iterations within a given
timing deadline. Nevertheless, this design paradigm is strictly pessimistic
since a codeblock would typically reach convergence in fewer iterations than
the preset maximum. This fact could be exploited in order to reclaim the
timing slack and slowdown the decoder to a low-power mode.

Figure 7.12 shows a decoding task performed under both a high- and
low-power mode. Under the high-power mode the task is completed before
a timing deadline, while under the low-power mode the task is also completed
by the deadline but utilizes the full slack that remains from the high-power
mode. The area under each curve indicates the total energy spent for each
task. Depending upon the relationship among the power levels and the
slowdown factor energy efficiency may be improved by reclaiming the slack
left when running at high-power mode. Notice that the task deadline is
typically defined in order to comply with performance requirements like
latency and/or throughput.

7.2.2 Prior Art

As mentioned in Section 7.1.1, previous works addressing power management
on LDPC decoders focus on reducing the number of iterations to avoid
unnecessary decoder operation. For the case of Turbo decoding the authors
in [71] proposed to monitor the sign changes of the LLRs in order to detect



7.2 Dynamic Power Management 107

the codeblock convergence. Well-known methods for SDA criteria monitor
the cross-entropy value [21] and the mean-reliability value [72].

In [73] [74] the authors proposed a preprocessing stage for LDPC de-
coding that estimates the required decoding effort and proceed to adjust
the system power mode (voltage and frequency) in order to have a con-
stant decoding-time. To the best of our knowledge, no other work within
the prior art has attempted to follow online the iterative decoding process
in order to make predictions about the codeblock convergence and look for
opportunities to apply dynamic power management strategies.

For iterative decoding in general, the work in [75] proposes a method for
reducing the average power consumed by a decoder by reducing the average
number of iterations. The authors of this patent propose a control loop that
adaptively restricts the maximum number of iterations performed on highly
corrupted codeblocks. This work effectively comprises an SDA stopping
criterion.

DPM techniques based upon workload prediction have been previously
proposed in different contexts. For example, the work in [76] predicts the
MPEG frame decoding time and applies dynamic voltage scaling. The pre-
diction is based upon the block level statistics where the premise for work-
load variation is the difference on block processing time, this depends upon
the block type. In [77], the authors target embedded system applications and
propose a software-based power manager that profiles the workload charac-
teristics through a queuing model. By means of an initial value problem the
workload is predicted and the system frequency of operation is adjusted.
Both works assume continuous frequency/voltage scaling capabilities.

DPM has been a topic of intense research, comprehensive surveys can
be found in [70] [78]. As revealed by these works, DPM has been mostly
investigated in the context of operating systems for general purpose and
embedded computing. The main problem studied has been to find the opti-
mal transition times to low-power or idle modes. In this work, we target a
real-time kernel for mobile computing devices that must rely upon control
policies of very low complexity in order to enable DPM. Following the taxo-
nomy introduced in [70], we present an adaptive predictive control scheme
for the iterative decoding of LDPC and Turbo codes.

7.2.3 Problem Definition

We consider an iterative decoder to be a power manageable CMOS compo-
nent governed by a power manager. The set P = {P0, P1, . . . , Pn−1} defines
n power modes where, [73]:
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Pk = P sw
k + P sc

k + P leak
k

= EswCLV
2
k fk + ISCVk + IleakVk . (7.4)

P sw
k is the power due to the switching activity when charging and dis-

charging the load capacitance CL with switching activity factor Esw. P sc
k

is the power due to a short-circuit current when both NMOS and PMOS
sections of the circuit are switched. P leak

k is the power due to the leakage
current Ileak (subthreshold plus reverse bias junction current), a technology
dependent parameter. The threshold voltage Vt can also be incorporated in
(7.4), [73]. Each power mode Pk operates at a particular voltage Vk and fre-
quency fk. In the following, we assume that the first state P0 consumes the
most power, subsequent states consume each less power than the previous
one. For each power mode Pk there is a corresponding slowdown factor αk

where for the fastest mode α0 = 1. Each power mode can also be described
as a fraction of the highest power mode P0 by a factor βk, e.g., Pk = βkP0.
Given the quadratic relation between power and voltage and the linear re-
lation between power and frequency, it is possible to slowdown the system
(consequently augmenting processing time) such that the total energy ex-
penditure is reduced. This is the principle behind the well-known concept
of dynamic voltage and frequency scaling (DVFS), [79].

Given the model of the power function P ∝ V 2 and f ∝ (V −V 2
t )/V , [80],

it is in the best interest of the power manager to run a task as slowly as
possible due to the convexity of the power function, [78] [81].

Given a workload of I iterations to be executed before a timing deadline
d, we wish to find a subset of power modes P ′ ⊆ P such that the total energy
is minimized. If an iteration is executed in time tk through a power mode
Pk, the problem is stated as finding the optimal P ′ that minimizes the total
energy spent:

minimize
I

∑

i

P
(i)
k t

(i)
k , Pk ∈ P

′

subject to
I

∑

i

t
(i)
k ≤ d , (7.5)

where P
(i)
k indicates the power mode used during the ith iteration. This

problem can be formulated as well as a linear program that minimizes an
energy function by finding a power P ∈ R that guarantees the constraint d.
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Such formulation, however, would not capture the adaptive online charac-
teristic of choosing a power mode from a finite set under the uncertainty of
the workload. In the following, we propose a heuristic to solve (7.5) based
upon workload predictions.

7.2.4 Control Policy

DPM is at its core an online problem since a power manager must make
decisions about the system operation mode before all of the input to the
system is available. The input here refers to the total required number of
iterations to achieve a codeblock convergence. Indeed, an online algorithm
attempts to find an optimal power mode based upon information available
only at runtime. On the other hand, an offline algorithm finds the optimal
power mode to satisfy (7.5) assuming the total required number of decoding
iterations is known.

In order to formulate the online strategy it is necessary to look into the
dynamics of the decoding process. For the case of LDPC codes, in [67] [82]
it was proposed to use the number of satisfied parity-check constraints as
a decision metric for iteration and power control. The complement of this
metric (number of unsatisfied constraints) follows a monotonic decreasing
behavior when the decoder enters a convergence state. For the case of Turbo
codes, in this work we propose to use the number of hard-decision changes
upon the posterior messages after each half-iteration, i.e., at the output of
each component SISO decoder.

Figure 7.13a shows the number of unsatisfied parity-check constraints per
iteration for an instance of an undecodable and a decodable LDPC code-
block. This corresponds to the decoding of the code of length 1944 and rate
1/2 defined in [5], simulated through the AWGN channel (Eb/N0 = 1dB)
with QPSK modulation and a maximum of 60 iterations. Figure 7.13b shows
the number of sign changes in the posterior LLRs after each half-iteration
for an instance of an undecodable and a decodable Turbo codeblock. This
corresponds to the Turbo code defined in [4] with codeblock length 6144
and rate 2/3 through the AWGN channel (Eb/N0 = 1dB) with QPSK mo-
dulation and 20 maximum full-iterations. It is observed for both codes that
the corresponding metric fluctuates around a mean value for undecodable
blocks, but for decodable blocks it fluctuates for a period of time tc and
later enters a convergence mode characterized by a monotonic decreasing
behavior. We refer to the period tc as a critical period since no decision can
be made regarding the convergence of the code.

The shown metrics reveal a characteristic behavior that can be exploited
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Figure 7.13: Convergence metric example behavior.
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Figure 7.14: Convergence metric example and first order predictions.

to make predictions about the possible outcome of the decoding task. For
both types of codes the respective metric approaches zero once convergence
is achieved. By predicting this time instant a power manager could calcu-
late the remaining number of iterations and adjust the system operation so
that minimal power is consumed and the task deadline is satisfied. Figure
7.14 shows the behavior of a decision metric and different predictions per-
formed at different time instants. These predictions are based upon a simple
approximation, a first order derivative using two samples from the metric
history.

As shown in Figure 7.13, no predictions can actually be valid during the
critical time section due to the repeated and irregular fluctuations of the
metric. But indeed once the convergence mode is entered predictions can be
refined at each time step in order to approximate with higher accuracy the
probable end of the task. Based upon the assumption that slowing the task
speed is the optimal decision in terms of energy consumption, we propose
to operate the decoder at a high-power mode (high speed) during the crit-
ical period and look for opportunities to slow the system down (low-power
modes) based upon the metric predictions. Figure 7.15 illustrates this idea,
a typical convergence metric behavior is shown along with the set of power
modes that a power manager may select based upon the metric predictions.
Another possibility would be to slow the system down in the critical section
and speedup at the end once convergence has been detected. However, we
do not pursue such approach since this could potentially compromise the
deadline fulfillment.

We formulate the proposed control policy based upon the observations of
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the selected convergence metrics for both types of codes. Figure 7.16 shows
the decision flow of the control policy. Decision making is based upon the
behavior of the monitored metric that reveals whether a convergence mode
is entered or not and whether further decoding iterations may be triggered
or not. The latter point in fact refers to an early stopping criterion just like
the ones mentioned in the prior art for both types of codes. In Section 7.2.6,
we will show how the performance loss in the error-correction sense is due
to the stopping criteria used within the power control policy.

