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Résumé

Cette thèse aborde le problème de préparation et de stabilisation d’états non clas-
siques de systèmes quantiques, ainsi que l’identification d’Hamiltonien. La plupart
des méthodes que nous proposons ont été développées en étroite collaboration avec
des expérimentateurs. Quelques-unes de ces idées ont déjà été implémentées au
laboratoire.

Premièrement, nous avons démontré un résultat d’observabilité pour
l’identification d’Hamiltonien. Nous considérons une expérience de contrôle quan-
tique avec des lasers femtoseconde: une observable est mesurée après que le système
(typiquement un nuage d’atomes) ait interagi avec un champ laser (notre contrôle).
Nous posons le problème d’établir s’il existe un ensemble de contrôles qui fourni-
raient une information suffisante pour la reconstruction de la matrice de moment
dipolaire. Nous démontrons que sous certaines conditions, il existe en effet des con-
trôles (en analogie avec l’interférométrie de Ramsey) qui rendent le moment dipolaire
localement observable. Le reste de la thèse traite des problèmes de préparation et
de stabilisation d’états quantiques.

La deuxième contribution est sur le contrôle d’ensemble. Nous proposons un con-
trôle robuste qui effectue une permutation sur un ensemble de systèmes en échelle.
La force de ce résultat qui est basé sur la théorie adiabatique, est que ce contrôle à
lui seul, permet d’effectuer une permutation de tout un ensemble de systèmes ayant
des paramètres différents. Les résultats sont basés sur une étude mathématique
détaillée qui donne des bornes d’erreurs.

Troisièmement, nous nous intéressons à la stabilisation par dissipation contrôlée
en électrodynamique quantique en cavité. Nous décrivons une expérience où des
atomes interagissent un par un avec un ou deux modes de la cavité. Nous trouvons
un contrôle à appliquer durant chaque interaction entre atome et cavité, qui permet
de stabiliser les modes de la cavité dans un état cible prédéterminé. En particulier,
nous pouvons stabiliser un état intriqué de deux modes de la cavité qui permettrait
une violation des inégalités de Bell pour des temps arbitrairement grands. Cette
proposition est appuyée par des simulations numériques et une preuve de conver-
gence en dimension infinie (pas de troncature de l’espace d’Hilbert à un nombre de
photons fini).

Quatrièmement, nous proposons des contrôles pour la préparation d’états quan-
tiques dans des circuits Josephson (également appelés circuits quantiques). Nous
considérons un qubit supraconducteur couplé à un résonateur micro-onde, et nous
décrivons une séquence de pulses qui permettrait de construire toute superposi-
tion d’états cohérents quasi-orthogonaux dans la cavité, des états intriqués de deux
modes de la cavité, et des états intriqués de plusieurs qubits. De récents résultats
expérimentaux sont en bon accord avec les prédictions de nos simulations.

La dernière contribution est sur la correction d’erreur quantique. Ceci peut être
vu comme la stabilisation d’un espace d’états de dimension deux. Nous proposons
d’encoder un bit d’information quantique dans deux états orthogonaux de la cavité.
La décohérence induit des sauts qui modifient l’information encodée. Nous pro-
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posons une séquence de pulses qui permettrait de rétablir cette information dans
l’état de la cavité. Ceci pourrait prolonger la durée de vie d’un qubit de presque un
ordre de grandeur. Le grand intérêt de cette proposition est double. Premièrement,
elle nécessite un nombre de composants physiques minimal: seulement un qubit
fortement couplé (dans le régime dispersif) à un mode de la cavité. Deuxièmement,
nous avons des séquences de pulses pour l’encodage d’un qubit dans la cavité, la
correction de l’état de la cavité suite à un saut quantique, et enfin le décodage de
l’état de la cavité vers l’état du qubit.
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Abstract

This thesis tackles the problem of preparing and stabilizing highly non classical
states of quantum systems, as well as identifying their Hamiltonian. Most of the
methods we propose were developed in close collaboration with experimentalists.
Some of these ideas have already been implemented in the laboratory.

First, we derived an observability result for Hamiltonian identification. We con-
sider a typical setting in ultra-fast quantum control experiments where an observable
is measured after a system (e.g a cloud of atoms) has interacted with a controlled
electric field. We thus pose the problem of whether we can find a set of controls
which would provide sufficient information to reconstruct the dipole moment ma-
trix. We prove that under certain conditions, we can find controls (in analogy with
Ramsey interferometry) which make the dipole moment matrix locally observable.
The rest of the thesis is devoted to quantum state engineering and stabilization.

The second contribution is on ensemble control. We propose a robust control
which performs any state permutation on an ensemble of quantum ladder systems.
The strength of this result which is based on adiabatic theory, is that this single con-
trol performs the same permutation on an ensemble of different systems. The results
are based on a detailed asymptotic mathematical analysis giving error bounds.

Third, we address the problem of quantum state stabilization by reservoir engi-
neering in the context of cavity quantum electrodynamics (QED). We describe an
experiment where flying atoms successively interact with one or two cavity modes.
We find a control to apply during each atom-cavity interaction which would drive
and stabilize the cavity modes close to a predefined non-classical target state. In
particular, we are able to stabilize an entangled state which would lead to a vi-
olation of Bell’s inequality for arbitrarily large times. The proposal is supported
by numerical simulations and a first mathematical convergence analysis, where the
Hilbert space is infinite dimensional (no truncation to a finite number of photons).

Fourth, we introduce a control which performs quantum state preparation in the
context of Josephson circuits (also called circuit QED). We consider one supercon-
ducting qubit coupled to a microwave resonator and describe a sequence of pulses
which would generate any superposition of quasi-orthogonal coherent states, entan-
gled states of two cavity modes and multi-qubit entangled states. Recent preliminary
results in the laboratory are in good agreement with our simulation predictions.

The last contribution is to quantum error correction. This may be viewed as
the stabilization of a two dimensional manifold. We propose to encode a quantum
bit of information in two orthogonal states of a cavity. Decoherence induces jumps
out of these two states, thus compromising the encoded information. We describe a
sequence of pulses which can restore the cavity state. This lengthens the quantum
information lifetime by almost an order of magnitude. The power of this proposal is
that it requires a minimal amount of hardware: one qubit coupled to one resonator,
and that we have found a full pulse sequence to transfer the qubit state to the cavity,
correct against jumps, and transfer the cavity state back to the qubit.
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Chapter 1

Introduction (version française)

Contents

1.1 Physique quantique: de la théorie à la technologie . . . . . 1

1.2 Le contrôle quantique . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Formulation générale . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Vue d’ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Plan de la thèse . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Physique quantique: de la théorie à la technologie

La physique quantique prédit des effets contre-intuitifs dans la nature. Dès sa
conception au début du 20me siècle, il y a eu un grand nombre de controverses
sur ses principes fondateurs. Après des décennies de vérifications expérimentales,
la physique quantique est aujourd’hui reconnue comme une excellente théorie qui
décrit des phénomènes à une multitude d’échelles. Dans la deuxième moitié du siè-
cle dernier, des technologies nécessitant une compréhension détaille de la physique
quantique est née. Parmi celles-ci, le transistor, au coeur de l’informatique mod-
erne; l’imagerie par résonance magnétique (IRM), utilisée dans le domaine médical;
le laser, avec un nombre incalculable d’applications; les horloges atomiques, qui per-
mettent une mesure du temps d’une précision telle que des technologies comme le
GPS ont vu le jour.

Dans les années 1980 et 1990, des scientifiques comme David Deutsch et Peter
Shor ont suggéré d’utiliser des propriétés de systèmes quantiques pour effectuer
des calculs. Dans son célèbre papier de 1994 [Shor 1994], Shor a démontré qu’il y
aurait un gain exponentiel en vitesse de calcul si des systèmes quantiques (plutôt
que classiques) étaient utilisés pour la factorisation d’un grand nombre entier en
produit de nombres premiers. Quelques années plus tard, Lov Grover a démontré
que la physique quantique permettrait un gain quadratique pour la recherche dans
une base de données non triées [Grover 1997].

De nos jours, les protocoles de communication sécurisée reposent sur notre in-
capacité à factoriser de grand nombre entier en produit de nombres premiers. Il
n’y a pas de barrière fondamentale qui empêcherait une factorisation rapide. En
utilisant des photons dans des états de superpositions (qui sont non classiques)
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[Bennett 1984], on pourrait concevoir une communication dont la sureté est garantie
par les lois fondamentales de la physique.

Plusieurs expériences de nos jours, nécessitent des mesures de haute précision.
L’utilisation d’états quantiques de la lumière comme sonde pourrait rendre ces
mesures plus sensibles [Giovannetti 2006]. Par exemple, les interféromètres gravita-
tionnels tentent de mesurer des déplacements relatifs extrêmement petits (de l’ordre
de 10−20). L’utilisation d’états intriqués, de superpositions ou comprimés, pourrait
aider à atteindre une telle précision.

Toutes ces applications fascinantes nécessitent de pouvoir générer et contrôler
des états quantiques. Ceci implique une bonne compréhension des lois de la physique
qui gouvernent leur dynamique, et une bonne maitrise des outils pour contrôler cette
dynamique. En utilisant des idées issues de la théorie du contrôle, nous étudions
des problèmes de préparation et de stabilisation d’états quantiques sur des modèles
correspondant à des expériences actuelles.

1.2 Le contrôle quantique

1.2.1 Formulation générale

Un problème de contrôle quantique cohérent peut être modélisé par l’équation de
Scrhödinger bilinéaire

i~
d

dt
|ψ(t)〉 = (H0 −

M∑

k=1

ukHk)|ψ(t)〉 , (1.1)

|ψ(0)〉 = |ψ0〉 .

L’état du système (la fonction d’onde) à l’instant t est noté |ψ(t)〉 ∈ H. L’espace
des états H est un espace de Hilbert, qui peut être de dimension finie ou infinie.
En absence de control, l’Hamiltonien du système est H0 (aussi appelé l’Hamiltonien
libre). L’Hamiltonien est un opérateur auto adjoint sur H. Les contrôles u1, · · · , uM

sont des fonctions du temps réelles. Ce sont typiquement des amplitudes de champs
électriques ou magnétiques. Ces champs sont couplés au système à travers les Hamil-
toniens d’interaction H1, · · · ,HM . Le terme multiplicatif uk|ψ〉, rend ce problème
non linéaire (plutôt bilinéaire). Pour une introduction détaillée au contrôle quan-
tique, nous recommandons le livre de D. D’Alessandro [D’Alessandro 2008] et le
livre de H. Wiseman and G. Milburn [Wiseman 2009].

Nous pouvons regrouper les problèmes abordés en contrôle quantique en trois
catégories:

• L’identification de Hamiltonien: Prenons des Hamiltoniens
H0,H1, · · · ,HM approximativement connus, et une observable O, quels
controls u1, · · · , uM (t) faudrait il appliquer afin qu’en mesurant O, nous
puissions extraire de l’informations sur H0,H1, · · · ,HM? Le résultat d’une
mesure à un instant t sur un ensemble de systèmes est 〈O(t)〉 = 〈ψ(t)|O|ψ(t)〉.
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La mesure 〈O(t)〉 dépend de H0, · · · ,HM à travers (1.1). Cette dépendence
est non linear, ce qui complique ce problème d’inversion.

• Commandabilité et préparation d’états: Considérons que les Hamil-
toniens H0,H1, · · · ,HM sont connus. Prenons un état initial |ψ0〉 et un état
cible |ψT 〉, est ce qu’il existe des contrôles u1(t), · · · , uM (t) qui transfèrents
le système de |ψ0〉 à |ψT 〉? Si oui, comment pouvons nous trouver de tels
contrôles?

• La stabilisation d’états quantiques: Considérons que les Hamiloniens
H0,H1, · · · ,HM sont connus. Prenons un état cible |ψT 〉 (ou de manière plus
générale, un sous espace de l’espace des états) que nous voulons stabiliser.
Quels contrôles u1(t), · · · , uM (t) devons-nous appliquer afin que le système
reste proche de son état cible (ou espace cible) pour tout temps, en présence
of perturbations comme la décohérence.

1.2.2 Vue d’ensemble

Nous présentons une vue d’ensemble non-exhaustive des différentes directions de
recherche dans le domaine du contrôle quantique. Des résultats de commandabilité
pour des systèmes de dimension infinie ont été introduits dans [Ramakrishna 1995],
et sont basés sur des résultats de commandabilités sur des groupes de Lie par V.
Jurdjevic and H. Sussman [Jurdjevic 1972]. Ce travail a ouvert le champ à une
multitude de travaux qui ont simplifié les conditions nécessaires et/ou suffisantes
de commandabilité, en particulier par C. Altafini et G. Turinici [Altafini 2002,
Turinici 2001]. Après avoir démontré qu’un système est commandable, il est impor-
tant d’avoir des méthodes qui trouvent un contrôle pour transférer un système d’un
état initial à un état final. A cette fin, plusieures méthodes numériques ont été poro-
posé, notamment l’algorithme de convergence monotone [Maday 2006][Zhu 1998],
ou des méthodes basées sur des fonctions de Lyapunov [Mirrahimi 2005]. Sou-
vent, il est préférable que ces contrôles minimisent une certaine fonction de coût,
comme la valeur d’une observable, l’énergie du contrôle, ou sa longueur temporelle
[Boscain 2002][Sugny 2007]. Ces contrôles optimaux peuvent être trouvés, par ex-
emple, par des algorithmes génétiques [Judson 1992]. Le contrôle d’un ensemble de
systèmes quantiques a été introduit par J.S Li et N. Khaneja [Li 2006], et a des
applications intéressantes en résonnance magnétique nucléaire (RMN). La plupart
de ces lois de contrôles supposent que l’Hamiltonien du systèmes est bien connu.
Ce dernier doit avoir été estimé par la mesure d’une observable. Ceci soulève la
question d’observabilité de l’Hamiltonien. Cette question a été abordée par C.
Le Bris et d’autres collaborateurs dans [LeBris 2007]. K. Beauchard, J.M Coron,
M. Mirrahimi et d’autres collaborateurs se sont intéressés à des problème de com-
mandabilité [Beauchard 2006][Chambrion 2009] et stabilisabilité [Beauchard 2009]
en dimension infinie. Des outils d’analyse fonctionnelle et d’équations aux dérivées
partielles sont utilisés [Brezis 1983][Coron 2007].
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Enfin, un autre vaste domaine de recherche est la stabilisation de systèmes quan-
tiques autour d’un point d’équilibre. Dans le monde classique, la stabilisation est
souvent obtenue en mesurant le système, en estimant son état et en appliquant un
contrôle pour corriger la différence entre l’état cible et l’état estimé. Plusieurs bar-
rières empêchent l’application directe de cette rétroaction au domaine quantique. La
première est fondamentale, et concerne le postulat de la mesure: lorsqu’on mesure
un système quantique, on projette inévitablement son état dans un sous-espace pro-
pre de l’observable mesurée. Cette grande perturbation de la dynamique due à la
mesure doit être prise en compte dans le modèle. La deuxième est pratique: la
projection n’est souvent pas la perturbation dominante due à la mesure. La plupart
des mesures au laboratoire détruisent complètement l’état du système. Ceci est par
exemple le cas de la mesure forte [Reed 2010a], ou la mesure d’un atome de Rydberg
dans l’expérience de l’ENS. La troisième, également pratique, est due aux relative-
ment faibles durées de vie des systèmes quantiques. Ces temps sont de l’ordre de
10 µs pour les cavités supraconductrices dans les circuits quantiques, 1 µs pour les
qubits supraconducteurs, et 100 ns pour un nuage de Rb. Afin qu’une stabilisation
soit efficace, il faut que la mesure, l’estimation et la rétroaction, soient faites dans
un temps bien plus court que ces temps de vie. Ceci est difficile sur ordinateur
usuel. La théorie initiale de la rétroaction quantique a été établie par H. Wiseman
et G. Milburn [Wiseman 1993][Wiseman 1994]. Un grand nombre de travaux en
découlent, notamment par H. Mabuchi, A.C Doherty, K. Jacobs, et collaborateurs
[Doherty 2000]. La première expérience de rétroaction quantique a récemment été
réalisée dans le groupe de S. Haroche [Sayrin 2011], suite à la proposition théorique
[Dotsenko 2009]. Ce travail nécessite de traiter de l’information classique avant de
rétroagir sur le système. Cette “rétroaction par la mesure” vient s’opposer à la
“rétroaction cohérente” [James 2010], où l’on stabilise un système en le couplant à
un autre système quantique dissipatif. Cette théorie a été construite par M. James,
J. Gough, H. Nurdin et collaborateurs. Ces travaux sont étroitement liés à la stabil-
isation par “dissipation contrôlée”, également appelée “rétroaction autonome”. Cette
théorie a été introduite par I. Cirac, P. Zoller et collaborateurs [Poyatos 1996]. Il
semblerait que cette dissipation contrôlée puisse même servir à réaliser un calcula-
teur quantique robuste [Verstraete 2009].

1.3 Contributions

Dans ce domaine de plus en plus vaste, les contributions de cette thèse sont dans
cinq directions:

Premièrement, nous avons démontré un résultat d’observabilité pour
l’identification d’Hamiltonien. Nous considérons une expérience type en contrôle
quantique avec des lasers femtoseconde: une observable est mesurée après que le
système (typiquement un nuage d’atomes) a interagi avec un champ laser (notre
contrôle). Nous posons le problème d’établir s’il existe un ensemble de contrôles
qui fourniraient une information suffisante pour la reconstruction de la matrice de
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moment dipolaire. Nous démontrons que sous certaines conditions, il existe en effet
des contrôles (en analogie avec l’interférométrie de Ramsey) qui rendent le moment
dipolaire localement observable. Le reste de la thèse traite des problèmes de prépa-
ration et de stabilisation d’états quantiques.

La deuxième contribution est sur le contrôle d’ensemble. Nous proposons un con-
trôle robuste qui effectue une permutation sur un ensemble de systèmes en échelle.
La force de ce résultat qui est basé sur la théorie adiabatique, est que ce contrôle à
lui seul, permet d’effectuer une permutation de tout un ensemble de systèmes ayant
des paramètres différents. Les résultats sont basés sur une étude mathématique
détaillée qui donne des bornes d’erreurs.

Troisièmement, nous nous intéressons à la stabilisation par dissipation contrôlée
en électrodynamique quantique (QED) en cavité. Nous décrivons une expérience
où des atomes interagissent un par un avec un ou deux modes de la cavité. Nous
trouvons un contrôle à appliquer durant chaque interaction entre atome et cavité,
qui permet de stabiliser les modes de la cavité dans un état cible prédéterminé.
En particulier, nous pouvons stabiliser un état intriqué de deux modes de la cavité
qui permettrait une violation des inégalités de Bell pour des temps arbitrairement
grands. Cette proposition est appuyée par des simulations numériques et une preuve
de convergence en dimension infinie (pas de troncature de l’espace d’Hilbert à un
nombre de photons fini).

Quatrièmement, nous proposons des contrôles pour la préparation d’états quan-
tiques dans des circuits Josephson (également appelés circuits quantiques). Nous
considérons un qubit supraconducteur couplé à un résonateur micro-onde, et nous
décrivons une séquence de pulses qui permettrait de construire toute superposi-
tion d’états cohérents quasi-orthogonaux dans la cavité, des états intriqués de deux
modes de la cavité, et des états intriqués de plusieurs qubits. De récents résultats
expérimentaux sont en bon accord avec les prédictions de nos simulations.

La dernière contribution est sur la correction d’erreur quantique. Ceci peut être
vu comme la stabilisation d’un espace d’états de dimension deux. Nous proposons
d’encoder un bit d’information quantique dans deux états orthogonaux de la cavité.
La décohérence induit des sauts qui modifient l’information encodée. Nous pro-
posons une séquence de pulses qui permettrait de rétablir cette information dans
l’état de la cavité. Ceci pourrait prolonger la durée de vie d’un qubit de presque un
ordre de grandeur. Le grand intérêt de cette proposition est double. Premièrement,
elle nécessite un nombre de composants physiques minimal: seulement un qubit
fortement couplé (dans le régime dispersif) à un mode de la cavité. Deuxièmement,
nous avons des séquences de pulses pour l’encodage d’un qubit dans la cavité, la
correction de l’état de la cavité suite à un saut quantique, et enfin le décodage de
l’état de la cavité vers l’état du qubit.

Tous les modèles que nous étudions peuvent être décrits par la formulation (1.1)
pour des exemples spécifiques de H0,H1, · · · ,HM . Il est assez remarquable que
des systèmes aussi différents puissent être modélisés par des systèmes spin-ressort
similaires [Haroche 2006]. En particulier, nous considérons trois classes de modèles:
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• Un système à deux niveaux couplé à un champ électrique classique peut être
modélisé en prenant H0 = ωq

σz

2 , M = 1 et H1 = σx, où σx, σy et σz sont
les matrices de Pauli. On note ωq la fréquence de l’atome. Un tel modèle est
appelé semi-classique car l’atome est modélisé par un système quantique, et le
champ par un système classique. Dans les chapitres 3 et 4, nous étudions des
systèmes multi-niveaux qui interagissent avec un champ électrique classique.

• Un système à deux niveaux couplé à un champ classique. Ce dernier est
modélisé par un oscillateur harmonique. Ceci donne lieu à l’Hamitlonien de
Jaynes-Cummings Hamiltonian [Jaynes 1963] H0 = ωq

σz

2 +ωca
†a+Ωσx⊗(a+

a†). On note a l’opérateur annihilation, ωc la fréquence de l’oscillateur et Ω la
fréquence de couplage entre l’atome et l’oscillateur. Un contrôle est appliqué
à l’oscillateur: H1 = a+ a†, et un à l’atome: H2 = σx. Dans le chapitre 6, un
modèle similaire est utilisé pour un atome artificiel: a qubit supraconducteur,
couplé à un résonateur micro onde.

• Un système à deux niveaux couplé à un oscillateur harmonique, où on
s’intéresse uniquement à l’oscillateur harmonique. Afin d’obtenir un système
dynamique réduit pour l’oscillateur, on effectue une trace partielle sur l’atome,
ce qui donne une équation de Lindblad (i.e une application de Kraus). Dans
le chapitre 5, utilise une équation de Lindblad en temps discret, obtenue à
partir de l’Hamiltonien de Jaynes et Cummings avec un contrôle uniquement
sur l’état du qubit: H1 = σz and H2 = σx.

1.4 Plan de la thèse

Le contenu de cette thèse est présentée de la manière suivante:

Chapitre 3: Nous commençons par un problème d’identification d’Hamiltonien.
Nous démontrons que l’identification d’Hamiltonian à partir de mesures de popula-
tions en utilisant une famille de contrôles bien choisis, est un problème bien posé.
Ce résultat est basé sur [Leghtas 2012d].

Chapitre 4: Nous procédons ensuite à un problème de préparation d’états. Nous
proposons un contrôle qui permet d’effectuer toute permutation d’un système quan-
tique en échelle. Le grand intérêt de cette proposition est que ce même contrôle
peut agir sur un ensemble de systèmes avec des paramètres différents, et induire une
permutation de chacun de ces systèmes. Ce résultat fut publié dans [Leghtas 2011].

Chapitre 5: Ici, nous nous intéressons à la stabilisation d’états quantiques. Nous
décrivons une expérience pour la stabilisation d’états de superposition et d’états
intriqués dans un ou deux modes d’une cavité. Ce résultat a fait l’objet de l’article
[Sarlette 2012]. Nous suggérons une méthode qui consiste à coupler la cavité à
un environnement contrôlé: une série d’atomes uniques traversant la cavité un à
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un. Cette méthode ne nécessite pas de feedback en temps réel ce qui rendrait
son implémentation au laboratoire relativement simple. Cette dissipation contrôlée
induise par les atomes fait converger tout état vers l’état cible. À la fin de ce
chapitre, nous démontrons cette convergence en dimension infinie.

Chapitre 6: Ce dernier chapitre commence par une méthode de préparation
d’états quantiques. Nous montrons ensuite comment ceci peut être utilisé pour de la
correction d’erreur quantique. Nous proposons une suite de pulses qui prépare toute
superposition d’états cohérents quasi-orthogonaux dans une cavité micro-onde forte-
ment couplée à un qubit supraconducteur. Ce schéma peut également être adapté
pour la préparation d’états intriqués de deux modes de la cavité, et d’états intriqués
d’un grand nombre de qubits. Ces résultats sont issus de [Leghtas 2012b]. Nous
montrons enfin que ces superpositions d’états cohérents peuvent être utilisées pour
de la correction d’erreur quantique [Leghtas 2012c].

Chaque chapitre peut être lu de manière indépendante. La conclusion (chapitre
7) est une ouverture vers d’autres problèmes.
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2.1 Quantum physics: from theory to technology

Quantum physics predicts intriguing and counter-intuitive effects in nature. Since its
birth in the early 20th century, there has been a huge amount of controversy around
its founding principles. After decades of successful confrontation with experiments,
quantum physics is now recognized by many as being in excellent agreement with
the laws of nature, at many different scales. In the second half of the last century,
technologies requiring a detailed understanding of quantum physics were born. Some
of the most important ones include the transistor, at the heart of modern computing;
magnetic resonance imaging (MRI) machines, essential in medical research; the laser,
with countless applications; and atomic clocks, which provide such a precise measure
of time that technologies such as the global positioning system (GPS) were made
possible. However, the output of a laser for example, can be very well described
by a classical electromagnetic field. The next step of technological progress was
then to exploit inherently quantum properties of nature, such as entanglement and
delocalization.

In the 1980s and 1990s, scientists like David Deutsch and Peter Shor pursued
this effort, and suggested using quantum systems to perform computations. In
his famous 1994 paper [Shor 1994], Shor proved that an exponential speed up in
computational power would be possible, if quantum systems were used to find the
prime factors of a large integer. A few years later, Lov Grover proved that quantum
physics can lead to a quadratic speed up for searching in unsorted data [Grover 1997].

Nowadays, secure communication protocols are built on the assumption that we
cannot factorize large integers into a product of prime numbers in a short time.
There is no physical barrier which prohibits a fast factorization. It was suggested
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that photons in superposition states, which are only allowed by quantum mechan-
ics, could be used for secure communication [Bennett 1984]. The security of such
a “quantum communication” is guaranteed by the fundamental laws of quantum
physics, and not by a current technological limitation.

Cutting edge experiments and advanced technologies are in constant need for
more precise measurements. It has been found that using quantum states of light as
probes, instead of classical light, can greatly enhance measurement sensitivity. This
area of research was coined quantum metrology [Giovannetti 2006] . For example,
devices such as gravitational wave interferometers aiming to detect gravitational
waves, require measuring extremely small differential displacements (smaller than
10−20). Reaching such sensitivities could be aided by the use of squeezed, superpo-
sition and entangled states of light [Giovannetti 2004].

All these exciting applications require the ability to generate quantum states
and manipulate them reliably. This necessitates understanding the laws of physics
which govern their dynamics, and a detailed insight into how external controls can
affect this dynamics. This thesis aims to contribute to this effort by applying ideas
drawn from control theory to a set of current experiments.

2.2 Quantum control theory

2.2.1 General formulation

A coherent quantum control problem is usually formulated by the following bilinear
Schrödinger equation

i~
d

dt
|ψ(t)〉 = (H0 −

M∑

k=1

ukHk)|ψ(t)〉 , (2.1)

|ψ(0)〉 = |ψ0〉 .

The system state at time t is denoted by the Dirac notation |ψ(t)〉 ∈ H, (the wave
function). The state space H is a Hilbert space, which may be of finite or infinite
dimension. In absence of control inputs, the system’s Hamiltonian is H0 (also called
the free Hamiltonian). A Hamiltonian is a self adjoint operator on H. The control
inputs u1, · · · , uM are real functions of time. They are typically electric or magnetic
field amplitudes which can be produced at will and constitute our control over the
system. These fields couple to the system through the interaction Hamiltonians
H1, · · · ,HM . Due to the multiplicative terms uk|ψ〉, this is a nonlinear (rather
a bilinear) control problem. For a detailed introduction to quantum control, we
recommend the book by D. D’Alessandro [D’Alessandro 2008] and the book by H.
Wiseman and G. Milburn [Wiseman 2009].

We may group the problems which are tackled in quantum control theory into
three categories:

• Hamiltonian identification: Given approximately known Hamiltonians
H0,H1, · · · ,HM , and a measured observable O, what controls u1, · · · , uM (t)
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should we apply to the system such that by measuring the observable O, we
extract information about H0,H1, · · · ,HM? The result of a measurement at
time t on an ensemble of systems yields 〈O(t)〉 = 〈ψ(t)|O|ψ(t)〉. The depen-
dence of 〈O(t)〉 on H0, · · · ,HM is through (2.1). This dependence is highly
non linear, which hugely complicates the inversion problem.

• Controllability and quantum state preparation: Given known Hamil-
tonians H0,H1, · · · ,HM , and known initial and target states |ψ0〉, |ψT 〉, do
controls u1(t), · · · , uM (t) which drive the system from |ψ0〉 to |ψT 〉 exist? If
the answer is positive, how can we find such controls?

• Quantum state stabilization: Given known Hamiltonians H0,H1, · · · ,HM

and a target state |ψT 〉 (or more generally a target manifold) we wish to sta-
bilize, what controls u1(t), · · · , uM (t) should we apply to maintain the system
close to the target state (or target manifold) at all times, in the presence of
perturbations such as the effect of decoherence.

2.2.2 Brief Overview

Here we give a brief and highly non-exhaustive overview of the different directions of
research in the field of quantum control. Controllability results for finite dimensional
quantum systems were introduced in [Ramakrishna 1995] based on results from con-
trollability on Lie groups by V. Jurdjevic and H. Sussman [Jurdjevic 1972]. This
work paved the path for a variety of new results simplifying the necessary and/or
sufficient controllability conditions, in particular by C. Altafini and G. Turinici
[Altafini 2002, Turinici 2001]. The next step after proving that a system is con-
trollable is to actually find a control which takes the system from an initial state to
the target state. Several numerical methods have been proposed for this task, such
as the monotonic convergent algorithm [Maday 2006][Zhu 1998], or methods based
on a Lyapunov function [Mirrahimi 2005]. These controls may need to maximize
an observable or minimize a cost function, such as the total energy or the control
time [Boscain 2002][Sugny 2007], leading to the field of optimal control of quantum
systems. Such an optimal control can be found by combining a learning algorithm
to the experimental setting [Judson 1992]. The concept of controlling an ensem-
ble of quantum systems with one single control was introduced by J.S Li and N.
Khaneja [Li 2006], and has important implications for nuclear magnetic resonance
(NMR). Most of these control strategies assume a good knowledge of the system
Hamiltonian. The latter needs to be estimated from a measured observable. This
raises the question of whether a measurement record is sufficient to reconstruct the
Hamiltonian of a system. Such problems are addressed by C. Le Bris and co work-
ers in [LeBris 2007]. K. Beauchard, J.M Coron, M. Mirrahimi and co-workers have
been concerned with the controllability [Beauchard 2006][Chambrion 2009] and sta-
bilizability [Beauchard 2009] of (2.1) in the case where H is of infinite dimension.
Tools from functional analysis and partial differential equations are used to prove
the claimed results [Brezis 1983][Coron 2007].
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Finally, another large domain of interest is the stabilization of a quantum sys-
tem around a target steady state. In the classical world, stabilizing a system is
usually done by measuring it, estimating its state and based on that information,
applying a control which keeps the system close to its target state. Some major
difficulties are added in the quantum case. The first is fundamental and concerns
the measurement postulate: when a quantum system is measured, it is always pro-
jected into an eigenspace of the measured observable [Haroche 2006, Chapter 4].
This large system perturbation due to the measurement necessarily has to be taken
into account. The second is practical and concerns the way a measurement is done
in the laboratory. Very often, the projection is not the dominant source of per-
turbation due to the measurement. Indeed, most measurements completely erase
the quantum state; this is the case for example in the high power readout of a su-
perconducting qubit [Reed 2010a], or the measurement of a Rybderg atom in the
ENS experiment. The third is practical and concerns the very short time scales
involved. Many quantum systems have relatively short lifetimes: of the order of
10 µs for superconducting cavities, 1 µs for superconducting qubits, and 100 ns
for atomic systems like Rb in the gas phase. In order for a stabilization to be
efficient, a whole feedback cycle of: measuring, processing and controlling would
need to be performed within these lifetimes. This is far from being easy with a
regular desktop computer. The initial theory on quantum feedback is due to H.
Wiseman and G. Milburn [Wiseman 1993][Wiseman 1994]. This opened the door
to many results, in particular, by H. Mabuchi, A.C Doherty, K. Jacobs, and co-
workers [Doherty 2000]. The first experiment closing the loop of feedback by state
estimation was performed in the group of S. Haroche [Sayrin 2011], following the
theoretical proposal [Dotsenko 2009]. This work assumes measuring the system,
classically processing the measurement outcome, and computing the control law to
be applied. This “measurement based feedback” is distinct from “coherent” feedback
[James 2010], where the feedback loop is performed by connecting the system to
another dissipative quantum system. This theory was developed by M. James, J.
Gough, H. Nurdin and co-workers. Coherent feedback highly resembles “reservoir
engineering”, also called “autonomous feedback”. This area of research was intro-
duced by I. Cirac, P. Zoller and co-workers [Poyatos 1996]. It has also been sug-
gested that engineering dissipation could be used for robust quantum computation
[Verstraete 2009].

2.3 Contributions

In this rapidly growing field of quantum control theory, the contributions of this
thesis lie in five areas.

First, we derive an observability result for Hamiltonian identification. We con-
sider a typical setting in ultra-fast quantum control experiments where an observable
is measured after a system (e.g a cloud of atoms) has interacted with a controlled
electric field. We thus pose the problem of whether we can find a set of controls
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which would provide sufficient information to reconstruct the dipole moment ma-
trix (H1 in the notation of (2.1)). We prove that under certain conditions, we can
find controls (in analogy with Ramsey interferometry) which make the dipole mo-
ment matrix locally observable. The rest of the thesis is devoted to quantum state
engineering and stabilization.

The second contribution is on ensemble control. We propose a robust control
which performs any state permutation on an ensemble of quantum ladder systems.
The strength of this result which is based on adiabatic theory, is that this single con-
trol performs the same permutation on an ensemble of different systems. The results
are based on a detailed asymptotic mathematical analysis giving error bounds.

Third, we address the problem of quantum state stabilization by reservoir engi-
neering in the context of cavity quantum electrodynamics (QED). We describe an
experiment where flying atoms successively interact with one or two cavity modes.
We find a control to apply during each atom-cavity interaction which would drive
and stabilize the cavity modes close to a predefined non-classical target state. In
particular, we are able to stabilize an entangled state which would lead to a vio-
lation of Bell’s inequality for arbitrarily large times. This proposal doesn’t require
any real time data processing and feedback, making it very appealing for experi-
mental implementation. We provide numerical simulations and a first mathematical
convergence analysis, where the Hilbert space is infinite dimensional (no truncation
to a finite number of photons).

Fourth, we introduce a control which performs quantum state preparation in the
context of Josephson circuits (also called circuit QED). We consider one supercon-
ducting qubit coupled to a microwave resonator and describe a sequence of pulses
which would generate any superposition of coherent states, entangled states of two
cavity modes and multi-qubit entangled states. We show that with currently avail-
able systems with state of the art coherence times and coupling strengths, we obtain
preparation fidelities above 90%. Recent preliminary results in the laboratory are
in good agreement with our simulation predictions.

The last contribution is to quantum error correction. This may be viewed as
the stabilization of a two dimensional manifold. We propose to encode a quantum
bit of information in two orthogonal states of a cavity. Decoherence induces jumps
out of these two states, thus compromising the encoded information. We describe a
sequence of pulses which can restore the cavity state. This lengthens the quantum
information lifetime by almost an order of magnitude. The power of this proposal is
that it requires a minimal amount of hardware: one qubit coupled to one resonator,
and that we have found a full pulse sequence to transfer the qubit state to the cavity,
correct against jumps, and transfer the cavity state back to the qubit.

All the models for which we obtain the above results may be described by
the general formulation (2.1) for specific examples of H0,H1, · · · ,HM . Quite re-
markably, these different systems may be modeled by similar spin-spring systems
[Haroche 2006]. In particular, we consider three classes of models:

• A single two level atom coupled to a classical electric field can be modeled
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by taking H0 = ωq
σz

2 , M = 1 and H1 = σx, where σx, σy and σz denote the
Pauli matrices. We denote ωq the atom frequency. Such a model is called a
semi classical-light matter interaction model, where the atom is modeled by
a quantum system and the light is modeled by a classical electric field. In
chapters 3 and 4, we actually consider multi-level atoms interacting with a
classical source of light.

• A single two level atom coupled to a quantized electric field. The latter is
modeled by a Harmonic oscillator. This leads to the Jaynes-Cummings Hamil-
tonian [Jaynes 1963] H0 = ωq

σz

2 + ωca
†a + Ωσx ⊗ (a + a†). We denote a the

oscillator’s annihilation operator, ωc its frequency and Ω the coupling strength
between the atom and the oscillator. One control is applied to the oscillator
leading to H1 = a+a†, and one to the atom leading to H2 = σx. In chapter 6,
a very similar model is applied to an artificial atom: a superconducting qubit,
coupled to a microwave resonator.

• A two level atom coupled to a Harmonic oscillator, where the system of interest
is the Harmonic oscillator alone. In order to obtain a reduced dynamical model
on the oscillator only, we trace out the state of the atom yielding a Lindblad
master equation (i.e. a Kraus map). In chapter 5 we use a discrete time
Lindblad equation derived from a Jaynes-Cummings Hamiltonian with control
on the qubit state only: H1 = σz and H2 = σx.

2.4 Layout of this dissertation

The content of this thesis has been organized as follows:

Chapter 3: We start with a Hamiltonian identification problem. We prove that
identifying the Hamiltonian from population measurements using a family of dis-
criminating control fields is a well posed problem. These results are based on
[Leghtas 2012d].

Chapter 4: We then move on to a state preparation problem. We propose a
control field which could perform any state permutation on a multi-level system.
The power of this scheme is that this one field may act on an ensemble of systems
with different parameter values, and permute every single one of them. This result
appeared in [Leghtas 2011].

Chapter 5: Here we tackle the problem of quantum state stabilization. Report-
ing the results of [Sarlette 2012], we describe a scheme for stabilizing superposition
states and entangled states in a cavity. In this aim, we suggest tailoring the inter-
action of the cavity with a controlled environment: a stream of two level atoms.
This proposal doesn’t require any real time data processing and feedback, making it
very appealing for experimental implementation. This controlled dissipation forces
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any initial state in the cavity to converge towards the desired target state. The
convergence is proved where the cavity state space is an infinite dimensional Hilbert
space, having to overcome technical problems such as the non compactness of the
unit ball.

Chapter 6: In this final chapter, we start with a state preparation scheme and
then see how this can be used to stabilize a whole manifold of states, thus performing
quantum error correction. We propose a sequence of pulses which prepares any
superposition of non overlapping coherent states in a microwave resonator. This
preparation scheme can also be applied to generate entangled states of two modes
and entangled states of an arbitrary large number of qubits. This was the subject of a
recent paper [Leghtas 2012b]. We then show that these coherent state superpositions
can be used for efficient quantum error correction [Leghtas 2012c]. This brings us
one step closer to a readily realizable quantum memory.

Each chapter can be read independently. A conclusion in chapter 7 gives an
insight on future work.





Chapter 3

Enhanced observability utilizing

quantum control

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Observability of the quantum dipole moment . . . . . . . . 19

3.2.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Existence of discriminating controls . . . . . . . . . . . . . . 21

3.3.2 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . 21

3.3.3 Proof of lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.4 Proof of lemma 3.2 . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Definitions and computation . . . . . . . . . . . . . . . . . . . 27

Ce chapitre traite l’identification d’Hamiltonien pour un système commandable

avec des transitions non dégénérées et un état initial connu. On considère un seul

contrôle scalaire et une mesure de population à instant T arbitrairement grand.

