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Context and related problems

> Exponential growth of EO image databases

> Need for efficient methods to index these

databases

Main Challenges:

> Exhaustive training databases do not exist
> Efficient indexing methods to extract
image semantics are computationally
expensive and often require a high level of

supervision
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Target objectives

> Learning from small and non-exhaustive training datasets
> Designing learning algorithms scaling up to large data volumes

> Adapting to a human user (need for fast learning methods
allowing fluid user-system interactions)

> Envisaging these problems successively from the point of
view of auto-annotation and interactive image search engines



Contributions of the thesis
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Outline of the presentation

I. Semi-supervised auto-annotation in the context of non-
exhaustive training datasets

II. Accelerated semi-supervised active learning in the framework
of interactive image search engines

ITI. Interactive object detection in large satellite image
repositories using a cascaded active learning scheme

IV. Conclusion and perspectives
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Auto-annotation systems and
unknown semantic structures discovery

Goal: associate words belonging to a predefined vocabulary with images

> Building of an annotation model linking low-level image descriptors to
high-level semantic concepts

Higher level nodes in the
Nature hierarchy correspand ta maore
general concepts

/\

Intermediate level nodes in the

an-made
Landcover M hierarchy correspond to
structures rr1lm:|er"c1’te|*;.-r general concepts
/ \ / Lowest level nodes
Residential
Woods Fields ea Bmldmgs Pnr’rs correspond to

s “atamic” image concepts

Fatches of an image
may consist of
several "atomic” concepts




Positioning of the problem

Objective: exploiting the information from both the labeled and the unlabeled
part of the database

> Semi-supervised methods fit naturally inside this framework

o Target class
> Problem: avoiding the common

assumption of semi-supervised
methods i.e. considering that the
distribution of unlabeled data fits
that of labeled data: p(x) — p(y|x)

> hot verified in the case of non-
exhaustive training datasets



Proposed concept

Objective:

> Computing in a joint way the model e ,
of labeled data and the model of Unlabeled — 4 Semi-supeniced
unlabeled data date ! T

- Labeled data contain known image
classes

!

Supervised training

. Unlabeled data contain both known
and unknown image classes
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datamodel M + M




10 Auto-annotation systems and unknown semantic structures discovery

Synopsis of the system
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Auto-annotation model (1/3)

 Multi-labeled and multi-
valued training dataset

—
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Auto-annotation model (2/3)

a; Q@
Purpose: Predicting unigram models for each image AN /N } .atomic" concepts
I ;\1 C/:< ;\ } .Lafen’r Gaussian
mm) plailimg)=) |m;-plaile)- [] plvjle) ) mixiure components
I=1 vielmg ( J .......... ( J ........... ( ) }L°W"2’:lof;‘”“'”e

Supervised part of the
model:

. Learning the parameters of
hierarchical Bayesian model to
perform bottom-up inference

.atomic”
concepts

1 probabilistic

associations

Latent Gaussian
mixture
components

‘ {73, U3, 23 }

{7 My, 25 }
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Auto-annotation model (3/3)
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Incorporating the unlabeled data

Purpose: inferring the existence of
unknown structures given the known
part of the model and obtain more
reliable estimators for the low-level
statistics

. Use of a three-part log-likelihood
objective function optimized with a
modified EM algorithm

. Addition of a decision step between
the expectation and maximization
steps in order to decide to which part
(.known" or ,unknown") of the model an
.unlabeled training sample™ will
contribute

— known unknown
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/
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Experimental results (1/2)

> Database of 64 SPOT 5
panchromatic scenes size 3000 x
3000

> Resolution of 2.5m

> Classification is performedon |- Over 600 000
small patches of size 64 x 64 ‘ patches are
extracted through the help a 5 extracted over the

sliding window using overlapping ; whole database
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Experimental results (2/2)

annotated

truth

urban

fields

clouds

urban

0.74

0.17

0.09

fields

0.15

0.77

0.08

clouds

0.03

0.11

0.86

|

Semi-supervised SVM

. . ‘. ‘gvli“

annotated
truth urban | fields | clouds | desert sea
urban 0.79 0.07 0.05 0.06 0.03
fields 0.05 0.81 0.02 0.09 0.03
clouds 0.01 0.12 0.8 0.07 0
desert 0.06 0.13 0 0.78 0.03
sea 0.02 0.02 0.03 0.01 0.92

