
HAL Id: pastel-00762010
https://pastel.hal.science/pastel-00762010

Submitted on 6 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multigrid methods for zero-sum two player stochastic
games

Sylvie Detournay

To cite this version:
Sylvie Detournay. Multigrid methods for zero-sum two player stochastic games. Optimization and
Control [math.OC]. Ecole Polytechnique X, 2012. English. �NNT : �. �pastel-00762010�

https://pastel.hal.science/pastel-00762010
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE L’ÉCOLE POLYTECHNIQUE

MATHÉMATIQUES APPLIQUÉES

présentée par

Sylvie Detournay

Multigrid methods for zero-sum two player

stochastic games

Thèse soutenue publiquement le 25 septembre 2012

devant le jury composé de :

Marianne Akian Directeur

Jean-Philippe Chancelier Rapporteur

Maurizio Falcone Rapporteur

Stéphane Gaubert Examinateur

Yvan Notay Examinateur

Xavier Vasseur Examinateur

Hasnaa Zidani Examinateur

Wieslaw Zielonka Examinateur

Remerciements

J’adresse tout d’abord mes plus sincères remerciements à ma directrice de thèse Mar-

ianne Akian pour m’avoir encadrée dans la réalisation de cette thèse. Je lui sais gré du

temps qu’elle m’a consacré, de ses conseils et de sa gentillesse. Je souhaite également

remercier Stéphane Gaubert pour l’intérêt qu’il a porté à mes travaux.

Je remercie Jean-Philippe Chancelier et Maurizio Falcone qui m’ont fait l’honneur d’ac-

cepter d’être rapporteurs de cette thèse. Mes plus sincères remerciements vont également

à Hasnaa Zidani, Yvan Notay, Xavier Vasseur et Wieslaw Zielonka qui ont accepté de faire

partie de mon jury.

Je tiens à remercier Jean Cochet-Terrasson, pour l’intérêt qu’il a porté à mes travaux

et sa relecture de ma thèse. Mes pensées vont également à Artem Napov pour ses conseils

ainsi que pour les moments de détentes passés en conférence. Merci à Audrey Minten pour

sa relecture et ses corrections orthographiques.

Je remercie sincèrement Wallis Filippi pour sa disponibilité et son aide précieuse ainsi

que toute l’équipe administrative du CMAP. Je n’oublie pas aussi tous les membres du

CMAP pour l’excellent accueil durant mes années de thèse.

Merci à aux doctorants et anciens doctorants du CMAP que j’ai eu la chance de

rencontrer. Et plus particulièrement, Camille, Émilie, Irina, Isabelle, Soledad, Francisco,

Jean-Baptiste, Khaled, Khalil, Zhihao, Florent, Zixian, Laurent D., Assalé, Pascal, Gilles,

Olivier, Michael, Laurent P., Xavier, Maxime et tant d’autres. Je remercie en particulier

tous mes co-bureaux pour tous les bons moments passés dans notre bureau à douze et en

dehors.

Je remercie également tous les doctorants et chercheurs que j’ai rencontrés lors de mes

conférences. En particulier, tous ceux avec qui j’ai eu l’occasion de partager pauses café,

d̂ıners, visites touristiques et culturelles.

Mes pensées vont également à mes parents pour les visites à Paris, l’aide au déménagement

et la préparation de ma soutenance. Je pense aussi à mon petit frère Jérôme pour son aide

et ses conseils pour mon pot de thèse.

Finalement, un grand merci à toutes les personnes, famille et amis, qui ont contribué

au bon déroulement de mes études.

3

4

Résumé

Dans cette thèse, nous proposons des algorithmes et présentons des résultats numériques

pour la résolution de jeux répétés stochastiques, à deux joueurs et somme nulle dont l’es-

pace d’état est de grande taille. En particulier, nous considérons la classe de jeux en

information complète et en horizon infini. Dans cette classe, nous distinguons d’une part

le cas des jeux avec gain actualisé et d’autre part le cas des jeux avec gain moyen. Nos

algorithmes, implémentés en C, sont principalement basés sur des algorithmes de type

itérations sur les politiques et des méthodes multigrilles. Ces algorithmes sont appliqués

soit à des équations de la programmation dynamique provenant de problèmes de jeux à

deux joueurs à espace d’états fini, soit à des discrétisations d’équations de type Isaacs

associées à des jeux stochastiques différentiels.

Dans la première partie de cette thèse, nous proposons un algorithme qui combine l’al-

gorithme des itérations sur les politiques pour les jeux avec gain actualisé à des méthodes de

multigrilles algébriques utilisées pour la résolution des systèmes linéaires. Nous présentons

des résultats numériques pour des équations d’Isaacs et des inéquations variationnelles.

Nous présentons également un algorithme d’itérations sur les politiques avec raffinement

de grilles dans le style de la méthode FMG. Des exemples sur des inéquations variation-

nelles montrent que cet algorithme améliore de façon non négligeable le temps de résolution

de ces inéquations.

Pour le cas des jeux avec gain moyen, nous proposons un algorithme d’itération sur les

politiques pour les jeux à deux joueurs avec espaces d’états et d’actions finis, dans le cas

général multichaine (c’est-à-dire sans hypothèse d’irréductibilité sur les châınes de Markov

associées aux stratégies des deux joueurs). Cet algorithme utilise une idée développée dans

Cochet-Terrasson et Gaubert (2006). Cet algorithme est basé sur la notion de projecteur

spectral non-linéaire d’opérateurs de la programmation dynamique de jeux à un joueur

(lequel est monotone et convexe). Nous montrons que la suite des valeurs et valeurs relatives

satisfont une propriété de monotonie lexicographique qui implique que l’algorithme termine

en temps fini. Nous présentons des résultats numériques pour des jeux discrets provenant

d’une variante des jeux de Richman et sur des problèmes de jeux de poursuite.

Ensuite, nous présentons de nouveaux algorithmes de multigrilles algébriques pour la

résolution de systèmes linéaires singuliers particuliers. Ceux-ci apparaissent, par exemple,

dans l’algorithme d’itérations sur les politiques pour les jeux stochastiques à deux joueurs

et somme nulle avec gain moyen, décrit ci-dessus. Nous introduisons également une nouvelle

5

6

méthode pour la recherche de mesures invariantes de châınes de Markov irréductibles basée

sur une approche de contrôle stochastique. Nous présentons un algorithme qui combine les

itérations sur les politiques d’Howard et des itérations de multigrilles algébriques pour les

systèmes linéaires singuliers.

Finalement, nous décrivons la bibliothèque PIGAMES en C qui a été développée par

l’auteur de cette thèse.

Abstract

In this thesis, we present some algorithms and numerical results for the solution of

large scale zero-sum two player repeated stochastic games. In particular, we consider the

class of games with perfect information and infinite horizon. In this class, we consider the

games with discounted payoff and the games with mean payoff. Our algorithms are mainly

based on policy iteration type algorithms and multigrid methods, and are implemented in

C. These algorithms are applied either to the dynamic programming equation of a true

finite state space zero-sum two player game or to the discretization of an Isaacs PDE of a

zero-sum stochastic differential game.

In a first part, we propose an algorithm which combines policy iterations for discounted

games and algebraic multigrid methods to solve the linear systems involved in the policy

iterations. We present numerical tests on discretizations of Isaacs equations or variational

inequalities. We also present a full multilevel policy iteration, similar to FMG, which

allows one to improve substantially the computation time for solving some variational

inequalities.

For the games with mean payoff, we develop a policy iteration algorithm to solve

zero-sum stochastic games with finite state and action spaces, perfect information and in

the general multichain case (i.e. without irreducibility assumption on the Markov chains

determined by the strategies of the players), following an idea of Cochet-Terrasson and

Gaubert (2006). This algorithm relies on a notion of nonlinear spectral projection of dy-

namic programming operators of one player games (which are monotone and convex). We

show that the sequence of values and relative values satisfies a lexicographical monotonicity

property which implies that the algorithm does terminate. We present numerical results

on a variant of Richman games and on pursuit-evasion games.

We propose new algebraic multigrid algorithms to solve particular singular linear sys-

tems that arise for instance in the above policy iteration algorithm for zero-sum two player

stochastic games with mean payoff. Furthermore, we introduce a new method to find the

stationary probability of an irreducible Markov chain using a stochastic control approach

and present an algorithm which combines the Howard policy iterations and algebraic multi-

grid iterations for singular systems.

At the end, we describe the C library PIGAMES which has been implemented by the

author of this thesis.

7

Contents

Notations 12

Introduction 13

0.1 Stochastic Games with perfect information 13

0.1.1 Dynamic programming equation . 14

0.1.2 Example of a game and applications 16

0.1.3 Stochastic Differential Games . 18

0.2 Algorithms for stochastic games . 19

0.2.1 Policy iterations for zero-sum stochastic games 20

0.2.2 Approximation and complexity . 21

0.2.3 Multigrid methods . 22

0.3 Contributions . 23

0.3.1 Handling stochastic discounted games with large state space 23

0.3.2 Policy iterations for stochastic mutlichain games with mean payoff . 25

0.3.3 Multigrids methods for particular linear systems with applications

to Markov chains and to zero-sum two player stochastic games with

mean payoff . 26

0.3.4 Modeling and implementation . 26

1 Stochastic Games with perfect information 27

1.1 The discrete case . 27

1.1.1 The model . 27

1.1.2 Payoff and dynamic programming equation 28

1.2 Algorithms for Discounted Games . 31

1.2.1 Value iteration algorithm for two player stochastic games 32

1.2.2 Policy iteration algorithm for Markov Decision Process with dis-

counted payoff . 32

1.2.3 Policy iteration algorithm for two player games 34

1.2.4 About the complexity of the policy iteration algorithm 36

1.2.5 Approximation in Policy iterations 37

1.3 The continuous case . 37

1.3.1 Differential games with regular controls. 38

9

10 CONTENTS

1.3.2 Differential games with optimal stopping control 39

1.3.3 Discretization . 41

2 Methods for solving linear systems 43

2.1 Direct solvers for linear systems . 43

2.2 Relaxation schemes . 44

2.3 Multigrids methods for non singular linear systems 46

2.3.1 Geometric multigrid methods . 46

2.3.2 Algebraic multigrid methods . 47

2.3.3 Smoothing property . 48

2.3.4 Solution phase . 48

2.3.5 Setup phase : the classical way . 53

2.3.6 Setup phase : aggregation methods 58

2.3.7 The AMG algorithm . 61

2.3.8 AGMG . 61

2.3.9 Other methods . 62

2.4 Stationary probability of Markov Chains . 65

2.4.1 Direct Solver . 66

2.4.2 Iterative Solver . 67

2.4.3 IAD for Markov Chains . 68

2.4.4 Multigrid for Markov Chains . 69

2.4.5 AMG for Markov Chains . 71

3 AMGπ for discounted games 75

3.1 AMGπ for discounted games . 75

3.1.1 Policy iteration combined with algebraic multigrid method 75

3.1.2 Full multi-level policy iteration . 77

3.2 Numerical results for discounted stochastic games 79

3.2.1 Isaacs equations . 79

3.2.2 Optimal stopping game . 86

3.2.3 Stopping game with two optimal stopping 92

3.3 Conclusion and perspective . 96

4 Policy iteration algorithm for zero-sum stochastic games with mean pay-

off 97

4.1 Introduction . 97

4.2 Two player zero-sum stochastic games with discrete time and mean payoff . 103

4.3 Reduced super-harmonic vectors . 108

4.4 Policy iteration algorithm for stochastic mean payoff games 112

4.4.1 The theoretical algorithm . 112

4.4.2 The practical algorithm . 113

4.4.3 Convergence of the algorithm . 115

CONTENTS 11

4.5 Ingredients of Algorithm 4.1 or 4.2: one player games algorithms 117

4.5.1 Policy iterations for one player games with discounted payoff 118

4.5.2 Policy iteration for multichain one player games 119

4.5.3 Critical graph . 122

4.6 An example with degenerate iterations . 123

4.7 Implementation and numerical results . 126

4.7.1 Variations on tug of war and Richman games 127

4.7.2 Pursuit evasion games . 130

4.8 Details of implementation of Policy Iteration for multichain one player games133

5 Multigrid methods for particular linear systems with applications to

Markov Chains and to zero-sum two player stochastic games with mean

payoff 137

5.1 Solving the linear systems . 137

5.1.1 First Approach . 138

5.1.2 Second Approach . 142

5.2 Stochastic control for the stationary probability of an irreducible Markov

Chain . 148

5.2.1 Numerical tests . 152

5.3 Ergodic differential stochastic games : Isaacs equation 154

5.3.1 Isaacs equations for mean payoff differential games 154

5.3.2 Numerical results . 156

5.4 Conclusion . 160

6 Modeling and implementation 163

6.1 Modeling of a zero-sum two player stochastic game 163

6.1.1 Discounted Payoff . 163

6.1.2 Mean Payoff . 165

6.2 Implementation details . 167

6.2.1 Discounted Payoff . 167

6.2.2 Mean payoff . 172

6.3 The linear solver: problems and issues . 178

6.3.1 Tarjan Algorithm . 178

6.4 The PIGAMES package . 180

6.5 Contents of the package . 180

6.5.1 Installation . 180

6.5.2 Run . 180

6.5.3 Input data file for discrete stochastic games 181

6.5.4 Option files for linear systems . 183

6.5.5 External packages . 185

Bibliography 185

12 CONTENTS

Notations

– N∗ := {k > 0 | k ∈ N}.
– Rn+ := {x ∈ Rn | xi ≥ 0, for 1 ≤ i ≤ n}.
– Rn×n+ := {A ∈ Rn×n | aij ≥ 0, for 1 ≤ i, j ≤ n}.
– (R∗+)n := {x ∈ Rn | xi > 0, for 1 ≤ i ≤ n}.
– (R∗+)n×n := {A ∈ Rn×n | aij > 0, for 1 ≤ i, j ≤ n}.
– 1 = [1 · · · 1]T is the vector of ones in Rn.

– I is the identity matrix of Rn×n.

– For A,B ∈ Rn×n, we write A ≥ B if aij ≥ bij for 1 ≤ i, j ≤ n.

– For A,B ∈ Rn×n, we write A ≤ B if aij ≤ bij for 1 ≤ i, j ≤ n.

– x|l is a vector of Rnl .

– A|l is a matrix of Rnl×nl .

– 1|l is the vector of ones in Rnl .

– I |l is the identity matrix of Rnl×nl .

– (k) is an index of iteration.

– [n] := {1, · · · , n}.
– ρ(A) = maxi∈[n] |λi| is the spectral radius of the matrix A ∈ Rn×n with λi are its

eigenvalues.

Introduction

0.1 Stochastic Games with perfect information

The (deterministic) game theory finds its origins in the field of economics and was

introduced by von Neumann and Morgenstern in[VNM44]. In 1953, Shapley defined the

class of stochastic games in [Sha53]. We refer to the books of Filar and Vrieze [FV97] and

Sorin and Neyman [NS03] for further descriptions on the topic and applications.

An infinitely repeated game, or discrete time dynamic game, or infinite horizon multi-

stage game, consists in an infinite sequence of state transitions, where at each step, the

transition depends on the actions of the players, and each player receives a reward which

depends on the state of the game and the actions of all players at this step. The aim

of each player is to maximize his own objective function, for instance his payoff which is

the sum of the rewards he received at all steps. The game is stochastic when the state

sequence is a random process with a Markov property, then the objective function is the

expected payoff. In particular, the game is a two player zero-sum game when there are two

players with opposite rewards, i.e. the rewards sum to zero at each step. Hence, player

2 aims to minimize player 1 objective function. When the game does not stop in finite

time (almost surely), it generates an infinite stream of rewards. In this case, one can for

instance consider a discounted payoff where the reward at each step k is discounted by some

multiplicative factor µk, with 0 < µ < 1. Alternatively, one can consider a mean payoff,

that is the Cesaro limit of the expectation of the successive rewards, which represents the

mean reward per step. In this thesis, we shall consider zero-sum two player stochastic

games with the discounted and the mean payoff criteria.

We consider in particular a two player zero-sum stochastic game with finite state space

X := {1, . . . , n} and finite action spaces A := {1, . . . ,m1} and B := {1, . . . ,m2} for player

1 and player 2 respectively. We denote by r(x, a, b) ∈ R the reward of player 1 when the

state (at the current step) is x ∈ X and the actions of player 1 and 2 are a ∈ A, b ∈ B
respectively. Since the game is zero-sum the reward for player 2 is −r(x, a, b) and we say

that player 2 makes a payment of r(x, a, b) to player 1. We denote by p(y|x, a, b) ∈ R+

the transition probability from state x to state y when the actions of player 1 and 2 are

a ∈ A and b ∈ B respectively (and we have
∑

y∈X p(y|x, a, b) = 1). In this thesis, we

shall consider the class of zero-sum two player stochastic games with perfect information.

Before describing these games, we introduce stochastic games with imperfect information

13

14 INTRODUCTION

without entering into the details.

In a zero-sum two player stochastic game with imperfect information (as initially intro-

duced in [Sha53]), the players play simultaneously and each player is trying to maximize

his own objective function. For this purpose they choose a strategy which is a decision rule

that tells them which action to choose in any situation. A (behavior) strategy for a player

is a function which to all possible histories associates a probability distribution over the

player’s action space. We denote this function by α for player 1 and by β for player 2.

Then, for a fixed pair of strategies (α, β), when the game starts in x ∈ X , we denote the

objective function (or payoff or expected payoff) of the first player by J(α, β, x). A couple

of optimal strategies (α∗, β∗) for player 1 and player 2 respectively, verifies

J(α, β∗, x) ≤ J(α∗, β∗, x) ≤ J(α∗, β, x), x ∈ X

for all possible strategies α for player 1 and β for player 2. The strategies α∗ and β∗ are

called optimal strategies for player 1 and player 2 respectively and the value J(α∗, β∗, x) is

called the value of the game starting in x ∈ X . For the discounted setting (or terminating

games), Shapley showed in [Sha53] that there always exist optimal Markov stationary

strategies for both players, that are strategies that only depend on the current state.

Moreover, he showed that the value of the game, defined for each starting state x ∈
X , is unique and verifies the Shapley equation, that has the same form as the one of

perfect information games given in Equation (1), but with A and B replaced by the sets

of probability distributions over A and B respectively and p and r modified accordingly.

A two player stochastic game is of perfect information when player 1 plays before player

2 and each player is informed at every move of the exact sequence of choices preceding that

move. Equivalently, a perfect information two player stochastic game is a stochastic game

where in each state one of the two players has no more than one possible action. Moreover,

when the same player has exactly one possible action in each state, the game can be seen

as a game with one player. The particular class of Markov Decision Processes (MDP)

or stochastic control problems, which can be viewed as stochastic games with one player,

has been introduced and developed by Bellman [Bel57] and by Howard [How60]. Albeit

the class of MDPs and the class of stochastic games are closely related, they have been

discovered independently, stochastic games preceding MDP and the two theories evolved

independently. See in particular the book of Puterman [Put94] for a wide description of

MDPs and applications. For the relation between MDPs and stochastic games, we refer

to the books of [FV97, NS03].

0.1.1 Dynamic programming equation

Now, we consider a zero-sum two player stochastic game with perfect information and

discounted payoff as previously defined. Hence, we assume that player 1 plays before

player 2, and that at each step, player 1 is choosing his action a ∈ A as a function of the

current state x ∈ X , and player 2 is choosing his action b ∈ B as a function of the current

state x ∈ X and the action a ∈ A of player 1.

0.1. Stochastic Games with perfect information 15

Under the finiteness conditions on the sets X , A and B, there exists a function v : X →
R which associates to each x ∈ X the discounted value of the game v(x) = J(α∗, β∗, x)

where J(α, β, x) is the discounted payoff for player 1 when he applies strategy α, player 2

applies strategy β and the initial state of the game is x. This function is called the value

or the value function of the game and is the unique solution [Sha53] of:

v(x) = max
a∈A

min
b∈B

∑
y∈X

p(y |x, a, b)µ v(y) + r(x, a, b)

︸ ︷︷ ︸

=:F (µv;x)

∀x ∈ X (1)

where 0 < µ < 1. This Equation (1), called the dynamic programming equation or Shapley

equation of the game, also gives the optimal strategies for both players which are pure

Markov stationary strategies (see [Sha53]). A pure stationary Markov strategy or feedback

policy for a player, is a decision rule that prescribes him the same action each time the

same state is reached independently of the past plays. Hence, it is a function which maps

any state x ∈ X to an action a ∈ A for player 1, respectively b ∈ B for player 2. (Now, we

shall denote by α : X → A and β : X → B pure stationary Markov strategies for player 1

and for player 2 respectively.)

Moreover, the operator F (µ·) : Rn → Rn which maps v ∈ Rn to the function

F (µv) : X → R

x 7→ F (µv;x)

where F (µv;x) is defined in (1) and 0 < µ ≤ 1, is called the dynamic programming

operator or Shapley operator [Sha53]. From [Sha53, Sor03], this operator is monotone or

order-preserving, meaning that v ≤ v
′

=⇒ F (µv) ≤ F (µv
′
) where ≤ denotes the partial

order of Rn, and when µ = 1, it is additively homogeneous, meaning that it commutes with

the addition of a constant vector (see for instance [CT80, GG04] for more background on

this class of nonlinear maps). Hence, the Shapley operator is contracting with constant

µ in the sup-norm, that is ‖F (µv)− F (µv
′
)‖∞ ≤ µ‖v − v′‖∞ for all v, v

′ ∈ Rn when

0 < µ < 1 and nonexpansive in the sup-norm when µ equals one.

In the undiscounted case, the discount factor µ equals one and we denote by F the

operator F (µ·) defined above. In this case, we look at the mean reward per turn for player

1 and the value of the game is his mean payoff which we denote by ρ(x) for each starting

point x ∈ X . The Shapley operator F is polyhedral, meaning that there is a covering of

Rn by finitely many polyhedra such that the restriction of F to any of these polyhedra

is affine. Kohlberg [Koh80] showed that if a map F is a polyhedral self-map of Rn that

is nonexpansive in some norm, then, there exist two vectors η and v in Rn such that

F (tη+ v) = (t+ 1)η+ v, for all t ∈ R large enough. A map of the form t 7→ tη+ v is called

a half-line, and η is its slope. It is invariant if it satisfies the latter property. When F has

an invariant half-line with slope η, the growth rate of its orbits χ(F) := limk→∞ F
k(v)/k

exists and is equal to η (where F k denotes the k-th iterate of F and v ∈ Rn), and ρ(x) = ηx

16 INTRODUCTION

for all x ∈ X . Moreover, we have that the couple (η, v) is an invariant half-line of F if,

and only if, it satisfies: {
η = F̂ (η) ,

η + v = F́η(v),
(2)

where the maps F̂ and F́η are constructed from F (see [ADCTG12] or Chapter 4). For

the Shapley operator F , this couple system of equations (2) is what is solved in practice

to find the value function ρ = η of the mean payoff game and v is called the relative value

of this game.

0.1.2 Example of a game and applications

Typical examples of zero-sum two player stochastic games with perfect information

are, for instance, parlor games such as chess games or draughts (see [FV97]), where the

players play in turn and the rewards are of zero-sum type. Another typical class of perfect

information games are the pursuit evasion games, that appear for instance in the context

of warfare (see [FV97] and the work of McEneaney, Fitzpatrick and Lauko in [MFL04]).

In these games, the two players, the pursuer and the evader, play in turn. The evader

wants to escape from the pursuer, and the pursuer has the opposite objective. The reward

can be chosen as the distance between the two players that the pursuer wants to minimize

and the evader wants to maximize, the actions are for instance the possible directions and

the transition probabilities from a state to another are determined by the directions of

both players with a possible stochastic perturbation. We shall present numerical results

on pursuit evasion games in Chapter 4 and Chapter 5 with a mean payoff criterion. The

class of pursuit evasion game is more commonly studied in the case of deterministic games

or in the field of differential stochastic games, see the works of Bardi, Falcone and Soravia

in [BFS94, BFS99], and of Li, Cruz and Schumacher in [LCS08]. See also the works of

Bardi, Koike and Soravia in [BKS00], of Falcone in [Fal06], and of Cristiani and Falcone in

[CF09] for stochastic games with state constraints. More recent applications of zero-sum

two player stochastic games with perfect information appeared in computer science. In

verification of programs, see the works of Costan, Gaubert, Goubault, Martel, and Putot

in [CGG+05], Gaubert, Goubault, Taly and Zennou in [GGTZ07], Gawlitza and Seidl

in [GS07b, GS07c], Adjé, Gaubert, and Goubault in [AGG08, AGG10, AGG12a], and of

Gawlitza, Seidl, Adjé, Gaubert and Goubault in [GSA+12]. In problems of the internet

and network flow control, see the work of Altman [Alt94]. See also the book of [NS03] for

other applications references.

Example 0.1 (Tug-of-war). We shall now describe an example of a game, called tug-

of-war or quasi-combinatorial game, which belongs to the class of random turn games

(see [LLPU96, LLP+99, PSSW09]). We shall present some numerical tests on a variant

of this game in Chapter 4.

In this game, we consider two players, called Mr. Blue and Ms. Red, and a directed

graph G = (V,E) where V is a finite set of vertices and E := {(i, j) | i, j ∈ V } is a finite

0.1. Stochastic Games with perfect information 17

x

B R

x

B R

Figure 1: Example of a tug-of-war game, on the left the graph when the token is in the

initial state and on the right the graph on a later step of the game.

set of edges (or arcs). The game is played on the graph in the following way. A token is

placed on an initial vertex x0 ∈ V and represents the current state of the game. Then,

a fair coin is tossed, the winner of the toss can choose to move the token to any vertex

x1 ∈ V such that there exists an edge, (x0, x1) ∈ E, between the two vertices. At each

turn k, the coin is tossed again and the winner controls the next move of the token in the

graph. When a player cannot move, the game terminates. Moreover, there are two special

vertices, b ∈ V and r ∈ V , where there are no possible moves, that are called terminal

states. Mr Blue wins when the game stops at b and Mrs Red wins when the game stops

at r. Hence, Mr Blue’s goal is to bring the token in b and Mrs. Red’s goal is to bring the

token in r. The game is a draw if neither vertex b or r is ever reached. This game is a

zero-sum two player stochastic game.

