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Introduction



Modeling

Traffic Performance
_— Network —_—
Objectives:
- Modeling
- Design

- Dimensioning



What Are We Talking About?

- In a distributed storage system with failures,
what is the life expectancy of a file?

- Does the Internet collapse if users are selfish
and don’t use congestion control?

- Does CSMA/CA, as used in WiFi, ensure
efficient use of bandwidth?



Contents

Mathematical tools
Modeling

Scaling methods

Stochastic averaging

Examples
Unreliable File System

The Law of the Jungle

Flow-Aware CSMA



Modeling



Modeling

Traffic Performance
_— Network _—
Objectives: Tools:

- Modeling - Markov processes

- Design - Queueing models

- Dimensioning - Scaling methods



Stochastic Models

State: (X(t)) a Markov jump process in N9;

- Number of files,
- Number of active flows in the Internet,

- Number of messages to be transmitted.



Stochastic Models

State: (X(t)) a Markov jump process in N9;

- Number of files,
- Number of active flows in the Internet,

- Number of messages to be transmitted.

Markov assumptions:
- Poisson arrivals

- Exponentially distributed sizes/durations.



Stochastic Models

State: (X(t)) a Markov jump process in N¢:

- generally, non-reversible,
- when ergodic, invariant distribution not known,

- results on transient properties are rare (for
d=>2).



Scaling Methods



Scaling Methods

Principle: N a scaling parameter
Analyze the evolution of the sample path of

(XN(WN(t)))
Py

as N — oo, for some convenient (Vy(t)) and (dy).

Time scale t — Wy (t) is used as a tool to focus on
some specific part of sample paths.
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Scaling Methods

Principle: N a scaling parameter
Analyze the evolution of the sample path of

(XN(WN(t)))
Py

as N — oo, for some convenient (Vy(t)) and (dy).

Time scale t — Wy (t) is used as a tool to focus on
some specific part of sample paths.

There may be more than one time scale of
interest!
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Scaling Methods: Goals

Give a First order description of (XN (t)):
XN(Wpy(t)) =~ dpn.x(t)

where,
(x(t)) is a simpler stochastic process or even a
deterministic dynamical system:

12



Classical Example: Fluid Limit

_ X(Nt
(X(t))_( (Nt)

T) . with N = IX(O)]l.

Scaling parameter: initial state

Time scale: t— Nt
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Classical Example: Fluid Limit
_ X(Nt
(X(t) = (%) with N = ||X(0)]I.

Scaling parameter: initial state

Time scale: t— Nt

Fluid limit reaches 0

Process is stable
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Example: Fluid Limit of M/M/1 Queue

(X)) = (%) with N = X(0).
.10t
X(0)=10
1 |
X 05| N[\\
0 MIIII
0 1
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Example: Fluid Limit of M/M/1 Queue

(X(t)) = (@) with N = X(0).

102

/X(O) — 102

14



Example: Fluid Limit of M/M/1 Queue

(X(t)) = (@) with N = X(0).
103
e X(0) =103
X 0.5 A=08u=1
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Example: Fluid Limit of M/M/1 Queue

(X(t)) = (@) with N = X(0).
-10%
e X(0) = 10%
X 0.5 A=08u=1
0
0 1
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Example: Fluid Limit of M/M/1 Queue

(X(t)) = (@) with N = X(0).
-10°
Lle— X(0) =103
X 0.5 A=08u=1
0
0 1

14
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Technical Corner
Proof of the tightness of the scaled process

(XN (W/v(f)))
by

- Stochastic Differential Equation representation
of (XN(t)) with martingales

- Standard tightness criteria
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- Stochastic averaging
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Technical Corner
Proof of the tightness of the scaled process

(XN (W/v(f)))
by

- Stochastic Differential Equation representation
of (XN(t)) with martingales

- Standard tightness criteria

Difficulties:
- Discontinuities: Skorokhod Problem Techniques
- Stochastic averaging

Each example has its specific difficulties

16



Stochastic Averaging



A Deterministic Example

Deterministic sequences (xn(t)) and (yn(t)) with:

Xn(t) = NF(xn(t)),
Yn(t) = Gxn(t), yn(t))
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A Deterministic Example
Deterministic sequences (xn(t)) and (yn(t)) with:

Xn(t) = NF(xn(t)), Fast time-scale
yn(t) = G(xn(t), yn(t)) Slow time-scale

Fast time-scale:

Xn(t/N) = F(xn(t/N)).
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A Deterministic Example
Deterministic sequences (xn(t)) and (yn(t)) with:

Xn(t) = NF(xn(t)), Fast time-scale
yn(t) = G(xn(t), yn(t)) Slow time-scale

Fast time-scale:

Xn(t/N) = F(xn(t/N)).