\

l

1

Proposed approach with unknown structures discovery
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Outline

I. Semi-supervised auto-annotation in the context of non-
exhaustive training datasets

IT. Accelerated semi-supervised active learning in the framework
of interactive image search engines

ITI. Interactive object detection in large satellite image
repositories using a cascaded active learning scheme

IV. Conclusion and perspectives
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Accelerated active learning using the data distribution

Interactive image search engines
try to achieve two goals:

> learn the targeted image
category as accurately and as
exhaustively as possible

> and also, as fast as possible — we
focus on this second goal in the
following

Query image

Relevance
feedback
iterations
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Proposed concept (1/4)

Concept:

> Changing the granularity of the
description space and exploiting the
inner structure of the data — instead
of working at point level, we work on
bigger entities such as Gaussian mixture
components

> Structuring of the descriptor space
under the form of a mixture of
Gaussian components

> Gaussian mixture modeling,
restrictive assumption ?

Descriptors extracted clustering/GMM
from images parameters estimation
Y
= O
§0® 0P

Structuring of the input space / estimation of
the parameters of a Gaussian mixture model
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Proposed concept (2/4)

Enabling hypothesis:

> Classes can be roughly approximated by O O
a union of Gaussian ,clusters”

> Simple associative model between O : O

mixture components and semantic
concepts

> Use in a first approach of binary @
associations between the mixture

components ¢, and the targeted concept
S_>p(S|CI):§IS p(S|v;0) = Zpb clv;0) =

] =

p(Slei;v;0) - pler; 0) - p(v|e; 0)

(9)

=1

(Sler) -7 N(v; py, X)

IIMh

> Problems of the binary associative p(w

|:
mode . S S : targeted category
. It is not discriminative enough v : descriptor associated with an image

. Gaussian assumpfion never 6 : mixture model parameters
completely true
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Proposed concept (3/4)

Concept:

> Exploiting the data intrinsic distribution
to speed up the learning of a
discriminative classifier — semi-
supervised paradigm

> Objective: design of a method which
respects the two fundamental
assumptions of semi-supervised learning:
. Low-density separation
. Intra-cluster coherence (cluster
assumption)
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Proposed concept (4/4)

> Component-based SVM working directly on
the Gaussian mixture components

@

Idea: using the simple binary associative model Q O )
as a first approximation of the SVM Q

f X
separation surface O

) SVM surface approximating the .equi-
likelihood" surface:

{Vv;p(Slv, 6) =p(Slv, ) }
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Solving the component-based SVM problem (1/3)

1 " N
min —=|wl|°+ C) ¢;
w,b,é 2 ; :

> Naive formulation:
ot Sign(ZL) (Vi) — ZLnp(vi)) - (w-p(vi) +b) =2 1-¢;
& =0,Vi=1,...,N

> Problem of this formulation:
all the database points are used for the training

> Solution: identifying points belonging to the
mixture components such as the SVM trained
with these points has the smallest possible \

margin 0

A
A
~
. ~

> notion of critical points ® critical points of S|

critical points of S
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Solving the component-based SVM problem (2/3)

Step 1: defining hard delineations
for the mixture components

> A mixture component is a

probabilistic notion — need to define

a ,hard delineation" for each
component

> the constants p, control the size of

the envelopes — they are adjusted
during the active learning process

> component-based SVM formulation:

The equiprobable envelope of a Gaussian mixture
component c, is an ellipsoid of equation:

V—m)" 27 (v - ) = p

!
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Solving the component-based SVM problem (3/3)

Step 2: solving the .max min" optimization problem

> the critical points are defined as the points of the SVM
surface belonging to the convex enveloppes of mixture
components which are the closest of the SVM separating
surface (separable case) or the farthest on the ,wrong”
side of the SVM surface (non separable case)

> iterative alternating maximization minimization scheme:

— iterating between the following two steps until
convergence

> Computing the SVM surface with the current set
of critical points

> Recomputing the critical points as the points
closest to the SVM surface

0
[ 1 2 3 4 5 & 7 & 9 10
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Integration into an active learning scheme (1/3)

Idea:

> Interactive readjustment of the mixture
components envelopes by exploiting the
user feedback in each critical point:

— negative feedback => we reduce the size e critical point
. —=>direction of maximum increase
Of The COPP@SPONdmg enVCIOPC Original component convex hull
— Readjusted convex hull