On démontre que la matrice de moment dipolaire est localement observable: pour

tout couple de matrices différentes mais suffisamment proches, il existe un con-

trôle qui permet d’obtenir deux mesures différentes. Ce résultat suggère qu’une sim-

ple mesure de population à un seul instant peut être transformée en une source

d’information très riche permettant l’identification unique du moment dipolaire,

lorsque cette mesure est précédée d’une commande bien choisie. Ce chapitre est

basé sur [Leghtas 2012d], qui paraîtra comme une note technique dans IEEE Trans-

actions of Automatic Control. Ce résultat a été obtenu en collaboration avec Gabriel

Turinici, Herschel Rabitz et Pierre Rouchon.

This chapter considers Hamiltonian identification for a controllable quantum
system with non-degenerate transitions and a known initial state. We assume to
have at our disposal a single scalar control input and the population measure of
only one state at an (arbitrarily large) final time T. We prove that the quantum
dipole moment matrix is locally observable in the following sense: for any two close
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but distinct dipole moment matrices, we construct discriminating controls giving
two different measurements. This result suggests that what may appear at first to
be very restrictive measurements are actually rich for identification, when combined
with well designed discriminating controls, to uniquely identify the complete dipole
moment of such systems. This chapter is based on [Leghtas 2012d], which is about
to appear as a technical note in IEEE transactions of automatic control. This result
was obtained in collaboration with Gabriel Turinici, Herschel Rabitz and Pierre
Rouchon.

3.1 Introduction

Quantum control has been receiving increasing attention [Brif 2010] and one of its
promising applications is to Hamiltonian identification [Warren 1993] by using the
ability to actively control a quantum system as a means to gain information about
the underlying Hamiltonian governing its dynamics. The underlying premise is
that controls may be found which make the measurements not only robust to noise
but also highly sensitive to the unknown parameters in the Hamiltonian. Hence,
although the performance of laboratory measurements may be constrained, the abil-
ity to control a quantum system has the prospect of turning this data into a rich
source of information on the system’s Hamiltonian.

In this chapter, we consider the problem of identifying the dipole moment (which
is assumed to be real) of an N−level quantum system, initialized to a known state
(ground state), from a single population measurement at one arbitrarily large time T .
We suppose an ability to freely control the system with a time dependent electric field
u(t). The measurements are obtained by (i) initializing at time t = 0 the system’s
state at a known state |i〉, (ii) controlling in open loop and without measurement the
system with an electric field uk(t) for t ∈ [0, T ] where T > 0, and (iii) measuring at
final time T the population of one state |f〉. This may be repeated for many controls
(uk)k. We prove the existence of controls which make the identification from one
population measurement a well posed problem (theorem 3.1). These controls have
a simple physical interpretation in analogy with Ramsey interferometry (see Fig.
3.1).

The perspective above combined with control theory is motivated by three prac-
tical arguments. First, measuring a state population at one time T is a technique
which can have a very high signal to noise ratio (∼ 100). Second, technological
progress with spatial light modulators (SLM) permits generating a broad variety of
controls in the laboratory. Third, ultra short pulsed fields can be well measured in
the laboratory [Iaconis 1998]. Hence, we are able to design a variety of precisely
known control inputs.

Le Bris et al [LeBris 2007] prove the observability of the dipole moment when
the population of all states are measured over an arbitrarily large interval of time.
Algorithms to reconstruct the dipole from the measured data were proposed using
nonlinear observers [Leghtas 2009, Bonnabel 2009]. A different setting is considered
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in [Schirmer 2010a, Schirmer 2010b] where it is supposed that one can prepare and
measure the system in a set of orthogonal states at various times, and the available
data is the probability to measure the system in a certain state when it was prepared
in another; Bayesian estimation is used to reconstruct the energy levels, the damping
constants and the dipole moment from the measured data. We consider here the
less demanding case where the only available measurement is the population of one
state at one arbitrarily large time, and the initial state is known and coincides with
the ground state. We may summarize the scheme to identify an arbitrary matrix
element 〈l|µ|k〉 of the dipole moment operator µ by the following:

1. We use the controllability of the system to steer it from the ground state to
state |l〉.

2. “Gently” Rabi flop the transition |k〉 → |l〉 using the assumed unique transition
frequency in a way that does not affect nearby transitions.

3. Finally use the controllability of the system to steer the system to a state
which is detectable by the measurement apparatus: population of a state |f〉.

4. From the measured population, deduce the dipole matrix element.

The chapter is organized as follows. In subsection 3.2 we state the main result in
Theorem 3.1, and subsection 3.3 gives the proof of the Theorem and an important
lemma on which the main result is based. Finally concluding remarks are presented
in subsection 3.4.

3.2 Observability of the quantum dipole moment

3.2.1 Problem setting

We consider a quantum system in a pure state described by the wave function
|ψ〉 ∈ S. Here S is the set of N dimensional complex vectors of unit norm. The
system interacts with an electric field (the real control input) u ∈ UT for some
T > 0 with UT ≡ {f : [0, T ] → R |f piecewise continuous}. For a given control u
we measure the population of the state |f〉 at time T denoted as Pif (u). We denote
by H0 the free Hamiltonian, due to the kinetic and potential energy of the system
(Hermitian matrix) and by µ the dipole moment operator, also a Hermitian matrix.
In the notation of (2.1), we have µ = H1 and u(t) = u1(t). This choice was made
to adapt to the notation used in the mathematical physics community. The initial
state |i〉 and the measured state |f〉 are eigenvectors of H0. We consider a semi-
classical model for the light-matter interaction, and the dynamics of |ψ〉 are given
by the Schrödinger equation:

ı~
d

dt
|ψ(t)〉 = (H0 − u(t)µ)|ψ(t)〉 (3.1)

|ψ(0)〉 = |i〉 , Pif (u) = | 〈f |ψ(T )〉 |2 .
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For all T > 0, we suppose that we can create any field u ∈ UT and that we can
measure Pif (u). For M different fields {u1, .., uM} we can collect the measurements
{Pif (u1), .., Pif (uM )}. Through (3.1), Pif is a function of µ and a functional of u,
and when necessary this explicit dependence will be written as Pif (u, µ). The aim of
this chapter is to explore the feasibility of estimating the dipole moment µ from the
measured data {Pif (u1), .., Pif (uM )} using well chosen controls {u1, .., uM}. Below,
Pif (u, µ) refers to the measurement achieved on the real system using a control
u, and for any µ̂, Pif (u, µ̂) is the estimated measurement which is obtained by
simulating system (3.1) with the control u and coupling µ̂.

3.2.2 Main result

For all k ≤ N we denote |k〉 as the eigenvector of H0 with associated eigenvalue
Ek. Throughout this chapter, all matrices are written in the basis (|1〉, .., |N〉). The
initial and measured states correspond to some indexes i, f ∈ {1, . . . , N}. For all
k, l ≤ N we specify σlk

x ≡ |l〉〈k| + |k〉〈l|. We define

M ≡ Span{σlk
x \k, l ≤ N with Tr

(
µσlk

x

)
6= 0},

with Tr being the trace operation. When all non diagonal elements of µ are non-null,
M = dim(M) = N(N−1)

2 . The main result is the following:

Theorem 3.1. Consider a real symmetric matrix µ with zero diagonal entries and

a real diagonal matrix H0 with non-degenerate transitions. Suppose that the system

defined in (3.1) is controllable. Then for any positive constant α there exists a time

T > 0 and M fields (u1, .., uM ) ∈ UT
M such that the cost function

J : M ∋ µ̂→
M∑

k=1

(Pif (uk, µ̂) − Pif (uk, µ))2

is in C2(M,R) and locally α-convex1 around µ.

Ck(A,B) denotes the set of k times continuously differentiable functions defined
over A with values in B. In Section 3.5 we provide the definitions of controllability
and a matrix with non-degenerate transitions. Here and throughout this chapter,
the norm of matrix µ, noted ||µ|| refers to the max norm.
A direct consequence of Theorem 3.1 is the local observability of the dipole moment:

Corollary 3.1. Under the assumptions of Theorem 3.1, the dipole moment is locally

observable in M (see definition 3.3).

Proof Take α > 0. Theorem 3.1 implies that there exists a time T > 0 and M

fields (u1, .., uM ) ∈ UT
M such that the cost function J is C2(M,R) and locally α-

convex around µ. Hence ∃r > 0 such that for all µ̂ ∈ M with ||µ̂−µ|| ≤ r and µ̂ 6= µ,
J(µ̂) > 0, and hence there exists u ∈ {u1, .., uM} such that Pif (u, µ̂) − Pif (u, µ) 6=
0.�

1The smallest eigenvalue of the Hessian ∇2J(µ) is larger than α.
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Remark 3.1. The local α−convexity is a property stronger than the mere possibility

to identify the dipole matrix. It states that the distinction between a dipole candidate

µ̂ and the true dipole µ can be observed (through the measurements aggregated in J)

to first order in the distance ‖µ−µ̂‖. This first order dependence of the measurement

Pif with respect to the dipole µ is addressed in more detail in lemma 3.1. For well

chosen controls, the J function has a very simple shape around µ and a simple

gradient algorithm could be used to identify it.

The eigenvalues of H0 are commonly measured through spectroscopy and can be
found in reference tables2 with precisions of order 10−7. The result of theorem 3.1
is also relevant for the problem of discriminating between two molecules with the
same free Hamiltonian and different effective dipole operators. In that framework,
µ̂ and µ would be the dipole operators of these two molecules (as opposed to one
estimated and one true dipole, as considered in this chapter), and the aim is to
find controls which produce different data sets for these two different but similar
quantum systems. This was experimentally accomplished in [Petersen 2010] where
a genetic algorithm is used to find these discriminating controls. A complementary
theoretical controllability analysis can be found in [Turinici 2004].

3.3 Proofs

3.3.1 Existence of discriminating controls

We denote µ′ = 1
||µ||µ the normalized dimensionless dipole moment operator, µ′lk ≡

Tr
(
µ′σlk

x

)
and ∂Pif

∂µ′
lk

(u) the partial derivative of Pif (u) with respect to µ′lk. Theorem
3.1 is based on the following lemma:

Lemma 3.1. Suppose that µ is real, symmetric and has only zeros on its diagonal

and H0 is real, diagonal, with non-degenerate transitions (see definition 3.2). Sup-

pose system (3.1) is controllable. Then for all (l, k) with µlk 6= 0, there exists ξ0 > 0

such that, for all ξ ∈]0, ξ0[, there exists a T > 0 and u ∈ UT satisfying

• ∂Pif

∂µ′
lk

(u) = 1
2ξ +O(1)

• ∀{m,n} 6= {l, k} with µmn 6= 0,
∂Pif

∂µ′
mn

(u) = O(1),

where O(1) corresponds to zero order terms with respect to ξ around 0+.

3.3.2 Proof of Theorem 3.1

To each pair of integers (lp, kp), lp < kp such that Tr
(
µ′σlpkp

x

)
6= 0 we associate a

unique index p ∈ {1, ...,M}, and we define σp
x ≡ σ

lpkp
x along with µ′p ≡ Tr (µ′σp

x).
According to lemma 3.1, ∃ξ0 > 0 such that ∀ξ ∈]0, ξ0[, ∃ T1, .., TM and

(u1, .., uM ) ∈ UT1 × .. × UTM
such that: (i) ∀p ∈ [1 : M ],

∂Pif

∂µ′
p
(up) = 1

2ξ + O(1)

2See for e.g: National Institute of Standards and Technology (NIST) data sheets.
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and (ii) ∀p′ 6= p,
∂Pif

∂µ′
p′

(up) = O(1). We take T = max(T1, .., TM ) and for all

k ∈ {1, ..,M}, we extend the definition of uk from [0, Tk] to [0, T ] by taking uk(t) = 0

for all t ∈]Tk, T ]. We will use J : M → R defined by:

J(µ̂) =
M∑

k=1

(Pif (uk, µ̂) − Pif (uk, µ))2.

For a fixed T > 0 and u ∈ UT , since µ̂ → Pif (u, µ̂) is in C2(M,R), µ̂ → J(µ̂) is in
C2(M,R). We find

∂2J

∂µ′p∂µ
′
p′

(µ) =
M∑

k=1

∂Pif

∂µ′p
(uk, µ)

∂Pif

∂µ′p′
(uk, µ) ,

so that for

p ∈ {1, ...,M} :
∂2J

∂µ′p
2 (µ) =

1

4ξ2
+O(

1

ξ
) ,

and for

p 6= p′ :
∂2J

∂µ′p∂µ
′
p′

(µ) = O(
1

ξ
) .

We have:

∇2J(µ) =
1

4ξ2
(I +O(ξ)) ,

where ∇2J(µ) is the Hessian of J at µ and I is the identity matrix. The smallest
eigenvalue of ∇2J(µ) scales as 1

4ξ2 (1+O(ξ)), hence by taking ξ small enough it can
be made larger than α thereby reaching the conclusion above. �

3.3.3 Proof of lemma 3.1

We define the dimensionless time scale τ ≡ 1
~
||H0||t and also ⊤ ≡ 1

~
||H0||T . For

two times τ, τ ′ ∈ [0,⊤] we define the propagator U(τ ′, τ) such that |ψ(τ ′)〉 =

U(τ ′, τ)|ψ(τ)〉. Rewriting (3.1) for U(τ, 0) we obtain:

ı
∂

∂τ
U(τ, 0) =

1

||H0||
(H0 − u(τ)µ)U(τ, 0) (3.2)

Pif (u) = |〈f |U(⊤, 0)|i〉|2 , U(0, 0) = I .

The proof of lemma 3.1 has two parts I and II separately treated below.

i) Part I Take two times τ1, τ2, 0 < τ1 < τ2 < ⊤. We can write (for
any complex z we denote by z̄ its complex conjugate): Pif (u) = zz̄ where
z = 〈f |U(⊤, τ2)U(τ2, τ1)U(τ1, 0)|i〉.

Denote for any m,n = 1, ...,M : ω′
mn ≡ Em−En

||H0|| and consider the control defined
on [τ1, τ2]:

u(τ) = ε cos(ω′
lk(τ − τ1)) , (3.3)
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0

ωlk

Figure 3.1: A good control u has three components (inspired from Ramsey inter-
ferometry) to enable the identification of µlk. The field u1 is defined over [0, τ1]

(analog of first Ramsey pulse) to steer the known initial state |i〉 to |ψ1〉 = |l〉:
|l〉 = U(τ1, 0)|i〉. The field u2 is defined over [τ2,⊤] (analog of second Ramsey

pulse) is such that |f〉 = U(⊤, τ2)|ψ2〉 where |ψ2〉 = U(τ2, τ1)
(
|l〉+ı|k〉√

2

)
and the

propagator U(τ2, τ1) corresponds, for a long interval τ2 − τ1, to a large number of
Rabi oscillations with the control ε cos(ω′

lk(τ − τ1)) resonant with the |l〉 ↔ |k〉
transition.

where ε is a small strictly positive real parameter. Take ξ = ||µ||ε
||H0|| . The only

remaining degree of freedom in the control over [τ1, τ2] is ξ, which can be taken
arbitrarily small. We define H′

0 = 1
||H0||H0 and ω′

mn = 〈m|H′
0|m〉 − 〈n|H′

0|n〉. Note
that ω′

mn = −ω′
nm. We have [Beltrani 2007]

∂

∂µ′lk
U(τ2, τ1) = ı

||µ||
||H0||

U(τ2, τ1) ×
∫ τ2

τ1

u(τ)U †(τ, τ1)σ
lk
x U(τ, τ1)dτ . (3.4)

We now rewrite (3.2) and (3.4) for the control given in (3.3) on the time interval
[τ1, τ2]:

ı
∂

∂τ
U(τ, τ1) = (H′

0 − ξ cos(ω′
lk(τ − τ1))µ

′)U(τ, τ1) (3.5)

∂

∂µ′lk
U(τ2, τ1) = ıξU(τ2, τ1) ×

∫ τ2

τ1

cos(ω′
lk(τ − τ1))U

†(τ, τ1)σ
lk
x U(τ, τ1)dτ . (3.6)

The goal is to show that ∂
∂µ′

lk
U(τ2, τ1) can be made arbitrarily "large" while

∂
∂µ′

mn
U(τ2, τ1) stays bounded. Note that all the terms in the integrand of (3.6)

are bounded, and a rough estimate of the norm of ∂
∂µ′

lk
U(τ2, τ1) gives a quantity
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proportional to (τ2 − τ1)ξ. Hence, we take τ2 − τ1 = 1
ξ2 , implying the need to have

expressions for U(τ, τ1) over a time scale on the order of 1
ξ2 . To this end we state

lemma 3.2 which gives such an approximation.

Lemma 3.2. Consider Eq. (3.5). There exists a Hermitian matrix K and ξ0 > 0

such that, for any ξ ∈]0, ξ0[, we have:

sup
τ∈[τ1,τ1+ 1

ξ2
]

||U(τ, τ1) − e−ıH′
0(τ−τ1)eı(ξ

µ′
lk
2

σlk
x +ξ2K)(τ−τ1)|| = O(ξ).

We continue with the proof of lemma 3.1 and will come back to lemma 3.2 in
Section 3.3.4.

Using the expression of U(τ, τ1) given in lemma 3.2, the integrand in (3.6) is:

cos(ω′
lk(τ − τ1))U

†(τ, τ1)σ
lk
x U(τ, τ1) =

e−ı(ξ
µ′

lk
2

σlk
x +ξ2K)(τ−τ1)(cos(ω′

lk(τ − τ1))e
ıH′

0(τ−τ1)

σlk
x e

−ıH′
0(τ−τ1))eı(ξ

µ′
lk
2

σlk
x +ξ2K)(τ−τ1) +O(ξ) .

In order to compute (3.6), we need the following result:

cos(ω′
lk(τ − τ1))e

ıH′
0(τ−τ1)σlk

x e
−ıH′

0(τ−τ1) = 1
2σ

lk
x + 1

2 cos(2ω′
lk(τ − τ1))σ

lk
x (3.7)

+ 1
2 sin(2ω′

lk(τ − τ1))σ
lk
y ,

where we denote σlk
y = +ı|l〉〈k| − ı|k〉〈l|. In (3.7), the terms oscillating at frequency

2ω′
lk independent of ξ will only contribute to O(ξ) in (3.6). We now focus on the

contribution of the term with σlk
x in (3.6) which calls for (see Section 3.5): ∀τ

e−ı(ξ
µ′

lk
2

σlk
x +ξ2K)(τ−τ1)σlk

x e
ı(ξ

µ′
lk
2

σlk
x +ξ2K)(τ−τ1) = σlk

x +O(ξ) . (3.8)

Introducing (3.8) into (3.6), we find:

∂

∂µ′lk
U(τ2, τ1) = ıξU(τ2, τ1)

(
τ2 − τ1

2
σlk

x +O(1) + (τ2 − τ1)O(ξ)

)
.

From now on, we take τ2 = τ1 + 1
ξ2 and obtain:

∂

∂µ′lk
U(τ2, τ1) = ıU(τ2, τ1)(

1
2ξσ

lk
x +O(1)). (3.9)

We define |ψ1〉 ≡ |l〉 and |ψ2〉 ≡ 1√
2
U(τ2, τ1)(|l〉+ ı|k〉). Since the system is control-

lable there exists a time τ1 and a field u1 ∈ Uτ1 such that U(τ1, 0)|i〉 = |ψ1〉, and
there exists a time ⊤ and a field u2 defined over [τ2,⊤] such that U †(⊤, τ2)|f〉 = |ψ2〉.
Since the state space is compact (here it is a sphere), we know that if the system
is controllable, it is controllable in bounded time, and with bounded controls (see
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Theorem 6.5 in [Jurdjevic 1972]). Hence, ⊤ − τ2 can be chosen bounded for all ξ.
Therefore ∂

∂µlk
U(0, τ1) and ∂

∂µlk
U(τ2,⊤) are bounded. Thus, we have:

∂

∂µ′lk
Pif (u) = 2ℜ(〈f |U(⊤, τ2)

∂

∂µ′lk
U(τ2, τ1)U(τ1, 0)|i〉

〈i|U †(τ1, 0)U †(τ2, τ1)U
†(⊤, τ2)|f〉) +O(1).

We now utilize U(τ1, 0)|i〉 = |ψ1〉 and U †(⊤, τ2)|f〉 = |ψ2〉 where |ψ1〉 and |ψ2〉
are defined above, and replace ∂

∂µ′
lk
U(τ2, τ1) by its expression in (3.9) to find:

∂
∂µ′

lk
Pif (u) = 1

2ξ + O(1). This expression holds for the control defined as (see Fig.

3.1):

u(τ) =





u1(τ), if τ ∈ [0, τ1]
||H0||
||µ|| ξ cos(ω′

lk(τ − τ1)), if τ ∈]τ1, τ2[

u2(τ), if τ ∈ [τ2,⊤]

(3.10)

ii) Part II We now need to prove that ∂
∂µ′

mn
Pif (u) = O(1) for {m,n} 6= {l, k},

where u is the control found above in (3.10). As in Eq. (3.6), we have:

∂

∂µ′mn

U(τ2, τ1) = ıξU(τ2, τ1)×
∫ τ2

τ1

cos(ω′
lk(τ − τ1))U

†(τ, τ1)σ
mn
x U(τ, τ1)dτ , (3.11)

and again the result of lemma 3.2 is employed. Eq. (3.11) calls for

2 cos(ω′
lk(τ − τ1))e

ıH′
0(τ−τ1)σmn

x e−ıH′
0(τ−τ1) =

cos((ω′
lk − ω′

mn)(τ − τ1))σ
mn
x − sin((ω′

lk − ω′
mn)(τ − τ1))σ

mn
y + (3.12)

cos((ω′
lk + ω′

mn)(τ − τ1))σ
mn
x + sin((ω′

lk + ω′
mn)(τ − τ1))σ

mn
y .

Considering that H0 has non-degenerate transitions (see definition in Section 3.5)
implies that ω′

lk −ω′
mn 6= 0 and ω′

lk +ω′
mn 6= 0. As the expression in (3.12) oscillates

at frequencies independent of ξ, it therefore contributes to O(ξ) in (3.11). Hence,
for τ2 − τ1 = 1

ξ2 we can directly conclude that ∂
∂µ′

mn
Pif (u) = O(1). �

3.3.4 Proof of lemma 3.2

This proof relies on three consecutive changes of frame that aim to cancel the os-
cillating terms of order 0 and 1 with respect to ξ. We then derive a specific form
of the averaging Theorem (see theorem 4.3.6 in [Sanders 2007] for a general form of
the averaging theorem). For the sake of clarity and with no loss of generality, we
take τ1 = 0 and note U(τ) ≡ U(τ, τ1). Eq. (3.5) may be written in the interaction
frame UI(τ) ≡ eıH

′
0τU(τ),

∂

∂τ
UI(τ) = ıξ

(
µ′lk
2
σlk

x +
∂

∂τ
HI(τ)

)
UI(τ)



26 Chapter 3. Enhanced observability utilizing quantum control

where:
∂

∂τ
HI(τ) = 1

2

∑

(m,n) 6=(k,l)

µ′mne
ı(−ω′

kl+ω′
mn)τ |m〉〈n|

+ 1
2

∑

(m,n) 6=(l,k)

µ′mne
ı(−ω′

lk+ω′
mn)τ |m〉〈n| ,

and the average of HI is zero. The average of a time dependent operator C(τ) is
defined as follows (see defintion 4.2.4 in [Sanders 2007]): C = limθ→+∞

1
θ

∫ θ
0 C(τ)dτ .

We now take U ′
I(τ) = (I − ıξHI(τ))UI(τ). Since ∂

∂τHI is almost periodic3, then HI

is also almost periodic and hence bounded for all τ . Hence, there exists ξ0 > 0, such
that ∀ξ < ξ0, I− ıξHI(τ) has an inverse and (I− ıξHI(τ))

−1 = I+ ıξHI(τ)+O(ξ2).
We find:
∂

∂τ
U ′

I(τ) = ı

(
ξ

µ′
lk
2 σ

lk
x − ıξ2

(
µ′

lk
2 [HI(τ), σ

lk
x ] +HI(τ)

∂

∂τ
HI(τ)

)
+O(ξ3)

)
U ′

I(τ).

Notice that, with K = −ıHI
∂
∂τHI independent of ξ and K̃(τ) almost periodic with

zero average, we also have: µ′
lk
2 [HI(τ), σ

lk
x ] +HI(τ)

∂
∂τHI(τ) = ı(K + ∂

∂τ K̃(τ)). It is

important to note that 1
2

∂
∂τH

2
I = 0 = HI

∂
∂τHI + ( ∂

∂τHI)HI = ı(K − K†). Hence
K = K† is Hermitian.

We now take U ′′
I (τ) = (I − ıξ2K̃(τ))U ′

I(τ). Since K̃(τ) is bounded for all τ ,
then for a sufficiently small ξ, I − ıξ2K̃(τ) has an inverse and (I − ıξ2K̃(τ))−1 =

I + ıξ2K̃(τ) +O(ξ4). U ′′
I satisfies the following equation:

∂

∂τ
U ′′

I (τ) = ı
(
ξ

µ′
lk
2 σ

lk
x + ξ2K +O(ξ3)

)
U ′′

I (τ) , (3.13)

and we define Uav to be the solution to the averaged dynamics (Uav(0) = I):

∂

∂τ
Uav(τ) = ı

(
ξ

µ′
lk
2 σ

lk
x + ξ2K

)
Uav(τ) . (3.14)

We can directly solve (3.14): Uav(τ) = e
ı

(
ξ

µ′
lk
2

σlk
x +ξ2K

)
τ
. Subtracting (3.13) from

(3.14), we find, using Gronwall’s lemma, that for all τ < 1
ξ2 one has U ′′

I (τ) =

Uav(τ) + O(ξ). Also note that to go from UI to U ′′
I we have used two consecutive

changes of variables which are close to the identity, hence: ∀τ U ′′
I (τ) = UI(τ)+O(ξ).

Finally, since e−ıH′
0τ is an isometry, we have:

U(τ) = e−ıH′
0τeı(ξ

µ′
lk
2

σlk
x +ξ2K)τ +O(ξ) for all τ ≤ 1

ξ2 .�

3.4 Conclusion

Identification of the real dipole moment matrix is shown to be well posed for a
controllable finite dimensional quantum system with non-degenerate transitions and
using as measurements only one population at a final time T . The results also
provide a theoretical foundation to optimal discrimination experiments.

3It can be written as
∑M

k=1 eiωkτAk
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3.5 Definitions and computation

Definition 3.1. We say that system (3.1) is controllable [D’Alessandro 2008] if

for all |ψ1〉, |ψ2〉 ∈ S there exists a time t and a control u ∈ Ut such that for

|ψ(0)〉 = |ψ1〉, (3.1) leads to |ψ(t)〉 = |ψ2〉.

Definition 3.2. Let H0 and µ be N ×N Hermitian matrices. We denote E1, .., EN

the eigenvalues of H0 and |1〉, .., |N〉 its corresponding eigenvectors. We say that H0

has non-degenerate transitions [Turinici 2003] if ∀(l, k) 6= (m,n), l 6= k and m 6= n,

such that 〈l|µ|k〉 6= 0 and 〈m|µ|n〉 6= 0, we have El − Ek 6= Em − En.

Definition 3.3. Take system (3.1). Let us denote M as the space to which µ

belongs. We say that µ is locally observable in M if there exists r > 0 such that for

all µ̂ ∈ M with 0 < ||µ̂ − µ|| ≤ r and µ̂ 6= µ, there exists T > 0 and u ∈ UT such

that Pif (u, µ̂) 6= Pif (u, µ).

Computation: Here, we compute

Σlk
x (τ) = e−i(ξ

µ′
lk
2

σlk
x +ξ2K)(τ−τ1)σlk

x e
i(ξ

µ′
lk
2

σlk
x +ξ2K)(τ−τ1) .

We have µ′lk 6= 0 and σlk
x + ξ 2K

µ′
lk

is Hermitian. Hence, there exists a unitary matrix

Pξ and a real diagonal matrix ∆ξ such that σlk
x + ξ 2K

µ′
lk

= Pξ∆ξP
†
ξ . The function

ξ ∈ [0, ξ0] → σlk
x + ξ 2K

µ′
lk

is analytic, therefore the eigenvectors of σlk
x + ξ 2K

µ′
lk

can be

continued analytically as a function of ξ (see Theorem 6.1 in chapter II, §6 section 1
and 2 in [Kato 1966]). Hence, Pξ = P0 +O(ξ) where P0 is such that P †

0σ
lk
x P0 = σlk

z

is real and diagonal (σlk
z = |l〉〈l| − |k〉〈k|). We find, ∀τ : Σlk

x (τ) = σlk
x +O(ξ), where

O(ξ) is a first order term in ξ and a bounded function of τ .
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Ce chapitre est sur le transfert de population entre états propres du Hamiltonien,

dans un système quantique en échelle, contrôlé par un champ électrique. Nous mon-

trons que ce problème peut être traité dans le cadre du passage adiabatique, dont

l’efficacité pour le contrôle d’ensemble de systèmes est bien connue. Nous com-

mençons par démontrer la robustesse du champ “chirpé”, qui est utilisé par les ex-

périmentateurs pour transférer la population de l’état fondamental vers l’état le plus

excité, sur un ensemble de systèmes différents. Nous proposons ensuite des nouvelles

lois de commandes robustes qui induisent toute permutation de populations d’états

propres d’un ensemble de systèmes. Ces contrôles combinent le balayage en fréquence

et la modulation d’amplitude. Ces propositions sont appuyées par des simulations et

des preuves donnant des bornes d’erreurs. Ce travail a été réalisé en collaboration
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avec Alain Sarlette et Pierre Rouchon, et est paru dans la revue Journal of Physics

B [Leghtas 2011].

This chapter considers population transfer between eigenstates of a finite quan-
tum ladder controlled by a classical electric field. Using an appropriate change of
variables, we show that this setting can be set in the framework of adiabatic pas-
sage, which is known to facilitate ensemble control of quantum systems. Building
on this insight, we present a mathematical proof of robustness for a control protocol
– chirped pulse – practiced by experimentalists to drive an ensemble of quantum
systems from the ground state to the most excited state. We then propose new
adiabatic control protocols using a single chirped and amplitude shaped pulse, to
robustly perform any permutation of eigenstate populations, on an ensemble of sys-
tems with imprecisely known coupling strengths. Such adiabatic control protocols
are illustrated by simulations achieving all 24 permutations for a 4-level ladder. This
chapter reports the results obtained in collaboration with Alain Sarlette and Pierre
Rouchon, and published in Journal of Physics B [Leghtas 2011].

4.1 Introduction

Population transfer from eigenstate k to eigenstate l of a quantum system refers
to finding a control input such that the projection of the final system state on
eigenstate l of the free Hamiltonian has the same norm as the projection of the
initial system state on eigenstate k. Applications of population transfer range from
population inversion [Nussenzweig 1993], where k and l are the lowest and highest
energy eigenstates, to quantum information processing [Nielsen 2000, Averin 1998,
Aharonov 2007], where logic gates would (selectively) permute the populations of
several eigenstates. In many applications, including those mentioned, relative in-
sensitivity to variations in system parameters is important for robustness purposes.

In the present chapter, we show how control inputs designed on the basis of adi-
abatic passage can implement any given permutation of eigenstate populations for
a finite anharmonic quantum ladder. The latter is a quantum system with a finite
number of unequally spaced energy levels, where only consecutive levels are coupled.
The controls we use are chirped pulses [Chelkowski 1990] with appropriately mod-
ulated amplitudes and exploit the idea of eigenvalue crossing [Yatsenko 2002]. The
ladder consists of a free Hamiltonian with approximately equidistant eigenvalues and
where the control input couples eigenstates associated with consecutive eigenvalues.
A striking robustness feature is that our control fields must only satisfy a set of
key properties and achieve population transfer independently of the values of dipole
moments coupling consecutive levels of the ladder. This is a major difference with
respect to early non-adiabatic approaches to molecular ladder dissociation using
chirped pulses [Chelkowski 1990]. Adiabatic passage through eigenvalue crossings
has also very recently been used to prove approximate controllability in finite time
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of an infinite dimensional quantum system [Boscain 2011].
In this sense, we achieve a specific form of ensemble control. Ensemble con-

trol in its most general form wants a single given input to drive an ensemble of
systems, with different values of some parameter p, from given p-dependent initial
state to given p-dependent final state [Li 2009, definition 1]. Currently, solutions
to this general problem are essentially restricted to two-level systems, achieving
approximate ensemble control in finite time and exact ensemble control in infi-
nite time [Li 2009, Li 2006, Beauchard 2010]. They rely on accurate knowledge of
laser-system coupling strengths and accurately tailored inputs, involving e.g. exact
instantaneous “π-amplitude-impulses”. In our setting, system parameters need not
be exactly known and the input must only satisfy a few key properties. In turn,
regarding initial-to-final-state transformations, we are limited to population permu-
tations (with arbitrary relative phases between components of different eigenstates)
that are constant as a function of system parameters. Driving an ensemble of 2-level
systems from a common initial to a common final state has also been much studied
in the NMR context, e.g. with geometric methods [Li 2006].

Adiabatic passage is a control strategy that builds on the adiabatic evolu-
tion property: A system state initially close to an eigenstate of a time-varying
Hamiltonian H(t) approximately follows the time-varying eigenstate of H(t) if
it varies slowly enough; the slower H(t) varies, the better the adiabatic ap-
proximation. A thorough formal study of adiabatic evolution can be found in
[Avron 1987, Avron 1999, Teufel 2003], on which we build the proofs of our results.
Adiabatic evolution has been standard since the early days of quantum mechan-
ics [Messiah 1958], e.g. when interpreting system evolution in terms of “avoided
eigenvalue crossings”. In a ladder control context, population inversion in two-level
systems by a “chirped” pulse — where frequencies of a Gaussian laser pulse are
spread out in time — is known by experimentalists and theoretically explained in
the adiabatic framework [Allen 1987]. This is the most basic case of our control,
section 4.3 with N = 2. Many experimentalists have then focused on multiple-

laser techniques, individually addressing pairwise couplings in an N -level system;
this includes stimulated Raman adiabatic passage (STIRAP), see e.g. [Oreg 1984,
Shapiro 2009, Vitanov 2001]. For N -level ladder systems specifically, the possibil-
ity of population transfer from the lowest to the highest energy eigenstates with a
single chirped laser pulse has been recognized and exploited in “adiabatic rapid pas-
sage” experiments [Hulet 1983, Nussenzweig 1993, Maas 1999, Vitanov 2001]. An
analysis of N -level adiabatic molecular dissociation with chirped pulses is given in
[Guérin 1997] based on the Floquet representation. In the present chapter we pro-
vide a simple mathematical proof of population inversion with avoided crossings
(gap condition) based on Favard’s Theorem [Favard 1935] and on the roots of or-
thogonal polynomials [Szegö 1967], and extend the framework by adding amplitude
control to perform not only population inversion but all different permutations of
free Hamiltonian eigenstates.

The chapter is organized as follows. Section 4.3 gives the formal statement
and section 4.6 the proof for N -level population inversion with “adiabatic rapid
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passage”, actually proving how initial population of level k is finally transferred to
level N−k−1 in adiabatic approximation. The key point for using adiabatic passage
is a change of frame that depends on time-varying control input phase; it is detailed
in section 4.2 after formal description of the ladder system. The proof then applies
the standard “adiabatic theorem with spectral gap condition”, where time-varying
eigenvalues are shown to remain separated for all times. The inversion is insensitive
to exact energy values of the individual levels in the ladder. Section 4.4 proposes
adiabatic control inputs to transfer population between two arbitrary eigenstates.
It requires the control field to vanish at specific times which depend on (some)
energy levels of the anharmonic ladder, such that we select a pair of time-varying
eigenvalues to cross. System evolution is then ruled by the “adiabatic theorem
without spectral gap condition”. A complementary study of system behavior in
the neighborhood of two crossing eigenvalues and valid for more general systems
than ladder ones, can be found in [Boscain 2010]. We provide a formal proof of
the control’s effect and highlight its ensemble/robustness features in section 4.6.
Section 4.5 finally shows how any permutation of eigenstate populations can be
achieved in this adiabatic passage framework. Each control protocol is illustrated
by a simulation at the end of the corresponding section.

Notation: We use the Dirac bra-ket notations: |ψ〉 ∈ C
N denotes a complex vec-

tor, 〈ψ| = |ψ〉† is its Hermitian transpose, and 〈.|.〉 : C
N × C

N → C : (|ψ1〉, |ψ2〉) →
〈ψ1|ψ2〉 = 〈ψ1||ψ2〉 is the Hermitian scalar product. For z ∈ C we note ℜ(z) its
real part and z∗ its conjugate. HN is the set of N ×N Hermitian matrices, where
N ∈ N. We note I the N × N identity matrix. For any matrix A ∈ C

N×N , we
denote its Frobenius (or Hilbert-Schmidt) norm ‖A‖ =

√
Tr (A†A) where Tr (·) de-

notes trace. For H ∈ HN , it holds ‖H‖ =
√∑N−1

i=0 λ2
i where λ0, . . . , λN−1 are the

(real) eigenvalues of H. For H ∈ HN and λ an eigenvalue of H, we denote Pλ ∈ HN

the orthogonal projector on the eigenspace of H associated to the eigenvalue λ. If
H has M distinct eigenvalues {λ0, .., λM−1}, with M ≤ N , then H =

∑N−1
k=0 λkPλk

is the spectral decomposition of H. If M = N , then H is called non degenerate and
each Pλk

is a rank-one projector. When M < N we say that H is degenerate; then
some Pλk

have rank larger than 1.
S

1 denotes the unit circle equivalent to R modulo 2π. For J an interval of R, the
derivative of a differentiable function f : J → S

1 is a function from J to R. For all
n ∈ N, we denote Cn(J,K) the set of n times continuously differentiable functions
from J to K, where J is an interval of R and K is an interval of R or S

1. A multi-
component function is n times continuously differentiable, e.g. H(s) ∈ Cn(J,HN ),
if all its components belong to Cn(J,K). For f ∈ C1(J,K ⊆ R

n), we note
f ′(y) ∈ C0(J,Rn) the value at y ∈ J of the derivative of f . R>0 is the set of
strictly positive real numbers; we use analog notation with ≥, ≤ or <. N

b
a is the set

of integers from a to b, both boundaries included. When writing c0, . . . , cN−1 ∈ S
we mean that ck belongs to the set S for each k ∈ N

N-1
0 . Infimum and supremum

of a set are noted inf and sup respectively.
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4.2 Problem setting

4.2.1 Standard formulation

Consider a quantum system with wavefunction |ψ〉 ∈ C
N , 〈ψ|ψ〉 = 1, N ∈ N,

whose dynamics is governed by the Schrödinger equation (with ~ = 1)

i
d

dt
|ψ(t)〉 = (H0 + u(t)H1) |ψ(t)〉 . (4.1)

The Hamiltonians H0 ∈ HN and H1 ∈ HN respectively characterize free and
control-induced evolution, u(t) being a real scalar control. In the present chap-
ter, we consider a quantum ladder for which the Hamiltonians, in the eigenbasis
{|0〉, . . . , |N − 1〉} of H0, take the form

H0 =
N−1∑

k=0

k(ω0 + ∆k) |k〉〈k| (4.2)

H1 =

N−2∑

k=0

µk (|k〉〈k + 1| + |k + 1〉〈k|) , (4.3)

with ω0 ∈ R>0; ∆0, . . . ,∆N−1 ∈ R; and µ0, . . . , µN−2 ∈ R>0. We assume that
system (4.1) features two very different orders of magnitude,

||u(t)H1|| ≈ |∆k| ≪ ω0 for all k and all t . (4.4)

Physically, H0 is the free Hamiltonian of a quantum ladder with mean resonant
frequency ω0 and anharmonicities ∆k. We call eigenstates |0〉, . . . , |N−1〉 of H0 the
levels of the ladder. H1 is the dipole moment matrix and models couplings between
consecutive eigenstates; it is therefore tridiagonal with zero diagonal elements, and
can be taken real positive and symmetric without loss of generality1. Condition (4.4)
expresses that control amplitude is relatively weak and that the ladder is close to a
harmonic one, i.e. eigenvalues of H0 associated to consecutive eigenstates are close
to equidistant. This allows to exploit resonant transitions between all consecutive

1The orthonormal basis of eigenvectors of H0: {|k〉}k=0,··· ,N−1 is defined up to a phase on each

|k〉. This phase can be chosen arbitrarily. We assume that the system is a quantum ladder, i.e.

that H1 is tridiagonal in the basis {|k〉}k=0,··· ,N−1, hence it can be written:

H1 =

N−2∑

k=0

µk (|k〉〈k + 1|) + c.c ,

where the µks are, a-priori, complex numbers. Now, we may perform the change of frame |k〉 →

eiηk |k〉, where the ηks are real. In this new basis, H1 is written

H1 =

N−2∑

k=0

ei(ηk+1−ηk)µk (|k〉〈k + 1|) + c.c .

