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Industrial context 

Many of the world’s nations, both industrialized and developing, are driving the growth of 

nuclear energy. The Generation IV International Forum (GIF) is undertaking necessary research 

and development activities (R&D) to build the next generation of innovative nuclear energy 

systems. That can replace today’s nuclear plants and transition nuclear energy into the long term. 

Generation IV nuclear energy systems include the nuclear reactor, its energy conversion 

systems, as well as the necessary facilities for the entire fuel cycle from mineral extraction to final 

waste disposal. 

Six issues are currently under consideration: the new generation reactors have to meet 

criteria improvements such as safety and reliability of facilities, nuclear non-proliferation, and 

waste minimization, while remaining profitable and competitive economically. The fast reactor 

sodium-cooled liquid (SFR) is the reference technology for the fourth-generation reactor program. 

In this context, many studies are directed toward the development of innovative metallic 

materials, fulfilling the design requirements for fission nuclear reactors. Among these are oxide 

dispersion strengthened (ODS) alloys obtained by powder metallurgy, which are of interest as 

structural materials due to their creep rupture strength at high temperature and their resistance to 

severe neutron exposure, compared to the, e.g. conventional ferritic steels. For new fast-neutron 

sodium-cooled Generation IV reactors, the candidate cladding materials for the very strong rates 

of combustion are the ferritic and martensitic ODS grades. Classically, the cladding tube is cold 

formed by a sequence of cold pilger rolling passes with intermediate heat treatments. 

It is in this context that Valinox Nucléaire, CEMEF (Center for Material Forming) and CEA 

(French Alternative Energies and Atomic Energy Commission), gather their efforts and expertise 

to achieve this ambitious goal. For that purpose, the French National Research Agency (ANR) 

Stratotube project is a current R&D program within the GIF context. The challenge of this ANR 

project is to demonstrate the industrial feasibility of thin cladding ODS steel tubes manufacturing.  

To produce ODS steel tubes, the Stratotube partners decided to proceed in stages by 

forming tubes: 

i) at the laboratory scale 

ii) at the industrial scale 

This study focuses on an accurate comprehension of the mechanical behavior of ODS 

steel tubes under the complex solicitation of the pilgering process at both laboratory and 

industrial scales. Experiments as well as numerical simulations will be used for this purpose. The 

final objective is the numerical optimization of the process, looking in particular at the cracking 

risk. 
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Fuel cladding tube materials 

One of the solutions that may be considered for fuel cladding (Fig. 1), is that for which the 

widest operational feedback is available. Zirconium alloys are currently employed in pressurized-

water reactors (PWR), and austenitic steels in fast reactors (FR). These materials do however 

carry a number of drawbacks: the former may not be used beyond 400°C, while use of the latter 

is not to be considered at high doses, owing to their swelling under irradiation (see Fig. 2). There 

is one other major steel class for which behavior under irradiation is well known: ferritic–

martensitic steels. These have many advantages, with respect to fuel element cladding. Indeed, 

as may likewise be seen from Fig. 3, they exhibit outstanding dimensional stability under 

irradiation due to their body-centered cubic crystallographic structure, and good corrosion 

resistance in a variety of environments. When strengthened by a nanometric oxide dispersion [de 

Carlan et al., 2009], [Inoue et al., 2007], their mechanical strength is greatly enhanced, even at 

very high temperature (1000-1100°C). Materials of t his type are commonly known as oxide-

dispersion-strengthened (ODS) materials. In ODS steels, fine oxides block the displacement of 

dislocations, which are responsible for the material plastic deformation. 

Figure 1. Fuel cladding tube [Dubuisson et al., 2011a]. 

Figure 2. Mechanical performance of several materials as a function of neutron dose and temperature. Oxyde dispersion 

hardening is effective even over 973 K [Inoue et al., 2007]. 
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Figure 3. Dimensional evolution, as a function of the dose applied on metallic cladding structures in fuel assemblies used in the 

core of the Phénix fast reactor [Iracane et al., 2006]. 

Austenitic steels of the 316Ti type have seen widespread employment, in the past, as 

cladding “hexagonal” tube material. They have been replaced by an austenitic variant, 15/15Ti, 

exhibiting slightly greater swelling resistance (see Fig. 3). ODS steels are used for high 

temperature structural applications and ferritic-martensitic steels have been considered as 

candidate cladding and structural materials for the Generation-IV fast reactors. 

ODS fuel cladding tube forming process 

ODS cladding tubes are manufactured by following three main steps [Inoue et al., 2007], 

[Ratti 2009], [Olier et al., 2009]:  

1) Mechanical alloying of the powders. 

2) Consolidation of the material usually using hot-extrusion. 

3) Manufacturing by means of cold-rolling passes punctuated by intermediate softening 

heat treatments. 

Figs. 4 and 5 set out the schematic for iron-base ODS cladding tube production [Ratti 

2009], [Inoue et al., 2007]. First, metal or prealloyed powders, with a few tens of micrometers in 

diameter, are mixed with a fine yttrium oxide powder, with particle sizes ranging from about 10 

nanometers to around 10 micrometers, oxide volume accounting for some 1% of total material 

volume. These powders are then co-ground, through a succession of mechanical shocks, inside a 

mill holding grinding balls of various sizes. During this delicate step, which, to a large extent, 

determines material ultimate quality, the powders are successively work-hardened, welded 

together, fractured again, welded again and so on. Next, the ground powder is then recovered, 

and placed in a mild steel container, prior to be carried out using hot extrusion forming, or hot 

isostatic pressing. This operation allows consolidation of the material, i.e. it makes it possible to 

obtain, due to the pressure and temperature involved, a material that is dense, free of porosity, 

and exhibiting a density equivalent to that of a fusion-obtained material [Olier et al., 2009]. During 
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material consolidation, the dissolved oxides may precipitate again, forming a fine, homogeneous 

dispersion in the matrix. Depending on consolidation parameters, quality of pulverization, and 

powder chemical composition, part of the precipitates will be of nanometer size.  

�

Figure 4. Powder metallurgy for the production of ODS tube from [Ratti 2009].

Subsequently, the cladding tube is cold formed by a sequence of cold pilger rolling 

passes with intermediate heat treatments. It is on this last stage that this work is focused. The 

aim is to simulate numerically the forming process.

Figure 5. Principle schematic of ODS alloy fabrication through pilgering from [Inoue et al.,  2007]. 

Cold pilgering process 

The cold pilgering process is a widespread seamless tube forming operation where the 

tube is repeatedly rolled over a fixed mandrel by grooved dies. During this process the inner 
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radius and wall thickness are both progressively reduced. After each back and forth movement 

(stroke) of the dies, the raw tube is advanced by a small distance and rotated around its axis. It is 

important that the rotation angle is not multiple of π  so as to avoid tube polygonalization. A 

material volume element undergoes typically several dozens of strokes (see Fig. 6) before 

deformation is completed [Montmitonnet and Aubin 2008]. 

�

Figure 6. . Axial stress history in pilgering conditions [Montmitonnet and Aubin 2008]. 

This special forming process is necessary for numerous applications, and cost-effective 

for many others, for a variety of reasons [Nerino et al., 2011]: 

• The cross-section reductions attained are higher than those achieved by other 

processes. Because the cold pilgering process applies pressure from all sides, it can 

achieve reductions up to 90 percent for copper; 80 percent for stainless steel, nickel 

alloys, and Zircaloy; and 75 percent for high-strength titanium alloys. 

• The large cross-section reductions help to limit process-related conversion costs, 

because cold pilgering eliminates additional processes such as cleaning, annealing, 

pickling, cutting, handling, and straightening between drawing operations. 

• The homogenizing material flow in a circumferential direction facilitates substantial 

reductions in eccentricity. Experience has shown that the higher the eccentricity of the 

starting tube, the greater is the improvement in eccentricity by cold pilgering. 

• The sequence of forming steps improves roundness, stress homogeneity, and 

surface roughness. Surface defect depths decreases in proportion to the amount of the 

wall thickness reduction. 

• During cold pilgering, practically no material loss occurs. Only the end faces of the 

finished tubes are out of shape and have to be cut off. 

• The cold pilgering process also tends to result in a high Q  factor, which is the 

ratio of the percentages of wall reduction to mean diameter reduction. This is vital in 
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zirconium cladding because it increases its durability. For comparison, a Q  factor greater 

than 1 is favorable, and a Q  factor above 2.5 is very desirable. 

The two most common ways to cold-reduce tubes by compression are VMR1 and HPTR2

cold pilgering mills. Although both VMR and HPTR dies reduce tubes via compression rather than 

tension, the complexity of tooling design and manufacturing varies greatly between these 

machine types. The variable cross-sectional groove of a VMR die requires special expertise and 

equipment to be designed and built, as does the matching mandrel (conical mandrel). By 

contrast, the cams, cylindrical mandrels, and constant cross-sectional grooves of HPTR dies are 

relatively simpler to design and build (see Fig. 7). This allows the production on conventional 

machine tools, which gives HPTR die owners much more flexibility on sourcing tooling and 

modification of tool design. 

Figure 7. The variable groove on the VMR die (left) requires complex design and manufacturing technology for both dies and 

mandrel. By contrast, the simple, constant-cross-section HPTR die (right) and similarly simple cams and mandrels allow 

themselves to conventional manufacturing technologies [Nerino et al., 2011]. 

HPTR dies run on the same concept as dough rolling, whereby the rolling pin is pressed 

down into the dough as it is rolled forward, stretching and flattening the dough at the same time. 

The HPTR dies act as the rolling pin, the cylindrical mandrel acts as the table, and the cams act 

as the baker's hands (see Fig. 8). Three dies, each paired with a profiled cam, are arranged in a 

triangle around the tube in what is called the separator, which is itself contained within the 

housing. The tube's internal diameter is lubricated before loading, and a cylindrical mandrel is 

inserted. 

���������������������������������������� �������������������
1 Vertikaler Massenausgleich Ringwalzei in german or mill by offsetting vertical grooves of the masses
2 High Pressure Tube Reducer
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Figure 8. The principle of the HPTR mill's rolling process is based on three components: cams, dies, and mandrel (just one of 

the three dies is shown here for clarity) [Nerino et al., 2011]. 

The mill cold-works the tube using a reciprocating motion, following a cycle of four basic 

steps (see Fig. 9). In step 1, the housing (roller cage) moves forward. This causes the profiled 

cams (support strap) to push the dies (roller) into the tube, compressing it. In step 2, the housing 

moves back to the start position, with the dies following the cam until they are once again 

removed from the tube. In step 3, the tube and mandrel rotate. In step 4, the entire tube is 

advanced forward slightly. The mandrel is fixed to the rear of the machine and does not advance 

with the tube. HPTR dies also are capable of producing tubing in special shapes. Among the 

possibilities are tubes with triangular, square, and hexagonal cross sections. 

Figure 9. HPTR mill principle of operation [Nerino et al., 2011]. 

On the other hand, in VMR cold pilgering, the external surface is shaped by two dies with 

non-axisymmetric grooves, located in a back-and-forth-moving. The die rotation and translation 

are synchronized by a rack-and-pinion system (see Fig. 10), giving roughly a rolling-without-

sliding movement pressing the tube between the die groove and the mandrel. The internal 

surface is calibrated by a horizontal axisymmetric conical mandrel, held by a mandrel rod. The 

��
���

��	���
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evolution of its diameter along the rolling direction ("profile") is one of the parameters controlling 

the final tube quality. The conjugation of the mandrel profile and the die groove profile controls 

the evolution of diameter and thickness of the tube. After each back-and-forth movement of the 

dies, a small length of the tube is fed forward few millimeters and rotated. 

Figure 10. VMR mill principle of operation [Strehlau 2006]. 

While HPTR dies are simpler in design and operation than VMR dies (Fig. 11), they 

cannot match the output rates of VMR. As such, modern, high-speed VMR pilger machines have 

largely taken over the role of HPTR pilger machines in cladding production, as well as other 

products for which production speed and quantity are important. Sometimes, the HPTR pilger 

machine is employed in the later cold work passes. 

Figure 11. The grooves of VMR dies have a varying cross-section (left). HPTR die (right) has grooves with a single, constant 

cross section [Nerino et al., 2011]. 

Fig. 12 displays a comparison between the two cold pilgering processes, i.e. VMR and 

HPTR. 
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Figure 12. VMR and HPTR pilgering process comparison [Strehlau 2006], [Karas].

Cold pilgering processes induce morphological and crystallographical texture 

modifications. Grains are elongated by quasi-uniaxial deformation leading to strength anisotropy 

(see Fig. 13). Moreover, strain hardening due to cold work increases hardness. Therefore, 

intermediate heat-treatments are necessary to soften the material. Based on previous studies for 

ODS steels a hardness value below 400 HV1 is needed to avoid damage during manufacturing 

[Inoue et al., 2007]. 

�

Figure 13. Grains are elongated by uniaxial deformation [Inoue et al., 2007].  

Some pilgering process characteristic definitions: 

Stroke: corresponds to one back and forth movement of the dies. 

Working zone: corresponds to the traveled die distance of one back/forth movement. 

Feed increment: tube is moved forward (by small distance) after each stroke. 

Rotation angle: tube is turned (by certain angle) after each stroke. 

Q factor: ratio between thickness reduction and external diameter reduction. 
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Goals of the thesis 

The final objective of this thesis is to investigate the possibility to predict cracking risk 

from the simulation of ODS tubes HPTR pilgering. For that purpose, it is necessary to model 

forming operations in a proper way. This requires adaptations and improvements of the Finite 

Element Method (FEM) software, Forge3
®, developed at CEMEF. 

Cracking risk prediction in pilgering is linked to the choice of an appropriate constitutive 

model for modeling the process. Therefore, prior to studying the resistance of ODS steels to this 

kind of complex, non-proportional multi-axial, and non-periodic cyclic loading using the FEM, a 

realistic constitutive law is needed.  

Furthermore, FEM is quite successful to simulate metal forming processes, but accuracy 

depends both on (i) constitutive laws and (ii) material parameters identification. Consequently, 

this thesis aims to assess the impact of the choice of both simulation features and constitutive 

laws on cracking risk development in pilgering conditions. 

The final and robust numerical model will be accurate enough to be used as a design tool 

for process optimization. 

Outline of the study  

Considering the previous sections, this work is organized in the following way: 

• The following Chapter (Chapter 1) will introduce a bibliographical review useful to 

understand most of the results presented and discussed in this thesis. Martensitic and 

ferritic ODS cladding tube manufacturing processes will be addressed first. In a second 

part, a review will be given for the cold pilgering simulation considering both analytical and 

FEM (2D and 3D). Special attention is addressed to damage prediction. Finally, the last 

section will be dedicated to cyclic constitutive laws for both proportional and non-

proportional loadings. An effort will be made to highlight the complexity of parameters 

identification and implementation of some constitutive laws in order to give some clues as 

how to develop a constitutive model relevant to the pilgering process. 

• Chapter 2 is devoted to the mathematical model of forming. The main equations of 

the discretization by FEM are presented as well as a brief description of the resolution 

methods used in Forge3
®

. Subsequently, the results of a complete isotropic simulation of 

the HPTR cold pilgering will be analyzed. Several sensitivity numerical parameters 

studies will be presented as well. A comparison between predicted and measured 

pilgered steady state tube geometry is performed in the last section of Chapter 2. 

• ODS steels are considered in this study and a complete understanding of theirs 

mechanical behavior is required. Hence, mechanical tests in monotonic loadings 

(classical tensile or compression tests plus shear test), cyclic loadings (classical tension-
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compression plus original compression-compression tests), are investigated in Chapter 3. 

Monotonic and cyclic behaviors are discussed, together with the role of mechanical 

anisotropy. Different constitutive laws are tested, and calibrated based on the 

experimental results. Parameters identification is discussed in some details.  

• In Chapter 4 a number of experimental observations have been performed 

(longitudinal strain, number of pilgering marks, micro-hardness) that provide relevant data 

in order to validate the choice of the constitutive law. Additionally, a deep analysis of the 

HPTR pilgering process is performed considering each of the constitutive laws identified 

in Chapter 3. Strains and stresses histories are discussed in detail, together with their 

probable consequences on the damage, to be correlated with the ODS steel cracking risk. 





�

�

��������	�

�

Bibliography review 



���������	
����
������

� ���������

�

	
	� �����������





































































































































�	��

	
�� ���������������������������������������























































































�	��

������ ��	
���
����	����������������������������������������������������������������������������������������������������������������������������������������

������ ��		�
����	�����������������������������������������������������������������������������������������������������������������������������������������������

	
�� �������������� �������������������������



















































































��!�

������ �����
��������	��������������������������������������������������������������������������������������������������������������������������������������

������ �������	����������������������������������������������������������������������������������������������������������������������������������������������

�������� ����������������������������������������������������������������������������������������������������������������������������������������������������

�������� ����������������������������������������������������������������������������������������������������������������������������������������������������

������ �������� ��
������������	�������������������������������������������������������������������������������������������������������������������!��

����!� " ���	������������������������������������������������������������������������������������������������������������������������������������������������!��

	
!� �������������� �































































































































�!"�

��!��� #����� 	����������������������������������������������������������������������������������������������������������������������������������������������!$�

��!����� %�
	������������ ��
������������������������������������������������������������������������������������������������������������������������!��

��!������� &��������	�
�	����������������������������������������������������������������������������������������������������������������������!��

��!������� '	�����	�
�	�����������������������������������������������������������������������������������������������������������������������������!��

��!������� (���	���	�
�	��������������������������������������������������������������������������������������������������������������������������!)�

��!����� ����
	������������ ��
������������������������������������������������������������������������������������������������������������������!)�

��!������� (����* ��	�
����	�
�	���������������������������������������������������������������������������������������������������������������������

��!������� (��������* ��	�
����	�
�	��������������������������������������������������������������������������������������������������������������

��!������� +
��	�����
	������ ��
�������������������������������������������������������������������������������������������������������������

��!��� ,������-���.��	�����������������������������������������������������������������������������������������������������������������������������������������

��!����� /���0��������������������������������������������������������������������������������������������������������������������������������������������

��!������� %�
	�������	����������������������������������������������������������������������������������������������������������������������������

��!������� 1�����
�����	���������������������������������������������������������������������������������������������������������������������������

��!������� ��0�����	������������������������������������������������������������������������������������������������������������������������������2�

��!����� � �
��0���������������������������������������������������������������������������������������������������������������������������������������$�

��!����� 3���������
������ ����������������������������������������������������������������������������������������������������������������������������

��!���!� "
	����	���������	�������
�������������������������������������������������������������������������������������������������������������)�



���������	
����
������

� ���2����2

��!����� 4����	���	
������������������������������������������������������������������������������������������������������������������������������2��

��!������� 5����������������������������������������������������������������������������������������������������������������������������������������2��

��!������� '���6�����������������������������������������������������������������������������������������������������������������������������������2��

��!������� �-� ��3�
������������������������������������������������������������������������������������������������������������������������������22�

��!���2� 7���	6��������������������������������������������������������������������������������������������������������������������������������������������22�

	
"� ����������






































































































































�##�

	
#� $%���%��������&����


























































































































�#'�

�



���������	
����
������

� ���$����$

1.1 Introduction 

ODS alloys were first developed for gas-turbine aerospace applications because of their 

very high mechanical strength and corrosion resistance properties at elevated temperature. The 

high-temperature strength of ODS alloys is due to the presence of fine, stable and uniformly 

distributed oxide particles which produce direct strengthening by acting as barriers to dislocation 

motion [Turker and Hughes 1995]. ODS steels are being developed and investigated for nuclear 

fission and nuclear fusion applications in Japan, Europe, and the United States of America. In 

addition, commercial ODS products, such as MA957, MA956 and PM2000, are available and 

have been used in niche applications [Klueh et al., 2005]. 

Fundamental studies concerning optimization of the mechanical alloying (MA) process as 

well as effects of alloying elements on high temperature mechanical strength were carried out in 

cooperation with industrials companies [Ukai et al., 1998]. Based on the results of these studies, 

the manufacturing of thin-walled cladding tubes was initially attempted using hot extrusion and 

warm rolling processes in 1989 [Ukai et al., 1998]. Research and development of the ODS 

ferritic/martensitic steels started in 1987 [Ukai et al., 1998], [Inoue et al., 2008]. Mechanical 

properties of the tubes have been extensively tested in air and stagnant sodium environments to 

establish material strength for fuel pin mechanical design. Many works were conducted to 

develop ODS materials for nuclear applications [Ukai et al., 1993a], [Ukai et al., 1993b], [Ukai and 

Fujiwara 2002], [Ukai and Ohtuska 2007], [de Carlan et al., 2009], [Fazio et al., 2009], [Dubuisson 

et al., 2011b], [Kimura et al., 2011], [Baluc et al., 2011]. Specific studies were conducted to 

propose tube fabrication routes for ODS materials, taking into account the metallurgy of ODS 

alloys [Ukai et al., 2002], [Ukai et al., 2004], [Narita et al., 2004], [Toualbi et al., 2011], but the 

determination of constitutive laws to model the cold forming of ODS alloys is a new challenge to 

improve these fabrication routes. Indeed, ODS constitutive models under cyclic/monotonic 

loadings are not available at room temperature in the literature, although they are a requisite for 

the numerical modeling and optimization of cold forming operations. 

This bibliography Chapter is organized as follows. In the next section, the ODS ferritic and 

martensitic cladding tube manufacturing process is described, including the combination of 

material characteristics. Section 3 is devoted to a general overview of cold pilgering numerical 

simulation. Section 4 then presents a brief summary of different cyclic constitutive models at room 

temperature from the simplest to the more complex representation available in the literature. 

1.2 ODS cladding tube manufacturing process 

The optimization of the fabrication route at the laboratory scale is in progress at the 

French Alternative Energies and Atomic Energy Commission (CEA) from an experimental and 

metallurgical point of view. After a few rolling passes, it is necessary to restore the microstructure. 

Its evolution is closely related to the plastic deformation imposed on the ODS tube material. Heat 

treatment is performed to reduce the hardness to a level low enough (typically below 400 Hv1) to 
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ensure cold forming without risk of tube cracking [Inoue et al., 2007]. The intermediate heat 

treatments performed during the fabrication are strongly linked to the chemical composition and 

have a crucial influence on the microstructural and mechanical properties of the final tube 

[Toualbi et al., 2011]. The alternate thermo-mechanical treatments and deformation steps have to 

be adjusted to determine a robust fabrication route which allows the manufacturing of ODS 

cladding tubes with limited crystallographic and morphological anisotropies. Their microstructure 

depends on the martensitic (Fe-9Cr) or ferritic (Fe-14Cr) structure. Below it is shown that the 

fabrication route depends on the ODS tube grade. 

1.2.1 Martensitic grade  

The HPTR cold-rolling process was used by both Japan Nuclear Cycle Development 

Institute (JNC) and CEA, but the applied fabrication routes included different cross-section 

reduction ratios, number of passes and intermediate heat treatments. 

JNC and CEA independently manufactured the claddings from the same mother tubes of 

Fe-9CrODS martensitic steel using their own fabrication routes to reach the final dimensions of 

6.55 mm outer diameter, 0.45 mm thickness and 1 m length. Fig. 1.1 shows the Fe-9CrODS 

cladding tube JNC fabrication route. It is composed of 11 cold rolling sequences and 4 heat 

treatments. Fig. 1.2 shows the Fe-9CrODS cladding tube CEA fabrication route. It is composed of 

8 cold rolling sequences and 4 heat treatments. 

Figure 1.1. Fe-9CrODS cladding tube JNC fabrication route [Ukai et al., 2004]. 
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Figure 1.2. Fe-9CrODS cladding tube CEA fabrication route [Ukai et al., 2004]. 

The manufactured cladding tubes exhibited an isotropic grain structure in both 

longitudinal and transverse cross-sections. Equivalent tensile strength levels were obtained along 

the axial and radial directions of tubes. This is a very important outcome that assesses the 

isotropic mechanical behavior of ODS martensitic steels. Similar strength levels in tensile and 

creep rupture properties were attained for the cladding tubes manufactured by JNC and CEA 

using HPTR rolling processes, not depending on different fabrication routes. 

In [Ukai et al., 2002] and [Ukai et al., 2004] authors proposed manufacturing ranges 

based on the optimization of thermo mechanical treatments, allowing to both reduce the degree 

of crystallographic texture in order to ensure the isotropy of mechanical properties of the final 

tube, and ensure forming without any risk of cracking on the tube. 

The authors concluded that the Fe-9CrODS martensitic steels present, during heating, a 

ferrite to austenite phase transformation around 800 - 900°C [Ukai et al., 2002]. The critical 

cooling rate needed to obtain a fully martensitic structure is about 1°C/s. This value implies that 

only thin products will be easily hardened with a fully martensitic structure. The Y2O3 dispersed 

particles in the matrix stop the grain growth leading to micrometer-sized austenitic grains. 

The ferrite to austenite phase transformation, characteristic of martensitic grades, has the 

advantage of effectively erase the accumulation of work-hardening due to pilgering and deal with 

a restored material for the next sequence (hardness below 400 Hv1) as proposed by [Inoue et al., 

2007]. 

Thus, JNC in [Ukai et al., 2004] performed an intermediate heat treatment of 1h at 1050 

°C carried out every 3 or 4 passes, which reduces t he hardness of around 50 Hv1. CEA in [Ukai et 

al., 2004] chose an intermediate heat treatment of 2h at 800 °C carried out every 2 passes, 

allowing a smaller reduction in hardness of about 20 Hv1. In both cases, intermediate heat 

treatments are followed by slow cooling so as to ensure a fully ferritic state alloy. This state, which 

has a hardness lower than the martensitic state, minimizes the risk of cracking during the cold 

forming [Ukai et al., 2004]. 
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The microstructures observed after the final heat treatment are, in both cases, structured 

ferritic-martensitic or martensitic, and composed of equiaxed grains. The elongated grain 

structure was destroyed and rearranged during successive passes in the austenitic phase. 

Texture measurements before and after thermo-mechanical treatments showed a reduction of the 

anisotropy of the tube, confirmed by the results of mechanical tests which give equivalent values 

of yield stress in the radial and longitudinal directions [Ukai et al., 2004]. The ODS martensitic 

steel tubes produced in this way have a yield stress around 900 MPa at room temperature, and a 

hardness around 350 Hv1. 

In a more recent work, [Toualbi et al., 2011] studied a fabrication route for a Fe-9CrODS 

tube. The material was produced by mechanically alloying a pre-alloyed metal powder and an 

yttrium powder. The resulting powder was sealed into a mild steel can and hot-extruded at a 

temperature of 1100°C. After degassing, mother tube s with 19mm outer diameter and 2mm wall 

thickness are obtained. In this work, fabrication routes are determined to reach the final geometry 

of the cladding tubes: 10,73mm outer diameter and 500µm wall thickness. Cladding tubes were 

manufactured by means of HPTR cold pilgering. To avoid any damage during cold-working the 

hardness of the mother tube had to be low enough, therefore, after hot-extrusion the Fe-9CrODS 

mother tube was homogenized at 1250°C during 30min and cooled to room temperature with a 

slow cooling rate of 0.03°C/s. The hardness value o f 250 Hv1 indicated a ferritic structure which 

can easily be cold-worked. The mother tube crystallographic texture is shown in Fig. 1.3. The 

authors concluded that the texture induced by the hot-extrusion process was significantly reduced 

by the phase transformation characteristic of martensitic grades.

Figure 1.3. EBSD and computed pole figures obtained on the transverse cross-section of mother tube after hot-extrusion and 

annealing at 1250°C during 30min [Toualbi et al., 2011]. 

Fig. 1.4 shows the hardness evolution during the fabrication route used by [Toualbi et al., 

2011]. It is noticed in this study that the ferrite to austenite phase transformation allows releasing 

the internal stresses induced by cold-working. 



���������	
����
������

� ���������

Figure 1.4. Hardness evolution in the course of cladding manufacturing process [Toualbi et al., 2011]. 

After 3 passes the cold-rolled tube is heat treated at 1200°C during 1h and slowly cooled 

in order to transform to a softened ferritic structure. This intermediate anneal causes a significant 

hardness reduction about 80 Hv1 which proves the efficiency of the intermediate heat treatment. 

Fig. 1.5 and 1.6 show the crystallographic texture and pole figures after 3 passes before and after 

annealing, respectively. 

Figure 1.5. EBSD and computed pole figures obtained on the a) transverse and b) longitudinal cross-sections of raw tube after 3 

rolling-passes [Toualbi et al., 2011]. 
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Samples taken on the raw tube after 3 rolling passes present slightly elongated grains 

(see Fig. 1.5) on the longitudinal cross-section sample (around 3-5�m thick and 5-10�m long). 

After the intermediated heat treatment the elongated grain shape is changed into equiaxial grain 

shape (see Fig. 1.6) which confirm the efficiency of the phase transformation to reduce the 

morphological anisotropy introduced by the rolling process [Toualbi et al., 2011]. The grain size 

remains 7-15�m.  

�

Figure 1.6. EBSD and computed pole figures obtained on the a) transverse and b) longitudinal cross-sections of raw tube after 3 

rolling-passes and intermediate heat treatment at 1200°C during 1h [Toualbi et al., 2011]. 

1.2.2 Ferritic grade  

These grades contain higher levels of chromium that provide improved corrosion 

resistance of these materials [Ukai and Fujiwara 2002], [Ukai and Ohtuska 2007], [de Carlan et 

al., 2009]. Unlike the martensitic grades presented in the previous paragraph, ferritic grades show 

no phase transformation because the matrix remains fully ferritic at all temperatures. To 

manufacture Fe-12CrODS ferritic steel cladding tubes with coarser and equiaxed recrystallized 

grains after the final heat treatment instead of the typical elongated structures along the cold 
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rolling direction, [Narita et al., 2004] propose to optimize the conditions for the intermediate heat 

treatment after cold pilgering. It was found that the intermediate heat treatment should avoid 

formation of a recrystallized structure and should restrict to produce recovered structures, 

because once recrystallization has taken at an intermediated step of the manufacturing process, 

the recrystallized condition can not be repeated at the final heat treatment. Moreover, [Narita et 

al., 2004] showed that the conventional heat treatment used to restore the tube microstructure 

(ferritic grade) is not sufficient to achieve a sufficiently low hardness value (<400 Hv1) if 

recrystallization is to be avoided. Therefore, [Narita et al., 2004] developed an original two-step 

softening heat treatment which reconciled the two conflicting requirements at the intermediate 

heat treatment, namely, avoiding recrystallization and reducing the hardness to a suitable level for 

the next cold rolling (see Fig. 1.7) 

Figure 1.7. The optical microstructures and hardness results for the two steps heat treatment [Narita et al., 2004], as compared 

to the one-step heat treatment. 

The proposed two-step softening heat treatment (see Fig. 1.8) consists first in a heat 

treatment at temperature (T1) lower than the recrystallization temperature (T0) to relieve the strain 

accumulated during the cold rolling. Following this first heat treatment, the recrystallization 

temperature, which is highly dependent on the energy stored during the cold work, increases to 

the value (T0
’). The second heat treatment may be performed at a temperature (T2) lower than the 

new recrystallization temperature (T0
’) but higher than (T0), causing a decrease in hardness 

without recrystallization (see Fig. 1.8). This unique two-step softening heat treatment proposed by 

[Narita et al., 2004] makes it possible to manufacture good quality Fe-12CrODS ferritic steel 

tubes. 
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Figure 1.8. Two-step softening heat treatment proposed by [Narita et al., 2004]. 

Finally, the authors concluded with this approach where recrystallization is not caused by 

intermediate heat treatments. The result is a finely recrystallized tube whose degree of 

crystallographic texture is low, ensuring a good isotropy of mechanical properties. 

However, both, the work-hardening rate and the Q  factor (ratio between thickness 

reduction and external diameter reduction), characteristic parameters of cold pilgering, have not 

been optimized in the work of Narita [Narita et al., 2004]. Moreover, it is necessary to adjust the 

cold-rolling parameters on the chemical composition of the ODS material. 

The development of ODS materials for the cladding in sodium fast reactors is a key issue 

to achieve the objectives required for GENIV reactors. CEA has launched an important program 

to acquire the harnessing of the fabrication and to understand the properties and mechanical 

behavior before and after irradiation of such cladding materials [Parmentier et al., 2002], [Alamo 

et al., 2004], [Alamo et al., 2007], [de Carlan et al., 2009], [Dubuisson et al., 2011b], [Olier et al., 

2009], [Ratti et al., 2009], [Oksiuta et al., 2009], [Steckmeyer et al., 2010], [Sornin and Couvrat 

2010], [Malaplate et al., 2011], [Toualbi et al., 2011]. 

1.3 General overview of cold pilgering modeling 

Cold pilgering had been modeled and analyzed since the 1950s. Therefore, significant 

work is available in the literature. First in this section the main works dealing with the analytical 

approach are presented. Second, works focusing on the finite element methods (FEM) are 

depicted. Finally, damage models used in the cold pilgering literature are described. 

It is pointed out that no literature was found for the HPTR pilgering process. Therefore, all 

the information presented in this section dealt with the VMR cold pilgering process.  



���������	
����
������

� ���������

1.3.1 Analytical approach 

In the 1950s, simplified 2D models were proposed to calculate the vertical die forces. 

These models are comparable with those on cold strip rolling. In 1954, [Siebel and Neumann 

1954] proposed a model considering only the groove die geometry. They did not take into account 

the die oval shape. They estimated first the contact length between the groove die and the tube. 

Afterwards the vertical die force is obtained as the product of the contact length surface by the 

normal stress. [Geleji 1955] proposed also a 2D model in order to determine the die vertical 

forces but he considered that the pressure to deform the tube could be divided into the force to 

reduce the thickness and the force to reduce the diameter since in cold pilgering the inner radius 

and the wall thickness are both progressively reduced. These models were used to design dies 

geometries. 

Later on, [Yoshida et al., 1975] measured the strain level from deforming grids printed on 

the transient tube external surface. They also measured rolling vertical and axial force, pressure 

and contact length. They proposed a 3D simplified model for cold pilgering rolling of copper 

tubes, based on the experimental observations. The stress tensor was estimated from strain 

increments measured from the rolled grid via the von Mises criterion. They assumed that the 

ortho-radial stress was constant over the thickness and neglected the shear stresses. Moreover, 

they assumed a constant longitudinal strain in the tube cross-section. They showed that the axial 

stress is compressive in the groove bottom and tensile in the flange area since there is not 

contact with the die. All the other stresses were described as compressive. They demonstrated 

that the maximal strain appears during the forward stroke. 

[Furugen and Hayashi 1984] developed also a 3D model, following the axial and the 

orthoradial movement of a metal particle between the groove bottom and the groove flange, due 

to the rotation and feeding of the tube before starting a new stroke. This model deals with a 

material point undergoing successive reductions from the raw tube to the final tube. Thus, the 

principal strain increments can be calculated and, using Huber-Mises criterion and Hencky-Mises 

flow rule, the stresses were calculated. The authors considered that the gap between the two dies 

should be taken into account in the geometric description of pilgering. Moreover, the cage mill 

deformation is considered in the model. Once again, the authors neglect the influence of the 

shear stresses and strains. The stresses are then integrated to give the rolling force. They found 

tendencies similar to the measurements in [Yoshida et al., 1975]. 

[Osika and Libura 1992], created a 2D and 3D strain simulation for copper and brass 

materials. The computer simulations results for only one stroke are the rolling pressure and the 

axial force in the tube. An isotropic constitutive law is used in this study. They showed that the 

numerical results were in good agreement with the experimental results but unfortunately the 

authors did not describe the approach in details. Fig. 1.9 shows the rolling force comparison for 

the 2D and 3D models versus the experimental one (named: M-M). Equations are proposed to 

describe the plastic strain energy consumption, the surface forces energy and the effect of the 

velocity discontinuity of a kinematically admissible field. Tools shapes were calculated by 

satisfying a minimum of energy consumption criterion. 
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Figure 1.9. Simulations results for the model 2D and 3D [Osika and Libura 1992]. 

[Huml and Lindegren 1992], [Huml at al. 1993], [Huml and Fogelholm 1994 ], [Huml 1997] 

developed a computer assisted cold pilgering numerical model able to predict the stress map in 

the tube, the separating force of dies, the temperature map, using an analytical equation 

describing the deformation of the tube. In their model the geometry of the pilger rolling process is 

given analytically (shape of the mandrel and die). The authors do not describe the way to 

calculate these analytical expressions. They proposed, in neglecting the die groove and the 

mandrel clearance, that the material can be divided into four zones (see Fig. 1.10). 

Figure 1.10. The geometry of the plastic zone during a forward stroke in cold pilger rolling tube [Huml and Lindegren 1992]. 