For instance, we represent in Figure 1, a directed graph that represents a tug of war

game. There are two terminal vertices: the vertex labeled B and the vertex labeled R for

Mr. Blue and Mrs. Red respectively. The black token is placed in a vertex of the graph.

We show in this Figure the game at two different steps of the game.

This kind of game was introduced by Richman in a context of auction game (see for

instance [LLPU96, LLP+99]). Indeed, it is closely related to the following auction game.

Again, we consider the same graph and the same players, Mr. Blue and Mrs. Red. We

assume now that both of them has an initial amount of money. Then rather than tossing

a coin, the two players bid at each stage of the game for the right to make the next move.

The player with the highest bid wins the choice of the next move and pays the bid to the

opponent. If the bids are equal, they toss a coin. As previously, Mr Blue wins when

the game stops at b and Mrs Red wins when the game stops at r regardless of the final

distribution of money. The game is a draw if neither vertex b or r is ever reached.

From [LLPU96, LLP+99], both players admit optimal strategies which are pure sta-

tionary strategies. Moreover, when the graph G is finite, the game has a value v : V → R,

called the Richman cost function. It is the unique solution of

v(x) =
1

2

(
max
y∈S(x)

v(y) + min
z∈S(x)

v(z)

)
x ∈ V \ {r, b}

with v(b) = 0 and v(r) = 1, and where S(x) := {y ∈ V | (x, y) ∈ V } is the set of successors

of x ∈ V .

18 INTRODUCTION

There exists many variants of this game, see for instance [LLP+99] and also applica-

tions, such as the infinite laplacian, see [PSSW09, Obe05].

0.1.3 Stochastic Differential Games

Another class of games which we shall consider is the class of zero-sum two player

differential stochastic games in continuous time. In these games, the state space is a

regular open subset X of Rd and the dynamics of the game is governed by a stochastic

differential equation which is jointly controlled by two players, see the works of Fleming

and Souganidis in [FS89] and of Świech in [Świ96].

Let us consider here the second order Hamiltonian:

H(x, p,K) = min
a∈A

max
b∈B

[
p · g(x, a, b) +

1

2
tr(σσT (x, a, b)K) + r(x, a, b)

]
(3)

where x ∈ X, p ∈ Rn,K ∈ Rn×n, A, B are either finite sets or subsets of some Rp spaces,

(x, a, b) ∈ X ×A×B 7→ g(x, a, b) ∈ Rd and (x, a, b) ∈ X ×A×B 7→ σ(x, a, b) ∈ Rd×d′+ are

given functions.

In the discounted case [FS89, Świ96], the value v of a zero-sum two player stochastic

differential game is solution of the following dynamic programming equation1:

− λv(x) +H

(
x,

∂v

∂xi
,
∂2v

∂xi∂xj

)
= 0, x ∈ X (4)

where λ ≥ 0 is a scalar and H is of the form . This nonlinear elliptic partial differential

equation is called Isaacs or Bellman-Isaacs equation.

For a zero-sum two player differential stochastic games with mean payoff or ergodic

differential stochastic games, when the mean payoff ρ (= η) is independent of the initial

state, it is the unique constant such that there exists v is the unique solution of the

following dynamic programming equation1:

− η +H

(
x,

∂v

∂xi
,
∂2v

∂xi∂xj

)
= 0, x ∈ X. (5)

This partial differential equation is a stationary Isaacs or Bellman-Isaacs equation. See

the works of Alvarez and Bardi in [AB07] and of Bardi in [Bar09].

The discretization of Equation (4) (or Equation (5)) with a monotone scheme in the

sense of [BS91] yields the dynamic programming Equation (1) (or Equation (2)) of a

stochastic game with discrete state space. Hence, it allows one to solve a differential game

in the same way as (1) (or (2)) solves a discrete time dynamic game. Suitable possi-

ble discretizations schemes are for instance: Markov chain discretizations [Kus77, KD92],

monotone discretizations [BS91], full discretizations of semi-Lagrangian type [BFS94], and

max-plus finite element method [FM00, AGL08] for deterministic games or control prob-

lems. Hence, we are interested in solving discretizations of Equation (4) (or Equation (5))

1. We denote by ∂v/∂xi (resp. ∂v/∂xi∂xj) the vector (resp. matrix) of the first (resp. second) partial

derivatives of v.

0.2. Algorithms for stochastic games 19

which have the form of Equation (1) (or Equation (2)), in order to find an approximation

of the value of the corresponding differential stochastic game.

Such equations may be applied in particular to pursuit-evasion games (see for in-

stance [BFS94]), but they also appear in solving H∞ optimal control problems (see for

instance [BB95]), or risk-sensitive optimal control problems [Fle06], in particular for fi-

nance applications [ES11, BCPS04].

A formal description of all the above definitions will be given in Chapter 1 for dis-

counted games and in Chapter 4 for games with mean payoff.

0.2 Algorithms for stochastic games

The classical method to solve the dynamic programming Equation (1) of a two player

zero-sum stochastic game with discounted payoff is the value iterations, also called suc-

cessive approximations or the value iteration algorithm. It was first introduced by Shap-

ley [Sha53] for zero-sum two player discounted games with imperfect information and after

by Bellman [Bel57] for stochastic control problems (or MDPs) and zero-sum two player

stochastic games with perfect information. The iterations of this method are cheap but

their convergence slows considerably as the discount factor µ approaches one. However,

when we discretize Equation (4) with a finite difference or finite element method with

a discretization step h, we obtain an equation of the form (1) with a discount factor

µ = 1−O(λh2), then when h is small µ is close to one and the value iteration method is

as slow as the Jacobi or Gauss-Seidel iterations for a discretized linear elliptic equation.

We refer also to [KK71, vdW77] for variants of this method.

Another approach consists in the so-called policy iterations or policy iteration algo-

rithm, initially introduced by Howard [How60] to solve stochastic control problems (i.e.

one player games), with proof of convergence for the discounted payoff case and without

proof for the mean payoff case. The proof in the mean payoff case was given by Denardo

and Fox in [DF68]. The first generalization of the policy iteration algorithm to zero-sum

two player stochastic games was proposed by Hoffman and Karp [HK66a] for the mean

payoff, imperfect information, when all the Markov chains associated to the strategies are

irreducible. In his study of contracting maps [Den67], Denardo also proposed a conver-

gent generalization of Howard’s algorithm with proof of convergence and with possibly

approximate solutions. His algorithm applies to zero-sum two player stochastic games

with imperfect information and discounted payoff.

The policy iteration algorithm for discounted games appeared also, as an adaptation

of the Hoffman-Karp algorithm, in the work of Rao, Chandrasekaran, and Nair [RCN73,

Algorithm 1] for the imperfect information case and the work of Puri [Pur95] for determin-

istic games with perfect information. More recently, Raghavan and Syed [RS03] developed

a related algorithm in which strategy improvements involve only one state at each itera-

tion. Some other attempts of generalization were proposed for discounted games, such as

the most natural extension of Howard’s algorithm given in [PAI69] or in [RCN73, Algo-

20 INTRODUCTION

rithm 2] which is sometimes called Newton-Raphson technique (because it is a Newton like

algorithm). However the Newton-Raphson policy iteration algorithm does not converge in

general [vdW78, Con93] except with very restrictive assumptions [PAI69].

Inspired by Hoffman and Karp algorithm, Cochet-Terrasson, Gaubert and Gunawar-

dena [GG98, CTGG99] developed a policy iteration algorithm for zero-sum two player

deterministic games with mean payoff, which has been intensively tested numerically

in [DG06]. Then, from this algorithm and the policy iterations for multichain MDPs

of [How60, DF68], Cochet-Terrasson and Gaubert proposed in [CTG06] a policy iteration

algorithm for zero-sum two player stochastic games with mean payoff in the multichain

case, i.e. without any irreducibility assumptions on the Markov chains associated to the

strategies. Another algorithm has also been proposed in [BEGM10] which is pseudo-

polynomial in time. However, it solves zero-sum two player stochastic mean payoff games

(which they call BWR) in the ergodic case, i.e. when the value of the game does not

depend on the initial state. The latter condition is more general than unichain games but

does not include multichain games.

Moreover, in [BCPS04], Bielecki, Chancelier, Pliska, and Sulem used a policy iteration

algorithm to solve a semi-Markov mean-payoff ergodic game problem with infinite action

spaces obtained from the discretization of a quasi-variational inequality. Their algorithm is

based on the approach of [CTGG99, GG98] and proceeds in a Hoffman and Karp fashion.

0.2.1 Policy iterations for zero-sum stochastic games

We shall now briefly describe the policy iteration algorithm of [Den67, Pur95] for

solving Equation (1). Starting with an initial policy α(0) : X → A for player 1, the

policy iteration algorithm for a zero-sum two player discounted stochastic game consists

in applying successively a policy evaluation step followed by a policy improvement step,

that are given by:

1. Policy Evaluation: Compute v(k+1) solution of the stochastic control problem ob-

tained by fixing in Equation (1), the actions a = α(k)(x) for all x ∈ X .

2. Policy Improvement: Choose the policy α(k+1) : X → A such that a = α(k+1)(x)

attains the maximum in the right hand side of Equation (1) when the value v is

replaced by v(k+1).

The iterations stop when α(k+1) = α(k), i.e. when we cannot improve the strategy. The

policy iterations stop after a finite number of steps when the sets of actions are finite.

Computing the value functions in the policy evaluation step (first step) is performed using

the policy iteration algorithm for a one-player game. For one player games, the policy

iterations stop after a finite number of steps when the sets of actions are finite, see the

works of Lions and Mercier [LM80], Bertsekas [Ber87] and Puterman [Put94]. In addition,

under regularity assumptions on the maps r and p, the policy iteration algorithm for

a one player game with infinite action spaces is equivalent to Newton’s method, thus

can have a super-linear convergence in the neighborhood of the solution, see the works

0.2. Algorithms for stochastic games 21

of Puterman and Brumelle [PB79], and Bokanowski, Maroso, and Zidani [BMZ09], for

superlinear convergence under general regularity assumptions; and the works of [PB79],

Akian [Aki90b], and Bank and Rose [BR82], for order p > 0 superlinear convergence under

additional regularity and strong convexity assumptions.

For stochastic games with mean payoff and irreducibility condition, one can use similar

policy iteration algorithm as stated above. But for the multichain stochastic games, these

policy iterations may cycle. Recall that for zero-sum two player stochastic games with

mean payoff, we have to solve Equation (2) for the dynamic programming operator F to

find the value ρ (= η) and relative value v functions of the game. Each policy evaluation

step for a one player game (or each policy evaluation iteration in the inner loop of the two

player algorithm) consists in solving a couple of linear singular systems, that is Equation (2)

with fixed strategies α and β for player 1 and player 2 respectively, for which there exists an

infinite number of relative values solutions. Indeed, if we denote by Pαβ the probabilities

matrix given by Pαβxy = p(x|y, α(x), β(x)) for x, y ∈ X , the relative value which is solution

of Equation (2) with fixed α and β, is defined up to an element of the kernel of the matrix

(I − Pαβ) whose dimension equals the number of final classes of Pαβ. Hence, for the one

player game, when the value of the game ρ does not change from one iteration to another,

the policy iterations may return different relative values v and the algorithm may cycle.

Howard [How60] and Denardo and Fox [DF68], proposed a policy iteration algorithm to

solve MDPs which overcome cycling by using conservative improvement of the strategies

and a way to solve the linear system that selects a unique relative value for each couple

linear system of the form Equation (2) with fixed strategies α and β. For zero-sum two

player stochastic games with mean payoff, similar behavior may also appear in the sequence

of relative values of the outer loop, i.e. iterations on the first player’s policies. In this case,

Cochet-Terrasson and Gaubert proposed a policy iteration algorithm [CTG06] where the

relative values for the first player are constructed using the nonlinear analogues of spectral

projectors. These nonlinear projectors where introduced by Akian and Gaubert in [AG03].

The policy iterations for discounted games will be given in details in Chapter 1 and

for mean payoff games in Chapter 4.

0.2.2 Approximation and complexity

In the policy iteration algorithm for solving MDPs (and hence in the intern policy itera-

tion of two player games), the costly part of the algorithm lies in the policy evaluation step

which requires the solution of a linear system that has the size of the discrete state space.

However, the exact solution of this system may not be necessary and an approximation of

this solution may be used, for instance by using an iterative solver. This leads to a class

of modified policy iterations which gives ε-optimal solution and ε-optimal strategies. See

for instance [Por72, Por75, vN76, Por80, Put94, Aki90b] for MDPs, [vdW78, BMZ09] for

discounted stochastic games and [vdW80] for unichain stochastic games with mean payoff.

One can easily see that a trivial bound for the number of policy iterations for an MDP

is the total number of possible policies which is exponential in the number of states. This

22 INTRODUCTION

is also the case for two player games. The complexity of the policy iteration algorithm has

been of large interest in the computer science community in the last decades. Condon has

shown [Con92] that the decision problem corresponding to a simple stochastic game belongs

to NP∩coNP. Friedmann has shown [Fri09] that a strategy improvement algorithm requires

an exponential number of iterations for a “worst”-case family of games called parity games.

Moreover, we have that parity games can be reduced to mean payoff deterministic games

(Puri [Pur95]), the latter ones to discounted deterministic games which in turn can be

reduced to simple stochastic games (Zwick and Paterson [ZP96]). In [AM09], Andersson

and Miltersen generalized this result showing that stochastic mean payoff games with

perfect information, stochastic parity games and simple stochastic games are polynomial

time equivalent. Hence, the decision problem corresponding to a game of one of these

classes lies in the complexity class of NP∩coNP. Moreover, Jurdzinski [Jur98] has shown

that solving parity games as well as mean payoff games belongs UP∩coUP. Note that

the result of Friedmann has also been extended to total reward and undiscounted MDP

by Fearnley [Fea10a, Fea10b] and to simple stochastic games and weighted discounted

stochastic games by Andersson [And09].

Moreover, for Markov decision processes with a fixed discount factor, some upper

bounds on the number of policy iterations have been given in [MH86]. More recently, Ye

presented the first strongly polynomial bound in [Ye05, Ye11]. The latter bound has been

improved and generalized to zero-sum two player stochastic games with perfect information

and fixed discount factor by Hansen, Miltersen and Zwick in [HMZ11], giving the first

strongly polynomial bound for these games.

0.2.3 Multigrid methods

Standard multigrid method was originally created in the seventies to solve efficiently

linear elliptic partial differential equations (see for instance [McC87]). It works as follows.

Multigrid methods require discretizations of the given continuous equation on a sequence

of grids, each of them, starting from a coarse grid, being a refinement of the previous one

until a given accuracy is attained. The size of the coarsest grid is chosen such that the

cost of solving the problem on it is cheap. Assume also that transfer operators between

these grids are given: interpolation and restriction. Then, a multigrid cycle on the finest

grid consists in: first, the application of a smoother on the finest grid; then a restriction

of the residual on the next coarse grid; then solving the residual problem on this coarse

grid using the same multigrid scheme; then, interpolate this solution (which is an approx-

imation of the error) and correct the error on the fine grid; finally, the application of a

smoother on the finest grid. If the multigrid components are properly chosen, this process

is efficient to find the solution on the finest grid. Indeed, in general the relaxation process

is smoothing the error which then can be well approximated by elements in the range of

the interpolation. This implies, in good cases, that the contraction factor of the multigrid

method is independent of the discretization step and also the complexity is in the order of

the number of discretization points. We shall refer to this standard method as geometric

0.3. Contributions 23

multigrid.

Algebraic multigrid method, called AMG, has been initially developed in the early

eighties (see [Bra86, BMR85, RS87]) for solving large sparse linear systems arising from

the discretization of partial differential equations with unstructured grids or PDE’s not

suitable for the application of the geometric multigrid solver or large discrete problems

not derived from any continuous problem. The AMG method includes a “setup phase” in

which the coarse levels (coarse “grids”) are constructed and which is based only on the

algebraic equations (in contrast to geometric multigrids). The points of the fine grids are

represented by the variables and the points of the coarse grids by subsets of these variables.

The selection of those coarse variables and the construction of the transfer operators

between levels are done in such a way that the range of the interpolation approximates

the errors not reduced by a given relaxation scheme.

In the recent years, multigrid methods have also been introduced [HL94, DSMM+08,

BBB+10, TY10, TY11, Vir07] for the computation of the stationary probability of ir-

reducible Markov Chains. Also [DSMM+10a, DSMM+10b, DSMMS11, DSMSW10] pro-

posed variants or accelerations of [DSMM+08]. The method of the latter is based on

the Iterative Aggregation/Disaggregation (IAD) scheme which is suitable for Nearly Com-

pletely Decomposable (NCD) Markov Chains and are working on two levels. See [DS00]

and references therein, for a broad overview of IAD partitioning techniques. A local con-

vergence result for this two level scheme is available in [MM03] and a global convergence

result is available in [MM98] in some specific setting.

Algebraic multigrid methods and some basic iterative algorithms to solve linear systems

will be explained in more details in Chapter 2.

0.3 Contributions

0.3.1 Handling stochastic discounted games with large state space

Each policy iteration for a one player game (or each iteration in the inner loop of

the two player algorithm) requires the solution of a linear system. Indeed, when we fix

feedback policies α : X → A and β : X → B for player 1 and 2 respectively, the system

of equations (1) yields a linear system of the form: v = µPαβv + r where v, r ∈ Rn are

respectively the value function of the game and the vector of rewards for the fixed policies

α and β, 0 < µ < 1 is the discount factor and Pαβ ∈ Rn×n is a Markov matrix whose

elements are the transition probabilities Pαβxy = p(x|y, α(x), β(x)) ∈ R+ for x, y ∈ X (and

each rowsum of Pαβ equals one). When the dynamic programming Equation (1) is coming

from the discretization of an Isaacs partial differential Equation (4), this linear system

corresponds to the discretization of a linear elliptic partial differential equation, hence it

may be solved in the best case in a time that is linear in the number of discretization points

by using multigrid methods, that is the cardinality |X | of the discretized state space X ,

or the size of the matrix Pαβ. For general stochastic games on a finite state space X ,

since Pαβ is a Markov matrix, the matrix (I − µPαβ) of the linear system is an invertible

24 INTRODUCTION

M-matrix [BP94], and one may expect the same complexity when solving it by using an

algebraic multigrid method.

In Chapter 3, we propose an algorithm which combines the policy iteration algorithm

for solving zero-sum two player discounted stochastic games with the algebraic multigrid

method (AMG). We shall call AMGπ the resulting algorithm. This algorithm can be

applied either to a true finite state space zero-sum two player game or to the discretiza-

tion of an Isaacs equation, although in the thesis we restrict ourselves to numerical tests

for the discretization of stochastic differential games. Such an association of multigrid

methods with policy iteration has already been used and studied in the case of one player

games, that is discounted stochastic control problems (see Hoppe [Hop86, Hop87] and

Akian [Aki90a, Aki90b] for Hamilton-Jacobi-Bellman equations or variational inequali-

ties, Ziv and Shimkin [OZ05] for AMG with learning methods). A two-level partitioning

technique combined with policy iteration was also used by [BC89] in the context of solving

Markov Decision process. However, the approach is new in the case of two player games.

The AMGπ algorithm has been implemented in the C library PIGAMES for this thesis.

We present in Chapter 3, numerical tests on discretizations of Isaacs or Hamilton-Jacobi-

Bellman equations or variational inequalities. In our numerical tests, we observe that the

computation time is smaller when using AMGπ instead of the policy iteration with LU

and that the computation time needed by AMGπ increases linearly with the size of the

problem, what is expected from a multigrid method.

Furthermore, we notice in the numerical tests that for some variational inequalities the

number of policy iterations to solve the problem may be large. However, as for Newton’s

algorithm, convergence can be improved by starting the policy iteration with a good initial

guess, close to the solution. With this in mind, we present a full multi-level policy iteration,

similar to FMG. It consists in solving the problem at each grid level by performing policy

iterations until a convergence criterion is verified, then to interpolate the strategies and

value to the next level, in order to initialize the policy iterations of the next level, until

the finest level is attained. When at each level policy iterations are combined with the

algebraic multigrid method, we shall call FAMGπ the resulting full multi-level policy

iteration algorithm. For one-player discounted games with infinite number of actions and

under regularity assumptions, one can show [Aki90b, Aki90a] that this kind of full multi-

level policy iteration has a computing time in the order of the cardinality |X | of the

discretized state space X at the finest level. In Chapter 3, we give numerical examples on

variational inequalities for two player games, the computation time of which is improved

substantially using FAMGπ instead of AMGπ. However, the FAMGπ algorithm uses

coarse grids discretizations of the partial differential equation and so cannot be applied

directly to the dynamic programming equation of a two player zero-sum stochastic game

with finite state space.

The aforementioned algorithms and numerical results of Chapter 3 have been published

in the paper [AD12] co-authored with Marianne Akian.

0.3. Contributions 25

0.3.2 Policy iterations for stochastic mutlichain games with mean payoff

In Chapter 4, we shall present the policy iteration algorithm for zero-sum two player

multichain stochastic games with mean-payoff of which an initial version was given in [CTG06].

However, no implementation details were given in the short note [CTG06], in which the

algorithm was stated abstractly, in terms of invariant half-lines. An iteration k on the

policies of player 1 (outer loop) is called degenerate when the mean value η(k) equals the

mean value η(k−1) of the previous iteration. In this case, as for the one player case, the

general policy iterations may cycle. When a degenerate iteration occur, the policy iter-

ation algorithm of [CTG06] avoids cycling by constructing the relative values using the

nonlinear analogue of spectral projectors. It allows one to determine a unique relative

value for Equation (2) when the strategy α of player 1 is fixed. This spectral projection

or reduced super-harmonic function for a non linear convex order-preserving additively

homogeneous map, was introduced in the work of Akian and Gaubert on spectral theory

of such maps [AG03].

In Chapter 4, we develop fully the idea of [CTG06], and describe a policy iteration

algorithm for multichain stochastic games with mean-payoff (see Section 4.4.2). We explain

how nonlinear systems of the form (2) are solved at each iteration. We show in particular

how non-linear spectral projections can be computed, by solving an auxiliary (one player)

optimal stopping problem. This relies on the determination of the so called critical graph,

the nodes of which (critical nodes) are visited infinitely often (almost surely) by an optimal

strategy of a one player mean payoff stochastic game. An algorithm to compute the critical

graph, based on results on [AG03], is given in Section 4.5.3.

We shall also give a proof of the convergence result which was only stated in [CTG06].

In particular, we show that the sequence (η(k), v(k), C(k)) consisting of the mean payoff

vector, relative value vector, and set of critical nodes, constructed by the algorithm satisfies

a kind of lexicographical monotonicity property so that it converges in finite time (see

Section 4.4.3). The proof of convergence exploits some results of spectral theory of convex

order-preserving additively homogeneous maps, by Akian and Gaubert [AG03]. Then,

we discuss an example (see Section 4.6) involving a variant of Richman games [LLP+99]

(also called stochastic tug-of-war [PSSW09], related with discretizations of the infinity

Laplacian [Obe05]), showing that degenerate iterations do occur and that cycling may

occur with naive policy iteration rules. Hence, the handling of degenerate iterations, that

we do here by nonlinear spectral projectors, cannot be dispensed with.

The present algorithm has been implemented in the C library PIGAMES for this

thesis. We finally report numerical experiments (see Section 4.7) carried out using this

library, both on random instances of Richman type games with various numbers of states

and on a class of discrete games arising from the monotone discretization of a pursuit-

evasion differential game. These examples indicate that degenerate iterations are frequent,

so that their treatment cannot be dispensed with. They also show that the algorithm scales

well, allowing one to solve structured instances with 106 nodes and 107 actions in a few

hours of CPU time on a single core processor (the bottleneck being the resolution of linear

26 INTRODUCTION

systems).

Chapter 4 consists in the paper [ADCTG12] which is a joint work with Marianne

Akian, Jean Cochet-Terrasson and Stéphane Gaubert.

0.3.3 Multigrids methods for particular linear systems with applications

to Markov chains and to zero-sum two player stochastic games

with mean payoff

In Chapter 5, we present some new algebraic multigrid algorithms to solve particu-

lar singular linear systems that arise for instance in the policy iteration algorithm for

zero-sum two player stochastic games with mean payoff. In particular, we present our

algorithm AMGsingular2. Furthermore, we introduce a new method to find the station-

ary probability of an irreducible Markov chain using a stochastic control approach and

present our algorithm MGPIMG which combines the policy iterations of [How60, DF68]

and AMGsingular2. We shall present some numerical results on random matrices that rep-

resent random walks on an uniform square grid and compare our our algorithm MCPIMG

with the algorithm MAA of [DSMM+08]. In the last section of this chapter, we apply the

policy iterations combined with AMGsingular2 to solve some ergodic differential games

with mean payoff. We shall compare the policy iteration algorithm with a direct solver

LU versus the policy iteration algorithm with AMGsingular2 on pursuit evasion games.

0.3.4 Modeling and implementation

In Chapter 6, we describe the modeling that we use to represent a zero-sum two player

stochastic game with discounted payoff or mean payoff. Then, we give the main ideas in

term of structures (objects) and algorithms used in the C library PIGAMES which has

been implemented by the author of this thesis. In section 6.4, we give the readme file of

the library PIGAMES which describe the contents, the instructions and the options of

the PIGAMES package.

Chapter 1

Stochastic Games with perfect

information

1.1 Two player zero-sum stochastic games: the discrete case

The class of two player zero-sum stochastic games was first introduced by Shapley in

the early fifties [Sha53]. We recall in this section the definition of a game with perfect

information in the case of finite state space, discrete time and perfect information (for

more details see [Sha53, FV97, Sor03]). A game is of perfect information means that a

player is informed at every move of the exact sequence of choices preceding that move.