The proposed decision flow is used to design the online DPM strategy
for iterative decoding, outlined in Algorithm 5. The decision metric ǫ is
monitored on an iteration/half-iteration basis depending upon the type of
code.

The algorithm essentially starts the system on the highest power mode
since it tries to exit the critical period as fast as possible. During this period
there is uncertainty with respect to the convergence of the block and indeed
the energy cap Ec represents a stopping criterion. Stopping criteria suffer
from false alarms, i.e., codeblocks that would have been successfully decoded
in the absence of such rule. This translates into a loss on error-correction
performance. Convergence is detected when the last q values of the metric
ǫ are strictly decreasing. If the consumed energy is below the energy cap
the convergence metric is used to estimate the remaining decoding effort.
Equation (7.6) shows a function based upon the last w values of the metric
where prediction functions of different degrees of complexity may be used.
A first order approximation based upon two metric samples provides the
simplest prediction function. Figure 7.17 shows how two values of the metric
are used to approximate the convergence region to a line segment.
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Algorithm 5 Online Power Management Policy

i: current iteration/half-iteration, i ∈ {1, 2, . . . , Imax}
ǫi: convergence metric value at iteration i
1. Decoding starts, i = 1

Set power mode P0

2. Critical section
for i = 1 to Imax do

if (P0t0i ≥ Ec) then

Halt decoding
else

Check convergence state
if (ǫi < ǫi−1 < . . . < ǫi−q) then

Go to 3.
end if

end if

end for

3. Convergence section
for j = i to Imax do

Estimate required workload

Î = f(ǫj , ǫj−1, . . . , ǫj−w) (7.6)

Switch to power mode Pk such that

j
∑

m=1

t
(m)
k + (Î − j)tk ≤ d (7.7)

Stopping Criterion
if (ǫj = 0) then

Halt decoding
end if

end for
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Î iterations

ǫn

ǫn+1

M
et

ri
c

ǫ i

n + 1n

Figure 7.17: Estimation of decoding effort by first order approximation.

Given the two latest values of the convergence metric ǫn and ǫn+1 (at
iterations/half-iterations n and n + 1 respectively) the total estimated de-
coding iterations/half-iterations Î is given by:

Î = n−
ǫn

ǫn+1 − ǫn
. (7.8)

Overheads associated with the transitions between power modes (e.g.
transition times and energy cost) are not explicitly mentioned in Algorithm
5 for simplicity.

Competitive analysis has been used in theoretical computer science to
design and analyze online algorithms; dynamic power management has been
previously analyzed within this context in [78] [83]. The performance of an
online algorithm operating on a continuous input stream can be compared
to an offline algorithm which has access to the same input in advance. The
competitive ratio is the ratio between the performances of the online and
offline algorithms. In the context of the problem presented in this section,
an offline algorithm can perform the decoding task with a minimum energy
expenditure since it is able to find an optimal low-power mode that guaran-
tees the task timing deadline. This is due to the foreknowledge of the task
workload (required number of iterations). The performance of the online
algorithm can be evaluated by the competitive ratio with respect to the cost
of the offline alternative. The notion of cost in this case is taken as the total
consumed energy by each strategy. The upper bound of this ratio is given
by:

c =
P0

Pn−1 · αn−1
=

1

βn−1 · αn−1
. (7.9)

This performance metric indicates that an online algorithm can find a
solution with a cost less than c times the cost of the offline alternative.
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An online algorithm is said to be c-competitive if for any input the cost is
bounded by c times the cost of the offline algorithm for that input. Never-
theless, it has been previously noted [83] that competitive analysis provides
an overly pessimistic bound on the performance of online techniques, this
will become evident with the results presented in Section 7.2.6. This is due
to the worst-case analysis nature of the competitive ratio, nonetheless this
analysis provides good insights for tuning an online strategy and improving
performance.

7.2.5 DPM System Implementation

The proposed DPM system is shown in Figure 7.18. An iterative decoder
with adjustable voltage and frequency operation is governed by a power
manager. The decoder receives intrinsic channel values in the form of LLRs
and produces hard-decision bits for the decoded message. By constantly
monitoring a convergence metric from the decoder, the power manager exe-
cutes the control policy outlined in Algorithm 5. The power manager sets
the state of a DVFS unit that provides the operating conditions for the
decoder.

Figure 7.19 shows the architecture of the power manager unit. This unit
executes three main tasks duly represented in this figure: estimation of re-
maining decoding effort, power mode selection and convergence/energy cap
detection. The estimation function shown implements the complement of
equation (7.8) to predict the remaining workload, this function relies upon
two samples of the metric ǫ. In the power mode selection block, the pro-
cessing time tk per iteration of each power mode k is used to calculate the
cumulative decoding time. This value is constantly being added to the es-
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buck
converter

divider
clock

selection
modePk

fk

Vk

fbc

Figure 7.20: DVFS unit diagram.

timated remaining time provided by the estimation function block. The
calculated predicted time is compared against the task deadline in order
to validate a power mode selection. The power mode selection block es-
sentially searches for a power mode that guarantees the task completion,
and by starting the search with the lowest power mode it greedily looks for
the highest energy savings available. The convergence/energy cap detection
block implements the stopping criteria shown in the policy flow in Figure
7.16. This block uses as a decision metric the difference between consecu-
tive samples of ǫ. The increments/decrements of this metric are compared
against a precalculated threshold characteristic. Using two samples for ǫ
in the estimation function block and the convergence/energy cap detection
block corresponds to q = w = 2 in Algorithm 5.

The energy savings obtained by the proposed DPM policy depend upon
the characteristics of the power modes used and the implementation of the
DVFS block. There are numerous works on how to implement a DVFS
unit, using different techniques where several tradeoffs take place: size and
power overhead, mode switching speed and conversion efficiency. The work
in [84] provides a study on on-chip regulators for DVFS implementation on a
dedicated core. This and similar work in [85] show sufficiently fast switching
regulators (voltage transition times on the order of tens of nanoseconds) for
demanding applications such as LDPC and Turbo decoding.

Based upon [84] [85], we target an on-chip solution to implement the
DVFS unit, shown in Figure 7.20. A mode selection signal selects the ap-
propriate setting for a clock divider. The clock divider is based upon the
architecture presented in [86] and generates a signal fbc that is used by a
buck converter with hysteretic control. These two last blocks generate the
signals fk and Vk that drive the decoder unit. Notice that the buck con-
verter is the critical component in this block due to its conversion losses.
We rely upon the works in [84] [85] to characterize this component in order
to study the feasibility to implement the proposed control policy in a VLSI
architecture.
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Table 7.2: Characterization of decoder power modes.

Mode Voltage Frequency Power Slowdown
factor

P0 Vmax fmax Pmax 1.0

P1 0.9Vmax 0.66fmax 0.5346Pmax 1.5

P2 0.75Vmax 0.5fmax 0.2812Pmax 2.0

P3 0.68Vmax 0.4fmax 0.1849Pmax 2.5

Interconnection 

Network

Extrinsic Messages

memory

15x[96x44] SRAM

Interconnection 

Network15xProcessing Units

5x[136x18] SRAM

Posterior

messages

memory

Figure 7.21: LDPC decoder architecture.

7.2.6 Results

In order to implement the proposed system several factors have to be taken
into consideration: control policy tuning, workload characterization, work-
load prediction accuracy, prediction function complexity and available power
modes that depend upon the technology being used. By control policy tu-
ning we refer to the setting of the parameters within the policy like the
energy cap Ec and the stopping criteria used. This is done in conjunction
with the workload characterization, which refers to observations from the
average number of iterations as a function of SNR. This provides insights
into the required workload based upon the channel quality. By observing the
average number of critical iterations the energy cap is adjusted to limit the
time the decoder will operate at a high-power mode. Regarding the stopping
criteria, these rules have to be tuned as a function of their performance in
the sense of false alarms and missed detections, this tuning was addressed
in Section 7.1.3.

In Table 7.2, we show the characterization of the power modes of the
target system considered for LDPC decoding. The LDPC code to support
is the one defined in IEEE 802.11n [5]. The target CMOS technology is of
65nm; Vmax = 1.32V and fmax = 400MHz are used in the following. In our
simulations with this technology the static power was below 2% of the total
power (refer to Figure 5.3). This is why the characterization of the power
modes is dominated by the dynamic power.
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Figure 7.21 shows the architecture of the LDPC decoder synthesized
within the embodiment of the DPM system previously depicted in Figure
7.18. This decoder consists of 15 processing units that perform the SCMS
decoding of a row in H in serial fashion as outlined in [14]. The decoder
essentially updates posterior messages (quantized to 6-bits) that are dis-
tributed by an interconnection network (acting as the edges of the underlying
code graph) to a set of processing units. These units process the messages
along with the previous results (extrinsic messages) and write back the newly
calculated posterior messages (again the messages are properly distributed
by an interconnection network). This decoder achieved a throughput of
156Mbps.