Slow time-scale: If x(t) tends to a fixed point x*:
(yn(t)) converges to (y(t)) with

y(t) = G(x*, y(t))
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A Deterministic Example
Deterministic sequences (xn(t)) and (yn(t)) with:

Xn(t) = NF(xn(t), yn(t)), Fast time-scale
yn(t) = G(xn(t), yn(t)) Slow time-scale

19



A Deterministic Example

Deterministic sequences (xn(t)) and (yn(t)) with:

Xn(t) = NF(xn(t), yn(t)), Fast time-scale
yn(t) = G(xn(t), yn(t)) Slow time-scale

Fast time-scale: When N — oo, yn(t/N) ~ z

Xn(t/N) = F(x(t/N), z)
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A Deterministic Example
Deterministic sequences (xn(t)) and (yn(t)) with:

Xn(t) = NF(xn(t), yn(t)), Fast time-scale
yn(t) = G(xn(t), yn(t)) Slow time-scale

Fast time-scale: When N — oo, yn(t/N) ~ z

Xn(t/N) = F(x(t/N), z)

Slow time-scale: If (xn(t)) tends to a fixed point x:
(yn(t)) converges to (y(t)) with

y(8) =G (X} ¥(0))

19



Stochastic vs Deterministic

Deterministic

Stochastic

Fast process ODE Markov process
- (x(1) (X(t))
X = F(x(f), y) Q(y)
Slow process ODE Markov process
(y(t)) (¥(t))
Fixed point Stationary
Equilibrium x)*/ distribution
My
Regularity of Regularity of
Convergence Y x}*/ Y,




Stochastic vs Deterministic

Deterministic

Stochastic

Fast process

ODE
o (x(®)
x = F(x(t), y)

Markov process
(X(t))
Q(y)

Slow process ODE Markov process
(y(t)) (Y(t))
Fixed point Stationary
Equilibrium x)*/ distribution
My
Convergence Regulant*y of Regularity of
y— Xy Yy — T[y
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Contributions
The Law of the Jungle:
- Stochastic averaging

- Scaling over the stationary distributions

Flow-Aware CSMA:
- Suboptimality of CSMA (mono/multi-channel)
- Optimality of Flow-Aware CSMA (mono/multi)
- Time-scale separation

An unreliable file system:
- Three time-scales
- Stochastic averaging (simpler proof)

Transient properties of Engset and Ehrenfest:
- Positive martingales
- Asymptotics on hitting times
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Example 1:
An Unreliable File System



Model

BN files <
2 copies/file

Back-up: AN




Model

BN files <
2 copies/file

Back-up: AN

Each copy is lost at rate u

24



Model

BN files <
2 copies/file

Back-up: AN




Model

BN files <
2 copies/file

Back-up: AN

A file with 1 copy can be backed up

24



Model

BN files <
2 copies/file

Back-up: AN

A file with 1 copy can be backed up

24



Model

BN files <
2 copies/file

Back-up: AN




Model

BN files <
2 copies/file

Back-up: AN
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Model

BN files < o ° o
= 2

2 copies/file

Back-up: AN

A file with O copies is lost
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Model

BN files o o o
3
=

2 copies/file

Back-up: AN

A file with O copies is lost
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Model

BN files <
2 copies/file

Back-up: AN




BN files
2 copies/file

s

Model

@
Q@

Back-up: AN
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BN files
2 copies/file

s

Model

e 9

Back-up: AN
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BN files
2 copies/file

s

Model

Back-up: AN
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Model

BN files <
2 copies/file

Back-up: AN

What is the decay rate of the network?

24



Model

Xi(t) : number of files with i copies at time t.

(Xo(t), X1(t), X2(t)): a transient Markov Process.
Xo(t) +X1(t) + X2(t) = BN.
A unique absorbing state (BN, 0, 0).

2UX?

BOSO

AN1{x; >0}
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Model

Xi(t) : number of files with i copies at time t.

(Xo(t), X1(t), X2(t)): a transient Markov Process.
Xo(t) +X1(t) + X2(t) = BN.
A unique absorbing state (BN, 0, 0).

21(BN = xo — X1)

BOSO

AN1{x; >0}
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Different Behaviors

Three time scales:
t —-t/N

t —»t
t — Nt

Three regimes:

Overload: 28 > p = A/u,
Critical load: 28 = p,
Underload: 28 < p.

26



Time scale: t—=t/N

—(BN — x1 — Xo)

X1 Alix>0}

27



Time scale: t—=t/N

ergodic if 28 < p,
transient if 28 > p.

