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Chapter 1

General Introduction

1.1 About this Thesis

The work presented in this dissertation was performed in the LOASIS facilities at the

Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California. As a graduate

student at École Polytechnique, I was supervised by Dr. François Amiranoff, director of

the Laboratoire pour l’Utilisation des Lasers Intenses (LULI) and Dr. Wim Leemans,

director of the LOASIS group at LBNL.

This dissertation describes a full set of single-shot non-intrusive diagnostics for the

laser-plasma accelerator (LPA). Both a gas jet and a capillary-based LPA were used

during this PhD. Using the gas jet-based accelerator, three injection mechanisms were

characterized: channeled and self-guided self-injection, plasma down-ramp injection, and

two-beam colliding pulse injection.

A new technique for plasma density measurements based on wavefront sensing was

demonstrated at LBNL1 [1]. The technique, which offers greater sensitivity and ease

of use, was used to characterize and optimize the plasma density profiles during gas

1Wavefront-sensor-based electron density measurements for laser-plasma accelerators, G. R. Plateau,
N. H. Matlis, C. G. R. Geddes, A. J. Gonsalves et al., Review of Scientific Instruments, 81(3), 033108
(2010)
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jet experiments. In addition, two analysis softwares were developed for both transverse

interferometry and electron spectrometry which provided the plasma density and the

electron bunch energy and divergence distribution, respectively.

Stable low absolute momentum-spread electron bunches were produced using plasma

density gradients to control the wake phase velocity and trapping threshold in the accel-

erator 2 [2]. In combination with simulations, coherent transition radiation (CTR) in the

terahertz (THz) regime showed the bunches (≤ 30 fs) could be used as LPA injectors.

Extensive work was performed on characterizing and optimizing the THz radiation

emitted by the electrons as they exit the plasma 3 4 [3, 4]. In this dissertation, one of

the new techniques for single-shot THz measurements which resolves both time and one

dimension of space is presented. The two-component structure of the bunches observed

by the electron spectrometer during self-guided self-injection regime experiments was

confirmed and correlation between bunch duration and accelerator performance was

observed.

The sub-micron transverse size and emittance of the electron bunch was demon-

strated by single-shot direct measurements of the betatron X-ray radiation emitted by

the electrons inside the plasma 5 6 [5, 6]. Single-shot betatron spectra were measured

with 250 eV resolution using the Single Photon Absorption Event (SPAE) technique,

2Plasma-Density-Gradient Injection of Low Absolute-Momemtum-Spread Electron Bunches,
C. G. R. Geddes, K. Nakamura, G. R. Plateau, Cs. Tóth et al., Physical Review Letters, 100(21),
215004 (2008)

3Single-shot spatiotemporal measurements of ultrashort THz waveforms using temporal electric-field
cross correlation, N. H. Matlis, G. R. Plateau, J. van Tilborg and W. P. Leemans, Journal of the Optical
Society of America B, 28(1), 23 (2011)

4Single-shot measurement of the spectral envelope of broad-bandwidth terahertz pulses from femtosec-
ond electron bunches, J. van Tilborg, Cs. Tóth, N. H. Matlis, G. R. Plateau and W. P. Leemans, Optics
Letters, 33(11), 1186 (2008)

5Ultra-low-emittance electron bunches from a laser-plasma accelerator measured using single-shot
x-ray spectroscopy, G. R. Plateau, C. G. R. Geddes, M. Chen, D. B. Thorn et al., Physical Review
Letters, submitted (2011)

6Single-shot direct X-ray spectra of betatron emission from a laser-plasma accelerator, G. R. Plateau,
C. G. R. Geddes, D. B. Thorn, M. Chen et al., Physics of Plasmas, in preparation (2011)
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and confirmed the synchrotron nature of the emission 7 8 [7, 8]. In addition, the LPA is

shown to provide a scalable, bright, broadband, femtosecond source of keV X-rays intrin-

sically temporally synchronized to the driver laser pulse, enabling pump-probe studies

in ultra-fast science.

This dissertation is separated into six Chapters. The first Chapter presents an

overview of the research field of laser-plasma acceleration. Chapter 2 introduces the

basic physics of the LPA and an overview of the concepts of plasma wave, laser prop-

agation, electron trapping, and acceleration is presented and provides the foundations

for the analyses and discussions following in this dissertation.

Chapter 3 presents two aspects of the optimization of a laser-plasma accelerator.

First, because the performance of an LPA depends on the plasma wavelength, i.e., on

the electron density, part of this Chapter focuses on the characterization of the electron

density. A novel technique using direct wavefront analysis of a probe laser beam is pre-

sented. Density measurements using a conventional folded-wave interferometer and using

a commercial wavefront sensor are compared for different regimes of the laser-plasma

accelerator. It is shown that direct wavefront measurements agree with interferometric

measurements and, because of the robustness of the compact commercial device, have

greater phase sensitivity, simplifies analysis, thus improving shot-to-shot plasma-density

diagnostics.

The second part of Chapter 3 focuses on one of the key challenges to achieve com-

pact, reliable, tunable LPAs: decoupling injection from acceleration. In colliding pulse

injection the beat between multiple laser pulses can be used to control energy, energy

spread, and emittance of the electron beam by injecting electrons in momentum and

7Spectroscopy of betatron radiation emitted from laser-produced wakefield accelerated electrons,
D. B. Thorn, C. G. R. Geddes, N. H. Matlis, G. R. Plateau et al., Review of Scientific Instruments,
81(10), 10E325 (2010)

8On the betatron radiation calculation of laser-plasma accelerators, M. Chen, C. G. R. Geddes,
G. R. Plateau, C. B. Schroeder, E. Esarey and W. P. Leemans, Physical Review Special Topics –
Accelerators and Beams, in preparation (2011)
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phase into the accelerating phase of the wake trailing the driver laser pulse. Using au-

tomated control of spatiotemporal overlap of laser pulses, two-pulse experiments show

stable operation and reproducibility over hours of operation. Arrival time of the collid-

ing beam is scanned, and the measured timing window and density of optimal operation

agree with simulations. The accelerator length is mapped by scanning the collision point.

As discussed in Chapter 1, the ability of laser-plasma accelerators to generate ul-

trashort electron bunches in a compact setup offers the unique possibility of providing

a compact source of radiation ranging from terahertz to γ-rays. In the course of this

thesis, two particular forms of radiation have been measured using both single-shot and

scanning techniques: THz and X-ray radiation.

Chapter 4 presents the detection of coherent transition radiation (CTR) in the tera-

hertz (THz) regime. After a brief overview of the theory of transition radiation, bolomet-

ric measurements of CTR emitted by downramp injected electron bunches are reported.

A plasma downramp in a gas jet is used to control the wake phase velocity and trapping

threshold, producing low energy (0.76± 0.02 MeV/c) stable electron bunches with lon-

gitudinal and transverse momentum spreads more than 10 times lower than in previous

experiments (0.17 and 0.02 MeV/c FWHM, respectively). The temporal characteri-

zation of the electron bunch, combined with simulations, indicate that the technique

could be used as an LPA injection mechanism and could lead to < 0.1% energy spread

GeV-class electron beams.

Also in Chapter 4, transition radiation of self-injected electron bunches is measured

using two-dimensional electro-optic measurements which reveal a strong spatiotemporal

coupling of the THz pulse at focus, motivating the development of a single-shot technique

capable of solving both space and time. The last section of Chapter 4 presents a new

high-resolution (. 50 fs) single-shot technique for measuring the spatiotemporal phase

and amplitude of an optical probe, based on linear spectral interferometry between a
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temporally short reader pulse and a temporally long probe pulse. The technique is used

to characterize self-injected electron bunches. The presence of strong spatiotemporal

coupling in the THz waveforms is also observed and a complex temporal electron bunch

structure is determined.

In the last Chapter (Chapter 5), single-shot direct spectral measurements of beta-

tron X-ray radiation from electrons produced by both gas jet- and capillary-based LPAs

are demonstrated and used to study the X-ray source and the accelerated electrons.

The X-ray radiation from betatron emission is collected by a photon-counting pixelated

Silicon-based detector with a 1–20 keV sensitivity range. Single-shot betatron spectra are

measured with 250 eV resolution using the SPAE technique. Analysis of the X-ray spec-

tra, together with simultaneous electron energy spectra and divergence measurements,

indicate the electron bunch source size is of the order of 0.1–0.2 µm, in agreement with

particle-in-cell code simulations, and the normalized transverse geometric emittance is

εx < 0.4 mm.mrad. Single-shot measurements of the energy (∼ 0.5 GeV, < 10% energy-

spread), the divergence (∼ 1 mrad), and the transverse size (∼ 0.1 µm) of electron

bunches suitable for injection into a free-electron laser (FEL) are reported. Comparison

of X-ray spectra calculated using synchrotron radiation theory with measured spectra

further allows estimation of the wakefield amplitude. In addition to providing single-shot

diagnostics of bunch size and plasma wake structure, this table-top setup is shown to

provide a bright source of keV X-rays suitable for pump-probe experiments.

Lastly, Chapter 6 presents conclusions and possible directions of future work.
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1.2 Motivation for plasma-based acceleration

The main reason to study particle accelerator physics is to provide accelerators to be

used as tools to study and manipulate fundamental processes in matter (radiotherapy,

medical imaging, X-ray lithography, electron beam welding, ion implantation), or to

study fundamental particles, their interactions, and test theoretical models. Over the

last century conventional accelerators (e.g., linear accelerators, cyclotrons, synchrocy-

clotrons, and synchrotrons) were designed, built, and improved to produce high quality

particle bunches for both low and high energy physics. In this thesis the focus is on

electron acceleration only. Charged particles radiate when accelerated, this is called

synchrotron radiation for circular motion, it strongly limits the accelerator efficiency for

light particles like electrons. One way to limit the loss by synchrotron radiation is to

increase the radius of curvature for circular machines, like for the former Large Electron-

Positron (LEP) collider at the Centre Européen de Recherche Nucléaire (CERN) which

had a circumference of 27 km and produced electrons with energies up to 104.5 GeV.

Another way to accelerate electrons efficiently is to use linear structures, like the In-

ternational Linear Collider (ILC) project which will be 31 km in length and accelerate

electrons to energies of 500 GeV (500 billion-electron-volts). Particle accelerators are

key tools for both fundamental and applied sciences but for obvious budgetary reasons

there is a need to find more compact, more efficient ways to accelerate particles.

To increase the energy of a bunch of electrons an electric field is required. The sim-

plest way to produce an electron bunch is to heat a piece of metal, place a positively

charged plate in front with a hole in it: heat boils electrons off the metal, the poten-

tial difference provides an accelerating force and the electrons making it through the

hole form the bunch. To reach high energies, the direct current (dc) voltage applied

to the plate has to increase as well. Since it is difficult to generate very high dc volt-

ages, methods were developed to accelerate electrons using alternating current voltage,
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Figure 1.1: An example of conventional linear accelerator facility, the SLAC national acceler-
ator laboratory; and an example, at the same scale, of laser-plasma accelerator, BELLA at the
LBNL. c©2010 Google – Imagery c©2010 DigitalGlobe, USDA Farm Service Agency, GeoEye,
U.S. Geological Survey

generated by radio-frequency (RF) electronic oscillators. For this reason, conventional

accelerators are also called RF accelerators. In a RF accelerator, the polarity of a series

of accelerating structures is alternated as the electrons travel through one of them, so

that they always see an accelerating electric field. From the 1928 Wideröe drift tube

structure to the RF cavities of the ILC, conventional accelerators have had two major

limitations: the maximum voltage, thus accelerating gradient, which can be applied to

an element of the structure without damaging it, and its elements size. For example,

the ILC will have accelerating gradients on the order of 30 MV/m. At these gradients,

more than 30 meters are needed to accelerate an electron up to 1 GeV. In 2006, 27 years

after the enunciation of its principles by T. Tajima and J. M. Dawson [9], a laser-plasma

accelerator produced 1 GeV electron beams using a single 3.3 cm long stage [10].

A plasma is a distinctive state of matter where atoms are ionized. Unlike any gas,

plasma particles behave collectively because local charge concentrations may occur, cre-

ating local electric fields which put particles into motion and induce magnetic fields which
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affect surroundings particles motion, and so forth. External electromagnetic fields can be

used to manipulate plasmas, and create local charge separations between electrons and

ions of the medium, thus generate local electric fields suitable for electron and positron

acceleration. Like a gas, a plasma is characterized by its constituents and its density.

For electron densities (ne) of 1018 – 1019 electrons per cubic-centimeter [e−/cm3], plas-

mas can sustain local accelerating electric fields in excess of 100 – 300 GV/m, which

is a thousand to 10 thousand times greater than what conventional accelerators have

achieved, making it possible to reach high energies over thousand times smaller distances

(30 meters becomes 3 cm, Fig. 1.1).

However, plasma-based accelerators [11] face several challenges before they can pro-

duce the high energy, high quality electron bunches that are typically generated by

state-of-the-art RF accelerators. For an accelerator user, some of the important param-

eters are the type of particles accelerated (electrons in this thesis), the repetition rate of

the accelerator, the average energy, the energy spread, the total amount of charge, the

transverse size, the duration, the divergence of the bunch, and the cost of the accelera-

tor. Laser-plasma accelerators, on which this thesis focuses, have demonstrated electron

bunches of 1 GeV and few percent energy spread but need to reach even higher energies

to compete with state-of-the-art RF accelerators. Also, in order to use laser-plasma ac-

celerators (LPA) as colliders for high energy physics, higher repetition rates (i.e., number

of bunches per second) have to be achieved. Nevertheless, laser-plasma accelerators al-

ready represent a competitive alternative to RF accelerators as a radiation source (e.g.,

laser, electrons, ions, X-rays, THz radiation, γ-rays, EUV/UV emission). Laser-plasma

accelerators benefit from research and development in laser technologies which are of

interest for numerous industries (e.g., military, medical, commercial). Finally, cavity

wall breakdown is irrelevant when using plasmas, which can easily be replaced after a

bunch was accelerated by simply replenishing some fresh gas.
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1.3 The laser-driven plasma wakefield accelerator

The laser-plasma accelerator was first proposed by T. Tajima and J. M. Dawson [9]. A

comprehensive review of the laser-plasma accelerator is presented in E. Esarey et al. [12].

In an LPA, a focused intense laser pulse, typically I > 1018 W/cm2, propagates through

a plasma, typically of Hydrogen (H+) or Helium (He2+). The laser ponderomotive

force pushes background plasma electrons away from the surroundings ions. The charge

displacements induce a train of electrons oscillations behind the laser pulse, called a

wakefield or plasma wave, an electron density oscillation with a phase velocity close to

the laser group velocity. The large electric fields (& 100 GV/m) generated by the plasma

wave are used to accelerate electrons to high energies over short distances (Fig. 1.2).

Various schemes for injecting electrons into the accelerating phase of the plasma wave

have been discussed in the literature and demonstrated in the laboratory (e.g., self-

trapping [13, 14, 15], external injection [16, 17, 18], plasma density ramp [19, 2], colliding

laser pulses [20, 21, 22]).

laser
pulse

ions
electrons

propagation direction

Accelerating E-field

Accelerating E-fields

tim
e

Figure 1.2: In a laser-plasma accelerator, the ponderomotive force of an intense laser pulse
expels the electrons of the plasma, creating high and low electron density regions. Hence, high
longitudinal electric fields are generated that are suitable for electron acceleration.
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From the early 1980’s to the mid-2000’s, the field of plasma-based accelerators has

become a competitive alternative to conventional accelerators (c.f. 1.2). Thanks to

the significant progress already made and the promise for future successes, research

programs are present, in alphabetical order, including in China, Denmark, France, Ger-

many, Greece, Italy, Japan, the Netherlands, Portugal, South Korea, Sweden, Taiwan,

the United Kingdom, and the United States. It was with the late 80’s and early 90’s

development of intense (> 1018 W/cm2), high power (& TW), ultrashort lasers (< 1 ps)

that suitable plasma waves [23, 24] for electron acceleration could be generated.

Applying a technique used in radar communication of short and energetic pulses [25],

D. Strickland and G. Mourou [26] introduced in 1985 the chirped-pulse amplification

(CPA) technique, on which state-of-the-art tera- and petawatt (1012 and 1015 Watts)

laser systems are based [27, 28]. The CPA technique allows the amplification of an

ultrashort high-peak-power optical pulse, which otherwise is often limited by nonlinear

effects such as self-focusing and saturation in the optical amplifier [29]. Following the

example of the LOASIS laser system, an initial low energy (∼ 40 nJ), short laser pulse

(800 nm, ' 20–30 fs) is stretched (∼ 200 ps) by use of a chirp filter (“stretcher”), which

means that the instantaneous frequency of the stretched pulse is time varying. While

the energy of the pulse can be conserved, its peak-power is lowered. By distributing

the energy over a longer time, saturation of the optical amplification of the laser pulse

energy in a Titanium-sapphire crystal (Ti:Al2O3) is reached at the Joule per square-

centimeter level (' 0.5–1.5 J/cm2). In order to avoid damaging beam transport optics,

the laser beam is typically simultaneously enlarged to limit its fluence. Finally, the laser

pulse is compressed back to its original duration by use of a chirp filter (“compressor”)

of roughly equal magnitude and opposite sign as the stretcher and compensating for all

the dispersion encountered while the pulse propagated through the amplifier chain. Such

laser pulses (' 35–50 fs), focused down to 5–20 µm spot sizes yield peak-intensities in
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excess of 1019 W/cm2, suitable to drive nonlinear plasma waves.

Eight years after the first direct observation in 1985 of a laser-driven plasma wakefield

[30], the first electron bunches accelerated by a laser-plasma accelerator were reported

using external injection by C. E. Clayton et al. [18]. Laser-plasma acceleration was

demonstrated by several groups throughout the late 1990’s [31, 13, 32, 33, 34, 35, 36,

37, 38] but these initial electron beams were low energy (. 30 MeV) beams with large

energy spreads, typically an exponential energy distribution extending to high energy

(∼ 100 MeV), limiting their use for potential applications.

In 2004, three groups, in the U.K. at Imperial College (S. P. D. Mangles et al.

[39]), in the U.S.A. at LBNL (C. G. R. Geddes et al. [40]) and in France at the École

Polytechnique’s LOA (J. Faure et al. [41]), simultaneously reported the production of

high-quality electron bunches with less than 10% energy spread, energies on the order

of 100 MeV, and 20 to 500 pC of charge. These results were the fruit of a better

understanding of the underlying physics of the laser-plasma accelerator, especially the

self-focusing effects of intense laser pulses in plasmas, the resonant excitation of plasma

waves by self-modulation of the laser pulse when its length exceeds a plasma wavelength

and in the case of the LBNL group the guiding of laser pulses, and the importance of

matching the accelerator length to the dephasing length, which is the distance it takes

the accelerated electrons to outrun the wave. Each of these publications was supported

by the development in the early 2000’s of simulation tools using particle-in-cell (PIC)

numerical codes [42] such as OSIRIS [43], VORPAL [44], VLPL [45], which, to date, are

routinely used to understand and optimize plasma-based accelerators.

The formulation of an analytical description of nonlinear laser-driven plasma waves

was presented in 1990 by P. Sprangle et al. [46, 47] (Chapter 2) based on previous work

on plasma wave excitation [48, 49]. In this model the plasma is described as a one-

dimensional fluid and the laser pulse is assumed to not evolve. This work was based,
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among others, on the work of A. I. Akhiezer and R. V. Polovin [50], J. .M. Dawson

[51], T. P. Coffey [52], T. Katsouleas [53] who had found the maximum amplitude of,

respectively, relativistic cold (1956), non-relativistic cold (1959), non-relativistic warm

(1971), and relativistic warm plasma waves (1988). Soon after, in 1992, P. Sprangle et

al. [54] presented a two-dimensional relativistic fluid model of laser propagation in a

plasma for both short and long pulses, for which self-modulation at the plasma period

occurs [55]. The trapping and the energy gain of an electron in a cold fluid plasma wave

was provided by E. Esarey and M. Pilloff in 1995 [56]. C. B. Schroeder et al. presented

a warm relativistic fluid theory of the breaking of plasma waves in a non-relativistic

plasma (2005) [57], and of the minimum initial electron momentum for trapping (2006)

[58].

In order to generate high-quality electron beams at higher energies while keeping

the power, the size and cost of the laser relatively low (< 100 TW), the acceleration

length needs to be increased, which can be achieved by optical guiding, and the plasma

density decreased as to extend the dephasing length. An extensive description of optical

guiding of intense laser pulses in plasmas is provided by E. Esarey et al. [59]. Much

like an optical fiber, a preformed plasma density channel can provide refractive guiding

to an intense laser pulse. In 2004, C. G. R. Geddes et al. [40] reported the production

of 320 pC, 86 MeV, 4% full width at half-maximum (FWHM) energy spread electron

beams by guiding a 0.5 J, 55 fs FWHM laser pulse in a 2.4 mm long supersonic Hydrogen

gas jet using the “ignitor-heater” technique [60]. In this technique, an initial ultrashort

laser pulse (60 fs) is used to ionize a cylindrical filament of plasma, and a longer (250 ps)

laser pulse is used to heat it as to obtain an expanding hot plasma (tens of electronvolts)

which forms a nearly parabolic transverse density profile, hence, index of refraction.

Unfortunately, laser plasma heating is inefficient at the low densities (< 1019 e−/cm3)

necessary to reach centimeter-scale dephasing lengths. In 2006, W. P. Leemans et al. [10]
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reported the production of a 1 GeV (1000 MeV), 30 pC, 2.5% root-mean-square (rms)

energy spread, 1.6 mrad divergence electron beam by guiding a 40 TW peak power,

40 fs FWHM laser pulse through a 3.3 cm-long Hydrogen gas-filled capillary discharge

waveguide [61, 62], where the hot plasma is obtained by an electric discharge between

two electrodes located on each side of a gas-filled waveguide.

However, reaching high energies is not the only challenge that plasma-based accel-

erators face. Plasma-based accelerators have to provide reliable and tunable sources

of electrons and photons, which require decoupling injection from acceleration. Hence,

advanced diagnostics are needed for a good understanding of laser-plasma acceleration

physics. An independent controlled injection mechanism leads to an engineered beam

quality, and the freedom to design the plasma structure for high efficiency. In this

thesis, three different injection regimes have been explored: self-injection, downramp

injection, and colliding pulses injection. Self-injection relies on temperature spread of

the plasma to capture background electrons in the accelerating phase of the wave. In

this scheme, which typically requires generation of large amplitude plasma wakefields,

injection and acceleration are strongly coupled. In the downramp injection scheme, a

downward transition is introduced to slow-down the phase velocity of the wake. Trap-

ping occurs behind the laser pulse where the phase velocity of the wake matches the

fluid velocity [63, 64, 65, 2]. This technique could provide small energy spread electron

bunches to secondary acceleration structures. Additional laser pulses can be used to op-

tically trigger the injection of electrons into the wake. The beat wave between multiple

laser pulses can be used to control energy, energy spread, and emittance of the electron

beam [20, 21, 66, 22, 67].
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1.4 Radiation from an LPA and diagnostics

To increase understanding of the laser-plasma accelerator, insightful diagnostics of both

the laser-plasma interaction and the accelerated electron beams need to be developed

in order to provide comparison between experiments, numerical PIC simulations, and

analytical models. Laser-plasma accelerators have several features which require re-

evaluation of electron bunch diagnosis used for conventional accelerators, and the de-

velopment of new ones. For example, the energy distribution of the produced electron

bunches can be broad and require the acquisition of a large energy range [68] (1–2 orders

of magnitude, e.g., 10–100 MeV). Another remarkable feature of LPAs is their ability

to produce ultrashort [69, 70] (≤ 50 fs rms), small transverse size electron bunches [6]

(∼ µm rms). Such small bunches require the development of detection method with

ultrahigh resolution. Moreover, laser-plasma accelerators still suffer from shot-to-shot

fluctuations in the plasma, laser, and consequently electron bunch and secondary ra-

diation (THz, X-ray) parameters. For this reason, LPA diagnostics need to provide

single-shot, non-invasive measurements of these actors simultaneously.

In this thesis, laser, plasma, and electron diagnostics are investigated. Laser measure-

ments include high-resolution temporal intensity profile via third-order cross-correlation,

and a new technique is proposed for plasma density diagnostics [1]. An electron beam

is characterized by its charge, energy distribution, divergence, emittance, duration and

size. The charge is provided by mean of an integrating charge transformer (ICT) and

of an electron magnetic spectrometer. Part of the technical work of this thesis was to

implement the analysis of this electron spectrometer which provides single-shot charge,

energy distribution and divergence of the accelerated electron beams.
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1.4.1 Coherent Transition Radiation

The bunch duration is measured indirectly by a widely-used technique, in both con-

ventional and plasma-based accelerators, called electro-optic sampling. This technique

measures the change of birefringence in an electro-optic (EO) active crystal (e.g., ZnTe,

GaP) by the effect of an external electric-field. Two electromagnetic signatures of the

electron bunch can be used to induce birefringence in the crystal: either the Coulomb

field of the bunch, or the coherent transition radiation emitted when the electron bunch

passes through the interface between two media with different dielectric constant (rel-

ative permittivity εr) [71]. In the harsh environment of the laser-plasma accelerator

where the intense defocusing laser pulse, after interaction with the plasma, can damage

the EO crystal, direct probing of the bunch self-field can be difficult. On the other

hand, coherent transition radiation (CTR) which is in the terahertz (1012 Hz or THz)

frequency band can be collimated and transported to a secondary setup and be used

either as a bunch diagnostics or as a source of energetic (> 1 µJ), short (∼ 1 ps) THz

pulses. Figure 1.3 provides a heuristic picture of transition radiation at a sharp metal–

vacuum interface. The relative permittivity, which is basically a measure of the ratio of

polarization of a medium to the applied electric field [72] (εr = 1 + P ·E/ε0E2), is large

for a metal since it can sustain large polarization (εr � 1). Such polarization causes

the electric field inside the conductor to be small (electrostatic equilibrium). Thus, the

Coulomb field of a relativistic electron bunch, which can be shown to be transverse to

the direction of propagation in the laboratory frame, traveling through a metal is par-

tially screened by the surrounding electrons. On the other hand, in vacuum the field

expands due to the lack of screening. At the transition, as the field expands it repels its

surroundings electrons, resulting in a near single-cycle radial oscillation of the surface

electrons around their neighboring ions which is responsible for the emission of a forward

near single-cycle electromagnetic wave (transition radiation), as illustrated in Fig. 1.4.
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Figure 1.3: Heuristic picture of transition
radiation emitted at a sharp metal–vacuum
boundary. As the bunch propagates through
the plasma, its Coulomb field expels the sur-
rounding electrons. At the plasma-vacuum in-
terface (critical density for THz waves), the
CTR emission induced by this transverse cur-
rent can propagate forward.
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Figure 1.4: Example of temporal elec-
tric field profile (CTR pulse) emitted at a
plasma–vacuum boundary (blue curve) and
the electron charge distribution (green curve)
which induced its generation upon exiting the
plasma. The delay between the THz pulse and
the electron bunch is not represented for clar-
ity sake.

In a conventional accelerator CTR is produced by placing a thin metallic foil [73, 74,

75] in the path of the electron bunch, thus providing a discontinuity vacuum (εr = 1)

– metal (εr � 1) – vacuum (εr = 1). In a laser-plasma accelerator, this technique can

be difficult to implement for two reasons: risks of damaging the foil with the remaining

energy of the laser pulse after the interaction with the plasma, and because of important

space-charge effects [76] due to a high charge density (> 1019 e−/cm3), a relatively low

energy (< 100 MeV), and a large energy spread of the electron bunch in some regimes of

the accelerator (e.g., self-trapping), the bunch is subject to spread both longitudinally

and transversely, limiting the coherency of the transition radiation.

Fortunately, in a plasma-based accelerator coherent transition radiation is emitted at

the plasma–vacuum boundary [77]. In the absence of magnetic fields, the relative permit-

tivity of a cold plasma [78] is εr(λ) ' 1−λ2/λ2
p, where λp [µm] ' 3.34·1010/

√
ne [e−/cm3]

is the plasma wavelength [79], ne is the plasma density (electrons per unit of volume)

which, in the experiments, typically ranges from 1018 to 5 · 1019 e−/cm3 (λp ' 5 to

33 µm), and λ is the radiated light wavelength. Because of the severe drop in relative
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permittivity for wavelengths greater than the plasma wavelength, the plasma-vacuum

interface acts as a sharp boundary between two media with different dielectric constants.

An additional argument in favor of approximating the interface as a sharp boundary is

the consideration of the distance over which the transition radiation develops, also called

the formation length, which will be shown in Chapter 4 to be larger than the thickness

of the interface for relativistic electrons.

Ultrashort terahertz pulses with energies in the µJ range, with high peak-electric-

field (MV/cm) suitable for pump-probe experiments, have been measured and used for

high-resolution (femtosecond-scale, one millionth of a billionth of a second: 10−15 s)

temporal characterization of the electron bunches produced by the accelerator [77, 70,

3]. Theoretical analysis [80, 81] reveals a strong dependence of the THz (CTR) peak-

power on the bunch charge, plasma size (diffraction effects), bunch length (coherence

effects), and electron energy. Since each electron in the bunch emits independently,

the radiation only constructively interferes if the bunch is shorter than the emitted

wavelength. The bunch length thus sets the cut-off frequency of the THz spectrum

(typically 5–10 THz). An example of CTR electric-field, based on the equations in

Ref. [80], is given in Figure 1.4, for a Gaussian distribution of the electron bunch (50 fs

rms long), a plasma density and radius of 3 · 1019 e−/cm3 and 300 µm, respectively.

1.4.2 Betatron X-ray radiation

In addition to generating intense THz pulses, laser-plasma accelerators offer the possi-

bility of generating femtosecond [82, 83] kiloelectronvolt (keV) X-ray pulses. At present,

an immediate application of relativistic electron beams is the generation of X-rays for

biological, medical, and material science applications. Conventionally, kiloelectronvolt

X-rays are produced by injecting multi-GeV electron bunches into permanent magnetic

undulators, typically of centimeter- or millimeter-scale periods. Replacing these large fa-
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Figure 1.5: Heuristic picture of X-ray ra-
diation emitted by betatron motion of self-
trapped electrons in the bubble regime. The
volume of positive charge behind the intense
laser pulse acts as a wiggler.
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Figure 1.6: Example of X-ray spectrum emit-
ted by a 100 MeV, 3 µm rms radius electron
bunch undergoing betatron oscillations in a
laser-driven plasma wakefield. The spectrum
was calculated for a 3 mrad collection angle.

cilities (e.g., synchrotron facilities) by smaller scale university, or hospital facilities would

enable a large range of applications to become possible. In a laser-plasma accelerator,

the wakefield generated behind the driver laser pulse acts as a strong focusing channel in

which off-axis injected electrons undergo oscillations, typically of sub-millimeter period,

suitable for generating collimated keV X-ray radiation from sub-GeV electron bunches

[84, 85, 86, 87, 6].

For high laser intensities, the ponderomotive force of the laser pulse expels all plasma

electrons. In this regime, referred to as the “bubble” or “blow-out” regime [88, 89, 90,

91, 92] because a somewhat spherical cavity free from plasma electrons is formed behind

the laser pulse, the wake undergoes a transverse wavebreaking [19, 12] which results

in off-axis injection of background electrons. The transverse wavebreaking is due to

a curvature of the wavefront of the plasma wave for nonlinear regimes [93]. Because

the laser intensity peaks on-axis, the plasma wave amplitude is maximum on axis, and

because the nonlinear plasma wavelength increases with the wave amplitude, the plasma

wavelength varies as a function of the distance from the axis of propagation, so that the

wavefront takes the shape of a “C”. The very large radial focusing field inside the bubble

causes the electrons to undergo betatron oscillations [94], as illustrated in Figure 1.5.
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Since the bubble travels near the speed of light behind the laser pulse, it can be described

as a static ion column [82], for which the betatron wavelength of a single electron, in the

absence of acceleration, can be calculated to be λβ = λp
√

2γ ∝
√
γ/ne, where γ is the

relativistic factor of the electron. At a plasma density of 3 · 1019 e−/cm3 and for typical

electron distributions ranging from 10 to 100 MeV, λp ' 6 µm, γ ' 20− 200, and λβ '

38 − 120 µm. This betatron motion induces directional synchrotron radiation within a

cone of angle θ ' aβ/γ, where aβ ∝ σr is the betatron strength parameter, the equivalent

to the undulator strength for conventional accelerators, and σr is the amplitude of the

radial oscillation of the electron. In this geometry, the cut-off energy (~ωc) of the X-ray

spectrum is given, in practical units, by ~ωc[keV] ' 1.1 · 10−4γ2 ne[1019 e−/cm3]σr[µm].

For a 100 MeV electron beam, an electron density of 2 ·1019 e−/cm3, and a bunch radius

of 3 µm rms, ~ωc ' 25 keV. The expected spectrum within a 3 mrad collection angle,

assuming a bunch charge of 300 pC, an energy spread of 3%, and a plasma channel of

1 mm length, is given in Fig. 1.6. Hence, in addition to providing a source of collimated

keV X-ray beams, betatron radiation provides insightful information on the electron

bunch transverse profile, both through its spatial distribution and its spectrum.





