

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

Construction Difficultés Exemples

Applications et optimisation

Coalescence Moments d'ordre supérieurs

Conclusion

Un modèle hybride pour le calcul de propriétés radiatives des plasmas chauds combinant niveaux, configurations et supraconfigurations à l'équilibre thermodynamique local.

Quentin PORCHEROT¹

Thèse de doctorat effectuée dans le cadre d'une formation par la recherche d'Ingénieur de l'Armement sous la direction de :

Jean-Christophe PAIN¹ Franck GILLERON¹ Thomas BLENSKI²

¹CEA, DAM, DIF

²CEA, DSM, IRAMIS

17 janvier 2012

Domaine d'étude

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

Construction

Difficultés

Exemples

Applications et optimisation

Coalescence

Moments d'ordre

superieurs

Expériences

Opacité et transport de rayonnement

Le calcul d'opacités

Introduction Faisceaux détaillé Faisceaux statistiques

SCORCG

Construction Difficultés

Applications et optimisation

Coalescence

Moments d'ordre supérieurs

Conclusion

- Milieu absorbant uniforme :
 - densité ρ ;
 - épaisseur L.

- Transport de rayonnement : dI_{ν}
 - $\frac{\mathrm{d} v_{\nu}}{\mathrm{d} x} = -\alpha_{\nu} \, I_{\nu} + j_{\nu}$
 - α_{ν} absorption, j_{ν} émission;
 - Libre parcours moyen :

$$\lambda_{\nu} = \frac{1}{\alpha_{\nu}}$$

Opacité et émissivité :

$$\kappa_{\nu} = \frac{\alpha_{\nu}}{\rho} \qquad \epsilon_{\nu} = \frac{j_{\nu}}{\rho}$$

Transmission :

$$T_{\nu}=\frac{I_{\nu}(L)}{I_{\nu}(0)}=\boldsymbol{e}^{-\rho L \kappa_{\nu}}$$

- ρL est la masse surfacique;
- Équilibre thermodynamique local :
 - collisions dominent;
 - loi de Planck pour le rayonnement.

$$\frac{\epsilon_{\nu}}{\kappa_{\nu}} = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/k_{\rm B}T} - 1}$$

Processus et contributions

Le calcul d'opacités

Introduction Faisceaux détaillé Faisceaux

SCORCG

- Constructio Difficultés
- Exemples

Applications et optimisation

Coalescence Moments d'ordre supérieurs

- rayonnement électrons libres
 - diffusion
 - Bremsstrahlung inverse
- rayonnement électrons liés
 - photoionisation
 - photoexcitation

Structure en couches des ions et configurations électroniques

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

Construction Difficultés Exemples

Applications et optimisation

- Coalescence
- Moments a ora supérieurs
- Expériences

- Approximation du champ central
- \Rightarrow Caractérisation des électrons liés :

Nom	Lettre	Condition
principal	n	<i>n</i> ≥ 1
orbital	ℓ	$0 \le \ell < n$
magnétique	m_ℓ	$-\ell \leq m_\ell \leq \ell$
spin	m _s	$m_s = \pm 1/2$

- Rôle des nombres quantiques
 - $n \leftrightarrow$ couche électronique ;
 - $n\ell \leftrightarrow$ orbitale ou sous-couche ;
 - *m*_ℓ, *m*_s ⇒ dégénérescence 4ℓ + 2 / orbitale *n*ℓ.

Structure en couches des ions et configurations électroniques

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

Construction Difficultés Exemples

Applications et optimisation

Coalescence Moments d'ordres supérieurs

Structure fine d'une configuration

Configuration $C \supset$ Niveaux $|\gamma J\rangle \ni \text{États} |\gamma J M_J\rangle$.

Diagonalisation du Hamiltonien \Rightarrow obtention des $|\gamma J\rangle$

Faisceaux détaillés

SCORCG

Applications et optimisation

Conclusion

FIGURE: Cu^{8+} [Ar] $3d^24s$. $E_{av} = 0$.

- Moment cinétique total J conservé
- \Rightarrow niveaux $|\gamma J\rangle$ en partie définis par J.
- On a :

$$\sum_{J=J_{\min}}^{J_{\max}} \left(2J+1
ight) Q(J) = g_{\mathcal{C}},$$

Q(J) nombre de niveaux de moment J

Structure fine d'une configuration

Si le mélange de configurations est négligeable.

Diagonalisation du Hamiltonien

 \Rightarrow obtention des $|\gamma J\rangle$

Faisceaux détaillés

SCORCG

Applications et optimisation

Conclusion

FIGURE: Cu^{8+} [Ar] $3d^24s$. $E_{av} = 0$.

- Moment cinétique total J conservé
- \Rightarrow niveaux $|\gamma J\rangle$ en partie définis par J.
- On a :

$$\sum_{J=J_{\min}}^{J_{\max}} \left(2J+1
ight) Q(J) = g_{\mathcal{C}},$$

Q(J) nombre de niveaux de moment J

Faisceaux de transition dipolaires électriques

Faisceaux de transition dipolaires électriques

Introduction

Faisceaux détaillés

Faisceaux statistiques

SCORCG

Construction

Difficultés

Exemples

Applications et optimisation

Coalescence

Moments d'ordre

Eupérioneen

Conclusion

FIGURE: Faisceau de transition Cu $3d^24s - 3p^53d^24s4d$.

