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Abstract

When subject to freezing/thawing cycles with or without deicing salt, cement-based materials can suffer

severe damage, which raises the long term sustainability problem of concrete/mortar in cold regions. Leav-

ing aside the precise fracture mechanics and damage processes in this kind of problem, this PhD deals with

the physical and thermomechanical phenomena undergone by cohesive porous solids under freezing, with

particular attention to the material properties arising from cement hydration and microstructure devel-

opment. The present work revisits the poromechanics of freezing porous materials developed by Olivier

Coussy. This gives the opportunity to add the effect of the bulk supercooling and of salt in the liquid

saturating the porous space.

We measured the relation between depressed temperature at the end of bulk supercooling and salt concen-

tration. We then obtained that the contact angle between ice and pore wall by heterogeneous nucleation

decreases as salt concentration increases. We showed that the instantaneous dilation at the end of bulk

supercooling is related to the pore structure because the latter determines the in-pore ice content.

Using the pore size distribution measured by mercury intrusion porosimetry, we estimated the ice saturation

degree with temperature and NaCl solution at different concentration through the Gibbs-Thomson equation.

We measured the deformation of saturated cement pastes. The poromechanical analyses show that the

strains depend on the initial salt concentration and pore structure of our cement pastes.

By the same experimental approach on dried cement pastes, we concluded that the porosity (with or

without air voids) has significant influence on the thermal expansion coefficient of our cement pastes. We

also performed measurements on the deformation of saturated air entrained cement pastes. The results

obtained by both experiments and poromechanical analyses under drained and undrained conditions showed

that the initial saturation degree in air-voids has significant influence on the deformation curves with

temperature.

Keywords: Cement-based materials, Poromechanics, Pore structure, Freeze-thaw, NaCl solution, Strain,

Air-voids.
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Résumé

Les matériaux cimentaires peuvent se détériorer grandement lorsqu’ils sont soumis à des cycles de

gel/dégel avec ou sans sels de déverglaçage. Ceci peut porter atteinte à la durabilité à long terme des

bétons/mortiers dans les régions aux hivers froids. Laissant de côté les processus d’endommagement et de

rupture mécanique à l’œuvre dans de tels problèmes, ce mémoire de thèse est consacré aux phénomènes

physiques et thermo-mécaniques accompagnant la solidification de l’eau dans des solides poreux cohésifs,

avec une attention particulière aux "propriétés matériau" issues de l’hydratation du ciment et de l’évolution

de la microstructure.

Ce travail reprend la poromécanique des milieux poreux partiellement gelés telle que développée par Olivier

Coussy, tout en lui adjoignant une analyse de l’effet de la fin de la surfusion (en volume, hors contribution

capillaire) et de la présence de sels dans le liquide saturant l’espace poreux.

Nous avons mesuré la température de fin de surfusion en fonction de la concentration en sel. Ceci nous

permet ensuite de calculer l’angle de contact entre la glace et les parois des pores dans le cadre classique

de la nucléation hétérogène : on trouve que cet angle diminue avec la concentration en sel. Nous montrons

que la dilatation instantanée consécutive à la fin de la surfusion dépend de la structure poreuse puisque

cette dernière détermine la teneur en glace dans l’espace poreux.

À l’aide de la distribution de tailles de pores estimée par porosimétrie par intrusion de mercure, nous

estimons le degré de saturation en glace en fonction de la température et de la concentration initiale en

sel via la relation de Gibbs-Thomson. Nous avons mesuré la déformation d’échantilllons de pâte de ciment

saturée. L’analyse poromécanique montre que la déformation dépend de la concentration initiale en sel et

de la structure poreuse des pâtes de ciment.

En utilisant la même approche expérimentale sur des pâtes de ciment sèches, nous trouvons que la

porosité (avec ou sans vide d’air entraîné) influence significativement le coefficient d’expansion thermique

du matériau. En ce qui concerne les pâtes de ciment saturées, les mesures expérimentales et l’approche

poromécanique en condition drainée ou non-drainée montrent que le degré de saturation initiale en liquide

des vides d’air entraîné a un impact important sur la déformation de l’échantillon avec la température.

Mots clefs : matériau cimentaire, poromécanique, structure poreuse, gel/dégel, solution NaCl, déforma-

tion, vide d’air.
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Chapter 1

General introduction
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1.1 Freezing issues in civil engineering

The cement-based materials are known as a sort of most used materials in all fields of civil affairs,

even military affairs. In 2010, the world cement production is about 3.3 billion tons [58]. The durability

of cement-based materials are of significant importance in serviceability and economic consideration. In

addition, the requirements of environmental sustainability and energy efficiency confirm the importance

of the durability of cement-based materials due to the large amount of energy consumption and carbon

dioxide emission during their product processes.

The loss of serviceability in the sense of lack of durability can be attributed to many different reasons.

Besides inappropriate design/curing/use, which are man made factors, the severe environment loadings,

such as, corrosion of reinforcement induced by chloride ingress and carbonation, cracking induced by alkali-

silica reaction and freeze-thaw, and deteriorations induced by salt crystallization, are important factors

for durability problems of cement-based materials. This can bring about very high cost for reparation

and maintenance. In USA, for instance, the financing gap for road, highway and bridge repairs and

improvements, can be as high as 495 billion US dollars in 2009 [398].

Among these common reasons for durability problem of cement-based materials, the freeze-thaw can

be one of the most important factors. Although the freeze-thaw deterioration, in France, is not as serious
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(a) (b)

Figure 1.1: The distribution of risks of frost deterioration (a) and frequency of salting (b) of concrete in
France, source from [62].

Figure 1.2: Various freeze-thaw damages observed in civil engineering. Figures (A,D,E) are adopted from
Ronnings (2001) [328], figure (B) is adopted from Pigeon et al., (2003) [295], and figure (C) is adopted
from [1].
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as in northern countries, these phenomena can also be observed frequently, specially in some high-altitude

alpine area [62]. Figure 1.1(a) shows the distributions of risks of frost damage of cement-based (concrete)

constructions in France [62]. In addition, this durability problem is often worsened by a man made factor:

the use of deicing salts. As shown in Figure 1.1(b), the salting is frequent in more than two thirds of the

areas of France [62]. The original intention of using deicing salts , melting the sliding ice, is to increase

serviceability of pavements, roads and/or bridge decks. The U.S. and Canada use approximately 15 million

and 4-5 million tons of deicing salts each year, respectively [334]. However, both on-site and experimental

observations confirm that the deicing salts can lead to serious deteriorations to cement-based constructions,

the so-called frost scaling, see for instance (A), (D) and (E) in Figure 1.2. Scaling not only reduces the

elegance but also brings about significant serviceable problems. For the reinforced concrete construction,

which is usually acting as load-bearing structure, the surface layer (cover) is very important. The cover

with alkali pore solution can provide a protective layer against the corrosion of reinforcement steels, and

the chloride ions ingress and carbonation of cement-based materials of this layer, which can weaken and/or

brake the electrochemical immunity of the steel, are normally very slow. However, the deicing salts induced

scaling may accelerate them significantly [71]. Although the freeze-thaw resistance has received significant

attention in northern countries, there are no efficient ways to prevent the deicing attack. Generally, the

osmotic pressure model) [310], the thermal shock [236], the more porous structure of surface layer of cement-

based materials [294], and the discrepancy between the thermal dilation coefficients of ice and solid skeleton

(the so called "Glue spalling" model) [72, 405] can be responsible for the surface scaling (detailed review

on the relevant content can be found in chapter 3 or other comprehensive review [101, 407, 408]).

The other important phenomena of freeze-thaw damage is the internal cracking [295, 296]. This alter-

native damage pattern, contrary to scaling, leads to the strength (or elastic modulus) loss with increasing

freeze-thaw cycles. It is believed that this internal damage is associated with the micro cracks when ice

forms in pores. The frozen damaged cement-based materials, like the weathered rock, can completely loss

their serviceability (see for instance, (B) and (C) in Figure 1.2). The outstanding work on this issue was

the studies performed during the 1940s and 50s in USA (cf. Powers [305], Powers and Helmuth [310]).

With help of the entrained air voids which provide spaces to accommodate the excess water [305] and act

as cyopump that attracts the water to the ice site nucleated on the interface of air voids [77, 342], the

resistance to internal freeze-thaw damage has been improved significantly. This is still the most efficient

way to protect the cement-based materials against freeze-thaw damage, although the understandings on

the mechanisms of freeze-thaw damage having been deepened extensively (cf. the crystallization pressure

model [342] and poromechanical analysis [77, 114, 451]).
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1.2 Problem statement

The mechanisms of internal cracking induced by freeze-thaw attack are somehow complicated but gen-

erally clear through comprehensive researches during several decades: damage due to hydraulic pressure,

crystallization pressure and/or discrepancy expansions between ice and solid skeleton. However, the mecha-

nisms for the deteriorations induced by deicing are still enigma, although several hypotheses or models have

been proposed for these specific issues, cf. the recent proposed "glue spalling" model by Valenza and Scherer

[404–406]. Furthermore, very little attention has been payed to the crossed case: the freeze-thaw deteriora-

tions of cement-based materials saturated with saline solution. In addition, very little literature concerned

with the freeze-thaw performance of air voids entrained cement-based materials initially saturated with

saline solution. Therefore, it is necessary to study this scope phenomenologically and to understand the

hidden mechanisms, either being physical-chemical or mechanical or both.

The pore structure must be a factor intimately related to all durability problems of cement-based

materials. With appropriate practice, the pore structure as well as the micro-structure of cement-based

materials depend mainly on the compounds of raw materials, water to cement (w/c) ratios and curing

conditions. The afore and on-going researches on these issues can provide us with the feature of pore

structure/microstructure, although there are still many open questions. Knowledge of cement hydration

allows us to predict the main hydration products quantitatively in engineering requirements. Through

standard experiments, the pore structure of cement-based materials can be characterized. In addition, the

mechanical and transport properties of cement-based materials can be evaluated in some extent by means of

multi-scale modelling . These properties are quite important for durability of cement-based materials. But

the relationship has not been clearly understood for freeze-thaw problem. For instance, most laboratory

tests and field performance show that the cement-based materials with high strength and low porosity is

better against frozen resistance [295]. However, some opposite observations (cf. [28, 115]) indicate that it

is not a simple monotonous relationship between frost resistance and porosity or strength of cement-based

materials.

With several, simultaneously acting mechanisms as above mentioned, the freeze-thaw damage can not

be the consequence of any one of these mechanisms alone, and it seems not possible to identify the critical

one(s) for a specific material design and environment. In addition, the severe lack of correlation between

laboratory and field (on-site) performance should be noticed: the specific designed laboratory experiment,

associated with some expected mechanisms, may not be adopted to on-site situation. Therefore, for both

the laboratory tests and on-site observations, the controlled conditions, such as, humidity, temperature,

salt concentrations, are crucial.
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1.3 Research motivation

Following the aforementioned arguments, the present research work aims at:

❀ Establishing qualitative and, if possible, quantitative information on the ice nucleation temperature for

well characterized cement pastes;

❀ Quantitatively assessing the characteristics of ice formation in pores of cement-based materials saturated

with solution at different salinity;

❀ Extending the poromechanical modelling to describe freezing behavior of cement-based porous materials

initially saturated with NaCl solution;

❀ Calibrating the hydration process of the cement pastes, assessing content of hydration products and

characterizing the pore structure of paste I (w/c=0.5) and paste II (w/c=0.3);

❀ Evaluating/assessing the mechanical and transport properties of well identified cement pastes based on

multi-scale modelling;

❀ Quantitatively explaining the observed strain variation of cement-based materials under different material

and boundary conditions;

❀ Quantitatively explaining the observed instantaneous deformation of cement-based materials by bulk

supercooling of pore water;

❀ Experimentally identifying the deformation of cement pastes saturated with saline solution subjected to

freeze-thaw loadings;

❀ Experimentally identifying the deformation of air entrained cement pastes saturated with saline solution

subject to freeze-thaw loadings.

1.4 Layout of this thesis

The present work is organized as follow:

Part I: Thermodynamic and mechanical analyses of freezing in porous materials. In chapter

2, we first review the principles of ice formation and the physico-chemical properties of ice in small pore

size. In addition, the ubiquitous but often underestimated phenomena, viz. the freeze-thaw hysteresis,

bulk supercooling and unfrozen layer (liquid like layer) between the surface of ice and solid matrix, are

qualitatively and (in some extent) quantitatively analyzed and/or discussed. In chapter 3, we recapitulate

the freeze-thaw deterioration phenomenologically and the corresponding mechanisms. Then, we use the

thermalporoelasticity to describe the partially frozen porous materials saturated with saline solution (chap-

ter 4) based on the comprehensive study by Olivier Coussy [76, 77, 79, 82]. In chapter 5, the deformation

of cement-based materials saturated with pure water is analyzed by the established model and compared
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with the results in literature as a case study. The strains resulting from the ice formation and thermal

shock at the end of bulk supercooling of pore water are analyzed as another case study.

Part II: Freezing/thawing with salt: experiments, material properties and poromechanical

analyses. In chapter 6, we start from the hydration processes of our cement pastes. Based on the afore

and on-going work of cement chemistry, the main hydration products are evaluated and are compared with

experimental results. The pore structure is comprehensively assessed by the MIP and NAD measurements.

In chapter 7, we use the effective medium theory of composites with Eshelbian type morphology inclusions

and multi-scale technique to estimate the effective mechanical and transport properties of cement pastes.

In chapter 8, the physical properties of water, ice and NaCl solution in functions of temperature, pressure

and salt concentration are evaluated by Archer’s model. The water/ice saturation degree in terms to tem-

perature is estimated based on the capillary invasion of ice during freezing. In chapter 9, we introduce the

experimental procedures of freeze-thaw deformation measurement, and discuss the effects of pore structure

and NaCl concentration on the freeze-thaw deformation by poromechanical analyses. In chapter 10, the

effect of air voids on the deformation of both dried and saturated samples are analyzed.

We end this work with general conclusion and some unclear problems that need further research.
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Thermodynamic and mechanical

analyses of freezing in porous

materials
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Abstract of Part I

The aims of Part I are to: ❶ , understand the freezing processes water confined in porous materials,

the freeze-thaw hysteresis, capillary and bulk supercooling phenomena, which are basis for the problem

at hand; ❷ , understand the frost deterioration of cement-based materials comprehensively; ❸ , establish a

poromechanical model based on the variables of temperature, pressure and salt concentration for partially

frozen cement-based materials; and ❹ , verify the established model by data in literature and confirm the

robustness of this model.

The basic principles of ice formation in porous materials were recapitulated in chapter 2. The necessary

but not sufficient condition for ice formation is that the chemical potential of ice is equal to or lower than

that of liquid water. The penetration of ice into porous materials is governed by capillary forces. Using

the Young-Laplace equation and assuming that pores are cylindrical, the relation between pore size and

melting temperature depression can be obtained, which is the principle of cryoporosimetry. The activity

of ions is a combination of the individual ionic long-range interaction and short-range solvation effect.

Ionic parameters based empirical models are adopted to estimate the ionic activity, osmotic coefficient

and water activity. When water confined in pores of very small size, rather than the ordinary hexagonal

ice (Ih), water prefers to form the cubic ice (Ic) during freezing. The ice growing rate and the structure

of ice crystals vary with temperature as well. Like any other invasion/retreat processes of non-wetting

phases in porous materials, hysteresis can be observed after one freeze-thaw cycle. This can be due to the

contact angle difference between freezing and melting, pore curvature-induced metastability of the solid

phase and the connectivity and/or "ink-bottle" structure of pores. The Gibbs free energy based principles

were recalled to describe the widely observed bulk supercooling phenomenon for porous materials during

freezing. The mean ice nucleation temperature varies from −8℃ to −17℃ and the contact angle varies

from 25° to 20° when salt concentration increases from zero to 15 wt%. For cement pastes with pore size

around 10 nm, the general bulk supercooling temperature is estimated to be 3.4∼11 K lower than the bulk

melting temperature.

In chapter 3, both the phenomenology and proposed mechanisms of freeze-thaw deterioration of cement-

based materials were reviewed. Basically, the internal cracking and surface scaling are the main deteri-

oration patterns observed in both laboratory tests and on-site practice. From the work by Powers and

co-workers, the internal cracking can be attributed to the hydraulic pressure induced by the viscous flow

of water when ice forms. Later, as a supplementary model to account for the effect of deicing salts, the

osmotic pressure hypothesis, was proposed by Helmuth and Powers. The local thermodynamic and me-

chanical equilibria of ice crystals and water lead to additional pore pressure, the so-called crystallization

pressure. In addition, the local thermodynamic inequilibium governs the transport behaviors of water and
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vapor, which is the principle of the so-called micro-ice-lens theory. In practice, a critical saturation degree

in the range of about 0.7-0.9 for porous materials, rather than the 0.91 required by hydraulic pressure,

was observed. The water uptake during freeze-thaw cycles as well as a low-cycle fatigue mechanism can be

responsible for this phenomenon according to Fargelund. For salt scaling, the glue-spalling theory that is

based on the discrepancy between thermal expansion coefficient of the ice and that of solid cement-based

materials, was proposed by Valenza and Scherer. With the help of the comprehensive poromechanical work

by Oliver Coussy and co-workers, the strains and the pore pressure of cement-based materials subjected to

freezing can be clearly described mathematically. The entrained air voids provide with the negative liquid

pressure in capillary pores acting as a cryosuction that drive the water to ice at the interface of air voids,

which leads to additional contraction as observed in experiments.

Following the thermoporoelasticity, in chapter 4, we develop a poromechanical model to describe the

partially frozen cement-based porous materials. We define the scope, phases and representative volume

element adapted for the poromechanical descriptions in the present study firstly. By using the hypothesis of

infinitesimal transformations and displacements, small variation of density of each phase, and recapitulating

the state equations of unsaturated porous materials, we obtained the constitutive equations for describing

the deformations of solid and pores. In addition, the mass conservation and heat transport equations are

established to complete the model.

Then, in chapter 5, analysis on cement-based materials saturated with water has been performed and

compared with experimental results in literature. Good agreement between the predicted curves and

the measured curves confirms the robustness of the present poromechanical model. The negative liquid

pressure accounts for the continual shrinkage after ice nucleation for air-entrained cement paste, and the

pore pressure relaxation accounts for the slight shrinkage when temperature is kept constant. For the

cement paste without air entrainment, the pore pressure can be built up rapidly when water crystallizes.

In addition, the instantaneous deformation when ice suddenly nucleates at certain bulk supercooling, has

been studied and compared to the data in literature. To follow the required thermodynamic equilibrium

and to take account of the supercooling effect, the temperature is set to be constant at first, and then

rapidly cooled down to the prescribed supercooled temperature. The predicted results indicated that the

instantaneous deformation at the end of supercooling can be due to the immediate ice formation and the

temperature shift (thermal shock) by heat release when ice forms.



Chapter 2

Ice formation in porous materials

Contents
2.1 Thermodynamic equilibrium between ice and water . . . . . . . . . . . . . . 11

2.1.1 Ice penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Crystal structure of ice in pores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Effect of salt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Activity of ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Water activity and osmotic coefficient . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Freeze-thaw hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Introduction to freeze-thaw hysteresis . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Effect of pore curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Effect of pore connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Bulk supercooling and ice nucleation . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Experimental evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Homogeneous nucleation or heterogeneous nucleation . . . . . . . . . . . . . . . . 29

2.4.3 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Thickness of liquid-like layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Thermodynamic equilibrium between ice and water

Let us first consider the state of ice and aqueous solution in porous materials. Here we do not consider

the possible dissolution/precipitation of solute from/to the solid matrix of cement hydrates, and any other

possible related chemical processes. Let µw and µc denote the chemical potential of liquid water (solvent

of the liquid solution) and the ice crystals. They can be expressed as [24],

µw(T, Pl, aw) = µ⊖
w(T, Pl) +RT ln aw, (2.1a)

µc(T, Pc, ac) = µ⊖
c (T, Pc) +RT ln ac (2.1b)
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where µ⊖
w(T, Pl) and µ⊖

c (T, Pc) are the chemical potential of pure water and ice crystals, respectively. T

is the current temperature; Pl and Pc are the pressure of liquid solution and ice; aw is the activity of the

water in the electrolyte solution that is related to the temperature, pressure and the solute concentrations

c; ac is the activity of the solid solvent, since the formed ice is in bulk phase, ac = 1. Adopting the

atmospheric pressure (P0 = 0.1MPa) and the corresponding freezing point T0 = 273.15K as the common

reference states, µ⊖
w(T, Pl) and µ⊖

c (T, Pc) can be expressed as,

µ⊖
w = µ⊖

w(T0, P0) −
∫ T

T0

SwdT +
∫ Pl

P0

VwdP, (2.2a)

µ⊖
c = µ⊖

c (T0, P0) −
∫ T

T0

ScdT +
∫ Pc

P0

VcdP (2.2b)

where µ⊖
w(T0, P0) and µ⊖

c (T0, P0) are the chemical potential of pure water and ice in the reference equilib-

rium state; Sw and Sc are molar entropy of liquid water and ice crystals (in J ·mol−1 ·K−1), and Vw and Vc

are molar volume of liquid water and ice crystals (in m3 · mol−1). It should be noted that the used molar

volume and molar entropy of water are not the partial molar quantities but the apparent molar quantities

used in Archer’s model [15, 16], see also the definitions in section 4.1.5. Generally, the molar entropy and

molar volume of ice (water in solution), depend on the temperature and pressure (and salt concentration

for water, see Appendix D for detail). The necessary but not sufficient condition for ice formation is that

the chemical potential of ice crystals is equal to or lower than that of liquid water. Although the metastable

condition of water, i.e., bulk supercooled water, can be observed ubiquitously either naturally or artificially

[372, 427], we here only consider the thermodynamic equilibrium case, which requires,

µw(T, Pl, aw) = µc(T, Pc), and µ⊖
w(T0, P0) = µ⊖

c (T0, P0) (2.3)

Combining the equations above mentioned and considering further that the molar volume of water and ice

are constant, one thus obtains the relation:

RT ln aw = −∆Gfus

∣

∣

T

T0
− Vw(Pl − P0) + Vc(Pc − P0) with ∆Gfus

∣

∣

T

T0
= −

∫ T

T0

(Sw − Sc)dT (2.4)

where ∆Gfus is the Gibbs energy of fusion at reference pressure P0 . According to the Gibbs-Helmholtz

equation [134], the Gibbs fusion energy can be expressed as:

∂

∂T

(

∆Gfus

T

)

= −∆Hfus

T 2
→ ∆Gfus

∣

∣

T

T0
= −T

∫ T

T0

∆Hfus

T 2
dT at P = P0 (2.5)
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where ∆Hfus denotes the enthalpy change of fusion at current lowered freezing temperature T , and it is

related to the heat capacity change of fusion:

∆Hfus = ∆H◦
fus +

∫ T

T0

Cf dT, with ∆H◦
fus = SfT0 = (S◦

w − S
◦
c)T0 (2.6)

where ∆H◦
fus is the enthalpy change of fusion of ice at bulk melting temperature T0; Cf is the difference

of heat capacity between the liquid and solid phases at lowered temperature T , i.e, Cf = CP,w − CP,c; Sf

is defined as molar fusion entropy (in J · K−1 · mol−1). Taking here CP,α as constant (see section 8.1 for its

dependence on the variables of temperature, pressure and salt concentration), the molar entropy of water

and ice, Sw,c, can be expressed to be function of temperature [114]:

Sw = S
◦
w + CP,w ln

(

T

T0

)

; and Sc = S
◦
c + CP,c ln

(

T

T0

)

(2.7)

In case of freezing of pure water, the term at the left side of eq(2.4) denoting the effect of water activity is

Figure 2.1: The phase diagram of ice and water (a) and local magnification under normal loading conditions
(b). After Akyurt et al. (2002) [9].

zero. With further assuming that Pc = Pl = P for water, then eq(2.4) reduces to a Clapeyron-like relation

between temperature and pressure:

T

∫ T

T0

∆Hfus

T 2
dT = −∆Vwc(P − P0) (2.8)

where ∆Vwc is the molar volume difference between ice and water, i.e., ∆Vwc = Vc−Vw = Mw·(1/ρc−1/ρw).

This allows for plotting the boundaries of water-ice phase diagram. Figure 2.1(a) shows the phase diagram

of water and ice in different crystal structures. The magnified phase diagram of water and ice (Ih and III)
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is illustrated in Figure 2.1(b). Contrary to other usual liquids, the density of ice is lower than that of liquid

water, viz. ρc = 917(kg · m−3) < ρw = 997(kg · m−3), thus the increment of pressure causes the depression

of freezing/melting temperature, as shown in Figure 2.1(b).

2.1.1 Ice penetration

In this section, we follow the explanation in Ref. [341] of ice propagation in pores on the premise that

water and ice are always in equilibrium. Recalling the equilibrium function, i.e, eq. (2.4),

− ∆Gfus

∣

∣

T

T0
+ VcPcap + ∆Vwc(Pl − P0) −RT ln aw = 0 (2.9)

where Pcap = Pc − Pl denotes the capillary pressure. Substitution of the eq(2.6) in to eq(2.5), the Gibbs

fusion energy is then given by:

−∆Gfus

∣

∣

T

T0
= T

∫ T

T0

∆Hfus

T 2
dT = T

∫ T

T0

1
T 2

[SfT0 + Cf (T − T0)] dT

= Sf (T − T0) + Cf

(

(T0 − T ) + T ln
(

T

T0

))
(2.10)

In above equation, the term ∆Gfus has the same fusion energy form to that in Fabbri (eq(3.22) in [114]).

Substitution of eq(2.10) into eq(2.9), one obtains:

Pcap =
(

ρc

ρw
− 1
)

(Pl − P0) +
1

Vc

[

RT ln aw + Sf (T0 − T ) + Cf

(

(T − T0) + T ln
(

T0

T

))]

(2.11)

If the equations are expressed on the unit of mass (see [76, 77, 82, 114]), rather than on the unit of mole,

the capillary pressure can be expressed in the equivalent form:

Pcap =
(

ρc

ρw
− 1
)

(Pl − P0) + ρc

[

1
Mw

RT ln aw + Sf (T0 − T ) + Cf

(

(T − T0) + T ln
(

T0

T

))]

(2.12)

with Sf = Sf ·Mw and Cf = Cf ·Mw. Sf (in J ·K−1 ·kg−1) and Cf (in J ·K−1 ·kg−1) are the fusion entropy

and fusion heat capacity when one unit mass of ice transfers to water.

The capillary pressure Pcap, as a result of local mechanical equilibrium, is given by Young-Laplace

equation:

Pcap =
2γcl cos θ
r − δ

(2.13)

where γcl is the surface tension between crystals and liquid (in N · m−1), θ is the contact angle, r is the

pore radius, δ is the thickness of unfrozen layer, see section 2.5 for detail.

Substitution of Young-Laplace equation into eq(2.9), with the rough assumptions that Pl = P0, the size
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Figure 2.2: Schematic illustration
of ice penetration along cylindrical
pores. (a), Ice forms first in big
pores, i.e., in pores with radius r =
r1; (b), as temperature decreases ice
penetrates to smaller pores r = r2.
req is the radius of ice tips that are
equilibrium with water in small pore
in vicinity. The interface layer (liq-
uid like layer) thickness between solid
matrix and ice δ relates to depressed
freezing temperature ∆T .

of ice req then can be expressed as:

req = r − δ =
2γcl cos θVc

RT ln aw + ∆Gfus
(2.14)

In case that pore liquid is pure water, viz. ln aw = 0, and with assumption that, −∆Gfus ≈ Sf (T − T0) =

Sf (T − T0) · Mw, the eq(2.14) reduces to the classic Gibbs-Thomson equation:

∆T = T0 − T = −2γcl cos θVc

Sfreq
= −2γcl cos θ

ρcSfreq
(2.15)

To represent the ice formation processes in pores, we follow the classic Gibbs-Thomson equation given

in eq(2.15) as adopted in [77, 257, 342, 381]. At the beginning of freezing, ice forms in big pores at

temperature T0. With decrease of temperature, ice penetrates into smaller pores as illustrated in Figure

2.2 schematically. In big pore r1, the required depression temperature should be ∆T1. As the depression

temperature increases, the radius of ice tip req decreases and ice penetrates into thinner pores until it

matches the size of thinner pores, accordingly, the depression temperature should be ∆T2 as illustrated in

Figure 2.2. More detailed discussions on the ice penetration can be found elsewhere, cf. [226, 380, 451].

It also illustrates the liquid like layer between the ice crystals and the wall of solid in Figure 2.2, which is

discussed in detail in section 2.5, and the related contents can be found in Refs. [89, 102].

2.1.2 Crystal structure of ice in pores

The water confined in porous materials is generally classified in two sorts: the free water (freezable

water) in middle of pores and bound water (unfrozen water) adjacent to pore wall. Both the freezing

and melting points of free pore water are lower than those of bulk water, which in known as the capillary

supercooling. The structure of water and/or ice confined in pores is still unclear. Numerous researches

indicate that the freezing of free water in small pores gives rise to the metastable cubic ice (Ic) instead of
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Table 2.1: Basic physical parameters for the hexagonal ice Ih (a) and the cubic ice Ic. After Fletcher (1971)
[125].

polymorph density Crystal system Space group Molecules per cell cell dimensions(Å)

Ih 0.92 Hexagonal P63/mmc 4 a = 4.48, c = 7.31
Ic 0.92 Cubic Fd3m 8 a = 6.35

(a) (b)

Figure 2.3: The crystal structure and unit cell for the hexagonal ice Ih (a) and the cubic ice Ic (b). After
Fletcher (1971) [125].

the ordinary hexagonal ice (Ih) [38, 106, 259, 374, 375, 384]. As observed by Dunn et al. [106], for porous

silica, both Ic and Ih coexist at the beginning of freezing, and the amount of Ih increases significantly as

temperature decreases. It is believed that the interactions between the surface of silica and water, mainly

induced by van der Waals force, can be the main reason for Ic formation instead of Ih [38] in small pores.

Furthermore, some researches indicated that it is much more stable for ice to nucleate in cubic structure

than in hexagonal structure in fine pore space [20, 123, 375]. Ic has similar structure and properties as Ih,

see Figure 2.3 and Table 2.1 [125]. The lattice energy difference between Ih and Ic approximates 5%, and it

remains unclear why the hexagonal form should be more stable than the cubic form for bulk ice [375]. The

rate of transferring from Ic to Ih is very slow. However, it has been reported that this transferring becomes

easier at vicinity of melting point, which may be due to the factor that the molecular distances increase

mear melting point [38, 383]. Johari [181] found that ≈ 15nm radius for droplet and ≈ 10nm thickness of

flat film might be the critical size. When smaller than the critical size, water forms cubic ice rather than

hexagonal ice during freezing.

For water confined in cement-based material, it freezes in the hexagonal structure generally [121, 349].

This may be due to the reason that the rough surface of solid skeleton acts as the nucleation agent and

the temperature in conventional atmospheric environments for cold regions can be rarely down to 230 K.

Note that even for the ordinary hexagonal ice, the macro crystals appear in different structures at different

temperature, see Table 2.2 [333].
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Table 2.2: Variation of crystal structures of ice with temperature [333].
Temperature range Form of ice crystal

0 ∼ −3℃ Thin hexagonal plates
−3 ∼ −5℃ Needles
−5 ∼ −8℃ Hollow prisms

−8 ∼ −12℃ Hexagonal plates
−12 ∼ −16℃ Dentritic crystals
−16 ∼ −25℃ Plates
−25 ∼ −50℃ Hollow prisms

2.2 Effect of salt

The activity coefficient determines the deviation from the ideality of a solution [24]. This deviation

may become more or less dependent on the magnitude of interactions between ions. The chemical activity

of the solution is related to two types of interactions: ion-ion interactions and ion-solvent interactions, cf.

Pitzer [301], and Robinson and Stokes [326]. The sources for these interactions can be:

❶ , Electrostatic interactions which depend on the distance that separates two molecules; Elec-
trostatic interactions are the main cause of non-ideality of solutions;
❷ , Relaxation which is due to the ionic atmosphere deformation in presence of a difference in
local potential;
❸ , Ion-solvent interactions (electrophoresis) which can be due to the disruption of the forces of
friction caused by clusters of solvent molecules attached to the ion cloud;
❹ , Solvation interactions which can be due to the energy decrease of ions when salts are intro-
duced into the water;
❺ , Association of ions in solution, which can be due to the ionic escape from the hydrated pairs
or triplets.

The overall effect of these interactions is constated as an activity coefficient. It is very difficult to propose

a mathematical model to quantify these phenomena. The chemists have often worked in an empirical

way: setting up hypotheses, and establishing equations and then comparing the results obtained with the

experimental results. The activity coefficients steming from the preceding phenomena are very complex.

Several semi-empirical models have been developed to predict the chemical activity of a species ion in

solution, among which the Pitzer’s model and relevant models [301, 302] are most widely used.

2.2.1 Activity of ions

The first comprehensive semi-empirical model on describing the ion activity solutions that has been

extensively quoted and developed was proposed by Debye and Hückel [94]. The principle of their theory

starts from the assumption that departure from non-ideality is due to electrostatic interactions between

ions, associated Coulomb’s law and the relatively small electrical potential fluctuations. This model can

calculate the activity of single electrolytes. It is very relevant, but its applications are limited because it

applies only to solutions of very low ionic concentration. In fact, during the establishment of Debye-Hückel

law, integration of energy by electrostatic forces requires the same approach distance for all ions, which
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does not correspond to reality. It is thus an empirical correction that allows the Debye-Hückel law to extend

to concentrated solutions.

When the solutions are concentrated, short-range interactions become more significant and the law of

Debye- Hückel and the extended models can not take into account all the actions, which means these models

are not adapted to the case of brines. Pitzer [302] has, meanwhile, proposed an empirical equation that best

describes the behavior of electrolytes. This model takes the additional terms to account for short-range

forces given by the actions between two or three ions and allows to calculate not only the activity coefficient

of a solute simple but also much of the solutes complex. Based on the Pitzers model, Lin and Lee [217]

proposed a semi-empirical model to calculate activity using two adjustable parameters with relative simple

expressions and good accuracy. At the same period, Khoshkbarchi and Vera proposed a semi-empirical

model with three adjustable parameters [193, 194]. The predicted values of activity for individual ions

are well consistent with experimental results to high ionic strength as well. Also, there exist numerous

semi-empirical models derived from Debye-Hückel law with consideration of the the short range effect, cf.

model proposed by Zhao et al. [445], Papaiconomou et al. [279] and Pazuki and Rohani [281].

Table 2.3: The semi-empirical expressions of long range and short range effects for
ionic activity calculation.

Long range effect Short range effect Authors References

−Aφz2
i

[

I1/2

1+BiI1/2
+ 2

Bi
ln(1 + BiI1/2)

]

Ciz2
i Ia

T
Lin and Lia [216, 217]

−Axz2
i I1/2

x

1 + ρI
1/2
x

+
BiI3/2

x

1 + ρI
1/2
x

Ci ln
(

1 + ρI
2/3
x

)

Khoshkbarchi and Verab [193, 194]

−Aφz2
i I1/2

1 + BiI1/2
CiI Pitzer and coworkers [300–302]

−Aφz2
i I1/2

1 + BiI1/2

Ciz2
i Ia

T
Pazuki and Rohani [281]

a Aφ and I are the Debye-Hückel constant and the ionic strength on concentration base respectively, Bi

and Ci are the adjustable parameters, ρ = 9 and a = 1.29;
b Ax and Ix are the Debye-Hückel constant and the ionic strength on molar fraction base respectively.

Table 2.4: Parameters required by the selected semi-empirical models for the activity coefficient of individual
ion for single electrolyte solution at 25℃.

Electrolyte Ion Lin & Lee Pitzer Khoshkbarchi & Vera Pazuki & Rohani Reference

Bi Ci Bi Ci Bi Ci Bi Ci

NaCl
Na+ 4.352 26.448 95.891 0.557 95.891 0.577 3.627 28.265 [193]
Cl− 1.827 19.245 60.973 -0.409 60.973 -0.409 0.676 12.958 [193]

KCl
K+ 1.243 13.296 45.877 -0.293 45.877 -0.29 0.807 9.883 [193]
Cl− 3.235 11.158 16.791 0.221 16.791 0.221 1.737 6.692 [193]

NaOH
Na+ 0.971 59.306 299.712 0.671 299.712 0.671 3.963 95.763 [327]
OH− 6.052 15.685 -120.072 -0.481 -120.072 -0.481 0.506 30.460 [327]

KOH
K+ 0.002 36.479 90.248 -0.054 90.248 -0.054 1.148 25.206 [327]
OH− 22.347 159.038 257.028 0.241 257.028 0.241 1.903 75.406 [327]
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(a) (b)

Figure 2.4: Individual activity coefficients of chloride (a) and sodium (b) ions in aqueous NaCl solution
predicted by models of Lin and Lee [216, 217], Khoshkbarch and Vera [193, 194], Pitzer [301, 302], and
Pozuki and Rohani [281]. Experimental data is adopted from Khoshkbarchi and Vera [194].

These proposed semi-empirical models can be schematically expressed in the form:

ln γi = long range effect + short range effect (2.16)

Table 2.3 shows the selected semi-empirical expressions for long range and short range effects of ionic activ-

ities [193, 194, 216, 217, 281, 300–302]. The adjustable parameters (Bi and Ci) for common solution (NaCl,

KCl, NaOH and KOH) are presented in Table 2.4. The calculated individual activity coefficients of chloride

and sodium ions are shown in Figure 2.4. Compared to the experimental data, all the selected models can

predict the individual ionic activity coefficients very well., see Appendix A.1 for detailed derivations.

2.2.2 Water activity and osmotic coefficient

The osmotic coefficient is defined as a quantity which characterizes the deviation of a solvent from ideal

behavior. Based on the Gibbs-Duhem equation for an aqueous solution, the osmotic coefficient can be

obtained as [216, 217]:

Π = 1 +
∑

i

xi ln γi −
∑

i

xi
1
I

∫ I

0

ln γidI (2.17)

where xi is the molar fraction defined as xi = mi/mT , with mi the molar concentration of species i (in
mol · kg−1) and mT =

∑

mi. By substitution of the expressions of the ionic activity coefficient ln γi (see
Table 2.3) into eq(2.17), the osmotic coefficient derived from the selected semi-empirical models then can
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be presented as (see Appendix A.2 for derivation details):

Π = 1 − Aφ

∑
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xiz
2
i

I1/2
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+
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(1 + a)T

∑
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The water activity is related to the osmotic coefficient by the formula [216, 217]:

ln aw = −mtMw

1000
Π (2.19)

(a) (b)

Figure 2.5: Calculated osmotic coefficient Π (a) and logarithm value of water activity ln aw (b) in terms
of the NaCl concentrations by models of Lin and Lee [216, 217], Khoshkbarch and Vera [193, 194], Pitzer
[301, 302], and Pozuki and Rohani [281]. Experimental data is adopted from Guendouzi et al. [147].

Figure 2.5(a) shows the variation of calculated osmotic coefficient Π of NaCl solution with the NaCl

concentration. It can be found that those values are well consistent with the experimental results when

the models of Lin and Lee [216, 217], Pitzer [300–302] and Pozuki and Rohani [281] are used. Whereas

the values calculated by model of Khoshkbarchi and Vera [193, 194] show more differences than the other
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models. However, the logarithm values of water activity, calculated by all models, show no significant

differences, see Figure 2.5(b). In the present work, we choose the Lin and Lee’s model, because it has

relative simple expressions for both the individual ionic activity and the water activity.

2.3 Freeze-thaw hysteresis

2.3.1 Introduction to freeze-thaw hysteresis

The freeze-thaw hysteresis has been widely observed for porous materials [188, 308, 310, 380]. Analogous

to the other observed hysteresis, cf. wetting-drying, gas adsorption-desorption and mercury intrusion-

extrusion in porous materials, there are several mechanisms responsible for these behaviors. It is believed

that the contact angle between ice crystals and pore wall contributes, not mainly but to some extent, to

the freeze-thaw hysteresis [145]. This mechanism lies on that the contact angle during freezing is larger

than that during thawing, so that the depressed freezing temperature is lower than the depressed melting

temperature. The energy barrier between ice crystals and liquid water might be another source for the

phenomena of supercooling and superheating [369]. This concept is, physically, similar to the earlier

approach for gas adsorption-desorption hysteresis by Broekhoff and de Boer [52]. The energy barrier

between small liquid droplets and the unfrozen surface layer has been verified in Ref. [413]. For liquid

confined in very thin pore, i.e., the micro-pores 1, the energy barrier is not significant, therefore, the freeze-

thaw hysteresis is not significant either. This has been verified from the experimental observations by

Morishige and Kawano [259] and Schreiber et al. [346]. Morishige and Kawano [259] performed X-ray

diffraction measurements of water confined inside the cylindrical pores of silica with different pore radii

(1.2-2.9) nm and the interconnected pores of Vycor glass as a function of temperature. The results indicated

that the hysteresis depends markedly on the size of the cylindrical pores: the hysteresis is negligibly small in

smaller pores and becomes remarkable in larger pores. This phenomenon also has been verified by replacing

water with methanol as pore liquid [260]. According to the Gibbs energy based theory, water does not

crystallize spontaneously due to the energy barrier of creating stable ice embryos [53, 402]. However, once

temperature depresses to −40℃ (233K), the thermal agitation energy of water equals to the required energy

barrier, the freeze-thaw hysteresis disappears [259]. Under commonly encountered conditions, Petrov and

Furo [288] stated that the freeze-thaw hysteresis can be readily explained by different paths along which

solid-liquid interface propagates during freezing and thawing. Within the approach by Petrov and Furo

[288] that was developed from the model proposed by Denoyel and Pellenq [97], the hysteresis is caused

1. According to IUPAC [439] notation, micropores have width of less than 2 nm, mesopores have width between 2 nm and
50 nm and macropes have width of greater than 50 nm. This classification of pore size is used in this study except specific
notation.
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Figure 2.6: (a), Cross-sectional view of a pore filled by a solid core and a liquid layer of uniform width δ;
(b) The free energy of water for a unit length of a cylindrical pore of 36 nm radius as function of thickness δ
and temperature T, as provided by eq (2.20) with γlc = 30 mJ/ m2 and ξ = 0.4 nm (roughly two molecules
thick). The metastable region providing the freezing-melting hysteresis is hatched. After Petrov and Furo
(2006) [288].

by pore curvature-induced metastability of the solid phase and, thereby, is an intrinsic property of the

system defined by the pore morphology and the interfacial interactions. Those coincide with the concepts

or approaches by other researchers [97, 259, 383]. In addition to the physical chemistry characteristics of

processes of water-ice transferring, the characteristics of pore structure contribute largely to the freeze-thaw

hysteresis as well, which will be introduced in section 2.3.3. This concept was also applied to explain the

behaviors of capillary condensation/evaporation in cylindrical mesopores [282].

2.3.2 Effect of pore curvature

The Helmholtz free energy of a partial frozen porous system (cf. Figure 2.6(a)) can be expressed as a

function of the thickness of unfrozen layer or the distance away from the pore wall, δ, as follows [288]:

Ψ(δ, T ) =
∆Hfus

Vc

T − T0

T0
Vc + γlcAc + ∆γA exp(−2δ/ξ) (2.20)

where T0 is the bulk freezing/melting temperature at P = P0, ∆Hfus is the latent heat (enthalpy) of fusion,

Vc is the molar volume of ice , Vc is the volume of ice in this system, Ac is the surface area of ice crystals,

A is the surface area of pore wall, γlc is the interface energy between liquid water and ice crystals. ∆γ is

defined as a excess free energy when a ice-wall interface is separated by a liquid phase that covers the solid

wall and ice crystal (cf. Figure 2.6a), ∆γ = γsc − (γlc + γls). γsc is the interface energy between solid wall

and ice crystals and γls is the interface energy between liquid water and solid wall. The exponential term

"exp(−2δ/ξ)" accounts for the short range (∼ ξ) surface-induced perturbation in the liquid [219].

The variation of Helmholtz free energy in form of eq(2.20) with thickness of liquid layer δ and tempera-
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(a) (b)

Figure 2.7: (a), Theoretical ratio ∆Tm/∆Tf depends on the pore diameter for spherical and cylindrical
geometry. The dashed lines indicate experimental ratios for different sized controlled pore glass (CPGs),
the solid lines indicate the calculated ratios for cylindrical and spherical pores by eq(2.21) with ξ = 0.4nm;
(b), Correlation between average values of ∆Tm and ∆Tf in different-sized CPGs. The straight lines with
zero intercept have the slopes 0.67, 0.65, 0.62, 0.57 and 0.57 for CPG75, CPG115, CPG156, CPG237 and
CPG729, respectively. The insert enlarges the data points for CPG729. The four points of ∆Tm/∆Tf for
each CPG are determined with the pore liquid of water, benzene, cyclohexane and cyclooctane, which have
the bulk melting temperature of 273.2K, 278.8K, 279.9K and 287K respectively at P = 0.1MPa. After
Petrov and Furo (2010) [290].

ture T is illustrated in Figure 2.6(b). As shown in Figure 2.6(b), there are two minima at low temperature:

one minimum at δ(ξ, T ) near zero corresponds to a pore filled by ice crystals with a nonfreezing film induced

by the short-range surface effect [97, 259, 282, 288, 383, 413], while the minimum δ = r to a pore filled

by liquid, with r the pore radius. The liquid like film is a criterion for freeze-thaw hysteresis in Petrov

and Furo’s model [288]. In Figure 2.6(b), as the temperature increases from (T1), Helmholtz free energy at

first minimum increases. As temperature increases further to the solid-liquid equilibrium point T2, the two

corresponding minima of Helmholtz free energy are equally deep. A expected phenomenon that melting

begins at T = T2, would not be observed, because growing the liquid phase from the nonfreezing film at the

pore wall requires to surmount the additional free energy. Accordingly, until the temperature approximates

T3, where thermal fluctuations are sufficient to surmount the energetic barrier, it will not start to melt.

During cooling process, the temperature decreases from T4, and the pore is filled by liquid initially. The

freezing temperature depends on the two typical freezing patterns: (a) the solidification takes place in the

presence of preexisting crystallites adjacent to the pore and (b) it nucleates at certain supercooling. The

effect of supercooling and nucleation will be briefly reviewed in section 2.4. If there is no nucleation barrier,

the material freezes at the equilibrium point Tf = T2, where Tf stands for the freezing temperature of

pore liquid. If there is nucleation barrier, it needs further cooling to overcome the nucleation barrier, thus

Tf < T2. Obviously, T2 < T3 = Tm and Tf < Tm, where Tm stands for the melting temperature of pore
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liquid at P = P0. The freezing and melting depressed temperature, ∆Tf and ∆Tm respectively, can be

given by [290]:

∆Tf = −VcγlcT0

∆Hfus

Ac + ξA′
c

Vc + ξV ′
c

and ∆Tm = −VcγlcT0

∆Hfus

A′
c + ξA′′

c

V ′
c + ξV ′′

c

(2.21)

On condition that pore size is much larger than the thickness of unfrozen film, r ≫ δ, Petrov and Furo

[288, 291] derived the expressions to estimate the depressed freezing and thawing temperature as:

∆Tf ≈ −VcγlcT0

∆Hfus

Ac

Vc
and ∆Tm ≈ −VcγlcT0

∆Hfus

∂Ac

∂Vc
(2.22)

Note that the eq(2.22) can be applicable to any particular pore geometry. For pores in convex geometry, the

volume Vc(δ) enclosed by surface Ac(δ) can be expressed as a third order polynomial equation of thickness

δ, which is known as the Steiner’s formula [215]:

Vc(δ) = V +Aδ + κAδ2 +
4
3
πδ3 and Ac(δ) = A+ 2κAδ + 4πδ2 (2.23)

where κ is the mean curvature, defined as: κ = (1/2A)
∫

(1/r1+1/r2)dA with the principle radii of curvature

r1 and r2. In large pore area, r ≫ δ, one can get the approximation, Vc(δ)/Ac(δ) ≈ V/A and ∂Ac/∂Vc ≈ 2κ.

From eq(2.22) one obtains the relation between depressed freezing temperature ∆Tf and depressed melting

temperature ∆Tm [288]:

∆Tm = ∆Tf
2κV
A

(2.24)

For spherical pores, V/A = 2r/3 and 2κV/A = 2/3, while for cylindrical pores V/A = r/2 and 2κV/A = 1/2.

Those values are different from the values by Brun et al. [53], who obtained the value of ∆Tm/∆Tf equal to

1/2 and 1 for cylindrical and spherical pores respectively. The ratios of depressed thawing temperature to

depressed freezing temperature for spherical pores and cylindrical pores calculated by eq(2.21) are plotted

in Figure 2.7(a), where the pore size of controlled pore glass (CPGs) determined by NMR cryoporometry

are also presented [290]. The detailed correlation between average values of ∆Tm and ∆Tf in different-sized

CPGs are illustrated in Figure 2.7(b). It can be found that the values of 2κV/A for CPGs lie between

the value 1/2 and 2/3. In addition, the smaller the pore size of CPGs, the closer the value of ∆Tm/∆Tf

to 2/3. According to the Gibbs-based model or phenomenological model [97], the difference between the

depressed freezing temperature and depressed melting temperature vanishes as pore size decreases further.

The critical pore radius is estimated to be 1.2 nm. When the pore size lower than the critical value,

∆Tm/∆Tf reduces to 1 (see Figure for example 2.8). For droplets in size of about 5 µm, the average values

of ∆Tm/∆Tf are in the range 0.5 ∼ 0.588, see Ref. [195] for detail. For mortar, the values of ∆Tm/∆Tf

are systematically much lower than those for silica porous materials as studied by Sun and Scherer [381].
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Figure 2.8: Determined freez-
ing/melting temperature in
terms of the inverse of pore
size. The MCM-41 and SBA-15
porous materials, which have
different pore sizes, are used.
The freezing/melting temper-
ature is determined by the
differential scanning calorime-
try (DSC). After Schreiber et
al. (2001) [346].

In addition to the hemispherical interface penetration during freezing and cylindrical interface withdraw

during melting, the reason of causing the values of ∆Tm/∆Tf to be under 1/2 in mortar samples is more

likely to be pore blocking effects, according to Riikonen et al. [323, 324], see the followed section 2.3.3.

2.3.3 Effect of pore connectivity

The pore connectivity effect is also an important factor for freeze-thaw hysteresis. As illustrated in

Figure 2.9, this factor that is described by Sun and Scherer [381] in a simplified model, shows a mechanism

of hysteresis as well as an interpretation on the measurement of pore shape by means of differential scanning

calorimetry (DSC) method. Assuming a pore model as shown in left side of Figure 2.9, where B and D

have the same pore radius connected by thinner pore C. At first cooling, ice penetrates into pore A at

the corresponding depressed temperature −∆TA
F , the ice volume in pore A is represented by the length

of vertical blue line at right side of Figure 2.9. When cooling to −∆TB
F , the ice fullfills pore B, but does

not penetrate to the smaller pore C. According to the Gibbs-Thomson equation, ice shall fill pore D at

−∆TB
F under equilibrium. However, this can not happen unless the temperature is cooled enough to allow

ice to enter pore C. At −∆TC
F , the ice volume is the sum of ice volumes in both pore C and pore D, as

represented as "C+D" in Figure 2.9. When the temperature is raised, the ice in pore C will melt first, at an

subzero temperature of −∆TC
M = −∆TC

F /2 as first presented by Brun et al. [53] 2. The melted ice volume

is C in stead of C + D during freezing. When the temperature rises to −∆TB
M = −∆TD

M = −∆TB
F /2,

ice in pores B and D will melt. The melted ice volume is sum of the space of pore B and D, represented

by the length of red line at right side of Figure 2.9. As temperature increases further, the ice in pore A

melts. Note that two different melting paths exist during melting, 1, the melting begins at ice side, 2, the

melting begins at ice front. When the temperature is such that ∆TB
M ≥ ∆TA

F or −∆TB
M ≤ −∆TA

F , ice melts

2. The ratios of ∆TM /∆T C

F
= 0.5 is used also by Sun and Scherer. Note that other constants can be used for this ratio

for more accurate modification, an it will not change the mechanism of freeze-thaw hysteresis presented by Sun and Scherer
[381].
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from the side of cylinder pore A, otherwise, ice melts from the front between ice and water. The melting

process from pore B to pore A is thus not shown in Figure 2.9 correctly. To sum up, the characteristics

of pore connectivity lead to the freeze-thaw hysteresis in addition to the aforementioned contact angle

effect and pore curvature-induced metastability of the solid phase. This feature also provides a method

to determine the pore shapes or structures by performing DSC measurement in small temperature range

for every freeze-thaw cycle. This method has been executed and extended for characterizing nano-porous

materials and meso-porous materials [200, 290].

Figure 2.9: A simplified model for ice formation along cylindrical pores during freezing and withdrawal
during thawing (left); The corresponding ice content at each equilibrium temperature (right). After Sun
and Scherer [380].

2.4 Bulk supercooling and ice nucleation

2.4.1 Experimental evidence

As aforementioned, freezing of water confined in small pores, as stated by Petrov and Furo [288],

depends on two different ways: ❶ ice homogeneously nucleates everywhere and grows spontaneously, and

❷ heterogeneously nucleates somewhere then penetrates into smaller pores until the required equilibrium

between ice crystals and liquid water is achieved, see Figure 2.10. The different ice formation patterns,

governed by different physic principles, can lead to different consequences. The homogeneous nucleation of

ice is often companied with large supercooling due to the large surface energy barriers [341], which is widely

observed during cooling of porous media. For instance, in Figure 2.11(a), the nucleation temperature of

cement pastes saturated with NaCl solution is about 3.4-11 K lower than the freezing point of bulk solution.

This has been observed elsewhere, see Figure 2.11(b). Figure 2.12 shows the temperature shift when ice
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Figure 2.10: Illustration of changes in the
liquid signal intensity in sized controlled
pore glass in size of 23.7 nm (CPG237)
filled with water with 100% excess to the
pore volume, as recorded on cooling at a
constant rate of 0.04 K/s. Upper curve:
both confined and excess water are ini-
tially in the liquid state and freezing is nu-
cleation controlled with corresponding su-
percooling. Lower curve: excess water is
frozen, and therefore, no nucleation is re-
quired for the pore water to freeze. After
Petrov and Furo (2006) [288].

(a) (b)

Figure 2.11: (a), Measured ice nucleation temperature of cement paste saturated with NaCl solution at
different concentration in the present study, the cooling rate is 0.33 K/min. (b), Incipient freezing point as
a function of salt concentration, the cooling rate is 0.33 K/min. The PC denotes the plain cement paste
and the AE denotes the air-entrained cement paste. After Litvan (1975) [223].

nucleates in cement-based materials that have been initially saturated with NaCl solution at different

concentration. However, the large supercooling would be a catastrophe for cryoporosimetry, because the

pores can not be detected when the bulk supercooled temperature is lower than the equilibrium temperature

(capillary supercooled temperature) given by the Gibbs-Thomson equation. Furthermore, supercooling can

lead to rapid ice formation and large heat releasing, which may cause significant higher stresses on pore wall

than those under equilibrium case. This has been verified by experimental results of saturated cement-based

materials under freezing, cf. Grübl and Soktin [146].

Another interesting phenomenon of ice nucleation and growth is the process in tubes or capsule upon

cooling. The typical experimental observations on freezing processes of water confined in cylindrical capsule

are presented in Figure 2.13 [149]. As showed in Figure 2.13, five different stages can be observed, of which

some or all appear upon cooling depending on the materials of capsule and cooling rate [149]. The stage (a)

represents the liquid sensible heat release to the density inversion temperature (Tdi = 4℃). The stage (b) is
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Figure 2.12: Temperature shift when ice nucleates in ce-
ment pastes initially saturated with NaCl solution at con-
centration of 0%, 1.5%, 3%, 6%, 10% and 15%. The tem-
perature is measured by thermocouple in accuracy of 0.1
K. The cooling rate is controlled to be 0.33 K/min.

Nucleation temperature measure-
ment:
The used materials are cement pastes
with w/c=0.5 and 0.3. The preparation
procedures and the physical properties of
the used cement pastes can be found in
chapter 6. The temperature and defor-
mation measurements were performed si-
multaneously as shown in chapter 9. The
temperature was measured by thermo-
couple in accuracy of ±0.1℃. NaCl at
concentrations of 0% t0 15% are used.
For each salt concentration, 54 times
of cooling were performed and the cor-
responding temperatures were recorded.
Thus total 54 × 6 = 324 times freezing
were performed. The ice formation or
nucleation temperature can be inspected
once the temperature shift is observed as
shown in Figure 2.12.

(a) (b)

(c) (d)

Figure 2.13: Freezing processes of water confined in cylindrical capsule: (a) Freezing process without
supercooling; (b), Freezing process with supercooling and large heat releasing; (c), Freezing process with
supercooling and instantaneous freezing; (d), Freezing process with hypercooling and instantaneous freezing.
The different freezing stages of a, b, c, d and e are figured out specifically in text. Afterm Guzman and
Braga (2005) [149]
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the region where water is in metastable liquid state, and the temperature decreases monotonously until the

ice nucleation temperature Tn. The stage (b), although frequently observed, is not sufficient condition for

ice formation. In stage (c), thin-plaque-like crystals of dendritic ice grows on the interface of supercooled

water and capsule. At the end of this dendritic growth process, the water temperature usually returns to

its bulk freezing/melting point (Tf ) and isothermal phase change starts in stage (d). The length of this

stage depends on the heat release rate or the ice formation rate. Once the heat release of ice formation is

not enough to compensate the heat loss by cooling, the stage (e) starts. The length of each stage depends

on the cooling rate, nature of substrate materials as well as the size of capsule as specifically presented in

Figure 2.13 [149].

It is not possible to review all the water supercooling related phenomena and models, but the mecha-

nisms of supercooling lie on the free energy of water and ice either in steady state or in metastable state,

which can be described principally by Gibbs-based approaches. More general and generalized thermody-

namic models based on Gibbs-based approach can be found in Refs. [195, 343–345].

2.4.2 Homogeneous nucleation or heterogeneous nucleation

The primary reason of supercooling which can be observed for freezing of porous materials till homo-

geneous nucleation or heterogeneous nucleation, is due to the energy barrier [125]. When a very small ice

embryo forms, either surrounded by water (Figure 2.14a) or in contact with substrates (Figure 2.14b), it

must surmount large surface energy, otherwise the ice embryo will not grow into bulk phase or large crystal.

Keeping in mind that the pressure on ice embryo is determined by the surface tension and the curvature,

the larger the embryo size, the lower the ice pressure. A critical embryo size is thus expected. The em-

bryos which are smaller than the critical size will melt and transfer back to bulk water due to the high

pressure induced by the interfacial energy. In contrary, once the embryos are larger than the critical size,

they will grow spontaneously and rapidly because the free energy of ice is lower than that of supercooled

water [125, 341]. The homogeneous nucleation temperature of bulk water is known to be about −39℃

[427]. It was also reported that the nucleation temperature depends on the size of water droplets [154].

However, as stated by Wilson et al. [427], the ice formation temperature is higher than the homogeneous

nucleation temperature whether the measured water is in state of small droplets, placed on substrate or

confined in pores/tubes. This indicates that in water or aqueous solution occurs the heterogeneous nu-

cleation rather than the homogeneous nucleation. Except adding the extremely efficient nucleation agent,

such as silver iodide and cholesterol [187], the heterogeneous nucleation temperature were found in range

of −30℃∼ −5℃ depending on the size of droplets [104, 154, 163, 164, 207] and the nature of substrate

[171, 444]. As stated by Dash et al. [89], the surface roughness, polycrystallinity, dislocations and impurity
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Figure 2.14: Schematic representation of a homogeneous (a) and a heterogeneous (b) nucleation. After
Fletcher (1971) [125].

can cause heterogeneous nucleation. If water solution is used, the heterogeneous nucleation temperature is

also related intimately to the salt concentration, see Figures 2.11(a) and 2.11(b).

Actually, the homogeneous nucleation is a special case of heterogeneous nucleation where no nucleation

agent works. For planar substrate that acts as an agent, a widely applied model that has been proposed to

describe this process, is considering the effect of contact angle as illustrated in Figure 2.14 [125, 402]. The

temperature dependent nucleation rate J is given by [125, 402]:

J = J0 exp
(

−∆G∗
homf(θ)
kbT

)

(2.25)

where J0 is the prefactor depending on the temperature, nature of substrate and contact surface or number

of nucleation sites [312, 352, 380], kb is Boltzmann constant (1.38066×10−23 J/K), T is absolute temperature

(in K), ∆G∗
hom is the free energy excess of an ice embryo with critical size in homogeneous case, which is

expressed as:

∆G∗
hom =

16πγ3
clV

2
cT

2
0

3∆H2
fus(T0 − T )2

(2.26)

where ∆Hfus is the enthalpy change of ice formation. As a matter of factor, eq(2.26) can be derived

directly by looking for the minimum of the free-energy difference ∆Ghom that is composed of volumetric

term and interfacial term, i.e, ∆Ghom = 4/3πr3∆Hfus +4πr2γlc. The term f(θ) is the contact angle factor

that accounts for the feature of substrate [125]:

f(θ) =
(1 − cos θ)2(2 + cos θ)

4
(2.27)

To quantify the influence of depressed supercooling temperature on the nucleation rate J , it is preferred
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to rewrite the eq(2.25) in the form:

log J = log J0 − Γ
2.303T (T0 − T )2

with Γ =
16πγ3

clV
2
cT

2
0 f(θ)

3∆H2
fuskb

(2.28)

The eq(2.28) was applied to best fit the measured data to compare the parameters ln(J0) (or log(J0))

and Γ of specific treated liquid droplets with controlled liquid, cf. Seeley and Seilder [352]. Following the

process of binning temperature distribution into numbers of temperature bins with widths ∆Ti, centered

on temperatures Ti and containing ni freezing events as presented by Seeley and Seilder [352], one can thus

rewrite the ice nucleation rate formula as:

J(Ti) =
Rni

V∆Ti

(

ni/2 +
∑

j>i nj

) (2.29)

where R is the cooling rate (K/s), V is the volume of liquid water (ml or m3). Actually, eq(2.29) can be

derived from the concept of inhomogeneous Poisson process when the observed freezing events are assumed

to be random and uncorrelated for a given nucleation rate, cf. Shaw and Lamb [366], Shaw et al. [364, 365].

The detailed derivation processes of eq(2.29) are given in Appendix A.3.

Now let us consider the effect of solutes on heterogeneous nucleation, the energy barrier to formation

of a spherical nucleus of the critical size is found to be [195]:

∆G∗
hom,salt =

16π
3

γ3
clV

2
cT

2
0

[∆Hfus(T0 − T ) +RTT0 ln(Sw)]2
(2.30)

where Sw is defined as the water saturation ratio 3. In case that solution is confined in small pores, the

water saturation ratio is related to the pore curvature and water activity, which is known as the Köhler

equation [195]:

ln(Sw) = ln(aw) +
Vwγls

RT

2
rp

(2.31)

where Vw is the molar volume of water (18 × 10−6m3/mol), rp is the pore radius (nm or m). Substitution

of the eqs(2.31) and (2.30) into eq(2.25), one obtains:

J = J0 exp
{

− 16π
3

γ3
clV

2
cT

2
0 f(θ)

[∆Hfus(T0 − T ) +RTT0 ln(Sw)]2 kbT

}

(2.32)

3. Sw is an environmental variable used in some cloud models [195]. It stands for the deviation extent from the state of
pure water. In absence of curvature effect, ln Sw = ln aw, and for pure bulk water ln Sw = 0. This is quite different with the
saturation degree Sl defined in chapter 4.