— positive feedback => we increase the size
of the corresponding envelope

> Use of the binary associative model to
perform the envelopes readjustement
— the ratio p(S|v, 8)/p(S|v, 6) = L (V)/L,(v)
is used to define the direction in which
to perform the readjustment

— the readjustment step is fixed
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Integration into an active learning scheme (2/3)

Batch learning approach

> Relevant mixture
components are tagged all at
once at the beginning of the
active learning process

> Not a realistic scenario —
we want to be able to add
relevant mixture components
progressively during the
Interactive process

1: Initialization step

The user is asked to mark the
relevant component prototypes A

2: User/system interaction

- BER

[® © @ Critical points |

Y

4: Training of the new SVM model

@ Critical points of S
@ Critical points of 5
~Ilew SVM surface

O New (readjusted) convex hulls

™ Previous convex hulls

~~ Current SVM surface
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Integration into an active learning scheme (3/3)

1: Userlsystem interaction 2: Readjustment of convex hulls

| o[ |
=7

Online learning approach

> Relevant mixture components
can be introduced progressively

C) New (re-adjusted) convex lnlls
during the interactive learning O ] [ | P
omts =  Current SVM surface
process

4: Training of the new SVM model

A prion struchuare

Current SV model of data

> Presence of an unlearning
feature which allows to forget 0
mixture components which have L\
erroneously tagged as relevant
by the user during previous
learning iterations

1

1

|

|

1 New corrvex hullz

1 j
1

I .
1

|

| |

1

1

1
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Results on QuickBird images (1/2)

|
i
o |
i

i
i
Ll

> Database of 10 QuickBird
panchromatic scenes of
approximate size 30 000 x 30 000 &

> Resolution of 60cm

> Classification is performed on P .
small patches of size 200 x 200 |-~
extracted through the help a
sliding window using overlapping

Over 1E6 patches
are extracted over
the whole database

> What is the optimal patch size ?




30 Accelerated active learning using the data distribution

Verifying the enabling assumption

Assumption: Gaussian clusters retain some semantic consistency near their center

08

08

04

Purity

600 \\ :
500 23
400
T
200

nb of components
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recall precision

Nb of SVs

Results on QuickBird images (2/2)

1

precision , °*

recall B o7/

0.55

State of the art
CBIR system

0.4

1 10 20 30
Nb of active learning iterations

0.4,

We reduce
o by 30% the
R number of
iterations
; (a) desert (b) fields (c) forest (d) park. lots (e) res. area (f) roads (g) avg diff. needed 1-0
[ | N | 1 ‘ ‘ o reach the
| Il =t S = I~ et 02 same level of
o4 =t precision and
N T E recall
(k) park. lots (I) res. area (n) avg diff.
4 0

?
;
2
S

o (o) desert (p) fields (q) forest (r) park. lots (s) res. area (t) roads (u) avg diff.
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Outline

I. Semi-supervised auto-annotation in the context of non-
exhaustive training datasets

IT. Accelerated semi-supervised active learning in the framework
of interactive image search engines

ITI. Interactive object detection in large satellite image
repositories using a cascaded active learning scheme

IV. Conclusion and perspectives
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Coarse-to-fine strategy and cascaded learning (1/3)

. Objects are very rare events in the
images

. Use of a coarse-to-fine strategy to
perform object retrieval

Goals:

. Eliminating as many subwindows as
possible in the highest levels of the
cascade to focus on a reduced number
of subwindows in the lowest levels

. Applying more computationally
expensive processing on the remaining
subwindows

a!l sub- " ( stage 1] > {s‘rage 2)—»(51:193 3 - further processing
windows

TTT

rejected sub-windows

A subwindow is propagated to the next level of
the cascade until it gets rejected



34
Coarse-to-fine strategy and cascaded learning (2/2)

200 x 200
. At each stage of the cascade, we -

diminish the size of the patch in the
patch-based representation of
Images

100 x 100
» 50 x 50

. Purpose: better capturing the

properties of the object @ @ @

.BUTGTTheexpenseOfOn V1:1X128 V2:1X128 V3:1X128
exponential growth in the number of
patches to process -

