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Motivations

Mathematical Programming: describe (by means of a
Mathematical Programming formulation) and solve
optimization problems;

given a problem, different formulations can be proposed:
reformulations;

Objective: starting from the original formulation for a
problem, propose some reformulations which are somehow
“better” (i.e., less time to obtain the optimal solution).
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Liberti’s Classification of Reformulations

Let P the original problem and Q a reformulation, and fP and fQ
be respectively their objective functions. Q can be:

exact or opt-reformulation: local (global) optima of P
correspond to local (global) optima of Q;
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Liberti’s Classification of Reformulations

Let P the original problem and Q a reformulation, and fP and fQ
be respectively their objective functions. Q can be:

exact or opt-reformulation: local (global) optima of P
correspond to local (global) optima of Q;

narrowing: each global optimum of Q corresponds to a global
optimum of P (Q can have fewer global optimum than P );
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Liberti’s Classification of Reformulations

Let P the original problem and Q a reformulation, and fP and fQ
be respectively their objective functions. Q can be:

exact or opt-reformulation: local (global) optima of P
correspond to local (global) optima of Q;

narrowing: each global optimum of Q corresponds to a global
optimum of P (Q can have fewer global optimum than P );

relaxation: the feasible region of P is a subset of the feasible
region of Q, and in case of minimization problem
fQ(x) ≤ fP (x) for x in the feasible region of P .
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Problems studied

For each kind of reformulation, a problem is studied:

exact or opt-reformulation: clustering by means of modularity
maximization in general and bipartite graphs;

narrowing: circle packing in a square;

relaxation: convex relaxations for multilinear terms.
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Clustering in graphs

Graph G = (V,E)

V : set of n vertices;

E: set of m edges connecting pairs of vertices.
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Clustering in graphs

Graph G = (V,E)

V : set of n vertices;

E: set of m edges connecting pairs of vertices.

Goal: one seeks clusters which contains more inner edges (vertices
in the same cluster) than cut edges (vertices in different clusters).
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Clustering in graphs

Graph G = (V,E)

V : set of n vertices;

E: set of m edges connecting pairs of vertices.

Goal: one seeks clusters which contains more inner edges (vertices
in the same cluster) than cut edges (vertices in different clusters).

Modularity [Newman, Girvan; Phys. Rev. E, 2004]

Find a partition of V into clusters, maximizing the number of inner
edges minus the expected number of such edges in a random graph
having the same distribution of degrees of G.
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Modularity

Modularity [Newman, Girvan; Phys. Rev. E, 2004]

Q =

Nc
∑

c=1

(

mc

m
− Dc

2

4m2

)
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Q =
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Nc: number of clusters;
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Modularity

Modularity [Newman, Girvan; Phys. Rev. E, 2004]

Q =

Nc
∑

c=1

(

mc

m
− Dc

2

4m2

)

Nc: number of clusters;

m: number of edges of the graph;
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Modularity

Modularity [Newman, Girvan; Phys. Rev. E, 2004]

Q =

Nc
∑

c=1

(

mc

m
− Dc

2

4m2

)

Nc: number of clusters;

m: number of edges of the graph;

mc: number of edges in cluster c;
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Modularity

Modularity [Newman, Girvan; Phys. Rev. E, 2004]

Q =

Nc
∑

c=1

(

mc

m
− Dc

2

4m2

)

Nc: number of clusters;

m: number of edges of the graph;

mc: number of edges in cluster c;

Dc: sum of degrees of vertices in cluster c;
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Modularity

Modularity [Newman, Girvan; Phys. Rev. E, 2004]

Q =

Nc
∑

c=1

(

mc

m
− Dc

2

4m2

)

Nc: number of clusters;

m: number of edges of the graph;

mc: number of edges in cluster c;

Dc: sum of degrees of vertices in cluster c;
mc

m
: fraction of edges in cluster c;
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Modularity

Modularity [Newman, Girvan; Phys. Rev. E, 2004]

Q =

Nc
∑

c=1

(

mc

m
− Dc

2

4m2

)

Nc: number of clusters;

m: number of edges of the graph;

mc: number of edges in cluster c;

Dc: sum of degrees of vertices in cluster c;
mc

m
: fraction of edges in cluster c;

Dc
2

4m2 : expected number of edges in cluster c in a graph where
vertices have same degrees but edges are placed randomly.
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Locally optimal hierarchical divisive heuristic

In this thesis we focus on a hierarchical divisive heuristic [Cafieri,

Hansen, Liberti; Phys. Rev. E, 2011].
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Locally optimal hierarchical divisive heuristic

In this thesis we focus on a hierarchical divisive heuristic [Cafieri,

Hansen, Liberti; Phys. Rev. E, 2011].

Algorithm Divisive (input of first call is G = (V,E))

Input: cluster c = (Vc, Ec) of graph G
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In this thesis we focus on a hierarchical divisive heuristic [Cafieri,

Hansen, Liberti; Phys. Rev. E, 2011].

Algorithm Divisive (input of first call is G = (V,E))

Input: cluster c = (Vc, Ec) of graph G

Output: partition into clusters of c
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Locally optimal hierarchical divisive heuristic

In this thesis we focus on a hierarchical divisive heuristic [Cafieri,

Hansen, Liberti; Phys. Rev. E, 2011].

Algorithm Divisive (input of first call is G = (V,E))

Input: cluster c = (Vc, Ec) of graph G

Output: partition into clusters of c

if |Vc| ≤ 3 save c as cluster, and return;
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Locally optimal hierarchical divisive heuristic

In this thesis we focus on a hierarchical divisive heuristic [Cafieri,

Hansen, Liberti; Phys. Rev. E, 2011].

Algorithm Divisive (input of first call is G = (V,E))

Input: cluster c = (Vc, Ec) of graph G

Output: partition into clusters of c

if |Vc| ≤ 3 save c as cluster, and return;

divide c in c1 and c2 in an optimal way (maximizing
modularity using a 0− 1 MIQP model for bipartition);
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Locally optimal hierarchical divisive heuristic

In this thesis we focus on a hierarchical divisive heuristic [Cafieri,

Hansen, Liberti; Phys. Rev. E, 2011].

Algorithm Divisive (input of first call is G = (V,E))

Input: cluster c = (Vc, Ec) of graph G

Output: partition into clusters of c

if |Vc| ≤ 3 save c as cluster, and return;

divide c in c1 and c2 in an optimal way (maximizing
modularity using a 0− 1 MIQP model for bipartition);

if Q(c) > Q(c1) +Q(c2) save c as cluster, and return;
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Locally optimal hierarchical divisive heuristic

In this thesis we focus on a hierarchical divisive heuristic [Cafieri,

Hansen, Liberti; Phys. Rev. E, 2011].