32 Ice formation in porous materials

We further rewrite the eq(2.32) in form of eq(2.28):

ln J = ln J0 − Γ

T (T0 − (1 −AS)T )2 , Γ =
16πγ3

clV
2
cT

2
0 f(θ)

3∆H2
fuskb

, AS =
RT0 ln(Sw)

∆Hfus
(2.33)

To estimate the relation of depressed temperature to the salt concentration, liquid size and nucleation

rate, we rewrite the eq(2.32) as:

∆T = T − T0 = AsT −
(

Γ
T ln(J0/J)

)1/2

=
RTT0 ln(Sw)

∆Hfus
−
[

16π
3

γ3
clV

2
cT

2
0 f(θ)

∆H2
fuskbT ln(J0/J)

]1/2

(2.34)

Actually, eq(2.34) is a specific case of depressed temperature upon freezing, more general discussion on this

issues can be found elsewhere, cf. Khvorostyanov and Curry (2004) [195].

2.4.3 Results and discussions

Figure 2.15 illustrates the normalized frequency of ice nucleation in terms of depressed supercooling

temperature for NaCl solutions at different salinity confined in porous cement pastes. The temperature

curves of samples during freezing were determined by thermocouple, of which the procedures are briefly

shown in the sidebar of Figure 2.12. The normalized frequency is calculated as: f =
∑j

i=1 ni/
∑N

i=1 ni

for T < Tj , where N is the number of temperature bins shown in Table 2.5 and
∑N

i=1 ni = 54, Tj is the

center temperature of jth temperature bin. The binning temperature width and the temperature range are

presented in Table 2.5. The frequency of nucleation temperature distribution (f = nj/
∑N

i=1 ni at Tj) and

the corresponding Gauss fitting can be found in Figure 2.15(b). To represent the heterogeneous nucleation

temperature for samples saturated with salt concentration, the mean heterogeneous nucleation temperature

T ∗
f , defined as the temperature where the normalized frequency is equal to 0.5, is evaluated. It decreases

from about −8℃ to −17℃ as salt concentration increases from zero to 15 wt%. It also can be found

in Figure 2.15 that the supercooling temperature distribution shows no significant difference when NaCl

concentration is lower than 6%. As salt concentration increases, the ice formation temperature decreases

progressively, which can be due to the lowering of water activity when mixed with salts (see Figure 2.5(b)).

For cement-based materials, the pore radius can range from nano-size to millimeter-size, which depends

on the initial compounds, water to cement ratio, curing condition and so on [247]. Based on the Mercury

intrusion porosimetry and gas sorption porosimetry, the mean pore size of hardened cement pastes, both

with high w/c (0.5) and with low w/c (0.3), defined as rp = d/2 = 2V/A, are about 10 nm [443]. The value

of the second term in right hand side of eq(2.31) is estimated as 0.036 for water confined in cylindrical

pores, with γls = 45mJ/m2 [44]. This value approximates the logarithmic value of water activity when

NaCl concentration is about 1.1 mol/kg (calculated by Lin and Lee’s model [216]), viz. ln(aw) = − Vwγls

RT
2

rp
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Table 2.5: Parameters for the normalized frequency (see Figure 2.15) and the mean depressed supercooling
temperature T ∗

f .
Samples Non salt %1.5 NaCl %3 NaCl % 6 NaCl %10 NaCl %15 NaCl

Temperature range (Tmin ∼ Tmax) −11 ∼ −6 −12 ∼ −6 −11 ∼ −6 −15 ∼ −8 −17 ∼ −8 −21 ∼ −13
Temperature widths ∆Ti 0.2 0.2 0.2 0.2 0.2 0.2
Number of temperature bins 25 30 25 35 45 40
Temperature T ∗

f at f = 0.5 −8.2 −8.4 −7.7 −11.5 −12.9 −17

(a) (b)

Figure 2.15: The normalized frequency of ice nucleation for solution confined in cement paste with NaCl
at concentration of 0%, 1.5%, 3%, 6%, 10% and 15%. The nucleation temperature values are from Figure
2.11(a).

with mNaCl = 1.1mol/kg and rp = d/2 = 10nm. This may be the reason why there are no significant

differences in the depressed supercooling temperature when the salt concentration is not larger than %6

(≈ 1.03mol/kg).

The ice nucleation rate J can be evaluated by eq(2.29) using the measured freezing events and the

corresponding nucleation temperature presented in Figure 2.12. The obtained nucleation rates for materials

saturated with salt solution at different concentration are presented in Figure 2.16. Best-fitting the obtained

nucleation rate – temperature data through the heterogeneous nucleation equation, cf. eq(2.33), one can

obtain the parameters: prefactor (log J0), Γ and contact angle function f(θ). The best-fitting curves are

shown in Figure 2.16 as well. Two conditions are considered in fitting equation (eq(2.33)): 1, only the

salt concentration is encountered, viz. ln(Sw) = ln(aw) in eq(2.31); 2, both the salt concentration and

the pore size effect are encountered, viz. ln(Sw) = ln(aw) + Vwγls

RT
2

rp
. The parameters for both best

fitting conditions are presented in Table 2.6. It can be seen that the logarithm values of prefactor (log J0)

decreases slightly with salt concentration for both conditions 1 and 2, see also Figure 2.17(a). And the

values for fitting condition 1 are lower than those with condition 2, which indicates easier nucleation for

condition 1 because of the excess energy by curvature effect in condition 2. The parameters Γ and f(θ)

decrease with salt concentration, indicating that easier ice nucleation for more saline solution under the
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Figure 2.16: The logarithm
value of nucleation rate (ln J) in
terms of temperature for cement
samples saturated with NaCl so-
lution at concentration of 0%
(non salt), 1.5%, 3%, 6%, 10%
and 15%. The points are calcu-
lated through eq(2.28) and the
lines are fitted by eq(2.33), the
cooling rate is 0.00556K/s. The
obtained parameters, such as
the prefactor J0, the factors Γ
and As in eq(2.33) are presented
in Table 2.6 for condition 2.

Table 2.6: Nucleation parameters extracted from the best-fit curves evaluated by eq(2.28) for the cement
pastes saturated with NaCl solution at concentration of 0% (non salt), 1.5%, 3%, 6%, 10% and 15%. Two
conditions are considered, see text for detail.

Samples Non salt %1.5 NaCl %3 NaCl % 6 NaCl %10 NaCl %15 NaCl Homogeneous[352]

Condition 1: only salt concentration is considered

ln J0 -1.359 -1.173 -1.572 -1.493 -2.267 -2.075 35
Γ 4.79 × 104 4.06 × 104 1.85 × 104 3.69 × 104 1.11 × 104 1.42 × 104 2.4 × 107

R2 0.866 0.925 0.818 0.867 0.866 0.843 -
f(θ) 0.002 0.00169 0.00077 0.00154 0.000463 0.000592 1.0
θ 18.58 17.80 14.58 17.38 12.83 13.65 180
As 0 -0.00324 -0.00645 -0.013 -0.02236 -0.037 0

Condition 2: both salt concentration and pore size are considered

ln J0 -0.686 -0.479 -1.049 -1.154 -1.812 -1.600 35
Γ 15.41 × 104 14.06 × 104 8.02 × 104 12.72 × 104 5.76 × 104 7.38 × 104 2.4 × 107

R2 0.862 0.921 0.815 0.861 0.869 0.939 -
f(θ) 0.00642 0.00586 0.00334 0.0053 0.0024 0.00303 1.0
θ 25.04 24.46 21.63 23.83 19.46 20.65 180
As 0.0136 0.0104 0.00715 0.000604 -0.00876 -0.02145 0

(a) (b)

Figure 2.17: (a), The logarithm values of prefactor (ln J0) in terms of the salt concentration. (b), The
contact angle θ in terms of concentration. Both the prefactor (ln J0) and contact angle θ are evaluated
from best fitting of eq(2.33) on the nucleation rates evaluated by eq(2.29). With salt only: fitting under
condition that ln(Sw) = ln(aw) in eq(2.31); With salt and pore size: fitting under condition that ln(Sw) =
ln(aw) + Vwγls

RT
2

rp
.
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Figure 2.18: The measured freezing point as function
of salt concentration that is confined in porous cement
paste, and the calculated supercooling temperature.
The cooling rate is 0.33 K/min. Grey filled circle:
measured depressed supercooling temperature, data
from Figure 2.11(a); Grey filled square: measured de-
pressed supercooling temperature, data from Litvan
(1973) [221]; Dot line: equilibrium freezing tempera-
ture of bulk solution; Dash line: Supercooling calcu-
lated by eq(2.34); Dash dot line: Supercooling calcu-
lated by eq(2.34) without consideration of pore size
effect.

same supercooling temperature (see Figure 2.17(b)). The contact angle decreases from about 18° to 13° and

from 25° to 20° as salt concentration increases from zero to 15wt% when conditions 1 and 2 are considered

respectively. However, because the water activity decreases significantly as salt concentration increases (see

Figure 2.5(b)), the overall heterogeneous nucleation energy, |∆G∗
hom,saltf(θ)| in eq(2.32) where ∆G∗

hom,salt

is expressed as eq(2.30) and fθ is expressed as eq(2.27), increases with salt concentration. Therefore, the

observed depressed nucleation temperature decreases with increasing of salt concentration.

If the ice nucleates on a planar surface, the depressed temperature would be smaller than the one

when ice nucleates in pores due to the excess energy induced by the pore curvature. In this study, the

temperature shift required by ice formation in pores in size of 10 nm is calculated to be about −3.4℃ by

Gibbs-Thomson equation. Therefore, the values corresponding to "supercooling: non pore effect" in Figure

2.18 are equal to the depressed temperature calculated by eq(2.34) minus the temperature shift required

by pore size effect. Interestingly, the obtained values of "supercooling: non pore effect" appears as an

upper bound of measured supercooling temperature interval, see Figure 2.18. However, it is more likely

a coincidence, because there is no specific physical meaning for this estimation. In addition, the eq(2.34)

also allows us to estimate the supercooling temperature range by changing the logarithm value of ratio

of prefactor to ice nucleation rate, ln(J0/J). This ratio actually indicates the potential of ice nucleation.

The higher the ratio, the lower the probability of ice nucleation. The region of supercooling temperature

corresponding to the 0.3 ≤ ln(J0/J) ≤ 2 is plotted in Figure 2.18.

2.5 Thickness of liquid-like layer

The liquid like layer (unfrozen layer) on the surface of ice has been observed more than 150 years. There

are three proposed mechanisms for the formation of this layer: pressure melting, frictional heating, and

intrinsic premelting [213]. The thickness of this layer, which is reported to be ranging from one to three
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molecular layers [97, 289], depends preliminary on the temperature [89, 102]. To derive the relationship

between the thickness of liquid-like layer (unfrozen layer) and the temperature, we recall the Helmholtz

free energy of a convex pore filled with ice and a layer of unfrozen water as presented by Petrov and Furo

[288, 291] and Dash [89]. The requirement of minimal Helmholtz free energy (or Gibbs free energy instead

when the work by pressure is negligible) in equilibrium, leads to an equation for the equilibrium thickness

of the liquid-like layer δ by substituting the Steiner’s equation (eq(2.23)) in eq(2.20):

∂Ψ(δ, T )
∂δ

= 0 = A

[

∆Hfus

Vc

T − T0

T0
(1 + 2κδ) + 2κγlc + ∆γ

∂F

∂δ

]

(2.35)

Where F is the specific interfacial potential [89]. T0 is the equilibrium bulk freezing/melting temperature

at P = P0. Note during the processes of deducing eq(2.35), the approaches ∂V (δ)
∂δ ≈ A(1 + 2κδ) and

∂A(δ)
∂δ ≈ 2κA are adopted 4. In case that 1 ≫ 2κδ and temperature is not in the close vicinity of the

bulk melting point within the pore, the term 2κτ at the right side of eq(2.35) can be neglected. Also the

relation, 2κγlc = ∆Hfus(T0 −Tm)/Vc/T0, is adopted according to the Gibbs-Thomson equation, where Tm

is the melting temperature of ice in the pore with only the effect of curvature at κ. Thus the equation

for evaluating the thickness of liquid-like layer in form of eq(2.35) is reduced to the classic approach as

presented in [89], with the formula:

∆Hfus(Tm − T )
T0Vc

=
∆γ∂F
∂δ

(2.36)

Once the term ∂F/∂δ is determined, the relationship between the thickness of liquid like layer and the

temperature can be evaluated specifically. In addition, the choice of F (δ) depends on the surface force

acting between the solid-liquid and the liquid-ice interfaces for ice growing in fine pores and on those

between the solid-liquid and the liquid-vapor interfaces for ice exposed to air [102]. For an exponentially

distributing force between the two interfaces, F = exp(−2δ/ξ), cf. [288, 291], the thickness of unfrozen

layer can be expressed as:

δ = −ξ

2
ln
[

−ξ∆Hfus(Tm − T )
2T0Vc∆γ

]

(2.37)

The parameter ξ in eq(2.37) can be determined by experiments. Often, for convenience, the thickness of

liquid like layer on ice surface is expressed as a simpler equation [102]:

δ = A−B ln(Tm − T ) (2.38)

4. In Refs. [215, 288], the eq(2.23) is used, while in Ref. [291], the expressions, A(δ) = A(1−2κδ) and V (δ) = V −A(δ−κδ2)
are used. In the present study, we use the formulas in Refs. [215, 288].
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(a) (b)

Figure 2.19: (a), Atomic force microscopy (AFM) measured thickness of liquid like layer on ice surface, data
from Döppenschmidt and Butt (2000) [102], and the expression: δ = 2.8 ln(40/∆T − 0.4)nm, by Fletcher
(1968) [124]. (b), The calculated thickness of liquid like layer between ice and silica-gel, the lines were
fitted by the relation δ ∝ ∆T−1/3, data from Ishikiriyama et al. (1995) [174] and Ishikiriyama and Todoki,
(1995) [173].

The parameters A and B depend on the nature of substrate that is in contact with the liquid like layer.

Thus, those parameters were applied to evaluate the hydrophilic or the hydrophobic degree of a material

whose surface properties are unknown. When ice exposed to air, A = 140(±10) nm and B = 41(±4)nm

according to Goertz et al. [143].

If van der Waals forces were considered, where the repulsive dispersion force between two microscopic

bodies is in a limiting separation σ, F = δ2/(δ2 +σ2) was substituted into eq(2.36) and δ ≫ σ was adopted

in general case, the thickness of liquid like layer is then given by:

δ =
[ −∆Hfus

2∆γσ2T0Vc
(Tm − T )

]−1/3

(2.39)

The eq(2.39) is actually a special case of δ = [−∆Hfus · (Tm − T )/(2∆γσ2T0Vc)]α, with F = δn/(δn + σn)

and α = −1/(1 + n) [102, 425]. If the curvature effect is neglected, Tm = T0, eq(2.39) reduces to the well

used formula: δ ∝ (∆T )−1/3 [89]. Figure 2.19(a) illustrates the Atomic force microscopy (AFM) measured

thickness of liquid like layer in terms of the supercooling temperature, and the fitted curves by eqs(2.38)

and (2.39) respectively. It appears that eq(2.38) can describe the thickness of liquid like layer better than

eq(2.39) when ice exposed to air (see Figure 2.19a). This conclusion was also verified when ice is in contact

with silica [143]. But Dash et al. [89] argued that the eq(2.39) is better than the eq(2.38) to describe the

thickness of liquid like layer when ice is in contact with rough solid surface. In addition, the eq(2.39) was

adopted widely in engineering application [116, 450, 451], see Figure 2.19(b).

Again, the effects of salt on the thickness of liquid like layer will be derived through the classic Gibbs
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approaches as shown in Schmelzer et al. (2006) [344], Khvorostyanov and Curry (2004) [195]. By rewriting

the terms in left side of eq(2.36), one obtains a novel formula that includes the effect of water activity as

follow:
1

Vc∆γ

[

∆Hfus(T0 − T )
T0

+RT ln(aw)
]

=
RT

∑

ci ln γi

∆γ
+

2κγlc

∆γ
+
∂F

∂δ
(2.40)

The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory is retained to evaluate the specific interfacial

energy induced by van der Waals forces and Coulombic interactions within solution films, cf. in Wettlaufer

[424] 5:

F = γd − ∆γ
[

1 − σ2

2δ2
− 1

2
exp

(

−Akδ
−1/2(δ − σ)

)

]

(2.41)

where γd is the dry interfacial energy and Ak is a parameter associated with Ni, which represents moles

per unit area of a single species of monovalent nonvolatile impurities deposited in the film (Ak ∝ N
1/2
i )

[424]. Substituting of eq(2.41) into the eq(2.40) and considering again 2κγlc = ∆Hfus(T0 − Tm)/Vc/T0,

one obtains:

Tm − T =
T0Vc

∆Hfus

[

RT
∑

ci ln γi +
∆γσ2

δ3
+

∆γ
2
Akδ

−1/2
(

1 +
σ

δ

)

exp
(

−Akδ
−1/2(δ − σ)

)

]

(2.42)

The detail derivation of eq(2.42) is given in Appendix A.4. In case that surface melting occurs for planar

ice with an ideal dilute solution assumption, ln γi ≈ 1, eq(2.42) reduces to the eq(7) in [424].

In addition, based on the X-ray reflectivity techniques, Engemann et al. (2004) [110] observed that the

liquid like layer (quasiliquid layer defined in [110]) between ice and SiO2 has a large density to be ρ = 1.17

g/ml. This value is very close to the density of water strongly adsorbed on C-S-H, ρ ≈ 1.16 g/ml, according

to Allen et al. [12] and Thomas et al. [397].

5. The second term in the right hand side of eq(2.41) has the opposite signal of that initially shown in [424], because the
term ∆γ = γls + γlc − γsc is defined in [424]. Here we use the definition of ∆γ = γsc − (γlc + γls) in [290].
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In chapter 2, the thermodynamics and mechanisms of ice formation in porous materials were discussed

comprehensively, which did not concern specifically with the macro properties and/or problems of porous

materials. Yet how and in what extent freeze-thaw influences the mechanical behaviors and durability of

porous materials were not addressed. For cement-based porous materials, these are especially important. In

this chapter, we will introduce the deterioration of cement-based materials subjected to freeze-thaw loading

phenomenologically and the corresponding models/hypotheses developed in the last decades. These deteri-

oration phenomena and models/hypotheses can help us to understand the hidden mechanisms qualitatively

and (in some extent) quantitatively.
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3.1 Phenomenology of freeze-thaw deterioration

3.1.1 Internal damage

It is well known that the inner cracking and surface scaling are the two main deterioration patterns

for cement-based materials subjected to freeze-thaw loading [294]. Both in laboratory tests and on-situ

practice, the inner cracking and/or surface scaling have been observed frequently [235, 236, 294, 305, 348,

379, 406, 407, 415]. The internal deterioration of cement-based materials subjected to freeze-thaw loadings

is a progressive damage due to the nucleation, growth and percolation of cracks in the materials [296].

This damage thus exhibits as strength or (dynamic) elastic modulus loss of solid materials progressively

[127, 287, 296, 420], see for instance Figure 3.1. The (dynamic) elastic modulus loss is often measured

by ultrasonic methods [7, 434, 435]. Due to the very importance of (dynamic) elastic modulus of cement-

based materials, it has been adopted as an important frost resistance factor, cf. ASTM C 666 [21] and

RILEM recommended freeze-thaw test method, CDF [360]. The practice in cold regions indicated that the

internal cracking highly depends on the intrinsic properties of cement-based materials, such as compressive

strength, pore structure and permeability. Materials with lower porosity (denser material), thinner pore

size distributions have better frost resistance [294, 296]. Phenomenologically, significant dilation can be

observed after ice nucleation for the initially saturated cement-based materials, especially when significant

bulk supercooling occurs [35, 36, 107, 188]. In addition, after one whole freeze-thaw cycle, the displacements

usually can not go back to the original points, which indicates that the permanent residual deformation is

created, and this kind of permanent deformation is, obviously, an evidence of internal cracking [187]. In

some extent, the porosity and pore size distribution modifications were observed for internal freeze-thaw

deteriorations usually [239, 261, 420]. Comprehensive researches indicated that the total porosity increases

with the increment of freeze-thaw cycles, and more pores distribute in larger size, which is probably due

to the formation of percolated internal cracks [239, 261]. Understandably, the permeability must increase,

since the percolated cracks provide additional paths for gas or water transport [287, 420]. Moreover, in-

crease of water content or water saturation degree with freeze-thaw cycles can be observed frequently,

when samples are measured in open condition where it permits free water movement [261]. It has been

reported that the content of water uptake does not depend significantly on the salt concentration [59]. On

contrary, Fagerlund [120] proposed that the water uptake is more severe when material surface is covered

with more concentrated solution. The increased water content aggravates the internal frost deteriorations.

Furthermore, for sealed tests, a critical saturation degree can be observed for all sorts of porous materials

and it ranges between 0.7-0.9 for cement-based porous materials [117–120]. After numbers of freeze-thaw

cycles, some visible macro cracks can be observed directly [417, 420]. Eventually, the strength or (dynamic)
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(a) (b)

Figure 3.1: Compressive strength (a) and dynamic elastic modulus (b) loss of typical ordinary Portland
cement (OPC) concrete (w/c=0.457). After Wardeh et al. [420].

elastic modulus of materials loses significantly, and the cohesion of the cement pastes becomes very weak,

which means the cement-based materials have been damaged completely. When cement-based materials

are entrained with air voids appropriately, the frost resistance can be improved significantly. In addition,

contrary to the significant dilation after ice nucleation for normal cement-based materials, it contracts

after ice nucleation for air-entrained materials [310], see section 5.1 for detailed discussions. To sum up,

the phenomenological characteristics of internal frost deterioration of cement-based materials are:

❶ The internal cracking highly depends on the pore structure of materials, materials with lower
porosity (denser material), thinner pore size distributions have better frost resistance [294, 296];
❷ The water content or saturation degree increases progressively with the freeze-thaw cycles in
open condition [59, 120];
❸ The higher the saturation degree, the higher the risk of frost deterioration, and it exists a
critical saturation degree in range of 0.7-0.9 [119, 120];
❹ Significant dilation after ice nucleation and residual dilation after a whole freeze-thaw cycle
can be observed, these dilations depend highly on the saturation degree [35, 36, 107, 188];
❺ The mechanical properties, such as elastic modulus, compressive strength, split and tension
strength decrease significantly once internal cracking happens [127, 420];
❻ The total porosity increases progressively with the freeze-thaw cycles, and the pore size dis-
tribution is altered by micro cracks [239, 261];
❼ The permeability of materials increases progressively with the freeze-thaw cycles [420];
❽ There are visible cracks after numbers of freeze-thaw cycles [417, 420].
❾ Properly entrained air voids can significantly improve the frost resistance [296, 305, 310];
❿ Continual shrinkage occurs when freezing is suddenly stopped for air-entrained materials,
whereas continually expansion occurs for non-air-entrained materials [310, 380].

3.2 Surface scaling

As to salt scaling, significant different phenomenological characteristics have been observed. The most

crucial one must be that the salt scaling is a progressive superficial damage of cementitious surface [296, 406].

It is known that the salt scaling consists of the removal of small chips or flakes of binder and even of some
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small aggregates after numbers of freeze-thaw cycles [295, 406]. Therefore, the amount of mass removal per

unit surface area is an important frost resistance factor for cement-based materials with deicing salts, see

for instance RILEM recommended freeze-thaw test method, CDF [360] and CIF [358, 361]. In addition, a

significant anomalous phenomenon is the occurrence of a maximum amount of damage with a "pessimum"

of solution concentration around 3 wt% [225, 235, 236, 296, 406, 407, 415], see Figure 3.2 for instance.

Thus the proposed experimental procedures or codes, cf. CDF/CIF [360, 361] and ASTM C672 [22] (see

Appendix A.5 for detial), recommended that one surface of samples shall be exposed to 3 wt% NaCl solu-

tion with depth of several millimeters. In addition, this kind of surface damage and the pessimum value of

solution concentration are reported to be independent of the sorts of solutes [87, 101, 175, 176, 405, 415].

Interestingly, no significant strength or (dynamic) elastic modulus loss occurs when only surface scaling

occurs [236, 296]. Some studies indicated that the layer of salt solution is a necessary but not a sufficient

condition for surface scaling [354, 415], which is to say the scaling will not occur in the absence of the

layer of salt solution. Furthermore, it has been reported that when the thickness of the salt solution is

larger, the scaling is more severe [71, 72]. However, Fabbri et al. [115] reported that scaling can occur

even without the superficial salt solution. Another relevant issue that is full of argument, is if the pure

water can cause scaling. As reported by Klieger [197] and Klieger and Perenchio [198], water can cause

scaling as well. However, Valenza and Scherer [406] stated that this kind of observations are misleading,

because the number of freeze-thaw cycles required by pure water tests for scaling is almost twice that

required by salt solution, and the authors attributed the scaling caused by pure water to the weak surface

or low quality of samples. When samples are not sealed and in contact with superficial salt solution, the

water uptake and/or solution uptake occurs as the number of freeze-thaw cycle increases [119, 387]. This

phenomenon has been partially addressed by the micro-ice-lens theory by Setzer [356, 357], and will be

shortly recapitulated in the following sections. The minimum temperature and the duration of samples at

subzero temperature have been reported to have significant influences on the surface scaling. The lower the

minimum temperature and/or the longer the duration of subzero temperature, the more severe the surface

scaling [153, 354, 406]. Because there are numerous characteristics of surface scaling that are different

from those of internal deterioration, it is stated that the susceptibility to salt scaling is not correlated with

susceptibility to internal frost action [405–407]. However, the practice of cement-based material against

frost actions indicated that improving the strength and appropriate air voids entrainment can improve the

frost resistance against surface scaling significantly. These are exactly the same ways to fight against the

internal cracking as introduced in previous paragraphs. Briefly, the characteristics of surface scaling of

cement-based materials can be presented as (see also the comprehensive reviews by Valenza and Scherer

[406, 407]):
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Figure 3.2: Effect of deicing salt concentration and sorts of deicing salt on the surface scaling. After
Verbeck and Klinger (1957) [415].

❶ The progressive removal of small flakes of binder on surface of cement-based materials appears
along with freeze-thaw cycles [176, 177, 294];
❷ The most severe scaling occurs at a solute concentration of ≈3%, independent of the type of
solute used [221, 225, 415];
❸ There is no significant strength or (dynamic) elastic modulus loss if only surface scaling occurs
[236, 296];
❹ SSuperficial salt solution is a necessary but not a sufficient condition for surface scaling
[354, 415];
❺ Saturation degree increases with freeze-thaw cycles, which is the same as that observed for
internal freezing [119, 387];
❻ The lower the minimum temperature and/or the longer the duration of subzero temperature,
the more severe the surface scaling [153, 354, 406]
❼ Both strength increment and air void entrainment can improve the frost resistance against
salt scaling [296, 380, 406].

Air voids are known for their protection of cement-based materials against both the internal cracking

and surface scaling when they are entrained in cement-based materials properly [101]. The spacing factor

that is deduced from Powers hydraulic pressure theory [305] has been widely used in engineering practice.

However, only recently, the mechanisms of contraction for air void entrained cement-based materials after

ice nucleation, have been addressed [77, 82, 381]. The mechanisms of air voids protecting against the surface

scaling have been comprehensively studied by Sun and Scherer [379, 380]. Some details will be discussed

in section 3.4.

3.2.1 Relevant issues

Although most observations are consistent with the phenomena summarized above, there are still many

conflicting experimental observations. For example, Litvan showed that the maximum dilation occurred

for cement-based materials saturated with 3% NaCl solution [224], which is consistent with the pessimum

concentration observed for surface scaling. However, some results indicated that the dilation decreases with

increase of salt concentration [59] or that there is no statistical tendency of the maximum deformation for
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(a) (b)

Figure 3.3: The dimensional change (a) and differential thermogravimetry (DTG) (b) of porous glass
saturated with NaCl solution at different concentrations. After Litvan, (1973) [222].

freeze-thaw tests with 3 wt% NaCl superficial solution [354]. Even the results measured by Litvan himself

did not support the "pessimum" of 3 wt% NaCl, see Figure 3.3. Litvan measured the dimensional change and

the differential thermogravimetry of porous glass saturated with NaCl solution at different concentrations.

As shown in Figure 3.3(a), the dilation after ice nucleation decreases as the salt concentration increases,

and the maximum residual deformation (∆l/l ≈ 700×10−5) was observed for samples with saturated saline

solution (about 36% at 25℃). The ice content, as shown in Figure 3.3(b), decreases as salt concentration

increases.

In addition, contrary to the conclusion obtained in Ref. [406] that the scaling is independent of the

type of salts used, different types of salts lead to different damage extents. For instance, Wang et al. [418]

found that calcium chloride (CaCl2) solutions cause the most damage, but potassium acetate (CH3CO2K)

solutions cause minor scaling. McDonald and Perenchio [243] obtained the opposite results, they found

that salts containing potassium can cause more scaling damage. Recent investigations by Shi et al. [368]

indicated that the calcium magnesium acetate (CMA) (CaMg(CH3COO)2) deicing solids and the mag-

nesium chloride (MgCl) deicing solutions are harmless to the concrete durability, the K-formate and the

Na-acetate/Na-formate blend deicing agent has moderate scaling damage to concrete, and the NaCl-based
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deicing salt (including NaCl) and the K-acetate-based deicing salt lead to the most serious damage to the

concrete. A report by Darwin et al. [87] indicated that at low concentrations, magnesium chloride (MgCl2)

and CMA cause measurable damage to concrete, while at high concentrations, CaCl2, MgCl2, and CMA

cause significant changes in concrete: loss of material and reduction in stiffness and strength. Those obser-

vation are consistent with the results in [243]. In addition, it has been reported that some deicing salts, such

as MgCl2 and CMA, can react with hardened cement paste, which may lead to additional deteriorations

[367, 368]. However, the chemical reaction between the deicing salts and hardened cement pastes is beyond

our scope, thus this will not be discussed in this study.

3.3 Models and/or mechanisms for freeze-thaw deterioration

The mechanisms behind deteriorations arising upon freeze-thaw cycles can be based on scientific and/or

engineering knowledge. However, it has been not possible to have a mechanism accounting for all the

deterioration phenomena presented in section 3.1. Indeed numerous models were developed by many

researchers. Of course, it is required to know these mechanisms/models briefly to extend the research

work. Therefore, in this section, the deterioration mechanisms of cement-based porous materials arising

upon freeze-thaw are reviewed briefly.

3.3.1 Hydraulic model

The hydraulic pressure theory developed by Powers is based on the viscous water flow expelled from

the partial frozen pore volume if the porous space can not accommodate the almost 9% volume increase

associated with ice crystallization [305], see Figure 3.4. This pressure, as shown in eq(3.1), is a function of

the saturation degree Sl, ice formation rate dwf/dT and the pore structures. It is shown [305]:

Pmax =
1
3

(

1.09 − 1
Sl

)

ηl

κ

dwf

dT
dT
dt
ϕl; with ϕl =

(L̄+ r0)3

r0
+

(r0)2

2
− (L̄+ r0)2

l
− l2

2
. (3.1)

where ηl is the viscosity of liquid pore water (in Pa · s), κ the water permeability of hardened cement pastes

(in m2), dT/dt the freezing rate (in K/s), r0 average radius of air voids, l the distance to air void, L̄ the

spacing factor. ϕl is the pressure distribution function, where ϕr has maximum as l = L̄+ r0, and ϕl has

minimum as l = r0.

As suggested by Powers and co-workers [305, 308, 310], the average half distance between adjacent

voids should be limited to avoid the deterioration by the hydraulic pressure that arises upon freezing. The

suggested values based on the hydraulic pressure for concrete are within the interval of 250−300µm, which



46 Deterioration of cement-based materials by freeze-thaw loading

has been verified by many researchers later [82, 101, 294, 298].

(a) (b)

Figure 3.4: (a), Illustration of ice formation in capillary pores in vicinity of air bubble; (b), Schematic
presentation of hydraulic pressure model by Powers.

It has been observed that the volume change is reversed as the air void spacing is reduced, dilation

of a non-air-entrained sample does not relax away, and it contracts continually for air-entrained sample

when temperature is held constant [310]. The hydraulic pressure theory can not account for either of

these observations. Powers suggested that this contraction after ice nucleation can be due to ice melting

in the capillary pores and the diffusion of gel water to ice nucleated in the big capillary pores [310].

However, the thermodynamic equilibrium of ice-water in capillary pores does not confirm the hypothesis

proposed by Powers, and the so-called thermodynamic framework will be discussed in detail in section

3.3.3. Furthermore, when material is saturated with benzene instead of water, the dilation can be detected

although the molar volume of benzene contracts 1 when liquid benzene solidifies [36, 169]. The dilation

should also increase with increasing freezing rates since the hydraulic pressure is proportional to the freezing

rate according to hydraulic theory, but the opposite results were observed in [441].

3.3.2 Osmotic model

As previous mentioned, the shrinkage upon freezing after first dilation was observed for air entrained

cement-based materials [310, 380]. Powers and Helmuth proposed a hypothesis that water moved towards

the capillary pores where ice has formed, which was then developed as the osmotic hypothesis to explain the

deterioration of cement-based materials upon freezing with/without deicing salts [310]. The liquid phase

in pores of cement-based materials contains alkali with rather high concentrations, i.e., the pH in range

of ≥ 12.5 [247, 253] and the total ionic strength can be as high as 0.5-1 mol/l [227, 232, 329]. Once ice

forms and grows in big capillary pores, the pore solution is concentrated. Therefore, the pore solution in

thinner pores where no ice forms due to surface tension, evolves at lower concentration than the unfrozen

pore solution in capillary pores. The induced chemical potential difference causes a osmotic pressure built

1. The density of liquid benzene at 298K: 0.8765 g/cm3 [214], the density of crystallized benzene at 258K: 1.031g/cm3

[218].
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up from water migrating from lower concentration areas (thinner capillary pores and/or gel pores) to the

higher concentration areas (larger capillary pores). The water migration/diffusion was put forward to

explain the continual shrinkage after first expansion for samples with air-entrainment [310].

Furthermore, the osmotic model coupled with

Figure 3.5: The schematic illustration of the pessi-
mum effect of ’3 wt%’ salt solution by osmotic model.

hydraulic model has been applied to account for

the pessimum salt concentration on surface scaling

[118]. The hydraulic pressure arises upon freez-

ing as soon as ice forms, and it highly depends

on the amount of ice formed and ice formation

rates. According to thermodynamic laws, for a

given cement-based material and a given subzero

temperature, the ice volume decreases with increas-

ing salt concentration. The osmotic pressure, on

the contrary, increases with increasing salt concen-

tration. Therefore it is expected that introducing the sum of hydraulic pressure and osmotic pressure should

account for the pessimum salt concentration as illustrated in Figure 3.5. However, Valenza and Scherer

indicated that the osmotic pressure could not be built up because the pressure relaxation is rather fast

[405]. In addition, the osmotic model only provided a conceptual description rather than a quantitative

assessment of the freeze-thaw deterioration.

3.3.3 Thermodynamic models

3.3.3.1 Everett’s model

Figure 3.6: The thermodynamic model for ice growing in
small pores. After Everett, (1961) [113].

Based on the thermodynamic equilibrium

between water and ice crystals formed in

porous materials, Everett [113] pointed out

that the pressure difference between water and

ice accounts for the deterioration of porous

materials. Two different ice growth models

have been pointed out by Everett [113], as

shown in Figure 3.6. When the applied pres-

sure on ice surface Pc remains constant and is

not large enough to prevent the movement of the top piston, water in reservoir A would transport to the

reservoir B and the top piston will move upward. However, if the applied pressure on ice Pc is large enough



48 Deterioration of cement-based materials by freeze-thaw loading

to prevent the movement of piston, it is more likely that ice penetrates along the small capillary. Again,

the Gibbs-Thomson equation is recalled to describe ice-water equilibrium with small hemispherical cap.

Once the surface tension induced pressure difference exceeds the strength of porous materials, frost damage

occurs.

3.3.3.2 Micro-ice-lens theory

The micro-ice-lens model is based on the stability criteria for triple-phase condition of water liquid,

water vapor and ice in pores at temperature below bulk water freezing point [355–357]. Briefly, micro-ice-

lens act as water pump to achieve an artificial supersaturation condition due to the shift of triple-phase

conditions with temperature as well as a non-infinitely rigid solid matrix. The micro-ice-lens theory focuses

on the heat and mass transfer of water, moisture and ice, but not on the possible induced pressure which

causes deterioration of porous materials.

Figure 3.7: Schematically illustration of Micro-ice-lens
model. Part I shows the cooling (Top) and Part II
shows the heating (Bottom) phase of freeze-thaw cycle.
Adopted from Setzer, (2001) [356].

The micro-ice-lens theory can be graphically

recapitulated in Figure 3.7. During freezing,

as required by thermodynamic equilibrium, high

negative liquid pressure is created, so that the

solid skeleton contracts more in addition to the

thermal contraction. The water in reducing vol-

ume by solid skeleton shrinkage, therefore must

flow to the adjacent ice. Analogous to dry-

shrinkage, water in gel pores goes into big capil-

lary pores in vicinity progressively, see top half of

Figure 3.7. During heating, water transfers from

big capillary pores filled by ice to gel pores in

inverse process of freezing. Two transportation

routines: evaporation-condensation and melting

directly at the interface between ice and water,

may take place during thawing. If extra water

source exists, it will be sucked into the gel effi-

ciently by viscous flow, see bottom half of Figure

3.7. This may be, in some extent, the reason for

water uptake during freeze-thaw cycles. The saturation increment during freeze-thaw cycles must be an

important factor for the frozen deterioration of porous materials, since it has been found that a critical
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saturation degree that is not unique for porous materials, exists [117, 118]. The related content will be

presented in section 3.3.4.

3.3.3.3 Crystallization pressure

Figure 3.8: The schematic illustration for crys-
tallization pressure generated on ice.

When ice crystallizes in capillary pore and/or grows

from external surface, see Figure 3.8, the hemispherical

ice front as well as the sides of cylindrical ice should

observe mechanical equilibrium. However, the curvature

difference between the cylindrical side and hemispherical

front of ice requires an additional pressure exerted by

pore wall, otherwise, the pressure inside the ice crystals

would not be uniform, and ice would melt from the region

of higher pressure and crystallize elsewhere to make sure the equilibrium of the whole ice crystals. The

pressure between the crystal and the pore wall is so large that the pressure necessary to force them into

contact is greater than the tensile strength of cement paste [342]. In order to equilibrate the forces, the

crystal attempts to grow towards the wall, pushing the wall away. This is exactly the same as the mechanism

of frost heave. More comprehensive and extensive discussion on the crystallization pressure can be found

in [342, 407].

3.3.4 Critical saturation degree and fatigue

The critical saturation degree Scr exists for all porous materials subjected to freeze-thaw loading.

Based on series of experimental observations, Fagerlund [117, 118] suggested that low-cycle fatigue as well

as gradual water adsorption (water uptake) should account for the frost damage. Two sorts of freeze-

thaw experiments were performed by Fagerlund [120]: the open freeze-thaw test and the closed (sealed)

freeze-thaw test. The former experimental condition allows mass and heat transport freely. This is quite

practical, because most of concrete structures in civil engineering are exposed freely. It has been observed

that, for cement-based materials, the water content increases step by step for each freeze-thaw cycle [117,

118, 120, 387]. Yet the mechanisms for water uptake during freeze-thaw cycles have not been clarified.

Kaufmann [188] suggested that the thermal contraction of ice can contribute to both the water uptake

and the frost damage. As presented in Figure 3.9, ice contacts much more than cement-based solid when

temperature decreases (see Figure 3.9(1)); therefore, it provides the residual volume to accommodate more

water migrated from thinner capillary pores in vicinity or water source outside (see Figure.3.9(2)); when

temperature rises again, it would create damage due to ice expansion since there is no room to accommodate
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Figure 3.9: Thermal contrac-
tion of ice when temperature
decreases (1) and resaturation
with pore solution which then
freezes (2). Ice expands as tem-
peratures rises, which induces
tension in the cement matrix
(3). After Kaufmann (2004)
[188].

Figure 3.10: Effect of the
water saturation degree
and the number of freeze-
thaw cycles on the relative
elastic modulus (En/E0)
of a cement mortar mea-
sured by closed (sealed)
freeze-thaw test. After
Fagerlund (2002) [120].

the additional volume because ice engulfed the pores completely. This could be also a reason for freeze-thaw

hysteresis [188]. Another mechanism for water uptake is the so-called ’Micro-ice-lens’ model [356], which

was introduced in previous section.

Table 3.1: The critical saturation degree for different porous materials.
Material Scr references

Mortar 0.77 Figure 3 in Fagerlund (2002) [120]
Concrete 0.845 Figure 4 in Fagerlund (2002) [120]
Concrete Type I 0.90 Figure 5 in Fagerlund (2002) [120]
Concrete Type II 0.80 Figure 5 in Fagerlund (2002) [120]
Sand lime brick 0.80 Figure 6 in Fagerlund (2002) [120]
Concrete ≈0.830 Figure 7 in Fagerlund (2002) [120]
Concrete with steel fibers 0.86 Figure 1 in Fagerlund (1975b) [117]
Concrete without fibers 0.86 Figure 1 in Fagerlund (1975b) [117]
Cellular concerete, Type I 0.62 Table 1 in Fagerlund (1975b) [117]
Cellular concerete, Type III 0.48 Table 1 in Fagerlund (1975b) [117]
Underburnt clay brick 0.85 Figure 12 in Fagerlund (1975b) [117]
Wellburnt clay brick 0.76 Figure 12 in Fagerlund (1975b) [117]
10 rocks in France 0.60-0.93 Table 1 in Prick (1997) [311]

Under condition of closed freeze-thaw, the material is sealed to avoid water uptake and/or loss. A

critical saturation degree Scr is found independent of freeze-thaw cycles, when the relative elastic modulus

versus saturation degree are plotted at different freeze-thaw cycles, see Figure 3.10. Table 3.1 shows the

critical saturation degree for different porous materials from numerous experimental measurements. It can

be found that there is no unique value for all the porous materials. Besides, the critical saturation degree

is lower than the values estimated by Powers hydraulic pressure theory: around 0.91. A possibility of

application of critical saturation degree for surface scaling by deicing salts was also discussed by Fagerlund

[117]. The saturation degree would increase if deicing salts exist at surface of material due to osmotic
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theory on one hand, on the other hand, the amount of freezable water would be decreased due to the high

salt concentrations contained in pore solution. Therefore, a pessimum salt concentration that creates most

severe damage to cement-based materials is expected.

3.3.5 Glue spalling model

The glue spalling model was inspired by an industrial technique to decorate glass surface [148]. The

mechanism of glue spalling is schematically illustrated in Figure 3.11. The rough glass surface is coated

with a layer of epoxy at first, then the temperature drops. Because of the mismatch of thermal dilation

between glass and epoxy, high tensile stresses are created in the glass surface at the boundary of the islands

as the epoxy shrinks relative to the substrate. These stresses make cracks propagate in the glass surface,

culminating in the removal of the island and a thin piece of glass [405].

Figure 3.11: (a-c) Schematic representation of the glue-spalling mechanism: (a) sandblasted glass surface
with rough surface, (b) covered with epoxy surface layer at initial temperature, T0, and (c) scaling of glass
when T ≪ T0. (d,e) Schematic representation of an epoxy/glass/epoxy sandwich seal and the stress that
arises in the composite: (d) sandwich seal, dimensions and orientation; (e) schematic of stress that arises
in the glass surface under the epoxy, σg, in the epoxy, σe, and the glue-spalling stress around the boundary
of the epoxy, σgs. After Valenza and Scherer (2006) [405]. These figures were initially presented by Gulati
et al. 1982 [148].

The glue spalling stress in the glass surface can be approximated, by elastic analysis, as a function of

the difference between the stress from the thermal expansion mismatch and the tensile stress in the epoxy.

This stress as well as the stress in the epoxy and glass are given by [405]:

σgs =
Eg

1 − vg

[

∆α− σe
1 − ve

Ee

]

; σe =
0.5tg [Eg/(1 − vg)] ∆α∆T

0.5(Eg/Ee)[(1 − vg)/(1 − ve)] + te
; σg = −2σe

tg
te

(3.2)

where σ is stress as introduced in Figure 3.11, E is the elastic modulus, v is the poisson ratio, t is the

thickness, ∆α is the thermal expansion mismatch ∆α = αe − αg and the subscript e, g and gs denote the
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Figure 3.12: Illustration of
the three situations that may
occur when the ice layer
cracks from the mismatch
stress. The crack may (a)
arrest in the ice, (b) bifur-
cate along the ice/cement in-
terface, or (c) penetrate the
cement surface. After Valenza
and Scherer (2006) [405].

(a) (b)

Figure 3.13: (a), Numerical modeling of the pessimum salt concentration effect on the frost scaling damage;
(b) Effect of ice-layer thickness (1, 3, 5 and 10 mm) on the frost surface scaling damage magnitude. After
Copuroglu and Schlangen (2008) [72].

epoxy, glass and glue-spalling stress around the boundary of the epoxy.

Valenza and Scherer introduced this model to explain the surface scaling of cement-based materials with

deicing salts upon freezing [404–408]. The mismatch of thermal expansion coefficients of ice and cement-

based substrate mainly contributes to the surface scaling (the thermal (volumetric) expansion coefficient

of ice is about 159 × 10−6K−1 [263], while that of the cement paste is about 30 × 10−6K−1 [310]). The

layer of pool solution acts as the epoxy as illustrated in Figure 3.11. As analyzed by the authors [405],

for a cement-based material covered with a layer of ice, the glue spalling stress is estimated as ≈ 2.6MPa

when the temperature change is ∆T = 20℃, which is capable of damaging the surface of cement-based

materials. To explain the pessimum concentration for material deterioration, the authors [405] stated that

the brine pockets that impact the mechanical properties of brine ice were the main reason for pessimum

concentration. Ice crystallizing from pure water is too strong to crack, while the brine ice crystallizing from

high concentrated solution is too weak to damage the surface of materials [405]. As presented by Valenza

and Scherer [405], three different situations for ice cracking may occur, see Figure 3.12: it arrests at

the interface (Figure 3.12(a)), bifurcates along the interface (Figure 3.12(b)), or penetrates the substrate

(Figure 3.12(c)). The third situation is likely to occur due to the weak surface layer of cement-based

materials and the weak interface transition zone (ITZ).

The numerical simulation results by Copuroglu and Schlangen [72] were consistent with those by Valenza



3.3 Models and/or mechanisms for freeze-thaw deterioration 53

and Scherer [404–407], see Figure 3.13(a). Furthermore, the experimental results obtained by the authors

[72] indicated that the larger the thickness of superficial pool solution, the more severe the surface scaling.

The results by numerical modeling confirmed their conclusions [72], see Figure 3.13(b). Recent study

by Sun and Scherer [380] indicated that the mismatch stress on substrate decreases when air voids are

entrained into cement-based materials due to the cryo-suction of ice, which forms first in capillary pores in

vicinity of air voids or at the interface between air voids and solid skeleton. Therefore, the frost resistance

of cement-based materials against surface scaling can be improved by air entrainment.

3.3.6 Poromechanical model

The Poromechanics has been widely applied in fields of rock engineering, soil engineering, petrol engi-

neering and bio-engineering [76, 92, 105]. For a porous material, the constitutive equation for mechanical

equilibrium is [76, 79]:

σ = C : ǫ − bP ∗ − C : αth∆T (3.3)

where σ is the macro stress tensor, b is the tensor of Biot’s coefficient, P ∗ is the effective pressure, C is

the fourth order tensor of material stiffness, αth is the thermal (volumetric) expansion coefficient of solid

skeleton.

According to Coussy [77], the sources for stresses arising upon freezing could be: ① , the pressure

induced by the volume or density change of ice formation; ② , the pressure induced by interfacial energy; ③ ,

the pressure created by ice crystallization (crystallization pressure); ④ , the discrepancy between thermal

expansion coefficients of solid matrix, pore liquid and ice crystals; ⑤ , the pressure induced by the fusion

heat, which is the reason of immediate expansion of crystallization of Benzene in cement pastes and porous

glass observed in [36, 169].

Table 3.2 presents the equations for effective or mean pore pressure of poromechanical models applied for

describing the freezing behaviors of cement-based materials. For a stress-free loaded cement-based material,

the strain arises upon freezing due to the density change, the entropy change during freezing/melting,

thermal dilation mismatch between solid matrix and pore phases, and the surface energy change as ice

penetrating into thin pores [77]. It thus requires,

ǫ = ǫ∆ρ + ǫSf
+ ǫT + ǫU (3.4)

In case that a cement-based material is initially saturated with water, the deformation comes mostly from

hydraulic pressure associated with phase change. However, if cement-based material is entrained with air
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Table 3.2: The effective/mean pore pressure of poromechanical models used in literature.
The effective/mean pore pressure Authors References

P ∗ = 1
φ

(

∫ 0

req
Pl

dϕ
dr +

∫ req

∞
σr

dϕ
dr

)

a Zuber and Marchand (2000,2004) [449–451]

Wardeh and Perrin (2008a,2008b) [421, 422]

P ∗ = 1
φ (φcPA + φlPl)b Sun and Scherer (2010) [380]

P ∗ = SlPl + ScPc − 2
3 Uc Coussy (2005), Coussy and Monterio (2008) [77, 82]

P ∗ = χ(t)P∞ + (φ̇t − χ(t))ρcSf (T − Tm)d Coussy and Teddy Fen-Chong (2005) [80]

0 < t ≤ 1/φ̇ = θ
P ∗ = ρ0

c∆µ∗ + (Pθ − ρ0
c∆µ∗) exp(−µ/τ)

µ = t − θ ≥ 0
P ∗ = ρ0

c∆µ∗ + [−Sf Ṫ t + (Sf Ṫ t + Pθ − ρ0
c∆µ∗) exp(−µ/τ)]

µ = t − θ ≥ 0

a Pl is the liquid pore pressure, σr is the stress on pore wall, req is the radius of ice at equilibrium with water, dϕ
dr is the

pore size distribution, φ is porosity of material.
b φj=l,c is volume fraction of ice and water respectively, PA is the stress on pore wall. Pl = ∆Sf ∆T , < PAφc >=

φc

∫ Tmr

T
Sf dT −

∫ Tm

T

(

λ(T ′)
∫ Tmr

T ′
Sf dT ”

)

φc(T )dT , Tmr is the melting temperature of water confined in pores with

radius r.
c S is the volume fraction of ice (with subscript c) and water (with subscript l), U is the surface energy.

d ρ0
c∆µ∗ = Pc − Pl = −∆Sf ∆T , ρ0

c is the ice mass density at atmospheric pressure, P∞ = 4GsKc
4Gs+3Kc

(

ρ0
l

ρ0
c

− 1

)

representing

the pore pressure arising upon an instantaneous freezing of the whole pore liquid, χ(t) = φ̇τ

1−αφ̇τ

[

1 −
(

1+α−αφ̇
1+α

) 1
αφ̇τ

−1
]

.

Pθ = χθP∞ + (1 − χθρ0
c∆µ∗), χθ = φ̇τ

1−αφ̇τ

[

1 − (1 + α)
1−

1
αφ̇τ

]

the pressure at θ = 1
φ̇

, τ = η
(

3
4Gs

+ 1
Kc

)

.

voids properly, the second term in eq(3.4) would contribute mostly on the stain arising upon freezing [82].

The effects of air-entrainment on the frost resistance of cement-based materials will be discussed in section

3.4 in detail. Interestingly, the pore pressure can be deduced when the strains upon freezing are obtained,

cf. Wardeh and Perrin [421] and Wardeh et al. [420].

3.3.7 Summary

As introduced in previous sections, the models/theories are based on either the principles of thermo-

dynamic laws or the concept of Darcean flow or them both. Figure 3.14 illustrates the models with time

arrow. Any model/theory can not catch all the deterioration phenomena exhibited on the field practice

and/or laboratory experiments. In Table 3.3, the scope and advantages/disadvantages are summarized. As

shown in Table 3.3, even the most widely used model, the hydraulic pressure model can not explain the

continual expansion of non-air-entrained samples and the continual shrinkage of air-entrained samples when

temperature is held constant after ice nucleation [310]. The later developed osmotic hypothesis by Powers

and Helmuth may provide a reasonable concept for both internal cracking and surface scaling. However,

there is no mathematical expression to quantify the osmotic pressure [235, 236]. In addition, the time

required to build up the osmotic pressure is significantly longer than that required to relax [405]. Based

on the experimental observations, the critical humidity and fatigue model are very practical for concrete

engineering [120]. Furthermore, the phenomenon of water uptake during freeze-thaw cycles has been ver-
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Figure 3.14: A schematic
illustration of the mod-
els of frost deteriorations
of cement-based materials
with time arrow.

ified by experiments extensively [120, 387]. The micro-ice-lens model developed by Setzer [356] based on

the triple phase thermodynamic equilibrium provided a mechanism for water uptake during freeze-thaw,

but in the absence of mechanical consideration. Based on the point view of thermodynamics, the micro-

ice-lens model and crystallization model are quite similar, the former focuses on the stability criteria for

triple-phase condition of water liquid, water vapor and ice in pores materials [356], while the later focuses

on the stress exerted on pore wall during freezing [342]. The crystallization pressure and the hydraulic

pressure may contribute most to the stress on solid skeleton during freezing. Therefore, by combining both

pressure sources, the strains can be predicted by means of poromechanical approach [450, 451], and it has

been further developed by Coussy and co-workers comprehensively and extensively [77, 82].

For surface scaling, numerous experiments have been carried out to identify the mechanisms of salt

scaling. However, it seems that none of them can explain most of the observations. Recently, a model

inspired by a industrial technique, the glass decoration, has been proposed by Valenza and Scherer [404, 405].

As shown in section 3.3.5, this model is stated to be capable catching all the characteristics of salt scaling.

However, some arguments about the phenomena of surface scaling may be of interest. For instance, the

authors suggest that the surface scaling with pool of pure water is misleading, while this scaling has been

verified by many experiments [115, 223, 354]. Furthermore, Sellevold and Farstad [354] reported that for

a given concentration of outer solution, scaling is more severe for water saturated samples than for those

which have been impregnated with the salt solution prior to test. In addition, it is well recognized that

chloride-related deicing chemicals often brought about leaching of calcium hydroxide, as well as chemical

alterations in concrete [37, 119, 266, 418], while magnesium chloride, in particular, results in the conversion

of calcium silicate hydrate to non-cement-based magnesium silicate hydrate [87, 382, 391]. Therefore, the

mechanisms for salt scaling may be not as simple as any single model provided before.

Of course, numerous studies on the relevant issues of freeze-thaw deterioration of cement-based materials

are not presented in this work, cf. the contribution from Litvan [221–224] and Penttala and coworkers [284–

286]. Litvan suggested that water migrates from thin pores to the air void or cracks due to the difference

between the vapor pressure over supercooled water and that over ice, which is very similar to the micro-ice-

lens theory developed by Setzer [356]. In addition, Litvan indicated that the pessimum can be attributed
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Table 3.3: Recapitulation of models/theories for cement-based material subjected to freeze-thaw loadings.
Model Internal Surface Advantages Disadvantages Representative

cracking scaling references

Hydraulic
pressure

√ Comprehensive model for the in-
ternal frost cracking and effect of
air voids.

Can not explain the continual ex-
pansion of non-air-entrained sam-
ples and the continual shrink-
age of air-entrained samples when
temperature is held constant af-
ter ice nucleation

[305]

Osmotic pressure
√ √

Concept to explain the continual
shrinkage after ice nucleation for
air entrained samples and the ef-
fect of deicing salts.

It has no quantitative expression,
and the time required to build
up the osmotic pressure is signif-
icantly longer than that to relax.

[310]

Crystallization
pressure

√ Help to understand the local
equilibrium in pores.

Not at the scale of macroscopic
condition.

[342]

Critical satu-
ration degree
and fatigue

√ √ A practical model with an impor-
tant factor, the critical saturation
degree.

No description of microscopic
mechanisms, and the results de-
pends much on the experimental
conditions.

[120]

Micro-ice-lens
√ Help to understand the micro-

scopic equilibrium in pores and
water uptake.

No mechanical theory [356]

Glue-spalling
√ Specially for surface scaling, help

to understand the mechanisms of
scaling

[404, 405]

Poromechanics
√ √

Comprehensive model for un-
derstanding the couplings be-
tween physical, thermodynamic
and mechanical phenomena and
for predicting macroscopic vol-
ume change.

Relatively complicated and it
needs numerical calculations.

[77, 82]

to the increase of the saturation degree and lowering of the temperature of ice formation [221], which is

similar to the opinion of Fagerlund [120]. Penttala and coworkers used the classical mechanical theory to

predict the volumetric behavior of cement-based materials during freeze-thaw cycles. The internal pressure

was deduced from the triple-phase equilibrium among pore water, ice and vapor. Rather rough consistent

results were obtained for Penttala’s model. The similar model was established by Zhou and Mihashi

[447] and Mihashi et al. [250]. Some other important but not vital factors, such as the thermal shock

[203, 231, 261, 283], and the variation of the microstructure and pore structure of porous solid along the

distance beneath the surface [294], are not considered in the present work.

3.4 Effect of air-entrainment

The air-entrainment technique was developed to improve the frost resistance of cement-based materials

in 1930s. When air entrainment agents were mixed with fresh concrete, it would form a series of air

bubbles with diameters in range of 10µm∼500µm because the air entrainment agents are hydrophobic

generally. The fresh concrete contains ≈ 1.5% air content, even when no air entrainment agents are

applied. However, these air voids would not improve the frost resistance of concrete because the air voids

are in relatively large size, i.e., d ≥ 100µm, and they do not have appropriate spatial distribution in cement

pastes. Numerous research indicated that it would improve the frost resistance of concrete both for internal



3.4 Effect of air-entrainment 57

cracking and surface scaling significantly, when 5%∼6% properly distributed air voids are entrained into

concrete [96, 305, 310, 380, 407, 408]. As shown in Figure 3.15(a), the number of freeze-thaw cycles required

to reduce the relative elastic modulus to 50% increases significantly as the air content increases. Under

the same freeze-thaw cycles, cement-based materials with more air voids can have larger relative elastic

modulus, see Figure 3.15(b). Note that the air void content is only a factor necessary but not sufficient for

improving frost resistance. Studies indicated that improperly air void entrainment, eg inadequate amounts

of entrained air, or a ‘coarse’ air void system, show a worse internal and surface scaling resistance against

freezing [101, 175, 176]. ACI Committee 201 and 318 suggest that a good air void system is made up of

a system of uniformly distributed, numerous, very fine, spherical and nearly spherical entrained voids that

are situated close to each other so that the specific surface and the void spacing factor of air voids fulfill

the respective industry requirements of at least 600 in2/in3 (23.4 mm2/mm3) and at most 0.008 in.(0.2

mm) [101]. Note that the void spacing factor, first introduced by Powers [305], is a factor representing the

maximum half distance between adjacent voids. The void spacing factor, compared to the air void content,

is a more efficient factor to judge the frost resistance of an air entrained cement-based material.

(a) (b)

Figure 3.15: Effect of entrained air voids on the resistance of concrete against freeze-thaw in laboratory
tests. (a) The required freeze-thaw cycles for 50% reduction on relative dynamic elastic modulus in terms of
air void content. The used concrete samples were made with cements of different fineness and composition
and with various cement contents and water-cement ratios. After [2]. (b) Variation of relative elastic
modulus with air void content under 300 and 1500 freeze-thaw cycles. The used concrete samples were
blended with fly ash in different dosages, 1.33 and 1.31 are constants depending on mix characteristics
durability level. After Cramer and Walls [83].

The mechanisms of frost resistance improvement by air entrainment were studied since this technique

has been used in concrete engineering. Powers, who may be one of the earliest researchers to study the air
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(a) (b)

Figure 3.16: (a), Schematic illustration of cryosuction effects of air bubbles. (b), The ice crystals observed
by environmental scanning electric microscopy (ESEM). After Corr et al. (2004) [73].

void effects quantitatively, proposed the famous hydraulic pressure theory as previous described, correlating

the pore pressure to the spacing factor [305], see section 3.3.1 for detail. It is the air void that provides

the space accommodating the water expelled from the capillary pores due to the 9% volume increase when

water transfers to ice during cooling. By means of the hydraulic pressure theory, the safety void spacing

factor is estimated to be 200∼250 µm, which has been verified by many researches and engineers later, cf.

[82, 114, 296, 297]. According to Pigeon et al. [297], the spacing factors required for protecting concrete

decrease with the freezing rates. Lower freezing rate provides larger safety spacing factors.

In addition, according to the investigation of the freezing process of air void entrained concrete by means

of environmental scanning electron microscopy (ESEM) by Corr et al. [73, 74], the interface between air

void and solid skeleton acts as ice nucleation agents, especially for the area connected with the capillary

pores. This mechanism is illustrated in Figure 3.16(a). As observed in Figure 3.16(b), the ice forming on

the surface of air void is found to be in hemisphere and the contact angle between ice and solid skeleton is

about 91° [74].

The mechanism of cryosuction can account for the continual shrinkage of air entrained cement-based

materials after a first peak of ice formation as observed by Powers and Helmuth [310]. Because air voids

are generally much larger than capillary pores where ice gem penetrates, the effect of size on the ice

crystals on the air void interface can be neglected. The ice pressure thus can be assumed to be equal to

atmospheric pressure or to be be zero [406]. Therefore, the liquid pressure is negative and proportional to

the depression temperature, viz. Pl = ∆Sf (T − Tm), Pc = 0.1MPa. At −20℃, the liquid pressure would

be −20 × 1.22275 = −24.455MPa, which is capable of creating large contraction in addition to the thermal

shrinkage. Detailed quantitative analysis can be found in Ref. [77, 82, 114] and in section 5.1.
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4.1 Basic notations and definitions of the present work

This part of the present work focuses on the thermoporomechanical description on behaviors of initial so-

lution saturated cement-based materials subjected to freeze-thaw loading. It starts from the well-established

thermoporoelasticity theory, cf. [76, 79]. The fracture behaviors of cement-based materials are thus beyond

this scope although the elastic and fracture deformations are symbiotic when cement-based materials suffer



60 Poromechanical framework

severe mechanical and/or environment loadings. A symmetrical geometry of sample is considered in this

study (see Figure 4.1). The surface of sample is covered with a layer of epoxy resin in thickness of about 1

mm and a layer of latex membrane, see section 9.1.1 for detailed procedures. It causes hydraulic isolation

corresponding to undrained condition as defined in classical poromechanics [77, 79, 135, 137–139]. On the

surface of samples, heat exchanges freely. During the freeze-thaw processes, no additional surface stresses

are exerted on samples.

The used material in this work, is hardened ce-

Figure 4.1: Schematic representation of the geometry
structure of samples in the present study.

ment paste, which is widely used as a main and the

most important compound of concrete in civil en-

gineering [247, 391], support and sealing materials

in petrol engineering [138], and materials for CO2

storage [57, 183]. As a typical porous material, the

specific characteristics of cement pastes will not be

addressed in this chapter (see chapters 6 and 7 for

the detailed physico-chemical properties of cement pastes used in this study) but the general characteristics

of porous materials are recalled for poromechanical description.

4.1.1 Basic phases definition

Figure 4.2: Presentation of relation of the porous
medium, matrix and skeleton.

