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Abstract

This dissertation is a collection of our approaches to solve the problem of
mobile terminal (MT) location estimation. Main focus is on fingerprinting
based localization methods which are suitable for multipath and NLoS en-
vironments. This feature is one of the many advantages of fingerprinting
methods over “traditional” geometrical localization methods, i.e., they ex-
ploit multipath and NLoS conditions instead of trying to mitigate them.
Hence a curse for “traditional” geometrical localization methods turns into
a blessing for fingerprinting methods. This characteristic property of fin-
gerprinting algorithms makes them a promising solution for MT localization
problem. Being inspired from this, we steered our research direction towards
this field and we can categorize our studies into the following main groups:

• development of new, high precision fingerprinting-based localization
algorithms which get use of an additional dimension (Doppler dimen-
sion),

• derivations of Cramér-Rao bounds (CRBs) to obtain performance lim-
its for fingerprinting based localization systems, for the estimation of
location-dependent parameters (LDPs), as well as the position of the
MT,

• investigation of identifiability concerns of the MT position under dif-
ferent circumstances and path amplitude modeling,

• pairwise error probability (PEP) analysis for power delay profile fin-
gerprinting (PDP-F) methods for different cost functions and path
amplitude modeling,

• MT tracking based on adaptive Kalman filtering (KF).

This thesis consists of 7 chapters, including introduction and conclusion.
We pay special attention to have a meaningful ordering of the chapters.
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ii Abstract

Chapter 1 is the introduction where we present the state of the art local-
ization systems and then introduce the basics of fingerprinting based local-
ization systems. This chapter serves two purposes: informing readers about
fundamentals of localization systems who might be unfamiliar to the sub-
ject, and presenting some material which we will get use of throughout the
text.

In chapter 2, two new fingerprinting algorithms are introduced, both
exploiting the mobility of the MT to increase localization accuracy. Com-
prehensive derivations and explanations are provided to have an easy to
understand context.

Chapter 3 can be considered as the core of our studies. CRBs for the
estimation of LDPs and the MT position are derived under various different
conditions, path amplitude modelings for PDP-F. Impact of the network
geometry on the estimation of MT position is clearly stated. Additionally,
local identifiability issues of the MT position are extensively investigated.

Chapter 4 is an extension of our work in chapter 3 to power delay Doppler
profile-fingerprinting (PDDP-F) method. Improvements arising with the
integration of Doppler shifts of the paths are stated in terms of CRBs.

In chapter 5, we deal with a new problem in the field of localization. PEP
analysis is a well-known concept in digital communication, e.g., calculating
the probability of error when a vector of symbols sm is transmitted but
another vector of symbols sn is detected at the receiver. The same concept
is imported in the field of localization for PDP-F methods utilizing various
cost functions.

Chapter 6 deals with MT tracking based on adaptive KF. It is in the con-
text of a project we were involved. Different mobility models are presented
and applied to the measurement data. Their performances are compared in
terms of the position prediction error.

In the final chapter, there is a brief summary of our conclusions we
have obtained during all localization research we have conducted. We try
to justify our results. Furthermore, we make a list of ideas about future
research subjects and the extension of our work.
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Here, we list the main acronyms used in this document.
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Notation

Throughout this document, upper case and lower case boldface symbols will
represent matrices and column vectors respectively.

tr {·} Trace of the matrix in brackets.
det{·} Determinant of the matrix in brackets.
|a| Absolute value of a.
‖a‖ Euclidean norm of vector a.
‖A‖F Frobenius norm of matrix A.
(̂·) An estimate of the quantity in parentheses.
(̃·) The error in the estimate of the quantity in parentheses.
A∗ The complex conjugate of matrix A.
AH The complex conjugate transpose (Hermitian) of matrix A.
AT The transpose of matrix A.
A−1 The inverse of matrix A.
A ≥ B means that A−B is non-negative definite.
f(·) pdf of the continuous random variable in parenthesis.
Pr(·) Probability of the event in parenthesis.
E{·} Expected value of the random variable in brackets.
CN (m,C) Circularly symmetric complex Gaussian random vector of

mean m and covariance matrix C.
U Uniform distribution
max,min Maximum and minimum.
∼ Distributed according to.
⊙ Hadamard Product.
⊗ Kronecker Product.
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Chapter 1

Introduction

For the past few years, there has been a high interest in mobile position-
ing systems from both academic and industrial world [1, 2]. The primary
motivation for the development of mobile positioning systems was due to
the mandatory requirement of E-911 service by the U.S. Federal Commu-
nications Commission (FCC) [3, 4]. Although the starting was because of
security-emergency need, later it has found various applications in many
fields. Position information of the mobile is indeed very useful and can be
evaluated in many ways. For example, with the position information of the
MT, it is possible to make beamforming in the direction of the mobile to de-
crease the interference between the users in the cell, increase the range and
throughput of the system and so on. Also intra and inter-system handoffs
can be handled more properly. Therefore it is not surprising that the prob-
lem of MT localization attracts so much interest from researchers. Research
in the field of localization in a more general sense can be categorized under
the “parameter estimation” topic which is widely popular for a considerably
long time.

Due to the difficulty of the localization problem under realistic propa-
gation conditions, researchers first try to estimate meaningful parameters
that can in turn be used for the localization process. Those parameters are
known as location-dependent parameters (LDPs). As the name suggests,
these LDPs can be expressed as a function of the MT position via the ex-
ploitation of geometrical relations. Hence localization of the MT can be

1
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carried out afterwards by solving a system of equations. The most com-
monly used LDPs are the angle of arrival (AoA), time of arrival (ToA), time
difference of arrival (TDoA), and the received signal strength (RSS) [5]. Hy-
brid localization methods use a combination of two or more of these LDPs
to increase the accuracy further.

“Traditional” geometrical localization methods are by far the most well-
known methods in the field of localization. These methods have a two step
localization process. In the 1st step, LDPs are estimated in an adequate
number of base stations (BSs). Afterwards, by using these LDPs, location
of the MT is estimated by using geometric relations. However the biggest
drawback of these methods is that they require line-of-sight (LoS) signals
with the BSs. Moreover localization of the MT is not possible with only one
BS if only one type of LDP is used. Although they are easy to use, these
factors limit their applicability. We will briefly introduce them soon in the
text.

Due to the many drawbacks of the “traditional” geometrical localiza-
tion methods, research was steered towards another direction. As a re-
sult, fingerprinting-based localization methods have arisen which are also
the main subject of our research. The main advantage of fingerprinting
methods is that localization is possible even with only one BS. Moreover
they do not suffer from non line-of-sight (NLoS) conditions, instead they
exploit it. This was our main motivation to conduct research in this field.
Implementation of fingerprinting-based localization methods is completely
different than the geometrical methods. As the name suggests, they are
based on matching “fingerprints” obtained from the BS-MT link with the
entries of an already existing database consisting of “fingerprints” of discrete
points over the area of interest. These “fingerprints” are basically LDPs or
functions of LDPs. Wide applicability of fingerprinting methods in any envi-
ronment (indoor and outdoor localization, dense urban environments, NLoS
conditions) make them a good solution for the problem of MT localization.
As they form the core of our research, we will elaborate them in detail later.

1.1 Fundamentals of Geometrical Localization Meth-
ods

This section is devoted to introducing the basics of traditional geometrical
methods. For interested readers, [6] is a very good reference for this section.
As we expressed before, localization process is performed in two steps for
these methods. In the 1st step, LDPs are estimated by using sufficient num-



1.1 Fundamentals of Geometrical Localization Methods 3

ber of BSs. Number of BSs required depends on the type of LDPs utilized
in the system. Identifiability of the MT location is the highest priority (de-
pends also on the dimension of localization, e.g. 2D or 3D). Another factor
(or demand) is the high localization accuracy. In order to satisfy these two
constraints, number of BSs required might be high depending on the LDPs
used. In the 2nd step, a system of equations are solved with these estimated
LDPs to estimate the location of the MT with respect to the coordinates of
the BSs. We will now present a very brief summary of the most well-known
ones of these methods.

1.1.1 Angle of Arrival Methods

The easiest AoA estimation is accomplished via the calculation of phase
difference of the waves on different antenna elements that they impinge on.
Hence, multiple antennas are required for this purpose at the receiver. Also
the antenna array response must be known (antenna array response is also
a function of the spacing between the antenna elements). In figure 1.1, we
provide a simple sketch of the problem.

Figure 1.1: AoA-based localization with two BSs (triangulation).

It is clearly seen that at least two BSs are required to uniquely determine
the MT location in 2D. With the estimated AoAs, location of the MT is
calculated in terms of the coordinates of the BSs and AoAs via simple system
of equations via the well-known technique called triangulation. To increase
the localization accuracy, more BSs might be utilized and in that case MT
location can be computed via least squares (LS) technique. Even though
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it looks like a very elegant localization method, it has some drawbacks.
Intuitively, by just looking at figure 1.1, we can understand the reason.
Localization is accomplished via the estimated AoAs. Therefore small errors
in the AoA estimates might lead to a high position estimation error when
the MT is far from the BSs. Position estimation error increases when the
MT moves further from the BSs.

1.1.2 Time of Arrival Methods

Estimating the arrival times of the LoS paths in each BS-MT link and then
converting these ToA estimates to distance estimates via the speed of prop-
agation is the basic principle of ToA-based localization methods. In general,
ToA estimation is performed by means of correlation techniques or matched
filtering [7]. After obtaining the ToA estimates, and hence the distance
estimates, localization of the MT can be done via a well-known technique
known as trilateration as shown in figure 1.2.

Figure 1.2: ToA-based localization with three BSs (trilateration).

For 2D localization, MT location estimate is obtained by the intersection of
circles (for 3D, it will be an intersection of spheres) and at least three BSs
are required for a unique position estimation. Major drawback of ToA-based
localization systems is that they require strict time synchronization among
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all BSs and the MT. Otherwise unknown delay offsets (DOs), unsynchro-
nized BSs might seriously degrade the localization accuracy. Localization
performance of ToA-based techniques in the perfectly synchronized case can
be found in [8]. What we mean by localization performance is the Cramér-
Rao bound (CRB) for the estimation of MT location. We will introduce
CRBs soon in the local identifiability section.

1.1.3 Time Difference of Arrival Methods

Due to the strict synchronization requirement of ToA methods, a more flex-
ible method in terms of synchronization was developed. For TDoA-based
localization methods, synchronization among BSs is enough [9]. This is be-
cause in this technique, the difference between the ToA of the signal at two
different BSs is utilized instead of the absolute arrival times. Below, we
provide a simple sketch of the problem.

Figure 1.3: TDoA-based localization with three BSs.

For three BSs case, there are two TDoA estimates at hand, and each TDoA
estimate defines a hyperbola passing through the MT with foci at the BSs.
Estimate of the MT position is obtained by their intersection as seen in
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figure 1.3. However it is not as easy as ToA-based localization since now
non-linear equations need to be solved [10]. A unique position estimate can
be obtained under geometric regularity conditions with at least three BSs
for 2D localization.

TDoA estimates might be obtained either from ToA estimates, or from
cross-correlations of the received signals at the two BSs and by calculating
the delay corresponding to the highest cross-correlation output.

Note that relaxation of the synchronization requirement comes with a
cost in terms of performance degradation with respect to the ToA-based
localization techniques for the same number of BSs. This is reasonable
because available data is decreased by one for TDoA (2 TDoA estimates
can be obtained from 3 ToA estimates). A comprehensive study about the
performance comparisons of ToA and TDoA-based localization systems can
be found in [11].

1.1.4 Received Signal Strength Methods

RSS-based localization methods were first introduced by [12]. The most
attractive feature of RSS-based methods is the availability of RSS measure-
ments in almost all systems as it is easy to obtain. However RSS-based
localization methods have low accuracy. The accuracy of distance estimates
obtained from RSS data deteriorates as the distance between MT and BS
increases [13]. Therefore it is not favorable to use RSS data standalone to
perform localization. However, as we just mentioned, RSS data is widely
available. Therefore it is better to take advantage of it by so-called hybrid
data fusion techniques. As the name indicates, these techniques utilize dif-
ferent kinds of LDPs, fuse them to obtain a higher localization accuracy. For
example in the same system configuration, fusing RSS and ToA data gives
better results than the systems using only ToA or RSS data standalone [14].

1.1.5 Hybrid Methods

We just talked about hybrid methods. In hybrid schemes, a combination
of LDPs are estimated, and localization is performed by using them all
together. There are various hybrid schemes, such as ToA/RSS, ToA/AoA,
etc. For example the hybrid ToA/AoA system can estimate the position of
the MT uniquely (in 2D) using only one BS as seen in figure 1.5 [15].

Besides increasing the localization accuracy, hybrid schemes also improve
the identifiability of the MT position as we have just seen in the ToA/AoA
system where localization is possible with only one BS. Therefore they have
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Figure 1.4: Hybrid AoA/ToA-based localization with one BS.

multiple advantages over single-LDP geometrical techniques.

1.2 Fingerprinting Methods

As mentioned before, traditional geometrical techniques perform poorly in
challenging environments, such as in dense urban and indoor environments.
Moreover they are designed to work in LoS conditions, and LoS condition
between all BS-MT links might not be satisfied simultaneously. For exam-
ple, for a ToA-based localization system in 2D, at least three BSs must be
present, and they must all have LoS condition with the MT as we have seen
before. Due to this reason, some approaches were proposed to guarantee the
algorithm to work properly also in NLoS conditions. Nájar et al. [16] pro-
posed a novel idea. During LoS condition, by estimating the ToA of the LoS
and a NLoS path, the time offset (bias) between the two ToAs is calculated.
When LoS condition is no longer present, the bias is then subtracted from
the ToA of the NLoS path to estimate ToA of the LoS path. In general by
adding a Kalman filtering stage, the accuracy of position estimate can be
improved. The use of Kalman filter (KF) allows the tracking of the position
trajectory, the velocity of the mobile and ToA bias caused by multipaths.
In figure 1.5, we illustrate a typical multipath environment.

As can be deduced from the examples, these geometric localization tech-
niques work robust in LoS conditions and try to minimize the effects of the
NLoS conditions. However its effect cannot be eliminated completely, lead-
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Figure 1.5: A multipath environment.

ing to some irreducible errors in the position estimates for the techniques
relying on LoS paths. Therefore new techniques have been developed which
try not to eliminate NLoS effects, but instead get advantage of it. Hence
fingerprinting techniques were born. The main idea is to store the LDPs or
some functions of LDPs, such as channel impulse responses (CIRs) or power
delay profiles (PDPs) of the discrete locations in the coverage area of the
BS in a database [17–20]. Compared to the distance or angle-related pa-
rameters in the “traditional” geometric approaches, PDPs or CIRs can give
considerably more information about the MT position. Moreover, simple
fingerprinting approaches also exist which store easy to obtain LDPs, such
as RSS information in the database and they can also achieve good local-
ization accuracies [21]. Position estimation of the MT is carried out via a
correlation or likelihood kind of operation which compares the measured pa-
rameter with the entries stored in the database. We will now summarize the
basic concepts of general fingerprinting-based localization methods in detail
in two steps. First step is creating and maintaining the database. This is
the off-line part. Second step is matching the received signal fingerprint to
an entry in the database which is performed on-line.

• Creating and maintaining the database:

– Choose suitable fingerprints which must be unique for every dis-
crete location in the database. There is a trade-off here between



1.2 Fingerprinting Methods 9

complexity and performance. Selecting a lot of very complicated,
detailed fingerprints will end up in a database which will be diffi-
cult to maintain. Localization accuracy might be better, but on
the other hand matching operation will also last long in such a
case. Hence choosing fingerprints with as few parameters as pos-
sible and at the same time achieving a good localization accuracy
is the target of many researchers.

– Run (ray tracing or ray launching) simulations or perform mea-
surement campaigns over the area of interest to obtain the unique
fingerprints corresponding to a specific position. Then these fin-
gerprints should be stored in a large database. Every time a
localization task is carried out, this database will be used as a
reference.

– Update the database periodically or when it is necessary. The
propagation environment might not stay the same all the time,
especially in dense urban areas. There can be new constructions
in the field and many other similar factors which can significantly
change the environment. Hence, it is necessary to have an up-to-
date database.

• Matching operation:

– Evaluate the signature of the signal received at the BS and extract
the fingerprint out of it.

– Compare the fingerprint with the ones in the database to find
the best match. The matching operation is usually based on
maximizing correlation or likelihood between them. The location
resulting in the best match is considered as the location estimate.

Fingerprinting techniques are classified among direct location estimation
(DLE) techniques, i.e., position estimation is performed in one step. If we
remember the“traditional”geometrical techniques, they perform localization
in two steps.

Location fingerprinting (LF) technique (introduced by U.S. Wireless
Corp. of San Ramon, Calif.) relies on signal structure characteristics
[1, 22–24]. By using multipath propagation pattern, LF creates a signa-
ture unique to a given location. For LF, it is enough to have only one
BS-MT link (multiple BSs are not required) to determine the location of
the mobile. Ahonen and Eskelinen suggest using the measured PDPs in the
database for fingerprints, because amplitudes and delays of the multipath
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components (MPCs) can create a unique position dependent signature [25].
In [26], authors provide deterministic and Bayesian methods for power delay
profile fingerprinting (PDP-F) based localization. This work was important
for us, since we were inspired from it while developing new fingerprinting
algorithms.

For ultra-wideband (UWB) systems employing ToA algorithms, local-
ization accuracy is quite good due to the very high bandwidth utilized in
the system [27, 28]. Number of resolvable paths of the multipath channel
defined in [29] is quite large in these systems. On the other hand its range
is quite limited. Therefore it is mainly used in indoor localization applica-
tions. Outdoor localization which is also the scope of our studies, suffers
from considerably lower bandwidth used in the system which degrades the
resolvability of the MPCs. Therefore, we develop new fingerprinting algo-
rithms exploiting new dimensions which increase the resolvability of paths.
They will be introduced in chapter 2.

1.3 Identifiability Issues and Performance Bounds

In this section, we will talk about the identifiability of the MT position, i.e.,
the ability to estimate it. Identifiability analysis can be divided into two,
namely local identifiability and global identifiability analysis. Global iden-
tifiability concept is easy to understand. For example, for 2D localization
for a ToA-based localization system, three BSs are enough to have a unique
position estimate as we have already seen in figure 1.2. However local identi-
fiability of MT position is a bit more tricky. Local identifiability is a similar
issue in the sense that the position of the mobile must be uniquely identified
around a local neighborhood of the MT. Hence if only signals from two BSs
are available (still for the 2D ToA system), the intersection of two circles
will result in two possible candidates for the MT position. In this case it is
clear that there is no global identifiability. However local identifiability is
present. For a TDoA system in 2D, local identifiability cannot be obtained
with two BSs as can be inferred from figure 1.3. This is due to the lack of
synchronization. When we examine the DO issue for fingerprinting-based
localization systems in the upcoming chapters, it will be more clear after
analytical derivations. To summarize, no global identifiability in the pres-
ence of local identifiability means that there are discrete (not continuous)
ambiguities left. For example, with one BS, there is neither local identifia-
bility nor global identifiability for ToA systems. As it is obvious, if there is
no local identifiability, it also implies that global identifiability is also not
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present. No local identifiability means that there are continuous ambiguities
left. This concept is important for us as we will extensively investigate the
local identifiability conditions of MT position for various cases later. The
reason that we explore identifiability analysis with performance bounds is
that they are related to each other via Fisher Information Matrix (FIM).

CRB sets the limit on the covariance matrix of unbiased estimators.
For an unbiased estimator r̂ of r, the correlation matrix of the parameter
estimation error r̃ is bounded below by the inverse of the Fisher Information
Matrix (FIM) Jr as shown below:

Rr̃r̃ = E{(r̂− r)(r̂− r)T } ≥ Jr
−1 (1.1)

where the FIM is given by:

Jr = E

{(∂LL
∂r

)(
∂LL
∂r

)T }
(1.2)

where LL is the log-likelihood of the measurement data which depends on
the parameter vector r given by:

LL = ln p ( z| r ), (1.3)

p ( z| r ) being the p.d.f of the measurement data z conditioned upon the
parameter vector r. We will now introduce an important theorem about
local identifiability of the unknown parameter vector r:

Theorem 1. Let r0 be a regular point of Jr(r). Then r0 is locally identifiable
if and only if Jr(r

0) is non-singular [30],

and a point r0 is said to be a regular point of the matrix Jr if there exists an
open neighborhood of r0 in which Jr has constant rank. This theorem tells
us that unknown parameters become identifiable when the FIM evaluated
at the true values is nonsingular. This theorem will be used quite frequently
in the further chapters.
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Chapter 2

Power Delay Doppler Profile
Fingerprinting

2.1 Introduction

In this chapter, we are going to introduce two new fingerprinting algo-
rithms, namely frequency-domain PDDP-F and time-domain PDDP-F. By
default, all fingerprinting-based localization systems need databases. As we
expressed in chapter 1, they can be constructed off-line either by ray trac-
ing or by ray launching simulation methods over the geographical area of
interest [31, 32]. The area is divided into several discrete sections, each sec-
tion having a unique fingerprint. We will begin with the frequency-domain
PDDP-F algorithm and after that we will introduce the time-domain PDDP-
F algorithm.

2.2 Frequency-Domain PDDP-F

We will start with the frequency-domain PDDP-F algorithm. There are
two main steps that we are going to mention soon to understand and apply
the frequency-domain PDDP-F. First one is constructing the PDDP from
the ray tracing data, and the other one is constructing PDDP from the
measurement data.

13
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2.2.1 Obtaining PDDP from Ray Tracing Data

Here in this section, we will first introduce a formulation of PDDP for a
general MIMO channel, then simplify the case for the SISO case which we
are interested in this chapter. Finally we will explain step by step how to
apply the formulation to a given ray tracing data.

Figure 2.1: MIMO multipath propagation parameters
Consider a specular wireless MIMO channel model with multiple (Nt)

transmit and (Nr) receive antennas. The time-varying channel impulse re-
sponse is:

h(τ, t) =

Np∑

i=1

Ai(t) e
j2π fi t aR(φi)a

T
T (θi) p(τ − τi) (2.1)

where h is rank 1 in 3 dimensions. The Np pathwise contributions are
characterized by these additional parameters:

• p(t): convolution of the transmit and receive filters (pulse shape)

• fi: Doppler shift



2.2 Frequency-Domain PDDP-F 15

• τi(t): delay

• Ai(t): complex attenuation coefficient (amplitude and phase of the
ray)

• θi: angle of departure (AoD)

• φi: angle of arrival (AoA)

• aR(.), aT (.): (Rx/Tx side) antenna array response (if only a single
antenna is present on one side or the other, then the corresponding
a(.) = 1)

We shall assume here 2D propagation, an extension to 3D is immediate.
Note: in case the Tx & Rx array responses are unknown, one should instead
consider a parameterization of the following form:

h(τ, t) =

Np∑

i=1

Ai(t) e
j2π fi t aR,i a

T
T,i p(τ − τi) (2.2)

with aR,i, aT,i unknown vectors. Note that also the pulse shape may need
to be adjusted to measurements.

The channel impulse response in (2.1) results in fact from the propaga-
tion channel

c(τ, t, φ, θ, v, φv) =∑Np

i=1Ai(t) e
j2π fi t δ(φ− φi) δ(θ − θi) δ(τ − τi)

(2.3)

where we shall assume the channel evolution over a short time period t so
that the AoA φ, the AoD θ, the path delay τi and even the complex path
amplitude Ai can be considered as constant.

Any Doppler shift in the propagation channel is actually assumed to be
due to the mobility of the mobile terminal (any mobility in the environment
would have to be captured by Ai(t)). Assume the terminal speed vector
to have a magnitude µ and an orientation φµ (if φi = φµ, then incoming
wave and speed vector are aligned, but are evolving in opposite directions).
Mobility of the terminal leads to a Doppler shift for path i as follows:

fi = cos(φi − φµ)µ /λ (2.4)

where λ is the carrier wavelength. The channel impulse response in (2.1) is
the convolution of the propagation channel with the system elements:

h(τ, t) = c(τ, t, φ, θ, v, φv) ∗ p(τ) ∗ aR(φ) ∗ aTT (θ) . (2.5)
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Consider now sampling the impulse response with a sampling period τs
leading to Nτ samples and then vectorizing it:

h(t)︸︷︷︸
N×1

=




h(τs, t)
h(2τs, t)

...
h(Nττs, t)


 =

Np∑

i=1

Ai(t) e
j2π fi t hi (2.6)

where h(τs, t) is the vectorized version of the Nr x Nt channel for the first
delay element at time t and

hi = p(τi)⊗ aT (θi)⊗ aR(φi) , p(τ) =




p(τs − τ)
p(2τs − τ)

...
p(Nττs − τ)


 (2.7)

where N = NtNrNτ = # TX antennas x # RX antennas x delay spread,
and ⊗ denotes the Kronecker product: for two matrices A and B, we get
the block matrix A⊗B = [aijB].

In case of a SISO channel, the sampled CIR is simply:

h(t) =
[
pτ1 · · ·pτNp

]

︸ ︷︷ ︸
Pτ




A1(t) e
j2π f1 t

...

ANp(t) e
j2π fNp t




︸ ︷︷ ︸
b(t)

, (2.8)

where pτi is the complex pulse delayed by τi samples. Two possible models
can now be considered for the path amplitudes:

• Gaussian model: Ai(t) Gaussian, characterized by a power (variance)

• deterministic model: Ai(t) deterministic unknowns

We shall consider here the Gaussian case (other random models could be
considered also, at least for the introduction of the profiles). We are now
ready to introduce the Power Delay Doppler Space Profile (PDDSP). At the
propagation level we get

PDDSPc(τ, f, φ, θ, v, φv)
=
∫
E c(τ, t1 + t, ...)c∗(τ, t1, ...) e−j2πftdt

=
∑Np

i=1 σ
2
i δ(τ − τi) δ(f − fi) δ(φ− φi) δ(θ − θi) .

(2.9)
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where σ2i = E|Ai|2, and the expectation is at least over the (independent
and uniformly distributed) random phases in the Ai, and possibly over the
amplitudes also if they are not deterministic. At the channel response level,
we get

PDDSPh(τ, f)

=
∫
Eh(τ, t1 + t)hH(τ, t1) e

−j2πftdt

=
∑Np

i=1 σ
2
i |p(τ − τi)|2 δ(f − fi)aia

H
i

=
∑Np

i=1 σ
2
i |p(τ − τi)|2 δ(f − fi)RT (θi)⊗RR(φi)

(2.10)

where ai = aT (θi)⊗ aR(φi) and we introduced the spatial covariances

RT (θi) = aT (θi)a
H
T (θi) , RR(φi) = aR(φi)a

H
R (φi) . (2.11)

In the case of a SISO channel, we get the Power Delay Doppler Profile
(PDDP)

PDDPh(τ, f) =

Np∑

i=1

σ2i |p(τ − τi)|2 δ(f − fi) . (2.12)

Now the formulation is complete and we explain how to apply the above for-
mulation to the ray tracing data. The construction of the PDDP is explained
step-by-step below:

1. First we create the 2D delay-Doppler profile by only taking the rays
into account (pulse shape and windowing effects not included yet).
Delay, Doppler and power information of each ray is known. One
thing to keep in mind is that delay and Doppler domains should be
discretized properly according to the parameters in the measurement
data.

The discretization in delay domain which we call ∆τ is fixed, and
equal to the sampling duration τs like in the measurement data defined
before. For the Doppler domain discretization, channel estimations are
carried out every ts seconds for the measurement data, so the highest
Doppler frequency + frequency offset (FO) that can be observed is in
the range [−fs/2, fs/2] where fs = 1/ts. The FFT length we use in the
measurement data is denoted by NFFT , so the Doppler discretization
in the measurement data is given by fs/NFFT . Therefore we use the
same for the ray tracing data which we call ∆Ω.

The FO, that we mentioned above is due to the difference between
the carrier frequencies of the local oscillators of the transmitter and
receiver. Normally in a uniform scattering environment, the mean
Doppler spread Ω̄ given by:
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Ω̄ =

∫
ΨΩ D(Ω) dΩ∫
ΨD(Ω) dΩ

(2.13)

would be close to 0, where D(Ω) is the Doppler spectrum and Ψ de-
notes the range of possible Doppler shifts. So if there is FO, there
will be a nonzero mean Doppler spread Ω̄. Unless the FO is too high,
leading to aliasing, it is not a problem for our algorithm, also the DO
is not a problem either as we will see soon.

2. Next step is summing up the power of the rays which are in the same
grid. Here we directly sum up their individual powers, as we compute
the expected average power by the following formula in the grid (we
are averaging over the random phases assuming uniform distribution
over [0, 2π]):

Eϕg,1...ϕg,r |(Ag,1e
jϕg,1 + · · ·+Ag,re

jϕg,r)|2 =
r∑

i=1

A2
g,i (2.14)

where r is the number of rays in the grid, Ag,i is the magnitude of the
ith ray in the grid. It is also easy to see that mean of the rays is equal
to 0, where we will use this fact in the time-domain PDDP-F section.

3. Last step is to include the effects of pulse shape in the delay domain,
and the windowing in the Doppler domain. This is an easy process. It
is enough to make linear convolution in the delay domain of the PDDP
matrix with the absolute squared pulse shape.

And the other operation as we mentioned before is for windowing
effect in the measurement data. We have M channel estimates per
point. And we choose a certain number of consecutive channel esti-
mates (NWindow) among them for computing Fourier Transforms. This
process is called windowing, and should be included in the ray tracing
PDDP.

Also it is important to choose a suitable window and a window length
NWindow. Although Rectangular window has the narrowest main lobe
for a given NWindow, its side lobes are not negligible leading to spectral
leakage [33]. Therefore we decided to choose the Hamming window
whose side lobes decay much faster than the Rectangular window.
Hamming window is given as:
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w[k] = 0.54− 0.46 cos

(
2πk

NWindow − 1

)
, 0 ≤ k ≤ NWindow − 1.

To include the effect of windowing, it is enough to make cyclic convo-
lution in the Doppler domain of the PDDP matrix with the absolute
squared DFT of the window.

It will be more instructive to summarize the whole process with illustrative
figures. With the AoA, delay and power information of the rays, we can
construct the Power Delay Angle of Arrival Profile (PDAoAP) as shown in
figure 2.2. Then the next step is to form the PDDP with the help of the
speed vector. With the fusion of information from the AoA of the rays and
the information from the speed vector (speed magnitude and direction of
motion), Doppler shift of each ray can be computed. Hence PDDP can be
constructed as in figure 2.3. The last thing to do is to include the pulse
shape and windowing effects. After all, we end up with the final PDDP as
shown in figure 2.4.

2.2.2 Obtaining PDDP from Measurement Data and The
Fingerprinting Operation

Obtaining the PDDP from the measurement data is easier. NWindow con-
secutive channel estimates are chosen with the Hamming window explained
before. Each channel estimate is a vector of length Nτ . For each delay el-
ement among Nτ , absolute squared DFT is computed with respect to the
time variable to see its variation in time (Doppler information). Conse-
quently this gives the 2D delay-Doppler profile of the measurement data.
One thing to pay attention is that all hardware related effects must be re-
moved from the channel estimates e.g. automatic gain control (AGC) and
others to make a true comparison.

After computing ray tracing and measurement data PDDPs, next step is
to check the similarity between these matrix profiles. There are consecutive
channel measurements, obtained in the BS, and the objective is to see which
ray tracing data in the database will give the highest match to this measure-
ment. The cost function is defined as the similarity between the matrices.
Among the K element database, the one corresponding to the position of
the k̂th ray tracing data will be chosen:

k̂ = arg max
k∈[1,K]

J(PDDPM , PDDPRTk
) (2.15)
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Figure 2.2: Power Delay Angle of Arrival Profile

where J is the likelihood (cost) function, PDDPM is the PDDP obtained
from the measurement data and PDDPRTk

is the PDDP from the kth entry
in the ray tracing database. For the likelihood function J, one reasonable
candidate is to use the inner product criteria defined for matrices normalized
by their norms as below:

J(A,B) =
tr (ATB)√

tr (ATA) tr (BTB)
=

tr (ATB)

‖A‖F ‖B‖F
. (2.16)

where ‖A‖F is the Frobenius norm of A. But one thing to note is that,
before using the above formula, the ray tracing and measurement PDDPs
must be perfectly aligned in the delay and Doppler dimensions. Any DO or
FO must be handled very precisely. Therefore it is reasonable to choose a
computationally effective solution. 2D FFT operation to check the highest
correlation between the two matrices normalized by their norms is a very
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Figure 2.3: Power Delay Doppler Profile

fast operation given by:

IFFT (FFT (A)⊙ conj(FFT (B)))

‖A‖F ‖B‖F
(2.17)

where ⊙ is the Hadamard (element-wise) multiplication and conj denotes
conjugate. The maximum entry in the resulting matrix is the highest corre-
lation between the two in the perfectly aligned case. Also the position of the
maximum entry gives the DO and FO if there is any. Moreover to ensure
linear correlation in this operation, proper amount of zero-padding must be
introduced in both dimensions.

