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Abstract

This work originates in the context of the “NapaWine” European project and its main goal is to
make P2P applications aware of the underlying network topology. This information (e.g., path
capacity, latencies, etc.) helps to optimize P2P traffic andits benefits are twofolds: on one hand
operators can limit traffic on peering links by confining traffic in their AS. On the other hand, users
can experience higher quality of service due the proximity of neighbors.

To tackle the problem we first analyze existent applicationsand we especially gauge their level
of network awareness: since many systems are closed source,we study them as black boxes by
means of purely passive analysis, then we setup a controlledtestbed and finally we make use of
parallel active probing to gather dynamic neighbors properties.

As a second step we test state of the art chunk diffusion algorithms in a realistic simulator
where we model latencies and access link capacities according to academic results. Within such
a scenario we study how chunk diffusion performance suffersin presence of measurement errors
and out-of-date system state knowledge.

Finally we develop an emulation scenario in which we are ableto test real applications. Our
testbed can scale up to 200 application instances and emulates the topology of the existing research
network Abilene; it also allows to perform traffic engineering which we exploit to analyze coupling
phenomenon between IP and overlay routing.
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Résumé en français

Introduction

Au début de cette thèse le paradigme pair-à-pair était en train de devenir de plus en plus populaire
et des nouveaux services étaient en train d’être déployés dans le réseau globale. Selon une étude
de Hendrik Schulze [43], en 2008, environ le 70% du trafic des données européen était généré par
des applications P2P. Cependant, la révolution promise parle P2P n’est pas encore avérée : cela
est essentiellement dû aux limitations de l’ADSL (le système P2P n’a pas la capacité de soutenir le
service) mais cela poudrait changer avec le déploiement de la fibre optique jusqu’aux utilisateurs
finaux. Ceci confirme donc l’importance de notre travail.

Les motivations derrière la croissance initiale des systèmes P2P-TV sont multiples : d’abord,
une grande partie de l’intelligence exigée par un système P2P est au bord du réseau, ainsi que ce ne
soit pas nécessaire d’améliorer son infrastructure pour déployer un nouveau service. Le deuxième
aspect important c’est qu’il n’y a pas un seul point d’échec :les graphes logiques de niveau 7
sont construits d’une façon distribuée et n’exigent pas d’équipement centralisé pour coordonner
l’échange des informations. Troisième point, c’est difficile d’avoir un contrôle du trafic de données
et cela a permis aux systèmes de partage de fichiers de gagner de plus en plus de popularité.

Aujourd’hui le paradigme P2P s’étend sur une large gamme de services de réseau, de la com-
putation distribuée jusqu’aux systèmes de fichiers distribués; il est aussi en train de modifier la
façon dont le contenu vidéo est distribué. Les opérateurs qui offrent ainsi la dénommée “triple-
play” 1 sont en train d’utiliser la technologie multicast, laquelle, si d’un coté garantit une perfor-
mance optimale, de l’autre ne permet la distribution du contenu que dans le même autonomous
system. Les technologies vidéo P2P, tout en gardant une haute qualité d’efficience, pourraient
remédier à cette limitation en permettant aux distributeurs de construire des marchés de distribu-
tion d’échelle globale.

Les systèmes de vidéo en direct commePPLive [89], TVAnts [112], SopCast [107] sont
déjà en train d’attirer un grand nombre d’utilisateurs.PPLive soutient d’avoir eu 200 millions
d’installations et 104 millions d’utilisateurs actifs parmois en 2011 [109]. Des nombres si grands
que ça, combinés avec les caractéristiques intrinsèques des overlays modernes2, sont en train
de préoccuper les opérateurs et fournisseurs de services Internet qui sont en train d’adopter des
stratégies pour contrer le phénomène. Comcast, un provideraméricain [23], est le cas le plus
célèbre et récemment a admis de gérer différemment le trafic P2P par rapport a l’autre trafic; en
outre, des études ont démontré que la forme du trafic P2P est inversé par rapport au trafic quotidien.
Cela semblerait dû à l’effet de la manipulation du trafic par les opérateurs.

Le défi est donc de faire si que les systèmes P2P, et spécialement vidéo en direct, se com-
portent synergiquement avec la couche réseau et aussi qu’ils coopèrent avec les fournisseurs de
services. Cela peut porter des avantages pour les utilisateurs comme pour les fournisseurs d’accès:

1ADSL, télévision et téléphone
2nombre élevé de connections, flux avec large débit, trafic pasoptimisé, etc.,
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un trafic P2P mieux conçu peut améliorer drastiquement l’expérience des utilisateurs (e.g., bas
délais, qualitée augmenté) tout en limitant les coûts opérationnels des opérateurs. En fait, si un
noeud P2P est capable de choisir ses voisins dans le même système autonome, le trafic généré ne
passera pas à travers des liens coûteux. On appelle cette habilite “Network Awareness” (NA) ou
conscience du réseau.

Conscience du réseau

La définition de conscience du réseau est très simple: une application P2P est consciente du réseau
ou “network aware” si elle a connaissance de la couche qui esten dessous d’elle même et utilise
cette information pour ces algorithmes internes (i.e., programmation d’envoi des morceaux vidéo,
gestion topologique). Pour raisons d’espace, on utiliseraNA (Network Awareness) comme syn-
onyme de conscience du réseau.

Intuitivement cette information peut répondre aux questions: est-ce que il y a un noeud que
je peux contacter dans mon système autonome? Combien mesure-t-il le chemin vers ce noeud?
Combien de sauts faut-il faire pour le rejoindre? Un rôle partiel de cette thèse est de déterminer
quelles propriétés du réseau puissent être prises en comptepour améliorer les systèmes P2P.

Approche Travail Année Navigation de la topologie

P2P Mesures

[57] 2009 Latence
[104] 2008 Débit
[93] 2008 Dbit

Latence

[12] 2006 Localité

Coopération avec ISP
[37] Oracle (IETF ALTO WG)
[3] 2007 Oracle
[124] 2008 iTracker

Table 1: Une vue d’ensemble des approches pour atteindre la “network awareness

Les méthodes dont les données sont collectionnés peuvent changer d’un système à l’autre
et la Table 1 résume les majeures efforts au présent. Les travaux sont divisés en deux grandes
familles, mesures pair-à-pair et coopération avec les ISPs. La première consiste en des mesures
exécutées par les applications (e.g., en utilisant des outils commeping pour mesurer la latence
ouCapProbe [46] pour l’estimation de la capacité du chemin) sans besoind’aide d’une infras-
tructure externe. Toutefois, si la mesure de capacité, nombre de sauts, taux de perte ou mesure
du débit de l’application est relativement facile à effectuer, autres métriques comme la capacité
d’un chemin sont achevées en injectant du trafic additionneldans le réseau qui peut biaiser les
mesures lui même. Finalement ces techniques sont généralement conçues pour être utilisés seules
et leur utilisation multiple en parallèle pourrait générerune mauvaisee conscience du réseau.
Le deuxième groupe de techniques utilise l’aide de ISPs qui peuvent déployer des noeuds ainsi
dénommé “oracles” dans des points stratégiques du réseau. Les oracles exposent des interfaces
d’interrogation pour permettre l’échange d’informationsavec l’ensemble des noeuds pour leur
permettre de choisir le meilleur voisin. Un aspect positif de cette solution est la parfaite con-
naissance de la topologie du réseau par les ISP qui pourraient aussi potentiellement exploiter les
oracles pour faire du trafic engineering basique. Dans cettethèse on se focalisera sur la classe de
mesures P2P.
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The Big Picture

En faisant référence à la figure 1, nous décrivons maintenantle contenu et l’organisation de cette
thèse.

Measuring 

Network Awareness

Implementing 

Network Awareness

Packet-level

Emulation

[Chapter 7]

Chunk-level

Simulation

[Chapter 6]

[Chapter 4]

Figure 1: La vision d’ensemble

Mesure de la conscience du réseau

Un pas préliminaire dans le contexte du projet européenNapaWinec’est d’avoir une vue
d’ensemble de l’état de l’art actuel des plus importants systèmes P2P déployés (PPLive,
TVAnts, SopCast and autres). Notamment, notre but est d’évaluer le niveau deNA embar-
quée dans ces logiciels. L’obstacle majeur c’est la fermeture du code de ces systèmes et nous
n’avons pas d’informations concernantes leur algorithmesou protocoles. Donc notre première
défi est de trouver une méthodologie qui puisse permettre l’évaluation; nous n’avons pas pris
en compte l’approche reverse-engineering car il a un coût trop élevé et il n’est pas applicable à
plusieurs logiciels. Par conséquence nous avons développéune méthodologie à “boite noire” qui
permet d’examiner n’importe quel logiciel actuel, ou futur, suivant le paradigme P2P. La prochaine
section expliquera en détail nos résultats.

Approche PassiveLe premier travail en cette direction est présenté dans le Chapitre 3 dans lequel
nous avons préparé une campagne de mesures pan européenne entre les partenaires du projet
NapaWine pendant lequel le nous avons capturé le trafic généré par des application P2P
depuis de points privilégiés. Nous définissons aussi une structure pour quantifier quels sont
les paramètres de réseau qui modifient les décision des applications; ensuite nous appliquons
notre méthodologie aux données collectées.
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L’idée principale est d’utiliser unePartition Préférentielle(PP) : chacun des noeuds dans
notre expérience prend contact avec autres peers dans le monde. AvecP(p) nous indiquons
l’ensemble de peers contacté par le noeudp. Après, en considerant une propriété du réseau
X(·), nous divisonsP(p) en deux sous-ensembles utilisant la valeur deX(·) d’une façon
telle qu’une classe devrait intuitivement être choisi par l’application (e.g., si nous utilisons
la propriétéRTT nous pouvons diviser les noeuds qui sont loin de ces qui sont voisins). À
ce point nous computons le nombre d’octet qui sont échangés avec ce noeuds qui sont dans
le sous-ensemble “proche” sur le totale d’octets envoyés. Intuitivement le plus ce nombre
est grande, le plus l’application est biasée par la propriété examinée.

Selon l’analyse des données, nous observons queTVAnts etPPLive préfèrent légèrement
échanger les données dans leur même autonomous system. PourSopCast, par contre, cet
effet d’agglomération est moins évident. Toutefois, dans tous les cas, les applications ne
présentent aucune préférence vers le pays, sous-réseau ou nombre de sauts.

Approche Active Le problème principal de l’analyse purement passive c’est que seulement les
métriques concernantes les noeuds (système autonome, pays, adresse IP) peuvent être
étudiés. Au contraire, le métriques concernant les cheminssont difficiles à analyser a
partir seulement de l’analyse passive des traces car nous neconnaissons pas ni les détail
d’implémentation, ni les details des protocoles utilisés.Pour surmonter cette limitation est
necessaire d’utiliser un approche active comme celui descrit dans le Chapitre 4, oú nous
utilisons des conditions contrôlés pour tester le comportement des applications.

Nous obligeons les applications à télécharger le flux vidéo depuis une source contrôlé, puis
nous commençons à changer les propriété du chemin (capacité, latence, taux de perte, nom-
bre de sauts, etc) et nous observons comment l’application réagit à ces altérations.

Nous appliquons notre méthodologie àPPLive et nous investiguons quelles sont le pro-
priétés qui influencent ses préférences d’échange. Le resultat principal est quePPLive
semble plutot chercher les noeuds avec un haut débit mais il ne préfère pas explicitement
les noeuds qui sont voisins (RTT ou nombre de sauts).

Avec un approche purement passive nous pouvons evaluer la NAd’une application vers
quelques propriétés mais nous ne sommes pas encore capable de comprendre la situa-
tion générale. Nous avons besoin de la contribution de deux techniques. En corrélant les
dernières découvertes avec l’analyse passive des traces, nous déduisons que la préférence
vers les grands débits peut induire un niveau non négligeable et bénéfique d’agglomération
géographique

Analyse passive augmenté avec sondage actifFinalement, comment nous venons de voire,
méthodes actives ou passives seules ne peuvent pas contribuer à avoir une vue globale de
la NA des applications: pour cette raison nous exploitons les deux méthodologies au même
temps. Dans le Chapitre 5 nous présentons un cadre complet nommé Sherlock pour (i)
analyser les applications P2P d’une façon “boite-noire” et(ii) décrire le trafic généré de
manière compacte. Sherlock peut collectionner informations sur une application au moyen
d’une analyse au même temps passive et active et présenter d’un seul coup ses empreintes
digitales en forme de graphiques de Kiviat.

Nous implémentons la structure de Sherlock dans le logicieldémonstratifP2PGaugeque
nous avons présenté àSIGCOMM09[94] et que publions en open-source in [76]. P2PGauge
est capable de mesurer, en fait, le niveau de NA embarqué dansles applications P2P
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courantes en corrélant techniques actives et passives. Lesrésultats de notre étude sont ap-
pliqués à l’analyse du système de P2P-TVSopCast.

Mise en oeuvre du NA

Dans la deuxième partie de la thèse nous transférons notre intérêt de l’analyse des systèmes ex-
istants aux designs et algorithmes originaux et nous développons des méthodologie et outils pour
les tester en conditions réelles.

Étude de simulation Avec les autres partenaires du projet Napa-Wine nous avons développé un
simulateur nommé P2PTV-Sim qui est spécialement conçu pourla télévision P2P. Ses prin-
cipales objectif de conception sont (i) être facilement customisé et (ii) les plus réaliste pos-
sible. Notre but est de comprendre si les algorithmes de NA sont robustes aux erreurs de
mesure et aux mauvais connaissances de l’état du système ou si, par contre, des informations
imprécises ont un impact négative sur les performances de l’overlay.

Le chapitre 6 expose une analyse simulative qui prend en considération différents facteurs:
L7 overlay (e.g., chunk scheduling, management de la topologie, etc), réseau niveau 3 (mod-
èles de latence, conditions dynamiques vs. statiques, etc)et l’interaction de deux niveaux
(erreurs de mesure, perte de messages de signalisation, etc). Pour avoir une représentation
complète des systèmes, les résultats sont exprimés depuis un point de vue soi des utilisa-
teurs soi du réseau. En résumé, notre résultat principale est que les systemes P2P-TV sont
généralement robustes aux erreurs de measure (latence ou estimation de la capacité), mais il
sont, au contraire, profondément affecté par les erreurs designalisation (e.g., perte de paquet
ou vieux état du système), qui sont souvent négligés sans justification.

Malheureusement, malgré le précieux aperçu qu’un simulateur peut offrir du mechanisme
de fonctionnement d’un overlay, il pourrait pas suffire pourcapturer toutes les failles poten-
tielles de l’architecture d’un système P2P: en effet, beaucoup de détails d’implémentation
ne peuvent pas être analysé par simulation.

Étude d’émulation Pour dépasser cette limitation et approfondir notre analyse, nous utilisons
une technique de émulation réseau niveau paquet. En détail nous considéronsmodelnet
[113] qui est un environnement d’émulation qui permet l’expérimentation d’applications
réseau réelles en émulant topologies réseau arbitraires avec latences, capacités des chemins
et pertes. A partir de Modelnet, nous développons Modelnet-TE [70], qui est capable de
performer de l’ingénierie du trafic en temps réel.

Dans le Chapitre 7 nous réalisons une campagne expérimentale d’interaction entre les
niveaux du routage 7 et 3. Nous considérons un algorithme classique du répartition
de charge, que nous comparons avec le routage IP standard. Comme applications P2P
d’exemple, nous prenons BitTorrent, un des plus connu système de partage de ficher au-
jourd’hui, et WineStreamer, une application open-source de streaming en direct dévelop-
pée au sein du projet NapaWine et disponible à [119]. Nous émulons BitTorrent et
WineStreamer avec des topologies soi réalistes (e.g., Abilene) soi simpliste qui sont
habituellement utilisées aujourd’hui.

Les résultats de notre campagne expérimentale démontrent que le performance niveau util-
isateurs peuvent être significativement affecté par, soi les mécanismes utilisés au niveau 3
(e.g., à cause des interactions avec le contrôle de cogestion TCP ou la logique d’échange de
morceaux vidéo de l’application.), soi par des paramètres qui sont difficiles à contrôler dans
l’internet, ce qui confirme l’intérêt pour les outils comme ModelNet-TE.
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Table 2: Résumé des hôtes, sites, pays (CC), systèmes autonomes et type d’accès des noeuds
prenant part aux expériences

Host Site CC AS Access NAT FW
1-4 BME HU AS1 high-bw - -

5 ASx DSL 6/0.512 - -
1-9 PoliTO IT AS2 high-bw - -
10 ASx DSL 4/0.384 - -

11-12 ASx DSL 8/0.384 Y -
1-4 MT HU AS3 high-bw - -
1-3 FFT FR AS5 high-bw - -
1-4 ENST FR AS4 high-bw - Y

5 ASx DSL 22/1.8 Y -
1-5 UniTN IT AS2 high-bw - -
6-7 high-bw Y -

8 ASx DSL 2.5/0.384 Y Y
1-8 WUT PL AS6 high-bw - -

9 ASx CATV 6/0.512 - -

Analyse Passive

Dans cette section nous présentons notre analyse du NA a partir d’une base de données purement
passive.

DataSet Passive

Les partenaires du projet NapaWine ont pris part aux expériences en exécutant des logiciels P2P
sur des PCs connectés dans les sous-réseaux institutionnels ou ADSL. En détail, la configuration
comprenait un total de 44 noeuds, dont 37 machines connectées aux sites académiques/industriels
et 7 machines connectées à des passerelles ADSL domestiques. Par conséquence, la configuration
représente un nombre non négligeable d’environnements réseaux. Par la suite nous appellerons
l’ensemble des machines qui ont pris part à l’expérience “NAPA-WINE peers”.

Dans les systèmes P2P, les hôtes qui exécutent l’application (peers) forment un topologie
logique en créant des liens virtuels sur lesquels ils transmettent et reçoivent les informations.
Une source est responsable d’injecter dans le système le fluxvidéo découpé en morceaux (que
nous appelons chunks) de quelques Ko, qui sont après envoyésvers un sous-ensemble de ses
voisins. Chaque peer peut contribuer à la diffusion des chunks, en les retransmettant vers ses
voisins comme dans le système BitTorrent. Les différences principales entre P2P-TV et le partage
de fichiers sont: (i) la source génère le flux vidéo en temps réel, (ii) les données doivent être livrées
aux peers à débit presque constant et (iii) chunks doivent arriver en séquence pour être rapidement
joués chez le récepteur.

Nous avons considéré trois différentes applications,PPLive, SopCast etTVAnts, et nous
avons performé plusieurs expériences d’une heure pendant le mois d’avril 2008, pendant lesquelles
nos noeuds regardaient le même canal à la même heure. Des traces au niveau paquet ont été col-
lectées et analysées. Comme les applications P2P-TV sont très populaires dans les pays asiatiques,
nous avons réglé chaque application sur la chaine CCTV-1 pendant les heures de pic [41]. Dans
toutes les expériences, le débit du flux vidéo était de 384kbps, l’encodeur était Windows Media 9
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Table 3: Moyenne et coefficient de variation de quelques statistiques collectionnées pendant les
expériences

PPLive SopCast TVAnts
Mean cv Mean cv Mean cv

Avg RX rate [kbps] 549 0.22 482 0.05 415 0.04
Avg TX rate [kbps] 3150 1.02 262 1.04 396 0.65
N. contacted peers 22263 0.53 740 0.29 222 0.19
N. RX contrib peers 382 0.50 139 0.43 54 0.31
N. TX contrib peers 958 0.73 137 0.54 66 0.54
% non-resp. peers 27 0.87 25 0.73 30 0.31

Encoder et la qualité vidéo perçue par les utilisateurs était très similaire entre les systèmes. Les
résultats reportés dans cette thèse concernent plus de 120 heures d’expériences, qui correspondent
à environ 140 millions de paquets. Les traces collectées sont disponibles pour la communauté
scientifique.

Une structure pour l’analyse de la sélection des peers

Notre but est de développer une structure rigoureuse pour découvrir la NA exposée par les appli-
cations, i.e., quels sont les paramètres de réseau qui sont pris en considération en distribuant le
flux vidéo. Nous définissons un cadre flexible qui nous permet de ne pas seulement inspecter le
niveau de NA d’un système par rapport à la couche L3, mais aussi pour comprendre si les peers se
comportent de façon “amicale” entre eux, i.e. si les noeuds sont poussés vers un échange mutuel
des données. En particulier nous considérons :

• AS(p): l’Autonomous System ou le peerp est localisé

• CC(p): le pays duquel le noeudp fait partie

• NET(p): le sous-réseau duquel le noeudp fai partie

• HOP(p, e): le nombre de sauts entre lep ete

• SYM(p, e): la symétrie de l’échange d’octets entre le noeudp et e

Définition de la structure

Définissonsp ∈ W un peer qui appartient à l’ensemble NAPA-WINEW. P(p) indique
l’ensemble de peers quicontribuentet avec quip échange des données.P(p) est composé de
peers auxquelsp a envoyé/reçu des informations.U(p) décrit le sous-ensemble de peers auxquels
p envoie les données etD(p) le sous-ensemble depuis lesquels télécharge des données.U(p) et
D(p) sont deux (non disjoints) sous-ensembles deP(p), etU(p) ∪D(p) = P(p).

e ∈ P(p) est un noeud arbitraire qui échange du trafic avecp. B(p, e) est le nombre d’octets
transmis parp verse, tel queB(e, p) est le nombre d’octets reçus parp depuise.

En considérant maintenant un paramètre réseauX(·), X(p, e) ∈ X indique la valeur observée
deX(·) pour le paire(p, e). Nous répartissonsP(p) dans deux classes en se basant surX(p, e),
telle que une classe devrait intuitivement être préférée par l’application (e.g., bons peers contre



16

mauvais peers). Plus formellement, nous répartissons le supportX dans deux ensembles disjoints
: l’ensemble préfèreXp et son complémentXP , tel queXP ∪ XP = X etXP ∩ XP = ∅.

Pour faciliter la notation, nous indiquons avec1P (p, e) la fonction identité qui prend la valeur
1 siX(p, e) ∈ XP et 0 autrement ; de la même façon1P (p, e) = 1−1P (p, e). Pour rester général,
nous nous concentrons sur le trafic sortant d’un noeud NAPA-WINE p ∈ W, et nous définissons :

PeerU |P (p) =
∑

e∈U(p)

1P (p, e) (1)

ByteU |P (p) =
∑

e∈U(p)

1P (p, e) · B(p, e) (2)

PeerU |P (p) =
∑

e∈U(p)

(1 − 1P (p, e)) (3)

ByteU |P (p) =
∑

e∈U(p)

(1 − 1P (p, e)) · B(p, e) (4)

ou les indicesU et D sont utilisés pour indiquer respectivement le trafic sortant et entrant.
PeerU |P (p) conte le nombre de noeuds desquelsp est un donateur et qui appartient à la parti-
tion préférentielleXp. Pareillement,ByteU |P (p) représente le nombre total d’octets envoyés par
p aux peers de la partitionXp. Au contraire,PeerU |P (p) et ByteU |P (p) représentent le nombre
de peers e d’octets auxquelsp envoie malgré leur appartenance à la partition non préférentielle
XP .

En considérant maintenant l’ensemble completW des peers NAPA-WINE, nous définissons
le nombre total de noeuds et d’octets comme :

PU = 100
PeerU |P

PeerU |P + PeerU |P

(5)

BU = 100
ByteU |P

ByteU |P + ByteU |P

(6)

Intuitivement,PU exprime les probabilités que le mécanisme de sélection des peers favorise la dé-
couverte et l’échange entre noeuds appartenant à la partition préférentielleXP . Pareillement,BU

exprime la probabilité que n’importe quel octet soit envoyévers des noeuds appartenant à la classe
XP . Clairement, plus grandsPU etBU sont, plus grand est le biais vers la partition préférentielle
concernant la métriqueX. L’avantage d’utiliser ces simple métriques c’est qu’elles permettent
une comparaisondirecteet compactedes différentes propriété du réseau et des systèmes P2P-TV
car elles ne sont sensitives ni à l’unité de mesure, ni à la valeur actuelle deX.

Les métriquesPD etBD peuvent être définie en considérante ∈ D(p) dans la dérivation précé-
dente.

Partitions préférentielles

Avec le terme partitions préférentielles, nous considérons :

• AS: 1P (p, e) = 1 si et seulement si AS(p) = AS(e),
i.e., les deux noeuds sont localisés dans le même système autonome3;

• CC: 1P (p, e) = 1 si et seulement si CC(p) = CC(e),
i.e., les deux noeud sont localisés dans le même pays;

3CC et AS ont été déterminés en utilisant la base de données “whois”.
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• NET: 1P (p, e) = 1 si et seulement si HOP(e, p) = 0,
i.e., les noeuds appartiennent au même sous-réseau;

• HOP: 1P (p, e) = 1 si et seulement si HOP(e, p) < median[HOP],
i.e., le nombre de sauts entree etp est plus petit que la distance moyenne calculée entre tous
les noeuds;

• SYM: 1P (p, e) = 1 si et seulement si1/2 < B(e, p)/B(p, e) < 2,
i.e., le nombre d’octets reçus (envoyés) est au moins le double des octets envoyés (reçus).

Si par AS, CC et NET le choix de la classe préférentielle est simple, les cas de HOP et SYM
exigent une discussion supplémentaire. Si nous considérons la métrique HOP d’abord, le dé-
compte de sautsHOP (e, p) a été évalué à 128 moins le TTL des paquets reçus, étant 128 la
valeur par défaut sur des hôtes avec système d’exploitationWindows. Nous utilisons la médiane
de la distribution comme un seuil pour définir deux sous-ensembles. Comme la valeur de la médi-
ane de nombre de sauts varie entre 18 et 20 selon l’application, nous utilisons un seuil fixe de 19
sauts pour toutes les applications. Cela signifie qu’environ 50% des noeuds tombent dans la classe
préférentielle.

Dans le cas des mécanismes des avantages (incentive mechanisms), nous classifions un
échange comme “symétrique” quand le nombre d’octets reçu est au maximum le double d’octets
envoyés et vice versa. Nous soulignons que même si ce mécanisme définit une relation de symétrie
non exacte, nous avons vérifié que les résultats ne sont pas trop sensibles au choix du seuil (voir
Sec. 3.3.4).

Résultats expérimentaux

L’évaluation expérimentale de la NA dePPLive, SopCast et TVAnts est rapportée en table
4. Spécifiquement nous rapportons, pour les directions de upload (U ) et dowload (D), le dé-
compte de noeuds (P ) et d’octets (B) pour chacune des différentes métriques considérées avant.
Table 4 détaille les résultats concernant tout l’ensemble des apporteurs (PU , PD, BU , BD) et aussi
l’ensemble des apporteurs en excluant les noeuds NAPA-WINE(P ′

U , P ′
D, B′

U , B′
D).

Conclusions

Dans cette section nous avons proposé une méthodologie pourcomprendre quelles sont les
métriques qui sont exploitées par les applications P2P-TV pour optimiser la diffusion vidéo. En
considérant trois applications populaires (PPLive, SopCast etTVAnts) nous avons démontré
que seulementTVAnts et PPLive exposent une légère préférence à échanger les données avec
des noeuds qui sont dans le même système autonome. Cependant, il n’y a pas de preuve d’une
préférence vers les noeuds dans le même sous-réseau, avec unchemin plus court et il n’apparaît
pas de mécanisme d’avantage (incentive) en aucun des logiciels observés.

Nous croyons qu’un meilleur niveau de NA doit être embarqué dans les systèmes P2P-TV
pour mieux exploiter et optimiser l’allocation des ressources des fournisseurs de service. Dans
le contexte du projet NAPA-WINE nous sommes en train d’examiner comment atteindre ce but
(améliorer la localisation du trafic, emprunter des cheminsplus courts, exploiter les connaissances
topologiques, etc.).
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Table 4: La conscience du réseau comme “peer-wise” et “byte-wise” biais

Download Upload
Non-Napa All Contributors Non-Napa All Contributors

Net App B′
D % P ′

D % BD % PD % B′
U % P ′

U % BU % PU %

AS PPLive 6.5 0.6 12.8 1.3 0.8 0.2 1.8 0.5
SopCast 0.6 0.7 3.5 3.9 1.7 0.7 6.4 3.9
TVAnts 7.3 3.3 32.0 13.5 11.6 1.8 30.1 9.6

CC PPLive 6.5 0.6 13.1 1.4 1.1 0.3 2.1 0.6
SopCast 0.6 0.8 4.0 4.4 1.7 0.8 7.2 4.4
TVAnts 7.6 4.0 37.9 16.3 14.3 3.1 37.7 12.5

NET PPLive - - 9.9 0.8 - - 1.4 0.3
SopCast - - 2.0 2.6 - - 3.5 2.6
TVAnts - - 18.1 6.7 - - 18.1 5.4

HOP PPLive 42.2 41.1 51.4 42.4 30.4 40.4 31.7 41.0
SopCast 29.0 40.7 37.9 48.0 45.9 43.0 56.9 49.8
TVAnts 62.1 55.0 81.1 71.9 57.8 53.0 78.9 67.2

SYM PPLive 3.3 4.8 4.3 5.0 - - - -
SopCast 6.7 13.0 7.8 14.2 - - - -
TVAnts 12.4 10.9 20.0 14.3 - - - -

Analyse hybride

En cette section nous utilisons deux différents ensembles d’expériences afin de mesurer la NA
d’un système P2P-TV par rapport aux métriques peer-wise et path-wise discutées plus tôt :

Méthodologie

• D’un coté, nous exploitons uneplate-forme d’essai activepour imposer des conditions ar-
tificielles (longueur du chemin, délai, pertes, étranglement du débit du chemin) sur des
chemins particuliers.

• D’un autre coté nous adoptons une approche basée sur desmesures passives, avec lesquelles
nous performons des mesures en direct et au même moment depuis des points spéciaux
dans l’Internet pour étudier les propriétés (comme le système autonome ou la localisation
géographique) qui appartiennent aux noeuds de l’overlay.

Propriétés concernant le chemin: plate-forme d’essai contrôlée

Pour les préférences liées aux métriques concernant les chemins, nous avons monté une plate-
forme d’essai qui impose des conditions de réseaux artificielles comme dans [5], duquel notre
approche diffère par deux raisons particulières. Premièrement, nous décidons de contrôler com-
plètement les métriques. Cela veut dire que, au contraire de[5] oú les restrictions sont appliquées
en outre aux conditions du réseau actuel, nous connaissons les conditions des différents noeuds
concernés par l’expérience. Deuxièmement, nous ne testonspas seulement l’impact des métriques
en isolement mais nous étudions aussi leur effet combiné.
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Figure 2: Métriques concernant les chemins : configuration du banc d’essai

La configuration utilisée pour toutes les expériences actives est reportée en figure 2. Nous
utilisons trois ordinateurs modernes équipés avec processeurs dual-core qui exécutent un logiciel
de P2P-TV (PPLive 2.4) sur windows XP. Deux machinesA et B sont connectées à un com-
mutateur de paquets a travers des interfaces ethernet à 100 Mbps. Le trafic est observé à la sonde
P qui est connectée au switch par une autre machine, nomméeFw/Net dans la figure, qui joue
le rôle de bridge, firewall et émulateur réseau. Remarquez qu’une large partie d’utilisateurs, et la
source aussi, sont accessibles par l’internet.

Pendant la phase de démarrage, toutes les machinesA, B etP exécutent l’application pendant
5 minutes. Pendant ce temps initial (oú nous vérifions que la vidéo est jouée correctement et
synchronisée entre les machine),P naturellement reçoit la plupart du trafic par des noeuds dans
Internet. Après, au momentFon = 5 minutes, des règles du firewall sont établies sur la machine
Fw/Net afin de bloquer le trafic provenant depuis internet versP , qui, à partir de ce moment,
peut recevoir seulement le trafic depuisA ou B. Dans ce cas, les machinesA et B recevront
encore les données par les noeuds distants en Internet, maisnotre sonde ne pourra pas recevoir la
totalité du trafic parA etB.

Nous introduisons après, à partir deRon = 10 min, des règles d’émulation du réseau (comme
la perte de paquets, RTT délai, réduction du débit, etc) sur les chemins qui relient la sondeP
aux hôtesA et B. Nous soulignons que, comme notre but est de comprendre comment la “peer
selection” marche pendant les opérations normales, nous vérifions que la sondeP est en train de
recevoir et de jouer correctement la vidéo. Quand une métriqueX est considérée en isolation, nous
aggravons volontairement les conditions de réseau seulement pour le chemin qui relie la machine
A à P , en configurant correctement la discipline de queue (queuing discipline) sur la machine
Fw/Net. Les règles pour le chemin entreB et P , au contraire, sont appliquées seulement pour
l’étude de l’importance relative des différentes métriques (e.g., delai surA → P et pertes sur
B → P ). Finalement, les conditions de réseau artificielles sont enlevées àRoff = 20 m et les
limitations du firewall sont enlevées àFoff = 25 m.

Cette configuration nous permet de nous focaliser sur la décomposition du bit-rate reçu parP
parmi ses apporteurs (i.e.A, B et hôtes internet), et d’exprimer d’une façon simple et intuitive
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Figure 3: Métriques concernant les chemins : le débit agrégédePPLive est représenté en haut
et la décomposition par rapport àA, B et les hôtes internet en bas pour différentes capacités (a)
et taux de perte (b). Les profils de la limitation de la capacité et de l’imposition des pertes sont
reportés avec les lignes noires et font référence à l’axe de droite. PPLive montre une grande
sensibilité vers le changement de capacité alors qu’il réagit seulement à des grands taux de pertes.

la NA des applications P2P-TV. En fait, en considérant la période pendant laquelle les règles
d’émulation sont activées sur le chemin entreA et P , nous pouvons imaginer intuitivement que
s’il n’y a pas de biais par rapport à une métrique déterminéeX, la décomposition du trafic est
insensible aux variations deX. Au contraire, une décomposition variante est le réflexe de la NA
versX, oú l’amplitude de la variation est un vague indicateur de lasensibilité du système versX.

Résultats expérimentaux: métriques concernant les chemins

Nous reportons dans ce résumé à titre d’exemple seulement les résultats obtenus par la plate-forme
d’essai active et en particulier ceux concernant la capacité des chemins.

Les résultats de cette expérience sont reportés en figure 3. Le temps de l’expérience est affiché
sur l’axe x, alors que les temps du début et fin du firewall sont reportés sur l’axe en haut pour
référence. Un profil décroissant limitant le débit est appliqué à partir duRon au moyen d’un
filtre “token bucket”, qui suit des marches deC = {50, 10, 1, 0.5, 0.25} Mbps chaque 2 minutes
comme montré par la ligne noire épaisse. Les valeurs du débitdu bottleneck sont montrés sur l’axe
y de droite et le bottleneck est enlevé àRoff . L’évolution temporelle du débit agrégé à la machine
P est montré dans la portion haute du graphique (moyenne calculé toutes les 20 secondes). Il est
possible de voir, après une phase de démarraget < Fon pendant laquelle le débit entrant arrive à
1.2Mbps, le débit agrégé versP est stable autour du 400 Kbps, qui compte pour les données vidéo
et les données de signalisation. De plus, nous pouvons remarquer que le débit est stable pendant
tout l’expérience, ce qui suggère que le “shaping” du trafic ne perturbe pas la qualité du service
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perçu.
Le graphique en bas montre la répartition du trafic entrant vers P par rapport aux différents

hôtes qui envoient le trafic versP : l’hôte A est montré en bas en vert, l’hôteB en rouge et le
reste du trafic internet en pointillé. C’est facile de voir que, avant que les règles du firewall soient
mise en place àt < Fon, plus du 80% du trafic entrant est reçu depuis les hôtes internet extérieurs.
Des que les règles du firewall démarrent at = Fon, P est obligé de recevoir la totalité du trafic
exclusivement depuisA et B : comme pendantFon < t < Ron, la capacité du chemin n’est pas
encore forcée, le trafic est divisé également entreA et B parce que les conditions du réseau et
d’état de l’application (play-out time) sont pareilles. Puis, dès que l’émulation limite la capacité à
50 Mpbs àRon, PPLive commence tout de suite à préférer l’hôte libreB, qui ensuite apporte la
plupart du trafic versP .