M/ZEB\‘

)\1{x1>0}

(L1(t)): an M/M/1 queue {

28



Time scale: t—=t/N

ergodic if 28 < p,
transient if 28 > p.

M/ZEB\‘

)\1{x1>0}

(L1(t)): an M/M/1 queue {

No loss!
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Time scale: t—t
Overloaded network

If 28 > p, (Xo(t)/N, X1(t)/N, X2(t)/N) converges to a
deterministic process (xo(t), x1(t), x2(t)).

—X2(t) : 2 copies
B 1 --- x1(t) : 1 copy
— Xo(t) : O copies

29



Time scale: t—t
Overloaded network

If 28 > p, (Xo(t)/N, X1(t)/N, X2(t)/N) converges to a
deterministic process (xo(t), x1(t), x2(t)).

—X2(t) : 2 copies
B 1 --- x1(t): 1 copy
— Xo(t) : O copies

A fraction N(B — p/2) is lost!
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Time scale: t—t
Underloaded network

If 26 < p, (Xo(t)/N, X1(t)/N, X2(t)/N) converges to

Xo(t) =0
Xl(t) =0
x2(t) =B
A .
2u
—X2(t) : 2 copies
B
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Time scale: t—t
Underloaded network

If 26 < p, (Xo(t)/N, X1(t)/N, X2(t)/N) converges to

Xo(t) =0,
x1(t) =0,
x2(t) =P.
A
2u
—X2(t) : 2 copies
B

No significant loss!
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Time Scale t = Nt

lim (XO(Nt)) —w(t),
N

N—-4-00
where V(t) is the unique solution of

t -
‘WU=HJ 2u(B — V(s)) ds.

0 A= 2u(B—V(s))
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Time Scale t = Nt

lim (XO(Nt)) —w(t),
N

N—-4-00
where V(t) unique solution in (0, B) of

(1 —w(t)/B)P/?evO+t 1,

—— 0 copies

t — Nt is the “correct” time scale.
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A Stochastic Averaging Phenomenon

@@

N(B — W(t))

Fast time scale: At “time” Nt,
(X1(Nt+u/N), u > 0): an M/M/1 with transition rates:

+1 at rate 2u(B — V(t))
—1 at rate A.

32



A Stochastic Averaging Phenomenon

N(B — W(t))

Slow time scale: (Xo(Nt)/N) “sees” only X7 at equi-
librium:

o [ [ 2mB—v(s)
v = | B s S olE e
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Technical Corner
Step 1 Radon measures: tightness of (uV) with

N 1 " N
(H ,g)zﬂo g (X¥(s),5) ds
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Technical Corner
Step 1 Radon measures: tightness of (uV) with

N 1 " N
(H ,g)zﬂo g (X¥(s),5) ds

Step 2 Control of limits of (uN):

1 Nt t
lim —J X’l\’(s)ds:wt):f (ms, 1) ds

t
J ms(N)ds =t
0
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Technical Corner
Step 1 Radon measures: tightness of (uV) with

N 1 " N
(H ,g)zﬂo g (X¥(s),5) ds

Step 2 Control of limits of (uN):

1 Nt t
lim —J X’l\’(s)ds:wt):f (ms, 1) ds

t
J ms(N)ds =t
0

Here: Proof by stochastic domination
Step 3 Identification of ms with martingale
techniques and balance equations.

33



Decay Rate of the Network

Tn(8) =inf{t>0: X{(t) > 68N}

Theorem:
Tn(6

im "% 10g(1 - 6) - a8

—00 N
=
>\
S
=

é

34



Conclusion

- Three different time scales
- A first example of stochastic averaging

- Asymptotics on a transitory property.

Extensions:
- Number of copies: d > 2 = d — 1 times scales

- Decentralized back-up (mean-field)

Open problem:
- Modeling a DHT: geometrical considerations

35



Example 2:
The Law of the Jungle



Context

Congestion control:
- Rate adjustment to limit packet loss
- Retransmission of lost packets
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No congestion control:
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- Coding to recover from packet loss
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Context

Congestion control:
- Rate adjustment to limit packet loss
- Retransmission of lost packets

No congestion control:
- No rate adjustment
- Sources send at their maximum rate
- Coding to recover from packet loss

Does this bring congestion collapse?
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Bandwidth Sharing Networks

[Massoulié Roberts 00]

N

A flow: a stream of packets

0
1

Flows are considered as a fluid
Users divided in classes/routes
Poisson arrivals/Exponential sizes

Resource allocation determined by congestion
policy

38



Bandwidth Sharing Networks

[Massoulié Roberts 00]

Ao Hodo
A1 A2
H191 262

A flow: a stream of packets

Flows are considered as a fluid
Users divided in classes/routes
Poisson arrivals/Exponential sizes

Resource allocation determined by congestion
policy

38



Resource Allocation

Usually, a-fair policies are considered [MwW00].