Simulations (same scenario as in Figure 7.13a) for the decoding of the
code of length 1944 and rate 1/2 are shown in Figure 7.22a to depict the
workload characterization for this use case and tune the DPM control policy.
The average decoding iterations with no DPM are shown as well as the
average critical iterations. The curve corresponding to No DPM implements
only as stopping criterion the fulfillment of equation (2.13) or the maximum
number of iterations.

By applying the DPM technique a reduction in the average iterations
is observed, this is a consequence of the inherent stopping criteria within
the flow of the policy. As previously noted, the stopping criteria can pro-
duce wrong decisions known as false alarms, i.e., instances of the decoding
task that were halted when in fact they were able to converge within the
maximum number of iterations. This represents a loss on error-correction
performance. Figures 7.22b and 7.22c show the false alarm rate and the
bit-error rate (BER)/frame-error rate (FER) obtained for this setup respec-
tively. As shown as well in the Turbo decoding case that follows, the false
alarms peak within a region of high workload, i.e., high critical iterations.
Tuning the control policy implies making a judicious tradeoff between aver-
age performance loss and energy savings.

The average energy consumed by a decoder using the typical design
paradigm of operating at a unique high-power mode P0 disregarding the
duration of the task is given by:

ETY P = Iavg · P0 , (7.10)

where Iavg is the average number of iterations for a given SNR operating
point. On the other hand, the energy consumed when applying the DPM
policy on a system with n power modes must incorporate the critical ite-
rations and the possibility of switching to a low-power mode. This energy
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Figure 7.22: DPM technique on LDPC code K=1944, R=1/2.
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EDPM has a lower bound when the lowest power mode can guarantee the
completion of the task deadline, this is given by:

EDPM = Ic · P0 + (Imax − Ic) · βn−1 · P0 · αn−1 , (7.11)

where Ic is the average number of critical iterations and Imax is the
maximum number of iterations. The lowest power mode Pn−1 is described
by a slowdown factor αn−1 and a power factor βn−1 of the highest power
mode. In this same manner, we can describe the lower bound of the energy
consumed by an offline power management strategy that would operate at
the lowest power mode provided the task deadline is achieved. This would
be the unachievable theoretical bound for the DPM strategy. This bound is
given by:

Eoffline = Iavg · βn−1 · P0 · αn−1 . (7.12)

The design was synthesized with Synopsys Design Compiler and the
power consumption was estimated with Synopsys PrimeTime using post-
layout netlists. We combined the simulations of the proposed DPM policy
using Imax = 15 with the characteristic per power mode to estimate the
energy savings on several use cases. In Figure 7.23, we show the average
energy savings obtained by the online algorithm (EDPM ) with respect to
the absence of a power management strategy (ETY P ), i.e., constant opera-
tion at full power. Three code lengths N were used along with two coding
rates in order to observe the behavior for several use cases. At a low SNR
there are fewer opportunities for energy savings (20% with code rate 1/2
and 40% for rate 5/6) because of a higher decoding effort (longer critical
time), but for the high SNR region up to 54% energy savings were obtained.

The energy savings from the proposed policy have two components: one
due to the inherent stopping criteria and another one due to the system
slowdown. The former dominates on the low SNR region and the latter on
the mid to high SNR region. At low SNR the stopping criteria detect the
potential codeblocks that are not likely to be decoded, whereas at mid to
high SNR values the system takes advantage of the fast convergence in order
to reduce power consumption.

The competitive ratio for this setup is c = 2.17, nevertheless, from the
simulation results it was observed that the competitive ratio had an upper
bound of c = 0.97. This is not surprising since competitive analysis often
provides an overly pessimistic bound for the performance of algorithms.

We applied also the proposed DPM technique to an LTE Turbo de-
coder, depicted in Figure 7.24. This decoder uses 6 SISO radix-2 units with
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Figure 7.23: DPM technique average energy savings on LDPC decoding.
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a window length of 32 samples with a message quantization of 6-bits. It
provides a throughput of 95Mbps and completes a decoding task of 8 full
iterations in 65µs. Because of the reduced number of iterations (compared
to an LDPC decoder) only two power modes were used for the Turbo case:
1.2V at 266MHz and 0.9V at 160MHz. This setup provides a competitive
ratio c = 3.27.

Posterior messages

memory

Extrinsic messages

memory

Interleaver unit

6x[512x12] SRAM 6x[512x12] SRAM

SISO core

6 units

Figure 7.24: Turbo decoder architecture.

Three use cases were simulated with different code lengths K at the code
rate 2/3. Figure 7.26 shows the workload characterization for these use cases
as a function of SNR. The average half-iterations are shown for No DPM,
DPM and the average critical half-iterations. The curve corresponding to No
DPM uses as stopping criterion the HDA rule as outlined in [71]. Based upon
these results and the error-correction performance loss, the DPM policy is
tuned in order to provide the biggest gains in energy savings at the lowest
performance loss. As mentioned before, these losses stem from the potential
wrong decisions that a stopping criterion may take. In Figure 7.25, we show
the false alarm rate for the simulated use cases. Again, the false alarms
exhibit high values in the regions of intermediate SNR that correspond to
the highest workloads for the decoder. Figure 7.28 shows the BER/FER
loss for applying the DPM technique on each use case.

The achieved energy savings are depicted in Figure 7.27 for each use
case, this would correspond to the difference percentage between ETY P

and EDPM , equations (7.10) and (7.11), respectively. The energy savings
achieved by an offline strategy Eoffline are shown as well to indicate how
far the DPM policy behaves from its ideal performance. This difference is
indeed an indirect measure of the prediction error from equation (7.8).

The use case of K = 6144 encompasses the most workload, in fact be-
cause of the characteristic of the power modes it is only after Eb/N0 = 0.8dB
that the DPM technique starts delivering results. For all cases the offline
policy produces around 54% of energy savings, this is asymptotically ap-
proached by the DPM technique on the high SNR region. This comes from
the fact that at high SNR values the critical workload is very low, this sug-
gests in fact that the blocks enter convergence relatively fast, exactly what
would be expected at a good channel quality. The achieved energy savings
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Figure 7.25: DPM technique on Turbo code: false alarm rate.

Table 7.3: Area and power comparison for DPM system.

Component Area [mm2] Power [mW ]

LDPC decoder (No DPM) 0.85 70

Turbo decoder (No DPM) 0.62 180

Power manager 0.08 5

DVFS unit 0.12 15

vary between 34% to 54% for all use cases depending upon the channel
quality.

The area and power overheads for applying DPM on these decoders
are revealed in Table 7.3. For both setups (LDPC and Turbo) the same
DVFS unit was used. This unit is characterized from the results presented
in [84] [85]. From those works we extract the data for a buck converter with
a switching frequency of 100MHz and a conversion efficiency in the range
of 75%-87% with an output voltage range of 0.9V-1.3V. The components
involved are compared in order to assess the impact of applying DPM, this
should be considered alongside the error-correction performance loss and the
energy savings achieved for all cases.
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Figure 7.26: Turbo decoding workload visualization: average half-iterations
and critical half-iterations.
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Figure 7.27: DPM technique average energy savings on Turbo decoding.
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Figure 7.28: DPM technique on Turbo code: BER/FER performance.
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Table 7.4: Comparison of energy savings techniques.

Work Proposed [73] [74] [87] (SC) [87] (PR)

LDPC

Energy 54 37 30 - -
savings %

SNR 0.07 N/A 0.05 - -
loss [dB]

Turbo

Energy 54 - - 17.5 24.5
savings %

SNR 0.08 - - 0.34 0.48
loss [dB]

We compare the achieved average energy savings with works from the
prior art in Table 7.4. The SNR loss reported in the table corresponds
to the point at BER = 10−5 for the corresponding code from each work.
Even though the codes among the cited works are different, the SNR loss
provides a measure on the impact in performance for each applied power
savings technique. The work in [87] analyses individual techniques proposed
for energy reduction in Turbo decoding. Among them we show the reported
achieved energy savings for reduction in the number of paths (PR) and the
LLR stopping criterion (SC). We acknowledge that in [87] several of the
analyzed techniques therein were combined and savings of up to 66% were
reported.

7.3 Conclusion

In this chapter, power management techniques for iterative decoders were
presented. Iteration control for LDPC codes was discussed. Even though
iteration control is relevant only for the low SNR region of the performance
curves it is an important technique studied for the purpose of avoiding use-
less decoder operation. We provided insights into the performance of several
control rules in terms of the detection of undecodable blocks as false alarms
and missed detections. We proposed an iteration control law that moni-
tors two decision metrics that allowed a notorious decrease in the missed
detection rates found among the prior art. By decreasing the average num-
ber of missed detections we argued that an iteration control law is more
energy efficient. Furthermore, by observing the tuning of the control rules
the performance can be selected according to the target application.
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In addition, we considered the dynamic power management of iterative
decoders. We proposed an online policy that is aided by the dynamics of
the decoding process that can be extracted from a particular convergence
metric. By making a recurrent estimation on the required decoding effort the
policy adjusts the performance of the system so that it minimizes the energy
consumption while the task deadline is satisfied. A judicious selection of a
power mode is carried out at runtime by a power manager that considers
the decoding task deadline and the predicted remaining decoding time once
the decoder has entered a convergence mode. The proposed technique has
been applied to the decoding of LDPC and Turbo codes. For the case of
LDPC codes the number of unsatisfied parity-check constraints was used as
a decision parameter, while for the Turbo case the total number of hard-
decision changes in the posterior messages was used. Both metrics were
monitored per iteration/half-iteration in order to make decisions about the
system operation. Several use cases were simulated in order to observe the
achieved energy savings as a function of codeblock length and code rate.
Energy savings of up to 54% were achieved with a relatively low impact on
error-correction performance.