In this subsection, we recall the basic definitions

of partially frozen porous materials. A porous

medium is defined as a continuous medium formed

from the superimposition of continuous skeleton

and continuous porous spaces. The latter has been

solution infiltrated initially and frozen partially

with temperature decreasing [76]. In this study,

one classifies the phases of porous medium as fol-

lows (see for instance [76, 77, 79, 98, 114], see also

the definition illustrated in Figure 4.2):

❀ The pore space is the space of connected pores and it could be filled by saline solution, ice
crystals and/or both of them. We mark φ for porosity in Lagrangian description, and φl and φc

for the relative pore volume (partial porosity) occupied by liquid and crystals respectively.
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❀ The solid matrix is the phase excluding the connected pore space described above. For
the cement-based materials, the solid matrix can be composed of the cement-based binders
(hardened cement pastes), aggregates (if exist), the isolated pores, water molecules and/or ions
strongly adsorbed on the solid surface, as well as the small gel pores in scale of Angstrom meter.
This phase is somehow scale dependent, which has been validated by some relevant multiscaling
techniques, cf. [67, 68, 403].
❀ The skeleton is a continuous medium composed of the matrix, empty pore space and the
interfaces of liquid/solids, liquid/crystals, and crystals/solids [76, 79].

4.1.2 Description of representative volume element

Figure 4.3: Multi-scale heterogeneous microstructure of cement-based
composite materials. After Constantinides and Ulm (2004) [67], see also
[66, 403].

Strictly speaking, cement-

based materials are heteroge-

neous at any scale (cf. Figure

4.3). For instance, concrete

and mortar are heterogeneous

materials at both macro- and

meso-scale; cement paste is

heterogeneous at meso- and

micro-scale [66, 67, 136, 403].

It is thus important to de-

fine representative volume el-

ement (RVE) appropriately.

For hardened cement pastes,

the unreacted clinkers as well

as the large crystals, such as

Portlandite, ettringite, can be as large as 10 µm [391], therefore the characteristic length of heterogeneity

is estimated in the same scale lh ≈ 10µm. To obtain homogeneous properties of cement pastes, it is thus

required that:

ldΩ ≫ lh (4.1)

where ldΩ is the characteristic length of RVE, and its value is chosen in the range:

ldΩ ∈ (100, 1000)µm (4.2)

The retained value is somewhat larger than the RVE scale, to say ldΩ ∈ (1, 100)µm, adopted by Fabbri

[114], but agrees well with the value of 100 µm retained for comprehensive simulation on the properties of

cement pastes by Garboczi, Bentz and coworkers [42, 43, 131].
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Figure 4.4: Schematic definition of: (a) La-
grangian saturation Sα capturing the in-
vading process (drainage process); (b) La-
grangian change ϕα in partial porosity φα

capturing the deformation process. After
Coussy and Monterio (2007) [81].

4.1.3 Hypotheses of small deformation and small displacement

We adopt the frame of small perturbation hypothesis (cf. [76, 79, 114]). Thus we assume the classi-

cal hypotheses of infinitesimal transformations and displacements.We also adopt the hypotheses of small

variation of porosity and temperature during freeze-thaw:
∣

∣

∣

∣

1 − φ

φ0

∣

∣

∣

∣

≪ 1; and

∣

∣

∣

∣

1 − T

T0

∣

∣

∣

∣

≪ 1 (4.3)

For cement-based materials, under linear elasticity consideration, these hypotheses are particularly true for

very limited pore volume deformation due to high bulk modulus and shear modulus of solid matrix. Again,

the additional pore volume deformation by any fracture crack in cement-based materials [79] is out of the

scope of this study.

At last, we assume the small variation of density of solid phase:

ρα − ρ0
α

ρ0
α

≪ 1 (4.4)

where ρ0
α is the initial phase density. This hypothesis allows us to replace the ρα by the ρ0

α whenever

required. But only solid phases obey this hypothesis. For liquid solution in this study, its density can be

influenced significantly by the concentration of salts, which will be specifically considered in Appendix D.

4.1.4 Partial porosities and degree of saturation

During the freeze-thaw processes, the pore space of cement-based materials is partially filled by saline

solution α = l and/or ice crystals α = c, thus the total porosity φ is sum of partial porosity φα:

φ = φl + φc (4.5)

The partial porosity φα results from the porosity change by an invading process (drainage process) and

that by deformation [81], it thus has:

φα = φ0Sα + ϕα;
∑

α

Sα = 1 (4.6)

where Sα is the saturation degree. The definition of partial porosity and saturation degree are schematically

illustrated in Figure 4.4. According to this definition, the term φ0Sα and ϕα represent the drainage/imbibition

process and skeleton deformation of phase α, respectively.
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4.1.5 Partial molar quantities and apparent molar quantities

For saline solution, the quantities of volume, heat capacity and compressibility (or bulk modulus) of a

mixture can not be obtained by the simple weighted average method. In addition, there is limited data on

the partial molar quantities of saline solution, particularly when it is subjected to the variation of pressure,

temperature and salt concentrations. For simplification, the apparent molar quantities are introduced. For

NaCl solution, the apparent molar volume is defined as the volume change of solution when one mole NaCl

is added to a large volume of the mixture, while the water molar volume is retained to be bulk molar

volume [17]. It thus requires:

Vtotal = nNaClVφ + nwVw (4.7)

where Vtotal is the total volume (m3), nNaCl and nw are the mole number of NaCl and water respectively

(mole), Vw is the bulk molar volume of water (m3 · mol−1), and Vφ is the apparent molar volume of

NaCl (m3 · mol−1). Note that the apparent molar volume is equal to the partial molar volume in case of

infinite dilution. Figure 4.5 shows the variation of apparent molar volume of Na+, Cl− and NaCl with

temperature, where the pressure is kept constant at 0.1 MPa. It can be seen that as the temperature

decreases, the apparent molar volume of NaCl decreases to be negative, which means more NaCl is added,

less total volume is obtained. The derivations of apparent molar volume, heat capacity and compressibility

in terms of pressure, temperature and salt concentration for NaCl solution by Archer’s model, cf. [15–17],

are presented in Appendix D.

Figure 4.5: Apparent molar volume of Na+, Cl− and
NaCl in terms of temperature. Data from Tanger and
Hegelson [388].

In addition, the compatibility of volume of so-

lution requires:

cwVw +
∑

i

ciVi = 1 (4.8)

where cw is concentration of water (mol · m−3), ci

is concentration of species i (mol · m−3) and Vφ,i is

the apparent molar volume of species i (m3 ·mol−1).

The overall density of solution is defined as:

ρl ≡ ρw +
N
∑

i

ρi (4.9)

where ρl is the total density liquid phase (kg · m−3), ρw the partial mass density of water (kg · m−3) and

ρi the partial mass density of species i (kg · m−3), with relation ρw = Mwcw, ρi = Mici, and Mw the molar

mass of water (kg · mol−1) and Mi the molar mass of species i (kg · mol−1). By substituting of eq(4.8) into
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eq(4.9), the overall density then can be rewritten as:

ρl = Mw

(

1 −∑i ciVφ,i

Vw

)

+
N
∑

i

Mici =
Mw

Vw
+

N
∑

i

(

Mi − Vφ,i
Mw

Vw

)

ci (4.10)

4.2 Mass conservation of pore fluid

4.2.1 Mass conservation of liquid phase and ice crystals

Let mα denotes the mass of phase α in a RVE:

mα = ραφα = ρα(φ0Sα + ϕα) (4.11)

According to the conservation law, the mass variation rate is the sum of the Darcean flux ω and solidification

rate (during freezing) m̊w→c, one can write the conservation expression for liquid saline solution and ice

crystals as: ∂ml

∂t
+ ∇ · ωl + m̊w→c = 0 and

∂mc

∂t
− m̊w→c = 0 (4.12)

Consider a saline solution confined in pore space composed of liquid water (with subscript w) and N ionic

species (with subscript i). The flux of saline solution is the sum of the flux of each species [317]:

ρlυl ≡ ρwυw +
N
∑

i

ρiυi (4.13)

where υl is the velocity of the barycentric center of mass (see for instance, [267, 317]), υw the velocity of

water, υi the velocity of species i. The mass flux of diffusion of water and species i are then respectively,

given by:

Jw = ρwφl(υw − υl) = Mwcw(φ0Sl + ϕl)(υw − υl) (4.14a)

Ji = ρiφl(υi − υl) = Mici(φ0Sl + ϕl)(υi − υl) (4.14b)

From the definition of partial flux of diffusion JJ=w,i in eq(4.14) and the barycentric velocity defined in

eq(4.13), the sum of all the diffusion fluxes is equal to zero:

Jw +
N
∑

i

Ji = 0 (4.15)

Let ωl denote the flux of liquid regarding the skeleton as reference frame, which can be expressed as:

ωl = ρlφlυl (4.16)

Then the flux of water and solute i are given by:

ωw = Mwcw(φ0Sl + ϕl)υl + Jw and ωi = Mici(φ0Sl + ϕl)υl + Ji (4.17)

Obviously, ωl = ωw +
∑N

i ωi.
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4.2.1.1 Darcean transport

A viscous Newtonian liquid transport in a porous medium can be described by the Darcy’s law:

ωl = −ρl
κ

ηl
∇(Pl) (4.18)

where κ is the permeability of material to the pore fluid, ηl is the viscosity of pore fluid, Pl is the liquid

pressure.

The permeability is one of the most important properties of cement-based materials, and it is related

intimately to their durability [122, 247]. Physically, permeability is determined by the square of the critical

pore diameter [77, 79, 184, 185]. In concrete engineering, the lower the permeability, the more durable the

material is expected [247]. Generally, the permeability can be expressed as function of relative permeability

and intrinsic permeability:

κ = κr(φ, Sl)κ0 (4.19)

where κ0 is the intrinsic permeability of a material, it varies from 10−16 to 10−21 (in m2) for cement-based

materials [76, 271], see also section 7.3 in the present work. Although, physically, the intrinsic permeability

depends only on the geometry of the porous network [76, 79], it takes different value for different fluids. For

instance, the permeability of gas is systematically higher than that of water [316, 399]. The term κr(φ, Sl)

denotes the relative permeability related to the porosity and saturation degree. The influence of porosity

and saturation degree on the permeability of cement-based materials is specifically addressed and discussed

in section 7.3.

4.2.1.2 Fickian transport

As mentioned above, Ji is the diffusion mass flow (kg · m−2 · s−1) which is related to the gradient of

ionic concentration, electric potential and temperature. This physical phenomenon can be described by the

extended Nernst-Planck model (cf. [267, 269, 335–337]):

Ji = −φlMiDici

RT
∇µ = −φlMiciDi

[

1
ci

∇ci + ∇ ln γi +
ln(γici)
T

∇T +
ziF

RT
∇ΨE

]

(4.20)

where µ is the electrochemical potential, φl is the porosity occupied by liquid phase (-), Mi is the molar

mass of species i (kg · mol−1), Di is diffusion coefficient of species i (m2 · s−1), γi the activity coefficient

of species i (-), ΨE the electric potential (V), R is the ideal gas constant R = 8.314472 (J · mol−1 · K−1),

zi is the valence of species i (-), F is the Faraday constant F = 96485.309 (C · mol−1). Note again that

the used flow is the mass content per square meter per second, rather than the molar flow of species Ji

(mol · m−2 · s−1) used in [267, 336, 337].

The diffusion coefficient is an important property characterizing the diffusivity of solutes in porous
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media, it is often expressed as:

Di = τ(φ)D0
i G(φ, Sl) (4.21)

where D0
i is the intrinsic diffusion coefficient of species i (m2 · s−1), τ is the tortuosity, G(φ, Sl) is the

function of porosity φ and saturation degree Sl (-), see section 7.3 for detail. In many studies, the latter

two terms are merged together in one term named relative diffusion coefficient Dr = D0
i G(φ, Sl).

The intrinsic diffusion coefficient D0
i is defined as the diffusion coefficient of ionic species i at the infinite

dilution case. It is directly proportional to the mobility of solution and can be given by the Nernst-Einstein

approach [47]:

D0
i =

κbTβi

e|zi|
(4.22)

where κb is the Boltzmann constant (1.381 × 1023J · K−1), βi is the mobility of species i in free electrolyte

(in m2 · s−1 · V−1), e is the charge of electron (−1.602 × 10−19 C), zi is the valence of i (-).

4.2.2 Electroneutrality and Poisson equation

4.2.2.1 Electroneutrality

Let qi denotes the charge per unit mass of component i (C · kg−1). For water, it is neutral, thus qw = 0.

Then the total current density ωq (in A · m−2 ) is defined as the net amount of charge flowing per unit

surface area and per unit time:

ωq =
N
∑

i

ρiqiφlυi (4.23)

The total charge per unit mass of the system q is defined by

q =
1
ρl

N
∑

i

ρiqi (4.24)

Using the eq(4.15), one thus obtains the total current density as:

ωq = Jc + ρlqφlυl with Jc =
N
∑

i

qiJi (4.25)

where Jc is the conduction current (in A·m−2). Therefore the total current density is equal to the conduction

current density plus a convective term ρlqφlυl. The porous medium or the colloidal suspension is also

characterized by a global electroneutrality condition: the net charge of the grains is exactly counterbalanced

by the net charge of the pore water. Consequently q = 0 and therefore the convective term is equal to zero

in the Lagrangian framework attached to the barycentric center of mass [317, 318].

Since it is global electroneutrality in the system (q = 0), the continuity equation for the electrical charge,



4.2 Mass conservation of pore fluid 67

i.e, ∂q/∂t+ ∇ · Jc = 0, then reduces to:

∇ · Jc = 0 (4.26)

4.2.2.2 Poisson equation

The electric field built by the net charge q per unit mass (C · kg−1) is given by the Gauss theorem [210]:

∇ · E =
ρlq

ξrξ0
(4.27)

where E is the electric field (in V · m−1), ξr the relative permittivity of the medium (ξr = 80 at 293K

for water, the variation of relative permittivity of water with temperature and pressure can be found in

[15, 196], and briefly presented in Appendix D.2), ξ0 the permittivity of free space (ξ0 = 8.854 × 10−12

C2 · J−1 · m−1). q is excess of charge, which is the sum of charges for all species:

qρl = F
N
∑

i

zici (4.28)

where zi (-) and ci (mol ·kg−1) are the valence and the concentration of species i, F is the Faraday constant

(F = 9.6486 × 104 C·mol−1). The electric field E being the gradient of electric potential ΨE :

E = −∇ΨE (4.29)

Substitution of eqs(4.27) and (4.28) into eq(4.29), one obtains the Poisson equation:

∇2ΨE = − qρl

ξrξ0
= −F

∑

i zici

ξrξ0
(4.30)

The previous two sections (sections 4.2.2.1 and 4.2.2.2) provide two approaches to complete the extended

Nernst-Planck equation (cf. eq(4.20)). Both approaches are extensively used in modeling the transport of

ions in porous media [317, 336, 337]. Nguyen et al. [268] compared the ions transport depth in concrete

through numerical model, see left half of Figure 4.6, and concluded that both electroneutrality and Poisson

approaches lead to the same results. Also, it does not exist obvious difference for electrical charge and

potential, see right half of Figure 4.6.

4.2.3 Final expression

The transport model is based on the observation that the transport of ions only occurs in the liquid

phase. The conservation equations for water w and an ionic species i in the liquid phase at pore scale are
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Figure 4.6: Effects of different methods on prediction the concentration profiles (left) and evaluating the
electric potential (right). After Nguyen et al. [267, 268].

given as follows [33]:

∂mi

∂t
+ ∇ · ωi =0 (4.31a)

∂mw

∂t
+ ∇ · ωw + m̊w→c =0 (4.31b)

Substitution of eqs(4.16), (4.17b) and (4.20) into eq(4.31a), one obtains:

∂mi

∂t
− Miciφl

κ

ηl
∇2(Pl) − ∇ ·

{

MiciφlDi

[

1
ci

∇ci + ∇ ln γi +
ln(γici)
T

∇T +
ziF

RT
∇ΨE

]}

= 0 (4.32)

For water, one can derive the conservation equations by the same procedure (substitution of eqs(4.15),

(4.17a) and (4.20) into eq(4.31b)) as follows:

∂mw

∂t
−Mwcwφl

κ

ηl
∇2(Pl)+

N
∑

i

∇·
{

MiciφlDi

[

1
ci

∇ci + ∇ ln γi +
ln(γici)
T

∇(T ) +
ziF

RT
∇ΨE

]}

+ m̊w→c = 0

(4.33)

4.2.4 Heat transfer

The law of heat conduction, known as Fourier’s law, states that the rate of heat transfer through a

material is proportional to the gradient of temperature [172]:

q = −λ · ∇T (4.34)

where λ is the tensor of coefficient of heat conductivity. Let λα stand for the tensor of heat conductivity

coefficient of phase α. For isotropic or statistical isotropic materials, λα = Iλα, where I is the unit second
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order tensor, with Iij = Iji. For composites, the overall heat conductivity coefficient λ depends on the

specific heat conductivity coefficient λα and the microstructure modes. More details can be found in section

refsec:heat-conduct.

4.3 State equations of solid matrix

4.3.1 Dissipation contribution

Considering a deformable porous material, the dissipation can be expressed by the well known Clausius-

Duhem inequality [76, 114], and is given by (see Appendix B.1 for detailed derivation):

D = T
∂S
∂t

− r̊ + T∇ · slωl + ∇ · q − q · ∇T
T

≥ 0 (4.35)

where S is the overall entropy density of the considered RVE, r̊ is source of heat, q is the current of outgoing

heat, sl is the specific entropy density of liquid phase, ωl is the flow of liquid phase. The overall Helmholtz

free energy rate can be written as (see Appendix B.1.1, see also [77, 114]):

∂Ψ
∂t

= σ :
∂ε

∂t
− ∇ ·

[(

Pl

ρl
+ ψl

)

ωl + q
]

+ r̊ − S ∂T
∂t

−
(

∂S
∂t

+ ∇ · (slωl)
)

T (4.36)

where Ψ is the overall Helmholtz free energy density, σ is the stress tensor, ε is the strain tensor, ψl is

the Helmholtz free energy density of liquid phase. Substitution of eq(4.36) into eq(4.35) and separating

the global dissipation into three uncoupled terms (cf. [76]): Dsk the skeleton dissipation, Df the fluid

dissipation and Dth the thermal dissipation, which have the forms:

Dsk = σ :
∂ε

∂t
− gl∇ · ωl − S ∂T

∂t
− ∂Ψ

∂t
; Df = −ωl · ∇gl; Dth = −q · ∇T

T
(4.37)

where gl is the Gibbs free energy density of liquid phase, it can be written alternatively in:

gl = ψl +
Pl

ρl
= el − Tsl +

Pl

ρl
and dgl = −sldT +

1
ρl

dP (4.38)

where el is the internal energy density of liquid phase.

4.3.2 Energy balance of skeleton

Let us consider the skeleton dissipation Dsk. Substitution of eq(4.12) into eq(4.37a), one obtains:

Dsk = σ :
∂ε

∂t
+ gl

∂ml

∂t
+ gc

∂mc

∂t
− S ∂T

∂t
− ∂Ψ

∂t
+ m̊w→c(gl − gc) (4.39)

where m̊w→c is the ice formation rate and (gl − gc) the Gibbs free energy change of ice crystallization. In

equilibrium case, (gl − gc) = 0. The skeleton Helmholtz free energy density Ψsk and the skeleton entropy

density Ssk can be given by:

Ψsk = Ψ − ρlφlψl − ρcφcψc; and Ssk = S − ρlφlsl − ρcφcsc (4.40)
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where Ψ and S are, respectively, the total Helmholtz free energy density and total entropy density. Con-

sidering further the relations: mα = φαρα and dψα = −Pαd(1/ρα) − sαdT with α = l, c, one can rewrite

eq(4.39) as:

Dsk = σ :
∂ε

∂t
+
∑

α=l,c

Pα
∂φα

∂t
− Ssk

∂T

∂t
− ∂Ψsk

∂t
(4.41)

In thermoporoelasticity this dissipation is zero (Dsk = 0), we rewrite the eq(4.41) as:

σ :
∂ε

∂t
+
∑

α=l,c

Pα
∂φα

∂t
− Ssk

∂T

∂t
− ∂Ψsk

∂t
= 0 (4.42)

4.3.3 Surface energy and effective pressure

As stated in section 4.1.1, the skeleton is composed of solid matrix and the interface between different

components. Considering that the interface between different components possesses their own proper

interfacial energy and entropy, and using the additive character of energy, one obtains (cf. [76]):

Ψsk = Ψm + φU (4.43)

where Ψm is the Helmholtz free energy density of solid matrix, φU is the total interface energy density.

Then the state equation of Helmholtz free energy of solid matrix is given by:

σ :
∂ε

∂t
+
∑

α=l,c

P ∗
α

∂φα

∂t
− Sm

∂T

∂t
− ∂Ψm

∂t
= 0 (4.44)

with the additional equations:

Sm = Ssk +
∂(φU)
∂T

and P ∗
α = Pα − ∂(φU)

∂φ
(4.45)

where Sm is identified as the entropy density of solid matrix, and P ∗
α the apparent pore pressure of phase

α. In an unsaturated porous medium, the macroscopic interfacial energy is a function of the saturation

degree and capillary pressure Pcap according to [76, 77]:

U =
∫ 1

Sl

Pcap(S)dSl and
∂(φU)
∂φ

=
2
3
U (4.46)

In the case of drying of porous medium, the relation between capillary pressure and saturation degree can

be obtained by experiment.

Figure 4.7(a) shows the interfacial energy U in terms of saturation degree Sl from eq(4.46), where the

used data are adopted from Fabbri (2006) [114]. It indicates that the interfacial energy is not significant
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(a) (b)

Figure 4.7: (a), The calculated interfacial energy U in terms of saturation degree Sl from eq(4.46); (b),
The ratio of pressure created by interfacial energy 2U/3 to capillary pressure Pcap in terms of saturation
degree Sl. The label "P(X)-C(x)d" represents the paste with w/c=(X/10) and curing age of (x) day(s).
Data from Fabbri (2006) [114].

until the saturation degree Sl is lowered down to a certain value, which depends on the pore size distribution

of porous materials. Figure 4.7(b) shows the ratio of pressure created by interfacial energy 2U/3 to capillary

pressure Pcap in terms of saturation degree Sl. The results indicate the influence of interfacial energy on the

pore pressure is not significant. Generally, this term can be neglected [114, 115]. In addition, the influence

of interfacial energy on the entropy (see eq(4.45)a) is reported to be rather small [114].

4.3.4 State equations of solid matrix

Let Gm denote the free energy density of solid matrix defined by:

Gm = Ψm − P ∗
l φl − P ∗

c φc (4.47)

Substitution of eq(4.47) in eq(4.44), one thus obtains:

σ :
∂ε

∂t
−
∑

α=l,c

φα
∂P ∗

α

∂t
− Sm

∂T

∂t
− ∂Gm

∂t
= 0 (4.48)

Finally, we can derive the state equation of unsaturated thermoporoelasticity in the form:

Gm = Gm(ε, P ∗
i , P

∗
l , T ) : σ =

∂Gm

∂ε
, φα = −∂Gm

∂P ∗
α

, Sm = −∂Gm

∂T
(4.49)
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4.3.5 Constitutive equations

Considering the Maxwell symmetric relation of Gibbs free energy density of matrixGm, i.e., ∂2Gm/∂α∂β =

∂2Gm/∂β∂α, one can finally obtain [76, 77, 79]:

dσ = C : dε − bldP ∗
l − bcdP ∗

c − C : αthdT (4.50a)

dφl = bl : dε + N−1
ll : IdP ∗

l + N−1
lc : IdP ∗

c − αφl : IdT (4.50b)

dφc = bc : dε + N−1
lc : IdP ∗

l + N−1
cc : IdP ∗

c − αφc : IdT (4.50c)

dSm = C : αth : dε − αφl : IdP ∗
l − αφc : IdP ∗

c + Cs
dT
T

(4.50d)

where C,bα,αβ ,N−1
lc and Cs are the thermoporoelastic tangent properties. They have properties as follows:

❀ C = ∂Gm/∂εij∂εkl stands for the 4th order tensor of solid matrix tangent elastic stiffness
moduli. For an isotropic material, the linear stiffness moduli provides (cf. [129, 419]):

C : ε =
(

K − 2
3
G

)

ǫ + 2Gε (4.51)

where K and G are the bulk moduli and shear moduli of solid matrix respectively. ǫ is the
volumetric dilation of strain tensor.
❀ bαij = ∂Gm/∂εij∂Pα is the ijth component of Biot’s tangent tensor with symmetry bαij =
bαji, so that bαij can be replaced by bαI in case of isotropy. When the temperature is hold
constant, the Biot’s tangent coefficient is the ratio of porosity changes to drained strain changes.
In the case of partial frozen porous materials, it has:

bα = bαI; b = bl + bc = 1 − K

Ks
(4.52)

with hypothesis that the liquid phase and ice crystals have similar morphology:

bl = bSl; bc = b(1 − Sl) (4.53)

This hypothesis has been applied to describe the contribution of water and ice when cement-
based materials are subject to freezing [81, 82].
❀ αth is the tangent thermal (volumetric) expansion coefficient tensor of solid matrix, with
symmetry αth|ij = αth|ji. Again, for an isotropic material or statistical isotropic material, it has
αth = αthI and C : αthT = KαthIT . The term C : αth = −∂2Gm/∂T∂ε represents the solid
matrix tangent strain latent heat, i.e., the heat per unit of strain that the skeleton exchange
with outside when pressure and temperature are held constant according to eq(4.50d).
❀ N−1

αβ with α, β ∈ {l, c} is the inverse of Biot’s tangent modulus related to the pore pressure
variation with porosity as strain and temperature are held constant.
❀ αφα : I = ∂2Gm/∂T∂P

∗
α represents a thermal (volumetric) expansion coefficient related to

partial porosity.
❀ Cs = −T∂2Gm/∂T∂T stands for the tangent heat capacity of solid matrix.

In macromechanical viewpoint, both the cement-based material and the phases in pore space, are often

adopted to be isotropic and elastic (cf.[76, 82, 114, 247]). This allows us to rewrite the eq(4.50) in the form
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[76, 77, 82]:

σ =
(

K − 2
3
G

)

ǫI + 2Gε − blP
∗
l I − bcP

∗
c I −Kαth(T − T0)I (4.54a)

ϕl = blǫ+
1
Nll

P ∗
l +

1
Nlc

P ∗
c − αφl(T − T0) (4.54b)

ϕc = bcǫ+
1
Nlc

P ∗
l +

1
Ncc

P ∗
c − αφc(T − T0) (4.54c)

Sm = Kǫαth − αφlP
∗
l − αφcP

∗
c + Cs ln(T/T0) (4.54d)

4.4 Macroscopic description

Partially frozen porous material is investigated by means of thermoporoelastic approach. Like the

established unsaturated poroelastic model concerning with drying-wetting or crystallization, several basic

hypotheses allow us to approximate the mechanical equations in linear form. From the mass conservation

law applied to pore phases (liquid and ice in this study), the state equations of solid matrix derived from

thermodynamics of porous media, the constitutive equations of liquid phase and ice crystals as well as the

chemical equilibrium between liquid and ice, one obtains the relations describing the mechanical behavior

of frozen porous media, as recapitulated in Table 4.1. The basic variables in this study are the liquid pore

pressure Pl, temperature T and salt concentrations ci of species i (Na+ and Cl−). Through the equations

presented in Table 4.1, the capillary pressure Pcap, stress σ, strain ǫ, state quantities of liquid, ice and

solid matrix, which are related directly to the basic variables, can be evaluated.

Note that one of the basic variables, the concentration of solute ci, does not explicitly contribute to

the constitutive equations of solid matrix (cf. eq(4.54)) directly. Actually, the liquid saline solution can be

replaced by any other isotropic mobile phase and the state equations can be applied on other unsaturated

cases in poromechanics, such as freezing behaviors of cement pastes saturated with pure liquid water

initially (cf. [81, 82, 114]), drying of cement-based materials [78]. However, the capillary pressure is related

to concentrations of solutes intimately. As discussed in chapter 2 and Appendix D, the thermodynamic

properties of saline solution are quite different with those of pure water. For instance, the liquid density ρl,

liquid heat capacity CP,l, and liquid thermal dilation coefficient αl are function of pressure, temperature

and solute concentrations. Furthermore, the saturation degree in terms of temperature is significantly

different from the case of freezing of porous material saturated with pure water initially (see section 8.3

for detail). Due to the lower free energy with adding salts, the ice formation temperature will decrease

with the augmentation of salt concentration. It is the saturation degree that connects the physico-chemical

changes in pores to the macroscopic deformation. This model is completed with help of the saturation

degree curves presented in section 8.3.
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Table 4.1: Recapitulation of parameters and equations for themoporoelasticial description of partial frozen
porous media

Nature Description Number of Number of Eqs
unknowns

Mass continuity 11 + 4N 4 + N
∂ms

∂t = 0 Solid matrix continuity ms
∂mc

∂t − m̊w→c = 0 Ice crystal continuity mc, m̊w→c
∂mw

∂t + ∇ · ωw + m̊w→c = 0 Water continuity mw, ωw
∂mi

∂t + ∇ · ωi = 0 Solutes continuity mi, ωi
∂ml

∂t + ∇ · ωl + m̊w→c = 0 Liquid continuity ml, ωl

Compatibility 13 + 5N 15 + N

ρl = Mwcw +
∑

i
Mici Total density ρl, ρw, ρi

cwVw +
∑N

i
ciVi = 1 Volume compatibility cw, ci

Jw +
∑N

i
Ji = 0 Jw, Ji

mα = ραφα φl, φc

Sl + Sc = 1 Sl, Sc

ϕl = φl − φ0Sl, ϕc = φc − φ0Sc ϕl, ϕc

φl + φc = φ φ

Darcean transport 1 6 + 3N
ωl = −ρl

κ
ηl

∇(Pl) Liquid phase Pl

ωw = −ρw
κ
ηl

∇(Pl) Water

ωi = −ρi
κ
ηl

∇(Pl) Ions

Fickian transport 2+N 3N
Ji = −φlMiciDi [1/ci∇(ci) + ∇(ln(γi))] γi

−φlMiciDi [ln(γici)/T ∇(T ) + ziF/(RT )∇(ΨE)] T, ΨE

Poisson equation 1 2
∇2Ψ = − q

εε0
q

q =
∑

i
ziciF

Momentum balance 9 6
∇ · σ = 0

σ
T = σ

Constitutive equation of solid matrix 12 9

σ =
(

K − 2
3 G
)

ǫI + 2Gε

−blP ∗

l I − bcP ∗

c I − Kαth(T − T0)I Total stress of solid matrix ε, P ∗

l , P ∗

c
ϕl = blǫ + 1

Nll
P ∗

l + 1
Nlc

P ∗

c − αφl(T − T0) Pore deformation of liquid phase

ϕc = bcǫ + 1
Nlc

P ∗

l + 1
Ncc

P ∗

c − αφc(T − T0) Pore deformation of crystals

Sm = Kǫαth − αφlP ∗

l − αφcP ∗

c + Cs ln(T/T0) Entropy of solid matrix Sm

Effect of surface energy 2 3
P ∗

l = Pl − 2/3U Liquid pressure U
P ∗

c = Pc − 2/3U Ice pressure Pc

U =
∫ Sl

1
PcapdSl, Pcap = Pc − Pl Interfacial energy

Constitutive equation of phase in pore space 8+N 4

dρl = dρw +
∑

i

(

Mi − Mw
Vφ,i
Vw

)

dci −
∑

i
ciMwd

(

Vφ,i
Vw

)

constitutive equation Vφ,i

dsl = Cp,ldT/T − αl/ρldPl of liquid phase sl,Cp,l,Kl,αl

dρc = ρc (1/KcdPc − αcdT ) constitutive equation Kc,αc

dsc = Cp,cdT/T − αc/ρcdPc of ice crystals sc,Cp,c

Chemical equilibrium between ice and liquid 3 3
dµw = −sldT + dPl/ρw − RT/Mwd(ln(aw)) Chemical potential of water µw, aw

dµc = −scdT + dPc/ρc Chemical potential of ice µc

dµw = dµc Equilibrium

Mechanical equilibrium of capillary interface 1 1

Pc − Pl = − 2γlc
r interfacial force r

Entropy balance 3 1
T ∂S

∂t ≥ r̊ − T ∇ · slωl

−∇ · q + q·∇T
T q

Heat conductivity 9 3
q = −λ∇T λ

parameters 0 19 + 2N
γi ionic activity coefficient
aw Water activity
Sl Saturation degree
Vφ,i Apparent molar volume
λ Thermal conductivity
CP,l, CP,c Heat capacity
αl, αc Thermal expansion

coefficient
Kl, Kc Bulk modulus

Total 77 + 10N 77 + 10N
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5.1 Freezing strains of saturated cement pastes

The established model is applied to calculate the freezing strains of saturated cement pastes published

in [310] and compare the model prediction with the experimental data [440]. Since the pore structure of

samples were not available in [310], the pore structure data with a similar mixing (w/c=0.62) from the

same author is retained in our analysis [308]. Using the Gibbs-Thompson equation, the relation between

pore liquid saturation and temperature is calculated and presented in Figure 5.1(b). The used parameters

are presented in Table 5.1. More details can be found in [440].

Freezing strains are calculated for samples with and without entrained air for one dimensional case. The

initial conditions and boundary conditions for both cases are listed in Table 5.2. For both cases, cooling

is prescribed on one edge of sample, viz. T (t, x = 0) = f(t), and according to the curve shown in top half

of Fig. 5.1(a) given in [310]. For air entrained sample, the ice pressure at one edge is set to be constant

and equal to 0.1 MPa (Pc(t, x = 0) = 0.1 MPa), while the liquid pressure is taken the same value for non

air entrained sample (Pl(t, x = 0) = 0.1 MPa). The length retained for air-entrained sample is the half

distance of two adjacent air voids measured by the authors, i.e., L = 0.016in ≈ 0.4mm while for the sample

without air entrainment the length is taken as the half of sample length, i.e. L = 0.125in ≈ 3.2mm. The
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Table 5.1: Thermoporoelastic properties required in numerical analysis.
Parameter Value Unit Significance References

φ 0.45 - Porosity [310]
ρ0

l 999 kg/m3 Water Density [372]
ρ0

c 917 kg/m3 Ice Density [372]
Kl 1.75 GPa Water Compressibility [373]
Kc 8.65 GPa Ice Compressibility [263]
λl 0.56 w/(mK) Heat conductivity of water [214]
λc 2.14 w/(mK) Heat conductivity of ice [214]
λs 0.53 w/(mK) Heat conductivity of skeleton [433]
C0

P,l 4218 J/(kgK) Heat capacity of water [214]

C0
P,c 2110 J/(kgK) Heat capacity of ice [214]

C0
s 1.47 × 106 J/(m3K) Heat capacity of solid skeleton [433]

αl −298 × 10−6 K−1 Water dilation coefficient [372]

αc 154 × 10−6 K−1 Ice dilation coefficient [263]

αs 30 × 10−6 K−1 Skeleton dilation coefficient [308]

κl 2 × 10−19 m2 Water permeability [310]
Ks 31.8 GPa Bulk modulus of skeleton [403]
Gs 19.1 GPa Shear modulus of skeleton [403]

observed and predicted freezing strains are presented in Figure 5.1(a).

It can be seen that the numerical results reproduce reasonably well the experimental observations in

[310]. As the cooling process starts from about 4℃, material begins to shrink for both samples due to

thermal contraction, followed by an expansion peak at t=12min (∼ −1℃) due to relatively important

quantity of ice formation. To simulate this expansion peak, the nucleation point is delayed to ℃ in Figure

5.1(b), hence the numerical simulation also gives the expansion peak at this moment. This reflects in fact

the energy barrier to overcome for liquid water in pores to nucleate. After this point, the pore pressure is

simultaneously controlled by viscous pressure by liquid flow and crystallization pressure by ice formation

(see Figure 5.2), of which the relative importance depends on the ice formation rate and pore structure.

For air-entrained case, this expansion behavior in Figure 5.1(a) ends at t=15min. One can assume that

both effects are present during this period. As cooling suddenly stops at t =30min, the contraction of

material does not stop simultaneously but presents a transitional contraction. That is an obvious evidence

for pore pressure relaxation by viscous flow. The pore pressure relaxation time lasts about 7 minutes,

which can be estimated by viscous flow: τ = ηl · L2/(4κl · ∆Pl) ≈ 420s with ηl ≈ 1.633 × 10−3Pa · s,

L2 = 16 × 10−8m2, κl ≈ 3.11 × 10−20m2, ∆Pl ≈ 5 × 106Pa. As cooling restarts from t=52min, the

numerical prediction gives firstly a small expansion followed by a contraction. In Figure 5.1(c) are illustrated

separately the thermal shrinkage and pore pressure-induced strain, showing that the thermal contraction

is relatively small compared to the contribution of pore pressure. For air-entrained sample, see Figure 5.2,

the pore pressure is the main contraction source, and this negative pore pressure arises from the capillary

equilibrium of liquid water and ice crystals as entrained air voids provide an atmospheric pressure to ice.

For non-air-entrained case, the sample undergoes significant expansion from t=12min to t=30min, due

to viscous flow pressure as well as pore crystallization pressure. As the cooling stopped at t =30min and

the temperature was kept constant for 22 minutes, the sample was observed to expands slightly, probably
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Table 5.2: Initial and boundary conditions in applied case

Initial condition Boundary condition

Cement paste with entrained air

Temperature T (t = 0, x) = 277 (K) T (t, x = 0) according to Fig.5.1(a)
Heat flow - Q · n(t, x = L) = 0
Liquid pressure Pl(t = 0, x) = 0.1 (MPa) Pc(t, x = 0) = 0.1MPa
Water flow - wl · n(t, x = L) = 0

Cement paste without entrained air

Temperature T (t = 0, x) = 277 (K) T (t, x = 0) according to Fig.5.1(a)
Heat flow - Q · n(t, x = L) = 0
Liquid pressure Pl(t = 0, x) = 0.1 (MPa) Pl(t, x = 0) = 0.1 (MPa)
Water flow - wl · n(t, x = L) = 0

due to the diffusion process of gel water to ice nucleation site according to Powers [310]. Our model predicts

a continuous expansion from t=10min to t=30min, a slight contraction during the cooling platform and an

expansion afterwards, see Figure 5.1(a). According to our modeling, the continuing ice formation between

t=12min to t=30min supports the expansion, during the cooling platform the pore pressure relaxes very

slowly due to much longer distance between (natural) air voids and lower permeability of partially ice

filled pores (≈ 10−23m2). As the cooling resumes from t=52min, the ice formation compensates both the

contraction by pressure relaxation and the thermal shrinkage.

Form the above case study, it is showed that the freezing strain is largely controlled by the pore

pressure accumulated during the freezing, which is intimately related to one intrinsic property of porous

medium: pore structure. Pore structure or pore size distribution, intrinsic property of porous material, is

a basis for ice or water content determination under freezing. According to the Gibbs-Thomson equation,

the equilibrium temperature or depressed temperature is reciprocal of throat size. Therefore, if the pore

structure contains more large pores, most of freezable pore water can be frozen under small depressed

temperature, the freezing expansion peak, consequently, is significant even for cement pastes with air

entrainment. If, on the contrary, the pore distribution is more centered on small pores, the freezing

expansion peak is to be delayed to larger supercooling degrees, the freezing peak will even not appear

since the thermal contraction can dominate the pore pressure effect. Pore structure determines another

fundamental property of porous medium: permeability. Pore structure with high percolation degree gives

large permeability. The pore pressure relaxation directly depends on the permeability of porous medium

to liquid water. Larger permeability gives shorter relaxation time, thus more freezable water can be

transported to nucleation sites, giving more important ice formation and usually more detrimental to

material durability.
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(a)

(b)

(c)

Figure 5.1: (a), Modeling and experimental results for freezing expansion of saturated cement paste:
L = 400µm retained for numerical simulation and experimental curves regenerated from Fig.2, pp286 in
[310]; (b), Liquid saturation degree during freezing vs temperature. The void square is profiled with data
from [308], pp: 955-956, Table 8.6-8.7. w/c = 0.62, 28day aged; the dash line is fit by modified van
Genuchten equation, see [440] for detail; (c), The strain contributions of temperature and pore pressure
with air void; the thermal dilation/contraction is relatively small, while the shrinkage by cryo-suction is
much larger than that by thermal effect.

Figure 5.2: The calculated liquid pressure at
x = L of cement paste with air void. The peak at
around 15 minutes is due to the hydraulic pres-
sure with rapid ice formation, and the negative
pressure after this peak is required by the ther-
modynamic equilibrium between ice and water,
Pl ≈ −1.2227 × ∆T MPa.
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5.2 Instantaneous thermal dilation at the end of supercooling

As aforementioned in chapter 2, the bulk supercooling of liquid is very common for porous materials

during freezing [427]. The high degree of metastability of supercooled water leads to high potential for

water transferring to ice. Once the metastable water begins to transfer to ice, the rapid ice formation may

lead to significant hydraulic pressure and instantaneous dilation. Rather than retarded ice formation by

capillary (capillary supercooling), the rapid ice formation at the end of bulk supercooling can lead to much

more severe damage to porous materials. To quantify the relation between the supercooled temperature

and the instantaneous dilation, two sorts of pore size distribution and four different supercooling degrees

are retained in the present study for cases study. Figure 5.3 illustrates the saturation-temperature curves,

where the ’Curve 1’ represents a material with more small pores, while the ’Curve 2’ represents a material

with more large pores. Obviously, more ice forms for pore structure of ’Curve 2’ than that of ’Curve 1’ at

the same cooling temperature. Typically, for cement-based materials, pore structure with ’Curve 1’ can be

the materials with lower w/c ratio than that with ’Curve 2’. These are consistent with the freezable water

for cement pastes with different w/c ratios obtained by Powers [308] and Bager and Sellevold [25–27].

Figure 5.3: Liquid saturation degree of typical pore
structure of ’Curve 1’ and ’Curve 2’.

The typical temperature curves of supercooling

in porous materials is the temperature decreases

firstly to a certain subzero degree, then it rapidly

rises to or near to the triple point (0.1℃) due to

the large amount of heat releasing as ice forms.

Then temperature drops again monotonously with

the decrease of prescribed temperature. Figure

5.4(a) illustrates the temperature curves with dif-

ferent supercooling degrees, and this kind of tem-

perature curves has been observed experimentally

[146]. However, the established model is only adapted for the equilibrium case, which is to say, the

metastable (supercooled) water can not exist except capillary supercooling condition. This inequilibrium

case has not been considered in the models by other authors either, cf. Coussy [77, 82], Fabbri et al.

[115] and Zuber and Marchand [450, 451]. Assuming that there are no obvious changes on the physical

properties of supercooled water if the supercooling degree is not significant, the bulk supercooled water can

be replaced by the water at triple phase point. We thus design the routines of cooling as shown in Figure

5.4(b) to avoid the water metastability with supercooling and to predict the equivalent supercooling effect

on the instantaneous dilation. Temperature is held constant at triple phase point at first, where no ice

forms. Then it drops rapidly to subzero, where the water and ice are still in equilibrium. Then it follows
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the prescribed temperature at a rate of 0.18 ℃/min. The duration of rapid cooling is set to be 30 seconds,

thus for the required supercooling of ∆T = 0.5, 1.0, 2.0 and 3.0 K, the corresponding cooling rates are 1, 2,

4 and 6 ℃/min. These values are somewhat in the range of the cooling rates of DSC measurement [206],

but are still far larger than the cooling rates in nature [272].

However, these designed temperature-time curves do not include the immediate temperature augmen-

tation due to heat releasing when ice forms, as illustrated in Figure 5.5. To complement this thermal

effect, additional strain due to the immediate temperature increment (thermal shock) should be consid-

ered. Therefore, the total strains εTotal at the end of supercooling peaks can be given by:

εTotal = εIF + εTem (5.1)

where εIF denotes the strains due to the liquid pressure by immediate ice formation and εTem represents the

strains due to the immediate temperature augmentation, and it can be directly expressed as: εTem = αs·∆T ,

with αs the thermal expansion coefficient of solid skeleton. The thermal expansion coefficient of OPC

is usually about 10 ×10−6 · K−1 [249], so that the instantaneous thermal dilation can be estimated as

εTem ≈ 10 · ∆T × 10−6. Even the supercooled temperature is as large as 10 K, the total thermal strains is

about 100 ×10−6, which is only 1/4 of the total instantaneous dilation according the experimental results

by Grübl and Stokin [146]. As an example, the determination of the instantaneous dilation by supercooling

effect εIF and that by therm effect εTem are illustrated in Figure 5.6.

(a) (b)

Figure 5.4: Illustration of (a) the temperature curves of porous materials in different supercooling degree and
(b) the temperature curves designed for calculation of the instantaneous thermal dilation by supercooling.
The prescribed cooling rate of environment is set to be 0.18 ℃/min.

The initial and boundary conditions presented in Table 5.3 are retained for predicting the effect of

supercooling on the instantaneous dilation. Figures 5.7(a) and 5.7(b) show the variations of strains with

temperature for materials with pore structure of ’Curve 1’ and ’Curve 2’ respectively. Material with pore



5.2 Instantaneous thermal dilation at the end of supercooling 81

Figure 5.5: Schematic illustration of the de-
signed temperature-time curve. The tempera-
ture is held constant at zero firstly, then drops
rapidly in 30 seconds to the equilibrium tem-
perature (dash lines). The metastability of wa-
ter (in the shadow area) under the real cooling
curves (bold lines) is thus avoid.

Figure 5.6: Determination of the instantaneous
dilation at the end of supercooling, see eq(5.1),
εIF is the strain by rapid ice formation and εT em

is the strain by thermal effect. Dash line: the
calculated total strain for material with pore
structure of "Curve 2"; solid line: the thermal
shrinkage following the prescribed temperature
curve shown in Figure 5.5.

Table 5.3: Initial and boundary conditions in applied case for predicting the instantaneous dilation by the
effect of supercooling.

Initial condition Boundary condition

Temperature T (t = 0, x) = 273 (K) T (t, x = 0) according to Figure 5.4(b)
Heat flow - Q · n(t, x = L) = 0
Liquid pressure Pl(t = 0, x) = 0.1 (MPa) Pc(t, x = 0) = 0.1MPa
Water flow - wl · n(t, x = L) = 0

(a) (b)

Figure 5.7: Variation of strains for materials with pore structure of ’Curve 1’ (a) and ’Curve 2’ (b) with
different supercooling degree.



82 Case studies: the robustness of poromechanics

(a) (b)

Figure 5.8: Variation of effective liquid pressure for materials with pore structure of ’Curve 1’ (a) and
’Curve 2’ (b) with different supercooling degree.

structure of ’Curve 1’ shrinks with the prescribed temperature for the cases ∆T ≤ 1K, and expanses slightly

after ice nucleation for the cases ∆T = 2K and ∆T = 3K. Whereas material with pore structure of ’Curve

2’ expands for all supercooling decreases, and continual expanses as the temperature drops to around −5℃,

which can be due to that factor that most of ice forms at this temperature, see Figure 5.3. Obviously,

as the supercooling degree increases, the instantaneous dilation increases significantly. This is due to the

large hydraulic pressure by rapid ice formation. Figure 5.8 shows the variation of liquid pore pressure with

cooling. It can be found that, at the end of the supercooling ∆T = 3K, the instantaneous average liquid

pressure can be as high as about 2.5 MPa and 15 MPa for materials with pore structure of Curves 1 and

2 respectively. After the continual expansion to about −5℃, rapid shrinkages can be observed in Figures

5.7(a) for all materials, which can be due to the pore pressure relaxation. Obviously, the pore pressure

relaxes much faster for material of ’Curve 1’ than that of ’Curve 2’. As discussed in section 5.1, the relaxation

time for viscous flow can be estimated as: τ = ηl · L2/(4κl · ∆Pl). Taking the length L = 0.01m for the

materials with ’Curve 1’ and ’Curve 2’, and considering the relation for estimating the permeability, κl ∝

φ3.6 [305] (for partially frozen, κl ∝ (φSl)3.6 [450, 451]), the ratio of characteristic pressure relaxation time

is then estimated as: τ1/τ2 ≈ (∆Pl,2κl,2)/(∆Pl,1κl,1) ≈ (∆Pl,2/∆Pl,1)(Sl,2/Sl,1)3.6. Take the supercooling

of ∆T = 3K for example, the Sl,1 ≈ 0.9, Sl,2 ≈ 0.5, and ∆Pl,1 ≈ 7.5MPa, ∆Pl,2 ≈ 35MPa, thus τ1/τ2 ≈

(0.5/0.9)3.6 ·35/7.5 ≈ 0.56. This estimation is consistent with the observations presented in Figure 5.8. The

required time for relaxation from maximum pressure to the zero are about 1000s and 2000s for materials

with pore structure of "Curve 1" and "Curve 2" respectively.

The predicted instantaneous dilations for materials with pore structure of ’Curve 1’ and ’Curve 2’ are

shown in Figure 5.9, where the measured data by Grübl and Stokin [146] have been illustrated as well

(denoted by small cycles). It can be seen that almost all the measured data are located in the region of the
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Figure 5.9: The instantaneous thermal dilation
of cement-based materials subject to freezing.
(Line + hexagon): The instantaneous thermal
dilation of porous materials with pore structure
of "Curve 1" at the supercooling extent of 0K,
0.5K, 1K and 2K and 3K; (Line + circ): The in-
stantaneous thermal dilation of porous materials
with pore structure of in "Curve 2" at the same
supercooling extent; (Small circ): The experi-
ment data from Grübl and Stokin, (1980) [146];
(Dash line): the fitting curve; (Dot line): the
dilation of pure thermal effect.

predicted curves (the crossed area in Figure 5.9). This indicates that the established model can predict the

instantaneous dilation by the effect of supercooling appropriately. In addition, it can be deduced that the

pore size distribution of the porous materials used by Grübl and Stokin [146] must be between the ’Curve

1’ and ’Curve 2’ as shown in Figure 5.3.
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Abstract of Part II

The aims of Part II are to: ❶ , assess the microstructure and pore structure of cement pastes qualitatively

and quantitatively; ❷ , evaluate the mechanical and transport properties of the used cement pastes based

on multi-scale modelling; ❸ , evaluate the physico-chemical properties of NaCl solution with temperature,

pressure and salt concentration; ❹ , evaluate the saturation degree versus temperature curves for cement

pastes initially saturated with solution at different salinity; ❺ , characterize the strain variation of cement

pastes subjected to freeze-thaw loading experimentally; ❻ , identify the mechanisms of freezing behaviors

of cement pastes and the influence of salt; ❼ , characterize the freezing behaviors of air entrained cement

pastes by experiments and modelling at undrained and drained conditions.

The hydration of ordinary Portland cement can be quantitatively described by the Avrami’s equation

in chapter 6. Combining with the microstructure model of C-S-H proposed by Jennings and coworkers, the

contents of hydration products are evaluated. Comprehensive experiments were proposed to access the pore

structure of our hardened cement pastes. The specific surface area, pore volume, porosity, characteristic

pore size and pore size distribution of pore surface were studied by means of nitrogen adsorption/desorption

(NAD) and mercury intrusion porosimetry (MIP). The obtained results provide us with comprehensive

information of pore structure of our hardened cement pastes.

Following the well established multiscale composite theory, the concentration, representation and ho-

mogenization steps of multi-scale modelling were addressed firstly in chapter 7. By using the multi-scaling

method and the properties of compounds of our cement pastes, the macro-thermal-poroelastic properties

were evaluated. Within the same approaches, but different specific homogenization equations, the transport

properties, such as hydraulic permeability, conductivity and diffusivity, were estimated.

The significance of the physico-chemical properties of saline solution comes from the effect of salt. By

using the Archer’s empirical equations developed from the Pitzer’s model, we obtained the physico-chemical

properties of NaCl solution, such as, density, heat capacity, thermal expansion coefficient and bulk modulus

in chapter 8. The apparent molar quantities instead of the partial molar quantities are used to represent

the effect of NaCl, because the bulk molar quantities of water are well known, and the apparent molar

quantities are easier to be measured than the partial molar quantities. The correlation between the water

or ice saturation degree and the pore structure can be described by the capillary-saturation relations,

which is alike the imbibition-drying problems. Based on the pore structure obtained by means of MIP

measurements, the pore size distribution curves of our cement pastes were evaluated by using the multi-

Gauss fitting. Then, the curves of ice content versus cooling temperature for paste I and paste II saturated

with NaCl solution at different salinities were evaluated.

Freezing strains for cement pastes initially dried and/or saturated with NaCl solution at different
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salinities were studied by experiments and poromechanical modelling in chapter 9. Paste II has larger

thermal expansion coefficient (TEC) than paste I, because paste II contains more C-S-H and Calcium

Hydroxide. Samples of paste I showed significant expansion after ice nucleation, whereas samples of paste

II showed no dilation. The primary reason for this observation is their intrinsic pore structures. We

classified six sorts of deformation based on the shapes of strain-temperature curves. Samples with significant

expansion at low temperature also presented large residual deformation after one complete freeze-thaw cycle,

which indicated that the fracture deterioration occurs during freezing. The poromechanical calculations

were performed to analyze the freezing strains and compared to the experimental results. Acceptable

agreement between the experimental curves and the predicted curves were obtained.

The effects of air voids on the strains of our samples have been specifically discussed in chapter 10.

The TEC of pastes and mortars with four different dosages of air voids were measured. Analyses indicated

that the TEC can be expressed in terms of total porosity (including the capillary porosity and air void

content) or entrained air void content through a power law, αd = α0(1 − φ)C . The exponents C for pastes

(mortars) are respectively 2.66 (2.38) when φ is defined as total porosity, and 3.74 (2.69) when φ is defined

as air void content. The decreased TEC with air-entrainment can probably be attributed to the existence

of dense shell structures around the air voids.

Comprehensive experimental studies have been performed on the deformations of air entrained cement

pastes saturated with NaCl solution at different salinity subjected to freeze-thaw loading. Contrary to the

3% pessimum concentration for surface scaling, the maximum ultimate deformation at −35℃ for samples

with rather high salt concentrations (cf. 10% and 15% NaCl) were observed. In addition, the samples

entrained with more air voids exhibit larger deformations. Yet there is no proposed mechanism accounting

for these observations to the author’s knowledge. The classifications on the deformation curves indicated

that the initial saturation degree may govern these deformation curves. The air entrained pastes with

boundary conditions of undrained freezing and these of drained freezing were analyzed by the established

poromechanical model. Some of the measured curves lie between the predicted curves under undrained

and drained freezing conditions, while the other measured curves are beyond the predicted areas. This

confirms partially the relevance of our self-contained approach developed in the present work, but also

requires further deepened investigation.



Chapter 6

Hydration and pore structure of

cement paste

Contents
6.1 Materials and experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1.3 Determination of pore structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.3.1 Gravimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.3.2 Mercury intrusion porosimetry . . . . . . . . . . . . . . . . . . . . . . . 92

6.1.3.3 Nitrogen adsorption/desorption . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Hydration of ordinary Portland cement . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 Stoichiometry analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.2 Hydration degree and content of products . . . . . . . . . . . . . . . . . . . . . . 96

6.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Pore structure of ordinary Portland cement . . . . . . . . . . . . . . . . . . . 101

6.3.1 Specific surface area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.2 Pore volume, porosity and characteristic pore size . . . . . . . . . . . . . . . . . 106

6.3.3 Pore size distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1 Materials and experiments

6.1.1 Materials

A type I ordinary Portland cement (OPC) was used in the present study. The chemical composition

and physical properties of cement as well as their mineral contents are given in Table 6.1. The mineral

contents of cement were analyzed through Bogue’s procedure [48].



90 Hydration and pore structure of cement paste

Table 6.1: Chemical composition and physical properties and mineralogical composition of cement.
Chemical composition/ Formula Content Minerals Formula Content
physical properties or abbreviation (%) (Bogue) (%)

Silica SiO2 (S) 22.93 Tricalcium silicate C2S 21.38
Alumina Al2O3 (A) 4.29 Dicalcium silicate C3S 58.88
Iron oxide Fe2O3 (F) 2.89 Tricalcium aluminate C3A 6.49
Calcium oxide CaO (C) 66.23 Tetracalcium aluminoferrite C4AF 8.77

Magnesium oxide MgO (-) 1.92 Gypsum CSH2 0.75

Sulfur trioxide SO3 (S) 0.35 Other 3.73
Sodium oxide Na2O(eq)(-) 0.70
Free calcium oxide CaO(f) (C) 0.64
Chloride Cl (-) 0.05
Loss on ignition -(LOI) 1.70
Density (g/ml) 3.12
Specific area (m2/kg) 343

6.1.2 Sample preparation

Figure 6.1: Sequences of sample preparation and experi-
mental procedures.

Cement paste samples were prepared with

two water to cement (w/c) ratios (0.5, 0.3),

named as paste I and paste II respectively. The

mixing procedure observes the ACI Committee

211 [64], see also Figure 6.1. After mixing, ce-

ment pastes of different mixtures were casted

into cylinder tubes of 10mm in diameter and the

hardened specimens were demoulded from the

tubes at the age of 3 days (D) (see Figure 6.2),

then immersed into water. At the ages of 7D,

28D, 90D and 180D, specimens were taken out

of water and crushed to particle samples of size

in 1mm∼2mm for later experiments. The MIP

and NAD experiments on the samples were to

characterize the porosity, pore size distribution,

specific surface area and the skeleton density.

The porosity was also evaluated directly with

the help of gravimetry method. The helium pycnometry method was employed to measure the skeleton

density. The thermogravimetric analysis (TGA) was used to quantify the non-evaporable water (Wn) and

the Ca(OH)2 (CH) content.

The procedure of sample preparation was adapted for different experiments, of which the sequences

are presented in Figure 6.1. For MIP and NAD tests, the samples were subjected to drying procedure by

freezing (F-drying). The samples, together with the container, were firstly immersed into liquid nitrogen

(N2, −196℃) for about 5min, then transferred to the freeze-dryer system and vacuumed for 24 hours (h)
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Figure 6.2: Samples casted in cylindrical tubes (a) and a demoulded cylindrical sample (b).

Table 6.2: Experiments, sample preparation methods and measurements.
Experiment Sample treatment Measurement

MIP, NAD
Freezing-dry in liquid nitrogen (-196℃) and
vacuumed for 24h

Porosity, pore size distribution, critical
pore size, specific surface, skeleton den-
sity (only MIP)

Gravimetry
Water saturated, solvent exchange in methanol
and acetone for 7D, oven-dry at 50℃ for 24h

Porosity

Helium Pycnometry
Water saturated, oven-dry at 105℃ for 24h,
ground to powder d95% = 80µm

Skeleton density

TGA
Water saturated, oven-dry at 105℃ for 24h,
ground to powder d95% = 80µm

Non-evaporable water, Ca(OH)2 con-
tent

before MIP or NAD experiments. For porosity evaluation by gravimetry method, the samples, each 1-1.5g,

were firstly vacuum-saturated by liquid water and then immersed both in methanol and acetone of 100ml.

The solvent (methanol or acetone) was renewed every hour during the first 24h, and every 24h afterwards

for 7D. The samples were then oven-dried at 50 ℃ for 24h. Before and after oven-dry procedure the weight

of samples was measured to the accuracy to 0.001g.

For helium pycnometry, selective dissolution and TGA experiments, the samples were firstly vacuum-

saturated by liquid water and then oven-dried at 105±1℃ for 24h. The dried samples were ground to

powder, having the 80µm-sieve passing ratio of 95%. The experiments and their respective sample treatment

procedures are summarized in Table 6.2.

6.1.3 Determination of pore structure

6.1.3.1 Gravimetry

The principle of evaluating porosity by gravimetry is that the pore space occupied by a liquid can be

determined via pore liquid evaporation or pore liquid replacement by another liquid. The sample saturated

with a known liquid is weighted as ms, after the oven-drying (105±℃ for 24 hrs) and solvent exchange
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Table 6.3: Skeleton density of porous cement pastes at different ages (g/cm3).

Sample
Helium pycometry MIP

7D 28D 90D 180D 7D 28D 90D 180D

PI 2.355 2.251 2.110 2.056 3.092 2.025 2.110 2.380
PII 2.383 2.410 2.347 2.384 2.647 2.254 2.191 2.414

procedures the sample is weighted as m0 and md respectively. The porosity, therefore, can be calculated

as,

φ =
(ms −md)/(ρo − ρr)

(ms −md)/(ρo − ρr) +m0/ρs
(6.1)

where ρs is the density of solid skeleton, ρo is the density of the initial pore liquid phase and ρr is the

density of phase occupying the pore spaces after drying or liquid exchange. For samples after oven-drying,

ρr is the density of air, ρr = 1.2041 × 10−3 g/ml at 20℃, which is negligible compared to liquid water

density, ρo=0.997g/ml at 20℃ with md = m0. For samples after solvent exchange, ρr are the densities

of methanol and acetone, 0.7918 g/ml and 0.7925 g/ml at 20℃ respectively. The skeleton density ρs was

determined by helium pycnometry and MIP, given in Table 6.3.

6.1.3.2 Mercury intrusion porosimetry

Mercury intrusion porosimetry is based on the principle that the intrusion volume of mercury into a

porous medium depends on the applied pressure. If the pore geometry is assumed to be cylindrical, the

pore diameter(size) d can be related to the applied pressure P using Washburn equation [423],

d = −4γ cos θ
P

(6.2)

where γ is the surface tension of mercury (0.485 N/m), θ is the contact angle between mercury and pore

wall and θ =130° is commonly adopted for cement-based materials [186]. A volume-weighted pore size

distribution can be obtained by associating the intruded mercury volume at a given pressure with the pore

size evaluated from eq(6.2). It is noted that the above assumption of straight cylindrical pores can lead to

inaccurate interpretation for pore structure if "ink-bottle" pores exist. The mercury intrusion porosimetry

used in this study is of type Autopore IV 9510 with maximum and minimum applied pressures as 414 MPa

and 1.4 kPa, corresponding to a minimum pore size of 3 nm and maximum pore size of 800 µm.

6.1.3.3 Nitrogen adsorption/desorption

As a dried porous medium is put into a gas (nitrogen) environment, the internal surface of pores can

adsorb a certain quantity of gas (nitrogen) molecules. The nitrogen adsorption/desorption (NAD) ex-

periment records the nitrogen gas pressure and the adsorbed nitrogen quantity, providing an adsorption

isotherm. These data need further interpretation to deduce the pore structure of the porous medium. As

the gas pressure is relatively low, it can be assumed that surface adsorption dominates. The Langmuir and
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BET approaches are most used to deduce the internal specific surface area of pores, based on monomolec-

ular adsorption and multimoleculars adsorption assumptions respectively. As the gas pressure goes on,

condensation of nitrogen happens in mesopores. The Barrett-Joyner-Halenda (BJH) interpretation uses

pore condensation principle to evaluate the pore size distribution from the adsorption isotherm [29]. The

relation between capillary condensation pressure and the interface radius rk can be described by Kelvin

equation,

2rk =
−19.18

ln(P/P0)
× 10−10 m (6.3)

where P, P0 stand for the present and saturated vapor pressure. To obtain the real pore size r, the

thickness of adsorption layer t should be considered: r = rk + t. More details of the thickness can be

found in [90, 91, 220] and Appendix A.6. Note that this estimation holds just for the mesopores and

small capillary pores, since the pore condensation cannot happen for larger pores [10, 322]. Also from BJH

interpretation of adsorption isotherm the pore specific area is evaluated through pore condensation volume

and the average pore size with cylindrical pore geometry assumption. The NAD on powder samples was

carried out by a NAD device of type ASAP2010 with the nitrogen pressure range up to 126.66 kPa.