Here:
- Sources send at their maximum rate (1 or a)

- Tail dropping: At each link, output rates are
proportional to input rates

s N
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Resource Allocation

Usually, a-fair policies are considered [MwW00].

Here:
- Sources send at their maximum rate (1 or a)

- Tail dropping: At each link, output rates are
proportional to input rates

X0
X1 X2
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Resource Allocation

Usually, a-fair policies are considered [MwW00].

Here:
- Sources send at their maximum rate (1 or a)

- Tail dropping: At each link, output rates are
proportional to input rates

_ _Xo
a= X0+X1

v

X0
X1 X2

_ox1
$1= X0+X1
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Resource Allocation

Usually, a-fair policies are considered [MwW00].

Here:
- Sources send at their maximum rate (1 or a)

- Tail dropping: At each link, output rates are
proportional to input rates

_ _Xo
-~ Xo+X1
X - . a
0 ¢$o = min (a, X—za+a)
X1 X2
. X2a
¢1 X1 ¢2 =min (Xza, #Xza)

T Xo+X1

39



Ergodicity Condition

0
1 2

Optimal ergodicity condition:
po+p1<1l, po+p2<1
where pj = Ai/u;.

We know a-fair policies are optimal [BMO02].
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Ergodicity Condition

0
1 2

Optimal ergodicity condition:
po+p1<1l, po+p2<1
where pj = Ai/u;.

We know a-fair policies are optimal [BMO02].

What about our policy?

40



Fluid Limits

_ _Xo
a= Xo+x1
X - . o
0 ¢$o = min (O(, XZaM)
X1 X2
H X2a
6y — X ¢$2 = min (xza, or+2xza)
1= Xotx1

If x2 > 0, class 2 uses virtually all the second link.
If (zo(t), z1(t), z2(t)) is a fluid limit with z,(0) > O,
Zo(t) = Ao,
- _ z1(t)
21(0) = A1 = gz
(

Zr(t) = A2 — U2.

41



Fluid Limits

_ _Xo
a= Xo+x1
X - . o
0 ¢$o = min (O(, Xza+a)
X1 X2
H X2a
6y — X ¢$2 = min (xza, or+2xza)
1= Xotx1

If x2 > 0, class 2 uses virtually all the second link.
If (zo(t), z1(t), z2(t)) is a fluid limit with z,(0) > O,

2o(t) = Ao,

: _ z1(t)
21(t) = A1~ Mgz
Z(t) = A2 — H2.

If p2 < 1, (z2(t)) reaches 0 in finite time.

41



Fluid Limits

o

/7
v

—_— 1 a
¢o = min (a, Xza+a)
X2

o H X2a
¢2 =min (xza, —cx+xza)

Classes 0 and 1 are frozen:
n3 is the stationary distribution of class 2

$o(a) = Erg (d)o (a, x2aa+ a)) .




Fluid Limits

( _ zo(t)
Zo(t) =Ao—Modo (zo(t)+zl(t))
\ B z1(t)
al) =M A ®
zy(t) =

with
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Fluid Limits

( B _ Zo(t)
Zo(t) =Ao—HModo (zo(t)+zl(t))
\ L z1(t)
21{t) =M KO+ 2100
z2(t) =

with

Stochastic averaging
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Ergodicity Conditions

Ergodicity conditions:

p1<1, p2<l1,
po < ¢o(1 - p1)

Optimal conditions:

p1 < 1, P2 < 1,
pPo<min(l—p1,1-p>7)
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Ergodicity Conditions
Ergodicity conditions:
p1<1, p2<l1,
po < ¢o(1l —p1)
Optimal conditions:

p1 < 1, P2 < 1,
pPo<min(l—p1,1-p>7)

But:

¢o(1—p1) <min(l—p2,1-p01)
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Ergodicity Conditions
Ergodicity conditions:
p1<1, p2<l1,
po < ¢o(1l —p1)
Optimal conditions:

p1 < 1, P2 < 1,
pPo<min(l—p1,1-p>7)

But:

¢o(1—p1) <min(l—p2,1-p01)

Not optimal!

44



Impact of Maximum Rate a

--- Optimal
....... a=1

---a=0.1
—a=20.01

Class 0: po

Class 1: p1

45



Impact of Maximum Rate a

--- Optimal
....... a=1

---a=0.1
—a=0.01

Class 0: po

Class 1: p1
What happens whena —-07?

