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Abstract

Commodity prices have been rising at an unprecedented pace over
the last years making commodity derivatives more and more popular in
many sectors like energy, metals and agricultural products. The quick
development of commodity market as well as commodity derivative market
results in a continuously uprising demand of accuracy and consistency in
commodity derivative modeling and pricing.

The specification of commodity modeling is often reduced to an appro-
priate representation of convenience yield, intrinsic seasonality and mean
reversion of commodity price. As a matter of fact, convenience yield can
be extracted from forward strip curve and then be added as a drift term
into pricing models such as Black Scholes model, local volatility model and
stochastic volatility model. Besides those common models, some specific
commodity models specially emphasize on the importance of convenience
yield, seasonality or mean reversion feature. By giving the stochasticity to
convenience yield, Gibson Schwartz model interprets the term structure of
convenience yield directly in its model parameters, which makes the model
extremely popular amongst researchers and market practitioners in com-
modity pricing. Gabillon model, in the other hand, focuses on the feature
of seasonality and mean reversion, adding a stochastic long term price to
correlate spot price.

In this thesis, we prove that there is mathematical equivalence relation
between Gibson Schwartz model and Gabillon model. Moreover, inspired
by the idea of Gyöngy, we show that Gibson Schwartz model and Gabillon
model can reduce to one-factor model with explicitly calculated marginal
distribution under certain conditions, which contributes to find the analytic
formulas for forward and vanilla options. Some of these formulas are new
to our knowledge and other formulas confirm with the earlier results of
other researchers.

Indeed convenience yield, seasonality and mean reversion play a very
important role, but for accurate pricing, hedging and risk management,
it is also critical to have a good modeling of the dynamics of volatility in
commodity markets as this market has very fluctuating volatility dynamics.
While the formers (seasonality, mean reversion and convenience yield) have
been highly emphasized in the literature on commodity derivatives pricing,
the latter (the dynamics of the volatility) has often been forgotten. The fam-
ily of stochastic volatility model is introduced to strengthen the dynamics
of the volatility, capturing the dynamic smile of volatility surface thanks to
a stochastic process on volatility itself. It is a very important characteristic
for pricing derivatives of long maturity. Stochastic volatility model also
corrects the problem of opposite underlying-volatility correlation against
market data in many other models by introducing correlation parameter
explicitly. The most popular stochastic volatility models include Heston
model, Piterbarg model, SABR model, etc.

As pointed out by Piterbarg, the need of time-dependent parameters in
stochastic volatility models is real and serious. It is because in one hand
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stochastic volatility models with constant parameters are generally inca-
pable of fitting market prices across option expiries, and in the other hand
exotics do not only depend on the distribution of the underlying at the
expiry, but on its dynamics through all time. This contradiction implies the
necessity of time-dependent parameters. In this thesis, we extend Piter-
barg’s idea to the whole family of stochastic volatility model, making all the
stochastic volatility models having time-dependent parameters and show
various formulas for vanilla option price by employing various techniques
such as characteristic function, Fourier transform, small error perturbation,
parameter averaging, etc.
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Résumé

Les prix des matières premières ont augmenté à un rythme sans précé-
dent au cours des dernières années rendant les dérivés sur matières pre-
mières de plus en plus populaires dans de nombreux secteurs comme
l’énergie, les métaux et les produits agricoles. Le développement rapide
du marché des produits dérivés sur matières premières a aussi induit une
recherche vers toujours plus de précision et cohérence dans la modélisation
et l’évaluation de produits dérivés des matières premières.

Les points les plus importants dans la modélisation des matières pre-
mières sont la bonne représentation du rendement d’opportunité appelé
communément «convenience yield », la prise en compte de la saisonnalité
et la capture du phénomène de retour à la moyenne pour les prix des ma-
tières premières. Il est à noter que le rendement d’opportunité (convenience
yield ) peut être induit du prix des la courbe des forwards et être simplement
ajouté au terme d’évolution(terme de drift) dans les modèles canoniques,
comme le modèle de Black Scholes, le modèle à volatilité locale et les mo-
dèles à volatilité stochastique. An delà de ces modèles, d’autres modèles
ont été conçus pour modéliser spécifiquement l’évolution du convenience
yield, la saisonnalité ou le phénomène de retour à la moyenne des prix. Il
s’agit par exemple du modèle de Gibson Schwartz qui suppose que le terme
de convenience yield est aléatoire. Cette approche prend donc en compte
l’évolution non déterministe du convenience yield et l’interprète comme
un paramètre critique du modèle. Ceci explique sa grande popularité et
son adoption important par les praticiens du marché. Un autre modèle
fréquemment utilisé est le modèle de Gabillon. Celui se concentre sur la
saisonnalité des prix et l’effet de retour a la moyenne, en modélisant un prix
à long terme stochastique corrélé aux prix du spot. Dans cette thèse, nous
prouvons que ces deux approches ne sont en fait qu’une et qu’il y a une
relation d’équivalence entre le modèle de Gibson Schwartz et le modèle de
Gabillon. Reposant sur le principe de diffusion équivalente introduite par
Gyöngy, nous montrons que le modèle de Gibson Schwartz et le modèle
de Gabillon peuvent se réduire à un modèle à un facteur dont la distribu-
tion marginale peut être explicitement calculée sous certaines conditions.
Ceci nous permet en particulier de trouver des formules analytiques pour
l’ensemble des options vanilles. Certaines de ces formules sont nouvelles à
notre connaissance et d’autres confirment des résultats antérieurs.

Dans un second temps, nous nous intéressons à la bonne modélisation
de la dynamique de la volatilité des marchés des matières premières. En
effet, les marchés de matières premières sont caractérisés par des volatilités
très fluctuantes et importante. Alors que les effets sur la saisonnalité, la
modèlisation du convenience yield et l’effet de retour à la moyenne des prix
ont été fortement soulignés dans la littérature, la bonne modélisation de
la dynamique de la volatilité a souvent été oubliée. La famille de modèle à
volatilité stochastique est introduite pour renforcer la dynamique de la vola-
tilité, capturant le phénomène de smile de la surface de volatilité grâce à un
processus stochastique pour la volatilité. C’est une caractéristique très im-



iv

portante pour les dérivés à maturité longue où l’effet volatilité stochastique
conduit à des résultats très différents de ceux obtenus avec des modèles
plus conventionnels. Les modèles à volatilité stochastique permettent aussi
de prendre en compte le phénomène de corrélation négative entre le sous-
jacent et la volatilité en introduisant de manière explicite ce paramètre de
corrélation. Les modèles à volatilité stochastique les plus populaires com-
prennent le modèle d’Heston, le modèle de Piterbarg, le modèle de SABR,
etc.

Dans cette thèse, nous étendons les idées de Piterbarg à la famille des
modèles à volatilité stochastique en rendant le concept plus général. Nous
montrons en particulier comment introduire des paramètres dépendant du
temps dans les modèles à volatilité stochastique et explicitons différentes
formules de calcul explicite du prix d’options vanilles, permettant ainsi une
calibration des paramètres du modèles extrêmement efficace.
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Chapter 1

Introduction

Résumé du chapitre

Les matières premières sont un sous-jacent important en finance, cette impor-
tance s’est accrue avec l’émergence du processus de globalisation dans le monde.
Les marchés des matières premières telles que le pétrole, les métaux précieux et
l’agriculture ont une influence très large sur l’économie mondiale.

Le premier marché à terme organisé, moderne a commencé en 1710 à la Bourse
de Dojima Rice, à Osaka, au Japon. L’échange a été utilisé pendant près de 300
ans jusqu’à la Seconde Guerre mondiale. Il a ensuite été dissous entièrement en
1939, étant absorbé par le riz Agence gouvernement.

Au 19ème siècle, un contrat à terme est apparu aux États-Unis. Des produits
agricoles comme le maïs et le bétail, ont été échangés par contrat à terme de
Chicago et du Midwest. Le Chicago Board of Trade (CBOT) a été fondé en 1848.
Le premier contrat était un contrat à terme sur le maïs, écrit le 13 Mars, 1851. Le
Chicago Mercantile Exchange (CME) a été créé en 1874, sous le nom de Chicago
Produit Exchange, puis réorganisé en 1919 ou il a pris son nom actuel.

Ce marché initialement des matières premières agricoles s’étend progressi-
vement, couvrant d’autres produits comme le charbon, le pétrole, les métaux
précieux, etc. Ces produits sont commercialisés dans différentes bourses partout
dans le monde. En terme de volume, le pétrole brut et ses dérivés dépasse un
tiers du volume traité.

1
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Commodity is an important kind of financial asset among others, especially
under the process of globalization all over the world. The markets of commodity
such as fossil fuels, precious metal and agricultural have a very wide and radical
influence on the world’s economy.

The first modern organized futures exchange began in 1710 at the Dojima
Rice Exchange in Osaka, Japan, according to West [2000]. The exchange was
used for nearly 300 years till the World War II. It was then dissolved entirely in
1939, being absorbed into the Government Rice Agency.

In the 19th century, forward contract appeared in the United States. Agri-
cultural commodity, such as corn and cattle, was traded by forward contract
in Chicago and Midwest. Chicago Board of Trade (CBOT) was founded in
1848. The first contract was a forward contract on corn, written on March 13,
1851. Chicago Mercantile Exchange (CME) was established in 1874. The original
name was “Chicago Produce Exchange” and then reorganized in 1919 with the
name Chicago Mercantile Exchange.

The commodity market gradually extends beyond agricultural, covering
other commodities such as coal, petroleum, precious metal, etc. Nowadays,
the trading commodity in exchange are shown in table 1.1. These commodities
are traded in various exchanges all over the world. In term of volume, crude oil
and its derivative exceeds one third of total volume in all kinds of commodity.
We list hereby some of the major commodity exchanges in the world in table 1.2.
The major indices in commodity market are shown in table 1.3.

Table 1.1: The commodity categories

Category Description
Agricultural soybean, corn, wheat, cocoa, coffee, sugar, cotton, cit-

rus, orange juice, cattle, hogs, pork bellies, etc.
Metal gold, silver, platinum, palladium, copper, tin, zinc,

nickel, aluminum, etc.
Oil and oil production crude oil, Liquefied Petroleum Gas (LPS), gasoline,

naphtha, kerosene, diesel, fuel oil, etc.
Gas and gas production gas and Liquefied Natural Gas (LNG).
Electricity
Coal and CO2 emission

The commodity trading volume has grown to a very large scale. The trad-
ing volume of Intercontinental Exchange (ICE), a leading operator of regulated
global futures exchanges, clearing houses and over-the-counter (OTC) markets,
reported strong futures volume growth in November 2010. Average daily vol-
ume (ADV) across ICE’s futures exchanges was 1,366,669 contracts, an increase
of 26% from November 2009. Year-to-date through November 30, 2010, ICE’s
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Table 1.2: Some commodity exchanges

Abuja Securities and Commodities Exchange
Africa Mercantile Exchange
Bhatinda Om & Oil Exchange Bathinda
Brazilian Mercantile and Futures Exchange
Chicago Board of Trade
Chicago Mercantile Exchange
Commodity Exchange Bratislava, JSC
Dalian Commodity Exchange
Dubai Mercantile Exchange
Dubai Gold & Commodities Exchange
Euronext.liffe
Hong Kong Mercantile Exchange
Indian Commodity Exchange
Intercontinental Exchange
Iranian Oil Bourse
Kansas City Board of Trade
London Metal Exchange
Minneapolis Grain Exchange
Multi Commodity Exchange
National Commodity and Derivatives Exchange
National Multi-Commodity Exchange of India Ltd
National Food Exchange
New York Mercantile Exchange
New York Board of Trade
Rosario Board of Trade
Steelbay
Winnipeg Commodity Exchange
National Spot Exchange

futures ADV was 1.325 million contracts, up 27% compared to the same period of
2009. Total futures volume in November 2010 was 28.7 million contracts. ICE fu-
tures volume exceeded 300 million contracts through November 30; the previous
annual record, established in 2009, was 262 million contracts. ICE also reported
OTC energy average daily commissions (ADC) of $1.33 million US dollars in the
fourth quarter of 2010 and a record $1.37 million for the full year.

The derivative market of commodity contributes the majority part in commod-
ity trading. Unlike stock market or currency market, most commodities involve
physical transaction and therefore shipping cost or so-called freight cost, which
make spot trading very rare in commodity market. Instead, forward trading is
much more common. Consequently, the underlying commodity for the com-
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Table 1.3: Some commodity indices

Continuous Commodity Index (CCI)
Astmax Commodity Index(AMCI)
Commin Commodity Index
Dow Jones-AIG Commodity Index
Goldman Sachs Commodity Index
Thomson Reuters/Jefferies CRB Index
Rogers International Commodity Index
Standard & Poor’s Commodity Index
NCDEX Commodity Index
Deutsche Bank Liquid Commodity Index (DBLCI)
UBS Bloomberg Constant Maturity Commodity Index (CMCI)
Merrill Lynch Commodity index eXtra (MLCX) , etc.

modity option is not the commodity itself, but rather a standardized forward
contract, or commonly known as futures contract, for that commodity. For ex-
ample, a November soybean option will actually be an option for a November
delivery soybean futures contract. In this sense, the options are on futures and
not on the physical commodity. This fact results in a somehow slightly differ-
ent form of formula for option price from other asset classes even under classic
Black-Scholes model.

Nevertheless, the carry cost as well as potential benefit of holding a commod-
ity, also known as convenience yield, changes the fundamental relation between
spot price and future price. Besides, commodity market has other distinguish
characters, among which seasonality and mean reversion patterns play a very
important role. Both patterns describe the periodic behavior of commodity price
in both short term and long term. Certain specific designed commodity models
can explicitly reflect these characters in their model parameters, which presents
a better financial interpretation. In these models, convenience yield or long
term price themselves are assigned to follow a distinguish stochastic process
and eventually make the drift term of spot price to be stochastic.

Quite differently, stochastic volatility models introduce the second stochastic
process on the volatility parameter. The models in this family allows for a
different and as well complex marginal distribution, which in one way has a
better fit to the forward volatility surface, but in the other way adds difficulties
on even the simple vanilla option price. Thus, it is crucial to have the stable and
precise option formula and calibration to enjoy the advantage of the models.

In the first two chapters of this thesis, two most popular specific commodity
models, namely Gibson-Schwartz model and Gabillon model, will be studied.
In chapter two we will prove the mathematical equivalence between the two
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models. And in the chapter three we develop a so-called model factor reduction
technique and apply on both models to achieve the formulas for vanilla options
based on spot and future.

In chapter four, we will focus on the stochastic volatility model. We extend
the popular stochastic volatility model such as Heston model by allowing the
model parameter to be time-dependent. This extension gives the more degree
of freedom to stochastic volatility model in term structure, but in the other hand
introduces difficulty for formula of option price and process of calibration. We
will study different methods including parameter averaging, perturbation and
vol of vol expansion to get the option price formula in the extended models.
Some of calibration algorithm are also listed in the last part of this chapter.





Chapter 2

Modeling commodity with
convenience yield

Résumé du chapitre

Contrairement à d’autres actifs classiques, les matières premières montrent des
caractéristiques spécifiques : importance du convenience yield, de la saisonnalité
et du retour à la moyenne. Le concept clé est ici convenience yield, qui est
clairement expliqué par exemple dans Lautier [2009]. Celui-ci dicte la relation
entre les prix futurs et les prix au comptant. Il ya beaucoup de modèles sur
des produits de base spécifiques qui mettent l’accent sur ces concepts, citons
les principaux : Gibson and Schwartz [1990], Brennan [1991], Gabillon [1991],
Schwartz [1997], Hilliard and Reis [1998], Schwartz and Smith [2000], Casassus
and Collin-Dufresne [2005]. A présent les modèles de Gibson et Schwartz et
de Gabillon sont les plus populaires chez les chercheurs et les praticiens du
marché, non seulement parce que leur interprétation en terme de rendement de
commodité ou de prix à long terme, mais aussi de part leur simplicité et leur
clarté.

Dans ce chapitre, nous montrerons qu’il ya équivalence entre les modèles
de Gibson Schwartz et Gabillon. Cette conclusion n’est pas surprenante à si
l’on considère que dans le modèle de Gibson et Schwartz le convenience yield
apparaît comme un terme de dérive stochastique qui n’est pas loin d’un com-
portement à long terme comme dans le modèle de Gabillon.

7
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2.1 Introduction

Unlike other asset classed, commodity has a strong presence of convenience
yield, seasonality and mean reversion. The key concept here is convenience
yield, which is clearly stated in Lautier [2009]. It dictates the relation between
future price and spot price. There are many commodity-specialized models
emphasize on these concepts, including Gibson and Schwartz [1990], Brennan
[1991], Gabillon [1991], Schwartz [1997], Hilliard and Reis [1998], Schwartz and
Smith [2000], Casassus and Collin-Dufresne [2005], etc. Among others, Gibson
Schwartz model and Gabillon model are the most popular in researchers and
market practitioners, not only because their appropriate interpretation on con-
venience yield or long term price, but also because their simplicity and clarity.

In this chapter, we will point out that there is a mathematical equivalence
relation between Gibson Schwartz model and Gabillon model. This conclusion
is not surprising provided the consideration that the former model suggests
convenience yield as its drift term while the latter uses long term price as its
drift term, which is an equivalent counterpart of convenience yield. The close
relation between convenience yield and long term price results in the equivalence
between two models.

2.2 Review of research and background

2.2.1 Convenience yield

Almost all the commodities, apart from the exception of electricity, are normally
considered as storable. That is to say, people can hold their commodities in the
stock for economic purpose. The following discussion will rule out electricity
and focus on the storable commodity. The concept of convenience yield is closely
linked to storage, which can be referred to Lautier [2005] and Lautier [2009].

Storability is essentially a very important feature of commodities. Various
scholars and market participants, such as Kaldor [1939], Working [1949], Brennan
[1958] and Telser [1958], have worked on the theory of storage. There are two
major economic effects based on storage theory:

1. The time value of holding a commodity. It is because the inventory enables
holders to store the commodity when its price is low and sell it on the market
when the price goes high. It also avoids the disruption of manufacturing.

2. The holding cost. Holding cost is also called carry cost or cost of storage. It
includes the land and facility to store the commodity, as well as the operation
management cost.

Convenience yield is then defined as the total effect of these two aspects,
which generally reflects the economic value of holding a commodity.
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Of course, this description only helps understand the economic meaning of
convenience yield. More elaborated and mathematical definition, as shown in
Lautier [2009] and Geman [2005], will involve market structure, precisely the
relation between spot price and future price.

Definition 1 (Convenience yield). Note Ft,T to be the future price of a commodity at
time t for maturity T. Note St to be the spot price at time t. Note rt to be the short
rate, which is the (annualized) interest rate at which an entity can borrow money for an
infinitesimally short period of time from time t. Then we define convenience yield yt by
satisfying the arbitrage-free condition:

Ft,T = Ste
∫ T

t (rs−ys)ds (2.1)

or equivalently,

ys = rs−
d
ds

(
log

Ft,s

St

)
(2.2)

with t < s < T.

The definition of convenience yield in equation (2.2) is in continuous form,
which presents the average of convenience yield from time t to T. In real world
application, since the future values are normally available at some discretion
time points, we can then defined convenience yield yt accordingly in piecewise
constant form by the following definition:

Definition 2 (Convenience yield in discrete form). Let t = t0 < t1 < t2 < ... < tn = T.
Note Ft,ti to be the future price at time t for maturity ti. Note St to be the spot price. Note
D(ti, t j) to be the discount factor between time ti and t j, which stands for the present
value at time ti of a future cash flow of 1 unit currency at time t j.

Convenience yield ys is then given by the following equation:

ys =
1

ti+1− ti
log

(
Ft,ti

Ft,ti+1

1
D(ti, ti+1)

)
, ti 6 s < ti+1 (2.3)

It is very easy to verify that this definition fulfills the arbitrage-free condition

in equation (2.1) by using D(ti, ti+1) = e−
∫ ti+1

ti
rsds

. This definition of convenience
yield in discrete form is practically used as the formula to calculate convenience
yield from market data.

The notion of discount factor is very useful in following paragraphs. We here
separately write it as a definition.

Remark For a fixed discount rate, r, continuously compounded discount rate
from time t to T, then we have the relation D(t,T) = e−r(T−t). Normally discount
factor is provided by interest rate market data and very easy to access. So we
will treat it as a known variable hereafter.
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Convenience yield v.s. stock dividend

We compare arbitrage-free condition (2.1) to its counterpart in stock market. We
continue use the same symbol: Ft,T, St and rt for future, spot and interest rate
respectively. Note dt to be the dividend of the stock. Then we have

Ft,T = Ste
∫ T

t (rs−ds)ds (2.4)

Notice that it is exactly the same form as equation (2.1). This fact encourages
us to migrate the stock market models to commodity. All we need to do is to
simply replace dividend term by convenience yield.

Term structure: backwardation and contango

We copy here the arbitrage-free condition, equation (2.1), to facilitate reading.
The relation between future and spot is,

Ft,T = Ste
∫ T

t (rs−ys)ds (2.5)

The term
∫ T

t (rs − ys)ds can be negative or positive. We call these two different
term structures backwardation and contango respectively.

Backwardation means
∫ T

t (rs− ys)ds is negative. In this case, future price Ft,T

is smaller than spot St. It happens when interest rate in low and convenience
yield is high. For example, when the Gulf war broke up, holding oil became
particularly profitable at that time. And convenience yield of oil became so high
that caused backwardation in the future market.

Contrarily, when
∫ T

t (rs − ys)ds is positive, we have contango. In this case,
future price Ft,T is greater than spot St. The structure of future curve becomes an
increasing function against maturity time.

2.2.2 Gibson Schwartz model

Gibson Schwartz model, first introduced by Gibson and Schwartz [1990], is based
on a two-factor diffusion. The spot price St is assumed to follow a lognormal
diffusion but with a stochastic drift. Gibson and Schwartz [1990] assume that
convenience yield, δt, is a stochastic process, explicitly following a mean revert-
ing normal diffusion, which leads to the following diffusion for the commodity
spot price on risk-neutral measure:

dS
S

= (r−δ)dt +σ1dz1 (2.6)

dδ = (k(α−δ)−λσ2)dt +σ2dz2 (2.7)

where r is the risk free rate, z1 and z2 are two correlated Brownian motions
with correlation ρ.
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2.2.3 Gabillon model

Gabillon [1991] created this model to account for long term trend. He argued
that it was beneficial to use a two-factor diffusion to capture the difference
between short and long term effects. He introduced a long term trend factor
that would influence the convenience yield. This led him to assume that the
spot prices, S, follows a log-normal diffusion but with a stochastic drift term.
Instead of assuming a stochastic convenience yield like in Gibson and Schwartz
[1990] model, Gabillon assumed that the drift term is influenced by a long term
factor that is itself stochastic. This long term factor denoted by L follows also a
log-normal diffusion.

In the original paper the model parameters are assumed to be constant. To
allow an easy calibration across time, we will extend the hypothesis of Gabillon
and assume that these parameters are time dependent. This setting is very inter-
esting as we capture the long term trend stochasticity through the second factor
and capture time varying value through time dependent model parameters. We
will take the traditional assumption in mathematical finance and assume that
the uncertainty is represented by a probability space (Ω,F ,P) with a two dimen-
sional Brownian motion. The two components of the Brownian motion will be
denoted by z1,z2 and will be assumed to be correlated with a constant correlation.

dz1dz2 =ρdt

This leads us to assume that the spot price S follow under the historical
probability,

dS
S

= k ln
L
S

dt +σSdz1 (2.8)

dL
L

= µLdt +σLdz2 (2.9)

where in the above equations, we have removed any obvious reference to
time to simplify the notation, like for instance St,Lt,zt

1,z
t
2.

2.2.4 Previous research

As two of the most popular models in commodity world, Gibson Schwartz
model and Gabillon model are actually mathematically equivalent to each other.
The previous researches includes Gabillon [1991] and Schwartz and Smith [2000].
The former studied and compared the economic interpretation of the parameters
of both models. The latter built a Gabillon style model, namely short-term/long-
term model, and proved that the model was equivalent to Gibson Schwartz
model by change of variable. And our result in this thesis goes in the other
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direction: the equivalence relation between Gabillon model and short-term/long-
term model. Our result together with the result of Schwartz and Smith [2000]
complete the proof of the equivalence relation between Gibson Schwartz model
and Gabillon model.

2.3 Equivalence between Gibson Schwartz model and
Gabillon model

We establish the equivalence relation through a third model. The idea is to
respectively prove Gibson Schwartz model and Gabillon model are both equiva-
lent to a third model. Consequently, they are equivalent to each other. Moreover,
we interpret the equivalence relation in term of the economic significance of the
parameters in both models.

The significance of this equivalent relation is to establish a close connection
between two most popular models in commodity derivative pricing. Although
the two models are mathematically equivalent, the market practitioners have
their preference on choosing between the two. It is because they have good
knowledge about the economic meaning of the parameters of the model, which
guarantees them to better understand and use the model.

In fact, the equivalence between the third model and Gibson Schwartz model
were already proved in Schwartz and Smith [2000]. The model is called short-
term/long-term model in the paper. The definition is as follows.

Definition 3 (Short-term/long-term model). Let St denote the spot price of a com-
modity at time t. We define,

log(St) = χt +ξt, (2.10)

where χt and ξt present short term price and long term price respectively. They follow
the stochastic process:

dχt = −κχtdt +σχdzχ (2.11)

dξt = µξdt +σξdzξ (2.12)

Here zχ and zξ are two Brownian motion with correlation ρ. Parameters κ, µξ, σχ
and σξ are constant.

The first step is to prove the equivalence relation between short-term/long-
term mode and Gibson Schwartz model. It is done in Schwartz and Smith [2000].
The key here is the change of variable .
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χt =
1
κ

(δt−α) (2.13)

ξt = logS−
1
κ

(δt−α) (2.14)

Then simply inject the stochastic diffusion of Gibson Schwartz model, equa-
tion (2.6) and (2.7), into the equations above. We have the derivation as follows.

dS
S

= (µ−δ)dt +σ1dz1 (2.15)

dδ = (k(α−δ)−λσ2)dt +σ2dz2 (2.16)

Note Xt = logSt, we have

dXt =
(
µ−δt−

1
2
σ2

S

)
dt +σSdz1 (2.17)

Using 2.13, we have

χt =
1
κ

(δt−α) (2.18)

⇒ dδt = κ(α−δt)dt +κσχdzχ (2.19)

ξt = logS−
1
κ

(δt−α) (2.20)

⇒ dXt = (µξ+α−δt)dt +σξdzξ+σχdzχ (2.21)

Assume zχ = ρzξ+
√

1−ρ2z⊥ξ , where z⊥ξ is independent to zξ.