100 Y o e : 1
| ‘ g o8l
— window size = 200

——window size = 100
0.4 ——window size =50
—— window size = 25

. Interesting observation: at level
100, we can safely discard around
70% of the database, still ensuring a o |
recall of 90% oo e w0 % d e s oo

pct

nb of patches
recall
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Object recognition using active learning (2/3)

arg max  min  d(v;,v},)
« At each level of the cascade, we use iLenip€S (j1ja)elivemipl 0 72

with j;</»
a soft SVM classifier with a strategy "

o0 ensure spar'si’ry of feedback — we look for the D elements from the pool of unlabeled

data whose minimum pairwise distance is maximum

samples
TR
. If at any stage in the cascade a NS
— . Active learming loop
classifier rejects the patch under v~
inspection, no further processing is C T ‘T ""\,|
performed on this patch - j N7
P

Detection rate = H d, C TL2
I = ¢
False positive rate = H f —0 CL,}

=1
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Object recognition using active learning (3/3)

Main difficulty:

. Propagating feedback examples
from one level of the hierarchy to
the other

. The problem can be formulated as
a Multiple Instance Learning
problem in which the purpose is to
retrieve the positive examples from
mixed bags of positive and negative
examples

50 x 50
—>
woxioo R
T Y e
YN e : :
- e

Positively Intersecting
tagged patch patches at the level
at level 100" below (50 x 50)
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Multiple Instance Learning (MIL)

. There is an uncertainty on the labels of Positive bags Negative bags
Training instances "

« Training data is available under the form of
bags of instances with labels for the bags

. Purpose: retrieving the positive elements
inside the positive bags

| 1 N
min m1n—||w||2+CZ £
Wil wwibi 2 i=1

 The maximum margin formulation of MIL
leads to a combinatorial problem — we need CJazovi=N
to find a suboptimal way to solve the 1
problem in a polynomial time

J"Ii+1
Zj-sfm S—=zl1Vmst Y, =1

yi=-1Vjel, Vms.t ¥, =-1

MIL-SVM problem
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Cascaded active learning and

interlevel propagation of feedback examples (1/3)

Positioning of the problem:

. We want to retrieve one element per
positive bag

. Discarding all the negative bags

. Intuitively, we would like the negative
elements of the negative bags to belong to
the same class as the negative elements of
the positive bags (principle of noise
cancellation)

. Use of the context of each positive bag
to do so

+

3\ y

—— Patch of size t tagged by the user
—— Intersecting patches of size t |

—— Neighborning patches of size t
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Cascaded active learning and

interlevel propagation of feedback examples (2/3)

Solving the MIL problem with
K-positive bags:

Positive bags

« Procedure consisting in solving K -

separate MIL-SVM problems and

Set of single + and -
training instances

~

setting in common the obtained ;
solutions to increase the learning Q =
performance

. Backtracking-like principle

(s N, ...

- —imax; n¥f—

b4

v

(s, n), ..., (K

n)

Synopsis of the proposed MIL-SVM

algorithm
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Object recognition using active learning: results (1/2)

JEs s
« Roundabouts, storehouses, i
buildings, marina, boats, gas holders, g .
swimming pools, crossroads, planes, g

baseball grounds

Results on ten classes of objects:

—"y
—k

o

o
o
=]

. The precision and the recall are
approximately the same at the end
of the active learning process

precision
o
(2]
(=
[=2]

o
=

=]

[h]
o
M

o
=l

nb of iterations nb of iterations
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Object recognition using active learning: results (2/2)

. But: decrease in the number of evaluation of the classifier decision function by
two orders of magnitude in average

> Very important result in a context where the . fluidity" of the interactions
between the user and the system is a crucial issue

The number of evaluation of the

decision function is reduced by ‘

two orders of magnitude !l

amount of computations

0 10 20 30 40
nb of iterations
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Outline

I. Semi-supervised auto-annotation in the context of non-
exhaustive training datasets

IT. Accelerated semi-supervised active learning in the framework
of interactive image search engines

ITI. Interactive object detection in large satellite image
repositories using a cascaded active learning scheme

IV. Conclusion and perspectives
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Conclusion, discussion and perspectives (1/4)

Summary of our main contributions:

(1) Semi-supervised algorithm to perform auto-annotation and ..unknown semantic
structures discovery" in satellite image databases

(2) Semi-supervised active learning algorithm to speed up the learning of the
target image category in the framework of interactive image searc engines