Complexité des faisceaux de transition

Le calcul d'opacités

Introduction Faisceaux détaillés

Faisceaux de

SCORCG

Construction Difficultés Exemples

Applications et optimisation

Coalescence Moments d'ordres supérieurs

Conclusion

Complexité des configurations $(n_k \ell_k^{w_k})_{k=1,q}$

- Q(J) nombre de niveaux d'état de moment cinétique J. $\sum_{J} (2J+1) Q(J) = g_C = \prod_{k=1}^{q} C_{4\ell_k+2}^{w_k}$
- diagonalisation du Hamiltonien : $\mathcal{O}\left(g_{C}^{3}\right)$ par bloc ;
- nombre de raies : $\mathcal{O}(g_C g_{C'})$;
- on peut montrer que la complexité d'une configuration ne dépend pratiquement que de g_C.

Prolifération des niveaux et des raies

Espèce	e k _B T	Transition	$g_{ m initial}$	g_{final}	N _{raies}
Fe VI	20 eV	$3d^3 - 3d^2 4f$	120	630	721
Ge X	40 eV	3d ⁴ 4p–3d ⁴ 5d	1260	2100	22845
Sm III	10 eV	4f ⁶ –4f ⁵ 6d	3003	20 020	25 680
Gd VI	20 eV	4f ⁴ 5d–4f ³ 5d6d	10010	36 400	1 139 91 1
Br IX	40 eV	3d ⁶ 4p4d ² -3d ⁵ 4p4d ² 4f ³	56 700	952 560	213 10 ⁶

Importance de la prise en compte des raies individuelles

Composantes du spectre en opacité, la prise en compte des raies détaillées ont des conséquences importantes :

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux

SCORCG

Construction Difficultés Exemples

Applications et optimisation

Coalescence Moments d'ordres supérieurs

Conclusion

 les spectres en transmission et en émission, outils de diagnostic ;

les opacités moyennes dont dépend le transfert de rayonnement dans les plasmas chauds.

Applications

FCI (LIL/LMJ) transport de rayonnement dans la cavité et les ablateurs CH, Ge et Cu;

FCM (ITER) absorption du tungstène dans le divertor;

Physique stellaire modélisation des corps stellaires (ex. Soleil, Céphéides) très sensible à l'opacité.

Laboratoire diagnostic des plasmas expérimentaux (ex. LULI)

Bilan sur l'approche détaillée

Force, pertinence et limites du calcul détaillé des faisceaux de transition.

Avantages de l'approche détaillée

- structure fine \mapsto raies E1 ;
- très bonne modélisation des faisceaux « poreux » ;
- permet une prise en compte de l'interaction de configuration ;

Le calcul d'opacités

Introduction

DGA

- Faisceaux détaillés
- Faisceaux statistiques

SCORCG

Construction Difficultés

Applications et optimisation

Coalescence Moments d'ordre supérieurs

Conclusion

Approche souhaitable si

- Z faible ou intermédiaire :
 - configurations simples;
 - nombre de configurations réduit.
- Faible température :
 - peu d'états excités ;
 - facteur de Boltzmann
 - \Rightarrow peuplement des niveaux.

Limites

- Configurations complexes :
 - nombre de niveaux ;
 - nombre de raies.
- Haute température :
 - prolifération des configurations ;
 - configurations excitées complexes.

Formalisme UTA¹

Le calcul d'opacités

Introduction

Faisceaux statistiques

SCORCG

Construction

Difficultés

Exemples

Applications et optimisation

Coalescence

Moments d'ordr

supérieurs

Conclusion

UTA = Unresolved Transition Array

- des faisceaux de transition {*f*_{raie}}
 n'ont pas de structure détaillée (coalescence);
- ces faisceaux peuvent être modélisés par une gaussienne ;
- 3 paramètres :
 - I'« aire » ou intensité totale

$$\mu_0 = \sum_{\text{raies}} f_{\text{raie}};$$

Ia moyenne

$$\mu_1 = \frac{1}{\mu_0} \sum_{\text{raies}} f_{\text{raie}} E_{\text{raie}};$$

la dispersion ou variance

$$\mu_2^{(\mathrm{c})} = rac{1}{\mu_0} \sum_{\mathrm{raies}} f_{\mathrm{raie}} \left(E_{\mathrm{raie}} - \mu_1
ight)^2$$

Formalisme UTA :

- calcul exact des moments;
- configurations non détaillées.

FIGURE: UTA et faisceau coalescent

1. BAUCHE-ARNOULT et coll., PRA 20, 2424 (1979)

Séparation spin-orbite

Z = 29

0,08

0.04

0

480

500

1050

950

900 0

950

Energie (eV) 100

Z = 39

540

0.1

0,05

900

Le calcul d'opacités

Faisceaux statistiques

SCORCG

Applications et optimisation

Conclusion

FIGURE: Intégrale de spin-orbite $\sim Z^4$ vs. intégrales coulombiennes $\sim Z$.

520

Énergie (eV)

0	00	DO	\sim
- 5	(.(.)	180	2 ÷
	$\sim \sim$		~~

0,08

0.06

0.04

0,02

170

55

525

500

475

1/2 5/2 9/2

Énergie (eV)

180 190 200 210 220

13/2 17/2

Énergie (eV)

1000

Énergie (eV)

8

1050

12/40

Z = 49

Autres formalismes statistiques²

d'opacités

Faisceaux statistiques

SCORCG

Applications et

optimisation

Conclusion

La méthode UTA

- accélère le calcul des faisceaux de transition ;
- est adapté aux faisceaux coalescents.