⇒ dσξdzξ+σχdzχ = (σξ+ρσχ)dzξ+

√
1−ρ2σχdz⊥ξ (2.22)

Then we note

||σ||2t =

∫ t

0

(
(σξ+ρσχ)2 + (1−ρ2)σ2

χ

)
ds (2.23)

So

||σ||t = σ1 (2.24)

z1(t) =

∫ t

0

σξ+ρσχ
||σ||t

dzξ+

√
1−ρ2σχ
||σ||t

dz⊥ξ

 (2.25)
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According to Levy Theorem, z1(t) is Brownian motion. So the two models
are equivalent.

dχt =
1
κ

dδt (2.26)

= (α−δt)dt +
σ2

κ
dz2 (2.27)

= −κχtdt +
σ2

κ
dz2 (2.28)

and

dξt = dlogS−
1
κ

dδt (2.29)

= (µ−δt−
1
2
σ2

1)dt +σ1dz1− (α−δt)dt−
σ2

κ
dz2 (2.30)

= (µ−α−
1
2
σ2

1)dt +σ1dz1−
σ2

κ
dz2 (2.31)

Here we use the risk neutralized version of both short term/long term model
and Gibson Schwartz model to exclude the risk premium parameter. Under
non-arbitrage principle, the drift term of both models should equal to

∫ t
0 rsds. So

we just need to take care of stochastic term for the spot diffusion. Comparing
these forms with short term/long term model, we can see that the two models
are equivalent if we relate the parameters of the two models.

In the other hand, the equivalence relation between long term/short term
model and Gabillon model is also easy to prove. The change of variables here is

ξt = logL (2.32)

χt = logS− logL (2.33)

Inspired by the above result, we can similarly prove the equivalence relation
between long term/short term model and Gabillon model. We inject the diffusion
of Gabillon model, equation (2.8) and (2.9), in the equations above. We can re-find
the diffusion of long term/short term model.

dχt = dlogS−dlogL (2.34)

= −κχtdt−σSdW1 +σLdW2 (2.35)

and
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dξt = dlogL (2.36)

=
(
µL−

1
2
σ2

L

)
dt +σLdW2 (2.37)

Therefore, we prove the equivalence relation between long term/short term
model and Gabillon model. This result is new to our knowledge.

Now we put the two parts together and we can get the equivalence relation
between Gibson Schwartz model and Gabillon model. It is given by the change
of variables as follows:

logS = Xt (2.38)

logL = Xt−
1
κ

(δt−α) (2.39)

For the equivalence of parameters, the calculation is a bit lengthy but very
straightforward. We just list the result in table 2.1. Given the high similarity
between Gabillon model and short-term/long-term model, we observe the the
result in table 2.1 is in the same form as the result for the equivalence relation be-
tween Gibson Schwartz model and short-term/long-term model, which is shown
in Schwartz and Smith [2000].

Table 2.1: The Relationships Between Parameters in Gabillon Model and Gibson
Schwartz model

Gabillon model parameter
Symbols Description Equivalence in Gibson Schwartz model
κ Short-term mean-reversion rate κ
σS Short-term volatility σ2/κ
µL Equilibrium drift rate (µ−α− 1

2σ
2
1)

σL Equilibrium volatility (σ2
1 +σ2

2/κ
2
−2ρσ1σ2/κ)1/2

ρ Correlation in increments (ρσ1−σ2/κ)(σ2
1 +σ2

2/κ
2
−2ρσ1σ2/κ)1/2

2.4 Summary

In this chapter, we revisited the concept of convenience yield and the models
specialized on commodity, namely Gibson Schwartz model and Gabillon model,
which emphasizes on stochastic convenience yield and stochastic long term price
respectively. As the main result of the chapter, we proved that the two models
are eventually equivalent in mathematics.
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The explanation of the equivalence of the two models involves the relation
of the concept of long term price and convenience yield. As we know, conve-
nience yield is the total benefit and carry cost on holding a commodity, which
consequently decides the long term price of the commodity. Gibson Schwartz
model assumes that convenience yield follows a Brownian motion with mean
reversion, while Gabillon model suggests that the logarithm of long term price
is also a Brownian motion with mean reversion. Apparently, these assumptions
lead to the equivalence of the two models.



Chapter 3

Model factor reduction
technique

Résumé du chapitre

Le résultat principal de ce chapitre est l’introduction et l’application de la tech-
nique de réduction de modèle factoriel. C’est une technique qui permet de
trouver –sous certaines conditions-un équivalent à un facteur qui a la même
distribution marginale de spot et donc du prix d’une option Européenne, que le
modèle initial à plusieurs facteurs. Nous appliquons ensuite cette la technique
aux modèles de Gibson Schwartz et de Gabillon. En outre, nous allons donner ex-
plicitement la distribution marginale des spots et futures de ces deux modèles,
et en déduire une formule explicite du prix de l’option vanille. La technique
s’applique généralement à tout modèle multi-facteurs de prix sous l’hypothèse
que la dérive est un processus de diffusion gaussien. C’est précisément le cas
des modèles de commodités que sont les deux modèles mentionnés ci-dessus.
La technique peut également s’appliquer à des modèles pour les autres classes
d’actifs telles que les modèles stochastiques avec dividendes pour les marchés
des actions.

L’organisation de ce chapitre commence en présentant notre technique de
réduction de modèle factoriel sur un modèle de tarification à deux facteurs
généraux. La première étape consiste à obtenir l’équivalent à un facteur puis la
distribution marginale des prix au comptant, ce qui permet de dériver la formule
de prix de l’option de vanille. Ensuite, nous appliquons le résultat général aux
deux modèles ci-dessus modèle.

17
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3.1 Introduction

The main result in this chapter is the introduction and application of model factor
reduction technique. It is a technique to find an equivalent one-factor model that
has the same marginal distribution of spot and therefore vanilla option price
with the original two-factor model under certain condition. Interestingly, we
apply the technique to Gibson Schwartz model and Gabillon model. We show
that they are equivalent to one-factor model when pricing futures and vanilla
option. In addition, we will explicitly express the marginal distribution of spot
and future price of both models, and derive the formula of vanilla option on spot
and future thusly.

The equivalent one-factor model admits a weak solution, which has the same
one-dimensional marginal probability distribution and therefore same price for
vanilla options. Moreover, this distribution can be explicitly expressed under
certain conditions. The result can consequently induct closed formulas for fu-
ture and vanilla option price. The technique generally applies to any multi-factor
pricing model under assumption of normally distributed drift, which are pre-
cisely, in commodity modeling, the stochastic drift such as convenience yield
in Gibson Schwartz model or long term price in Gabillon model. Obviously,
the technique can also apply to models for other asset classes such as stochastic
dividend models in stock market.

The organization of this chapter begins with introducing our model factor
reduction technique on a general two-factor pricing model. The first step is to
get the equivalent one-factor model and then the marginal distribution of spot
price, which can derive the formula for vanilla option price. Next we apply the
general result to Gabillon model and Gibson Schwartz model, verifying that both
models fit the assumption condition. Once the equivalent reduced one-factor
model and the marginal distribution are obtained, it is straightforward to get
the formulas for vanilla option price by applying the result of general two-factor
model.

3.2 Review of research

The idea of model factor reduction technique is inspired by the paper of
Gyöngy [1986]. In his paper, Gyöngy considered a general form of a stochas-
tic process dx(t) = δ(t,ω) dW(t) + β(t,ω)dt. He proposed an equivalent process,
replacing stochastic parameters by non-random parameters. The new process
admits a weak solution having the same one-dimensional probability distribu-
tion.

Proposition 4 (Gyöngy [1986]). Let ξ(t) be a stochastic process starting from 0 with
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Ito differential

dξ(t) = δ(t,ω)dW(t) +β(t,ω)dt, (3.1)

where (W(t),Ft) is a Wiener process, δ and β are bounded Ft-non-anticipative processes
such that δδT is uniformly positive definite. Then it is proved that there exists a stochastic
differential equation

dx(t) = σ(t,x(t))dW(t) + b(t,x(t))dt (3.2)

with non-random coefficients which admits a weak solution x(t) having the same one-
dimensional probability distribution as ξ(t) for every t. The coefficients σ and b have a
simple interpretation:

σ(t,x(t)) =
(
E[δδT(t)|ξ(t) = x]

) 1
2 (3.3)

b(t,x) = E[β(t)|ξ(t) = x] (3.4)

From this result, we can see the process x(t) is with non-random coefficients,
which means the model is reduced to one-factor. However, the condition that
δ and β are bounded limits the application of this result, since two-factor mod-
els usually cannot satisfy this constraint. For example, in Gibson Schwartz
model and Gabillon model, the drift term β is normally distributed, hence not
bounded. Follow this line, we make one step further. We will impose nor-
mal distribution on β(t,ω), which holds for a large class of commodity pricing
models. Although normal distribution isn’t bounded, we still can calculate
the non-random coefficients for reduced equivalent one-factor model and ex-
press this one-dimensional probability distribution explicitly. Then, we show an
equivalent one-factor model that presents the same marginal distribution at any
time t, as shown in the definition 6. Once we know the distribution of the spot
price, it is then possible to compute a closed formula for the future price and
vanilla option price, shown and proved in proposition 10, 11 and 12 in following
sections for the general case. These results of general case are then applied to
Gibson Schwartz model and Gabillon model in the following sections.

3.3 Model factor reduction technique in general form

Assume that St is a stochastic process with the following dynamic:

dSt

St
= (r +αt,ω)dt +σ(t)dWt (3.5)

where Wt is a (potentially multi-dimensional) Wiener process under filtration
Ft and risk-neutral measure Q. To be clear, all the calculation in this section is
always on risk-neutral measure Q. r is risk free rate. Drift term αt,ω is stochastic.
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And we assume that it follows another diffusion process, which is the case in
pratical for models such as Gibson Schwartz model and Gabillon model. ω

represents the full stochastic information. In particular, the path-wise behavior
of Xt may depend, via the random coefficients αt,ω in a complicated way on the
past filtration Ft.

Assume that Xt = logSt. So Xt is a stochastic process with the following
dynamic:

dXt =
(
r−

1
2
σ(t)2 +αt,ω

)
dt +σ(t)dWt (3.6)

Equation (3.6) depicts a general form for pricing models under the assump-
tion of a deterministic volatility σ(t). Since the parameters αt,ω is a random
variable, the process is multi-factor. Some examples can be found in section 3.4.

Lemma 5. In process dXt = (r− 1
2σ(t)2 +αt,ω)dt+σ(t)dWt, as αt,ω is a normal diffusion

process for all t> 0, then Xt = X0 +rt− 1
2

∫ t
0 σ(s)2ds+

∫ t
0 αs,ωds+

∫ t
0 σ(s)dWs is a normal

variable for any t > 0.

Proof. Since αt,ω is normal, so
∫ t

0 αs,ωds is normal. The Ito integral
∫ t

0 σsdWs is
normal as the integrand σs is deterministic. Xt, being the sum of normals, is
normal for all t. �

Under the assumption that αt,ω is a normal variable, we note σα(t) as the
standard deviation (square root of variance) of αt,ω for future convenience.

Definition 6. For afterward convenience, we define here µ(t,T) and ξ(t,T). Denote
µ(t,T) the expectation of XT −Xt at time t. Denote ξ(t,T) the variance of XT −Xt at
time t. They are simply defined by:

µ(t,T) = E[XT −Xt|Ft] = E

[∫ T

t
αs,ωds

∣∣∣∣∣∣Ft

]
+ r(T− t)−

1
2

∫ T

t
σ(s)2ds (3.7)

ξ(t,T) = var(XT −Xt|Ft) = var
(∫ T

t
αs,ωds +

∫ T

t
σ(s)dWs

∣∣∣∣∣∣Ft

)
(3.8)

Remark We can write E[XT|Ft] = Xt +µ(t,T) and var(XT|Ft) = ξ(t,T).

Now we can construct a new model with non-random time-dependent pa-
rameter. This one-factor model should have the same distribution.

YT = Xt +µ(t,T) +

∫ T

t

√
ξ′(t,s)dWs (3.9)

where µ(t,T) and ξ(t,T) are given by equation (3.7) and (3.8). And ξ′(t,s) =
∂ξ(t,s)
∂s .

It is easily to verify that E[YT|Ft] = Xt +µ(t,T) and var(YT|Ft) = ξ(t,T). From
lemma 7, we know that ξ′(t,s) is positive, so the process YT is well defined.
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Lemma 7. ξ(t,T) is given by equation (3.8). Assume αt has form dαt = µα(t)dt +

σα(t)dWα
t . µα(t) and σα(t) are deterministic. Then we have ∀t, ∂ξ(t,T)

∂T > 0.

Proof. Note µα(t,T) =
∫ T

t µα(s)ds.

∫ T

t
αsds = µα(t,T) +

∫ T

t
du

∫ T

t
1u>sσα(s)dsdWα

s (3.10)

= µα(t,T) +

∫ T

t
(T− s)σα(s)dWα

s (3.11)

Therefore,

XT =Xt + r(T− t)−
1
2

∫ T

t
σ(s)2ds +µα(t,T)

+

∫ T

t
(T− s)σα(s)dWα

s +

∫ T

t
σ(s)dWs

E(XT|Ft) = Xt + r(T− t)−
1
2

∫ T

t
σ(s)2ds +µα(t,T) (3.12)

var(XT|Ft) = E

(∫ T

t
(T− s)σα(s)dWα

s +σ(s)dWs

)2 (3.13)

Note ρ the correlation between Wα
t and Wt.

For any t < T, we have

ξ(t,T) = var(XT|Ft)

=

∫ T

t
(T− s)2σ2

α(s)ds +

∫ T

t
σ2(s)ds + 2ρ

∫ T

t
(T− s)σα(s)σ(s)ds

>

∫ T

t
[(T− s)2σ2

α(s) +σ2(s)−2σα(s)σ(s)]ds

=

∫ T

t
[(T− s)σα(s)−σ(s)]2ds

> 0

So we have,

∂ξ(t,T)
∂T

= lim
δ→0

ξ(t,T +δ)−ξ(t,T)

= lim
δ→0

ξ(T,T +δ)

> 0

This proves lemma 7. �
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The process YT = Xt +µ(t,T) +
∫ T

t

√
ξ′(t,s)dWs is a one-factor model with non-

random time-dependent parameters. At any time s > t, Ys is a normally dis-
tributed variable withE[Yt] = X0 +µ(0, t), var(Yt) = ξ(0, t). So it has the same one-
dimensional marginal distribution as our original process dXt = αt,ωdt +σtdWt

at any time t.
From the calculation above, we know

µ(t,T) = µα(t,T) + r(T− t)−
1
2

∫ T

t
σ(s)2ds. (3.14)

Therefore from YT = Xt +µ(t,T) +
∫ T

t

√
ξ′(t,s)dWs, we can have ∀s > t,

dYs =
(
r−

1
2
σ(s)2 +µα(s)

)
ds +

√
ξ′(t,s)dWs (3.15)

The advantage of the one-factor model, YT = Xt +µ(t,T) +
∫ T

t

√
ξ′(t,s)dWs, is

that there are existing closed formula for future and vanilla option price. We
show them in proposition 10 and 11. Theoretically, with the normal distribution
in definition 6, all kinds of non-path-dependent options can be priced as in the
equivalent one-factor model.

In order to use the Black Scholes formula, we list the result of Black Scholes
here for convenience. Black Scholes model is initially introduced by Black and
Scholes [1973]. The model suggests the marginal distribution of underlying
follows a log-normal distribution. It is now still popular in the market thanks to
its simplicity and stability. Black and Scholes [1973] also presented Black Scholes
formula for the price of a vanilla option.

Definition 8 (Black Scholes model with dividend). Assume St to be the spot price
of an underlying (such as commodity) at time t. The diffusion of Black Scholes model
follows:

dSt

St
=

(
r− q(t)

)
dt +σ(t)dWt (3.16)

where µS(t), q(t) and σS(t) are deterministic. q(t) is dividend. Note Xt = logSt.
Applying Ito lemma, we have

dXt =
(
r−

1
2
σ(t)2

− q(t)
)
dt +σ(t)dWt (3.17)

Proposition 9 (Black Scholes formula - price of a vanilla option). Under Black
Scholes model in Definition 8, we can express the price of a vanilla option as follows:
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V(t) = StN(d1)e−
∫ T

t q(s)ds
−KN(d2)e−r(T−t) (3.18)

where r is interest rate. St is the spot price observed at time t. N(x) = 1
2π

∫ x
−∞

e−t2/2dt
is the cumulative distribution function of standard normal distribution. And d1 =
log(St/K)+r(T−t)−

∫ T
t q(s)ds

σ
√

T−t
+ 1

2σ
√

T− t, d2 = d1−σ
√

T− t.

When σS(t) is time dependent, d1 and d2 are changed to d1 =
ln(St/K)+r(T−t)−

∫ T
t q(s)ds

√
ν

+

1
2
√
ν, d2 = d1−

√
ν, with ν =

∫ T
t σ(s)2ds

Since the distribution St is log-normal and the average and variance of logSt

are known, it needs only straightforward calculation to get Black Scholes formula
by integrating St from K to ∞. The detailed proof can be found in Black and
Scholes [1973] and we won’t list here. Example calculation for Black Scholes
model with dividend can also be found in page 237 - 238 of Shreve [2004].

Proposition 10 (Formula for future). If Xt follows equation dXt = αt,ωdt +σtdWt

with αt,ω being a normal, assuming that St is a stochastic process defined by St = eXt ,
then the price of the future F(t,T), observed at time t, expiring at time T, and given by
E[ST|Ft] has the following closed formula:

F(t,T) = E[ST|Ft] = Steµ(t,T)+ 1
2ξ(t,T) (3.19)

Here µ(t,T) =E
[∫ T

t αs,ωds
∣∣∣∣Ft

]
and ξ(t,T) = var

(∫ T
t αs,ωds +

∫ T
t σsdWs

∣∣∣∣Ft

)
are given

by equation 3.7 and 3.8.

Proof. Since St is a log-normal variable, the proposition is obviously proved by
employing the property of a log-normal variable. �

Proposition 11 (Formula of vanilla option). If X follows equation 3.9 under risk
neutral measure, with αt,ω being a normal, then the price of a vanilla call on the spot
St = eXt with strike K is given by:

V = StN(d1)e−p(t,T)
−KN(d2)e−r(T−t) (3.20)

where N(·) is standard normal cumulative distribution function;

d1 =
log(St/K) + r(T− t)−p(t,T)√

ξ(t,T)
+

1
2

√
ξ(t,T)

d2 = d1−
√
ξ(t,T)

p(t,T) = r(T− t)−
1
2
ξ(t,T)−µ(t,T)

with µ(t,T) and ξ(t,T) in equation 3.8 and St = eXt .
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Proof. Simply use Black Scholes formula with on the stochastic process 3.15

dYs =
(
r−

1
2
σ(s)2 +µα(s)

)
ds +

√
ξ′(t,s)dWs

We have

ν =

∫ T

t

(√
ξ′(t,s)

)2
ds

= ξ(t,T)

and ∀s > t, the dividend term in Black-Scholes model is

q(s) =
(
r−

1
2

(√
ξ′(t,s)

)2
)
−

(
r−

1
2
σ(s)2 +µα(s)

)
⇒ p(t,T) def

=

∫ T

t
q(s)ds

=
1
2

(∫ T

t
σ(s)2ds−ξ(t,T)

)
−µα(t,T)

= r(T− t)−
1
2
ξ(t,T)−µ(t,T)

Then simply use the result of proposition 9 to get the result of this proposition.
�

Proposition 12 (Vanilla option on future). If X follows equation 3.6 with α(t,ω)
being a normal and the spot process S = eX is a log normal process. Assume a vanilla
call option has maturity at time t. The underlying is future FT

t and strike is K. Then the
price V of the option at time t is given by:

V = e−r(T−t)
(
Steµ(t,T)+ 1

2ξ(t,T)N(d1)−KN(d2)
)

where N(·) is standard normal cumulative distribution function;

d1 =
log

(
Steµ(t,T)+ 1

2ξ(t,T)/K
)

√
ξ(t,T)

+
1
2

√
ξ(t,T)

d2 = d1−
√
ξ(t,T)

with µ(t,T) and ξ(t,T) in equation 3.8 and St = eXt .

Proof. We have to compute the following expectation:

e−r(T−t)E
[(

FT
t −K

)+
∣∣∣∣Ft

]
= e−r(T−t)E

[
(E [ST|Ft]−K)+

∣∣∣Ft
]

= e−r(T−t)E
[
(Steµ(t,T)+ 1

2ξ(t,T)
−K)+

∣∣∣∣Ft
]
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where

µ(t,T) = E

[∫ T

t
αs,ωds

∣∣∣∣∣∣Ft

]
ξ(t,T) = var

(∫ T

t
αs,ωds +

∫ T

t
σsdWs

∣∣∣∣∣∣Ft

)
leading to

e−r(t−t)E
[(

FT
t −K

)+
∣∣∣∣Ft

]
= e−r(T−t)

(
S0eµ(t,T)+ 1

2ξ(t,T)N(d1)−KN(d2)
)

where

d1 =
log

(
Steµ(t,T)+ 1

2ξ(t,T)/K
)

ξ(t, t)
+

1
2

√
ξ(t,T)

d2 = d1−
√
ξ(t,T)

which is the result of the proposition. �

Remark The propositions assume that:

1. the drift term αt,ω in equation 3.6 is normally distributed for any t,

2. the volatility σt is deterministic.

These condition holds for at least two common models for commodity deriva-
tives, which are Gibson Schwartz model and Gabillon model.

3.4 Reduced one-factor Gabillon model

Commonly, the process 3.6, Xt, is the log price of the spot. Now, we show two
applications of the above propositions to the modeling of commodity deriva-
tives, namely the models of Gibson Schwartz and Gabillon. These models are
commonly used in commodity market. And both of them are two factors models
with a normal stochastic drift.

We take the traditional assumption in mathematical finance and assume
that the uncertainty is represented by a probability space (Ω,F ,P) with a two
dimensional Brownian motion. The two components of the Brownian motion
will be denoted by z1,z2 and will be assumed to be correlated with a constant
correlation.

dz1dz2 =ρdt

This leads us to assume that the spot price S follow under the historical
diffusion
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dS
S

= k ln
L
S

dt +σSdz1 (3.21)

dL
L

= µLdt +σLdz2 (3.22)

where in the above equations, we have removed any obvious reference to
time to simplify the notation, like for instance St,Lt,kt,zt

1,z
t
2, . . ..

Denoting by λS the risk premium price for the spot risk, we can easily derive
the diffusion under the risk neutral probability as follows (see for instance Hull
and White [1990] or Gabillon [1991]):

dS
S

= (k ln
L
S

dt−λSσS) +σSdz̃1 (3.23)

dL
L

= σLdz̃2 (3.24)

where dz̃1 and dz̃ are two Brownian motion with a correlation dz̃1dz̃2 = ρdt.
Now let us change the variables and take X = lnS, Y = lnL. Using Ito’s lemma

in (3.21) and (3.22), we have:

dX =
(
k(Y−X)−

1
2
σS

2
−λSσS

)
dt +σSdz1 (3.25)

dY = −
1
2
σL

2dt +σLdz2 (3.26)

It can be rewritten in the following form:

dX = a(t,ω)dt +σSdz1 (3.27)

with a(t,ω) = k
(
Y0−

1
2σL

2t +
∫ t

0 σLdz2−X
)
−

1
2σS

2
−λSσS

To apply the Distribution Match Method, we just need to prove that a(t,ω)
is a normal. Then, propositions 10 and 11 provides us closed formula for the
future and European options. To be clear, we work on risk neutral measure.

Lemma 13. If X follows equation 3.27, then a(t,ω) is normally distributed. In addition,
the term µ(0, t) and ξ(0, t) defined in equation 3.7 and 3.8 can be computed explicitly as
follows:

µ(0, t) =X0

(
e−kt
−1

)
+

(
1− e−kt

)
Y0 +

1
k

(
−λSσS +

1
2
σ2

L−
1
2
σ2

Lkt−
1
2
σ2

S

+e−ktλSσS−
1
2

e−ktσ2
L +

1
2

e−ktσ2
S

)
(3.28)

ξ(0, t) =
1
k

(
1−2e−kt + e−2kt

)
σSσLρ+

1
2k

(
σ2

S + 4e−ktσ2
L

−3σ2
L− e−2ktσ2

S− e−2ktσ2
L + 2σ2

Lkt
)

(3.29)
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Proof. Re-write equation 3.27 here,

dX = a(t,ω)dt +σSdz1

with a(t,ω) = k
(
Y0−

1
2σL

2t +
∫ t

0 σLdz2−X
)
−

1
2σS

2
−λSσS

Denote a1 = k
(
Y0−

1
2σL

2t +
∫ t

0 σLdz2

)
−

1
2σS

2
−λSσS, it is obvious a1 is normal.

So we can write a(t,ω) = a1− kX. Change the variable, H = ektX,

dH = ektdX− kektXdt

= ekta1dt + ektσSdz1 (3.30)

So H = H0 +
∫ t

0 eksa1dt +
∫ t

0 eksσSdz1 is normal since a1 is normal. Therefore,
X = e−ktH is normal. a(t,ω) = a1 − kX is normal. This proves that the drift is
normal.

Let us now calculate the terms µ(0, t) and ξ(0, t). In equation 3.30, we can
derive the expectation and variance of H.

E(H) = H0 +E

[∫ t

0
eksa1ds

]
= H0 +

∫ t

0
eksa2ds

var(H) =

∫ t

0
e2ksσS

2ds +

∫ t

0

(
ekt
− eks

)2
σL

2ds + 2ρ
∫ t

0
eks

(
ekt
− eks

)
σSσLds

with a2 = kY0−
1
2 kσL

2t− 1
2σS

2
−λSσS

Knowing X = e−ktH, we have

E(X) = X0e−kt +

∫ t

0
ek(s−t)a2ds

var(X) =

∫ t

0
e2k(s−t)σS

2ds +

∫ t

0

(
1− ek(s−t)

)2
σL

2ds + 2ρ
∫ t

0
ek(s−t)

(
1− ek(s−t)

)
σSσLds

finally we get

µ(0, t) =E(X)−X0

=X0

(
e−kt
−1

)
+

∫ t

0
ek(s−t)a2ds

=X0

(
e−kt
−1

)
+

∫ t

0
ek(s−t)

(
kY0−

1
2

kσL
2s−

1
2
σS

2
−λSσS

)
ds

ξ(0, t) =var(X)

=

∫ t

0
e2k(s−t)σS

2ds +

∫ t

0

(
1− ek(s−t)

)2
σL

2ds

+ 2ρ
∫ t

0
ek(s−t)

(
1− ek(s−t)

)
σSσLds
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The calculation of the integrals is straightforward, and we finally get the
result of lemma 13. �

The distribution match method summarized by propositions 10 enables us
to retrieve the original result of Gabillon for the futures price. The result of
proposition 11 and 12 introduces a new result for the price of European options
in Gabillon model.

Proposition 14. The future price at time t is

F(0, t) = A(t)S0
B(t)L0

1−B(t)

with, A(t) = exp
{
λSσS

(
e−kt
−1

k

)
+

v
4k

(
2e−kt

− e−2kt
−1

)}
B(t) = e−kt

v = σS
2 +σL

2
−2ρσSσL

Proof. Application of proposition 10 with equation 3.28 and 3.29. The calculation
is straightforward. �

Note that the above result gives another proof of the result of the Gabillon
model which is originally done using PDE arguments.