Zone1 contains a material that has already been rolled down into contact with the 

mandrel. Zone 2 is a material that is in contact with both the die groove and the mandrel. Zone 3 

is a material that is in contact with the die groove only. Material in the zone 4 is not yet deformed 

by the dies. The successive reductions of the cross-section in zones 2 and 3 must be 

compensated for by a rigid displacement of zone 4 in the axial direction. In zone 3 the material 

deformation leads to diameter reduction. In the model it is assumed that the material in zone 3 

does not expand in the axial direction because the axial strain increment is neglected in 

comparison with the radial and the hoop (orthoradial) increments. The deformation of a material 

point of the tube was computed as a function of its position in the deformation zone and the 

number of the stroke. The flow stress was related to a characteristic strain increment expressing 
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the influence of the cyclic multidirectional deformation in terms of a single strain increment value 

calculated from the strain history: 
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where )(Tf  is a function of the temperature T , )(εσU  and )(εσM  are respectively 

limiting flow stress curves for the extremes cases of monotonic uniaxial compression, and cyclic 

loading, and ε∆  is the characteristic strain increment detailed in [Huml and Lindegren 1992]. η
is a parameter that describes the interpolation between the two extreme flow curves. 

The authors calculated die separating force, stress, temperatures, strain increments in the 

axial direction and the length/shape of contact in order to improve process parameters (e.g. 

combination of feed and stroke rates). It is pointed out that the authors do not take into account 

the rotation angle for theirs process improvements. Fig. 1.11 shows the contact length and the 

shape of the plastic zone.  

Figure 1.11. Contact length and shape of the plastic zone [Huml et al. 1993]. 

In 1993, [Abe et al., 1993] used the [Furugen and Hayashi 1984] 3D analytical model to 

understand the origin of the creation of internal surface cracks on Zircaloy-2 tubes during cold 

pilgering. The authors perform a comparison between 6 dies with a variation of the Q  factor 

defined in the previous Chapter. They inferred the stress conditions in a section of the 

deformation area that can cause cracks. They concluded that the improvement, for cracking risk, 

of pilgering is inversely proportional to the ratio ( )/ θεε r− . In others words, in the case of good 

pilgering, the increase of the wall thickness on the flange part, caused by large circumferential 

compression, is very small even at high area reduction pilgering and, consequently, the frequency 

of crack occurrence is lower. This crack mechanism is illustrated in Fig. 1.12. Thus, in the tube 

with less circumferential deformability, larger circumferential compression strain during cold 
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pilgering tends to produce cracks in the formed tube surface. It is therefore necessary to choose 

for less deformable tube, a higher Q  factor to decrease the radial tensile strain on the flange part 

during cold pilgering. 

(a)       (b)  

Figure 1.12. Schematic diagram of crack mechanism: (a) bad pilgering and (b) good pilgering [Abe et al., 1993]. 

[Girard 1993] in his thesis and [Aubin et al., 1994] in their publication performed a broad 

experimental and theoretical mechanical study of Zircaloy-4 tubes during cold pilgering. Shear 

strain was measured by observing the progressive inclinations of inserts through the thickness of 

the tube wall. A design experiment was used to evaluate the influence of three parameters on the 

shear strain: the feeding, the die velocity and the type of internal lubricant. It was concluded that 

shear deformation rzε  can not be neglected and could be the responsible of some defects. rzε  is 

strongly dependent on the lubrication conditions, e.g. difference in friction conditions between the 

inner and the outer surfaces of the tube during pilgering. Positive shear, higher friction coefficient 

on the internal surface compared to the external one ( intµµ <ext ), was always found, suggesting 

that external friction is lower than the internal friction. In order to avoid defects the authors 

proposed to control the pilgering conditions that influence the shear stress. An equivalent friction 

between internal and external surfaces tends to minimize this shearing. The amount of shear 

strain zθε  was also measured (see Fig. 1.13). This strain is likely to be responsible of the 

transformation of a straight line into a helix. It is pointed in this work that shear deformation zθε  is 

neglected in relation with rzε . However, the pilgered helix is not a well-understood phenomenon 

according to the authors. 
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Figure 1.13. Insert position with rolling helix [Girard 1993]. 

Next in [Aubin et al., 1994] work, a 2D mechanical model is proposed to describe the 

mechanical conditions that prevail during the pilgering pass of a Zircaloy-4 tube, as a function of 

the contact length of the die, the tool design, the rolling parameters and the friction. It is based on 

the geometrical definition of strains that is transformed into stresses via the von Mises criterion 

and the slab method [Girard 1993]. They included connections to these analytical model 

corrections on die deformation and horizontal mandrel movement. The die separation forces for 

the forward and return strokes are calculated. Longitudinal deformation is considered as 

homogeneous around a cross-section. The strain analysis is improved by a calculation of the 

contact length between the die and the tube assuming elastic deformation of the die and taking 

into account the material wave, which increases the contact length. Shear deformation rzε  was 

taken into account in this semi-analytical model; rzε  was constant over the thickness. [Girard et 

al., 2001] used the 2D mechanical model proposed by [Aubin et al., 1994]. A stress calculation 

applied to one particle at each stroke is presented in Fig. 1.14. 

Figure 1.14. Stress components calculation during the last cold pilgering pass of a Zy4 tube [Girard et al., 2001]. 
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The calculation of average strains and stresses in a given perpendicular section of the 

tube is the major drawback of the 2D mechanical model in terms of accurate tracking of the 

mechanical history of a material point. 

[Girard et al., 2001] proposed to simulate the crystalline texture evolution during cold 

pilgering using a visco-plastic self-consistent (VPSC) model. This approach was first proposed by 

[Lebensohn et al., 1996] for zircaloy pilgered tubes. The global strain matrix is defined according 

to the mechanical model proposed by [Girard, 1993], [Aubin et al., 1994], [Girard et al., 2001]. 

They arbitrarily divided the simulations: from 0 to 0.5, from 0.5 to 1, from 1 to 1.5% and from 1.5% 

to 1.75% equivalent strain. The mechanical strain hardening is not taken into account in the 

simulation. The shear strain rzε  was taken into account in the global strain matrix, a new fact in 

relation with the approach proposed by [Lebensohn et al., 1996]. A very good agreement is 

obtained between experimental and simulated pole figures, which underlines the importance of 

the shear component. 

1.3.2 FEM approach 

Cold pilgering is a quite complex cyclic forming operation, highly transient, where the 

material undergoes a long series of small incremental deformations resulting in both diameter and 

thickness reduction. FEM computation brings a lot of understanding on the mechanical details of 

this process, can help improving the simple models presented in the previous section and could 

be used for the process optimization [Mulot et al., 1996]. First, some 2D FEM approaches are 

described briefly, followed by the 3D approaches. 

1.3.2.1 2D models 

[Davies et al., 2002] use a 2D FEM model to study the isotropic behavior of a titanium 

alloy tube. This study investigated the nature of the plastic deformation of the tube during cold 

pilgering via finite element analysis (Ansys® software). The authors simulated 4 regions of the 

whole process. Thus, one model was constructed in the rolling area where the material was in 

contact with the roll dies but not yet in contact with the mandrel. The second finite element model 

was built in the region shortly after the tube comes in contact with the mandrel. Two additional 

models were constructed at locations where the overall area reduction was 50 % accomplished 

and 100 % accomplished. The finite element modeling results presented in this work may be 

used to qualitatively present an explanation for the direction and the magnitude of the anisotropic 

hardening that is experienced during cold pilgering. Fig. 1.15(a) is a sample of the results 

produced during this analysis and shows the equivalent plastic strain imparted to the tube for the 

given analysis. Fig. 1.15(b) is an illustration of the magnitude of the equivalent plastic strain 

versus the model angular position at different regions (0%, 7%, 50%, 100%) with all four finite 

element models included. It is concluded for all 4 models that the maximum plastic strain after 

one stroke is located on the groove die.  
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(a)        (b) 

Figure 1.15. Strain hardening: (a) finite element analysis results (equivalent plastic strain) for the two-dimensional pilgering 

analysis performed at a point where the total pass was 50% complete; (b) equivalent plastic strain on the inside diameter 

surface as a function of model angular position. Each curve represents FEA results at a different axial position in the pass 

[Davies et al., 2002]. 

Finally, given the significant titanium crystallographic texture and the heterogeneous 

deformation in a given section of the tube during cold pilgering, the authors carried out an 

experimental biaxial test (combined axial and internal pressure) to characterize the mechanical 

anisotropy of the cold pilgered tube. Experimental yield strength data for various ratios of biaxial 

stress quantified and illustrated the anisotropic nature of titanium alloys developed during 

pilgering. The Hill equation was used to fit a continuous yield surface to the experimental data. 

The authors did not implement this anisotropic constitutive model in the 2D FEM cold pilgering 

simulation. 

In [Harada et al., 2005], the authors proposed a generalized plane strain model for the 

simulation of cold pilgering of cladding tubes for nuclear applications (Zircaloy). In this model, the 

material is treated as viscoplastic at the loading stage of the pilgering and totally elastic after 

every stroke. Tools are assumed to be rigid. The authors consider the effect of the tube spring-

back after each stroke on the tube deformation in the next stroke. The effect of the spring-back on 

the die separation force as a function of the rolling displacement (z) is shown in Fig. 1.16. It was 

concluded that numerical results are improved significantly when considering the effect of the 

spring-back.  
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Figure 1.16. Effect of tube spring-back on die separation force [Harada et al., 2005]. 

1.3.2.2 3D models 

[Mulot et al., 1996], [Mulot 1997] firstly used a 3D FEM (LAM3 software) to analyze one 

forward stroke of a cold pilgering operation on a Zircaloy-4 cladding tube. The main purpose of 

their study is to evaluate the hypotheses and the results of the 2D simplified mechanical model 

based upon an estimation of incremental strain components (slab method and length corrected 

contact proposed in [Aubin et al., 1994], [Girard, 1993]). Because a fully predictive modeling of all 

the strokes is very CPU time consuming, the authors adapted the approach proposed first by 

[Hacquin et al., 1996], [Hacquin et al., 1998] for strip rolling. It consisted in estimating the state of 

the system at the beginning of a representative stroke, when the deformed tube covers the whole 

mandrel. Therefore, a preform was partly rolled in an industrial mill. Its shape was completely 

measured on a 3-coordinated measuring machine, from which equations of longitudinal sections 

and cross sections were determined. Then, the geometry was meshed with 8-node bricks. They 

considered the entire tool as a rigid body. In these simulations, the tube is assumed to be free 

from previous strain and stresses, it means without any thermo-mechanical history. An 

incremental, isotropic elastic-viscoplastic constitutive model is used. It is concluded (i) that 3 

nodes only in the thickness are not sufficient for a precise analysis of the internal shear and (ii) 3 

or 4 elements in contact with the die and mandrel along the rolling direction is insufficient, at least 

10 would be required to obtain good stress and strain distributions. The pilgering helix (already 

mentioned earlier) was reproduced by the simulation. Moreover, the authors made an interesting 

conclusion: looking from the rear of the tube, the pilgering helix starts counter-clockwise, then 

shifts to clockwise; globally, the counter-clockwise rotation seems to dominate in all cases. This is 

a variance with the experimental observations where the tube in this work is rotated clockwise 

when fed, and is then twisted further clockwise during the stroke. This may due to some lateral 

shift of the dies under transverse forces. Progression of the deformation zone along the mandrel 

is shown in Fig. 1.17. It is noticed how the deformation is propagated as a wave as a 
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consequence of the die roll along the mandrel. These two last statements confirmed the 

experimental observations made in [Girard, 1993]. 

Figure 1.17. Progression of the deformation along the mandrel at different stages of the forward stroke [Mulot et al., 1996]. 

Fig. 1.18 compares the strain increment on one forward stroke by the slab method and 

the FEM. The semi-analytical model (slab-method) only gives the average strain. The authors 

concluded that the average value coincides with the FEM result. But an important conclusion is 

the significant spread of the accumulated strain through the tube thickness (see Fig. 1.18). 

Figure 1.18. Comparison of the incremental strain [Mulot et al., 1996]. 

Fig. 1.19 shows the ortho-radial distribution of the axial stress which is tensile near the 

groove flanges and compressive in the groove bottom, as described by [Yoshida et al., 1975], 

[Furugen and Hayashi 1984]. The authors made deep analyses of the stresses in the pilgered 

tube. 
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Figure 1.19. FEM simulation: Ortho-radial distribution of the axial stress [Mulot et al., 1996]. 

Next, this work tested the effect of friction variation between the tube/mandrel and the 

tube/die interface. In the groove bottom, depending of the friction coefficients, shear may be 

negative ( intµµ >ext ) or positive ( intµµ <ext ), equal coefficients resulting in a symmetric shear. 

The authors also noticed that the shear is negative at the beginning of the deformation zone 

( 500 ≤< z ), then it either remains negative or becomes positive (see Fig. 1.20). Finally, they 

concluded that the cumulated effect of strain can be predicted only if the complex shear history is 

known and accounted for. 

Figure 1.20. Visualisation of the incremental shearing strain 
rzε  at the groove bottom [Mulot et al., 1996]. 

[Mulot et al., 1996] studied the anisotropic behavior of Zircaloy-4; they determined the 

parameters of Hill’s criterion at various passes of the cold pilgering. For this, they developed 

compression and shear tests that allowed calculating the six Hill’s criterion coefficients on thick 

tubes (before rolling). For thin tubes, they used tensile and pipe burst tests. They used a 

polycrystalline model to predict the Hill’s criterion on the whole sequence of cold pilgering passes. 

The results were promising. Then the Hill’s criterion was introduced in the 2D semi-analytical 

mechanical model. They concluded that the die separation forces are strongly sensitive to the 

anisotropic yield limit introduced in the mechanical model. This suggests the importance of 

mechanical anisotropy when dealing with the pilgering process. 
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Last, [Mulot 1997], [Aubin et al., 2000] proposed a 3D semi-analytical mechanical model 

based on the 2D semi-analytical model of [Aubin et al., 1994] because the latter does not allow to 

report the variations of the strain and stress values in a section of the tube since the 2D model 

computes average values (i.e. it assumes circumferential homogeneity). It is concluded that this 

3D model reproduced, qualitatively and quantitatively, the results from the 3D finite element 

simulation. The 3D semi-analytical mechanical model was validated in relation with measured 

magnitudes from the industrial mill, as the rolling force, contact length and shear strain rzε . Fig. 

1.21 shows the results for the 2D and 3D semi-analytical models as well as the results of the 3D 

FEM simulation (maximum FEM equivalent strain: elt1 and minimum FEM equivalent strain: elt6). 

Fig. 1.22 shows the successive solicitations in tensile and compression pilgering conditions. This 

cyclic issue is not examined in this work through an appropriate constitutive law. Likewise, the 

anisotropic Hill’s criterion was not introduced in the 3D semi-analytical mechanical model. 

Figure 1.21. Equivalent strain comparison: FEM simulation and analytical method in function of the deformation zone [Mulot 

1997].

Figure 1.22. Longitudinal stress long the deformation path [Mulot 1997]. 

[Montmitonnet et al., 2002] have subsequently improved the work of [Mulot et al., 1996]. 

The authors showed in this study that for a perfect plastic material, the real periodic state of 

stress can be identified with 2 or 3 strokes when a reasonable initialization of a transient 
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geometry is performed. The shape of the transition tube at each position z  in the rolling direction 

is determined by the gap between the mandrel and dies when the dies are at z  during the stroke. 

Moreover, to confirm this geometry, similar to [Mulot et al., 1996], the authors performed 3D 

measurements on a partly pilgered preform (zircaloy tube). Isotropic constitutive behavior is used 

in this work. They concluded that initializing the stresses to zero has no detrimental 

consequences. The return stroke had been omitted, because it should be considered purely 

elastic in the absence of tool deformation (tools are considered rigid). Regarding the numerical 

model, they used an anisotropic structured mesh. The tube transition mesh and the initial 

positioning of the simulated system can be observed in Fig. 1.23.  

Figure 1.23. FEM model initial set-up: (1) tube transition; (2) mandrel; (3,4) dies; (5,6) represent the boundary conditions at the 

exit and entry tube, respectively [Montmitonnet et al., 2002]. 

Strain rate or temperature dependence are not taken into account. Absence of strain 

hardening is also assumed, to ensure that the initialization does not disturb the development of 

the geometry and stresses. The analysis is based on the incremental strain imposed by a single 

stroke. Fig. 1.24 confirms the quasi steady state hypothesis since the geometry and the state of 

the stress stabilize after 2 strokes. The study was carried out with the commercial software 

Forge3®. 
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(a)      (b) 

Figure 1.24. Variables stabilization on a tube cross-section : (a) external surface; (b) orthoradial stress [Montmitonnet et al., 

2002]. 

[Lodej et al., 2006] used the numerical simulation approach of a representative single 

stroke performed by [Montmitonnet et al., 2002] to develop a post-processing tool to estimate the 

thermo-mechanical history of a material point. Similarly to the former modeling of steady-state 

processes, the initial geometry comes from a 3D-measurement of a transition shape. The FEM 

set-up used in this study is showed in Fig. 1.25. 

Figure 1.25. Inital FEM model set-up with Forge3® [Lodej et al., 2006]. 

Anisotropic structural mesh was used and similarly to other work, the tools are assumed 

rigid. The authors used the same friction coefficient in the internal and external tube surfaces, 

based on the work of [Aubin et al., 1994]. An isotropic elastic-plastic behavior is assumed for the 

Zircaloy-4 tube material, but this time accounting for the work-hardening. Consequently, they 

added a simple initialization of the equivalent strain field (Fig. 1.26) given by: 
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where 0S  is the initial tube section and zS  is the section at a given z  position of the 

transient tube (see Fig. 1.26). The stress field was initialized to zero in this study. 

Figure 1.26. Equivalent strain initialisation [Lodej et al., 2006]. 

Because these initializations are not rigorously exact, some pilgering strokes must be 

computed until geometry and strain fields have been stabilized leading to the “pseudo-steady 

state” [Hacquin et al., 1996], [Montmitonnet 2007]. Next, by cumulating the single-stroke 

displacements and the rigid body motions (feed and rotations) between the strokes, the 

successive positions of any material point are computed (see Fig. 1.27). 

        

(a)       (b) 

Figure 1.27. Trajectory determination: (a) principle of position incrementation and (b) seen from behind, the successive positions 

[Lodej et al., 2006]. 

The mechanical fields are then interpolated, giving the complete mechanical history of 

stresses and strains for a volume element. The authors showed the successive tension and 

compression in all the strain and stresses components (e.g. see Fig. 1.28 for the longitudinal 

stress). 
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Figure 1.28. Longitudinal stress history of a material point along 56 cycles [Lodej et al., 2006]. 

The precision is however dependent on the storage frequency. The computation time 

remains high; one stroke took 38 CPU h on a 2GHz PC for the FEM computations, plus 21 CPU h 

for the post-processing. The quasi-state approach was estimated to be 10-20 times faster than 

computing the full 60 or 70 strokes necessary to obtain the periodic state. This study was carried 

out with the commercial software Forge3®. 

[Park et al., 2005] proposed an optimum design of a die shape for the cold pilgering 

process using FEM analyses considering various processing factors. They concluded that the 

important design parameters of the pilgering mill machine are the feed rate and the profile of the 

grooved die. Therefore, an optimum design procedure was conducted in order to investigate 

various effects on the forming load, as well as the deformed shape as a function of the die 

surface profiles. Profiles of the die surface for the optimum design were tested with linear, cosine 

and quadratic curves (see Fig. 1.29). It is pointed out that this work analyzed a cylindrical billet 

instead of a tube. The results of the analyses showed that the model with the quadratic profile 

gave the lowest forming load and the proper deformed shape. The material used for FEM 

analysis was cold OFHC copper. Analyses were conducted for 1/4 model for each profile to 

minimize CPU time. Three dimensional brick elements were used in the mesh, and computation 

were carried out with the LS-DYNA 3D® software. 

Figure 1.29. Cylindrical billet deformed by 3 different die profile. LS-DYNA 3D software [Park et al., 2005]. 
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In his thesis, [Karas] evaluated the influence of the die geometry on the rolling helices 

observed experimentally by [Osika and Libura 1992] and [Girard 1993]. Actually, the intrinsic 

dissymmetry of the tube - dies configuration in the deformation zone brings about both the 

"pilgering helix" (Fig. 1.30) and spurious torques and transverses forces of large amplitude. 

Figure 1.30. Comparison of the material flow in standard and asymmetric die design (schematic) [Karas]. 

The authors proposed to compensate these effects by an opposite dissymmetry of the 

dies groove (see Fig. 1.31). The differences in the groove shape make it non-circular and mean 

that it changes over the mandrel length. [Karas] pointed out the fact that general changes of the 

groove die cannot be too large, because vibrations effects could appear.  

Figure 1.31. Asymmetric die groove [Karas]. 

In the work of Karas, only 15 strokes are necessary to pilger a copper tube, reaching a 

deformation close to 95%. Therefore, the author proposes to use an arbitrary Lagrangian-

Eulerian formulation (ALE) in the Abaqus® FEM software. ALE adaptive meshing allows to 

maintain a high quality mesh throughout the analysis, even when large deformation occurs, by 

allowing the mesh to move independently of the material. The adaptive mesh moves only the 
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nodes, while the mesh topology remains unchanged. Fig. 1.32 shows the numerical model set up 

by Karas. 

Figure 1.32. FEM model set-up with Abaqus [Karas]. 

Fig. 1.33 presents the results of equivalent plastic strain after 15 strokes. It is shown that 

it is possible to find information about rotation of the tube during deformation, because the 

maximum equivalent plastic strain can be found at each 60°, the rotation angle after each stroke 

used in this work. It is also concluded that the standard die design deals with higher equivalent 

plastic strain level (around 8% more) for a similar forming pass. 

Figure 1.33. Equivalent plastic strain comparison between the standard and the asymmetric model [Karas]. 

This study showed that the material deformation state is not homogenous in any of the 3 

cylindrical coordinates ( r ,θ , z ) (see Figs. 1.33 and 1.34). 

Figure 1.34. Displacement in the radial direction [Karas]. 
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Finally, [Karas] concluded a new asymmetric die design obtained from numerical 

simulations reduced the rolling force and increased elongation during pilgering. It was possible to 

observe such effects because well-fitted asymmetric rolls reduced the “pilgering helix”, almost 

down to “zero”. 

1.3.3 Damage function in pilgering 

The criterion of Latham and Cockroft (LC) was introduced in [Girard, 1993], [Aubin et al.

1994], [Girard et al., 2001] in order to establish a damage function from the principal stresses. 

Compressive stresses were neglected because they do not have an influence on damage. The 

damage LC function is the sum of the product of the maximum tensile stress at each stroke with 

the equivalent strain increment: 

εσσσ ∆= � ),,,0( IIIII

stroke

IMaxLC 8� � � � � � � � (1.3) 

where Iσ 8� IIσ 8� IIIσ �are the principal stresses (supposed to be active only if tensile) and: 
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In [Girard et al., 2001] the mechanical model was fed with 3 different experimental values 

of rzε . Fig. 1.35 shows the evolution of the damage function with different shear values: (R) curve 

represents the ideal rolling conditions with 3.0=rzε , the (S) curve, a harder friction conditions 

with 45.0=rzε  and the (T) curve, the hardest conditions with 6.0=rzε . These results were in 

agreement with the experimental campaign carried out by [Girard et al., 2001]. The authors 

modified the die geometries and the lubrications conditions in order to quantify the defects 

frequency in relation to their locations in the tube thickness, and the adopted tools. The authors 

concluded with this experimental and theoretical work that the tool geometry has a very strong 

influence on damage. However, for a given geometry, the lubricant is very important. The LC, as 

well as the shear strain rzε  could be used as indicators to predict defects frequency. In particular, 

effort in reducing the damage rate should be intended at reducing the shear strain rzε , i.e. 

improving the friction conditions at the interface tool/tube rather than just focusing on the 

reduction rate or Q  factor. The predictive aspect of this model is limited by the need to separately 

evaluate the mandrel motion, the wave factor and the shear strain. 
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Figure 1.35. Damage function in the reference conditions during the last cold pilgering pass of a Zy-4 tube. (R) curve represents 

the ideal rolling conditions with 3.0=rzε , the (S) curve, a harder friction conditions with 45.0=rzε  and the (T) curve, the 

hardest conditions with 6.0=rzε  [Girard et al., 2001]. 

[Aubin et al. 1994] work showed that it is not only possible to predict the severity of the 

defects, but also to control the pilgering conditions in order to avoid these defects. The 

improvements were obtained by optimizing the lubricant and pilgering conditions (e.g. feed, Q

factor).  

In [Harada et al., 2005], the authors assessed the influence of two different tools (Tool-A 

and Tool-B) on cracking risk. In order to compare Tool-A and Tool-B, the authors use the classical 

Latham and Cockroft damage function. In this function, the main factors corresponding to the 

damage are the accumulation of axial stress and the equivalent strain rate. 

The differences are based on two process parameters; the first one is the quantity )(zQ , 

given by Eq. (1.5) at a given point z  of the pilgering, where t  is the thickness and D  the 

diameter. The second parameter )(0 zB  deals with the distance between the mandrel centre and 

the die groove centre.  
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The first tool (named Tool-A) has a relative large )(0 zB  and its )(zQ  is almost constant. 

On the other hand, with the second tool (Tool-B); )(0 zB  is not large, and its )(zQ  is not constant 

but increases in the rolling direction (see Fig. 1.36). 
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                   (a)          (b) 

Figure 1.36. Feature of Tool-A and Tool-B: (a) )(0 zB , (b) )(zQ  [Harada et al., 2005]. 

Fig. 1.37 shows the maximum damage function on the outer/inner tube surface at every 

axial position in pilgering using Tool-A and Tool-B. It has been found that the damage function of 

the tube inner surface is higher than that on the tube outer surface. Moreover, comparing the 

effects of Tool-A and Tool-B on the damage, it can be seen that Tool-A brings greater damage 

than Tool-B does. 

     (a)          (b) 

Figure 1.37. Maximum damage function on tube outer/inner surface considering spring-back : (a) Tool-A, (b) Tool-B [Harada et 

al., 2005]. 

Such a damage function (LC) is not supposed to predict accurately the occurrence of a 

given type of defect, but can be used qualitatively to make comparisons between different rolling 

conditions. 
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1.3.4 Summary 

2D and 3D analytical approaches have disclosed the main features of pilgering. However, 

these approaches were semi-predictive only, in that measurements are necessary at least when a 

new tool is tested in order to check that corrections remains valid. A drawback of analytical 

approach is the assumption that the mechanical cladding tube states (e.g. stress and strain) are 

homogeneous over the wall thickness and over the circumference, which is not the case in reality. 

2D FEM simulations are low CPU time consuming but the process under consideration is clearly 

3D and without obvious symmetries [Montmitonnet et al., 2002]. The mechanical behavior of the 

pilgering mill can be thoroughly dissected using 3D FEM simulations. The pseudo-periodic 

(steady-state) approach is addressed to reduce CPU time using trajectory determination from the 

data of only 4-5 strokes [Montmitonnet et al., 2002]. Nevertheless, the former approach needs 

approximate initializations of geometry and state variables. 3D FEM simulations are high 

numerical parameters (e.g. mesh size, time step, contact management, etc.) dependent. 

Moreover, in all the cases presented in this section, the tool mills are assumed as a rigid body. 

The 3D FEM pilgering mechanical analysis carried out in the literature are base on 

isotropic monotonic constitutive laws. The influence either cyclic or anisotropic constitutive laws 

on the mechanical history of a material point in pilgering conditions are not reported in the 

literature. 

No data was found in the literature for the numerical modeling of HPTR cold pilgering 

process. 

1.4 Constitutive law 

During the cold pilgering process the inner radius and wall thickness are both 

progressively reduced. After each stroke of the dies, the raw tube is advanced by a small distance 

and rotated around its axis. A volume element is submitted to several dozens of strokes before 

deformation is completed. This complex mechanical history is illustrated in Fig. 1.27 and 1.28. 

The FEM is quite successful to simulate metal forming processes, but accuracy depends both on 

the constitutive laws used and their material parameters identification [Flores et al., 2007]. 

Knowledge of the mechanical behavior of materials under complex loadings is necessary to 

appropriately design mechanical systems. 

A large number of cyclic plasticity models have been presented in the literature. According 

to [Velay et al., 2006], three main approaches for describing a cyclic elastic-plastic constitutive 

behavior can be distinguished, and are denoted as crystallographic, microscopic or macroscopic.  

Crystallographic models are increasingly used even though the associated computing 

time is high [Nouailhas 1988], [Forest and Cailletaud 1995], [Estrin 1998]. The number of internal 

variables is typically very large, as it includes a detailed description of the microstructure. 

Plasticity is described through dislocation slip along crystallographic planes, whose orientation 

differs from one grain to another. The model formulation is similar to the macroscopic approach 

(see below), but the stress tensor is applied at the grain scale [Eberl et al., 1998]. The computing 
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time and the large number of variables limit the use of such models within large scale forming 

computations. 

Microscopic models are based on parameters which can be directly and explicitly related 

to experimental material microstructural parameters, like dislocation densities and grain sizes 

[Cailletaud 1992], [Cailletaud et al., 2003], [Cailletaud and Sai 2008], [Bari and Hassan 2001]. 

The considered scale is typically much smaller than that of the macroscopic representative 

volume element. Microscopic models can catch the essential phenomena dominating the 

deformation based on the underlying physics of the deformation coupled to microstructure 

evolution. However, the models are again very expensive in terms of computing time, when 

coupled with large scale forming simulations. 

Macroscopic models consider, in general, that yield surfaces evolve according to 

kinematic and isotropic hardening processes. One of the challenges is to be able to capture the 

sometimes complex hardening kinetics with a reduced number of parameters in the evolution 

equations. In order to represent plastic behavior of steels, a phenomenological (or macroscopic) 

elastic-plastic approach is commonly used [Chaboche and Cailletaud 1996], [Chaboche and 

Cailletaud 1986], [Chaboche 1986], [Chaboche 1996], [Chen and Jiao 2004]. It is then typical to 

employ a yield function (to describe the yield surface). The yield surface, defined in the stress 

space, corresponds to the elastic limit and the beginning of the plastic flow. 

Concerning the elastic properties, it is often considered that the material can simply be 

modeled by an isotropic behavior, governed by Hooke's law: 

ijij s
E

e
ν+

=
1

8� � � � � � � � � � � (1.6) 

where E  is the elastic modulus and ν  the Poisson’s ratio, ijs  and ije  respectively the 

components of the deviatoric tensor of stress and strain. From Eq. (1.6), the elastic behavior is 

written in a matrix form thanks to the matrix C : 

sCe =             (1.7) 

Several models of plastic behavior can be considered. Table 1.1 summarizes the options 

depending on the desired degree of accuracy. 

Table 1.1. Various constitutive laws governing plasticity [Lemaître and Chaboche 1994]. 

Plasticity criterion Hardening State variables 

Isotropic Isotropic p

Isotropic Kinematic X

Anisotropic Isotropic p

Anisotropic Kinematic X

Isotropic Isotropic + Kinematic +Anisotropic 
p

Xp ε,,

Anisotropic Isotropic + Kinematic +Anisotropic 
p

Xp ε,,
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In Table 1.1 p  is the accumulated plastic strain, X  is the kinematic (back-stress) 

hardening tensor and 
pε  is the plastic strain tensor. Isotropic and anisotropic yield criteria are 

detailed below, before addressing specifically the issues related to cyclic constitutive law. 

1.4.1 Yield surface 

To describe the yield surface it is typical to employ a yield function ( )(σf ). The former is 

usually associated to a hardening law. The yield surface ( )(σf ) is convex and the state of stress 

(σ ) inside the yield surface is elastic. The yield surface, defined in the stress space, corresponds 

to the elastic limit and the beginning of the plastic flow and is written in the following way: 

yf σσσ −= )( � � � � � � � � �  (1.8) 

In this Equation, )(σσ  is the effective or equivalent stress and yσ  is the material yield 

stress. 

When the stress state lies on the surface the material is said to have reached its yield 

point. Further deformation of the material causes the stress state to remain on the yield surface, 

even though the surface itself may change shape and size as the plastic deformation evolves. 

Almost all rate-independent theories of continuum plasticity postulate that for a given state of a 

material, there exists a function )(σf  of the stress such that the material is elastic for: 

0)( ≤σf , or for 0)( =σf  and 0<
∂

∂
ij

ij

f
σ

σ
�

and plastic for: 0)( =σf and 0≥
∂

∂
ij

ij

f
σ

σ
�

where ijσ�  is the stress rate. The normality rule associated to the yield function expresses 

relationships between the stress and plastic strain rate tensor (
pε� ). The yield function gives the 

stress at which yielding occurs for a given stress state and its gradient (normality rule) gives the 

direction of the plastic strain rate: 

σ

εσ
λε

∂

∂
=

),( p
p f

�� 8� � � � � � � � � � (1.9) 

where, λ�  is the plastic multiplier. 

The hardening law expresses the evolution of the yield surface during deformation. 

Isotropic and kinematic hardening represent, respectively, the yield surface homothetic dilation 

and translation. 

The yield function itself can be either isotropic (von Mises, Tresca, Hosford…) or 

anisotropic (Hills, Hosford, Barlat…). The next section introduces briefly some standard yield 

functions. 
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1.4.1.1 Isotropic yield function 

Isotropic yield functions describe materials with isotropic plastic properties. The equation 

of the boundary of the yield function involves all components of the stress tensor and the 

hardening variable is reduced to a scalar variable in the case of isotropic hardening. In this 

section the most common isotropic plasticity criterion (von Mises) is presented, further details can 

be found in [Lemaître and Chaboche 1994]. 

1.4.1.1.1 Von Mises criterion 

The von Mises Criterion [Mises 1928], also known as the maximum distortion energy 

criterion, octahedral shear stress theory, or Maxwell-Huber-Hencky-von Mises theory, is often 

used to estimate the yield of ductile materials. Since the trace of the stress tensor does not play 

an active role in plasticity, a simple idea consists in using the second invariant of the deviatoric 

stress. This produces an ellipsoid in the space of the symmetric stress tensors with a criterion 

which is independent of the hydrostatic pressure. Denoting yσ  the yield stress in tension, s  the 

deviatoric stress tensor, and Is , IIs , IIIs  the principal deviatoric stress components, the yield 

surface is given by: 

yIIIIIIIIIIIII sssssssf σ−−+−+−= 2/1222 ))()()(()( � � � � � � (1.10) 

1.4.1.1.2 Tresca criterion 

The von Mises criterion involves the maximum shear in each principal plane, )( ji ss − . 

On the contrary, the Tresca criterion [Tresca 1868] takes only the largest. As in the previous case, 

hydrostatic pressure does not modify the value of the criterion. Instead of having a regular 

surface like von Mises, the Tresca criterion is only piecewise linear. 

yjiIIIIIIji sssf σ−−= = ,,,max)(         (1.11) 

Fig. 1.38 represents the superposition of the two criteria in generalized plane stresses. 

These criteria coincide under some loading conditions: uniaxial tension-compression, biaxial 

tension-compression. However, the criteria disagree in shear loading (second bisector), i.e. the 

ratio between shear and tensile stress is different (1/2 vs. 1/�3). Fig. 1.38 shows no Bauschinger 

effect as yσ  in tension equals yσ  in compression. The isotropy is characterized by the symmetry 

of bisectors. 
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Figure 1.38. Comparison of Tresca and the von Mises criteria in biaxial tension. 

1.4.1.1.3 Hosford criterion 

The Hosford yield criterion for isotropic materials is a generalization of the von Mises yield 

criterion [Hosford 1972]. This is also a criterion independent of the hydrostatic pressure. It has the

following form: 

y

nn

IIII

n

IIIII

n

III sssssssf σ−−+−+−= /1)()(       (1.12)

where is , IIIIIIi ,,=  are the principal stresses, n  is a material-dependent exponent. 

When 1=n  or n  goes to infinity the Hosford criterion reduces to the Tresca yield 

criterion. When 2=n  the Hosford criterion reduces to the von Mises yield criterion. This criterion 

gives possible intermediate descriptions of the plastic behavior, between the von Mises and 

Tresca criteria. Exponent n  depends on the type of crystal (bcc, fcc, hcp, etc.) and has a value 

usually much greater than 2. Common values of n  are 6 for bcc materials and 8 for fcc materials. 