Mais est inadapté

 aux cas relativistes (séparation spin-orbite);

Formalisme SOSA (spin-orbit split array)

- Orbitale → sous-couches relativistes ;
- Configuration → SCR (sous-configurations relativistes);
- Faisceaux de transition
 - $\mapsto \text{sous-faisceaux relativistes}$
- \Rightarrow séparation spin-orbite incluse.

Attention au mélange de SCR !

2. C. BAUCHE-ARNOULT et coll., PRA 31, 2248 (1985)

SCORCG

Q. PORCHEROT

CEA, DAM, DIF

Autres formalismes statistiques²

DGA

Le calcul d'opacités

Faisceaux

statistiques

Applications et optimisation

Conclusion

La méthode UTA

- accélère le calcul des faisceaux de transition;
- est adapté aux faisceaux coalescents.

Mais est inadapté

- aux cas relativistes (séparation spin-orbite);
- à un grand nombre de configurations.

Formalisme STA (super-transition array)

- Orbitales → supracouche (regroupement d'orbitales);
- Configurations
 - \mapsto supraconfiguration
- Faisceaux de transition
 - \mapsto suprafaisceaux de transition
- \Rightarrow moins d'entités, moins de transitions

2. BAR-SHALOM et coll., PRA 40, 3183 (1989).

Forces, pertinence et limites des approches statistiques

DGA

Le calcul d'opacités

Forces des approches statistiques

- calculs rapides, y compris pour les configurations complexes ;
- possibilité d'utiliser différents formalismes statistiques ;
- adaptées aux plasmas avec de nombreuses configurations.

Approche détaillée

Approches statistiques

Motivations de l'approche hybride

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

Construction Difficultés Exemples

Applications et optimisation

Coalescence Moments d'ordre supérieurs

Expériences

Conclusion

Approche détaillée

- rendu de toutes les structures du spectre ;
- adaptée aux faisceaux de transition simples ;
- prend en compte la température dans la forme des faisceaux.

Approche statistique

- faible temps de calcul ;
- faisceaux complexes pris en compte ;
- **STA** \supset nombreux UTA.

« Cahier des charges » de notre modèle hybride

- Applicable à l'équilibre thermodynamique local (É.T.L);
- Applicable pour de nombreux éléments ;
- Modéliser l'effet du voisinage ionique ;
- Maîtriser le temps de calcul ;
- Simple d'utilisation et automatique.

Choix des outils pour notre modèle

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

Construction

Difficultés

Applications et optimisation

Coalescence

Moments d'ordre supérieurs

Expérience

- Thermodynamique et calculs statistiques : SCO³
 - mélange de supraconfigurations et de configurations ;
 - approximation de Pauli pour les effets relativistes ;
 - calcul des fonctions d'onde dans la cellule de Wigner-Seitz ;
 - prend en compte la relaxation des orbitales.
- Calculs détaillés avec RCG (Cowan, Los Álamos)⁴
 - code disponible et utilisé depuis plusieurs décennies ;
 - traitement des effets relativistes comme dans SCO;
 - nombreuses options de calcul (ex. passage d'intégrales radiales);
- Approximations
 - interaction de configuration limitée aux SCR ;
 - Fonctions d'onde des (supra)configurations écrantées à l'intérieur des cellules ioniques.
- 3. T. BLENSKI et coll., JQSRT 65, 91 (2000).
- 4. R. D. COWAN, The Theory of Atomic Structure and Spectra, 1981.

Couplage entre SCO et RCG*

Couplage entre SCO et RCG*

Gestion du calcul lié-lié

Fonctions de partition et probabilités des espèces

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

Construction Difficultés Exemples

Applications et optimisation

Coalescence Moments d'ordres supérieurs

Conclusion

La thermodynamique de l'espèce X à la température $k_{\rm B}T = 1/\beta$ est caractérisée par sa fonction de partition

$$\mathcal{U}_X = g_X \, e^{-\beta \, E_X}.$$

X peut être :

- une configuration ;
- une supraconfiguration

Maxwell-Boltzmann (É. T. L.)

Compare les probabilités de deux espèces :

$$\frac{\mathcal{P}(Y)}{\mathcal{P}(X)} = \frac{\mathcal{U}_Y}{\mathcal{U}_X} \left(= \frac{g_X}{g_Y} e^{-\beta(E_Y - E_X)} \right)$$

- Pour une configuration :
 - Non-détaillée :

$$egin{aligned} \mathcal{U}_{\mathcal{C}}^{(\mathrm{S})} &= g_{\mathcal{C}} \, e^{-eta E_{\mathcal{C}}} \ &= \sum_{\gamma J \in \mathcal{C}} (2J+1) \, e^{-eta E_{\mathcal{C}}} \end{aligned}$$

Détaillée :

$$\mathcal{U}_{\mathcal{C}}^{(\mathsf{D})} = \sum_{\gamma J \in \mathcal{C}} (2J+1) \, e^{-eta E_{\gamma J}}$$

Probabilité :
$$\mathcal{P}(C) = \frac{\mathcal{U}_{C}}{\sum_{C'} \mathcal{U}_{C'}}$$

Fonctions de partition et probabilités des espèces

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

Construction Difficultés Exemples

Applications et optimisation

Coalescence Moments d'ordres supérieurs

Conclusion

La thermodynamique de l'espèce X à la température $k_{\rm B}T = 1/\beta$ est caractérisée par sa fonction de partition

$$\mathcal{U}_X = g_X \, e^{-\beta \, E_X}.$$

X peut être :

- une configuration ;
- une supraconfiguration

Maxwell-Boltzmann (É. T. L.)