Chapter 2

Laser-Plasma Acceleration

2.1 Ionization and plasma waves

As introduced in Chapter 1, plasmas are attractive media for particle acceleration be-

cause they can sustain high electric fields. Electric fields can be generated inside a plasma

by creating local variations of the electron densities. In a laser-plasma accelerator, this

charge displacement is the result of the ponderomotive force applied by an intense laser

pulse onto the background plasma electrons (Fig. 2.1). In the experiments described in

this thesis, laser intensities vary from 1.5×1018 to 3.5×1019 W/cm2 and the gas used to

form a plasma is either Hydrogen (H+) or Helium (He2+) at densities ranging from 1018

to 8 × 1019 e−/cm3. At these high laser intensities and at these gas densities, the gas

turns into a fully ionized plasma since the minimum ionization intensity, Imin, is much

smaller than the laser intensities IH2
min < IHe

min ' 8.8×1015 W/cm2 � 1018 W/cm2). Also,

the laser energy loss by ionization, Ei, is typically neglected. For instance, for a 2 mm

long, 0.2 mm radius fully ionized column of Helium gas at a density of 3 · 1019 e−/cm3

the energy loss by ionization can be estimated by Ei ∼ neπr
2
pLEi/Z ' 33 mJ � 0.5–2 J

where Z = 2, Ei = 54.416 eV.
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Figure 2.1: An electron in a oscillating electromagnetic field with constant amplitude experi-
ences a quiver motion (a). In presence of an intensity gradient, the electron experiences a net
drift in addition of an increasing quiver motion (b).

As the ultrashort laser pulse propagates through the plasma, electrons are displaced

from the uniform background of ions. This displacement is due to the intensity gradient

of the laser pulse which adds a net drift (Fig. 2.1b) to the regular quiver motion electrons

would experience in presence of a constant amplitude oscillating field (Fig. 2.1a). The

electrostatic force of the ions onto the electrons causes the electrons to oscillate around

their equilibrium positions at the angular plasma frequency [79]:

ωp =

√
nee2

ε0me

(2.1)

ωp [rad/s] ' 5.64 · 1013

√
ne [1018 cm−3] (2.2)

where ne is the plasma density, e is the elementary charge, ε0 is the vacuum permittivity,

and me is the electron mass. In Hydrogen gas, for typical densities (ne = 1 to 80 ×

1018 e−/cm3), the electron time response (tp = 2π/ωp) is on the order of 10–100 fs

(∼ τL), and the ion (proton for H2) time response is on the order of 0.5–5 ps (� τL),

with τL the laser pulse duration (30–50 fs FWHM). Hence, models presented in this

thesis neglect the ion motion.

As it propagates in the plasma the laser excites a plasma wave which moves along the
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laser with a phase velocity equal to the laser group velocity, as discussed in Sec. 2.4, which

is given by [9]: vp ' vLg = dω/dk = c(1−ω2
p/ω

2)1/2 . c, with ω the laser frequency, and c

the speed of light in vacuum. In order to provide an analytical description, the plasma is

described as an Eulerian fluid and the plasma fluid is considered “cold” since the kinetic

energy of the electrons oscillating in the laser field, Ek = (
√

1 + (eE0/meωc)2−1)mec
2 '

0.15–15 keV where E0 ' 1011–1012 V/m is the laser peak electric field, is much higher

than the thermal energy of background electrons kBTe ' P/ne ∼ 5–50 eV [95].

Introducing u = γβ, kp = ωp/c, the normalized vector potential of the laser a =

eA/mec, and the normalized scalar potential of the plasma φ = eV/mec
2, it can be

shown that the laser-plasma interaction for a cold fluid plasma is described by the

following general set of equations:

∇2φ = k2
p (n/n0 − 1) (2.3a)

∇ · (nu/γ) = − ∂n/∂t (2.3b)(
∇2 − 1

c2

∂2

∂t2

)
a = k2

p

nu

γn0

+
1

c

∂

∂t
∇φ (2.3c)

∂u/∂t = c∇(φ− γ) + ∂a/∂t (2.3d)
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2.2 One-dimensional plasma wake

To date, there are no general solutions to the set of coupled equations (2.3) on {a, φ,u, n},

and for a three dimension laser pulse, in the high-intensity limit, the plasma wakefield

is typically modeled numerically [45, 43, 44]. However, as discussed in this Section, a

solution can be found in the one-dimensional (1D) regime under the assumption that the

laser pulse does not evolve over the transit time of the plasma through the laser pulse,

i.e., the plasma experiences a constant laser electric field. This assumption is referred

to as the quasi-static approximation (QSA) [46].

It is possible to express the wake in terms of the plasma density where φ is solution

of the differential equation:

∂2φ

∂ξ2
=
k2
p

2

[
γ2
⊥

(1 + φ)2
− 1

]
(2.4)

where γ2
⊥ = 1+u2

⊥ = 1+a2 and ξ = z− ct is the coordinate in the frame co-propagating

at vp = c with the laser pulse.

Equation (2.4) can be rewritten, after some tedious algebra, for vp ' vLg 6= c using

the new change of variable (z, t) 7→ (ψ, τ), with ψ = kp(z − vpt) and τ = t as [96, 97]:

∂2φ

∂ψ2
= γ2

p

{
βp

(
1− γ2

⊥
γ2
p(1 + φ)2

)−1/2

− 1

}
(2.5)

where βp = vp/c and γp is the relativistic Lorentz factor associated with the phase veloc-

ity of the plasma wave, with λp and λ are respectively the plasma and laser wavelengths.

Figure 2.2 plots two numerical solutions of Eq. (2.4) corresponding to the wakefield

generated by a low (Fig. 2.2a) and high (Fig. 2.2b) intensity linearly polarized laser in

a plasma with initial density n0 = 1018 e−/cm3. The laser intensity is plotted as the

square of the normalized laser potential function a2(ξ). The amplitude a0 of a(ξ) is
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Figure 2.2: Density profiles δn/n0 = (n−n0)/n (gray) and longitudinal electric field profiles
E/E0 (blue) driven by a laser pulse (magenta) with (a) a0 = 0.3 and (b) a0 = 3. The laser
pulse has a Gaussian temporal profile with a duration of 50 fs FWHM (c τFWHM ' 15 µm).
The horizontal axis represents the relative position to the laser pulse.

called the laser strength parameter and for a0 > 1 [12] the wakefield becomes nonlinear:

a0 =

(
e2

2πε0m2
ec

5
λ2I0

)1/2

(2.6)

' 8.54 · 10−10 λ [µm]
√
I0 [W/cm2] (2.7)

For clarity the plasma density and the electric field are respectively normalized to the ini-

tial plasma density (δn/n0 = (n−n0)/n0), and E0 the non-relativistic cold wavebreaking

electric field [51]:

E0 = c
√
men0/ε0 (2.8)

E0 [V/m] ' 96
√
n0 [e−/cm3] (2.9)

which for densities ranging from ne = 1 to 80 ·1018 e−/cm3 varies from 96 to 860 GV/m.

In Figure 2.2, E0 ' 96 GV/m and for a0 = 3 (Fig. 2.2b) the peak electric field induced

by the plasma density wave is Emax ' 135 GV/m. This ability to sustain such high

electric fields makes plasmas an attractive medium for particle acceleration.
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2.3 Blow-out regime

The blow-out or “bubble” regime is a particular operational mode of the laser-plasma ac-

celerator where the laser is intense enough to generate highly-nonlinear waves (a0 � 1).

In this regime, the plasma density wake no longer has the shape of a sinusoidal wave

oscillating at the plasma period λp (Fig. 2.2a) and starts to spike at a larger period,

shaping the electric field to a “sawtooth”-like function (Fig. 2.2b) with maximum am-

plitude Emax > E0. In the limit γp � 1, the nonlinear plasma wavelength is given by

[49, 98, 11]:

λnl =
2λp
π

Emax

E0

(2.10)
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Figure 2.3: Analogy between particle-in-cell simulations of the laser-plasma accelerator in the
bubble regime (left) and a wakeboarder surfing the wave generated at the back of a speedboat
(right). Photo: http://www.high-country-tours.com/mbsports.html

The lengthening of the plasma period has an important effect on the transverse shape

of nonlinear 3D plasma waves. Typically, the laser pulse has a Gaussian radial profile

so that the wave is driven more strongly on-axis where the laser intensity is maximum.

The plasma wavelength varies as function of the radial distance and it results a curved

wavefront of the plasma wave. For sufficiently large plasma waves, a volume behind

the laser pulse is cleared of all electrons, so called ion bubble [88, 89, 90, 91]. The
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bubble regime has the advantage to provide a stable accelerating structure with strong

transverse focusing fields and an accelerating longitudinal electric field over the full

plasma wavelength (Fig. 2.2b). While analytical models exist to describe either the

mildly relativistic regime (a0 < 1) in 3D, or the nonlinear regime (a0 � 1) in 1D, the

shape of the plasma in 3D, required for the understanding of the bubble regime, must

be computed numerically using particle-in-cell (PIC) simulations code.

The bubble regime has been successfully used to produce low emittance electron

bunches [5, 6] suitable for radiation sources [99, 100] in quantitative agreement with

three-dimensional simulations, confirming accurate understanding of trapping and emit-

tance in LPAs. Recent 3D PIC simulations [101, 102] showed production of 0.1 µm rms

transverse size, 1.3 mrad rms divergence, 300 MeV with 5% FWHM energy spread, and

2 fs FWHM length bunches in the bubble regime, in agreement with the data measured

for similar laser-plasma parameters [5, 6]. This indicates that the physical picture of

trapping observed in simulations [103, 101] is quantitatively correct; particles trap trans-

versely in the wake, and the spike in plasma density at the back of the bubble has an

important role in injection, as particles on injection trajectories pass close to it and its

field repels them. Simulations [101] previously observed that 3D bunch divergence was

lower and more closely agreed with experiments than 2D simulations, due to differing

wake structure.
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2.4 Laser propagation

The laser pulse propagation is described by the wave equation given in Eq. (2.3c) with

n0 = ni(r = 0) where ni is the initial density profile and r = 0 corresponds in a

cylindrical geometry to the propagation axis z. The wave equation can be simplified

using four considerations: an under-dense plasma, the QSA, the paraxial approximation

and the slowly varying envelope approximation (SVEA).

For an under-dense plasma (ωp � ω), laser and plasma variables can be separated

in high and low frequency components so we can write a ∼ af , u = uf + us, φ ∼ φs

and n ∼ ns where the subscripts “f” and “s” denote the fast and slow response of each

variable, respectively. In the QSA, Eq. (2.3c) can be approximated by the paraxial wave

equation: (
∇2
⊥ +

2ik

c

∂

∂τ

)
as = k2

pρ as (2.11)

A particular set of solutions to the paraxial wave equation are the Gaussian beams.

Gaussian modes are of interest because in the experiments the laser pulse transverse

profiles are close to Gaussian distributions. In vacuum, the Gaussian modes have the

form:

as = A0
w0

w(z)
e−r

2/w(z)2e−ikr
2/2R(z)+iζ(z) (2.12)

where A0 is a constant, w0 =
√
λz0/π is the beam waist at focus, z0 = kw2

0/2 is

the Rayleigh length, R(z) = z[1 + (z0/z)2] is the radius of curvature of the wavefront,

w(z) = w0

√
1 + (z/z0)2 is the waist of the beam and ζ(z) = arctan(z/z0) is the Gouy

phase shift, i.e., the phase difference between a Gaussian and a plane wave traveling

along the propagation axis z.
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The intensity of the Gaussian beam I ∝ |as|2 is given by:

I(r, z) = I0
w2

0

w(z)2
e−2r2/w(z)2 (2.13)

=
2P

πw(z)2
e−2r2/w(z)2 (2.14)

where P is the total power carried by the beam at any transverse plane.

Other beam-like solutions to the Helmholtz paraxial equation exist and can be useful

to describe non-uniformities of the beams in the experiments. Two sets of solutions are

of particular interest [29]: the Hermite-Gaussian beams, which exhibit non-Gaussian

intensity distributions while keeping paraboloidal wavefronts, are well suited to describe

waves in an optical resonator; and the Bessel-Gaussian beams which have planar wave-

fronts but have non-uniform transverse intensity distributions.

For laser powers near or above the critical power [55, 104, 105], nonlinear effects such

as self-focusing can occur:

Pc =
c

2πε0

(
e

re

)2

(2.15)

Pc [GW] ≈ 17.4× (ω/ωc)
2 (2.16)

where re = e2/4πε0mec
2 is the classical electron radius and nc = meε0ω

2/e2 is the

critical density (Appendix A). At P ≥ Pc relativistic plasma dynamics produce nonlinear

effects such as self-modulation and self-focusing by creating nonlinearities in the index

of refraction (e.g., η = η0 + η2I) [55].

The index of refraction for a plane wave traveling in a plasma is given by:

η =
√

1− ω2
p/ω

2 (2.17)
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and the phase velocity of the laser by:

vp = c (1− ω2
p/ω

2)−1/2 (2.18)

In the nonlinear regime, a corrective factor is applied to ωp and the nonlinear index

of refraction is given by:

η(r) =

√
1−

n(r)ω2
p,0

n0γ(r)ω2
(2.19)

For a maximum on-axis, the radial dependency of the index of refraction can be used

to provide refractive guiding of the laser pulse beyond the diffraction limited acceleration

length, which is typically of the order of the Rayleigh length. In the presence of a

preformed plasma channel of radius r0, modeled by a quadratic function centered on-

axis, and a laser-induced plasma density perturbation δn(r), the density profile is given

by n = n0 +[n(r0)−n0]r2/r2
0 +δn(r) ≡ n0 +∆n(r)+δn(r). Hence, the index of refraction

can be written:

η(r)2 ≈ 1−
ω2
p,0

γ⊥(r)ω2

[
1 +

∆n(r)

n0

+
δn(r)

n0

]
(2.20)

From Eq. (2.20), it appears the phase velocity (vp = c/η) increases as a function of the

radial distance r for ∂n/∂r > 0 or ∂af/∂r < 0. A preformed plasma density channel

with a minimum on-axis (channel guiding) or a laser pulse peaked on-axis (self-guiding)

can lead to a propagation length inside the plasma of several Rayleigh lengths, a greater

acceleration length and consequently higher electron energies [12].



35/196 Chapter 2. Laser-Plasma Acceleration

2.5 Electron acceleration

In the previous Sections, both plasma and laser responses have been presented. In this

Section, we describe how electrons experience the accelerating and decelerating fields of

the wake, i.e., how the laser-plasma interaction can be used for electron acceleration.

To describe the injection and acceleration of electrons in a plasma wave, it is possible to

analyze the motion of a test electron in a 1D plasma wave using Hamiltonian dynamics

[56], i.e., calculating the energy of that particle. In the moving frame, the normalized

Hamiltonian (H = HT/(γpmec
2)) [56] of a test electron is given by:

H = γ(1− βpβz)− φ (2.21)

where γ = (1− β2
z )
−1/2 is the Lorentz factor associated with the electron.

Figure 2.4 shows in phase space the electrons trajectories calculated using cold fluid

theory of laser-plasma acceleration. The parameters used for this map are close to

experimental results presented in this thesis (c.f. Chapter 5), the laser is 50 fs FWHM

long and has an intensity of a0 = 1, and the plasma density is 4×1018 e−/cm3. A general

solution of Eq. (2.21) can be found in terms of γ for an electron with initial position

ξ0, initial potential φ0 and initial energy γ0 by solving H = H0 = γ − βpuz − φ =

γ − βp
√
γ2 − 1− φ:

γ = γ2
p(H0 + φ)± βpγp

√
γ2
p(H0 + φ)2 − 1 (2.22)

For an electron initially at rest, H0 = 1 since φ0 = 0 and γ0 = 1, the momentum equation

becomes:

γ = γ2
p(1 + φ)± βpγp

√
γ2
p(1 + φ)2 − 1 (2.23)

and describes an open orbit in phase-space (Fig. 2.4b, blue curve) or “fluid” orbit.
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Figure 2.4: Orbits in momentum-phase space of constant Hamiltonian HT for a0 = 1, a pulse
duration of 50 fs FWHM and a plasma density of 4× 1018 e−/cm3. (a) The solid red lines are
the upper and lower separatrix separating the closed orbits from the open orbits. The dashed
lines are examples of fluid and trapped orbits. (b) Direction of propagation for different orbits.

As was introduced in Chapter 1, laser-plasma accelerators can sustain high accel-

erating gradients allowing electrons to be accelerated to relativistic energies over short

distances. As shown in Fig. 2.4, one can establish the condition for an electron to be

on a “trapped” orbit (closed orbits in Fig. 2.4b, red curves) and calculate the maximum

energy gain for that electron. The Hamiltonian map of Fig. 2.4a shows local minima

(stable points) and maxima (unstable points) where the potential φ is respectively max-

imum and minimum. The separatrix is a boundary in phase-space separating the fluid

orbits from the trapped ones (Fig. 2.4b, black dashed curves). The maximum energy

gain occurs when an electron is trapped on the closed orbit just inside the lower sep-

aratrix and exit the plasma after reaching the maximum of the upper separatrix (ideal

case). It can be shown [12] (Appendix A) that the maximum energy gain is given by:

∆γ = 2βpγp

√
(1 + γp∆φ)2 − 1 (2.24)

where ∆φ = φmax − φmin and ∆γ = γmax − γmin. In the example of Fig. 2.4, φmin, max
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are found by solving Eq. (2.4) to be φmin ' −0.147 and φmax ' 0.331. Since it is a

mildly nonlinear case (a0 = 1), the phase velocity is calculated using the linear formula:

vp = c(1−ω2
p/ω

2)1/2; and we get βp ' 1−1.15×10−3 and γp ' 20.9. Thus, the maximum

energy gain is calculated to be ∆γ ' 456, for which the maximum electron energy at

the exit of the plasma is Emax = (γmax − 1)mec
2 ' 230 MeV.

For larger a0 [56], γmin decreases and γmax increases. Eventually, the lower separatrix

overlaps with the orbit of background electrons initially at rest so that γmin = 1 and

∆φ = 1− 1/γp. However, the background electrons (γ0 = 1) flow backward in the frame

of the laser at a speed −vp and undergo fluid oscillations without being trapped by the

plasma wave. As a0 increases [56], γmin eventually increases back up allowing electrons

with negative velocities to be trapped. For the example shown in Fig. 2.4 (50 fs Gaussian

pulse, 4× 1018 e−/cm3), it can be computed that γmin = 1 for a0 ' 1.47. At this point,

wavebreaking occurs and background plasma electrons are trapped in the plasma wave

and accelerated.

In the cold fluid relativistic model, wavebreaking occurs as a limitation of the model;

Eq. (2.5) presents a singularity for φ→ −1 + γ⊥/γp (xm → 1/γp ∈ [0, 1]). The cold fluid

relativistic wavebreaking electric field [50, 56] is found to be:

EWB =
√

2(γp − 1)E0 (2.25)

For a plasma density of 4 × 1018 e−/cm3 (Fig. 2.4), E0 ' 1.9 GV/cm and EWB '

6.3 × E0 ' 12 GV/cm. The maximum electron energy at the exit of the plasma is

calculated to be Emax ' 18.5 GeV.

However, in the experiments the background plasma electrons have an initial ther-

mal energy spread which induces injection before wavebreaking is reached, reducing the

maximum accelerating field amplitude achievable (E ≤ EWB) and limiting the maximum

energy gain. Although the self-trapping injection scheme is often used in laser-plasma
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Figure 2.5: Effects of the background thermal energy spread on the laser-plasma accelerator.
(a) Modulation of the temperature profile (δT/T0 = T/T0−1, magenta) by the plasma density
wave (gray : δn/n0; blue: E/E0) excited by a 50 fs FWHM Gaussian laser pulse with peak
intensity a0 = 1 propagating in a plasma of initial density 4 × 1018 e−/cm3. (b) Maximum
plasma electric fields for different initial background plasma temperatures (θ = kBT/mec

2)
behind the laser pulse (γ⊥ = 1) using Eq. (2.25) (cyan), Eq. (2.28) (green), Eq. (2.27) (red)
and Eq. (2.26) (black). After [57, 58].

accelerator experiments [12], it can become a source of undesired dark current in other

injection schemes (e.g., colliding pulses, see Sec. 3.2). Typically, for laser-driven plasma

wakefield accelerators the initial temperature of the plasma (mean local kinetic en-

ergy) is of the order of kBT0 ∼ 5–50 eV [95], i.e., nonrelativistic plasma temperatures,

with kB the Boltzmann constant and T0 the initial center electron plasma tempera-

ture. C. B. Schroeder et al. [57, 58] developed a fluid theory for warm plasmas. As

expected, the local temperature of the plasma is modulated by the plasma density wave

(Fig. 2.5a) such that [58] T/T0 = (n/n0γf )
2, with γf the fluid orbit, for a nonrelativistic

plasma (kBT/mec
2 ≤ 1). This modulation enhances the effect of temperature-induced

self-injection, further limiting the wavebreaking electric field. The general expression for

the maximum electric field is found to be [57]:

(EWB/E0)2 = γ⊥(χ0 + 1/χ0 − 2) + (θ/γ⊥) [F (χ0)− 1] (2.26)

where θ = kBT/mec
2 is the temperature of the plasma and, χ0 and F (χ0) are functions
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of βp, γp, θ and γ⊥ (Fig. 2.5b). In the case of an ultrarelativistic plasma (1/γ2
p � θ � 1),

Eq. (2.26) simplifies as [57]:

(EWB/E0)2 '
√

8γ4
⊥/27θ

(
1− γ−1

⊥

√
3θ/2

)3

(2.27)

In the asymptotic limit θ � γ2
⊥/γ

2
p � 1, i.e., a nonrelativistic plasma, the corrected

fluid wavebreaking electric field is given by [57]:

(EWB/E0)2 ' 2γ⊥(γp − 1)− 2γp

[
4

3
(3γ2

pγ
2
⊥θ)

1/4 − (3γ2
pθ)

1/2

]
(2.28)

In the example shown in Fig. 2.4 and Fig. 2.5a, behind the laser pulse (γ⊥ = 1) Eq. (2.28)

applies since θ ∼ 10−5–10−4 and γ2
⊥/γ

2
p ' (1/20.9)2 ' 2.3 × 10−3. Assuming θmec

2 =

10 eV, the wavebreaking electric field in this example is reduced to EWB ' 4.9 × E0,

i.e., ∼ 22% lower than for a cold plasma.
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2.6 Limits to the acceleration and beam quality

The injection and acceleration of electrons in an LPA is limited by several phenomena.

Of particular importance are beam loading, laser-plasma instabilities and diffraction,

dephasing and depletion of the laser.

Beam loading is the process by which the accelerating electron bunch has enough

charge to drive a wake which significantly interferes with the accelerating plasma wave.

Besides intense laser pulses, wakefields in plasmas can also be driven by relativistic

charged particle bunches [106]. Instead of the ponderomotive force, for an electron

bunch the wake is driven by the electrostatic forces of the bunch. As with a laser pulse,

the electrons of the plasma will be expelled from the relativistic bunch and will start

to oscillate around the quasi-static ions. To include the effects of a trapped electron

bunch on the laser-driven wakefield, two terms need to be added to the set of equations

Eqs. (2.3): qb = −enb and jb = −enbvb corresponding to the volume charge density and

current of the bunch respectively [107, 108]. In the linear perturbation theory, the laser

propagation is then described by adding the electron bunch current to the wave equation

Eq. (2.3c): (
∇2 − 1

c2

∂2

∂t2

)
a = k2

p

nu

γn0

+ k2
p

nbub
γbn0

+
1

c

∂

∂t
∇φ (2.29)

where ub = γbβb with γb the relativistic Lorentz factor associated with the electron beam.

In the same manner, the plasma density wave is described by adding the charge density

of the electron bunch to Poisson’s equation Eq. (2.3a):

∇2φ = k2
p

(
n+ nb
n0

− 1

)
(2.30)

In the frame of the driver Poisson’s equation can be written as (Appendix A):

∂2φ

∂ξ2
=
k2
p

2

[
γ2
⊥

(1 + φ)2
− 1

]
+ k2

p

nb
n0

= k2
p

δn

n0

+ k2
p

nb
n0

(2.31)
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This expression shows that as the charge density of the bunch increases, it compensates

for the potential of the wake generated by the laser and eventually cancels out the

wake (δn = −nb). Hence, beam loading can severely limit the achievable current of the

accelerated bunch, as well as the bunch quality. In the region behind the laser pulse, each

plasma bucket, i.e., the region confined in a given plasma period, can trap an electron

bunch. Each trapped electron bunch will drive its own wake which will be out of phase

with the accelerating wave, thus reducing its strength. Since this effect is cumulative

the strength of the wake in the nth bucket is affected by the (n− 1) bunch-driven wakes

preceeding it. Hence, the total wake is sufficiently strong to support injection only in

the first few buckets ∼ 1–10. At typical density for gas-jet experiments at the LOASIS,

e.g., 3× 1019 e−/cm3, the plasma wavelength is of the order of λp ' 6 µm and the total

bunch duration can be estimated to be ' 6–60 µm (20–200 fs).

Several other mechanisms can limit the performance of the LPA. The main limitations

are summarized in the expression of 3 distances: diffraction, dephasing and depletion.

The diffraction length is the length over which the laser stays focused enough as to create

the intensity required to generate a plasma wave. In Sec. 2.4, the Gaussian beam was

introduced as a solution of the paraxial wave equation Eq. (2.11). It was shown that in

vacuum its waist evolves according to w(z) = w0

√
1 + (z/z0)2 where z0 = kw2

0/2 is the

Rayleigh length of the beam. From Eq. (2.13), the peak intensity of the Gaussian beam

is given by I(r = 0, z) ∝ w2
0/w(z)2 = 1/(1 + (z/z0)2) and the laser-plasma interaction

length is limited to a few z0. For w0 = 20 µm and an 800 nm laser pulse, the Rayleigh

length is of the order of z0 ' 2 mm and the intensity on-axis is reduced by 99% after

20 mm of propagation. However, it was discussed in Sec. 2.4 that the laser pulse can be

guided over several Rayleigh lengths by either self-focusing effects when the laser power

exceeds the critical power, Eq. (2.15), or by using a preformed plasma channel.

For a given plasma bucket, the dephasing length is the distance the accelerated
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electron bunch travels before outrunning the wave. As it accelerates the electron bunch

velocity approaches the speed of light vz → c and eventually exceeds the phase velocity

of the plasma wave vp < c, allowing the electrons to outrun the accelerating phase of the

wave. In a 1D linear plasma wave of the form Ez = Emax cos[kp(z − vpt)], the electron

can be accelerated at most over half a plasma wavelength. Three-dimensional plasma

wave effects include the transverse focusing field which is offset from the longitudinal

accelerating field by a quarter of λp. Thus, the wave is both accelerating and focusing

over λp/4 and the dephasing length can be determined by solving: kp(z−vpt) ≡ kp(Lφ−

vptφ) = π/2. Assuming vz ' c, we have tφ = Lφ/c and Lφ = λp/[4(1− βp)] = λp/[4(1−√
1− 1/γ2

p)] which, for γp � 1, yields:

Lφ ' γ2
pλp/2 (2.32)

' λ3
p/2λ

2 (2.33)

since the phase velocity of the plasma wave is approximately equal to the group velocity

of the electromagnetic wave propagating through the plasma [9, 24], vp ' vlaser
g = c(1−

ω2
p/ω

2)1/2, i.e., γp ' ω/ωp = λp/λ. In the example of a uniform plasma density of

n0 = 1018 e−/cm3 and a 800 nm laser pulse, γp ' 42 and the dephasing length is of the

order of Lφ ' 29 mm.

In exciting the plasma wave, the laser pulse transfers energy to the medium. This

mechanism is referred as pump depletion [109] and the depletion length Ld is the distance

after which the laser lost its energy. The energy contained in a laser pulse of length LL,

waist w0 and peak electric field EL is given by EL ∼ πw2
oLLε0E

2
L/2 [72]. The electric

energy contained in the plasma wave is given by Ep ∼ πw2
oLpε0E

2
z/2 where Lp is the

length of the plasma and Ez the longitudinal electric field of the plasma wave. Assuming

the laser is guided until it reaches full depletion, the depletion length can be determined
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by equating the energy of the laser and of the plasma wave, EL = Ep(Lp = Ld), which

gives:

Ld = LL(EL/Ez)
2 (2.34)

In addition [110],

EL '
√

Ω0I0/2 =
ωa0

4π

√
Ω0mec

re
(2.35)

where Ω0 ' 377 Ω is the impedance of free space; and in the linear regime (a2
0 � 1) a gen-

eral solution to Poisson’s equation, Eq. (2.4), can be found for the potential [12] provid-

ing a solution for the electric field of the form Ez/E0 = (
√
π/2)a2

0kpLL exp(−k2
pL

2
L/4)×

cos(kpξ). Note that with this expression the maximum electric field is achieved for

LL =
√

2/kp = λp/
√

2π; this condition is known as the resonance condition. At the

resonance and for a0 � 1, the peak electric field is then given by:

Ez =

√
π

2

a2
0

exp(2)
E0 (2.36)

Using Eq. (2.1) and Eq. (2.8), the depletion length can be written in this regime as:

Ld =
exp(4)

√
2

8π3
· Ω0ε0
re
·
γ2
pωp

a2
0ne

(2.37)

=
exp(4)

√
2

4π2
· Ω0ε0c

re
· λp
a2

0λ
2ne

(2.38)

Ld [µm] ' 695× λp [µm]

a2
0 (λ [µm])2 ne [1018 cm−3]

(2.39)

Following the previous example of a plasma density of 1018 e−/cm3 and a 800 nm laser

pulse with w0 = 20 µm, the resonance condition implies a pulse duration of τL ' 25 fs

(LL ' 7.5 µm). Assuming an energy on target of EL ' 50 mJ, the peak intensity is given

by I0 = 2
√

ln 2/πEL/τLπw2
0 ' 1.5×1017 W/cm2, a0 ' 0.26 < 1 and, neglecting all other

sources of energy loss, Ld ∼ 0.5 m� Lφ > z0. Note that for more realistic experimental
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parameters (e.g., higher density, longer pulse duration, higher laser energy), Ez has to

be computed numerically and an estimate of Ld is given by Eq. (2.34).



Chapter 3

LPA Experimental Optimization

3.1 Plasma density measurements

As introduced in the previous Chapter (Sec. 2.6), the electron density, ne, determines

key parameters of the accelerator such as the dephasing length, the pump depletion

length, and the maximum amplitude of a nonlinear plasma wave [12]. The present

generation of LPAs is being developed to serve as a unique source for generating THz

and X-ray light [77, 111, 84]. The performance of such light sources is determined in

particular by the plasma shape and density. For instance, the radiated energy and

duration of ultrashort THz pulses produced by accelerated electron bunches crossing

the plasma-vacuum boundary (coherent transition radiation), depends on the sharpness

of the transition and on the transverse size of the plasma [112, 113, 80]. Mapping the

electron density of the plasma is therefore necessary to understand the THz generation

mechanism. In betatron based X-ray sources, the X-ray energy is in part determined by

the plasma density [82, 85, 114].

Plasma density measurements are conventionally performed using non-perturbative

laser interferometric techniques (Michelson, Mach-Zender configurations). In these tech-
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niques a laser beam, usually a short (< 1 ps) pulse, is split and propagates along two

beam paths. In one arm the laser pulse goes through the plasma and experiences a

phase shift due to a local variation of the refractive index. By interfering the laser pulse

from this arm with the laser pulse in the other arm, called the reference arm, the rela-

tive phase is retrieved by Fourier analysis. The electron density is finally deduced from

the phase map via its relation to the refractive index [78]. For most interferometers,

the reference and probe laser pulses travel along significantly different paths, and ef-

fects such as vibration of the optics can cause shot-to-shot change in the relative phase.

This increases the noise in the measurement. In this thesis, an alternative technique

[115, 116, 117, 118] using a wavefront sensor is demonstrated in which only one laser

pulse is required. Several types of wavefront sensors are commercially available (Hart-

mann, Shack-Hartmann, shearing interferometer). The setup used for both folded-wave

interferometry and wavefront sensing as well as both analysis and density map recon-

struction are discussed in Sec. 3.1.1. Electron density measurements using this new

technique were benchmarked with interferometric measurements for a range of plasma

densities as shown in Sec. 3.1.2 and the ability to resolve strong density gradients was

successfully demonstrated. Furthermore, it is shown that for the setup presented, phase

sensitivity and hence accuracy in determining the electron density can be significantly

improved by using a wavefront sensor.

3.1.1 Electron density map reconstruction

The experiments were performed using a laser-driven plasma-wakefield accelerator in

the self-modulated regime [119, 120] relying on self-trapping of background electrons.

A laser pulse of central wavelength 800 nm (> 40 fs, up to 0.5 J) was focused (w0 ' 6

µm, > 1019 W/cm2) into Helium or Hydrogen supersonic gas from a supersonic nozzle

[2]. The focus was 1 mm above the nozzle. The laser pulse excited a plasma density
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Figure 3.1: Schematic of the plasma density diagnostics. When using the folded-wave inter-
ferometer the wavefront sensor is operated as a camera, both arms of the interferometer are
used and interferograms are recorded (a). When using the wavefront sensor for phase front
measurements of the probe beam only one arm is used (b).

wave which trapped and accelerated up to 10’s of MeV electron bunches with ∼ 1

nC of charge. Typical electron densities were on the order of 3 · 1019 electrons per

cubic centimeter (e−/cm3), which corresponds to a plasma wavelength of λp ' 6 µm.