Cette observation est importante car elle signifie que (i)PPLive estextrêmementsensible au
débit et (ii) pourrait trop réagir ou estimer incorrectement le débit.

Finalement les limitations de la capacité sont enlevées àRoff , ce qui enlève l’inégalité dans
la répartition du trafic en faveur deB ; cette situation reste stable jusqu’au moment où les limita-
tions du firewall sont enlevées aFoff , après lesquelles les hôtes internet redeviennent les majeurs
apporteurs.

Sherlock

Dans cette section nous appliquons l’outil de visualisation Sherlock pour analyser la NA des appli-
cations. Nous suivons une méthodologie hybride qui mélange[5,22] dans un logiciel démonstratif,
nommé P2PGauge, qui exploite les techniques actives et passives pour déduire résultats complets.
Notre logiciel est disponible open-source a l’adresse [76]. En détail, nous trouvons toujours les
deux différentes catégories de métriques : celles qui concernent les noeuds et celles qui concernent
les chemins.

Il est nécessaire de souligner queP2PGauge exploite une exploration active des noeuds
contactés par l’application P2P sous analyse : même si l’outil est capable d’analyser des
traces passives, les résultats sont beaucoup plus fiables siles mesures sont exécutées simultané-
ment à l’application. Donc, en utilisant P2PGauge, nous avons collecté un nouveau ensemble
d’expériences pendant lesquelles nous avons étudié l’application SopCast. Dans ces expériences
une sonde unique située en France est utilisée pour suivre différentes chaînes vidéo à différentes
heures, explorant ainsi un large spectre de localisation ducontenu et de popularité des chaînes. De
plus, nous avons été particulièrement attentifs au choix d’un contenulocal (ligue des champions)
et aussi étranger (informations et films en langue étrangère). Encore une fois, chaque expérience
est conduite indépendamment pour éviter de biaiser les résultats.

Processus d’analyse

Nous décrivons maintenant le processus d’analyse à l’aide de la figure 4. Dans nos expériences, un
client SopCast non modifié tourne sur la machine sonde, le trafic de laquelle est capturé par l’outil
P2PGauge qui est exécuté sur la machine à l’écoute.P2PGauge analyse le trafic généré par
SopCast et recueille des statistiques sur (i) les caractéristiques concernant les noeuds au moyen
de l’analyse passive et (ii) des caractéristiques concernant les chemins en envoyant des paquets
sondes vers les noeuds contactés par SopCast.

Avant de commencer l’explication des métriques et des caractéristiques choisies, nous voulons
souligner une implication importante. Concernant les méthodologies passives, P2PGauge recueille
les caractéristiques concernant les noeuds au moyen d’une base de données locale [65] (e.g., geo
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Figure 4: Processus d’analyse de P2PGauge

localisation et numéro d’AS, etc.) ou à travers des simples analyses et inférences (e.g., longueur
du préfixe IP, débit de l’application, nombre de sauts, etc.). L’analyse passive ne peut pas interférer
avec le trafic observé, mais elle pourrait être limitée pas lavitesse d’accès de la base de données
: comme les API de la base de données supportent plus de 40,000questions par seconde, cela ne
constitue pas un problème de vitesse.

Pourtant, l’outil performe aussi des mesuresactivespour collecter des propriétés concernant
les chemins, possiblement interférant avec le trafic observé : pour cette raison, les mesures actives
doivent être utilisées le moins possible. Notez en fait que,bien que les mesure sont exécutées par
une machine dédiée, le monitor et la sonde partagent la même liaison d’accès. Considérez par ex-
emple le problème d’estimation de la capacité : les coûteuses techniques du sondage actif des liens
(comme les mesures de bande par trains de paquets) ne sont pasappropriées à nos objectifs, et nous
avons besoin de techniques de mesure plutôt légères (comme celles basées sur la dispersion des
paires de paquets). En raison de cette observation, nous nous résoudrons à utiliser CapProbe [46]
pour estimer activement la capacité du chemin, le RTT et aussi le TTL IP (a partir duquel nous
pouvons connaître le nombre de sauts). Pour chaque noeud, nous performonsN = 100 mesures
en envoyant des paires de ICMP paquets l’une après l’autre (back-to-back), et chaque paire est
espacé par∆T = 0.5 seconds.

Pour limiter le nombre de paquets sondes pendant les phases intenses de découverte du réseau,
nous limitons le nombre de procès de sondage active àC = 50. Bien que le volume de paquets
sondes soit limité àR = 2C/∆T = 200 paquets par seconde, mesurer activement tout le voisi-
nage serait une tache prohibitive. Nous soulignons que seulement une partie des noeuds prend
effectivement part à l’échange du contenu alors que les autres n’échangent pas de données. Si ces
noeuds peuvent constituer un pourcentage significatif de lapopulation des noeuds, il n’ont quand
même pas de poids pour ce qui concerne le volume du trafic. Comme nous sommes intéressés
par la majeure partie du volume du trafic, nous limitons donc les mesures actives seulement aux
noeuds qui apportent activement à la distribution du flux. Spécifiquement, nous considérons seule-
ment ces peers qui envoient au moins deux paquets dans une fenêtre temporelle∆T . Cette simple
heuristique nous permet de nous concentrer sur la plupart dutrafic (e.g., au dessus du 95% dans
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le pire des cas de PPLive), tout en limitant le biais causé parle sondage actif. Notez que cette
heuristique est très robuste et peut être appliquée à d’autres classes du trafic comme le partage de
fichiers.

Définition des métriques

Partition préférentielle La métrique plus simple et plus intuitive que nous utilisonsest la par-
tition préférentielle déjà présentée dans le chapitre 3. Pour chaque caractéristiqueF ,
l’ensembleNk des noeuds contactés jusqu’àT = k∆T est divisé en deux sous-ensembles
disjointsNk = N

close(F )
k ∪N

far(F )
k , afin que les noeuds qui sont “proches” au peer analysé

X en terme de caractéristiqueF soient regroupés ensemble.

Spécifiquement nous utilisons les règles suivantes pour partager l’ensemble. Nous consid-
érons les peers qui tombent dans le même AS ou pays, dans le même sous-ensemble de
noeuds proches. Concernant le NET nous utilisons un seuil fixe de 16 bits, au dessus duquel
nous considérons les noeuds comme voisins. Finalement, pour RTT, HOP et CAP, nous
utilisons un seuil variable basé sur la médiane calculée surtous le noeuds.

En nous basant sur ces simples partitions, nous quantifions le niveau de préférence en calcu-
lant la pourcentage d’octets que le peerX a échangé avec le noeud de la partition préférée.

Kullback-Leibler (KL) Comme seconde métrique nous considérons la mesure de divergence de
Kullback-Leibler (KL), qui est une mesure connue de distance entre deux distributions de
probabilité (pdf)p et b :

KL(p‖b) =
∑

x∈X

p(x) log
p(x)

b(x)
(7)

Nous utilisons la divergence KL pour mesurer la différence entre les pdf concernant (i) les
noeuds (peer-wise) et (ii) les octets (byte-wise) d’une caractéristiqueF . Autrement dit, nous
évaluons le pdf deF , soit en décomptant chaque peer une fois, soit en prenant en compte le
volume de trafic en octets que le peer loin a échangé avecX. La divergence KL nous indique
si les deux distributions sont pareilles (KL≃0) ou s’il y a quelques disparités (KL>0). Notez
que, au contraire d’avant, une large valeur de KL ne peut pas être lue comme un indicateur
de préférence : plutôt, elle indique simplement que il y a un biais entre le nombre de peers
exhibant une valeur donnée pour une caractéristiqueX et le nombre d’octets échangés avec
eux. Par exemple, une large valeur de KLAS ne signifie pas qu’un large nombre d’octets
est échangé avec des noeuds du même AS mais plutôt quequelquesAS apportent plus des
données que d’autres. En d’autre termes, les valeurs de KL élevées correspondent à un biais
majeur, qui pourtant ne se traduit pas nécessairement en conscience majeure du réseau.

Résultats expérimentaux

Nous adoptons maintenant une représentation Kiviat de l’ensemble de caractéristiques, ex-
primées au moyen des métriques PP e KL pour SopCast. La figure 5reporte les graphiques,
arrangés d’une façon telle que les caractéristiques mesurées par inférence passive (AS, CC,
NET) sont représentées sur les trois axes en haut, tandis queles caractéristiques qui im-
pliquent des mesures actives sont dans la partie basse. Les deux métriques PP et KL sont
reportées respectivement en 5-(a) et (b). Notez aussi que les axes s’étendent jusqu’à 1.0
(2.0) pour la métrique PP (KL).
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Figure 5: Représentation de la conscience du réseau : graphes Kiviat de la (a) Partition Préféren-
tielle et (b) de la mesure de divergence de Kullback-Leiblerpour SopCast. Les caractéristiques
assemblées à partir de mesure passives sont montrées en haut(AS, CC, NET) alors que les mesures
actives sont sur les axes en bas (HOP, RTT, CAP).

Kiviat reporte, comme d’habitude, la moyenne et la déviation standard sur tous les noeuds.
Considérons d’abord la partition préférentielle. Il est facile de noter que, tandis que les
expériences se réfèrent à un contenu qui est très populaire en EU (football match de ligue
des champions), et aussi très localisé (équipes françaises), pourtant SopCast réussit à trouver
seulement peu de noeuds qui sont dans le même sous-réseau (PPNET ≃ 0%) AS ou pays
(PPAS ≃ 1.6% andPPCC ≃ 4.5%).

L’analyse de graphiques kiviat nous permet d’arriver à la conclusion que la localisation
géographique pourrait être causée par autre préférences : par exemple, la simple stratégie
de choisir les noeuds a haute capacité, qui dans notre dataset sont aussi ceux appartenant
au même AS. Et en fait, tout cela est corroboré par la caractéristique de capacité (PPCAP

> 50%), qui montre une légère préférence vers les noeuds à haute capacité. Au contraire,
aucune préférence n’est montrée pour les noeuds proche en terme de RTT, car juste la moitié
du trafic global est échangé avec des noeuds proches (PPRTT ≃ 50%), fait qui suggère qu’il
n’y a pas de préférence pout le RTT. Pareillement, le fait quePPHOP < 50% confirme que
des chemins légèrement plus longs peuvent être empruntés pour chercher ces noeuds à haute
capacité.

Nous considérons d’après le graphique du KL (b). Dans ce cas4, un large biais est manifesté
pour la capacitéKLCAP , corroborant ainsi l’hypothèse de la sélection avide. Un biais
encore plus large est manifesté pourKLAS , qui dans ce cas, correspond à une distribution
du trafic déséquilibré. Dans ce cas peu d’ASs sont les majeursapporteurs : cependant, telles
ASs diffèrent du AS du noeud analysé et leur occurrence pourrait être le résultat d’autres
politiques de choix. Globalement nous pouvons conclure queles applications populaires
P2P-TV comme SopCast n’ont pas encore considéré le problèmede la NA.

4nous rappelons que valeurs du KL plus larges indiquent un biais plus large
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Figure 6: Aperçu du cadre d’évaluation : vue d’ensemble des composants L3 et L7 et de
l’interaction des deux.

Analyse simulative

Dans cette section nous utilisons un simulateur pour testerdes algorithmes [12, 17, 93, 104] en
considérant les facteurs importants que nous modélisons avec un niveau croissant de réalisme.
Un premier problème est que les systèmes NA P2P-TV prennent typiquement des décisions en se
basant sur les caractéristiques des autres noeuds mesurés :pour cela, réussir à avoir de mesures
correctes sur Internet est une tâche difficile et il est très important de comprendre l’implication
deserreurs de mesuressur les performances du système. Un deuxième problème est que les
algorithmes de “scheduling” ont été évalués en comptant surune connaissance parfaite, mais pas
réaliste, de l’état du système (buffer-maps des voisins) : pour cela, il est important d’évaluer
l’impact de l’inconsistance du système (dû à la perte des messages de contrôle ou à de vieilles
informations).

Description du système

Cette section donne une vue d’ensemble de la structure que nous avons conçu pour comparer les
systèmes P2P-TV, laquelle est à disposition de la communauté scientifique à l’adresse [78]. Le
simulateur guidé par les évènements (event-driven) customisé prend en considération différents
éléments, qui sont visuellement présentés en 6. D’un point de vue de haut niveau, la structure
consiste en deux couches : (i) la couche physique réseau L3 dudessous et une couche logique en
haut nommé overlay, qui sont couplées par différents modelés d’interaction.

Du point de vue de L3, au bord de l’architecture nous trouvonsles hôtes, qui sont physique-
ment interconnectés au réseau L3 à travers des liens d’accès, qui se comportent comme des étran-
glements, et qui sont modelés comme des pairs capacité–délai. Les hôtes sont attachés aux rou-
teurs de borde, qui constituent le point d’accès du trafic P2Pdans le réseau, lequel nous modelons
avec un niveau croissant du détail. De point de vue du L7, les hôtes exécutent des applications P2P-
TV, que nous exprimons en terme d’algorithmes (chunk scheduling, selection des hôtes, manage-
ment de la topologie) et du graphe logique en résultant. Finalement, nous modelons l’interaction
L3/L7 en tenant compte que, dans le monde réel, différentes source d’erreurs peuvent apparaître
dans n’importe quel point du procès (e.g., perte de paquets de signalisation, mesures biaisées,
etc.).

Maintenant nous détaillons chacun des composants du système, et les motivations à la base
des nos choix.
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Table 5: Répartition en classes des propriétés des noeuds
Class Ratio BWD BWU tTX

I 10% ∞ 5.0 Mbps 20 ms
II 40% ∞ 1.0 Mbps 100 ms
III 40% ∞ 0.5 Mbps 200 ms
IV 10% ∞ 0 Mbps ∞

Composants L3

Avec le terme “composants L3” nous indiquons des objets du monde physique, comme (i) hôtes
et (ii) routers, qui sont interconnectés par un réseau (iii).

Hôtes Les hôtes sont des machines qui exécutent les instances des applications P2P et sont carac-
térisés par une interface physique vers le réseau L3. Les hôtes sont divisés en deux classes en
accord avec leur capacité d’upload BWU alors que nous considérons le débit entrant BWD

infini. Cela est une acceptation raisonnable en cas d’accès asymétrique, donné que nous
supposons ultérieurement que l’étranglement est placé au bord du réseau (qui représente
le cas commun aujourd’hui et il est généralement supposé pard’autres recherches sur la
P2P-TV [93,104] et sur le partage des fichiers [83] ).

Dans nos simulations nous considéronsNH=2000 hôtes divisés en 4 classes, ou la moyenne
BWU (i) pour la classei-ème est répartie comme décrite en table 5, qui est en accord avec
[83, 104]. La première colonne de table 5 reporte la répartition en classes : la plupart de la
population est constituée par des peers avec une vitesse moyenne, avec une présence non
marginale de peers très rapides et très lents. Dans la classei, le débit sortant de chaque peer
p est configuré àν · BWU (i) où ν est une variable aléatoire uniformément distribuée en
[0.9, 1.1] (e.g., le vrai débit sortant de chaque peerp dévie au plus du 10% de la moyenne
de la classe).

Router Chaque hôte est “single-homed”, i.e., attaché à un single router d’accès, qui modèle le
premier router IP du réseau d’agrégation (e.g., le BRAS pourle réseau ADSL). Dans nos
simulations nous considérons un nombre de routers égal àNR = 100 et nous utilisons un
simple “mapping” entre hôtes et routers : chaque hôte est couplé par hasard à un router, il
suit qu’en moyenne il y aNH/NR = 20 hôtes attachés a chaque router.

Comme montré en figure 6, les routers son placés au bord du réseau et agissent comme
point d’accès en formant une “full-mesh” logique. Chaque router garde des statistiques
concernant les paquets qui passent à travers ses interfaceset il différencie le trafic entre
remote(i.e., trafic qui est réexpédié vers le réseau) et traficlocal (i.e., trafic qui est reflété
vers un autre lien d’accès attaché au même router). Notez quecette façon nous permet
d’avoir une simple mesure de la localisation du traficP% = local/(local + remote).

RéseauLe réseau niveau 3 modèle l’interconnexion des routers : dans ce travail, nous considérons
différents modèles de réseau.

Si nous considérons le lien d’accès comme le “bottleneck”, il n’y aura probablement pas
de formation de queues dans le noyau du réseau : comme cela, leréseau modèle simple-
ment le délai bout-a-bout. Dans ce cas, la topologie réseau,est bien représentée par une
matrice statique des latences, ou la latence représente le délai de propagation. Nous con-
sidérons plusieurs modèles de réseaux statiques, à partir d’un overlay idéal (ou le délai est
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donné seulement par la durée de transmission d’un morceau) vers des modèles plus réal-
istes comme Meridian [38] (où le délai bout-à-bout est dérivé à partir de mesures réelles
effectuées par de multiples hôtes). Nous considérons aussile cas où la congestion peut se
produire dans le réseau et nous employons des matrices des latencesdynamiques, où la la-
tence entre deux hôtes peut être différente parmi plusieursmorceaux vidéo. Nous soulignons
que le cas où le trafic P2P est (i) minoritaire ou (ii) prévalent sont à considérer séparément.
Dans le premier cas, qui est typique aujourd’hui et que nous considérons dans ce travail, la
congestion est due au trafic dit de “background” : nous modelons cet effet simplement en
variant la latence entre deux morceaux consécutifs aléatoirement. Dans le deuxième cas, les
liens du réseau devraient, eux aussi, être modélisés, pour que l’ingénierie du trafic (réparti-
tion de la charge, optimisation périodique, etc.) puisse être appliquée pour gérer la matrice
de trafic générée par le P2P-TV. Comme le cas (i) est le plus commun, nous considérons le
cas ou le trafic P2P est prévalent hors intérêt.

Composants L7

Avec le terme composants L7 nous indiquons les composantes de niveau plus élevé comme (i)
les peers, qui sont des instances du niveau 7 des applications P2P-TV. En plus de ce détail, nous
modelons les peers en définissant les algorithmes qu’ils implémentent : spécifiquement, chaque
peer doit (ii) gérer la topologie overlay et (iii) programmer l’envoi des chunks.

Peer Chaque peer établit et maintient différentes connections logiques vers des autre peers : nous
dénotons avecN(p) l’ensemble de peers dans le voisinage dep. Comme, dans les systèmes
mesh-push, les morceaux vidéo ne sont pas forcement reçus dans l’ordre, les peers doivent
avoir une buffer-mapB qui décrit les morceaux qui ont étés reçus et stockés dans la mé-
moire. Pour un peerp, nous indiquons avecB(p) sa buffer-map et avecc ∈ B(p) le fait que
le peerp ait reçu le morceauc. La dimension de la buffer-mapB(p) détermine la perfor-
mance de la P2P-TV comme décrit ci-après : des buffer-maps larges réduisent la probabilité
de perte des morceaux mais ils augmentent le décalage temporel entre la source et les des-
tinations ; au contraire, buffer-maps plus petites réduisent le décalage mais augmentent les
pertes (les morceaux qui arrivent après le délai ne sont plusutiles et peuvent être considérés
perdus).

Topologie overlay les liens logiques établis par les peers forment une topologie overlay. Pour
optimiser leur performance, les peers peuvent modifier la topologie créée : i.e., ils arrangent
leur voisinage pour exploiter l’hétérogénéité de la population, pour optimiser globalement
la topologie en se basant sur des décisions locales.

Dans ce travail, nous nous focalisons sur le management de latopologie en le considérant
soit comme (i) un “outil boîte” noire qui induit un type particulier de graphe ou (ii) comme
un algorithme qui règle constamment la topologie. En détail, pour le point (i) nous consid-
érons différentes topologie Erdos-RenyiG(n, p) qui sont créées àt = 0 et ne sont jamais
changées, et donc cela définit un voisinage logique fixé àt = 0. Pour (ii) nous consid-
érons aussi un processus de management de la topologie qui tourne constamment et adapte
la topologie initiale, en se basant sur les propriétés mesurées (e.g., latence, capacité, etc).
En fait, comme les noeuds à plus haute capacité peuvent servir multiples voisins, les mettre
près de la source permet de propager les nouveaux morceaux plus rapidement et vers un
plus grand nombre de noeuds. Cela implique d’avoir des arbres de diffusion (qui peuvent
changer pour différents morceaux) qui ont un majeur “fan-out” et une profondeur réduite.
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Table 6: Chunk scheduler policies
Scheduler Description
ru/r [17] Random useful chunk / Random peer
lu/r [17] Latest useful chunk / Random peer
lu/la [12] Latest useful chunk / Latency-aware peer
lu/ba [104] Latest useful chunk / Bandwidth-aware peer
lu/pa [93] Latest useful chunk / Power-aware peer

Nous remarquons que la gestion dynamique de la topologie estune approche raisonnable
: en fait, en considérant une topologieG(n,M) ou G(n, p) à t = 0, elle modèle approxi-
mativement un système dans lequel les noeuds qui entrent dans un swarm reçoivent un petit
nombre de noeuds de bootstrap (e.g., par moyen d’un tracker àla BitTorrent) qui constitue
le voisinage initial, qui peut en suite être modifié continuellement (par exemple comme
le mécanisme PEX de BitTorrent). Nous soulignons que, en accord avec le chapitre 3,
les applications sur internet peuvent exhiber un comportement plus proche de (i) comme
TVAnts et Joost, ou (ii) comme PPLive et SOPCast, ce qui rend les deux cas importants.
Nous soulignons aussi que d’autres types de graphes peuventêtre utilisés pour (i), comme
Barabasi-Albert [11] scale-free et Watts-Strogatz [117] small-world, mais cela n’ajouterait
pas de réalisme à notre campagne expérimentale car la dynamique des topologies est beau-
coup plus importante que les conditions initiales au tempst = 0.

Chunk Scheduler Le but final de chaque application P2P est de donner à chaque peer un flux
continu de données vidéo : pour cela, les peers doivent éviter d’avoir des trous dans leur
buffer-maps dans la position proche de la limite de jeu. Le procès d’échange vidéo est géré
par un chunk-scheduler, qui agit dès que le peer peut utiliser son débit sortant. Dans les
systèmes push, n’importe quel peerp exécute un scheduler qui doit choisir : (i) un morceau
parmi ceux stockés dans la buffer-mapB(p) et (ii) choisir un noeud-destination parmi ses
voisinsN(p).

Les algorithmes de scheduling peuvent être divisés en deux classes, selon l’ordre avec lequel
la sélection chunk/peer est faite : dans ce travail, nous nous focalisons sur les algorithmes
qui d’abord choisissent les chunks et après les peers. Nous considérons les algorithmes
proposés en [12,17,93,104] que nous résumons en table 6. En suivant librement [17], nous
décrivons chaque algorithme commec/p, ou c et p signifient respectivement algorithme de
sélection dechunketpeer.

Le scheduler le plus simple estru/r, qui sélectionne un chunkrandomc ∈ B(p) que est
ensuite envoyé vers un randomusefulpeerp′ ∈ N(p), i.e., un noeud qui ne possède pas
le chunk sélectionnéc /∈ B(p′). Nous considérons après une série de schedulers qui sélec-
tionnent ledernier chunk parmi leur buffer-maps, que ensuite ils envoient versun “useful”
noeud choisi avec une stratégie soit aléatoirelu/r [17], soitnetwork awarelu/{la, ba, pa}.
Pour ce qui concerne les stratégies NA, nous considérons unestratégie consciente de la la-
tencelu/la [12], du débitlu/ba [104] et consciente du “pouvoir”lu/pa [93] (i.e., ou le
pouvoir est le ratio du débit sur la latenceB/L). La sélection est accomplie en mesurant les
propriétés de chaque peer, qui sont ensuite ordonnés par la valeur de la propriété et sélec-
tionnés aléatoirement (i.e., pas dans l’ordre strict), avec une probabilité proportionelle à la
valeur de la propriété.

Intuitivement, lu/r vise à maintenir le décalage entre source et destinations leplus bas



29

possible en diffusant le morceau le plus récent (i.e., le dernier morceau dans la buffer-map
B(p)). Nous considérons le simpleru/r à raison de référence, etlu/r comme il a été prouvé
optimal dans des scénarios homogènes [17]. Schedulers NAlu/{la, ba, pa} [12, 93, 104]
sont, par contre, censés améliorer la performance delu/r, spécialement dans le cas de
scénarios hétérogènes : en détail,lu/la vise à confiner le trafic localement par une sélection
de proximité,lu/ba vise à réduire le temps de diffusion des morceaux en préférant des peers
avec des hautes capacités d’upload etlu/pa vise à combiner le deux avantages.

Intéraction L3/L7 Finalement, l’efficacité des décisions de scheduling est potentiellement per-
turbée par des erreurs concernant (i) la précision des mesures du réseau ou (ii) le fonction-
nement de l’échange des informations de contrôle.

D’un côté, (i) NA schedulers basent leur décisions sur des propriétés concernant les voisins
et potentiellement les conditions du réseau au dessous. Cette propriétés peuvent être
récupérées par l’utilisation “d’oracles” (comme proposé par le projet ALTO [6]), ou di-
rectement mesurées par l’application. Mesures directes peuvent être plutôt imprécises pour
plusieurs raisons (e.g., trafic de fond, OS scheduling, NICsinterrupt coalescing, interaction
entre plusieurs mesures), et ça peut causer des mauvaised représentations du voisinage et
mauvaises décisions de scheduling. Afin de mesurer l’impactdes erreurs de mesure sans
être spécifiquement lié a des techniques particulières, nous nous sommes résolu à utiliser
un modèle de haut-niveau ou le procès de mesure est contrôlé par un seul paramètreα qui
décrit l’ampleur de l’erreur.

De l’autre coté, (ii) l’information de contrôle peut ne pas être distribué dans les délais, ou
même perdue at L3. En fait, en cas de algorithmes de gossipingutilisant UDP, cette infor-
mation ne serait pas retransmise, déformant ainsi la visionque le peer a de l’état du système.
L’inconsistance peut aussi être due à une dissémination lente des informations de contrôle
(e.g., un système pourrait désirer de limiter le débit de sonflux de contrôle en limitant la
fréquence des message de mise a jour des buffer-maps). Si nous considérons des systèmes
mesh-push, le deux types d’erreurs se traduisent en une connaissance périmé de l’état des
buffer-maps du voisinage : dans ce cas, un peer peut décider de programmer une transmis-
sion d’un morceau vidéo même si la destination a déjà reçu le morceau, résultant ainsi une
transmission inutile (chunk collision). Afin de mesurer l’impact de la signalisation sans être
lié à des algorithmes spécifiques, nous utilisons encore uneabstraction de haut niveau et
nous modelons les erreurs provoqué par la perte des paquets ou informations périmes de
l’état du système comme des erreurs des buffer-maps.

Analyse Emulative

Introduction

Dans cette section nous présentons ModelNet-TE, une extension de ModelNet qui habilite
l’émulation de l’ingénierie du trafic. En outre, nous portons la version originale du cœur Mod-
elNet de BSD à Linux, et nous le rendons disponible à la communauté scientifique [70]. L’outil
ModelNet-TE est interoperable, flexible et passe à l’échelle. L’interoperabilité e le passage à
l’échelle sont directement hérédité par le code original deModelNet qui permet de exécuter des
milliers d’instances d’applications. La flexibilité, au contraire, est une clé de ModelNet-TE que
nous avons conçu pour être un outil réutilisable, dans laquelle les chercheurs peuvent facilement
intégrer leur propre mécanismes de TE à coté de ceux que nous fournissons déjà [31,72].
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Figure 7: Sommaire des éléments pris en compte dans cette section

Nous utilisons ModelNet-TE pour évaluer l’interaction noncoordonné entre le trafic engineer-
ing au niveau 3 et le polices du contrôle du trafic appliqués par les applications au niveau 7. En
fait, malgré un nombre de travaux ait étudié le problème du “selfish routing”, [45,47,58,75,90,99]
la plupart de ces travaux adoptent une approche théorique, qui est vrai spécialement pour le cas de
interaction non contrôlé de dynamiques de routage à plusieurs niveaux [45,47,58]. De l’autre coté,
même si plusieurs études expérimentaux existent [16,29,87,91,101,106,123] néanmoins ils négli-
gent l’interaction avec le niveau réseau dessous. Si leur approche est nécessaire pour comprendre
le comportement des applications, il ne permet pas de comprendre l’impact du traffic engineering
(TE) sur le trafic des utilisateurs; ni il permet aux développeurs P2P du comprendre comment leur
algorithmes performent sur des réseaux réactives.

En voulant remplir cet écart, nous étudions l’interaction L3/L7 à travers ModelNet-TE. Pour
prouver la flexibilité de ModelNet-TE, et pour recueillir unensemble complet de résultats, nous
conduisons une campagne expérimentale qui, comme montré enfigure 7, considère un riche en-
semble de (i) topologie niveau 3 et algorithmes de routage et(ii) applications niveau 7 e modèles
de population. Au niveau 3, nous considérons soit un simple modèle de overlay pur, ou le bottle-
neck est seulement à l’accès, soit Abilene, une topologie populaire, ou est le cœur qui se comporte
de bottleneck. Concernant l’ingénierie du trafic L3, nous implémentons un algorithme de partage
de charge multi-chemin [31] que nous comparons avec le techniques standard du chemin le plus
court. Au niveau 7, nous considérons deux applications réactives : BitTorrent [15], l’application
de partage de fichiers la plus connue, et WineStreamer [14, 55], une application de streaming
en direct. En plus, nous considérons soit une population uniforme, soit une population qui est
proportionelle aux habitants de chaque ville.

En résumé, cette section atteint deux principales résultats. Premier, nous offrons à la commu-
nauté scientifique un émulateur de réseau complet, open source, customizable, avec la capacité de
faire du TE en directe. Deuxième, nous conduisons la première campagne approfondie, exploitant
une méthodologie expérimentale, qui se focalise sur l’interaction entre le dynamiques P2P et le
réseau L3 au dessous. Les résultats expérimentaux donnent le suivants aperçus : (i) les bottle-
necks dans le réseau peuvent avoir un impact profond sur la performance des applications; (ii) le
modèle de population, outre à modéliser le trafic perçu par leréseau, peut contribuer à déterminer
la performance; (iii) TE peut améliorer la performance du réseau (e.g., en égalisant la charge sur
les liens) au détriment des performance au niveau utilisateur (e.g., du aux effets des interactions
inattendues avec TCP ou la logique d’échange P2P).
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Figure 8: Topologie Abilene de niveau 3 et swarm niveau 7 : modèle de population uniforme à
gauche et biaisé à droite

Scénario et méthodologie

Nous décrivons maintenant les scénarios émulés dans notre campagne expérimentale, en donnant
le motivations et informations détaillés concernant nôtres choix de (i) topologie réseau, (ii) algo-
rithmes de TE, (iii) modèles de population, (iv) applications P2P.

Réseau niveau 3

Topologie Sans considérer l’application P2P, nous considérons deux différentes topologies de
réseau : (i) une topologie réaliste Abilene et (ii) un modeléde overlay pur.

Le scénario réaliste que nous concevons est représenté en figure 8 avec de lien de cœur
interconnectés selon la topologie Abilene [1] qui comprendNR = 11 routers déployés sur
le sol des États-Unis. Dans notre setup, nous considérons lecapacités de liens du cœur de
C = {5, 10}Mbps et nous modélisons la capacité d’accès des peers similaire à la FTTH
(fiber to the home) avecCD,i = CU,i = 5Mbps. Il est important de mentionner que le
trafic agrégé de chaque peer est en moyenne entre 720Kbps (WineStreamer) et 1.5Mbps
(BitTorrent), et que comme une partie du trafic est dirigé vers des peers qui sont derrières
la même passerelle, il ne consumera pas la capacité entière du lien cœur. Donc, siC =
5 Mbps représente un scénario pauvre, le scénario avecC = 10 Mbps modèle un réseau
bien provisionné. Remarquez aussi que, malgré réaliste, latopologie Abilene est aussi un
scénario difficile pour la répartition de la charge, car le niveau de diversité des chemins ne
pourrait toujours permettre de contourner les lien congestionnés.

Pour mieux apprécier l’impact de la topologie du réseau, nous comparons le scénario Abi-
lene avec un modèle simplifié ou tous le peers sont interconnectés avec une topologie étoile
vers un router central. Ni les capacités ni le délai sont émulé dans le cœur mais que à l’accès
: donc, du a notre setup physique, le cœur va à la même vitesse de notre1/,Gbps ethernet
switch (qui est plus vite du cas Abilene et ou il n’y a jamais des congestions). Toutefois,
dans ce scénario nous appliquons latences d’accès réalistes, dépendantes du modèle de pop-
ulation.
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Ingenierie du trafic Dans ModelNet-TE, la matrice de trafic (TM) est échantillonnée sur des
fenêtres dew secondes (w = 1 dans notre cas), et ModelNet-TE peut faire de simples
opérations (e.g., moyenne, std deviation, maximum, etc.) sur W fenêtres consécutives.
Puis, aprèsW fenêtres consécutives, ces demandes sont exportées du kernel vers les al-
gorithmes de TE. Pour la campagne expérimentale, nous fixonsW = 30, and exécutons
iAWM périodiquement aprèsW fenêtres, pour générer le nouvelles table de routage.

Applications P2P niveau 7

Au niveau 7 , nous construisons scénarios réalistes en considérant hétérogénéité dans (i) la classe
des applications P2P et (ii) modèles de population

Nous sélectionnons deux applications P2P, BitTorrent [15]et WineStreamer [14, 55], qui of-
frent services hétérogènes et ils ont ainsi des différentesarchitectures. En fait, BitTorrent et
WineStreamer sont plutôt différents dans leur contraintes, choix architecturales (TCP vs UDP)
et logique d’échange (rarest first VS playout-deadline). Pourtant, ces applications partagent aussi
des similarités (mesh overlay) qui sont un résultat naturelde l’évolution de l’écosystème du P2P.

Pour les deux applications, nous émulons un scénario de flash-crowd dans lequel une source
unique injecte la vidéo pour un ensemble deNp = 200 noeuds. Notez que cela est une taille
raisonnable pour des applications de file-sharing: en fait,[126] observe que juste le 1% des torrents
ont plus de 100 peers, alors que [84] report des tailles typiques de swarms de BitTorrent entre
300 et 800 peers. Concernant le streaming en directe, dans lechapitre 3 nous avons observé
que la taille des swarms pour une chaine dépende de l’application (qui reflet la popularité de
l’application plutot que la popularité de la chaine), avec des swarms qui vont de 500 peers en
TVAnts jusqu’à 180,000 peers pour PPLive pour le contenus les plus populaires. Donc,Np = 200
peers peut représenter une chaîne populaire sur une application moyennement populaire, ou un
contenu moyennement populaire sur une application populaire.

Pour simplicité, nous considérons les capacités des peers homogènes : notez que l’effet des
swarms hétérogènes avec plusieurs capacité sont connu [53]par un point de vue purement appli-
catif, et pourrait être digne de investigation vue par une interaction L3/L7.

Modèle de population La différence entre le modèle uniforme et proportionnel estreprésenté
graphiquement en figure 8, et la correspondante distribution des latences en figure 9. La dis-
tribution des latences montre l’impact des la population biaisé et trois pics se produisent : ils
correspondent a (i) bas délai pour les communications proches (derrière la même passerelle),
(ii) délai modéré pour communications mi-porté et (iii) pour les communications loin (entre
le deux cotes). Notez aussi que le pic à haut délai est prononcé, car la plupart de la pop-
ulation est distribuée sur le deux cotes. Au contraire, la distribution uniforme porte à une
distribution complètement différente, qui est pas réaliste par rapport aux mesures faites par
des projets comme [120].