Algorithm Divisive (input of first call is G = (V,E))

Input: cluster c = (Vc, Ec) of graph G

Output: partition into clusters of c

if |Vc| ≤ 3 save c as cluster, and return;

divide c in c1 and c2 in an optimal way (maximizing
modularity using a 0− 1 MIQP model for bipartition);

if Q(c) > Q(c1) +Q(c2) save c as cluster, and return;

call Divisive(c1) and Divisive(c2);
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0− 1 MIQP model used by the hierarchical divisive
heuristic - 1

Objective function (split the cluster c into two clusters;
Dc = D1 +D2 is known before solving the problem)

Q =

(

m1 +m2

m
− D1

2 +D2
2

4m2

)

=

(

m1 +m2

m
− 2D1

2 +Dc
2 − 2D1Dc

4m2

)
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0− 1 MIQP model used by the hierarchical divisive
heuristic - 1

Objective function (split the cluster c into two clusters;
Dc = D1 +D2 is known before solving the problem)

Q =

(

m1 +m2

m
− D1

2 +D2
2

4m2

)

=

(

m1 +m2

m
− 2D1

2 +Dc
2 − 2D1Dc

4m2

)

Variables

Xi,j,s = 1 if the edge (vi, vj) is inside the cluster s, 0
otherwise (s is either 1 or 2);
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0− 1 MIQP model used by the hierarchical divisive
heuristic - 1

Objective function (split the cluster c into two clusters;
Dc = D1 +D2 is known before solving the problem)

Q =

(

m1 +m2

m
− D1

2 +D2
2

4m2

)

=

(

m1 +m2

m
− 2D1

2 +Dc
2 − 2D1Dc

4m2

)

Variables

Xi,j,s = 1 if the edge (vi, vj) is inside the cluster s, 0
otherwise (s is either 1 or 2);

Yi = 1 if the vertex vi is inside the cluster 1, 0 otherwise;
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0− 1 MIQP model used by the hierarchical divisive
heuristic - 1

Objective function (split the cluster c into two clusters;
Dc = D1 +D2 is known before solving the problem)

Q =

(

m1 +m2

m
− D1

2 +D2
2

4m2

)

=

(

m1 +m2

m
− 2D1

2 +Dc
2 − 2D1Dc

4m2

)

Variables

Xi,j,s = 1 if the edge (vi, vj) is inside the cluster s, 0
otherwise (s is either 1 or 2);

Yi = 1 if the vertex vi is inside the cluster 1, 0 otherwise;

ki is the degree of the vertex vi.
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0− 1 MIQP model used by the hierarchical divisive
heuristic - 2 (OB model)

max
1

m

(

m1 +m2 −
1

2m

(

D1
2 +

Dc
2

2
−D1Dc

))

s.t. Xi,j,1 ≤ Yi ∀(vi, vj) ∈ Ec

Xi,j,1 ≤ Yj ∀(vi, vj) ∈ Ec

Xi,j,2 ≤ 1− Yi ∀(vi, vj) ∈ Ec

Xi,j,2 ≤ 1− Yj ∀(vi, vj) ∈ Ec

ms =
∑

(vi,vj)∈Ec

Xi,j,s ∀s ∈ {1, 2}

D1 =
∑

vi∈Vc

kiYi

Yi ∈ {0, 1} ∀vi ∈ Vc

Xi,j,s ≥ 0 ∀(vi, vj) ∈ Ec, ∀s ∈ {1, 2}
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Improving the 0− 1 MIQP formulation

reduction of number of variables and constraints;
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Improving the 0− 1 MIQP formulation

reduction of number of variables and constraints;

symmetry breaking.
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Reduction of number of variables

Consider the variables X of the original model:

Xi,j,s =

{

1, if edge (vi, vj) belongs to cluster s,

0, otherwise.
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Reduction of number of variables

Consider the variables X of the original model:

Xi,j,s =

{

1, if edge (vi, vj) belongs to cluster s,

0, otherwise.

We do not actually need to know if an edge is in the cluster 1 or 2,
but only if it is within a cluster or not:

Xi,j =

{

1, if Yi = Yj ,

0, otherwise.
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Reduction of number of variables

Consider the variables X of the original model:

Xi,j,s =

{

1, if edge (vi, vj) belongs to cluster s,

0, otherwise.

We do not actually need to know if an edge is in the cluster 1 or 2,
but only if it is within a cluster or not:

Xi,j =

{

1, if Yi = Yj ,

0, otherwise.

Half of the variables X needed.
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New variables

Variables X can then be expressed as

Xi,j = 2YiYj − Yi − Yj + 1, ∀(vi, vj) ∈ Ec.
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New variables

Variables X can then be expressed as

Xi,j = 2YiYj − Yi − Yj + 1, ∀(vi, vj) ∈ Ec.

Variables S linearize the product of the binary variables Y :

Si,j = YiYj , ∀(vi, vj) ∈ Ec.
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New variables

Variables X can then be expressed as

Xi,j = 2YiYj − Yi − Yj + 1, ∀(vi, vj) ∈ Ec.

Variables S linearize the product of the binary variables Y :

Si,j = YiYj , ∀(vi, vj) ∈ Ec.

So we obtain

Xi,j = 2Si,j − Yi − Yj + 1, ∀(vi, vj) ∈ Ec.
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Fortet linearization

Relationship Si,j = YiYj (Fortet inequalities):

Si,j ≥ 0 ∀(vi, vj) ∈ Ec

Si,j ≥ Yj + Yi − 1 ∀(vi, vj) ∈ Ec

Si,j ≤ Yi ∀(vi, vj) ∈ Ec

Si,j ≤ Yj ∀(vi, vj) ∈ Ec.
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Fortet linearization

Relationship Si,j = YiYj (Fortet inequalities):

Si,j ≥ 0 ∀(vi, vj) ∈ Ec

Si,j ≥ Yj + Yi − 1 ∀(vi, vj) ∈ Ec

Si,j ≤ Yi ∀(vi, vj) ∈ Ec

Si,j ≤ Yj ∀(vi, vj) ∈ Ec.

Objective function maximizes variables S→ half of the constraints
needed:

Si,j ≤ Yi ∀(vi, vj) ∈ Ec

Si,j ≤ Yj ∀(vi, vj) ∈ Ec.
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OB1 formulation

max
1

m





∑

(vi,vj)∈Ec

(2Si,j − Yi − Yj) + |Ec| −
1

2m

(

D1
2 +

Dc
2

2
−D1Dc

)





s.t. Si,j ≤ Yi ∀(vi, vj) ∈ Ec

Si,j ≤ Yj ∀(vi, vj) ∈ Ec

D1 =
∑

vi∈Vc

kiYi

Yi ∈ {0, 1} ∀vi ∈ Vc,
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OB1 formulation

max
1

m





∑

(vi,vj)∈Ec

(2Si,j − Yi − Yj) + |Ec| −
1

2m

(

D1
2 +

Dc
2

2
−D1Dc

)





s.t. Si,j ≤ Yi ∀(vi, vj) ∈ Ec

Si,j ≤ Yj ∀(vi, vj) ∈ Ec

D1 =
∑

vi∈Vc

kiYi

Yi ∈ {0, 1} ∀vi ∈ Vc,

where in the objective function we use the fact that
∑

(vi,vj)∈EC

1 = |Ec|.
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Symmetry breaking constraint - Fixing a vertex

If a solution is found, another equivalent solution is obtained by
swapping the clusters (i.e., vertices in cluster 1 are placed in
cluster 2, and vice-versa). → fix a vertex in one of the clusters.
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Symmetry breaking constraint - Fixing a vertex

If a solution is found, another equivalent solution is obtained by
swapping the clusters (i.e., vertices in cluster 1 are placed in
cluster 2, and vice-versa). → fix a vertex in one of the clusters.