1.4.1.2 Anisotropic yield functions 

It is shown in the literature that the experimental yield surfaces of metallic alloys 

determined after plastic deformation exhibit an expansion, a translation and a distortion [Lemaître 

and Chaboche 1994]. The first two events are taken into account by isotropic and kinematic 

hardening (see section 1.4.2.1). This is not the case for the last one, which is not described by 

classical models. Kinematic hardening and isotropic hardening induce themselves anisotropy, but 

the distorted shape of the yield surfaces is due to textures, which are a direct outcome of plastic 

deformation. As a consequence, many authors proposed new or modified criteria which describe 

better the shape of the yield surface, as compared to isotropic criteria. Most of them assume the 

symmetry of the mechanical behavior in tension and compression and as in the case of isotropic 

criteria, they are independent of the hydrostatic pressure. 
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1.4.1.2.1 Hill quadratic criterion 

The first yield function accounting for orthotropic anisotropy was introduced by R. Hill in 

1948 [Hill 1948] and is based on von Mises work. To introduce anisotropy, R. Hill kept the von 

Mises quadratic form, but added six coefficients to describe the direction-dependent plastic flow 

properties: 

yNsMsLsssHssGssFsf σ−+++−+−+−= 2/12

12

2

13

2

23

2

2211

2

1133

2

3322 )222)()()(()(   (1.13) 

The 6 anisotropy parameters are the F , G , H , L , M , N  variables. Even today, its 

easy FEM implementation and identification based only on tensile and shear tests allow it to be 

the most important criterion used in the industrial context. Writing the fourth-order tensor like a 

6x6 matrix gives: 
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The contribution of the anisotropic behavior through the Hill matrix ][H  is shown in Fig. 

1.39. The plot of isotropic and anisotropic yield surfaces shows different yield strengths 

depending on the orientation of the loading, e.g. by comparing 0σ  in the rolling direction 0σ  and 

90σ in the transverse direction. 

�

Figure 1.39. Graphic representation of both, Hill 1948 and von Mises plasticity criterions, in the framework of principals stresses 

( Is  and IIs ). 
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Others quadratic criteria have been developed from Hill’s (see e.g. [Hu 2007]). They can 

refine the description of the yield surface from phenomenological or crystallographic 

considerations. However, the number of experiments needed to identify the yield surface must be 

kept reasonable. 

1.4.1.2.2 Hill non quadratic criterion 

In 1979, R. Hill [Hill 1979] developed a non-quadratic criterion from his quadratic criterion, 

considering a symmetric behavior in tension and compression. The expression of this criterion in 

plane stress is:  
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where a , b , m  are dimensionless parameters that must be identified from experimental 

tests. tσ  and cτ  are the yield points in traction and shear, respectively. 

1.4.1.2.3 Other anisotropic functions 

From this date, many yield criteria have been proposed to accurately predict the flow 

behavior of various materials enhancing the yield surface description and taking into account 

more and more experimental results. Reviews on these improvements can be found in [Hu 2007]. 

Many authors must be cited, who tried to give accurate anisotropy predictions: [Barlat and Brem 

1991], [Karafillis and Boyce 1993], [Banabic et al., 2003], [Barlat et al., 2003], [Cazacu et al., 

2006]. In their approaches, anisotropy is introduced by means of a linear stress transformation 

(combinations of the stress components, based on linear transformation, used in yield function). 

The main advantage is the easy development of convex formulations which lead to numerical 

simulations stability, as explained in [Rauch et al., 2011]. 

All of these formulations are more and more complicated and some of them cannot even 

take a completely analytical form. For this reason, many authors still prefer to use Hill’s quadratic 

criterion rather than developing new theories. In his paper, [Hu 2007] presents a complete list of 

these authors using models based on Hill’s function and explains that if the selected experimental 

results are obtained under conditions close to those of applications, Hill’s criterion remains a 

reasonable choice. Moreover if the stress states of applications can be restricted within a specific 

range, Hill’s model can predict the physical process at an acceptably accurate level. However, a 

problem appears when the real physical problem involves many kinds of stress states and needs 

a continuous yield model. This explains why [Hu 2007] proposes a new model that uses multiple 

yield systems which are able to generate a continuous yield surface in stress space.  
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After defining the shape of the yield surface, one must now define its evolution over the 

cyclic plastic deformation, as the case in cold pilgering. 

1.4.2 Cyclic behavior 

Cyclic behavior is often distinguished from the loading conditions (see Fig. 1.40). In the 

first case, the simplest, the device is subjected to a uniaxial stress field. Laboratory tests often 

use uniaxial conditions, however, most of the time; service conditions impose multiaxial stress 

fields. 

In multiaxial loading, the case of proportional loading is characterized as follows [Caillet 

2007]: at any point M of the solid, on a cycle, the stress tensor ( )tM ,σ  is proportional to a tensor 

( )MΓ  independent of time; the proportionality factor is a monotonic function of time � (t) such as: 

0)0( =α and )()(),( MttM Γ= ασ         (1.16)

Under these conditions, the principal directions of the stress tensor (variables at each 

point) remain constant during loading. In this context a uniaxial load is necessarily proportional. If 

the previous conditions (Eq. 1.16) are not fulfilled, the loading is called non-proportional. Finally, 

the load may be periodic, which is the case most frequently encountered in the literature, or 

random (see Fig. 1.40). 

Figure 1.40. The different types of cyclic loading [Caillet 2007]. 
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1.4.2.1 Uniaxial cyclic loading 

Uniaxial loading is a particular case of proportional loading. Prescribing a strain path with 

symmetrical bounds in tension and compression is the basic experiment used to characterize 

cyclic plasticity. Expressing the effect of hardening is a very complex task, which closely depends 

on the class of material. Some materials even present hardening and then softening behavior 

during cyclic loading, for example. In addition, the nature of the hardening can be modified under 

complex loading paths or by aging of the material. In uniaxial cyclic loading, the main types of 

hardening usually considered are the isotropic and the kinematic hardening [Lemaître and 

Chaboche 1994]. 

1.4.2.1.1 Isotropic hardening 

The isotropic hardening model is based on the assumption that the yield surface expands 

uniformly in the stress space as yielding occurs. The surface does not translate or change shape. 

Isotropic hardening is generally used to express the cyclic evolution of the material 

strength with respect to the plastic flow. The isotropic hardening R  is related to the density of 

dislocations or flow arrests and it represents the growth/decrease in size of the yield surface. The 

dimension control of the elasticity domain is often given by a law of type [Chaboche et al., 1979]: 

pRQbR �� )( −=           (1.17) 

or 

))exp(1( bpQR −−=           (1.18) 

with b  and Q  being temperature-dependent material parameters. 

This law is obtained from conventional tensile tests or other tests to identify the behavior 

in large deformations such as shear, torsion test or bulge test [Lemaître and Chaboche 1994]. 

Fig. 1.41 shows a representation of the 3D evolution of the yield surface in the case of isotropic 

material flow. 
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Figure 1.41. Schematics of the isotropic hardening. Left: in the deviatoric plane; right: the stress vs plastic response [Lange 

2006]. 

An isotropic hardening law is generally not enough in situations where components are 

subjected to cyclic loading. For example, it does not account for the Bauschinger effect, whereby, 

material yields at lower stress when the direction of loading is reversed (see Fig. 1.41) [Lange 

2006]. 

The behavior under cyclic loading induces a review of the evolution of the amplitude of 

stress during the cycles depending on the strain amplitude imposed. It is often possible to 

distinguish two stages of consolidation cycles: a stage of rapid changes in the stress amplitude, 

and a saturation stage during which the stress amplitude remains constant or almost constant. 

This is illustrated in Fig. 1.42, where 2/σ∆  is the half stress amplitude. A better approximation, 

given in [Chaboche et al., 1979], [Velay 2003], [Velay et al., 2006], consist in adding several 

isotropic models such as (Eq. 1.19) allowing the expression to be valid for different saturations 

rates: 

�
=

=
2

1

n

i

iRR � � ))exp(1( pbQR iii −−= � � � � � � (1.19) 

�

Figure 1.42. Schematic cyclic softening curve [Velay 2003]. 
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1.4.2.1.2 Kinematic hardening 

Kinematic hardening rules were developed to model the Bauschinger effect. The model is 

based on the assumption that the yield surface translates in stress space but does not change 

size, shape, or orientation as yielding occurs. The kinematic stress tensor X  represents the 

center of the yield surface in the stress space (see Fig. 1.43). The kinematic hardening is related 

to the state of internal (micro) stresses [Chaboche 1989]. 

�

Figure 1.43. Schematics of the Prager’s kinematic hardening. Left: in the deviatoric plane; right: the stress vs plastic strain 

response [Lange 2006]. 

The simplest model is Prager’s linear kinematic hardening [Prager 1945], in which the 

evolution of the kinematic variable X  is colinear with the evolution of the plastic strain: 

ε�� CX
3

2
= �� � � � � � � � � � � (1.20) 

The linearity associated with the stress-strain response (Fig. 1.43) is rarely observed 

(except perhaps in the regime of significant strains). A better description is given by the model 

proposed initially by [Armstrong and Frederick 1996] introducing a second term, called dynamic 

recovery: 

pXCX ��� γε −=
3

2
� � � � � � � � � � (1.21)�

The second term is colinear with X  and is proportional to the norm of the plastic strain 

rate. The evolution of X , instead of being linear, is then exponential for a monotonic uniaxial 

loading, with saturation at a value γ/C . 

A better approximation, given in [Chaboche et al., 1979], consists in adding several 

kinematic models such as in (Eq. 1.22), allowing the expression to be valid in a larger domain, 

and a better description of the soft transition between elasticity and the plastic flow. Fig. 1.44
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shows, for the 35NCD16 hard steel, the significant improvement obtained with only two variables, 

one being linear, with 0=γ . 

�
=

=
1

1

n

i

iXX � pXCX iiii
��� γε −=

3

2
� � � � � � � � (1.22) 

�

�

Figure 1.44. Cyclic curves on various materials and their interpretation by the Armstrong and Frederick rule or the 

multikinematic model [Chaboche 2008]. 

k  in Fig. 1.44 represents the yield stress ( yσ  in the thesis notation). More complex 

combinations can be used, and can be found in [Cailletaud and Saï 1995], [Ohno 1997] for 

example. 

1.4.2.1.3 Mixed hardening 

Rather than considering purely isotropic or purely kinematic hardening, real-life materials 

show in general a combination of both phenomena; that is, under plastic straining, the yield 

surface expands/reduces and translates simultaneously in stress space. Thus, more realistic 

plasticity models can be obtained by combining the above laws of isotropic and kinematic 

hardening [Lemaître and Chaboche 1994]. 

A hardening model that includes both translation and expansion of the yield surface was 

proposed first by Hodge (1957) [Lemaître and Chaboche 1994]. This model reproduces well the 

permanent softening upon reverse loading but not the smooth elastic/plastic transition. A more 

refined model was then proposed by [Chaboche 1989]. The general equation of the yield surface 

in the case of coexisting kinematic and isotropic hardening is given by: 
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0)(2 =−−−= yRXJf σσ          (1.23) 

In Eq. (1.23), yσ  is the initial yield stress, X  the kinematic hardening tensor (or back 

stress tensor), and R  the isotropic hardening. 

)(2 XJ −σ , is the second invariant, is defined from the von Mises criterion: 

2/1

2 )](:)(
2

3
[)( XsXsXJ −−=−σ 8        (1.24) 

where s  is the deviatoric part of the Cauchy stress tensor σ . 

Fig. 1.45 illustrates the mixed hardening in the stress space with the displacement of the 

center of the yield surface and the dilatation. This model allows describing efficiently the 

Bauschinger effect. The model parameters can be identified using a semi-automatic identification 

process [Lange 2006]. This process is performed using an inverse optimization algorithm. 

�

Figure 1.45. Schematics of the Chaboche’s mixed hardening. Left: in the deviatoric plane; right: the stress vs plastic response 

(good representation of Bauschinger effect) [Lange 2006]. 

1.4.2.2 Multiaxial cyclic loading 

The previous section looked at uniaxial testing conditions, and in particular at tension-

compression tests, which are the most common and easy to analyze. These tests are however 

not fully representative of the actual stress fields applied to structural parts. To account for the 

multiaxial loading, different types of tests have been set up. Multiaxial fatigue has been 

conducted since the early stages in the history of fatigue testing. Cylindrical tube specimens were 

first used. They were subjected to solicitations in traction-compression/torsion or traction-

compression/ internal pressure or tension-compression /torsion /internal and external pressures 

[Calloch and Marquis 1999], [Aubin 2001], [Bocher et al., 2001]. These specimens have the 

advantage of having an almost uniform distribution of stresses and distortions in the active area. 

Further development continued with bi-traction tests [Aubin 2001], [Bouchou and 

Delobelle1996a], [Bouchou and Delobelle1996b] or triaxial tension-compression [Calloch and 
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Marquis 1997]. The former test is complex to analyze because the stresses and strains are not 

homogeneous in the specimen useful area, it is necessary to use a structural examination to 

analyze the results. 

In uniaxial fatigue, different factors influence the behavior of the material, especially the 

history of loading, the strain rate and temperature. It will be seen in this section that the hardening 

under multiaxial loading depends strongly on the loading path. The shape of the loading path and 

the nature of direction changes have a dominant influence. 

1.4.2.3 Loading path influence 

For materials that harden cyclically, if non-proportional multiaxial loadings are applied, the 

cyclic hardening effect can be drastically increased and the stabilized cyclic response can be 

much more resistant than under equivalent proportional conditions [Chaboche 2008]. One can 

observe, Fig. 1.46, the responses obtained on a stabilized 316L steel for a tension-compression 

loading path and a circular loading path of the same amplitude of total controlled strain. At a strain 

amplitude of 0.5%, the stabilized response is 1.7 times higher for the circular loading path than for 

the tension-compression loading path. 

�

Figure 1.46. Additional hardening in non-proportional loading. (a) Strain path: cyclic proportional loading up to the stabilized 

cycle (1) followed by a circular path (2) at the same equivalent strain range. (b) Comparison between the stabilized cycle for 

path (1) and for the path (2) [Benallal and Marquis 1987]. 

This fact was observed for the first time in OFHC copper, and has been reproduced later 

on several other materials, especially stainless steels [Tanaka et al., 1985], [Benallal et al., 1989], 

[Cailletaud and Sai 1995]. Many studies have been carried out to quantify the influence of 

different loading paths and to classify these paths (see Fig. 1.47) considering the extra-hardening

under tension-torsion mainly [Tanaka et al., 1985], [Benallal and Marquis 1987], [Benallal et al., 

1989], [Tanaka 1994], [Cailletaud and Sai 1995], [Aubin et al., 2003b]. Such effects can be 

understood from crystal plasticity and dislocation behavior. Under a non-proportional multiaxial 
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cyclic loading, more slip systems are activated, which increase the number of obstacles for 

subsequent slip to take place [Chaboche 2008].  

�

Figure 1.47. Loading paths in the )3/,( γε  plane [Aubin et al., 2003b]. 

Fig. 1.48 illustrates the extra-hardening in a duplex stainless steel, due to the loading 

type, when keeping a constant strain amplitude. 

�

Figure 1.48. Duplex stainless steel hardening -/softening curves with strain amplitude of 0.5% [Aubin et al., 2003b]. 

1.4.2.4 Strain range memory effects 

After cyclic hardening and stress amplitude stabilization, and regardless of the type of 

loading path, some stainless steels can harden again when subjected to a new solicitation with a 

larger strain amplitude (Fig. 1.49). A new stabilization of the stress amplitude occurs. Several 

authors have observed that the second stress amplitude stabilization is somewhat affected by the 

previous cycling, the amplitude of stress on the stabilized cycle is not the same as if the test had 

been performed directly on a virgin specimen [Tanaka et al., 1985], [Benallal et al., 1989]. 
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Similarly, if the first strain amplitude is imposed again, stress amplitude stabilization occurs at a 

different level from that reached the first time (Fig. 1.49). This is a memory effect of the strain 

amplitude. For such materials the cyclic curve (relation between stress range and plastic strain 

range under stabilized conditions) is no longer a unique relationship and clearly depends on the 

previous loading histories. 

�

Figure 1.49. 316L steel strain range memory effects at 20°C for a torsion and circle loading path [Tan aka et al., 1985]. 

To take into account the plastic strain range memorization, a simple method was 

proposed in [Chaboche et al., 1979]. Authors introduced a new internal state variable, called q . 

The memory surface (F ) in plastic strain space proposed by [Chaboche et al., 1979] is 

introduced through: 

( ) ( ) 0:
3

2
≤−−−= qF

pp ξεξε � � � � � � � � (1.25) 

Translation of the strain based memory surface is governed by the variable, ξ  as follows: 

( )( ) νηξ dnnnd mem

∗∗
−= :1 � � � � � � � � � (1.26)�

where memη  is a material parameter and the normal to the strain memory surface (
∗
n ) is 

defined as follows: 

q
n

p ξε −
=

∗
8�� � � � � � � � � � � (1.27)�

and the exterior unit normal to the yield surface at the loading point is defined as: 

( ) ( )XsXs

Xs
n

−−

−
=

:
� � � � � � � � � (1.28)�
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The quantity q  is the radius of the memory surface ( F ) size which is equal to the 

stabilized plastic strain amplitude for the uniaxial loading. Via this definition, q  is in fact equal to 

the equivalent plastic strain magnitude for any loading path under a constant amplitude loading. 

The following evolution for changes in the yield surface is proposed in [Chaboche et al., 1979]: 

( )( )qm eQQQQ µ2

00 1 −−−+= � � � � � � � � � (1.29)�

where mQ , 0Q , µ  are material parameters. Such a memory variable is taken into 

account in the plastic flow rule by its influence on the asymptotic value of isotropic hardening Q

parameter, which now becomes a varying quantity )(pQ , p  being the accumulated plastic strain 

(see Eq. 1.17). 

The plastic strain range memorization evolution rule, given below, and sketched in Fig. 

1.50; takes into account a progressive memorization of the current plastic strain range (under any 

multiaxial conditions) provided it is larger than those previously encountered: 

if 0: <
∗
nn , 

0=dq  and 0=ξd

if 0: >
∗
nn  and ( ) ( ) 0:

3

2
>−−−= qF

pp ξεξε , 

( ) νη dnndq mem

∗
= :  and ( )( ) νηξ dnnnd mem

∗∗
−= :1

if 0: >
∗
nn  and 0<F , 

( ) νη dnndq mem

∗
−= :1.0  and 0=ξd

�

Figure 1.50. Concept of the memory in the plastic strain space from [Chaboche et al., 1979]. 

In [Nouailhas et al., 1985a-1985b ], a more sophisticated model, in which some part of the 

memory was slowly evanescent, was used in order to describe both monotonic and cyclic 

hardening of (annealed) 316 stainless steel, but also, with the same model parameters, many 
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different cold worked initial conditions of the same stainless steel. Chaboche’s model in 

[Chaboche et al., 1979] performs well in simulating uniaxial ratcheting responses, i.e. proportional 

loading responses [Bari and Hassan 2000], but it fails when performing simulation of multiaxial 

and quasi-random non-proportional loadings. [Bari and Hassan 2002] proposed an improved 

kinematic hardening rule incorporating one multiaxial parameter into the Chaboche model. This 

modified Chaboche model improves the performance in simulating ratcheting responses under 

multiaxial loading. 

1.4.2.5 Non-proportional loading  

Non proportional cycles generally induce more significant hardening than proportional 

ones. In order to distinguish the proportional loadings from the other paths, the angles between 

vectors representing stress, plastic strain or the rates of these vectors can be introduced. Indeed, 

in the deviatoric plane, proportional loadings are such that all these angles are null, and for non-

proportional loading, they are not. For the description of the non-proportionality, still using 

macroscopic models (e.g. Chaboche’s model), several attempts have been made in the eighties 

[Tanaka et al., 1985], [Benallal and Marquis 1987]. Benallal and Marquis’s model propose that the 

extra-hardening is completely based on isotropic hardening. On the other hand, some other 

constitutive models considered the influence of the non-proportionality to be represented in the 

saturation amplitude of stress due either to kinematic or both isotropic and kinematics hardening 

[Krempl and Lu 1984], [McDowell 1985], [Abdul-Latif 1996], [Saanouni and Abdul-Latif 1996], 

[Abdul-Latif and Saanouni 1996], [Taleb et al., 2006], [Abdel-Karim 2009], [Abdel-Karim 2010a], 

[Abdel-Karim 2010b]. A few examples of literature models are given below. 

1.4.2.5.1 Benallal model 

One of the simplest and best rules was proposed by Benallal and Marquis [Benallal and 

Marquis 1987], using a scalar parameter A  based on the current tensorial product of the strain 

and stress rates.  

α2cos1−=A � � � � � � � � � � � (1.30)�

where if,� 0
2

3
≠p
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ij εε �� 8�� � � � � � � � � (1.31)�

ijij

p

ij

p

ij

ij

p

ij

ss

s

����

��

3

2

2

3
cos
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ε
α = � � � � � � � � � (1.32)�

Benallal and Marquis tested also as parameter the angle α  between 
pε  and 

pε� ; X

and X� ; s  and s� . They have concluded that for low values of A , the angle α  must be that 

between the tensors X  and X� , because it is not sensitive to elastic variations. 
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For proportional loading 0=α  and 0=A  whereas for a non-proportional loading 

10 ≤< A . 
The asymptotic value Q  of R 8 which represents the size of the yield surface is a constant 

in the classical formulation (see Eq. 1.17) and�is considered here as a new variable. Its evolution 

law, which depends on the non-proportionality parameter A �defined above, is:�

pQQfAfdQ AS
�� )]()[( −+−= 8�� � � � � � � � (1.33)�

with 

)1(

)1( 0

AgA

QAgAQ
QAS

++

++
= ∞ 8� � � � � � � � � (1.34)�

gQQfd ,,,, 0∞
 are material dependent parameters. 

To improve capabilities of the Chaboche model concerning the description of the isotropic 

non-proportional hardening, the simplified version of Benallal and Marquis is chosen by many 

authors, e.g. [Calloch and Marquis 1999], [Bari and Hassan 2000], [Kang et al., 2002], [Kang et 

al., 2004], [Taleb et al., 2006], it is described below. 

It takes: 1=g 8� 00 =Q  and 0=f  which leads to:�

pQQdAQ AS
�� ][ −= � � � � � � � � � � (1.35)�

with, 

∞= AQQAS � � � � � � � � � � � (1.36)�

The non-proportional effect interacts with the flow rule by increasing the limit of isotropic 

hardening )(AQ  in a similar way to the method of strain range memorization discussed in section 

1.4.2.4. However, accuracy reduces as the degree of non-proportionality in a loading cycle 

changes abruptly (e.g. Fig. 1.49). Benallal and Marquis’s parameter computation of non-

proportionality is instantaneous and lacks memory features. It was demonstrated by [Jiang and 

Kurath 1997] that Benallal’s determination of non-proportionality was unreasonable for some 

strain cycling paths, such as the butterfly path.  

Nonetheless, this model is frequently chosen for its simplicity despite certain drawbacks 

(creep test and cross hardening test where the angle between the deviatoric stress and the 

plastic strain rate is zero between the sequences). For more details about these drawbacks the 

reader may refer to [Taleb and Cailletaud 2010]. 

1.4.2.5.2 Tanaka model 

Another interesting approach was given by [Tanaka 1994], introducing a structural tensor 

as well as a non-proportionality parameter. This model links the magnitude of the cross effect to 
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the accumulated plastic strain. Tanaka introduces an internal state variable C  describing the 

internal dislocation structure. C  describes the directional characters of the structure and is a 

fourth order tensor. C  evolves gradually during the cyclic loading process. The evolution 

equation is given by: 

( )pCuucC c
�� −⊗= 8� � � � � � � � � � (1.37)�

where cc  is a material constant, the symbol ⊗  indicates the tensor product and u  is the 

normalized plastic strain rate vector: 

p

p

u
ε

ε

�

�
= � � � � � � � � � � � (1.38)�

The components of the tensor C  have zero values for an initially isotropic material and 

gradually reach the target value ( )nn⊗  that depends on the plastic strain direction of the loading 

increment [Tanaka 1994].  

Then, Tanaka proposes an associated non-proportionality parameter A  (similar to 

Benallal): 

( )
( )CCtr

nCCnCCtr
A

T

TT
−

= � � � � � � � � � (1.39)�

A  and C  are memory parameters [Tanaka 1994], [Jiang and Kurath 1997]. The tensor 

C  describes the slow evolution of the internal dislocations structure induced by plastic 

deformation. If a material is loaded in tension-compression, then the dislocation substructure is 

formed in a particular direction. After the end of these loading cycles, if the material is subjected 

to torsion, then the previous dislocation structure is destroyed and a new structure is formed (e.g. 

see Fig. 1.51). This loading sequence is incorporated in the tensor C  by [Tanaka 1994].  

0=A  represents the proportional loading and the maximum value of 1=A  represents 

the highest degree of non-proportionality for the 90-degree out of phase loading. For an 

intermediate degree of non-proportionality, A  varies between 0  and 1. 
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Figure 1.51. Schematic figure of the cross-hardening phenomena [Tanaka 1994]. 

The evolution of the isotropic hardening surface depends not only on the accumulated 

plastic strain ( p ), but is also function of another variable q , which allows to take into account the 

strain range. Y  is the center of this surface and q  its radius. The introduction of this variable Y

allows taking into account the cyclic stress relaxation under non-symmetric loadings. 

( )pYrY
p

y
�� −= ε �� � � � � � � � � � (1.40)�

Yq
p

−= ε � � � � � � � � � � � (1.41)�

The asymptotic isotropic hardening value then depends of the loading strain range 

through the equations: 

pRQbR �� )( −=           (1.42) 

( ) ( )( ) ( )qqqqqqAQ ppN +−= �� � � � � � � � (1.43)�

( ) ( ))(1 qc

PPP
Pebqaqq −−+= � � � � � � � � � (1.44)�

( ) ( ))(
1

qc

NNN
Nebqaqq

−−+= � � � � � � � � � (1.45)�

Nq  is the target value for the case of non-proportional hardening ( 1=A ), and Pq , on the 

other hand, is the value for proportional hardening ( 0=A ). Pa , Pb , Pc , Na , Nb , Nc  are 

material parameters. 

Satisfactory stress predictions were obtained for all multiaxial strain paths investigated in 

this work for two materials (1050 QT steel and 304L stainless steel), employing the non-

proportionality parameter proposed by [Tanaka 1994] coupled with a simplified form of the 

Armstrong-Frederick incremental plasticity model [Armstrong and Frederick 1966]. 
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1.4.2.5.3 Abdul-Latif model 

For some materials, the size of the yield surface varies slightly. This is the case of ODS 

steels, which will be analyzed in details in this work. Therefore, the isotropic hardening is low, 

even when dealing with non-proportional loadings. Benallal and Marquis and Tanaka models are 

based on the dependence of the isotropic hardening on the non-proportional loading. These 

models allow to simulate the extra-hardening but not the physical mechanisms. 

Abdul-Latif [Abdul-Latif and Saanouni 1996] observed for the Waspaloy, that both the 

isotropic and kinematic hardening depend of the non-proportional loading. For that reason, the 

authors modified the Benallal and Marquis model. The isotropic hardening R  and the kinematic 

hardening X  were then both depending of the Benallal and Marquis’s parameter A . 

1.4.2.6 Remarks 

The most suitable model including non-proportionality effects appears to be the Tanaka 

model, which can describe the mechanical behavior of 316 stainless steel, 304L stainless steel 

and 1050 QT steel at room temperature under almost all loading conditions except the 

mechanical ratcheting and cyclic creep. The implementation of Tanaka type models remains 

rather complex and involves a large number of parameters, which is an issue in the context of 

FEM simulations of pilgering. 

One can conclude that cyclic plasticity models deal in general with an important number 

of parameters and require calibration from various types of test. For example, 304 stainless steel 

requires 47 model parameters in [Krishna et al., 2009] to account for different mechanical effects 

(ratcheting, strain range dependence, non-proportional loading and memory effect). The model 

parameters are determined using responses from: uniaxial stress controlled test, uniaxial 

tensile/compression strain controlled test, shear ratcheting and tension-torsion ratcheting tests, 

90° out-of-phase strain/stress-controlled experimen ts [Hassan et al., 2008] and finally, triaxial 

tension-compression test [Calloch and Marquis 1999]. 

1.5 Conclusions 

This Chapter has been dedicated to a bibliography review in order to present the scientific 

background of the thesis. Three main parts have been presented. 

In the first section it is noticed that the fabrication route proposed with pilgering passes 

and intermediate heat treatments is efficient to ensure a safe manufacturing of Fe-9CrODS and 

Fe-14CrODS cladding tubes. For Fe-9CrODS steel the role of the phase transformation is crucial 

to reduce the morphological and the crystallographic anisotropies induced by the manufacturing 

process. The intermediate heat treatments are efficient in softening the raw tube and changing 

the elongated grain structure into an equiaxed grain structure. On the contrary, for Fe-14CrODS, 

it is concluded that if recrystallization took place at intermediate stages of the fabrication route a 
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recrystallized microstructure cannot be obtained at final heat treatment. A two-step annealing is 

useful to soften the cold-rolled tubes without premature recrystallization in intermediate heat 

treatments. Based on previous studies a hardness value below 400 Hv1 is needed to avoid 

damage during manufacturing. Reduction ratio per pass is limited approximately to 20% - 25%. 

However, fabrication routes leading to different work-hardening rates and Q  factors 

(characteristic parameters of cold pilgering), have not been optimized yet. A robust numerical cold 

pilgering model could be useful to address this task. 

In the second part, a literature survey of 2D and 3D analytical models and 2D and 3D 

FEM cold pilgering models was carried out. It is pointed out that all the models, either analytical 

or FEM were performed for VMR pilgering mills. No literature was reported on the modeling of 

HPTR pilgering mills. It seems to be a new issue. 

The first analytical models were intended to find the vertical die forces, in order to better 

design the tooling. The 2D analytical approach is an outcome of the strip rolling method. The 3D 

analytical approach is more rigorous, and based on the plasticity theory. These simple 

approaches have disclosed the main features of the process, but due to the geometrical 

complexity of pilgering, the details of the stress patterns must be determined by the finite element 

method. Some authors have focused on a better understanding of the material flow to minimize 

the defects on the tubes or to predict the mechanical characteristics of the formed tube. The 

effect of the plastic shearing rzε  on damage and texture evolution is underlined. rzε  is strongly 

dependent of the lubrication conditions. [Aubin et al., 2000], [Girard et al., 2001] concluded that 

the Latham and Cockroft damage function is a relevant model to detect defects frequency. 

Additionally, [Girard et al., 2001] performed texture evolution simulations under pilgering, using a 

visco-plastic polycrystalline self-consistent model [Lebensohn and Tome 1993]; their numerical 

results are in agreement with the experimental ones. [Davies et al., 2002] for titanium, [Mulot 

1997] for Zircaloy, carried out experimental tests in order to quantify the cladding tubes 

anisotropy. They showed that the anisotropic Hill’s model is well-adapted to describe the cladding 

tubes yield surface. However, Hill’s model was not included in reported FEM numerical 

simulations. 

An original approach to steady-state (or pseudo-steady state) isotropic elastic-plastic flow 

computation proposed by [Montmitonnet et al., 2002], [Lodej et al., 2006] must be highlighted. It 

saves computation time and allows optimized meshes to be used; cold pilgering can be simulated 

at a reasonable computational cost. A drawback of this approach is the “transition long tube 

geometry” difficult to obtain experimentally, and any change in the fabrication route, would lead to 

a new one. 

Mainly three materials were studied: Zircaloy, titanium and copper. For the time being 

ODS steels are not yet modeled in pilgering conditions.  

It is concluded in [Lodej et al., 2006] that 3D FEM computation can bring a lot of 

understanding on the mechanical details of this complex process and can be used to carry out 

parameters process optimization. Nevertheless, a lack of realistic constitutive laws is noticed 

regarding literature. Actually, most of the 3D FEM simulations used isotropic and monotonic 

constitutive models. Anisotropy due to crystallographic and morphological textures is however 

inherited from the hot extrusion process or from intermediate cold pilgering. Furthermore, the 
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complex, non-proportional, multi-axial, and non-periodic strain path must have an important 

influence on the mechanical response of the material. 

The last section of the bibliography review is assigned to describing pertinent steel 

constitutive laws. Tresca’s and von Mises’ isotropic yield functions are too simple to correctly 

predict output geometries and plastic properties for complex deformation path. Anisotropic yield 

functions have been developed based on new criteria. Yield functions are more and more 

complicated and many mechanical tests are sometimes required to correctly identify the model 

parameters. When dealing with cyclic loading, different effects must be taken into account: multi-

axiality, loading path, strain range memory, and even dislocation structure. The ODS steels 

mechanical behavior has not been studied yet in these conditions, according to the literature. 

1.6 Résumé en français 

Ce Chapitre est consacré à une revue bibliographique, afin de présenter le contexte 

scientifique de la thèse. Trois parties principales ont été présentées. 

Dans la première partie, il a été constaté que la gamme de fabrication proposée avec des 

passes de laminage et les traitements thermiques intermédiaires, est efficace pour assurer une 

fabrication des tubes de gainage en Fe-9CrODS et Fe-14CrODS. Pour l'acier Fe-9CrODS, le rôle 

de la transformation de phase est crucial pour réduire la morphologie et les anisotropies 

cristallographiques induites par le laminage à pas de pèlerin. Les nuances martensitiques 

subissent une transformation de phase de ferrite α  en austénite γ  vers 800-900°C, qui présente 

l’avantage de permettre d'effacer efficacement l'accumulation de l'écrouissage due au laminage, 

et d’obtenir un matériau restauré qui sera ensuite facilement déformable. Les traitements 

thermiques intermédiaires réalisés entre les passes de laminage, doivent ainsi permettre de 

repasser dans le domaine austénitique. La nuance Fe-14CrODS ne présentant aucune 

transformation de phase, la restauration de la microstructure est plus complexe. Il est conclu pour 

l'acier Fe-14CrODS, que si la recristallisation a eu lieu aux stades intermédiaires de la gamme de 

fabrication, une microstructure recristallisée ne peut pas être obtenue dans le traitement 

thermique final. Un processus en deux étapes de recuit est utile pour adoucir les tubes laminés à 

froid sans recristallisation dans les traitements thermiques intermédiaires. Sur la base des études 

précédentes, une valeur maximal de dureté de 400 HV1 est nécessaire pour éviter des 

dommages pendant le laminage. L’écrouissage par passe est limité approximativement à 20% - 

25%. Cependant, les gammes de fabrication menant à différents taux d'écrouissage et à des 

facteurs Q (paramètres caractéristiques de laminage à froid), n'ont pas encore été optimisées. Un 

modèle numérique robuste de laminage à pas de pèlerin à froid peut être utile afin d'aborder 

cette tâche. 

Dans la deuxième partie, une étude bibliographique des modèles 2D et 3D analytiques et 

des modèles 2D et 3D FEM du laminage à pas de pèlerin à froid a été réalisée. Il est souligné 



���������	
����
������

� ��2)���2)

que tous les modèles, analytiques ou éléments finis ont été effectués pour les laminoirs de type 

VMR laminage. La littérature est peu abondante sur la modélisation des laminoirs de type HPTR. 

Les premiers modèles analytiques ont eu pour but de retrouver les efforts verticaux de 

laminage ou efforts de séparations des matrices. Ensuite, les auteurs se sont attachés à mieux 

connaître l’écoulement du matériau au cours du laminage afin de minimiser les défauts sur les 

tubes ou de connaître les caractéristiques du tube fini. L'approche 3D analytique est plus précise, 

elle est basée sur la théorie de la plasticité. Ces approches simples ont divulgué les principales 

caractéristiques du processus, mais en raison de la complexité géométrique du laminage à pas 

de pèlerin, les détails du chemin des déformations et des contraintes doivent être déterminés par 

la méthode des éléments finis. Certains auteurs ont mis l'accent sur une meilleure 

compréhension de l’écoulement de la matière afin de minimiser les défauts sur les tubes ou de 

prédire les caractéristiques mécaniques du tube fini. L'effet du cisaillement plastique sur les 

dommages et l’évolution de la texture sont soulignés. rzε  est fortement dépendante des 

conditions de lubrification. [Aubin et al., 2000], [Girard et al., 2001] ont conclu que le critère des 

dommages de Latham et Cockroft est un modèle pertinent pour détecter la fréquence des 

défauts. En outre, [Girard et al, 2001] ont effectué des simulations sur l’évolution de la texture 

pendant le laminage, en utilisant un modèle viscoplastique polycristallin auto-cohérent 

[Lebensohn et Tome 1993]; leurs résultats numériques sont en accord avec les résultats 

expérimentaux. [Davies et al., 2002] pour le titane, [Mulot 1997] pour le Zircaloy, ont effectué des 

essais expérimentaux en vue de quantifier l'anisotropie des tubes. Ils ont montré que le modèle 

anisotrope de Hill est bien adapté pour décrire la surface de charge de tubes. Toutefois, le 

modèle de Hill n'a pas été inclus dans les simulations FEM. 

[Mulot et al., 1996] ont créé un modèle éléments finis 3D du procédé. Il s’agit d’un modèle 

simulant un seul coup de cage du procédé pour un tube en Zircaloy. Pour cela, un essai 

expérimental a été lancé et interrompu une fois que le tube recouvrait tout le mandrin. La 

géométrie du tube a ensuite été mesurée avec une machine haute précision et la géométrie a été 

implémentée dans le modèle éléments finis. Les auteurs ont ensuite comparé les résultats de 

cette simulation avec un modèle semi analytique. La simulation a mis entre autre en évidence les 

variations de la contrainte longitudinale à une section donnée du tube (zones en fond de 

cannelure sollicitées en compression et zones aux dépouilles sollicitées en traction), ainsi que le 

chemin de déformation hélicoïdal, la vague de front de matière créée par le passage des 

cannelures. 

