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supérieures au Cambodge grâce auquel j’ai pu venir étudier en France et finalement mener
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Chapitre 1

Contexte et démarche de thèse

1.1 Contexte industriel

L’acier martensitique Grade 91 présente une bonne résistance à la corrosion, de bonnes
propriétés mécaniques, un faible coefficient de dilatation thermique mais une forte conduc-
tivité thermique [1]. Sa résistance en fluage à haute température a été améliorée durant de
nombreuses années de recherche à partir des aciers martensitiques à 9%Cr par ajout des
éléments Mo, Nd et V [1]. Cette nuance serait un candidat approprié pour des éléments
de structures du circuit secondaire et des tubes de générateurs de vapeur du proto-
type de réacteur nucléaire SFR (Sodium-cooled Fast Reactor) [1]. L’acier Grade 91 est
économiquement plus compétitif que les aciers austénitiques, car son coût de fabrication
est nettement inférieur du fait que le chrome est moins cher que le nickel [1]. En plus,
ses bonnes caractéristiques de conductivité et de dilatation nous permettent de raccour-
cir les tuyauteries, ce qui aboutit en fin à une réduction importante du volume d’acier
nécessaire [1].

La durée de vie des réacteurs nucléaires de la génération IV, y compris le proto-
type SFR, serait prolongée jusqu’à 60 ans [1]. Cela nécessite de prendre en compte les
mécanismes de fluage actifs durant de très longues durées de vie (Cocks et Ashby [2]),
dans le cas de l’acier martensitique Grade 91.

1.2 Introduction au fluage des aciers martensitiques

revenus

L’essai de fluage consiste à appliquer une contrainte d’ingénieur (σeng) constante à une
éprouvette (certains auteurs imposent une contrainte vraie constante). La courbe de
fluage typique des métaux et des alliages est représentée sur la Figure 1.1 [3]. La durée de
fluage est conventionnellement divisée en trois stades. Durant le stade primaire (premier
stade), la vitesse de déformation diminue due aux effets des grains voisins ou au durcisse-
ment intergranulaire. Pendant le stade secondaire, la vitesse de déformation est approxi-
mativement constante. Cette vitesse peut être appelée aussi la vitesse de déformation
minimale (ε̇min). Durant le stade tertiaire, la vitesse de déformation accélère jusqu’à la
rupture. Ces deux derniers stades seront explicités plus en détails dans le chapitre 3.

Une loi exprimant le temps à rupture (tf ) en fluage comme une fonction puissance d’un

15



16 CHAPITRE 1. CONTEXTE ET DÉMARCHE DE THÈSE

Figure 1.1 – Courbe de fluage des métaux (Figure issue de [4]).

exposant -1 de la vitesse de déformation minimale (ε̇min) a été proposée par Monkman et
Grant [5]. Figure 1.2 montre que tf et ε̇min suivent une loi de type Monkman-Grant d’une
puissance près de -1 jusqu’à des durées de vie de 200×103h, à des températures comprises
entre 500 et 625̊ C pour l’acier Grade 91. Cette puissance est approximativement égale à
celle trouvée par Abe [6] pour l’acier de la même nuance.

Cependant, la validité de la loi de Monkman-Grant au-delà de ces durées de vie
n’est pas assurée. Ainsi, nous nous intéresserons à comprendre les différents mécanismes
conduisant à la rupture du matériau en fluage. Cela nous permettra de les modéliser et
de les valider pour les temps inférieurs à 200 × 103h à 500̊ C et 100 × 103h à 600̊ C, et
surtout de proposer des extrapolations au-delà de ces durées.

1

0.93

Figure 1.2 – Loi de Monkman-Grant pour l’acier Grade 91 à des températures comprises
entre 500 et 625̊ C et pour des durées de vie jusqu’à 200× 103h [7].

Les contraintes de fluage, σeng, sont tracées sur la Figure 1.3 en fonction des durées de
vie à des températures entre 500 et 700̊ C. L’extrapolation des données obtenues à forte
contrainte conduit à des surestimations notables des durées de vie à faible contrainte.
Ces surestimations sont dues à l’adoucissement du matériau ainsi que la cavitation inter-
granulaire de fluage qui seront présentés par la suite. Avant de les aborder, la ruine par
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striction est présentée dans la section suivante afin de définir le domaine de durées de vie
dans lequel est le mécanisme de ruine prépondérant.

Figure 1.3 – Variation de contraintes de fluage (σeng) en fonction des durées de vie (tf )
d’après [7](CEA) et [8–11]. Figure issue de [7].

1.2.1 Striction

La striction durant des essais de traction a été étudiée il y a plus d’un siècle par Considère
[12]. Elle est induite par une instabilité viscoplastique conduisant à une déformation
localisée dans la longueur utile de l’éprouvette (Fig. 1.4). La déformation devient ensuite
hétérogène.

Figure 1.4 – Striction observée sur une éprouvette de Grade 92 à un instant précédant
la rupture en traction monotone à la vitesse de déformation de 2.5×10−4s−1 à 550̊ C [13].

Les réductions d’aire en zone de striction à la fin du fluage de l’acier Grade 91 sont
reportées sur la Figure 1.5. A 500̊ C, la réduction d’aire finale est approximativement de
80% pour les durées de vie inférieures à 60× 103h. A partir de la durée de vie de 160×
103h, pour laquelle la réduction d’aire finale atteint 60%, la réduction d’aire commence à
décrôıtre en fonction de la durée de vie. A 600̊ C, la réduction est approximativement de
80% pour les durées de vie inférieures à 15×103h. Mais, la réduction d’aire est seulement
de 20% pour la durée de vie de 94× 103h à la même température.

Pendant les deux essais de fluage à 500̊ C et à 600̊ C dont les durées de vie sont
respectivement de 160 × 103h et de 94 × 103h, l’adoucissement du matériau peut être
important. Ils pourraient également avoir été affectées par la cavitation intergranulaire
le long des anciens joints de grains austénitiques et des joints de blocs.
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Figure 1.5 – Réduction de la section en zone de striction mesurée à la rupture pour
l’acier Grade 91 d’après [4, 7]. Figure issue de [7].

Figure 1.6 – Baisse de la dureté de l’acier Grade 91 (noté � BM-Crept �) selon la durée
de vie et la température de fluage [14].

1.2.2 Adoucissement de l’acier Grade 91 en cours de fluage

A l’échelle macroscopique, l’adoucissement de l’acier Grade 91 est caractérisé par une
baisse de dureté [14]. La Figure 1.6 montre que la dureté de cet acier baisse le long du
temps de fluage. L’adoucissement de l’acier Grade 91 est dû à l’évolution métallurgique de
sa microstructure. En effet, la taille des sous-grains crôıt le long d’un essai de fluage [15–
17]. La densité de dislocations diminue aussi [18,19]. La taille des précipités de type M23C6

crôıt le long du fluage [16, 18, 20]. La croissance des phases de Laves dans l’acier Grade
91 a été observée à 600̊ C, ainsi que de manière limité une phase Z [20]. La croissance et
la coalescence des précipités M23C6 induit une perte de l’ancrage des dislocations, alors
que le grossissement des phases de Laves conduit à une réduction de la solution solide de
Mo [4], et probablement à des sites de germination de cavités de fluage.
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1.2.3 Cavitation induite par la diffusion des lacunes le long des
joints polycristallins

Eggeler et al. [21] ont observé en microscopie optique des cavités de fluage dans un acier
martensitique revenu à 12%Cr ayant une microstructure similaire à celle de l’acier Grade
91. Cette étude concerne un essai de fluage de durée de vie de 270 h. La déformation
d’ingénieur à la rupture est de 12%. La réduction d’aire est de 10%, ce qui signifie que
la striction est réduite. Ces auteurs ont constaté une rupture essentiellement d’origine
intergranulaire dans le matériau. Des cavités de fluage situées le long des anciens joints de
grains austénitiques et des joints de blocs ont été observées à une déformation d’ingénieur
de 5% (réduction d’aire de 5%). Des observations similaires ont été rapportées concernant
l’acier Grade 91 [4, 22].

Figure 1.7 – Cavités de fluage intergranulaires observées en microscopie optique dans
un acier martensitique à 12%Cr pour une déformation εeng = 5% durant un essai de
fluage à 650̊ C et 80 MPa [21]. Les cavités sont situées le long des anciens joints de grains
austénitiques et des joints de blocs d’après [21].

1.3 Conclusions et démarche de thèse

L’examen de la littérature a montré que les aciers martensitiques à 9-12%Cr soumis au
fluage sont affectés par trois principaux mécanismes de ruine : la striction, la cavitation
intergranulaire et l’adoucissement du matériau. Cela nous conduit à la démarche de thèse
suivante.

La striction pourrait être le mécanisme principal menant à la ruine de l’acier Grade 91
jusqu’à des durées de vie de 160×103 h à 500̊ C et de 94×103h à 600̊ C. La simulation de
la striction tenant compte de l’adoucissement du matériau en cours du fluage grâce à une
modélisation analytique ainsi que des observations expérimentales seront présentées dans
la partie II. Des lois de prédiction de durée de vie obtenues à partir de cette simulation
seront appliquées aussi aux autres aciers martensitiques.

Des cavités de fluage intergranulaires ont été observées après les deux essais de fluage
de durée de vie de 160 × 103 h à 500̊ C et de 94 × 103h à 600̊ C. Ces cavités seront
étudiées dans la partie III. Les cavités de fluages seront modélisées grâce à des modèles
classiques de germination et de croissance de cavités induites par la diffusion des lacunes
le long des anciens joints de grains austénitiques et des joints de blocs. Des observations
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en microscopie électronique à balayage (FEG-SEM) à la fin des essais de fluage serviront
comme des ingrédients à ces modèles. Elles permettront également des comparaisons entre
les distributions de taille de cavités prédites et celles mesurées. Les durées de vie prédites
grâce à ces modèles de cavitation pour les essais de fluage étudiés seront comparées avec
les résultats expérimentaux. A ce stade, les joints sont supposés soumis à des contraintes
constantes dans le temps et égales à la contrainte macroscopique.

L’effet de l’hétérogénéité de la microstructure sur les concentrations de contrainte et la
nucléation des cavités sera prise en compte par des calculs par éléments finis des champs de
contrainte autour des points triples présentées dans la partie IV. L’hypothèse de quasi-2D
déformation plane sera utilisée permettant des temps de calculs plus courts et de raffiner
considérablement les maillages. Les microstructures utilisées sont construites grâce à un
modèle simple de point triple ainsi que des mesures EBSD. Une loi élasto-viscoplastique
cristalline nécessitant seulement trois paramètres sera utilisée. Ces paramètres seront
identifiés par des simulations des courbes de fluage sur de grands agrégats polycristallins
comparées à des courbes expérimentales.

Des conclusions et perspectives seront présentés dans la partie V. Des lois de prédiction
des durées de vie comprises dans le domaine des données expérimentales seront montrées.
Des extrapolations des durées de vie hors du domaine exploré en laboratoire seront
également présentées.



Chapitre 2

Propriétés de l’acier martensitique
revenu Grade 91

2.1 Evolution historique des aciers martensitiques

revenus au chrome

La famille des aciers au chrome a connu sa première application dans les centrales
thermiques dans les années 1930 avec la nuance 21

4
Cr-1Mo (P/T22) utilisée comme

un matériau de cuve et de tubes du générateur de vapeur [23]. Le développement des
aciers à 9-12% de Cr a commencé en 1912 en Allemagne avec les nuances 12%Cr et 2-
5%Cr conçues pour une bonne résistance à la corrosion [24]. Puis, ils ont évolué décennie
après décennie au sein de différentes industries mondiales, comme indiqué sur la Figure
2.1. La nuance 9Cr-1Mo (T9) a été élaborée et introduite dans l’industrie vers l’année
1936 [25,26]. Néanmoins, les aciers à 9-12% chrome avec ajout de Mo et V ont été utilisés
comme matériaux de centrales thermiques seulement à partir du milieu du 20e siècle [27].
Le développement des familles à 9-12%Cr a été particulièrement dynamique à la fin des
années 1970 [27]. Durant cette décennie, l’acier 9Cr-1Mo a été modifié par ajout optimisé
de V et Nb à Combution Engineering and Oak Ridge National Laboratories aux Etats-
Unis, ce qui conduit à la création du Grade 91 (9Cr-1MoVNb) [27]. Ceci a été ensuite
approuvé par le code ASME en 1983 [28]. Le développement de cet acier a continué à
l’Université de Tokyo et Nippon Steel Corporation [29]. Ce travail a conduit au milieu de
la décennie 1980 à un nouvel alliage pour la forge de turbines nommé NF616 [29], qui a
été approuvé par le code ASME en 1994 sous le nom Grade 92 [30,31].

Notre étude concerne plus spécifiquement l’acier Grade 91. Cet acier a déjà été utilisé
dans les circuits de vapeur des centrales nucléaires [32], comme à Lippendorf (267 bar,
550-580̊ C), Boxberg (267 bar, 555-578̊ C), et Nordjylland (290 bar, 590̊ C). Dans le cadre
des réacteurs de la génération IV, il est un candidat pour certains composants du circuit
secondaire et les tubes des générateurs de vapeur du prototype SFR (Sodium-cooled Fast
reactor) [1].

21
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Figure 2.1 – Evolution de la composition chimique des aciers à 9-12%Cr [27,29].

2.2 Composition chimique

Deux tôles d’acier Grade 91 étudiées ont été fabriquées à Creusot-Marrel et Usinor. La
Table 2.1 montre les compositions chimiques exprimées en pourcentage massique des deux
tôles [33, 34] ainsi que de l’acier Grade 91 selon ASTM Standard A387 - Grade 91 [35].
Les pourcentages massiques des éléments constituant les deux tôles sont compris dans
les limites données par la spécification ASTM. Il est aussi défini dans le code français
RCC-MRx [36].

Le rôle des différents éléments chimiques utilisés dans les alliages métalliques a été
étudié par Masuyama et al. [37]. L’élément Cr permet une bonne résistance à la corrosion
et de bonnes propriétés mécaniques [37]. Les éléments Nb et V permettent la formation
des précipités Nb(CN) et VN qui aident à stabiliser les joints de grains austénitiques
lors la normalisation [38]. En plus, d’autres précipités Nb(CN) et VN se forment lors du
revenu et renforcent le matériau. L’élément Mo est un élément de durcissement de la
solution solide [37]. Les éléments de P et S peuvent ségréger aux joints de grains et les
fragiliser [4, 38]. Leur quantité doit être donc strictement contrôlée. L’élément Ni peut
précipiter sous forme fragile riche en Fe, ainsi sa quantité doit être également contrôlée [4].

2.3 Elaboration

Les tôles d’acier Grade 91 Creusot-Marrel et Usinor ont été élaborées au four électrique à
l’arc, puis affinées en poche (vacuum arc degassing), et enfin coulées en coulée continue.
Elles ont été laminées respectivement en épaisseur de 300mm et 30mm. Ces tôles ont
ensuite subi trois stades de traitement thermique : la normalisation, la trempe, et le
revenu. Les caractéristiques de ces trois stades sont reportées dans la Table 2.2.
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Table 2.1 – Composition chimique exprimée en pourcentage massique de l’acier Grade
91 selon ASTM Standard A387 - Gr 91 [35](minimum/maximum), et des deux tôles en
acier Grade 91 étudiées et fabriquées à Creusot-Marrel (CM) [33] et Usinor [34].

C Si Mn P S Cr Ni Mo V Nb N

ASTM
0.08 0.2 0.3 ≤0.02 ≤0.01 8.0 ≤0.4 0.85 0.18 0.06 0.03
0.12 0.5 0.6 9.5 1.05 0.25 0.1 0.07

CM 0.106 0.47 0.38 0.009 0.003 9.0 0.12 1.01 0.21 0.07 0.053

Usinor 0.088 0.324 0.363 0.017 0.001 8.91 0.149 0.917 0.198 0.08 0.041

Table 2.2 – Traitements thermiques des deux tôles de Grade 91 fabriquées à Creusot-
Marrel [33] et Usinor [34].

Tôle
Coulée Traitement thermique

Epaisseur Normalisation Trempe Revenu

Creusot-Marrel 300mm 1070̊ C/7h à eau 760̊ C/8h
Usinor 30mm 1050̊ C/30min à air 780̊ C/1h

Normalisation Les aciers à 9%Cr et à faible contenu en C et N sont sous forme
austénitique à la température de normalisation comprise entre 850 et 1200̊ C [38]. Orr
et al. [39] constatent que la taille des grains austénitiques crôıt légèrement durant une
normalisation à 1050 voire 1100̊ C et de durée jusqu’à 24 h. Elle commence à crôıtre
significativement seulement à partir de la température de normalisation de 1125̊ C [39].
Les nitrites VN se dissolvent entièrement à 1100̊ C [40,41]. Mais, les carbures Nb(CN) ne
se dissolvent pas aux températures de normalisation habituelles [38,40,41] (i.e. entre 850
et 1200̊ C). Cependant, ces carbo-nitrures limitent les mouvements des joints de grains
et évitent la croissance excessive de taille de grains austénitiques [38].

Trempe Après la trempe, la microstructure des aciers à 9-12%Cr contient des lattes
de martensite et une densité de dislocations élevée [38]. Les lattes de martensite sont
riches en Fe-C et ont une structure atomique de type quadratique, Fe-α′, qui contient des
atomes C en position interstitielle en plus par rapport à Fe-α.

Revenu Un adoucissement rapide du matériau lors du revenu est constaté d’après la
chute de dureté (Fig. 2.2). La densité de dislocations diminue. La martensite se trans-
forment en ferrite grâce à la précipitation de carbures. Les lattes s’élargissent et les
sous-grains se forment. Les précipités de type M23C6 et MX sont formés [38].
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Figure 2.2 – Evolution de la dureté d’un acier à 12%Cr le long du revenu [42].

2.4 Microstructure à l’état de réception

2.4.1 Tailles caractéristiques

La microstructure de l’acier Grade 91 après les trois stades de traitement thermique
est montrée sur les Figures 2.3. Sa microstructure est complexe et divisée en plusieurs
échelles comme schématisé sur la Figure 2.4 d’après [43]. L’échelle la plus grande est celle
des anciens grains austénitiques formés durant la normalisation. Pour l’acier Grade 91,
leur taille moyenne est comprise entre 50 et 70 mm [33]. Chaque ancien grain austénitique
est divisé en plusieurs paquets de bloc. Les blocs ont une taille moyenne de 2 mm [24]
et possèdent entre 5 et 10 lattes alignés et faiblement désorientées entre elles [44–46].
Chaque latte est divisée en sous-grains. Les sous-grains ont une structure atomique de
type cubique centré (bcc). Ils représentent l’échelle la plus petite. Pour l’acier Grade 91,
leur taille moyenne est comprise entre 0.3 et 0.5 mm [16,17,47].

Table 2.3 – Tailles moyennes des anciens grains austénitiques (dg), des blocs (dbl) et
des sous-grains (dsg) pour l’acier Grade 91, obtenus grâce à des traitements thermiques
de type de ceux décrits dans la Table 2.2.

Nuance dg (mm) dbl (mm) dsg (mm)

Grade 91 50-70 [33] 2 [24] 0.3-0.5 [16–18,47]

2.4.2 Relations entre orientations cristallographiques

Les orientations cristallographiques des blocs appartenant à un même ancien grain austénitique
(à l’état de réception) sont liées à celle du grain austénitique (durant la normalisation)
par les relations de Kurdjumov-Sachs [48] (Eq. 2.1) ou de Nishiyama-Wasserman [49] (Eq.
2.2) (voire d’un mixte entre ces deux relations). A partir d’un grain austénitique lors de la
normalisation, la relation de Kurdjumov-Sachs prédit 24 variants pour les blocs (à l’état
de réception) alors que celles de Nishiyama-Wasserman prédit seulement 12 variants.

(111)γ // (011)α [110]γ // [11̄1]α (2.1)

(111)γ // (011)α [12̄1]γ // [11̄1]α (2.2)
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(a)

(b)

(c)

Figure 2.3 – Microstructure de l’acier Grade 91 à l’état de réception observée en (a)
microscopie optique, (b) microscopie électronique à balayage (MEB ou SEM) et (c) mi-
croscopie électronique à transmission (MET ou TEM) [24].
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Figure 2.4 – Schéma de la microstructure de l’acier Grade 91 à l’état de réception [43].

Les désorientations entre des blocs appartenant à des anciens grains austénitiques
différentes sont aléatoires [50]. Un paquet est constituée de blocs de lattes parallèles
allongées le long du même plan {111}γ//{011}α. Ces blocs de lattes peuvent avoir une
parmi les 6 orientations qui correspondent au nombre de possibilités d’associer l’une ou
l’autre des deux directions [11̄1]α et [111̄]α du plan (011)α aux trois directions parents
[01̄1]γ, [11̄0]γ et [101̄]γ du plan (111)γ. Dans un même paquet, deux lattes voisines peuvent,
soit avoir la même orientation, soit former l’un des 15 couples possibles entre les 6 variants
existants différents. Chaque bloc de lattes est donc désorienté par rapport aux autres,
soit de manière aléatoire (deux blocs appartenant à des paquets différents), soit de l’un
des dix angles prévus par la relation de Kurdjumov-Sachs, ou d’un des 5 prévus par celle
de Nishiyama-Wassermann [51].

Un bloc peut se distinguer des autres par une désorientation de plus de 10.5̊ [52]. Les
désorientations des lattes et des sous-grains appartenant à un même bloc sont inférieures
à celle-ci [52]. Les sous-joints peuvent être confondus avec les parois constitués d’une ou
plusieurs familles de dislocations [45, 46]

2.4.3 Dislocations

Les aciers à 9-12%Cr contiennent une densité de dislocations élevée après la trempe [38].
Ces aciers s’adoucissent au fur et à mesure du temps de revenu qui est caractérisé par une
baisse de la dureté à l’échelle macroscopique, ainsi que par une diminution des densités
totales de dislocations [42]. Pour les aciers à 9-12%Cr, les densités de dislocations après
le revenu sont comprises entre 5− 10× 1014m−2 [18, 53,54] et reportées dans Table 2.4.

La Figure 2.5 montre des sous-grains et des dislocations dans l’acier Grade 91 à l’état
de réception [24]. Pour l’acier Grade 91 (tôle Creusot-Marrel) ayant subi les traitements
thermiques spécifiés dans la Table 2.2 (voir aussi la Table 2.5), la densité de dislocations
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Table 2.4 – Densité totale de dislocations pour les aciers à 9-12%Cr.

Nuance Normalisation et Revenu Densité (m−2)

Grade 91 [18] N. 1050̊ C/1h R. 750̊ C/1h 7.5× 1014

Grade 92 [18] N. 1070̊ C/2h R. 775̊ C/2h 7.5× 1014

X20CrMoV-12-1 [54] N. 1050̊ C/1h R. 750̊ C/1h 5.3× 1014

Table 2.5 – Densité de dislocations mobiles pour les aciers à 9-12%Cr.

Nuance Normalisation et Revenu Densité (m−2)

Grade 91 [53] N. 1070̊ C/7h R. 760̊ C/8h 1.6× 1014

X20CrMoV-12-1 [42] N. 1050̊ C/1h R. 750̊ C/90min 0.6× 1014

X20CrMoV-12-1 [54] N. 1050̊ C/1h R. 750̊ C/1h 1× 1014

mobiles est de 1.6 × 1014m−2 à l’état de réception d’après les mesures en microscopie
électronique à transmission (MET ou TEM) [53].

Figure 2.5 – Observations des sous-grains et des dislocations dans l’acier Grade 91 à
l’état de réception [24]. La distribution spatiale des dislocations est hétérogène.

La distribution spatiale des dislocations est hétérogène comme le montre la Figure
2.5. Les dislocations sont constituées de celles situées aux joints de sous-grains et celles
localisées à l’intérieur des sous-grains (dislocations mobiles) [54]. Pour l’acier à 12%Cr
dont les traitements sont indiqués dans les Tables 2.4 et 2.5, les dislocations mobiles
constituent 20% de la population totale [54].
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2.4.4 Précipités

Table 2.6 – Tailles des précipités M23C6 et MX présents dans les aciers à 9-12%Cr.

Nuance M23C6 (nm) MX (nm)

Grade 91 [55] dM23C6 = 137 -

Grade 91 [16] dM23C6 = 79 -

Grade 91 [56] dM23C6 < 150 (sous-joints) dMX = 17− 60
dM23C6 > 350 (joints γ)

Grade 92 [47] dM23C6 = 90 dMX = 20

X20CrMoV-12-1 [42] dM23C6 = 137 -

X20CrMoV-12-1 [57] dM23C6 = 80− 150 (sous-joints) -
dM23C6 = 130− 310 (joints γ) -

A l’état de réception, l’acier Grade 91 contient deux grands types de précipités : M23C6

et MX [16,55,56]. Les analyses à l’EDS menées par Gieseke et al. [56] sur l’acier Grade 91
ont montré que le nombre de précipités de type M23C6 constituent entre 85 et 90% de la
population totale des précipités. Les précipités de type M23C6 sont situés généralement
aux joints (de grains austénitiques, de paquets, de blocs et de lattes) [56,57]. Les précipités
de type MX sont répartis de manière uniforme dans la microstructure [52,58].

Les tailles des précipités pour les aciers à 9-12%Cr sont reportées dans la Table 2.6.
Elles peuvent varier en fonction des nuances d’aciers ainsi que des traitements thermiques
appliqués par les auteurs [16, 42, 47, 55–57]. Pour l’acier Grade 91, les tailles moyennes
des précipités de type M23C6 et de type MX sont respectivement de l’ordre de 100 nm et
20 nm [16,55,56].

2.5 Traction simple

Le module d’Young de l’acier Grade 91 a été mesuré à des températures différentes et
son évolution est donnée par le code RCC-MRx [36]. La Figure 2.6 montre que le module
d’Young du matériau diminue en fonction de la température. Un changement de pente
sur ce graphe est observé à la température 500̊ C. Cela pourrait être dû en partie à la
déformation anélastique provoquée par la flexion élastique des sous-joints due aux sous-
grains [59].

La limite d’élasticité conventionnelle de l’acier Grade 91 (pour une déformation visco-
plastique de 0.2%) varie en fonction de la vitesse de déformation comme indiqué sur la Fi-
gure 2.7. Les essais de traction sur l’acier Grade 91 menés par Gaffard [4] à 625̊ C montrent
que la limite d’élasticité conventionnelle obtenue au test sous la vitesse de 10−5s−1 est
deux fois plus petite que celle obtenue sous la vitesse de 10−2s−1. Cela est également vrai
pour la résistance maximale de traction [4]. Cet effet est dû à la baisse de la contrainte
visqueuse d’après la théorie de l’activation thermique. Il pourrait être également dû à
l’adoucissement du matériau qui augmente quand la vitesse de déformation diminue [13].
La limite d’élasticité baisse de 15% alors que la résistance maximale diminue de 35%,
quand la température crôıt de 450 à 625̊ C sous la même vitesse déformation de 10−3s−1
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Figure 2.6 – Module d’Young de l’acier Grade 91 [36]

Figure 2.7 – Essais de traction sur l’acier Grade 91 (a) à 625̊ C à des vitesses de
déformation comprises entre 10−5 et 5× 10−2s−1 et (b) à trois températures, à la même
vitesse de 10−3s−1 [4].

(Fig. 2.7). Ceci pourrait être dû à l’adoucissement du matériau qui crôıt aussi en fonction
de la température.

Les essais de traction monotone indiqués ci-dessus ont duré jusqu’à seulement 5 h.
Notre étude menée sur des essais de fluage de durées de vie comprises entre une dizaine
d’heures et plusieurs centaines de milliers d’heures est maintenant présentée.
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Résumé

Les stades tertiaires de nombreux essais de fluage de durée de vie jusqu’à 160 kh à 500̊ C
et 94 kh à 600̊ C sont modélisés et observés expérimentalement. Après avoir atteint
le minimum, la vitesse de déformation crôıt le long de la déformation. Cela est dû à
l’adoucissement du matériau induit par l’évolution microstructurale. Un essai interrompu
à plusieurs reprises montre que la striction conduit à une forte réduction d’aire en zone
de striction seulement durant les deniers 10% de la durée de vie. Le modèle de Hoff
basé sur la réduction homogène de la section prédit correctement seulement les durées
de vie à haute contrainte. Le modèle de striction de Hart utilisant la loi de Norton
sans adoucissement du matériau permet des prédictions de durée de vie jusqu’à 60 kh à
500̊ C. Le modèle de striction prenant en compte l’adoucissement du matériau permet
de prédire les durées de vie différentes des résultats expérimentaux des essais de fluage
étudiés de moins de 50%, ce qui correspond à la dispersion expérimentale. L’évolution
de la section en zone de striction prédite est en accord avec un essai interrompu. Deux
lois de borne sont déduites du modèle de striction tenant compte de l’adoucissement du
matériau. Les durées d’un grand nombre d’aciers martensitiques de durée de vie jusqu’à
200 kh à 500-700̊ C sont comprises entre les deux lois de borne. A ce stade, les cavités
ne sont pas prises en compte dans la modélisation.

Mots clés : fluage, acier Grade 91, stade tertiaire, adoucissement du matériau, stric-
tion, durée de vie.
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Chapter 3

Modelling and experimental study of
the tertiary creep stage of grade 91
steel

(Published in Int. J. Fracture [60])

3.1 Introduction

It is widely considered that modified 9Cr-1Mo (Grade 91) tempered martensitic steel is
a suitable candidate material for structural components subjected to high temperature
creep, such as coolant pipes of the future Generation IV nuclear reactors. Its mechanical
properties are reported by [61]. In the asreceived condition, the grade 91 steel has a
complex microstructure [43] made of former austenitic grains (diameter between 10 and
60 mm) [17,62]. Each austenitic grain is divided into martensite packets, further divided
into martensite blocks. Each block is made of 5 to 10 martensitic laths. Finally, each
martensitic lath is divided into sub-grains having a size between 0.3 and 0.5 mm [17,47].
Secondary phases of M23C6 type (M means Fe or Cr) are found next to or at grain
boundaries and correspond to about 90% of the total particle distribution [63]. The
rest of the particles are of the MX type (M means V or Nb and X means C or N) and
are distributed homogeneously in the whole microstructure (within laths and at grain
boundaries) [58]. The size of M23C6 particles is about 250 nm and that of MX particles,
40 nm [63]. Dislocations are observed aligned in lattice and pinned at secondary phases
and boundaries [54]. Their density is about 1.6 1014m−2 for Grade 91 after annealing at
1070̊ C for 7 h then tempering at 760̊ C for 8 h [64].

The Hoff model predicts that the creep lifetimes are inversely proportional to the
minimum strain rate estimated using the Norton power-law [65]. This model allows fair
prediction only for short lifetimes for softening materials such as Grade 91 steel [7]. In the
present case, the predictions are accurate for lifetimes up to 60 103h at 500̊ C [7], 103h at
650̊ C [8], and 400 h at 700̊ C [8]. Beyond these limits, the model overestimates the actual
lifetimes due to the drop in slope of the experimental engineering stress vs. the creep
lifetime curve. This drop is due to creep softening effect and/or to damage development
in the material, which increases with increasing creep lifetime [14, 66]. Monkman and

35
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Grant [5] suggested that the time to failure is inversely proportional to a power function of
the minimum creep rate. Experimental creep data of Grade 91 steel approximately obey
that relationship (within an error of 50%) for lifetimes up to 160 103h and at temperatures
between 500 and 625̊ C [7]. However, this method requires numerous experimental results
for the adjustment of the Monkman-Grant parameters for a given material. The lifetime
model developed by Hart [67] is based on necking, which was first studied by Considere
[12] and more recently by Dumoulin et al. [68]. The Hart model is used for viscoplastic
materials obeying the Norton power-law equation. Its failure criterion is based on the
reduction in cross-section at fracture. Extensive necking controls the fracture of Grade 91
creep specimens only for short-term creep does. Long-term creep specimens fracture after
the coalescence of diffusional creep cavities. These ones nucleated and grew at austenitic
grain and packet/block boundaries [21].