Résultats expérimentaux

Dans cette section nous reportons des résultats de notre campagne expérimentale, pour raisons
d’espace nous montrons ici seulement l’impact des modelés de population et de la capacité du
réseau.
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Figure 9: Modèle de population uniforme contre biaisé : distribution des latences

Impact du modèle de population et de la capacité du réseau

Nous nous focalisons maintenant sur la performance des applications niveau 7, en considérant
le débit de téléchargement des peers BitTorrent et (ii) la pourcentage de morceaux correctement
reçus pour WineStreamer. Nous pensons que ces métriques sont les meilleures pour représenter
la qualité aperçue par les utilisateurs : en fat (i) est lié à l’efficience du système et au temps pour
compléter le téléchargement ; concernant (ii), la qualité vidéo est baissé par les morceaux qui
arrivent après la limite de temps ou qui sont perdus. Les deuxmétriques sont évalués sur des
fenêtres de 10 secondes. Dans la suite nous reportons les résultats collectés en 5 expériences pour
chaque configuration.

Nous considérons d’abord l’impact que la capacitéC des lien du cœur et le modèle de pop-
ulation ont, et nous montrons la CDF (cumulative distribution function) du débit e de la vitesse
de réception des morceaux, mesurés pour toute la populationen figure 10 (pour l’instant nous
utilisons la topologie Abilene).

Nous considérons d’abord la distribution de la population.La considération générale est que
la population biaisé est bénéfique car, si l’application tiens en compte la latence ou la capacité,
5, elle peut établir relations de voisinage avec noeuds qui sont attaché a la même passerelle, en
confinant ainsi le trafic au bord du réseau et en évitant les étroits liens du cœur.

En se focalisant sur les clients BitTorrent, nous voyons queles débit plus bas sont atteint par
les noeuds du scénario uniforme àC = 5Mbps: après, nous trouvons deux scénarios dont les
performances sont presque équivalentes. Elle peuvent êtreatteinte par, soit (i) doublant la capacité

5Comme TCP est avantagé par des RTT petits, le applications qui préfèrent noeuds à haute capacité, préférerons
aussi probablement les noeuds proches. Même pour des applications comme PPLive, qui utilisent UDP au niveau 4
et mesurent le débit au niveau 7, nous avons vérifié expérimentalement que la préférence vers la capacité induit une
agrégation des noeuds proches (voir chapitre [97])
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sous le même modèle de population ou (ii) considérant un modèle biaisé avec la même capacité.
Notez en fait que le débit entrant moyen augmente du 25% et 26%respectivement, comme reporté
dans la figure 10(a).

Si nous considérons les clients WineStreamer, nous voyons que l’impact du modèle de pop-
ulation reste considérable, bien que dans ce cas les capacités des liens du cœur jouent un rôle
déterminant à cause des contraintes du streaming. En fait, si nous considérons le scénario à basse
capacitéC = 5Mbps de la figure 10(b), en moyenne le 22% en plus des morceaux sont reçus
dans le modèle de population biaisé par rapport au modèle uniforme. Pourtant, changement du
modèle de population ne suffisent pas, car la pourcentage desmorceaux reçus pour le scénario à
C = 5Mbps est encore basse pour certains noeuds (particulièrement pour ceux qui sont derrière à
liens très chargé), alors que la situation s’améliore nettement pour le scénario àC = 10Mbps.
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Chapter 1

Introduction

1.1 Foreword

At the beginning of this thesis, peer-to-peer paradigm was becoming more and more popular as
new services were deployed in the internet. According to [43], in 2008 around 70% of the traffic on
European Internet backbones was generated by P2P applications. However, for the time being, the
promised breakthrough of P2P-TV did not maintain itself: Cisco Visual Networking Index 2010-
2012 [21] affirms that streamed video is surpassing P2P traffic and that video directly streamed
to enabled-televisions1, through OTT (Over-the-top) technologies, will be in the next years the
fastest growing video service together with mobile video. Our opinion is that this is mainly due to
ADSL limitation (i.e. P2P systems do not have enough upload bandwidth to sustain the service)
but it can change with Fiber-to-the-home FTTH in the near future. Hence, this is the reason to
sustain the importance of this study.

The motivations behind the initial growth of P2P-TV systemsare manifold: first, great part
of the intelligence required by a P2P system is at the network’s edge so that it is not necessary
to upgrade its infrastructure to deploy a new application/service. Second important aspect is that
there are no Single points of Failure: overlays are built in adistributed fashion and do not require
centralized equipment to coordinate the exchange of information. Third, due to its decentralized
nature, it is difficult to have a control over data traffic (e.g., tracking illegal contents) and this
allowed file-sharing systems to gain more and more popularity. [21] claims that approximately 70
to 80 percent of P2P traffic in 2010 was carrying video content.

Nowadays, P2P paradigm spreads over a wide range of network-services, from distributed
computation to distributed file systems; it is also affecting the way video content is delivered. Op-
erators offering the so-calledtriple play 2 are currently relying on multicast technology which, if
on one hand guarantees optimal performance, on the other lets video traffic only to be distributed
into the single AS. Video-P2P technologies, while keeping an high level of efficiency, could rem-
edy to this limitation and allow distributors to build world-wide video-distribution markets.

Well-know live video systems such asPPLive [89], TVAnts [112], SopCast [107] are al-
ready attracting a huge number of users.PPLive claims to have 200 million user installations and
104 million active users each month in 2011 [109]. Such huge numbers added to the intrinsic char-
acteristic of modern P2P overlays3 are worrying network operators and internet service providers
which are beginning to adopt strategies to face P2P phenomenon. Comcast, a US provider, [23]

1by means of set-top boxes, Internet enables devices as Microsoft XBox 360 or Internet-enabled televisions
2High bandwidth internet connectivity, television and telephone services
3High number of connection, streams with high bandwidth demand, not optimized traffic, etc,
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is the most famous case and it recently admitted to handle differently P2P from traditional traffic;
moreover, some studies have shown that P2P traffic daily trend is inverted from daily traffic. This
fact seems to be due to the effect of traffic manipulation frominternet providers [44].

The challenge therefore is to make P2P systems, and especially live-video P2P systems, be-
having friendly toward the network layer and also to make possible the cooperation with service
providers. This fact can lead to advantages for both users and service providers: a better en-
gineered P2P traffic can drastically improve the user experience (e.g., lower delays and higher
perceived quality) while containing operators’ costs. In fact, if a P2P node is able to chose neigh-
bors in the same autonomous system, traffic generated will not transit through expensive access
links. We call this abilitynetwork awareness.

1.1.1 Network Awareness

The definition ofnetwork awarenessis straightforward: A P2P application is network-aware if
has some knowledge about the underlay network and uses this information for its inner algorithms
(i.e. chunk scheduling or topology management).

Intuitively this information can answer to the questions: is there any peer i can contact in my
Autonomous System? How long is the round trip time toward that peer? How many IP hops
packets must pass through? A partial role of this thesis workis to individuate which network
properties can be taken into account to improve P2P systems.

Approach Work Year Topology Navigation

P2P Measurements

[57] 2009 Latency
[104] 2008 Bandwidth
[93] 2008 Bandwidth

Latency

[12] 2006 Locality

ISP Cooperation
[37] Oracle (IETF ALTO WG)
[3] 2007 Oracle
[124] 2008 iTracker

Table 1.1: An overview of Network-Aware approaches

The ways these data are collected can vary across systems andTable 1.1 summarizes main
efforts in this field. Work is divided in two big families, P2Pmeasurements and ISP cooperation.
With former techniques applications can perform measures on their own (e.g., use tools asping
to carry out latency measure orCapProbe [46] for path capacity estimations) without the need
of external supporting infrastructure. However, while measuring latency, hop distance, loss rate
or throughput measurement is trivial, other metric such as path capacity or available bandwidth
can be tricky. Furthermore those measure usually are achieved by injecting additional traffic in
the network which in turn can bias the measure itself resulting in imprecise values. Finally, tech-
niques are generally devised to single measurements, so that multiple measurements at the same
time interfere leading to wrong awareness of the network status. The second group of techniques
leverages the help of ISPs which can deploy so-calledoracle nodes in strategic point of the net-
work. Oracles expose query interfaces to allow the exchangeof information with the P2P swarm
to help nodes choosing the best neighbors according to certain criteria. One positive aspect of this
solution is the optimal topology knowledge of ISPs which mayalso potentially exploit oracles to
do some basic traffic engineering. In this thesis, we focus onP2P measurement class.
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1.2 The Big Picture

With reference to Figure 1.1, we now describe the content andorganization of this thesis.

Measuring 

Network Awareness

Implementing 

Network Awareness

Packet-level

Emulation

[Chapter 7]

Chunk-level

Simulation

[Chapter 6]

[Chapter 4]

Figure 1.1: The big picture

1.2.1 Measuring Network-Awareness

One of the preliminary steps in the context of theNapaWineproject [73] is to get an overview on
the actual state-of-the-art of most important deployed P2Psystems (namelyPPLive, TVAnts,
SopCast and others). Specifically, our aim is to assess the level of network awareness embedded
in these applications. The major obstacle is that these massively-used systems are closed-source
and we have no information about either their inner algorithms or protocols they use for data
exchange. Therefore the first challenge is to find a methodology that enables the evaluation; we
dropped the reverse engineering approach since it entails high costs and is hence applicable only
to few applications/versions. Consequently we developed methodologies that use ablack-box
approach and that are usable to examine every present and future system that follows the P2P
paradigm. Next section will explain in more detail our achievements.

Passive Approach

First work in this direction is presented in Chapter 3 in which we set-up a pan-European measure
campaign among project partners to run unmodified and undisturbed P2P clients in order to collect
traces from a certain number of vantage points. We then definea framework to quantify which
network parameters influence the application choices and wethen apply the methodology to the
dataset.

Here the main idea is to usePreferential Partitions(PP): each peer in our testbed contacted
a number of other peers in the rest of the world. LetP(p) denote the set of peers contacted by
the peerp. Then, given a network propertyX(·), we divideP(p) into two sub-set using the value
of X(·) such that one class should intuitively be preferred from theapplication (e.g., if we use
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RTT as a property, we dividecloseVs. far peers). At this point we compute the number of bytes
that are exchanged with peers in the preferred partition over the total. Intuitively the greater this
number is, the greater the bias w.r.t. the preferential partition is.

From the analysis of the dataset we observe thatTVAnts andPPLive clients mildly prefer
to exchange data in their own Autonomous System. InSopCast, instead, this clustering effect is
less intense. However, in all cases, no preference versus country, subnet or hop count is shown.

Active Approach

The main drawback of purely passive analysis is that onlypeer-wisemetrics4 can be analyzed.
Conversely, path-wise metrics (i.e. properties related topaths), are instead difficult to infer by
simple analysis of traces, since we do not know the details ofthe protocols used by applications. To
overcome this limitation, it is necessary to use an active approach as the one described in Chapter
4 in which we setup a completely controlled environment to test the behavior of applications.

Here, we force application instances to download the video stream from a controlled source,
then we start to change path properties (e.g. capacity, latency, loss rate or number of IP hops, etc.)
and we observe how the application reacts to these alterations.

We apply this methodology toPPLive and we investigate which path-wise property biases
more its trading preferences. Our main finding is thatPPLive seems mainly bandwidth greedy,
but does not show any preference toward peer proximity basedon RTT delay.

Again, with a purely active approach we can evaluate the awareness of an application towards
some network properties but we are not able yet to draw a comprehensive picture. We need indeed
the contribution of both techniques. Correlating the abovefindings with the offline analysis of
passive traces, we gather that bandwidth preference alone may provide a non-negligible level of
geographical clustering among peers as a beneficial side-effect.

Passive Analysis augmented with Active Probing

Finally, as we just saw, active and passive methods alone cannot contribute in having a global
overview of the applications’ network-awareness: for thisreason we exploit both methodologies
at the same time. In Chapter 5 we present a comprehensive framework named Sherlock to (i)
analyze P2P applications as black-boxes and (ii) to compactly describe the traffic they generate.
Sherlock can collect information about an application by means of passive and active measures
and show at a glance its distinctive fingerprint in form ofkiviat charts.

We implement the Sherlock framework in the demonstration softwareP2PGaugewe presented
atSIGCOMM09[94] and which we release as open source in [76] building a tool able to measure
the level of network awareness embedded in current P2P applications by correlating passive and
active techniques. Results of our investigation are applied to the analysis of the well-known P2P-
TV applicationSopCast.

1.2.2 Implementing Network Awareness

In the second part of the thesis, we move from the analysis of existent P2P-TV systems to orig-
inal designs and algorithms and we develop methodologies and tools to test them under realistic
conditions.

4properties related to a single peer and not to the path (e.g.,Autonomous System, country, IP address
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Simulation-based Study

Together with other NapaWine project partners we developeda chunk-level simulator called
P2PTV-Sim which is specifically conceived for P2P television. Its main design goals are (i) being
easily customizable and (ii) as realistic as possible. Our aim is to understand if network-aware al-
gorithms are robust to measurement errors and wrong state knowledge or if imprecise information
impact negatively on the overlay performance.

In Chapter 6 we carry on a simulation analysis that considersseveral factors, modeling the L7
overlay (e.g., chunk scheduling, topology management, overlay topology, etc.), the L3 network
(e.g., end-to-end latency models, fixed vs dynamic conditions, etc.), and the interaction of both
layers (e.g., measurement errors, loss of signaling messages, etc.). To depict a comprehensive
system view, results are expressed in terms of both user-centric and network-centric metrics. In a
nutshell, our main finding is that P2P-TV systems are generally robust against measurement errors
(e.g., propagation delay or capacity estimation), but are on the contrary deeply affected by signal-
ing errors (e.g., loss or outdated system view), which are often overlooked without justification.

Still, despite the invaluable insight a simulator can offeron the inner workings of an overlay,
it may not be enough to capture all the potential flaws of a P2P system design: indeed, many
implementation details can not be analyzed by means of simulation.

Emulation-based Study

To overcome this limitation and deepen our analysis, we makeuse of a packet-level network
emulator technique. In more detail we consider Modelnet which is an emulation environment that
allows the experimentation of real network applications byemulating arbitrary network topologies
with latencies, capacities and losses. Building on Modelnet we develop Modelnet-TE, which is
able to perform real-time Traffic Engineering (TE).

In Chapter 7 we carry on an experimental campaign of L7/L3 routing layers interaction. As TE
algorithm we consider the classic minimum congestion load-balancing, that we compare against
standard IP routing. As example P2P applications, we take BitTorrent, one among the most pop-
ular file-sharing applications nowadays, and WineStreamer, an open source live-streaming appli-
cation developed during NapaWine project and available at [119]. We emulate BitTorrent and
WineStreamer swarms over both realistic topologies (e.g.,Abilene) and simplistic topologies that
are commonly in use today (e.g., where the bottleneck is sited at the network edge) under a variety
of scenarios.

Results of our experimental campaign show that user-level performance may be significantly
affected by both the TE mechanism in use at L3 (e.g., due to interactions with TCP congestion
control or P2P chunk trading logic), as well as scenario parameters that are difficult to control in
the wild Internet, which thus testifies the interest for tools such as ModelNet-TE.
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Part I

Measuring network awareness
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Chapter 2

Preliminary discussion

Since the first part of the thesis deals with problematics that are very close, we provide in this
chapter contents (related work and a passive dataset collected in the context of NapaWine project
[73]) that are common to chapters 3, 4 and 5.

2.1 Related Work

A fairly large number of public P2P architectures and algorithms for the support of video
distribution over the Internet has been proposed in the lastthree-four years within the scien-
tific community [10, 18, 20, 79, 129]. Despite their clear merit, the above systems have only
gained limited popularity – especially in comparison with commercial systems. The latter sys-
tems have indeed attracted a larger audience, up to several millions of users. The fact that
such commercial systems follow a closed and proprietary design has motivated further re-
search [2, 5, 41, 42, 56, 100, 105, 115, 116, 122], aimed at understanding these systems through
on-field measurements.

Such works, which exploit partial reverse engineering techniques and typically rely on active
crawling methodologies, face the daunting task of understanding and implementing part of the
system under analysis. As a consequence, this methodology is limited by the ability to break
closed and proprietary systems, and we believe that they canbe hardly extended to characterize all
the possible P2P-TV applications. For example, [41] investigates PPLive, whereas [56] focuses
on the commercial re-engineer of Coolstreaming, and [122] and [121] considers UUSee. For
instance, authors in [121] exploit the application-layer logs of UUSee: at the same time, we stress
that our work differs from [121] concerning two important points. A first difference arises in the
methodology employed, which in the case of [121] limits the applicability of the effort: indeed,
authors not only have knowledge of the P2P-TV system inner workings, but also base their analysis
on application-layer logs, which requires thus to instrument the application under analysis and
is thus clearly not applicable in case of closed-source proprietary systems. Second, our work
does not have the same motivation: while authors of [121] want to explore and dig P2P overlays
dynamics and graph properties over long period of time, we focus on the network awareness of
the applications under study; despite these different interests we arrive to a common conclusion.
In fact they say that a significant fraction of neighbor peersfalls into the same ISP, despite UUSee
does not explicitly take into consideration ISP membership. These observations allows them to
conclude that the reason behind the clustering is that “as connections between peers in the same
ISPs have generally higher throughput and smaller delay than those across ISPs, they are more
inclined to be chosen as active connections”. Interestingly, in chapter 4 we show that a similar
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geographical clustering can be observed inPPLive, which we also shownot to be sensitive to
RTT preference. To the best of our knowledge, this clustering effect solely induced by bandwidth
preference has not been observed by other researchers to date.

Other works, such as [2,42,115,116] instead study specific aspects of a P2P streaming system.
For instance, [115] gives some preliminary results on the node degrees of popular versus unpop-
ular channels in PPLive, while [116] instead investigates the stability of PPLive peers. Quality of
service is of concern in [2,42]. Authors in [42] exploit an analysis of PPLive buffer maps, collected
through protocol reverse engineering, to infer QoS metricssuch as network-wide playback conti-
nuity, startup latency, playback lags among peers, and chunk propagation timing. Authors in [2]
focus on similar metrics but instead exploit logs made available from an unspecified commercial
P2P streaming system.

Despite all the above valuable work, to date, very few measurement studies compare differ-
ent systems, such as [5, 100, 105], which are closest to our work. Authors in [100] analyze and
compare PPLive and SopCast, investigating the time evolution of different metrics, like trans-
mitted/received bytes, number of parents and children, etc. Authors in [105], present instead a
comparative evaluation of PPLive, PPStream, SOPCast and TVAnts. Analysis is carried on in
terms of flow-level scatter plots of mean packet size versus flow duration and data rate of the
top-10 contributors versus the overall download rate.

In [5], authors set-up anactivetestbed to investigate the congestion control algorithms of dif-
ferent P2P-TV applications. Using active probes, authors enforce artificial bandwidth limitations,
packet loss and delay, and examine P2P-TV reaction to adverse network conditions. However, not
all metrics potentially exploited by the overlay for neighbor selection and chunk scheduling can
be artificially enforced – as, for instance, it is the case of the geographical and AS location of the
contributing peers.

Our work presented in chapter 3 differs from [5, 100, 105] in several aspects. The first is the
aim, as our work focuses on a systematical exploration of themetrics, if any, that drive the peer-
selection in the different systems. Second, we consider different aspects related to the overlay
setup and download policies which are complementary to those addressed in [5, 100, 105]. An
important last difference lies on the scale of the testbed used in chapters 3, 4 and presented in 2.2,
which involves multiple vantage points scattered across European countries and it is representative
of very different network setups.

Inspired by [5], and willing to overcome the problems found in chapter 3, chapter 4 refines their
setup, by (i) considering a more controlled setup and by (ii)jointly applying different impairments,
so to assess the relative importance of multiple path-wise properties.

2.2 Passive Data Set

In this section we present the data set used in Chapters 3 and 4, whose main features are summa-
rized in Tab. 2.1. Partners of the NAPA-WINE project took part in the experiments by running
P2P-TV clients on PCs connected either to their institutionLAN, or to home networks having
cable/DSL access. In more details, the setup involved a total of 44 peers, including 37 PCs from
7 different industrial/academic sites, and 7 home PCs. PCs are distributed over four countries,
and connected to 6 different Autonomous Systems (AS), whilehome PCs are connected to 7 other
ASs. Therefore, the setup is representative of a significantnumber of different network environ-
ments. In the following, we refer to the set of PCs used duringthe experiment as “NAPA-WINE
peers”.

In P2P-TV systems, hosts running the application (called peers) form an overlay topology by
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Table 2.1: Summary of the hosts, sites, countries (CC), autonomous systems (AS) and access types
of the peers involved in the experiments.

Host Site CC AS Access NAT FW
1-4 BME HU AS1 high-bw - -

5 ASx DSL 6/0.512 - -
1-9 PoliTO IT AS2 high-bw - -
10 ASx DSL 4/0.384 - -

11-12 ASx DSL 8/0.384 Y -
1-4 MT HU AS3 high-bw - -
1-3 FFT FR AS5 high-bw - -
1-4 ENST FR AS4 high-bw - Y

5 ASx DSL 22/1.8 Y -
1-5 UniTN IT AS2 high-bw - -
6-7 high-bw Y -

8 ASx DSL 2.5/0.384 Y Y
1-8 WUT PL AS6 high-bw - -

9 ASx CATV 6/0.512 - -

setting up virtual links over which they transmit and receive information. A source peer is respon-
sible to inject the video stream, by chopping it into segments (called chunks) of few kilobytes,
which are then sent to a subset of its neighboring peers (called neighbors). Each peer can con-
tribute to the chunk diffusion process, by retransmitting them to its neighbors following a swarm-
ing like behavior, as in file sharing P2P systems like BitTorrent. The major differences between
P2P-TV systems and traditional P2P file sharing applications are i) that the source is generating
the stream in real time, ii) that data must be received by peers at almost constant rate, and iii) that
chunks must arrive almost in sequence so that they can be quickly played at the receiver.

We considered three different applications, namelyPPLive, SopCast andTVAnts, and
we performed several 1-hour long experiments during April 2008, where peers were watching
the same channel at the same time. Packet-level traces were collected and later analyzed. Since
P2P-TV applications are mostly popular in Asian countries,we tuned each application to CCTV-1
channel during China peak hours [41]. In all cases, the nominal video stream rate was 384kbps,
Windows Media 9 Encoder was used, and the video quality perceived by users was very similar
across systems. The entire dataset contains more than 120 hours of experiments, corresponding
to more than 140M packets. Collected traces are also made available to the research community
upon request.
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Chapter 3

Passive Analysis

In this chapter, whose results have been published in [22], we gather the level of network aware-
ness of P2P-TV applications by means of a strictly passive analysis of traffic traces generated
by P2P-TV applications. Since we do not know any detail aboutthe applications’ design and
inner workings, our methodology must allow the study of applications as black-boxes. This pro-
cedure, in contrast with reverse engineering approaches, permits to analyze any application, even
future, who follows the P2P paradigm. We run a large testbed experiments described in section
2.2 which consists in passive traces collected from 40 vantage points scattered across Europe for
three different P2P-TV applications, namelyPPLive [89], SopCast [107] andTVAnts [112].
By applying the proposed methodology, we highlight which parameters affect the peer selection
and data exchange policies. This work arose from collaboration between Politecnico di Torino,
Budapest University of Technology and Economics and Télécom-ParisTech in the context of the
NapaWine European project. Our contribution to the work hasbeen the development of the pref-
erential partition framework and the analysis of all the traces collected during the experimental
campaign.

The rest of this Chapter is organized as follows. First, we present preliminary results in 3.1,
where we present a preliminary quantitative description ofthe performed experiments. We then
introduce the methodology for the analysis of the experimental data in 3.2, introducing the metrics
that we will use to assess P2P systems network awareness. Experimental results are reported in
3.3, while we devote 3.4 to a spatial and temporal analysis ofthe peer selection process.

3.1 Preliminary Results

We recall that the description of the dataset used in this section is presented in 2.2 towards which
we invite the reader for more details.

Let us now give some preliminary definition. It has been previously observed that P2P-TV
peers exchange packets of typical length, i.e., very short packets carrying signaling information,
and much longer packets carrying video information [41]. Let Nv(i, j) be the number of packets
sent from peeri to peerj whose size is equal to the typical video packet length. To distinguish
between peers that exchanged mainly signaling information, and peers that exchanged actual video
content too, we say that Peeri is a “TX (transmitting) contributing” peer forj if Nv(i, j) is larger
than thresholdM = 5, i.e., peeri transmitted at least5 video packets to peerj. At the same time,
j is a “RX (receiving) contributing” peer fori, i.e.,j received at least5 video packets fromi. We
verified that this heuristic gives accurate and conservative results for classifying the contributing
peers. Results are also consistent with results of the heuristic presented in [41] in which only
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Table 3.1: Mean and coefficient of variation of some statistics collected during all the experiments.
PPLive SopCast TVAnts

Mean cv Mean cv Mean cv

Avg RX rate [kbps] 549 0.22 482 0.05 415 0.04
Avg TX rate [kbps] 3150 1.02 262 1.04 396 0.65
N. contacted peers 22263 0.53 740 0.29 222 0.19
N. RX contrib peers 382 0.50 139 0.43 54 0.31
N. TX contrib peers 958 0.73 137 0.54 66 0.54
% non-resp. peers 27 0.87 25 0.73 30 0.31

PPLive was analyzed.
We start by giving some preliminary insights from the collected data.
Both the average value over all the NAPA-WINE peers and the coefficient of variation (i.e.,

cv =
√

σ2(X)/E2(X), whereσ(X) andE(X) are the standard deviation and average ofX,
respectively) are reported. Tab. 3.1 presents the following simple metrics which are evaluated
considering all NAPA-WINE peers: i) receiving data rate, ii) transmitting data rate, iii) number
of contacted peers (i.e. the number of peers that successfully exchanged at least one packet), iv)
number of RX contributing peers, v) number of TX contributing peers, and vi) percentage of peers
that have never replied to any message.

The first and the second rows show the average inbound and outbound data rate, including both
video and signaling traffic. As we can expect, on the reception side, no significant difference can
be observed among the different applications, as testified by the small coefficients of variation.
This is due to the fact that the dominant component of the received traffic is constituted by the
video content, whose average rate is the same for all the peers and applications (recall that all
the considered applications adopt the same streaming encoding technique). ForPPLive dataset,
the highercv and average values suggest that the receiver rate can be higher than the stream rate.
This is due to the large incoming traffic that high-bandwidthpeers receive, i.e., to the signaling
messages they have to handle which are sent by the peers receiving the uploaded video content.

More interestingly, the transmission rates are significantly different. Indeed, the transmission
data rates are strongly dependent on the specific mechanism adopted by each system to distribute
the video content. First, the transmission data rate is largely correlated to the upload bandwidth of
peers; all the applications successfully exploit high bandwidth peers, demanding to some of them
a significant contribution. To confirm this, we investigatedthe upload rate of each NAPA-WINE
peers and we found that high-bandwidth NAPA-WINE peers are acting as “amplifiers”, i.e., they
upload much more than what they download. Instead, peers that are connected by CABLE/DSL
show much smaller upload rate. On this regard, we observe that PPLive may be significantly
demanding, so that high bandwidth peers push their average transmission data rate to more than
10Mbit/s, with short time peaks reaching 30Mbit/s. The highcoefficient of variation is also due to
difference among the upload capacity of the peers.

Huge differences among the systems arise considering the number of contacted peers, which
is on the order of tens of thousands for PPLive, up to one thousand for SopCast, and in the order of
few hundreds for TVAnts. We believe that the huge differencein the number of contacted peers is
mainly due to the algorithms used to discover and to maintainthe overlay, on which we will come
back later in 3.4.

The fourth and the fifth rows report the number of RX contributing peers and TX contributing
peers, respectively. If we compare the number of contacted peers against the number of contribut-
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Figure 3.1: Geographical breakdown of the number of peers, received and transmitted bytes.

ing peers, we can see thatTVAnts exploits the contacted peers at the highest degree, i.e., one
fourth of the contacted peers are also contributing peers. ConsideringSopCast, about 1/5 of the
contacted peers are used to download some content. Finally,in thePPLive case, the number of
contacted peers is more than 50 times higher than the number of contributing peers. Focusing on
the number of TX contributing peers (i.e., peers to which some content has been transmitted to), we
observe that peers with low upload bandwidth serve fewer peers than peers with high bandwidth.
This fact is expected since low upload bandwidth peers have limited capability to upload data to
other peers. ForPPLive, the significantly larger number of both contacted and contributing peers
explains the higher upload rate.

The last row shows the fraction of the peers which did not reply at all, i.e., failing peers. All
of the systems show a very high failing ratio (25% - 30%). Thishints to little optimization on the
P2P-TV control plane, so that outdated information is stilldistributed among peers. Moreover, we
noticed that in all experiments, NAPA-WINE peers tried to contact peers with private IP address,
with some peers performing address scan of whole subnetworks.

Fig. 3.1 shows the geographical distribution of the number of contacted peers, the amount of
received and transmitted bytes, labeled #, RX and TX respectively. China (CN) and countries in
which experiments were performed are shown, with the rest ofthe countries labeled with a star.
Percentages are expressed over the total number of observedpeers, which amounts to 181729
for PPLive, 4057 forSopCast and 550 forTVAnts. As expected, China is the predominant
country, though it is easy to gather that a non negligible fraction of the data is exchanged within
the countries of NAPA-WINE peers: this hints to a bias in the peer selection, which will be more
rigorously investigated in the following sections. The large difference in geographical distribution
of contacted peers shows that different algorithms are usedby the different applications. In par-
ticular, TVAntsseems to adopt a “smart” choice in selecting peers. Indeed, among the 550 total
peers, 154 are located in Europe and 229 in China. Considering the watched channel and time of
the experiment, the popularity of the application should bemuch higher in China than in Europe,
so that we can conclude that the observed peers are only a biased and small fraction of the total
active population. On the contrary,PPLive adopts a less smart peer discovery policy, so that the
total number of contacted peers is more than 50 times higher thanTVAntsor SopCast. In this
case, 748 peers are located in Europe only (180.000 in China).
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3.2 A Framework for Peer Selection Analysis

As previously stated, our aim is to develop a rigorous framework to unveil the “network-
awareness” exhibited by P2P-TV applications, i.e., which network parameters current P2P-TV
systems take into account when distributing the stream. We define a flexible framework that al-
lows us not only to inspect the level of “awareness” of a P2P system with respect to the underlying
network, but also to assess whether peers behave fairly withrespect one to another, i.e. if the peers
are incentivized to the mutual data exchange. In particular, we consider:

• AS(p): the Autonomous System where peerp is located

• CC(p): the Country, which peerp belongs to

• NET(p): the subnetwork, which peerp belongs to

• HOP(p, e): the IP hop-distance between peersp ande

• SYM(p, e): the symmetry of byte-wise data exchanges between peersp ande

3.2.1 Framework Definition

Let p ∈ W denote a peer that belongs to the NAPA-WINE setW. Let P(p) denote the set of
contributingpeers,p exchanges data with. That is,P(p) is composed by the peers to whichp
transmitted or/and from whichp received some video information. LetU(p) denote the subset of
peers to whichp is uploading video content, andD(p) the subset from whichp is downloading
video from.U(p) andD(p) are two (non disjoint) subsets ofP(p), andU(p) ∪ D(p) = P(p).

Let e ∈ P(p) be an arbitrary peer that exchanges traffic withp. Denote byB(p, e) the amount
of bytes transmitted fromp to e, so thatB(e, p) represents the amount of bytes received byp from
e.

Consider now a generic network parameterX(·), and denote withX(p, e) ∈ X the observed
value ofX(·) for the pair(p, e). We partitionP(p) into two classes based onX(p, e), such that one
class should intuitively be preferred from the application(e.g., good vs bad peers). More formally,
we partition the supportX into two disjoint sets: the preferred setXP and its complementXP ,
such thatXP ∪ XP = X andXP ∩ XP = ∅.

For the ease of notation, let1P (p, e) be the identity function which takes the value of 1 if
X(p, e) ∈ XP and 0 otherwise; similarly,1P (p, e) = 1 − 1P (p, e). Without loss of generality, let
us focus on the upload traffic of a NAPA-WINE peerp ∈ W, and let us define:

PeerU |P (p) =
∑

e∈U(p)

1P (p, e) (3.1)

ByteU |P (p) =
∑

e∈U(p)

1P (p, e) · B(p, e) (3.2)

PeerU |P (p) =
∑

e∈U(p)

(1 − 1P (p, e)) (3.3)

ByteU |P (p) =
∑

e∈U(p)

(1 − 1P (p, e)) · B(p, e) (3.4)

whereU and D subscripts are used to indicate the upload and download traffic respectively.
PeerU |P (p) counts the number of peers of whichp is a contributor and which belongs to the
preferential partitionXP . Similarly, ByteU |P (p) represents the total amount of bytes uploaded
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from peerp to peers in the preferential partitionXP . Conversely,PeerU |P (p) andByteU |P (p)
represent the number of peers and bytes to whichp is uploading despite they belong to the non-
preferential partitionXP . Considering now the whole setW of NAPA-WINE peers, we define the
total amount of peers and bytes as:

PeerU |P =
∑

p∈W

PeerU |P (p) (3.5)

ByteU |P =
∑

p∈W

ByteU |P (p) (3.6)

Similar definitions hold forPeerU |P andByteU |P .
Finally, we define the peer and byte preference as:

PU = 100
PeerU |P

PeerU |P + PeerU |P

(3.7)

BU = 100
ByteU |P

ByteU |P + ByteU |P

(3.8)

Intuitively, PU expresses the chance that the peer selection mechanism favors the discovery and
data exchange among peers belonging to the preferred partition XP . Similarly, BU quantifies the
chance that any given byte is uploaded to peers belonging to the XP class. Clearly, the greater
PU andBU are, the greater the bias with respect to the preferential partition of metricX is. The
advantage of using these simple metrics is that they allow adirect andcompactcomparison of
different network properties and P2P-TV systems, since they are neither sensitive to the unit of
measure, nor to the actual value ofX.

Downlink metricsPD andBD can be defined by consideringe ∈ D(p) in the previous deriva-
tion.

3.2.2 Preferential Partitions

As preferential classes, we consider the following:

• AS: 1P (p, e) = 1 if and only if AS(p) = AS(e),
i.e., both peers are located in the same Autonomous System1;

• CC: 1P (p, e) = 1 if and only if CC(p) = CC(e),
i.e., both peers are located in the same Country;

• NET: 1P (p, e) = 1 if and only if HOP(e, p) = 0,
i.e., peers belong to the same subnet;

• HOP: 1P (p, e) = 1 if and only if HOP(e, p) < median[HOP],
i.e., the number of hops betweene andp is smaller than the median distance among all
peers.

• SYM: 1P (p, e) = 1 if and only if 1/2 < B(e, p)/B(p, e) < 2,
i.e., the amount of data received (sent) is at most twice the amount of data sent (received).

1CC and AS have been determined by querying the “whois” database.
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Table 3.2: NAPA-WINE induced Bias
Contributors All-peers

App Peer% Bytes% Peer% Bytes%
PPLive 0.95 3.54 0.10 3.33
SopCast 10.25 17.71 4.60 19.45
TVAnts 29.82 56.31 15.56 56.06

While for AS, CC and NET the preferential set choice is straightforward, the HOP and SYM
cases require additional discussion. Considering HOP metric first, the hop countHOP (e, p) has
been evaluated as 128 minus the TTL of received packets, since 128 is the default TTL considering
Windows O.S. We use the median of the distribution as threshold to define two subsets. Since the
actual HOP median ranges from 18 to 20 depending on the application, we use a fixed threshold
of 19 hops for all applications. This means that, approximately 50% of the peers falls in the
preferential class.

In case of incentive mechanism, we classify a data exchange as ‘symmetric’ when the amount
of data received is at mosttwice the amount of data sent, and vice versa. We point out that while
this only enforces a loosely symmetrical relationship, we verified that the results are not very
sensitive to these threshold choice (see Sec. 3.3.4).