Chapter 8

Unified Decoders and Future

Work

Due to the increasing number of mobile wireless communication standards to
be supported by nomadic devices, there is a need to design highly reusable
and flexible receivers. These devices must provide a seamless transition
within different network technologies depending upon physical location, mo-
ving speed and required services. Moreover, should these devices be con-
nected to more than one network, concurrent data streams should be pro-
cessed.

In this chapter, we address the challenges to conceive a unified architec-
ture for the decoding of both Turbo and LDPC codes. Due to the dissemi-
nation of these codes among current and future communication standards,
a flexible and efficient multi-mode decoder is of interest. We briefly disclose
the design challenges for a dual-mode Turbo/LDPC decoder with concu-
rrent processing of data streams in order to describe how the work in this
dissertation may be extended.

8.1 Prior Art

In this section, we outline in a compact way the relevant previous art
that addresses unified and common architectures for the decoding of Turbo
and LDPC codes. The major points to discuss include two architectural

131
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paradigms that achieve the required flexibility and the formulation of deco-
ding algorithms that may act upon both types of codes.

Application-specific instruction-set processors.

A common theme found in the previous works that address flexibility
and multi-mode functionality has been the paradigm of application-specific
instruction-set processors (ASIP). These devices consist of an optimized
data path and a reduced instruction-set that offers programmability and
good performance. These processing architectures are gaining interest to
be used within programmable platforms for software defined radios (SDR).
As suggested by its name, these platforms provide a fully programmable
solution for radio baseband architectures. The works in [32] [33] describe
a unified architecture for ASIPs that support Turbo, LDPC and convolu-
tional codes. Authors in [88] consider a multi-user approach instead, where
multiple decoder instances are used to support concurrent decoding tasks.

Application-specific integrated circuits.

Due to the computational complexity of the iterative decoding of these
codes along with high throughput demands and high energy efficiency dedi-
cated unified architectures have been proposed as well. These architectures
offer high efficiency and hardware reuse at the expense of lower flexibility
when compared to their ASIP counterparts. Works in [89] [90] [91] [92] des-
cribe similar architectural constructs based upon flexible functional units
and reconfigurable permutation networks. The work in [92] goes beyond by
implementing the distribution of messages among processing units by means
of a network on chip (NoC).

Unified decoding algorithms.

Based upon the previous works we describe the decoding strategies that
enable common architectures for both types of codes. As mentioned in
Chapter 2, Turbo and LDPC codes can be described in general as codes
on sparse graphs and their decoding can be explained as an instance of the
sum-product algorithm applied to their respective graphs. Two main ap-
proaches have been followed to unify the decoding of these codes:

1. LDPC decoding transformed into a Turbo decoding pro-

blem: The work in [13] [27] showed how an LDPC code can be interpreted as
the parallel concatenation of single parity-check codes. The MAP algorithm
can be applied to the 2-state trellis representation of each parity-check where
each state represents the value of the parity-check according to the variable
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nodes that particular row in H is connected to. The works in [89] [91] [92]
follow this approach to design flexible SISO units that essentially apply the
BCJR algorithm on a trellis representation.

2. Turbo decoding transformed into an LDPC decoding pro-

blem: A Turbo code is typically represented by the concatenation of con-
volutional codes and the trellis diagram of each component code. However,
recent work has shown the ways in which a Turbo code can be analyzed from
a block and low-density parity-check code point of view. Works in [90] [93]
have shown how to construct a parity-check matrix from a Turbo code.
Indeed, such approach provides a better understanding of the relationship
between these types of codes. After obtaining a parity-check matrix for a
Turbo code the typical sum-product algorithm may be applied to the re-
sulting code graph. This approach is adopted in [90] where performance
losses are reported mainly due to transformations necessary on the resulting
parity-check matrix.

The previous works have concentrated on maximum hardware reuse and
in fact report attractive implementation area gains when compared to the
separate instantiation of the individual decoders they support. In the follo-
wing, we outline specific aspects to be considered in order to achieve high
energy efficiency and the possibility to support concurrent coded streams.

8.2 Dual-mode Decoder Design

In this section, we target the design of a dual-mode decoder for the decoding
of the LTE [4] Turbo code and the IEEE 802.11n [5] LDPC code. We assume
there is a requirement to support concurrently one coded stream for each
type of code. Such assumption may arise from a multi-mode device that
is required to operate on both networks, one simple scenario may be the
operation of a mobile device that is downloading data through a cellular
LTE network and at the same time operating as an access point for a 802.11n
local area network. Figure 8.1 illustrates the mentioned scenario.

Admittedly, any optimal decoder design should be competitive to the
separate instantiation of the supported decoders, the support of concurrent
coded streams may limit the level of hardware reuse. In the following, we
formulate the design issues for this case study with the purpose to lay down
the aspects of future work for this research.
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Figure 8.1: Dual-mode receiver scenario.
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Figure 8.2: LTE ACK/NACK timing requirements.

8.2.1 Requirements

The Turbo coding scheme used in 3GPP-LTE [4] features the parallel con-
catenation of two 8-state convolutional codes separated by a quadratic per-
mutation polynomial (QPP) interleaver. The native coding rate is 1/3 and
12 tail-bits are added to terminate the trellis. Puncturing is used to change
the coding rate up to 0.95. A total of 188 different block sizes N are defined,
with 40 ≤ N ≤ 6144.

An LTE User Equipment (UE) must comply with key performance con-
straints in order to complete hybrid automatic repeat request (HARQ) pro-
cesses. LTE takes the advantages of adaptive coding and modulation and
HARQ in order to maximize the link throughput under poor channel con-
ditions. The latency requirement for a UE in order to provide an acknow-
ledgement ACK/NACK upon a decoded frame is shown in Figure 8.2.

On the other hand, the UE must comply with a peak throughput re-
quirement of 75Mbps per MIMO stream. Up to 4x4 MIMO configurations
are supported in LTE.

The structured LDPC codes defined in IEEE 802.11n [5] contain several
parity-check matrices for several use cases that are characterized by various
codeblock lengths and coding rates. There are a total of 12 matrices for
12 use cases, each matrix HM×N consists of an array mb × nb of Z × Z
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Figure 8.3: 802.11n ACK/NACK timing requirements.

blocks. The defined values in the code are Z ∈ {27, 54, 81}, nb = 24 and
mb ∈ {4, 6, 8, 12} and they depend upon the use case with codeblock lengths
N ∈ {648, 1296, 1944} and coding rate R ∈ {1/2, 2/3, 3/4, 5/6}.

The latency requirement for a high throughput station (HT-STA) in
802.11n is shown in Figure 8.3. The short inter-frame spacing (SIFS) defines
the allotted time to generate an ACK/NACK message. The distributed IFS
(DIFS) is the time a station uses to sense a clear radio before starting a new
transmission sequence.

The HT-STA must comply with a peak throughput of 150Mbps per
MIMO spatial stream (at a channel bandwidth of 40MHz), where up to 4x4
MIMO systems are supported.

For both systems the latency and throughput constraints impose the di-
mensioning specifications of a baseband processor. It is required to estimate
the processing latency and throughput required per processing block within
the baseband chain. This chain usually contains blocks like channel estima-
tion and equalization, demodulation, channel decoding, rate matching and
frame construction. Hereafter, we assume a 60% of the baseband processing
time to be allocated to channel decoding.

8.2.2 Dimensioning

As mentioned in Chapter 6, we refer to dimensioning to the selection of the
level of parallelism required for the target system. For a decoder operating
at a frequency fclk a latency constraint involves the completion of a decoding
task under a deadline d:

D

fclk

≤ d , (8.1)

where D cycles are consumed. On the other hand, a throughput Γ
constraint for decoding a codeblock of length N is given by:

N × fclk

D
≥ Γ . (8.2)



136 Chapter 8 Unified Decoders and Future Work

We consider now the latency for each decoder assuming the use of the
BCJR kernel for MAP [20] decoding on the Turbo case and the general
description of latency for an LDPC decoder given in Chapter 4 on equation
(4.2). A MAP decoder traverses the trellis of a code to estimate the possible
state transitions of the decoder at each time stamp, this is done in both
forward and backward directions. Values known as state and branch metrics
are generated at each node of the trellis and are used to calculate the output
posterior messages. Traversing the whole trellis for long codeblocks involves
the storage of long chains of metrics, therefore typically a sliding-window
approach is followed instead, [94]. In this approach, the trellis is processed
in a fixed length that advances within time, saving on storage requirements
but introducing delays that are required in order to estimate the metrics
at the edges of the window. This is done by so-called training or dummy
calculations.

MAP processing is typically performed in radix-2 architectures or dou-
bling the throughput with radix-4 computations by compressing the trellis
in time, [95] [96].