We arbitrarily pick η0 = 0, and for all k ≥ 0, ηk+1 = ηk − arg(µk). This cancels the phase of each

µk and H1 has only real positive matrix elements in this basis.
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eigenstates with a control of carrier frequency ω0. We consider a typical such control
with a small positive parameter ε,

u(t) = 2ℜ
(
eiω0tE(t)

)
, E(t) = A(εt)e

i
ε
θ(εt) (4.5)

with ‖ d
dt
E(t)‖ ≪ ω0 , (4.6)

where A(t) ∈ R and θ(t) ∈ S
1 for all t ∈ R≥0. The parameter ε governs the rate of

variations in the envelope A(εt) and frequency d
dt

1
εθ(εt) = θ′(εt) of E(t); we show in

the next sections how taking ε small allows us to apply adiabatic passage properties.
The slow but nonzero frequency variation is a key element for our control strategy.
Physically, control fields like (4.5) are obtained e.g. by “shaping” a single laser pulse
[Weiner 2000].

The rotating wave approximation (RWA), standard in quantum systems
modeling, consists in writing (4.1) with the change of variable |φ(t)〉 =(∑N−1

k=0 eikω0t |k〉〈k|
)

|ψ(t)〉 and neglecting fast oscillating terms, to keep only

those that vary at frequencies ≪ ω0. It can be justified by averaging theory
[Sanders 2007] thanks to inequalities (4.4),(4.6). Within this approximation, |φ〉
follows the dynamics

i
d

dt
|φ(t)〉 = (H̄I + H̃I(t)) |φ(t)〉 (4.7)

where

H̄I =

N−1∑

k=0

k∆k |k〉〈k|

H̃I(t) =

N−2∑

k=0

µk(E(t)|k〉〈k + 1| + E∗(t)|k + 1〉〈k|) .

4.2.2 Change of frame

Hamiltonian H̃I(t) contains a control field whose phase 1
εθ(εt) varies on timescales

of order one. The key idea to apply adiabatic passage to the N -level system is an
appropriate further change of frame on (4.7), such that all explicit time-dependence
in the resulting dynamics involves timescales of order ε. To this end, we extend the
change of frame given in [Allen 1987, Section 4.6] for the two-level case and define
|ξ(t)〉 =

∑N−1
k=0 ek

i
ε
θ(εt) |k〉〈k| |φ(t)〉. The two changes of frames come down to

writing the system dynamics in the frame imposed by the field phase ω0t+ θ(εt)/ε.
Dynamics (4.7) becomes

i
d

dt
|ξ(t)〉 = (HR(ω(εt)) +A(εt)H1) |ξ(t)〉 (4.8)

with ω = θ′, H1 given by (4.3) and

HR(v) =

N−1∑

k=0

k(∆k − v) |k〉〈k| for all v ∈ R . (4.9)
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Define the propagator U ε to be a time-dependent N by N unitary matrix such that
the solution of (4.8) is given by |ξ(t)〉 = U ε(t)|ξ(0)〉 for all t and for all |ξ(0)〉. Then
U ε follows the dynamics

iε
d

ds
U ε(s) = H(s)U ε(s) , U ε(0) = I (4.10)

with H(s) = HR(ω(s)) +A(s)H1 (4.11)

in the time scale s = εt. In the following, we study system (4.10) for s in the interval
[0, 1] and with A(s) and ω(s) as controls. Our goal is to achieve:

(a) Adiabatic approximate eigenstate permutations:

lim
ε→0+

max
k∈G

‖U ε(1)|k〉〈k|U ε(1)† − |σ(k)〉〈σ(k)| ‖ = 0 (4.12)

for given G ⊆ N
N-1
0 and given permutation σ of (0, . . . , N − 1).

(b) Ensemble control: a single control (A,ω) achieves such eigenstate permutation
on an ensemble of systems with different parameter values; the parameters are
the dipole moments (µ0, . . . , µN−2) and, in some cases, the anharmonicities
(∆0, . . . ,∆N−1).

(c) Robust control inputs: the above holds for any (A,ω) that satisfy a set of key
properties, and do not necessitate having a perfect shape for (A,ω).

Remark 4.1. Writing (4.12) in terms of |k〉〈k|, the projector on eigenspace {β |k〉 :

β ∈ C}, expresses that the goal is really population transfer, i.e. we allow U ε(1)|k〉 ≈
eiχk |σ(k)〉 with arbitrary phases χk ∈ S

1. Both frame changes — for RWA in section

4.2.1 and θ-dependent in section 4.2.2 — involve only phase changes on eigenstates.

Therefore, for all t and for all |k〉,

‖|ψ(t)〉〈ψ(t)| − |k〉〈k|‖ = ‖|φ(t)〉〈φ(t)| − |k〉〈k|‖
= ‖|ξ(t)〉〈ξ(t)| − |k〉〈k|‖ .

4.3 Robust ensemble transfer from |k〉 to |N − k − 1〉
In this section we consider a control protocol – chirped pulse – used by physicists to
drive a system from the lowest eigenspace, spanned by |0〉, to the highest eigenspace,
spanned by |N−1〉, of the free Hamiltonian H0 given in (4.2). In fact we prove that
a general (robust) class of control inputs transfers population from eigenstate |k〉 to
eigenstate |N − k − 1〉, for all k, on an ensemble of systems with different values of
parameters µ0, . . . , µN−2 (dipole moments) and ∆0, . . . ,∆N−1 (anharmonicities).

The key requirements on the control are (i) to use a sufficiently chirped pulse
— condition (b) in Theorem 4.1 — and (ii) to avoid all eigenvalue crossings —
condition (c) in Theorem 4.1.
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4.3.1 Transfer Theorem

For k = 0, . . . , N − 1, we denote the eigenvalues of HR(ω(s)) by λR
k (s) =

〈k|HR(ω(s))|k〉 = k(∆k − ω(s)).

Theorem 4.1. For given ∆ > 0, µmax > µmin > 0, consider S an ensemble of

systems of type (4.10) with µj ∈ [µmin, µmax] for all j ∈ N
N-2
0 and ∆j ∈ [−∆,∆]

for all j ∈ N
N-1
0 . Take controls A and ω with:

(a) A and ω ∈ C2([0, 1],R)

(b) ω(0) and ω(1) are such that, for all systems in S,

λR
0 (0) < . . . < λR

N−1(0) and (4.13)

λR
0 (1) > . . . > λR

N−1(1)

(c) A(0) = A(1) = 0 and A(s) 6= 0 for s ∈]0, 1[

Then ∃ a constant C > 0 such that, for all ε > 0,

sup
S

k∈NN-1
0

‖ U ε(1)|k〉〈k|U ε(1)† − |N − k − 1〉〈N − k − 1| ‖ ≤ Cε .

The proof of this theorem is given in section 4.6; we there actually replace the
simple condition (c) on A by a more general one: A(0) = A(1) = 0 and A(s) 6= 0

for all s ∈ Iω(S), where

Iω = {s ∈ [0, 1] : HR(ω(s)) is degenerate for some system ∈ S} . (4.14)

The argument is based on the facts that the system approximately follows eigen-
states of H(s) for small enough ε (adiabatic theorem), eigenvalues of HR are in-
verted between s = 0 and s = 1 thanks to ω(s) (chirping), and nonzero A(s) avoids
all crossings for eigenvalues of H(s) such that e.g. the initial highest-energy level
|N −1〉 connects to the final highest-energy level |0〉 (see Lemma 4.1 in section 4.6).
Theorem 4.1 implies that for a given control satisfying the assumptions, taking ε

small enough allows one to invert the state populations of a whole ensemble of sys-
tems featuring different parameter values. Note that however, the phases in the
resulting states depend on the parameter values. The control inputs only need
to satisfy a few weak conditions and are therefore robust to many perturbations.
These insensitivity properties of the adiabatic passage protocol have long been rec-
ognized by experimentalists. They commonly use the following type of control, see
e.g. [Vitanov 2001].

Example 1. A function ω satisfying the inequalities (4.13) is e.g. ω(s) = α(s− 1
2),

for a large enough positive α; such ω is said to perform a frequency sweep. Typically,

such inputs are obtained by a “chirped” Gaussian laser pulse, which takes the form

E(t) = E0

∫ +∞
−∞ e−ζ2τ2

eiκζ2
e−iζt dζ where κ 6= 0 characterizes chirping.
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Theorem 4.1 still holds if inequality (4.13) is replaced by

λR
0 (0) > . . . > λR

N−1(0) and λR
0 (1) < . . . < λR

N−1(1) ,

i.e. the direction of the frequency sweep in Example 1 can be inverted (taking a
large enough negative α). However, for a given system, choosing one inequality
over the other may allow to get a lower value for the constant hidden in the “order
of magnitudes” result. This brings a mathematical foundation to the experimental
observations made e.g. in [Maas 1999].

4.3.2 Simulations
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Figure 4.1: Control scheme transferring |k〉 to |N − k− 1〉. (a) control inputs A(s),
ω(s). (b) s-dependent eigenvalues of H(s) (thick lines) and of HR(ω(s)) (thin lines).
(c) population on level |3〉 for 10 systems whose parameters µ0, µ1, µ2 and ∆1,∆2,∆3

were randomly picked respectively in [1, 5] and [−0.4, 0.4], and all starting at the
initial state |0〉. (d) squared norm of the matrix elements of U ε(1), represented in
shading from white (value 0) to black (value 1).

We simulate system (4.10) with a control satisfying assumptions (a), (b) and
(c) of Theorem 4.1. We consider a 4-level quantum ladder (so N = 4). We take
ε = 10−2, ∆0, . . . ,∆3 ∈ [−∆,∆] = [−0.4, 0.4] and µ0, µ1, µ2 ∈ [µmin, µmax] = [1, 5].
The control is ω(s) = 8(s − 1

2) and A(s) = s(1 − s), represented on Fig.4.1.a. In
Fig.4.1.b, we show how the eigenvalues of H(s) (thick lines) avoid crossing For the
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illustrated random choice of detunings, the eigenvalues of HR(ω(s)) (thin lines) are
very close to concurrent between s = 0.5 and s = 0.6. This poses no problem for
the adiabatic transfer from |k〉 to |N − k− 1〉. The successful transfer is illustrated
on Fig.4.1.d, which shows the squared norm of the projection of U ε(1)|k〉 onto |p〉,
for all pairs (|k〉, |p〉) of eigenvectors of H0; this is equivalent to the squared norm
of element on row p, column k of matrix U ε(1) that acts by left-multiplication on
initial column-vectors, for U ε(1) expressed in basis (|0〉, . . . , |3〉). Fig. 4.1.c shows
ensemble control on ten systems with different random values of ∆0, . . . ,∆3 and
µ0, µ1, µ2.

4.4 Robust ensemble transfer from |l〉 to |p〉
In this section we propose a new robust control protocol to drive a system from the
eigenspace (of free Hamiltonian H0) spanned by |l〉 to the eigenspace spanned by |p〉,
for any given l and p in N

N-1
0 . The population transfer works on an ensemble of sys-

tems with different values of µ0, . . . , µN−2 (dipole moments), and for a general class
of inputs where zero-crossings of A(s) must coincide with degeneracies of HR(ω(s));
the latter depend on ω(s) and (some of the) anharmonicities ∆0, . . . ,∆N−1, which
must hence be fixed.

4.4.1 From |0〉 to any |p〉
For the sake of clarity, we start by giving sufficient conditions on A and ω for the
particular population transfer from |0〉 to arbitrary level |p〉. Section 4.4.2 generalizes
the result to arbitrary initial state |l〉. Consider the following assumptions:

(A1) S is an ensemble of systems of type (4.10) with µj ∈ [µmin, µmax] for all
j ∈ N

N-2
0 , for some given µmax > µmin > 0, and with given sequence of

detunings (∆0, . . . ,∆N−1), such that the set {k(∆k − v) : k ∈ N
N-1
0 } contains

at least N − 1 distinct values for any v ∈ R;

(A2) ω is analytic and d
dsω(s) > γ > 0 for all s ∈ [0, 1];

(A3) ω(0) and ω(1) are such that (4.13) holds.

For any m and n in N
N-1
0 with m < n, we note s(m,n) the unique time2 where

λR
m(s(m,n)) = λR

n (s(m,n)).
As all systems in S have the same sequence of detunings, they feature the same

eigenvalues λR
0 , . . . , λ

R
N−1 of HR and hence the same set of s(m,n). The set of

all s(m,n) equals Iω defined in (4.14), with dependence on particular system ∈ S
becoming irrelevant. The end of (A1) further implies that HR has at most one pair of
equal eigenvalues for any s ∈ [0, 1] i.e. (m,n) 6= (j, k) implies s(m,n) 6= s(j, k), hence
Iω contains N(N − 1)/2 distinct values. Further define Iω

0 = {s1, . . . , sN−1} ⊂ Iω

2If assumptions (A1) to (A3) hold, then the existence and uniqueness of s(m, n) is ensured for

all m and n > m: see Fig.4.2.b or Fig.4.3.c
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the N − 1 points where λR
0 (s) = λR

n (s) for some n ∈ N
N-1
1 , numbered such that

s1 < s2 < . . . < sN−1. Thus, for each sk ∈ Iω
0 there exists a unique n ∈ N

N-1
1 such

that sk = s(0, n).
The key requirements on the control to achieve population transfer from |0〉 to

|p〉 are (i) to use a sufficiently chirped pulse frequency (condition (A3)) and (ii) to
shape the pulse amplitude in order to appropriately provoke ((c) in Theorem 4.2)
or avoid ((b),(d) in Theorem 4.2) crossing of eigenvalues of H.

Theorem 4.2. Consider S an ensemble of systems satisfying (A1) with a control

ω satisfying (A2) and (A3). Take p ∈ {0, . . . , N − 1} and consider a control A with

the following properties:

(a) A is analytic over [0, 1] and A(0) = A(1) = 0.

(b) A(s) 6= 0 for all s ∈ Iω\Iω
0 .

(c) A(sk) = 0 for all sk ∈ Iω
0 with k ≤ N − p− 1.

(d) A(sk) 6= 0 for all sk ∈ Iω
0 with k ≥ N − p.

Then ∃ a constant C > 0 such that, for all ε > 0,

sup
S

‖ U ε(1)|0〉〈0|U ε(1)† − |p〉〈p| ‖ ≤ C
√
ε .

The proof, given in section 4.6, shows that at eigenvalue crossing points the
system adiabatically follows the eigenvector corresponding to the crossing branch.

4.4.2 From any |l〉 to any |p〉
Under assumptions (A1) to (A3), we denote Iω

k+(s) = {s(m,n) ∈ Iω : m = k, n >

k and s(m,n) > s} and Iω
k−(s) = {s(m,n) ∈ Iω : m < k, n = k and s(m,n) >

s}, for any k ∈ N
N-1
0 . Further let qk±(s) = inf(Iω

k±(s)) and define gk±(s) by
s(k, gk+(s)) = qk+(s) and s(gk−(s), k) = qk−(s) respectively. For p ≤ N − l − 1,
construct Iω

lp with the following algorithm.

1. d := 0; x := 0; k := l; Iω
lp := ∅;

2. while d < N − l − p− 1 do

3. while [ Iω
k−(x) 6= ∅ and qk−(x) < qk+(x) ] do

4. k := gk−(x); x := qk−(x);

5. end while

6. Iω
lp := Iω

lp ∪ {qk+(x)}; d := d+ 1; x := qk+(x);

7. end while
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The algorithm is verified to always successfully complete3. For p ≥ N − l − 1, we
can define Iω

lp with a similar algorithm but where ‘<’ is changed to ‘>’ on line 2
and indices k−, k+ are switched. Then Iω

lp contains |N − l − p− 1| elements.

Corollary 4.1. Consider S an ensemble of systems satisfying (A1) with a control

ω satisfying (A2) and (A3). Take l, p in N
N-1
0 and consider a control A with the

following properties:

(a) A is analytic over [0, 1] and A(0) = A(1) = 0.

(b) A(s) = 0 for all s ∈ Iω
lp.

(c) A(s) 6= 0 for all s ∈ Iω \ Iω
lp.

Then ∃ a constant C > 0 such that, for all ε > 0,

sup
S

‖ U ε(1)|l〉〈l|U ε(1)† − |p〉〈p| ‖ ≤ C
√
ε .

Assumption (A1) ensures that each eigenvalue crossing / anti-crossing can be
addressed individually. This ensures that any transfer can be implemented in any
situation, but it is in general not necessary for a given system and transfer, as
(simultaneous) crossings of some eigenvalue branches are irrelevant. The control
proposed for Theorem 4.2 or Corollary 4.1 is just one amongst many possibilities
of “eigenvalue crossing designs”. Indeed, depending on (l, p) and on the particular
arrangement of the s(m,n), one can find other subsets Jlp ⊂ Iω such that taking
A(s) = 0 if and only if s ∈ Jlp, permutes the eigenvalues in such a way that
λl(1) = λR

p (1). The controls that we propose are optimal in the sense that they
require a minimal number of pairwise crossings, that is of nullings of A at accurate
points. Variant annihilation subsets Jlp may be useful (i) to avoid some crossing
points s(m,n) or eigenvalue branches (e.g. because corresponding ∆m or ∆n is
poorly known, or because s(m,n) is close to some other point in Iω), (ii) to
optimize adiabatic convergence as a function of ε, or (iii) to simultaneously perform
population transfers between several eigenstates, as we do in section 4.5.

Another approach [Thomas 2005] for transferring |l〉 to |p〉 is to use A(s) Gaus-
sian, i.e. without any nulls, but reduce ω(s) to a specific range. Indeed, un-
der the above assumptions, it is possible to choose ωmin and ωmax such that
l(∆l − v̄) = p(∆p − v̄) for some v̄ ∈ [ωmin, ωmax] and HR(v) is non-degenerate
for all v ∈ [ωmin, ωmax] \ {v̄}. Then taking ω(s) monotone between ωmin and
ωmax just induces one avoided crossing that exchanges |l〉 and |p〉. Pictorially, this
is like selecting a particular narrow vertical slice on Fig.4.1.b. Depending on the
specific system under study and whether it is experimentally easier to precisely mod-
ulate the amplitude or the phase of a field, one method may be more suitable than

3Indeed by construction, the cardinality of Iω
k+(x) equals N−l−d−1 (except during the update

on line 6) and the cardinality of Iω
k−(x) decreases by one each time line 4 is applied; thus it is

impossible to keep applying line 4 infinitely, and line 6 is always well-defined (that is Iω
k+(x) 6= ∅)

for d < N − l − 1.
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the other. A main advantage of our method is that, unlike the method proposed in
[Thomas 2005], it can be extended to achieve any permutation of eigenstates as is
shown in section 4.5.

4.4.3 Simulations
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Figure 4.2: Control scheme transferring |0〉 to |2〉; subplots analogue to Fig.4.1,
except that ∆1,∆2,∆3 remain fixed for (c). A(s) vanishes at s = 0.25 so that λ0

and λ1 cross instead of avoiding crossing.

As in section 4.3.2 we simulate (4.10) for a 4-level quantum ladder (so N = 4)
with µ0, µ1, µ2 ∈ [µmin, µmax] = [1, 5]. We now take ε = 10−3 and in accordance
with the statement of Theorem 4.2 we fix the anharmonicities, taking ∆1 = −1,
∆2 = 0.3, ∆3 = 0 (the value of ∆0, multiplied by k = 0, is irrelevant). We
target in particular a transfer from |0〉 to |2〉. The algorithm of section 4.4.2
reduces to the simple case of Theorem 4.2, requesting a single zero of A(s) at
s = inf{s(0, 1), s(0, 2), s(0, 3)} = s(0, 1) = 0.25 in addition to A(0) = A(1) = 0.
We take A(s) = s(1 − s)(s − 0.25) and ω(s) = 4(s − 1

2), represented on Fig.4.2.a.
In Fig.4.2.b, we show how the eigenvalues λk(s) of H(s) cross or not (thick lines);
the eigenvalues of HR(ω(s)) (thin lines) define points s(m,n) for our control design.
Fig.4.2.d confirms achievement of the intended result by showing the squared norm of
components of matrix U ε(1) in basis (|0〉, . . . , |3〉): we indeed have |〈p|U ε(1)|k〉|2 ≈ 1

for (p, k) = (2, 0) (other values incidental). Fig.4.2.c illustrates ensemble control on
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ten systems with different random values of µ0, µ1, µ2. Since for this particular case
the control only exploits a precise crossing point s(0, 1) = 0.25, we might actually
allow ensembles of systems with different ∆2,∆3.

4.5 Robust ensemble permutation of populations

In this section we describe the most general result of the chapter, adiabatically trans-
ferring (|0〉〈0|, . . . , |N−1〉〈N−1|) to (|σ(0)〉〈σ(0)|, . . . , |σ(N−1)〉〈σ(N−1)|), where
σ is any permutation of N

N-1
0 . As in section 4.4, the population permutation works

on an ensemble of systems with different values of µ0, . . . , µN−2 (dipole moments),
and for a general class of inputs where zero-crossings of A(s) must coincide with
degeneracies of HR(ω(s)); the latter depend on ω(s) and require anharmonicities
∆0, . . . ,∆N−1 to be fixed and known. We prove existence of an appropriate control
by recurrence on N . In fact this recurrence method can be used to design A(s), as
we illustrate in section 4.5.2.

4.5.1 Permutation theorem

Theorem 4.3. Consider S an ensemble of systems satisfying (A1) with a control ω

satisfying (A2) and (A3). Take σ to be any permutation of N
N-1
0 . Then there exists

a subset IA ⊆ Iω for which, taking control A to satisfy

(a) A analytic over [0, 1] and A(0) = A(1) = 0,

(b) A(s) = 0 for all s ∈ IA,

(c) A(s) 6= 0 for all s ∈ Iω \ IA,

implies: ∃ a constant C > 0 such that, for all ε > 0,

sup
S

k∈NN-1
0

‖ U ε(1)|k〉〈k|U ε(1)† − |σ(k)〉〈σ(k)| ‖ ≤ C
√
ε .

Since the proof of this Theorem is constructive and necessary for the under-
standing of the example below, we present it here.

Proof 4.1 (of Theorem 4.3). The formal arguments (sup, adiabatic propagator) are

presented in detail in the proof of Theorem 4.1 in section 4.6. We focus on the

construction of the control A(s) by following analytic eigenvalue branches of H(s).

The property is obvious for N = 2: either (σ(0), σ(1)) = (1, 0), which follows

Theorem 4.1 just requiring A(s(0, 1)) 6= 0; or (σ(0), σ(1)) = (0, 1), which follows

Theorem 4.2 transferring |0〉 to |p〉 = |0〉 with one crossing4, i.e. just requiring

A(s(0, 1)) = 0.

4Indeed, {Pλ0(1),Pλ1(1)} = {|0〉〈0|, |1〉〈1|} then automatically implies transferring |1〉〈1| to

Pλ1(1) = |1〉〈1|.
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Assume that we can achieve any permutation of N
K-1
0 for N = K, and we are

given a permutation σ of N
K
0 for N = K + 1 where σ(l) = K and σ(K) = p.

• If l = p = K, i.e. σ(K) = K, then first build the remaining permutation on levels

|0〉, . . . , |K − 1〉 by neglecting level |K〉. This uses the result for N = K; it just

requires A(s) = 0 for some s = s(m,n) and A(s) 6= 0 for some other s = s(m,n),

with m,n < K. Now take a particular such A(s) where in addition, A(s) = 0 for all

s ∈ {s(m,K) : m ∈ N
K-1
0 }. Then λK(s), starting at λK(0) = λR

K(0), exactly follows

the same crossings as λR
K(s) to end up as λK(1) = λR

K(1); the other levels remain

unperturbed, so σ is achieved.

• If l 6= K 6= p, then first construct A(s) by applying the result of the preceding point

to σ, defined by

σ(l) = p ; σ(K) = K ; σ(k) = σ(k) for all k 6∈ {l,K} .

A(s) performs the target permutation, except that K remains on K and l goes to p.

From (4.13) eigenvalue branch λK(s) necessarily crosses, at some s ∈ {s(m,K) :

m ∈ N
K-1
0 }, the analytic eigenvalue branch that starts at λl(0) = λR

l (0) and ends at

λl(1) = λR
p (0). Define A(s) to have the same zeros as A(s) except that A(s) 6= 0.

This just transforms the crossing at s into an anti-crossing, such that the analytic

branch coming from λK(0) (resp. λl(0)) now connects to the analytic branch going

to λp(1) (resp. λK(1)). Thus A(s) achieves the target permutation σ. �

Each “eigenvalue crossing design” choice IA yields a particular permutation σIA
.

For N > 2, the number 2N(N−1)/2 of possible IA (i.e. subsets of Iω) is strictly larger
than the number N ! of permutations. Thus there are still several IA that yield the
same σ. Unlike in section 4.4, building A(s) as in the proof of Theorem 4.3 does
not necessarily yield a minimal cardinality of IA for given σ.

4.5.2 Example and simulations

We first illustrate the control design by recurrence based on the proof of Theorem
4.3. Consider target permutation σ(0, 1, 2, 3) = (2, 0, 3, 1). First we reduce it down
to an elementary permutation. Start with K = N − 1 = 3 and note (l, p) = (2, 1)

because σ(2) = K and σ(K) = 1; we thus define σ(0, 1, l = 2, 3) = (2, 0, p = 1, 3)

and impose A(s) = 0 for s ∈ {s(0, 3), s(1, 3), s(2, 3)} reducing the permutation to
0, 1, 2. Then we take K = N − 1 = 2 and note (l, p) = (0, 1) because σ(0) = K and
σ(K) = 1; we thus define σ(l = 0, 1, 2, 3) = σ(p = 1, 0, 2, 3) and impose A(s) = 0

for s ∈ {s(0, 2), s(1, 2)} reducing the permutation to 0, 1. To implement σ we need
A(s(0, 1)) 6= 0. Now we progressively move up to permutations on more levels,
removing one at a time from our objects. The reader is encouraged to follow
crossings/anti-crossings under the different controls by referring to Fig.4.3.c, corre-
sponding to our chirping choice ω(s) = 4(s− 1

2). Under A the analytic branch from
|l〉 = |0〉 to |p〉 = |1〉 meets the branch staying on |K〉 = |2〉 at s = s(1, 2). We there-
fore impose A(s(1, 2)) 6= 0 unlike for A, and for the rest copy the requirements of A:
A(s(0, 1)) 6= 0, A(s(0, 2)) = 0. Now under A the branch from |l〉 = |2〉 to |p〉 = |1〉
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Figure 4.3: Control scheme generating permutation σ(0, 1, 2, 3) = (2, 0, 3, 1) and
simulation result. Subplots (a),(b),(d) analogue to Fig.4.1). Subplot (c) shows the
eigenvalues of HR(ω(s)), used to design IA (see text). The points s ∈ IA where
A(s) = 0 are marked on (a).

crosses the branch staying on |K〉 = |3〉 at s = s(2, 3). We therefore get requirements
for our actual control A by imposing A(s(2, 3)) 6= 0 unlike for A, for the rest copying
the requirements of A, i.e. A(s) = 0 for s ∈ {s(0, 3), s(1, 3), s(0, 2)} and A(s) 6= 0 for
s ∈ {s(0, 1), s(1, 2)}. To satisfy these requirements, we take the polynomial control
A(s) = s(1−s)(s−s(0, 3))(s−s(1, 3))(s−s(0, 2)), represented on Fig.4.3.a. Fig.4.3.b
shows how the eigenvalues of H(s) cross and anti-cross depending on whether A(s)

vanishes or not. The squared norm components of U ε(1) resulting from a simulation
of (4.10) with this control and ε = 10−3 are shown on Fig.4.3.d on a white-to-black
scale, confirming achievement of permutation σ(0, 1, 2, 3) = (2, 0, 3, 1).

Fig.4.4 shows the same squared norm components of U ε(1) in gray-shades for
24 cases, corresponding to different control inputs A(s) designed for all 24 possible
permutations of the set (0, 1, 2, 3). The controls A(s) are built as the product of
(i) a polynomial vanishing on IA ∪ {0, 1} and only there, and (ii) a set of functions
(1 + g(s − s(m,n))), with g(s − s(m,n)) Gaussians centered on all s ∈ Iω \ IA;
the role of the latter is to amplify A(s) in the vicinity of intended “anti-crossings”,
improving convergence of the adiabatic limit as a function of ε. Fig.4.4 corresponds
to the choice ε = 10−3.
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1

0

Figure 4.4: Simulation results of (4.10) for 24 different controls A(s) following The-
orem 4.3 to achieve each one of the 24 permutations of (0, 1, 2, 3) with adiabatic
passage. Shading represents squared norm of elements of matrix U ε(1) expressed
in basis |0〉, . . . , |3〉, from white (value 0) to black (value 1). In other words, each
subplot may be read as a 4 × 4 matrix where the black patches are ones and the
white patches are zeros; gray patches indicate intermediate values, reflecting that
the unitary propagator obtained by integrating (4.10) is not exactly a permutation
matrix for the finite ε = 10−3.

4.6 Proofs

In this section we give the proofs of all the formal results presented in previous
sections.

4.6.1 Proof of Theorem 4.1

We start the proof by recalling the following result [Nagao 1993].

Lemma 4.1. Let DN be a real tridiagonal and symmetric N ×N matrix defined by

DN =
N−1∑

k=0

ak|k〉〈k| +
N−2∑

k=0

ck(|k〉〈k + 1| + |k + 1〉〈k|) (4.15)

in some orthonormal basis (|0〉, . . . , |N − 1〉). If ck 6= 0 for all k ∈ N
N-2
0 , then DN

is non degenerate.

Proof 4.2 (of Lemma 4.1). Denote Qn the characteristic polynomial of Dn, which

is defined as (4.15) with N replaced by n, for all n ∈ {1, . . . , N}. The sequence of

polynomials (Qn)n verifies the following recurrence relation: for n ≥ 2,

Qn(x) = (x− an−1)Qn−1(x) − (cn−2)
2Qn−2(x) , (4.16)
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with Q0(x) = 1 and Q1(x) = x− a0. According to Favard’s Theorem [Favard 1935],

a sequence satisfying (4.16) where (cn−2)
2 > 0 for all n, is a sequence of orthogonal

polynomials. Furthermore, from [Szegö 1967, Theorem 3.3.1], every polynomial Qn

in a sequence of orthogonal polynomials has n real and distinct zeros; this is in

particular true for n = N , therefore DN is non degenerate. �

Proof 4.3 (of Theorem 4.1). We prove the result for any single system in S and

conclude that it remains true for the sup over S. Indeed, the application

(µ0, . . . , µN−2,∆0, . . . ,∆N−1)

→ ‖ U ε(1)|k〉〈k|U ε(1)† − |N − k − 1〉〈N − k − 1| ‖

reaches its sup over the allowed compact space since the state of a (sufficiently reg-

ular) dynamical system at a finite time depends continuously on system parameters

(see e.g. [Khalil 2001, theorem 3.5]). The proof for one system is in two steps: first

we prove that the hypotheses of the adiabatic theorem with gap condition are veri-

fied, then we apply the theorem to compute the image at s = 1 of the initial projector

|k〉〈k| in the adiabatic approximation.

Step 1: By hypothesis (a), we have H(s) ∈ C2([0, 1],HN ) and therefore con-

tinuous over [0, 1]. From [Kato 1966, section II.5.2], it is then possible to find N

continuous functions λ0(s), . . . , λN−1(s) such that λ0(s) ≤ . . . ≤ λN−1(s) for all

s ∈ [0, 1] are the eigenvalues of H(s). In terms of associated eigenspace projections,

note that {Pλk(s) : k ∈ N
N-1
0 } = {|k〉〈k| : k ∈ N

N-1
0 } every time A(s) = 0, by the

uniqueness of the spectral decomposition of a non degenerate matrix. However, the

pairwise correspondence depends on the value of ω(s). In particular, by hypotheses

(b) and (c),

Pλk(0) = |k〉〈k| and Pλk(1) = |N − k − 1〉〈N − k − 1| (4.17)

for all k. For a given s ∈ [0, 1],

• either A(s) 6= 0, then H(s) has N distinct eigenvalues according to Lemma 4.1;

• or A(s) = 0, then H(s) = HR(ω(s)) and it must have N distinct eigenvalues by

hypothesis (c). Hence,

λ0(s) < .. < λN−1(s) for all s ∈ [0, 1] . (4.18)

Then by continuity over the compact interval [0, 1], there exists δ > 0 such that

λk(s)+ δ < λk+1(s) for all k ∈ N
N-2
0 and for all s ∈ [0, 1]: each λk(s) is at all times

surrounded by a “spectral gap” of amplitude δ in which there is no other eigenvalue.

We can therefore apply the adiabatic theorem with gap condition (see [Teufel 2003,

Theorem 2.2]) to eigenvalue λk(s), for any particular k ∈ N
N-1
0 , as is done in the

following.

Step 2: The adiabatic theorem ensures that Pλk(s) ∈ C2([0, 1],HN ). Define the

“adiabatic Hamiltonian”

Ha,k(s) = H(s) − iεPλk(s)
d

ds
Pλk(s) − iεP⊥

λk(s)

d

ds
P⊥

λk(s) (4.19)
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where P⊥
λk(s) = I − Pλk(s), and the “adiabatic propagator” U ε

a,k which satisfies, for

all s ∈ [0, 1],

iε
d

ds
U ε

a,k(s) = Ha,k(s)U
ε
a,k(s) with U ε

a,k(0) = I . (4.20)

One verifies that this construction ensures

U ε
a,k(s)Pλk(0)U

ε
a,k(s)

† = Pλk(s) (4.21)

for all s ∈ [0, 1]. The adiabatic theorem states the existence of a constant C1 > 0

such that

||U ε(s) − U ε
a,k(s)|| ≤ C1ε for all s ∈ [0, 1] ,

in particular for s = 1. This implies

‖U ε(1)|k〉〈k|U ε(1)† − U ε
a,k(1)|k〉〈k|U ε

a,k(1)†‖
≤ ‖(U ε(1) − U ε

a,k(1))|k〉〈k|U ε(1)†‖
+ ‖U ε

a,k(1)|k〉〈k|(U ε(1) − U ε
a,k(1))†‖

≤ ‖U ε(1) − U ε
a,k(1)‖ ‖ |k〉〈k| ‖ (‖U ε

a,k(1)‖ + ‖U ε(1)‖)
≤ C1ε · 1 · 2

√
N

since ‖U‖ =
√

Tr (U †U) =
√

Tr (I) for any unitary matrix U . Combining this with

(4.17),(4.21) yields the result, where C = 2C1

√
N . �

4.6.2 Proof of Theorem 4.2 and corollary 4.1

We start by proving a Lemma about the behavior of time-dependent eigenvalues
crossing each other.

Lemma 4.2. Assume that H(s) as defined in (4.11) depends analytically on the

real parameter s on an interval I ⊂ R, with d
dsω(s) > γ > 0 for all s ∈ I. Suppose

that HR(ω(s)) is non degenerate on I except for a simple degeneracy at s̄ ∈ I,

i.e. HR(ω(s̄)) has N − 1 distinct eigenvalues and HR(ω(s)) has N distinct eigen-

values for s ∈ I \ {s̄}. If A(s̄) = 0, then:

(a) There exist N unique functions λ0, . . . , λN−1 analytic over I, with λ0(s) <

. . . < λN−1(s) for all s < s̄, and such that {λ0(s), . . . , λN−1(s)} are the eigen-

values of H(s) for all s ∈ I.

(b) Let k be such that λk(s̄) = λk+1(s̄). Then for all s > s̄ we have

λ0(s) < . . . < λk+1(s) < λk(s) < . . . < λN−1(s) .

Proof 4.4 (of Lemma 4.2). Point (a) is a direct consequence of [Kato 1966, The-

orem 6.1]. The order of the analytic eigenvalues is obviously preserved over time

intervals where H(s) is non degenerate; by Lemma 4.1, these intervals are {s < s̄}
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and {s > s̄}. The issue is what happens at s = s̄. In the following, we show that

λ′k(s̄) 6= λ′k+1(s̄). Since the eigenvalues are analytic and λk(s̄) = λk+1(s̄), a Taylor

expansion then yields the conclusion of (b).

We lead calculations similar to those of [Messiah 1958, section XVI.II.8]. Ac-

cording to [Kato 1966, section II.6.2], since H is analytic over I and H(s) ∈ HN for

all s ∈ I, there exist rank one orthogonal spectral projections Pλ0(s), . . . ,PλN−1(s)

which are analytic over I. Computing the derivative of

H(s)Pλk(s) = λk(s)Pλk(s) (4.22)

with respect to s at s = s̄, we get

H′(s̄)Pλk(s̄) + H(s̄)P′
λk(s̄) = λ′k(s̄)Pλk(s̄) + λk(s̄)P

′
λk(s̄) .

Multiplying the last equation by (Pλk(s̄)+Pλk+1(s̄)) from the left, using (4.22) and the

fact that Pλk
and Pλk+1

are two orthogonal projectors (P2
λk

= Pλk
, P2

λk+1
= Pλk+1

and Pλk
Pλk+1

= 0), we get (Pλk(s̄) + Pλk+1(s̄))H
′(s̄)Pλk(s̄) = λ′k(s̄)Pλk(s̄). Noting

that Pλk(s̄) = (Pλk(s̄) + Pλk+1(s̄))Pλk(s̄), we get

(Pλk(s̄) + Pλk+1(s̄))H
′(s̄)(Pλk(s̄) + Pλk+1(s̄))Pλk(s̄)

= λ′k(s̄)Pλk(s̄) .

The analog holds with k and k+1 switched. This implies that {λ′k(s̄), λ′k+1(s̄)} are the

eigenvalues of the 2× 2 matrix obtained by restricting operator H′(s̄) to the column

space of (Pλk(s̄) + Pλk+1(s̄)). Since A(s̄) = 0 we have H(s̄) = HR(ω(s̄)). Denoting

|m〉 and |n〉 the two eigenvectors of HR corresponding to eigenvalue λk(s̄) = λk+1(s̄),

we have Pλk(s̄) + Pλk+1(s̄) = |m〉〈m| + |n〉〈n|. Defining

(
H′(s̄)

)
mn

=

( 〈m|H′(s̄)|m〉 〈m|H′(s̄)|n〉
〈n|H′(s̄)|m〉 〈n|H′(s̄)|n〉

)

and computing

H′(s̄) = ω′(s̄)
d

dv
HR(v) |v=ω(s̄) +A′(s̄)H1 , we get

(
H′(s̄)

)
mn

=

( −mω′(s̄) A′(s̄)µmn

A′(s̄)µmn −nω′(s̄)

)
(4.23)

where µmn = 〈m|H1|n〉. Thus µmn = 0 if |m− n| > 1 and µmn 6= 0 if |m− n| = 1.

In both cases, since ω′(s̄) 6= 0 and m 6= n, the matrix in (4.23) has 2 real and distinct

eigenvalues, corresponding to λ′k(s̄) 6= λ′k+1(s̄). �

Proof 4.5 (of Theorem 4.2). Taking A(s) = 0 at some points where HR is degen-

erate means that eigenvalues of H(s) will not remain distinct at those points. We

therefore use the adiabatic theorem without spectral gap condition, see [Teufel 2003,

corollary 2.5]. Like for Theorem 4.1, we prove the result for one system ∈ S and

conclude the result for the sup. The proof is again in two steps. First we state how
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the adiabatic theorem can be applied; then we compute the image at s = 1 of initial

state |k〉〈k| in adiabatic approximation.