Optical measurements are possible at these densities using wavelengths shorter than ∼ 6

µm. In these experiments measurements were carried out using a laser pulse of central

wavelength 400 nm and 70 fs FWHM duration.

Both a wavefront sensor and a folded-wave interferometer [121] were used to charac-

terize the electron density of the plasma. In the folded-wave interferometer, the lower

part of a probe beam, which has a large transverse size compared to the plasma diame-

ter, passed through the plasma. After passing through the plasma, the probe beam was

split into two laser beams of equal intensity. By spatially inverting the beam in one arm

before recombining the two beams, the area of each laser beam unaffected by the plasma

interfered with the affected area to the other (Fig. 3.1a). Each arm therefore served as

the reference of the other.
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The setup with wavefront sensor is shown in figure 3.1b. The sensor measures directly

the phase front curvature of an incoming laser beam and therefore does not require the

folded-wave interferometer. The amount of phase introduced in the laser beam passing

through the plasma is retrieved by subtracting a reference phase map obtained when

the plasma is absent.

Wavefront sensor and interferometric measurements use different algorithms to re-

cover the phase information. The wavefront sensor used in these experiments was a

commercial 4-wave shearing interferometer (SID4 from Phasics S.A.). Measurements

are based on a modified Hartmann test [122], in which diffraction-based limitations are

greatly reduced by adding a phase chessboard to the classical Hartmann mask. A clas-

sical Hartmann test uses a mask of holes splitting the incoming light into beams whose

deflections are proportional to the local distortions of the analyzed wavefront. By adding

a second mask, a 2D diffraction grating is created, which replicates the incoming beam

into 4 identical waves propagating along different directions. A Fourier analysis of the

interference grid allows reconstruction of the phase gradient in 2 orthogonal directions.

The phase map is obtained by integration of these gradients. The phase recovery routine

is provided by the manufacturer.

Using the folded-wave interferometer, the plasma density was recovered from the in-

terferograms by fringe pattern analysis [123, 124, 125]. A fast-Fourier-transform (FFT)

was applied line-by-line on the interferograms (Fig. 3.2, left). Filtering out the car-

rier frequency and computing the inverse Fourier transform, the phase information was

retrieved as the phase of the complex space-domain signal (Fig. 3.2, center).

The fringe pattern of a folded-wave interferogram has the form f(x, y) = a(x, y) +

b(x, y) cos[2πf0x + φ(x, y)] where a(x, y) and b(x, y) are due to non-uniformities of the

intensity profile in the probe beam, φ(x, y) is the phase difference due to the presence of

the plasma and/or optics, and f0 is the spatial-carrier frequency. In complex notations
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Figure 3.2: Left, interferogram obtained for a back pressure of the gas jet of 600 psi Hydrogen
(1 psi ' 6895 Pa). Center, phase map [radians] retrieved from Fourier analysis of the interfer-
ogram. Right, electron density map [1019 electrons/cm3] retrieved after symmetrization of the
phase map and Abel inversion.

the fringe pattern can be written:


f(x, y) = a(x, y) + c(x, y) exp(2πjf0x) + c∗(x, y) exp(−2πjf0x)

c(x, y) = 1/2 · b(x, y) exp[jφ(x, y)]

(3.1)

where ∗ denotes the complex conjugate. An FFT of this equation yields:

F (f, y) = A(f, y) + C(f − f0, y) + C∗(f + f0, y) (3.2)

The phase information is simply retrieved as the argument of the inverse-FFT of the

term C(f − f0, y), F−1[C(f − f0, y)] = 1/2 · b(x, y) exp{j[φ(x, y) + 2πjf0x]}. A linear fit

on an unperturbed part of the interferogram provides f0 whose contribution can then

be subtracted.

The phase information is retrieved within [−π; π] and to avoid any non-physical

discontinuities the phase map needs to be “unwrapped”. When the difference between

two adjacent values along the horizontal axis exceeds π it is compensated. The formula
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Figure 3.3: Contour plots from wavefront sensor and interferometer of average phase maps
(a) and average electron density maps (b) obtained at 600 psi Hydrogen. The average was
performed on over 50 phase maps in both cases, wavefront sensor (solid lines) and folded-wave
interferometer (dashed lines).

used for these experiments is: φunwrapped(0) = φ(0) and ∀i ∈ {1; . . . ;n− 1},

φunwrapped(i) = φ(i)− 2π × b1/2 + (φ(i)− φ(i− 1))/2πc (3.3)

where n is the number of pixels on the axis and b c denotes rounding to the lowest value.

The unwrapping is applied on each line and each column of the phase map.

For both diagnostics the electron density map (Fig. 3.2, right) was computed, using

its relation to the plasma refractive index of refraction, by an Abel inversion [78, 126]. As

discussed in Sec. 2.4, for a non-magnetic plasma and in the absence of a relativistically

intense laser pulse, the refractive index is given by, c.f. Eq. (2.17), η2
p = 1 − ω2

p/ω
2 =

1−ne/nc(ω) where ω is the angular frequency of the probe beam and nc(ω) = ε0meω
2/e2

is the critical density. For ne < nc and ηgas ' 1, the phase lag between reference and

probe is then

φ =
ω

c

∫
(1− ηp(ω)) dl (3.4)

where the integral is performed along the beam path in the plasma and c is the vacuum
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speed of light. Substituting the definition of ηp in this equation yields:

φ(x, y) =
ω

c

∫
(1−

√
1− ne(x, y)

nc(ω)
) dl (3.5)

Here, the phase is a measure of the average refractive index along the path in the plasma.

Assuming the plasma is cylindrically symmetric, the measured phase is therefore an Abel

transform of the actual physical quantity. After symmetrization of the unwrapped phase

map, using the vertical location of its center of mass as axis of symmetry (Fig. 3.2, right),

an Abel inversion is computed:

Φ(x, r) = − 1

π

∫ R

r

∂φ(x, y)

∂y
· 1√

y2 − r2
dy (3.6)

where φ(x,R) = 0, r is the radial position and R = rmax. From the unwrapped and Abel

inverted phase map, the electron density of the plasma can be calculated by inverting

the previously established relation between phase and density:

ne(x, r) = nc(ω)

[
1−

(
1− c

ω
· Φ(x, r)

)2
]

(3.7)

For both phase maps retrieved from folded-wave interferometry and wavefront sensing,

symmetrization, Abel inversion, and conversion to electron density were computed. In

the next section, the difference between the two types of measurements is studied.

3.1.2 Plasma density measurements using a wavefront sensor

Measurements were performed for different back pressures of the gas jet, namely 500 psi,

600 psi, and 700 psi Hydrogen. For each of these pressures, wavefront-sensor-based

measurements and folded-wave interferograms were alternatively taken. A mean phase

map of over 50 pictures was computed for both types of measurements. Both mean phase
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Figure 3.4: Contour plots of the difference in percent between average phase maps (left
plot) and average electron density maps (right plot) from wavefront sensing and folded-wave
interferometry obtained at 600 psi Hydrogen. The average was performed on over 50 phase
maps in both cases. In the region of interest, the difference between density measurements
does not exceed 20%.

maps were then symmetrized, Abel inverted, and converted to electron density according

to the equations presented in Sec. 3.1.1. Analysis shows good agreement between the two

types of measurements. An example would be the contour plots of the mean phase maps

and mean density maps at 600 psi Hydrogen are compared in Fig. 3.3. The two contours

of density in Fig. 3.3b differ from each other near the symmetry axis. This difference

is attributed to the Abel inversion, which is sensitive to noise close to the symmetry

axis since the integration
∫ R
r

1/
√

(y2 − r2) dy diverges for r ' 0. A discrepancy between

the phase maps is also observed for higher phase shifts (Fig. 3.3a) ranging from 6% at

the center of the plasma to 22% near the plasma edge where noise is more problematic

around z ' 1, 1.8 and 3 mm (Fig. 3.4). The difference in density measurements ranges

from 6% to 17% in the center of the plasma and increases at low densities where the

signal-to-noise is small (∼ 1).

In addition, the ability to resolve strong density gradients was tested using a damaged

gas jet nozzle which produced a strongly perturbed gas flow for Helium gas. Both

measurements provide similar resolution of the perturbed density profile (Fig. 3.5).
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Figure 3.5: Comparison between direct wavefront sensor measurements and folded-wave in-
terferometry on a line out of the density maps obtained using a damaged gas jet nozzle (600
psi, Helium). Both measurements are capable of resolving the “shock” in the gas flow.

Folded-wave interferometer Wavefront sensor
500 psi 2.06± 0.25 2.26± 0.25
600 psi 2.43± 0.30 2.56± 0.26
700 psi 2.69± 0.32 2.56± 0.27

Table 3.1: Comparison between direct wavefront sensor measurements and folded-wave
interferometry for three different pressures. Values correspond to average and rms shot-
to-shot deviation of the phase maps, and are indicated in 1019e−/cm3.

In order to compare the scaling laws of the two techniques, the plasma density was

analyzed as a function of gas pressure. Averages of the density maps were calculated

over the plateau region where the density is nearly flat, excluding the zone near the axis

where the Abel inversion fails. The shot-to-shot errors are dominated by fluctuations in

gas flow (Table 3.1). The in-quadrature contribution of the instrument resolution to the

rms deviations is less than 4.4% for the wavefront sensor and 33% for the folded-wave

interferometer (Fig. 3.6).

The phase sensitivity of both techniques was evaluated by measuring 188 consecutive

phase maps in the absence of plasma and under the same experimental conditions. An

rms deviation phase map was calculated for both types of measurement (Fig. 3.6). The

averages of the maps are 95.7 mrad and 11.4 mrad for respectively the folded-wave
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Figure 3.6: Sensitivity measurements for folded-wave interferometry (a) and wavefront sens-
ing (b). Each figure is the rms deviation of 188 phase maps obtained without plasma.
Wavefront-sensor-based measurements are ' 8.4 times more sensitive and the noise is more
homogeneously distributed.

interferometer and the wavefront sensor, making the wavefront sensor-based technique

' 8.4 times more sensitive. In addition, fluctuations over the phase maps are more

homogeneous for the wavefront sensor measurements.

The spatial resolution of the diagnostic is determined by the intrinsic camera resolu-

tion and the magnification of the imaging system. The wavefront sensor camera was used

for both types of measurements to avoid ambiguity in the interpretation of the images.

It has 480× 640 pixels of 7.5 µm for both dimensions. Because the wavefront sensor is

a 4-wave shearing interferometer the size of a measurement point does not correspond

to a pixel. The wavefront sensor produces intensity and phase maps of 120× 160 mea-

surements points with a spatial resolution of 29.6 µm for both dimensions. Whereas the

wavefront sensor has a fixed CCD chip and pixel size chosen by the manufacturer, it is in

principle possible to choose a different camera to increase resolution of the folded-wave

interferometer.

Plasmas produced by the laser-gas interaction were typically 2 mm long and had a

diameter of 0.2 mm. After imaging the plasma to a primary focus shortly after the beam
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combiner (Fig. 3.1) with a f/7 achromat lens, an imaging system using aspherical and

cylindrical optics was used to provide higher resolution in the vertical direction to the

wavefront sensor, 21.3 µm per measurement point in the horizontal plane and 4.8 µm

per point in the vertical plane.

In conclusion, a simple single-shot wavefront-sensor-based electron density diagnostic

is presented that relies on the use of a wavefront sensor. The design requires only one arm

of a non-perturbative probe laser beam. Post-analysis requires only the computation of

an Abel inversion. Successful resolution tests were performed by comparing wavefront

sensing and folded-wave interferometry-based measurements for different pressures, thus

electron densities and, for steep density gradients. The technique, which can be used

for any phase sensitive measurement, was found to provide the same information as a

regular interferometer with improved phase noise and with greater ease of operation.
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3.2 Off-axis colliding pulse injection

Decoupling injection from acceleration is a key challenge to achieving compact, reli-

able, tunable laser-plasma accelerators (LPAs) [9, 12]. Although capillary-guided LPAs

have demonstrated high-quality electron beams at 1 GeV [10] with 2.5% r.m.s. energy

spread, most of present LPAs [39, 41, 40] still rely on transverse wavebreaking effects

[19] of highly nonlinear waves [57] to inject electrons into the accelerating phase of the

electron density wave. In this scheme, injection and acceleration are coupled, limiting

control of the acceleration structure which is essential for LPAs’ applications such as

free-electron lasers [127], THz [77, 70] and X-ray radiation sources [84, 85, 128]. Elec-

trons injected at different longitudinal positions behind the laser pulse, i.e., different

phases of the periodic structure of the accelerating wakefield, experience different elec-

tric fields, due for example to beam loading effects (Sec. 2.6), which can lead to a large

energy spread. Several methods to control trapping of the electrons have been pro-

posed and demonstrated: external injection of an electron beam from a conventional

accelerator [16, 17, 18], triggering injection in plasma density gradients with density

decreasing in the laser propagation direction [63, 2], and using additional laser pulses

[20, 66, 129, 22, 67].

In this Chapter, a two-pulse configuration of the colliding pulse injection (CPI) [21]

is presented. In colliding pulse injection the beat between multiple laser pulses can be

used to control energy, energy spread, and emittance of the electron beam by injecting

electrons in momentum and phase into the accelerating phase of the wake trailing the

driver laser pulse [20, 21, 76, 129, 22]. Using automated control of spatiotemporal over-

lap of laser pulses, two-pulse experiments showed stable operation and reproducibility

over hours of operation. The length of the accelerating structure was scanned by varying

the intersection point of the collider beam. Two-dimensional particle-in-cell (PIC) sim-

ulations reproduce the observed timing window for the experimental parameters [130].
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Both plasma density and intensity of the collider beam were scanned. Injection reaches

a plateau for a normalized vector potential, a1, of the collider laser pulse greater than

0.9 as predicted by simulations. To provide higher energy electron beams in coming CPI

experiments, guiding of the driver laser pulse alone through several Rayleigh lengths

by a third laser pulse was successfully demonstrated. Combined with CPI, 2–400 MeV

beam of several pC and with narrow energy spread could be produced [66].

3.2.1 Two-pulse colliding pulse injection

The idea of using an additional laser pulse to control the injection of background plasma

electrons was first reported in Umstadter et al. [20]. The proposed scheme involved two

laser pulses propagating in perpendicular directions. Injection occurs due to the direct

ponderomotive force of the envelope of the injection pulse (colliding pulse). Although

simulations [20] indicated production of ultrashort electron bunches with low energy

spreads (∼ 10 fs, ∼ 21 MeV, ∆E/E ∼ 6%), this required relatively high intensities

for both pulses (normalized vector potentials a ' 2). Esarey et al. [21, 131, 132]

provided theoretical description and simulations of a colliding pulse injection scheme

with 3 pulses, a driver and both a forward and a backward going injection pulses, and

showed production of 27 MeV, ∼ 3 fs and ∼ 0.3% energy spread. When the injection

beams intersect some distance behind the driver beam, their interference creates a laser

beat wave. Because of its small characteristic spatial scale, this standing wave has a

large ponderomotive force which can accelerate a fraction of the plasma electrons such

that they become trapped in the wakefield.

In the colliding pulse scheme presented here, a single off-axis counter-propagating

laser pulse is used to simplify the implementation of a laser triggered injection technique

[66, 129, 22, 67, 133], minimize the risk to the laser system when doing a co-linear

counterpropagating geometry, and to facilitate secondary radiation extraction [134, 135].
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In this simplified configuration of the CPI, background plasma electrons are injected into

the wake by the ponderomotive force associated with the beat wave between the off-axis

backward going injection pulse with the trailing portion of the driver laser [66, 67].

As discussed above, in the self-injection regime, injection and acceleration are coupled,

limiting control of the accelerated electron bunch. In CPI experiments the self-trapping

threshold is not reached and the interference between the two injection pulses are used

to move background electrons from fluid orbits to trapped orbits.

A simple description of colliding pulse injection can be provided for two counter-

propagating circularly polarized lasers [66, 67]. In Chapter 2, the one-dimensional

plasma wakefield generated by the driver pulse was described and the Hamiltonian of

the system was found to be, c.f. Eq. (2.21), H = γ(1−βpβz)−φ. Assuming the plasma

background electrons are initially at rest (H0 = 1), Eq. (2.23) gives the lower background

fluid orbit: γmin
fluid = γ2

p(1 + φmax) − βpγp
√

(1 + φmax)2γ2
p − 1. It can be also found that

the lower separatrix is given by: γmin
sep = γp(1 + γp∆φ) ± βpγp

√
(1 + γp∆φ)2 − 1 with

∆φ = φmax − φmin. In addition, the Hamiltonian of the beat wave alone (φ = 0) is

given by [66] Hb =
√

1 + a2
b + u2

z − βbuz −φb where a2
b = (a0 + a1)2 is the laser intensity

resulting from the interference of the two pulses and φb is the space charge potential

driven by the beat wave. For circularly polarized laser pulses the normalized vector

potentials can be written as a(0,1) = a(0,1),s(ξ)[cos(k(0,1)ξ(0,1))x + sin(k(0,1)ξ(0,1))y] with

k1 = −k0 (βb = 0) and ξ(0,1) = z∓ vpt [67]. It yields a2
b = a2

0,s + a2
1,s + 2a0,sa1,s cos(2k0z).

Assuming φb � a0,sa1,s the Hamiltonian for electron trajectories in the beat wave

reduces to Hb =
√

1 + a2
b + u2

z so that on the separatrix electrons oscillate between

γb,sep = ±
√

1 + 4a0,sa1,s. Thus, an estimate of the threshold value of a1,s for injecting

background electrons into the accelerating phase of the wakefield is obtained by satis-

fying two conditions: the lower beat wave separatrix has to be less than the fluid orbit,

i.e., γmin
b,sep ≤ γmin

fluid, and the higher beat wave separatrix has to exceed the lowest trapped
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Figure 3.7: Schematic of the experimental setup. The laser beams, with strengths a0 and
a1, are focused using off-axis parabolic mirrors onto a supersonic gas jet of neutral electronic
density ne. Temporal duration (τ), charge (Q), energy (E) distribution, and source size (σr)
can be monitored. The inset describes the principles of colliding pulse injection: at overlap a
ponderomotive beat wave provides momentum and phase kick to some background electrons
which are then accelerated.

orbit, i.e., γmax
b,sep ≥ γmin

sep .

3.2.2 Experimental setup and diagnostics

Two ultrashort 800-nm laser pulses were focused into Helium or Hydrogen gas (3–9 ×

1018 e−/cm3) from a 2.2 mm inner diameter supersonic nozzle. Both laser pulses were

produced using the 10 Hz Ti:Al2O3 chirped-pulse-amplification LOASIS laser system.

The first laser pulse (driver beam), an s-polarized pulse of ' 0.4 J/pulse in ' 45 fs

FWHM, was used to drive the plasma wave. The driver was focused to a 4.4 µm focal

spot (1/e2 intensity radius) which gave a peak intensity of 3×1019 W/cm2 and a0 = 3.75.

The second laser pulse (collider beam), an s-polarized pulse of ' 0.25 J/pulse in ' 45 fs

FWHM, intersected the driver at both foci from the downstream direction at a 19 degree

angle. The experimental setup is shown in Fig. 3.7. The collider beam energy had a

focal spot of 5.7 µm (1/e2 intensity radius), and its energy was ∼ 0.1 J, which gave

a1 ' 1.

The alignment of the both driver and collider beam foci was performed in two steps:
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Figure 3.8: Schematic of the automated laser alignment system. The beam is steered using
Picomotor-driven mirrors (high precision motors) and the beam position is monitored by a
webcam placed behind a mirror downstream. Picomotors are controlled by motor driver called
“Picopad”. A server-client structure is used to handle simultaneous user commands.

first, by propagating both pulses in backfill gas, the waists of the ionization contours

could be overlapped using a top view camera (horizontal plane); second, the arrival times

were synchronized by referencing each beam relative to a third ∼ 70 fs 400-nm beam

which provides side view shadowgrams. These shadowgrams allow also vertical overlap

of the two beams (vertical plane). To maintain this alignment within a few microns

and 10’s of femtoseconds, an active pointing system was implemented which controls

the laser beam path at many locations throughout the lab.

The laser beam is steered using precision-motor-driven mirrors (Fig. 3.8). By mon-

itoring the beam position downstream, automated control of the beam alignment can

be achieved. The high precision (< 30 nm) motors used to control a mirror’s position

are called Picomotors. They are made of a piezoelectric transducer which is used to

turn a screw and adjust the steering angle of the mirror. The Picomotors are connected

to a driver (e.g., New Focus 8732 Picopad) which can be remotely controlled using a

General Purpose Interface Bus (GPIB) connection. Feedback on the laser position is

provided by a common webcam observing the leakage through a downstream mirror. To

control the many pairs of Picomotors/webcam placed throughout the lab, a client-server
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Figure 3.9: Timing scan in 5 × 1018 e−/cm3 H2+ of the collider beam (a1 ' 1) arrival time
relative to the driver beam (a0 ' 3.5). The timing window is consistent with simulations
(magenta curve, a1 ' 0.5). At overlap, charge stability is ' 20%.

architecture has been implemented with a server per driver.

A series of single-shot diagnostics was used to characterize the generated electron

beams: the total, i.e., including low-energy (< 10 MeV) tail, electron beam charge was

monitored using an integrating current transformer (ICT) [136, 137]. The ICTs used

at LOASIS were recently crossed-calibrated using an activation based measurement [36]

which is immune to electromagnetic pulse (EMP) noise [137]; it was found that both

charge diagnostics agree within ±8%, making the ICT an accurate non-invasive charge

measurement for LPAs. A magnetic dipole spectrometer was used to provide single-shot

energy and divergence of the accelerated electron bunches [138, 68, 139]. Electron beam

spectrum over a broad spectral range (10–100 MeV) is provided by combining a dipole

magnet with scintillating screens (Kodak Lanex Fast scintillating screens) which, with

a fluorescence decay time of less than 10 ms, are particularly suited for 10 Hz repetition

rate, and can be cross-calibrated [68, 137] to provide absolute charge measurements

[charge/MeV] and allow large areas to be imaged with reasonable sensitivity and cost.
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Figure 3.10: Example of colliding pulse injection produced electron beam distribution. The
total charge in the beam, at the dipole magnetic spectrometer, is 0.6 pC.

3.2.3 Experimental results

Experimental parameters were chosen so that, when the driver was fired alone, no elec-

tron beam was produced. To operate below self-injection threshold, the plasma density

was set below 5 × 1018 e−/cm3. Prior to lowering the plasma density, by varying the

backing pressure of the gas jet, the longitudinal position of the gas jet was adjusted so

that the focus of the driver beam lay on the upstream edge of the density plateau where,

at higher pressures, self-injection was maximum.

By scanning the arrival time of the collider beam, one could scan the location of the

beat wave in phase space. As the collider timing was scanned, the injection was succes-

sively turned on and off as illustrated in Fig. 3.9. The experiments show the expected

timing signature as the collider timing was scanned with respect to the drive beam.

The experiments also showed dependence of injection on density reasonably consistent

with simulations. Colliding pulse experiments were conducted and have demonstrated

reproducible injection of electron beams using the colliding pulses, so far at low energies

(Fig. 3.10).

A possible explanation for this low energy electron spectra is the combination of a

short (' 75 µm) defocusing length of the driver beam, and the non-uniformity of the

plasma density profile, with a ∼ 25% rise from the upstream to the downstream edge

of the profile, which would prematurely stop the injection. Future experiments will
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Figure 3.11: Density scan without (a) and with (b) pre-ionizing laser pulse in the self-injection
regime. The charge produced (colormap) is displayed as function of the electron energy (x-axis)
and plasma density (y-axis). (c) and (d) are examples of un/channeled single-shot electron
beam spectra (charge vs. electron energy) for a plasma density of 3.2× 1019 e−/cm3.

include guiding [40] of the driver beam to increase the acceleration length of colliding

pulse injected beams. In preparation for guided experiments, where a third pre-ionizing

laser pulse creates a plasma channel allowing extended acceleration lengths, guiding of

the driver alone was performed. Increasing the density (0.5–5 × 1019 e−/cm3) to reach

self-trapping, 90-MeV electron beams were generated near 3×1019 e−/cm3 (Fig. 3.11d),

using a pre-ionizing igniter laser pulse to produce a plasma channel and guide the driver

over many Rayleigh length (' 1.6 mm), similar to [40]. Combined with CPI, 200–

400 MeV beams of several pico-coulombs of charge and narrow energy spread should be

anticipated based on simulations.

Because CPI experiments rely on the spatiotemporal overlap of the colliding beams,

an active beam pointing system was developed in order to provide amplifier and tar-
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Figure 3.12: Three timing scans of the collider beam arrival time relative to the driver
beam. The first and third curves show the importance of having an active beam pointing
system. Using active beam pointing, the first and second curves, conducted using respectively
Hydrogen and Helium gas, show a good stability of the timing window over several hours.

get pointing stability, and consequently stability of electron beam properties. Relative

arrival time and focus positions of the two beams were measured using a conventional

folded-wave interferometer [1], also used to measure the density profile of the plasma.

Few micron on-target stability was achieved, with less than 50 fs timing drift over an

hour, and ∼ 100 fs over 8 hours. To illustrate this stability, Fig. 3.12 shows two timing

scans, one using Hydrogen gas and the other using Helium gas, which were conducted 3

hours from each other. Because of differences between the two gases, timing windows dif-

fered from each other but the overlap stayed identical, and both cases showed an r.m.s.

charge stability of ' 20%. Finally, Fig. 3.12 displays a case, using Hydrogen gas, where

the collider beam had been purposely detuned, focusing the collider downstream of the

driver focus, to show correlation between charge, timing overlap and laser pointing.

In addition to the timing scans, both pressure and collider strength (a1) were scanned,

and in both cases results were consistent with simulations. In Hydrogen, colliding pulse

injection turned on at about 2× 1018 e−/cm3 and turned off at about 5× 1018 e−/cm3,

before self-trapping mechanisms started to produce low energy, broad-band, high charge

electron beams. In scanning the collider beam intensity, injection reached a plateau for

a1 > 0.9 as predicted by simulations [130], producing high charge, low energy electron
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Figure 3.13: Experimental scan of collider beam normalized vector potential agree with
simulations [130]. Injection occurs for a1 & 0.2 and saturates for a1 ' 1. Due to beam loading,
as the charge in the bunch increases the final energy decreases and the energy spread increases.

beams (Fig. 3.13). Because of laser output power limitations, the scan could not be

performed beyond a1 ' 1.

In conclusion, the successful implementation of an active beam pointing system led to

the production of stable (' 20% r.m.s. charge stability) electron beams in the colliding

pulse injection scheme. Timing scans in both Hydrogen and Helium were performed,

showing consistent timing window with two-dimensional PIC simulations. Pressure and

collider beam intensity were scanned as well, showing CPI occurring for plasma densities

below 5× 1018 e−/cm3, with a driver strength of a0 = 3.75. Injection reached a plateau

as simulations predicted for a1 > 0.9. Future experiments will focus on guiding the

driver laser pulse over several Rayleigh lengths at the low densities CPI needs to operate

at, and the production of stable, high-energy electron beams.





Chapter 4

Coherent Transition Radiation

4.1 THz source optimization

One of the primary focuses of this thesis was the development of an intense THz radi-

ation source, as introduced in Chapter 1. The key objectives were to understand and

optimize the THz source performance including spatial beam profile, temporal waveform

and spectrum, energy and stability. Measurements of aberration-corrected spatial THz

beams are presented, and novel techniques for measuring the pulse waveform have been

developed. Work on increasing THz pulse energies, including increasing the radiator

plasma size through the use of a pre-ionizing laser beam, and work on main drive laser

beam pre-pulse control and pointing stability has been carried out. Two important

technical improvements to the laser-plasma accelerator have been implemented that are

found to be essential for obtaining stable performance of both the electron beam and

THz beam: laser pre-pulse control and active beam stabilization.

Three different methods of pre-pulse control were evaluated: introducing a second

colinearly propagating laser pulse to act as a controllable pre-pulse with adjustable

timing; adjusting the timing of a Pockels cell to selectively attenuate laser energy arriving
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prior to the main pulse; and a contrast improvement system based on the cross-polarized

wave technique. Significant enhancement factors, > 5, were obtained using the cross-

polarized wave (XPW) technique [140] allowing generation of µJ-class THz pulses.

4.1.1 THz collection efficiency: spatial beam profiles

In a laser-plasma accelerator, electron bunches are produced through the interaction of

an intense focused near-infrared (NIR) laser with a plasma. The radiation pressure of an

intense laser drive beam excites a plasma wake, accelerating electrons which emit THz

radiation as they exit the plasma. Coherent THz radiation is emitted as the bunches

exit the plasma-vacuum boundary [77, 80]. The details on the specific geometry of the

LPA used for the experiments described in this thesis, as well as their THz emission,

have been presented in previous work [77, 141, 69, 70, 142, 143].

THz experiments have been carried out with the goal of producing 10 µJ stable

THz output suitable for pump-probe experiments and THz nonlinear optics [144]. The

experiments were conducted using the Ti:sapphire based lasers at the LOASIS facility.

The facility has three main amplifier chains (Godzilla, Chihuahua and TREX) and two

target areas. All the THz experiments reported in this Chapter were done with the

10 TW Godzilla and multi-pulse Chihuahua amplifiers.

A 800-nm laser pulse (up to 0.5 J in 40–50 fs) is focused (w0 ' 6 µm) onto Hydrogen

or Helium gas from a supersonic gas jet. The plasma density is dependent on gas jet

backing pressure and ranges from ne ∼ 1 to 8×1019 [e−/cm3]. Through the laser-plasma

interaction, an electron bunch containing up to 1010 electrons propagates through the

plasma-vacuum interface, producing coherent transition radiation (CTR) pulses. Part of

the THz radiation (' 0.178 sr) is collected and collimated by an off-axis parabola (OAP),

with an incident angle θ = 19o, and focused by a second OAP outside the target chamber

on an electro-optic crystal (Fig. 4.1). A model of the THz transport line is presented in
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Figure 4.1: Sketch of the optical line. OAP-down collects transition radiation emitted by
electrons while they cross the plasma-vacuum boundary and the couple flat mirror – OAP-top
refocus the collimated beam onto an electro-optic crystal (for the EOS experiment).

Appendix B. A pair of polarizers (input polarizer/analyzing polarizer, called analyzer)

and a quarter-wave plate (λ/4-plate) regulate the energy transmission of a probe beam

onto a 12-bit camera. Through electro-optic (EO) effect, the THz pulse induces a change

in crystal birefringence, which affects the analyzer transmission of the probe beam. By

scanning the temporal delay between THz and probe pulse, a sign-resolved field profile

of the THz pulse can be recorded. The recorded EO waveform SEO(τ) is a convolution

of the original THz pulse ETHz(t) and known crystal parameters [145]. Alternatively, a

Golay cell or bolometer is placed instead of the crystal to measure energy directly.

The amount of CTR produced by an LPA is characterized by its spatial beam profile,

temporal waveform and spectrum, and its total energy. A two-dimensional (2D) electro-

optic diagnostic [146, 147, 148] was used to measure the THz spatial profile (Fig. 4.2).

A collimated, linearly polarized probe beam was overlapped with the focused THz pulse

in an EO active crystal (e.g., GaP or ZnTe 〈110〉). The high amplitude, low frequency

field of the THz acted as an electrical bias on the crystal, inducing a localized, spatially

varying birefringence. The probe beam, which is significantly larger than the THz

focus, experiences a localized polarization rotation where it overlaps the THz, which is
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Figure 4.2: Setup for THz spatial profile measurement through EO sampling in a GaP or
ZnTe crystal, using a 50 fs optical probe beam. Both EO images are integrated through the
duration of the pulse and normalized in intensity; the new (right) pulse has a 0.52 mm 1/e2

intensity radius.

proportional to the field strength of the THz. The polarization rotation is analyzed and

recorded with a crossed polarizer and CCD camera.

The conceptual lay-out for measuring the 2D profile is depicted in Fig. 4.2. The THz

radiation, collected and collimated by an off-axis parabola, was focused by a second

OAP outside the target chamber on a 100 µm thick GaP crystal. Also incident on the

crystal was a collimated laser probe beam (λ = 800 nm) that overfilled the THz spot at

the crystal plane. The probe polarization was rotated by the THz-induced birefringence

and a camera read out the THz spatial mode by looking at the light passing through a

crossed polarizer.

The probe beam was split off from the pre-amplified beam that seeds the TREX

amplifier and was subsequently split in two beams, each of which was sent to a separate

compressor. The first probe beam was partially compressed and was brought onto the

same path as the THz beam and the second probe beam was used for the non-collinear

optical mixing. In previous experiments [142], optical aberrations in the THz optical

path (e.g., astigmatism, coma) were observed. Elimination of aberrations caused by
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Figure 4.3: Old proof-of-principle setup (left) and new application-oriented setup (right).

misalignments in the THz imaging optics motivated the construction of an entirely new

setup employing motorization of the vacuum THz imaging optics to allow in-situ op-

timization of the THz focused mode. In addition, the spatiotemporal diagnostics were

completely re-engineered to create a dedicated, applications-oriented test and measure-

ment platform (Fig. 4.3). The new experimental setup allows rapid switching between

spatial and temporal diagnostics, and was engineered for increased repeatability.