6.2 Hydration of ordinary Portland cement

6.2.1 Stoichiometry analysis

In this section, the simple stoichiometric reactions for the hydration of the several dominant compounds

in ordinary Portland cement, i.e., C3S,C2S,C3A, C4AF and 3CSH2 are adopted to represent the whole

hydration, and this assumption has been widely applied in many quantitative and qualitative models

[391, 392]. The formulas for complete hydration for these compounds are given by [391]:

C3S + 5.3H → C1.7SH4 + 1.3CH (6.4a)

C2S + 4.3H → C1.7SH4 + 0.6CH (6.4b)

C3A + 3CSH2 + 26H → C6AS3H32 (6.4c)

2C3A + C6AS3H32 + 4H → 3C4ASH12 (6.4d)

C3A + CH + 12H → C4AH13 (6.4e)

C4AF + 2CH + 10H → 2C3AFH6 (6.4f)

Note that the first two formulas, by which the average stoichiometry of the C-S-H is determined, are

the most important. The bound water or water/silica ratio of C-S-H depends on the drying condition,

the high C-S-H water content (H/S = 4) used in eqs (6.4a) and (6.4b) corresponds to the bulk phase

including water trapped in the gel pore spaces between the nanoparticles [397]. The eq(6.4c) is used for
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the initial reactions of C3A in the presence of sulfate to form ettringite (C6AS3H32). If the initial supply

of sulfate is depleted, the additional reaction of C3A with formed ettringite forms monosulfoaluminates

(3C4ASH12) as shown in eq(6.4d). If all Gypsum is consumed, C3A further reacts with calcium hydroxide

(CH) and water (H) producing the hexagonal tetracalcium aluminate hydrate (C4AH13) as presented by

eq(6.4e). In eq(6.4f), the product of the ferrite reaction is a hydrogarnet (C3AFH6). Generally, the sulfate

in OPC is in relative low content, the ultimated hydration products with the sulfate element would be

monosulfoaluminates (3C4ASH12). The basic physical and chemical properties of OPC and their hydration

products are presented in Table 6.4.

Let fm
α and fv

α denote the mass and volume fraction of compound α respectively. The amount of each

product can be estimated by the aforementioned stoichiometry analysis once the hydration degree of each

compound is determined. Let αα denotes the hydration degree of the main compounds of OPC, the mass

contents of hydration products per mass unit of unhydrated cement powder are then given by:

C-S-H = 0.9956fm
(C3S)α(C3S) + 1.3198fm

(C2S)α(C2S) (6.5a)

C6AS3H32 = 2.4322fm
(CSH2)

α(CSH2) −m(C6AS3H32) (intermediate) (6.5b)

C4ASH12 = 0.4964m(C6AS3H32) (6.5c)

C4AH13 = 2.0741fm
(C3A)α(C3A) − 1.9111fm

(CSH2)
α(CSH2) − 2.3241m(C6AS3H32) (6.5d)

C3AFH6 = 1.6749fm
(C4AF)α(C4AF) (6.5e)

CH = 0.4219fm
(C3S)α(C3S) + 0.2581fm

(C2S)α(C2S) − 0.2741fm
(C3A)α(C3A) + 0.2525fm

(CSH2)
α(CSH2)

+ 0.3071m(C6AS3H32) − 0.3045fm
(C4AF)α(C4AF) (6.5f)

where m(C6AS3H32) denotes the mass of AFt that is an intermediate product and reacts with C3A further.

If the AFt is consumed, the formulas of eqs(6.4c) and (6.4d) then reduce to:

C3A + CSH2 + 10H → C4ASH12 (6.6)

The amount of monosulfate (AFm), calcium aluminate hydrate, hydrogarnel and calcium hydroxide thus

can be expressed ultimately as:

C4ASH12 = 3.661fm
(CSH2)

α(CSH2); C3AFH6 = 1.6749fm
(C4AF)α(C4AF)

C4AH13 = 2.0741fm
(C3A)α(C3A) − 1.5699fm

(CSH2)
α(CSH2)

CH = 0.4219fm
(C3S)α(C3S) + 0.2581fm

(C2S)α(C2S) − 0.2741fm
(C3A)α(C3A)

+ 0.4302fm
(CSH2)

α(CSH2) − 0.3045fm
(C4AF)α(C4AF)

(6.7)
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Table 6.4: Physical properties of reactants and products of ordinary Portland cement.
Compound name Symbol State Density Molar Molar Heat of References

Mg/m3 volume mass formation
ml/mol g/mol kJ/mol

Tricalcium silicate C3S Bulk 3.15 72.4 228 -2927.82 [392]
Dicalcium silicate C2S Bulk 3.28 52 172 -2311.6 [40, 392]
Tricalcium aluminate C3A Bulk 3.03 89.1 270 -3587.8 [40, 392]
Tetracalcium C4AF Bulk 3.73 120.3 486 -5090.3 [392]
aluminoferrite

Gypsum CSH2 Bulk 2.32 74.2 172 -2022.6 [40, 392]
Calcium silicate hydrate C1.7SH4 Saturated 2.03 111.8 227 -3283 [40, 178, 392]
Calcium silicate hydrate C1.7SH4 Pore empty 1.44 157.6 227 - [178, 396]
(LD)
Calcium silicate hydrate C1.7SH4 Pore empty 1.75 129.7 227 - [178, 396]
(HD)
Calcium silicate hydrate C1.7SH4 Pore full 1.93 117.6 227 - [178, 396]
(LD)
Calcium silicate hydrate C1.7SH4 Pore full 2.13 106.5 227 - [178, 396]
(HD)
Calcium silicate hydrate C1.7SH2.1 11% Hr 2.47 78 193 - [178, 396]
Calcium silicate hydrate C1.7SH1.8 dries 2.60 72.2 187.6 - [12, 397]
Calcium silicate hydrate C1.7SH1.2-1.4 D-dried 2.86 62.4 178.6 - [178, 397]
Calcium hydroxide CH Bulk 2.24 33.1 74 -986.1 [40, 392]

Ettringite (AFT) C6AS3H32 Bulk (saturated) 1.75 717 1255 -17539 [40, 392]

Ettringite (AFT) C6AS3H7 Bulk (dried) 2.38 338 805 - [392]

Monosulfate C4ASH12 Bulk (saturated) 1.99 346 623 -8778 [40, 392]

Monosulfate C4ASH8 Bulk (dried) 2.40 229 551 - [392]
Calcium aluminate C4AH13 Bulk 2.05 273.2 560 -5548 [392]
hydrate (AFm)
Hydrogarnel C3AFH6 Bulk 2.67 152.4 407 - [392]
Water H Bulk 0.997 18.0 18.0 -285.83 [40]

Confined in gel 1.163 15.48 18.0 - [308]
Chemical bound 1.1 16.28 18.0 - [397]

The amount of non-evaporable water Wn (g/g cement) is then expressed as:

Wn = 0.1310C1.7SH1.3 + 0.2432CH + 0.2613C4ASH8 + 0.2654C3AFH6

= 0.2053fm
(C3S)α(C3S) + 0.1988fm

(C2S)α(C2S) + 0.3704fm
(C4AF)α(C4AF)

+ 0.8000fm
(C3A)α(C3A) + 0.6207fm

(CSH2)
α(CSH2)

(6.8)

For a type I OPC that has a composition of C3S = 58.88%,C2S = 21.38%,C3A = 6.49%,C4AF = 8.77%

(see Table 6.1), the amount of non-evaporable water Wn for complete hydration is estimated to be 0.257

(= Wn∞), which is close to the value obtained by Powers [308] and Garcia [111]. Note that the ultimate

Wn is intimately related to the state of hydration products. For instance, if the water in small gel pores

and/or layers and the mono-layer adsorbed water are adopted in calculating the Wn: H/S = 2.1 [178, 397],

the ultimate Wn is estimated to be 0.302, which is much higher than the value measured by TGA for OPC.

This overestimation of non-evaporable water has been extensively studied by Hobbs [168].

The porosity of cement paste, varying with the hydration processes, is related to the initial water volume

fraction Vw and the volume fraction change by chemical reaction Vc. The capillary porosity Vcp is defined

as:
Vcp = Vw − Vc = Vw −

∑

i

(Vp,i − Vr,i) (6.9)

where Vp,i and Vr,i represent the volume percentage of hydration products and that of reactants i respec-

tively. Again, the water in small gel pores and the mono-layer adsorbed water should be included for
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calculating the volume percentage of hydration products, because the space occupied by the gel water and

the adsorbed water do not belong to capillary pores [178, 308]. Therefore, the products in state of saturated

condition, presented in Table 6.4 are employed in the calculations.

Two types of C-S-H have been observed for decades, and they were presented either as inner products

and outer products [320, 321] or high density (HD) C-S-H and low density (LD) C-S-H [178, 392, 396]. We

here follow the second definition, and hereafter all the approaches on the microstructures and the correlated

issues are according to this second definition. According to Tennis and Jennings [392], only the LD C-S-H

is accessible by Nitrogen, thus the surface area measured by NAD represents the surface area of the LD

C-S-H. Based on a series of experimental results, the authors [392] obtained an equation that correlate the

fraction of LD C-S-H to the w/c ratio and total hydration degree αt:

fLD = 3.017(w/c)αt − 1.347αt + 0.538 (6.10)

where fLD is the mass ratio of LD C-S-H to total C-S-H. Note that eq(6.10) was fitted from data of the

materials with the w/c ratios in range of 0.25-0.5. Use of this equation when w/c ratios are beyond this

interval is thus debatable. The volume of LD C-S-H and HD C-S-H can be given by [392]:

VLD =
fLDM(C-S-H)

ρLD
, and VHD =

(1 − fLD)M(C-S-H)
ρHD

(6.11)

where ρLD and ρHD are density of LD C-S-H and HD C-S-H respectively, M(C-S-H) represents the total

mass of C-S-H. The gel pore volume in LD C-S-H is then calculated by [392]:

Vgel = VLD

(

1 − ρLD

ρHD

)

(6.12)

6.2.2 Hydration degree and content of products

The aforementioned stoichiometry analyses allow us to estimate the main hydration products quanti-

tatively. However, the reaction rates of the compounds usually have not the same values. For instance,

the C3A and C3S react much faster than other compounds. In addition, the reaction rates are influenced

much by the additives, among which the Gypsum and the CaCl2 are known as retarding and accelerating

additives respectively. The aim of this section is to evaluate the hydration processes and to estimate the

contents of hydration products. The effects of additives are thus out of the scope. The Avrami equation is

employed to estimate the hydration degree of each compound, which has the form [392]:

αi = 1 − exp [−ai (t− bi)
ci ] (6.13)

where αi is the hydration degree of compound i at time t (in days), ai, bi and ci are adjustable constants

determined empirically and given in Table 6.5. The Avrami equation provides a simple kinetic method

that fits the hydration of OPC approximately well, although it was argued that the hydration of OPC and
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Figure 6.3: Hydration degree of
compounds with time. Each
of the principal compounds is
assumed to hydrate indepen-
dently as shown. The curve la-
beled "average" represents the
weighted average hydration de-
gree (eq(6.14)) of cement that
has a composition of C3S =
58.88%,C2S = 21.38%,C3A =
6.49%,C4AF = 8.77%.

blended cement paste are far beyond the capability of this simple model [392]. More precise models can

refer to Lothenbach et al. [227, 228], and a comprehensive review on hydration models can be found in

Thomas et al. [394].

Table 6.5: The adjustable constants used in Avrami equation (see eq(6.13)) [390, 392].
Compounds i Formula a b c

Tricalcium silicate C3S 0.90 0.70 0.25
Dicalcium silicate C2S 0 0.12 0.46
Tricalcium aluminate C3A 0.90 0.77 0.28
Tetracalcium aluminoferrite C4AF 0.90 0.55 0.26

The average hydration degree is defined as a weighted averaged value of hydration degrees of all com-

pounds:

αt =
∑

i

αif
m
i (6.14)

where fm
i is the mass fraction of compound i. The hydration degrees of typical Type I OPC (see Table 6.1)

evaluated by Avrami equation are presented in Figure 6.3. It can be seen that C3A hydrates faster than

other compounds, C2S has the lowest hydration rate, and the average hydration degree is slightly lower

than that of C4AF.

Figure 6.4: Calculated value by eq (6.8) and by linear
equation y = a ∗ αt for non-evaporable water content
Wn with hydration degree. The applied cement has
the same compounds as shown in Figure 6.3.

The amount of non-evaporable water Wn is of-

ten employed to estimate the mean hydration de-

gree of OPC that is determined as the ratio of

measured value to the ultimate value for complete

hydration, i.e, αt = Wn/Wn∞. Figure 6.4 illus-

trates the amount of non-evaporable water Wn that

is evaluated by the weighted average for all com-

pounds and by the linear estimation, i.e, Wn =

0.257αt. The good agreement between the two es-

timation methods indicates that the Wn is a reliable

factor to assess the hydration degree of OPC.
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Let us now consider the volumetric variation of all components with time or with hydration degree. We

will process this evaluation referring to a mass unit of unhydrated OPC. Given a w/c, the total volume at

initial mixture state is:
Vin = V in

w +
∑

i

fm
i /ρi (6.15)

with i = C3S,C2S,C3A,C4AF,CSH2 and innert (nonactive compounds), of which the density are presented

in Table 6.4, V in
w = (w/c)/ρw is the initial volume of water before mixing with cement clinkers. As reaction

proceeds, water is consumed and new hydration products appear, the total volume is then composed of the

unhydrated components and new created components:

Vt = Vin = Vcp +
∑

i

fm
i,unhydr/ρi + VC-S-H + VCH + VC3AFH16

+ VC4AH13
+ VC4ASH12

(6.16)

where Vcp is the volume of capillary pores, fm
i,unhydr is the mass fraction of unhydrated compound i per

unit mass of initial unhydrated OPC, VCSH is the volume of the C-S-H that is composed of the HD C-S-H,

LD C-S-H and the accessible pores in LD C-S-H. The quantitative relations among them have been given

by eqs(6.10), (6.11) and (6.12). The terms Vi is volume of product i, with i = CH,C3AFH16, C4AH13 and

C4ASH12, and given by:

VCH =
CH
ρCH

; VC3AFH16
=

C3AFH16

ρC3AFH16

; VC4AH13
=

C4AH13

ρC4AH13

; VC4ASH12
=

C4ASH12

ρC4ASH12

(6.17)

where the mass CH,C3AFH16, C4AH13 and C4ASH12 are given by eq(6.5) and eq(6.7).

Substitution of eqs(6.5), (6.7), (6.10), (6.11), (6.12) and (6.17) into the eq(6.16), and considering the pa-

rameters given in Table 6.4, one obtains the volumes of unhydrated phases for a material with a composition

shown in Table 6.1:

Vunhydr = 0.3205 − 0.1869αC3S − 6.5183 × 10−2αC2S − 2.1419 × 10−2αC3A

− 2.3512 × 10−2αC4AF − 2.2328 × 10−3αCSH2

(6.18)

The volume of monosulfate (AFm), calcium aluminate hydrate, hydrogarnel and calcium hydroxide thus

can be expressed ultimately as:

VC4ASH12
= 0.013799α(CSH2); VC3AFH6

= 0.05502α(C4AF) (6.19a)

VC4AH13
= 0.06566α(C3A) − 0.0057415α(CSH2); (6.19b)

VCH = 0.11089α(C3S) + 0.024634α(C2S) − 0.007942α(C3A) + 0.00133α(CSH2) − 0.0119α(C4AF) (6.19c)

The volume of LD C-S-H is given by:

VLD-CSH = 0.1634αC3S + 0.07879αC2S − 0.2377α2
C3S − 0.04210α2

C2S − 0.2034αC3SαC2S

+
(

0.5395α2
C3S + 0.09431α2

C2S + 0.4556αC3SαC2S

)

(w/c)
(6.20)
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Figure 6.5: Variation of volume (ml/g cement) of components with curing age for paste I (w/c=0.5).

Figure 6.6: Variation of capillary
porosity (dash dot line) and C-S-
H gel volume fraction (dash line)
with hydration degree. The capil-
lary porosity is calculated by eq(6.9)
The gel volume is the sum of the vol-
ume of LD and HD C-S-H, calculated
by eqs(6.20) and (6.21) respectively.
w/c=0.5 and the used OPC has a
composition of C3S = 58.88%,C2S =
21.38%,C3A = 6.49%,C4AF =
8.77% as shown in Table 6.1.

and the volume of HD C-S-H is given by:

VHD-CSH = 0.1481αC3S + 0.07139αC2S + 0.2183α2
C3S + 0.03815α2

C2S + 0.1843αC3SαC2S

−
(

0.4888α2
C3S + 0.08545α2

C2S + 0.4128αC3SαC2S

)

(w/c)
(6.21)

The initial volume of mixture with a given OPC and w/c can be calculated as 1 :

Vin = w/c + 0.3205 (6.22)

Figure 6.5 shows the variation of volume of components with curing age. Note that, during the hy-

dration, the intermediate product AFt (ettringite) has not been considered, because the AFt transfers to

AFm ultimately and the amount of Gypsum in the raw OPC is very low (0.75%). In addition, the kinetics

of AFt formation is relatively complex. It can be seen that the volume of C-S-H increases significantly as

hydration goes on and the amount of LD C-S-H is larger than that of HD C-S-H obviously. The volume of

1. The value 0.3205 is calculated as : (1 gram OPC)/ρOPC, with ρOPC = 3.12 as shown in Table 6.1.
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Figure 6.7: Variation of volume frac-
tion (-) of LD C-S-H (open circles),
HD C-S-H (open rectangle) and the to-
tal C-S-H (stars) with water cement
ratios (w/c). The values are calcu-
lated by eqs(6.20) and (6.21) with hy-
pothesis that αi = 1 for compound
i. The OPC has a composition of
C3S = 58.88%,C2S = 21.38%,C3A =
6.49%,C4AF = 8.77% as shown in Ta-
ble 6.1.

Figure 6.8: The volume fraction of all compounds of paste I (a) and paste II (b) evaluated by Avrami’s
empirical equation at curing age of 360D.

Monosulfate (AFm), Calcium aluminate hydrate and Hydrogarnel increase with curing age progressively,

and the amount of those products are much lower than those of C-S-H and CH due to the low content

of alumina and ferrite in raw material. The porosity and the main reactants, i.e, C3S,C2S,C3A,C4AF

decrease with curing age, and the later four components will vanish ultimately.

Figure 6.6 shows the variation of volume fraction of capillary pores and C-S-H gels with hydration

degree. The volume fraction of C-S-H gels increases to about 60%, and that of capillary pore decreases to

about 10% when the hydration degree arrives 90%. Figure 6.7 shows the variation of volume fractions of

LD C-S-H, HD C-S-H and total C-S-H with w/c. The amount of LD C-S-H increases progressively with

w/c, whereas the amount of HD C-S-H decreases significantly with w/c. The volume fraction of total C-S-H

thus decreases as w/c increases, because of the increase of initial total volume, see eq(6.22).

6.2.3 Summary

By use of semi-empirical equations, the main hydration products of our cement pastes can be estimated.

Those values are the basic data for evaluating the mechanical and transport properties of cement pastes in

chapter 7. Figure 6.8 shows the volume fraction of the main compounds for past I and paste II at 360D
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Figure 6.9: Variation of porosity with water
to cement ratio (w/c). The solid lines are
calculated from the model by Powers and
Brownyard [308]. Line A: Porosity with to-
tal water; line B: porosity with free water;
and line C: porosity with capillary water.
The empty symbols (circle, square and tri-
angle) represent the experimental data by
complete drying. The filled and partially
filled symbols (filled triangle and square and
partially filled circle) represent the exper-
imental data by MIP. After Taylor, 1997
[391].

respectively. It can be found that the volume of C-S-H that is composed of LD C-S-H, HD C-S-H and

gel pore, occupies more than half of the total volume for both paste I and II. The capillary porosity is

about 16% for paste I, while that for paste II is negligible. These results are consistent with the value

obtained by Powers [308], see Figure 6.9. Those values are somehow different from the experimental

results in the next section, where the 26% and 13% porosity for paste I and II are obtained by MIP

measurement (see Figures 6.16 and 6.17 and the drying technique is freezing-dry). Figure 6.9 also shows

that the MIP porosity is systematically larger than the capillary porosity. Several reasons account for

the differences between the values by model and those by experiments. Firstly, the measured porosity

includes not only the capillary pores but also part of gel pores. According to Jennings, the size of large

gel pores can be as large as about 12 nm [178]. The pore volume in the size interval d ∈ (3 − 12)nm

takes 30% and 70% of total pore volume for paste I and paste II respectively (see Figures 6.18(a) and

6.18(b)). The capillary porosity for paste I and paste II thus are: φcap(Paste I) = 26%×(1−30%) = 18.2%

and φcap(Paste II) = 13% × (1 − 70%) = 3.9%. These values are comparable with the predicted ones.

Secondly, it is well known that the high pressure during MIP measurement may induce the additional

deformation which can be either elastic solid deformation or cracks [99], therefore, the MIP measurement

may overestimate the total pore volume. Thirdly, the capillary pores do not include the water adsorbed on

pore walls, but drying procedures may remove some adsorbed water so that more pore volume is obtained.

6.3 Pore structure of ordinary Portland cement

As typical porous media, cement pastes adopt a pore structure with broad pore size distribution from

nanometer to micrometer scales [170, 247] (see Figure 6.10). Moreover, the connectivity of the pores of

different sizes seem to be complicated and “ink-bottle” geometry exists extensively in the pore network
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[99]. Nowadays, no experimental method allows to measure the pore structure of cement pastes completely.

So far, numerous experimental methods have been developed to measure or assess the pore structure,

and the most widely used methods include the mercury intrusion porosimetry (MIP) and nitrogen ad-

sorption/desorption (NAD) methods. The MIP measurement still remains the preferred method for pore

structure evaluation due to its large range of pore size measurement and easy operation [211], although

the measurement may lose its accuracy for the “ink-bottle” pores and fractures can be possibly induced in

samples by the high intrusion pressure [99, 140].

Figure 6.10: Approximate ranges of pores and other microscopic features
in hardened cement paste. After Hover (2011) [170].

The gas adsorption method

has also been used for iden-

tifying the pore structure of

cement-based materials for

decades [29, 133, 251, 308].

On the basis of the adsorbed

gas quantity, the internal sur-

face area of pores can be

evaluated from the Langmuir

monomolecular layer theory,

the BET multilayer adsorp-

tion theory and the t-plot

method. Furthermore, the pore size distribution can be obtained using Barret-Joyner-Halenda (BJH)

interpretation based on capillary condensation [29]. Note that the desorption phase of NAD is similar to

the intrusion phase of MIP from the point of view of non wetting phase propagation in pores [278]. Thus

the pore size distributions obtained from NAD and MIP measurements can be compared for the mutual

range of pore size. Actually, the combination of MIP and NAD for pore structure characterization has

been widely used in such fields as industry catalyst [278], soil engineering [108] and artificial materials

[158]. Recent works by Kaufmann et al. [186] and Kaufmann [190] showed the application of NAD, MIP

and other methods combined together to evaluate the pore structure of cement-based materials.

6.3.1 Specific surface area

Figures 6.11(a) and 6.11(b) show the isotherm NAD curves at −196℃ on paste I and paste II re-

spectively. For paste I, it can be seen that the adsorbed volume increases with curing age in all relative

pressure interval (see Figure 6.11(a)). A significant augmentation of isotherm adsorption/desorption curves

is observed when curing age increases from 7D to 28D. For instance, the maximum adsorbed volume at
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saturation case (P/P0 = 1) increases from 37.5 ml/g at 7D to 63.6 ml/g at 28D. After 28D, only slight

increment of isotherm adsorption/desorption curves is observed as curing age goes on. There are no signifi-

cant differences among the normalized isotherm adsorption/desorption curves for paste I at all curing ages,

see Figure 6.12(a). For paste II, the isotherm adsorption/desorption curve for sample at 7D is different

from those at longer curing ages in the whole relative pressure interval P/P0 ∈ (0, 1), see Figure 6.11(b).

The adsorbed volume keeps almost constant in the relative pressure interval P/P0 ∈ (0, 0.8) for paste II at

7D, compared to the samples at longer curing age, of which the adsorbed volume increases with relative

pressure monotonously. This can be also verified by the normalized isotherm adsorption curves as shown

in Figure 6.12(b). After significant increase of adsorbed volume as the curing age increases from 7D to

28D, the adsorbed volume keeps almost constant when curing age goes on. Those observations may be

governed by the hydration processes of cement pastes. According to Jennings and coworkers [178, 392],

the nitrogen adsorption technique can only access the LD C-S-H, which has the specific surface area about

250 m2/g. The observation that the isotherm sorption/desorption curves for Paste I increase with curing

age monotonously, is thus reasonable due to the monotonously increase of the amount of LD C-S-H with

curing age (see Figure 6.5). However, for paste II (w/c=0.3), the hydration rate is much lower than that

of Paste I, and more unaccessible HD C-S-H is created, thus the measured isotherm adsorption/desorption

curves are not sensitive to curing age when curing age is longer than 28D.

Table 6.6 summarizes the specific surface area evaluated by Langmuir, BET, t-plot and BJH approaches

by means of NAD data and that by MIP data. Obviously, the specific surface area of Paste II is much lower

than that of Paste I, independent of the evaluation methods. Again, the model by Tennis and Jennings

[392] is adopted to explain the obtained data. Recalling Figure 6.7, for Paste II, it only has about 15% of

the accessible LD C-S-H, one third of those for Paste I, which coincides roughly with the data presented

in Table 6.6.

Table 6.6: The specific surface area of paste I (II) by different measurement.

Curing age (days) BET (m2/g) t-plot Micropore areaa(m2/g) t-plot External areab(m2/g) Langmuir m2/g

7D 26.689(9.000) 8.440(8.792) 18.287(0.210) 36.455(12.201)
28D 36.622(17.922) 8.078(1.856) 28.548(16.066) 50.380(24.880)
90D 40.415(16.682) 3.352(1.200) 37.110(15.482) 56.107(23.214)

180D 44.656(16.961) 2.984(1.042) 41.672(15.919) 61.853(23.634)

Curing age (days) BJH (sorp) (m2/g ) BJH (desorp) (m2/g ) MIP (m2/g )

7D 21.166(5.071) 32.030(13.071) 35.525(17.788)
28D 33.610(18.552) 56.437(26.538) 64.432(23.267)
90D 42.980(17.715) 58.510(25.256) 58.824(22.307)

180D 48.444(17.632) 61.943(22.553) 55.322(23.990)

a The micropore defined here is different with that defined by IUPAC [439], the details of determination of micropore is
presented in Figure 6.15.

b The external area is defined as the slope of the t-plot, whose range lies between monolayer and capillary condensation.

The Langmuir specific surface area is systematically larger than BET one. This is due to the intrinsic

mechanism differences between BET and Langmuir approaches (see Appendix A.6). It can be further found
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(a) (b)

Figure 6.11: Isotherm curves of nitrogen sorption and desorption near the boiling point of nitrogen on paste
I (a) and paste II (b).

(a) (b)

Figure 6.12: The normalized isotherm sorption curves for paste I (a) and II (b). The normalized value
= V/V (P/P0 = 1).

(a) (b)

Figure 6.13: The t-plot curves for paste I (a) and paste II (b) at different curing age.
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that the BET specific surface area is very close to the total t-plot specific surface area (t-plot micropore

area + t-plot external area, and the determination of the micropore is given in following section 6.3.2).

This has been verified by the NAD results on the pastes blended with silica fume by Khalil [191]. The

t-plot curves for Paste I and II are illustrated in Figure 6.13(a) and 6.13(b) respectively. It can be seen

that, except the curves of pastes at 7D, all the curves show almost linear relations. According to de Boer

et al. [90, 91] and Mikhail et al. [251], the filling of some narrowest pores by multilayer adsorption firstly

may lead to the phenomenon that the t-plot curve begins to drop below the straight line as the thickness

increases. The authors [90, 91] also pointed out that if the capillary condensation starts in certain pores in

addition to multilayer adsorption, the points of the t-plot should begin to deviate upward [90, 91, 251]. This

is not observed in our results. Note that, different t-curves (adsorption thickness) may cause the different

t-plot curves. In the t-plot by Mikhail et al. [251], the Cranston and Inkley t-curve [84] was applied. In

this study, the Hakins and Jura t-curve (see eq(A.41)) is employed for t-plot evaluation. Table 6.6 also

presents the sorption and desorption BJH specific surface area.

The cumulative specific surface area distribution in terms of pore size are illustrated in Figure 6.14(a)

for Paste I and in Figure 6.14(b) for Paste II. Obviously, a significant augmentation of specific surface area

at pore size (diameter) around 3.5 nm is observed for almost all samples, which may be due to the fact

that the average size (diameter) of gel pores in C-S-H [178, 308] is 3.5 nm. Interestingly, the BJH(sorp)

specific surface area is close to the BET specific surface area, while the BJH (desorp) specific surface area is

close to the Langmuir specific surface area. This must be coincidence because the region of BET approach

(P/P0 ∈ (0.05, 0.35)) is different with that of BJH approach (P/P0 ∈ (0.45, 0.967)), and there is no physical

basis for this observation. However, the observation that the desorption BJH specific surface area is larger

than the adsorption one, can be due to the "ink-bottle" effect and the connectivity of percolated pores

with different sizes. In addition, the BET approach was originally developed for estimating the specific

surface of flat solid rather than that of porous materials, and the BJH approach requires the cylindric pore

geometry which was criticized for its oversimplification.

Table 6.6 shows the specific surface areas evaluated by means of MIP data as well. Similar to the

values obtained by means of NAD data, the MIP specific surface area for paste I is higher than that of

paste II because paste I has more capillary pores and more large gel pores accessible by MIP measurement

(minimum accessible pore size for MIP measurement used in this study is 3 nm). However, a maximum

value of specific surface area for Paste I at 28D is obtained. This can be attributed to, firstly, a large

amount of gels and crystals with high specific surface area that are formed by elimination of capillary pores

as hydration goes on, and this hydration finishes about 70% during the first 28 days [247, 253]; secondly, at

later curing age (cf. curing age is longer than 28D) denser C-S-H that can not be penetrated by mercury
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(a) (b)

Figure 6.14: The BJH cumulative surface area in terms of pore size for paste I (a) and paste II (b) at
different curing ages.

even under high pressure, forms.

Table 6.7: The pore volume of paste I (II) by different measurements.

Curing age (days) Total Pore Volume (NAD)a(µl/g) Micro pore volume (NAD)b(µl/g) BJH (sorp)c(µl/g)

7D 56.521(25.868) 3.774(4.141) 73.426(31.075)
28D 78.751(39.336) 3.492(0.684) 98.294(49.622)
90D 84.077(39.959) 1.159(0.380) 97.065(48.892)

180D 88.915(31.534) 0.960(0.291) 114.548(39.482)

Curing age (days) BJH (desorp) d(µl/g) MIP (µl/g) MIP (3-70 nm) (µl/g)

7D 75.800(44.788) 208.119(90.300) 104.300(74.200)
28D 99.317(57.127) 177.801(87.642) 113.869(77.562)
90D 108.550(55.220) 164.776(75.202) 139.800(69.107)

180D 113.567(38.958) 160.794(62.540) 140.354(55.515)

a Single point adsorption total pore volume of pores less than 70.7 nm at P/P0 = 0.972;
b Pore size rang 0.7-1.8 nm, and the determination method refers to Figure 6.15;
c Nominal BJH adsorption cumulative pore volume of pores between 1.7 and 300.0 nm Diameter;
d Nominal BJH desorption cumulative pore volume of pores between 1.7 and 300.0 nm Diameter.

6.3.2 Pore volume, porosity and characteristic pore size

Figure 6.15: Determination of micropore volume of
paste I at 7D.

Table 6.7 presents the pore volume evaluated

by t-plot, BJH approaches from NAD data and

by Washburn equation from MIP data. It can be

found that the total pore volume (NAD) increases

with curing age due to the continual formation of

porous LD C-S-H. For paste II, the total pore vol-

ume is much lower due to less porous LD C-S-H

formed compared to Paste I. In addition, the max-

imum total pore volume (NAD) appears for paste

II at 90D, then it decreases slightly as curing age

increases, which can be due to the microstructure changing of C-S-H: LD C-S-H transferring to HD C-S-H
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progressively [178].

The micropore volume, as shown in second column in Table 6.7, is determined by the method proposed

by de Boer et al. [90, 91] and Lippens and de Boer [220]. As shown in typical t-plot (see Figure 6.15),

a downward deviation from linearity at low relative pressures is observed, i.e., after the third point at

relative pressure of 0.39 in Figure 6.15. This downward deviation indicates that micropores become filled

by multilayer adsorption at low relative pressure, thus the surface available for continual adsorption reduces

[10]. Through the extrapolation of the second straight line to zero relative pressure, one yields a measure of

the volume of the adsorbate in the previously blocked micropores. This extrapolation process is illustrated

in Figure 6.15. Korpa and Trettin [202] suggested that supermicropores and very narrow mesopores in size of

0.7-1.8 nm, which are presented in slit-shaped, sheet-like nanostructures that are typical microstructures of

cement-based materials, can be filled in the range (P/P0 ∈ (0.01, 0.4)). Contrary to the total pore volume,

the micropore volume decreases with curing age monotonously for both Paste I and II, see the second

column in Table 6.7. This may be due to the drying technique applied in this study. Since the freezing

dry with vacuum for 24 hours at outgass of 8-13 Pa is a mild drying method, some of the micropores are

still filled with water (this kind of water can be structural water or strongly adsorbed water). In addition,

as curing age increases, the gel structure becomes denser so that some of the micropores are blocked by

gel solid, which is similar to the hindered pore identified by Jennings [178]. The reduction of micropores

is particularly severe for Paste II. As shown in Table 6.7, the volume of micropores reduces from 4.141 to

0.219 (µl/g ) when curing age of samples increases from 7D to 180D.

Similar to the variation of total pore volume with curing age, the pore volumes for paste I both from BJH

sorption and desorption branches increase with curing age. For paste II, the BJH pore volume (sorption

and desorption) increases as curing age increases from 7D to 28D, then it decreases when curing age goes

on. The reasons are the same with those for the BJH surface area variation with curing age: accessible

porous gels increase firstly, then become inaccessible denser structure.

The MIP total volume decreases with curing age monotonously for both paste I and paste II, which

can be attributed to the continual pore volume elimination by hydration. However, once the pore region

reduces to 3-70 nm, the variation of pore volume obtained by MIP data is similar to that by BJH: it

increases with curing age monotonously for paste I, while it increases first then decreases when curing age

is longer than 28D for paste II. Note that this pore size interval d ∈ 3 − 70 nm for MIP is close to that of

BJH (d ∈ 1.7 − 100nm) as shown in Figures 6.14(a) and 6.14(b).

The total porosity can be evaluated once the pore volume and the solid volume are determined. Since

the pore volume determined by the NAD is limited in magnitude of hundred nanometers in average [10],

it thus will not be used to evaluate the total porosity. Instead, the pore volume determined by gravimetry
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(a) (b)

Figure 6.16: (a), Porosity of paste I measured by different drying technology in terms of curing age. (b),
The statistical results of the porosity in terms of curing age.

and MIP methods are employed to evaluate the total porosity. The drying methods for MIP and gravity

methods are summerized in Table 6.2. The samples for MIP measurement were dried by method of freezing

dry, while the samples for gravity measurement are dried by methods of solvent exchange and of oven dry

(105℃ for 24 hours). The drying techniques have significant influence on pore structure measurement

[202]. The porosity pretreated by different drying techniques is shown in Figure 6.16(a). It can be seen

that oven dried samples exhibit the largest porosity, while the freezing dried samples have almost lowest

porosity except for paste I at 7D. This can be due to the fact that the oven dry in 105℃ removes water in

capillary pore and part of water in gel pores [10], while freezing dry is much mild and slow. The porosity of

samples dried by methanol exchange is slightly larger than those by acetone exchange because the molecule

size of methanol is smaller than that of acetone, and the affinity of hydrogen of acetone with pore wall

make it easier to penetrate into pores but harder to remove from pores. Figure 6.16(b) illustrates the

statistical results of the porosity measured by different drying techniques for paste I. The average porosity

decreases from 0.39 to 0.33 consistently as curing age increases. Figures 6.17(a) and 6.17(b) show the

similar observations for paste II, but the porosity for paste II is much lower than that of paste I: the

average porosity decreases from 0.24 to 0.21 as curing age increases from 7D to 180D.

To characterize the pore structure of blended cement pastes comprehensively and extensively, three

different characteristics of pore size are addressed by means of NAD and MIP data. The critical radius is

the inflection point on the volume intrusion versus radius curve (the maximum value of the dV/dP curve),

which corresponds to the smallest pore size of the subset of the largest pores creating a connected path

through the sample as suggested by Katz and Thompson [184]. It is also reported the strong correlation

between the critical pore size and water permeability or ions diffusion coefficients [151]. The threshold pore

size (diameter) is defined as the diameter where mercury begins to enter and percolate the pore system in
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(a) (b)

Figure 6.17: (a), Porosity of paste II measured by different drying technology in terms of curing age. (b),
The statistical results of the porosity in terms of curing age.

Table 6.8: The characteristic pore size of paste I (II) by different measurements.
Curing age (days) Critical pore size (nm) threshold pore size (nm) 4V/S MIP (nm)

7D 75.0(13.2) 544.6(95.6) 23.448(20.306)
28D 38.5(13.2) 225.2(83.3) 11.038(15.063)
90D 21.1(8.6) 77.4(40.3) 11.206(13.489)

180D 17.2(3.6) 95.6(15.4) 11.631(10.421)

Curing age (days) 4V/S BJH (adsorp) (nm) 4V/S BJH (desorp) (nm) 4V/S BET (nm)

7D 138.764(114.964) 94.662(254.108) 84.711(137.058)
28D 11.698(10.699) 7.039(8.611) 8.602(8.779)
90D 9.034(11.040) 7.421(8.746) 8.321(9.581)

180D 9.458(8.957) 7.334(6.910) 7.964(7.437)

appreciable quantity [428]. The average pore size or mean pore size is determined by the ratio of total pore

volume to surface area, d = 4 × volume/surface area. The average pore size is also addressed through BJH

(adsorption and desorption branches) and BET approach by means of NAD data.

As presented in Table 6.8, the critical pore radii decreases as curing time increases, so do the other

characteristics of pore size. The critical pore radius for paste I are larger than those for paste II obviously due

to the larger w/c ratio for paste I. The decrease of characteristic pore sizes with curing age is undoubtedly

due to the hydration processes that form new C-S-H gel and other crystals filling the capillary pores.

A noticeable observation is that some of the average pore size determined by all the four data branches

(MIP, BJH sorption and desorption, and BET), for paste II are slightly larger than those for paste I. This

anomalous observation may be due to the microstructure change of C-S-H with curing age. On one hand,

for paste I, the formed porous LD C-S-H augments the specific surface area as observed in Table 6.6; on

the other hand, paste II that has denser compaction and forms more HD C-S-H, eliminates the capillary

pores and leads to a small amount of pore volume accessed by NAD. The coupling of the above mentioned

effects may lead to the anomalous observation of average pore size for paste I and II as shown in Table 6.8.
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(a) (b)

Figure 6.18: Cumulative pore size distribution measured by MIP for paste I (w/c=0.5) (a) and paste II
(w/c=0.3) (b) at different curing age.

6.3.3 Pore size distribution

The MIP measurement can present both cumulative pore size distribution (CPSD) and differential pore

size distribution (DPSD). As shown in Figures 6.18, the CPSD profiles of paste I and paste II with curing

age have similar curves but are full of different pore feature information. As presented in Figures 6.18(a)

and 6.18(b), the intruded pore volume shown in CPSD profiles of paste I is larger than that of paste II,

which indicates the amount of capillary pores of paste I is larger than that of paste II systematically. It

also clearly shows that the pore width decreases as curing time increases for paste I and II. Figures 6.19(a)

and 6.19(b) show the variation of intruded pore volume fraction of paste I and II with curing age. The

intruded pore volume fraction is obtained by a normalization that divides the current intruded pore volume

by the total intruded pore volume. The narrowing of pore size with hydration time can be found for paste

I and II as obviously shown in Figure 6.19(a) and 6.19(b).

Figures 6.20(a) and 6.20(b) illustrate the DPSD profiles of paste I and II respectively. Two pore size

regions are used to analyze the PSDs. The region I that is defined in scale of d ∈ (3 ∼ 20) nm, determines

the variation of gel pores and part of small capillary pores. In this region, the ink-bottle effect is not

significant, so that the variation of pores in this scale may be captured well by DPSD. The region II is

defined in scale of d ∈ (20 ∼ 1000) nm. In this region, the critical pore size that actually is the throat pore

size of ink bottle as extensively analyzed by Diamond [99], can be clearly figured out. It can be seen, in

Figures 6.20(a) and 6.20(b), that the DPSD in region I increases with curing age for both paste I and II

due to the formation of porous C-S-H gel. In region II, the peak point that is the critical pore size, and

the peak area that is the cumulative pore size distribution, decrease with the augmentation of curing age

for both paste I and II.
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(a) (b)

Figure 6.19: Normalized CPSD or intruded pore fraction measured by MIP for paste I (w/c=0.5) (a) and
paste II (w/c=0.3) (b) at different curing ages.

(a) (b)

Figure 6.20: Differential pore size distribution measured by MIP for paste I (w/c=0.5) (a) and paste II
(w/c=0.3) (b) at different curing ages.

(a) (b)

Figure 6.21: The cumulative pore size distributions for paste I (a) and paste II (b) with different curing
ages by means of BJH desorption data.
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(a) (b)

Figure 6.22: The differential pore size distributions for paste I (a) and paste II (b) with different curing
age by means of BJH desorption data.

The CPSD and DPSD of all paste samples evaluated by BJH desorption data are presented in Figures

6.21 and 6.22 respectively. The average pore size region for BJH desorption analysis is limited in about

(2∼100) nm. Furthermore, the effective region of pore size for BJH approach is argued to be less than 60

nm since the upper boundary of relative pressure is 0.967 [10]. For all samples, an almost linear increase

of CPSD with logarithm value of pore diameter can be seen down to 3.5 nm. At this size, a significant

increment of pore volume is observed, see Figure 6.21 and 6.22. The corresponding pore size agrees well

with the interlayer pore size of hydration product C-S-H, and this peak is due to the gel (interlayer) pore

condensation of nitrogen. The same conclusion is also reached by other authors [12, 306].

In summary, for pore size distribution measurement, MIP provides a reliable distribution on a large

pore size range while for micropore and meso-pore ranges, the NAD measurement affords more detailed

information on gel pores of C-S-H hydrates. The combined MIP and NAD methods have been extensively

studied to evaluate the pore structure of cement-based materials by Kaufmann and Kaufmann et al. [186,

189, 190]. Due to the large scale availability of MIP measurement, and the same physic meaning of ice

penetration and mercury intrusion, the pore structure measured by MIP is selected for evaluating the

curves of ice or liquid saturation degree in terms of temperature (see section 8.3 for detail).
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In this chapter the classical homogenization procedure for multi-level or multi-scale composites, used

for example by Ulm et al. [403], is applied to evaluate the macroscopic poro-elastic properties of hardened

cement pastes, which will be useful in the description of cement-based materials submitted to freeze-

thaw loading in next chapter. In the present work, we start the homogenization procedures from the

microstructure of hardened cement paste since the components and pore structure have been evaluated in
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chapter 6. Also through the classical homogenization procedure, the transport properties of cement-based

materials are to be evaluated and validated by experimental results in literature.

7.1 Principle of multi-scale modelling

The global behavior of composites depends not only on the materials of compounds, but also the their

microstructural morphology and their interactions. The classical homogenization technique is actually a

method to estimate the global behavior through replacing an actual heterogeneous complex body by a

fictitious homogeneous one which behaves globally in the same way. Cement-based materials are typical

composites which are heterogeneous at micro-scale or meso-scale, and homogeneous at macro-scale. It is

thus not surprising that numerous multi-scale models have been used to assess the global behaviors of

cement-based materials, cf. [137, 179, 338, 403, 411]. The first but significant important procedure is to

define a RVE, see also chapter 4. Over the RVE, the average behaviors of locally heterogeneous materials can

be represented by a fictitious homogeneous material. Generally, the homogenization method includes three

steps [438]: description/representation, concentration/localization and homogenization/upscaling. In the

step of description, the different phases of the microstructure in the RVE of the considered heterogeneous

material must be identified clearly. This step is very important not only for multiscale modelling, but

also for the properties of materials themselves. That is why many researches pay much attention on the

nano-structure of C-S-H in cement-based materials, cf. [66, 68, 179, 411, 412]. The concentration step is

concerned with the principles of mechanical and transport behaviors of each phase as well their interactions.

The homogenization step is actually a method that estimates the macroscopic properties by means of the

local constitutive equations and the concentration relations. Based on different hypotheses, there are many

different homogenization/upscaling methods. More details can be found in relevant comprehensive reviews

[159, 438, 446]. In this work, we follow the widely used Mori-Tanaka and self-consistent methods. The

detailed homogenization procedures for mechanical and transport properties can be found in Appendix C.

7.2 Mechanical properties of cement paste

7.2.1 Multiscale nature of cement paste

In this subsection, we recapitulate the nature of microstructure of hardened cement paste as extensively

discussed in chapter 6. The two types of C-S-H that were originally observed by Taplin [389] have been

extensively studied by researchers afterwards. Based on the data by means of nitrogen sorption, Jennings

and coworkers proposed the widely employed cement model, named CM, in which the LD C-S-H and HD

C-S-H are structurally distinct but compositionally similar. The CM model was then after verified and

calibrated by nanoidentation measurement by Ulm et al. [403] and Constantinides and Ulm [65–67, 69] and
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by the small-angle neutron scattering (SANS) measurement and small-angle X-radian scattering (SAXS)

measurement by Allen, Thomas and Jennings et al. [11, 12, 179, 393, 395, 397]. Based on the flourishing

contribution aforementioned, it is thus not difficult to represent the complex microstructure as an ideal

multiscale composite system as illustrated in Figure 7.1.

In order to address the micromechanical modelling and homogenization of poroelastic properties, the

microstructure of the hardened cement paste is divided into the following three scale levels:

✾ Level-I, (10−9 ∼ 10−8m, the LD and HD C-S-H solid): the LD and HD C-S-H are composed
of the basic globules and the gel pores.
✾ Level-II, (10−8 ∼ 10−6m, the C-S-H solid matrix): the C-S-H solid matrix is composed of LD
and HD C-S-H.
✾ Level-III, (10−6 ∼ 10−4m, the cement paste): the cement paste is composed of C-S-H matrix,
CH, Al and Fe minerals, unhydrated cement clinkers and capillary pores.

More details on microstructure modelling of cement paste can be found in Ulm et al. [403], Constantinides

and Ulm [67], Dormieux et al. [103], Bernard et al. [46] and Pichler and Hellmich [292].

7.2.2 Homogenization equations

Figure 7.1: Micromechanical representation of the cement
paste through a three-step homogenization scheme.

The nature of multi-scale microstructure

of the cement paste (cf. three different lev-

els presented in Figure 7.1) allows us to write

the homogenization equations of the macro-

scopic parameters in three steps, first for HD

and LD C-S-H (from nano-structure of C-S-H

globules to level-I), then for the C-S-H col-

loid (from Level I to Level II), and last for

the cement paste (from level-II to level-III).

The description on the micromechanics repre-

sentation of the RVEs of C-S-H and cement

paste has been extensively discussed in Refs.

[46, 136, 137, 292].

7.2.2.1 Level-I: LD and HD C-S-H

According to the CM model by Jennings and coworkers [178, 392, 396], the LD and HD C-S-H are

constituted by the same solid matrix, named the globules in size of 3nm. The globules are considered to be

identical in LD and HD C-S-H. The different packing density or patterns of globules lead to the different

porosity between these two types of C-S-H, i.e., the gel porosity is about 0.24 for HD C-S-H and 0.37 for
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LD C-S-H [392]. The pores then can be regarded as a kind of inclusion in the continual C-S-H matrix, the

poroelastic properties of C-S-H matrix can therefore be evaluated by means of homogenization presented

in Appendix C. For this purpose, the porosities, φLD and φHD, the elastic modulus ks and gs and the

thermal expansion of the C-S-H solid αs are needed. Considering one solid phase and one porous phase,

the homogenized drained bulk modulus and the shear modulus can be given by [137]:

Khom
X = (1 − φX)ksA

v
s,X , Ghom

X = (1 − φX)gsA
d
s,X (7.1a)

bhom
x = 1 − Khom

X

ks
,

1
Nhom

X

=
(1 − φx)

(

1 −Av
s,X

)

ks
(7.1b)

where the subscript X represents LD or HD. Av
s,X and Ad

s,X are the strain localization tensor parameters

of phase LD C-S-H or HD C-S-H. If an Eshelbian type morphology inclusion that is proved to be a suitable

assumption for elastic properties homogenization of cement based materials [103, 376], is considered, and

the self consistent scheme, i.e, k0 = Khom
X and g0 = Ghom

X , is applied, the parameters α0 and β0 in

concentration equation are given by:

α0 =
3Khom

X

3Khom
X + 4Ghom

X

; β0 =
6
(

Khom
X + 2Ghom

X

)

5
(

3Khom
X + 4Ghom

X

) (7.2)

By using the eq(C.33) and (C.37) in Appendix C, and the relation αhom
d = (C)−1 : κhom, the homogenized

thermal parameters can be evaluated in:

κhom
X = (1 − φX)ksαsA

v
s,X , αhom

d,X = αs, Qhom
X = αs(1 − φx)

(

1 −Av
s,X

)

(7.3)

We follow the assumption that the porosity in HD C-S-H is not active 1 as is done by Ghabezloo [136, 137,

139]. The water in HD C-S-H, strongly adsorbed by the van der Waals forces, can not be removed except in

severe drying condition, cf. O-dry with 105℃ and D-dry, and can sustain the mechanical loading partially

[178]. Thus the undrained condition should be specifically considered in homogenization procedure. The

undrained homogenized bulk modulus and thermal dilation coefficient are then given by [137]:

Khom
u,HD = Khom

HD +
(bhom

HD )2

1
Nhom

HD

+ φHD

Kf

(7.4a)

αhom
u,HD = αhom

d,HD +
Qhom + φHDαf,HD − bhom

HD αhom
d,HD

Khom
HD

bhom
HD

(

1
Nhom

HD

+ φHD

Kf

)

+ bhom
HD

(7.4b)

where αf,HD is the thermal dilation coefficient for pore fluid in HD C-S-H, which is much larger than that

for solid phases in cement-based materials [136, 248, 249, 370].

The homogenized elastic properties of LD C-S-H and HD C-S-H are presented in Table 7.1. It can be

1. According to [136], the active pore is defined as : the pore fluid can exchange with the fluid filling the pore volume
situated in its neighbourhood under the effect of a pressure gradient. Otherwise, the pore is not active
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found that the evaluated results are lower than those homogenized by Mori-Tanaka scheme in Refs. [67, 403]

and experimental results in Ref [6, 448], but are comparable to the values homogenized by self-consistent

scheme in Refs. [136].

Table 7.1: The evaluated poromechanical parameters in Level-I.

Level-I
Young’s modulus Bulk modulus Shear Modulus Bulk modulus

References
Ehom

X (GPa) Khom
X (GPa) Ghom

X (GPa) Kuhom
X (GPa)

(Drained case) (Undrained case)

LD C-S-H

13.63 9.03 5.21 11.88 This studya,b

21.7 ± 2.2(M-T)b,c 14.47 8.75 - [67, 403]

12.46d 7.99 4.93 8.59 [136]
23.4 ± 3.4 - - - [448]
21 ± 2 - - - [6]

HD C-S-H

26.33 16.81 10.22 18.74 This studyb

29.4 ± 2.4(M-T) 18.84 11.85 - [67, 403]

21.95d 14.07 9.75 14.36 [136]
31.4 ± 2.1 - - - [448]
30 ± 4 - - - [6]

Level-I

Poisson ratio Biot coefficient Biot moduli Thermal dilation coefficient

Referencesv (-) bhom
X (-) Nhom

X (GPa) αhom
d,X (µm/m) αhom

u,X (µm/m)
(Drained case) (Undrained case)

LD C-S-H
0.25 0.72 92.72 42 96.62 This study
0.25 0.71 93.1 - - [67, 403]

0.25 0.68 81.0 42 100.23d [137]

HD C-S-H
0.25 0.47 135.72 42 64.68 This study
0.25 0.61 85.9 - - [67, 403]
0.25 0.44 124.91 42 66.93 [137]

a The poisson ratio is assumed to be 0.25 [67, 403];
b The used LD C-S-H and HD C-S-H porosity are 0.37 and 0.24 respectively [392];
c M-T represents the Mori-Tanaka homogenization scheme;
d Calculated from the data in Ref. [136], E = 44.3, v = 0.204, ks = 25, gs = 18.4 and φLD = 0.37, φHD = 0.24.

7.2.2.2 Level-II: C-S-H matrix

The homogenized poromechanical properties of C-S-H that is composed of LD and HD C-S-H, can then

be evaluated as:

Khom
CSH = fLDK

hom
LD Av

LD,CSH + fHDK
hom
u,HDA

v
HD,CSH (7.5a)

Ghom
CSH = fLDG

hom
LD Ad

HD,CSH + fHDGHD
homAd

HD,CSH (7.5b)

bhom
CSH = 1 − fLDA

v
LD,CSH

(

1 − bhom
LD

)

− fHDA
v
HD,CSH (7.5c)

1
Nhom

CSH

= fLD

(

(1 − bhom
LD )

(

1 −Av
LD,CSH

)

ks
+

1
Nhom

LD

)

+ fHD

1 −Av
HD,CSH

Khom
u,HD

(7.5d)

Again, the Eshelbian type solutions of strain localization tensor parameters, Av
X,CSH and Ad

X,CSH , can be

evaluated (see eq(C.9)). Under the self consistent scheme: k0 = Khom
CSH and g0 = Ghom

CSH , the parameters α0

and β0 are given by:

α0 =
3Khom

CSH

3Khom
CSH + 4Ghom

CSH

; β0 =
6
(

Khom
CSH + 2Ghom

CSH

)

5
(

3Khom
CSH + 4Ghom

CSH

) (7.6)
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Recalling again the eqs(C.33) and (C.37), and the relation αhom
d = (C)−1 : κhom, the homogenized thermal

parameters can be evaluated in:

αhom
d = fLDK

hom
LD αhom

d,LDA
c
LD,CSH + fHDK

hom
HD αhom

u,HDA
c
HD,CSH (7.7a)

Qhom
CSH = αhom

u,HDfHD

(

1 −Av
HD,CSH

)

+ fLD

(

αhom
d,LD(1 −Av

LD,CSH)(1 − bhom
LD ) +Qhom

LD

)

(7.7b)

The term αhom
d,X = αs, is retained for any elastic porous medium [192].

For the C-S-H phase, the active porosity is only contributed by the pores in LD C-S-H with a form

φact
CSH = fLDφLD. One thus can evaluate the undrained bulk modulus Khom

u,CSH and thermal dilation

expansion coefficient αhom
u,CSH as follows:

Khom
u,CSH = fHDK

hom
u,HDA

v
HD,CSH + fLDK

hom
d,LDA

v
LD,CSH +

(bhom
CSH)2

1
Nhom

CSH

+ φact
CSH

Kf

(7.8a)

αhom
u,CSH = αhom

u,HDfHDA
v
HD,CSH + αhom

d,LDfLDA
v
LD,CSH

+
Qhom

CSH + φact
CSHαf,CSH − bhom

CSH

(

αhom
u,HDfHDA

v
HD,CSH + αhom

d,LDfLDA
v
LD,CSH

)

Khom
CSH

bhom
CSH

(

1
Nhom

CSH

+ φact
CSH

Kf

)

+ bhom
CSH

(7.8b)

The homogenized properties are related intimately to the volume fraction of all compounds. Table 7.2

presents the volume fraction of LD C-S-H and HD C-S-H of paste I and paste II estimated by Avrami

equations as is used by Tennis and Jennings [392]. Those values are also compared to those in Refs

[67, 403, 448]. It can be seen that roughly, the ratio of LD C-S-H to HD C-S-H is 7:3 for w/c=0.5.

Table 7.2: The volume fraction (absolute volume (ml/g cement)) of LD, HD C-S-H and active
porosity in Level-II.

Level-II HD C-S-H fHD,CSH (VHD) LD C-S-H fLD,CSH (VLD) Active porosity φact
CSH (Vact) References

Paste I
0.358 (0.155) 0.642 (0.273) 0.238 (0.101) a This study

0.3b(-) 0.7 (-) -(-) [67, 403]
0.241c(-) 0.759 (-) -(-) [448]

Paste II 0.744 (0.267) 0.256 (0.092) 0.095 (0.034)a This study

a Calculated as φact
CSH = fLD,CSH × 0.37;

b w/c=0.5;
c w/c=0.35.

The homogenized elastic properties of C-S-H that is composed of LD C-S-H and HD C-S-H are presented

in Table 7.3. Obviously, the elastic properties of C-S-H for paste I is significantly lower than those for paste

II due to more HD C-S-H in paste II.
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Table 7.3: The evaluated poromechanical parameters in Level-II.

Level-I: C-S-H
Young’s modulus Bulk modulus Shear Modulus Bulk modulus

References
Ehom

CSH (GPa) Khom
CSH (GPa) Ghom

CSH (GPa) Kuhom
CSH (GP a)

(Drained case) (Undrained case)

Paste I
13.53 11.62 5.25 13.94 This study
23.94(M-T)a 15 9.7 - [67, 403]

Paste II 23.25 15.51 9.60 16.61 This study

Level-II: C-S-H
Poisson ratio Biot coefficient Biot moduli Thermal dilation coefficient

References
v bCSH Nhom

CSH (GPa) αhom
d,CSH (µm/m) αhom

u,CSH (µm/m)
(Drained case) (Undrained case)

Paste I
0.30b 0.53 91.22 42 80.58 This study

0.23b 0.69 90.8 - - [67, 403]

Paste II 0.25b 0.24 162.85 42 68.87 This study

a M-T represent the Mori-Tanaka homogenization scheme.
b Calculated from the bulk modulus and shear modulus, v = (3K − 2G)/(2(3K + G)).

7.2.2.3 Level-III: Cement paste

In this homogenization step, the cement paste is considered. The microstructure of cement paste is

constituted by several phases, of which the C-S-H, Portlandite, AFm, Hydrogernol, anhydrous clinkers

and the macro-pores occupy most of the volume. The volume fraction of these phases and their elastic

constants are presented in Table 7.4. Among these phases, Portlandite crystals, AFm, Hydrogernol and

anhydrous clinkers can be considered as non-porous solids, while C-S-H are porous solids which have been

homogenized in previous subsection. Again, the homogenization of multiphase porous materials are applied

in this system, and the formulas are presented as:

Khom
CP =

m
∑

X

fX,CPK
hom
X,CPA

v
X,CP (7.9a)

Ghom
CP =

m
∑

X

fX,CPG
hom
X,CPA

d
X,CP (7.9b)

bhom
CP = 1 − fCSHA

v
CSH,CP

(

1 − bhom
CSH

)

−
(

m−1
∑

X

fX,CPA
d
X,CP

)

(7.9c)

1
Nhom

CP

= fCSH,CP

(

(1 − bhom
CSH,CP )

(

1 −Av
CSH,CP

)

Khom
CSH

+
1

Nhom
CSH

)

+
m−1
∑

X

fX,CP

1 −Av
X,CP

Khom
X,CP

(7.9d)

Again, the solutions of Eshelbian type inclusions of the strain localization tensor parameters, Av
X,CSH and

Ad
X,CSH in the level of cement pastes, can be evaluated by eq(C.9). With help of the self consistent scheme:

k0 = Khom
CP and g0 = Ghom

CP , the parameters α0 and β0 are expressed as:

α0 =
3Khom

CP

3Khom
CP + 4Ghom

CP

; β0 =
6
(

Khom
CP + 2Ghom

CP

)

5
(

3Khom
CP + 4Ghom

CP

) (7.10)
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Table 7.4: The volume fraction and elastic properties of paste I (paste II).
Compounds Volume fraction Elastic Modulus Possion ratio References

fX,CP EX (GPa) v(-)

CSH 0.5196(0.5745) 13.53 (23.25) 0.3 (0.25) This study
- 23.9 0.234 [67, 403]

C3S 0.0108(0.0398) This study
135 ± 7 0.28 [6, 234]
147 ± 5 0.3 [414]

C2S 0.0131(0.0370) This study
130 ± 20 0.3 (βC2S) [234, 414]
140 ± 10 0.3 [6]

C3A 0.0005(0.0023) This study
145 ± 10 [414]
160 ± 10 [6]

C4AF 0.0023(0.0066) This study
125 ± 25 [414]

AFm 0.0882(0.1097) This study
42.3 0.324

Hydrogarnel 0.0614(0.0718) This study
22.4 0.25 [150]

CH 0.1325(0.1551) This study
35.24 [34]
48 [429]
39.77-44.22 3.05-3.25 [258]
36 ± 3 [6]
38 ± 5 [65, 67, 69]
35.2 0.31 [234]

Inert 0.0024(0.0029) This study
the same as C-S-H

Capillary Pores 0.1689(≈ 0)

Table 7.5: The evaluated poromechanical parameters in Level-III.

Level-III: Young’s modulus Bulk modulus Shear Modulus Bulk modulus
References

Cement paste Ehom
CP (GPa) Khom

CP (GPa) Ghom
CP (GPa) Kuhom

CP (GPa)
(Drained case) (Undrained case)

Paste I
17.53 14.61 6.41 17.39 This study
22.3(M-T)a 14.1 8.7 16.6 [67, 403]

Paste II 24.2 20.18 10.02 23.48 This study

Level-III: Poisson ratio Biot coefficient Biot moduli Thermal dilation coefficient
References

Cement paste v bCP Nhom
CP (GPa) αhom

d,CP (µm/m) αhom
u,CP (µm/m)

(Drained case) (Undrained case)

Paste I
0.30b 0.49 122.2 - 68.08 This study
0.25 0.69 90.8 - - [67, 403]

Paste II 0.3 0.33 179.7 42 55.4 This study

a M-T represent the Mori-Tanaka homogenization scheme.
b Calculated from the bulk modulus and shear modulus, v = (3K − 2G)/(2(3K + G)).

The homogenized thermal parameters can be evaluated as:

κhom
CP =

m
∑

X,CP

fX,CPK
hom
X,CPα

hom
X,CPA

c
X,CP (7.11a)

Qhom
CP =

m−1
∑

X,CP

αhom
X,CP fX,CP

(

1 −Av
X,CP

)

+ αhom
CSH,CP

[

fCSH,CP

(

1 −Av
HD,CSH

)

(1 − bhom
CSH,CP ) +Qhom

CSH

]

(7.11b)

For the cement paste, the active porosity is contributed by the capillary pores and the gel pores in LD
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C-S-H. The active porosity is expressed as φact
CP = φCP + fCSH,CP fLD,CSHφLD. One thus can evaluate

the undrained bulk modulus Khom
u,CP and thermal dilation expansion coefficient αhom

u,CP of cement paste as

follow:

Khom
u,CP =

m
∑

X

fX,CPK
hom
d,X Av

X,CSH +
(bhom

CP )2

1
Nhom

CP

+ φact
CP

Kf

(7.12a)

αhom
u,CP = αt,CP +

Qhom
CP + φact

CPαf,CP − bhom
CP αt,CP

Khom
CP

bhom
CP

(

1
Nhom

CP

+ φact
CP

Kf

)

+ bhom
CP

(7.12b)

with

αt,CP = fCSH

(

αhom
u,HDfHDA

v
HD,CSH + αhom

d,LDfLDA
v
LD,CSH

)

+
m−1
∑

X

αhom
d,X fX,CPA

v
X,CP (7.13)

where αt,CP represents the total thermal expansion coefficient of the material in which the active pore

water (gel pore water in LD C-S-H and capillary pore water) is removed.

As shown in Table 7.4, the C-S-H occupies more than half of the total volume. For all the hydration

products, their volume for paste II are slightly higher than those for paste I due to the lower initial volume

of paste II: Vin = 0.8205 for Paste I and Vin = 0.6205 for paste II referring to 1 gram of unhydrated cement

powder. Table 7.4 also presents the elastic properties of main compounds of cement paste adopted in

literature. The unhydrated cement clinkers have much higher elastic modulus, i.e, 125-160 GPa, compared

to those values of C-S-H and CH, which occupies around 70% total volume of cement paste.