(3) Object retrieval scheme using a cascaded active learning strategy.
(4) Our contributions were mainly tested on optical high-resolution satellite

images. The results demonstrate the usefulness of our methods in the context of
high-volume satellite image databases and very small/non-existent training sets



44 Concept for an image mining system exploiting
the complementarity of auto-annotation and category

. the category/object search
engine is used to build the
training database of the
auto-annotation system

. the auto-annotation system
is used to suggest prototypes
of new categories to be
searched for. It also provides
an annotation model using
natural keywords

search paradigms

Interactive category/object

Feature extraction part Auto-annotation part

Primitive I
extraction ||
K
: ! Annotating |
I l model
mage [
archive I :
I i ! ; i
: i i ! i
| i f f
) 1 A to- l i I
Semantic | - : "; r‘;_ i New class ! :
catalog . : annotation | : |
» i component i Training set ! l
1 : I
R P -

- End-user interface
<)

.
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Conclusion, discussion and perspectives (2/4)

Genericity of the proposed methods:

» Our first contribution dealing with the unknown structures discovery is
well suited for low-resolution satellite images but not for high-resolution
images and complex classes of objects

» In our second contribution, the proposed method is generic regarding the
type of data — results demonstrated on a subset of the Corel dataset

» The third contribution could be generalized as well to other types of image
data and other kind of problems such as face detection

» The descripors we use differ for each dataset but the methods we propose
are independent of the type of signature used (the aim being to confer to

our solutions the maximum generalizability over the type of data)

= Reusable concepts for other problems (MIL — error-prone training datasets ...)
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Conclusion, discussion and perspectives (3/4)

. Use of database technologies and of space-partitioning data structures to make
the proposed algorithms scalable to large image databases:

> In our second contribution: implementing the structuring of the input space
under the form of ellipsoidal convex hulls using a space-partitioning data
structure

> Inour third contribution: implementing the idea of hierarchy based on the
patch size using quadtrees

> The final goal being to implement the proposed procedures inside a
geographical information sytem operating on thousands of terabytes of data
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Conclusion, discussion and perspectives (4/4)

. Use of visual data mining techniques to speed up the learning of the target
class in the case of interactive image search engines:

> Use of dimensionality reduction techniques such as manifold learning
algorithms to provide graphical representations of image databases in the
purpose of performing active learning

> The general idea is to replace standard user interfaces which have shown
some limitations regarding the representation of the semantic content of
image databases



Representation of the data in
the 3D space using a
Laplacian eigenmap

Semantically consistent
groupings appear inside the data
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Cascaded active learning and

interlevel propagation of feedback examples (3/3)

Computation of the confidence levels * . . .
® ®
r‘ik: .o ¥ ® ® 3' °
oo o %o
. > @0.0458 @0.8893 g ® ..
« Must be. performed in a completely . ks °« °,
unsupervised way L +0.6895 00-3935.. .
. e s » ¢ o o ¢
- We train a probabilistic SVM on the %% ®° o . ®
current training set at the iteration k of the o ° ® o
MIL-procedure
« Use of a modified form of Platt’s algorithm o (, 1) - _ Y [tilog(pn) +(1— t)logl— p;)
to compute the confidence levels associated i1vietsthiet,., kUP
with the current solutions of the K MIL-SVM with
problems . o
Pi= 1+exp(ag:(v;)+b) and ti =N

. Confidence levels obtained at the preceding
iteration of the algorithm are taken as an

out-of-sample model

Platt's algorithm consists in finding the
optimal (a, b) i.e. the couple (a, b) such as:

(ay,by) = argming , £, (a, D)
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Positioning of the problem

Objective: exploiting the information from both the labeled and the unlabeled
part of the database

> Semi-supervised methods fit naturally inside this framework

o Target class
> Problem: avoiding the common

assumption of semi-supervised
methods i.e. considering that the
distribution of unlabeled data fits
that of labeled data: p(x) — p(y|x)

> hot verified in the case of non-
exhaustive training datasets
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Positioning of the problem

Objective: designing an algorithm able to:

> Exploit the information in the unlabeled data since the
labeled data are only representative of a very small part of
the semantic diversity inside the images

> Adapt to non exhaustive training datasets which do not
grant the distribution of unlabeled data to be the same as
that of labeled data (it is almost never the case in the
problems we consider)