1.1.1 The model

We consider a finite state space X = {1, . . . , n}. A stochastic process (ξk)k≥0 on X
gives the state of the game at each point time k, called stage. At each of these stages,

both players have the possibility to influence the course of the game.

The stochastic game Γ(x0) starting from x0 ∈ X is played in stages as follows. The

initial state ξ0 is equal to x0 and known by the players. The player who plays first, say

max, chooses an action ζ0 in a set of possible actions A(ξ0). Then the second player, called

min chooses an action η0 in a set of possible actions B(ξ0, ζ0). The actions of both players

and the current state determine the payment r(ξ0, ζ0, η0) made by min to max and the

probability distribution p(·|ξ0, ζ0, η0) of the new state ξ1. Then the game continues in the

same way with state ξ1 and so on.

At a stage k, each player chooses an action knowing the history defined by ιk =

(ξ0, ζ0, η0, · · · , ξk−1, ζk−1, ηk−1, ξk) for max and (ιk, ξk) for min. We call a strategy or

policy for a player, a rule which tells him the action to choose at any stage and in any

situation. There are several classes of strategies. Assume A(x) ⊂ A and B(x, a) ⊂ B for

some sets A and B. A behavior or randomized strategy for max (resp. min) is a sequence

ᾱ := (α0, α1, · · ·) (resp. β̄ := (β0, β1, · · ·)) where αk (resp. βk) is a map which to a

history hk = (x0, a0, b0, . . . , xk−1, ak−1, bk−1, xk) with xi ∈ X , ai ∈ A(xi), bi ∈ B(xi, ai) for

0 ≤ i ≤ k (resp. (hk, ak)) at stage k associates a probability distribution on a probability

27

28 CHAPTER 1. STOCHASTIC GAMES WITH PERFECT INFORMATION

space over A (resp. B) whose support is included in the possible actions space A(xk) (resp.

B(xk, ak)). A Markovian (or feedback) strategy is a strategy which only depends on the

information of the current stage k: αk (resp. βk) depends only on xk (resp. (xk, ak)), then

αk(hk) (resp. βk(hk, ak)) will be denoted αk(xk) (resp. βk(xk, ak)). It is called stationary

if it is independent of k, then αk is also denoted by α and βk by β. A strategy of any type

is called pure if for any stage k, the values of αk (resp. βk) are Dirac probability measures

at certain actions in A(xk) (resp. B(xk, ak)) then we denote also by αk (resp. βk) the map

which to the history assigns the only possible action in A(xk) (resp. B(xk, ak)).

In particular, if ᾱ is a pure Markovian stationary strategy, then ᾱ = (αk)k≥0 with

αk = α for all k and α is a map X → A such that α(x) ∈ A(x) for all x ∈ X . In

this case, we also speak about pure Markovian stationary strategy for α and we denote

by AM the set of such maps. We adopt a similar convention for player min: BM :=

{β : X ×A → B | β(x, a) ∈ B(x, a) ∀x ∈ X , a ∈ A(x)}.
A strategy ᾱ = (αk)k≥0 (resp. β̄ = (βk)k≥0) together with an initial state determines

stochastic processes (ζk)k≥0 for the actions of max, (ηk)k≥0 for the actions of min and

(ξk)k≥0 for the states of the game such that

P (ξk+1 = y | ιk = hk, ζk = a, ηk = b) = p(y |x, a, b) (1.1a)

P (ζk ∈ A | ιk = hk) = αk(hk)(A) (1.1b)

P (ηk ∈ B | ιk = hk, ζk = a) = βk(hk, a)(B) (1.1c)

where ιk := (ξ0, ζ0, η0, . . . , ξk−1, ζk−1, ηk−1ξk) is the history process, hk is a history vector

at time k: hk = (x0, a0, b0, . . . , xk−1, ak−1, bk−1, x) and A (resp. B) are measurable sets in

A(x) (B(x, a) resp.). For instance, for each pair of pure Markovian stationary strategies

(ᾱ, β̄) of the two players, that is such that for k ≥ 0: αk = α with α ∈ AM and βk = β

with β ∈ BM , the state process (ξk)k≥0 is a Markov chain on X with transition probability

P (ξk+1 = y | ξk = x) = p(y|x, α(x), β(x, α(x))) for x, y ∈ X

and ζk = α(ξk) and ηk = β(ξk, ζk).

1.1.2 Payoff and dynamic programming equation

We consider here the payoff of the game Γ(x0) starting from x0 ∈ X as the expected

sum of the rewards at all steps of the game that max wants to maximize and min to

minimize. When the strategies ᾱ for max and β̄ for min are fixed, the payoff in finite

horizon τ of the game Γ(x0, ᾱ, β̄) starting from x0 is given by

Jτ (x0, ᾱ, β̄) = Eᾱβ̄x0

[
τ−1∑
k=0

r(ξk, ζk, ηk)

]
,

where Eᾱ,β̄x0 denotes the expectation for the probability law determined by (1.1).

1.1. The discrete case 29

When the action spaces A(x) and B(x) are finite sets for all x ∈ X , the finite horizon

game has a value v : X → R which is given by:

vτ (x) = sup
ᾱ

inf
β̄
Jτ (x, ᾱ, β̄), ∀x ∈ X (1.2)

where the supremum is taken among all strategies ᾱ for max and the infimum is taken

over all strategies β̄ for min, and the value vT satisfies the dynamic programming equa-

tion [Sha53]:

vτ+1(x) = max
a∈A(x)

 min
b∈B(x,a)

∑
y∈X

p(y |x, a, b) vτ (y) + r(x, a, b)

 ∀x ∈ X . (1.3)

Moreover [Sha53], optimal strategies are obtained for both players by taking in (1.2) pure

Markovian stationary strategies α ∈ AM for max and β ∈ BM for min such that for all x

in X , α(x) attains the maximum in (1.3):

α(x) ∈ Argmax
a∈A(x)

F (v;x, a)

where

F (v;x, a) := min
b∈B(x,a)

∑
y∈X

p(y|x, a, b) v(y) + r(x, a, b)

︸ ︷︷ ︸

:=F (v;x,a,b)

, (1.4)

and for all x in X and a in A(x), β(x, a) attains the minimum in (1.4):

β(x, a) ∈ Argmin
b∈B(x,a)

F (v;x, a, b) .

Here we use the notation Argmax
c∈C

f(c) := {c ∈ C | f(c) = maxc′∈C f(c′)} and similarly for

Argmin.

We denote by F the dynamic programming operator or Shapley operator from RX (that

is here Rn) to itself given by:

F (v;x) := min
a∈A(x)

max
b∈B(x,a)

∑
y∈X

p(y |x, a, b) v(y) + r(x, a, b)

 , ∀x ∈ X , v ∈ RX .

(1.5)

Then, the dynamic programming equation of the finite horizon game writes:

vτ+1 = F (vτ).

The operator F is order-preserving, i.e. v ≤ w =⇒ F (v) ≤ F (w) where ≤ denotes the

partial ordering of Rn, and additively homogeneous, i.e. it commutes with the addition of

a constant vector; it implies that F is nonexpansive in the sup-norm.

Note that in [Sha53], the theorems are given for games which are not necessarily with

perfect information, the application to perfect information games is given in section 4

of [Sha53].

30 CHAPTER 1. STOCHASTIC GAMES WITH PERFECT INFORMATION

When we consider an infinite horizon, the game may not stop in finite time (almost

surely), hence the expected sum of the rewards may not be bounded and one consider

other payoffs for instance a discounted payoff described below (or a mean payoff which

will be the subject of Chapter 4).

Discounted payoff

Now, consider that the reward at time k is the payment made by min to max times µk

where 0 < µ < 1 is called the discount factor. We denote by Γµ a game with a discounted

payoff. In this case, for a couple of fixed strategies ᾱ for max and β̄ for min, the payoff of

the game Γµ(x0, ᾱ, β̄) starting from x0 is defined by

J(x0, ᾱ, β̄) = Eᾱ,β̄x0

[∞∑
k=0

µkr(ξk, ζk, ηk)

]
,

where Eᾱ,β̄x0 denotes the expectation for the probability law determined by (1.1). The value

of the game starting from x0 ∈ X , denoted by Γµ(x0), is then given by

v(x0) = sup
ᾱ

inf
β̄
J(x0, ᾱ, β̄), (1.6)

where the supremum is taken over all strategies ᾱ for max and the infimum is taken over

all strategies β̄ for min. Note that a non terminating game without any discount factor

(or µ = 1) is called ergodic.

When the actions sets A(x) and B(x, a) are finite sets for all x ∈ X , a ∈ A(x), the value

v : X → R of the stochastic game Γµ satisfies the dynamic programming equation [Sha53]:

v = F (µ v). (1.7)

In this case, the dynamic operator F (µ ·) is monotone and contracting with constant

0 < µ < 1 in the sup-norm, i.e.
∥∥∥F (µ v)− F (µ v

′
)
∥∥∥
∞
≤ µ

∥∥∥v − v′∥∥∥
∞

for all v, v
′ ∈ RX .

Moreover [Sha53], optimal strategies are obtained for both players by taking in (1.6)

pure Markovian stationary strategies α ∈ AM for max and β ∈ BM for min such that for

all x in X :

α(x) ∈ Argmax
a∈A(x)

F (µ v;x, a)

and for all x in X and a in A(x):

β(x, a) ∈ Argmin
b∈B(x,a)

F (µ v;x, a, b) .

Note that the above results hold also when we consider total payoff (µ = 1) for games

that stop almost surely in finite time. Those games are called terminating game (or

sometimes stopping game). That is for any pair of strategies (ᾱ, β̄) the limit:

lim
τ→∞

Jτ (x, ᾱ, β̄) < ∞

1.2. Algorithms for Discounted Games 31

is finite, then the dynamic programming operator F defined in (1.5) is contracting in the

supnorm and v = F (v) has a unique solution (see for instance [FV97, Sor03]). This is the

case, for instance, when the game has an absorbing state, that is a state x ∈ X such that

p(x|x, a, b) = 1 and r(x, a, b) = 0 for all possible actions a ∈ A(x) and b ∈ B(x, a). Hence,

a discounted stochastic game can be seen as a game with an absorbing state y such that

for all x 6= y ∈ X , p(y|x, a, b) = 1 − µ for all a ∈ A(x) and b ∈ B(x, a). Note that in

his pioneer paper [Sha53], Shapley considered stochastic games with a positive probability

s(x, a, b) that the game stops in each state x ∈ X for all a ∈ A(x) and b ∈ B(x, a), that is

p(y|x, a, b) = 1−s(x, a, b) < 1, his games are called terminating games. When s(x, a, b) = s

for all x ∈ X for all a ∈ A(x) and b ∈ B(x, a), it is equivalent to our discounted payoff

case explained above (see also remark in [Sha53] section 4). It is this last setting (fixed

discount factor) that appears mostly in the literature.

A related class of perfect information zero-sum stochastic games, is the class of Ad-

ditive Reward and Additive Transition(AR-AT) zero-sum stochastic games. See for in-

stance [RTV85, TR97, Vri03] for a complete description and applications. In these class of

AR-AT games, at each state of the game, a part of the reward depends only on the action

of max and the other part depends only on the action of min. The reward is then the

addition of both parts, that is r(x, a, b) = r(x, a)+r(x, b) for each state x in X and actions

a in A and b in B for max and min respectively. Also the transition probability is the

addition of two independents parts of both players, that is p(y|x, a, b) = p(y|x, a)+p(y|x, b)
for x, y ∈ X . This class of games shares the same properties as the perfect information

games see [RTV85, TR97, Vri03]. Indeed [RTV85, TR97, Vri03], two person zero-sum

AR-AT stochastic games with discounted or mean payoff admit pure stationary Markov

strategies for both players. Hence, the dynamic programming equation for these games

can be solved using the same algorithms.

1.2 Numerical solution of discrete dynamic programming

equations of discounted games

One can classically solve the dynamic programming Equation (1.7) of a two player zero-

sum stochastic game with discounted payoff and perfect information by using the value

iteration algorithm that Shapley [Sha53] first introduced for general discounted games.

This method is sometimes also called value iterations or successive approximations. The

iterations of this method are cheap but their convergence slows considerably as the discount

factor µ approaches one. Another approach consists in the so called policy iteration

algorithm, initially introduced by Howard [How60] for one player stochastic games (i.e.

stochastic control problems). Further adaptations of this algorithm were proposed for the

two player games, the first by Hoffman and Karp [HK66a] for a special mean-payoff case.

And later, the policy iteration algorithm was given by Denardo [Den67] for zero-sum two

player discounted stochastic games and by Puri [Pur95] in the case deterministic games of

perfect information. In all cases, the policy iteration algorithm converges faster than the

32 CHAPTER 1. STOCHASTIC GAMES WITH PERFECT INFORMATION

value iteration algorithm (see for instance [Aki90a, HMZ11]) and in practice it ends in few

steps (see for instance [DG06] for numerical examples in the case of deterministic games).

In this section, we shall present the policy iteration algorithm to solve the dynamic

programming Equation (1.7) of a two player zero-sum discounted stochastic game with

finite state space. Before, we provide the value iteration algorithm for those games and

also the policy iteration algorithm for a one player game.

1.2.1 Value iteration algorithm for two player stochastic games

We consider here the value iterations or successive approximations or the value iteration

algorithm that were first introduced by Shapley [Sha53]. (see for instance [Bel57]). Given

an initial approximation v(0) ∈ Rn and setting k = 0, the algorithm iterates on the values

v(k) that are computed at each iteration by:

v(k+1) = F (µ v(k)),

until the desired convergence is obtained, e.g. ‖v(k+1) − F (µv(k+1))‖ < ε for some posi-

tive ε. Using the fact that the dynamic operator F (µ ·) is monotone and contracting with

constant 0 < µ < 1 in the sup-norm, the iterates (v(k))k≥1 converge to the discounted

value of the game (see [Bel57]). However, the convergence is slow when the discount factor

µ approaches one. Acceleration of this method have been proposed in the literature, see

for instance [vdW77] for a successive approximation method in a “Gauss Seidel” fashion

or [KK71] for the one player case.

1.2.2 Policy iteration algorithm for Markov Decision Process with dis-

counted payoff

Now, let us consider a one player stochastic game with only a min player and finite

state space X . The discounted value of this game starting in x ∈ X is given by:

v(x) = inf
β̄

Eβ̄x

[∞∑
k=0

µkr(ξk, ηk)

]
,

where the processes ξk, ηk and strategies β̄ are defined such as in the Section 4.2 without

the max player. As before, we define the set of feedback strategies for player min by

BM := {β : X → B | β(x) ∈ B(x) ∀x ∈ X}, where B contains all the sets B(x). In this

case, the dynamic programming operator F , mapping Rn to itself, is defined by:

F (v;x) := min
b∈B(x)

∑
y∈X

p(y|x, b) v(y) + r(x, b)

 , ∀x ∈ X ,∀v ∈ Rn .

Then, the discounted value v ∈ Rn of the game is the solution of the dynamic programming

equation: v = F (µ v), which also gives the optimal strategy β ∈ BM for min. This

game is also called stochastic control problem or Markov Decision Process with finite state

1.2. Algorithms for Discounted Games 33

space X . We shall use the term Markov Decision Process or MDP for short. We refer

to [How60, DF68, Put94] for a deeper description on this topic.

The policy iteration algorithm that solves the dynamic programming equation of a

Markov Decision Processes with discounted payoff 0 < µ < 1 (or µ = 1 for a MDP that

stops almost surely in finite time), was first introduced by Howard [How60] and is given

in Algorithm 1.1. Given an initial policy β(0) ∈ BM , this algorithm returns the value of

the game v : X → R and the optimal policy β ∈ BM .

Algorithm 1.1 Policy iteration for Markov Decision Processes

Input: An initial policy β(0) ∈ BM . Ouput: The value v ∈ Rn of the MDP and the optimal

policy β ∈ BM .

1. Compute the value v(k+1) of the game with fixed feedback policy β(k), that is the

solution of

v(k+1)(x) =
∑
y∈X

µ p(y |x, β(k)(x)) v(k+1)(y) + r(x, β(k)(x)) x ∈ X , v ∈ Rn.

2. Improve the policy. Find the optimal feedback policy β(k+1) for the value v(k+1), i.e.

for each x in X , choose β(k+1)(x) such that:

β(k+1)(x) ∈ Argmin
b∈B(x)

∑
y∈X

µ p(y |x, b) v(k+1)(y) + r(x, b)

 .

3. If β(k+1)(x) = β(k)(x) for x ∈ X then STOP and return v(k+1) and β(k+1).

4. Increment k by one and go to Step 1.

Each policy iteration of Howard’s Algorithm 1.1 strictly improves the current policy

and produces a non increasing sequence of values (v(k))k≥1. It implies that the algorithm

never visits twice the same policy. Hence if the action sets are finite in each point of X , the

policy iterations stop after a finite time (see for instance [PB79, LM80, Ber87]). Moreover,

under regularity assumptions, the policy iteration algorithm for a one player game with

infinite action spaces is equivalent to Newton’s method [PB79, BR82, Aki90b, BMZ09].

Indeed, define G(v) = F (v) − v, then the problem is to find the solution of G(v) = 0

where all entries of G are concave functions. The policy improvement step can be seen as

the computation of an element of the sup-differential of G in the current approximation

v(k+1) and the value improvement step computes the zero of the previous sup-differential.

When G is regular, the sequence of value functions (v(k))k≥1 is exactly the sequence of the

Newton’s algorithm.

Moreover, Chancelier, Messaoud, and Sulem presented in [CMS07] a policy iteration

algorithm for quasi-variational inequalities, partially undiscounted infinite horizon prob-

lems. They proved the contraction of their policy iteration algorithm.

34 CHAPTER 1. STOCHASTIC GAMES WITH PERFECT INFORMATION

1.2.3 Policy iteration algorithm for two player games

Some algorithms for solving zero-sum two player stochastic games that do not converge

have been proposed in the literature, see for instance [vdW78, Con93] for proofs of the

corresponding “non convergence”. The most known of these algorithms is the most natural

extension of Howard’s algorithm, sometimes called Newton-Raphson technique (because it

is a Newton like algorithm). Given an initial value v(0), it consists in successively applying

the two following steps:

1. Determine α(k+1) ∈ AM such that α(k+1)(x) ∈ Argmax
a∈A(x)

F (µ v(k);x, a), x ∈ X , and

β(k+1) ∈ BM such that β(k+1)(x, a) ∈ Argmin
b∈B(x,a)

F (µ v(k);x, a, b), a ∈ A(x), x ∈ X .

2. Compute v(k+1) solution of v(x) = F (µ v;x, α(k+1)(x), β(k+1)(x, α(k+1)(x))), x ∈ X .

until convergence. In [PAI69], it has been shown that this algorithm converges under

very restrictive assumptions and in [RCN73, Algorithm 2] that it converges in general.

However, this last proof is false, see [vdW78] for a counter-example and [Con93]. Indeed,

we notice that the dynamic programming operator F for the two player game is neither

convex nor concave.

A convergent extension of Howard’s algorithm for two player games was first proposed

by Hoffman and Karp [HK66a] for zero-sum two player mean-payoff games with imperfect

information and with assumption on the transition probabilities of the game (see chap-

ter 4). In his study of contracting maps [Den67], Denardo proposed a generalization of

Howard’s algorithm with an approximate solution and convergence results. He applied

his method to Shapley’s zero-sum two player stochastic terminating games (or with dis-

count payoff) with imperfect information. The policy iteration algorithm for discounted

games appeared also, as an adaptation of the Hoffman-Karp algorithm, in the work of Rao,

Chandrasekaran, and Nair [RCN73, Algorithm 1] for the imperfect information case and

the work of Puri [Pur95] for deterministic games with perfect information. More recently,

Raghavan and Syed [RS03] developed a related algorithm in which strategy improvements

involve only one state at each iteration.

We give here the policy iteration algorithm for solving a two player zero-sum stochastic

games with finite state space X and perfect information, as defined in [Den67, Pur95]

(and adapted to our case and notations). Based on the definitions of Section 1.1, we need

to solve the dynamic programming Equation (1.7) which give us the value of the game

(Equation (1.6)) and the optimal strategies for both players. For a fixed pure feedback

policy for max α ∈ AM , the value v of the game is the solution of the equation v = Fα(µ v)

where Fα is an operator mapping Rn to itself whose x-coordinate is given by:

Fα(v;x) := F (v;x, α(x)),

for each x ∈ X , v ∈ Rn and F (v;x, a) is defined by (1.4). Note that Fα is the dynamic

programming operator of a one player game with only the min player. Then the policy

iteration algorithm is given in Algorithm 1.2.

1.2. Algorithms for Discounted Games 35

Algorithm 1.2 Policy Iteration for two player games

Input: An initial policy α(0) ∈ AM for max. Ouput: The value v ∈ Rn of the game and

the optimal strategies α ∈ AM for max and β ∈ BM for min.

1. Compute the value v(s+1) of the game with fixed feedback policy α(s), that is the

solution of

v(s+1) = Fα
(s)

(µ v(s+1))

by using Algorithm 1.1 that returns β(k).

2. Improve the policy: Find the optimal feedback policy α(s+1) of max for the value

v(s+1) , i.e. for each x in X , choose α(s+1)(x) such that:

α(s+1)(x) ∈ Argmax
a∈A(x)

F (µ v(s+1);x, a)

where F (v;x, a) is defined by (1.4).

3. If α(s+1)(x) = α(s)(x) for x ∈ X then STOP and return v(s+1), α(s+1) and β(k).

4. Increment s by one and go to Step 1.

In Algorithm 1.2, Step 1 is performed by using the policy iteration algorithm for a one

player game. That is, given an initial feedback policy for min β(s,0) ∈ BM , we iterate on

min policies β(s,k) ∈ BM and value functions v(s,k). Then at each step k of the interior

policy iteration (Algorithm 1.1 Step 1), one computes v(s,k+1), the value of the game with

fixed strategies α(s) ∈ AM for max and β(s,k) ∈ BM for min. This is done by solving the

linear system:

v(s,k+1) = µPα
(s)β(s,k)

v(s,k+1) + rα
(s)β(s,k)

, (1.8)

where for all α ∈ AM , β ∈ BM : Pαβ ∈ Rn×n is a stochastic matrix whose elements are

defined by (Pαβ)xy = p(y|x, α(x), β(x)) for all x, y ∈ X and rαβ ∈ Rn is the vector whose

elements are defined by (rαβ)x = r(x, α(x)β(x)) for x ∈ X .

As for the one player case, each iteration of the policy iteration algorithm strictly

improves the current policy, hence it can never visit twice the same policy. Moreover, the

algorithm produces a non decreasing (resp. non increasing) sequence of values (v(s))s≥1

(resp. (v(s,k))k≥1) of the external loop (resp. internal loop), see [Pur95, CTG06]. It follows

that if the action sets for both players are finite in each point of X , the policy iterations

stop after a finite time [Pur95].

Note that both Algorithm 1.1 and Algorithm 1.2 also apply to stochastic terminating

games, that is µ = 1, see remark at the end of Section 1.1.2.

Another extension of the policy iteration algorithm has been proposed by Raghavan

and Syed [RS03] with proved convergence for discounted stochastic games with perfect

information. It is based on graph theory interpretation. The algorithm is based on so

called “policy adjacent improvement” following a specific lexicographical order (see [RS03,

Rag03] for more details). This algorithm is closely related to the policy iteration algorithm

36 CHAPTER 1. STOCHASTIC GAMES WITH PERFECT INFORMATION

of [Den67, Pur95] but it improves only one action per improvement step.

1.2.4 About the complexity of the policy iteration algorithm

One can easily see that a trivial bound for the number of policy iteration for an MDP

is the total number of possible policies which is exponential in the number of states. The

complexity of the policy iterations have been of large interest in the computer science

community in the last decades.

First, we recall here some “informal” definitions of the complexity classes P, NP and

co-NP from [CLRS01] (see also [CLRS01] for formal definitions). The class P consists of all

the problems which are solvable in polynomial time. These problems can be solved in time

O(Ld) where d is an integer and L the size of the input of the problem (generally the length

of its binary-encoded inputs). The class NP consist of the problems that are “verifiable”

in polynomial time. That is, if we were somehow given a “certificate” of a solution for

the problem, then we could verify that the certificate is correct in polynomial time in the

size of the problem. We have that P⊆NP. The class of problems with such verification

of certificates for the ”no-solution-answers” is called co-NP, the complementarity class

of NP. A nondeterministic machine is unambiguous if, for any input, there is at most

one accepting computation of the machine. UP is the class of languages accepted by

unambiguous machines in polynomial time.

Condon has shown in [Con92] that the decision problem corresponding to a simple

stochastic game (which is restriction of the general stochastic games) belongs to NP∩coNP.

Moreover, no polynomial time algorithm is known to solve this problem. Friedmann has

shown [Fri09] that a strategy improvement algorithm requires an exponential number of

iterations for a “worst” case family of games called parity games. From Puri thesis [Pur95],

we know that parity games can be reduced to mean payoff (deterministic) games. Also,

Zwick and Paterson have shown in [ZP96] a polynomial reduction from mean payoff (de-

terministic) games to discounted (deterministic) payoff games, and from the latter ones

to simple stochastic games. In [AM09], Andersson and Miltersen generalized this result

showing that stochastic mean payoff games with perfect information, stochastic parity

games and simple stochastic games are also polynomial time equivalent. Hence, the deci-

sion problem corresponding to a game of one of these classes lies in the complexity class of

NP∩coNP. Moreover in [Jur98], Jurdzinski has shown that solving parity games as well as

mean payoff games belongs to UP∩coUP. Note that the result of Friedmann has also been

extended to total reward and undiscounted MDP by Fearnley [Fea10a, Fea10b] and to

simple stochastic games and weighted discounted stochastic games by Andersson [And09].

In computer science, an algorithm is strongly polynomial in time when its running

time is bounded polynomially in the inherent dimensions of the problem (that is here the

number n of states and the total number of actions m) and independent of the sizes of the

numerical data (the bitzise of the encoded problem).