3.2.3 Preliminary Analysis and Issues

Given the black box approach based on passive measurement, several issues could undermine the
significance of the results unless carefully dealt with. Thefirst issue is that the NAPA-WINE peers
induced a biasduring the experiments. Recall that among NAPA-WINE peers there are several
high-bandwidth peers, located in Europe only. Furthermore, all peers within the same institution
are in the same LAN, and AS. This possibly represents an uncommon population subset.

A quantification of the induced bias is given in Tab. 3.2. It reports the percentage of i) NAPA-
WINE peers over all peers observed during each experiment, and ii) bytes exchanged among
NAPA-WINE peers over all exchanged bytes. Results are reported considering contributors only,
or all peers. As first important remark, NAPA-WINE peers clearly prefer to exchange data among
them. For example, considering contributors in thePPLive experiment, NAPA-WINE peers con-
tribute to more than 3.5% of exchanged data, even if they represent less than 1% of the contributing
peers. Similarly, they are about 10% and 30% of peers forSopCast andTVAnts respectively,
but they contribute to 18% and 56% of exchanged bytes. We stress that by restricting the analysis
to the set of peers other than NAPA-WINE, it will be possible to highlight and quantify which
properties of the NAPA-WINE peers cause such a strong bias. To solve the issue concerning
the induced bias, we introduce the setP ′(p) ⊂ P(p). SubsetP ′(p) is constituted by the peers in
P(p) excluding the NAPA-WINE peers, formallyP ′(p) = P(p) \W. We evaluate the preference
metrics also over the filtered set, gettingP ′

D, P ′
U , B′

D, B′
U , accordingly. Intuitively, restricting the

observation toP ′ is equivalent to consider peers not involved in the experiment. For example, we
expect that a preference versus a metric noticed in the full contributor set should be noticeable
also in the set deprived of NAPA-WINE peers. In case the bias is still evident, this means that the
preference wasnot artificially induced by NAPA-WINE peers.

Another problem concerns the fact that it exists acorrelationbetween the considered metrics:
for example, peers within the same subnetwork (NET=1) traverse paths of zero hop (HOP=0),
belong to the same Autonomous System (AS) and Country (CC) aswell. It may be therefore
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Table 3.3: Network Awareness as Peer-wise and Byte-wise Bias

Download Upload
Non-Napa All Contributors Non-Napa All Contributors

Net App B′
D % P ′

D % BD % PD % B′
U % P ′

U % BU % PU %

AS PPLive 6.5 0.6 12.8 1.3 0.8 0.2 1.8 0.5
SopCast 0.6 0.7 3.5 3.9 1.7 0.7 6.4 3.9
TVAnts 7.3 3.3 32.0 13.5 11.6 1.8 30.1 9.6

CC PPLive 6.5 0.6 13.1 1.4 1.1 0.3 2.1 0.6
SopCast 0.6 0.8 4.0 4.4 1.7 0.8 7.2 4.4
TVAnts 7.6 4.0 37.9 16.3 14.3 3.1 37.7 12.5

NET PPLive - - 9.9 0.8 - - 1.4 0.3
SopCast - - 2.0 2.6 - - 3.5 2.6
TVAnts - - 18.1 6.7 - - 18.1 5.4

HOP PPLive 42.2 41.1 51.4 42.4 30.4 40.4 31.7 41.0
SopCast 29.0 40.7 37.9 48.0 45.9 43.0 56.9 49.8
TVAnts 62.1 55.0 81.1 71.9 57.8 53.0 78.9 67.2

SYM PPLive 3.3 4.8 4.3 5.0 - - - -
SopCast 6.7 13.0 7.8 14.2 - - - -
TVAnts 12.4 10.9 20.0 14.3 - - - -

difficult to properly isolate the impact of each metric. At the same time, this correlation is likely to
hold for the NAPA-WINE peers mainly, since they form “clouds” of high-bandwidth PCs within
the same LAN, CC, and AS. Considering the setP ′, where the correlation related to the locality
among peers is smaller, it will be possible to identify whichmetric has the highest impact.

All the observed parameters can be evaluated considering separately the download and upload
direction of traffic, e.g., we can observe from (to) which countries the NAPA-WINE peers prefer
to download (upload) the content. Notice that, for HOP metric, we can only directly measure
HOP(e, p), but not HOP(p, e) which can be in general different from HOP(e, p) due to Internet
path asymmetry. However, we point out that the adoption of a coarse-granularity should minimize
this issue. Indeed, it is likely that HOP(e, p) ∈ HOPP , then HOP(p, e) ∈ HOPP as well, i.e., it is
unlikely that the reverse path HOP(p, e) is short when the direct path HOP(e, p) is long. Finally,
note that to compute the SYM metric it is necessary to comparethe amount of transmitted and
received data between any pair of peers.

3.3 Experimental Results

Empirical evaluation ofPPLive, SopCast and TVAnts network-awareness is reported in
Tab. 3.3. Specifically, we report, for both upload (U ) and download (D) directions, the peer-
wise (P ) and byte-wise (B) preference metrics for each of the different network properties early
considered. Tab. 3.3 details results referring to the wholecontributor set (PU , PD, BU , BD) and to
the contributor set excluding the NAPA-WINE peers (P ′

U , P ′
D, B′

U , B′
D).



56 3. PASSIVE ANALYSIS

3.3.1 AS and Country Awareness

We first turn our attention to location awareness by considering the AS and CC metrics. Consid-
ering download direction, it can be seen thatSopCast is unaware of AS location. Indeed,PD

is almost equal toBD, which suggests that peers in the same AS are not preferentially selected
to download data from. On the contrary, bothPPLive andTVAnts show higher AS-awareness.
Considering non-NAPA-WINE contributors, aPPLive peer downloads fromP ′

D=0.6% of peers
B′

D=6.5% of traffic, i.e., there is a byte preference 10 times larger than a peer preference. The
same factor holds including NAPA-WINE peers (which then do not bias the results). Similarly,
for TVAnts, B′

D=7.6% of the bytes are downloaded fromP ′
D=3.3% of the non-NAPA-WINE

contributors, i.e., aB′
D/P ′

D ratio equal to 2. Also, notice that 0.04% ofall peers are in the same
AS of NAPA-WINE peers in case ofPPLive, and 3.6% in case ofTVAnts. Still, as 1.3% of
thecontributingpeers are located in the same AS forPPLive, and 13.5% forTVAnts, we can
conclude thatPPLive exhibits a stronger preference for peers within the same AS thanTVAnts.

Looking at the downloaded traffic with respect to the peer Country, we notice that almost the
same percentages are observed as in the AS preference case. Since two peers in the same AS are
also located within the same Country, we can conclude that nocountry preference is shown, i.e.,
the CC preference is due to the AS preference. Finally, considering the upload directions, similar
conclusions can be drawn.

3.3.2 NET Awareness

We now evaluate the potential preference to exchange trafficwith peers in the same subnet (NET).
The set of peers in the same subnet includes only NAPA-WINE peers, i.e.,P ′ = ∅. Results show
that also in this case,PPLive andTVAnts only exhibit NET awareness, for both upload and
download directions. Indeed, about 10% and 18% of the bytes are received from about 1% and
7% of hosts which are in the same subnet respectively. Conversely, SopCast does not show
any evidence of subnet awareness. However, the NET preference can be also enforced by the AS
preference. Looking at the ratio betweenP overB for the AS and NET preferences, we observe
that they are very similar. This points out that peers in the same autonomous system but not in the
same NET are equally preferred as the peers in the same NET (and in the same AS). Therefore,
the AS preference is stronger than the NET preference. Notice also that the AS locality is overall
quite marginal, so that the majority of the traffic is still coming from other ASs. As such, there is
large margin to improve the network friendliness of P2P-TV applications.

3.3.3 HOP Awareness

We also investigate the HOP count preference. In this case, no particular evidence of preference
toward shorter paths is underlined. Indeed, looking at the non-NAPA-WINE peers, almost no
difference emerges comparingP ′ andB′. Only TVAnts shows a small preference to download
from closer nodes.

To further testify this finding, Fig. 3.2 reports the Cumulative Distribution Function (CDF) of
contacted peers (solid line) and of the received bytes (dashed line) versus the distance between
peers in hop count, not including the NAPA-WINE peers.TVAnts only shows a slight commit-
ment to the closest peers, whileSopCast andPPLive seem to ignore peer distance considering
the hop number.
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Figure 3.2: CDF of the number of peers and the amount of received data versus the number of
hops.
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3.3.4 SYM Incentive Mechanism

Considering P2P file sharing applications, incentives mechanisms have been successfully intro-
duced to improve system performance. For example, BitTorrent clients play a tit-for-tat game
with other peers, so that the more a peer sends to a neighbor, the more it will receive from it. This
enforces a sort of symmetry between the amount of bytes sent and received by peers.

We explore whether there exists some incentive mechanism that enforces symmetry in P2P-
TV systems as well. Results are reported in Tab. 3.3: Even if we arbitrarily report SYM under
the download section of the table, we recall that it is a metric that requires to compare the amount
of traffic exchanged in both directions (upload and download) between two peers. Considering
non NAPA-WINE peers, it emerges that only a small percentage(from 5% consideringPPLive
to 13% consideringSopCast) of the links are symmetrical. Moreover, the amount of data ex-
changed between these peers is not predominant (less than 12%). This suggests that P2P-TV sys-
tems do not enforce any tit-for-tat like mechanism. Indeed,being the download rate constrained
by the actual video rate, these systems are engineered in such a way that peers with limited upload
capacity can receive the video stream anyway, even if they are not able to re-distribute it.

This is highlighted in Fig. 3.3, which reports the amount of transmitted versus received bytes
considering contributing peers. Intuitively, if a tit-for-tat like incentive mechanism were imple-
mented, then a strong correlation should be observed so thatpoints accumulate along they = x
diagonal. Log/log scale is used to better represent results. The area between the TX/RX=2
and TX/RX=1/2 lines corresponds to symmetrical exchanges as previously defined. Looking at
Fig. 3.3, it can be seen that the wide majority of points fall outside this area, as already reported
in Tab. 3.3. Only in theSopCast case, a cloud of points lies in the symmetry strip, though such
points correspond to moderate amount of data (i.e., few thousand Bytes). ConsideringPPLive,
we observe that a lot of points accumulate along they = 10x line, corresponding to peers that
mostly download data from the NAPA-WINE peers2. The dense points accumulating around
y = 104 andx = 104 are also a consequence of a private mechanism of the application. Summa-
rizing, no evidence of a symmetric tit-for-tat like incentive emerges for any system.

To summarize, we have shown that the three applications behave differently, and by means
of inference on passive measurements, we have empirically quantified these differences. While
our results point out the lack of network awareness of such systems, the picture is far from being
complete: for instance, the different behaviors are a direct consequence of specific, proprietary
and therefore unknown mechanisms adopted by such systems. However, we point out that by pure
black-box measurement is unfortunately impossible to understand what are the specific algorithms
implemented, as well as the parameters adopted by each system.

3.4 Dynamics of Contacted Peers

In this section we supplement the analysis of peer selection, by inspecting its dynamics from both
a temporal and a spatial point of view as well.

3.4.1 Temporal Analysis

To better understand the peer selection process, Fig. 3.4 plots the dynamics of the contacted peers
versus time. One arbitrary NAPA-WINE peer is represented ineach figure, since they are qualita-
tively all similar. ForPPLive the behavior of both high-bandwidth and DSL nodes are reported.

2The factor 10 can be explained by considering thatPPLive protocol uses some acknowledgment message to
possibly confirm the reception of data packets. The size of ACKs is about 1/10th of the size of data packets.
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Figure 3.4: Arrival and Departure process of the all and video contributing peers.
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The continuous line reports the total number of contacted peers versus time, while the squared dots
show the arrival of contributing peers, whose departure is shown by the crosses in the same line.
In this context, the arrival and the departure of a peer is identified by the time of the first and last
observed packet from it, respectively. Positive y-axis reports the remote peers that were contacted
by the NAPA-WINE peer first, while negative y-axis reports the peers that were the initiator of the
connection toward the NAPA-WINE peer. ForPPLive, the evolution of the number of contacted
peers is reported in Fig. 3.5, since it is much larger larger than other quantities.

Both TVAnts andSopCast limit this rate as soon as a good set of contributing peers is
obtained (after about 250s and 500s respectively). On the contrary,PPLive has a stronger greedy
behavior, essentially contacting new peers at an almost constant rate. These different overlay



60 3. PASSIVE ANALYSIS

exploration algorithms clearly drive the total number of contacted peers, which is much higher for
PPLive.

As already observed in Tab. 3.1, the number of contributing peers is limited to few tens for
TVAnts andSopCast. In addition, the set of contributing peers is rather stablealong the whole
experiment duration, i.e., the contributing peer contact time lasts several tens of minutes. In the
case ofPPLive on the contrary, the number of contributing peers is much higher (several hun-
dreds, up to one thousand) and it exhibits a higher degree of variability. This can be explained
considering the fact that the number of possibly good candidates is higher, and the peer selection
policy continuously tries to improve performance by testing new peers. No major difference is
shown between DSL or high bandwidth nodes considering the number of contributing peers that
are contacted by the NAPA-WINEpeer. On the contrary, the number of peers that initiated a con-
nection to the high-bandwidth peer is larger than the one that initiated a connection to the DSL
node. That is, the high-bandwidth peer gets more requests. This suggests that the information
about the peer upload capacity is made available to other peers.

3.4.2 Spatial Analysis

Finally, we complete our analysis of the peer selection process by considering the spatial properties
that can be inferred by exploiting our large number of measurement points. Fig. 3.6 shows the
CDF of the common contributing peers, i.e., the probabilitythat a contributing peer is seen byN
different NAPA-WINE peers (on the x-axis).

For example, Fig. 3.6 shows that for PPLive, there are 50% of the peers can be observed by
only 1 NAPA-WINE user and 70% of the peers can be observed by either 1 or 2 NAPA-WINE
users. For SopCast, about 30% of peers are seen by only one NAPA-WINE peer, and 40% as seen
by two NAPA-WINE users. These percentages reduces to less than 15% for both cases. Similarly,
considering the probability that a peer has been contacted by at least 20 NAPA-WINE peers, we
notice that for PPLive, the probability is close to one, meaning that a negligible set of peers have
been contacted by more than 20 NAPA-WINE hosts; for SopCast,this probability is 0.8, meaning
that there are about 20% of the peers that exchanged data withmore that 20 different NAPA-
WINE hosts; for TVAnts, there are 50% of the peers that are contacted by more than 20 different
NAPA-WINE hosts.

In case a random independent and identically distributed (i.i.d.) selection is performed, the
common peers CDF follows a Binomial distribution. On the contrary, in case of a correlated
choice (i.e., when certain peers are preferred to other peers), a different trend is expected; for
example, a more linear CDF would suggest that peers prefers to contact the same subset of peers.

We assume that the number of contributing peers that exchanged data with NAPA-WINE peers
during the experiment is a small fraction of all available peers. This assumption is supported by
Fig. 3.1, in which TVAnts population is largely biased, suggesting a “smart” choice by peers.
Furthermore, Fig. 3.4 shows that both TVants and Sopcast usea peer discovery mechanisms
which is very greedy during the first part of peer life, after which the peer discovery rate slows
down.

Fig. 3.6 clearly shows that forSopCast andTVAnts experiments the selection of peers from
which to download is performed according to some algorithm that tends to correlate peer choice.

For example, consider the probability that no more than 20 NAPA-WINE peers select the same
contributing peer. ForPPLive, is almost one, it is about 0.8 forSopCast, and it is about 0.5 for
TVAnts. Indeed, forTVAnts, there are some peers that have been selected as contributing peers
by most of the NAPA-WINE peers.
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3.5 Conclusions

In this chapter we have proposed a methodology to highlight which metric is exploited by P2P-
TV applications to optimize the video delivery. Considering three popular P2P-TV applications,
namelyPPLive, SopCast andTVAnts, we conclude that only TVAnts and PPLive exhibit a
mild preference to exchange data among peers in the same Autonomous System. At the same time,
no preference versus country, subnet or hop count is shown byany system. Despite the content is
available from peers on the same LAN, about 82% of the video chunks are fetched from peers out-
side the LAN considering TVAnts. Percentages grows to 90% for PPLive and 98% forSopCast
respectively. Moreover, only 32% of the content is fetched from peers inside the Autonomous Sys-
tem where TVAnts peers are. Even worse, PPLive andSopCast peers receive the large majority
of traffic from outside the AS (87% and 96% respectively). Thepresented results underline the
need for the development of newer and network friendlier P2P-TV systems, an interesting topic
deserving future investigation. To this extent, the principal goal of the NAPA-WINE project is to
design a novel P2P-TV system thatexplicitelyoptimizes ISP resource utilization. According to the
NAPA-WINE vision, peers should download/upload the streamfrom/to nearby peers, they should
minimize the path length, and in general they should leverage information about the network sta-
tus. According to the results presented in this chapter, very little network awareness is embedded
in current P2P-TV applications.

We believe that a much higher level of “network-awareness” has to be embedded in P2P-
TV systems to better exploit and optimize the ISP resource utilization. In the context of the
NAPA-WINE project, we are currently investigating how to reach this goal, e.g., to improve traffic
localization, seeking shorter paths, exploiting topologyknowledge, etc.
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Chapter 4

Hybrid Analysis

In this Chapter, whose results have been published in [97], we develop an hybrid methodology
which overcomes the problems found in chapter 3 (i.e., the evaluation of preference towards path-
wise properties) and that exploitsactive techniques to artificially enforce path-wise metrics in a
controlled testbed to analyze chunk trading policies. We modify the analysis procedure presented
in chapter 3 developing a newpassive techniquethat is used on the same data set of section 2.2 to
infer application preference with respect to peer-wise metrics.

We apply this methodology to the study ofPPLive where the combination of both techniques
allows us to draw conclusions that are otherwise precluded using either methodology alone.

Let us briefly summarize the main contributions of this chapter are as follows:

• First, we propose a black-box methodology, based on a combination of active and passive
measurement techniques, to assess the level of network awareness and friendliness of cur-
rently deployed Internet P2P-TV applications.

• Second, we apply our methodology to the analysis ofPPLive finding that geo-localization,
while not explicitly enforced by the application, actuallyarises as beneficial side effect of
bandwidth preference.

• Third, the methodology allows to investigate the relative preference of different metrics as
well: in the case ofPPLive, we find that the peer selection process is continuously updated,
with a relative preference among path-wise properties thatdepends on the actual magnitude
of the metrics.

The reminder of the chapter is organized as follows. After having described the methodology
in Sec. 4.1, we apply it to the analysis ofPPLive reporting experimental results of active and
passive techniques in Sec. 4.2 and Sec. 4.3 respectively. Finally, Sec. 4.4 concludes the chapter.

4.1 Methodology

As previously outlined, our aim is to define a methodology able to tell whether a P2P-TV system
has some level of knowledge of the underlying IP network, andwhether it exploits this knowl-
edge to bias the selection of the overlay neighborhood – especially for what concerns the chunk
download preference. From a high level perspective, we can define two categories of metrics that
pertain to network awareness:
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Figure 4.1: Path-wise metrics: Active testbed setup

• Path-wise metrics, such as IP path length (hops), loss rate, RTT delay, available bandwidth,
etc., are determined by the conditions on the end-to-end path between two peers in the
overlay.

• Peer-wise metrics, such as Autonomous Systems, geographical location, /16 or/24 IP pre-
fix, access capacity, etc., instead only depend on properties of a single peer.

In this work, we use two separate sets of experiments to assess the awareness of a P2P-TV system
with respect to metrics falling in either of the two above categories:

• On the one hand, we exploit anactive measurementtechnique to enforce controlled arti-
ficial conditions (such as path length, delay, loss and bottleneck bandwidth) on a specific
network path in an Internet-scale testbed.

• On the other hand, we adopt a livepassive measurementapproach, where we perform
contemporary live measurement of unmodified peers from multiple vantage points, in order
to investigate properties (such as AS or geographical location) belonging to real overlay
peers.

4.1.1 Path-wise: Controlled Testbed

For preference related to path metrics, we setup a controlled testbed to enforce artificial network
conditions as in [5], from which our approach differs for twomain reasons. First, we decide to
completelycontrol the path metrics. This means that, unlike [5] where impairments are addi-
tionally enforced beyond the actual network conditions, weknow precisely the conditions of the
different peers involved in the experiments. Second, we notonly test the impact of each metric in
isolation, but also investigate their combined effect as well.

The configuration used for all active experiments is shown inFig. 4.1. We use three modern
desktop PCs equipped with dual-core processor running native installations of Windows XP and of
the P2P-TV application, which in our case isPPLive 2.4. Two machinesA andB are connected
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to a network switch through their 100 Mbps Ethernet interfaces. Traffic is observed at the probe
PCP , which is connected to the switch through a machine, referred to asFw/Net in the picture,
running a linux kernel 2.6 and acting as a bridge, firewall andnetwork emulator. Notice that a
large population of users, as well as the primary source of the video itself, is reachable through the
Internet.

At start-up, all machinesA, B, andP runs undisturbed clients for 5 minutes. During this
start-up period (where we verify that play-out starts and that the clients are visually synchronized
within a 1-2 seconds range),P naturally receives most of the traffic from Internet hosts. Then,
at timeFon = 5 min, firewall rules are established atFw/Net to block traffic coming from the
Internet towardP , which can thus only receive traffic coming from eitherA or B. In this case,
hostsA andB will still receive the video from the remote Internet peers,but our probeP will be
forced to receive the totality of the video fromA andB.

We then introduce, starting atRon = 10 min, artificial network emulation rules (such as packet
loss, RTT delay, bottleneck bandwidth limitation, etc.) onthe path that joins our probeP to the
hostsA andB from which he is receiving the video content. We point out that, our aim being to
understand how the system biases its peer selection duringnormaloperation, we verify that probe
P is correctly receiving the video stream. When a path metricX is considered in isolation, we
artificially worsen network conditions (e.g., increase packet loss rate, delay, etc.) solely on the
path from machineA to P , by properly configuring the queueing discipline onFw/Net. Rules
on path fromB to P are instead enforced only to investigate the relative importance of different
metrics (e.g., delay onA → P and loss onB → P ). Finally, artificial network conditions are
turned off at timeRoff = 20 m and firewall limitations are removed atFoff = 25 m.

The above setup allows us to focus on thebreakdownof the bit-rate received atP between
its contributors (i.e.,A, B and Internet hosts), and to expresses in a visually simple way the
network awareness of the P2P-TV application. Consider indeed the period when artificial network
emulation rules are applied on the path fromA to P , for instance: clearly, in absence of bias with
respect to a given metricX, we expect the breakdown of the traffic received atP to be unaffected
from variations ofX. Conversely, a varying breakdown will reflect system awareness toX, with
the extent of the breakdown variation as rough indication ofthe system sensitivity toX.

4.1.2 Peer-wise: Multiple Live Measurement

The analysis of preference related to peer properties is instead based on a large testbed, setup in
the context of the NAPAWINE project [73] which we described in 2.2. In this case, we mine the
data gathered from the experiment in order to infer additional information concerning the P2P-TV
system bias on peer-wise properties.

The main idea is to use acorrelation-basedanalysis of any given peer-wise metricX and the
amount of bytes exchanged between contributor peers. As peer-wise metricsX, we will consider
the Autonomous System (AS) and geographical Country (CC) properties. In this case, our aim is
to test whether two peers that belong to the same AS/CC exchange more data than faraway peers,
gauging the importance ofX in the peer selection process.

4.2 Experimental Results: Path-wise Metric

Let us start by inspecting path-wise preference, by means ofthe controlled testbed depicted early
in Fig. 4.1. Initially, we study path-wise metrics in isolation, enforcing either (i) decreasing bot-
tleneck bandwidth, (ii) increasing packet loss rate, (iii)increasing RTT delay, (iv) increasing IP
hop count on the path from hostA to the probeP .
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We then inspect the relative importance of the above metricsin the peer selection process by
jointly considering different metric combinations, applying one condition (e.g., bottleneck band-
width) on the path from the hostA to the probeP , and a different condition (e.g., packet loss rate
or RTT delay) on theB → P path.

4.2.1 Bottleneck Bandwidth

Results of the first experiment are reported in Fig. 4.2-(a).Time of the experiment runs on the x-
axis, while the firewall start and end times are reported on the top axis as a reference. A decreasing
bandwidth profile is enforced starting atRon by means of a token bucket filter, with steps of
C = {50, 10, 1, 0.5, 0.25} Mbps every 2 minutes, as shown by the thick black line. Valuesof
the bottleneck bandwidth are reported on the right y-axis, and the bottleneck is removed atRoff .
The time evolution of the aggregatedreceivedrate atP is reported in the top portion of the plot,
averaged over 20 seconds intervals. It can be seen that, after an initial start-up phaset < Fon in
which the incoming rate peaks up to 1.2Mbps, the aggregated received throughput atP is steady
around 400 Kbps, which account for both signaling and video traffic. Moreover, notice that the
aggregate rate is undisturbed during thewholeexperiment, hinting to the fact that traffic shaping
did not perturbed the perceived quality of service.

Bottom plot of the figure report thebreakdownof the traffic incoming atP with respect to the
different hosts that sent the traffic toP : hostA is depicted at the bottom with light (green) color,
hostB with dark (red) color and the remaining Internet hosts with adashed pattern. It is easy to
gather that, before firewall rules are in placet < Fon, more than 80% of the incoming traffic is
received through Internet hosts. As soon as firewall rules start att = Fon, P is forced to receive
traffic exclusively from hostsA andB: since duringFon < t < Ron, no bottleneck bandwidth
is enforced yet, the traffic splits roughly equally betweenA andB, as the network condition and
play-out time of hostsA andB are alike. Then, as soon as a 50 Mbps bottleneck bandwidth kicks
in at Ron, PPLive immediatelystarts preferring the unconstrained hostB, which then provides
the most significant portion of the traffic toP .

This observation is important as it means that (i)PPLive is extremely sensitive to the band-
width and (ii) that it may over-react or perform faulty bandwidth estimations. This behavior might
be due to the token bucket shaper used to enforce bandwidth limitations, causing strange arrival
patterns that mingle the bandwidth estimation algorithm. Moreover, packet time stamping may
also bias the results (e.g., by poor timing due to clock drift, clock skews due to NTP synchroniza-
tion, etc). More likely, since packets of the same chunk are sent out in bursts [41], implementation
of hardware card and drivers may play a very important role aswell, especially due tointerrupt
coalescing: this feature, aimed at avoiding the overkill of raising an IRQ signal for every packet
received, makes the cards wait during a short time-window for the arrival of other packets prior
to notify the reception to the upper layers. Since packet time-stamping is then performed by the
OS, this means that interrupt coalescing has a possibly verynasty impact on the bandwidth esti-
mation as well, because two consecutive packets received bythe card during the same interrupt
coalescing window will then be sent to the upper layer almostat the same time. As a consequence,
bandwidth and capacity estimation tools that are based on packet pair or packet dispersion, will
rather measure the PCI bus speed more than bottleneck in the network.

Finally, bottleneck limitations are removed atRoff , which partly removes the breakdown bias
toward hostB; this holds until the firewall limitations are removed as well at Foff , after which
contributors are again to be found mainly among Internet hosts.
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Figure 4.2: Path-wise metrics:PPLive aggregated received rate atP (top) and its breakdown
betweenA, B and Internet hosts (bottom) for varying bottleneck bandwidth (a) and packet loss
(b). Profiles of the bottleneck bandwidth and packet loss impairments are reported as solid black
lines directly in the plot and refer to the right y-axis. PPLive shows a great sensitivity towards path
capacity variations while it reacts only to very high loss rates

4.2.2 Packet loss

We then conduct similar separate experiments for the other considered metrics, enforcing a single
impairment at any time. Results for the packet loss rate experiments are reported in Fig. 4.2-
(b) using the same similar visual presentation (i.e., aggregated rate, breakdown and packet loss
profile).

We notice again that the incoming traffic rate atP is steady for any packet loss rate: indeed,
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since only the pathA → P is impaired,P has still the possibility to receive the rest of the video
from B. In this experiment, starting at timeRon, we increased packet loss rate experienced by
hostA using the profileL = {0.01, 0.1, 1, 10, 20}%.

As the picture clearly shows,PPLive is not very sensitive to packet loss: noticeable changes
in the breakdown happens only when packet loss percentageexceeds10% –indeed when loss rate
is 10%, still more than half of the data is downloaded from theimpaired hostA. If we couple
this observation to the fact that, despite packet loss increases considerably, the sent traffic rate
(measured atA and not shown in the picture) does not increases proportionally, we can conclude
thatPPLive seems to use an effective FEC techniques, as already observed in [5].

4.2.3 IP Distance

We then test whetherPPLive is aware of the host proximity, which we measure in terms of
the number of IP routers that packets cross on their path across the network. Applications using
raw UDP sockets can infer IP proximity by means of the Time To Live (TTL) field of IP packet
header, which is initially set to an OS-dependant value (namely 60 or 64 for BSD and Linux,
128 for Windows) and then decremented by one unit at each hop in the network. We artificially
increase the number of hops on the path fromA → P by subtracting the number of additional
hopsH = {1, 2, 32, 64, 100} from the IP TTL header field atFW/Net.

As before, a change in the hop profile is enforced every two minutes, and the results are shown
in Fig. 4.3-(a). As there is no noticeable change in the breakdown irrespectively of the additional
hops values, we can conclude thatPPLive is either unaware the IP hop distance between two
hosts, or that its inner algorithms do not rely on this piece of information.

4.2.4 RTT Delay

Finally, we verify whetherPPLive does instead take latency measurement into account. We
increase the delay on theA → P path so that the Round Trip Time (RTT ) equalsRTT =
{0.1, 0.2, 0.5, 1, 2} s, and report the results in Fig. 4.3-(b).

The plot clearly assert thatPPLive is not very sensitive to the delay, as the breakdown do
not show any noticeable change until the round trip delay grows very large (RTT > 1 s). We can
thus conclude thatPPLive peers do not bias their download policy in terms of nodes proximity,
neither in terms of IP hop distance, nor in terms of delay. In other words,PPLive does not seem
to implement proximity techniques such as [3,12,39,71,79,92,93].

Yet, another very important remark can be gathered from the picture. Indeed, whenRTT >
1 s, the breakdown drastically drops: this suggest thatPPLive doesactually measureRTT ,
which is however not used afterward for the proximity-basedvideo contributors selection. This
behavior can be explained by recalling that one of the main aim of scheduling in P2P-TV streaming
is to reduce as possible the play-out delay of the whole system. Therefore, despite useful video
content may be available at highRTT peers, such peers are preferentially discarded as they may
not timely contribute to the video content delivery, and as such they would increase the whole
system play-out delay. In other words, it seems thatPPLive, streaming to keep a low end-to-end
play-out delay, usesRTT as a “sanity-check” and disregard such peers on purpose to avoid the
system pollution.

4.2.5 Combined path-wise metrics

In order to further refine the knowledge concerningPPLive network awareness, we investigate
how PPLive reacts to different combination of impairments, so to sketch a relative order of
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Figure 4.3: Path-wise metrics:PPLive aggregated received rate atP (top) and its breakdown
betweenA, B and Internet hosts (bottom) for varying IP hop distance (a) and RTT delay (b).
Profiles of the IP hop distance and RTT delay impairments are reported as solid black lines directly
in the plot and refer to the right y-axis. Here, PPLive shows no awareness of IP distance and a
mild sensitiveness towards Round Trip Time.

importance of the above metrics. As we shown thatPPLive is not sensitive to IP hop count, we
now limitedly consider packet loss, RTT delay and bottleneck bandwidth limitations, applying an
impairmentX on theA → P path, and another impairmentY onB → P at the same time.

For the sake of readability, we consider only a couple of values for each metric (i.e.,Xhi > Xlo

andYhi > Ylo) and investigatePPLive behavior on the four different operational points resulting
from their combination(X,Y ) ∈ ({Xhi,Xlo}×{Yhi, Ylo}). Results are shown in Fig. 4.4, which
reports for the sake of readability the value of the impairment applied to a specific path directly on
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Figure 4.4: Path-wise metrics: Combined impairments, considering RTT delay vs bottleneck
bandwidth (top plot), bottleneck bandwidth vs packet loss (middle plot), RTT delay vs packet
loss (bottom plot). Relative importance of impairments depends on their actual magnitude.

the plot. In this case, to avoid cluttering the pictures, we no longer report the aggregated received
rate but limitedly depict its breakdown.

4.2.5.1 Delay vs Rate

Top plot of Fig. 4.4 reports the case in which we apply a delayRTT = {1, 2} s on theB → P path
and enforce a rate limitation ofBW = {0.4, 1}Mbps onA → P . It can be seen that preference
goes toward bandwidth limited host, and is mainly driven by the bottleneck bandwidth: indeed,
almost all content is downloaded fromA when the rate limit is set to 1 Mbps, irrespectively on the
delay towardB. Once the bottleneck rate drops toBW = 0.4 Mbps, the number of video chunks
downloaded fromB slightly increases (even though the rate limit would allow almost the whole
content to be downloaded fromA), but no noticeable effect of RTT variation is shown.

4.2.5.2 Rate vs Loss

Middle plot of Fig. 4.4 refers to a rate limitationBW = {0.4, 1}Mbps onB → P and loss rate
L = {10, 20}% onA → P . In this case, contrary to the previous experiment, we see that both
metrics have an impact in determining the breakdown. WhenL = 10% breakdown is roughly
equal forA andB, with a slight bias towardA when bandwidth towardB drops at 0.4 Mbps.
When losses instead grows toL = 20%, the bandwidth limited host is always preferred, though
the actual bandwidth limit still slightly influences the breakdown value.

4.2.5.3 Delay vs Loss

Finally, bottom plot of Fig. 4.4 refers to a delay enforcement of RTT = {1, 2} s onB → P and
loss rateL = {10, 20}% onA → P . Again, both metrics play an important role in determining
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the breakdown, depending on the impairment level. As expected, lossL = 10% do not constitute
a significant impairment, as such lossy path is preferred toward high RTT path: when RTT=1 s,
peerA is almost completely ignored. Behavior changes completelyas soon as losses grow to
L = 20%, in which case breakdown favors completelyB whenRTT = 0.5 s and is more fairly
split whenRTT = 1 s.

The above observations allow us to conclude that therelativepreference of path-wise metrics
is weighted on the ground on the actual magnitude of the impairment. In principle, we point out
that by exploring a wider number of(X,Y ) impairment couples, it should be possible to get an
even finer picture of the relative preference, but this fallsoutside the scope of this work.

4.3 Experimental Results: Peer-wise metric

In this section, we refine the picture ofPPLive awareness by mining data gathered in the
multiple-vantage point testbed. Following the methodology defined in [41], we extract from our
traces about 16500 peers that contribute by providing videocontent. We focus on peers’ Au-
tonomous System (AS) and geographical location, which we represent by Country Code (CC)
information. For each probe peerx in the testbed, we analyze theCC andAS properties of all
its contributors peersy, gathered bywhoisand open IP databases queries. We point out that con-
tributorsy in this case may be either probes taking part in the experiment, or external peer of real
users. As such, we no longer control the properties related to their path, and we need to infer them
from packet level traces in case of need.

As core tool in this case, we use a correlation-based analysis, inspired by Principal Compo-
nent Analysis (PCA) technique. While PCA [81] is often used for dimensionality reduction –i.e.,
to transform a set of correlated variables into a smaller subset of uncorrelated variables, called
principal components– in our case our aim is to gauge the extent of the correlation, so to show the
existence of a dependence (if any) between these variables.