2.2.3 Simulation Results

Figure 2.5 is the simulation result for the comparison of deterministic PDP-F
and frequency-domain PDDP-F over a range of SNR values. In our simu-
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Figure 2.4: Power Delay Doppler Profile with pulse shape and windowing
effects included

lation environment, we have created 15 ray tracing points (K = 15), and
then generated a measurement data from the first ray tracing point by in-
troducing noise. The objective is to see in how many cases the algorithm
will match with the first point. The path loss exponent is taken as two,
and we generate more than 1000 rays in every iteration to imitate a real RT
database as much as possible. There is no spatial relation between these 15
points, we just generate random channel parameters for each of them. For
the system parameters, we have a sampling frequency of 9.1429 MHz and a
wavelength of 0.4249 m. For the PDDP-F, the size of the 2D FFT is 1024 x
512 when we are computing the correlation. To compute the spectrum, we
use an FFT length of 512. The channel estimates are obtained every 4 ms,
window length is 200, speed magnitude is chosen randomly between 1-60
km/h and direction angle between 0-359 degrees. For the pulse shape, root-
raised-cosine filters are used in the transmitter and in the receiver resulting
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in a raised cosine pulse in total with a roll-off factor β of 0.8. Moreover
PDDP-F simulations are done in two different ways. In the first case, we
assume that speed vector of the mobile is known beforehand and in the sec-
ond case, we try to estimate the speed vector (its magnitude and direction).
As can be expected, the performance of the algorithm when we know the
speed vector beforehand is much better than the case when we estimate the
speed vector. Estimation of the speed vector is carried out by an exhaus-
tive search method. We know that Doppler spectrum is a function of the
speed vector. The speed vector leading to the highest correlation between
the RT and measurement spectrums is our estimation. However as we see
from the plot, its performance is not that good. The reason might be due
to the non-parametric spectrum computation. However as we see in the
plot, frequency-domain PDDP-F (when the speed vector is known before-
hand) always outperforms the deterministic PDP-F algorithm in all the SNR
values. This difference comes from the usage of the additional Doppler di-
mension which PDP-F cannot benefit from. By deterministic PDP-F, what
we mean is that the RT and measurement PDPs are compared via correla-
tion. Computation of the correlation is carried out effectively by using the
FFT operation again. However it is now 1D FFT whereas it was 2D FFT
for the PDDP-F as we had a 2D profile.

2.3 Time-Domain PDDP-F

As in the frequency-domain version of the algorithm, here we first provide
the formulation of the time-domain algorithm, then we explain in detail the
application of the algorithm on the ray tracing data. We know that, sampled
channel taps might be the superposition of several rays which arrive within
the same sampling duration as in a diffuse channel environment:

Al(t) =

Kl∑

k=1

Al,ke
jϕl,k(t) ej2πfl,kt, (2.18)

As we explained before, mean of these channel taps is 0, due to averaging
over random phases. Also the expected average power is just the summation
of the individual powers of the incoming rays. The central limit theorem
lets us model these taps as Gaussian random variables. In this section, we
propose the time-domain version of the PDDP-F algorithm which exploits
the second-order statistics of the channel. We assume that the complex
fading vector b(t), and the additive noise v(t) are i.i.d. zero-mean Gaussian
vector processes, i.e.,
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Figure 2.5: Performance comparison of deterministic PDP-F and frequency-
domain PDDP-F algorithms.

b(t) ∼ N (0,Cb)
v(t) ∼ N

(
0, σ2vIN

) (2.19)

where N (0,Cb) denotes the zero-mean complex Gaussian vector with co-
variance matrix Cb (we will soon explain how to derive it), and σ2v is the
channel estimation error variance. With the statistical model of (2.19), ĥ(t)
is modeled as an i.i.d. complex Gaussian vector with ĥ(t) ∼ N

(
0,C

ĥĥ

)
,C

ĥĥ
=

PτCbPτ
H + σ2v IN .

With the Gaussian modeling of ĥ(t), we can propose a Maximum Likelihood
solution to the localization problem. Our aim is also to take into account
the Doppler variation of the channel. Therefore we stack consecutive ĥ(t)
channel estimates in a vector, instead of taking just one, and compute the
covariance matrices based on this. Now consider the channel response at
multiple consecutive time instants t = ts, 2ts, . . . , nts :
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h︸︷︷︸
nNτNrNt×1

=




h(ts)
h(2ts)

...
h(nts)


 . (2.20)

Then we get

h =

Np∑

i=1

Ai e(fi)⊗ hi , e(f) =




ej2πfts

ej2πf2ts

...
ej2πfnts


 (2.21)

We get for the covariance matrix of h

Chh =

Np∑

i=1

σ2i Rf (fi)⊗Rτ (τi)⊗RT (θi)⊗RR(φi) (2.22)

where

Rf (f) = e(f)eH(f) , Rτ (τ) = p(τ)pH(τ) . (2.23)

Note that Rf is Toeplitz. In the case of a SISO channel, we have Chh =∑Np

i=1 σ
2
i Rf (fi) ⊗ Rτ (τi) and the PDDP is related to the diagonal part of

this matrix, after taking DFT of the Rf part.

To be more specific for a SISO channel, if there areM channel estimates
available, they are divided intoM−n+1 groups each group having n consec-
utive channel estimates. For example there can be 2 such groups for M = 4
and n = 3, i.e. ĥ(ts), ĥ(2ts), ĥ(3ts) for group 1 and ĥ(2ts), ĥ(3ts), ĥ(4ts) for
group 2. We stack these vector groups into a longer vector as:

ĥ(m) =




ĥ(m ts)
...

ĥ((m+ n− 1) ts)


 . (2.24)

Now, the Gaussian Log-Likelihood can be constructed withM−n+1 vectors
as:

LL ∝ − (M − n+ 1) ln
(
detC

ĥĥ

)
−

M−n+1∑

m=1

ĥ(m)HC
ĥĥ

−1ĥ(m) (2.25)
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where C
ĥĥ

is the covariance matrix of ĥ. Instead of the usual Maximum
Likelihood approaches to estimate the path parameters by maximizing the
likelihood with respect to the parameters, the likelihood is evaluated by
substituting the position dependent path parameters from the database and
hence it provides the likelihood of position. In other words, covariance ma-
trices of the ray tracing database (C

ĥĥ
) are created off-line by the position

dependent parameters (using delays, powers, Doppler shifts of the rays),
then the likelihood is evaluated with the above formulation for the mea-
surement data. The position giving the highest likelihood is the position
estimate of the mobile. (2.25) can be written equivalently as:

LL ∝ − ln
(
detC

ĥĥ

)
− tr

{
C

ĥĥ
−1Ĉ

ĥĥ

}
(2.26)

where Ĉ
ĥĥ

=
1

M − n+ 1

M−n+1∑

m=1

ĥ(m)ĥ(m)H is the observed sample covari-

ance matrix which is asymptotically unbiased. (C.11) clearly shows that
the log-likelihood is just a covariance matching operation between the mea-
surement covariance matrix and the pre-computed K covariance matrices of
the database. One last thing to mention is the derivation of the covariance
matrices of the ray tracing database (C

ĥĥ
). We will begin with (2.24) and

just present the derivation for n = 2. Deriving for any n is straightforward
afterwards.

E

{
ĥ(1)ĥ(1)H

}
=


 E

{
ĥ1ĥ

H
1

}
E

{
ĥ1ĥ

H
2

}

E

{
ĥ2ĥ

H
1

}
E

{
ĥ2ĥ

H
2

}

 (2.27)

where E

{
ĥ1ĥ

H
1

}
= E

{
ĥ2ĥ

H
2

}
= C

ĥĥ
= PτCbP

H
τ + σ2v IN , and Cb is a

diagonal matrix given as:

Cb =




∑K1

k=1A
2
1,k . . . 0

...
. . .

...

0 . . .
∑KL

k=1A
2
L,k


 , (2.28)

where we used (2.18) to derive Cb (Al,k’s are the magnitudes of the rays).
As can be seen from the formulation, there is no Doppler information yet
because the calculated covariance is for the same time instant. The idea of
stacking consecutive channel estimates brings the Doppler information which

will be clear while deriving E

{
ĥ1ĥ

H
2

}
. We will not make the derivation for
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E

{
ĥ2ĥ

H
1

}
because it is just the transpose-conjugate of the other. E

{
ĥ1ĥ

H
2

}

=
(
E

{
ĥ2ĥ

H
1

})H
= PτCdP

H
τ , where Cd is derived as:




∑K1

k=1A
2
1,k e

−j2πf1,kts . . . 0
...

. . .
...

0 . . .
∑KL

k=1A
2
L,k e

−j2πfL,kts




by using (2.18) again. Now, the Doppler contributions of each ray is visible
in the covariance matrix. As can be seen, the overall covariance matrix is a
function of delays, powers and Doppler shifts of rays. We aim to increase the
localization accuracy by incorporating this additional Doppler information.

2.3.1 Simulation Results

Figure 2.6 is the simulation result for the comparison of Bayesian PDP-F
described in [26] and the time-domain PDDP-F over a range of SNR values
for different n. The simulation environment is the same as for the frequency-
domain PDDP-F simulations. We see three curves in the plot where n = 1
corresponds to the Bayesian PDP-F case. It is obvious that time-domain
PDDP-F outperforms Bayesian PDP-F. Increasing n (number of consecu-
tive channel estimates) also increases the success rate. If we also compare
with the frequency-domain PDDP-F algorithm, we see that the time-domain
PDDP-F is more robust and success rate is higher for n ≥ 3. Also one draw-
back of the frequency-domain PDDP-F is that its non-parametric spectrum
might suffer from limited resolution. In these simulations, we assumed that
the speed vector is known beforehand.

As was the case in the frequency-domain PDDP-F, simulations for the
case when the speed vector is estimated jointly was carried out for n = 2.
However to reduce the simulation time, we had to reduce the ray tracing
points (K = 5 now). Apart from that, simulation environment and the
system parameters are the same. Joint speed vector estimation was carried
out by maximizing the likelihood with respect to the speed vector in every
ray tracing point. Hence it is again an exhaustive search over the possible
values of the speed magnitude and the direction of motion. The results are
demonstrated in figure 2.7. As expected, there is a loss of performance when
compared to the case of known speed vector.

The time-domain PDDP-F approach can be seen as an elegant method
for localization. Instead of trying to match only the PDPs (diagonal elements
of the covariance matrices for the same time instant), the whole covariance
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Figure 2.6: Performance results of time-domain PD(D)P-F as a function of
n.

matrices are compared, also by taking into account the Doppler information.
However, there are some important things to note. First of all, DO and
FO problems are also present here. So care must be taken for them. The
advantage of the time-domain PDDP-F over its frequency-domain version
lies in the weighting matrix (inverse of the covariance matrix) used. If we
consider the noiseless case, the weighting matrix tries to balance the weak
and strong rays. In other words, strong rays (rays with high power) are
weighted by small coefficients whereas weak rays are weighted by higher
coefficients. As a result, this gives the advantage of observing even very
little details which would be mostly ignored in the frequency-domain case.
However if we consider noise, this could also lead to noise amplification when
the path contribution is below the noise level.
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Figure 2.7: Time domain PDDP-F for n = 2 with and without speed vector
estimation.

2.4 Conclusion

In this chapter, two new fingerprinting methods have been introduced uti-
lizing the time variation of the channel due to MT mobility. Actually we
introduced the most general profile, namely PDDSP, of which PDDP is a
special case (for SISO channels). First method, frequency-domain PDDP-F
resolves the paths not only in delay dimension but also in Doppler dimension.
Naturally, with this 2D profile instead of the classical 1D profiles of PDP-F,
higher accuracies were achieved. Also the cost function implemented via 2D
FFT operations is considerably fast and also increases the robustness of the
algorithm against FO and DO. For the systems having small bandwidths,
resolvability of rays might be a problem which can cause low localization
accuracies. Hence, as we proposed in this chapter, introducing a new di-
mension to increase the resolvability of rays resulted in significant increase
in localization performance. Therefore the Doppler dimension has the ef-
fect of increasing the accuracy, and also the identifiability. Having Np ≥ 2
paths is sufficient for the identifiability unless they arrive at the same delay-
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Doppler grid. For a channel with delay spread Nτ , the probability that two
paths arrive in the same sampling duration is 1/Nτ , however the probability
that both are located in the same delay-Doppler grid is much lower than this
for the frequency-domain PDDP-F algorithm. Hence resolution is increased
considerably by exploiting the Doppler information.

Second algorithm, which we call time-domain PDDP-F, is based on ex-
ploiting the SOS of the time varying channel. It is another high resolution
localization technique. The novelty that we proposed was based on stack-
ing consecutive channel estimates. By this way, Doppler information of the
paths have become visible in the covariance matrices. We have experienced
the performance increase with the increasing n, n being the consecutive
channel estimates stacked. Even for n = 2, the performance was quite satis-
fying. However, in this case, FO and/or DO problems (if they are present),
must be carefully handled for the method to work properly.



Chapter 3

Performance Analysis of
Power Delay Profile
Fingerprinting Methods

3.1 Introduction

This chapter deals with performance analysis of PDP-F algorithms. Var-
ious path amplitude models, overlapping and non-overlapping pulses, DO
issues, impact of network geometry on the localization performance are in-
vestigated. Local identifiability and CRB analysis are carried out for each
of these cases. Although we have introduced channel model in chapter 2, we
present it once more for the completeness of the text. However, we will try
to avoid repeating obvious material.

3.2 CRB Analysis of PDP-F

We start by introducing the channel model. As one can expect, PDP is
also obtained from the CIR by averaging over phases and also over path
amplitudes if they are random. The time varying CIR between the BS and
MT can be written as:

31
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h(t, τ) =

Np∑

i=1

Ai(t) p(τ − τi(t)) (3.1)

After sampling the CIR with a sampling period of τs leading to Nτ samples
and stacking them in a vector, we obtain:

h(t) =




h(τs, t)
h(2τs, t)

...
h(Nττs, t)


 =

Np∑

i=1

Ai(t) pτi (3.2)

where pτ is defined as:

pτ =




p(τs − τ)
p(2τs − τ)

...
p(Nττs − τ)


 (3.3)

which is the sampled complex pulse shape vector having a delay equal to the
delay of the path in samples and has N nonzero samples. If we write (3.2)
in matrix notation and include the channel estimation noise, we obtain the
estimated CIR vector as:

ĥ(t) =
[
pτ1 · · ·pτNp

]

︸ ︷︷ ︸
Pτ




A1(t)
...

ANp(t)




︸ ︷︷ ︸
b(t)

+v(t), (3.4)

As we have stated in chapter 2, two possible models can be considered for
the path amplitudes:

• Gaussian model: Ai(t) Gaussian with zero mean, characterized by a
power (variance) i.e., var(Ai) = σ2i , which corresponds to Rayleigh
fading case (magnitude has Rayleigh distribution)

• deterministic model: Ai(t) deterministic unknowns

We will investigate both of these cases, derive the CRBs and see the condi-
tions of local identifiability of the position vector. The method to be used
is the GML based PDP-F for the Rayleigh fading case. To see the details of
GML based PDP-F, readers can refer to [26].
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We will derive the FIM of LDPs and the position vector r as well for local
identifiability analysis and to obtain CRBs. As we have stated in chapter
1, inverse of the FIM determines the lower bound of the estimation error
variance of unbiased estimators which is known as the CRB.

3.2.1 Rayleigh Fading Case

Let θ represent the vector of LDPs for a channel with Np paths. If we
consider the delays and the variances of the complex path amplitudes as
LDPs, θ is defined as:

θ =
[
τ1, τ2, · · · τNp , σ

2
1, σ

2
2, · · · σ2Np

]T
(3.5)

where τi and σ2i represent the delay and the amplitude variance of the ith

path respectively. The log-likelihood of the data vector for complex white
Gaussian noise is given as:

LL ∝ − ln
(
det
(
C

ĥĥ

))
−
(
ĥ− µ

)H
C−1

ĥĥ

(
ĥ− µ

)
(3.6)

From (3.6), the elements of the FIM Jθ for a general complex Gaussian
scenario is given by [34]

[Jθ]ij = tr

(
C−1

ĥĥ

∂C
ĥĥ

∂θi
C−1

ĥĥ

∂C
ĥĥ

∂θj

)
+ 2ℜ

([
∂µ

∂θi

]H
C−1

ĥĥ

[
∂µ

∂θj

])
. (3.7)

Note that we are computing the FIM in the true position. The covariance
matrix and the mean vector which were computed off-line according to the
parameters of a database entry (each entry in the database corresponds to a
different position with unique parameters such as path delays, amplitudes,
etc.) belong to the same position of the measured channel estimates. More-
over, also one of our interests is the local identifiability of the position vector
r = [x, y] which denotes the coordinates of the mobile position. Hence there
will be a FIM transformation of parameters from θ to r. This transformation
can be obtained by the following formula [35]:

Jr = FJθF
H (3.8)

where F = ∂θ
∂r

∣∣
r=r0

(r0 = [x0, y0]
T being the true position of the mobile) is

a 2× 2Np matrix which in this case defined as:
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F =




∂τ1
∂x · · · ∂τNp

∂x
∂σ2

1

∂x · · · ∂σ2
Np

∂x

∂τ1
∂y · · · ∂τNp

∂y
∂σ2

1

∂y · · · ∂σ2
Np

∂y



∣∣∣∣∣∣
x=x0,y=y0

(3.9)

Note that if LDP vector θ is defined differently then there will be a different
F matrix. We will now make some comments on the parameters σ2i and also
on the matrix F.

Remark 1. For the path amplitude variances, they are mostly modeled by
distance dependent attenuation which is accompanied by a path-loss coeffi-
cient (isotropic model). In that case σ2i = k

τγi
where k is a positive constant

depending on the propagation speed of the wave, antenna gains, etc and γ is
the path-loss coefficient (γ ≥ 2). In such a condition, σ2i is just a function
of τi. So only τi carries position-dependent information. On the other hand
we can consider σ2i itself as a position-dependent parameter (anisotropic
model). For example in a given position it might be a function of the sur-
rounding geography which will cause reflections, refractions and so on. It
is obvious that in that case each path will carry two distinct information
about position instead of one. For an isotropic model, the variation in path
amplitudes becomes smaller in magnitude with the increasing distance due
to the exponential decay factor. This can be seen immediately with a simple
example. Suppose for a path-loss coefficient of 2 (γ = 2), σ2i (di) =

g
d2i

where

g is a constant and di denotes the path length. If we make a first order
Taylor series expansion around di, we get σ2i (di + ∆d) ≈ g

d2i
− 2g∆d

d3i
. So

∂σ2
i

∂d ≈ σ2
i (di+∆d)−σ2

i (di)
∆d = −2g

d3i
. As it is clear the change in the path ampli-

tude is inversely proportional to the path length with an exponential factor.
Consequently we can say that longer paths have less variation in path ampli-
tudes with respect to a position change than shorter paths for the isotropic

model, i.e.,
∣∣∣∂σ

2
i

∂d

∣∣∣ <
∣∣∣∣
∂σ2

j

∂d

∣∣∣∣ or
∂σ2

i
∂d >

∂σ2
j

∂d due to the negative sign for i > j. In

fact with high probability, this inequality still holds for the anisotropic model

as well. Also note that by chain rule, we have
dσ2

i
dx =

dσ2
i

dτi
dτi
dx = ηi

dτi
dx where

ηi = −kγτ−(γ+1)
i for the isotropic model. We can say that F is a generic

matrix. Hence it is full rank (rank two) with probability 1 for the anisotropic
case. For the isotropic modeling, rank(F) = min(2, Np).

Proposition 1. From theorem 1, for local identifiability of r, Jr must be
full rank (rank 2). For Jr to be full rank, it is required that Jθ has at least
rank 2. Therefore it is never possible to achieve the local identifiability of r
for the isotropic case with Np = 1.
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3.2.1.1 Anisotropic Path Amplitude Variances

We see that channel estimates have zero mean because Eb(t) = 0 also the
noise vector has zero mean. Hence the second term in (3.7) vanishes. The
covariance matrix of the channel estimates C

ĥĥ
can be easily obtained from

(5.3) and it is given by C
ĥĥ

= PτCbP
H
τ +σ2v I, σ2v being the channel estima-

tion error variance. Cb is a diagonal matrix with entries [σ21, σ
2
2, · · · , σ2Np

].
The diagonal structure of Cb comes from the uncorrelated scattering as-
sumption of the paths. So for the GML technique with Rayleigh fading, the
FIM is:

[Jθ]ij = tr

(
C−1

ĥĥ

∂C
ĥĥ

∂θi
C−1

ĥĥ

∂C
ĥĥ

∂θj

)
. (3.10)

We will investigate a special case of the CIR which will make the derivation
of the FIM easier. We will assume that pulse contributions corresponding to
different path delays do not overlap with each other. Moreover, this assump-
tion will be valid throughout the whole chapter unless otherwise stated. In
other words, pulses for different path delays are orthogonal to each other.
This makes the pulse matrix Pτ an orthogonal matrix (orthogonal columns),
i.e. PH

τ Pτ = epI where ep = ‖p(τ)‖2 is the pulse energy. After this as-
sumption, we can derive the elements of the FIM by using (3.10). We can
explicitly obtain the inverse of the covariance matrix by using Woodbury’s
matrix identity. By exploiting the orthogonality of the pulse matrix Pτ , the
inverse covariance matrix is obtained as:

C
ĥĥ

−1 = σ−2
v I− σ−2

v

Np∑

i=1

σ2i
ep σ2i + σ2v

pτip
H
τi . (3.11)

For the preparation of the computation of the FIM entries, we first com-
pute the partial derivatives of the covariance matrix with respect to the
parameters as follows:

∂C
ĥĥ

∂σ2i
= pτip

H
τi , (3.12)

∂C
ĥĥ

∂τi
= −σ2i

(
p′

τip
H
τi + pτip

′H
τi

)
(3.13)
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where

p′
τ =




p′(τs − τ)
p′(2τs − τ)

...
p′(Nττs − τ)


 (3.14)

and p′(nτs − τ) being defined as:

p′(nτs − τ) =
dp(t)

dt

∣∣∣∣
t=nτs−τ

. (3.15)

From these partial derivatives, and by using (3.10), (3.11) and the assump-
tion that pH

τipτj = δijep, we obtain the FIM entries:

Jτi,τi = tr

(
C−1

ĥĥ

∂C
ĥĥ

∂τi
C−1

ĥĥ

∂C
ĥĥ

∂τi

)
(3.16)

= σ4i σ
−4
v tr ((Bi − ciCi)(Bi − ciCi)) (3.17)

= σ4i σ
−4
v

(
tr (BiBi) + c2i tr (CiCi)− 2ci tr (BiCi)

)
(3.18)

where

Bi =
(
p′

τip
H
τi + pτip

′H
τi

)
(3.19)

Ci =
(
αpτip

H
τi + eppτip

′H
τi

)
(3.20)

α = pH
τip

′
τi = a+ jb (3.21)

ci =
σ2i

ep σ2i + σ2v
. (3.22)

Remark 2. After a careful inspection, we realize that a = 0. To show that,
let us write ep = pH

τ pτ . If we take its derivative with respect to τ we obtain:

∂ep
∂τ

= −
(
p′H

τ pτ + pH
τ p′

τ

)
= −(α∗ + α) = −2a = 0. (3.23)

Hence we see that a = 0, and α = jb. This is the most general case.
Obviously if the pulse is real, then b also becomes 0 which results in α = 0.
Another thing that we should emphasize is that if the pulse is symmetric (for
complex or real pulse shape) around its center, this also results in α = 0.
This is because in this case, the derivative of the pulse is antisymmetric
(odd) around its center which makes this inner product 0. To summarize,
if the pulse is real or symmetric around its center α becomes 0, otherwise
α = jb.
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If we turn back to the calculation of Jτi,τi , after doing the algebra, we
obtain the result as follows:

Jτi,τi = σ4i σ
−4
v

(
−2b2 + 2eped + 2cib

2ep − 2cie
2
ped
)

(3.24)

= 2σ4i σ
−4
v (1− ep ci)(ep ed − b2) (3.25)

=
2σ4i σ

−2
v (ep ed − b2)

ep σ2i + σ2v
(3.26)

where p′H
τip

′
τi = ed.

Remark 3. The variable ed that was just defined above gives information
about the effective bandwidth of the pulse shape. To see that, let us define
the mean square bandwidth of the pulse shape F 2 which is computed as:

F 2 =

∫∞
−∞ f2|P (f)|2df∫∞
−∞ |P (f)|2df , (3.27)

where P (f) is the Fourier transform of the pulse. By using Parseval’s the-
orem, the following equality is obtained:

4π2F 2 =

∫ T
0 |p′(t)|2dt
∫ T
0 |p(t)|2dt

=

∫∞
−∞ 4π2f2|P (f)|2df∫∞

−∞ |P (f)|2df =
ed
ep
, (3.28)

T being the pulse duration and assuming that the sampling frequency satisfies
the Nyquist criteria. Therefore we can define W , the effective bandwidth of

the pulse as the square root of F 2, i.e., W =
√
F 2 =

√
ed/ep
2π .

By using the same methodology we continue to calculate the rest of the
FIM.

Jσ2
i ,σ

2
i

= tr

(
C−1

ĥĥ

∂C
ĥĥ

∂σ2i
C−1

ĥĥ

∂C
ĥĥ

∂σ2i

)
(3.29)

= σ−4
v (1− epci)

2 tr
(
pτip

H
τipτip

H
τi

)
(3.30)

= σ−4
v e2p (1− epci)

2 (3.31)

=

(
ep

epσ2i + σ2v

)2

, (3.32)

and
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Jσ2
i ,τi

= Jτi,σ2
i
= tr

(
C−1

ĥĥ

∂C
ĥĥ

∂τi
C−1

ĥĥ

∂C
ĥĥ

∂σ2i

)
(3.33)

= −2aepσ
2
i σ

−4
v (1− epci)

2 = 0, (3.34)

since a = 0. This is an important result. Estimate of the path delay is
uncorrelated with the estimate of the path amplitude variance. For Np > 1,
we have the cross terms of the FIM for different paths, e.g. Jτi,τj or Jσ2

i
,τj

and etc. We still have the non-overlapping pulse assumption. Under this
assumption, Jτi,τj (for i 6= j) is given by:

Jτi,τj = tr

(
C−1

ĥĥ

∂C
ĥĥ

∂τi
C−1

ĥĥ

∂C
ĥĥ

∂τj

)
(3.35)

= σ2i σ
2
jσ

−4
v tr ((Bi − ciCi)(Bj − cjCj)) (3.36)

= σ2i σ
2
jσ

−4
v ( tr (BiBj) + cicj tr (CiCj)− ci tr (CiBj)− cj tr (BiCj)) .

We observe that overall summation is composed of cross product terms such
as BiBj or BiCj, etc. These cross products all happen to be the 0 matrix.
The proof is very simple and comes from the orthogonality of the pulses of
different paths. The matrices Bi and Ci have N2 nonzero terms located
in the indices [τi : τi +N − 1, τi : τi +N − 1], while the matrices Bj and Cj

haveN2 nonzero terms located in the indices [τj : τj +N − 1, τj : τj +N − 1].
Obviously, these cross products end up in the 0 matrix. Therefore Jτi,τj = 0.
With the same reasoning Jσ2

i
,σ2

j
and Jτi,σ

2
j
are all equal to 0 for i 6= j.

After having completely derived the FIM for the LDP vector, we can check
the conditions for the rank to be at least two to achieve the local identifia-
bility of r. We will first investigate the case when Np = 1. In this case FIM
has the following structure:

Jθ =

[
Jτ1,τ1 0
0 Jσ2

1
,σ2

1

]
(3.37)

Obviously to achieve a rank of two, the diagonals of the matrix must be
nonzero. As can be seen from (3.32), Jσ2

1
,σ2

1
is always positive. For Jτ1,τ1 ,

the following condition must hold:

ep ed 6= b2. (3.38)

We can also state in the following form:
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|pH
τ p′

τ |2 6= ‖pτ‖2 ‖p′
τ‖2. (3.39)

Note that we have not used τ1, but instead we just used τ because the
statement is independent of the delay. What we observe is that local iden-
tifiability of r depends on the pulse shape and its derivative for Np = 1. By
using the Cauchy-Schwarz inequality we have:

‖pτ‖2 ‖p′
τ‖2 ≥ |pH

τ p′
τ |2. (3.40)

So unless one vector is a scalar multiple of the other vector (pulse shape and
its derivative), the equality never holds resulting in a rank two matrix (full
rank in this case). This is an important result because local identifiability
of r can be achieved with only one path. Another thing to emphasize is
that if the pulse is real or symmetric, then α and consequently b becomes
zero. In this case Jτ1,τ1 is always nonzero. Hence local identifiability of r
is achieved without any constraints in this case. We can easily extend the
investigation for Np > 1. Moreover it is also possible to extract the CRBs
for the estimation of the elements of the LDP vector θ. For that purpose
diagonal entries of the inverse of Jθ must be computed. For Np > 1 the FIM
is:

Jθ =




Jτ1,τ1 0 · · · · · · · · · 0

0
. . .

...
...

...
...

... · · · JτNp ,τNp

...
...

...
... · · · · · · Jσ2

1
,σ2

1

...
...

... · · · · · · · · · . . . 0
0 · · · · · · · · · 0 Jσ2

Np
,σ2

Np




.

Note that Jθ is a 2Np × 2Np diagonal matrix. Therefore computing the
CRBs is quite easy and given by:

E(τi − τ̂i)
2 ≥ 1

Jτi,τi

=
σ2v (ep σ

2
i + σ2v)

2σ4i (ep ed − b2)
. (3.41)

A first comment on this result is that CRB(τ̂i) decreases with the increasing
path power (σ2i ) and as expected increases with the increasing noise power.
Most importantly CRB(τ̂i) decreases with the increasing effective bandwidth
of the pulse shape as expected. For a real (or a symmetric) pulse shape, we
can equivalently express CRB(τ̂i) as following:
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E(τi − τ̂i)
2 ≥ 1

8π2W 2SNRi

(
1 +

1

SNRi

)
(3.42)

where SNRi =
ep σ2

i
σ2
v

is the signal to noise ratio (SNR) of the ith path. In

the figures below, we plot the RMSE (root mean square error) of τ̂i which is
the square root of CRB(τ̂i) as a function of SNRi for different bandwidth
values. Also we normalize the pulse energy ep to 1 and use a real pulse shape
(α = 0). Noise variance σ2v is set to 1.
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Figure 3.1: RMSE of τ̂i as a function of SNRi for W = 1 MHz.

Figures clearly express the points that we have just emphasized. Having
a larger bandwidth or a larger path power simplifies the estimation of the
delay.

For the estimation of the path amplitude variance σ2i , we obtain the
following expression for the CRB:

E(σ2i − σ̂2i )
2 ≥ 1

Jσ2
i ,σ

2
i

=
(
σ2i + σ2v/ep

)2
. (3.43)

We can express it equivalently as:
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Figure 3.2: RMSE of τ̂i as a function of SNRi for W = 10 MHz.

E(σ2i − σ̂2i )
2 ≥ σ4i

(
1 +

1

SNRi

)2

. (3.44)

Although the expression for CRB(σ̂2i ) is quite simple, we introduce a plot

for it too, with the same parameters that were used for CRB(σ̂2i ). Only one

plot will be given since CRB(σ̂2i ) is independent of the effective bandwidth
of the pulse shape. Another thing to pay attention to is that, unlike the
estimation of τi, the estimation of σ2i becomes difficult as σ2i increases. This
might be interpreted in the way that as the variance of a random variable
is increasing, then it becomes more difficult to estimate that variance as
expected.

An important comment about these results is that the CRBs for the ith path

(CRB(τ̂i) and CRB(σ̂2i )) depends only on the parameters of the ith path.
This is due to the non-overlapping pulse assumption we have made before.
And needless to say that higher σ2v makes the estimation more difficult for
all the parameters. As regards local identifiability, we see that local iden-
tifiability of the position vector r is always guaranteed for Np > 1. This is
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Figure 3.3: RMSE of σ̂2i as a function of σ2i for W = 1 MHz.

because the condition rank(Jθ) ≥ Np always holds, hence guaranteeing the
local identifiability of r.