However, some upper bounds on the number of policy iterations have been studied

for the solution of MDP and more recently for zero-sum two player stochastic games with

1.3. The continuous case 37

perfect information, when the discount factor µ < 1 is fixed. In 1986, Holzbaur and Meister

gave in [MH86] a polynomial bound for Howard algorithm to solve MDP with discount

factor 0 < µ < 1, that is the number of policy iterations is bounded by O(nL
1−µ log 1

1−µ)

where n is the size of the problem and L is the largest bits size of the rewards. A strongly

polynomial time algorithm for solving those games is given by Ye in [Ye05] using an interior

point algorithm. Recently, Ye presented in [Ye11] a new strongly polynomial bound for

the number of iterations of Howard’s algorithm for solving MDP with discount factor

0 < µ < 1, that is given by O(mn1−µ log n
1−µ) where m is the total number of actions. His

proof is based on a linear programming formulation of the problem and linear programming

duality. Based on the work of Ye, Hansen, Miltersen and Zwick improved the bound to

O(m
1−µ log n

1−µ) in [HMZ11]. They have shown that this bound also applies to policy

iterations for solving zero-sum two player stochastic games with perfect information and

fixed discount factor µ < 1, giving the first strongly polynomial bound for this problem.

1.2.5 Approximation in Policy iterations

In the policy iteration algorithm of Howard for solving Markov Decision Processes, the

costly part of the algorithm lies in the policy evaluation step (Step 1 of Algorithm 1.1).

Indeed, this step requires the solution of a linear system which has the size of the discrete

state space X . If n is the size of state space, a direct solver may require up to 2
3n

3

arithmetic operations (see Section 2.1). However, the exact solution of this system may

not be necessary and an approximation of this solution may be used by using for instance

an iterative solver (see Section 2.2). This leads to a class of modified Policy Iteration

which gives an ε-optimal solution and an ε-optimal strategy of the MDP. The first was

proposed and studied in [Por72], see for instance [vN76, Put94, Por80]. See also [Por75]

and references therein for related bounds on the solution.

For two player zero-sum stochastic games, the evaluation step (Step 1 of Algorithm 1.2)

is also the costly part of the policy iteration since it involves the solution of a Markov

Decision Process. Then, it was proposed and studied in [vdW78] and [BMZ09], to replace

this solution by an approximation using for instance one of the above cited methods for

MDP.

1.3 Two player zero-sum stochastic differential games: the

continuous case

Another class of games which we consider is the class of two player differential stochastic

games in continuous time. In these games, the state space is a regular open subset X of

Rd and the dynamics of the game is governed by a stochastic differential equation which is

jointly controlled by two players (see [FS89, Świ96] and below). In this case, the value of the

game (defined below) is solution of a non linear elliptic partial differential equation of type,

called Isaacs equation (see also [FS89, Świ96]). The discretization of this equation with a

38 CHAPTER 1. STOCHASTIC GAMES WITH PERFECT INFORMATION

monotone scheme in the sense of [BS91] yields the dynamic programming Equation (1.7)

of a stochastic game with discrete state space which was described in the Section 1.1.

In the first following subsection, we give the definitions of differential stochastic games

with a bounded state space and a discounted payoff. Then, in the next subsection, we

present a subclass of these differential games called optimal stopping time games. Finally,

in the last subsection, we introduce the finite difference discretization scheme that we use

to discretize the Isaacs Equation (1.13) and (1.14) respectively. Numerical examples of

such kind of games will be presented in Section 3.2.

1.3.1 Differential games with regular controls.

Assume now that the state space is a regular open subset X of Rd. Suppose a prob-

ability space Ω is given, as well as a filtration (Ft)t≥0 over it (that is a non decreasing

sequence of σ-algebras over Ω). We consider games which dynamics is governed by the

following stochastic differential equation:

dξt = g(ξt, ζt, ηt) dt+ σ(ξt, ζt, ηt) dWt, (1.9)

with initial state ξ0 = x ∈ X . Here Wt is a d′-dimensional Wiener process on (Ω, (Ft)t≥0);

ζt and ηt are stochastic processes taking values in closed subsets A and B of Rp and Rq

respectively; (x, a, b) ∈ X×A×B 7→ g(x, a, b) ∈ Rd and (x, a, b) ∈ X×A×B 7→ σ(x, a, b) ∈
Rd×d

′
are given functions. The dimension d′ of the Wiener process may be different from

d and is given by the modeling of the problem. Assuming that ζt and ηt are adapted to

the filtration (Ft)t≥0 (that is for all t ≥ 0, ζt and ηt are Ft-measurable), allows one to

define the stochastic process ξt satisfying Equation (1.9) and it is a necessary condition

to the assumption that the actions of the two players depend only on the past states and

actions. We also consider strategies ᾱ = (αt)t≥0 (resp. β̄ = (βt)t≥0) of player max (resp.

min) determining the process (ζt)t≥0 (resp. (ηt)t≥0). In particular, for pure Markovian

stationary strategies, one has ζt = α(ξt) and ζt = β(ξt, ζt).

When X = Rd, the discounted payoff of the game with discount rate λ > 0 is given by:

J(x; ᾱ, β̄) = Eᾱ,β̄x
[∫ ∞

0
e−λtr(ξt, ζt, ηt) dt | ξ0 = x

]
(1.10)

where (x, a, b) ∈ X × A × B 7→ r(x, a, b) ∈ R is the (instantaneous, or running) reward

function. Now, we consider that X is a regular open subset X of Rd. In this case, we

denote by τ the first exit time of the process (ξt)t≥0 from X , i.e. τ = inf {t ≥ 0 | ξt /∈ X}.
Then, the discounted payoff of the game stopped at the boundary is:

J(x; ᾱ, β̄) = Eᾱ,β̄x
[∫ τ

0
e−λtr(ξt, ζt, ηt) dt+ e−λτψ1(ξτ) | ξ0 = x

]
(1.11)

where the function x ∈ ∂X → ψ1(x) ∈ R is called the terminal reward. The value function

of the differential stochastic game starting from x is defined as in Section 4.2 by

v(x) = sup
ᾱ

inf
β̄

J(x; ᾱ, β̄) (1.12)

1.3. The continuous case 39

where the supremum is taken over all strategies ᾱ for max and the infimum is taken over

all strategies β̄ for min.

As previously, we are interested in finding the value function of the game and the

corresponding optimal strategies. We denote by L(v;x, a, b) the following second order

partial differential operator:

L(v;x, a, b) :=
d∑

i,j=1

qij(x, a, b)
∂2v(x)

∂xi∂xj
+

d∑
j=1

gj(x, a, b)
∂v(x)

∂xj
− λv(x),

with (qij)i,j=1,..,d =
1

2
σσT . When d′ ≥ d and σ(x, a, b) is onto for all x ∈ X , a ∈ A, b ∈ B,

the matrix q(x, a, b) is of full rank and the operator L is elliptic. The value of the game

v is solution, under some regularity assumptions on Ω and on the functions g, σ, r and ψ

(for instance boundedness and uniform Lipschitz continuity), of the dynamic programming

equation, called Isaacs partial differential equation:
max
a∈A

(
min
b∈B

(L(v;x, a, b) + r(x, a, b))

)
= 0 for x ∈ X

v(x) = ψ1(x) for x ∈ ∂X .
(1.13)

This has been shown in the viscosity sense in [FS89]. See also [CIL92] and references therein

for uniqueness of the solution of (1.13). If the value v of the game is a classical solution

of (1.13), α and β are strategies such that for all x in X and a in A(x), α(x) and β(x, a)

are the unique actions that realize the maximum and the minimum in Equation (1.13) for

max and min respectively, then α and β are pure Markovian stationary strategies, that are

optimal for (1.12) (with ξ, ζ, η satisfying (1.9), (1.11), with ζt = α(ξt) and ηt = β(ξt, ζt)).

Note that for a game with one player, i.e. for a stochastic control problem, Equa-

tion (1.13) is the so-called Hamilton-Jacobi-Bellman equation. Also when X is bounded,

and L is strongly uniformly elliptic (if for some c > 0, q(x, a, b) ≥ cI for all x ∈ X , a ∈
A, b ∈ B), then the case λ = 0 can also be considered.

1.3.2 Differential games with optimal stopping control

When the action (ζt, ηt) of the players are not continuous or not bounded, the dynamic

programming equation of the game is no more of the form of Equation (1.13), but may be

a variational inequality or a quasi-variational inequality, see for instance [Fri73, BL78] for

the case of optimal stopping games with one or two players and [FS06, BL82] for impulse

or singular control.

We consider here an optimal stopping game, that is a game in which one of the players

has the choice of stopping the game at any moment (see [Fri73] for a more general case).

We assume here that max has this ability. Then at each time t, he chooses to stop or not

the game, that is he is choosing an element of the action space {0, 1} where 1 means that

the game is continuing, 0 that the game stops, with ζs = 0 and ξs = ξt for s ≥ t when

ζt = 0 (i.e. g(x, 0, b) = 0, σ(x, 0, b) = 0 ∀b ∈ B, x ∈ X in (1.9)). The second player min

40 CHAPTER 1. STOCHASTIC GAMES WITH PERFECT INFORMATION

plays as previously and we consider the same model as in previous subsection. The value

of a strategy ᾱ for max determines a process (ζt)t≥0 adapted to the filtration of (ξt)t≥0

(that is (σ(ξt))t≥0), then a stopping time κ = inf {t ≥ 0 | ζt = 0} adapted to the process

(ξt)t≥0 and vice versa.

So if r(x, 0, b) = λψ2(x)∀b ∈ B, the discounted payoff (1.11) can be written as a

function of the stopping time κ instead of ᾱ:

J(x;κ, β) = Eκ,βx
[∫ κ

0
e−λtr(ξt, 1, ηt) dt+ e−λκψ2(ξκ) 1Iκ<τ + e−λτψ1(ξτ) 1Iκ=τ

∣∣∣ ξ0 = x

]
.

Indeed, if κ < τ , then ξs = ξκ ∈ X , s ≥ κ, so τ = +∞, and
∫ τ
κ e
−λtr(ξt, ζt, ηt) dt =

e−λκψ2(ξκ). The value function (1.12) of the game starting from x is then given by:

v(x) = sup
κ

inf
β

J(x;κ, β)

where the supremum is taken over all stopping times κ ≤ τ and the infimum is taken over

all strategies β for min.

Since the variable “a” appears only when equal to 1, one can omit it in equations,

hence Equation (1.13) becomes:
max

{
min
b∈B

(L(v;x, b) + r(x, b))︸ ︷︷ ︸
1©

, λ(ψ2(x)− v(x))︸ ︷︷ ︸
2©

}
= 0 for x in X ,

v(x) = ψ1(x) for x ∈ ∂X ,

(1.14)

since λ > 0, one can divide the term 2© by λ, and get the variational inequality in the

usual form used in viscosity solutions literature. In another usual way, Equation (1.14)

can be written as:

for x ∈ X

min
b∈B

(L(v;x, b) + r(x, b)) ≤ 0

ψ2(x)− v(x) ≤ 0(
min
b∈B

(L(v;x, b) + r(x, b))

)
(ψ2(x)− v(x)) = 0

(1.15)

with v(x) = ψ1(x) for x ∈ ∂X . Both Equation (1.14) and Equation (1.15) are called varia-

tional inequalities. Note however, that Equation (1.14), or the resulting equation obtained

by simplifying by λ in 2©, reveals more the control nature and can be used to define viscos-

ity solutions (where one needs to write equations in the form F (x, v(x), Dv(x), D2v(x)) = 0

on X), whereas Equation (1.15) is more adapted to a variational approach.

As for (1.13), if v is a classical solution of (1.14) or (1.15), if for all x in X : α(x)

is equal to 1 or 0 if resp. 1© or 2© is maximum in (1.14) and if for all x in X : β(x, 1)

is the action b ∈ B which realizes the minimum in 1©, then an optimal pure Markovian

stationary strategy is obtained by taking ηt = β(ξt, 1) and κ equal to the first time when

α(ξt) = 0. So this equation behaves as Equation (1.13) but where the first player has a

discrete action space equal to {0, 1}, 1 meaning continue to play and 0 meaning stop the

game. This variational inequality can be treated with the same methods as (1.13).

1.3. The continuous case 41

1.3.3 Discretization

Several discretization methods may transform equations (1.13) or (1.14) into a dynamic

programming equation of the form (1.7). This is the case when using Markov discretiza-

tion of the diffusion (1.9) as in [Kus77, KD92] and in general when using discretization

schemes for (1.13) or (1.14) that are monotone in the sense of [BS91]. One can obtain

such discretizations by using the simple finite difference scheme below when there are no

mixed derivative (that is σσT is a diagonal matrix). Under less restrictive assumptions on

the coefficients, finite difference schemes with larger stencil also lead to monotone schemes

[BZ03, MZ05]. In the deterministic case (when σ ≡ 0), one can also use a semi-Lagrangian

scheme [BFS94, BFS99] or a max-plus finite element method [AGL08], both of them having

the property of leading to a discrete equation of the form (1.7).

We suppose that X is the d-dimensional open unit cube and that there are no mixed

derivatives (qi,j(x, a, b) = 0 if i 6= j, i, j ∈ {1, . . . , d}). Let h = 1
m (m ∈ N∗) denote the

finite difference step in each coordinate direction, ei the unit vector in the ith-coordinate

direction, and x = (x1, . . . , xd) a point of the uniform grid Xh = X∩(hZ)d. Equation (1.13)

is discretized by replacing the first and second order derivatives of v by the following

approximation, for i = 1, . . . , d:

∂v(x)

∂xi
∼ v(x+ hei)− v(x− hei)

2h
(1.16)

or

∂v(x)

∂xi
∼

v(x+ hei)− v(x)

h
when gi(x, a, b) ≥ 0

v(x)− v(x− hei)
h

when gi(x, a, b) < 0.

(1.17)

∂2v

∂x2
i

(x) ∼ v(x+ hei)− 2v(x) + v(x− hei)
h2

, (1.18)

Approximation (1.16) may be used when L is uniformly elliptic and h is small, whereas

(1.17) has to be used when L is degenerate (see [Kus77, KD92]). For equations (1.13)

and (1.14), these differences are computed in the entire grid Xh, by prolonging v on the

“boundary” ∂Xh := ∂X∩(hZ)d using Dirichlet boundary condition:

v(x) = ψ1(x) ∀x ∈ ∂X ∩ (hZ)d.

We obtain a system of Nh non linear equations of Nh unknowns, the values of the

function vh : x ∈ Xh 7→ vh(x) ∈ R:

max
a∈A

(min
b∈B

(Lh(vh; (x, a, b)) + r(x, a, b))) = 0 ∀x ∈ Xh , (1.19)

where Nh =]Xh ∼ 1/hd and Lh is a function which to v ∈ RXh , x ∈ Xh, a ∈ A, b ∈ B
associates the approximation of L(v;x, a, b).

The discretization is monotone in the sense of [BS91], then if (1.13) has a unique viscos-

ity solution, the solution vh of (1.19) converges uniformly to the solution v of (1.13) [BS91].

42 CHAPTER 1. STOCHASTIC GAMES WITH PERFECT INFORMATION

Moreover, multiplying Equation (1.19) by ch2 with c small enough, it can be rewritten

in the form (1.7), with a discount factor µ = 1 − O(λch2). A similar result holds for the

discretization of (1.14) (by multiplying only the diffusion part by ch2).

We refer to Section 3.2.1 for an example of an Isaacs Equation (3.3) whose discretization

(using scheme (1.17)–(1.18)) yields an Equation (3.4) which has the form of (1.7).

Chapter 2

Methods for solving linear systems

In this chapter, we give an overview of methods for the solution of linear systems. In

particular, we are interested in multigrids methods. In Section 2.3, we explain multigrids

methods for non singular linear systems and in Section 2.4, we give some specific multigrid

methods to find the stationary probability of an irreducible Markov Chain. Before entering

in the multigrid methods sections, we give a short survey of direct and basic iterative

methods to solve non singular linear systems.

2.1 Direct solvers for linear systems

We consider here the following system of n linear equations:

Av = b (2.1)

where A ∈ Rn×n, b ∈ Rn are given and we are looking for the solution v ∈ Rn of the

linear system. The most known direct solver is the Gauss elimination method (see for

instance [GVL96] and references therein). It is the most used algorithm when the matrix

A is square, dense and unstructured. This algorithm is based on the idea that triangular

systems are easy to solve (they require n2 flops or arithmetic operations) and that the

matrix of the system A can be decomposed into the product of two triangular matrices.

The Gauss elimination scheme to solve Equation (2.1) works as follows.

1. Factorize the matrix A into two triangular matrices, that is :

A = LU ,

where L ∈ Rn×n and U ∈ Rn×n are respectively lower unitary triangular and upper

triangular matrices. This LU decomposition is sometimes called Doolittle.

2. Compute the solution w ∈ Rn of the lower linear system Lw = b.

3. Solve the upper linear system : U v = w.

The LU factorization is the most costly part of the Gauss elimination algorithm, it requires
2
3n

3 flops. The following theorem of [GVL96], states the existence and unicity of the LU

decomposition.

43

44 CHAPTER 2. METHODS FOR SOLVING LINEAR SYSTEMS

Theorem 2.1 ([GVL96]). The LU factorization of a square matrix A ∈ Rn×n exists if

the determinants det(A1...k,1...k) 6= 0 for k = 1, . . . , n− 1, where A1...k,1...k is the submatrix

composed of the k first lines and columns of A. When the diagonal of L is fixed, if the LU

factorization exists and the matrix A is non-singular, the LU factorization is unique and

det(A) = u11 . . . unn where uii are the diagonal elements of U .

However, the LU factorization may be unstable when it involves small pivots (see [GVL96]).

To avoid this poor behavior of the algorithm, one can permute the rows and columns of

the matrix. These methods are known as partial or complete pivoting and are commonly

used to stabilize Gaussian elimination, see for instance [GVL96] for more details. Other

factorizations also exist that are more adapted to some special classes of matrices.

The above Gauss elimination algorithm is efficient to solve dense and unstructured

systems, however it is quite expensive for solving sparse systems. Indeed, the LU factor-

ization may lead to dense triangular matrices L and U . This phenomenon, usually called

fill-in, generates costs in both storage and computation. However the cost of the Gauss

elimination method can be reduced by exploiting the sparsity of the linear system. This

can be done by finding a good ordering (permutation) of the matrix of the system, see for

instance [GL81] for symmetric matrices and [Dav06] for non symmetric matrices. For in-

stance, the Curthill-McKee [CM69] algorithm is an algorithm to permute sparse symmetric

matrices which is based on the class of breadth-first search algorithms from graph theory,

see [CLRS01]. Note that finding the best ordering is an NP-complete problem [Yan81].

However good heuristic algorithms are known, see for instance [Dav04, DEG+99, Dav06]

and references therein. In our numerical tests, we use both libraries UMFPACK and

SuperLU which include suitable Gauss elimination algorithms or LU solvers for non sym-

metric and unstructured sparse matrices.

Beside the class of direct solvers, a large amount of iterative algorithms exist to solve

sparse linear systems. Starting from an initial approximation of the solution of Equa-

tion (2.1), an iterative method for solving a linear system consists in generating a sequence

of successive approximations which converges to the solution of the linear system.

2.2 Basic iterative methods

Consider the linear System (2.1), a smoothing process or relaxation scheme or splitting

method is an iterative method to solve a linear system having the following specificity. If we

split the matrix A = M−N with M ∈ Rn×n a non singular matrix, starting from an initial

approximation v(0) ∈ Rn, one smoothing step consists in the following approximation :

v(k+1) = S v(k) + M−1 b with S = M−1N

where S ∈ Rn×n is called the smoothing operator or smoother and M−1 is an approxima-

tion of the inverse of A. Consequently, the error e(k) = v(k) − v at iteration k propagates

as :

e(k+1) = S e(k) .

2.2. Relaxation schemes 45

The sequence of iterates (v(k))k≥0 converges to the solution v of the System (2.1) if ρ(S) < 1

where ρ(S) = maxi |λi| is the spectral radius of S with λi its eigenvalues, see [Var62,

GVL96, Saa03, BP94].

A simple iterative method, called Richardson iteration, consists in the following itera-

tions :

v(k+1) = v(k) + (b−Av(k)) ,

then S = (I−A) and M = I. When A = I−P where P ∈ Rn×n+ is a substochastic matrix,

it is equivalent to the successive approximations :

v(k+1) = Pv(k) + b ,

hence the convergence of the method depends on the spectral radius of P .

Let us now denote by D, L, U , respectively the diagonal, the lower triangular part

and the upper triangular part of the matrix A such that A = D − L− U . An example of

smoothing process is the Jacobi relaxation. First, we write the Jacobi method in equation

form at step k + 1 :

v
(k+1)
i =

1

aii

bi −∑
j 6=i

aij v
(k)
j

 i ∈ {1, . . . , n}

v
(k+1)
i =

−1

aii

∑
j 6=i

aij v
(k)
j

 +
1

aii
bi i ∈ {1, . . . , n}.

The smoother operator of the Jacobi method is then given by

S = D−1 (L+ U)

with M = D and N = (L + U). Another example is the Gauss-Seidel method whose

component form for the (k + 1)th-iteration is given by :

v
(k+1)
i =

1

aii

bi − i−1∑
j=1

aij v
(k+1)
j −

n∑
j=i+1

aij v
(k)
j

 i ∈ {1, . . . , n}

(2.2) i−1∑
j=1

aij v
(k+1)
j

 + aii v
(k+1)
i =

− n∑
j=i+1

aij v
(k)
j

 + bi i ∈ {1, . . . , n}

(2.3)

and its smoothing operator is S = (D−L)−1U with M = (D−L) and N = U . Unlike the

Jacobi method, the Gauss-Seidel uses the most updated information when updating each

component of the approximation. Several variants of the Gauss-Seidel smoother exist, one

can for instance change the order of the updating of the components of the approximation.

Another method is the Successive Over-Relaxation (SOR) iterative method. It is de-

rived from the Gauss-Seidel relaxation scheme. Denote by ṽ(k+1) the iterate defined by

46 CHAPTER 2. METHODS FOR SOLVING LINEAR SYSTEMS

the Gauss-Seidel iteration in Equation (2.2), then the iteration k + 1 of the SOR method

is given by :

v
(k+1)
i = (1− w)v

(k)
i + w ṽ

(k+1)
i i ∈ {1, . . . , n}

where 0 < w < 2 is the relaxation factor. Note that when w = 1, this is exactly the

Gauss-Seidel scheme. Writing the equation without the intermediate iteration and in

matrix form, we obtain :

v(k+1) = Sw v
(k) + w (D − wL)−1 b , (2.4)

where Sw = (D − wL)−1 [(1− w)D + wU] is the SOR relaxation operator.

See for instance the books of [Var62, GVL96, Saa03, BP94] for more details about

these methods and other non basic iterative algorithms. In the next section, we describe

another class of iterative methods called multigrids methods.

2.3 Multigrids methods for non singular linear systems

In this section, we recall the multigrids methods which are used to solve linear systems.

In the first subsection, we recall briefly what are the Geometric multigrid methods and

the rest of the chapter will be about Algebraic multigrids methods. The main references

which were used to describe here the general framework of the multigrids methods are the

following [RS87, Stü01, BHM00].

2.3.1 Geometric multigrid methods

Standard multigrid was originally created in the seventies to efficiently solve linear

systems of the form of Equation (2.1) that arise from the discretization of elliptic partial

differential equations (see for instance [McC87]). Assume that a discretization scheme is

chosen and the discretization of the partial differential equation on a grid is given. To get

a good approximation of the solution, this grid, called “fine grid” has a small step size in

each direction.

The multigrid method requires a sequence of grids, each of them is a discretization of

the domain of the continuous equation with a different mesh (or step) size. Starting from

the finest grid, each of them are constructed by enlarging the step size of the grid, i.e by

reducing the number of nodes. The coarsest grid which is the grid with the fewest nodes, is

chosen such that the cost of solving the linear system on it is cheap. When those grids are

given and also the transfer operators between these grids: interpolation and restriction,

a multigrid cycle on the finest grid consists in : first, the application of a smoother on

the finest grid; then a restriction of the residual on the next coarse grid; then solving the

residual problem on this coarse grid using the same multigrid scheme; then, interpolate

this solution (which is an approximation of the error) and correct the error on the fine

grid; finally, the application of a smoother on the finest grid. This algorithm is explained

in detail in the next section for the algebraic multigrid case.

2.3. Multigrids methods for non singular linear systems 47

If the multigrid components are properly chosen, this process is efficient to find the

solution on the finest grid. Indeed, in general the relaxation process is smoothing the

error which then can be well approximated by elements in the range of the interpolation.

It implies, in good cases, that the contraction factor of the multigrid method is indepen-

dent of the discretization step and also the complexity is in the order of the number of

discretization nodes. We shall refer to this standard method as geometric multigrid.

2.3.2 Algebraic multigrid methods

Let us now introduce the algebraic multigrid method, called AMG. The algebraic

multigrid method has been initially developed in the early eighties (see for example

[Bra86, BMR85, RS87]) for solving large sparse linear systems arising from the discretiza-

tion of partial differential equations with unstructured grids or PDE’s not suitable for the

application of the geometric multigrid solver or large discrete problems not derived from

any continuous problem.

Recall that we have to solve a system of n linear equations :

Av = b (2.5)

where A ∈ Rn×n, b ∈ Rn are given and we denote by v ∈ Rn the exact solution of the linear

system. We denote by u ∈ Rn an approximation of the exact solution v. For theoritical

studies, the matrix A is usualy assumed to be sparse symmetric and semi positive definite.