Good choice: fix the vertex with highest degree in one cluster.

Yg = 0, g = argmax{ki, ∀vi ∈ Vc}.
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Numerical results

Tests: 2.8GHz Intel iCore i7 CPU, 8 GB RAM, Linux, CPLEX 12.2

[IBM; 2010]
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Numerical results

Tests: 2.8GHz Intel iCore i7 CPU, 8 GB RAM, Linux, CPLEX 12.2

[IBM; 2010]

graph OB OB1 + SBC

vertices edges nodes CPU time nodes CPU time
Karate 34 78 45 0.14 17 0.04

Dolphins 62 159 207 0.59 93 0.16

Les Misérables 77 254 205 1.09 105 0.35

A00 main 83 135 76 0.35 26 0.04

P53 protein 104 226 275 1.10 119 0.26

Political books 105 441 313 3.04 152 0.51

Football 115 613 8853 307.56 3822 44.38

A01 main 249 635 1119 47.83 726 9.72

USAir97 332 2126 16682 4585.04 8665 446.06

Netscience main 379 914 291 3.64 94 0.85

S838 512 819 392 5.26 186 1.18

Power 4941 6594 1459 708.51 891 123.85
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Bipartite graphs

For bipartite graphs the definition of modularity is the following

Bipartite Modularity [Barber; Pys. Rev. E, 2007; Leicht,

Newman; Phys. Rev. Lett., 2008]

Qb =

Nc
∑

c=1

(

mc

m
− RcBc

m2

)
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Bipartite graphs

For bipartite graphs the definition of modularity is the following

Bipartite Modularity [Barber; Pys. Rev. E, 2007; Leicht,

Newman; Phys. Rev. Lett., 2008]

Qb =

Nc
∑

c=1

(

mc

m
− RcBc

m2

)

Rc: sum of degrees of red vertices in cluster c;
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Bipartite graphs

For bipartite graphs the definition of modularity is the following

Bipartite Modularity [Barber; Pys. Rev. E, 2007; Leicht,

Newman; Phys. Rev. Lett., 2008]

Qb =

Nc
∑

c=1

(

mc

m
− RcBc

m2

)

Rc: sum of degrees of red vertices in cluster c;

Bc: sum of degrees of blue vertices in cluster c;
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Bipartite graphs

For bipartite graphs the definition of modularity is the following

Bipartite Modularity [Barber; Pys. Rev. E, 2007; Leicht,

Newman; Phys. Rev. Lett., 2008]

Qb =

Nc
∑

c=1

(

mc

m
− RcBc

m2

)

Rc: sum of degrees of red vertices in cluster c;

Bc: sum of degrees of blue vertices in cluster c;

all edges have a red and a blue end vertices.
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Bipartite divisive heuristic

We adapt the divisive heuristic to the bipartite case → P model:

max
1

m







∑

(vi,vj)∈Ec

(

2Si,j − Yi − Yj

)

+ |Ec| −
1

m
(2R1B1 − BcR1 − RcB1 + RcBc)







s.t. Si,j ≤ Yi ∀(vi, vj) ∈ Ec

Si,j ≤ Yj ∀(vi, vj) ∈ Ec

R1 =
∑

vi∈VRc

kiYi

B1 =
∑

vj∈VBc

kjYj

Yg = 1, g = argmax{ki, ∀vi ∈ Vc}

Yi ∈ {0, 1} ∀vi ∈ Vc,

VRc and VBc are respectively the sets of red and blue vertices, and
Vc = VRc ∪ VBc .
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Fortet linearizations

Nonlinear model: R1B1 in the objective function.
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Fortet linearizations

Nonlinear model: R1B1 in the objective function.
One can apply the Fortet linearization for R1B1 → P1a model.
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Fortet linearizations

Nonlinear model: R1B1 in the objective function.
One can apply the Fortet linearization for R1B1 → P1a model.
A more compact formulation is possible → P1b

max
1

m

∑

vi∈VRc

∑

vj∈VBc

Hi,j (2Wi,j − Yi − Yj + 1)

s.t. Wi,j ≥ 0 ∀vi ∈ VRc
, ∀vj ∈ VBc

: Hi,j < 0

Wi,j ≥ Yi + Yj − 1 ∀vi ∈ VRc
, ∀vj ∈ VBc

: Hi,j < 0

Wi,j ≤ Yi ∀vi ∈ VRc
, ∀vj ∈ VBc

: Hi,j > 0

Wi,j ≤ Yj ∀vi ∈ VRc
, ∀vj ∈ VBc

: Hi,j > 0

Yg = 1, g = argmax{ki, ∀vi ∈ VRc
∪ VBc

}

Yi ∈ {0, 1} ∀vi ∈ VRc
∪ VBc

.

Hi,j = Ti,j − kikj
m

, and Ti,j = 1 if there exists the edge (i, j), 0
otherwise.
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Binary decomposition

R1 =
∑

vi∈VRc

kiYi =

tR
∑

h=0

2hah

B1 =
∑

vj∈VBc

kjYj =

tB
∑

l=0

2lbl

R1B1 =

tR
∑

h=0

2hah

tB
∑

l=0

2lbl =

tR
∑

h=0

tB
∑

l=0

2l+hahbl
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Binary decomposition

R1 =
∑

vi∈VRc

kiYi =

tR
∑

h=0

2hah

B1 =
∑

vj∈VBc

kjYj =

tB
∑

l=0

2lbl

R1B1 =

tR
∑

h=0

2hah

tB
∑

l=0

2lbl =

tR
∑

h=0

tB
∑

l=0

2l+hahbl

each product albh is then linearized using the Fortet inequalities
→ P2 model
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Numerical results

Tests: 2.8GHz Intel iCore i7 CPU, 8 GB RAM, Linux, CPLEX 12.2

[IBM; 2010]
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Numerical results

Tests: 2.8GHz Intel iCore i7 CPU, 8 GB RAM, Linux, CPLEX 12.2

[IBM; 2010]

graph P1a P1b P2

red vertices total vertices edges nodes time nodes time nodes time
1 18 32 89 437 0.30 72 0.19 670 0.39
2 26 35 147 154 0.19 10 0.09 618 0.43
3 26 35 86 45 0.14 6 0.07 183 0.19
4 18 36 99 2169 1.46 1360 1.24 1854 0.93

5 26 41 98 1963 1.25 276 0.44 647 0.39

6 50 59 225 1123 0.77 27 0.16 2521 2.12
7 62 102 192 1223370 4440.04 407104 3038.06 38910 5.26

8 108 244 358 - - - - 3793 5.81

9 314 674 613 - - - - 71927548 15450.40

10 960 2549 2580 - - - - 91917 38.49
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Clustering based on strong and almost-strong conditions

Not related with modularity maximization;
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Clustering based on strong and almost-strong conditions

Not related with modularity maximization;

Community in the strong sense [Radicchi et al.; PNAS,

2004]: a subset S of vertices where the number of neighbors
of each vertex within S is larger than the number of neighbors
outside S.
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Clustering based on strong and almost-strong conditions

Not related with modularity maximization;

Community in the strong sense [Radicchi et al.; PNAS,

2004]: a subset S of vertices where the number of neighbors
of each vertex within S is larger than the number of neighbors
outside S.