The decoding latency of a codeblock of length N in clock cycles for a
decoding task of I iterations is given by:

DTurbo = 2× I × (
N

P
+ 2W ) (8.3)

for P MAP radix-2 units using a window length W . For the case of a
radix-4 unit, this latency is reduced by 50%.

On the other hand, structured LDPC codes with an expansion factor Z
can be processed in parallel fashion, the decoding latency in clock cycles of
a codeblock by P processing units performing I decoding iterations is given
by:

DLDPC = I ×mb ×
Z

P
× Lc , (8.4)

where LC is the number of cycles consumed for processing a row in H.

An inspection on the values provided by each specification reveals that
for LTE the dominating constraint is the throughput requirement whereas
for 802.11n the latency is the dominating one. We use the term dominating
in the sense that a performance constraint reveals the necessary processing
units P when considering equations (8.3) and (8.4) in both constraints (8.1)
and (8.2). In Figure 8.4, we show the required number of processing units
for individual decoders in order to comply with their respective dominating
constraint. For Turbo decoding a radix-2 MAP unit is used with window
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lengthW = 64 and 6 full iterations; for LDPC decoding a unit that processes
a row of degree dc in dc + 3 cycles with 8 iterations is used. The use cases
shown are: LTE with N = 6144 and R = 1/3; and 802.11n with N = 1944,
dc = 8 and R = 1/2. On each curve of the figure the used constraint is
shown. Here the tradeoffs of area and power can be roughly estimated.

Nevertheless, for the case of a system that supports both coded streams
in concurrent fashion the latency constraints would change. An LTE Turbo
decoder that complies with the throughput requirement exhibits a latency
between 40µs and 60µs. Since the latency requirement for an LDPC decoder
in 802.11n is in the order of less than 10µs this inevitably suggests that a
Turbo decoding task must be preempted or halted in order to schedule a
higher priority LDPC decoding task. This would lead to a duplication of the
memory requirements as the context of the halted task must be saved. This
of course eliminates any possibility to reuse hardware and hence achieve an
optimum implementation area. Therefore it is compelling to explore the
design space of the decoders after reducing their latency requirements so
that both Turbo and LDPC decoding tasks may be executed and completed
one after another and still respect their required specifications. Figure 8.5
shows the time-multiplexed operation of a dual-mode decoder with incoming
dual frame buffers as input streams.
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Figure 8.5: Dual-mode decoder characteristics.

8.3 Future Work

The work presented in this thesis can be extended to address the design
space exploration of a unified decoder architecture as shown in the previous
section. Namely, the following relevant points can be addressed:

1. Memory architecture exploration: As argued in the previous
chapters, the memory subsystem of decoders for Turbo and LDPC codes
is critical in terms of implementation area and power consumption, [97]
[98] [99]. For a dual-mode decoder reusing this subsytem represents the
highest opportunities to improve on implementation area. Therefore, it is of
interest to explore the ways in which the memory may be partitioned and
how the data can be allocated to enable a high reuse factor. The particular
memory access requirements of each code impact the previously mentioned
design choices since different access patterns may cause read/write conflicts
between competing processing units. For the case study considered in the
previous section, the LTE QPP interleaver guarantees contention-free access
of P processing units to P memory banks when P is a factor of the interleaver
length, [100]. For the case of structured LDPC codes the memory access
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Figure 8.6: Memory access characteristic for a QPP Turbo code and a struc-
tured LDPC code.

configurations have been studied in Chapter 5. Figure 8.6 shows examples
of the required memory access characteristic for a QPP Turbo code and a
structured LDPC code.

In Figure 8.6a a Turbo code of length N = 16 is processed in 4 windows
and the data is distributed among 4 memory banks. For the first decoding
half-iteration the non-interleaved access is used, then for the second half-
iteration the interleaved data is fetched in a contention-free fashion. For
the case of LDPC codes, Figure 8.6b shows a codeblock of length N = 16
distributed among 4 memory banks and an expansion factor of Z = 4, which
means that up to 4 rows can be processed concurrently. With a row degree
dc = 3 example access patterns are shown, contention-free access is provided
by the micro and macro placement of data described in Chapter 5. What is
then the optimal memory partition and data allocation that can maximize
the reuse of memory between each decoding mode?

2. Decoding kernels: Optimal MAP decoding can be performed on
both types of codes with the BCJR algorithm as described in the previous
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art in Section 8.1. As discussed in Section 4.3 for the LDPC code case, a
BCJR processing unit provides excellent error-correction performance but
at the cost of higher implementation area and energy expenditure. Nonethe-
less, a plurality of processing units in a parallel architecture constitute just
a fraction of the memory footprint. Therefore, it is of interest to disclose the
impact on power consumption when combining BCJR and SCMS (or any
LDPC decoding kernel of similar performance/energy cost) processing units
in a dual-mode decoder. For instance, it should be possible to operate the
decoder on lower frequencies during LDPC mode given the lower workload
an MS kernel exhibits compared to the BCJR kernel. What quantitative
advantages would this design choice bring about?

3. Power management: Given the iterative nature of both Turbo and
LDPC decoding and the joint processing of both types of decoding instances,
it is of interest to study the possibilities to operate the system at low power
modes depending upon different factors such as: input frames arrival times,
workload estimation, use case (determined by code length and rate) and
required throughput among others. Which power management techniques
can be formulated for this type of decoding architectures?



Chapter 9

Concluding Remarks

In this dissertation, we have addressed important aspects for the realization
of energy efficient LDPC decoders. We have provided insights and contri-
butions at different levels that are of interest for VLSI designers skilled in
the art of channel decoders.

Firstly, we have considered the decoding kernels that offer different trade-
offs in terms of performance, complexity and energy consumption. We ob-
served how a particular kernel choice can impact design parameters as me-
mory requirements, performance metrics like convergence speed and error-
correction as well as overall task energy consumption. A thorough explo-
ration of these kernels is therefore compelling for optimal designs. Fur-
thermore, we described a proposed method for optimizing the syndrome
verification in order to speedup the decoding task.

Secondly, at the architectural level, much discussion was focused on the
memory subsystem. Indeed, by means of different results within this disser-
tation we showed the relevance of this subsystem in terms of implementa-
tion area and energy consumption. We described several characteristics of
this subsystem that are important for achieving both flexibility and energy
efficiency besides a reduced footprint. Particularly, the topics of memory
partition and data allocation play an important role for achieving these
mentioned goals. In addition, we elaborated on architectural descriptions of
a multi-mode decoder that features a compact and flexible memory design
that enables a low complexity interconnection network, a high performance

141
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decoding kernel and high energy efficiency when compared to the state-of-
the-art.

Finally, at the system level, we considered the topic of power manage-
ment. We analyzed the performance of stopping criteria and proposed a
control policy that enhances the energy efficiency of the previous art. We
showed how these criteria are only relevant in the low SNR region of a
decoder. Our analysis on the tuning of these decision rules has shown the
tradeoffs between false alarms (penalties of a rule usually materialized as re-
transmissions) and missed detections (futile energy spent on an undecodable
block). In summary, for applications that include power-limited devices and
bad channel conditions a tuning of a stopping criterion should consider the
previous tradeoff.

As a second point on power management, we proposed an online policy
that adjusts a power manageable iterative decoder so that a timing deadline
is guaranteed at a low energy expenditure. We provided implementation
details for such policy on both LDPC and Turbo decoders. Throughout
this work we have provided implementation results on relevant technologies
along with comparisons with representative work in order to support the
quantitative advantages of our contributions.

Finally, we addressed the topic of unified decoder architectures in order
to introduce the directions in which this research can be extended. We
specified at least three points of this topic that can benefit from the ideas
discussed throughout this dissertation.
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Appendix A

Résumé étendu

This is a French extended summary of this dissertation required by the
publisher.

A.1 Introduction

Les techniques de décodage itératif pour les codes modernes dominent actue-
llement le choix pour la correction des erreurs dans une pléthore d’applications.
Les Turbo codes, présentés en 1993 [1], ont déclenché une révolution dans
le domaine du codage de canal parce qu’ils permettent de s’approcher de la
limite de Shannon. Ensuite, les codes LDPC (low-density parity-check) [2]
ont été redécouverts.

Ces codes sont actuellement omniprésents dans le contexte des communi-
cations mobiles sans fil, entre autres domaines d’application. Par exemple,
les Turbo codes sont utilisés dans le standard de téléphonie cellulaire de
troisième génération 3GPP Universal Mobile Telecommunications System
(UMTS) [3] et son évolution Long Term Evolution (LTE) [4]. D’un autre
côté, nous pouvons trouver les codes LDPC dans les standards de Wire-
less Local/Metropolitan Area Networks (LAN/MAN) (IEEE 802.11n [5] et
802.16e [6]) ainsi que la la Wireless Personal Area Networks (PAN) (IEEE
802.15.3c [7]). D’autres applications comprennent la transmission de vidéo
par satellite de seconde génération Digital Video Broadcast (DVB-S2 [8]).