Proposition 15. The price (at time t) V of a European call option on spot with strike K
and option expiry T is given by:

V = StN(d1)e−p(t,T)
−KN(d2)e−r(T−t)

where N(·) is standard normal cumulative distribution function;

d1 =
log(St/K) + r(T− t)−p(t,T)√

ξ(t,T)
+

1
2

√
ξ(t,T)

d2 = d1−
√
ξ(t,T)

p(t,T) = r(T− t)−
1
2
ξ(t,T)−µ(t,T)

with µ(t,T) and ξ(t,T) in equation 3.28 and 3.29. St = eXt .

Proof. Straightfuture application of proposition 11. �

Lemma 16. Under the hypothesis of lemma 13. The variance of process X from t to T is

ξ(t,T) =
2σL

k

(
e−kT
− e−kt

) (
σL−σSρ

)
−

1
2k

(
e−2kT

− e−2kt
)(
σ2

S +σ2
L−2ρσSσL

)
+σ2

L(T− t) (3.31)
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Proof. Substitute lemma 13 into definition 3.8. �

Proposition 17. Assume a vanilla call option has maturity at time T. The underlying
is future F(t,T) and strike is K. Then the price V of the option at time t is given by:

V = e−r(T−t)
(
Steµ(t,T)+ 1

2ξ(t,T)N(d1)−KN(d2)
)

where N(·) is standard normal cumulative distribution function;

d1 =
log

(
Steµ(t,T)+ 1

2ξ(t,T)/K
)

√
ξ(t,T)

+
1
2

√
ξ(t,T)

d2 = d1−
√
ξ(t,T)

with µ(t,T) and ξ(t,T) in equation 3.28 and 3.31. St = eXt .

Proof. Straightfuture application of proposition 12. �

The results in proposition 15 and 17 are new to our knowledge.

3.5 Reduced one-factor Gibson Schwartz Model

Like the Gabillon model, Gibson and Schwartz [1990] model is based on a two-
factor diffusion. The spot price S is assumed to follow a lognormal diffusion like
in the Black Scholes model but with a stochastic drift. The difference between
Gibson Schwartz model and Gabillon model lies in the second factor assump-
tion. Gibson Schwartz Gibson and Schwartz [1990] assume that it is directly the
convenience yield, δ, that is stochastic, following a mean reverting log normal
diffusion. This leads to the following diffusion for the commodity spot price
under measure Q:

dS
S

= (r−δ)dt +σ1dz1 (3.32)

dδ = (k(α−δ)−λσ2)dt +σ2dz2 (3.33)

where r is the risk free rate, z1 and z2 are two correlated Brownian motions.
To apply the Distribution Match Method, we will do some change of variables.
Let X = lnS. Using Ito’s lemma in equation 3.32 and 3.33, we have:

dX = (r−δ−
1
2
σ1

2)dt +σ1dz1 (3.34)

dδ = (k(α−δ)−λσ2)dt +σ2dz2 (3.35)



CHAPTER 3. MODEL FACTOR REDUCTION TECHNIQUE 30

These equations can be rewritten in the following form:

dX = a(t,ω)dt +σ1dz1 (3.36)

with a(t,ω) = r− (k(α−δ)−λσ2)t−
∫ t

0 σ2dz2−
1
2σ1

2.

Lemma 18. If X follows equation 3.36, then (a(t,ω),Wt) is a normal. In addition, the
term µ(0, t) and ξ(0, t) can be computed explicitly as follows:

µ(0, t) = rt−
1
k
δ0

(
1− e−kt

)
−

kα−λσ2

k
t

+
kα−λσ2

k

(
1− e−kt

)
−

1
2
σ1

2t (3.37)

ξ(0, t) = σ1
2t +

σ2
2

2k3

(
2kt− e−2kt + 4ekt

−3
)

+
2ρσ1σ2

k2

(
−kt + 1− e−kt

)
(3.38)

Proof. We re-write the process of convenience yield δ here:

dδ = (k(α−δ)−λσ2)dt +σ2dz2 (3.39)

Let H = ektδ, then

dH = ektdδ+ kektδdt

= ekt (kα−λσ2)dt + ektσ2dz2

So, H = H0 +
∫ t

0 eks(kα−λσ2)dt +
∫ t

0 eksσ2dz2. Consequently, we have:

δ = e−ktH

= e−ktδ0 +

∫ t

0
ek(s−t)(kα−λσ2)ds +

∫ t

0
ek(s−t)σ2dz2 (3.40)

δ(t) = e−ktδ0 +
(
1− e−kt

) kα−λσ2

k
+σ2e−kt

∫ t

0
eksdz2 (3.41)

Denote Y(t) =
∫ t

0 δds.
In the other hand, we can derive from equation 3.39,

δ(t)−δ(0) = (kα−λσ2)t− kY(t) +σ2

∫ t

0
dz2 (3.42)

Substitute equation 3.41 into equation 3.42, we can get the expression for Y(t).
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Y(t) =
kα−λσ2

k
t +

1
k
σ2

∫ t

0
dz2

−
1
k

((
e−kt
−1

)
δ0 +

(
1− e−kt

) kα−λσ2

k
+σ2e−kt

∫ t

0
eksdz2

)
Therefore, we can rewrite X as following:

X =

∫ t

0

(
r−δ−

1
2
σ1

2
)
ds +

∫ t

0
σ1dz1

= rt−Y(t)−
1
2
σ1

2t +

∫ t

0
σ1dz1

It is obvious that the drift is normally distributed since Y(t) is a normal.
Now we calculate µ(0, t) and ξ(0, t).

µ(0, t) = E(X)−X0

= rt−
1
k
δ0

(
1− e−kt

)
−

kα−λσ2

k
t +

kα−λσ2

k

(
1− e−kt

)
−

1
2
σ1

2t (3.43)

ξ(0, t) = var(X)

= σ1
2t +

σ2
2

2k3

(
2kt− e−2kt + 4ekt

−3
)
+

2ρσ1σ2

k2

(
−kt + 1− e−kt

)
(3.44)

This proves lemma 18. �

Now we can use proposition 10, 11 and 12 to derive following result.

Proposition 19. The future price at time t is

F(0, t) = S0eµ(0,t)+ 1
2ξ(0,t)

with µ(0,T) and ξ(0,T) in equation 3.37 and 3.38. S0 = eX0 .

Proof. Straightfuture application of proposition 10. �

Proposition 20. The price (at time T) of a vanilla call option with strike K and maturity
T is

V = S0N(d1)e−p(0,T)
−KN(d2)e−rT (3.45)
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where N(·) is standard normal cumulative distribution function;

d1 =
log(S0/K) + rT−p(0,T)√

ξ(0,T)
+

1
2

√
ξ(0,T)

d2 = d1−
√
ξ(0,T)

p(0,T) = rT−
1
2
ξ(0,T)−µ(0,T)

with µ(0,T) and ξ(0,T) in equation 3.37 and 3.38 and S0 = eX0 .

Proof. Straightfuture application of proposition 11. �

Lemma 21. Under the same hypothesis of lemma 18. The variance of process X from t
to T is

ξ(t,T) =
1
k

(
1−2e−k(T−t) + e−2k(T−t)

)
σSσLρ+

1
2k

(
σ2

S + 4e−k(T−t)σ2
L

−3σ2
L− e−2k(T−t)σ2

S− e−2k(T−t)σ2
L + 2σ2

Lk(T− t)
)

(3.46)

Proof. Same calculation with lemma 18. �

Proposition 22. Assume a vanilla call option has maturity at time T. The underlying
is future F(t,T) and strike is K. Then the price V of the option at time t is given by:

V = e−r(T−t)
(
Steµ(t,T)+ 1

2ξ(t,T)N(d1)−KN(d2)
)

where N(·) is standard normal cumulative distribution function;

d1 =
log(Steµ(t,T)+ 1

2ξ(t,T)/K)√
ξ(t,T)

+
1
2

√
ξ(t,T)

d2 = d1−
√
ξ(t,T)

with µ(t,T) and ξ(t,T) in equation 3.37 and 3.46. St = eXt .

Proof. Straightfuture application of proposition 12. �

Remark The results in proposition 19 and 20 are equivalent to those of Jamshid-
ian and Fein [1990] and Bjerksund [1991]. The result in proposition 22 is new to
our knowledge.

3.6 Summary

In this chapter, we introduce model factor reduction method. We show that a
diffusion process with deterministic log-normal volatility and a normal stochastic
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drift can be approximated by an equivalent one dimensional process with the
same final marginal distribution. This enables us to compute explicitly futures,
vanilla call options on the spot and futures allowing for fast calibration. In
section 3.4, we show how to apply the model factor reduction technique on
Gabillon models and Gibson Schwartz model. This enables us to find a formula
for the Gabillon model for vanilla option allowing fast calibration. For Gibson
Schwartz model, the model factor reduction method provides another proof for
the closed form solution for futures and vanilla options. In addition, as model
factor reduction technique provides explicitly the marginal distribution, we can
easily extend our result to other common vanilla options like digitals. Model
factor reduction technique in addition, implies that for future and vanilla option,
the Gabillon model and Gibson Schwartz model are indeed equivalent to a one-
factor model. This contrasts with the common belief that these models were
explicit two-factor models.

An important consequence of model factor reduction technique is that it
shows, in the sense of marginal distribution, the similarity between the original
two-factor model and one-factor model. This contrasts slightly with the general
opinion that commodity derivatives should be priced with two-factor models.
Our result shows that in the particular case of vanilla options, Gibson Schwartz
model and Gabillon model are indeed equivalent to one-factor models. The
equivalence holds only for this specific case and not for path dependent options.

One of the limitation of the model factor reduction method is the loss of
information on the dynamic of the original process. Therefore, it can not work for
path-dependent products such as Asian option and snowball option. A possible
future work could be on the joint distribution at different time 0< t1 < t2 < · · ·< tn

that would provide a way to calculate closed forms solutions for path dependent
options.





Chapter 4

Stochastic volatility model

Résumé du chapitre

Dans le domaine de la finance quantitative pour évaluer des titres dérivés,
comme les options, les produits sont souvent chers et couvert à l’aide du modèle
Black-Scholes, dans lequel il ya une relation univoque entre le prix de l’option et
la volatilité σB. En théorie, la valeur de volatilité σB dans le modèle de Black est
constante sur la durée du produit dérivé, et ne dépend pas des changements du
niveau des prix du sous-jacent. Cependant, en pratique, ce n’est pas le cas. Donc
modèle Black-Scholes ne peut pas expliquer les caractéristiques de la surface de
volatilité implicite comme le « smile » de volatilité et le « skew », qui indiquent
que la volatilité implicite tend à varier par rapport aux niveaux de prix, du strike
et de la distance de l’expiration.

Le développement de modèles de volatilité locale par Dupire et Derman-Kani
a été une avancée majeure. Ces modèles à volatilité locale sont auto-cohérents,
sans arbitrage, et peuvent être calibrés pour correspondre exactement aux vola-
tilités observées. Ces modèles sont très populaires actuellement. Cependant, le
comportement dynamique des « smiles » et « skew » prédite par des modèles
à volatilité locale est différent du comportement observé dans le marché. Sur le
marché, les prix des actifs et des smiles évoluent dans dans la même direction,
mais le modèle de volatilité locale prédit le mouvement inverse. Cette contradic-
tion crée des difficultés pour la couverture en delta et vega dérivées du modèle
de volatilité locale. Ceci est prouvé dans l’article « Gestion du risque Smile » par
Hagan et al. [2002].

Les modèles cités auparavant ne permettent pas de respecter une dynamique
réaliste pour la volatilité. Les modèles à volatilité stochastiques ainsi que leur
calibration sont bien examinées dans Javaheri [2005].

Les modèles à volatilité stochastique découlent du traitement de la volatilité

35
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du titre sous-jacent comme un processus aléatoire, gouverné par des variables
d’état tels que le niveau des prix du sous-jacent, la tendance de la volatilité
à revenir vers une certaine valeur à long terme et la variance du processus de
volatilité elle-même, la corrélation entre le processus aléatoire pour le sous-jacent
et la volatilité du processus aléatoires, et d’autres. Ces variables peuvent décrire
précisément les « smiles » et « skew » du marché. En supposant que la volatilité
du prix sous-jacent est un processus stochastique plutôt que d’une constante
qui peut être adapté à l’exigence du marché en changeant les paramètres et
les modèles de formulaires, il devient possible de modéliser les dérivés plus
de précision. Les modèles tels que ceux de Heston, Piterbarg et SABR sont
les modèles les plus populaires actuellement pour leurs performances dans la
manipulation des smiles et skew. Dans ce chapitre on les étend à des fonctions
qui dépendent du temps, afin de leur donner encore plus de souplesse. Ensuite
on les calibre et on discute leurs performances.
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4.1 Introduction

In the field of quantitative finance to evaluate derivative securities, such as
options, products are often priced and hedged using Black-Scholes model, in
which there is a one-to-one relation between the price of option and the volatility
σB. In theory, the volatility value σB in Black’s model is constant over the life of
the derivative, and unaffected by the changes in the price level of the underlying.
However in practice, options with different strikes K require different valatilities
to match their market prices. So Black-Scholes model cannot explain long-
observed features of the implied volatility surface such as volatility smile and
skew, which indicate that implied volatility does tend to vary with respect to
strike price and expiration.

The development of local volatility models by Dupire and Derman-Kani was
a major advance in managing smiles and skews. Local volatility models are self-
consistent, arbitrage-free, and can be calibrated to match exactly observed market
smiles and skews. These models are very popular currently in most financial
institution. However, the dynamic behavior of smiles and skews predicted by
local volatility models is different from the behavior observed in the marketplace.
In the market, asset prices and market smiles move in the same direction, but the
local volatility model predicts the reverse movement. This contradiction creates
difficulties for delta and vega hedges derived from the local volatility model.
This is proved in the article "Managing Smile Risk" by Hagan et al. [2002]).

Commodity specialized model is able to better capture the features such as
convenience yield, seasonality and mean reversion. Various drift terms are sug-
gested in these models. These models for commodity derivatives pricing relies
on a specific dynamics of some state variables from whom one can derives the
corresponding futures prices. The states variables are often assumed to follow
a mean reverting process to capture the mean reversion nature of commodity
prices. Typical examples include Gibson and Schwartz [1990], Brennan [1991],
Gabillon [1991], Schwartz [1997], Hilliard and Reis [1998], Schwartz and Smith
[2000], and Casassus and Collin-Dufresne [2005]. But these models also lack a
realistic dynamics for the volatility. These models as well as their calibration are
well reviewed in Javaheri [2005].

Stochastic volatility models derive from the models’ treatment of the un-
derlying security’s volatility as a random process, governed by state variables
such as the price level of the underlying, the tendency of volatility to revert to
some long-run mean value, and the variance of the volatility process itself, the
correlation between the random process for the underlying and the volatility
random process, and others. These variables can describe precisely the market
smiles and skews. By assuming that the volatility of the underlying price is a
stochastic process rather than a constant which can be adapted to the market
requirement by changing the parameters and model forms, it becomes possible
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to model derivatives more accurately. The models such as Heston model, Piter-
barg model and SABR model are the most popular stochastic volatility models
studied currently for their performance in handling the smiles and skews.

4.2 Review of research

Indeed, various authors had already noticed the importance of stochastic volatil-
ity for commodity modeling. This includes the work of Eydeland and Geman
[1998], Richter and Sørensen [2002], Nielsen and Schwartz [2004], and Trolle
and Schwartz [2008] who explicitly allow for stochastic volatility for the corre-
sponding state variables. Their models are often an adapted version of some
existing stochastic volatility models already developped for another asset than
commodity. For instance, Eydeland and Geman [1998] adapt an Heston model
to commodity. Trolle and Schwartz [2008] adapt their corresponding interest
rates HJM model.

This suggest first to study the various stochastic models already developed
in equity option pricing and see how to adapt them to commodity issue. Then
we need to benchmark these models in the case of commodity to assess the fit
or the consistency of these models for this market. These two questions are the
motivations of this work.

Stochastic volatility modeling has been studied for quite some time. Among
the precursors, Hull and White [1990] and Wiggins [1987] studied lognormal
distributed stochastic volatility. The Hull-White model was developed using
a trinomial lattice, although closed-form solutions for European-style options
and bond prices are possible. They assumed the correlation between spot price
and volatility is zero. But from the market data, evidence showed that the two
processes are strongly correlated.

Wiggins studied the same model with Hull and White, but with the non-zero
correlation. The advantage of the model is that the volatility is always positive
by assuming geometric Brownian motion.

Scott [1987], and then Stein and Stein [1991] studied an Ornstein Uhlen-
beck process (OU process) for volatility. OU process adds mean reversion into
volatility. It is more natural to assume the volatility mean reversion rather than
lognormal. The disadvantage of the model is that, the model cannot guarantee
positiveness. That is to say, if volatility follows an OU process, then there is
chance that volatility goes to negative.

Heston [1993] studied a special case of stochastic volatility model. He sup-
posed the square of volatility follows an OU process. This assumption resolved
the problem that volatility goes to negative. Another advantage of Heston model
is that, it allows correlation between spot and volatility. The model has also a
semi-analytic formula, which makes it practical to use.
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Richter and Sørensen [2002] and Trolle and Schwartz [2008] studied the un-
spanned stochastic volatility model with abundant data analysis. It is an appli-
cation of perturbation theory. They expand the formula of price around vol of
vol near zero.

In dynamic stochastic volatility models, parameters depend on the time t.
The process for the forward and the volatility become much more complicate
than in constant parameter case. In reality, we only need to price products for
given dates, so we intend to consider the parameters as piecewise constant ones.
With this assumption, it is possible to find out closed pricing formulas which
are used later for the calibration. There are several methods as we noted before:
firstly, compute the effective mean value of the parameters so that we can use the
closed formula of the constant stochastic volatility model by replacing the time
dependent parameters with their effective mean values. This method consists
to find out the effective medium value of each parameter who depends on time.
This method is employed by Piterbarg [2005]. Secondly as another method, by
resolving the PDEs, we can compute the option price directly by an integration
of a function which is continuous on time t. Theoretically, we can use both these
two methods for each model. But as each model has its different characteristics,
one method should be easier than another. For SABR model in the case of
constant β, the first method is easier that the second. But we can use the second
method to price an option with SABR model in the case of time dependent β.
For Heston model and Piterbarg model with correlation ρ, we use the second
method, and for Piterbarg model without correlation, we can use both of them.
In the following, we will present one by one the methods used for each model.

Stochastic volatility models with time dependent parameters are derived
from stochastic volatility models with constant parameters to be able to price
products with long maturities. Different periods have variant market smiles
and skews, which need different parameter values to match exactly the curves.
In reality, the parameters in the models, especially correlation ρ between the
process of underlying and the process of volatility and parameters related to the
smile and skew, depend on time t. As we only need the model values for certain
dates, we can consider the parameters as piecewise functions of time t. This is
the approach taken for all the models.

Although jump can relax the need of time-dependent parameter, it cannot
fulfill the need completely, especially for the options with long maturity. It is
because the expectation of jumps tends to flatten in long time. We don’t consider
jump in this article, interested readers can refer to Andersen and Andreasen
[2000] and Benhamou et al. [2008].

However in practical, SV models are usually difficult to use due to difficulties
of calibration. The difficulty is obvious: 1. too many parameters to calibrate:
an SV model usually has more than 5 parameters; 2. some of the parameters
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cannot be observed from the market. Therefore we cannot perform the same
procedure of calibration as we do for BS model or LV models. To calibrate
an SV model, the common way is to minimize the vector distance between
theoretical price (or implied BS vol) and the market price(or implied BS vol).
One of the key points here is how to calculate the theoretical price fast and
precisely. The numerical algorithms such as partial differential equations (PDEs)
or Monte Carlo is too time-consuming to use in calibration, even for the simplest
European-style options. For this reason, we investigate closed form formula for
European options.

A closed form formula is typically available for SV models with constant
parameters. A series of references are available on this topic, such as Andersen
and Brotherton-Ratcliffe [1998], Hagan et al. [2002], Zhou [2003] and Andersen
and Andreasen [2002]. Lewis summarizes the Fourier formed solution for static
models in his book Lewis [2000]. There are closed formulas for all the common
SV models including square root model, GARCH model and 3/2 model.

Here we have some clarification on the term “closed form formula”. The
definition of the term “closed form formula” can vary from person to person.
A solution is said to be a closed form solution if it is in terms of functions and
mathematical operations from a given generally accepted set. However, the
choice of what to call closed form is rather arbitrary. For example, an infinite
sum is be called a closed form in certain context. In this paper, we call the Fourier
transform integration a closed form function. This kind of infinite integration is
also called semi-analytical solution in some references as well.

For an SV model with time-dependent parameters, saying dynamic SV
model, the closed form formula is more difficult to derive. Several different
methods have been reported, such as asymptotic expansion and character func-
tion. References for the former one includes Labordere [2005] and Osajima
[2007]. For the latter, readers can refer to Mikhailov and Nogel [2003a]. Some
references suggest piecewise constant parameters since market data in practical
is only available on certain expiries. It is a natural assumption because there is no
information about how the parameters behave between two adjacent expiries.
This assumption can considerably simplify the closed form formula without
losing any generality.

4.3 Heston model

Heston [1993] supposes that spot price St follows a log-normal process and its
variance Vt also follows a log-normal process.

dSt

St
= µdt +

√
VtdW1 (4.1)

dVt = k(θ−Vt)dt +ξ
√

VtdW2 (4.2)
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where W1 and W2 are two standard Brownian motion with correlation ρ; µ is drift
term; θ is the mean reversion of variance process; k is speed of mean reversion;
ξ is vol of vol parameter. Another model parameter is V0, the initial value of the
variance process.

Using Fourier transform and characteristic function, we can get the formula
for vanilla option of Heston model as in Heston [1993] and Mikhailov and Nogel
[2003b]. The idea is to write the solution in the same form as Black Scholes
formula and assume the characteristic function has the form as eC+DV0+iφ f . By
solving C and D , we can have the final result.

4.3.1 Formula for vanilla option

Case 1: Heston formula This is the method developed by Steven L. Heston in
"A Closed-Form Solution for Options with Stochastic Volatility with Applica-
tions to Bond and Currency Options" Heston [1993].

Firstly we guess that the option value of a call has the form

C(S,V, t) = SP1−KP2

Note x = logF(t,T), from the PDEs that C satisfies (that we can get by applying
the Ito’s formula), we get the PDE for P1 and P2:

1
2

V
∂2P j

∂x2 +ρξV
∂2P j

∂x∂V
+

1
2
ξ2V

∂2P j

∂V2 + u jV
∂P j

∂x
+ (a j−b jV)

∂P j

∂V
+
∂P j

∂t
= 0

for j = 1, 2, where u1 = 1/2, u2 = −1/2, a = kθ, b1 = k−ρξ, b2 = k with the initial
condition P j(x,V,T; logK) = 1x≥logK when t = T.

P j can be considered as the conditional probability of x j that the option expires
in the money:

P j = Proba
[
x j(T) ≥ logK

∣∣∣x j(0) = log f ,v(0) = V(0)
]

where x j follows:

dx j(t) = u jv(t)dt + x j(t)
√

v(t)dW1

dv(t) = (a−b j)dt +ξ
√

v(t)dW2

< dW1,dW2 > = ρdt

We can’t get the solutions for P j immediately. So we introduce the characteristic
functions f j(x,V, t;φ) of their probability density function, we have by using
Lévy’s theorem to get the distribution function from characteristic function:
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P j(x,V, t,T; log(K)) = 1−Proba
[
x(T) ≤ log(K)

∣∣∣x(t) = x,v(t) = v
]

(4.3)

= 1/2 +
1
π

∫
∞

0
Re

e−iφln(K) f j(x,V, t,T;φ)
iφ

dφ (4.4)

where f j(x,V, t;φ) satisfies:


1
2

V
∂2 f j

∂x2 +ρξV
∂2 f j

∂x∂V
+

1
2
ξ2V

∂2 f j

∂V2 + u jV
∂ f j

∂x
+ (a j− b jV)

∂ f j

∂V
+
∂ f j

∂t
= 0 if 0 ≤ t < T

f j(x,V,T; logK) = eiφx if t = T

The solutions for f j(x,V, t,T;φ) can be found by introducing:

f j(x,V, t,T;φ) = eC(T−t;φ)+D(T−t;φ)V+iφx

where C j(τ;φ) and D j(τ;φ) with τ = T− t satisfy the PDEs following:
dC j(τ;φ)

dτ
− aD(τ,φ) = 0

dD j(τ;φ)
dτ

−

ξ2D2
j (τ;φ)

2
+ (b j−ρξφi)D j(τ,φ)−u jφi +

1
2
φ2 = 0

And C j(0;φ) = 0, D j(0;φ) = 0 .

The solutions for C j(τ;φ) and D j(τ;φ) are:

C j(τ;φ) =
a
ξ2

(b j−ρξφi + d j

)
τ−2log

1− g jed jτ

1− g j


D j(τ;φ) =

b j−ρξφi + d j

ξ2 ·
1− ed jτ

1− g jed jτ

g j =
b j−ρξφi + d j

b j−ρξφi−d j

d j =
√

(ρξφi− b j)2−ξ2(2u jφi−φ2)

Case 2: Lewis formula Another method using Fourier Transform is the method
developed by Lewis [2000]. Instead of adapting to the Black Scholes form as
Heston, we do directly Fourier Transform to the PDE of the option value C
following:

−Ct =
1
2

VF2CFF + (ω− kV)CV +
1
2
ξ2VCVV +ρξVFCFV if 0 ≤ t < T

C = (S−K)+ if t = T
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Here CFF, CV, CVV and CFV are the partial derivation of option price C with
respect to forward F(t,T) and variance V.