3.2.1.1.1 Effect of the Delay Offset Delay synchronization is an im-
portant factor in ToA based localization systems. If there is a synchroniza-
tion error between BS and MT, then there will be an offset value τ0 in the
delays, i.e., τi0 = τi + τ0, where τi is the actual delay of the ith path. Hence
DO τ0 is an important nuisance parameter which must be jointly estimated
(hence a total of 2Np + 1 parameters to estimate). We will try to estimate
τi from the estimates of τi0 and τ0. We still investigate the non-overlapping
pulse case again. The partial derivatives are now given as:

∂C
ĥĥ

∂σ2i
= pτi0

pH
τi0
, (3.45)

∂C
ĥĥ

∂τi0
= −σ2i

(
p′

τi0
pH
τi0

+ pτi0
p′H

τi0

)
, (3.46)
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∂C
ĥĥ

∂τ0
=

Np∑

i=1

∂C
ĥĥ

∂τi0
. (3.47)

After these derivations, entries of the FIM can be calculated. Obviously
Jτi0 ,τi0

is given by (3.26), and Jσ2
i ,σ

2
i
still by (3.32), and Jτi0 ,σ

2
i
= 0. By

(3.47), we obtain: Jτi0 ,τ0
= Jτi0 ,τi0

, Jτ0,τ0 =

Np∑

i=1

Jτi0 ,τi0
and Jτ0,σ2

i
= 0.

Hence for Np = 1, the FIM will be:

Jθ =




Jτ10 ,τ10
0 Jτ10 ,τ10

0 Jσ2
1
,σ2

1
0

Jτ10 ,τ10
0 Jτ10 ,τ10


 . (3.48)

Clearly rank(Jθ) = 2 as long as Jτ10 ,τ10
is nonzero. But surprisingly this is

not enough to achieve the local identifiability of r. The reason is due to the
matrix F. With the inclusion of τ0, it now has the structure (for Np = 1):

F =

[
∂τ10
∂x

∂σ2
1

∂x
∂τ0
∂x

∂τ10
∂y

∂σ2
1

∂y
∂τ0
∂y

]
, (3.49)

where

∂τ10
∂x

=
∂τ1
∂x

∂τ10
∂τ1

=
∂τ1
∂x

, (3.50)

∂τ0
∂x

=
∂τ1
∂x

∂τ0
∂τ1

= −∂τ1
∂x

, (3.51)

∂τ10
∂y

=
∂τ1
∂y

∂τ10
∂τ1

=
∂τ1
∂y

, (3.52)

∂τ0
∂y

=
∂τ1
∂y

∂τ0
∂τ1

= −∂τ1
∂y

. (3.53)

Hence due to this chain rule, the structure of matrix F becomes:

F =
[
f1 f2 −f1

]
, (3.54)

where f1, f2 and −f1 are the columns of F. We know from (C.14) that:
Jr = FJθF

H , which results in Jr = Jσ2
1
,σ2

1
f2 f2H which is clearly rank 1.

Therefore we conclude that local identifiability of r is not possible forNp = 1.
This was an expected result. Because in case of a DO, the delay does not
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carry any information about position for Np = 1. Therefore at the end
we just have a 1D information coming from the amplitude, which is not
sufficient to achieve local identifiability. Also because of the rank deficiency
of Jθ, CRBs cannot be derived. For Np > 1, FIM becomes:

Jθ =




Jτ10 ,τ10
0 · · · · · · · · · 0 Jτ10 ,τ10

0
. . .

...
...

...
...

...
... · · · JτNp0

,τNp0

...
...

... JτNp0
,τNp0

... · · · · · · Jσ2
1
,σ2

1

...
... 0

... · · · · · · · · · . . . 0
...

0 · · · · · · · · · 0 Jσ2
Np

,σ2
Np

0

Jτ10 ,τ10
· · · JτNp0

,τNp0
0 · · · 0 Jτ0,τ0




.

Rank of Jθ is 2Np for a real pulse shape and at most 2Np for any pulse shape
as long as ep ed > b2. It is easy to see the reason for the rank deficiency. The
last row (column) is a summation of the first Np rows (columns). Hence it
does not contribute to the rank. But now local identifiability of r is achieved.
However CRBs cannot be obtained again.

3.2.1.1.2 Overlapping Pulses Although our main concern was just
to investigate the case of non-overlapping pulses because it is simpler and
closed form analytic expressions can be obtained, we now investigate a simple
case of 2 overlapping pulses. We define the correlation coefficient ρ, where
|ρ| ∈ [0, 1], as a measure to indicate the overlapping of the pulses. Obviously
|ρ| = 0 corresponds to the case of non-overlapping situation and |ρ| = 1
means that pulses are just on top of each other. The correlation coefficient
ρ is given as:

ρ =
pH
τ1pτ2

‖pτ1‖‖pτ2‖
=

pH
τ1pτ2

ep
. (3.55)

As a result, the matrix Pτ is not orthogonal anymore and PH
τ Pτ = epR,

where R is given by:

R =

[
1 ρ
ρ∗ 1

]
. (3.56)

Similarly, we will introduce the correlation coefficient for the derivatives of
the pulses: P′H

τ P′
τ = edN where N is given as:
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N =

[
1 ρd
ρ∗d 1

]
. (3.57)

Clearly ρd → 1 when ρ → 1 and ρd → 0 when ρ → 0. For this overlapping
pulses case, some formulas will change. (3.11) is not valid anymore, and the
inverse of the covariance matrix is obtained as:

C
ĥĥ

−1 = σ−2
v I− σ−4

v Pτ

(
C−1

b +
ep
σ2v

R

)−1

︸ ︷︷ ︸
G

PH
τ . (3.58)

G is computed easily as:

G =
1

q

[
σ−2
2 + ep/σ

2
v −ρ ep/σ2v

−ρ∗ ep/σ2v σ−2
1 + ep/σ

2
v

]
, (3.59)

where q = (ep/σ
2
v + σ−2

1 )(ep/σ
2
v + σ−2

2 ) − |ρ|2 e2p/σ4v . Obviously G is al-
ways a nonsingular matrix and q always positive. Partial derivatives of C

ĥĥ

with respect to the LDPs are still the same as our uncorrelated scattering
assumption is still conserved ((3.12), (3.13) still valid). To simplify the equa-
tions, we will assume that pulse is real. Therefore ρ and ρd also become real
(ρ = ρ∗, ρd = ρ∗d). In addition, we will make the following approximation:
pH
τip

′
τj ≈ 0 for i 6= j. As we remember for real pulses, pH

τip
′
τi is already 0.

With these at hand, entries of the FIM are calculated by using (3.10) again:

Jτi,τi = tr

(
C−1

ĥĥ

∂C
ĥĥ

∂τi
C−1

ĥĥ

∂C
ĥĥ

∂τi

)
(3.60)

= 2epedσ
4
i σ

−4
v

(
1− ep σ

−2
v [RGR]i,i

)
(3.61)

= 2epedσ
2
i σ

−4
v

(
ep/σ

2
v − ep ρ

2/σ2v + σ−2
j

)
/q (3.62)

where [RGR]i,i refers to the element in the ith row, ith column position of
RGR. At first glimpse, we recognize the differences between the correspond-
ing entry for the non-overlapping pulse case. The correlation coefficient ρ
and the power of the other path σ2j now all affect the information obtained

from the delay of the ith path. We continue to derive the other entries of
the FIM:

Jτi,σ2
i

= tr

(
C−1

ĥĥ

∂C
ĥĥ

∂τi
C−1

ĥĥ

∂C
ĥĥ

∂σ2i

)
(3.63)

= 0, (3.64)
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Jσ2
i ,σ

2
i

= tr

(
C−1

ĥĥ

∂C
ĥĥ

∂σ2i
C−1

ĥĥ

∂C
ĥĥ

∂σ2i

)
(3.65)

= e2pσ
−4
v

(
1− ep σ

−2
v [RGR]i,i

)2
(3.66)

= e2p σ
−4
v σ−4

i

(
ep/σ

2
v − ep ρ

2/σ2v + σ−2
j

)2
/q2, (3.67)

where we see the effects of the jth path again due to the overlapping. We
keep on deriving the rest of the entries. In the non-overlapping case, the
cross entries of the FIM all happened to be 0, e.g. Jτi,τj = 0 for i 6= j.
However, that is not the case anymore, as it is seen in the derivation below:

Jτi,τj = tr

(
C−1

ĥĥ

∂C
ĥĥ

∂τi
C−1

ĥĥ

∂C
ĥĥ

∂τj

)
(3.68)

= ep ed [N]j,i

(
[R]i,j − ep σ

−2
v [RGR]i,j

)

+ ep ed [N]i,j

(
[R]j,i − ep σ

−2
v [RGR]j,i

)
(3.69)

= 2ep edρρd

(
1− ep σ

−2
v (ep/σ

2
v − ep/σ

2
vρ

2 + σ−2
i + σ−2

j )/q
)
(3.70)

= 2ep ed ρ ρd σ
−2
i σ−2

j /q, (3.71)

and

Jσ2
i ,σ

2
j

= tr

(
C−1

ĥĥ

∂C
ĥĥ

∂σ2i
C−1

ĥĥ

∂C
ĥĥ

∂σ2j

)
(3.72)

= e2pσ
−4
v

(
[R]j,i [R]i,j − epσ

−2
v [R]j,i [RGR]i,j

− epσ
−2
v [R]i,j [RGR]j,i + e2pσ

−4
v [RGR]i,j [RGR]j,i

)
(3.73)

= ρ2e2pσ
−4
v (1− ep σ

−2
v (ep/σ

2
v − ep/σ

2
vρ

2 + σ−2
i + σ−2

j )/q)2(3.74)

= ρ2e2pσ
−4
v σ−4

i σ−4
j /q2. (3.75)

where Jτi,τj = Jτj ,τi and Jσ2
i ,σ

2
j
= Jσ2

j ,σ
2
i
. Obviously both Jτi,τj and Jσ2

i ,σ
2
j

become 0 when ρ is 0. All the FIM entries have been derived, and the FIM
is:
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Jθ =




Jτ1,τ1 Jτ1,τ2 0 0
Jτ2,τ1 Jτ2,τ2 0 0
0 0 Jσ2

1
,σ2

1
Jσ2

1
,σ2

2

0 0 Jσ2
2
,σ2

1
Jσ2

2
,σ2

2


 . (3.76)

FIM is a block diagonal matrix, hence computing its inverse is easy. We just
need to compute the inverses of the 2× 2 blocks. As a result we obtain the
following results for the CRBs:

E(τi − τ̂i)
2 ≥ 1

Jτi,τi − J2
τi,τj/Jτj ,τj

, (3.77)

E(σ2i − σ̂2i )
2 ≥ 1

Jσ2
i ,σ

2
i
− J2

σ2
i ,σ

2
j
/Jσ2

j ,σ
2
j

. (3.78)

In the following plots, CRBs are shown for different parameters. The values
used for ep and σ2v are the same as the ones used before to make a true
comparison between the non-overlapping case and the overlapping case. As
expected, the CRB values for the overlapping case is globally higher than
the corresponding values of the non-overlapping case. And, obviously, as
the correlation between the pulses increases, the CRB values also increase

because CRB(τ̂i) depends on both ρ and ρd while CRB(σ̂2i ) depends only on
ρ. Another factor affecting the CRBs is now the power of the other path (σ2j ).
It appears as an interference. Hence CRB values increase monotonically with
the increasing σ2j for the estimation of both of the parameters. As regards
local identifiability, we see that it is achieved for this 2 overlapping pulse
case.

3.2.1.2 Isotropic Path Amplitude Variances

As we have already expressed in Remark 1, it is not possible to achieve the
local identifiability of r for Np = 1 due to matrix F (it will have a rank
of 1 for Np = 1). As we will show soon, it will also be clear that Jθ is
rank deficient for Np = 1. Now we model the path amplitude variances as
distance dependent, i.e., σ2i = k

τγi
. As τi and σ2i are coupled now, we will

apply chain rule to derive the elements of the FIM. We do not need the
entries explicitly for local identifiability analysis. To distinguish the entries
from the anisotropic case, we will use the notation J′

τi,τi for example. By
using (3.10) again we have:
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Figure 3.4: RMSE of τ̂i as a function of SNRi for W = 1 MHz, σ2j = 2.

J′
τi,τi = tr

(
C

ĥĥ
−1 ∂Cĥĥ

∂σ2
i

dσ2
i

dτi
C

ĥĥ
−1 ∂Cĥĥ

∂σ2
i

dσ2
i

dτi

)

where
dσ2

i
dτi

= −kγτ−(γ+1)
i = ηi. Hence J′

τi,τi = η2i J
′
σ2
i ,σ

2
i
. The partial

derivative of C
ĥĥ

with respect to σ2i is now given as:

∂C
ĥĥ

∂σ2i
= pτip

H
τi −

σ2i
ηi

(
p′

τip
H
τi + pτip

′H
τi

)
, (3.79)

and
∂C

ĥĥ

∂τi
= ηi

∂C
ĥĥ

∂σ2
i
. For this reason we have J′

σ2
i ,τi

= J′
τi,σ2

i
= ηi J

′
σ2
i ,σ

2
i
.

Therefore for Np = 1 we have:

Jθ = J′
σ2
1
,σ2

1

[
η21 η1
η1 1

]
, (3.80)

which is clearly rank 1. For Np > 1, we will have the same structure of
the 2Np × 2Np matrix Jθ again. However now its rank is always equal to
Np due to the scalar multiplication of the Np independent rows. Hence for
Np > 1, local identifiability of r can be achieved. Since Jθ is always a rank
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Figure 3.5: RMSE of τ̂i as a function of SNRi for W = 1 MHz, σ2j = 20.

deficient matrix, it is not possible to calculate the CRBs for the LDPs in
that configuration. Hence we change the strategy here. The rank deficiency
results from the fact that parameters are coupled (σ2i is a function of τi).
Therefore for the LDP, only delays will be accounted, FIM will consist of
only delays, and their CRBs will be calculated. CRBs for the estimation of
σ2i ’s will be calculated by the transformation of parameters technique [34].
We obtain easily:

J′
τi,τi = Jτi,τi + η2i Jσ2

i ,σ
2
i
, (3.81)

where Jτi,τi and Jσ2
i ,σ

2
i
are given by (3.26) and (3.32) respectively in the

anisotropic case. We see that the information for delay is higher than the
anisotropic case, and this is an expected result. The reason is that, now not
only delay, but also the path power carries information about the delay and
vice versa. The second term in (3.81) is the information coming from the
path power which increases the overall information for the delay. The CRB
for delays is just the inverse of J′

τi,τi , i.e.,
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Figure 3.6: RMSE of σ̂2i as a function of σ2i for W = 1 MHz, σ2j = 2.

E(τi − τ̂i)
2 ≥ 1

J′
τi,τi

=
1

Jτi,τi + η2i Jσ2
i ,σ

2
i

. (3.82)

Hence, estimating delay is easier than the anisotropic case. By the trans-
formation of parameters technique, we obtain the CRB for the amplitude
variance:

E(σ2i − σ̂2i )
2 ≥ 1

Jσ2
i ,σ

2
i
+ Jτi,τi/η

2
i

. (3.83)

Estimating the path amplitude variance is also easier than the anisotropic
case due to the same reason.

3.2.2 Deterministic Path Amplitude Case

We turn back to the channel model in (5.3) and write the complex path
amplitude of path i in polar form as Ai(t) = ai(t)e

jφi(t). Now in this section
the path magnitudes are modeled as deterministic unknowns, i.e., ai(t)’s.
Based on the modeling of the phases, the discussion is divided into two.
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Figure 3.7: RMSE of σ̂2i as a function of σ2i for W = 1 MHz, σ2j = 20.

The former consists in modeling them as deterministic unknowns and in the
latter they are modeled as random variables with uniform distribution over
[0, 2π). We will explore these two cases separately.

3.2.2.1 Deterministic Modeling of the Phases

Having a different assumption in the path amplitude changes the mean and
the covariance matrix of the channel estimates. As we now have determin-
istic path amplitudes and phases, the mean of the channel estimates is not
0 and given by µ = Pτb(t). We also have a different covariance matrix
C

ĥĥ
= σ2vI. Under these conditions, the computation of the FIM will be

completely different. Now we define the LDP vector as:

θ =
[
τ1, τ2, · · · τNp , a1, a2, · · · aNp , φ1, φ2, · · · φNp

]T
. (3.84)

If we check (3.7), it is easy to see that, unlike the Rayleigh fading case, now
the first term vanishes because the covariance matrix is not a function of the
LDP vector elements, hence its derivatives with respect to these elements
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are zero. The second term involving the mean now remains as we have a
nonzero mean and also it is a function of the LDP vector elements. So the
FIM is given as:

[Jθ]ij = 2ℜ
([

∂µ

∂θi

]H
C−1

ĥĥ

[
∂µ

∂θj

])
. (3.85)

3.2.2.1.1 Anisotropic Path Amplitudes In the previous section, we
modeled the path amplitudes either isotropically or anisotropically. The
similar concept is also applied here, but now for the path magnitudes (ai’s).
We model them as a genuine function of position as we have done before.
The procedure to follow is the same. We will compute the FIM entries again.
Before starting the computation of the FIM entries, we need the following
partial derivatives:

∂µ

∂τi
= −ai ejφip′

τi , (3.86)

∂µ

∂ai
= ejφipτi , (3.87)

and

∂µ

∂φi
= j ai e

jφipτi . (3.88)

With these partial derivatives, the entries of the FIM can be computed as:

Jτi,τi =
2

σ2v
ℜ
([

∂µ

∂τi

]H [ ∂µ
∂τi

])
(3.89)

=
2

σ2v
a2i ed, (3.90)

Jτi,ai =
2

σ2v
ℜ
([

∂µ

∂τi

]H [ ∂µ
∂ai

])
(3.91)

= −2ai
σ2v

ℜ (α) (3.92)

= −2ai
σ2v

a (3.93)

= 0, (3.94)



3.2 CRB Analysis of PDP-F 53

Jai,ai =
2

σ2v
ℜ
([

∂µ

∂ai

]H [ ∂µ
∂ai

])
(3.95)

=
2

σ2v
ep, (3.96)

Jφi,φi =
2

σ2v
ℜ
([

∂µ

∂φi

]H [ ∂µ
∂φi

])
(3.97)

=
2

σ2v
a2i ep, (3.98)

Jφi,ai =
2

σ2v
ℜ
([

∂µ

∂φi

]H [ ∂µ
∂ai

])
(3.99)

= 0, (3.100)

and

Jφi,τi =
2

σ2v
ℜ
([

∂µ

∂φi

]H [ ∂µ
∂τi

])
(3.101)

= − 2

σ2v
a2i b, (3.102)

where α is defined in (3.22). Note that the correlation between delay and
phase disappears for a real (or symmetric) pulse shape. Again we see that
stronger paths carry more information for the delay parameter. For Np > 1,
we have the cross terms again. However due to the same reasoning (non-
overlapping pulse assumption), they are all 0 again. For Np = 1, the FIM is
given as follows:

Jθ =




Jτ1,τ1 0 Jτ1,φ1

0 Ja1,a1 0
Jτ1,φ1

0 Jφ1,φ1


 =

2

σ2v



a21 ed 0 −a21 b
0 ep 0

−a21 b 0 a21 ep


 . (3.103)

Obviously, for any Np, FIM has a rank of at least 2Np. Hence local identifi-
ability of r is guaranteed. When ep ed 6= b2, it always has a rank of 3Np (full
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rank). From now on, we will assume that the pulse is real (or symmetric)
which leads to b = 0. In this case Jτi,φi will be 0, resulting in a diagonal
FIM. Since now the FIM is diagonal, we do not need to jointly estimate the
phases anymore. Therefore the LDP vector will consist of only τi’s and ai’s
now. In that case, CRBs for τi and ai are:

E(τi − τ̂i)
2 ≥ 1

Jτi,τi

=
σ2v

2 a2i ed
=

1

8π2W 2SNRi
, (3.104)

E(ai − âi)
2 ≥ 1

Jai,ai

=
σ2v
2 ep

=
a2i

2SNRi
. (3.105)

where SNRi =
ep a2i
σ2
v
. We will not provide the plots of these CRBs as we

have given the corresponding plots for the Rayleigh fading case. The main
difference that we realize is that estimating the delay is easier than in the
Rayleigh fading case as expected. And as usual, estimation improves with
the decreasing noise power for both of the parameters. Higher bandwidth
and higher path power makes the estimation of the delay easier. And having
a larger pulse energy (ep) improves the estimation of the path amplitudes.

3.2.2.1.1.1 Effect of the Delay Offset The same DO issue is re-
visited here for the deterministic path amplitude case. We begin with the
partial derivatives again:

∂µ

∂τi0
= −ai ejφip′

τi0
, (3.106)

∂µ

∂ai
= ejφipτi0

, (3.107)

and

∂µ

∂τ0
=

Np∑

i=1

∂µ

∂τi0
. (3.108)

By (3.108), we obtain: Jτi0 ,τ0
= Jτi0 ,τi0

, Jτ0,τ0 =

Np∑

i=1

Jτi0 ,τi0
and Jτ0,ai = 0.

Hence for Np = 1, the FIM will be:

Jθ =




Jτ10 ,τ10
0 Jτ10 ,τ10

0 Ja1,a1 0
Jτ10 ,τ10

0 Jτ10 ,τ10


 . (3.109)
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The discussion is the same here as in the corresponding DO part in the
Rayleigh fading section. Obviously rank(Jθ) is always two but due to the
same reason that occurred in the Rayleigh fading section, again local identi-
fiability of r cannot be achieved for Np = 1. This is because of the structure
of matrix F, i.e., F = [f1 f2 −f1] which makes Jr a rank 1 matrix. CRBs
cannot be derived due to the rank deficiency and for local identifiability of
r, Np > 1 is required.

3.2.2.1.1.2 Overlapping Pulses The same issue as in the Rayleigh
fading case will be investigated for the deterministic path amplitudes here.
The scenario is the same again, with 2 overlapping and real pulses. Hence
there is no need to redefine the parameters ρ and ρd once again. The partial
derivatives with respect to τi and ai are the same and given by (3.86) and
(3.87) respectively. The only difference between the overlapping and non-
overlapping cases are the presence of the cross elements for the overlapping
pulse case. Obviously Jτi,τi , Jτi,ai and Jai,ai are the same as in the non-
overlapping case. The new ones are obtained as:

Jτi,τj =
2

σ2v
ℜ
([

∂µ

∂τi

]H [ ∂µ
∂τj

])
(3.110)

=
2

σ2v
ai aj ed ρd cos(φj − φi), (3.111)

Jai,aj =
2

σ2v
ℜ
([

∂µ

∂ai

]H [ ∂µ
∂aj

])
(3.112)

=
2

σ2v
ep ρ cos(φj − φi), (3.113)

and Jτi,aj = 0. Evidently, for this overlapping case, FIM entries depend on
the phases. Therefore phases must also be jointly estimated. However we
will make a simplifying assumption that phases are known beforehand so
that they do not need to be estimated. In this case, FIM is:

Jθ =




Jτ1,τ1 Jτ1,τ2 0 0
Jτ1,τ2 Jτ2,τ2 0 0
0 0 Ja1,a1 Ja1,a2

0 0 Ja1,a2 Ja2,a2


 . (3.114)

The CRBs are easy to derive:
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E(τi − τ̂i)
2 ≥ 1

Jτi,τi − J2
τi,τj/Jτj ,τj

=
σ2v

2 a2i ed(1− ρ2d cos2(φj − φi))
≥ 1

Jτi,τi

,

E(ai − âi)
2 ≥ 1

Jai,ai − J2
ai,aj/Jaj ,aj

=
σ2v

2 ep(1− ρ2 cos2(φj − φi))
≥ 1

Jai,ai

.

The second inequalities are just given to express that CRBs for this case
are higher than the CRBs for the non-overlapping pulse case, as expected.
Equality occurs if and only if the phase difference between the pulses is
φj − φi = mπ/2, m being an odd integer. In order to have finite CRBs, the
denominators must be nonzero (to have an invertible FIM). These inequali-
ties must hold for finite CRBs: ρ2 cos2(φj−φi) 6= 1 and ρ2d cos2(φj−φi) 6= 1.
The only way for the equalities to be satisfied is when ρ becomes 1 (remem-
ber that ρd also becomes 1 in that case) and φj − φi = mπ, m being an
integer. The interpretation of these results is that when the pulses are ex-
actly on top of each other (so that ρ and ρd both become 1) and the phase
difference of the paths is an integer multiple of π, CRBs become infinite.
Hence estimation of delays and amplitudes become impossible in that case.

3.2.2.1.2 Isotropic Path Amplitudes Now we model path magni-
tudes as distance dependent and write ai = m

τ
γ/2
i

where m is a positive

constant and γ is the path-loss coefficient again. We will have a similar dis-
cussion that we had in the isotropic modeling in the Rayleigh fading case.
Hence to have local identifiability, at least two paths are required again.
If the LDP vector is composed of delays and path amplitudes, the FIM
will have a rank of Np due to the coupling between ai and τi. Due to the
rank deficiency of the FIM, CRBs cannot be computed in this configuration.
Therefore we will apply the same method again. LDP vector will consist of
only delays. From that, the CRBs for delays will be computed. And by ap-
plying the transformation of parameters technique, the CRBs for the path
amplitudes will be derived. The partial derivative with respect to ai is now
given by:

∂µ

∂ai
= ejφipτi −

1

κi
ai e

jφip′
τi , (3.115)

where κi =
dai
dτi

= −mγ
2 τ

−(γ/2+1)
i . Also ∂µ

∂τi
= κi

∂µ
∂ai

. With these we obtain:

J′
τi,τi = Jτi,τi + κ2iJai,ai =

2

σ2v
(a2i ed + κ2i ep), (3.116)
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where Jτi,τi and Jai,ai are given in the anisotropic section by (3.90) and
(3.96) respectively. Obviously information has increased when compared
with its anisotropic counterpart for delay. The CRBs are derived as:

E(τi − τ̂i)
2 ≥ 1

J′
τi,τi

=
1

Jτi,τi + κ2iJai,ai

, (3.117)

E(ai − âi)
2 ≥ 1

Jai,ai + Jτi,τi/κ
2
i

. (3.118)

Hence estimating both the delay and the path amplitude is easier than the
anisotropic case, as expected.

3.2.2.2 Uniform Random Modeling of the Phases

Now, the second alternative for modeling the phases is investigated. Instead
of modeling them as deterministic unknowns, they are now modeled as uni-
form random variables over [0, 2π), i.e., fΦ(φ) =

1
2π . In fact this is a more

appropriate model for the phases. In this case, it is easy to see that the
mean and the covariance matrix of the channel estimates will be different,
i.e., µ = 0 and C

ĥĥ
= PτCbP

H
τ + σ2v I where Cb is a diagonal matrix with

entries [a21, a
2
2, · · · , a2Np

]. Interestingly, the structure of the problem becomes
very similar to the Rayleigh fading case. Obviously, the entries of the FIM
will be calculated by (3.10):

[Jθ]ij = tr

(
C−1

ĥĥ

∂C
ĥĥ

∂θi
C−1

ĥĥ

∂C
ĥĥ

∂θj

)
. (3.119)

If we define the LDP vector as:

θ =
[
τ1, τ2, · · · τNp , a

2
1, a

2
2, · · · a2Np

]T
, (3.120)

we will end up with the same results of the Rayleigh fading case as expected.
The only difference would be to substitute a2i for σ2i in the end results. For
example CRBs for τi and a

2
i would be given by (3.41) and (3.43) respectively

with σ2i ’s replaced by a2i ’s for the anisotropic case. For the isotropic case,
the results of the corresponding isotropic section can be used with the same
transformation. Hence there is no need to repeat the same things here again.
By this simple substitution, we can use the results of the Rayleigh fading
section directly.

An interesting thing to do is comparing these results with the ones where
we have modeled the phases as deterministic unknowns. As one can expect,
the corresponding CRBs will be higher now than their counterparts in the
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deterministic phase modeling. If we start with the delays we have (for real
or symmetric pulses):

1

8π2W 2SNRi

(
1 +

1

SNRi

)
>

1

8π2W 2SNRi
(3.121)

with SNRi =
ep a2i
σ2
v

as defined previously. For the estimation of the path am-

plitudes, we now have to apply the transformation of parameters technique
to obtain the CRBs for ai’s from the CRBs of a2i ’s. By this way we obtain:

E(ai − âi)
2 ≥

( 1
2ai

)2

(
ep

epa2i+σ2
v

)2 =
a2i
4

+
σ4v

4a2i e
2
p

+
σ2v
2ep

>
σ2v
2ep

. (3.122)

These results clearly show that the CRBs for the uniform modeling of the
phases are strictly higher than the ones where the phases are modeled as
deterministic unknowns.

3.2.3 Rician Fading Case

In this section, we investigate the case where the path amplitudes have both
deterministic (non-fading) and random (fading) components at the same
time. Indeed, this is the most general case we have dealt with so far. Rician
fading is a combination of Rayleigh fading on top of deterministic path
amplitudes. In this case, Ai(t) is modeled as a complex Gaussian random
variable having a mean of aie

jφi and a variance of σ2i around this mean.
Similarly, based on the modeling of the phases, we can split the analysis
into two parts.

3.2.3.1 Deterministic Modeling of the Phases

In this case, there will be a non-zero mean of the paths. The mean will be the
same as given in the deterministic path amplitudes deterministic modeling
of the phases section, i.e., µ = Pτb where bi = aie

jφi . The covariance matrix
is computed as: C

ĥĥ
= PτCbP

H
τ +σ2v I, where Cb is a diagonal matrix with

entries [σ21, σ
2
2, · · · , σ2Np

]. In this case the LDP vector is:

θ =
[
τ1, τ2, · · · τNp , σ

2
1, σ

2
2, · · · σ2Np

, a1, a2, · · · aNp ]
T . (3.123)

For simplicity we will just explore the anisotropic case. To calculate the FIM
entries, now it is required to use the full formula given by (3.7) because both
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the mean and the covariance matrix are now functions of the LDP vector
elements. It is not difficult to realize that Jτi,σ2

i
= Jτi,ai = Jai,σ2

i
= 0. The

entries corresponding to different paths are still 0. Hence FIM is a diagonal
matrix. Also the expression of Jσ2

i ,σ
2
i
is still given by (3.32). Hence the CRB

for the estimation of σ2i is the same and given by (3.43). The other entries
are computed as (for a real or symmetric pulse):

Jτi,τi = JR
τi,τi + JD

τi,τi , (3.124)

where JR
τi,τi stands for the FIM entry calculated for Rayleigh fading given

by (3.26), and JD
τi,τi is the FIM entry calculated in the deterministic path

amplitude section given by (3.90). The FIM entry just becomes the summa-
tion of the information coming from the Rayleigh and deterministic parts.
As the CRB is just the inverse of the FIM entry, we can say that in the case
of a real (or symmetric) pulse, estimation of τi for Rician fading is easier
due to the increased information. For the estimation of ai, we calculate the
FIM entry as:

Jai,ai = JD
ai,ai −

2

σ2v

e2p σ
2
i

ep σ2i + σ2v
, (3.125)

where JD
ai,ai represents the FIM entry calculated in the deterministic path

amplitude section given by (3.96). CRB for ai is just the inverse of Jai,ai .
As the information decreased now, we can conclude that estimation of ai is
more difficult for Rician fading case.

3.2.3.2 Uniform Random Modeling of the Phases

Modeling the phases with uniform distribution has an effect on the mean
and variance of the channel estimates for Rician fading. We now have µ = 0
and C

ĥĥ
= PτCbP

H
τ + σ2v I where Cb is a diagonal matrix with entries

[a21 + σ21, a
2
2 + σ22, · · · , a2Np

+ σ2Np
]. Once more we have the same structure

of the Rayleigh fading case. We just investigate the anisotropic case again.
Obviously, the entries of the FIM will be computed by (3.10):

[Jθ]ij = tr

(
C−1

ĥĥ

∂C
ĥĥ

∂θi
C−1

ĥĥ

∂C
ĥĥ

∂θj

)
. (3.126)

If we define the LDP vector as:

θ =
[
τ1, τ2, · · · τNp , a

2
1 + σ21, a

2
2 + σ22, · · · a2Np

+ σ2Np

]T
, (3.127)
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we end up with the same results we had in the Rayleigh fading section. The
only modification is the substitution of a2i + σ2i for σ2i . But in this way we
obtain the CRBs for the elements of vector θ. To obtain the CRBs for vector
β (β = f(θ)), which is:

β =
[
τ1, τ2, · · · τNp , σ

2
1, σ

2
2, · · · σ2Np

, a1, a2, · · · aNp ]
T , (3.128)

we get use of the transformation of parameters technique again:

Jβ
−1 ≥ ∂f(θ)

∂θ
Jθ

−1∂f(θ)

∂θ

T

, (3.129)

where
∂f(θ)

∂θ
is the 3Np× 2Np Jacobian matrix. In this case it is derived as:

∂f(θ)

∂θ
=




1
. . .