Compare les probabilités de deux espèces :

$$\frac{\mathcal{P}(Y)}{\mathcal{P}(X)} = \frac{\mathcal{U}_Y}{\mathcal{U}_X} \left(= \frac{g_X}{g_Y} e^{-\beta(E_Y - E_X)} \right)$$

- Pour une configuration :
 - Non-détaillée :

$$\mathcal{U}_{\mathcal{C}}^{(\mathsf{S})} = g_{\mathcal{C}} \, e^{-eta E_{\mathcal{C}}} \ = \sum_{\gamma J \in \mathcal{C}} (2J+1) \, e^{-eta E_{\mathcal{C}}}$$

Détaillée :

$$\mathcal{U}_{C}^{(\mathsf{D})} = \sum_{\gamma J \in C} (2J+1) \, e^{-eta E_{\gamma J}}$$

Probabilité :
$$\mathcal{P}(C) = \frac{\mathcal{U}_{C}^{(?)}}{\sum_{C'} \mathcal{U}_{C'}^{(?)}}$$

Convexité $\Rightarrow \mathcal{U}_{C}^{(D)} > \mathcal{U}_{C}^{(S)}$
à température finie

Fonctions de partition et probabilités des espèces

Problèmes :

DGA

Le calcul d'opacités

Construction Difficultés

Applications et optimisation

Conclusion

- (D) = ensemble des configurations d'où partent des DTA ;
- Des UTA/SOSA peuvent partir des configurations de (D);
- Des autres configurations ne partent que des UTA/SOSA.

Jeu détaillé

Fonctions de partition :

pour une configuration :

$$\mathcal{U}_{\mathcal{C}} = \left\{ egin{array}{ll} \mathcal{U}_{\mathcal{C}}^{(\mathsf{S})} \; ext{si} \; \mathcal{C}
ot \in (\mathsf{D}) \ \mathcal{U}_{\mathcal{C}}^{(\mathsf{D})} \; ext{si} \; \mathcal{C} \in (\mathsf{D}) \end{array}
ight.$$

pour l'ensemble :

$$\mathcal{U} = \mathcal{U}^{(\mathsf{D})} = \sum_{\mathcal{C} \in (\mathsf{D})} \mathcal{U}^{(\mathsf{D})}_{\mathcal{C}} + \mathcal{U}^{(\mathsf{S})}_{\mathcal{C}}$$

Jeu statistique

Fonctions de partition :

pour une configuration

$$\mathcal{U}_{\mathcal{C}} = \mathcal{U}_{\mathcal{C}}^{(\mathsf{S})} = \boldsymbol{g}_{\mathcal{C}} \, \boldsymbol{e}^{-eta \mathcal{E}_{\mathcal{C}}}$$

pour l'ensemble

$$\mathcal{U} = \mathcal{U}^{(S)} = \sum_{C} \mathcal{U}^{(S)}_{C}$$

DGA

Le calcul d'opacités

Construction Difficultés

Problèmes posés par l'approche hybride

Fonctions de partition et probabilités des espèces

- (D) = ensemble des configurations d'où partent des DTA;
- Des UTA/SOSA peuvent partir des configurations de (D);
- Des autres configurations ne partent que des UTA/SOSA.

Jeu détaillé

Problèmes :

Fonctions de partition :

pour une configuration :

$$\mathcal{U}_{\mathcal{C}} = \left\{ egin{array}{l} \mathcal{U}_{\mathcal{C}}^{(\mathsf{S})} \; \mathsf{si} \; \mathcal{C}
ot \in (\mathsf{D}) \ \mathcal{U}_{\mathcal{C}}^{(\mathsf{D})} \; \mathsf{si} \; \mathcal{C} \in (\mathsf{D}) \end{array}
ight.$$

pour l'ensemble :

$$\mathcal{U} = \mathcal{U}^{(\mathsf{D})} = \sum_{C \in (\mathsf{D})} \mathcal{U}^{(\mathsf{D})}_{C} + \mathcal{U}^{(\mathsf{S})}_{C}$$

Jeu statistique

Fonctions de partition :

pour une configuration

$$\mathcal{U}_{\mathcal{C}} = \mathcal{U}_{\mathcal{C}}^{(\mathsf{S})} = \boldsymbol{g}_{\mathcal{C}} \, \boldsymbol{e}^{-eta \mathcal{E}_{\mathcal{C}}}$$

pour l'ensemble

$$\mathcal{U} = \mathcal{U}^{(S)} = \sum_{C} \mathcal{U}^{(S)}_{C}$$

Comment appliquer les jeux?