Strong conditions can be too stringent → we propose the
almost-strong conditions: same definition as the strong
conditions, except for degree 2 vertices, for which the number
of neighbors within S is larger or equal to the number of
neighbors outside S;
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Clustering based on strong and almost-strong conditions

Not related with modularity maximization;

Community in the strong sense [Radicchi et al.; PNAS,

2004]: a subset S of vertices where the number of neighbors
of each vertex within S is larger than the number of neighbors
outside S.

Strong conditions can be too stringent → we propose the
almost-strong conditions: same definition as the strong
conditions, except for degree 2 vertices, for which the number
of neighbors within S is larger or equal to the number of
neighbors outside S;

We designed an algorithm to find strong and almost-strong
communities in graphs, and we compare the results.
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Test 1 - Zachary karate club - strong vs almost-strong

(a) (b)
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Test 2- strike - strong vs almost-strong

(c) (d)
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Test 3 - graph - almost strong (strong: trivial partition)
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Test 4 - dolphins small - strong vs almost-strong

(e) (f)
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Where are we?

1 Introduction

2 Exact reformulations - Clustering in general and bipartite graphs

3 Narrowings - Circle packing in a square

4 Relaxations - Convex relaxations for multilinear terms

5 Conclusions
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The problem: Packing Equal Circles in a Square (PECS)

Consider the following problem: Place n ∈ N non-overlapping
circles of radius r ∈ R in the unit square such that the radius is
maximized.
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The problem: Packing Equal Circles in a Square (PECS)

Consider the following problem: Place n ∈ N non-overlapping
circles of radius r ∈ R in the unit square such that the radius is
maximized.

Non-linear Non-convex formulation

max r

s.t. (xi − xj)
2 + (yi − yj)

2 ≥ 4r2 ∀i < j ≤ n

xi, yi ∈ [r, 1− r] ∀i ≤ n,
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The problem: Packing Equal Circles in a Square (PECS)

Consider the following problem: Place n ∈ N non-overlapping
circles of radius r ∈ R in the unit square such that the radius is
maximized.

Non-linear Non-convex formulation

max r

s.t. (xi − xj)
2 + (yi − yj)

2 ≥ 4r2 ∀i < j ≤ n

xi, yi ∈ [r, 1− r] ∀i ≤ n,

where (xi, yi) represents the coordinates of the center of the i-th
circle, and r ≥ 0 is the common radius to maximize.
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Example: optimal solution of PECS with 10 circles
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Applications

cutting problems (cut out as many identical disks as possible
from a piece of material);
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Applications

cutting problems (cut out as many identical disks as possible
from a piece of material);
container loading (place as many identical objects as possible
into a container);
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Applications

cutting problems (cut out as many identical disks as possible
from a piece of material);
container loading (place as many identical objects as possible
into a container);
tree exploitation (plant trees in a given region maximizing
both the density and the size of trees);
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Applications

cutting problems (cut out as many identical disks as possible
from a piece of material);
container loading (place as many identical objects as possible
into a container);
tree exploitation (plant trees in a given region maximizing
both the density and the size of trees);
cheese packing!
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Point Packing in a Square (PPS)

Consider the following problem: Place n ∈ N points in the unit
square such that the minimum pairwise distance d∗ is maximal.
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Point Packing in a Square (PPS)

Consider the following problem: Place n ∈ N points in the unit
square such that the minimum pairwise distance d∗ is maximal.

Non-linear Non-convex formulation

max α

s.t. (xi − xj)
2 + (yi − yj)

2 ≥ α ∀i < j ≤ n

xi ∈ [0, 1] ∀i ≤ n

yi ∈ [0, 1] ∀i ≤ n

α ≥ 0
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Point Packing in a Square (PPS)

Consider the following problem: Place n ∈ N points in the unit
square such that the minimum pairwise distance d∗ is maximal.

Non-linear Non-convex formulation

max α

s.t. (xi − xj)
2 + (yi − yj)

2 ≥ α ∀i < j ≤ n

xi ∈ [0, 1] ∀i ≤ n

yi ∈ [0, 1] ∀i ≤ n

α ≥ 0

where (xi, yi) represents the coordinates of the i-th point and
d∗ =

√
α∗.
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Relationship between PECS and PPS

A point belongs to an edge in PPS ⇔ the corresponding center is
at distance r from that edge in PECS.
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Relationship between PECS and PPS

A point belongs to an edge in PPS ⇔ the corresponding center is
at distance r from that edge in PECS.

Figure: Relationship between PECS and PPS (figure taken from [Szabó;

Contributions to Algebra and Geometry, 2005]).
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Narrowing in CPS

Problem

CPS has a lot of symmetric global optima. Branch-and-Bound
algorithms do not work very efficiently in this situation, because
the BB tree is large.
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Narrowing in CPS

Problem

CPS has a lot of symmetric global optima. Branch-and-Bound
algorithms do not work very efficiently in this situation, because
the BB tree is large.

Possible solution

Removing some of the global optima, by adjoining some Symmetry
Breaking Constraints (SBCs) → narrowing reformulation.
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BB trees

Figure: Original Formulation
Figure: Narrowing Reformulation
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Symmetries in Circle Packing

It is proved that the formulation group (class of symmetries which
can be computed from the mathematical model of the problem) of
CPS is isomorphic to C2 x Sn, where:
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Symmetries in Circle Packing

It is proved that the formulation group (class of symmetries which
can be computed from the mathematical model of the problem) of
CPS is isomorphic to C2 x Sn, where:

C2 represents the permutation between x and y axes.
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Symmetries in Circle Packing

It is proved that the formulation group (class of symmetries which
can be computed from the mathematical model of the problem) of
CPS is isomorphic to C2 x Sn, where:

C2 represents the permutation between x and y axes.