The homogenized elastic properties of cement pastes are presented in Tables 7.5. It can be found that

the evaluated results are comparable to those homogenized by Mori-Tanaka scheme in Ref [67, 403]. The

elastic modulus and shear modulus for paste I is lower than those values in Ref [67, 403] due to the different

Poisson ratios, see Table 7.5. Paste II has higher elastic constants due to the fact that it has more minerals

that have higher elastic constants. It can be also found that the undrained bulk modulus of cement paste is

higher than that in drained case due to pressure sustainability of the liquid phase. The undrained thermal

expansion coefficient for paste II is lower than that of paste I because paste II has lower porosity.

7.3 Transport properties of hardened cement paste

7.3.1 Introduction to the transport properties of hardened cement paste

As a typical porous material, the properties of electrical conductivity, permeability and diffusivity of

cement-based materials are of significant interest for engineering application. In addition, sustainability

issues require more durable cement-based materials with low water permeability and diffusivity because
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the permeability is related intimately to the normal deterioration phenomena of cement-based materials,

such as, freeze-thaw deformation, carbonation, chloride ingression and corrosion of steel reinforcement [247].

However, direct measurement of transport properties of cement-based materials usually requires specialized

equipment and costs long time [271], and the obtained data are scattered due to the microstructure hetero-

geneity of cement-based materials. A noticeable effect of microstructure change on the transport properties

of cement-based materials is the interfacial transition zone (ITZ) for concrete and mortars [100, 276], which

increases the ability of mass transport in porous cement-based materials due to the more porous structure

of ITZ. Nevertheless, many additives, such as, silica fume [41, 42], fly ash [13, 280], ground granulated

blast furnace slag (GGBS) [241, 242], lime stone powder [161], polymer [130, 204] and other nano parti-

cles [160, 180], used in cement-based materials for both sustainability and durability consideration, have

significant influences on their transport properties. For instance, by adding nano-particles into Portland

cement mortars, the chloride diffusivity is lowered due to both physical and chemical effects, such as, space

filling, nucleus agent for cement hydration, formation of the denser C-S-H, and possible pozzolanic reactions

[160]. In addition, the obtained diffusivity of cement-based materials is rather influenced by the measure-

ment methods. As shown in Buenfield and Newman [55], the three typical chloride diffusion methods for

cement-based materials: the concentration-profile technique, the diffusion-cell technique and the electrical

conductivity technique, have significant shortages for ionic diffusivity. Both the concentration-profile tech-

nique and the electrical conductivity technique are rather approximate and the former method requires

very long test time. The diffusion-cell technique is said to be the most appropriate laboratory method for

determining the ions diffusivity, but the technique is unable to monitor changes in diffusion rate during

long-term exposure to a source of the ion in question [55]. The conflict between accuracy, convenience

and/or low cost requirements of experiments on the transport properties of cement-based materials con-

tributes to the models development. Based on the percolation theory, many works on the conductivity

of porous medium have been published for either theoretical discussion or applications on soil, petrol and

cement-based science/engineering [41, 184, 351, 426]. In this section, we thus try to estimate the transport

properties of cement-based materials by the effective methods presented before.

7.3.1.1 Conductivity and diffusivity

For a porous material, the relative diffusivity and relative electrical conductivity are defined as the ratio

of diffusivity D (conductivity σ) to the bulk diffusivity D0 (bulk conductivity σ0) of pore-filled liquid:

D

D0
=

σ

σ0
=

1
F

=
φ

τ
(7.14)

where F is the formation factor, φ is connected porosity, τ is the tortuosity. Note that in eq(7.14) the

tortuosity is somewhat different from the definition in [409]. The relationship σ/σ0 = (φδc)/τ2 was retained
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by Brakel and Heertjes [409], with δc the constrictivity. Obviously τ = δc/τ
2|BH . Except some applications,

cf. [264, 378], the tortuosity in eq(7.14) rather than that in Brakel-Heerthes form, was used. An empirical

equation that relates the conductivity to the porosity is the Archie’s law [19]:

σ = CAφ
mA (7.15)

where CA and mA are adjustable constants. When the percolation of the entire pore network are taken

into account, a more appropriate formula with a critical porosity φc than the Archie’s law [246] can be

obtained:
σ

σ0
=
(

φ− φc

1 − φc

)mp

(7.16)

where mp is defined as a percolation exponent. Also, on percolation consideration, the porosity φ in

Archie’s law (eq (7.15)) can be replaced by a effective porosity φ− φc. For φc ≪ 1, eq(7.16) reduces to the

percolation modified Archie’s equation, σ = CA(φ− φc)mA .

Table 7.6: Parameters of conductivity in empirical equations with or without percolation consideration.

Materials Constant C Constant m Percolation Equation Methods References
porosityφc

Model porous media 2-4 0.125 Eq(7.16) ballistic deposition model [88]
Cement-based materials 0.036-210 1.34-4.73 Eq(7.15) 30 Volt/15 min [271]
Model porous media 2-2.4 0.27-0.3 Eq(7.16) Lattice Boltzmann method [238]
Model porous media 2.8 0.33 Eq(7.16) Lattice simulation [201]

Table 7.7: Summary of some mixing models for conductivity of porous materials.
Name Scope Formula σeff = Note References

Parallel
model

1-many phases
∑N

i
φiσi Parallel axi-

ally layered
structure of
phase i with
σi

[230]

Perpendicular
model

1-many phases 1
σeff

=
∑N

i

φi
σi

Parallel nor-
mally layered
structure of
phase i with
σi

[142, 230]

Modified
parallel
model

2 phases σ1φ2β1 + σ2φ2β2 βi connectiv-
ity factor

[265]

Random
model

1-many
∏N

i
σ

φi
i

Arbitrary
oriented
phase i with
σi

[142]

Archie-based
model

2 phases σ1(1 − φ2)[log(1−φm
2

)/ log(1−φ2)] + σ2φm
2 with bound-

ary constric-
tion

[142]

Archie-based
model

2 phases σ1φm + σ2φn
2 [56, 265]

Bruggeman-
Hanay ap-
proach

2 phases σ1φm
1 [(1 − σ2/σ1)/(1 − σ2/σeff )]m with σ1 < σ2 Composite

theory
[56]

Waff model 2 phases [σ2 + (σ1 − σ2)(1 − 2φ2/3)]/[1 + (φ2/3)(σ1/σ2 − 1)] Composite
theory

[416]

Table 7.6 presents the parameters of conductivity in Archie’s law for common porous materials from

literature. Note that, for cement-based materials, both the CA and ma have large deviation compared to

other porous materials. Therefore, for complex composites, such as cement-base materials, the Archie’s
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Figure 7.2: The reciprocal of formation factor 1/F = σ/σ0 for cement-based materials in terms of porosity.
Data from [61, 271, 275, 339, 378, 400, 401, 409].

Table 7.8: The expressions for curves presented in Figure 7.2.
Name Formula References

Brakel-Heerthes equation σ
σ0

= φδc
τ2

BH

[264, 378, 409]

δc = 0.395 tanh[4(log rp + 6.2)] + 0.405
τBH = −1.5 tanh[8(φ − 0.25)] + 2.5

Effective medium theory σ
σ0

= D
D0

=

[

mφ +
√

m2
φ

+ φc
1−φc

(Ds/D0)1/n

]n

[275]

mφ = 1
2

[

(Ds/D0)1/n + φc
1−φc

(

1 − (Ds/D0)1/n
)

− φc
1−φc

]n

Garboczi-Bentz equation σ
σ0

= 0.001 + 0.07φ2 + H(φ − φc) · 1.8(φ − φc)2 [40]

law in simple power formula may be not suitable for describing their conductivities. Instead of the simple

Archie’s law, many mixing models for conductivity of porous materials have been developed, cf. Table

7.7. Figure 7.2 shows the curves predicted by selected models (see Table 7.8) and measured data by

different authors for cement-based materials. It can be found that no uniform formula can capture all

the experiment data for cement-based materials and there exist two distinct data areas for blended cement

pastes and mortars and/or concrete respectively. For the blended cement pastes, a large variation of regions

of porosity in about 0.1∼0.6 can be observed and numerous data of the distribution of relative conductivity

in terms of porosity are close to the values predicted by Ghaboczi-Bentz equation [40] and the EMT by

Oh et al. [275]. For concrete and mortars, the porosity is much lower than that of cement pastes, but the

conductivity does not decrease due to the percolated pores in interface transition zone (ITZ).

7.3.1.2 Permeability of porous materials

A well known empirical equation describing the permeability of porous materials is the Kozeny-Carman

equation:

κ = CKC
φ3

S2
or =

φ(V/S)2

C∗
KC

(7.17)
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Table 7.9: Constant and factor of permeability in Katz-Thompson formula fro cement-based materials.
Materials Measurement method Constant CH Formation factor F Acuurancy References

Mortars Pressure permeability cell 180 E-D equation normal [151].
Cement pastes References [4,5] there in 226 Impedance spectroscopy normal [61]
Mortars Pressure permeability cell 180-2000 [109, 237]

where CKC and C∗
KC are adjustable constants, V is the pore volume, S is the specific surface area. Actually

V/S is a geometric length, and generally, 2V/S is defined as a mean pore radius rm. Alternatively,

Johnson et al. [182] introduced another geometric parameter Λ instead of the 2V/S used in eq(7.17).

This parameter is a measure of dynamic connected pore size that is related directly to transport in porous

medium. Generally, 2V/S 6= Λ. Based on electrical conductivity measurement, Katz-Thompson addressed

an elegant formula as follows [184]:

κ =
r2

c

CHF
(7.18)

where rc is the critical pore radius, CH is a adjustable constant and F is the formation factor defined

in eq(7.14). Again, rc 6= 2V/S 6= Λ generally. However, From the Kozeny-Carman and Katz-Thompson

equations, for porous media the permeability is proportional to the hydraulic characteristic length l2H

(lH = V/S for Kozeny-Carman equation and lH = rc for Katz-Thompson equation). This was also verified

by Friedman and Seaton [126], who applied the critical path analysis to both the electric and hydraulic

conductivities, and derived by dimensional analysis by Coussy [76].

Compared to the direct measurement of the permeability, which is long time cost especially for low

permeable cement-based materials, measurement of the electrical conductivity of porous materials is much

easier. Note that the deduction of the permeability through measurements of the electrical conductivity may

be a problem of some experimental interest. For cement-based materials which have pore size distributions

from nano-meter to millimeter (air-voids), the mass transport mechanisms in capillary pores and in gel

pores can be quite different. For instance, with the percolated ITZ that has large capillary pores in size

of 10-40 µm [237], the permeability deviates much from the predicted values by Katz-Thompson relation

[271]. Therefore, Martys concluded that estimation of permeability of cement-based materials from rc

determined by MIP would be too simple, unless it has a clear explanation for the anomalously large Katz-

Thompson constant CH in terms of the pore structure [237]. Table 7.9 presents the constant and factor of

permeability in Katz-Thompson formula for cement-based materials. It can be seen that the constant CH

has no unique value for cement-based materials. However, with comprehensive study several models on

calculating the permeability, Bernabe and Bruderer [45] concluded that the Katz-Thompson model provides

the best description of trends of the permeability with width of the pore distribution.

Besides the Katz-Thompson equation, a widely used expression is a power law equation like Archie’s

law, fitted from experimental data:

κ = Crr
m
c or = Cφφ

m (7.19)
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Nyame and Illston [273] (cited from [151]) obtained the exponent value m = 3.28 for cement pastes with

w/c in 0.25∼1.0. For mortars, with w/c=0.4 and 0.5 and the sand volume fraction 0, 0.35, 0.45 and 0.55,

Halamickova et al. [151] obtained a close exponent value m = 3.35. This relation is very similar to the

formula obtained by Powers [305], in which the variable is porosity φ rather than the critical pore size rc,

and a close exponent value m = 3.6 is found for mortars. Breysse and Gerard [51] found the exponent

values m = 5.9 for cement pastes and m = 3.1 for concrete, and the correlation between permeability and

porosity is very poor for concrete. The constants in above mentioned equations were obtained from fitting

with numerous experimental data, and it seems not suitable for predicting the permeability of cement-based

materials in general case, because each experimental conditions are different. Therefore, it is very necessary

to develop a reliable model for evaluating the transport properties of cement-based materials.

7.3.2 Multi-scale modelling on the transport properties of cement pastes

Compared to the mechanical problem in cement-based materials aforementioned, in the transport prob-

lem the capillary pores have to be specially considered, because the percolated capillary pores has significant

influence on the transport properties of porous materials. In addition, it is not meaningful to start the

transport properties of cement-based materials from the size of C-S-H globules, since the transport prop-

erties at such scale are still enigma and of unknown importance. Therefore, three steps are proposed to

address the multi-scale system:

✾ Step 1, Estimating the conductivity of LD C-S-H and HD C-S-H specifically. Microstructure
differences between LD and HD C-S-H may lead to significant transport properties differences,
although they have the same basic globules. Thus specific considerations on LD and HD C-S-H
are necessary.
✾ Step 2, Estimating the conductivity of solid phases of cement paste which is composed of
LD/HD C-S-H, CH, unhydrated cement clinkers. The same homogeneous method as explored
in previous sections can be applied to estimate the overall conductivity of solid phase.
✾ Step 3, Specific consideration of the effect of capillary pores. The influence of the percolated
capillary pores on the conductivity of cement-based materials maybe beyond the classic homoge-
nization approach. Although numerous works on the overall transport properties of cement-based
materials have been published, the used parameters have been significantly modified to fit the
experimental results, cf. [275, 378], which does not follow the physical principle.

7.3.2.1 Transport properties of LD and HD C-S-H

Experimentally, one can not obtain the transport properties of LD/HD C-S-H directly and there are very

limited knowledge on them. We here adopt the conductivity in literature and with help of homogenization

as demonstrated in Appendix C, we access the transport properties of C-S-H with different LD/HD C-S-H

ratios. The relative conductivity of LD C-S-H and HD C-S-H are reported respectively to be 1.7×10−3 and

0.415 ×10−3 [31]. Those values were adopted as the relative conductivity of outer layer and inner layer

C-S-H by Bary and Béjaoui [31]. Imagine that the HD C-S-H is embedded in the percolated LD C-S-H,

which is similar to the observed microstructure of C-S-H gel: the inner layer appears to be denser structure,
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Figure 7.3: Variation of relative conductivity
with volume fraction of HD C-S-H in a bi-
nary composites which is composed of only LD
and HD C-S-H. σ/σ0 = 1.7 × 10−3 for LD C-
S-H and σ/σ0 = 0.415 × 10−3 for HD C-S-
H are adopted [31]. SCE: Self-consistent esti-
mation, HS+: Hashin-Stricktman upper bound
(=MTE:Mori-Tanaka estimation), HS−: Hashin-
Striktman lower bound, Voigt: Voigt estimation
and Reuss: Reuss estimation.

the outer layer appears to be more porous structure, the solution of Eshelbian inclusions thus can be used

to access the effective relative conductivity. Figure 7.3 shows the effective relative conductivities evaluated

by different homogenization methods as the volume fraction of HD C-S-H increases from 0 to 1. Very closed

value between the self-consistent scheme (SCE) and Mori-Tanaka scheme can be observed.

To quantity the permeability of LD/HD C-S-H system, the Katz-Thompson equation is recalled, cf.

eq(7.18). As discussed in foregoing section, the factor CH = 226 (see Table 7.9) which has been verified

by experiment [61], is adopted. The difficulty in evaluating the permeability of LD/HD C-S-H is that

it is hard to determine the critical geometric length or critical pore size that percolates the matrix. We

here use the term rc = 2V/S with V the specific pore volume and S the specific surface area. For LD

C-S-H, V = φLD/ρLD = 0.37/1.44 × 106 = 0.26 × 10−6m3/g and S = 250m2/g [396], one thus obtains

rc(LD) = 2.06nm. For HD C-S-H, there is no values for the specific surface areas in the CM model by

Jennings and coworkers [178, 392] who assume only the LD C-S-H are accessible. However, according to the

CM model, the basic globules for both LD and HD C-S-H are the same but with different packing patterns,

and the microstructure in size of 3-30 nm is fractal with a relation 1 −φ ∝ rD−3, with D = 2.67 the fractal

dimension [178] 2. Apparently, the specific surface area of HD C-S-H can be larger than that of LD C-S-H,

but lower than that of globules. By using the fractal relation for both LD and HD C-S-H, 1−φ ∝ rD−3, the

critical radius of HD C-S-H is estimated as: 1−φLD

1−φHD
=
(

rc(LD)
rc(HD)

)D−3

→ rc(HD) = rc(LD)·
(

1−φLD

1−φHD

)−1/(D−3)

.

Using the values, φLD = 0.37, φHD = 0.24, ρLD = 1.44 × 106g/m−3, ρHD = 1.75 × 106g/m−3,D = 2.67,

[178, 396], the critical pore size is estimated as rc(HD) = 1.17nm. This value is very close to the 1.1 nm

small gel pores (SGP) as presented in [178]. By using the Katz-Thompson equation, the permeability of

LD C-S-H is estimated as 3.35 × 10−23m2, which is comparable with the value by Powers (≈ 7 × 10−23m2)

[306], whereas the permeability of HD C-S-H is estimated as 0.25 × 10−23m2. Again, using the effective

medium theory, the permeability of a system in which HD C-S-H is embedded in LD C-S-H with different

volume fractions, can be evaluated as:

2. The original equation used in Ref. [178] is 1 − φ = rD. This relation must be incorrect, see Ref. [30, 95, 233].
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Figure 7.4: Variation of permeability with vol-
ume fraction of HD C-S-H in a binary com-
posites which is composed of only LD and HD
C-S-H. SCE: Self-consistent estimation, HS+:
Hashin-Stricktman upper bound (=MTE:Mori-
Tanaka estimation), HS−: Hashin-Striktman
lower bound, Voigt: Voigt estimation and Reuss:
Reuss estimation.

σhom
CSH = fLDσ

hom
LD Av

LD,CSH + fHDσ
hom
HD Av

HD,CSH (7.20a)

κhom
CSH = fLDκ

hom
LD Av

LD,CSH + fHDκ
hom
HD Av

HD,CSH (7.20b)

As shown in Figure 7.4, the effective permeability evaluated by Hashin-Striktman lower bound and

Reuss bound appear to be lower than the values estimated by other scheme as HD C-S-H concentration

varies from 0 to 1. The volume fraction of LD C-S-H to total C-S-H gels for paste I and II are 0.627 and

0.237 respectively. The relative conductivity and permeability calculated by self consistent scheme and

Mori-Tanaka scheme are shown in Table 7.10.

Table 7.10: Relative conductivity (permeability) of C-S-H gels for paste I and II estimated by self-consistent
and Mori-Tanaka scheme. The permeability is calculated by Katz-Thompson equation (eq(7.18)) with
CH = 226.

materials LD C-S-H content Self-consistent estimation Mori-Tanaka estimation

Paste I 0.627 1.141 × 10−3(1.872 × 10−23m2) 1.131 × 10−3(1.833 × 10−23m2)
Paste II 0.237 0.668 × 10−3(0.809 × 10−23m2) 0.657 × 10−3(0.772 × 10−23m2)

7.3.2.2 Effective transport properties of solid phase

In this subsection, we consider further the effective transport properties of solid phase in which the

impermeable minerals, such as the unhydrated cement clinkers, Portlandite, Hydrogarnel, AFm, are em-

bedded. As demonstrated in Figure 7.5, the HS−, Reuss estimations of the ratio of effective conductivity

to that of high permeable phase may lead to the underestimated values when σLP /σHP is large. Therefore,

in the following sections, the HS− and Reuss approaches will not be considered.

Table 7.11 shows the volume content of unhydrated compounds and hydration products for paste I

and paste II, which are calculated from the Avrami’s equation, see chapter 6. It can be seen that the

impermeable solids occupy more than one third of total solid volume. This may lead to significant decrease

of overall conductivity and permeability. For this solid system, where the capillary pores are not considered,

assuming that the impermeable solids are embedded in the homogeneously percolated permeable C-S-H, the
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Figure 7.5: Variation of σeff/σHP (ratio of ef-
fective conductivity to the conductivity of high
permeable phase) with σLP /σHP (ratio of con-
ductivity of low permeable phase to that of
high permeable phase). The volume fraction
of high permeable phase is set to be fHP =
0.627. SCE: Self-consistent estimation, HS+:
Hashin-Stricktman upper bound (=MTE:Mori-
Tanaka estimation), HS−: Hashin-Striktman
lower bound , Voigt: Voigt estimation and Reuss:
Reuss estimation.

solution for Eshelbian inclusion can be used again to estimate the overall transport properties. Although

the concentration of different solids in cement pastes may be heterogeneously distributed, for instance, the

AFm and Portlandite are observed to accumulate around the air voids [212], an arithmetic average relation

was adopted in many works [31, 403]. The effective relative conductivity σhom
S and permeability κhom

S can

be expressed as:

σhom
S = fCSHσ

hom
CSHA

v
CSH,SOLID + fIMσIMAv

IM,SOLID (7.21a)

κhom
S = fCSHκ

hom
CSHA

v
CSH,SOLID + fIMκIMAv

IM,SOLID (7.21b)

where the subscripts IM represents the impermeable solids shown in Table 7.11. Table 7.12 presents the

effective relative conductivities and permeabilities evaluated by eq(7.21). These values are significantly

lower than the usual measured values for cement pastes in literature [275, 339, 378] because the very

permeable capillary pores are not considered. In addition, the estimated relative conductivity of solid

phases, for both paste I and II, is consistent with the values used for effective theory fitted by Oh et al.

[275], who obtained the 5 × 10−5 ≤ σs/σ0 ≤ 10−3.

Table 7.11: The volume fraction and permeability of paste I and II at 360D.
Compounds Volume fraction Permeability

w/c=0.5 w/c=0.3

LD C-S-H 0.3330 0.1363 Low permeable

HD C-S-H 0.1866 0.4385 Very low permeable

Total permeable porous phase 0.5196 0.5748 Permeable

C3S 0.0108 0.0398 Impermeable

C2S 0.0131 0.0370 Impermeable

C3A 0.0005 0.0023 Impermeable

C4AF 0.0023 0.0066 Impermeable

AFm 0.0882 0.1097 Impermeable

Hydrogarnel 0.0614 0.0718 Impermeable

CH 0.1325 0.1551 Impermeable

Inert 0.0024 0.0029 Impermeable

Total impermeable solid 0.3115 0.4222

Capillary Pores 0.1689 ≈ 0
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Table 7.12: Relative conductivity (permeability) of solid phases for paste I and II estimated by self-
consistent and Mori-Tanaka scheme.

materials Permeable C-S-H content Self-consistent estimation Mori-Tanaka estimation

Paste I 0.625 0.619 × 10−3(1.015 × 10−23m2) 0.601 × 10−3(0.994 × 10−23m2)
Paste II 0.538 0.328 × 10−3(0.398 × 10−23m2) 0.323 × 10−3(0.379 × 10−23m2)

7.3.3 Effect of capillary pores

The transport properties of porous materials are related intimately to the properties of capillary pores,

especially the connectivity or percolation of pores. Therefore, using the classical solution of Eshelbian

inclusion to estimate the effective conductivity for a porous materials with percolating pores may lead to

incorrect results. For example, Figure 7.6 shows significant differences of the relative conductivities for

a system that is composed of percolating high permeable pores and homogeneous embedded solids, as

evaluated by Mori-Tanaka estimation and effective medium theory estimation. The values by M-T method

are much lower than those by EMT method. For the EMT method, it has been widely developed to estimate

the effective conductivity and/or permeability of porous materials, cf. McLachlan [244, 245], Youngs[437],

Cui and Cahyadi [85], Sant et al. [339], Sun et al. [378] and Oh et al. [275]. We here follow the modified

effective medium theory by Oh et al. [275], who expressed the effective relative conductivity in an explicit

expression:
σ

σ0
=

D

D0
=

[

mφ +

√

m2
φ +

φc

1 − φc
(Ds/D0)1/n

]n

(7.22)

with

mφ =
1
2

[

(Ds/D0)1/n +
φcap

1 − φc

(

1 − (Ds/D0)1/n
)

− φc

1 − φc

]

(7.23)

where φcap is the capillary pores, Ds/D0 = σs/σ0 is the normalized diffusivity or conductivity of the solid

phase. By fitting the data in literature, the authors obtained that the normalized diffusivity or conductivity

of the solid phase is in rang of 2×10−6 ∼ 1×10−3 depending on type of cement used and curing conditions

[275], while Bentz et al. [41] obtained the values in similar range 1×10−5 ∼ 4×10−4 varying with the silica

fume content. These values are comparable with the relative conductivity presented in Table 7.12. The

term n in eq(7.22) is the percolation exponent. Comparing with the range of 1.65 to 2.0 conventionally, it

was found that for cement-based materials, it has higher value. For instance, Oh et al. obtained n in range

of 2.7 ∼ 4.5 [275]. φc is the critical porosity at which the pore network percolates. Bentz and Garboczi

[40–42, 132] obtained a critical porosity φc = 0.17. Powers et al. [309] reported that the porosity required

for percolation is about 0.2, while Ye found that for OPC in w/c=0.3, with 68% hydration degree, capillary

depercolation is only 5% [436]. Therefore, the capillary porosity for Paste II near zero as presented in Table

7.11 is acceptable.

Substituting the value of σs/σ0 obtained by multi-scale modelling of Eshelbian enclusion for solid phases

for paste I and II into eq(7.22), one obtains the curves of effective conductivity in terms of porosity. Very

good agreement between the estimated values by EMT methods and the measured values is obtained, see
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Figure 7.6: The estimation
of effective conductivity
of cement pastes by Mori-
Tanaka estimation and
effective medium theory
(EMT) estimation. The ratio
of conductivity of capillary
pores to that of solid phase,
σs/σ0 = 0.000619 [275], is
retained for the estimations.

Figure 7.7: The estimation
of effective conductivity of
cement pastes by effective
medium theory (EMT). Note
the ’SRA’ in data by Sant
et al. [339] represents
the shrinkage-reducing ad-
mixture. Other data adopted
from [61, 401].

Figure 7.7 where a critical porosity φc = 0.17 is adopted in the calculations. The good agreement between

the predicted values and the measured values indicates that the multi-scale modelling can predict the

effective transport properties successfully. Again, by using the Katz-Thompson equation, the permeability

can be obtained. However, here we can not present the variation of permeability with porosity as that of

relative conductivity illustrated in Figure 7.2, because of the lack of the critical pore width values.

7.3.4 Effect of saturation degree

As discussed in the previous section, the capillary pores play important roles in the transport properties

of cement-based porous materials. However, the presented data in previous section is in the saturated

condition. The complete saturation does not occur in practice for cement-based porous materials generally,

except structures under water. Thus the influence of the saturation must be considered, and it, actually,

has significant impact on the transport properties of porous materials [238, 410].

The relative permeability in terms of saturation degree is often expressed by the van Genuchten equation

[410], which is based on the curves of capillary-saturation relation:

κr(Sl) =
√

Sl

[

1 −
(

1 − S
1/m
l

)m]2

(7.24)

where Sl is the saturation degree, m is a constant depending on the material. Figure 7.8(a) presents the

curves of relative permeability versus saturation degree with m varying from 0.4 to 0.9. Through capillary
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(a) (b)

Figure 7.8: (a), The variation of relative permeability in terms of the saturation degree. (b) The relative
diffusion quantity Gr(Sl) in terms of Sl, the values of constant c and m are adopted from [267]. Regre
eq: the regressed equation present in second row of Table 7.13 [63, 93]; Humi based eq: Humidify based
formula presented in the third row of Table 7.13 [3, 270, 332].

Table 7.13: Relationship between the relative diffusion quantity Gr(Sl) (see eq(4.21)) and Sl for cement-
based materials.

Power law
Gr(Sl) = Sm

l , m = 6 [267], m = 7/3 [336] for concrete

Regressed formula
Gr(Sl) = Sm

l = 0.04514 − 0.6889Sl + 1.6438S2
l [63, 93]

Humidity based formula

Gr(Sl) =
[

1 +
((

1 − exp(b(Sm/(1−m)
l − 1)1/m)

)

/(1 −H0)
)4
]−1

b = cvl/RT = 7.389c, H0 = 0.75, m the constant [3, 270, 332].

curves, Nguyen obtained that m varies from 0.42 to 0.57 for different concrete samples [267, 269].

For the relative diffusion quantity, Gr(Sl) (see eq(4.21)), numerous semi-empirical relations have been

proposed. Table 7.13 and Figure 7.8(b) present the frequently used expressions of Gr(Sl) for cement-based

materials. It can be found that there are significant differences among these formulas for Gr(Sl), which can

be due to the different pore structure. Therefore, to evaluate the relative permeability of porous materials,

sufficient information on the pore structure/microstructure of material is necessary.

7.4 Heat conductivity of composites

The effective medium approaches for estimating thermal conductivity, are first applied for solution-ice

system (see Figure 7.9). It is then considered as a homogeneous component of composites. This kind

of method has been widely used on estimating the effective properties of multi-phase composites [66, 67,

136, 137, 165]. In this section, semi-empirical formulas on thermal conductivity and the self-consistent

homogenization [165], which have been proved to be practicable for many composites (cf. [39, 430], more
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Figure 7.9: Schematic illustration of
a partially frozen porous materials. It
is assumed that liquid solution is em-
bedded into ice crystals (this assump-
tion actually can be observed in the
freezing process of cylindrical capsule,
see Figure 2.13 by Guzman and Braga
(2005) [149]), then the solution-ice
system is embedded into the solid
matrix.

details can be found in previous sections in this chapter), are considered for estimating the effective heat

conductivity coefficient.

Based on the Maxwell’s work on two-phase mixture, Brailsford and Major [50] derived a semi-empirical

equation in estimating the effective thermal conductivity of composites composed of three phases:

λ =
λs(1 − φ) + λlφSl3λs/(2λs + λl) + λcφ(1 − Sl)3λs/(2λs + λl)

(1 − φ) + φSl3λs/(2λs + λl) + φ(1 − Sl)3λs/(2λs + λl)
(7.25)

where the subscript s, l and c denote the solid skeleton, liquid phase and ice crystals, φ is porosity and S

is saturation degree.

(a) (b)

Figure 7.10: Variation of effective thermal conductivity estimated by different methods with ice content for
paste I (a) and paste II (b). HS+: Hashin-Stricktman upper bound, HS−: Hashin-Striktman lower bound,
Voigt: Voigt estimation, Reuss: Reuss estimation, EMT: Effective medium theory, B-D: the Brailsford-
Major estimation method.

Figure 7.10 shows the effective thermal conductivity of a partial frozen cement-based materials in terms

of ice content. The porosity of used material is 0.26 for paste I and 0.13 for paste II (180D MIP measurement

presented in chapter 6), the thermal conductivity of solid skeleton, ice and water, respectively are, 0.53

(W/m·K), 2.14 (W/m·K) and 0.56 (W/m·K) [214, 433]. Except the simple estimation models, cf. the Reuss

estimation ( 1
L =

∑

fi/Li, with fi the volume fraction of phase i) and the Voigt estimation (L =
∑

fiLi),

the values estimated by other models do not show significant differences. We thus choose the self consistent

homogenization model in this work, since it has been used for partially frozen cement-based materials
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elsewhere [114, 115].
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8.1 Physical properties of pure water and ice Ih

Physical properties of water and ice are of importance for calculating the capillary pressure and the

accuracy of apparent molar quantities of NaCl solution. The heat capacity, thermal expansion coefficient,

heat conductivity and bulk modulus of supercooled water and ice are presented in Table 8.1. Note that

only a linear variation with temperature has been adopted in this study, which can be found in [114] as

well.

Table 8.1: Physical properties of water and ice [114].
Parameter Symbol Liquid water (supercooling) Ice (Ih) Unit

Thermal (volumetric) expansion coefficient αw −68.7 + 24.732(T − T0) 158.15 + 0.67(T − T0) 10−6K−1

Heat capacity CP,w 4.2 − 0.0023(T − T0) 2.1 + 0.00712(T − T0) J · g−1 · K−1

Heat conductivity λw 0.5622 + 0.0017(T − T0) 2.15 − 0.0123(T − T0) W · m−1 · K−1

Bulk modulus Kw 1970 + 19.7(T − T0) 4305 − 8.18(T − T0) MPa
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8.2 Physical properties of NaCl solution

The physical properties of NaCl solution are function of current temperature, liquid pressure as well

as the salt concentration. However, few data on the coupled physical properties of aqueous solution can

be found in literature. This may be due to the difficulties in measurements. From the limited reference

data, we choose the model developed by Archer [15, 16], which is based on the Pitzer’s theory on aqueous

solution, see for instance [299, 303, 304]. The details of derivation of the formulas are given in Appendix D.

In the present section, we just recapitulate some important formulas and parameters. More information

can be found in [8, 15–18] and references there in. For NaCl solution with molality m (mol · kg−1) 1, the

overall property P per mass unit of solution can be given by:

P =
Ps ·m+ Pw · 1000/Mw

m · Ms + 1000
(8.1)

where Pw represents the quantity P per unit mole of water. Note Ps is the apparent molar quantity P of

salt. In Pitzer’s model, the excess Gibbs free energy is related to m by the following equation [15, 16, 18]:

GE = nwRT
[

−4Aφ ln(1 + b
√
I) + 2(m2B +m3C)

]

(8.2)

where nw is the molarity of water, Aφ is the Debye-Hückel coefficient for osmotic coefficient, B and C are

parameters related to ionic strength I, temperature and pressure, see eqs(D.3a) and (D.3b). The apparent

molar volume Vφ and apparent heat capacity CP,φ, thus can be given by [16, 17]:

Vφ = V
0
m + VE , with VE =

∂GE

∂P

∣

∣

∣

∣

T

(8.3a)

CP,φ = C0
P,m + CP,E , with CP,E = −T ∂

2GE

∂T 2

∣

∣

∣

∣

P

(8.3b)

with V0
m and C0

P,m are, respectively the apparent molar volume and the apparent molar heat capacity of the

electrolyte at infinite dilution. The detailed expressions with 56 adjustable constants, which are obtained

from least squares fitting, are presented in Appendix D.

8.3 Evaluation of saturation degree curves

Physically, the principles of ice penetration, mercury intrusion and drying are the same: the non-

wetting phase invades the pore space progressively, and the wetting phase retreats correspondingly. The

interface between wetting phase and non-wetting phase moves from surface of porous materials into the

inner part or from big pores to the connected small pores. The driving force of ice penetration, mercury

intrusion and drying respectively are the chemical potential difference between ice and liquid water at the

1. The molality m is defined as mole number of salt per kilogram of pure water m = c · ρl, with c the mole number of salt
per volume unit of solution (mol · m−3).
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same environmental temperature, applied pressure on liquid mercury and the chemical potential difference

between liquid water and water vapor (or humidity) at the same environmental temperature. The force

balancing them is the surface tension. It is thus possible to estimate the amount of non-wetting phase

according to the local mechanical equilibrium, which is described by the Young-Laplace equation:

Pcap = Pn−w − Pw

= − 2γcl cos θF

rF − δF (T )
(Freezing) = −2γmg cos θMIP

rMIP
(Mercury intrusion) =

2γlg cos θD

rD − δD(HR)
(Drying)

(8.4)

where Pcap is the capillary pressure (Pa), Pn−w is the pressure of non-wetting phase (Pa) and Pw is the

pressure of wetting phase (Pa). For freezing process, Pn−w = Pc and Pw = Pl, with Pc the pressure of ice,

Pl the pressure of liquid water, γcl is the surface tension between ice crystals and liquid water, θF is the

contact angle between ice and solid wall, usually θF is taken equal to 180°, rF is the pore radius, and δF

is the thickness of unfrozen layer that is a function of temperature. rF − δF is the radius of cylinderical

size near ice tip at equilibrium with surrounding liquid water. For mercury intrusion process, Pn−w = Pex

and Pw = Pm, with Pex the exerted pressure on mercury, Pm the atmospheric pressure, γmg is the surface

tension between liquid mercury and air, θMIP is the contact angle between mercury and solid wall, and its

values is often retained as θMIP = 130° [186], rMIP is the pore radius. For drying process, Pn−w = Pg and

Pw = Pl, with Pg the gas pressure, Pl the liquid pressure, γlg is the surface tension between liquid water

and gas, θD is the contact angle between water and solid wall, usually θD is taken equal to 180°, rD is the

pore radius at equilibrium, and δD(HR) is the thickness of adsorbed layer which is a function of humidity

HR.

8.3.1 Non-wetting phase volume

Using the mercury intrusion porosimetry (MIP), the pore size distribution can be obtained directly by

the Washburn equation [423] by assuming that the pores have cylindrical shape. Based on the relation

presented in eq(8.4), it is expected that the ice volume can be estimated with the help of the pore size

distribution and the curvature of ice interface. In equilibrium case, the volume of ice Vc with tip at size of

req and its fraction Sc can be estimated as [450]:

Vc =
∫ ∞

req

dV
dreq

dr (8.5a)

Sc =
Vc

VT
, with VT =

∫ ∞

rmin

dV
dr

dr (8.5b)

where req is the radius of ice tip at equilibrium, rmin is the minimum pore radius of cement-based materials.

In the present study, rmin = 3nm is retained since the maximum pressure of MIP is around 400 MPa. dV
dreq

is the pore size distribution occupied by ice, dV
dr is the real pore size distribution. VT is the total pore
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volume, Vc is the ice volume. In addition to the pore space of small size where ice can not penetrate, there

is the volume occupied by the liquid-like layer with thickness of δ, which has been extensively discussed

in chapter 2. The estimation of the volume fraction of the liquid-like layer here follows nearly Zuber and

Marchand’s procedure [450, 451]:

φδ(T ) =
liquid like layer volume

ice volume + liquid like layer volume
=

∫∞
r

dV
dr g(r, δ)dr
∫∞

r
dV
dr dr

(8.6)

where g(r, δ) is the pore shape function, which can be expressed as:

g(r, δ) = 1 −
(

1 − δ

r

)2

for cylindrical pores (8.7a)

g(r, δ) = 1 −
(

1 − δ

r

)3

for spherical pores (8.7b)

The relation between the ice volume to the total volume is then retained as:

dV
dreq

=
dV
dr

(1 − φδ) (8.8)

Note again, r is the pore radius and req the radius of ice tips at equilibrium with surrounding liquid water.

The ice volume and its fraction are then obtained as:

Vc =
∫ ∞

req

dV
dr

(1 − φδ)dr (8.9a)

Sc =
1
VT

∫ ∞

req

dV
dr

(1 − φδ)dr =
∫ ∞

req

dφ
dr

(1 − φδ)dr (8.9b)

Since req = r − δ = −2γlc cos θF /Pcap, by assuming that γlc cos θF is constant, it can be found:

dreq = − req

Pcap
dPcap and dPcap = −Pcap

req
dreq (8.10)

Taking the differential form of eq(8.9b), and combining the eq(8.10), one obtains:

dSc = −dSl =
dφ
dr

(1 − φδ)dreq = −dφ
dr

(1 − φδ)
req

Pcap
dPcap (8.11)

where Sl is the liquid saturation degree, Sl = 1 −Sc. The differential form of capillary pressure is given by

(cf. eq(2.12)):

dPcap =
(

ρc

ρw
− 1
)

dPl − ρc

(

Sf + Cf ln
(

T

T0

))

dT +
∑

i

ρcRT

Mw

d ln aw

dci
dci (8.12)

If we further assume that the porous material is sealed so that the salinity of pore solution must increase

as ice forms and obeys:
ciSl = c0

i and dci = − ci

Sl
dSl (8.13)
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where c0
i is the initial concentration of species i. The eq(8.13) describes exactly the salinity balance of

frozen solution in impermeable container or in undrained freezing condition.

Substitution of eqs(8.12) and (8.13) into eq(8.11), and eliminating the term dPcap, one can deduce an

equation correlating the saturation degree with the liquid pressure Pl, the current temperature T and the

initial salt concentration ci, which is given by:

dSl =

dφ
dr

req

Pcap
(1 − φδ)

1 +
dφ
dr

req

Pcap
(1 − φδ)

ρcRT

Mw

∑

i

d ln aw

dci

ci

Sl

{(

ρc

ρw
− 1
)

dPl − ρc

(

Sf + Cf ln
(

T

T0

))

dT
}

(8.14)

In above equation, dφ
dr represents the pore structure of porous materials, which can be determined by MIP

or other porosimetry techniques. The term (Sf + Cf ln (T/T0)) only depends on the temperature and the

term d ln aw

dci
can be derived by solution thermodynamic models, such as Lin and Lee’s model [216, 217], of

which the detail can be found in chapter 2.

If the effect of liquid pressure is not significant, cf. in drained freezing condition where the liquid

pressure is equal to the atmospheric pressure constantly, the first term in the brace of the right hand side

of eq(8.14) can be neglected. Thus the saturation degree is only related to the temperature and the pore

structure. In the undrained freezing condition, the liquid pressure can be significant as ice forms, and is

function of initial salt concentration, ice formation rate and entropy change during freezing, see Appendix

B.3.1 for detail. However, eq(8.14) is still an implicit form for calculating the saturation degree, it must be

evaluated by iterative method.

8.3.2 Pore size distribution by multi-Gauss fitting

In order to obtain the curves of the pore size distribution (PSD), the multi-peak Gauss formula is

employed to fit the differential pore size distribution (DPSD) curves by means of MIP. It has the form

[157, 325, 347]:

dV
d log(d)

= f0 +
N
∑

i

[
√

2Ai

wi
√
π

exp
(

−2(log d− log di)2/w2
i

)

]

(8.15)

where d is the pore diameter, f0, Ai, wi and di are the adjustable constants. Considering now the paste I

and Paste II which have been extensively studied in chapter 6, and using the eq(8.15) one can obtain well

fitted curves for both samples, cf. Figure 8.1.

The integration of standard Gauss equation leads to the error equation, which can be expressed as:
∫

exp
(

−2(log(d/di))2/w2
i

)

·
√

2/(wi
√
π) d log(d) = 1/2 · erf((

√
2(log d/di)2)/wi). If the CPSD curves plot



140 Properties of NaCl solution and saturation-temperature curves

(a) (b)

Figure 8.1: Multi-gauss fitting of MIP DPSD of paste I(w/c=0.5) (a) and paste II (w/c=0.3) (b).

from large pores to fine pores, one obtains the formula:

∫ log d

log dmax

[
√

2Ai

wi
√
π

exp
(

−2(log d− log di)2/w2
i

)

]

d log(d)

= Ai

[

1 − 1
2

(

1 + erf

(
√

2(log d− log di)2

wi

))]log dmax

log d

(8.16)

Through integration procedure of eq(8.15), the CPSD curve is then given by:

V (d) =
∫ log d

log dmax

[

f0 +
N
∑

i

[
√

2Ai

wi
√
π

exp
(

−2(log d− log di)2/w2
i

)

]

]

d log(d)

= f0(| log d− log dmax|) +
N
∑

i

Ai

[

1 − 1
2

(

1 + erf

(
√

2(log d− log di)2

wi

))]log dmax

log d

(8.17)

Table 8.2 presents the parameters required for multi-peak Gauss fitting. It can be found that the

characteristic pore size for each peak of Paste II is systematically smaller than that of Paste I, of which

the mechanisms are comprehensively presented in chapter 6.

Table 8.2: Parameters of multi-peak Gauss fitting for paste I and paste II.
Samples Peaks f0 Ai wi log di(di) (nm) Coefficient R2

Paste I
1

0.00271
0.00621 0.432 5.515 (327340)

0.9992 0.102 0.727 1.190 (15.488)
3 0.301 0.647 0.0145 (1.0304)

Paste II
1

0.00176
0.00250 0.0996 1.055 (11.350)

0.9992 0.0324 0.329 0.858 (6.9984)
3 0.0199 0.181 0.511 (3.2434)

The Gauss-fitting and/or multi-Gauss-fitting procedure in characterizing the pore size distribution have

been applied for over a century, and they were employed to characterize many different porous materials

through different experimental methods, cf. [157, 325, 347]. Figures 8.1 and 8.2 show the PSD measured

by MIP and the multi-Gauss fitting (eqs(8.15) and (8.17)), which present good agreement. Note again, the

pore size distribution obtained by MIP measurement may be not the real pore size distribution due to the
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(a) (b)

Figure 8.2: Multi-Erf fitting of CPSD of paste I (w/c=0.5) (a) and paste II (w/c=0.3) (b).

ink-bottle like pores and the connectivity of pores with different sizes. But the similar physical processes

between ice penetration and mercury invasion allows us to neglect the effect of ink-bottle like pores.

8.3.3 Saturation degree of cement pastes with freezing

As explicitly shown in eq(8.14), the ice volume or saturation degree with decreasing temperature, can

be calculated numerically, once the pore size distribution, dφ/dr, is determined. In section 8.3.2, the

multi-Gauss fitting is used to describe the PSD of cement pastes measured by MIP. One most but not the

least advantage of using multi-Gauss fitting to describe the PSD of porous materials, is that it is more

flexible in numerical calculation to turn data into PSD continuous curve. Note that, for convenience, the

pore size distribution in form of dφ/d log r or dφ/d log d, rather than dφ/dr, is retained for presenting the

pore information. The eq(8.15) and the data in Table 8.2 for two sorts of cement pastes with different w/c

ratios, are retained to estimate the curves of saturation degree with temperature.

The ice volume – temperature curves of paste I and II are illustrated in Figure 8.3(a), where only pure

water in pore space is considered. It can be found that ice forms progressively in the pore space of paste

I because of large pores, whereas almost no ice forms in paste II until −15℃. The first visible peak for

ice volume –temperature curve of paste I is about −5℃ due to the ice formation in pores with diameter

of about 15 nm. However, when ice forms in pores in diameter of 327340 nm and in 1 nm as presented in

Table 8.2, there are not visible peaks shown in Figure 8.3(a), because the macropore volume is very small

and the ice formation temperature is only about −0.027℃ according to the Gibbs-Thomson equation [342],

while ice can not form in 1 nm pore due to the large van der Waals forces induced by pore wall that makes

the water in highly stressed state [195]. Even when this stress is not considered, the temperature of ice

formation in 1 nm can be as low as −89℃ estimated by Gibbs-Thomson equation.

The volume of unfrozen layer is considered in this study. Figure 8.3(b) shows the ratio of liquid like



142 Properties of NaCl solution and saturation-temperature curves

(a) (b)

Figure 8.3: (a), Ice volume – temperature curves of paste I (in solid line) and II (in dash line); (b), Ratio
of liquid like layer volume to total pore volume as temperature decreases for paste I (in solid line) and II
(in dash line).

layer volume to total pore volume as temperature decreases. For paste I, the volume ratio of unfrozen

layer increases monotonously to about 0.1 when temperature decreases to −20℃, while for paste II, it only

increases to about 0.01. Figures 8.4(a) and 8.4(b) show the saturation degree of paste I and II respectively,

in terms of temperature with and without unfrozen layer. Obviously, the volume of unfrozen layer has

significant influence on the saturation degree of pastes used in this study. Take paste I for example, as

temperature decreases to −20℃, the saturation degree, if the volume of unfrozen layer is not considered, is

about 0.33, which indicates about 67% total volume has been frozen. It decreases to 57% when the volume

of unfrozen layer is considered. A critical case should be noticed, when the unfrozen layer equals the pore

radius, then it could not form ice any more because of the previously mentioned stress by van der Waals

forces induced by pore wall [195]. In this case, the saturation degree could be constant as temperature

decreases further. The volume fraction of unfrozen layer, eventually can be estimated as: φδ = δ × S/V ,

with δ the thickness of unfrozen layer (estimated as 0.8 nm [381]), S the specific surface area of porous

materials, V the pore volume. Taking account of the data, (S = 55 (m2 · g−1), V = 0.1608 (ml · g−1) for

paste I and S = 24 (m2 · g−1), V = 0.0625 (ml · g−1) for paste II, see chapter 6 for detail), one obtains the

eventual volume fraction of unfrozen layer, φδ = 0.274 for paste I and φδ = 0.307 for paste II. Those values

are comparable to values predicted in this section, φδ = 0.195 for paste I and φδ = 0.252 for paste II.

When the pore space is occupied by saline solution, the ice formation temperature decreases due to the

decrease of chemical potential of liquid phase. This is exactly the principle of using salts for melting ice on

roads or pavements in winter. For bulk saline solution, the ice formation follows the classical phase diagram,

in which the depression temperature is only due to the adding of salts. For pore solution, again, the local

mechanical equilibrium, viz, the Young-Laplace equation, allows us to associate the pore size to capillary

pressure as explicitly shown in eq(8.4). So the phase diagram of saline solution in porous materials depends



8.3 Evaluation of saturation degree curves 143

(a) (b)

Figure 8.4: Liquid saturation degree of Paste I (a) and II (b) in function of temperature with (in dash line)
and without (in solid line) liquid like layer.

(a) (b)

Figure 8.5: Ice volume of Paste I (a) and II (b) initially saturated with 0% (non salt), 1.5%, 3%, 6%, 10%
and 15% NaCl, in function of temperature.

(a) (b)

Figure 8.6: Liquid saturation degree of Paste I (a) and II (b) initially saturated with 0% (non salt), 1.5%,
3%, 6%, 10% and 15% NaCl, in function of temperature.
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(a) (b)

Figure 8.7: Relative salt concentration (c/c0 = 1/Sl) of Paste I (a) and II (b) initially saturated with 0%
(non salt), 1.5%, 3%, 6%, 10% and 15% NaCl, in function of temperature.

on both the salinity of solution and the pore size distribution. Figures 8.5(a) and 8.5(b) show the volume

of ice formation with temperature for paste I and II respectively. It can be found that more ice formed

in paste I than that in paste II because the former has larger pores. Also, due to aforementioned effect of

salinity, the ice formation temperature decreases as initial salinity increases. As the concentration of NaCl

increases to 15% wt, the ice formation temperature decreases to about −10℃. Note that here we assume

that ice forms instantaneously, without any barrier against ice nucleation, once the chemical potentials of

water and ice are equal. Figures 8.6(a) and 8.6(b) illustrate the variation of liquid saturation degree of paste

I and paste II that initially saturated with 0% to 15% NaCl solution when temperature drops to −20℃.

For paste I, it can be found that only about 10% of pore volume is occupied by ice when the material is

initially saturated with 15% NaCl solution as temperature decreases to −20℃. When paste I is initially

saturated with pure water, the temperature required for ice volume fraction approaching this value is only

−1.5℃. For paste II, a very small amount of ice forms due to, as previously mentioned, the thinner pore

size distribution. The ice content is only 8% to 2% as initial salt concentration increases from 0% to 15%

when temperature drops to −20℃. Obviously, as ice progressively forms in pores, the solution in vicinity

becomes more concentrated. Figures 8.7(a) and 8.7(b) show the relative salt concentration (c/c0 = 1/Sl,

see eq(8.13)) with temperature. Again, due to the larger pore size distribution of paste I, it has larger

relative salt concentration in terms of temperature. In addition, the lower the initial salt concentration,

the higher the ultimate relative salt concentration because more ice forms when initial salt concentration is

lower. When the materials are saturated with pure water, the effect of salt concentration is null: c/c0 = 1.
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9.1 Experimental procedures

9.1.1 Sample preparation

The chemical and physical properties of raw cement clinkers and the mixing, moulding/demoudling

procedures have been introduced in chapter 6. The cylindrical samples in age of 360D were selected for

experiments in next step. Figure 9.1 shows the sequences of deformation measurements of cement pastes

briefly. For more comprehensive study on the deformation of cement paste subjected to freeze-thaw loading,

two sorts of samples were planned. One sort of cement pastes were oven dried at 50℃ for 7 days to avoid

freezable water in capillary pores in the range of the freeze-thaw temperature, 20℃ ∼ −35℃. The other

sort of samples were saturated with NaCl solution at concentrations of 0%, 1.5%, 3%, 6%, 10% and 15% by

vacuum saturation for 24 hours. The solution-saturated cylinders were placed in a box with NaCl solution
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Figure 9.1: Sequences of experimental procedures
on the deformation measurement.

Figure 9.2: Preparation procedures of saturated cylin-
drical samples to obtain an undrained condition dur-
ing freeze-thaw tests.

Table 9.1: Nomenclature of pretreated samples.
Samples Non salt (Oven dried) 1.5% NaCl 3% NaCl 6% NaCl 10% NaCl 15% NaCl

Paste I

No air entrainment PI-S0 (PI-S0-D) PI-S1 PI-S2 PI-S3 PI-S4 PI-S5
1.5% PIA1-S0 (PIA1-S0-D) PIA1-S1 PIA1-S2 PIA1-S3 PIA1-S4 PIA1-S5
3.0% PIA2-S0 (PIA2-S0-D) PIA2-S1 PIA2-S2 PIA2-S3 PIA2-S4 PIA2-S5
4.5% PIA3-S0 (PIA3-S0-D) PIA3-S1 PIA3-S2 PIA3-S3 PIA3-S4 PIA3-S5
6.0% PIA4-S0 (PIA4-S0-D) PIA4-S1 PIA4-S2 PIA4-S3 PIA4-S4 PIA4-S5

Paste II

No air entrainment PII-S0 (PII-S0-D) PII-S1 PII-S2 PII-S3 PII-S4 PII-S5

at the same concentration for at least 7 days. After that period, the samples were removed from NaCl

solution and allowed to achieve a surface dried condition. The samples were then covered by a thin layer of

resin epoxy, and enclosed in a latex membrane to avoid the moisture exchange, the details of this procedure

can be seen in Figure 9.2. In addition, samples of paste I entrained with air voids in dosages of 1.5%, 3%,

4.5% and 6% were considered as shown in Table 9.1. More details on the air entrained samples can be

found in chapter 10.

9.1.2 Deformation measurement

After the cylindrical samples were sealed by resin epoxy and latex membrane, the length of sample i

was measured and marked as L0
i . The samples were then placed in the LVDT-stand. Figure 9.3 shows the

well placed samples, LVDTs and the data logger. The temperature were controlled by an environmental

chamber of Type Espec PL-2k, of which the temperature range is −40 ∼ 150℃, the humidity range is 20%

∼ 100%. The dilation of samples were measured by spring loaded LVDTs (Type Macrosensor 750) and the

data was accorded by data logger. The strains of samples then can be calculated as:

ε =
∆Li

L0
i

=
Li − L0

i − LLV DT,i

L0
i

(9.1)
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where Li is the current measured displacement of samples i, LLV DT,i is the displacement by LVDT i it

self, and it can be calculated as:

LLV DT,i = βi × (T − T0) (9.2)

with T0 = 20℃ is the initial temperature. The linear displacement-temperature slope βi of used LVDTs are

validated respectively to be 0.5770, 0.5875, 0.5541, 0.5622, 0.5969 and 0.5637 µm/℃, instead of the nominal

0.56 µm/℃. The details of validations on the linear displacement-temperature slope of used LVDTs can

be found in Appendix E.1.

Figure 9.3: The experimental setup for deformation measurement.

9.2 Experimental results

9.2.1 Deformation of cement pastes subjected freeze-thaw loading

9.2.1.1 Pre-dried samples

Figure 9.4: Normalized sample weight loss for oven-
dried paste I and paste II at temperature 50 ± 1℃.

The drying of cement pastes was inspected by

gravimetric measurement. Figure 9.4 shows the

normalized samples weight loss for paste I and

paste II during oven-drying period at temperature

50 ± 1℃. Very quick weight loss in first 48 hours

was observed for past I, while that for paste II was

relatively slow due to its denser microstructure and

less percolated pores as presented in chapter 6.
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Figure 9.5: Strain-temperature curves for pre-dried
paste I and paste II.

The deformation of dried samples were mea-

sured by LVDTs and calculated by eq(9.1). Figure

9.5 illustrates the typical strain-temperature curves

for paste I and paste II respectively. The thermal

expansion coefficient (TEC) is then obtained as:

α = ε/∆T . Four independent measurements on

the dilations of dried pastes were performed, and

the minimum strain and the calculated TEC are

shown in Table 9.2. It can be found that the TEC

of paste II is systematically larger than that of paste I. This may be due to the differences of mineral

content for paste I and II. For paste II with w/c=0.3, it contains more C-S-H gel and Portlandite, cf.

fC-S-H=0.5745 for w/c=0.3 and fC-S-H=0.5196 for w/c=0.5 according to the Avrami’s model [392]. The TEC

of C-S-H solid αC-S-H = 14 × 10−6℃−1, estimated by multiscale model in [137] and that of Portlandite

αCH = 23.3 × 10−6℃−1, evaluated by using neutron diffraction method [383]. Consequently a reduction

of the C-S-H and Portlandite fraction results in a decrease of the TEC of dried paste. These observations

are consistent with the results obtained by Ghabezloo [137] who used a multiscale model to analyze the

thermal expansion behaviors of hardened cement pastes.

Table 9.2: Measured strains and TEC for paste I (paste II).

Measurements Temperature range Minimum straina TEC

(℃) (µm · m−1 at −35℃) (µm · m−1 · ℃−1)

1st 18 ∼ −35 -586 (-936) 11.052 (17.67)

2ed 20 ∼ −35 -657 (-964) 11.941 (17.54)

3rd 20 ∼ −35 -629 (-971) 11.442 (17.66)

4th 20 ∼ −35 -634 (-991) 11.532 (18.01)

average -626 (-975) 11.388 (17.72)

a The reference state is at 20℃.

9.2.1.2 Samples saturated with NaCl solution

For hardened cement pastes saturated with NaCl solution at different salinityies: non-salt (0%), 1.5%,

3%, 6%, 10% and 15% in weight fraction, significant different deformation curves can be observed, compared

to those of dried samples. Figures 9.6 and 9.7 show, respectively, the deformation curves in terms of freeze-

thaw time and temperature for paste I initially saturated with NaCl solution at different salinities. Except

the samples of PI-S1 and PI-S5 (samples saturated with 1.5% and 15% NaCl solution), all the other

samples show significant expansion as temperature is lower than the nucleation point. For PI-S1, a slight

contraction when the temperature is lower than the ice nucleation point, is observed. This might be due

to the incomplete saturation. Some occluded voids are empty, and they act as cryo-pump similar to the
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effect of air voids [77, 342], which attract water confined in capillary pores in the vicinity. The preference

of ice nucleation on the interface of air voids has been observed by the environmental scanning electron

microscopy (ESEM) by Corr et al, [73]. This kind of contraction after ice nucleation can also be observed

for sample of PI-S2 (sample saturated with 3% NaCl solution) at the third and the fourth freeze-thaw

cycles, but accompanied with much more severe expansion as temperature is cooled down to −35℃, see

Figure 9.7. For PI-S5, neither the significant expansion, nor the obvious residual strains can be observed.

This may be because only the small amount of ice forms during freezing. Another important observation

on the strain-time or strain-temperature curves is the evolution of maximum strains for solution saturated

samples: the maximum strains increase for the first 3 cycles, then keep constant, even decrease (see PI-S3

for example). In addition, except the PI-S5, all samples have residual deformation, which might be due to

the cracks induced by freeze-thaw damage. Quantitative analyses on the strains are given in section 9.2.2.

Figure 9.6: Deformation of paste I saturated with NaCl solution in terms of freeze-thaw time.

For paste II, with the same pretreatment conditions as those of paste I, completely different strain-

time or strain-temperature curves can be observed. As shown in Figures 9.8 and 9.9, except for PII-S0

(water saturated sample), all other samples do not exhibit expansion at low temperature (cf. −35℃).

These observations may be due to the dense microstructure and very limited percolated pores for paste

II. Therefore, during freezing, only small amount of ice forms in this pore system, see section 8.3.3 for

detail. In addition, the ice nucleation points can not be detected for all samples of paste II based on

strain-temperature curves.
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Figure 9.7: Deformation of paste I saturated with NaCl solution in terms of temperature.

Figure 9.8: Deformation of paste II saturated with NaCl solution in terms of freeze-thaw time.
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Figure 9.9: Deformation of paste II saturated with NaCl solution in terms of temperature.

9.2.2 Quantitative analysis of strain evolution with freeze-thaw cycles

Figures 9.10(a) and 9.10(b) show the strain-time and strain-temperature curves for PI-S0. From the

observations, several deformations can be identified. The deformation at −35℃ due to pure thermal

contraction of a porous materials composed of skeleton and confined solution in the pore space, is defined

as εth. Note that the defined εth is different from the measured deformation of pre-dried samples as

presented in section 9.2.1.1, because the hydrothermal effect of confined pore solutions has influence on the

deformation of saturated porous materials for undrained heating-cooling test. More quantitative analysis

on this issue can be found in [137, 431, 432], see also section 10.1.1 for more comprehensive review. The

instantaneous deformation at the vicinity of ice nucleation point is defined as εnu. This value depends on

the water content, solution concentration, depressed solidification temperature (nucleation temperature)

and freezing rates. The maximum deformation at −35℃ referring to the initial state of a freeze-thaw cycle

is named εex, and the difference between maximum deformation at −35℃ ant the deformation εth due to

pure thermal contraction is the deformation by pore pressure, viz. εpr = εex − εth. When a freeze-thaw

cycle finishes, it generally can not go back to the initial state, the corresponding deformation is the residual

deformation, viz. εre. Note that the start temperature is 20℃, whereas the end temperature is 10℃ for the

first freeze-thaw cycle. The difference of the maximum deformation of (i + 1)th cycle to that of the (i)th

cycle is defined as εif. All the definitions of deformations are recapitulated in Table 9.3 and illustrated in

Figure 9.10.

The defined deformations for paste I and II subjected freeze-thaw cycles are presented in Table 9.4. It

can be seen that the (absolute) values of εth of paste II are systematically larger than those of paste I. Two
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(a) (b)

Figure 9.10: Specific deformations for samples subject to freeze-thaw cycles loading (a) in terms of loading
time, (b) in terms of loading temperature. The selected curves are the first and second freeze-thaw circles
of Paste I saturated with water (PI-S0, see nomenclature in Table 9.1).

Table 9.3: Definition of the deformations based on strain-temperature/strain-time curves.

Deformation Definition

εth Pure thermal dilation of saturated porous medium;
εnu Deformation for ice nucleation;
εex Maximum deformation at −35℃ based on the zero point in a cycle;
εpr Deformation by pore pressure, εex − εth;
εre Residual deformation
εif Difference of the maximum deformation of (i+ 1)th cycle to that of the (i)th cycle;

reasons are responsible for the differences, one is the larger TEC of samples of paste II, as shown in section

9.2.1.1, the other is the hydrothermal pressure induced by pore fluid. Samples of paste II are less permeable,

thus have higher hydrothermal pressure: more negative/positive deformation during cooling/heating. The

significant nucleation strain εnu can be found for PI-S0 and PI-S3, and the values increase with freeze-thaw

cycles. The strains by pore pressure εpr at −35℃ for all samples are positive, due to the phase change

in pore space, which can be either the ice formation in pores and/or the formation of eutectic mixture of

NaCl solution and ice at about −23℃. This eutectic mixture does not lead to an abrupt deformation as

the ice nucleation. As shown in Figure 9.7, for paste I, except for PI-S5, the residual deformations εre and

the differential deformation εif are significant, which indicate that in addition to the elastic deformation,

the permanent fracture deformation after one freeze-thaw cycle occurs,.
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Table 9.4: Deformations for paste I and II saturated with NaCl solution at
different concentration subject to freeze-thaw loading.