It can be written by noting x = logF(t,T) and τ = T− t:

Cτ =
1
2

VCxx−
1
2

VCx + (ω− kV)CV +
1
2
ξ2VCVV +ρξVCxV if τ > 0

C = (S(T)−K)+ if τ = 0

Then by computing the Fourier Transform Ĉ =
∫
∞

−∞
eiφxC(x,V, t)dx:

Ĉτ = −
1
2

Vφ2Ĉ− i
1
2

VφĈ + (ω− kV)ĈV +
1
2
ξ2VĈVV + iρξVφĈV

=
(
−

1
2

Vφ2 + i
1
2

Vφ
)
Ĉ +

(
ω− kV + iρξV

1
2φ

)
ĈV +

1
2
ξ2VĈVV (4.5)

for τ > 0. And the initial condition for τ = 0 is:

Financial Claim Payoff Function Payoff Transform φ-plane Restricitons
Call

option max[S(T)−K,0] −
Kiφ+1

φ2−iφ Im(φ) > 1

Put
option max[K−S(T),0] −

Kiφ+1

φ2−iφ Im(φ) < 0

Here we introduce the fundamental transform H(φ,τ,V) who satisfies the same
equation as Ĉ but with an initial condition: H(φ,0,V) = 1. Then Ĉ can be written
as : Ĉ = H(0,V)*Payoff Transform, and:

C( f ,V,τ) = f −
K
2π

∫ iφi+∞

iφi−∞

e−iφX H(φ,τ,V)
φ2− iφ

dφ (4.6)

To get the solution for H(φ,τ,V), we guess the form H(φ,τ,V) = exp( f1 + f2V),
and we have the PDEs for f1 and f2:

d f1
dτ

= ω f2

d f2
dτ

= −
1
2
φ2 + i

1
2
φ+ (−k + iρξφ) f2 +

1
2
ξ2 f 2

2

with initial conditions f1(0) = 0 and f2(0) = 0. Here ω = kθ.
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The solutions for f1 and f2 are:

f1 = ω̃

[
tg− log

(
1−hexp(dt)

1−h

)]
f2 = g

(
1−exp(dt)

1−hexp(dt)

)
d = [θ̂2 + 4c̃]1/2

g =
1
2

(θ̂+ d)

h =
θ̂+ d
θ̂−d

where θ̂(k) = 2
ξ2

[
(1−γ+ iφ)ρξ+

√
k2−γ(1−γ)ξ2

]
, t = 1

2ξ
2τ, ω̃= 2

ξ2ω, and c̃ =
φ2
−iφ
ξ2 .

The advantage of Lewis formula is that it has a better numerical convergence.
The reason is obvious: it has only one integral instead of two in Mikhailov
formula. The following figure shows a test between two formulas. We calculate
the same option and integral interval is set to (0,M). M = 2,3, · · · ,12. For Lewis
formula, an interval (0,6) is enough to converge, while Mikhailov formula needs
an interval (0,12) to converge.

Figure 4.1: Option price with different formula under Heston model

4.3.2 Control variate in Heston model

This section focuses on the instability of the semi-analytical solution of Heston
model. We notice the numerical difficulty on the infinitive integral. When we
cut the integral to finite, it will cause a systematic error. We therefore propose a
more stable solution to overcome this difficulty. Let us consider a similar model
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with deterministic volatility. Instead of integrating the original function, we
integrate the difference between the original function and the function in case of
deterministic. As the new integrand is smoother, we get a better convergence.
Following this idea, we will show more detail in both Mikhailov formula and
Lewis formula.

Our improvement is supported in the section of empirical result. It solves the
failure in calibration caused by instability, especially with in-the-money options.

Here we consider a modified Heston model with deterministic volatility. In
Heston model we take vol of vol ξ = 0 and get the following model:

dS(t)DET

S(t)DET
= µdt +

√
V(t)DETdW1 (4.7)

dV(t)DET = k
(
θ−V(t)DET

)
dt (4.8)

The objective is to improve the closed formula solution of the option price
with Heston Stochastic Model. As the volatility follows a process stochastic,
the convergency of the price formula is not very strong. We try to find out a
variate that increases the convergency of the pricing formula. The variate that we
choose is the price of an option with Heston model but in which the volatility of
volatility is 0. This method is used both for Heston formula and Lewis formula.

Case1: Heston Formula The Heston model without volatility of volatility has
the process for the square of volatility:

dV(t) = k[θ−V(t)]dt (4.9)

which is a deterministic process. Noting Ṽ the option price of Heston model
without volatility of volatility ξ, Ṽ can be written in two ways:

Ṽ = SP̃1−KP̃2

where P̃ j satisfies the same PDEs as P j by setting ξ to 0. And:

Ṽ = SN(d1)−KN(d2) (4.10)

where N is the Gaussian distribution, and by noting σT the total volatility (def-
inition in equation 4.11) of the Heston model without volatility of volatility, we
have

d1 =
logS/K
σT

+
1
2
σT

d2 =
logS/K
σT

−
1
2
σT
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To get the total volatility σT, as we know dV(t) = k[θ−V(t)]dt and V(t) is the
square of volatility, then:

(σT)2 =

∫ T

0
V(t)dt

= θT +
V0−θ

k
(1− e−kT)

And so

σT =

√
θT +

V0−θ
k

(
1− e−kT) (4.11)

By resolving the PDEs of C j and D j with ξ = 0, let DDET
j and CDET

j the solutions
in the case ξ = 0, we have:

DDET
j =

u jφi−1/2φ2

b j
(1− e−b jτ)

CDET
j = a

u jφi−1/2φ2

b2
j

(e−b jτ−1) +
(u jφi−1/2φ2)τ

b j


And we can have the characteristic functions f DET

j of the density function of P̃ j:

f DET
j (x,V,τ;φ) = eCDET

j (τ;φ)+DDET
j (τ;φ)V+iφx (4.12)

We have two different way to calculate the option price with vol of vol = zero.
One is on closed formula in equation 4.10. The other is on integral form with
characteristic functions in equation 4.12. Now the option price can be expressed
by adding and minus the two form on the original formula.

C( f ,V(0), t) = f ˜̃P1−K ˜̃P2 + [SN(d1)−KN(d2)]−
S−K

2
(4.13)

where

˜̃P j = 1/2 +
1
π

∫
∞

0
Re

e−iφln[K]( f j(x,V,T;φ)− f DET
j )

iφ

dφ

The control variate method improve much the calibration process. For Heston
static model, without control variate, we usually can’t success the calibration
process. We know the vega : vega = dC

dV is very small when we are in the money
as we can see in a graph (figure 4.2) for vega with strike = 110.

The Heston formula without control variate calculates the option price in the
money with a difference which results a greater error for the implied volatility.
Because we calibrate to the market implied volatility, we can’t reach the given
calibration level with this formula since the error is accumulated in the calibration
loop to make the whole process fail. To illustrate the effect of control variate,
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Figure 4.2: vega and spot

Figure 4.3: Effect of control variate to implied volatility - without control variate

by taking the same calibrated parameters, here we have the implied volatility
calculated with the Heston formula without control variate at left and the Heston
formula with control variate in figure 4.3 and 4.4.

We see from the figure above that the Heston formula gives a very big error
for the case when the spot is very small. The error is bigger if we have even
smaller spots. This difference is enough for that we can’t success the calibration.
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Figure 4.4: Effect of control variate to implied volatility - with control variate

The error shows that it is more difficult for in-the-money option since vega is
much smaller in this area.

Case2: Lewis Formula We have the same process for the volatility as in the
case of Heston formula. Note C̃ the option price of Heston model with ξ = 0,
then we get:  C̃τ =

1
2

VC̃xx−
1
2

VC̃x + (ω− kV)C̃V if τ > 0

C̃ = ( f (T)−K)+ if τ = 0

where ω = kθ, by doing Fourier Transform of C̃: ˆ̃C =
∫
∞

−∞
eiφxC̃(x,V, t)dx, we get:

ˆ̃Cτ = −
1
2

Vk2 ˆ̃C + i
1
2

Vk ˆ̃C + (ω− kV) ˆ̃CV

for τ > 0 and the initial condition for τ = 0 is the same as in the case with
ξ , 0.
Suppose ˆ̃C = Ȟ(φ,τ,V)∗Payoff Transform, Ȟ(φ,τ,V) = exp( f̃1 + f̃2V) and Ȟ(φ,0,V) =

1 as initial value, we get easily:
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
d f̃1
dτ

= ω f̃2

d f̃2
dτ

= −
1
2
φ2 + i

1
2
φ− k f̃2

with ω = kθ And their solutions:

f̃1 =
φi−φ2

2k
(1− e−kτ)

f̃2 = ω

(
φi−φ2

2k2 (e−kτ
−1) +

(φi−φ2)τ
2k

)
The same as for Heston Formula, we can get the option price by computing

the total volatility and use Black’s formula:

C̃ = fN(d1)−KN(d2)

Finally, we have the option price formula:

C( f ,V,τ) = −
K
2π

∫ iφi+∞

iφi−∞

e−iφX Ĥ
φ2− iφ

dφ+ [ fN(d1)−KN(d2)]

where:
Ĥ = H(φ,τ,V)− Ȟ(φ,τ,V)

and H(φ,τ,V) is the fundamental function that we calculated for Lewis for-
mula(See the section 3.2.2).

The figure 4.5 shows the numerical result of using control variate. We can
spot the zig-zag effect of the price for the formula without control variate. The
control variate makes the price curve smoother and more quickly convergence.

4.3.3 Discussion of numerical stability

As function log(·) is not continuous in C++ for complex numbers, we have to
pay attention during the implementation by using simple a method to track the
angle in order to keep it continuous. For doing this, we can use the method
explained in Kahl and Jackel [2005].

The formulas we have here can be written in another way by changing d to−d.
This is because d is the square root of a complex number and the principal square
root value is returned for d. The principal square root value makes f pass across
the negative real axis when increasing φ and hence leads to a discontinuous
function causing numerical trouble. In contrast, when we change d to −d, we
can go around this difficulty. The proof is given in Albrecher et al. [2007].

The numerical problem of solution (4.4) and (4.6) is that it is a semi-analytic
solution. In practical use, we must replace the infinitive integral to an integral
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Figure 4.5: Option price with different formula under Heston model

from 0 by a large number M. It causes a systematic error. The structure of Vega
also amply the pricing error, especially for the case of in the money options. The
empirical result is also given in Albrecher et al. [2007].

4.3.4 Dynamic Heston Model

For Heston stochastic volatility model with piecewise parameters, we use the
same method as in the case of Heston static stochastic volatility model by
Mikhailov and Nogel [2003b]. The model is presented as:

dF(t) = F(t)
√

V(t)dW1

dV(t) = k(t)(θ(t)−V(t))dt +ξ(t)
√

V(t)dW2 (4.14)

< dW1,dW2 > = ρ(t)dt

Suppose that we have N periods with time intervals [T0,T1], [T1,T2], [T2,T3],
...., [TN−1,TN] where TN = T, and T0 = t, and in each subinterval of time the pa-
rameters are constant. We note the parameters: k1, k1, k1, ..., k1, θ1, θ2, ...., θN, ρ1 ,
ρ2, ..., ρN, and ξ1, ξ2, ..., ξN. As we use the inverse time τ = T− t, the subintervals
for τ become [0,TN −TN−1], [TN −TN−1,TN −TN−2], ..., [TN −T1,TN − t].

Return to the Heston static model, the option price V = f P1−KP2, to calculate
P1 and P2, we introduce their characteristic functions f1 and f2, and f j ( j = 1 or
2) is presented as f j = eC j(T−t;φ)+D j(T−t;φ)V+iφx. Our final task is to resolve the
equations of C j(τ,φ) and D j(τ,φ):
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
dC j(τ;φ)

dτ
− a(T−τ)D(τ,φ) = 0

dD j(τ;φ)
dτ

−

ξ2D2
j (τ;φ)

2
+

(
b j(T−τ)−ρ(T−τ)ξ(T−τ)φi

)
D j(τ,φ)−u jφi +

1
2
φ2 = 0

where a(T − τ) = k(T − τ)θ(T − τ), b1(T − τ) = k(T − τ)− ρ(T − τ)ξ(T − τ) and
b2(T−τ) = k(T−τ).

As the parameters are constant in each subinterval of τ, note i the ith subin-
terval of τ, 1 ≤ i ≤N, we rewrite the equations for C j and D j in the ith subinterval
[TN −TN+1−i,TN −TN−i] of τ where we note Ci

j and Di
j and τ̃ = τ− (TN −TN+1−i):


dCi

j(τ̃;φ)

dτ̃
− aN+1−iDi

j(τ̃,φ) = 0

dDi
j(τ̃;φ)

dτ̃
−

ξ2(Di
j(τ̃;φ))2

2
+ (bN+1−i

j −ρN+1−iξN+1−iφi)Di
j(τ̃,φ)−u jφi +

1
2
φ2 = 0

where bN+1−i
1 = kN+1−i−ρN+1−iξN+1−i, bN+1−i

2 = kN+1−i and 0≤ τ̃≤ TN+1−i−TN−i.

The initial conditions are Ci
j(0), Di

j(0) are to be determined later.

The solution for the previous equations are:

Ci
j(τ̃;φ) =

aN+1−i

ξ2
N+1−i

(bN+1−i
j −ρN+1−iξN+1−iφi + d j

)
τ̃−2log

1− g jed jτ̃

1− g j


+ Ci

j(0)

Di
j(τ̃;φ) =

bN+1−i
j −ρN+1−iξN+1−iφi + d j− (bN+1−i

j −ρN+1−iξN+1−iφi−d j)g jed jτ̃

(1− g jed jτ̃)ξ2
N+1−i

g j =
bN+1−i

j −ρN+1−iξN+1−iφi + d j−Di
j(0)ξ2

N+1−i

bN+1−i
j −ρN+1−iξN+1−iφi−d j−Di

j(0)ξ2
N+1−i

d j =
√

(ρN+1−iξN+1−iφi−bN+1−i
j )2−ξ2

N+1−i(2u jφi−φ2)

For the first interval i = 1, the same as in the constant case, the initial conditions
are:

C1
j (0) = 0,

D1
j (0) = 0.

C j and D j are continuous on τ, so for the second subinterval of τ, we take the
final value of the first subinterval as initial value. We do the same procedure for
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each subinterval of τ, every time we take the final value of previous interval as
initial value, this means for i > 2:

Ci
j(0) = Ci−1

j (TN+2−i−TN+1−i;φ),

Di
j(0) = Di−1

j (TN+2−i−TN+1−i;φ).

The final values of the last subinterval of τ: CN
j (T1 − t;φ) and DN

j (T1 − t;φ)
equal to C j(T− t;φ) and D j(T− t;φ) that we searched for.

Control variate on Heston Dynamic Model

In the Heston static model, we used control variate to improve the closed formula
solution, and we used some methods to resolve the discontinuity problems
during the implementation.

The discontinuity problems exist also in Heston dynamic model, and we use
the same methods as we cited in section 3.2.4 to handle them.

The control variate that we use here is an option which follows the Heston
dynamic model without the volatility of volatility, which means ξ(t) = 0. So the
volatility part is a deterministic part instead of a volatility process:

dV(t) = k(t)(θ(t)−V(t))dt

In this part, we use the same notation as for the Heston static model. As pa-
rameters are piecewise constant, we compute CDET

j and DDET
j in each subinterval

of τ. The only difference is that the initial values for each subinterval (DDET
j (0),

CDET
j (0)) are not 0 except for the first subinterval. So we have the solutions for

each subinterval of τ as following:

DDET
j =

u jφi−1/2φ2

b j

(
1− e−b jτ

)
+ DDET

j (0)e−b jτ

CDET
j = a

u jφi−1/2φ2

b j
−DDET

j (0)

 1
b j

(
e−b jτ−1

)
+

(u jφi−1/2φ2)τ
b j

+ CDET
j (0)

And the final values of the last subinterval are the values of CDET
j (T− t;φ) and

DDET
j (T− t;φ) that we need to compute f DET

j .
The other way to calculate the option value by using the total volatility σT is

quite the same as in the Heston static model. We can write:
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(σT)2 =

∫ T

0
V(t)dt

=

N∑
i=1

θi(Ti−Ti−1) + (V0
i −θi)

(
−

1
ki

)(
e−kiTi − e−kiTi−1

)
where

V0
i = V(Ti−1) = θi−1 + (V0

i−1−θi−1)e−ki−1(Ti−1−Ti−2)

and V0
1 = V0.

The same way as in section 3.2.3, the option price can be expressed by:

C( f ,V(0), t) = f ˜̃P1−K ˜̃P2 + [ fN(d1)−KN(d2)]−
f −K

2
(4.15)

where

˜̃P j = 1/2 +
1
π

∫
∞

0
Re


e−iφ logK

(
f j(x,V,T;φ)− f DET

j

)
iφ

dφ

4.4 Piterbarg model

In this section we extend the closed form formula for square root stochastic
volatility model with time-dependent parameters. An earlier result by Piterbarg
has two constraints on parameters: 1. the correlation between the stochastic
processes of underlying and volatility must be zero; 2. mean reversion parameter
is constant. By employing our new calculation, we are able to remove the two
constraints. The formula can facilitate the calibration of the model.

In the second part, we show an application. We use the result that we have
obtained and extend the closed form formula of another stochastic volatility
model, SABR model, by removing the constraint on the parameter “skew".

One of the recent results on square root model is the method of “effective"
parameters, introduced by Piterbarg [2005] Piterbarg [2003]. The author suggests
replacing the time-dependent parameters by their average so that the model can
be converted into a static one. The kernel calculation shows how to get the
averages from the piecewise parameters in order to approximate the original
model as closely as possible. The method is lightweight comparing to asymptotic
expansion method and still have good performance.

However, there are two constraints on parameters in the calculation: 1. the
correlation between the stochastic processes of underlying and volatility must
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be zero; 2. mean reversion parameter is constant. To remove these constraints,
we employ Malliavin calculus and perform integration by parts on random
variables.

The main result of this paper includes two different closed form formula for
square root model. In the first formula, we follow the same line with Piterbarg,
and find all the effective parameters. The other way is to transform the model to
Heston model, of which the closed form formula is already known. Interestingly,
when changing the parameters, we have a constraint: to keep the continuity of
the underlying process, the parameter “skew” must be constant, and to average
the skew we once more find the need of zero correlation. In a word, it turns out
to be the same question with the previous formula. Therefore, the solution for
the first formula can apply to the second.

This article is organized in the following way. In chapter 2 we present square
root SV model. In chapter 3 we see the transform to Heston model. In chapter 4
we review Piterbarg’s result. Chapter 5 is the main result: we show the formula
without the previous constraint. In the last chapter, we show one application on
SABR model.

4.4.1 Diffusion and formula for vanilla option

In this section, we present the square root stochastic volatility model. Suppose
the price of an underlying S(t) follows a shifted log-normal diffusion.

dS(t) = σ(βS(t) + (1−β)S(0))
√

z(t)dU(t) (4.16)

dz(t) = θ(z(0)− z(t))dt +γ
√

z(t)dV(t) (4.17)

where d〈U,V〉 = ρdt.

In this model, z(t) is the variance of S(t); it follows a CIR process. z(0) is the
initial value of variance z(t). σ is the deterministic part of the volatility. β is called
skew parameter; usually, 0 6 β 6 1; when β = 1, the process is log-normal; when
β = 0, the process is normal. θ is the mean reversion of the volatility process. γ
is the volatility of volatility. U(t) and V(t) are two Brownian motions and their
correlation is ρ.

We can extend the model (4.16), (4.17) with time-dependent parameters. To
distinguish the extended model from the original one, we call model (4.16), (4.17)
static model and call extended model dynamic model. The dynamic model is
the primary target in this article.

dS(t) = σ(t)(β(t)S(t) + (1−β(t))S(0))
√

z(t)dU(t) (4.18)

dz(t) = θ(t)(z(0)− z(t))dt +γ(t)
√

z(t)dV(t) (4.19)

where d〈U,V〉 = ρ(t)dt.
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The parameters of the model are continuous. But for practical use, we prefer to
supposing the parameters to be piecewise constant. It is because in calibration we
fit the price of options on certain maturities. There is no information about how
the parameters evolve between the maturities. So the assumption of piecewise
constant parameters won’t damage the generality of the model.

More precisely and mathematically, we can present the assumption of piece-
wise constant parameters in the following way. Suppose that we have n dif-
ferent maturities t1, t2, ..., tn. Therefore we divide the parameters in n periods:
0 = t0 < t1 < t2 < · · · < tn = T. When ti−1 < t 6 ti, the parameters are constant on the
interval, we note σ(t) = σi, γ(t) = γi, ρ(t) = ρi, θ(t) = θi ,β(t) = βi.

Now we show the closed formulas of European options on our model. First
we give the formula for the static model, then for the dynamic model. In both
cases, we suppose that the option has strike K and maturity T.

Closed formula for static model

We list the closed formula for static model in this subsection. It will be refer-
enced in following sections.

We rewrite the static model (4.16), (4.17) here.

dS(t) = σ(βS(t) + (1−β)S(0))
√

z(t)dU(t)

dz(t) = θ(z(0)− z(t))dt +γ
√

z(t)dV(t)

where d〈U,V〉 = ρdt.

This model can be regarded as a shifted Heston model. The closed formula
of Heston model can refer the result of Lewis [2000] and Mikhailov and Nogel
[2003a] in last section. So all we need to do is to change the variables to convert
the model to Heston model.

Let S̃(t) = S(t) +
1−β
β S(0). z̃(t) = σ2β2z(t). γ̃ = σβγ. Then we get a Heston model.

dS̃(t) = S̃(t)
√

z̃(t)dU(t) (4.20)

dz̃(t) = θ(z̃(0)− z̃(t))dt + γ̃
√

z̃(t)dV(t) (4.21)

where d〈U,V〉 = ρdt, with S̃(0) = 1
βS(0).

Here we list the closed formula for Heston model. It bases on the Fourier
transform of characteristic function.



CHAPTER 4. STOCHASTIC VOLATILITY MODEL 56

Proposition 23. Suppose we have a Heston model.

dS(t) = S(t)
√

V(t)dW1

dV(t) = k(θ−V(t))dt +ξ
√

V(t)dW2 (4.22)

d〈W1,W2〉t = ρdt

Then the price of a European call option with maturity T and strike K is,

Call = S(0)P1(0)−KP2(0)

where

P j(t) = 1/2 +
1
π

∫
∞

0
Re

e−iφ log(K) f j(x,V, t,T;φ)
iφ

dφ

f j(x,V, t,T;φ) = eC j(T−t;φ)+D j(T−t;φ)V+iφx

C j(τ;φ) =
a
ξ2

(b j−ρξφi + d j)τ−2log

1− g jed jτ

1− g j




D j(τ;φ) =
b j−ρξφi + d j

ξ2 ·
1− ed jτ

1− g jed jτ

g j =
b j−ρξφi + d j

b j−ρξφi−d j

d j = −
√

(ρξφi−b j)2−ξ2(2u jφi−φ2)

with j = 1,2, u1 = 1/2, u2 = −1/2, a = kθ, b1 = k−ρξ, b2 = k.

4.4.2 Piterbarg Dynamic model

Dynamic model with zero correlation

In this subsection we show the result of Piterbarg [2005]. His idea is to find a
static model to mimic the original dynamic model, in the objective of having the
same price for a European options. This technique is called parameter averaging.

Here two constraints are added on the dynamic model: mean reversion θ is
constant and the correlationρ is zero. The latter assumption is strong because that
correlation controls the form of volatility smile. How to release this constraint is
the main purpose of this article and will be presented in the following sections.

dS(t) = σ(t)(β(t)S(t) + (1−β(t))S(0))
√

z(t)dU(t) (4.23)

dz(t) = θ(z(0)− z(t))dt +γ(t)
√

z(t)dV(t) (4.24)

where d〈U,V〉 = 0.
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Piterbarg gave three approximate formula to convert γ(t), β(t) and σ(t) to three
constants, namely η, b and λ. After applying these three formulas, we have a
static model. The closed formula of a static model have already solved in section
(4.4.1).

dS(t) = λ(bS(t) + (1−b)S(0))
√

z(t)dU(t) (4.25)

dz(t) = θ(z(0)− z(t))dt +η
√

z(t)dV(t) (4.26)

where d〈U,V〉 = 0.

Parameter averaging formula To approximate the same price for European op-
tions with maturity T, the parameters in model (4.25) (4.26) should satisfy the
following equations. Basically, we use η, b and λ in the static model (4.25) (4.26)
to replace γ(t), β(t) and σ(t) in model (4.23) (4.24).

Proposition 24. (Piterbarg [2005]) For parameter η,

η2 =

∫ T
0 γ

2(t)p(t)dt∫ T
0 p(t)dt

with p(t) =
∫ T

r ds
∫ T

s dtσ2(s)e−θ(t−s)e−2θ(s−r)

Proof. σ(t) is the determinist part of the variance; z(t)is the volatility part of the
variance on the other hand. It can change the curvature of the implied volatility
smile. The curvature is

∫ T
0 σ

2(t)z(t)dt−σ2(t)z(t); as the termσ2(t)z(t) is constant,

therefore,
∫ T

0 σ
2(t)z(t)dt should be the same in both two models. This gives the

following equation:

E

(∫ T

0
σ2(t)z(t)dt

)2

= E

(∫ T

0
σ2(t)z(t)dt

)2

(4.27)

Calculation can be detailed in the following way. Fubini’s theorem is employed.
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E

(∫ T

0
σ(t)2z(t)dt

)2
=E

[(∫ T

0
σ(t)2z(t)dt

)(∫ T

0
σ(s)2z(s)ds

)]
=E

[∫ T

0

∫ T

0
σ(t)2σ(s)2z(t)z(s)dsdt

]
=2

∫ T

0

∫ t

0
σ(t)2σ(s)2E [z(t)z(s)]dsdt (4.28)

=2
∫ T

0

∫ t

0
σ(t)2σ(s)2

(
z0

∫ s

0
eθ(2r−s−t)γ(r)2dr + z2

0

)
dsdt

=2z0

∫ T

0

∫ T

r

∫ T

s
σ(t)2σ(s)2eθ(2r−s−t)γ(r)2dtdsdr + 2z2

0

∫ T

0

∫ t

0
σ(t)2σ(s)2dsdt

=2z0

∫ T

0
γ(r)2ρ(r)dr + z2

0

∫ T

0

∫ T

0
σ(t)2σ(s)2dsdt

Where, ρ(r) =
∫ T

r ds
∫ T

s dtσ(t)2σ(s)2e−θ(t−s)e−2θ(s−r)

We substitute this result to (4.27), and get 2z0
∫ T

0 γ(r)2ρ(r)dr = 2z0
∫ T

0 η
2ρ(r)dr

This gives that, η2 =

∫ T
0 γ(r)2ρ(r)dr∫ T

0 ρ(r)dr

In the above equation we use the covariance of the z(s), which can be derived
in the following way.

To calculate the covariance of z(s), this follows:

dz(s) = θ(z0− z(s))ds +γ(s)
√

z(s)dV(s) , z(0) = z0

Let x(s) = eθs(z(s)− z0).

So we can derive that x(0) = 0 ,E[x(s)] = 0 and z(s) = x(s)e−θs + z0.

Therefore,

dx(s) = θeθs(z(s)− z0)ds + eθsdz(s)

= eθsγ(s)
√

x(s)e−θs + z0dV(s)

So the covariance of E(x(s)x(t)), s 6 t is
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E(x(s)x(t)) = E

[∫ s

0
eθrγ(r)

√
x(r)e−θr + z0dV(r)

∫ t

0
eθrγ(r)

√
x(r)e−θr + z0dV(r)

]
= E

[∫ s

0
e2θrγ(r)2

(
x(r)e−θr + z0

)
dr

]
= z0

∫ s

0
e2θrγ(r)2dr

Now we substitute x(s) = eθs(z(s)− z0)into the left-hand side of the formula
above.