More precisely, let us consider a set ofN contributor peersp1..pN observed during an ex-
periment. By denoting withXi = X(pi) the value of propertyX for peerpi and similarly with
Yi = Y (pi) the value of propertyY for the same peer, we measure the correlation betweenX and
Y over the whole experiment as:

ρ(X,Y ) =
cov(X,Y )

σXσY
=

E[(X − µX)(Y − µY )]

σXσY
(4.1)

whereµX andµY are the means ofX andY over all samples,σX andσY are the sample standard
deviations ofX andY respectively. Usually, (4.1) is referred to as the Pearson product-moment
correlation coefficient [24] which, dropping the sum boundsfor the sake of readability, can be
rewritten as:

ρ(X,Y ) =

∑

XiYi − nE[X]E[Y ]

(N − 1)σXσY

=
N

∑

XiYi −
∑

Xi

∑

Yi
√

N
∑

X2
i − (

∑

Xi)2
√

N
∑

Y 2
i − (

∑

Yi)2
. (4.2)

4.3.1 Autonomous System and Geo-location

We are interested in assessing ifPPLive is AS- andCC-aware, and whether its video scheduling
policy exploits such information – i.e., if in other words our PPLive probes tend to download
video content from contributors falling in the sameAS or CC. By mining the experimental data,
we find that, despite only1.3%(1.4%) of peers fall in the sameAS(CC) of the probe, about the
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12.8%(13.1%) of bytes are downloaded from them. To further quantify this evident degree of geo-
localization among contributors, we evaluate the coefficient of correlationρ between the amount
of bytesRX received from any given contributorx and the fact that this contributor belongs to the
sameAS or CC. Considering all probesx in the experiments, and by using the indicator function
I(x, y) = 1 when bothx andy belong to the sameAS or CC, we obtainρ(RX,AS) = 0.21 and
ρ(RX,CC) = 0.17 respectively, which accounts for modest (though not negligible) correlation.

This is however surprising, since the controlled testbed early suggested thatPPLive peers are
greedy in terms of bandwidth, but that are not sensitive otherwise to the fact that contributors are
“close” in underlay terms (e.g., IP distance or latency).

4.3.2 Bandwidth

We are therefore interested in assessing if (and to what extent) the geo-location can be a (rather
desirable)side-effectof PPLive bandwidth sensitivity. Therefore, we further evaluate theband-
width (BW) between probes and contributor by measuring the throughput of chunks, which are
typically sent out in packet bursts, to further investigatethe existence of correlation between peer-
wise metrics.

4.3.2.1 Bandwidth estimation techniques

Since we are unaware of the technique actually employed byPPLive to measure the available
bandwidth, we adopt a hands-on approach: we estimateBW using multiple techniques, and re-
quire an agreement of our observations overall techniques. Considering only the downstream
traffic direction of a contributing peer toward one of our testbed probes, we evaluate theBW over
windowsof fixed length. We express the window length in terms of either (i) a number of con-
secutive packetsN or (ii) a temporal duration∆T . Let us denote byti andBi, respectively the
arrival time and size of thei-th packet downloaded by probex from contributory during the cur-
rent observation window. In case of fixed-length packet trains, we estimate the bandwidthBWN

over the current window as the amount of bytes carried by the train of consecutiveN packets as:

BWN =

N
∑

i=2

Bi/(tN − t1) (4.3)

In case of fixed-duration trains, we estimate the bandwidth as:

BW∆T =

N(∆T )
∑

i=1

Bi/∆T (4.4)

whereN(∆T ) is the number of packets received during∆T .
As far as the window lengthN and duration∆T are concerned, we point out that their choice

is made complex not only by the fact that we are unaware of the chunk size and chunk start
time, but also from the fact that the estimation can be severely influenced by factors such as
interrupt coalescing1 (which however affects both our estimates andPPLive methodology as

1Interrupt coalescing is a feature of modern network cards that limits the number of interrupt to improve perfor-
mance. Usually when a packet is received by the NIC, the card raises an interrupt to notify the OS that a packet has
arrived and action is needed. At high speeds this can quicklyoverwhelm the OS interrupt handling and slow down
system performance. When interrupt coalescing is enabled,the network card raises the interrupt only when a train of
packet has been received or a timer has expired; in this way the number of interrupt that have to be serviced by the OS
is lowered. In our measure this feature becomes a problem because the timestamp done by pcap libraries is done at
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Figure 4.5: Scatter plot of received traffic versus estimated mean bandwidth (log-log scale).

well). We argue that choosing large values ofN and∆T would yield less noisy results, but due to
chunk scheduling policy, it may introduce abias in the result. Intuitively, counting the number of
packets over large time windows equals to count the number ofchunk exchanged, rather than their
actual transmission throughput: using large windows, peers that more actively contributed to the
transmission will thus appear asbothpreferred and high-bandwidth, introducing thus an artificial
correlation between the two terms. To avoid this bias, shorter windows should be preferable. At
the same time, too small values ofN and∆T should be avoided: indeed, as packets are sent out
in bursts, it may happen that interrupt coalescing (which weverified to be present in out traces)
can squeeze the packet arrival pattern and increase the estimatedBW .

In reason of the above observations, we select values ofN = {5, 10, 20} packets and∆T =
{50, 100, 250} ms. For every peer pair, we then construct a series of severalBW samples gathered
during the whole experiment, of which we then compute the mean and 99-th percentile (p99)
values: we argue that both statistics are relevant, since the mean value is indicative of instantaneous
network conditions, whereasp99 may be more representative of peery access capacity. For interest
reason, we will only report a subset of results, selectingN = 10 packets and∆T = 100 ms, since
we verified that the same conclusions holds using the other parameters as well.

Scatter plot of the amount of received traffic versus mean bandwidth BW∆T is depicted in
Fig. 4.5, using∆T = 100 ms and log-log scale. Blue points represent exchanges between any two
probes in the same LAN, white points are used for probes belonging to our testbed but belonging
to different institutions, whereas any other contributor is represented with a small red dot. First,
hosts within our testbed, and especially hosts within the same LAN, achieve higher rates with
respect to Internet hosts. Moreover, the estimatedBW∆T values are sound and consistent with
our expectation.

kernel level and when the copy of a packet train is triggered by a coalesced interrupt we actually measure the PCI bus
speed.
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Table 4.1: Correlationρ(X,Y ) between bandwidth (BW), received bytes (RX) and peer localiza-
tion information (CC,AS) for different groups of contributor peers (LAN, Internet, all)

Y : BW∆T BWN

X : mean p99 mean p99

AS 0.28 0.44 0.27 0.29
CC 0.27 0.42 0.26 0.26
RX all 0.43 0.54 0.45 0.53

LAN 0.62 0.75 0.51 0.61
!LAN 0.33 0.40 0.37 0.45

4.3.2.2 Correlation-based analysis

Another interesting observation to gather from Fig. 4.5 is that host achieving higher data rates,
also tend to contribute more data, and that this behavior is consistent across all three host groups.

To further quantify this behavior, we evaluate the coefficient of correlationρ(RX,BW ) be-
tween the amountRX of bytes received by a given probe and the bandwidthBW toward that
contributor. For comparison purposes, we also evaluate thecoefficient of correlation between the
estimated bandwidthBW between two peers and the fact that they belong to the sameAS or CC
(using the indicator function as before). Though we are aware of the fallacies of correlation based
analysis, we point out that we do not seek toprovedirectional cause-effect relationship between
variables, but that we rather compare the magnitude of the correlation and relatively weight their
impact.

Results are reported in Tab. 4.1 for different bandwidth estimation methods. In case of
ρ(RX,BW ) we also consider different peers subsets: namely, peers falling in the same LAN,
peers that do not belong to the same LAN and all the peers altogether. As expected, we ob-
serve that irrespectively of theBW evaluation method considered, there is medium correlation
between received bytes and bandwidthρ(RX,BW ), which is clearly stronger for peers belonging
to the same LAN. Moreover, notice that this correlation is stronger with respect toρ(RX,AS) or
ρ(RX,CC) reported earlier, even when all peers are considered. Also,notice that the correlation
between bandwidth and geo-locationρ(BW,AS) (i.e., the fact that high bandwidth contributors
can be found within the same AS), is of the same order of magnitude ofρ(RX,AS) (i.e., the fact
that video content is downloaded from contributors within the same AS). Overall, these observa-
tions suggest that, even outside the LAN environment, peersare primarily looking for bandwidth
and that the early noticed geo-localization may be a beneficial side-effect of the enforced band-
width preferencealone. Finally, we point out that part of the correlation might be explained by
means of (i) mutual dependency betweenAS andBW , as well as (ii) additional hidden factors
which causes both AS and bandwidth preference. At the same time, such hidden factors (e.g.,
preference based on IP/16 address similarity) are likely toplay only an additional role beside the
one played by the bandwidth, to which we shown earlyPPLive being extremely sensitive to.

4.4 Conclusions

This work proposed a methodology, based on the joint use of active and passive measurement
technique for the analysis of the network awareness of currently deployed Internet P2P-TV system.
The technique have been designed so to consider P2P systems as a black-box, and as such can be
applied to future systems as well. As a case study, we appliedthe methodology to the analysis of
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PPLive a very popular system nowadays, gathering interesting results, that we briefly summarize
here.

First of all, by means of active testbed methodology, we findPPLive to be extremely sensitive
to bandwidth, only mildly sensitive to losses and mostly unaware of IP distance, expressed in terms
of either delay or IP hop count, which is in agreement with [5]. Refining further this picture, we
find that actually the peer selection process is continuously updated, with a relative preference
among path-wise properties that depends on the actual magnitude of the impairment.

Interestingly, by the correlation analysis of peer-wise preference gathered through the passive
technique, we find that the very same bandwidth sensitivity of PPLive, seems to induce a de-
sirable side-effect: namely, a moderate geo-clusterization of peers within the same AS and CC.
Yet, it seems thatPPLive does not, for the time being, explicitly enforce AS-awareness, which
remains thus a new exciting challenge for the next steps of its evolution.
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Chapter 5

A comprehensive framework to test
Network Awareness

In this chapter we present a new methodology developed to inspect network awareness as well
as its implementation in a demonstration tool, namedP2PGauge, that has been presented in
SIGCOMMdemo session in August 2009 [94]. All results contained in this chapter have been
published in [95].

In chapter 3 we studied the network awareness of P2P-TV application exclusively analyzing
passive traces and we concluded that it is difficult to have a comprehensive understanding of the
network awareness since path-wise metrics are hard to measure and the experimental methodol-
ogy we used had some drawbacks as the bias present in the dataset. To overcome this limitations,
chapter 4 presented a controlled testbed that allowed the study of chunk scheduling policies by
completely controlling the application environment and challenging the application with modifi-
cations of the underlying network properties. This enabledthe study of path-wise features but still
we could not investigate the comprehensive set of features which possibly guide the chunk trading
logic of applications. In this chapter we present an analysis framework, and its implementation
P2PGauge [76], that exploits, at the same time, both active and passive techniques to measure
and visualize the network awareness of P2P applications.

It is necessary to point out that theP2PGauge tool exploits active probing of peers contacted
by unmodified P2P clients: whilst the tool is able to process offline traces, active probing should
be better performedsimultaneouslyto the running P2P application, as otherwise contacted peers
may go offline (and thus be no longer available for later probing, compromising the accuracy of
the dataset). Therefore, usingP2PGauge as monitoring and analyzer tool, we performed a set
of 1-hour long experiments running the SopCast application. In these experiments, a single probe
peer in France is used to join different channels at different hours, exploring thus a wider spectrum
of content locality and channel popularity. Moreover, carehas been taken in order to considerlocal
content (e.g., European Champions League football matches, or matches of the French Ligue-1)
as well asforeigncontent (e.g., news and movies in foreign languages). Beside the availability of
a larger number of metrics, there is another important difference between the dataset presented in
section 2.2 and the dataset collected by means of P2PGauge. Indeed, in this case each experiment
is carried out in isolation, while in previous experiments all peers watched the same channel at
the same time. Thus, the previous dataset was possiblybiasedby the presence of several high-
bandwidth peers, located in Europe, that were moreover sometimes co-located within the LAN of
a single institution1. As a consequence, unless specific care is taken, there is thepossibility that a

1For more detailed discussion about this topic please refer to section 3.2.3
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Figure 5.1: P2PGauge analysis process

self-induced artifact increases the observed geolocalization as observed in chapter 3. The fact that
each observation is carried out independently, guaranteesinstead that such bias does not affect the
new dataset, on which we focus on the following.

In the remainder of this chapter, we briefly explain the analysis process and the set of fea-
tures and metrics, which we then apply to the study of SopCastnetwork awareness. Although
P2PGauge takes into account bothtimescales(e.g., short term snapshot vs long-term averages)
and traffic directionality issues (i.e., meaning that it is possible to either separately analyze the
download/upload application behavior), in the following we limitedly consider the long-term, uni-
directional, aggregated traffic volume for the sake of simplicity.

5.1 Analysis Process

We describe the analysis process with the help of Fig. 5.1. Inour experiments, an unmodified
SopCast client runs on the probe machine, whose traffic is sniffed by the P2PGauge tool running on
the monitor machine. P2PGauge analyzes the traffic generated by SopCast and collects statistics
about (i) peer-wise features by passive analysis and (ii) path-wise features by sending active probes
toward peers contacted by the monitored SopCast client.

Prior to delve into the features and metrics selection, let us stress an important implication of
this choice. As far as passive methodology is concerned, P2PGauge gathers peer-wise features
by means of a local database [65] (e.g., geolocalization andAS number, etc.) or through simple
inference and analysis (e.g., IP prefix length, throughput,hop-count, etc.). Passive analysis cannot
interfere with the observed P2P application traffic, but maybe rather limited by database access
speed: since the database API supports more than 40,000 queries per second, this clearly does not
constitute a bottleneck.

However, the tool also performsactive measurementsto gather path-wise properties, thus
possibly interfering with the observed P2P traffic: as such,active path-wise measurement should
be limited as much as possible. Notice indeed that, althoughmeasurements are performed by a
dedicated machine, monitor and probe machines share the same access link. Consider for instance



79

Table 5.1: Summary of the features measured by the application, highlighting whether an active
or passive methodology is used.

Feature Type Method
AS Autonomous System Peer Passive (DB)
CC geographical Country Peer Passive (DB)
NET IP address similarity Peer Passive
RTT Round Trip Delay Path Active
CAP Capacity Path Active
HOP IP hop-count distancePath Active

the issue of path capacity estimation: expensive active-path probing techniques (such as bandwidth
measurement by means of packet trains) are not suitable for our purposes, and we rather need
light-weight measurement technique (such as those based onpacket-pair dispersion). In reason of
this observation, we resort to CapProbe [46] to actively estimate the bottleneck capacity, the RTT
delay and the IP time-to-live (from which we can infer the IP hop path distance). For each peer,
we performN = 100 measurements by sending pairs of back-to-back ICMP packets, and each
pair is spaced by∆T = 0.5 seconds.

To limit the number of probes during intense network discovery phase, we further upper-
bound the number of concurrently active path-probing processes atC = 50. Although the amount
of active-probing traffic is limited toR = 2C/∆T = 200 packets per second, performing active
experiments for the whole peer population may be a prohibitive task. Furthermore, concurrent
experiments may have mutual influence, thus we would like to reduce their occurrence. To this
extent, we recall that a large number of peers is only contacted once (i.e., during the network
discovery phase), but is not contacted later on – thus is not involved in the content exchange.
While such peers may constitute a significant percentage of the peer population (e.g., in case of
PPLive), they are nevertheless irrelevant as far as the traffic volume is concerned. As we are
interested in the bulk of the traffic volume, we thus limit active measurements only to peers that
actively contribute to the video stream. Specifically, we consider only peers who send at least
two packets in a time window∆T . This simple heuristic still allows to focus on the bulk of the
traffic volume (e.g., above 95% for the worst case application, namely PPLive), while significantly
limiting the bias induced by active probing traffic. Notice that this heuristic is robust and applies
also to other classes of P2P services such as filesharing.

5.2 Features Definition

Table 5.1 briefly summarizes the features that we take into account when measuring network
awareness specifying if they are peer or path wise and the type of measure we use to analyze them.
The choice of the features pertaining network awareness hasalready been preliminary discussed
in previous chapters. We point out that in some cases it may bepossible to measure the same
feature (e.g., IP TTL, RTT, etc.) with either methodology. Still passive measurement can be less
reliable than active ones: e.g., in case of RTT, the difficulty lies in matching data packets with the
corresponding application-layer acknowledgement. We therefore follow a conservative approach,
and adopt on the most accurate methodology for each feature.More precisely, we exploitpassive
analysisto infer AS, CC and NET properties, while we useactive probingto measure the CAP,
RTT and HOP features, which are described as follows:
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Figure 5.2: Example of geolocalization analysis (passive metrics) that can be done with P2PGauge.

Autonomous System (AS)andCountry Code (CC): For these peer-wise properties, we rely on
same public database [65], used early to gather cross-layermetrics, which enables us to map
public IP addresses to Country Codes (CC) or Autonomous System (AS) numbers. From
this kind of analysisP2PGauge is able to show at a glance the geographical distribution of
traffic and its breakdown into ASs as showed in figure .

Network prefix (NET): Namely, the length of the bitwise prefix match between the monitored
peers IP address and the IP addresses of the peers it contacts. This feature gives a raw
estimation of peers distance in the IP address space: when two peers are in the same sub-
network, they likely share a longer prefix than faraway peers.

Path capacity (CAP): We measure the bottleneck capacity along the path between two peers
with CapProbe [46], a packet-pair technique that infers capacity based on the dispersion of
the acknowledgement packets on the backward path. Bottleneck capacity is measured over
N = 100 packet-pairs measurements.
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Round Trip time (RTT): RTT measurements are directly available as a side effect ofCapacity
probing. Indeed, CapProbe sendsN = 100 packet-pairs, from which we gather the same
amount of RTT samples.

IP hopcount (HOP): The IP hop-count distance corresponds to the number of layer-3 nodes
traversed by an IP packet. Usually, we infer as in chapter 3 this value from the TTL field in
the IP header of the CapProbe packets. However, we found that, in some cases, this value
is mangled by non-standard networking devices: in case P2PGauge notices such anomalous
behaviour, it falls back on the more reliable (but longer andmore costly) path discovery
operation by means of the common Traceroute tool.

5.3 Metric Definition

P2PGauge acquires a great number of informations: namely, the amount of sent and received
traffic, along with the path-wise and peer-wise features early described is stored for each remote
peer contacted. This raw information has thus to be processed in order to be displayed on a Kiviat
chart. At the same time, a careful selection of display metrics should be made, in order not to loose
too much information in the data processing. In this section, we present two out of the four metrics
implemented in the P2PGauge software namely thepreferential partitionand theKullback-Leibner
distance. P2PGauge implements other two metrics (correlationandBhattacharyya distance) that
are not presented here as they are out of the scope of this chapter as they do not bring additional
value to our work but let us stress that our framework can be easily integrated with other metrics
demonstrating thus its flexibility.

5.3.1 Preferential Partition (PP)

As the simplest and most intuitive metrics, we ressort to thepreferential partition (PP) metric
already defined in chapter 3. Let us denote withNk the set of peers who where discovered by the
application from time 0 to timeT = k∆T . For each featureF , the setNk is split in two disjoint
groupsNk = N

close(F )
k ∪N

far(F )
k , so that peers that are “close” to the monitored peerX in terms

of the featureF are grouped altogether.
Specifically, we use the following rules to partition the sets. We consider peers falling in the

same AS and CC of the monitored peer to be part of the close peerset. As far as the NET feature
is concerned, we use a fixed threshold of 16 bits, above which we consider peers to be close.
Finally, for the RTT, HOP and CAP features we use a relative threshold, equal to the median value
computed over all peers: namely, peer whose RTT and HOP values are below the median threshold
are considered to be close, while peers having a bottleneck capacity CAP higher than the threshold
are included in the preferential set.

Based on this simple partitions, we now quantify the preference level by evaluating the per-
centage of bytes that the monitored peerX has exchanged with peers belonging to the preferential
setN close(F )

k , as:

PPF =

∑

Y ∈N
close(F )
k

B(X,Y )
∑

Y ∈Nk
B(X,Y )

(5.1)

Considering the RTT feature, Fig. 5.3-(a) exemplifies the preferential partition as a gray shaded
zone: in the scatter plot, each(x, y) point corresponds to the amounty of bytes exchanged with a
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Figure 5.3: Network-awareness metrics: (a) Preferential partitioning PPRTT and (b) Kullback-
Leibner divergenceKLRTT of the RTT feature.

peer having a given RTT equal tox. In the case of figure, about 56% of the data is exchanged with
the 50% of peers that constitutes the preferential set (notice that, since we used the median RTT
as threshold, the population size is equal for both sets), hinting thus toward a slight preference for
peers that are close in IP-latency terms.

5.3.2 Kullback-Leibler (KL)

As a second metric, we consider the Kullback-Leibler (KL) divergence [51] (5.2), which is a
known measure of the distance between two probability distribution functions (pdf)p andb:

KL(p‖b) =
∑

x∈X

p(x) log
p(x)

b(x)
(5.2)

We use the KL divergence to measure difference between thepeer-wiseand thebyte-wisepdf
of a given featureF . In other words, we evaluate the pdf ofF , either counting each peer once, or
by taking into account the volume of traffic that remote peershave exchanged with the monitored
peer. The KL divergence tells us whether the two distribution matches (KL≃0), or whether some



83

discrepancies arises instead (KL>0). Notice that, as opposite to before, a large KL value cannot
be directly read aspreferenceindicator: rather, it merely pinpoint the existence of abiasbetween
the number of peers exhibiting a given value for a featureF , and the amount of bytes exchanged
with those peers. For instance, a large KLAS value does not mean that a large amount of bytes is
exchanged with peers falling in thesameAS, but rather expresses the fact thatsomeAS possibly
contributes for a significant portion of the traffic, inducing a distortion in the byte-wise pdf with
respect to the peer-wise one. In other words, high KL values correspond to high bias, which
however do not necessarily translate into higher awareness.

An example of the KLRTT metric is reported in Fig. 5.3-(b) considering the same dataset
depicted in Fig. 5.3-(a). In this case, dashed and continuous lines are used to represent the byte-
wise and peer-wise RTT cumulative distribution functions respectively. In the case of figure, notice
that the two curves do not overlap, which is especially visible for RTT∈ [200, 300] ms, and that
yield to a value of KLRTT = 0.98. This means that there is a group of peers, whose RTT is
about [200,300] ms, that contribute more data than others: notice indeed that such a couple of
highly-contributing peers is clearly visible in Fig. 5.3-(a) in the same RTT range.

5.4 Experimental Results

In order to show the awareness of the application “at a glance” we resort to use the Kiviat rep-
resentation [50] which has been introduced in networking research by [66] to report noteworthy
characteristics of different classes of applications (e.g., Web, interactive, VoIP, etc.). A Kiviat
chart consists of several axis represented in the same planar space. Each axis reports a different
feature, as in figure 5.4 where AS, CC, NET, CAP, RTT, HOP are reported, respectively by their
preferential partition value 5.4(a) and Kullback-Leiblerdistance 5.4(b). For each feature we report
its mean valueµ over all peers in the dataset: by joining mean values of different features together
with a line we obtain a closed shape – the Kiviat chart. Furthermore to show the variability of
application behavior among different peers, we draw thin lines to represent the standard deviation
σ of the features, and depict them relatively to the average (i.e., thin line representµ ± σ) and
we shade the area between the curves for the sake of readability. For each feature we report the
maximum range value under the feature label of each axes directly in the graph.

Kiviat charts in figure 5.4 are arranged in such a way that features gathered by passive inference
(i.e., AS, CC and NET) are represented on the three top axis, whereas features involving active
probing (i.e., CAP, RTT and HOP) are represented on the threebottom axis.

Let us consider the preferential partition metric first, which is depicted in Fig. 5.4-(a). It is
easy to notice that, despite experiments include content that is very popular in EU (e.g., Cham-
pions League matches) and possibly also very local (e.g., French Ligue-1 matches), nevertheless
SopCast managed to find a few peers that were located in the same network (PPNET ≃ 0%), AS
or CC (PPAS ≃ 1.6% andPPCC ≃ 4.5%) boundaries and to exchange data with. We would
like to stress that in figure 5.4 we take into consideration all the aggregate of traffic without dis-
tinguishing between inbound and outbound traffic;P2PGauge instead allows the user to chose
which kind of traffic to observe. As already said earlier, we underline that, since we just analyze
the application in isolation, we don’t have to worry about anexperimental bias issue.

Taking into account the capacity feature, we can notice thatSopCastshows a slight pref-
erence for higher bandwidth peers (PPCAP > 50%) meaning thatSopCast presents a slight
preference in exchanging data with peers whose capacity is higher than the median. This observa-
tion is in accord with results gathered early in this thesis in chapter 4

On the contrary, no such preference is shown for close peers,as only about half of the overall
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(a) Preferential Partition: notice that preferential parti-
tion value is included between 0 and 1.

(b) Kullback-Leibner divergence: KL values are in-
cluded between 0 and 2.

Figure 5.4: Network-awareness representation: Kiviat charts of SopCast dataset. Features gath-
ered with passive measurement are displayed on top axis (AS,CC, NET), features requiring active
measurement on the bottom axis (HOP, RTT, CAP).

traffic volume is exchanged with peers close in terms of RTT latency (PPRTT ≃ 50%), hinting
that the application is not actively trying to reach traffic locality by confining the traffic within
close peers. Similarly, the fact thatPPHOP < 50% confirms that slightly longer IP paths may be
taken to find those high-capacity peers. Again the application could try to be network friendly by
taking into account the number of hops instead of using DBs topinpoint peers in the same AS but
this seems not to be the case.

Let then finally consider the Kullback Leibner plot of figure 5.4(b). In this case, we recall that
a larger KL value expresses a larger bias, but not necessarily larger awareness. In this case, a large
bias is exhibited for the capacityKLCAP metrics, corroborating in this case the hypothesis of a
greedy selection policy. An even larger bias is visible forKLAS, which in this case corresponds to
an unbalanced traffic distribution. In this case, a few ASes act as main contributors: however, such
ASes differ from the monitored peer AS, and their occurrencemay rather be the result of other
peer-selection policies (e.g., possibly due to the presence of high capacity peers in such ASes).
Overall, we can conclude that current popular P2P-TV applications such as SopCast, have not yet
considered network-awareness issues.

5.5 Conclusions

This chapter presented a comprehensive framework for the characterization of P2P applications’
network awareness based on a black-box measurement and analysis of the traffic they gener-
ate, coupled to an expressive data representation exploiting Kiviat graphs. We implemented the
methodology in a demonstration software calledP2PGauge that we used to carry an experimen-
tal campaign of 1 hour long analysis of theSopCastapplication during which we joined different
channels of different hours to have a wider spectrum of scenarios.

Results presented in this chapter confirm the ones obtained early in this thesis showing that
SopCasthas a slight preference in exchanging content with high capacity peers while it does
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not show any specific preference either towards peers close in term of RTT, hop distance or IP
distance, either toward nodes located in the same country orautonomous system



86 5. A COMPREHENSIVE FRAMEWORK TO TESTNETWORK AWARENESS



87

Part II

Implementing network awareness
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Overview

In this second part we abandon the study of the network awareness of existent P2P-TV applications
and we focus on the interaction of network aware algorithm with the underlying network layer. In
chapter 6, we make use of a chunk-level P2P-TV simulator to gauge the impact of non ideal
scenarios on the P2P systems performance, then, in chapter 7, we use a packet-level emulation
tool to gauge the effect of layer 7 routing over a reactive network in which traffic engineering is
active.
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Chapter 6

Simulation Analysis

In the last years, a number of different proposals have targeted mesh-based P2P streaming [12,17–
19,35,56,61,62,82,92,93,102,104,111,128,130]. With few exceptions [60,101] such proposals
have typically been studied in isolation, possibly focusing on very specific aspects of the system
(notably, chunk scheduling policies), in possibly highly ideal settings (e.g., overlay-only studies,
homogeneous settings, synchronous timelines, perfect neighborhood knowledge, etc.). As such,
a thorough comparison of the different proposals under a common and realistic framework is
missing so far. A first aim of this work is thus not to propose any new system, but rather to
compare existing ones. A second aim is instead to understandhow the performance of these
system declines under more realistic scenarios.

In this chapter, we implement some of these algorithms [12, 17, 93, 104] in a custom event
driven simulator, and evaluate their performance considering important (but often overlooked)
factors, which we model with increasing levels of realism. Afirst issue is that “network aware”
P2P-TV systems typically makes chunk scheduling and topology management decision based on
some measured properties of other peers in the swarm: yet, asgathering precise and reliable
measurements is notoriously difficult in the Internet, it isimportant to understand the implication
of measurement errorsin the system performance. A second issue is that schedulingalgorithms
are generally evaluated assuming a perfect, though unrealistic, knowledge of the system state (e.g.,
neighbors buffer maps): as such, it is important to evaluatethe impact ofstate inconsistency(e.g.,
due to lost or outdated control information) as well.

Our main findings can be summarized as follows. On the positive side, we find that system
performance are rather robust to measurement errors, as performance degrades gracefully even for
very large capacity and latency measurement errors. Conversely, we find that state inconsistencies
significantly degrade the achievable performance even for very low signaling error rates: as such,
signaling should not be neglected in future studies aiming at a realistic assessment of the quality
provided by P2P-TV services.

This chapter extends the results published in [98] adding the study of more network models
and examining the impact of a topology management mechanism. It also contains a section the
analyzes the impact of measurement errors on systems performance and new experiments that
justify our scenarios decisions. The simulator tool used inthis chapter (P2PTV-Sim available
at [78]) has been developed by NapaWine partners; in particular Politecnico di Torino provided
the core of the simulator and basic scheduling algorithms. We developed the L3 network layer, the
measurement error framework and some scheduling algorithms used in our comparison.

The rest of the chapter is outlined as follows: section 6.1 presents work related to ours, 6.2
describes the architecture of our simulation environment and 6.3 presents results of the impact of
both layer 7 and layer 3. Finally section 6.4 reports the analysis of the interaction between L7 and
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L3 and section 6.5 summarizes the contribution of the chapter.

6.1 Related work

Starting from [17], many schedulers have been proposed thatalso incorporate awareness to the
network environment (such as bandwidth [104], latency [12], and their ratio [93]). At the same
time, many works proposing novel algorithms [12,17,93,104,130] have been studied in isolation,
possibly adopting a highly idealized view of the system and of the network models. Though
simplistic, this viewpoint is nevertheless necessary to gather solid theoretic foundations for specific
algorithms design choices. In this work, we focus on such class of schedulers, which we analyze in
a common framework under more realistic conditions. With this respect, closest work to our is [60]
that, by means of simulation, however limitedly compare twosystems (namelySplitStream[18]
andPRIME [61]).

We point out that full blown systems [19, 56, 61, 82] have alsobeen evaluated by means of
middle to large scale deployments of real prototypes. With the exception of [101] (that compares
Chainsaw[80] andSplitStream[18] and is the closest work in spirit to ours), and of the methodol-
ogy presented in chapter 3 (that analyzesPPlive, SopCast, andTVAnts), real systems have however
been studied in isolation. Moreover, what makes the comparison difficult is that experimental con-
ditions are hardly reproducible. Also, although performance results are in this case realistic, as
systems are very tightly designed, it is often not possible to isolate and understand the impact of
different factors in the overall system performance.

This chapter aims at reducing the gap between the above classes of work, by performing a
thorough and realistic, but controlled and reproducible comparison of relevant systems proposed in
the literature [12,17,93,104]. In order to provide a fair comparison, we consider several algorithms
that perform well in ideal settings, and implement them in a common simulation framework. We
then challenge these algorithms by plugging different models, representative of a realistic Internet
environment, so to assess their performance into the wild.

6.2 Framework Description

This section overviews the framework we devised to compare P2P-TV systems, which is available
as open-source software at [78]. The custom chunk-level event-based simulator takes into account
several components, which are visually presented in Fig. 6.1. From an high-level point of view,
the framework consists of two layers: namely, the underlaying physical L3 network and the logical
L7 overlay, which are coupled by different models of their possible interactions.

From the L3 point of view, at the edge of the architecture we have end hosts, which are phys-
ically interconnected to the L3 network by access links, that acts as bottleneck, and that are mod-
eled as a capacity–delay pair. Hosts are attached to edge routers, which constitute the entry point
of P2P-TV traffic in the network, which we model with increasing levels of details. From the
L7 viewpoint, hosts run P2P-TV applications, which we express in terms of the algorithms (e.g.,
chunk scheduling, peer selection, topology management) they implement, and of the overlay graph
resulting by those algorithms. Finally, we model L7/L3 interaction by taking into account that, in
the real world, different sources of error can slip in at any point of the process (e.g., loss of signal-
ing packets, bias on measurement of L3 properties performedby L7 overlay peers, etc.).

In the remainder of this section, we further detail each component, motivating the realism and
soundness of our choices. At the same time, we point out that the framework is extremely flexible,
and can easily accommodate other models for the different components as well: as such, where
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Figure 6.1: Sketch of the evaluation framework: overview ofL3 and L7 components under study,
including L3/L7 interaction

Table 6.1: Breakdown of hosts into classes
Class Ratio BWD BWU tTX

I 10% ∞ 5.0 Mbps 20 ms
II 40% ∞ 1.0 Mbps 100 ms
III 40% ∞ 0.5 Mbps 200 ms
IV 10% ∞ 0 Mbps ∞

relevant, we list other interesting models that could be investigated by further research but that are
out of the scope of this work.

6.2.1 L3 Components

With L3 components we indicate objects in the physical world, such as (i) hosts and (ii) routers,
that are interconnected by a (iii) network.

6.2.1.1 Host

Hosts are machines running P2P applications instances, andare characterized by a physical inter-
face to the L3 network. Hosts are divided in different classes according to their upload bandwidth
BWU , while we consider the download bandwidth BWD to be infinite. This is a reasonable as-
sumption in case of asymmetric access, provided that we further assume that the bottleneck is
placed at the edge of the network (which represents the common case today and is generally as-
sumed by other research on P2P-TV [93,104] and P2P-filesharing [83]).

In our simulations, except where explicitly stated, we consider NH=2000 hosts divided into
four classes, where the average BWU (i) for the i-th class is allocated as described in Tab. 6.1,
consistently with [83, 104] (we further motivate this choice in section 6.2.4.3). The first column
of Tab. 6.1 reports the class breakdown: the bulk of peer population is constituted by mid-speed
peers, with a non marginal presence of very-high and very-low speed peers. In classi, the uplink
capacity of each peerp is set toν · BWU (i) whereν is a random variable uniformly distributed in
[0.9, 1.1] (i.e., the actual uplink of each peer deviates at most 10% from the average for that class).
For reference purpose, last column reports the transmission time tTX of a 12.5 KBytes chunk
(corresponding to about 10 full-payload packets, considering application layer header), where we
consider that all the uplink bandwidth is devoted to the chunk transmission.
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6.2.1.2 Router

Each host is single-homed, i.e., attached to a single accessrouter, which models the first IP router
in the aggregation network (e.g., the BRAS for ADSL access).In our simulations, we consider a
number of routers equal toNR = 100 and we use a simple host-to-router mapping policy: each
host is randomly bound to a router, so that in averageNH/NR = 20 hosts are attached per router.

As depicted in Fig. 6.1, routers are placed at the edge of the network and act as access points
forming a logical full mesh at L3. Each router keeps statistics about packets passing through its
interfaces and discriminates traffic betweenremote(i.e., the traffic that it injects further down
toward the core) andlocal (i.e., the traffic that is reflected toward other access linksinsisting on
the same router).

Notice that, in this way, routers directly yield a very simple measure of traffic locality as
P% = local/(local + remote) (which is independent from the actual network topology, from the
Autonomous System AS level topology, from the router-to-ASmapping policy, etc). We point out
that theabsolutevalue of this measure is heavily affected by several factors(e.g., AS topology,
host-to-router mapping), which disqualify this index to beused for realistic assessment of locality
awareness. At the same time, this rough indication however allows to relatively compare the
locality awareness of P2P-TV systems, which is our main aim more that to evaluate the amount of
inter-AS traffic (for which we refer the reader to [12,85]).

6.2.1.3 Network

The L3 network models the interconnection of routers: in this work, we consider different models
of network, with additional complexity and levels of details.