[Montmitonnet et al., 2002] se sont ensuite appuyés sur ce modèle pour prédire l’état 

mécanique du tube au cours de l’intégralité du procédé à partir de la simulation de deux coups de 

cage. En effet, les auteurs considèrent le procédé comme quasi-périodique, une fois que le tube 

recouvre tout le mandrin. Ainsi, la simulation d’un coup de cage couplée aux mouvements rigides 

(avances et rotations du tube) devrait être suffisante pour reconstruire l’histoire mécanique d’un 

point du tube au cours de l’intégralité du procédé. En réalité, les auteurs ont démontré que la 

simulation de deux coups de cage était préférable. Pour chaque coup de cage, ils n’ont simulé 

que l’aller en considérant que le retour induisait des déformations purement élastiques. Ils partent 

de champs de déformations et contraintes initiaux nuls. Leurs résultats donnent donc l’incrément 

de déformation causé par le coup de cage. En revanche, cela implique que les contraintes ne 

sont valables que pour un matériau non écrouissable. 
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Cette méthode d’extrapolation de l’histoire mécanique du tube a ensuite été reprise 

[Lodej et al., 2006]. Cette fois-ci, la méthode est étendue aux matériaux écrouissables. Pour cela 

les auteurs déduisent l’état de déformation du tube à partir de la géométrie obtenue par les 

mesures. La simulation de quatre coups de cage est nécessaire pour la convergence des 

résultats initiaux. Un maillage structuré a été utilisé pour le tube afin d’obtenir des champs 

mécaniques plus réguliers. Dans cette étude, les auteurs ont implémenté un outil de post-

traitement qui permet de reconstruire directement les champs de contraintes et déformations du 

tube au cours de l’intégralité du procédé. Ainsi, ils montrent qu’un point matériel du tube subit au 

cours du procédé, des phases alternées de compression et de traction, ce qui engendre un 

phénomène de fatigue oligocyclique. 

Un inconvénient de cette approche est la géométrie de transition du tube long, difficile à 

obtenir expérimentalement, et tout changement dans la gamme de fabrication, conduirait à une 

nouvelle mesure du profil pseudo stationnaire. Trois matériaux ont été principalement étudiés: 

Zircaloy, titane et cuivre. Pour le moment, les aciers ODS ne sont pas encore modélisés dans 

des conditions de laminage. Il est conclu dans [Lodej et al., 2006] que le calcul 3D par FEM peut 

apporter beaucoup de compréhension sur les détails mécaniques de ce procédé complexe et 

peut être utilisé pour réaliser l'optimisation des paramètres procédés. Néanmoins, une loi de 

comportement réaliste n’a été jamais utilisée dans la littérature. En fait, la plupart des simulations 

(3D FEM) ont utilisé des modèles de comportement isotrope monotone. L’anisotropie, due à des 

textures cristallographiques et morphologiques héritées du procédé d'extrusion à chaud ou à 

partir de laminage à froid intermédiaire, n’est pas prise en compte dans les simulations 

numériques. Par ailleurs, le chemin de déformation complexe devrait avoir une influence 

importante sur la réponse mécanique du matériau.  

La dernière partie de l’étude bibliographique est dédiée à la description des lois de 

comportement des aciers. Le critères (fonctions de charge décrivant l’évolution de la surface de 

charge) isotropes et anisotropes ont été introduits afin de pouvoir représenter le comportement 

plastique des matériaux dans un code numérique. Les premiers critères apparus sont ceux de 

Tresca et de von Mises dans une formulation isotrope, puis ont été étendus afin de mieux 

correspondre aux résultats expérimentaux. Cependant, dans certains cas, ces fonctions ne 

permettaient pas encore de prédire correctement les géométries finales et les caractéristiques 

mécaniques du matériau. C’est pourquoi les critères anisotropes ont été développés. Parmi ces 

critères, beaucoup sont issus de la modification du critère de von Mises et d’autres ont été créés 

afin de prendre en compte les résultats expérimentaux. En contrepartie, ces fonctions et 

l’identification des paramètres sont de plus en plus compliquées.  

Lorsque un matériau subi un chargement cyclique à froid, différents effets doivent être 

pris en compte: la multi-axialité, le chemin de charge, la mémoire des amplitudes de déformation. 

Le comportement mécanique des aciers ODS n'a pas encore été étudié dans ces conditions, 

d’après la littérature. 
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2.1 Introduction 

This Chapter deals with the presentation of different mathematical and numerical 

modeling conditions of the mechanical problem arising in material forming, through the finite 

element software Forge3®. This software has been developed since the 80’s at CEMEF and is 

dedicated to forming processes modeling. Its formulation is based on an updated Lagrangian 

approach and its principal characteristics are: 

• a specific software for axisymmetric and plane strain problems, 

• a specific software for 3D problems, 

• a velocity-pressure mixed formulation, 

• a finite element P1+/P1: linear tetrahedron in 3D and linear triangle in 2D with a 

bubble term, to enrich velocity discretization compared with pressure 

discretization, 

• management of large deformations, 

• automatic 2D and 3D remeshing, 

• deformable tools, 

• Parallel computation for 3D computation, with MPI library for efficient domain 

partitioning. 

The first part of this section will be devoted to the introduction of the mathematical model 

in material forging. Then, the main equations of the discretization by the finite element method 

are presented as well as a brief description of the resolution methods used in Forge3®. Next, the 

results of a full simulation of the HPTR cold pilgering process using an isotropic constitutive law 

will be analyzed. Several sensitivity studies will be presented as well. A comparison between 

predicted and measured pilgered steady state tube geometry is made in the last section. 

2.2 The mechanical problem 

2.2.1 Continuous problem formulation 

When forming by plastic deformation is considered, two types of objects are used: non-

deformable objects (dies) and deformable objects (billets, tubes, strips…). Each deformable 

object is considered as a finite domain 3ℜ⊂Ω  with its boundary 2ℜ⊂Ω∂ . Its behavior is 

controlled by fundamental principles of continuum mechanics. After introducing the movement 

description formalism of the point x
�

 of Ω , the conservation equations governing its equilibrium 

are developed with the associated boundary conditions. The mechanical problem is shown to be 

solved using a mixed finite element formulation combining velocity and pressure as primary 

variables. 
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2.2.1.1 Movement description 

Solving a mechanical problem requires to introduce a formalism for describing the solid 

displacements. There are two main families. The so-called Lagrangian approach consists in 

following the evolution of each material point over time, while the Eulerian approach consists in 

positioning oneself at a point in space and see the material points flow. The approach taken in 

Forge3® is the updated Lagrangian, which means that the configuration is updated at each time 

step. 

�

Figure 2.1. Lagrangian displacement description. 

At the initial moment 0=t , the solid occupies the area noted 0Ω  (Fig. 2.1). By deforming 

with time, it occupies at the time t  the domain tΩ . To follow the movement of a material point of 

the solid, there exists a function φ , that is a bijection from 0Ω  to tΩ  at any moment t . The 

position vector x
�

 of any point of tΩ , at time t , is given by: 

),( 0 txx
��

φ=           (2.1) 

Thus the function φ  defines the position at t  of the material point with initial coordinates 

0x
�

. This description is called Lagrangian description of motion, for which it is possible to 

introduce the Lagrangian displacement field u
�

 defined by: 

),(),( 000 txuxtxx
�����

+=         (2.2) 

The description of motion is completely defined by knowing the initial state and final state 

of the material point. Forge3® software is based on a movement description of updated 

Lagrangian type. At each time interval, the movement is defined by a function tφ  analogous to 

(2.1) as: 

),( ttxx t

t

tt ∆+=∆+

��
φ          (2.3) 

The time-step discretization t∆  is chosen small enough to afford the hypothesis of small 

deformations (between 0.1% and 1% strain at each increment). Under this assumption, the strain 

rate tensor ε�  and strain ε  can be written down as: 
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2.2.1.2 Conservation equations 

The equilibrium of the deformable body is governed at all instants by the conservation 

equations. A first equation is the dynamic equilibrium expressed locally in the Ω  domain: 

0)()( =−+ γωρσ
��

div          (2.5) 

In this equation, ρ  is the material volume mass, σ  the Cauchy stress tensor, ω
�

 the 

volume forces due to gravity and γ
�

 the acceleration. ρ  and γ
�

 terms reflect the inertia effects. It 

is assumed that those terms are negligible as compared to the forming processes internal efforts. 

Eq. (2.5) becomes: 

0)( =σdiv            (2.6) 

To this equilibrium equation, other relationships are added to entirely define the 

mechanical problem: 

The constitutive law defined in Ω  and connecting the stress tensor σ  to the strain rate 

ε� . Its numerical integration will be discussed later. 

The mass conservation of the elastic-plastic constitutive model integrates the plastic 

incompressibility and the elastic compressibility in the equation: 

0)( =+
χ

P
vdiv

��
� � � � � � � � � � (2.7)�

with P�  the hydrostatic pressure rate responsible of the mass compression and χ  the 

compressibility elastic coefficient inferred from de Young’s modulus E  and the Poisson ratio ν : 

)21(3 ν
χ

−
=

E
�� � � � � � � � � � (2.8)�

Assuming a small strains framework, the total strain rate tensor is partitioned into elastic 

and plastic strain rate: 

pe εεε ��� += � � � � � � � � � � � (2.9) 

Combining Eq. (2.6) and Eq. (2.7), the system to solve is:�

�
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The equations may be expressed as a function of two unknowns of the mechanical 

problem: velocity v
�

 and pressure P : 

�
�

�
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� � � � � � � � � � (2.11)�

where s  is the deviatoric part of the Cauchy stress tensor. 

2.2.1.3 Boundary conditions 

Boundary conditions are applied on the boundary domain and govern the solid equilibrium 

state. The boundary Ω∂  is decomposed into four parts as described by Fig. 2.2, and can be 

written is the following way: 

cvTl Ω∂∪Ω∂∪Ω∂∪Ω∂=Ω∂         (2.12) 

�

Figure 2.2. Boundary conditions. 

Each part correspond to a different type of boundary condition: 

• Free boundary ( lΩ∂ ) condition: 

0. =n
�

σ  on lΩ∂           (2.13) 

with n
�

 the outer normal to the contact surface. 

• Imposed velocity ( vΩ∂ ) condition: 
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0vv
��

= on vΩ∂           (2.14) 

with 0v
�

 the imposed surface solid velocity. 

• Imposed stress ( TΩ∂ ) condition: 

Tn
��

=.σ  on TΩ∂           (2.15) 
�

with�T
�
�the imposed normal stress.�

�

• Friction contact ( cΩ∂ ) condition: 

This condition appears in our case between the solid and tools. This is essential in 

forming and is divided into two distinct concepts: contact and friction.  

-To express the contact condition, it is convenient to introduce pressure contact nσ
defined by the projection of the stress vector on the external normal to the surface of the tool: 

nnn

��
).(σσ =            (2.16) 

Unilateral contact describing the non-penetration of the material into the dies is written by 

Signorini’s conditions: 
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σ �� �	� cΩ∂ � � � � � � � (2.17)�

In this expression, toolv
�

 is the tool velocity and cΩ∂  is the boundary of the domain Ω  on 

which the unilateral contact condition is imposed. These equations describe a condition of non-

penetration. If nσ  is zero then there is no contact and the solid and the tool can have different 

velocities. In the case where there is contact, then the normal velocity of the solid at the contact 

point becomes equal to that of the tool, the contact pressure becomes non-zero. 

- The friction tangential component is given through the friction law and is defined by 

relating friction cission τ
�

 to the pressure and the relative velocity: 

nn n

���
σστ −=            (2.18) 

The friction laws enable to model the friction on the interfaces between two bodies when a 

relative sliding movement occurring between them. In the Forge3® software, different friction laws 

are available for modeling friction with forging tools. The Coulomb limited Tresca friction law is 

mostly used in cold forming. It is written in the following general form: 
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µσ mn ≥ � � � (2.19)�

gV∆  is the relative sliding velocity between the two bodies. With this relation, the friction 

shear stress is equal to the normal stress multiplied by the friction coefficient µ  or to a fraction of 

the maximum shear stress sustainable by the material. 

2.2.1.4 Constitutive laws 

Constitutive laws are critical when modeling the material flow during metal forming. To 

calibrate a constitutive model, the material behavior following different mechanical and thermal 

loadings is analyzed. A constitutive model is generally represented as a relationship between the 

stress tensor σ , the strain tensor ε , the strain rate tensor ε�  and temperature °T : 

),,( °= Tεεσσ �           (2.20) 

The stress tensor is decomposed into the deviatoric part s  and the spherical part IP : 

IPs −=σ            (2.21) 

s  is the deviatoric stress tensor, I  is the unit (second rank) tensor and P  is the hydrostatic 

pressure given by: 

)(
3

1
σtrP −= � � � � � � � � � � � (2.22)�

The one-dimensional representation of the stress and strain are given by: 

• von Mises equivalent stress: 

ss :
2

3
=σ � � � � � � � � � � � (2.23)�

• equivalent strain rate: 
�

εεε ��� :
3

2
= � � � � � � � � � � � (2.24)�

• equivalent strain: 
�
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time

0

dt εε � � � � � � � � � � � � (2.25)�

Depending on the loading conditions of the process different types of constitutive laws 

may be considered. For hot processes the elastic strain is often neglected and the material 

behavior is modeled by a viscoplastic constitutive law. A cold process, such as pilgering, the 

elasticity can not be neglected, and an elastic-plastic constitutive law type is therefore considered 

in this work. 

Elastic behavior 

The elasticity is characterized by a linear and reversible behavior. The constitutive law of 

a linear elastic and isotropic material is represented by the Hooke's law: 

ItraceC
dt

eeeeJ )(2 ελεµε
σ

��� +==
∂

/� � � � � � � � (2.26)�

eλ  and µ  are the Lamé coefficients that are constant for a homogeneous material: 

)1(2 ν
µ

+
=

E
��	��

)21)(1( νν

ν
λ

−+
=

Ee
/� � � � � � � (2.27)�

E �is the Young’s modulus and ν �Poisson’s ratio. 
eε� �is the elastic strain rate tensor and σ� �is the 

stress tensor ratio,�C �the resulting fourth rank elastic tensor. The Jaumann derivative of the 

stress tensor in Eq. (2.26) is defined by: 

σωσωσ
σ

+−=
∂

�
dt
J �� � � � � � � � � (2.28) 

where ω �is the spin tensor. When the process involves moderate rotations, the simple material 

derivative can be used in Eq. (2.26) as a satisfactory approximation. 

Elastic-plastic behavior 

The elastic-plastic constitutive model is used for cold material forming. The elastic-plastic 

constitutive model can be summarized as follows: 

• as the stress σ  is lower than a given stress yσ  the material has a purely elastic behavior 

described by the Hooke's law (Eq. 2.26). 

• when the stress reaches the value yσ  the material starts deforming plastically.  

The total strain rate is decomposed into an elastic and a plastic terms (see Eq. 2.9). The 

elastic part of strain rate is calculated by Hooke's law. The additively is verified for metals where 
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the elastic strains are small with respect to plastic strains. The yield stress yσ  required to cause 

plastic deformation is generally determined by a tensile test. 

The elastic-plastic behavior is determined by the Prandt-Reuss model [Gay 1995] and is 

illustrated here with the isotropic von Mises criterion. The plasticity criterion is defined by a yield 

surface f  which, for isotropic hardening, involves the stress tensor σ  and yield stress yσ : 

0),( 0 ≤σσf            (2.29) 

As discussed in the previous Chapter, 

behaviorplastic:0),(

behaviorelastic :0),(

0

0

=

≤

σσ

σσ

f

f
� � � � � � � � (2.30)�

Plastic flow appears when: 

ssstrace :)(
3

2 22

0 ==σ � � � � � � � � � (2.31)�

Using the definition of equivalent stress (Eq. 2.23), (Eq. 2.31) leads to: 

0σσ =            (2.32) 
�

The yield criterion function f  is written finally in the simple form: 

0σσ −=f            (2.33) 

The Prandt-Reuss model allows determining the direction and the intensity of the plastic flow. The 

normality rule 

σ
λε

∂

∂
=

fp �� � � � � � � � � � � � (2.34)�

means that plastic flow appears in the normal direction of the yield surface with a intensity given 

by the scalar λ� �

The plastic strain being incompressible: 

0)( =
p

trace ε� � � � � � � � � � � � (2.35) 

For a von Mises material Eq. (2.34) becomes: 

02

3

σ
λε

sp �� = � � � � � � � � � � � (2.36)�
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and the deviatoric stress tensor is given by: 

p

p

s
ε

ε
σ

�

�

0
3

2
= � � � � � � � � � � � (2.37) 

Summarizing, the elastic-plastic equations are: 
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2.2.1.5 The mechanical problem to solve 

The “strong” formulation to be solved is defined by the following system, decomposing σ
in its spherical and deviatoric part: 
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2.2.2 Mechanical problem discretization 

2.2.2.1 Weak formulation of the continuous problem 

The “strong” formulation is transformed into a weak form by multiplying the two equations 

by *v
�

 and *P  quantities and integration. Using the Green’s theorem, the problem becomes: find 

( *v
�

, *P ) ∈ V  x Ρ so that: 
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where T
�
�corresponds to external stress vector on the�Ω �boundary. 
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2.2.2.2  Space discretization 

After continuous domain Ω  discretization into finite subdomains hΩ  composed of 

elements eΩ , the finite element method defines the interpolation functions over each element in 

order to define the unknowns of the problem Ρ×∈VPv ),(
�

. This approximation leads to solve 

the weak problem in the finite dimension sub-spaces VVh ⊂ , Ρ⊂hP . The discretized weak 

problem leads to finding the solutions in the finite dimension hhhh VPv Ρ×∈),(
�

: 
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hP  and hV  designated respectively the finite spaces of pressure and velocities which are 

kinematically admissible and defined over hΩ .  

An important issue in the mixed velocity-pressure formulation is the choice of the degree 

of interpolation functions of the two variables hv
�

 and hP
�

 in each element. Indeed, the 

interpolation of the pressure can not be chosen independently of the interpolation of the velocity. 

For example, if the degree of interpolation of the pressure is higher than that of the velocity, the 

imposed constraint on the velocity field by the equations of equilibrium and mass conservation 

are too important and can lead to a wrong solution. Therefore, in order to avoid these “locking” 

problems, the finite element chosen in Forge3® is a four node tetrahedron with linear interpolation 

of velocity and pressure. However, the interpolation of the velocity field is enriched with an 

additional component. This component is called the bubble field and represents an additional 

node in the centre of the element. This procedure allows satisfying the Brezzi-Babuska (BB) 

[Babuska 1973] compatibility condition, sufficient for a stable mixed formulation. The bubble field 

is linear in each of the sub-tetrahedral formed by the central node and three of the other nodes of 

the element. The tetrahedral element P1+ / P1, shown in Fig. 2.3, is used to discretize the 

domain. Tetrahedral element enables easy meshing and remeshing operations [Coupez et al., 

1998], [Coupez et al., 2000]. 

�

Figure 2.3. P1+/P1 mini-element. 
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The weak mechanical continuous problem is solved using the finite element discretization. 

For further details of this system resolution the reader can refer to [Perchat 2000], [Aliaga 2000], 

[Ben-Tahar 2005], [Boussetta 2005]. 

2.2.2.3 Contact management 

In Forge3® the contact is managed incrementally thanks to a penalty method. The 

distance between a node and its projection on the tool at time t  is denoted )(td . The contact 

conditions correspond to: 

0)( =td  on cΩ∂ ,         (2.42) 

0)( =td  if the node is not in contact, 0)( <td  is impossible (non physical). 

During simulation, the nodes of the part move with respect to the tools and contact 

conditions may change. Starting from a known configuration at time t , the condition to be 

enforced at the end of the following increment is: 

0)( ≥∆+ ttd   on cΩ∂          (2.43) 

This condition is expressed at time t  and linearized [Mocellin 1999]: 
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The unilateral contact condition is written as: 

0
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∂
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tnvv tool

���
� � � � � � � � � (2.45)�

This expression is an approximation because the normal n
�

 and the distance d  at the 

time t  are used. However, these quantities vary during the time increment, leading to some 

errors. This contact algorithm is implicit in the time because the contact conditions are enforced at 

the end of the increment. From another point of view, it is also explicit because the contact data 

(distance, normal direction) are computed at time t  and are considered constants during the time 

increment. To take into account the contact condition in the weak formulation, the penalty method 

is used and the non-penetration condition is imposed thanks to a penalty coefficient ( cρ ). 

Physically, this method consists in applying a repulsive force to the nodes which penetrate into 

the die, and this force is proportional to the penetration distance. A node is submitted to penalty 

only if the distance between this node and the tool is less than dPen− . So, a small penetration is 

allowed. This parameter is chosen depending on the characteristic size of the part, or of the mesh 

elements. This parameter is fixed by default to 100/1  of the mesh element size. For more details 
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on contact management techniques, the reader is invited to consult [Fourment et al., 1999], 

[Mocellin 1999]. 

2.3 HPTR cold pilgering process simulation 

In this section, a one pass cold pilgering FEM simulation is detailed for a better 

understanding of the HPTR cold pilgering process. Due to the incremental and non-symmetrical 

nature of the pilgering process, 3D FEM computation should be used [Lodej et al., 2006] in order 

to carry out a complete mechanical analysis. The mechanical analysis is performed here with 

Forge2009®, in 3D. 

This work does not use the representative pseudo-periodic state approach described by 

[Montmitonnet et al., 2002] and [Lodej et al., 2006]. The reasons are: 

• First, this approach requires an interrupted pilgered test in order to get the “transition 

shape” and the initial tube strain field. ODS steels are new and expensive. In addition, the 

fabrication route is not yet fully determined. Therefore, this methodology can not be used. 

• The post-processing interpolation, once the stabilized stroke is reached, has been 

implemented almost a decade ago in order to save computation time. Since then, metal forming 

simulations are in continuous progression and have become more reliable and faster due to the 

simultaneous improvements of resolutions algorithms and computer technology [Chenot et al., 

2002]. 

• Finally, with this approach, the stress and strain fields are considered constant in the tube 

wall thickness in the initial state. However, in this project the goal is to use a damage criterion, 

which is not correlated with the assumption of constant stress and strain in the tube wall 

thickness.  

For these reasons the strategy that was chosen is to simulate the whole process, that is 

to say the full number of strokes. However, only a short part of the tube is considered in order to 

save CPU time. 

2.3.1 Fabrication route simulation 

The fabrication route is a combination of rolling passes and intermediate heat treatments. 

Based on previous studies recommendations for ODS steels the cross-section reduction ratio for 

each pass is limited to approximately 20% - 25% [Ukai et al., 2004]. Hardness evolution allows 

adjusting the fabrication parameters. Intermediate heat treatments are performed to ensure a 

limited increase of the cladding tube hardness, below the critical hardness value of 400 Hv1. After 

2 passes the cold-rolled tube is heat treated. After 6 rolling-passes the final dimensions of the 

cladding tube are 10,73 mm outer diameter and 500 µm wall thickness. The fabrication route of a 

Fe-14Cr-1W-ODS (CEA code: J37) tube is showed in Table 2.1.  
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Table 2.1. Fe-14Cr-1W-ODS HPTR tube fabrication route at CEA/Saclay. 

Grade tube 12: Fe-14Cr-1W-0,3Ti-0,3 Y2O3 (Ferritic grade) 

Outer diameter Inner diameter Wall thickness Pass deformation Total deformation 
Q 

factor 
Hardness* 

Raw tube 18.65 16.10 1.28    374 

Pass 1 17.44 15 1.22 10.67 10.67 0.66  

Pass 2 15.98 14 0.99 25.01 33.01 2.25 420 

Heat treatment 393 

Pass 3 14.35 12.70 0.83 24.81 49.63 1.63  

Pass 4 13.28 11.90 0.69 22.15 60.79 2.19 416 

Heat treatment 392 

Pass 5 12.13 10.97 0.58 22.89 69.76 1.84  

Pass 6 10.73 9.73 0.5 23.65 76.91 1.2 400 

Final heat treatment 410 

* Applied force: 1kg, time:15s (Vickers) 

All numerical simulations performed in this work for HPTR pilgering are based on pass 3

in Table 2.1. The raw tube is advanced by 1,7 mm and rotated around its axis by 39° after each 

stroke, a stroke being defined by one forward and one backward displacement of the rolling dies. 

2.3.2 Simulation set up 

The cold pilgering process is also used for forming Zircaloy-4 cladding tubes. Therefore, 

the first feasibility test of HPTR pilgering simulation will consider this material with an monotonic 

elastic-plastic behavior. The with Young’s modulus is E =99GPa, the Poisson’s ratio is ν =0.37, 

and the monotonic strain hardening curve is [Montmitonnet et al., 2002], [Lodej et al., 2006]: 

15.0)01.0(1000 εσ +=          (2.46) 

The time step is considered constant, st 001.0=∆ , giving a maximal incremental die 

translation of 0.82mm. The influence of this numerical parameter will be discussed later. All 

contacts are unilateral. A unilateral contact denotes a mechanical constraint which prevents 

penetration between two bodies and is usually associated with a gap function which measures 

the distance between the bodies and a contact force. A Coulomb friction law is assumed with 

µ =0.1 for both internal and external surface [Montmitonnet et al., 2002]. Another assumption is 

that the process is isothermal (20°C), or more prec isely that the change in temperature of the 

material does not affect significantly the material behavior. Tools are assumed rigid (which is a 

strong assumption when dealing with thin tubes). Therefore, only the active die surfaces needs to 

be meshed. Typical die mesh features are shown in Table 2.2. Both forward and return strokes 

are simulated. Dies kinematics and tube mesh are discussed in the next sections. 
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Table 2.2. Die mesh characteristics. 

 Number of elements Number of nodes Element type 

Dies 3 x 20294 3 x 10199 2D triangles 

Mandrel 60000 30100 2D triangles 

2.3.2.1 Cold pilgering kinematics 

The dies translation velocity (Fig. 2.4) is a sinusoidal function given by: 

)
**2

sin(
f

t
AVz

π
= ,          (2.47) 

where t is the time, A the amplitude (dies maximal rolling velocity), and f the frequency (for 

one complete stroke time). zV ���the velocity in the rolling direction. 

�

Figure 2.4. Rolling direction dies translation velocity. 

In the real HPTR pilgering process, profiled cams push the dies into the tube, which leads 

to compression [HPTR CEA/LTMEX]. Profiled cams are 3 slopes with different angles (see Annex 

1). Therefore, the pilgering model should have also a translation velocity in the radial direction (y). 

Moreover, cams and dies have a relative motion, which leads to a larger working zone than the 

real cams’ length (191mm). This relative motion depends on the final diameter that at the same 

time depends on the set up of the HPTR mill connecting rod system [see HPTR CEA/LTMEX]. 

With the assumption that there is not sliding between dies and tube, the dilatation factor ( xf ) to 

apply at the real cam length for the pass 3 is 1.373 (see Annex 2). With this dilatation factor the 

cams length is nearly 260mm. Homothetic cam is done with fixed slopes angles. Dies move 

following the slope imposed by the cams and once the final diameter is reached, the die is locked 

with a hillock in order to calibrate the tube without any slope. Fig. 2.5 displays schematically this 
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mechanism. The strategy implemented in this work is to simulate only the working zone. Finite 

element simulations can start slightly before this stage, say 2-3 strokes earlier, in order to safely 

capture the first contact. 

�

Figure 2.5. Schematic kinematics of the HPTR pilgering process. 

Dies compression profile and velocity in the radial (compression) direction (y) are given in 

Fig. 2.6 and 2.7 respectively. 

�

Figure 2.6. Cams profile. Y is the radial die displacement.  

Next Figure displays the velocity profile corresponding to the above cam profile (see Fig. 

2.6). 
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Figure 2.7. Compression dies velocity in the radial direction (y). 

Finally, a numerical Forge2009®  feature called manipulator is used at the rear of the tube 

to impose boundary conditions. Six degrees of freedom at each node belonging to the tube rear 

base are set to zero. The six degrees of freedom correspond to 3 rotations and 3 translations. 

This is consistent with reality since the tube is maintained by jaws, outside of the working zone. 

The tube and the mandrel are coaxial. This is also true in the actual process because the 

mandrel is also maintained by jaws. 

2.3.2.2 Tube length choice 

Optimizing numerically the whole process with a long tube is simply not feasible at the 

time being, because of the huge computation time involved. Consequently, a short tube is used. 

The length of this short tube must be long enough to be able to achieve steady state thermo 

mechanical values in the central zone. A numerical study was carried out to obtain the optimal 

tube length in relation with the numerical accuracy and the computation time (Table 2.3). 2 

elements over the thickness and 100 elements over the circumference are used. The mesh size 

in the rolling direction is 1mm. 

Table 2.3. Tube length influence simulations characteristics  

(a) (b) (c) 
Tube length [mm] 10 20 40 

Number of elements 12000 24000 48000 

CPU time (5 cores) 106h 91h 221h 
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Figure 2.8. Tube length influence study results: equivalent strain isovalues. (a) 10mm (b) 20mm (c) 40mm. 

Fig. 2.8 shows the numerical results with 3 different tube lengths. It illustrates the 

influence of edge effects (manipulator and free end) on the distribution of accumulated strain. 

Axial rolling marks with a high accumulated equivalent strain also appear. They are due to the die 

shoulder contact which initially induces local deformations (this point is discussed latter). 20 mm 

and 40 mm tubes display nearly the same accumulated equivalent strain axial marks in the 

middle of the tube (steady zone). For 10 mm tube, the steady zone does not exist because of 

edge effects perturbations. Therefore, the tube of 20 mm is chosen for our simulations because of 

its acceptable computation time (see Table 2.3) and numerical accuracy. Moreover, Lagrangian 

sensors are placed in the thickness of the tube at mid-length (in order to avoid edge effects). 

They collect the mechanical history undergone by the material point during the whole pilgering 

process, which provides indications on the nature and the amplitude of the cyclic deformations. 

The full simulation approach proposed in this work involves with huge amounts of data storage 

associated to meshes. In this context, Lagrangian sensors allow collecting the essential data for 

the mechanical analysis of a well chosen materials points. 

2.3.2.3 Mesh type choice 

Forge3® can perform numerical simulations with structured and unstructured meshes. 

This section deals with a numerical test comparing 3 types of mesh: structured isotropic, 
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structured anisotropic and unstructured (see Table 2.4). 0.5mm mesh size is used for the 

structured isotropic case. 0.5mm mesh size over the wall thickness and 0.66 mm mesh size in the 

rolling direction is used for the structured anisotropic case. Unstructured mesh case is performed 

with a mesh size close to 0.5mm. 

The goal is to select the optimal mesh type for future simulations. The initial tube length is 

fixed to 20 mm. The results are summarized in Fig. 2.9. It can be concluded first, that the 

unstructured mesh lost strain continuity rolling marks. Additionally, some isolate peak strain 

values are observed. On the other hand, structured meshes display smooth and continuous axial 

rolling marks in the steady zone. These marks are also observed experimentally. Therefore, in 

this particular case, a structured mesh can be used because it gives smoother mechanical fields 

(see Fig. 2.10). Regarding the isotropic versus anisotropic structured meshes, it can be noticed 

that mesh size influences the axial rolling marks intensity (see Fig. 2.9), which could be due to the 

software contact management that itself depends on mesh size. Actually, the more the mesh size 

decreases the more the equivalent strain field is significant. In section 2.2.5.2 a deeper analysis 

is done in order to get the optimal anisotropic structured mesh size when considering both 

computation time and numerical precision.  

Additionally to previous comments, the structured meshes allow to control the number of 

elements in the wall thickness, which is an important issue when analyzing the mechanical field 

gradient over the wall thickness. 

Table 2.4. Mesh type influence on simulations characteristics  

(a) (b) (c) 
Mesh type Structured isotropic Structured anisotropic Unstructured 

Number of elements 86400 43200 53719 

CPU time (5 cores) 232h 105h 155h 

It is noticed regarding Fig. 2.10 that the longitudinal strain for the isotropic and anisotropic 

cases are slightly the same. It can be explained by the fact that the sensor (material point) is 

placed at the middle of the wall thickness. If the sensor is placed close to the external surface, 

longitudinal strains should be different as showed in Fig. 2.9. 
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(a)����� (b) 

(c) 

Figure 2.9. Equivalent strain isovalues field. Structured and unstructured meshes influence (initial tube length: 20mm). (a) 

Structured isotropic mesh (b) Structured anisotropic mesh (c) Unstructured mesh.  

�

Figure 2.10. zzε  history of a material point in the middle of the tube – mesh type influence. 
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2.3.3 First numerical results analyses 

Taking into account the previous conclusions, an anisotropic structured mesh is chosen 

for this first numerical results analysis. 3 elements over the thickness, 100 elements over the 

circumference and 20 elements over the length are used to mesh the 20mm short tube. Mesh 

characteristics are summarized in Table 2.5. 

Table 2.5. Mesh characteristics. 

 Number of elements Number of nodes Element type 

Tube 36000 8400 3D tetrahedral 

Dies 3 x 20294 3 x 10199 2D triangles 

Mandrel 60000 30100 2D triangles 

Meshing and initial position of the simulated systems are displayed in Fig. 2.11. 

�

Figure 2.11. FEM simulation set-up. 

A Lagrangian sensor is placed at the element Gauss-point located in the mid-thickness of 

the tube (Fig. 2.12). Placing the sensor in the Gauss-point allows getting the mechanical value 

without doing any interpolation with the neighboring elements, which is important when using few 

elements in the tube thickness. 
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Figure 2.12. Numerical Lagrangian sensor position. 

Fig. 2.13 shows the time integrated values of each component of the strain rate tensor in 

cylindrical coordinates. It is noticed that before the 52nd stroke the dies mainly lead to a diameter 

reduction of the tube since θθε  is incrementally negative.  

�

Figure 2.13. Accumulated strain for each component of ε  integrated components of the strain rate tensor as a function of the 

stroke number. 

The material constitutive law being elastic-plastic, 0)( ≠ε�Tr . When integrating over the 

full pass, and combining with numerical errors, which is a little high. Another representation of 

Fig. 2.13 would consist in plotting and integrating only the plastic part of the strain, with then 

0)( ≈pTr ε . 

Most of the deformation is performed after the 52nd stroke by compression between the 

grooves dies and the mandrel, and leads to significant extension in the axial (z) direction. As 

shown in Fig. 2.13 the material can be locally in tension in the finishing zone, because of the side 

relief. In this case θθε∆  could be positive. 
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Figure 2.14. Cross-sectional view of the tube at a given position in z in the deformation zone. The shoulder locally deforms the 

material, creating a tensile stress in the side relief and in the outer gap, and a compressive stress in the shoulder. This leads to 

a “clover tube”. 

From Fig. 2.13, the particular strokes 24, 53, 56, 59, 62, 64 and 67, θθε∆  is positive, 

indicating either a tensile stress in the orthoradial direction (Fig. 2.15) or a volume conservation 

effect.  

�

Figure 2.15. Clover geometry caused by the local contact between shoulder and die, and the absence of contact with the die 

groove. 

It is also noticed from Fig. 2.13 that rrε∆  is mostly positive during the first 52 strokes, 

which is due to the clover effect, some parts being in tension (side relief, outer gap) and others 

parts being in compression (shoulder). This results in an increase of the thickness and is 

illustrated in Fig. 2.16. From the 52nd to the last stroke, the material comes in contact with the die 

grooves and with the mandrel, which this time induces a reduction of the tube thickness (Fig. 

2.13) with rrε  negative. 
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Figure 2.16. Clover effect causing an increase of the thickness. 

It is noticed regarding Fig. 2.17 that the thickness reduction is homogeneous in the 

formed tube despite the intermediate significant clover tube shape (see Fig. 2.17 red lines) in the 

working zone. This fact is explained because of the tube full contact with the die groove and the 

mandrel at the end of the deformation zone, and because of the small size of the side relief in this 

zone (sees Fig. 2.18). 

�

Figure 2.17. Different cross section geometries along the tube length. The clover tube (here in red) is taken from de deformation 

zone. 
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Figure 2.18. Cross-sectional view of the tube at a given position in z in the finishing zone. Note the homogeneous thickness 
reduction and the small size of the side relief. 

The associated deformation in z  is positive. The thin walled geometry leads to a stress 

field dominated by a negative hydrostatic stress (high pressure) leading to a negative stress 

triaxiality most of the time (Fig. 2.20). The axial stress may however become positive and 

significant (yield limit: 500 MPa) as illustrated by Fig. 2.19. It means that the stress triaxiality is 

important but negative as illustrated by Fig. 2.20. 