E
[(

eθs(z(s)− z0)
)(

eθt(z(t)− z0)
)]

= z0

∫ s

0
e2θrγ(r)2dr

E [(z(s)− z0)(z(t)− z0)] = z0e−θ(s+t)
∫ s

0
e2θrγ(r)2dr

We note that,E[z(s)] = z0

So

E[z(s)z(t)] = z2
0 + z0e−θ(s+t)

∫ s

0
e2θrγ(r)2dr (4.29)

which proves the result.
�

Proposition 25. For parameter b,

b =

∫ T

0
β(t)w(t)dt

with w(t) =
v2(t)σ2(t)∫ T

0 v2(t)σ2(t)dt

v2(t) = z2
0

∫ t

0
σ2(s)ds + z0η

2e−θt
∫ t

0
σ2(s)

eθs
− e−θs

2θ
ds

Proposition 26. For parameter λ, we need to solving an equation numerically.

E

[
g
(∫ T

0
σ2(t)z(t)dt

)]
= E

[
g
(
λ2

∫ T

0
z(t)dt

)]
with g(x) = S0

b

(
2N

(
1
2 b
√

x
)
−1

)
N(·) is standard normal cumulative distribution function.

Proof. The proof of proposition 25 and 26 can be found in appendix A.1 and
A.2. �
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Remark An interesting fact is that the zero correlation condition is only used
in the proof of proposition 25. In another word, proposition 24 and 26 can work
with a non-zero correlation model, such as model (4.18) (4.19). So we can target to
improve this calculation by relaxing the need of the zero correlation assumption.

Remark 2 The formulas in Proposition 24, 25 and 26 can apply to both contin-
uous parameters and piecewise constant parameters.

Dynamic model with constant skew parameter In this part, we follow the idea
in section 4.4.1, and regard the square root SV model as a shifted Heston model.
Since we know the closed formula for dynamic Heston model, all we have to do
is to find a change of variables to connect these two models.

Suppose the skew parameter is constant; that is to say β(t) ≡ b in model (4.18)
(4.19). We re-write square root SV model here.

dS(t) = σ(t)(bS(t) + (1− b)S(0))
√

z(t)dU(t) (4.30)

dz(t) = θ(t)(z(0)− z(t))dt +γ(t)
√

z(t)dV(t) (4.31)

where d〈U,V〉 = ρ(t)dt.

Then we take the change of variables in section 4.4.1, saying S̃(t) = S(t)+ 1−b
b S(0).

The model can change to a Heston model.

dS̃(t) = σ(t)S̃(t)b
√

z(t)dU(t) (4.32)

dz(t) = θ(t)(z(0)− z(t))dt +γ(t)
√

z(t)dV(t) (4.33)

where d〈U,V〉 = ρ(t)dt. S̃(0) =
S(0)

b .

The hypothesis of constant β(t) is necessary because it keeps the continuity of
S̃(t). Otherwise we cannot use the result of Heston model on S̃(t). The following
proposition shows a closed formula for Heston model.

Proposition 27. The price for a European call option with maturity T, strike K under
model (4.32) (4.33) is given by the following equation.

V = S̃(0)P1(0)− K̃P2(0)

with K̃ = K + 1−b
b S(0)
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Where, for j = 1,2, note u1 = 1/2, u2 = −1/2, a = θ(t)z(0), b1 = θ(t)−ρ(t)γ(t)σ(t)b,
b2 = θ(t)

P j(t) = 1/2 +
1
π

∫
∞

0
Re

e−iφln(K̃) f j(x,V, t,T;φ)
iφ

dφ

f j(x,V, t,T;φ) = eC j(T−t;φ)+D j(T−t;φ)V+iφx

With

C j(τ;φ) =
a

γ2(T−τ)

(b j−ρ(T−τ)γ(T−τ)σ(T−τ)bφi + d j)τ−2log

1− g jed jτ

1− g j




D j(τ;φ) =
b j−ρ(T−τ)γ(T−τ)σ(T−τ)bφi + d j

γ2(T−τ)
·

1− ed jτ

1− g jed jτ

g j =
b j−ρ(T−τ)γ(T−τ)σ(T−τ)bφi + d j

b j−ργφσ(T−τ)βi−d j

d j = −

√(
ργσ(T−τ)bφi−b j

)2
−γ2

(
2u jσ2(T−τ)b2φi−σ2(T−τ)b2φ2

)
Note that i =

√
−1 is the unit of pure imaginary number.

Proof. The proof is very similar to the proof in Mikhailov and Nogel [2003a] on
dynamic Heston model. �

Remark The proposition can apply to both continuous parameters and piece-
wise constant parameters.

Dynamic model without constraint

We rewrite the model here.

dS(t) = σ(t)(β(t)S(t) + (1−β(t))S(0))
√

z(t)dU(t) (4.34)

dz(t) = θ(t)(z(0)− z(t))dt +γ(t)
√

z(t)dV(t) (4.35)

where d〈U,V〉 = ρ(t)dt.

First we analyze why we introduce the constraints in previous sections. In
section 4.4.2, we use the condition of zero correlation in the proof of proposition
24. More precisely, in equation (A.6) of the proof of proposition 25 we use the
condition of zero correlation to calculate v2(t). The definition of v2(t) is in (A.4).
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For the closed formula in section 4.4.2, we have a constraint of constant skew
β(t). If we first use parameter averaging technique on parameter β(t), we can
remove this constraint. However it introduces the constraint of zero correlation.
We find the same problem as in the previous case.

In conclusion, both problems need a new way to average the parameter β(t).
More precisely, we need to calculate v2(t) in case of non-zero correlation. The
method we propose here is to use the formula of integration by parts.

Proposition 28. Suppose all the parameters of the model are piecewise constant. Sup-
pose we have n periods: 0 = t0 < t1 < t2 < · · · < tn = T. The parameters are piecewise
time-dependent. When ti−1 < t < ti, we note σ(t) = σi, γ(t) = γi, ρ(t) = ρi, θ(t) = θi

,β(t) = βi, Bi = 4γiσiρi−θi.
Then the value of v2(t) in equation (A.4) with ti−1 < t 6 ti is given by:

v2(t) =v2(ti−1)e(t+1)Bi +
(
e(t−ti−1)Bi −1

)
σ2

i z0
1
Bi

(
z0 +

1
2θi

γ2
i

)
+ z2

0σ
2
i θi

1
Bi

(
e(t−ti−1)BiBiti−1 + e(t−ti−1)Bi −Bit−1

)
−

1
2θi(Bi + 2θi)

σ2
i z0γ

2
i

(
e(t−ti−1)Bi−2θiti−1 − e−2θit

)
with v2(t0) = 0

Proof. See the proof in appendix A.3. �

Remark Obviously, the proposition can only apply to the case of piecewise
constant parameters.

Piterbarg Dynamic Model with ρ = 0 and constant k

In this case, we use effective medium values of the parameters and we change
the problem into the constant case.

The effective values for each parameter are computed in Piterbarg [2005] and
Piterbarg [2003]. Note ξ̄ the effective volatility of volatility, β̄ the effective skew,
and σ̄ the effective volatility, the final constant model that replaces the dynamic
model is:

dS(t) = σ̄
[
β̄S(t) + (1− β̄)F(0)

] √
V(t)dW1

dV(t) = k(V(0)−V(t))dt + ξ̄
√

V(t)dW2

< dW1,dW2 > = 0
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The effective volatility of volatility ξ̄:

(ξ̄)2 =

∫ T
0 ξ

2(s)g(s)ds∫ T
0 g(s)ds

where g(.) satisfies:

g(t) =

∫ T

t
ds

∫ T

s
drσ2(r)σ2(s)e−θ(r−s)e−2θ(s−t)

The effective skew β̄:

β̄ =

∫ T

0
β(s)w(s)ds

where the weights w(.) is given by:

w(t) =
ν2(t)σ2(t)∫ T

0 ν
2(t)σ2(t)dt

ν2(t) = V2
0

∫ t

0
σ2(s)ds + V0(ξ̄)2e−θt

∫ t

0
σ2(s)

eθs
− e−θs

2θ
ds

The effective volatility σ̄ is the solution of:

ψ0

(
−

g”(ζ)
g′(ζ)

σ̄2
)

= ψ

(
−

g”(ζ)
g′(ζ)

)
where

ζ = V0

∫ T

0
σ2(t)dt

ψ(µ) = E
[
exp

(
−µV(T)

)]
ψ0(µ) = E

[
exp

(
−µ

∫ T

0
V(t)dt

)]

Piterbarg Dynamic Model with constant β

In this case, by doing the following transformations:

L(t) = F(t) +
1−β
β

F(0)

Z(t) = σ2(t)β2V(t)

we have:
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

dL(t) = L(t)
√

Z(t)dW1

dZ(t) = k(t)(θ(t)−Z(t))dt + ξ̃(t)
√

Z(t)dW2

< dW1,dW2 > = ρ(t)dt

L(0) =
F(0)
β

Z(0) = σ2(0)β2V(0)

where:

θ(t) = σ2(t)β2V(0)

ξ̃(t) = ξ(t)σ(t)β

Now as the parameters are piecewise constant, we use the method that we
introduced for Heston dynamic model to get the option price.

Note: In the case when β is piecewise constant too, the tranformation: L(t) =

F(t) +
1−β
β F(0) introduces jumps for the forward at the end of each constant pa-

rameter period. So L(t) is not continuous. We can’t use exactly the same method
as we used in the Heston model.

4.4.3 Summary

Finally, let us summarize the result here. We showed two paths to find a closed
formulas without constraints on parameters.

First path, we use proposition 24, 25 and 26 with replacing the calculation
of v2(t) by proposition 28. As we convert the dynamic model to a static model,
we can use proposition 23 to get a closed formula. In this case, the correlation
is piecewise constant. This constraint may be relaxed by averaging a time-
dependent correlation to a constant correlation. That is left for future research.

Second path, we use the calculation of β(t) in proposition 23 to convert β(t)
to b, where the calculation of v2(t) is replaced by proposition 28. Then we use
proposition 27 to get a closed formula. In this case, correlation and skew are
both time-dependent.

As we can see, proposition 28 enables us to avoid the constraint of zero
correlation in both paths.

4.5 SABR model

4.5.1 Diffusion

SABR model is a stochastic volatility model which name stands for “Stochastic-α-
β-ρ model”. The model and its dynamic variation are first introduced by Hagan
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et al. [2002]. It is mainly used for forward interest rate and other asset classes
including commodity. The diffusion of SABR model is defined as follows.

Definition 29 (SABR model). Denote Ft = F(t,T) the forward of underlying (i.e.
commodity) at time T, observing at time t, and denote αt the volatility of underlying at
date t, then SABR model is given by:

dFt = αtFt
βdW1 (4.36)

dαt = γαtdW2 (4.37)

Where W1 and W2 are two standard Brownian motion with correlation ρ. Skew
parameter β and vol of vol parameter γ are constant.

The parameters in this model are

1. α(0) - the initial value of volatility at time t = 0,

2. β - skew parameter. When β = 0, the model becomes to normal; when β = 1,
the model is log-normal model,

3. γ - vol of vol parameter. When γ = 0, the model reduces to a CEV model.

4. ρ - the correlation between the two Brownian processes W1 and W2.

Remark By using forward Ft instead of spot price at time t, the model already
includes the information of convenience yield and discounting term in forward.
Therefore, there is no drift term in the stochastic diffusion. Moreover, we have
FT = F(T,T) = ST the forward at time T observed at time T, which is obviously
the spot price ST at time T.

If we let parameters depend on time, namely β to β(t), γ to γ(t) and ρ to ρ(t),
then we extend SABR model to dynamic SABR model.

Definition 30 (Dynamic SABR model). Denote Ft = F(t,T) the forward of underlying
(i.e. commodity) at time T, observing at time t, and denote αt the volatility of underlying
at date t, then dynamic SABR model is given by:

dFt = αtFt
β(t)dW1 (4.38)

dαt = γ(t)αtdW2 (4.39)

Where W1 and W2 are two standard Brownian motion with correlation ρ(t). Skew
parameter β(t) and vol of vol parameter γ(t) are time-dependent.
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4.5.2 Static SABR model

Proposition 31 (Vanilla option price under SABR model, Hagan et al. [2002]).
Under SABR model, the price (at time t = 0) V of a vanilla call option with strike K
and maturity T is defined as V = D(0,T)E[(ST −K)+

|F0]. Here D(0,T) is the discount
factor, which equals to the value of 1 unit bond at time 0 with maturity at time T.
Forward Ft follows the same definition in SABR model. F0 is the filtration of probability
space at time 0.

Then we can have the formula for V in form of Black Scholes formula:

V = D(0,T) (F0N(d1)−KN(d2)) (4.40)

where F0 = F(0,T) is the forward observed at time 0 with maturity T. N(x) =
1

2π

∫ x
−∞

e−t2/2dt is the cumulative distribution function of standard normal distribution.

d1,2 = log(F0/K)± 1
2
σBS

2T
σBS
√

T
. Implied Black Scholes volatility σBS is given by

σBS =
α

(F0K)(1−β)/2
·

1

1 +
(1−β)2

24 ln2 F0/K +
(1−β)4

1920 ln4 F0/K + ...
·
ζ

x(ζ)

·

{
1 +

[
(1−β)2α2

24(F0K)1−β
+

ραγβ

4(F0K)(1−β)/2
+

2−3ρ2

24
γ2

]
T + ...

}
(4.41)

where

ζ =
γ

α

√
F0K log(F0/K) (4.42)

x(ζ) = log


√

1−2ρζ+ζ2−ρ+ζ

1−ρ

 (4.43)

Remark The pricing of SABR model with constant parameters is well presented
by Hagan et al. [2002]. In practise, Benhamou and Croissant [2007] use Taylor
series to get a more precise implied volatility when we are at the money. Closed
formula for static SABR model is given in Hagan et al. [2002].

4.5.3 Dynamic SABR model

For dynamic model, Hagan et al. [2002] showed a closed formula with constant
skew β(t) ≡ β. In Wang [2009], the parameter averaging technique is employed;
it shows another closed formula with zero correlation ρ(t) ≡ 0.

We follow the same line with Wang [2009], applying the parameter averaging
technique. We loosen the constraint of zero correlation ρ(t) ≡ 0 to the condition
of ρ(t) ≡ ρ being constant. We target to convert the dynamic model in equation
4.38 and 4.39 to a static model in the following form.
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dα(t) = να(t)dV(t)

dS(t) = α(t)S(t)bdU(t)

d〈U,V〉t = ρdt

For parameters γ(t) of the dynamic model, the calculation doesn’t need the
zero correlation condition in Wang [2009]; therefore we take directly the result
from the paper and we don’t list the result in this thesis. Here we focus on the
calculation of β(t).

Proposition 32. Suppose all the parameters of the model are piecewise constant. Sup-
pose we have n periods: 0 = t0 < t1 < t2 < · · · < tn = T. The parameters are piecewise
time-dependent. When ti−1 < t < ti, we note γ(t) = γi, ρ(t) = ρi, β(t) = βi, Bi = 4γiσiρi.
For parameter b,

b =

∫ T

0
β(t)w(t)dt

with w(t) =
v2(t)σ2(t)∫ T

0 v2(t)σ2(t)dt

v2(t) = v2(ti−1)e(t+1)Bi +
z0

4ρi

(
1

4ρi
+σiγit +

σiz0

γi

)(
eBi(t−ti−1)

−1
)

Proof. We use the same calculation with the proof of proposition 28. The only
difference is that the volatility process (equation 4.37) of SABR has no drift.
Therefore, we take the limit of the result in proposition 28 when drift term θ(t)
tends to zero. Then we get the result of proposition 32. �

Remark With proposition 32, we convert the dynamic model to a static SABR
model. Then we can use the closed formula for a static SABR model.

In proposition 32, correlation is actually piecewise constant. It means that
the constraint of correlation being constant can be removed if we can find a way
to averaging a piecewise constant correlation. That is left for future research.

Vol of vol expansion for SABR with constant β

For a SABR model with constant β, we can use the effective medium parameter
method. Firstly, the model is:

dF(t) = α(t)F(t)βdW1

dα(t) = γ(t)α(t)dW2

< dW1,dW2 >= ρ(t)dt

as in the constant case, we will rewrite α−→ εα and γ−→ εγ, with ε� 1 which is
the distinguished limit. And we get the answers in terms of the original variables
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by replacing εα −→ α and εγ −→ γ after obtaining the results.

Let V(t, f ,α) be the value of a European call option at date t, with the economy
in state F(t) = f , α(t) = α. Let also T be the option’s expiry, and K be its strike.

As in the constant parameter case, by defining the probability density p(t, f ,α;T,F,A):

p(t, f ,α;T,F,A)dFdA = prob{F < F(T) < F + dF,A < α(T) < A + dA | F(t) = f ,α(t) = α}

And

P(t, f ,α;T,K) =

∫
∞

−∞

A2p(t, f ,α;T,F,A)dA

we have:

V(t, f ,α) = [ f −K]+ +
1
2
ε2K2β

∫ T

t
P(t, f ,α;s′,K)ds′

where P(t, f ,α;T,K) satisfies the forward problem:

Pt +
1
2
ε2

{
α2C2( f )P f f + 2η(t)α2C( f )P fα+ v2(t)α2Pαα

}
= 0 for t < T

P = α2δ( f −K) for t = T

where

η(t) = ρ(t)γ(t)

v(t) = γ(t)

We solve this problem by using an effective media strategy. Our objective
is to determine constant values η̄ and v̄ yield the same option price as the time
dependent coefficients η(t) and v(t). Then the problem is reduced to the non-
dynamic SABR model solved before.

Noting C( f ) = f β, and C(0) = Kβ. By defining the variate z:

z =
1
εα

∫ f

K

d f ′

C( f ′)

we have the probability density P is Gaussian in z.

We carry out this strategy to resolve the near-Hamiltonian system by applying
the same series of time-independent transformations L that was used to solve
the non-dynamic SABR model before. The transformations here are in terms of
the constants η̄ and v̄ to be determined later.

We name L all the transformations used:
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1. z = 1
εα

∫ f
K

d f ′

C( f ′) ;

2. P = α
εK−βP̂;

3. P̂ =

√
f β

KβH;

4. H = eε
2ργb1z2/4Ĥ;

5. x = 1
εγ

∫ εγz
0

dξ
√

1−2ρξ+ξ2
= 1
εγ log

( √
1−2εργz+ε2γ2z2−ρ1+εγz

1−ρ

)
;

6. Ĥ =
(
1−2εργz +ε2γ2z2

)1/4
Q;

Then, the value V(t, f ,α) can be written as:

V = [ f −K]+ +
1
2
εα

√
Kβ f βI1/2(εv̄z)e1/4ε2αb1δz2

∫ T−t

0
Q(τ,x)dτ (4.44)

where I(ζ) =
√

1−2ρζ+ζ2, fav =
√

f K, b1 =
β
fav

, b2 =
β(β−1)

f 2
av

.
Q satisfies:

Qt +
1
2

Qxx = ε[(η− η̄)xQxx] +ε2
[1
2

(
v2
− v̄2
−3η̄(η− η̄)

)
x2Qxx

+
1
2
αb1(η−δ)(xQx−Q)−

3
4
αb1δQ− v̄2

(1
4

I”I−
1
8

I′I
)
Q−α2

(1
4

b2−
3
8

b2
1

)
Q
]

for t < T

Q = δ(x) for t = T

Using perturbation expansion, we expand Q(t,x,T) as:

Q(t,x,T) = Q(0)(t,x,T) +εQ(1)(t,x,T) +ε2Q(2)(t,x,T) + ...

Then we get the equations that satisfy Q0, Q1 and Q2:Q(0)
t +

1
2

Q(0)
xx = 0 for t < T

Q(0) = δ(x) for t = TQ(1)
t +

1
2

Q(1)
xx = (η− η̄)xQ(0)

xx for t < T

Q(1) = 0 for t = T


Q(2)

t +
1
2

Q(2)
xx =

1
2

(
v2
− v̄2
−3η̄(η− η̄)

)
x2Q(0)

xx +
1
2
αb1(η−δ)

(
xQ(0)

x −Q(0)
)
−

3
4
αb1δQ(0)

− v̄2
(1
4

I”I−
1
8

I′I
)
Q(0)
−α2

(1
4

b2−
3
8

b2
1

)
Q(0) + (η− η̄)xQ(1)

xx for t < T

Q(2) = 0 for t = T
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By resolving these standard diffusion equations, we set some parts to 0 and find
values for η̄, v̄, δ, τ̄:

η̄ =

∫ T
t (T− s)η(s)ds

1
2 (T− t)2

δ =η̄

v̄2 =
1

1
3 (T− t)3

{∫ T

t
(T− s)2v2(s)ds−3η̄

∫ T

t
(T− s)2[η(s)− η̄]ds

−6
∫ T

t

∫ s1

t
(s1− s2)[η(s1)− η̄][η(s2)− η̄]ds2ds1

}
τ̄ =T− t +

∫ T−t

0
s[v2(s)− v̄2]ds

Then the option price is identical to the static model’s option price by making
the identifications:

ρ�
η̄
v̄ , γ� v̄, τ� τ̄

SABR: Dynamic β

For a SABR model with a non-constant β, it is not easy to find out an effective
medium value for β. But as we have seen during the search for the effective
medium values, we have the formula to calculate the option price in the form of
an integration. The integrand is a function continuous on time. Inspired from
this, we can compute the option price with β depending on time. The model is
given as: 

dF(t) = α(t)F(t)β(t)dW1

dα(t) = γ(t)α(t)dW2

< dW1,dW2 >= ρ(t)dt

We consider firstly the most simple case where we have just two periods:

Hypotheses: Suppose that all the parameters are piecewise, and we just have
two periods: from 0 to T1 and from T1 to T2.

In the case of SABR model, we have parameters as

α(t) = α0 if t = 0

β(t) =

β1 if 0 6 t 6 T1

β2 if T1 6 t 6 T2
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ρ(t) =

ρ1 if 0 6 t 6 T1

ρ2 if T1 6 t 6 T2

γ(t) =

γ1 if 0 6 t 6 T1

γ2 if T1 6 t 6 T2

We define the probability density p and P as before, we can write the value as:

V(t, f ,α) = [ f −K]+ +
1
2
ε2

∫ T2

0
K2β(T2−τ)P(τ, f ,α)dτ

where P(τ, f ,α) satisfies the forward problem:

Pτ =
1
2
ε2

{
α2 f 2β(T2−τ)P f f + 2ρ(T2−τ)α2 f β(T2−τ)P fα+γ2(T2−τ)α2Pαα

}
for τ > 0

P = α2
0δ( f −K) for τ = 0

As the parameters are piecewise constant, we rewrite the equation above as
following:

V(t, f ,α) = [ f −K]+ +
1
2
ε2

∫ T2−T1

0
K2β2P(τ, f ,α)dτ+

1
2
ε2

∫ T2

T2−T1

K2β1P(τ, f ,α)dτ

and

Pτ =
1
2
ε2

{
α2 f 2β2P f f + 2ρ2α

2 f β2P fα+γ2
2α

2Pαα
}

for 0 < τ < T2−T1

Pτ =
1
2
ε2

{
α2 f 2β1P f f + 2ρ1α

2 f β1P fα+γ2
1α

2Pαα
}

for T2−T1 < τ < T2

P = α2
0δ( f −K) for τ = 0

P is a function continuous on time t. The option price computing problem can
be reduced to:

V(t, f ,α) = V(2) + V(1) (4.45)

V(2) = [ f −K]+ +
1
2
ε2

∫ T2−T1

0
K2β2P(2)(τ, f ,α)dτ

V(1) =
1
2
ε2

∫ T2

T2−T1

K2β1P(1)(τ, f ,α)dτ

where

P(2)
τ =

1
2
ε2

{
α2 f 2β2P(2)

f f + 2ρ2α
2 f β2P(2)

fα+γ2
2α

2P(2)
αα

}
for 0 < τ < T2−T1

P(2) = α2
0δ( f −K) for τ = 0 (4.46)

and

P(1)
τ =

1
2
ε2

{
α2 f 2β1P(1)

f f + 2ρ1α
2 f β1P(1)

fα+γ2
1α

2P(1)
αα

}
for T2−T1 < τ < T2

P(1) = P(2)(T2−T1) for τ = T2−T1 (4.47)



CHAPTER 4. STOCHASTIC VOLATILITY MODEL 72

Remark1: V(2) is the value of a portfolio in state F̂(0) = f , α̂(0) = α0 at date 0,
with parameters of the second period and maturity equal to T2−T1.

P(2)(T2 −T1) can be got easily regarding to the constant case. By doing some
simplifications and transformations (see detail in Appendix A), we can write
V(1) in the form of:

V(1) = M ∗
1
2
εα0

√
Kβ1 f β1I1/2

(1) (εγ1z)e1/4ε2ρ1γ1α0b(1)
1 z2

∫ T2

T2−T1

Q̃(τ̃,x)dτ

= M ∗N1
(∫ T2−τ0

0
Q̃(τ̃,x)dτ̃−

∫ T2−T1−τ0

0
Q̃(τ̃,x)dτ̃

)
= M ∗ (V11

−V12) (4.48)

where

V11 = [ f −K]+ + N1
∫ T2−τ0

0
Q̃(τ̃,x)dτ̃ (4.49)

V12 = [ f −K]+ + N1
∫ T2−T1−τ0

0
Q̃(τ̃,x)dτ̃ (4.50)

and M is a constant with M =
√

2
√

2K2(β1−β2)+ε2 J(T2−T1)
Kβ1−β2eε

2(k(2)
−k(1))(T2−T1)eε

2k(1)τ0 ,

N1 = 1
2εα0

√
Kβ1 f β1I1/2

(1) (εγ1z)e1/4ε2ρ1γ1α0b(1)
1 z2

.

Remark2: V11 is the value of a portfolio in state F̂(0) = f , α̂(0) = α0 at date 0,
and with parameters of the first period and maturity equal to T2−τ0.

Remark3: V12 is the value of a portfolio in state F̂(0) = f , α̂(0) = α0 at date 0,
and with parameters of the first period and maturity equal to T2−T1−τ0.

So the value of the option is obtained by:

V(t, f ,α) = V2 + V1

= V2 + M ∗ (V11
−V12) (4.51)

4.5.4 Summary

In this section we discuss the Fourier formed closed formula for square root SV
model. We reviewed the existing result on square root SV model with constraint
of zero correlation. We figured out another path by changing of variables, and
found a closed formula with constraint of constant skew. The constraints in
both cases can be removed by employing the integration by parts on random
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variables. We show this result in proposition 28. The proposition helps two
mentioned closed formulas relax the constraint.

An application on another SV model, SABR model, is also shown. It removes
the constraint of constant skew in the original paper of Hagan.

4.6 Vol of vol expansion

In order to calibrate stochastic volatility models, it is convenient to have an accu-
rate and fast-computing analytical formula for call options. However, deriving
such a formula is not always an easy task. For instance, as regards Heston model,
the most popular technique involves numerical integration, which is necessarily
time-consuming. This article presents the volatility of volatility series expan-
sion, a powerful technique for deriving fast-computing analytical formulae for
European options. The main idea is to apply perturbation method to the param-
eter vol of vol, calculating the first and second order of the difference between a
stochastic volatility model and a Black Scholes model. In general case, we can
reduce the integration of the exact formula to some simpler integration. For cer-
tain models, for example Heston model, the new integrations can be express into
analytic form. The result is significant: the time of calculation can be only 1% of
exact formula with optimization in integral; and the difference in implied vol is
often smaller than 0.05% in most cases except too short maturity. The method can
be applied successfully to several stochastic volatility models including Heston
model, GARCH model, SABR model, etc, to enhance the calibration and pricing
routines.