Sn represents the permutation of the circle indicies (we can
swap some circles, and the solution does not change).
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SBCs (Symmetry Breaking Constraints)

In order to eliminate some global optima, we adjoin these
constraints (that give an order on the variables)
[Hansen, C., Liberti; ISCO10]:
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SBCs (Symmetry Breaking Constraints)

In order to eliminate some global optima, we adjoin these
constraints (that give an order on the variables)
[Hansen, C., Liberti; ISCO10]:

weak constraints: x1 ≤ xi, ∀i ∈ {2, . . . , n}
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SBCs (Symmetry Breaking Constraints)

In order to eliminate some global optima, we adjoin these
constraints (that give an order on the variables)
[Hansen, C., Liberti; ISCO10]:

weak constraints: x1 ≤ xi, ∀i ∈ {2, . . . , n}
strong constraints: xi ≤ xi+1, ∀i ∈ {1, . . . , n− 1}
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SBCs (Symmetry Breaking Constraints)

In order to eliminate some global optima, we adjoin these
constraints (that give an order on the variables)
[Hansen, C., Liberti; ISCO10]:

weak constraints: x1 ≤ xi, ∀i ∈ {2, . . . , n}
strong constraints: xi ≤ xi+1, ∀i ∈ {1, . . . , n− 1}
mixed constraints, introduced in [C., Liberti, Hansen;

DAM, 2012], that mix contraints on the x and y variables.
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Example - n = 9

weak constraints

x1 ≤ x2, x1 ≤ x3, . . . , x1 ≤ x9
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Example - n = 9

weak constraints

x1 ≤ x2, x1 ≤ x3, . . . , x1 ≤ x9

strong constraints

x1 ≤ x2, x2 ≤ x3, . . . , x8 ≤ x9
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Mixed SBCs

Idea: strong constraints give some conditions only for the x

coordinates of the centres of the circles; it would be better to have
also some conditions for the y coordinates.
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Mixed SBCs

Idea: strong constraints give some conditions only for the x

coordinates of the centres of the circles; it would be better to have
also some conditions for the y coordinates.

Starting from the strong constraints, we replace xiS ≤ xiS+1 with
y1+(i−1)S ≤ y1+iS , ∀i ∈

{

1, 2, . . . ,
⌈

N
S

⌉

− 1
}

(best results with
S = 2).
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Strong and mixed SBCs, S = 3

strong constraints

x1 ≤ x2, x2 ≤ x3, x3 ≤ x4,

x4 ≤ x5, x5 ≤ x6, x6 ≤ x7,

x7 ≤ x8, x8 ≤ x9
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Strong and mixed SBCs, S = 3

strong constraints

x1 ≤ x2, x2 ≤ x3, x3 ≤ x4,

x4 ≤ x5, x5 ≤ x6, x6 ≤ x7,

x7 ≤ x8, x8 ≤ x9

mixed constraints

x1 ≤ x2, x2 ≤ x3, y1 ≤ y4,

x4 ≤ x5, x5 ≤ x6, y4 ≤ y7,

x7 ≤ x8, x8 ≤ x9
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Why mixed SBCs are valid? - Example
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This solution respects the strong
constraints, but not the mixed
constraints.

x1 ≤ x2, x2 ≤ x3, y1 ≤ y4,

x4 ≤ x5, x5 ≤ x6, y4 ≤ y7,

x7 ≤ x8, x8 ≤ x9
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This solution respects the strong
constraints, but not the mixed
constraints.

x1 ≤ x2, x2 ≤ x3, y1 ≤ y4,

x4 ≤ x5, x5 ≤ x6, y4 ≤ y7,

x7 ≤ x8, x8 ≤ x9
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Why mixed SBCs are valid? - Example
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This solution respects the strong
constraints, but not the mixed
constraints.

x1 ≤ x2, x2 ≤ x3, y1 ≤ y4,

x4 ≤ x5, x5 ≤ x6, y4 ≤ y7,

x7 ≤ x8, x8 ≤ x9

r r r
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Now, after the swapping, the
solution respects the mixed
constraints.

x1 ≤ x2, x2 ≤ x3, y1 ≤ y4,

x4 ≤ x5, x5 ≤ x6, y4 ≤ y7,

x7 ≤ x8, x8 ≤ x9
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Some results

strong constraints better than weak ones;
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Some results

strong constraints better than weak ones;

mixed constraints better than strong ones.
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Some results

strong constraints better than weak ones;

mixed constraints better than strong ones.
Mixed constraints results: Couenne solver on a 2.4 GHz Intel Xeon CPU with 24 GB RAM running Linux.

n r∗ rr r′ r̄ t(r′) sBB nodes
20 0.111382 0.111382 0.111382 0.322063 16.45 441828
25 0.1 0.096852 0.1 0.250133 553.68 125632
30 0.091671 0.091671 0.091671 0.316273 86.24 90230
35 0.084290 0.082786 0.083766 0.351545 1495.31 46162
40 0.079186 0.078913 0.078913 0.2501 19.68 17116
45 0.074727 0.07444 0.07444 0.353325 357.90 12915
50 0.071377 0.070539 0.070539 0.250121 5429.88 2

Statistics: the best known solution r∗, the solution found at the root node rr , the largest radius r′ found by our

method within the time limit, the tightest upper bound r̄ on r′, the time t(r′) at which the solution r′ was found

and the number of nodes explored within the time limit.
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Conjecture about the bounds on the variables

Consider PPS: the linear relaxation computed at the root node
does not provide good bounds because of the bounds of the
variables x and y.
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Conjecture about the bounds on the variables

Consider PPS: the linear relaxation computed at the root node
does not provide good bounds because of the bounds of the
variables x and y.

The real problem is that all the variables have the same lower and
upper bounds (i.e., respectively, 0 and 1).
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Linear relaxation of PPS - 1

Proposition

The optimal solution of the linear relaxation of PPS is always
α∗ = 2.
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Linear relaxation of PPS - 1

Proposition

The optimal solution of the linear relaxation of PPS is always
α∗ = 2.

This means that for all the instances (that is, for all the values of
n number of points), the Upper Bound obtained as solution at the
root node is always the same, even if the optimal value of α
obviously decreases when n increases.
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Proof - 1

Let Lxi
, Uxi

, Lyi and Uxi
be respectively the lower and upper

bounds for the variables xi and yi. The linear relaxation of PPS is
([Locatelli, Raber; Tech. Rep. 09/99]):
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Proof - 1

Let Lxi
, Uxi

, Lyi and Uxi
be respectively the lower and upper

bounds for the variables xi and yi. The linear relaxation of PPS is
([Locatelli, Raber; Tech. Rep. 09/99]):

Linear relaxation of PPS

max α

s.t. − l(i, j) ≥ α ∀i < j ≤ n

xi ∈ [0, 1] ∀i ≤ n

yi ∈ [0, 1] ∀i ≤ n

α ≥ 0

Alberto Costa Applications of Reformulations in Mathematical Programming



Outline
Introduction

Exact reformulations - Clustering in general and bipartite graphs
Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms
Conclusions

Proof - 1

Let Lxi
, Uxi

, Lyi and Uxi
be respectively the lower and upper

bounds for the variables xi and yi. The linear relaxation of PPS is
([Locatelli, Raber; Tech. Rep. 09/99]):