�

Figure 2.19. Axial stress history (75 strokes). 

Regarding Fig. 2.19, this could be linked to damage nucleation, with cracking in the axial 

direction. 
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Figure 2.20. Stress components and stress triaxiality. 46th stroke detailing. 

More precisely, in the deformation zone under the die, the axial stress is tensile in the 

side relief area and outer gap area and compressive where the material touches the dies (see 

Fig. 2.16 gray line). Referring to Fig. 2.21, the reason is clear, the tube is strongly compressed 

(thickness reduction) underneath the die shoulder, causing axial z-elongation which is necessarily 

homogenous all around the tube, leading to axial stresses. 

�

Figure 2.21. 46th stroke cross-section view showing zzσ  (in MPa) isovalues at the sensor position (z = 223mm). 

This phenomenon is accompanied by an ortho-radial flow. Orthoradial stress θθσ  is 

locally tensile (Fig. 2.22) in the presence of free surfaces (clover geometry explained previously). 
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Figure 2.22. 31st stroke cross-section view showing θθσ  (in MPa) isovalues (z = 197 mm). 

Finally, the radial stress and strain are also positive when free surfaces exist, (outer gaps 

and side relief). Radial tensile stress values are however small in comparison with the 

compressive ones. The positive rrε  creates slight bulges in the tube which are illustrated in Fig. 

2.23. They correspond with the side relief area of the previous stroke. As these bulges have an 

increased thickness, contact is made with the dies groove at the next stroke, leading to a 

compressive stress rrσ . 

�

Figure 2.23. 31st stroke cross-section view showing 
rrσ  (in MPa) isovalues (z = 197 mm). 

Experimental data indicates a tendency to cracks opening in the axial direction when 

dealing with ODS steels, hence under the influence of orthoradial loading ( θθε , θθσ ). A more 

detailed analysis of these effects is therefore undertaken. 
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Fig. 2.24 shows the orthoradial stress and orthoradial strain rate histories at the material 

point (sensor), described previously. Compression dominates the picture, but some isolated 

tensile conditions could lead to crack nucleation. 

�

Figure 2.24. Strokes stress and strain rate histories of a material point in the ortho-radial direction. Strain rate is in black. 

Fig. 2.25 shows in details the stroke 56 because the maximal positive θθε�  occurs there. 

�

Figure 2.25. 56th stroke detailing. 

θθσ  in this stroke is negative. Therefore, the origin of this θθε∆  is the volume 

conservation ( 0=∆+∆+∆ p

zz

pp

rr εεε θθ ). 

#$
���

�

�

][ 1−sθθε�

�
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A more systematic analysis of all cycles can help defining which cycles may contribute to 

the oligocyclic fatigue of the material. This leads to the need for a damage criterion, which will be 

addressed in Chapter 4. 

It is underlined that such analysis requires appropriate constitutive laws, which will be 

discussed in Chapter 3. 

2.3.4 Adaptative time step 

A method of adaptive time step was set up to allow the acceleration of the simulation 

computing time. Indeed, many iterative processes may occur during the resolution of the 

mechanical system for elastic-plastic behavior. A small time step is a safe choice but is no more 

necessary when dies are far from the tube (no contact). In this case it is possible to switch to a 

higher time step. To come back to the small time step the following condition must be true: 

toolcontact dd ≤ � � � � � � � � � � � (2.48) 

!�
$/�

tVd ztool ∆= max
�� � � � � � � � � � (2.49)�

where max

zV  is the maximum translation velocity of dies, t∆  is the time step when dies 

are not in contact with the tube, contactd  is the minimal distance of the tube nodes to the tools 

calculated by the contact management algorithm. Once toolcontact dd ≥  the time step is switched 

again to the small time step and so on. Fig. 2.26 shows an example for a 20 mm length tube. A 

st 001.0=∆  is set when dies are close to the tube and then switched to st 01.0=∆  when dies 

are far from the tube.  

�

Figure 2.26. Adaptative time step through the simulation of pilgering. 

toolcontact dd ≤ �������������������� �
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This method accelerates the CPU time by a factor of 2.4 when pilgering a 20 mm length 

tube. The management of a time step from the tools position is demonstrated in this case and 

saves considerable CPU time. 

2.3.5 Sensitivity studies 

The previous mechanical analysis is sensitive to numerical parameters such as:  

• Number of elements over the wall thickness 

• Number of elements over the tube length  

• Time step 

This section looks at the quantitative influence of such parameters. 

2.3.5.1 Number of elements over the wall thickness 

For this sensitivity study the time step is fixed to 0.001s, the Zy4 material behavior is still 

assumed to be isotropic elastic-plastic (Eq. 2.46). The tube initial length is 20 mm and the number 

of elements over the tube length is 60 (mesh size in the rolling direction: 0.33 mm). 4 different 

mesh sizes over the thickness are tested. Their characteristics are summarized in Table 2.6. The 

adaptative time step explained in section 2.3.4 is used in this study. 

Table 2.6. Simulation characteristics and CPU time.

Assigned 

simulation 

name 

Number of elements  

(wall thickness) 

Mesh size 

(wall thickness) 

Number of 

elements 

Number of 

nodes 
CPU time 

2Th 2 elements 0.495 mm 72000 18300 99 h (6 cores) 

3Th 3 elements 0.33 mm 108000 24400 110 h (6 cores)

4Th 4 elements 0.2475 mm 144000 30500 289 h (12 cores) 

5Th 5 elements 0.198 mm 180000 36600 447h (12 cores) 

Lagrangian numerical sensors have been placed at the mid-length of the tube at different 

angles (0°-19.5°-39°-90°-180°-270°) and each elemen t of the wall thickness (see Fig. 2.27).  



��������		�
���������������������

� ���-�����-�

�

Figure 2.27. Lagrangian numerical sensors placed at the mid-length of the tube at different angles (0°-19°-39°-90°-180°-270°). 

The sensors are placed at Gauss-points of some elements. Thus the comparison of 

different simulations is difficult because the positions of Gauss-points varies depending on the 

number of elements in the thickness as shown in Fig. 2.28. At each angle, only the sensor closest 

to the center of the thickness of the tube is considered. 

�

Figure 2.28. Sensors used in this study. 

Therefore it is chosen to compare the strain component which is the most homogeneous 

in the wall thickness of the tube, such that the influence of the difference in position between the 

sensors is minimized. Figs. 2.29 - 2.31, show that the most uniform strain component over the 

thickness is zzε . This strain component is used to compare the simulations in this section. 
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Figure 2.29. Change of rrε  in the wall thickness at angle 0° (5Th simulation – 5 elements over the wall thickness). Diff 

corresponds to the strain component gradient between the internal and the external sensors. 

�

�

Figure 2.30. Change of θθε  in the wall thickness at angle 0° (5Th simulation) . Diff corresponds to the strain component 

gradient between the internal and the external sensors. 

�

Figure 2.31. Change of zzε  in the wall thickness at angle 0° (5Th simulation) . Diff corresponds to the strain component gradient 

between the internal and the external sensors. 
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From Fig. 2.32, the “mid-thickness” results for zzε , with the assigned simulation name 

5Th, are very similar to those obtained with the tube with the simulation 4Th. The convergence 

seems to be achieved with 4 elements in the wall thickness. 

�

Figure 2.32. “Mid-thickness” value of zzε  comparison at angle 180° in function of the number  of elements over the thickness. 

This analysis at “mid-thickness” is then done for other components of the strain tensor: 

rrε , θθε  (see Fig. 2.33 and 2.34). The trend is the same: the convergence seems to be achieved 

with 4 elements in the wall thickness. 

�

Figure 2.33. “Mid-thickness” value of rrε  comparison at angle 180° in function of the number  of elements over the thickness. 
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Figure 2.34. “Mid-thickness” value of rrε  comparison at angle 180° in function of the number  of elements over the thickness. 

2.3.5.2 Number of elements over the tube length  

For this sensitivity study the time step is fixed to 0.001s, the Zy4 material behavior is 

assumed isotropic elastic-plastic (Eq. 2.46). The tube initial length is 20 mm and the number of 

elements over the wall thickness is 3 (mesh size: 0.33 mm). 4 different size meshes over the 

length of the tube are tested. Their characteristics are summarized in Table 2.7. The adaptative 

time step is used in this study. 

Table 2.7. Number of elements over the length tube (simulation characteristics). 

Assigned 

simulation 

name 

Number of elements  

(length) 

Mesh size 

(length) 

Number of 

elements 

Number of 

nodes 
CPU time 

20L 20 elements 1 mm 36000 8400 123 h (6 cores) 

30L 30 elements 0.66 mm 54000 12400 78 h (6 cores) 

40L 40 elements 0.5 mm 72000 16400 76 h (6 cores) 

50L 50 elements 0.4 mm 90000 20400 212 h (6 cores) 

60L 60 elements 0.33 mm 108000 24400 140 h (6 cores) 

Simulations comparisons are carried out with the three values rrε , θθε , zzε  since they 

were calculated with a mesh tube with 4 elements over the thickness. The sensors are positioned 

at the same place. 
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Figure 2.35. rrε  comparison at angle 0° in function of the number o f elements over the tube length. 

�

�

Figure 2.36. θθε  comparison at angle 0° in function of the number o f elements over the tube length. 

�

Figure 2.37. zzε  comparison at angle 0° in function of the number o f elements over the tube length. 
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From Fig. 2.37, the higher the number of elements along the length of the tube, the higher 

the values of zzε  (10-15% more axial elongation). Convergence is achieved from 40 elements 

along the tube length in this strain direction. The difference is especially noticeable from the 50th

stroke since then the tube is in contact with the mandrel. From this point, dies reduce the wall 

thickness involving a tube elongation in the rolling direction because of mass conservation. It is 

therefore necessary to put 40 elements in length for a 20 mm tube. It is noticed from Fig. 2.35

and 2.36 that rrε , θθε  values are miscalculated after the 50th stroke when using less than 40 

elements. As explained previously, in the working zone, the material can only flow in two 

directions: the rolling direction or the side relief, therefore a mesh with few elements in the tube 

length could induce numerical rigidity to the mechanical computation, and lead to a decrease of 

the computation accuracy. Finally, in this particular case, it is necessary to use at least 50 

elements in the rolling direction in order to get good precision. 

2.3.5.3 Time step 

For this sensitivity study the simulation 4Th (4 elements over the thickness) is used. The 

set-up of the numerical simulation stays unchanged. 4 different time steps are tested: 5.10-3s, 

1.10-3s, 5.10-4s, 1.10-4s. Their characteristics are summarized in Table 2.8. The adaptative time 

step is not used in this study. 

Table 2.8. Number of elements over the length tube simulation characteristics. 

Time step [s] 
Number of 

strokes 
CPU time 

5.10-3 77 98 h (6 cores) 

1.10-3 77 288h (6 cores) 

5.10-4 77 869h (6 cores) 

1.10-4 51 749h (6 cores) 

Simulations comparison is carried out with the three values rrε , θθε , zzε  since they were 

calculated with a mesh tube with 4 elements over the wall thickness.  

Some numerical volume increase is observed during the first 50 strokes. As explained 

previously, these first 50 strokes deal with the clover tube. Fig. 2.38 shows a sensitivity study of 

this volume increase with the time step. A small time step can prevent this numerical error. But, 

reducing the time step leads to an increase in the required CPU time (Fig. 2.38 and Table 2.8). 
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Figure 2.38. Volume increase in the numerical simulation during the HPTR process for various time steps. CPU time with 12 

cores. Mesh characteristics: 4 elements over the wall thickness – 60 elements over the tube length. 

This numerical volume increase has an impact in the computation of the mechanical 

values. Figs. 2.39 - 2.41 displays the influence of the time step on one material point (sensor) 

deformation. 

�

Figure 2.39. rrε  comparison at angle 0°. Time step influence. 
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Figure 2.40. θθε  comparison at angle 0°. Time step influence. 

�

Figure 2.41. zzε  comparison at angle 0°. Time step influence. 

It is clear regarding Figs. 2.39 - 2.41 that the simulation with a time step of 5.10-3s is not 

viable. The tube increasing volume leads to much more contact with dies hence more 

deformation (e.g. Fig. 2.41). In contrast the simulation with a time step of 1.10-3 is very close to 

that with a time step of 5.10-4 in terms of strains. On the other hand, time step of 1.10-4s leads to 

different strain values in the orthoradial and radial directions, when comparing with the other time 

step. It can be explained by the fact that the clover tube (stroke 30-50) does not increase too 

much its numerical volume as seen in Fig 2.38. Nonetheless, time step of 1.10-4s leads to a huge 

CPU time (749h are required for 51 strokes). Due to the minimal difference in the results between 

time steps of 1.10-3s and 5.10-4s, it is chosen to work with a time step of 1.10-3s, which gives the 

best compromise CPU time –precision. 
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2.3.6 Summary 

This section dealt with influence of numerical parameters. The following numerical 

characteristics are chosen for future simulations: 

- Time step: 0.001s 

- Tube length: 20 mm 

- Mesh type: Unstructured anisotropic mesh 

- Number of element over the thickness: 4 

- Number of element over the length: 50 

2.4 Comparison between predicted and measured pilgered steady 
state tube geometry 

The goal of this section is to validate the kinematics of the dies that will be used in the 

following of this work. CEA/Saclay carried out an interrupted pilgering test in order to know 

experimentally the tube profile in a steady state. This test dealt with two materials: the ODS steel 

tube and the Zircaloy-4 tube. A 3D measurement machine, numerically controlled (CNC), allows 

the acquisition of the coordinates of the points measured in the pilgered steady state tube 

geometry. Concerning the numerical simulation, a long tube approach is used. The latter consists 

in pilgering numerically a tube at least as long as the real working zone. In this particular case the 

length tube is 210 mm. Now, dealing with such a tube length, CPU time computation is 

enormous. In order to reduce the simulation time  and, because only the transition geometry is 

required in this study, a coarse mesh is used: 2 elements over the thickness and 210 elements 

over the length tube (mesh size in the rolling direction: 1 mm). Simulation mesh characteristics 

are summarized in Table 2.9. 

Table 2.9. Mesh characteristics. 

 Number of elements Number of nodes Element type 

Tube 176400 44310 3D tetrahedral 

Dies 3 x 20294 3 x 10199 2D triangles 

Mandrel 60000 30100 2D triangles 

The simulation set up is displayed in Fig. 2.42. 
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Figure 2.42. The tooling and meshes used in the long tube simulation. 

The elastic-plastic behavior described in section 2.3.2 is assumed for the tube. Coulomb 

friction is assumed with 1.0=µ . Pass 3 of the fabrication route (Table 2.1) is simulated. The 

process total time is 98s. The time step is constant during deformation, st 001.0=∆ , elsewhere 

the adaptative time step is used. The tube is turned 39° and moved forward (feed) 1.7 mm after 

each stroke. A material point takes 120 strokes to pass through the working zone. The full 120 

strokes computation time remains high: the long tube approach took 1560 CPU h (65 days) 

parallel calculation on a 2x8 cores (AMD Opteron Magny-cours 2.3 Ghz) Linux cluster. 

Fig. 2.43 shows how equivalent deformation is distributed in the steady state tube. Dies 

shoulder first touch the tube, leaving axial rolling marks with a high accumulated equivalent strain. 

It is noticed also that the strain is not homogeneous over the tube circumference due to the clover

tube shape imposed in the first dozens of strokes. These two aspects were observed in the 

experimental test carried out (e.g. Fig. 2.43: Zy4 tube).  

�

Figure 2.43. Interrupted pilgering test: simulation and experimental. Equivalent strain Zy4 tube isovalues.
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Fig. 2.44 displays the calculated distance between the mandrel and the steady state Zy4 

tube. It is concluded that nearly the half of the pilgering process in this particular case is done 

with contact between the mandrel and the tube. Therefore the wall thickness reduction occurs in 

the last 69 strokes. It means that the Q  factor evolves during the HPTR process. In the first fifty 

strokes the Q  factor is smaller than during the last strokes.  

�

Figure 2.44. Interrupted pilgering test simulation. Contact distance mandrel - Zy4 tube isovalues. 

A comparison between the predicted and the measured pilgered steady state tube 

geometry is illustrated in Fig. 2.45. In this figure the strain of the experimental tube is calculated 

with the following equation: 

�
�

�

�

�
�

�

�
=

2

)(

2

0ln
zr

r
ε � � � � � � � � � � � (2.50)�

where 0r  is the initial tube radius and )( zr  is the radius at a given position z  of the tube 

length. 
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Figure 2.45. Comparison between the predicted and the measured pilgered steady state tube. 

It is noticed in Fig. 2.45 that the numerical pilgering model underestimates the 

intermediate strain values because the steady state profile is slightly different between the 

experimental and the numerical response. It is in the first slope that the difference is more 

distinct. There are some numerical model assumptions that can explain this dissimilarity: the 

whole HPTR mill is considered as rigid (the dies and mandrel spring-back is not taken into 

account), the contact management based in the penalty algorithm is highly dependent of the time 

step and the mesh size, the numerical volume increase has also an important role in this 

divergence. Nevertheless, the working zone length is nearly the same as well as the trend of the 

steady state tube profile and the strain. Additionally, the formed tube geometry of the pass 3

fabrication route is reached. Fig. 2.46 shows a comparison between the analytical and the 

calculated formed tube geometry, which coincide very well. 

�

Figure 2.46. Formed tube cross geometry comparison (dimension: mm). 
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2.5 Conclusions 

In this Chapter, complete modeling of HPTR cold forming process, involved in the 

production of thin tubes, has been analyzed. 

In order to better understand numerical results, an introduction to the finite element 

method (FEM) has been done with the presentation of equations of the mechanical problem. 

Conservation equations and boundary conditions enable to define the system which has to be 

solved. 

First numerical results have been detailed in a second part. The present study has 

demonstrated the feasibility of FEM mechanical deep analysis of the HPTR cold pilgering of 

tubes. Complete simulations of HPTR pilgering of an isotropic material have been presented 

using a short tube approach. In this approach all strokes are simulated. The main results have 

shown that the formed tube has non-homogenous strain in the radial, circumferential and axial 

direction. The maximal strain is located on the tube external surface due to the repeated contact 

with dies. A complex mechanical history undergone by a material point has been detailed. One 

can follow the overall thinning of the tube (compression along the radial direction), and overall 

reduction in diameter (compression along the ortho-radial direction), both of them resulting in a 

significant elongation along the tube axis. It is concluded that some ortho-radial and radial strain 

positive increments could lead to damage and cracking, even though most of the strain path 

involves reduced stress triaxiality. A detailed analysis of local stress conditions may explain the 

nucleation of defects (longitudinal cracks) in low-cycle fatigue regime. The shear rzε  component 

was found to be not negligible in relation with the others shear strains. Additionally, non-helicoïdal

path was found in HPTR pilgering because the component zθε  is nearly zero.  

A sensitivity analysis on the mesh sizes, time step, type of mesh and length of the tube 

was performed in order to assess the accuracy of the current calculations. An optimal set of 

numerical parameters was chosen: unstructured anisotropic mesh (4 elements over the 

thickness, 50 elements over the length), tube length of 20 mm, time step of 0.001s. This 

configuration exhibits the best accuracy-computation time compromise. 

Finally, a comparison between predicted and measured pilgered steady state tube 

geometry was carried out. The long tube approach was used. Some discrepancies were found 

between the numerical and the experimental response. They are mainly due to numerical 

approximations in the FEM model and assumptions made for the real HPTR kinematics. 

Nevertheless, general trends have been obtained and the numerical kinematics seems to be 

accurate enough to be considered in for a more detailed mechanical analysis of the process, 

using adapted constitutive laws. 
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2.6 Résumé en français 

Dans ce Chapitre, la modélisation complète du procédé de laminage à pas de pèlerin de 

type HPTR, impliqué dans la production de tubes minces, a été analysée. 

Afin de pouvoir interpréter et comprendre au mieux les résultats numériques, une 

introduction à la mécanique numérique a été faite. Les équations de conservations et les 

conditions limites ont permis de poser le problème et définir le système à résoudre. Le problème 

est ensuite discrétisé en temps et en espace afin d’avoir le système final à résoudre. Enfin, la 

résolution du ce système est brièvement détaillée. 

Les premiers résultats numériques ont été présentés dans la deuxième partie de ce 

chapitre. La présente étude a démontré la faisabilité détaillée de la mise en forme des tubes par 

le procédé de laminage à pas de pèlerin de type HPTR en utilisant la méthode des éléments 

finis. Des tendances générales ont été obtenues et ont besoin d'être confrontées à des 

expériences. La première difficulté pour la simulation de procédés de type laminage à pas de 

pèlerin est la prise en compte de l’aspect incrémental de la déformation. Certains auteurs ont fait 

le choix de simplifier la modélisation du procédé en considérant la déformation sur une 

configuration quasi stationnaire du procédé pour diminuer les temps de calcul des simulations du 

procédé. On a choisi ici d’étudier l’ensemble des événements de déformation vu par la matière. 

On se limite simplement à l’étude d’une portion du tube. Les extrémités du tube ne sont pas 

représentatives de l’histoire du matériau car les conditions de bord libre d’un coté et les 

conditions de déplacement imposé de l’autre coté entraînent des perturbations. On étudie alors 

l’histoire thermomécanique du matériau sur la portion intérieure du tube. 

Dans cette approche (tube court), tous les coups de cage sont simulés. Les principaux 

résultats ont montré que le tube fini a une déformation non homogène dans les directions radiale, 

circonférentielle et axiale. La déformation maximale est située sur la surface externe du tube, elle 

est  due au contact répété avec les galets. L’histoire mécanique complexe subie par un point 

matériel a été détaillée. On peut suivre l’amincissement du tube (compression suivant la direction 

radiale), et la réduction globale de diamètre (compression le long de la direction ortho-radiale), 

les deux phénomènes conduisant à un allongement important le long de l'axe du tube. Il est 

conclu que certains incréments positifs de déformation ortho-radiale et radiale pourraient 

conduire à des dommages et des fissures, même si la plupart du chemin de déformation implique 

une triaxialité négative. Une analyse détaillée des conditions de déformations locales peut 

expliquer la germination de porosités (fissures longitudinales) dans le régime de la fatigue 

oligocyclique. La composante de cisaillement rzε  a été jugée non négligeable par rapport aux 

autres déformations de cisaillement. En outre, un chemin non-hélicoïdal a été trouvé dans le 

laminage HPTR car la composante zθε  est presque nulle. 

Une analyse de sensibilité sur la taille de maille,  le pas de temps, le type de maillage et  

la longueur du tube a été réalisée afin d'évaluer la validité des calculs. Des paramètres 

numériques optimaux ont été choisis: maillage anisotrope non structuré (4 éléments sur 

l'épaisseur, 50 éléments sur la longueur), la longueur du tube est de 20 mm, le pas de temps est 
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0.001s. Cette configuration présente le meilleur compromis temps, calcul et précision des 

résultats. 

Enfin, une comparaison entre le profil expérimental et le profil numérique du tube d’un 

essai interrompu a été réalisée. L'approche tube long a été utilisée. Certains écarts ont été 

trouvés entre la réponse numérique et la réponse expérimentale. Elles sont principalement dues 

aux approximations numériques dans le modèle éléments finis et des hypothèses faites sur la 

cinématique du laminoir HPTR réel. Néanmoins, les tendances générales ont été obtenues et la 

cinématique numérique semble être assez précise pour être prise en compte dans une analyse 

mécanique plus détaillée du procédé, en utilisant des lois de comportement adaptées au 

chargement cyclique. 
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Constitutive law 
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3.1 Introduction 

The knowledge of the constitutive equations of materials allows an optimal design 

involving the proper material at the right place. Building the models calls on a set of equations 

that must be adjusted to a given material thanks to an experimental database made of 

mechanical experiments and, possibly, microstructural observations. For this purpose, some 

experimental mechanical tests have been achieved leading to an identification of three different 

types of constitutive laws: isotropic monotonic, anisotropic monotonic and isotropic cyclic. The 

final goal is to assess the influence of the choice of the constitutive model on the mechanical 

history of a material point under pilgering conditions. 

Section 1 introduces briefly the ferritic and martensitic ODS steels considered in this 

Chapter. Some microscopic observations coming from the literature are discussed. 

Section 2 deals with the mechanical response of ODS steels using a classical tensile test. 

The constitutive behavior of two ODS grades under tensile conditions is modeled with a 

monotonic constitutive law. Constitutive law parameters are identified using the inverse analysis 

module available in Forge3®. 

Hot extruded ODS steel tubes usually reveal an anisotropic strength in the radial, ortho-

radial and longitudinal directions. Anisotropy is due to crystallographic texture and to the strongly 

elongated grain morphology in the extrusion direction. Identification of Hill’s parameters is done in 

Section 3 using both i) compression tests of cylindrical specimens cut in three different directions 

(longitudinal, radial and ortho-radial) and ii) shear test parallelepiped specimens; combined with 

an inverse analysis technique [Vanegas et al., 2011a]. 

In Section 4, in the framework of a unified plastic constitutive theory, the strain-controlled 

cyclic characteristics of ODS steels are analyzed and modeled with two different tests. The first 

test is a classical tension-compression test. The second test consists in alternated uniaxial 

compressions along two perpendicular axes. It has been developed based on the similarities with 

the loading path induced by the pilgering process. Since variable strain amplitudes prevail in 

pilgering conditions, the parameters of the considered constitutive law were identified based on a 

loading sequence including strain amplitude changes. Next, an elastic-plastic model based on 

internal state variables is investigated. Its main features and its implementation into Forge3® are 

discussed. Moreover, a proposed semi automated inverse analysis methodology is shown to 

efficiently provide optimal sets of parameters for the considered loading sequences. When 

compared to classical approaches, the model involves a reduced number of parameters, while 

keeping a good ability to capture stress changes induced by strain amplitude changes. 

Furthermore, the methodology only requires one test, which is an advantage when the amount of 

available material is limited [Vanegas-Marquez et al., 2011b]. 
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3.2 Manufacturing ODS steel process 

In this study, the mechanical properties of two different ODS steels are presented:  

i) ferritic steel (14% by weight of chromium)  

ii) martensitic steel (9% by weight of chromium) 

Because the amount of ODS is limited, ferritic ODS steels from different origins were 

used. One designated as J05 (CEA material code) and the other designated as J27-M2 (CEA 

material code). Concerning the martensitic grade, it is designated as J24 (CEA material code).

Theirs manufacturing and microscopy observations are discussed below.  

J05 and J24 were produced at the CEA from powders delivered by Aubert & Duval. 

Mechanical alloying was performed by Plansee: yttrium oxide powder (content of 0,3 wt.%) was 

added by milling to the pre-alloyed (Fe, Cr, C, W, Ti….) matrix powder (Table 3.1). The 

mechanically alloyed powder is sealed in a soft steel can and hot-extruded in the form of bars at 

a temperature of 1100°C and then air-cooled. The pr oduced J05 ODS bar was then annealed at 

1050°C for 1 h and air cooled. The J24 bar was then annealed first at 1050°C for 1 h and w ater 

cooled; then annealed at 750°C and air cooled. They  did not undergo any subsequent 

recrystallization heat treatment.  

Table 3.1. Chemical composition of ODS steels (weight %). 

*�'���
��������
� 3���
� )
� *�� 4� ��� 5� 0� *� $�� 6�� ���

���� )
������� ����&� ���/�� ���"� &��&� &��/� &�&/� &�&�� &��"� &��/� &����

������� )
������� ����&� ����� &�%&� &��&� &���� &�&/� &�&�� &���� &��"� &��"�

���� ����
������� �"�&/� ����� ���&� &���� &���� &�&/� &�&�� &��"� &���� &��"�

J05 ODS steel microstructure characterization was carried out in the work of Steckmeyer 

[Steckmeyer et al., 2010]. Characterization of the grain morphology using a transmission electron 

microscope (TEM) showed that the grains were elongated along the extrusion direction (Fig. 

3.1(b)) and relatively equiaxed in the bar section (Fig. 3.1(a)). Additionally in Steckmeyer’s study, 

texture analyses were conducted using X-ray diffraction (XRD) techniques. For J05 steel, they 

revealed a very strong fiber texture, the preferential crystallographic orientation being <110> 

along the extrusion direction, as presented in Fig. 3.2. J05 showed a pole density <110> along 

the extrusion direction of 28 [Steckmeyer et al., 2010]. Unlike ferritic grades, martensitic grades

(J24) show a lower crystallographic texture (see Fig. 3.3), with a pole density <110> along the 

extrusion direction of 3 [Praud 2011]. J24 grade is much more isotropic than J05 because of the 

ferrite to austenite phase transformation (see section 1.2.1), characteristic of martensitic grades, 

after hot extrusion [Toualbi et al., 2011]. 
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Figure 3.1. Description of the extruded bar microstructure of J05 steel. TEM images with an extrusion direction respectively (a) 

perpendicular to the image plane and (b) along the arrow [Steckmeyer et al., 2010]. 

�

Figure 3.2. J05 steel pole figure obtained by XRD [Steckmeyer et al., 2010]. 

Figure 3.3. J24 steel pole figure obtained by XRD [Praud 2011]. 

The other ferritic alloy designated as J27-M2 was studied in the framework of the 

Generation IV and Transmutation Materials (GETMAT) European program research project. The 

alloy, produced at the CEA/Saclay; was hot extruded in the form of bars at 1100°C and then air 

cooled. Next, it was annealed at 1050 °C for 1.5 ho urs and air-cooled. The chemical composition 

of the investigated ODS grade is shown in Table 3.1. It is noticed that chemical compositions of 

both ferritic grades (J05 and J27-M2) are quite similar. Therefore, J05 and J27-M2 ODS ferritic 

steels have a very close microstructure. This study assumes that J05 and J27-M2 ODS ferritic 

grades have also the same mechanical behavior. 

The J27-M2 microstructure looks different depending on the orientation of the plane of 

observation [Serrano et al., 2011], since grains are elongated in the extrusion direction. A 
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preferential orientation <110> axes along the extrusion direction (see Fig. 3.4) is observed. 

Similarly to the bar J05 described previously (Fig. 3.2). [Serrano et al., 2011] carried out tensile 

tests on samples machined in the longitudinal and radial direction of a ferritic ODS extruded bar 

(J27-M2). They have concluded that the observed microstructural anisotropy seems to have a 

direct effect on the ductility. It was found in this work that the radial orientation was around 50% 

less ductile than the extruded (longitudinal) direction, while the yield stress and ultimate tensile 

strength were only slightly affected by anisotropy.

�

Figure 3.4. J27-M2 inverse pole figure maps obtained by EBSD on the (a) longitudinal, (b) transverse section of samples and (c) 

inverse pole figure legend (reference direction is the extruded direction [Serrano et al., 2011]. 

The available material described previously were mechanically tested as following: 

• J05: tensile test and cyclic tension-compression test 

• J24: tensile test and cyclic tension-compression test 

• J24-M2: cyclic compression-compression test 

The above mechanical tests are described, simulated and analyzed in the following 

sections. 
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3.3 Monotonic constitutive law 

3.3.1 Experimental facilities 

3.3.1.1 Tensile test set up 

One specimen geometry has been used for grades J05 and J24 to characterize the 

mechanical properties in tension. The tensile direction is parallel to the longitudinal direction of 

the extruded bar. The specimen geometry has an 11.5 mm gauge length and a 2 mm x 2 mm 

square section. The specimens were machined from the homogeneous part of the ODS steel bar. 

Tensile tests were carried out at room temperature. They were strain controlled with a constant 

strain rate of 7x10-4 s-1. This experimental campaign was carried out by M. Praud at CEA/Saclay 

[Praud 2011], [Praud et al., 2011]. 
�

3.3.1.2 Tensile test results 

Tensile test results are gathered in Table 3.2. The first highlight is the limited ductility of 

J24 in comparison with J05. Moreover, J24 has a yield limit slightly superior to J05. The Young’s 

modulus is the same for both grades as expected. Stress-strain curves obtained for J05 and J24

are displayed in Fig. 3.5. 

Table 3.2. J05 and J24 tensile experimental test results. 

][GPaE ][%2.0 MPaRp � ][MPaRm ][%2.0 MPayσ � ][MPamσ � [%])( mσε � [%]failureε �

J05 207.7 1072 1158.14 1078.26 1294.6 12.62 21.39 

J24 207.7 1083 1183.3 1089 1237 5 14.6 

In Table 3.2 E  is the Young’s modulus, %2.0pR  is the offset yield point, mR  is the tensile 

strength, %2.0yσ  is the yield limit at the offset yield point, mσ  is the ultimate tensile strength, )( mσε
is the strain corresponding to the ultimate stress and failureε  is the fracture point. 
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Figure 3.5. ODS steel tensile test experimental results [Praud 2011]. 

3.3.2 Monotonic constitutive model 

A standard constitutive model to described monotonic loadings is the elastic-visco-plastic 

Hansel-Spittel law described given by: 

TmmmTmmmmTm
eeTAe 83754291 )1()(0 εεεεεσ εε ��+= *� � � � � � (3.1) 

where ε  is the equivalent deformation (total strain), ε�  the equivalent deformation rate 

(total strain rate), T  is the temperature and A , 91−m  are the regression coefficients. The 

previous tensile test is assumed isothermal (temperature T  is constant) and without strain rate 

effects: parameters 3m  and 8m  are therefore set to zero. 

3.3.3 Identification methodology 

An inverse analysis method is used to fit the parameters ( A , 1m , 2m , 4m , 5m , 7m ) of the 

Eq. (3.1) behavior law. The main interest of these methods is to identify parameters which are 

hard to estimate by manual fitting. These methods combine experimental and numerical data in 

order to determine the considered parameters. In a first step, experimental tests are performed 

and data are collected ( expR ). These tests are numerically simulated to provide the numerical 

data ( simR ). Correlation between numerical and experimental data is obtained by minimizing an 

objective function representing the level of disagreement between numerical and experimental 

values. The best set of parameters is given thanks to an optimization algorithm based on Meta-

model Assisted Evolution Strategies (MAES) [Fourment et al., 2009], [Fourment et al., 2010]. 

MAES are regarded as quite robust with respect to local extrema. They make possible to solve 
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complex optimization problems. Evolutionary algorithms (ES) typically consist of three operators: 

selection, recombination and mutation. Their cost is usually quite high in terms of function 

evaluations. MAES combines an ES with Kriging meta-models to reduce the number of functions 

[Ducloux et al., 2010]. The inverse analysis tool based on MAES is used here as illustrated in Fig. 

3.6. 

�

Figure 3.6. Inverse analysis schematic principle. 

This method leads to the parameters given in Table 3.3 and to a good correlation 

between the experimental and the numerical responses (Fig. 3.7). The parameters were identified 

before necking. 

Table 3.3. Parameters values of the numerical Hansel-Spittel law. 

][MPaA 1m �
2m 4m � 5m � 7m � ][GPaE � (������8��������

J05 1360 -0.01 0.0005 -0.0008 0 3.5 220 0.30 

�

(a)       (b) 

Figure 3.7. Comparison between the experimental and numerical responses of the tensile test carried out for a) J24 b) J05. 
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3.4 Anisotropic constitutive law 

Plastic anisotropy can be measured through ovalization of cylindrical samples in tension 

or compression tests. Indeed the difference in the yield stress will favor plastic flows one-cross-

sectional direction with respect to the other. The underlying application being cladding tubes 

undergoing internal pressure, the mechanical properties of the ODS steel in the radial and ortho-

radial directions should be studied. 

In this section the identification of Hill’s parameters (see section 1.4.1.2.1 for Hill48 model 

description) is presented performing compression tests on cylindrical specimens cut in three 

different directions (longitudinal, radial and ortho-radial directions in an extruded bar). Additionally 

to these tests, shear tests are also performed such as to identify all Hill’s parameters [Massé 

2010]. 

3.4.1 Experimental facilities 

3.4.1.1 Upsetting test set up 

Compression tests have been done on a hydraulic testing device Dartec HA250/300 at 

CEMEF. Samples were cut from the ODS bar by electrical discharge machining with an initial 

height of 11 mm, and an initial radius of 5 mm. The cutting procedure is displayed in Fig. 3.8. 

49% height compression is performed with an hydraulic machine. The sample and tools are 

lubricated with Molykote® HSC paste. The ram speed for compression is set to 1 mm/s. The ram 

displacement is 5 mm. For each direction, two samples have been used. The error (L2 error 

norm) between the experimental curves (force versus displacement) is calculated from Eq. (3.2), 

1expf  and 
2expf  being the experimental force, and i  indicating a particular data point in the force 

versus displacement curves. The mechanical tests are reproducible with a maximum error of 2% 

(see Table 3.4). 
�
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Figure 3.8. Cylindrical specimens cut in three different directions (longitudinal, radial and ortho-radial) of an ODS extruded bar. 

GETMAT project bar, piece reference: B 1-2. 

3.4.1.1.1 Upsetting test results 

After compression, the sample cut in longitudinal direction shows no ovalization, proving 

isotropy in the traverse section (Table 3.4). Radial and ortho-radial samples show an ovalization 

which confirms the existence of a crystallographic texture (see Fig. 3.9).  