4.6.1 Framework

Consider the following two-factor stochastic volatility model

dS = (r−d)Sdt +σSdBt (4.52)

dV = b(V)dt +εν(V)dW (4.53)

dBdW = ρ(V)dt (4.54)

where r is the short rate, d the dividend yield, ε a constant, and b(V) and ν(V) are
independent of ε. We assume parameters r and d to be constant for the sake of
simplicity. The series expansion consists in writing the option price formula as
a series in ε.

Fourier transform integration tells us that the call option price is given by

C(S,V,T) = Se−dT
−

Ke−rT

2π

∫ i/2+∞

i/2−∞
exp(−iuX)

Φ(u,V,T)
u(u− i)

du, (4.55)

where X = log(S/K) + (r−d)T.
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Figure 4.6: Comparison of series A (expasion on price), series B (expansion on
implied volatility) and exact volatility

4.6.2 The expansion technique

We are looking for solutions which can be written as a power series of ε. Thus,
we can obtain the power series of the call price using either 4.55 directly

C(u,V,T) = C(0)(u,V,T) +εC(1)(u,V,T) +ε2C(2)(u,V,T)

or expanding first the implied volatility

Vimp(u,V,T) = V(0)
imp(u,V,T) +εV(1)

imp(u,V,T) +ε2V(2)
imp(u,V,T)

and then plugging it into the option price with Black-Scholes formula.
As a matter of fact, these two methods differ significantly. The former -

denoted by series A in the remainder of this article - gives the call price first
and implied volatility while the latter - denoted by series B - gives the implied
volatility and call price is obtained afterwards. Nevertheless, in most cases,
numerical difference is slight between the two series. However, regarding far
out-of-the money options, the two series give different results as shown in figure
4.6. Empirical evidence shows that series B is very often better than series A.
Even though this is not a general rule, series B should be usually preferred over
series A.
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4.6.3 Deriving the series

After we have presented the expansion technique, we will now explicit the two
series for the following model. In particular, this model encompasses the Heston
model for the special case φ = 0.5.

dS = (r−d)Sdt +σSdBt (4.56)

dV = (ω−θV)dt +εVφdW (4.57)

dBdW = ρ(V)dt (4.58)

The expansion is first on the fundamental transform of the closed formula,
which is presented by Φ(u,V,T) in equation 4.55. The idea is that we can expand
this function into simpler form, so that the integration in the equation 4.55 can be
reduced to analytic form. We don’t jump into the detailed derivation. Interested
readers can refer to the book of Lewis [2000]. Here we just list the result.

For series A, the expansion on price, is

C(S,V,τ) = c(S,v,τ) +ετ−1J(1)R̃(1,1)cV(S,v,τ)

+ε2
{
τ−1J2 +τ−2J(3)R̃(2,0) +τ−1J(4)R̃(1,2) +

τ−2

2
(J1)2R̃(2,2)

}
cV(S,v,τ)

+ O(ε3)

For series B, the expansion on price, is

Vimp = v(S,v,τ) +ετ−1J(1)R̃(1,1)

+ε2
{
τ−1J2 +τ−2J(3)R̃(2,0) +τ−1J(4)R̃(1,2) +

τ−2

2
(J(1))2

[
R̃(2,2)

− (R̃(1,1))2R̃(2,0)
]}

+ O(ε3)

In the above formulae, term c(S,v,τ) presents corresponding Black Scholes
price. When vol of vol ε = 0, the stochastic model reduces to a Black Scholes
model. v here is the equivalent variance for Black Scholes, which is basically the
the integration of the variance from 0 to τ.

The function R̃(p,q) and J(s) are the derivative ratios and integration respec-
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tively. Here list their expressions for practical use purpose.

R̃(2,0) = τ

[
1
2

X2

Y2 −
1

2Z
−

1
8

]
,

R̃(1,1) =
[
−

X
Z

+
1
2

]
,

R̃(1,2) =

[
X2

Z2 −
X
Z
−

1
4Z

(4−Z)
]
,

R̃(2,2) = τ

 1

2 X4

Z4

−
1
2

X3

Z3 −3
X2

Z3 +
1
8

X
Z2 (12 + Z) +

1
32

1
Z2 (48−Z2)


with Z = Vτ

And

J(1)(V,τ) =
ρ

θ

∫ τ

0

(
1− e−θ(τ−s)

)[ω
θ

+ e−θs(V−
ω
θ

)
]φ+ 1

2
ds,

J(2)(V,τ) = 0

J(3)(V,τ) =
1

2θ2

∫ τ

0

(
1− e−θ(τ−s)

)2
[
ω
θ

+ e−θs(V−
ω
θ

)
]2φ

ds

J(4)(V,τ) = (φ+
1
2

)
∫ τ

0

[
ω
θ

+ e−θ(τ−s)(V−
ω
θ

)
]φ+ 1

2
J(6)(V,τ)ds

with J(6)(V,τ)ds =

∫ τ

0

(
e−θ(τ−s)

− e−θs
)[ω
θ

+ e−θ(τ−u)(V−
ω
θ

)
]φ− 1

2
du

4.6.4 Example of vol of vol expansion: Heston model

In this section we will present an interesting example to show how the expansion
of vol of vol works with Heston model. By the asymptotic expansion, we can
finally obtain an approximate analytic formula for the European call option. This
work comes from the result of Benhamou et al. [2009].

Suppose we take a Heston model,

dXt =
√

vtdWt−
vt

2
dt, X0 = x0, (4.59)

dvt = κ(θt−vt)dt +ξt
√

vtdBt, v0, (4.60)

d〈W,B〉t = ρtdt,

Here we have adjusted to risk neutral probability; as consequence it intro-
duces the drift term in spot process by change of probability.

To expand the model, we add ε in the model.

dXε
t =

√
vεt dWt−

vεt
2

dt, Xε
0 = x0,

dvεt = κ(θt−vεt )dt +εξt

√
vεt dBt, vε0 = v0, (4.61)
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Now we will expand the European call option price formula respect to ε.
Note that, when ε = 0, we have a Black Scholes model; while ε = 1, we have a
Heston model. We have already the closed formula of Black Scholes for ε = 0.
We expand at ε = 0, and let ε = 1 to obtain the approximate formula. This can
write in mathematics language as follows.

PHeston = PBS +E

[
∂PBS

∂ε

]
+

1
2
E

[
∂2PBS

∂ε2

]
+E.

Another approximation we will take here is to simulate the partial derivatives
in the equation above by the linear combination of the Greek letters of Black
Scholes. The idea is that using the chain rule in derivative can make ∂PBS

∂ε =
∂PBS
∂S

∂S
∂ε + ∂PBS

∂σ
∂σ
∂ε . Same idea for the second derivative.

PHeston =PBS(x0,varT) +

2∑
i=1

ai,T
∂i+1PBS

∂xiy
(x0,varT) +

1∑
i=0

b2i,T
∂2i+2PBS

∂x2iy2
(x0,varT) +E,

(4.62)

We omit the lengthy derivation but just listing the result here. Readers can
refer to Benhamou et al. [2009] for proofs and intermediate derivation. The
parameters in the formula are:

varT =m0v0 + m1θ, a1,T =ρξ(p0v0 + p1θ),

a2,T =(ρξ)2(q0v0 + q1θ), b0,T =ξ2(r0v0 + r1θ).

varT =

∫ T

0
v0,tdt,
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m0 =
e−κT

(
−1 + eκT

)
κ

,

m1 =T−
e−κT

(
−1 + eκT

)
κ

,

p0 =
e−κT

(
−κT + eκT

−1
)

κ2 ,

p1 =
e−κT

(
κT + eκT(κT−2) + 2

)
κ2 ,

q0 =
e−κT

(
−κT(κT + 2) + 2eκT

−2
)

2κ3 ,

q1 =
e−κT

(
2eκT(κT−3) +κT(κT + 4) + 6

)
2κ3 ,

r0 =
e−2κT

(
−4eκTκT + 2e2κT

−2
)

4κ3 ,

r1 =
e−2κT

(
4eκT(κT + 1) + e2κT(2κT−5) + 1

)
4κ3 .

The advantage is that there is no integration in the approximate formula. So
that the calculation speed is much faster than that of the exact formula. We will
see this point in section numerical results.

The error in the approximation is estimated as E = O
([
ξsup
√

T
]3 √

T
)
.

Numerical results

Benhamou et al. [2009] tested the approximate formula with strikes from 70%
to 130% for short maturity, and 10% to 730% for long maturity. Implied Black-
Scholes volatilities of the closed formula, of the approximation formula and
related errors (in bp), expressed as a function of maturities in fractions of years
and relative strikes. Parameters: θ= 6%, κ= 3, ξ= 30% and ρ= 0%. Except short
maturity with very small strike, where we observe the largest difference (18.01
bp), the difference is less than 5 bp (1 bp = 0.01%) in almost all other cases. For
the calculation speed, the approximate formula is about 100 times quicker than
the exact formula (with the optimization in integral).

4.7 Calibration of Stochastic Volatility Model

4.7.1 Introduction

A calibration procedure is a procedure in which we use market data (usually
prices) as input to determine the parameters of a financial model. We search
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for those parameters which enable the model to fit the best the input market
data. Calibration can be time consuming, this issue depending on the size of the
input data, on the number of parameters to calibrate and also on the calibration
algorithm itself.

Because a model parameter can be either time dependent or constant, we
have two categories of calibration methods: (1) the calibration procedure of time
dependent parameters is called "bootstrap", while (2) the calibration procedure
of the constant parameters is called "optimization".

Usually, the model we use for pricing contains one or several parameters.
These parameters give the model some flexibility to better fit the characteristic
of the market. Before using a model to price, we need to get the parameters from
the market data. This procedure is often called calibration.

There are at least two methods to find the parameters. The quick way is to
estimate manually the parameters. This method is good when the number of
parameters are small. For example, in Black-Scholes model Black and Scholes
[1973], we need volatility. User of this model can estimate the parameter and then
use the model with his estimation. But this method is inaccurate, and useless to
the models with many parameters. Stochastic volatility models usually have 4
or more parameters. So we need to calibrate the models.

Description
Generally, the calibration process is a process using certain algorithm to find

the minimum of the difference of the target function by changing the parameter
(or parameter vector if there are more than one parameter).

Target function
Usually we use the option prices listed in the market as the target function. For

each given parameter vector, we need the option price calculated by the model.
For a given financial instrument, there are different maturities. So we need

to minimize the ∑
all maturities

(pmodel−pmarket)2

where pmodel and pmarket are respectively the option price calculated by the
model and the option price listed in the market.

Algorithm
The algorithm are usually the minimum finding algorithm.

Levenberg Marquadt
L-BFGS-B
Nelder and Mead (Simplex)
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The calibration of stochastic volatility model is a
We need analytic formula to evaluate the price of options, in order to calibrate

the model.

The Calibration Scheme in General

To calibrate the static stochastic volatility models, we search for ways to com-
pute the value of option with the corresponding model. Several methods are
introduced for the calibration of stochastic volatility models according to their
forms. For SABR model, by introducing the probability density, we compute the
value of a call option by resolving the PDEs. For the square root model, two
different ways using Fourier Transform are used, one of which will be applied
in the dynamic case.

The calibration of stochastic volatility models require analytic solution of the
option price or implied volatility. We calibrate the models to implied volatility
that we get from the market with an optimization algorithm "Levenberg Mar-
quardt". Let T be the time to maturity with f wd the corresponding forward. Let
K1, K2, ... KM be a set of strikes, and V1, V2, ... VM be the corresponding market
implied volatiliy. The aim of the calibration is to minimize the least square error:

R =

M∑
i=1

(Vi−Vim
i )2

where Vim
i is the implied volatility corresponding to the model(calculated

with the Black’s formula after having obtained the option price). So the speed
of the calculation of the option price is very important for the speed of the
calibration.

By using methods to increase the convergency of the closed formulas and to
resolve the discontinuities during the implementation, we don’t dispose much
difficulty in the case of models with constant parameters. Based on these solu-
tions, we try to find out solutions for time dependent models. Several approaches
are used in the research. These methods are adapted to their process of spot (or
forward) and volatility. The effective medium parameter method is to find out
a mean value for each parameter. The effective medium parameter depends on
time and the values of all time dependent parameters in each period. By doing
this, we change a time dependent model into a constant parameter model where
we can use the analytical formulas that we developed in the constant parame-
ter case for the calibration. Another method is to compute the option price by
resolving the PDEs and to use the final value of one constant parameter period
as the initial value of the following constant parameter period. According to the
form of each model, we will choose the easiest method.
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Note: In the following, we work with "forward" instead of "spot" of the
underlying. So we are in the neutral risk environment. This will simplify
our calculus. The option price that we calculate is the expected value of the
payoff, which equals to the real option price divided by the discount factor. The
discount factor is generally DF = e−rT where r is the constant interest rate and T
is the expiry.

Bootstrap

The so called "Bootstrap Technique" may be used for parameters which are time
dependent, that is, deterministic functions depending on time. Below we explain
in which manner the bootstrap technique is performed.

Consider a financial model M, having an unknown function parameter f
depending on time. Suppose we want to calibrate this function f . This means
that we want to exactly say who f (t) is for any t belonging to [0,T]. As a base
hypothesis, suppose that you are also knowing the shape of f ; typically, your
function will be piecewise constant, or piecewise linear, or quadratic.

Recall that we have to recover f (t) over the time interval [0,T], and suppose
that we get on the market n prices p1, . . . , pn of financial instruments π1, . . . , πn:

p1 = Market price(π1;0, t1),

p2 = Market price(π2;0, t2),

. . .

pi = Market price(πi;0, ti),

. . .

pn = Market price(πn;0, tn),

where each price pi is computed at time t = 0 for the maturity ti, and we have:

0 < t1 < t2 < · · · < tn = T.

Because we know the interpolation type of f , to compute f (t) over the time
interval [0,T], it suffices to compute f at the points

t1, t2, . . . , tN,

as f is completely defined by the vector of couples:

{t1, f (t1)}

{t2, f (t2)}

. . .

{ti, f (ti)}

. . .

{tn, f (tn)}.
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Indeed, if f1 = f (t1), f2 = f (t2), . . . , fn = f (tn) are known, to compute f (t), for t in
[0,T], we have only to find the index k, such that : t belongs to [tk, tk+1]; once we
have k, we will compute f (t) interpolating f between tk and tk+1.

We explain now how we can compute f1, f2, . . . , fn. This will be done itera-
tively, solving numerically n equations; first we compute f1; then, using that f1
is known, we compute f2; then, using that f1 and f2 are known, we compute f3;
and so on; at the end, using that f1, f2, . . . , fn−1 are known, we compute fn.

Step 1 To compute f over the first interval [0, t1], we have to use the price p1;
as this information does not suffice to recover f (t), for any t ∈ [0, t1], we
suppose in addition that f is constant over this interval: f (t) ≡ f1, for any
t ∈ [0, t1].

Then, on [0, t1], f is defined by the 2-dimensional vector

[{0, f1}, {t1, f1}],

which will be known, once f1 will be known. Denote by f (t1, f1) the
function f , constructed with the vector above. We will compute f1 solving
the following equation in y:

M(π1; f (t1, y)) = p1,

whereM(π1; f (t1, y)) is the price of the financial instrument π1, computed
with the modelM, which uses the function f (t1, y). The equation above is
solved using Newton Raphson algorithm.

Step 2 We will use now that f is already constructed over [0, t1], and we will
compute it over (t1, t2]. Our goal function f is defined by the 3-dimensional
vector

[{0, f1}, {t1, f1}, {t2, f2 = f (t2)}],

where f1 is already know, and we have only to compute f2.

This will be done solving the following equation in y:

M(π2; f (t2, y)) = p2,

whereM(π2; f (t2, y)) is the price of the financial instrument π2, computed
with the modelM, which uses the function f (t2, y). The above equation is
well defined because we know to computeM(π2; f (t2, y)) using: (1), that
we have already computed the function on the interval [0, t1], and, (2), that
f has a known interpolation type.

Step 3 to n Are analogous to Step 2.

In this way we iteratively compute f (t1), f (t2), ·, f (tn).
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Optimization

Consider a financial modelM, depending on m unknown parameters

α1, . . . , αm,

where each αi is a constant real number: αi ∈ R. Suppose we want to calibrate
these numbers and that we get on the market n prices p1, . . . , pn of financial
instruments π1, . . . , πn:

p1 = Market price(π1),

p2 = Market price(π2),

. . .

pi = Market price(πi),

. . .

pn = Market price(πn).

We consider the following Least Square Problem: find the numbers x1, . . . ,xm

that minimize the following function F:

F(x1, . . . , xm) =

n∑
i=1

[
M(πi;x1, . . . , xm)−pi

]2 ,

whereM(πi;x1, . . . , xm) is the price of the financial instrument πi, computed with
the modelM, which uses the parameters x1, . . . , xm. We suppose that m ≤ n.

To resolve this Least Square Problem, we can employ the following numerical
methods

(1) Levenberg-Marquardt algorithm.

(2) Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.

Find details on these numerical methods in following subsection.

4.7.2 Calibration order

When we calibrate a model its parameters are calibrated one by one, but there
are two possible calibration procedures:

(1) Successive calibration.

(2) Nested calibration.

These calibration procedures use essentially an optimization algorithm to
compute (x∗1, ...,x

∗
m), which is the optimal value for the parameter x = (x1, ...,xm):

(x∗1, ...,x
∗

m) = Calibrate
{
x = (x1, ...,xm)|(y1, ..., yn),K

}
using the known values (y1, ..., yn) and performing at most K steps.
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Successive calibration

This method calibrates the parameters independently: each parameter is cali-
brated independently with respect to the other parameters.

It is the end user who chooses the calibration order in the parameter vector.
Suppose that you have to calibrate tree parameters called m, v, w. If you want to
calibrate first v, then m, and then w you have to construct the vector: (v, m, w).
Writing (v, w, m) means that v will be calibrated first, then w and then m.

To explain the successive calibration procedure, let us suppose the model to
calibrate has only two parameters: (a1,a2), having the initial value (a0

1,a
0
2). The

successive calibration procedure has only 2 steps and is as follows:

(1) Compute a∗1, that is the optimum value of the first parameter:

Calibrate
(
a1|a0

2,K
)
.

Calibrate a1 using the value a0
2 for the second parameter. a0

1 is used as the
starting point of the algorithm.

(2) Compute a∗2, that is the optimum value of the second parameter:

Calibrate
(
a2|a∗1,K

)
calibrate a2 using the value a∗1 for the first parameter. Note that to compute
a∗2 we used a∗1.

The maximum total number of steps of the 2-dimensional successive cali-
bration procedure is K + K. When calibrating N parameters, the maximum total
number of steps is N×K.

Example

Let consider that we want to calibrate a Hull-White 1 factor model to the
following portfolio of swaptions. We denote by f (start,end,σ,a) the price of an
ATM swaption with Hull-White model. σ can be a time-dependent parameter.

Initial volatility (σ0) and initial mean reversion are both set to (a0) are both
set to 1%. The prices of portfolio 1 are given by:

First, we start by resizing the volatility parameter to the size of the portfolio.
The volatility is now a curve model parameter with size 10. Abscissas are equal to
14-May-08,...,15-May-17 and ordinates are equal to σ0

1 = 1%,σ0
2 = 1%, ...,σ0

10 = 1%.

Then we bootstrap the volatility. We look for the value σ∗1 such that

f (14-May-08,14-May-18,σ1,a0) = 1.16186% (4.63)
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where σ1 is the volatility parameters with ordinates

σ∗1,σ
0
2 = 1%, ...,σ0

10 = 1%. (4.64)

Once we have found σ∗1, we look for the value σ∗2. It is the value of σ2 such that

f (14-May-09,14-May-18,σ,a0) = 2.06796% (4.65)

where σ is the volatility parameters with ordinates

σ∗1,σ
∗

2,σ
0
3 = 1%, ...,σ0

10 = 1%. (4.66)

At the end of this process, we obtain the following volatility parameter σ∗ :
Once we have finished the bootstrap of volatility, we won’t modify it any-

more. We will optimize the parameter a∗. It is the mean reversion value that
minimizes

∑10
i=1[ f (starti,endi,σ∗,a)− f M(starti,endi)]2 where f M is the market price

of a swaption, starti are the start dates of the swaption portfolio and endi are the
end dates.

The linked calibration algorithm is now finished and output parameters are
σ∗ and a∗.

Nested calibration

This method nests calibration loops; which means we go through each loop of
parameter 1 by finishing a full calibration on parameter 2 with the present value
of parameter 1. We also call this kind of calibration order as "linked".

To explain the nested calibration procedure, let us suppose the model to
calibrate has only two parameters: (a1,a2), having the initial value (a0

1,a
0
2). The

nested calibration procedure has at most K×K steps and is as follows:

Calibrate (a2 |Calibrate (a1|a2,K) ,K) ,

that is, compute a∗2, doing at most K steps, and using at each step

(ai
1)∗ = Calibrate

(
ai

1|a
i
2,K

)
the optimal value of ai

1; ai
1 corresponds, at the ith step, to ai

2, that is the current
value of the second parameter.

The maximum total number of steps of the 2-dimensional nested calibration
procedure is K×K. When calibrating N parameters, the maximum total number
of steps is KN.

We take the same example as in the linked calibration.Let consider that we
want to calibrate a Hull-White 1 factor model to the following portfolio of swap-
tions. We denote by f (start,end,σ,a) the price of an ATM swaption with Hull-
White model. σ can be a time-dependent parameter.
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Initial volatility (σ0) and initial mean reversion are both set to (a0) are both
set to 1%. The prices of portfolio 1 are given by :

First, we start by resizing the volatility parameter to the size of the portfolio.
The volatility is now a curve model parameter with size 10. Abscissas are equal to
14-May-08,...,15-May-17 and ordinates are equal to σ0

1 = 1%,σ0
2 = 1%, ...,σ0

10 = 1%.

Then we bootstrap the volatility. We look for the value σ∗11 such that

f (14-May-08,14-May-18,σ1,a0) = 1.16186% (4.67)

where σ1 is the volatility parameters with ordinates

σ∗1,σ
0
2 = 1%, ...,σ0

10 = 1%. (4.68)

Once we have found σ∗1, we look for the value σ∗2. It is the value of σ2 such
that

f (14-May-09,14-May-18,σ,a0) = 2.06796% (4.69)

where σ is the volatility parameters with ordinates

σ∗1,σ
∗

2,σ
0
3 = 1%, ...,σ0

10 = 1%. (4.70)

At the end of this process, we obtain the following volatility parameter σ∗1 :
Like in the successive calibration scheme, we will now optimize the param-

eter a. It is the mean reversion value that minimizes
∑10

i=1[ f (starti,endi,σ∗,a)−
f M(starti,endi)]2 where f M is the market price of a swaption, starti are the start
dates of the swaption portfolio and endi are the end dates. The optimization
algorithm returns that a∗1 = 0.87%.

Contrary to the successive calibration, the nested calibration is not finished
yet. We will now redo the bootstrap process with a mean reversion equal to a∗1.
Thus, we get a bootstrapped volatility σ∗2. We iterate this process until we get a
good calibration precision. This nested calibration generally finds better results
than the successive calibration but it can be much slower.

4.7.3 Numerical method

Newton Raphson

Newton Raphson is an efficient algorithm for finding approximations to the zeros
(or roots) of a real-valued function. As such, it is an example of a root-finding
algorithm. It can also be used to find a minimum or maximum of such a function,
by finding a zero in the function’s first derivative.

The idea of the method is as follows: one starts with an initial guess which
is reasonably close to the true root, then the function is approximated by its
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tangent line, and one computes the x-intercept of this tangent line (which is
easily done with elementary algebra). This x-intercept will typically be a better
approximation to the function’s root than the original guess, and the method can
be iterated.

Suppose f : [a,b]→ R is a differentiable function defined on the interval [a,b]
with values in the real numbers R. The formula for converging on the root can
be easily derived. Suppose we have some current approximation xn. Then we
can derive the formula for a better approximation xn+1 by referring to the Fig 4.7.
We know from the definition of the derivative at a given point that it is the slope
of a tangent at that point.

Figure 4.7: An illustration of one iteration of Newton’s method (the function
f is shown in blue and the tangent line is in red). We see that xn+1 is a better
approximation than xn for the root x of the function f .

That is

f ′(xn) =
∆y
∆x

=
f (xn)−0
xn−xn+1

=
0− f (xn)
xn+1−xn

were f ′ denotes the derivative of the function f. Then by simple algebra we can
derive

xn+1 = xn−
f (xn)
f ′(xn)

.
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We start the process off with some arbitrary initial value x0. (The closer to the
zero, the better. But, in the absence of any intuition about where the zero might
lie, a "guess and check" method might narrow the possibilities to a reasonably
small interval by appealing to the intermediate value theorem.) The method will
usually converge, provided this initial guess is close enough to the unknown
zero, and that f ′(x0) , 0. Furthermore, for a zero of multiplicity 1, the conver-
gence is at least quadratic in a neighborhood of the zero, which intuitively means
that the number of correct digits roughly at least doubles in every step.

Levenberg Marquardt

Levenberg-Marquardt (LM) algorithm provides a numerical solution to the prob-
lem of minimizing a function, generally nonlinear, over a space of parameters of
the function.These minimization problems arise especially in least squares curve
fitting and nonlinear programming.

Minimization algorithm We reformulate the Least Square Problem: find the
vector p = (p1, . . . ,pm) that minimize the following function F:

F(p) =

n∑
i=1

[
fi(p)

]2 , (4.71)

where f :Rm
→Rn, p 7→ f (p) = ( f1(p), . . . , fn(p)) ∈Rn, and f is of class C1.

Like any other numeric minimization algorithms, the LM algorithm is an
iterative procedure. To start a minimization, the user has to provide an initial
guess for the vector p. In many cases, an uninformed standard guess like
p0 = (1,1, ...,1) will work fine; in other cases, the algorithm converges only if the
initial guess is somewhat close to the final solution.

At each iteration step, the vector p is replaced by a new estimate p + q. To
determine q, the value f (p + q) is approximated by its linearization:

f (p + q) ≈ f (p) + Jq.

At a minimum of the sum of squares F in eq. (4.71), the gradient of F is zero.
Differentiating F the square of the right hand side of the equation (4.71) and
setting it to zero leads to:

(JTJ)q = JT[y− f (p)],

from which q can be obtained by inverting JTJ. The key hallmark of the LM
alogorithm is to replace this equation by a “damped version”:

(JTJ +λI)q = JT[y− f (p)],

where I is the identity matrix, and

q = (JTJ +λI)−1JT[y− f (p)].