If we consider the access link to be the bottleneck, likely noqueuing happens within the
network core: as such, the network simply models the delay ofthe end-to-end path. In this case, the
network topology is well represented by astatic latency matrix between routers, where the latency
essentially represents the propagation delay along links of the router-to-router path. Notice that,
in this scenario, two host attached to the same router sense alatency of 0. We consider different
models of static networks, from an ideal overlay model (where the end-to-end delay is given solely
by the chunk transmission duration over the uplink bottleneck) to more realistic models such as
Meridian [38] (where end-to-end delays are derived from real measurement performed among a
large number of Internet hosts).

We also consider the case where congestion may still happen in the network by employing
dynamicend-to-end latency matrices, where the latency between anytwo peers may thus differ
from chunk to chunk. We point out that the case where the amount of P2P-TV traffic is (i) minority
or (ii) prevalent shall be considered separately. In the former case, which is typical today and that
we consider in this work, congestion is due to the backgroundtraffic: we model this effect by
simply varying the latency between two consecutive chunks at random. In the latter case network
links should be modeled as well, so that Traffic Engineering mechanisms (e.g., load balancing,
periodic optimization of routing weights IGP-WO, etc.) could be applied to handle the edge-to-
edge traffic matrix induced by P2P-TV traffic. In this chapterwe limit our investigation to case
(i); in the next chapter ( 7) we will study case (ii) with the help of a network-emulator tool capable
of performing traffic engineering.

6.2.2 L7 Components

With L7 components, we indicate higher level components, such as (i) peers, which are instances
of L7 P2P-TV applications running on L3 hosts. In more detail, we model peers by defining the
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algorithms they implement: specifically, each peer has to (ii) manage the overlay topology and
(iii) schedule the transmission of chunks on the overlay links.

6.2.2.1 Peer

Each peer establishes and maintains several logical connections to other peers in the overlay: we
denote withN(p) the set of peers in the neighborhood ofp. As in mesh-push systems chunks
are not received in playout order, peers need to have a buffer-mapB that describes the chunks
received and stored into the peer memory. Given a peerp, we indicate withB(p) its buffer-map,
and denote byc ∈ B(p) the fact that peerp has received chunkc. The size of the buffer map
B(p) determines P2P-TV performance as in the following tradeoff: large buffer maps reduce the
chunk loss probability, but increase the time lag with respect to the source chunk generation time;
conversely, small buffer maps reduce the playout delay withrespect to the source at the price of an
increased chunk loss probability (as chunks that arrive later than the playout delay are no longer
useful and thus can be considered as lost).

In order to gather performance of the system insteady state, in this work we do not consider
churn (i.e., peers arrival or departure). While this choicemay seem strange at first sight, espe-
cially given our attention to the realism of the scenario, wenevertheless show its soundness in
section 6.2.4.1. Shortly, results from a measurement campaign in real ISP network show that,
while churn in filesharing applications is dominated by userhabits, the churn in livestreaming ap-
plications is dominated by the content schedule: in other words, users connect to watch specific
content at a specific time, and stay connected during the whole program.

6.2.2.2 Overlay Topology

Logical links established by peers form an overlay topology. To enhance their performance, peers
may perform topology management: i.e., they rearrange their overlay neighborhood in order to
exploit population heterogeneity, so to globally optimizethe topology based on local decisions.

In this work, we focus on topology management by consideringit as either (i) a black box
tool that induces a particular type of overlay graph or (ii) aspecific algorithm that continuously
adjusts the topology. In more details, for (i) we consider different random graphs with a mean
degreed0 ≃ 20 1 that are created att = 0 and are never changed later on, and that thus define a
fixed logical neighborhood for all peers at timet = 0. For (ii) we additionally consider a topology
management process that continuously run and adapts the initial topologies, based on the measured
peer properties (e.g., latency for geolocalization or capacity for performance). Indeed, since higher
capacity peers can serve more neighbors, placing them near the source allows spreading new
chunks faster and to a greater number of nodes. This should turns out in a per-chunk diffusion
trees (i.e., the instantaneous trees followed by each chunk, which differ from chunk to chunk) with
higher fan-out and reduced depth.

We point out this to be a reasonable approach: indeed, considering aG(n,M) or G(n, p)
topology at timet = 0, roughly models a system in which peers joining the system receive a small
number of bootstrap peers (e.g., by means of a BitTorrent-like tracker) that constitute their initial
neighborhood, which may be then continuously adjusted (e.g., by means of a BitTorrent-like peer
exchange PEX function2). We point out that according to chapter 3, applications in the Internet
may exhibit behavior closer to case (i) such as TVAnts and Joost, or to (ii) such as PPLive and

1We used two kind of random graphs, both havingn = 2000; the difference lies in the building of graph: first class
of graph is built by assigning, att = 0, to each node, a fixed number of neighbors (10 in our case). Second method is
to assign to each node a number of neighbors chosen by a Poisson process whose rate is 10.

2http://www.rasterbar.com/products/libtorrent/extension_protocol.html
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Table 6.2: Chunk scheduler policies
Scheduler Description
ru/r [17] Random useful chunk / Random peer
lu/r [17] Latest useful chunk / Random peer
lu/la [12] Latest useful chunk / Latency-aware peer
lu/ba [104] Latest useful chunk / Bandwidth-aware peer
lu/pa [93] Latest useful chunk / Power-aware peer

SopCast, which makes both cases relevant. We also point out that despite other graphs could be
considered for (i), such as Barabasi-Albert [11] scale-free and Watts-Strogatz [117] small-world,
this would not however add further realism to our simulationcampaign – as we will see, the
topology dynamics are far more important than the initial conditions at timet = 0.

6.2.2.3 Chunk Scheduler

The ultimate goal of any P2P-TV system is to give each peer a continuous stream of data: as such,
peers must avoid having gaps in the buffer-map positions that are closer to the playout deadline.
The video exchange process is handled by a chunk scheduler, which acts whenever a peer can use
the host upload bandwidth. In push systems, any peerp runs a scheduler that has to choose: (i) a
chunk from its buffer mapB(p) and (ii) a destination peer among its neighborsN(p).

Scheduling algorithms can be divided in two classes depending on the order in which the
chunk/peer selection is made: in this work, we focus on algorithms that first chooses the chunk
to send and then the destination peer. We consider the chunk scheduling algorithms proposed
in [12, 17, 93, 104] which we summarize in Tab. 6.2. Loosely following [17], we denote each
algorithm asc/p wherec andp stand forchunkandpeerselection algorithm respectively.

The simplest scheduler is the work-conservingru/r, that select arandomchunkc ∈ B(p)
which is sent to a randomusefulpeerp′ ∈ N(p), i.e., a peer that misses that chunkc /∈ B(p′). We
then consider a series of schedulers that select thelatest usefulchunk in their buffer-map, which
then they send to a useful peer (i.e. a peer that has not received yet the chunk) selected according
to either alu/r random strategy [17] or anetwork-awarecriterion lu/{la, ba, pa}. As far as
network-aware strategies are concerned, we consider a latency-awarelu/la strategy adapting [12]
from file sharing to P2P-TV applications, a bandwidth-awarelu/ba strategy [104], and a power-
awarelu/pa strategy [93] (i.e., where power is the ratio of bandwidth tolatencyB/L). Selection
is performed by measuring the property of each peer, which are then ranked according to the
property value (e.g., low latency, high bandwidth or power)and selectedprobabilistically (i.e., not
in strict order), with a probability that decreases with increasing ranking.

Intuitively, lu/r aims at keeping the playout delay from the source as low as possible by dif-
fusing the most recent chunk at their disposal (i.e., the latest in their buffermapB(p)). We consider
the simpleru/r for reference purposes, andlu/r as it is proven to be optimal in ideal homoge-
neous settings [17]. Network-awarelu/{la, ba, pa} schedulers [12, 93, 104] are instead expected
to enhance performance beyondlu/r, especially in case of heterogeneous realistic scenarios:in
more details,lu/la aims at locally confining the traffic by proximity peer selection, lu/ba aims
at reducing the chunk diffusion time by preferring peers with higher upload capacities andlu/pa
aims at combining both benefits.
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6.2.3 L3/L7 Interaction

Finally, the efficiency of scheduling decisions is possiblyperturbed by errors affecting (i) the
precision of network property measurements or (ii) the fateof control information exchanged by
peers, that have largely been neglected in the reference work we consider [12,93,104]

On the one hand, (i) network-aware schedulers base their chunk-scheduling decision on prop-
erties concerning neighbors and possibly the underlying network conditions (e.g. path RTT, avail-
able bandwidth, peer upload capacityBWU , etc.). Such properties can either be retrieved through
an “oracle” entity (such as an IETF ALTO [6] compliant serverin an ISPs), or directly measured
by peers themselves. Direct measurement can be rather imprecise for several reasons (e.g. cross
traffic, OS scheduling, NICs interrupt coalescing, unexpected interaction between simultaneous
measurement probes, etc.), which can in turn lead to unfaithful neighborhood representation and
wrong scheduling decisions. In order to assess the impact ofmeasurement errors without being
bound to specific measurement techniques, we resort to a high-level model where the measurement
process is controlled by a single parameterα describing the magnitudo of the error.

On the other hand, (ii) control information can be not timelydisseminated, or event lost, at
L3. Indeed, in case of gossiping algorithms using UDP, such information would not be retrans-
mitted, distorting thus the vision that each peer has of the system state. Inconsistency can also
be due to slow dissemination of control information (e.g., asystem may wish to limit the amount
of signaling traffic injected at L3 by reducing the refresh rate of control information exchange).
Considering mesh-push P2P-TV systems, both types of errorstranslate into out-of-date knowledge
concerning neighbors’ buffer maps: in this case, a peer may decide to schedule the transmission
of a chunk even if the destination has already received that chunk, resulting in an unnecessary
chunk transmission (i.e., a chunk collision). In order to assess the impact of signaling without
being bound to specific algorithms (nor to their settings), we resort to a high-level abstraction, and
model errors due to packet loss or out-of-date system knowledge as error on the buffer-maps.

6.2.4 Preliminary studies: simulation parameters

This section describes our careful selection of some crucial parameters of our simulations cam-
paign, such as (i) the population size and stability, (ii) the sharing ratio and (iii) the upload band-
width. We stress that our choice was to gather simulation scenarios that are as representive as
possible of the Internet and real-life: hence, we used own measurement, or other relevant mea-
surement performed by colleagues in the scientific community, to derive a realistic set of simu-
lation parameters. For simplicity reasons preliminary simulations of sections 6.2.4.2 and 6.2.4.3
have been realized withNH = 2000 homogeneous peers, organized in a random graph with mean
degreed0 ≃ 20 and trading a video stream composed of 1500 chunks; latency matrix is fixed ac-
cording to the Meridian dataset [38,69] as well as chunk-size C that is fixed at 100kbit according
to [40, 59]; buffer maps can store 50 chunks and statistics are collected starting from the 500th
chunk to avoid initial transient.

6.2.4.1 Population size and stability in real P2P-TV systems

To justify our assumption of absence of churn in the population, we show in Fig. 6.2 the stabil-
ity of a real user base population in the operational networkof a major European ISP that we
continuously monitor in the context of the NAPA-WINE project [55]. For the same project, we
have developed state of art P2P-TV classifiers, that are either based on the stochastic analysis
of the packet payload (KISS [32]) or on the behavioral analysis of the connection pattern (Aba-
cus [114]). The classifiers are comparably accurate [33, 34]and an open source implementation
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Figure 6.2: Temporal evolution of the number of peers, received and sent traffic volume during a
typical P2P-TV event (SopCast application), at a PoP of a major European ISP that we continu-
ously monitor.

is available at [48]. We run the classifiers on several probesin different major European ISP, so
that we are able to recognize the traffic of popular applications such as PPlive [89], SopCast [107],
tvants [112], as they are used by real user in operational networks.

While in general the usage of P2P-TV application is episodic, as it is driven by a specific
program –rather typically, a sport event–during the event the population remainsextremely stable.
We support this statement with the help of Fig. 6.2, which reports the temporal evolution of the
number of peers, depicted with a star point on the right y-axis, during a typical sport event streamed
by the popular SopCast [107] application gathered during a Championship match in April 2009.
Each point in the picture reports a measurement related to 5 seconds, and we sub-sample the
observation points for the sake of readability. The picturealso reports, on the left x-axis, the
received (plus sign) and sent (cross sign) bitrate in Mbps. As it can be seen from the picture, peers
arrive in a flash-crowd pattern starting from 20h30 (thus prior that the match begins), while during
the whole 1h30-long soccer match the peer population keeps extremely stable to about 100 peers
(i.e., the value that we actually simulated). Then, immediately after the end of the match, peers
rapidly depart and the system empties. Also, noticeable from the picture, the traffic contributed by
the peer behind the residential point of presence (PoP) is lower than the received traffic, which is
due to the asymmetry typical of ADSL lines.

This pattern is very common in our measurements and justify our environment choice ofab-
sence of churn. First, by focusing on steady-state performance of different algorithms, we gather
results that are clearly statistically more significant that performance in the transient phase (i.e.,
during arrival or departure). Second, it is likely that the algorithm exhibiting the best performance
in steady-state, will also be the best candidate in the transient phase. Finally, users are clearly



99

interested in the QoS during the match, while they are likelyless interested in the system perfor-
mance prior that the match begins: indeed, notice how arrival time roughly uniformly distributes
in the 30 minutes preceding the match, which is more likely tied to user “warm-up” of the chan-
nel (i.e., joining the P2P-TV system in advance to be sure seeing the first kick of the match) and
personal habits rather than reflecting actual interactive usage of the channel.

6.2.4.2 Sharing ratio

Sharing ratiok is a fundamental and critical parameter in every peer-to-peer system since it de-
scribes its capacity to disseminate data to all nodes:k is defined as

k =
BWU

λvideo

=

∑

i∈NH

BWU i

NH · λvideo

or the ratio between the total uplink capacity (i.e. the sum of uplink capacity of all nodes) and
total inbound traffic; intuitively a value ofk > 1 means that nodes uplink capacity is sufficient for
the system to be self-sustainable as long as algorithms are good enough to exploit capacity. On the
contrary, in a scenario wherek is < 1, total up-link capacity is not high enough to guarantee that
every peer receives the entire stream. Notice that, as the value of k provided by common ADSL
peers in actual system can be as low as 0.2 [19], the correct working of the system is guaranteed
by the presence of “amplifier” nodes providing the missing capacity.

Notice that scheduling algorithm may not be able to succesfully exploit the available system
capacity even fork > 1. For simplicity reasons, in this section we show results collected from
simulation of homogeneous swarms of peers. Figure 6.3 showsthe cumulative distribution func-
tion (CDF) of chunk delays experienced by each peer, or in other words, the temporal gap between
the emission of a chunk at the source and its reception at a given peer. Notice that the gray shaded
zone indicates the percentage of lost chunk (i.e., those whohave been actually lost at L3 or arrived
after the playout deadline). These results refer to a scenario in which the source generates video
at 1Gbps (i.e.chunk generation rate of 10 per second) and we modify the value ofk by varying the
upload bandwidth of peersBWU .

Top plot of Fig. 6.3 shows the CDF of the chunk delay for the naïve ru/r scheduler, where it
can be seen that fork = 1, almost half of chunks are lost and even when the capacity is twice
k = 2 the needed sustainable rate, the system still experiences anon negligible amount of 1.4%
losses.

In case more sophisticated schedulers are used, such as the power-awarelu/pa in the bottom
plot of Fig. 6.3, we notice that the system is almost losslessfor a sharing ratio ofk = 1.5.
Hence, in our simulation we design the class population to match the factork = 1.5, so that the
system is self-sustainable, which allows to isolate the impact of other factors (e.g., L3 network,
L7 schedulers, L3/L7 interactions) on an otherwise lossless system.

6.2.4.3 Mean upload bandwidth

In previous section 6.2.4.2 we fixed a value for parameterk, binding video rate to mean upload
bandwidth: hence, we need to investigate sound values for the peer upload capacity. To the best
of our knowledge, there are no studies or tools, as for instance the Meridian project for latencies,
which estimate end-host bandwidth distribution. Moreover, even if there were any, the gathered
data would likely be strongly dependent on countries or service provider. For these reasons we per-
form a survey, to gather rough boundaries for the uplink capacity, as well as a sensitivity analysis,
to gather reliable simulation results between these boundaries.
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Figure 6.3: Delay distribution ofru/r and lu/pa schedulers for different values of the sharing
ratiok. Notice that the gray shaded zone indicates lost chunks.

Again, as in the previous section, we consider an homogeneous peer population, where each
peer belongs to a single class with upload bandwidthBWU . We perform a sensitivity analysis by
carrying on several simulations varying the relative magnitude of the propagation and transmission
time, by varyingBWU . Notice moreover that latencies, chunk-size and buffer-map size are kept
constant while video rate and playout deadline vary according toBWU

3. In more detail, we denote
by γ the ratio between the propagation delay and the chunk uploadtime:

γ =
M

tTX

= M
BWU

C
(6.1)

whereM is the average Meridian end-to-end latency,tTX is the chunk transmission time and
C the chunk size. Intuitivelyγ indicates which component of the delay has the largest influences
on the total chunk transfer time. For instance, whenγ < 1 the transmission delay is greater
than the propagation delay, so that the total chunk delay reduces in case of bandwidth-awareness;
conversely, whenγ > 1, propagation delay is the largest component of total chunk transmission
time, which would thus reduce in case of latency-awareness.

3Video rate is bound toBWU via parameterk and playout deadline takes into account video rate, the fixedchunk
sizeC and the buffermap size.
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To gather valid boundaries forγ we surveyed the average uplink capacity of different European
countries [9], to gather upper (CZ) and lower (IT) bounds ofBWU (and, hence, ofγ). Fig. 6.4
depicts several performance metrics (i.e., chunk losses, mean and 95th percentile of the total chunk
delay) as a function ofγvarying in the range resulting from the survey. Asγ grows, we notice a
smooth decrease of the delay curves, which is an expected consequence of the transmission time
reduction due to higher upload bandwidth.

The vertical thick line in between IT and CZ references represent the working point that will
be used for all our simulation, which can be thought to represents an average European country.
Two considerations hold: first, notice that, as loss rate remains steady over the whole interval, we
can expect the results that will be shown in this chapter, to hold for a number of different European
countries. Second, we gather that, asγ varies in the selected range, the delay can vary by almost
one order of magnitude: hence, our simulation results should be considered as representative of
an average country, and we can expect delay results to (roughly linearly) vary depending on the
actual value ofBWU in the country of interest.

6.3 Simulation Results: Impact of L7 and L3

In this section, since we have fixed all the crucial parameterof the simulator, we begin the actual
study of the impact of L7 and L3 factors on the system performance: we first analyze the impact
of chunk scheduler and topology manager, and then evaluate the impact of L3 topologies on the
system performance.

Simulations have been performed according to the followinggeneral settings. For each param-
eter under investigation, simulations are averaged over 6 repetitions: specifically, we consider 3
different instances of 2 different overlay graphs as described in section 6.2.2.24. Unless otherwise
stated, we use the Meridian dataset [38, 69] as a default realistic model of L3 network latencies
with M = 35 ms.

4Since impact of different overlay topologies at timet = 0 is not appreciable, we do not breakdown results according
to them
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Figure 6.5: Cumulative distribution function of chunk delay: (a) Performance of different sched-
ulers (ru/r and lu/{r, la, ba, pa}) on a Meridian network. (b) Effects of topology management
for best (lu/pa) and worst (ru/r) schedulers. Labels along the curves in (a) and (b) express the
traffic proximity percentageP%.

Each overlay consists ofNH = 2000 peers, of which we simulate a lifetime of 150 seconds,
during which 1500 chunks of video stream are disseminated inthe overlay. We consider a single
source node that streams video at an average rate of 1 Mbps, and consider 100 kbit fixed-size
chunks (i.e., 10 new chunks are generated in each second). Statistics are collected starting from
500th chunk in order to avoid the initial transient. We consider that buffer maps store 50 chunks,
which correspond to a playout delay of 5 seconds.
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6.3.1 L7 Algorithms

6.3.1.1 Schedulers

Curves in Fig. 6.5(a) follow the same semantic of those presented in section 6.2.4.2. Each curve
represents a different scheduler, and we indicate lost chunks (i.e., chunks that arrived later than
the playout deadline) as chunk with negative delay (i.e., falling into the gray shaded zone): this
is especially visible for the simplest schedulerru/r, where the fraction of lost chunks exceeds
10%. The picture further reports the traffic-localityP% percentage along each curve. Recall that
P% represents the fraction of chunks that do not traverse the core network (i.e., the destination
host is attached to the same router of the sender host), and isthus a rough indication of network
friendliness.

With the exception ofru/r, other schedulers limit the fraction of lost chunk (which isvery
close to 0%), but instead differ by chunk delay and localityP% measures. Consideringlu/r
and lu/la, both strategies select the latest chunk and send it to peerswhich do not own it:lu/r
selects a destination peer at random, whilelu/la proportionally prefers closer neighbors. Clearly,
locality improves when latency-awarelu/la peer selection is performed with respect tolu/r (from
0.92% to 2.66%). Recall that two hosts attached to the same router sense a latency of 0 so when
a scheduler take into account latency information, hosts behind the same router are likely to be
chosen. At the same time, notice thatlu/r andlu/la are very close in terms of delay, despitelu/la
preference for low latency neighbors. This can be explainedwith the fact that the propagation
delay has a less prominent impact with respect to transmission delay, especially considering that
chunks possibly travel multiple hops on low-capacity access links.

Consider indeed that the average propagation delay betweenany two peers isM = 35 ms,
whereas from Tab. 6.1 we have that the average chunk upload times range from 20 ms for class-I
peers to 200 ms for class-III peers. This entails that, at each hop, the transmission time likely plays
a great role in determining the chunk delay performance: thus, merely choosing a peer which is
closer in terms of the propagation delay does not allow to improve the overall system chunk delay
performance.

Finally, the lu/ba and lu/pa schedulers achieve the best delay performance. Consider that
bothlu/ba andlu/pa assign scores according to the destination upload bandwidth, with the power-
awarelu/pa scheme taking into account the propagation latency as well.Results confirm that
uploading chunks to high-capacity peers, which can in turn diffuse them fast, is beneficial to the
whole system [104]. Moreover, we further gather confirmation of the fact that explicitly taking into
account node latency improves localityP% but does not further ameliorate delay performance.

In addition, an interesting aspect emerges from this analysis: comparing thek = 1.5 homo-
geneous single-class system of Fig. 6.3 in section 6.2.4.2 to the heterogeneous multi-class system
shown in Fig. 6.5(a), we see that peer heterogeneity plays a non marginal role in improving global
efficiency [64]. Intuitively, having peers with different capacity is beneficial because high capacity
peers, which can handle a greater number of active connections, will occupy the high portion of
the istantaneous chunk distribution tree, close to the source, possibly as a result of topology man-
agement. On the other hand, peers with poor connectivity canoccupy far positions in each chunk
distribution tree, since they can serve a lower number of neighbors (or even none).

Overall, preference toward high-bandwidth peers is necessary to reduce the delay incurred by
chunks; instead, preference toward low-latency peers is not helpful in reducing the chunk delay,
but may ameliorate the network friendliness confining the traffic at the access.
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6.3.1.2 Topology management

We now investigate the impact of topology management on the system performance. To gather
performance bounds for a large class of schedulers, we consider lu/pa asupper-bound(since it
exhibits the best results in terms of both delays and locality) and the simpleru/r aslower-bound

In their overlay maintenance process, peers have the chanceto tune their neighborhood, both
in terms of itssize(i.e., change their out-degree) andcomposition(i.e., preferring high-bandwidth
peer as in BitTorrent tit-for-tat, or trying new peer as in BitTorrent unchocking). For the sake of
simplicity, we consider topology management as a feature that can be turned on or off, and select
thus a single algorithm: specifically, we use the approach described in [59], which we refer the
reader to, for a detailed description. Briefly, according to[59] peers continuously vary their neigh-
bor size, selecting peers according to a “desirability” function that depends on the neighbor upload
bandwidth: as we previously observed in the case of chunk scheduling, bandwidth-awareness is
extremely beneficial (specifically, more beneficial than latency or power-awareness) to the overall
system performance, hence our selection.

In Fig. 6.5(b), improvements induced by the topology manager are clearly noticeable for both
schedulers. Taking into accountru/r, for instance, we notice a significant amelioration in terms
of both losses and delays. According to [59], high-bandwidth peers have an higher fan-out, and
tend to select high-bandwidth nodes in their neighborhood:in this way, chunks generated by the
source will be first sent to nodes that are capable of spreading them faster, thus reducing the overall
delay and, by consequence, loss rates. In other words, performance enhancements are due to the
fact that high-capacity nodes “moves” up toward the source in the instantaneous chunk diffusion
tree. In Fig. 6.5(b), the same schedulerru/r can lower the mean delay by 0.75 seconds with an
improvement of 25% and reduce losses to 0.25% by performing topology management.

Yet, improvements can be achieved in case oflu/pa as well: e.g., the 99th percentile of the de-
lay reduces by 50% reaching 1.1 second. Moreover, notice that several beneficial effects combine
altogether: indeed, despite being based on bandwidth-awareness only, topology management con-
sistently increases the fraction of the traffic confined in the access network as well (P% = 10.7%).
Indeed, consider that the improved neighborhood is composed mostly by high-bandwidth nodes:
the power-aware scheduler is then able to select among closer nodes, that are also higher capacity
than in the previous case. Overall, this yields higher odds to choose high-capacity nodes that are
also connected to the same router, and as high-capacity peers can offer a larger amount of data in
the same time window, traffic locality increases as well.

Summarizing, active topology management is beneficial, as it increases the chances to find
higher capacity peers, thus lowering the chunk delay and hence reducing losses.

6.3.2 L3 Network

We now assess the impact of the following models for the underlaying L3 network, each of which
assigns latencies between access routers in a specific way:

• Ideal: This represents an L3 network without latencies, or in other words, propagation delay
is 0, so that in practice only the logical L7 overlay topologyis taken into account.

• Meridian : Latencies provided by the Meridian project [38,69], whererealistic latencies are
gathered by means of end-to-end Internet measurements (themean latency of the Meridian
dataset equals toM = 35 ms as most of peers in the data-set are from US).

• Constant: Latencies are constant and equal among all end-to-end paths, and the latency
value is equal to the mean valueM of Meridian latencies.
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Figure 6.6: Cumulative distribution function of chunk delay: Impact of different models of L3
networks, for best (lu/pa) and worst (ru/r) scheduler.

• Dynamic: Latencies between any two pairs of routers are distributedaccording to an Ex-
ponential distribution, whose mean is fitted using the mean valueM of Meridian latencies;
to simulate the effect of cross traffic, yielding to different levels of congestion on a chunk
duration timescale, new values of latency are extracted foreach new chunk propagation.

The network models we consider range from a simplisticIdealmodel to the realisticMeridian
one, where one would expect network-aware algorithms to stand from the lot. TheConstant
network model is a simple, still unrealistic model, that is however fitted on real data: notice that
we expect latency-aware algorithms to be ineffective in this case. Finally, we include theDynamic
network model as a worst case for latency-aware algorithms such aslu/pa, since the decisions
are taken on the basis of measurements that however continuously change (so that each chunk
between any two peers willalwaysexperience different latencies).

In Fig. 6.6, we show the CDF of delays for bothru/r and lu/pa schedulers using different
topologies, when the topology management feature is enabled (since similar considerations hold,
we avoid reporting the case where topology management is disabled). From Fig. 6.6 we notice
that the performance of each scheduler remains clearly separated, and further that the L3 network
model only minimally affects the chunk delay performance (i.e., given any scheduler, curves are
tightly clustered across all models).

In case ofru/r scheduling, ideal L3 network exhibits remarkably lower delays than the other
network models, which all have a very similar impact on the delay performance. In case oflu/pa
scheduling, we instead remark that performance figures are very tight irrespectively of the net-
work model, which surprisingly holds even for the dynamic network scenario. Again, this is due
to the predominant impact of transmission delay over propagation delay, entailing that even a
rather simple network model (e.g., non-null delay fitted over real measurement), yields consistent
performance estimates.

Notice that this might change in case the transmission and propagation delay are comparable,
which can happen when e.g., the uplink bandwidth increase, or the chunk size shrinks. Still, as
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small chunk implies higher overhead (i.e., due to increasedsignaling rate, buffer map size, etc.)
we can expect the relationship between transmission and propagation delay to hold for a while.
Notice also that, althoughlu/pa performance are not affected by the network model given the
current peer population breakdown, in future scenarios where most of nodes have high-capacity,
we instead forecast an increased importance of latency-awareness over bandwidth-awareness. In
this case, we may also expect the dynamic network case to constitute a stiffer scenario.

Summarizing, the impact of L3 network models is almost negligible: in case access network is
the bottleneck, the chunk transmission time largely dominates the delay end-to-end delay (at least
for reasonable chunk sizes and the current access rates).

6.4 Simulation Results: L3/L7 Interaction

In this section, we investigate the impact of L7/L3 interaction on the system performance: first
we study latency and capacity estimation errors, afterwards we analyze the effect of signaling
errors. In this section we take into account exclusively thelu/pa scheduler since it is the one
that presented best performance on previous scenarios and it is sensible to both bandwidth and
latency information. Experiments of L3/L7 interaction have been done for the other network
aware schedulers as well andlu/pa always performed better; we do not include results of other
schedulers because we think their inclusion would not bringadded vale to our study.

6.4.1 Measurements Errors

P2P-TV systems need to implement measurement techniques inorder to successfully imple-
ment both topology management policies and network-aware scheduling algorithms such as
lu/{la, ba, pa}. In a real deployment, both latency-related (e.g., one-waydelay or RTT-latency)
and capacity-related (e.g., bottleneck capacity, available bandwidth) measurements will be af-
fected by some degree of errors, that are either intrinsic tothe measurement techniques, or depend
on temporary network conditions: our aim is thus to evaluatethe robustness of P2P-TV systems
to such errors.

6.4.1.1 Latency measurement errors

Consider latency first, which is generally simple to estimate, and focus on the minimum RTT es-
timation, which is especially simple since it does not need clock-synchronizaton. In case RTT
measurements can passively exploit the continuous transmission of data/acknowledgment pairs,
this yields to many samples and thus to robust estimates. However, there are cases where RTT
measurements are neededprior that any data transmission happened: in this case, active measure-
ment are needed which yields to fewer samples and thus to possibly biased the RTT estimation.
Specifically, we consider that RTT can only beover-estimated(e.g., since the acknowledgment
packet may be delayed due to cross-traffic, self-induced congestion at the access, sustained CPU
load in the host machine running the P2P application, etc.),so that a nearby peer can be mistaken
as a faraway one. Formally, denote by∆(p, p′) the actual round trip time latency betweenp and
p′, and consider that peerp will measure ã∆(p, p′) ≃ ∆(p, p′)+α, whereα represent the error in-
tensity.∆̃(p, p′) is modeled by a random variable, that follows a negative exponential distribution
with meanMα.

Figure 6.7 reports system performance as a function of increasing error intensityα. Specifi-
cally, x-axis reports the ration of overestimation error between the measured and the actual latency
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Figure 6.7: L3/L7 Interaction: Impact of latency measurement error. (a) reports chunk delay
distributionµ andπ95, (b) reportsLoss% andLocalityP%.

value, varying fromα = 0 to α = 2 (measured̃∆ is, on average, the double of the actual∆). Pic-
tures report both user-centric (i.e., meanµ and 95th percentileπ95 of the delay, Loss %) and
network-centric metrics (i.e., percentage of local trafficP%). In reason of our previous observa-
tion on the lower impact of the propagation delay component,it is not surprising to observe that
user-centric performance are not affected by latency errors. Conversely, network-centric perfor-
mance is deeply affected by measurement errors: as the scheduler knowledge of its neighborhood
becomes erroneous, its proximity-aware choices are no longer correct, and the traffic locality index
significantly decays. Notice that a qualitatively similar behavior holds both in presence or absence
of topology management.

Overall, latency estimation precision has a small impact onP2P-TV performance, limitedly
affecting the overlay ability to localize the traffic.

6.4.1.2 Capacity measurement errors

Let us now consider capacity measurement. In this case, we expect measurement errors to have
a possibly larger impact on the system performance, since the transmission delay component
(which depends on the uplink capacity) plays a major role in determining the chunk delay. At
the same time, capacity measurement are notoriously difficult, as several techniques typically
yield rather different measurement [103]. Also, unlike theprevious case, capacity can be either
under-estimated or over-estimated (depending on the considered technique, due to cross traffic,
etc.). In the case of P2P, this gets further complicated as concurrent measurements have mutual
influence [25], which further adds to the error. Finally, in case of P2P-TV, the uplink capacity
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Figure 6.8: L3/L7 Interaction: Impact of capacity measurement error. (a) reports chunk delay
distributionµ andπ95, (b) reportsLoss% andLocalityP%.

measure of thereceiver peeris generally needed, which is not straightforward since themeasuring
peer cannot rely on the chunk transmission process. For the above reasons, we can expect capacity
measurement errors to be larger in magnitude with respect tolatency errors. Formally, we denote
by C(p′, p) the actual bottleneck capacity in the path fromp′ to p; we consider that peerp will
erroneously estimateC(p′, p) asC̃ ∼ N(C(p′, p), αC): in other words, peers capacity estimate is
a normally distributed variable, with mean equal to the actual bottleneck capacityC(p′, p) and a
variance equal toαC.

In Fig. 6.8 we explore errors ranging inα ∈ [0, 5]: despite we consider such a large range,
we observe that performance is rather robust: indeed, only amarginal increase of latency (and
of losses, in case topology management is disabled) can be observed. This can be explained
with the fact that, provided that measurement errors still allow to clearly separate the peers in
classes5, performance of bandwidth-aware algorithms remains consistent. Given the challenges
in capacity and bandwidth measurement, this intrinsic robustness is a very advantageous feature,
as a rough binary discrimination capability in high-capacity vs low-capacity peers may be enough
for network-aware algorithms.

Overall, capacity estimation precision has a small impact on P2P-TV performance: indeed,
provided that peer classes are sufficiently separated, it isalways possible to differentiate among
classes even in presence of measurement errors.

5Measurements are correct with a very coarse granularity, from Tab. 6.1 we have thatBW
i

U

BW
i+1

U

> 2∀i which means

that we may correctly separate peers into classes even when the measurement precision is rather poor.
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6.4.2 Signaling errors

We now investigate the effect of signaling errors on the system performance. Recall that, in order
to send chunks that areusefulfor the receivers, each peer must have a precise knowledge ofits
neighbor buffer-maps. This can be accomplished by periodically exchanging buffer-map status in
control packets, or by piggybacking buffer maps in data packets. In order for this knowledge to
be as up-to-date as possible, any peerp should inform all of its neighbors as soon as it receives a
new chunkc. Still, even in this “perfect signaling system”, due to the unavoidable latency of the
signaling process (both propagation and transmission delay), it is still possible thatp schedules the
transmission of a chunkc to a peerp′ that has just received it (but not sent its buffer mapB(p′)
out yet), thus generating a collision. Furthermore, loss ofsignaling messages can happen in the L3
network, further degrading the quality of peers knowledge.Clearly, frequent buffer-map exchange
has a high cost in terms of overhead: as several new chunks aregenerated at each second, the
signaling process would thus need to be continuous in order for peers to have an up-to-date view
of their neighborhood. However, lowering the signaling rate to reduce the messaging overhead
also increases the chance for collisions to occur.

6.4.2.1 Impact on L7

Up to now, we have evaluated network-aware P2P-TV systems performance by assuming that
peers have a perfect instantaneous knowledge of the buffer maps of their neighbors – a rather un-
realistic assumption. We therefore model the impact of low signaling rates (or signaling messages
losses at L3) as a quality degradation of system state knowledge in the distributed P2P system.
In more detail, we model imprecision of system state knowledge as “usefulness” errors: in other
words, with a given probability Perr a peerp can take a scheduling decision of chunkc towardp′

which he believes to be useful (i.e.,c /∈ B(p′)) despite it is not (i.e.,c ∈ B(p′)), which generates
a collision.