For a softening material such as Grade 91 steel, creep softening should also be in-
troduced. In fact, the hardness of Grade 91 steel usually drops during creep and the
final drop is maximal at high temperatures and during long-term tests [14]. The creep
behaviour of X20CrMoV12-1 steel at 600̊ C in compression (prescribed axial compressive
true stress) and in tension (prescribed axial engineering stress with possibility of necking)
were compared by Straub et al. [69]. Their results showed similar true strain rate vs. true
strain curves up to a half of the fracture strain under creep tension [69]. The same con-
clusion holds for the strain acceleration and creep strain rate evolution. In compression,
necking and creep cavitation were not expected to occur. Therefore, the acceleration of
the strain rate was attributed to the material creep softening of the material itself.

The softening of Grade 91 steel comes from its microstructure evolution during creep.
In fact, the higher the temperature, the stronger the sub-grain growth [16]. Similarly, the
longer the test duration, the stronger the sub-grain growth [16,70]. The overall dislocation
density drops by a factor 3 during a creep time of 125 h (strain of 8%) at 650̊ C for a 12%Cr
tempered martensitic steel [54]. Dislocation annihilation leads to the disappearing of some
of the sub-grain boundaries and, consequently, to sub-grain growth. M23C6 carbides grow
and their number progressively decreases with increasing creep time [20, 70]. The final
size of M23C6 particles increases with increasing creep lifetime [16]. The growth of the
M23C6 carbides causes a decrease in their pinning effect on dislocations leading to lath
boundary recovery [16]. Laves phases, Fe2Mo, nucleate and grow significantly during the
creep deformation of the Grade 91 steel, e.g. their mean radius reaches about 500 nm
after a creep duration of 50 103h at 600̊ C [20]. The precipitation of Laves phases leads
in particular to a decrease in solid solution strengthening induced by molybdenum [71].

This paper presents experimental results from a database of 17 creep tests carried
out on Grade 91 steel at CEA/SRMA as well as simple analytical simulation of the
tertiary creep stage at temperatures between 500 and 600̊ C. The results of creep tests
(Section 3.2) are used in order to identify the parameters of both the Norton power-law
and an additional softening term. The evolution of cross-section during an additional
creep test interrupted several times at 500̊ C under 350 MPa is also presented. Analytical
modelling of the tertiary creep stage (Section 3.3) takes both mechanical and metallurgical
effects into account, namely, the development of necking (due to some surface defect of
the specimen, using the Hart model) and the metallurgical softening of the material
during creep (using the law mentioned above). The evolution of the specimen cross-
section predicted with this model is compared with measurements carried out during the
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interrupted creep test. Creep lifetimes predicted by lower and upper bounds are then
deduced from the necking model including the material softening. These bounds are
compared with the experimental creep results of a large number of tempered martensitic
steels at temperatures between 500 and 700̊ C.

3.2 Materials and experiments

3.2.1 Materials

Two materials of Grade 91 type were used for the creep tests. Material 1 was taken from
a 300 mm thick plate produced by Creusot-Marrel and Material 2 was taken from a 30
mm thick plate fabricated by Usinor. The chemical compositions and heat treatments
are given in Table 3.1 and Table 3.2, respectively. The first material was tested at 500
and 600̊ C, and the second one at 550̊ C.

Table 3.1: Chemical composition of both materials under study expressed in wt.%.

Element Material 1 Material 2

C 0.106 0.088
S 0.003 0.001
P 0.009 0.017
Si 0.47 0.324
Mn 0.38 0.363
Ni 0.12 0.149
Cr 9.0 8.91
Mo 1.01 0.917
V 0.21 0.198
Nb 0.07 0.08
N 0.053 0.041

Table 3.2: Heat treatments of both materials under study.

Materials Initial state Austenisation Cooling Temper

Material 1 Hot forged and rolled 1070̊ C / 7 h water 760̊ C / 8 h
Material 2 Hot forged and rolled 1050̊ C / 30 min air 780̊ C / 1 h

3.2.2 Mechanical testing

All creep tests were carried out at a constant temperature and a constant load using
specimens of 85 mm in total length, 40 mm in gauge length and 5 mm in gauge diameter.
The summary of creep tests is reported in Table 3.3. One multiple-loading-unloading
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creep test was performed at 500̊ C and 350 MPa. This test includes three interruptions
at three different engineering strain levels: 1.68%, 6.8%, and 10.0% (Table 3.4). The
diameter profile of the gauge length along the loading axis was measured at room tem-
perature using a Laser Scan Micrometer before the beginning of the test and after each
unloading step; then, the creep specimen was again mounted on the creep machine to
continue the test until the next interruption.

Table 3.3: Database of creep tests carried out at CEA/SRMA on the Grade 91 steel.
T : temperature, σeng: engineering stress, tf : lifetime.

T (̊ C) σeng (MPa) tf (h)

500 370 14.8
500 350 38.0
500 270 10396
500 250 59347
500 230 160
500 210 in progress
550 275 64
550 230 1230
550 215 3236
550 200 10796
550 185 in progress
600 160 543
600 140 2,103
600 125 5,022
600 110 14,946
600 90 93,749

Table 3.4: Creep test carried out at 500̊ C and 350MPa on Grade 91 steel at
CEA/SRMA, interrupted at three engineering strain levels (εeng) before fracture.

Interrupted points εeng(%) Time (h)

1 1.68 14
2 6.8 39
3 10 43
rupture (last recorded value) 13.25 46.4

3.2.3 Measurements and observations of fractured specimens

The reduction of area at fracture was measured on SEM pictures as the mean value
between both specimen halves. FEG-SEM (Field Emission Gun Scanning Electron Mi-
croscopy) observations were carried out at CEA/SRMA to characterize long-term damage
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for two creep tests, one with a time to failure of 160×103h (500̊ C) and another with a
lifetime of 94×103h (600̊ C). FEG-SEM observations were carried out on the longitudinal
cross-sections of one-half of the fractured specimen. The observed area were located far
from the necking area, as shown in Fig. 3.1. The samples were polished with a colloidal
silica solution finish.

Figure 3.1: Schematic diagram showing the sectioning procedure and zones for FEG-
SEM observations.

3.2.4 Analysis of the creep curves

Creep curves are usually divided into three main stages: primary, secondary, and tertiary
stage [3]. The secondary stage covers the time interval during which the creep rate varies
negligibly or is almost constant. The slope of the straight line in the time-strain plot
gives the minimum strain rate. The true strain or logarithmic strain (finite deformation)
is expressed as a function of the engineering strain, εeng (infinitesimal deformation) [3].
The experimental scatter in strain leads to discontinuity of the strain rate derivative at
a given time. To solve this problem, the engineering strain rate at a given time, ti, is
taken as the mean value of the left and the right slopes.

3.2.5 Results and discussion

Fig. 3.2 shows the ratios between the time duration of the tertiary stage and the total
creep lifetime for various materials and various temperatures. For a given material and
temperature, these ratios seem to decrease with increasing lifetime. For Grade 91 steel
at temperatures between 500 and 625̊ C, the tertiary stage extends over 1/3 (long-term
tests) to 2/3 (short-term tests) of the lifetime. The time fraction of the tertiary creep
stage for Grade 91 steel is similar to that of A5052-0 aluminium alloy, 316 and 316L(N)
austenitic stainless steel, and IN100 nickel-based alloy. This large time fraction could
be attributed to at least one of the following phenomena: the decrease of the specimen
cross section with or without localised necking, metallurgically-induced softening, and
the growth of creep cavities.

Figures 3.3, 3.4 and 3.5 show the evolution of the true strain rate during creep tests.
These curves allow determination of the minimum true strain rates. The Norton power-
law Eq. (3.1) is then adjusted for each temperature using the minimum true strain rates
and the engineering stress (Fig. 3.6). The temperature-dependent Norton parameters (n,
C) are given in Table 3.5.

ε̇min = C(T )(σeng)n(T ) (3.1)
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Figure 3.2: Ratio of the time spent in tertiary creep stage to total creep lifetime
for Grade 91 steel at 500-600̊ C (CEA/SRMA) and at 625̊ C [72], Grade 92 steel at
600̊ C [73], A5052-0 aluminium alloy at 150̊ C [74], IN100 nickel-based alloy at 1000̊ C [3],
316 austenitic stainless steel at 625̊ C [75], and 316L(N) austenitic stainless steel at
600̊ C [76].

The Norton exponent decreases with increasing temperature. The values found here
are in agreement with those given by [73] (n = 12 at 600̊ C), [77] (n = 17 at 550̊ C and
n = 13 at 600̊ C) and finally [78] (n = 16 at 550̊ C and n = 12 at 600̊ C).

Table 3.5: Norton law parameters.

Temperature (̊ C) n C(MPa−nh−1)

500 20.35 1.56× 10−55

550 16.76 6.97× 10−45

600 9.94 8.42× 10−27

The minimum true strain rate is reached at a strain, εmin, ranging between 0.6 and
2.5% for temperatures between 500 and 600̊ C (Figs. 3.3, 3.4 and 3.5). This means
that the minimum engineering and true strain rates differ by less that a few %. Each
minimum true strain rate differs relatively by less than a few % from the corresponding
“stationary”engineering strain rate, evaluated with the straight line method. For each
creep test, the evolution of the logarithm of the true creep strain rate (h−1) with respect
to the true strain is plotted in Figs. 3.3, 3.4 and 3.5. Each evolution is linear after
the minimum creep strain is reached and before the final acceleration. After reaching
the minimum, the true strain rate seems to be an exponential function of the strain
until 50% of the fracture strain i.e. the very end of the test. These observations are in
agreement with the conclusions of Straub et al. [69] and Abe [79]. For each creep test,
the “softening”slope, k, is defined as the slope of the linear part of each curve plotted in
Figs. 3.3, 3.4 and 3.5: k = ∂ log(ε̇)

∂ε
. The “softening”slope globally increases with increasing

lifetime, i.e. decreasing minimum strain rate (Fig. 3.7).
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Figure 3.3: True strain rate evaluated using numerical derivation from creep curves
(engineering strain vs. time) at 500̊ C.

Figure 3.4: True strain rate evaluated using numerical derivation from creep curves
(engineering strain vs. time) at 550̊ C.
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Figure 3.5: True strain rate evaluated using numerical derivation from creep curves
(engineering strain vs. time) at 600̊ C.

Figure 3.6: Norton power-law fit at 500-600̊ C (CEA/SRMA) and at 625̊ C [72].
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Figure 3.7: Softening slope versus minimum creep rate for Grade 91 steel, according to
the date given by CEA/SRMA and [8, 72].

Fig. 3.7 shows that the softening slope can be represented with a power-law function
of the minimum creep rate. The results of the present study were used together with
literature results at 600̊ C [8] and at 625̊ C [72] to adjust the power-law parameters
between 500 and 625̊ C:

k = A(ε̇min)α (3.2)

with α = 0.1098, A = 15.27 and the creep strain rate is divided by h−1 in the power
term.

The measured reduction of area at fracture varies between 20% and 80% (Fig. 3.8).
Senior et al. [80] showed that cavities are nucleated and grow up to a size of 40 nm when
the true strain of a tensile specimen at room temperature reaches 25%. This true strain
corresponds to a reduction of 20% in cross-section. It shows that the critical reduction
factor ranges between 20% and 100%. For long-term tests, e.g. 160×103h at 500̊ C and
94×103h at 600̊ C, the reduction of area is lower than that measured after short-term
tests. At the end of these long-term creep tests, creep cavities up to 1 mm in size at 500̊ C
and up to 5 mm at 600̊ C are observed far form the necking area (Fig. 3.9).

Experimental results on the additional test including interruptions and observations
are illustrated in Figs. 3.10, 3.11 and 3.12. Before the creep test, the surface roughness
leads to a maximum variation of 20 mm in diameter along the gauge length (Fig. 3.12).
Observation with naked eye is not enough to see any change in cross-section between
the initial state and the second interruption (6.8% of strain), (Fig. 3.11). Laser scan
micrometer measurements reveal a reduction of 2% and 9% in cross-section respectively
at the first and second interruption (Fig. 3.12). Necking appears visibly only at the third
interruption (Fig. 3.11) for which the average longitudinal engineering strain reaches
10% and the reduction in cross-section reaches 16%. The specimen fractured after an
engineering strain of 13.3% is reached (last record). The reduction in necking cross-section
is 82%. These results imply that for the testing conditions used here, the reduction in
cross-section is slow during a large time fraction of the tertiary stage. And it accelerates
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Figure 3.8: Reduction of area measured after fracture as a function of minimum creep
rate [7, 72].

Figure 3.9: FEG-SEM observations of long-term creep damage on longitudinal cross-
sections far from the necking area for creep tests on Grade 91 steel at (a) 500̊ C for
160×103 h and (b) 600̊ C for 94×103 h.
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very quickly during the last 10% of the lifetime.

Figure 3.10: Multiple loading-unloading creep test at 350 MPa and 500̊ C on Grade 91
steel. Unloading and further loading parts of the curve are not indicated.

Figure 3.11: Evolution of necking during creep at 350 MPa and 500̊ C.

3.3 Modelling of the tertiary creep stage

3.3.1 Viscoplastic flow law

a. Norton power-law expressed with the true strain rate and the true stress

The mechanical behaviour during the secondary stage is usually modelled using the Nor-
ton power-law given by Eq. (3.1). For a given creep test, we use this law in order to
simulate creep deformation starting from its minimum creep rate. At the minimum creep
rate and assuming homogeneous deformation (see Fig. 3.12), the axial true stress σ is
expressed as a function of the engineering stress σeng. A material law in true stress
should be used provided the axial strain is higher than a few % which is the case in the
acceleration stage, after the minimum creep strain rate is reached.
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Figure 3.12: Diameter profile of the P91 creep specimen during creep test at 350 MPa
and 500̊ C.

This stress modification leads to a modification of the constant C of Eq. (3.1). The
Norton law in true stress starting at the true strain εmin can thus be expressed using a
modified constant: Cm = C exp(−nεmin).

b. Viscoplastic flow law including the creep-softening of the material

This phenomenological viscoplastic flow law consists in combining the acceleration of the
creep strain rate during the tertiary stage with the Norton power-law:

ε̇min = C(σeng)n exp [k(ε− εmin)] (3.3)

The exponential term represents the creep softening behaviour in the tertiary stage
starting at the true strain εmin at which the minimum true strain rate is reached. Then,
Eq. (3.3) leads to the law written in terms of true stress:

ε̇min = Cσn exp(hε− kεmin) (3.4)

with h = k −N .
For the sake of simplicity, a unique set of parameters (k,εmin) was adjusted for each

temperature, which gives fair agreement between simulated and experimental curves of
all creep tests at a given temperature. The set of (k,εmin)was found to be (0.02, 35) at
500̊ C and 550̊ C, and (0.018, 35) at 600̊ C.

3.3.2 First approach: homogeneous deformation (no localised
necking)

As a first approach, we assume that the specimen cross-section reduces homogeneously
along the tensile axis during the whole creep test. This approach is similar to the Hoff
analysis [65] which allows the prediction of the specimen deformation from the secondary
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stage until fracture. The analysis is based on the volume conservation which allows the
computation of the cross-section and true stress evolution with respect to the strain.

a. Model including the Norton law for true strain and stress

The Norton power-law in true stress leads to the following differential equation:

exp(−nε)ε̇ = Cm (σeng)n (3.5)

For a given engineering stress, this equation can be solved by integration between the
time tmin and a given time t, corresponding to the strain εmin and a given strain ε. From
this, the true strain can be derived:

ε(t) = εmin −
1

n
ln
[
1 + nε̇Nortonmin (tmin − t)

]
(3.6)

Then, the engineering strain can be deduced as well as the cross-section evolution with
time:

S(t) = Smin
[
1 + nε̇Nortonmin (tmin − t)

]1/n
(3.7)

with Smin the cross-section at the time tmin.
This model requires the knowledge of the Norton parameters, (n, C), and time and

strain for which the the minimum creep rate is reached, tmin and εmin.

b. Model including the creep softening of the material

The integration of Eq. (3.5) between tmin and t (corresponding strains: εmin and ε) leads
to an expression of the true strain at a given time:

ε(t) = εmin −
1

k
ln
[
1 + kε̇Nortonmin (tmin − t)

]
(3.8)

Then, the engineering strain and the cross-section are obtained from this equation re-
spectively as:

εeng(t) = (1 + εengmin)
[
1 + kε̇Nortonmin (tmin − t)

]−1/k − 1 (3.9)

S(t) = Smin
[
1 + kε̇Nortonmin (tmin − t)

]1/k
(3.10)

This approach requires the knowledge of the Norton parameters (N and C), the time and
strain (tmin and εmin), and the softening slope (k). The parameter tmin is an experimental
value measured from the experimental creep curves when the true strain reaches εmin.

c. Comparison between model predictions and experimental creep curves

The creep curves predicted by the homogeneous deformation model using either the
Norton law without softening or taking into account additional softening are shown in
Figs 3.13, 3.14 and 3.15. For the first model, the value of parameter C was fitted from the
minimum stain rate vs. stress data. At 500̊ C, the use of the Norton law expressed with
the true stress allows fair calculations of the creep curves up to 80% of the lifetime for
lifetimes shorter than 60×103h but up to only 60% for the longest creep test (160×103h).
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Figure 3.13: Experimental and predicted engineering strain evolution with the homo-
geneous deformation approach and either (1) the Norton power-law or (2) the modified
power-law including the material softening effect, for creep tests at 500̊ C.

Figure 3.14: Experimental and predicted engineering strain evolution with the homo-
geneous deformation approach and either (1) the Norton power-law or (2) the modified
power-law including the material softening effect, for creep tests at 550̊ C.
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Figure 3.15: Experimental and predicted engineering strain evolution with the homo-
geneous deformation approach and either (1) the Norton power-law or (2) the modified
power-law including the material softening effect, for creep tests at 600̊ C.

The model allows fair computations of the creep curves until 60% of the lifetime for all
creep tests at 550̊ C and 600̊ C. Therefore, the model underestimates the creep strain
during the end of the tertiary stage.

As expected, the homogeneous deformation model using the viscoplastic flow law
including the material softening effect leads to improved calculations of the creep curves.
The difference between the creep rates at the starting points is due to the use of the
minimum creep rates predicted by the Norton law ε̇Nortonmin which are different from the
actual experimental minimum creep rates, partly because of experimental scatter. For
the longest tests, this model allows correct evaluations up to 80% of the lifetimes at 500̊ C
and up to 90% at 550̊ C. This suggests that necking controls deformation only during
the very final part of the creep tests. For the longest test at 600̊ C, the calculated curve
is correct up to only 60% of lifetime. This is due to the fact that the softening slope
used (35) is about twice smaller than its experimental value for this test (64). For all
the other creep tests at 600̊ C, calculations from the model including the softening effect
are still better than the first ones neglecting softening. However, the second model still
leads to an underestimation of the strain just before failure. That is why necking is now
considered.

3.3.3 Instability and necking evolution

a. Prediction of the onset of necking

At any given time, a small portion of the gauge length is assumed to have a cross-section
differing by a small amount, δS, from the rest of the gauge part, which is supposed to have
a homogeneous cross-section, S. According to the definition of Hart [67], deformation is
unstable if this difference in cross-section increases with time. This criterion is defined
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Figure 3.16: Specimen at onset of necking.

as:

δṠ/δS > 0 (3.11)

The difference δS is assumed to be produced during a small amount of time δt and could
be replaced by Ṡδt. Then, Eq. (3.12) is deduced from Eq.(3.11).

S̈ < 0 (3.12)

Using the volume conservation assumption and Eq. (3.12) leads to the instability criterion
expressed as:

ε̈eng

ε̇eng
− 2

ε̇eng

1 + εeng
> 0 (3.13)

The creep curve is concave before and convex after the minimum creep rate. The Hart
criterion predicts thus that the instability can takes place only in the convex part of creep
curves, corresponding to the creep rate acceleration domain.

In order to use the Hart instability criterion, Eq. (3.13), calculations of the first and
second derivatives with respect to time are required. The experimental scatter of engi-
neering strains causes derivative discontinuities. This was solved by using a polynomial
regression. The engineering strain vs. time curves were fitted using a 6th order poly-
nomial function of time. The number of required digits of the polynomial coefficients
is a parameter of the regression. When this number is higher than three, there is no
significant effect on the prediction of the necking onset. There is a relative difference less
than 5% between the minimum creep rate estimated with the 6th order polynomial and
the one determined with the straight line method (Section 3.2.5). Using a 4th and 5th
order polynomial function leads to a relative change of the prediction lower than 10%.
In the following, the 6th order polynomial regression is used.

Necking predictions are reported in Table 3.6 for the all the creep tests. The predic-
tions using the Hart criterion show that strain instability is reached at a time very close
to tmin. This criterion predicts early strain instability while from experiments, extensive
necking significantly develops only just before fracture (Figs. 3.10, 3.11 and 3.12).

b. Cross-section evolution after the onset of necking

After the onset of necking, the necking part of the specimen shows a curved shape indi-
cated by the dotted line in Fig. 3.17. Following the laser scan micrometer measurements,
the radius of curvature of the necking part after fracture is only 1.2-3.4 times larger than
the diameter of the necking cross-section radius. Preliminary calculations assuming per-
fect plasticity behaviour and using the wellknown Bridgman model [81] show that axial
stress varies across the necking section by less than 10%. That is why we assume in the
following that the axial stress is uniform in the necking section.

The specimen is divided into three homogeneous parts. The first and third ones have
the same uniform section: S (homogeneous parts). The second one is the necking part
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Table 3.6: Predictions of the onset of necking.

T (̊ C) tf (h)
End stage I End stage II Min. creep rate Predic. necking
t (h) ε (%) t (h) ε (%) t (h) ε (%) t (h) ε (%)

500 15 1.3 0.93 5 2.2 3 1.51 3.1 1.54
500 38 6 1.12 14 2.03 9 1.45 10 1.56
500 10400 385 0.42 3500 1.24 1219 0.625 1267 0.64
500 59350 1500 1.73 32500 2.96 19334 2.04 19418 2.04
500 160000 35000 1.86 88000 0.83 66961 2.02 66961 2.02
550 64 7 0.67 28 1.76 20 1.37 20 1.37
550 1230 170 1.06 650 2.35 372 1.61 402 1.69
550 10800 2800 1.7 6200 2.6 5615 2.43 5615 2.43
600 543 100 1.79 260 3.11 175 2.41 180 2.44
600 2103 400 1.53 1100 2.69 672 1.98 694 2.02
600 5022 700 1.4 2350 1.86 1507 1.4 1507 1.4
600 14950 6000 1.9 8500 2.28 7194 2.07 7226 2.07
600 93750 11000 0.77 47500 1.68 26126 1.14 26319 1.14

Figure 3.17: Longitudinal section of the specimen after the onset of necking.

and is located between the first and third ones. Its cross-section is assumed to be uniform
as well: s = S − δS < S. The three parts are loaded in series, neglecting the effect of
stress triaxiality and stress heterogeneity in the necking part induced by the notch effect.

The two creep strain rate equations mentioned above are used here to predict the
cross-section evolution. The first one is the usual Norton power-law. The expression of
the homogeneous section S following time, t, starting at the necking onset time, tnecking,
can be written as:

S(t) = Snecking
[
1 + nε̇Nortonmin (tmin − t)

]1/n
(3.14)

with Snecking = Sinit/(1 + εengnecking)
The load P is equal in all cross-sections along the gauge length:

P = σhomS = σneckings (3.15)

The true stress in each cross-section is expressed as a function of the true strain rate
using the Norton power-law. Then, the true strain rate is expressed as a function of
both the cross-section rate and the cross-section using a volume conservation assump-
tion. Hence, a differential equation linking the homogeneous and necking cross-sections
is obtained:

sn−1ds = Sn−1dS (3.16)

Integration of Eq. (3.16) between the onset of necking and a given time t leads to a
relationship between the homogeneous and the necking cross-section:

sn − sneckingn = Sn − Sneckingn (3.17)
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After time integration, if we consider that deformation develops in a ductile way and
slowly, the cross-section difference between the homogeneous parts and necking part
is thus small (δS << S). Using the Taylor first order approximation, we deduce the
relationship given by Hart [67]:

δS = δSnecking

(
Snecking
S

)n−1

(3.18)

The second model uses the viscoplastic flow law described by Eq. (3.3). This one takes
material softening into account. Predictions based on the Hart instability criterion show
that necking starts only slightly later than tmin. Therefore, for the sake of simplicity,
necking is supposed to start at time tmin. The strain reached when the minimum creep
strain rate is measured, εmin, is determined from fitting the softening law (Section 3.3.1.b.)
and tmin is the experimental time corresponding to strain εmin. The cross-section of the
homogeneous parts is given by Eq. (3.10). Using the procedure described previously, a
relationship between the homogeneous and the necking cross-sections is derived as follows:

sk − smink = Sk − Smink (3.19)

For both necking models, the difference in cross-section δSnecking between the homoge-
neous and necking part at the predicted onset of necking is calculated using:

δSnecking ≈ δDnecking

√
πSnecking (3.20)

with Snecking = Sinit/(1 + εengnecking) for the first model, or Sinit exp(−εmin) for the second
model.

δDnecking is supposed to be equal to the initial variation in diameter along the spec-
imen (≈ δD), which ranges between 0 and 20 mm following the laser scan micrometer
measurements (Section 3.2). To evaluate the sensitivity of the predictions to δD, para-
metric calculations were carried out by setting this parameter to 1 mm, 10 mm, 20 mm, 50
mm, and 100 mm.

The criterion for final fracture is based on a critical reduction of minimum cross
section. From creep results at temperatures between 500 and 625̊ C (Section 3.2) its
value stands within 20 − 80%. Therefore, two extreme values of the reduction of the
minimum cross-section were chosen: fcinf = 20% and fcsup = 80%. The influence of the
choice of the critical reduction value will be discussed in the following.

3.4 Results and discussion

3.4.1 Lifetime predictions using necking modelling

Fig. 3.18 shows the predicted lifetimes for the various values of the initial variation in
diameter using the necking model with either the Norton power-law and the modified flow
law taking into account the softening effect. For both models, the lifetime predictions
become stable with a relative variation lower than 10% when δD varies between 1 and
20 mm. These values correspond to the machining-induced roughness of the present
specimens.
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Figure 3.18: Lifetime predicted by the necking model using (a) the Norton power-law
and integration formulation and (b) the modified power-law including the softening effect
for various values of the initial diameter variation, δD.

The cross-section evolution of long-term creep specimens tested at 500, 550 and 600̊ C
predicted by the necking models including softening or not are plotted in Fig. 3.19 for
δD = 20 mm. The durations predicted for a reduction of 20% and 80% in cross-section
differ relatively by less than 10%. Using the Hart formulation, Eq. (3.18), yields to an
overestimation of 10% compared to the time integration formulation given by Eq. (3.17).
Since the Taylor first order approximation can only be applied for small values of the
cross section variation (δS), we suggest the use of the time integration formulation, which
is valid for a larger strain range.

Figure 3.19: Predicted evolutions of the necking section with time. Symbols: exper-
imental fracture surfaces, dotted lines: Norton law and Hart Eq. (3.18), dashed lines:
Norton power-law and time integration formulation Eq. (3.17), and solid lines: modified
power-law including the softening effect. Initial diameter variation δD = 20 mm.

The necking model including the creep-softening behaviour gives a better lifetime
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prediction than the model using only the Norton power-law expressed in true stress. The
two models predict that the cross-sections of the creep specimens decrease very slowly
with time during the main part of the tertiary stage. The reduction in cross-section
significantly accelerates only just before fracture. This evolution is in agreement with
observations of the creep specimen during the interrupted creep test (Section 2). Under
tensile tests (performed at 650̊ C and strain rate of 2.5 10−4s−1 on Grade P92 steel),
Giroux et al. [13] observed a similar slow evolution of the necking cross-section, i.e. the
reduction in cross-section accelerates strongly only just before fracture. This is due to
the values of the Norton exponent (n) and of the softening slope (k).

Experimental and predicted lifetimes for the various creep tests are shown in Fig. 3.20.
The necking model using the Norton power-law expressed in true stress overestimates by
50% the lifetimes shorter than 60×103h at 500̊ C. It overestimates by more than 100% the
longest lifetime (160×103h) at the same temperature. And it overestimates all lifetimes at
higher temperatures. This can be explained by the effect of the material creep-softening,
which is not considered in this first model. In fact, as mentioned in the Introduction part
of this paper, material softening is more significant for the highest creep temperatures and
the longest creep times. The necking model taking into account material softening leads
to predicted lifetimes that differ by less than 20% from the experimental data whatever
the applied load and temperature. At 600̊ C, this model overestimates the lifetime of the
94×103h long test by 50%, which still remains within the experimental scatter commonly
encountered in literature [21]. Therefore, we consider that the necking model including
the material creep-softening satisfactorily predicts creep lifetimes.

Figure 3.20: Experimental results and lifetimes predicted with the necking model using
either the Norton power-law or the modified power-law including the softening effect, for
δD = 20 mm.

The necking model including creep-softening correctly predicts the lifetimes of the
creep tests (Fig. 3.21). The necking cross-section predicted by this model first decreases
slowly, and then fastly just before fracture, in agreement with the measurements carried
out during the interrupted creep test. The model correctly predicts the necking cross-
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section evolution up to 75% of lifetime. The model underestimates lifetime by 20%. This
is consistent with the scatter between the results of tests carried out in similar conditions
[21]. When the evolutions with respect to the relative time, t/tf , are considered, the
agreement between the predictions and the measurement values is even better (Fig. 3.21).

Figure 3.21: Experimental results and evolution of cross-section versus time predicted
with the necking model taking into account the creep-induced material softening, for the
creep test performed at 500̊ C and 350 MPa.

3.4.2 Derivation of simple lower and upper bounds

The ratio between the necking section at fracture and the initial cross-section is supposed
to be equal to a critical value, fc:

s/Sinit = fc (3.21)

Then, Eqs. (3.10), (3.19) and (3.21) lead to:

tf − tmin =
1

kε̇min

{
(1− δSmin/Smin)k − exp [k(εmin + ln fc)]

}
(3.22)

In Eq. (3.22), the exponential term is small and can be neglected (< 10−2 for k ≥ 25,
fc ≤ 0.8 and 0.6% ≤ εmin ≤ 3%). The time to failure can thus be more simply predicted
by Eq. (3.23), where δDr is the relative variation of the diameter with respect to the
initial diameter.

tf − tmin =
1

kε̇min
[1− δDr(2 + εmin)]k (3.23)

According to creep tests at temperatures between 500 and 625̊ C, there is a variation range
of each of these parameters: δDr = [10−4, 5.103], εmin = [0.6, 3]% and tmin/tf = [0.2, 0.5].
The softening slope, k, is expressed as a function of the minimum true strain rate using
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Eq. (3.2). This leads to the expression of the lifetime lower and upper bounds:

tfinf =
1.25

Aε̇min
(0.9899)A(ε̇min)−α (3.24)

tfsup =
2

A(ε̇min)1−α (3.25)

For creep tests at temperatures between 500̊ C and 625̊ C, the parameters (A,α) are
found to be (15.27,0.1098). The upper bound is of the Monkman-Grant type. The lower
bound takes the necking effect into account and is not a simple power law.