Linear relaxation of PPS

max α

s.t. − l(i, j) ≥ α ∀i < j ≤ n

xi ∈ [0, 1] ∀i ≤ n

yi ∈ [0, 1] ∀i ≤ n

α ≥ 0

and l(i, j) = −(Lxi
− Uxj

+ Uxi
− Lxj

)(xi − xj)− (Lyi
− Uyj

+ Uyi
−

Lyj
)(yi − yj) + (Lxi

− Uxj
)(Uxi

− Lxj
) + (Lyi

− Uyj
)(Uyi

− Lyj
) is the

linearization of the nonlinear distance constraints.
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Proof - 2

Since Lxi
= Lyi = 0, ∀i ≤ n and Uxi

= Uyi = 1, ∀i ≤ n, we
obtain l(i, j) = −2, ∀i < j ≤ n.
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Proof - 2

Since Lxi
= Lyi = 0, ∀i ≤ n and Uxi

= Uyi = 1, ∀i ≤ n, we
obtain l(i, j) = −2, ∀i < j ≤ n. The model can be rewritten as

Linear relaxation of PPS

max α

s.t. 2 ≥ α

xi ∈ [0, 1] ∀i ≤ n

yi ∈ [0, 1] ∀i ≤ n

α ≥ 0
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Proof - 2

Since Lxi
= Lyi = 0, ∀i ≤ n and Uxi

= Uyi = 1, ∀i ≤ n, we
obtain l(i, j) = −2, ∀i < j ≤ n. The model can be rewritten as

Linear relaxation of PPS

max α

s.t. 2 ≥ α

xi ∈ [0, 1] ∀i ≤ n

yi ∈ [0, 1] ∀i ≤ n

α ≥ 0

the optimal solution is obviously α∗ = 2, and it does not depend
on the value of the variables x and y.
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Considerations on the bound
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Considerations on the bound

Upper bound dUB =
√
2. Not good: it is the optimal solution

when n = 2 (2 points placed in the opposite vertices).
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Considerations on the bound

Upper bound dUB =
√
2. Not good: it is the optimal solution

when n = 2 (2 points placed in the opposite vertices).

This value does not depend on n, x, y: all the coefficients of
x and y are 0 in l(x, y).
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Considerations on the bound

Upper bound dUB =
√
2. Not good: it is the optimal solution

when n = 2 (2 points placed in the opposite vertices).

This value does not depend on n, x, y: all the coefficients of
x and y are 0 in l(x, y).

In order to improve this bound, we should change the bounds
on some variables.
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Conjecture about bounds for the variables

We present the following conjecture (easy to see that is is true, but
not easy to prove)
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Conjecture about bounds for the variables

We present the following conjecture (easy to see that is is true, but
not easy to prove)

Conjecture

Consider an instance of PPS with n points. Divide the unit square
in k2 equal subsquares, with
k = argmin

s

∣

∣

n
2 − s2

∣

∣, s ∈
{⌈√

n
2

⌉

,
⌊√

n
2

⌋}

. There is at least one

point of the optimal solution in each subsquare.
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Conjecture about bounds for the variables

We present the following conjecture (easy to see that is is true, but
not easy to prove)

Conjecture

Consider an instance of PPS with n points. Divide the unit square
in k2 equal subsquares, with
k = argmin

s

∣

∣

n
2 − s2

∣

∣, s ∈
{⌈√

n
2

⌉

,
⌊√

n
2

⌋}

. There is at least one

point of the optimal solution in each subsquare.

This means that we can modify the bounds for k2 variables.
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Example - n = 9

r r r
r r r
r r r

1

2

3

4
Consider the example with n = 9.
In this case, k = 2. So we can
divide the square in 4 subsquares,
and in each of them there is a
point of the optimal solution.

Alberto Costa Applications of Reformulations in Mathematical Programming



Outline
Introduction

Exact reformulations - Clustering in general and bipartite graphs
Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms
Conclusions

Example - n = 9

r r r
r r r
r r r

1

2

3

4
Consider the example with n = 9.
In this case, k = 2. So we can
divide the square in 4 subsquares,
and in each of them there is a
point of the optimal solution.

The new bounds becomes:

x1 ∈ [0, 0.5], y1 ∈ [0, 0.5]

x2 ∈ [0, 0.5], y2 ∈ [0.5, 1]

x3 ∈ [0.5, 1], y3 ∈ [0, 0.5]

x4 ∈ [0.5, 1], y4 ∈ [0.5, 1]

while the bounds for the other variables remain 0 and 1.
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Tests

The tests were performed on one 2.4GHz Intel Xeon CPU of a
computer with 24 GB RAM running Linux, using the solver
Couenne [Belotti, Lee, Liberti, Margot; 2009].

Original formulation Bounds constraints formulation
n d∗ LB UB LB UB
9 0.5 0.000098 1.414213 0.300463 0.707107

10 0.421279 0.000098 1.414213 0.396156 0.707107

11 0.398207 0.000099 1.414213 0.000099 0.707107

12 0.388730 0.000099 1.414213 0.360065 0.707107

13 0.366096 0.000098 1.414213 0.339654 0.502948

14 0.348915 0.000098 1.414213 0.340830 0.502874

15 0.341081 0.000098 1.414213 0.334524 0.502793

16 0.333333 0 1.414213 0.290033 0.502793

17 0.306153 0 1.414213 0.000099 0.502793

18 0.300462 0 1.414213 0.252819 0.502793

19 0.289541 0.000047 1.414213 0.252337 0.502793

20 0.286611 0 1.414213 0.276468 0.502793

Statistics (root
node)

opt. sol.
d∗

best sol.
LB

opt. sol.
of linear
relaxation
UB
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Where are we?

1 Introduction

2 Exact reformulations - Clustering in general and bipartite graphs

3 Narrowings - Circle packing in a square

4 Relaxations - Convex relaxations for multilinear terms

5 Conclusions
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Definitions

Let S ⊆ R
n be non-empty
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Definitions

Let S ⊆ R
n be non-empty

Any convex set containing S is a convex relaxation of S
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Definitions

Let S ⊆ R
n be non-empty

Any convex set containing S is a convex relaxation of S

The convex hull conv(S) of S is the intersection of all
convex relaxations of S

hull

relaxation
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Relaxing problems having multilinear terms

Conisder a problem involving multilinear terms (i.e., product of
variables). In order to obtain its convex relaxation, we compare
two methods:
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Relaxing problems having multilinear terms

Conisder a problem involving multilinear terms (i.e., product of
variables). In order to obtain its convex relaxation, we compare
two methods:

primal relaxation: each multilinear term is replaced by a new
variable, and a set of linear constraints (convex envelopes) is
adjoined, thus defining the convex hull;
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Relaxing problems having multilinear terms

Conisder a problem involving multilinear terms (i.e., product of
variables). In order to obtain its convex relaxation, we compare
two methods:

primal relaxation: each multilinear term is replaced by a new
variable, and a set of linear constraints (convex envelopes) is
adjoined, thus defining the convex hull;

dual relaxation: the convex hull is represented as the convex
combination of its extreme points.
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Primal relaxation