Step 1: Since H is Hermitian, analytic over [0, 1] and simply degener-

ate at isolated points, we can apply Lemma 4.2(a) repeatedly to conclude that

there is a unique set of functions λ0, . . . , λN−1 analytic over I, with λ0(0) <

. . . < λN−1(0), and such that {λ0(s), . . . , λN−1(s)} are the eigenvalues of H(s)

for all s ∈ I. Moreover, according to [Kato 1966, section II.6.2], there is a

unique set of associated rank-one projectors Pλ0(s), . . . ,PλN−1(s) which are ana-

lytic over I. In particular, given assumption (A3) and as H(s) = HR(ω(s))

for s ∈ {0, 1}, we have (λk(0),Pλk(0)) = (λR
k (0), |k〉〈k|) for all k and

{(λ0(1),Pλ0(1)), . . . , (λN−1(1),PλN−1(1))} = {(λR
0 (1), |0〉〈0|), . . . , (λR

N−1(1), |N −
1〉〈N − 1|)}. Note however that, unlike for Theorem 4.1, the pairwise correspon-

dence between elements of the latter sets is not obvious a priori, because here

eigenvalues of H(s) do not remain distinct on [0, 1]. A second difficulty is to

assess how the system’s state evolves when eigenvalues become degenerate. This

second part is answered by the adiabatic theorem witout gap condition. Intro-

duce, as in Theorem 4.1, the adiabatic Hamiltonian Ha,0 and adiabatic propaga-

tor U ε
a,0, given by (4.19) and (4.20) respectively with k = 0. Then by construction

U ε
a,0(1)|0〉〈0|U ε

a,0(1)† = U ε
a,0(1)Pλ0(0)U

ε
a,0(1)† = Pλ0(1). The adiabatic theorem states

that ∃C such that

‖U ε(s)|k〉〈k|U ε(s)† − U ε
a,0(s)|k〉〈k|U ε

a,0(s)
† ‖ ≤ C

√
ε (4.24)

for all |k〉 ∈ {|0〉, . . . , |N − 1〉}. Thus the actual system adiabatically follows the

analytic Pλk(s), from Pλ0(0) = |0〉〈0| up to Pλ0(1) in particular.

Step 2: We now compute Pλ0(1). Define a small interval Imn = [τ o
mn, τ

f
mn] ⊂

[0, 1] around each point s(m,n) such that all Imn are disjoint. If A(s(m,n)) 6= 0,

then as shown in Theorem 4.1, H(s) is non degenerate for all s ∈ Imn, such that

for any j, k with λj(τ
o
mn) < λk(τ

o
mn) we have λj(τ

f
mn) < λk(τ

f
mn). On the other

hand, if we take A(s(m,n)) = 0, then two eigenvalues intersect at s = s(m,n) and

the analytic branches cross so that their order changes as stated in Lemma 4.2(b).

To avoid separate treatment of limit cases, we define s0 = 0 and sN = 1. Now by

construction:

• λj(0) = λR
j (0) for all j ∈ N

N-1
0 .

• For k ∈ N
N
1 , λR

0 (s) is the kth smallest eigenvalue of HR(ω(s)) when s ∈
(sk−1, sk).

• As long as A(s0) = . . . = A(sk−1) = 0, that is for k ≤ N −p, λ0(s) follows the

same crossings as λR
0 (s); therefore it is the kth smallest eigenvalue of H(s)

when s ∈ (sk−1, sk).

• For s > sN−p−1, we have A(s) 6= 0 so the λk(s) keep the same order, i.e. λ0(s)

remains the (N − p)th smallest eigenvalue of H(s).
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• In particular for s = 1, from (4.13) we identify λ0(1) = λR
N−(N−p)(1) = λR

p (1),

such that Pλ0(1) = |p〉〈p| by uniqueness of the spectral decomposition. �

Remark 4.2. To apply the adiabatic Theorem [Teufel 2003, corollary 2.5], it is

sufficient to have Pλ0(s) ∈ C2([0, 1],HN ). However, a condition like H(s) ∈
C2([0, 1],HN ) does not ensure the existence of Pλ0(s), . . . ,PλN−1(s) ∈ C2([0, 1],HN ),

see [Kato 1966, example 5.3]. It is only for analytic H(s) that we can guarantee

analytic Pλ0(s), which then in particular belongs to C2([0, 1],HN ).

Proof 4.6 (of corollary 4.1). The arguments are the same as in the proof

of Theorem 4.2. We concentrate on tracking the analytic eigenvalue branches

λ0(s), . . . , λN−1(s) of H(s) to establish their pairwise correspondence with eigenval-

ues λR
0 (s), . . . , λR

N−1(s) of HR(ω(s)) at s = 1. We prove the result for p < N− l−1;

the case p > N − l− 1 is treated similarly, while p = N − l− 1, implying Iω
lp = ∅, is

the case covered by Theorem 4.1. Denote s1 < . . . < sN−l−p−1 the elements of Iω
lp,

and s0 = 0, sN−l−p = 1.

The algorithm constructs Iω
lp such that the (l + d)th and (l + d + 1)th smallest

eigenvalues of HR(ω(s)) become equal at sd, for each d ∈ N
N-l-p-1
1 . Taking A(sd) =

0 implies H(sd) = HR(ω(sd)) so the same eigenvalue equalities hold for H(s) at

s = sd. Moreover from point (c) and Lemma 4.1 all eigenvalues of H(s) remain

distinct for s 6∈ Iω
lp. Therefore the analytic eigenvalue branch λl(s), starting with

λl(0) = λR
l (0), exactly evolves through crossings at s1, . . . , sN−l−p−1 such that it is

the (l + d+ 1)th smallest eigenvalue of H(s) for s ∈ (sd, sd+1). In particular, λl(1)

is the (N − p)th smallest eigenvalue of H(1) = HR(ω(1)), which from (A2) means

λl(1) = λR
p (1) such that Pλl(1) = |p〉〈p|. �

4.7 Summary and discussion

This chapter shows how adiabatic passage can be applied to a quantum ladder sys-
tem to achieve permutations of populations on the ladder levels with a single laser
pulse. We explicitly propose control inputs whose precise functional dependence
on time is not important as long as they satisfy a few key features, most notably
vanishing or not at specific times. This makes our strategy robust against multi-
plicative input disturbances. Another important advantage of our adiabatic strategy
is its ability to simultaneously control an ensemble of systems with different dipole
moment values.

Theorems in the present chapter provide a proof of concept in idealized situa-
tions. Several practical issues deserve a more quantitative investigation in future
work. Probably the most important aspect is to characterize precision of the adia-
batic approximation as a function of ε. Indeed, for small ε the actual control time
t = s

ε gets long; this further implies that, at constant power A2(s), the energy given
to the system gets large. Beyond performance requirements, this also invalidates our
model at infinitesimal ε (e.g. regarding finite lifetime of the levels). Although or-
ders of magnitude are given for the adiabatic limit, variations in the proportionality
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constant can lead to significant discrepancies. Investigating them, as well as “opti-
mal paths” minimizing non-adiabatic losses [Guérin 2002], could yield guidelines for
choosing amongst several possible “eigenvalue crossing designs”. Both precision of
adiabatic approximation and modeling assumptions (e.g. RWA) also limit the range
of “ensemble” properties in practice.

It may appear surprising at first sight that two different evolutions are selected
just by taking A(s) = 0 or A(s) 6= 0 at a precise instant s. The elucidation is
that this dichotomy only holds at the limit ε → 0+. For a given ε, the larger |A|
in the neighborhood of s = s, the more the evolution deviates from the A(s) = 0

case. Nevertheless, for small ε, the relevant neighborhood around s for selecting
population transfer or not indeed gets small. Our scheme might therefore allow
selective population permutation as a function of {∆0, . . . ,∆N−1} on an ensemble
of systems, in a scheme resembling resonance selection. Take A(s) = 0 for s ∈ Iω of
a nominal system. If a system has detunings very close to nominal, then two of its
λR

k (s) cross at a point s̃ close to s, where A(s̃) ≈ 0, such that for moderate ε its final
state will be close to the adiabatic result of the nominal system with A(s) = 0. If
a system has detunings more different from nominal, then all its crossings of λR

k (s)

occur at points where A significantly differs from zero, and with moderate ε its final
state will be closer to the adiabatic result of the nominal system with A(s) 6= 0. A
quantitative statement of this idea requires further investigation.
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Nous analysons une méthode de stabilisation d’états non classiques dans une

cavité par dissipation contrôlée, initialement proposée par Sarlette et al [Phys. Rev.

Lett. 107, 010402 (2011)]. Nous généralisons la méthode pour la protection d’états

intriqués de deux modes de la cavité. Le réservoir qui induit la dissipation est com-

posé d’atomes qui interagissent les uns après les autres avec la cavité. Cette in-

teraction est d’abord dispersive, puis résonnante, puis dispersive à nouveau. Nous

étudions en détail la compétition entre la décohérence et l’effet de cette dissipation

contrôlée induite par le réservoir d’atomes. Nous montrons que cette méthode est

robuste aux imperfections expérimentales, et qu’elle pourrait être implémentée au

laboratoire dans un futur proche, soit dans le domaine de l’électrodynamique quan-

tique en cavité, soit dans celui des circuits quantiques. Ce chapitre est basé sur un

papier écrit en collaboration avec Alain Sarlette, Michel Brune, Jean-Michel Rai-

mond et Pierre Rouchon. Il a été récemment accepté pour publication dans Physical

Review A [Sarlette 2012]. Ici, nous détaillons certains calculs et dans la section 5.2,

nous démontrons un résultat de convergence en dimension infinie. Ma contribution
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principale à ce projet a été la stabilisation d’états intriqués de deux modes de la

cavité (section 5.1.6), ainsi que la preuve de convergence (section 5.2).

We analyze a quantum reservoir engineering method, originally introduced by
Sarlette et al [Phys. Rev. Lett. 107, 010402 (2011)], for the stabilization of
non-classical field states in high quality cavities. We generalize the method to the
protection of mesoscopic entangled field states shared by two non-degenerate field
modes. The reservoir is made up of a stream of atoms undergoing successive compos-
ite interactions with the cavity, each combining resonant with non-resonant parts.
We gain detailed insight into the competition between the engineered reservoir and
decoherence. We show that the operation is quite insensitive to experimental im-
perfections and that it could thus be implemented in the near future, either in the
context of microwave Cavity Quantum Electrodynamics or in that of circuit-QED.
This chapter is built on a paper we wrote in collaboration with Alain Sarlette, Michel
Brune, Jean-Michel Raimond and Pierre Rouchon. It was recently accepted for pub-
lication in Physical Review A [Sarlette 2012]. Here, extra details and computations
are given. Moreover, in section 5.2, we have included a convergence proof where the
state space is an infinite dimensional Hilbert space . My main contribution to this
project is the stabilization of the two-mode entangled state (section 5.1.6) and the
convergence proof (section 5.2).

5.1 Proposal to stabilize non-classical states of one- and

two-mode radiation fields by reservoir engineering

Nonclassical electromagnetic field states are extremely important, both for a fun-
damental understanding of the quantum properties of light and for their possible
use in practical applications. For instance, squeezed states (SS) have fluctuations
of one of their quadratures below those of the vacuum state, or of a classical coher-
ent state [Dowling 2008]. They thus lead to interesting methods for high-precision
measurements and metrology [Giovannetti 2004]. They are for instance planned to
be used for reducing the noise of the gravitational wave interferometers below the
standard quantum limit [Goda 2008].

Mesoscopic field state superpositions (MFSS) are also the focus of an intense
interest. They involve a quantum superposition of two quasi-classical coherent com-
ponents with different complex amplitudes. These counter-intuitive states bridge
the gap between the quantum and the classical worlds and shed light on the de-
coherence process responsible for the conspicuous lack of superpositions at our
scale [Haroche 2006].

Finally, entangled superpositions of mesoscopic states (ESMS) shared by sev-
eral field modes are even more intriguing. They violate generalized Bell inequal-
ities [Banaszek 1999], illustrating the fundamentally non-local nature of quantum
phyics. However, their non-local character is rapidly erased by a fast decoherence
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process [Milman 2005], driving them back into a statistical mixture that can be
undestood in terms of a classical local hidden variable model. This interplay of
decoherence and nonlocality opens fascinating perspectives for exploring the limits
of the quantum.

In principle, the SS and MFSS could be simply prepared in the optical domain by
letting a coherent laser pulse propagate in a non-linear medium, whose index of re-
fraction is a linear function of the light pulse intensity (Kerr medium) [Yurke 1986].
The field evolves from initial coherent state |α〉 under the action of the Kerr Hamil-
tonian HK :

HK = ζK N + γK N2 . (5.1)

Here N is the photon number operator, ζK is proportional to the linear index and γK

is the Kerr frequency describing the strength of the non-linearity. In the following,
we use units such that ~ = 1. Note that the collisional interaction Hamiltonian for
an N-atom sample in a tightly confining potential or in an optical lattice is similar
to HK [Will 2010].

Depending on the interaction time tK , the final state e−i tKHK |α〉 spans a number
of nonclassical forms [Haroche 2006, Section 7.2], including:

(i) squeezed states for tKγK ≪ π;

(ii) states with ‘banana’-shaped Wigner function for slightly larger tKγK ;

(iii) mesoscopic field state superpositions |kα〉 with k equally spaced components
for tKγK = π/k 1.

(iv) in particular, a MFSS of two coherent states with opposite amplitudes:

|cα̃〉 = (|α̃〉 + i |-α̃〉)/
√

2 , (5.2)

with α̃ = α e−iζKtK , for tKγK = π
2 .

The top panels on Figure 5.1 present the Wigner functions of the states (i)-(iv) for
a mean photon number |α|2 = 2.7.

This preparation method by a deterministic unitary evolution is simple in its
principle, but its implementation is extraordinarily difficult for propagating light
fields, due to the weakness of the Kerr nonlinearity [Rosenbluh 1991].

Other methods for the production of these nonclassical states have been
proposed or realized in the context of trapped ions [Monroe 1996, Myatt 2000]
or Cavity Quantum Electrodynamics (CQED) [Haroche 2006, Brune 1992,
Brune 1996, Deléglise 2008, Davidovich 1993, Villas-Bôas 2003, Solano 2003,
de Matos Filho 1996]. Both systems implement the ‘spin-spring’ model, the sim-
plest nontrivial quantum situation of a two-level system coupled to a harmonic os-
cillator, embodied by the harmonic motion of the ion or by a single field mode. The
proposed nonclassical state production methods are either deterministic or rely on

1The components are well separated only in the case k < πα [Haroche 2006, Section 7.2]
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Figure 5.1: (a-d) Wigner functions of nonclassical field states e−i tKHK |α〉 generated
by propagation of an initial coherent state through a Kerr medium, (a) 2-component
MFSS given by Eq. (5.2) for tKγK = π/2; (b) 3-component MFSS for tKγK = π/3;
(c) ‘banana’-state, for tKγK = 0.28; and (d) squeezed state, for tKγK = 0.08 ≪
π. (e-h): similar states stabilized, despite decoherence, by the atomic reservoir as
explained in the remainder of this Section. Frame (e) corresponds to the reference
two-component MFSS most lengthily discussed in the rest of this Section.
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a detection-conditioned scheme. The latter expand the possibilities of the former by
applying a measurement operation after a unitary evolution towards an intermediate
target state. Measurement back-action generates different final states conditioned
by the stochastic detection outcome [Ourjoumtsev 2007]. In the microwave CQED
context, detection-conditioned preparation of MFSS and ESMS can be achieved by
the dispersive interaction of an initial coherent field state with a two-level atom,
initially prepared in a state superposition, followed by the detection of the atomic
state in an appropriate basis [Haroche 2006, Brune 1996].

All these preparation techniques do not solve, however, the problem of stabilizing

(“protecting”) a selected nonclassical state for long times in spite of the unavoidable
coupling of the system S to its environment E . Reservoir engineering can be used
to stabilize target quantum states by strongly coupling S to an “engineered” envi-
ronment, or reservoir R, a large quantum system with many degrees of freedom.
The reservoir is designed so that, when acting alone, it drives S, whatever its in-
tial state, towards a unique target ‘pointer state’, a stable state of S coupled to
R [Zurek 1981, Zurek 2003]. The state of S remains close to this pointer state even
in the presence of E , provided R is more strongly coupled to S than E . An engi-
neered reservoir thus achieves much more than the preparation of a target state. It
effectively stabilizes the system close to it for arbitrarily long times.

Reservoir engineering is experimentally challenging. Reservoirs made up of lasers
and magnetic fields for trapped-ion oscillators have been proposed [Poyatos 1996,
de Matos Filho 1996, Carvalho 2001] and demonstrated [Barreiro 2011]. Recently,
a reservoir has been used to generate entanglement of spin states of macroscopic
atomic ensembles [Krauter 2011].

In the context of CQED, the reservoir may be a stream of atoms interacting
with the trapped field. An early proposal [Slosser 1989] relied on the so-called
‘trapping state conditions’ for the micromaser [Rempe 1990], which require a very
fine tuning of the parameters and can only be properly achieved in the case of
a zero-temperature environment. Reservoirs composed of atoms in combination
with external fields have also been proposed to stabilize one-mode squeezed states
[Werlang 2008] and two-mode squeezed vacuum entanglement [Pielawa 2007].

In [Sarlette 2011], we proposed a robust reservoir engineering method for CQED.
It generates and stabilizes nonclassical states of a single mode of the radiation field,
including SS and MFSS. The reservoir is made up of a stream of 2-level atoms,
each prepared in a coherent superposition of its basis states. They interact one
at a time with the field according to the Jaynes-Cummings model before being dis-
carded, a procedure reminiscent of the “reset” operation performed in other contexts
[Reed 2010b, Barreiro 2011]. The key idea is to use a tailored composite interac-
tion of each atom with the field: dispersive, then resonant, then dispersive again.
The pointer states of this composite interaction are precisely those, e−i tKHK |α〉,
resulting from the action of a Kerr Hamiltonian acting upon an initially coherent
state.

This method is quite general and could be implemented in a variety of CQED
settings, particularly in the active context of circuit QED [Devoret 2004] or in that
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of microwave CQED, with circular Rydberg atoms and superconducting Fabry Perot
cavities. For the sake of definiteness, we shall focus in this Section on the microwave
CQED case, and particularly on the current ENS CQED experiment whose scheme
is depicted on Fig. 5.2. The bottom panels of Fig. 5.1 present the results of numerical
simulations of the ENS experiment, with interaction parameters chosen to reproduce
the states generated by the Kerr Hamiltonian (top panels).

The present Section is intended to provide an in-depth description of this single-
mode reservoir engineering procedure, with a detailed analysis of the physical mech-
anism of state stabilization. We also discuss the competition between the engineered
reservoir and the ordinary cavity enviroment, giving simple insights into the finite
final fidelity of the prepared state.

We finally extend the scheme proposed in [Sarlette 2011] to the stabilization
of entangled superpositions of mesoscopic states of two field modes. The atoms
of the reservoir undergo a tailored interaction with two modes of the same cavity,
combining dispersive and resonant parts for each mode. This proposal opens inter-
esting perspectives for studying the interplay between entanglement, non-locality
and decoherence in the context of mesoscopic quantum states.

This Section is organized as follows. We consider the single-mode case for most
of this Section and extend it to two modes in Section 5.1.6. Section 5.1.1 describes
the experimental scheme and the principle of the method. Section 5.1.2 discusses,
as a building block for the next Sections, how a stream of atoms resonant with one
field mode stabilizes approximately a coherent field state. Section 5.1.3 introduces
the composite interaction: non-resonant, resonant and non-resonant again. In this
Section, we treat the non-resonant interactions in the dispersive regime of a large
atom-cavity detuning. We thus get a simple qualitative insight into the mechanism
generating non-classical states. Section 5.1.4 details the more realistic case of in-
termediate atom-cavity detuning. We show that the main features of Section 5.1.3
are recovered, exhibiting the robustness of the method. Section 5.1.5 analyzes the
effect of decoherence due to the cavity damping and imprecisions on the experimen-
tal parameters. We find that the method is also robust against realistically large
imperfections. Section 5.1.6 presents the stabilization of two-mode ESMS. Finally,
detailed computations are given in Section 5.1.8.

5.1.1 General description

!

"

#

$%
$&

Figure 5.2: Scheme of the current ENS CQED experiment.
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The scheme of the ENS experiment is depicted on Fig. 5.2 (see [Haroche 2006,
Deléglise 2008] for details). A microwave field of frequency ωc is trapped in the
superconducting cavity C (damping time Tc = 65 ms). Atoms are sent one after
the other through C. They cross its standing wave gaussian mode at a constant,
adjustable velocity v. The mode interacts with the transition between the two
atomic levels |g〉 and |e〉 (circular Rydberg states with principal quantum numbers 50
and 51). A static electric field applied across the cavity mirrors is used to adjust the
atomic transition frequency ω0 and hence the atom-cavity detuning δ = ω0−ωc ≪ ωc

via the Stark effect. Varying the electric field during the atom-field interaction makes
it possible to engineer the detuning profile δ(t). Zero and small δ values are used for
the resonant and non-resonant parts of the interaction. Making δ very large allows
us to effectively turn off the atom-field interaction.

We describe the atom and field states in a frame rotating at frequency ωc. The
atoms are prepared in state |g〉 in B, by a time-resolved laser and radiofrequency
excitation of a velocity-selected thermal rubidium atomic beam. Before entering C,
the atoms are prepared in a coherent superposition of |g〉 and |e〉 in the low-quality
cavity R1, driven by a classical microwave source (“first Ramsey zone”) at frequency
ωc. Without loss of generality, we can choose the phase reference for all atoms so
that they enter the cavity in the initial state |uat〉 = cos(u/2)|g〉 + sin(u/2)|e〉 with
u > 0. In a Bloch sphere representation with |e〉 at the north pole, |uat〉 corresponds
to a vector at an angle u with the north-south vertical axis.

A second classical microwave pulse in the second Ramsey zone R2 is followed by
a detection in the {|e〉, |g〉} basis in the field-ionization detector D. This amounts
to a projective measurement of the atomic state at the exit of C, in a basis that can
be chosen arbitrarily by properly setting the microwave pulse in R2. For the engi-
neered reservoir operation, the result of this final atomic state detection is irrelevant.
Detection results are however necessary in other phases of the experiment. In par-
ticular, they will be used to reconstruct the field state generated by the engineered
reservoir, using a method described in [Deléglise 2008].

Let us first consider atom-cavity interaction for an atom that crosses cavity axis
at t = 0. The atom-field interaction is ruled by the Jaynes-Cummings Hamiltonian
HJC . Neglecting far off-resonant terms (rotating wave approximation, negligible
interaction with other cavity modes), we have:

HJC =
δ(t)

2
(|e〉〈e| − |g〉〈g|) + i

Ω(s)

2
( |g〉〈e|a† − |e〉〈g|a ) , (5.3)

where Ω(s) is the atom-cavity coupling strength (vacuum Rabi frequency) at position
s = vt along the atomic trajectory; a is the photon annihilation operator in C. The
photon number operator N = a†a =

∑
n n |n〉〈n| defines the Fock states basis

{|n〉}.
The coupling strength Ω(s) is determined by the atomic transtion parameters

and by the cavity mode geometry. It is written here as Ω(s) = Ω0 e
−s2/w2

, with
Ω0/2π = 50 kHz and w = 6 mm for the ENS setup. To get a finite total interaction
duration T , we assume that the coupling cancels when |s| > 1.5w. The total
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interaction time of the atom with the field is thus T = 3w/v. We have checked
numerically that this truncation of the interaction time has negligible effects.

The evolution operator, or propagator U associated with HJC expresses the
transformation that the joint atom-cavity state undergoes during their interaction.
The Schrödinger equation for U, starting at the initial time t = t0 is:

d
dtU(t) = −iHJC(t)U(t) with U(t0) = I , (5.4)

where I is the identity operator. We note UT the propagator obtained by integration
of Eq. (5.4) over one full atom-cavity interaction, that lasts from −T/2 to T/2.

We represent the action of UT over the field state by the operators M
UT
g and

M
UT
e , such that:

UT (|uat〉|ψ〉) = |g〉MUT
g |ψ〉 + |e〉MUT

e |ψ〉 ,

for any pure initial field state |ψ〉. Tracing over the final atomic state, the modifica-
tion of the field density operator due to the interaction with the atom is thus finally
given by the Kraus map [Kraus 1983]

ρ→ M
UT
g ρMUT †

g + M
UT
e ρMUT †

e . (5.5)

For the reservoir action, we let a stream of atoms consecutively interact with
the field and always use the same parameter set (detuning profile, atom velocity v
and initial state |uat〉 = cos(u/2)|g〉+ sin(u/2)|e〉). Thus each atom affects the field
according to Eq. (5.5). The interaction of C with the (k+1)th atomic sample begins
as soon as that with the kth sample ends. Successive atoms are thus separated by
the time interval T . We denote by ρk the cavity state just after interacting with the
kth atom and tracing over its irrelevant final state. The field density operator ρk is
thus given by:

ρk = M
UT
g ρk-1M

UT †
g + M

UT
e ρk-1M

UT †
e . (5.6)

We aim to stabilize a pure pointer state ρ∞ = |ψ∞〉〈ψ∞|, which must be a fixed
point of this Kraus map. The right-hand side of Eq. (5.6), with ρk-1 = ρ∞, is a
statistical mixture of two pure states. It is then a pure state only if its two terms
are proportional to each other. Thus, |ψ∞〉 must be an eigenstate of both M

UT
g

and M
UT
e . State stabilization by reservoir engineering amounts to tailoring a Kraus

map for the field from a constrained physical setting.
We have shown in [Sarlette 2011] that it is possible to engineer the atom-cavity

interaction so that the Kraus map leaves invariant the states ≈ e−i tKHK |α〉, in
which α and γK tK in Eq.(5.1) can be chosen at will. Explicitly, we build UT

by sandwiching a resonant interaction (δ = 0 for t ∈ [−tr/2, tr/2]) symmetrically
between two dispersive interactions with opposite detuning: δ = δ0 before the reso-
nant interaction, δ = −δ0 thereafter. We choose a positive δ0 value for the sake of
definiteness.

This timing is illustrated on Fig. 5.3. Each resonant or dispersive interaction
phase is characterized by a set of parameters that we denote q = (t1, t2, v, δ0) where
t1 is start time, t2 is stop time. The corresponding propagators are denoted Uq.
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Figure 5.3: Time profile of δ (difference between the tunable frequency ω0 of the
atomic transition and the fixed frequency ωc of the single cavity mode; bottom
frame, full line) and Ω(vt) (bottom frame, dashed line) during cavity crossing by
one atomic sample; we take t = 0 when the atom is at cavity center. Top frame:
scheme of the propagators corresponding to the successive steps in the composite
interaction.
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To compute these evolution operators, we use the fact that each two-dimensional
subspace spanned by (|g, n + 1〉, |e, n〉) is invariant under the action of HJC . The
state |g, 0〉 does not take part in the evolution. We can thus view the action of
Uq as photon-number-dependent rotations acting on a set of Bloch spheres Bn

(n = 0, 1, ...), with |g, n+ 1〉 at the south-pole and |e, n〉 at the north-pole defining
their Z-axes. These rotations can be decomposed as general rotations around the
X-, Y - and Z-axes of the Bloch spheres. We use the notation fN = f(N) =∑

n f(n) |n〉〈n| =
∑

n fn |n〉〈n| for arbitrary functions f of n, with the fundamental
property

a f(N) = f(N + I) a . (5.7)

We can then cast these rotations as:

X(fN) = |g〉〈g| cos(fN/2) + |e〉〈e| cos(fN+I/2) (5.8)

−i|e〉〈g|asin(fN/2)√
N

− i|g〉〈e| sin(fN/2)√
N

a† ,

Y(fN) = |g〉〈g| cos(fN/2) + |e〉〈e| cos(fN+I/2) (5.9)

−|e〉〈g| asin(fN/2)√
N

+ |g〉〈e| sin(fN/2)√
N

a† ,

Z(fN) = |g〉〈g| ei fN /2 + |e〉〈e| e−i fN+I /2 . (5.10)

As shown in Sections 5.1.2 and 5.1.3, Y(fN) with f(n) proportional to
√
n+ 1 corre-

sponds to a resonant interaction and Z(fN) with f(n) proportional to n corresponds
to a non-resonant interaction in the dispersive regime δ ≫ Ω. See Section 5.1.8.1
for more details.

5.1.2 Engineered reservoir for coherent state stabilization

The coherent state |α〉 is obtained by the action of the displacement operator Dα =

eαa
†−α†

a on the vacuum [Haroche 2006]:

|α〉 = Dα |0〉 = e−|α|2/2
∑

n

αn

√
n!
|n〉 . (5.11)

We show here how a short resonant interaction (δ = 0) with weakly excited atoms
provides an engineered reservoir, whose pointer state is close to a coherent state
[Sarlette 2011].

Stabilization of coherent states is not an amazing feat. A classical radiation
source weakly coupled to the cavity directly generates a coherent state. This is
a routine operation in microwave CQED experiments. However, the situation de-
scribed in this Section is an essential building block for the stabilization of more
complex nonclassical states, as shown below. Moreover, it is an interesting micro-
maser situation [Slosser 1989, Casagrande 2002], in which the small excitation of the
atoms leads to a finite energy in the steady state even though the cavity is assumed
to be lossless.



5.1. Proposal to stabilize non-classical states of one- and two-mode
radiation fields by reservoir engineering 63

We consider a resonant interaction over a time interval tr, corresponding to
the parameter set r = (−tr/2, tr/2, v, 0). Following Section 5.1.8.1, the associated
propagator is:

Ur = Y(θr
N) (5.12)

= |g〉〈g| cos(θr
N/2) + |e〉〈e| cos(θr

N+I/2)

−|e〉〈g| asin(θr
N
/2)√

N
+ |g〉〈e| sin(θr

N
/2)√

N
a† ,

with

θr
n = θr

√
n, θr =

∫ tr/2

−tr/2
Ω(vt) dt . (5.13)

This readily yields:

M
Ur
g = cos(u

2 ) cos(θr
N/2) + sin(u

2 )
sin(θr

N
/2)√

N
a†

M
Ur
e = sin(u

2 ) cos(θr
N+I/2) − cos(u

2 )a
sin(θr

N
/2)√

N
. (5.14)

A pointer state of this resonant reservoir must be an eigenstate of both Mg and
Me given by Eq.(5.14). Let us expand it over the Fock states basis, |ψ∞〉 =

∑
ψn|n〉.

We get a condition on the coefficients ψn, for n = 0, 1, 2, ...:

sin(θr
n+1/2)ψn+1 = tan u

2 (1 + cos(θr
n+1/2) )ψn . (5.15)

This relation allows to compute all the ψn starting from ψ0 6= 0, except if
sin(θr

m/2) = 0 for some m. This condition corresponds to the existence of a trap-
ping state |m− 1〉 [Filipovicz 1986], which is then uncoupled from |m〉. The Hilbert
subspaces corresponding to the photon numbers ≤ (m − 1) and to those ≥ m are
then decoupled, such that the steady state depends on the initial conditions. Since
all states considered in the remainder of this Section have an energy lower than 20

photons, we arbitrarily truncate the Hilbert space to n ≤ nmax = 50. We can thus
avoid trapping states by choosing small θr values such that sin(θr

n+1/2) 6= 0 for all
0 ≤ n ≤ nmax. Dividing (5.15) by sin(θr

n+1/2) then gives the recurrence:

ψn+1 =
tan(u/2)

tan(θr
n+1/4)

ψn , (5.16)

which defines a unique normalized pointer state.
For (θr

nmax
/4)2 ≪ 1, the recurrence (5.16) reduces to ψn+1 ≈ 4 tan(u/2)

θr
√

n+1
ψn,

which defines a coherent state |α∞〉 with α∞ = 4 tan(u/2)
θr

(compare with the last
member of Eq. (5.11)).

This value of α∞ can be retrieved by a simplified reasoning as in [Sarlette 2011].
Assume that the cavity already contains a large coherent field of amplitude α≫ 1.
The incoming atoms then undergo a resonant Rabi rotation in this field, with an
atomic Bloch vector initially pointing towards the south pole of the Bloch sphere.
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The Bloch vector rotates by an angle −θrα, such that if θrα < 2u (resp. θrα > 2u)
the final atomic state has a lower (resp. larger) energy than the initial one, i.e. in
average gives energy to (resp. draws energy from) the field. This energy exchange
thus stabilizes a field with amplitude α∞ = 2u/θr.

We have numerically examined the fidelity F = |〈ψ∞|α∗〉|2 of the pointer state
|ψ∞〉 defined by Eq. (5.16) with respect to a coherent state |α∗〉 of the same mean
photon number |α∗|2 = 〈ψ∞|N|ψ∞〉. Fig. 5.4(a) represents that mean photon num-
ber in gray scale, for a range of parameters u, θr delimited such that the fidelity F is
larger than 99%. We limit the plot to θr < (2π)/

√
nmax ≈ 0.88 to avoid trapping

states, and to θr > 5 tan(u/2)/
√
nmax to remain in the truncated Hilbert space

(top left corner cut off). The coherent state approximation for |ψ∞〉 remarkably
holds for a range of u and θr much larger than that predictable from the qualitative
discussion above.

Convergence towards |α∞〉 can be simply analyzed in the limit of small u, θr.
Expansion of Eq. (5.14) to second order in u, θr

N
yields the Kraus map:

ρk+1 ≈ ρk +
uθr

4
( [a†, ρk] − [a, ρk] ) (5.17)

−θ
2
r

8
(Nρk + ρkN − 2aρka

†) .

It can be simplified by letting ρ̃ = D−α∞ ρDα∞ such that ρ = |α∞〉〈α∞| corresponds
to ρ̃ = |0〉〈0|. A few calculations show that Eq. (5.17) transforms into

ρ̃k+1 = ρ̃k − θ2
r

8
(Nρ̃k + ρ̃kN − 2aρ̃ka

†) . (5.18)

This is a finite difference version of the standard Lindlblad equation, describing the
damping of an harmonic oscillator coupled to a zero temperature bath. It efficiently
drives any initial state towards the vacuum, with a relaxation rate proportional to
θ2
r . This analogy shows that the initial map [Eq. (5.17)] drives any initial cavity

state towards a coherent state |α∞〉 with α∞ = 2u/θr. Smaller θr values, i.e. shorter
interaction times of each atom with the field lead to a higher energy pointer state
(for a given u), but to a lower convergence rate (independently of u).

Similar conclusions are directly reached from Eq. (5.17) by assuming that the
field is, at each step during its evolution towards the equilibrium, in a coherent state
with amplitude αk. Using simple second-order approximations in u, θr

2, we find
that this amplitude evolves as:

αk+1 = (1 − θ2
r/8)αk + uθr/4 . (5.19)

2 Explicitly, we have (all |·〉 denote coherent states)

εN|β〉 = |(1 + ε)β〉 − |β〉 + |β|2ℜ(ε)|β〉

εa†|β〉 = |β + ε〉 − |β〉 + ℜ(εβ†)|β〉

∑

ν

aν |β + εν〉 =

(
∑

ν

aν

)
|
∑

ν aν(β+εν)∑
ν aν

〉 ,

up to second order terms in |ε|, |εν |, with ε, εν , aν ∈ C and
∑

ν aν 6= 0.
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This first-order system has the explicit solution αk = (1 − θ2
r/8)k (α0 − α∞) +

α∞ starting from α0 at k = 0. Noting that log |〈α∞|αk〉|2 = −|αk − α∞|2, the
fidelity indicator log | log |〈α∞|αk〉|2| = log |α0 − α∞|2 − λconv k decreases linearly
in k towards −∞. The slope λconv = 2| log(1 − θ2

r/8)| measures the exponential
convergence speed of |αk − α∞|2, which increases with θr and is independent of u.

Numerical simulations of Eq. (5.6) with the exact Kraus map [Eq. (5.14)]
vindicate this approximate analysis. Figure 5.4(b) shows the evolution of
log | log〈ψ∞|ρk|ψ∞〉| as a function of the number of atom-field interactions k, start-
ing from the vacuum ρ0 = |0〉〈0|, with the real Kraus map associated with Ur. The
evolution is linear, as predicted by the simplified model. We have checked that this
linearity holds for a large range of parameter values: it is only for large θrs that the
curve bends slightly upwards for the first few ks. This allows us to use the slope
λconv of that approximate line as a measure of convergence speed. Fig. 5.4(c) shows
the dependency of λconv in θr, for two different u values: u = 0.1 (dotted curve)
and u = 1 [dashed curve, which does not extend to low θr values, according to
the accessible domain on Fig. 5.4(a)]. They closely follow the simplified model (full
line), which is independent of u and slightly overestimates the convergence speed.

5.1.3 Kerr Hamiltonian simulation in the dispersive regime

We now discuss the case of a full composite interaction, with the detuning profile
δ(t) represented on Fig. 5.3. The full propagator

UT = Ud2 Ur Ud1 , (5.20)

is the concatenation of three unitary operators corresponding first to the dispersive
interaction with d1 = (−T/2,−tr/2, v, δ0) as the atom enters the cavity, then to the
resonant one with q = r around cavity center, then to the last dispersive interaction
with d2 = (tr/2, T/2, v,−δ0) as the atom leaves the cavity. The exact expression of
Ur is given by Eq. (5.12). The dispersive propagators Ud1 and Ud2 are computed in
Section 5.1.8.1, assuming that δ0 and v satisfy the adiabatic approximation condi-
tion [Eq. (5.50)]. This condition merely expresses that the interaction Hamiltonian
HJC varies slowly (through Ω(vt)) in comparison to the differences between its
eigenfrequencies. Thus, each initial eigenstate of HJC remains an eigenstate and
only accumulates a phase proportional to its eigenenergy.

To get a simple insight in the physics of the stabilization of nonclassical states,
the present Section focuses (like [Sarlette 2011]) on the simple case in which the
two nonresonant interactions take place in the dispersive regime, i.e. δ0 ≫ Ω0. This
avoids spurious population transfers in the dispersive phase, as atomic levels dressed
by the cavity field almost coincide with the bare levels |e〉 and |g〉. The dispersive
propagators, deduced from Eq. (5.56) in Section 5.1.8.1, then write:

Ud1 ≈ U
†
d2

≈ Z(φd
N) (5.21)

with φd
N = φγN + φζ ,
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Figure 5.4: Reservoir with interaction Ur. (a) Mean photon number 〈ψ∞|N|ψ∞〉 of
the pointer state |ψ∞〉. Grayscale axis is linear in

√
〈ψ∞|N|ψ∞〉. The shaded zone is

delimited such that the corresponding states have at least a 99% fidelity |〈ψ∞|α∗〉|2
to a coherent state |α∗〉 of same mean photon number |α∗|2 = 〈ψ∞|N|ψ∞〉. On
the top left corner, pointer states have significant population outside the truncated
Hilbert space. On the top right part, |〈ψ∞|α∗〉|2 drops to ∼ 98% as u approaches
π/2. (b) Evolution of the fidelity indicator log | log〈ψ∞|ρk|ψ∞〉| as a function of
the number of atom-field interactions (i.e. Kraus map iterations) k, starting from
vacuum ρ0 = |0〉〈0|. We have arbitrarily set u = 0.5 and θr = 0.4, for which
〈ψ∞|N|ψ∞〉 = 6.21. (c) Convergence rate λconv as a function of θr for u = 0.1

(dotted curve) and u = 1 (dashed curve). Dependency on u is small. We also
represent (full curve) the analytic result of the simplified model [Eq. (5.19)]. This
model slightly overestimates the convergence speed.
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where φγ = 1/(2 δ0)
∫ −tr/2
−T/2 Ω2(vt) dt is a phase shift per photon and φζ = δ0(T −

tr)/2 reflects the free atom evolution in the interaction representation at cavity
frequency.

The full propagator can then be written

UT ≈ Ud = Z(−φd
N) Ur Z(φd

N)

= |g〉〈g| cos θr
N/2 + |e〉〈e| cos θr

N+I/2

−|e〉〈g|a sin θr
N
/2√

N
ei(φγN+φζ)

+|g〉〈e| sin θr
N
/2√

N
e−i(φγN+φζ) a† , (5.22)

where θr
N

is defined by Eq. (5.13). The two opposite dispersive interactions have no
net effect when the atom remains in the same state during the resonant interaction
Ur. In contrast, Z does not commute with terms in which the atomic level changes in
the resonant phase. For these terms, the dispersive phase shifts add up. The global
evolution Ud thus associates a phase shift to each term of Ur that changes the
field energy. An increasing field energy corresponds to a decrease of the field phase
and vice versa. These correlated phase and amplitude shifts suggest that Ud might
stabilize a coherent state distorted by amplitude-dependent phase shifts, a situation
similar to that encountered during the propagation through a Kerr medium.