Conversely, we do not consider the opposite kind of errors (i.e.,p believesc ∈ B(p′) despite
actuallyc /∈ B(p′)), as this would indeed model a somewhat unlikely case ofmisconfiguredpeers
sending erroneous updates (i.e., advertising chunkc ∈ B(p′) to be available while it is not).

Fig. 6.9 shows the meanµ and 95th percentileπ95 delay, along with chunk loss statistics. No-
tice that while the mean delay is roughly unaffected by signaling error probability Perr, a counter-
intuitive phenomenon characterizes theπ95 measure. Indeed, the 95th delay percentile increases
until Perr = 1/400, and afterward starts decreasing: this behavior is strongly correlated to the
chunk loss rate, which starts rising roughly at Perr = 1/400. What happens is that for increas-
ing Perr, peers indeed receive chunks with higher delay, which in turns raises the probability that
chunks arrive beyond the playout delay (i.e., delay larger than 5s), and are thus marked as lost:
as lost chunks are not accounted in the delay curve, the peak is thus an artifact due to the playout
deadline.

Traffic locality exhibits a non-straightforward behavior as well: indeed, it can be seen from
Fig. 6.10 (left y-axis) that locality increases as buffer-map errors increase as well, which is es-
pecially visible in case of topology management. This can beexplained by considering that the
lu/pa scheduler preferentially selects nearby high-capacity peers. When the error probability is
low, these peers will be fed first, but then, as peers rarely fail in estimating the usefulness of their
decisions, other lower-capacity higher-latency peers getsuccessfully served during the remain-
ing upload slots. Conversely, when error probability is high, the scheduler will keep on sending
chunks to close high-capacity neighbors, despite they likely already have received that chunk from
other peers (notice that we forbid peers sending the same chunk to the same peer multiple times).



110 6. SIMULATION ANALYSIS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.0001  0.001  0.01  0.1

D
el

ay
 µ

 a
nd

 π 9
5 

(s
)

Signaling error probability Perr

Delay  µ
Delay π95

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.0001  0.001  0.01  0.1

D
el

ay
 µ

 a
nd

 π 9
5 

(s
)

Signaling error probability Perr

TMOFF
TMON

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.0001  0.001  0.01  0.1

D
el

ay
 µ

 a
nd

 π 9
5 

(s
)

Signaling error probability Perr

(a)

 0

 10

 20

 30

 40

 50

 60

 0.0001  0.001  0.01  0.1
 0

 5

 10

 15

 20

 25

 30

Lo
ss

%

Lo
ca

lit
y 

P
%

Signaling error probability Perr

Loss%
Locality P%

 0

 10

 20

 30

 40

 50

 60

 0.0001  0.001  0.01  0.1
 0

 5

 10

 15

 20

 25

 30

Lo
ss

%

Lo
ca

lit
y 

P
%

Signaling error probability Perr

 0

 10

 20

 30

 40

 50

 60

 0.0001  0.001  0.01  0.1
 0

 5

 10

 15

 20

 25

 30

Lo
ss

%

Lo
ca

lit
y 

P
%

Signaling error probability Perr

TMOFF
TMON

(b)

Figure 6.9: Delay and chunk losses as a function of signalingerrors. (a) reports chunk delay
distributionµ andπ95, (b) reportsLoss% and localityP%.

Overall, system performance are extremely sensitive to errors due to stale signaling: effects
are noticeable on the tail of the delay distribution for error rates as low as Perr = 1/1000 and
loss probability become excessive for error rates as low as Perr = 1/100.

6.4.2.2 Impact on Quality of Experience (QoE)

We then dig the user Quality of Experience (QoE) by evaluating an objective video quality metric,
namely the Peak Signal to Noise Ratio (PSNR). We consider thestandard Soccer sequence (H624
format, CIF resolution, 300 frames @30Hz, looped for the whole simulation duration), and record
for each peer the list of lost chunks. We then make use of Evalvid [49] to evaluate video quality,
by feeding the tool with the video sequences where we take into account the chunk loss pattern
for each peer. To give the reader an intuition of PSNR value, and how it roughly corresponds to
other system performance, we report in Tab. 6.3 a few examples. Each row refers to either the
video source, a peer of class-II, or a peer of class-IV, and reports different performance metrics
such as delay (mean and 95th percentile) and loss statistics,.with a graphical representation of
the loss pattern, where each vertical bar corresponds to a loss. As PSNR evaluation is very time
consuming and due to the size of our system, we resort to stratified sampling: specifically, we rank
peers according to the amount of losses and select a 10-peerssample (corresponding to different
loss amounts) out of the totalNH = 2000 peer population. Right y-axis of Fig. 6.10 reports the
PSNR averaged over the 10-peers sample (bars report the standard deviation over the sample),
which due to stratification is however representative of thewhole population. It can be seen that
PSNR drops as soon as a losses occur in the system: notice further that, since a PSNR<24 dB is
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Table 6.3: PSNR values for the Source, a class-III and a class-IV peer

Class PSNR
Delay
µ(π)

Lost
chunks

Loss pattern

Source 39.4 – –

II 16.1
1.18s
(4.3s)

45
(2.2%)

IV 12.1
1.28s
(3.7s)

487
(24.3%)
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Figure 6.10: PSNR evaluation as a function of signaling errors. Bars represent the standard devia-
tion of PSNR values gathered over the 10-sample population.PSNR of the original video sequence
at the source is 35.6 dB.

generally considered as an indicator of extremely bad videoquality, this suggest that buffer-map
errors should be kept below Perr < 1/100.

Overall, as in our evaluation buffer maps hold 50 chunks and anew chunk is generated every
100ms, this suggests that the signaling rate should be aboutas high as the chunk generation rate.

6.4.2.3 Impact on Peer Class

For the sake of completeness, we analyze how system performance vary across the different
classes, comparing ideal (Perr=0%) and harsh (Perr=5%) settings, so to gather performance
bounds. To quantify the impact of Perr, we define theintra-class degradation factoras:

D(X) = X(Perr = 5%|c)/X(Perr = 0%|c) (6.2)

whereX is any metric considered in the table andc the considered class: intuitively,D(X) is a
compact indicator of the performance loss from ideal to realistic settings.

To quantify the fairness of the results among classes, we define ainter-class fairness factoras:

F(X) = max
c

X(c|Perr)/min
c

X(c|Perr) (6.3)
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Table 6.4: Per-class performance breakdown
Ideal Harsh

Perr = 0% Perr = 5% D

µ π95 L% µ π95 L% µ π95 L%
I 0.4 0.6 10−3 0.8 1.3 0.2 1.9 2.1 92.2
II 0.6 1.0 10−2 0.8 1.1 4.4 1.2 1.1 263.9
III 0.7 1.1 10−2 0.8 1.2 8.5 1.1 1.2 1421.3
IV 0.9 1.3 0.2 1.1 1.4 33.9 1.2 1.1 198.6
F 2.2 2.2 68.2 1.3 1.1 146.9

intuitively, F=1 corresponds to comparable performance across classes, while the larger the value
of F>1, the larger the unfairness.

Results are reported in Tab. 6.4. Notice that, already on ideal settings, class-IV peers experi-
ence a delay twice than that of class-I peers, and about 68 times more losses (lossL% unfairness
exceeds a factor of 146 in harsh settings). Concerning the degradation due to signaling error,
we see that class-I experiences a larger delay degradation than other classes but a limited loss
increase: in other words, average delay increases but not enough to exceed the playout deadline
(and to cause losses). The opposite happens instead for class-II and III, whose delay . The extent
of class-IV degradation is instead smaller, however the absolute amount of losses exceed 33%,
which likely makes video quality unbearable.

We conclude that, even in absence of signaling errors, performance breakdown is unfair with
respect to peer belonging to different classes. Under harshsignaling errors, delay become more
fair among classes, with however extremely large loss ratesfor peers belonging to the poorer
classes.

6.5 Conclusions

In this work, we compare different state-of-art “network-aware” P2P-TV systems, i.e., systems
whose main algorithms (such as chunk selection and topologymanagement) are based on in-
formed decisions concerning the status of the network. We define a flexible framework, able to
accommodate further aspects beyond to the one we focus on in this work, and perform a thorough
simulation campaign: our purpose is to understand what are the main factors that affect P2P-TV
performance, and to what extent performance degrades underrealistic settings.

Our main findings can be summarized as follows. First, we find the impact of the L3 underlay
network model to be modest, with a small performance gap between simple (e.g., constant and
fixed delay) and realistic models (e.g., meridian latency ordynamic latencies). This owes to the
fact that the propagation delay has a smaller impact with respect to transmission delay, especially
considering the relative low-capacity of current scenario. At the same time, we can expect that as
the access capacity increases, the impact of propagation latency may need to be reconsidered.

Second, we find that system performance is rather robust to errors in the measurement of
peer properties. More precisely, provided that peers capacity is clearly separated, the ability to
roughly discriminate high-capacity from low-capacity peer is sufficient to guarantee a good level
of performance. Similarly, errors in the latency estimation only affect the traffic locality, but
system performance are otherwise unaltered.

Finally, we find the impact of signaling errors to be, by far, the most important factor able
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to significantly degrade the quality of P2P-TV services and is able to severely impact overlay
performance already from very low intensities. This suggests P2P-TV protocol designers to pay
special attention to signaling logic, in order to gather reliable estimate of the achievable system
performance. As future work, we aim at studying the interplay between chunk size and buffer
maps update rate and exploring the trade-off between the overhead caused by high signaling rate
and the outdated knowledge of neighborhood buffer-maps dueto low signaling rate.
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Chapter 7

Emulation Analysis

It is desirable that P2P algorithms and protocols are testedbefore they can be deployed at large
scale. Beta testing usually involves either (i) the deployment of small to large-scale testbeds, such
as Grid5000 [36], where the environment is fully under control but not representative of real world
dynamics, or (ii) the use of large-scale testing facilities, such PlanetLab [88] or OneLab [74], that
benefit of the realism of the wild Internet, but lacks howeverof control.

Researchers face thus the following dilemma. On the one hand, their testbed results may be
easily reproducible, but hardly representative of real-world performance: in this case, the large
development and deployment effort invested in the testbed does not payoff, since the offered level
of realism only slightly exceeds the one achievable by simulation. On the other hand, carrying
on experiments over the wild Internet allows to gather realistic results, though in this case the
experimental scenario is not under control and generally hardly reproducible. Loss ofcontrol
means that it may be very hard to correlate the observed performance with their root cause, so that
experimental results become hard to interpret. Loss ofreproducibility –which has been a require-
ment of experimental science since Hipparchus (ca.190 BC – 120 BC) measurement on Earth
axial precession– can further hinder cause-effect relationships, and is therefore not a favorable
environment for beta testing.

Efforts such as ModelNet [113] offer a third way, enabling the control of thecore network
topology that is instead precluded in Grid5000, PlanetLab and OneLab. In this sense, Model-
Net does not try to fully substitute to these existing experimental facilities, but rather to comple-
ment them. Indeed, ModelNet stands between the two approaches for being more realistic than
Grid5000 or smaller testbeds and, at the same time, more controllable than PlanetLab; further-
more experiments on ModelNet can be reproducible (L3 topology, traffic condition, etc.) as in
Grid5000 and unlike in PlanetLab. These capabilities make it a valuable complementary tool for
P2P application developer to test their systems. ModelNet is however only capable of shortest-
path IP routing, which represents its major drawback. This limitation makes it is not suitable for
research in Traffic Engineering (TE), nor completely realistic as emulation environment, since no
source-routing or load-balancing techniques, though widely used as of today [8], are available for
testing.

In this chapter, we present ModelNet-TE, an extension of ModelNet that enables TE emulation
and experiments. Colleagues in our group ported the original ModelNet core code from BSD
to Linux, making it available to the scientific community [70] and we slightly modified it for
stability reasons and for the integration with the traffic engineering tool that will be discussed
next. The ModelNet-TE tool is interoperable, scalable and flexible. Interoperability and scalability
are directly inherited from the original ModelNet code, that allows to run possibly thousands of
unmodified application instances (provided that certain constraints are met, which we detail in the
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following). Flexibility is instead a key of ModelNet-TE, aswe took special emphasis in the design
of a reusable toolbox, where researchers can easily integrate their own TE algorithms beside those
that we already provide [31,72]1.

We use ModelNet-TE to evaluate the uncoordinated interaction between Traffic Engineer-
ing (TE) at the network layer (L3) and end-to-end control policies applied by P2P systems at
the application layer (L7). Indeed, though a number of work have studied the issue of selfish
routing [45, 47, 58, 75, 90, 99] most of these work adopt a theoretical approach, which is espe-
cially true for the case of the uncoordinated interaction ofrouting dynamics at different levels
[45, 47, 58]. On the other hand, while several experimental studies of popular P2P applications
exists [16, 29, 87, 91, 101, 106, 123] they nevertheless neglect the interaction with the underlying
network. While their approach is necessary to understand application dynamics, it does not allow
ISPs to understand the impact of TE on the traffic of their users; nor it allows P2P developer to
assess how do their algorithms perform over a reactive network.

Aiming at filling this gap, we study the L3/L7 interaction viaModelNet-TE. To prove the
flexibility of ModelNet-TE, and to gather a full blown set of results, we carry on an experimen-
tal campaign that, as sketched in Fig. 7.1, considers a rich set of (i) L3 topologies and routing
algorithms and of (ii) L7 applications and peer population models. At L3, we consider both a
simplistic pure overlay model, where the bottleneck is onlyat the access, as well as the popular
Abilene topology spanning across the US, in which any link can become a bottleneck (depending
on the traffic matrix induced by the P2P application). As reactive L3 Traffic Engineering we use
a multi-path load balancing algorithm [31], that we compareto standard shortest path IP rout-
ing. At L7, we consider two reactive P2P applications, namely BitTorrent [15], the most popular
file-sharing application nowadays, and WineStreamer [14, 55], an open source live streaming ap-
plication2. Furthermore, we consider both a uniform peer population across the network, or a
skewed population, that reflects the actual number of citizen in major US urban areas.

Summarizing, the main contribution of this chapter is to carry the first thorough campaign,
exploiting an experimental methodology, that focuses on the interaction of P2P dynamics with the
underlying L3 network. Experimental results yield the following interesting insights: (i) bottle-
neck in the network (which recently arose in case of popular applications and content [23,67]) may
have a profound impact on the P2P application performance; (ii) the peer population model, other
than shaping the traffic perceived by the L3 network, may significantly contribute in determining
P2P performance; (iii) traffic engineering may ameliorate network-centric ISP performance (e.g.,
equalize traffic on links) to the detriment of user-centric P2P performance (e.g., due to unexpected
interactions with TCP transfers or P2P trading logic).

The rest of the chapter is organized as follows. In section 7.1 we present related work, in 7.2
we present a system-level view of the original ModelNetemulator, describing the TE extension and
the load balancing algorithm we use, providing an initial assessment of its scalability as well. 7.3
provides a detailed description of the emulated scenarios,describing the P2P applications used, the
different network and population models, and the evaluation metrics. Results of our experimental
campaign are then reported in 7.4. Finally, conclusive remarks are drawn in 7.5.

1The traffic engineering algorithm we present in this chapterhas originated from a collaboration in which we pro-
vided the network emulator and the interfaces to hook in while authors of [31,72] provided the load balancing algorithm.

2We justify the choice of these particular applications in section 7.3.2
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Figure 7.1: Synopsis of the elements taken into account in this chapter
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Figure 7.2: ModelNet low-level architecture

7.1 Related work

Two bodies of work are related to ours. On the one hand, there is work focusing on the experimen-
tal evaluation of P2P applications by means of testbeds or large scale-experiments. On the other
hand, work exists that focuses on the interaction of both layers.

7.1.1 Experimental evaluation

As far as experimental evaluation is concerned, we find two main class of methodologies: the first
employs controlled testbed [13,16,91], the second world-wide infrastructures [63,84,123].

Controlled experiments are run in dedicated infrastructures, such as Grid5000 [16, 91] or ad
hoc testbeds [13], where clusters of several coordinated machine, which are usually connected
through LAN, run P2P clients. As these infrastructures are general purpose (i.e., not tailored for
network experiments) experimental setup can be a burden. Besides, latency and packet drops must
be artificially enforced by external tools and it is impossible to carry out studies on L3/L7 inter-
action. Nonetheless, [91] concludes that BitTorrent experiments performed on cluster are realistic
and that wide area network latency and packet losses impact for less than 15% of the download
time. If we agree that this precision is realistic enough forelastic file-sharing applications, such
error margin cannot be tolerated for interactive live-streaming applications – where chunk losses
or delayed arrivals heavily impact the quality of experience.

World-wide infrastructures such as PlanetLab [88] and OneLab [74], have long been used to
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test and benchmark distributed applications [63, 84, 123].Currently, PlanetLab provides about
1000 nodes at 500 different sites scattered around the globe. Yet, one of the perception is that
PlanetLab is not suitable for P2P experiments since it is composed mainly by high capacity nodes
and few DSLs [108]. Another potential problem arises from the fact that access to nodes is shared
among users, each of which is getting different “slices”: yet, as multiple concurrent experiments
can be run on the same infrastructure, there is no control on CPU load3 nor other traffic (e.g., two
P2P experiments running concurrently, or measurement between PlanetLab nodes) that can both
alter experiment results4.

7.1.2 Routing layer interaction

The study of the interaction of several routing layers is instead motivated by findings in [75,90,99].
Briefly, while selfish routing may be highly unoptimal in general settings [75, 99], in practice it
performs reasonably well in Internet-like environment [90], which justify and confirms its interest.
At the same time, an important observation is that local optimization entailed by selfish overlay
routing may counter actions taken by the underlaying network, overall resulting in poor system
stability.

As a consequence, there has been a recently increased attention [45,47,58,127] on the poten-
tial issues on uncoordinated, uncontrolled interaction oftwo routing paradigms. Different studies
consider different levels of interaction such as a P2P overlay network and the underlying IP net-
work routing [47,58], IP routing and the underlying MPLS/GMPLS network [127], multiple P2P
overlays routing, coexisting on a given underlay network [45].

7.1.3 Advances with respect to the State of Art

This work extends and complements both bodies of work. On theone hand, though we use an
experimental methodology, to the best of our knowledge P2P traffic has been studied with a pure
overlay model [13, 16, 29, 53, 63, 87, 91, 101], neglecting thus the mutual impact with lower-layer
network. On the other hand, most of the work focusing on interaction between different routing
layers exploits a Game Theoretical approach [30, 58, 127], with a simulative approach limitedly
used in [47].

As such, the research community still lacks more realistic and practical studies, which is pre-
cisely what we address in this work: thanks to the ModelNet-TE framework, we encompass both
classes of work, by proposing the first study of routing layerinteraction that exploits an experi-
mental methodology.

Moreover, ModelNet-TE tool sits between controlled and wild testbed infrastructures, trading
off between the realism of PlanetLab, and the scalability ofGrid5000, and adding the control
over the network topology and routing algorithm. Yet, the scale of the experiments that can be
performed is not compromised: to prove this, Tab. 7.1 reports a comparison of different closely
related work, highlighting the scalability aspects for themethodologies discussed so far.

Notice that most works scale up to a few hundreds peers, i.e.,the same order of magnitude of
our ModelNet-TE experiments, confirming the validity and usefulness of the tool. Only two no-
table exceptions push the experiment scale to 1,000 [13] and10,000 [16], trading off experimental
scale with simplicity of the experimental setup. Still, thesize of ModelNet-TE experiments could

3For instance, [87] points out that “Since most Planetlab machines are usually over-loaded, we limit the overlay size
to 160 peers running on machines that report at least 5% idle CPU time.”

4Notice that this should change with the recent ability in OneLab to reserve resources, similarly to what happens in
Grid5000
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Table 7.1: Scale of different P2P experiments (this work in bold)
Ref. Testbed Nodes Nodes/ Machine
[16] Grid5000 10000 100
[13] Own testbed 1000 5
[29] PlanetLab 400 1
[87] Modelnet 320 32
[91] Grid5000 300 100
[101] PlanetLab 280 1

ModelNet-TE 200 35
[87] PlanetLab 160 1
[86] Modelnet 80 8
[53,63] PlanetLab 41 1

be scaled up, though a higher number of HOST machines would be needed in that case. Taking
into account that the scale of experiments is limited by the core machine, we expect the testbed
to scale up by a factor of 4 in the WineStreamer scenario leaving the access capacities unchanged
and augmenting the number of HOST machines; more details about scalability issues will be given
in 7.2.4. In the BitTorrent case, larger swarms up to a factorof 5 could be instead emulated by
considering lower access speeds (such as the 800 Kbps [91] inGrid5000 or 1 Mbps [87] in Mod-
elNet)(i.e., lower access speeds allow a greater number of nodes since the aggregate traffic rate
passing through the core is lower).

7.2 ModelNet-TE Emulator

7.2.1 ModelNet Primer

The original ModelNet software [113] is an IP network emulator, which allows to run unmodified
applications plugging them into realistic, large-scale networks. ModelNet implements emulated
virtual topologies that are independent from the physical testbed interconnection. A synoptic of its
architecture is sketched in Fig. 7.2. The ModelNet environment consists of two kind of machines,
HOST and CORE, interconnected by a physical LAN (address 192.168.0.0/24in the figure). The
COREmachine emulates the virtual network with an arbitrary topology, while each HOSTmachine
runs multiple instances of the application under test (in our case, BitTorrent or WineStreamer
clients, see 7.3.2). Each instance is bounded to a Virtual Node (VN) and a virtual IP address
belonging to a private subnet (typically the 10.0.0.0/8 network), dedicated to ModelNet emulation.
While in the physical topology VNs runs on HOST machines, in the virtual topology each VN is
attached to a Gateway node (GW), that constitutes its ingress/egress point in the emulated network.

Notice that, for the emulation to be successful, each packetgenerated by any VN application
instance must be delivered to the COREover the physical LAN: this is because, for each packet, IP
network emulation takes place at kernel level in the CORE. Emulation tasks can be summarized as
follow: using the source and destination virtual IP addresses of packets coming from applications
running on HOST machines, the CORE determines a path through the virtual topology and handles
the packets accordingly. Each hop on this path has a given bandwidth, queuing, propagation delay,
and packet loss characteristics: thus, this hop-by-hop emulation lets IP traffic experience realistic
wide area effects, possibly including congestion on core links. Notice that packet emulation occurs
in real time, and packet delays are handled with millisecondaccuracy.

For the sake of clarity, Fig. 7.2 depicts the case of an application instance bound to a virtual
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node VN having IP address 10.0.0.1, that wants to send a packet to a VN having IP address
10.0.0.4. Though both VNs are on the same physical HOST, packets are however delivered to
the CORE over the physical LAN, through a kernel level hack happeningat the interface of the
machine hosting the source VN5. The CORE routes then the packet in the emulated topology: once
the packet has crossed all path hops (in the emulated topology), it is delivered (again through the
physical LAN) to the HOST to which the destination VN is bound.

7.2.2 ModelNet-TE Overview

To overcome the single-path limit, we have modified the original ModelNet kernel module to
allow multiple parallel path to be used between any source destination pair: we call the improved
emulator ModelNet-TE. We have ported the original BSD code to the Linux kernel, that we make
available6 at [70].

We now briefly describe the improved internal ModelNet-TE structure. As can be seen in
Fig. 7.2, the topologies emulated by ModelNet-TE can be logically divided in two sections: a
backbonepart that connects the gateways nodes GW and anedgepart that comprises the set of
access links interconnecting each VN to a single GW node. In practice, we can imagine that each
GW to which VNs are attached, acts as WiFi hotspot or an ADSL DSLAM. We point out that the
TE algorithms only apply to thebackbonepart of the network, acting thus on aggregated traffic
demands coming from the network edge.

The high-level idea of the ModelNet-TE extension is depicted in Fig. 7.3, where all the relevant
components are represented, as well as their relationship and their mean of interaction. Basically,
theemulated topologyis described through an XML file, as in the original ModelNet-TE. Topol-
ogy definition consists in specifying both edge and backbonelink, by fully defining the property
of each link (such as bandwidth, delay, loss probability, queue size, etc.) and their topological
interconnection structure.

Routing tables of nodes in the emulated topology are insteadspecified in asource routesfile,
representing the Forwarding Information Base (FIB). In ModelNet, FIB is a text file containing,
for each VN couple, the list of hops that each packet coming from sourceV NS and destined
to V ND has to cross. In ModelNet-TE, the FIB is extended in order to handle multiple routes
between each VN pair: more specifically, aprobability is associated to each of the multiple paths
connecting each VN couple. The kernel-level forwarding module applies then this probability
for each packet: i.e., on each new packet arrival, one of the multiple paths is chosen at random
according to the specified probability.

Notice that the forwarding module only applies per-path probabilities, but expects an external
L3 TE routing moduleto set them: this way, routing optimization isdecoupledfrom low-level
forwarding, making it easy to integrate new algorithms. To prove the flexibility of the mechanism,
ModelNet-TE already implements two different TE algorithms [31,72] (although in this work, we
use only one of them, that we briefly describe in 7.2.3).

Centralized TE algorithms can easily run on ModelNet-TE. Notice that, given that all GW
traffic transits through the CORE machine, the TE optimization algorithms running on the CORE

benefit of the knowledge of the Traffic Matrix (TM), and of the load on each link. TM is continu-
ously updated by the CORE: more precisely, at a configurable periodic interval, the CORE exports

5ModelNet-TE flips a bit of the virtual destination address, which forces packets to exit the HOST (instead of being
“captured” by the loop-back interface), and be directed to the CORE (which is set as HOSTdefault gateway). The same
bit of the IP destination address is then flipped again at packet reception in the CORE.

6As our patch applies only to specific versions of the Linux kernel (namely2.6.18 or 2.6.22), and so as to
reduce the startup time for new users, we directly provide full ready-to-use systemimagesof the patched CORE and
HOST machines, containing the source code as well.
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Figure 7.3: ModelNet-TE high-level architecture

TM information from the kernel, writing it in an output text file containing theload of each link
on the network (expressed as the sum of the Protocol Data Unit(PDU) lengths that crossed each
link during that timeframe). TM information can then be usedas input by the TE toolbox running
in the user space, so to compute the FIB to be used by the CORE in the kernel-level forwarding
process, as illustrated in Fig. 7.3.

The routing/forwarding decoupling is not only a natural choice, as it follows from standard
operation in IP networks, but also simplifies the integration of new modules by (i) providing a
simple, clean and natural interface for the Linux environment (i.e., a file to read TM statistics from
the kernel, a file to write FIB information for the kernel) and(ii) avoiding constraints on the time-
scale of TE optimization module (which asynchronously runsin user space). To better grasp the
advantages of this design choice, let us consider which one between the (i) TE optimization and
(ii) FIB update process may constitute a bottleneck. Consider the ideal case of an instantaneous
optimization algorithm: then, update rate could only be limited by the time it takes ModelNet-TE
to read the new FIB from disk. As, in our experience, loading the update routing tables takes less
than a second (for moderate size networks of 10-50 nodes), this poses no constraint on the choice
of TE timescale. Indeed, the bottleneck in the FIB reconfiguration rate is more likely tied to the
TE algorithm running time, that depends on the algorithm complexity, and is generally tied to the
solution of an optimization problem.

With respect to our L7 vs L3 routing interaction study in a P2Pvs TE scenario, notice that
once the source routes are updated by the TE module, the CORE will use the updated routes in
the emulated topology, possibly triggering in turn changesat L7 due to P2P traffic dynamics, as
depicted in Fig. 7.3. This feedback happens naturally, i.e., without requiring any modification at
the application level, which is thus unaware of the L3 dynamics. In turn, changes in the L7 traffic
matrix translate into different loads at L3, which possiblytriggers a new update of the source
routes by TE, closing the feedback loop.
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7.2.3 ModelNet-TE Minimum Congestion Load Balancing

As already said in the introductory section, we did not participate in the development of the load
balancing algorithm but we present its description here to ease the understanding of the following
sections.

The L3 TE algorithm we consider in this chapter is the classicminimum congestion load
balancing problem, probably first introduced in [27]. For each link l, we define a convex increasing
function fl(ρl), whereρl is the load on linkl, and the problem objective is to minimize the sum
over all links of

∑

l fl(ρl). The rationale is that this function represents the congestion on the link,
and that TE should strive to minimize the total congestion onthe network. Convexity is intuitively
justified by the fact that at higher loads, an increase in loadgenerates more congestion than at
lower loads. This objective function has become very popular, to the point that [125] defines TE
as the procedure through which the network operator minimizes

∑

l fl(ρl).
Regarding the link congestion functionfl(ρl) we chose the resulting mean queue size of a

M/M/1 queue:

fl(ρl) =
ρl

cl − ρl

(7.1)

The influence of the particular choice offl(ρl) on different performance indicators is studied
in [31]: as long as (7.1) is convex, increasing and diverges as ρl reachescl, the exact choice is
unimportant in what regards path available bandwidth and link utilization.

The first input to the algorithm is the TM information. If every GW is ordered by an index, TE
traffic matrix contains in itsij-th entry the mean traffic demand from nodei destined to nodej,
usually called Origin-Destination (OD) pair. In addition to the TM, the algorithm also requires a
set of paths that each OD pair may use. By specifying this seta priori, the resulting optimization
problem is convex, which simplifies its solution (note that paths in this set are onlypotentially
used in the solution, i.e., the amount of traffic sent along some paths may be zero). In particular,
we bound the length of alternate paths|A| with respect to the length of the shortest path|S| found
by Dijkstra, so that|A| < |S| + 3. In other words, we take alternate paths that exceed the shortest
path by at most two hops, so to be able to route around a congested link or node, without incurring
the load overhead of longer paths.

All in all, given the topology, thefl(ρl) associated to each link on the network, the traffic
matrix and the paths that each OD pair may use, an algorithm isneeded to find the amount of
traffic that each GW should send along each path, so as to minimize

∑

l fl(ρl). With this respect,
several choices are possible since the problem is convex. For instance, a classical approach to this
kind of problems is the gradient descent method [26]. However, most of gradient based algorithms
include a parameter that controls convergence speed, whichmay be very tricky to assign. Although
for each algorithm there exists a range for this parameter that makes the solution converge, in turn
these values may result in slow convergence in certain situations. Conversely, larger values for the
descent parameters may translate into faster convergence,but can possibly also trigger oscillations.

To avoid this reactivity-stability tradeoff, we resort to the use of so-called no-regret algorithms:
in particular, ModelNet-TE implements the Incrementally Adaptive Weighted Majority (iAWM)
algorithm [7], that presents the advantage of self-regulation. For instance, its convergence speed is
automatically set, depending on previously observed values offl(ρl). For lack of space, we invite
the reader to [7] for a thorough algorithm description, and to [31] for extensive simulations results.

7.2.4 ModelNet-TE Scalability

It should not be forgotten that virtual nodes and virtual topology are ultimately emulated by the
over a physical network, and that multiple virtual nodes arerun on HOSTmachines. Hence, certain
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constraints must be met so to avoid that LAN capacity, CPU or RAM bottlenecks perturb the ex-
periments. Our setups comprises 6 HOSTs and 1 CORE machines, each equipped with Intel Xeon
CPUs (4 cores in hyper-threading running at 1.86GHz) and 4GBRAM, that are interconnected by
an Ethernet Foundry EdgeIron 24G-A switch with 1 Gbps ports ports and a 4 Gbps back-plane.

Concerning CPU and RAM bottleneck, we experimentally verified that each HOST is able
to run up to 35 P2P clients without incurring CPU penalties (i.e. CPU idle time was always
higher than 20%): hence for instance, with 6 machines, we canbuild overlays whose size reaches
NP = 200 P2P clients (which is also a reasonable swarm size for both file-sharing and live-
streaming, cfr. 7.3.2). We point out that the number of P2P application instances that can be run
on a single HOSTmachine also depends on the emulated VN uplinkCU,i and downlinkCD,i access
capacities, as these translate into constraint on the physical HOST capacity. In our scenarios, we
verify that such safety constraints are met, as the maximum aggregated throughput (measured
over 1 second long time slots) generated by the whole set of 6 HOSTs never exceeds 377Mbps
(BitTorrent) or 140Mbps (WineStreamer).

An even more stringent constraint applies however to COREcapacity: indeed, in ModelNet-TE
each packet needs to traverse the core twice, and although packets are sent on virtual interfaces,
they enter the CORE through the same physical interface. As emulation happens in real time,
at any time the overall traffic sent by all HOSTs in the physical network (or, equivalently, by all
VNs in the emulated network) must not exceed the capacity of the CORE as otherwise unwanted
queuing and drop effects may arise in the physical LAN, perturbing thus the experiments. In
other words, it must be ensured that the sum of uplink and downlink traffic does not exceed the
CORE capacity, translating intoCU + CD < 1 Gbps, whereCU andCD represent the aggregated
uplink CU =

∑NV N

i=1 CU,i and downlinkCD =
∑NV N

i=1 CD,i capacities respectively. Our setup can
therefore be considered conservative since, as we just saw,both applications generate an aggregate
traffic which is lower than the 1 Gbps threshold. Hence, we caninfer that, at least theoretically,
our testbed could scale-up by a factor of 2.5 and 7 respectively for BitTorrent and WineStreamer.
A more conservative estimate that takes into account [86] experience (hinting to a degradation
of ModelNet core precision for aggregated traffic greater than 600Mbps), would still support a 4
times WineStreamer swarm.

7.3 Scenario and methodology

We now describe the scenarios emulated in our experimental campaign, providing motivation and
detailed information concerning our choice of (i) network topologies, (ii) TE algorithm details,
(iii) population models, (iv) P2P applications.

7.3.1 L3 Network

7.3.1.1 Topology

Irrespectively of the P2P application, we consider two network topologies: namely, (i) a realistic
Abilene topology and (ii) a simplified pure overlay model.

Often indeed, network topology is not considered due to studies such as [4], showing the
bottleneck to be sitedat the edgeof the network. However, this assumption holds for scenarios
with a majority of low-capacity access technologies, such as e.g., ADSL lines, whose upload
capacity is significantly limited. Furthermore, this may nolonger hold in case of fast FTTx Internet
access (i.e., Fiber To The Curb/Home), which is in the agendaof all major developed countries,
and that reinforces the need of studying more realistic network scenarios.
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Figure 7.4: L3 Abilene topology and L7 swarm: uniform (left)vs skewed (right) population
models.

Second, signals of the fact that P2P (or other user-level applications) are already causing con-
gestion to ISPs can be inferred by recent issues such as (i) the throttling of BitTorrent connections
by Comcast in the US [23] or (ii) the throttling of Megauploadby France Telecom in Europe [67].
The above examples show that, actually, ISPs arealready strugglingwith the amount of data in
their networks as of today, i.e., even when FTTx represent a minority of access technologies.

We take into account the above observation while building anemulation scenario. Due to the
scale of our testbed, and to the physical limits of the interconnection (i.e., Ethernet transceivers,
switches back-plane, number of HOST described in 7.2.4), it is however clearly impossible to em-
ulate a full speed Internet core. Rather, we observe that problems may arise when the aggregated
traffic generated by the user may cause congestion in the network, and decide thus tojointly scale
access and core capacities so to produce situations similarto [23,67]. Notice also that while, the
BitTorrent vs Comcast case has already hit the media, P2P-TVapplication may represent a similar
threat due to the forecast ed growth of Internet video [21].

The realistic network scenario we design is thus as in Fig. 7.4, with core links interconnected
according to the well-known Abilene topology [1], comprising NR = 11 routers spanning over
the US country. In our scaled setup, we consider core links capacities inC = {5, 10}Mbps and
we model peer access capacity as loose symmetric FTTH withCD,i = CU,i = 5Mbps. It is worth
pointing out that the aggregate traffic of each peer is on average between 720Kbps (WineStreamer)
and 1.5Mbps (BitTorrent), and that since part of that trafficis directed toward other peers behind
the same GW, it will thus not consume core link capacityC. Hence, whileC = 5 Mbps represents
an under-provisioning scenario (i.e., the core is not able to transport all the aggregate traffic and we
expect losses on core links), theC = 10 Mbps scenario models a fairly well provisioned network.
These values have been chosen empirically since is difficultto exactly size a network in function
of access capacities and video rate. Moreover notice that, though realistic, the Abilene topology
is also a hard scenario for load balancing, since the level ofpath diversity may not always allow to
routearoundcongestion.