For the general case, convex envelopes for multilinear terms
are available explicitly in function of xL, xU for k = 2, 3 and
partly k = 4

Alberto Costa Applications of Reformulations in Mathematical Programming



Outline
Introduction

Exact reformulations - Clustering in general and bipartite graphs
Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms
Conclusions

Primal relaxation

For the general case, convex envelopes for multilinear terms
are available explicitly in function of xL, xU for k = 2, 3 and
partly k = 4

They consist of sets of constraints to be adjoined to the
Mathematical Programming formulation
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Primal relaxation

For the general case, convex envelopes for multilinear terms
are available explicitly in function of xL, xU for k = 2, 3 and
partly k = 4

They consist of sets of constraints to be adjoined to the
Mathematical Programming formulation

No further variables are needed
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Bilinear terms: McCormick’s inequalities

Let W = {(w, x1, x2) | w = x1x2 ∧ (x1, x2) = [xL, xU ]},
then conv(W ) is given by:

w ≥ xL1 x2 + xL2 x1 − xL1 x
L
2

w ≥ xU1 x2 + xU2 x1 − xU1 x
U
2

w ≤ xL1 x2 + xU2 x1 − xL1 x
U
2

w ≤ xU1 x2 + xL2 x1 − xU1 x
L
2

Stated [McCormick; MP, 1976], proved [Al-Khayyal, Falk;

MOR, 1983]
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McCormick’s envelopes

Lower envelopes Upper envelopes Both
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Special case: Fortet’s linearization

If x1 and x2 are binary variables, the McCormick’s inequalities lead
to the Fortet’s inequalities [Fortet; RFRO, 1960]:

w ≥ 0

w ≥ x2 + x1 − 1

w ≤ x1

w ≤ x2

The resulting reformulation is an exact linearization as shown in
[Liberti; RAIRO-RO, 2009]
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Trilinear case

It is not as easy as bilinear convex relaxation:
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Trilinear case

It is not as easy as bilinear convex relaxation:

the number of constraints is greater than 4
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Trilinear case

It is not as easy as bilinear convex relaxation:

the number of constraints is greater than 4

there are several cases, depending on sign of bounds of the
variables: xLi x

U
i ≥ 0 [Meyer, Floudas; 2003]; mixed case

[Meyer, Floudas; JOGO, 2004]
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Trilinear case

It is not as easy as bilinear convex relaxation:

the number of constraints is greater than 4

there are several cases, depending on sign of bounds of the
variables: xLi x

U
i ≥ 0 [Meyer, Floudas; 2003]; mixed case

[Meyer, Floudas; JOGO, 2004]

there are further conditions to check
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Example (1): xU1 , x
U
2 , x

U
3 ≤ 0

Permute variables x1, x2 and x3 such that:

xU
1 xL

2 x
L
3 + xL

1 x
U
2 xU

3 ≤ xL
1 x

U
2 xL

3 + xU
1 xL

2 x
U
3

xU
1 xL

2 x
L
3 + xL

1 x
U
2 xU

3 ≤ xU
1 xU

2 xL
3 + xL

1 x
L
2 x

U
3
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Example (1): xU1 , x
U
2 , x

U
3 ≤ 0

Permute variables x1, x2 and x3 such that:

xU
1 xL

2 x
L
3 + xL

1 x
U
2 xU

3 ≤ xL
1 x

U
2 xL

3 + xU
1 xL

2 x
U
3

xU
1 xL

2 x
L
3 + xL

1 x
U
2 xU

3 ≤ xU
1 xU

2 xL
3 + xL

1 x
L
2 x

U
3

Lower envelope:

w ≥ xL
2 x

L
3 x1 + xL

1 x
L
3 x2 + xL

1 x
L
2 x3 − 2xL

1 x
L
2 x

L
3

w ≥ xU
2 xU

3 x1 + xU
1 xU

3 x2 + xU
1 xU

2 x3 − 2xU
1 xU

2 xU
3

w ≥ xL
2 x

U
3 x1 + xL

1 x
U
3 x2 + xU

1 xL
2 x3 − xL

1 x
L
2 x

U
3 − xU

1 xL
2 x

U
3

w ≥ xU
2 xL

3 x1 + xU
1 xL

3 x2 + xL
1 x

U
2 x3 − xU

1 xU
2 xL

3 − xL
1 x

U
2 xL

3

w ≥ c1x1 + xU
1 xL

3 x2 + xU
1 xL

2 x3 + xL
1 x

U
2 xU

3 − c1x
L
1 − xU

1 xU
2 xL

3 − xU
1 xL

2 x
U
3

w ≥ c2x1 + xL
1 x

U
3 x2 + xL

1 x
U
2 x3 + xU

1 xL
2 x

L
3 − c2x

U
1 − xL

1 x
L
2 x

U
3 − xL

1 x
U
2 xL

3 ,

where c1 =
xU
1 xU

2 xL
3 −xL

1 xU
2 xU

3 −xU
1 xL

2 xL
3 +xU

1 xL
2 xU

3

xU
1 −xL

1

and

c2 =
xL
1 xL

2 xU
3 −xU

1 xL
2 xL

3 −xL
1 xU

2 xU
3 +xL

1 xU
2 xL

3

xL
1 −xU

1
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Example (2): xU1 , x
U
2 , x

U
3 ≤ 0

Upper envelope:

w ≤ xL
2 x

L
3 x1 + xU

1 x
L
3 x2 + xU

1 x
U
2 x3 − xU

1 x
U
2 x

L
3 − xU

1 x
L
2 x

L
3

w ≤ xU
2 x

L
3 x1 + xL

1 x
L
3 x2 + xU

1 x
U
2 x3 − xU

1 x
U
2 x

L
3 − xL

1 x
U
2 x

L
3

w ≤ xL
2 x

L
3 x1 + xU

1 x
U
3 x2 + xU

1 x
L
2 x3 − xU

1 x
L
2 x

U
3 − xU

1 x
L
2 x

L
3

w ≤ xU
2 x

U
3 x1 + xL

1 x
L
3 x2 + xL

1 x
U
2 x3 − xL

1 x
U
2 x

U
3 − xL

1 x
U
2 x

L
3

w ≤ xL
2 x

U
3 x1 + xU

1 x
U
3 x2 + xL

1 x
L
2 x3 − xU

1 x
L
2 x

U
3 − xL

1 x
L
2 x

U
3

w ≤ xU
2 x

U
3 x1 + xL

1 x
U
3 x2 + xL

1 x
L
2 x3 − xL

1 x
U
2 x

U
3 − xL

1 x
L
2 x

U
3 .
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Quadrilinear terms

The convex envelope is not known explicitly for quadrilinear terms

Combine bilinear and trilinear envelope [Cafieri, Lee,

Liberti; JOGO, 2011]

Convex envelope for some cases presented in [Balram; M.Sc.