Measurements of the THz focus using the new imaging system showed a dramati-

cally improved mode shape (Fig. 4.2). While the modes in the initial experiments were

irregular and astigmatic, the setup produced an alignment-corrected mode profile that

is round and Gaussian with 1/e2 intensity radius ' 0.52 mm, and little or no observable

aberration. The measured spot size is close to the diffraction limit for the f/3 focusing

off-axis parabola.

Although the image in Figure 4.2 have been temporally integrated, this technique

is capable of resolving temporal variations in the spatial field profile with a resolution

of the probe pulse duration (' 45 fs) by scanning delay. Unfortunately, this requires

scanning of the relative timing between the probe and the THz pulse, and accumulation

of the temporal field over multiple shots.
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4.1.2 THz pulse energy

One of the key deliverables was to demonstrate the possibility of generating > 1 µJ

energy per THz pulse. Initial experiments had been carried out using a liquid Helium

cooled bolometer [149] which was calibrated at the infrared beam line at the Advanced

Light Source (ALS) [142]. The possibility to use a Golay cell instead was explored. The

Golay cell has many advantages over the bolometer detector. Among these are that the

Golay cell is much smaller, and so is portable and maneuverable; it does not require

cooling by liquid Helium, and so may be used continuously for many hours without

lengthy preparations; and data is available giving an absolute energy calibration. The

downside of the Golay cell is that it is 3–4 orders of magnitude less sensitive and that

it is only available from a single manufacturer worldwide, in Russia. This resulted in

nearly 18 months waiting time instead of the promised 6 month delivery time. The

calibration of the Golay cell response in the THz band was done by E. Chiadroni et al.

[150] at the FELIX facility in the Netherlands, and was found to be 0.59 µJ/V. Because

the saturation voltage of the Golay cell is 1.44 V, its full-scale detection limit is only

0.85 µJ. A series of measurements of THz energies was done as a function of various

interaction parameters using this detector, and will be discussed in Section 4.1.4.

During initial experiments, preceding THz energy optimization, energies on the order

of 0.1 µJ had been detected using the bolometer. In order to increase the collected

energy, several approaches have been pursued. The first one relied on simply increasing

the collection efficiency. The new setup implemented (Sec. 4.1.1) improved collection

efficiency and THz beam transport.

The second approach relied on maximizing two quantities which influence THz en-

ergy: the amount of charge in the bunch and the plasma size at the exit of the plasma

through the introduction of a second beam to pre-ionize the plasma. This approach

was motivated by theoretical analysis of the generation of coherent transition radia-
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Figure 4.4: Predicted spectra (0.5 nC, σz = 15 µm, Ec = 45 MeV) of CTR collected by a
6-inch OAP (19o off-axis) for different plasma transverse boundary sizes (ρ). The amount of
emitted energy is strongly affected by the transverse boundary size of the emitting region.

tion (CTR) by the electron bunch. Analytic expressions for coherent THz radiation

show that the energy is quadratically dependent on the charge of the electron bunch.

Furthermore the spectrum is strongly dependent on the size, ρ, of the plasma at the

transition surface and on the electron bunch longitudinal size, σz. The reason for the

sensitivity to bunch length is the requirement for coherent THz emission. Since each

electron in the bunch acts as an independent emitter of terahertz radiation, the radiation

can only constructively interfere (i.e., remain coherent) if the bunch is shorter than the

emitted wavelength. Higher frequencies thus suffer more destructive interference and

are consequently weaker, resulting in an upper limit on the THz spectrum (typically

3–6 THz, c.f. Fig. 4.4). The sensitivity to the plasma size is caused by diffraction effects

when ρ ∼ γλr/2π where γ is the Lorentz factor of the electron and λr the wavelength of

the emitted radiation. As with Gaussian-beam propagation in general, the diffraction

limit to the spot size is proportional to the wavelength. If the source is smaller than

the diffraction limit, the THz energy will not couple efficiently to the propagating mode,

and will be lost instead to evanescent waves. This effect thus provides a lower limit to
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the THz spectrum (0.1–0.2 THz, c.f. Fig. 4.4).

An igniter beam, typically with energy significantly less than that in the main drive

beam, has the potential to improve each of these properties. Unconstrained by the need

to achieve the highest intensity possible to drive the LPA, the igniter can be focused

with a large f/# to achieve a large focused spot size and hence create a large plasma. In

addition, by pre-ionizing the plasma, the igniter can mitigate the effects of any existing

pre-pulses on the main drive beam, and can create a guiding structure [151, 152, 40];

both of these effects enhance the operation of the accelerator, producing greater charge

and more energetic, shorter electron bunches.

Analytical expressions predict that for beams of charge ∼ 1 nC produced in large-

radius (ρ & 200 µm) pre-ionized channels, collected THz pulses of ∼ 7 µJ are achievable.

If in addition the size of the collection parabola could be increased to 6-inches, the

collected THz pulse energy could increase to as much as 30 µJ per pulse.

4.1.3 Effects of laser pre-pulse

We now describe a description of experimental results that pre-date the installation of

a contrast improvement system. The experiments aimed at understanding the basic

parameters that control the performance of the accelerator in terms of emitted THz

energy. To evaluate the performance the THz energy was monitored using a bolometer.

As the accelerator can be optimized for different modes of operation (e.g., high charge,

high electron energy, etc.), it is important that optimization be done with the terahertz

signals directly, and not with other related parameters such as the bunch charge or the

strength of the γ or neutron radiation produced. Comparison of the optimal parameters

for these different outputs can, however, elucidate the physical mechanisms at work.

The following parameters were scanned:
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1. Plasma density:

This was done by changing the backing pressure of the solenoidal gas jet.

2. Plasma pre-ionization state and plasma size:

This was done by using the “igniter” beam which is another laser pulse introduced

on the same path as the main drive laser pulse through a polarizing beam splitter,

with variable time delay and pulse duration.

3. Main drive beam pre-pulse level:

In the first round of experiments, this was done by using the switch-out Pockels

cell of the regenerative amplifier and a clean-up Pockels cell at the entrance to the

next amplifier in the laser chain. The results of these experiments motivated a

major effort and investment into cleaning up the contrast of the main drive laser

pulse which will be discussed in Section 4.1.4.

The scan of gas jet backing pressure, and hence plasma density, showed a general

increase in THz and γ radiation with density, peaking near 900 pounds-per-square-inch

(psi, 1 psi ' 6894.7573 Pa) H2, consistent with operation in the self-modulated laser

wakefield regime (Fig. 4.5). At low densities, the laser power was sub-critical, so self-

focusing and electron trapping did not occur. At high pressure, the laser pulse should

no longer be resonant, and should not drive the plasma wave efficiently, again shutting

off the THz generation mechanism.

As illustrated in Figure 4.5, the igniter did enhance the generation of THz overall at

all densities, while the trend with density was similar with and without the igniter beam.

The primary effect of the igniter was found to be the optimization of the accelerator

through a decrease in uncontrolled pre-pulse effect and guiding of the main drive beam.

Figure 4.6 shows the dependence of the enhancement factor of the THz and γ radiation

on the relative timing between the igniter and the drive beam. At small negative delays
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Figure 4.5: THz radiation signal amplitude, measured with the bolometer in the focus of
the THz radiation collection beam path, as the function of the Hydrogen backing pressure of
the gas jet. This backing pressure is directly proportional to the initial gas density at the
interaction region.

(igniter arriving just before driver), the igniter appeared to act as a pre-pulse, creating a

partially ionized volume which disrupted the propagation of the driver beam by creating

a radially varying index profile that defocused it. The THz radiation in this regime is

diminished by ∼ 50% (c.f. close-up in Fig. 4.6). For larger negative delays, when the

igniter was coming more than 200 ps before the drive beam, an enhancement appeared.

This timescale, and the coincident behavior of the γ radiation implies that there was an

evolution of the plasma that created conditions that enhanced the operation of the laser-

plasma accelerator. This timescale is also correct for gas dynamic and thermodynamic

effects to play a role, making it not unreasonable to attribute the enhancement effect to

guiding of the main drive pulse as observed in previous work [40, 153, 154], resulting in

higher electron beam energy and possibly shorter electron bunches (lower space charge

effects).

Initial efforts with the igniter beam have not however resulted in plasmas of increased

size as hoped for. In spite of this, the presence of the igniter did yield significant

enhancements in the THz generation for the other reasons mentioned above. However,
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Figure 4.6: THz and γ radiation enhancement (defined as the ratio of signals with and without
the presence of igniter pulse) as a function of the relative time delay between the igniter and
driver pulses. Negative delay corresponds to earlier arrival of the igniter pulse.

the dynamics of the interaction between the igniter, the plasma and the drive beam are

complex.

The presence of a pre-pulse on the drive beam can have a significant effect on the

dynamics of the interaction of the drive pulse with the plasma [155], and hence can

impact the amount of terahertz radiation produced. The timing of the Pockels cell

controlling the ejection of the laser pulse from the regenerative amplifier cavity was

next optimized to maximize the THz radiation produced by the accelerator. In order

to effectively filter pre-pulse energy, the timing had to be adjusted to closely overlap

with the front edge of the main pulse. However, since the time-scale for the Pockels

cell state-change was on the order of a nanosecond, pre-pulses in the sub-nanosecond

could still leak out of the cavity. To minimize the pre-pulse level required cutting into

the main pulse and the procedure thus represented a compromise between eliminating

pre-pulse energy and efficiently ejecting the main laser pulse.

As the deleterious effects of the pre-pulse were mainly due to partial ionization of the

interaction volume (disrupting the interaction of the main pulse with the plasma), they
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Figure 4.7: Control of the THz signal amplitude (left vertical axis) by controlling the ns-range,
pre-pulse level of the laser via Pockels-cell timing adjustment in the regenerative amplifier (hor-
izontal axis). Blue curve: measurements taken with the presence of additional igniter; Magenta
curve: without igniter pulse. The purple decreasing curve (right vertical axis) represents the
decrease of the output laser energy, as a consequence of cutting into the main pulse more and
more, as the Pockels-cell timing value increases.

could be somewhat mitigated by employing the igniter to pre-ionize the plasma. This

modification affected the optimum timing of the Pockels cell, an effect which is clearly

seen in Fig. 4.7. Without the igniter, filtering the pre-pulse resulted in an enhancement

of the terahertz emission by a factor 3.2 at a Pockels cell timing corresponding to a loss

of about 20% of the amplified laser energy. With the igniter, the enhancement factor

was greater, ' 5, at an optimum timing that was 0.5 ns earlier, corresponding to a loss

of only 10% of the laser energy. It is clear that optimization of the timing had to be done

with the igniter on, and that more energy would be available on target as a result. These

results strongly motivated the implementation of techniques to eliminate the pre-pulse

without compromising the energy of the drive beam. To this end, a module was built,

in collaboration with Dr. O. Albert of the Physique du Cycle Optique (PCO) group at

Laboratoire d’Optique Appliquée (LOA) in France, which uses a Cross-Polarized-Wave

intensity filtering (XPW) method to increase the contrast of the laser pulse by 4 orders

of magnitude.
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4.1.4 Laser contrast enhancement

Based on the results described above, three critical techniques to improve the perfor-

mance of the laser-plasma accelerator and electron source were identified: control of the

laser pre-pulse, stabilization of laser performance and controlled electron injection. This

section focuses on the development of the first two techniques. Results on controlled

injection were discussed in Section 3.2.

A laser pulse contrast improvement technique based on crossed wave polarization

filtering has been implemented to control pre-ionization and improve the laser-plasma

accelerator performance. As the evaluation of preliminary experiments indicated, optical

pre-pulses, inherent in most Chirped Pulse Amplification (CPA) laser systems, have a

strong effect on the stability of the laser accelerator and the yield of THz radiation.

XPW, or “crossed-polarized-wave” filtering is a nonlinear optical method to mini-

mize the relative amplitude of any optical pulse (“pre-pulse”) or slowly emerging optical

energy (“pedestal” or ASE for amplified spontaneous emission) preceding the arrival of

the main, ultrashort laser pulse in optical systems [140]. The method is based on cubic

anisotropy induced by intense laser pulses in special nonlinear crystals, such as BaF2

with high third order non-diagonal coefficients. The nonlinear crystal is preceded by

a polarizer and followed by an analyzing polarizer (analyzer). The main pulse, which

induces strong enough polarization rotation for itself, is transmitted with good efficiency

through the analyzer. On the other hand, relatively small pre-pulses and pedestal do not

create enough induced anisotropy and are then suppressed. The difference in these trans-

mission values through the crossed polarizers results in significant contrast enhancement

and pulse contrast up to 10−11 have been achieved using this method [156].

A detailed characterization of the laser pulses before and after the XPW setup was

performed during the implementation process, and continuous monitoring equipment

(e.g., photodiodes for relative energy measurements, cameras for alignment monitoring
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Figure 4.8: Optical contrast of the fully amplified driver laser at the interaction point before
(magenta curve) and after (blue curve) installation of the XPW contrast filter.

and an optical spectrometer for measurement of spectral changes to ensure correct oper-

ation of the XPW filter) was installed. The most important parameter, i.e., the contrast

enhancement factor at different time regions before the arrival of the main pulse was

measured with a commercial third-order cross-correlator device (“Sequoia” from Ampli-

tude Technologies). A contrast enhancement of 3 orders of magnitude was achieved on

the −0.75 ps pre-pulse and up to 4 orders on the other pre-pulses (Fig. 4.8).

New sets of experiments were performed with the contrast-enhanced laser to gauge

the effectiveness of increasing the pulse contrast in improving the performance of the

accelerator and the production of THz and other radiations. The results showed not

only dramatic increase in the production of charge, THz, γ-s, and neutrons, but also a

dramatic decrease in shot-to-shot variability, which were at the 100% level prior to XPW

implementation, and are now roughly at the 10% level. The results of the new scans

are summarized below. These scans all contribute to show that optimization of the THz

radiation occurs in a multi-parameters space, and that varying different experimental

knobs causes variations in different numbers of these parameters, which may or may not

be interdependent.
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Figure 4.9: Golay cell measurements of the THz energy prior XPW-filtering implementation.
(a) Photograph of the Golay cell mounted at the THz focus behind a motorized slit and
observing the collected THz energy. The CCD camera on the left is monitoring the set-up. A
slit of width 0.8 mm was scanned across the THz beam upstream of focus. (b) Measurements
of the THz spatial energy distribution at an upstream position from the THz focus (detector
at focus and a slit at z = −3.8 cm), and a downstream position of z = +8.1 cm from the focus
(no slits and scanning the Golay cell position). The upstream profile has a radius (1/e2) of
10.4 mm and an energy of 5.1 µJ, and the downstream profile has a radius of 20.0 mm and an
energy of 8.2 µJ.

Golay cell measurements were performed to characterize the energy of the THz pulses

generated both before and after laser contrast enhancement. During the course of ini-

tial measurements of THz pulse energy, it was found that the Golay cell was strongly

saturated, requiring development of secondary techniques to recover the energy. In the

first technique, the detector was moved 8.1 cm downstream of the THz focus until the

signal was reduced below saturation by only collecting a small portion of the expanding

THz beam. The detector was then scanned transversely to the beam to recover the

radial distribution of the THz energy (Fig. 4.9a), allowing a calibration of the fractional

portion of the beam energy collected by the Golay cell (assuming cylindrical symmetry

of the THz beam). After accounting for the calibration, the THz beam energy was then

measured to be 8.2 µJ (Fig. 4.9b). In the second technique, the Golay cell was placed at

the THz focus, and a narrow slit-aperture was placed across the THz beam at a plane
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Figure 4.10: (a) Scan of THz and charge yield versus laser pulse compression. The pulse
compression was scanned by varying the grating separation in the compressor while keeping
the pulse energy constant. The pulse compression is expressed in terms of the laser power
relative to the power at best compression (P/P0). Values on the left of the peak correspond
to negative chirp, and those on the right to positive chirp. (b) Dependence of THz radiation
on electron bunch charge for the laser pulse compression scan. The fit is a power law of the
form E = A×QB, with A = 6.54 and B = 1.38.

3.8 cm upstream of the focus (Fig. 4.9a). The resulting distribution of energy density

was then integrated to yield a full energy of the beam of 5.1 µJ, in reasonable agreement

with the first technique. It should be noted that the second technique employed no

assumptions about the shape of the beam profile, making it theoretically more accu-

rate. In fact, as theory predicts that there will be strong chirping (i.e., time-dependent

frequency variation) of the beam in the direction perpendicular to the one scanned, it

is then possible that the mode profile was not perfectly axis-symmetric, accounting for

some discrepancy in the two measurements. To be conservative, the energy measure-

ment from the second technique was used to provide an absolute energy scaling for the

other THz measurements.

The most dramatic effect of the XPW was the increase in performance of the ac-

celerator as measured by the yield of radiation. Before implementation of the XPW, a

peak charge of 0.25 nC, measured with an 5.5 cm inner diameter ICT located 40 cm
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Figure 4.11: (a) Scan of THz, charge, neutron and γ yield versus longitudinal position (z) of
the gas jet with respect to the laser focus. (b) Scan of THz and charge yield versus backing
pressure of the gas jet.

downstream from the gas jet, was achieved after tuning the laser system for several days.

After XPW implementation, a peak charge of 0.95 nC (i.e., a factor 4 enhancement) was

achievable with relatively little laser tuning. Figure 4.10a shows the dependence of the

bunch charge and THz energy with laser peak power by carrying out a compressor scan.

The observed asymmetry of the yield in charge and THz radiation is consistent with

previous experiments on investigating the effect of pulse shaping on the performance of

the LPA [37]. Pulse shapes can become skewed away from optimum compression [157].

The dependence of THz on charge is plotted in Fig. 4.10b. The fit through the data

indicates that the collected THz energy scaled as the amount of charge to the power

1.4, i.e., different than the simple quadratic dependence. This can be attributed to the

fact that the expectation of quadratic dependence does not account for the variation

in other parameters (e.g., electron bunch energy, electron bunch duration and plasma

emitter size) that may occur when scanning the compression.

Figure 4.11a shows the dependence of THz, neutron, γ-ray yields and charge on

position of the gas jet with respect to the focal position of the laser. As evidenced by

the charge, γ and neutron radiation yield, the accelerator performance was optimized
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when focusing the laser at the upstream edge of the gas jet, which is well known [153]. At

positions where the accelerator was not optimized, strong THz continued to be emitted.

In fact, the data indicate that the THz emission was constant over a significant range

of gas jet positions. At first glance, there is a discrepancy in the data: the same levels

of THz were produced at significantly different ICT charge levels. However, the total

charge that passes through the ICT is dependent on the divergence of the electron

beam: high energy beams have significantly lower divergence than lower energy beams.

Magnetic spectrometer data indicate that the energy was lower and divergence may have

been broader when the laser was focused at the downstream edge. At the location of

the ICT at the time of the experiments, about 40 cm away from the gas jet, only a

fraction of the charge was captured for high divergence beams. Earlier data showed that

beam divergence angle can exceed the ICT acceptance for such beams (' 140 mrad).

This indicates that the ICT may have underestimated the bunch charge when the laser

was focused at the downstream edge of the jet, which would explain the observation of

increased ICT-to-THz ratio at that location in Fig. 4.11a.

The effect of plasma size on this data set was also investigated. Theory predicts

that the size of the THz emission region can have a strong effect on the amount of THz

emission for a given amount of charge (c.f. Fig. 4.4). By analyzing the plasma shape

for shots taken on the left side of the jet where the charge was less optimized, and other

cases on the right side of the gas jet where the collected charge was high, it is found

that the plasma size at the output of the interaction was similar.

Of the scans, the dependence of THz on gas-jet backing pressure showed the most

unexpected behavior: the charge in the electron bunches showed a predictable increase

with backing pressure up to an optimal value of 800 psi. However, the THz radiation,

after rising initially with pressure, counter-intuitively dipped markedly between 600 psi

and 700 psi (Fig. 4.11b). This dipping behavior was also present in the pre-XPW data,
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Figure 4.12: (a) Scan of THz and charge yield versus laser pulse peak power. The peak power
was scanned by varying the degree of amplification in the final amplifier to adjust the final
pulse energy while keeping the pulse duration constant. (b) Dependence of THz radiation on
electron bunch charge for the pulse energy scan. The fit is a power law of the form E = A×QB,
with A = 20.92 and B = 2.33.

Fig. 4.5. The non-quadratic relationship is not yet understood.

Figures 4.12a and 4.12b show the charge and THz yield as function of laser peak

power by scanning the laser pulse energy and the THz yield vs. charge, respectively.

In this scan, peak powers in the compressed pulse was varied from 1 to 9 TW by

changing the degree of amplification in the final amplifier. The dependence of THz

on charge during a laser-power scan is found to be near quadratic, as expected since

both plasma density and pulse duration are constant thus reducing variations in plasma

size and electron bunch duration. It should be noted that the THz yield was also

significantly improved in shot-to-shot stability with the XPW. The yield fluctuated by

10% as opposed to 100% without XPW under the same conditions. In addition, results

in Figure 4.12a demonstrate that 1–2 µJ ultrashort (. 50 fs, c.f. Sec. 4.2) THz pulses

can be produced in the laser-plasma accelerator using only 2–3 TW laser power; such

devices are commercially available (e.g., Thales, Amplitude Technologies, etc.) and

could provide an application-oriented table-top sized source of intrinsically synchronized

high charge electron bunches, THz radiation and X-ray radiation (c.f. Chapter 5).
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4.2 Temporal electron beam profile

Terahertz radiation produced by laser-plasma accelerators has received increasing atten-

tion as both a source and as a diagnostic of the performance of the accelerator. Because

electron bunches produced by LPAs are very short (∼ 10 fs), they can radiate coher-

ently in the 0–4 THz frequency range when crossing a sharp dielectric boundary [77, 80].

The resultant THz pulses can have high electric fields, on the order of the megavolt per

centimeter (MV/cm), and high energies, on the order of the microjoule (c.f. Sec. 4.1) in

sub-picosecond pulse durations, making them attractive for both probing and pumping

of samples. In addition, the intrinsic synchronization of these THz pulses with the laser

system allows for multiple-pulse, multi-color experiments. Because the properties of the

THz pulses are directly related to those of the electron bunches producing them, they

are also well-suited for use as diagnostic to measure electron bunch parameters. In this

thesis, several detection techniques were implemented and used to characterize the tem-

poral, spectral and spatial profile of THz pulses emitted by electron bunches produced

in a laser-plasma accelerator and infer the electron bunches’ longitudinal length.

4.2.1 Basic description of transition radiation theory

The theory of transition radiation generated by relativistic electrons crossing a dielectric

boundary such as a plasma-vacuum boundary has been extensively studied [112, 71, 77,

80, 81], as introduced in Sec. 1.4. Transition radiation is generated by electron beam

induced polarization currents at the plasma-vacuum boundary when the plasma density

drops below the critical density where ωp = ω, see Appendix A, Eq. (A.55). The

dielectric constant of the plasma satisfies ε � 1 for the plasma densities used in the

experiments, and the plasma can be modeled as a conductor for frequencies ω < ωp.

In addition, the transition from plasma to vacuum is approximated by a step function
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conductor-vacuum provided the plasma density roll-off is shorter than the formation

length (c.f. Sec. 1.4) [113, 80] given by:

Lf ≈
λr

1/γ2 + θ2
(4.1)

where λr is the radiation wavelength, θ is the observation angle with respect to the

electron trajectory which is assumed to be normal to the plasma surface, and γ is

the Lorentz factor associated with the electron crossing the boundary. For electron

energies ranging from 1 to 100 MeV, an observation angle of 19 degrees and a radiation

wavelength of 300 µm (1 THz), the formation length is of the order of Lf ' 1.5–3 mm

and the plasma density roll-off is less than a millimeter, c.f. Sec. 3.1. The coherent

differential radiated energy spectrum by solid angle Ω emitted by a bunch traveling

normal to the plasma-vacuum boundary is given by [80, 81, 111]:

∂2W

∂ωr∂Ω
=
remec

π2
N2
b

∣∣∣∣∫ E(θ, u)D(ωr, θ, u, ρ)F (ωr, θ, u) g‖(u)du

∣∣∣∣2 (4.2)

where g‖(u) is the normalized longitudinal energy distribution of the electron beam, u =

γβ is the electron momentum normalized to mec, ωr is the radiation angular frequency

and Nb is the number of electrons in the bunch. Functions E(θ, u), D(ωr, θ, u, ρ) and

F (ωr, θ, u) are defined below. It is assumed that the plasma-vacuum boundary can be

approximated by a circular surface with radius ρ� σ⊥ where σ⊥ is the rms transverse

size of the electron bunch. This condition is well satisfied given that typical plasma

radii measured during the experiments, c.f. Sec. 3.1, are on the order of 200–400 µm

and electron bunches have a transverse size on the order of a micron, c.f. Chapter 5.

The correction to the spectrum due to diffraction from the limited transverse extent
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of the plasma is given by:

D = 1− J0(bu sin θ)

[
bK1(b) +

b2

2
K0(b)

]
− b2

2
K0(b)J2(bu sin θ) (4.3)

where the dimensionless impact parameter b = kρ/u is the ratio of the transverse size

of the dielectric ρ to the transverse extent of the self-fields of the relativistic electrons

(∼ γλr). Jm and Km are the mth order regular and modified Bessel functions, respec-

tively. For a large impact parameter, i.e., ρ� γλr, diffraction effects are negligible and

D → 1. For small impact parameters, i.e., ρ . γλr/2π, diffraction becomes a dominant

effect and sets the low cutoff frequency of the spectrum. For electron parameters rep-

resentative of gas jet experiments, such as a 20 MeV (γ ∼ 40) electron beam and an

average radiation of 1 THz (λr ∼ 300 µm), the radiation emitted is diffraction limited

since ρdiff. = γλr/2π ∼ 640 µm.

The spatial form factor F , which describes the degree of coherence in the bunch, is the

Fourier transform of the electron bunch spatial distribution. Assuming an uncorrelated

spatial distribution the form factor can be written F = F⊥F‖ where F⊥ is the form factor

associated with the transverse profile of the bunch and F‖ the form factor associated

with the longitudinal profile. For a Gaussian spatial profiles, the form factor can be

written:

F = exp

[
−1

2

(ωσ‖
v

)2

− 1

2

(
ωσ⊥ sin θ

c

)2
]

(4.4)

' exp

[
−1

2

(ωσ‖
v

)2
]

(4.5)

where σ‖ is the rms length of the electron bunch and provided that σ⊥ sin θ � σ‖. The

dependence of the form factor on the longitudinal bunch length σ⊥ makes coherent tran-

sition radiation a tool to measure the electron bunch temporal profile. The form factor
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shows that the emission becomes incoherent when the radiation wavelength exceeds the

bunch length, λr & σ‖. As σ‖ decreases, the high cutoff frequency of the spectrum in-

creases. The spectral region of coherent radiation is then approximately defined by the

longitudinal coherence (upper bound) and the diffraction effects (lower bound) [111]:

uc/ρ < ωr < c/σ‖, as illustrated in Fig. 4.4, which typically translates into a spectral

range 0–4 THz.

Note that from Eq. (4.2), the differential energy radiated by a single electron (Nb = 1,

F = 1) crossing a dielectric boundary with infinite transverse extent (D = 1) at normal

incidence is retrieved [71, 73, 74]:

∂2We

∂ωr∂Ω
=
remec

π2
E(θ, u)2 =

remec

π2

u2(1 + u2) sin2 θ

(1 + u2 sin2 θ)2
(4.6)

4.2.2 Characterization of downramp injected electrons

As discussed in Sec. 4.2.1, emission of coherent transition radiation at THz frequencies

can be used to diagnose the electron bunch length. A first generation of measurements

was performed to characterize the duration of low absolute-momentum-spread electron

bunches produced in a plasma density gradient [2, 158].

An alternative injection method to the colliding pulse injection scheme discussed in

Sec. 3.2 has been proposed [63, 159, 160] and demonstrated [2, 158] using a plasma den-

sity downramp. In a plasma density downramp, the plasma wavelength λp increases and

the phase velocity of the plasma wave vp decreases, c.f. Eq. (2.18), as the laser propagates

through the plasma, thus reducing the trapping threshold by reducing the minimum elec-

tron energy necessary, i.e., lowering the separatrix in phase-space (Eq. (A.79)). This

trapping mechanism has been characterized by simulations [160, 65, 2] and the crucial

parameter that determines the resulting electron beam quality is the rate of density

decrease. An advantage of the downramp injection technique is that it requires only one
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laser pulse and a thin gas jet, < 1 mm, providing good transmission of the laser mode

through the plasma which allows coupling to a second low density acceleration module

[161].

Experiments were performed on the 10 TW laser system. The 0.5 J, 47 fs FWHM

laser pulse was focused to a 7.5 µm FWHM spot, providing a Rayleigh length z0 '

220 µm, on the downstream edge of a slit gas jet oriented transversely to the laser prop-

agation axis. The plasma, which was made of Hydrogen, had a near-Gaussian profile

with a maximum density of 2.2±0.3×1019 e−/cm3 and was 750±100 µm FWHM wide.

The short Rayleigh length compared to the downstream plasma density roll-off allowed

selection of the rate of density decrease by scanning the slit jet longitudinal position

relative to the laser focus. In these experiments, the magnetic spectrometer, used to

characterize the electron bunch energy distribution, had a restricted acceptance. The

magnetic spectrometer had a fixed 55 degree bending angle from the laser axis to its

phosphor screen (Lanex, c.f. Sec. 3.2) and covered ±14% about the central momentum

determined by the magnet current with a resolution of ±5% in momemtum. The electron

bunch charge was determined by cross-correlating the intensity of the phosphor screen

with the ICT signal. To circumvent the limited acceptance of the spectrometer, the pres-

ence of high energy electrons was monitored using γ-radiation detectors [36] measuring

the bremsstrahlung radiation from the electron beam dump. Later experiments also

verified the momentum distribution using an upgraded magnetic spectrometer which

covered the full energy range.

Focusing the laser on the upstream edge of the gas jet, i.e., on the up-ramp of

the plasma, led to conventional self-trapping of plasma background electrons producing

electron bunches with an exponential energy distribution extending to the tens of MeV,

consistent with previous results [153]. The high charge, high energy bunches generated

a peak in γ-radiation. As the focus of the laser was moved to the downstream edge
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Figure 4.13: Energy distribution of electron bunches produced using plasma density down-
ramp injection. The slit jet was 750 ± 100 µm FWHM long and the laser focus was located
300 µm downstream of the peak density. (left) Consecutive shots show the pointing and bunch
stability by displaying the current (∗) and average, over 45 shots, (�) centroids. (right) Average
spectrum shows rms error bars for charge, mean energy and energy spread (FWHM). Figure
from [2].

of the jet, i.e., on the plasma downramp, the ICT signal increased by a few-% while

the γ-radiation decreased, indicating the production of lower energy electron bunches.

Different datasets on 3 different run days showed that this mode of operation was stable

and repeatable over a week of operation. Over 78 shots of a dataset, electron bunches

had a central momentum of 0.76 MeV/c± 0.02 MeV/c rms and a momentum spread of

0.17 MeV/c (∼ 20%) ±0.02 MeV/c rms. The electron bunch had a charge of 0.3–1 nC

with a 40% rms stability. Pointing and divergence were observed in the out-of-plane

direction and showed 20 mrad FWHM ±1.8 mrad rms with a pointing stability of 1.5

rms, indicating a transverse bunch momentum of the order of 0.2 MeV/c. Particle-in-

cell (PIC) simulations (VORPAL [44]) confirmed the production of MeV-class electron

bunches with 10–20% level momentum spread for laser powers of 8–10 TW and plasmas

with densities of 1.8–2.2× 1019 e−/cm3 and 0.5–1 mm FWHM widths [2, 158].

In addition to momentum spread measurements, the bunch duration of these stable
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Figure 4.14: Setup for THz pulse energy generated by a downramp injected electron beams.
A 6-inch effective focal length off-axis parabola (OAP) is used to collect part of the THz
emission (CTR). A 7-inch OAP is used to focus it back into the bolometer aperture.

MeV-class electron beams were shown to be suitable for staging experiments by demon-

strating that the bunch length is short enough to be post-accelerated in a second LPA.

The bunch length τb was inferred from the THz emission at the plasma-vacuum inter-

face. Since the amount of transition radiation produced by a 1 MeV beam is too small

to be characterized by electro-optic techniques, which will be introduced in Secs. 4.2.3–

4.2.4, a liquid-Helium-cooled Silicon composite bolometer [149, 141] with an acceptance

of f ' 0.3–6 THz was used to measure the amount of THz energy emitted (Fig. 4.14).

A bolometer is a sensitive energy detector (< 10−14 J) made of a resistor connected to a

heat sink. A constant current passes through the resistor creating a thermal equilibrium

between the Ohmic heating and the energy dissipation in the heat sink. Thus, any radi-

ation incident on the resistor will increase its temperature which will result in a change

in resistance and voltage. The energy of the radiation collected is proportional to the

induced voltage difference.