CHAPTER 4. STOCHASTIC VOLATILITY MODEL 89

The non-negative damping factor λ is adjusted at each iteration. If the reduction
of F is rapid, then a smaller value can be used bringing the algorithm close to
the Gauss-Newton alogorithm. On the other hand, if an iteration gives insuf-
ficient reduction in the residual, then λ can be increased, giving a step close to
the gradient descent direction. A similar damping factor appears in Tikhonov
regularization, which is used to solve linear ill-posed problems.

The solution of our minimization problem is found when one of the following
conditions is satisfied:

(1) The calculated step length q falls below a predefined limit.

(2) The reduction of the squares sum from the latest parameter vector p, falls
below predefined limits.

In these cases, the iteration is stoped and the last parameter vector p is considered
to be the solution.

Advantages The advantage of this algorithm is that it introduces a damping
parameter µ, which influences both the direction and the size of the step. The
step h∗ is defined by following formula:

(JTJ +µI)h∗ = −JT f ,

where f is the objective function and J is the Jaccobian of f .
Large damping parameter: When the damping parameter µ is large

h∗ ≈ −
1
µ

JT f ,

the algorithm takes the steepest descent direction. This is advantageous if the
current search is far from the solution.

Small damping parameter: When the damping parameter µ is small, the
algorithm becomes the Gauss-Newton algorithm, which is very advantageous
when the current search is close to the solution. The damping parameter is
updated at each loop of the algorithm.

In short, LM algorithm is the combination of the Steepest Descent method
and the Gauss-Newton algorithm. As a consequence it converges more quickly
than these two algorithms.

Quasi-Newton (BFGS)

In mathematics, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is a
method to solve an unconstrained nonlinear optimization problem.

The BFGS method is derived from the Newton’s method in optimization, a
class of hill-climbing optimization techniques that seeks the stationary point of
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a function, where the gradient is 0. Newton’s method assumes that the function
can be locally approximated as a quadratic in the region around the optimum,
and use the first and second derivatives to find the stationary point.

In Quasi-Newton methods the Hessian matrix of second derivatives of the
function to be minimized does not need to be computed at any stage. The
Hessian is updated by analyzing successive gradient vectors instead. Quasi-
Newton methods are a generalization of the secant method to find the root of the
first derivative for multidimensional problems. In multi-dimensions the secant
equation is under-determined, and quasi-Newton methods differ in how they
constrain the solution.

Rationale The search direction pk at stage k is given by the solution of the
analogue of the Newton equation

Bkpk = −∇ f (xk). (4.72)

A line search in the direction pk is then used to find the next point xk+1.
Instead of requiring the full Hessian matrix at the point xk+1 to be computed

as Bk+1, the approximate Hessian at stage k is updated by the addition of two
matrices.

Bk+1 = Bk + Uk + Vk (4.73)

Both Uk and Vk are rank-one matrices but have different bases. The rank one
assumption here means that we may write

C = abT (4.74)

So equivalently, Uk and Vk construct a rank-two update matrix which is robust
against the scale problem often suffered in the gradient descent searching.

(as in Broyden’s method, the multidimensional analogue of the secant method).
The quasi-Newton condition imposed on this update is

Bk+1(xk+1−xk) = ∇ f (xk+1)−∇ f (xk). (4.75)

Algorithm From an initial guess x0 and an approximate Hessian matrix B0 the
following steps are repeated until x converges to the solution.

1. Obtain sk by solving: Bksk = −∇ f (xk).

2. Perform a line search to find the optimal k in the direction found in the first
step, then update xk+1 = xk +αksk.

3. yk = ∇ f (xk+1)−∇ f (xk).

4. Bk+1 = Bk +
yky>k
y>k sk
−

Bksk(Bksk)>

s>k Bksk
.
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f (x) denotes the objective function to be minimized. Convergence can be
checked by observing the norm of the gradient,

∣∣∣∇ f (xk)
∣∣∣. Practically, B0 can

be initialized with B0 = I, so that the first step will be equivalent to a gradient
descent, but further steps are more and more refined by Bk, the approximation
to the Hessian.

The first step of the algorithm is carried out using an approximate inverse
of the matrix Bk, which is usually obtained efficiently by applying the Sherman-
Morrison formula to the fourth line of the algorithm, giving

B−1
k+1 = B−1

k + (sks>k )(s>k yk + y>k B−1
k yk)/(s>k yk)2

− (B−1
k yks>k + sky>k B−1

k )/(s>k yk). (4.76)

Credible intervals or confidence intervals for the solution can be obtained
from the inverse of the final Hessian matrix.

Simplex algorithm

The algorithm begins with n+1 randomly sampled vectors, xi i ∈ [0,n], when we
want to calibrate n parameters in our model. Each component xi, j j ∈ [0,n− 1]
represents a parameter of our model. The aim is to find the best parameters
to compute implied volatilities with our model. We minimize the following
function

f (x) =
∑

(T,K)∈Γ

(σ(x,T,K)−σMarket(T,K))2

where Γ is the set of all the strikes and maturities in our market data and σ(x,T,K)
is the implied volatility computed when we consider a model whose parameters
are the components of x. When it’s possible, σ(x,T,K) is directly computed with
a closed formula, otherwise we can get it with a closed formula for the price.

The Nelder-Mead algorithm (also known as the simplex algorithm) is usually
used for multidimensional unconstrained optimization. It remains a famous
solution for at least two reasons : it’s one of the methods which do not require
derivatives and it’s considered as reliable when it comes to deal with noisy
functions. If one has to find an optimal solution to a problem in n dimensions,
this algorithm creates and modifies a polytope of n + 1 vertices. Then, one has
just to compute objective function values on these vertices to know the next
modification of the simplex : reflexion, expansion, contraction, shrinkage. The
main idea of these distorsions is to progress toward areas where the objective
function takes the best values.

First, we need to find n + 1 vertices to create a simplex. We use a first set of
parameters given by the user and the others are choosen randomly. Algorithm’s
end occures when one of these condition is satisfied :
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• A vertex giving the good precision, x0, is found :

| f (x0)| < ε1

• New vertices don’t modify objective function values anymore :√∑n
i=0

( f (xi)−µ)2

n+1 < ε2 where µ =
∑n

i=0 f (xi)
n+1

• Time given to the algorithm has passed.

• The execution has rised above iteration limit.

We usually choose :
α = 1 (reflexion parameter)
β = 2 (expansion parameter)
γ = 1

2 (contraction parameter)
δ = 1

2 (shrink parameter)
This algorithm consists in the following pseudo code algorithm 1.

Modified simplex algorithm

Previously, we generated n + 1 vertices to create a simplex. However, it’s not
enough to find the minimum we’re looking for and we compute more objective
function values to increase our hope to reach a global solution. That’s why we
begin with the computation of 4n values so as to keep n interesting vertices.
This is the first modification of the initial Nelder-Mead algorithm. Then, we also
have to look for the minimum in every direction : the initial vertices mustn’t
be linearly dependent, this would prevent us from transforming the simplex in
a part of the space (and from computing objective function values in this part).
This step is also called degeneration test. After every initialization a test checks if
the simplex is degenerated and resets it if need. The modified simplex algorithm
consists in algorithm 2.

Advantages / Drawbacks The simplex algorithm is really famous for many
reasons. First of all, it does not need derivatives and we can use it for noisy func-
tions. Moreover, it does not compute many objective function values (indeed,
one by iteration in general) so it’s not a time-consuming algorithm.

The biggest difficulty with this algorithm appears when we have to minimize
multi-modal functions. It’s difficult to prevent the algorithm from finding a ’bad’
local minimum and giving it as a solution of the problem.

Differential evolution algorithm

The algorithm begins with p randomly sampled vectors to initialize the first
generation : xi,0 i ∈ [0,p− 1]. Each component xi,0, j j ∈ [0,n− 1] represents a
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if User hasn’t provided initial value of x1,x2, . . . ,xn+1 then
Randomly generate n + 1 vertices in n dimension: x1,x2, . . . ,xn+1 ∈R

N;
end
α = 1 // reflexion parameter
β = 2 // expansion parameter
γ = 1

2 // contraction parameter

δ = 1
2 // shrink parameter

while condition function is true do
Sort x1,x2, . . . ,xn+1 so that f (x1) < f (x2) < · · · < f (xn+1);
xcenter←

1
n
∑n

k=1 xk;
xr← xcenter +α(xcenter−xn+1);
if f (xr) < f (x1) then

xe← xcenter +β(xr−xcenter);
if f (xe) < f (xr) then

xn+1← xe;
else

xn+1← xr;
end

else if f (x1) ≤ f (xr) < f (xn) then
xn+1← xr;

else if f (xn) ≤ f (xr) < f (xn+1) then
xcout← xcenter +γ(xr−xcenter);
if f (xcout) < f (xr) then

xn+1← xcout;
else

xn+1← xr;
Call shrink function;

end
else if f (xn+1) ≤ f (xr) then

xcin← xcenter +γ(xn+1−xcenter);
if f (xcin) < f (xn+1) then

xn+1← xcin;
else

Call shrink function;
end

end
end

Algorithm 1: Simplex
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begin condition function
if time limit reached or iteration limit reached then

return false;
end
if | f (x1)| < ε1 then

return false;
end
µ← 1

n
∑n+1

i=1 f (xi);

if
√∑n+1

i=1
( f (xi)−µ)2

n+1 < ε2 then
return false;

end
return true;

end
Function for simplex

begin shrink function
for i = 2 to n + 1 do

xi← x1 +δ(xi−x1);
compute f (xi);

end
end

Function for simplex

parameter of our model (we want to calibrate n parameters). One iteration starts
with a generation xi,g i ∈ [0,p−1] and creates a new set of vectors xi,g+1 i ∈ [0,p−1].
The aim is to find the best parameters to compute implied volatilities with our
model. We minimize the following function

f (x) =
∑

(T,K)∈Γ

(σ(x,T,K)−σMarket(T,K))2

where Γ is the set of all the strikes and maturities in our market data and σ(x,T,K)
is the implied volatility computed when we consider a model whose parameters
are the components of x. When it’s possible, σ(x,T,K) is directly computed with
a closed formula, otherwise we can get it with a closed formula for the price.

The differential evolution algorithm is a population-based optimizer. An initial
population is sampled in the domain and objective function values are computed
to start the optimization. Then it produces a new generation of vectors with
perturbations of the existing points. To generate a new population the scaled
difference of two randomly chosen vectors is added to a third vector. The next
step consists in a recombination between this new population and the previous
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repeat
if User hasn’t provided initial value of x1,x2, . . . ,xn+1 then

Randomly generate n + 1 vertices in n dimension:
x1,x2, . . . ,xn+1 ∈R

N;
end
m← 4n;
Generate xn+2,xn+3, . . . ,xm ∈RN;
Sort x1,x2, . . . ,xm so that f (x1) < f (x2) < · · · < f (xm);

until The volume of polyhedron (x1,x2, . . . ,xn+1) > ε;
α = 1; // reflexion parameter
β = 2; // expansion parameter
γ = 1

2 ; // contraction parameter
δ = 1

2 ; // shrink parameter
while condition function is true do

Sort x1,x2, . . . ,xn+1 so that f (x1) < f (x2) < · · · < f (xn+1);
xcenter←

1
n
∑n

k=1 xk;
xr← xcenter +α(xcenter−xn+1);
if f (xr) < f (x1) then

xe← xcenter +β(xr−xcenter);
if f (xe) < f (xr) then

xn+1← xe;
else

xn+1← xr;
end

else if f (x1) ≤ f (xr) < f (xn) then
xn+1← xr;

else if f (xn) ≤ f (xr) < f (xn+1) then
xcout← xcenter +γ(xr−xcenter);
if f (xcout) < f (xr) then

xn+1← xcout;
else

xn+1← xr;
Call shrink function;

end
else if f (xn+1) ≤ f (xr) then

xcin← xcenter +γ(xn+1−xcenter);
if f (xcin) < f (xn+1) then

xn+1← xcin;
else

Call shrink function;
end

end
end

Algorithm 2: Modified simplex
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one. To achieve the algorithm, we compare objective function values between
the two sets of vectors to determine which vectors are part of the new generation.

Algorithm’s end occures when one of these condition is satisfied :

• A vector giving the good precision, x0,g, is found :

| f (x0,g)| < ε1

• New generations don’t modify objective function values anymore :√∑n
i=0

( f (xi,g)−µ)2

n+1 < ε2 where µ =
∑n

i=0 f (xi,g)
n+1

• Time given to the algorithm has passed.

• The execution has rised above iteration limit.

We use these parameters throughout the evolution of the optimization :

F = 0.5 (scale factor used in the mutation step)
C = 0.5 (criterion used in the crossover step)
The index g refers to the gth generation.

This algorithm consists in the following algorithm 3.

Advantages / Drawbacks An interesting advantage of this algorithm is the
use of difference vectors. The difference distribution adapts the algotithm to
the objective function landscape. When we have to cope with a multi-modal
function, this distribution is also multi-modal and gives us the opportunity to
look for the minimum in each region and to move vectors from a region to
another. We have a better chance to find a globalm minimum (in comparison
with the simplex algorithm for example).

However, we are not sure to be in a position to afford this opportunity. The
main difficulty is the time consumed in each iteration because many objective
function values have to be computed for each generation.

MGB algorithm

Call price approximation This algorithm uses an approximation of call prices
under the Heston model. We can compute them in the constant case and with a
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if User hasn’t provided initial value of x1,x2, . . . ,xn then
Randomly generate n vertices in n dimension: x1,x2, . . . ,xn ∈RN;

end
m← 5n;
Generate xn+1,xn+2, . . . ,xm ∈RN;
g← 0;
for i = 1 to m do

xi,g← xi
end
F← 0.5; C← 0.5;
while condition function is true do
// Mutation
for i = 1 to m do

Randomly choose r0,r1,r2 from 1 to m with r0 , r1 , r2;
ui,g← xr0,g + F(xr1,g−xr2,g)

end
// Crossover
for i = 1 to m do

Randomly choose jr from 1 to n−1;
for j = 0 to n do

randomly choose u ∈ [0,1];
if u < C or j == jr then

j-th ordinate of vi,g← j-th ordinate of ui,g, j
else

j-th ordinate of vi,g← j-th ordinate of xi,g, j
end

end
end
// Selection
for i = 1 to m do

if f (vi,g) < f (xi,g) then
xi,g+1← vi,g

end
xi,g+1← xi,g

end
g← g + 1

end
Algorithm 3: Differential evolution
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begin condition function
if time limit reached or iteration limit reached then

return false;
end
if | f (x1)| < ε1 then

return false;
end
µ← 1

m
∑m

i=1 f (xi);

if
√∑m

i=1
( f (xi)−µ)2

m < ε2 then
return false;

end
return true;

end
Function for differential evolution

time dependent model. From now on we use the following model :

dS(t) = rtS(t)dt +
√

V(t)S(t)dW1,

dV(t) = κ(θt−V(t))dt +ξ
√

V(t)dW2,

x0 = ln(S0),

v0 = V0.

ρt is the correlation coefficient between W1 and W2. These formula are very
interesting since they give us the opportunity to write a call price as an easily
computable function of ρ and ξ. This will be really useful for a new calibration
procedure. In this subsection we will just focus on these analytical formula.

In the constant case, we can derive the following expression:

varT =m0v0 + m1θ, a1,T =(p0v0 + p1θ)
∂2PBS

∂xy
(x0,varT),

a2,T =(q0v0 + q1θ)
∂3PBS

∂x2y
(x0,varT), b0,T =(r0v0 + r1θ)

∂2PBS

∂y2 (x0,varT),

b2,T =
(p0v0 + p1θ)2

2
∂4PBS

∂x2y2 (x0,varT).



CHAPTER 4. STOCHASTIC VOLATILITY MODEL 99

where

m0 =
e−κT

(
−1 + eκT

)
κ

, m1 = T−
e−κT

(
−1 + eκT

)
κ

,

p0 =
e−κT

(
−κT + eκT

−1
)

κ2 , p1 =
e−κT

(
κT + eκT(κT−2) + 2

)
κ2 ,

q0 =
e−κT

(
−κT(κT + 2) + 2eκT

−2
)

2κ3 , q1 =
e−κT

(
2eκT(κT−3) +κT(κT + 4) + 6

)
2κ3 ,

r0 =
e−2κT

(
−4eκTκT + 2e2κT

−2
)

4κ3 , r1 =
e−2κT

(
4eκT(κT + 1) + e2κT(2κT−5) + 1

)
4κ3 .

and PBS(x0,varT) is a call price under a Black-Scholes model with volatility
√

varT
T .

Then, the MGB formula is :

PMGB(x0,T) = PBS(x0,varT,T) + a1,Tρξ+ (a2,T + b2,T)ρ2ξ2 + b0,Tξ
2

If we consider piecewise constant parameters, we write T0 = 0≤T1 ≤ · · · ≤Tn =

T such thatθ,ρ,ξ are constant on each interval ]Ti,Ti+1[ and are equal respectively
to θTi+1 ,ρTi+1 ,ξTi+1 . The new coefficients used to derive our analytical formula are

a1,Ti+1 = a1,Ti + ω̃
−κ
Ti,Ti+1

ω̃1,Ti +ρTi+1ξTi+1 f 1
κ,v0,Ti

(θTi+1 ,Ti,Ti+1),

a2,Ti+1 = a2,Ti + ω̃
−κ
Ti,Ti+1

αTi +ρTi+1ξTi+1ω̃
0,−κ
Ti,Ti+1

ω̃1,Ti + (ρTi+1ξTi+1)2 f 2
κ,v0,Ti

(θTi+1 ,Ti,Ti+1),

b0,Ti+1 = b0,Ti + ω̃
−κ
Ti,Ti+1

βTi + ω̃
−κ,−κ
Ti,Ti+1

ω̃2,Ti +ξ
2
Ti+1

f 0
κ,v0,Ti

(θTi+1 ,Ti,Ti+1),

αTi+1 = αTi +ρTi+1ξTi+1(Ti+1−Ti)ω̃1,Ti +ρ
2
Ti+1
ξ2

Ti+1
g1
κ,v0,Ti

(θTi+1 ,Ti,Ti+1),

βTi+1 = βTi + ω̃
−κ
Ti,Ti+1

ω̃2,Ti +ξ
2
Ti+1

g2
κ,v0,Ti

(θTi+1 ,Ti,Ti+1),

ω̃1,Ti+1 = ω̃1,Ti +ρTi+1ξTi+1h1
κ,v0,Ti

(θTi+1 ,Ti,Ti+1),

ω̃2,Ti+1 = ω̃2,Ti +ξ
2
Ti+1

h2
κ,v0,Ti

(θTi+1 ,Ti,Ti+1),

v0,Ti+1 = e−κ(Ti+1−Ti)(v0,Ti −θTi+1) +θTi+1 ,

where
f 0
κ,v0

(θ, t,T) =
e−2κT(e2κt(θ−2v0)+e2κT((−2κt+2κT−5)θ+2v0)+4eκ(t+T)((−κt+κT+1)θ+κ(t−T)v0))

4κ3 ,

f 1
κ,v0

(θ, t,T) =
e−κT(eκT((−κt+κT−2)θ+v0)−eκt((κt−κT−2)θ−κtv0+κTv0+v0))

κ2 ,

f 2
κ,v0

(θ, t,T) =
e−κ(t+3T)(2eκ(t+3T)((κ(T−t)−3)θ+v0)+e2κ(t+T)((κ(κ(t−T)−4)(t−T)+6)θ−(κ(κ(t−T)−2)(t−T)+2)v0))

2κ3 ,

g1
κ,v0

(θ, t,T) =
2eκTθ+eκt(κ2(t−T)2v0−(κ(κ(t−T)−2)(t−T)+2)θ)

2κ2 ,

g2
κ,v0

(θ, t,T) =
e−κT(e2κTθ−e2κt(θ−2v0)+2eκ(t+T)(κ(t−T)(θ−v0)−v0))

2κ2 ,

h1
κ,v0

(θ, t,T) =
eκTθ+eκt((κt−κT−1)θ+κ(T−t)v0)

κ ,

h2
κ,v0

(θ, t,T) =
(eκt
−eκT)(eκt(θ−2v0)−eκTθ)

2κ ,

and ω̃u
t (T) = −etu+eTu

u , ω̃0,u
t (T) =

eTu(−tu+Tu−1)+etu

u2 , ω̃u,u
t (T) =

(etu
−eTu)2

2u2 .
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Thanks to these expressions we can write PMGB(x0,Ti+1) as a function of ρTi+1

and ξTi+1 with :

a
′

1,Ti+1
= f 1

κ,v0,Ti
(θTi+1 ,Ti,Ti+1)

∂2PBS

∂xy
(x0,varTi+1) + ω̃0,−κ

Ti,Ti+1
ω̃1,Ti

∂3PBS

∂x2y
(x0,varTi+1)

+ (a1,Ti + ω̃
−κ
Ti,Ti+1

ω̃1,Ti)
∂4PBS

∂x2y2 (x0,varTi+1),

a
′

2,Ti+1
= f 2

κ,v0,Ti
(θTi+1 ,Ti,Ti+1)

∂3PBS

∂x2y
(x0,varTi+1),

b
′

0,Ti+1
= f 0

κ,v0,Ti
(θTi+1 ,Ti,Ti+1)

∂2PBS

∂y2 (x0,varTi+1),

b
′

2,Ti+1
=

1
2
∂4PBS

∂x2y2 (x0,varTi+1),

a
′

0,Ti+1
=(a1,Ti + ω̃

−κ
Ti,Ti+1

ω̃1,Ti)
∂2PBS

∂xy
(x0,varTi+1)

+ (a2,Ti + ω̃
−κ
Ti,Ti+1

αTi)
∂3PBS

∂x2y
(x0,varTi+1)

+ (b0,Ti + ω̃
−κ
Ti,Ti+1

βTi + ω̃
−κ,−κ
Ti,Ti+1

ω̃2,Ti)
∂2PBS

∂y2 (x0,varTi+1)

+
(a1,Ti + ω̃

−κ
Ti,Ti+1

ω̃1,Ti)
2

2
∂4PBS

∂x2y2 (x0,varTi+1).

PMGB(x0,Ti+1) =a
′

0,Ti+1
+ PBS(x0,varT,T) + a

′

1,Ti+1
ρTi+1ξTi+1 + (a

′

2,Ti+1
+ b

′

2,Ti+1
)ρTi+1

2ξTi+1
2

+ b
′

0,Ti+1
ξTi+1

2

From now on, for each maturity T, this formula gives us the opportunity to
write a call price as an easily computable function of ρT and ξT.

Calibration This algorithm calibrates the Heston model using the new formula
to compute prices. We consider a time dependent Heston model with constant
v0 (chosen accordingly to our market data) and κ. With several maturities, Θ

represents the values of the longterm vol on [0,T1], ..., [TN−1,TN] and Γ and Ξ the
values of the correlation and the volatility of volatility on [0,T1], ..., [TN−2,TN−1].
If ρN and ξN are the corresponding values on [TN−1,TN], the call price for a strike
K is :

PMGB(TN,K) = a(κ,Θ,Γ,Ξ) + b(κ,Θ,Γ,Ξ)ρNξN + c(κ,Θ,Γ,Ξ)ξ2
N + d(κ,Θ,Γ,Ξ)ρ2

Nξ
2
N

It seems really interesting to use this approximation in a calibration procedure
since two market prices are enough to solve the system and get the volatility of
volatility and the correlation. However, numerical solutions for ξN and ρN can
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be useless for our model (for instance if we have to deal with complex numbers
or huge ξN). Finding a good value for θN in order to get interesting ξN and ρN

is the aim of this calibration.

The algorithm starts with given values for κ, v0 and θ1 for the first maturity.
Then, we use a simplex algorithm to find a good θ1. For each value of θ1, the
simplex solves the following system (using Mathemartica):

{
P1(T1) = a(κ,θ1) + b(κ,θ1)ρ1ξ1 + c(κ,θ1)ξ2

1 + d(κ,θ1)ρ2
1ξ

2
1

P2(T1) = a(κ,θ1) + b(κ,θ1)ρ1ξ1 + c(κ,θ1)ξ2
1 + d(κ,θ1)ρ2

1ξ
2
1

where P1(T1) and P2(T1) are two market prices (at the money and the first strike
higher than the spot) and the coefficients a, b, c and d are given in the previous
subsection. This system gives four solutions but two of them lead to negative
ξ. We decided to remove one of the two remaining solutions since it did not
give suitable results with our pricing formula. Then we have to realize our
optimization with one of these solution : (ρ1,ξ1). The simplex computes (ξ is the
upper bound chosen for ξ)

F(ρ1,ξ1) = max(0, |ρ1| −1) + |Im(ρ1)|+ |Im(ξ1)|+ |min(0,Re(ξ1))|

+ max(0,Re(ξ1)2
−2κθ1) + max(0,Re(ξ1)−ξ)

If F(ρ1,ξ1) = 0 this is a good solution and the simplex returns the current value of
θ1 and save ρ1 and ξ1. Otherwise, it tries to minimize F. To end the calibration
on the first maturity, we use these solutions as an initial vector for a Levenberg
Marquardt optimization.

When the model is calibrated on several maturities, T0,...,TN, we write Γ, Θ

and Ξ the calibrated values of ρ, θ and ξ from 0 to TN and the algorithm begins
with a given value θN+1 for TN+1. For each value of θN+1, the simplex solves the
following system :


P1(TN+1) = a(κ,Γ,Ξ,Θ,θN+1) + b(κ,Γ,Ξ,Θ,θN+1)ρN+1ξN+1

+c(κ,Γ,Ξ,Θ,θN+1)ξ2
N+1 + d(κ,Γ,Ξ,Θ,θN+1)ρ2

N+1ξ
2
N+1

P2(TN+1) = a(κ,Γ,Ξ,Θ,θN+1) + b(κ,Γ,Ξ,Θ,θN+1)ρN+1ξN+1

+c(κ,Γ,Ξ,Θ,θN+1)ξ2
N+1 + d(κ,Γ,Ξ,Θ,θN+1)ρ2

N+1ξ
2
N+1

where P1(TN+1) and P2(TN+1) are two market prices (at the money and the first
strike higher than the spot). Then, the simplex tries to find a θN+1 which gives
good values for ρN+1 and ξN+1. If it fails, this part is replaced by a classical
simplex optimizing every parameter. The solution of this subsection is then
used as an initial vector for a Levenberg Marquardt optimization.
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Table 4.1: Market data of crude oil future

Maturity Jun09 Jul09 Aug09 Sep09 Oct09 Nov09
Future Value 66.12 67.09 68.02 68.86 69.66 70.46

Dec09 Jan10 Feb10 Mar10 Apr10 May10
71.11 71.63 72.11 72.59 73.06 73.52
Jun10 Jul10 Aug10 Sep10 Oct10 Nov10
73.97 74.3 74.53 74.79 75.05 75.3
Dec10 Jan11 Feb11 Mar11 Apr11 May11
75.56 75.84 76.13 76.42 76.71 77

4.8 Numerical analysis

4.8.1 Market data: crude oil

We take a market data as of the 3rd June 2009. The spot value is 66.12. The
future and volatility market data are shown in figure 4.8 , table 4.1 and figure 4.9
respectively.