45



Scaling the Maximum Rate a
We freeze a and consider the process (Xg(t)) with
Q-matrix:

. X2a
q(x2, X2 — 1) =z min (xza, —)
a+Xza

46
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Time-scale: t — St
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Scaling the Maximum Rate a
We freeze a and consider the process (Xg(t)) with
Q-matrix:

q(X2,X2—|—1):)\2,

1 _ a xza/s
X2, X2 —1)=pomin | x2—, ————

222 = 1) =4 S’ a+xya/5

Time-scale: t — St

(X5(5t)/5) = (x2(t)) with

X2(t) = A2 = g2 min (axz(t), ﬂ)

a+xz(t)a
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Scaling the Maximum Rate a
We freeze a and consider the process (Xg(t)) with
Q-matrix:
q(X2,X2—|—1):)\2,
1 _ a xza/s
X2, X2 —1)=pomin | x2—, ————
222 = 1) =4 S’ a+xya/5
Time-scale: t — St

(XS(5t)/S) = (x2(t)) with

X2(t) = A2 — > min (axz(t), x2(b)a )

a+xz(t)a
Fixed point:

P2 ( o )
X2 =—max| 1,
a 1-p7

46



Scaling the Maximum Rate a

(XS(St)/S) == X5(0)/S

(x2(t))  —= X2()

t—o0

47



Scaling the Maximum Rate a

(X5(St)/S) == X5(c0)/S

pa(t) — xa()

Convergence of processes

U

Convergence of stationary distribution

47



Scaling the Maximum Rate a

(XS(St)/S) Xs(oo)/S

pa(t) — xa()

Convergence of processes

U

Convergence of stationary distribution

Li_rg ®o(1—p1) =min(1—p1,1-p3)
The policy is asymptotically optimal

47



Conclusion
- Analysis of equilibrium,

- Inversion of limits: scaling on stationary
distributions

- Impact of access rates

Extensions:
- Linear networks with L links

- Second order scaling: speed of convergence.

- Upstream trees

Open problem:
- General acyclic networks

48



Example 3:
Flow-Aware CSMA



Model

The network is represented by a conflict graph

O—O—0O

For each node i:
- Xi(t) € N: number of flows at time t

- Yi(t) =1 if node is active at time t, 0 otherwise.
50
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For each node i:
- Xi(t) € N: number of flows at time t

- Yi(t) =1 if node is active at time t, 0 otherwise.
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Model

The network is represented by a conflict graph

D—O—0O

wireless link potential interference

For each node i:
- Xi(t) € N: number of flows at time t
- Yi(t) =1 if node is active at time t, 0 otherwise.



Conflict Graph
A1 A2 A3
O—O—0

Schedules: @, {1}, {2}, {3}, {1,3}.
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Conflict Graph

A1 A2 A3
b0
M1

Schedules: @, {1}, {2}, {3}, {1,3}.
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Conflict Graph

A1 A2 A3

S
M2

Schedules: @, {1}, {2}, {3}, {1,3}.

51



Conflict Graph
A1 A2 A3
b6

M3

Schedules: @, {1}, {2}, {3}, {1,3}.
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Conflict Graph
A1 A2 A3
—
M1 M3

Schedules: @, {1}, {2}, {3}, {1,3}.
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Conflict Graph
A1 A2 A3
O—O—0

Schedules: @, {1}, {2}, {3}, {1,3}.

Optimal stability region: convex hull of schedules
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Back-off

Standard CSMA

Transmission

Back-off

~ exp(a)

~ exp(1)

~ exp(a)
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Standard CSMA

N Back-off Transmission Back-off
~ exp(a) ~exp(1) ~ exp(a)
Optimal?
11 —— Optimal
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Flow-Aware CSMA

Proposed modification of CSMA:
Exponential backoff time for each flow

Back-off Transmission Back-off

~ exp(axi) ~ exp(1) ~ exp(axi)
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Optimality of Flow-Aware CSMA

Theorem:

Flow-aware CSMA algorithm is optimal for any
network.

Sketch of proof:
- Asymptotically behaves as Max-Weight.

- Deduce a Lyapunov function and apply
Foster’s criterion.
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Conclusion

- An optimal and fully distributed channel
access mechanism

- Limiting process: jump process

- Simplification of the problem

Extension:
- Multi-channel

Open problem:
- Initial problem still open
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- Several examples of scalings
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and...
- Scalings: A set of powerful tools

- Stochastic averaging: a not so rare
phenomenon

Many interesting open questions. ..
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Thank you!
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