In the context of algebraic multigrid, the finest grid, denoted by Ω|h is defined as the set

of all variables of the System (2.5), i.e. Ω|h = {1, . . . , n}.
The AMG method consists of two main phases, called “setup phase” and “solving

phase”. In the “setup phase”, one constructs coarse grids by selecting subsets of the

fine grid Ω|h only based on the linear system to be solved and not on the underlying

continuous equation. The selection of those coarse variables and the construction of the

transfer operators between levels are done in such a way that the range of the interpolation

approximates well the errors not reduced by a given relaxation scheme. Then the “solving

phase” is performed in the same way as a geometric multigrid method and consists of the

application of a smoother and a correction of the error by a coarse grid solution.

Let us define the following inner product which is used in the algebraic multigrid

literature :

〈u, v〉K = 〈Ku, v〉 , (2.6)

where u, v ∈ Rn, and K ∈ Rn×n is a symmetric definite positive matrix, 〈·, ·〉 is the

euclidean inner product of Rn and ‖u‖K = (〈u, u〉K)1/2 is the associate norm. We shall

used this norm for K = D,A,D−1, where D = diag(A) is the diagonal part of A. The

norm ‖·‖A is commonly called energy norm.

Before explaining the whole process of algebraic multigrid methods, we recall some

properties of the relaxation schemes.

48 CHAPTER 2. METHODS FOR SOLVING LINEAR SYSTEMS

2.3.3 Smoothing property

A important concept in algebraic multigrid methods is the algebraic smoothness, see [RS87,

Stü01]. An error vector e is said to be algebraically smooth if it is not efficiently reduced

by the smoother S (i.e. Se ≈ e), that is the error e contributes to the slowness of the

smoothing process. The term algebraic smoothness is to be understood as slow to converge,

the use of smooth came from the geometric multigrid where the algebraic smooth errors

are also geometrically smooth.

The smoothing operator S satisfies the smoothing property if

‖S e‖2A ≤ ‖e‖2A − σ‖Ae‖2D−1 (σ > 0) (2.7)

holds for all vector e independently of σ. It means that the smoother S reduces efficiently

the errors e which are such that ‖Ae‖D−1 is significantly larger than ‖e‖A. However,

the smoother is not efficient in reducing the errors such that ‖Ae‖D−1 << ‖e‖A which

are the so-called algebraically smooth errors. The eigenvectors of D−1A corresponding to

its small eigenvalues, are those which characterize the slowness of the smoothing process

(see [Stü01]). Indeed, if we consider the Jacobi smoother, the eigenvalues of S = D−1(L+

U) = (I−D−1A) which are close to one are responsible for the slow convergence, these ones

are the small eigenvalues of D−1A. This is also the case for the Gauss-Seidel smoothing

process [Stü01]. For instance, for systems arising from the discretization of standard elliptic

partial differential equation on a regular grid with mesh size h, the smallest eigenvalues

λ of D−1A are in the order of O(h2). If h is small, they are close to zero and thus the

corresponding eigenvalues of S are close to one.

It is said that S satisfies the smoothing property w.r.t. a class A of matrices if the

property (2.7) is satisfied uniformly for all matrices in A with the same σ.

Note that σ‖Ae‖2D−1 ≤ ‖e‖2A is necessary for inequality (2.7) to hold. Because

ρ(D−1A) = sup
‖Ae‖D−1

‖e‖A , this condition is equivalent to the uniform boundness of ρ(D−1A)

which is verified for all important class of matrices in consideration.

Before using this concept of algebraic smoothness for the construction of the grids

(which will be the subject of Section 2.3.5), we first explain the solution phase in the next

section and its convergence in the following section.

2.3.4 Solution phase

In this section, we explain the different schemes that can be used for the solution

phase of the algebraic multigrid methods. We assume in this section that the coarse

grids are given with the corresponding transfer operators : restriction and interpolation.

Those operators are supposed to be properly chosen such that smooth errors are well

approximated in the range of the interpolation operators. First, we shall consider a simple

scheme with two grids and then we extend this scheme to more grids.

2.3. Multigrids methods for non singular linear systems 49

A two-grid scheme

We assume that during the construction phase of AMG, the n variables from the fine

level Ω|h have been split into two distinct subsets, namely C which contains the variables

belonging to both fine and coarse grid, and F the variables belonging to the fine grid only,

such that Ω|h = C ∪ F . The coarse grid is denoted by Ω|H and contains the nC variables

of C. We denote by PhH : RnC → Rn , the prolongation or interpolation operator which

maps vectors from the coarse grid to the fine grid. The restriction operator is denoted

by RHh : Rn → RnC and maps vectors from the fine grid to the coarse grid. Often the

restriction RHh is chosen to be the transpose of the interpolation PhH , i.e. RHh = (PhH)T .

Then, we can define the coarse grid operator by A|H = RHh A|hPhH where A|h = A and A|H

is the approximation of A on Ω|H , which maps RnC to itself. For any vector z|h ∈ Rn,

we denote z|H = RHh z|h its restriction on the coarse grid Ω|H and similarly, for any vector

z|H ∈ RnC , we denote by z|h = PhHz|H its interpolation on the fine grid Ω|h. In like

manner, we represent all the components defined on the fine grid with an exponent h and

similarly with an exponent H if the component is defined on the coarse grid.

Now, we have all the ingredients to define a two-grid algebraic method which combines

the action of a smoother on the fine grid and a coarse grid correction. Given a chosen

smoother S and an initial approximation u|h on the fine grid, it consists in applying

successively the two grid correction scheme u|h ← TG(u|h, b|h) given in Algorithm 2.1

until the iterates converge where ν1 and ν2 are respectively the fixed number of pre and

post relaxation to be performed on the fine grid.

In more details, one iteration of the two-grid scheme u|h ← TG(u|h, b|h) consists in :

first, applying ν1 iterations of the chosen relaxation scheme on the fine level, then restrict

the residual on the coarse level r|H = RHh (b|h − A|hu|h), then solve the residual system

defined on the coarse level by A|He|H = r|H to find an approximation of the error (the error

e|h on the fine level is assumed to be algebraically smooth according to the smoother S),

next the approximation of the error is interpolate on the fine level, this approximation of

the error is used to correct the approximation u|h on the fine grid, and finally, ν2 smoothing

iterations are applied to the new approximation u|h.

Algorithm 2.1 Two grid correction scheme u|h ← TG(u|h, b|h)

relaxation phase : u|h ← Su|h +M−1b|h (on Ω|h) ν1 times

coarse grid correction : u|h ← u|h + PhHz|H where z|H is solution of

A|Hz|H = RHh (b|h −A|hu|h) (on the coarse grid Ω|H)

relaxation phase : u|h ← Su|h +M−1b|h (on Ω|h) ν2 times

The error propagator operator T |h associated to the two grid correction scheme is given

by :

T |h = Sν2 (I |h − PhH (A|H)
−1RHh A|h)Sν1 ,

50 CHAPTER 2. METHODS FOR SOLVING LINEAR SYSTEMS

such that the error e|h propagates as follow :

e|h ← T |h e|h ,

where I |h is the identity operator on the fine grid which maps Rn to itself. This operator

T |h is called coarse-grid correction operator.

This scheme can be defined recursively with more grids as explained in the next sub-

section.

The multigrid schemes

Now, we assume that L grids are constructed during the setup phase with the corre-

sponding transfer operators. We denote with an exponent l, the components define on

level l and by nl the number of nodes on the grid Ω|l. Then, going from the finest level

l = 0 to the coarsest one l = L− 1, each grid Ω|l+1 is a subset of the grid Ω|l, that is

Ω|L−1 ⊂ Ω|L−2 ⊂ · · · ⊂ Ω|1 ⊂ Ω|0 = Ω|h .

If we consider a fine level l − 1 and a coarse level l for l = 0, . . . , L − 1, we denote Rll−1

the restriction operator which maps a vector from Rnl−1 to Rnl , P l−1
l the interpolation

operator which maps a vector from Rnl to Rnl−1 , and A|l = Rll−1A
|l−1P l−1

l the coarse grid

operator on level l. We also denote by S|l the smoother defined on level l corresponding

to the linear system A|lv|l = b|l. The multigrid solution phase with L grids, consists in

applying recursively the two-grid scheme, as described in Algorithm 2.2. Given a chosen

smoother S and an initial approximation u|0 on the fine grid, it consists in applying

successively u|0 ← MG(u|0, b|0) until the iterates converge to the solution of the system.

It is called V(ν1,ν2)-cycle if γ = 1 and W(ν1,ν2)-cycle if γ = 2 in Algorithm 2.2. The

V-cycle and W-cycle are schematically represented in Figure 2.1.

Algorithm 2.2 Multi-level scheme u|l ← MG(u|l, b|l)

if l < L− 1 then

pre relaxation :

u|l ← S|lu|l +M−1b|l (on Ω|l) ν1 times

coarse grid correction :

b|l+1 ← Rl+1
l (b|l −A|lu|l)

u|l+1 ← 0

u|l+1 ← MG(u|l+1, b|l+1) γ times

u|l ← u|l + P ll+1u
|l+1

post relaxation :

u|l ← S|lu|l +M−1b|l (on Ω|l) ν2 times

else

Solve A|L−1u|L−1 = b|L−1

end if

2.3. Multigrids methods for non singular linear systems 51

l= 0

l= 1

l= 2

l= 3

l= 0

l= 1

l= 2

l= 3

Figure 2.1: Graphical illustration of a V-cycle (on the left) and a W-cycle (on the right)

with 4 grids.

Note that on each level l, with l < L − 1, the coarse grid correction consists in solv-

ing the residual system on the next coarse level l + 1 using the same multigrid scheme

u|l+1 ← MG(u|l+1, b|l+1) with initial approximation u|l+1 = 0, since this is an intuitive

approximation for the error. On level l = L − 1, i.e. on the coarsest level, the system

A|L−1u|L−1 = b|L−1 is assumed to be exactly solved.

Besides the schemes based on the two grid correction scheme, there exist other schemes

such as the full multigrid scheme which is presented in the next section.

Full multigrid scheme

Another multigrid scheme called full multigrid (FMG) is based on the idea of starting,

at each level, the multigrid Algorithm 2.2 with a good initial guess. The scheme starts from

the coarsest level L− 1 on which the problem is solved, this solution is then interpolate to

the next level L−2 and is used as initial approximation to start the multigrid cycle on this

level. Again the solution is interpolated on the next level L−3 to start the multigrid cycle,

this scheme is repeated until the finest grid is attained. Therefore interpolation operators

are defined and may differ from those used in the multigrid cycle. The full multigrid scheme

starts from the coarsest grid and is given in Algorithm 2.3 and schematically represented

in Figure 2.2.

Algorithm 2.3 Full multigrid scheme u|l ← FMG(b|l)

if l < L− 1 then

b|l+1 ← Rl+1
l b|l

u|l+1 ← FMG(b|l+1)

u|l ← P ll+1 u
|l+1

end if

u|l ← MG(u|l, b|l) γ times

52 CHAPTER 2. METHODS FOR SOLVING LINEAR SYSTEMS

l= 0

l= 1

l= 2

l= 3

Figure 2.2: Graphical illustration of a FMG-cycle with 4 grids.

Theoretical convergence of the V-cycle of [RS87]

We recall here a theorem of convergence for the V-cycle and estimation of the conver-

gence factor from [RS87]. First, we define the (l,l+1) coarse grid correction operator for

all level l by :

T |l = I |l − P ll+1 (A|l+1)−1Rl+1
l A|l .

Assuming A|l to be symmetric and positive definite, the interpolation operators P ll+1

having full rank and Rl+1
l = (P ll+1)T , then all the operators T |l are orthogonal projections

with respect to the energy product 〈·, ·〉A defined on level l. In particular, we have that

Range(T |l) is orthogonal to Range(P ll+1) with respect to 〈·, ·〉A, ‖T |l‖A = 1 and for all

e|l : ‖T |le|l‖A = mine|l+1 ‖e|l − P ll+1e
|l+1‖A, meaning that the energy norm of the error

after one (l, l+1) grid correction step is minimum with respect to changes in Range(P ll+1).

Now, we give the theorem of [RS87].

Theorem 2.2 ([RS87]). Assume A to be symmetric and positive definite, that the in-

terpolation operators P ll+1 have full rank, that the restriction operators are defined as

Rl+1
l = (P ll+1)T and the coarse grid operators are given, as before, by A|l+1 = Rl+1

l A|lP ll+1.

Furthermore, suppose that for all e|l,

‖S|l e|l‖2A ≤ ‖e|l‖2A − δ ‖T |l e|l‖2A (2.8)

holds with some δ > 0 independently of e|l and l. Then δ ≤ 1, and provided that the

coarsest grid equation is solved and that at least one smoothing step is performed after

each coarse grid correction step, the V-cycle to solve (2.5) has a convergence factor (with

respect to the energy norm) bounded above by
√

1− δ.

The condition (2.8) gives condition on both the smoothing operator S|l and the coarse

grid correction operator T |l. Indeed, if for an error e|l, T |l is inefficient (i.e. ‖T |le|l‖A ≈
‖e|l‖A), then S|l has to properly reduce the error. On the contrary, if for an error e|l,

T |l is efficient, i.e. ‖T |le|l‖A << ‖e|l‖A and e|l is in the range of T |l, the smoother S|l is

allowed to be inefficient. In practice, one can replace the condition (2.8) by a couple of

2.3. Multigrids methods for non singular linear systems 53

conditions : one condition on the smoother S|l which is the smoothing property given in

Equation (2.7) and one condition on the the coarse grid correction operator :

‖T |l e|l‖2A ≤ β‖e|l‖2A .

Nevertheless, as mentioned in [RS87], a realistic coarsening strategy can hardly satisfy

those conditions for the V-cycle convergence except for linear systems arising from regular

elliptic PDE’s. Weaker conditions exist for two-level convergence for linear systems where

the matrix of the system is an M-matrix (see Definition 2.3 below), symmetric and positive

definite, see for instance [Bra86, RS87, FVZ05].

Note that if we require instead of a post-smoothing at least one pre-smoothing before

each coarse grid correction scheme in Theorem 2.2, then [RS87] Inequality 2.8 is replaced

by

‖S|l e|l‖2A ≤ ‖e|l‖2A − δ ‖T |l S|l e|l‖2A (2.9)

and the V-cycle convergence factor is bounded above by 1√
1+δ

. Similarly, if one uses a

V-cycle with at least one post-smoothing and one pre-smoothing, after and before each

coarse grid correction scheme respectively, then one of the conditions, (2.8) or (2.9), need

to be hold, if both are satisfied with constant δ1 and δ2 respectively, then [RS87] the

V-cycle convergence factor is bounded above by
√

1−δ1
1+δ2

.

2.3.5 Setup phase : the classical way

In this section, we explain the different algorithms to construct the coarse grids. As

explained before, the construction of the grids is made in such a way that the solution

on the coarsest grid is cheap and such that the range of the interpolation operator ap-

proximates well the errors not reduced by a given relaxation scheme applied on the fine

grid. We consider in this section multigrid methods where the restriction operator is the

transpose of the interpolation operator. We also assume that the matrix A of the system

is a M-matrix whose definition is given below; we refer to [PB74, BP94] and reference

therein for a survey about M-matrices.

Definition 2.3 (M-matrix). A matrix A in Zn×n = {A ∈ Rn×n | aij ≤ 0, i 6= j} is called

a M-matrix if A can be split into

A = sI −B

such that B ∈ Rn×n+ is a matrix with only nonnegative elements and s ≥ ρ(B).

Indeed, the matrices of the linear systems that we consider are all of the form A = I−P
where I is the identity matrix of Rn×n and P ∈ Rn×n+ is a stochastic or sub-stochastic

matrix (see Step 1 Algorithm 1.1 or see Step 2 Algorithm 4.4), hence the matrices we

consider are all M-matrices.

54 CHAPTER 2. METHODS FOR SOLVING LINEAR SYSTEMS

Classical coarse grids construction and interpolation operator

Many ways to construct grids exist, we shall explain some of them that we used in

our code. In this subsection, we describe the classical method such as explained in [RS87,

BHM00, Stü01]. In this method, the matrix A is also considered to be symmetric and

positive-definite.

Recall that for common relaxation schemes, an algebraically smooth error e satisfies

‖Ae‖D−1 << ‖e‖A, by definition of the norms it means that
∑

i
ri
aii

<<
∑

i ei. On the

average, we can expect to have |ri| << aii |ei| for all i, it means that the residual is small

compared to the error and that

aii ei +
∑
j∈Ni

aij ej =: ri ≈ 0

where Ni := {j 6= i : aij 6= 0} is the neighborhood of i. A good approximation of the

algebraically smooth error is then given by :

ei =
−1

aii

∑
j∈Ni

aij ej . (2.10)

Furthermore, we also know by the discussion of Section 2.3.3 that for an algebraically

smooth error e, we have ‖e‖A << ‖e‖D. For M-matrices, see [RS87, Stü01], it follows that

on the average for each i ∑
j 6=i

|aij |
aii

(ei − ej)
2

e2
i

<< 1 . (2.11)

Note that if aij is close to aii, meaning that
|aij |
aii

is close to one, then ei − ej ≈ 0. We

conclude [RS87, Stü01] that algebraically smooth error varies slowly in the direction of

large (negative) connections, i.e. from ei to ej if
|aij |
aii

is relatively large.

These properties lead to the notion of strong connections between the nodes. We define

the set of all nodes j that strongly influence i by :

Si :=

{
j 6= i | −aij ≥ θ max

aik<0
{−aik}

}
, (2.12)

where θ ∈ [0, 1[is fixed (usually taken θ = 0.25). Note that the positive off-diagonal

elements (if any) are not in Si, this condition is added in case the matrix A is only closed

to be a M-matrix, for instance when A contains small off-diagonal positive elements.

The set of nodes that strongly depend on the node i is denoted by STi and defined by

STi := {j 6= i | i ∈ Sj}. We define also some other useful sets :

Ci = Si ∩ C , Ds
i = Si ∩ F , Dw

i = Ni \ Si . (2.13)

Now, we consider a fine grid Ω|h and we have to construct the coarse grid Ω|H and the

interpolation operator PhH : RnC → Rn. Assuming that the splitting of the fine grid is

made such that Ω|h = F ∪ C where Ω|H = C, the interpolation operator PhH applied to a

2.3. Multigrids methods for non singular linear systems 55

vector e|H of Ω|H is of the form:

(PhH e|H)i =

e
|H
i i ∈ C∑

j∈C
wij e

|H
j i ∈ F (2.14)

where wij are the coefficient of PhH such that for i ∈ C : wij = 1 if j = i else wij = 0. To

have a good interpolation, it is usually required that the constant vectors on the coarse grid

are exactly interpolated on the fine grid, i.e.
∑

j∈C wij = 1 for all i ∈ Ω|h. Many choices

of weights wij for the interpolation operator exist. In general, the interpolation operator

has full rank. Its construction is based on the properties of the smooth error such as

property (2.11) and more generally approximation (2.10). We give here the definition of the

interpolation operator from the references [RS87, BHM00], for other possible definitions

of interpolation operators, see for instance [RS87, Stü01].

In [RS87, BHM00], based on the equations (2.11), (2.10) and the definition of the

sets (2.13), the interpolation weights wij in Equation (2.14) are given, for i ∈ F and

j ∈ Ci, by :

wij = −

aij +
∑

m∈Dsi

 aim amj∑
k∈Ci

amk

aii +

∑
l∈Dwi

ail

, (2.15)

and wij = 0 for j /∈ Ci. The denominator of the weights (2.15) is not null because of

the property of A and the definition of the sets Dw
i , we have that

∑
l∈Dwi

ail << aii. To

ensure the existence of the numerator in Equation (2.15), we need to add the following

assumption : if two nodes i and m, such that i,m ∈ F , are strongly connected then there

must exist at least one common node in Ci and Cm, or equivalently :

∀m ∈ Ds
i ∃ k ∈ Ci : m ∈ STk . (2.16)

This interpolation formula is used in our code and in our tests see Chapter 3.

Other interpolation formulas exist, see for instance [RS87]. In particular, for matrices

that may have off diagonal positive elements. In this case, the interpolation weights wij

for Equation (2.14) of [RS87] are given, for i ∈ F and j ∈ Ci, by :

wij =

−θ−i

aij
aii

if aij < 0

−θ+
i

aij
aii

if aij > 0

where

θ−i =

∑
j∈Ni a

−
ij∑

k∈Ci a
−
ik

and θ+
i =

∑
j∈Ni a

+
ij∑

k∈Ci a
+
ik

,

and a+
ij and a−ij are respectively the positive and negative elements of the ith-row for

j ∈ Ni.

56 CHAPTER 2. METHODS FOR SOLVING LINEAR SYSTEMS

Now, we still need to select the nodes which will belong to the coarse grid Ω|H . The

construction of the coarse grid will be made in such a way that the solution on the coarsest

grid is cheap, meaning that the coarse grid must contain substantially less nodes than the

fine grid. And the range of the interpolation operator from one coarse grid to a fine grid,

approximates the errors not reduced by a given relaxation scheme applied on the fine

grid. We focus on the methods presented in [RS87, Stü01] which are the ones we used in

the implementation of our code (see Chapter 6). From [RS87, Stü01], two conditions are

mentioned to try to satisfy these conditions :

1. For each i ∈ F , each node j ∈ Si either should be in Ci, or should be strongly

connected to at least one node in Ci, i.e. :

∀ i ∈ F ∀ j ∈ Si

{
either j ∈ Ci,
either ∃ k ∈ Ci k ∈ Sj ,

(H1)

2. C should be a maximal subset of all nodes Ω|h with the property that no two nodes

in C are strongly connected to each other, i.e. :

C = max {K ⊂ Ω|h | ∀ i ∈ K @ j ∈ K j ∈ Si} . (H2)

The first assumption (H1) ensure the existence of the weights of the interpolation operator,

indeed Equation (H1) implies condition (2.16). The second assumption (H2) limits the

size of the coarse. In practice, both assumptions are usually not satisfied together, (H1)

has priority on (H2) to ensure the existence of the interpolation operator.

In [RS87, BHM00], the selection of the coarse nodes C is made in two passes which

are called coloring schemes. The first coloring scheme consists in trying to satisfy (H2)

and the second coloring scheme to ensure (H1). The first coloring scheme of [RS87] is

presented in Algorithm 2.4. It consists in first assigning to each node i ∈ Ω|h, a measure of

possibly being in C. This measure, denoted by λi and defined as the number of nodes that

strongly depend on i, is then used in Algorithm 2.4 to make the first splitting Ω|h = F ∪C.

The same algorithm is used in [BHM00] but without Step 3.5.

Now, we describe the second coloring scheme from [RS87, BHM00] given in Algo-

rithm 2.5. It consists in passing over all nodes of F , then verify if condition (H1) is

satisfied. It works as follow : for all nodes i in F , we check for all nodes j of Ds
i if there

exists a node in Ci that strongly depends on j (i.e. Ci ∩ Sj 6= ∅). If we do not find such a

node, then node j becomes a candidate K for the coarse grid (C). Then we continue with

the next node j in Ds
i and so on. If all the following nodes in Ds

i verify condition (H1)

then the candidate K becomes a node of C; else if we find another candidate j in Ds
i that

doesn’t verify condition (H1), then it is the node i which becomes a node of C (indeed it

means that there exist at least two nodes of F with no dependence in C which depend

of node i). Then we go to the next node i in F . Note that we usually compute the

interpolation operator during the second coloring scheme.

This construction of the coarse grid and interpolation operator can be done recursively,

starting from the finest grid Ω|0 = Ω|h until the coarse grid is small enough, meaning it has

2.3. Multigrids methods for non singular linear systems 57

Algorithm 2.4 First coloring scheme [C, F] ← SC1(Ω|h)

1. C = ∅, F = ∅, K = Ω|h ,

2. for all i ∈ Ω|h do λi =](STi) end for

3. repeat

3.1 pick up i such that λi = maxk∈Ω|h λk

3.2 C = C ∪ {i}, K = K \ {i}

3.3 for all j ∈ STi ∩K do

F = F ∪ {j}
K = K \ {j}
for all k ∈ Sj ∩K do

λk = λk + 1

end for

3.4 end for

3.5 for all j ∈ Si ∩K do λj = λj − 1 end for

4. until K = ∅

Algorithm 2.5 Second coloring scheme [C, F] ← SC2(C, F)

K = ∅
for all i ∈ F do

Si = C ∩ Si, Ds
i = Si \ Ci

for all j ∈ Ds
i do

if Ci ∩ Sj = ∅ then

if K = ∅ then

Ci = Ci ∪ {j}, Ds
i = Ds

i \ {j}
K = j

else

C = C ∪ {i}, F = F \ {i}
break (for-loop)

end if

end if

end for

if K 6= ∅ and i /∈ C then

C = C∪ K
else

K = ∅
end if

end for

58 CHAPTER 2. METHODS FOR SOLVING LINEAR SYSTEMS

Algorithm 2.6 Setup Phase

l = 0

repeat

for all i in Ω|l do

compute the sets Si and STi
end for

[C, F] ← SC1(Ω|l) using Algorithm 2.4

[C, F] ← SC2(C, F) using Algorithm 2.5

construct P l−1
l defined by equations (2.14) and (2.15)

construct Rll−1 = (P l−1
l)T

set A|l = Rll−1A
|l−1P l−1

l

l = l + 1

until Ω|l is small enough

few enough nodes. The setup phase associated to the methods of [RS87, BHM00] is given

in Algorithm 2.6. Other algebraic multigrid methods have similar setup phase but with

other construction algorithms. In the next section, we give another kind of construction

of grid, which is called aggregation.

2.3.6 Setup phase : aggregation methods

In this section, we broach other common methods for the setup phase which are the

aggregation methods. As in the previous section, we consider working on a fine grid Ω|h

and we have to construct the coarse grid Ω|H = C with Ω|h = F ∪C and the interpolation

operator PhH : RnC → Rn. The concept is to partition the fine grid Ω|h into disjoint

subsets, called aggregates and denoted by Ghk . In each aggregate, one node is selected

to be a node of the coarse grid C and will serve to interpolate the other nodes of the

aggregate which belong to the fine grid only, i.e. F . This kind of method was for instance

introduced in [VMB96, VBM01].