Conclusion

Applications et optimisation

Arbitrage sur les propriétés à conserver

Choix des équations utilisées dans l'approche hybride :

Le calcul d'opacités

SCORCG

Difficultés

Applications et optimisation

Conclusion

Jeu de probabilités Jeu statistique Jeu statistique Jeu statistique

Niveau \subset configuration :

Propriétés à conserver

- la normalisation des probabilités : $\sum_{X} \mathcal{P}(X) = 1$;
- dépendance en $k_{\rm B}T$ la forme des faisceaux détaillés :
- Maxwell-Boltzmann entre les configurations ;
- conservation de l'opacité hors région spectrale détaillée ;
- mêmes probabilités d'espèces d'une approche à l'autre.

Arbitrage sur les propriétés à conserver

Choix des équations utilisées dans l'approche hybride :

Le calcul d'opacités

SCORCG

Difficultés

Applications et optimisation

Conclusion

Jeu de probabilités

Niveau \subset configuration :

 $\frac{\left(2J+1\right)e^{-\beta\left(E_{\gamma J}-E_{C}\right)}}{\mathcal{U}_{C}^{\left(D\right)}}$

Propriétés à conserver

- la normalisation des probabilités : $\sum_{X} \mathcal{P}(X) = 1$;
- dépendance en $k_{\rm B}T$ la forme des faisceaux détaillés ;
- Maxwell-Boltzmann entre les configurations ;
- conservation de l'opacité hors région spectrale détaillée ;
- mêmes probabilités d'espèces d'une approche à l'autre.

Arbitrage sur les propriétés à conserver

Choix des équations utilisées dans l'approche hybride :

Le calcul d'opacités

SCORCG

Difficultés

Applications et optimisation

Conclusion

 $\frac{\left(2J+1\right)e^{-\beta\left(E_{\gamma J}-E_{C}\right)}}{\mathcal{U}_{C}^{\left(D\right)}}$

Niveau \subset configuration :

Propriétés à conserver

- la normalisation des probabilités : $\sum_{X} \mathcal{P}(X) = 1$;
- dépendance en $k_{\rm B}T$ la forme des faisceaux détaillés ;
- Maxwell-Boltzmann entre les configurations ;
- conservation de l'opacité hors région spectrale détaillée ;
- mêmes probabilités d'espèces d'une approche à l'autre.

Arbitrage sur les propriétés à conserver

Choix des équations utilisées dans l'approche hybride :

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

Construction

Exemples

Applications et optimisation

- Coalescence Moments d'ordres supérieurs Expériences
- Conclusion

Propriétés à conserver

- la normalisation des probabilités : $\sum_X \mathcal{P}(X) = 1$;
- dépendance en *k*_B*T* la forme des faisceaux détaillés ;
- Maxwell-Boltzmann entre les configurations ;
- conservation de l'opacité hors région spectrale détaillée ;

mêmes probabilités d'espèces d'une approche à l'autre.

Approche retenue

Limites numériques et gestion des ressources

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

Construction

Difficultés

Applications et optimisation

- Coalescence
- Moments d'ord
- supérieurs

Conclusion

- 20 (supra)couches dans SCO;
- $Q(J) \le 4000;$
- 800 000 raies / faisceau;
- 8 orbitales ouvertes / faisceau;
- $w_k \le 2 \text{ si } \ell_k \ge 4^a$;
- ⇒ critères rudimentaires pour ne pas détailler des faisceaux trop complexes.
 - Gestion des ressources paramétrable :
 - le nombre de configurations ;
 - la dernière orbitale individuelle^b;
 - le traitement des raies^c;
 - ▶ le nombre de raies / faisceau.
- a. Algèbre de Racah

b. Toutes les autres orbitales sont regroupées dans une unique supracouche-chapeau.

c. J. ABDALLAH JR et coll., HEDP 3, 309 (2007).

Calculs d'opacité avec au plus 200 000 raies par faisceau

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

- Construction
- Difficultés
- Exemples

Applications et optimisation

- Coalescence
- Moments d'ordr
- supérieurs
- Conclusion

FIGURE: Opacité de la couche K de l'aluminium (Z = 13) à 37 eV et 10 mg/cm³ avec 200 (supra)configurations.

Calculs d'opacité avec au plus 200 000 raies par faisceau

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

Construction

Difficultés

Exemples

Applications et optimisation

Coalescence

Moments d'ordr

supérieurs

Conclusion

FIGURE: Opacité de la couche *L* du germanium (Z = 32) à 43 eV et 25 mg/cm³ avec 500 (supra)configurations. La couche 3*d* est à moitié remplie.

Conclusion

Exemples de calculs hybrides

Nombre de raies

FIGURE: Somme des intensités des faisceaux ayant même nombre de raies dans le plasma d'aluminium.

Conclusion

Exemples de calculs hybrides

Nombre de raies

FIGURE: Somme des intensités des faisceaux ayant même nombre de raies dans le plasma de germanium.

Spectre d'aluminium obtenu sur HELEN⁵

Le calcul d'opacités

Introduction Faisceaux détaillé: Faisceaux statistiques

SCORCG

Construction

Difficultés

Exemples

Applications et optimisation

Coalescence

Moments d'ordr

supérieurs

Conclusion

FIGURE: Transmission de l'aluminium dans les conditions de l'expérience de Davidson, $T = 37 \text{ eV}, \rho = 0,01 \text{ g/cm}^3 \text{ et } \rho l = 54 \text{ } \mu \text{g/cm}^2$.