The THz emission was measured in four wavelength bands using two different filters

to cut the spectrum: Teflon (1/4-inch thick) and Fluorogold (0.5 mm thick), with spec-
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tral cutoffs at ∼ 2 THz and ∼ 1 THz, respectively. Assuming a Gaussian electron bunch

profile, the bunch length was inferred by measuring the ratios of emission in each spec-

tral band: τb ' 300+600
−200 fs using Teflon, and τb ' 210+120

−80 fs using Fluorogold. Note that

Teflon has a less abrupt cutoff, reducing its precision. These lengths agree with bunch

lengthening due to space charge in a plasma density downramp [65]. Simulations [162]

indicate production of . 10 µm (30 fs) bunches inside the plasma and bunch lengthening

in the plasma downramp up to ∼ 50 µm (200 fs). Thus, injection into a second plasma

channel could be achieved by using a sharp transition between the two stages.

In conclusion, experiments demonstrated control of the injection by lowering wake

phase velocity and trapping threshold using negative plasma density gradients. Pro-

duction of 0.76± 0.02 MeV/c bunches with 0.17 MeV/c longitudinal momentum spread

and 0.02 MeV/c transverse momentum spread, was demonstrated. Coherent transi-

tion radiation measurements showed the bunch duration at the exit of the plasma was

τb ∼ 200± 100 fs, in agreement with simulations which indicate bunch durations inside

the plasma of less than 30 fs. The combination of the high stability of these experiments

and the high quality of the produced electron bunches shows the suitability of this tech-

nique as an LPA injector and could lead to < 0.1% energy spread GeV-class electron

beams.

4.2.3 Electro-optic sampling of THz pulses

Because of its ability to resolve both spatial and temporal features with high resolu-

tion, optical probing is an important tool for the analysis of ultrafast phenomena. The

simplest approach consists in probing at different delays the features to be observed

with a short probe pulse. However, this scanning approach can be impractical for high

shot-to-shot variation experiments or low repetition rates. In this thesis, we present

both scanning and single-shot techniques to resolve the spatiotemporal content of the
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Figure 4.15: Setup for sign-resolved 2D-EO sampling. The THz pulse overlaps with a short
circularly polarized probe pulse (couple polarizer – λ/4-plate) in a EO active crystal. The THz-
induced birefringence causes a local polarization rotation which is converted to an amplitude
modulation by a cross-polarized analyzer. The local amplitude modulation is measured as an
intensity modulation by a CCD camera.

coherent transition radiation emitted by the relativistic electrons at the plasma-vacuum

interface, c.f. Sec. 4.2.1. These techniques rely on a widely used measurement method

for electron bunch durations and temporal structure, known as electro-optic (EO) sam-

pling [163, 164, 165, 166, 167]. In this technique, the low frequency THz-electric field

of the CTR induces a change of birefringence in an EO active crystal. A near-infrared

(NIR) probe pulse, timed with the THz, is then used to probe the birefringence and

measure the THz-field strength. The analysis of the measured THz waveforms are in-

fluenced by several effects [168, 145] such as the phase mismatch in the crystal between

probe and THz pulses, the dispersion and absorption effects in the crystal, and limited

time resolution due to the finite duration of the probe. However, these effects can be

modeled since the crystals conventionally used for EO sampling (e.g., ZnTe, GaP, GaAs)

have well characterized dispersion functions in the THz domain [169, 170, 145].

The simplest EO experimental method employs a single linearly polarized probe

pulse, shorter than the characteristic CTR pulse to be observed, which experiences a
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polarization rotation as it propagates through the crystal. The polarization rotation

is converted to an amplitude modulation by a polarizer, termed “analyzer”, and the

intensity variation is retrieved by scanning the delay between the probe and the THz

pulse, using either a photodiode or CCD camera [70, 148, 171, 172]. When using a CCD

camera, the technique is usually referred to as “2D-EO sampling” since it provides a

two dimensional spatial slice of the THz pulse at a given time set by the probe delay.

Two configurations of this technique have been implemented; in both configurations,

the analyzer is set to minimize the probe transmission in the absence of THz, i.e., the

input polarizer which sets the polarization of the probe pulse and the analyzer are cross-

polarized. The difference between the two configurations is in the probe pulse input

polarization. In the “non sign-resolved” configuration, the probe is linearly polarized

and in the absence of THz there is no signal on the CCD camera. In the “sign-resolved”

configuration, the probe is circularly polarized by introducing a quarter-wave plate (λ/4-

plate) between the polarizer and the analyzer (Fig. 4.15). While this configuration is

not as sensitive as the previous one, it does resolve the sign of the THz electric field.

In the non sign-resolved configuration, the good extinction ratios of both the polarizer

and the analyzer makes the technique very sensitive to low THz field strengths. The

relative transmission of the probe intensity through the analyzer is given by [142]:

IT
I0

= sin2 ΓTHz

2
(4.7)

where ΓTHz = 2πL∆n/λ0 is the birefringent phase retardation with L the crystal thick-

ness, λ0 = 800 nm is the probe pulse wavelength and ∆n is the difference in index

of refraction between two principle axes of the index ellipse [173, 142, 29] which value

depends on the geometrical configuration of the THz polarization with respect to the

eigenvectors of the crystals. Here, a 200 µm thick Gallium Phosphide (GaP) crystal

with a 〈110〉 cut was used and set so that its 〈001〉 axis was perpendicular to the THz
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polarization to optimize the amount of polarization rotation of the short probe pulse

(∼ 50 fs). In this configuration, the phase retardation is given by:

ΓTHz = 2π
L

λ0

η3r41ETHz (4.8)

where η ' 3.57 [174] is the index of refraction of GaP at the wavelength λ0, r41 '

0.95× 10−12 [175, 29] is the second order nonlinear EO coefficient and ETHz is the THz

electric field.

With an extinction ratio of the couple polarizer-analyzer of 10−3–10−4, which is

limited by imperfections in both the polarizers and the EO crystal, the technique allowed

the detection of THz fields as low as ∼ 3 kV/cm. The interpretation of the probe

transmission becomes ambiguous for polarization rotations exceeding π, c.f. Eq. (4.7);

in this experimental setup (200 µm GaP) the maximum theoretical THz electric field

measurable was about ±460 kV/cm.

While this configuration does not resolve the sign of the electric field, it provides a

high sensitivity which in combination with the lack of sign-discernment makes it ideal for

characterizing the distribution of energy in both space and time. A sequence of images,

i.e., spatial slices at different times, was acquired which was first summed to produce

a time-integrated mode profile and then spatially integrated to produce a temporal

profile. Both space and time profiles had near Gaussian distributions with full-width-

at-half-maximum of 2.2 mm and 0.81 ps, respectively. The peak electric field was found

to be of the order of 200 kV/cm and the total energy in the THz pulse was obtained by

integrating both space and time: ETHz ' 5.8 µJ, in agreement with Golay cell measure-

ments presented in Sec. 4.1 for similar laser-plasma parameters (∼ 0.5 J, 45 fs driver

laser pulse; ne ∼ 4× 1019 e−/cm3 of Helium).

To analyze the structure of the THz electric field, the sign-resolved configuration of

the 2D-EO sampling technique was also implemented [171, 172]. In this configuration,
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Figure 4.16: Evolution of the spatial profile of the THz electric field measured using sign-
resolved 2D-EO sampling. The technique can resolve fine (< 0.1 µm) structures of the electric
field. The “ring”-like structure of the THz indicate strong spatiotemporal coupling due to the
single-cycle nature of the THz pulse.

the probe pulse has a circular polarization, providing a base level of polarization rotation

so that in the crystal the THz-induced birefringence induces either an increase or a

decrease in probe polarization, causing the transmission to vary with the sign of the

THz electric field. The relative intensity transmission in this configuration is given by

[142]:

IT
I0

=
1

2
(1− cos ΓTHz cos2 2θ + sin ΓTHz sin 2θ) (4.9)

where θ is the angle of the λ/4-plate relative to the 〈001〉 axis of the crystal. For a

linearly polarized probe beam θ = 0 and we retrieve the result presented in Eq. (4.7).

For a circularly polarized probe θ = π/4 and Eq. (4.9) becomes:

IT
I0

=
1

2
(1 + sin ΓTHz) (4.10)

Because of the base level provided by the circular polarization of the probe pulse, this

configuration had a reduced resolution compared to the non sign-resolved configuration

with a minimum electric field detectable of ∼ 10–50 kV/cm. In addition, the maximum
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Figure 4.17: Principle of the spatiotemporal profile reconstruction. At each delay position
of the probe pulse a vertical lineout is taken off the intensity map. By stacking the spatial
lineouts, the spatiotemporal profile of the pulse is retrieved.

unambiguous electric field detectable is also lowered since the maximum transmission

is reached for ΓTHz = π/2. The theoretical maximum THz electric field detectable is

calculated to be about ±230 kV/cm; the observable maximum electric field is found

to be ∼ 350 kV/cm. The difference can be explained by uncertainties on the crystal

thickness, the value of r41 and the index of refraction of the crystal; a 13% variation in

index of refraction would be enough to explain the difference.

The timing scan performed in this configuration revealed additional details in the

spatiotemporal structure of the THz pulse which could not be observed in non sign-

resolved experiments. The spatial profiles presented a “ring”-like spatial structure as

large as ∼ 3 mm in diameter at delays of ±1 ps, and as focused as ∼ 0.3 mm in diameter

with a negative electric field (Fig. 4.16). To reconstruct a spatiotemporal profile, a

center vertical lineout was taken off each frame of the timing scan and combined with

each other to form a space-time map (Fig. 4.17 and Fig. 4.18, left). The asymmetrical

intensity in the ring structure corresponds to a curvature of the energy front of the THz



99/196 Chapter 4. Coherent Transition Radiation

-3 -2 -1 0 1 2 3

-300

-200

-100

0

100

X [mm]

El
ec

tri
c 

fie
ld

 [k
V/

cm
]

-400 -200 0 200
-3

-2

-1

0

1

2

3

Electric field [kV/cm]
Y 

[m
m

]

-3 -2 -1 0 1 2 3

-200

0

200

400

Time [ps]

El
ec

tri
c 

fie
ld

 [k
V/

cm
]

Y 
[m

m
]

−3

−2

−1

0

1

2

3

Space-time cross-section Spatial cross-section

Close-up [1 x 1 mm]

Figure 4.18: Sign-resolved 2D-EO sampling provides a spatiotemporal profile of the THz pulse
(left), confirming the single-cycle nature of CTR emitted from relativistic electrons crossing
the plasma-vacuum boundary. At maximum polarization rotation, the spatial cross-section
(right) shows the phase retardation exceeded π/2 and causes the derivative of the field to
invert (close-up).

pulse which forms an “x”-shape with a slope of the order of 5 × c. This structure was

also observed with single-shot spatiotemporal measurements which will be discussed in

Sec. 4.2.4. A lineout at the center of the spatiotemporal map shows the near single-

cycle profile of the THz pulse and provides a field strength of ∼ 300 kV/cm and a pulse

duration of ∼ 0.4 ps. Figure 4.18 (right) shows the peak electric field of the THz could

be even greater since it locally exceeded the field necessary for a full polarization rotation

(ΓTHz ≥ π/2), causing the transmission to increase anomalously, as illustrated in the

close-up. Accounting for this behavior, the corrected peak electric field is estimated to

be ∼ 0.5 MV/cm; a field strength suitable for pump-probe experiments.
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4.2.4 Single-shot spatiotemporal measurements

The scanning EO technique discussed in the previous section can be successfully im-

plemented for applications, such as the characterization of current dynamics in semi-

and superconductors [176, 177, 178], because of the use of high repetition rate (kHz)

laser systems and the stability of the material response function. However, the scanning

nature of this technique makes it impractical for experiments with significant shot-to-

shot fluctuations, including the temporal diagnostic of LPA-produced electron bunches,

motivating the development of techniques capable of measuring the THz waveform in

a single shot. Over the last decade, several single-shot techniques have been developed

[179, 180, 181, 182, 183, 143, 4, 184, 3].

The first of these techniques, known as spectral encoding [179, 180, 181], is based on

EO modulation of a chirped (wavelength is function of time) probe by the THz pulse.

The birefringence is encoded as a spectral amplitude modulation that can be measured

in an optical spectrometer. Although this technique has the advantages of being easy

to set up and of being able to adjust the temporal window by varying the amount of

chirp in the probe, it can suffer from distortions due to the amplitude modulation which

affects the wavelength-to-time mapping [185, 186]. Another configuration, the nonlinear

cross-correlation geometry [183, 143], addressed this issue but with a cumbersome setup

involving two laser probe beams and the THz pulse, and two nonlinear processes (EO

effect and frequency doubling in a BBO crystal). In addition, because this technique

requires a high-intensity probe, the probe beam is typically focused onto the EO crystal

which implies the risk of damaging it and limits the spatial information that can be

retrieved. The electro-optic sampling measurements discussed in Sec. 4.2.3 revealed a

complex spatiotemporal structure of the focused THz pulse. Therefore, to avoid the loss

of critical information, it is important to resolve the spatial variations as well as the

temporal waveform of the THz.
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During this thesis, several scanning and single-shot techniques have been developed

and implemented [4, 184, 172, 171, 3]. In this section, we present a technique called tem-

poral electric-field cross-correlation (TEX), which overcomes the limitations discussed

above. This technique allows measurement of THz waveforms with high temporal reso-

lution while providing one-dimensional spatial information. TEX was successfully imple-

mented to measure in a single-shot spatiotemporal profiles of intense THz pulses emitted

from the LPA. The ability to retrieve the full electric field of an optical probe is not

unique to TEX, but is shared by other techniques, such as frequency domain holog-

raphy (FDH) [187, 188, 172] and single-shot super-continuum spectral interferometry

(SSSI) [189]. The key advantage of TEX over FDH and SSSI is that recovery of the

probe amplitude and phase does not require any reference data and is obtained from

the TEX interferograms by a single fast Fourier transform (FFT) operation, making it

significantly easier to use than the others. On the other hand, FDH and SSSI provide

the pure electric-field retrieval of the probe without convolution.

TEX is based on the measurement of the linear cross-correlation of a long chirped

pulse (probe) with a short reference pulse (reader) using spectral interferometry. The

full electric-field information of the probe, convolved with that of the reader, is retrieved,

allowing signals to be encoded onto either the phase or the amplitude of the probe, or

both. This dual capability is not present in previous EO methods and makes TEX

applicable to the measurement of a wide range of phenomena beyond EO sampling,

i.e., in principle, to any phase sensitive experiment. Because the detection is linear,

TEX can be implemented with low-cost, non-amplified laser systems, and because it

does not require focusing of the chirped probe, spatial information can be recorded and

retrieved. The temporal detection window is easily tunable in the several picosecond

range by adjusting the chirp of the probe pulse (within the spectral acceptance of the

spectrometer), and the temporal resolution of the phase and amplitude retrieval is set
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Figure 4.19: Schematic of the experimental setup for temporal electric-field cross-correlation
(TEX) detection of intense ultrashort THz pulses emitted from an LPA. Figure from [3].

by the duration of the reader pulse, which is convolved with the signal.

The schematic of the TEX detection scheme implemented on an LPA-based THz

source [77, 142] is shown in Fig. 4.19. Using ∼ 0.4 J, 800 nm, 45 fs FWHM laser pulses

focused into a 2.2 mm gas jet of Helium, electron bunches with large energy spreads

(exponential-like distributions) and sub-picosecond bunch durations were produced, re-

sulting in the generation of CTR in the range of 0–4 THz. A portion of the radially

polarized cone of THz emission is asymmetrically sampled by collection with an OAP.

The resulting collimated beam of THz is primarily linearly polarized, with a residual

transversely polarized component analytically estimated to be at the 10% level [142].

The THz beam is then refocused with a second OAP onto a 200 µm thick GaP crystal

with a 〈110〉 cut. An optical pulse split from the driver laser beam that generated the

electrons is partially compressed, resulting in a temporally chirped pulse with a FWHM

duration of 2 ps onto which phase and amplitude information of the THz pulse will be
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only. (b) Phase-encoding geometry. The probe polarization is parallel with one of the principal
axes, resulting in phase shifting only. Figure from [3].

imprinted. A second fully compressed optical pulse (reader), measured to have a FWHM

duration of 45 fs, is also split from the driver. Probe and the THz pulses overlap colin-

early in the GaP crystal, resulting in the EO interaction. A polarizer and λ/4-plate are

used to set the circular polarization of the probe, as in the sign-resolved 2D-EO sampling

technique discussed in Sec. 4.2.3, allowing both positive and negative THz electric fields

to be resolved. The analyzer is used to convert polarization rotations into amplitude

modulations. The transmitted probe pulse is then combined colinearly with, but tem-

porally offset from, the reader and is sent into a 0.27 m imaging spectrometer with a 14

bit, 1 megapixel cooled CCD detector, producing a spectral interferogram image, coined

“TEXogram”. A pair of achromatic lenses is used to image the interaction plane (GaP

crytal) to the input plane of the spectrometer, where the spectrometer slit is used to

select a spatial slice (a vertical slice of the THz focus here) of the probe.

The choice to encode the THz signal onto either the amplitude or the phase of the

probe field is made by appropriately choosing the polarization state of the incident
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probe (Fig. 4.20). If the polarization is aligned at 45o to the principal axes of the

THz-induced index ellipse, the probe polarization will be rotated in proportion to the

THz field strength [110], but the phase-shift contribution from each of the axes will

cancel out, resulting in a pure amplitude modulation (Fig. 4.20a). However, if the probe

polarization is aligned along one of the principal axes of the index ellipse, the probe will

experience a temporally varying phase shift, but no polarization rotation, resulting in

pure phase modulation (Fig. 4.20b). For other polarization states, the THz imprint is

mixed between phase and amplitude with a strongly nonlinear dependence on the field

strength, making waveform retrieval unreliable.

The recovery of THz waveform occurs in two distinct steps. The first step is the

recovery, post-interaction, of the spatiotemporal electric field of the probe, which can be

written Ep(y, t) = E(y, t) exp{iΦ(y, t)}, where t is the time, y is the spatial coordinate,

and E(y, t) and Φ(y, t) are the probe’s temporal amplitude and phase, respectively. The

second step is the determination of the THz waveform spatiotemporal profile, ETHz(y, t),

from the THz-induced modulations of either the probe amplitude or the probe phase,

depending on the encoding method.

In the first step, Ep(y, t) is obtained from the TEXogram by applying a single one-

dimensional FFT operation independently to each row of the spectral image. The TEX-

ogram is described by:

STEX(y, ω) = |Ep(y, ω) + Er(y, ω)|2 (4.11)

= |Ep(y, ω)|2 + |Er(y, ω)|2 + Ep(y, ω)E∗r (y, ω) + E∗p(y, ω)Er(y, ω)(4.12)

where ω is the optical angular frequency, the upper-script “ ∗ ” denotes the complex

conjugate and, Ep(y, ω) and Er(y, ω) are respectively the electric fields of the probe

and reader pulses in the frequency domain. The FFT results in a time-domain signal
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Figure 4.21: (a) Simulated TEX interferogram in the absence of THz showing interference in
the spectrometer between co-propagating probe and reader pulses separated in time by 2.5 ps.
(b) Modulus of the FFT of the interferogram in (a) showing a broad side peak at 2.5 ps, which
represents the amplitude of the cross correlation between the probe and reader electric fields.
(c) Simulated TEX interferogram with THz present. (d) Modulus of the complex FFT of the
interferogram in (c), showing a THz-induced modulation in the side peak amplitude. Figure
from [3].

containing four components corresponding to the four terms in Eq. (4.12). The first two

terms of STEX produce overlapping peaks known as “coherence spikes” at t = 0, while

the third and fourth terms, i.e., the cross-terms, which are responsible for the fringes

in the TEXogram, produce side peaks at t = ±∆t, where ∆t is the delay of the probe

behind the reader (Fig. 4.21). The Fourier transform of the TEXogram spectrum can

be written:

F [STEX(y, ω)](t) = A(y, t) + C(y, t) + C∗(y,−t) (4.13)

whereA(y, t) is the FFT of the first two terms of STEX and C(y, t) = F [Ep(y, ω)E∗r (y, ω)](t)

is the Fourier transform of the first cross term. Since the Fourier transform of a product
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is equal to the convolution, noted ⊗, of the Fourier transforms, we have:

C(y, t) = F [Ep(y, ω)](t)⊗F [Er(y, ω)](t) (4.14)

=

∫ ∞
−∞

Ep(y, τ)E∗r (y, τ − t) dτ (4.15)

For a reader with suitably short duration and negligible spectral phase, Er(y, t) ∼ δ(t),

with δ(t) the Dirac delta function, and the side peak in the time-domain TEXogram

approximates the chirped probe pulse in both amplitude and phase: C(y, t) ≈ Ep(y, t).

In the second step, the THz waveform is recovered by determining the modulation to

either E(y, t) or Φ(y, t). In the amplitude-encoding method (Fig. 4.20a), the transmitted

probe amplitude is given by:

E2
T (y, t) = (E2

0/2) [1 + sin (ΓTHz(y, t))] (4.16)

where ΓTHz(y, t) = (2πη2r41L/λ0) × ETHz(y, t) ≡ αETHz(y, t) is the birefringent phase

retardation introduced in Sec. 4.2.3 Eq. (4.8), with L the crystal thickness, λ0 the reader

wavelength, η the linear index of refraction of the crystal in the absence of THz, r41 is

the second order nonlinear EO coefficient, and the subscripts “0” and “T” denote field

quantities before and after the interaction, respectively. In the phase-encoding method,

the transmitted phase is given by:

ΦT (y, t) = Φ0(y, t)± ΓTHz(y, t)/2 (4.17)

where the sign depends on the choice of principal axis of the index ellipse (Ŝ+, Ŝ−),

see Fig. 4.20. As E0(y, t) and Φ0(y, t) are not simultaneously acquired in the presented

TEX configuration, a separate “null” shot in the absence of THz is required. The
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reconstructed waveform is thus given by:

ETHz(y, t) = (1/α) arcsin
[
E2
T (y, t)/E2

null(y, t)− 1
]

(4.18)

for the amplitude-encoding configuration, and:

ETHz(y, t) = (2/α) [ΦT (y, t)− Φnull(y, t)] (4.19)

for the phase-encoding configuration.

The temporal resolution of the THz waveform retrieval is determined by two indepen-

dent factors: the duration of the reader pulse, which determines the temporal resolution

of the probe electric-field recovery, and the thickness of the EO crystal, which deter-

mines the EO sampling phase-matching bandwidth [170, 145]. Calculations simulating

the probe field retrieval process in both phase- and amplitude-encoding configurations

for a 45 fs reader confirm accurate reconstruction of the encoded signal for frequencies

beyond ∼ 8 THz , which is the resolution limit set by the 200 µm GaP crystal. The

limitation to the temporal range of the detection is set by the bandwidth and spectral

resolution of the imaging spectrometer, which must be capable of resolving the spectral

fringes over the full bandwidth of the probe.

A sample THz spatiotemporal waveform image acquired using TEX in the amplitude-

encoding configuration is shown in Fig. 4.22a. The measured waveform is nearly single

cycle and displays sharp temporal features of the order of 100 fs, illustrating the need for

high temporal resolution. As in 2D-EO sampling (Sec. 4.2.3, Fig. 4.18 left), the waveform

exhibits strong spatiotemporal coupling, in the shape of an “x” which can be understood

as a combination of the Gouy phase shift of a single-cycle pulse (temporal profile) and

the wavelength-dependent waist of a broadband spectrum (transverse profile) [190, 191,

192]. Correlation between the spatiotemporal waveforms of the THz with the accelerator
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Figure 4.22: Space-time cross section obtained in a single-shot using the TEX detection
scheme. (a) Both the complex spatiotemporal coupling and the near single-cycle shape of the
waveform, previously observed using 2D-EO sampling (Fig. 4.18 left), are reproduced. (b)
Spatiotemporal waveforms of the THz correlate with the accelerator performance. This is
shown by scanning the longitudinal position of the gas jet relative to the vacuum focus of the
diver laser (p = 0 mm). As higher charge (ICT charge signal, solid line) and higher energy
(neutron yield, dashed line) electron bunches are being produced, the THz waveforms sharpens
indicating presence of high frequencies, i.e., compression of the bunch.

performance was verified by performing a scan of the longitudinal position of the gas

jet relative to the driver laser focus (Fig. 4.22b). As the upstream edge of the jet

approaches the laser focus, higher charge (ICT charge signal, solid line) and higher

energy (neutron yield, dashed line) electron bunches are generated [153], and the THz

waveforms display sharper features (high frequency content) indicating a compression of

the bunch. Throughout the scan the extent of the THz bandwidths varied from 1 THz

to 3–4 THz.

To diagnose the structure of the electron bunch, the spectrum of the THz waveform

shown in Fig. 4.22a was calculated and compared with theory. The spatial and tem-

poral features of the spectral image were modeled (Fig. 4.23) by using CTR emission

theory [80] with the inclusion of collection and propagation effects [29]. To accurately

model both the low- and high-frequency parts of the spectral image, two bunches of
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Figure 4.23: (a) Power spectrum of the THz waveform shown in Fig. 4.22a. (b) Spectral image
calculated using a two-bunch model. (c) Central lineouts of spectral images corresponding to
the data (black dotted line), a one-bunch model (blue dashed line), and a two-bunch model (red
solid line). Comparison shows that a two-bunch model yields a significantly better fit than a
one-bunch model. Figure from [3].

different duration and charge (90% of the charge in a 140 µm rms bunch and 10% in

a 50 µm bunch) were required. Comparison of a one-bunch model (containing only the

longer bunch) with the two-bunch model shows that the contribution to THz emission

above ∼0.75 THz comes entirely from the shorter bunch, despite its small relative charge

(Fig. 4.23c). This high sensitivity to the presence of the shorter electron bunch is an

important confirmation of the practicality of the THz-based diagnostic for characterizing

LPAs, since the high-energy, low-charge electron bunch component of interest is often
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accompanied by a lower energy component containing the bulk of the charge [153]. The

electron energy spectrum, measured simultaneously, does, in fact, show a two-component

distribution with a large thermal component and a smaller quasi-monoenergetic com-

ponent. The importance of recovering the spatial variations in the THz waveform is

illustrated by the strong spatial dependence of the spectrum of the focused THz pulse:

the higher-frequency component from the short bunch is more localized to the axis. A

spatially integrated technique would under-represent this component, thus diminishing

sensitivity to the presence of the short bunch. In addition, because the transverse focal

size of a given spectral component is strongly dependent on not only the wavelength

but also the spectrally varying far-field intensity distribution, the nice correspondence

between the data and model of the shape of the spectral image provides a confirmation

of the THz emission patterns predicted by CTR theory.

In conclusion, a new single-shot technique (TEX) was demonstrated for measurement

of ultrafast phenomena resulting in temporal phase or amplitude modulations. TEX pro-

vides high temporal resolution and one-dimensional imaging simultaneously for the first

time in EO sampling, enabling analysis of spatiotemporal and spatiospectral coupling

in THz waveforms. TEX is significantly easier to set up than previous high-resolution,

single-shot EO techniques because it does not require the use of nonlinear processes

other than the linear Pockels effect used for EOS. Because TEX is linear in the probe

field strength, low-power, low-cost, unamplified laser systems may be used, making it

highly accessible. In addition, its dual phase- and amplitude-encoding capability makes

it applicable to a wide range of phenomena. The temporal resolution is set by the du-

ration of the reader pulse, and can be made smaller than the intrinsic limitation set by

phase matching in the EO sampling process. The single-shot temporal detection window

is tunable in the range of several to tens of picoseconds and limited by the bandwidth

and spectral resolution of the spectrometer. Numerical analysis confirms the capability
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of TEX to reproduce THz waveforms in both temporal and spectral domains without

significant distortion. Waveforms of THz pulses generated as CTR from an LPA were

measured using the amplitude-encoding configuration and analyzed. The resultant THz

spectral images were used to demonstrate the presence of heterogeneous electron-bunch

structure from the LPA. The dependence of the THz spectrum on the electron-bunch

duration makes it possible to detect the presence of short electron-bunch substructure

with high sensitivity.





Chapter 5

Betatron X-ray Radiation

5.1 Introduction

In this Chapter, single-shot direct X-ray spectra from betatron motion of electrons pro-

duced by an LPA are presented [7], demonstrating the synchrotron nature of the radi-

ation. Simultaneous single-shot measurements of the electron and X-ray distributions,

in the low wiggler parameter limit, allowed sub-µm resolution of the beam size for both

high- and low energy-spread electron beams. This provides a measure of the normalized

transverse geometric emittance of 0.5 GeV-class LPA-produced electrons and allows in-

ference of the accelerator wake electric-field. In addition, the betatron emission serves

as a compact source of collimated keV X-rays [85, 193] which would otherwise require a

multi-GeV accelerator using a conventional undulator with cm- or mm-scale periodicity.

Measurements demonstrate the spectral form, brightness and scaling of the betatron

X-ray radiation.

In previous experiments, Fresnel-edge diffraction of the betatron X-ray beams pro-

vided an upper bound measurement of few microns for the transverse size of the electron

beam produced in the LPA [194, 193, 7]. The presence of the high intensity laser driver
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limits magnification and hence resolution. Far-field spatial distribution measurements

[86] and multi-shot diffractive spectral characterization of the betatron emission [87]

showed that the electron bunch size was on the order of a micron. Approximate spectra

have also been obtained using filter techniques assuming a synchrotron spectrum [114].

Pepper-pot measurements have been used to characterize low energy electron beams

[195, 196, 197]. Simulations [101] and theory [12] indicate that beam source size may

be of order 0.2 µm in experiments producing beams at 0.1 GeV [39, 40, 41]–1 GeV [10].

This indicates much lower emittance than has been measured, which would be important

for FEL [127] and Compton γ-sources [198], and a step towards collider requirements

[199].

In the next Section, laser-plasma acceleration theory [12] is used to provide a sim-

ple ballistic model relating electron beam transverse size to beam divergence, and a

model [82] of the on-axis betatron X-ray radiation is described. Section 5.3 presents

the two laser-plasma accelerators on which the experiments were performed. Section 5.4

discusses the validity and limitations of the single-shot high-resolution X-ray detection

method, emphasizing its advantages over filter-based techniques. In Section 5.5, beta-

tron radiation from broadband electron beams is analyzed. The synchrotron nature of

the X-ray radiation is demonstrated. The betatron radiation model limitations in de-

scribing the betatron spectrum of broadband low-energy electron beams are discussed

and numerical simulations are used to provide a good fit of the data. In Section 5.6,

agreement between model and data is demonstrated for high energy (∼ 0.5 GeV) quasi-

monoenergetic electron beams. The electron beam size within the plasma is calculated

using both a knife-edge technique [114] and single-shot measurements of the electron

beam divergence. An estimate of the plasma wakefield amplitude is calculated. The

accelerator is shown to provide a high flux 5 keV collimated X-ray source for potential

industrial applications (e.g., medical, military, commercial).
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5.2 Theoretical framework

The laser pulse propagation in the plasma is affected by a variety of phenomena [12],

including relativistic self-focusing, which occurs when the laser power exceeds the critical

power P ≥ Pc[TW] ' 17.4 × 10−3λ2
p/λ

2 where λ and λp are respectively the laser and

plasma wavelengths. Experiments presented in this Chapter satisfied this condition (P ∼

9–22 TW > Pc ' 1–4 TW) and self-focusing was the dominant mechanism for optical

guiding of the laser pulse, allowing the acceleration length to overcome the diffraction

limit, i.e., the Rayleigh length.

In the “bubble” regime [94, 200] (c.f. Sec. 2.3), accelerating electrons undergo be-

tatron motion induced by the strong focusing fields of the ion bubble formed behind

the driver laser pulse. As a result the electron beam size and divergence are related

[82]. In the self-trapping regime, in which the present experiments operated, LPAs rely

on the transverse wavebreaking effects [19] of highly nonlinear plasma waves [57] to in-

ject electrons into the accelerating phase of the electron density wave, providing off-axis

injection to initialize the betatron motion. The strong transverse focusing field asso-

ciated with the ion channel, whose diameter is typically much greater than the bunch

radius [89, 201], induces oscillations of the electron bunch at the betatron wavelength

λβ = λp
√

2γ ∝
√
γ/ne, where ne is the plasma density. The anticipated amplitude

of the betatron orbits, which defines the transverse size of the electron beam, can be

sub-µm [86] and knife-edge methods have not had enough resolution to provide a good

measurement [114, 194] of such dimensions.

An estimate of the electron beam size can be provided by means of single-shot energy

and divergence measurements of the electron beams via a simple ballistic model. The

transverse oscillations of an electron inside a relativistic ion bubble can be described by
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[94, 200] the following equations:

dx/ds = βx (5.1a)

dβx/ds = − k2
βx (5.1b)

where s is the moving coordinate, x is the transverse position, βx = vx/c, and kβ =

kp/
√

2γ, in the limit of small amplitude betatron orbit, is the betatron oscillation

wavenumber and kp the plasma wavenumber. Solving Eqs. (5.1) yields:

〈x2〉 = 〈x2
0〉/2 + 〈u2

x0
〉/2γ2k2

β (5.2a)

〈θ2〉 = k2
β〈x2

0〉/2 + 〈u2
x0
〉/2γ2 (5.2b)

where 〈〉 denotes the arithmetic average, (x0, ux0) are the initial transverse position

and normalized momentum and 〈θ2〉 ' 〈ux〉/γ is the beam divergence variance. For a

matched beam, 〈x2〉 = 〈x2
0〉, it comes (σx ≡ 〈x2〉1/2 and σθ ≡ 〈θ2〉1/2):

σx =
λp
π

√
γ

2
σθ (5.3)

For electron beam parameters representative of the present experiments, such as a

20 MeV electron beam [153] with 20 mrad rms divergence produced in a plasma of

3×1019 e−/cm3, and a 400 MeV, 1 mrad rms divergence electron beam [10] produced in

a plasma of 7×1018 e−/cm3, Eq. (5.3) yields respectively, an electron beam size inside the

plasma of σx ' 0.17 µm and σx ' 0.08 µm, in reasonable agreement with particle-in-cell

simulations described in [202]. From the electron bunch size, the normalized transverse

geometric emittance is calculated as εx ≈ βzγσxσθ. For the 20 MeV electron beam, the

normalized emittance is εx ' 0.14 mm.mrad, one order of magnitude lower than that

reported in recent single-shot pepper-pot measurements of electron bunches produced
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in an LPA [196]. For the 400 MeV electron beam, the normalized transverse geometric

emittance is εx ' 0.06 mm.mrad; such electron beams would be suitable for free-electron

laser experiments [127]. Equation (5.3) breaks down if the electron beam adiabatically

expands before reaching ballistic motion. Such expansion can occur at the downstream

edge of the plasma [196] if the bubble regime applies, i.e., the density downramp is much

longer than λβ and, the laser pulse energy is not depleted.