Les dispositifs nomades pour les communications mobiles sont générale-
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Figure A.1: Consommation d’énergie.

ment alimentés par des batteries et ils ont besoin d’une haute efficacité
énergéti-que et d’une haute performance dans une surface optimale. De plus,
ces dispositifs doivent être flexibles pour utiliser plusieurs standards et as-
surer une transition harmonieuse entre les réseaux en fonction de l’emplace-
ment physique, la vitesse de déplacement et les services requis. La com-
plexité des calculs effectués par ces dispositifs est augmentée en fonction
de techniques plus robustes de traitement du signal intégrées sur chaque
technologie de réseau. L’écart entre les améliorations de la technologie des
batteries et la puissance des puces électroniques spécifique (ASIC) et System-
on-Chip (SoC) est illustré dans la Figure A.1 (source de données [11] [12]).
La capacité maximale des batteries affiche une augmentation de 10-15% par
année mais la demande de puissance de la puce augmente beaucoup plus
vite, 35-40% par année.

Il est clair que la technologie des batteries actuelles ne peut pas faire
face aux exigences pour le traitement du signal requis par les technologies
de réseau futurs. Par conséquent, il existe un besoin constant pour une
meilleure efficacité énergétique. En outre, les décodeurs itératifs (Turbo et
LDPC) sont généralement responsables d’une part importante de la con-
sommation d’énergie dans la châıne de traitement en bande de base d’un
récepteur sans fil.
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A.1.1 Contributions

Dans cette thèse, l’accent est mis sur les aspects et défis pour la conception
des décodeurs VLSI à basse consommation destinés à la communication
sans fil. Nous considérons les aspects des décodeurs LDPC. Nos contribu-
tions sont principalement réparties entre trois niveaux d’abstraction:

Niveau algorithmique

Au niveau algorithmique nous étudions les compromis entre la performance,
l’efficacité énergétique et la surface pour les différents algorithmes de traite-
ment de la contrainte de parité. Ceci correspond aux Chapitres 3 et 4.

Niveau architecture

Au niveau de l’architecture nous considérons la conception des mémoires.
Ce point est particulièrement important pour la consommation et la sur-
face finale du décodeur. Nous présentons l’implémentation d’un décodeur
multi-mode efficace en termes d’énergie consommée. Ceci correspond aux
Chapitre 4, 5 et 6.

Niveau système

Nous proposons des stratégies pour la gestion dynamique de la puissance
pour les décodeurs Turbo et LDPC. Ces stratégies sont basées sur le contrôle
au niveau de l’itération et de la prédiction du nombre d’itérations. Ce sujet
est développé dans le Chapitre 7.

Le Chapitre 1 introduit la problématique de la thèse et sert d’introduction.
Le deuxième chapitre introduit les notions de capacité du canal et du codage
de canal pour comprendre le concept de décodage itératif. Le Chapitre 8
propose une ouverture vers des décodeurs unifiés pouvant traiter à la fois
les codes Turbo et LDPC. Le Chapitre 9 conclut la thèse.

A.2 Décodage des codes LDPC

Les codes LDPC, inventés par Gallager [2], sont des codes linéaires définis
par une matrice de parité creuse HM×N sur F2. Cette matrice définit M
contraintes de parité sur N symboles de code. Un mot de code satisfait:

HcT = S = 0 , (A.1)

où S est le syndrome.
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Le code peut être défini par un graphe de Tanner. Dans un graphe de
Tanner chaque symbole du mot de code est représentée par un nœud de vari-
able et chaque contrainte de parité est représenté par un nœud de parité.
Les éléments non nuls dans H déterminent la connexion (arêtes) entre les
nœuds. Les codes utilisés dans les standards de communication adoptent une
caractéristique structurelle pour réduire la complexité introduite par le car-
actère aléatoire de la matrice de parité. Les codes architecture-aware [13] et
les codes LDPC quasi-cycliques [26] (QC-LDPC) sont constitués de couches
formées par des sous-matrices de dimensions Z × Z. Z est un facteur
d’expansion qui montre le degré de parallélisme disponible. La sous-matrice
peut être une matrice nulle ou une matrice identité décalée. La Figure
A.2 montre une matrice de parité structurée et le graphe correspondant.
Chaque arête dans le graphe regroupe Z nœuds. Cette caractéristique per-
met l’utilisation d’architectures semi-parallèles.

H i
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n×n
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block-columns
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Figure A.2: Exemple de code LDPC structuré.
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A.2.1 Algorithmes de décodage

Les codes LDPC sont généralement décodés de manière itérative par l’algori-
thme sum-product [24]. Pendant le processus de décodage, des messages sont
échangés entre les nœuds de variable et de parité. Cet échange est illustré
dans la Figure A.3.
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Figure A.3: Exemple d’échange de messages sur les noeuds d’un graphe.

Chaque nœud effectue un calcul et génère un nouveau message. En
général les nœuds de variable font une somme de messages. D’autre part, les
nœuds de parité font le traitement des contraintes de parité. Il y a plusieurs
algorithmes de différents niveaux de complexité: sum-product (SP) [24],
min-sum (MS), offset-MS (OMS) et normalized-MS (NMS) [28]. L’algorith-
me self-corrected-MS (SCMS) [14] présente un bon compromis entre la com-
plexité et la performance. La Figure A.4 montre la performance (taux
d’erreur ou bit-error-rate BER) de chaque algorithme pour le décodage des
codes LDPC dans le standard IEEE 802.11n à travers le canal AWGN avec
une modulation QPSK; la taille des mots utilisée est 1944 avec un taux de
codage 1/2 et 60 itérations maximum.

La Figure A.5 montre les résultats d’une implémentation d’intégration
à très grande échelle (VLSI) des différents algorithmes de faible complexité
dans une technologie CMOS de 65nm. L’implémentation correspond à un
processeur série avec une quantification de message sur 6-bits. Les résultats
incluent la surface et la consommation moyenne d’énergie par itération.
L’algorithme avec la plus grande surface et consommation d’énergie est le
BCJR [20] [13] [27]. Cet algorithme présente des calculs de haute complexité.
D’autre part, l’algorithme MS présente la surface la plus faible en raison de
calculs de faible complexité. Toutefois, l’algorithme SCMS présente une
réduction de la consommation d’énergie en raison d’une réduction du nom-
bre de messages échangés à chaque itération. Effectivement l’algorithme
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SCMS présente un compromis intéressant entre consommation d’énergie,
surface et performance. Nous avons proposé de geler le processeur SCMS
de parité dès que deux, ou plus, de ses entrées sont effacées. Un gain de
consommation moyenne de 10% est realisé.

Nous examinons le taux de convergence des algorithmes. Ce taux est
affecté par le nombre de messages par itération et leur précision. La Fi-
gure A.6a montre le taux de convergence pour les algorithmes de la Figure
A.4. L’algorithme SCMS a une vitesse de convergence lente en raison de
la réduction du nombre de messages, mais en général cet algorithme a la
consommation d’énergie la plus faible. La Figure A.6b montre les données
de la Figure A.5 (l’énergie) combinées avec les taux de convergence.

Après cette analyse, nous pouvons choisir l’algorithme de décodage op-
timal. Jusqu’à présent nous avons considéré que les processeurs de parité.
Nous avons fait l’implémentation complète des décodeurs LDPC pour la
norme IEEE 802.11n [5] avec plusieurs algorithmes. La Figure A.7 mon-
tre la surface d’implémentation et consommation moyenne par itération
(SNR=1dB) de chaque module du décodeur (processeurs, mémoires et en-
trelaceur). Le décodeur SCMS présente la meilleure performance en termes
d’efficacité énergétique.
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Figure A.7: Surface et consommation d’énergie des décodeurs.

A.3 Architectures de décodeurs

Le décodage des codes LDPC présente de grandes possibilités de parallélisme.
En général le décodage consiste en l’échange de messages entre les pro-
cesseurs de parité. Basé sur le décodage TDMP [13] [27], il y a deux types
de messages: l’information extrinsèque et l’infomation a posteriori. Ces
messages sont échangés par un entrelaceur. L’architecture générale d’un
décodeur LDPC est illustrée par la Figure A.8. L’information de contrôle
est stockée dans une mémoire read-only (ROM) et provient de la matrice
de parité H. Chaque processeur dispose d’une mémoire pour les messages
extrinsèques selon une allocation statique entre processeurs et lignes de la
matrice. En outre, il y a une mémoire pour les messages a posteriori. Les
modules π et π−1 correspondent à la connectivité du graphe, typiquement
ils forment un réseau de permutation.

A.3.1 Calcul du syndrome

Le message décodé à la fin du processus de décodage provient des messages
a posteriori. Après chaque itération il faut faire le calcul du syndrome (A.1)
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Figure A.8: Architecture de décodeur LDPC.
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Figure A.9: Exemple de contraintes de parité.

afin de décider s’il faut arrêter le processus de décodage. Chaque ligne de
la matrice H correspond à une contrainte de parité. Le calcul du syndrome
est équivalent à l’évaluation de chaque contrainte. La Figure A.9 montre un
exemple de contraintes de parité basé sur la matrice de parité.