The lifetimes predicted with Eqs. (3.24) and 3.25 are plotted in Fig. 3.22 for a large
number of tempered martensitic steels. The experimental creep data points of the Grade
91 steel are actually bounded by these lower and upper values. The lower bound allows
correct predictions for short-term creep but, as expected, leads to an underestimation
of lifetimes for long-term creep tests. On the contrary, the upper bound overestimates
lifetime for short-term creep, but yields to reasonable predictions for long-term creep.

Figure 3.22: Experimental results and lifetimes predicted by the upper and lower
bounds for a large number of tempered martensitic materials at temperatures between
500 and 700̊ C (CEA/SRMA and [4, 8, 10,59,73,79].

For long-term creep lifetimes (≈ 2.105h), the predicted lower and upper lifetimes differ
by a factor of 4. This is due to the use of the lower and upper limits of δDr under the
exponent k (≈ 90) that leads to a difference by a factor 2.5, and lower and upper bounds
of the fraction tmin/tf that causes a difference by a factor 1.6. Therefore, to improve
lifetime prediction, the time fraction, tmin/tf , and (if possible) the initial variation of the
diameter δD should be more accurately measured.

3.5 Conclusions

The creep deformation and fracture of Grade 91 steel has been studied both experi-
mentally and theoretically, for temperatures ranging from 500̊ C to 625̊ C and lifetimes
up to 160×103h. The time fraction spent during the tertiary stage ranges from one to
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two-thirds and decreases with increasing creep lifetime. Creep-induced microstructure
softening leads to an acceleration of strain after the minimum strain rate, whereas neck-
ing induces the cross-section to drop quickly only just before fracture (last 10% of the
tertiary time stage). The softening slope can be predicted, using a phenomenological law,
as an exponential function of the true strain rate.

The Hoff model based on a homogeneous reduction in cross-section including creep-
softening of this material still overestimates lifetimes. Taking necking in account, the Hart
model using the Norton law expressed in true stress correctly predicts creep lifetimes only
up to 60×103h at 500̊ C. The necking model including creep softening behaviour (with
couples (εmin,k)) leads to fair predictions of lifetimes up to 160×103h at 500̊ C and
94×103h at 600̊ C. The predicted evolution of the necking cross-section is in agreement
with measurements carried out during an interrupted creep test. The model is stable
with respect to the initial variation in specimen diameter and the failure criterion value.

Lower and upper bound curves describing lifetime vs. minimum creep rate are derived
from the model including the matreial softening effect. Experimental lifetimes of a large
number of tempered martensitic materials up to 200×103h at temperatures between 500
and 700̊ C are bounded by the lower and upper predictions. Above such lifetime duration,
the intergranular cavity nucleation and growth might affect the time to fracture.
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Résumé

Des cavités de fluage inter-granulaires sont observées en FEG-SEM après deux essais de
fluage long-terme de durées de vie respectivement de 160 kh à 500̊ C et 94 kh à 600̊ C. Les
porosités mesurées conduisent à une augmentation de la vitesse de déformation prédite
par la loi de Norton de 2.5%, utilisant la mécanique de l’endommagement du milieu
continu. Le modèle de striction est par conséquence valide jusqu’à ces domaines de durée
de vie. Des prédictions valables de l’évolution des cavités permettraient des extrapolations
de durées de vie hors du domaine observé expérimentalement.

La croissance et la germination des cavités inter-granulaires sont supposées être as-
sociées à la diffusion des lacunes le long des joints de grain et de bloc. La croissance
des cavités, supposée soumise à une contrainte normale homogène et égale la contrainte
macroscopique, est modélisée en utilisant deux modèles. Le modèle de Raj et Ashby tient
compte de la germination instantanée, alors que le modèle de Riedel prend en compte
la germination continue simulée par la loi de Dyson. Le premier modèle est plus stable
que le deuxième modèle par rapport à ses paramètres, aux coefficients de diffusion, à
la vitesse de germination et la fraction d’aire critique des cavités. Les tailles de cavités
prédites en fin de fluage sont en accord raisonnable avec les mesures en FEG-SEM. Mais,
des valeurs de la vitesse de germination sont utilisées afin d’appliquer ce modèle.

Des cavités sont observées en FEG-SEM majoritairement sur les précipités et les
phases de Laves situés le long des joints de grain et de bloc. Ces cavités ont la plus haute
probabilité de germination d’après la littérature. La vitesse de germination des cavités
de ce type prédite par le modèle de Raj est pratiquement négligeable même en tenant
compte de la ségrégation de S et de P aux joints de grain. Des premiers calculs par
éléments finis en déformation plane sont menés afin d’estimer le facteur de concentration
de contrainte à l’interface entre un précipité élastique isotrope et une matrice simulée par
une loi de fluage isotrope. Un facteur de concentration de contrainte de 1.5 estimé ne
permet pas de prédire les densités finales de cavités même au même ordre de grandeur
que les valeurs mesurées. En effet, le facteur géométrique théorique est de trois ou quatre
ordres de grandeur plus grand que la valeur ajustée.

A ce stade, l’influence de l’hétérogénéité géométrique de la microstructure telle que les
points triples sur la concentration de contrainte locale n’est pas encore prise en compte.

Mots clés : cavitation intergranulaire, diffusion des lacunes, germination et croissance
des cavités, précipités, phase de Laves, germination continue, ségrégation
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Introduction

In the last chapter, viscoplastic instability called “necking”was shown to be the main
mechanism of failure of Grade 91 steel up to creep lifetimes of 160×103 h at 500̊ C
and 94×103 h at 600̊ C. Creep cavities forming along former austenitic grain boundaries
(FAGBs) or block boundaries were observed for these creep lifetimes. They probably do
not affect the failure mechanism for shorter lifetimes, but they may do for long lifetimes.
In order to predict their effect on creep lifetime, we present in this part an experimental
and theoretical study of creep cavitation along block/packet boundaries or FAGBs.

The cavitation investigated in this part involves two successive stages that are nu-
cleation and growth of cavities (no coupling with necking). The cavitation mechanisms
occurring during these stages can generally be controlled by either vacancy diffusion,
or viscoplasticity, or a coupling of both of them. With regards to long-term creep, only
diffusion-induced cavitation is studied in this part as justified by computation of the Rice
critical length. Diffusion-induced cavitation by mean of experimental observations and
modelling will be presented in this part.

Chapter 4 gives a literature review on diffusion cavitation. Section 4.1 focuses on
observations of creep cavities in martensitic steels in order to understand the mechanisms
of cavitation and to allow us to choose physically-based models. Many models of diffusion
cavitation including nucleation and growth will be presented in section 4.2. The choice
of the most suitable models will be discussed in section 4.3.

Our works on creep cavitation will be presented in Chapter 5. Section 5.1 presents
observations and cavity quantification after failure of four creep tests at 500̊ C (160 kh and
59 kh) and 600̊ C (94 kh and 5 kh). Modelling of diffusion cavitation including nucleation
and growth will be presented in section 5.2. The predictions are then compared to the
previous observations and measured values.

Finally, conclusions will be drawn at the end of this part.
In this part, grain boundaries subjected to damage are supposed to be almost per-

pendicular to the loading direction and loaded by the macroscopic tensile stress. The
effect of microstructure geometry and crystal orientations is neglected at this stage.

63



64



Chapter 4

Literature review on creep cavitation
induced by grain boundary diffusion

4.1 Observations of creep cavities in martensitic steels

Numerous studies on creep cavitation have been carried out in various metals such as
bainitic steel [82], ferritic steels (1Cr-1

2
Mo, 21

4
Cr-1Mo) [83–85], austenitic stainless steels

[76, 86], copper [87, 88], and nimonic alloy [89,90]. The cavitation behaviour depends on
grade of metals. The cavitation observations described in this section involve particularly
martensitic steels. These include Grade 91 steel and also 12%Cr-Mo-V steel since its
microstructure is rather similar to the first one.

Table 4.1: Observations of cavity nucleation after [21,80,82].

Steel alloy 9%Cr steel [80] 12%Cr steel [21] bainitic steel [82]

- Temperature (̊ C) 25̊ C - tensile 650̊ C - creep 700̊ C - tensile
- Strain rate (h−1) 54 1.1×10−5 3×10−4, 0.3
- Elongation at failure 78% 13% ≤ 5%

- Observation instrument TEM SEM -
- Elongation at the first de-
tection of cavities

28% <1% 0.05%

- Lowest diameter 20 nm 400 nm -

Diffusion (or creep) cavities should be distinguished from ductile cavities. The nu-
cleation of cavities in three alloys is reported in Table 4.1. Diffusion creep cavities with
nucleation size of 400 nm located along former austenitic grain boundaries (FAGBs)
or block boundaries were observed in 12%Cr steel at 650̊ C after a creep elongation of
1% [21], where the minimum creep strain rate was reached. Their nucleation may be
mainly controlled by vacancy diffusion along FAGBs or block boundaries. Indeed, duc-
tile cavities with nucleation size of 20 nm have only been observed at an elongation of
28% in 9%Cr steel at room temperature [80]. Nucleation of ductile cavities occurs when
plastic strain is high enough to lead to fracture at carbide-matrix interfaces [80]. Nucle-
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ation of cavities along FAGBs has also been observed earlier at an elongation of 0.05%
in bainitic steel [82].

The study of Eggeler et al. [21] on creep of 12%-Cr-Mo-V steel shows that cavity
nucleation seems to be continuous. The cavity density on polished cross-sections, Nm,
was measured and plotted in Fig. 4.1a. The cavity density along block boundary facets,
Na, was then deduced taking the probability of intersecting cavities on block boundary
facets into account as in the following equation [91]:

Na =
dg
πdH

Nm (4.1)

where dg is the mean linear intersected block size, and dH the harmonic mean of
intersected cavity diameters.

The accumulation of cavity densities Nm and Na seems to be linear between strain
interval of 1 and 12% (Fig. 4.1a). The linear accumulation of Na has been suggested by
Dyson [91] for other metallic materials such as 21

4
Cr-1Mo steel, 347 steel, Nimonic 80A

and Iron base. In exception, the nucleation behaviour is unclear yet before an elongation
of 1%. The growth in diameter of the largest (5%) cavities in 12%-Cr-Mo-V steel seems
to follow a logarithmic or power function of elongation (Fig. 4.1b). At an elongation of
1%, their mean equivalent-circular diameter reaches 1.5 mm. It then increases by two
times larger after an elongation of 5 to 12%.
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Figure 4.1: Nucleation and growth of cavities in 12%Cr steel during a creep test carried
out at 650̊ C and 80 MPa from [21].

Creep cavities were observed by Eggeler et al. [21] at block boundaries, FAGBs and
at triple junctions between FAGBs (Fig. 4.2). These observations revealed that the creep
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cavities located at triple junctions of FAGBs and along FAGBs were the largest ones.
After an creep elongation of 5%, the average diameter of cavities reach 1.6 mm for the
ones located at triple junctions of FAGBs, 1.3 mm for the ones along FAGBs and 1.2 mm
for the ones at block boundaries. A high resolution observation allowed the authors to
detect a cavity located at a carbide-matrix interface, having a size of 0.5 mm. No mass
spectrometry analysis on this carbide was made by the authors, but its characteristics in
size and shape match the M23C6 carbide ones [21](Fig. 4.3). No further statistics on this
type of cavity nucleation site were studied by the authors.

(a) Cavities located along and within FAGBs. (b) Cavities lining up along FAGB seg-
ments perpendicular to the loading axis.

(c) Microcracks forming on FAGB segments
mostly perpendicular to the loading axis.

Figure 4.2: Optical micrographs of cavitated 12%Cr-Mo-V steel after a 5% creep elon-
gation at 650̊ C under 80 MPa after [21].

The cavities located at FAGBs grow fastest and have more important role in failure
process if the corresponding FAGB segment are nearly perpendicular to the loading axis
[21]. Figure 4.2b shows that cavities line up along FAGBs perpendicular to the loading
axis. The average size of cavities located along FAGBs forming with the loading axis
angles close to 90̊ is 1.4 times larger than the ones located along FAGBs for which angles
are lower than 30̊ [21]. Besides, cavity spacing along FAGBs forming with the loading
axis angles between 60 and 90̊ is 3 times lower than FAGBs for which angles are lower
than 20̊ [21]. After a creep elongation of 5%, microcracks formed along FAGB segments
closely perpendicular to the loading axis were observed (Fig. 4.2c). Eggeler et al. [21]
suggested that these microcracks could result from a coalescence of cavities lining up
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Figure 4.3: SEM micrograph of a typical cavity after a creep elongation of 5% at 650̊ C
under an applied stress of 80 MPa [21].

along FAGBs as observed in Fig. 4.2b.

The observations by Eggeler et al. [21] on the microstructure of 12%Cr steel also
revealed that the spacial distribution of cavities were heterogeneous. Figure 4.2a and
4.2b show that there exist different fields where the cavity density is low and high. Figure
4.2c also shows that microcracked FAGB facets are isolated one from another.

Investigations of creep cavities in Grade 91 steel subjected to creep at 625̊ C have
been performed by Gaffard [4] and reported for three creep tests. These creep tests have
respectively lifetimes of 3800 h (100 MPa), 1750 h (110 MPa) and 870 h (125 MPa). FEG-
SEM observations of cavities were carried out in fields of the creep specimens located far
away from the fracture regions. Cavities with a spacial distribution almost uniform were
observed [4]. The average size of cavities seems to be weakly stress-dependent since it
varies between 2 and 2.5 mm within the stress range studied by the author. More creep
tests using a wider stress range could be necessary to obtain significant conclusions.

The observations of Gaffard [4] seem to show a dependence of creep damage with
respect to creep stress, but the results are statically not representative enough to conclude.
For creep stress varying from 100 to 120 MPa, the final cavity density decreases by 2 times
and respectively the area fraction of cavities decreases by 3 times (from 0.3% to 0.1%) [4],
see Fig. 4.4.

The observations by Gaffard [4] of cavitation in cross-sections located near the fracture
surface allow understanding failure mechanisms in this zone subjected to large viscoplastic
strain. First of all, fracture occurs along FAGB or block boundary segments perpendicular
to the loading axis (Fig. 4.5), after a lifetime of 7000 h at 625̊ C. This is in agreement
with the observations related in [21] (Figs. 4.2b and 4.2c). In the fracture zone, cavities
could be of ductile type [80]. Indeed, the local elongation in the fracture zone is high
and equal to 25%, whereas the elongation is not higher than 5% in the homogeneous
part. Cavities are located close to Laves phases and M23C6 carbides (Fig. 4.6a and 4.6b),
which is in agreement with the observations of Senior et al. [80] who have suggested that
ductile cavities were formed by decohesion of the particle-matrix interface. A ductile
cavity could also form by ductile fracture at a triple junction as shown in Fig. 4.6c.

The critical area fraction to final failure is not higher than 10% [4,92]. Area fraction
of cavities in regions near the fracture surfaces of specimens has been measured in [4]
and shown in Fig. 4.4b. The measured area fraction of cavities ranges between 2 and
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Figure 4.4: (a) Cavity number over cross-section fields of 214×286 mm2 and (b) area
fraction of cavities measured in [4]. D/D0 = 1 for cross-sections located in the homoge-
neous parts of creep specimens and D/D0 < 1 for cross-sections located in the necking
region.

Figure 4.5: Microcracks following FAGB or block boundary segments perpendicular
to the loading axis, observed in a cross-section near the fracture surface, after a creep
lifetime of 7000 h at 625̊ C [4].
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Figure 4.6: Ductile cavities lying on (a) a Lave phase, (b) on M23C6 carbides, and
forming at a triple point, observed in a cross-section near the fracture surface after a
creep lifetime of 7000 h at 625̊ C [4].

6%. These ratios are much lower than the critical porosity assumed when using classical
models [93] (50%). Therefore, overestimations of lifetimes may be expected from these
predictions.

The aim of the present study is to build a model to predict cavity development before
the onset of localised necking. To this aim, only long-term creep specimens (i.e. in which
creep cavities are present outside the necking region) will be considered and the applied
loading will be assumed to be uniaxial unless otherwise stated.

4.2 Modelling of creep cavitation induced by grain

boundary diffusion

4.2.1 Creep cavity nucleation

The study of nucleation has been influenced for almost 80 years by the famous theories
developed by Volmer and Weber [94], Becker and Döring [95], Frenkel [96], and Zeldovich
[97]. These theories essentially addressed nucleation of liquid droplets in supersaturated
vapour. Additional development was later made in order to apply them to heterogeneous
nucleation of precipitates in solids [98].

Only in the 70s, these theories were used to study the cavity nucleation in metallic
solids subjected to creep at high temperature. Ones among the first authors were Raj
and Ashby [93, 99]. These authors studied nucleation of cavities along grain boundary
facets perpendicular to the loading axis. Indeed, they assumed that all perpendicular
grain boundary facets contained cavities and that cavitation was controlled by diffusion
processes.

a. Void geometry

Voids formed along grain boundaries can display different shapes depending on whether
they nucleate at two-grain junctions, three-grain junctions, four-grain junctions (Fig.
4.7a), or at the interface with inclusions present at grain boundaries [93], see Fig. 4.7b.
All voids were however assumed in [93] to be spherical segments. Indeed, surface diffusion
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was supposed to be fast and isotropic so that the curvature was assumed to be maintained
uniform as the void grows [93]. The angles formed between the void and the interfaces
which contain it must be such as to satisfy equilibrium between surface tension forces [93].

(a) (b)

Figure 4.7: Voids formed either (a) at grain boundary junctions or (b) at inclusions
located at grain boundaries. Replotted after [93].

Figure 4.7a shows the void shapes at two-grain junctions, three-grain junctions and
four-grain junctions. The geometry of these voids is described by their curvature radius,
r, and the angle, α, formed at the junction of the void and the grain boundary. This
angle is dictated by equilibrium between the grain boundary surface energy, γb, and the
matrix free surface energy at the cavity tip, γs, both being assumed to be isotropic [93]:

cosα =
γb
2γs

(4.2)

Three geometric properties of the void including its volume, V , its free surface area,
S, and the grain boundary area that it replaces, Sb, are expressed as functions of r and
α [93]:

V = r3Fv(α) (4.3a)

S = r2Fs(α) (4.3b)

Sb = r2Fb(α) (4.3c)
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Geometric functions Fv, Fs and Fb depend on the void type and are taken from [100].
For a cavity at grain boundary facets (top of Fig. 4.7a), these functions are given by:

Fv(α) =
2π

3
(2− 3 cosα + cos3 α) (4.4a)

Fs(α) = 4π(1− cosα) (4.4b)

Fb(α) = π sin2 α (4.4c)

whereas, the geometric functions for three-grain and four-grain junctions are more com-
plicated and given in [93].

Figure 4.7b shows two types of void which can be formed at inclusions. One lies
completely at the inclusion-matrix interface (Type A), and the other one extends into
the grain boundary (Type B). Two new angles, αI and αIb, are needed to describe their
geometry (Fig. 4.7b). They satisfy the following equilibrium relationships between surface
energies [93]:

cosαI =
γIb − γI
γs

(4.5)

cosαIb =
γb

2γIb
(4.6)

where γI is the inclusion free surface energy and γIb is the inclusion-matrix interface
energy.

For the sake of simplicity, the void is assumed to be small compared to the inclusion.
The geometric functions of type A void are given as a good approximation by Eqs. (4.3)
and the following angle functions [93]:

Fv =
π

3
(2− 3 cosαI + cos3 αI) (4.7a)

Fs = 2π(1− cosαI) (4.7b)

Fb = π sin2 αI (4.7c)

One should notice that the void grows with increasing time. At any given time, its size
becomes high enough with respect to the inclusion size so that the approximation above
becomes inexact. Then, the angle functions should be recomputed.

Estimation of the geometric properties of type-B void is more complicated. An accu-
rate estimation of these functions is given in [93], whereas an approximation of its volume
(to within a factor of two) is made as the following [93]:

V = r3 4π

3

(
2− 3 cos θ + cos3 θ

)
(4.8)

where θ = 1
2
(α + αI − αIb) as shown in Fig. 4.7b.

b. Thermodynamic barrier and critical nucleus size

A given grain boundary located within a matrix is assumed to be subjected to an uniaxial
normal stress, σn, (at fixed temperature) as shown in Fig. 4.8. The system constituted
of the grain boundary and the matrix changes from a reference state (1) to another
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state (2). In state (2), an embryo is supposed to have formed and the whole system is
assumed to have grown by an amount equal to the embryo volume. The normal stress
is supposed to be the same for both states. This change in the considered system leads
to a change in Gibbs free energy, ∆G, contributed by (1) the work done by the system
on its surrounding, (2) change in the interface area, and (3) change in the stored elastic
energy in the system [93, 99]. Term (3) is of order σ2

n/2E (E � σn) which is negligible
in comparison with term (1) (of same order as σn) [93]. Therefore, ∆G is given by the
following [93,99]:

∆G = −σnV + γfreeSfree − γinterfaceSinterface (4.9)

Term γfreeSfree represents the free energy due to the creation of the cavity free surface
by considering that a void forms at grain boundary junctions (Fig. 4.7a), but it may also
represents the one due to the creation of the inclusion free surface for a type-A or type-B
void (Fig 4.7b. Term −γinterfaceSinterface represents either the energy loss by opening of
the grain boundary surface for a void formed at grain boundary junctions (Fig. 4.7a),
or by opening of the matrix-inclusion interface for a type-A void, or by both of them
for a type-B void. The normal stress acting on the surrounding matrix, σn, is assumed
to be uniform for the representative volume (Fig. 4.8). It should not be confused with
the normal stress acting on grain boundaries. For sake of simplicity, σn is approximated
to the normal macroscopic stress, Σn, which is not always true with regards to stress
heterogeneity within the microstructure and particularly in the vicinity of high-angle
boundaries.

Figure 4.8: Reference (1) and new (2) states of the system as a result of the introduction
of a grain boundary cavity [99].

The thermodynamic barrier to the nucleation of cavities can be calculated by con-
sidering the maximum value of ∆G [93]. Figure 4.9 shows the evolution of ∆G with
increasing nucleus size. The thermodynamic barrier, ∆Gc, is reached when the nucleus
size attains the critical size with radius of curvature rc that can be obtained by setting the
derivative of ∆G with respect to r, from Eq. (4.9), to zero. For a particular case where
the cavity has an equilibrium and spherical-cap shape and forms at two-grain junctions
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Figure 4.9: Contribution of the volume energy term and surface energy term to the
total change in free energy with increasing radius of the cavity [99].

(top of Fig. 4.7a), radius of curvature rc of the critical cavity and thermodynamic barrier
∆Gc are given by [93]:

rc =
2γs
σn

(4.10)

∆Gc =
σn
2
r3
cFv(α) (4.11)

where Fv(α) is given in Eq. (4.4).
Note that rc only depends on σn and on free surface energy γs (for type-B void, it is

an approximation), whereas Fv(α) can yield very different values for different nucleation
sites. For example, for the same value of rc, Fv(α) can vary considerably depending on
whether the cavity forms in the matrix, in a single grain boundary, at the interface of a
second phase particle with the matrix, or at a triple junction formed by a second phase
particle present in the grain boundary as shown in Fig. 4.10 [99]. In the last case, the
critical volume is the smallest, therefore, the cavity has the lowest activation barrier and
the highest nucleation probability [99].

c. Nucleation rate

In reality, cavities do not nucleate instantaneously but one after another. Continuous
nucleation has been suggested by Dyson [91] in various metal alloys (21

4
Cr-1Mo steel, 347

austenitic stainless steel and Nimonic), and especially by Eggeler et al. [21] in 12%Cr
steel. Continuous nucleation of cavities at grain boundary facets has been modelled
by Raj and Ashby [93] using the theories originally developed for nucleation of liquid
droplets from supersaturated vapour [94–97]. In the present case, cavities nucleate under
an additional loading condition such as creep stress (σn) which leads to an increase in
nucleation probability.

Since each embryo must overcome the activation barrier, ∆Gc, to become a critical
nucleus, the nucleation probability may be given according to the Boltzmann theory
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Figure 4.10: The volume of the critical cavity for a fixed value of rc for (a) homogeneous
and (b-d) three types of heterogeneous nucleation. The one with the smallest volume will
have the highest nucleation probability. Replotted after [99].

after Becker [95]: exp(∆Gc/kbT ). The density of potential nucleation sites within grain
boundaries, Na, is assumed to be limited with a maximum value of Nmax

a [93]. Therefore,
the number of critical nuclei per unit area of grain boundary is given by [93]:

N c
a = Nmax

a exp(∆Gc/kbT ) (4.12)

where kb is the Boltzmann constant.

The number of supercritical nuclei formed per unit period of time is N c
a times the

time-dependent probability, pt, of adding one vacancy to the critical nucleus of size rc.
Probability pt can be derived from the jumping frequency of a vacancy, which is related to
the boundary self diffusion, and from the probability of finding a vacancy at the perimeter
of the nucleus of the critical size which depends on the applied stress [93]:

pt =
4πγsDbδ

Ω4/3σn
exp(σnΩ/kbT ) (4.13)

where Dbδ is the self-diffusion coefficient in grain boundaries times the grain boundary
thickness and Ω the atomic volume.

Combining Eqs. (4.11), (4.12) and (4.13) leads to the nucleation rate of cavities at
the steady state (assuming a constant applied stress) given by :

Ṅa =
4πγsDbδ

Ω4/3σn
Nmax
a exp

(
− 4γ3

sFv
σ2
nkbT

)
exp

(
σnΩ

kbT

)
(4.14)

At low stress and high temperature, it is usually assumed that σnΩ/kbT � 1 [93].
Therefore, the last exponential term will be neglected.

Figure 4.11 shows the nucleation rate of cavities in pure copper as predicted using Eq.
(4.14), plotted versus stress normalised by Young’s modulus of copper (127 GPa), with
Nmax
a = 1017m−2 [99]. Threshold stress refers to the stress required for the nucleation rate

equal to 1 m−2s−1, assumed by Raj to be the minimum observable. At 650̊ C (i.e, 923 K),
for Fv = 10−2 the threshold stress is 20 times higher than the one for Fv = 10−5 [99]. For
given values of Fv and temperature, the nucleation rate varies significantly with stress.
For example, at 650̊ C and Fv = 10−5, a change in stress lower than 10% leads to a huge
change (1010 times) in nucleation rate [99].
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Figure 4.11: Nucleation rate normalised by Nmax
a as a function of tensile stress in pure

copper. The threshold stress refers to the stress for which the normalised nucleation rate
is equal to 1 s−1m−2. Replotted after [99].

d. Incubation time

The nucleation rate given in Eq. (4.14) is only valid after a steady state has been reached.
In fact, there exists a “transient”or “incubation”period required to establish the steady-
state nucleation rate (assuming constant applied stress) [99]. The incubation period
required to reach the steady state arises from the fact that a finite time is needed to
form an embryo containing a critical number of vacancies [99]. Therefore, the incubation
time depends on the size of the critical nucleus, the diffusivity and the average vacancy
concentration [99].

The transient problem has been studied for nucleation of liquid droplets in pure vapour
by Zeldovich [97], Turnbull [98, 101], Kantrowitz [102] and Probstein [103]. A rigorous
calculation of incubation time has been carried out by Turnbull [101] for embryos con-
taining only few molecules. The rate equation for the change in the concentration of
embryos of sizes ranging from single molecules up to the critical nucleus size was gener-
ated and numerically solved. In solid state transformations, critical cluster sizes are of
the order of 1000 atoms so that numerical computations take long times. Analytically,
the incubation time can be approximately calculated. Using certain simplifying assump-
tions, Zeldovich [97] and Kantrowitz [102] approximated the incubation time and the
dependence of the nucleation rate upon time in an order of:

τi =
n2
c

qsk′
(4.15)

Ṅ τ
a = Ṅa exp(−τi/t) (4.16)

where nc is the number of vacancies in the critical nucleus, qs the number of vacancy
sites at the surface of the critical nucleus, k′ the jumping frequency of vacancies into the
nucleus across its surface, and Ṅa the nucleation rate at steady state. qs is estimated by
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taking the thermodynamic equilibrium concentration in the bulk into account. Jumping
frequency k′ is assumed to be the migration frequency of vacancies and to be the same
as in the matrix (or grain boundary). Since the embryo can form by both the sum of the
volume and boundary diffusion processes at the same time, the incubation time from Eq.
(4.15) can be expressed as following [99]:

τ
(1)
i =

(
r3
cFv
Ω

)2
6Ω4/3

πr2
c [Dv + (πδ/rc)Db]

(4.17)

where Dv is the self-diffusion coefficient in the bulk.
Note that τi is a characteristic time called “incubation time”, i.e. the time required

for a steady-state nucleation rate to be established. It should not be confused with the
“nucleation time”which is the time required for one cavity to form.

Raj [99] has estimated lower bounds of the nucleation time. The minimum diffusion
distance of the vacancies was estimated as a function of the vacancy number in the critical
nucleus, the thermodynamic equilibrium concentration of vacancies and the grain bound-
ary thickness [99]. Raj [99] suggested that the minimum nucleation time was the required
time for a vacancy to diffuse over a diffusion minimum distance. The lower bounds of the
nucleation time are given respectively for either boundary or volume diffusion controls
by the following relationships [99]:

τ
(2)
i =

r3
cFv

4Dbδ
(4.18)

τ
(3)
i =

(r3
cFv)

2/3

6Dv exp(Qf/3RgT )
(4.19)

where Qf is the formation energy of a vacancy in the bulk and Rg is the gas constant.
Figure 4.12 shows a comparison between incubation times measured by Fleck et al.

[104] in a commercial copper, and incubation times predicted using Eq. (4.17) as well
as using the lower bound given in Eq. (4.18) both taking grain boundary diffusion into
account. Based on creep tests carried out for 15 h at 923 K (650̊ C), cavities were not
observed for stress less than 8 MPa, i.e. the threshold stress. Therefore, this threshold
stress where the steady state nucleation rate is 1 m−2s−1 [99], leads to a value of 1.1×10−5

for Fv from Fig. 4.11. Then, the critical nucleus size was predicted by Raj [99] to be 5
nm. Predictions of incubation time with the identified value of Fv were compared with
the earliest times where cavity nucleation had been observed during creep tests under an
applied stress of 11 MPa, at 923 K (650̊ C) and 1023 K (750̊ C). The nucleation times
predicted by Raj [99] using Eq. (4.18) are lower than the ones predicted using Eq. (4.17)
by one order of magnitude. Both of them are much lower than the observed incubation
times. This underestimation could be due to the critical nucleus size that is very small
to be detected and that the underestimation in time could be a required time for growth
of cavities from this size to the observable size.

4.2.2 Creep cavity growth driven by vacancy diffusion

Cavity growth along grain boundaries at high temperature has been suggested to be
induced by vacancy diffusion [93, 105–107]. Many models of cavity growth by vacancy
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Figure 4.12: Experimental nucleation times in a commercial copper alloy [104] com-
pared with (1) the predicted incubation time given in Eq. (4.17) and (2) the lower bound
of the nucleation time given in Eq. (4.18) [99], taking into account the grain boundary
diffusion and the coefficient of pure copper.

diffusion have been proposed through many decades. Hull and Rimmer [105] were among
the first authors who have proposed a mechanism by which diffusion leads to growth
of an isolated cavity in a metal under an external applied stress. The model further
have influenced for decades the study of cavity growth in polycrystals through many
developments by many other authors such as Raj and Ashby [93], Rice [106], Riedel [107],
and Chen and Argon [108], with increasing complexity in representing cavity growth
processes. These authors modelled cavities located along grain boundaries subjected to
a normal stress approximated to the uniaxial macroscopic stress.