Sorts
1st cycle (×10−6) 2ed cycle (×10−6) 3rd cycle (×10−6) 4th cycle (×10−6)

PI PII PI PII PI PII PI PII

Samples saturated with water

εth −577 −878 −509 −715 −560 −710 −547 −703
εnu 306 0 414 0 425 0 468 0
εex 944 −672 1231 −507 1305 −497 1337 −497
εpr 1521 206 1740 208 1865 213 1884 206
εre 305 −154 313 −10 300 10 −a −
εif 592 11 336 0 332 10 − −
Samples saturated with %1.5 NaCl solution

εth −746 −1322 −675 −930 −704 −915 −706 −893
εnu 0 0 0 0 0 0 0 0
εex 0 −1157 183 −819 72 −809 −55 −820
εpr 746 165 858 111 776 106 651 73
εre 205 −401 155 −31 104 −10 − −
εif 388 −63 44 −21 −23 −21 − −
Samples saturated with %3 NaCl solution

εth −829 −897 −622 −804 −574 −785 −639 −764
εnu 0 0 0 0 0 0 0 0
εex 802 −863 982 −708 787 −698 614 −699
εpr 1631 34 1604 −96 1461 87 1253 65
εre 257 −165 230 −32 138 −20 − −
εif 437 −10 35 −22 −35 −21 − −
Samples saturated with %6 NaCl solution

εth −589 −1285 −390 −937 −371 −929 −437 −923
εnu 306 0 467 0 575 0 445 0
εex 1051 −1197 1749 −854 1782 −865 1153 −867
εpr 1640 88 2139 83 2133 64 1590 56
εre 359 −408 419 −54 269 −43 − −
εif 1049 −65 460 −65 −360 −45 − −
Samples saturated with %10 NaCl solution

εth −617 −1135 −348 −955 −336 −968 −338 −966
εnu 0 0 25 0 98 0 49 0
εex 700 −1074 1284 −882 1356 −888 1037 −883
εpr 1317 61 1632 73 1692 80 1375 83
εre 257 −182 199 10 209 1 − −
εif 841 10 269 0 −110 10 − −
Samples saturated with %15 NaCl solution

εth −892 −1189 −715 −997 −786 −931 −766 −947
εnu 0 0 0 0 0 0 0 0
εex −665 −1128 −513 −869 −490 −871 −405 −860
εpr 217 61 202 128 296 60 361 87
εre −91 −259 1 2 35 0 − −
εif 61 0 24 0 120 11 − −
a − stands for the undetectable data.

9.3 Discussion

From the experimental curves depicted in Figures 9.6 to 9.8, the significant different deformations

between paste I and paste II can be observed. In this section, we try to explain the reasons being responsible

for the observed deformations. Figure 9.11 and 9.12 show, respectively, the comparisons of the measured

and simulated strains for paste I and paste II saturated with saline solution at different concentrations.

For simulation, the initial and boundary conditions are presented in Table 9.5. The freezing rate is 20℃/h,

about 0.0056 ℃/s. The cooling begins from the lateral surface x = 0 to the center x = L of sample (see

the schematic representation in Figure 4.1). Due to the symmetric geometry of the sample, the heat flow

at x = L is Q · n(t, x = L) = 0. Under the undrained condition, both water and salt flow are zero at
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x = 0 and x = L, see Table 9.5. The section at the middle of the sample is selected for simulation since

the material properties were characterized at this location, and for better approaching the one dimensional

modelling 1 since the length of sample is much larger than its radius.

For the samples of paste I, as shown in Figures 9.11, acceptable agreement between the measured and

predicted deformation curves can be obtained, except the PI-S1 as depicted in Figure 9.11(b). This may

be due to the incomplete initial saturation of the sample as discussed in previous section. The significant

dilation of paste I after a certain cooling can be due to the ice formation of pore solution. For the paste II

samples, as shown in Figure 9.12, rather good agreement between the measured and predicted deformation

can be observed. All the observations indicate again, that the poromechanical approach can describe the

freezing deformation of cement-based materials saturated with saline solution.

As is clearly presented in section 9.1.1, the experiments are performed under the undrained freezing,

where the moisture and/or salt exchanging with environment are prohibited. This undrained freezing for

porous materials saturated with pure water has been studied by Coussy [77] comprehensively, and later for

cement-based materials by Coussy and Monteiro [82]. The linear deformation of porous samples in case of

free loading (σ = 0) is hydrostatics and can be written as:

ε =
1
3
b(Pl − 2

3U) + bcPcap

K
+ αs(T − T0) (9.3)

For the undrained freezing, the conservation law for total mass allows us to derive a relation correlating the

liquid pore pressure with the temperature, salinity and saturation degree (see Appendix B.3.1 for detailed

derivation):
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(9.4)

The parameters 1/M, 1/Mc, αφ can be found in Appendix B.3.1 as well. The first term in the right hand

side of eq(9.4) denotes the contribution of interfacial energy U to the liquid pressure; the second term

represents the effect of salts, if pore liquid is pure water, this term is reduced to zero; the third term is the

contribution of hydrothermal effect of liquid solution confined in pores; the fourth term accounts for the

fusion entropy; and the last term is the effect of density difference when ice forms, in which the effect of

salt is associated by the apparent molar volume Vφ,s.

The total deformation of porous materials under undrained freezing and under free stress loading as

1. The modelling is performed with help of the code "BIL" developed by Patrick Dangla [86].
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(a) (b)

(c) (d)

(e) (f)

Figure 9.11: Comparison of the measured and simulated strains for samples of paste I, saturated with (a)
water (non-salt), (b) 1.5%, (c) 3%, (d) 6%, (e) 10% and (f) 15% NaCl solution.
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(a) (b)

(c) (d)

(e) (f)

Figure 9.12: Comparison of the measured and simulated strains for samples of paste II, saturated with (a)
water (non-salt), (b) 1.5%, (c) 3%, (d) 6%, (e) 10% and (f) 15% NaCl solution.
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Table 9.5: Initial and boundary conditions for calculating the deformation of samples saturated with NaCl
solution at different salinities. L represents the radius of sample.

Initial condition Boundary condition

Temperature T (t = 0, x) = 293 (K) T (t, x = 0) = 293 − 0.00556 × t
Heat flow - Q · n(t, x = L) = 0
Liquid pressure Pl(t = 0, x) = 0.1 (MPa) -
Water flow - ww · n(t, x = 0, x = L) = 0
Salt concentration ci(t = 0, x) = 0%, 1.5%, 3%, 6%, 10% and 15% -
Salt flow - wi · n(t, x = 0, x = L) = 0

(a) (b)

Figure 9.13: Detail of deformation in (a) Figure 9.11(a) (paste I) and (b) Figure 9.12(a) (paste II). Thermal
strain: the strain by pure thermal effect; Pressure strain: the strain by pore pressure induced by ice
formation and hydrothermal effect of pore solution.

Figure 9.14: Density of NaCl solution at different salinity as function of temperature. ©:0.00858 mol/kg,
�:0.0343 mol/kg, △:0.09707 mol/kg. After Mironenko et la. (2001) [255].
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Figure 9.15: Variation of liquid pressure with temperature for (a) paste I and (b) paste II initially saturated
with salt solution at different salinities.

depicted by eq(9.3) is composed of the deformation by pure thermal contraction of solid skeleton and that

induced by internal pressure. Note the second term in the right hand side of eq(9.3) present the pure

thermal deformation of solid skeleton without the hydrothermal effect of pore solution. Figures 9.13(a) and

9.13(b) show the thermal contraction and deformation by pore pressure for water saturated paste I and

paste II respectively. Obviously, the thermal shrinkage increases monotonously as temperature decreases,

while the deformation induced by pore pressure decreases slightly at first, then expands significantly. The

first contraction can be due to the temperature dependent density of liquid solution, viz. the highest

density of saline solution appears at about 4℃ (cf. Figure 9.14). Therefore, the contraction of liquid phase

with decrement of temperature leads to the negative liquid pressure, see Figures 9.15(a) and 9.15(b). The

lowest negative pressure can be about 7 MPa for samples saturated with pure water, when temperature

decreases from 20℃ to 4℃. The pressurization coefficient thus is estimated to be 0.5 MPa/℃, which is very

close to the value of well paste (0.6 MPa/℃) obtained by Ghabezloo [137]. As cooling goes on, the liquid

pressure increases significantly due to the formation of ice, and the more ice forms, the higher the liquid

pressure is obtained. As the salt concentration increases from zero to 15%, the maximum liquid pressure

at −35℃ decreases from 125 MPa to 42 MPa for paste I, and from 42 MPa to 27 MPa for paste II. The

huge difference of liquid pressure between the paste I and II is due to their pore structure. Recalling the

saturation degree-temperature curves, cf. Figures 8.6(a) and 8.6(b), very limited amount of ice forms in

pores of paste II because it has thinner pore size distribtuion, while more ice forms in paste I at the same

subzero temperature.
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10.1 Effect of air voids on freezing strain of dried samples

10.1.1 Problems with the TEC of cement-based materials

The thermal expansion coefficient (TEC) is one of the most important thermo-mechanical properties for

cement-based materials. It relates the thermal strain and the induced thermal stress at fixed displacement

boundary condition. Thus, the common practice of concrete technology is to keep the material TEC as

low as possible. Furthermore, the TEC of cement paste is of particular interest since it is a fundamental

parameter to determine the internal stress among the different phases in cement-based materials and
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to correctly predict the possible damage induced by the mismatch of thermal dilatation among phases

[128, 383].

Available experimental results show that the typical values for TEC of hardened cement paste are about

15-20 µm · m−1 · ℃−1 [248, 249]. These values are larger than TEC of aggregates, varying from 5 to 12

µm−1 · ℃−1 depending on the mineral composition [205]. Cement pastes are typical porous materials with

total porosity of 20%-40% [247], and the pore water has been proved to have a significant influence on the

material TEC due to the facts that liquid water has a larger TEC than the solid skeleton and that the pore

water can accumulate stress during thermal process [137, 170]. The thermal dilation behavior of liquids

confined in small pores has been investigated recently [431, 432]. Meanwhile, numerous experimental results

indicate that, under drained condition, the TEC of saturated samples of cement pastes have almost the

same TEC as dried samples [144, 353], and the TEC shows a maximum value at humidity of 65% [162].

Adopting the microstructure model of hydrates by Powers [307], Bazant[32] developed a hydrothermal

model for cement paste TEC, decomposing the total thermal dilation into pure thermal dilation of skeleton,

thermal shrinkage (swelling) of pore liquid and hydrothermic dilation of paste. This model was further

extended by other authors for different moisture conditions [144, 331, 353].

Compared to the detailed research on the role of pore water, little attention has been paid to the influence

of material porosity on TEC. For most ceramics, it is reported that the TEC is independent of porosity

[319]. However, the porosity of ceramics is controlled, in industry, to fabricate the low TEC materials.

For instance, the cordierite ceramics were sintered with porosity about 40% to obtain a TEC as low as 0.4

µm · m−1 · ℃−1 [167]. For cement-based materials, Shui et al. [370] showed that the TEC decreased with

the increase of material porosity and explained that this decrease was due to the pores accommodating a

part of the internal thermal expansion of solid skeleton. This argument was further supported by other

experimental observations [313]. However, based on the poromechanics analysis, Ghabezloo obtained the

opposite conclusion [136]. Thus, more research is needed to understand the mechanism of porosity’s impact

on TEC. To this aim, the TEC of cement pastes and mortars with different porosities are investigated in

this section (see also [442]). The temperature range of TEC measurement is −35 ∼ 20℃, a usual range for

atmospheric exposure of engineering cement-based materials. The thermogravimetric analysis (TGA) was

performed to characterize the hydration products respectively. On the basis of the measurements, the role

of porosity on TEC is discussed in depth.

10.1.2 Theoretical basis

Several available models for TEC for porous media are recalled in this section to provide a theoretical

basis for data interpretation of the experimental data in the present study. For sintered porous metals, the

TEC relates intimately to the porosity [14] through a power law,
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αd = αsρ
1/3 = αs(1 − φ)1/3 (10.1)

where αd is the global TEC of the porous material in drained condition, αs is the TEC of the solid matrix,

ρ is the compactness of the porous materials. From this relation, the increase of porosity leads to the

decrease of material TEC. Ghabezloo [136] gave a poroelastic description of thermal deformation of porous

material and derived the differential of TEC with respect to porosity as,

∂αd

∂φ
= − 1

K2
d

[

1 − φ

Kd
− 1
Ks

]−1
∂Kd

∂T
(10.2)

where Kd is the drained bulk modulus of porous material, and Ks the unjacked bulk modulus or the bulk

modulus of solid matrix. The detailed derivation of these equations is given in Appendix A.7, see also

[76]. The experimental results by Odelson et al. [274] show that the drained bulk modulus decreases with

temperature, i.e. ∂Kd/∂T < 0. The term −1/K2
d [(1−φ)/Kd −1/Ks]−1 is negative too since the inequality

1 − φ > Kd/Ks holds for most cement-based materials, e.g. Ghabezloo measured Kd/Ks = 0.414 and

1 − φ = 0.74 for oil-well cement pastes [139]. Accordingly, it is stated that the TEC of cement-based

materials, in drained condition, increases with porosity [136]. Note that if the drained bulk modulus Kd is

regarded as independent on temperature, i.e. ∂Kd/∂T = 0, then eq(10.2) depicts a simple fact that,

∂αd

∂φ
= 0 : αd = αd(φ = 0) = αs (10.3)

In fact, Khalili et al. [192] provide the proof of this relation from a boundary value problem in classical

poroelasticity with the bulk modulus independent of temperature.

10.1.3 Experimental procedures

10.1.3.1 Sample preparation

Cement pastes and mortars were prepared with w/c=0.5. For mortars, the sand-cement ratio was

retained as 2.25 and the modulus of fineness 1 of sands is 2.5. Air entrainment agent (AEA) was added, in

four dosages, into the cement paste and mortar mixtures to create different porosities in hardened samples.

Note P(M)-i the paste (mortar) sample with i = 0, 1, 2, 3, 4 standing for the dosage, that is to say AEA

mass over cement mass: 0, 30, 60, 90 and 120µg/g respectively. After mixing, cement pastes and mortars

were cast into cylinder tubes of 10mm diameter and the hardened specimens were demoulded from the

tubes at 3 days, then immersed into saturated water.

The samples with curing age of 300D were taken out from water and weighted as M0. The samples

were then oven-dried at 50℃ to constant weight Md. This temperature is regarded as capable to avoid the

1. The modulus of fineness is defined as: an empirical factor obtained by adding the total percentages of a sample of the
aggregate retained on each of a specified series of sieves, and dividing the sum by 100 [5].
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(a) (b)

Figure 10.1: Normalized sample weight loss for pastes (a) and mortars (b) during oven-drying period at
temperature 50℃.

possible drying damage in samples [10]. The normalized weight loss ((absolute mass loss)/(total mass)) in

drying process of pastes and mortars are presented in Figure 10.1. The weight of all samples became nearly

constant after drying of 60h. For each material, the dried samples were divided into three groups. The

first group was kept in desiccator for the thermal dilation measurement, the second group was vacuum-

saturated with water and/or NaCl solution. The outgass pressure was controlled to under 0.1atm, and the

vacuum-saturation last 48h to guarantee the saturation of the air voids as well. The vacuum-saturated

samples were weighted as Ms. The last group of dried samples were then ground into small particles to

perform helium pycnometry (HP), mercury intrusion porosimetry (MIP) and thermogravimetric analysis

(TGA).

Table 10.1: Physical and chemical properties of cement pastes (mortars).

P0(M0) P1(M1) P2(M2) P3(M3) P4(M4)
AEA dosage 0 1 2 3 4

Bulk density (MIP) (g/ml) 1.85(2.06) 1.78(2.01) 1.65(1.76) 1.58(1.70) 1.52(1.67)
Bulk density (Gravimetry) (g/ml) a 1.52(1.99) 1.57(1.87) 1.39(1.81) 1.39(2.00) 1.33(1.76)
Skeleton density (HP) (g/ml) 2.06(2.35) 2.12(2.23) 1.98(2.24) 2.01(2.18) 1.97(2.20)
Skeleton density (MIP) (g/ml) 2.38(2.48) 2.36(2.40) 2.30(2.47) 2.24(2.47) 2.30(2.48)
Air void (Nominal) (%) 0(0) 1.5 (1.5) 3.0(3.0) 4.5(4.5) 6.0(6.0)

Air void (Gravimetry) (%) b 0(0) 1.8(1.7) 3.2(3.1) 4.5(5.5) 6.3(6.1)
Porosity (Gravimetry) (-) c 0.26(0.15) 0.26(0.16) 0.27 (0.15) 0.27(0.13) 0.26(0.15)
Porosity (MIP) (-) 0.22(0.13) 0.25(0.16) 0.28 (0.18) 0.29(0.19) 0.32(0.22)
Wn content (TGA) (-) 0.24(0.23) 0.24(0.23) 0.26 (0.23) 0.26(0.24) 0.25(0.24)
CH content (TGA) (-) 0.18(0.16) 0.18(0.16) 0.19 (0.16) 0.18(0.14) 0.18(0.19)
Hydration degree (-) 0.90(0.90) 0.90(0.89) 0.99(0.90) 0.99(0.92) 0.95(0.92)

a The bulk density by gravimetry is calculated as: ρ = ρs · φ with ρs the skeleton density by helium
pycnometry, φ the porosity by gravimetry determined by eq(10.4a);

b The air void content is calculated by eq(10.4b), where ρs is determined by helium pycnometry;
c The porosity is calculated by eq(10.4a), where ρs is determined by helium pycnometry.

10.1.3.2 Porosity and air void content

By the gravimetry method mentioned above, the porosity φm and the air-void content φav, for each

material, are obtained through weight measurement:

φm =
(M0 −Md)/ρw

Md/ρs + (M0 −Md)/ρw
and φav =

(Ms −Md)/ρw − (M0 −Md)/ρw

Md/ρs + (Ms −M0)/ρw
(10.4)
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where ρw is the density of pore liquid (ρw = 0.997kg/m3 for water) and ρs is the skeleton density which can

be measured by helium pycnometry (HP) or mercury intrusion porosimetry (MIP). The analysis results

are given in Table 10.1.

10.1.3.3 Thermogravimetric analysis

Grounded powder of samples, about 20g, was analyzed by thermogravimetric analysis (TGA) method

to determine the non-evaporable water (Wn) and the calcium hydroxide (CH) content. It is known

that 1g of ignited Portland cement, completely hydrated, contains 23-27% of non-evaporable water, i.e.

Wnc(∞)=0.23-0.27 [391]. The stoichiometry analysis from cement hydration reactions gives Wnc(∞) =

0.26, see chapter 6 for detail. Note that the ignition loss of sand is relatively small Rs = 0.003 2, the

non-evaporable water Wnm for cement in mortar samples is then calculated as,

Wnm = mm
n · 3.25 −Rc − 2.25Rs

mm · (1 −Rc)
(10.5)

where mm
n stands for the measured non-evaporable water from mortar samples by TGA, mm represents

the ignited weight of mortar and Rc the ignition loss of cement (0.7%). The term mm·(1−Rc)
3.25−Rc−2.25Rs

represents

the ignited weight of cement. For both cement pastes and mortars, the hydration degree of samples is

calculated by

αc,m =
Wnc,m

Wnc(∞)
=

Wnc,m

0.26
(10.6)

The calculated hydration degrees of cement pastes and mortars are presented in Table 10.1.

10.1.3.4 Thermal expansion coefficient measurement

The thermal expansion coefficient of samples was measured with LVDT of Type Macrosensor 750. Both

the samples and LVDTs were placed in an environmental chamber of Type Espec PL-2k. The temperature

range was set as −35℃ ∼ 20 ℃. Compared to the conventional range for TEC measurement, e.g. 20 ℃ ∼

85 ℃ [370], this temperature range is more centered on low(negative) temperature and the measurements

intend to give TEC for cement-based pastes in conventional atmospheric environments for cold regions. The

cooling rate is 0.33 ℃/min. Since the geometry of samples is relatively small, the temperature distribution

in samples can be assumed uniform under this rate. In addition, the humidity of the environmental chamber

during TEC measurement was controlled as 25%. The recordings of temperature and the deformation of

samples were synchronized by digital data logger. The TEC is calculated from the linear regression of

recorded deformation with respect to temperature T,

αd =
1
L0

∂L

∂T
=

∂ε

∂T
(10.7)

2. Sample was ignited at 1000℃ in a furnace for 1 hour.
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where αd is the TEC of samples in drained condition, L,L0 are respectively the lengths of samples at test

temperature T and reference temperature 20℃, ε is the linear strain of samples ε = (L− L0)/L0.

10.1.4 Experimental results

10.1.4.1 Thermal expansion coefficient

The measured thermal strains are presented in Figure 10.2(a) and 10.2(b) for dried cement pastes and

mortars. It can be seen in Figure 10.2 that as the air void content decreases from 6.0% (AEA dosage 4) to

zero the strains at −35℃ of cement pastes decrease from −450µm/m to −600µm/m and strains of mortars

decrease from −360µm/m to −520µm/m. Note that for cement pastes and mortars, the largest thermal

contractions happen for samples with AEA dosage of 1.5%, i.e. −680µm/m and −520µm/m for pastes and

mortars respectively.

The TEC for each sample was obtained by means of linear regression ε − T . For each total porosity

(material pores φm plus entrained air content φav), 4 samples were measured and the TEC is plotted in

terms of total porosity in Figure 10.3, giving both average and dispersion of TEC values for cement pastes

and mortars. Obviously, the TEC decreases with the augmentation of total porosity for both cement pastes

and mortars. In Figure 10.3, eq(10.1) is used to fit the TEC value in terms of total porosity as well. It

can be seen that eq(10.1) can not capture the TEC in terms of porosity for cement pastes and mortars. A

better fitting relation for samples in this study is proposed as,

αd =















α0(1 − φ)2.66, α0 = 26.98(µm ·m−1 · ℃−1) for cement pastes

α0(1 − φ)2.38, α0 = 14.71(µm ·m−1 · ℃−1) for mortars
(10.8)

where α0 is the fitted TEC value for φ = 0. For cement pastes, the value of α0 is similar to the TEC of

Portlandite, i.e. 23.3 µm · m−1 · ℃−1. For mortars, the value of αc is much smaller than that of pastes,

due to the large volumetric content of quartz sands of which the TEC is about 12 µm · m−1 · ℃−1. The

TEC values are also fitted with respect to entrained air content φav as,

αd =















α0(1 − φav)3.74, α0 = 12.05(µm ·m−1 · ℃−1) for cement pastes

α0(1 − φav)2.69, α0 = 9.99(µm ·m−1 · ℃−1) for mortars
(10.9)

In Figure 10.4(a) and 10.4(b) are shown the measured and fitted TEC for samples in terms of air void

content. From these figures, it is confirmed that TEC is related to porosity, or entrained air content,

through a power law, with different exponents for pastes and mortars.
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(a) (b)

Figure 10.2: Measured thermal deformations of dried air-entrained cement pastes (a) and mortars (b).

(a) (b)

Figure 10.3: Measured and fitted TEC values for dried air-entrained cement pastes (a) and mortars (b) in
terms of total porosity (= φm + φav).

(a) (b)

Figure 10.4: Measured and fitted TEC values for air-entrained cement pastes (a) and mortars (b) in terms
of air voids content.
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(a) (b)

Figure 10.5: Pore size distribution measured by MIP for pastes (a) and mortars (b) with different air void
contents.

10.1.4.2 Pore structure

The capillary porosity and air void content measured by gravimetry for all samples are presented in

Table 6.3. The capillary porosity is measured by the gravimetry during the drying procedure described in

Section 3.3 and calculated through eq(10.4a). It can be shown that the capillary porosity of pastes is rather

constant, around 26%, and that of mortars varies within 13-16%. These values are rather independent of

the air voids content and this observation indicates that the air void system introduced by AEA does not

interfere with the capillary pore system.

(a) (b)

Figure 10.6: The intruded pore volume at different pore size ranges for paste (a) and mortar (b).

The pore size distribution (PSD) of pastes and mortars, measured by MIP, is illustrated in Figure 10.5(a)

and Figure 10.5(b). Significant difference can be observed between the PSD of air-entrained samples and

that of the non air-entrained samples. The total intruded pore volume increases with the AEA content,

from 0.12 ml/g to 0.20 ml/g for pastes and from 0.061 ml/g to 0.128 ml/g for mortars. Evidently, the
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air voids introduced by AEA do have influence on the mercury intrusion process. Three characteristic

pore ranges are identified and intrusion volume for each range is illustrated in Figure 10.6. The detailed

influence of air voids on the MIP measurement for each pore range is described as follows.

Range of d ≥ 5µm. Compared to non air-entrained samples, the intruded volume increases slightly for

pastes but substantially for mortars, cf. Figure 10.6. For pastes, this slight increase can be attributed to

the mechanical damage of surface air voids of samples by mercury pressure. For mortars, the important

increase of intrusion volume is due to the percolation of mercury into air voids through two neighbouring

interfacial transition zones (ITZ) between aggregates and cement paste, noting that ITZ contains more and

larger capillary pores [350]. The mechanism is shown in Figure 10.7a.

Figure 10.7: Influence of entrained air voids on three char-
acteristic pore size ranges.

Range of 50nm≤ d < 5µm. It is observed

from Figure 10.6 that in this range both paste

and mortar samples have important increase

of intrusion volume. This observation can be

explained by the mercury percolation into air

voids through the capillary pores (or microc-

racks) in hardened cement pastes, cf. Figure

10.7b. Note that SEM image analysis of “ink-

bottle” shape pores in cement pastes shows

that the “neck” size is about 2 magnitudes

smaller than the “bottle” size [99]. Therefore,

the “bottle” rather than the “neck” accom-

modates the important increase of intrusion

volume in this pore size range.

Range of 3nm≤ d < 50nm. In this range

no significant different intrusion volumes are

observed for samples with different entrained

air void contents. According to the C-S-H

model proposed by Jennings and coworkers

[392], at this scale we are approaching the inter-granular space (∼10nm) between C-S-H bundles and

the internal space (∼3nm) in a C-S-H bundle. In fact, this observation indicates the entrained air voids

interfere very little with the pore structure at the scale near C-S-H structures, cf. Figure 10.7c.
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10.1.4.3 Thermogravimetric analysis

The TGA results for pastes and mortars are presented in Figure 10.8. It can be seen that these

thermogravimetric curves are quite similar. The measured Wn and CH are evaluated from these TGA

results and presented in Table 10.1. The Wn values for hydrated cement in pastes and mortars are about

23-25% and the CH values for hydrated cement in pastes and mortars are 14%-19%. The hydration extent

of cement, calculated by eq(10.6), attains about 90% for all samples at age of 300D and no significant

difference of hydration extents is observed between pastes and mortars. This confirms that AEA dosage,

with entrained air voids, has no influence on the cement hydration kinetics.

10.1.5 Discussion

(a)

(b)

Figure 10.8: Thermogravimetric results for pastes (a) and
mortars (b) with different air void contents.

According to classical thermo-elasticity

[262], the TEC of a dried porous medium

with homogeneous matrix is independent of

its porosity and equal to the TEC of the ma-

trix. Ghabezloo [139] derived the TEC of

cement-based porous materials under drained

and undrained conditions, and predicted a

material TEC keeping constant for drained

condition and increasing with porosity for

undrained condition. However, our TEC mea-

surements on both pastes and mortars speci-

mens in this study do not support these state-

ments. Several causes can be responsible for

this discrepancy. Firstly, different porosity in

this study is created by entrained air contents

and the matrix of pastes and mortars is not

homogeneous between the air void surface and

bulk paste. Relevant investigations show that,

once air voids is entrained by AEA in cement

paste, a surface shell of about 1 µm thick-

ness is formed with very dense microstructure

[23, 212, 314, 315]. Through EDXA examina-

tion, it was also revealed that the C/S ratio in this shell was equal to 1.1, compared to C/S=1.5 in bulk
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(a) (b)

Figure 10.9: SEM observations on microstructure of air void shell (a) (After Atahan et al., 2008 [23]) and
fly ash (b) (After Luke and Lachowski, 2008 [229]).

paste [212]. Although no direct evidence is available to quantify the thermal deformation behavior of this

shell, it is believed that this shell, together with the discontinuity created between this shell and the bulk

paste, would have a direct impact on the TEC of entrained pastes and mortars. It is interesting to note

that, in the works of Shui et al. [370], smaller TEC was measured for fly-ash pastes, and at the surface of

fly-ash particles (void shell) similar C-S-H product with low C/S ratio was also observed [229, 293]. They

also have morphology similarity, cf. Figure 10.9.

Secondly, the samples in this study were dried under temperature fixed at 50℃ but it is not sure that

all pores are totally dried. In our TGA results, the mass loss during 50℃ and 150℃ was recorded as

7.2∼11.4% for pastes, and 5.6∼8.7% for mortars, cf. Figure 10.8. This mass loss is mainly the evaporated

water. The existence of this quantity of water in pastes and mortars can have an additional effect on the

TEC measurement by the possible water flow in pore structure [307]. At last, the thermal strain of solid

skeleton of pastes and mortars can more or less deviate from the ideal thermo-elasticity due to the cracks

and defects in skeleton especially with the presence of entrained air voids [70].

10.2 Strains of saturated air-entrained cement pastes subjected

to freeze-thaw loading

10.2.1 Experimental observations

Comprehensive experimental studies have been performed on the deformation variation of air-entrained

cement pastes saturated with NaCl solution at different concentrations subject to freeze-thaw loading.

Figures 10.10 to 10.17 show the deformation variation with testing time and temperature for paste I

entrained with dosage of 1.5%, 3%, 4.5% and 6% air void respectively. The porosity and air void content
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are given in Table 10.1 in previous section. Contrary to the expectation that the samples saturated with pure

water exhibit much larger deformation after ice nucleation, very limited deformation for samples saturated

with water, while a large amount of deformation for samples saturated with saline solutions, are observed.

It can be seen that, all samples, except the PIA1-S5, PIA2-S0, PIA4-S0 (see the nomenclature in Table

9.1), present the obvious freeze-thaw hysteresis and the residual deformation. This indicates that samples

have been damaged under freeze-thaw loading. The values of deformation defined in section 9.2.2 (see Table

9.3), are recalled to characterize the deformations shown in Figures 10.10 to 10.17, see Table 10.2. It can be

found that the maximum nucleation deformation εnu = 1156 × 10−6 for PIA3-S5 appears at second cycle,

and this value is even larger than the free deformation when ice immediately forms in porous materials

with 4.5% air voids saturated with 15% NaCl solution, viz. εvnu = 0.045 × 0.34 × 0.09/3 = 459 × 10−6.

The value 0.34 is the ultimate ice volume formed in 15% NaCl solution 3. The value 0.09 is the excess

volume as ice forms. The maximum total deformation εtotal = 4726×10−6 is observed for PIA4-S5 at third

cycle. Again, this value is larger than the free deformation when ice forms in porous materials with total

28% porosity saturated with 15% NaCl solution, viz. εvto = 0.28 × 0.34 × 0.09/3 = 2856 × 10−6. These

observations indicate, at least that the volume increment associated with water solidification can be an

important, but not the only reason for anomalous deformations of air entrained cement-pastes saturated

with saline solution subjected to freeze-thaw loading.

Figure 10.10: Deformation of saturated samples entrained with nominal 1.5% air voids (PIA1-S0→5) in
terms of freeze-thaw time.

3. The volume fraction of water that is capable to solidify, is estimated by: fice = (m∗
− m)/m∗

× (ρ − mb), where
m∗ = 0.2331g/g is the eutectic concentration, m = 0.15g/g is the current concentration, ρ ≈ 1.108ml/g is the density of
solution with mass concentration mb ≈ 0.166g/ml.
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Figure 10.11: Deformation of saturated samples entrained with nominal 1.5% air voids (PIA1-S0→5) in
terms of temperature.

Table 10.2: Deformations for air entrained pastes saturated with NaCl solution subject to
freeze-thaw loading.

Sorts
1st cycle (×10−6) 2ed cycle (×10−6) 3rd cycle (×10−6)

%1.5 %3 %4.5 %6 %1.5 %3 %4.5 %6 %1.5 %3 %4.5 %6

Samples saturated with water

εth −1004 −875 −659 −1250 −654 −637 −498 −868 −651 −644 −449 −993
εnu 0 0 0 46 0 0 36 78 0 0 0 110
εex −509 −649 55 −1119 17 −438 206 −685 146 −439 139 −502
εpr 495 226 1014 131 671 199 704 183 797 205 588 491
εre −178 −252 150 −229 109 −20 156 32 121 −1 111 54
εif 348 −41 301 205 84 −21 89 215 −a − − −
Samples saturated with %1.5 NaCl solution

εth −806 −1063 −619 −808 −509 −788 −419 −696 −474 −744 −420 −743
εnu 0 20 0 513 0 0 75 602 0 0 98 624
εex 0 −556 0 1260 530 −273 452 1434 624 −252 428 1449
εpr 806 507 619 2068 1039 515 871 2120 1098 492 848 2192
εre 54 −36 30 126 143 129 121 152 95 96 72 111
εif 584 247 482 300 237 150 97 167 − − − −
Samples saturated with %3 NaCl solution

εth −721 −663 −648 −736 −524 −433 −469 −529 −537 −417 −482 −495
εnu 0 61 315 135 0 71 178 334 0 141 152 500
εex 390 10 954 40 814 569 868 765 838 724 751 1063
εpr 1111 673 1602 776 1338 1002 1337 1394 1375 1141 1233 1558
εre −4 65 −51 65 77 155 36 272 45 133 21 220
εif 420 624 −135 790 101 310 −81 570 − − − −
Samples saturated with %6 NaCl solution

εth −735 −774 −602 −396 −514 −455 −471 −341 −536 −371 −473 −356
εnu 0 35 332 616 0 187 631 772 0 327 434 817
εex −231 −286 1406 2240 205 583 1654 2439 194 1150 1666 2386
εpr 504 488 2008 2636 719 1028 2125 2780 730 1521 2139 2742
εre −148 −15 336 551 66 222 336 223 35 299 120 133
εif 288 854 584 750 55 789 584 170 − − − −
Samples saturated with %10 NaCl solution

εth −515 −705 ∗b −526 −474 −557 ∗ −477 −548 −620 ∗ −485
εnu 703 445 271 572 994 681 861 838 898 759 827 849
εex 2680 2165 2170 2150 2851 2543 3892 2367 2737 2491 5123 2357
εpr 3195 2870 ∗ 2676 3325 3100 ∗ 2844 3285 3111 ∗ 2842
εre 877 587 583 373 366 452 834 200 162 247 622 134
εif 1032 965 2305 590 252 400 2065 190 − − − −
Samples saturated with %15 NaCl solution

εth −720 −948 ∗ −695 −561 −775 ∗ −593 −552 −774 ∗ −635
εnu 0 91 448 560 0 103 1156 571 0 103 1023 793
εex −813 −630 2930 2900 −538 −372 3253 4015 −528 −406 3176 4091
εpr −97 318 ∗ 3595 23 403 ∗ 4608 24 368 ∗ 4726
εre −145 −81 632 485 11 34 442 511 12 33 247 356
εif 130 177 845 1600 21 1 365 587 − − − −
a − stands for the undetectable data;
b ∗ is the anomalous value obtained from the measured data, so that it is not adopted in the table.
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Figure 10.12: Deformation of saturated samples entrained with nominal 3% air voids (PIA2-S0→5) in
terms of freeze-thaw time.

Figure 10.13: Deformation of saturated samples entrained with nominal 3% air voids (PIA2-S0→5) in
terms of temperature.

10.2.2 Is it the effect of saturation degree of air voids?

Apparently, the higher the concentration with which the cement pastes have been initially saturated,

the higher the maximum deformation, the residual deformation and the area of freeze-thaw deformation

hysteresis (especially for samples saturated with NaCl at concentration of 6% (PIAX-S3) and 10% (PIAX-

S4)). These observations have also been verified by the results obtained from comprehensive tests on the

materials with the same compounds, see Appendix E.2. As to the author’s knowledge, these phenomena

have not been observed elsewhere, yet there have no proposed mechanisms accounting for these observations.
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Figure 10.14: Deformation of saturated samples entrained with nominal 4.5% air voids (PIA3-S0→5) in
terms of freeze-thaw time.

Figure 10.15: Deformation of saturated samples entrained with nominal 4.5% air voids (PIA3-S0→5) in
terms of temperature.
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Figure 10.16: Deformation of saturated samples entrained with nominal 6% air voids (PIA4-S0→5) in
terms of freeze-thaw time.

Figure 10.17: Deformation of saturated samples entrained with nominal 6% air voids (PIA4-S0→5) in
terms of temperature.
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Morphologically, the deformation of air-entrained cement pastes subjected to freeze-thaw loadings can be

classified as three different sorts based on the characteristics of deformation curves, see Table 10.3 and top

half of Figure 10.18.

For class I, no or slight nucleation deformation is followed by continual contraction and/or slight ex-

pansion when temperature is cooled down to −35℃, and no significant residual deformation occurs. The

slight nucleation deformation can be due to the energy change of ice formation, which is exactly the same

reason for the dilation of porous materials when the benzene is used as saturating liquid as observed in

[36, 169]. The following contraction is due to the negative water pressure when the ice-water equilibrium is

required at ice tip in pores [342]. The negative pressure is roughly proportional to depressed temperature

as Pl ≈ −1.2227∆T MPa [356]. As freezing goes on, some capillary pores are then partially occupied by

ice, and the water in ’ink-bottle’ like pores is blocked. Once the blocked water crystallizes, the formed

hydraulic pressure can cause damage eventually due to relatively slow pore pressure relaxation. In addi-

tion, as illustrated in Figure 10.18(a), the saturation degree of air void would increase continually with

freeze-thaw cycles because the ice gem nucleated on the void-solid interface sucks the water in the adjacent

capillary pore according to the cryosuction process.

For class II, the initial saturation of air void is larger. For instance, Sl ≈ 90% but not arrives at full

saturation, the formed ice will fill the unsaturated space due to cryosuction process mentioned above [77],

which creates slight contraction after nucleation as observed in Figure 10.18(b). For further freezing, it has

no room to accommodate the sucked water, the contraction stops, and it begins to expanse as ice penetrates

into smaller pores.

For class III, the sample is initially saturated completely, as shown in Figure 10.18(c), once ice gem

nucleates on the interface of air voids, the porous material begins to expanse. Since the samples were

enclosed with resin epoxy and latex membrane, freezing occurs under undrained condition, therefore any

further formation of ice will create significant hydraulic pressure and cause significant expansion as shown

in Figure 10.18(c).

Definitely, the high hydraulic pressure can damage the solid skeleton of cement paste, thus significant

residual deformation can be observed. It has been reported that, for the samples initially saturated with

water, the surface scaling increases as the air void content increases [328]. In addition, all the three classes

of saturation degree may occur in one sample: some air voids are empty, some are partially saturated

and/or some are completely saturated. As in heating, the discrepancy of thermal expansion coefficients of

ice and cement matrix can cause additional damage to the porous material, and the expansion of ice with

temperature is probably the reason why samples continually expanse as temperature increases from −35℃

to about −15℃. Then samples contract significantly as temperature further increases to melting point
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due to ice melting. The similar observations of deformation versus temperature can be found for cement

based materials [107, 239, 284, 286, 340] and rock samples [330], but these experiments did not include the

salt solution. Figure 10.19 shows the images of sample PIA2-S4 before and after 16 freeze-thaw cycles. It

can be seen that significant damages have been caused by freeze-thaw, the strength of cement paste has

been lost completely, similar to some pulverization of the normal cement-based materials after hundreds of

freeze-thaw cycles under drained condition, cf. [296].

Table 10.3: The classification of deformation of air-entrained cement pastes subject to freeze-thaw loadings.
Deformation class Description Materials

Class I
❀ Contraction after ice nucleation;
❀ No or slight nucleation deformation εnu;
❀ Very small deformation εpr by pore pressure.

PIA1-S5, PIA2-S0, PIA4-S0

Class II

❀ Slight contraction after ice nucleation;
❀ Middle nucleation deformation εnu;
❀ Large deformation εpr by pore pressure, tiny extra deformation
εex.

PIA1-S0, PIA1-S3, PIA2-S1,
PIA4-S1, PIA4-S2, PIA4-S3

Class III
❀ No contraction after ice nucleation;
❀ Significant nucleation deformation εnu;
❀ Significant deformation for both εpr and εex.

PIA1-S1, PIA1-S2, PIA1-S4,
PIA2-S2, PIA2-S3, PIA2-S4,
PIA3-S3, PIA3-S4, PIA3-S5,
PIA4-S1, PIA4-S2, PIA4-S3,
PIA4-S4, PIA4-S5.

Figure 10.18: Three different sorts of deformation in terms of temperature after ice nucleation point (Top)
and the proposed possible mechanisms for different deformation styles (Bottom). (a), Contraction as water
flows to air voids due to negative liquid pressure; (b) Slight contraction after ice nucleation point then
expansion to certain extent; (c), Significant expansion after ice nucleation.

However, the proposed mechanisms presented in Figure 10.18 can not explain the weak tendency that

the samples with more NaCl salt concentration show larger deformation as presented in Table 10.3. This

may be related to the saturation processes. Since the solution with higher NaCl concentration has larger

surface tension, γlv = 73.6 + 1.62 × m mN/m at 25℃, with m the molar concentration mol/kg [240], the

bigger capillary pressure can be achieved for a given pore size r by Young-Laplace law, Pc = 2γlv/r. Thus

more solutions flow into air voids and achieve higher saturation degree. This hypothesis, however needs
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Figure 10.19: Image of an air-entrained sample before (a) and after (b) 16 freeze-thaw cycles.

further verification by experiments systematically.

10.2.3 Poromechanical analysis and discussion

The anomalous experimental observations in the previous sections may present some conflicting con-

clusions in the effects of air voids entrainment on deformations of cement-based materials subjected to

freeze-thaw loading. The concepts of mechanisms illustrated in Figure 10.18 present us the effects of satu-

ration degree on air voids entrained cement-based materials qualitatively. In this section, we try to address

the effect of saturation degree of air voids on the strains of cement-based materials appropriately.

The average spacing factor L̄ can be estimated by Powers theory [305],

L̄ =
3
Sa

[

1.4
(

φpaste

φav
+ 1
)1/3

− 1

]

when
φpaste

φav
≥ 4.342 (10.10)

where Sa denotes the average specific surface area of spheres, Sa = (4πr2)/( 4π
3 r

3) = 3/r. φpaste represents

the volume fraction of paste, φav represents air void content (see Table 10.1), and φpaste + φav = 1. The

calculated spacing factors are shown in Table 10.4, where the average size of air voids is assumed as 100µm.

Table 10.4: Powers spacing factor estimated by eq(10.10).

Materials PA1 PA2 PA3 PA4

Air void content (%) 1.8 3.2 4.5 6.3
Spacing factor (µm) 434 341 294 252

Analogous to the calculation performed in section 5.1, different boundary conditions are used for the

saturated and unsaturated cases (see Table 10.5). For the air void saturated condition, which is equivalent

to undrained condition, the initial and boundary conditions are the same as those presented in Table 9.5.

For the air void unsaturated condition, the element of an air void with the surrounding cement paste with

thickness of L̄ is studied. The initial and boundary conditions are similar to those presented in Table 5.2

in section 5.1, where the negative liquid pressure (when ice forms) is imposed at the surface of air void

x = 0, and there are no water and salt flows at x = L̄. The deformation of the cement paste embedding

the air void can represent the whole deformation of material if the air voids are homogeneously distributed.
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Table 10.5: Initial and boundary conditions for calculating the deformation of samples in air void saturated
and unsaturated condition. The size L is the radius of sample for saturated (undrained) condition and the
spacing factor L̄ for unsaturated (drained) condition.

Initial condition Boundary condition

Saturated case

Temperature T (t = 0, x) = 293(K) T (t, x = 0) = 293 − 0.00556 × t
Heat flow - Q · n(t, x = L) = 0
Liquid pressure Pl(t = 0, x) = 0.1(MPa) -
Water flow - wl · n(t, x = 0 and L) = 0
Salt concentration ci(t = 0, x) = 0%, 1.5%, 3%, 6%, 10% and 15% -
Salt flow - wi · n(t, x = 0, x = L) = 0

Unsaturated case

Temperature T (t = 0, x) = 293(K) T (t) = 293 − 0.00556 × t
Heat flow - Q · n(t, x = L̄) = 0
Liquid pressure Pl(t = 0, x) = 0.1(MPa) Pl = −Pcap, (MPa)
Water flow - ww · n(t, x = L̄) = 0
Salt concentration ci(t = 0, x) = 0%, 1.5%, 3%, 6%, 10% and 15% -
Salt flow - wi · n(t, x = L̄) = 0

Because of the small size of the air void element, we assume the homogeneous temperature distribution

in the surrounding cement paste. The calculation of the linear strain for air entrained cement is given in

Appendix B.3.2.

Figures 10.20 to 10.23 show the deformation curves for materials under both conditions. The experimen-

tal curves are also presented in the figures for comparison. It can be found that some of the measured curves

lie between the predicted curves under undrained and drained conditions, which confirms the mechanisms

proposed in section 10.2.2 in some extent. From the figures, it can be found that at the cooling stage before

ice nucleation, the experimental curves are above the predicted curves for both saturated and unsaturated

cases. This indicates that the experimental curves show less contraction than the predicted ones at this

cooling stage: the thermal expansion coefficient is lower than the used value (11 × 10−6m · m−1 · ℃−1).

This may be due to the effect of moisture in the microstructure of cement pastes as shown in [32, 144, 353],

see the literature study in section 10.1.1. For the unsaturated cases, the results show more contraction

than those in saturated cases in this cooling stage. The negative pressure induced by the contraction of

liquid phases under cooling can be the reason for this observation (the same observation in section 9.3

and Figure 9.15). As the cooling continues, ice nucleates at the interface of air voids and propagates into

pores. For drained freezing (air void is unsaturated), the negative pressure of liquid phase required by the

thermodynamic equilibrium of water-ice leads to the additional contraction of the whole material. The

negative pressure of liquid phase around the ice tips also attracts the water in the smaller adjacent pores

so that more contraction occurs as observed by Powers and Helmuth [310]. However, for the undrained

freezing (air void is saturated), as studied in section 9.3, the negative pressure of liquid phase thus can not

be valid any more. Therefore, it can be expected that, for the undrained freezing, the more the air void
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Figure 10.20: Comparison of the measured and predicted freezing deformation for samples with 1.5% air
content for saturated (undrained) case and unsaturated (drained) case.

Figure 10.21: Comparison of the measured and predicted freezing deformation for samples with 3% air
content for saturated (undrained) case and unsaturated (drained) case.
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Figure 10.22: Comparison of the measured and predicted freezing deformation for samples with 4.5% air
content for saturated (undrained) case and unsaturated (drained) case.

Figure 10.23: Comparison of the measured and predicted freezing deformation for samples with 6% air
content for saturated (undrained) case and unsaturated (drained) case.
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content, the higher the liquid pressure and the larger the ultimate expansion. As shown in Figures 10.20

to 10.23, the maximum expansion for samples initially saturated with pure water show 1400 µm/m to 2000

µm/m as air content increases from 1.5% to 6%.

Unfortunately, we can not figure out the saturation degree required by the experimental curves for

all specimens quantitatively. Nevertheless, the continual expansion when temperature is held constant at

−35℃ shown in Figures 10.10 to 10.17, can not be explained by the present model. This kind of expansion

has been recognized for more than half century by Powers and Helmuth [310]. In addition, some samples

saturated with saline solution show larger expansion than those with pure water, see the deformation curves

for samples saturated with, for instance, 10% NaCl in Figures 10.20 and 10.21, and samples saturated with

brine in Figures 10.22 and 10.23, which are rather anomalous. All the above mentioned questions need

further researches systematically.



182 The effect of air voids



Conclusion

Ice formation in porous materials

The basic principle of ice formation in porous materials relies on the thermodynamic equilibrium. This

allows us to find a equation to relate the capillary pressure to the liquid pressure, water activity and

entropy change of melting. As a non-wetting invasion process, the penetration of ice with the depression

temperature provides us a method to measure the pore size distribution, named cryo-porosimetry. The

activity of ions can be a combination of the individual ionic long-rang interaction and short-range solvation

effect. The ionic parameter approaches are used to evaluate the ionic activity, the osmotic coefficient and

water activity.

Literature study indicated that water is more likely to transfer to the cubic ice (Ic) rather than the

hexagonal ice (Ih) when confined in pores of nano-size. The ice growth rate and ice crystal structure are

associated with temperature. The freeze-thaw hysteresis can be due to the contact angle difference between

freezing and melting, the pore curvature-induced metastability of the solid phase and the ’ink-bottle’ like

pore structure. Experimental measurements indicated that the depressed supercooling temperature is

3.4∼11 K lower than the bulk melting temperature. By using the probability analysis and the Gibbs

energy based theory, the contact angle between ice and pore wall is evaluated and it decreases from 25° to

20° when the NaCl concentration increases from zero to 15 wt%.

Hydration and pore structure of cement pastes

With help of the Avrami equation and the CM model proposed by Jennings and coworkers, the content of

hydration products and porosity are evaluated explicitly. The pore structure of our cement pastes is studied

comprehensively by nitrogen adsorption/desorption (NAD) and mercury intrusion porosimetry (MIP). The

pore structure is the result of the related hydration processes of cement. Both chemical reaction kinetics

and physical packing of hydrates account for the pore structure. For specific surface area measurements,

the Langmuir, BET, BJH and t-plot approaches give comprehensive information. The specific surface area
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of paste I is systematically larger than that of paste II because paste I contains more accessible LD C-S-H.

The maximum pore volume and specific surface area for paste II at 28 D are observed due to the coupled

hydration and miscrostructure change of C-S-H with time. The average porosity of paste I and paste II

decrease from 0.39 and 0.24 to 0.33 and 0.21 respectively as curing age increases from 7D to 180D. The

critical pore size, threshold pore size and mean pore size decrease with curing age monotonously due to the

elimination of percolated capillary pores. For pore size distribution measurement, MIP provides a reliable

distribution on a large pore size range, while the NAD measurement affords more detailed information on

ton micropore and meso-pore ranges.

Mechanical and transport properties of cement pastes

By means of a multi-scale homogenization model, we are capable of predicting the poroelastic parameters

of a hardened cement paste by knowing the volume fractions and the elastic properties of the constituents

of its microstructure. Appropriate models are presented for evaluation of the volume fractions by knowing

the chemical composition and density of the cement clinkers and w/c ratio. The evaluated bulk modulus,

shear modulus and undrained bulk modulus for paste I(II), respectively, are 14.6(20.2) GPa, 6.4(10.0) GPa

and 17.4(23.5) GPa, which are close to the data in literature.

The transport properties of cement pastes are also evaluated by the multi-scale modeling. The Eshelbian

form solution is recalled for approaching the effective conductivity/permeability by assuming permeable

and/or impermeable phases embedded in the homogenized medium. The Katz-Thompson equation is

recalled to correlate the conductivity to the permeability. At the level of cement pastes, the capillary pores

are specially considered, and the effective medium theory is adopted to calculate the overall conductivity.

A good agreement between the predicted results and the experimental results from literature confirms the

capability of this kind of model.

Freezing strains of cement pastes: poromechanical analysis and

experimental observation

A thermoporomechanical model is established to describe the behaviors of cement-based materials

subjected to freeze-thaw loading, following the comprehensive studies by Olivier Coussy and coworkers.

This model takes the basic variables: temperature, liquid pressure and salt concentrations. To achieve

more accuracy results, the physico-chemical properties of NaCl solution are estimated by the Archer’s

empirical equations. The saturation degree curve, which is a governable parameter correlating the pore

structure to the macromechanical properties by poromechanics, is evaluated by means of the capillary
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relations. The multi-Gauss fitting is retained to characterize the pore size distribution by means of the

MIP data. Because paste I contains more large capillary pores, more ice forms in paste I than in paste II

at a certain subzero temperature. The more salt it contains, the less ice forms.

Analysis on the cement-based materials saturated with water in literature has been performed as a case

study. Good agreement between the predicted curves and the measured curves confirms the robustness

of the poromechanical model. The negative liquid pressure required by the thermodynamic equilibrium

between ice and water accounts for the continual shrinkage after ice nucleation for air-entrained cement

paste, and the pore pressure relaxation accounts for the slight shrinkage when temperature is kept constant.

For the cement paste without air entrainment, the pore pressure can be built up rapidly when water

crystallizes. The effect of supercooling on the instantaneous dilation is analyzed and compared to the

experimental data obtained by Glüble and Stokin as another case study. To avoid the metastability of water

under supercooling before ice nucleation, a temperature routine is designed specially. The temperature is

first kept at zero, then rapidly cooled to the depressed supercooling temperature. The thermal shock by

heat releasing when ice forms is considered as well. The predicted results indicated that the instantaneous

deformation at the end of supercooling can be due to the immediate ice formation and the thermal shock.

Deformations for cement pastes initially dried and saturated with NaCl solution at different concen-

trations are measured. Carefully sample preparation and apparatus calibration are performed to avoid

undesirable errors. Samples are covered with a layer of thin epoxy and condom to prevent the mass ex-

change. For dried samples, paste II has larger TEC than paste I, because paste II contains more CH

and C-S-H. For samples saturated with saline solutions, almost all the samples of paste I show significant

expansion after ice nucleation, whereas samples of paste II show no expansion. The primary reason for

the observation is the pore structure: paste II has thinner pore size distribution thus contains less ice

during freezing. Six sorts of deformations are classified based on the shape of the strain-temperature or

strain-time curves. The residual deformation after one complete freeze-thaw cycle indicates the permanent

deterioration induced by the fracture damage. The poromechanical analyses on the freezing behaviors of

initially saturated samples indicate that the ice formation can be one of the most important deformation

sources. The thermal contraction at the cooling stage before ice nucleation can be due to the pure thermal

deformation of paste solids and the negative pressure induced by the temperature dependent mass density

of liquid solution.

Effect of air voids and saturation degree

The effect of air voids on the freezing behaviors of cement pastes has been specifically considered in

the present work. Following the arguments on the effect of the porosity on TEC, we measured the TEC
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of pastes and mortars entrained with four different dosages of air voids. The results show that the TEC

decreases with porosity and/or air void content through a power law, αd = α0(1 − φ)C . The exponents

C of pastes and mortars are respectively 2.66 and 2.38 for φ = total porosity and 3.74 and 2.69 for

φ = air void content. From the available chemistry and microstructure analyses of air voids entrained in

cement pastes, is confirmed the existence of a dense shell around air void and rich in low C/S ratio C-S-H.

This shell structure, associated with the entrained air voids, may be responsible for the TEC decrease.

Deformation measurements have been performed when air entrained cement pastes saturated with NaCl

solution at different concentrations are subjected to freeze-thaw loading. Very anomalous deformation-time

and/or deformation-temperature curves can be observed: the significant ultimate deformation at −35℃

appears for samples with high salt concentrations (cf. PIAX-S4 with 10% NaCl and PIAX-S5 with 15%

NaCl). Three different sorts of freezing deformation curves can be classified according to their shapes.

The crucial factor for the deformations may be the initial saturation degree in air voids. Poromechanical

analyses under the undrained and drained condition have been performed. Some of the measured curves

lie between the predicted curves of undrained and drained conditions, which confirms the relevance of our

self-contained approach developed in the present work. However, some deformation curves lie beyond the

predicted area and samples show continual expansion when temperature is held constant at −35℃, which

can not be explained by this model. Those need further relevant researches.
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Appendix A

Equation derivation and activities

A.1 Activity coefficient of electrolytes

A.1.1 Selected activity models

A.1.1.1 Lin and Lee’s model

According to Lin and Lee [216, 217], the activity coefficient of an individual ion is assumed as a

combination of the individual ionic long-range interaction and short-range solvation effect, which is given

by:
ln γi = −Aφz

2
i

[

I1/2

1 +BiI1/2
+

2
Bi

ln(1 +BiI
1/2)

]

+
Ciz

2
i I

a

T
(A.1)

where Aφ is the Debye-Hückel constant with a formula:

Aφ =
(2πNAρw)1/2

3
·
(

e2

4πξ0ξrKT

)3/2

(A.2)

where, NA is the Avogadro number (6.023 × 1023mol−1), ρw density of water (9.997 × 103kg · m−3), ξ0 the

permittivity of free space (8.8528 × 10−12C2J−1m−1), ξr the relative permittivity of the solvent, e the unit

charge (1.6021 × 10−19C). The Debye-Hückel constant Aφ is 0.39 kg1/2 · mol−1/2 at T = 298K. Another

very important parameter in eq(A.2) is the ionic strength, which is defined as:

I =
1
2

∑

miz
2
i (A.3)

with mi the molality (mol/kg). The mean activity coefficients of an electrolyte is defined as:

ln γ± =
v+ ln γ+ + v− ln γ−

v+ + v−
(A.4)

where v+,− represent the stoichiometric number of cation and anion. Substitution of eq(A.1) into eq(A.4),

one obtains the mean activity coefficients of ions [216, 217]:

ln γ± =
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i=+,− vi
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(A.5)
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A.1.1.2 Khoshkbarchi and Vera’s model

Khoshkbarchi and Vera extended the Pitzer’s model to calculate the ionic activity coefficients [194]:

ln γi =
−Axz

2
i I

1/2
x
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1/2
x

+
BiI

3/2
x

1 + ρI
1/2
x

+ Ci ln
(

1 + ρI3/2
x

)

(A.6)

where Ax is the Debye-Hückel constant mole fraction base, Bi and Ci are the adjustable parameters, ρ = 9.

Note that the ionic strength used in eq(A.6) is defined as:

Ix =
1
2

∑

xiz
2
i (A.7)

where xi is the mole fraction of species i in the mixture (mol/mol). Combining eq (A.6) and eq (A.4), one

obtains the mean ionic activity coefficients as:

ln γ± =
−Ax|z+z−|I1/2

x

1 + ρI
1/2
x

+
B±I

3/2
x

1 + ρI
1/2
x

+ C± ln
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1 + ρI3/2
x

)

(A.8)

where

B± =
v+B+ + v−B−

v+ + v−
; and C± =

v+C+ + v−C−
v+ + v−

(A.9)

A.1.1.3 Pitzer’s model

Based on the Debye-Hückel theory, Pitzer [300–302] proposed a semi-empirical model for predicting the

activity coefficient of individual ions:

ln γi =
−Aφz

2
i I

1/2

1 +BiI1/2
+ CiI (A.10)

where Aφ is the Debye-Hückel constant molarity base that has a value 1.176, instead of 8.766 at 298.15K

in the Khoshkbarchi and Vera model. Bi and Ci are the adjustable parameters for each ions. The mean

ionic activity coefficient can be obtained by substituting of eq (A.10) in to eq (A.4) as follows:

ln γ± =

∑

i=+,− vi

{

−Aφz
2
i

I1/2

1+BiI1/2 + CiI
}

v+ + v−
(A.11)

A.1.1.4 Pazuki and Rohani’s model

Combining the Pitzer’s model and Lin and Lee’s model, Pazuki and Rohani [281] proposed a new model

to calculate the individual ionic activity coefficients:

ln γi =
−Aφz

2
i I
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1 +BiI1/2
+
Ciz

2
i I

a

T
(A.12)
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where a = 1.29, Bi and Ci are the adjustable parameters. Again, substitution of eq(A.12) into the

constitutive equation, eq(A.4), one finally obtains the mean ionic activity coefficient:

ln γ± =

∑

i=+,− vi

{

−Aφz
2
i

I1/2

1+BiI1/2 + Ciz2
i Ia

T

}

v+ + v−
(A.13)

A.2 Osmotic coefficient and activity of water

The Gibbs-Duhem equation for a multi-electrolyte aqueous solution at constant temperature and pres-

sure is expressed as:

nwdµw +
∑

i

nidµi = 0 (A.14)

The summation is carried out over all the constituent ions in the solution except water. The relation

between chemical potential and activity of water and ions in solution are given by:

dµw = RTd ln aw, and dµi = RTd ln ai (A.15)

Then the eq(A.14) can be rewritten as:

1000
Mw

d ln aw +
∑

i

mid ln ai = 0 with mi =
1000ni

nwMw
(A.16)

This equation is obviously applicable to both single and multi-electrolyte solutions in which the activity

of water depends on the electrolytes dissolved in the aqueous solutions. Let mt and xi denote the overall

molality and the molar fraction respectively:

mt =
∑

i

mi; and xi =
mi

mt
(A.17)

Using the eq(A.17) and the relation ai = miγi, one obtains the water activity as follows:

d ln aw = − mtMw

1000
∑

i xi (d lnmi + d ln γi)
(A.18)

Using the eq(A.17) and the definition of ionic strength, one can get the following equations:

∑

i

xid lnmi =
dmt

mt
;
∑

i

xid ln γi =
∑

i

xiz
2
i

∑

i xid ln γi
∑

i xiz2
i

=
2I
mt

∑

i xid ln γi
∑

i xiz2
i

(A.19)

The eq(A.18) can be rewritten as:

d ln aw = − Mw

1000
dmt − MwI

500

∑

i xid ln γi
∑

i xiz2
i

→ ln aw = −Mwmt

1000
− Mw

500
∑

i xiz2
i

∑

i

xi

∫ I=I

I=0

Id ln γi (A.20)

The osmotic coefficient of a solution, Π, is defined as:

Π =
−1000
mtMw

ln aw (A.21)

where ln aw can be determined as:

ln aw = −Mwmt

1000
− Mwmt

1000

∑

i

xi ln γi +
Mwmt

1000I

∑

i

xi

∫ I=I

I=0

ln γidI (A.22)
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Substitution of the expression of ln γi into eq(A.22), one can obtain the water activity with ions. Using the
selected models, the term,

∫ I=I

I=0
ln γidI can be given by:

∫ I=I

I=0

ln γidI =
−2Aφz2

i

Bi

I ln(1 + BiI
1/2

) +
Ciz2

i

(a + 1)T
I

(a+1)
, Lin&Lee (A.23a)

∫ I=I

I=0

ln γidI = − Az2
i

ρ3

(

ρ
2
I − 2ρI

1/2
+ 2 ln(1 + ρI

1/2
)
)

+
Bi

ρ5

[

2 ln(1 + ρI
1/2

) − 2ρI
1/2

+ ρ
2
I − 2

3
ρ

3
I

3/2
+

1

2
ρ

4
I

2

]

+
Ci

ρ3/2

[

−2 tan
−1

(ρ
1/2

I
1/3

) + Iρ
3/2

ln(1 + ρI
2/3

) + 2ρ
1/2

I
1/3 − 2

3
ρ

3/2

]

, Khoshkbarchi & Vera (A.23b)

∫ I=I

I=0

ln γidI = −Az
2
i

[

I

Bi

− 2I1/2

B2
i

+
2

B3
i

ln
(

1 + BiI
1/2
)

]

+
1

2
CiI

2
, Pitzer (A.23c)

∫ I=I

I=0

ln γidI = −Az
2
i

[

I

Bi

− 2I1/2

B2
i

+
2

B3
i

ln
(

1 + BiI
1/2
)

]

+
Ciz2

i

(a + 1)T
I

(a+1)
, Pazuki&Rohani (A.23d)

Using the eq(A.22), one can rewrite the osmotic equation A.21 as

Π = 1 +
∑

i

xi ln γi −
∑

i

xi
1
I

∫ I

0

ln γidI (A.24)

Using the eqs (A.1), (A.6), (A.10), (A.12) and eq(A.23), one can obtain the osmotic coefficient of a solution

as presented in eq(2.18) by the selected models.