L’opération ⊕ correspond à l’addition sur F2. Un syndrome non nul cor-
respond à au moins une contrainte avec une parité impaire. Cette condition
suggère qu’une nouvelle itération doit être déclenchée. Le calcul typique
du syndrome a besoin d’une mémoire supplémentaire et il est effectué après
chaque itération. Nous avons proposé une méthode de calcul du syndrome
à la volée (on-the-fly): chaque contrainte est evaluée après le traitement de
chaque ligne. Cette méthode n’est pas équivalente à l’équation (A.1) en rai-
son des fluctuations des arguments des contraintes de parité. Les messages
a posteriori sont les arguments des contraintes. Ces messages présentent un
comportement très dynamique. La Figure A.10 montre l’évolution des me-
ssages a posteriori pour une instance de décodage des codes dans la norme
IEEE 802.11n [5] avec une taille de mot de 648 et un taux de codage de 1/2
à travers un canal AWGN (SNR Eb/N0 = 1.5dB).
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Figure A.10: L’évolution des messages en fonction des itérations.

La méthode proposée peut avoir des résultats incorrects à la fin du pro-
cessus de décodage. La Table A.1 montre les résultats possibles par rapport
au calcul typique. Si les deux résultats sont les mêmes la décision est un
vrai positif (Pass), sinon la décision est un faux positif (False Alarm) ou un
faux negatif (Miss).

Nous examinons le taux des résultats des décisions de la méthode pro-
posée. La Figure A.11 montre les résultats du décodage de 105 mots de la
norme IEEE 802.11n avec une taille de mot de 1944 et deux taux de codage.
Nous pouvons observer que sur toutes les régions du SNR les vrai positifs

Table A.1: Résultats des décisions de la méthode proposée.

Calcul Calcul
du syndrome du syndrome Résultat
On-the-fly typique

Pass Pass Hit

Pass Fail False Alarm

Fail Pass Miss

Fail Fail Hit
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dominent de plusieurs ordres de grandeur. Toutefois, nous proposons aussi
une méthode pour valider les décisions erronées en effectuant un calcul du
syndrome lors du décodage du mot suivant.

Le principal avantage de la méthode proposée est l’accélération ou la
diminution de latence du décodage. Dans la région de faible SNR, il y a
plus de possibilités pour la réduction de latence en raison des fluctuations
des messages qui rendent inutile le calcul du syndrome. La Figure A.12
montre les résultats obtenus pour la norme IEEE 802.11n avec plusieurs
tailles de mots et taux de codage. Une réduction de latence correspond à
l’accélération du décodage si le facteur d’utilisation du décodeur est proche
de 100%. Nos résultats montrent une accélération de l’ordre de 90%.

A.3.2 Architecture des mémoires

Le sous-système de mémoire du décodeur est un module essentiel en raison
de la surface et de la consommation d’énergie. La Figure A.7 montre que
les mémoires représentent au moins 80% de la surface du décodeur. Nous
examinons l’organisation mémoire afin d’obtenir un compromis optimal sur-
face/consommation. En outre, nous avons proposé une structure mémoire
générique permettant des accès mémoires sans conflit pour tous les niveaux
de parallélisme d’un décodeur QC-LDPC.

Mémoire des messages a posteriori

Ce module est initialisé avec les messages intrinsèques (messages du
canal) et sa taille correspond à la taille du mot. Un vecteur de décision
(résultat binaire) sur cette mémoire génère le message décodé. Nous in-
troduisons deux niveaux d’organisation pour cette mémoire en raison de la
structure du code (QC-LDPC).

1. Micro-organisation: Ce niveau d’organisation est assuré par la
sous-matrice identité décalée dans H. Les lignes consécutives peuvent être
traitées en parallèle par la distribution de messages voisins (adjacents) entre
les processeurs.

2. Macro-organisation: Chaque fois qu’un bloc de lignes est traité
ci blocs de colonnes sont utilisés, où ci est le nombre des éléments non nuls
dans une ligne. Ce niveau d’organisation est défini comme l’allocation de
blocs de colonnes et des banques de mémoire permettant des accès aux ci
blocs sans conflit.
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Figure A.11: Résultats des décisions de la méthode proposée.
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Figure A.12: Diminution moyenne de latence et accélération correspondante
du décodage.
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Figure A.13: Exemple des niveaux d’organisation pour la mémoire des me-
ssages a posteriori.

La Figure A.13 illustre les deux niveaux d’organisation pour un bloc
de colonnes (symboles {324, 325, . . . , 404}) avec Z = 81, une taille de mot
de 1944 et un taux de codage de 1/2 dans la norme IEEE 802.11n. La
macro-organisation correspond à l’allocation d’un ensemble d’objets O =
{o1, o2, . . . , o24} (blocs de colonnes) des banques de mémoire.

Nous posons la macro-organisation de la mémoire comme un problème
de coloration de graphe. Nous construisons des graphes de conflit à partir
de la matrice de parité pour chaque bloc de lignes. Le nombre chromatique
des graphes de conflit définit le nombre de banques de mémoire. La Figure
A.14 illustre un exemple de macro-organisation résolu par les graphes de
conflit.

Nous explorons l’espace de conception de cette mémoire en termes de
taille des bancs mémoire et de division de la mémoire. La Figure A.15 mon-
tre l’exploration de l’espace de conception pour la mémoire des messages a
posteriori dans une technologie CMOS 65nm (avec Vdd = 1.32V ). La figure
montre la surface de la mémoire et la consommation moyenne d’énergie par
itération pour quelques cas d’utilisation (la taille de mot N et le taux de
codage R) pour un décodeur multi-mode pour les normes IEEE 802.11n et
802.16e [6]. Nous explorons dans cette figure deux configurations pour le
débit de 12 et 32 messages/cycle en utilisant des mémoires à accès aléatoire
(RAM) double port avec une fréquence d’horloge de 648 et 243MHz respec-
tivement. Cette exploration fournit un moyen de sélectionner une partition
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Figure A.14: La macro-organisation et les graphes de conflit.

optimale de la mémoire en considérant la flexibilité requise dans le décodeur.

Entrelacement de la mémoire

Nous identifions deux types de conflits mémoire: les conflits dus à la
structure de la matrice de parité et la valeur de décalage par chaque sous-
matrice identité, et les conflits dus au saut de ligne de chaque sous-matrice
identité. Pour résoudre ces conflits nous proposons d’utiliser une mémoire
entrelacée. Une mémoire entrelacée est divisée en plusieurs blocs, le nom-
bre de blocs représente le degré d’entrelacement. Nous étudions la division
verticale et horizontale de la mémoire dans le but de réduire les conflits.
La Figure A.16 montre un exemple d’une mémoire entrelacée avec un degré
d’entrelacement horizontal m = 5 et vertical s = 2. Chaque module enreg-
istre k = 3 messages par adresse.

Après une analyse algébrique de l’entrelacement nous examinons les
avantages de cette technique. Une réduction du nombre de conflits permet
une réduction de la fréquence ou une augmentation de débit. Dans la Figure
A.17 nous montrons les fréquences obtenues pour chaque cas d’utilisation
(avec un taux de codage R et un facteur d’expansion Z) à partir d’une
mémoire non-entrelacée pour un décodeur avec 30 processeurs pour la norme
IEEE 802.11n dans une technologie CMOS 65nm. L’entrelacement avec une
configuration m = 3 et s = 3 permet une réduction de la fréquence entre
25%-50% en fonction du cas d’utilisation. Alternativement, le débit peut
être augmenté dans la même proportion si la fréquence non-entrelacée est
conservée.
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Mémoire des messages extrinsèques

Cette mémoire enregistre les messages générés après chaque traitement
de ligne dans H. La taille de cette mémoire correspond au nombre d’arêtes
dans le graphe du code. L’utilisation d’un algorithme basé sur le min-sum
permet une réduction de la taille de cette mémoire. Au lieu de mémoriser les
messages de toutes les colonnes de chaque contrainte, seulement la valeur de
deux messages et les signes des messages sont enregistrées. Pour les codes
de la norme IEEE 802.11n nous avons obtenu une réduction de 65% avec
une quantification de 8-bits.

Une exploration de l’espace de conception permet la sélection d’une par-
tition optimale de la mémoire en fonction des cas d’utilisation, la surface et
la consommation d’énergie. La Figure A.18 montre l’exploration de l’espace
de conception pour la mémoire de messages extrinsèques dans une technolo-
gie CMOS 65nm (avec Vdd = 1.32V et F = 648MHz). La figure montre la
surface de la mémoire et la consommation moyenne d’énergie par itération
pour quelques cas d’utilisation (la taille de mot N et le taux de codage R)
pour un décodeur multi-mode en utilisant des RAM double port.
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Figure A.18: L’exploration de la mémoire des messages extrinsèques.

A.4 Implémentation d’un décodeur multi-mode

Dans cette thèse nous présentons une implémentation d’un décodeur multi-
mode efficace en termes d’énergie consommée pour les normes IEEE 802.11n
et 802.16e. Après une exploration de l’espace de conception pour les mémoires
nous avons proposé une organisation des données qui réduit la complexité
des unités d’entrelacement (les arêtes du graphe). Notre implémentation
dans une technologie CMOS 65nm a atteint une surface de 0.95mm2 et une
efficacité énergétique de 47pJ/bit/iter. Le décodeur est basé sur l’algorithme
SCMS.