The action of the atom can indeed be expressed by an operator acting on the
field only. Let us define the Hermitian operator hd

N
by:

hd
N = φγ(N2 + N)/2 + φζN . (5.23)

With the commutation identity [Eq. (5.7)] we have e−ihd
N a eih

d
N = a ei(φγN+φζ)

and
Ud = e−ihd

N Ur e
ihd

N . (5.24)

Thus, Ud is equivalent to Ur modulo a basis change on the field state alone defined
by the unitary operator e−ihd

N .
In other words, when ρ evolves under the Kraus map associated to (MUd

g , M
Ud
e ),

ρh = eih
d
N ρ e−ihd

N , evolves under the Kraus map associated to (MUr
g , M

Ur
e ). It

follows from Section 5.1.2 that ρh converges towards a coherent pointer state |α∞〉.
Therefore, ρ converges with the same convergence rate towards a nonclassical pointer
state exp[−ihd

N
] |α∞〉.

The effective Hamiltonian hd
N
/tK is equal to the Kerr Hamiltonian HK , with

γKtK = φγ/2 and ζKtK = (φζ +φγ/2). The engineered reservoir thus stabilizes the
nonclassical pointer states e−itKHK |α∞〉 which would be produced by propagation
through a Kerr medium (see Fig. 5.1). Tuning T and δ0 allows us to choose φγ at
will. We can thus prepare and stabilize a whole class of such states, as described
in the introduction of this Section. In particular, for φγ = π, we get the MFSS
|cα̃∞〉 = (|α̃∞〉+i |-α̃∞〉)/

√
2 with α̃∞ = e−i (φζ+π/2) α∞. Note that the stabilization

of this two-component MFSS is the most demanding experimentally, since it requires
the longest dispersive interaction time.
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The discussions in this Section only apply in the limit of small Ω/δ0. Reaching
a significant value of φγ in this case requires a large dispersive interaction time
(T − tr)/2, that can be prohibitive. First, in the experimental context of Fig. 5.2,
T = 3w/v is limited by the minimal achievable atomic velocity (a few tens of m/s
in the ENS setup). Second, a larger T means less frequent atom-field interaction
and thus a weaker reservoir, implying a less efficient protection of the target state
against decoherence induced by cavity relaxation.

5.1.4 Regime of arbitrary detunings

We thus discuss now dispersive interaction with moderate Ω/δ0 values; which al-
lows one to reach significant dispersive effects within moderate interaction times.
We therefore use a more precise expression of the propagator for the nonresonant
interactions (parameter sets d1 and d2), by applying the adiabatic approximation
to the actual dressed states (instead of |g, n + 1〉 and |e, n〉 as in Eq. (5.21) when
assuming δ0 ≫ Ω0). Developments detailed in Section 5.1.8.1 lead to:

UT ≈ Uc = Z(−φN)X(ξN)Y(θr
N)X(ξN)Z(φN) , (5.25)

with

φn = δ0

∫ −tr/2

−T/2

√
1 + n (Ω(vt)/δ0)2 dt , (5.26)

tan ξn = Ω(vtr/2)
√

n
δ0

with ξn ∈ (−π
2 ,

π
2 ) . (5.27)

We recognize in this expression the central resonant interaction evolution operator,
Y(θr

N
), and the two phase-shift operations accumulated during the non-resonant

interactions (Z(−φN) and Z(φN)). Note that here, unlike in Section 5.1.3, φn is a
nonlinear function of n. The remaining two X(ξN) operators reflect the fact that
the atomic energy eigenstates do not coincide with the dressed levels at ±tr/2,
when the atomic frequency is suddenly switched. Note that we neglect two similar
transformations which appear in principle when the atom gets first coupled to the
mode and finally decoupled from it, since the atom-field coupling is then quite
negligible.

Some tedious but simple computations exploiting Eq. (5.7) allow us to write:

Uc = |g〉〈g| cos(θc
N/2) + |e〉〈e| cos(θc

N+I/2)

−|e〉〈g|asin(θc
N
/2)√

N
eiφ

c
N

+|g〉〈e| e−iφc
N

sin(θc
N
/2)√

N
a† . (5.28)

Here, θc
n ∈ [0, 2π) is defined by

cos(θc
n/2) = cos(θr

n/2) cos ξn . (5.29)



5.1. Proposal to stabilize non-classical states of one- and two-mode
radiation fields by reservoir engineering 69

Introducing 3

χc
n = arg[ sin(θr

n/2) − i cos(θr
n/2) sin ξn ] , (5.30)

we define the composite phase as φc
N

= φN + χc
N

.
Comparing Eqs. (5.28) and (5.22), we finally get:

Uc = Z(−φc
N) Y(θc

N) Z(φc
N) . (5.31)

This expression of Uc has the same general form as that used in the dispersive
case (Section 5.1.3). Angles θc

N
, φc

N
replace θr

N
, φd

N
respectively. We now show

that with these adaptations, most of the conclusions of the previous Sections still
hold. The reservoir in realistic situations indeed stabilizes the nonclassical states
|ψ〉 ≈ e−itKHK |α〉.

5.1.4.1 Effects of Y(θc
N

) and Z(±φc
N

)

Let us first consider a reservoir of atoms whose interaction with the cavity would
be described by Y(θc

N
). Note that this situation is not physical: the Y(θc

N
) evo-

lution operator is no more than a convenient mathematical factor appearing in the
expression of the complete evolution operator Uc.

In analogy with Section 5.1.2, the pointer state |ψ∞〉 =
∑

ψn|n〉 corresponding
to this fictitious interaction is defined by the recurrence relation:

ψn+1 =
tan(u/2)

tan(θc
n+1/4)

ψn , (5.32)

for n = 0, 1, 2, ... . Equation (5.29) ensures | cos(θc
n+1/2)| < 1 ∀n, therefore 0 <

θc
n+1/4 < π/2. Moreover limn7→+∞ θc

n = π, such that Eq. (5.32) always yields a
well-defined finite energy state as soon as |tan(u/2)| < 1 i.e. |u| < π/2. For large n
values, the recurrence (5.32) is approximated by ψn+1 = tanu

2 ψn and ψn converges
exponentially towards 0 with

∑
n nψ2

n finite. The energy exchange resulting from
the rapid variation of the atomic frequency near the cavity center thus removes the
possibility of trapping states.

Note that even in the absence of the central resonant interaction, with θr
n = 0

in Eq. (5.29), relation (5.32) defines a unique pointer state with finite energy. It is
thus in principle possible to simplify our scheme by using only two dispersive phases
with opposite detunings. In this case, energy would be transferred from the qubit
to the cavity during these non-fully-dispersive interactions, where the qubit-cavity
detuning is larger, but of the same order, as the coupling Ω.

For θr and Ωr/δ0 small, 2 tan(θc
n/4) ≈ θc

n/2 ≈ θc
√
n/2 with θc =

√
θ2
r + (2Ωr

δ0
)2.

The pointer state is thus close to a coherent state |α∞〉, as in Section 5.1.2, with the
amplitude α∞ = 4 tan(u/2) / θc. Convergence arguments similar to those of Section
5.1.2 (effective Lindblad master equation) can be given. The convergence rate is

3Note that for all n > 0, phase χc
n is well-defined because |ξn| ∈ (0, π/2). For n = 0, the term

multiplying the undefined χc
0 vanishes in Eq. (5.28).
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Figure 5.5: Mean photon number 〈ψ∞|N|ψ∞〉 of the pointer state |ψ∞〉 stabilized
by Y(θc

N
), with δ0 = 2.2 Ωr (a) and δ0 = 10 Ωr (b). Grayscale axis is linear in√

〈ψ∞|N|ψ∞〉. The 2-component MFSS on Fig. 5.1 uses u = 0.9π/2 and θr = π/2

with δ0 = 2.2 Ωr, corresponding to the black dot on (a), for which 〈ψ∞|N|ψ∞〉 =

2.96. The shaded zone is delimited such that all corresponding states have at least
99% fidelity |〈ψ∞|α∗〉|2 to a coherent state |α∗〉 of the same mean photon number
(|α∗|2 = 〈ψ∞|N|ψ∞〉).

now proportional to θ2
c . We conjecture that this convergence is valid for any u with

0 ≤ u < π/2, θr ≥ 0, Ωr > 0 and δ0 > 0.

Figure 5.5 presents numerical estimations of the field pointer state |ψ∞〉 stabi-
lized by a hypotetical reservoir using interaction Y(θc

N
). For all represented param-

eter values, fidelity |〈ψ∞|α∗〉|2 to a coherent state |α∗〉 of the same mean photon
number (|α∗|2 = 〈ψ∞|N|ψ∞〉), is at least 99%. That mean photon number is rep-
resented by the grayscale. The larger value Ωr/δ0 = 1/2.2 used on Fig. 5.5(a), does
not allow to reach as high mean photon numbers as the value Ωr/δ0 = 1/10 of
Fig. 5.5(b). Small Ωr/δ0 however are more subject to undesired population of the
high-lying Fock states, reminiscent of the trapping states, for large θr and u. This
explains the smaller domain where fidelity is larger than 99%. With the particular
values used for Fig. 5.1(e) (black dot on Fig. 5.5(a), with Ωr/δ0 = 1/2.2, θ = π/2

and u = 0.45π), fidelity to a coherent state is almost 99.9% and 〈ψ∞|N|ψ∞〉 = 2.96.

We now examine the influence of the Z(±φc
N

) operators on the pointer state
defined by Y(θc

N
). A first observation is that it does not modify the photon number

populations, since it commutes with N. Thus, the energy of the field pointer state,



5.1. Proposal to stabilize non-classical states of one- and two-mode
radiation fields by reservoir engineering 71

for a reservoir with composite interaction, is entirely determined by the parameters
in Y(θc

N
), as represented for example on Fig. 5.5. Let us define the Hermitian

operator hc
N

by the recurrence relation:

hc
n+1 − hc

n = φc
n+1 , (5.33)

for n = 0, 1, 2, ..., with an arbitrary hc
0. Using Eq. (5.7) as in Section 5.1.3 yields

Uc = e−ihc
N Y(θc

N) eih
c
N . (5.34)

The pointer states of Uc are those of Y(θc
N

) transformed by the unitary e−ihc
N . The

choice of hc
0 for solving Eq. (5.33) is thus physically irrelevant, as it corresponds

in Eq. (5.34) to two constant opposite phases that cancel out. The operator hc
N

here plays exactly the role of hd
N

in Section 5.1.3. The only difference is that, as
φc

n is nonlinear, hc
n is defined with the discrete integral (5.33). If φc

n is nearly linear
in n over the relevant photon numbers [dominant photon numbers in the pointer
state |ψ∞〉 associated to Y(θc

N
)], then hc

n is nearly quadratic and the situation
of Section 5.1.4 is recovered. The reservoir stabilizes nonclassical pointer states
|ψc

∞〉 = e−ihc
N |ψ∞〉 ≈ e−itKHK |α〉 with tK depending on the parameters governing

φc
n.

5.1.4.2 Choice of the reservoir operating point

We now use this detailed description of the reservoir to justify the choice of operating
parameters leading to the generation of the two component MFSS presented in
figure 5.1(e): u = 0.45π, θr = π/2, v = 70 m/s, δ = 2.2 Ω0. Note that the state
in Fig. 5.1(e), with ≈ 2.7 photons on the average has been computed with a finite
cavity lifetime Tc = 65 ms. The same computation in an ideal cavity leads to
an average photon number equal to 2.96, see Fig. 5.5. The two-component MFSS
corresponds to the largest effect of the dispersive interaction, and hence to the most
demanding experimental conditions.

The chosen parameters are the result of a tradeoff between contradictory re-
quirements. First, the composite phase shift φc

n must be nearly linear in n over the
useful photon number range, with a slope of π per photon. Second, the time of con-
vergence towards the steady state needs to be much shorter than the decoherence
time (Tc/5.6) of the target state due to unavoidable cavity relaxation. Linearity
of φc

n improves with larger δ0/Ωr. The π phase shift per photon condition then re-
quires very long atom-cavity interaction time, in clear contradiction with the second
requirement.

The tradeoff is further examined in Fig. 5.6. Figure 5.6(a) evaluates the linearity
of φc

n by showing Dφc
n = φc

n+1 − φc
n = hc

n+1 + hc
n−1 − 2hc

n for different parameter
values. Once again θr has little influence and we set it to π/2. For each value of
Ωr/δ0, we adjust v to have Dφc

n = π for the same mean photon number n = 2.96

(by interpolation). That value is chosen to cover the parameter values of Fig. 5.1(e),
represented by a black dot on Figs. 5.5 and 5.6. As expected, Dφc

n is quite constant
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Figure 5.6: (a) Kerr-effect-inducingDφc
n = φc

n+1−φc
n as a function of photon number

n. Since φc
0 is undefined, we start with Dφc

1. We set θr = π/2. (b) Corresponding
velocities v: for each δ0/Ωr, we adjust v to have Dφc

n = π at n = 2.96. That value is
chosen to cover the parameter values v = 70 m/s, δ0/Ωr = 1/2.2 (black dots) used
for the 2-component MFSS in Fig. 5.1. An ideal hc

n, proportional to HK , requires
Dφc

n constant in n. Small δ0/Ωr values are disadvantageous for this criterion, but
allow higher velocity and hence more frequent reservoir atoms for a same mean Dφc.

for moderate photon numbers in the dispersive region δ0/Ωr ≫ 1. This corresponds
however to unrealistically small atomic velocities, represented on Fig. 5.6(b). In the
region of low δ0/Ωr values, a Dφc

n ≈ π at n = 2.96 can be reached with larger v,
but Dφc

n varies more rapidly with n. This variation is nevertheless sufficiently weak
in the range 2 ≤ n ≤ 5 for δ0/Ωr ≈ 2.2, corresponding to the v = 70 m/s that is
used for Fig. 5.1(e).

Let us now examine the overall reservoir fidelity and the convergence rate λconv

from the vacuum towards the target state, as defined in Fig. 5.4. We choose as
free reservoir parameters θr and δ0/Ωr. This choice sets the value of v [see Fig.
5.6(b)]. Then u is adjusted so that the target mean photon number is 2.96 (see
Fig. 5.5(a)). Figure 5.7(a) shows the ratio λconv/T , where T is the total interaction
time of each atom with the cavity. This ratio is the real convergence rate in s−1

units. For Fig. 5.1(e), since the expected target state decoherence time is of order
65/5.6 ≈ 10 ms, we choose a parameter set δ0/Ωr = 2.2 and θr = π/2, corresponding
to a 1400 s−1 convergence rate (black dot on Fig. 5.7(a)). The fidelity with respect
to an ideal MFSS with the same energy is shown on Fig.5.7(b). Our choice of
parameters does not correspond to a maximum fidelity due to the variation of Dφc

n

in the useful n value range (see Fig. 5.6(a)). However, we get an excellent 95%



5.1. Proposal to stabilize non-classical states of one- and two-mode
radiation fields by reservoir engineering 73

fidelity.
Figures 5.8 left and right respectively present the Wigner functions of the steady

state MFSS obtained with this parameter choice, and of a theoretical superposition
of two coherent states with opposite phases and same total energy. The slight
distortions of the quasi coherent components in the pointer state MFSS are due to
the non-linearity of the phase shift φc

n.

5.1.5 Decoherence and experimental imperfections

The choice of operating parameters performed above has been based on a rough
estimate of the action of decoherence. We now show how the reservoir allows us
to stabilize MFSS with a high fidelity, in presence of cavity relaxation due to a
zero-temperature environment (Section 5.1.5.1). In Section 5.1.5.2, we study the
robustness of the scheme against other experimental imperfections by numerical
simulations.

5.1.5.1 Cavity relaxation

First, we consider the field evolution with a simplified model. It is obtained from
equation (5.19) for a coherent evolution, sandwiched between two dispersive trans-
formations (Eq. (5.21)):

αk+1 = (1 − θ2
r/8)αk + uθr/4

ρ′hk = |αk〉〈αk|
ρ′k = e−iπ/2 N

2

ρ′hk e
iπ/2 N

2

. (5.35)

In a Monte-Carlo approach, the evolution of the field density matrix due to cavity
relaxation can be represented as a succession of quantum jumps described by the
annihilation operator a, occurring at random times and interrupting a non-unitary
deterministic evolution of the field state [Molmer 1993].

The action of a on an MFSS |cα〉 is:

a|cα〉 ∝ |c−α〉 .

Since the loss of photons in the environment cannot be detected, an initial |cα〉 state
rapidly evolves in the absence of the reservoir into a statistical mixture of |cα〉 and
|c-α〉, i.e. into a mixture of |α〉 and |-α〉. When the reservoir is present, it drives
|c-α〉 back to |cα〉 after each jump. If the reservoir-induced convergence time is much
shorter than the average interval between two jumps, then the field is mostly close
to |cα〉.

This simple description suggests to seek a solution for the steady state with
decoherence under the form ρ′h∞ =

∫
µ(z)|z〉〈z| dz. This is a statistical mixture of

coherent states |z〉 with real amplitudes z weighted by µ(z).
In the absence of cavity relaxation, the evolution of ρ′hk in the simplified model

[Eq. (5.35)] can be viewed as a discretization of the Lindblad master equation:

d
dtρ

′h = [βa† − β†a, ρ′h] − κ
2 (Nρ′h + ρ′hN − 2aρ′ha†) , (5.36)
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Figure 5.7: (a): Convergence rate λconv/T giving the slope, in time units
(s−1), of the convergence towards the reservoir pointer state |ψc

∞〉, according to
log | log〈ψc

∞|ρk|ψc
∞〉| = log | log〈ψc

∞|ρ0|ψc
∞〉|−λconv k (see Fig. 5.4). For each θr and

Ωr/δ0, we adjust v as in Fig. 5.6 to keep Dφc
n ≈ π, and u to keep 〈ψc

∞|N|ψc
∞〉 = 2.96;

this reference comes from the values θr = π/2, u = 0.45π, Ωr/δ0 = 2.2, v = 70 m/s
(black dot) used for Fig. 5.1(e). Time T = 3w/v between consecutive atoms
changes as we adjust v. (b): Fidelity of the same |ψc

∞〉 to a 2-component MFSS
|c′α∞

〉 = (|α∞〉 + ieiβ |-α∞〉)/
√

2, where we tune α∞ and 0 ≤ β < π to optimize
fidelity. It turns out that |β| < 0.005 for most parameter values, while |α∞|2 de-
creases as fidelity decreases, below 2.7 for the lowest values of Ωr/δ0. The black dot
marks the case of the 2-component MFSS in Fig. 5.1. For θr values larger than those
represented, no u value stabilizes a mean photon number 2.96, see also Fig. 5.5. The
two plots together illustrate a tradeoff between fidelity in absence of decoherence
and convergence speed.
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Figure 5.8: Wigner function illustrating a stabilized 2-component MFSS (colorbar
as in Fig. 5.1). Left: |ψc

∞〉〈ψc
∞|, pointer state of our reservoir with composite

interaction. Parameter values are θr = π/2, u = 0.45π, δ0 = 2.2Ω0, v = 70 m/s,
i.e. those used for figure 5.1(e), except Tc set to infinity here. Right: target state
|cα〉〈cα|.

with β dt = uθr/4 and κ dt = θ2
r/4. Eq. (5.36) describes the evolution of the field

mode coupled with a classical source with an amplitude β and damped at a rate
κ. At long times, ρ′ converges towards a coherent state |α∞〉 with α∞ = 2β/κ, see
e.g. [Haroche 2006]. Note that in Eq.(5.36), the damping rate κ is induced by the

atomic reservoir and not by cavity relaxation. Since ρ′h follows (5.36), ρ′ follows

d
dtρ

′ = β[a†e−iπN − eiπNa, ρ′] − κ
2 (Nρ′ + ρ′N − 2eiπNaρ′a†e−iπN) ,

where we can assume, up to a change of phase, that β is real and positive.
We now add to this simple model a thermal environment at zero temperature

that induces decoherence of the field with the cavity lifetime Tc = 1/κc. This adds
the usual Lindblad terms to the second member of the previous equation and ρ′ now
obeys:

d
dtρ

′ = β[a†e−iπN − eiπNa, ρ′]

− κ
2 (Nρ′ + ρ′N − 2eiπNaρ′a†e−iπN)

− κc
2 (Nρ′ + ρ′N − 2aρ′a†) . (5.37)

In the Kerr representation, ρ′h then evolves according to:

d
dtρ

′h = β[a† − a, ρ′h]

− κ+κc
2 (Nρ′h + ρ′hN − 2aρ′ha†)

− κc(aρ
′ha† − eiπNaρ′ha†e−iπN) . (5.38)

Without the terms in the third line of Eq. (5.38), we would get Eq. (5.36)
with κ replaced by κ + κc. This would yield a coherent steady state of amplitude
αc
∞ = α∞/(1+η) with η = (4T )/(θ2

r Tc). The whole equation (5.38) leaves invariant
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the set of mixtures of coherent states with real amplitudes in [−αc
∞, α

c
∞]. We

therefore search for the stationary solution under the form:

ρ′h∞ =

∫ αc
∞

−αc
∞

µ(z)|z〉〈z| dz . (5.39)

As shown in Section 5.1.8.3, this yields a solution:

µ(z) = µ0

(
((αc

∞)2 − z2)(α
c
∞)2 ez

2
)rc

αc∞ − z
, (5.40)

with rc = 2κc/(κ+κc). The normalization factor µ0 > 0 ensures that
∫ αc

∞

−αc
∞
µ(z)dz =

1. In any case, µ(−αc
∞) = 0. For small κc, we have limz 7→αc

∞
µ(z) = +∞ and ρ′h∞ is

close to the coherent state |αc
∞〉. For large κc, αc

∞ tends to zero and thus the field
steady-state becomes close to the vacuum.

We now compare this simplified model to the actual reservoir in the presence of
relaxation. Figure 5.9 illustrates the reservoir-induced convergence after a quantum
jump. The leftmost column shows the Wigner function of ρ′ during this recovery
process for the simplified model (5.35). We start as |cα〉 (upper left frame). Im-
mediately after a jump (second frame in the leftmost column), the state is |c-α〉.
Successive snapshots of the recovery procedure are presented in the next frames.
We neglect here the action of cavity relaxation during this recovery process. Note
that after ≈ 4 reservoir atoms, the state is the vacuum, from which |cα〉 is gradually
recovered.

The second column depicts the evolution of ρ′h. In this representation, the initial
state is the coherent state |α〉 (first frame). It jumps to |-α〉 (second frame), and
then gradually evolves back towards |α〉 according to Eq. (5.19), staying coherent
at all time.

On the third column, we show the Wigner functions of the actual cavity state ρ
induced by our reservoir, whose dynamics is governed by the Kraus map associated
to Uc. The last column shows the evolution of ρh = eih

c
N ρ e−ihc

N . We observe that
ρh and ρ′h follow qualitatively the same path. The main difference is a notable
distortion of ρh when the field amplitude is near zero.

In figure 5.10, we plot the two marginal distributions of the Wigner functions
for ρ′h∞ and ρh

∞ along the real and complex quadratures. The reservoir steady states
ρ′h∞ and ρh

∞ approximately correspond to the quantum Monte Carlo average of the
trajectories depicted in Fig. 5.9. Figure 5.10 features dominant peaks which suggest
that the field is mostly close to the target. The distortions with respect to a coherent
state visible on the fourth column of Fig. 5.9, lead to a plateau or bump on the
marginal distributions of ρh

∞. We nevertheless observe that our simplified model
[Eq.(5.37)] captures the main features of the influence of decoherence.

5.1.5.2 Experimental uncertainties

We have performed extensive numerical simulations to assess the robustness of the
reservoir versus uncertainties in the experimental settings. The evolution operators
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Figure 5.9: Evolution of the cavity field coupled to a reservoir stabilizing a 2-
component MFSS, immediately after a relaxation-induced photon loss. Parameter
values are those used for Fig. 5.8. The frames are labelled by the number of atomic
interactions. A photon loss out of the reservoir pointer state occurs between frames
labelled 0− and 0+. Left two columns: simplified model, described by Eq. (5.35).
We show the Wigner functions of both the cavity state, ρ′, on column 1 and of ρ′h

on column 2. Right two columns: same plots for the actual reservoir characterized
by Uc (ρ on column 3 and ρh on column 4).
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Figure 5.10: Steady state of the cavity field coupled to the atomic reservoir and to
a relaxation-inducing environment with Tc =65 ms. Top [resp: bottom]: marginal
distribution of the Wigner function along the imaginary [resp: real] quadrature
for the simplified model (dashed line) and for our reservoir (solid line). These
states correspond to the quantum Monte Carlo average of the sequence presented
in Fig. 5.9.
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during the interaction are computed exactly from the Hamiltonian HJC [Eq. (5.3)],
using the quantum optics package for MATLAB [Tan 1999]. The Hilbert space is
truncated to the 60 first Fock states. We take into account separately the atom-
cavity coupling determined by HJC and the relaxation of the cavity mode (modeled
in the standard Lindblad form). This simplifying approach holds since T ≪ Tc.

We use as a reference the generation of a two-component MFSS containing 2.7
photons on the average (thermal environment with Tc = 65 ms and a mean number
nt = 0.05 of blackbody photons per mode, δ = 2.2 Ω0, v = 70 m/s, u = 0.45π,
tr = 5 µs, see Fig. 5.1(e)). We take into account the randomness of the Rydberg
state preparation [Sarlette 2011]. In each atomic sample, we excite a random number
of atoms obeying a Poisson law with an average pat. We take a low value pat = 0.3

such that, in a first approximation, we only get samples containing zero or one atom
(we examine later in this Section the influence of samples containing two atoms).
Note that these are the conditions used for figure 5.1(e). In each case, we compute,
for a slight change in the experimental settings, the variation of the fidelity of the
pointer state w.r.t. an ideal optimized two-component MFSS. For the reference set
of parameters, the steady-state fidelity is 70%.

For velocities in the 66 ≤ v ≤ 74 m/s interval, the fidelity is only slightly altered,
varying from 65% to 70%. It is thus insensitive to a velocity dispersion in the 10%
range, well below the values achieved in the experiment.

The fidelity is also quite insensitive to a slight mismatch in the values of the
detuning for the two dispersive interactions. Assuming that δ takes the value a1 ×
2.2 Ω0 in the first dispersive period and −a2×2.2 Ω0 in the second, the fidelity drops
by at most 10% when a1 and a2 vary by up to 10%. The latter cover far more than
the actual uncertainty on the atomic frequency.

We have slightly offset the timing of the resonant interaction, shifting it in time
by δt and keeping tr constant. A shift of up to 1 µs (well above the 10 ns timing
accuracy) has no effect on the fidelity at the 1% level. The fidelity is also quite
insensitive to a finite rise time for the voltage controlling the atomic Stark effect in
the cavity, and hence to a finite commutation time for the detuning δ. Using an
exponential relaxation model, and setting tr to maintain a constant θr value, we
find that the fidelity is unchanged for commutation times up to 200 ns, in the range
of accessible values.

We have also studied the sensitivity to the atomic samples containing two atoms
at the same time. We decide randomly for each sample the actual number of atoms,
Na, according to a Poisson distribution with the average value pat, truncated above
Na = 2. For two-atom samples, we integrate the exact equations of motion, assum-
ing an identical coupling of both atoms to the mode. This condition is realized in
the experiment, since the maximum separation between the atoms in a sample is,
below 1 mm in C, much smaller than the wavelength – 6 mm – or than the mode
waist w.

We observe that the two-atom events do have an impact on the fidelity. For
pat = 0.3, the energy of the prepared cat decreases down to 2.4 photons on the
average and the fidelity is reduced to 66%. For larger pat values, the decrease is
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more important and the fidelity reduces to 34% for pat = 0.5 (for larger pat, the
simulation should also include 3-atom samples).

If we consider an unrealistic reservoir involving samples containing always two
atoms, we get as steady-state a large two-component cat, with 4.8 photons on the
average and a fidelity of 65%. In the real situation, this two-atom engineered reser-
voir interferes destructively with the operation of the one-atom samples, leading to
reduced average energy and fidelity.

When we reduce pat below 0.3, the fidelity and the energy also decrease, since
the reservoir is then less efficient to counteract decoherence. For pat = 0.2, we get
a 1.9 photons state with a fidelity of only 54%. Optimizing the average number of
atoms per sample is thus important to achieve an efficient engineered reservoir.

Note finally that the phase of the MFSS coherent components is determined by
the phase of the atomic state superposition when the resonant interaction period
begins. Since the atom is detuned from the mode during the dispersive interactions,
this phase rotates at frequency ±δ0 during the time interval −T/2 ≤ t ≤ −tr/2.
The timing of Stark shifts, that determines the atom-field interactions, should thus
define (T − tr)/2 with an uncertainty much smaller than 1/δ0 to avoid spurious
rotations of this phase. With detunings in the 100 kHz to few MHz range, this
timing accuracy is easily achieved.

5.1.6 A reservoir for two-mode entangled states

Our reservoir engineering strategy can be adapted to protect entangled state su-
perpositions of two cavity modes, which violate a Bell inequality. Preparation
of entangled states of two cavity modes, without protection, was considered in
[Milman 2005, Rauschenbeutel 2001]. An approximate reservoir for entangling large
atomic ensembles is proposed and realized in [Krauter 2011]. In ion traps, reservoir
engineering has recently been used to stabilize a Bell state and a GHZ state of four
qubits [Barreiro 2011].

We present here a scheme in which the two modes belong to the same cavity (two
TEM modes of orthogonal polarization, whose degeneracy is lifted by an appropriate
mirror shape). Extension to two separate cavities would require atoms going back
and forth between them, a feat not easily achieved in the present context of the
ENS experiments.

5.1.6.1 Model and target

We consider two modes a and b of the cavity of respective frequencies ωa < ωb. We
denote by b [resp. a] the photon annihilation operator for mode b [resp. mode a]
and Nb = b†b [resp: Na = a†a] the associated photon number operators. A sepa-
rable joint state of the two modes is written |ψa, ψb〉. The atomic qubit (transition
frequency ω0 ≈ ωa, ωb) interacts with the modes according to the Jaynes-Cummings
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Hamiltonian, which is written, in a frame rotating at the frequency ωm = (ωa+ωb)/2:

HJC = ∆ (Nb − Na) +
δ(t)

2
(|e〉〈e| − |g〉〈g|) (5.41)

+i
Ω(s)

2
(|g〉〈e|(a† + b†) − |e〉〈g|(a + b)) ,

where ∆ = (ωb−ωa)/2 > 0 and δ(t) = ω0(t)−ωm. Here again, δ(t) can be adjusted
by controlling ω0 through the Stark effect. We assume that the couping Ω(s) is the
same with both modes, a restriction that could be easily relaxed.

We denote by U the unitary evolution operator associated to HJC (the overline
here denotes two-mode operators), which is the solution of the Schrödinger equation:

d

dt
U(t) = −iHJC(t)U(t) with U(t0) = I . (5.42)

We denote by Uq the two-mode evolution operator corresponding to the parameter

set q, and (MUq
g ,M

Uq
e ) the associated Kraus operators. Approximate analytical

expressions of Uq for the relevant parameter sets are given in Section 5.1.8.1. Op-
erators Z and Y generalizing for each mode the ones introduced in the previous
Sections are also defined in Section 5.1.8.1.

Let us consider first the successive resonant interaction of the atoms, initially pre-
pared in |uat〉 = cos(u/2)|g〉+sin(u/2)|e〉, with the modes b and a. The correspond-

ing propagator is Ur = Y(θr
Na

)Y(θr
Nb

). The associated Kraus map
(
M

Ur
g ,MUr

e

)

stabilizes a tensor product of two coherent states |-α, α〉, where α = 2u/θr for small
enough u and θr.

An initial coherent state product |α, β〉 propagated under the Hamiltonian

H
′
K = γK(Na + Nb)

2 + ζaNa + ζbNb (5.43)

for a time tK = π
k γK

, k small integer, gets transformed into

e−itKH
′
K |α, β〉 =

1√
k

k∑

m=1

rm |e−i2mπ/kα̃, e−i2mπ/kβ̃〉 (5.44)

with rm = 1√
k

∑k
n=1 e2imnπ/k e−i(n2+kn)π/k, α̃ = −e−iζatKα and β̃ = −e−iζbtKβ. In

particular, for tKγK = π/2, the state

|cα̃,β̃〉 = (|α̃, β̃〉 − i| − α̃,−β̃〉)/
√

2

is entangled for any α, β > 0, see e.g. [Banaszek 1999]. Remarkably, a state |cα,β〉
is also obtained when propagating an initial coherent state product for a time tK =

π
2 γK

under Hamiltonian

HK = γK(Na − Nb)
2 + ζaNa + ζbNb (5.45)
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since π
2 (Na+Nb)

2− π
2 (Na−Nb)

2 = 2πNaNb. In particular, for ζa = 0 and ζb = 2γK

an initial state |-α, α〉 would get transformed into:

|cα〉 = (|α, α〉 − i|-α, -α〉)/
√

2 . (5.46)

In the following we show how to stabilize an ESMS of two field modes with the
two-level atom reservoir setup used for the single-mode case. A first method, which is
the strict analog of the single-mode case, could mimic the action of H

′
K on a coherent

state product. In the large ∆ limit, it allows one to stabilize any k-component
ESMS, but requires 4 dispersive interactions which can yield prohibitively large
interaction times for low k. The atom’s frequency would be successively set to
ωb + δ0, ωa + δ0, ωb, ωa, ωb − δ0, ωa − δ0. We would need to be in a regime where
∆ ≫ δ0 ≫ Ω0. A second method mimics the action of HK in special conditions with
2 dispersive interactions only, allowing to stabilize |cα〉 more efficiently. We have
chosen to detail the second method since although it only stabilizes a 2 component
ESMS, it allows violation of Bell’s inequality for a cavity lifetime only a few times
larger than the best reported so far [Kuhr 2007].

In the next Section, we show that the action of HK can be simulated by sand-
wiching the resonant interaction Ur between two dispersive interactions. The cor-
responding reservoir thus stabilizes |cα〉.

5.1.6.2 Composite interaction

The detuning profile δ(t) used to stabilize |cα〉 is represented in Fig. 5.11 (bottom
part). The atomic frequency is first set at ωm (δ = 0), between t = −T/2 and t =

−tr. The atom interacts non-resonantly with both modes, with opposite detunings.
We restrict in this Section to the dispersive regime. The corresponding evolution
operator is Z(φ(Nb −Na)) (see Section 5.1.8.1), describing opposite phase shifts of
the two modes driven by the atom, with a phase shift per photon φ.

The atom is then successively set at resonance with b and a for a time tr. During
these short time intervals, we neglect the residual dispersive interaction with the
other mode. The second dispersive interaction with the two modes is performed by
setting again δ = 0 from tr to T/2. With this sequence, the phase shifts produced
in the dispersive interactions would add up for the terms where the atom undergoes
|e〉〈e| and |g〉〈g| during the resonant parts. Instead, as in the single mode case,
these phase shifts must cancel out. We thus apply on the atom at tr a π pulse on
the |e〉 → |g〉 transition. This almost-instantaneous pulse on the atom while it is in
the cavity can be achieved by injecting a field through the space between the cavity
mirrors. The field frequency ωe, very different from ωc, does not affect the cavity
field. On the other hand, the atomic transition frequency ω0 is Stark-shifted close
to ωe for the (very short) duration of this pulse.

The phases of modes a and b evolve at the frequencies ±∆. In order to cancel
the build-up of these phases during reservoir operation, we constrain the total time
T between successive resonant interactions to T∆ = 0 modulo 2π. This condition
is easily achieved with the Stark atomic tuning.
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Figure 5.11: Timing of the composite interaction of the atom with the two cavity
modes a and b at frequencies ωb > ωa. Bottom frame, solid line: time profile of δ
(difference between the atomic frequency ω0 and the mean frequency ωm of the two
cavity modes) during cavity crossing by one atomic sample. For δ = 0, +∆, −∆

respectively, ω0 coincides with ωm = ωb+ωa

2 , ωb, ωa. The π pulse on the atomic state
is represented here as a red dot. Bottom frame, dashed line: coupling strength Ω(vt)

with t = 0 when the atom is at cavity center. Top frame: scheme of the propagators
corresponding to the successive steps in the composite interaction.
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This leads, up to irrelevant rotations, to the propagator (see Section 5.1.8.1 for
a detailed calculation):

UT ≈ U
eff

c̄ = Z(φ(Nb − Na))Y(θr
Na

)

Y(θr
Nb

)Z(φ(Na − Nb)) . (5.47)

Setting the dispersive interactions to produce a φ = π phase shift per photon, we
get

U
eff

c̄ = e−itKHKY(θr
Na

)Y(θr
Nb

)eitKHK ,

with tKγK = π/2. The resulting atomic reservoir thus stabilizes the entangled
pointer state |cα〉. Adapted detuning profiles δ(t) yield the same propagators when
the interaction strength is not the same on both modes4. Generalization to entangled
states with more than two coherent components in each mode is straightforward,
using slightly more complex detuning sequences. Indeed the latter must then be
chosen to have additive instead of opposite dispersive effects on the two modes.

5.1.6.3 Entanglement and the Bell inequality

The entanglement of the photon state produced by the reservoir can be proved
by a violation of a Bell inequality adapted to this two-mode case [Banaszek 1999,
Milman 2005]. The Bell signal is:

B(γa, γb, γ
′
a, γ

′
b) = π2

4 |W (γ′a, γ
′
b) +W (γa, γ

′
b) +W (γ′a, γb) −W (γa, γb)| , (5.48)

where W (γa, γb) is the two-mode Wigner function. It is defined as:

W (γa, γb) = 4
π2 Tr

(
D

a
−γa

D
b
−γb

ρD
a
γa

D
b
γb

P

)
,

where P = eiπ(Na+Nb) is a joint parity operator and D
a
γa

and D
b
γb

are the displace-
ment operators for modes a and b respectively. In a local realistic model, B is always
smaller than 2. A value larger than 2 for some (γa, γb, γ

′
a, γ

′
b) amplitudes is a proof

that ρ is not separable. Let us give a brief explanation for this. The Bell signal in
(5.48) may be written as

B = |〈O1O2〉 + 〈O2O3〉 + 〈O1O4〉 − 〈O4O3〉|

where 〈OkOj〉 = Tr (ρOkOj) is the expectation value of the observable Ok ⊗ Oj

when the system is in state ρ, and

O1 = D
a
γ′

a
PaD

a
−γ′

a
O2 = D

b
γ′

b
PbD

b
−γ′

b

4Consider interaction strength Ωa(s) = Ω(s) with mode a and Ωb(s) = λΩ(s) with mode b, where

λ 6= 1. Adjusting the resonant interaction times to get the same coherent state amplitude in both

modes is straightforward. Equal dispersive phases are obtained by setting δ(t) ≈ δ̄0 = ∆ 1−λ2

1+λ2 6= 0

for t ∈ (−T/2,−tr/2) ∪ (tr/2, T/2). Indeed, to first order approximation in Ω0/∆, this choice

shifts the eigenvalues of the Hamiltonian by equal amounts Ωa(s)/
√

1 + δ̄0
∆

= Ωb(s)/
√

1 − δ̄0
∆

for

the two modes.



5.1. Proposal to stabilize non-classical states of one- and two-mode
radiation fields by reservoir engineering 85

O3 = D
a
γa

PaD
a
−γa

O4 = D
b
γb

PbD
b
−γb

.