Figure 4.8: Market data of crude oil future

Now we use the spot, futures and volatility surface market data to calibrate
a Heston model. All the numerical tests are carried on under financial software
Price-it®Excel.

We recall Heston model here for convenience.

dSt

St
= rdt +

√
VtdW1 (4.77)

dVt = k(θ−Vt)dt +ξ
√

VtdW2 (4.78)

There are five parameters to calibrate:

1. V0, the initial value of Vt, is initial volatility.



CHAPTER 4. STOCHASTIC VOLATILITY MODEL 103

Figure 4.9: Market data of crude oil volatility

2. θ is long term volatility.

3. k is mean reversion.

4. ξ is vol of vol.

5. ρ is the correlation between W1 and W2

.

4.8.2 Calibration Heston model with constant parameters

In the first test, we assume all the parameters of Heston model are constant.
And we use only one year maturity on the volatility surface. The optimization
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Table 4.2: Calibration result

InitialVol LongTermVol MeanReversion VolOfVol Correlation
0.3981 0.0614 1.0922 0.6451 -0.0853

algorithm is set to be Levenberg-Marquardt. The result of calibration is listed
in table 4.2. We use this set of parameter in Heston model and re-calculate the
options we use to calibrate. In this way, we can compare the smile from the
model and the smile of market data. It is shown in figure 4.10.

Figure 4.10: Smile of Market data and Heston model

From figure 4.10 we observe the largest difference between two curves at
strike 95%. In market data, the smile presents a slight “Z” form instead of
normal “U” form, especially at point strike 95%. Heston model cannot match
exactly at this point. Therefore it causes a relative larger difference than other
points. The difference is shown in figure 4.11.

4.8.3 Calibration Heston model with time-dependent parameters

In this test, we continue to use the same market data in figue 4.8 , table 4.1 and
figure 4.9. We let parameters in Heston model be time-dependent, more precisely
piecewise constant. Among the five Heston model parameters, we allow three
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Figure 4.11: Difference on smile

of them to be piecewise constant: long term volatility, vol of vol and correlation.
Parameter initial volatility and Mean reversion parameter are set to be constant
over different maturities. The reason of setting mean reversion to be constant is
to decrease the degree of freedom in calibration, in order to stabilize the result
of calibration. We will discuss the stability of calibration in more details in the
next subsection.

Here we take maturity 1 year, 18 months and 2 years. So there are 21 input
volatility in total, seven strikes for each maturity. The calibration targets to
minimize the sum of the square of the difference on all the 21 points. The
calibrated parameters are listed in table 4.3 and the difference between market
data and Heston model is shown in figure 4.13 and 4.12.

Compare figure 4.11 and 4.12, we can see they present same form. The
reason is always that market data presents irregularity at strike 95%. Another
observation from table 4.3 is that the correlation parameter changes sign in the
second maturity, though there is little difference in the shape of the volatility
curves in figure 4.13.

With the observation on correlation parameter, we now set correlation as
constant over different maturities. The calibrated parameters are listed in table
4.4 and the difference between market data and Heston model is shown in figure
4.14 and 4.15. We can observe that all the parameters are smoother without big
change over different maturities in table 4.4. And the calibration error in figure
4.14 remains as little as that in the case of time-dependent correlation.
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Table 4.3: Calibration result for time-dependent Heston

InitialVol LongTermVol MeanReversion VolOfVol Correlation
1Y 47.96% 8.68% 408.47% 142.19% -9.13%
1Y+6M 47.96% 4.72% 408.47% 186.55% 30.82%
2Y 47.96% 7.49% 408.47% 112.43% -1.90%

Figure 4.12: Difference on Smile of Market data and time-dependent Heston
model

From the comparison, we find that we don’t need to allow every parameters
to be time-dependent. Two time-dependent parameters can achieve a calibration
result as good as the case of three time-dependent parameters.
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Figure 4.13: Smile of Market data and Heston model for time dependent case

Table 4.4: Calibration result with constant correlation

InitialVol LongTermVol MeanReversion VolOfVol Correlation
1Y 59.77% 6.32% 495.80% 171.95% -5.01%
1Y+6M 59.77% 6.06% 495.80% 171.98% -5.01%
2Y 59.77% 6.49% 495.80% 169.17% -5.01%



CHAPTER 4. STOCHASTIC VOLATILITY MODEL 108

Figure 4.14: Difference on Smile of Market data and time-dependent Heston
model with constant correlation
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Figure 4.15: Smile of Market data and Heston model for constant correlation
case
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4.8.4 Sensibility of parameters

In this subsection, we add 0.02% on the volatility surface of market data. Then
we use this shifted market data to calibrate Heston model. And we compare
against the previous result to see if the parameters largely change or just have
small change.

The spot value remains at 66.12. And the futures are still as in table 4.1. But
the volatility surface is shifted by 0.02% as shown in figure 4.16.

Figure 4.16: Shifted market data of crude oil volatility

The calibrated parameters are listed in table 4.5 and the difference between
market data and Heston model is shown in figure 4.17 and 4.18.

The result in table 4.4 and 4.5 shows that the parameters of Heston model
don’t change a lot. They are relatively stable. And the calibration result in figure
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Table 4.5: Calibration result with constant correlation

InitialVol LongTermVol MeanReversion VolOfVol Correlation
1Y 64.48% 5.41% 494.33% 157.08% -19.32%
1Y+6M 64.48% 6.36% 494.33% 159.48% -19.32%
2Y 64.48% 6.79% 494.33% 155.21% -19.32%

4.17 stays at a good level as the case before shifting in figure 4.14.

Figure 4.17: Difference on Smile of Market data and time-dependent Heston
model with shifted market data
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Figure 4.18: Smile of Market data and Heston model with shifted market data
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4.9 Summary

In this chapter, we have mainly discussed stochastic volatility model in two
parts. In the first part (section 4.1 to 4.5), we replace the constant model param-
eters to time dependent, which extends the original stochastic volatility model
to dynamic stochastic volatility model. It allows more degree of freedom on
the implied volatility surface generated by these models. We study the closed
formula for vanilla option price for three typical stochastic volatility models,
namely Heston model, Piterbarg model and SABR model, by employing control
variate, parameter averaging technique and perturbation theory. Instead of the
the formulas for the option price, we also have the formula for implied volatility.
In section 4.6, we discuss the result of vol of vol expansion. The advantage of the
method is that it can get directly the implied volatility which is very convenient
for calibration, but the precision is often not good enough for calibration.

In the second part (section 4.7), we discuss the calibration for stochastic
volatility models. Substantially, calibration is the process to numerically reverse
the closed formula of option price in n-dimension space (n is the number of the
parameters to calibrate). As the closed formulas for option price have ready
achieved in the first part, we focus on different numerical algorithm, includ-
ing bootstrap, Newton Raphson, simplex, differential evolution. We list their
pseudo-code and comment on their advantage and limitation.





Chapter 5

Conclusion

The modeling of commodity and commodity derivatives consists in three steps:

1. choose the dynamic model of the spot price,

2. calibrate the model,

3. price the products with the calibrated model.

All these three steps are necessarily needed for a complete pricing process and
they are related to each other. Step three needs the model parameters and so
it depends on the result of step two, the calibration. Step two needs to use
the formula of vanilla option price to calibrate the model to the market implied
volatility surface, which depends the choice of the dynamic model. Interestingly,
the choice of the dynamic model sometimes depends on the final product we
want to price. For example, if the product is sensitive to the volatility smile,
then the stochastic volatility model family is a better choice than Black-Scholes
model.

In this thesis, we focus on the different choices of dynamic model and their
formula for vanilla option price, as well as some calibration algorithms. Using
the model to price the products by employing numerical method, such as Monte
Carlo simulation or PDE grid is beyond the scope of the thesis.

There are basically two different families of dynamic models in our discus-
sion, namely stochastic convenience yield model and stochastic volatility model.
We pick up the most popular models, Gibson-Schwartz model and Gabillon
model, from the family of stochastic convenience yield model. In chapter 2, we
proved the mathematical equivalence relation between Gibson-Schwartz model
and Gabillon model. It is not surprising because both models share the similar
economy concept of stochastic convenience yield. And in financial mathematics
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equation, it shows the stochastic drift term. In chapter 3, we presented that both
Gibson-Schwartz model and Gabillon model were equivalent to a one-factor
model by introducing model factor reduction technique. Of course, this conclu-
sion is true only when the product is not path dependent because the equivalence
is established on the marginal distribution of the stochastic process. Based on
the equivalent one-factor model, we give the formula of vanilla option price with
the underlying being spot as well as forward.

The family of stochastic volatility model is studied in chapter 4. The main
idea is to extend the original version of the models to dynamic models by al-
lowing their parameter depending on time. To make it more practical, the
parameters are not set to be continuous function depending on time. We choose
piecewise constant parameters. The reason to choose piecewise constant param-
eters is based on the fact that market data is normally given on a few maturities.
Therefore, we simply don’t have the information of the parameters between two
maturities of market data from the point of view of calibration. These piecewise
constant parameters represent for the average value of the parameters between
two maturities in term of calibration result. Based on this assumption, we ex-
tended Heston model, SABR model and Piterbarg model into dynamic Heston
model, dynamic SABR model and dynamic Piterbarg model. To set up the
formula of vanilla price for these extended models we employ different tech-
niques including parameter averaging techniques, perturbation theory and vol
of vol expansion. These formulas are approximation but with a good numerical
precision.

In the last part of chapter 4, we list some calibration algorithms. These
algorithms are global optimization in high dimension space. We gave some
adjustment to increase the probability of convergence. Although the algorithms
are model-free, they can be more helpful for the family of stochastic volatility
model, since these models have more parameters.
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Appendix A

Proof of propositions

A.1 Proof of proposition 25

To porve the proposition, we consider two diffusions more generally,

dX(t) = f (t,X(t))
√

z(t)σ(t)dW(t), X(0) = x0

dY(t) = f̄ (Y(t))
√

z(t)σ(t)dW(t), Y(0) = x0

Without loss of generality:

f (t,x0) ≡ f̄ (x0) = 1

The objective is to find the best function f̄ (·), which minimizes the "distance"
between two diffusion X(t) and Y(t).

We note the objective function to minimize as:

p(X,Y) = E
[
(X(T)−Y(T))2

]
Use Ito’s lemma and then expand to the first order,

p(X,Y) =

∫ T

0
E

[
z(t)( f (t,X(t))− f̄ (Y(t)))2

]
σ2(t)dt

=

∫ T

0
E

z(t)
(
∂
∂x

f (t,x0)(X(t)−x0)−
∂
∂x

f̄ (x0) (Y(t)−x0)
)2σ2(t)dt

Further approximation:

X(t)−x0 = X0(t)−x0

Y(t)−x0 = X0(t)−x0
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Where X0(t) is given by,

dX0(t) =
√

z(t)σ(t)dW(t), X0(0) = x0 (A.1)

Finally we get,

p(X,Y) =

∫ T

0

(
∂
∂x

f (t,x0)−
∂
∂x

f̄ (x0)
)2

E
[
z(t)(X0(t)−x0)2

]
σ2(t)dt

Minimizing p(X,Y) leads to,

∂ f̄ (x0)
∂x

=

∫ T

0

∂ f (t,x0)
∂x

w(t)dt (A.2)

where the weights w(t) can calculate by,

w(t) =
v2(t)σ2(t)∫ T

0 v2(t)σ2(t)dt
(A.3)

v2(t) = E
[
z(t)(X0(t)−x0)2

]
(A.4)

Now we apply the general result (A.2) to our diffusion,

dS(t) = σ(t)(β(t)S(t) + (1−β(t))S(0))
√

z(t)dU(t)

And we can get,

b =

∫ T

0
β(t)w(t)dt

w(t) =
v2(t)σ2(t)∫ T

0 v2(t)σ2(t)dt

v2(t) = E
[
z(t)(X0(t)−x0)2

]
Remark In this part of proof, we don’t use the zero correlation condition.
Therefore, the result (A.2) can also apply to a model with non-zero correlation.

Now we calculate v2(t). It needs the assumption of zero correlation.

Using the independence between X0 and z we obtain,

v2(t) = E
[
z(t)(X0(t)−x0)2

]
(A.5)

= E
[
z(t)E

[
(X0(t)−x0)2

∣∣∣z(·)
]]

(A.6)

= E

[
z(t)

∫ T

0
z(s)σ2(s)ds

]
(A.7)

=

∫ T

0
σ2(s)E[z(t)z(s)]ds (A.8)



APPENDIX A. PROOF OF PROPOSITIONS 125

Calculate the covariance of z(t) and substitute in equation (A.8), we can get,

v2(t) = z2
0

∫ t

0
σ2(s)ds + z0η

2e−θt
∫ t

0
σ2(s)

eθs
− e−θs

2θ
ds

This proves proposition 25. �

A.2 Proof of proposition 26

We can first remark that the model given by:

dS(t) = σ(t)(bS(t) + (1−b)S(0))
√

z(t)dU(t)

where the stochastic volatility z(t)follows

dz(t) = θ(z0− z(t))dt +η
√

z(t)dV(t),z(0) = z0

has closed formula. We can use Fourier transform as in Lewis (2000), with the
non-constant sigma directly. In this case, instead of solving a Riccati system
by Runge-Kutta method, we have to solve a Riccati system in the fundamental
transform to construct the closed formula.

Consider the European style at-the-money call option.

E (S(T)−S0)+ = E
[
E

[
(S(T)−S0)+]∣∣∣z(·)

]
(A.9)

Where (S(T)−S0)+ =

{
S(T)−S0, when S(T) ≥ S0

0, when S(T) < S0

That’s to say, we can express(S(T)−S0)+ as a function ofZ(T), saying, in form
of g(Z(T)). And

Z(T) =

∫ T

0
σ2(t)z(t)dt (A.10)

Now we derive the explicit form of function g(·)
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The process S(t)is a shifted lognormal.

dS(t) = σ(t)(bS(t) + (1−b)S0)
√

z(t)dU(t),S(0) = S0

dS(t) = σ(t)b
(
S(t) +

(1−b)
b

S0

) √
z(t)dU(t)

d
(
S(t) +

1− b
b

S0

)
= σ(t)b

(
S(t) +

(1−b)
b

S0

) √
z(t)dU(t)

S(t) +
1−b

b
S0 = exp

{∫ t

0
σ(t)b

√
z(t)dU(t) + log

(
S0 +

1−b
b

S0

)}
=

S0

b
exp

∫ t

0
σ(t)b

√
z(t)dU(t)

S(T)−S0 =
S0

b

(
exp

∫ t

0
σ(t)b

√
z(t)dU(t)−1

)
(S(T)−S0)+ =

S0

b

(
exp

∫ t

0
σ(t)b

√
z(t)dU(t)−1

)+

The right-hand side of the equation (exp
∫ t

0 σ(t)b
√

z(t)dU(t)−1)+can be regarded
as Black-Scholes model, with the spot price being 1, strike price being 1 and
interest rate being 0.

Therefore,

(S(T)−S0)+ =
S0

b
(N(d1)−N(d2))

With

d1 =
log(S0/K) + (r + (vol)2/2)T

σ ·
√

T
=
σ ·
√

T
2

=
1
2

b
√

Z(T) (A.11)

d2 = d1−σ
√

T = −
1
2

b
√

Z(T)

N(y) = 1
√

2π

∫ y
−∞

e−x2/2dx is cumulative function of standard normal distribu-
tion. Z(T)is defined in A.10.

c(S(T)−S0)+ =
S0

b

(
N

(1
2

b
√

Z(T)
)
−N

(
−

1
2

b
√

Z(T)
))

=
S0

b

(
2N

(1
2

b
√

Z(T)
)
−1

)
We note g(x) = S0

b

(
2N

(
1
2 b
√

x
)
−1

)
So we get an equation for λ:

Eg
(∫ T

0
σ2(t)z(t)dt

)
= Eg

(
λ2

∫ T

0
z(t)dt

)
(A.12)

Now we make an approximation for g(x)
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We have obtained g(x) = S0
b

(
2N

(
b
√

x
2

)
−1

)
Here, N(y) = 1

√
2π

∫ y
−∞

e−x2/2dx is cumulative function of standard normal dis-
tribution

Note that, N
(

b
√

x
2

)
= 1
√

2π

∫ b
√

x
2

−∞
e−t2/2dt

The derivative respect to x is:(
N

(
b
√

x
2

))′
=

1
√

2π
e−

b2x
8

So, we can approximate N
(

b
√

x
2

)
with p + qe−rx

That’s to say,
g(x) ≈ a + be−cx (A.13)

a,b and care constants, which are to be determined.
Substitute (A.13) into (A.12), we get:

a + bEexp
(
−c

∫ T

0
σ2(t)z(t)dt

)
= a + bEexp

(
−cλ2

∫ T

0
z(t)dt

)

Eexp
(
−c

∫ T

0
σ2(t)z(t)dt

)
= Eexp

(
−cλ2

∫ T

0
z(t)dt

)
(A.14)

And the constant ccan be given by:

c = −
g′′(ζ)
g′(ζ)

,

ζ = EZ(t) =

∫ T

0
σ2(t)Ez(t)dt = z0

∫ T

0
σ2(t)dt

We note the Laplace transform of Z(T) as:

ϕ(µ) = Eexp(−µZ(T))

And the Laplace transform of z(t) as:

ϕ0(µ) = Eexp
(
−µ

∫ T

0
z(t)dt

)
Substitute the transforms above into (A.14), we get the equation, from which we
can solve the parameterλ.

ϕ0

(
−

g′′(ζ)
g′(ζ)

λ2
)

= ϕ

(
−

g′′(ζ)
g′(ζ)

)
(A.15)

The Laplace transform can be presented as:

ϕ(µ) = exp(A(0,T)− z0B(0,T))
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A(t,T) and B(t,T) suffice the Riccati system of ordinary differential equations:

A′(t,T)−θz0B(t,T) = 0 (A.16)

B′(t)−θB(t,T)−
1
2
η2B2(t,T) +µσ2(t) = 0 (A.17)

A(T,T) = B(T,T) = 0

Whenσ(t) ≡ 1, we arrive from ϕ(µ) to ϕ0(µ). This case can be solved explicitly.

ϕ0(µ) = exp(A0(0,T)− z0B0(0,T))

B0(0,T) =
2µ(1− e−γT)

(θ+γ)(1− e−γT) + 2γe−γT

A0(0,T) =
2θz0

η2 log
(

2γ
θ+γ(1− e−γT) + 2γe−γT

)
−2θ

µ

θ+γ
T

Here,γ =
√
θ2 + 2η2µ

To solve (A.15), we use Newton’s root searching method. We use recursion
to get the solution of f (x) = 0.

xn+1 = xn−
f (xn)
f ′(xn)

Because the scope of λ2 is relatively small, saying [0,2] typically, Newton’s
method works very fast.

(A.16) and (A.17) are called Riccati system. When σ(t) is not constant, Riccati
system doesn’t have explicit solution. In this case, we employ Runge-Kutta’s
method to solve it numerically which concludes the result.�

A.3 Proof of proposition 28

According to the definition in equation (A.4)

v2(t) = E

z(t)
(∫ t

0

√
z(u)σ(u)dW(u)

)2
We note Y(t) =

∫ t
0

√
z(u)σ(u)dW(u) and N(t) = Y(t)2.

Apparently, N(0) = Y(0) = 0.

E[Y(t)] = 0

E[N(t)] = z0

∫ t

0
σ(s)2ds

dN(t) = 2Y(t)dY(t) + d〈Y〉t
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dz(t) = θ(t)(z0− z(s))ds +γ(s)
√

z(s)dV(s)

with z(0) = z0

E
[
z(s)2

]
= z2

0 + z0e−2θ(s)s
∫ s

0
e2θ(u)uγ(u)2du

Here we use the integration by parts (XtYt = X0Y0 +
∫ t

0 Xs−dYs +
∫ t

0 Ys−dXs +

〈X,Y〉t)

v2(t) = E[z(t)N(t)] (A.18)

= E

[∫ t

0
z(s)dN(s) +

∫ t

0
N(s)dz(s) + 〈z,N〉t

]
(A.19)

The first term of equation A.19:

E

[∫ t

0
z(s)dN(s)

]
= E

[∫ t

0
z(s) ·2Y(s)dY(s) +

∫ t

0
z(s)d〈Y〉s

]
= E

[∫ t

0
z(s)d〈Y〉s

]
= E

[∫ t

0
z(s)2σ(s)2ds

]
=

∫ t

0
E

[
z(s)2

]
σ(s)2ds

The second term of equation A.19:

E

[∫ t

0
N(s)dz(s)

]
= E

[∫ t

0
N(s)θ(s) (z(0)− z(s))ds +

∫ t

0
N(s)γ(s)

√
z(s)dV(s)

]
= z0

∫ t

0
E[N(s)]θ(s)ds−

∫ t

0
E[N(s)z(s)]θ(s)ds

The third term of equation A.19:

E[〈z,N〉t] = E

[∫ t

0
γ(s)z(s) ·4Y(s)2σ(s)ρ(s)ds

]
= 4

∫ t

0
γ(s)σ(s)ρ(s)E [z(s)N(s)]ds

Finally we get,

E[z(t)N(t)] = A(t) +

∫ t

0
B(s)E[z(s)N(s)]ds (A.20)
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Or,

v2(t) = A(t) +

∫ t

0
B(s)v2(s)ds

dv2(t)
dt

= A′(t) + B(t)v2(t) (A.21)

with

A(t) =

∫ t

0
E

[
z(s)2

]
σ(s)2ds + z0

∫ t

0
E[N(s)]θ(s)ds

B(s) = 4γ(s)σ(s)ρ(s)−θ(s)

v2(0) = 0

Note that the ordinary differential equation (ODE) A.21 is easy to solve if all
the parameters are constant. The solution in this case is,

v2(t) = e
∫

B(t)dt
(∫

A′(t)e−
∫

B(t)dtdt + K
)

(A.22)

K is the constant of integration,

K = −

∫
A′(t)e−

∫
B(t)dtdt

∣∣∣∣∣
t=0

Now we consider all the parameters of the model is piecewise constant. The
ODE A.21 can be solved in each interval. And the initial value for each interval
is the last value for the last interval.

Suppose we have n periods: 0 = t0 < t1 < t2 < · · · < tn = T.
When ti−1 < t < ti, we note σ(t) = σi, γ(t) = γi, ρ(t) = ρi, θ(t) = θi ,β(t) = βi,

B(t) = Bi = 4γiσiρi−θi.

Now solve ODE A.21 on interval [ti−1, ti], with the initial value v2
i−1 = v2(ti−1).

We obtain the solution for t ∈ (ti−1, ti],

v2(t) = e
∫

B(t)dt
(∫

A′(t)e−
∫

B(t)dtdt + K
)

(A.23)

K = v2
i−1e−

∫
B(t)dt

−

∫
A′(t)e−

∫
B(t)dtdt

∣∣∣∣∣
t=ti−1

(A.24)

For the first period, initial value v2
0 = v2(0) = 0.
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Now we substitute the initial value and develop equation A.23. It yields,

v2(t) =v2
i−1eBi(t+1) +

(
eBi(t−ti−1)

−1
)
σ2

i z0
1
Bi

(
z0 +

1
2θi

γ2
i

)
+ z2

0σ
2
i θi

1
Bi

(
eBi(t−ti−1)Biti−1 + eBi(t−ti−1)

−Bit−1
)

−
1

2θi(Bi + 2θi)
σ2

i z0γ
2
i

(
eBi(t−ti−1)−2θiti−1 − e−2θit

)
with Bi = 4γiσiρi−θi.

It proves proposition 28. �





List of Symbols
and Abbreviations

Abbreviation Description Definition

ADC average daily commissions
ADV average daily volume
BS model Black Scholes model
BS implied vol implied Black Scholes volatility
D(t,T) discount factor It equals to the value of 1 unit

of risk free bond at time t with
maturity at time T.

Ft,T forward price The forward price at time t with
maturity T.

ICE Intercontinental Exchange
LV model local volatility model
OTC over-the-counter
OU process Ornstein Uhlenbeck process
St spot price Spot price at time t.
SV model stochastic volatility model
vol of vol volatility of volatility
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Produits Dérivés des Matières Premières: 

Modélisation et Evaluation 

RESUME : Les prix des matières premières ont augmenté à un rythme sans précédent au 

cours des dernières années rendant les dérivés sur matières premières de plus en plus 

populaires dans de nombreux secteurs comme l’énergie, les métaux et les produits agricoles. 

Le développement rapide du marché des produits dérivés sur matières premières a aussi induit 

une recherche vers toujours plus de précision et cohérence dans la modélisation et l’évaluation 

de produits dérivés des matières premières.  

Reposant sur le principe de diffusion équivalente introduite par Gyöngy, nous montrons que le 

modèle de Gibson Schwartz et le modèle de Gabillon peuvent se réduire à un modèle à un 

facteur dont la distribution marginale peut être explicitement calculée sous certaines conditions. 

Ceci nous permet en particulier de trouver des formules analytiques pour l’ensemble des 

options vanilles. Certaines de ces formules sont nouvelles à notre connaissance et d’autres 

confirment des résultats antérieurs.  

Dans cette thèse, nous étendons les idées de Piterbarg à la famille des modèles à volatilité 

stochastique en rendant le concept plus général. Nous montrons en particulier comment 

introduire des paramètres dépendant du temps dans les modèles à volatilité stochastique et 

explicitons différentes formules de calcul explicite du prix d’options vanilles, permettant ainsi 

une calibration des paramètres du modèles extrêmement efficace.  

Mots clés : Produits Dérivés des Matières Premières, modèle de Gibson Schwartz, modèle de 

Gabillon, Théorème de Gyöngy, modèle à volatilité stochastique, parametres dépend du temp. 

 

Commodity Derivatives: 

Modeling and Pricing 

ABSTRACT : Commodity prices have been rising at an unprecedented pace over the last years 

making commodity derivatives more and more popular in many sectors like energy, metals and 

agricultural products. The quick development of commodity market as well as commodity 

derivative market results in a continuously uprising demand of accuracy and consistency in 

commodity derivative modeling and pricing. 

In this thesis, we prove that there is mathematical equivalence relation between Gibson 

Schwartz model and Gabillon model. Moreover, inspired by the idea of Gyöngy, we show that 

Gibson Schwartz model and Gabillon model can reduce to one-factor model with explicitly 

calculated marginal distribution under certain conditions, which contributes to find the analytic 

formulas for forward and vanilla options. Some of these formulas are new to our knowledge and 

other formulas confirm with the earlier results of other researchers. 

We extend Piterbarg's idea to the whole family of stochastic volatility model, making all the 

stochastic volatility models having time-dependent parameters and show various formulas for 

vanilla option price by employing various techniques such as characteristic function, Fourier 

transform, small error perturbation, parameter averaging, etc. 

Keywords : Commodity derivative, Gibson-Schwartz model, Gabillon model, theory of 

Gyöngy, Stochastic volatility model, time-dependent parameter. 
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