1
1

. . .

1
k1

. . .

kNp




, (3.130)

where ki =
∂ai

∂(a2i+σ2
i )

= 1
2ai

. Hence, as expected, the CRB for the estimation

of τi is:

E(τi − τ̂i)
2 ≥ 1

8π2W 2SNRi

(
1 +

1

SNRi

)
(3.131)

where we now define SNRi as:
ep (a2i+σ2

i )

σ2
v

. It can be deduced that the CRB of

τi is smaller than the Rayleigh fading case (where there is no deterministic
component) due to the increased SNRi. Hence estimation of τi is easier
now. The estimation of σ2i is obtained as:

E(σ2i − σ̂2i )
2 ≥

(
a2i + σ2i + σ2v/ep

)2
. (3.132)

Obviously the CRB for σ2i is higher when compared with the Rayleigh fading
case. Finally, the CRB for the estimation of ai is calculated as:
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E(ai − âi)
2 ≥

( 1
2ai

)2

(
ep

ep(a2i+σ2
i )+σ2

v

)2 =
1

4a2i

(
a2i + σ2i + σ2v/ep

)2
, (3.133)

which is the highest CRB calculated for ai so far.

3.3 Discussion

In this section, the purpose is to exploit the results obtained so far to make
a performance comparison between fingerprinting-based localization algo-
rithms and some other existing localization algorithms. Up to now, the
main focus was on the derivation of CRBs of the LDPs and on the local
identifiability issue of the position vector r. Now the main concern is the
CRB of the position vector (localization performance of the algorithm). In
order to remind, the CRBs for the position vector is obtained via (C.14).
So far, we did not investigate in detail the matrix F present in that equa-
tion. Indeed F signifies the geometry of the network, i.e., the surrounding
geography, the relative position of the MT, BS and the scatters and etc. In
figure 3.8, a simple sketch of the problem is demonstrated.
In fact this is a simplified figure showing only single bounces from the scat-
terers. However a path from the BS might pass through multiple bounces
before reaching the MT, and also a LoS path might be present. Neverthe-
less, for the ToA-based localization systems, the change in the delay of a
path with respect to a change in the position only depends on the AoA.
Therefore, only the position of the last scatterer affects the change of the
delay of the path through the AoA. It is easy to see it with an example.
Suppose that ith path passes through ni scatterers to reach the MT (nthi one
being the last scatterer before the MT). The path length li is given as:

li = li1 + · · ·+ lini+1
, (3.134)

where lij is the length of the piece the path traverses on its way from the
MT to the BS. So li can be rewritten as:

li =
√
(xBS − xsi1)

2 + (yBS − ysi1)
2 + · · ·+

√
(xsini

− x)2 + (ysini
− y)2.

(3.135)
where (xsij , ysij ) stands for the position of the jth scatterer of the ith path.
The change in delay with respect to a change in position is then written:
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BS (xBS,yBS)

MT (x,y)

 i

 j

Si(xsi,ysi)

Figure 3.8: BS-MT geometry.

∂τi
∂x

=
1

c

∂li
∂x

=
1

c

x− xsini√
(xsini

− x)2 + (ysini
− y)2

= −1

c
cosψi (3.136)

∂τi
∂y

=
1

c

∂li
∂y

=
1

c

y − ysini√
(xsini

− x)2 + (ysini
− y)2

= −1

c
sinψi (3.137)

where ψi is the AoA of the ith path measured with respect to the positive x
axis, as shown in figure 3.8 and c is the speed of light. Moreover these equa-
tions are also valid for the LoS path since the derivative depends only on
AoA. Hence the matrix F consisting of these kinds of partial derivatives rep-
resents the geometry of the network which evidently affects the localization
performance of fingerprinting algorithms. This leads us to the well-known
concept of Geometric Dilution of Precision (GDoP). For example in indoor
positioning, the relative position of the nodes with respect to the mobile has
a great impact on the localization performance, which eventually gave rise
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to this GDoP concept. The minimum RMSE of position estimate (also the
lowest GDoP) for the non-overlapping case and for equal path amplitudes
(all path SNRi’s being equal) occurs when F has orthogonal rows. We will
soon see this in detail.

3.3.1 Localization Performance for Deterministic Path Am-
plitudes and Rayleigh Fading Cases

The purpose of this section is to evaluate the localization performance of
fingerprinting algorithms for different path amplitude modeling we have in-
vestigated so far. However we will not pass through all the cases we have
investigated before. For all the cases, we assume that pulse shape is either
real or symmetric.

3.3.1.1 Anisotropic Case with Non-overlapping Pulses

Here we investigate the anisotropic case with non-overlapping pulses first.
Only delays will be counted as LDPs. In that case F will be:

F = −1

c

[
cosψ1 cosψ2 · · · cosψNp

sinψ1 sinψ2 · · · sinψNp

]
. (3.138)

We want to derive the CRB of the position vector r, which is: E‖r− r̂‖2 =
E(x − x̂)2 + E(y − ŷ)2. This is just equal to the trace of the inverse of the
position FIM, i.e., tr (Jr

−1). We know from matrix theory that, only for a
2× 2 matrix:

tr (Jr
−1) =

tr (Jr)

detJr

. (3.139)

The term in the numerator is calculated as:

tr (Jr) =
1

c2

Np∑

i=1

Jτi,τi , (3.140)

and the term in the denominator as:

detJr =
1

c4

Np−1∑

i=1

Np∑

j=i+1

Jτi,τiJτj ,τj sin
2(ψi − ψj). (3.141)

The proof is given in appendix A. We interpret this result saying that posi-
tioning accuracy depends on the differences between the

(
Np

2

)
AoA couples
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of the paths. Indeed this is a reasonable result because differences between
AoAs signify the relative position of the scatters with respect to each other
and the MT. Therefore having an expression consisting of the differences
between the AoA couples makes complete sense. If we had summations of
AoAs instead of differences in the overall expression, in that case it would
not give any clue about the relative positioning of the scatters.

After the derivation we can now formulate the CRB of the position vec-
tor. Indeed we have obtained a generic formula. The term Jτi,τi might
correspond either to the Rayleigh fading case or to the deterministic path
amplitudes case. We will now present the result for the deterministic path
amplitudes with deterministic phases. Hence for Np ≥ 2:

E‖r− r̂‖2 = c2
2 ed
σ2
v

∑Np

i=1 a
2
i

4 e2d
σ4
v

∑Np−1
i=1

∑Np

j=i+1 a
2
i a

2
j sin

2(ψi − ψj)
(3.142)

= ζ

∑Np

i=1 SNRi∑Np−1
i=1

∑Np

j=i+1 SNRi SNRj sin
2(ψi − ψj)

, (3.143)

with SNRi =
ep a2i
σ2
v

and ζ = c2

8π2 W 2 . This is an important result and has

the same structure of the equation given in [35]. In that paper, Np refers
to the number of the BSs receiving LoS signals from the MT. But in our
case, we have one BS and Np paths (either all of them NLoS or 1 LoS and
the rest NLoS), and demonstrate the CRB of the position estimate. The
important thing in our case is that this is the result of a non-overlapping
pulse assumption, which means that paths are well separated. We see the
effects of the geometry through the differences of the AoAs. The geometry
might make the position estimation easier or more difficult (GDoP effect).
Even in an extreme case, estimation of the position might be impossible
because of the geometry, i.e., when all the pairwise differences between AoAs
are either 0 (when all the AoAs are the same) or π radians which nullifies the
denominator of (3.143), leading to an infinite CRB. This kind of situation
describes a geometry where all the last scatterers of the paths are aligned on
the same line (if all the paths are NLoS), or the BS and the last scatterers
of the paths all lie on the same line (when there is 1 LoS path and the rest is
NLoS) passing through the MT. However the probability of such a situation
to take place is extremely small (almost 0). On the other hand, to minimize
the RMSE of the position estimate, the pairwise differences between AoAs
must be either π/2 or 3π/2 radians (ψ1 − ψ2 = π/2 or ψ1 − ψ2 = 3π/2)
for Np = 2 as clearly seen. Obviously this defines an orthogonal geometry
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for Np = 2. Also note that in that case the rows of F become orthogonal.
Below, we provide a plot of this result for Np = 2 and W = 10 MHz. We see
that RMSE of the position estimate might go well below one meter (indeed
0.4775 meters minimum for SNR1 = SNR2 = 20dB).

0
5

10
15

20

0
5

10
15

20

0

1

2

3

4

5

SNR
2
 (dB)

SNR
1
 (dB)

R
M
S
E
(r̂
)(
m
)

Figure 3.9: RMSE of r̂ as a function of SNR1 and SNR2 for ψ2−ψ1 = π/2
for the deterministic case.

Derivation of the RMSE of the position estimate for the Rayleigh fading
case is straightforward. Just need to replace the Jτi,τi ’s with the correspond-
ing entries from the Rayleigh fading section. We easily obtain the result:

E‖r− r̂‖2 = ζ

∑Np

i=1
SNR2

i
SNRi+1

∑Np−1
i=1

∑Np

j=i+1

SNR2
i SNR2

j

(SNRi+1)(SNRj+1) sin
2(ψi − ψj)

, (3.144)

where SNRi =
ep σ2

i
σ2
v
. We will also provide a plot for it for the same con-

figuration of the deterministic plot. The minimum RMSE of the position
estimate is now 0.4798 meters. As expected, RMSE of position estimate is
always higher than the deterministic case. This is not surprising as the FIM
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entries of the LDPs are lower for Rayleigh fading for the same SNRi and
W values. Indeed we will soon generalize this statement.
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Figure 3.10: RMSE of r̂ as a function of SNR1 and SNR2 for ψ2−ψ1 = π/2
for Rayleigh fading case.

If we also talk about GDoP, the minimum GDoP that can be achieved
is 2/

√
Np in 2D scenarios [36]. The GDoP is given by:

GDoP =

√
tr {(FFT )−1}. (3.145)

Also minimum RMSE of position estimate occurs when F has orthogonal
rows for the case of equal path amplitudes (all SNRi’s being equal). For any
Np (Np ≥ 2), this can be achieved when the difference between consecutive
AoAs is π/Np radians, i.e., ψi−ψi−1 = π/Np, i = 2, · · ·Np. In fact, we have
obtained this result via simulations. For sure, it is a critical point in the
cost function in the denominator of the RMSE expression (when all SNRi’s
are equal). However in the second derivative test, the Hessian turned out to
be negative semi-definite which made the test inconclusive. Moreover there
are multiple global maxima as clearly seen, and the one we propose is one



3.3 Discussion 67

of them. Intuitively we will make some more comments about these results.
We can list them as:

1. An increase in the SNR of any path always improves the position
estimation. In fact in a more general statement, we can say that
any increase in the information (Jτi,τi) of any path (or multiple paths)
improves the position estimation if the network geometry is held fixed.
This might be due to an increase in the SNRi’s or due to an increase
in the bandwidth W of the system.

2. From item 1 we figure out that the accuracy of position estimation for
the isotropic case is strictly better than the anisotropic case for the
same network geometry. This is because J′

τi,τi > Jτi,τi .

3. If we add one additional path (assuming the new path does not disturb
the non-overlapping pulse assumption) while keeping the rest of the
geometry fixed, this also always improves the position estimation even
if the new path has a very low SNR.

4. As expected, the biggest contribution for the position estimation comes
from the path with the highest SNR value.

We have carried out the analysis using only delays as LDPs. However as
one can expect, using more information would yield a better localization ac-
curacy. We mean that, in addition to the delays, we can also get use of the
information coming from the path amplitudes (Jai,ai ’s). To see the improve-
ment in the localization, suppose first that we use only one of them, without
loss of generality Ja1,a1 . Let us call Jr, the FIM of r using only delays as
LDPs, and J′

r, the FIM of r using both delays and the path amplitudes as
LDPs. The relation between them can be written as:

J′
r = Jr + Ja1,a1 q1 q

T
1 , (3.146)

where we define q1 as:

q1 =

[
∂a1
∂x
∂a1
∂y

]
. (3.147)

We need the inverses of the FIM’s to reach to a conclusion about their
localization performances. By using the matrix inversion lemma:

J′
r
−1

= Jr
−1 − Ja1,a1Jr

−1q1 q
T
1 Jr

−1

1 + Ja1,a1q
T
1 Jr

−1q1
. (3.148)
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Obviously, the second term in the right-hand side of the equation is a positive
semidefinite matrix. Therefore we can say that:

Jr
−1 ≥ J′

r
−1
, (3.149)

which means that, Jr
−1 is a more positive definite matrix than J′

r
−1 (Jr

−1−
J′
r
−1 ≥ 0). Moreover we can also write:

tr
(
Jr

−1
)
≥ tr

(
J′
r
−1
)
. (3.150)

The interpretation of this result is that covariance matrix of the position
error when only delays are counted is greater than the covariance matrix
of the position error when both delays and one of the path amplitudes are
counted. From (3.148) we can also see that, when Ja1,a1 increases, local-
ization accuracy also increases, as expected. Extending this result to any
number of (greater than one) Jai,ai ’s being incorporated in the analysis is
straightforward. The procedure to follow is similar. Let us assume that p
of the Jai,ai ’s will be used in addition to the Np delays being used where
1 < p ≤ Np. Without loss of generality, we can assume that the indexes
begin from i = 1 and end in i = p. In this case:

J′
r = Jr + Γ (3.151)

where

Γ =

p∑

i=1

Jai,ai qi q
T
i , (3.152)

with qi being defined the same way as q1 before. If we use the matrix
inversion lemma again, we obtain:

J′
r
−1

= Jr
−1 − Jr

−1
(
Γ−1 + Jr

−1
)−1

Jr
−1. (3.153)

The second term in the r.h.s. of the equation is a positive definite matrix.
Hence, once more we can write the following:

Jr
−1 ≥ J′

r
−1
, (3.154)

whose interpretation was already made before.
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3.3.1.2 Isotropic Case with Non-overlapping Pulses

In this section, we show the derivation only for deterministic case. It is
straightforward to extend to the Rayleigh fading case. However, the com-
ments we will make on the results will be valid for both of the cases. In
the 2nd item in the list of the previous section, we already mentioned that
isotropic case results in a better position accuracy than the anisotropic case
when both are utilizing only delays. Now we will investigate the isotropic
case which utilizes only path amplitudes (ai’s) for positioning. In this case,
Jθ is a diagonal matrix with J′

ai,ai ’s on its diagonal. Remember that we
have: ∂ai

∂x = κi
∂τi
∂x . Now in this case F becomes:

F = −1

c

[
κ1 cosψ1 κ2 cosψ2 · · · κNp cosψNp

κ1 sinψ1 κ2 sinψ2 · · · κNp sinψNp

]
. (3.155)

Then we can write c2 Jr =

[
cosψ1 · · · cosψNp

sinψ1 · · · sinψNp

]


κ2
1
J′

a1,a1
· · · 0

...
. . .

...
0 · · · κ2Np

J′

aNp ,aNp







cosψ1 sinψ1

...
...

cosψNp
sinψNp


 .

(3.156)

We see that we end up with the same structure as in the previous section (the
matrix F of the previous section), but now on the diagonals in the middle
matrix there are the terms κ2iJ

′
ai,ai ’s. We already know that, κ2iJ

′
ai,ai =

J′
τi,τi . Therefore this is the same result as if we are performing localization

with only J′
τi,τi ’s. As we mentioned in the previous section, this always

gives a better positioning accuracy than its anisotropic counterpart. The
comments we have made about GDoP before are still valid. The important
remark to be mentioned here is that localization accuracy enhances as the
path-loss coefficient γ increases.

3.3.1.3 Anisotropic Case for Non-overlapping Pulses with LoS
and NLoS Paths

We will now talk about another interesting and a quite frequent scenario
in wireless communications. In this situation, there is a direct LoS path
between BS and MT and the rest of the paths are NLoS. It is more rea-
sonable to model the LoS path with a deterministic path amplitude and
a deterministic phase. For the NLoS paths, Rayleigh fading modeling is
more realistic. Consequently Jτ1,τ1 is given by (3.90) and Jτi,τi ’s are given
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by (3.26) for i ∈ [2, Np]. Derivation of E‖r − r̂‖2 is again carried out via
equations (3.139), (3.140), (3.141).

3.3.1.4 Anisotropic Case with 2 Consecutive Pulses Overlapping

In this section, a more realistic scenario will be investigated, in which two
consecutive pulses are considered to be overlapping with each other. Indeed
this is a scenario very likely to happen. Once again, we take only the delays
into account as being the LDPs. In this case, FIM of the LDPs is not
diagonal, but instead tridiagonal as seen below:

Jθ =




Jτ1,τ1 Jτ1,τ2

Jτ1,τ2 Jτ2,τ2 Jτ2,τ3

. . .
. . .

. . .

. . .
. . . JτNp−1,τNp

JτNp−1,τNp
JτNp ,τNp




. (3.157)

To derive the CRB of the position estimate, we will utilize (3.139) again.
However calculating the determinant of Jr is more challenging now. The
difficulty arises from the non-diagonal structure of Jθ. On the other hand it
is easier to derive the trace and it is given by:

tr (Jr) =
1

c2




Np∑

i=1

Jτi,τi + 2

Np−1∑

i=1

Jτi,τi+1
cos(ψi+1 − ψi)


 . (3.158)

The procedure to calculate the trace is similar to the one before. We just
write Jr directly as the sum of 2× 2 matrices again, and the rest is easy to
see. Calculating the determinant is more difficult due to the terms coming
from the side diagonals of Jθ. However, in a similar manner as we calculated
the determinant for the non-overlapping case, we now derive it as follows:
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detJr =
1

c4

Np−1∑

i=1

Np∑

j=i+1

Jτi,τiJτj ,τj sin
2(ψi − ψj)

+
2

c4

Np∑

i=1

Np−1∑

j=1

Jτi,τiJτj ,τj+1
sin(ψj+1 − ψi) sin(ψj − ψi)

+
1

c4

Np−1∑

i=1

Np−1∑

j=1

Jτi,τi+1
Jτj ,τj+1

(sin(ψj+1 − ψi) sin(ψj − ψi+1)+

sin(ψj − ψi) sin(ψj+1 − ψi+1) ) . (3.159)

Just to remind, we have from (3.139):

E‖r− r̂‖2 = tr (Jr)

detJr

.

Hence plugging equations (3.158), (3.159) into the expression above, we can
obtain the CRB for position estimate. The CRB expression we just derived
is generic like the ones given by equations (3.140), (3.141) which is valid for
all non-overlapping cases for the cases where two consecutive pulses overlap.
Hence it is valid both for deterministic path amplitudes and Rayleigh fading
cases. However for the deterministic case with deterministic phases, we
should make the assumption that we know the phases beforehand to be able
to use this CRB formula.

3.3.1.5 Anisotropic Case with 2 Overlapping Pulses

The anisotropic case with 2 overlapping pulses is a special case of the section
which was just investigated (two consecutive pulses overlapping) for Np = 2.
We first consider the deterministic path amplitudes case with deterministic
phases. For the Rayleigh fading case, we will just provide the plots of the
results. As we expressed before, we assume to know the phases beforehand
for the deterministic case. In that case, Jθ is:

Jθ =

[
Jτ1,τ1 Jτ1,τ2

Jτ1,τ2 Jτ2,τ2

]
. (3.160)

The matrix F is still given by (3.138) for Np = 2. By using equations (3.158),
(3.159) we obtain the expression of E‖r− r̂‖2:
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= c2
Jτ1,τ1 + Jτ2,τ2 + 2Jτ1,τ2 cos(ψ2 − ψ1)

(Jτ1,τ1Jτ2,τ2 − J2
τ1,τ2) sin

2(ψ2 − ψ1)
(3.161)

= ζ
SNR1 + SNR2 + 2

√
SNR1 SNR2ρd cos(φ2 − φ1) cos(ψ2 − ψ1)

SNR1 SNR2(1− ρ2d cos
2(φ2 − φ1)) sin

2(ψ2 − ψ1)
.

Indeed (3.161) is a generic result. We will also exploit it for the Rayleigh
fading case by just substituing the corresponding FIM entries of the Rayleigh
fading section. We recognize that if the phase difference between the two
paths is π/2 or 3π/2, then we obtain exactly the same positioning accuracy
as in the non-overlapping pulse case (for Np = 2) in the same network
geometry. Surprisingly, the positioning accuracy of this overlapping case
might be even better than its non-overlapping counterpart for some values of
the phase difference, SNR’s and correlation coefficient. Therefore we cannot
make a certain conclusion about which one is better in every situation. In
the figures below, we plot the RMSE of the position estimate as a function
of the phase difference. Bandwidth is set to 10 MHz (W = 10 MHz) for
all the plots. We observe the results that we expected to see. Clearly,
in general, the non-overlapping case performs better than the overlapping
case, and increasing correlation between the pulses makes the estimation
more difficult.

Now, by using (3.161), we will try to see what happens in the same
situation for the Rayleigh fading case. We present two plots to make a com-
parison between overlapping and non-overlapping Rayleigh fading cases for
the same bandwidth (W = 10 MHz). As we do not have any phases in this
situation, the plots are obtained with respect to the ψ2−ψ1. Clearly, the es-
timation of position becomes impossible when ψ2−ψ1 → 0. Differently from
the deterministic path amplitudes case, now overlapping case always results
in a higher RMSE of position estimate than its non-overlapping counterpart.

3.4 Conclusion

This chapter was the core of our research where we explored performance
bounds (CRBs) for PDP-F. Many different cases for path amplitude mod-
eling, phase modeling, local identifiability, overlapping and non-overlapping
pulses were investigated. Also the notion of isotropic/anisotropic path am-
plitude modeling was introduced. We have found out many important results
on various subjects. We can briefly list them as follows:
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Figure 3.11: RMSE of r̂ as a function of φ2 − φ1, SNR1 = 10dB, SNR2 =
10dB and ψ2 − ψ1 = π/4 for the deterministic case.

• Local identifiability of the position vector r might be achieved even
with one path for the anisotropic case. Surprisingly pulse shape plays
an important role in local identifiability. For the isotropic case, at least
two paths are required.

• Estimation of path delays improves with SNR and effective bandwidth
of the pulse shape W . On the other hand, estimation of path ampli-
tudes is independent of W . Also estimating the same LDP under the
Rayleigh fading modeling is more difficult than the deterministic path
amplitude with deterministic phases modeling.

• In case of DO, at least two paths are required for the local identifiability
of r even for the anisotropic case.

• Closed-form CRB expressions for the estimation of LDPs under the
overlapping pulse assumption has also been demonstrated. We have
seen that interfering pulses hampers the estimation of the LDPs. If
a ToA based localization system relying on the LoS path is utilized,
and if the LoS pulse overlaps with some other pulses, then the local-
ization accuracy might be substantially degraded depending on the
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Figure 3.12: RMSE of r̂ as a function of φ2 − φ1, SNR1 = 10dB, SNR2 =
20dB and ψ2 − ψ1 = π/4 for the deterministic case.

overlapping ratio.

• Closed-form expressions of the CRB for the estimation of r have been
derived for both deterministic and Rayleigh fading cases. We have
directly seen the positive effects of W and SNR’s of the individual
paths. Also impact of the surrounding geometry (GDoP) has also been
explicitly shown. The geometry conditions enhancing or degrading the
localization performance were explained. Also the special case of two
overlapping pulses has been demonstrated. For the Rayleigh fading
case, it always degrades the localization performance. However for the
deterministic case, it might improve the localization performance for
some specific values of the phase difference, overlapping ratios, etc.
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Figure 3.13: RMSE of r̂ as a function of φ2 − φ1, SNR1 = 10dB, SNR2 =
10dB and ψ2 − ψ1 = π/2 for the deterministic case.
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Figure 3.14: RMSE of r̂ as a function of φ2 − φ1, SNR1 = 10dB, SNR2 =
20dB and ψ2 − ψ1 = π/2 for the deterministic case.
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Figure 3.15: RMSE of r̂ as a function of ψ2 − ψ1, SNR1 = 10dB, SNR2 =
0dB for the Rayleigh fading case.
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Figure 3.16: RMSE of r̂ as a function of ψ2 − ψ1, SNR1 = 10dB, SNR2 =
10dB for the Rayleigh fading case.



Chapter 4

Performance Analysis of
Power Delay Doppler Profile
Fingerprinting Methods

4.1 Introduction

In this chapter, the aim is to extend the analysis that we have performed
for PDP-F to the PDDP-F method. We aim to see the differences on the
estimation of the same LDPs for PDDP-F algorithm. Also the CRBs of
the estimation of new LDPs are among our targets. We are also interested
in observing the local identifiability analysis of the MT position after the
inclusion of Doppler shifts of the paths. Since the concepts are very similar
to the concepts in chapter 3, we will follow the same methodology. However,
we will try to avoid repeating the same things unless they are important.

4.2 CRB Analysis of PDDP-F

We have to revisit the channel model to include the effects of time variation.
Now, as the name implies, we have another parameter in the CIR which
models the time variation of the channel, which is the Doppler shift of each
ray. This new model is presented as:

77
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h(t, τ) =

Np∑

i=1

Ai(t) e
j2πfit p(τ − τi(t)). (4.1)

We are familiar with the other parameters from the previous chapter, except
for the Doppler parameter. The Doppler shift of each ray is given by:

fi = ν cos(ψi − ψν)/λ (4.2)

where ν is the magnitude of the velocity, λ is the carrier wavelength, ψi

and ψν denote the orientation of the incoming wave and the speed vector
respectively. Let us sample the CIR and then stack it in a vector. We obtain
the following:

h(t) =




h(τs, t)
h(2τs, t)

...
h(Nττs, t)


 =

Np∑

i=1

Ai(t) e
j2πfit pτi (4.3)

where we implicitly assume that all paths are resolvable, which was also the
case in the PDP-F analysis. If we write (4.3) in matrix notation and include
the channel estimation noise, we obtain the estimated CIR vector:

ĥ(t) =
[
pτ1 · · ·pτNp

]

︸ ︷︷ ︸
Pτ




A1(t) e
j2πf1t

...

ANp(t) e
j2πfNp t




︸ ︷︷ ︸
b(t)

+ v(t), (4.4)

We will also assume, like in chapter 3, that pulses from different paths are
non-overlapping. In other words we assume that Pτ is an orthogonal matrix
again. For the path amplitudes, there are again two possible models:

• Gaussian model: Ai(t) Gaussian with zero mean, characterized by a
power (variance) i.e. var(Ai) = σ2i ,

• deterministic model: Ai(t) deterministic unknowns.

The GML-based PDDP-F localization technique utilizing the Gaussian model
is explained in detail in [37]. However, for completeness, we will sum up some
important concepts.
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4.2.1 Rayleigh Fading Case

Let θ represent the vector of location dependent parameters (LDP) with
Np paths. If we consider the delays, the variances of the complex path
amplitudes and Doppler shifts as LDPs, θ is defined as:

θ =
[
τ1, τ2, · · · τNp , σ

2
1, σ

2
2, · · · σ2Np

, f1, f2, · · · fNp

]T
. (4.5)

As we know before, the elements of the FIM for the parameter vector θ
is given by (3.7). For the computation of the FIM, we need to derive the
covariance matrix of the channel estimates. For the PDDP-F, the covariance
matrix is a bit different and includes the effects of the Doppler shifts. Before
deriving it we need to introduce some preliminary information of PDDP-F
which can be found in [37]. The main idea is to stack consecutive channel
estimates in time in a vector. By this way, the Doppler effect can be seen.
Now consider the channel response at multiple consecutive time instants
t = ts, 2ts, . . . , nts:

h︸︷︷︸
nNτ×1

=




h(ts)
h(2ts)

...
h(nts)


 (4.6)

Then we get

h =

Np∑

i=1

Ai e(fi)⊗ pτi , e(f) =




ej2πfts

ej2πf2ts

...
ej2πfnts


 (4.7)

We get for the covariance matrix of h

Chh =

Np∑

i=1

σ2i Rf (fi)⊗Rτ (τi) (4.8)

where

Rf (f) = e(f)eH(f) , Rτ (τ) = pτp
H
τ . (4.9)
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We will illustrate this derivation for n = 2, and then do the CRB analysis
for this case. Extension for any n is similar, but becomes computationally
more complex as n increases. For n = 2 we have:

ĥ =

[
ĥ(ts)

ĥ(2ts)

]
. (4.10)

The covariance matrix is:

E

{
ĥĥ

H
}
= C

ĥĥ
=


 E

{
ĥ(ts)ĥ(ts)

H
}

E

{
ĥ(ts)ĥ(2ts)

H
}

E

{
ĥ(2ts)ĥ(ts)

H
}

E

{
ĥ(2ts)ĥ(2ts)

H
}

 (4.11)

where E
{
ĥ(ts)ĥ(ts)

H
}
= E

{
ĥ(2ts)ĥ(2ts)

H
}
= C

ĥĥ
= PτCbP

H
τ +σ2v I, and

Cb is a diagonal matrix with entries [σ21, σ
2
2, · · · , σ2Np

]. E

{
ĥ(ts)ĥ(2ts)

H
}
=

(
E

{
ĥ(2ts)ĥ(ts)

H
})H

= PτCdP
H
τ where Cd is given as:

Cd =



σ21e

−j2πf1ts . . . 0
...

. . .
...

0 . . . σ2Np
e−j2πfNp ts


 . (4.12)

With these derivations we can write the covariance matrix as:

C
ĥĥ

=

[
Pτ 0
0 Pτ

]

︸ ︷︷ ︸
P

[
Cb Cd

CH
d Cb

]

︸ ︷︷ ︸
D

[
PH

τ 0
0 PH

τ

]

︸ ︷︷ ︸
PH

+ σ2v I. (4.13)

Now with the same reasoning, for the GML-based PDDP-F, the second term
in (3.7) vanishes due to the zero mean. So the entries of the FIM are given
by (3.10) again. Just for reminding we write it again,

[Jθ]ij = tr

(
C−1

ĥĥ

∂C
ĥĥ

∂θi
C−1

ĥĥ

∂C
ĥĥ

∂θj

)
. (4.14)

Although we have derived the covariance matrix, we also need its inverse
explicitly. By using Woodbury’s matrix identity again, and exploiting the
orthogonality of matrix P the inverse is obtained as:
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C−1

ĥĥ
= σ−2

v I− σ−4
v P

[
σ2v
ep

I− σ4v
e2p

(
D+

σ2v
ep

I

)−1
]

︸ ︷︷ ︸
G

PH . (4.15)

In fact we made a simple trick here, and used the Woodbury’s matrix identity
twice to compute the inverse of the covariance matrix. The reason to do
this is to avoid ending up in an equation involving the inverse of matrix D.
Because D is a singular positive semi-definite matrix. To see that we simply
check its determinant:

det(D) = det(CbCb −CdC
H
d ). (4.16)

The reason why we can write the determinant in the form above is due to the
commutative property of the diagonal matrices. We realize that moreover,
CdC

H
d = C2

b, which makes the determinant zero resulting in a singular
matrix D. Hence in (4.15), there is no term involving the inverse of D
directly. The inverse results after adding a scaled identity matrix to D,
which guarantees invertibility.

4.2.1.1 Anisotropic Path Amplitude Variances

We start with the anisotropic case again. For the computation of the FIM
entries, partial derivatives of the covariance matrix with respect to the pa-
rameters are required:

∂C
ĥĥ

∂σ2i
= P

[
ei 0
0 ei

] [
1 zi
z∗i 1

]

︸ ︷︷ ︸
Zi

[
eTi 0
0 eTi

]
PH , (4.17)

∂C
ĥĥ

∂fi
= P

[
ei 0
0 ei

] [
0 si
s∗i 0

]

︸ ︷︷ ︸
Si

[
eTi 0
0 eTi

]
PH , (4.18)

∂C
ĥĥ

∂τi
= −P′

[
ei 0
0 ei

] [
[Cb]i,i [Cd]i,i[
CH

d

]
i,i

[Cb]i,i

]

︸ ︷︷ ︸
Di

[
eTi 0
0 eTi

]
PH (4.19)

−P

[
ei 0
0 ei

] [
[Cb]i,i [Cd]i,i[
CH

d

]
i,i

[Cb]i,i

] [
eTi 0
0 eTi

]
P′H ,(4.20)
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where zi = e−j2πfits , si = −j2πtsσ2i zi, Di = σ2iZi and ei is the Np × 1
elementary vector having 1 in its ith position. After having calculated these
partial derivatives, we can begin deriving the elements of the FIM.