We have defined the parity operators for each mode Pa = eiπNa and Pb = eiπNb . A
computation like that of the CHSH inequality follows [Nielsen 2000, page 115]. The
result ok of a measurement of the observable Ok yields one of its eigenvalues. Since
O2

k = I, these eigenvalues are 1 and −1. Assume that before each measurement,
the four observables (O1,O2,O3,O4) (even the ones which are not measured) have
a definite value (o1, o2, o3, o4) with probability p(o1, o2, o3, o4). Then we have

B = |〈O1O2〉 + 〈O2O3〉 + 〈O1O4〉 − 〈O4O3〉|
= |

∑

o1,o2,o3,o4

p(o1, o2, o3, o4)o1o2 +
∑

o1,o2,o3,o4

p(o1, o2, o3, o4)o2o3

+
∑

o1,o2,o3,o4

p(o1, o2, o3, o4)o1o4 +
∑

o1,o2,o3,o4

p(o1, o2, o3, o4)o3o4|

= |
∑

o1,o2,o3,o4

p(o1, o2, o3, o4)(o1o2 + o2o3 + o1o4 − o3o4)| .

Notice that b = o1o2+o2o3+o1o4−o4o3 = (o1+o3)o2+(o1−o3)o4. Since o1, o3 = ±1,
we either have o1 + o3 = 0 or o1 − o3 = 0. Hence b = ±2. And hence, the absolute
value of the average will necessarily satisfy

B ≤ 2 .

Now let us show that for an entangled state of the form |cα〉 = (|α, α〉−i|-α, -α〉)/
√

2,
we can find γa, γb, γ

′
a and γ′b such that the bell signal violates the latter inequality:

B > 2. We take ρ = |cα〉〈cα|, and hence we have

π2

4 W (γa, γb) = 1
2〈α|Da

γa
eiπNaD

a
−γa

|α〉〈α|Db
γb
eiπNbD

b
−γb

|α〉
+ 1

2〈−α|Da
γa
eiπNaD

a
−γa

| − α〉〈−α|Db
γb
eiπNbD

b
−γb

| − α〉
+ ℜ(i〈−α|Da

γa
eiπNaD

a
−γa

|α〉〈−α|Db
γb
eiπNbD

b
−γb

|α〉)

The first two lines in this equation correspond to the Wigner function of a coherent
state in each mode. A statistical mixture of |α, α〉 and | − α,−α〉 would lead to
the same terms. The last line however, is a signature of coherence between the two
components. We thus expect that this is the term which will enable the violation
of the Bell inequality. To compute these terms, we will need the following relations
[Haroche 2006, Section 3.1.3]

Dγ |α〉 = e(γα†−γ†α)/2|α+ γ〉

〈α|β〉 = e−
1
2 (|α|2+|β|2)eα

†β .

Simulations show that for real α, the Bell inequality is violated for pure imaginary
γa, γ

′
a, γb, γ

′
b. Hence, we take a real α and constrain our search to pure imaginary

amplitudes, which we denote γa = iξa where ξa is now real. The same holds for the
three other amplitudes. We have

〈α|Da
ξa
eiπNaD

a
−ξa

|α〉 = e−2(α2+ξ2
a) ,
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and

ℜ(i〈−α|Da
ξa
eiπNaD

a
−ξa

|α〉〈−α|Db
ξb
eiπNbD

b
−ξb

|α〉) = e−2(ξ2
a+ξ2

b ) sin(4(ξa + ξb)α) .

This yields

π2

4 W (γa, γb) = e−(4α2+2ξ2
a+2ξ2

b ) + e−2(ξ2
a+ξ2

b ) sin(4(ξa + ξb)α) .

As expected, the first term in this equation can be neglected for large enough α. A
re-scaling ξa, ξb → 4αξa, 4αξb yields

π2

4 W (γa, γb) = e−
1

8α2 (ξ2
a+ξ2

b ) sin(ξa + ξb) ≈ sin(ξa + ξb) ,

for large enough α. The Bell signal may now simply be written as

B = | sin(ξ′a + ξ′b) + sin(ξ′a + ξb) + sin(ξa + ξ′b) − sin(ξa + ξb)| .

For ξa = ξb = 0 and ξ′a = ξ′b = π/3, we find B = 3
√

3/2 ≈ 2.6 > 2. This corresponds
to γa = γb = 0, and γ′a = γ′b = i(π/3)/(4α) ≈ 1/4, for α = 1. This is consistent with
the simulation of Fig. 5.13 which we explain in the next section. The white dots on
this figure show the amplitudes γa, γb, γ

′
a and γ′b which are found to maximize the

Bell signal.

5.1.6.4 Numerical simulations

We numerically solve Eq. (5.42) and iterate the corresponding Kraus maps starting
from the vacuum state with u = π/4 and θr = π/2, such that the entangled field
modes amplitude α is of the order of 1. Decoherence is modeled as the separate
coupling of each field mode with a thermal environment, with the same damping
time Tc and the same temperature (nt = 0.05). The interaction strength Ω(s) of
the atom with each mode has the same Gaussian profile as in the single-mode case,
with Ω0/2π = 50 kHz. In the computations, the field Hilbert space is truncated to
the 10 first Fock states for each mode.

Figure 5.12 shows (solid line) the evolution of the fidelity 〈cα|ρ|cα〉 of the two-
mode cavity state ρ w.r.t. an entangled two-component MFSS |cα〉 with |α|2 = 0.67

photons on average, starting from the vacuum. The reference state is numerically
optimized to maximize its fidelity w.r.t. the reservoir stationary state (≈ ρ200). We
find 0.67 < 2u/θr = 1 because of finite cavity lifetime. We have chosen ∆ = 8Ω0,
Tc = 650 ms. The atomic velocity is v = 22 m/s and each atomic sample has a
probability pat = 0.3 to contain one atom (we neglect here two-atom samples). The
engineered reservoir is efficient, since the optimal fidelity is ≈ 89%. This value is
reached after ≈ 30 samples, corresponding to only 10 atoms on average. To illustrate
the protection of the state, we interrupt the reservoir after 200 atomic samples. As
shown in Figure 5.12, the fidelity w.r.t. the target state rapidly decreases.

Figure 5.13 shows a cut of the two-mode Wigner function of ρ200 in the plane
ℜ(γa) = ℜ(γb) = 0 in which maximum violation of the inequality is expected



5.1. Proposal to stabilize non-classical states of one- and two-mode
radiation fields by reservoir engineering 87

0 100 200 300 400
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
id

e
lit

y

t/T
0 100 200 300 400

1

1.2

1.4

1.6

1.8

2

2.2

M
a
x
im

u
m

 B
e
ll 

s
ig

n
a
l

Figure 5.12: Simulation of the reservoir stabilizing a two-mode entangled state.
Solid line: fidelity of ρ, the cavity state starting at vacuum, w.r.t. an ideal optimized
entangled state of the two modes |cα〉, as a function of time in units of the sample
interaction time T . The reservoir operates up to t/T = 200 and is then switched
off. Dashed line: maximum Bell signal Bmax as a function of time. A Bmax value
above the thin dash-dotted line (Bmax = 2) proves entanglement of ρ.

[Banaszek 1999]. A numerical optimization of the Bell signal in this plane provides
the four amplitudes shown as white dots. We have performed similar optimizations
of B after each atomic sample interaction and plotted the maximum Bell signal Bmax

as a dashed line in figure 5.12. It reaches ≈ 2.1 > 2 which implies that the reservoir
stabilizes a provably entangled state of the modes. When the reservoir is switched
off after 200 interactions, decoherence causes a rapid decrease of Bmax.

Figure 5.14 shows the maximum Bell signal Bmax of the steady state as a func-
tion of Tc, for three detuning and atomic velocity values. The Bell inequality is
violated for all these settings when Tc > 450 ms. The crossing of the different
curves illustrates the competition between two effects. For small Tc, the Bell signal
is larger when ∆ is smaller, since a small ∆ corresponds to a relatively large veloc-
ity and thus to a smaller total interaction duration T . Thus the reservoir is a more
efficient protection against decoherence when ∆ is small. For very large Tc, cavity
damping becomes negligible w.r.t. the dispersive approximation error introduced in
the reservoir action, for which large ∆ values are preferred.

The Tc values required for a violation are certainly difficult to reach, but they
are only ≈ 3 times larger than the best damping time reported so far [Kuhr 2007].
Stabilizing field states violating a Bell inequality may thus be within reach of the
next generation of experiments.
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Figure 5.13: Cut in the plane (ℜ(γa) = ℜ(γb) = 0) of the two-mode Wigner function
W (γa, γb) of ρ200. The fringes and negative values for W are a signature of the
“quantumness” of the stabilized state. The white dots show the points used to
maximize the violation of Bell’s inequality.
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Figure 5.14: Maximum Bell signal Bmax of ρ200 as a function of the cavity lifetime
Tc for ∆/2π = 300 kHz, v = 30 m/s (solid blue line); ∆/2π = 400 kHz, v = 22 m/s
(dashed-dotted green line); ∆/2π = 500 kHz, v = 18 m/s (dashed red line).

5.1.7 Summary and discussion

We have proposed simple engineered reservoirs stabilizing a wide variety of non-
classical field states in one and two quantum cavity modes. These reservoirs effi-
ciently counteract the standard relaxation of the cavities and offer promising per-
spectives for studies and applications of mesoscopic field state superpositions.

We have gained a detailed insight into the reservoir mechanisms, and particu-
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larly into the way it corrects for decoherence-induced quantum jumps of the field.
We have performed extensive numerical simulations justifying the approximations
used in [Sarlette 2011] and assessing the robustness of the method to experimental
imperfections.

We have discussed here, for the sake of definiteness, the reservoir operation
in the context of the microwave-CQED experiments performed with circular Ryd-
berg atoms and superconducting cavities at ENS. We have shown that many quan-
tum states protected by our reservoir could realistically be observed in this con-
text. Clearly, the method could be straightforwardly extended to other spin/spring
systems, in cavity QED and trapped ions contexts. It is particularly appealing
for the thriving field of circuit-QED [Devoret 2004]. Resettable superconducting
qubits [Reed 2010b] interacting with one or two cavity modes could be used to im-
plement our proposal. With two separate cavities interacting with one qubit, it
would become possible to stabilize a non-local entangled mesoscopic superposition
and to study the fascinating interplay between decoherence and non-locality.

5.1.8 Detailed computations

5.1.8.1 Propagators

This section details the computation of the propagators associated to the atom-
cavity interaction in the various settings used in the main text. These propagators
are computed using an adiabatic approximation. We start this section by clarifying
this approximation. Consider the general problem of solving [Teufel 2003]:

iε
d

dt
Uε(t) = H(t)Uε(t) , (5.49)

where ε is a small parameter, Uε is a unitary operator initialized at Uε(0) = I, and
H(t) is a time-dependent hermitian operator. In general, H(t1) and H(t2) do not
commute for different times t1 and t2, which makes the above differential equation
non-trivial. For a given projector P(t) on an eigenspace of H(t), we start by defining
Ha(t) and Uε

a(t):

iε
d

dt
Uε

a = HaU
ε
a ,

Ha = H − iεP
d

dt
P − iεP⊥ d

dt
P .

The adiabatic theorem states that if t → H(t) is C2 (twice continuously differ-
entiable) and the eigenvalue λ(t) corresponding to the projector P(t) satisfies the
gap condition [Teufel 2003, equation (1.5)], then t → P(t) is C2 and there exists a
constant C, such that for all t

||Uε(t) − Uε
a(t)|| ≤ Cεt .

In practice, we would like to have a simple expression for Uε
a. The latter has the

interesting property of transforming, exactly, a projector at time 0 into a projector
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at time t:
Uε

a(t)P(0)Uε
a(t)

† = P(t) .

As pointed out in [Teufel 2003, Remark 1.3], the generalization where many parts of
the spectrum are mutually separated by a gap is straightforward. In particular, we
consider the simple case where H has N separated eigenvalues (N is the dimension
of the Hilbert space), and hence, each projector P1, · · · ,PN is of rank one. We
therefore search for a solution of the form:

Uε
a(t) =

N∑

n=1

eiφn(t)|Vn(t)〉〈Vn(0)| ,

where Pn(t) = |Vn(t)〉〈Vn(t)|, and Pn(0) = |Vn(0)〉〈Vn(0)|. Recall that
H(t)|Vn(t)〉 = λn(t)|Vn(t)〉. To fully determine Uε

a, we need to find φn. To this
end, we insert this expression in the Schrödinger equation with

Ha = H − iε
N∑

n=1

Pn
d

dt
Pn .

Multiplying by 〈Vn(t)| on the left and |Vn(0)〉 on the right, we find

d

dt
φn(t) = −λn(t)/ε+ i

〈
Vn(t)| d

dt
Vn(t)

〉
.

We have

Uε
a(t) =

N∑

n=1

e−i 1
ε

∫ t
0 λn(s)dse

−
∫ t
0

〈
Vn(s)| dVn(s)

ds

〉

|Vn(t)〉〈Vn(0)| .

Notice that this expression of Uε
a(t) is invariant under the transformation |Vn(t)〉 →

eiθn(t)|Vn(t)〉, where θn(.) is a smooth function. This “Gauge choice freedom”
is expected since each eigenvector |Vn(t)〉 is only defined up to a global phase.
The term 1

ε

∫ t
0 λn(s)ds is commonly called the dynamical phase, while the term

∫ t
0

〈
Vn(s)|dVn(s)

ds

〉
is related to the Berry phase [Shapere 1989]. In the case where

for all time we have
〈
Vn(s)|dVn(s)

ds

〉
= 0, the expression of Uε

a simplifies to the one

we commonly use:

Uε
a(t) =

N∑

n=1

e−i 1
ε

∫ t
0 λn(s)ds|Vn(t)〉〈Vn(0)| .

When does this condition hold? Take a basis of the Hilbert space |0〉, .., |N〉. For
all time an eigenvector |V (t)〉 can be written: |V (t)〉 =

∑
k rk(t)e

iθk(t)|k〉 (rk and θk

are real smooth functions). Besides we have
∑

k r
2
k = 1, hence

∑
k rk(t)

d
dtrk(t) = 0.

Hence
〈
V (t)| d

dtV (t)
〉

= i
∑

k r
2
k(t)

d
dtθk(t). Whenever the phases θk are time inde-

pendent,
〈
V (t)| d

dtV (t)
〉

= 0. This is the case for the eigenvectors (|−, n〉t, |+, n〉t)
that diagonalize HJC(t) in the present work (see below (5.51)), which shows that
we don’t acquire a Berry phase [Shapere 1989].



5.1. Proposal to stabilize non-classical states of one- and two-mode
radiation fields by reservoir engineering 91

Single-mode case: For a resonant interaction [δ(t) = 0], Eq. (5.4) is written:

d
dtU(t) =

Ω(s)

2
( |g〉〈e| a† − |e〉〈g|a ) U(t) ,

with s = vt if we set the time origin such that the atom crosses the cavity axis at
t = 0. For each Bloch sphere Bn associated with the invariant space spanned by
(|g, n+1〉, |e, n〉), this interaction induces a Rabi rotation at an angular rate

√
nΩ(s)

around the Y axis. We therefore define the unitary operator Y(fN) [Eq. (5.9)]
performing a rotation around Y by an angle f(n), where f(n) is an arbitrary function
of n. The resonant interaction propagator is thus given by Eq. (5.12).

For the interaction between t1 and t2 with a constant nonzero detuning δ(t) =

δ 6= 05, the Gaussian variation of Ω(vt) precludes an exact integration of Eq. (5.4).
However, assuming that Ω(vt) varies slowly enough, the coupled atom-field sys-
tem evolves adiabatically. An initial eigenstate of HJC(t1) (a “dressed state") then
remains, for any time t, close to an eigenstate of HJC(t) [Haroche 2006]. This
adiabatic approximation is valid provided:

∣∣∣ 2v
wΩ0

√
n+1

se−s2
∣∣∣≪

(
δ

Ω0
√

n+1

)2
+ e−2s2

, ∀s ∈ ( t1v
w , t2v

w ) , (5.50)

for all n in the relevant photon number range [Messiah 1964, Section XVII-13].
The dressed states (|−, n〉t, |+, n〉t) that diagonalize HJC(t) for each n = 1, 2, ...

satisfy

HJC(t) |±, n〉t = ±δ
2

√

1 + (n+ 1)

(
Ω(vt)

δ

)2

|±, n〉t ,

and are explicitly written

|−, n〉t = cos(ξ(t)n /2) |g, n+ 1〉 + i sin(ξ(t)n /2) |e, n〉
|+, n〉t = i sin(ξ(t)n /2) |g, n+ 1〉 + cos(ξ(t)n /2) |e, n〉 , (5.51)

where we define ξ(t)n by

tan ξ(t)n = Ω(vt/2)
√

n

δ
with ξ(t)n ∈ (−π

2 ,
π
2 ) . (5.52)

The propagator Uq corresponding to the parameter set q = (t1, t2, v, δ) is thus

Uq =
∑

n

|−, n〉t2〈−, n|t1 e
i
2
φq

n+1 + |+, n〉t2〈+, n|t1 e
−i
2

φq
n+1 , (5.53)

where the accumulated phase φq
n is given by:

φq
n = δ

∫ t2

t1

√
1 + n(Ω(vt)/δ)2 dt . (5.54)

5The following developments also carry through with (slowly) continuously varying δ(t). For

pedagogical reasons, we have chosen to explain the experiment with piecewise constant δ. We

therefore directly particularize the notation to δ(t) = δ constant.
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The restriction of Uq on the Bloch sphere Bn can then be written as:

|−, n〉t2〈−, n|t1 e
i
2
φq

n+1 + |+, n〉t2〈+, n|t1 e
−i
2

φq
n+1

= (|−, n〉t2〈g, n+ 1| + |+, n〉t2〈e, n|)
×(|g, n+ 1〉〈g, n+ 1| e i

2
φq

n+1 + |e, n〉〈e, n| e−i
2

φq
n+1)

×(|−, n〉t1〈g, n+ 1| + |+, n〉t1〈e, n|)† . (5.55)

The transformation (|−, n〉t〈g, n + 1| + |+, n〉t〈e, n|) is a rotation around the
X-axis of Bn by an angle −ξ(t)n+1. The transformation (|g, n+ 1〉〈g, n+ 1| eiφq

n+1/2 +

|e, n〉〈e, n| e−iφq
n+1/2) is a rotation around the Z-axis of Bn by an angle φq

n+1. We
thus introduce in Eqs. (5.8),(5.10) the unitary operators X(fN) and Z(fN) repre-
senting these rotations on each Bloch sphere Bn. Noting that X(−fN)† = X(fN),
we can finally write (5.53) in the compact form:

Uq = X(−ξ(t2)
N

) Z(φq
N

) X(ξ
(t1)
N

) . (5.56)

At the start and end of the complete composite interaction, the atom-cavity coupling
is weak: Ω2(±vT/2) = Ω2

0/100. We can thus take X(−ξ(−T/2)
N

) = X(ξ
(T/2)
N

) = I in

Section 5.1.4 since ξ(±T/2)
N

≈ 0. This leads to Eq. (5.25).
In the large detuning regime studied in Section 5.1.3, we can even neglect all the

X operators in Uq compared to the large dispersive phase shift operator Z(φq
N

).

Two-mode case: In the two-mode case, it is not possible to get an exact expres-
sion for the dressed states. We thus restrict either to a resonant interaction with
one of the modes or to a dispersive interaction with both, assuming a large detuning
2∆ between modes a and b. In the resonant case, we neglect the residual dispersive
interaction with the other mode. For the non-resonant interaction, we use simple
first-order dispersive expressions. In both cases, simulations integrating Eq. (5.42)
explicitly confirm the validity of our approximations.

We start by giving some explicit formulas for the eigenvectors and eigenvalues of
HJC/∆. These are computed using perturbation theory [Messiah 1964]. Using the
adiabatic approximation, we are then able to give an expression for the propagator.
From (5.41), we have

HJC/∆ = (Nb − Na) + iε(−|g〉〈e|(a† + b†) + |e〉〈g|(a + b)) ,

where ε = −Ω(s)
2∆ and we have taken δ = 0.

We first split the total Hilbert space H into the direct sum of finite dimensional
subspaces in which the total energy in the two modes and the atom is conserved.
For any two integers m,n, we denote |g,m, n〉 the state where the atom is |g〉 and
the two modes are in the Fock states |m〉 and |n〉. The same holds when the atom
is in |e〉. We denote |g,m, n〉ε the eigenvector of HJC/∆ which would overlap with
|g,m, n〉 if we take ε→ 0 analytically.

H =
⊕

E∈N

span{|g,E, 0〉ε, |e, E−1, 0〉ε, |g,E−1, 1〉ε, .., |g, 1, E−1〉ε, |e, 0, E−1〉ε, |g, 0, E〉ε} .
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The eigenvectors are given, for all E ∈ N, by

|g,E, 0〉ε = |g,E, 0〉 − iε
√
E|e, E − 1, 0〉 +O(ε2)

|g, 0, E〉ε = |g, 0, E〉 + iε
√
E|e, 0, E − 1〉 +O(ε2)

|g, n,E − n〉ε = |g, n,E − n〉 − iε
√
n|e, n− 1, E − n〉

+ iε
√
E − n|e, n,E − n− 1〉 +O(ε2)

∀n ∈ {1, .., E − 1}
|e, n− 1, E − n〉ε = |e, n− 1, E − n〉 − iε

√
n|g, n,E − n〉

+ iε
√
E − n+ 1|g, n− 1, E − n+ 1〉 +O(ε2)

∀n ∈ {1, .., E} . (5.57)

The corresponding eigenvalues are

⋃

E∈N

{λε
g,E,0, λ

ε
e,E−1,0, λ

ε
g,E−1,1, .., λ

ε
g,1,E−1, λ

ε
e,0,E−1, λ

ε
g,0,E}

where, for all E ∈ N:

λε
g,E,0 = −E − ε2E +O(ε4)

λε
g,0,E = E + ε2E +O(ε4)

λε
g,n,E−n = E − 2n+ ε2(E − 2n) +O(ε4)

∀n ∈ {1, .., E − 1}
λε

e,n−1,E−n = E − 2n+ 1 + ε2(2n− E − 1) +O(ε4)

∀n ∈ {1, .., E} . (5.58)

Let us first investigate the resonant case, with δ = ±∆. A simple adaptation of
the single mode results leads to:

Uq = e−i∆(Nb−Na)(t2−t1)
Z(∆(t2 − t1))Y(θq

Nb
)

for q = (t1, t2, v,∆) (5.59)

Uq = e−i∆(Nb−Na)(t2−t1)
Z(∆(t1 − t2))Y(θq

Na
)

for q = (t1, t2, v,−∆) , (5.60)

where Y(θq
Na

), for instance, is the tensor product of Y(θq
Na

) acting on the pair
atom-mode a, with the identity acting on b. We define a generalized two-mode
phase rotation by:

Z(fNa,Nb
) = |g〉〈g| e

i
2 fNa,Nb + |e〉〈e| e

−i
2 f(Na+I),(Nb+I) , (5.61)

where the operator fNa,Nb
is diagonal in the joint Fock state basis of the two modes

with fNa,Nb
|na, nb〉 = f(na, nb)|na, nb〉. In Eqs. (5.59) and (5.60), Z is used with a

constant argument fNa,Nb
= ±∆(t2 − t1).
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We now consider the dispersive interaction corresponding here to δ = 0. Apply-
ing second-order perturbation theory in Ω0/∆ (see Eqs. (5.57)(5.58)), we get for
q = (t1, t2, v, 0):

Uq = e−i∆(Nb−Na)(t2−t1)
Z(φ

q
(Nb − Na)) , (5.62)

with φ
q

= 1
2∆

∫ t2
t1

Ω2(vt) dt .

Using Eqs. (5.59),(5.60),(5.62) and the commutation relation (5.7), we get an
approximate evolution operator with the sequence defined in Section 5.1.6 (with
T∆ = 0 modulo 2π):

UT ≈ U
eff

c̄ = Uπ Z(−∆(T/2 + tr))

Z(φ(Nb − Na)) Y(θr
Na

) Y(θr
Nb

) (5.63)

Z(φ(Na − Nb)) Z(-∆(T/2 − tr)) ,

with

φ =
1

2∆

∫ −tr

−T/2
Ω2(vt) dt . (5.64)

The first line in Eq. (5.63) has no effect on the Kraus map since it is a rotation on
the atom only after it has interacted with the modes. The operator Z(−∆(T/2−tr))
can simply be compensated by properly setting the phase of the Ramsey pulse,
preparing now each atom in Z(∆(T/2 − tr))|uat〉. These considerations lead to the
effective propagator given in Eq. (5.47).

5.1.8.2 Simulation details

In this section we give some details on how we numerically simulate the reservoir in
order to obtain the results of Section 5.1.6.4.

Interaction with the environment is modeled by the following Kraus operators
[Haroche 2006, page 186] :

M
a
loss =

√
Tκlossa M

b
loss =

√
Tκlossb

M
a
gain =

√
Tκgaina

†
M

b
gain =

√
Tκgainb

†

Mno = I − 1

2
(Ma

loss
†
M

a
loss + M

b
loss

†
M

a
loss

+M
a
gain

†
M

a
gain + M

b
gain

†
M

b
gain) ,

where κloss = (1 + nt)/Tc , κgain = nt/Tc .

These operators model the loss and gain of a photon in each mode due to cavity
damping and thermal photons respectively. We neglect the contribution of events
such as the simultaneous absorption or emission of a photon in both modes at the
same time, and the absorption or emission of two photons and more in each mode
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during T . These events occur with a probability of higher order in κlossT, κgainT and
can therefore be neglected. We also neglect the pure dephasing of the cavity, since
its frequency is extremely stable on the time scale of the experiment we propose.
Mno is constructed such that, neglecting second order terms in Tκloss and Tκgain,
we verify the identity

I = M
a
loss

†
M

a
loss + M

b
loss

†
M

b
loss + M

a
gain

†
M

a
gain

+ M
b
gain

†
M

b
gain + M

†
noMno .

We also take into account the fact that only about pat ≈ 1/3 of samples are
occupied by an atom. Hence, at each cavity-sample interaction step, with probability
1 − pat, the cavity is simply damped by the environment, and with probability pat,
an atom is present in the sample and applies the Kraus map (MUT

g ,MUT

e ) to the
cavity. This leads us to solving the following Kraus map:

ρk+1/2 = (1 − pat)ρk + pat(M
UT

g ρkM
UT

g

†
+ M

UT

e ρkM
UT

e

†
) ,

ρk+1 = M
a
lossρk+1/2M

a
loss

† + M
b
lossρk+1/2M

b
loss

†

+ M
a
gainρk+1/2M

a
gain

† + M
b
gainρk+1/2M

b
gain

†
(5.65)

+ Mnoρk+1/2Mno
† .

Note that a more rigorous solution would be to solve at each step k, a Lindblad
equation on the atom-cavity system including cavity decoherence. At the end of
each interaction, we can trace out the atomic state and recover the cavity density
matrix. This would capture the possibility of a quantum jump of the cavity while it
is interacting with the atom. Here, we decouple the coherent evolution due to the
interaction with the atom (from k to k + 1/2) and the damping (from k + 1/2 to
k + 1). This decoupling saves us a lot of computational time. Indeed, M

UT

g and

M
UT

e are computed once by solving the Schrödinger equation, and then we simply
iterate (5.65). We checked numerically that our simplified scheme gives the right
result. A possible explanation is the following. If a quantum jump occurs in the
presence or absence of an atom, the cavity jumps to a different state. However,
since the reservoir seems to drive all states to the target state with convergence
times much smaller than Tc, whether an atom was present or not shouldn’t matter.

5.1.8.3 Equilibrium of reservoir with damping

If ρ′h∞ of the form (5.39) is a stationary solution of (5.38) then we have:

∫ αc
∞

−αc
∞

µ(z)
(
β − κ+κc

2 z
) (

(a† − z)|z〉〈z| + |z〉〈z|(a − z)
)
dz

+

∫ αc
∞

−αc
∞

κc(µ(−z) − µ(z))z2|z〉〈z| dz = 0 ,
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(using a|z〉 = z|z〉, eiπNa|z〉 = z|-z〉 and their Hermitian conjugates). For any real
ξ, multiplying on the left by coherent state 〈ξ| and on the right by |ξ〉 yields

∫ αc
∞

−αc
∞

2µ(z)
(
β − κ+κc

2 z
)
(ξ−z)e−(ξ−z)2 dz+

∫ αc
∞

−αc
∞

κcz
2(µ(−z)−µ(z))e−(ξ−z)2 dz = 0 ,

since | 〈ξ|z〉 |2 = e−(ξ−z)2 , ξ and z being real. An integration by parts of the first
integral yields

[
µ(z)

(
β − κ+κc

2 z
)
e−(ξ−z)2

]z=αc
∞

z=−αc
∞

−
∫ αc

∞

−αc
∞

(
d
dz

(
µ(z)

(
β − κ+κc

2 z
) ))

e−(ξ−z)2 dz

+

∫ αc
∞

−αc
∞

κcz
2(µ(−z) − µ(z))e−(ξ−z)2 dz = 0 .

One solution is a µ which verifies: (we conjecture that since the latter equation
holds for any real ξ, this is the only possibility)

κcz
2(µ(−z) − µ(z)) − d

dz

(
µ(z)

(
β − κ+κc

2 z
) )

= 0

for z ∈ (−αc
∞, α

c
∞) with the boundary conditions limz 7→αc

∞
µ(z)(z − αc

∞) = 0 and
µ(−αc

∞) = 0 .

To solve this differential equation for z ∈ [−αc
∞, α

c
∞], we decompose µ into its

even and odd parts: these parts satisfy two first-order coupled differential equations
that can be integrated directly to give formula (5.40) for µ(z).
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5.2 A first convergence proof

In this section, we provide a mathematical result proving that the engineered reser-
voir of atoms we considered previously forces the cavity to converge to the desired
cat state.

We consider the dynamics followed by one mode of the cavity when interacting
with a stream of flying atoms. The interaction we consider here corresponds to that
of Section 5.1.4, where we consider the resonant interaction time to be zero: tr = 0.
Dropping the latter assumption adds technical difficulties to the proof which we have
not yet been able to overcome. Thus, each atom enters the cavity with a frequency
detuned w.r.t the cavity frequency by ∆ = Ω0/ε. When the atom is in the cavity
center, its frequency is shifted to a detuning of −∆. The propagator associated to
such an interaction is given in (5.25), where θr

N
= 0 and hence Y(θr

N
) = I. In order

to simplify computations by having a real operator, we replace X(ξN) by Y(ξN).
Moreover, note that Y(ξN)Y(ξN) = Y(2ξN). We thus consider a propagator of the
form Z(−φN)Y(2ξN)Z(φN). We have also proven that taking a Kerr Hamiltonian
hN ∼ φγN

2, we have Z(−φN)Y(2ξN)Z(φN) = e−ihc
NY(2ξN)eih

c
N . Hence, we prove

the convergence of a dynamical system evolving under a Kraus map associated to
Y(2ξN) to a pointer state |ψ̄〉〈ψ̄|, which proves the convergence of the Kraus map
associated to Z(−φN)Y(2ξN)Z(φN) to e−ihc

N |ψ̄〉〈ψ̄|eihc
N .

The main difficulty here is that we take the cavity state space to be infinite
dimensional, rather than truncating to a finite dimensional space using a Galerkin
approximation which would greatly simplify the proof. Infinite dimensional Banach
spaces lose a key property compared to finite dimensional ones: the compactness of
their unit ball. This complicates any convergence proof since bounded sequences do
not necessarily admit converging subsequences. Many methods have been proposed
to overcome this difficulty, in particular, proving the pre-compactness of the trajec-
tories. That is, that there exists a compact set which is invariant under the system’s
dynamics. This is the path we have followed. We start by posing the problem, next
we formulate the main result in theorem 5.1. This result is based on the two lemmas
5.1 and 5.2. Finally, we give the proofs of the theorem and the two lemmas.

5.2.1 Problem setting

We model the cavity state space with the Hilbert space H spanned by the Hilbert
basis {|n〉}n≥0:

H = {
∑

n≥0

ψn|n〉 where ψn ∈ C and
∑

n≥0

|ψn|2 <∞} .

For all n, |n〉 is called a Fock state: a cavity state with exactly n photons. For all
|ψ〉 =

∑
n≥0 ψn|n〉 and |φ〉 =

∑
n≥0 φn|n〉 in H, the scalar product on H corresponds

to < φ,ψ >=
∑

n≥0 φ
∗
nψn ∈ C.

An important linear operator on H is the annihilation operator a. It is defined
as follows: a|0〉 = 0 and for all n ≥ 1 a|n〉 =

√
n|n − 1〉. We have the important
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commutation relation:
[a,a†] = I .

From a, we define the photon number operator N = a†a which acts as follows: for
all n ≥ 0 N|n〉 = n|n〉. For any analytic function f of R, we use the notation fN to
denote the linear operator on H acting as follows: for all n ≥ 0, fN|n〉 = f(n)|n〉.
We recall the fundamental relation:

a f(N) = f(N + I) a .

Let L(H) be the set of continuous linear operators from H to H. We define the
trace operator:

Tr : ρ ∈ D(Tr) ⊂ L(H) → Tr (ρ) =
∑

n≥0

〈n|ρ|n〉 .

Here, D(Tr) is the domain of Tr(.): a subset of L(H) on which the series
∑〈n|ρ|n〉

is absolutely convergent. Now consider the set of Hilbert-Schmidt operators:

OHS = {ρ ∈ L(H), ρ†ρ ∈ D(Tr)} .

Notice that since ρ†ρ is positive, ρ†ρ ∈ D(Tr) is equivalent to Tr
(
ρ†ρ
)
< ∞. We

have that
(
OHS , (A,B) ∈ OHS

2 → Tr
(
A†B

))
is a Hilbert space .

We define the linear operator K on OHS , also called a Kraus map:

K : OHS ∋ ρ→ MgρM
†
g + MeρM

†
e ∈ OHS . (5.66)

The Kraus operators Mg and Me are those associated to Y(2ξN). We have (see
(5.14))

Mg = cos(u/2) cos(ξN) + sin(u/2)
sin(ξN)√

N
a† ,

Me = sin(u/2) cos(ξN+1) − cos(u/2)a
sin(ξN)√

N
. (5.67)

Recall that (see (5.27)) cos(ξN) = 1/
√

1 + ε2N, sin(ξN) = ε
√

N/
√

1 + ε2N and
ξN ∈ (−π

2 ,
π
2 ).

Operators Mg and Me satisfy the important relation (needed to preserve
Tr (ρ) = 1 under the Kraus map):

M
†
gMg + M

†
eMe = I .

From the latter equation, we have that Mg and Me are bounded over OHS , and
hence K is bounded over OHS . Hence, as claimed in (5.66), we have K(OHS) ⊂ OHS .
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We therefore know that there exists K > 0 such that for all ρ ∈ OHS ||K(ρ)|| ≤
K||ρ||, let us show that we can in fact take K = 2. Take ρ ∈ OHS , we have:

||K(ρ)||2 = ||MgρM
†
g + MeρM

†
e||2

≤ 2
(
||MgρM

†
g||2 + ||MeρM

†
e||2
)
.

Besides,

||MgρM
†
g||2 = Tr

(
Mgρ

†
M

†
gMgρM

†
g

)

= Tr
((
ρ†M†

gMgρ
)
M

†
gMg

)

= Tr
(
ρ†M†

gMgρ
)
− Tr

((
ρ†M†

gMgρ
)
M

†
eMe

)

= Tr
(
ρ†ρ
)
− Tr

(
ρ†M†

eMeρ
)
− Tr

(
Meρ

†
M

†
gMgρM

†
e

)

≤ Tr
(
ρ†ρ
)
,

since ρ†M†
eMeρ ≥ 0 and Meρ

†
M

†
gMgρM

†
e ≥ 0. The same holds for

||MeρM
†
e||2 ≤ Tr

(
ρ†ρ
)
.

From this, we have
||K(ρ)|| ≤ 2||ρ|| .

In analogy with Section 5.1.2, we find that:

• Mg and Me have a unique common eigenvector |ψ̄〉 if and only if tan(u/2) < 1.
In the following we take u such that γ = tan(u/2) < 1.

• Expanding |ψ̄〉 on the Fock basis |ψ̄〉 =
∑∞

n=0 ψ̄n|n〉, the sequence (ψ̄n)n sat-
isfies

∀n ≥ 0 ψ̄n+1 = tan(u/2)
ε
√
n+ 1√

1 + ε2(n+ 1) − 1
ψ̄n

and ψ̄0 is such that
〈
ψ̄|ψ̄

〉
= 1 (with arbitrary phase).

• The associated eigenvalues are:

Mg|ψ̄〉 = cos(u/2)|ψ̄〉
Me|ψ̄〉 = − sin(u/2)|ψ̄〉 (5.68)

Consider the set of density operators

D = {ρ ∈ OHS , ρ
† = ρ,Tr (ρ) = 1, ρ ≥ 0} .

This is the set of physically permitted states of an open quantum system. Notice
that K(D) ⊂ D. Finally for all A > 0 consider the set

VA = {ρ ∈ D,
∑

n

σn〈n|ρ|n〉 ≤ A} ,
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where σn =
∑n−1

k=0 αk, and (αk)k≥0 are defined next. Let γ = tan(u
2 ) and take

n0 = int

((
2γ

ε(1−γ2)

)2
)

+ 1, where int denotes the integer part. For all n ≤ n0 we

take αn = 0 and for all n > n0 we take αn = 1+ε2(n+1)
n+1 . For all n, σn ≥ 0, (σn)n≥0

is an increasing sequence, and limn→∞ σn = +∞.

5.2.2 Main result

Theorem 5.1. Take A > 0, ρ0 ∈ VA and for all k ≥ 0 ρk+1 = K(ρk). We have

limk→∞ Tr
(
(ρk − |ψ̄〉〈ψ̄|)2

)
= 0.

The theorem is based on the Lyapunov function ρ → 〈ψ̄|ρ|ψ̄〉, and the two
following lemmas:

Lemma 5.1. Take A > 0, ρ0 ∈ VA and for all k ≥ 0 ρk+1 = K(ρk). We have for

all k ≥ 0, ρk ∈ VA.

Lemma 5.2. Take A > 0. The set VA is compact for the topology inherited from

OHS: For all sequence (ρk)k≥0 ∈ VA, ∃ q : N → N and ρ∞ ∈ VA such that

Tr
(
(ρq(k) − ρ∞)2

)
→ 0.

Notice that for any sequence (ρk)k≥0 initialized at a state ρ0 of finite energy,
we have strong convergence towards |ψ̄〉〈ψ̄|. Indeed, for all n ≥ 0, we have αn ≤
1 + ε2, and hence σn ≤ (1 + ε2)n. Take ρ0 ∈ D, such that ρ0 has finite energy:∑

n≥0 nρ
nn
0 = E0 < +∞. We have

∑
n≥0 σnρ

nn
0 ≤ (1+ ε2)E0. Hence ρ0 ∈ VA where

A = (1 + ε2)E0. And according to theorem 5.1, (ρk)k≥0 converges strongly towards
|ψ̄〉〈ψ̄|.

5.2.3 Proofs

5.2.3.1 Proof of Theorem 5.1

Take A > 0, ρ0 ∈ VA and for all k ≥ 0 ρk+1 = K(ρk). We want to prove that
limk→∞ Tr

(
(ρk − |ψ̄〉〈ψ̄|)2

)
= 0. According to lemma 5.1, for all k ≥ 0, ρk ∈ VA.

According to lemma 5.2, VA is compact, and hence there exists a sequence q and
ρ∞ ∈ VA such that Tr

(
(ρq(k) − ρ∞)2

)
→ 0. Here we prove that necessarily ρ∞ =

|ψ̄〉〈ψ̄|. Since VA is compact, this would prove the sought result.
To this end we use the fidelity between ρ and the pure state |ψ̄〉〈ψ̄| as a Lyapunov

function (in standard terminology, the Lyapunov function would be 1 − V ):

V : ρ ∈ D → 〈ψ̄|ρ|ψ̄〉 ∈ R
+ .

It is well known that the fidelity increases under the action of a Kraus map
[Nielsen 2000, theorem 9.6]. In particular, for the Kraus map (5.66), we have

V (ρk+1) = V (ρk) + 〈χ̄|ρk|χ̄〉 ,
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where |χ̄〉 = (sin(u/2)M†
g + cos(u/2)M†

e)|ψ̄〉. Where we have used the fact that(
cos(u/2)M†

g − sin(u/2)M†
e

)
|ψ̄〉 = |ψ̄〉. Since ρk is positive, 〈χ̄|ρk|χ̄〉 ≥ 0.