5. S. J. DAVIDSON et coll. Appl. Phys. Lett. 52, 847 (1987),

SCORCG Q. PORCHEROT CEA, DAM, DIF	Soutenance 17/1/2012	24/40

Spectre d'aluminium obtenu sur HELEN⁵

Introduction Faisceaux déta

SCORCG

Construction

Difficultés

Exemples

Applications et optimisation

Coalescence

Moments d'ordr

supérieurs

Conclusion

FIGURE: Transmission de l'aluminium dans les conditions de l'expérience de Davidson, $T = 37 \text{ eV}, \rho = 0,01 \text{ g/cm}^3 \text{ et } \rho l = 54 \text{ } \mu \text{g/cm}^2$.

5. S. J. DAVIDSON et coll. Appl. Phys. Lett. 52, 847 (1987),

SCORCG Q. PORCHEROT CEA, DAM, DIF	Soutenance 17/1/2012	24/40

Spectre de cuivre obtenu au LULI⁶

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

Construction

Difficultés

Exemples

Applications et optimisation

Coalescence

Moments d'ordr

superieurs

Conclusion

FIGURE: Transmission du cuivre à 16 eV et 0,005 g/cc, masse surfacique $\rho I = 20 \ \mu g/cm^2$

6. G. LOISEL ET COLL. High Energy Density Physics 5, 173 (2009).

SCORCG	Q. PORCHEROT	CEA, DAM, DIF	Soutenance 17/1/2012	25/40
		- 1 1		

DGA Le calcul d'opacités

SCORCG

Exemples

Applications et

optimisation

Conclusion

Exemples de calculs hybrides

Spectre de fer obtenu sur installation Z-pinch⁷

FIGURE: Transmission du fer à 155 eV et 58 mg/cm³.

7. J. E. BAILEY et coll., *PRL* 99, 265002(4) (2007).

SCORCG

Effet de l'élargissement physique sur un faisceau

Le calcul d'opacités

Introduction Faisceaux détaillé: Faisceaux statistiques

SCORCG

Construction Difficultés

Applications et optimisation

- Coalescence
- Moments d'ordre supérieurs
- Conclusion

- naturel (lorentzien, très faible);
- Doppler (gaussien, faible);
- Stark (gaussien ?);
- collisionnel (lorentzien);
- ⇒ convolution lors du calcul de l'opacité (profil de Voigt).
- Erreur instrumentale :
- ⇒ convolution lors du calcul de la transmission (gaussien).
- Coalescence :
 - élargissement élevé
 - ⇒ coalescence des structures détaillées ;
 - approche quantitative
 critère ?

Aspect quantitatif de la coalescence des faisceaux

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

Construction Difficultés Exemples

Applications et optimisation

Coalescence

Moments d'ordre supérieurs

Conclusion

$\chi = \int_{-\infty}^{+\infty} \frac{(f_{(S)}(h\nu) - f_{(D)}(h\nu))^2}{f_{(S)} + f_{(D)}} dh\nu$

Indicateur de forme

$$f_{(S)}(h\nu) = f_{CC'} \Phi_{CC'}(h\nu)$$

$$f_{(D)}(h
u) = \sum_{
m raie} rac{2J+1}{g_C} f_{
m raie} \Phi_{
m raie}(h
u)$$

Propriétés

- χ petit
 - \Rightarrow faisceaux proches ;

χ grand

- \Rightarrow faisceaux différents ;
- les « ailes » sont aussi prises en compte.

FIGURE: Faisceaux de transition à des élargissements tels que $\chi = 0, 02$.

SCORCG

Loi empirique sur la coalescence des faisceaux

DGA Le calcul d'opacités

Élargissements pour lesquels $\chi \simeq 0,02$

Ζ	Transition	N _{raies}	Ws	WG WS	$\frac{W_{\rm L}}{W_{\rm S}}$
13	2p ⁴ 3p-2p ³ 3s3p	778	4,32 eV	0,459	0,282
29	3d² -3d 4f	81	1,82 eV	0,860	0,676
	3d ⁵ 4p-3d ⁵ 5d	30969	0,883 eV	1,023	0,702
	3d ⁵ 4p-3d ⁴ 4p ²	42579	2,46 eV	0,059	0,026
	3p ⁵ 3d ⁷ -3p ⁴ 3d ⁷ 4d	111240	7,64 eV	0,394	0,198
64	4f ⁴ -4f ³ 6d	14087	2,70 eV	0,167	0,074
	4f ⁴ 5d -4f ³ 5d ²	524362	2,20 eV	0,173	0,030
	4f ⁵ 5d -4f ⁵ 6p	687330	0,903 eV	0,852	0,530

SCORCG Construction Difficultés Exemples

Applications et optimisation

- Coalescence
- Moments d'ordres supérieurs

Conclusion

Critère a posteriori Faisceau coalescent quand :

 $\chi \leq \mathbf{0}, \mathbf{02}$

Élargissements en jeu :

- Statistique w_S;
- Gaussien w_G;
- Lorentzien w_L.