A.3 Derivation of eq(2.29)

The eq(2.29) was originally presented in [352], but the authors did not precisely figure out the physical

meanings and the derivation processes. Here we employ the statistically inhomogeneous Poisson process

that has been used to quantify droplet clustering in clouds, cf. Shaw et al. [364, 365]. We follow the

definitions in [364, 365]: the freezing events which are assumed to be perfectly random and independent of

each other and the measured substrates, observe the Poisson probability process. The freezing probability

is the given by [364–366]:

P (N) =

(

∫ t

0
Jdt
)N

exp
(

−
∫ t

0
Jdt
)

N !
(A.25)

where N is the number of freezing events. The ratio of freezing events can be also accounted for the

probability of freezing, P = Nf/Nt, with Nf freezing events and Nt total events. One obtains:

P = 1 − exp
(

−
∫ t

0

Jdt

)

(A.26)

where J is the total nucleation rate for the system. Taking in to account the cooling rate R, one can rewrite

the eq(A.26) as:
P = 1 − exp

(

−1/R
∫ T

Tm

JdT

)

(A.27)

Applying the differential procedure to the eq(A.27), one obtains:

J

R =
dP (T )

(1 − P (T ))dT
(A.28)

Note that the unit of nucleation rate J in eq(A.28) is times/K, which is different from the widely used

nucleation rate in unit of times/(K · ml) (cf. [380]). The volume of liquid phase V is thus added to be
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consistent with eq(2.29): JV

R =
dP (T )

(1 − P (T ))dT
(A.29)

Since the probability of freezing is determined by the independent freezing events, the term in the right

hand side of eq(A.28) or (A.29) can be rewritten as follows by discretization process:

dP (T )
(1 − P (T ))dT

=
∆P

(1 − P (T ))∆T
=

ni

ni/2 +
∑

j>i ni∆Ti
(A.30)

where ni is the number of freezing events at temperature scale ∆T . The probability of freezing when

temperature is larger than the center temperature Ti is evaluated as: P (T > Ti) =
∑

J>i ∆P (T (j)) + 1/2 ·

∆P (T (j)) = ni/2 +
∑

j>i nj . By substituting of eq(A.30) into eq(A.28), the eq(2.29) in [352] is obtained.

A.4 Thickness of liquid like layer for aqueous solution

When a convex pore composed of aqueous solution and ice is freezing progressively, the total Gibbs

free energy (Helmholtz free energy when it has no volumetric work) can be expressed in eq(A.31), which is

similar to the system of freezing pure water as shown in eq(2.20),

Ψ =
V − Vc

Vw
µw +

Vc

Vc
µc + (V − Vc)RT

∑

ci ln(γi) +Aγls +Acγlc +A∆γF (A.31)

where V and A are volume of pore and the interfacial area between pore and solid wall respectively, Vc

and Ac are volume of the ice crystal and the interfacial area between ice and liquid solution respectively,

Vw is the molar volume of water, Vc is molar volume of ice, µw represents the chemical potential of water,

ci is the concentration of species i (mol/l), γi is the activity of species i. γls is the surface tension of

liquid phase and solid wall, γlc the surface tension of liquid phase and ice crystal, ∆γ = γls + γlc − γcs is

defined as the free energy excess of a single ice crystal-solid wall (cs) interface over a crystal-liquid-solid

’sandwich’[89, 291], F is the total effective interfacial free energy, and it depends on the approaches used,

cf. [89, 102, 291]. Substitution of eqs(2.1a) and (2.23) into eq(A.31), one can obtain the expression:

Ψ =
µw

Vw
V − Ah

Vc
A(δ + κδ2) +A(δ + κδ2)RT

∑

ci ln(γi)

+Aγls +A(1 + 2κδ)γlc +A∆γF ; with Ah = ∆Hfus
T0 − T

T0
+RT ln(aw)

(A.32)

In the procedure of deriving eq(A.32), the widely used approaches that Vc ≈ Vw and µc −µw ≈ ∆Hfus(T −

T0)/T0 +RT ln(aw) are adopted. If the liquid like layer is in stable state, it must have ∂Ψ/∂δ = 0. Through

simple calculations, one obtains:

Ah

Vc
(1 + 2κδ) = (1 + 2κδ)RT

∑

ci ln γi + 2κγlc + ∆γ
∂F

∂δ
(A.33)

In case that 1 ≫ 2κδ, once thus obtains:

T − T0 = − VcT0

∆Hfus

[

−RT ln(aw)
Vc

+RT
∑

ci ln γi + 2κγlc + ∆γ
∂F

∂δ

]

(A.34)
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The eq(A.33) is actually composed of two parts, one is the contribution of solidification temperature

depression by solute and pore size effect, which is expressed as:

Tm − T0 =
VcT0

∆Hfus

[

RT ln(aw)
Vc

− 2κγlc

]

(A.35)

The other part of contribution is the effect of ions and effective interfacial energy F . Substituting of

eq(2.41) into the eq(A.34) and considering the eq(A.35), one obtains:

Tm − T = T0 − T − (T0 − Tm)

=
T0Vc

∆Hfus

[

RT
∑

ci ln γi +
∆γσ2

δ3
+

∆γ
2
Akδ

−1/2
(

1 +
σ

δ

)

exp
(

−Akδ
−1/2(δ − σ)

)

] (A.36)

In the case that surface melting occurs for planar ice with a ideal dilute solution assumption, ln γi ≈ 1,

the eq(A.36) reduces to the eq(7) in [424]. By combining the eqs(A.35) and (A.36), the eq(2.42) can be

derived.

A.5 Test methods

There are numerous test methods to access the frost resistance of cement-based materials. Almost

every country has its own test standard, for instance the well known ASTM C 666 [21] and C 672 [22],

the RILEM recommended test method CDF/CIF [358, 360, 361] and the Swedish Standard SS 13 72 44

[209], the so-called Bor̊as. Note that the RILEM recommended test method CDF/CIF contains the content

of both the internal deterioration and surface scaling [358, 360, 361]. These test methods as well as the

Modified SNV 64046 and RILEM recommended cubic tests are summarized in Tables A.1 and A.2.

For the internal damage tests, cf. ASTM C666 and CDF/CIF (partially), the dynamic modulus were

adopted as an important factor for accessing the frozen damage. Because the dynamic modulus of porous

materials are proportional to the square of the relative transition time, the ultrasonic method thus is often

used [7, 254, 434, 435]. The damage criterion of the relative dynamic modulus for ASTM C666 and CIF test

methods are 0.6 and 0.8 respectively. Below the values, the materials can be regarded to be damaged. In

addition, both methods recommend the length change as alternative factor for damage assessment [21, 361].

For salt scaling tests, significant differences with the internal damage test methods can be obtained.

As shown in Tables A.1 and A.2, the ASTM C 672 requires that a concrete slab with thickness ≥75 mm

should be covered with a pool of 3 wt% NaCl solution with a depth of 6 mm, see Figure A.1(a). The

similar requirements can be found in CDF/CIF and Bar̊as methods [358, 360, 361, 385, 386]. But the CDF

method is an "upside down" version of ASTM C672. The test configuration consists of supporting the

slab 3 mm above the bottom of a stainless steel container that holds enough NaCl solution to submerge

only a few mm of the test surface. The top of the slab that is originally the bottom molded surface, is
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covered with 20 mm of insulation, see Figure A.1(b). To assess the damage of materials, the ASTM C672

applies a rating between 0 (no scaling) and 5 (severe scaling) to quantify the degree of scaling after every

5 freeze-thaw cycles, thorough a subjective analysis of the appearance of the surface. At the same time, it

should measure the mass of the specimen and the change in mass referring to the original mass. However,

this method may not assess the damage of porous solid properly, because the water uptake occurs during

freeze-thaw cycles [387]. Therefore, the CDF/CIF test measures the mass of scaled-off material per unit

area of the surface exposed to NaCl solution and the mass change by water uptake. This measurement is

normally performed at frequent intervals, for instance, ASTM C672: every 5 cycles, CDF and Boras: 7,

14, 28, 42 and 56 freeze-thaw cycles. The test container is dipped into the contact liquid of an ultrasonic

bath and subjected to ultrasonic cleaning for 3 minutes, in order to remove loosely adhering scaled material

from the test surface at every measurement interval. The removed material is then oven-dried 24 hrs at

110±5℃ and cooled for 1 hr (±5 min) at 20 ±2℃C and 60 ±10 relative humidity before it is weighed.

(a)

(b)

Figure A.1: Schematic illustration of ASTM standard C 672 and (b) CDF standard test methods. After
Valenza and Scherer [406].
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Table A.1: Comparison of the freeze-thaw test methods: ASTM C 666/672 and SNV 640461.

Parameters ASTM C 666 Modified ASTM C 672 Modified SNV 640461

Temperature range −17.8 ∼ +4.4℃ −17.8 ∼ +23℃ −20 ∼ +20℃
Cooing(heating) rate 9 ∼ 22(9 ∼ 22)℃/h 2.27 ∼ 2.55(−)℃/h 120(240)℃/ha

Max. temperature 4.4(±1.7)℃ 23(±3)℃ 20℃
Min. temperature −17.8(±1.7)℃ −17.8(±2.8)℃ −20℃
Temperature Center of dummy Liquid bath Liquid bath
measure-point
Exposure full test specimen full test specimen full test specimen
Exposure media 1-3 mm layer of cooling:6 mm layer of cooling:saturated

tap water 3% NaCl solution CaCl solution,
heating: air heating:running tap water

Freeze-thaw cycles 300 - 350
Duration of I cycle (hours) 2-5 24 ± 2 0.5
Measuring terms per 36 cycles per 5 cycles per 50 cycles

Measuring parameters Edyna
band length Surface appearance and length length

Cleaning if surfaces - - -

Sample curing before start of conditioning
- mould: 1 day 1 day 1 day
- water curing: 13 days - ≥ 28daysc

- air storage: - - -

Test duration (days) after cutting

- pre-dryingd 0 0 0
- re-saturation 3 0 5e

- freeze-thaw 42 - 8
- total 45 - 13
Cost level 10000 per set of 6 cores 12000 per set of 12 specimens 5000 per set of 6 prisms

a Values for cooling/heating rates are approximated, because the test methods prescribe alternating immersion of test
specimens into liquids of fixed temperatures

b Edyna represents the dynamic elastic modulus
c The test method does not specify if the curing is in water or in air
d Condition: RH=65(±5)%. Evaporation from a free water surface =45(±15)g · m−2 · h−1

e Re-saturation with tap water

Table A.2: Comparison of the freeze-thaw test methods: Bor̊as, RILEM proposal CDF and
Cube test.

Parameter SS 137244 (Bor̊as) RILEM proposal: CDF RILEM proposal 3: Cube test

Temperature range −18 ∼ +20℃ −20 ∼ +20℃ −20 ∼ +20℃
Cooing rate 5.3℃/h[+20 ∼ −4℃]a 10℃/h 10℃/h[+20 ∼ 0℃]

and 1.9℃/h[−4 ∼ −28℃] and 1.25℃/h[0 ∼ −15℃]
Heating rate 4.8℃/h 10℃/h 20℃/h
Max. temperature 20(±4)℃ 20.0(±0.5)℃ 20(±2)℃
Min. temperature −18(±2)℃ −20.0(±0.5)℃ −15(±2)℃
Temperature Center of exposure Liquid bath center of dummy
measure-point (test) liquid
Exposure one plane, from above one plane, from above full test specimen
Exposure media 3 mm layer of 3% NaCl 10mm layer of 3% NaCl 10 mm layer of tap water

in tap water in distilled water or 3% NaCl in tap water
Freeze-thaw cycles 56 28 56
Duration of I cycle 24 12 24
(hours)

Measuring terms at 7, 14, 28, 42, 56 cycles at (4, 6,)b at 7, 14, 28, 42, 56 cycles
Measuring parameters scaling scaling scaling
Cleaning if surfaces squirt-bottle and brush ultra sound bath squirt-bottle and brush

Sample curing before start of conditioning
- mould: 1 day 1 day 1 day
- water curing: 6 days 6 6 days

- air storage: 12 daysc+ 2 daysd 14d -

Test duration (days) after cutting
- pre-dryinge 7 7 20

- re-saturation 3g 7f 1fg

- freeze-thaw 56 14 56
- total 66 28 77
Cost level 4500 per set of 5 samples 4500 per set of 4 samples 4000 per set of 4 samples

a Values in [] represent the temperature range
b Values in () represent the optional test
c Conditions: RH=60(±20)%. Evaporation from a free water surface =45(±15)g · m−2 · h−1

d Condition: RH=65(±5)%. Evaporation from a free water surface =45(±15)g · m−2 · h−1

e The test method does not specify if the curing is in water or in air
f Re-saturation with salt solution, 3% NaCl in tap water (Cuber test) or in distilled/demineralised water
g Re-saturation with tap water
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In addition to the test and assessment methods in codes mentioned above, there are numerous test

methods that were designed specially [75], and efficient assessment methods that were developed from

other areas [60] or other factors to represent the frozen damage [141, 254, 362, 363]. We here will not adopt

these methods, since they are beyond the scope of this short review.

To reduce the unacceptable variation of results obtained from laboratory tests, the carefully controlled

experimental processes as required by ASTM C 666/672, CDF/CIF are very necessary. However, for

cement-based construction on-situ, the temperature and the humidity can be rather different with these

in laboratory. Thus, there may be a severe lack of correlation between laboratory and field performance.

In addition, it is possible that too "liberal" tests and evaluation criteria may cause the use of inadequate

materials and too conservative criteria may unjustly exclude excellent materials with adequate properties

[328]. Therefore, an appropriate test method is required.

A.6 Methods for specific surface area

For a porous material, the specific surface area can be determined by deducing the amount of gas

required to cover a monomolecular layer on the pore surface by means of isotherm sorption data. The

formula for nitrogen sorption is then given by [10]:

S =
VmonoNAAm

VN2

× 10−20 = 4.35Vmono × 106 (m2/g) (A.37)

where S is the specific surface area to be determined, Vmono the volume of gas adsorbed when the entire sur-

face is covered by a monolayer, Am is the average area of one molecule of adsorbate (16.2×10−20m2/molecule

for one molecule of nitrogen), VN2
is the molar volume of nitrogen (22.4 × 10−3m3/mol). The most widely

used methods for evaluating the volume of gas Vmono required for the completion of monomolecular layer

are the Langmuir approach and the BET approach.

Langmuir approach is based on that the adsorbate behaves as an ideal gas and monomolacular layer

of gases that are independent of the nearby gases molecules, are adsorbed on solid surface. When the

system is at equilibrium, the number of molecules evaporating from the solid surface is equal to those

condensing on the solid surface, and the formula is given by [208]:

P

V
=

1
KLVm

+
P

Vmono
(A.38)

where P denotes the pressure (Pa), V the corresponding volume adsorbed on solid surface at pressure P ,

KL the empirical constant. By plotting P/V in terms of P , the completion monomolecular adsorption Vm

and the constant KL can be evaluated by the slop and Y-intercept (see Figure A.2(a)).

BET approach was developed from Langmuir approach to a multilayer gas sorption. The BET theory

assumed that the solid surface is energetically homogeneous and there is no interaction between adsorbate
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(a) (b)

Figure A.2: (a), Langmuir plot for calculating the mono-layer adsorbed volume Vmono from the slop; (b),
BET plot for calculating the monolayer adsorbed volume Vmono and constant C from the Y intercept and
slop.

and no variation in properties of adsorbed layers after the first layer. Again, at equilibrium, the number of

molecules evaporating from a layer is equal to those condensing on the layer below surface. The equation

for this concept is given by [54]:

P/P0

V (1 − P/P0)
=

1
VmonoC

+
C − 1
VmonoC

P

P0
(A.39)

where C is the BET constant related to the net heat of adsorption of the monomolecular layer. As illustrated

in Figure A.2(b), the completion monomolecular adsorption Vm and the constant KL by BET method can

be evaluated through the the slop and Y-intercept.

In addition to the well known Langmuir and BET interpretations on NAD, the surface area can be

evaluated thorough BJH method [29]. Once the adsorbed volume of nitrogen is measured, the specific

surface can be estimated by:

S =
∑

i

(

∆V
ri

)

(A.40)

where ∆V is the volume increment stepwise, ri the pore radius. Analogous to the mercury porosimetry, the

cylindrical geometry of pore is adopted in BJH approach. The radius ri is equal to the sum of Kelvin radius

rk and the thickness of adsorbed film t. There are many methods to determine the adsorbed thickness t

[84, 90, 91, 152, 155, 156, 220], among which the most widely used method may be the Hakins and Jura’s

equation [155]:

t =
1
10

(

13.99
0.034 − log(P/P0)

)1/2

nm (A.41)

Then the specific surface can also be determined by (the named t-plot),:

S = 15.47 × 10−4V

t
(A.42)

where V is the adsorbed volume of Nitrogen.
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A.7 Derivation of eq(10.2)

For a porous material, the thermoelasticity relates the total volume V and pore volume Vφ to the

Terzaghi effective pressure σd, the pore pressure P and the temperature T through [76, 137, 139],

− dV

V0
=

1
Kd

dσd +
1
Ks

dP − 3αddT and − dVφ

Vφ,0
=

1
KP

dσd +
1
Kφ

dP − 3αφdT (A.43)

where dV/V0 represents the total volumetric strain, dVφ/Vφ,0 is the pore volumetric strain; Kd and Ks are

the drained bulk and unjacked moduli; KP and Kφ the moduli link pore volumetric strain with effective

stress and pore pressure, and αd is the linear drained TEC. Employing the Betti’s reciprocal theorem, the

moduli adopt the relation φ/Kp = 1/Kd − 1/Ks. Under drained condition and dσd = 0, dP = 0, αd can be

given by:

αd =
1
3

1
V0

(

∂V

∂T

)

P,σd

(A.44)

Actually, eq(A.44) is the expression for TEC evaluation from drained tests. The variation of the drained

TEC with porosity is then expressed as,

∂αd

∂φ
=
∂αd

∂σd
· ∂σd

∂φ
(A.45)

Using eq(A.43b) and the relation dφ/φ0 = (dVφ/Vφ,0) − (dV )/V0), the variation of effective stress with the

porosity is then given by,

∂σd

∂φ
= −

[

φ

(

1
KP

− 1
Kd

)]−1

= −
[

1 − φ

Kd
− 1
Ks

]−1

(A.46)

Combining eqs(A.45) and (A.46), one obtains,

∂αd

∂φ
= −

[

1 − φ

Kd
− 1
Ks

]−1
∂αd

∂σ
(A.47)

From eq(A.44), the variation of linear drained TEC with respect to effective pressure σd can be expressed

as,
∂αd

∂σ
=

1
3

1
V0

(

∂2V

∂T∂σd

)

= −1
3
∂1/Kd

∂T
=

1
3K2

d

∂Kd

∂T
(A.48)

Substituting eq(A.48) into qe(A.47), one gets,

∂αd

∂φ
= − 1

3K2
d

[

1 − φ

Kd
− 1
Ks

]−1
∂Kd

∂T
(A.49)
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Appendix B

Poromechanical description of

unsaturated porous materials

B.1 Energy balance of porous materials

B.1.1 First principle of thermodynamic

In this section, the energy balance (first principle) of porous media is postulated, and more detail and

deepen work on this theory can be found in [76, 79]. By neglecting the dynamic energy terms, the total

internal energy rate of porous media Ė is composed of the potential of deformation Pdef and the heat

exchange rate Q̊:

Ė = Pdef + Q̊ (B.1)

With hypothesis that the solid skeleton and ice crystals in pore space are immobile, the total internal

energy rate of porous media Ė , the potential of deformation Pdef and the heat exchange rate Q̊ can be

expressed as (cf.[76, 77, 79, 114]):

Ė =
∫

Ω0

[

∂E

∂t
+ ∇ · (elωl)

]

dΩ0 (B.2a)

Pdef =
∫

Ω0

[

σ :
∂ε

∂t
− ∇ ·

(

Pl

ρl
ωl

)]

dΩ0 (B.2b)

Q̊ =
∫

Ω0

r̊∂Ω0 −
∫

∂Ω

q · nd(∂Ω) (B.2c)

where el is the internal energy of liquid phase, q is the current of heat outgoing and r̊ is the source of heat,

E is the average local internal energy:

E = ρsk(1 − φ)esk + ρcφ(1 − Sl)ec + ρlφSlel (B.3)

where esk and ec is the internal energy of solid skeleton and ice crystals.
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Recalling the divergence theorem,
∫

∂Ω
G · nd(∂Ω) =

∫

Ω0
∇ · GdΩ0, and substitution of eq(B.2) into eq(B.1),

one obtains the energy conservation state as:

∂E

∂t
= σ :

∂ε

∂t
− ∇ ·

[(

Pl

ρl
+ el

)

ωl + q
]

+ r̊ (B.4)

Let Ψ and ψα denote the overall Helmholtz free energy density and the specific Helmholtz free energy

density of phase α; S and sα stand for the overall entropy density and specific entropy density of phase α.

The thermodynamic expression relating to Helmholtz free energy, internal energy and entropy is known as:

Ψ = E − TS and ψα = eα − Tsα (B.5)

Obviously, the overall property is composed of the specific property by volume average approach:

Ψ = ρsk(1 − φ)ψsk + ρcφ(1 − Sl)ψc + ρlφSlψl (B.6a)

S = ρsk(1 − φ)ssk + ρcφ(1 − Sl)sc + ρlφSlsl (B.6b)

Substitution of eqs(B.5) and (B.6) into eq(B.4), one obtains:

∂Ψ
dt

= σ :
∂ε

∂t
− ∇ ·

[(

Pl

ρl
+ ψl

)

ωl + q
]

+ r̊ − S ∂T
∂t

−
(

∂S
∂t

+ ∇ · (slωl)
)

T (B.7)

Eq(B.7) expresses the rate of overall Helmholtz free energy density.

B.1.2 Second principle of thermodynamics

According to Clausius statement of the second principle of thermodynamics [199], entropy is defined as

a thermodynamic property that is a measure of the energy not available for useful work in a thermodynamic

process, which has:

S̊ ≥ Q̊
T

=
∫

Ω0

r̊

T
dΩ0 −

∫

∂Ω0

q · n
T

d(∂Ω0) (B.8)

where S =
∫

Ω
SdΩ stands for the global entropy of porous media, which can be expressed as:

S̊ =
∂

∂t

∫

Ω0

ρsk(1 − φ)sskdΩ0 +
dl

dt

∫

Ω0

ρlφSlsldΩ0 +
∂

∂t

∫

Ω0

ρcφ(1 − Sl)scdΩ0

≃
∫

Ω0

[

∂

∂t
(ρsk(1 − φ)ssk + ρcφ(1 − Sl)sc + ρlφSlsl) + ∇ · (slωl)

]

dΩ0

(B.9)

Combining eqs(B.6b), (B.9) and eq(B.8), one can obtains:
∫

Ω0

∂S
∂t

dΩ0 ≥
∫

Ω0

r̊

T
dΩ0 −

∫

∂Ω0

q · n
T

d(∂Ω0) −
∫

Ω0

∇ · (slωl)dΩ0 (B.10)

Again, the divergence theorem is used for the second term at the right hand of eq(B.10), it thus has:

T
∂S
∂t

≥ r̊ − T∇ · slωl − ∇ · q +
q · ∇T
T

(B.11)
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B.2 Principle equations

B.2.1 Momentum conservation

Considering a partial frozen porous medium, which is composed of skeleton, liquid saline solution and

ice crystals. If neglecting field force (i.e. gravity force), and no surface force applied, according to solid

mechanics [129, 419], the momentum balance in a RVE allows us to write:

∇ · σ = 0, σT = σ (B.12)

Substitution of eq(4.54a) into eq(B.12), one obtains:

∇ ·
[(

K − 2
3
G

)

ǫ + 2Gε − blP
∗
l I − bcP

∗
c I −Kαth(T − T0)I

]

= 0 (B.13)

With linear elasticity hypothesis of solid matrix, one can rewrite the above equation as:

(

K +
4
3
G

)

∇ǫ− bl∇P ∗
l − bc∇P ∗

c −KαT H∇T −G∇ × (∇ × ε) = 0. (B.14)

Integration of the above equation, one obtains an one dimensional equation:

(

K +
4
3
G

)

ǫ− blP
∗
l − bcP

∗
c −KαT H(T − T0) = F(t) (B.15)

where F(t) is a function of time.

B.2.2 Partial and total pore deformation

Considering the eqs(4.54b) and (4.54c), the partial pore deformation of liquid phase ϕl is:

ϕl =

[

b2
l + blbc(ρc/ρl − 1)

K + 4
3 G

+
1

Nll

+
1

Nlc

(

ρc

ρw

− 1

)]

Pl −
[

bbl

K + 4
3 G

+
1

Nll

+
1

Nlc

]

2

3
U

+

[

blKαT H

K + 4
3 G

− αφl −
(

blbc

K + 4
3 G

+
1

Nlc

)

Sf

]

(T − T0) −
(

blbc

K + 4
3 G

+
1

Nlc

)

Cf

[

(T − T0) + T ln

(

T0

T

)]

+

(

blbc

K + 4
3 G

+
1

Nlc

)

ρcRT

Mw

ln

(

aw

a0
w

)

+
bl

K + 4
3 G

F(t)

(B.16)

and the differential term of partial pore deformation of liquid phase dϕl can be expressed as:

dϕl =

[

b2
l + blbc(ρc/ρl − 1)

K + 4
3 G

+
1

Nll

+
1

Nlc

(

ρc

ρw

− 1

)]

dPl +

[

bbl

K + 4
3 G

+
1

Nll

+
1

Nlc

]

2

3
PcapdSl

+

[

blKαT H

K + 4
3 G

− αφl −
(

blbc

K + 4
3 G

+
1

Nlc

)(

Sf + Cf ln

(

T

T0

))]

dT +

(

blbc

K + 4
3 G

+
1

Nlc

)

ρcRT

Mw

d ln aw +
bl

K + 4
3 G

dF(t)

(B.17)

With the same procedures, one can obtain the partial deformation of pore space by ice crystals ϕc as:
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ϕc =

[

blbc + b2
c(ρc/ρl − 1)

K + 4
3 G

+
1

Nlc

+
1

Ncc

(

ρc

ρw

− 1

)]

Pl −
[

b2
c + blbc

K + 4
3 G

+
1

Ncc

+
1

Nlc

]

2

3
U

+

[

bcKαT H

K + 4
3 G

− αφc −
(

b2
c

K + 4
3 G

+
1

Ncc

)

Sf

]

(T − T0) −
(

b2
c

K + 4
3 G

+
1

Ncc

)

Cf

[

(T − T0) + T ln

(

T0

T

)]

+

(

b2
c

K + 4
3 G

+
1

Ncc

)

ρcRT

Mw

ln

(

aw

a0
w

)

+
bc

K + 4
3 G

F(t)

(B.18)

Again, the differential form of partial pore deformation of ice crystals dϕc can be given by:

dϕc =

[

blbc + b2
c(ρc/ρl − 1)

K + 4
3 G

+
1

Nlc

+
1

Ncc

(

ρc

ρw

− 1

)]

dPl +

[

b2
c + blbc

K + 4
3 G

+
1

Ncc

+
1

Nlc

]

2

3
PcapdSl

+

[

bcKαT H

K + 4
3 G

− αφc −
(

b2
c

K + 4
3 G

+
1

Ncc

)(

Sf + Cf ln

(

T

T0

))]

dT +

(

b2
c

K + 4
3 G

+
1

Ncc

)

ρcRT

Mw

d ln aw +
bc

K + 4
3 G

F(t)

(B.19)

During the derivation processes of eqs(B.16) to (B.19), the capillary pressure and its differential form, viz.

Pcap = Pc − Pl and dPcap = dPc − dPl, are used:

Pcap =
(

ρc

ρw
− 1
)

(Pl − P0) + Sf (T0 − T ) + Cf

(

(T − T0) + T ln
(

T0

T

))

+
ρc

Mw
RT ln aw (B.20a)

dPcap =
(

ρc

ρw
− 1
)

dPl − Sf dT − Cf

T 2
dT +

ρc

Mw
RTd ln aw (B.20b)

For the partial pore volume occupied by liquid phase, viz. φl = φ0Sl + ϕl, the saturation degree has

significantly impact on the partial pore volume filled by liquid phase. Since the capillary pressure, required

by local mechanical equilibrium between ice tips and liquid water, is only the function of surface tension

and penetration pore size, the saturation degree thus can be expressed as a function of capillary pressure

Pcap. The differential form of saturation degree to liquid pressure Pl, temperature T and salt concentration

ci is then given by:
dSl =

∂Sl

∂Pcap

[

∂Pcap

∂Pl
dPl +

∂Pcap

∂T
dT +

∑

i

∂Pcap

∂ci
dci

]

(B.21)

Combining eqs(B.20b), (B.21) and (B.17), the differential form of partial pore volume occupied by liquid

phase, viz. dφl = φ0dSl + dϕl, is thus obtained as:

dφl =
∂φl

∂Pl
dPl +

∂φl

∂T
dT +

∂φl

∂ci
dci +

bl

K + 4
3G

dF(t) (B.22)

where

∂φl

∂Pl

=

[

φ0 +

[

bbl

K + 4
3 G

+
1

Nll

+
1

Nlc

]

2

3
Pcap

](

ρc

ρw

− 1

)

∂Sl

∂Pcap

+

[

b2
l + blbc(ρc/ρl − 1)

K + 4
3 G

+
1

Nll

+
1

Nlc

(

ρc

ρw

− 1

)]

(B.23a)

∂φl

∂T
= −

[

φ0 +

[

bbl

K + 4
3 G

+
1

Nll

+
1

Nlc

]

2

3
Pcap

](

Sf + Cf ln

(

T

T0

))

∂Sl

∂Pcap

+

[

blKαT H

K + 4
3 G

− αφl −
(

blbc

K + 4
3 G

+
1

Nlc

)(

Sf + Cf ln

(

T

T0

))]

(B.23b)

∂φl

∂ci

=

[

φ0 +

[

bbl

K + 4
3 G

+
1

Nll

+
1

Nlc

]

2

3
Pcap

]

∂Sl

∂Pcap

ρcRT

Mw

∂ ln aw

∂ci

+

(

blbc

K + 4
3 G

+
1

Nlc

)

ρcRT

Mw

∂ ln aw

∂ci

(B.23c)

The differential form of partial pore volume occupied by ice crystals, viz. dφc = φ0dSc + dϕc = −φ0dSl +

dϕc, is then expressed explicitly as:
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dφc =
∂φc

∂Pl
dPl +

∂φc

∂T
dT +

∂φc

∂ci
dci +

bl

K + 4
3G

dF(t) (B.24)

where

∂φc

∂Pl

=

[

−φ0 +

[

bbc

K + 4
3 G

+
1

Ncc

+
1

Nlc

]

2

3
Pcap

](

ρc

ρw

− 1

)

∂Sl

∂Pcap

+

[

blbc + b2
c(ρc/ρl − 1)

K + 4
3 G

+
1

Nlc

+
1

Ncc

(

ρc

ρw

− 1

)]

(B.25a)

∂φc

∂T
=

[

φ0 −
[

bbc

K + 4
3 G

+
1

Ncc

+
1

Nlc

]

2

3
Pcap

](

Sf + Cf ln

(

T

T0

))

∂Sl

∂Pcap

+

[

bcKαT H

K + 4
3 G

− αφc −
(

b2
c

K + 4
3 G

+
1

Ncc

)(

Sf + Cf ln

(

T

T0

))]

(B.25b)

∂φc

∂ci

=

[

−φ0 +

[

bbc

K + 4
3 G

+
1

Ncc

+
1

Nlc

]

2

3
Pcap

]

∂Sl

∂Pcap

ρcRT

Mw

∂ ln aw

∂ci

+

(

b2
c

K + 4
3 G

+
1

Ncc

)

ρcRT

Mw

∂ ln aw

∂ci

(B.25c)

B.2.3 Equations for ions

The total mass of species i in a porous material is given by:

mi = ρiφl = Mici(φ0Sl + ϕl) (B.26)

By using of the deformation of pore volume, eq(B.16), and its differential term, eq(B.17), the differential

form of mass of species i then can be expressed as:

dmi = φlMidci + Mici (φ0dSl + dϕl)

= φlMidci + Mici

(

∂φl

∂Pl
dPl +

∂φl

∂T
dT +

∂φl

∂ci
dci +

bl

K + 4
3G

dF(t)
) (B.27)

where the terms ∂φl

∂Pl
, ∂φl

∂T and ∂φl

∂ci
can be found in eq(B.23). Substitution of eq(B.27) into eq(4.32), one

gets the mass conservation equation for species i:
(

φl + ci
∂φl

∂ci

)

∂ci

∂t
+ ci

∂φl

∂Pl

∂Pl

∂t
+ ci

∂φl

∂T

∂T

∂t
+ ci

bl

K + 4
3G

∂F(t)
∂t

= ∇ ·
{

ciκ

ηl
∇Pl + ciφSlDi

[

1
ci

∇ci + ∇ ln(γi) +
ln(γici)
T

∇T +
ziF

RT
∇ΨE

]}
(B.28)

B.2.4 Equations for water

The total mass of water in a porous material is given by:

mw = Mwcw(φ0Sl + ϕl) =
Mw

Vw

(

1 −
∑

i

ciVφ,i

)

(φ0Sl + ϕl) (B.29)

Again, using the differential terms of partial deformation of liquid phase dφl, one obtains the differential

form of water mass:

dmw =

(

1 −
∑

i

ciVφ,i

)

φld
Mw

Vw
− Mw

Vw
φl

∑

i

Vφ,idci − Mw

Vw
φl

∑

i

cidVφ,i

+
Mw

Vw

(

1 −
∑

i

ciVφ,i

)

[

∂φl

∂Pl
dPl +

∂φl

∂T
dT +

∂φl

∂ci
dci +

bl

K + 4
3G

dF(t)
]

(B.30)
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where Vφ,i is the apparent molar volume of species i. The expressions of ∂φl/∂α with α = Pl, T, ci can be

found in eq(B.23). Substitution of eq(B.30) into the liquid water conservation equation, eq(4.33), one can

achieve:

(

1 −
∑

i

ciVφ,i

) φl

Kw

Mw

Vw

∂Pl

∂t
−
(

1 −
∑

i

ciVφ,i

)

φl3αwρw
∂T

∂t

− Mw

Vw

φl

[

∑

i

(

Vφ,i + ci
∂Vφ,i

∂ci

)∂ci

∂t
+

∑

i

ci

Kφ,i

1

Vφ,i

∂Pl

∂t
−
∑

i

ci
1

Vφ,i

3αφ,i
∂T

∂t

]

+
Mw

Vw

(

1 −
∑

i

ciVφ,i

)

[

∂φl

∂Pl

∂Pl

∂t
+

∂φl

∂T

∂T

∂t
+

∂φl

∂ci

∂ci

∂t
+

bl

K + 4
3 G

∂F(t)

∂t

]

+ m̊w→c

= ∇ ·

{

Mwcwκ

ηl

∇Pl −
N
∑

i

Mici(φ0Sl + ϕl)Di

[

1

ci

∇(ci) + ∇(ln(γi)) +
ln(γici)

T
∇(T ) +

ziF

RT
∇(ΨE)

]

}

(B.31)

where 1/Kw is the compressibility of pure water (Pa−1), 1/Kφ,i is the apparent compressibility of species

i (Pa−1), αw is the thermal expansion coefficient of pure water (K−1) and αφ,i is the apparent thermal

(volumetric) coefficient of species i (K−1). These parameters for NaCl solution can be found in Appendix

D. With hypothesis of an infinitesimal pore deformation, the ice formation rate m̊w→c is then approached

by:

m̊w→c =
−∂ρcφSl

∂t
≈ −ρcφ

∂Sl

∂Pcap

[(

ρc

ρw
− 1
)

∂Pl

∂t
−
(

Sf +
Cf

T 2

)

∂T

∂t
+

ρc

Mw
RT

∂ ln aw

∂ci

∂ci

∂t

]

(B.32)

Substitution of eq(B.32) into eq(B.31), one obtains:

∂mw

∂Pl
· ∂Pl

∂t
+
∂mw

∂T
· ∂T
∂t

+
∑

i

∂mw

∂ci
· ∂ci

∂t
+ ρw

(

1 −
∑

i

ciVφ,i

) bl

K + 4
3G

∂F(t)
∂t

= ∇ ·
{

Mwcwκ

ηl
∇Pl −

N
∑

i

MiciφlDi

[

1
ci

∇(ci) + ∇(ln(γi)) +
ln(γici)
T

∇(T ) +
ziF

RT
∇(ΨE)

]

} (B.33)

With

∂mw

∂Pl

=
(

1 −
∑

i

ciVφ,i

) φl

Kw

Mw

Vw

− Mw

Vw

φl

∑

i

ciKφ,i
1

Vφ,i

+
Mw

Vw

(

1 −
∑

i

ciVφ,i

) ∂φl

∂Pl

− ρcφ
∂Sl

∂Pcap

(

ρcVw

Mw

− 1

)

(B.34a)

∂mw

∂T
= −
(

1 −
∑

i

ciVφ,i

)

φlαw
Mw

Vw

+
Mw

Vw

φl

∑

i

ci
1

Vφ,i

αφ,i +
Mw

Vw

(

1 −
∑

i

ciVφ,i

)∂φl

∂T
+ ρcφ

∂Sl

∂Pcap

(

Sf +
Cf

T 2

)

(B.34b)

∂mw

∂ci

= − Mw

Vw

φl

∑

i

(

Vφ,i + ci
∂Vφ,i

∂ci

)

+
Mw

Vw

(

1 −
∑

i

ciVφ,i

)∂φl

∂ci

− ∂Sl

∂Pcap

ρ2
cφ

Mw

RT
∂ ln aw

∂ci

(B.34c)



B.2 Principle equations 229

B.2.5 Equations for liquid phase

For porous medium saturated with saline solution initially, the total mass m in pore space currently

contained in a RVE is given by:

m = ml +mc = ρlφl + ρcφc = ρlφ0Sl + ρcφ0Sc + ρlϕl + ρcϕc (B.35)

and the differential form of total mass is given by:

dm = φldρl + ρldφl + φcdρc + ρcdφc (B.36)

Note ρl is the overall density of solution containing salts, and its normal expression and the differential

expression are given by:

ρl = Mwcw +
∑

i

Mici =
Mw

Vw
+
∑

i

(

Mi − Mw
Vφ,i

Vw

)

ci (B.37a)

dρl = d
Mw

Vw
+
∑

i

(

Mi − Mw
Vφ,i

Vw

)

dci −
∑

i

ciMwd
(

Vφ,i

Vw

)

(B.37b)

where Vφ,i is apparent molar volume of species i, of which the detail variations with pressure, temperature

and salt concentrations can be found in Appendix D.

The compressibility of solution 1/Kl then can be expressed as:

1
Kl

=
1
ρl

∂ρl

∂Pl
=

1
ρl

[

Mw

KwVw
−
∑

i

ci

(

Mw

Vw

Vφ,i

Kw
+

Mw

Vw

∂Vφ,i

∂Pl

)

]

=
1
Kw

+
∑

i

ci
1

Kφ,i
(B.38)

where 1/Kφ,i is defined as the apparent compressibility of specie i:

1
Kφ,i

= − 1
ρl

(

Mi

Kw
+

Mw

Vw

∂Vφ,i

∂Pl

)

(B.39)

The thermal expansion coefficient of solution αl then can be expressed as:

αl = −1
3

1
ρl

∂ρl

∂T
=

1
3

1
ρl

[

Mw

Vw
αw +

∑

i

ci

(

−Mw

Vw
αwVφ,i +

Mw

Vw

∂Vφ,i

∂T

)

]

= αw +
∑

i

ciαφ,i (B.40)

where αφ,i is defined as the apparent thermal expansion coefficient of specie i:

αφ,i =
1
3

1
ρl
ci

(

−αwMi +
Mw

Vw

∂Vφ,i

∂T

)

(B.41)

For ice crystals, the constitutive equations can be given by:
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dρc =
ρc

Kc
dPl − 3ρcαcdT, with

1
Kc

=
1
ρc

∂ρc

∂Pl
, and αc = −1

3
1
ρc

∂ρc

∂T
(B.42)

Substitution of eqs(B.20a) and (B.15) into eq(B.36), and combining the eq(4.12), on finally obtains:

∇ ·
(

ρlκ

ηl
∇Pl

)

= A∆ρ
∂Sl

∂t
+ B∂T

∂t
+ C ∂Pl

∂t
+ D∂U

∂t
+

N
∑

i

Hi
∂ci

∂t
+
blρl + bcρc

K + 4
3G

∂F(t)
∂t

(B.43)

with

A∆ρ(Sl) = φ0 (ρl − ρc) (B.44a)

B(T ) =
(ρlbl + ρcbc)K3αs

K + 4
3 G

− 3[αφ,lρl + αφ,cρc + (ρlφlαl + ρcφcαc)] −
[

bc(ρlbl + ρcbc)

K + 4
3 G

+
ρl

Nll

+
ρc

Ncc

](

Sf + Cf ln

(

T

T0

))

(B.44b)

C(Pl) =
b2

l ρl + blbc(2ρl − ρl) + b2
c(ρ2

c/ρl − ρc)

K + 4
3 G

+
ρl

Nll

+
ρc(ρc − ρl)

ρlNcc

+
2ρc − ρl

Nlc

+

(

ρlφl

Kl

+
ρcφc

Kc

)

(B.44c)

D(U) = − 2

3

[

b(ρlbl + ρcbc)

K + 4
3 G

+
ρl

Nll

+
ρc

Ncc

+
ρc + ρl

Nlc

]

(B.44d)

Hi(ci) =

[

bc(ρlbl + ρcbc)

K + 4
3 G

+
ρl

Nll

+
ρc

Ncc

]

ρcRT

Mw

∂ ln aw

∂ci

+ φlMi (B.44e)

The A∆ρ(Sl) denotes the mass change by the effect of density difference between ice and liquid phase.

B(T ) represents the mass change due to the temperature effects. C(Pl) is the mass change due to the liquid

pressure Pl. D(U) accounts for the mass changing owing to the interfacial effect, and Hi(ci) is the mass

change by the water activity with salts.

B.2.6 Equations for heat transfer

We start to derive the equation of entropy from the dissipation equation (cf. eq(4.35)). Considering

further the eq(B.11), one obtains:

T
∂S
∂t

− r̊ + T∇ · (slωl) + ∇ · q = Dsk + Dl (B.45)

Hypothesizing that no heat source exists in materials (̊r = 0), and the skeleton is elastic so that the skeleton

dissipation can be neglected (Dsk = 0). The eq(B.45) thus can be rewritten as:

T

(

∂S
∂t

+ sl∇ · ωl

)

+ Tωl · ∇sl + ωl · ∇gl + ∇ · q = 0 (B.46)

Substitution of the relation, ∇gl = −T∇sl + ∇Pl/ρl, into eq(B.46), one obtains:

T

(

∂S
∂t

+ sl∇ · ωl

)

+ ωl · ∇Pl

ρl
+ ∇ · q = 0 (B.47)

Considering eq(4.12), one can rewrite the eq(B.46) as:

T

(

∂S
∂t

− sl
∂ml

∂t
− sc

∂mc

∂t

)

= Tm̊w→c(sl − sc) − ωl · ∇Pl

ρl
− ∇ · q (B.48)

Owing to the additive character of total entropy density, viz. S = Ssk +mlsl +mcsc, and considering the

limited contribution of surface energy, Sm ≫ ∂φU
∂T or Sm ≈ Ssk, one can thus rewrite the eq(B.48) as:
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T

(

∂Sm

∂t
+ml

∂sl

∂t
+mc

∂sc

∂t

)

= Tm̊w→c(sl − sc) − ωl · ∇Pl

ρl
− ∇ · q (B.49)

The entropy density of solid matrix, liquid and ice crystals can be simplified as a function of temperature:

∂sα/∂t = ∂sα/∂T ·(∂T/∂t) = CP,α/T (∂T/∂t). Combining these relations, eq(B.32) (m̊w→c = ρcφ0∂Sc/∂t)

and Fourier’s law presented in section 4.2.4, one obtains:

∇ · (λ∇T ) + ωl · ∇Pl

ρl

= −
[

T ρcφ0

[(

Sf + Cf ln
T

T0

)

∂Sc

∂Pcap

](

Sf + Cf ln

(

T

Tm

))

+ (Cm + ρlφ0SlCP,l + ρcφ0ScCf )

]

∂T

∂t

+ T ρcφ0

[(

Sf + Cf ln
T

T0

)

∂Sc

∂Pcap

](

ρc

ρw

− 1

)

∂Pl

∂t
+ T φ0

[(

Sf + Cf ln
T

T0

)

∂Sc

∂Pcap

]

ρ2
cRT

Mw

∂ ln aw

∂ci

∂ci

∂t

(B.50)

where CP,l is the heat capacity per unit mass of liquid phase.

B.3 Undrained freezing and air voids

B.3.1 Undrained freezing of porous materials saturated with saline solution

Following the principles of undrained freezing of porous materials studied by Coussy [77] and Coussy

and Monteirio [82], the total mass of phases occupied by liquid solution and ice crystals can be given by:

Mtotal = ρl(φ0Sl + ϕl) + ρc(φ0Sc + ϕc) (B.51)

The current mass density of liquid water and ice crystals can be written as linear function of temperature

and pressure, if the temperature and pressure shift are not so large,

ρ∗
w = ρ0

w

[

1 +
Pw

Kw
− 3αw(T − T0)

]

and ρc = ρ0
c

[

1 +
Pc

Kc
− 3αc(T − T0)

]

(B.52)

where ρ∗
w = Mw/Vw, Kw,c is the bulk modulus of liquid water (ice crystals), and αw,c is the TEC of liquid

water (ice crystals). In the case of undrained freezing, the ultimated concentration of solution is correlated

with the saturation degree:
ci =

c0
i

Sl
(B.53)

ci and c0
i are the current and initial concentration of specie i. Substitution of eq(B.53) into eq(4.10) given

in section 4.1.5, one thus gets the current density of liquid phase:

ρl = ρ∗
w +

∑

(Mi − ρ∗
wVφ,i)ci = ρ0

w

[

1 +
Pl

Kw
− 3αw(T − T0)

]

+
∑

(Mi − ρ0
wVφ,i)

c0
i

Sl

= ρ0
l

[

1 +
Pl

Kl
− 3αl(T − T0)

]

+
∑

(Mi − ρ0
wVφ,i)

c0
i (1 − Sl)
Sl

(B.54)

where Vφ,i is the apparent molar volume of specie i as introduced in section 4.1.5, Kl and αl are bulk

modulus and thermal expansion coefficient of liquid solution. Substitution of the eqs(B.52b), (B.54),

(4.54b) and (4.54c) into eq(B.51), one obtains:

Mtotal = ρ0
l φ0 + ρ0

l (v∆ρ + vϕ + vs) (B.55)
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where

v∆ρ =
(

ρ0
c

ρ0
l

− 1
)

φ0(1 − Sl) (B.56a)

vϕ = bǫ+
Pl

Ml
+
Pc

Mc
− 1
N

2
3
U − 3 (φ0Slαl + φ0Scαc + αφl + αφc) (T − T0) (B.56b)

vs =
1
ρ0

l

∑

(

Mi − ρ0
wVφ,s

)

c0
i (1 − Sl)φ0 (B.56c)

with

1
Ml

=
1
Nll

+
1
Nlc

+
φ0Sl

Kl
(B.57a)

1
Mc

=
1
Ncc

+
1
Nlc

+
φ0Sc

Kc
(B.57b)

1
N

=
1
Nll

+
1
Ncc

+
2
Nlc

(B.57c)

If neglecting the term of interfacial energy U in eq(B.56b) and the term of salt in eq(B.56c), the equations

reduce to these for porous materials with pure water, cf. eqs(17)-(21) in [82]. Since the total mass holds

conservation all the time for undrained freezing, the second term at the right hand of eq(B.55) must be

zero,
v∆ρ + vϕ + vs = 0 (B.58)

Under the stress-free condition, the volumetric deformation ǫ can be expressed in the form [77, 82],

ǫ =
1
K

[

b

(

Pl − 2
3
U

)

+ bcPcap + 3αsK(T − T0)
]

(B.59)

where αs = 1/3αth is the TEC of solid skeleton. By substitution of the volumetric deformation under free

stress in to eq(B.59) to eliminate the term ǫ and considering the formula of capillary pressure, eq(2.11),

the liquid pressure is found to be depending on the temperature, initial salt concentration and saturation

degree eventually for undrained freezing case,

Pl =
(

b2

K
+

1
M

)−1 [(
b2

K
+

1
M

)

2
3
U −

(

bbc

K
+

1
Mc

)

ρ0
cRT ln aw

Mw
+
[

3αφ +
(

bbc

K
+

1
Mc

)

Sf

]

(T − T0)
]

−
(

b2

K
+

1
M

)−1 [(
ρ0

c

ρ0
l

− 1
)

− 1
ρ0

l

∑

(

Mi − ρ0
wVφ,s

)

c0
i

]

φ0(1 − Sl)

with

1
M

=
1
Ml

+
1
Mc

=
1
N

+
φ0Sl

Kl
+
φ0Sc

Kc
(B.60a)

αφ = φ0Slαl + φ0Scαc + αφl + αφc − αs (B.60b)
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Figure B.1: Schematic illustration of a representative air-bubble and the surrounded paste.

B.3.2 Calculation of the strain of air void entrained paste

It has been well understood that the air voids act as a reservoir to accommodate the excess water due

to about 9% volume increment as ice forms [305], and provide a boundary where liquid pressure is negative

required by the thermodynamic equilibrium between ice and water [82]. Furthermore, the quantitative

relationship between the content of air voids and frozen resistance has been obtained either by means of

experimental observations [294, 296], or by means of theoretical calculation [82, 114, 305]. Figure B.1 shows

a representative air-bubble and the surrounded paste schematically. It has more volume of paste when the

distance away from air bubble is further. Thus the one dimensional calculation should be modified to

adaptable for this condition. We assume that there are total N elements, and each has the same width ∆x,

thus the ith element volume is given by:

Vi = 4π(R+ i · ∆x)2 · ∆x (B.61)

where R is the radius of air bubble. The total volume of the paste VT is: VT = 4
3π
[

(R+ L̄)3 −R3
]

. The

linear strain of ith element is: εi = 1
3ǫi = 1

3K+4G (biP
∗
i +K∆T ). The overall linear strain is thus simplified

as:

ε =
∑N

i εiVi

VT
=

∑N
i

[

(R+ i · ∆x)2 · ∆x
]

3
3K+4G (biP

∗
i +K∆T )

(R+ L̄)3 −R3
(B.62)
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Appendix C

Estimation method for multi-scale

modelling

C.1 Representation

Let us consider a RVE of a heterogeneous material with volume V0. The RVE is composed of n different

phases with volumes Vi, i = 1...n, and volume fractions denoted by fi = Vi/V0. A phase is defined as

a material domain that can be identified with on average constant material properties [137]. The phase

defined here is related to the scale used. For example, at nano-scale, the LD C-S-H and HD C-S-H can be

different phases, while at an upscale, the C-S-H that is composed of LD and HD C-S-H is a single phase.

For porous materials, the pore space, which can be infiltrated by either air or solution or both of them,

is considered as a porous phase with pore volume Vφ and porosity φ = Vφ/V0. The wetting phase and

no-wetting phase in pores will not be considered here, but discussed specifically in text. Let m denotes

the number of solid phases and Vs denotes the total volume of solid phases, it then has m = n − 1 and

Vs =
∑m

1 Vi. The fourth order tensor of elastic moduli, the second order tensor of transport properties and

the second order tensor of thermal expansion coefficient of each phase are denoted by Ci, Di and αi. In

the case of isotropy of the solid phases, the tensors can be written as:

Ci = 3KiK + 2GiD, Di = DiI, and αi = αiI (C.1)

where Ki and Gi are the bulk modulus and shear modulus of the phase i respectively. Di represents

a bulk transport property of the phase i: it can be either electric conductivity or water permeability.

Kijkl = 1/3 · δijδkl is the volumetric part of the fourth-order symmetric unit tensor I and D = I − K is the

deviatoric part. I is defined as Iijkl = 1/2 · (δikδjl + δilδjk) and δij stands for Kronecker delta. I is the

second order unit tensor with Iij = δij .
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C.2 Concentration

The concentration problem is presented by assuming homogeneous boundary conditions on the RVE

[159, 166, 438]. Homogeneous stress and strain boundary conditions correspond respectively, to prescribed

surface tractions T and displacements u on the boundary ∂V of the RVE:

on ∂V : T = Σ · n and u = E · x (C.2)

where Σ is the macroscopic stress tensor and n is the unit outward normal tensor at the boundary. x is

the microscopic position vector and E is the macroscopic strain tensor. For the transport problem, the

surface flux S and the field vector µ have the similar equation as eq(C.2):

on ∂V : S = Q · n and G = ∇xµ (C.3)

where Q is the macroscopic flux tensor and G is the macroscopic potentials tensor.

The macroscopic stress Σ and strain E can be expressed as the volume average of the microscopic

equilibrated stress field σ(x) and strain field ε(x), respectively, in the RVE [438]. Taking the same

procedure, the macroscopic flux Q and potential G are equal to the volume average of the microscopic

equilibrated flux field q(x) and potential field g(x), respectively, [252, 377].

Σ = 〈σ〉V and E = 〈ε〉V (C.4a)

Q = 〈q〉V and G = 〈g〉V (C.4b)

where 〈z〉V = 1/V
∫

V
z(x)dV stands for the volume average of quantity z over domain V.

The Hill’s lemma can be presented in the following by using the homogeneous boundary conditions

eq(C.2) [438]:
〈σ : ε〉V = 〈σ〉V : 〈ε〉V = Σ : E (C.5)

In the framework of linearity, the fourth-order localization tensors A(x) and B(x) correlate the local

strain and stress fields, σ(x) and ε(x), to the macroscopic strain and stress, E and Σ, respectively, and

the second-order localization tensors C(x) and D(x), correlate the local flux vector and potential fields,

q(x) and g(x), to macroscopic flux and potential, Q and G, respectively. They can be expressed as:

ε(x) = A(x) : E and σ(x) = B(x) : Σ (C.6a)

q(x) = C(x) · Q and g(x) = D(x) · G (C.6b)

The linear localization tensors must obey:

〈A〉V = I; 〈B〉V = I; 〈C〉V = I; 〈D〉V = I (C.7)

If the heterogeneous material is composed of homogeneous phases, one thus can obtain a linear phase strain
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localization tensor as done in [403]:

〈ε〉Vi
= 〈A〉Vi

: E;
n
∑

i=1

〈A〉Vi
= I and 〈g〉Vi

= 〈D〉Vi
· G;

n
∑

1=1

〈D〉Vi
= I (C.8)

Considering the isotropic case, 〈A〉Vi
can be simplified to be 〈A〉Vi

= Av
i K + Ad

i D with Av
i and Ad

i the

volumetric and deviatoric strain localization coefficients. Considering further simplified case, a spherical

inclusion embedded in a reference medium, which is known as an Eshelbian type inclusion [112], the strain

localization tensor of phase i can be expressed as [103, 137]:

Av
i =

(1 + α0(ki/k0 − 1))−1

∑

i fi (1 + α0(ki/k0 − 1))−1 ; Ad
i =

(1 + β0(gi/g0 − 1))−1

∑

i fi (1 + β0(gi/g0 − 1))−1 (C.9)

with

α0 =
3k0

3k0 + 4g0
; β0 =

6 (k0 + 2g0)
5(3k0 + 4g0)

(C.10)

where k0 and g0 are bulk modulus and shear modulus of the reference medium.

Analogous to the eq(C.9), in the isotropic case, the global potential localization tensor is reduced to

〈D〉Vi
= Dv

i I, and global potential localization tensor of phase i can be expressed as:

D
v
i =

(1 + 1
3 (Di/D0 − 1))−1

∑

i fi

(

1 + 1
3 (Di/D0 − 1)

)−1 (C.11)

As a matter of fact, eq(C.11) has the same formula as the eq(C.9) by setting α0 = 1/3 and replacing k0, ki

by D0, Di in eq(C.9).

C.3 Homogenization

C.3.1 Micro-poro-mechanics

Following the thermo-poro-elasticity, the stress state of a RVE of porous materials is subjected to the

homogeneous strain boundary condition of the Hashin type (see eq(C.6a)), the eigenstresses σp by pore

pressure and the eigenstresses σT by temperature variation. The microscopic constitutive stress equation

can be given as:

σ(x) = C(x) : ε(x) + σP (x) + σT (x) (C.12)

or in the inverse form:

ε(x) = C
−1(x) : σ(x) + εP (x) + εT (x) (C.13)

where C(x) is the tensor of local elastic moduli which is equal to zero in the pore volume, σP (x) is an

eigenstress applied to the pore volume of the material, and σT (x) is an eigenstress applied to the solid

phase of the material. Their domains are presented in Table C.1.

The thermal-poro-mechanical problem at hand can be decomposed into three problems (see Figure C.1).

In the first problem, only the homogeneous strain boundary condition is considered, and the eigenstresses

σP (x) and σT (x) are equal to zero. This case is exactly the drained case for poro-elasticity. The boundary
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Table C.1: Decomposition of the problem of a thermo-poro-mechanical loading into three independent
problems.

Domains Problem A Problem B Problem C

Vs C(x) : ε(x) = Ci(x) : ε(x) or C(x) = Ci(x) 0 σT (x) = −C(x) : αT
Vφ 0 σP (x) = −P I 0

Figure C.1: Decomposition of the problem of a thermo-poro-mechanical loading into three cases.

conditions for the second problem are: the displacement on the boundary of the RVE is equal to zero, and

the hydraulic eigenstresses are σP (x). For the last problem, the displacement on the boundary of the RVE

is equal to zero and the thermal loading is σT (x). In the following derivation procedures, we introduce the

superscripts of ()A, ()Band ()C to denote the tree problems as done in [137].

C.3.1.1 Problem A: Drained stiffness and Biot coefficients

In the first problem, the regular boundary condition (eq(C.2)a) and the classical strain localization

condition of linear continuum micro-mechanics (eq(C.6a)) last two terms in right hand side of eq(C.12)

allows to write the local stress equation of state:

σA(x) = C(x) : εA(x); εA(x) = A(x) : E (C.14)

Using the volume average law as demonstrated in eq(C.4a), viz. ΣA = 〈σA〉V and combining the eq(C.14),

one can obtain the overall effective moduli of the heterogeneous porous material Chom as:

ΣA = C
hom : E; C

hom = 〈C : A〉V =
n
∑

i=1

fiCi : 〈A〉Vi
(C.15)

Let us now consider only the stress equation of solid phases. From the eq(C.14), the average local stress

in the solid phase can be expressed as

〈σA〉Vs
= 〈C : εA〉Vs

= 〈C : A〉Vs
: E (C.16)

The principle of eq(C.8) allows us to present the average local strain of the solid phase as 〈εA〉Vs
= 〈A〉Vs

: E.
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Using this relation and the eq(C.16), one thus deduce the the tensor of effective solid moduli Chom
s as:

〈σA〉Vs
= C

hom
s : 〈εA〉Vs

; C
hom
s = 〈C : A〉Vs

: 〈A〉−1
Vs

(C.17)

The porosity change is defined as dφ = φ− φ0. In the case of the hydraulic pressure loading σP (x) =

P I = 0 and the thermal loading σT (x) = C(x) : αT = 0, (dφ)A = φI : 〈εA〉Vφ
= bhom : E, where b is

defined as the tensor of effective Biot’s coefficient. Substitution of eq(C.14) in the above relation, one can

thus have the expression of the effective Biot’s coefficient bhom:

bhom = φI : 〈A〉Vφ
= I :

(

1 −
m
∑

i=1

fi〈A〉Vi

)

(C.18)

From eq(C.15)b and the boundary condition shown in the second column of Table (C.1), viz. C(x) = Ci(x),

it deduces C
hom = (1 − φ)〈C : A〉Vs

. Moreover, from eq(C.7), one obtains φ0〈A〉Vφ
= I − (1 − φ0)〈A〉Vs

.

From these relations mentioned above and eqs(C.17)b and (C.18), the tensor of effective Biot’s coefficients

can be expressed alternatively as:

C
hom = (1 − φ)〈C : A〉Vs

C
hom
s = 〈C : A〉Vs

: 〈A〉−1
Vs

φ0〈A〉Vφ
= I − (1 − φ0)〈A〉Vs

}

→ bhom = I :
(

I − C
hom :

(

C
hom
s

)−1
)

(C.19)

In the isotropic case, the effective elastic modulus C
hom, the effective unjacketed modulus Khom

s and

the effective Biot’s coefficient can be presented as:

C
hom = 3Khom

d K + 2Ghom
D (C.20a)

Khom
s =

∑m
i=1 frkiA

v
i

∑m
i=1 fiAv

i

(C.20b)

bhom = 1 −
m
∑

i

fiA
V
i = 1 −Khom

d /Khom
s (C.20c)

with

Khom
d =

n
∑

i=1

fikiA
v
i ; Ghom

d =
n
∑

i=1

figiA
d
i (C.21)

C.3.1.2 Problem B: Hydraulic loadings and Biot moduli

In the second problem, the RVE subjected to the boundary of zero displacement (EB = 〈εB〉V = 0)

and the solid liquid interface is subjected to the eigenstress σP defined in the third column of Table (C.1).

The local stress tensor is given by:

σ(x) = C(x) : εB(x) + σP (x) (C.22)

Again, by using the Hill’s lemma, eq(C.5), on the stress field of second sub-problem σB and the strain field

of first sub-problem εB , the macroscopic stress tensor can be evaluated as:
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E : ΣB = 〈ε : σB〉V = 〈εA : C : εB〉V + 〈εA : σP 〉V (C.23)

The Hill’s lemma, eq(C.5), and the concentration relation for boundary condition A, eq(C.14), require the

right-hand side of eq(C.23) to be zero, viz. 〈εA : C : εB〉V = 〈εA : σB〉V = ΣA : 〈σB〉V = 0. Again,

substitution of concentration relation for boundary condition A, eq(C.14), into the second term of the right

hand side of eq(C.23) and using the boundary condition presented in the third column of Table (C.1), we

can express the tensor of effective Biot’s coefficients as:

ΣB = 〈σP : A〉V = −φI : 〈A〉Vφ
P = −Pbhom (C.24)

The average local stress in the RVE is ΣB = 〈σB〉V = φ〈σB〉Vφ
+
∑m

i=1 fi〈σB〉Vi
. Combining this relation,

eqs(C.18) and (C.24) and the condition, 〈σB〉Vφ
= −P I, one obtains:

m
∑

i=1

fi〈σB〉Vi
= −P

(

bhom − φ0I
)

= −P I :
m
∑

i=1

fi (I − 〈A〉Vi
) (C.25)

The average strain over a phase of the solid volume thus can be given by [403]:

〈σB〉Vi
= −P I : (I − 〈A〉Vi

) in Vs (C.26)

The variation of the porosity, in this condition, is defined as:

(dφ)B = φI : 〈εB〉Vφ
(C.27)

The boundary conditions of this problem require that EB = 〈εB〉V = φ〈εB〉Vφ
+ (1 − φ)〈εB〉Vs

= 0. The

variation of the porosity, eq(C.27) can be rewritten as:

(dφ)B = −I :
m
∑

i=1

fiC
−1
i : 〈σB〉Vi

(C.28)

Substitution of eq(C.26) into eq(C.28), one obtains the effective Biot skeleton modulusNhom in the following

form:
(dφ)B =

P

Nhom
;

1
Nhom

= I :
m
∑

i=1

fiC
−1
i : (I − I〈A〉Vi

) (C.29)

In the isotropic case, eq(C.29) is reduced to the more familiar expression [77, 403]:

1
Nhom

=
m
∑

i=1

fi(1 −Av
i )

ki
(C.30)

C.3.1.3 Problem C: Thermal loadings

In the problem C, a RVE is subjected to boundary condition of zero displacement (EC = 〈εC〉V = 0),

and the system is subjected to the thermal stress σT defined in the fourth column of Table C.1. The

constitutive equation of local stress tensor is then given by:

σC(x) = C(x) : εC(x) + σT (x) (C.31)
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Again, by application of Hill’s lemma, eq (C.5), on the stress field of the third sub-problem σC and the

strain field of first sub-problem εA, the macroscopic stress tensor for this condition can be expressed as:

E : ΣC = 〈εA : σC〉V = 〈εA : C : εC〉V + 〈εA : σT 〉V (C.32)

Using Hill’s lemma and eqC.14, the first term in the right-hand side of eq(C.23) is found to be equal to

zero, 〈εA : C : εC〉V = 〈σA : εC〉V = ΣA : 〈εC〉V = 0. Substitution of eq(C.14) into the second term of the

right-hand side of eq(C.32) and using the condition σT = −kT , one obtains the expression of the tensor

of effective coefficients khom:

ΣC = 〈σT : A〉V = −khomT ; khom = 〈k : A〉V =
n
∑

i=1

fiki : 〈A〉Vi
(C.33)

The average local stress in the RVE is ΣC = 〈σC〉V =
∑m

i=1 fiCi : 〈εC〉Vi
− T

∑m
i=1 fiki. Combining

this relation and eq(C.33), on obtains:
m
∑

i=1

fiCi : 〈εC〉Vi
= T

m
∑

i=1

fiki : (I − 〈A〉Vi
) (C.34)

Note that α = C
−1 : k, then the average strain in a phase of solid can be evaluated from the above equation

obviously, and it has the formula:

〈εC〉Vr
= αr : (I − 〈A〉Vr

)T in Vs (C.35)

The boundary conditions of this problem require that EC = 〈εC〉V = φ〈εC〉Vφ
+ (1 − φ)〈εC〉Vs

= 0.