Thus, k → V (ρk) is increasing, since it is bounded by 1, it converges. Con-
sequently 〈χ̄|ρk|χ̄〉 converges to 0. Hence 〈χ̄|ρ∞|χ̄〉 = 0. Since Mg and Me are
bounded over the unit ball of OHS , K is bounded and hence continuous over OHS .
Therefore, limk→∞ Tr

(
(K(ρq(k)) − K(ρ∞))2

)
= 0, hence 〈χ̄|K(ρ∞)|χ̄〉 = 0, thus

〈χ̄|Mgρ∞M
†
g|χ̄〉 = 0 , 〈χ̄|Meρ∞M

†
e|χ̄〉 = 0 .

By iteration, we see that necessarily, ρ∞ is orthogonal to any iterates of M
†
g and

M
†
e on |χ̄〉. Consider a non zero eigenvector |φ∞〉 of ρ∞: ρ∞|φ∞〉 = λ|φ∞〉, λ > 0.

Necessarily, |φ∞〉 is orthogonal to any iterates of M
†
g and M

†
e on |χ̄〉. We may

decompose |φ∞〉 over |ψ̄〉 and the orthogonal subspace to |ψ̄〉, we note |φ⊥∞〉 the
projection of |φ∞〉 over the orthogonal subspace to |ψ̄〉. Since |ψ̄〉 is orthogonal to
all iterates of M

†
g and M

†
e over |χ̄〉, |φ∞〉 is orthogonal to these iterates if and only

if |φ⊥∞〉 also is. Moreover, we have

(cos(u
2 )M†

g − sin(u
2 )M†

e)|ψ̄〉 = |ψ̄〉 and (sin(u
2 )M†

g + cos(u
2 )M†

e)|ψ̄〉 = |χ̄〉 ,

consequently, |φ⊥∞〉 is orthogonal to all the iterates of M
†
g and M

†
e on |ψ̄〉. Let us

now prove that this implies |φ⊥∞〉 = 0: this will show that |φ∞〉 is collinear to |ψ̄〉,
and since, ρ∞ ∈ VA, we have Tr (ρ∞) = 1 and hence ρ∞ = |ψ̄〉〈ψ̄|. This would prove
that the accumulation set of ρk is equal to the single element ρ∞ and hence we have
strong convergence of all the trajectories starting in VA towards |ψ̄〉〈ψ̄|.

From Mg|ψ̄〉 = cos(u
2 )|ψ̄〉 and Me|ψ̄〉 = − sin(u

2 )|ψ̄〉, we get

sin(ξN)√
N

a†|ψ̄〉 =
cos(u

2 )

sin(u
2 )

(1−cos(ξN))|ψ̄〉, a
sin(ξN)√

N
|ψ̄〉 =

sin(u
2 )

cos(u
2 )

(1+cos(ξN+1))|ψ̄〉.

Since M
†
g = cos(u/2) cos(ξN) + sin(u/2)a sin(ξN)√

N
and M

†
e = sin(u/2) cos(ξN+1) −

cos(u/2) sin(ξN)√
N

a†, we have

M
†
g|ψ̄〉 =

1

cos(u
2 )

(
cos2(u

2 ) cos(ξN) + sin2(u
2 )(1 + cos(ξN+1))

)
|ψ̄〉

M
†
e|ψ̄〉 =

1

sin(u
2 )

(
sin2(u

2 ) cos(ξN+1) − cos2(u
2 )(1 − cos(ξN))

)
|ψ̄〉

Thus cos(ξN)|ψ̄〉 and cos(ξN+1)|ψ̄〉 are linear combinations of |ψ̄〉, M
†
g|ψ̄〉 and

M
†
e|ψ̄〉. Since |φ⊥∞〉 is orthogonal to |ψ̄〉, M

†
g|ψ̄〉 and M

†
e|ψ̄〉, it is also orthogonal to

cos(ξN)|ψ̄〉 and cos(ξN+1)|ψ̄〉.
Let us prove that |φ⊥∞〉 is orthogonal to cosr(ξN)|ψ̄〉 and cosr(ξN+1)|ψ̄〉, for any

integer r. It is sufficient to prove that cosr(ξN)|ψ̄〉 and cosr(ξN+1)|ψ̄〉 are linear
combinations of iterates of M

†
g and M

†
e on |ψ̄〉. This is true for r = 1, assume it is
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true for r and let’s prove it is true for r + 1. We have

M
†
g cosr(ξN)|ψ̄〉 =

(
cos(u/2) cosr+1(ξN) + sin(u/2) cosr(ξN+1)a

sin(ξN)√
N

)
|ψ̄〉

=
1

cos(u
2 )

(
cos2(u/2) cosr+1(ξN) + sin2(u/2)(cosr+1(ξN+1) + cosr(ξN+1))

)
|ψ̄〉

M
†
e cosr(ξN+1)|ψ̄〉 =

(
sin(u/2) cosr+1(ξN+1) − cos(u/2) cosr(ξN)

sin(ξN)√
N

a†
)
|ψ̄〉

=
1

sin(u
2 )

(
sin2(u/2) cosr+1(ξN+1) − cos2(u/2)(cosr(ξN) − cosr+1(ξN))

)
|ψ̄〉 .

(5.69)

Recall that cosr(ξN)|ψ̄〉, cosr(ξN+1)|ψ̄〉, M
†
g cosr(ξN)|ψ̄〉 and M

†
e cosr(ξN+1)|ψ̄〉 are

linear combinations of iterates of M
†
g and M

†
e over |ψ̄〉. Hence, cosr+1(ξN)|ψ̄〉 and

cosr(ξN+1)|ψ̄〉 are also linear combinations of iterates of M
†
g and M

†
e over |ψ̄〉.

We have proved that for any r, |φ⊥∞〉 is orthogonal to cosr(ξN)|ψ̄〉. Noting
|φ⊥∞〉 =

∑
n≥0 xn|n〉, xn ∈ C,

∑
n |xn|2 ≤ 1, we have, for all r > 0:

∑

n≥0

xnψ̄n cosr(ξn) = 0 .

Since ξ0 = 0, we have

∀r > 0 x0ψ̄0 +
∑

n≥1

xnψ̄n cosr(ξn) = 0 .

Moreover, cos(ξn) = 1√
1+ε2n

< 1√
1+ε2

< 1 for all n ≥ 1. Hence∣∣∣
∑

n≥1 xnψ̄n cosr(ξn)
∣∣∣ ≤ 1√

1+ε2r

∑
n≥1 |xnψ̄n| where

∑
n≥1 |xnψ̄n| is finite since

∑
n≥0 |xn|2 ≤ 1 and

∑
n≥0 |ψ̄n|2 ≤ 1. Hence, taking the limit where r → ∞,

we get x0ψ̄0 = 0. Since ψ̄0 6= 0, we conclude x0 = 0. For x1, the reasoning is
similar. Since cos(ξ1) 6= 0, we have

∀r > 0, x1ψ̄1 +
∑

n≥2

(
cos(ξn)

cos(ξ1)

)r

xnψ̄n = 0.

We have cos(ξn)
cos(ξ1) <

√
1+ε2√
1+2ε2

< 1 for all n ≥ 2, hence, taking the limit r → ∞, we get

x2ψ̄2 = 0. Since for all n ψ̄n 6= 0, and cos(ξn) is strictly decreasing, we repeat this
reasoning and deduce xn = 0 for all n ≥ 0. From this we conclude that the only non
null eigenvector of ρ∞ is |ψ̄〉, and hence ρ∞ = λ|ψ̄〉〈ψ̄| where λ 6= 0. Since ρ∞ ∈ VA,
we have Tr (ρ∞) = 1 and hence λ = 1. This concludes the proof.

5.2.3.2 Proof of Lemma 5.1

We define

f(ρ) =
∞∑

n=0

σn〈n|ρ|n〉 .
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We are going to prove that for any ρ ∈ D, f(K(ρ)) ≤ f(ρ). Since K(D) ⊂ D, this
proves that if we take ρ0 ∈ VA, for all k, ρk ∈ VA. We have K(ρ) = MgρM

†
g +

MeρM
†
e, hence

f(K(ρ)) =
∑

n≥0

σn

(
〈n|MgρM

†
g|n〉 + 〈n|MeρM

†
e|n〉

)

=
∑

n≥0

σn

(
cos2(u

2 )

1 + ε2n
+

sin2(u
2 )

1 + ε2 + ε2n

)
〈n|ρ|n〉

+ ε2 sin2(u
2 )
∑

n=1

(
σn

n

1 + ε2n
〈n− 1|ρ|n− 1〉

)

+ ε2 cos2(u
2 )
∑

n=0

(
σn

n+ 1

1 + ε2 + ε2n
〈n+ 1|ρ|n+ 1〉

)

+ ε sin(u)
∑

n=1

(
σn

√
n

1 + ε2n
ℜ(〈n|ρ|n− 1〉)

)

− ε sin(u)
∑

n=0

(
σn

√
n+ 1

1 + ε2 + ε2n
ℜ(〈n+ 1|ρ|n〉)

)
.

This can be written as

f(K(ρ)) = f(ρ)

−
∑

n≥0

σn

(
cos2(u

2 )
ε2n

1 + ε2n
+ sin2(u

2 )
ε2(n+ 1)

1 + ε2 + ε2n

)
〈n|ρ|n〉

+ ε2 sin2(u
2 )
∑

n=0

(
σn+1

n+ 1

1 + ε2(n+ 1)
〈n|ρ|n〉

)

+ ε2 cos2(u
2 )
∑

n=1

(
σn−1

n

1 + ε2n
〈n|ρ|n〉

)

+ ε sin(u)
∑

n=1

(σn − σn−1)

√
n

1 + ε2n
ℜ(〈n|ρ|n− 1〉) ,

Using σn =
∑n−1

k=0 αk, and noting γ = tan(u/2), we get

f(K(ρ)) − f(ρ)

ε cos2(u
2 )

= εα0γ
2 1

1 + ε2
〈0|ρ|0〉

+ ε
∑

n≥1

(
−αn−1

n

1 + ε2n
+ αnγ

2 n+ 1

1 + ε2(n+ 1)

)
〈n|ρ|n〉

+ 2γ
∑

n≥1

αn−1

√
n

1 + ε2n
ℜ(〈n|ρ|n− 1〉) .

Take n0 = int

((
2γ

ε(1−γ2)

)2
)

+ 1, where int denotes the integer part. For all

n ≤ n0 we take αn = 0 and for all n > n0 we take αn = 1+ε2(n+1)
n+1 . We have
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f(K(ρ)) − f(ρ)

ε cos2(u
2 )

= ε
∑

n≥n0

(−1 + γ2)〈n|ρ|n〉

+ 2γ
∑

n≥n0

1√
n
ℜ(〈n|ρ|n− 1〉)

≤ ε(γ2 − 1) + 2
γ√
n0

∑

n=n0

|ℜ(〈n|ρ|n− 1〉)| .

For all ρ ≥ 0 and n ≥ 1, we have

|ℜ(〈n|ρ|n− 1〉)| ≤ |〈n|ρ|n− 1〉| ≤
√

〈n|ρ|n〉
√
〈n− 1|ρ|n− 1〉 ,

hence

∑

n≥n0

|ℜ〈n|ρ|n− 1〉| ≤
∑

n≥n0

√
〈n|ρ|n〉

√
〈n− 1|ρ|n− 1〉

≤

√√√√√



∑

n≥n0

〈n|ρ|n〉





∑

n≥n0

〈n− 1|ρ|n− 1〉




≤ 1 .

Hence

f(K(ρ)) − f(ρ)

ε cos2(u
2 )

≤ ε(γ2 − 1) + 2
γ√
n0

,

which is negative for n0 = int

((
2γ

ε(1−γ2)

)2
)

+ 1.

5.2.3.3 Proof of Lemma 5.2

Take A > 0 and consider a sequence (ρk)k≥0 ∈ VA. We want to prove that there
exists ρ∞ ∈ VA and a subsequence

(
ρq(k)

)
k≥0

which converges strongly towards ρ∞.
To this aim, we start by proving that there exists ρ∞ ∈ BOHS

(BOHS
is the unit

ball of OHS), such that the sequence
(
ρq(k)

)
k≥0

converges weakly to ρ∞. We then
prove that ρ∞ ∈ VA, and finally that the convergence is strong.

We have VA ⊂ D ⊂ BOHS
, hence (ρk)k≥0 is a bounded sequence of OHS . More-

over, OHS is a Hilbert space, it is therefore reflexive. According to [Brezis 1983,
th III.27], we can extract a subsequence

(
ρq(k)

)
k≥0

which converges for the weak
topology to some ρ∞ ∈ BOHS

. To lighten notations, we assume with no loss of gen-
erality that q(k) = k for all k. This is equivalent to [Brezis 1983, prop III.5], for all
h ∈ OHS , Tr

(
h†ρk

)
→ Tr

(
h†ρ∞

)
. In particular, we have for all m,n, ρmn

k → ρmn
∞ ,

where we note 〈m|ρ|n〉 = ρmn.
Let us now prove that ρ∞ ∈ VA.
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We start by proving that ρ∞ ≥ 0. For all |ψ〉 ∈ H, |ψ〉〈ψ| ∈ OHS , and hence
〈ψ|ρk|ψ〉 → 〈ψ|ρ∞|ψ〉. And ρk ≥ 0, hence for all |ψ〉 ∈ H, 〈ψ|ρk|ψ〉 ≥ 0, and hence
ρ∞ ≥ 0.

Moreover, for all k, ρk is self-adjoint, hence, ρ∞ is self-adjoint.

Next we show that Tr (ρ∞) = 1. For all k,
∑∞

n=0 ρ
nn
k = 1. Take ε > 0, N > 0

and k > 0. We have

|
N∑

n=0

ρnn
∞ − 1| ≤

N∑

n=0

|ρnn
∞ − ρnn

k | +
∑

n≥N

ρnn
k .

Since ρk ∈ VA,
∑∞

n=0 σnρ
nn
k ≤ A. Moreover, for all n, σnρ

nn
k ≥ 0 hence∑

n≥N σnρ
nn
k ≤ A. For N > n0, we have σn > σN > 0 for all n > N , and

hence
∑

n≥N ρnn
k ≤ A/σN . From this we conclude that

|
N∑

n=0

ρnn
∞ − 1| ≤

N∑

n=0

|ρnn
∞ − ρnn

k | +A/σN .

We have σn → ∞, hence there exists Nε > 0 such that for all N > Nε, A/σN < ε/2.
We take N > Nε. Since for all n, limk→+∞ |ρnn

∞ − ρnn
k | = 0, there exists kε,N > 0

such that for all k > kε,N ,
∑N

n=0 |ρnn
∞ − ρnn

k | ≤ ε/2. We therefore have

|
N∑

n=0

ρnn
∞ − 1| ≤ ε ,

and hence Tr (ρ∞) = 1.

Finally, we prove that
∑∞

n=0 σnρ
nn
∞ ≤ A. Take N ≥ 0 and k > 0.

N∑

n=0

σnρ
nn
∞ =

N∑

n=0

σn(ρnn
∞ − ρnn

k ) +
N∑

n=0

σnρ
nn
k

≤
N∑

n=0

σn(ρnn
∞ − ρnn

k ) +A .

For all ε > 0, ∃kε,N such that for all k > kε,N ,
∑N

n=0 σn(ρnn
∞ − ρnn

k ) < ε. Hence

N∑

n=0

σnρ
nn
∞ ≤ ε+A ,

and hence
∑∞

n=0 σnρ
nn
∞ ≤ A.

We have proven that (ρk)k≥0 converges weakly to ρ∞ ∈ VA. Let us now prove
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that this convergence is strong. Take N > 0,

Tr
(
(ρ∞ − ρk)

2
)

=
∑

m,n≥0

|ρmn
∞ − ρmn

k |2

=
∑

m,n<N

|ρmn
∞ − ρmn

k |2 +
∑

m,n>N

|ρmn
∞ − ρmn

k |2

+ 2
N∑

n=0

∑

m≥N

|ρmn
∞ − ρmn

k |2 . (5.70)

Notice that we have, for any two complex numbers x and y: |x− y|2 ≤ 2(|x|2 +

|y|2).
For any bounded positive self adjoint operator ρ, there exists a unique positive

self adjoint bounded operator
√
ρ, such that

√
ρ2 = ρ. For any m,n, we have:

|ρmn|2 = |〈m|√ρ√ρ|n〉|2 ≤ ρmmρnn .

This is simply a Cauchy-Schwarz inequality in H for
√
ρ|n〉,√ρ|m〉 ∈ H.

From this we have:
∑

m,n>N

|ρmn
∞ − ρmn

k |2 ≤
∑

m,n>N

2(ρmm
∞ ρnn

∞ + ρmm
k ρnn

k ) ≤ 4A2/σ2
N ,

and

2

N∑

n=0

∑

m≥N

|ρmn
∞ − ρmn

k |2 ≤ 8A/σN .

Take ε > 0, since σN → ∞, there exists Nε such that for all N > Nε, 8A/σN +

4A2/σ2
N ≤ ε/2. Now take N > Nε fixed. Since for all m,n limk→+∞ ρmn

k = ρmn
∞ ,

there exists kN,ε such that for all k > kε,N ,
∑

m,n<N |ρmn
∞ − ρmn

k |2 ≤ ε/2. Hence
Tr
(
(ρ∞ − ρk)

2
)
< ε. This concludes the proof.
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Ce chapitre traite de la préparation d’états non classiques dans des circuits

Josephson (section 6.2), et la correction d’erreur quantique (QEC) (section 6.3).

Nous proposons une séquence de pulses qui permettrait la préparation de toute super-

position d’états cohérents quasi-orthogonaux, et nous montrons comment ces opéra-

tions peuvent être utilisées pour la correction d’erreur autonome nécessitant seule-

ment une cavité couplée à un qubit physique. Avant de décrire ces résultats, nous

commençons par une rapide comparaison entre l’électrodynamique quantique en cav-

ité et les circuits quantiques (section 6.1).

This chapter is concerned with the preparation of non-classical states in the
context of Josephson circuits (section 6.2), and quantum error correction (QEC)
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(section 6.3). We provide a detailed sequence of pulses which could prepare arbitrary
superpositions of quasi-orthogonal coherent states in a cavity, and we show how
these operations could be used for autonomous QEC requiring only a single cavity
coupled to a single physical qubit. Before describing these results, we start with a
brief section describing some differences and similarities between cavity QED and
circuit QED (section 6.1).

6.1 From cavity QED to circuit QED

Up to this point, in this thesis, we have considered “real” atoms, coupled to “real”
cavities. These atoms are real in the sense that they can be found in nature. In
chapter 5 for instance, we described an experiment where Rb atoms interact with an
electrical field confined in a microwave cavity. These systems, being simultaneously
natural quantum systems, and described by a relatively simple theory, make them
wonderful to explore the laws of quantum mechanics and understand how these
intriguing laws carry out to our macroscopic world.

However, when working with natural systems, we are stuck with what nature
has to offer. This can be problematic if we want a system with specific properties,
such as frequency transitions or coupling strengths, or even more generally, if we
want a specific Hamiltonian. As an example, in every experiment which aims to
manipulate quantum states, an important quantity is the coupling strength between
our controller and the system itself. The time needed to perform a state preparation
decreases as the coupling increases. Since we always aim to perform the preparation
in times much shorter than the lifetime, we always aim for large couplings. In
the ENS experiment [Haroche 2006] for instance, this translated into increasing the
coupling between the Rb atoms and the cavity mode. Indeed, a Rb atom in its
ground state is very weakly coupled to a single photon in the cavity. In order to
see any significant effect of one photon on the atom it was necessary to drive the
Rb atoms into Rydberg states, which are states with a very large principle quantum
number n (here n = 50). Preparing a Rb atom from its ground state to a Ryberg
state is in itself a complex experiment.

The question then arises of whether there exists a class of quantum systems
for which the properties can be easily engineered on demand. A field which offers
such versatility is electrical engineering. Engineers have built basic electrical circuit
elements such as inductors, capacitors, resistances, transistors, and so on, which they
are able to assemble in order to obtain circuits with predefined properties. This way,
we may engineer a huge range of technologies ranging from a radio to a computer
processor. These electrical circuits as a whole, however, seem to obey to the laws of
classical physics and electrodynamics. A long time dream has been to build systems
combining engineering versatility and quantum behavior. This dream came to life
not more than a decade ago when physicists in places like CEA Saclay, Yale and
Santa Barbara started building big (on the micrometer scale) systems formed of
capacitors, inductors and Josephson junctions. These systems were proven to have
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a few collective degrees of freedom which obey to the laws of quantum mechanics
[Devoret 2004].

The consequences of such new systems are huge. The ability to engineer sys-
tems with predefined Hamiltonians paves the way for quantum simulators, quantum
computing and the observation of a variey of new effects. This embodies a complete
change of paradigm. Instead of observing an intriguing effect on a natural system
and trying to understand it by modeling it and finding its Hamiltonian, it is now
possible to predict an interesting behavior produced by an imagined Hamiltonian,
and “order” it for fabrication, and then observe it.

As theorists, this allows us to daydream about ideas and feel more confident
that one may be able to put them into practice. After establishing the model of the
system we consider and describing what behavior we should observe by performing
a sequence of pulses, experimentalists can then translate this model into a circuit ar-
chitecture. Properties such as couplings and frequencies can be obtained within a few
percent uncertainty by carefully manufacturing the circuit. Tools such as “Maxwell”,
“HFSS” and more recently the “black box quantization” theory [Nigg 2012], are used
to predict which Hamiltonian will be generated by a given architecture.

Recently, these engineered quantum circuits have reached coherence times which
make them serious competitors to other systems such as trapped ions and cavities
with Rydberg atoms. Lifetimes of several tens of microseconds for superconducting
qubits and cavities in circuits have been reported, with couplings of several hundreds
of MHz. This gives a coupling quality factor of the order of 104. This is of the same
order as in the ENS experiment, where the cavity lifetime is ≈ 100 ms with a coupling
of ≈ 50 kHz. Notice that although the coupling quality factor is of the same order,
there is a three orders of magnitude difference in lifetimes and couplings. On the
one hand, this makes all circuit QED experiments a thousand times faster than their
cavity QED analogue: this is a huge advantage since measuring data on a quantum
system necessarily requires averaging and hence performing the experiment tens of
thousands of times. On the other hand, slower cavity QED experiments have made
possible real time quantum feedback [Sayrin 2011], since processing information is
much easier on the 100 microsecond time scale than on the 100 ns time scale.

Many experiments performed with trapped ions and cavities with Ryd-
berg atoms have been reproduced in quantum circuits, such as the prepara-
tion of Fock states [Hofheinz 2008][Brune 1996] and quantum error correction
[Reed 2012a][Schindler 2011]. Other experiments with quantum circuits don’t seem
possible at all with other systems. This is for instance the case of a recent
experiment where it has been possible to measure the distortion of a coherent
state into multi-component cat states and squeezed states due to the Kerr effect
[Kirchmair et al. 2012].

In the spring of 2012, I had the immense pleasure of visiting Michel Devoret’s
and Rob Schoelkopf’s groups in Yale. The work we present in this chapter was
done during this visit. At the time of writing most of these ideas are still on the
theoretical level, although some experimental data on the deterministic preparation
of cat states has already been obtained, and we hope to report it in a few months.
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The system we have in mind in this chapter is a set of superconducting qubits
coupled to microwave cavities for which we propose some new experiments.

6.2 Deterministic protocol for mapping a qubit to coher-

ent state superpositions in a cavity

We introduce a new gate that transfers an arbitrary state of a qubit into a super-
position of two quasi-orthogonal coherent states of a cavity mode, with opposite
phases. This qcMAP gate is based on conditional qubit and cavity operations
exploiting the energy level dispersive shifts, in the regime where they are much
stronger than the cavity and qubit linewidths. The generation of multi-component
superpositions of quasi-orthogonal coherent states, non-local entangled states of
two resonators and multi-qubit GHZ states can be efficiently achieved by this gate.
This section reports the results we obtained in collaboration with G. Kirchmair,
B. Vlastakis, R. Schoelkopf, M. Devoret and M. Mirrahimi. We have submitted a
manuscript to Phys. Rev. Lett. and a preliminary version can be found on the
ArXiv [Leghtas 2012b].

6.2.1 Introduction

In the field of quantum Josephson circuits, microwave resonators are extremely
useful for performing readout, coupling multiple qubits and protecting against de-
coherence [Wallraff 2005, Majer 2007, Paik 2011]. In addition, using an oscillator
as a memory to store a qubit state has been explored both theoretically and ex-
perimentally (see e.g [Gottesman 2001, Mariantoni 2011, Maître 1997]). The recent
improvement in coherence times of microwave resonators with respect to supercon-
ducting qubits ([Megrant 2012, Reagor et al. 2012]) makes it particularly interesting
to use a cavity as a quantum memory in this context.

In this section we introduce a new gate between a qubit and a cavity (qcMAP)
which maps the qubit state onto a superposition of two quasi-orthogonal coherent
states with opposite phases. This gate provides access to the large Hilbert space
of the cavity, so that one can encode the information of a multi-qubit system on a
single cavity mode and decode it back on the qubits. In particular, this gate can
be employed to efficiently prepare any superposition of quasi-orthogonal coherent
states (SQOCS) [Raimond 2010]. Furthermore, we show that this scheme can be
easily adapted to prepare entangled states of two resonators, which would maximally
violate Bell’s inequality. Finally, the qcMAP gate offers a new method to use the
cavity as a bus to perform multi-qubit gates and prepare arbitrary GHZ states.

Previously realized qubit-cavity encoding in superconducting qubits are
based on a correspondence between the register’s states and the cavity’s Fock
states [Hofheinz 2008]. These schemes are based on bringing the qubit into res-
onance with the cavity. The qcMAP gate does not require such real-time fre-
quency tunings and hence avoids an extra decoherence channel. Additionally, in
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contrast to the resonant regime, the time to prepare a SQOCS using the qcMAP
gate does not increase with the amplitudes of the coherent components, but scales
only linearly with the number of coherent components. Large SQOCS could hence
be generated with high fidelities, exploring the decoherence of highly non-classical
states [Brune 1996, Deléglise 2008].

We place ourselves in the strong dispersive regime, where both the qubit and
resonator transition frequencies split into well-resolved spectral lines indexed by
the number of excitations in qubit and resonator [Schuster 2007]. The resonator
frequency ωr splits into two well resolved lines ωg

r and ωe
r , corresponding to the

cavity’s frequency when the qubit is in the ground (|g〉) or the excited (|e〉) state.
Through the same mechanism, the qubit frequency ωq splits into {ωn

q }n=0,1,2,··· cor-
responding to the qubit frequency when the cavity is in the photon number state
|n〉. Recent experiments have shown dispersive shifts that are about 3 orders of
magnitude larger than the qubit and cavity linewidths [Paik 2011].

6.2.2 The qcMAP gate

The qcMAP gate relies on two operations which we detail in the following: the
conditional cavity displacement, which we denote by Dg

α, and the conditional qubit
rotation, which we denote by X0

θ (see Fig. 6.1(a)). An unconditional displacement
Dα is obtained by applying a very short pulse, which displaces a coherent state by α
regardless of the qubit state. A conditional displacement Dg

α can be reaIized in the
strong dispersive limit: with a selective pulse of duration T & 1/χqr, we may displace
the cavity by a complex amplitude α only if the qubit is in the ground state. For a
coherent state |β〉, we have Dg

α|e, β〉 = |e, β〉, and Dg
α|g, β〉 = e(αβ†−α†β)/2|g, β + α〉.

Such a conditional displacement was first proposed in [Davidovich 1993] as part of
a non-deterministic scheme to prepare a two-component superposition of coherent
states. For the deterministic qcMAP gate, we combine this displacement with a
conditional qubit rotation X0

π. The conditional rotations X0
θ are simply achieved by

applying a selective pulse at ω0
q , performing an rotation of angle θ of the qubit state

conditioned on the cavity being in its vacuum state. Such selective qubit rotations
have been experimentally demonstrated in [Johnson 2010].

In order to map the state of the qubit to the cavity mode, we construct the
qcMAP gate as follows. Starting from a qubit in cg|g〉 + ce|e〉 and cavity in |0〉,
a first conditional displacement Dg

2α entangles the qubit and the cavity, creating
the state cg|g, 2α〉 + ce|e, 0〉. We choose 2|α| to be large enough so that the
non-orthogonality of the two coherent states | 〈2α | 0〉 |2 = e−4|α|2 is negligible (of
order 10−6 for n̄ = |α|2 = 3.5). A conditional π-pulse X0

π can then disentangle
the qubit from the cavity leaving the qubit in |g〉 and the cavity in cg|2α〉 + ce|0〉.
Finally, the unconditional displacement D−α centers the superposition at the origin.

The qcMAP gate is well adapted to quantum information processing with a
transmon qubit [Koch 2007] coupled to a microwave resonator. The Hamiltonian is
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Figure 6.1: (a) The qcMAP gate comprises a conditional displacement of the cavity
mode Dg

2α and a conditional rotation of the qubit X0
π, mapping the qubit state to a

superposition of two coherent states with opposite phases in the cavity. (b) Fidelity
(blue) and gate time (green) of the qcMAP gate as a function of the dispersive
coupling χqr, for two values 3.5 (solid line) and 7 (dashed line) of n̄ = |α|2. Increasing
χqr decreases the gate time, however it also increases the cavity self-Kerr χrr which
reduces the fidelity. This effect is more important for large coherent states, which
explains the more important fidelity drop for n̄ = 7 photons. For n̄ = 3.5 photons,
fidelities larger than 99% are obtained for χqr smaller than 5 MHz, with a gate time
of ≈ 170 ns, much shorter than achievable coherence times.

well approximated by [Nigg 2012]

H

~
= ωra

†a + ωqb
†b − χrr

2
(a†a)2 − χqq

2
(b†b)2 − χqra

†a b†b .

Here a and b are respectively the dressed mode operators of the resonator and the
qubit (|g〉 and |e〉 are the first two eigenstates of b†b), ωr and ωq are their frequencies,
χqr is the dispersive qubit-resonator coupling, and χqq and χrr the anharmonicities.
Indeed, due to the coupling to a non-linear medium (the qubit), the cavity also
inherits a Kerr effect that leads to the anharmonicity χrr = χ2

qr/4χqq [Nigg 2012].
This nonlinearity can distort coherent states and sets a limit on the fidelity of the
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Figure 6.2: (a-c) Operations to prepare a 2 (a), 3 (b) and 4 (c) component SQOCS.
|Cα

n 〉 denotes a superposition of coherent states |α1〉 + . . . + |αn〉. In (b) and (c),
β1 = α1, β2 = α2 − α1, β3 = α3 − α2 and θ3 = 2 arccos(1/

√
3). In addition, in (c),

β4 = α4 − α3 and θ4 = 2arccos(1/2). (d-i) Wigner functions of the prepared states
in presence of decoherence and the cavity self-Kerr. The upper figures correspond
to n̄ = 3.5 photons in each coherent component and the lower ones correspond to
7 photons. We define the fidelity of the prepared state |ψprep〉 to the target |Cα

n 〉
as Fprep(|Cα

n 〉) = | 〈ψprep|Cα
n 〉 |2. We get Fprep(|Cα

2 〉) = 97.8% (resp. 97.2%) for
n̄ = 3.5 (resp. n̄ = 7) for a preparation time Tprep = 170 ns (resp. 135 ns). Simi-
larly, Fprep(|Cα

3 〉) = 96.2% (resp. 95.7%) and Tprep(|Cα
3 〉) = 320 ns (resp. 225 ns);

Fprep(|Cα
4 〉) = 91.9% (resp. 91.5%) and Tprep(|Cα

3 〉) = 460 ns (resp. 355 ns). Note
the insensitivity of the preparation fidelity to the size of the coherent components.
Due to the cavity self-Kerr, the components that are created earlier are deformed
more than those created later.
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gate.
While an unconditional cavity displacement Dα can be performed rapidly us-

ing a short pulse, the conditional cavity displacements Dg
α and qubit rotations X0

θ

necessitate long pulses allowing one to selectively address the corresponding spec-
tral line. In the qcMAP gate, X0

π transforms |e, 0〉 to |g, 0〉 while leaving |g, 2α〉
unchanged. To this end, we apply a pulse with a carrier frequency ω0

q and shape it
such that it does not overlap with the spectral lines ωn

q (= ω0
q −nχqr) corresponding

to the qubit frequencies when the cavity is in |2α〉. Defining n̄ = 〈α|a†a|α〉 = |α|2,
the pulse length needs to be longer than a certain multiple of 1/4n̄χqr. Here we
take a Gaussian pulse of standard deviation σt = 5/4n̄χqr and total length 6σt re-
sulting in a π-pulse time of 15/2n̄χqr (≈ 70ns for n̄ = 3.5 and χqr/2π = 5MHz)
for 99% fidelity. For the Dg

α operation, using a gaussian pulse to selectively address
ωg

r without driving ωe
r = ωg

r − χqr (the spectral lines are separated by χqr and not
4n̄χqr) would require a relatively long time of ≈ 30/χqr. However, as detailed in
section 6.2.6, Dg

α can be performed using two unconditional displacements and a
waiting time between them; the whole operation time is significantly reduced to
π/χqr (≈ 100ns). The total gate time is TGate ≈ 15+2n̄π

2n̄χqr
(TGate ≈ 170ns).

There is a compromise between decreasing the gate time with larger coupling
strengths and increasing the undesirable effect of the cavity self-Kerr. The Kerr
effect leads to a phase collapse of a coherent state with mean photon number n̄ on
a time scale of Tcollapse = π

2
√

n̄χrr
[Haroche 2006, Section 7.2]. This phase collapse

can be considered as an extra dephasing of the cavity and reduces the gate fidelity.
In Fig. 6.1(b), we compute the fidelity and time of the qcMAP gate in

the presence of the cavity self-Kerr but without any decoherence. We take
χqq/2π = 300 MHz and vary χqr. The fidelity F of the gate U is defined as
F = mincg ,ce |(c†g〈g, α| + c†e〈g,−α|) U (cg|g, 0〉 + ce|e, 0〉)|2. The gate fidelity and
the gate time decrease with increasing χqr. The decrease in fidelity is slightly worse
for higher n̄ since the coherent state becomes more exposed to the cavity’s non-
linearity. The maximum fidelity of ≈ 99.5% is set by the fidelity of the conditional
π-pulse which can be arbitrarily improved using longer pulses (at the expense of
longer gate times). In presence of decoherence, one should increase the coupling
strength (and therefore decrease the gate time) up to values that make the phase
collapse due to the cavity self-Kerr comparable to other dephasing times.

6.2.3 Preparing arbitrary superpositions of coherent states in one

and two cavity modes

One can tailor any SQOCS by applying a sequence of qcMAP gates
(see [Raimond 2010] for another method based on the dynamical quantum Zeno
effect, and [Lutterbach 2000] for a non deterministic scheme). The protocols to
generate 2, 3 and 4-component SQOCS are given in Fig. 6.2(a-c). The mas-
ter equation simulation of these preparation protocols lead to the Wigner func-
tions shown in Fig. 6.2(d-i). The corresponding parameters are χqr/2π = 5 MHz,
χqq/2π = 300 MHz and χrr/2π = 20 kHz. The qubit relaxation and dephasing times
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are T1 = T2 = 20 µs, and the cavity decay time is Tcav = 100µs. Recent experiments
with transmon qubits coupled to 3D resonators [Paik 2011, Rigetti 2012] indicate
that such parameters are realistic. More details on the preparation scheme can be
found in section 6.2.6. In particular, one notes the insensitivity of the fidelity to the
size of the coherent components. The ability to prepare multi-component SQOCS
also implies that the qcMAP gate can be used to store multi -qubit states in the
resonator.

The qcMAP gate can also be used on a qubit coupled to two spatially sepa-
rated cavities [Kirchmair et al. 2012] to prepare non-local mesoscopic superposition
states of the form | − α,−α〉 + |α, α〉. Such highly non-classical states achieve a
maximum violation of Bell’s inequality as soon as |α|2 ≈ 2 [Haroche 2006, Sec-
tion 7.6]. The preparation scheme is sketched in Fig. 6.3. As in the single-mode
case, the sequence duration is set by the length of the selective operations. The
two conditional displacements are performed simultaneously and their time is given
by max(π/χqr1 , π/χqr2) (χqr1 and χqr2 being the dispersive coupling between the
qubit and cavity modes). The conditional π-pulse is performed in a time of or-
der 15/2n̄(χqr1 + χqr2). Therefore, the preparation time for a non-local superposi-
tion is even shorter than the single-mode case. However, in addition to the cavity
self-Kerr effects χr1r1 and χr2r2 , we also have a cross-Kerr term χr1r2a

†
1a1 a†

2a2

between the two modes (χr1r2 given by 2
√
χr1r1χr2r2 [Nigg 2012]). We simulate

this scheme taking χqr1/2π = 5 MHz, χqr2/2π = 4 MHz, χr1r2/2π = 20 kHz,
χr1r1/2π = 20 kHz, χr2r2/2π = 13 kHz and χqq/2π = 300 MHz, and coherence
times of T1 = T2 = 20 µs for the qubit and Tcav = 100µs for the two cavities. The
entangled state |α, α〉 + | − α,−α〉 with |α|2 = 1.5 is prepared with a fidelity of
≈ 96% in 190 ns. By measuring the two-mode Wigner function at four points, as
explained in [Banaszek 1999, Milman 2005, Sarlette 2012], we retrieved a Bell signal
of 2.5, largely violating Bell’s inequality (the maximum possible Bell signal is 2

√
2).

6.2.4 Using the qcMAP gate to entangle qubits

We have shown that the qcMAP gate generates highly non-classical cavity
field states, making it a promising tool to store multi-qubit states in the cav-
ity [Gottesman 2001, Vitali 1998, Zippilli 2003]. An extension of the qcMAP gate
uses the cavity as a bus to perform multi -qubit gates. As shown in Fig. 6.4(a),
starting from state cg|g〉 + ce|e〉 for one qubit, we use the qcMAP gate to map this
state to a multi-qubit entangled state cg|gg · · · g〉 + ce|ee · · · e〉. A first conditional
displacement Dg

2α prepares cg|2α, gg · · · g〉 + ce|0, eg · · · g〉. The time for this opera-
tion is ≈ π/χ1. Applying, in parallel, a conditional π-pulse X0

π on nq − 1 qubits, we
prepare an (nq + 1)-body entangled state cg|2α, gg · · · g〉 + ce|0, ee · · · e〉. The time
for this operation is fixed by the minimum dispersive coupling strength. Next, we
perform a conditional displacement Dgg···g

−2α disentangling the cavity from the qubits
which are left in cg|gg · · · g〉 + ce|ee · · · e〉, while the cavity is in vacuum. This con-
ditional displacement can be performed in a very short time ≈ π/(χ1 + · · · + χnq),
which decreases with the number of qubits. Such an operation can be compared to
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C

C

|g〉 ⊗ |ψNL〉

Cavity 1: |0〉

Cavity 2: |0〉

Qubit: |g〉 Xπ/2

D−α

D−α

X00
π

Dg
2α

Dg
2α

Figure 6.3: Protocol for preparing a non-local entangled state between two cavities
that are dispersively coupled to a single qubit. Two simultaneous conditional dis-
placements lead to a tripartite entanglement, preparing the state |g, 2α, 2α〉+|e, 0, 0〉;
A π-pulse on the qubit, conditioned on both cavities being in vacuum, will then dis-
entangle the qubit from the cavities leaving them in an entangled state |ψNL〉 =

(| − α,−α〉 + |α, α〉)/N , where N is a normalization constant. We obtain a fidelity
of ≈ 96% in 190ns, leading to a Bell signal of 2.5.

the joint readout of qubits in the strong dispersive regime [Filipp 2009, Chow 2010]
where, by driving the cavity at a frequency corresponding to a particular joint state
of qubits, one can measure its population with a high fidelity.