Table 3.4. Samples dimensions evolution after compression. 

Long. a Long. b Radial a Radial b Ortho-radial a Ortho-radial b 

Major axis 6.51 6.52 6.86 6.85 6.95 6.93 

Minor axis 6.50 6.48 6.20 6.19 6.10 6.09 

Height reduction 48.2% 48.1% 49.3% 48.8% 48.4% 48.5% 

Longitudinal a Radial a Ortho-radial a 

� � �

��9�������,���������:��� ��9�������,���������:������ ��9�������,���������:������

Figure 3.9. Upsetting experimental test results after compression. 

When the mean stress-strain curves of the three upsetting tests are plotted (Fig. 3.10), 

slight differences of the yield stress appear between longitudinal, radial and ortho-radial 
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directions. Yield stresses are summarized in Table 3.5. The ortho-radial direction seems to be the 

hardest one. 

�

Figure 3.10. Stress-strain compression curves in three directions of samples cut from an extruded bar.

Table 3.5. Upsetting test yield stress comparison. 

zz0σ +�,�-�.���������� RR0σ +�,�-�&������ θθσ 0 +�,�-������/�������

�&��� �&//� ���&�

3.4.1.2 Shear test set up 

Shear tests are performed in order to complete the Hill’s parameters identification [Massé 

2010]. Shear tests have been done on the same machine as for the compression tests. 

Dimensions of the samples are 2 x 2 x 14 mm3, cut from a J27-M2 ODS extruded bar (described 

previously) as shown in Fig. 3.11. Samples were again cut from a bar by electrical discharge 

machining. The ram speed for the shear test is set to 1 mm/s; the test set up is displayed in Fig. 

3.12. Their experimental shear response is reproducible with a maximum error (Eq. (3.2)) of 5%. 
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Figure 3.11. Sampling for shear test. 

�

Figure 3.12. Shear test set up, left: before shear, right: after shear. J27-M2 steel. 

3.4.1.2.1 Shear test results 

The shear stresses for the three selected orientations are shown in Fig. 3.13. Shear yield 

stresses are summarized in Table 3.6.  The Rθ  solicitation seems to be the less ductile. The 

other two, RZ  and Zθ , lead to similar behaviors. 
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Figure 3.13. Shear curves. J27-M2 steel. 

Table 3.6. Shear test yield stress results in three different directions.. 

Zθσ 0 +�,�-� RZ0σ +�,�-� Rθσ 0 +�,�-�

/"&� /&�� ��&�

3.4.2 Anisotropic constitutive model  

The first yield function accounting for orthogonal anisotropy was introduced by Hill [Hill 

1948] and is based on von Mises work. To introduce anisotropy, Hill kept the von Mises quadratic 

form, but added six coefficients to describe the direction-depended plastic flow properties: 

222222 222)()()(1 θθθθθθ σσσσσσσσσ rrzZrrrrZZZZ NMLHGF +++−+−+−= � � � � (3.3) 

These parameters have a physical meaning; they are linked to the axial and shear yield 

stresses [Massé et al., 2011]: 

NMLHFHGGF
RRZZRRZZ
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2

1
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1
000000 ===

+
=

+
=

+
= θθθθ σσσσσσ � (3.4) 

Thus, the equivalent stress can be chosen as [Montmitonnet and Chenot 1995]: 

]222)()()([ 2222222

θθθθθθ σσσσσσσσσσ rrzZrrrrZZZZeq NMLHGFA +++−+−+−⋅= � � � (3.5) 

In an anisotropic case, A  is taken by convention as [Montmitonnet and Chenot 1995]: 
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Σ
=

3

2

1
A ;�<���� GHFGFH ++=Σ �� � � � � � � (3.6) 

1=== HGF  and 3=== NML  return the von Mises criterion. Hill’s criterion 

therefore appears as the simplest quadratic generalization of von Mises criterion. 

Complex anisotropy models developed for sheet forming, previously mentioned in 

Chapter 1, have not been validated in bulk forming and their numerous parameters are quite 

difficult to identify [Massé et al., 2011]. This explains the choice for this simple approach. Besides 

the model is already available in most FEM formulations. 

3.4.3 Identification methodology 

Ovalization can be characterized by the shape factor of the cross-section after 

compression (see Fig. 3.14) and related to the anisotropy coefficients [Montmitonnet and Chenot 

1995]. HG  can be identified from the radial compression test: 

)/()(
0

HGHG

h

h

a

b
+−

= � � � � � � � � � (3.7) 

where b , a  are the axis of the ellipsoidal cross-section (b < a ). 

�

Figure 3.14. Compression test geometry. 

Similarly, for the ortho-radial compression test ( FH ): 

)/()(
0

FHFH

h

h

a

b +−
= � � � � � � � � � (3.8) 

The third equation GF  is issued from the two previous equations. All the experimental 

(major axis/minor axis) values are taken at mid-height of the sample. To fully identify the three 

coefficients (F , G  and H ) one more information is required. The yield stress in the axial 

compression (Eq. 3.4 for 
ZZ0σ ) gives F .  

))/(1(

)/(
2

0 GF

GF
F

ZZ +
=

σ
� � � � � � � � � (3.9) 

Finally,�G  and H  are given by:�
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F
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)/(* GFFH = � � � � � � � � � � (3.11) 

In practice, L , M  and N  are determined from shear tests using expressions in Eq. 3.4

for 
Zθσ 0
, 

Rθσ 0
 and 

RZ0σ . Because of the limitation in the amount of available ODS material steels, 

shear tests are not always possible. Therefore, in this section it is proposed to identify two 

anisotropic constitutive laws: 

i) Fully identification: F ,G  and H  are identified through Eqs. (3.9) - (3.11). L , M

and N  are determined from shear tests using Eq. 3.4 for 
Zθσ 0
, 

Rθσ 0
 and 

RZ0σ . 

(Designated simulation name: cylinder). 

ii) Partial identification: F ,G  and H  like in (i). The values of L ,M  and N  are fixed 

to 3, as the case for an isotropic material. (Designated simulation name: 

cylinder_shear_iso). 

These methodologies, applied to our experimental tests, leads to the parameters values 

presented in Table 3.7. 

Table 3.7. Anisotropic Hill criterion material parameters calculated using analytical expressions. 

� F � G � H � L � M � N �
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These parameters have been validated by simulating the upsetting test using the 

identified behavior. Friction was first identified based on barreling [Massé et al., 2011], resulting in 

Tresca’s friction factor 21.0=m . Some discrepancy is observed between experiment and 

simulation of the ovalization, when leading in the radial and ortho-radial directions as shown in 

Fig. 3.15 and Table 3.8 (Ovalization ratio is defined as the ratio between a  and b , see Eq. 3.7). 

Hill’s constitutive model equations make the assumption that the material is perfectly orthotropic. 

However, the initial sample height is significant in comparison to the diameter of the raw extruded 

bar, which leads according to Fig. 3.16 to inhomogeneous texture in the sample. This may 

correspond to a non orthotropic material. A second limitation of the analytical approach is that it 

combines strain and stress data to identify the anisotropic parameters. This is known to be 

incompatible with Hill’s theory [Hill 1948], [Hill 1990]. Finally, it is known that friction reduces the 

magnitude of anisotropic effects [Montmitonnet and Chenot 1995]. The three aspects above may 

explain the difference between experimental and numerical ovalization results. For this reason a 

numerical optimization is proposed in the next section in order to have enhanced results. 

It is pointed out that the cylinder and cylinder_shear_iso approaches, performed about the 

same way, but a slight improvement for the cylinder approach (see Table 3.8). 
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Figure 3.15. Comparison between experimental and numerical ovalization (cylinder case). J27-M2 steel. 

Table 3.8. Ovalization ratios comparison. 
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Figure 3.16. Schematic crystallographic texture pattern from side to side of the sample schematic representation. 

3.4.3.1 Parameters calculation improvement 

In order to improve the ovalization ratio results, for the cylinder and the 

cylinder_shear_iso cases, the inverse analysis method explained in section 3.3.3 is used again. 
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The optimization is done on F , G , H  only, i.e. shear parameters remain fixed for both cases. 

The inverse analysis was carried out for each sample (radial and ortho-radial loading). Enhanced 

parameter values, for both studied cases, are shown in Table 3.9. Correlation between numerical 

and experimental data is obtained by minimizing the deviation between numerical and 

experimental values (major and minor axes of the cross-section). A new ovalization result of the 

radial and orthoradial samples is shown in Table 3.10 for the cylinder case. 

Table 3.9. Anisotropic Hill criterion enhanced parameters after numerical identification. 

� F � G � H � L � M � N �
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Table 3.10. Cylinder case: experimental and numerical compression test ovalization ratio results. 

Ovalization ratio before numerical optimization Ovalization ratio after numerical optimization 

 Long. Radial Orthoradial Long. Radial Orthoradial 

Simulation 1.001 1.16 1.12 1.001 1.107 1.142 

Experimental 1.001 1.110 1.144 1.001 1.110 1.144 

The optimization on ovalization ratios leads, as expected when using Hill’s criterion, to 

errors in the predicted yield stresses [Hill 1990]. The yield stress is not well estimated as seen in 

Table 3.11. Errors already existed in the analytical approach. Fitting Hill’s coefficient based on 

ovalization should however give relevant results on deformation predictions during cold forming. 

Table 3.11. Cylinder case: yield stresses comparison. 

�
ZZ0σ @�(�A� RR0σ @�(�A� θθσ 0 @�(�A�
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3.4.4 Further mechanical test 

In the previous section it was pointed that the crystallographic texture was not 

homogeneous in the samples due to the significant size of the sample in relation with the ODS 

GETMAT bar diameter (36 mm). Therefore, it is proposed in this section to assess the effects of 

the sample size and of the cut position into the bar. Compressions of mini-cylinders were 
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performed. Designated names and cut positions of each mini-cylinder are shown schematically in 

Fig. 3.17(a). This Figure shows also the samples (in red) used in the previous section 3.3.1. 

� � �

(a)       (b) 

Figure 3.17. (a) Cylinder and mini-cylinder cut in the extruded bar (not to scale) – (b) Cylinder and mini-cylinder size 

comparison.  

Fig. 3.17(b) shows a comparison between the cylinder and the mini-cylinder sizes. Stress-

strain curves for cylinders and mini-cylinders are superposed in Figs. 3.18 - 3.20 respectively for 

the three loading directions. The yield stresses and ovalization ratios of each test are summarized 

in Table 3.12. 

�

Figure 3.18. Stress-strain compression curves of one cylinder and two mini-cylinders positioned at different points and oriented 

in the longitudinal (extrusion) direction. 
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Figure 3.19. Stress-strain compression curves of one cylinder and two mini-cylinders positioned at different points and oriented 

in the radial direction. 

�

Figure 3.20. Stress-strain compression curves of one cylinder and two mini-cylinders positioned at different points and oriented 

in the ortho-radial direction. 

Table 3.12. Experimental yield stresses and ovalization ratios comparison. 

Yield stress 

[MPa] 

Major axis 

[mm] 

Minor axis 

[mm] 

Ovalization ratio 

Longitudinal 1041 12.28 12.18 1.001 

Longitudinal_1 1035 5.73 5.66 1.009 

Longitudinal_2 958 5.79 5.52 1.044 

Radial 1066 13.72 12.36 1.110 

Radial_1 1047 6.12 5.08 1.151 

Radial_2 1035 5.98 5.38 1.107 

Ortho-radial 1110 13.92 12.16 1.144 

Ortho-radial_1 1070 6.12 5.39 1.123 

Ortho-radial_2 1012 6.07 5.36 1.129 
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Peripheral mini-cylinders show lower yield stresses in comparison with those located 

close to the central axis. Moreover, when dealing with mini-cylinders, it can be noticed that the 

ovalization ratio can vary with the position. In the ortho-radial direction, a systematic difference is 

noticed as compared to the bigger cylinders. 

The parameters identification methodology described in section 3.3.3 was used again for 

the mini-cylinder compression tests. Results are summarized in Table 3.13. 

Table 3.13. Anisotropic Hill criterion parameters for cylinder and mini-cylinders. 

� F � G � H � L � M � N �
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Mini-cylinder_1 is calculated from: ortho-radial_1, radial_1 and longitudinal_1. Mini-

cylinder_2 is calculated from: ortho-radial_2, radial_2 and longitudinal_2. The simulation of the 

upsetting of mini-cylinder_2 resulted in good agreement on ovalization as shown in Table 3.14. 

For mini-cylinder_1 some discrepancy may still be observed. 

Table 3.14. Experimental and numerical compression test ovalization ratio results.  

Cylinder Mini-cylinder_1 Mini-cylinder_2 

Long. Radial 
Ortho-

radial 
Long. Radial 

Ortho-

radial 
Long. Radial 

Ortho-

radial 

Exp. 1.001 1.11 1.144 1.009 1.151 1.123 1.044 1.107 1.129 

Sim. 1.001 1.16 1.12 1.096 1.222 1.554 1.061 1.079 1.134 

Regarding Table 3.13 it is pointed that the Hill’s coefficients are dependent on the 

specimens cut position and size. Thus, when the cladding tube comes from a drilled extruded bar, 

it is clear that the choice of the mini-cylinders placed in peripheral zone (position 2) is the most 

adequate to calculate. 

3.5 Cyclic constitutive law 

This section deals with the experimental cyclic behavior of the investigated ODS steels at 

room temperature. Two types of test were performed. The first test is a classical tension-

compression test. The second test consists in alternated uniaxial compressions along two 

perpendicular axes. It has been set up in order to replicate the loading path induced by the 

pilgering process. This section describes the specific loading sequence which was designed to 

determine completely the constitutive model parameters, using only one specimen, for each of 

the two tests (two samples overall). 
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3.5.1 Experimental facilities 

3.5.1.1 Tension-compression test set up 

The cyclic elastic-plastic behavior of the J05 and J24 was studied using one cylindrical 

specimen machined from an extruded bar with dimensions of 6 mm diameter and 10 mm gauge 

length. The samples were machined parallel to the extrusion direction. The strain rate was fixed 

at 0.002s-1 and the amplitude of deformation varied. The transitions from one amplitude to 

another are made after returning to zero deformation. The sequence of strain range amplitudes is 

described in Fig. 3.21: ±0.2%, ±0.3%, ±0.4%, ±0.5%, ±0.7%, ±1% before coming back to ±0.5% 

and finally increasing to ±1.5%. and ±2% The number of cycles at each amplitude is selected so 

as to stabilize the stress amplitude. The tests were carried out at room temperature and were 

performed at the CEA/Saclay in collaboration with B. Fournier, C. Caës and L. Toualbi [Toualbi 

2010], [Vanegas-Marquez et al., 2011b] 
�

�

Figure 3.21. Schematic representation of the tension-compression loading sequence. 

�
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3.5.1.2 Compression -compression test set up 

The cyclic deformation induced by cold pilgering is fairly well approximated by a sequence 

of compression tests along two perpendicular directions e.g. see [Armstrong 1982], [Huml and 

Strandell 1984]. The resulting flow stress evolution is expected to be different from the one 

obtained in monotonic deformation mode [Jiang and Kurath 1997], [Shamsaei et al., 2010]. The 

non proportionality of the loading path is also likely to influence the mechanical behavior. 

Small cubic specimens (10x10x10 mm) were cut from the J27-M2 extruded bar (see Fig. 

3.22).  

�

Figure 3.22. Schematic compression-compression test specimens cut from J27-M2 steel bar. 

The alternated loading sequence is schematically illustrated in Fig. 3.23 for the blue 

sample of Fig. 3.22, rotated by 90° at each compression step around th e ortho-radial direction. 

Lubrication is applied on each face before compression, in order to keep homogeneous 

deformation at each ‘cycle’. 
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Figure 3.23. Schematic representation of the compression-compression test for the ortho-radial sample (sample rotated around 

the orthoradial direction). 

The experimental test is divided for each specimen in 3 sequences: 1st) 20 cycles at 

plastic ��= -1%; 2nd) 8 cycles at plastic ��= -1.5%; 3th) 4 cycles at plastic ��= -2%. 

3.5.2 Analysis of experimental results 

3.5.2.1 Tension-compression test 

During the first 3 sequences no plastic strain is noticed. Therefore, the analysis starts 

from the 4th sequence. The cyclic stress response of J05 and J24 at room temperature for 

different total strain amplitudes is shown in Fig. 3.24. This figure shows the corresponding 

variations of the half-stress amplitudes vs. the number of cycles. 

�

Figure 3.24. J05 and J24 experimental response for the considered loading sequence in tension-compression. Half stress 

amplitude vs. number of cycles. 
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For all strain ranges, the J05 specimen exhibits higher strength than J24 the specimen. 

The experiments show that the stabilized stress amplitude level (stabilized cycle) is reached 

within only few cycles (Fig. 3.24) for both studied grades. This is attributable to the excellent 

microstructure stability produced by the presence of nano-size oxide particles dispersed in ODS 

steels [Ukai and Ohtsuka 2007]. For sequence 4 and 5 the softening ratio is similar for the two 

grades, however, in sequence 5, J05 stabilized faster than J24. 

The switch from one strain amplitude to another illustrates strain range memory effects. In 

sequences 4-5-6 of Fig. 3.24, each increase in strain amplitude is followed by a cyclic softening

until a steady state is reached. In sequence 7, a decrease of strain amplitude leads to a cyclic 

hardening, which then keeps going at sequences 8 and 9 for J05, while softening is observed for 

J24.  

Cyclic softening (sequences 4th, 5th and 6th ) is, in general, attributed to the increase of the 

mean free motion of dislocations, and/or to the decrease of the back stress, and/or the evolution 

of precipitates structure. It depends not only on the accumulated plastic strain, but also on the 

plastic strain amplitude experienced by the material [Fournier et al., 2009], [Kubena et al., 2010]. 

The cyclic hardening observed from sequence 7 seems, on the other hand, new with respect to 

the literature data. 

It is also concluded observing Fig. 3.25 that the strain recovery (Bauschinger effect) is 

minimum for these types of ODS grades.  

�

Figure 3.25. Left: J24 experimental responses at ±1% - Right: J05 experimental responses at ±1% [Toualbi 2010]. 

The hysteresis loop is composed of three regions for sequences 5, 6 and 8: a linear 

elastic region, a smooth non-linear elastic-plastic transition, and a non-linear plastic bounding 

region (Figs. 3.26 and 3.27). On the other hand, the hysteresis loop for sequence 4 and 7 is 

composed of two regions: a linear elastic region and smooth elastic-plastic region. 

B��� B&��
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Figure 3.26. J05 and J24 experimental response for 3 strain amplitudes (4th, 5th and 6th sequence). Stabilized cycle. 

�

Figure 3.27. J05 and J24 experimental response for 2 strain amplitudes (7th and 8th sequence). Stabilized cycle. 

The influence of the strain history can be illustrated by comparing hysteresis loops of the 

4th and 7th sequences, with equal strain amplitudes of ±0.5% (Fig. 3.28). J24 steel seems to be 

more impacted by the plastic strain path than J05 steel. 

�

Figure 3.28. Experimental response for strain amplitude equals to ±0.5% (4th and 7th sequence). Stabilized cycle. Left: J24 – 

Right: J05. 

B��� B&��
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During sequence 9 J05 exhibits a continuous hardening until 20th cycle. Then some 

cracks appear leading to a force decrease, followed by sudden failure at 37th cycle. The main 

cracks appear at 45° from the principal stress dire ction (see Fig. 3.29). 

�

Figure 3.29. Cracks in J05 during sequence 9 ( ε∆ = ±2%) [Toualbi 2010]. 

During sequence 9 J24 exhibits a continuous softening until the 81st cycle (see Fig 3.24). 

The test was stopped at this cycle. Two cracks appear (see Fig. 3.30) during cycling leading to a 

force decrease. 

�

Figure 3.30. 2 cracks appearing in J24 during sequence 9 ( ε∆ = ±2%) [Toualbi 2010]. 

According to these test, J05 seems to be less resistant to cracks propagation than J24. 

3.5.2.2 Compression-compression test 

Figs. 3.31 and 3.32 show that the compression-compression test sequence systematically 

leads to cyclic hardening. The work-hardening rate is influenced by the existence of two 

compression axis. The ortho-radial direction remains the hardest and the longitudinal the 

weakest, when looking at the first compression in Fig. 3.31. The strong difference in hardening 

rate with respect to the tension-compression tests may be attributed to dislocation-dislocation 

interactions increase due to the applied loading path. Cyclic hardening progressively decreases 
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at each strain amplitude, but regenerates after each increase of the strain amplitude (Fig. 3.34). It 

is pointed out that in this test no decrease of the strain range was performed.  

�

Figure 3.31. J27-M2 compression-compression test. 

�

Figure 3.32. J27-M2 compression-compression test. 
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It is noted that anisotropy may influence the stress level, i.e. textural effects may lead to 

stress variations when straining in different directions. When rotating around the longitudinal 

direction (Z) the final shape is parallelepiped because alternated compression in radial and ortho-

radial directions produces similar responses. However, when compression is done in samples 

rotating around the radial or the ortho-radial direction, the incremental flow is asymmetrical, 

leading to a trapezium-shaped sample (see Fig. 3.33). This asymmetrical flow distribution is more 

important when rotating around the radial direction because the hardest (ortho-radial) and the 

weakest (longitudinal) directions are compressed alternately. 

�

Figure 3.33. Trapezium-shaped samples after 40% of plastic strain. 

Results are detailed below by looking at compression steps along the Z (longitudinal) 

direction, which allows strict comparisons with the tension-compression tests, performed along 

the same direction. The first compression is done along the radial direction (R), the second one is 

along the axial direction (Z), and so on (Fig. 3.34). 

�

Figure 3.34. Experimental stress response in the compression-compression loading sequence. 
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Non-proportional cycles generally induce more significant hardening than proportional 

ones [Tanaka 1994]. In this test, the ability to eliminate or weaken the obstacles to dislocation 

motion [Huml 1987] is very much reduced compared to the tension-compression tests, leading to 

much higher hardening rates. For this reason the stress values are very different when 

performing tension-compression test (maximum stress at ��= 2%: 1200 MPa) and compression-

compression test (maximum stress at ��= 2%: 1600 MPa). 

Similarly to the tension-compression test, stress stabilization is reached within few cycles 

in the compression-compression test. 

3.5.3 Cyclic constitutive equations implementation and numerical resolution 

According to the previous experimental behavior, it is proposed to describe the cyclic 

behavior of ODS steels with an elastic-plastic model developed by Chaboche [Chaboche 1989]. 

The equations characterizing an individual material and its reaction to applied loads are called 

constitutive equations, since they describe the macroscopic behavior resulting from the internal 

structure of the material. 

The cold pilgering process used for cladding tubes forming involves a sequence of small 

strain increments of quasi-random amplitudes. For this type of loading, kinematic hardening 

cannot be neglected and must be introduced into the numerical model [Velay et al., 2006]. The 

constitutive equations of [Chaboche 1989] use a decomposition of hardening into kinematic and 

isotropic parts. The standard implementation includes one kinematic hardening variable and one 

isotropic hardening variable. Nevertheless, it was shown by [Velay et al., 2006] that in many 

cases two kinematic hardening variables and two isotropic hardening variables are necessary to 

have a good description of cyclic behaviors. 

3.5.3.1 A model of rate-independent elastic-plasticity 

The equations of the constitutive law have already been presented in Chapter 2 and are 

reminded here in order explain their implementation within a FEM formulation. The assumption of 

the additive decomposition of the strain-rate tensor into elastic and plastic parts leads to: 

pe εεε ��� += � � � � � � � � � �  (3.12)�

The elastic response 
eε�  is described by Hook’s law which, for isotropic materials, gives: 

Itr
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where I  is the unit (second rank) tensor, E  is the elastic modulus and ν  the Poisson’s 

ratio, σ�  the stress rate tensor and )(⋅tr  the trace function. It is considered that the plastic strain 

rate is normal to the yield surface. The plastic strain rate tensor 
pε�  is written as: 
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where the plastic multiplier λ�  is positive. The unit normal n  to the yield surface has the 

following form: 

)(

)(

2

3

2 XJ

Xsf
n

−

−
=

∂

∂
=

σσ
� � � � � � � �   (3.15)�

The limit between the elastic domain and the plastic domain is defined by a yield function, 

which obeys the von Mises criterion [Chaboche et al., 1979], [Chaboche 1991]. The equation of 

the yield surface can be written as: 

0)(2 =−−−= yRXJf σσ ;� � � � �     (3.16)�

where yσ  is the initial yield stress, X  the kinematic hardening tensor (or back stress 

tensor). R  is the isotropic hardening. 

)(2 XJ −σ , second invariant, is defined from the von Mises criterion: 
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where s  is the deviatoric part of the Cauchy stress tensor σ : 

Itrs
3

1
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Plastic strain occurs when the state of stress reaches the current yield stress; this 

corresponds to the yield criterion 0=f . The plastic strain continues to grow if the yield criterion is 

continuously satisfied, that is, if 0=f� . 

Due to the incompressibility of plastic deformation, it is useful to decompose the strain 

rate tensor into spherical and a deviatoric parts. 
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where e�  is the deviatoric strain rate, itself can be decomposed into elastic and plastic 

part: 

pe
eee ��� += � � � � � � � � � �  (3.20) 
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The equivalent accumulated plastic strain rate is expressed as a function of the deviatoric 

plastic strain rate: 

pp
eep ��� :

3

2
=           (3.21) 

The Lamé parameter µ  (or the elastic shear modulus) is given by: 

)1(2 ν
µ

+
=

E
           (3.22) 

Knowing ε� , if the loading is considered as elastic, 0== p��λ , the equations to integrate 

are: 
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with χ  the elastic compressibility coefficient, its expression is given in section 2.1.1.2 and 

P�  hydrostatic pressure rate. The kinematic stress tensor X  expression was given in section 

1.4.2.1.2. 

If the loading is considered as elastic-plastic, 0>= p��λ the equations to integrate are: 
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where iC  and iγ  are material parameters dependent. 1n  is the number of kinematic 

hardening variables. The system of Eqs. (3.24) remains valid if the load is elastic, considering 

0=p� . In this case the deviatoric stress s�  is linked to the elastic deviatoric strain 
e
e�  by the 

fourth-order tensor C , often referred to as the continuous tangent modulus: 

e
eCs :=�            (3.25)�

Since linear isotropic elasticity is considered here (Hooke’s law), C  is simply given by: 
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where I  is the fourth-order symmetric unit tensor defined as: ( )
jkiljlikijklI δδδδ +=

2

1
. 

3.5.3.2 An implicit time integration procedure 

It is pointed out first that the mass conservation equation involving the hydrostatic 

pressure in the system (3.23) and (3.24) is already present in the mechanical equilibrium 

resolution in Forge3®. The variables ),,(
ninn Xsp  satisfying the equilibrium at the increment )(n , 

the problem is to determine those variables at the increment )1( +n , ),,(
111 +++ ninn Xsp . 1+ne�  is 

estimated at each iteration of the Newton-Raphson scheme by solving the equilibrium equations 

of the mechanical problem.  

The calculation of the new material state implies, except for simple laws such as elasticity, 

to carry out the numerical integration of differential equations. The choice of the integration 

method has an impact on the computing time, the accuracy of the result and the calculation of the 

elastic-plastic (tangent) modulus. Many authors [Simo and Taylor 1985], [Benallal and Marquis 

1987], [Gratacos 1991], [Hartmann at Haupt 1993], [Gay 1995], [Knockaert 2001], [Lange 2006], 

[Fayolle 2008], [Revil-Baudard 2010] chose to use an implicit integration scheme that has the 

advantages of numerical stability, robustness, possibility of appending further equations to the 

existing system of non-linear equations, and together with reasonable computing time.  

In this work, we consider the return mapping algorithm corresponding to an implicit 

integration scheme (backward Euler method) for the above variables under the assumption of 

constant total strain during the increment: 
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          (3.27) 

p

n

p

nn tpp εε −=∆=∆ ++ 11
�  is the accumulated plastic strain increment to be determined. 

The return mapping algorithm from a computational standpoint consists in treating the 

elastic-plastic problem as a strain controlled problem, the stress history being obtained from the 

strain history by means of an integration algorithm. The basic idea is illustrated in Fig. 3.35. From 

the converged solution at the increment )(n  an elastic trial stress
T

ns 1+  is computed. If the 

resulting state defined by 
T

ns 1+  is outside of the elastic region enclosed by the yield surface, the 

final state is defined as the closest-point-projection of 
T

ns 1+  onto the yield surface (see Fig. 3.35). 

Thus, it is written: 

11 2 ++ ∆+= nn

T

n etss �µ           (3.28)�
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In the particular case of the von Mises yield condition with associated flow rule and 

isotropic hardening, the closest-point-projection is trivially defined and leads to the so-called 

radial return algorithm [Germain and Muller 1995]. The basic integration scheme, modified to 

account for two non-linear kinematic hardening variables 2)( 1 =n  and two non-linear isotropic 

hardening variables 2)( 2 =n  is summarized below. 

�
�

Representation of an elastic increment 

in the stress space 

Representation of an elastic-plastic increment 

in the stress space 

Figure 3.35. Radial return algorithm representation in the stresses space. 

By applying this integration scheme, the system becomes: 
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     (3.29)�

The determination of the unknowns (
p

n

e

n ee 11, ++ �� ) is immediate if ( p

n 1+∆ε ,
1+ns ,

11 +n
X ) are known. 

The problem is therefore to determine these three variables, assuming that the plastic loading 

criterion is satisfied: 

0
11 =+− ++ ynin R σσ

The calculation of iR  with 22 == ni  will be described in section 3.5.3.4. Rearranging 

system 3.29: 
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with 
T

ns 1+  the elastic trial stress described by Eq. 3.28. 

By injecting in 
11 +n

X  (system (3.30)) the expression of Eqs. (3.14) and (3.15) we obtain: 
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1+ns  is then obtained by neglecting second order terms:
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with 21 CCC +=  and 21 γγ +=D . 

Moreover the equivalent stress is equal to: 
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The plastic consistency conditions are enforced in order to find the solution that satisfies 

the plastic von Mises criterion: 

( ) ( ) 0:
2

3
),,,(

11111111 212112111211 =−−−−−−−=
++++++++ ++++ ynnnn nnnnnnnn

RRXXsXXspXXsf σ

            (3.36)�

By injecting in Eq. (3.36) the expression of 1+ns , 
11 +n

X  from Eq. (3.35), we obtain: 
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This equation is solved using a Newton-Raphson scheme. Successive corrections p∆∂

on p∆  are computed iteratively. For that purpose, it is necessary to differentiate )( pg ∆  with 

respect to p∆ . If p∆  is determined, all other quantities are known from Eq. (3.24) and (3.29). 

Tables 3.15 and 3.16 summarize schematically the proposed algorithm of stress calculation. 

Table 3.15. Computation of the accumulated plastic strain by Newton-Raphson scheme 
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Table 3.16. Radial return algorithm. Nonlinear kinematic/isotropic hardening 
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It should be noted that due to the assumption of constant total strain during the increment, 

it is impossible to observe the transition from a plastic to an elastic state during the calculated 

increment. 

3.5.3.3 Consistent tangent elastic-plastic modulus 

As shown by Taylor and Simo (Simo and Taylor 1985), to preserve the character of 

quadratic convergence of the Newton-Raphson method for the global mechanical problem, it is 

necessary to use discrete tangent elastic-plastic moduli consistent with the integration scheme of 

the constitutive law. The consistent tangent elastic-plastic modulus 
d
C  considers the relationship 

between the stress and the strain rates: ( s�  and ε� respectively): 

1

1

1
+

+
+ ∂

∂
=

n

nd

n

s
C

ε�

�
           (3.38)�

After calculations based on the work of [Hartmann and Haupt 1993] for two kinematic 

hardening variables, the consistent tangent elastic-plastic modulus can be written in our case as: 
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by affectation: 
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3.5.3.4 Modeling the isotropic hardening/softening 

The modeling of the isotropic hardening/softening behavior is also of the outmost 

importance for simulations involving metallic materials.  

Voce’s strain hardening law is usually used in cold forming [Lange 2006]. It has the 

particularity to model the mechanism of dynamic recovery which is interpreted by a saturation of 

the isotropic hardening/softening at large deformations. It is also well adapted to model cyclic 

conditions [Chaboche 1989], i.e. to describe the cyclic hardening phenomenon (increase of 

strength) or the cyclic softening (decrease). Its evolution is governed by the accumulated plastic 

strain and the stabilized state is reached when the variables iR  reach the asymptotic values iQ . 

The dimension of the elastic domain is controlled by: 
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( )pRQbR iiii
�� −= � � � � � � � � � � (3.42)

or 

))exp(1( pbQR iii −−= � � � � � � � � � (3.43)

with 2,1 ni = . 

Considering two variables ( 22 =n ) for the description of isotropic hardening, we obtain:  

� � � � � � � � �����������(3.44)�

or 

( ) ))exp(1())exp(1( 22110 pbQpbQp y −−+−−+= σσ �� � � � � (3.45)

The integration of an isotropic hardening involves the calculation of: 
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Finally, 

21 RRR +=           (3.47) 

3.5.3.5 Validation of the numerical implementation of the cyclic constitutive model 

into Forge3®

A simple uniaxial tension/compression test schematized on the Fig. 3.36, allowed to 

validate the implementation of the Chaboche’s cyclic elastic-plastic law into Forge3®. A 

parallelepiped specimen (10x10x20mm) is fixed on one side, the other one being moved with a 

constant velocity either in tension or in compression. The contact between tools is considered as 

bilateral sliding. A Lagrangian sensor (moving with the mesh) is positioned at the center of the 

specimen to follow locally the computation of stress and strain. Two symmetry planes are 

necessary to avoid side effects and rigid body of motion. 

( ) 210 RRp y ++= σσ
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Figure 3.36. Tension/compression test carried out in Forge3®

The implementation started from an existing version using one kinematic hardening 

variable and one isotropic hardening variable. The designed name of this constitutive law in this 

work is: CH. When setting to zero all the parameters of the second variables (kinematic and 

isotropic hardening) in the full model (2CH); the two models are supposed to be equivalent. The 

parameters used in the tension/compression test are shown in Table 3.17. 

Table 3.17. Constitutive model parameters taken for the validation material test. 

Parameter yσ @�(�A� 1Q @�(�A�
1b 1C [MPa] 1γ

Material test 132 112 14 740 4.2 

�

Figure 3.37. CH and 2CH constitutive models response to tension/compression loading with parameters of Table 3.17.  

The comparisons between the tension/compression curves of both models (CH and 2CH) 

are presented in Fig. 3.37. It shows that curves coincide, which validates partially the model 

implementation. 

To validate the model with two kinematic variables and two isotropic variables, we 

compare our results with those obtained by [Robin 2006] in Abaqus® for the tension/compression 

test described below.  
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Figure 3.38. 
0σ  (R +

yσ ) calculation with Abaqus® and Forge3® for a tension/compression test. 

�

Figure 3.39. Kinematic hardening ( )X  calculation with Abaqus® and Forge3® for a tension/compression test.

We can see that both calculations of (
yσ ,R  and X ) give similar results with the two 

codes (Figs. 3.38 and 3.39). The error between the curves does not exceed 0.5 % (average error 

between values calculated for the same level of strain). We can thus consider that our 

developments are validated. 

3.5.4 Identification methodology of the model parameters 

3.5.4.1 Tension-compression tests 

The optimum values of the 10 model parameters { yσ , E , ib , iQ , iC , iγ  with 2,1=i } have 

been identified using a semi-automatic identification process divided in three steps and applied 

for two ODS grades: J05 and J24. The first and second steps are those proposed by [Velay et al., 

2006] schematically illustrated in Fig. 3.40. The third step is proposed in this study to enhance the 

numerical response of the Chaboche’s model in the regime of strain amplitude changes. Each 
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step of the process was performed using an optimization algorithm based on MAES techniques 

described in section 3.3.3. The three stages are summarized below: 

• The stabilized cycle of sequence 6 illustrated in Fig. 3.26 with ±1% strain 

amplitude is first considered. Assuming a stable cycle, the isotropic component can be set 

to a constant value (close to zero for the investigated material). In this first step, yσ  is 

assumed to correspond to the observed yσ  on the stabilized cycle at ±1% strain 

amplitude. It is identified graphically using Fig. 3.26 (elastic-plastic transition). The 

kinematic parameters 1C , 1γ , 2C , 2γ  are identified such as to minimize the gap between

calculated and experimental hysteresis loops. 

• The previously identified values of the kinematic hardening parameters are kept 

constant. The isotropic hardening parameters are then adjusted, using 1R  (parameters 

1Q  and 1b  according to Eq. (3.42)) to describe the strong softening observed during the 

first dozens of cycles of loading sequence 6 (Fig. 3.24), and 2R  (parameters 2Q  and 2b ) 

to account for the asymptotic softening (see Fig. 3.24). Besides these isotropic hardening 

parameters, yσ  and E  can also be adjusted at this stage. 