In this family of cavity growth models, creep cavities were assumed to be located
along simple grain boundaries. These models do not address cavitation at triple junctions
where the maximum size of cavities is experimentally observed [21]. The driving force to
cavity growth was assumed to be the normal stress acting on grain boundaries, and not
the hydrostatic stress. This normal stress was approximated to the macroscopic stress.
Stress heterogeneity due to complicated grain shapes or viscoplastic incompatibilities
between neighbouring grains was not taken into account by these models. The models
also ignored the stress heterogeneity at triple points and carbide-matrix interfaces for
cavities formed at these sites.

a. Applicability domain of diffusion cavity growth models

The applicability domain of the diffusion cavity growth models can be assessed using a
length parameter, LR, given in Eq. (4.20) usually called “Rice length”and introduced
in [109]. In fact, Needleman and Rice [110] carried out comparisons between the cavity
growth rates induced by either diffusion or viscoplasticity. The first one was estimated
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using the Riedel cavity growth model [107]. The second one was predicted by considering
an ellipsoidal cavity in a linear viscous material under uniaxial tension. The solution
was obtained by an elasticity-like approach [111], replacing the Poisson ratio by 1/2 (in
non-porous matrix) and remote strain En by remote strain rate Ėn [110]. The ratio of the
cavity growth rate by diffusion to the one by viscoplasticity was obtained approximately
as (rb/LR)3 [110].

LR =

(
DbδΩΣn

kbT

1

Ėn

) 1
3

(4.20)

Needleman and Rice [110] suggested that cavity growth is controlled by diffusion alone
if rb/LR < 0.2 (with neglected viscoplasticity effect). The diffusion and viscoplasticity
processes combine to produce growth in excess if 0.2 < rb/LR < 20 (very much in
excess if 1 < rb/LR < 5), rather than either mechanism acting in isolation [110]. The
viscoplasticity process is the dominant mechanism if rb/LR > 20 [110].

b. Growth of isolated cavities - Hull and Rimmer’s theory [105]

Hull and Rimmer [105] modelled homogeneous cavitation assuming that all polycrystal
facets perpendicular to the loading axis were affected by cavity development. All cavities
were assumed to be spherical and periodically located with the same spacing, 2L, along
each perpendicular facet. The normal stress acting on each perpendicular facet was
supposed to be uniform and equal to the uniaxial macroscopic stress, Σn. Growth of
each cavity was due to diffusion of vacancies within distance 2L along the grain boundary.
The total number of vacancies was supposed to be unlimited so that the diffusion process
is unrestricted for the considered creep time. The diffusion of vacancies on the cavity
surface was supposed to be quick enough so that the cavity curvature is maintained with
time.

The diffusion flux of vacancies is determined by the chemical potential gradient, ∇µch,
along the grain boundary plane, as given by Herring [112]:

Jb = − Db

ΩkbT
∇µch (4.21)

Under the above hypothesis, a grain boundary containing a vacancy leads to a chem-
ical potential given as a function of the remote normal stress, Σn, acting on the grain
boundary by: µch = −ΣnΩ. This assumption is based on the normal stress and not the
hydrostatic pressure. This potential corresponds to the work done by the external stress
(Σn) to form a vacancy volume (Ω) at the grain boundary by leading to a matrix growth
by a similar volume (with no elastic remote strain). Along the cavity free surface, the
chemical potential is defined as a function of the free surface energy, γs, as following:
µch = −2γsΩ/r.

By using a one-step gradient of chemical potential between the cavity surface and the
grain boundary, Hull and Rimmer [105] obtained the flux of vacancy diffusion along the
grain boundary approximately as following:

Jb =
Db

kbTL

(
Σn −

2γs
r

)
(4.22)
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Vacancies diffuse from the grain boundary of thickness δ across surface area 2πrδ of
the cavity. The number of vacancies entering the cavity per unit time is equal to 2πrδJb.
Therefore, the growth rate of cavity volume is approximated as:

V̇ =
2πΩDbδ

kbT
(Σn −

2γs
r

)
r

L
(4.23)

Finally, by considering a spherical shape and neglecting 2γs/r with respect to Σn

(only true when r � rc = 2γs/Σn), Hull and Rimmer obtained the size growth rate as
following:

ṙ =
DbδΣnΩ

kbT

1

2Lr
(4.24)

c. Raj and Ashby’s model [93]

An additional hypothesis was assumed by Raj and Ashby [93]. They supposed that a
steady state (time-independent) was established so that all parts of the grain boundary
must release or gain the same amount of matter [93]:

∇ · Jb = βj (4.25)

where βj is a constant and is equal to the number of atoms removed per unit volume of
the boundary per unit time. Combining Eqs. (4.21) and ( 4.25) leads to the following
differential equation:

∇2
(µch) = −βjkbTΩ

Db

(4.26)

This equation was solved by Raj and Ashby in cylindrical coordinates (radial axis: R,

(a) (b)

Figure 4.13: (a) Growth of isolated cavities by grain boundary diffusion modelled by
Raj and Ashby [93], (b) resolved normal stress along grain boundary [93].

revolution axis: vertical passing by the cavity center). The cavity was assumed to keep a
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shape of spherical segment (Fig. 4.7a) with its geometric functions defined by Eqs. (4.4).
The resolution used the boundary conditions given by the following [93]:





µch = −2γsΩ

r
for R = rb

µch = −σnΩ for rb < R ≤ L
∂µch

∂R
= 0 for R = L

(4.27)

The solution of the differential equation with respect to R is given by [93]:

µch(R) = −βjkbTΩ

4Db

(R2 − r2
b )−

βjkbTΩL2

2Db

ln
rb
R
− 2γsΩ

r
(4.28)

The stress profile can then be obtained by using Eq. (4.27). The condition of mechanical
equilibrium requires that:

πL2Σn =

∫ L

rb

σn(R)2πRdR (4.29)

Substituting Eqs. 4.28 and 4.29 leads to the final expression of βj. Since the growth rate
of the void is proportional to the amount of atoms added in the grain boundary per unit
time, Raj and Ashby [93] found:

V̇ = −βjδπL2Ω

(
1− r2

b

L2

)
(4.30)

By combining Eqs. 4.4 and 4.30, the cavity growth rate can be obtained as following:

ṙb =
2ΩDBδ

h(α)kbT

(
1

r2
b

)
(1− ω)

Σn − σ0(1− ω)

q(ω)
(4.31)

where h(α) = (1− cosα)/ sin3 α− 1

2
cotα, ω = r2

b/L
2, σ0 = 2γs/r (sintering stress), and

q(ω) = 2 ln 1/ω − (1− ω)(3− ω).
The Raj and Ashby model assumes that the diffusion flux of vacancies is induced

by the normal stress acting on grain boundaries, and not by the hydrostatic pressure.
A penny-shaped cavity with radius of curvature r at its tip and size 2rb, subjected to
a normal stress filed of Σn results in a stress concentration factor (in elastic regime)
1 + 2

√
rb/r → ∞ when r → 0 [113]. In consequent, σn(R = rb) → ∞. This problem

may be resolved by viscoplastic creep flow.

d. Constraints on diffusive growth of cavities

The previous authors [93, 105] supposed that cavities are uniformly distributed overall
transverse facets of polycrystals (Fig. 4.14a). For such uniform cavitation, assuming
isolated cavity growth under an average normal stress equal to macroscopic stress Σn

could be valid.
However, cavitated grain boundary facets might be relatively isolated one from an-

other (Fig. 7.14c). This holds for creep cavitation in Cr-Mo-V bainitic steel at 196̊ C [83]
and in 12%Cr steel at 650̊ C [21]. In this case, cavities were suggested by Dyson [115]
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(a) (b)

Figure 4.14: Schemata representing (a) uniform and (b) heterogeneous cavitation at
(especially) grain boundaries under vertical loading replotted after [114]. The latter one
leads to constrained cavity growth.

to be subjected to constrained diffusion growth. At low creep strain rate, the cavitated
facets tend to deform faster that the surrounding matrix [106]. In order to ensure a
compatibility of remote strain, the cavitated facets shed load to the surrounding ma-
trix [106]. Therefore, diffusion-controlled cavity growth is constrained and the cavitated
facets are subjected to a normal stress relatively reduced with respect to Σn. This local
stress reduction induces a reduction in cavity growth by grain boundary diffusion.

The constraints on diffusive cavity growth originally suggested by Dyson [115] were
then modelled by Rice [106]. The cavity growth rate was suggested to be reduced to:

ṙb =
2ΩDBδ

h(α)kbT

(
1

r2
b

)
Σn − σ0(1− ω)

[8L3
R/α

′L2dg] + [q(ω)]
(4.32)

where LR is the Rice transition length (paragraph a. of section 4.2.2), dg the grain diam-
eter, and α′ = 2/π for for linear viscous material. For viscoplastic materials obeying the

Norton flow rule with exponent n, Riedel [107] suggested that α′ = 4/[π2(1 + 3/n)
1
2 ].

e. Cavity growth coupled with continuous nucleation

During creep, cavities do not nucleate at the same time but continuously one after an-
other. In fact, cavities nucleate earlier on sites having smaller activation barrier. These
sites can be for example triple junctions of polycrystals, where local stress is high com-
pared to another. Following numerous measurements, Dyson [91] suggested that cavities
nucleate with approximately constant rates during the creep tests, Ṅ0.

Cavity growth by vacancy diffusion along grain boundary with continuous nucleation
has been modelled by Riedel [107]. The distribution of cavities in size (rb) and time (t)
is represented by a function Nrb(rb, t). This function is defined such that the number
per unit area of grain boundary of cavities with sizes ranging between [rb, rb + drb] is
Nrb(rb, t)drb. By analogy with the diffusion problem, the mass-balance equation is given
by [107]:

Ṅrb +
∂Jn
∂rb

= 0 (4.33)
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where Jn(rb, t) is the flux in size space. Cavities can only pass from one size class rb to
the next one rb+ drb only by growth. If an individual cavity of size rb has growth rate ṙb,
the flux in size space is Jn(rb, t) = Nrb(rb, t)ṙb. The meaning of Jn(0, t) is that Jn for a
small value of rb set to zero corresponds to nucleation rate Ṅ(t) of cavities, which is the
boundary condition for differential equation (4.33). In order to simplify the resolution of
differential equation (4.33), Riedel [107] suggested to represent ṙb and Ṅ by particular
analytical formulas. Thus, the boundary conditions for differential equation (4.33) are
given by:

Nrb(rb = 0, t)ṙb = Ṅ(t) (4.34)

ṙb(rb, t) = A1(rb)
−ξt−η (4.35)

Ṅ(t) = A2t
ζ (4.36)

where A1, A2, η, ξ and ζ are parameters which should be calculated later. Riedel [107]
suggested that a solution in form Nrb(rb, t) = tPf( rb

tQ
) may exist. Resolving differential

equation (4.33) by taking the boundary conditions given in Eqs. (4.34), (4.35) and (4.36)
into account, the solution was finally obtained as [107]:

Nrb(rb, t) =

∣∣∣∣∣∣

A2

A1
(rb)

ξtη+ζ
[
1− 1−η

(1+ξ)A1
(rb)

ξ+1tη−1
](η+ζ)(1−η)

if η < 1

A2

A1
(rb)

ξtη+ζ exp
[
− 1+ζ

(1+ξ)A1
(rb)

ξ+1
]

if η = 1
(4.37)

Since the final fracture criterion is assumed to be based on the critical average area frac-
tion of cavities along grain boundaries, ωf , estimating damage evolution ω(t) is required.
It can be calculated by integrating the areas occupied by the individual cavities of area
π(rb)

2 times their area density Nrbdrb, therefore given by:

ω(t) = I1(η, ξ, ζ)A2A1
2/(1+ξ)tη+ζ+(1−η)(ξ+3)/(ξ+1) (4.38)

where the factor I1(η, ξ, ζ) = π(1 + ξ)(ξ+3)/(ξ+1)
∫ u

0
xξ+2

[
1− (1− η)xξ+1

](η+ζ)/(1−η)
dx,

with u =∞ if η > 1 and u = (1− η)−1/(ξ+1) if η < 1. Note that I1(η, ξ, ζ) is a numerical
value independent of model parameters A1 and A2 and also of time t. Then, for η < 1,
the average radius of cavities is deduced from Eq. (4.37) and given by the following:

rb(t) =

∫ rbmax
0

rbNrbdrb∫ rbmax
0

Nrbdrb
= (1 + ζ)I2A1

1/(1+ξ)t(1−η)/(1+ξ) (4.39)

where the factor I2 = (1 + ξ)(ξ+2)/(ξ+1)
∫ u

0
xξ+1

[
1− (1− η)xξ+1

](η+ζ)/(1−η)
dx, u = (1 −

η)−1/(ξ+1), and maximum cavity size rbmax giving Nrb = 0.
The Dyson nucleation equation, Ṅ(t) = Ṅ0, can be introduced into Eq. (4.36). Unfor-

tunately, the unconstrained diffusion growth rate deduced from Eq. (4.32) is not compat-
ible with the power-law form defined by Eq. (4.35). To solve this problem, Riedel [107]
neglected the sintering stress, σ0 = 2γs

r
, and proposed a lower bound of q(ω) = 1. The

author then deduced η = 0, ξ=2, and ζ = 0. Therefore, the lower bound of fracture time
for unconstrained growth and continuous nucleation is given by [107]:

tf = 0.33

(
h(α)kbT

ΩDbδΣn

)2/5(
ωf

Ṅ0

)3/5

(4.40)
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Two new bounds of q(ω) are used. The upper bound is 0.65ω−0.209 (true for ω up to
0.2) leading to η = −0.209, ξ = 1.582, ζ = 0). The upper bound is 0.75ω−0.5 leading to
η = −0.5, ξ = 1, ζ = 0). Two bounds of tf can be then deduced as following:

0.301

(
h(α)kbT

ΩDbδΣn

)2/5
(ωf )

0.5164

(Ṅ0)2/5
≤ tf ≤ 0.354

(
h(α)kbT

ΩDbδΣn

)2/5
(ωf )

2/5

(Ṅ0)2/5
(4.41)

Then, the bounds of average radius are respectively given by the following:

1.97

(
ΩDbδΣn

h(α)kbT

)0.5

(Ṅ0)0.25t0.75 ≤ rb(t) ≤ 1.74

(
ΩDbδΣn

h(α)kbT

)0.3873

(Ṅ0)0.0809t0.4682 (4.42)

In constraint limit, q(ω) in Eq. (4.32) was neglected by Riedel [107]. The sintering
stress, σ0 = 2γs

r
, was again neglected [107]. The growth rate ṙb deduced from Eq. (4.32)

is compatible with the analytical formula given in Eq. (4.35). The exponents in Eqs.
(4.34), (4.35) and (4.36) were deduced by Riedel as η = 1, ξ = 2 and ζ = 0. Therefore,
lifetime for continuous and constrained cavity growth is predicted as following [107]:

tf = 0.78

(
1 + 3

n

Ṅ0

)1/3
(
h(α)

dgĖn

)2/3

ωf (4.43)

f. Experimental validation of the models for cavity growth

Figure 4.15 illustrates a comparison between predicted growth rates using Eq. (4.32) [107]
and experimental results of Needham [30] for two ferritic steels at 550̊ C. The growth
rates predicted using the constrained cavity growth model are in fair agreement with
the measured rates. The growth rates predicted using the unconstrained cavity growth
model are much faster [107]. Riedel [107] concluded that the constrained cavity growth
model describes cavity growth rates fairly well for these experiments.

Figure 4.16 illustrates the effects of continuous nucleation as distinct from instanta-
neous one. The curves for instantaneous nucleation were calculated assuming that all
cavities which were present at the end of the test had been nucleated instantaneously at
the beginning of the test [107]. The figure shows that the effect of continuous nucleation
on lifetime is substantial if the cavities grow by unconstrained diffusion, whereas the
effect is weaker for constrained cavity growth. Lifetimes predicted using the constrained
cavity growth model [107] are in good agreement with experimental data given in [116]
for 21

4
Cr-1Mo steel at 565̊ C.

These results show that for both 1Cr-1
2
Mo and 21

4
Cr-1Mo ferritic steels, the con-

strained cavity growth model is the most satisfactory one. It should be mentioned that
for both steels, cavitated facets were observed to be isolated one from another as sug-
gested by Dyson [115].

g. Coupled viscoplasticity and diffusion-driven cavity growth models

Another cavity growth mechanism which has been studied by many authors is a coupling
between diffusion growth and viscoplasticity growth. This coupling corresponds to: 0.2 <
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Figure 4.15: Cavity growth rates predicted using an unconstrained cavity growth model
(dashed lines) and a constrained cavity growth model [107](solid lines), compared with
experimental measurements in bainitic steels [84]. Redrawn in [114].

Figure 4.16: Predicted fracture lifetime taking into account unconstrained cavity growth
(dashed lines) and constrained cavity growth (solid lines) with either continuous or in-
stantaneous nucleation [107]. The predictions are compared with the measured lifetimes
of 21

4
Cr-1Mo steel in over-heated condition [116]. Redrawn in [114].
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rb/LR < 20 (paragraph a.). A model coupling both mechanisms was first proposed by
Needleman and Rice [110] and then improved by Chen and Argon [108]. Van Der Giessen
et al. [117] proposed a coupling model by taking the effect of high triaxialities into account.
Gaffard et al. [72] used a viscoplastic potential of Leblond-Perrin-Suquet type to describe
the creep cavitation in Grade 91 steel.

However, for the creep tests at 500̊ C under 230 MPa and 250 MPa, and at 600̊ C
under 90 MPa and 125 MPa, diffusion alone is assumed to be the dominant mechanism
of cavity growth following predictions of Rice length that will be shown in section 5.2.2.

4.3 Discussion and choice of models

Models of diffusion cavity growth presented in section 4.2.2 will be used to simulate
cavitation along packet/block boundaries or FAGBs [4,21] in Grade 91 steel under study.
These models assume generally that the normal stress acting on grain boundaries is equal
to the macroscopic uniaxial stress. Hull and Rimmer [105] used a rough approximation
of the flux gradient of diffusion leading to an underestimation of the cavity growth rate.
Raj and Ashby resolved this diffusion problem more accurately by using integration
of diffusion flux gradient along the grain boundary. However, the Raj and Ashby model
considers instantaneous nucleation of cavities. Continuous nucleation suggested by Dyson
[91], also observed in 12%Cr steel [21], was included in the Riedel model.

As observed by Gaffard in a Grade 91 steel (see also section 5.1), cavities seem to
be isolated one from another on each grain boundary. Therefore, the constrained cavity
growth model does not present yet strong interest for the applications under study.

Critical minimum strain rates below which the constrained growth effect become
critical and to be taken into account could be computed using the constrained growth
model [118]. The distance between cavities is taken as 40 mm which is the average size
of former austenitic grains. For the creep test at 500̊ C and 230 MPa, the estimated
critical minimum strain rate is 10 times lower than the experimental one. For the creep
test at 600̊ C and 90 MPa, the estimated critical minimum strain rate is equal to the
experimental one. Therefore, for creep tests at 600̊ C under lower stress, contrained
growth mechanism may be required to take into account.

For the creep tests under study, considering only diffusion cavity growth is sufficient.
The Raj and Ashby model and the Riedel model will be used and their results will be
compared with the experimental observations based on our creep tests.

The Raj nucleation model presents a great interest to be used with the Riedel model
of diffusion cavity growth and continuous nucleation. After Raj, cavities could nucleate
at grain boundaries without or with carbides. In the last case, cavity nucleation was
suggested by Raj to have the highest probability. The Raj nucleation model will be used
for both nucleation sites, and the predictions will be compared with our experimental
observations in Grade 91 steel.

One should mention that all these analytical models do not consider stress heterogene-
ity that could occurs at triple junctions, grain boundaries and carbide-matrix interfaces.
This could affect the diffusion cavity growth and nucleation rates. The stress heterogene-
ity could only be studied using the finite element method or other sophisticated numerical
approaches.



Chapter 5

Observations and modelling of
long-term creep cavitation in Grade
91 steel

5.1 Creep cavity observations in Grade 91 steel

This section presents observations of creep cavities at the end of four long-term creep tests
on Grade 91 steel at 500̊ C and 600̊ C reported in Table 5.1. Numerous observations for
two creep specimens, one tested at 500̊ C under 230 MPa and another at 600̊ C under 90
MPa, had already been carried out by Haney and Bonnaillie [7]. Additional observations
were carried out on these specimens as well as on two others, one loaded at 500̊ C under
250 MPa and another at 600̊ C under 125 MPa, to get more extensive experimental
database for both temperatures (500 and 600̊ C).

Table 5.1: Characteristics of the creep tests considered for studying creep cavitation in
Grade 91 steel.

T Engineering stress Lifetime Reduction in cross-
(̊ C) (MPa) (h) section at fracture [7]

500̊ C 230 160×103 0.60
500̊ C 250 59×103 0.80
600̊ C 90 94×103 0.15
600̊ C 125 5×103 0.70

5.1.1 Preparation of creep samples

All samples were taken from homogeneous zones of the creep specimens, i.e. located far
away from the necking zones. The cross-section was taken parallel to the loading axis and
at the middle of the cylindrical creep specimens. Polishing of all observed cross-sections
was finished with a colloidal silica solution (OPS).

87
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5.1.2 Procedure used for quantitative measurements of cavita-
tion

Micrographs for creep tests carried out at 500̊ C under 230 MPa (Fig. 5.1) and at 600̊ C
under 90 MPa (Fig. 5.2) were provided from previous FEG-SEM observations made by
Bonnaillie and Haney [7]. The parameters of the creep cavity observations used by these
authors are reported in Table 5.2. The resolution of the provided micrographs only allows
detection of cavities with a minimum size. This minimum size is 0.2 mm (an area of 4
pixels) for the specimen loaded at 500̊ C under 230 MPa and respectively 0.5 mm (an area
of 4 pixels) for the other one.

For the sample loaded at 500̊ C under 250 MPa (59 kh), the FEG-SEM magnification
as used for the observations of the one loaded at 500̊ C under 230 MPa was kept. The
corresponding micrographs are presented in Fig. 5.4. Exceptionally, for the specimen
loaded at 600̊ C and 250 MPa, the magnification of 500 (i.e. as used for the one loaded at
600̊ C under 90 MPa) did not allow us to distinguish between cavities and pixel noises.
Instead, a magnification of 1000 was chosen and allowed detecting cavities with a mini-
mum size of 150 nm. For a fair quantification of cavities, the minimum size was kept the
same for each temperature, i.e. 0.2 mm at 500̊ C and 0.5 mm at 600̊ C.

Cavity statistics by mean of Image Processing were carried out for both specimens, one
loaded at 500̊ C under 230 MPa (over a field of 9.38× 105mm2) and another one at 600̊ C
under 90 MPa (over a field of 1.32 × 106mm2). The procedure of image analysis starts
by transforming greyscale images into binary images where cavities are represented by
white-pixel areas and the rest by black pixels. Then, all white-pixel objects are subjected
to morphological dilation and erosion. The final transformed images are compared with
the original images. The pixel numbers of white objects provide a measure of the cavity
areas, whereas their equivalent diameters are estimated by considering circular shapes.
Image processing respects the conditions that only cavities with diameter not lower than
the minimum detectable size (0.2 mm for creep at 500̊ C under 230 MPa, and 0.5 mm for
the other one) are taken into account. Indeed, lower-size cavities could be confused with
pixel noises. The observation parameters and numbers of observed cavities are reported
in Table 5.2.

However, fully automated image processing could not be applied to the creep samples
loaded at 500̊ C under 250 MPa and at 600̊ C under 125 MPa because of the very small size
of cavities. Since the grey level of cavities is easily confused with the surrounding pixels,
the transformation from greyscale to binary images causes a pixel lost in cavity areas.
Therefore, detection of cavities was carried out manually on FEG-SEM micrographs taken
over a field of 9.83×103mm2 for the sample loaded at 500̊ C and 250 MPa and respectively
of 1.97× 104mm2 for the one loaded at 600̊ C and 125 MPa. The observation parameters
and numbers of cavities are reported in Table 5.2 as well.

Cavity observations with higher resolution are carried out for the creep samples loaded
at 500̊ C under 250 MPa and respectively at 600̊ C under 125 MPa in order to measure
the sizes of smallest cavities. A magnification of 10000 allowed us to detect smallest
cavities in both samples and their sizes are reported in Table 5.3. This high resolution
will allow comparisons with the nucleation sizes of cavitation presented in section 5.1.4.
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Figure 5.1: Creep cavities in Grade 91 steel subjected to creep at 500̊ C under 230
MPa, after a lifetime of 160×103h. FEG-SEM observations by Bonnaillie and Haney [7]
using a magnification of 1000.

Figure 5.2: Creep cavities in Grade 91 steel subjected to creep at 600̊ C under 90 MPa,
after a lifetime of 94×103h. FEG-SEM observations by Bonnaillie and Haney [7] using a
magnification of 500.
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Figure 5.3: Creep cavities in grade 91 steel subjected to creep at 500̊ C under 250 MPa,
after a lifetime of 59 × 103h. FEG-SEM observations using a magnification of 1000 at
Ecole des MINES with A.-F. Gourgues-Lorenzon and A. Laurent.

Figure 5.4: Creep cavities in Grade 91 steel subjected to creep at 600̊ C under 125
MPa, after a lifetime of 5×103h. FEG-SEM observations using a magnification of 1000
at Ecole des MINES with A.-F. Gourgues-Lorenzon and A. Laurent.
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Table 5.3: Smallest sizes of creep cavities in Grade 91 steel.

Creep characteristics Observation parameters Smallest Density

T (̊ C) σeng (MPa) Magnification Field area (mm2) size (mm) (mm−2)

500 230 5000 1070 0.05 6× 10−2

500 250 10000 772 0.05 1.9× 10−2

600 90 500 1.32×106 < 0.5 -
600 125 10000 1867 0.08 8× 10−4

5.1.3 Cavity characteristics with regards to creep lifetime

The results of cavity quantification are reported in Table 5.4. At 500̊ C, creep cavities
were observed after a creep lifetime of 59×103 h, but their sizes are low (up to 1 mm).
At 600̊ C after a creep lifetime of 5×103 h, creep cavities with sizes up to 0.9 mm were
observed. At 625̊ C after a creep lifetime of 870 h, Gaffard observed creep cavities with
an average size of 2 mm in Grade 91 steel. At 650̊ C in martensitic 12%Cr steel, creep
cavities with sizes up to 3.8 mm were observed after a creep lifetime of only 280 h [21].
These results seem to show that with increasing temperature cavitation tends to occur
earlier.

Area fraction of cavities for various lifetimes and temperatures are reported in Table
5.4. At a constant temperature, the amount of cavity damage increases with increasing
lifetime. At 500̊ C, the measured area fraction of cavities is of 6.86×10−4 for a lifetime of
160×103 h, and is lower by an order of magnitude for a lifetime of 59×103 h. At 600̊ C,
the area fraction of cavities is of 2.5×10−3 for a lifetime of 94×103 h, and is 30 times
lower for a lifetime of 5×103 h. At 625̊ C, the area fraction of cavities increases from
1×10−3 to 3×10−3 when lifetime increases from 870 h to 3800 h [4].

Table 5.4: Summary on the quantification of creep cavities after observations at 500̊ C
(CEA data), 600̊ C (CEA data) and 625̊ C [4]. Nm is the 2D number density of cavities
measured from polished cross-section, d is the average 2D cavity diameter by considering
circular areas. The used observation parameters are given in Table 5.2.

Creep characteristics

T (̊ C) σeng (MPa) tf (kh) Nm (mm−2) Area fraction of cavities

500̊ C 230 160 1.6× 10−3 6.9× 10−4

500̊ C 250 59 1.02× 10−3 5.2× 10−5

600̊ C 90 94 2.2× 10−4 2.5× 10−3

600̊ C 125 5 2× 10−4 8.3× 10−5

625̊ C [4] 100 3.8 5.5× 10−4 3× 10−3

The cavity densities in polished cross-sections, Nm, for different values of the applied
stress and temperatures are reported in Table 5.4. Nm should be distinguished from the
cavity density along FAGB or block boundary facets, Na, given in Eq. (4.1) [91]. Results
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for the creep tests at 500̊ C seem to show a decrease in number density of cavities with
increasing stress. However, the cavity density varies by lower than 60% which is close
to the experimental uncertainty due to possible sampling effects. The creep tests carried
out at 600̊ C also show no stress dependence. The study of Gaffard [4] on Grade 91 steel
shows a decrease of cavity density with a factor 3 between stresses of 100 and 120 MPa,
but only these specimens were used. A large range of applied stress may be required to
clarify a dependence of the cavity density with respect to stress. The limit resolution
of FEG-SEM usually constraints a minimum size of detectable cavities and leads to an
underestimation of numbers of cavities having lower sizes.

Size distributions of cavities after the creep tests at 500̊ C under 230 MPa and at 600̊ C
under 90 MPa are plotted in Figs. 5.5 and 5.6. For the first creep test, the most probable
cavities have (equivalent circular) diameters lower than 1 mm, whereas the largest cavities
(3.5 mm) have a relative probability of about 0.1%. The cumulative probability seems to
be linear following the cavity size, except for sizes larger than 1 mm. For the second creep
test, the most observed cavities have diameters lower than 5.5 mm, whereas the largest
cavities (8.5mm) have a relative probability of only 0.34%. The probability distribution
is more flatter than the one at 500̊ C. The cumulative probability seems to be linear
following the cavity size, except once for sizes larger than 5.5 mm. Therefore, distribution
queues with the highest cavity sizes are observed in both long-term specimens.

Mean cavity sizes were computed using the probability distributions plotted in Figs.
5.5a and 5.6a. Mean distances between cavities were computed by considering uniform
square distributions. The results are reported in Table 5.5.

Table 5.5: Characteristic size and average distance between cavities in the considered
Grade 91 steel using the observation parameters in Table 5.2. dmin is the lower cut-off
value of the size distribution.

T (̊ C) σeng (MPa) tR (h) dmin (mm) dmax (mm) d (mm) 1/
√
Nm (mm)

500̊ C 230 160× 103 0.2 3.5 0.67 25
500̊ C 250 59× 103 0.2 1 - 31
600̊ C 90 94× 103 0.5 8.5 3.3 67
600̊ C 125 5× 103 0.5 0.9 - 71
625̊ C 100 7× 103 - - 2.5 43

5.1.4 Location of creep cavities

The observations show that there are three types of cavity nucleation sites: FAGBs/packet/block
boundaries, triple junctions and interfaces between intergranular particles and the matrix.

At 500 and 600̊ C, creep cavities are usually located along FAGBs/packet/block
boundaries (Figs. 5.1, 5.2 and 5.8a). A cavity formed at a triple junction of block bound-
aries was observed after a creep lifetime of 5×103 h at 600̊ C (Fig. 5.9a), which is the
largest detected cavity of that specimen. An analysis using SEM-EBSD carried out by
Barcelo and Fournier [119] on a cavity (Fig. 5.7) shows that it is located at a triple
junction of block boundaries.
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Figure 5.5: Sizes distribution of creep cavities (equivalent circular diameter) in Grade 91
steel represented by (a) probability and (b) cumulative probability after a creep lifetime
of 160 × 103 h at 500̊ C (230 MPa). Magnification: 1000, minimum size of detectable
cavities: 0.2 mm.
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Figure 5.6: Size distribution of creep cavities (equivalent circular diameter) in Grade 91
steel represented by (a) probability and (b) cumulative probability after a creep lifetime
of 94×103 h at 600̊ C (90 MPa). Magnification: 500, minimum size of detectable cavities:
0.5 mm.
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(a) (b)

Figure 5.7: A cavity located at a triple junction of block boundaries of Grade 91 steel
subjected to the creep test at 600̊ C and 90 MPa (94 kh), identified using (a) SEM
observations and (b) SEM EBSD analysis [119].