Thesis, 2019] (e.g., when xL1 , x
L
2 , x

L
3 , x

L
4 ≥ 0, then 44

constraints are generated)
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Beyond quadrilinear terms

envelopes for multilinear terms larger than quadrilinear: not
known explicitly
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Beyond quadrilinear terms

envelopes for multilinear terms larger than quadrilinear: not
known explicitly

software as PORTA can compute the convex hull of a given
set of points in R

n
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Beyond quadrilinear terms

envelopes for multilinear terms larger than quadrilinear: not
known explicitly

software as PORTA can compute the convex hull of a given
set of points in R

n

Balram’s thesis reports a similar procedure to compute the
convex hull (but less refined)
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Dual relaxation: preliminaries

Consider the 2k point set P :
{ (xL

1 , . . . , x
L
k−1, x

L
k ),

(xL
1 , . . . , x

L
k−1, x

U
k ),

(xL
1 , . . . , x

U
k−1, x

L
k ),

(xL
1 , . . . , x

U
k−1, x

U
k ),

. . . ,

(xU
1 , . . . , xU

k−1, x
L
k ),

(xU
1 , . . . , xU

k−1, x
U
k ) }

(i.e., all combinations of lower/upper bounds)

Let w(x) =
∏

i≤k xi: lift P to (x,w) space, get PW ⊆ R
k+1

∀x̄ ∈ P (x̄, w(x̄)) ∈ PW
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Dual representation of a point set

Convex hull of P = {p1, . . . , pm} ⊆ R
n is given by x ∈ R

n | :

∃λ ∈ R
m



x =
∑

i≤m

λipi ∧
∑

i≤m

λi = 1 ∧ ∀i ≤ m (λi ≥ 0)




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Dual representation of a point set

Convex hull of P = {p1, . . . , pm} ⊆ R
n is given by x ∈ R

n | :

∃λ ∈ R
m



x =
∑

i≤m

λipi ∧
∑

i≤m

λi = 1 ∧ ∀i ≤ m (λi ≥ 0)





⇔ x is a convex combination of points in P
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Dual representation of a point set

Convex hull of P = {p1, . . . , pm} ⊆ R
n is given by x ∈ R

n | :

∃λ ∈ R
m



x =
∑

i≤m

λipi ∧
∑

i≤m

λi = 1 ∧ ∀i ≤ m (λi ≥ 0)





⇔ x is a convex combination of points in P

Can express points in PW in function of x,w, xL, xU and of
added (dual) variables λ for any k
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Dual representation of a point set

Convex hull of P = {p1, . . . , pm} ⊆ R
n is given by x ∈ R

n | :

∃λ ∈ R
m



x =
∑

i≤m

λipi ∧
∑

i≤m

λi = 1 ∧ ∀i ≤ m (λi ≥ 0)





⇔ x is a convex combination of points in P

Can express points in PW in function of x,w, xL, xU and of
added (dual) variables λ for any k

Automatically get explicit convex envelopes for multilinear
terms
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Example: bilinear term

Using a matrix representation, we have:

[

λ1 λ2 λ3 λ4
]

·









xL
1 xL

2
xL
1 xU

2
xU
1 xL

2
xU
1 xU

2









=
[

x1 x2
]
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Example: bilinear term

Using a matrix representation, we have:

[

λ1 λ2 λ3 λ4
]

·









xL
1 xL

2
xL
1 xU

2
xU
1 xL

2
xU
1 xU

2









=
[

x1 x2
]

[

λ1 λ2 λ3 λ4
]

·









xL
1 x

L
2

xL
1 x

U
2

xU
1 xL

2
xU
1 xU

2









= w

Alberto Costa Applications of Reformulations in Mathematical Programming



Outline
Introduction

Exact reformulations - Clustering in general and bipartite graphs
Narrowings - Circle packing in a square

Relaxations - Convex relaxations for multilinear terms
Conclusions

Example: bilinear term

Using a matrix representation, we have:

[

λ1 λ2 λ3 λ4
]

·









xL
1 xL

2
xL
1 xU

2
xU
1 xL

2
xU
1 xU

2









=
[

x1 x2
]

[

λ1 λ2 λ3 λ4
]

·









xL
1 x

L
2

xL
1 x

U
2

xU
1 xL

2
xU
1 xU

2









= w

x1 = λ1x
L
1 + λ2x

L
1 + λ3x

U
1 + λ4x

U
1

x2 = λ1x
L
2 + λ2x

U
2 + λ3x

L
2 + λ4x

U
2

w = λ1x
L
1 x

L
2 + λ2x

L
1 x

U
2 + λ3x

U
1 xL

2 + λ4x
U
1 xU

2
∑

i≤4

λi = 1
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Experimental set-up

Generate random multilinear NLPs P

linear, bilinear, trilinear terms

Generate primal convex LP relaxation RP

Generate dual convex LP relaxation ΛP

Solve RP ,ΛP using CPLEX, compare CPU times

To “get a feel” about how RP ,ΛP might perform in BB, add integrality

constraints on primal variables, get MILP relaxations R′
P ,Λ′

P

Solve R′
P ,Λ

′
P using CPLEX, compare CPU times
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Instance set

2520 random instances

# variables n ∈ {10, 20}
n = 10:

# bilinear terms β ∈ {0, 10, 13, 17, 21, 25, 29, 33}
# trilinear terms τ ∈ {0, 10, 22, 34, 46, 58, 71, 83}

n = 20:

β ∈ {0, 20, 38, 57, 76, 95, 114, 133}
τ ∈ {0, 20, 144, 268, 393, 517, 642, 766}

20 instances for each parameter combination yielding
multilinear NLPs (and then MINLPs after imposing integrality
on some variables)

Variable bounds chosen at random, magnitude ±2.0× 101
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LP relaxation test, n = 10

CPU time averages over each 20-instance block with given (n, β, τ)
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LP relaxation test, n = 20

CPU time averages over each 20-instance block with given (n, β, τ)
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MILP relaxation test, n = 10

CPU time averages over each 20-instance block with given (n, β, τ)
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MILP relaxation test, n = 20

CPU time averages over each 20-instance block with given (n, β, τ)
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Where are we?

1 Introduction

2 Exact reformulations - Clustering in general and bipartite graphs

3 Narrowings - Circle packing in a square

4 Relaxations - Convex relaxations for multilinear terms

5 Conclusions
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Final considerations

Reformulations can have a high impact in terms of computational times
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Final considerations

Reformulations can have a high impact in terms of computational times

Reformulations can allow to employ different solvers

Human contribution is important: automatic reformulations are not easy
to derive due to the specific features a problem can present.
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Future work

Clustering: implement an exact method for bipartite modularity
maximization
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Conclusions

Final considerations

Reformulations can have a high impact in terms of computational times

Reformulations can allow to employ different solvers

Human contribution is important: automatic reformulations are not easy
to derive due to the specific features a problem can present.

Future work

Clustering: implement an exact method for bipartite modularity
maximization

Circle packing: prove the conjecture about bound constraints

Relaxations for multilinear terms: try to implement the dual approach for
some sBB solver.
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