It works as follow, the fine grid Ω|h is divided in aggregates, denoted by Ghk where

k ∈ C is the node of C. The other nodes i 6= k in Ghk are nodes of F . The number of

aggregates is denoted by nC . The partitioning in aggregates is based on the connections

between the nodes, i.e. on the elements aij of the matrix A of the System (2.5). When

those aggregates are selected, a piecewise constant interpolation operator PhH is defined

by :

(PhH)ij =

{
1 if i ∈ Ghj
0 else .

(2.17)

If we apply this interpolation operator to a vector e in Ω|H , we have that (PhH e)i = ek for

all nodes i in the same aggregate Ghk . By construction, the interpolation operator is of full

rank and interpolates constant exactly. If the restriction operator is the transpose of the

2.3. Multigrids methods for non singular linear systems 59

interpolation operator, we have RHh = (PhH)T and the coarse grid operator is given by :

(A|H)kl = (RHh A|hPhH)kl =
∑
j∈Ghl

∑
i∈Ghk

(A|h)ij .

The coarse grid operator is closely related to the choice of the aggregates. This scheme

can be repeated recursively for more levels. The resulting algebraic multigrid method is

not efficient due in part to the inaccuracy of the interpolation operator. In practice, this

method is improved, for instance by constructing a more accurate interpolation opera-

tor [VMB96], or by using the new multigrid K-cycle [NV08]. We will explain these two

methods in the next subsections.

Smooth aggregation

This method, called smooth aggregation, has been introduced by Vanek [VMB96]. We

describe here the setup phase of the method, the solution phase is the same as in Sec-

tion 2.3.4. It consists in first splitting the fine grid Ω|h into disjoint aggregates, then

constructing the piecewise constant interpolation operator defined by Equation (2.17),

which is called the tentative prolongator and denoted by P̃hH , finally an iteration of Jacobi

relaxation is applied to the tentative prolongator to get the final interpolation operator

PhH . The restriction operator, as before, is RHh = (PhH)T and the coarse grid operator

A|H = RHh A|hPhH . This method can be repeated recursively for more levels.

This method can be applied to any System (2.5) with the assumption that the matrix

A is symmetric positive definite. However, it is more adapted to systems arising from

the discretization of second and fourth order elliptic problems by a finite element dis-

cretization [VMB96]. The convergence of this method is presented in [VBM01] and the

application [VMB96] to second and fourth order elliptic problems discretized with finite

element methods.

We only recall here the setup phase. First, we define the notion of neighborhood

of [VMB96] which will be used to construct the aggregates. The neighborhood of a node

i is given by :

Nh
i (ε) = {j ∈ Ω|h | |aij | ≥ ε

√
aii ajj}, (2.18)

where ε ∈ [0, 1[is fixed. The algorithm of [VMB96] to generate the disjoint aggregates of

the fine grid Ω|h is described in Algorithm 2.7.

Now that we have the aggregates {Ghk}
nC
k=1, we can construct the interpolation operator.

A first tentative piecewise constant prolongator, P̃hH , is defined using Equation (2.17).

Then, the final interpolation operator is obtained by applying one smoothing step of the

damped Jacobi relaxation on the operator P̃hH :

PhH = (I − wD−1A
|h
F) P̃hH , (2.19)

where A
|h
F is the filtered matrix defined as :

(A
|h
F)ij =

{
(A|h)ij if j ∈ Nh

i (ε)

0 else

60 CHAPTER 2. METHODS FOR SOLVING LINEAR SYSTEMS

Algorithm 2.7 Aggregation : {Ghk}
nC
k=1 ← SAGGR(Ω|h)

Initialization :

for all i ∈ Ω|h do

compute the set Nh
i (ε) defined by (2.18)

end for

Set K = {i ∈ Ω|h | Nh
i (0) 6= {i}} (isolated nodes are not aggregate)

Set nC = 0

Algorithm :

1. Start up aggregation : Select disjoint neighborhoods as an initial partitioning

of the fine grid Ω|h :

for all i ∈ K do

if Nh
i (ε) ⊂ K then

nC = nC + 1

GhnC ← Nh
i (ε)

K ← K\GhnC .

end if

end for

2. Enlarging the decomposition sets : Add the remaining nodes i ∈ K to one

of the existing aggregates Ghl to which node i is the (mostly) strongly connected :

Copy all the aggregates : G̃hk ← Ghk k = 1, . . . , nC .

for all i ∈ K do

if ∃ k : Nh
i (ε) ∩ G̃hk 6= ∅ then

Ghk ← G̃hk ∪ {i}
K ← K \ {i}

end if

end for

3. Handling the remnants : Make new aggregates with the remaining nodes

for all i ∈ K do

nC = nC + 1

GhnC ← K ∩Nh
i (ε),

K ← K \GhnC .

end for

2.3. Multigrids methods for non singular linear systems 61

for i 6= j and

(A
|h
F)ii = (A|h)ii −

∑
j∈Ω|h

j 6=i

((A|h)ij − (A
|h
F)ij) .

The aim of using the filtered matrix in Equation (2.19) is to reduce the number of non

zero elements in the interpolation operator.

From numerical experiments in [VMB96], the parameters are given by :

ε = 0.08

(
1

2

)l−1

, w =
2

3
,

where l > 1 is the number of level.

In the next section, we give the complete AMG algorithm independent of the choice of

the Setup phase.

2.3.7 The AMG algorithm

We have now all the ingredients to define the AMG algorithm. It starts with the con-

struction of the L grids and the corresponding transfer operators, by using for instance one

of the methods of the previous sections: 2.3.5 or 2.3.6. Then, given an initial approxima-

tion v(0) on the fine grid, it consists in applying successively the V-cycles of Algorithm 2.2

until the iterates converge to a good approximation of solution of the system. The resulting

algorithm is given in Algorithm 2.8.

Algorithm 2.8 AMG for linear system: v ← AMG(v(0), A, b)

1. Construct the coarse grid operators for 0 ≤ l < L:

– build P l−1
l and Rll−1,

– set A|l = Rll−1A
|l−1P l−1

l .

2. Initialize k = 0.

3. Compute v(k+1) = MG(v(k), b).

4. If ‖(b − Av(k+1))‖ < ε then STOP and return v(k+1).

5. Else, set k = k + 1 and go to Step 3.

In the next section, we consider another aggregation method without smoothing the

interpolation operator. Instead a better multigrid cycle is proposed.

2.3.8 AGMG

The aggregation method, called AGMG, has been introduced by [Not10a]. The main

idea is the use of aggregation based algebraic multigrid without smoothing the interpola-

tion operator and to improve the convergence by introducing a new multigrid cycle [NV08]

in the solution phase, called K-cycle, providing Krylov subspaces acceleration. The AGMG

method is proposed as a preconditioner that is applicable as a black box solver for linear

62 CHAPTER 2. METHODS FOR SOLVING LINEAR SYSTEMS

systems. We recall in this section the method from [Not10a]. For an introduction to

preconditioner methods and Krylov subspace iterations, see references [GVL96, Saa03].

The setup phase of AGMG consists, as for other aggregation methods, in splitting the

fine grid Ω|h into nC disjoint aggregates. In AGMG, the aggregation is performed in two

passes. The first pass consists in applying a pairwise aggregation, recalled here in Algo-

rithm 2.9, which constitutes a first tentative partition of the grid Ω|h. This aggregation

algorithm is based on strongly negative connections between the nodes like in classical al-

gebraic multigrid, see Section 2.3.5. The simple pairwise aggregation results in a relatively

slow multigrid method so that a second pass is proposed. The resulting algorithm is given

in Algorithm 2.10, which splits a fine grid Ω|h into nC disjoint aggregates : {Ghk}
nC
k=1. From

numerical experiences from [Not10a], the resulting aggregates are commonly quadruplets

with some aggregates of size less than four. This implies that the coarsening rate is ap-

proximately a bit less then four. The setup phase ends by building a piecewise constant

interpolation operator, PhH , using Equation (2.17). The restriction operator is defined by

RHh = (PhH)T and the coarse grid operator by A|H = RHh A|hPhH . This method can be

repeated recursively for more levels.

Note that Algorithm 2.9 takes an optional parameter check, denoted by CKDD, if

it is true then nodes associated to row with strongly dominant diagonal element, are not

aggregated. This option is based on a heuristic view [Not10a] that those nodes have fast

enough corresponding error reduction without multigrids help.

The solving phase of AGMG consists then in applying multigrid K-cycles as a precon-

ditioner to an adapted iterative method. It is proposed to use flexible conjugate gradient

method (FCG) if the matrix is symmetric positive definite and a preconditioned variant

of GCR, called GMRESR. First, we describe in Algorithm 2.11, the action of a multigrid

preconditioner to a residual vector r|l at a level l, as given in [NV08, Not10a]. A V-cycle

MG preconditioner consists in recursively calling the MG preconditioner on the next coarse

level, a K-cycle instead applies one or two steps of a Krylov subspace iterative method. In

practice, a K-cycle may not be called at each level but instead a mix V-cycle and K-cycle

is used, see [Not10a] for details.

Note that a package in FORTRAN implementing AGMG is freely available for down-

load on the website of its author [Not10a]. Interfacing functions are implemented in the

code of PIGAMES to enable the use of this package when resolving linear systems.

2.3.9 Other methods

Also we can find in the literature two-grid convergence analysis for non-symmetric

linear systems in [Not10b], also in [MN08] which is based on the analysis of AMLI, a block

incomplete factorization partitioned in hierarchical form.

In the next section, we shall present an overview of some methods to find the stationary

probability of an irreducible Markov Chain. We will see that multigrid methods and other

closely related methods exist for such problems. These methods will be used in the last

chapters, Chapter 4 and Chapter 5, for solving mean payoff stochastic games.

2.3. Multigrids methods for non singular linear systems 63

Algorithm 2.9 Pairwise aggregation : {Ghk}
nC
k=1 ← PairwiseAGGR(A|h, CkDD)

Initialization :

if CkDD = TRUE then

K = Ω|h \
{
i | aii > 5

∑
j 6=i |aij |

}
else

K = Ω|h

end if

for all i ∈ K do

compute Si as defined in (2.12)

set λi =](Si)

set nC = 0

end for

Algorithm :

while K 6= ∅ do

select i ∈ K with minimal λ

nC = nC + 1

select j ∈ K such that aij = mink∈K {aik}
if j ∈ Si then GhnC = {i, j} else GhnC = {i} end if

K ← K \ GhnC
for all k ∈ GhnC do

for all l ∈ Sk do λl = λl − 1 end for

end for

end while

Algorithm 2.10 Double Pairwise aggregation : {Ghk}
nC
k=1 ←

2PairwiseAGGR(A|h, CkDD)

Apply Algorithm 2.9 to A|h :

{G̃hk}
ñC
k=1 ← PairwiseAGGR(A|h, CkDD)

Compute the ñC × ñC auxiliary matrix Ãh with elements :

ãij =
∑
k∈G̃hi

∑
l∈G̃hl

ãik

Apply Algorithm 2.9 to Ãh :

{Ḡhk}
nC
k=1 ← PairwiseAGGR(Ãh, FALSE)

for i = 1 to nC do

Ghi = ∪j∈Ḡhi Ḡj
end for

64 CHAPTER 2. METHODS FOR SOLVING LINEAR SYSTEMS

Algorithm 2.11 MG as preconditioner at level l : y|l ←MGprec(r|l, l)

pre relaxation :

y|l ← M−1 r|l ν1 times (on Ω|l)

coarse grid correction :

r|l ← r|l − A|l y|l

r|l+1 ← Rl+1
l r|l

compute (approximate) solution z|l+1 of A|l+1 e|l+1 = r|l+1

if l = L− 1 then z|l+1 = (A|l+1)
−1
r|l+1

else if V-cycle then z|l+1 ←MGprec(r|l+1, l + 1)

else if K-cycle then Perform 1 or 2 iterations with MG prec. :

c
|l+1
1 ←MGprec(r|l+1, l + 1)

if FGC then α1 = (c
|l+1
1)T r|l+1 ; β1 = (c

|l+1
1)T A|l+1 c

|l+1
1 end if

if GCR then α1 = (c
|l+1
1 A|l+1)T r|l+1 ; β1 = ‖A|l+1 c

|l+1
1 ‖2 end if

z|l+1 ← z|l+1 +
α1

β1
c
|l+1
1

if ‖r|l+1 − α1

β1
A|l+1 c

|l+1
1 ‖ > εprec ‖r|l+1‖ then

r|l+1 ← r|l+1 − α1

β1
A|l+1 c

|l+1
1

c
|l+1
2 ←MGprec(r|l+1, l + 1)

if FGC then

α12 = (c
|l+1
2)T A|l+1 c

|l+1
1 ; α2 = (c

|l+1
2)T r|l+1 ;

β2 = (c
|l+1
2)T A|l+1 c

|l+1
2 − α2

12

β1
;

end if

if GCR then

α12 = (A|l+1 c
|l+1
2)T A|l+1 c

|l+1
1 ; α2 = (A|l+1 c

|l+1
2)T r|l+1 ;

β2 = ‖(A|l+1 c
|l+1
2)T ‖2 − α2

12

β1
;

end if

z|l+1 ← z|l+1 − α12α2

β1β2
c
|l+1
1 +

α2

β2
c
|l+1
2

end if

y|l ← y|l + P ll+1 z
|l+1

r|l ← r|l − A|l y|l

post relaxation :

y|l ← y|l + M−1 r|l ν2 times (on Ω|l)

2.4. Stationary probability of Markov Chains 65

2.4 Find the stationary probability of an irreducible Markov

Chain

Here, we consider the probability transition matrix P ∈ Rn×n of a Markov Chain and

we are looking for the stationary probability vector π ∈ Rn+ which satisfies the following

equation :

πT P = πT , ‖π‖1 = 1 (2.20)

where P is row stochastic (i.e.
∑

j∈[n] Pij = 1, i ∈ [n]). Or equivalently, we have to solve

the singular linear system :

Aπ = 0, ‖π‖1 = 1 (2.21)

where A = (I − P T) with I the identity matrix in Rn×n. In this section, we shall con-

sider only irreducible Markov chains, i.e. we assume that the corresponding transition

probability matrices P are irreducible.

Definition 2.4 (Irreducible matrix). Let A ∈ Rn×n+ be a non negative matrix. The matrix

A is irreducible if and only if for every i, j ∈ {1, · · · , n}, there exists a natural number

k ∈ N∗ such that akij > 0.

Definition 2.5 (Primitive matrix). Let A ∈ Rn×n+ be a non negative matrix. The matrix

A is primitive if and only if there exists a natural number k ∈ N∗ such that for every

i, j ∈ {1, · · · , n}, akij > 0 (i.e. Ak ∈ (R∗+)n×n).

We recall the Perron-Frobenius theorem for non negative matrices from the book [Var62]

and [BP94]. This theorem plays a key role in the analysis of Markov Chains.

Theorem 2.6 (Perron-Frobenius theorem). Let A ∈ Rn×n+ be a non negative matrix.

Then,

1. ρ(A) is an eigenvalue of A, associated to a non negative eigenvector, x ∈ Rn+.

2. The spectral radius ρ(A) is non decreasing with respect to any entry of A.

If in addition A is irreducible, we have :

3. To ρ(A) corresponds a positive eigenvector x ∈ (R∗+)n.

4. For any B ∈ Rn×n+ , if B ≤ A and B 6= A then ρ(B) < ρ(A).

5. ρ(A) is a simple eigenvalue of A.

6. Each eigenvalue of A with modulus equal to ρ(A) is also simple.

7. There exists k ∈ N∗ such that A has exactly k eigenvalues of modulus ρ(A) which are

precisely the distinct roots of λk − (ρ(A))k = 0. This number k is called the cyclicity

of A.

8. When A is primitive, the cyclicity k equals one.

66 CHAPTER 2. METHODS FOR SOLVING LINEAR SYSTEMS

It follows from this theorem that Equation (2.20) has a unique solution, see [Var62, BP94].

Note that in the Markov chain’s literature, we have the following terminology. Consider

the transition stochastic matrix P ∈ Rn×n+ (with P1 = 1) of a Markov chain. The matrix

P is called ergodic if the matrix P has one final class, it is called regular if P is primitive

and it is called periodic if P is irreducible and has cyclicity greater then one. The same

adjectives are used for the corresponding Markov chains.

In the next subsections, we describe some methods from the literature to solve Equa-

tion (2.20). We will first consider direct solvers and then iterative solvers.

2.4.1 Direct Solver

A well-known direct solver for solving non singular linear systems is the Gauss elimi-

nation method (explained in section 2.1). In Equation (2.21), the linear system Aπ = 0

which is singular admits an infinite set of solutions and the codimension of the range of

A is one. Hence, we can remove a row, i ∈ {1, . . . , n}, of the matrix A without changing

the set of solutions. To satisfy the condition ‖π‖1 = 1, we can for instance replace the

removed row i by a row of ones and set the corresponding ith coordinate of the right hand

side to one. However, this trick may slow down the Gauss elimination algorithm for sparse

matrices. Hence, one can also set πi = 1 in the linear system and at the end normal-

ize the solution. Using one of both methods described above, the resulting non singular

system can be solved with the Gauss elimination method, giving the unique solution of

Equation (2.21).

Other direct methods have been developed to find the stationary probability of an

irreducible Markov chain, see for instance [PSS96, Ste97] and below. In Equation (2.21),

the matrix A is singular and the system is homogeneous (the right hand side is null). Since

P is irreducible, A is also irreducible and there exists a LU decomposition such that

A = LU

where the diagonal elements of the lower triangular matrix L ∈ Rn×n are equal to one

and U ∈ Rn×n is an upper triangular matrix with Unn = 0 (see [PSS96, Ste97]). From

this decomposition, our linear system from Equation (2.21) becomes LUπ = 0. Since L

is non singular, it leads to Uπ = 0. Since the solution of this singular linear system is

defined up to a constant, we can fix for instance πn = 1. Then the LU scheme for solving

Equation (2.21), proposed by [PSS96, Ste97], follows.

1. Factorize the matrix of the system : A = LU ,

2. set Unn = 1,

3. solve the upper triangular system : U π = b with bi = 0, i < n and bn = 1,

4. normalize the solution : π = π
‖π‖1 .

2.4. Stationary probability of Markov Chains 67

2.4.2 Iterative Solver

Finding the stationary probability of a Markov Chain is a special case of consistent sin-

gular linear system. The first iterative methods for solving singular systems were proposed

and studied in [MP77, NP79, Ple76]. Let first give some useful definitions and properties,

known from the literature and used in the aforementioned papers.

Definition 2.7 (Semi-convergent matrix). A matrix A is said semi-convergent if the limit

lim
k→∞

Ak

exists.

For a matrix A, we define

γ(A) := max {|λ| | λ ∈ σ(A), λ 6= 1} (2.22)

and we denote by σ(A) its spectrum. Then, we have the following lemma of [Ple76],

Lemma 2.8 ([Ple76]). The matrix A ∈ Rn×n is semi-convergent if and only if

– γ(A) < 1 and

– If λ = 1 is an eigenvalue of A, then λ = 1 is semi-simple, that is rank(I −A) =

rank((I −A)2).

Another useful known definition for M-matrices is the following

Definition 2.9 (Matrix with “property c”). A M-matrix A is a matrix with “property

c” if there exists a decomposition of A

A = sI −B

such that s > 0, B ∈ Rn×n+ is a non-negative matrix and T = 1
sB is semi-convergent.

In our case, we define A = I − P T with P a stochastic matrix and from [BP94], we have

that A is a M-matrix with “property c”. Now, we introduce some basic iterative solvers.

Fixed point iteration

A straightforward iterative method to solve Equation (2.20) is a successive approxima-

tions approach. Starting with an initial approximation π(0) ∈ Rn+ such that ‖π(0)‖1 = 1, it

consists in successively applying a fixed point iteration followed by a normalization step :

π(k+1) = P T π(k)

π(k+1) = π(k+1) / ‖π(k+1)‖1

until the desired convergence is obtained, i.e. ‖π(k+1) − P T π(k+1)‖ < ε, for some positive ε.

This method converges since P is semi-convergent.

68 CHAPTER 2. METHODS FOR SOLVING LINEAR SYSTEMS

Smoothing process

As we have seen in Chapter 2.3, a key ingredient of the multigrid method is the

splitting or relaxation scheme. Similarly to Section 2.2, we split the matrix A = M −N
with M being a non singular matrix. In this case, each smoothing step is followed by a

normalization step. Starting from an initial approximation π(0) ∈ Rn+ such that ‖π(0)‖1 =

1, the splitting method consists in applying successively the two steps :

π(k+1) = S π(k) with S = M−1N

π(k+1) = π(k+1) / ‖π(k+1)‖1

until the desired convergence is obtained, i.e. ‖π(k+1) − P T π(k+1)‖ < ε, for some positive ε.

Note that the fixed point iteration is a particular case withM = I andN = P T . A splitting

method converges when the smoother operator S is semi-convergent. Moreover, a splitting

is called weak regular if S ≥ 0 and regular if M−1 ≥ 0 and N ≥ 0 (see [Var62]).

From Lemma 1 and Theorem 1 of [NP79], we have the following theorem of [BP94] :

Theorem 2.10 ([BP94]). Let A ∈ Cn×n. Then A is a M-matrix with “property c” if and

only if every regular splitting A = M −N with S = M−1N satisfies ρ(S) ≤ 1 and if λ = 1

is an eigenvalue of S, it is semi-simple.

See also [PSS96, Ste97] for an overview of other iterative methods for finding the

stationary probability of an irreducible Markov Chain. In the following section, we consider

iterative methods whose concepts are closely related to multigrid methods.

2.4.3 Iterative aggregation/disaggregation for Markov Chains

We explain here a general Iterative aggregation/disaggregation (IAD) scheme to find

the stationary probability of an irreducible Markov Chain as it is given in [MM03]. See

also [DS00] and references therein, for a broad overview of IAD partitioning techniques,

that are methods working on two levels and that are suitable for Nearly Completely De-

composable (NCD) Markov Chains. We will see in the next section, that those methods

are closely related to aggregation multigrid methods.

We are looking for the stationary probability of an irreducible Markov Chain that

is the solution of the linear System (2.20). Consider that a partition of the nodes in

nL aggregates {Gk}nLk=1 is given. Then, we define the transfer operators: the restriction

operator R : Rn → RnL

(Ru)i =
∑
j∈Gi

uj u ∈ Rn

and the interpolation operator P(w) : RnL → Rn, for w ∈ (R∗+)n

(P(w)u)i =
wi

(Rw)j
uj i ∈ Gj , j ∈ {1, · · · , nL} , u ∈ Rn,

that is :

P(w) = diag(w)RT diag(Rw)−1.

2.4. Stationary probability of Markov Chains 69

It follows that :

RP(w) = I |L (2.23)

where I |L is the identity operator that maps RnL to itself, and

(P(w))T 1 = 1|L RT 1|L = 1

where 1|l = [1 . . . 1]T is a vector of Rnl . Hence, the aggregate of the transition matrix P

of the Markov Chain, given by :

(P T)|L = RP T P(w) ∈ RnL×nL+

is also a stochastic matrix. We define I(w) = P(w)R the aggregation projection, we have :

(I(w))2 = I(w).

Consider a splitting scheme for A = I − P T = M − N such that M is non singular and

S = M−1N is non-negative, then the IAD scheme of [MM03] is given in Algorithm 2.12

applied to P, S and initial condition u(0) ∈ (R∗+)n. A global convergence result is available

in [MM98] when S = P and a local convergence result is available in [MM03] for the

general case.

Algorithm 2.12 IAD for Markov chains : u ← SPV (P ;S; ν2;u)

Step 1. Construct P(u) and (P T)|L = RP T P(u)

Step 2. Find the unique solution of

(uT)|L P |L = (uT)|L, ‖u|L‖1 = 1, u|L > 0,∈ RnL

Step 3. Disaggregate : u ← P(u)u|L

Step 4. Relax : u ← Su ν2 times

Step 5. Normalize : u ← u/‖u‖1
Step 6. If ‖u− P Tu‖ < ε STOP and return u

Else return u ← SPV (P ;S; ν2;u).

2.4.4 Multigrid for Markov Chains

In the recent years, multigrids methods have also been introduced [HL94, DSMM+08,

DSMM+10a, DSMM+10b, DSMMS11, DSMSW10, BBB+10, TY10, TY11, Vir07] for the

computation of the stationary probability of irreducible Markov Chains. We focus here

on [DSMM+08] which is an adaptive version of [HL94]. This method is closely related

to IAD schemes, explained in the previous section, except that it is given in multigrid

scheme and the coarse grids are computed at each iteration. The methods in [DSMM+10a,

70 CHAPTER 2. METHODS FOR SOLVING LINEAR SYSTEMS

DSMM+10b, DSMMS11, DSMSW10] are variants or accelerations of [DSMM+08]. Con-

sider the linear System (2.20). As in standard AMG, the grid on a level l is represented

by a set of variables: Ω|l = [nl].

The multigrid method of [DSMM+08] is somewhat different from the multigrid methods

of Section 2.3. Indeed, it is based on an adaptive multiplicative coarse-level correction. It

is adaptive in the sense that the grids and the transfer operators are constructed at each

level of a multigrid cycle. Hence, there is no setup phase. The multigrid cycles are of

multiplicative type by considering the multiplicative error equation which is defined for

level l by :

A|l diag(u|l) e|l = 0 (2.24)

where u|l is the current approximation of πT and e|l is the corresponding multiplicative

error. When the approximation converges to the solution, the multiplicative error con-

verges to the vector 1|l = [1, . . . , 1]T ∈ Rnl . We shall use here the same notations as in the

previous section. Assuming that a partition of level l in nl+1 aggregates: {Ghk}
nl+1

k=1 is given,

we define the piecewise constant tentative prolongator P̃ ll+1 by Equation (2.17). Define

the restriction operator Rl+1
l = (P̃ ll+1)T . Then, a coarse level version of Equation (2.24)

is constructed :

Rl+1
l A|l diag(u|l)P̃ ll+1 e

|l+1 = 0, (2.25)

where e|l+1 is the coarse approximation of e|l on level l+1. Setting u|l+1 = diag(Rl+1
l u|l)e|l+1,

then instead of solving Equation (2.25) one can solve :

Rl+1
l A|l P ll+1(u|l)u|l+1 = 0

where P ll+1(u|l) := diag(u|l)P̃ ll+1 diag(Rl+1
l u|l)−1. We are looking for an improved coarse

level approximation u|l+1 of u|l. Now, we define A|l+1 := Rl+1
l A|lP ll+1(u|l). Such as in

Equation (2.23), we have :

Rl+1
l P ll+1(u|l) = I |l+1

and

A|l+1 = Rl+1
l (I |l − (P T)|l)P ll+1(u|l),

= I |l+1 − (P T)|l+1

where P |l+1 is a row stochastic matrix ofR
nl+1×nl+1
+ . The multigrid cycle MAA of [DSMM+08]

is then given in Algorithm 2.13. Note that the relaxation step is followed by a normaliza-

tion.