To better grasp the impact of the network topology, we compare the Abilene scenario with a
simplified model (not shown in the picture) where all peers are interconnected in a star topology
to a single network core router. No capacities or delay are emulated in the network core (but only
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at the access): hence, due to our physical setup, the backbone runs at 1 Gbps switched Ethernet
speed (which is much faster than the Abilene case, and where congestion never arises). Still, in
this scenario we may enforce realistic access latencies, depending on the population model (see
7.3.2.1).

7.3.1.2 Traffic Engineering

We now discuss some implementation details of the iAWM algorithm described in 7.2.3, notably
the timescale at which the algorithm is run. Let us recall that one of the inputs to the algorithm is
the traffic matrix (TM), defined as the amount of aggregated VNtraffic each GW node exchanges
with each other.

In ModelNet-TE, the TM is sampled over windows ofw seconds (w = 1 in our case), and
ModelNet-TE can perform simple operations7 (e.g., average, standard deviation, maximum, etc.)
overW consecutive time windows. Then, afterW consecutive windows, these demands are ex-
ported from the kernel to the TE algorithm (see 7.2.2). For the experimental campaign reported in
this chapter, we setW = 30, and run iAWM periodically afterW windows, to set the new routing
tables. Notice that the resulting timescale of the L3 trafficengineering decisions is on the order
of 30 seconds (which is comparable with the order of the L7 timescale, as we describe in the next
section).

7.3.2 L7 P2P Applications

At L7, we build realistic scenarios by considering heterogeneity in the (i) class of P2P applications
and (ii) peer population models.

We select two P2P applications, namely BitTorrent [15] and WineStreamer [14, 55], that
offer heterogeneous services and have thus a rather dissimilar design. Indeed, BitTorrent and
WineStreamer are rather diverse in their constraints (i.e., elastic file-sharing vs minimum rate
live-streaming), architectural choices (i.e., TCP vs UDP)and trading logic (i.e., rarest-first vs
playout-deadline based). Yet, these applications also share some similarities (i.e., both are built on
an unstructured a mesh overlay, with each peer optimizing its neighborhood by preferring high-
bandwidth peers) that are a natural result of the evolution of the Internet P2P ecosystem, following
the good performance these choices have exhibited [54,104].

For both applications, we emulate a flash-crowd scenario in which a single source initially
provides content (i.e., a file, or a TV channel) to a swarm ofNP = 200 peers. Notice that
this is a reasonable swarm size for file-sharing applications, that furthermore trades off between
observation in [84, 126]: more precisely, [126] observes that only about 1% of the torrents have
more than 100 peers, while [84] reports typical sizes of BitTorrent swarms to be around 300-800
peers [84]8. As far as live-streaming is concerned, in chapter 3 we observed that the swarm size
for the same channel also depends on the application (i.e., which reflects the application popularity
rather than the popularity of the content itself), with swarms ranging from 500 peers in TVAnts
to about 180,000 peers for PPLive for the most popular content. Hence,NP = 200 can represent
an highly popular channel over a mildly popular application, or a mildly popular content over an
highly popular application.

For the sake of simplicity, we consider homogeneous swarms capacities (i.e. each node has
the same access capacity as described in section 7.3.1.1): notice that the effect of heterogeneous

7The support for different operations simplifies the implementation of different algorithms, that may rely on different
inputs (e.g., average for iAWM [7] or maximum for [72]).

8This may be due to the fact that [126] exhaustively exploresall torrents, while observation in [84] are limited to a
smaller torrents catalog.
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Figure 7.5: Uniform vs skewed population models: end-to-end latency distribution.

swarms with multiple capacities are well-known [53] from a pure L7 standpoint, and may be worth
investigating from a joint L7/L3 viewpoint as future work.

7.3.2.1 Population model

Irrespectively of the P2P application, we may consider different swarm population models. In the
Abilene topology of Fig. 7.4, each router acts as access router for several peers of the network:
since the Abilene network comprisesNR = 11 nodes, and since we emulateNP = 200 peers
swarms, on average there are about 20 peers per node. In both cases, swarms initially have a
single source located in Kansas City (in the middle of US).

However, while emulation studies usually uniformly distribute peers in the network (e.g., by
spreading peers at random over PlanetLab nodes), we argue that peer population is more likely
to reflect the actual human population in the real world. As the Abilene network spans across
the US, we consider US cities of Abilene PoP and distribute peers to routers proportionally to the
population of the corresponding urban area [118].

The skew in the population distribution translates into a more clustered swarm population,
where several peers (users) may be found behind the same router (city). In turn, this also affect
the distribution of the end-to-end9 latencies, as peers are now more likely to be close.

The difference in the uniform vs skewed population models ispictorially represented in
Fig. 7.4, and the corresponding distributions of edge-to-edge latencies are reported in Fig. 7.5.
Latency distribution shows the impact of skewed peer population, as three peaks clearly arise:

9Notice that edge-to-edge latencies are measured between any pair of gateways GW (or IP routers), taking into
account the physical distance between US cities. We derive latencies by applying a factor of 5 microseconds per
kilometer of optics fibre [52]. End-to-end latencies are emulated by additionally taking into account the local loop
network beside the access GW adding a uniformly distributedaccess latency with mean 1ms.
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these correspond to (i) low delay for nearby communication (i.e., behind the same GW or con-
fined in the east cost, west cost, or mid US), (ii) moderate delay for mid-range communication
(i.e., between east cost and mid US, or west cost and mid US), and (iii) high delay for faraway
communications (i.e., between both coasts). Notice also that high delay PDF peak is pronounced,
as the majority of US inhabitants can be found along the eastern and western US coasts. Con-
versely, uniform peer distribution yields to a completely different latency distribution, which is
unrealistic with respect to actual measurements carried onin measurement projects such as [120].

7.3.2.2 P2P Filesharing: BitTorrent

For file-sharing, we use the Python version of BitTorrent-4.0.0-GPL. In file-sharing, the main aim
is to let all peers in the swarm download the content in the shortest possible time. Notice that
the BitTorrent version we consider employs TCP at transportlayer (L4). While we are aware
that recently BitTorrent introduced a new application-layer transport protocol based on UDP at
L4 [96], we choose TCP filesharing since the new protocol is for the time being implemented only
in a specific client (namely,µTorrent, that is estimated to account for varying ratio of BitTorrent
clients from 15% [84] to 60% [126]. Besides, our attention ishere more focused on the interaction
of P2P applications and L3 network, rather than to the performance of BitTorrent under a new
congestion control paradigm, which has been investigated in [110].

We point out that providing a survey of BitTorrent is out of the purpose of this work, for which
we refer the reader to [15,53]. Here, we only mention that BitTorrent peers establish and maintain
a limited number of connections, over which they download small portions (or chunks) of the file
they are interested in obtaining. Periodically (every 20 seconds), peers rank their connections de-
pending on the download rate, keeping only the best connections (“chocking” the least performing
ones), and optimistically trying to discover new potentialgood peers (nicknamed as “optimistically
un-choking” in BitTorrent, and performed every 30 seconds). To avoid free-riding, BitTorrent en-
forces reciprocation of content exchange (tit-for-tat) and, to avoid resources hot-spot, BitTorrent
peers try to equalize the chunk availability in the system bydownloading the rarest chunk first.
The timescale of the L7 application dynamics is on the order of 20 seconds, thus comparable with
L3 dynamics.

In a flash crowd scenario, BitTorrent peers behave differently depending on whether they are
leecher or seed. Initially, the seed is the unique source of a100 MBytes file: hence, at the very
beginning we expect most of the traffic to be originated from asingle VN (i.e., the seed). However,
as chunks start spreading in the swarm, exchanges between leechers become prominent, until the
seed contribution is no longer necessary [53]. Hence, the traffic matrix offered at L3 by L7 will
change during the whole experiment duration, so that the system evolves without ever reaching a
stationary state.

7.3.2.3 P2P-TV: WineStreamer

For live-streaming, we use WineStreamer, an application developed in the context of the FP7
Strep Project on Network Aware P2P Applications over Wise Networks (Napa-Wine) [55]. In
live-streaming the main aim is to let all peers in the swarm receive the minimum stream rate
(similarly to video-on-demand), and to minimize the playout lag with the source (additionally to
video-on-demand).

WineStreamer belongs to the last generation of live-streaming applications, and is able to take
informed decisions with respect to the network state [28]. Knowledge of the network state is com-
monly nicknamed as “network awareness”, and can either (i) be measured by the application or
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(ii) be achieved with ISP cooperation. Examples of (i) include preferring nearby peers to faraway
ones based on RTT or IP hop-count measurements, or preferring high capacity peers by means
of bandwidth measurements, etc. [28]). An examples of (ii) is represented by IETF ALTO [6],
defining ISP servers that acts as “oracles” and participate in the P2P peer selection process with
informed suggestion on good candidate peers.

In this work, we only consider L7 measurements performed by the application itself, and
turn off WineStreamer ALTO capabilities. Notice that, due to chunk transmission duration over
ADSL lines, we expect the bandwidth-aware [104] peer selection criterion to prevail over latency-
aware [12] or power-aware [93] (i.e., the ratio of bandwidthover latency) peer selection criteria. In
other words, as for slow ADSL peers the chunk transmission time exceeds the propagation delay,
in order to keep the overall system latency low, the ability to find high-capacity peers prevails over
the ability to find nearby peers as already discussed in chapter II.

In all of the following experiments we stream a 600 Kbps videoat 25 fps encoded with H264.
In the video diffusion, we map every video frame to a single chunk (while several audio frames
are grouped together in a single chunk to reduce the overhead). Video stream is not decoded at
destination, but is discarded to avoid too many concurrent blocking IO calls; however, we log
chunk-level arrival patterns to later evaluate the qualityof user experience.

Again, providing a survey of WineStreamer is out of the purpose of this work, for which
we refer the reader to [14, 55]. Rather, here we highlight thecomplementarity of WineStreamer
with respect to BitTorrent. On this regards, we point out that the application exploits UDP and,
though it implements a simple retransmission mechanism, the version we use in the testbed does
not implement any form of congestion or flow control – hence, it sends out chunks at full speed.
Moreover, chunk size is smaller than the one normally used inBitTorrent: as the scheduler per-
forms decisions at a higher rate, hence we expect the P2P neighborhood to be more dynamic. Due
to the use of UDP and to the minimum stream-rate requirement,WineStreamer is therefore a non-
elastic application, with stringent near real-time requirements, unlike BitTorrent. Also, differently
from BitTorrent, WineStreamer source is always providing new content to the swarm, at the same
average rate, so that the system tends to a stationary state (although with a varying neighborhood).

7.4 Experimental Results

In this section, we report results of our experimental campaign, adopting two complementary
viewpoints. First, we analyze the traffic that the P2P applications induce on the L3 network. Then,
we analyze the impact that each simplistic vs realistic parameter choice has on the quality that the
user perceives.

7.4.1 Traffic demands and link load

Let us investigate the traffic demands that P2P traffic induces over the whole network, and how
these demands translate into individual link load. A pictorial representation of the traffic demands,
at L7 and L3, is shown in Fig. 7.6 and Fig. 7.7 respectively.

Fig. 7.6 exploits a matrix representation to compare trafficdemands of the applications, mea-
sured over the whole experiment duration, where black points indicate a chunk exchange between
two peers. Already at a first glance we can observe the difference in matrix density: WineStreamer
behavior is much more “loquacious”, while BitTorrent contacts a lower number of nodes.

Augmenting the same kind of representation with gray levelsproportional to the volume of
exchanged data, we analyze load on L3 induced by the L7 application. Considering for the sake
of example only the BitTorrent application, we vary the L7 population model and the L3 routing,
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Figure 7.6: L7 traffic demands (Abilene topology, skewed population, IP routing): Swarm adja-
cency matrix for BitTorrent (left) and WineStreamer (right)

and depict the L3 TM in Fig. 7.7. Comparing top and bottom rows, one can gather the difference
between uniform (top) and skewed (bottom) population models: data exchange in the skewed
population is much more concentrated around few points (i.e. GW of large US cities as New
York or Los Angeles) while in the uniform case, chunks are more evenly exchanged. Comparing
instead left and right columns, one can gather the difference between IP shortest-path (left) and TE
multi-path (right) routing: as expected, traffic is more spread out under TE load balancing, which
is especially visible in the case of skewed population.

Performance of L3 network are reported in 7.8, showing link load and packet loss rate of
individual links in the backbone, for both P2P applicationsand comparing IP vs TE routing. For
the sake of simplicity, we only consider a scenario with realistic Abilene topology, 5Mbps core
links, and skewed population. The striking differences that the L7 traffic matrix exhibited in 7.6,
also entails different impact on L3, which can easily be explained.

Consider first the BitTorrent case in 7.8(a): as the application version we use employs TCP at
L4, peers attempt at fully utilizing their uplink bandwidth(provided that they have enough chunk
requests). In turn, this yields to a significant utilizationof core link, which are mostly above 70%
average utilization. Notice also that important links, such as those serving the gateways where
the source is located, are not facing severe congestion (i.e., higher load or losses), which is again
due to TCP congestion control. Hence, TE only provides marginal changes in the traffic matrix,
increasing by about 2% the fairness of the link utilization (measured with Jain fairness index
(
∑N

i=0 ρi)
2/(N

∑N
i=0 ρ2

i ) with ρi load on thei-th link).

Conversely, in the WineStreamer case of 7.8(b), we notice that load is unevenly distributed,
with some links being lightly loaded and other carrying significant traffic amount, and experienc-
ing non marginal losses. This striking difference is due to (i) chunk scheduling dynamics and (ii)
the transmission of chunks as spurts of back-to-back packets over UDP. As for chunk scheduling,
peers need to receive content over small time windows, and asnew content is constantly being
produced at the source, the source is possibly overwhelmed by chunk requests. Moreover, as no
congestion control is implemented by the application, the chunk transmission process can be very
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Figure 7.7: L3 traffic demands (Abilene topology, BitTorrent file-sharing application). Plots rep-
resent uniform (top) vs skewed (bottom) population models,with IP shortest path (left) and TE
multi-path (right) routing.

bursty, so that aggregated traffic load is no longer smooth asin the TCP case, but is more likely to
cause drops on some links. It must be said that 7.8(b) depictsa severe congestion scenario due to
narrow 5Mbps link, that however let us better grasp some effects: notice indeed that while it can
be seen that TE manages to equalize link level load to some extent (fairness increases by about
6%), TE efforts are not sufficient in this severe congestion scenario. Worse yet, use of multi-path
TE can seldom overload links (that were only mildly loaded under IP routing), further inducing
losses that were absent under IP (mean loss for IP and TE are respectively3.08% and4, 77%).
This behavior can be induced by the two uncoordinated control policies at L3 and L7, that happen
independently and at the same timescale, and that we can exemplify as follows. Assume that L7
application decides to route content toward a peer whose path is lightly loaded and has never ex-
perienced losses. Assume further that, roughly at the same time, L3 realizes that links along the
same path are lightly loaded, and decides to reconfigure the FIB. Now, what happens is that links
along that path will experience a sudden, unexpected, load increase – that in case of live-streaming
will be exacerbated by the use of full-rate UDP chunk spurts.

Notice also that 7.8(b) suggests that not all the network capacity is fully utilized, while a
swarm of the same size in 7.8(a) was able to use more resources. This hints to the fact that peers in
the WineStreamer application could potentially serve moreother peers, thus offloading the source
and further ameliorating system performance. Similar observations lately led to the development
in WineStreamer of a dynamic aggregated congestion controlover UDP, named Hose Rate Control
(HRC) [13], showing thus that ModelNet-TE can provide an invaluable help to P2P application
developers10.

10HRC was however not available at the time of the experimentalcampaign.
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Figure 7.8: Network link load and packet loss rate, BitTorrent (top) vs WineStreamer (bottom), in
the IP vs TE cases, Abilene topology and skewed population

7.4.2 Impact of population model and network capacity

We now focus on the performance of L7 applications, considering (i) the download rate of BitTor-
rent peers and (ii) the percentage of correctly received chunks for WineStreamer. We argue these
to be the most relevant metrics that furthermore intuitively express the quality of user experience:
as for (i), download rate is tied to the system efficiency and to the time it takes peers to complete
their download; as for (ii), the video quality is badly affected by chunks that are received after the
playout deadline (e.g., due to queuing delay at L3) or that are only partially received (e.g., due to
packet loss at L3 that WineStreamer retransmission mechanism failed to recover). Both metrics
are evaluated over windows of 10 seconds (i.e., the same timescale employed by BitTorrent to
rank the active peer set for the choke operation). In the following, we report results gathered over
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Figure 7.9: Impact of (i) uniform vs skewed population modeland (ii) core link capacities
C=5Mbps vs C=10Mbps. Arrows are used to highlight the percentage of difference between the
mean valuesof the corresponding CDF curves.

5 different runs for any given experimental settings.
We first consider the impact that the capacityC on core links and the peer population model

have, and depict the cumulative distribution function (CDF) of the download and chunk reception
rates, measured over the whole swarm in Fig. 7.9 (for the timebeing, we fix the topology to
Abilene and limitedly consider IP shortest path routing, whose impact we instead assess in 7.4.3).

Consider the population distribution first. The general consideration is that skewed population
is beneficial in that, provided that the application is awareof latency or bandwidth11, it can estab-

11Since TCP is advantaged by smaller RTT, application preferring high-bandwidth peers will also likely prefer nearby
peers. Even for application such as PPLive, using UDP at L4 and measuring transfer rates at L7, we experimentally
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lish neighboring relationships with peers attached to the same GW router, thus confining traffic at
the edge and avoiding narrow core links.

Focusing on BitTorrent clients, we see that lowest downloadrates are achieved by peers on
the C=5Mbps uniform population scenario: then, notice thata roughly equivalent performance
gain can obtained by either (i) doubling the capacity under the same population model or (ii)
considering a skewed population model at the same capacity level. Notice indeed that the average
download rate increases by 25% and 26% respectively, as reported in Fig. 7.9-(a).

Considering WineStreamer clients, we see that the impact ofthe population model remains
considerable, although in this case core links capacities plays a determinant role due to stream-
ing constraints. Indeed, considering the under-provisioned C=5Mbps scenario in Fig. 7.9-(b),
on average 22% more chunks are received under a skewed population model with respect a uni-
form one. Yet, change in the population model are not sufficient, as the percentage of received
chunks for C=5Mbps is still low for some peers (those that were serviced by the underprovisioned
link exhibiting up to 40% packet losses in Fig. 7.8), while situation improves considerably for
C=10Mbps.

7.4.3 Impact of network topology and multi-path routing

Let us now consider the impact of the network topology and routing policies, where for the sake
of simplicity, we only consider a skewed population model. To assess the impact of the topology,
we compare a pure overlay model against a well provisioned Abilene network with core link
capacity equal to C=10Mbps. While it is straightforward to foresee that on a pure overlay model
both applications will perform better, as we removed any topological bottleneck, it would not be
possible to quantify this gain without ModelNet-TE.

As expected, we see that in the case of BitTorrent the performance achieved on a pure overlay
model can be significantly higher with respect to the Abilenecase. This is because once in network
capacity bottleneck are removed, TCP can make better use of the access capacity: on average
BitTorrent can download at a 40% faster rate in a overlay-only scenario with respect to shortest-
path IP routing. Conversely, as the video stream sent by WineStreamer has a fixed bitrate, and
since the capacity of the network is provisioned to transport almost all that traffic, the difference
between the overlay-only vs IP routing is limited to 4% (respectively, 95% vs 91% of chunks are
received on average).

Finally we analyze the influence that TE techniques can have on P2P systems, by contrasting
IP vs TE routing on the Abilene topology: counter-intuitively, we see that TE may lower the
performance of both applications.

In BitTorrent, this can be explained by the fact that, recalling Fig. 7.8(a)-(a), nearly all links
already operates at a regime close to their capacity. Hence,as TE reroutes the traffic along possibly
longer paths, it extends the number of traversed link for each packet: thus, while TE balances the
load more evenly across links, it may in turn raise the globalnetwork load. Second, since TE
operates on a per packet basis, it may alter TCP congestion control: indeed, TCP transmission
mechanism is self-clocked on the basis of RTT estimation. Aseach packet may traverse different
paths, of different lengths, with different levels of congestion, this can significantly affects the
RTT estimate. Second, as packets can now arrive out of order,this may possibly trigger spurious
TCP retransmissions [68]

WineStreamer is a network aware application, that already executes measurement on the un-
derlying L3 network, so to perform informed peer selection and scheduling decisions: in this case,
periodical changes in the network topology due to TE are not beneficial to the already complex

verified in chapter 4 that bandwidth preference induces a clustering of nearby peers.
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Figure 7.10: Impact of (i) Abilene vs Pure overlay network topology and (ii) IP single-path vs TE
multi-path routing. Arrows are used to highlight the percentage of difference between themean
valuesof the corresponding CDF curves.

L7 algorithms. Recalling 7.8, we see that due to the highly bursty chunk transmission process, it
seldom happens that independent L7 and L3 decisions increase the loads on some link. However,
since this is the result of two uncoordinated decisions, it is impossible to blame a single actor be-
tween L3 or L7, as problems arise from the interplay of both. In fact, both L3 TE and L7 algorithm
take decisions on the assumption that, respectively, traffic and network topology are static: thanks
to ModelNet-TE we see that when this assumption no longer holds, unexpected phenomena may
arise.
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7.5 Conclusions

This chapter presents ModelNet-TE [70], a open source emulation tool with Traffic Engineering
(TE) capabilities: building over the original ModelNet core, which only offers standard IP routing,
we added the support of TE and implemented a multi-path load balancing algorithm. At the same
time, our purpose was to design a flexible tool, that can be easily integrated with many other TE
algorithms beyond the one that we provide.

As a case study, we use ModelNet-TE to analyze the interaction between Traffic Engineer-
ing at the network level (L3) and end-to-end control policies implemented at the application-layer
(L7) by P2P application such as BitTorrent (one of the most popular file-sharing applications)
and WineStreamer (a mesh-based network-aware live-streaming application). We performed a
thorough experimental campaign, considering several parameters (such as topology, core link ca-
pacities, IP vs TE routing, peer population models, etc.) inthe scenario definition. To gather a
comprehensive understanding of the system dynamics, we express performance in terms of both
network-centric and user-centric metrics: at L3, we measure link load and losses and at L3 we
measure the BitTorrent download rate and WineStreamer chunk reception rate.

Our results not only validate ModelNet-TE as a complementary tool to test P2P applications in
realistic environment, but also yield several interestinginsights on L7/L3 dynamics. Summarizing
our main findings, we have that overlay-only models yield an overly optimistic evaluation of P2P
application: while the overlay-only model applies to toady’s ADSL access, we have increasing
evidence [23, 67] that in the near future bottlenecks may no longer sits at the user access link.
Second, we observed that the population model heavily impacts overlay performance, as its impact
can be of the same order of magnitude of in-network capacity limitations: hence, the ability to
localize part of traffic behind the same access gateway, e.g., by means of IETF ALTO servers,
seen an interesting option to offload the network and ameliorate the user experience. Third, we
see that TE can noticeably worsen L7 performance: this counter-intuitive results is due to the
interplay of several factors, among which (i) the impact of per-packet load balancing on TCP
performance, and (ii) the uncoordinated reconfiguration ofthe overlay and underlay networks for
unelastic applications.

While this work attempts at analyzing a large spectrum of scenarios, it also leaves many points
open. As far as the experimental results are concerned, for example, it would be interesting to
assess whether the conclusions gathered in this chapter aremore general than the explored settings,
i.e., if they continue to hold for different topologies, TE algorithms and P2P applications. As far
as the tool itself is concerned, it would instead be interesting to further extend the scale of the
achievable experiments, e.g., by allowing the newly introduced TE functionalities to work on
multiple parallel COREs as supported by the original ModelNet core for shortest path IP routing.
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Chapter 8

Conclusions

In this thesis we studied the importance of network awareness in Peer-to-Peer television: in last
years we saw P2P-TV loosing traffic share with respect to the traditional client-server streaming
model. However, in a near future where FTTH is widely deployed and users have enough upload
capacity, P2PTV could still play a major role in the distribution of video content. In such a scenario
is important for both P2P application developer and networkoperators to know how to deal with
the traffic patterns generated by P2P-TV swarms and, at the same time, it is important to optimize
as much as possible data exchange between nodes of the swarm.

8.1 Summary

Passive AnalysisOur first work aimed at measuring the level of network awareness embedded
in the applications that are mainly used today. We did this bysetting up an European-
scale testbed in which 37 machines running undisturbed P2P clients and passively collected
packet traces. We then proposed a methodology to analyze data and highlight which met-
rics, if any, are exploited by P2P-TV applications to optimize the video delivery. Consid-
ering three popular P2P-TV applications, namelyPPLive, SopCast andTVAnts, we
have shown that onlyTVAnts andPPLive exhibit a mild preference to exchange data
among peers in the same Autonomous System. However, no evidence of preference versus
peers in the same subnet, or having a shorter path, neither the use of incentive mechanism
emerge from any of the system under observation. This methodology alone, however, did
not permit to analyze the so-called path-wise metric such asRound-Trip-Time, path capac-
ity or loss rate. We thus developed another methodology which exploits the joint use of
active (controlled testbed) and passive measurement technique for the analysis of the net-
work awareness of P2P-TV system.

Hybrid Analysis The technique was designed so to consider P2P systems as a black-box, and as
such can be applied to future systems as well. It consists of an active testbed in which we
have a few controlled nodes running the application. With a mix of firewall rules and net-
work emulation at kernel level we force impairments (latency, capacity, etc) on links and we
register application behavior. Besides that, we exploit a passive dataset to correlate results
and have a bigger and sharper understanding of the application behavior. As a case study,
we applied the methodology to the analysis ofPPLive gathering interesting results. First
of all, by means of active testbed methodology, we foundPPLive to be extremely sensitive
to bandwidth, only mildly sensitive to losses and mostly unaware of IP distance, expressed
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in terms of either delay or IP hop count, which is in agreementwith [5]. Refining fur-
ther this picture, we found that actually the peer selectionprocess is continuously updated,
with a relative preference among path-wise properties thatdepends on the actual magnitude
of the impairment. Interestingly, by the correlation analysis of peer-wise preference gath-
ered through the passive technique, we showed that the very same bandwidth sensitivity of
PPLive, seems to induce a desirable side-effect: namely, a moderate geo-clusterization of
peers within the same AS and CC.

Sherlock We then developed a general framework for the characterization of any P2P applica-
tion based on a black-box measurement and analysis of the traffic they generate, coupled
to an expressive data representation exploiting Kiviat graphs. We used Sherlock to analyze
a number of file-sharing, VoIP, VoD and live-streaming P2P applications that are popular
nowadays, further presenting two case studies, namely P2P anomaly detection and P2P
network awareness. As emerges from the results, Sherlock has a number of desirable prop-
erties, which makes it a valuable tool for P2P traffic analysis. First of all, it allows a very
compact representation of rather heterogeneous features and metrics, which can be further-
more easily customized as we shown. Moreover, the representation is flexible in the space
domain, which is suited to express not only individual peersbehavior, but also generalizes
well to express the aggregated peer behavior (e.g., mean) and its variability (e.g., standard
deviation). The representation is also flexible in the time domain, which allows to observe
not only the long-term behavior of P2P applications, but thetemporal system evolution as
well. Finally, Sherlock is generally applicable, in virtueof its black-box approach, which
is important in reason of both the varying popularity of Internet applications and the close-
ness of popular P2P applications. Notably we implemented Sherlock in a demonstration
software (P2PGauge) that measures and displays the networkawareness using multiple rep-
resentation (maps, probability distributions, kiviat charts). Starting from the understanding
that no conclusions can be drawn without jointly leverage passive and active measurement,
P2PGauge computes statistics exploiting both peer-wise (Autonomous System, Country, IP)
and path-wise (RTT, hop count, path capacity). We applied our method to SopCast which
showed a greedy preference toward high capacity nodes coupled with a negligible prefer-
ence towards topologically close peers.

In the second part of the thesis we focused on the testing of network aware algorithms and
applications in controlled environment: particularly we wanted to assess (i) how much measure-
ment errors on network property impact overlay performanceand (ii) which are the interactions of
L7 and L3 when traffic engineering algorithms (TE) change periodically the underlying topology
configuration.

P2PTV Simulation In Chapter 6 we compared different state-of-art “network-aware” algorithms
by means of a simulation campaign. We defined a flexible framework, which can be easily
extended with new components: our purpose was to understandwhat were the main factors
that affect P2P-TV performance, and to what extent performance degraded under realis-
tic settings. We modified P2PTV-SIM a chunk level simulator conceived in the NapaWine
project; P2PTV-SIM takes into account several factors suchas heterogeneous class of peers,
access link capacity, link latency and exposes to diffusionalgorithms information about L3
network and nodes; moreover this information can possibly be changed by an error model.
Our main findings can be summarized as follows. First, we found the impact of the L3
underlay network model to be modest, with a small performance gap between simple (e.g.,
constant and fixed delay) and realistic models (e.g., meridian latency or dynamic latencies).
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This owes to the fact that the propagation delay has a smallerimpact with respect to trans-
mission delay, especially considering the relative low-capacity of current scenario. At the
same time, we can expect that, as the access capacity increases, the impact of propagation
latency may need to be reconsidered. Second, we found that system performance was rather
robust to errors in the measurement of peer properties. Moreprecisely, provided that peers
capacity was clearly separated, the ability to roughly discriminate high-capacity from low-
capacity peer was sufficient to guarantee a good level of performance. Similarly, errors in
the latency estimation only affected the traffic locality, but system performance were oth-
erwise unaltered. Finally, we found the impact of signalingerrors to be, by far, the most
important factor able to significantly degrade the quality of P2P-TV services and was able
to severely impact overlay performance already from very low intensities. This suggests
P2P-TV protocol designers to pay special attention to signaling logic, in order to gather
reliable estimate of the achievable system performance.

P2P Emulation Finally we presented ModelNet-TE [70], a open source emulation tool with Traf-
fic Engineering (TE) capabilities: building over the original ModelNet core, which only
offers standard IP routing, we added the support for Traffic Engineering (TE) and imple-
mented a multi-path load balancing algorithm. At the same time, our purpose was to design
a flexible tool, that could be easily integrated with many other TE algorithms beyond the one
that we provide. As a case study, we used ModelNet-TE to analyze the interaction between
Traffic Engineering at the network level (L3) and end-to-endcontrol policies implemented
at the application-layer (L7) by P2P application such as BitTorrent (one of the most popular
file-sharing applications) and WineStreamer (a mesh-basednetwork-aware live-streaming
application). We performed a thorough experimental campaign, considering several param-
eters (such as topology, core link capacities, IP vs TE routing, peer population models, etc.)
in the scenario definition. To gather a comprehensive understanding of the system dynam-
ics, we expressed performance in terms of both network-centric and user-centric metrics: at
L3, we measured link load and losses and at L3 we measured the BitTorrent download rate
and WineStreamer chunk reception rate. Our results not onlyvalidated ModelNet-TE as a
complementary tool to test P2P applications in realistic environment, but also yielded sev-
eral interesting insights on L7/L3 dynamics. Summarizing our main findings, we found that
overlay-only models yielded an overly optimistic evaluation of P2P application: while the
overlay-only model applies to today’s ADSL access, we have increasing evidence [23, 67]
that in the near future bottlenecks may no longer sits at the user access link. Second, we ob-
served that the population model heavily impacts overlay performance, as its impact can be
of the same order of magnitude of in-network capacity limitations: hence, the ability to lo-
calize part of traffic behind the same access gateway, e.g., by means of IETF ALTO servers,
seen an interesting option to offload the network and ameliorate the user experience. Third,
we saw that TE could noticeably worsen L7 performance: this counter-intuitive results was
due to the interplay of several factors, among which (i) the impact of per-packet load bal-
ancing on TCP performance, and (ii) the uncoordinated reconfiguration of the overlay and
underlay networks for unelastic applications.

8.2 Future Work

Despite we did our best to make this work as complete as possible, there are inevitably points
that we did not deal with for lack of time, or which would require supplementary year(s) to be
discussed. In the following, we present issues that we thinkare still open and we would like to
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pursue in the future.

Next generation applications Frameworks and analysis methods for the measure of network
awareness presented in first part of this thesis have been applied to P2P-TV applications
that were the state of the art in 2008 and 2009. During the lastyears however, P2P devel-
opers improved their existing solutions and different network aware approaches have been
studied by other project as well (P2PNext [77] or P4P [124]).Our opinion is that a compar-
ative study assessing the improvement done in recent years is necessary. Also, it could be
interesting to monitor applications, for instance by meansof Sherlock, over a period of time.
In fact, studies as the one presented in chapter 3 are useful but their main limit is that they
refer to a snapshot of time; it would be more valuable to applythe very same methodology
continuously over the years, to monitor the evolution and usage of P2P applications.

Churn Chapters 6 and 7 analyze swarm performance in realistic scenarios and on stable condi-
tions but do not take into account one of the issues in P2P streaming: peer churn. Although
it is true that population is almost constant during popularprograms, still sudden departures
or flash-crowd arrivals could mine the stability of the system and degrade user-perceived
quality of experience. The problem is complex and worth to bestudied, e.g. by measuring
real life churn behavior (channel switch, mean duration time) and then embed a derived
model in the simulator of Chapter 6.

Signaling dynamics Chapter 6 concludes that signaling errors are the biggest cause of quality
degradation; this result depends on certain parameters such as chunk-size, buffer-map size
and buffer-map update rate. An interesting future work is tostudy the interplay between
those parameters and exploring the trade-off between the overhead caused by high signal-
ing rate and the outdated knowledge of neighborhood’s buffer-maps due to low signaling
rate; eventually develop novel signaling strategies exploiting buffer-map compression or
prediction techniques. Furthermore, since the signaling model used in simulation was over-
simplified, it would be interesting to implement actual signaling protocols for cross-check.

Parallel Modelnet Core As far as ModelNet-TE is concerned, it would be useful to further ex-
tend the scale of the achievable experiments, e.g., by allowing the newly introduced TE
functionality to work on multiple parallel COREs. Although this is supported by the original
ModelNet core for shortest path IP routing, in the case of TE algorithm the issue is more
complex as, at each computation interval, the master core must query all slaves for traffic
load information, re-compute forwarding tables and dispatch them to slaves. This operation
however should be done carefully since control informationis exchanged in-bandwidth and
should not deteriorate application performance.

New Topologies and TE algorithms In Chapter 7 we showed that traffic engineering, whereas
reduced losses and congestions on highly loaded link, most of the times it did not ameliorate
P2P-TV performance. In fact, an improved quality of service(QoS), e.g., link load/loss
fairness, is not enough to have higher quality of experience(QoE); load balancers or frequent
route changes, while ameliorating global network performance, could annoy applications by
reordering packets or, if application is preforming network measures, by interfering with its
decisions. Besides that, we know from our experiments that there are particular topologies
in which the action of TE can aid improving both the QoE and theQoS. This leads to the
need of a sensitivity analysis to understand which TE algorithm/topology performs better
and give developers and operator general guidelines (e.g. frequency of network measures,
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connectivity degree of L3 network, creation of critical backup links) about development of
new generation applications and good deployment of networkinfrastructure.

Web Integration It is well known that nowadays YouTube is generating huge amount of video
traffic and it is the second search engine in the US. If we imagine a future in which video
is only in High Definition, the amount of video data served by YouTube servers and the
surrounding Content Distribution Network could be too highto support. A possible solution
would be to implement and standardize P2P trading logic in future browsers (for instance
through HTML5<VIDEO> tag) so that each user could, at least, cache very popular contents
and lighten the load on servers.
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