Jτi,τi = tr

(
C−1

ĥĥ

∂C
ĥĥ

∂τi
C−1

ĥĥ

∂C
ĥĥ

∂τi

)
(4.21)

= 2σ−4
v

(
ep ed − b2

) (
tr (DiDi)− σ−2

v ep tr (GiDiDi)
)
(4.22)

where Gi is defined similarly as Di. To obtain the matrix Gi, we will get
use of the block matrix inversion lemma:

[
X Y
Z T

]−1

=

[ (
X−YT−1Z

)−1 −X−1Y
(
T− ZX−1Y

)−1

−T−1Z
(
X−YT−1Z

)−1 (
T− ZX−1Y

)−1

]
.

(4.23)
By using this block matrix inversion lemma and replacing the matrix D
defined in (4.13), we obtain Gi as follows:

Gi =

[
σ2i σ

2
v/(2epσ

2
i + σ2v) σ2i σ

2
vzi/(2epσ

2
i + σ2v)

σ2i σ
2
vz

∗
i /(2epσ

2
i + σ2v) σ2i σ

2
v/(2epσ

2
i + σ2v)

]
= γiZi, (4.24)

with γi =
σ2i σ

2
v

2epσ2i + σ2v
. Hence with Gi and Di, we can calculate:

tr (DiDi) = 4σ4i , (4.25)

tr (GiDiDi) = 8γiσ
4
i . (4.26)

All these at hand, we obtain:

Jτi,τi =
4σ4i σ

−2
v (eped − b2)

ep σ2i + σ2v/2
. (4.27)

Check the similarity between the corresponding entry for the PDP-F case
in (3.26). As expected, the information has increased since we are now
effectively using two channel estimates. Information is now higher than
twice its value in the PDP-F section. In fact if we replaced the channel
estimation error variance with σ2v/2 in (3.26), we would have obtained the
same result above. Hence this reminds us the noise averaging effect. We
continue the computation of the other entries of the FIM.
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Jτi,σ2
i

= tr

(
C−1

ĥĥ

∂C
ĥĥ

∂τi
C−1

ĥĥ

∂C
ĥĥ

∂σ2i

)
(4.28)

= −2 a ep σ
−4
v ( tr (DiZi) (4.29)

− σ−2
v ep tr (DiGiZi)

− σ−2
v ep tr (GiDiZi)

+ σ−4
v e2p tr (GiDiGiZi) )

= 0, (4.30)

and

Jτi,fi = tr

(
C−1

ĥĥ

∂C
ĥĥ

∂τi
C−1

ĥĥ

∂C
ĥĥ

∂fi

)
(4.31)

= −2 a ep σ
−4
v ( tr (DiSi) (4.32)

− σ−2
v ep tr (DiGiSi)

− σ−2
v ep tr (GiDiSi)

+ σ−4
v e2p tr (GiDiGiSi) )

= 0 (4.33)

since a = 0. This is an important result. Estimate of the path delay is
uncorrelated with the estimate of the path Doppler shift. We go on with the
other entries of the FIM.

Jσ2
i ,σ

2
i

= tr

(
C−1

ĥĥ

∂C
ĥĥ

∂σ2i
C−1

ĥĥ

∂C
ĥĥ

∂σ2i

)
(4.34)

= σ−4
v e2p ( tr (ZiZi) (4.35)

− epσ
−2
v tr (ZiGiZi)

− epσ
−2
v tr (GiZiZi)

+ e2pσ
−4
v tr (GiZiGiZi) )

where
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tr (ZiZi) = 4, (4.36)

tr (ZiGiZi) = 8γi, (4.37)

tr (GiZiZi) = 8γi, (4.38)

tr (GiZiGiZi) = 16γ2i . (4.39)

Hence we get:

Jσ2
i ,σ

2
i
=

(
ep

ep σ2i + σ2v/2

)2

. (4.40)

Once more, the reader should compare it with its corresponding entry in
(3.32). Obviously substituting σ2v/2 for the channel estimation error variance
would end up in the same result above. For the remaining entries of the FIM,
we continue to derive:

Jσ2
i ,fi

= tr

(
C−1

ĥĥ

∂C
ĥĥ

∂σ2i
C−1

ĥĥ

∂C
ĥĥ

∂fi

)
(4.41)

= σ−4
v e2p ( tr (ZiSi) (4.42)

− epσ
−2
v tr (ZiGiSi)

− epσ
−2
v tr (GiZiSi)

+ e2pσ
−4
v tr (GiZiGiSi) )

where

tr (ZiSi) = 0, (4.43)

tr (ZiGiSi) = 0, (4.44)

tr (GiZiSi) = 0, (4.45)

tr (GiZiGiSi) = 0, (4.46)

resulting in Jσ2
i ,fi

= 0. We obtained a similar result for the delay and
Doppler estimation. Now the same situation occurs for the path ampli-
tude. Hence, the path amplitude variance estimate is uncorrelated with
the Doppler shift estimate. There is one remaining entry of the FIM to be
computed which we derive as following:
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Jfi,fi = tr

(
C−1

ĥĥ

∂C
ĥĥ

∂fi
C−1

ĥĥ

∂C
ĥĥ

∂fi

)
(4.47)

= σ−4
v e2p ( tr (SiSi) (4.48)

− epσ
−2
v tr (SiGiSi)

− epσ
−2
v tr (GiSiSi)

+ e2pσ
−4
v tr (GiSiGiSi) )

where

tr (SiSi) = 8π2t2sσ
4
i , (4.49)

tr (SiGiSi) = 8γiπ
2t2sσ

4
i , (4.50)

tr (GiSiSi) = 8γiπ
2t2sσ

4
i , (4.51)

tr (GiSiGiSi) = 0, (4.52)

which results in

Jfi,fi =
8π2t2s e

2
p σ

4
i σ

−2
v

2 ep σ2i + σ2v
. (4.53)

Due to the non-overlapping pulse assumption, the terms corresponding to
different paths are null, e.g., Jfi,fj = 0 or Jτi,σ2

j
= 0 for i 6= j. The derivation

of the FIM entries has been completed. We can now check the conditions
for local identifiability and also derive the CRBs. First we investigate the
Np = 1 case again. In this case FIM is:

Jθ =




Jτ1,τ1 0 0
0 Jσ2

1
,σ2

1
0

0 0 Jf1,f1


 (4.54)

Clearly local identifiability of r is achieved. When ep ed 6= b2, Jθ is full rank
for any Np. For a real (or symmetric) pulse shape, it is always full rank. It
is easy to derive the CRBs because of the diagonal nature of the FIM. We
just need the inverses of the FIM entries. Note that, for the estimation of
the delays, having a real (or symmetric) pulse makes the estimation easier.
In this case, the CRB for the estimation of τi is given as:

E(τi − τ̂i)
2 ≥ 1

16π2W 2SNRi

(
1 +

1

2SNRi

)
(4.55)
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where SNRi =
ep σ2

i
σ2
v
. As we mentioned before, estimating the delay is now

easier than it was for the PDP-F case. The CRBs of the other parameters
are derived as:

E(σ2i − σ̂2i )
2 ≥ σ4i

(
1 +

1

2SNRi

)2

(4.56)

E(fi − f̂i)
2 ≥ 1

4π2 t2s SNRi

(
1 +

1

2SNRi

)
. (4.57)

It is noteworthy to check the similarity between the CRBs of delay and
the Doppler parameter. The delay estimation improves with the increasing
bandwidth (W ), while the Doppler estimation improves when ts increases.
This is a reasonable result because when ts increases, then the phase change
will also increase. Therefore it will be easier to extract the Doppler shift
from the change of phase. But there is one important thing to pay attention
here. If ts increases too much or in other words the channel estimates are
obtained less frequently, then this may lead to aliasing for the estimation of
fi, because the highest Doppler shift that can be estimated is bounded by
0.5/ts.

4.2.1.1.1 Effect of the Delay Offset It is worthwhile to investigate
the effects of the DO also for PDDP-F method. The reason to explore this
is that now we expect to achieve local identifiability with only 1 path. This is
because we now have an additional parameter, namely fi, which also carries
position dependent information. We know that in case of a DO, delay does
not carry any information about position. However with σ21 and f1, we
expect to have local identifiability with Np = 1. We will not repeat the
calculations that we have carried out in the PDP-F method because we just
need some little modifications and additions. Instead we will provide a brief
explanation of the situation now. The LDP vector to be estimated is (for
Np = 1):

θ =
[
τ10 , σ

2
1, f1, τ0

]
.T (4.58)

Obviously Jτi0 ,τi0
is given by (4.27), and Jσ2

i ,σ
2
i
still by (4.40), and Jτi0 ,σ

2
i
=

0. We also have: Jτi0 ,τ0
= Jτi0 ,τi0

, Jτ0,τ0 =

Np∑

i=1

Jτi0 ,τi0
and Jτ0,σ2

i
= 0. Hence

for Np = 1, the FIM will be:
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Jθ =




Jτ10 ,τ10
0 0 Jτ10 ,τ10

0 Jσ2
1
,σ2

1
0 0

0 0 Jf1,f1 0
Jτ10 ,τ10

0 0 Jτ10 ,τ10


 . (4.59)

For matrix F, it has the following structure (for Np = 1):

F =
[
f1 f2 f3 −f1

]
. (4.60)

Consequently, all these lead to

Jr = FJθF
T = Jσ2

1
,σ2

1
f2 f2T + Jf1,f1f3 f3

T (4.61)

which is clearly rank two. Hence, with Np = 1, local identifiability of r can
be achieved even in the case of a DO for PDDP-F method. As mentioned
before, this is due to the Doppler parameter which is not present in the
PDP-F method.

4.2.1.1.2 Effect of the Frequency Offset In communication systems,
when there is a mismatch between the frequencies of the transmitter and
receiver oscillators (when the receiver oscillator frequency is not exactly the
same as the carrier frequency), another defect arises. This is known as the
frequency offset (FO) problem which we also mentioned in chapter 2. This
is analogous to the DO problem in the sense that it now adds an offset f0
to the Doppler shifts, i.e., fi0 = fi + f0. We will pursue a similar approach
that we did for the DO case. For Np = 1, the LDP vector is:

θ =
[
τ1, σ

2
1, f10 , f0

]
.T (4.62)

Obviously Jτi,τi is still given by (4.27), and Jσ2
i ,σ

2
i
still by (4.40). We also

have: Jfi0 ,f0
= Jfi0 ,fi0

, Jf0,f0 =

Np∑

i=1

Jfi0 ,fi0
. Hence for Np = 1, the FIM will

be:

Jθ =




Jτ1,τ1 0 0 0
0 Jσ2

1
,σ2

1
0 0

0 0 Jf10 ,f10
Jf10 ,f10

0 0 Jf10 ,f10
Jf10 ,f10


 . (4.63)

The matrix F has the following structure, for Np = 1:
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F =
[
f1 f2 f3 −f3

]
. (4.64)

Consequently,

Jr = FJθF
T = Jτ1,τ1f1 f1

T + Jσ2
1
,σ2

1
f2 f2T (4.65)

which is obviously rank two. Hence, with Np = 1, local identifiability of
r can be achieved even in the case of a FO. It is clearly seen that all the
information comes from delay and path amplitudes. Due to the FO, Doppler
shift does not carry any information about position.

4.2.1.1.3 Effect of Delay and Frequency Offset Simultaneously
Naturally, there is the possibility that both DO and FO problems take place
at the same time. To investigate this case, we will get use of the results of
the previous delay and FO sections. For Np = 1, the LDP vector is:

θ =
[
τ10 , σ

2
1, f10 , τ0, f0

]
.T (4.66)

And for Np = 1, the FIM will be:

Jθ =




Jτ10 ,τ10
0 0 Jτ10 ,τ10

0

0 Jσ2
1
,σ2

1
0 0 0

0 0 Jf10 ,f10
0 Jf10 ,f10

Jτ10 ,τ10
0 0 Jτ10 ,τ10

0

0 0 Jf10 ,f10
0 Jf10 ,f10



. (4.67)

Additionally, the matrix F, has the following structure for Np = 1:

F =
[
f1 f2 f3 −f1 −f3

]
. (4.68)

In this case, we obtain:

Jr = FJθF
T = Jσ2

1
,σ2

1
f2 f2T , (4.69)

which is rank one. This is an expected result. Having offsets both in delay
and frequency resulted in a lack of knowledge from them. In this case, infor-
mation about position only comes from the path amplitude which eventually
resulted in a rank one FIM for the position vector r. Hence for Np = 1, it is
not possible to achieve the local identifiability of r when we have both DO
and FO simultaneously.
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4.2.1.2 Isotropic Path Amplitude Variances

The same phenomenon that was investigated for the PDP-F method is now
examined for PDDP-F method. The path amplitude variances are modeled
as distance dependent, i.e., σ2i = k

τγi
. We will not repeat the same procedure

here. But the difference from the PDP-F method is now the inclusion of the
Doppler parameter into the LDP vector. For the LDP, we have only delays
and Doppler shifts. For Np = 1, FIM is:

Jθ =

[
J′

τ1,τ1 0
0 J′

f1,f1

]
. (4.70)

It is easy to see that J′
fi,fi is the same as in the anisotropic case, i.e.,

J′
fi,fi = Jfi,fi . For the delays, we obtain the same relationship as we had in

the PDP-F case:

J′
τi,τi = Jτi,τi + η2i Jσ2

i ,σ
2
i
. (4.71)

Clearly rank(Jθ) = 2 for Np = 1. There is now the possibility of achieving
the local identifiability of r with only one path. Remember that it was not
possible to do that with one path for PDP-F method. However we should
check matrix F with the inclusion of the partial derivatives of fi’s. For
Np = 1:

F =

[
−1

c cosψ1
∂f1
∂x

−1
c sinψ1

∂f1
∂y

]
. (4.72)

where we have:

∂fi
∂x

= −ν
λ
sin(ψi − ψν)

∂ψi

∂x
(4.73)

∂fi
∂y

= −ν
λ
sin(ψi − ψν)

∂ψi

∂y
(4.74)

where ψi which is defined in (3.136) or (3.137), is a function of the MT’s
coordinates. After substituting ψi, we obtain:

∂ψi

∂x
/
∂ψi

∂y
= −

y − ysini

x− xsini

(4.75)

whereas
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cosψi/ sinψi =
x− xsini

y − ysini

, (4.76)

which guarantees the full rankness of F (last two ratios given above cannot
be equal to each other). Hence for Np = 1, it is possible to achieve the local
identifiability of the position vector r. This result is different from what we
have obtained in the corresponding section of PDP-F method. Now local
identifiability is possible even with one path. The reason is that now each
path carries two distinct information instead of one. One information comes
from the Doppler shift of the path, while the other information from the
delay (or the amplitude variance as they are coupled). CRBs are easy to
derive. The CRB for the estimation of fi is still given by (4.57). For the
delay we have:

E(τi − τ̂i)
2 ≥ 1

J′
τi,τi

=
1

Jτi,τi + η2i Jσ2
i ,σ

2
i

, (4.77)

and the CRB for the amplitude variance is:

E(σ2i − σ̂2i )
2 ≥ 1

Jσ2
i ,σ

2
i
+ Jτi,τi/η

2
i

(4.78)

by using the transformation of parameters technique.

4.2.2 Deterministic Path Amplitude Case

Now the second alternative for modeling the path amplitudes is investigated
as we have also done in the PDP-F case. We revisit (4.4) for the chan-
nel model and write the complex path amplitude of path i in as Ai(t) =
ai(t)e

jφi(t). We will only deal with the case where the phases are considered
as deterministic unknowns. We will investigate the case of real (or sym-
metric) pulses, which makes b = 0. As we will see soon, we now have to
include the phases into the LDPs, because there will be correlation between
the phases and the Doppler shifts. Moreover, the results will be given for
any n (n > 1). Now, in this situation, our LDP vector is:

θ =
[
τ1, τ2, · · · τNp , a1, a2, · · · aNp , f1, f2, · · · fNp , φ1, φ2, · · · φNp

]
.T

(4.79)
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Because of the deterministic path amplitudes, the mean of the channel esti-

mates is not zero: µ = P




b(0)
...

b((n− 1)ts)


. It is important to say that size

of P and P′ is changed accordingly (nNτ×nNp) and all the related matrices,
e.g. C

ĥĥ
is now an nNτ × nNτ matrix and is given by: C

ĥĥ
= σ2vI. Under

these circumstances, FIM is given as:

[Jθ]ij = 2ℜ
([

∂µ

∂θi

]H
C−1

ĥĥ

[
∂µ

∂θj

])
. (4.80)

We again consider the case where the pulses from different paths are non-
overlapping.

4.2.2.1 Anisotropic Path Amplitudes

Before deriving the FIM entries, one needs the partial derivatives:

∂µ

∂τi
= −P′




ei · · · 0
...

. . .
...

0 · · · ei







ai e
jφi

...

ai e
jφi ej2π(n−1)fits


 , (4.81)

∂µ

∂ai
= P




ei · · · 0
...

. . .
...

0 · · · ei







ejφi

...

ejφi ej2π(n−1)fits


 , (4.82)

∂µ

∂fi
= P




ei · · · 0
...

. . .
...

0 · · · ei







0
...

j2π(n− 1) ts ai e
jφi ej2πfits


 . (4.83)

After computing the partials, FIM entries can be derived as follows:

Jτi,τi =
2

σ2v
ℜ
([

∂µ

∂τi

]H [ ∂µ
∂τi

])
(4.84)

=
2

σ2v
na2i ed, (4.85)
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Jτi,ai =
2

σ2v
ℜ
([

∂µ

∂τi

]H [ ∂µ
∂ai

])
(4.86)

= − 2

σ2v
nai a (4.87)

= 0, (4.88)

Jτi,fi =
2

σ2v
ℜ
([

∂µ

∂τi

]H [ ∂µ
∂fi

])
(4.89)

= − 2

σ2v
n (n− 1) a2i b π ts (4.90)

= 0. (4.91)

This is an interesting result. For the Rayleigh fading case, there was no
correlation between the estimates of τi and fi for any pulse shape, but here,
because of the real (or symmetric) pulse assumption, it is null. The correla-
tion depends on the pulse. We derive the other entries of the FIM:

Jτi,φi =
2

σ2v
ℜ
([

∂µ

∂τi

]H [ ∂µ
∂φi

])
(4.92)

= − 2

σ2v
na2i b (4.93)

= 0, (4.94)

due to the same reason.

Jai,ai =
2

σ2v
ℜ
([

∂µ

∂ai

]H [ ∂µ
∂ai

])
(4.95)

=
2

σ2v
n ep, (4.96)

Jai,fi =
2

σ2v
ℜ
([

∂µ

∂ai

]H [ ∂µ
∂fi

])
(4.97)

= 0, (4.98)
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Jai,φi =
2

σ2v
ℜ
([

∂µ

∂ai

]H [ ∂µ
∂φi

])
(4.99)

= 0, (4.100)

Jfi,fi =
2

σ2v
ℜ
([

∂µ

∂fi

]H [ ∂µ
∂fi

])
(4.101)

=
4

3σ2v
n (n− 1) (2n− 1) a2i ep π

2 t2s, (4.102)

Jfi,φi =
2

σ2v
ℜ
([

∂µ

∂fi

]H [ ∂µ
∂φi

])
(4.103)

=
2

σ2v
n (n− 1) a2i ep π ts, (4.104)

Jφi,φi =
2

σ2v
ℜ
([

∂µ

∂φi

]H [ ∂µ

∂phii

])
(4.105)

=
2

σ2v
na2i ep. (4.106)

We have completed the derivation of the FIM. We know that the cross entries
corresponding to different paths are null. For Np = 1, FIM is:

Jθ =




Jτ1,τ1 0 0 0
0 Ja1,a1 0 0
0 0 Jf1,f1 Jf1,φ1

0 0 Jf1,φ1
Jφ1,φ1


 . (4.107)

This matrix is always full rank, which guarantees the local identifiability of
r. To derive the CBRs for the LDPs for any Np > 1, we first check the
structure of the FIM for Np > 1:
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Jθ =




Jτ1,τ1
. . .

Ja1,a1
. . .

Jf1,f1 Jf1,φ1

. . .
. . .

JfNp ,fNp
JfNp ,φNp

Jf1,φ1
Jφ1,φ1

. . .
. . .

JfNp ,φNp
JφNp ,φNp




.

To derive the CRBs for the estimation of LDPs, we need to compute the
diagonal entries of the inverse of Jθ. For this purpose, we will use Cramer’s
rule.

[
Jθ

−1
]
i,i

=
det
(
J̃θ [ii]

)

det (Jθ)
, (4.108)

where J̃θ [ii] is the matrix obtained by deleting the ith row and ith column of
Jθ. Due to the special structure of Jθ we can easily make this calculation. We
might compute its determinant either via Laplace expansion in a recursive
manner or via making elementary row and column swapping operations, to
obtain a matrix whose determinant is easy to compute. We prefer the second
one. We know that swapping two rows (or two columns) has the effect of
multiplying the determinant by -1. We will make row swapping Np times,
and also column swapping Np times. So 2Np swapping operations leaves
the determinant unchanged. After these operations we obtain the following
matrix:
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J′
θ =




Jτ1,τ1
. . .

Ja1,a1
. . .

Jf1,f1 Jf1,φ1

Jf1,φ1
Jφ1,φ1

. . .
. . .

JfNp ,fNp
JfNp ,φNp

JfNp ,φNp
JφNp ,φNp




,

whose determinant can be computed easily. As clearly seen, the submatrix
obtained by selecting the first 2Np rows and 2Np columns is a diagonal
matrix, and the rest is the block diagonal part. Now we can apply the
Cramer’s rule. Computing the CRBs for τi’s and ai’s is easier, because they
just appear as a single factor in the determinant. When that row and column
are deleted, then only this single factor will disappear. Hence the ratio will

be the inverse of the single factor, e.g., det (Jθ) = Jτi,τi det
(
J̃θ [ii]

)
. Hence

we have:

E(τi − τ̂i)
2 ≥ 1

Jτi,τi

=
σ2v

2na2i ed
(4.109)

=
1

8nπ2W 2SNRi
, (4.110)

where SNRi =
ep a2i
σ2
v
. Similarly, we derive:

E(ai − âi)
2 ≥ 1

Jai,ai

=
σ2v

2n ep
(4.111)

=
a2i

2nSNRi
. (4.112)

By using the Cramer’s rule again, we derive the CRBs for the estimation of
fi’s and φi’s. For example, for the CRB of fi, when we delete the row and
column where Jfi,fi is located, only Jφi,φi will remain from the 2× 2 block.
Hence, the ratio in the Cramer’s rule will be:
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E(fi − f̂i)
2 ≥ 1

Jfi,fi − J2
fi,φi

/Jφi,φi

=
3

2n (n2 − 1)π2 t2s SNRi
, (4.113)

and similarly for φi:

E(φi − φ̂i)
2 ≥ 1

Jφi,φi − J2
fi,φi

/Jfi,fi

=
2n− 1

n (n+ 1)SNRi
. (4.114)

In order to prevent aliasing, we must still impose fi’s are below 0.5/ts.
When we replace n = 2, and compare it with the corresponding CRB of the
Rayleigh fading case, we see that estimating fi’s is easier than the Rayleigh
fading case. Naturally we see that it is impossible to estimate the Doppler
shift with just one channel estimate (when n = 1). This is also parallel to
the Rayleigh fading case. In that case, the effects of the Doppler shifts are
visible in the covariance matrix of the channel estimates only when n ≥ 2.
Another comment is that with the increase of n, estimating Doppler shift
becomes easier than delay, amplitude or phase estimation. This is because
the CRB for the others are inversely proportional to n, while for the Doppler
shift it is inversely proportional to n3. In figures 4.1 and 4.2, we provide
the CRB plots for the estimation of fi and φi respectively for n = 4. We
use ts = 10 ms, which is reasonable for a channel with not so high Doppler
spread (coherence time is not very short).

4.2.2.2 Isotropic Path Amplitudes

As we have done before, we now model the path amplitudes as ai =
m

τ
γ/2
i

again. We have dai
dτi

= κi = −mγ
2 τ

−(γ/2+1)
i . The real pulse assumption is

still valid. LDP vector will consist of delays, Doppler shifts and the phases.
By applying the transformation of parameters technique, the CRBs for the
path amplitudes will be derived from the CRBs of the delays as carried out
before. For Np = 1, FIM is:

Jθ =




J′
τ1,τ1 0 0
0 J′

f1,f1 J′
f1,φ1

0 J′
f1,φ1

J′
φ1,φ1


 . (4.115)

Obviously, the FIM entries for Doppler shifts and phases are the same as in
the anisotropic case. Hence the CRBs for the estimation of Doppler shifts
and phases are still given by Equations (4.113) and (4.114) respectively. For
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Figure 4.1: RMSE of f̂i as a function of SNRi.

the delays and path amplitudes, we first need the following partial derivative
to compute the FIM entries:

∂µ

∂ai
= P




ei · · · 0
...

. . .
...

0 · · · ei







ejφi

...

ejφi ej2π(n−1)fits


 (4.116)

− 1

κi
P′




ei · · · 0
...

. . .
...

0 · · · ei







ai e
jφi

...

ai e
jφi ej2π(n−1)fits


 . (4.117)

Also ∂µ
∂τi

= κi
∂µ
∂ai

. By exploiting these, we obtain:

J′
τi,τi = Jτi,τi + κ2iJai,ai =

2n

σ2v
(a2i ed + κ2i ep), (4.118)

where Jτi,τi and Jai,ai are the anisotropic FIM entries. The CRBs are derived
as:
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Figure 4.2: RMSE of φ̂i as a function of SNRi.

E(τi − τ̂i)
2 ≥ 1

J′
τi,τi

=
1

Jτi,τi + κ2iJai,ai

, (4.119)

E(ai − âi)
2 ≥ 1

Jai,ai + Jτi,τi/κ
2
i

. (4.120)

Hence, estimating both the delay and the path amplitude is easier than the
anisotropic case, as expected.

4.3 Conclusion

We focused mainly on the CRBs of the LDPs. As one can expect, esti-
mation performances of the same LDPs are improved when compared with
the PDP-F method. This is due to the fact that we are effectively using
more channel estimates (hence more data). Another remarkable conclusion
is that, mobility of the MT, hence the integration of the Doppler shifts into
the scenario enhanced the local identifiability of the MT position. This is
because Doppler shifts also provide information about the position which
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in turn improves the local identifiability of MT position, e.g. identifiability
might be achieved even with one path for isotropic modeling. Readers can
ask why we did not mention the localization performance of the PDDP-F.
In fact, we implicitly talked about it in chapter 3. There, we have provided
generic formulas to see the CRB of the position estimation as a function of
the information obtained from the delays. The only thing to be done here is
to substitute the new information values obtained for PDDP-F algorithm.
We just did not want to repeat the same things here. Needless to say, lo-
calization performance of PDDP-F is strictly superior to PDP-F algorithm
due to the higher information. However, as it is usually the case, there is
a trade-off between complexity and performance. In addition to DO, FO
problem might also be present in PDDP-F. Unless both impairments oc-
cur simultaneously, local identifiability might still be achieved with only one
path.
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Chapter 5

Pairwise Error Probability
Analysis for Power Delay
Profile Fingerprinting
Methods

5.1 Introduction

We now deal with a new problem in the field of localization. PEP per-
formance of PDP-F algorithm will be studied. In fact, PEP analysis is a
well-known concept in digital communications, e.g., calculating the proba-
bility of error when a vector of symbols sm is transmitted but another vector
of symbols sn is detected at the receiver [38]. Under different path ampli-
tude modelings and cost functions, we will try to obtain closed-form results
for PEP.

5.2 PEP of the LS Technique for Deterministic
Path Amplitudes

The specular SISO CIR is given as:

101
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h(t, τ) =

Np∑

i=1

Ai(t) p(τ − τi(t)). (5.1)

We already know the parameters from previous chapters. We can write the
complex path amplitude of path i in polar form as Ai(t) = ai(t)e

jφi(t). Let
us now consider sampling the CIR with a sampling period of τs leading to
Nτ samples and stacking them in a vector as follows:

h(t) =




h(τs, t)
h(2τs, t)

...
h(Nττs, t)


 =

Np∑

i=1

Ai(t) pτi , (5.2)

where pτ is defined in (3.3). If we write (5.2) in matrix notation and include
the channel estimation noise, we obtain the estimated CIR vector as:

ĥ(t) =
[
pτ1 · · ·pτNp

]

︸ ︷︷ ︸
Pτ




A1(t)
...

ANp(t)




︸ ︷︷ ︸
a(t)

+v(t). (5.3)

where v(t) is the complex additive white Gaussian noise vector with covari-
ance matrix σ2v I. For the techniques relying on PDPs, PDP estimates are
classically obtained by averaging the magnitude squared version of the CIR
over a time duration. However, if the mobile moves rapidly and/or some
paths are not resolvable (due to the limited bandwidth of the pulse-shape
p(t), path contributions can overlap), the averaging gives a poor PDP es-
timation, and then a poor location accuracy. We estimate the PDP vector
as:

P̂DP =
1

T

T∑

t=1

∣∣∣ĥ(t)
∣∣∣
2

(5.4)

where T is the number of channel observations. There is one thing that needs
to be clarified that the absolute squaring operation is element-wise. Hence
the resulting PDP estimate is another vector having the same length as the
channel estimates. For the path amplitudes, we consider two possibilities:

• deterministic model: Ai(t) deterministic unknowns
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• Gaussian model: Ai(t) Gaussian with zero mean, characterized by a
power (variance) i.e. var(Ai) = σ2i , which corresponds to Rayleigh
fading for the magnitudes.

We will consider the first case now where the path amplitudes are considered
as deterministic unknowns. The PEP can be defined as follows when the LS
criteria is the cost function:

PEP = Pr (||P̂DP−PDPF || < ||P̂DP−PDPT ||), (5.5)

where P̂DP is the estimated PDP vector defined in (5.4), PDPT is the
true PDP vector which is computed off-line from the stored database and
PDPF is the PDP vector to be erroneously detected. Every position in
the database (Ray Tracing database or any other pre-computed database)
is distinguishable from each other, e.g. they have either different number of
paths, or path delays or amplitudes (variances) are different. Hence there
are unique entries in the database so that fingerprinting can work correctly.
PDPT and PDPF are given as:

PDPT = PDPtrue + σ2v1, PDPF = PDPfalse + σ2v1, (5.6)

where 1 is a vector of all 1’s which is added to include the effects of the
noise. PDPtrue and PDPfalse are computed with delays and amplitudes of
paths in the database by averaging over random phases. They are given as:

PDPtrue =

Np∑

i=1

a2i |pτi |2 , PDPfalse =
L∑

i=1

b2i |pζi |2 , (5.7)

Based on (5.4), P̂DP can be calculated as:

P̂DP =
1

T

T∑

t=1

(
|v(t)|2 + 2(ℜh(t)⊙ℜv(t) + ℑh(t)⊙ℑv(t))

)

+ PDPtrue, (5.8)

where ⊙ stands for the Hadamard element-wise multiplication. In this case,
it is used to multiply the corresponding elements of the real and imaginary
parts of the noise and channel vectors. We will make an important simplifi-
cation in (5.8) and assume that the terms in the innermost parentheses tend
to go to 0. In other words they will be replaced by their expected values as



104Chapter 5 Pairwise Error Probability Analysis for Power Delay Profile Fingerprinting

the noise is a zero mean process. In fact it is a reasonable assumption when

the number of observations T is high. Hence P̂DP is now approximated as:

P̂DP ≈ PDPtrue +
1

T

T∑

t=1

|v(t)|2 . (5.9)

After these calculations and definitions we can turn back to the PEP for-
mulation. In fact PEP can also be stated equivalently as:

PEP = Pr (||P̂DP−PDPF ||2 < ||P̂DP−PDPT ||2). (5.10)

This equivalent formulation is easier to deal with. For simplicity of notation,

let us call P̂DP as x, PDPfalse as y and PDPtrue as z. Then PEP becomes:

Pr

(
xT (z − y) <

(z+ σ2v1)
T (z+ σ2v1)− (y + σ2v1)

T (y + σ2v1)

2

)
. (5.11)

If we check (5.9), we immediately recognize that first term of the equation
is deterministic while the second term is the random part. If we do the
algebra, we can reorganize (5.11) as:

PEP = Pr

(
(z − y)T

T∑

t=1

|v(t)|2 < T

2
(2k2 − k1 − k3 + 2M)

)
(5.12)

where k1 = zTz, k2 = yT z, k3 = yTy and M = σ2v1
T (z − y). Here k2

is an important parameter which gives information about the overlapping
between the vectors. As it is clear, it is always non-negative. It can be 0 if
and only if the vectors do not overlap with each other at all. Mathematical
formulation of PEP is almost complete. When we explore (5.12), it is a
summation of random variables on the left hand side. We can divide the
analysis for each turn of T . Let us call the random variable as Wi for the
ith loop. So the left hand side as a result becomes a random variable W
which is W =

∑T
i=1Wi. However finding the distribution of W is not easy

as we will see later. Therefore we will just compute the distribution of a
Wi (mean and variance of W1 without loss of generality). And then we will
call the central limit theorem (CLT) for W as all the Wi’s are identically
distributed. Remember that v(t) is a complex white Gaussian noise vector.
Hence each element of the |v(t)|2 vector is composed of sums of squares
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of two zero mean Gaussian random variables. It is well known that this
leads to the exponential distribution with mean 1/λ = σ2v , i.e., fM (m) =
λe−mλ, m ≥ 0 [39]. Therefore W1 will be a summation of exponential
random variables. However they all have different parameters (different
λ’s) because of the multiplication by the vector (z − y)T which makes the
calculation of the overall distribution more difficult. In other words it would
be a summation of independent but not identically distributed exponential
random variables. If all had the same parameters, we know that this leads to
the Erlang distribution [40]. The distribution of W1 which is a summation
of K exponential random variables with means 1/λi’s is derived as (see
appendix B for the derivation):

fW1
(u) =

(
K∏

i=1

λi

)




K∑

j=1

e−λju

K∏

l=1
l 6=j

(λl − λj)




. (5.13)

However deriving the distribution of W which is a summation of T of these
random variables (Wi’s) would be very difficult. We can also compute the
probability for T = 1 with the obtained derivation. However in that case
the assumption that we have done in (5.9) will be disturbed. Due to these
reasons, we will call the CLT for these T (T being large) i.i.d. random
variables as we mentioned before. Before applying the CLT, we have to
know the mean and variance of Wi’s. By using (5.12), we determine the
mean and variance of Wi’s as follows:

µWi = M, (5.14)

σ2Wi
= σ4v (k1 + k3 − 2k2) . (5.15)
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By CLT,
W − TµWi

σWi

√
T

will tend to have a standard normal distribution (N (0, 1))

when T is large. Hence PEP can be reformulated as:

PEP = Pr

(
W − TµWi

σWi

√
T

<

√
T

2σWi

(2k2 − k1 − k3)

)

= Q

(√
T

2σ2v

√
k1 + k3 − 2k2

)
(5.16)

= Q

(√
T

2σ2v
||z− y||

)
. (5.17)

And by using the Chernoff bound for the Q function, we can bound the PEP
as:

PEP ≤ 1

2
e
− T

8σ4
v
||z−y||2

. (5.18)

We see that PEP decreases when the norm of the difference between the
true and false PDPs increase. In fact it is a reasonable result. When they
become more and more apart from each other, one can expect that it will
be less likely to confuse the true PDP with the false one. The interesting
thing is that we reached this result after the approximation given by (5.9)
and by the use of the CLT.