The construction of the coarse levels in [DSMM+08] is an aggregation based algorithm.

It consists, on level l, in first constructing for all nodes, the strongly dependence sets{
Sli
}
i∈[n]

as defined in Equation (2.12) in which we replace the matrix A|l of the system

by Ā|l = A|l diag(u|l) where u|l is the current approximation of πT and θ = 0.8. Then

the setup phase of [DSMM+08] is given in Algorithm 2.14. It consists in selecting a seed

node that corresponds to the largest value of the current approximation of πT among

2.4. Stationary probability of Markov Chains 71

Algorithm 2.13 Aggregation multigrid for Markov chains[DSMM+08] : u|l ←MAA(u|l)

if l < L− 1 then

pre relaxation :

u|l ← S|lu|l (on Ω|l) ν1 times

u|l ← u|l/‖u|l‖1
coarse grid correction :

{Glk}
nl+1

k=1 ← AGGRMAA(Ω|l, u|l)

Build the tentative prolongator P̃ ll+1 using {Glk}
nl+1

k=1

Rl+1
l = (P̃ ll+1)T and P ll+1(u|l) = diag(u|l) P̃ ll+1 diag(Rl+1

l u|l)−1

A|l+1 = Rl+1
l A|l P ll+1(u|l)

u|l+1 ← Rl+1
l u|l

u|l+1 ← MAA(u|l+1) ς times.

u|l ← P ll+1(u|l)u|l+1

post relaxation :

u|l ← S|lu|l (on Ω|l) ν2 times

u|l ← u|l/‖u|l‖1
else

Solve A|L−1u|L−1 = 0 with ‖u|L−1‖1 = 1

end if

all unassigned nodes. Then this seed node is used to form a new aggregate with all the

unassigned nodes that are strongly influenced by it. This scheme is repeated until all

nodes are assigned.

The multigrid method for Markov Chain of [DSMM+08] differs from the one of [HL94]

in the adaptive behavior and in the aggregation strategy. In [HL94], the grids are con-

structed once in a setup phase based on a initial approximation of π. A local convergence

result for a two level aggregation method is given in [MM98, MM03].

2.4.5 Algebraic Multigrid Preconditioner for Markov Chains

We describe here the method of [Vir07]. In [Vir07], the algebraic multigrid method is

used as a preconditioner of GMRES ([Saa03]), however in our code, we use it as a solver.

This method is related to classical algebraic multigrid as explained in Section 2.3.2.

Consider the problem of finding the stationary probability of an irreducible Markov

chain that is the solution of the linear System (2.21). Since the matrix (I − P T) has

column sums equal to zero, the construction of the multigrid operators are based on its

transpose. Hence, in the following, we consider A = (I − P). The fine grid associated

to the matrix A ∈ Rn×n is denoted by Ω|l and a partition of it in two distinct subsets:

C which contains the coarse grid nodes and F which contains the nodes from the fine

grid only, that is Ω|l = C ∪ F . The coarse grid Ω|L = C and contains nL elements. As

in [Stü01], the nodes, {1, . . . , n}, of the matrix A of the system can be reorganized such

72 CHAPTER 2. METHODS FOR SOLVING LINEAR SYSTEMS

Algorithm 2.14 Aggregation [DSMM+08] : {Glk}
nl+1

k=1 ← AGGRMAA(Ω|l, u|l)

for all i ∈ Ω|l do

Compute the set Sli defined by Equation (2.12) with Ā|l

end for

Set K = {i ∈ Ω|l}
Set nC = 0

repeat

nC = nC + 1

Pick up i ∈ K such that the ith-coordinate of u|l has the largest value in u|l.

GlnC ← i and K = K \ {i}
for all k ∈ K that are strongly influenced by i (i.e. i ∈ Slk) do

GlnC ← {k} and K = K \ {k}
end for

until K = ∅
nl+1 ← nC

that after a suitable permutation, the matrix rewrites :

A =

(
AFF AFC

ACF ACC

)
.

In classical AMG methods [Stü01, Vir07], the coarse nodes are chosen such that the matrix

AFF is closed to a diagonal matrix, i.e. such that there are few connections between the

nodes of the subset F . In this scope, a sparsification step is performed moving the off-

diagonal elements of the submatrix AFF to the submatrix AFC such that the row sums

of the new approximation of A are equal to the those of A. We obtain then the following

approximation of A, denoted by Ã :

Ã =

(
ÃFF ÃFC

ACF ACC

)
.

Then, the restriction operator R : Rn → RnL and the interpolation operator P : RnL →
Rn are defined by :

R =
(
−ACF Ã−1

FF I |L
)
, P =

(
− Ã−1

FF ÃFC

I |L

)

and the coarse grid operator is given by [Vir07] :

A|L = R ÃP = ACC − ACF Ã
−1
FF ÃFC ∈ R

nL×nL .

From Lemma 1 and Theorem 2 of [Vir07], the row sums of P equal one, those of A|L equal

zero and A|L is an M-matrix such that A|L = I |L−P |L where P |L ∈ RnL×nL is a stochastic

matrix.

2.4. Stationary probability of Markov Chains 73

Note that in our program, we use also this construction method to solve linear non

singular systems involved in the policy iteration algorithm (Algorithm 1.1), in this case

the matrix of the linear system is row stochastic. We use the classical AMG scheme of

Section 2.3.5 for the selection of the coarse grid, and the interpolation operator (2.15). In

this case, weak connected elements of ÃFF and ÃFC (in Dw
i defined in Equation (2.13))

are moved to the diagonal of ÃFF and the off-diagonal strongly connected elements of

ÃFF are distributed in ÃFC .

74 CHAPTER 2. METHODS FOR SOLVING LINEAR SYSTEMS

Chapter 3

AMGπ for discounted games

In this chapter, we present our algorithm AMGπ for solving zero-sum two player

stochastic games with discounted payoff. In Section 3.1, we describe our algorithms, a

shorter version has been presented in the paper [AD12]. In Section 3.2, we give numerical

results on discretizations of Isaacs equations that were presented in the paper [AD12].

3.1 A multigrid algorithm for discrete dynamic program-

ming equations arising in a discounted or stopping game

3.1.1 Policy iteration combined with algebraic multigrid method (AMGπ)

Recall that in the policy iteration algorithm for games at each step k of the interior

policy iteration, we have to solve a linear System (1.8) which is of the form v = µMv + r

with M a Markov matrix and 0 < µ < 1 the discount factor. Since (I − µM) are non

singular M -matrices, we use AMG to solve those systems. For shortness in the sequel, we

shall call the resulting algorithm AMGπ that is the combination of policy iterations and

AMG. The name AMGπ refers also to the numerical implementation of this algorithm.

Note that in practice, in Algorithm 1.1 (equivalently in Algorithm 1.2), the policy iterations

are stopped when after Step 1, the norm of the residual, rv = F (v)− v, is smaller than a

given value denoted by ε. We used this stopping criterion in AMGπ. The algorithm AMGπ

for the solution of the dynamic programming equation of a zero-sum two player stochastic

game with discounted payoff is given in Algorithm 3.2. This algorithm also applies to

zero-sum two player stochastic games with total payoff when the game stops in finite

time almost surely. The iterations of AMGπ are summarized in the scheme represented

in Figure 3.1 where (v(s,k,0), · · · , v(s,k,m), · · · , v(s,k+1,0)) is a sequence of value functions

generated by the multigrid solver. The algebraic multigrid methods allows us to solve

linear systems arising from either the discretization of Isaacs or Hamilton-Jacobi-Bellman

equations or a true finite state space zero-sum two player game.

75

76 CHAPTER 3. AMGπ FOR DISCOUNTED GAMES

Algorithm 3.1 (β, v)← AMGπone (β(0), v(0), ε)

1. Compute an approximation v(k+1) of the value v of the game with fixed feedback

policy β(k) that is solution of

v = F β
(k)

(v) (3.1)

using an AMG solver that is

v(k+1) ←MG(v(k), rβ
(k)

) .

2. If ‖F (v(k+1))− v(k+1)‖ < ε STOP and return β(k), v(k+1).

3. Find the optimal feedback policy β(k+1) for the value v(k+1), i.e. for each x in X ,

choose β(k+1)(x) such that :

β(k+1)(x) ∈ Argmin
b∈B(x)

F (v(k+1);x, b) .

4. Increment k by one and go to Step 1.

Algorithm 3.2 (α, β, v)← AMGπ(α(0), β(0), v(0), ε)

1. Compute an approximation v(s+1) of the value v of the game with fixed feedback

policy α(s) that is solution of

v = Fα
(s)

(v) (3.2)

using AMGπ for one player, that is

(β(s+1), v(s+1))← AMGπone(β(k), v(s), ε) .

2. If ‖F (v(s+1))− v(s+1)‖ < ε STOP and return α(s), β(s+1), v(s+1).

3. Find the optimal feedback policy α(s+1) of max for the value v(s+1) , i.e. for each x

in X , choose α(s+1)(x) such that :

α(s+1)(x) ∈ Argmax
a∈A(x)

F (v(s+1);x, a) .

4. Increment s by one and go to Step 1.

3.1. AMGπ for discounted games 77

α(0)

...
α(s)

...

β(s,0)

...
β(s,k)

...

v(s,k,0)
...
v(s,k,m)

...
v(s,k+1,0)

-

-PI external

PI intern

AMG

Figure 3.1: Representation of the nested iterations of AMGπ.

In the one player game case, convergence results of combination of policy iteration

and geometric multigrid method have been established by Hoppe [Hop86, Hop87] and

Akian [Aki90a, Aki90b]. A two-level partitioning techniques combined with policy iteration

was also used by [BC89] in the context of solving Markov Decision process, i.e. the one

player stochastic game, this method is more related to IAD schemes (see Section 2.4.3).

3.1.2 Full multi-level policy iteration (FAMGπ)

Recall that the number of policy iterations can be exponential in the cardinality of

the state space X . However, as for Newton’s algorithm, convergence can be improved by

starting the policy iterations with a good initial guess, close to the solution. With this

in mind, we present a full multi-level scheme, that we shall call FAMGπ. As in standard

FMG, starting from the coarsest level, it consists in solving the problem at each grid level

by performing policy iterations AMGπ until a convergence criterion is verified, then to

interpolate the strategies and value function to the next level, in order to initialize the

policy iterations of that level. This scheme is repeated until the finest level is attained.

The algorithm FAMGπ only applies to Isaacs partial differential equations (1.13). It

works as follows. The state space X is first discretized on sequence of LF +1 grids : X |LF ⊂
· · · ⊂ X |1 ⊂ X |0 = Xh such that on grid X |l, 0 ≤ l ≤ LF , the discretization step is hl = 2lh,

where h is the discretization step chosen on the finest grid Xh. Then, the Isaacs PDE is

discretized on all levels, 0 ≤ l ≤ LF , using the finite differences scheme (1.17)- (1.18). For

level l, we denote by F |l : X |l → X |l the dynamic programming operator, v|l : X |l → R

the value of game, x ∈ X |l → α|l(x) ∈ A(x) and (x ∈ X |l, a ∈ A(x))→ β|l(x, a) ∈ B(x, a)

the strategies of max and min respectively. We denote by I l−1
l the linear interpolation

operator which maps any vector v|l from RX
|l

to RX
|l−1

:

I l−1
l v|l(x) =

{
v|l(x) x ∈ X |l∑

y∈N (x)
1

](N (x)) v
|l(y) x ∈ X |l−1 \ X |l

where N (x) =
{
y ∈ X |l | ‖x− y‖2 <= hl

}
for x ∈ X |l−1 \ X |l, and we denote by U l−1

l

the operator which interpolates a strategy from grid X |l to grid X |l−1, for instance for a

78 CHAPTER 3. AMGπ FOR DISCOUNTED GAMES

strategy of max :

U l−1
l (α|l) =

{
α|l(x) x ∈ X |l

a0 ∈ A(x) x ∈ X |l−1 \ X |l

where a0 is chosen arbitrary A(x) in for x ∈ X |l−1 \ X |l. We denote by AMGπ(α, β, v, ε)

the algorithm AMGπ with initial strategy α for player max iterations, initial policy β for

the first iteration of player min, value v as initial approximation for the first call of AMG

and ε the stopping criterion for the policy iterations. Then FAMGπ algorithm is given in

Algorithm 3.3 where c > 0 is a given constant.

Algorithm 3.3 FAMGπ

Given an initial α(0)|LF , β(0)|LF and v(0)|Lf on level LF ,

for l = LF to 1 do

(α|l, β|l, v|l)← AMGπ(α(0)|l, β(0)|l, v(0)|l, ch2
l) on level l

v(0)|l−1 = I l−1
l v|l

α(0)|l−1 = U l−1
l α|l and β(0)|l−1 = U l−1

l β|l

end for

solve v = F (v) on Xh by using AMGπ(α(0)|0, β(0)|0, v(0)|0, ε)

Figure 3.2 illustrates the FAMGπ algorithm when V-cycles are use in AMGπ. The

dashed lines represent the interpolation of the solution and strategies from a coarse grid

X |l to the next fine grid X |l−1. The continuous V-lines are the V-cycles of AMGπ which

are not fixed in number since at each level, AMGπ cycles are performed until a given

criterion is attained.

Interpolation of strategies and value

AMGπ

X |0

X |1

X |2

X |3

Figure 3.2: FAMGπ with AMGπ V-cycles

Note that our FAMGπ program only applies to stochastic differential games since for

them coarse representation, including equations and strategies, can be easily constructed

by taking different sizes of discretization step.

For one-player discounted games with infinite number of actions and under regularity

3.2. Numerical results for discounted stochastic games 79

and strong convexity assumptions, it is shown in [Aki90b, Aki90a] that this kind of full

multi-level policy iteration has a computing time in the order of the cardinality of X .

3.2 Numerical results for discounted stochastic games

In this section, we apply our programs AMGπ and FAMGπ, which were implemented

in C, to examples of two player zero-sum stochastic differential games. Let us first give

some details about the implementation of the algorithms that we use and some notations

for the numerical results.

The AMG linear solver of AMGπ implements the construction phase, including the

coarsening scheme and the interpolation operator, described in [RS87] and the general

recursive multigrid cycle for the solution phase (see Algorithm 2.2). In the tests, W(1,1)-

cycles were used and the chosen smoother is a CF relaxation method, that is a Gauss

Seidel relaxation scheme that relaxes first on C-points and then on F-points. The AMGπ

program is the implementation of the method explained in section 3.1 with the above

AMG linear solver. The FAMGπ program is the implementation of Algorithm 3.3.

The following notations are used in the tables: s denotes the iteration over max policies

and kmax is the corresponding number of iterations for min policies, that is the number

of linear systems solved at iteration s. The residual error of the game is denoted by

rv = F (v)−v and the exact error, when known, by e = F (v)−u where u is the discretized

exact solution of the game. The sup-norm ‖ · ‖∞ and discrete L2 norm ‖ · ‖L2 are given

for each of them.

3.2.1 Isaacs equations

The first example concerns a diffusion problem where the value v : X → R of the game

is solution of the following Isaacs PDE : max
a∈A

min
b∈B

(
∆v(x) + (a · ∇v(x))− (b · ∇v(x))− λv(x) +

‖b‖22
2

+ f(x)

)
= 0 x in X ,

v(x) = ψ1(x) x in ∂X
(3.3)

where X =]0, 1[×]0, 1[is the unit square, A =
{
a ∈ R2 | ‖a‖2 ≤ 1

}
, B = R2, ψ1(x1, x2) =

sin(x1)×sin(x2) for (x1, x2) ∈ ∂X , and f(x) = −(∆u(x)+‖∇u(x)‖2−0.5‖∇u(x)‖22−λu(x))

with u(x1, x2) = sin(x1) × sin(x2) for x = (x1, x2) ∈ X . Note that the exact solution is

v(x1, x2) = sin(x1)× sin(x2) on X = [0, 1]× [0, 1] and is represented in Figure 3.3. Indeed,

by convex duality (or computation of Fenchel-Legendre transformations [Roc70]), we have

that

‖u‖2 = max
‖a‖2≤1,a∈Rd

a · u and
1

2
‖u‖22 = max

b∈Rd
b · u− 1

2
‖b‖22

for all u ∈ Rd, a = u
‖u‖2 and b = u are optimal solutions in these equations.

To solve Equation (3.3), we first discretize the domain [0, 1] × [0, 1] on a grid with

m + 1 points in each direction, i.e. with a discretization step h = 1
m and we obtain a

80 CHAPTER 3. AMGπ FOR DISCOUNTED GAMES

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

Figure 3.3: Graph of sin(x1)× sin(x2) on X = [0, 1]× [0, 1].

discrete space Xh with boundary ∂Xh. We denote by xi = ih with i = 0, . . . ,m such that

Xh = {(xi, xj) | i, j ∈ {1, . . . ,m− 1}} and

∂Xh = {(xi, xj) | i ∈ {0,m} , j ∈ {0, . . . ,m} or j ∈ {0,m} , i ∈ {0, . . . ,m}} . Then, using

the discretization scheme (1.17)–(1.18), Equation (3.3) becomes for (xi, xj) ∈ Xh :

0 = max
(a1,a2)∈A

min
(b1,b2)∈B

{(
−4v(xi, xj) + v(xi+1, xj) + v(xi−1, xj) + v(xi, xj+1) + v(xi, xj−1)

h2

)
+ (a1 − b1)

(
v(xi+1, xj)− v(xi, xj)

h

)
1I(a1−b1)≥0 + (a1 − b1)

(
v(xi, xj)− v(xi−1, xj)

h

)
1I(a1−b1)<0

+ (a2 − b2)

(
v(xi, xj+1)− v(xi, xj)

h

)
1I(a2−b2)≥0 + (a2 − b2)

(
v(xi, xj)− v(xi, xj−1)

h

)
1I(a2−b2)<0

− λv(xi, xj) +
b21 + b22

2
+ f(xi, xj)

}
,

multiply by h2

c , where c = 4 + h |a1 − b1| + h |a2 − b2| > 0, and adding v(xi, xj) on both

sides, we obtain :

v(xi, xj) = max
(a1,a2)∈A

min
(b1,b2)∈B

(
1 +

h2

c
λ

)−1

{(
1

c
+
h

c
(a1 − b1)1I(a1−b1)≥0

)
v(xi+1, xj) +

(
1

c
− h

c
(a1 − b1)1I(a1−b1)<0

)
v(xi−1, xj)

+

(
1

c
+
h

c
(a2 − b2)1I(a2−b2)≥0

)
v(xi, xj+1) +

(
1

c
− h

c
(a2 − b2)1I(a2−b2)<0

)
v(xi, xj−1)

+
h2

c

b21 + b22
2

+
h2

c
f(xi, xj)

}
for (xi, xj) ∈ Xh , (3.4)

where v(xi, xj) is replaced by ψ1(xi, xj) for (xi, xj) ∈ ∂Xh. This equation has the form of

Equation (1.7) with a discount factor µ equal to (1 + h2

c λ)−1 ≤ 1. Transition probabilities

3.2. Numerical results for discounted stochastic games 81

from (xi, xj) ∈ Xh to (xi′ , xj′) ∈ Xh are given by :

p((xi′ , xj′)|(xi, xj), (a1, a2), (b1, b2)) =

1
c + h

c (a1 − b1)1I(a1−b1)≥0 if i
′

= i+ 1, j
′

= j ,

1
c −

h
c (a1 − b1)1I(a1−b1)<0 if i

′
= i− 1, j

′
= j ,

1
c + h

c (a2 − b2)1I(a2−b2)≥0 if i
′

= i, j
′

= j + 1 ,

1
c −

h
c (a2 − b2)1I(a2−b2)<0 if i

′
= i, j

′
= j − 1 ,

0 otherwise ,

(3.5)

and the running cost is, for (xi, xj) ∈ Xh :

r((xi, xj), (a1, a2), (b1, b2)) =

(
1 +

h2

c
λ

)−1
{
h2

c

(
b21 + b22

2
+ f(xi, xj)

)
+

(
1

c
+
h

c
(a1 − b1)1I(a1−b1)≥0

)
ψ1(xi+1, xj)1I(xi+1,xj)∈∂Xh

+

(
1

c
− h

c
(a1 − b1)1I(a1−b1)<0

)
ψ1(xi−1, xj)1I(xi−1,xj)∈∂Xh

+

(
1

c
+
h

c
(a2 − b2)1I(a2−b2)≥0

)
ψ1(xi, xj+1)1I(xi,xj+1)∈∂Xh

+

(
1

c
− h

c
(a2 − b2)1I(a2−b2)<0

)
ψ1(xi, xj−1)1I(xi,xj−1)∈∂Xh

}
.

Note that when i, j ∈ {2, . . . ,m − 2} the sum of the transition probabilities from (xi, xj)

to the points of Xh equals 1, when i or j is in {1,m − 1} this sum is strictly less than

1. Hence, the matrix Mα,β in (1.8) is substochastic, and since it is irreducible, it has a

spectral radius strictly less than one. So even when λ = 0 or equivalently µ = 1, the

System (1.8) has an unique solution and the dynamic programing equation has also an

unique solution. Hence, we shall take λ = 0 in the numerical tests. Note also that for this

example, the matrices Mα,β in (1.8) are not symmetric but close to be symmetric when h

is small, since the non-symmetric part correspond to the order one term in Equation (3.4)

and are dominated by order two terms when b is optimal in (3.4).

In Table 3.1, we present numerical results when Equation (3.3) is discretized on a grid

with 1025 points in each direction, i.e. with a discretization step of h = 1/210. The stopping

criterion for the policy iterations is that the discrete L2 norm ‖rv‖L2 of the residual is less

than ε = 10−10. The first table of 3.1 shows the results of the policy iteration algorithm

with a direct solver LU (we used the package UMFPACK [Dav04]) and the second table

of 3.1 the results of AMGπ. We observe that AMGπ solves the problem faster than the

policy iterations with a direct solver. In both tables, we see that only three steps on max

policies are needed (first column) and a total of six steps on min policies (second column)

which involves the resolution of six linear systems. The small number of iterations is due

to the fact that the solution is regular. In Table 3.2, we show that the computation time

82 CHAPTER 3. AMGπ FOR DISCOUNTED GAMES

Table 3.1: Numerical results for Equation (3.3) on a 1025× 1025 points grid.

Policy iteration with LU

s kmax ‖rv‖∞ ‖rv‖L2 ‖e‖∞ ‖e‖L2 cpu time (s)

1 3 8.51e− 7 5.96e− 7 4.47e− 2 2.48e− 2 1.40e+ 2

2 2 2.44e− 8 6.16e− 9 1.84e− 4 1.05e− 4 2.31e+ 2

3 1 7.38e− 13 2.03e− 13 4.13e− 6 2.16e− 6 2.77e+ 2

AMGπ

s kmax ‖rv‖∞ ‖rv‖L2 ‖e‖∞ ‖e‖L2 cpu time (s)

1 3 8.51e− 7 5.96e− 7 4.47e− 2 2.48e− 2 2.65e+ 1

2 2 2.44e− 8 6.16e− 9 1.84e− 4 1.05e− 4 4.59e+ 1

3 1 7.92e− 13 2.02e− 13 4.13e− 6 2.16e− 6 5.56e+ 1

is improved when applying FAMGπ with c = 0.1 to the same example. In this case, the

problem is solved in approximately 18s.

In Figure 3.4, we compare the policy iteration algorithm with a direct solver LU (UMF-

PACK [Dav04]) and AMGπ for solving Equation (3.4), when increasing by one the number

of discretization points in each direction from m = 5 to m = 1500. The stopping criterion

for the policy iterations uses ε = 10−10. In Figure 3.5, we represent the corresponding

number of iterations on min policies, i.e the number of linear systems solved for each

size of problem; this number is the same for both methods. In Figure 3.4, if we consider

only the problems of size greater than 104, the relationship between the logarithm of the

computation time and the logarithm of the size of the problem is almost linear with slope

about 1.03 for AMGπ, however the slope is about 1.37 for the policy iteration algorithm

with a LU solver. If we consider the 100 problems of finest discretization, the slope is

about 1.04 for AMGπ while it is about 1.85 for the policy iterations with a LU solver.

Hence, the computation time by AMGπ seems to grow linearly with respect to the size

of the problem, whereas that of the policy iteration algorithm with a LU solver grows

only polynomially with respect to the size of the problem with an exponent for large sizes

strictly greater than 3/2 (which is what one may expect for a LU solver in dimension 2).

Each Table 3.3 to 3.8 contains numerical results for Equation (3.3) discretized on grids

with discretization step h = 1
26

, h = 1
27

, h = 1
28

, h = 1
29

, h = 1
210

and h = 1
211

respectively.