The width of the X-ray shadow of crossed thin wires, acting as knife edges, provides

a measure of the bunch size [194, 193, 7]. Based on particle code simulations [202, 8]

or theory [82], for typical experimental electron beam and plasma parameters the X-

ray source distribution can be approximated by a Gaussian distribution (1/
√

2πσ2 ·

exp [(r0 − µ0)2/2σ2]), for which the shadow intensity profile, for a wire radius rw and a

magnification M , is described by:

I(r) = 1 +
1

2
erf

(
r + (M − 1)µ0 −Mrw√

2(M − 1)σ

)
− 1

2
erf

(
r + (M − 1)µ0 +Mrw√

2(M − 1)σ

)
(5.4)

where erf(x) = 2√
π

∫ x
0
e−t

2
dt is the error function. A line-by-line and column-by-column

fit of a high signal-to-noise image provides a measurement of the X-ray source size.

Knife-edge methods have, however, had a limited resolution of few microns [114, 194].

A more detailed understanding of the bunch size is available by analyzing the X-ray

betatron spectrum. A theoretical description of betatron X-ray radiation in plasma-

focusing channels was developed for electrons with constant longitudinal momentum

[82]. Electrons emit directional synchrotron radiation within a cone of angles [82, 86]:


θ‖ ' aβ/γ for aβ � 1, and θ‖ ' 1/γ for aβ � 1

θ⊥ ' 1/γ

(5.5)

where θ‖ is the emission angle in the plane of the electron orbit, θ⊥ is the emission angle
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in the plane normal to the electron orbit, and

aβ = γkβrβ ' 1.33× 10−10

√
γne[e−/cm3] rβ[µm] (5.6)

is the betatron or wiggler strength parameter, and rβ is the amplitude of the betatron

orbit. In the undulator regime, aβ � 1, the betatron radiation of a single electron

is emitted in a narrow photon-energy band. For larger betatron strength parameters,

higher order harmonics are generated and in the wiggler regime, aβ � 1, an electron

radiates a broadband continuum. In the present experiments, aβ ' 1 and each electron

radiates a train of harmonics. At first order, the betatron strength parameter aβ can

be considered constant since, in the wake of the laser pulse, the electron beam focuses

on-axis (smaller betatron orbit amplitude rβ) as it accelerates (greater energy γ). In the

limits γ2 � 1, θ2 � 1 where θ is the observation angle from the ion channel axis z, and

a2
β/γ

2 � 1, the on-axis photon spectrum of the radiation emitted by a single electron is

given by [82]:

1

~ω
∂2I

∂~ω∂Ω
=

4αfγ
2N2

β

1 + a2
β/2

+∞∑
n=1

RnFn
~ωn

(5.7)

where ∂2I/∂~ω∂Ω is the energy radiated per frequency ω per solid angle Ω, n is the nth

odd harmonic number, ωn = nM0ckβ is the nth resonant frequency, M0 = 2γ2/(1+a2
β/2)

is the relativistic Doppler upshift factor, αf ' 1/137 is the fine structure constant, Nβ =

L/λβ is the number of betatron periods that the electron undergoes, L is the propagation

length, Rn is the nth resonance function and Fn is the nth harmonic amplitude function,

respectively defined as:

Rn =

{
sin[nπNβ(ω/ωn − 1)]

nπNβ(ω/ωn − 1)

}2

(5.8)

Fn = nαz[J(n−1)/2(αz)− J(n+1)/2(αz)]
2 (5.9)
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where Jm are Bessel functions of the first kind and

αz =
ω

ωβ

a2
β

8γ2
(5.10)

The energy spectrum per frequency interval per solid angle radiated by a single

particle in Eq. (5.7) derives from an approximation of the integrated by parts general

equation [203]:

∂2I

∂~ω∂Ω
=

αf
4π2

∣∣∣∣∣
∫ ∞
−∞

n× [(n− β)× β̇]

(1− β · n)2
eiω(t−n·r(t)/c)dt

∣∣∣∣∣
2

(5.11a)

=
αfω

2

4π2

∣∣∣∣∣
∫ T/2

−T/2
n× (n× β)eiω(t−n·r(t)/c)dt

∣∣∣∣∣
2

(5.11b)

where the acceleration is considered different from zero only for −T/2 ≤ t ≤ T/2,

implying non-physical instantaneous suspending or setting in motion of the particle.

For a given motion r(t), β(t) = ṙ(t)/c and β̇(t) = r̈(t)/c can be calculated and the

integral evaluated in the observation direction defined by the unit vector n (n = z for

θ = 0), which is considered constant in time since the observation point is assumed to

be far away from the region of space where the motion occurs. It can be shown [8] that,

under this approximation, the energy spectrum calculated (Eq. (5.7)) does not converge

to zero at high frequencies when aβ � 1 (high frequency generation) and Nβ ∼ 1. A

parallel numerical code was developed [8] based on the work of Thomas et al. [202] which

calculates the trajectories of a bunch of particles in a giving external electromagnetic

field structure, a uniform ion channel here, and outputs the final radiation radiated in

the far field. To provide convergence at high frequencies, the approximation was applied

to Eq. (5.11a), before integration by parts, which introduced a correction term related
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rβ = 0.1 μm (1 e- x Ne ≈ 6.24.106)
σx = 0.05 μm
σx = 0.1 μm
σx = 0.4 μm
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Figure 5.1: Examples of on-axis X-ray betatron spectra calculated using Eqs. (5.7–5.10) for a
single electron orbiting at rβ = 0.1 µm (blue) and for Gaussian electron distributions centered
on-axis with standard deviation radii of 0.05 µm (green), 0.1 µm (black) and 0.4 µm (red),
for which aβ ' 0.5, 1 and 3.9 respectively. The spectra were calculated for a 1 pC, 400 MeV,
5% FWHM energy-spread electron bunch and a propagation length of 0.5 mm (Nβ ' 1).
The single electron spectrum is dominated by the 1st harmonic and the peak energy of the
bunch-integrated spectra varies with the bunch rms radius σx.

to the trajectories end points:

∂2I

∂~ω∂Ω
=

αf
4π2

∣∣∣∣∣
[
n× (n× β)

1− β · n
eiω(t−n·r(t)/c)

]T/2
−T/2

− iω
∫ T/2

−T/2
n× (n× β)eiω(t−n·r(t)/c)dt

∣∣∣∣∣
2

(5.12)

The theoretical on-axis spectrum of X-ray radiation emitted by a single electron

with Ez = 400 MeV and rβ = 0.1 µm, for a propagation length in the plasma channel of

0.5 mm is shown in Fig. 5.1. For comparison with the spectra of electron bunches, the

amplitude of the spectrum is multiplied by the number of electrons contained in 1 pC

of charge, Ne ' 6.24× 106. Because the betatron strength parameter is low, aβ ' 1, the

spectrum of X-ray radiation emitted by a single electron is composed of distinct peaks

near the resonant frequencies ωn [82]. For a given harmonic, the radiation spectrum

is dominated by the resonant function Rn and the frequency width at the resonant

frequency ωn is given by ∆ωn ≈ ωn/nNβ = M0ωL ∝ γ/ner
2
β with ωL = 2πc/L. In the

low Nβ limit, Nβ ' 1 in this thesis, the harmonic peaks broaden and the summation

over all harmonics results in a continuum spectrum. The peak energy of the distribution
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is located near the energy of the first harmonic ~ω1 = M0ωβ. In Figure 5.1, the peak

energy of the summation over all odd harmonics is ~ωpeak ' 2.27 keV whereas the peak

energy of the first harmonic is ~ω1 ' 2.1 keV (< 10% error) with a FWHM bandwidth

of ∆~ω1 ' 2 keV.

In a bunch, the electrons radiate X-rays incoherently since the length on which the

bunch has structure [70, 3] (∼ 10 µm) is much greater than the characteristic emission

wavelength (∼ 0.6 nm). The integrated X-ray radiation spectrum is then obtained

by summing individual electron contributions. Figure 5.1 shows three bunch-integrated

spectra for 1 pC, 400 MeV with 5% full-width-at-half-maximum (FWHM) energy-spread

distributions of electrons with σx = 0.05, 0.1, 0.4 µm rms radii. The dependence of the

spectral peak energy on σx makes single-shot X-ray measurements a good diagnostic

of the transverse size (< 1 µm resolution) and, in combination with electron beam

divergence and energy measurements, the geometric emittance of the electron beam.

Because the betatron radiation length can be inferred by fitting the observed spectral

amplitude to theory, betatron radiation also provides information on the length over

which the electrons remain at high energy, and hence on the accelerating electric field.

The length over which an electron initially at rest accelerates to a Lorentz factor γ

depends on the electric field in the plasma: L '
√
γ2 − 1mec

2/eE0 with c the speed of

light. For a plasma density of 7 × 1018 e−/cm3 and an electric field equal to the linear

cold relativistic wavebreaking field [51], E0 = mecωp/e, with me and e the electron

mass and charge, and ωp the plasma angular frequency, the acceleration length to reach

an electron energy Ez = 400 MeV is on the order of the focusing dephasing length

L ' Lφ ' λpγ
2
p/2 ' 1.5 mm, where γp ∼ λp/λ is the relativistic Lorentz factor associated

with the phase velocity of the plasma wave. However, for laser pulse lengths on the order

of the plasma wavelength, Llaser ' 1–2× λp, as in this thesis, the initial intensity profile

may shorten and steepen as the plasma density wave feeds back on the laser pulse,
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resulting in a highly nonlinear wakefield and electron self-injection. In the limit of the

one-dimensional nonlinear cold relativistic wavebreaking electric field amplitude [50, 56]

EWB =
√

2(γp − 1)E0 > E0, the acceleration length necessary to reach the same energy

(400 MeV) would be limited to L ' 0.29 mm.
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5.3 LPA setup and diagnostics

Experiments were conducted in the LOASIS facility at the Lawrence Berkeley National

Laboratory, on two different laser-plasma accelerators. Both accelerators use a 800-nm

laser pulse produced using a 10 Hz Ti:Al2O3 chirped-pulse amplification system. The X-

ray betatron radiation emitted by the electrons inside the plasma was measured using a

cooled back-illuminated charge coupled device (CCD) camera detailed in Sec. 5.4. Single-

shot diagnostics were used to characterize the electron bunches generated, including

a magnetic dipole spectrometer for the electron bunch energy distribution [68] which

provided energy, charge and divergence measurements.

Figure 5.2: Schematic diagram of the gas jet laser-plasma accelerator. A 800-nm laser pulse
was focused using a f/4 off-axis parabola into supersonic Hydrogen gas. The plasma density
was scanned by varying the gas jet backing pressure (1–6 × 1019 e−/cm3). Thin crosshairs
were placed 22 cm, and the X-ray camera CCD chip 220 cm, downstream of the plasma. X-ray
background radiation was mitigated using high-density-polyethylene (HDPE) plates and Lead
bricks. The line of sight was further restricted by a rectangular stainless steel pipe fitting to
the CCD chip. The electron beam was analyzed using a broadband magnetic spectrometer
(∼ 10–100 MeV, ±25 mrad).

In the first accelerator [40, 153], a 0.45 J, 45 fs FWHM, linearly polarized laser pulse

was focused (7.2 µm FWHM intensity spot size) into Hydrogen gas from a 2.2 mm inner

diameter supersonic nozzle (Fig. 5.2). This accelerator operated at a normalized vector

potential a0 ' 1.9 (Eq. 2.7), and plasma densities ranging from 1–6× 1019 e−/cm3, for

which the focusing dephasing length [12], Lφ (Eq. 2.32), varies from ∼ 60 to 900 µm.

In these experiments, plasma density measurements were performed using a trans-
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verse folded-wave interferometer [1]. Electron bunches produced typically had a two-

component structure: a low energy exponential-like distribution containing most of the

total charge (& 90%) and a high energy (' 40 MeV), low charge (. 10% of total)

quasi-monoenergetic distribution [153, 3].

The X-ray radiation was collected in the first accelerator with the camera placed

220 cm downstream from the exit of the plasma. In both accelerators camera place-

ment was constrained by available space in the beamline. Shielding and apertures were

used to ensure good control of bremsstrahlung background radiation, due to secondary

collisions of low energy background electrons, and to collimate of the measured X-ray

beam. The camera was coupled to the vacuum chamber with a single window made of

0.1 µm of Aluminum, 14 µm of polycarbonate, 18 µm of Kapton, and 25 µm of Beryl-

lium, enhancing the acquired X-ray spectral range. Strong defocusing of the laser after

interaction with the plasma, due to the small f/#, meant that the crosshairs, made of

gold plated tungsten (12.5 µm and 50 µm diameter), were protected from laser damage

at their location, 22 cm downstream from the exit of the plasma, providing 10 times

magnification imaging of the X-ray source.

The second accelerator [10] channeled a 1.3 J, 56 fs FWHM, linearly polarized

laser pulse in a 3.3 cm long, 250 µm diameter, Hydrogen gas-filled capillary discharge

waveguide (Fig. 5.3). This accelerator operated at a smaller input normalized vector

potential, a0 ' 1, and lower plasma densities, 0.4–1 × 1019 e−/cm3, for which the

focusing dephasing length varies from ∼ 0.9 to 3.6 mm. The on-axis plasma den-

sity inside the capillary was calculated by substituting the capillary discharge cur-

rent calibration provided by B. H. P. Broks et al. [204] and the perfect gas law

(nH2 [H2/cm3] ' 3.29 × 1016 × Pi [Torr]), where Pi is the pressure inside the capillary,

in the on-axis density calibration of Hydrogen-gas-filled capillary discharge waveguides

provided by A. J. Gonsalves et al. [205]. Typical electron spectra had low divergence,
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Figure 5.3: Schematic diagram of the capillary-guided laser-plasma accelerator. A 800-nm
laser pulse was focused using a f/25 off-axis parabola into a Hydrogen gas-filled capillary
discharge waveguide. The plasma density was scanned by varying the backing pressure (0.4–
1×1019 e−/cm3). Thin crosshairs were placed 176 cm, and the X-ray camera CCD chip 473 cm,
downstream of the plasma. Residual laser light after interaction with the plasma was filtered
out using a succession of foils. X-ray background radiation was mitigated by the presence of a
meter-thick concrete wall and the use of Lead bricks. A movable quadrant of filters was placed
in front the X-ray camera window to test the validity of the measurements. The electron beam
was analyzed using a broadband magnetic spectrometer (∼ 10–975 MeV, ±25 mrad).

. 5 mrad FWHM, and quasi-monoenergetic charge distribution centered about 400–

600 MeV with ∼ 10% FWHM energy-spread [206].

The X-ray radiation was collected in the second accelerator with the X-ray camera

placed 4.7 m downstream from the exit of the plasma. The X-ray CCD camera was

better shielded from background bremsstrahlung X-rays than in gas jet experiments. In

addition to a lead brick castle around the camera and a greater distance to the source, a

meter thick concrete wall with a one-foot diameter aperture separated the camera from

the capillary (Fig. 5.3). In this setup, laser diffraction was weaker increasing damage

risk. Because of this, the crosshairs (made of stainless steel wires of 680 µm diameter)

was placed 1.7 m downstream from the exit of the plasma, providing ' 2.7 times imaging

magnification imaging of the X-ray source. An additional set of foils was used to dump

the laser energy and avoid damaging the X-ray CCD camera. This set of foils had a

thickness of 33.3 µm of Mylar (6.35 µm at 11o), 73.4 µm of polycarbonate (14 µm at

11o), and 19.2 µm of nitrocellulose (3 foils of 5 µm, 1 at 90o, 2 at 45o).
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5.4 X-ray detector setup and analysis

A pixelated Silicon-based detector [207] was used to resolve the X-ray photons emitted

by the LPA both spatially and spectrally. The CCD camera had a 1024×256 pixel chip,

with 26 µm square pixels, a 40 µm depletion region of Silicon, a ∼ 5 µm dead Si layer,

and provided a broad detection range (& 4% absorption for ∼ 1–20 keV). The CCD

was calibrated for single pixel absorption spectroscopy, spectral yield was characterized

versus occupancy and analysis thresholds, and the accuracy was validated using both

synthetic data and experimental filter spectra.
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Figure 5.4: Principle of the single pixel absorption events (SPAE) detection method. Gray
pixels in this one-dimensional detector have noise signal, red pixels could be due to either two
single-photon events or to a shared current generated by a single photon, and hence are not
being counted. The green pixel satisfies the SPAE conditions and is being counted.

Single-shot X-ray spectra were calculated by generating a histogram of the image

acquired by the CCD camera after background subtraction. Only single pixel absorption

events (SPAE) were considered. An SPAE is an isolated X-ray hit on the CCD, for which

surrounding pixels level do not exceed the background level (Fig. 5.4). Thus, the number

of counts in a pixel for an SPAE is directly proportional to the energy of the absorbed

X-ray [208, 7]. An offline calibration using a 55Fe radioactive source was performed and

provided a conversion of 31.25 eV/count and a resolution of 0.25 keV FWHM [7]. The
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Figure 5.5: Example of single pixel absorption event (SPAE) spectrum measured for different
background threshold levels: 2, 3, 4, 5, 6, 7, 8, 10, 15, 20 camera counts (from bottom to top
curve). Each spectrum is an average over 200 shots collected during gas jet experiments. For
thresholds below 4–5 counts, the spectral shape does not change, only the amplitude is affected
and the spectrum correctly represents the betatron emission. At higher thresholds the spectra
are distorted by contribution of split charge hits.

X-ray hits were binned in natural integer factors of camera units to respect the camera

digitization and avoid interpolation. Because of the continuum nature of the betatron

radiation (c.f. Sec. 5.2) the choice was made to present the X-ray spectra in photons per

unit of energy [ph./keV] to have a constant energy bin size throughout the spectrum.

To obtain the spectra in unit of photons per solid angle [sr] per 0.1% of bandwidth

[ph./sr/0.1% BW], the spectra would be multiplied by 0.1% of the bins energy (10−3~ω)

and normalized by the solid angle subtended by the detector, which during gas jet and

capillary experiments was, respectively, ' 26 × 10−6 sr and ' 5.5 × 10−6 sr, satisfying

the small observation angle condition in Eq. (5.7).

The efficiency of the SPAE method depends on the flux of X-rays. If every pixel is

illuminated (100% occupancy) there are no SPAE, hence no spectral information. The

occupancy effect was characterized on the capillary-based accelerator by inserting a set

of filters in front of the camera (Fig 5.7). The ratio SPAE number to total local charge

was found to be 0.3% (31.9% occupancy), 0.89% (21.5% occupancy), 2.07% (14.3%

occupancy), and 2.63% (10.9% occupancy) for respectively no filters, 10 µm Cu, 100 µm
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Figure 5.6: Noise characterization of the X-ray CCD camera using a background shot. (a)
SPAE histogram and Gaussian fit. (b) Cumulative density function.

Al, and 10 µm Cu and 100 µm Al. To compensate for the occupancy effect, the SPAE

spectra are normalized to the total charge collected within the spectral acceptance of

the detection. For these measurements the accelerator was tuned to maximize the X-ray

yield by increasing the bunch charge with the trade-off of lowering the electron bunch

energy. The average electron beam distribution was centered around 250 MeV, had a

' 20.7% energy-spread and ' 11 pC of charge.

The choice of background threshold determines how discriminating the SPAE algo-

rithm is and ultimately how accurately the measured spectrum represents the X-ray

betatron emission. The higher the background threshold the more hits on the camera

are being counted as SPAE. Eventually, split charge hits, which are clusters of two or

more pixels charged by a single X-ray photon, are being counted as SPAE and included

in the spectrum erroneously, distorting the spectrum (Fig. 5.5). Conversely, for small

thresholds the probability of rejecting a valid SPAE increases and the spectrum has a

poor signal-to-noise value. To select a value for the background threshold the histogram

of a background shot (no driver laser) was analyzed (Fig. 5.6a). The cumulative density

function of the measured noise distribution was calculated, providing the probability of

a given threshold to be within the noise (Fig. 5.6b). For gas jet experiments, the back-
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Figure 5.7: Average (111 shots) single pixel absorption event (SPAE) spectra of four regions
of the CCD camera, in front of which different filters were placed (no filters, 10 µm Cu, 100 µm
Al, and 10 µm Cu and 100 µm Al). Each spectrum matches with the convolution of the non-
filtered spectrum with the transfer function of each filter convoluted with the detector response,
indicating the SPAE method is robust throughout the detection range of the detector.

ground threshold was set at 4 camera counts for which the probability for a single pixel

of being outside the noise was 97.7% (Fig. 5.6b). Hence, the probability of rejecting a

valid single hit event due to noise was (1 − 0.9778) × 100 ' 17%, since each pixel is

surrounded by 8 pixels. On capillary experiments, the background threshold was set at

5 camera counts, for which the SPAE rejection probability was 12.2%. Figure 5.5 shows

an example of gas jet experiments SPAE spectrum calculated for different background

thresholds. Convergence is obtained for thresholds of 2–4; the choice of a threshold of

4 assured good statistics while minimizing spectral distortion due to un-accounted-for

charge sharing.

A set of synthetic images generated with spectra, occupancy, and backgrounds rep-

resentative of those in the experiments was analyzed to further evaluate SPAE accuracy.

Double hit counts, which occur when two low-energy photons hitting a single pixel are

counted as a high-energy SPAE, become significant for occupancies of 40% or above.
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The experiments typically operated below 10% occupancy in which cases pile up was

not significant and the spectra are accurate. Similarly, using simple estimates for charge

splitting, convergence of the recovered spectrum to the correct (input) value was ob-

served for background threshold values of 3–4 as chosen in the experiments.

The validity of the SPAE method over the energy detection range of the Silicon CCD

camera was confirmed by placing in front of the camera a quadrant filter, described

above, and comparing the SPAE spectra measured over the area of the CCD covered

by each filter (Fig. 5.3). A transfer function was calculated for each filter by convolving

the 0.25 keV FWHM Gaussian response of the detector with the filter photoabsorption

cross sections, derived from semi-empirical atomic scattering factors, tabulated [209]

by the Center for X-ray Optics (www.cxro.lbl.gov). The detector response smoothes

the transfer functions at the sharp 8.98 keV absorption edge of Copper. The spectra

measured for each of the three areas placed behind a filter match the spectrum resulting

from the multiplication of the non-filtered spectrum by the respective transfer functions

and an arbitrary normalization factor (Fig 5.7). Thus, the SPAE method provides a valid

measure of the X-ray spectrum over the detection range of the detector and confirms

the spectral continuity of the X-ray betatron radiation emitted by electrons accelerated

in an LPA, allowing detailed fits to the theory of Sec. 5.2.
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5.5 Broadband electron beam experiments

Gas jet experiments produced broadband exponential-like electron distributions with

characteristic roll-off energy (i.e., damping energy) on the order of 10–20 MeV. The high

energy tail, & 10 MeV, of these electron distributions typically had a few pC of charge.

Figure 5.8a shows an example electron distribution where the charge (Q) distribution has

a two-component structure with a high-charge (' 4.9 pC) exponential-like distribution

having a damping energy Ed ' 15 MeV (δQ/δEz ∝ exp(−Ez/Ed)), and a low charge

component of ' 0.3 pC, 45 MeV and 5% energy-spread. In addition to a broadband

energy distribution, the typical angular charge distribution was also a complex function

of the electron energy. Figure 5.8b shows an example of electron distribution where the

angular divergence, θdiv, is an approximate exponential function of the electron energy,

δθdiv/δEz ∝ exp(−Ez/Ed), with Ed ' 27 mrad.
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Figure 5.8: Examples of electron charge distributions produced during gas jet experiments.
(a) Detail of an angle-integrated charge distribution with a two-component structure, a
exponential-like and a quasi-monoenergetic distributions. (b) Detail of the energy-integrated
divergence distribution.

The transverse size of the electron bunch was first evaluated using the penumbra

technique (Eq. (5.4)). At a plasma density of 2.8 × 1019 e−/cm3, the average image of

200 X-ray shadowgrams yield a source size of less than 5± 2.5 µm rms which is on the



5.5. Broadband electron beam experiments 132/196

Deconvolved spectrum

Outside crosshair
Betatron spectrum

0 2 4 6 8 10 12
Energy [keV]

X-
ra

y 
sp

ec
tru

m
 [p

ho
to

ns
/k

eV
]

0

100

200

300

Fe K-α

Cr K-β
Al, Si K-α

Si K-edge

Cr K-α

Fe K-β

Ni K-α

Inside crosshair

Figure 5.9: Average (200 shots) single pixel absorption event (SPAE) spectra measured inside
and outside the shadow of crosshairs. Using the SPAE method, the fluorescence emitted by
bremsstrahlung in stainless steel was resolved and subtracted from the signal to provide the
betatron continuum. The X-ray spectrum at the source (deconvolved spectrum) was retrieved
by dividing the betatron continuum by filters and camera transmissions.

order of the driver laser focal spot. Note that imaging of the crosshairs onto the CCD

chip proves the X-rays originated from the plasma itself.

Single-shot and shot integrated X-ray betatron spectra were measured using the

SPAE technique (c.f. Sec. 5.4). During gas jet experiments, for shielding the line of

sight of the camera was restricted by a rectangular stainless steel pipe that fitted to the

size of the CCD chip. The K-shell fluorescence lines from X-rays generated by collisions

of low-energy (< 10 MeV), high-divergence (> 10 mrad) electrons with the stainless steel

(Fe, Cr, Ni), as well as Al and Si K-shell fluorescence lines from the window and the CCD

dead layer were observed (Fig. 5.9). Since the vacuum pipe was placed downstream from

the crosshairs, this fluorescence formed a uniform background throughout the CCD chip.

Although not desired for betatron measurements, these fluorescence lines provided an

additional energy calibration and resolution measurement of the detector which agreed

with the offline 55Fe radioactive source calibration.

By measuring the X-ray spectrum inside and outside the crosshairs shadow, the X-

ray betatron continuum was retrieved by subtracting the inner spectrum multiplied by a

fitting parameter (which represents the fluorescence), from the outer spectrum (Fig. 5.9).
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Figure 5.10: (a) Average (200 shots) electron bunch charge distribution produced during gas
jet experiments. The distribution is fitted by an exponential-like distribution with a 16 MeV
damping energy. (b) Average X-ray betatron spectrum measured at the CCD camera. The fit
was obtained for an initial transverse Gaussian electron distribution of rms radius of 0.2 µm,
the energy distribution of figure (a) and a total charge of 14 pC. (c) Confidence range of the
fit of figure (b) obtained for initial transverse distributions of 0.1 and 0.3 µm rms radius, and
respective total charge of 74 pC and 6.5 pC.

The spectrum of betatron X-rays incident on the camera was then retrieved by dividing

the betatron continuum by the transmission functions of the vacuum window, the Silicon

dead layer of the CCD, and the absorption of the depletion region of Silicon (Fig. 5.9).

Without the high spectral resolution of these measurements, the fluorescence peaks

would be smeared over the spectrum and counted as betatron radiation.

To model accurately the X-ray betatron radiation emitted by the complex electron

energy distributions produced during gas jet experiments, and hence to provide a correct

understanding of both electron dynamics and plasma wave structure, numerical integra-

tion [202, 8] of Eq. (5.12) over discretely sampled trajectories of electrons oscillating in
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an ion channel was performed. The initial transverse electron distribution was assumed

Gaussian, centered on-axis and was sampled over 262144 particles which produced good

numerical convergence. The electron energy distribution was assumed to be exponential

with a 16 MeV damping energy which well models the average experimental energy dis-

tribution (Fig. 5.10a) whose high-energy tail (≥ 11.8 MeV) had ' 5 pC of charge. The

output spectrum was convolved with the vacuum window and camera transfer functions

and the 0.25 keV FWHM Gaussian response of the detector.

Figure 5.10b shows the comparison between the betatron spectrum, obtained after

fluorescence subtraction (as in Fig. 5.9), and the best fit calculated spectrum which

was calculated for a 5 µm Si dead layer of the CCD camera and a rms radius of the

bunch of 0.2 µm. The acceleration length was assumed to be the focusing dephasing

length, L ∼ λpγ
2
p/2 ' 196 µm (ne = 2.8×1019 e−/cm3). The amplitude was matched by

increasing the simulated bunch charge to ' 14 pC. As the bunch accelerates, some of the

electrons pass dephasing and lose energy before exiting the plasma [153]. Although these

electrons do not exit the plasma at high energy, they contribute to the X-ray betatron

radiation.

Several electron beam parameters were used to provide a confidence range for the

transverse bunch size and an estimate of the beam emittance. While a simulated bunch

radius of 0.1 µm (Fig. 5.10c) provided a good fit of the high energy tail of the X-ray

betatron spectrum, it failed to represent the low energy part of the spectrum. On the

other hand, a bunch radius of 0.3 µm provided a good fit of the low energy X-ray photon

spectrum but overestimated the high energy tail (Fig. 5.10c). This gives a confidence

range on the rms radius of the electron beam inside the plasma, σx ' 0.2± 0.1 µm.

The divergence for a matched beam of the radius inferred from the betatron radiation

(Eq. (5.3)) is σθ . 30 mrad, about twice the measured divergence at the magnetic

spectrometer, and the normalized transverse geometric emittance is inferred to be εx '
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0.24 ± 0.12 mm.mrad for 20 MeV electrons. The discrepancy between the betatron fit

radius of 0.2 µm and the ballistic radius of 0.13 µm calculated using Eq. (5.3) can be

explained by the decrease of transverse momentum of the electron bunch as it crosses and

adiabatically expands in the downstream edge of the plasma [196]. The plasma density

downramp was measured [1] to be long compared to the betatron wavelength, σw '

150 µm ∼ 9–12×λβ, where the ramp was modeled by an error function ne(z) = ne(0)/2×

(1 − erf(z/
√

2σw)). As the plasma density decreases, the plasma wavelength increases

inducing a decrease in focusing strength of the plasma wakefield, an expansion of the

beam and a decrease in angular spread. This effect is difficult to model quantitatively

since at the downstream edge of the plasma the laser energy is partially depleted and

the full “bubble” regime might not apply, in which case the electron trajectories would

not be strongly affected by the plasma density roll-off.

Using the SPAE method, high spectral resolution of betatron radiation emitted from

the oscillation of electrons accelerated in the wake of a laser-plasma accelerator was

obtained. Measured amplitudes of the X-ray spectra were correlated with the electron

bunch charge [7]. Direct X-ray spectra had enough counts to allow calculation of the

X-ray cut-off frequency and verify, within the detection range of the CCD camera (∼ 2–

20 keV), the theoretical shape of betatron X-ray spectra that filter based techniques

assume [210, 193]. X-ray measurements based on the relative absorption of different

filters have a limited resolution (one energy bin per filter) and may occult important

spectral features.
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5.6 High-energy low-energy-spread electron beam ex-

periments

Capillary experiments produced high energy (400–600 MeV), quasi-monoenergetic (∆E <

20%) electron beams. Figure 5.11 shows an example of single-shot energy distribution

close-up (the full range was about ±30 mrad, 5–975 MeV) and betatron spectrum of a

463 MeV (γ = 907), 6.6% FWHM energy-spread, electron beam with a 1.15 mrad rms

divergence angle.
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Figure 5.11: Example of simultaneous single-shot electron energy distribution and X-ray
betatron spectrum. The electron beam is centered about 463 MeV, has 6.6% FWHM energy-
spread and a 1.15 mrad rms divergence. The matched transverse size of the electron bunch,
σx ' 0.12 µm, was calculated for a Gaussian distribution of electrons using Eq. (5.3). The
theoretical X-ray spectrum was calculated using Eq. (5.7), summing over the first 101 odd
harmonics to reach numerical convergence, and assuming a propagation length of 400±200 µm.
The X-ray spectrum at the source (Data/Model without filters) was retrieved by dividing the
betatron spectrum by filters, foils and camera transmissions.

X-ray shadowgrams of the crosshairs were used to infer an upper bound measurement

of the transverse size of the electron bunch. During capillary experiments, the source
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size measurements were limited to the single-pixel resolution ' 4 µm, ∼ 6 times smaller

than the focal spot (w0 ' 23 µm).