A.4.1 Conception

Il est nécessaire d’analyser les besoins du décodeur en termes de contraintes
temps réel et de taille des mémoires. Il y a aussi des exigences de flexibilité
en raison de plusieurs cas d’utilisation. Les cas d’utilisation sont différenciés
par la taille de mot, le taux de codage, le facteur d’expansion et le mode
d’operation (11n/16e).

La Table A.2 montre les caractéristiques des cas d’utilisation les plus et
les moins exigeants.
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Table A.2: Caractéristiques des codes LDPC standardisés.

Cas d’utilisation Le plus exigeant Le moins exigeant

Standard 802.xx 11n 16e 11n 16e

Taille de mot 1944 2304 648 576

Taux de codage 1/2 5/6

Dimensions de H 12x24 12x24 4x24 4x24
(mb × nb)

Z 81 96 27 24

Latence 8µs 0.25ms 8µs 0.25ms

Degré ligne ci 7,8 6,7 22 20

Lignes dans H 972 1152 108 96

Arêtes de graphe 6966 7296 2376 1920

A.4.2 Panorama de l’architecture et résultats

Nous avons conçu un décodeur avec 15 processeurs série de type SCMS
avec une quantification sur 6-bits. Le décodeur exécute un maximum de 8
itérations. Le sous-système mémoire comprend l’enregistrement de la ma-
trice de parité dans une mémoire ROM (mémoire morte accessible unique-
ment en lecture), une mémoire des messages a posteriori divisée en 5 blocs
et une mémoire des messages extrinsèques répartie entre les processeurs.
L’architecture générale du décodeur est illustrée dans la Figure A.8.

La répartition des données que nous avons proposé dans la mémoire des
messages a posteriori permet l’utilisation d’un réseau de permutation de
faible complexité. Cela résulte de l’alignement des données pour la majorité
des cas d’utilisation. La Figure A.19 montre l’organisation de la mémoire
au niveau de la répartition et du partitionnement des données.

Dans le Chapitre 6 nous présentons les détails d’implémentation de
chaque module du décodeur: architecture des processeurs, architecture des
mémoires et des exemples de l’utilisation du réseau de permutation. Les op-
timisations proposées dans cette thèse ont permis la réalisation d’un décodeur
efficace en termes de surface et consommation d’énergie. Nous avons com-
paré le décodeur implémenté avec l’état de l’art afin de démontrer les avan-
tages de notre approche. La Figure A.20 montre la distribution de la sur-
face du décodeur multi-mode implémenté. Bien entendu le sous-système
de mémoire occupe la plupart de la surface et il est donc l’élément es-
sentiel. Effectivement l’optimisation du décodeur passe essentiellement par
l’optimisation du sous-système de mémoire.
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A.5 Gestion de la puissance

Les chapitres précédents ont examiné les optimisations de la conception
des architectures des décodeurs LDPC. Dans le Chapitre 7 nous exam-
inons la gestion de la puissance pour les décodeurs itératifs au niveau du
système. Nous nous intéressons à l’optimisation de l’utilisation du décodeur
pour obtenir un fonctionnement à faible puissance. Nous abordons ce su-
jet à deux niveau différents: le contrôle du nombre d’itérations par la
détection de la convergence et l’adaptation dynamique de la puissance (la
tension d’alimentation et la fréquence d’horloge) par la prédiction du nombre
d’itérations nécessaires pour la convergence en satisfaisant des contraintes
temps réel.

A.5.1 Contrôle de l’itération

Les algorithmes de décodage itératif sont intrinsèquement dynamiques puisque
le nombre d’itérations dépend de plusieurs facteurs externes. Des poli-
tiques optimales pour le contrôle d’itérations (aussi connues comme critères
d’arrêt) devraient identifier des trames décodable et indécodable afin d’écono-
miser l’énergie des l’opérations inutiles du décodeur. La convergence est
détectée par le calcul du syndrome (A.1) et normalement la divergence est
détectée par un maximum d’itérations.

Après une comparaison des performances avec l’état de l’art nous pro-
posons un critère hybride pour le contrôle d’itérations des décodeurs de type
SCMS. Ce critère est basé sur l’observation du nombre de messages effacés
et du nombre de contraintes de parité respectées. Ces deux valeurs sont
des mesures pour la convergence du code et ils permettent de suivre la
dynamique du processus de décodage. Basé sur les caractéristiques du com-
portement des mesures, nous avons proposé un critère d’arrêt qui permet
de réduire le nombre moyen de décisions erronées (de faux negatifs). Un
faux negatif dans ce contexte correspond à l’achèvement du nombre maxi-
mal d’itérations. De cette façon le taux de faux negatifs montre l’efficacité
du critère d’arrêt. Dans la Figure A.21 nous montrons le nombre moyen
d’itérations obtenu par plusieurs critères: [67] (Shin), [65] (Kienle), [69]
(Chen) et le critère proposé. En outre, nous montrons les performances
de deux cas limites:

1. Calcul du syndrome: le décodeur s’arrête dès que le syndrome est
valide.
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Figure A.21: Nombre moyen d’itérations des critères d’arrêt.

2. Un génie: le décodeur a une connaissance préalable de la trame trans-
mise, dans ce cas le décodage ne serait pas démarré pour les trames
indécodables.

La Figure A.21 montre que les critères d’arrêt sont importants seulement
dans la zone de faible SNR, cependant nous sommes intéressés à la perfor-
mance des critères. La Figure A.22 montre le taux de faux negatifs des
critères d’arrêt utilisés. Le critère proposé montre une plus grande efficacité
que l’état de l’art.

A.5.2 Prédiction du nombre d’itérations

Dans cette section, nous proposons d’aborder le problème de la réduction de
la puissance des décodeurs itératifs d’une manière différente. Notre approche
est basée sur les observations suivantes:

• Les décodeurs sont généralement dimensionnés pour exécuter un nom-
bre maximal d’itérations en satisfaisant des contraintes temps réel.

• Il est bien connu que le décodage sans erreurs est réalisable avec
quelques itérations dans de bonnes conditions de canal.



168 Appendix A Résumé étendu
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Figure A.22: Taux de faux negatifs des critères d’arrêt.

• Dans de mauvaises conditions de canal une trame ne pourrait pas être
décodée avec le nombre maximum d’itérations.

La Figure A.23 illustre la situation typique pour une tâche de décodage
réalisée à deux niveaux de puissance. Les deux instances garantissent le
respect de la contrainte temporelle (deadline). Toutefois, la tâche à haute
puissance peut réclamer le temps restant pour utiliser d’autres modes de
faible puissance. La relation entre les différents modes disponibles peut
garantir une réduction de consommation d’énergie du décodeur.

Nous soutenons qu’un décodeur avec une puissance gérable peut être
contrôlé en suivant la dynamique du processus de décodage. Nous proposons
un algorithme en-ligne qui suit le processus de décodage afin de trouver
un mode de puissance approprié pour finir le décodage dans la contrainte
temps réel. Un algorithme en-ligne signifie qu’il faut choisir une action lors
de l’exécution de la tachê de décodage. Contrairement à un algorithme
hors-ligne où toutes les situations possibles de la tâche sont connues avant
l’exécution.

Nous formulons un problème de décision pour choisir pour chaque itération
le mode de puissance du décodeur qui garantit le respect de la contrainte
temporelle. Nous proposons une heuristique pour l’optimisation de la con-
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Figure A.23: Exemple d’une tâche de décodage à deux niveaux de puissance.

sommation d’énergie avec une contrainte temporelle. Le processus de décision
est basé sur la prédiction du nombre d’itérations qui restent pour atteindre
la convergence. En effet nous utilisons une mesure de la convergence pour
suivre la dynamique du processus de décodage. Pour le cas des codes LDPC
nous utilisons le nombre de contraintes de parité respectées pendant chaque
itération, d’autre part, pour les codes Turbo, nous utilisons le nombre de
changements de signe des messages a posteriori pendant chaque itération.
Les deux mesures affichent un comportement caractéristique qui nous per-
met de dériver une politique de contrôle. La politique proposée s’applique
aux décodeurs itératifs en général, mais nous avons montré le concept pour
les décodeurs de type Turbo et LDPC.

Nous étudions l’implémentation de la politique de contrôle proposée dans
une technologie CMOS 65nm et nous montrons des résultats intéressants
pour la réduction d’énergie (jusqu’à 54%) avec une dégradation de la per-
formance inférieure à 0,1dB.

A.6 Perspectives

Le travail de recherche effectué au cours de cette thèse peut être étendu dans
le cadre des architectures versatiles pouvant traiter à la fois les codes Turbo
et LDPC:

• L’étude des organisations du sous-système de mémoire qui permettent
de maximiser la réutilisation des mémoires.

• L’enquête sur les avantages quantitatifs de l’utilisation de plusieurs
algorithmes de décodage dans le même décodeur multi-mode.

• La conception des politiques de contrôle pour la gestion de la puissance
spécifique pour les décodeurs unifiés Turbo/LDPC.
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