5.2.1 Simulation Results

Now, the aim is to justify the theoretical analysis developed so far with
simulations. For the simulations, we have used T = 50, sampling frequency
fs (= 1/τs) equal to 9.14 MHz, and also we assumed Pζ = Pτ . Below we
present three plots. The SNR calculation is carried out with respect to the
CIR of the false position’s entry. Hence σ2v is calculated accordingly. For
these three plots, the path amplitude coefficients of the true PDP vector are
just a multiple of the false PDP vector. Let us call this factor as α. Hence
when α increases, the separation between the true and false PDP increases,
i.e., ||z − y|| becomes higher. In accordance with the theoretical analysis,
PEP is decreasing with the increasing α as can be seen in the plots.

What we see in the plots is that simulations and theoretical analysis are
very close to each other in all SNR ranges. This shows that our approxima-
tions and the application of the CLT are quite accurate. Also effect of α is
clearly seen in the plots. For α = 1.1, PEP approaches to 0 around an SNR
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Figure 5.1: Pairwise error probability for α = 1.1.

of −5dB. However for α = 1.4, PEP approaches to 0 much before, around
−15dB. Another comment that we can infer from the plots is that at very
low SNR, PEP is almost equal to 0.5 which means that due to the very
high noise, PDP ’s cannot be differentiated much and hence selecting the
true or false PDP is dominated mostly by noise which results in an equal
probability for true or the false one to be selected.

5.3 PEP of the GML Technique for Rayleigh Fad-
ing

In this part, we investigate the PEP analysis for the GML based PDP-F
technique. We also have a different assumption for the complex path ampli-
tudes Ai(t). Instead of modeling them as deterministic unknowns, we now
model them as complex Gaussian random variables (Rayleigh distribution
for the magnitudes). For a complete description of this PDP-F method,
readers can refer to [26]. The channel model that we have proposed in the
previous section is still valid and given by (5.3). We now assume that pulses
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Figure 5.2: Pairwise error probability for α = 1.2.

from different paths are non-overlapping (Pτ is an orthogonal matrix) to
simplify the analysis which is a reasonable assumption in high bandwidth
systems. The matching criteria is based on Gaussian log-likelihood. Hence
formulation of the PEP is such that the probability that the log-likelihood
performed in the true position is lower than the log-likelihood in the false
position which results in the false position to be selected. If we have multiple
channel estimates, the log-likelihood can be expressed as:

LL ∝ − ln
(
det
(
C

ĥĥ

))
− tr

(
ĈC−1

ĥĥ

)
(5.19)

where Ĉ = 1
T

∑T
i=1

(
ĥi − µ

)(
ĥi − µ

)H
is the sample covariance matrix

obtained from channel estimates. Since the complex path amplitudes Ai(t)
and the noise have both zero mean, channel estimates have also zero mean,
i.e., µ = 0. For simplicity of notation, let us call C

ĥĥ
as CT which denotes

the covariance matrix calculated with the true positions’ entries. By using
(5.3), we have CT = PτCaP

H
τ + σ2vI where Ca is a diagonal matrix having[

σ2a1 , σ
2
a2 , · · · , σ2aNp

]
on its diagonal (var(Ai) = σ2ai). We also introduce CF
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Figure 5.3: Pairwise error probability for α = 1.4.

for the covariance matrix computed with the false positions’ entries as CF =

PζCbP
H
ζ +σ2vI where Cb is a diagonal matrix having

[
σ2b1 , σ

2
b2
, · · · , σ2bL

]
on

its diagonal and Pζ is defined similarly as Pτ . After giving the necessary
information, we can state PEP as:

PEP = Pr (LLT < LLF ). (5.20)

We know that there are many scenarios to investigate. However we will try
to explore the scenario where the error probability is more likely to occur.
And also the scenario proposed will also simplify the analysis.

Scenario: The scenario can be summarized as follows:

1. Number of paths are equal, i.e., L = Np.

2. Path delays are equal, i.e., τi = ζi ∀i.

3. There is no delay synchronization error.
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Under these assumptions Pζ = Pτ . We see that the only differences between
the true and the false positions’ parameters are the path amplitude variances.
By using (5.19) we can restate PEP as:

PEP = Pr
(
ln (detCT/ detCF) > tr

(
ĈC−1

F

)
− tr

(
ĈC−1

T

))
. (5.21)

Under the assumption that Pτ being an orthogonal matrix, the determinants
can be easily calculated.

det (CT ) = σ2Nτ
v det

(
I+

1

σ2v
PτCaP

H
τ

)

= σ2Nτ
v

Np∏

i=1

(
1 +

epσ
2
ai

σ2v

)
, (5.22)

where we have used the Sylvester’s determinant theorem, det(I + AB) =
det(I +BA) and ep = S is the pulse energy. One thing to note is that the
determinant does not depend on the path delays when the pulses are non-
overlapping. Similarly we obtain det (CF ). Hence left hand side of (5.21)
is:

ln (detCT/ detCF) =

Np∑

i=1

ln

(
σ2v + epσ

2
ai

σ2v + epσ2bi

)
= f1. (5.23)

For the inversion of CT and CF we will use the Woodbury’s matrix inversion
lemma. We get:

C−1
T = σ−2

v (I−PτDaP
H
τ ) (5.24)

C−1
F = σ−2

v (I−PτDbP
H
τ ) (5.25)

where Da and Db are diagonal matrices having [Da]ii =
σ2ai

σ2v + epσ2ai
and

[Db]ii =
σ2bi

σ2v + epσ2bi
on their diagonals respectively. By using (5.3) we can

write Ĉ as:
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Ĉ =
1

T

T∑

i=1

ĥiĥ
H
i =

1

T

T∑

i=1

(Pτai + vi)(Pτai + vi)
H

=
1

T

T∑

i=1

(
Pτaia

H
i PH

τ +Pτaiv
H
i + via

H
i PH

τ + viv
H
i

)

≈ 1

T

T∑

i=1

(
Pτaia

H
i PH

τ + viv
H
i

)
(5.26)

where in the last equation we have made an approximation based on the
fact that noise samples and channel coefficients are uncorrelated zero mean
Gaussian random variables. Hence for large T we replaced them with their
expectations resulting in 0. With these at hand, the trace functions can be
evaluated by using (5.24), (5.25) and (5.26). By exploiting the properties of
the trace function and also the orthogonality of Pτ we obtain:

tr
(
ĈC−1

T

)
=
σ−2
v

T

[
ep tr

(
T∑

i=1

aia
H
i

)
+ tr

(
T∑

i=1

viv
H
i

)

−e2p tr

(
T∑

i=1

aia
H
i Da

)
− tr

(
T∑

i=1

viv
H
i PτDaP

H
τ

)]
.

We assume that random variables are uncorrelated in time. It is well
known that distribution remains the same under orthonormal transforma-
tions. Therefore we realize that vi and wi = 1√

ep
PH

τ vi have the same

distribution (N (0, σ2vI)). However size of the vector changes (size of I also
changes). By this transformation we rewrite the above equation:

tr
(
ĈC−1

T

)
=
σ−2
v

T

[
ep tr

(
T∑

i=1

aia
H
i

)
+ tr

(
T∑

i=1

viv
H
i

)

−e2p tr

(
T∑

i=1

aia
H
i Da

)
− ep tr

(
T∑

i=1

wiw
H
i Da

)]
.

Similarly we can derive tr
(
ĈC−1

F

)
. The term we need in (5.21) is:

tr
(
ĈC−1

F − ĈC−1
T

)
=
ep σ

−2
v

T

(
ep

T∑

i=1

aHi Dai +
T∑

i=1

wH
i Dwi

)
. (5.27)
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where D = Da − Db being another diagonal matrix. Each element of wk

and ak are complex Gaussian random variables with mean 0. For wk, every
entry has the variance σ2v while ith entry of ak has a variance of σ2ai . The
matrix D being diagonal simplifies the analysis substantially. It prevents the
coupling of the cross elements of the vectors. Therefore (5.27) represents a
summation of squares of Gaussian random variables weighted by D. Since

aHk Dak =

Np∑

j=1

[D]jj |akj |2 and wH
k Dwk =

Np∑

j=1

[D]jj |wkj |2, each loop of (by

loop any of the T iterations is meant) (5.27) is composed of summation of
non-identically distributed exponential random variables. One important
thing to mention is that in order to consider it as a summation we implicitly
assume that D has all positive elements on its diagonal meaning that σ2ai >
σ2bi∀i. In the previous section that distribution was calculated and given by
(5.13). As we have done in the previous section, let us call this distribution
as Wi, and let W =

∑T
i=1Wi (all Wi’s identically distributed). Since the

derivation of the distribution of summation of T of them (W ) will be difficult,
we will call the CLT again for T being large. Before that we need the mean
and variance of Wi which is calculated as:

µWi =
ep
T

Np∑

i=1

[D]ii
(
ep σ

−2
v σ2ai + 1

)
=
ep
T
f2, (5.28)

σ2Wi
=

e2p
T 2

Np∑

i=1

[D]2ii
(
e2p σ

−4
v σ4ai + 1

)
=
e2p
T 2

f3. (5.29)

We know that
W − TµWi

σWi

√
T

will tend to have a standard normal distribution

(N (0, 1)) when T is large. Hence PEP can be reformulated as:

PEP = Pr

(
W − TµWi

σWi

√
T

<

√
T

ep
√
f3

(f1 − ep f2)

)
(5.30)

= Q

( √
T

ep
√
f3

(ep f2 − f1)

)
. (5.31)

And we can use the Chernoff bound for the Q function bounding the PEP
as:

PEP ≤ 1

2
e
− T

2 e2p f3
(ep f2−f1)

2

. (5.32)
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In fact, (5.31) is a specific case where we imposed constraints on the path
delays. In the general ergodic case where there are no constraints on the
path delays, using the CLT, we get for the PEP:

PEP = Q


 tr {CTC

−1
F − I} − ln det(CTC

−1
F )√

1
T tr {(CTC

−1
F − I)2}


 (5.33)

from which we see that a mismatch in every path contributes separately to
decreasing the PEP when the path delays are well separated (the numerator
of the argument of the Q function is a form of the Itakura-Saito distance
between covariance matrices). We will now show the derivation of this for-
mula for the general case (when we do not impose any constraints on the
delays). We can write (5.21) equivalently as:

PEP = Pr
(
ln det(CTC

−1
F ) > tr (ĈA)

)
(5.34)

where A = C−1
F −C−1

T . Then:

PEP = Pr

(
T ln det(CTC

−1
F ) >

T∑

i=1

ĥi
H
Aĥi

)
. (5.35)

Let us call ĥi
H
Aĥi = xi. Before using the CLT, mean and variance of xi is

required. Mean is easy to derive and given as:

µxi = tr (ACT ) = tr {CTC
−1
F − I}. (5.36)

For the variance we know that σ2xi
= Ex2i −(µxi)

2. In order to derive Ex2i , we
will use the following identity for zero mean complex Gaussian vectors [41]:

E{ĥi
H
Aĥiĥi

H
Aĥi} = tr (ACTACT ) + ( tr (ACT ))

2 . (5.37)

Therefore:

σ2xi
= tr (ACTACT ) = tr {(CTC

−1
F − I)2}, (5.38)

so that (5.33) follows via the CLT.

For the non-ergodic case in which the channel h remains constant in the
T estimates ĥi, the PEP using the CLT becomes:
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PEP = Eh Q


hHAh+ σ2v tr (A)− ln det(CTC

−1
F )

1√
T

√
σ4v ||A||2F + 2σ2vh

HA2h


 . (5.39)

The derivation is similar to the ergodic case. We start with equation (5.35)
again. For the non-ergodic case, ĥi is not a zero mean vector, it is: ĥi =
h+ vi. For the mean of xi, we obtain it easily:

µxi = hHAh+ σ2v tr (A). (5.40)

For the variance σ2xi
, we need Ex2i again. We will exploit another identity

for non-zero mean complex Gaussian vectors:

E{ĥi
H
Aĥiĥi

H
Aĥi} = σ4v ||A||2F + (σ2v tr (A) + hHAh)2 + 2σ2v h

HA2h.
(5.41)

Consequently:

σ2xi
= σ4v ||A||2F + 2σ2v h

HA2h, (5.42)

so that (5.39) follows via the use of CLT.

5.3.1 Simulation Results

To verify the analytical results, we have performed simulations for the er-
godic case. The simulation parameters are the same as in the deterministic
section and also Pζ = Pτ . The SNR calculation is carried out with respect
to the CIR of the false position’s entry. We provide three plots again. The
path amplitude variances of the true position’s entries are just a multiple of
the false ones, i.e., σ2ai = β2 σ2bi .

Obviously, increasing β has the effect of increasing the distance between
the covariance matrices. Therefore, as can also be seen in the simulations,
PEP decreases with the increasing β. Moreover, differently from the deter-
ministic case, PEP curves do not all converge to 0 unless T → ∞. Although
with the increasing β, they converge closer to 0 in high SNR, some of them
(for smaller values of β) stay around non-negligible PEP values. The rea-
son is evident. In the deterministic case, path amplitudes are deterministic.
Hence the only random parameter is the noise. As the noise becomes negli-
gible in the high SNR region, PEP decays to almost 0 as expected even for
finite T . However in this case, path amplitudes are also random variables.
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Figure 5.4: Pairwise error probability for β = 1.1.

Hence in the high SNR region, effect of the noise almost vanishes but on the
other hand effects of the randomness of the path amplitudes still remain.
Consequently, if the difference between the amplitude variances increases
(when β increases), the chance of PEP getting closer to 0 also increases.

5.4 Conclusion

In this chapter, we derived approximate analytic results of PEP for PDP-F
for different cost functions and path amplitude modelings. To the best of
our knowledge, there has not been any work for the computation of PEP for
fingerprinting applications so far. The effects of the pulse shape and other
parameters on PEP are explicitly shown. As expected we have shown that
the PEP decreases with the increasing T . In the asymptotic case (when
T → ∞), PEP goes to 0 for both of the algorithms investigated. Also we
have verified the accuracy of the theoretical analysis with the simulations.

For the deterministic path amplitudes case using LS as the cost function,
we have observed that PEP decreases with an increase in the difference of
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Figure 5.5: Pairwise error probability for β = 1.2.

the PDP vectors. This was an expected outcome in fact. For the GML based
Rayleigh fading case, we have seen the saturation of PEP around a non-zero
value in the high SNR regime. This is due to the randomness in the channel
coefficients and improves only with the number of channel observations (T ).
We can say that total mitigation of the saturation is only possible for high
T values.
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Figure 5.6: Pairwise error probability for β = 1.4.
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Chapter 6

Mobile Terminal Tracking
based on Kalman Filtering

6.1 Introduction

We discuss various algorithmic approaches for augmenting the Kalman fil-
ter (KF) to an adaptive Kalman filter in which position tracking and ac-
celeration parameter estimation occur simultaneously. The main algorithm
proposed is the expectation-maximization-KF (EM-KF), based on fixed-lag
smoothing.

6.2 Adaptive Kalman Filtering based Tracking

Even though the Kalman filter is the work horse of position tracking, its
use requires the knowledges of various parameters that describe the mea-
surement error variances and the acceleration model. This aspect is often
overlooked. In this section we review some known and some not so known
methods to adapt these state space model parameters.

6.2.1 Adaptive Kalman Filtering Approaches

We shall first consider the topic of Adaptive Kalman filtering for a general
linear state-space model.

119
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Basic Kalman Filter

The KF considers the estimation of a first-order vector autoregressive (Markov)
process from linear measurements in white noise. The KF performs this es-
timation recursively by alternating between filtering (measurement update)
and (one step ahead) prediction (time update). An alternative viewpoint
is that the Kalman filter recursively generates the innovations of the mea-
surement signal (by a structured Gram-Schmidt approach that decorrelates
the consecutive measurements). The KF corresponds to optimal (Minimum
Mean Squared Error (MMSE) or Maximum A Posteriori (MAP)) Bayesian
estimation of the state sequence if all random sources involved (measure-
ment noise, state noise and state initial conditions) are Gaussian. In the
non-Gaussian case, the KF performs Linear MMSE (LMMSE) estimation.

The signal model can be written as

state update equation:

xk+1 = Fk xk +Gk wk

measurement equation:

yk = Hk xk + vk

(6.1)

for k = 1, 2, . . ., where the initial state x0 ∼ N (x̂0,P0), the measurement
noise vk ∼ N (0,Rk), and the state noise wk ∼ N (0,Qk) and all these
random quantities are mutually uncorrelated. In the case of time-varying
system matrices Fk etc., the form of the equations as they appear in (6.1)
is the most logical, with the state update corresponding to a prediction of
the state on the basis of the quantities available at time k. In the position
tracking application to be considered here, the system matrices are essen-
tially time-invariant, or at most slowly time-varying. In that case the time
index k in e.g. Fk refers to the estimate of F available at time k in an
adaptive approach. In a logical ordering, a measurement is performed first
and then the state gets predicted.

In the following, we introduce the notation y1:k = {y1, . . . ,yk}. The KF
performs Gram-Schmidt orthogonalization (decorrelation) of the measure-
ment variables yk. This is done by computing the LMMSE predictor ŷk|k−1

of yk on the basis of y1:k−1, leading to the orthogonalized prediction error
(or innovation) ỹk = ỹk|k−1 = yk − ŷk|k−1. We introduce the correlation

matrix notation Rxy = ExyT (correlation matrices will usually also be co-
variance matrices here since the processes yk and xk have zero mean and
also various estimation errors will have (conditional) zero mean). We denote
the covariance matrix Rỹkỹk

= Sk. The idea of the innovations approach is
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that (linear) estimation in terms of y1:k is equivalent to estimation in terms
of ỹ1:k since one set is obtained from the other by an invertible linear trans-
formation. Now, since the ỹk are decorrelated, estimation in terms of ỹ1:k

simplifies:

x̂|k =
k∑

i=1

Rxỹi
R−1

ỹiỹi
ỹi = x|k−1 +Rxỹk

S−1
k ỹk .

This will be used to obtain predicted estimates x̂k|k−1 with estimation error
x̃k|k−1 = xk−x̂k|k−1 with covariance matrix Pk|k−1 = Rx̃k|k−1x̃k|k−1

and also
filtered estimates x̂k|k with estimation error x̃k|k = xk−x̂k|k with covariance
matrix Pk|k = Rx̃k|kx̃k|k

.
Now exploiting the correlation structure in the signal model, this leads

to the following two-step recursive procedure to go from |k−1 to |k:
Measurement Update

ŷk|k−1 = Hk x̂k|k−1

ỹk = yk − ŷk|k−1

Sk = Hk Pk|k−1H
T
k +Rk

Kk = Pk|k−1H
T
k S−1

k

x̂k|k = x̂k|k−1 +Kk ỹk

Pk|k = Pk|k−1 −Kk Hk Pk|k−1

(6.2)

Time Update (prediction)

x̂k+1|k = Fk x̂k|k
Pk+1|k = Fk Pk|k F

T
k +Gk Qk G

T
k

(6.3)

There are various other ways to formulate these update equations, in-
cluding performing both steps in one step.

The choice of the initial conditions crucially affects the initial conver-
gence (transient behavior). In the usual case of total absence of prior infor-
mation on the initial state, one can choose x̂0 = 0, P0 = p0 I with p0 a (very)
large number. This leads to P1|0 = F0P0 F

T
0 +G0Q0G

T
0 , x̂1|0 = F0 x̂0.

For numerical stability (in the presence of roundoff errors), it is crucial
that the symmetry of the covariance matrices Pk|k−1, Pk|k is maintained
throughout the updates (which is not going to be the case with the update
of Pk|k the way it appears in (6.2)). The easiest way to ensure this is to
periodically (e.g. every sample to ease programming) force the symmetry
of e.g. Pk|k by computing Pk|k−1 = 1

2(Pk|k + P T
k|k). Another solution that

should work is to update Pk|k as Pk|k = Pk|k−1 −Kk Hk P
T
k|k−1 = Pk|k−1 −

Kk Sk K
T
k .
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Extended Kalman Filter (EKF)

For the case of a nonlinear state-space model, the idea of the EKF is to
apply the KF to a linearized version of the state-space model, via a first-
order Taylor series expansion. So we get

state update equation:

xk+1 = f(xk,wk) ≈ Fk xk +Gk wk

measurement equation:

yk = h(xk) + vk ≈ Hk xk + vk

(6.4)

where

Fk =
∂ f(x,w)

∂ xT

∣∣∣∣
(x,w)=(xk,wk)

Gk =
∂ f(x,w)

∂wT

∣∣∣∣
(x,w)=(xk,wk)

Hk =
∂ h(x)

∂ xT

∣∣∣∣
x=xk

.

(6.5)

So, at this point, the basic KF can be applied to the thus obtained approx-
imate linear state-space model.

The EKF approach can be used to adapt some parameters in an other-
wise linear state-space model x

′

k+1 = F
′
x

′

k + G
′
wk. For instance, con-

sider the case in which one wants to adapt parameters appearing (e.g.)
linearly in the matrix F

′
= F

′
(θ). One can jointly estimate the unknown

constant parameter vector θ by considering the following state update for
them: θk+1 = θk. Then one can introduce the augmented state and system
matrices

xk =

[
x

′

k

θk

]
, Fk =

[
F

′
(θk) C(x

′

k)
0 I

]
, Gk =

[
G

′

0

]
(6.6)

where C(x
′

k) =
∂ F

′
(θ)x

′

k

∂ θT
. When running the EKF, the state-dependent

system matrices have to be filled with the latest state estimates, so in this
case

Fk =

[
F

′
(θ̂k|k) C(x̂

′

k|k)

0 I

]
. (6.7)

The basic EKF can be improved by correct computation of the covariance
matrix Pk+1|k, accounting for the replacement of xk by x̂k|k (which in fact
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leads to equivalent augmented process noise). The other issue is that the
parameters θ are often not really constant and hence need to be tracked
adaptively. This can be done either by introducing some process noise in
θk+1 = θk (random walk time evolution) or by introducing exponential
weighting (at least for the θ portion) into the KF updates [42].

This EKF approach allows fairly straightforwardly to estimate param-
eters in Fk, Hk, or Gk, but much less so in Qk, Rk. For adapting (pa-
rameters in) Q and R, one needs to consider the innovations representation
x̂k+1|k = Fk x̂k|k−1 + FkKk ỹk and consider gradients of the Kalman gain
Kk w.r.t. these matrices.

Recursive Prediction Error Method (RPEM-KF)

The RPEM [43], [44] is an adaptive implementation of Maximum Likelihood
(ML) parameter estimation. The negative log-likelihood becomes a least-
squares criterion in the prediction errors (innovations) and RPEM performs
one iteration per sample. Applied to KF, the RPEM can be seen as a more
rigorous version of EKF and computes gradients more precisely [45]. Indeed,
for the case of a state transition matrix Fk = Fk(θ), the EKF would consider
the gradient

∂xk+1

∂θT
=
∂Fk(θ)xk

∂θT
(6.8)

where only the explicit dependence of F on θ would be considered, whereas
the RPEM would consider more correctly

∂xk+1

∂θT
=
∂Fk(θ)xk

∂θT
+ Fk(θ)

∂xk

∂θT
. (6.9)

RPEM for KF can be found in the references above, but will not be pursued
here further. One characteristic of the RPEM is a higher complexity.

Expectation-Maximization (EM-KF)

In EM [46], the parameters are estimated by minimizing expected values
of negative loglikelihoods, see e.g. [47] for an application involving KF. For
the state update, since Gk is typically a tall matrix, Gk wk has a singular
covariance matrix. The state update equation can be rewritten as

G+
k xk+1 = G+

k Fk xk +wk (6.10)
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where G+
k = (GT

kGk)
−1GT

k is the pseudo-inverse of Gk. For the parameters
involved in the state update equation, hence the following negative log-
likelihood is applicable:
∑

k

{ln det(Qk) + (G+
k (xk+1 − Fk xk))

TQ−1
k (G+

k (xk+1 − Fk xk))} . (6.11)

For the parameters involved in the measurement equation, the appropriate
log-likelihood is

∑

k

{ln det(Rk) + (yk −Hk xk)
TR−1

k (yk −Hk xk)} . (6.12)

Now the expectation is taken, in principle with the conditional distribution
given all data. Hence E|n involving all data yk up to the last sample n. This
leads to an iterative algorithm with in each iteration a whole fixed-interval
smoothing operation. An adaptive version [47], [48] can be obtained by
replacing fixed-interval smoothing by fixed-lag smoothing and performing
one iteration per time sample. Since the state update equation corresponds
to a vector AR(1) model, one may expect (as in [48]) that a lag of 1 should
be enough (to guarantee convergence). In [47], complexity is reduced further
by suggesting that filtering might be enough. In that case, the (presumably)
slowly varying Q̂k+1, F̂k+1 (for use in the KF at time k+1) get determined
by minimizing

k∑

i=1

λk−i
E|i{ln det(Q̂)+(G+

i (xi+1−F̂ xi))
T Q̂−1(G+

i (xi+1−F̂ xi))} (6.13)

w.r.t. Q̂, F̂ where we introduced an exponential forgetting factor λ
≈
< 1.

(6.13) is equivalent to

γ−1
k ln det(Q̂) +

k∑

i=1

λk−i tr {G+T
i Q̂−1G+

i E|i(xi+1 − F̂ xi)(xi+1 − F̂ xi)
T }

(6.14)
where we introduced γ−1

k =
∑k

i=1 λ
k−i = λ γ−1

k−1 + 1. γ−1
k behaves initially

as 1/k but saturates eventually at γ−1
∞ = 1−λ. We shall need

E|i xix
T
i = x̂i|ix̂

T
i|i + Pi|i

E|i xi+1x
T
i = Fi x̂i|ix̂

T
i|i + FiPi|i

E|i xix
T
i+1 = x̂i|ix̂

T
i|iF

T
i + Pi|i F

T
i

E|i xi+1x
T
i+1 = Fi x̂i|ix̂

T
i|iF

T
i + Pi+1|i

= Fi (x̂i|ix̂
T
i|i + Pi|i)F

T
i +GiQiG

T
i .

(6.15)
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In case of time-invariant Gk ≡ G, we can rewrite (6.14) as

ln det(Q̂)+ tr {G+T Q̂−1G+(M11
k −F̂ M01

k −M10
k F̂ T+F̂ M00

k F̂ T )} (6.16)

where

M00
k = (1− γk)M

00
k−1 + γk (x̂k|kx̂

T
k|k + Pk|k)

M10
k = (1− γk)M

10
k−1 + γk Fk (x̂k|kx̂

T
k|k + Pk|k)

M01
k = (1− γk)M

01
k−1 + γk (x̂k|kx̂

T
k|k + Pk|k)F

T
k

M11
k = (1− γk)M

11
k−1 + γk(x̂k+1|kx̂

T
k+1|k + Pk+1|k) .

(6.17)

In case of furthermore time-invariant Fk ≡ F , Qk ≡ Q, then

M10
k = F M00

k

M01
k = M00

k F T

M11
k = F M00

k F T +GQGT .
(6.18)

As a result, (6.16) can be rewritten as

ln det(Q̂)+ tr {Q̂−1Q}+ tr {G+T Q̂−1G+
i (F −F̂ )M00

k (F −F̂ )T )} . (6.19)

The optimization of (6.19) now clearly leads to F̂ = F , Q̂ = Q, so we
just get back the quantities that we use in the KF, without any additional
information. Hence, just Kalman filtering in the EM-KF is not enough to
adapt the state update parameters. Indeed, it just leads to a snake biting
its own tail.

Fixed-Lag Smoothing

Using the innovations approach, we have

x̂k−1|k = x̂k−1|k−1 +Rxk−1ỹk
S−1
k ỹk . (6.20)

After a few steps, we get the following lag-1 smoothing equations that need
to be added to the basic Kalman Filter equations (to be inserted between
the Measurement Update and the Time Update)

Kk;1 = Pk−1|k−1 F
T
k−1H

T
k

x̂k−1|k = x̂k−1|k−1 +Kk;1 S
−1
k ỹk

Pk−1|k = Pk−1|k−1 −Kk;1 S
−1
k KT

k;1 .
(6.21)
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Adaptive EM-KF with Fixed-Lag Smoothing

Consider now the case in which the state-space model is essentially time-
invariant (or slowly time-varying). In that case the time index of the system
matrices Fk etc. just reflects at which time the (unknown) system matri-
ces have been adapted. The resulting KF equations with lag-1 smoothing
become:

ŷk|k−1 = Hk−1 x̂k|k−1

ỹk = yk − ŷk|k−1

Sk = Hk−1Pk|k−1H
T
k−1 +Rk−1

Kk;1 = Pk−1|k−1 F
T
k−1H

T
k−1

x̂k−1|k = x̂k−1|k−1 +Kk;1 S
−1
k ỹk

Pk−1|k = Pk−1|k−1 −Kk;1 S
−1
k KT

k;1

Kk = Pk|k−1H
T
k−1 S

−1
k

x̂k|k = x̂k|k−1 +Kk ỹk

Pk|k = Pk|k−1 −Kk Hk−1Pk|k−1

parameter update
x̂k+1|k = Fk x̂k|k
Pk+1|k = Fk Pk|k F

T
k +Gk Qk G

T
k

(6.22)

So, the system matrices (F , G, Q) should be adapted after the smoothing
step and before the filtering and prediction steps. We now adapt the system
matrices F , G, Q from

ln det(Q̂) + tr {Ĝ+T Q̂−1Ĝ+γk
∑k

i=1 λ
k−i E|i(xi − F̂ xi−1)(xi − F̂ xi−1)

T } =

ln det(Q̂) + tr {Ĝ+T Q̂−1Ĝ+ (M11
k − F̂ M01

k −M10
k F̂ T + F̂ M00

k F̂ T )}
(6.23)

where the matrix definitions become this time

M00
k = (1− γk)M

00
k−1 + γk (x̂k−1|kx̂

T
k−1|k + Pk−1|k)

M10
k = (1− γk)M

10
k−1

+γk (x̂k|kx̂
T
k−1|k + Fk−1Pk−1|k −Gk−1Qk−1G

T
k−1H

T
k−1S

−1
k KT

k,1)

M01
k = (M10

k )T

M11
k = (1− γk)M

11
k−1 + γk(x̂k|kx̂

T
k|k + Pk|k) .