FEG-SEM observations of creep cavities were carried out with higher spacial resolu-
tion for the creep specimens loaded at 500̊ C under 250 MPa (59 kh) and 600̊ C under
125 MPa (5 kh). For the first one, cavities located at matrix-M23C6 interfaces (Figs. 5.8b,
5.8c and 5.8d) constitute the majority of the cavity population following observations on
numerous micrographs. After Raj and Ashby (Fig. 4.7b), these cavities are described by
type-A (Fig. 5.8b), type-B (Fig. 5.8c), and another one similar to type-B but the cavity
is located between two neighbouring carbides (Fig. 5.8d). The particles may have been
fractured as well. For this test, the type-B cavities are the majority. For the second creep
test, no cavities were detected at matrix-M23C6 interfaces, but one is observed at a Laves
phase-matrix interface. The cavity size is about 80 nm and the size of the Laves phase is
of 250 nm (Fig. 5.9b). This measured diameter is in agreement with the measured value
given by Hald [20] after an ageing time of 5000 h at 600̊ C (300 nm). However, cavitation
close to Laves phases constitutes a rare case at 600̊ C.

FEG-SEM observations using a magnification of 5000 were also carried out for de-
tecting cavities in the creep specimen loaded during 160 kh at 500̊ C under 230 MPa.
Cavities having sizes of about 40 nm were observed, whereas the ones whose sizes range
between 100 and 500 nm were not detected. The majority of the cavities are located at
Laves phase interfaces, with 2/3 of them are of type B. They were sometimes detected
at grain/block boundaries parallel to the loading axis.

5.1.5 Conclusions

Following the literature [4,21], only cavitation along FAGBs/packet/bolck boundaries al-
most perpendicular to the loading direction, where the final cavity size is the maximum,
will be focused. Only cavities located at the middle of FAGBs/packet/bolck boundaries
will be first assumed. Cavitation at triple junctions will be studied later taking into



96
CHAPTER 5. OBSERVATIONS AND MODELLING OF LONG-

TERM CREEP CAVITATION IN GRADE 91 STEEL

(a) (b)

(c) (d)

Figure 5.8: cavities located (a) at a packet or block boundary (size of 290 nm), (b) at a
carbide-matrix interface - type A (size of 320 nm), (c) at the triple junction of a carbide
and a boundary of the matrix - type B (size of 160 nm) and (d) at a matrix boundary
between two carbides (size of 90 nm). Creep lifetime: 59 × 103h, temperature: 500̊ C,
applied stress: 250 MPa.

(a) (b)

Figure 5.9: Cavities located at (a) a triple junction of block boundaries (a size of 120
nm) and (b) at Laves phase-matrix interface (size of 80 nm). Creep lifetime: 5 × 103h,
temperature: 600̊ C, applied stress: 125 MPa.
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account stress concentrations computed using the finite element method in the viscoplas-
ticity framework.

After our observations together with the literature [4,21], an amount of cavities seem
to have approximately spherical shapes (Figs. 5.2 and 5.1) and the others have complex
shapes. For the modelling of cavity growth, all cavities are assumed to have spherical
shapes. They are assumed to be located at FAGBs/packet/block boundaries perpendic-
ular to the loading axis without particles. The measured cavity density and the average
deduced distance between cavities will be used as parameters of this modelling. The
predicted cavity sizes will be compared with the measured ones.

For the modelling of cavity nucleation, nucleation sites at FAGBs/packet/block bound-
aries without particles will be first considered. The results will be then compared with
the modelling of cavity nucleation at particle-matrix interfaces.

5.2 Modelling of cavitation along matrix boundaries

In this section, cavitation along FAGBs/packet/block boundaries almost perpendicular to
the loading axis is modelled using analytical approaches previously discussed. The stress
heterogeneity induced by the various crystallographic orientations of the matrix crystals
is not considered. The local normal stress acting on considered boundary is assumed to
be equal to the macroscopic uniaxial stress.

5.2.1 Diffusion data of tempered martensitic chromium steels

Self-diffusion coefficients along FAGBs, Db, and in the bulk, Dv, have been measured by
Huntz and co-workers [120–122] for tempered martensitic steels with chromium content
ranging from 6.8% to 9.1% in weight. Ahrrenius parameters for self-diffusion coefficients
are reported in Table 5.6. These parameters values are given for temperature ranges
with lower bounds close a temperature under study, 600̊ C, and higher than another one
(500̊ C) by an amount between 100 and 150̊ C. An extrapolation out of the temperature
range of measurements could lead to an error in value of self-diffusion coefficients. Its
effect on the modelling of cavitation will be checked.

Table 5.6: Ahrrenius parameters for self-diffusion coefficients along grain boundaries
and in the bulk for tempered martensitic steels [120–122].

Diffusive Cr Db0δ Qb Dv0 Qv T range
atom (wt.%) (m3s−1) (kJ.mol−1) (m2s−1) (kJ.mol−1) (̊ C)

Fe 6.8 8.2× 10−10 234.3 3.56× 10−1 309.6 650− 800
7.8 8.41× 10−12 205.9 2.48× 10−3 267.6 659− 771
8.9 8.65× 10−2 402.4 1.11× 10−1 305.4 652− 808
9.1 1.01× 10−8 254 1.88 326.4 652− 808

Cr 9.1 8.36× 10−8 271 8.49× 101 355.6 623− 827

Figures 5.10a and 5.10b show the evolution of both Dbδ and Db with respect to the
chromium content. For 9.1%Cr steel, the two points on the vertical line represent the
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diffusion coefficients of either Fe or Cr atoms in Fe-9.1%Cr. The self-diffusion coefficients
of both atoms differ by a factor lower than 2. The values of Dbδ measured in 9.1%Cr
steel differ from the ones measured in 6.8%Cr and 7.8%Cr steels by a factor lower than
3. Exceptionally, the values of Dbδ in 8.9%Cr steel are lower than the ones measured in
9.1%Cr steel by a factor about 1000 at 500̊ C and respectively by a factor about 30 at
650̊ C. However, the values of Dv measured in both steels are not significantly different.
Since, only 8.9%Cr steel which does not exhibit a clear martensitic microstructure [122],
presents a fairly different diffusion behaviour along boundaries with regards to the other
chromium steels, only the values of Dbδ measured for diffusion of Fe atom in 9.1%Cr steel
will be used.
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Figure 5.10: Diffusion coefficients in function of contents in Cr for (a) grain boundary
diffusion and (b) volume diffusion given from [120–122].

5.2.2 Dominant mechanism predicted with Rice length

Figure 5.11 shows comparisons between the diameter deduced from the Rice length (Eq.
(4.20)), 2LR, and the measured cavity diameter after creep lifetimes. For the creep test
at 500̊ C under 230 MPa (160 kh), the ratio of the measured maximum size (3.5 mm) to
the Rice diameter is 0.24. This value is close to the lower of the range (ratio between 0.2
and 20) where the cavity growth is influenced by both mechanisms of self-diffusion and
viscoplasticity. The viscoplasticity effect is assumed to be still low at this ratio (i.e. 0.2).
Besides, the relative probability of the cavity size to be 3.5 mm is very low (≈ 0.07%, see
Fig. 5.5), whereas most of the cavities have a diameter lower than 2 mm leading to a ratio
lower than 0.2. Therefore, the dominant mechanism of cavity growth is considered to be
self-diffusion alone for this creep test. For three creep tests, one at 500̊ C under 250 MPa
(59 kh) and two others at 600̊ C under 90 MPa (94 kh) and 125 MPa (5 kh), the ratio of
the maximum measured diameter to the Rice diameter are lower than 0.2.

Finally for all creep tests considered here, based on Rice predictions [110] the dominant
mechanism of cavity growth is assumed to be diffusion.
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Figure 5.11: Comparison between cavity diameter predicted using the Rice length (2LR)
and the measured maximum and average diameters of cavities.

5.2.3 Diffusion growth of cavities

a. Parameter values for the modelling

The observations carried out for the creep specimens in the present study show that
cavitated facets are uniformly distributed within the microstructure. Thus, constraints
on diffusion cavity growth are not taken into account in the modelling.

Two models are used to predict diffusion cavity growth. The first one was proposed
by Raj and Ashby by assuming instantaneous nucleation, see Eq. (4.31). This model
requires the knowledge of an influential parameter, 2L, which is the average distance
between cavities along boundaries. This parameter is taken as the average distance
between cavities on observed cross-sections reported in Table 5.4. The second model
proposed by Riedel assuming continuous nucleation along the creep tests are represented
by two Riedel bounds given in Eq. (4.41). This model requires the knowledge of the
parameter of the Dyson nucleation law, Ṅ0 (see paragraph d of section 4.2.2), which is
supposed to be equal to Nm/tf . Measured values of Nm for the creep tests under study
are given in Table 5.4. Here, we use an approximation that Na ≈ Nm since this leads to
a low difference in L.

The failure criterion is supposed to be based on the critical area fraction of cavities (or
critical amount of damage), ωf . After the measurements of the area fraction of cavities in
zones close to fracture surfaces of Grade 91 creep specimens loaded at 625̊ C [4], ωf = 0.1.
Similar values were also used by Koplik and Needleman [92] as critical amount of damage
above which their model expected a very quick viscoplasticity growth of damage up to
failure.
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b. Prediction of time to failure by diffusion cavity growth

Predicted times to failure at 500̊ C and 600̊ C are plotted in Figs. 5.12 and 5.13. Param-
eters L and Ṅ0 were taken from the measurements for the creep tests at 500̊ C under 230
MPa (160 kh) and 600̊ C under 90 MPa (94 kh), see Table 5.5. These values were also
used for the prediction at lower and higher stress. Lifetimes predicted using the Raj and
Ashby model as well as by the Riedel bounds are longer than the experimental lifetimes.
The lifetimes predicted using the first model are longer than the ones predicted using
the Riedel upper bound by less than 30%. The lifetimes predicted using the Riedel lower
and upper bounds differ by less than 50%. The predictions using the Riedel bounds are
proportional to (σeng)x with x = −0.4. This can be deduced from Eq. (4.41) considering
a constant value of Ṅ0 at each temperature.

c. Prediction of the time evolution of the average cavity diameter

The evolution of the average cavity diameter during the creep tests at 500̊ C under 230
MPa and at 600̊ C under 90 MPa were predicted using the Raj and Ashby model as well
as using the Riedel bounds. The results are illustrated in Figs. 5.14a and 5.14b.

The cavity diameter predicted at times equal to the experimental lifetimes using the
Raj and Ashby model is in good agreement with the maximum measured diameter. But,
it is 4 times larger than the measured mean diameter for the creep test at 500̊ C under
230 MPa, and respectively 3 times larger for the one at 600̊ C under 90 MPa. The model
seems to correctly predict first cavities to have nucleated.

The cavity diameter predicted using the Riedel upper bound is about 2 times larger
than the prediction using the Riedel lower bound. The Riedel upper bound approximately
correctly predicts the maximum cavity size, whereas the lower bound approximately
correctly predicts the mean cavity size. The cavity diameter predicted using the Riedel
upper bound are slightly higher (by 10% after 160 kh at 500̊ C, and 15% after 94 kh at
600̊ C) than the one predicted using the Raj and Ashby model. Indeed, the Riedel upper
bound considers a lower bound of size growth rate in order to simplify the resolution of
the differential equations (see section 4.2.2). This lower bound is higher than the size
growth rate given by the Raj and Ashby model.

d. Size distribution of cavities predicted using the Riedel bounds

The size distribution of cavities predicted using the Riedel bounds are compared with the
ones given from the experimental measurements (Fig. 5.15). The predicted cumulative
probabilities were assumed to be power functions of cavity size in order to be able to solve
analytically the coupled problem. Following the predicted distributions, the predicted
cavity sizes are globally larger than the measured ones with a factor of 2 or 3. This is
probably due to the overestimation of the boundary normal stress by the tensile stress.
The agreement between the predictions and the measurements is better for the creep test
at 600̊ C under 90 MPa than for the one at 500̊ C under 230 MPa.
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Figure 5.12: Comparison between experimental lifetime at 500̊ C (CEA) and times
to failure predicted using the Raj and Ashby model and using the Riedel bounds. The
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and 230 MPa (the values are slightly different at 500̊ C and 250 MPa).
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Figure 5.14: Comparisons between the measured maximum and average values of di-
ameter and the diameter predicted using the Raj and Ashby model and using the Riedel
bounds. (a) 230 MPa at 500̊ C and (b) 90 MPa at 600̊ C. Corrected experimental values
to take into account 3D shape of cavities (measured 2D size times a factor 4/π).
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5.2.4 Sensitivity of model predictions of cavity growth to the
values of model parameters

Predictions of cavity growth could be sensitive to the values of parameters Dbδ, ωf , L,
and Ṅ0. The self-diffusion coefficient in grain boundaries, Dbδ, generally varies following
different authors. Scatter of diffusion coefficients measured in [120–122] could lead to a
value of Dbδ 5 times lower or greater. If nucleation of cavities along FAGBs is considered,
distance 2L between cavities could vary between 10 and 60 mm (range of former austenitic
grain size). The critical area faction of cavities, ωf , could vary and be lower than 10%
[4,89] or possibly higher. To study its effect on predictions of cavity growth, ωf is assumed
to range within 0.1 ± 0.05. Uncertainty of cavity quantification is assumed to cause a
variation in Ṅ0 by a factor 1/2 or 2.

The sensitivity of the two cavity growth models, Raj and Ashby model and Riedel
bounds, to the individual values of their parameters is studied in relationship with the
predictions for the creep tests at 500̊ C under 230 MPa and at 600̊ C under 90 MPa
(Table 5.7).

For the Raj and Ashby model, if ωf varies by −50% or +50%, the predicted lifetime
becomes respectively 2 times shorter or 1.5 longer than in the reference case. If the
value of Dbδ changes by a factor 5 or 1/5, the predicted lifetime increases or decreases
by a factor 5. Then, the predicted cavity diameter is respectively 1.4 times smaller or 2
times larger than in the reference case. At 500̊ C under 230 MPa, for 2L = 10 mm (to
be compared with the measured value, 25 mm) the predicted lifetime becomes 15 times
shorter. Instead, the predicted lifetime only increases by 40% for 2L = 60 mm. At 600̊ C
under 90 MPa, for 2L = 10 mm (to be compared with the measured value, 67 mm) tf
becomes 280 times shorter, and instead reduces by 30% for 2L = 60 mm. The Raj and
Ashby model seems to be less sensitive to the increasing value of L than to the decreasing
one.

For the Riedel bounds, the variations in predicted lifetime and in cavity size due to
the variation in parameters can be estimated directly from Eqs. (4.41) and (4.42). If the
value of ωf varies by −50% or +50%, lifetimes predicted using the Riedel bounds reduce
by 30% or increase by 20%. If the value of Dbδ is 5 times lower or greater, the predicted
lifetime becomes approximately 2 times longer or shorter respectively. The predicted
cavity diameter becomes respectively 2 times smaller or larger. If the value of Ṅ0 is 2
times lower or greater, the predicted lifetime respectively increases or reduces by 30%.
The change in cavity diameter predicted using the Riedel lower bound is of −20% or
+20%, and respectively of −5% or +5% for the upper bound.

In conclusion, the Riedel bounds are less sensitive to the values of parameters Dbδ, ωf
and L with regards to the Raj and Ashby model. The Riedel bounds represent therefore
advantages with respect to robustness. As in addition their physical basis are stronger
than the ones of the Raj and Ashby theory, they should be preferred.

The Riedel model requires the knowledge of cavity nucleation rate that is at present
determined from the experimental measurements. In the following section, this one is
predicted using the Raj nucleation model.
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Table 5.7: Sensitivity of predictions of lifetime and cavity size to the values of model
parameters. Reference values: ωf = 0.1, 2L = 25 mm at 500̊ C and 67 mm at 600̊ C,
Ṅ0 = 2.8 m−2s−1 at 500̊ C and 0.65 m−2s−1 at 600̊ C , Dbδ determined from Table 5.6
(for diffusion of Fe in 9.1%Cr steel). The studied creep tests: (1) at 500̊ C under 230
MPa and (2) at 600̊ C under 90 MPa. (3): Riedel lower bound, (4) Riedel upper bound.

Raj and Ashby Riedel bounds

Lifetime Cavity size Lifetime Cavity size

Dbδ 1/5 times 1/5 times 1/1.4 times 2 times 1/2 times
5 times 5 times 2 times 1/2 times 2 times

ωf −0.05 1/2 times unchanged −30% unchanged
+0.05 1.5 times unchanged +20% unchanged

L 10 mm 1
15

(1), 1
280

times(2) -
60 mm +40%(1), −30%(2) −20%(1), +3%(2)

Ṅ0 1/2 times +30% −20%(3), −5%(4)

2 times −30% +20%(3), +5%(4)

5.2.5 Nucleation of cavities

First, spherical cavities are assumed to nucleate along boundaries perpendicular to the
loading axis. Incubation times predicted using the Raj model after Eq. 4.17 are presented
in Figs. 5.16a and 5.16b. At 500̊ C under 230 and 250 MPa, the predicted incubation
times are respectively equal to 2% and 4% of the corresponding experimental lifetimes.
These incubation times correspond to creep stage I. For two shorter creep tests carried
out under applied stress of 350 and 370 MPa, the predicted incubation times are longer
than the corresponding experimental lifetimes. For the creep tests at 600̊ C under 90 and
110 MPa, the predicted incubation times belong to creep stage I. For creep tests at 600̊ C
under 125 and 160 MPa, the predicted incubation lifetimes correspond to the beginning
of creep stage II. These predicted times are in agreement with the observations of cavities
in all the considered specimens.

The nucleation rate is predicted using Eq. (4.14) with Fv = 4π
3

for spherical cavities for
creep tests at 500̊ C under 230 MPa and at 600̊ C under 90 MPa. The results show that
using such high theoretical value of Fv leads to a predicted nucleation rate practically
equal to zero for both creep tests.

Cavities of type B (Fig. 4.7b) suggested by Raj [99] to have the highest nucleation
probability are now considered. They are assumed to have nucleated at M23C6 interfaces
following the observations on the specimen loaded at 500̊ C under 250 MPa. The effect
of segregation of S and P leads to a reduction in γs to 1.42 Jm−2 [118]. The free surface
energy of M23C6 is given in [123] as γI = 1.1 Jm−2. The grain boundary energy is γb = 1.7
Jm−2 for general boundaries [124] and the precipitate-matrix interface energy value, γIb,
ranges between 0.5 and 1 Jm−2 for incoherent interfaces of precipitates [124]. Angles
α and αI (Fig. 4.7b) could be deduced from these energy values, whereas angle αIb is
assumed to be equal to 90̊ following numerous observations. Using Eqs. (4.2), (4.5), (4.6)
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Figure 5.16: Incubation times predicted using the Raj model given by Eq. (4.17), for
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3
.

and (4.8), the value of Fv is minimized to be 0.18. By using this value, the predicted
nucleation rates are still negligible.

The geometry factor, Fv, is adjusted to predict the final densities of cavities in agree-
ment with the measured ones. Cavities of type B nucleated at M23C6 interfaces located
along boundaries are assumed. The maximum density of nucleation sites, Nmax

a , is eval-
uated by assuming that the average distance between M23C6 carbides is equal to the
average block size (2 mm [24]). This leads to a value of Nmax

a equal to 0.25 mm−2. The
adjusted values of Fv are reported in Table 5.8.

Table 5.8: Comparison between cavity densities measured after creep tests and predic-
tions using Eq. (4.14) and the adjusted values of the geometry factor Fv.

T (̊ C) Stress (MPa) Lifetime (h) N exp
a (mm−2) Fv NRaj

a (mm−2)

500̊ C 230 MPa 160× 103 1.53× 10−3 4.1× 10−4 2.09× 10−3

600̊ C 90 MPa 90× 103 4.24× 10−5 8.7× 10−5 2.78× 10−5

These adjusted values of Fv are now used to predict the incubation time using Eq.
4.17. For the creep tests at 500̊ C under 230 MPa and 600̊ C under 90 MPa, the predicted
incubation time is lower than one second. The steady-state nucleation regime is thus
predicted to be quickly reached. However, the corresponding predicted nucleation rates
are respectively 1.3×10−8mm−2h−1 and 3×10−10mm−2h−1. At this incubation time, the
predicted cavity density is very low and cause a difficulty for detection of cavities.

The obtained values of Fv were adjusted by assuming that σn at the precipitate-
matrix interface is equal to the uniaxial macroscopic stress, σeng. At this location, stress
concentrations could occur and that may lead to lower adjusted values of Fv.
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5.2.6 Effect of stress concentrations at precipitate-matrix inter-
faces on the adjusted value of Fv

A 2D plane strain finite element model was used to compute stress concentrations at the
interface of a precipitate with the matrix. The linear isotropic elasticity flow rule was
used to model the mechanical behaviour of the precipitate and respectively an isotropic
viscoplasticity flow rule defined in RCC-MRx code [36] for modelling the creep flow of the
matrix. The parameters of this one were readjusted to represent correctly the uniaxial
εeng(t) curves of creep tests under study (section 8.1.2). The size of the matrix is 10 times
larger than the precipitate diameter.

The distribution of computed axial stress is plotted in Fig. 5.17. These normal stress
fields at the interface of the precipitate with the matrix increase by 50% with respect
to the applied macroscopic stress, σeng. Two values of Young’s modulus were used, but
both corresponding results differ slightly (Table 5.9).

The computed value of stress concentrations, 1.5, is now used to readjust the values
of Fv for the creep tests in the present study. The readjusted values of Fv are 2.25 times
lower than the previous ones adjusted considering the macroscopic uniaxial stress (Table
5.8). However, these values are still higher than the theoretical value by 3 to 4 orders of
magnitude.

Table 5.9: Computed normal stress at the precipitate-matrix interface with respect to
the applied engineering stress. σeng = 90 MPa, temperature: 600̊ C, creep time: 94×103h.

Young modulus (GPa)

Inclusion Matrix Normal stress

151 151 Σn + 50%
200 151 Σn + 52%

5.3 Discussion

Diffusion-induced creep cavities were observed in Grade 91 steel at least after a lifetime
of 59×103 h at 500̊ C and respectively 5×103 h at 600̊ C. The values of area fraction
of cavities for these lifetimes are much lower than the ones measured for lifetimes of
160×103 h at 500̊ C and 94×103 h at 600̊ C, for which the area porosities are respectively
6.9×10−4 and 2.5×10−3. These values of area porosity lead to an increase in creep strain
rate of less than 2.5%, assuming a stress exponent of 20.35 at 500̊ C and 9.9 at 600̊ C
and using continuous damage mechanics (see chapter 3). Therefore, necking kinetics is
almost unaffected.

For applying the cavity growth models, cavities were assumed to have spherical shapes
and to be located along boundaries perpendicular to the loading axis. Numerous nucle-
ation cases were observed at M23C6 carbides (one case in 12%Cr steel [21]) as well as at
Laves phases. The assumption of the spherical shape is valid as soon as the cavity size
reaches the typical size of carbides (100 nm). The stress heterogeneity due to spherical
carbides may lead to an excess of 50% over the local normal stress with respect to the
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Figure 5.17: Axial stress distribution given in Pa. Horizontal loading axis. Stress: 90
MPa, temperature: 600̊ C, creep time: 94×103h.

macroscopic stress (Fig. 5.17). This leads to a reduction of 30% in lifetime predicted
using the Raj and Ashby model, and only of 15% in lifetime predicted using the Riedel
bounds. It can be noticed that the Riedel bounds are less sensitive to the parameters
(Dbδ, ωf , L) than the Raj and Ashby model (see section 5.17).

Cavities located at boundaries but far from carbides have a low nucleation proba-
bility which yields a negligible density according to the Raj model. Similarly, the use
of literature data [118] leads to similar conclusions for nucleation close to precipitates.
Type-B cavities located at carbide-matrix interfaces, with adjusted geometry parameter
Fv = 4.1 × 10−4 at 500̊ C and Fv = 8.7 × 10−5 at 600̊ C, could be nucleated at a rate
leading to final densities in agreement with the measured ones (based on creep tests at
500̊ C under 230 MPa and at 600̊ C under 90 MPa). However, the local stress hetero-
geneity that could occur within the microstructure such at triple junctions of FAGBs
and at carbide-matrix interface is not taken in account. Indeed, an excess of 50% over
the normal stress due heterogeneity, for the creep tests at 500̊ C under 230 MPa and at
600̊ C under 90 MPa, could lead to predicted nucleation rate of 4 × 109 and 5 × 1011

times higher using the Raj formula and the adjusted values of Fv. In the other words,
readjusted values of Fv are lower.

The use of a stress concentration factor of 1.5 obtained using the finite element com-
putations previously described leads to an increase in the predictions of Rice length of
only 15%. Therefore, the assumption of diffusion-induced cavity growth is still valid.



Conclusions

Creep cavities were observed at least after lifetimes of 59×103 h at 500̊ C and 5×103 h at
600̊ C, but the measured area fraction of cavity is very low. After lifetimes of 160×103

h at 500̊ C and 94×103 h at 600̊ C, the area fraction of cavities is higher but leads to an
increase of less than 2.5% (for n = 10) in creep strain rate using the continuum damage
approach. Therefore, necking is still the dominant mechanism in such loading conditions.

Times to failure predicted using the Raj and Ashby model as well as using the Riedel
bounds (not coupled from any effects induced by necking) are longer than experimental
lifetimes up to 160×103 h at 500̊ C and 94×103 h at 600̊ C. Indeed, in these lifetime
ranges, failure was observed to be induced mainly by necking. The Raj and Ashby
model allows fair predictions of the maximum diameter of cavities, whereas the average
diameter predicted using the Riedel bounds ranges between the mean measured size and
the maximum measured size of cavities. The Riedel bounds are more stable than the
Raj and Ashby model with respect to the values of model parameters (within the range
studied here).

Following the Raj nucleation theory, the nucleation probability is higher for cavities
located at intergranular carbide-matrix interfaces with regards to cavities simply located
at boundaries. However, the cavity density could be correctly predicted only using ad-
justed values of the cavity geometry parameter, Fv = 4.1× 10−4 at 500̊ C and 8.7× 10−5

at 600̊ C.
Stress heterogeneity could affect strongly cavity nucleation. Using the adjusted values

of Fv, nucleation rate becomes strongly dependant on stress which is in contrast with the
observations carried out by Dyson and McLean [89].

Following the 2D plane strain finite element model, the local stress at precipitate-
matrix interfaces could reach 1.5 times the macroscopic uniaxial stress. This leads to a
decrease in adjusted value of Fv by 2.25 times. However, the readjusted values of Fv are
still higher than the theoretical value by 3 or 4 orders of magnitude.

Another stress heterogeneity is due the forms neighbouring blocks or grains and their
different crystal orientations which induce strain incompatibilities and local stress con-
centrations at the boundaries. In the next part, stress heterogeneity at triple junctions
of block boundaries or FAGBs will be studied in details using finite element simulation
taking into account crystal viscoplasticity.
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Résumé

Une singularité logarithmique de contrainte au point triple en thermoélasticité est obtenue
d’après la littérature. Des calculs par éléments finis en élasto-viscoplasticité cristalline
de la concentration de contrainte locale près des points triples sont menés afin de prédire
son influence sur la germination des cavités pour deux essais de fluage de durées de vie
de 160 kh à 500̊ C et 94 kh à 600̊ C. Les paramètres d’une loi viscoplastique cristalline
utilisée sont ajustés en utilisant des simulations des courbes de fluage de larges agrégats
poly-cristallins le plus possible en accord avec les courbes expérimentales. La distribution
des contraintes moyennes par bloc, contraire à celle des déformations moyennes par bloc,
est stable par rapport au raffinement du maillage, au nombre de blocs et aux valeurs des
paramètres choisies. Des calculs en déformation plane en utilisant des microstructures
construites par un modèle simple de point triple ainsi que construites par des mesures
à l’EBSD. Le modèle de point triple tenant compte des orientations aléatoires des blocs
permettent de représenter approximativement de manière correcte les contraintes nor-
males aux joints de blocs près des points triples construits par des mesures à l’EBSD. Un
facteur de concentration de contrainte près des points triples maximum de 2 est estimée
en utilisant le modèle de point triple tenant compte des orientations aléatoires. Ten-
ant compte de l’hétérogénéité géométrique des points triples et le facteur géométrique
théorique des cavités, les densités de cavités finales prédites par le modèle de germination
de Raj ne sont même pas au même ordre de grandeur que les mesures en FEG-SEM. En
utilisant le facteur géométrique théorique des cavités, un facteur de concentration de 20
voire 50 est requis pour des prédictions valables par le modèle de Raj.

Mots clés : point triple, concentration de contrainte locale, singularité de contrainte,
viscoplasticité cristalline, dislocation, activation thermique, géométrie des blocs, orienta-
tion cristallographique.
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Introduction

In the previous part, the normal stress acting on grain boundaries was assumed to be the
driving force of cavitation. The normal stress was supposed to be equal to the macroscopic
stress, which is only an approximation. In reality, mechanical fields are heterogeneous
at block, packet or former austenitic grain boundaries and triple junctions, including
normal stress. This is due to the difference in crystal orientation and grain geometries
which induces strain incompatibility [125, 126]. A study of the normal stress field at
block/packet/former austenitic grain boundaries and triple junctions has been performed
by finite element analysis in the crystal elasto-viscoplasticity framework. Our aim is to
predict stress fields and distributions at triple junctions as well as their effect on cavity
nucleation. This study is applied to two long-term creep tests with lifetimes of 160×103h
at 500̊ C and 90×103h at 600̊ C as described previously.

Chapter 6 is a literature survey on finite element simulation of polycrystalline aggre-
gate deformation in the crystal elasto-viscoplasticity framework. The chapter describes
studies of stress heterogeneity in polycrystalline aggregates and the choice of crystalline
viscoplasticity constitutive equations for our study.

Chapter 7 presents the adjustment of the crystal viscoplasticity parameters based on
the prediction of the macroscopic uniaxial creep strain curves. Creep curves of large
polycrystalline aggregates made of cubic blocks having random crystal orientations are
computed. The stress and strain sensitivity with respect to mesh refinement, the number
of blocks and the values of constitutive parameters are also discussed. These parameters
are needed for computing the stress fields around triple junctions and block boundaries.

Chapter 8 focuses on the normal stress at block boundaries obtained by finite element
computations assuming a quasi plane strain hypothesis. Firstly, a basic microstructure
containing a triple junction whose neighbouring blocks have random crystal orientations
is used. Then, computations are carried out on actual microstructures meshed from
EBSD maps. The stress concentration effect on the prediction of cavity nucleation is
then discussed.

Finally, conclusions on the stress concentration effect on cavity nucleation is given at
the end of this part.
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Chapter 6

Literature review on polycrystal
models

6.1 Stress and strain concentrations at polycrystalline

grain boundaries

Nucleation of cavities has been observed by Caré and Zaoui [127] at polycrystalline triple
points of a Zr alloy subjected to tensile test at room temperature (Fig. 6.1). These authors
used an analytical model to compute stress singularity at triple points. They assumed
uniform free strain in each grain. The internal stress field was calculated according
to an elastic accommodation assumption; it is derived by superposition of the stress
field contributions associated with each uniform grain boundary. They showed that
the model predicts a logarithmic stress singularity close to triple points. Thermoelastic
stress singularities close to free surface at the boundary between two anisotropic elastic
materials emerging at the free surface and having different elasticity constants were also
computed in [128]. The results showed that stress singularities were obtained as an inverse
power law function of the distance to the boundary between both materials [128].