• Both kinematic hardening and isotropic hardening parameters are re-identified by 

inverse analysis using the stabilized cycle at ±0.7% (sequence 5), and the first cycle at 

±1% (sequence 6). This procedure is used to improve the description of the transient 

behavior when the strain amplitude is changed (Fig. 3.41). 

�

Figure 3.40. Parameter identification methodology from [Velay et al., 2006]. 

Tables 3.18-3.20 provide the set of parameters identified for the J05 and J24 steels with 

the above semi-automatic identification process. 
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Table 3.18. Kinematic parameters for the tension-compression test. 

� (MPa)1C � 1γ � (MPa)2C � 2γ �

���� ��&��&� �/�&� �&�&�� ����

���� ��&�&&� ���&� �%�&&� �&&�

Table 3.19. Isotropic parameters for the tension-compression test. 

� (MPa)1Q � 1b � (MPa)2Q � 2b �

���� ��&� ��� ����� ���

���� ��&� ��� ��&&� ��

Table 3.20. Elastic parameters. 

� (MPa)yσ � (GPa)E � 30.0=ν �

���� %/&� �&�� &��&�

���� �&&� �%&� &��&�

�

Figure 3.41. Transient behavior due to a change in strain amplitude. Comparison between experimental and calculated 

hysteresis loops at the stabilized cycle, ± 0.7%, and the first cycle at ± 1%. Left: J05 steel - Right: J24 steel. 

The challenge consists in reaching a good description of both asymptotic and transient 

behaviors. Predicted numerical curve and experimental response are compared in Figs. 3.42-

3.45. It can be seen that experimental and predicted results are in good agreement, even when 

considering loading sequences which were not used for the parameter identification, i.e. other 

than sequences 5 and 6, with either lower or higher strain amplitudes. Limitations of the 

constitutive model used in this work are shown in Figs. 3.44 - 3.45. The numerical response 

shows slight softening at sequence 7; rather than the slight cyclic hardening obtained 

experimentally. In sequence 8 of J05, cyclic stabilization is obtained numerically instead of the 

slight hardening measured experimentally. An evolution equation of the isotropic hardening 
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variable dealing with strain range memory, e.g. as proposed in [Wolf and Taleb 2008], [Taleb and 

Hauet 2009], [Taleb and Cailletaud 2010], [Sai 2011], might further improve the results (e.g. see 

[Velay et al., 2006]). 

�

Figure 3.42. Comparison between experimental and calculated hysteresis loops at 4th, 5th and 6th sequences. Left: J05 steel - 

Right: J24 steel. 

�

Figure 3.43. Comparison between experimental and calculated hysteresis loops, at 7th and 8th sequences. Left: J05 steel - Right: 

J24 steel. 

�

Figure 3.44. Comparison between experimental and calculated responses in the tension-compression loading sequence. J05 

steel. 
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Figure 3.45. Comparison between experimental and calculated responses in the tension-compression loading sequence. J24 

steel. 

The error (L2 error norm) between the experimental and the numerical curves in Fig. 3.44 

and 3.45 is calculated from Eq. (3.48), 
simf  and 

expf  being the simulated and experimental half-

stress amplitudes, and i  indicating a particular data point in Figs. 3.44 and 3.45. Estimation of the 

error is 1.95 % for the J05 steel and 1.8% for the J24 steel. 
�
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Besides the good agreement found in Figs. 3.44 and 3.45, the model predicts reasonably 

well the hysteresis loops, as shown in Figs. 3.42 and 3.43.

3.5.4.2 Compression-compression tests 

Using the model parameters of the J05 steel identified in tension-compression 

experiments to simulate the compression-compression test does not give good predictions at all 

(Fig. 3.46). A new parameters identification is therefore performed for this test. The procedure is 

here divided into two main stages to identify the following set of parameters: yσ ,E , ib , iQ , iC , iγ
with 2,1=i . 

• All the strain ranges are considered. Elastic parameters, yσ  and E , are kept to 

the values identified in section 3.5.4.1 for tension-compression tests. At this stage the 

kinematic parameters 1C , 1γ , 2C , 2γ  are identified such as to minimize the gap between

calculated and experimental stress responses at each cycle (Fig. 3.46). 

• The previously identified parameter values describing kinematic hardening are 

kept constant. The isotropic hardening parameters are then adjusted, using 1R
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(parameters 1Q  and 1b ) to describe the strong hardening observed during the first cycles 

of the loading sequence at -1%, and 2R  (parameters 2Q  and 2b ) to account for the 

asymptotic hardening (see Fig. 3.46). 

Tables 21 and 22 provide the set of parameters identified with the above semi-automatic 

identification process and compare with those obtained from the tension-compression test. 

Agreement between predicted and experimental curves is shown in Fig. 3.46. 

Table 21. Kinematic parameters of J27-M2 steel. 

� (MPa)1C � 1γ � (MPa)2C � 2γ �

��	�
��������	�
������ ��&&&&� %&&� �&&&� �&�
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Table 22. Isotropic parameters of J27-M2 steel. 

� (MPa)1Q � 1b � (MPa)2Q � 2b �

��	�
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������ %&� ��� ��&� ��
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������ ��&� ��� ����� ���

Estimation of the error between the experimental and the numerical curves based on Eq. 

(3.48) is 4.54 %. The model is able to capture both stabilized values for each amplitude, and the 

rapid evolution observed when the strain amplitude changes. 
�

In Table 22, it is pointed out that 1Q  and 2Q  have different signs for the two investigated 

tests, leading to opposite trends in the cyclic hardening. It is also observed in Table 21 that the 

magnitudes of kinematic parameters are higher in tension-compression, which is mainly due to 

the difference in transient behaviors due to strain amplitude changes. 
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Figure 3.46. Compression-compression loading sequence: comparison between experimental and calculated responses. 

Simulated curves include the elastic strain. 

3.5.5 ODS steel response under cyclic loading: discussion 

The ODS steel investigated in this work shows a cyclic behavior which strongly depends 

on the loading path, the strain amplitudes, and the strain history. Depending on such conditions, 

the material response may range from significant cyclic softening to very strong cyclic hardening. 

It is noted that cyclic softening in tension-compression is not reported for ODS ferritic steels at 

high temperature [Ukai et al., 2007], [Kubena et al., 2011], [Kruml et al., 2011], but instead a 

stable response is observed. At room temperature however, cyclic softening was already pointed 

out in [Kubena et al., 2011]. The mechanism governing this evolution remains to be further 

investigated, but one possible explanation would be related to the shearing of nano-sized 

precipitates, occurring at room temperature and not at higher temperatures. 

The proposed constitutive model is simple, and captures well stress changes due to strain 

amplitude changes. Predicted stabilized loops slightly overestimate the stress level in the elastic-

plastic transition range, however in cold pilgering conditions, such a stabilized state is very 

unlikely to take place. The ability to capture stress changes due to strain amplitude changes is, 

on the contrary, a more important feature when dealing with this forming process. 

The difference in parameter values obtained for tension-compression and compression-

compression tests is attributed to the simplicity of the adopted constitutive model, which does not 

include a direct account of strain range memory effects, and of the degree of non-proportionality 

of the loading path:  
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• Strain range memory effects could be introduced as in [Chaboche et al., 1979], 

but are likely to be inaccurate when dealing with quasi-random non-proportional 

mechanical loading [Krishna et al., 2009]. 

• Additional complex mechanical tests with increasing-decreasing non-

proportionalities, such as those proposed by Aubin [Aubin et al., 2003a] could be 

performed in order to analyse further the influence of the degree of non-proportionality of 

the loading on the model parameters. 

Because of the simplicity of the model, and the need to describe complex strain histories, 

the identified model parameters must be considered as “ad hoc”, i.e. even though they lie in 

acceptable ranges as compared to other steels [Velay et al., 2006], their exact values cannot be 

related directly to material properties.  

The proposed semi-automatic identification methodology for compression-compression 

tests could be applied to other ODS steel grades or ODS steels with different microstructures, 

e.g. recrystallized ferritic ODS steels with equiaxed grains or martensitic ODS steels with isotropic 

crystallographic and morphological textures. However, the ability to accurately capture transients 

consecutive to strain amplitude changes should be tested in a systematic way. Anisotropy due to 

crystallographic and morphological textures inherited from the hot extrusion process or from 

intermediate cold pilgering passes, as discussed in section 3.4, could be included in future work 

within the proposed cyclic constitutive law. The trapezium-shaped describes in Fig. 3.33 for some 

the compression-compression tests, could then possibly be modeled. 

3.6 Conclusions 

Accurate modeling of the material constitutive behavior is one of the most important 

features needed in order to simulate forming process operations properly. Within the framework 

of this study, the ODS tubes cold pilgering process is investigated. A volume element typically 

undergoes several dozens of strokes before deformation is completed. This complex mechanical 

history may lead to the nucleation of defects (longitudinal cracks) in low-cycle fatigue regime. 

Anisotropy in the constitutive behavior (crystallographic and morphological textures) and in 

second phase particles distribution may have a significant influence on this phenomenon. Two 

ODS steels grades, ferritic (J05 and J27-M2) and martensitic (J24), were tested, modeled and 

analyzed in order to identify three different constitutive laws: i) monotonic, ii) anisotropic, iii) 

cyclic. 

First, the monotonic Hansel-Spittel law has been calibrated from tensile tests using an 

inverse analysis for each ODS grade (J05 and J24). Experimental tensile tests show that J24

steel has less ductility than J05 steel but their yield strength are quite similar. 

Second, compression tests carried out on cylindrical specimens cut in three different 

directions (longitudinal, radial and ortho-radial) confirmed the crystallographic texture of the 
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ferritic ODS steel. These tests result in an ovalization of the cross-section when looking in the 

radial or ortho-radial directions, and therefore exhibit flow anisotropy. The ovalization ratio is more 

significant when dealing with the sample cut in the ortho-radial direction. However the yield stress 

difference between the three loading directions is small. Hill’s quadratic plastic anisotropy 

criterion has been selected to model the different flow patterns in compression. A set of Hill’s 

parameters was identified based on the ovalization shape after upsetting and the stresses 

recorded from shear tests. Some discrepancy was found between experimental and numerical 

results. This was explained from three different reasons, one of them being the heterogeneity of 

crystallographic texture in the samples. It was proposed to assess the influence of the sample 

size and the cut position into de ODS bar. Furthermore, a Hill’s parameters calculation 

enhancement was performed using the inverse analysis method, which led to an improvement of 

the correlation between the experimental and numerical results.  

Third, strain-controlled cyclic responses of ODS steels, were analyzed and modeled, 

using two different tests. The first test is a classical tension-compression test, and leads to cyclic 

softening at low to intermediate strain amplitudes. The second test consists in alternated uniaxial 

compressions along two perpendicular axes. It is based on the similarities with the loading path 

induced by the pilgering process. The difference of the material response in those two tests is 

mainly attributed to the loading path. A simple Chaboche type constitutive model involving only 

10 parameters was successfully used to describe the experimental trends. This model was 

implemented in a FEM code with an implicit integration scheme in order to obtain a good 

accuracy. Its implementation and numerical resolution was detailed. The consistent tangent 

modulus was also derived in a classical way. In order to check the implementation of Chaboche’s 

model, comparisons with results coming from literature and with Abaqus® were performed. 

The model parameters were identified with a semi automated identification procedure 

involving an inverse analysis method, and considering loading sequences compatible with those 

encountered in cold pilgering conditions. Experimental and predicted results are in good 

agreement, but a single set of model parameters could not be identified for both tests. This is 

mainly attributed to the difference in transient behavior observed in the two tests, when strain 

amplitudes change. More elaborated constitutive models could be explored in the future, in order 

to reach a unique model accounting for both tension-compression, and compression-compression 

tests. Meanwhile, the model obtained from compression-compression test can be used for the full 

scale simulation of pilgering process. 

Due to the limited amount of martensitic grade (J24) neither the upsetting test nor the 

compression-compression test has been performed on this material. Nonetheless, the 

methodology implemented for the ferritic grade can be applied in a similar way. 

The next Chapter will analyze a numerical simulations of ODS tubes cold pilgering 

considering the three considered constitutive laws in this Chapter, i.e. the monotonic, anisotropic 

and cyclic behaviors. The influence of these constitutive laws on the mechanical history 

undergone by a material point during the process will be assessed. This will allow analyzing 
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conditions for which (a) cracking may develop, and (b) recrystallization may take place upon heat 

treatment. 

3.7 Résumé en français 

Une modélisation précise du comportement du matériau est l'une des caractéristiques les 

plus importantes afin de simuler les procédés de mise en forme correctement. Dans le cadre de 

cette étude, le procédé de laminage à froid des tubes ODS est étudié. Un élément de volume 

subit généralement plusieurs dizaines de coups de cage avant que la déformation soit terminée. 

Cette histoire mécanique complexe peut conduire à la germination de porosités (fissures 

longitudinales). L’anisotropie dans le comportement mécanique (textures cristallographiques et 

morphologiques) et dans la distribution des particules de seconde phase peut avoir une influence 

significative sur ce phénomène. Deux nuances ferritiques d’aciers ODS (J05 et J27-M2) et 

martensitiques (J24), ont été testées, modélisés et analysées afin d'identifier trois lois de 

comportement différentes: i) monotone, ii) anisotrope, iii) cyclique.  

Premièrement, la loi de comportement de type Hansel Spittel a été utilisée afin de simuler 

le comportement du matériau à partir des essais de traction simple. L’analyse inverse a permis 

d’identifier les paramètres matériaux de chaque nuance ODS (J05 et J24). Les essais de traction 

expérimentaux montrent que l'acier J24 est moins ductile que l'acier J05 mais leur limite élastique 

sont assez similaires. 

Deuxièmement, les tests de compression réalisés sur des échantillons cylindriques 

prélevés dans trois directions différentes (longitudinal, radial et l'ortho-radiale) ont confirmé la 

texture cristallographique de l'acier ferritique ODS. Ces tests se traduisent par une ovalisation de 

la section dans la direction radiale ou ortho-radiale, et présentent donc un écoulement anisotrope 

de la matière. Le ratio d'ovalisation est plus important lorsqu'il s'agit de l'échantillon prélevé dans 

le sens ortho-radial. Cependant, la limite élastique dans le trois cas reste proche. Le critère 

d’anisotropie quadratique de Hill a été choisi pour modéliser les différences d’écoulement en 

compression. Un ensemble de paramètres de Hill a été identifié, basé sur la forme elliptique et 

les contraintes à partir d’essais de cisaillement. Un certain écart a été trouvé entre les résultats 

expérimentaux et numériques. Cela a été expliqué par trois raisons différentes, l'une d'entre elles 

étant l'hétérogénéité de la texture cristallographique dans les échantillons. Il a été proposé 

d'évaluer l'influence de la taille de l'échantillon et la position de prélèvement dans la barre d’acier 

ODS. Par ailleurs, les paramètres du modèle anisotrope ont été recalculés en utilisant la méthode 

d'analyse inverse, qui conduit à une amélioration de la corrélation entre les résultats 

expérimentaux et numériques. 

Troisièmement, les réponses cycliques à déformation contrôlées des aciers ODS, ont été 

analysées et modélisées, en utilisant deux tests différents. Le premier test est un test classique 

de traction-compression. Il conduit à l'adoucissement cyclique à faible amplitude de déformation. 

Le deuxième test a été mis au point dans cette étude. Il consiste à alterner des compressions 
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uniaxiales le long de deux axes perpendiculaires. Il est basé sur les similitudes avec le chemin de 

chargement induit par le procédé de laminage à pas de pèlerin. La réponse du matériau est 

différente pour les deux tests. Cela est principalement attribué au type de chargement. Un 

modèle de comportement de type Chaboche impliquant seulement 10 paramètres a été utilisé 

avec succès pour décrire les tendances expérimentales. Ce modèle a été implémenté dans un 

code éléments finis avec un schéma d'intégration implicite en vue d'obtenir une bonne précision. 

Sa mise en œuvre et la résolution numérique ont été détaillées. Le module tangent a également 

été calculé d'une façon classique. Afin de vérifier la mise en place du modèle de Chaboche, les 

résultats provenant de la littérature et ceux obtenus avec Abaqus® ont été comparés. 

Les paramètres du modèle ont été identifiés avec une procédure d'identification semi-

automatique impliquant une méthode d'analyse inverse. Les résultats expérimentaux et 

numériques sont en accord, mais un seul jeu de paramètres n'a pas pu être identifié pour les 

deux essais mécaniques. Ceci est principalement attribuable à la différence de comportement 

transitoire observée dans les deux essais, lorsque l’amplitude de déformation change. Des 

modèles plus élaborés de comportement de matériaux pourraient être explorés dans l’avenir, afin 

d’avoir un modèle unique pour les deux essais, tension-compression et compression-

compression. D’ici là, le modèle obtenu avec l’essai de compression alternée de cubes, peut être 

utilisé pour la simulation complète du laminage à pas de pèlerin. 

En raison de la quantité limitée de matière de la nuance martensitique (J24), l’essai de 

compression alternée de cubes a été effectué sur une nuance ferritique. Néanmoins, la 

méthodologie mise en œuvre sur la nuance ferritique peut être appliquée d'une façon similaire 

pour une autre nuance ODS. 
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Pilgering process analysis 
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4.1 Introduction 

Longitudinal defects may occur in cold pilgering of ODS tubes caused by the stress and 

strain history. Because of rare occurrences, these defects are really difficult to be study directly. A 

model has been built in Chapter 2 to describe the mechanical conditions that prevail during a 

forming pass. In this Chapter the influence of the ferritic ODS constitutive law, on the prediction of 

defect, is assessed. The constitutive law is shown to control the strain path, and hence the 

tendency to develop cracks. Experimental observations have been performed (longitudinal strain, 

number of pilgering marks, and micro-hardness). They provide data which can be used to identify 

the most accurate constitutive law. The distribution of strains and stresses is discussed as well. A 

damage criterion risk is finally defined and computed. The third pass of the fabrication route is 

more specifically studied here. 

4.2 Experimental measurements 

4.2.1 Strain measurements 

To observe the strain path in a Zircaloy-4 tube during cold pilgering, [Aubin et al., 1995], 

[Girard et al.,1993], [Mulot et al., 1996], [Aubin et al., 2000], [Girard et al., 2001], [Osika and 

Swiatkowski 2003], [Osika et al., 2009] drilled pieces of rods (markers) in the thickness of the 

tube. This technique is also used here to analyze and validated the proposed HPTR cold 

pilgering FEM model. The amount of ODS steel being limited, a Zircaloy tube is used instead. 

The Zircaloy tube has been prepared by drilling 59 holes (diameter: 1mm) aligned along 

the axis of the tube. A hole is drilled every 8 mm. Due to the character of the tube rolling process 

(small diameter-thickness reduction and tube elongation) the markers should be properly located. 

The choice of material marker has been done taking into account that it should have a different 

color to be easily identified in the tube material. Its mechanical properties should be as similar as 

possible compared to the tube. If the marker is too soft it is difficult to put it into the hole and it 

could leave the hole during pilgering. If the material is too hard, then it will significantly affect the 

flow of the tube material. In our case the holes were filled with pieces of stainless steel (316L) 

because its yield stress is close to the Zircaloy one. 

The tube has been partially rolled with the HPTR mill available at CEA/Saclay. Evolution 

of location and shape of the inserts (markers) are revealed by microscopic examination.  

4.2.1.1 Longitudinal strain 

The Zy-4 partially rolled tube is showed in Fig. 4.1. The initial marker shape is displayed 

in Fig. 4.1(a). During rolling, some markers were ejected from the initial hole (see e.g. Fig. 4.1(b)), 

markers were pulled out and then smashed over the tube by the dies (see e.g. Fig. 4.1(c)). 
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Despite these losses, there were enough markers left  to measure and analyze the strain path in 

the longitudinal direction. Indeed, initial circular markers become ellipses (see e.g. Fig. 4.1(d)-

(e)). The longitudinal elongation allows calculating the longitudinal strain using the following 

equation: 
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where fl  is the long axis of the measured ellipse at a given position z  (on the tube 

working zone) and 0l  is the marker initial diameter. Thus, the experimental longitudinal strain can 

be quantified along the length of the partially rolled tube (see Fig. 4.2). 

�

Figure. 4.1. Partially rolled tube showing the working zone and the 316L cylindrical markers evolution. a) initial shape and 

position of a given marker b) marker has disappeared c) marker smashed by the dies after being pulled out d) good marker 

deformation in the working zone e) final shape (elliptical) of the marker. 
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Figure 4.2. Experimental longitudinal strain evolution along the length of a partially rolled tube. 

From Fig. 4.2, the first half of the working zone ( mmz 1350 << ) deals with a small 

elongation in the rolling direction. This means that the HPTR process works mainly on the 

diameter and thickness changes in this area. From mmz 135>  the elongation of the tube 

becomes more significant because the tube is in contact with the mandrel and, by mass 

conservation effect, the material flows in the rolling direction. It is pointed out from Fig. 4.1 that 

the markers remained aligned in the axial direction, i.e. the orthoradial position of the holes did 

not change during HPTR pilgering. 

4.2.1.2 zθε  (Rolling helix) 

Torsion of the tube (pilgering helix) is a known phenomenon that occurs during VMR 

pilgering [Girard 1993], [Mulot et al., 1996], [Aubin et al., 2000], [Girard et al., 2001], [Osika et al., 

2009]. In order to check this observation in the HPTR pilgering, a straight channel (0.4 mm depth 

and 0.4mm width) was machined in the raw tube at 180° of the holes alignment described above. 

After pilgering, the initial straight channel does not change to an helix (see Fig. 4.3) as in the 

VMR case (e.g. see [Aubin et al., 1994]). In the VMR case, a cross-section of the tube at a given 

position in the rolling direction, z , remains slightly elliptical. Therefore, during a VMR stroke , a 

significant transverse shift of the dies (transverse force) can appear, and partially explains the 

sense of the twisting of the tube (pilgering helix, see section 1.3.1). On the other hand, for HPTR 

pilgering, a cross-section of the tube at a given position in the rolling direction, z , remains slightly 

clover; with a 120° rotation symmetry. Therefore, d uring a HPTR stroke, the 3 dies are less 

subjected to transverse forces, avoiding thus a material twist. 
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Figure 4.3. Partially rolled tube showing the evolution of the straight initial channel. It remains straight after rolling, showing no 

torsion of the tube.  

4.2.2 Stress measurement 

Hardness measurements provide an easy way of obtaining the increase of the yield 

strength in cold-formed products, since their use is very simple and inexpensive. Vickers 

hardness number is used in this work. 

The Vickers Pyramid Number (Hv ) is expressed in 2. −mmkgf (1 2. −mmkgf MPa81.9≈ ). 

Hv  is directly calculated with respect to the applied force in kgf  and the average diagonal value 

of the square-based pyramid. 

It is common to express Hv  in MPa . These measures allow characterizing the 

rheological properties of work-pieces surfaces. The flow stress can be indeed related to the 

Vickers hardness [Tabor 1950] using: 

[ ]
c

MPaHv
≈0σ � � � � � � � � � � ������

where c  is a material parameter, often close to 3. In the case of ferritic ODS (not 

recrystallized), it was found 14.3=c . Micro-hardness (Vickers) measures were carried out in the 

partially rolled ferritic ODS tube at the CEA/SRMA/LA2M Saclay [LA2M 2011]. For this purpose, a 

piece (ring) of tube was cut from the formed tube. The ring was then polished. Afterwards, micro-

hardness measures at different locations into the ring wall thickness were performed. A force of 

1 kgf  during 15s was used. The hardness measurements are only available after the pass 2 and 

the subsequent intermediate heat treatment, and after the pass 4. They are summarized in Table 

4.1. The hardness increases from the internal to the external tube surface (see Fig. 4.4). A small 

hardness increase (<7%) of ODS steels is observed and this was also pointed out in the literature 

(see e.g. [Toualbi et al., 2011]). 
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Table 4.1. Ferritic ODS tube micro-hardness [HV1] before and after cold pilgering. 

Position from the 

internal diameter [mm] 

Raw tube hardness [ 2. −mmkgf ] 

(Pass 2 + heat treatment) 

Formed tube hardness 

(Pass 4) [ 2. −mmkgf ]

Hardness increases 

[ 2. −mmkgf ]  

Hardness 

increases (%) 

0.1 369.1 393.8 24.7 6.7 

0.3 397.4 405.3 7.9 1.98 

0.5 397.9 421.5 23.6 5.9 

0.7 396.3 418.2 21.9 5.52 

0.8 405.2 - - - 

�

Figure 4.4. Hardness [HV1] evolution over the tube wall thickness from [LA2M 2011]. 

Table 4.2. Ferritic ODS tube 
0σ  [MPa] before and after cold pilgering, computed from Table 4.1. 

Position from the internal 

diameter [mm] 

Raw tube 
0σ [MPa] 

(Pass 2 + heat treatment) 

Formed tube 
0σ [MPa]

(Pass 4) 

0.1 1153 1230 

0.3 1241 1266 

0.5 1243 1317 

0.7 1238 1306 

0.8 1266 - 

After heat treatment (following pass 2), 0σ  remains high (see Table 4.2) in relation with 

the initial yield limit extruded bar (960 MPa) (see Chapter 3). This means that the heat treatment 

is unable to significantly soften the material, in the absence of recrystallization. 
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4.2.3 Clover marks periodicity 

In a partially rolled tube clover marks dashed by the shoulders die are easily observed 

(see Fig. 4.5). The number of marks does not depend on the material because they are observed 

in both Zircaloy and ODS tubes. Indeed, their numbers depend of the rotation angle at each 

stroke. For the investigated fabrication route, the rotation angle is 39° leading to 9 clover marks 

(360°/39° ≈ 9). 

�

Figure 4.5. HPTR pilgering marks on partially rolled ferritic ODS tube. 9 marks are visible when rotating 39° the tube after each 

stroke. 

The depth of HPTR pilgering marks should be measured as it could be material 

dependent. This measurement can be used to validate, partially, the adopted constitutive law. 

4.3 Mechanical analysis 

4.3.1 Simulation set up 

Taking into account Chapter 2 conclusions, we will consider here a 20 mm tube initial 

length. The tube is space discretized with an anisotropic structured mesh, with 4 elements over 

the thickness, 60 elements over the length and 100 elements over the circumference. Mesh 

characteristics are summarized in Table 4.3. For this study the time step is fixed to 0.001s 

managed with the adaptive time step method described in section 2.3.4. Coulomb friction is 

assumed with 1.0=µ . Pass 3 of the fabrication route (see section 2.3.1) is simulated. The 

process total time is 98s. The tube is turned 39° a nd moved forward (feed) 1.7 mm after each 

stroke. A material point takes 120 strokes to pass through the working zone. 
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Table 4.3. Mesh characteristics. 

 Number of elements Number of nodes Element type 

Tube 144000 30500 3D tetrahedral 

Dies 3 x 20294 3 x 10199 2D triangles 

Mandrel 60000 30100 2D triangles 

Lagrangian numerical sensors have been placed at the mid-length of the tube at different 

angles (0°-19.5°-39°-90°-180°-270°) (see Fig. 4.6) to avoid edge effects. Four sensors are placed 

over the thickness at the Gauss point as illustrated in Fig. 4.6. In order to analyze the process 

over the circumference 6 sensors rows are placed in the )(θr  cross-section plane. Each row 

(called R) leads to four sensors (called S). Thus, R1 contains S1-4 counted from the external 

surface to the internal surface; R2 contains S5-8 and so on. 

�

Figure 4.6. Lagrangian numerical sensors placed at the mid-length of the tube at different angles (0°-19°-39°-90°- 180°-270°).

The aim of this section is to assess the influence of the constitutive law on the mechanical 

history of a material point in pilgering conditions, and to identify the critical mechanical conditions 

corresponding to the highest risk of cracking.  

Referring to Chapter 3, the ferritic ODS steel will be considered here using different 

constitutive laws: 

• Chaboche type constitutive model. Materials parameters identification coming 

from a classical tension/compression test (named: Cyclic T/C). 

• Chaboche type constitutive model. Materials parameters identification coming 

from alternated uniaxial compressions along two perpendicular axes (named: Cyclic C/C). 

• Hill’s quadratic plastic anisotropy criterion. Materials parameters identification 

coming from upsetting tests of cylindrical specimens cut in three different directions. 
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Shear parameters are assumed to be the same as for an isotropic material (named: 

anisotropic monotonic). 

• Hansel-Spittel behavior law. Materials parameters identification from tensile test 

(named: isotropic monotonic). 

4.3.2 Cyclic material point history induced by pilgering 

4.3.2.1 Stress 

The sensor S2 stress history is monitored and is illustrated in Fig. 4.7. The axial stress is 

tensile when the material is located in the side relief, and compressive over the die shoulder. A 

material point will experience cycles of tension and compression, potentially inducing fatigue 

phenomena during the pilgering process. The 120 positive (tensile) and negative (compressive) 

peaks appear in Fig. 4.7; in the compressive case, high and low peaks alternate, because the 

material point varies, depending on the successive rotations. The largest stress is experienced in 

the last cycles because the thickness reduction is larger and the material is strongly work-

hardened. 
�

�

Figure 4.7. Sensor S2 longitudinal stress (in MPa) history for different ferritic ODS constitutive laws. 

Fig. 4.8 displays the dies and tube position when the longitudinal stress is maximum 

according to Fig. 4.7, using the cyclic C/C constitutive law. In the deformation zone under the die, 

the longitudinal stress zzσ  is tensile in the side relief area, and compressive in the groove bottom 

(see Fig. 4.9).  
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Figure 4.8. Longitudinal stress isovalues (in MPa) showing the high compression in the groove bottom and the high tensile 

material state in the side relief when using the cyclic C/C constitutive law. Stroke 117 corresponds to the moment when the 

tensile stresses are highest for the Cyclic C/C constitutive law. 

�

�

Figure 4.9. Cross-section at the stroke 117 where the longitudinal stress is maximum (in MPa), on sensor S2 according to Fig. 

4.7. Cyclic constitutive law. 

When analyzing the maximum value of the equivalent stress at each stroke for each 

constitutive law (see Fig. 4.10), both isotropic monotonic and anisotropic monotonic laws provide 

overestimated stress values in the last strokes. Indeed, the equivalent stress value increases 

sharply from the 85th stroke. From, the mathematically point of view, the computation is correct 

because the flow stress equation is given by a power law, therefore the more the strain increases, 

the more the stress increases. On the other hand, when dealing with Chaboche’s constitutive 
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model, no more hardening is possible because of stabilization of the isotropic hardening variables 

(the asymptotic value is reached, see section 1.4.2.1.1). 

�

Figure 4.10. Sensor 2: maximum equivalent stress (in MPa) at each stroke for a ferritic ODS HPTR pilgered tube. 

Different isotropic hardening evolutions are observed in Fig. 4.11 when considering the 

two cyclic laws. For the cyclic T/C constitutive law the yield surface size decrease during 

pilgering. This is coherent with the fact that the material parameters were identified through the 

classical uniaxial tension-compression test, where cyclic softening occurs. On the other hand, 

when dealing with the cyclic C/C constitutive law, the material parameters were identified through 

alternating uniaxial compressions along two perpendicular axes of a cube. In that case, cyclic 

hardening was observed. 

From Fig. 4.11 the fast stabilization of the first isotropic variable apparent in both cases. It 

was reached after only 14 strokes leading to plastic strain. However, the second variable evolves 

differently, i.e. much faster in the cyclic T/C constitutive law. In the cyclic C/C constitutive law, it 

does not even saturate, which leaves space for further strain hardening.  
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Figure 4.11. Sensor 2: isotropic hardening (in MPa) variables history for both cyclic T/C and cyclic C/C constitutive laws. 

Now, when comparing the flow stress 0σ  value experimentally and numerically identified 

(at the external surface of the tube wall thickness, see Fig. 4.12), it is observed that the cyclic T/C 

constitutive law does not manage to model the final state of the ferritic ODS tube. In the case of 

monotonic constitutive laws, the difference is even larger when comparing to the final 

experimental yield stress of the formed tube (see Table 4.2). On the other hand, the cyclic C/C 

constitutive law is much closer. In Fig. 4.13, the initial yield stress (960 MPa) identified from the 

compression-compression test is however lower that measured (1238 MPa). The tube has indeed 

already undergone two forming passes and a subsequent heat treatment (without any 

recrystallization). 

Fig. 4.14 analyzes the flow stress ( 0σ ) evolution as a function of the wall thickness level. 

The larger values are located close to the external tube surface. Simulation and experimental 

results are in agreement on this. However, some disagreements appear when approaching the 

internal tube surface. The numerical value of 0σ  decreases from the external surface to the 

center of the tube, and then, close to the internal tube surface it increases slightly. This increase 

is not measured experimentally. It should be noticed again that we are comparing the numerical 

pass 3 with measurements done after pass 4, so final conclusions are difficult to reach. 
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Figure 4.12. Sensor 1: stress 0σ  (in MPa) numerical and experimental response comparison for different constitutive laws. 

�

Figure 4.13. Sensor 1: stress 0σ  (in MPa) numerical and experimental response comparison for cyclic T/C and cyclic C/C 

constitutive laws. 

�

Figure 4.14. Row 1: stress 0σ  (in MPa) numerical and experimental response comparison for the cyclic C/C constitutive law. 
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Despite the possible discrepancy between the cyclic C/C constitutive law and the 

experimental yield stress calculated from hardness measurements, the Chaboche’s cyclic 

constitutive model, involving material parameters identified from alternated uniaxial compressions 

along two perpendiculars axes, proved to be by far the most accurate model. 

4.3.2.2 Strain rate 

The quasi-random loading of a material point under pilgering conditions is observed in 

Fig. 4.15. The highest strain rate values are found in the last strokes when the HPTR process 

leads to thickness reduction. Although the tube is rolled on the forward and return stroke, the 

major deformation is mainly undergone during the forward stroke (see stroke 70 zoom in Fig. 

4.15). 

�

Figure 4.15. Sensor 2 strain rate history for the Cyclic C/C behavior law.

The random-loading intensity can vary from one side of the tube to the other. The 

maximum strain rate value is mostly located at the external tube surface. This observation is valid 

with any constitutive law used in this work (Fig. 4.16). 
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Figure 4.16. Maximum strain rate in the sensors (S1-S24). 

The maximum strain rate remains high for cold deformation of hard materials. 

Nevertheless, from Fig. 4.17, it can be observed that 62% of the strokes are performed with strain 

rates from 0 to 1.5 s-1. Few isolated high strain rate strokes (e.g. stroke: 85, 92, 95, 101, 116, 

118) could increase the risk of damage and cracking (see Fig. 4.15). 

�

Figure 4.17. Strain rate frequency (S2). Cyclic C/C behavior law. 

Fig. 4.18 shows at which stroke the maximum strain rate is undergone by each sensor 

placed over the tube when using the cyclic C/C constitutive law. This helps identifying the “risky” 
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strokes. With this law, strokes 112,116 and 117 are particularly dangerous. Nevertheless, strain 

rate alone does not tell the story about damage risks. This point is discussed later in this Chapter. 

�

Figure 4.18. Strokes exhibiting maximum strain rate for the Cyclic C/C behavior law.. 

4.3.2.3 Strain  

Figs. 4.19-4.22 show the time integrated values of four components of the strain rate 

tensor in cylindrical coordinates. It is noticed that before 85th stroke the dies mainly lead to a 

diameter reduction of the tube, after this stroke θθε  decreases markedly (see Fig. 4.20). On the 

other hand rrε  increases during the first 85 strokes, leading to an increase of the tube thickness 

(see Fig. 4.19), resulting in a clover-shape tube. Most of the deformation is then performed after 

the 85th stroke by compression between the dies and the mandrel resulting in an extension in the 

axial ( z ) direction (see Fig. 4.21). Furthermore; θθε  can be locally in tension in the finishing 

zone, at the side relief (e.g. see strokes 100-105 in Fig. 4.20). 

The above general analysis is valid for the different constitutive laws investigated in this 

study whereas the distribution of deformation can change from one constitutive law to another. 

Differences can be found when looking closer at the deformation path. In Fig. 4.19, the radial 

deformation value is more or less the same for all cases except for the anisotropic monotonic 

constitutive law for which the 56th stroke exhibits a positive strain increment, indicating either a 

tensile stress in the radial direction or a volume conservation effect. The other constitutive laws 

do not predict such a radial strain at the 56th stroke. At the 27th stroke, the difference in the 

material flow can be pointed out again for the anisotropic monotonic law. The radial strain is 

almost twice as compared to the isotropic monotonic case. This is a consequence of the Hill’s 

parameters which largely control the 3D material flow. This can be observed in strokes 30-58 and 

67-85. The radial strain increment, rrε∆ , are compressive in the anisotropic monotonic case, 

while they remain close to zero in the other cases.
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Figure 4.19. Radial strain rrε  path undergone by a volume element (sensor 2) during HPTR cold pilgering of a ferritic ODS 

cladding tube. 