Loi empirique sur la coalescence des faisceaux

DGA Le calcul d'opacités

Ζ	Transition	N _{raies}	Ws	W _G W _S	$\frac{W_{\rm L}}{W_{\rm S}}$
13	2p ⁴ 3p-2p ³ 3s3p	778	4,32 eV	0,459	0,282
29	3d² -3d 4f	81	1,82 eV	0,860	0,676
	3d⁵4p-3d⁵5d	30969	0,883 eV	1,023	0,702
	3d ⁵ 4p-3d ⁴ 4p ²	42579	2,46 eV	0,059	0,026
	3p ⁵ 3d ⁷ -3p ⁴ 3d ⁷ 4d	111240	7,64 eV	0,394	0,198
64	4f ⁴ -4f ³ 6d	14087	2,70 eV	0,167	0,074
	4f ⁴ 5d -4f ³ 5d ²	524362	2,20 eV	0,173	0,030
	4f ⁵ 5d-4f ⁵ 6p	687330	0,903 eV	0,852	0,530

SCORCG Construction Difficultés Exemples

Applications et optimisation

- Coalescence
- Moments d'ordre supérieurs

Conclusion

Condition suffisante de convergence UTA - DTA ($\chi \leq 0, 02$) :

- Iorsque $w_{\rm G}$ + 1,5 $w_{\rm L} \gtrsim w_{\rm S}$;
- lorsque $2w_{\rm G} + 3w_{\rm L} \gtrsim w_{\rm S}$ sauf si :
 - le faisceau a peu de raies (moins de 1000);
 - ▶ il est de la forme $(\ell^w \ell' \ell^w \ell'')$;

Une description statistique plus précise des faisceaux⁸

La distribution des raies dans un faisceau de transition non séparé n'est pas gaussienne.

8. J.-C. PAIN et coll., HEDP 5, 294 (2009).

SCORCG

Une description statistique plus précise des faisceaux⁸

La distribution des raies dans un faisceau de transition non séparé n'est pas gaussienne.

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

Construction

Exemples

Applications et optimisation

Coalescence

Moments d'ordres supérieurs

Conclusion

$$\mu_n^{(c)} = \frac{\sum_{\text{raies}} (E_{\text{raies}} - \mu_1)^n \cdot f_{\text{raies}}}{\sum_{\text{raies}} f_{\text{raies}}}$$

$$n = 2 \quad \text{variance} \quad \sigma^2 = \mu_2^{(c)}$$

$$n = 3 \quad \text{asymétrie} \quad \alpha_3 = \frac{\mu_3^{(c)}}{\sigma^3}$$

$$n = 4 \quad \text{kurtosis} \quad \alpha_4 = \frac{\mu_4^{(c)}}{\sigma^4}$$

Ge XII $3p^5 3d^5 - 3p^5 3d^4 4p$

8. J.-C. PAIN et coll., HEDP 5, 294 (2009).

SCORCG

Distribution des moments d'ordres 3 et 4

Exemple de l'aluminium à 40 eV sur 100 configurations

DGA

Introduction Faisceaux détaillé: Faisceaux statistiques

SCORCG

Construction

Exemples

Applications et optimisation

Coalescence

Moments d'ordres supérieurs

Expériences

Coalescence des distributions statistiques à l'ordre 4

Le calcul

SCORCG

Construction

Exemples

Applications et optimisation

Coalescence

Moments d'ordres supérieurs

Expériences

Conclusion

- kurtosis très élevé ;
- coalescence :
 - difficile à l'ordre 2 ;
 - facile à l'ordre 4.

Gd [Xe]4f⁵5d-[Xe]4f⁵6p

- Moments :
 - α₃ = 0, 5876;

Coalescence des distributions statistiques à l'ordre 4

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

Construction Difficultés Exemples

Applications et optimisation

Coalescence

Moments d'ordres supérieurs

- kurtosis très élevé ;
- coalescence :
 - difficile à l'ordre 2 ;
 - facile à l'ordre 4.

Coalescence des distributions statistiques à l'ordre 4

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

Construction Difficultés Exemples

Applications et optimisation

Coalescence

Moments d'ordres supérieurs

Conclusion

Faisceaux $\ell^w \ell' - \ell^w \ell''$

- kurtosis très élevé ;
- coalescence :
 - difficile à l'ordre 2 ;
 - facile à l'ordre 4.

Intérêt de l'ordre 4

Faisceaux complexes : convergence à élargissement réduit. Il y a des exceptions !

Interprétation d'expériences

Principe de la transmission et schéma expérimental

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

- Construction
- Difficultés
- Exemples

Applications et optimisation

- Coalescence
- Moments d'ordre
- Expériences

Conclusion

FIGURE: Dispositif expérimental pour la spectroscopie plasma.

Interprétation d'expériences

Transmission de l'aluminium 9

DGA

Le calcul d'opacités

Introduction Faisceaux détaillé Faisceaux statistiques

SCORCG

Construction

Exemples

Applications et optimisation

Coalescence

Moments d'ordro

superieurs Expériences

Conclusion

FIGURE: Transmission de l'aluminium dans les conditions de l'expérience d'Eidmann , $\rho = 0,01 \text{ g/cm}^3$ et $\rho l = 30 \ \mu \text{g/cm}^2$.

9. K. EIDMANN et coll., Europhys. Lett. 44[4], 459 (1998)

SCORCG	O PORCHEROT	CEA DAM DIE
3001100	Q. I ONGHENOT	OLA, DAW, DI

Interprétation d'expériences

Transmission de l'aluminium 9

SCORCG

Construction

Difficultes

Applications et optimisation

Coalescence

Moments d'ordr

superieurs Expériences

Conclusion

FIGURE: Transmission de l'aluminium dans les conditions de l'expérience d'Eidmann , $\rho = 0,01$ g/cm³ et $\rho l = 30 \ \mu$ g/cm².