The variation of the porosity is thus given by:

(dφ)C = −(1 − φ)I : 〈εC〉Vs
= φI : 〈εC〉Vφ

= −I :
m
∑

i=1

fi〈εC〉Vi
(C.36)

Substitution of eq(C.35) into eq(C.36), one obtains the effective coefficient Qhom as follow:

(dφ)C = −QhomT ; Qhom = I :
m
∑

i=1

fiαi : (I − 〈A〉Vi
) (C.37)

Again, in the isotropic case, the effective coefficient Qhom is then reduced to:

Qhom =
m
∑

i=1

fiαi(1 −Av
i ) (C.38)

C.3.1.4 Macroscopic equations

The overall macroscopic stresses can be summation of the macroscopic stresses of the A, B and C

cases, Σ = ΣA + ΣB + ΣC . Combining eqs(C.15), (C.24) and (C.33), one obtains the equations of macro-

poroelasticity:

Σ = C
hom : E − bhomP − khomT (C.39)

Analogue to eq(C.39), the variation of porosity is summation of the variation of porosity of the A, B and

C cases, dφ = (dφ)A + (dφ)B + (dφ)C . From eq(C.18), (C.29) and (C.37), we have:
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dφ = bhom : E +
P

Nhom
−QhomT (C.40)

C.3.2 Transport properties

For the transportability of composites with Eshelbian type morphology and in the isotropic case, the

overall transportation coefficient can be given by:

D = DhomI; Dhom =
n
∑

i=1

fiDiD
v
i (C.41)

where Di is the transport property of solid phase i, while Dv
i is the concentration factor given by eq(C.11).

C.4 Multi-scale porous materials

In this section, we follow the descriptions on the homogenization procedures of porous materials by

Ghabezloo [136, 137]. The total porosity of a material with two scale pore volume can be presented as

[137]:

φ =
l
∑

i=1

fiφ
I
i + φII (C.42)

where φI
i is the porosity of phase i in scale I, φII is the overall porosity in scale II, which are corresponding

to the active gel pores and capillary pores. For the poroelastic properties of the l porous phases of level I

(CI , bI
i , N

I
i , Q

I
i ), they can be evaluated by standard homogenization equations aforementioned. Referring

to the problem-A, in which a RVE is subjected to the displacement E, zero hydraulic stress and thermal

stress as defined in the previous section, and using eqs(C.42) and (C.40), one can obtain the variation of

the porosity as:

(dφ)A =
l
∑

i=1

fi

(

dφI
i

)A
+
(

dφII
)A

= −
l
∑

i=1

fib
I
i : 〈εA〉Vi

− φII
0 I : 〈εA〉V II

φ
(C.43)

By using eq(C.8), eq(C.43) can be rewritten as:

(dφ)A =
m
∑

i=1

fib
I
i : 〈A〉Vi

: E −
(

I −
m
∑

i=1

fi〈A〉Vi

)

: E (C.44)

From the above equation, the homogenized tensor of Biot’s coefficients is then obtained as:

bhom = −(dφ)AE−1 = I −
m
∑

i=1

(

fi〈A〉Vi

(

I − bI
i

))

(C.45)

If all solid phases are non-porous (bl
i = 0), the eq(C.45) is reducing to eq(C.18). Again, using the isotropic

scheme, the Biot coefficients is further reduced to the following expression:

bhom = 1 −
m
∑

i=1

(

fiA
V
i

(

1 − bI
i

))

(C.46)

By using eqs(C.42) and (C.40), the variation of the porosity for the problem-B can be expressed as:

(dφ)B =
l
∑

i=1

fi

(

dφI
i

)B
+
(

dφII
i

)B
=

l
∑

i=1

fi

(

−bI
i : 〈εB〉Vi

+
P

N I
i

)

− φII
0 I : 〈εB〉V II

φ
(C.47)
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Again, for the non-porous materials, i.e, bI
r = 0 and 1/N I

r = 0, and using the right-hand side equality of

eq(C.28) in (C.47), one obtains the variation of the porosity for the second sub-problem:

(dφ)B =
m
∑

i=1

fi

(

(

1 − bI
i

)

: 〈εB〉Vi
+

P

N l
i

)

(C.48)

On the other hand, the first homogenization step of each solid phase is then given by:

〈σB〉Vi
= C

I
i : 〈σB〉Vi

+ PbI
i , and 〈σB〉Vi

=
(

C
I
i

)−1
:
(

〈σB〉Vi
− PbI

i

)

(C.49)

The average local stress in the phase i of the solid phase can be evaluated using eq(C.24), the relation of

average local stress, ΣB = 〈σB〉V = φ0〈σB〉Vφ
+
∑m

i=1 fi〈σB〉Vi
and the term bhom of multi-scale porous

material from eq(C.45):
〈σB〉Vi

= P
(

1 − I : 〈A〉Vi
+ bI

i : 〈A〉Vi

)

in Vs (C.50)

The relation is reduced to the expression of average local stress of simple porous materials , i.e., eq(C.26),

if bI
i = 0. Substitution of eqs(C.50) and (C.49) into eq(C.48), and using the relation (I − bI

i ) : (CI
i )−1 =

I :
(

C
I
si

)−1
, one obtains:

(dφ)B =
P

Nhom
;

1
Nhom

=
m
∑

i=1

fi

(

I :
(

C
I
si

)−1
: (I − 〈A〉Vi

) :
(

I − bI
i

)

+
1
N I

i

)

(C.51)

If all solid phases are non-porous materials, i.e, bI
i = 0, 1/N I

i = 0,CI
si = Cr, eq(C.51) is then reduced to

eq(C.29). For the isotropic case, eq(C.51) is then expressed as:

1
Nhom

=
m
∑

i=1

fi

(

(1 −AV
i )(1 − bI

i )
kI

i

+
1
N I

i

)

(C.52)

The porosity variation for the problem-C is obtained using the eqs(C.42) and (C.40):

(dφ)C =
l
∑

i=1

fr

(

dφI
i

)C
+
(

dφII
i

)C
=

l
∑

i=1

fi

(

−bI
i : 〈εC〉Vi

−QI
i T
)

− φII
0 I : 〈εC〉V II

φ
(C.53)

Using the right-hand size equality of eq(C.36) in eq(C.53) and the relation bI
i = 0 and QI

r = 0 in the

non-porous phases, it obtains:

(dφ)C =
m
∑

i=1

fi

((

I − bI
i

)

: 〈εC〉Vr
−QI

rT
)

(C.54)

By using eq(C.39) for the first homogenization step of each solid phase and eq(C.33), and the relation of

average local stress, 〈σC〉V =
∑m

i=1 fiCi : 〈εC〉Vi
+ T

∑m
i=1 fiki; 〈σC〉V = ΣC , the average local strain

in phase i of the solid phase is evaluated as:

〈εC〉Vr
= −αI

r : (I − 〈A〉Vr
)T inVs (C.55)

This relation is equivalent to eq(C.35) for simple porous materials. Substitution of eq(C.55) into eq(C.54),

we obtain:
(dφ)C = −QhomT ; Qhom =

m
∑

i=1

fi

(

αI
i : (I − 〈A〉Vi

) :
(

I − bI
i

)

+QI
i

)

(C.56)

When all solid phases are non-porous, bI
i = 0 and QI

i = 0, eq(C.56) is reduced to eq(C.37).
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Appendix D

Thermodynamic properties of

NaCl+H2O system at subzero

temperature

D.1 Gibbs energy description on NaCl+H2O system

The thermodynamic properties of NaCl solution can be derived from Gibbs free energy based principle.

However, for strong electrolytes, because of the ions-ions, ions-water interaction, the Gibbs free energy

is very difficult to be obtained. The most widely accepted description must be the model by Pitzer and

coworkers [299, 303, 304], which can be found elsewhere [8, 15, 16]. In particular, for a univalent-univalent

electrolyte with molality m, the excess Gibbs energy GE can be written as:

GE = nwRT
[

−4Aφ ln(1 + b
√
I) + 2(m2B +m3C)

]

(D.1)

where

Aφ = 1.400608 × 106ρ
1
2

l (ξT )− 3
2 (D.2)

is the Debye-Hückel parameter that depends on liquid density ρl (g · cm−3 ) and dielectric permeability of

pure water ξ at temperature T (K), nw is the molarities of one kilogram water, R = 8.31441 (J ·K−1 ·mol−1)

is the universal gas constant, b is a constant currently assigned a value of 1.2 (kg1/2 · mol−1/2) which is

independent of temperature and pressure [8, 16], I is the ionic strength (mol · kg), and coefficients B and
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C represent binary ion-ion interactions related to the ionic strength [16, 17]:

B = β(0) + β(1) 2[1 − (1 + α1

√
I) exp(−α1

√
I)]

α2
1I

(D.3a)

2C = C(0) + 4C(1)
[

6 −
(

6 + 6α2I
1/2 + 3α2

2I + α3
2I

3/2
)

exp
(

−α2I
1/2
)] 1

α4
2I

2
(D.3b)

where β(0) and β(1), depending on temperature and pressure, are ion-interaction parameters. α1 and α2

are adjustable parameters, which are chosen to be, respectively, 2 (kg1/2 ·mol−1/2) and 2.5 (kg1/2 ·mol−1/2)

for NaCl solution [8, 16, 17]. Akinfiev et al. [8] presented an alternative expression of C, which is related to

the ionic strength and includes 12 terms of adjustable parameters that fitted from experiment results. The

expression by Akinfiev et al. [8] does not provide the relation of apparent molar volume of the electrolyte

at infinite dilution in terms of pressure, although it has less fitting terms.

The ion-interaction terms β(i=0,1) and C(i=0,1) for excess Gibbs energy for NaCl solution are given in

following forms:

β(0) =
F(1, P, T )

m0
; β(1) =

F(2, P, T )
m0

; C(0) =
F(3, P, T )

(m0)2 ; C(1) =
F(4, P, T )

(m0)2 (D.4)

with

F(i, P, T ) = bi,1 + bi,2
T

1000
+ bi,3

(

T

500

)2

+ bi,4
T 0

T − 215
+ bi,5 × 10

4

(

T 0

T − 215

)3

+ bi,6 × 10
2

(

T 0

T − 215

)2

+ 2bi,7 × 10
2

(

T 0

T

)2
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(

T

500

)3
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(

T 0
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+ bi,10 × 10
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ρ0
+ bi,112 × 10

−4 P

ρ0

T 0

T − 225

+ bi,12 × 10
2 P

ρ0

(

T 0

650 − T

)3

+ bi,13 × 10
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ρ0

T

500
+ bi,142 × 10

−4 P

ρ0

T 0

650 − T
+ bi,15 × 10

−7

(

P

ρ0

)2

+ bi,162 × 10
−6

(

P

ρ0

)2 T 0

T − 225
+ bi,17

(

P

ρ0

)2 ( T 0
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)3

+ bi,18 × 10
−7

(

P

ρ0

)2 T

500T 0

+ bi,19 × 10
−7

(

P

ρ0

)2 ( T

500

)2

+ bi,204 × 10
−2 P

ρ0

(

T 0

T − 225

)2

+ bi,21 × 10
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ρ0

(

T

500T 0

)2

+ bi,222 × 10
−8

(

P

ρ0

)3 T 0

T − 225
+ bi,23 × 10

−2

(

P

ρ0

)3 ( T 0

650 − T

)3

+ bi,24200

(

T 0

650 − T

)3

(D.5)

where ρ0 = 1 (g/ml), T 0 = 1 K. The parameters bi,j including these in eqs(D.15) and (D.25) are presented

in Table D.1

D.2 Properties of supercooled water

The dielectric permeativity ξ of liquid water is given by Kirkwood equation [196], see also [18]:

(ξ − 1)(2ξ + 1)
9ξ

= NA

[

αd−p + g
µ2

d−p

3ξ0kbT

]

1
3Vm

(D.6)
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Table D.1: Values for parameter bi,j . Adopted from Archer (2000) [17].
bij i=1 2 3 4 5 6

j=1 0.16975213 -1.79414636 0.017402574 1.23339646 1.74148922 1.64078658
2 0.22591122 5.23254688 -0.11595863 -5.12387550 0.90377494 -0.77918008
3 -0.21148253 - 0.049043291 1.46331147 6.78968430 0.21502726
4 - -20.65972870 -0.025478459 -20.03181141 5.46196497 -1.01900966
5 - - - - -13.04039117 -
6 0.05115848 - - 0.28087799 0.16670784 -
7 -51.6284318 392.33242025 1.21392976 - -9,26081294 -
8 - -0.64596432 -0.011436071 - 0.13236058 -
9 0.64068578 - - - - -

10 -16.20243674 - - - - -
11 72.26082973 250.62580689 -2.22009679 - - -
12 -1.07904472 - - - - -
13 - -101.55231544 1.51149396 - - -
14 - - -15.33930307 - - -
15 10.15067387 - -0.11624695 - - -
16 -19.09944846 -104.31579650 - - - -
17 1.11765048 - 0.10312928 - - -
18 -10.84847744 - - - - -
19 - - - - - -
20 - - - - - -
21 23.63319008 - - - - -
22 2.59934047 - - - - -
23 -0.77999327 - - - - -
24 8.13472440 - -0.19130871 8.51169963 - -

Table D.2: Adjustable parameters in eq(D.7). Adopted from Archer (1990) [18].
Parameter bi Value Unit

b1 −0.04044525 K · MPa−1

b2 103.6180 K1/2

b3 75.32165 K

b4 −23.23778 K1/2

b5 −3.548184 K1/4

b6 −1246.311 K
b6 263307.7 K2

b8 −0.6928953 K · MPa−1

b9 −204.4473 K2 · MPa−1

with

g − 1
ρd−p

=
1

ρ0
d−p

[

b1
Pl

T
+ b2

1√
T

+ b3
1

T − 215
+ b4

1√
T − 215

+ b5
1

(T − 215)1/4

]

+
1

ρ0
d−p

exp(b6
1
T

+ b7
1
T 2

+ b8Pl
1
T

+ b9Pl
1
T 2

)
(D.7)

In above equations, NA is Avogadro’s constant (6.0221367×1023mol−1), αd−p is the molecular polarizability

(18.1458392 × 10−30m3), Vm the molar volume of water (18.0153 × 10−3kg · mol−1), µd−p is the molecular

dipole moment of arbitrary molecule in the fluid (6.1375776 × 10−30C · m), g is identified as the Kirkwood

correlation factor, ξ0 = 8.8541878 × 10−12 (C2 · J−1 · m−1) is the dielectric permittivity of vacuum. The

adjustable constants bi, i = 1 ∼ 9 are given in Table D.2. Figure D.1(a) shows the variation of dielectric

permittivity with temperature (243∼273 K) and pressure (0.1∼87 MPa). In the calculation steps, the

density of liquid water is evaluated from the expression by Speedy [372], see Figure (D.1(b)).

The volumetric properties of water at subzero temperature, has been extensively studied for decades

[371, 372]. As stated by Mironenko et al, [256], the accuracy of solute apparent molar volume evaluated

from density data depends strongly on the adopted value of water molar volume, and the authors estimated
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Figure D.1: Dielectric permittivity (a) and density (b) of water in terms of temperature from 273-240 K
and pressure from 0.1-90 MPa.

Table D.3: Values of B(n)
α and Cα in [372].

x α (10−3K−1) 1/Kl (10−11Pa−1) CP,w (J · K−1 · mol−1)

Cx -0.80 20.0 14.2

B(0)
x 1.8021803 4.120 25.952

B(1)
x -0.9416980 -1.130 128.281

B(2)
x 0.9055070 77.817 -221.405

B(3)
x -0.0579531 -78.143 196.890

B(3)
x 0 54.290 -164.812

that a difference in water density of 50 µg · cm−3 will yield a difference in apparent molar volume of about

0.5 cm3 · mol−1. Both the temperature and pressure have significant influence on the volumetric properties

of water, the water density ρ∗
w, viz ρ∗

w = Mw/Vw, in terms of pressure and temperature, can be expressed

as:
ρ∗

w = ρs exp

[

∫ T

Ts

αwdT +
1
Kw

(P − Pm)

]

(D.8)

where ρs = 920.17 (Kg · m−3) was obtained from fitting, αw and 1/Kw, are respectively the thermal

(volumetric) expansion coefficient and compressibility (reciprocal of bulk modulus) of water, which can be

given by [372]:
X =

N
∑

i=0

B(n)
α

(

T

227.1
− 1
)n

+ Cα

(

T

227.1
− 1
)−1/2

(D.9)

B
(n)
α and Cα are adjustable parameters given in Table D.3. Note that in eq(D.8), we add the term P −Pm

to count the effect of pressure, in addition to the original formula (eq(14) in [372]). The calculated density,

which has been used for evaluate the dielectric permittivity of water in previous section, is illustrated in

Figure D.1(b).

To evaluate the apparent partial molar volume of solution, the values of Debye-Hückel limiting-law

slopes Av should be calculated firstly, which is evaluated in the form [18, 256]:

Av = 2AφRT

(

3
∂ ln ξ
∂P

∣

∣

∣

∣

T

+
∂ ln Vw

∂P

∣

∣

∣

∣

T

)

(D.10)

where ξ is the relative dielectric permittivity, which can be evaluated through the Kirkwood equation, see

eq(D.6). The calculated values of Debye-Hückel limiting-law slope Av, in terms of temperature (240-273

K) and pressure (0.1-90 MPa), are illustrated in Figure D.2(a). The value of Av at P = 0.1 MPa, increases
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from about 1.5 to 2.5 as temperature decreases from 273 K to 240 K, which can be verified by data in [8].

The values of Debye-Hückel limiting-law slopes of heat capacity Ac can be evaluated as [18, 256]:

Ac = 8RT
∂Aφ

∂T
+ 4RT 2 ∂

2Aφ

∂T 2
(D.11)
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Figure D.2: The values of Debye-Hückel limiting-law slopes of volume Av (a) and heat capacity Ac (b) of
water in terms of temperature (273-240 K) and pressure (0.1-90 MPa).

Substitution of eq(D.2) into eq(D.11), one obtains the expression of Ac:

Ac = AφR

[

−T 2

ρ2

(

∂ρ
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)2 ∣
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T 2
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∣
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∣
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∂ξ
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] (D.12)

Figure D.2(b) shows the variation of Ac with temperature (240-273 K) and pressure (0.1-90 MPa). The

values are negative, which are comparable with values in [8, 18].

D.3 Properties of NaCl solution

D.3.1 Volumetric properties

D.3.1.1 Density

The apparent molar volume of the solution with nr moles of solutes in 1 kilogram water is given by

[16, 17]:

Vφ +
V∗

w

nr
=

V(mr)
nr

+ 2Av
ln(1 + bI

1
2 ) − ln(1 + bI

1
2

r )
2b

− 2RT
[

(mBV (m) −mrBV (mr)) + (m2CV (m) −m2
rCV (mr)

]

(D.13)

where Vφ is molar volume of electrolyte at infinite dilution, V∗
w is volume of 1 kg of pure water. V(mr) is

volume of a quantity of solution containing 1 kg of solvent at the given temperature and pressure (mr = 6
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Figure D.3: Variation of apparent molar volume of NaCl Vφ (ml ·mol−1) (a) and total density ρl (kg ·m−3)
of solution (b) with temperature (273-240 K) and salt concentration (0.2-6 mol · kg−1) at P = 0.1 MPa.

in [16, 17]) (mol · kg−1). BV and CV are adjustable parameters accounting for ion-interaction:
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The quantity of V (mr) is related to temperature and pressure:

Vmr

nr
= V

0

[
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where, bi=5,j=1∼8 are adjustable constants, which can be obtained by least square fitting [15–17], P0 = 0.1

(MPa) and V0 = 1.0 × 10−3 (m3 · mol−1). The density of solution is then given by:

ρl =
m · MNaCl + 1000

Vφ ·m+ V∗
w

(D.16)

where MNaCl is the molar mass of NaCl (58.5 g/mol). Variations of apparent molar volume of NaCl Vφ

(ml ·mol) and total liquid density ρl (kg ·m3) with temperature (273-240 K) and NaCl concentrations (0.2-6

mol · kg) at P = 0.1MPa are shown in Figures D.3(a) and D.3(b). Variation of apparent molar volume of

NaCl Vφ (ml ·mol) and total liquid density ρl (kg ·m3) with pressure (0.1-90 MPa) and NaCl concentration

(0.2-6 mol · kg) at 273.15K are shown in Figures D.4(a) and D.4(b) respectively. The obtained values are

close to those given in [17]. From the Figure D.3(a), it can be found that the apparent partial molar volume

of NaCl become to be negative when temperature decreases to about -20 ℃, which is consistent with the

dat by Tanger and Hegelson [388], and M.V. Mironenko, et al. [256], see Figure (4.5).
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Figure D.4: Variation of apparent molar volume of NaCl Vφ (ml ·mol−1) (a) and total density ρl (kg ·m−3)
of solution (b) with pressure (0.1-90 MPa) and salt concentration (0.2-6 mol · kg−1) at T = 273.15 K.

D.3.1.2 Compressibility

The compressibility of a solution is defined as (see eqs(B.38) and (B.39)):

1
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=
1
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(D.17)

The important factor ∂Vφ,1/∂Pl can be obtained by differentiating the eq(D.13) to pressure:
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where AK , BK and CK are adjustable parameters accounting for ion-interactions:
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(D.19c)

The variation of compressibility of NaCl solution 1/Kl (GPa−1) calculated by eq(D.17) with temperature

and salt concentration, and with pressure and salt concentration, are respectively illustrated in Figures

D.5(a) and D.5(b). The apparent molar compressibility of NaCl 1/Kφ (GPa−1), calculated by eq(D.17)(2)

can be found in Figure D.6.

D.3.1.3 Thermal expansion coefficient

The thermal coefficient of a solution is defined as (see eqs(B.40) and (B.41)):
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Figure D.7: Variation of thermal (volumetric) expansion coefficient of NaCl solution 3αl (µm · m−1) with
(a) temperature (273-243 K) and salt concentration (0.2-6 mol · kg−1) at P = 0.1 MPa, and with (b)
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The important factor ∂Vφ,1/∂T can be obtained by the differentiating the eq(D.13) to the variable of

temperature in the following form:
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where Aα, Bα and Cα are adjustable parameters accounting for ion-interactions:
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The variation of thermal (volumetric) expansion coefficient of NaCl solution 3αl (µm · m−1 · ℃−1) calcu-

lated by eq(D.20) with temperature and salt concentration, and with pressure and salt concentration, are

respectively illustrated in Figures D.7(a) and D.7(b). The apparent molar thermal (volumetric) expansion

coefficient of NaCl 3αφ (µm · m−1) calculated by eq(D.20)(2) with temperature and salt concentration, and

with pressure and salt concentration, are respectively illustrated in Figures D.8(a) and D.8(b).

D.3.2 Heat capacity

The apparent heat capacity of the solution with nr moles of solutes in 1 kilogram water is [16, 17]:
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P |w
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(D.23)

where CP |φ is molar heat capacity of electrolyte at infinite dilution. c∗
P |wis the heat capacity of 1 kg of

pure water. CP (mr) is the heat capacity of a quantity of solution containing 1 kg solvent at the given
temperature and pressure, mr = 6mol · kg−1 in [16, 17]. BC and CC are adjustable parameters accounting
for ion-interactions:
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When P = 0.1 MPa, CP (mr)/nr can be given by the following polynomial [16, 17]:
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Figure D.8: Variation of apparent molar thermal (volumetric) expansion coefficient of NaCl solution 3αφ

(µm · m−1 · ℃−1) with (a) temperature (273-243 K) and salt concentration (0.2-6 mol · kg−1) at P = 0.1
MPa, and with (b) pressure (0.1-90 MPa) and salt concentration (0.2-6 mol · kg−1) at T = 273.15 K.
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Figure D.9: Variation of apparent heat capacity of NaCl CP,φ (J ·K−1 ·mol−1) (a) and overall heat capacity
CP,l (J · K−1 · g−1) of solution (b) with temperature (273-240 K) and salt concentration (0.2-6 mol · kg−1)
at P = 0.1 MPa.

 240
 245

 250
 255

 260
 265

 270
 275  0

 1
 2

 3
 4

 5
 6

-1600
-1400
-1200
-1000

-800
-600
-400
-200

 0
 200

Apparent heat capacity

T (K) m (mol/kg)

-1600
-1400
-1200
-1000
-800
-600
-400
-200
 0
 200

(a)

 3.2
 3.4
 3.6
 3.8

 4
 4.2
 4.4
 4.6
 4.8

Solution heat capacity

 240
 245

 250
 255

 260
 265

 270
 275 0

 1
 2

 3
 4

 5
 6

 3.2
 3.4
 3.6
 3.8
 4
 4.2
 4.4
 4.6
 4.8

(b)

Figure D.10: Variation of apparent heat capacity of NaCl CP,φ (J·K−1 ·mol−1) (a) and overall heat capacity
CP,l (J ·K−1 ·g−1) of solution (b) in terms of pressure (0.1-90 MPa) and salt concentration (0.2-6 mol ·kg−1)
at T = 273.15 K.
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where, C0
p = 1.0 (kJ ·mol−1 ·K−1), bi=6,j=1∼4 are adjustable constants presented in Table D.1 [15–17]. The

overall heat capacity referring to one mass unit of solution can be calculated as:

CP,l =
CP |φ ·m+ c∗

P |w
m · MNaCl + 1000

(D.26)

Figures D.9(a) and D.9(b), respectively, show the variation of the apparent molar heat capacity of NaCl

solution at infinite dilution CP |φ (J · K−1 · mol−1) and the variation of the overall heat capacity of solution

CP,l (J ·K−1 ·g−1) with temperature (273-240 K) and salt concentration (0.2-6 mol ·kg−1) at P = 0.1 MPa.

Figures D.10(a) and D.10(b), respectively, show the variation of the apparent molar heat capacity of NaCl

solution at infinite dilution CP |φ (J · K−1 · mol−1) and the variation of the overall heat capacity of solution

CP,l (J · K−1 · g−1) with pressure (0.1-90 MPa) and salt concentration (0.2-6 mol · kg−1) at T = 273.15 K.

D.4 Thermal conductivity

Unlike the volumetric property and thermal property of NaCl solution, which are related to the Gibbs

free energy [15, 16], the thermal conductivity can not be predicted from the Gibbs energy based formulas.

Again, due to the complexity of experiments on the thermal conductivity of solution with temperature,

pressure and salt concentration, few data have been published. Ozbek and Phillips [277] applied a semi-

empirical model to fit the NaCl solution in range of 0-6 mol · kg−1:

λl = λw

[

1 − xm

(

0.23434 − 7.923 × 10−4T + 3.924 × 10−6T 2
)]

+ λw

[

x2
m

(

0.106 − 2 × 10−4T + 1.2 × 10−6T 2
)]

(D.27)

where λl is the thermal conductivity of aqueous solution (mW · m−1 · K−1), λw is the thermal conductivity

of water (mW ·m−1 ·K−1), T is temperature (K), xm is the mass fraction of NaCl. Figure D.11(a) illustrates

the variation of the thermal conductivity of NaCl solution with the salt concentration and temperature. It

can be found that the thermal conductivity of aqueous solution decreases as temperature decreases and as

salt concentration increases.

Table D.4: Experimental results for the thermal conductivity of aqueous solution of NaCl at different
pressure at 293K (mW · m−1 · K−1). Data from Abdulagatov and Magomedov (1994) [4].

.

Pressure (MPa)

NaCl mass fraction 0.1-2 20 40 60 80 100

2.5% 594 603 611 619 629 639
5% 591 598 607 616 625 633
10% 588 592 600 608 616 624
15% 580 586 593 601 610 617
20% 574 579 585 593 600 605
25% 566 573 578 584 590 597
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Figure D.11: (a), Variation of thermal conductivity (λ) of NaCl solution with salt concentration (0.2-
6mol · kg−1) and temperature (240-273K) (W · m−1 · K−1). (b), Variation of thermal conductivity (λ) of
NaCl solution with pressure at 293K (mW · m−1 · K−1). Data from Abdulagatov and Magomedov (1994)
[4].

The influence of pressure on the thermal conductivity of aqueous solution scan be found in Table D.4 and

Figure D.11(b). The slope of the thermal conductivity to the pressure is found to be 0.45 (mW ·m−1 ·K−1 ·

MPa−1) when the mass fraction of NaCl is 2.5%, and it decreases to 0.3 (mW ·m−1 ·K−1 ·MPa−1) when the

mass fraction of NaCl increases to 25%. We take an average value, ∂λl/∂Pl = 0.37 (mW·m−1 ·K−1 ·MPa−1),

where the mass fraction of NaCl is about 15%. It thus has:

λl = λl(P = 0) + 0.37 × 10−4Pl (W · m−1 · K−1) (D.28)

It can be concluded that the influence of pressure on the thermal conductivity of aqueous solution is not

significant.



Appendix E

Strains of saturated samples

E.1 LVDT verification

The nominal linear displacement of LVDT itself is 0.56 µm/℃. We performed a series of measurements

on the displacement of LVDT itself to obtain reliable data. Figure E.1 shows a typical displacement curve

of LVDT during freeze-thaw. The freeze-thaw temperature is set in the range of 20∼ −20℃. It can be

seen that the slopes of the displacement-temperature curves are 0.5703 and 0.5972 (0.5837 in average)

during freezing and thawing respectively. The average values for 6 LVDTs are presented in Table E.1. The

obtained values will be used to calculate the strains of cement-based materials subjected to freeze-thaw.

(a) (b)

Figure E.1: Displacement of LVDT (a) in terms of time, (b) in terms of temperature.
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Table E.1: The measured displacement – temperature slops of 6 spring LVDTs (Type Microsensor 750).

LVDT Sensor number 1 2 3 4 5 6

Nominal value (µm/℃) 0.56 0.56 0.56 0.56 0.56 0.56

Test 1 (µm/℃) 0.5996 0.5819 0.5601 0.5673 0.5812 0.5602
Test 2 (µm/℃) 0.5962 0.5985 0.5188 0.5601 0.5823 0.5592
Test 3 (µm/℃) 0.5444 0.5837 0.5600 0.5158 0.6266 0.5597
Test 4 (µm/℃) 0.5672 0.5767 0.5628 0.5855 0.6131 0.5672
Test 5 (µm/℃) 0.5926 0.5911 0.5673 0.5533 0.5849 0.5551
Test 6 (µm/℃) 0.5617 0.5899 0.5555 0.5909 0.5932 0.5607

Average (µm/◦C) 0.5770 0.5875 0.5541 0.5622 0.5969 0.5637

E.2 Deformations of air entrained cement pastes

Figures E.2 ∼ E.13 show the deformation of cement pastes with different dosage of air voids. Those

samples have been initially saturated with NaCl solution from zero∼ 15%. The sample preparation, defor-

mation measurement procedures can be found in section 9.1. The strains presented in Tables E.2 and E.3

are defined in Table 9.3.

Figure E.2: Deformation of water saturated samples entrained with different dosages of air voids in terms
of freeze-thaw time.
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Figure E.3: Deformation of water saturated samples entrained with different dosages of air voids in terms
of temperature.

Table E.2: Deformations for air entrained pastes saturated with pure water (1.5% NaCl)[3% NaCl] subjected
to freeze-thaw loading.

Sorts
1st cycle 2ed cycle 3rd cycle 4th cycle 5th cycle 6th cycle

(×10−6) (×10−6) (×10−6) (×10−6) (×10−6) (×10−6)

Non air entrained samples

εth −893 (−1200) [−798] −555 (−997) [−853] −548 (−982) [−869] −531 (−973) [−868] −542 (-) [-] −560 (-) [-]
εnu 87 (30) [0] 100 (−78) [0] 67 (−55) [0] 0 (−76) [0] −51 (-) [-] −41 (-) [-]
εex 263 (−100) [190] 509 (115) [387] 326 (11) [337] 154 (165) [292] 36 (-) [-] −72 (-) [-]
εpr 1156 (1300) [988] 1064 (1112) [1240] 874 (993) [1206] 685 (1138) [1160] 578 (-) [-] 488 (-) [-]
εre 142 (20) [135] 226 (132) [168] 161 (89) [112] 108 (63) [86] 108 (-) [-] - (-) [-]
εif 388 (235) [332] 43 (28) [118] −11 (16) [67] −10 (-) [-] 0 (-) [-] - (-) [-]

%1.5 air entrained samples

εth −770 (−590) [−584] −449 (−347) [−600] −460 (−334) [−599] −444 (−353) [−605] −444 (-) [-] −460 (-) [-]
εnu 101 (62) [0] 78 (132) [0] 70 (98) [0] −41 (58) [0] −51 (-) [-] −38 (-) [0]
εex −35 (836) [9] 264 (1418) [79] 155 (1230) [70] 90 (1100) [70] 36 (-) [-] −28 (-) [-]
εpr 735 (1426) [593] 713 (1765) [679] 615 (1564) [669] 534 (1463) [675] 480 (-) [-] 432 (-) [-]
εre 48 (332) [85] 153 (310) [65] 75 (178) [33] 75 (118) [23] 77 (-) [-] - (-) [-]
εif 236 (914) [155] 44 (112) [56] 11 (48) [33] 21 (-) [-] 13 (-) [-] - (-) [-]

%3 air entrained samples

εth −751 (−871) [−786] −582 (−731) [−747] −594 (−923) [−730] −590 (−676) [752] −649 (-) [-] −627 (-) [-]
εnu 85 (100) [0] 86 (167) [0] 25 (133) [0] 44 (77) [0] 66 (-) [-] 40 (-) [-]
εex −455 (−18) [−439] −340 (283) [−215] 341 (305) [−157] −299 (248) [−145] −279 (-) [-] −281 (-) [-]
εpr 1206 (853) [347] 922 (356) [532] 935 (1228) [573] 889 (924) [607] 928 (-) [-] 908 (-) [-]
εre −154 (42) [−97] 42 (161) [45] 20 (97) [46] 41 (118) [35] 41 (-) [-] - (-) [-]
εif −38 (343) [127] 41 (183) [103] 62 (54) [58] 61 (-) [-] 39 (-) [-] - (-) [-]

%4.5 air entrained samples

εth −650 (−537) [*] −408 (−268) [*] −431 (−281) [*] −441 (−274) [*] −420 (-) [-] −467 (-) [-]
εnu 0 (100) [0] 59 (196) [0] 137 (428) [0] 175 (439) [0] 114 (-) [-] 101 (-) [-]
εex −36 (750) [261] 813 (1411) [210] 870 (1498) [165] 792 (1510) [164] 648 (-) [-] 531 (-) [-]
εpr 614 (1287) [*] 1221 (1679) [*] 1201 (1779) [*] 1233 (1784) [*] 1068 (-) [*] 998 (-) [*]
εre 83 (324) [161] 344 (350) [70] 267 (240) [57] 211 (180) [-] 167 (-) [-] - (-) [-]
εif 932 (985) 401 (437) 189 (252) 67 (-) 50 (-) - (-)

%6 air entrained samples

εth −847 (*) [−945] −572 (*) [−861] −573 (*) [−863] −574 (*) [−854] −575 (-) [-] −574 (-) [-]
εnu 121 (0) [0] 110 (38) [0] 100 (82) [0] 119 (58) [0] 145 (-) [0] 162 (-) [0]
εex −659 (220) [−750] −331 (717) [−504] −255 (884) [−513] −179 (1469) [−501] −115 (-) [-] −61 (-) [-]
εpr 188 (*) [195] 241 (*) [357] 828 (*) [350] 395 (*) [353] 460 (-) [-] 513 (-) [-]
εre −124 (303) [−103] 86 (273) [43] 96 (206) [10] 93 (173) [10] 97 (-) [-] - (-) [-]
εif 204 (800) [98] 162 (440) [34] 172 (290) [21] 161 (-) [-] 151 (-) [-] - (-) [-]
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Figure E.4: Deformation of 1.5% NaCl solution saturated samples entrained with different dosages of air
voids in terms of freeze-thaw time.

Figure E.5: Deformation of 1.5% NaCl solution saturated samples entrained with different dosages of air
voids in terms of temperature.
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Figure E.6: Deformation of 3% NaCl solution saturated samples entrained with different dosages of air
voids in terms of freeze-thaw time.

Figure E.7: Deformation of 3% NaCl solution saturated samples entrained with different dosages of air
voids in terms of temperature.
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Figure E.8: Deformation of 6% NaCl solution saturated samples entrained with different dosages of air
voids in terms of freeze-thaw time.

Figure E.9: Deformation of 6% NaCl solution saturated samples entrained with different dosages of air
voids in terms of temperature.
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Figure E.10: Deformation of 10% NaCl solution saturated samples entrained with different dosages of air
voids in terms of freeze-thaw time.

Figure E.11: Deformation of 10% NaCl solution saturated samples entrained with different dosages of air
voids in terms of temperature.
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Figure E.12: Deformation of 15% NaCl solution saturated samples entrained with different dosages of air
voids in terms of freeze-thaw time.

Figure E.13: Deformation of 15% NaCl solution saturated samples entrained with different dosages of air
voids in terms of temperature.
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Table E.3: Deformations for air entrained pastes saturated with 6% (10%) [15%] NaCl solution subjected
to freeze-thaw loading.

Sorts
1st cycle 2ed cycle 3rd cycle 4th cycle 5th cycle 6th cycle

(×10−6) (×10−6) (×10−6) (×10−6) (×10−6) (×10−6)

Non air entrained samples
εth −611(−1385)[−985] −526(−1211)[−817] −505(−1229)[−754] −603(−1239)[−801] -(−1233)[-] -(−1264) [-]
εnu 139(0)[0] 148(0)[0] 80(0)[0] 91(0)[0] -(0)[-] -(0)[-]
εex 388(−813)[−831] 667(74)[−662] 696(142)[−561] 814(128)[-] -(73)[-] -(−51)[-]
εpr 999(571)[154] 1193(1285)[155] 1201(1369)[190] 1417(1367)[-] -(1306)[-] -(1314)[-]
εre 162(−172)[−160] 210(196)[0] 156(106)[12] 147(108)[-] -(54)[-] -(9)[-]
εif 447(715)[49] 247(265)[36] 266(92)[-] -(53)[-] -(31)[-] -(-)[-]

%1.5 air entrained samples

εth −864(−753)[−679] −717 (−489) [−535] −735 (−504) [−520] −725 (−495) [−511] - (−496) [-] - (−505) [-]
εnu 105(105)[38] 124 (435) [38] 72 (542) [233] ∗ (606) [298] - (499) [-] - (446) [-]
εex −33(1445)[229] 232 (1827) [754] 156 (1785) [775] 121 (1751) [-] - (1683) [-] - (1600) [-]
εpr 831(2198)[908] 949 (2317) [1289] 891 (2289) [1295] 846 (2246) [-] - (2179) [-] - (2105) [-]
εre 71(541)[257] 147 (344) [250] 75 (194) [141] 40 (130) [-] - (95) [-] - (49) [-]
εif 270(923)[782] 71 (303) [171] 40 (250) [-] - (62) [-] - (12) [-] - (-) [-]

%3 air entrained samples

εth −877(−871)[−782] −743 (−558) [−663] −735 (−551) [−534] −734 (−541) [−504] - (−515) [-] - (−500) [-]
εnu 0(122)[50] 0 (305) [38] 0 (392) [50] ∗ (329) [28] - (284) [-] - (199) [-]
εex −624(460)[−333] −385 (1048) [148] −296 (1018) [244] −251 (870) [-] - (779) [-] - (651) [-]
εpr 253(1331)[449] 358 (1606) [811] 439 (1569) [778] 483 (1411) [-] - (1294) [-] - (1151) [-]
εre −73(238)[74] 56 (247) [156] 55 (140) [110] 36 (86) [-] - (64) [-] - (28) [-]
εif 166(784)[555] 145 (214) [252] 100 (−8) [-] - (−5) [-] - (−64) [-] - (-) [-]

%4.5 air entrained samples

εth −816(−512)[−408] −542 (−420) [−346] −518 (−470) [−411] −533 (−464) [−500] - (−460) [-] - (−403) [-]
εnu 225(82)[315] 257 (180) [494] 345 (326) [505] ∗ (550) [428] - (527) [-] - (417) [-]
εex 570(1980)[1478] 928 (2084) [1782] 980 (2005) [2046] 993 (1086) [-] - (1669) [-] - (1524) [-]
εpr 1386(2492)[1886] 1470 (2504) [2149] 1498 (2475) [2457] 1526 (2270) [-] - (2129) [-] - (1927) [-]
εre 224(770)[707] 177 (400) [500] 109 (189) [348] 68 (125) [-] - (75) [-] - (51) [-]
εif 582(886)[1011] 229 (309) [765] 122 (−10) [-] - (−12) [-] - (−60) [-] - (-) [-]

%6 air entrained samples

εth −611(−603)[−450] −414 (−448) [−350] −410 (−453) [−365] −399 (−449) [−381] - (−432) [-] - (−433) [-]
εnu 194(148)[815] 483 (394) [848] 415 (516) [960] ∗ (517) [948] - (471) [-] - (527) [-]
εex 1120(1611)[2267] 1495 (1985) [2326] 1519 (2027) [2391] 1513 (1979) [-] - (1948) [-] - (1893) [-]
εpr 1731(2214)[2717] 1909 (2433) [2676] 1929 (2480) [2756] 1912 (2428) [-] - (2380) [-] - (2326) [-]
εre 338(593)[1007] 278 (388) [611] 144 (245) [367] 91 (146) [-] - (98) [-] - (73) [-]
εif 713(967)[1066] 302 (430) [676] 138 (197) [-] - (115) [-] - (47) [-] - (-) [-]
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List of Symbols and Abbreviations

αhom
d,X , αhom

u,X , αs, αl, αc, αsk, αt, αi, αd, α0, αc,m Homogenized thermal expansion coefficient at drained (with
subscript d,X and superscript hom) and undrained (with subscript u,X and superscript hom)
conditions for material X; Thermal expansion coefficient of solid (with subscript s), liquid (with
subscript l), ice crystals (with subscript c) and skeleton (with subscript sk) (K−1); Overall hydration
degree (with subscript t) and hydration degree of cement clinkers of compound i in Chapter 6 (-);
Measured thermal expansion coefficient (with subscript d) and samples with zero porosity (with
subscript 0) (K−1); Hydration degree of cement mortar (-)

βi Mobility of species i (m2 · s−1 · V−1); Length modification coefficient of LVDT in eq(eq:dilation-
LVDT) (m · ℃−1)

αφα,αth Partial volumetric thermal dilation coefficient of phase α (with subscript φα); Tensor of thermal
dilation coefficient of solid matrix (with subscript th) (K−1)

ǫ, ǫ∆ρ, ǫSf
, ǫT , ǫU Total freezing strain tensor (no script), freezing strain tensor by density change (with

subscript ∆ρ), entropy change (with subscript Sf ), temperature change (with subscript T ), inter-
facial energy (with subscript U)

u Displacement

λ, λl, λc, λs Heat conductivity tensor (bold form), heat conductivity of liquid (with subscript l), ice crystals
(with subscript c) and solid matrix (with subscript s) (W · m−2 · K−1)

Σ Macroscopic stress tensor

υl,υw,υi Velocity of water (with subscript w) and species i (with subscript i) in partial frozen porous
system with the velocity of barycentric center of mass (with subscript l), (m · s−1)

ε, εP , εT Strain tensor (no script); Strain tensor by pore pressure (with superscript P ); Strain tensor by
temperature variation (with superscript T )

b, b, bα, b
hom
X Biot’s coefficient in tensor form, isotropic from, for phase α and in homogenized from for

material X

Jw,Ji,Jc The diffusion flux of of water (with subscript w), species i (with subscript i) in partial frozen
porous system (kg · m−2 · s−1), and conduction current (with subscript c) (rmA ·m−2)

Nαβ , N
hom
X Biot’s tangent modulus, with αβ ∈ l, c and homogenized Biot’s modulus for material X

q Heat flux tensor (W · K−1)

wi,wl,wq,ww, wi Darcean flux tensor of species i (with subscript i); Flux tensor of barycentric center
of mass (with subscript l); Flux tensor of water (with subscript w) (kg · m−2 · s−1); Total current
density (with subscript q) (A · m−2); Adjustable parameters for multi-Gauss fitting (with subscript
i) in eqs(8.15) and (8.17) (-)

∆Gfus,∆G∗
hom,∆G

∗
hom,salt Gibbs fusion energy at reference pressure P0 (with subscript fus) (J · mol−1);

Excess Gibbs free energy of an ice embryo with critical size nucleating in pure water (with super-
script hom) and in saline solution (with superscript hom, salt) homogeneously (J)

∆Hfus Enthalpy change of fusion at current temperature T (J · mol−1)
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∆T,∆Tm,∆Tf ,∆Ti Depressed temperature by capillary supercooling, depressed melting (with subscript
m) and freezing temperature (with subscript f), and width of ith temperature bin Ti (with subscript
i) (K)

δ Thickness of unforzen layer (m) or (nm)

∆α Thermal expansion coefficient mismatch between epoxy and glass, ∆α = αg − αe in in eq(3.2),
(K−1)

∆Vwc Molar volume difference between ice and water (m3 · mol−1)

Ė Total internal energy rate of porous media

ǫTotal, ǫIF, ǫTem Total instantaneous dilation (with subscript Total), by ice nucleation (with subscript IF)
and thermal shock (with subscript (Tem))

ηl Viscosity of liquid phase (Pa · s)

γcl, γsc, γls, γd, γi, γ+, γ−, γ± Surface tension between crystals and liquid (with subscript cl), between crys-
tals and solid wall (with subscript sc), between liquid and solid wall (with subscript ls) (N · m−1);
Surface tension of dried solid (N · m−1); Ionic activity coefficient (with subscript i) (-); Activity co-
efficient of cation (with subscript +); Activity coefficient of anion (with subscript −); Mean activity
coefficient (with subscript ±)

κ, κr,0, κ
hom
X Curvature (no script) (m−1) in eq(2.23), overall permeability of porous materials (no script)

in eq(4.18) and section 7.3.1.2, relative permeability (with subscript r), intrinsic permeability (with
subscript 0) and homogenized permeability of material X (with subscript X and superscript hom)
(m2)

A Fourth order Strain localization tensor

B Fourth order Stress localization tensor

C,Ci,C
hom Stiffness tensor (no script); Stiffness tensor of compound i (with subscript i); Homogenized
stiffness tensor (with superscript hom)

D Deviatoric stiffness tensor

K Volumetric stiffness tensor

C Second order flux localization tensor

D Fourth order potential localization tensor

D,Dsk,Df ,Dth Total dissipation (no script) (J · K · s−1), dissipation of skeleton (with subscript sk), fluid
(with subscript f) and heat (with subscript th)

G Relative diffusion coefficient (-)

P,Ps,Pw,Pdef Overall quantities per unit mass of solution (no script) in eq(8.1), the quantities per unit
mole of water (with subscript w) and apparent molar quantities of salt (with subscript s); Strain
work rate (with subscript def)

R Cooling rate (K · s−1)

S,Sc,S◦
c ,Sf ,Sl,Sm,Ssk,Sw,S◦

w Overall entropy density (no script); Entropy density of ice (with subscript
c) and that at reference state (with subscript c and superscript ◦); Fusion entropy density (with
subscript f); Entropy density of liquid phase (with subscript l); Entropy density of solid matrix
(with subscript m); Entropy density of skeleton (with subscript sk); Entropy density of water (with
subscript w); Entropy density of ice (with subscript w) and that at reference state (with subscript
w and superscript ◦) (J · m−3 · K−1)

S̊ Global entropy of porous medium (J · kg−1 ·K−1)

Q̊ Heat exchange rate

m̊w→c Ice formation rate
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r̊ Heat source

CP,w,CP,c,Cf ,CP,φ,C
0
P,m Molar heat capacity of water (with subscript P,w), ice crystals (with subscript

P, c) and their difference (with subscript f); Apparent molar heat capacity of salt (with subscript
P, φ) and these at infinite dilution (with subscript P,m and superscript 0) (J · mol−1 · K−1)

Mw,Mc,Mi Molar mass of water (with subscript w), ice (with subscript c) and species i (with subscript i)
(kg · mol−1)

Sw,S
◦
w,Sc,S

◦
c ,Sf Molar entropy of water (with subscript w) and that at reference state (with subscript w

and superscript ◦); Molar entropy of ice crystals (with subscript c) and that at reference state (with
subscript c and superscript ◦); Molar fusion entropy (J · mol−1 · K−1)

Vw,Vc,Vi,Vtotal,Vφ,Vφ,i,V
0
m Molar volume of water (with subscript w), ice (with subscript c) and species

i (with subscript i) (m3 ·mol−1); Total volume of aqueous solution (with subscript total); Apparent
molar volume of NaCl (with subscript φ), species i (with subscript i); And apparent molar volume
of electrolyte at infinite dilution (with subscript m and superscript 0) (m3 · mol−1)

µw, µc, µ
⊖
w , µ

⊖
c Chemical potential of water (with subscript w) and ice crystals (with subscript c) (J·mol−1);

Chemical potential of bulk water (with subscript w and superscript ⊖) and bulk ice crystals (with
subscript c and superscript ⊖) at reference state (J · mol−1)

φ, φ0, φl, φc, φp, φcap, φm, φav, φpaste, φ
act, φδ Current Lagrangian porosity (no script); Initial porosity (with

subscript 0), partial porosity occupied by liquid phase (with subscript l), partial porosity occupied
by ice (with subscript c), percolated critical porosity (with subscript p), capillary porosity (with
subscript cap), porosity by gravimetric measurement (with subscript m), volume fraction of air
voids (with subscript av), volume fraction of paste (with subscript paste); Active porosity (with
superscript act); Volume fraction of liquid-like layer (with subscript δ) (-)

Π Osmotic coefficient (-)

Ψ,ΨE ,Ψsk Helmholtz free energy density (no script) (J · m−3); Electric potential (with subscript E) (V);
Helmholtz free energy density of skeleton (with subscript sk) (J · m−3)

ψl, ψc, ψsk Helmholtz free energy density of liquid phase (with subscript l), ice crystals (with subscript c),
and skeleton (with subscript sk) (J · kg−1)

ρα, ρ
0
α, ρLD,HD Current (with subscript α) and initial density (with subscript α and superscript 0) of

phase α; Density of low density (with subscript LD) and high density (with subscript HD) C-S-H
(kg · m−3)

σ, σ0, σgs, σs, σe,σ,σ
P ,σT Separation of two microscopic bodies (no script) (m) or (nm) in eq(2.39), cur-

rent electric conductivity (no script) and bulk electric conductivity (with subscript 0) in eqs(7.14)
to (7.16) and eq(7.22); Stress around the boundary of epoxy (with subscript gs), stress in the glass
surface (with subscript g), stress in the epoxy (with subscript e), in eq(3.2) (Pa) or (MPa); Second
order stress tensor (in bold form); Eigenstress by pressure (with superscript P ); Eigenstress by
temperature variation (with superscript T )

τ Tortuosity (-) in eq(4.21), Pore pressure relaxation time in chapter 5

θ Contact angle (π) or (°)

ϕα Deformation of phase α

ξ, ξr, ξ0 Surface induced short-range perturbation in eq(2.20) (nm) or (m), dielectric permeability of pure
water in eq(D.2) (F ·m−1); Relative permittivity of medium (with subscript r) and the permettivity
of free space (with subscript 0) (ξ0 = 8.854 × 10−12 C2 · J−1 · m−1)

A,Ac, Ai, Ak, A
v
α,X , A

d
α,X , Aφ, Ax Surface area of pore wall (no script); Surface area of ice crystals (with

subscript c) (m2 ·kg−1); Constants for Multi-Gauss fitting (with subscript i) in eqs(8.15) and (8.17);
An impurity constant (with subscript k) (m1/2); Volumetric (with subscript α,X and superscript
v) and deviatric (with subscript α,X and superscript d) localization coeffcicients for phase α in
composites X; Concentration based Debye-Hükel constant (with subscript φ) (mol1/2 · kg−1/2);
Molar fraction based Debye-Hükel constant (with subscript x) (-)



272 List of Symbols and Abbreviations

ai, aw, ac Activity of ions (with subscript i), water (with subscript w) and solid solvent (with subscript c)
(-)

B,Bi Parameter for short-rang ion-ion interaction in Pitzer’s model (no script), Adjustable constants for
short-range effects in ionic activity (with subscript i) (-)

C,CA, Cf , Ci, CH , CKC , CP,c, CP,l, CP,w, Cr, Cs, Cφ Parameters for long-rang interaction in Pitzer’s model
(no script); Constant for conductivity by Archie’s law (with subscript A); Heat capacity difference
between ice and water (with subscript f); Constants for long-range effects in ionic activity (with
subscript i) (-); Constant for permeability by Katz-Thompson (with subscript H) and by Kozeny-
Carman equation (with subscript KC); Mass heat capacity of ice crystals (with subscript P, c),
liquid phase (with subscript P, l) and water (with subscript P,w) (J · kg−1 · K−1); Constant for
permeability by Archie’s law based on critical pore size (with subscript r); Mass heat capacity of
solid matrix (with subscript s); Constant for permeability by Archie’s law based on porosity (with
subscript φ.

c, ci, cw, c
0
i Overall salt concentration (no script); Current concentration of species i (with subscript i) and

water (with subscript w); Initial concentration of species i (with subscript i and superscript 0)
(mol/M3)

d, di Pore diameter (no script); Characteristic pore diameter by multi-Gauss fitting (with subscript i)
(m) or (nm)

D,Di, D0, Ds,Di Diffusivity for general description (no script); Diffusivity of species i or compound i for
multi-scale modelling (with subscript i); Bulk diffusivity (with subscript 0) and diffusivity of solid
phase (with subscript s) (m2 · s−1), Conductivity (diffusivity) tensor of compound i (with subscript
i in bold form)

e, ec, el, es Charge of electron (−1.602 × 10−19C); Internal energy of ice crystals (with subscript c), liquid
solution (with subscript l) and solid skeleton (with subscript s) (J · kg−1)

E,Eg, Ee,E Average local internal energy (no script); Elastic modulus of glass (with subscript g), elastic
modulus of epoxy (with subscript e), in eq(3.2), (GPa) or (MPa), Electric field (in bold form)
(V · m−1) in section 4.2.2.2; Macro strain tensor (in bold form) in Appendix C

F Specific interfacial potential (J · m2) in eqs(2.35)→(2.39), Formation factor (-) in eqs(7.14) and
(7.18), otherwise the Faraday constant (C · mol−1)

f0, fθ, f
m
i , fv

i , fLD, fHD Adjustable constant for Multi-Gauss fitting (with subscript 0) in eqs(8.15) and
(8.17); Contact angle factor (with subscript θ) (-); mass (with subscript i and superscript m) and
volume (with subscript i and superscript v) fraction of compound i in Chapter 6 (-); Volume fraction
of low density (with subscript LD) and high density (with subscript HD) C-S-H (-)

g, gc, gi, gl, gs, gsk, g Shape function for calculating the ice.water saturation degree in eq(8.7);Gibbs free
energy density of ice crystals (with subscript c) (J · kg−1); Shear modulus of compounds i (with
subscript i) (GPa); Gibbs free energy density of liquid phase (with subscript l), Shear modulus of
solid phase (with subscript sk) (GPa); Tensor of potential field

G,Gi, Gm, Gsk, G
hom
X , GE ,G Shear modulus of porous materials for general description (no script); Shear

modulus of compound i (with subscript i); Gibbs free energy density of skeleton (with subscript
sk) (J · kg−1); Gibbs free energy density of solid matrix (with subscript m) (J · kg−1); Homogenized
drained (with subscript X and superscript hom) shear modulus of material X (GPa); Excess Gibbs
free energy when electrolytes mixed with water (with superscript E) (J·kg−1); Tensor of macroscopic
potential for flux

I, Ix, Ic, Ih, I, I Concentration based (no script) and molar fraction based (with subscript x) ionic strength
(mol1/2 · kg−1/2); Cubic ice (with subscript c); Hexagonal ice (with subscript h); Second order unit
tensor; Fourth order unit tensor

J, J0 Ice nucleation rate (no script) and the prefactor (with subscript 0) (s−1) or (m−3 · s−1)

K,Kw,Ki,Kl,Kc,Ks,K
hom
X ,Khom

u,X Bulk modulus of porous materials for general description (no script);
Bulk modulus of compound i (with subscript i); Bulk modulus of water (with subscript w), liquid
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solution (with subscript l) and ice crystals (with subscript c); Bulk modulus of solid matrix (with
subscript s);Bulk modulus of homogenized drained (with subscript X and superscript hom) and
undrained (with subscript u,X and superscript hom) bulk modulus of materials X (GPa)

kb, ks, ki, k
hom
X ,khom,k Boltzmann constant (with subscript b) (J · K−1); Bulk modulus of solid C-S-H

(with subscript s) and compound i (with subscript i), (GPa); Thermal parameter of homogenized
material X and the tensor form, (GPa · K−1)

l, ldΩ,h Distance to air void (no script); Characteristic length of a representative element volume (with
subscript dΩ), and characteristic length of heterogeneity of cement paste (m) or (µm)

Li, L
0
i , LLV DT,i, L̄ Current length of ith sample (with subscript i); Initial length of i sample (with subscript
i and superscript 0); Length change of ith LVDT (with subscript LV DT, i); Spacing factor (µm)
or (m)

M(C-S-H),M0,Md,Ms Total C-S-H mass; Mass of initial sample (g); Mass of dried sample (g); Mass of
vacuum-saturated sample (g)

m,mp,mA,mi,mT ,mα Constant for permeability (no script) and molality in eq(8.1), for relative conduc-
tivity with consideration of percolation (with subscript p) and based on Archie’s law (with subscript
A), molar concentration of species i (with subscript i) and total concentration (with subscript T )
(mol · kg−1); Mass of phase α (with subscript α) in partial frozen porous system (kg)

n, ni, nw,n Percolation exponent (no script) (-); Freezing events occur at temperature Ti with bin width
∆Ti (with subscript i); Molar numbers of water (with subscript w) (molar); Unit outward normal
tensor

Ni, NA Moles per unit area of a single species of monovalent nonvolatile impurities deposited in the film
(with subscript i) (mole · m−2); Avogadro constant (6.023 × 1023J−1 · m−1)

P0, Pcap, Pα, Pmax, P
∗
α Saturated gas pressure in Chapter 6 and section A.6, otherwise the atmospheric

pressure (Pa) or (MPa); Capillary pressure (with subscript cap); Pressure of phase α(with subscript
α); Effective pressure of phase α (with subscript α and superscript *); Maximum hydraulic pressure
by Power’s model (with subscript max) (Pa) or (MPa)

q, qi Excess net charge (no script), and charge per unit mass of species i (with subscript i) (C · kg−1) in
eqs(4.23) to (4.25)

Qhom
X ,Q Effective coefficient for thermal porosity deformation for material X (K−1); Tensor of macroscopic

flux

R The gas constant (8.31441J · K−1 · mol−1)

r, req, rk, rc, r0, Radius of capillary pores (no script), cylindrical ice (with subscript eq), cylindrical pore
calculated by Kelvin equation (with subscript k), critical pore (with subscript c), and air voids for
Powers’ hydraulic model (with subscript 0) (m) or (nm)

S, Sa, Sw, Sl, Sc, Scr,S Specific surface area of porous material (no script) (m2 · g); Average specific surface
area of sphere (m−1); Water saturation ratio (with subscript w), liquid saturation degree (with
subscript l), ice saturation degree (with subscript c) and critical saturation degree (with subscript
cr) (-); Tensor of surface flux

sl, sc, ssk Entropy density of liquid phase (with subscript l), ice crystals (with subscript c) and skeleton
(with subscript sk)(J · kg−1 · K−1)

T, T0,T Current Kelvin temperature (no script); Freezing/melting temperature for bulk phase at equilib-
rium (with subscript 0) (K); Tensor of surface traction

t, tg, te Time for cement hydration (no script) (day); Thickness of adsorbed gas for interpretation of nitrogen
adsorption/desorption (no script) (nm); Thickness of glass (with subscript g), thickness of epoxy
(with subscript e), in eq(3.2), (m)

U Interfacial energy
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V, Vc, Vcp, Vcr, Vgel, VHD, VLD, Vm, Vmono, Vp,i, Vr,i, Vt, Vw Current pore volume (no script); Ice volume (with
subscript c); Capillary volume fraction (with subscript cp); Volume fraction by chemical reaction
(with subscript cr); Volume fraction of C-S-H gel (with subscript gel), low density (with sub-
script HD) and high density C-S-H (with subscript LD); Volume of the completion monomolecular
adsorption (with subscript m); Volume of gas adsorbed when the entire surface is covered by a
monolayer (with subscript mono) (m2 ·g−1); Volume fraction of hydration products (with subscript
p, i) and the reactants (with subscript r, i); Total pore volume (with subscript t); Initial water
volumetric fraction (with subscript w)

vg, ve Poisson ratio of glass (with subscript g), Poisson ratio of epoxy (with subscript e), in eq(3.2), (-)

zi Valence of species i (-)

A3S Tricalcium Aluminate

AEA Air entrainment agent

AFM Atomic force microscopy

B-D Brailsford-Major estimation

BJH Barrett-Joyor-Halenda

CSH2 Gypsum

C2S Dicalcium Silicate

C3S Tricalcium Silicate

C3AFH6 Hydrogarnel

C4AF Tetracalcium Aluminoferrite

C4AH13 or AFm Calcium Aluminate Hydrate

C4ASH12 Monosulfate

C6AS3H32 or AFt Calcium Aluminum Sulfate Hydrate)

C-S-H Calcium-Silicate-Hydrate

CH Portlandite

CMA Calcium Magnesium Acetate

CPG Controlled pore glass

CPSD Cumulative pore size distribution

DLVO Derjaguin-Landau-Verwey-Overbeek

DPSD Differenctial pore size distribution

DTG Differential thermalgravimetry

EMT Effective medium theory

ESEM Environment Scanning Electric Microscopy

H H2O

HD High density

HS Hashin-Stricktman

ITZ Interfacial transition zone

LD Low density

MCM Mobile crystalline material

MIP Mercury intrusion porosimetry
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NAD Nitrogen adsorption/desorption

OPC Ordinary Portland cement

PSD Pore size distribution

RVE Representative volume element

SBA Santa Barbara Amorphous type material

SCE Self-consistant scheme

SEM Scanning Electric Microscopy

TEC Thermal expansion coefficient

TG Thermogravimetry

TGA Thermogravimetric analysis

w/c Water to cement ratio

Wn Non-evaporable water
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