In Fig. 4.20, the ortho-radial deformation history is roughly the same for the two cyclic 

constitutive laws. However, some differences can be found with monotonic constitutive laws, 

more specifically for the 18th, 24th, 27th and 64th strokes (circled on the Figure). Positive 

orthoradial strain increments, +∆ θθε , are again noticed in the anisotropic case.  

�

Figure 4.20. Ortho-radial strain θθε  path undergone by a volume element (sensor 2) during HPTR cold pilgering of a ferritic 

ODS cladding tube. Most of the strokes involve compressive strains along the ortho-radial direction. 

The longitudinal strain history seems independent of the constitutive law choice (see Fig. 

4.21). It is mainly prescribed by the HPTR pilgering process parameter (e.g. die geometries, dies 

kinematics, feed, rotation…). 
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Figure 4.21. Longitudinal strain zzε  path undergone by a volume element (sensor 2) during HPTR cold pilgering of a ferritic 

ODS cladding tube. 

In Fig. 4.22, it is noticed that the relative rzε  increment values change more than those of 

zzε . However the values of rzε∆  could have modifications in the same way in absolute values. 

The observed values of rzε  (0.03-0.05) are smaller than those reported in the literature (0.5-0.6) 

for VMR pilgered Zyrcaloy tubes [Aubin et al., 1994]. Unfortunately no reference value is available 

in the literature for the HPTR process. 

�

Figure 4.22. Shear strain rzε  path undergone by a volume element (sensor 2) during HPTR cold pilgering of a ferritic ODS 

cladding tube. 

Concerning the two others shear strains zθε  and θε r : the first one is insignificant from the 

experimental measurements. It can also be confirmed from the numerical model because the 
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original sensor row rotation is negligible. Sensor 2 zθε  is shown in Fig. 4.24. It slightly depends 

on the constitutive law but values remain low. 

On the other hand, the numerical model displays a 4° )(θr  plane rotation after 120 

strokes (see Fig. 4.23). Hence, very small strain increments occur in )(θr . The shear θε r , 

computed with the cyclic C/C constitutive law (see Fig. 4.25), is small in magnitude for the cyclic 

laws. For the monotonic cases, however θε r  values can be four times as high.  

�

Figure 4.23. Numerical displacement undergone by each sensor during HPTR cold pilgering looking at the )(θr  planes. 

It is concluded that for the cyclic C/C behavior law, the shear values zθε  and θε r  remain 

low in magnitude as compared to the other components. For this reason, in the remainder of this 

work these two components are not analyzed. 

�

Figure 4.24. Shear strain zθε  path undergone by a volume element (sensor 2) during HPTR cold pilgering of a ferritic ODS 

cladding tube. 
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Figure 4.25. Shear strain θε r  path undergone by a volume element (sensor 2) during HPTR cold pilgering of a ferritic ODS 

cladding tube. 

Considering the equivalent strain evolutions, two plateaus are observed in Fig. 4.26. The 

first one, between 33rd and 53rd strokes and the second one between 70th and 85th strokes. This 

could be explained by the fact that the material locally hardens during cold deformation, therefore 

the force applied to the material in these two plateaus is not enough to deform plastically through 

the whole thickness of the tube. This is clear when looking at stroke 80 with the Cyclic C/C 

behavior law in Fig. 4.27. S1 and S2 do not deform plastically whereas S3 and S4 do. During the 

process plastic deformation is located on the external surface, then on the inner surface. From 

Fig. 4.27 one can also see that the external surface of the tube is much more deformed as 

compared to the other thickness levels. 

�

Figure 4.26. Equivalent strain path undergone by a volume element (sensor 2) during HPTR cold pilgering of a ferritic ODS 

cladding tube. 
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Figure 4.27. Cyclic C/C behavior law: equivalent strain path undergone by sensors along the raw 1 (R1) during HPTR cold 

pilgering of a ferritic ODS cladding tube. 

Comparison between predicted and measured longitudinal strain 

Experimental evaluation of plastic longitudinal strains due to cold pilgering of a Zy-4 

cladding tubes has been performed in section 4.2. Experimental and simulated values are 

displayed in Fig. 4.28. As shown previously, the numerical longitudinal strain is slightly sensitive 

to the choice of the constitutive law. The numerical HPTR pilgering model overestimates 

longitudinal strains at the beginning of the process. More than a half of the working zone 

( 1350 << z mm) leads mainly to diameter reduction with very limited tube elongation. For 

135>z mm the tube elongates consequently, and this captured by the model. Overall, the trend 

is well predicted. 

�

Figure 4.28. Comparison between predicted and measured longitudinal strain. Numerical results correspond to S2. 
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The identification of the deformation path was the first step toward a better understanding 

of the critical conditions leading to damage and cracking. A more systematic analysis of all cycles 

can help to define which cycles (strokes) may contribute to the oligocyclic fatigue of the material. 

This leads to the need for a damage criterion. Integration of a proper damage law or failure 

criterion into the proposed numerical model may lead to the numerical optimization of the process 

in terms of maximum acceptable deformation before heat treatment, and detailed cold pilgering 

conditions (tools kinematics, dies profile optimization, etc.). 

4.3.2.4 Damage  

The criterion introduced by Latham and Cockroft and used in this work establishes the 

damage function from the principal stresses [Cockroft and Latham 1968]. This damage criterion 

was already used for VMR cold pilgering (e.g. [Aubin et al., 2000], [Girard et al., 2001]) and 

seems to be a good indicator to predict defects frequency. Compressive stresses have a 

negligible effect on damage compared with tensile ones; so in its original version this criterion 

does not take them into account. The classical damage function used in [Girard et al., 2001] is 

the sum of the product of the maximum tensile stress at each stroke. This function represents an 

indicator of the material state. The expression was already given in section 1.3.3. 

Considering the HPTR cold pilgering process, and the experimental evidence of longs 

cracks along the rolling axis, it is proposed to consider each strain increments in all directions 

( iε∆ , rzzrzzrri ,,,,, θθθθ= ), instead of the equivalent strain eqε . Similarly, the expression of 

the maximal stress is modified in order to consider only positive stress components. Finally, 

authors have shown that damage occurs for mechanical states where the triaxiality is higher than 

-1/3 [Bao and Wierzbicki 2004]. 

A modified cumulative damage function (Lat&Co) is then proposed: 

+

−≥

+ ∆∗= � i

ytriaxialit
Stroke

iiCoLat εσ

3/1

)(&          (4.3) 

where rzzrzzrri ,,,,, θθθθ= , ),0max( ii σσ =+ , eqHytriaxialit σσ /=  with Hσ  the 

hydrostatic pressure and eqσ  the equivalent stress. Thus, it is possible to obtain a cumulative 

damage field in each mechanical solicitation direction. These damage functions have been 

implemented in the FEM software Forge3®. 

Comparing Figs. 4.29-4.32, it is observed that the longitudinal damage function is 

maximal in magnitude regardless of the constitutive law. Fig. 4.29 shows the sensor 2 longitudinal 

damage function evolution, computed with Eq. (4.3), for each constitutive law. 

Longitudinal damage is highest for the cyclic C/C behavior law. Even with the huge stress 

values predicted by monotonic laws; the longitudinal damage value is lower than for both cyclic 

laws. Hence, when the cyclic constitutive law is taken into account, the material follows more 
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damaging situations. Additionally, the anisotropic monotonic case seems to decrease damage 

risks. This point will be discussed later. 

�

Figure 4.29. Longitudinal damage function history in sensor S2 (in MPa). 

Dashed circles in Figs. 4.29-4.32 show damage increments observed for one constitutive 

law while they are absent for the others. For example, in Fig. 4.29 two strokes (74 and 113) 

cause longitudinal damage only in the anisotropic monotonic case. On the other hand, stroke 87 

causes a very small damage increment in comparison with other cases. That can be explained by 

the different 3D material flow. The damage increments in those three particular strokes remain 

however limited in magnitude. 

�

Figure 4.30. Radial damage function history in sensor S2 (in MPa). 

Looking at Fig. 4.30 and Fig. 4.31 and considering the cyclic C/C behavior law, damage 

functions increase dramatically between strokes 57-65 for the radial component, and 75-78 for 

the ortho-radial component. Other laws  also lead to an increase, but with lower intensity. 
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Figure 4.31. Ortho-radial damage function history in sensor S2 (in MPa). 

The damage associated to shear rz  is higher in magnitude than the damage function in 

the ortho-radial directions, and that is true for any constitutive law used in this work. This shows 

the importance of lubrication in this process. The magnitude is actually comparable to that of the 

radial component. 

�

Figure 4.32. Shear rzε damage function history in sensor S2 (in MPa). 

4.3.3 Geometry evolution 

Whereas the mandrel and the dies are axisymmetric, the die shoulder and the conic 

profile of the die cams ensure the deformation of the tube. Therefore, the tube cross-section has 

a clover shape at the beginning of the process. The cloverty tube shape vanishes continuously 

until the end of the reduction zone, as the final tube must have a circular section. The clover 

shape is clearly seen, at the external and internal tube surfaces, in Figs. 4.33-4.35 for the 36th
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stroke. A more complex evolution takes place in the first strokes, where the tube is rolled without 

being reduced by a mandrel-tube-die contact. This shape can contribute to damage because 

some materials points are in tension (see Fig. 4.8). 

Nine marks can be observed on the tube with the model (see Fig. 4.33-4.35). The depth 

marks depend of the constitutive law used in the numerical simulation. It varies from 5-8µm for 

the cyclic C/C behavior law to 10-12µm with the isotropic monotonic behavior law. Nine marks 

were also measured experimentally in the tube partly rolled on an HPTR mill. 

Fig. 4.35 shows the internal and the external surfaces radii obtained with the cyclic C/C 

constitutive law. The clover-shaped tube is clearly observed. Both internal and external surfaces 

oscillate. The thickness is not homogeneous circumferentially and may be locally higher than the 

initial one (0.99 mm), in agreement with the history of rrε  in Fig. 4.19. 

�

Figure 4.33. External surface radius at stroke 36th. 

�

Figure 4.34. External surface radius at stroke 36th. 
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Figure 4.35. External and internal surfaces radius at stroke 36th for the Cyclic C/C constitutive law. 

The more the tube advance in the reduction area the more the tube becomes circular. Fig. 

4.36 displays the cross-sectional shapes ( )θr  at the 96th stroke. At this moment the tube is in 

contact with the mandrel, therefore bulges start being compressed. The marks depth varies now 

from 2 to 3.5µm.  

�

Figure 4.36. External surface radius at stroke 96th. 

At the end of the process (120 strokes) the tube is circular for any constitutive law. The 

marks are still present (their depth varies from 1 to 2µm), but only 3 marks are left instead of 9 

(see Fig. 4.37). These 3 marks correspond to the number of side relief zones of the HPTR cold 

pilgering process (see Fig. 4.38). The side relief at a half-stoke is about 3.2 mm wide. 
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Figure 4.37. External surface radius at stroke 120th. 

�

Figure 4.38. Cross-sectional view of the tube and dies at the end of the forward pass of the stroke 120, showing full 

conformation of the tube inside the three grooves with the three side relief spaces. Note the homogeneous thickness reduction. 

Up to now, the mechanical analysis focused on the evolution of stress, strain and damage 

function undergone by a volume element. In the next section, the mechanical and damage state 

of the final tube is analyzed. 

4.3.4 Formed tube mechanical state 

In order to analyze the mechanical conditions of the formed tube over the circumference 

and also over the thickness, five layers are selected (see Fig. 4.39). These layers do not coincide 

exactly with the sensor position in order to analyze more accurately what happens at the external 

and internal surfaces. The eight apparent layers result from a 2D cut of a 3D mesh with 4 

parallepipeds in the thickness, each one divided into 5 tetrahedra. The analysis will be done at 

mi-length of the tube to avoid edge effects.  
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Figure 4.39. Formed tube and selected layers used to analyze the wall thickness and the circumference.

4.3.4.1 Strain 

Fig. 4.40 illustrates the influence of side effects (manipulator and free end) on the 

distribution of accumulated strain and the stabilized state at mid-length. Axial rolling marks with a 

high accumulated equivalent strain also appear in Fig. 4.40 and are due to the die shoulder which 

induces non homogeneous deformations in the first strokes. Nevertheless, their intensity varies 

from one behavior law to another. For example, when comparing cyclic behavior laws, the rolling 

marks intensity are higher in cyclic C/C than in cyclic T/C. The reason is clear; the material 

cyclically hardens in the first case whereas it tends to soften in the second case. With the 

isotropic monotonic law, quasi-homogeneous deformation can be noted (excepted for the 

borders). In the anisotropic case, rolling marks are visible but with low intensity. 
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Figure 4.40. Formed tube equivalent strain a) cyclic C/C b) cyclic T/C c) anisotropic monotonic d) isotropic monotonic. 

Equivalent strain, at mid-length of the tube, is displayed in Fig. 4.41. The equivalent strain 

evolves over the wall thickness and is not totally homogeneous in the ortho-radial direction, with a 

40° (39°) periodicity. The maximum values are locat ed in the external tube surface. 
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Figure 4.41. Cross-section view of the formed tube equivalent strain a) cyclic C/C b) cyclic T/C c) anisotropic monotonic d) 

isotropic monotonic 

Another view on the strain distribution over the tube wall thickness and along the 

circumference is given in Figs. 4.42 to 4.45. For the cyclic constitutive laws, Figs. 4.42-4.43, the 

equivalent strain gradient between the internal and the external tube surface is higher than for 

both monotonic cases, Figs. 4.44-4.45. 

The deformation along the circumference is confirmed to be non homogeneous with cyclic 

constitutive laws, the external surface exhibits three peaks, corresponding to the side relief zones 

Fig. 4.37.These peaks are less apparent in the monotonic cases, as already discussed in Fig. 

4.40. 

It is also pointed out that the strain in the internal layer is equal or even larger, in some 

cases, than the one in layers 2 and 3. Therefore, the tube “core” has undergone lower 

deformation than the external and internal surfaces. 

The above remarks are not in agreement with the assumptions made in the analytical 

models proposed in the literature for VMR pilgering (see Chapter 1). 
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Figure 4.42. Cyclic C/C constitutive law case: circumferential distribution of the equivalent strain in the formed tube.  

�

Figure 4.43. Cyclic T/C constitutive law case: circumferential distribution of the equivalent strain in the formed tube.  

�

Figure 4.44. Anisotropic monotonic constitutive law case: circumferential distribution of the equivalent strain in the formed tube. 
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Figure 4.45. Isotropic monotonic constitutive law case: circumferential distribution of the equivalent strain in the formed tube. 

4.3.4.2 Damage  

Nine marks with higher values of the axial damage function are visible in the formed tube 

for all the investigated constitutive laws (see Fig. 4.46). For the cyclic C/C behavior law their 

intensity is much higher than for the cyclic T/C. On the other hand, the isotropic monotonic case 

leads to higher values than the anisotropic monotonic one where the marks are barely visible. 

The modified material flow caused by the anisotropic yield function leads to predict lower risks of 

damage. 

It would be interesting to combine the cyclic C/C law with a Hill criterion. Anisotropy would 

probably reduce the predicted risks of damage. 
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Figure 4.46. Formed tube axial damage function. a) cyclic C/C b) cyclic T/C c) anisotropic monotonic d) isotropic monotonic law. 
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Figure 4.47. Axial damage function in the formed tube (in MPa). 

�

Figure 4.48. Radial damage function in the formed tube (in MPa). 
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Figure 4.49. Ortho-radial damage function in the formed tube (in MPa). 

�

Figure 4.50. Shear damage function in the formed tube (in MPa). 

Figs. 4.47-4.50 display the final damage function value at each numerical sensor for each 

constitutive law studied. The conclusion can be summarized as follows: 

• For any sensor and any constitutive law, the maximum damage function value is 

found in the longitudinal or axial ( z ) component. 
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• The maximal longitudinal damage is found at the internal tube surface for any 

sensor and any constitutive law. Moreover, the longitudinal damage function value is 

lower in the center (core) of the tube wall thickness. 

• For the cyclic C/C constitutive law, damage risks at the internal surface are 

strongly increased as compared to the other constitutive laws. Voids nucleation could be 

triggered from longitudinal loading in this case. 

• In most cases, damage values obtained with the anisotropic monotonic 

constitutive law are lower than for the other cases. It can be concluded that the anisotropy 

due to hot extrusion seems to be beneficial for cracking risks. 

• From the above remark, it seems necessary to introduce an anisotropic-cyclic 

constitutive law in the FEM software in order to have more accurate results. 

• Shear damage ( rz ) is maximal at the external surface of the tube, then it 

decreases gradually to the internal layer. It can be explained by the die/tube contact 

conditions. 

• Shear damage ( rz ) is maximal for monotonic constitutive laws in the external 

surface and much higher in magnitude as compared to the other cases. With the cyclic 

laws the shear damage ( rz ) values remain significant as compared to radial and ortho-

radial components. 

• Ortho-radial damage in the tube thickness core is lower than for the other 

components. The significant values at the external and internal surfaces are related to the 

clover tube shape in the deformation zone. 

• The trend and conclusions are reproducible from one row of sensors to another 

one. 

4.3.4.3 Residual stress 

Residual stresses are generated, following plastic deformation induced by pilgering. The 

magnitude and distribution of residual stresses after pilgering are analyzed in this section based 

on data at stroke 139. 

Longitudinal residual stress 

Fig. 4.51 shows the residual longitudinal stresses after pilgering. Overestimated values 

given by the isotropic monotonic case are noticed. They are twice as large as than the initial yield 

stress (960MPa). On the other hand, results obtained with the cyclic C/C behavior law show a 

residual stress level in the longitudinal direction close to 600 MPa in some regions at mid-length 

of the tube. This corresponds approximately to a half of the final yield limit (1300 MPa) of the 

formed tube.  
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Figure 4.51. Longitudinal residual stress (in MPa) for the cyclic C/C (left) and isotropic monotonic (right) constitutive laws in the 

formed tube at stroke: 139. 

A high compressive state in the inner layer of the tube is observed in three regions in Fig. 

4.52, at about 120° from each other. Likewise, there ar e three regions exhibiting tensile states, 

also with a three-fold symmetry. This periodicity corresponds to the number of bottom groove and 

side relief zones. 

�

Figure 4.52. Cyclic C/C constitutive law: residual longitudinal stress (in MPa). 

Fig. 4.53 shows the residual longitudinal stresses along the circumference using the cyclic 

C/C law. The larger values for both tensile and compression states are located in the inner layer. 

Moreover, tensile values are larger than compressive ones. 
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Figure 4.53. Cyclic C/C constitutive law: residual longitudinal stress along the circumference (in MPa). 

Ortho-radial residual stress 

Fig. 4.54 shows the residual ortho-radial stresses after pilgering. Similar patterns as for 

longitudinal stresses are noted. However, residual stresses magnitudes are slightly lower. 

�

Figure 4.54. Cyclic C/C constitutive law: residual ortho-radial stress (in MPa). 

Another view of the residual ortho-radial stresses along the circumference is given in Fig. 

4.55. The larger values for both tensile and compression states are again located at the inner 

layer. Tensile values are again larger than compressive ones. 
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Figure 4.55. Cyclic C/C constitutive law: residual ortho-radial stress along the circumference (in MPa). 

Radial residual stress 

Fig. 4.56 shows the residual radial stresses after pilgering. A more random distribution is 

observed when comparing the previous cases. Lower magnitudes for the tensile states are also 

pointed out. Typical values range around 125 MPa. 

�

Figure 4.56. Cyclic C/C constitutive law: residual radial stress (in MPa). 

Fig. 4.57 shows that excepted for the external surface, the residual radial stresses are 

more homogeneous than in the previous cases. The magnitudes remains lower, around 1/5 of the 

final yield limit (1300 MPa). 
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Figure 4.57. Cyclic C/C constitutive law: residual radial stress along the circumference (in MPa). 

Shear residual stress 

Fig. 4.58 shows the residual shear ( rz ) stresses along the circumference. The internal 

layer shear stress has a sign opposite to that of the other layers. 

�

Figure 4.58. Cyclic C/C constitutive law: residual shear stress along the circumference (in MPa). 

4.3.4.4 Cracks origin possible explanation 

The damage criterion used in this work revealed maximum values, along the longitudinal 

direction, in the inner region of the formed tube. Therefore, voids nucleation could be formed 

there during the process. Additionally, the residual stress analysis shows three zones of tensile 

residual stresses regions in both longitudinal and ortho-radial directions. 

In general, tensile residual stresses tend to open crack and promote cracks propagation. 

Experimental data indicates a tendency for crack opening in the axial direction (see Fig. 4.59), 

hence under the influence of orthoradial loading ( θθσ ). Predicted magnitudes of residual stresses 

are similar in the θ  and z  directions, however one has to keep in mind that alignment of second 



��������	
��������������������������

� ����)�����)

phase particles in the axial direction lead to anisotropic toughness of ODS steels, with the 

weakest value corresponding to a circumferential stress. 

This analysis during pilgering enables to conclude on the probable fracture areas. The 

ferritic ODS tube crack could initiate during rolling close to the inner surface, and then the 

propagation could be driven by the residual stresses in the orthoradial direction. A fracture area 

analysis is necessary to validate this scenario. 

�

Figure 4.59. Longitudinal cracks after pilgering. 

4.4 Conclusion 

In this Chapter; a deep analysis of the HPTR pilgering process has been achieved. The 

aim was to: 

• Assess the impact of the constitutive law choice on the prediction of  the 

mechanical history undergone by a material point during the process, 

• Analyze the mechanical state of the HPTR pilgered tube, 

• Identify the most damaged regions of the tube and the possible origin of cracks, 

• Analyze damage evolution during pilgering. 

Accurate modeling of the material constitutive behavior is one of the most important 

features needed in order to simulate the process properly. Full numerical simulations considering 

the monotonic, anisotropic and cyclic constitutive behavior of ODS steels (identified in Chapter 3) 

were carried out. 

It was shown in this study that monotonic constitutive laws lead to non physical stress 

values during pilgering. The formalism fails because cold pilgering involves a sequence of small 

strain increments. For this type of loading, kinematic hardening cannot be neglected and must be 

introduced in the numerical model. Thus, a simple Chaboche-type constitutive model is preferred.  

  

It was found that the cyclic C/C constitutive law, identified with a specific 

compression/compression procedure, leads to better results in terms of stresses than a cyclic T/C 

constitutive law, identified with a classical tension/compression test. Measurements performed 

before and after pilgering have shown that the ferritic ODS tube undergoes hardening. 
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Experimental and “cyclic C/C predicted” stress results are in good agreement. Therefore, the 

compression-compression procedure based on the similarities with the loading path induced by 

pilgering seems to be quite accurate to represent the ODS steels hardening. 

A systematic analysis of all strokes has helped defining which stroke could contribute 

mainly to the oligocyclic fatigue of the material. A modified Latham and Cockroft damage function 

has been computed from positive strains and stresses. The damage accumulation is done only if 

stroke triaxiality is higher than -1/3. With the current FEM meshes and the cyclic C/C constitutive 

law, it was possible to predicted that voids nucleation should originate in the internal surfaces of 

the tubes. 

The study of the residual stress state of the formed tube led to reporting high longitudinal 

and ortho-radial tensile stresses in the internal surface of the tube. Thus, the experimental 

longitudinal cracks observed on ferritic ODS tubes could be explained by the fact that some voids 

are nucleated during rolling and that the ortho-radial residual stresses can promote crack 

propagation. 

For all considered constitutive laws in this Chapter and the rolling pass 3 the wall 

thickness center is the region with lowest plastic strain and damage function intensity. 

The friction coefficient was taken from literature in the case of VMR pilgered Zyrcaloy 

tubes. The shear damage ( rz ) function remains high and not negligible when simulating HPTR 

process. Therefore, the friction coefficient should be identified more accurately. 

The anisotropic constitutive law used in this Chapter supposed that shear Hill’s model 

parameters were those in an isotropic case. Other solutions could be tested. One important 

conclusion seems to be that anisotropy inherited from extrusion is favorable, i.e. it decreases 

cracking risks. Identification of the quadratic Hill model parameters from tubes instead of bars to 

confirm these conclusions. However, cylindrical sample upsetting is not appropriate when using 

tubes. Polycrystalline models (e.g. see [Lebensohn and Tomé 1993]) could be use to compute 

Hill’s anisotropic parameters through tube texture measurement. Moreover, taking into account 

the anisotropy in the cyclic C/C case could improve the numerical results and damage prediction. 

The results are encouraging but more experimental data, e.g. pilgered marks depth, 

partially rolled tube hardness evolution, residual stresses, shear strains, longitudinal cracks 

analysis, dies forces, mandrel forces, are necessary to assess the accuracy of the current 

calculations and conclusions. 

The current work focused on the mechanical analysis of a laboratory pilgering mill, HPTR. 

However, in the context of the Stratotube project, a parallel numerical study was performed for 

the VMR cold pilgering process. This study was partially based on the work described in this 

document and some numerical code improvements were also carried out in order to simulate 

properly this particular process. The reader can refer to [Veysset 2011] for more details of this 

work. The numerical VMR model predicts the pilgering helix observed in the industrial VMR mill 
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(see Fig. 4.60). In addition, the so called pilgering waves were also predicted. This phenomenon 

was observed experimentally: several inserts positioned initially at the same z  position were no 

more aligned after pilgering, i.e. z  positions were different (see Fig. 4.60 and Fig. 4.61). These 

two mechanical phenomena observed in the real pilgered tube are not observed in the case of 

HPTR pilgered tubes. This study pointed out the difference in strain path between HPTR and 

VMR pilgering. 

�

Figure 4.60. The pilgering helix (in red) and pilgering wave observed in the VMR pilgering numerical model. 

�

Figure 4.61. Final shape and locations of three inserts placed originally in the same cross-section. After VMR pilgering they are 

placed at different z  positions. 
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4.5 Résumé en français 

Dans ce Chapitre, une analyse détaillée du procédé de laminage HPTR a été réalisée. 

L'objectif était de:  

• Évaluer l'impact du choix de la loi de comportement sur la prédiction de l'histoire 

mécanique subie par un point matériel au cours du procédé, 

• Analyser l'état mécanique du tube après un passe de laminage à pas de pèlerin, 

• Identifier les régions les plus endommagées du tube et la possible origine des fissures, 

• Analyser l'évolution des dommages lors du laminage. 

Une modélisation précise du comportement du matériau est l'une des caractéristiques les 

plus importantes et nécessaires afin de simuler la mise en forme correctement. Des simulations 

numériques complètes en prenant en compte le comportement monotone, anisotrope et cyclique 

des aciers ODS (identifiés dans le chapitre 3) ont été réalisées. 

Dans cette étude il a été démontré que la loi de comportement isotrope monotone mène à 

des valeurs de contraintes non physiques au cours du laminage. Le formalisme échoue car le 

laminage à froid implique une séquence de petites déformations incrémentales. Pour ce type de 

chargement, l’écrouissage cinématique ne peut pas être négligé et doit être introduit dans le 

modèle numérique. Ainsi, un simple modèle de comportement de type Chaboche est préférable. 

On a constaté que le modèle de comportement cyclique, basé sur les essais de 

compression alternée de cubes (cyclique C/C), conduit à de meilleurs résultats en termes de 

contraintes que le modèle de comportement cyclique basé sur les essais de traction/compression 

(cyclique T/C). Les mesures effectuées avant et après laminage ont montré que le tube ferritique 

ODS subit un durcissement. Les valeurs de contrainte expérimentales et numériques "cyclique 

C/C" sont en bon accord. Par conséquent, l’essai de compression-compression basé sur les 

similitudes avec le chemin de chargement induit par laminage semble être assez précis pour 

représenter le durcissement des aciers ODS. 

Une analyse systématique de tous les coups de cage a permis de définir les situations qui 

pourraient contribuer principalement à la fatigue oligocyclique du matériau. Le critère de Latham 

et Cockroft modifié a été calculé à partir de déformations positives et leurs contraintes. 

L'accumulation des dommages se fait seulement si la triaxialité est supérieure à -1/3. Avec le 

maillage utilisé et le comportement cycliques C/C, il a été possible de prévoir que la germination 

de porosités devrait se créer dans la surface interne des tubes. L'étude de l'état de contrainte 

résiduelle du tube formé conduit à des valeurs de contraintes de traction longitudinales et des 

contraintes de traction ortho-radiales dans la surface interne du tube. Ainsi, les fissures 

longitudinales expérimentales observées sur des tubes ODS ferritiques pourraient s'expliquer par 

le fait qu’un endommagement initial soit apparu pendant le laminage, et que les contraintes 

résiduelles ortho-radiales aient ensuite conduit à la propagation des fissures. 
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Conclusions and outlooks 
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This thesis aimed at providing a better understanding of deformation paths which may 

lead to crack growth in ODS tubes HPTR pilgering. To reach such goal three main steps were 

undertaken: 

i) Creating a robust and reliable finite element model of pilgering. 

ii) Characterization of the mechanical behavior of ODS steels under monotonic and cyclic 

loadings. 

iii) Sensitivity analysis of the different constitutive laws on the deformation path undergone 

by a volume element. 

The present study has demonstrated the feasibility of detailed FEM mechanical analysis 

of the HPTR cold pilgering of tubes. Complete simulations of HPTR pilgering have been 

presented using a short tube approach. The length reduction allowed saving considerable CPU 

time and permitted to simulate all strokes. The main results have shown that the formed tube has 

non-homogenous strain in the radial, circumferential and axial directions. A complex mechanical 

history undergone by a material point has been detailed. A sensitivity analysis on the mesh sizes, 

time step, type of mesh and length of the tube was performed in order to assess the accuracy of 

the calculations. Bases on this analysis, an HPTR pilgering model was proposed which gives a 

good compromise between CPU cost and accuracy. 

A comparison between predicted and measured pilgered steady state tube geometry as 

well as the experimental evaluation of plastic longitudinal strains due to cold pilgering allowed 

validating the dies kinematics. 

A detailed mechanical analysis of the process requires a realistic constitutive law. ODS 

steels are considered in this study and a detailed study of their mechanical behavior was carried 

out : 

Since ODS tubes reveal mechanical anisotropy, compression and shear tests of 

cylindrical specimens cut in three different directions (longitudinal, radial and ortho-radial) were 

performed. Hill’s quadratic plastic anisotropy criterion was selected to account for the observed 

anisotropy. A set of Hill’s parameter was identified based on the ovalization shapes of cross 

sections after compression, with the option of considering yield stress in shear tests. 

Furthermore, a Hill’s parameter calculation enhancement was performed using an inverse 

analysis method, which led to an improvement of the correlation between experimental and 

numerical results. 

The strain-controlled cyclic characteristics of ODS steels were analyzed and modeled, 

using two different tests. The first test is a classical tension-compression test. The second test 

consists in alternated uniaxial compressions along two perpendicular axes. It has been 

developed based on the similarities with the loading path induced by the pilgering process. The 

cyclic behavior of ODS steels was modeled using an elastic-plastic model developed by 

Chaboche. This model was implemented in a FEM code. The constitutive model involves only 10 

parameters and nevertheless successfully describes the experimental trends. The model 
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parameters were identified with a semi automated identification process involving an inverse 

analysis method, and considering loading sequences compatible with those which can be 

encountered in cold pilgering conditions. Experimental and predicted results are in good 

agreement, but a single set of model parameters could not be identified for both tests. This is 

mainly attributed to the difference in transient behavior observed in the two tests, when strain 

amplitudes change. The set of parameters identified with the compression/compression 

procedure leads to much more accurate results in terms of stresses than those identified from the 

classical tension/compression test. 

It was shown in this study that monotonic constitutive laws lead to non physical stress 

values during pilgering.  

A systematic analysis of all strokes has helped defining which stroke could contribute 

mainly to the oligocyclic fatigue of the material. A modified Latham and Cockroft damage function 

has been computed considering only the contribution of positive strains and stresses, and when 

the stress triaxiality is higher than -1/3. With the current FEM meshes and the cyclic 

(compression/compression) constitutive law, it was possible to predict that damage is likely to 

initiate in the internal surfaces of the tubes. The predicted residual stress state of the formed tube 

results in high longitudinal and ortho-radial tensile stresses in the internal surface of the tube. 

Therefore, the experimental longitudinal cracks observed in ferritic ODS tubes could be explained 

by damage initiation during rolling and subsequent crack growth after forming, assisted by the 

ortho-radial residual stresses, and considering the anisotropic toughness of the material. 

More experimental data is needed to validate the proposed model, e.g. longitudinal cracks 

analysis, dies forces, mandrel forces, pilgered marks depth, partially rolled tube hardness 

evolution, residual stresses, shear strains, friction characterization. Nonetheless, the present 

HPTR numerical model has already proved enough accuracy to be considered for numerical 

optimization, looking at quantities such as tools kinematics dies profile, lubricant, feed, rotation 

angle and Q  factor, etc. Optimization objectives may be related to cracking risks (which was the 

main focus in this work), but also to intermediate heat treatments. Indeed, maximum hardness 

values have been identified, and these may be correlated to the calculated evolution of the 

material yield strength in the process. The possibility to trigger recrystallization during the heat 

treatment is linked to the material hardness, but also to the strain path undergone by a volume 

element, since it dictates the final crystallographic texture. Since heterogeneous textures are 

favorable for triggering recrystallization, one interesting outcome of this study could be a 

proposed fabrication route where the strain path changes from one pass to another. This would 

effectively reduce the recrystallizing temperature. Calculated textures from the predicted strain 

paths, using polycrystalline models, could therefore be part of the optimization program. 

Future work should definitely include a numerical simulation of ODS tubes cold pilgering 

using the Chaboche cyclic constitutive law combined with the Hill’s anisotropic criterion. Indeed, 

both the cyclic nature of the loading and the material anisotropy have been shown to significantly 

influence the mechanical history undergone by a material point during the process. 
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The proposed test considering alternated uniaxial compressions along two perpendicular 

axes, and the associated semi-automatic identification methodology, could be applied to other 

ODS steels with different microstructures, e.g. recrystallized ferritic ODS steels with equiaxed 

grains or martensitic ODS steels with isotropic crystallographic and morphological textures. This 

would then lead to an overall optimization of fabrication routes, considering both the forming 

parameters, and the material choice. 

More elaborated constitutive models could be explored in the future, in order to reach a 

unique model accounting for both tension-compression, and compression-compression tests. A 

memory effect could be introduced to take into account the influence of the plastic strain range on 

the amount of cyclic hardening. The effect of the degree of non-proportionality of the loading path 

could also be studied in more details. Interesting bibliography references have been already 

identified on that subject. 

More complex tools kinematics could be studied in the future, by which the tube may be 

advanced and rotated not only before the forward stroke, but also between the forward and the 

backward stroke. 

The modified Latham and Cockroft damage function delivers qualitative results. A non-

linear damage model for ductile fracture based on the continuum damage mechanics formulation 

could be introduced in the model, and associated to the Chaboche cyclic constitutive law. 

However two limitations of such an approach should be kept in mind: 

- the directional spatial distribution of second phase particles in the investigated ODS 

steels would call for an anisotropic damage law, which significantly increases the complexity of 

the model [Lemaître et al., 1999], [Benzerga et al., 2004a], [Benzerga et al., 2004b]; 

- ductile fracture in ODS steels is not yet confirmed when deformation is at room 

temperature, with large strain rates. Toughness might be a more appropriate property to consider. 

Finally, this thesis focused mainly on the laboratory HPTR mill available at CEA/Saclay. 

The proposed constitutive law identified from alternated compressions, as well as the modified 

Latham & Cockroft damage function, could be used as well when modeling the industrial VMR 

mill, and lead to an optimization with objectives similar to those described for the HPTR process. 
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Annex 1: HPTR/LTMEX cam geometry 

Profiled cams are 3 slopes with different angles. HPTR/LMTEX cam length: 191 mm 

�

Figure A.1. Profiled cams are 3 slopes with different angles. 

The corresponding angles in Fig. A.1 are: 

1α = 0.682°  

2α = 0.1290°  

3α = 3.653°  
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Annex 2: Cam dilatation factor 

Denis Sornin at CEA / DEN/DMN/SRMA/LTMEx laboratory calculated the dilatation cam 

factor ( xf ) in relation with the formed external tube diameter. xf  is computed thanks to 

dimensions of the crankpin systems of the HPTR mill which varies from one final diameter to 

another (see [HPTR CEA/LTMEX]). 

Table A.1. the dilatation factor (
xf ) to apply at the real cam length 

Formed external tube diameter 
[mm] 

Factor�� xf �
Theoretical cam working zone 

length [mm] 

8 1,552 296,7 

9 1,526 291,7 

10 1,494 285,6 

11 1,463 279,6 

12 1,436 274,6 

13 1,405 268,5 

14 1,373 262,5 

15 1,347 257,5 
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