(6.24)
If for example G would be fixed and invertible, minimization of (6.23) w.r.t.
F̂ , Q̂ would lead to the following minimizers

Fk = M10
k (M00

k )−1

Qk = G+(M11
k −M10

k (M00
k )−1M01

k )G+T .
(6.25)
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For adapting the parameters in the measurement equation on the other
hand, Kalman filtering should be sufficient. So consider

γk
∑k

i=1 λ
k−i E|i{ln det(R̂) + (yi − Ĥ xi)

T R̂−1(yi − Ĥ xi)}
= ln det(R̂) + tr {R̂−1 γk

∑k
i=1 λ

k−i E|i(yi − Ĥ xi)(yi − Ĥ xi)
T }

= ln det(R̂) + tr {R̂−1 (R̂yy,k − Ĥ R̂xy,k − R̂yx,k Ĥ
T + Ĥ R̂xx,kĤ

T )}
(6.26)

where

R̂yy,k = γk
∑k

i=1 λ
k−i yiy

T
i = (1− γk)R̂yy,k−1 + γkyky

T
k

R̂xy,k = γk
∑k

i=1 λ
k−i x̂i|iy

T
i = (1− γk)R̂xy,k−1 + γkx̂k|ky

T
k

R̂yx,k = R̂T
xy,k

R̂xx,k = γk
∑k

i=1 λ
k−i E|ixix

T
i = (1− γk)R̂xx,k−1 + γk(x̂k|kx̂

T
k|k + Pk|k)

(6.27)
Minimization of (6.26) w.r.t. Ĥ, R̂ yields

Hk = R̂yx,kR̂
−1
xx,k

Rk = R̂yy,k − R̂yx,kR̂
−1
xx,kR̂xy,k .

(6.28)

For the initialization, in absence of any side information, one can takeM00
0 =

1/p0I, M
10
0 = 0, M11

0 = 0, R̂xx,0 = 1/p0I, R̂xy,0 = 0, R̂yy,0 = 0 where
again p0 is a very large number.

Hybrid EM-EKF

The idea here is to update Fk via EKF and Qk, Rk via EM.

6.2.2 State-Space Models for Position Tracking

White Noise Acceleration

Consider positioning in nD, where n = 1, 2 or 3 dimensions. Let pk be
the position at sampling instant k, vk the velocity (not to be confused with
the measurement noise) and ak the acceleration. In the case of e.g. 3D
positioning, pk is of the form p = [x y z]T . By simple discretization of the
differential equations of motion, we get

pk+1 = pk + vk
vk+1 = vk + ak

ak = wk .
(6.29)
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In the case of modeling the acceleration as (temporally) white noise, the
acceleration is the process noise. To simplify the equations, we assume here
that the unit of time for velocity and acceleration is the sampling period.
The physical speed and acceleration are then ts vk and t2s ak where ts is the
sampling period expressed in seconds, assuming pk is expressed in meters.
We get for the state-space model

xk =

[
pk

vk

]
, F =

[
In In
0n,n In

]
, G =

[
0n,n
In

]
, yk = p̂k,H = [In 0n,n]

(6.30)
where 0n,m is a n×m matrix of zeros. We have G+ = [0n,n In] and ak =
G+xk. The only unknown system parameter in this case is the acceleration
covariance matrix Q.

AR(1) (Markov) Acceleration

In this case we assume a first-order autoregressive model for the acceleration
ak+1 = Aak + wk where now A and Q are unknown. Note that G+F =
AG+. We get for the state-space model

xk =




pk

vk
ak


 , F =




In In 0n,n
0n,n In In
0n,n 0n,n A


 , G =




0n,n
0n,n
In


 , H = [In 0n,2n] .

(6.31)
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6.2.3 Adaptive EM-KF with Fixed-Lag Smoothing for Posi-
tion Tracking

White Noise Acceleration

The EM-KF becomes (note that HG = 0)

ŷk|k−1 = H x̂k|k−1

ỹk = yk − ŷk|k−1

Sk = HPk|k−1H
T +Rk−1

Kk;1 = Pk−1|k−1 F
T
k−1H

T

x̂k−1|k = x̂k−1|k−1 +Kk;1 S
−1
k ỹk

Pk−1|k = Pk−1|k−1 −Kk;1 S
−1
k KT

k;1

Kk = Pk|k−1H
T S−1

k

x̂k|k = x̂k|k−1 +Kk ỹk

Pk|k = Pk|k−1 −Kk HPk|k−1

M00
k = (1− γk)M

00
k−1 + γk G

+(x̂k−1|kx̂
T
k−1|k + Pk−1|k)G

+T

M10
k = (1− γk)M

10
k−1 + γk G

+(x̂k|kx̂
T
k−1|k + Fk−1Pk−1|k)G

+T

M11
k = (1− γk)M

11
k−1 + γk G

+(x̂k|kx̂
T
k|k + Pk|k)G

+T

Qk = M11
k −M10

k −M10T
k +M00

k

( Qk = 1
n tr {Qk} In )

Rk = (1− γk)Rk−1 + γk ((yk −Hx̂k|k)(yk −Hx̂k|k)
T +HPk|kH

T )

x̂k+1|k = Fk x̂k|k
Pk+1|k = Fk Pk|k F

T
k +GQk G

T

(6.32)
Qk = 1

n tr {Qk} In gets added in case we want to model the acceleration as
also spatially white.

AR(1) (Markov) Acceleration

The only change for the EM-KF in (6.39) is that the update for Qk gets
replaced by

Ak = M10
k (M00

k )−1

Qk = M11
k −Ak(M

10
k )T .

(6.33)

6.2.4 Non-Linear Measurements

In the case the measurement equation is of the form yk = h(xk) + vk, the
EKF needs to be applied as explained earlier. We get

yk = h(xk) + vk ≈ Hk xk + vk (6.34)
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where

Hk =
∂ h(x)

∂ xT

∣∣∣∣
x=x̂k|k−1

. (6.35)

6.3 Fitting of State Space Mobility Models to M3
Measurements

In this section, by exploiting the algorithms discussed so far, we try different
mobility models on the measurement data (GPS position estimates) we have.

Temporally White, Spatially Colored Noise Acceleration

We consider positioning in nD, where n = 1, 2 or 3 dimensions. Let pk

be the position at sampling instant k, vk the velocity (not to be confused
with the measurement noise) and ak the acceleration. In the case of 2D
positioning, pk is of the form p = [x y]T . By simple discretization of the
differential equations of motion, we get:

pk+1 = pk + vk
vk+1 = vk + ak

ak = wk .
(6.36)

In the case of modeling the acceleration as (temporally) white noise, the
acceleration is the process noise. To simplify the equations, we assume here
that the unit of time for velocity and acceleration is the sampling period.
The physical speed and acceleration are then ts vk and t2s ak where ts is the
sampling period expressed in seconds, assuming pk is expressed in meters.
We get for the state-space model

xk =

[
pk

vk

]
, F =

[
I2 I2
02,2 I2

]
, G =

[
02,2
I2

]
, yk = p̂k,H = [I2 02,2]

(6.37)
where 0n,m is a n×m matrix of zeros. The only unknown system parameter
in this case is the acceleration covariance matrix Q.

Spatio-Temporally White Noise Acceleration

In this case the 2×2 matrix Q is constrained to be of the form Q = q I2.

AR(1) (Markov) Velocity

In this case we assume a first-order autoregressive model for the velocity
vk+1 = Avk + wk where now A and Q are unknown. We get for the
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state-space model

xk =

[
pk

vk

]
, F =

[
I2 I2
02,2 A

]
, G =

[
02,2
I2

]
, yk = p̂k,H = [I2 02,2]

(6.38)
The case of temporally white acceleration is a special case of the AR(1)
velocity model with A = I2.

Mobility Model Performance Evaluation via Position Prediction

Although we have seen before that the mobility parameters can be adapted
with the EM-Kalman filter, in the case of the M3 measurement campaign
with GPS position estimates, we dispose of very good initial position esti-
mates. As a result, the mobility model dynamics can be fitted to the GPS
position estimates directly. In order to evaluate the usefulness of the vari-
ous mobility models, we shall nevertheless take into account the bit of noise
on the GPS position estimates, and run the Kalman filter with the esti-
mated mobility model parameters, for each of the three models considered.
Then the histogram of the position prediction error ‖ỹk‖ gets evaluated and
compared between models.

The basic Kalman filter becomes:

Fk =

[
I2 I2
02,2 Ak

]

ŷk|k−1 = H x̂k|k−1

ỹk = yk − ŷk|k−1

Sk = HPk|k−1H
T +Rk−1

Kk = Pk|k−1H
T S−1

k

x̂k|k = x̂k|k−1 +Kk ỹk

Pk|k = Pk|k−1 −Kk Sk K
T
k

x̂k+1|k = Fk x̂k|k
Pk+1|k = Fk Pk|k F

T
k +GQk G

T

(6.39)

Initialization: x̂1|0 = [yT
1 01,2]

T , P1|0 = blockdiag{R, 2R}. This needs to be
augmented (preceded for each sample k) with the following model parameter
updates.

Temporally White, Spatially Colored Noise Acceleration
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vk = yk − yk−1

ak = vk − vk−1

γ−1
k = λ γ−1

k−1 + 1

Qk = (1− γk)Qk−1 + γk aka
T
k .

(6.40)

with initializations y0 = y1, v0 = 0, Q0 = 02,2, γ
−1
0 = 0. Ak = I2 , ∀k.

Spatio-Temporally White Acceleration

vk = yk − yk−1

ak = vk − vk−1

γ−1
k = λ γ−1

k−1 + 1

Qk = (1− γk)Qk−1 +
1
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(6.41)

with initializations y0 = y1, v0 = 0, Q0 = 02,2, γ
−1
0 = 0. Ak = I2 , ∀k.

AR(1) (Markov) Velocity
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with initializations y0 = y1, v0 = 0, A0 = I2, γ
−1
0 = 0.

Some practical details: for the noise level on the GPS position estimates,
we have determined a value by inspection of the estimated trajectories (see
trajectory plots) and we have fixed R = I (so a standard deviation of 1m/s
on x and y position components). The GPS data for various trajectories are
discontinuous due to frame errors in the communication from time to time.
These discontinuities lead to significant outliers in the position prediction
error and hence are easy to discard.

Examples of trajectories considered in the M3 data

Here we show some of the aerial photos with trajectories superposed (GPS +
Kalman filtered for AR(1) (Markov) Velocity model). GPS data is marked
with blue ’+’ while the Kalman filtered data is marked with red ’x’ marks.
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Figure 6.1: A sample of an aerial photo with trajectory superposed.

Figure 6.2: A sample of an aerial photo with trajectory superposed.



134 Chapter 6 Mobile Terminal Tracking based on Kalman Filtering

Figure 6.3: A sample of an aerial photo with trajectory superposed.

Histograms of position prediction error for the three mobility
models considered

Here we show the histograms of the position prediction errors for all the three
mobility models averaged over all the scenarios (driving, walking). Accord-
ing to the plots, we see that the performance of AR(1) (Markov) Velocity
model is the best, then comes the Spatio-Temporally White Acceleration
model. Temporally White, Spatially Colored Noise Acceleration model per-
forms the worst among them. During all the simulations, the value used
for λ was 0.97 and we had a total of 55928 total position samples in our
database.

6.4 Conclusion

In this chapter, we have explored adaptive KF approaches, tested different
mobility models. In fact, this work was in the context of a project. We
had the duty to fit the mobility models to our M3 measurement campaign
GPS data. Three different mobility models were tested. The results were
surprising. We were expecting to see that temporally white, spatially colored
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Figure 6.4: Position prediction error histogram for the temporally white,
spatially colored noise acceleration model.

noise acceleration model would perform better than the spatio-temporally
white acceleration model. However, just the opposite came true. This was
a surprising result. Among the models investigated, AR(1) Markov velocity
model has achieved the highest performance in terms of position prediction
error.
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Figure 6.5: Position prediction error histogram for the spatio-temporally
white acceleration model.
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Figure 6.6: Position prediction error histogram for the AR(1) (Markov)
velocity model.



Chapter 7

Conclusions and Future
Work

Throughout this thesis period, we tried to conduct research in diverse fields.
Mainly, our subject of interest was localization of MTs based on fingerprint-
ing methods. In a broader sense, parameter estimation has been our main
subject of research. Many results have been obtained on performance bounds
of the estimation of parameters, local identifiability issues, new localization
algorithms, PEP analysis, etc. Hopefully, the results, findings obtained in
this work has shed light on the problems related to our research field.

Our main effort was oriented towards preparing a complete text about
the the topics we investigated. For that purpose, we tried to follow a rea-
sonable order. First we introduced two new fingerprinting methods, namely
time-domain PDDP-F and frequency-domain PDDP-F. After that we tried
to address performance bounds on PDP-F and PDDP-F methods. To the
best of our knowledge, performance analysis on fingerprinting based local-
ization methods has not been conducted yet. Therefore we focused on that
aspect and presented CRBs on the estimation of LDPs and the position
vector for various cases investigated. We figured out many intuitive and
comprehensive results on CRBs and also the local identifiability of the posi-
tion vector r. Next step in our studies was a very interesting subject which
is the PEP analysis for PDP-F methods. PEP analysis is a quite well-known
topic in the field of digital communications. Receiver designs, detection al-
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gorithms are deeply involved with PEP analysis for digital communication
channels. Being inspired from this, we tried to convey the same concept to
PDP-F based localization methods. This can be perceived as a kind of per-
formance analysis. We managed to derive closed-form results and verified
the accuracy of the analytical results with simulations. Final work in this
dissertation was about MT tracking based on adaptive KF. In fact this was
in the context of a project we were involved in (project WHERE). We inves-
tigated three mobility models for EURECOM’s M3 measurement campaign
and presented the results in the form of position prediction errors.

Although we tried to address a wide variety of issues about fingerprinting
based localization, there are for sure many open problems/questions left
uninvestigated/unanswered. Some of them listed below might be interesting
problems for further research or for other researchers interested in this field:

• For the frequency-domain PDDP-F, window selection is also an impor-
tant factor effecting the performance of the algorithm. Hence impact
of window selection might be further investigated. Both for time-
domain and frequency-domain PDDP-F algorithms, joint speed vector
estimation case needs to be improved.

• Even though we have introduced the most general PDDSP, we just
explored the SISO case afterwards. Hence multi-antenna extensions
of the proposed fingerprinting algorithms seem definitely promising
solutions to NLoS localization.

• Another important parameter is the pulse shape for the fingerprinting
algorithms we have introduced. Therefore its effects on the localization
performance can be studied, e.g. different pulse shapes, various roll-off
factors for raised cosine filters, etc.

• Studies show that, diffuse channel parameters might have significant
importance in channel modeling [49, 50]. In spite of the fact that our
fingerprinting algorithms work both in specular and diffuse channel en-
vironments, we have only derived the CRBs for the specular channels.
Hence it is an open question how the bounds for LDPs, position vector
will be effected after the integration of diffuse channel components.

• Deriving the CRBs for PDDSP-F methods might be considered among
important future research work. As can be expected, more parameters
will be involved in this process. Antenna array responses as a function
of AoAs, AoDs will play an important role and at the same time will
require new parameters to be jointly estimated.
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• We put majority of our effort on exploring the performance bounds
of PDP-F algorithms. Therefore, we believe that there are still things
to do about CRBs of PDDP-F methods. Mostly, the CRBs for LDPs
were derived. Even though we know that after the transformation from
LDPs to the position vector r, PDDP-F methods result in strictly bet-
ter localization performance, it would be nice to see the closed-form
results when both delays and Doppler shifts are utilized in the local-
ization process. This requires the integration of the Doppler shifts
(fi’s) into the matrix F. We have done this partly in the isotropic
path amplitudes variances section. However it requires further inves-
tigation, further simplification to obtain intuitive results in the overall
CRB expression for the estimation of r.

• We opened a new research path by importing the PEP analysis in
PDP-F. However we are just at the beginning. There are still more
interesting scenarios to simulate. Moreover for the non-ergodic case
in the GML based PDP-F, we could not proceed much. Only the
expression was stated. However it must be evaluated (averaging over
the channel coefficients). We expect to see interesting results there
in terms of diversity coming from delay mismatches between the true
and false position’s CIRs. Naturally, other interesting future work
would be to extend the analysis to PDDP-F methods which seems a
bit challenging but not impossible.

• KF based tracking requires deeper thought because we were expecting
a different outcome (we were expecting that temporally white spatially
colored noise acceleration model would perform better than the spatio-
temporally white noise acceleration model) at the end. Therefore the
reasons for this surprising result should be discovered.

By far the most crucial item we did not put forth in the preceding list was
applying the fingerprinting algorithms to multi-BS scenarios. In fact, one
of the most appealing features of fingerprinting based localization methods
is their ability to locate the MT with just a single BS. This is undoubtedly
a very big advantage over classical localization methods which require sig-
nals from multiple BSs. Because coordination between BSs, fusion of the
information obtained in each BS-MT link require huge effort. However, if
there is an already established infrastructure, then why not to exploit it?
More interestingly, hybrid approaches might be suggested (already exists
between classical geometrical methods such as ToA/RSS, etc.) between fin-
gerprinting and other classical or advanced geometric localization methods
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to improve the localization accuracy even further. As a result, one can say
that “there is plenty of room for improvement”.
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Appendix A

CRB of the Position Vector
for Non-overlapping Case

We can write Jr as:

Jr =
1

c2

Np∑

i=1

Jτi,τi

[
cos2 ψi cosψi sinψi

cosψi sinψi sin2 ψi

]
. (A.1)

(3.140) is now easy to see. Proving (3.141) can be done by mathematical
induction. It is straightforward to show for Np = 2. Assuming that it holds
for any Np, it is easy to show that it is still valid for Np + 1. However we
will directly prove without using induction. If we check (A.1), we can write:
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c4 detJr

=




Np∑

i=1

Jτi,τi cos
2 ψi






Np∑

i=1

Jτi,τi sin
2 ψi


−




Np∑

i=1

Jτi,τi cosψi sinψi




2

=

Np∑

i=1

Np∑

j=1

Jτi,τiJτj ,τj cosψi sinψj (cosψi sinψj − sinψi cosψj)

=

Np∑

i=1

Np∑

j=1

Jτi,τiJτj ,τj cosψi sinψj sin(ψj − ψi)

=

Np∑

i=1

Np∑

j=1
j 6=i

Jτi,τiJτj ,τj cosψi sinψj sin(ψj − ψi). (A.2)

(A.2) stems from the fact that the terms for i = j are null due to the term
sin(ψj −ψi). Hence N

2
p −Np terms are left in the summation. Note that in

the (i, j)th turn we have a factor of Jτi,τiJτj ,τj cosψi sinψj sin(ψj − ψi) and
in the (j, i)th turn there is Jτj ,τjJτi,τi cosψj sinψi sin(ψi − ψj) in the overall
summation. When we add them we have:

Jτi,τiJτj ,τj cosψi sinψj sin(ψj − ψi) + Jτj ,τjJτi,τi cosψj sinψi sin(ψi − ψj)

= Jτi,τiJτj ,τj sin(ψi − ψj) (cosψj sinψi − cosψi sinψj)

= Jτi,τiJτj ,τj sin
2(ψi − ψj). (A.3)

Let us plug (A.3) into (A.2); we now have
(
Np

2

)
= (N2

p −Np)/2 terms in the
overall summation resulting in:

c4 detJr =

Np−1∑

i=1

Np∑

j=i+1

Jτi,τiJτj ,τj sin
2(ψi − ψj), (A.4)

which concludes the proof of (3.141).



Appendix B

Distribution of the
Summation of Non-identical
Exponential RVs

The proof is via mathematical induction. Let us assume that V1, V2, ...VK
be independent exponential random variables with parameters λ1, λ2, ...λK
respectively and W1 =

∑K
i=1 Vi is the distribution we are interested in, i.e.,

fW1
(u). We begin to derive this distribution recursively by starting with

K = 2 and then try to extend it to any K.

fV1+V2
(u) =

∫ ∞

−∞
fV1

(u− v)fV2
(v)dv

=

∫ u

0
λ1e

−λ1(u−v)λ2e
−λ2vdv

=
λ1λ2
λ1 − λ2

(
e−λ2u − e−λ1u

)

= λ1λ2

(
e−λ2u

λ1 − λ2
+

e−λ1u

λ2 − λ1

)
, (B.1)

where we used convolution to derive the distribution of summation of ran-
dom variables. Now we have two exponentials for the summation of two
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exponential random variables with different λi’s. Now by using (B.1) next
step is to see fV1+V2+V3

(u):

fV1+V2+V3
(u) =

∫ ∞

−∞
fV3

(u− v)fV1+V2
(v)dv

=

∫ u

0
λ3e

−λ3(u−v)λ1λ2

(
e−λ2v

λ1 − λ2
+

e−λ1v

λ2 − λ1

)
dv

= λ1λ2λ3

(
e−λ2u − e−λ3u

(λ1 − λ2)(λ3 − λ2)
+

e−λ1u − e−λ3u

(λ2 − λ1)(λ3 − λ1)

)

= λ1λ2λ3

(
e−λ3u

(λ2 − λ3)(λ1 − λ3)
+

e−λ2u

(λ1 − λ2)(λ3 − λ2)

+
e−λ1u

(λ2 − λ1)(λ3 − λ1)

)
. (B.2)

Because of the integrals involving these exponentials, we will have the similar
patterns when we extend the analysis for any number of summations. The
distribution has the form given in (5.13). However to prove it formally by
induction, we will assume that (5.13) is valid for K summations, and try to
derive the distribution for K + 1 summations. When we begin for the case
of K exponential random variables, the coefficient of e−λku represented by
cKλk

given by (5.13) is:

cKλk
=

(
K∏

i=1

λi

)




1
K∏

j=1
j 6=k

(λj − λk)




. (B.3)

To derive the distribution for the K + 1 case, the following convolution
operation is used:

fK+1
W1

(u) =

∫ ∞

−∞
fVK+1

(u− v)fKW1
(v)dv (B.4)

=

∫ u

0
λK+1e

−λK+1(u−v)fKW1
(v)dv (B.5)

where fKW1
(u) denotes the distribution of the summation of K exponential

random variables. It is easy to realize that now the coefficient of e−λku has
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some additional factors, and we can write it recursively as:

cK+1
λk

=
λK+1

λK+1 − λk
cKλk

. (B.6)

Hence we can write cK+1
λk

as:

cK+1
λk

=

(
K+1∏

i=1

λi

)




1
K+1∏

j=1
j 6=k

(λj − λk)




, (B.7)

demonstrating that the distribution still has the same form for K +1 which
concludes the proof by induction.
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Appendix C

Résumé Étendu en Français

C.1 Abstract en français

Depuis plusieurs années, le positionnement de terminal mobile reçoit un
intérêt particulièrement grand. La motivation principale pour le développe-
ment de système de positionnement mobile provient essentiellement dŠune
nécessité imposée par le service E-911 de lŠU.S FCC. Bien quŠau départ ils
ont été utilisés pour les besoins des systèmes de sécurité dŠurgence, aujour-
dŠhui ils trouvent des applications dans de nombreux domaine tel que les
systèmes cellulaires.

Il existe de nombreux algorithmes développés pour le problème de local-
isation MT. Les méthodes traditionnelles de localisation géométrique sont
conçues pour fonctionner sous les conditions de line-of-sight (LoS). Cepen-
dant, les conditions LoS pourrait ne pas être toujours présentes entre la
station de base (BS) et le MT. Par conséquent, les techniques de localisa-
tion basée sur fingerprinting qui sont également l’objet de cette thèse attire
l’attention en raison de leur capacité à travailler aussi en multi trajet et dans
des environnements non-line-of-sight (NLoS).

Dans cette thèse, nous introduisons de nouveaux algorithmes de finger-
printing, à savoir lŠalgorithme de power delay Doppler-profile fingerprinting
(PDDP-F) qui exploite la mobilité du MT. Le but est d’augmenter la préci-
sion de localisation en utilisant la dimension Doppler. Nous étudions égale-
ment les performances de localisation des algorithmes power delay-profile
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fingerprinting (PDP-F) et PDDP-F via la dérivation des bornes de Cramer-
Rao (CRBs). L’impact de la géométrie du réseau est également étudié.

Un autre sujet nous nous occupons est lŠanalyse de la probabilité d’erreur
par paires (PEP) pour les méthodes PDP-F. Le PEP est une notion bien
connue dans les communications numériques, et nous lŠimportons dans le
domaine de la localisation pour dériver la probabilité de prendre une décision
en faveur d’une mauvaise position.

Le dernier sujet sur lequel nous avons travaillé est le suivi adaptatif
de lŠenviron MT en utilisant un filtre de Kalman. Différents modèles de
mobilité sont comparés en termes de leurs erreurs de prédiction de position.

C.2 Contributions et Cadre de cette Thèse

Tout au long de cette période de thèse, nous avons essayé de mener des
recherches dans divers domaines. Principalement, notre sujet d’intérêt était
la localisation des MTs basée sur des méthodes d’empreintes. Dans un
sens plus large, l’estimation des paramètres a été notre principal sujet de
recherche. De nombreux résultats ont été obtenus sur des bornes de perfor-
mance de l’estimation des paramètres, des questions d’identifiabilité locales,
des algorithmes de localisation de nouvelles, des analyses PEP, etc. Espérons
que les résultats obtenus dans ce travail a mis en lumière les problèmes liés
à notre domaine de recherche.

Notre effort principal a été orientée vers la préparation d’un texte com-
plet sur les sujets que nous avons étudiés. Pour ce faire, nous avons es-
sayé de suivre un ordre raisonnable. D’abord, nous avons introduit deux
nouvelles méthodes d’empreintes, à savoir domaine temporel PDDP-F et
domaine de fréquence PDDP-F. Puis, nous avons essayé d’aborder les lim-
ites de performance sur PDP-F et PDDP-F méthodes. Pour le meilleur de
notre connaissance, l’analyse des performances des méthodes de localisation
basés sur les empreintes n’a pas été effectuée pour le moment. Par con-
séquent, nous nous sommes concentrés sur cet aspect et présentés CRBs
sur l’estimation des LDPs et le vecteur de position pour les différents cas
étudiés. Nous avons pensé beaucoup de résultats intuitifs et complètes sur
les CRBs et aussi la possibilité de locale identifier du vecteur de position
r. Prochaine étape dans nos études était un sujet très intéressant qui est
l’analyse PEP pour le PDP-F méthodes. Analyse PEP est un sujet bien
connu dans le domaine des communications numériques. Conceptions du
récepteur, des algorithmes de détection sont profondément impliqués dans
l’analyse PEP pour voies de communication numériques. En s’inspirant
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de cela, nous avons essayé de transmettre le même concept pour méthodes
de localisation basées sur PDP-F. Cela peut être perçu comme une sorte
d’analyse de performance. Nous avons réussi à tirer résultats analytiques et
vérifié l’exactitude des résultats analytiques avec des simulations. Travail
final dans cette thèse était sur le suivi des MT basée sur adaptative KF. En
fait, ce fut dans le contexte d’un projet, nous ont été impliqués dans (projet
WHERE). Nous avons étudié trois modèles de mobilité pour la campagne de
mesure M3 d’EURECOM et a présenté les résultats sous la forme d’erreurs
de prédiction de position. Tous ceux-ci nous a expliqué jusqu’ici était un bref
résumé de nos réalisations. Maintenant, nous allons essayer de les élaborer
en détail.

Dans le chapitre 2, deux méthodes d’empreintes nouvelles ont été intro-
duites en utilisant la variation temporelle de la châıne en raison de la mo-
bilité de MT. En fait, nous avons introduit le profil le plus général, à savoir
PDDSP, dont PDDP est un cas particulier (pour les canaux SISO). Première
méthode, domaine de fréquence PDDP-F résout les chemins non seulement
dans la dimension de retard, mais aussi dans la dimension Doppler. Na-
turellement, avec ce profil 2D au lieu de les profils classiques 1D de PDP-F,
des exactitudes plus élevées ont été atteints. En outre la fonction de coût
mises en IJuvre par l’intermédiaire d’opérations FFT 2D est beaucoup rapide
et augmente également la robustesse de l’algorithme contre FO et DO.

Deuxième algorithme, que nous appelons domaine temporel PDDP-F,
est basé sur l’exploitation du SOS du canal variant dans le temps. Il est une
autre technique de localisation haute résolution. La nouveauté que nous
avons proposé a été fondée sur le cumul des estimations de canal consé-
cutifs. De cette manière, l’information Doppler des chemins sont devenus
visibles dans les matrices de covariance. Nous avons connu l’augmentation
des performances avec le n croissante, n, soit le canal consécutive estimations
empilées. Même pour n = 2, la performance était tout à fait satisfaisant.
Toutefois, dans ce cas, les problèmes FO et/ou DO (si elles sont présentes),
doivent être manipulés avec soin pour que la méthode fonctionne correcte-
ment. Une partie de ce travail a été publié en:

• Turgut Mustafa Oktem and Dirk T. M. Slock, ”Power delay doppler
profile fingerprinting for mobile localization in NLOS”, in the
proceedings of 21st Annual IEEE International Symposium on Per-
sonal, Indoor and Mobile Radio Communications (PIMRC), Istanbul,
Turkey, 2010.

Chapitre 3 était le coeur de notre recherche où nous avons exploré
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les limites de performance (CRBs) pour le PDP-F. Beaucoup de cas dif-
férents pour la modélisation d’amplitude chemin, la modélisation des phases,
l’identifiabilité locale, les impulsions qui se chevauchent et ne se chevauchent
pas ont été étudiés. Modèles des chemins d’amplitude isotrope/anisotrope
a été introduite aussi. Nous avons découvert de nombreux résultats impor-
tants sur des sujets divers. Toutefois, nous avons publié seulement une petite
quantité de nos réalisations dans ce chapitre jusqu’ici qui a été publié en:

• Turgut Mustafa Oktem and Dirk T. M. Slock, ”Cramer-Rao bounds
for power delay profile fingerprinting based positioning”, in
the proceedings of IEEE 36th International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Prague, Czech Republic, 2011.

Nous allons présenter reste de nos réalisations en tant que article journal:

• Turgut Mustafa Oktem and Dirk T. M. Slock, ”Cramer-Rao bounds
for power delay profile fingerprinting based positioning”, under
preparation.

Chapitre 4 était une extension du travail présenté dans le chapitre 3
pour la méthode PDDP-F. Naturellement, nous voyons l’amélioration dans
les CRBs des LDPs puisque nous utilisons plus des estimations de canal
maintenant. En outre, il ya aussi l’amélioration de l’identifiabilité de r, par
exemple, identifiabilité peut être atteint même avec un chemin pour la mod-
élisation isotrope. Cela est dû à l’exploitation de la nouvelle dimension en
provenance de Doppler. En raison de l’augmentation dans les informations
obtenues à partir de LDPs, les performances de localisation est sans doute
plus élevé que le PDP-F méthode. Cependant, comme c’est généralement le
cas, il ya un compromis entre la complexité et la performance. En plus de
DO, le problème FO pourrait également être présent dans PDDP-F. Sauf si
les deux déficiences se produisent simultanément, identifiabilité locale pour-
rait encore être atteint avec un seul chemin.

Nous n’avons pas publié les conclusions dans ce chapitre car il est une
extension du chapitre précédent. Cependant, les résultats que nous avons
obtenus sont originaux et pourrait être considérée comme publiée dans un
article de conférence.

Dans le chapitre 5, nous avons étudié un sujet intéressant à propos de
l’analyse PEP dans le PDP-F. Nous avons dérivé des résultats analytiques
closed-form. Pour le cas de chemin amplitudes déterministe en utilisant
LS comme la fonction objectif, nous avons observé que la PEP diminue
avec l’augmentation de la différence des vecteurs du PDP. Il s’agissait d’un
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résultat attendu, en fait. Pour le cas GML Rayleigh fading, nous avons vu
la saturation de la PEP autour d’une valeur non-nulle dans le régime de la
haute SNR. Cela est dû à l’aléatoire dans les coefficients du canal et améliore
seulement avec le nombre d’observations de canaux (T ). Nous pouvons dire
que l’atténuation totale de la saturation n’est possible que pour des valeurs
élevées de T . Les résultats ont été publiés dans

• Turgut Mustafa Oktem and Dirk T. M. Slock, ”Pairwise error prob-
ability analysis for power delay profile fingerprinting based
localization”, in the proceedings of IEEE 73rd Vehicular Technology
Conference (VTC), Budapest, Hungary, 2011.