The transverse size of the beam was accurately resolved by fitting the spectrum

of the X-ray emission. No fluorescence was observed in the X-ray spectra and the

simple model of electrons propagating in a uniformly charged cylindrical ion channel

[82] (Eq. (5.7)) provided a good fit of the data (Fig. 5.11). With a backing pressure of

250 Torr Hydrogen gas, the on-axis electron density was calculated (c.f. Sec. 5.3) to be

' 4.7 ± 2.3 × 1018 e−/cm3 and, using Eq. (5.3), the standard deviation radius of the

electron bunch inside the plasma was estimated at σx ' 0.12+0.05−0.02 µm, providing

aβ ' 1. With a normalized transverse geometric emittance of εx ' 0.12 mm.mrad, this

463 MeV electron beam is suitable for injection into a free-electron laser (FEL) [127] for

radiation production.

Because the length of the plasma downramp, σw ' 350 µm, was only a few times

longer than the betatron wavelength of these high energy electrons, σw ' 3 × λβ at

γ = 907, the adiabatic expansion of the beam at the downstream edge of the plasma

was neglected. Simulations also show that the laser is strongly depleted and the electron

bunch dephased at the end of the 3.3 cm channel, such that the electron beam is no

longer executing strong betatron oscillations [102]. In addition, since no low energy

electron tail was measured on the magnetic spectrometer, the total collected charge,

Q ' 0.4 pC, was assumed to be the total amount of charge which contributed to the

X-ray betatron emission.

The measured beam size is in close agreement with particle-in-cell simulations [42,

44], confirming that the transverse beam dynamics of LPAs is accurately understood.

Simulations of laser and plasma parameters close to those of the experiment [102, 101]

showed production of electron beams near 300 MeV with 5% FWHM energy spread, 2 fs

FWHM and 1.3 mrad rms divergence, consistent with the experimental measurements



5.6. High-energy low-energy-spread electron beam experiments 138/196

Figure 5.12: Three dimensional VORPAL particle-in-cell simulation of the laser-plasma accel-
erator. The picture represents in false colors the plasma density. For clarity, a section formed
by the intersection of two planes at about 120 degrees from each other has been cut out. This
simulation produced a 300 MeV, 5% FWHM energy spread, 2 fs FWHM long, 1.3 mrad rms
electron beam.

above. The simulations observed a 0.1 µm rms transverse beam size, which had not

previously been measurable experimentally due to resolution limitations. The present

experiments confirm the predicted beam size and hence the presence of a low emittance

beam. The simulated divergence in the plasma is similar to the experimental diver-

gence, which is consistent with the ramp having a small effect on the beam divergence.

In addition to the short ramp length, the simulations have shown that at the plasma

channel exit the laser pulse is strongly depleted and the electron beam is dephased from

the wake [102], which would further suppress the ramp effects [196]. Close agreement of

both beam divergence and size indicates that the physical picture of particles trapping

transversely in the wake observed in the simulations [211, 103, 101] is quantitatively

correct. Comparison of 2D and 3D simulations showed that the wake structure differs

significantly [102]: a higher density spike is produced at the back of the bubble in 3D

because the plasma is converging in two transverse dimensions. This spike has an im-

portant role in injection, as particles on injection trajectories pass close to it and its field
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repels them, resulting in lower transverse beam momentum in 3D than in 2D. It has

been previously observed that 3D simulations better reproduce the experimental beam

divergence [101] (Fig. 5.12). The present experiments demonstrate that the observed

beam radius as well as divergence matches the 3D simulated result, indicating accu-

rate understanding of the transverse injection dynamics of LPAs and the reduction of

transverse momentum due to the spike at the back of the bubble, which are important

physical processes governing beam quality.

The theoretical spectrum in Fig. 5.11 was matched to the experimental amplitude

by varying the propagation length, using the ballistic radius σx ' 0.12 µm. Different

radii were also tried providing an upper bound radius of σx ∼ 0.4–0.5 µm. Using the

ballistic radius, best fit was found for a propagation length L = 400± 200 µm (Nβ ∼ 1)

< Lφ ' 2.9 + 4.9 − 1.3 mm, where L is the length over which the electrons radiated

& 2 keV betatron X-rays.

The X-ray betatron spectrum at the source was retrieved by dividing the collected

X-ray spectrum by the transmission functions of the vacuum window, the laser energy

dumping foils and the CCD, convoluted with the camera energy resolution (Fig. 5.11,

right scale). The peak energy of the X-ray betatron spectrum is found to be ~ωpeak '

1.7 keV. Assuming the emittance was conserved during the acceleration, the minimum

energy of an electron with orbit amplitude rβ ' 0.12 µm, for which the individual

spectral peak energy is greater or equal to the experimental value of ~ωpeak can be

computed using Equation (5.7): γmin ' 666 or Emin
z ' 340 MeV. An estimate of

the accelerating electric-field, i.e., the plasma wakefield amplitude, is given by EWF '

∆Ez/eL ' 3 × 1011 [V/m] ' 1.5 × E0, in reasonable agreement with laser-plasma

acceleration theory [12] and within 30% of the simulated field.

Linear scaling of the X-ray yield on-detector, for plasma densities ranging from 4 to

8×1018 e−/cm3, with the electron bunch charge was verified. The foils used to dump the
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Figure 5.13: Observation of X-ray angular steering by scanning the transverse position of the
capillary. (a) Single-shot X-ray betatron spectra emitted by two 350 MeV electron bunches
produced for two transverse positions of the capillary. The centroid position of these bunches
relative to the axis of the magnetic spectrometer were α ' 3.2 mrad and α ' 8.3 mrad. (b)
Vertically integrated spatial distribution of the respective X-ray betatron emissions.

laser energy and protect the instruments acted as bandpass filters, limiting the sensibility

of the spectrum to the experimental parameters. In addition, preliminary tests showed

the possibility of angular steering of the X-ray beam by scanning the capillary transverse

position, in the horizontal plane, to the laser focal position (Fig. 5.13). The intrinsic

synchronization of this bright X-ray beam with the ultrashort (. 50 fs) laser pulse

makes it an interesting table-top source for pump/probe, diffraction experiments as well

as medical, military, and commercial applications.

Assuming the X-ray pulse duration is on the same order than the electron bunch

duration given by [83] τ ∼ λp/4c ' 12.8 fs, the peak spectral brightness in Fig. 5.11 was

Bmax ∼ (10−3/τσ2
x) × ∂2Imax/∂~ω∂Ω ' 3 × 1022 ph./s/mm2/mrad2/0.1% BW, where

Ω [sr] ≈ 10−6πθ2 [mrad2]. The average X-ray yield over 158 shots was 14% lower than

that of Fig. 5.11 and the accelerator had a f ' 1 Hz repetition rate; hence, the average

brightness wasBavg ∼ (10−3f/σ2
x)×∂2Imax/∂~ω∂Ω ' 3.3×108 ph./s/mm2/mrad2/0.1% BW.

The effective peak spectral brightness and average brightness available behind the

foils were, respectively, Beff.
max ' 0.8 × 1022 ph./s/mm2/mrad2/0.1% BW and Beff.

avg '
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0.88× 108 ph./s/mm2/mrad2/0.1% BW. While the effective brightness is still high, the

X-ray peak energy is fixed (' 5 keV) and determined by the choice of foils and the

X-ray yield is determined by the bunch charge, making this X-ray source tunable in

peak energy, bandwidth, and amplitude.

The SPAE method allowed single-shot high resolution spectral analysis of X-ray

spectra. Because of setup constraints the betatron radiation emitted during both gas

jet and capillary experiments was strongly attenuated by filters, foils, and the camera

vacuum window. Placing the camera in vacuum and an intelligent choice of filters to

dump the laser energy should enhance the acquired X-ray spectral range. However, to

measure such broader X-ray energy range, which can extend up to ∼ 100 keV [111, 193],

using the SPAE method, would require the development of thicker pixelated detectors,

possibly made of Silicon [212] or Cadmium Zinc Telluride (CZT) [213], sensitive to high

energy X-rays.
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5.7 Conclusion

Single-shot direct measurements of betatron radiation generated by gas jet and capillary-

based laser-plasma accelerators was demonstrated using the single photon absorption

event technique. The analysis method was shown to provide high resolution, reliable

single-shot spectral information throughout the sensitivity range of the detector (∼ 2–

20 keV), a pixelated X-ray Silicon CCD camera. Both single-shot and shot integrated

betatron spectra were presented and the theoretical continuum-like shape of these spec-

tra, which filter based techniques assume, was observed.

The high spectral resolution allowed accurate retrieval of betatron continua produced

by high charge (> 1 pC), low energy (< 100 MeV), high energy-spread electron beams

by deconvolving a narrowband X-ray background from the raw spectra. An upper bound

of the electron beam size, σx < 5 ± 2.5 µm, was provided using X-ray shadowgrams.

A parallel numerical code [8] was used to successfully fit the X-ray betatron spectra

and provide a measurement of the size of the electron bunch inside the plasma wave,

σx ' 0.2 ± 0.1 µm. An explanation for the discrepancy of these spectral fits with the

ballistic model developed in this thesis was provided [196]. For downstream plasma

density ramp much greater than the betatron wavelength, σw � λβ, and for an non-

depleted laser pulse, an adiabatic expansion of the electron beam occurs as it exits the

plasma, inducing a decrease in angular spread. The larger electron beam radius for lower

energy electrons is also consistent with space charge affecting these lower energy beams

[214] or un-matched propagation.

Simultaneous single-shot analysis of the electron and X-ray distributions of low charge

(< 1 pC), high energy (∼ 0.5 GeV), low energy-spread (< 10%) electron beams were

presented. X-ray shadowgram analysis provided an upper bound for the transverse

electron beam size of σx < 4 µm. In this case, the ballistic projected electron beam size,

σx ' 0.12 µm, was shown to be accurate. The normalized transverse geometric emittance
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was calculated to be εx ' 0.12 mm.mrad, making these electron beams good candidates

for FEL experiments [127]. In addition, an estimate of the plasma wakefield amplitude,

EWF ' 3× 1011 [V/m] ' 1.5×E0, was calculated using single-shot measurement of the

X-ray peak energy, ~ωpeak ' 1.7 keV.

The total X-ray yield was correlated with the electron bunch charge in both types

of experiments. An average brightness of 3.3 × 108 ph./s/mm2/mrad2/0.1% BW was

achieved with ∼ 0.5 GeV electron beams. A single-shot peak spectral brightness of

3× 1022 ph./s/mm2/mrad2/0.1% BW was calculated. The capillary-based laser-plasma

accelerator was shown to be a stable, tunable, source of collimated 5 keV X-ray photons

at the detector with peak spectral brightness and average brightness suitable for X-ray

experiments and commercial applications.





Chapter 6

Discussion and Conclusions

This thesis presented a suite of diagnostics , designed to handle the advantages and disad-

vantages inherent in laser-plasma accelerators compared to conventional RF accelerators.

The diagnostics have been chosen because they provide non-destructive measurement of

the key attributes of the accelerated electron bunches in a single-shot format. These

diagnostics include the characterization of the electron bunch charge or the detection of

γ-radiation due to bremsstrahlung from the deceleration of electrons in the target cham-

ber using commercially available product such as an Integrated Charge Transformer

(ICT) and a Health Physics Instruments (HPI) Model 6020 Geiger-Mueller (GM) γ-

ray monitor (Fig. 6.1a). It includes also single-shot electron spectroscopy (Fig. 6.1b),

high-sensitivity plasma density measurements (Fig. 6.1c), single-shot betatron X-ray

spectroscopy (Fig. 6.1d), and single-shot spatiotemporal characterization of coherent

transition radiation (CTR) (Fig. 6.1e).

To simplify plasma density measurements which provides key parameters of the ac-

celerator such as the dephasing length and the pump depletion length, a wavefront sensor

was used (Sec. 3.1). The ease of use is greatly improved since the design requires only

one arm of a non-perturbative probe laser beam and the analysis is limited to an Abel
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Figure 6.1: Simultaneous single-shot diagnostics available at the LOASIS. (a) Integrated
Charge Transformer (ICT) measurements of the bunch charge and Geiger-Mueller (GM) γ-
ray monitoring as a function of the backing pressure of the gas jet. (b) Broadband electron
spectroscopy provides the energy distribution of the electron bunches. (c) Transverse inter-
ferometry provides the plasma density, i.e., the plasma wavelength. (d) X-ray spectroscopy
provides a measurement of the transverse size of the bunch and, in combination with electron
spectroscopy, an estimate of the transverse emittance. (e) Characterization of the coherent
transition radiation (CTR) provides a measurement of the bunch length.

inversion. The technique, which can be used for any phase sensitive measurement, was

benchmarked with folded-wave interferometry-based measurements at different uniform

plasma densities and for steep density gradients. It was shown the wavefront sensor-

based technique provides about 8 times higher phase sensitivity than conventional inter-

ferometry. The characterization of the plasma density has been used in the experiments

presented in this thesis as an optimization tool of the laser-plasma accelerator.

An important step toward the control of an accelerator is to provide a reliable, con-
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trollable injection mechanism. Using an active beam pointing system of the laser, a

stable colliding pulse optical injector was developed (Sec. 3.2). Experiments demon-

strated repeatable operation over hours with ∼ 20% charge stability. It was shown

that timing, density and collider intensity experimental scans are consistent with sim-

ulations. Because the low energy of the resulting electron bunches is attributed to the

limited acceleration length, future experiments will include guiding of the driver using

a third laser pulse to provide a plasma channel (Sec. 2.4). Simulations indicate that

for a guided driver, the colliding pulse technique may produce ultrashort 200–400 MeV

electron bunches of tens of pico-Coulombs of charge and narrow energy spread.

Analysis of the electron bunch temporal profiles is necessary in order to demonstrate

the production of high-quality bunches and the applicability of the LPA as a future

collider and for femtosecond pump-probe applications. In an LPA, the accelerated elec-

trons emit coherent transition radiation (CTR) in the THz regime as they cross the

plasma-vacuum boundary (dielectric discontinuity). Such high peak-power THz pulses,

of the order of 100’s of MV/cm, suitable for high-field pump-probe experiments, also

provide a non-invasive bunch-length diagnostics.

In Sec. 4.1, the ability to generate THz pulses with more than 5 µJ of energy was

demonstrated. A new design of the optical setup provided a good (near Gaussian) focus

mode quality and the production of peak electric field of the order of 0.3 MV/cm. The

pre-pulse dynamics of the driver laser was shown to significantly affect the performance

of the LPA and the generation of THz radiation. The implementation of a pulse contrast

enhancement technique, the crossed-polarized-wave filtering technique (XPW), showed

a dramatic increase in the production of charge (∼ 4 times), THz, γ-rays, and neutrons,

but also a dramatic decrease in shot-to-shot variability, from a 100% level prior to XPW

implementation to a 10% level after implementation.

In addition to providing an intense source of ultrashort THz pulses, CTR was used to
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characterize the duration of the electron bunches produced in the LPA. Both scanning

and single-shot techniques were used to provide a bunch-length measurements. A first

series of temporal measurements was performed on low energy electron beams produced

in a plasma downramp by measuring the amount of CTR energy emitted in four wave-

length bands using two different filters to cut the spectrum (Sec. 4.2.2). The bunch

duration at the end of the plasma downramp was calculated to be 200±100 fs, in agree-

ment with simulations, indicating the production inside the plasma of 30 fs long electron

bunches, making plasma downramp injection a suitable LPA injector.

In Sec. 4.2.3, the spatiotemporal profile of the focused THz pulse was measured using

two-dimensional electro-optic (EO) sampling. It was shown that the near single-cycle

THz pulses experience strong spatiotemporal coupling which spatially distributes the

spectral content of the pulses, indicating the necessity to measure the full spatiotemporal

waveforms in order to provide an accurate bunch duration measurement. To this end,

a new single-shot technique, temporal cross-electric field (TEX), which provides both

high temporal resolution and one-dimensional imaging was demonstrated (Sec. 4.2.4).

TEX is significantly easier to implement than previous high-resolution, single-shot EO

techniques because it does not require the use of nonlinear processes other than the

linear Pockels effect in the EO crystal. The spatiotemporal waveforms of THz pulses

demonstrated the presence of a two-component structure with low-charge (10%), short

(50 µm rms) bunch and a high-charge (90%), long (140 µm rms) bunch. The dependence

of the THz spectrum on the electron-bunch duration makes it possible to detect the

presence of short electron-bunch substructure with high sensitivity.

Single-shot X-ray spectroscopy measurements were reported of betatron radiation

from both broadband sub-100 MeV and low-energy-spread 0.5 GeV electron beams pro-

duced by a laser-plasma accelerator. The measurements demonstrate the synchrotron

nature (i.e., continuum form) of the betatron emission from both gas-jet and capillary-
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based laser-plasma accelerators. Measurement of single-shot spectra in the range 2–

20 keV was enabled by using a detection array in the SPAE technique. Comparison of

the measured spectra to analytical and numerical models of betatron radiation indicated

the electron bunch radius inside the plasma to be ∼ 0.1–0.2 µm. In combination with

divergence measurements, a normalized transverse emittance as low as 0.1 mm mrad

was inferred for a 460 MeV, 2.8% rms energy-spread electron bunch. Reducing the

beam emittance is necessary to enhance a variety of applications of relativistic electron

beams, such as X-ray FELs and colliders for high energy physics. The data agree with

simulated bunch size and divergence, consistent with the simulated physical picture of

self-trapping and emittance.

In conclusion, new techniques have been successfully implemented: wavefront sensor-

based plasma density measurements [1], several single-shot THz diagnostics (temporal

cross-correlation, optical sideband, spectral encoding) [3, 184, 4], and single-shot x-

ray spectroscopy [5, 6, 7]. These diagnostics have been used to characterize several

operational mode of the LPA: channeled and unchanneled self-injection [148], colliding

pulse injection [133] and downramp injection [2]. The electron bunches produced were

shown to be suitable for a wide variety of applications that demand high-quality beams.

Time ran out and I did not have the chance to pursue further experiments. The

development of permanent X-ray diagnostics on both gas jet and capillary setups would

allow a more systematic correlation of the bunch size and wake structure with the accel-

erator performance. TEX offers a great ease of use and could provide a measure of fine

structures in the electron bunch as a function of various parameters of the accelerator.

In particular, it would be very profitable to observe the evolution of the bunch in collid-

ing pulse experiments as the arrival time of the collider is scanned. Finally, additional

simulations and engineering of the gas jet would provide an improved flatness of the

density profiles currently available.
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Further advances in the development of an LPA used as a collider and a reliable light

source require improvements of the stabilization and efficiency of the acceleration. The

enhancement of laser pulse contrast and the development of an active beam pointing

system have shown dramatic increase of the accelerator performance both in electron

bunch quality and shot-to-shot stability. Active laser mode control using a pair de-

formable mirror/wavefront sensor may provide additional control over the laser-plasma

interaction and is being implemented at the LOASIS.

To compete with RF accelerators as colliders, LPAs have to demonstrate a systematic

decoupling of the injection, the ability to accelerate both electrons and positrons, and

the ability to stage its acceleration to produce high charge, high density, low emittance

bunches with TeV-energies.
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Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, Nature Physics 2, 696
(2006).



Bibliography 160/196

[11] E. Esarey, P. Sprangle, J. Krall, and A. Ting, IEEE Trans. Plasma Sci. 24, 252
(1996).

[12] E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys. 81, 1229 (2009).

[13] A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi,
V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, Nature 377, 606
(1995).

[14] K-C. Tzeng, W. B. Mori, and T. Katsouleas, Phys. Rev. Lett. 79, 5258 (1997).

[15] D. Gordon, K.-C. Tzeng, C. E. Clayton, A. E. Dangor, V. Malka, K. A. Marsh,
A. Modena, W. B. Mori, P. Muggli, Z. Najmudin, D. Neely, C. Danson, and
C. Joshi, Phys. Rev. Lett. 80, 2133 (1998).

[16] J. B. Rosenzweig, Phys. Rev. A 38, 3634 (1988).

[17] F. Amiranoff, D. Bernard, B. Cros, F. Jacquet, G. Matthieussent, P. Miné,
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R. Huber, R. A. Kaindl, E. Esarey, and W. P. Leemans, Phys. Rev. Lett. 96,
014801 (2006).

[71] M. L. Ter-Mikaelian, High-energy electromagnetic processes in condensed media,
Wiley, New York, 1972.

[72] D. J. Griffiths, Introduction to Electrodynamics, Prentice-Hall, third edition, 1999.

[73] U. Happek, A. J. Sievers, and E. B. Blum, Phys. Rev. Lett. 67, 2962 (1991).

[74] Y. Shibata, T. Takahashi, T. Kanai, K. Ishi, M. Ikezawa, J. Ohkuma, S. Okuda,
and T. Okada, Phys. Rev. E 50, 1479 (1994).

[75] D. Mihalcea, C. L. Bohn, U. Happek, and P. Piot, Phys. Rev. ST Accel. Beams
9, 082801 (2006).

[76] G. Fubiani, G. Dugan, W. Leemans, E. Esarey, and J. L. Bobin, AIP Conference
Proceedings 647, 203 (2002).

[77] W. P. Leemans, C. G. R. Geddes, J. Faure, Cs. Tóth, J. van Tilborg, C. B.
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[157] Cs. Tóth, J. Faure, J. van Tilborg, C. G. R. Geddes, C. B. Schroeder, E. Esarey,
and W. P. Leemans, Opt. Lett. 28, 1823 (2003).

[158] C. G. R. Geddes, E. Cormier-Michel, E. Esarey, K. Nakamura, G. R. Plateau,
C. B. Schroeder, C. Toth, D. L. Bruhwiler, J. R. Cary, and W. P. Leemans, AIP
Conference Proceedings 1086, 12 (2009).

[159] H. Suk, N. Barov, J. B. Rosenzweig, and E. Esarey, Phys. Rev. Lett. 86, 1011
(2001).



169/196 Bibliography

[160] R. G. Hemker, N. M. Hafz, and M. Uesaka, Phys. Rev. ST Accel. Beams 5, 041301
(2002).

[161] A. J. Gonsalves, E. Esarey, C. G. R. Geddes, W. P. Leemans, C. Lin, K. Naka-
mura, D. Panasenko, C. B. Schroeder, and C. Tóth, PAC Conference Proceedings
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Appendix A

LPA theory

In this Appendix, we present the calculation details of the cold fluid theory of the laser-

plasma accelerator presented in Chapter 2. We first present a brief calculation of the

minimum intensities necessary to fully ionize both Hydrogen and Helium gases. Using a

Lagrangian description of a plasma wave, the cold non-relativistic wavebreaking electric

field is calculated. The general equations of the Eulerian fluid model of the laser-plasma

interaction [12] are derived and solutions in one dimension and under the quasi-static

approximation (QSA) are presented. Laser propagation and plasma equations are then

rewritten to include the transverse dimension of the laser pulse.

Ionization: Assuming the electric field of the laser is strong enough to fully ionize the

plasma, the ionization threshold of a gas can be calculated by expressing the electric

potential of a bounded electron:

V (r) = − Ze2

4πε0|r|︸ ︷︷ ︸
atom

− eEr︸︷︷︸
laser

(A.1)

which is maximum for dV (r)/dr = 0, i.e., rmax =
√
Ze/4πε0E, where e is the charge of

the electron, ε0 is the permittivity of vacuum and Z is the atomic number. The laser

electric field E diminishes the electric potential barrier that confines the electron. When

the potential is dropped below the ionization energy of the electron, i.e., V (rmax) < −Ei,
the bond is broken and the electron is free. Thus, the minimum laser field to ionize the
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atom is given by:

V (rmax) = − Ze
2

4πε0

√
Ze

4πε0E
− eE

√
Ze

4πε0E
< −Ei (A.2)

⇔ E > πε0
E2
i

Ze3
(A.3)

The average power per unit area carried by an electromagnetic wave is given by [72]

I = cε0E
2/2. Hence, the laser intensity necessary to fully ionize a gas is given by:

Imin =
π2cε30
2e6

E4
i

Z2
(A.4)

Imin [W/cm2] ' 4× 109E
4
i [eV]

Z2
(A.5)

Table A.1 gives the ionization levels for Hydrogen (H+) and Helium (He2+):

1+ 2+
H 1.4× 1014 –
He 1.4× 1015 8.8× 1015

Table A.1: Ionization thresholds ([W/cm2]) for Hydrogen and Helium based on
Eq. (A.5).

Non-relativistic cold wavebreaking field: Using a one-dimensional Lagrangian de-

scription of the fluid, i.e., following a particle, the non-relativistic cold wavebreaking

electric field can be found [51]. At a given time the position of two sample particles is

given by: z1(t) = z0,1 + Z1(z0,1, t)

z2(t) = z0,2 + Z2(z0,2, t)
(A.6)

where z0,i is the initial longitudinal position and Zi is the separation. Wavebreak-

ing occurs when the ordering of the particles is changed [51], which means that if at

t = 0, z0,1 < z0,2,∃t, z1(t) < z2(t). The non-wavebreaking condition is then given by

∀t, z2(t)− z1(t) > 0⇔ Z2 − Z1 > −(z0,2 − z0,1)⇔ ∂Z/∂z0 > −1.

The equation of motion provides a solution for Zi(z0,i, t). The electric field is given by
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solving the Gauss-Maxwell equation (ρ is the charge density and n the electron density):

∇ ·E = ρ/ε0 (A.7)

∂E/∂zi = ∂E/∂Zi = en/ε0 (A.8)

E =
en

ε0
Zi (A.9)

and for an electron Newton’s equation is given by:

m
d2Zi
dt2

= −eE (A.10)

where m is the mass of the electron. Substituting Eq. (A.9) and Eq. (2.1) into Eq. (A.10)

provides the following ODE:
d2Zi
dt2

+ ω2
pZi = 0 (A.11)

which solutions can be written Zi(z0,i, t) = (A/kp) sin(kpz0,i−ωpt). The non-wavebreaking

condition implies |A| < 1. Finally, the electric field is given by substituting this expres-

sion of Zi(z0,i, t) into Eq. (A.9): E(z0,i, t) = A(en/ε0kp) sin(kpz0,i − ωpt). At wavebreak-

ing, A = 1 and:

Emax ≡ E0 =
en

ε0kp
=
mc

e
ωp = c

√
mn

ε0
(A.12)

Note that at a given time, t, the wave can be described by the following parametric

equation (the subscript i is dropped):z(z0, t) = z0 + (A/kp) sin(kpz0 − ωpt)

E(z0, t)) = AE0 sin(kpz0 − ωpt)
(A.13)

Cold fluid plasma equations: Maxwell’s equations [72] are given by:

∇ · E = q/ε0 (A.14a)

∇ ·B = 0 (A.14b)

∇× E = − ∂B/∂t (A.14c)

∇×B = µ0j + µ0ε0 ∂E/∂t (A.14d)

where µ0 is the permeability of vacuum (µoε0c
2 = 1), q = −e(n − n0) is the volume

charge density, with n0 the initial electron density, and j = −env is the volume current
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density. To simplify the problem we introduce the potentials A and V :B = ∇×A

E = −∇V − ∂A/∂t
(A.15)

and we consider the Coulomb gauge (∇·A = 0) as to simplify the calculation of the scalar

potential V which represents the low frequency (ωp � ω) plasma density perturbation.

In the Coulomb gauge, substituting Eq. (A.15) into Eq. (A.14a) yields Poisson’s equation

(potential equation):

∇2V =
e

ε0
(n− n0) (A.16)

Using the definition of the current crossing a surface S with normal vector a [72], I =∫
S j·da, the total charge leaving a volume per unit of time is found to be

∮
S j·da =

∫
V(∇·

j)dτ = −d/dt
∫
V −endτ = e

∫
V ∂n/∂tdτ which, since it is true ∀V , yields ∇· j = e∂n/∂t.

Thus, the continuity equation (conservation of charge) is given by:

∇ · nv = −∂n/∂t (A.17)

The wave equation is obtained by substituting Eq. (A.15) into Eq. (A.14d):(
∇2 − 1

c2

∂2

∂t2

)
A =

en

ε0c2
v +

1

c2

∂

∂t
∇V (A.18)

Starting from the Eulerian fluid equation [79] given by:(
∂

∂t
+ v · ∇

)
p = −e(E + v ×B) (A.19)

the momentum equation is obtained, after some algebra, by substituting Eq. (A.15) into

Eq. (A.19). The product rule∇(A·B) = A×(∇×B)+B×(∇×A)+(A·∇)B+(B·∇)A

yields∇p2 = 2[p×(∇×p)+(p·∇)p] = 2γm[v×(∇×p)+(v·∇)p] where γ is the electron

Lorentz factor. Also, p = γmv implies γ =
√

1 + p2/m2c2 which provides the equation:

∇γ = (1/2γm2c2)∇p2. Thus, (v·∇)p = (1/2γm)∇p2−v×(∇×p) = mc2∇γ−v×(∇×p)
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and:

(∂/∂t+ v · ∇)p = e [∇V + ∂A/∂t− v × (∇×A)] (A.20)

∂

∂t
(p− eA) +mc2∇γ − v × (∇× p) = e∇V − v × (∇×A) (A.21)

∂

∂t
(p− eA) +∇(γmc2 − eV ) = v × [∇× (p− eA)] (A.22)

Calculating the curl of Eq. (A.22):

∂

∂t
∇× (p− eA) = ∇× v × [∇× (p− eA)] (A.23)

shows that ∇× (p − eA) is stationary so that ∇× (p − eA) = ∇× (p − eA)|t=0 = 0

since at t = 0 the laser is absent and there is no perturbation. Therefore, Eq. (A.22)

can be written as follows:

∂p

∂t
= ∇(eV − γmc2) + e

∂A

∂t
(A.24)

where Fp = −mc2∇γ is the laser ponderomotive force.

Finally, introducing u = γβ, kp = ωp/c, the normalized vector potential a = eA/mc,

and the normalized scalar potential φ = eV/mc2, the general set of equations describing

the laser-plasma interaction for a cold fluid plasma is found to be:

∇2φ = k2
p (n/n0 − 1) (A.25a)

∇ · (nu/γ) = − ∂n/∂t (A.25b)(
∇2 − 1

c2

∂2

∂t2

)
a = k2

p

nu

γn0

+
1

c

∂

∂t
∇φ (A.25c)

∂u/∂t = c∇(φ− γ) + ∂a/∂t (A.25d)

One-dimensional plasma wake: Considering z the normalized vector of the prop-

agation axis, ∇ = ∂/∂z z and the Coulomb gauge can be written ∇ · a = ∂az/∂z = 0,

so that az = az|t=0 = 0 and a = a⊥. Projecting the general momentum equation

Eq. (A.25d) onto the transverse direction, it is shown that the transverse motion of the

electron is due purely to the laser (u⊥ = a⊥ = a).

It is convenient to introduce an algebraic transformation from the laboratory frame

to the laser pulse frame (z, t) 7→ (ξ, τ), with ξ = z − ct and τ = t. Here, the phase

velocity of the plasma wave, i.e., the group velocity of the laser, is considered equal to
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the speed of light (vp ' vLg = c(1−ω2
p/ω

2)1/2 ' c for ωp≪ ω). As discussed in Sec. 2.6,

the group velocity is responsible for one of the limitations to laser-plasma acceleration:

the dephasing between the accelerated particles and the laser pulse.

In the moving frame (ξ, τ) and in the QSA, the continuity equation Eq. (A.25b)

becomes ∂ [n(1− βz)] /∂ξ = 0, so that n(1− βz) = n|t=0(1− βz|t=0) = n0:

n/n0 = (1− βz)−1 (A.26)

In the same manner, the longitudinal projection of the momentum equation Eq. (A.25d):

c ∂(φ− γ)/∂z = ∂uz/∂t (A.27)

becomes ∂ [φ− γ(1− βz)] /∂ξ = ∂uz/∂τ = 0, which provides the relation:

γ(1− βz) = 1 + φ (A.28)

Writing γ =
√

1 + u2
⊥ + u2

z =
√

1 + a2 + γ2β2
z , the Lorentz factor associated with the

electron is given by γ =
√

(1 + a2)/(1− β2
z ). Substituting this expression of γ into

Eq. (A.28) and noting γ2
⊥ = 1 + a2, yields:

βz =
γ2
⊥ − (1 + φ)2

γ2
⊥ + (1 + φ)2

(A.29)

Hence,

γ =
γ2
⊥ + (1 + φ)2

2(1 + φ)
(A.30)

uz =
γ2
⊥ − (1 + φ)2

2(1 + φ)
(A.31)

and Eq. (A.26) becomes:
n

n0

=
γ2
⊥ + (1 + φ)2

2(1 + φ)2
(A.32)

where the potential φ of the plasma wave is solution of Poisson’s equation, obtained by

writing Eq. (A.25a) in the moving frame and substituting Eq. (A.32) into it:

∂2φ

∂ξ2
=
k2
p

2

[
γ2
⊥

(1 + φ)2
− 1

]
(A.33)
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Laser propagation: As discussed in Sec. 2.4, for an under-dense plasma (ωp � ω),

laser and plasma variables can be separated in high and low frequency components so

we can write a ∼ af , u = uf + us, φ ∼ φs and n ∼ ns where the subscripts “f” and

“s” denote the fast and slow response of each variable, respectively. In the quasi-static

approximation (QSA), the second term on the right-hand side of Eq. (A.25c), ∂∇φ/∂ct,
can be neglected and the wave equation in the frame of the laser pulse ((z, t) 7→ (ξ, τ))

is given by [215, 216]: (
∇2
⊥ +

2

c

∂2

∂ξ∂τ
− 1

c2

∂2

∂τ 2

)
a = k2

pρu (A.34)

where ρ = n/γn0. In the 1D case and in the Coulomb gauge (a = a⊥) the projection

of the momentum equation, Eq. (A.25d), onto the transverse dimension, ∂u⊥/∂t =

c∇⊥(φ−γ)+∂a⊥/∂t, provides the relation u⊥ = a⊥. For a linearly polarized laser pulse

with electric field of the form af = as(r, ξ, τ)eikξ, the term ∂2/∂τ 2 in Eq. (A.34) can be

neglected assuming the envelope as(r, ξ, τ) evolves slowly:(
∇2
⊥ +

2

c

∂2

∂ξ∂τ
+

2ik

c

∂

∂τ

)
as = k2

pρ as (A.35)

Finally, in the paraxial approximation where the pulse follows the main axis of prop-

agation, spatial variations are slow and the term ∂2/∂ξ∂τ is dropped, providing the

paraxial wave equation: (
∇2
⊥ +

2ik

c

∂

∂τ

)
as = k2

pρ as (A.36)

In the limit vp = c and in the QSA, it was shown, Eqs. (A.30, A.32), that ρ = 1/(1 + φ)

where φ is solution of Eq. (A.33), ∂2φ/∂ξ2 = (k2
p/2)[γ2

⊥/(1 + φ)2 − 1]. Hence, the laser-

plasma interaction can be calculated in 1D in an iterative fashion by solving Eq. (A.33)

and update the laser pulse profile by solving Eq. (A.36).