Figure 6.1: Cavity located at a polycrystalline triple point of a Zr alloy observed by
Caré and Zaoui [127] at a tensile strain of 24% and room temperature. Many slip bands
are observed and the strain field is heterogeneous around the triple point [127].
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Figure 6.2: (a) Microstructure of zirconium built using EBSD measurements (the
Schmidt factor is high in white grains and low in black grains) [129]. (b) Axial strain
fields measured using microextensometry at a macroscopic strain of 2.5% at room temper-
ature [129]. (c) Superposition of both experimental results [129]. The loading direction
is horizontal.

However, the uniform plastic strain distribution in each grain supposed by [127] is
not in agreement with SEM observations of the heterogeneity of plastic strain fields
in each grain around triple points (Fig. 6.1). Localised strain at grain boundaries of
zirconium polycrystals has also been observed and measured by Héripré et al. [129] using
microextensometry as shown in Fig. 6.2. Computations based on uniform plastic strain in
each grain lead to stress overestimations even at the macroscopic scale [130]. Santacreu
[131] has carried out finite element modelling to compute stress fields at the interface
of two materials. The first one is an isotropic elastic material and the second one is an
isotropic elastoplastic material. His computations based on either plane strain, plane
stress or axisymmetric hypothesis resulted in stress lower than the values predicted by
the analytical models proposed in [132, 133] which suggested that the stress singularity
increases linearly with increasing plastic strain.

Normal stress fields at grain boundaries of a Zr alloy have been computed by Diard et
al. [125, 126] using finite element modelling of Voronöı polycrystalline aggregates (Figs.
6.3a and 6.4a). These aggregates were subjected to tensile tests. The first one was
carried out at a strain rate of 10−5s−1 at room temperature [125] and the second one
at a strain rate of 2 × 10−4s−1 at 350̊ C [126]. The mechanical behaviour of Zr crystals
was modelled by crystal elastoviscoplasticity constitutive equations. Hardening was taken
into account and the viscoplastic slip rate was expressed by a power law dependence upon
the viscoplastic potential [125,126]. Normal stress fields averaged along grain boundaries
for both tensile tests were computed and are plotted in Figs. 6.3b and 6.4b. For the
room temperature test, the average normal stress to grain boundaries perpendicular to
the loading direction varies by ±50% with respect to the macroscopic tensile stress. For
the second test, only the standard deviation was evaluated and equal to 10% of the
macroscopic stress (for grain boundaries perpendicular to the loading direction). The
standard deviation is generally lower than the real amplitude. Thus, for the second test,
the amplitude of variation of the average normal stress may be not strongly different
from the one computed for the first test. A rather large stress amplitude was found.
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Figure 6.3: (a) Voronöı polycrystalline aggregate containing 100 grains meshed by tetra-
hedral finite elements [125]. (b) Normal stress averaged along different grain boundaries
in a Zr alloy subjected to a tensile test at a strain rate of 10−5s−1 at room temperature,
compared with an analytical model assuming uniform stress field in the whole polycrystal
(upper curve) [125].

Figure 6.4: (a) Voronöı polycrystalline aggregate containing 2197 grains meshed by
cubic elements. (b) Normal stress averaged along different grain boundaries and standard
deviations, in a Zr alloy subjected to a tensile test at strain rate of 2 × 10−4s−1 at
350̊ C [126].

The results on normal stress heterogeneity in polycrystalline aggregate given by Diard
et al. [125,126] only concern monotonic tensile tests. Our study involves creep tests having
lifetimes of 160×103h at 500̊ C and 94×103h at 600̊ C. These may yield a different ratio
of the grain boundary normal stress to the macroscopic stress due to stress redistribution
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during creep. Diard et al. [125, 126] computed the normal stress averaged along grain
boundaries. However, normal stress fields close to triple points could be even higher
following [127, 129]. This problem will be studied using triple junction models and the
finite element method in chapter 8.

6.2 Crystal elasto-viscoplasticity constitutive equa-

tions

6.2.1 Basic kinematics in the finite strain framework

Figure 6.5: Kinematic model of elastoplastic transformation at the single crystal scale
after [134].

In crystalline solids, a finite transformation is assumed to occur in two steps [134]
(Fig. 6.5). In the first step, starting from the reference state (left side), the material
flows by crystallographic slip, which gives the viscoplastic sliding gradient tensor ∼Ḟ

p

(right bottom, intermediate configuration). Following this step, the material is deformed
elastically from the intermediate configuration to the current configuration (top right).
Thus, the transformation gradient is decomposed as:

∼F = ∼F
e · ∼Fp (6.1)

The velocity gradient tensor due to the elasticity contribution, ∼L
e, the tensor of slip

induced viscoplastic velocity gradient, ∼L
∗p, and the total velocity gradient tensor, ∼L, are
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given by the following [134]:

∼L
e = ∼Ḟ

e · ∼Fe−1 (6.2)

∼L
∗p = ∼F

e · ∼Ḟp · ∼Fp−1 · ∼Fe−1 (6.3)

∼L = ∼L
e + ∼L

∗p (6.4)

The Green-Lagrange strain tensor due to the elasticity contribution, ∼E
e, is given by

Eq. (6.5) after [134]. The anisotropic elasticity constitutive equation is given by Eq.
(6.6) [135], in which ∼̌σ is the Trusdell derivative of Cauchy stress tensor ∼σ, ∼D

e is the
symmetric part of ∼L

e and
≈
C is the fourth-order tensor of elastic moduli. For bcc crystals,

tensor
≈
C has three independent components: C11, C12, C44 due to the cubic symmetry.

∼E
e =

1

2

(
∼F
eT · ∼Fe −∼I

)
(6.5)

∼̌σ =
≈
C : ∼D

e (6.6)

∼̌σ = ∼̇σ − ∼L
e · ∼σ − ∼σ · ∼LeT + Tr (∼L

e) ∼σ (6.7)

The velocity gradient tensor due to crystallographic slip is given by Eq. (6.8) after
[135]. The resolved shear stress on slip system (s), τ s, is given by Eq. (6.9) after [135].
For the bcc structure, 24 easy slip systems are considered (Table 6.1) [136,137].

∼L
∗p =

24∑

i=1

γ̇sm∗s ⊗ n∗s (6.8)

τ s = ∼σ : (m∗s ⊗ n∗s) (6.9)

Table 6.1: Easy slip systems in the bcc structure [136,137].

Slip system family number of slip systems

{110} 〈111〉 12
{112} 〈111〉 12

6.2.2 Viscoplastic slip rate and thermal activation

In addition to Eq. (6.8), a flow rule allowing the computation of the rate-dependent slip
is needed. Many crystal viscoplasticity equations have been proposed to describe the
viscoplastic slip rate in each slip system. Diard et al. [125, 126] used phenomenological
crystalline viscoplasticity flow rules including hardening. They assumed that the vis-
coplastic slip rate on slip system (s) was expressed as a power function of the resolved
shear stress on this system. In the contrary to numerous alloys, softening occurs rather
than hardening during creep of tempered martensitic steels [42].
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Figure 6.6: Obstacle profile in the framework of thermal activation.

In our study, a flow rule describing viscoplastic slip by dislocation glide will be used.
Indeed, the creep tests carried out on the grade 91 steel under study lead to the Norton
creep flow rule with stress exponents ranging between 10 and 20. Sklenic̆ka et al. [73]
have suggested that for this range of stress exponent, the creep flow of grade 91 steel is
controlled by dislocation glide rather than dislocation climb.

Dislocations overpass though some short-range obstacles by thermal activation, after
Caillard and Martin [137]. The scheme of a dislocation overcoming obstacles on a slip
system (s) is represented in Fig. 6.6. The work done by the dislocation over the swept
area under an effective or viscous stress τ ∗s is V ∗τ ∗s. If ∆G0 is the barrier energy of
obstacles, then the necessary Gibbs energy to overcome these obstacles by thermal acti-
vation is ∆Gs = ∆G0−V ∗τ ∗s. This leads to a probability proportional to exp (∆Gs/kbT )
following the Boltzmann theory. The backward motion of dislocations is neglected, i.e.
for monotonic loading conditions (even at this very local scale). The slip rate on slip
system (s) is given by [137]:

γ̇s =




γ̇s0 exp

(
−∆G0

kbT

)
exp

(
V ∗τ ∗s

kbT

)
sign (τ s) if |τ ∗s| > 0

0 if τ ∗s = 0
(6.10)

where γ̇s0 = ρsmb
2νd, with ρsm the density of mobile dislocations on the slip system (s),

b the Burgers vector norm, and νd the Debye vibration frequency of atoms. Dislocations
could be decomposed in screw and edge segments which are not distinguished in our study
even if these overcoming obstacles may differ: cross-slip for screw dislocations, climb for
edge dislocations.

The shear stress is decomposed into the viscous stress, τ ∗s, and the athermal stress
due to the obstacles, τ s0 . The viscous stress is then given by:

τ ∗s = |τ s| − τ s0 (6.11)

The creep evolution of the stress τ s0 should be modelled by a creep-induced soften-
ing equation representing the softening behaviour of the grade 91 steel due to sub-grain
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growth and dislocation density decrease along creep time [42]. Up to day, no crystalline
constitutive equations are available for simulating the softening behaviour during creep.
In order to reduce the number of parameters which allows us to simplify their identifica-
tion by finite element simulation of polycrystalline large scale aggregates, τ s0 is assumed
to be constant.

The critical shear stress values for slip systems {110}〈111〉 and {112}〈111〉 in Fe-α
after the experimental results reported in [138] are plotted in Fig. 6.7. These results show
that the difference between the critical shear values of both slip families is negligible for
temperatures higher than 200 K. Therefore, at 773 K (500̊ C) and 873 K (600̊ C) which
are the temperatures of the creep tests under study, only one constant value of τ s0 for all
24 slip systems needs to be identified. Henceforth, this parameter is annotated as τ0.

Figure 6.7: Evolution of critical resolved shear on slip systems {110}〈111〉 and
{112}〈111〉 in Fe-α after [138].

6.3 Crystal viscoplasticity parameters

The values of the three independent constants (C11, C12, C44) of cubic tensor
≈
C are given

in [139] after measurements by the ultrasonic method and are reported in Table 6.2. The
high values of the anisotropic coefficient of cubic elasticity, a > 3, show that the ferrite
steel is highly anisotropic at high temperature.

Table 6.2: Independent elastic constants of Fe-α single crystals [139].

C11 (GPa) C12 (GPa) C44(GPa) 2C44/ (C11 − C12)

500̊ C 196.8 128 107.2 3.1
600̊ C 186.7 126.5 105.3 3.5

Rare studies have given the estimations of the values of the crystal viscoplasticity
parameters, ∆G0, τ0, V ∗ for tempered martensitic 9%Cr steels. Some authors have
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provided their values in a range of creep strain rate many orders of magnitude higher
than ours (4.1×10−11s−1 for creep at 500̊ C and 230 MPa, 6.4×10−11s−1 for creep at 600̊ C
and 90 MPa). Fournier et al. [140] have used an uniaxial model equivalent to Eq. (6.10)
and have identified the value of the corresponding V ∗ = 230b3 based on uniaxial tests
of 9%Cr steels at 550̊ C with strain rates in the order of magnitude of 10−5s−1. This
corresponds to a value of V ∗ = 460b3 at the crystal scale (supposing a Schmid factor of
0.5). This value of V ∗ was given in a range of strain rate higher than the creep strain rates
of both creep tests of grade 91 steel under study by more than 5 orders of magnitude.
This could influence deformation mechanisms and thus the value of V ∗. The value of the
activation energy, ∆G0, ranges between 2.7 and 4.7 eV after the evaluations in [141] using
creep tests of 9%Cr-1%Mo steel at temperatures between 500 and 600̊ C. These studies
provide the orders of magnitude of the crystal viscoplastic parameter values that help
their identification in application to our creep tests (500̊ C under 230 MPa and 600̊ C
under 90MPa).

Many authors [125, 126, 142] have used different meshes of polycrystalline aggre-
gate to identify the crystalline viscoplasticity parameters. Diard et al. [125, 126] used
Voronöı polycrystalline aggregates (Figs. 6.3a and 6.4a) whereas Libert [142] used poly-
crystalline aggregates constituted of regular cubic grains. In fact, Diard et al. [125, 126]
were interested in studying the local stress and strain at grain boundaries which are in-
fluenced by grain geometry. The polycrystalline aggregates constituted of regular cubic
grains proposed in [142] are much more simple to build and could be sufficient for only
adjusting the crystalline viscoplasticity parameters by using the average creep response
of the aggregates.

Recent Fast Fourier Transform computations (FFT) carried by Lebensohn et al.
[143,144] have focused on the macroscopic effect of the grain shapes. The first FFT com-
putations were carried out in the crystal linear viscosity framework using 2D-plane strain
hypothesis and an aggregate constituted of either regular square grains or Voronöı poly-
gons. The second FTT computations were performed in the crystal viscoplasticity frame-
work using a 3D aggregate constituted of either regular cubic grains or Voronöı polyhedral
grains. These calculations showed that the grain shapes only affect slightly the predicted
macroscopic behaviour. Therefore, polycrystalline aggregates constituted of regular cubic
blocks will be used to adjust the crystal viscoplasticity parameters used in Eqs. (6.10)
and (6.11).

6.4 Conclusions

Our study concerns creep tests at 500̊ C under 230 MPa (a lifetime of 160 × 103h) and
at 600̊ C under 90 MPa (a lifetime of 94 × 103h). The crystal elasto-viscoplasticity
constitutive equations given by Eqs. (6.10) and (6.11) require the adjustment of only three
crystal viscoplasticity parameters: ∆G0, τ0, V ∗. In order to identify these parameters in
chapter 7, finite element simulations of creep deformation of polycrystalline aggregates
constituted of regular cubic blocks will be carried out. Different numbers of blocks as well
as various numbers of finite elements per block will be chosen, whereas Libert [142] used
only 8 FEs per grain. The fitting procedure is based on the simulation of the macroscopic
creep strain curves and comparison with our experimental data.

The normal stress fields averaged over a grain boundary in a Zr alloy subjected to



6.4 CONCLUSIONS 125

monotonic strain rate at room temperature as well as at 350̊ C differs from the macro-
scopic tensile stress by ±50% [125, 126]. Not many results concerning the normal stress
during very long-term creep tests at high temperature have been reported in the lit-
erature. Our study in chapter 8 will focus on the normal stress distribution at block
boundaries in grade 91 steel subjected to the both creep tests previously described. In
addition, we will focus on the computations of stress fields around triple junctions where
the stress and strain heterogeneity should be the highest (Figs. 6.1 and 6.2).
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Chapter 7

Finite element modelling of
polycrystalline aggregates

7.1 Geometry description and meshing

The polycrystalline aggregates used in this study have cubic shapes meshed into regular
cubic blocks (Fig. 7.1). Each cubic polycrystalline aggregate contains the same number
of blocks along each edge. Each cubic block is meshed into regular cubic finite elements
(CUB8 element, 8 integration points) with the same number of finite elements along each
block edge.

Figure 7.1: Polycrystalline aggregate containing 125 blocks of random orientations.
Issued from [145].

The crystal orientations of the blocks of the grade 91 steel with respect to one and
another are either random (when they belong to two different former austenitic grains) or
related after the relationships of Kurdjumov-Sachs [48] and Nishiyama-Wassermann [49].
However, for the sake of simplicity, we assumed that all blocks of the polycrystalline aggre-
gates have random crystal orientations. Assuming random orientations of the neighbours
instead of Kurdjumov-Sachs or Nishiyama-Wassermann orientations should probably not
strongly affect macroscopic predictions. At the macroscopic scale, EBSD measurements
have shown that the material is almost texture free [119].
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7.2 Crystal elasto-viscoplasticity constitutive equa-

tions

The anisotropic elasticity equation is described in chapter 6 by Eq. (6.6) as well as the
crystal viscoplasticity equations by Eqs. (6.10) and (6.11). The values of the three in-
dependent constants of anisotropic elasticity for Fe-α are given in [139] and reported in
Table 6.2 for both temperatures under study (500 and 600̊ C). For the crystal viscoplas-
ticity equations, only three parameters are needed to be adjusted: ∆G0, τ0, V ∗. The
study of Fournier et al. [140] allows us to choose the V ∗ values of the order of magnitude
of 460b3 for 9%Cr steels given at 550̊ C. This value of V ∗ corresponds to strain rate of the
order of magnitude of 10−5s−1. The value of the activation energy, ∆G0, ranges between
2.7 and 4.7 eV (for 9%Cr steels at 500− 600̊ C) after [141].

The UMAT algorithm allowing the time integration of these crystal elastoviscoplasti-
city laws in the finite strain formulation was implemented in CAST3M by Vincent [146,
147]. The numerical procedures originate from a collaborative work between LPMTM
Villetaneuse, CEA Saclay - SRMA and LMS Polytechnique [135]. The procedures were
transformed into UMAT procedures and introduced in the CAST3M software for the
fcc structure [148] and bbc structure [146, 147] using an explicit algorithm for the time
integration.

7.3 Boundary conditions and creep loading

The boundary conditions are set as shown in Fig. 7.2. Some of the displacement compo-
nents of three vertexes are set to zero to block any degrees of freedom (3 rotations and
3 translations) preventing from any rigid body motion. Engineering stresses are applied
to the TOP and BOTTOM surfaces shown in Fig. 7.2, whereas the lateral surfaces are
free from any load and deformation constraints.

Figure 7.2: Boundary conditions, six degrees of freedom of rigid body motion are
blocked.

Two creep tests at 500̊ C under creep engineering stress σeng = 230 MPa and at 600̊ C
under σeng = 90 MPa are simulated using the finite element method. The loading stages
of both creep tests are applied after the experimental records (Fig. 7.3). These finite
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element computations are carried out using CAST3M finite element software in the 2009
version.
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Figure 7.3: Experimental loading stages of the creep tests at 500̊ C and 600̊ C before
reaching their final creep engineering stress (σeng) which are respectively 230 MPa and
90 MPa. Similar loading curves are used for applying the boundary conditions during
the starting of the finite element computations.

The computations are stopped before failure at times 50×103h and 30×103h respec-
tively for the creep tests at 500̊ C under 230 MPa and at 600̊ C under 90 MPa. In fact,
longer computations show that at these times the minimum creep strain rates are mostly
reached. Following these times, creep strain rates vary very weakly.

7.4 Adjustment of the crystal viscoplasticity param-

eters

The adjustment of these crystal viscoplasticity parameters are based on the use of the
macroscopic curves displaying engineering strain versus creep time. The macroscopic
creep engineering strains are cumulated from the creep beginning (after the loading
stage). The crystal viscoplasticity parameters are identified using a step-by-step pro-
cedure to predict the creep curves that should be as the most accurate as possible. The
adjustment of the viscoplasticity parameters is constrained by the choice of the same value
for the activation energy ∆G0 at both temperatures under study (500̊ C and 600̊ C). The
activation volumes at both temperatures are imposed to differ by a factor lower than one
order of magnitude. The initial value of τ0 is slightly lower than 0.5 times the macroscopic
engineering stress. The values of the crystal viscoplasticity parameters allowing a rea-
sonable agreement between the predicted macroscopic creep curves and the experimental
ones are reported in Table 7.1. The selected values of V ∗ are discussed at the end of this
section.
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Table 7.1: Parameter values for the crystal viscoplastic constitutive equations.

∆G0 (eV) τ0 (MPa) V ∗ (b3)

500̊ C 3.3 78 350
600̊ C 3.3 27 400

7.4.1 Effect of mesh refinement

Two numbers of blocks, 33 and 53, are chosen to study the effect of mesh refinement
on the creep strain curve for the creep test at 600̊ C and 90 MPa. The polycrystalline
aggregate containing 33 blocks is meshed using four values of the meshing parameter: 23

FEs/block, 43 FEs/block, 63 FEs/block and 83 FEs/block. The one containing 53 blocks
is meshed using three values of the meshing parameter (because of longer computation
time): 23 FEs/block, 43 FEs/block and 63 FEs/block. For each one of both polycrystalline
aggregates, one set of random crystal orientations is used.

0 1 2 3

·104

0

1

2

3

·10−2

Time (h)

E
n
gi
n
ee
ri
n
g
st
ra
in

exp

23 FEs

43 FEs

63 FEs

83 FEs

(a) Aggregate of 33 blocks

0 1 2 3

·104

0

1

2

3

·10−2

Time (h)

E
n
gi
n
ee
ri
n
g
st
ra
in

exp

23 FEs

43 FEs

63 FEs

(b) Aggregate of 53 blocks

Figure 7.4: Effect of the number of finite elements per block on the macroscopic en-
gineering strain vs. time curve for the creep test at 600̊ C and 90 MPa. The material
parameters are given in Tables 6.2 and 7.1. For each number of blocks, only one set of
random crystal orientations is chosen.

The macroscopic engineering strain vs. time curves predicted using the polycrystalline
aggregate containing 33 blocks are plotted in Fig. 7.4a. The engineering strain at which
the minimum strain rate is reached (30 × 103h, see Fig. 7.4) is evaluated from the use
of the different meshing parameters. The results show that an increase in the meshing
parameter from 23 to 63 FEs/block leads to an increase in engineering strain by a factor
2.55. The minimum creep strain rates, ε̇engmin, are evaluated as the average engineering
strain rates between creep times of 10× 103h and 30× 103h. They are reported in Table
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7.2. The results show that the use of 43 FEs/block rather than 23 FEs/block leads to
an increase in value of ε̇engmin by a factor 1.8. The use of 63 FEs/block rather than 43

FEs/block yields a further increase by a factor 1.5. Finally, the use of 83 FEs/block
rather than 63 leads to a further increase in value of ε̇engmin by a factor 1.3.

Table 7.2: Computed minimum creep strain rate depending on the meshing parameters.
The material parameters are given in Tables 6.2 and 7.1. One set of random crystal
orientations is assigned to each polycrystalline aggregate.

Predictions (10−7h−1) Experiment (10−7h−1)

Number of Blocks

FEs/block 33 53 63 73

23 2.40 2.58 - - 2.3
43 4.38 4.42 3.93 3.44 2.3
63 6.40 6.38 - - 2.3
83 8.45 - - - 2.3

The macroscopic engineering strains, εeng, predicted using the polycrystalline aggre-
gate containing 53 blocks are plotted in Fig. 7.4b. The engineering strain at the minimum
creep strain rate increases by a factor 2.25 when the meshing parameter increases from 23

to 63 FEs/block. The minimum strain rates are evaluated and reported in Table 7.2. The
results show that the use of 43 FEs/block rather than 23 FEs/block leads to an increase
in value of ε̇engmin by a factor 1.7. The use of 63 FEs/block rather than 43 FEs/block leads
a further increase by a factor 1.4.

The results presented above seem to show that the macroscopic minimum strain rate,
ε̇engmin, is less dependant on mesh refinement as the number of blocks is higher. The value
of ε̇engmin computed using the polycrystalline aggregate containing only 33 blocks have been
shown to depend strongly on the random crystal orientations. On the contrary, the poly-
crystalline aggregate containing 53 blocks will be shown to yield values of ε̇engmin depending
weakly on the random crystal orientations. The meshing parameter 43FEs/block is cho-
sen. Coarser mesh refinement does not allow stable predictions of the minimum strain
rate, whereas finer mesh refinement seams to yield a low change in minimum strain rate
and longer computation times.

7.4.2 Effect of random crystal orientations

The effect of random crystal orientations is studied for the creep test at 600̊ C and
90 MPa. Four sets of random crystal orientations are chosen for 5 similar aggregates
containing 53 blocks. Each block is meshed by 43 cubic finite elements. The computed
creep engineering strain curves using these four aggregate configurations are plotted in
Fig. 7.5. This figure shows that the predicted creep strain rates vary by less than 10%.
The prediction is therefore weakly dependent on the set of crystal orientations.
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Figure 7.5: Predicted creep engineering strain vs. time curves of the creep test at 600̊ C
and 90 MPa, using one aggregate of 53 blocks meshed by 43 FEs per block and four
independent sets of crystal orientations. The used crystal elastoviscoplasticity parameters
are reported in Tables 6.2 and 7.1.

7.4.3 Effect of the number of blocks

In this paragraph, the effect of the polycrystalline aggregate size is studied using four
numbers of blocks: 33, 53, 63 and 73. The four aggregates are meshed by 43 FEs per
block. For each of these aggregates, one set of random crystal orientations is used. They
are sorted out from the same set of random crystal orientations.

The computed creep engineering strain vs. time curves for the creep test at 600̊ C and
90 MPa are plotted in Fig. 7.6. The results show that the computed creep engineering
strain decreases as the number of blocks increases. Indeed, in the aggregate containing a
high number of blocks, the deformation of each block may be constrained by its neigh-
bours. The distribution of the average strain fields within the blocks will be studied in
section 7.5.

Minimum engineering strain rates are evaluated from the creep engineering strain
curves predicted using the four polycrystalline aggregates. Their values are reported
in Table 7.2. The computed minimum strain rate using 73 blocks decreases by 20%
with respect to the one computed using 53 blocks. This difference ranges within the
experimental scatter of creep strain rates. Thus, a number of 53 blocks is sufficient for
the polycrystalline aggregate to be used for adjusting the crystal viscoplastic parameters.

7.4.4 Effect of the V ∗ parameter

In this paragraph, the effect of the V ∗ parameter is studied using two values, 350b3 and
400b3. These values are used for the finite element simulation of the creep test at 500̊ C
and 230 MPa. The used polycrystalline aggregate contains 53 blocks and one set of crystal
orientations. The aggregate is meshed by 43 FEs per block.
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Figure 7.6: Predicted evolution of the macroscopic engineering strain during creep
at 600̊ C under 90 MPa using four numbers of blocks for the polycrystalline aggregate.
The aggregate is meshed by 43 FEs per block. The used crystalline elastoviscoplasticity
parameters are reported in Tables 6.2 and 7.1.

The values of creep engineering strain, εeng, computed using both values of V ∗ are
plotted in Fig. 7.7. The value of V ∗ = 400b3 leads to the predictions of εeng in better
agreement with the experimental results than the ones using the value of V ∗ = 350b3.
For the last value of V ∗, the predictions of εeng are 2 times lower than the experimental
ones.

The minimum strain rates, ε̇engmin, obtained using both values of V ∗ are evaluated as
the mean strain rates between creep times of 30 × 103h and 50 × 103h. Contrary with
the previous observation concerning engineering strain, the computed minimum strain
rate using the value of V ∗ = 350b3 is in better agreement with the experimental results.
In this case, the computed value of ε̇engmin is lower than its experimental value by only
30%. The computed value of ε̇engmin using the value of V ∗ = 400b3 is 2 times higher than
the experimental value. As no value of V ∗ gives definitely better prediction of the creep
curve, both are kept for the sensitivity study.

For either of both V ∗ values, 350b3 or 400b3, the effect of mesh refinement on the
polycrystalline aggregate containing 53 blocks is studied. Three meshing parameters are
used: 23/block, 43/block and 63/block. The computed creep engineering strains using
this mesh refinement and both values of V ∗ are plotted in Figs. 7.8.

Figure 7.8a shows that the use of 23 FEs per block is not sufficient to predict either
εeng or ε̇engmin in agreement with the experimental results. Choosing 63 FEs per block, the
predicted value of ε̇engmin is two times higher then the one obtained using 43 FEs per block.

Figure 7.8b shows that the computed value of ε̇engmin is strongly dependent on mesh
refinement. The use of 63 FEs per block leads to a predicted value of ε̇engmin 4 times higher
than the one obtained using 43 FEs per block. In order to get stability with respect to
mesh refinement the value of V ∗ = 350b3 is chosen.
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Figure 7.7: Evolution of the macroscopic engineering strain during creep at 500̊ C under
230 MPa predicted using two values for the parameter V ∗. The polycrystalline aggregate
contains 53 block and is meshed by 43 FEs per block. The values of the parameters ∆G0

and τ0 at 500̊ C are reported in Table 7.1.
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Figure 7.8: Sensitivity of predicted engineering strains of creep at 500̊ C under 230
MPa due to mesh refinement for two V ∗ values. Polycrystalline aggregates of 53 blocks
and the same values of the parameters ∆G0 and τ0 at 500̊ C reported in Table 7.1 are
used.
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7.4.5 Discussion

The previous results show that the predicted macroscopic strain increases with increasing
number of finite elements. This effect although tends to decrease when the chosen number
of blocks increases (see Figs. 7.4 and 7.6). Consequently, numbers of finite elements per
block higher than 43 have not been used in the meshing of the polycrystalline aggregate
containing high numbers of blocks (63 and 73). Indeed, the RAM capacity of the machine
is very limited (of only 16 Go for CAST3M in the 2009 version) and causes failure of this
type of heavy computation. The computation times lasted for: 5 days for the use of 53

blocks meshed by 43 FEs/block, 9 days for 53 blocks (43 FEs/block) and between 2 and
3 weeks for 73 blocks (43 FEs/block).

The use of 53 blocks leads to an error in computed minimum strain rate with respect to
the one computed using higher number of blocks lower than 20%. This ranges within the
scatter of the experimental creep strain rate. The polycrystalline aggregate containing
53 blocks meshed by 43 FEs/block is therefore preferentially used for identification of the
crystal viscoplasticity parameters. The stability of the minimum creep rates discussed
above is an additional supporting element for the choice of the parameters in Table 7.1.

The effect of time increment refinement is also checked. Time increment sufficiently
small is used allowing stability of the presented results.

7.5 Analysis of the mean block stress and strain dis-

tributions

This section focuses on analysis of the predicted distributions of mean block stress and
strain fields. Firstly, predicted distributions based on a reference choice will be presented.
This reference choice corresponds to the use of the crystal viscoplasticity parameters
reported in Table 7.1, a polycrystalline aggregate containing 53 blocks and the meshing
parameter as 43 FEs/block.

The effect of the choice of the number of blocks for the polycrystalline aggregate, of
the meshing parameter and the value of one crystal viscoplasticity parameter (V ∗) will
be discussed later.

As the creep lifetime is closely related to the minimum strain rate, values of stress
and strain are evaluated at the time when the minimum strain rate is reached, namely
at creep times of 50× 103h at 500̊ C and of 30× 103h at 600̊ C.

7.5.1 Analysis based on the reference choice of parameters

The distributions of the mean axial stress and strain fields per finite element after a
creep time of 30 × 103h at 600̊ C and 90 MPa are presented in Figs. 7.9a and 7.9b.
The isovalue plots show that the σxx field is almost uniformly distributed through the
polycrystalline aggregate, except in some blocks where σxx reaches a value higher than
the applied macroscopic stress by 50%. Contrary to the σxx field, the εxx field is strongly
heterogeneous though the polycrystalline aggregate (factor 5). In fact, the macroscopic
behaviour of the material obeys the Norton creep flow rule with an exponent of n = 10
at 600̊ C. This exponent leads to a scatter in the εxx field much higher than the one in
the σxx field.
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(a) σxx (b) εxx

(c) σeq (d) εveq

Figure 7.9: Distributions of (a) axial stress fields, (b) axial strain fields after a creep
time of 30 × 103 h at 600̊ C and 90 MPa, given at the surface of the polycrystalline
aggregate constituted of 53 blocks using the following parameter values: ∆G0 = 3.3 eV,
τ0 = 27 MPa and V = 400b3.
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The distributions of the mean Von Mises stress and viscoplastic equivalent strain per
finite element are plotted in Figs. 7.9c and 7.9d. The isovalue plots show that the value
of σeq are relatively different from one block to another. Some blocks are subjected to
multiaxial loading (compare Figs. 7.9a and 7.9c) and others to uniaxial loading. The
distribution of the εveq value is heterogeneous and similar to that of εxx.
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Figure 7.10: Distribution of the mean values per block of 〈σ〉blockxx and 〈σ〉blockeq after
30× 103 h of creep at 600̊ C under a creep stress of 90 MPa.