Enfin, dans le chapitre 6, dans le contexte de projet WHERE, nous
avons effectué un suivi de MT basée sur adaptative KF. Nous avons essayé
d’adapter les paramètres de mobilité à nos mesures GPS. Différents modèles
de mobilité ont été étudiées. Parmi eux, AR (1) modèle de vitesse de Markov
a atteint la plus haute performance en termes d’erreur de prédiction de po-
sition. Cependant, temporellement blanc spatialement couleur bruit modèle
de accélération moins bons résultats que le modèle d’accélération spatio-
temporel du bruit blanc qui était surprenant pour nous. Nous n’avons pas
publier ces résultats dans un article, mais plutôt qu’ils ont été présentés dans
les éléments livrables du projet de WHERE.

C.3 Résumé du Chapitre 1

Dans ce chapitre d’introduction, nous allons introduire les bases du processus
de localisation. La plupart des méthodes bien connues pour la localisation
MT sont les techniques que l’on appelle “ traditionnelle” géométriques. Ces
méthodes fonctionnent généralement la localisation en deux étapes. Dans
l’étape 1er, les LDPs sont estimés dans un nombre suffisant de stations de
base. Parmi les plus connus LDPs, on peut énumérer AoA, ToA, TDoA,
et le RSS [5]. Ensuite, en utilisant les LDPs, l’emplacement de la MT est
estimée en utilisant les relations géométriques. Cependant le plus grand
inconvénient de ces méthodes est qu’elles nécessitent des signaux LoS avec
le BSs.

En raison des nombreux inconvénients des méthodes traditionnelles de
localisation “géométriques”, la recherche a été dirigée vers une autre direc-
tion. En conséquence, les méthodes de localisation basées sur les empreintes
ont surgi, qui font également l’objet principal de nos recherches. Le principal
avantage des méthodes d’empreintes digitales, c’est que la localisation est
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possible même avec un seul BS. En outre, ils ne souffrent pas de conditions
NLoS, au contraire, ils l’exploitent. Ce fut notre principale motivation pour
mener des recherches dans ce domaine. Dans la figure C.1, nous illustrons
un environnement multipath typique.

Figure C.1: Un environnement multipath.

Techniques d’empreintes sont classés parmi les techniques de DLE, c’est
à dire, l’estimation de position est effectuée en une seule étape. En résumé,
les concepts de base de méthodes générales de localisation basés sur les em-
preintes peuvent être expliquées en deux étapes. La première étape est la
création et le maintien d’une base de données des empreintes. Empreintes
appropriés doivent être choisis qui doit être unique pour chaque emplace-
ment discret dans la base de données. Ceci peut être réalisé en exécutant
(ray tracing ou ray lancement) ou en effectuant des simulations de cam-
pagnes de mesures sur la zone d’intérêt pour obtenir des empreintes uniques
correspondant à une position spécifique. Ensuite, ces empreintes devraient
être stockées dans une base de données grand. C’est la partie off-line. Deux-
ième étape est de l’empreinte correspondant au signal reçu une entrée dans
la base de données qui est effectué en ligne par l’intermédiaire d’une sorte
de fonction de likelihood.
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C.3.1 Questions d’identifiabilité et Bornes de Performance

Un autre sujet intéressant que nous allons mentionner, c’est au sujet de la
identifiabilité de la position MT, c’est à dire, la capacité de l’estimer. Anal-
yse identifiabilité peut être divisé en deux, à savoir l’identifiabilité locale et
l’analyse d’identifiabilité globale. Notion d’identifiabilité globale est facile à
comprendre. Par exemple, pour de localisation 2D pour un système de lo-
calisation basé sur ToA, trois BSs sont suffisantes pour avoir une estimation
de la position unique que nous pouvons voir dans la figure suivante:

Figure C.2: Localisation basée sur ToA avec trois BSs (trilateration).

Cependant, identifiabilité locale de la position de MT est un peu plus
compliqué. Identifiabilité locale est un problème similaire en ce sens que la
position du mobile doit être identifié de façon unique autour d’un voisinage
local du MT. Par conséquent, si seuls les signaux provenant de deux BSs sont
disponibles (toujours pour le 2D ToA système), l’intersection de deux cercles
se traduira par deux candidats possibles pour le poste MT. Dans ce cas, il est
clair qu’il n’ya pas de identifiabilité globale. Cependant, identifiabilité locale
est présente. Il existe un théorème que nous allons utiliser fréquemment dans
la thèse qui offre un moyen d’analyse pour faire face à ce problème grâce à
l’utilisation de la FIM. Ce théorème nous dit que les paramètres inconnus
devenir localement identifiables lorsque la FIM évalué à des vraies valeurs
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est inversible.

C.4 Résumé du Chapitre 2

Dans ce chapitre, nous allons introduire deux nouveaux algorithmes, à savoir
domaine de fréquence PDDP-F et domaine temporel PDDP-F basé sur
d’empreintes. Par défaut, tous les systèmes de localisation basés sur les
empreintes besoin de bases de données. Comme nous l’avons exprimé dans
le chapitre 1, ils peuvent être construits hors ligne, soit par le ray trac-
ing, ou par des rayons de lancer des méthodes de simulation sur la zone
géographique d’intérêt [31,32]. La zone est divisée en plusieurs sections dis-
tinctes, chaque section ayant une empreinte unique. Nous allons commencer
par le domaine fréquentiel PDDP-F algorithme et après que nous allons
introduire le domaine temporel PDDP-F algorithme.

C.4.1 Domaine de Fréquence PDDP-F

Considérons un canal MIMO sans fil spéculaire illustré ci-dessous avec de
multiples (Nt) et de transmettre (Nr) antennes de réception: La réponse

Figure C.3: MIMO multipath paramètres de propagation
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varie dans le temps d’impulsion de canal est la suivante:

h(τ, t) =

Np∑

i=1

Ai(t) e
j2π fi t aR(φi)a

T
T (θi) p(τ − τi) (C.1)

Pour ce modèle de canal, nous pouvons maintenant introduire le profil le
plus général, qui est la Power Delay Doppler Space Profile (PDDSP) comme
suit:

PDDSPh(τ, f)

=
∫
Eh(τ, t1 + t)hH(τ, t1) e

−j2πftdt

=
∑Np

i=1 σ
2
i |p(τ − τi)|2 δ(f − fi)aia

H
i

=
∑Np

i=1 σ
2
i |p(τ − τi)|2 δ(f − fi)RT (θi)⊗RR(φi)

(C.2)

où ai = aT (θi)⊗ aR(φi) et nous avons introduit les covariances spatiales:

RT (θi) = aT (θi)a
H
T (θi) , RR(φi) = aR(φi)a

H
R (φi) . (C.3)

Dans le cas d’un canal SISO, nous obtenons le Power Delay Doppler Profile
(PDDP)

PDDPh(τ, f) =

Np∑

i=1

σ2i |p(τ − τi)|2 δ(f − fi) . (C.4)

Toutefois, les équations ci-dessus ne comprennent pas les effets de fenêtrage.
Puisque nous avons une quantité limitée de données, nous avons besoin de
prendre des effets de fenêtrage en compte. Ses effets se font sentir à l’image
dans le domaine fréquentiel.

Il sera plus instructif de résumer l’ensemble du processus avec les chiffres
d’illustration. Avec le AoA, le retard et la puissance des rayons, on peut
construire le Power Delay Angle of Arrival Profile (PDAoAP) (PDAoAP)
comme le montre la figure C.4. Alors la prochaine étape consiste à former le
PDDP avec l’aide du vecteur vitesse. Avec la fusion de l’information à partir
du AoA des rayons et les informations à partir du vecteur vitesse (vitesse
amplitude et la direction du mouvement), décalage Doppler de chaque rayon
peut être calculé. Ainsi PDDP peuvent être construits que dans la figure C.5.
La dernière chose à faire est d’inclure la forme des impulsions et des effets
de fenêtrage. Après tout, nous nous retrouvons avec le PDDP finale comme
le montre la figure C.6.

Pour l’opération de correspondance entre le PDDP et les entrées dans la
base de données, nous utilisons le rapide et vigoureuse de l’algorithme FFT
2D:

IFFT (FFT (A)⊙ conj(FFT (B)))

‖A‖F ‖B‖F
(C.5)
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Figure C.4: Power Delay Angle of Arrival Profile

Figure C.5: Power Delay Doppler Profile
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Figure C.6: Power Delay Doppler Profile avec la forme des impulsions et le
fenêtrage effets inclus

où ⊙ est la Hadamard (élément par élément) la multiplication et la conj
dénote conjugué. L’entrée maximum dans la matrice qui en résulte est la
plus forte corrélation entre les deux dans le parfaitement alignés cas.

Pour voir l’efficacité de notre algorithme, nous avons effectué quelques
simulations dont les résultats sont présentés dans la figure C.7.

Nous voyons la grande amélioration dans la performance. La raison du
succès est le domaine Doppler pris en compte. La capacité de résoudre les
rayons en deux dimensions (à la fois en retard et Doppler) a augmenté la
capacité de résolution des chemins, et donc la performance de localisation.

C.4.2 Domaine Temporel PDDP-F

Nous savons que, prises de canal échantillonnés pourrait être la superposition
de plusieurs rayons qui arrivent pendant la durée d’échantillonnage que dans
un environnement canal diffuse. Le théorème central limite nous permet de
modéliser ces taps comme des variables random Gaussiennes. Dans cette
section, nous proposons la version du domaine temporel de l’algorithme
PDDP-F qui exploite les statistiques de second ordre de la châıne. Nous
supposons que le complexe vecteur fading b(t), et le bruit additif v(t) sont
iid zero-mean processus vecteur Gaussien, à savoir les, les
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Figure C.7: Comparaison des performances du PDP-F déterministe and
domaine de fréquence PDDP-F.

b(t) ∼ N (0,Cb)
v(t) ∼ N

(
0, σ2vIN

) (C.6)

où N (0,Cb) désigne la zero-mean vecteur complexe Gaussien de covariance
matrice Cb, et σ

2
v est la variance de l’erreur d’estimation de canal. Avec

le modèle statistique de (2.19), ĥ(t) est modélisé comme un i.i.d. complexe
vecteur Gaussien avec ĥ(t) ∼ N

(
0,C

ĥĥ

)
,C

ĥĥ
= PτCbPτ

H + σ2v IN .

Avec la modélisation Gaussienne de ĥ(t), nous pouvons vous proposer un
solution ML du problème de localisation. Notre objectif est également de
prendre en compte la variation Doppler du canal. Par conséquent, nous
empiler consécutives ĥ(t) des estimations de canal en un vecteur, au lieu de
prendre un seul, et calculer les matrices de covariance basé sur ceci. Con-
sidérons maintenant la réponse du canal au moment consécutive multiples
instants t = ts, 2ts, . . . , nts:
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h︸︷︷︸
nNτNrNt×1

=




h(ts)
h(2ts)

...
h(nts)


 . (C.7)

Alors nous obtenons

h =

Np∑

i=1

Ai e(fi)⊗ hi , e(f) =




ej2πfts

ej2πf2ts

...
ej2πfnts


 (C.8)

Nous obtenons pour la matrice de covariance h

Chh =

Np∑

i=1

σ2i Rf (fi)⊗Rτ (τi)⊗RT (θi)⊗RR(φi) (C.9)

où
Rf (f) = e(f)eH(f) , Rτ (τ) = p(τ)pH(τ) . (C.10)

Notez que Rf est Toeplitz. Dans le cas d’un canal SISO, nous avons Chh =∑Np

i=1 σ
2
i Rf (fi)⊗ Rτ (τi) et le PDDP est liée à la partie diagonale des cette

matrice, après la prise de DFT de la partie Rf . Au lieu de les approches
habituelles du ML pour estimer le chemin paramètres de maximiser la proba-
bilité par rapport à la paramètres, la probabilité est évaluée en substituant la
position paramètres dépendant du chemin de la base de données et, partant,
il fournit la probabilité de la position. En d’autres termes, les matrices de
covariance du ray tracing base de données (C

ĥĥ
) sont créés hors-ligne par le

positionner les paramètres dépendants (en utilisant les retards, les pouvoirs,
l’effet Doppler des rayons), puis la probabilité est évaluée à ce qui précède
formulation pour les données de mesure. La position donnant l’ vraisem-
blance la plus élevée est l’estimation de position du mobile. Likelihood peut
être exprimée comme suit:

LL ∝ − ln
(
detC

ĥĥ

)
− tr

{
C

ĥĥ
−1Ĉ

ĥĥ

}
(C.11)

où Ĉ
ĥĥ

est la covariance de l’échantillon observé matrice.
Une fois encore, nous avons effectué des simulations pour voir la per-

formance de notre algorithme. L’environnement de simulation est le même
que pour le domaine fréquentiel PDDP-F simulations. Nous voyons trois
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courbes dans la parcelle où n = 1 correspond à la bayésienne PDP-F cas.
Il est évident que dans le domaine temporel PDDP-F surpasse bayésienne
PDP-F. L’augmentation des n (nombre d’estimations de canal consécutifs)
augmente également le taux de réussite. Si nous comparons également avec
le domaine fréquentiel PDDP-F algorithme, nous voyons que le domaine
temporel PDDP-F est plus robuste et le taux de réussite est plus élevé pour
n ≥ 3. En outre un inconvénient de la fréquence-domaine PDDP-F, c’est
que sa non-paramétrique du spectre pourrait souffrir de la résolution limitée.
Dans ces simulations, nous avons supposé que le vecteur vitesse est connu
d’avance.
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Figure C.8: Résultat de performance de domaine temporel PD(D)P-F en
fonction de n.

C.5 Résumé du Chapitre 3

Ce chapitre traite de l’analyse des performances du PDP-F algorithmes.
Nous pouvons dire que ce chapitre est le cIJur de la thèse. Divers mod-
èles d’amplitude de chemin, qui se chevauchent et non-chevauchement des
impulsions, DO questions, impact de la géométrie du réseau sur la perfor-
mance de localisation sont étudiées. Identifiabilité locale et l’analyse CRB
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sont effectuées pour chacun de ces cas. La plupart de l’analyse s’appuie sur
des enquêtes FIM des paramètres à estimer. A la fin, en utilisant la trans-
formation des paramètres, nous obtenons les CRBs du vecteur de position
des CRBs des LDPs. Il ya beaucoup de résultats afin de discuter dans ce
chapitre. Cependant, nous allons donner un bref résumé de nos conclusions.

Pour le cas de Rayleigh fading anisotrope, on obtient le CRB qui suit
pour l’estimation du retard du chemin ieme lorsque les impulsions sont non-
chevauchement:

E(τi − τ̂i)
2 ≥ 1

8π2W 2SNRi

(
1 +

1

SNRi

)
(C.12)

où SNRi est le SNR de la voie ieme et W est la bande passante effective de
l’impulsion. Pour l’estimation de la variance chemin, nous avons:

E(σ2i − σ̂2i )
2 ≥ 1

Jσ2
i ,σ

2
i

=
(
σ2i + σ2v/ep

)2
. (C.13)

Nous vous fournirons les parcelles de ces résultats dans les chiffres suiv-
ants qui incluent également le cas de chevauchement.
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Figure C.9: RMSE de τ̂i en fonction de SNRi pour W = 1 MHz, σ2j = 2.

Il n’est pas difficile de se prononcer sur les chiffres. Augmentation
de la bande passante permet l’estimation du retard. En outre, pour le
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Figure C.10: RMSE de τ̂i en fonction de SNRi pour W = 1 MHz, σ2j = 20.
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Figure C.12: RMSE de σ̂2i en fonction de σ2i pour W = 1 MHz, σ2j = 20.

cas de chevauchement, comme l’ingérence de la part des augmentations
d’impulsions d’autres, l’estimation devient plus difficile que prévu. Notre
intérêt principal est l’obtention du CRB pour l’estimation du vecteur posi-
tion et étudie également l’analyse identifiabilité locale de la position de la
MT. Pour cela, nous allons utiliser la transformation que nous avons men-
tionné avant, qui peut être obtenu par la formule suivante [35]:

Jr = FJθF
H (C.14)

où F = ∂θ
∂r

∣∣
r=r0

(r0 = [x0, y0]
T est la position réelle du mobile). Pour

une configuration générique comme celui ci-dessous, nous allons présenter
le résultat pour les amplitudes de chemin déterministes avec des phases
déterministes.

Ainsi, pour Np ≥ 2 et non-chevauchement des impulsions:

E‖r− r̂‖2 = ζ

∑Np

i=1 SNRi∑Np−1
i=1

∑Np

j=i+1 SNRi SNRj sin
2(ψi − ψj)

, (C.15)

avec ζ = c2

8π2 W 2 . C’est un résultat important et a la même structure de
l’équation donnée dans [35]. L’intrigue de ce résultat peut être vu ci-dessous:
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Figure C.13: La géométrie de la BS-MT.
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Figure C.14: RMSE de r̂ en fonction de SNR1 et SNR2 pour ψ2−ψ1 = π/2
pour la cas deterministic.
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En utilisant la même méthodologie, de dérivation pour le cas de Rayleigh
fading est simple:

E‖r− r̂‖2 = ζ

∑Np

i=1
SNR2

i
SNRi+1

∑Np−1
i=1

∑Np

j=i+1

SNR2
i SNR2

j

(SNRi+1)(SNRj+1) sin
2(ψi − ψj)

. (C.16)

et son intrigue est donnée dans la figure C.15.
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Figure C.15: RMSE de r̂ en fonction de SNR1 et SNR2 pour ψ2−ψ1 = π/2
pour la cas Rayleigh fading.

C.5.1 Conclusions

Dans le chapitre 3, nous avons découvert de nombreux résultats importants
sur des sujets divers. Nous pouvons les énumérer brièvement comme suit:

• identifiabilité locale du vecteur de position r peut être atteint même
avec un chemin pour le cas anisotrope. Étonnamment, forme d’impulsion
joue un rôle important dans l’identifiabilité locale. Pour le cas isotrope,
au moins deux chemins sont tenus.
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• Estimation des retards de voie s’améliore avec SNR et avec la bande
passante effective de la forme de l’impulsion W . L’estimation des
amplitudes chemin, d’autre part est indépendant de W . En outre
l’estimation de la même LDP sous la modélisation évanouissement de
Rayleigh est plus difficile que l’amplitude chemin déterministe de la
modélisation déterministe phases.

• En cas de DO, au moins deux voies sont nécessaires pour l’identifiabilité
locale de r, même pour le cas anisotrope.

• Expressions CRB analytiques pour l’estimation des LDPs pour pulses
qui se chevauchent a également été démontrée. Nous avons vu que
l’ingérence des impulsions entrave l’estimation des LDPs. Si un sys-
tème de localisation basée sur ToA s’appuyant sur le chemin LoS
est utilisé, et si l’impulsion LoS interfère avec certains autres impul-
sions, alors la précision de localisation seriez peut-être sensiblement
dégradées en fonction du rapport qui se chevauchent.

• Expressions CRB analytiques pour l’estimation de r ont été tirés à la
fois pour les cas déterministe et Rayleigh. Nous avons directement con-
staté les effets positifs de l ’W et SNR’ des trajectoires individuelles.
Aussi l’impact de la géométrie environnante (GDOP) a également été
mentionnée explicitement. Les conditions de géométrie améliorants ou
dégradants de la performance de localisation ont été expliqués. En
outre le cas particulier de deux impulsions qui se chevauchent a été
démontrée. Pour le cas évanouissement de Rayleigh, il se dégrade tou-
jours la performance de localisation. Toutefois, pour le cas détermin-
iste, il pourrait améliorer la performance de localisation pour certaines
valeurs spécifiques de la différence de phase, ratios de chevauchent, etc.

C.6 Résumé du Chapitre 4

Dans ce chapitre, notre objectif est d’étendre l’analyse que nous avons fait
dans le chapitre précédent pour PDDP-F. Nous utilisons presque la même
méthodologie. Nous ne répéterons pas les mêmes équations à nouveau, au
lieu nous allons juste vous présenter nos nouvelles découvertes. Comme nous
l’avons expliqué précédemment, pour PDDP-F, nous utilisons plus d’un es-
timations de canal (n > 1). En conséquence, nous nous attendons à une
amélioration des estimations. En effet l’analyse FIM il vérifie. Pour le cas
déterministe anisotrope où la phase est modélisée comme inconnues déter-
ministes, on obtient les résultats suivants:
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E(τi − τ̂i)
2 ≥ 1

8nπ2W 2SNRi
, (C.17)

De même, nous tirons:

E(ai − âi)
2 ≥ a2i

2nSNRi
, (C.18)

E(fi − f̂i)
2 ≥ 3

2n (n2 − 1)π2 t2s SNRi
, (C.19)

et de même pour φi:

E(φi − φ̂i)
2 ≥ 2n− 1

n (n+ 1)SNRi
. (C.20)

Nous voyons clairement l’effet d’amélioration de la n sur les estimations des
LDPs.

C.6.1 Conclusions

Chapitre 4 était une extension du travail présenté dans le chapitre 3 pour la
méthode PDDP-F. Naturellement, nous voyons l’amélioration dans les CRBs
des LDPs puisque nous utilisons plus des estimations de canal maintenant.
En outre, il ya aussi l’amélioration de l’identifiabilité de bfr, par exemple,
identifiabilité peut être atteint même avec un chemin pour la modélisation
isotrope. Cela est dû à l’exploitation de la nouvelle dimension en provenance
de Doppler. En raison de l’augmentation dans les informations obtenues à
partir de LDPs, les performances de localisation est sans doute plus élevé
que le PDP-F méthode. Cependant, comme c’est généralement le cas, il
ya un compromis entre la complexité et la performance. En plus de DO,
le problème FO pourrait également être présent dans PDDP-F. Sauf si les
deux déficiences se produisent simultanément, identifiabilité locale pourrait
encore être atteint avec un seul chemin.

C.7 Résumé du Chapitre 5

Nous avons maintenant affaire à un nouveau problème dans le domaine de la
localisation. Dans ce chapitre, les performances des PEP PDP-F algorithme
sera étudiée. En fait, l’analyse PEP est un concept bien connu dans la
communication numérique, i.e., calcul de la probabilité d’erreur quand un
vecteur de symboles sm est transmis, mais un autre vecteur de symboles
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sn est détecté au niveau du récepteur [38]. Sous différentes modélisations
d’amplitude de chemin et les fonctions de coût, nous allons essayer d’obtenir
des résultats closed form pour la PEP.

C.7.1 PEP de la Technique LS pour des Amplitudes de Chemin
Déterministes

Nous utilisons les mêmes modèles de canaux qui ont été utilisées dans les
chapitres précédents, et l’analyse est limitée à canaux SISO nouveau. Nous
pouvons définir le PEP comme suit lorsque les critères de LS est la fonction
de coût pour des amplitudes de chemin déterministes:

PEP = Pr (||P̂DP−PDPF || < ||P̂DP−PDPT ||), (C.21)

où P̂DP est le vecteur PDP estimé défini dans (5.4), PDPT est le vecteur
PDP vrai, qui est calculé hors-ligne à partir de la base de données stockées
et PDPF est le vecteur PDP à tort détecté. Dans certaines hypothèses
simplificatrices et en obtenant un avantage de la CLT (lorsque le nombre
d’observations canal T est suffisamment élevée), nous obtenons le résultat
suivant intuitive:

PEP = Q

(√
T

2σ2v
||PDPtrue −PDPfalse||

)
. (C.22)

où PDPfalse and PDPtrue sont les versions de débruitées PDPF et PDPT

respectivement. Comme d’habitude, nous vérifions notre analyse des résul-
tats de simulation où α dénote le niveau de séparation entre les vecteurs
PDP vrais et faux:

C.7.2 PEP de la Technique de GML pour Rayleigh Fading

Maintenant, nous étudions le cas où les amplitudes de chemin complexes sont
modélisés comme des variables random Gaussiennes. Dans ce cas, lorsque la
fonction de coût est basée GML, nous pouvons formaliser PEP comme suit:

PEP = Pr (LLT < LLF ). (C.23)

Cela peut être interprété de telle sorte que la probabilité que le likelihood
logarithmique effectué dans la position vraie est inférieure à le likelihood
logarithmique dans la position fausse qui conduit à la position de fausse à
être sélectionné. Dans le cas général ergodique, en utilisant la CLT, nous
obtenons pour le PEP:
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Figure C.16: PEP pour α = 1.1.
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Figure C.17: PEP pour α = 1.2.
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Figure C.18: PEP pour α = 1.4.

PEP = Q


 tr {CTC

−1
F − I} − ln det(CTC

−1
F )√

1
T tr {(CTC

−1
F − I)2}


 (C.24)

à partir de laquelle nous voyons que un décalage dans chaque chemin sé-
parément contribue à diminuer le PEP lorsque les retards de voie sont bien
séparés (le numérateur de l’argument de la fonction Q est une forme de la
distance d’Itakura-Saito entre les matrices de covariance).

Pour vérifier les résultats de l’analyse, nous avons effectué des simulations
pour le cas ergodique. Les écarts d’amplitude chemin de la véritable position
des entrées sont sélectionnées pour être juste un multiple de celles de faux,
i.e., σ2ai = β2 σ2bi .

De toute évidence, l’augmentation de β a pour effet d’augmenter la dis-
tance entre les matrices de covariance. Par conséquent, comme on peut aussi
être vu dans les simulations, PEP diminue avec le croissante β.

C.7.3 Conclusions

Un autre sujet intéressant que nous avons étudié était l’analyse PEP dans
le PDP-F. Nous avons dérivé des résultats analytiques closed-form. Pour le
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Figure C.19: PEP pour β = 1.1.
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Figure C.20: PEP pour β = 1.2.
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Figure C.21: PEP pour β = 1.4.

cas de chemin amplitudes déterministe en utilisant LS comme la fonction
objectif, nous avons observé que la PEP diminue avec l’augmentation de la
différence des vecteurs du PDP. Il s’agissait d’un résultat attendu, en fait.
Pour le cas GML Rayleigh fading, nous avons vu la saturation de la PEP
autour d’une valeur non nulle dans le régime de la haute SNR. Cela est
dû à l’aléatoire dans les coefficients du canal et améliore seulement avec le
nombre d’observations de canaux (T ). Nous pouvons dire que l’atténuation
totale de la saturation n’est possible que pour des valeurs élevées de T .

C.8 Résumé du Chapitre 6

Dans ce chapitre, dans le contexte de projet WHERE, nous avons effectué
un suivi des MT basée sur adaptative KF. Nous avons essayé d’adapter les
paramètres de mobilité à nos mesures GPS. Différents modèles de mobilité
ont été étudiées. Parmi eux, AR (1) modèle de vitesse de Markov a at-
teint la plus haute performance en termes d’erreur de prédiction de position.
Cependant temporellement blanc spatialement couleur bruit modèle de ac-
célération moins bons résultats que le modèle d’accélération spatio-temporel
du bruit blanc qui était surprenant pour nous.
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Les histogrammes des erreurs de prédiction de position que nous avons
obtenus pour chacun des modèles de mobilité peut être vu dans les figures
C.22, C.23 and C.24:
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Figure C.22: Histogramme erreur de position de prédiction pour le blanc
temporellement, le bruit spatialement coloré modèle d’accélération.

C.9 Futures travaux

Bien que nous avons essayé de répondre à une grande variété de questions
relatives à la localisation basée sur les empreintes, il ya certainement de nom-
breux problèmes ouverts laissés objet d’aucune enquête, et de nombreuses
questions sans réponse. Certains d’entre eux ci-dessous peut y avoir des
problèmes intéressants pour la recherche supplémentaire ou pour d’autres
chercheurs qui s’intéressent à ce domaine:

• Pour le domaine fréquentiel PDDP-F, sélection de fenêtre est égale-
ment un facteur important à effectuer de la performance de l’algorithme.
Par conséquent, l’impact de sélection de une fenêtre appropriée pour-
rait être étudiée plus avant. Tant pour le domaine temporel et domaine
fréquentiel PDDP-F algorithmes, commune cas l’estimation du vecteur
vitesse doit être améliorée.
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Figure C.23: Histogramme erreur de position de prédiction pour
l’accélération spatio-temporellement blanc modèle.
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Figure C.24: Histogramme erreur de position de prédiction pour AR(1)
(Markov) modèle de vitesse.
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• Même si nous avons introduit la PDDSP plus générale, nous venons
d’explorer le cas SISO par la suite. Par conséquent, multi-antennes
extensions des algorithmes d’empreintes proposées semblent promet-
teuses solutions définitivement à la localisation NLoS.

• Un autre paramètre important est la forme de l’impulsion pour les
algorithmes d’empreintes que nous avons introduites. Par conséquent,
ses effets sur la performance de localisation peuvent être étudiées, par
exemple, formes d’impulsions différentes, divers facteurs roll-off pour
les filtres raised cosine, etc.

• Les études montrent que, les paramètres de canal diffus pourrait avoir
une importance considérable dans la modélisation de canal [49, 50].
En dépit du fait que nos algorithmes d’empreintes peut fonctionner à
la fois dans des environnements de canaux spéculaires et diffus, nous
avons seulement tiré les CRBs pour les canaux spéculaires. Par con-
séquent, il s’agit d’une question ouverte de savoir comment les bornes
pour les LDPs, vecteur de position sera effectuée après l’intégration
des composants du canal diffuses.

• Dérivation des CRBs pour PDDSP-F méthodes pourraient être consid-
érés parmi les importants travaux de recherche futurs. Comme on peut
s’y attendre, plus de paramètres seront impliqués dans ce processus.
Réponses de réseau d’antenne en fonction des AoAs, AoDs jouera un
rôle important et en même temps, il faudra de nouveaux paramètres
pour être estimées conjointement.

• Nous avons mis la majorité de nos efforts sur l’exploration des limites
de performance de PDP-F algorithmes. Par conséquent, nous croyons
qu’il ya encore des choses à faire au sujet des CRBs de PDDP-F méth-
odes. La plupart du temps, les CRBs pour les LDPs ont été tirées.
Même si nous savons que, après la transformation des LDPs au vecteur
position r, PDDP-F méthodes aboutissent à des performances de lo-
calisation strictement meilleure, il serait agréable de voir les résultats
closed-form lorsque les deux retards et Doppler shifts sont utilisés de
la processus de localisation. Cela exige l’intégration des Doppler shifts
(fi’s) dans la matrice F. Nous l’avons fait en partie dans le chemin
amplitudes section isotrope écarts. Toutefois, elle exige une enquête
plus poussée, une plus grande simplification pour obtenir des résultats
intuitifs dans l’expression CRB globale pour l’estimation de r.
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• Nous avons ouvert une voie de recherche nouvelle par l’importation
de l’analyse PEP dans le PDP-F. Cependant, nous sommes juste au
début. Il ya encore des scénarios les plus intéressants à simuler. En
outre, pour le cas non-ergodique dans la base de GML PDP-F, nous
ne pouvions pas avancer beaucoup. Seule l’expression a été déclaré.
Cependant elle doit être évaluée (en moyenne au cours des coefficients
du canal). Nous nous attendons à voir des résultats intéressants il en
termes de diversité à venir à des décalages de retard entre la position
CIRs vrai et le faux du. Naturellement, d’autres travaux futurs serait
intéressant d’étendre l’analyse à PDDP-F méthodes qui semble un peu
difficile mais pas impossible.

• Suivi des MT basée sur adaptative KF nécessite plus pensé parce que
nous nous attendions à un résultat différent (nous nous attendions à
ce que blanc temporellement modèle spatialement couleur accélération
du bruit serait plus efficace que le modèle spatio-temporel du bruit
d’accélération blanc) à la fin. Par conséquent, les raisons de ce résultat
surprenant doit être découvert.

De loin l’élément le plus crucial, nous n’avons pas mis en avant dans
la liste précédente a été d’appliquer les algorithmes d’empreintes à multi-
BS scénarios. En fait, l’une des caractéristiques les plus intéressantes de
prise d’empreintes digitales des méthodes de localisation basés sur est leur
capacité à localiser le MT avec juste un BS unique. C’est sans doute un
très grand avantage par rapport aux méthodes classiques de localisation
qui nécessitent des signaux provenant de plusieurs stations de base. Parce
que la coordination entre les stations de base, la fusion des informations
obtenues dans chaque lien BS-MT exigent un effort énorme. Cependant, si
il ya une infrastructure déjà établie, alors pourquoi ne pas l’exploiter? Plus
intéressant encore, les approches hybrides pourrait être suggéré (existe déjà
entre les méthodes classiques géométriques tels que ToA / RSS, etc) entre les
empreintes digitales et d’autres classiques ou des méthodes de localisation
avancée géométriques pour améliorer la précision de la localisation encore
plus loin. En conséquence, on peut dire que “ il ya beaucoup de place à
l’amélioration ”.
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