Using Eq. (A.36) the usual propagation properties of Gaussian modes in vacuum can

be retrieved. Gaussian modes are of interest because in the experiments the laser pulse

transverse profiles are close to Gaussian distributions. In vacuum, ρ = n/γn0 = 0 and for

cτ ≡ ct = z, Eq. (A.36) becomes (∇2
⊥ + 2ik∂/∂z)as = 0. This equation is known as the

Helmholtz paraxial equation [29]. A particular set of solutions to the Helmholtz paraxial

equation are paraboloidal waves of the form as(r) ≡ as = (A/z) exp(−ikr2/2z) which

are the paraxial approximation of the spherical waves (A/r) exp(−ikr) for r2 ≈ x2 + y2

and (x, y) � z. A more general solution is given by replacing z by q(z) = z − iz0 in
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the Helmholtz paraxial equation, where z0 is called the Rayleigh range and z0/c is the

characteristic laser evolution time. The function 1/q(z) can be separated into real and

imaginary parts: 1/q(z) = 1/R(z)− iλ/πw(z)2 where R(z) = z[1 + (z0/z)2] is the radius

of curvature of the wavefront and w(z) = w0

√
1 + (z/z0)2 is the waist of the beam and

w0 =
√
λz0/π is the beam waist at focus. The paraboloidal wave equation then yields

the solution:

as = A0
w0

w(z)
e−r

2/w(z)2e−ikr
2/2R(z)+iζ(z) (A.37)

where A0 = A/iz0 is a constant and ζ(z) = arctan(z/z0) is the Gouy phase shift, i.e.,

the phase difference between a Gaussian and a plane wave traveling along z.

Two-dimensional model: Plasma equations can be rewritten to include the trans-

verse dimension of a laser pulse solution of the paraxial wave equation, assuming cylin-

drical symmetry [54, 215, 216, 217]. Poisson’s equation, Eq. (A.25a), is given by

∇2φ = k2
p(n − ni)/n0 where n0 = ni(r = 0) and can be written in the laser frame

as follows: (
∇2
⊥ +

∂2

∂ξ2

)
φ = k2

p(γρ− ρ0) (A.38)

where ρ0 = ρ(t = 0) = ni/γ0n0 with γ0 = 1 for a cold plasma. The momentum equation,

Eq. (A.25d), yields ∂(u−a)/∂τ−c∂(u−a)/∂ξ = c∇(φ−γ) where the term ∂(u−a)/∂τ

can be neglected in the slow varying envelope approximation (SVEA):

∂

∂ξ
(us − as) = ∇(γs − φs) (A.39)

The wave equation on a, Eq. (A.34), can be written in the slowly varying envelope and

paraxial approximations as:

∇2
⊥as = k2

pρus −
∂

∂ξ
∇φs (A.40)

In the laser frame R the Hamiltonian of the 2D system is written (c.f. Sec. 2.5,

Eq. (A.74)): HT = mec
2[γ−(φ−a)]. Also, Eqs. (A.15) yield E = −(E0/kp)(∇⊥φ+∇zφ+

(1/c)∂a/∂τ − ∂a/∂z). Thus, in the SVEA the longitudinal component of the electric

field becomes Ez = Ez = −(E0/kp)∂(φ− az)/∂z and φ− az = −(kpγp/E0)
∫
Ez(kpu)du

= γp(φ − az) (c.f. Sec. 2.5, Eqs. (A.71–A.73)). Finally, in the case of a cold plasma
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H0 = HT/γpmec
2 = 1 = γs − βpuz,s − (φs − az,s) which yields the equation of energy:

γs − uz,s = 1 + φs − az,s (A.41)

In the SVEA, the continuity equation, Eq. (A.25b), provides the relation ∂(ns/n0)/∂ξ =

∂(ρsγs)/∂ξ = ∇ · (ρsus) = ∇⊥ · (ρsu⊥,s) + ∂(ρsuz,s)/∂ξ. Thus, ∂[ρs(γs − uz,s)]/∂ξ =

∇⊥ ·(ρsu⊥,s). Substituting Eq. (A.41) into this relation provides the following continuity

equation:
∂

∂ξ
[ρs(1 + Ψs)] = ∇⊥ · (ρu⊥,s) (A.42)

where Ψs = φs − az,s. Finally, Eqs. (A.38–A.42) can be combined, after some algebra,

to provide the wake equation [54, 215, 216, 217]:

∂2Ψs

∂ξ2
= (k2

pρs −∇2
⊥)uz,s +

∂

∂ξ
(∇⊥ · u⊥,s) (A.43)

where,

ρs =
ρ0 + (1/k2

p)∇2
⊥Ψs

1 + Ψs

(A.44)

uz,s =
u2
⊥,s + a2

s −Ψs(2 + Ψs)

2(1 + Ψs)
(A.45)

u⊥,s =
1

k2
pρs

∂

∂ξ
(∇⊥Ψs) (A.46)

and,

γ =
1 + u2

⊥,s + a2
s + (1 + Ψs)

2

2(1 + Ψs)
(A.47)

Substituting Eq. (A.44) into the paraxial wave equation, Eq. (A.36), yields:(
∇2
⊥ +

2

c

∂2

∂ξ∂τ
+

2ik

c

∂

∂τ

)
as = k2

p

ρ0 + (1/k2
p)∇2

⊥Ψs

1 + Ψs

as (A.48)

Equations (A.43) and (A.48) describe the 2D cold axisymmetric, quasi-static laser-

plasma interaction.

Refractive guiding: The index of refraction for a plane wave traveling in a plasma

can be obtained by expressing the dispersion relation for that wave. Taking the curl of

the Faraday equation (Eq. (A.14c)), substituting Ampère’s law (Eq. (A.14d)) into it and

using the vectorial identity ∇×∇×A = ∇(∇ ·A)−∇2A yields the wave equation:
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∇2E−∇(∇ ·E)− µ0ε0∂
2E/∂t2 = µ0∂j/∂t. For monochromatic plane wave solutions of

the form E(r, t) = E0 exp[i(k · r)− ωt], we have:

− k2E + k(k · E) +
ω2

c2
E = −iωµ0j (A.49)

Since electromagnetic waves are transverse waves k · E = 0 and:

(ω2 − k2c2)E = −i(ω/ε0)j (A.50)

where j = −n0ev for an under-dense (ωp � ω) plasma of uniform density n0. In the

linear theory and for a non-magnetic plasma Eq. (A.19) provides me∂v/∂t = −eE which

yields v = eE/imeω. Substituting this expression and Eq. (2.1) into Eq. (A.50) yields

the dispersion relation for the linear regime [79]:

ω2 = k2c2 + ω2
p (A.51)

The phase velocity of the laser is then given by (k = ω/vp):

vp = c (1− ω2
p/ω

2)−1/2 (A.52)

and the group velocity by (vg = ∂ω/∂k):

vg = c (1− ω2
p/ω

2)1/2 (A.53)

Hence, in the linear regime the index of refraction of the plasma is given by (η = c/vp):

η =
√

1− ω2
p/ω

2 (A.54)

Note that in Eq. (A.51), k ∈ R if ω2 > ω2
p, i.e., ne < nc (Eq. (2.1)), where nc is the

critical density above which the wave will not propagate through the plasma:

nc = meε0ω
2/e2 (A.55)

= 4π2me/µ0λ
2e2 (A.56)

nc [1019 cm−3] ' 111.5× λ−2 [µm] (A.57)

In the nonlinear regime, a corrective factor is applied to ωp. Looking at the right-hand

side of Eq. (A.36), the effective wavenumber is defined as k2
p,eff. = k2

pρ with ρ = n/n0γ
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and provides the relation ω2
p,eff. ≡ ω2

p = ω2
p,0ρ(r) where ωp,0 = ωp(n = n0). Thus, the

nonlinear index of refraction is given by:

η(r) =

√
1−

n(r)ω2
p,0

n0γ(r)ω2
(A.58)

where n(r) and γ(r) are respectively given by Eq. (A.44) and Eq. (A.47). Since the

quiver motion is the main component of the electron’s motion, γ can be written γ ≈
γ⊥ =

√
1 + a2

f .

As stated in Sec. 2.4, for a maximum on-axis, the radial dependency of the index

of refraction can be used to provide refractive guiding of the laser pulse beyond the

diffraction limited acceleration length, which is typically of the order of the Rayleigh

length. In the presence of a preformed plasma channel of radius r0, modeled by a

quadratic function centered on-axis, and a laser-induced plasma density perturbation

δn(r), the density profile is given by n = n0 + [n(r0)− n0]r2/r2
0 + δn(r) ≡ n0 + ∆n(r) +

δn(r). Hence, the index of refraction can be written:

η(r)2 ≈ 1−
ω2
p,0

γ⊥(r)ω2

[
1 +

∆n(r)

n0

+
δn(r)

n0

]
(A.59)

From Eq. (A.59), it appears the phase velocity (vp = c/η) increases as a function of the

radial distance r for ∂n/∂r > 0 or ∂af/∂r < 0. A preformed plasma density channel

with a minimum on-axis (channel guiding) or a laser pulse peaked on-axis (self-guiding)

can lead to a propagation length inside the plasma of several Rayleigh lengths, a greater

acceleration length and consequently higher electron energies [12].

For a preformed plasma channel of the form ∆n(r) = [n(r0) − n0]r2/r2
0 and for a

Gaussian laser pulse, it is possible to calculate the change of density required to guide

the pulse through it. A generalized form of Eq. (A.37) is given by:

as = A0
w0

rg
exp

[
iζ − (1 + iα)

r2

r2
g

]
(A.60)

where rg ≡ w(z) is the guided spot size, α(z) and ζ(z) are respectively the wavefront

curvature and phase shift. Substituting Eq. (A.60) into the paraxial wave equation,



Appendix A. LPA theory 184/196

(∇2
⊥ + 2ik∂/∂z)as = k2

p,eff.as, leads to (identifying real and imaginary parts):(
2α

r2
g

+ k2
r′g
rg

)(
2
r2

r2
g

− 1

)
= 0 (A.61a)(

− 4

r2
g

− 2kζ ′
)

+
r2

r2
g

[
4

r2
g

(1− α2) + 2kα′ − 4kα
r′g
rg

]
= k2

p +
r2

r2
g

∆n(r)k2
pr

2
g

n0r2
0

(A.61b)

where the right-hand side term of Eq. (A.61b) was given by k2
p,eff. = k2

p(1 + ∆r2/n0r
2
0)

since prior arrival of the laser pulse δn = 0 and γ⊥ = 1. Since these equations are true

∀ r, we have: α = −krgr′g/2

(4/r2
g)(1− α2) + 2kα′ − 4kαr′g/rg = ∆n(r)k2

pr
2
g/n0r

2
0

(A.62)

Substituting the expression of α into the second equation of Eq. (A.62) and defining the

normalized waist Rg = rg/r0 yields [120]:

d2Rg

dz2
=

1

Z2
0R

3
g

(
1− ∆n

∆nc
R4
g

)
(A.63)

where Z0 = kr2
0/2 and [54],

∆nc = 4n0/k
2
pr

2
0 (A.64)

= 1/πrer
2
0 (A.65)

∆nc [1018 cm−3] ' 113× r−2
0 [µm] (A.66)

is the critical channel depth necessary to guide a spot of size rg = r0. Note that for

a matched beam spot size w0 = r0, Z0 = z0, i.e., the Rayleigh length of the Gaussian

beam. Thus, for parameters close to the capillary experiments performed at the LOASIS

such as an initial plasma density n0 = 3 × 1018 e−/cm3 and a matched beam spot size

w0 = r0 = 20 µm, ∆nc ' 0.3× 1018 e−/cm3, i.e., 10% of n0.

Trapping and acceleration: To describe the injection and acceleration of electrons

in a plasma wave, it is possible to analyze the motion of a test electron in a 1D plasma

wave using Hamiltonian dynamics [56], i.e., calculating the energy of that particle. In

this model, the frame of the laser, moving at the phase velocity vp in the laboratory

frame, is called R. The laboratory frame in which the test electron has the velocity vz
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is called R. In the moving frame, the Hamiltonian (i.e., total energy) of the electron is

given by:

Etot = HT = Ekinetic + Epotential + Emass = (γ − 1)mec
2 − V e+mec

2 (A.67)

which can be written using the normalized scalar potential φ = eV /mec
2 as:

HT = mec
2(γ − φ) (A.68)

To express γ and φ in the laboratory frame, let’s consider the Lorentz transformation:

TL : (R→ R) =

z = γp(z − vpt) = γpξ

t = γp(t− βpz/c)
(A.69)

which yields vz = dz/dt = (vz − vp)/(1− βpβz) and (γ ≡ γz):

γ = γγp(1− βpβz) (A.70)

In addition, the longitudinal electric field is unchanged by the Lorentz transformation:

E‖ = E‖ and, in the Coulomb gauge (A = A⊥ ⇒ Az = 0): Ez = Ez = −∂Φ/∂z −
∂Az/∂t = −∂Φ/∂z = −(mec

2/e)∂φ/∂z. Using Eq. (2.1) and Eq. (2.8) we have mec
2/e =

E0/kp. The transformed wavenumber is found using Eqs. (A.69): kpξ = (kp/γp)z ≡ kpz

and the longitudinal electric field can be expressed as:

Ez(kpξ) = Ez(kpz) = −E0

kp

∂φ

∂z
(A.71)

Hence,

φ = − kp
E0

∫
Ez(kpz)dz (A.72)

Using the change of variable z 7→ γpu, for which kpz = kpγpu = kpu and dz = γpdu,

Eq. (A.72) becomes:

φ = −kpγp
E0

∫
Ez(kpu)du = γpφ (A.73)
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Finally, the normalized Hamiltonian (H = HT/(γpmec
2)) [56] of the test electron is

obtained by substituting Eqs. (A.70, A.73) into Eq. (A.68):

H = γ(1− βpβz)− φ (A.74)

Note that this equation could be found directly from the momentum equation, Eq. (A.25d).

Applying (z, t) 7→ (ξ, τ) to its projection onto z (Eq. (A.27)) yields [47]:

∂

∂ξ
[γ(1− βpβz)− φ] = −1

c

∂uz
τ

(A.75)

In the QSA, Eq. (A.75) writes γ(1− βpβz)− φ = [γ(1− βpβz)− φ]t=0 = H0.

A general solution of Eq. (A.74) can be found in terms of γ for an electron with initial

position ξ0, initial potential φ0 and initial energy γ0 by solving H = H0 = γ−βpuz−φ =

γ − βp
√
γ2 − 1− φ:

γ = γ2
p(H0 + φ)± βpγp

√
γ2
p(H0 + φ)2 − 1 (A.76)

For an electron initially at rest, H0 = 1 since φ0 = 0 and γ0 = 1, the momentum equation

becomes:

γ = γ2
p(1 + φ)± βpγp

√
γ2
p(1 + φ)2 − 1 (A.77)

and describes an open orbit in phase-space or “fluid” orbit.

The Hamiltonian map (e.g., Fig. 2.4a) shows local minima (stable points) and max-

ima (unstable points) where the potential φ is respectively maximum and minimum.

At the limit between closed and open orbits, γ = γp and the Hamiltonian values corre-

sponding to the local extrema are given by (uz|t=0 = up = γpβp):Hmin = 1/γp − φmax

Hmax = 1/γp − φmin

(A.78)

The two trajectories for which H = Hmax form the separatrix, a boundary in phase-

space separating the fluid orbits from the trapped ones (Fig. 2.4b, black dashed curves).

The maximum energy gain occurs when an electron is trapped on the closed orbit just

inside the lower separatrix and exit the plasma after reaching the maximum of the upper

separatrix (ideal case). Defining ∆φ = φ−φmin and substituting the expression of Hmax



187/196 Appendix A. LPA theory

in Eq. (A.76) yields [56]:

γ(φ) = γp(1 + γp∆φ)± βpγp
√

(1 + γp∆φ)2 − 1 (A.79)

Hence, γmin, max = γ(φmax)∓ and the maximum gain ∆γ = γmax − γmin can be written:

∆γ = 2βpγp

√
(1 + γp∆φ)2 − 1 (A.80)

which, in the limit γp∆φ� 1 simplifies as:

∆γ ≈ 2βpγ
2
p∆φ (A.81)

Note that from Eq. (A.79) we have γmin = γp for φ = φmin corresponding to the local

maxima in Fig. 2.4 (unstable points). In the example of Fig. 2.4, φmin, max are found

by solving Eq. (A.33) to be φmin ' −0.147 and φmax ' 0.331. Since it is a mildly

nonlinear case (a0 = 1), the phase velocity is calculated using the linear formula: vp =

c(1 − ω2
p/ω

2)1/2; and we get βp ' 1 − 1.15 × 10−3 and γp ' 20.9. Thus, the maximum

energy gain is calculated to be ∆γ ' 456, for which the maximum electron energy at

the exit of the plasma is Emax = (γmax − 1)mec
2 ' 230 MeV.

For a “square”-like laser pulse, it is possible to calculate ∆φ analytically as a function

of the maximum normalized electric field generated by the plasma density wave, Ẽmax =

Emax/E0 [56]. For a square pulse, a(ψ) ≡ a(kpξ) is a piecewise constant function. Thus,

γ2
⊥ = 1 + u2

⊥ = 1 + a2 can be treated as a constant in Eq. (2.5) and the first integral

calculated. Noting x(ψ) = 1 + φ(ψ) and x′ = dx/dψ, we have d2φ/dψ2 = x′dx′/dx and:

∫ x′

0

τ ′dτ ′ =

∫ x

x0

γ2
p

 βp√
1− γ2

⊥/γ
2
pτ

2
− 1

 dτ (A.82)

where x(ψ) = x0 when x′(ψ) = 0. Since φ can be positive, we have γpx ≥ 0 and:

x′2 = 2γ2
p

[
x0 − x+ βp

(√
x2 − γ2

⊥/γ
2
p −

√
x2

0 − γ2
⊥/γ

2
p

)]
(A.83)

Note that since Ez = −E0dφ/dψ (Eq. (A.73)), x′2 = Ẽ2. The electric field can then be

written:

Ẽ(x) =
√

2γp

(
−x+ βp

√
x2 − γ2

⊥/γ
2
p + α

)
(A.84)
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where α = x0− (x2
0− γ2

⊥/γ
2
p)

1/2. Solving dẼ/dx = 0 yields the extremum x = 1 (φ = 0).

Finally, the minimum and maximum normalized electric fields are obtained for γ⊥ = 1,

x0 = xmin = 1 + φmin and x0 = xmax = 1 + φmax (subscript “m” denotes both extrema):

Ẽ2
m/2 = γ2

pxm − 1− βpγ2
p

√
x2

m − 1/γ2
p (A.85)

which yields [56]:

φm = Ẽ2
m/2± βp

√
(1 + Ẽ2

m/2)2 − 1 (A.86)

and,

∆φ = 2βp

√
(1 + Ẽ2

m/2)2 − 1 (A.87)

which can be substituted into Eq. (A.80) to calculate the maximum energy gain of a

trapped electron.

In the cold fluid relativistic model, wavebreaking occurs as a limitation of the model;

Eq. (2.5) presents a singularity for φ→ −1 + γ⊥/γp (xm → 1/γp ∈ [0, 1]). The physical

solution is found for xmin → 1/γp which yields, c.f. Eq. (A.85), Ẽ2
m = 2(γp − 1). Using

Eq. (A.87), it comes xmax = xmin + ∆x = xmin + ∆φ → (2γ2
p − 1)/γp, which yields a

potential difference at wavebreaking of ∆φWB = 2(γ2
p − 1)/γp = 2β2

pγp. The cold fluid

relativistic wavebreaking electric field [50, 56] is then found by solving Eq. (A.87):

EWB =
√

2(γp − 1)E0 (A.88)

For a plasma density of 4 × 1018 e−/cm3 (Fig. 2.4), E0 ' 1.9 GV/cm and EWB '
6.3 × E0 ' 12 GV/cm. Substituting ∆φWB into Eq. (A.79), the maximum electron

energy at the exit of the plasma is calculated to be Emax ' 18.5 GeV.
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THz Wavefront Characterization

In this Appendix, we present a simple ray model of the THz transport line. The THz

pulse is emitted at the downstream surface of the plasma. A 3-inch diameter parabola

with 6-inch effective focal length collects part of the radiation and collimates it. The

wavefront of the THz beam is described in terms of Zernike polynomials. These poly-

nomials have several interesting properties like being a complete set of polynomials in

two real variables, ρ and θ that are orthogonal in a continuous fashion over a unit circle.

They have simple rotational properties that lead to a polynomial product which has the

form of Z = R(ρ) · G(θ) where G(θ) is a continuous periodic function (T = 2 π) and

satisfies a rotational independence: G(θ + α) = G(θ)G(α). The set of trigonometric

functions G(θ) = e±imθ where m is any positive integer or zero, meets these require-

ments.

Other properties of Zernike polynomials are that the radial function must be a polyno-

mial in ρ of degree n such as m 6 n and that R(ρ) must be even if m is even and odd if

m is so. Radial polynomials can be derived as a special case of Jacobi polynomials and

tabulated as Rm
n (ρ). Their orthogonality and normalization properties are given by:∫ 1

0

Rm
n (ρ) ·Rm

n′(ρ) · ρ dρ =
1

2(n+ 1)
δnn′ (B.1)

and Rm
n (1) = 1. Finally, first order Zernike polynomials are listed in Tab. B.1 and

commented by what aberration they correspond to.

The model we propose is based on ray optics assuming in first order that the transition

radiation is composed of a narrow bandwidth. The calculation of the wavefront is done

in a cartesian frame. We first made calculations in case of a perfect alignment of the
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n m Name Polynomial Aberration
0 0 0 1 Piston
1 1 1 ρ cos θ Tilt X

2 ρ sin θ Tilt Y
0 3 2ρ2 − 1 Defocus

2 2 4 ρ2 cos 2θ 0o Astigmatism
5 ρ2 sin 2θ 45o Astigmatism

1 6 (3ρ2 − 2) · ρ cos θ Coma X
7 (3ρ2 − 2) · ρ sin θ Coma Y

0 8 6ρ4 − 6ρ2 + 1 Spherical

Table B.1: First order Zernike polynomials and aberrations. Note that the classification
we present is not universal, other classifications may be used.

parabola in order to check if we retrieved a flat and circular wavefront as the theory

predicts. The frame in which we defined the problem was the parabola’s frame, ROAP

(see Fig. B.1).

In this way the origin is the focus (plasma) and the middle of the OAP stands at the

coordinates (0 ; 0 ; 6) since parabola’s effective focal length is 6 inches. From this, one

can deduce the surface equation (paraboloid) of the OAP, Eq. (B.2).

y =
1

12
(x2 + z2)− 3 (B.2)

However, the OAP is only a part of the surface that Eq. (B.2) describes. A parametric

description of the contour of our OAP was used since the contour can be calculated as

the intersection between a 3 inch diameter cylinder and the paraboloid surface. The

base (circle) of the cylinder is given by:x(t′) = −3
2

sin t′

z(t′) = 3
2

cos t′ + 6
(B.3)

where t′ ∈ [0 ; 2π] is a parameter. Combining Eq. (B.2) and Eq. (B.3) one finds for the
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β
O

A

F

θ

ϕ

x ~ x0

y0

z0

y1

z1

x1y

z

ROAP

Rlab

RWaveFront

Figure B.1: Frames used to describe the wavefront of a misaligned off-axis parabola. ROAP is
the so called parabola’s frame β-rotated from Rlab, the laboratory’s frame. In order to describe
the optical system as a centered one we consider the frame RWaveFront (RWF ) in which the
origin is on the reflected path of the photon, (θ ;ϕ) = (0 ; 0), which hurt the parabola in its
center.

contour’s equation (t′ ∈ [0 ; 2π]):
x(t′) = −3

2
sin t′

y(t′) = 3
2

cos t′ + 3
16

z(t′) = 3
2

cos t′ + 6

(B.4)

Now that we defined our parabolic mirror in space we can imagine a photon coming from

the origin and being reflected by the mirror. Considering a bunch of them, all defined

by emission angles (θ ;ϕ) as illustrated in Fig. B.1, we can find their position along the

time in our cartesian frame. The angle θ is the one between the beam traced by the

photon we consider and zo-axis such as θ ∈ [0 ;π].

Since we study aberrations introduced by a misalignment due to translations in space

we will consider that photons are not emitted from the origin of Ro but from a source

point shifted by a vector (δx ; δy ; δz) such as the evolution in time t of its position
−−→
OM
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after virtual emission can be expressed (c is the speed of light):

−−→
OM =


x(t) = ct sin θ cosϕ+ δx

y(t) = ct sin θ sinϕ+ δy

z(t) = ct cos θ + δz

(B.5)

Equations (B.2) and (B.5) yield the time after which the photon hits the parabola and

thus on which point of the parabola:

t1 = 6
α− τ + µ

λ · c
(B.6)

with,

α =

√
1 + τ(τ − 2µ)− γ

3
λ (B.7)

λ = sin2 θ cos2 ϕ+ cos2 θ (B.8)

µ = sin θ sinϕ (B.9)

τ =
δx
6

sin θ cosϕ+
δz
6

cos θ (B.10)

γ =
δ2
x

12
+
δ2
z

12
− δy (B.11)

Consider A the point on the parabola hurt by the considered beam (θ ;ϕ), see Eq. (B.12).

Since we know the surface equation, Eq. (B.2), of the OAP one can calculate the normal

vector −→n to this surface at a given point, Eq. (B.13).

−→
OA =


6 α−τ+µ

λ
· sin θ cosϕ+ δx

6 α−τ+µ
λ
· sin θ sinϕ+ δy

6 α−τ+µ
λ
· cos θ + δz

(B.12)

−→n =


1+µ
λ
· sin θ cosϕ

−1

1+µ
λ
· cos θ

(B.13)

To define the reflected beam we need to choose a point either in time or in space where

the measure of the wavefront takes place. Let us consider tf the time after a photon’s
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emission we measure its position (P ). The reflected beam’s norm is then AP = c(tf−t1)

and using Snell–Descartes laws:

−→
AP = α1 ·

−→
OA+ α2 · −→n (B.14)

Note that the base (
−→
OA ,−→n ) is not orthogonal which means that we need to project,

Eq. (B.14), in this base and to solve the obtained system of equations. Solutions are

given by:

α1 = − AP · 2 cos i

n
(B.15)

α2 =
AP

OA
(B.16)

where i is the oriented angle (
−→
OA ,−→n ), n and OA are norms of the respective vectors.

OA can be easily calculated from Eq. (B.12) and thus yields n and i:

cos i =

−→
OA · −→n
OA× n

(B.17)

n =

√
2

1− µ
(B.18)

where:

−→
OA · −→n = 6

α− τ + µ

λ
+

δx

1− µ
· sin θ cosϕ− δy +

δz

1− µ
· cos θ (B.19)

Now in order to express the wavefront in the frame RWF (Fig. B.1) one can write
−→
FP =

−→
OP−

−→
OF in the frame ROAP . In this expression,

−→
OP =

−→
OA+

−→
AP = (α1+1)·

−→
OA+α2 ·−→n

and
−→
OF =

−−→
OAF +

−−→
AFF . To simplify notations we write

−→
OA = (xA ; yA ; zA) and −→n =

(nx ;ny ;nz). The optical system we are dealing with is not a centered optical system

but it might be possible to treat it as a centered one by the following transformation

(Fig. B.1): 
x1 ≡ x0

y1 ≡ −z0

z1 ≡ y0

(B.20)
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Since
−−→
OAF = (0 ; 0 ; 6) and

−−→
AFF = αF1 ·

−→
OA+αF2 · −→n , see Eq. (B.14), we finally have the

expression of
−→
FP which defines in the cartesian frame RWF the beam’s wavefront:

−→
FP =


(1 + α1 − αF1 ) · xA + (α2 − αF2 ) · nx

6− (1 + α1 − αF1 ) · zA − (α2 − αF2 ) · nz

(1 + α1 − αF1 ) · yA + (α2 − αF2 ) · ny

(B.21)

Moreover calculations have been implemented in a Matlab’s file where any user can define

a shift for the parabola (misalignment) in the laboratory’s frame (Fig. B.1) through

variables (∆x ; ∆y ; ∆z) related to (δx ; δy ; δz) via (Fig. B.1):
δx = −∆x

δy = − cos β∆y − sin β∆z

δz = sin β∆y − cos β∆z

(B.22)

To characterize the calculated wavefront we need to proceed to a projection of its

surface onto the Zernike polynomials base that we introduced. Since many publications

[218, 219, 220, 221] treat this problem we will just summarize basics of calculations we

used in our Matlab program. One may express the measured quantity ϕi (phase in units

of length or time) in terms of Zernike polynomials as:

ϕi(ri) =
N∑
j=1

ajZj(ri) + δφ(ri) for i = 1, 2, · · · ,M (B.23)

where N is the total number of Zernike polynomials used, Zj(ri) is (see Tab. B.1) the

jth Zernike polynomial’s value at the position ri, aj is its coefficient, and δφ(ri) is the

error due to the truncation of using only N Zernike polynomials. In our program we

used the first 37 Zernike polynomials which is enough for the required. M is the number

of measurements. Furthermore, Eq. (B.23) can be written in a matrix form:
Z1(r1) · · · ZN(r1)

...
. . .

...

Z1(rM) · · · ZN(rM)




a1

...

aN


︸ ︷︷ ︸

Z a

=


ϕ1

...

ϕM


︸ ︷︷ ︸

Φ

(B.24)
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Note that we need to consider a number M of measurements such as M > N to make

the system of equations determined. The Matlab routine gets a well overdetermined

system since we choose usually M = 1000 whereas N = 37. To find a good fit one can

minimize a least-square within a normalized beam aperture in order to keep Zernike

polynomials orthogonal, i.e.,

∆ =
M∑
i=1

(ajZj(ri)− ϕi(ri))2 (B.25)

which can be written in the matrix form:

ZT Z a = ZT Φ (B.26)

and yields the coefficients through a direct inversion of the matrix (37× 37):

a = (ZT Z)−1 ZT Φ (B.27)

Finally, two wavefront examples are shown in Fig. B.2 to illustrate calculations previously

discussed. To compare the wavefront to what it should be in case of a perfect alignment,

we plot for each both the misaligned wavefront and the one that we would get for

(∆x ; ∆y ; ∆z) = (0 ; 0 ; 0). We also present partially their Zernike coefficients. We give

polynomial coefficients a1 to a8 corresponding to polynomials Z1 to Z8 (see Tab. B.1)

which are mainly the ones we are interested in. These coefficients are normalized in

order to reveal the relative importance of these coefficients. The next step is to evaluate

the coefficients’ evolution when we change (δx ; δy ; δz) in order to be able to anticipate

during experiments what translation we should apply to the OAP-down. In Fig. B.2 one

may interpret coefficients such as for the left plot tilt X and defocus effects are equivalent

whereas the tilt Y is dominating, and for the right plot a domination of the tilt X effect

but with a strong defocusing. Actually we can correlate this meant with figures since

on the left we see strong gradient along the Y-axis and on the right a strong one along

the X-axis.
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Plot Tilt X Tilt Y Defoc. 0o Ast. 45o Ast. Coma X Coma Y Spher.
Left -0.2817 1 -0.3166 -0.1392 -0.0406 0.0014 -0.0651 -0.0012
Right 1 0.4799 0.7324 -0.0515 0.1094 -0.0055 0.1038 -0.0017

Figure B.2: Theoretical wavefronts of collimated beams collected by a misaligned off-axis
parabola. Flat discs on both figures are flat wavefront one tries to get with a perfect align-
ment. On the left, we have in millimeters (∆x ; ∆y ; ∆z) = (0.07 ; 0.67 ;−1.08) and on the
right (∆x ; ∆y ; ∆z) = (−0.1 ;−0.35 ; 1.1). Moreover, normalized coefficients of the Zernike
polynomials decomposition are given for these plots in the table below curves.
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