9. K. EIDMANN et coll., Europhys. Lett. 44[4], 459 (1998)

	SCORCG	Q. PORCHEROT	CEA, DAM, DIF
--	--------	--------------	---------------

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

Construction

Difficultés

Exemples

Applications et optimisation

Coalescence

Moments d'ordr

Expériences

Conclusion

Interprétation d'expériences

Bromure de sodium à environ 40 eV 10

FIGURE: Transmission à kT = 42 eV et $\rho = 0,01$ g/cm³. Comparaison de SCO et SCORCG avec l'expérience.

10. J. BAILEY et coll., JQSRT 81, 31 (2003)

000	PCC	
300	nua	

DGA

Le calcul d'opacités

SCORCG

Interprétation d'expériences

Bromure de sodium à environ 40 eV 10

Applications et

Coalescence

Moments d'ordr

Expériences

Conclusion

FIGURE: Transmission avec gradient. Comparaison de SCO et SCORCG avec l'expérience.

10. J. BAILEY et coll., JQSRT 81, 31 (2003)

SCORCG

Q. PORCHEROT

CEA, DAM, DIF

Conclusion et perspectives

Apport de la thèse

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

Construction Difficultés

Applications et optimisation

- Coalescence Moments d'ord
- supérieurs
- Expériences

- Nous voulions élaborer une méthode pour :
 - introduire des faisceaux détaillés dans un calcul statistique ;
 - compléter un calcul détaillé par des faisceaux statistiques.
- L'approche hybride que nous avons développée s'applique :
 - aux plasmas de corps purs chauds et denses ;
 - à l'équilibre thermodynamique local.
- Mise en œuvre dans le code SCORCG, elle a permis :
 - de calculer en ligne l'opacité des plasmas chauds de la manière la plus autonome possible;
 - un calcul d'opacité efficace pour les plasmas d'éléments légers et intermédiaires;
 - de restituer des structures d'absorption incalculables par des méthodes statistiques;
 - de tester certains aspects des approches statistiques ;
 - de proposer des interprétations d'expériences.

Conclusion et perspectives

Perspectives

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

Construction Difficultés

Applications et optimisation

- Coalescence Moments d'ordr
- supérieurs
- Experiences

Conclusion

- Axes d'amélioration pour l'approche hybride :
 - condition nécessaire pour le critère de coalescence ;
 - la prise en compte de l'interaction de configuration ;
 - l'amélioration du calcul des faisceaux statistiques à basse température ;
 - la mise en œuvre d'algorithmes permettant le calcul purement statistique des moments d'ordre 3 et 4;
 - l' « extraction »des configurations simples à l'intérieur des supraconfigurations;
- Autres axes d'amélioration du calcul d'opacité :
 - la sélection des (supra)configurations nécessaires au calcul;
 - le calcul des profils de raies ;
 - le modèle de matière.

Remerciements

Le calcul d'opacités

Introduction Faisceaux détaillés Faisceaux statistiques

SCORCG

- Constructio Difficultés
- Exemples

Applications et optimisation

- Coalescence
- Moments d'ordre
- Expériences
- Conclusion

- Encadrement de la thèse :
 - Laboratoire de physique atomique des plasmas au CEA/DAM/DIF;
 - CEA/DSM/IRAMIS (directeur de thèse).

Collaborateurs :

- Les théoriciens d'IRAMIS ;
- les expérimentateurs d'IRAMIS et du LULI;
- Ie service d'Astrophysique du CEA;
- le groupe « plasmas chauds » du Laboratoire Aimé Cotton

Le Corps des Ingénieurs de l'Armement (financement).

Domaines de l'opacité du fer

Construction d'un gradient de température

FIGURE: Transmission à kT = 36 eV et $\rho = 0,01$ g/cm³. Comparaison de SCO et SCORCG avec l'expérience.

11. J. BAILEY et coll., JQSRT 81, 31 (2003)

SCORCG	Q. PORCHEROT	CEA, DAM, DIF	Soutenance 17/1/2012	40/40

Construction d'un gradient de température

FIGURE: Transmission à kT = 42 eV et $\rho = 0,01$ g/cm³. Comparaison de SCO et SCORCG avec l'expérience.

11. J. BAILEY et coll., JQSRT 81, 31 (2003)

SCORCG	Q. PORCHEROT	CEA, DAM, DIF	Soutenance 17/1/2012	40/40

Construction d'un gradient de température

FIGURE: Transmission à kT = 48 eV et $\rho = 0,01 \text{ g/cm}^3$. Comparaison de SCO et SCORCG avec l'expérience.

11. J. BAILEY et coll., JQSRT 81, 31 (2003)

SCORCG	Q. PORCHEROT	CEA, DAM, DIF	Soutenance 17/1/2012	40/40

Construction d'un gradient de température

FIGURE: Transmission mélangeant les trois températures. Comparaison de SCO et SCORCG avec l'expérience.

11. J. BAILEY et coll., JQSRT 81, 31 (2003)

SCORCG	Q. PORCHEROT	CEA, DAM, DIF	Soutenance 17/1/2012