In Fig. 6.4(b), we plot the gate time and fidelity as a function of the dispersive
coupling χqr. A limiting effect on the fidelity is the cavity self-Kerr which increases
additively with the number of qubits. Despite this effect, for χqr/2π = 3 MHz, we
prepare a 5-qubit GHZ state with a ≈ 97.5% fidelity in 300 ns. Furthermore, this
gate can be performed between any subset of qubits coupled to the bus and does
not require any qubit tunability or employment of higher excited states.

6.2.5 Summary and discussion

In conclusion, we have introduced the qcMAP gate which maps a qubit state to a
superposition of two coherent states in a cavity. The qcMAP gate is then used to
prepare 2, 3 and 4 component SQOCS, as well as a non-local mesoscopic field state
superposition in two cavity modes.

Using this gate, the resonator could be used as a quantum “disc drive” to store
multi -qubit states in a multi-component SQOCS. A SQOCS of maximum photon
number n̄ would be contained in a disc in phase space of radius

√
n̄. In this disc, we
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Figure 6.4: (a) The qcMAP gate can be used to map a single qubit state cg|g〉+ce|e〉
to a GHZ-type state |GHZ〉 = cg|gg · · · g〉 + ce|ee · · · e〉 for an arbitrary number of
qubits; The conditional rotations of qubits can be done in parallel and therefore
the total preparation time does not increase with the number of qubits nq (it ac-
tually slightly decreases with nq since the conditional displacement Dgg···g

−2α can be
performed faster). (b) Gate fidelity (blue) and time (green) as a function of the
dispersive coupling strength for 3 (solid lines) and 5 qubits (dashed lines); we take
the same dispersive shifts χqr/2π = 3 MHz for all qubits (not a necessary assump-
tion) and |α|2 = 3.5. Like in Fig. 6.1, the simulation does not include decoherence
but takes into account the cavity self-Kerr. For larger nq, the cavity self-Kerr in-
creases which leads to a drop in gate fidelity, particularly for high dispersive coupling
strengths. We obtain fidelities in excess of 99% (resp. 98%) for nq = 3 (resp. nq = 5)
with a gate time of 400 ns.

could fit coherent components which are at least separated by a minimal distance√
m. Hence, the maximum non-orthogonality of two coherent components is e−4m,

which is a very small systematic storage error for moderate m (for m = 2, e−4m ≈
10−4). The number of coherent components we can fit in this disc is ≈ n̄/m and
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hence this n̄ photon SQOCS could store a register of ≈ log2(n̄/m) qubits. The
effective decay rate of such a state would be n̄κ where κ is the decay rate of one
photon.

Using the qcMAP gate, the cavity can also be used as a bus to perform a multi-
qubit gate, preparing in particular, GHZ states. Finally, any multi-qubit gate can
be performed by concatenating such qcMAP gates.

6.2.6 Detailed sequence for conditional displacements and prepa-

ration of superpositions of coherent states

In this section, we describe in detail the Dg
α operation and provide the full sequence

of steps that prepares the two, three and four component superposition of quasi-
orthogonal coherent states with performances announced in the section. Finally, a
simple computation shows the first-order effect of the cavity self-Kerr on a coherent
state.

While the conditional qubit rotationX0
θ is performed through long enough pulses

ensuring a selective addressing of spectral lines, the conditional cavity displacement
Dg

α is composed of two short unconditional displacements separated by a waiting
time. This reduces the Dg

α operation time from ≈ 30/χqr to ≈ π/χqr. We consider
the rotating frame of the Hamiltonian ωra

†a + ωqb
†b − χqq

2 (b†b)2. We perform a
first unconditional displacement Dβ of the cavity through a very short pulse that
displaces the cavity regardless of the qubit state. We wait for time Twait, and apply
a second unconditional displacement D−βeiχqrTwait . Neglecting the cavity self-Kerr,
this sequence of operations leads to the following unitary evolution:

U = D−βeiχqrTwaite
iχqrTwaita

†ab†bDβ

= e−i|β|2 sin(χqrTwait)|g〉〈g| ⊗Dβ−βeiχqrTwait

+ |e〉〈e| ⊗ e−iχqrTwaita
†a.

Taking α = β − βeiχqrTwait , we have

U|g, 0〉 = e−i|β|2 sin(χqrTwait)|g, α〉,
U|e, 0〉 = |e, 0〉.

Up to a phase term of e−i|β|2 sin(χqrTwait) that we can take into account in future
qubit pulses, this is precisely the conditional displacement. In particular, taking
Twait = π/χqr, we have a conditional displacement of α = 2β in a time of π/χqr.

In Figure 6.5, we provide the complete sequence of operations which generate
superpositions of two, three and four quasi-orthogonal coherent components.

Let us finish by a simple computation showing the first order effects of the cavity
self-Kerr. Considering a short time τ such that ε = χrrτ/2 ≪ 1, we can show that
the first order contribution of the cavity self-Kerr is simply an extra deterministic
phase accumulation of the cavity’s coherent states that we can take into account
in future cavity displacements and qubit rotations. Indeed, the distortion of the
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coherent states happens only as a second order term with respect to ε. Consider a
coherent state |α〉 of average photon number n̄ = |α|2. We define |ψε〉 = eiε(a

†a)2 |α〉
and we search for a coherent state of amplitude αε and global phase φε: eiφε |αε〉,
which is close to |ψε〉 for small ε. We have 〈ψε|a|ψε〉 = αeiεen̄(e2iε−1) = 〈αε|a|αε〉
for αε = αeiεen̄(e2iε−1) = αeiε(2n̄+1) +O(ε2). In order to find φε, we compute

e−iφε 〈αε|ψε〉 = e−iφε〈α|eiε(−(2n̄+1)a†a+(a†a)2)|α〉 +O(ε2)

= e−iφε(1 − iεn̄2) +O(ε2)

Taking φε = −εn̄2, we get e−iφε 〈αε|ψε〉 = 1 + O(ε2). Therefore, as a first order
approximation for the effect of the cavity self-Kerr, we have

eiχrrτ(a†a)2/2|α〉 ∼ e−iχrrτn̄2/2|eiχrrτ(n̄+ 1
2
)α〉.

In the simulations of this section, we took into account this extra coherent state
rotation for the subsequent displacements. The overall phases were corrected by
appropriately choosing the subsequence qubit pulse phases.
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(a)

χqrTwait = π

DαDα

D
−αX0

π

Xπ/2

Dg
2α gate

Wait

(b)

Dα

χqrTw= 2π
3

χqrTw= 2π
3

D
−αe2iπ/3 X0

π/2

Dαe2iπ/3

D
−αe4iπ/3

Dαe4iπ/3X0

πWait

WaitXθ3

Figure 6.5: Detailed sequence to prepare a superposition of 2 (a) and 3 (b) quasi-
orthogonal coherent states (SQOCS). See Fig. 6.6 for a 4 component SQOCS. Each
frame is the Fresnel diagram of the field in the resonator. The two dotted lines
represent two orthogonal quadratures, and intersect at 0. The frames are ordered
from left to right and top to bottom. A circle of center α in the diagram refers to
a coherent state of amplitude α. The fraction of the circle colored in blue [resp:
red] corresponds to the population of the qubit which is in the ground state [resp:
excited state]. Eg. frame 3 in (a) corresponds to state 1√

2
(|g, α〉 + |e,−α〉). In

particular we represent 1√
2
|g, α〉 with the right circle (+α), with a qubit in |g〉

(blue color) and a 50% population (half full). Fast (here considered instantaneous)
displacements Dγ transform any coherent state |α〉 to |α+γ〉 regardless of the qubit
state. The Fresnel diagram is in a rotating frame which leaves states of the form
|g, α〉 unchanged, while |ψ(0)〉 = |e, α〉 evolves as |ψ(t)〉 = |e, αeiχqrt〉. A selective
pulse X0

θ rotates the qubit state when the resonator is in the zero photon state |0〉.
Graphically, this corresponds to changing a fraction of the color of a circle centered
at 0. In (b), θ3 = 2arccos(1/

√
3). A symbol in each frame n gives the operation

performed to go from frame n− 1 to n.
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Xθ4
Dα DαχqrTw=π

χqrTw=π

X0

π−θ3

D
−α χqrTw=π

2

Diα

Diα
X0

π/2

X0

πD
−iα

D
−iα

Wait

Wait

Wait

Figure 6.6: Detailed sequence to prepare a superposition of 4 quasi-orthogonal co-
herent states. We have θ3 = 2 arccos(1/

√
3) and θ4 = 2 arccos(1/2). See caption of

Fig. 6.5 for details on this diagrammatic representation.
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6.3 Hardware-efficient autonomous quantum error cor-

rection

This section describes a very recent proposal we obtained in collaboration
with G. Kirchmair, B. Vlastakis, R. Shoelkopf, M. Devoret and M. Mirrahimi
[Leghtas 2012c].

We propose a new method to autonomously correct for errors of a logical qubit
encoded in a cavity induced by energy relaxation of the qubit. This scheme encodes
the logical qubit as a multi-component superposition of coherent states in a harmonic
oscillator, more specifically a cavity mode. The sequences of encoding, decoding and
correction operations employ the non-linearity provided by a single physical qubit
coupled to the cavity. We layout in detail how to implement these operations in a
practical system. This proposal directly addresses the task of building a hardware-
efficient and technically realizable quantum memory.

6.3.1 Introduction

Long-lived coherence is a prerequisite for quantum computation. The last two
decades have seen impressive improvements in the coherence times of qubits and cav-
ities. The results of hardware improvement have been so substantial that the quality
threshold needed for quantum error correction (QEC) [Shor 1995, Steane 1996] to
be effective is within reach [Rigetti 2012]. Since the birth of QEC, many possible im-
plementations have been proposed. We classify these QEC schemes as being either
measurement based or autonomous. Measurement based QEC (MBQEC) consists
of periodically measuring error syndromes and feeding back appropriate correction
pulses conditioned on the measurement results [Chiaverini 2004]. In autonomous
QEC (AQEC), however, no classical information needs to be extracted. Instead,
it is sufficient to transfer the random errors to an ancillary quantum system which
is then reset to remove the entropy [Schindler 2011, Reed 2012b]. Furthermore,
continuous time implementations can be used for both MBQEC [Ahn 2002] and
AQEC [Kerckhoff 2010].

All these methods encode the single logical qubit to be protected in a register
of several physical qubits. While at least five physical qubits are needed to correct
for single phase and bit flip errors of the register [Gottesman 1996], it has been
shown that when the decoherence is due to a dominant quantum noise process
such as amplitude damping, fewer resources might be needed. Indeed, [Leung 1997]
propose a four-qubit code correcting for single amplitude damping errors.

In this section, we propose a QEC scheme which replaces the register of several
qubits by a single high-Q cavity mode, coupled to a single physical qubit. The
vastness of the Hilbert space of the harmonic oscillator, combined with the con-
trol provided by operations described in [Leghtas 2012b], allows this replacement.
In our scheme, the logical qubit is encoded in a multi-component superposition of
coherent states in the cavity mode, the coupled qubit bringing the non-linearity
necessary for the manipulation of coherent states. This simple cavity-qubit system
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is the standard building block of both circuit and cavity quantum electrodynamics
(QED) experiments [Schoelkopf 2008]. Here, we show that this minimal hardware,
together with an additional low-Q cavity mode used for qubit readout or qubit reset,
is sufficient to correct for the dominant source of errors, namely photon damping in
the high-Q cavity. Moreover, the number of independent quantum noise channels
corrupting the logical information, would not increase with the number of encoded
qubits, which represents an additional advantage of our protocol over a multi-qubit
register. A cavity mode is thus a powerful hardware for protecting quantum infor-
mation [Gottesman 2001, Vitali 1998, Zippilli 2003].

Previous proposals [Vitali 1998, Zippilli 2003] have suggested that states with a
given photon number parity of a cavity mode (parity states) can be used to encode
quantum information. There, stabilization of a parity manifold is obtained by a
quantum non-demolition (QND) parity measurement and photon injection when
needed. Such a scheme replaces the decoherence due to photon damping by a slower,
unusual dephasing due to a drift in the parity manifold.

Here, we go a step forward towards a readily realizable quantum memory, by
proposing a scheme for efficiently encoding a logical qubit in a particular cavity
state that is fully protected against single quantum jumps due to photon damping.
Depending on the experimental constraints, two approaches are possible. The first
approach, a MBQEC scheme, keeps track of the quantum jumps by stroboscopic
QND measurements of the photon number parity and corrects for the decay by an
appropriate decoding and encoding operation sequence. The second approach, an
AQEC scheme, transfers the entropy of the cavity state to an ancilla qubit and then
removes this entropy by reseting the qubit state. All the encoding, decoding and
correction operations of both approaches can be performed using tools that have
been introduced in our recent paper [Leghtas 2012b].

6.3.2 Cavity logical 1 and logical 0, and MBQEC

An arbitrary qubit state cg|g〉+ce|e〉 (we denote by |g〉 and |e〉 the ground and excited

state) is mapped into a multi-component coherent states |ψ(0)
α 〉 = cg|C+

α 〉 + ce|C+
iα〉,

where
|C±

α 〉 = N (|α〉 ± | − α〉) , |C±
iα〉 = N (|iα〉 ± | − iα〉) .

N (≈ 1/
√

2) is a normalizing factor and |α〉 denotes a coherent state of complex
amplitude α, chosen such that |α〉, | − α〉, |iα〉, | − iα〉 are quasi-orthogonal. We
have recently proposed a toolbox of operations which efficiently prepare these states
|C±

α 〉, |C±
iα〉 [Leghtas 2012b]. The logical 0: |C+

α 〉, and logical 1: |C+
iα〉, have some

remarkable properties: the state |ψ(0)
α 〉 evolves, after a quantum jump due a photon

loss, to |ψ(1)
α 〉 = a|ψ(0)

α 〉/
∥∥∥a|ψ(0)

α 〉
∥∥∥ = cg|C−

α 〉 + ice|C−
iα〉, where a is the annihila-

tion operator. Furthermore, in absence of jumps during a time interval t, |C±
α 〉 and

|C±
iα〉 deterministically evolve to |C±

αe−κt/2〉 and |C±
iαe−κt/2〉, where κ is the cavity

decay rate. Now, one can find a unitary transformation mapping |C−
αe−κt/2〉 and

i|C−
iαe−κt/2〉 respectively to |C+

α 〉 and |C+
iα〉. Therefore, whenever a jump is detected,
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such a unitary transformation can restore the state independently of the superpo-
sition amplitudes cg and ce, thus undoing the action of decoherence. Moreover,

the states |ψ(0)
α 〉 and |ψ(1)

α 〉 are eigenstates of the photon number parity operator
Π = exp(iπa†a), corresponding respectively to even and odd number of photons.
Therefore, measuring continuously the parity observable reveals quantum jumps and
can trigger the correction step.

Furthermore, one does not need to immediately correct when the parity mea-
surement indicates a quantum jump. Indeed, continuing with a stroboscopic QND
measurement of the parity observable, one can keep track of how many quan-
tum jumps occured. If a second photon is lost, the state jumps to |ψ(2)

α 〉 =

a2|ψ(1)
α 〉/

∥∥∥a2|ψ(1)
α 〉
∥∥∥ = cg|C+

α 〉 − ce|C+
iα〉, which switches back the parity to even.

A third jump gives |ψ(3)
α 〉 = cg|C−

α 〉 − ice|C−
iα〉 with an odd parity. Finally, the

fourth jumps reestablishes the initial state a4|ψ(0)
α 〉/

∥∥∥a4|ψ(0)
α 〉
∥∥∥ = |ψ(0)

α 〉.
We define the unitary operations Uencode and Udecode such that for all cg and ce,

Uencode :(cg|g〉 + ce|e〉) ⊗ |0〉 → |g〉 ⊗ (cg|C+
α 〉 + ce|C+

iα〉) .
Udecode :|g〉 ⊗ (cg|C+

α 〉 + ce|C+
iα〉) → (cg|g〉 + ce|e〉) ⊗ |0〉.

In section 6.3.4, we give a detailed pulse sequence which could inefficiently realize
these operations. The stroboscopic QND parity measurements indicates at each
time how many jumps have occurred, and hence, which orthogonal states encode
the logical qubit. Similarly to Udecode, one can consider 3 other decoding operations
bringing back the new codewords to the qubit state cg|g〉 + ce|e〉. Indeed, we will

have four decoding operations denoted by U (c)
decode for c ≡ njumps (modulo 4) jumps

detected. For example, if after a QND measurement time Tm, njumps = 7 parity

changes are detected, we have c = 3, and U (3)
decode is applied, thus transforming

|g〉 ⊗ (cg|C−
αe−κTm/2〉 − ice|C−

iαe−κTm/2〉) to (cg|g〉 + ce|e〉) ⊗ |0〉. The measurement

time Tm should be chosen such that |±αe−κTm/2〉 and |± iαe−κTm/2〉 remain quasi-

orthogonal. We may compute the overlap
∣∣〈αe−κTm/2|iαe−κTm/2

〉∣∣2 = e−2|α|2e−κTm .
For an overlap of, for instance, e−6, we get Tm = log(|α|2 /3)/κ. A new cycle then
starts by re-encoding the qubit state into cg|C+

α 〉+ce|C+
iα〉, performing a QND parity

measurement for time Tm, decoding and so on. An alternative can avoid decoding
back to the qubit. We could apply, after each measurement time Tm, a correction
operation which maps |ψ(c)

αe−κTw
〉 to |ψ(c)

α 〉, thus re-pumping energy back into the
damped state.

We denote εmeas the probability to make an erroneous measurement or to have
a single jump or more during the measurement. Also, we denote by λjump = κn̄ the
rate at which a quantum jump happens for the cavity state with an average number
of n̄ photons. If M is the number of measurements we perform during the time inter-
val Tm (we assume λjumpTm/M ≪ 1), the probability of having two jumps or more

between two measurements is well approximated by εwait = 1
2!

λ2
jump

T 2
m

M2 (the number
of jumps follows the Poisson law). The fidelity of the recovered state with respect to
cg|g〉+ce|e〉 at the end of one encoding-measuring-decoding procedure is larger than
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FQEC ≈ (1 − εdecode) ((1 − εmeas)(1 − εwait))
M (1 − εencode). Here, (1 − εdecode) and

(1 − εencode) represent the fidelities of the encoding and the decoding operations,
taking into account various imperfections and in particular the decoherence during
the operation time. Noting that εwait depends on the number of measurements M ,
in order to maximize FQEC, one should take M ≈ κn̄Tm/

√
2εmeas. This corresponds

to an equilibrium between the probability of an erroneous measurement, εmeas, and
probability of having more than a single jump between two measurements, εwait. In
the limit where 2Mεmeas = κn̄Tm

√
2εmeas ≫ εdecode, εencode, the effective lifetime

of the protected state is κeff ≈ κn̄
√

2εmeas. One cycle of the measurement-based
quantum error correction is performed in time Te + Tm + Td, this cycle can then be
reiterated.

QND parity measurements have been previously performed through
Ramsey-type experiments within the context of cavity QED with Rydberg
atoms [Haroche 2007]. Such a measurement scheme can also be adapted to cir-
cuit QED experiments but necessitates a flux bias line which would allow to tune
the qubit near and out of resonance with the cavity mode. Also, fast and reliable
measurements would necessitate application of quantum limited amplifiers.

In order to avoid such further experimental complications, we propose in the next
section an AQEC scheme which does not require any real-time measurement-based
quantum feedback.

6.3.3 Autonomous QEC

AQEC is realized by using an auxiliary quantum system that we take here to be a
qubit. The idea consists in finding a unitary operation Ucorrect such that

Ucorrect :|g〉 ⊗ |C±
αe−κt/2〉 →

1√
2
(|g〉 ± |e〉) ⊗ |C+

α 〉, (6.1)

|g〉 ⊗ |C±
iαe−κt/2〉 →

1√
2
(|g〉 ± |e〉) ⊗ |C+

iα〉.

This unitary operation transfers the entropy of the quantum system to be protected
to the auxiliary one. Now, resetting the state of the auxiliary system, we can evac-
uate the entropy, restoring the initial total state. The AQEC scheme consists of
encoding the qubit state cg|g〉 + ce|e〉 in the state |ψ(0)

α 〉 and performing the above
unitary transformation followed by the reset of the auxiliary qubit in a stroboscopic
manner. Assuming that at most one quantum jump can happen between two correc-
tion operations separated by time Tw, the state before the correction is given either
by |ψ(0)

αe−κTw/2〉 or |ψ(1)

αe−κTw/2〉 , and after the correction operation we have restored

the initial state |ψ(0)
α 〉. This whole process can be completed by a decoding step

transferring the quantum information back onto the qubit (see Fig. 6.7).
We now quantify the performance of our AQEC scheme. Let ρ(k)

α denote the
projector onto the state |ψ(k)

α 〉 for k = 0, · · · , 3. The effect of the waiting time Tw

between two corrections may be modeled by a Kraus operator

Kw : ρ(0)
α → p0ρ

(0)
α̃ + p1ρ

(1)
α̃ + p2ρ

(2)
α̃ + p3ρ

(3)
α̃ ,
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Figure 6.7: Our AQEC scheme is composed of three operations: encoding, correct-
ing and decoding. The joint cavity-qubit state is represented by a generalized Fresnel
diagram. Fresnel plane positions carry the description of the cavity mode, while col-
ors carry the description of the qubit. Our protocol only requires that we represent
superpositions of coherent states entangled with the qubit degrees of freedom. A
circle whose center is positioned at α in the diagram corresponds to a coherent
state component of amplitude α. For example, the diagram in frame 2 represents
the state cg|C+

α 〉+ ce|C+
iα〉 = N (cg|g, α〉 + cg|g,−α〉 + ce|g, iα〉 + ce|g,−iα〉), where

N ≈ 1/
√

2 is a normalization factor. Each component of this state corresponds to
a circle whose color refers to whether the qubit is in |g〉 (blue) or |e〉 (red). The
rim of each circle indicates whether the pre-factor is cg (single line) or ce (double
line). Finally, the fraction of the colored disc represents the total weight |N cg,e|2 of
each coherent component. Here, quarter filled circles correspond to |N cg,e|2 = 1/4.
Initially (frame 1), the qubit is in cg|g〉 + ce|e〉 and the cavity is in vacuum. The
plus [resp: minus] sign in the 2 and 3 diagrams indicates whether the logical qubit
is encoded in the pair (|C+

α 〉, |C+
iα〉) [resp: (|C−

α 〉, i|C−
iα〉)]. A jump from a plus to a

minus sign is induced by a photon loss error, which we aim to correct.
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where α̃ = αe−κTw/2. For a Poisson process with a jump rate λjump, the probability
of having k jumps during a time interval Tw is given by exp(−λjumpTw)λk

jumpT
k
w/k!.

We denote pk the probability of having k (modulo 4) jumps during the wait-
ing time Tw. In the limit where εjump := λjumpTw = κTwn̄ ≪ 1, we have
p0 ≈ 1 − εjump + ε2jump/2, p1 ≈ εjump − ε2jump, p2 + p3 ≈ ε2jump/2. The correc-
tion step consists of the joint unitary operation on the cavity-qubit system followed
by a qubit reset. We model the effect of this operation by the Kraus operator
Kc, mapping both |ψ(0)

αe−κTw/2〉 and |ψ(1)

αe−κTw/2〉 to |ψ(0)
α 〉. After N correction cycles

and waiting times (each one taking a time Tc + Tw), we obtain a fidelity at time

tN = N(Tc+Tw): FAQEC(tN ) =
∣∣∣〈ψ(0)

α |(KcKw)N |ψ(0)
α 〉
∣∣∣
2
. We denote (1−εcorrect) the

fidelity of the correction operation, taking into account various imperfections and
particularly finite coherence times. Also, εwait = ε2jump/2 denotes the probability
of having 2 or more jumps during the waiting time between two correction steps.
We have FAQEC(tN ) ≈ ((1 − εcorrect)(1 − εwait))

N . Assuming Tc ≪ Tw, we obtain
an effective decay rate κeff ≈ (εcorrect + (κTwn̄)2/2)/Tw. The latter is maximal for
Tw =

√
2εcorrect/κn̄, which would lead to

κeff = κn̄
√

2εcorrect . (6.2)

This is an improvement by a factor of
√

2εcorrect with respect to the decay rate κn̄
of |ψ(0)

α 〉 in absence of correction.

6.3.4 Encoding, decoding and correcting operations

We now show how we could perform the encoding, decoding and correcting opera-
tions in practice. We place ourselves in the strong dispersive regime, where both the
qubit and the resonator transition frequencies split into well-resolved spectral lines
indexed by the number of excitations in the qubit and the resonator [Schuster 2007].
The resonator frequency ωr splits into two well resolved lines ωg

r and ωe
r , correspond-

ing to the cavity’s frequency when the qubit is in the ground (|g〉) or the excited (|e〉)
state. Through the same mechanism, the qubit frequency ωq splits into {ωn

q }n=0,1,2,···
corresponding to the qubit frequency when the cavity is in the photon number state
|n〉. Recent experiments have shown dispersive shifts that are about 3 orders of
magnitude larger than the qubit and cavity linewidths [Paik 2011].

The Hamiltonian of such a dispersively coupled qubit-cavity system is well ap-
proximated by

H0 = ωq
σz

2
+ ωca

†a − χ
σz

2
a†a ,

where ωq and ωc are respectively the qubit and cavity frequencies, χ is the dispersive
coupling, σz = |e〉〈e| − |g〉〈g|, and a is the cavity mode annihilation operator. This
Hamiltonian may be written in an appropriate rotating frame as H = −χ|e〉〈e|a†a.
This dispersive coupling is called strong when χ ≫ κ, 1/T2, where κ is the cavity
decay rate and T2 is the qubit dephasing time.

As detailed in [Leghtas 2012b] the strong dispersive qubit-cavity coupling al-
lows one to efficiently perform conditional operations such as the conditional cavity
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(a) Encode

|0〉 Dα
Π
2 D-iα Dβ

Π
2

D-iβ Π
2

D-β D-α
cg|C+

α 〉
+ce|C+

iα〉

cg|g〉
+ce|e〉

• X0
-π
2 ,0 • X0

π
2 ,0 • X0

-π,2n̄ X0
-π,2n̄ |g〉

(b) Decode

cg|C+
α 〉

+ce|C+
iα〉

Dα Diβ
Π
2

Dβ
Π
2

D-iβ D-iα Π
2 D-α |0〉

|g〉 X0
π,0 • X0

π,-2n̄ • X0
-π
2 ,2n̄

X0
π
2 ,0 • cg|g〉

+ce|e〉

Figure 6.8: Sequence of operations which generate Uencode (a) and Udecode (b), map-
ping the qubit state to the cavity and back. Dα displaces the cavity state by an
amplitude α regardless of the qubit state. Conditional operation Π [resp: Π

2 ] is
realized by simply waiting for time π/χ [resp: π/(2χ)]. This transforms states of
the form |e, α〉 to |e,−α〉 [resp |e, iα〉], and leaves |g, α〉 unchanged. The conditional

qubit rotation X0
θ,η rotates the qubit state by e

θ
2 (eiη |e〉〈g|−e−iη |g〉〈e|) only if the cav-

ity is in the vacuum state |0〉. This is achieved by applying a long selective pulse
exploiting the energy level dispersive shifts. We denote β = α(−1+ i) and n̄ = |α|2.

displacements and the conditional qubit rotations. Long selective qubit pulses with
carrier frequency ω0

q can rotate the qubit state conditioned on the cavity being in the
vacuum state. Similarly, selective cavity pulses with carrier frequency ωg

r [resp: ωe
r ]

can coherently displace the cavity state conditioned to the qubit being in the ground
[resp: excited] state. Furthermore, as explained in [Caves 2010, Leghtas 2012b],
shorter operation times are obtained by replacing a conditional cavity displacement
by two unconditional ones separated by a waiting time.

The operations involved in our QEC scheme rely on a qubit reset and three
unitary transformations. The first one, Dα, displaces the cavity state by a complex
amplitude α regardless of the qubit state. Second, the conditional operation Π [resp:
Π
2 ] transforms states of the form |e, α〉 to |e,−α〉 [resp |e, iα〉], and leaves |g, α〉
unchanged. It is realized by simply waiting for time π/χ [resp: π/(2χ)]. Third, a

conditional qubit rotation X0
θ,η rotates the qubit state by e

θ
2 (eiη |e〉〈g|−e−iη |g〉〈e|) only

if the cavity is in the vacuum state |0〉. This is achieved by applying a long selective
pulse exploiting the energy level dispersive shifts. The reset operation sets the qubit
state to |g〉 independently of the cavity state. This reset needs to be fast compared
to χ to avoid re-entanglement of the qubit with the cavity mode. A possible scheme
to perform such a fast reset is to rapidly tune (with a flux bias line) the qubit
frequency to bring it into resonance with a low-Q cavity mode [Reed 2012b]. Another
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(a) Encode

(b) Decode
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Figure 6.9: Diagrammatic equivalent of Fig. 6.8. The frames are ordered from left
to right and top to bottom. The diagram notations are explained in Fig. 6.7. The
symbol given in frame n corresponds to the operation performed to go from frame
n − 1 to n. All the possible operations are described in the caption of Fig. 6.8.
The curved arrow corresponds to the rotation of the excited state component of the
state.
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(a) Transferring entropy from the cavity to the qubit, and qubit reset
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α′〉

+i
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Diα′ D-β′

Π
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Π
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i
π
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′ |0〉
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π
2 ,

π
2 |g〉±|e〉√

2

/. -,() *+Reset
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(b) Re-pumping energy into the cavity

cg|α′(1-i)〉
+cee

i
π
4 ein̄

′ |0〉
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d Π D-β′
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cg|α(1-i)〉
+cee

in̄|0〉

|g〉 X0
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4
• X0

-π,0 |g〉

(c) Re-encoding the logical qubit into the cavity logical 0 and 1 states

cg|α(1-i)〉
+cee

in̄|0〉 Dβ
Π
2

D-iβ Π
2

D-β D-α
cg|C+

α 〉
+ce|C+

iα〉

|g〉 X0
π
2 ,0 • X0

π
2 ,0 • X0

-π,2n̄ X0
-π,2n̄ |g〉

Figure 6.10: Full correcting sequence obtained by concatenating the three sequences
of pulses (a-c). (a) First, the entropy is transferred from the cavity to the qubit,
and then, the qubit is reset to its ground state. (b) Energy is re-pumped into the
coherent component to compensate the deterministic decay due to damping during
the waiting time Tw between two correction sequences. (c) The cavity state is
mapped back onto the initial cavity logical 0 and logical 1. See the caption of Fig. 6.8
for a description of operations Dα,Π and X0

θ,η. Here, we denote α′ = e−κTw/2α the
damped amplitude after the waiting time Tw, n̄′ = |α′|2 and β′ = α′(i − 1). In
order to compensate the damping during Tw, during the re-pumping step, we take
β′d = (β′ − β)/2.

possibility, avoiding a flux bias line, is to perform a dynamical cooling cycle as
proposed in [Leghtas 2012a]. See Fig. 6.8 and Fig. 6.10 for a detailed illustration of
how combining all these operations leads to the encoding, decoding and correcting
gates. A more geometrical representation is given in Fig. 6.9 and Fig. 6.11. For
the correction sequence, unlike in (6.1) which suggests a qubit reset at the end of
the correcting transformation, we find a shorter pulse sequence (see Figs. 6.10,6.11)
which resets the qubit in the middle of the sequence.
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(a) Transferring entropy from the cavity to the qubit, and qubit reset

(b) Re-pumping energy into the cavity

(c) Re-encoding the logical qubit into the cavity logical 0 and 1 states
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Figure 6.11: Diagrammatic equivalent of Fig. 6.10. See Fig. 6.7 for an explanation
of the diagram notation. In the frame before last of (a), the error is encoded in
the phase of the qubit superposition, and is not represented in this diagram. After
qubit reset (last of frame of (a)), this phase information is erased.

6.3.5 Simulations

To numerically compute the fidelity of each operation, we simulate the corresponding
sequence of pulses with a master equation taking into account the qubit and cavity
decoherence. We take a qubit decay time T1 and pure dephasing time T2 of T1 =

T2 = 100 µs and a cavity lifetime Tcav = 1/κ = 2 ms. The dispersive coupling
strength is χ/2π = 40 MHz and the mean photon number per coherent component is
n̄ = |α|2 = 4. We get an encoding and decoding fidelity of 1−εencode = 1−εdecode =
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Figure 6.12: Fidelity of our AQEC scheme. The cavity state is initialized in state
|ψ(0)

α 〉. We represent the fidelity of the cavity state w.r.t |ψ(0)
α 〉 in absence of the

error correction sequence of Fig. 6.10 (green solid line) and after each correction
sequence (blue open dots). These simulations take into account dominant sources of
decoherence: cavity decay Tcav = 2 ms and qubit T1 = T2 = 100 µs. The decay rate
of the bare qubit and cavity are plotted for comparison (red and magenta dashed
lines).

99.65% for an operation time of Te = Td = 231ns, and a correcting fidelity of
1 − εcorrect = 99.23% for an operation time of Tc = 519 ns. The optimal waiting
time is Tw = 65.6 µs. This leads to an effective lifetime for the corrected state of
T eff

cav = 4.1 ms, within 1% agreement with the formula in (6.2). This represents
a large improvement over the lifetime of the bare qubit T1 = 100 µs, and of an
uncorrected cavity Tcav/n̄ = 500 µs. There is even an improvement w.r.t a single
photon lifetime of Tcav = 2 ms. Notice that a better correction gate fidelity could
lead to an even larger improvement. This could be obtained by optimizing the pulse
sequence for a specific experimental setting.

6.3.6 Conclusion

We have shown that it is possible to protect a logical qubit against relaxation by
encoding it in a single cavity coupled to a single physical qubit, and driving them
with simple control pulses. No control over the qubit frequency or the cavity-qubit
coupling is necessary, as long as this coupling is in the strong dispersive regime.
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Our theoretical prediction of the lifetime improvement is confirmed by numerical
simulations of the proposed protocol. Also, additional control of the qubit frequency
in real time could lead to simpler and faster operations with higher fidelities, by
using ideas similar to those in [Caves 2010]. Finally, our scheme that corrects only
for single jumps in the cavity, could be generalized to an nth order correcting scheme
by superposing n+1 quasi-orthogonal coherent states for each logical state zero and
one.





Chapter 7

Conclusion

In this thesis, we tackle the problems of identification, state preparation and sta-
bilization of quantum systems. We consider the context of an ensemble of atoms
interacting with an electric field, Josephson circuits and cavity QED.

At the time of writing, two more experiments which we have proposed (not
discussed in this manuscript) are currently being realized in the groups of Michel
Devoret and Rob Schoelkopf at Yale:

The first experiment is on the stabilization of a two qubit Bell state by reservoir
engineering. The system is composed of two 3D transmons which are strongly
dispersively coupled to a microwave resonator. Simply by applying drives at well
chosen frequencies and satisfying a few simple conditions, we could stabilize a state
of the form |ge〉 + |eg〉 with a fidelity above 90%. We predict a violation of Bell’s
inequality for arbitrarily large times. The experiment will be equipped with quantum
limited amplifiers which would reveal single quantum trajectories dynamics, thus
observing jumps and automatically triggered corrections. This would be the first
experiment where an entangled pure state is stabilized, and where Bell’s inequality
is violated for arbitrarily large times.

The second experiment is on qubit cooling: qubits tend to be much hotter than
their environment. We proposed a scheme to dynamically cool a qubit which is
dispersively coupled to a cavity. The latter plays the role of a reservoir which
stabilizes the qubit ground state. This scheme was experimentally tested and showed
a reduction of temperature from 130 mK to 60 mK, in close agreement with our
theory [Leghtas 2012a]. This experiment can also be viewed as a qubit reset with
no fast qubit frequency tuning. A non-zero temperature is due to a coupling to an
external environment. Dynamical cooling data could help us gain more information
on the physics of this environment, which could help us increase coherence times.

We now list some future directions in the research subjects presented in this
dissertation.

Stabilization by reservoir engineering seems to be perfectly adapted to the con-
text of quantum systems, where measurement processing and latency in a feedback
loop can be prohibiting. This idea was first proposed by Cirac, Zoller and co-workers
[Poyatos 1996]. It would be useful to establish a mathematical foundation to reser-
voir engineering. For example: under which minimal assumptions can we insure
the existence of an interaction Hamiltonian between the system and the reservoir
in order to stabilize a target state, or more generally a manifold? Which set of
initial states will converge to the limit set? What are the convergence rates? A
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detailed mathematical analysis of such questions could lead to new tools to design
experiments revealing some interesting behaviors.

Highly non-classical states could be prepared using the control laws we have
proposed. These ideas emerged from a geometrical understanding of the dynamics
of the system. Representations such as eigenvalue diagrams (chapter 4) and Q-
functions (chapter 6) guided our intuition. Another approach to find these controls
could be to use numerical methods [Mirrahimi 2005, Maday 2003, Khaneja 2005].
Although the latter may not reveal the underlying physics during the transfer from
the ground to the target state, they could complete the preparation in shorter time,
which could be of great interest to decrease sensitivity to decoherence.

We have proposed experiments where tailoring the interaction between a quan-
tum system and its environment can stabilize highly non-classical states. This poses
an intriguing question: do natural systems or even biological systems do the same?
Can we imagine that some proteins interact with their environment in such a way
that they are maintained in an entangled state? Could such a process be evolution-
ary advantageous? Some of these questions have been raised in the flourishing field
of quantum biology [Engel 2007]. The Hilbert space of these systems is usually very
large: a set of chromophores (qubits) coupled to a bath (resonators), which com-
plicates numerically simulating them. Josephson circuits could serve as quantum
simulators for these biological systems.

As coupling strengths and coherence times are rising, the span of operations
we are able to do on these systems is widening. We have seen how the strongly
dispersive regime offers the possibility to perform new operations. In particular this
led us to proposing a full quantum error correction scheme using only one qubit
and one cavity. Future circuit architectures will most certainly lead to new regimes
paving the way for more possibilities. We hope that these ideas drawn from a merge
of control theory and quantum physics will help guide the development of these
future experiments.
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Préparation et stabilisation de systèmes quantiques

Résumé: Cette thèse s’intéresse au problème de préparation et de stabilisation
de systèmes quantiques. Nous considérons des modèles correspondant à des expéri-
ences actuelles en électrodynamique quantique en cavité, circuits Josephson, et de
contrôle quantique cohérent par laser femtoseconde. Nous posons les problèmes dans
le contexte de la théorie du contrôle et nous proposons des lois de commande qui
préparent ou stabilisent des états cibles. En particulier, nous nous intéressons à des
états cibles qui n’ont pas d’analogue classique: des états superpositions et intriqués.
De plus, nous proposons une commande pour la stabilisation d’un sous-espace de
l’espace des états, contribuant ainsi au domaine de la correction d’erreur quantique.
Ces résultats ont été obtenu en étroite collaboration avec des expérimentateurs. Des
mesures expérimentales préliminaires sont en bon accord avec certaines prédictions
théoriques de cette thèse.
Mots clés: Contrôle quantique, préparation d’états, stabilisation, dissipation con-
trôlée, rétroaction quantique autonome, chat de Schrödinger, contrôle adiabatique,
identification d’Hamiltonian, dimension infinie, fonction de Lyapunov.

Quantum state engineering and stabilization

Abstract: This thesis tackles the problem of preparing and stabilizing highly non
classical states of quantum systems. We consider specific models based on current
experiments in cavity quantum electrodynamics, Josephson circuits and ultra-fast
coherent quantum control. The problem is posed in the framework of control theory
where we search for a control law which prepares or stabilizes a desired target state.
Of particular interest to us are target states with no classical analog: superposition
and entangled states. More generally, we propose a scheme for the stabilization
of a manifold of quantum states, thus introducing some new ideas for autonomous
quantum error correction in a cavity. Close collaborations with experimentalists
helped us in the design of control protocols which are readily employable in the
laboratory. Experimental demonstrations are currently being implemented and pre-
liminary measurements are in good agreement with the theory introduced in this
thesis.
Keywords: Quantum control, state engineering, state stabilization, reservoir en-
gineering, autonomous quantum feedback, Schrödinger cat state, adiabatic control,
Hamiltonian identification, infinite dimensional, Lyapunov function.
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