In the following, distributions of the average values per block of axial stress, ax-
ial strain, Von Mises stress, viscoplastic equivalent strain and stress triaxiality will be
evaluated. The average axial stress and strain fields per block, 〈σ〉blockxx and 〈ε〉blockxx , are re-
spectively computed using Eqs. (7.1) and (7.2). The average Von Mises stress per block,
〈σ〉blockeq , is evaluated using the mean Cauchy stress tensor per block, 〈∼σ〉block, given in
Eq. (7.1). The average viscoplastic equivalent strain per block, 〈εveq〉block, is obtained by
integration over the block volume (Vb) of the εveq values given by the CAST3M software at
Gauss integration points of finite elements as in Eq. (7.3). The average stress triaxiality
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Figure 7.11: Triaxiality of each block in the polycrystalline aggregate of 53 blocks for
creep at 600̊ C and 90 MPa.

per block, 〈tσ〉block, is defined by Eq. (7.4).

〈∼σ〉block =
1

Vb

∫

Vb

∼σ dV (7.1)

〈∼ε〉block =
1

Vb

∫

Vb

∼ε dV (7.2)

〈εveq〉block =
1

Vb

∫

Vb

εveq dV (7.3)

〈tσ〉block =
1

3

Tr
(
〈∼σ〉block

)

〈σ〉blockeq

(7.4)

Figures 7.10a and 7.10b present respectively average values per block of axial stress,
〈σ〉blockxx , and Von Mises stress, 〈σ〉blockeq , after a creep time of 30×103 at 600̊ C and σeng = 90
MPa. The value of 〈σ〉blockxx varies by ±30% with respect to the mean macroscopic Cauchy
stress, Σxx, which is only slightly higher than the macroscopic engineering stress, σeng.
The value 〈σ〉blockeq varies by −20%/+40% with respect to the mean macroscopic Von Mises
stress Σeq. This one is equal to Σxx; in fact, the polycrystalline aggregate is subjected to
only uniaxial loading at the macroscopic scale.

Figures 7.10a and 7.10b show that the values of 〈σ〉blockxx and 〈σ〉blockeq evaluated for the
same blocks are different. In fact, the computed triaxialities of blocks range between
0.1 and 0.75 (Fig. 7.11). Some blocks are subjected to uniaxial loading (〈tσ〉block = 0.33,
Fig. 7.11) and others to multiaxial loading (〈tσ〉block 6= 0.33). For the triaxiality values
〈tσ〉block > 0.33 (e.g. in block number 60 〈tσ〉block = 0.53, Fig. 7.11), we observed that
〈σ〉blockxx > 〈σ〉blockeq (in block number 60, 〈σ〉60

xx = 110 MPa and 〈σ〉60
eq = 95 MPa, Figs.

7.10). On the contrary, for the values 〈tσ〉block < 0.33 we observed in Figs. (7.10) that
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〈σ〉blockxx < 〈σ〉blockeq (e.g. block number 80).
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Figure 7.12: Distributions of the mean values of (a) 〈ε〉blockxx and (b) 〈εveq〉block after
30× 103 h of creep time at 600̊ C and 90 MPa. Both distributions seem to be described
by a periodicity of 25 blocks, number of blocks comprised in each layer of the aggregate
of 53 blocks perpendicular to the loading axis.

The distributions of the values of 〈ε〉blockxx and 〈ε〉blockeq are plotted in Figs. 7.12a and
7.12b. The results show that 〈ε〉blockxx and 〈ε〉blockeq have the same distribution. All crystals
have 24 slip systems. The majority of these slip systems may be activated (the analysis
of the number of activated slip systems per block is still in progress) so all the blocks
behave similarly to an isotropic matrix. In consequence, the axial strain (εxx ≈ εvxx,
neglecting εexx) could be approximately equal to the viscoplastic equivalent strain, εveq.
Figures 7.12a and 7.12b also show that the distributions of 〈ε〉blockxx and 〈ε〉blockeq seem to
be described by a periodicity of 25 blocks. This number of blocks constitutes each layer
in the aggregate of 53 blocks perpendicular to the loading axis.
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Figure 7.12a shows that the 〈ε〉blockxx fields vary by a factor 2 with respect to the
macroscopic axial strain, εeng. Contrary to the 〈ε〉blockxx fields, the 〈σ〉blockxx fields vary
only by ±30% with respect to the macroscopic engineering stress, σeng. This difference
previously shown in Figs. 7.9a and 7.9b could be explained by the high nonlinearity of
the material described by the Norton flow rule with a stress exponent n = 10 at 600̊ C.
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Figure 7.13: Ratios 〈σ〉blockxx /Σxx at an engineering strain of 2.3% (after 50×103h) during
the creep test at 600̊ C and 90 MPa on the grade 91 steel, compared with the bound values
computed by Diard et al. [125] at an engineering strain of 3% during a tensile test carried
out on a Zr alloy at room temperature and at a strain rate of 1× 10−5s−1.

The computation using a polycrystalline aggregate containing 53 blocks loaded at
600̊ C under 90 MPa has been stopped at an engineering strain of 2.3% and a creep time
of 50× 103h because of the long computation time. Nevertheless, at this time the stress
distribution seems to be stabilized with respect to creep time (Fig. 7.14). The computed
ratio 〈σ〉blockxx /Σxx at this creep strain is compared with the bounds obtained from the
computations carried out by Diard et al. [125] on a polycrystalline aggregate of a Zr
alloy subjected to a tensile test at room temperature up to a macroscopic strain of 3%
(Fig. 7.13). The variation amplitudes of 〈σ〉blockxx /Σxx computed during the creep test on
the grade 91 steel are slightly lower than the ones estimated by Diard et al. [125] for
the tensile test on the Zr alloy (Fig. 7.13). This is may be due to the used number of
slip systems for the Zr alloy [125] lower than the one used for our computations (24 slip
systems for the bcc structure). Besides, the crystal orientations of the Zr alloy aggregate
are represented by a texture on the pole figure [125], whereas the ones used for grade 91
steel are random.

7.5.2 Effect of creep time

The evolution of the cumulative distributions of 〈σ〉blockxx and 〈ε〉blockxx with creep time are
presented in Fig. 7.14. The scatter in distribution of 〈σ〉blockxx increases with increasing
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creep time. The mean macroscopic stress increases only by 0.2% after a creep time of
50 × 103h, due to a reduction in the aggregate cross-section. The fraction of the blocks
subjected to a tensile stress lower than the engineering stress (90 MPa) is 50% at almost
the creep beginning. This fraction reduces then to 40% at a creep time of 50 × 103h.
The distribution of 〈σ〉blockeq is different from the one of 〈σ〉blockxx (Figs. 7.14), which is due
to local stress multiaxiality (see stress triaxiality distributions plotted in Fig. 7.11). The
average of all 〈σ〉blockeq values increases with increasing time, but the macroscopic Mises
stress is almost constant.
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Figure 7.14: Effect of creep time on the cumulative probability distributions of the
average mechanical fields per block during the creep test at 600̊ C and 90 MPa. A
polycrystalline aggregate constituted of 53 blocks meshed by 43FEs/block is used. The
crystal viscoplasticity parameter values are given in Table 7.1.

The distributions of 〈ε〉blockxx along creep time is plotted in Fig. 7.14. With increasing
creep time, this strain tends to be more and more homogeneous through the polycrys-
talline aggregate. From a creep time of 1000 h, the distribution of 〈ε〉blockeq follows the same
evolution as the one of 〈ε〉blockxx (Fig. 7.12). At the creep beginning, the scatter in 〈εveq〉block
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is high. At this time, only a small number of blocks are viscoplastically deformed. At
the same time, the distribution of 〈ε〉blockxx is almost homogeneous. This strain contain
indeed the elastic contribution not negligible at the creep beginning. As the creep time
is longer, this contribution is negligible.

Figure 7.14 show that the viscoplastic equivalent stress tends to be more and more
heterogeneous with increasing engineering strain (or increasing creep time). Contrary to
the viscoplastic equivalent stress, the viscoplastic equivalent strain tends to be more and
more homogeneous. Similar results have been obtained from the simulation of fatigue
tests on nickel polycrystalline aggregates in the crystal elastoplasticity framework carried
out by Steckmeyer et al. [145]. These results showed that the more the macroscopic
plastic strain amplitude is high, the more the distributions of viscoplastic equivalent
strain tend to be uniform.

50 70 90 110 130 150
0

0.2

0.4

0.6

0.8

1

〈σ〉blockxx (MPa)

C
u
m
u
la
ti
ve

p
ro
b
ab

il
it
y

33 blocks

53 blocks

63 blocks

50 70 90 110 130 150
0

0.2

0.4

0.6

0.8

1

〈σ〉blockeq (MPa)

C
u
m
u
la
ti
ve

p
ro
b
ab

il
it
y

33 blocks

53 blocks

63 blocks

0 1 2 3 4

·10−2

0

0.2

0.4

0.6

0.8

1

〈ε〉blockxx

C
u
m
u
la
ti
ve

p
ro
b
ab

il
it
y

33 blocks

53 blocks

63 blocks

0 1 2 3 4

·10−2

0

0.2

0.4

0.6

0.8

1

〈εveq〉block

C
u
m
u
la
ti
ve

p
ro
b
ab

il
it
y

33 blocks

53 blocks

63 blocks

Figure 7.15: Influence of the number of blocks on the distributions of 〈σ〉blockxx , 〈ε〉blockxx ,
〈εveq〉block and 〈σ〉blockeq after 30×103h of creep test at 600̊ C and 90 MPa. All polycrystalline
aggregates are meshed by 43 FEs/block. the crystal viscoplasticity parameter values
reported in Table 7.1 are used.
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7.5.3 Effect of the number of blocks

Three polycrystalline aggregates containing respectively 33, 53 and 63 blocks are used to
study the distributions of 〈σ〉blockxx , 〈ε〉blockxx , 〈σ〉blockeq and 〈εveq〉block during the creep test at
600̊ C and 90 MPa. For each polycrystalline aggregate, only one set of random crystal
orientations is used. All polycrystalline aggregates are meshed by 43 FEs/block, whereas
the effect of finer meshing density will be studied in the next section.

Figure 7.15 shows the distributions of the four variables after a creep time of 30×103h.
By using 53 and 63 blocks, the corresponding distributions of 〈σ〉blockxx are only slightly
different. The same observation is hold for the distributions of 〈σ〉blockeq . The distributions
of 〈ε〉blockxx for the three numbers of blocks converge only for 〈ε〉blockxx ≥ 2%. For a higher
number of blocks, the distribution of 〈ε〉blockxx is more scattered and the average value of
〈ε〉xx over the polycrystalline aggregate is lower. The same observation is made concerning
the distribution of 〈εveq〉block. For larger aggregates, blocks may be constrained by their
neighbours and their deformation fields are scattered. This effect may allow explaining
the decrease in engineering strain curves shown in Fig. 7.6 as well as a tendency of the
primary creep stage to last for longer amounts of time for higher numbers of blocks.

7.5.4 Effect of mesh refinement

Two numbers of FEs per block are chosen to study the sensitivity of the stress and strain
distributions due to mesh refinement: 43 and 63. A polycrystalline aggregate of 53 blocks
and one set of random crystal orientations are used. The polycrystalline aggregate is
subjected to uniaxial tensile creep at 600̊ C and 90 MPa.

The distributions of 〈σ〉blockxx and 〈ε〉blockxx after a creep time of 30 × 103h using either
the lower or the higher number of finite elements are plotted in Fig. 7.16. Using either
of both meshing parameters, the corresponding values of 〈σ〉blockxx only differ by less than
5%. By increasing the meshing parameter from 43 to 63, the values of 〈ε〉blockxx increase
by up to 60%. This is due to the high non-linearity obeying the Norton flow rule with a
stress exponent of n = 10 at 600̊ C. Thus, the axial stress is significantly less sensitive to
the mesh refinement than the axial strain.

7.5.5 Effect of the choice of the V ∗ values

The identified value of V ∗ for 500̊ C is reported in Table 7.1, i.e. 350b3. An additional
value of V ∗ is chosen, 400b3, in order to study the stress sensitivity due to the choice
of this parameter for the creep test at 500̊ C and 230 MPa. The used polycrystalline
aggregate contains 53 blocks and each block is meshed by 43 FEs.

The distributions of 〈σ〉blockxx and 〈ε〉blockxx after a creep time of 50× 103h (required time
to reach the minimum creep strain rate) are plotted in Fig. 7.17. Using either of both
V ∗ values, the axial stress only differ by less than 5%. But when using the value of
V ∗ = 400b3 rather than 350b3, the axial strain increases by a factor ranging between 2
and 2.5. In fact, as shown in section 7.4.4 (see also Fig. 7.7) that using the value 400b3

for V ∗ the predicted macroscopic minimum strain rate is approximately 2 times higher
than the one obtained using the other value of V ∗.
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Figure 7.16: Effect of mesh refinement on the distributions of 〈σ〉blockxx and 〈ε〉blockxx after
30 × 103h of creep test at 600̊ C and 90 MPa, using a polycrystalline aggregate of 53

blocks and one set of random crystal orientations.
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Figure 7.17: Effect of the V ∗ value choice on the distributions of 〈σ〉grainxx and 〈ε〉grainxx

after 50 × 103h of creep test at 500̊ C and 230 MPa. A polycrystalline aggregate of 53

blocks is used and meshed by 43 FEs/block.
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7.6 Conclusions

Identification of the crystal viscoplasticity constitutive parameters results in a unique
value of ∆G as well as values of V ∗ that differ by about 15% and are lower than the one
experimentally determined in [140] by about 25%. Numerous computations have been
carried out in order to obtained the parameter values obeying these conditions.

The limited availability of computation facilities did not allow us to carry out heav-
ier calculations using very fine meshing (more than 43 FEs per block) of polycrystalline
aggregates containing high numbers of blocks (63 and 73). The computation times corre-
sponding to different aggregate sizes are: 3 days using 23 blocks meshed by 43 FEs/block,
5 days using 53 blocks (43 FEs/block), 9 days using 63 blocks and between 2 and 3 weeks
using 73 blocks (43 FEs/block). To save computation time, the adjustment of the crys-
tal viscoplasticity constitutive parameters was based on the macroscopic response of the
polycrystalline aggregate containing 53 blocks meshed using 43 FEs per block. The re-
sults show that the minimum strain rate could increase by a factor lower than 2 if finer
meshing density is used.

The mean block stress analyses show that the distribution of the average stress per
block is weekly dependent on the choice of the V ∗ value as well as on meshing refinement.
This is not the case for the distribution of the average strain per block because of the
strong non-linearity of the viscoplasticity flow rule (Norton stress exponent n = 10 at
600̊ C, n = 20 at 500̊ C).

The finite element computations show that the average axial stress per block varies
by ±40% with respect to the macroscopic axial stress for the creep test at 600̊ C and 90
MPa when the engineering creep strain reaches 2.3%. The absolute variation amplitude
is slightly lower than the one computed by Diard et al. [125] for a tensile test carried
out on a Zr alloy at room temperature. Indeed, zirconium microstructures present a
crystallographic texture and has a number of slip systems lower than Grade 91 steel.

The viscoplasticity constitutive law identified in this chapter is now used to study the
stress and strain concentrations at triple junctions presented in the following chapter.
This study is carried out using the plane strain hypothesis and 2-D microstructures built
from either a simple triple point model or EBSD maps. A very fine meshing density is
applied to zones close to triple junctions.



Chapter 8

Finite element computations of
normal stress fields close to
polycrystalline triple junctions

8.1 Model of polycrystalline triple junctions

8.1.1 Microstructure geometry and meshing

In this section, we use the crystal viscoplasticity model as calibrated in the previous
chapter. Normal stress fields are predicted for block boundaries perpendicular to the
loading axis, at which cavities are preferentially observed. The “Triple point model”
is constituted of three adjacent blocks surrounded by an isotropic homogeneous matrix
(Fig. 8.1). The block boundaries form between them a regular angle of 120̊ . One of these
boundaries, L2, is perpendicular to the loading axis. The matrix represents the average
behaviour of all surrounding blocks.

The crystal orientations of the blocks in tempered martensitic ferritic steels with
respect to one and another are either random (when they belong to two different former
austenitic grains) or follow the relationships of Kurdjumov-Sachs [48] and Nishiyama-
Wassermann [49]. In the first case, the crystal misorientations could be high and lead to
more important stress concentration at the triple point. Thus, the three blocks belonging
to the triple point are assumed to have random crystal orientations.

In order to study cavities located in the bulk material, only quasi 2D plane strain
analysis is carried out. This leads to less time consuming computations than full 3D
computations and allows using very fine meshing and numerous independent sets of ran-
dom crystal orientations. Under such circumstance, the 2D microstructure in plane XY
shown in Fig. 8.1 is extruded into the 3D dimension along the Z-direction. This model
contains only one finite element in the thickness. Zero displacement along the Z-direction
is prescribed at the lower and upper 2D surfaces. This approach is similar to 2D plane
strain analysis. Quasi 2D plane stress analysis has also been carried out, but this did not
lead to large differences in normal stress to block boundaries with respect to quasi-plane
strain analysis.

The meshing of the triple point model is shown in Figs. 8.1a and 8.1b. The three
crystals are meshed using very fine finite elements, whereas the meshing of the surround-
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(a)

L1

L2

L3

B1 B2

B3

(b)

Figure 8.1: Meshing of the triple point area including one triple point and their bound-
aries. The thickness of the model is equal to the size of finite elements located at the
triple junction (0.4, 0.1 or 0.05 units).
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ing matrix is coarser. The finest meshing is assigned to the zone around the triple point
using different element sizes in order to check mesh size independence. The thickness
along the Z-direction is chosen so that the element aspect ratio ranges between 1/5 and
5.

The crystal elasto-viscoplasticity constitutive equations assigned to the three crystals
are described in section 6.2 with parameters given in Tables 6.2 and 7.1. The matrix
obeys the isotropic creep flow rule described in the following section.

The applied boundary conditions are shown in Fig. 8.1a. The six degrees of freedom
are blocked to prevent any rigid body motion. Engineering stresses are applied to the
BOTTOM and TOP edges, whereas the lateral edges are free surfaces.

8.1.2 Isotropic creep flow rule

The uniaxial creep behaviour is modelled in the RCC-MRx code [36] by the following
equations:

εp(1)
xx = C1 (σxx)

n1 tp1 for t < tfp (8.1)

εp(2)
xx = εp(1)

xx (tfp) + C2 (σxx)
n2 (t− tfp) for t ≥ tfp (8.2)

where ε
p(1)
xx and ε

p(2)
xx are respectively uniaxial creep (or viscoplastic) strain during creep

stage I and creep stage II. The end time of creep stage I is annotated as tfp, which could
be determined from Eqs. (8.1) and (8.2). Equation (8.2) is equivalent to the Norton flow
rule with constants C2 and n2, also annotated as C and n. The values of the constants
of these equations are given in the RCC-MRx code [36] for 9%Cr steels (also for 316
austenitic steel), but do not allow modelling creep strain vs. time curves in agreement
with the experimental results of the creep tests under study (at 500̊ C and 230 MPa,
at 600̊ C and 90 MPa). Thus, the values of these constants are readjusted using creep
data at 500̊ C (σeng ranges between 210 and 270 MPa, see Table 3.3) and at 600̊ C (σeng

ranges between 70 and 125 MPa, see Table 3.3). These parameter values are reported in
Table 8.1. The identified parameter values are checked to yield predicted creep strain vs.
time curves of the two creep tests, one at 500̊ C and 230 MPa and another at 600̊ C and
90 MPa, using analytical equations (8.1) and (8.2) in agreement with the experimental
results till the end of creep stage II.

Table 8.1: Ajusted parameter values for the creep flow rule described by Eqs. (8.1) and
(8.2), using creep data at 500̊ C for σeng ranging between 210 and 270 MPa (see Table
3.3) and at 600̊ C for σeng ranging between 70 and 125 MPa (see Table 3.3).

t < tfp t ≥ tfp

T (̊ C) n1 p1 C1 (MPa−n1h−p1) n2 C2 (MPa−n2h−1)

500 2.97 0.360 2.81× 10−11 20.35 1.56× 10−55

600 3.84 0.347 9.83× 10−12 9.94 8.27× 10−27

The three-dimensional isotropic creep behaviour is then modelled using the Von Mises
components of stress and strain tensors for the implementation in CAST3M. In this case,
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the uniaxial stress and strain components in Eqs. (8.1) and (8.2) are replaced by the Von
Mises components. The three-dimensional isotropic creep flow rule with constants given
in Table is then used for computation of axial creep strain of a cube subjected to two
uniaxial creep tests, one at 500̊ C under 230 MPa and another 600̊ C under 90 MPa. The
computed creep strain vs. time curves are weakly different from the ones obtained using
uniaxial equations (8.1) and (8.2).

8.1.3 Effect of mesh refinement on normal stress fields

The microstructure model does not contain only one triple point which is the junction
of the three block boundaries. Indeed, the intersections between these block boundaries
and the interfaces between the blocks and the matrix are also kinds of triple points even
if the matrix does not behave like a crystal. Since only the first triple point is the aim
of our study, only a half of the block boundary length (measured from the center of the
three blocks) is taken into account to plot normal stress field along L2.
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Figure 8.2: Effect of mesh refinement on the normal stress field along block boundary
L2 during creep at 600̊ C and 90 MPa for one set of random crystal orientations. The
length of block boundary L2 is 10 length units. The triple point is located at distance 0
and the middle of block boundary L2 at distance of 5 units.

Different element sizes at the triple point are chosen in order to study the effect of
mesh refinement on the normal stress along block boundary L2. Figure 8.2 shows that
an element size of FE = 0.05 units (1/200 of block size) is considered to be sufficiently
fine for mesh refinement independence of the normal stress field along L2. This meshing
parameter will be used for the study of the distributions of normal stress fields for the
different sets of random crystal orientations presented in the following section.
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8.1.4 Effect of the sets of random crystal orientations on normal
stress fields

In this section, normal stress fields to block boundary L2 during creep tests at 500̊ C under
230 MPa and at 600̊ C under 90 MPa are presented. For each creep test, normal stress
fields are obtained from twenty computations. These 20 computations correspond to 20
independent sets of random crystal orientations applied to the three blocks. These crystal
orientations are verified to represent no texture from inverse pole figure representations.

The normal stress fields to block boundary L2 at the triple junction, σtpnn, computed
from the 20 sets of crystal orientations are plotted along creep time in Fig. 8.3. Their
average values are slightly higher than the macroscopic stress, σeng, with a relative differ-
ence not higher than 10%. During the first creep test, the normal stress field close to the
triple junction varies by ±30% at the creep beginning and by -70%/+80% after 50×103h.
During the second creep test, the normal stress field close to the triple junction varies by
-30%/+35% at the creep beginning and by amplitudes of -50%/+70% after 30× 103h.

The normal stress profiles along block boundary L2 obtained from all the 20 sets of
random crystal orientations are presented in the following paragraph.

a. Normal stress profile along block boundary L2

The normal stress profiles for both creep tests computed for the same sets of random
crystal orientations are very similar (compare Fig. 8.4 and 8.5). These normal stress
profiles are mainly influenced by the block crystal orientations.

Generally, the results do not show high stress singularity at the triple junction, ratio
σtpnn/σ

eng ≤ 1.5. Exceptionally, the 8th set of random crystal orientations leads to a value
of normal stress at the triple junction about 2 times higher than the macroscopic stress,
σtpnn/σ

eng ≈ 2. This is explained by the following analysis of strain fields in the three
blocks.

The strain and stress fields along the loading direction (XX) during the creep test
at 600̊ C under 90MPa computed using the 8th set of random crystal orientations are
compared with the ones using the first set. This one leads to normal stress fields along
block boundary L2 representing the average value of the all normal normal stress fields
obtained from the 20 sets (see Fig. 8.5a for set 1). In this case, the tri-crystal is constituted
of one harder block (B3), one moderately hard block (B1) and one softer block (B2) (Fig.
8.6a). As the block B2 is softer than B3, load is transferred to B2 which is subjected to
higher stress (Fig. 8.6c). For the 8th set, B1 and B2 are harder whereas B3 is softer (Fig.
8.6b). Additional load (indicated by the arrows) is transferred to the blocks B1 and B2.
This is similar to the problem of a V-crack (having the shape of the block B3) subjected
to a tensile stress which leads to high stress at the triple point (Fig. 8.6). In this case,
the normal stress field close to the triple junction (see set 8 in Fig. 8.5a) is about 2 times
higher than the one computed using the first random set (see set 1 in the same figure).

Considering with the explanation above, all cases where the normal stress fields at
the triple point are higher than the one using the first set (Figs. 8.4 and 8.5), could
correspond to tri-crystals constituted of B1 and B2 that are harder and of B3 that is
softer. Among them, the 8th set could represent an extreme case where B3 is the softest
and B1 and B2 are the hardest. All cases where the normal stress fields at the triple point
are lower than one using the first set (Figs. 8.4 and 8.5) could correspond to tri-crystals
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Figure 8.3: Time evolution of normal stress fields at block boundary L2 close to the
triple junction. Average value and amplitudes using 20 sets of random crystal orienta-
tions.

constituted of B1 and B2 that are both softer and of B3 that is harder.

The normal stress is maximum either close to the triple point, or close to the middle
of L2 (Figs. 8.4 and 8.5) and more rarely somewhere between (see set 2 in the same
figures). In the following paragraph, only the first two locations are chosen to study
the normal stress statistics. The normal stress averaged on the half-length of L2 is also
studied.
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Figure 8.4: Normal stress profiles along a half length of block boundary L2 after 50×
103h of creep at 500̊ C under σeng = 230 MPa computed using 20 sets of ransom crystal
orientations. The triple junction corresponds to distance 0. The total length of block
boundary L2 is 10 units.

b. Time evolution of the normal stress fields

The time evolution of the normal stress fields at block boundary L2 close to the triple
junction, σtpnn, is plotted for the creep test at 500̊ C and 230 MPa in Fig. 8.7a. Considering
quite all of the 20 random sets of crystal orientations, the maximum time evolution of
σtpnn represents ±35%. This corresponds to the 8th and 14th sets. The maximum time
evolution of the normal stress fields at the middle of L2, σmidnn represents only ±15%.
These maximum time evolution represents approximately the same amplitudes for the
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Figure 8.5: Normal stress profiles along a half length of block boundary L2 after 30×
103h of creep at 600̊ C under σeng = 90 MPa computed using 20 sets of random crystal
orientations. The triple junction corresponds to distance 0. The total length of block
boundary L2 is 10 units.

creep test at 600̊ C and 90 MPa.

Figure 8.7a shows that all values of normal stress higher than the macroscopic stress
(σeng = 230 MPa) at the quasi-beginning of creep (10 h) are then still higher during
all along creep time. The ones lower than σeng at the quasi-beginning of creep (10 h)
are still lower. This is also confirmed for the creep test at 600̊ C and 90 MPa. This
phenomenon might be explained by the effect of local block softness described in the
previous paragraph.



8.1 MODEL OF POLYCRYSTALLINE TRIPLE JUNCTIONS 155

B1 B2

B3

(a) εxx, 1st set (b) εxx, 8th set

(c) σxx, 1st set (d) σxx, 8th set

Figure 8.6: Effect of the block softness on the normal stress distribution (in Pa) for two
sets of random crystal orientations, after 30 × 103h of creep at 600̊ C under σeng = 90
MPa.
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(b) At the middle of block boundary L2

Figure 8.7: Time evolution of the normal stress at block boundary L2 at two locations
during creep at 500̊ C under 230 MPa.

The normal stress averaged along the half length of block boundary L2, σnn is eval-
uated. The average normal stress fields computed using all 20 sets of random crystal
orientations are plotted along time of creep at 500̊ C and 230 MPa (Fig. 8.8). Consider-
ing all 20 sets, the maximum increase of the average normal stress represents 20%. This
corresponds to the 8th set.
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Figure 8.8: Time evolution of the normal stress averaged along the half length of block
boundary L2 during creep at 500̊ C under 230 MPa. Symbols are related to the individual
sets of blocks

c. Normal stress fields to L2 with respect to the macroscopic stress

Variation amplitudes of σtpnn, σmidnn and σnn with respect to the macroscopic stress, σeng,
obtained from 20 computations for each creep test are estimated and reported in Table
8.2.

Normal stress σtpnn corresponds to the highest amplitudes of variation with respect to
the macroscopic stress. For the creep test at 500̊ C and 230 MPa, these amplitudes repre-
sent -20%/+40% at the creep beginning. When the minimum creep strain rate is reached,
these amplitudes represent -60%/+40%, with the exception of the 8th microstructure con-
figuration for which the difference from σeng represents +95%. For creep at 600̊ C and 90
MPa, the variation amplitudes represents -25%/+50% at the creep beginning. When the
minimum creep strain rate is reached, the variation amplitudes represent -45%/+35%,
with the exception of the 8th microstructure configuration where the difference from σeng

represents +75%.

Normal stress σmidnn corresponds to the lowest amplitudes of variations with respect
to the macroscopic stress. For both creep tests, the absolute amplitudes of variation
represent up to 15% at the creep beginning and up to 30% when the minimum creep
strain rate is reached.

For the creep test at 500̊ C and 230MPa, random crystal orientations lead to values
of σnn varying with respect to σeng by -10%/65% at an engineering strain of 2%. Diard
et al. [125] have carried out finite element calculations of normal stress fields to grain
boundaries in Zr alloy subjected to monotonic tensile test at room temperature. These
authors found a ratio ranging between 0.5 and 1.5. The variation amplitudes during
creep seem to be sightly higher than the ones computed for tensile test [125].
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Table 8.2: Amplitude of variation of the normal stress at block boundary L2 with
respect to the macroscopic stress due to random orientations. The minimum creep strain
rate corresponds to creep times of 30× 103h for the first creep test and of 50× 103 of the
second one. Twenty microstructure configurations are considered (Fig. 8.1).

500̊ C - 230 MPa Probability 1 h 50 kh (εeng = 2%)

Triple junction 19/20 -20% to +40% -60% to +40%
1/20 (8th) +20% +95%

Middle of L2 20/20 -5% to +15% -15% to +30%

Mean value along 19/20 -5% to +20% -10% to +35%
one half of L2 1/20 (8th) +15% +65%

600̊ C - 90 MPa Probability 1 h 30 kh (εeng = 1%)

Triple junction 19/20 -25% to +50% -45% to +35%
1/20 (8th) +25% +75%

Middle of L2 19/20 0 to +15% -10% to +25%

Mean value along 19/20 0% to +25% -10% to +25%
one half of L2 1/20 (8th) +20% +55%

8.2 Normal stress fields computed using microstruc-

tures based on EBSD measurements

In this section, more realistic microstructures are used to compute normal stress fields at
block boundaries. Two microstructures have been identified using EBSD measurements
by Barcelo and Fournier [119] after the two creep tests considered above, one at 500̊ C
and 230 MPa (Fig. 8.9a) and another at 600̊ C and 90 MPa (Fig. 8.10a). These mi-
crostructures are located in the middle of the specimen diameter and on a longitudinal
section of the specimen far from the fracture surface. Creep cavities are observed on
both microstructures. Triple junctions containing some of these cavities are chosen for
computation of normal stress fields at block boundaries.

8.2.1 Meshing

Figures 8.9b and 8.10b show the meshing of the modelled blocks based on two EBSD
maps. The other surrounding blocks are not taken into account explicitely and are
replaced by a homogeneous matrix which represent the average mechanical behaviour of
microstructure. For each of both microstructures, two triple junctions (indicated by the
red circles in Figs. 8.9b and 8.10b) are chosen for fine regular meshing. This analysis is
carried out using the quasi-2D plane strain condition previously described; in fact, these
microstructures are located in the bulk of the creep specimen.
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(a) EBSD map of microstructure indexed
and given in [119] containing cavities repre-
sented by the red oval or round regions.
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(b) Microstructure after refilling the cavity areas and
meshing. The element size at the two triple junctions,
PT1 and PT2, is 0.05 μm.

Figure 8.9: Microstructure of grade 91 steel after the creep test at 500̊ C under 230MPa
before and after meshing. The loading axis is horizontal. The EBSD map contains a high
number of non-indexed pixels which could lead to an uncertainty of microstructure filling.

(a) EBSD map of microstructure indexed
and given in [119] containing cavities repre-
sented by the red oval or round regions
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(b) Microstructure after refilling the cavity areas and
meshing. The element size at the two triple junctions,
PT1 and PT2, is 0.05 μm.

Figure 8.10: Microstructure of grade 91 steel after the creep test at 600̊ C under 90MPa
before and after meshing. The loading axis is vertical. The EBSD map contains a high
number of non-indexed pixels which could lead to an uncertainty of microstructure filling.
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(a) σxx in Pa

(b) εxx

Figure 8.11: Distribution of the axial stress and strain fields after 50 × 103h of creep
time at 500̊ C and 230 MPa computed using the microstructure in Fig. 8.9 surrounded
by a homogeneous matrix (10 times larger). The loading direction is horizontal.
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(a) σyy in Pa

(b) εyy

Figure 8.12: Distribution of the axial stress and strain fields after 30 × 103h of creep
time at 600̊ C and 90 MPa computed using the microstructure in Fig. 8.10 surrounded
by a homogeneous matrix (10 times larger). The loading direction is vertical.
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8.2.2 Stress and strain distributions in the microstructures

The distributions of axial stress and strain fields after 50 × 103h of creep time at 500̊ C
and 230 MPa are shown in Figs. 8.11a and 8.11b. The axial stress is almost homogeneous
within each block, except along a few block boundaries where overstress is observed. The
axial strain is heterogeneous within each block with two parallel boundaries are subjected
to high deformation. The regions around triple junctions PT1 and PT2 are subjected
to axial stress higher than their surroundings. These are hard blocks subjected to axial
strain lower than their surroundings.

The distribution of axial stress and strain fields after 30×103h of creep time at 600̊ C
and 90 MPa are shown in Figs. 8.12a and 8.12b. The axial stress is almost homogeneous
in each block. The axial strain is still heterogeneous within each block. Axial strain is
strongly localised along one block boundary.

For both computations, axial strain is highly localised along some block boundaries.
Observations on the EBSD microstructures (Figs. 8.9a and 8.10b) do not show cavities
formed along theses block boundaries. Therefore, localised deformation is shown not to be
potential mechanism promoting cavitation. On the contrary, high stress is located at both
triple points, PT1 and PT2 (Fig. 8.11b), at which cavities are observed experimentally
after the end of creep at 500̊ C and 230 MPa (Fig. 8.9).

In the following paragraph, normal stress fields at block boundaries close to two triple
junctions for each microstructure are presented.

8.2.3 Normal stress fields along block boundaries close to triple
junctions

The stress profiles along block boundaries at triple junctions PT1 and PT2 (Fig. 8.9b)
after 50× 103h of creep time at 500̊ C and 230 MPa are plotted in Figs. 8.13a and 8.13b.
Block boundary L3 at triple point PT1, which is almost parallel to the loading direc-
tion, is subjected to compression. The finite element computations using 3D aggregates
performed by Diard et al. [125, 126] have also shown that among the grain boundaries
parallel to the loading direction, some are subjected to compression.

Figures 8.13a and 8.13b show that normal stress fields at block boundary L1 close
to triple point PT1 and at block boundary L4 close to triple point PT4 reach the maxi-
mum values. These block boundaries form with the loading direction angles close to 90̊ .
The first one represents approximately the macroscopic stress. The second one is higher
than the macroscopic stress by about 50%. Since the angle formed between L4 and the
loading direction is closer to 90̊ than the one formed between L1 and the loading direc-
tion, the normal stress at block boundaries seem to be related to this angle. Numerous
computations might be carried out for validation of this conclusion.

The normal stress fields at block boundary L1 close to PT1 and at block boundary
L4 close to PT4, respectively 220 and 350 MPa, range within the values computed using
the triple point model and 20 sets of random crystal orientations (Fig. 8.4). The EBSD
observations carried out by [119] show that creep cavities formed at triple points PT1
and PT2 (Fig. 8.9a).

The stress profiles along block boundaries at triple junctions PT1 and PT2 (see Fig.
8.10b) after 30× 103h of creep time at 600̊ C and 90 MPa are plotted in Figs. 8.14a and
8.14b. At both triple junctions, the maximum normal stress to block boundaries is only
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Figure 8.13: Normal stress profiles along block boundaries belonging to two triple points
(Fig. 8.9b) after 50 × 103h at 500̊ C and 230MPa. The triples points correspond to the
distance equal to 0.

55% of the macroscopic stress. The assumed block shapes at triple junctions PT1 and
PT2 (Fig. 8.10b) might not be as exact as they would be. In fact, the exact informations
about the block shapes at the triple junctions were lost because of the cavities and the
high number of non-indexed pixels (Fig. 8.10a). For another reason, these triple junctions
may contain precipitates that are expected to lead to higher stress concentrations.
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Figure 8.14: Normal stress profiles along block boundaries belonging to two triple points
(Fig. 8.10b) after 50 × 103h at 600̊ C and 90MPa. The triples points correspond to the
distance equal to 0.

8.3 Discussion about assessment of normal stress fields

at block boundaries

The normal stress fields at block boundaries during the creep tests at 500̊ C under 230
MPa and at 600̊ C under 90 MPa are computed in the quasi 2D plane strain condition.
This was chosen to correspond to block boundaries located in the bulk material. Two
types of meshed microstructures are used.
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The first one is a triple junction model containing one block boundary perpendicular
to the loading direction. The distribution of normal stress fields at this block boundary
close to the triple junction is computed using 20 sets of random crystal orientations for
the three blocks. These finite element computations result in ratios of normal stress close
to the triple junction to the macroscopic stress that could reach the maximum value of
about 2.

The ones of the second type are 2D microstructures based on EBSD measurements.
High mesh refinement is applied to triple junctions where cavities are experimentally ob-
served. At these triple junctions, computed ratios of normal stress at block boundaries to
the macroscopic stress could reach 1.5. This ratio ranges within the ones estimated using
the triple junction model using using 20 independent sets of random crystal orientations.

In the following, the maximum ratio of normal stress at block boundaries close to
triple points to the macroscopic stress is chosen as 2. This evaluation is now used for
evaluating the influence of stress heterogeneity on the prediction of cavity nucleation at
triple junctions.

8.4 Application to the prediction of cavity nucleation

Nucleation rates of cavities are predicted using the Raj model [93] as in Eq. (4.14). Two
types of cavity are taken into account: spherical-cap cavity formed at block boundaries
(Fig. 4.7a) and cavity of Type B formed at carbide-matrix interfaces (Fig. 4.7b). Volume
factors Fv = 0.875 for the first type and Fv = 0.18 are evaluated taking into account the
effect of P and S segregation at grain boundaries [118] as mentioned in section 5.2.5.

The normal stress estimated using the finite element model can be applied to the
study of spherical-cap cavities taking into account the overstress at block boundaries.
For the study of type-B cavities, the stress concentration at the junction of the carbide
and block boundaries could be different. However, we assume that the same ratio of the
normal stress (at block boundaries) to the macroscopic stress could be reached as well.
Finite element computations based on a triple point model containing a carbide (isotropic
elasticity) at the triple junction is still in progress.

The predictions of nucleation rates taking into account the normal stress concentration
close to triple junctions as well as two types of cavity are reported in Table 8.2. The
results show that the Raj model still predicts negligible nucleation rates because of the
high theoretical values of Fv.

8.5 Conclusions

For the studied long-term creep tests, normal stress at block boundaries close to triple
junctions was estimated using crystalline finite element computations. This study does
not lead to stress singularity as predicted by the model of Caré and Zaoui [127] taking
into account only thermoelastic accommodation. This could be due stress relaxation
induced by viscoplastic deformation.

The finite element computations using the triple junction model show that the normal
stress is maximum close to triple junctions (Figs. 8.4 and 8.5). During the creep test at
500̊ C under 230 MPa, the normal stress fields close to triple junctions varies with respect
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Table 8.3: Predictions of nucleation rates using the Raj nucleation model and taking
into account the maximum tensile stress concentration factor of 2 obtained by the triple

point model. Ṅa0 = 4πγsDbδ
Ω4/3σn

Nmax
a exp

(
σnΩ
kbT

)
, ∆Gc
kbT

= 4γs3Fv
σn2kbT

and Ṅa = Ṅa0 exp
(
−∆Gc

kbT

)

from Eq. (4.14). γs = 1.42 Jm−2 [118], γb = 1.7 Jm−2 [124], γI = 1.1 Jm−2 [123], γIb = 1
Jm−2 [124], Qb = 254 kJmol−1 [120], Db0δ = 1.88 m2s−1 [120], kb = 1.3806488 × 10−23

JK−1 and Ω = 1.18× 10−29m3.

Cavity at block boundary Fv = 0.85

Creep tests Ṅa0 (mm−2s−1) ∆Gc/kbT Ṅa (mm−2s−1) Ṅ exp
a (mm−2s−1)

500̊ C - 230 MPa 4.16× 1029 4.31× 103 2.7× 10−1843 2.8× 10−12

600̊ C - 90 MPa 7.05× 1031 2.49× 104 8.3× 10−10783 6.5× 10−11

Cavity at M23C6 - type B Fv = 0.18

Creep tests Ṅa0 (mm−2s−1) ∆Gc/kbT Ṅa (mm−2s−1) Ṅ exp
a (mm−2s−1)

500̊ C - 230 MPa 4.16× 1029 9.13× 102 1.3× 10−367 2.8× 10−12

600̊ C - 90 MPa 7.05× 1031 5.28× 103 6.0× 10−2262 6.5× 10−11

to the macroscopic stress with maximum amplitudes of -60%/+100% (at the minimum
creep strain rate), due to random orientations. During the creep test at 600̊ C under 90
MPa, the corresponding maximum amplitudes are -50%/80%.

For both creep tests, the normal stress fields at the middle of block boundaries per-
pendicular to the loading direction vary with respect to the macroscopic stress with
maximum amplitudes of about -10%/+30%, due to random orientations.

The average normal stress along the block boundary perpendicular to the loading
direction varies with respect to the macroscopic stress with maximum amplitudes of
−15%/ + 70%. This variation is slightly higher than the one estimated by Diard et
al. [125] which is ±50% during monotonic tensile test carried out on a Zr alloy at room
temperature. In fact, the viscoplastic slip law used in our study is an exponential function
of stress following the theory of thermal activation. During long creep times, the stress
scatter increases and becomes more important at the end.

For the creep test at 500̊ C under 230 MPa, the normal stress concentration factors
close to triple junctions computed based on the EBDS microstructure belong to the range
of values computed using the triple junction model with 20 sets of random crystal orienta-
tions. For the creep test at 600̊ C and 90 MPa, the normal stress fields computed based on
the EBDS microstructure could not be represented by the triple junction model by using
even 20 sets of random orientations. In this case, the presence of creep cavities at triple
junctions does not allow determining accurate geometries of block boundaries. Conse-
quently, only a hypothesis on block boundary geometries at the studied triple junctions
have been made and may leads to an underestimation of stress concentrations.

The maximum stress concentration factor of 2 is obtained from finite element com-
putations at triple junctions. This stress concentration factor is not sufficient for the
prediction of cavity nucleation using the Raj model, even taking into account type-B
cavities which are the most critical ones as well as the effect of P and S segregation at
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grain boundaries.
The stress concentration at the carbide-matrix interface for carbides located at triple

points is not yet studied. A stress concentration factor ranging between 20 and 50 is
however required for correct predictions of nucleation rates using the Raj model and
the theoretical values of Fv. Furthermore, theses high stress concentration factors could
strongly influence the Rice length. Then, the competitiveness between both cavitation
mechanisms, one controlled by diffusion and another by viscoplasticity, should be dis-
cussed.
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Chapter 9

Conclusions

Creep of grade 91 steel was investigated at temperatures of 500̊ C with lifetime up to 160
kh and of 600̊ C with lifetime up to 94 kh. This study involves three possible causes of
creep failure: necking, creep softening of the material and cavitation.

9.1 Necking and Softening

The onset of necking was first predicted using the Hart criterion of viscoplastic instability
for the creep tests mentioned above. The computations showed that the onset of necking
occurs just after the minimum creep rate is reached. At this time, the measurements
during two interrupted creep tests at 500̊ C, one during 46h and another during 7000 h,
revealed that the diameter profile is almost uniform. After this point, a reduction of area
in the necking section by 20% occurs and the diameter profile along the necking part is
elongated. Therefore, the gauge length was assumed to be divided into three parts, one
is located at the necking zone and another ones (equal cross-sections) are located outside
this zone. These parts were supposed to have uniform diameter profiles and be loaded in
series.

Necking models were studied and applied to a large number of creep tests of Grade 91
steel at 500̊ C and 600̊ C. Creep damage was not taken into account in this modelling. The
creep softening of the material was introduced into the model as well. A phenomenological
model of creep softening was then proposed to account for additional acceleration of creep
strain rate occurring just after its minimum (without necking and cavitation effect). The
corresponding material parameters were identified based on the creep tests under study.
They were first assumed to be stress-independent at a given temperature.

Two additional parameters were needed to apply this model. The first one is the
initial difference in area between the necking part and homogeneous parts at the onset of
necking. The second one is the final reduction in area in the necking section used as the
failure criterion. The stability of the predictions with respect to these parameters was
checked.

This necking model leads to predictions of creep lifetimes of Grade 91 steel up to 160
kh at 500̊ C and 94 kh at 600̊ C in agreement with the experimental results. The evolution
of the necking section predicted using this model is in agreement with the measurements
during one interrupted creep test (at 500̊ C and tf =46 h), as well as a more recent
one (at 500̊ C and tf =7000 h). Lifetimes could be correctly predicted by using a final
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reduction in area in the necking section by 20% as the failure criterion. Indeed, after
this value, the reduction of area in the necking section accelerates very quickly to failure
(80%). The value of the critical reduction in area is only weekly influential. Senior et
al. [80] have shown that nucleation of ductile cavities occurs at a strain of 25% (reduction
in area in the necking section by 20%). In consequence, during the creep acceleration
period, ductile cavities could contribute to the final failure of the material. Even so, this
final acceleration period due to necking represents only 10% of creep lifetime after the
measurements carried out during the interrupted creep test at 500̊ C with a creep time
of 46 h, as predicted by the modelling.

The softening increasing with respect to creep lifetime was then taken into account.
This softening behaviour were not considered in the previous necking modelling in which
the softening constants were unique at each temperature. The variations of the parameter
values for this necking model (failure criterion value, difference in area at the onset
of necking) were taken into account as in the previous modelling. Two bound laws
of creep lifetime were finally obtained. The upper bound is of Monkman-Grant type.
Experimental lifetimes of a large number of tempered martensitic-ferritic steels up to 200
kh at temperature between 500 and 700̊ C range between both bounds.

9.2 Cavitation induced by boundary diffusion

Creep cavities located along former austenitic grain/packet/block boundaries were ob-
served using FEG-SEM after creep lifetimes of 160 × 103h and 59 × 103h at 500̊ C, as
well as of 94 × 103h and 5 × 103h at 600̊ C. After the longest creep tests at 500̊ C and
at 600̊ C, the area fractions of porosity are highest. These porosities yield an increase
in creep strain rate predicted using the Norton creep law by only 2.5% following contin-
uum damage mechanics. Therefore, the necking predictions previously presented are not
affected by the creep cavity damage for the range of creep lifetimes under study. Nev-
ertheless, correct physically-based predictions of the nucleation and growth of cavities
during these creep tests may allow extrapolations of creep lifetimes out of the creep data
domain (Cocks and Ashby [2]).

The growth of cavities induced by boundary diffusion was shown to be the domi-
nant mechanism using the predictions of Rice length. Observations using FEG-SEM
microscopy of cavitated facets distributed almost uniformly allow us to neglect the effect
of constrained cavity growth (provided viscoplastic strain is not so low). This one may
be relevant for longer lifetimes.

Two models of diffusion cavity growth were used. The first one proposed by Raj and
Ashby takes spontaneous nucleation of cavities into account. On the other hand, the
second one proposed by Riedel assumes continuous nucleation described by the Dyson
experimentally-based law. This one leads to two bounds. The first model was shown to
depend strongly on the parameters such as the self-diffusion coefficient and the distance
between cavities. Contrary to this model, the Riedel bounds were shown to be stable
with respect to the corresponding parameters such as the nucleation rate as well as the
boundary diffusion self-coefficient. This model allowed predictions of the average cavity
size at the end of both longest creep tests in the same order of magnitude as the measured
ones. However, the parameter of the Dyson nucleation law was adjusted using measured
final densities of cavities. Therefore, predictions of cavity nucleation rates are necessary.
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High resolution observations using FEG-SEM revealed nucleation sites located along
grain/block boundaries and at carbide or Laves phase interfaces with the matrix. The
Raj model of cavity nucleation was applied. Very low values of geometry factor Fv (in the
order of 10−4 and 10−5) were required for predicting nucleation rates in agreement with the
measured final cavity densities. Adjusted values of Fv of the same order of magnitude had
also been used by Raj [99] and Riedel [118]. These values are lower than the theoretical
values by 3 to 4 orders of magnitude whatever the nucleation site. Segregation of S and
P proposed by Riedel could lead to a reduction in theoretical value of Fv to 0.18. Using
this value, the predictions based on the Raj model leads to negligible nucleation rates
with respect to the experimentally measured values, as expected by comparison with the
adjusted values of Fv.

These very low adjusted values could be due to underestimation of local stress induced
by heterogeneity, e.g. carbides, Laves phase or triple junctions. Preliminary finite element
computations were carried out to compute stress concentrations at the interface of an
isotropic elastic carbide and an isotropic matrix obeying phenomenological creep consti-
tutive equations whose parameters had been adjusted using experimental creep curves.
The 2D-plane strain hypothesis was used. A stress concentration factor of 1.5 with re-
spect to the macroscopic stress was computed. This leads to a reduction in theoretical
value of Fv to 0.08 and cannot allow predictions of nucleation rates in the same order of
magnitude as the measured ones.

Logarithmic stress singularities induced following thermoelastic accommodation at
the vicinity of triple junctions have been shown in the literature. Stress concentrations
at polycrystalline triple junctions of Grade 91 steel subjected to the two longest creep
tests previously described were computed by the finite element method in the crystalline
elasto-viscoplasticity framework.

9.3 Finite element computations of stress concentra-

tions at triple junctions and their effect on cavity

nucleation

These computations required calibrations of the crystalline viscoplasticity parameters.
The calibration procedure was based on simulations of macroscopic creep strain curves
of polycrystalline aggregates meshed by finite elements. The obtained values of the
parameters allowed the predictions of macroscopic creep strain curves at 500̊ C under 230
MPa and at 600̊ C under 90 MPa in satisfactory agreement with the experimental ones.
The distribution of stress fields averaged over blocks was shown to be weakly dependent
on the number of blocks in the aggregate, mesh refinement, and the choice of the V ∗

value. In contrary, predicted strain fields are strongly dependent on these parameters
because of the high non-linearity (Norton stress exponents of 10 and 20 respectively at
600 and 500̊ C).

Stress concentrations at block boundaries close to triple junctions were computed us-
ing finite element simulations. Microstructures were built using either a simple model
of triple junction or EBSD measurements. A quasi 2D-plane strain hypothesis was used
leading to lower computation times and allowed us to increase mesh refinement. Finite
element computations were carried out in the crystalline elasto-viscoplasticity frame-
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work. Stress concentrations were obtained using both microstructure types. The results
show that the triple points junctions using EBSD measurements could be represented by
the simple model of triple junction for which the crystal orientations of the blocks are
randomly determined. These computations do not yield higher stress singularity in the
crystal elasto-viscoplasticity framework as in the thermoelastic one.

Finite element computations of stress concentrations at triple junctions yielded normal
stress fields at block boundaries perpendicular to the loading direction that could be two
times higher than the macroscopic stress. As stated for the vicinity of precipitates/Laves
phases, this stress concentration still leads to predictions of cavity nucleation rates not
of the same order of magnitude as the experimental ones. Indeed, the required adjusted
values of Fv are very low and are of the orders of magnitude of 10−5 and 10−4. Even
taking into account the stress concentration and the effect of S an P segregation suggested
by Riedel, predicted nucleation rates are still not at least of the same order of magnitude
as the experimental ones. If the Raj model is valid a high stress concentration factor
ranging between 20 and 50 may be required to obtain predicted nucleation rates using
the theoretical values of Fv in agreement with the measured ones.

9.4 Criticism of the Raj model

During the nucleation phase, a nucleus was assumed by Raj to keep its equilibrium shape
assured by surface tension equilibrium. This may be true in the domain where crystal
deformation is purely controlled by diffusion. However, the finite element computations
in the crystal elasto-viscoplasticity framework revealed stress and strain heterogeneity at
block boundaries as well as close to triple junctions. This heterogeneity also occurs at
nucleation sites such as carbide interfaces. This implies that, in the framework of crystal
elasto-viscoplasticity, the Raj model may lead to a strong underestimation of nucleation
rates.

Raj assumed the thermal equilibrium concentration of vacancies to be reached even
at the region close to the cavity surface. This may not be always true.

Cavity nucleation is still an unresolved problem. In order to provide the required nu-
cleation rates, Ṅ0, to compute Riedel bound laws, the phenomenological model proposed
by Dyson is used: Ṅ0 = αd ε̇min. The value of the αd parameter has been suggested
by Dyson to vary weekly with stress at a given temperature. This hypothesis seems
reasonable with respect to our measured cavity densities. For grade 91 steel, values of
αd were identified based on the cavity density measurements carried out after the creep
tests at 500̊ C under 230 MPa and at 600̊ C under 90 MPa. These values are respectively
6.78× 1010m−2 at 500̊ C and 1.027× 1010m−2 at 600̊ C.

9.5 Final predictions of creep lifetimes and extrapo-

lation out of creep data domain

The final predictions and extrapolations of creep lifetimes are deduced from two models
interpreting the failure mechanisms studied in this PhD thesis. The first one is the upper
bound of the necking model taking into account the material creep softening. The second
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one is constituted of two bound laws deduced from the Riedel model of diffusion cavity
growth taking in account a continuous nucleation law of Dyson type.

The predictions of creep lifetimes using these models are applied to many creep condi-
tions on Grade 91 steel at 500̊ C and 600̊ C (Fig. 9.1). The upper bound of the softening-
enhanced necking model leads to predictions of creep lifetimes in agreement with the
experimental creep data up to 200 × 103h at 500̊ C and 100 × 103h at 600̊ C (for life-
times lower than 100 h, the lower bound should be used). The bound laws based on
diffusion-induced cavitation permit extrapolations of creep lifetimes longer than 106h at
500̊ C (≈ 110 years) and 3× 105h at 600̊ C (≈ 34 years).

One creep test at 600̊ C under 70 MPa has reached the end of creep stage II at 150 kh
and is now in progress in the tertiary stage (Fig. 9.1). If the strain rate acceleration regime
observed under 90 MPa at 600̊ C (Lim et al. [60], Lim et al. Creep 2012 Kyoto) is taken
into account, it represents between 40% and 60% of creep lifetime. The experimental
creep lifetime is therefore estimated to be 250− 375 kh. The creep lifetime given by the
bound laws based on diffusion-induced cavitation is 400−700 kh. This isolated test seems
to combine the change in damage regime predicted by Fig. 9.1, of course, this should be
confirmed by other test results, particularly after applying similar approaches to tests
carried out at higher temperatures.
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Figure 9.1: Comparisons between experimental creep lifetimes after CEA creep tests
and [6,73] and the predictions using either the upper bound of the necking model including
material creep softening (UNS), or the Riedel lower bound and Dyson law (LC) or the
Riedel upper bound and Dyson law (UC). One creep test at 600̊ C has reached the
end of the secondary stage 50 kh ago is still in progress at CEA/SRMA. Its estimated
experimental lifetime is noted by”est.exp“.
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Recommendations for future works

10.1 Cavity nucleation equation

Nucleation rate estimations are needed for the prediction of cavity diffusion-induced
growth modelling based on continuous nucleation. The Dyson phenomenological equation
requires the identification of the αd parameter at various temperatures. Fair values of
this parameter require numerous creep tests at different temperatures as well as a large
number of measurements of cavity density and sophisticated counting procedures.

A new model of cavity nucleation is required to be established. Raj assumed simple
shapes of cavities such as spherical shapes or spherical segments as well as surface ten-
sion equilibrium. Computations of the nucleus growth of a cluster from few atoms to
thousands or one million atoms (cavity of 25 nm) using nanoscale energy values could be
eventually required, based on cluster dynamics. But, these seem to be heavy computa-
tions. The use of vacancy equilibrium concentration is questionable as well.

10.2 Mechanisms of cavity nucleation

The modelled cavities whose sizes are larger than 200 nm were assumed to have grown
by boundary diffusion. However, much more numerous cavities with sizes from 50 nm to
100 nm were observed. They are located especially at the interfaces of carbides or Laves
phases located not only at grain/block boundaries perpendicular to the loading direction
but also at the ones parallel to it. Cavity with sizes ranging between 100 and 200 nm are
almost absent. Nucleation of some of the small cavities may be not associated to diffusion
of vacancies. They may have been nucleated by viscoplasticity like the ones observed by
Senior et at. [80] and then subjected to low diffusion growth because of their location.
Interrupted creep tests may be useful for concluding about the responsible nucleation
mechanism and the respective effect of strain and time.

10.3 Local stress concentration

Once a more suitable nucleation equation will be established, computations of local stress
concentrations close to triple junctions and/or particles could be an asset. Indeed, contin-
uous nucleation was confirmed by Dyson based on their measurements of the evolution of
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cavity densities. Cavities nucleate earlier at some sites and later at other ones. This could
be explained by microstructural heterogeneity inducing stress concentrations. Therefore,
stress concentrations close to triple junctions and precipitates could be coupled with the
use of the nucleation equation. The triple junction model previously presented could be
enhanced by taking step by step the following configurations into account:

• Different angles, high or low, formed between block boundaries at the triple junction
in order to generalize the results obtained with regular angles of 120̊

• The triple junction may contain a carbide or a Laves particle as triple points are
generally favourable sites for nucleation of these particles and then of cavities during
creep

• Extension of the triple point microstructure from 2D to 3D may be necessary to
take the effect of 3D neighbouring blocks into account.

10.4 Effect of material creep softening

The stress concentration of a factor two is obtained considering various triple point con-
figurations without taking creep softening into account, whereas it is usually observed
for tempered martensitic-ferritic steels. A stronger scatter in stress concentrations or
a higher stress concentration factor could be obtained. This could be studied using a
crystal viscoplasticity constitutive behaviour that takes softening during creep time into
account. Some of its parameters could be then identified using computations carried out
using large polycrystalline aggregates.
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Simulation numérique et étude expérimentale 
du fluage de l’acier Grade 91 à haute température 

RESUME : L’acier grade 91 serait un candidat approprié pour des éléments de structures du circuit secon-
daire et du générateur de vapeur des réacteurs nucléaires de génération IV. Leur durée de vie sera prolon-
gée jusqu’à 60 ans. Cela nécessite de considérer les mécanismes actifs durant de très longs temps de 
fluage afin de proposer des prédictions de durées de vie plus fiable que de simples extrapolations. 

La striction est le mécanisme de ruine principal pour des durées de vie jusqu’à 160 kh à 500°C et 94 kh 
à 600°C. Une simulation de la striction tenant compte de l’adoucissement du matériau conduit à deux lois de 
bornes qui encadrent les durées de vie expérimentales d’un grand nombre d’aciers martensitiques revenus 
jusqu’à 200 kh à température 500-700°C. Des cavités intergranulaires observées en FEG-SEM à deux du-
rées de vie longues affectent faiblement la vitesse de déformation. 

Une prédiction du développement des cavités permettrait d’extrapoler les durées de vie hors du do-
maine expérimental. Leur germination et croissance, supposées associées à la diffusion des lacunes, sont 
modélisées grâce à deux modèles classiques. Le premier tient compte d’une germination instantanée (Raj et 
Ashby) et le second d’une germination continue - Dyson. Le second, plus stable par rapport à ses para-
mètres que le premier, conduit à des prédictions des tailles finales de cavités en accord raisonnable avec les 
mesures en FEG-SEM. La vitesse de germination identifiée expérimentalement est requise dans ce modèle. 

La germination continue des cavités par diffusion est modélisée grâce au modèle classique de Raj. Ce 
modèle ne permet pas des prédictions de densité de cavités en accord avec les mesures, même en tenant 
compte de la germination aux interfaces matrice / précipités, observée au MEB-FEG et d’un facteur maximal 
de concentration de contrainte locale de 2. Ce dernier a été obtenu grâce à des calculs par éléments finis en 
déformations planes du fluage de microstructures simulées ou réelles, comprenant des points triples ou des 
précipités/phases de Laves. 

L’utilisation de la loi de germination de Dyson permet de proposer des prédictions au-delà de 200kh. La 
durée de vie prédite par le modèle de Riedel d’un essai à basse contrainte semble être en accord avec la 
durée expérimentale estimée de l’essai (toujours en cours) et actuellement en stade tertiaire, basée sur la 
fraction de la durée de vie habituellement consommée par le stade tertiaire.  
Mots clés : fluage, grade 91, striction, adoucissement, cavitation, diffusion, point triple  

Numerical and experimental study 
 of creep of Grade 91 steel at high temperature  

ABSTRACT: Grade 91 steel is a suitable candidate for structural components of the secondary and the va-
pour of generation IV nuclear reactors. Their in-service lifetime will last for 60 years. It is necessary to con-
sider the mechanisms involved during long-term creep to propose reliable predictions of creep lifetimes. 

Necking is the main failure mode for creep lifetimes up to 160 kh at 500°C and 94 kh at 600°C. Necking 
modelling including the material creep softening leads to two bound equations including experimental life-
times of a large number of tempered martensitic steels loaded up to 200 kh at temperature 500-700°C. The 
observed creep intergranular cavities are shown to affect very weekly creep strain rate. 

The prediction of the cavity evolution will allow estimating creep lifetimes out of experimental data do-
main. Their nucleation and growth, supposed to be associated to vacancy diffusion, are modelled using two 
classical models. The first one considers instantaneous nucleation (Raj and Ashby) and the second one 
continuous nucleation obeying the Dyson law (Riedel). The second one leads to two bound equations, more 
stable with respect to the parameter values. It allows predicting final size of cavities in reasonable agreement 
with measured ones. Yet, the nucleation rate should still be estimated from measured cavity densities.  

Nucleation of cavities by diffusion is simulated using the Raj model. This model does not allow predicted 
final cavity densities in agreement with the measured ones, even by considering cavity nucleation at precipi-
tates/Laves interfaces experimentally observed and the maximum local stress concentration of a factor 2 
computed using finite element calculation in a 2D plane strain hypothesis based on either simulated or real 
microstructures containing triple points or precipitates/Laves phases. 

The use of the Dyson model allows us to propose predictions of long-term creep lifetimes. Lifetime pre-
dicted using the diffusion-induced growth model of one creep test under low stress still in progress is ap-
proximately in agreement with the experimental lifetime estimated based on the fraction of tertiary stage.  
Keywords : creep, grade 91, necking, softening, cavitation, diffusion, triple point 
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