For these tests, the stopping criterion for the policy iterations uses ε = 0.001h2 where h is

the discretization step. The stopping criterion for the linear solver AMG is ‖r‖L2 < 10−12

where r is the residual for the linear system. For each line of the tables, the third column,

named AMG, contains the number of iterations needed by AMG for solving each linear

system (kmax systems per line). We can see that the number of iterations of AMG is

independent of the size of the problem. Note that the norm of the error (‖e‖∞ or ‖e‖L2)

decreases slowly when the grid becomes finer, this is because the exact solution (Figure 3.3)

is smooth and a small number of points is sufficient to get a good approximation, also the

non-linearity of the problem gives a worse approximation than one might expect in the

3.2. Numerical results for discounted stochastic games 83

Table 3.2: Numerical results for Equation (3.3) on a 1025 × 1025 points grid, computed

by FAMGπ with c = 10−1.

s kmax ‖rv‖∞ ‖rv‖L2 ‖e‖∞ ‖e‖L2 cpu time (s)

points in each direction : 3, h 5.00e− 01

1 2 1.42e− 01 1.42e− 01 1.07e− 01 1.07e− 01 << 1

2 1 2.34e− 03 2.34e− 03 2.45e− 04 2.45e− 04 << 1

points in each direction : 5, h 2.50e− 01

1 2 5.53e− 03 2.84e− 03 3.00e− 03 1.75e− 03 << 1

points in each direction : 9, h 1.25e− 01

1 2 2.40e− 04 1.10e− 04 8.20e− 04 4.46e− 04 << 1

points in each direction : 17, h 6.25e− 02

1 2 3.18e− 05 7.83e− 06 3.36e− 04 1.90e− 04 1.00e− 02

points in each direction : 33, h 3.12e− 02

1 1 5.89e− 04 7.08e− 05 5.05e− 04 1.99e− 04 1.00e− 02

points in each direction : 65, h 1.56e− 02

1 1 1.69e− 04 1.25e− 05 1.62e− 04 4.67e− 05 4.00e− 02

points in each direction : 129, h 7.81e− 03

1 1 4.28e− 05 2.16e− 06 4.73e− 05 1.21e− 05 1.80e− 01

points in each direction : 257, h 3.91e− 03

1 1 1.08e− 05 3.77e− 07 1.31e− 05 6.07e− 06 7.50e− 01

points in each direction : 513, h 1.95e− 03

1 1 2.70e− 06 6.61e− 08 7.29e− 06 3.56e− 06 3.13e+ 00

points in each direction : 1025, h 9.77e− 04

1 2 1.23e− 10 8.13e− 13 4.16e− 06 2.17e− 06 1.85e+ 01

84 CHAPTER 3. AMGπ FOR DISCOUNTED GAMES

0.01

0.1

1

10

100

1000

10000

10 100 1000 10000 100000 1e+06 1e+07

C
P

U
ti

m
e

(s
ec

on
d

s)
(l

o
g)

number of discretization nodes (log)

PI with LU (UMFPACK)
PI with AMG

Figure 3.4: Comparison between AMGπ versus policy iteration algorithm with a LU solver

for solving Equation (3.4) when increasing the size of the problem.

6

8

10

12

14

2002 4002 6002 8002 10002 12002 14002

T
ot

al
n
u

m
b

er
o
f

li
n

ea
r

sy
st

em
s

so
lv

ed

number of discretization nodes

Figure 3.5: Number of iterations on min policies (i.e the number of linear systems solved)

for solving Equation (3.4) when increasing the size of the problem, corresponding to Fig-

ure 3.4 for both methods (AMGπ and policy iteration algorithm with LU).

3.2. Numerical results for discounted stochastic games 85

s kmax AMG ‖rv‖∞ ‖rv‖L2 ‖e‖∞ ‖e‖L2 cpu time (s)

1 2 5, 4 2.15e− 04 1.52e− 04 4.45e− 02 2.50e− 02 5.00e− 02

2 2 4, 3 5.97e− 06 1.59e− 06 2.36e− 04 1.43e− 04 1.00e− 01

3 1 3 3.02e− 09 7.47e− 10 6.49e− 05 3.44e− 05 1.30e− 01

Table 3.3: Numerical results with a 65 × 65 points grid, computed by AMGπ for Equa-

tion (3.3).

s kmax AMG ‖rv‖∞ ‖rv‖L2 ‖e‖∞ ‖e‖L2 cpu time (s)

1 2 5, 4 5.40e− 05 3.80e− 05 4.46e− 02 2.49e− 02 2.30e− 01

2 2 4, 3 1.53e− 06 3.95e− 07 2.07e− 04 1.23e− 04 4.30e− 01

3 1 3 4.08e− 10 9.65e− 11 3.28e− 05 1.72e− 05 5.40e− 01

Table 3.4: Numerical results with a 129× 129 points grid, computed by AMGπ for Equa-

tion (3.3).

s kmax AMG ‖rv‖∞ ‖rv‖L2 ‖e‖∞ ‖e‖L2 cpu time (s)

1 2 5, 4 1.35e− 05 9.51e− 06 4.47e− 02 2.49e− 02 1.06e+ 00

2 2 4, 3 3.86e− 07 9.86e− 08 1.94e− 04 1.13e− 04 1.98e+ 00

3 1 3 5.17e− 11 1.22e− 11 1.65e− 05 8.63e− 06 2.49e+ 00

Table 3.5: Numerical results with a 257× 257 points grid, computed by AMGπ for Equa-

tion (3.3).

s kmax AMG ‖rv‖∞ ‖rv‖L2 ‖e‖∞ ‖e‖L2 cpu time (s)

1 2 5, 4 3.39e− 06 2.38e− 06 4.47e− 02 2.48e− 02 4.55e+ 00

2 2 4, 3 9.71e− 08 2.46e− 08 1.87e− 04 1.08e− 04 8.28e+ 00

3 1 3 6.26e− 12 1.55e− 12 8.26e− 06 4.31e− 06 1.04e+ 01

Table 3.6: Numerical results with a 513× 513 points grid, computed by AMGπ for Equa-

tion (3.3).

s kmax AMG ‖rv‖∞ ‖rv‖L2 ‖e‖∞ ‖e‖L2 cpu time (s)

1 2 5, 4 8.48e− 07 5.95e− 07 4.47e− 02 2.48e− 02 1.85e+ 01

2 2 4, 3 2.43e− 08 6.15e− 09 1.83e− 04 1.05e− 04 3.40e+ 01

3 1 3 7.40e− 13 2.02e− 13 4.13e− 06 2.16e− 06 4.27e+ 01

Table 3.7: Numerical results with a 1025 × 1025 points grid, computed by AMGπ for

Equation (3.3).

s kmax AMG ‖rv‖∞ ‖rv‖L2 ‖e‖∞ ‖e‖L2 cpu time (s)

1 2 5, 4 2.12e− 07 1.49e− 07 4.47e− 02 2.48e− 02 7.46e+ 01

2 2 4, 3 6.09e− 09 1.54e− 09 1.82e− 04 1.04e− 04 1.38e+ 02

3 1 3 1.13e− 13 3.04e− 14 2.07e− 06 1.08e− 06 1.72e+ 02

Table 3.8: Numerical results with a 2049 × 2049 points grid, computed by AMGπ for

Equation (3.3).

86 CHAPTER 3. AMGπ FOR DISCOUNTED GAMES

linear case. But a smooth solution is generally more difficult for linear iterative solvers.

3.2.2 Optimal stopping game

Next tests concern an optimal stopping time game where the value v : X → R of the

game is solution of the variational inequality :

max

min
b∈B

(
0.5∆v(x)− (b · ∇v(x)) +

‖b‖22
2

+ f(x)

)
︸ ︷︷ ︸

1©

, −v(x)︸ ︷︷ ︸
2©

 = 0 x in X

v(x) = u(x) x in ∂X

(3.6)

where X =]0, 1[×]0, 1[is the unit square, B = R2, f : X → R satisfies for x := (x1, x2) ∈
X :

f(x) =

{
−(0.5∆u(x)− 0.5‖∇u(x)‖22) if x2 ≥ (x1 − 0.5)2 + 0.1

0.5∆u(x)− 0.5‖∇u(x)‖22 otherwise ,

with u : X → R given by:

u(x1, x2) =

{
(x2 − ((x1 − 0.5)2 + 0.1))3 if x2 ≥ (x1 − 0.5)2 + 0.1

0 otherwise .
(3.7)

Equation (3.6) is of the form (1.14) with ψ1 = u, ψ2 ≡ 0, qij(x, b) = 1/2, gj(x, b) = −b,
λ = 0 and r(x, b) = 0.5‖b‖22 + f(x). The definitions of the functions f and ψ1 are chosen

such that the function u of (3.7), represented in Figure 3.6, is solution of (3.6) almost

everywhere and such that for u, the terms 1© and 2© in Equation (3.6) are non positive

for all x ∈ X (this condition must hold for the variational inequality to be well-defined).

Recall that (3.6) can be rewritten in the form (1.13) with A = {0, 1}, where 1© corresponds

to the action a = 1 of max (meaning that he continues to play), and 2© to the action a = 0

of max (meaning that he stops the game). This example leads to a free boundary problem

for the actions of max. Indeed, the points of the state space X can be divided in two

parts, the points where max chooses action 1 and the points where max chooses action 0.

For x = (x1, x2) ∈ X , the optimal strategy α for max is α(x) = 1 if x2 ≥ (x1 − 0.5)2 + 0.1

and α(x) = 0 otherwise.

As for the previous example, the domain X is discretized on a grid with m+ 1 points

in each direction, i.e. with a discretization step h = 1
m and we obtain a discrete space

Xh with boundary ∂Xh. Then, Equation (3.6) is discretized by using the discretization

scheme (1.17)–(1.18). After, the equations 1© and 2© are simplified separately by keeping

equations (1.15) true. In this case, only equation 1© is multiplied by h2

c with c an ap-

propriate constant. After discretization, we obtain the following dynamic programming

3.2. Numerical results for discounted stochastic games 87

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

Figure 3.6: Graph of the solution of Equation (3.6).

equation for a game with state space Xh :

v(xi, xj) = max

{
min

(b1,b2)∈B

(
1

2c
− b1

h

c
1Ib1≤0

)
v(xi+1, xj) +

(
1

2c
+ b1

h

c
1Ib1>0

)
v(xi−1, xj)

+

(
1

2c
− b2

h

c
1Ib2≤0

)
v(xi, xj+1) +

(
1

2c
+ b2

h

c
1Ib2>0

)
v(xi, xj−1)

+
h2

c

b21 + b22
2

+
h2

c
f(xi, xj), 0

}
for (xi, xj) ∈ Xh

with c = 2 + h |b1| + h |b2| > 0 and v(xi, xj) = ψ1(xi, xj) for (xi, xj) ∈ ∂Xh. The same

comments about non-symmetry and the discount factor in Equation (3.4) hold here. In

particular, λ = 0 or equivalently µ = 1.

The numerical results are performed for Equation (3.6) when discretized on a grid

with 1025 points in each direction. In the domain Xh, for a fixed strategy α of max,

we represent a point x with a green color when α(x) = 1, that is when max decides to

continue playing, and with a blue color when α(x) = 0, that is when max decides to stop

the game. The optimal strategy for max is to have only green points above the red curve,

x2 = (x1 − 0.5)2 + 0.1, and only blue points under. We start the tests with α(x) = 0 for

all x ∈ X , that is with blue points in the whole domain.

Numerical results with AMGπ are shown geometrically in Figure 3.7 where the strate-

gies of max obtained after 100, 200, 300, 400, 500, 600 and 700 iterations are represented.

We observe in Table 3.9 that AMGπ finds an approximation of the solution after 702 iter-

ations and in about two hours and 15 minutes. The stopping criterion for policy iterations

of AMGπ in this test uses ε = 10−14. This criterion was chosen to ensure the convergence

of the policy iteration, indeed with a smaller ε it did not converge because the intern policy

iterations did not gave a precise enough approximation.

In table 3.10, we present numerical results for the application of FAMGπ with c = 10−2

and ε = 10−14 to Equation (3.6) for a 1025 × 1025 points grid. We observe that our

algorithm solves the problem in about 49 seconds. Geometrical representation of the

strategies of max obtained by AMGπ on four successive levels in the FAMGπ algorithm,

are shown in Figure 3.8. We can see that on coarse grids, the algorithm can find a good

88 CHAPTER 3. AMGπ FOR DISCOUNTED GAMES

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.7: Application of AMGπ to the free boundary problem (3.6) for a 1025 × 1025

points grid : (a) after 100 iterations, (b) after 200 iterations, (c) after 300 iterations,

(d) after 400 iterations, (e) after 500 iterations, (f) after 600 iterations and (g) after 700

iterations.

3.2. Numerical results for discounted stochastic games 89

Table 3.9: Numerical results for optimal stopping time game (3.6) with a 1025 × 1025

points grid, computed by AMGπ with ε = 10−14.

s kmax ‖rv‖∞ ‖rv‖L2 ‖e‖∞ ‖e‖L2 cpu time (s)

1 0 3.645e− 01 9.195e− 03 7.243e− 01 1.998e− 01 1.790e+ 00

2 4 1.497e− 01 1.347e− 03 3.782e− 01 1.218e− 01 1.376e+ 01

3 4 1.094e− 01 8.839e− 04 3.767e− 01 1.213e− 01 2.492e+ 01

. . .

100 3 1.744e− 02 4.444e− 05 2.392e− 01 8.016e− 02 1.009e+ 03

. . .

200 3 7.398e− 03 1.879e− 05 1.222e− 01 3.996e− 02 2.214e+ 03

. . .

300 3 2.510e− 03 8.779e− 06 5.614e− 02 1.728e− 02 3.619e+ 03

. . .

400 2 1.258e− 03 4.363e− 06 2.321e− 02 6.519e− 03 4.770e+ 03

. . .

500 2 4.761e− 04 1.620e− 06 6.601e− 03 1.532e− 03 5.861e+ 03

. . .

600 2 8.857e− 05 2.781e− 07 7.274e− 04 9.598e− 05 7.045e+ 03

. . .

650 2 1.533e− 05 4.231e− 08 1.538e− 04 6.331e− 05 7.630e+ 03

. . .

700 1 5.647e− 08 8.734e− 11 1.571e− 04 6.619e− 05 8.134e+ 03

701 1 1.207e− 08 2.267e− 11 1.571e− 04 6.619e− 05 8.141e+ 03

702 1 9.992e− 16 7.284e− 17 1.571e− 04 6.619e− 05 8.148e+ 03

90 CHAPTER 3. AMGπ FOR DISCOUNTED GAMES

Table 3.10: Numerical results for optimal stopping time game (3.6) with a 1025 × 1025

points grid, computed by FAMGπ with c = 10−2 and ε = 10−14.

s kmax ‖rv‖∞ ‖rv‖L2 ‖e‖∞ ‖e‖L2 cpu time (s)

points in each direction : 3, step size : 5.00e− 01

1 1 2.17e− 01 2.17e− 01 1.53e− 01 1.53e− 01 << 1

2 2 2.64e− 05 2.64e− 05 3.92e− 02 3.92e− 02 << 1

points in each direction : 5, step size : 2.50e− 01

1 2 2.19e− 04 8.41e− 05 3.02e− 02 1.71e− 02 << 1

points in each direction : 9, step size : 1.25e− 01

1 2 4.99e− 03 1.06e− 03 1.65e− 02 7.99e− 03 << 1

2 1 2.68e− 03 5.41e− 04 1.66e− 02 8.15e− 03 << 1

3 1 2.72e− 04 5.49e− 05 1.68e− 02 8.30e− 03 << 1

points in each direction : 17, step size : 6.25e− 02

1 2 2.26e− 03 5.44e− 04 8.75e− 03 3.89e− 03 << 1

2 1 7.97e− 04 1.23e− 04 8.84e− 03 3.97e− 03 << 1

3 1 4.65e− 04 5.97e− 05 8.98e− 03 4.11e− 03 << 1

4 1 9.57e− 08 1.24e− 08 9.01e− 03 4.14e− 03 1.00e− 02

points in each direction : 33, step size : 3.12e− 02

1 1 2.10e− 04 1.90e− 05 4.94e− 03 2.16e− 03 1.00e− 02

2 1 1.05e− 04 6.57e− 06 4.76e− 03 2.09e− 03 2.00e− 02

points in each direction : 65, step size : 1.56e− 02

1 1 6.26e− 05 6.43e− 06 2.49e− 03 1.07e− 03 4.00e− 02

2 1 3.64e− 05 2.09e− 06 2.45e− 03 1.05e− 03 7.00e− 02

points in each direction : 129, step size : 7.81e− 03

1 1 7.67e− 06 3.88e− 07 1.25e− 03 5.33e− 04 1.60e− 01

points in each direction : 257, step size : 3.91e− 03

1 1 2.86e− 06 1.12e− 07 6.28e− 04 2.66e− 04 6.20e− 01

points in each direction : 513, step size : 1.95e− 03

1 1 5.33e− 07 1.44e− 08 3.15e− 04 1.33e− 04 2.49e+ 00

points in each direction : 1025, step size : 9.77e− 04

1 2 1.79e− 07 3.82e− 09 1.57e− 04 6.62e− 05 1.58e+ 01

2 1 9.66e− 08 8.84e− 10 1.57e− 04 6.62e− 05 2.30e+ 01

3 1 5.39e− 08 4.10e− 10 1.57e− 04 6.62e− 05 3.00e+ 01

4 1 2.86e− 08 1.31e− 10 1.57e− 04 6.62e− 05 3.70e+ 01

5 1 7.41e− 09 1.60e− 11 1.57e− 04 6.62e− 05 4.34e+ 01

6 1 8.88e− 16 7.31e− 17 1.57e− 04 6.62e− 05 4.99e+ 01

3.2. Numerical results for discounted stochastic games 91

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 (a)
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 (c)
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 (d)

Figure 3.8: Application FAMGπ to the free boundary problem (3.6) for: (a) 9× 9 points

grid, (b) 17× 17 points grid, (c) 33× 33 points grid, (d) 65× 65 points grid.

approximation of the solution in a few iterations. The interpolation of this solution and

the corresponding strategies, are used to start AMGπ on the next fine level and we observe

that only a small number of policy iterations are needed on each level.

With this example we show the advantage of using FAMGπ. Indeed, the computation

time of the FAMGπ algorithm seems to be in the order of the number of discretization

points whereas that of a AMGπ algorithm is about 160 times greater. This is due to

the large number of iterations needed by AMGπ for solving this kind of games. Indeed,

this number should be compared to the diameter of the graph (that is the largest number

of edges which must be covered to travel from one point to another) associated to the

corresponding game problem, for instance the union of all graphs of the Markov chains

associated to all couple of fixed policies α and β. Due to the finite differences discretization,

the arcs of the graphs are supported by edges of the grids Xh in Z2, so the diameter of

the graph of the discrete game is 2m with m = 1024.

Note that, as said in Section 3.1.2, one can use a full multi-level algorithm similar

to the FAMGπ Algorithm 3.3 with the policy iteration algorithm combined with a direct

solver LU instead of AMGπ. Then, we should obtain the same improvement in the number

of policy iterations compared to the plain policy iteration algorithm. Since the number of

policy iterations at each level is small (maximum 4), and the computation time of an AMG

iteration (or an AMGπ iteration) is in general in the order of the number of discretization

points, the total computation time of FAMGπ algorithm should be linear in the number

of discretization points. This would not be the case for the full multi-level algorithm using

92 CHAPTER 3. AMGπ FOR DISCOUNTED GAMES

a LU solver, since in this case the total computation time is greater or equal to that of

the LU solver, which is not linear in the number of discretization points.

3.2.3 Stopping game with two optimal stopping

In this example, we consider a stopping game where both players have the possibility

to stop the game, see [Fri73] for a complete theory about this subject. In this case, the

value of the game starting in x ∈ X is given by :

v(x) = sup
κ1

inf
κ2

{
Eκ1,κ2x

[∫ κ1∧κ2

0
r(ξt) dt+ ψ1(ξκ1) 1Iκ1<κ2 + ψ2(ξκ2) 1Iκ2≤κ1

∣∣∣ ξ0 = x

] }
where κ1 ∧ κ2 = min (κ1, κ2) and we assume min (κ1, κ2) < τ (τ = inf {t ≥ 0 | ξt /∈ X},
and that ψ2(x) > ψ1(x) for all x ∈ X . Then v is solution of the equation :

max

{
ψ1(x)− v(x), min {ψ2(x)− v(x) , L(v;x) + r(x)}

}
= 0 for x in X , (3.8)

or equivalently, {
(L(v;x) + r(x))(w(x)− v(x)) ≤ 0 for x ∈ X ,
∀w, ψ1 ≤ w ≤ ψ2 and ψ1 ≤ v ≤ ψ2 ,

that is

for x ∈ X

(L(v;x) + r(x)) ≤ 0 if v(x) = ψ1(x)

(L(v;x) + r(x)) ≥ 0 if v(x) = ψ2(x)

(L(v;x) + r(x)) = 0 if ψ1(x) < v(x) < ψ2(x).

For the numerical tests, we consider the stochastic differential game whose value v is

solution of :

max

{
ψ1(x)− v(x), min {ψ2(x)− v(x) , 0.5 ∆v(x) + r(x)}

}
= 0 for x in X , (3.9)

where X = [0, 1], for all x ∈ X : ψ1(x) = −ψ̄2, ψ2(x) = ψ̄2 with ψ̄2 = (2 cos(0.09π) +

π(0.18 − 1) sin(0.09π))/2) ≈ 0.6 and r(x) = 0.5π2 cos(πx). For all x ∈ X , the sets of

actions are A = {0, 1} for max and B = {0, 1} for min, where action 0 means that the

player chooses to stop the game and receive ψ1 when max stops or ψ2 when min stops,

action 1 means that the game is continuing. Here, the exact solution of Equation (3.9) in

the viscosity sense is for x ∈ X :

v(x) =

ψ1(x) for x > (1− 0.09)

ψ2(x) for x < 0.09

cos(πx) + π sin(0.09π)x+ c for 0.09 ≤ x ≤ (1− 0.09)

where the constant c = (ψ̄2−cos(0.09π)−0.09π sin(0.09π)); v is represented in Figure 3.9.

For all x ∈ X , the optimal strategy for max is α(x) = 0 if x > (1 − 0.09) and α(x) = 1

otherwise. For all x ∈ X , the optimal strategy for min is β(x) = 0 if x < 0.09 and β(x) = 1

otherwise.

3.2. Numerical results for discounted stochastic games 93

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

Figure 3.9: Solution of Equation (3.9)

We present numerical results for the discretization of Equation (3.9) on a grid with

2049 points in Table 3.11 when using AMGπ with ε = 10−10 and in Table 3.12 when

using FAMGπ with c = 10−2 and ε = 10−10. As in the previous example, we see the

advantage of using FAMGπ for this kind of games. Indeed, FAMGπ solves the problem in

about one second while AMGπ needs about 24 minutes. As for the previous example, the

computation time of the FAMGπ seems to be in the order of the number of discretization

points. For this example, due to the finite differences discretization, the diameter of the

graph of the discrete game is m with m = 2048. We see in Table 3.11 that both numbers

of intern and external policy iterations for AMGπ are in the order of the diameter of the

graph.

94 CHAPTER 3. AMGπ FOR DISCOUNTED GAMES

Table 3.11: Numerical results for optimal stopping time game (3.9) with a 2049 × 2049

points grid, computed by AMGπ with ε = 10−10.

s kmax ‖rv‖∞ ‖rv‖L2 ‖e‖∞ ‖e‖L2 cpu time (s)

1 1 1.20e+ 00 7.80e− 01 7.75e− 01 2.91e− 01 << 1

2 863 1.20e+ 00 2.66e− 02 6.02e− 01 3.00e− 01 1.58e+ 00

3 1025 1.20e+ 00 2.66e− 02 6.03e− 01 3.00e− 01 3.31e+ 00

. . .

100 1026 1.20e+ 00 2.66e− 02 7.10e− 01 2.46e− 01 1.81e+ 02

. . .

200 992 1.20e+ 00 2.66e− 02 8.16e− 01 1.93e− 01 3.75e+ 02

. . .

300 947 1.20e+ 00 2.66e− 02 9.16e− 01 1.44e− 01 5.72e+ 02

. . .

400 910 1.20e+ 00 2.66e− 02 1.00e+ 00 1.01e− 01 7.73e+ 02

. . .

500 882 1.20e+ 00 2.66e− 02 1.08e+ 00 6.59e− 02 9.78e+ 02

. . .

600 862 1.20e+ 00 2.66e− 02 1.14e+ 00 4.05e− 02 1.19e+ 03

. . .

700 849 1.20e+ 00 2.66e− 02 1.18e+ 00 2.84e− 02 1.41e+ 03

. . .

800 843 1.20e+ 00 2.66e− 02 1.20e+ 00 2.65e− 02 1.64e+ 03

. . .

839 843 1.20e+ 00 2.66e− 02 1.20e+ 00 2.66e− 02 1.73e+ 03

840 843 2.03e− 07 4.50e− 09 5.22e− 07 2.57e− 07 1.74e+ 03

841 1 1.11e− 16 6.57e− 18 1.16e− 07 7.40e− 08 1.74e+ 03

3.2. Numerical results for discounted stochastic games 95

Table 3.12: Numerical results for optimal stopping time game (3.9) with a 2049 × 2049

points grid, computed by FAMGπ with c = 10−2 and ε = 10−10.

s kmax ‖rv‖∞ ‖rv‖L2 ‖e‖∞ ‖e‖L2 cpu time (s)

points in each direction : 3, step size : 5.00e− 01

1 2 1.20e+ 00 1.20e+ 00 6.01e− 01 6.01e− 01 << 1

2 2 0.00e+ 00 0.00e+ 00 5.55e− 17 5.55e− 17 << 1

points in each direction : 5, step size : 2.50e− 01

1 2 1.56e− 01 9.02e− 02 1.13e− 01 1.03e− 01 << 1

2 1 1.89e− 17 1.09e− 17 1.13e− 01 9.22e− 02 << 1

points in each direction : 9, step size : 1.25e− 01

1 2 1.20e+ 00 4.54e− 01 8.74e− 01 3.52e− 01 << 1

2 5 1.20e+ 00 4.54e− 01 1.09e+ 00 4.14e− 01 << 1

3 5 5.55e− 17 2.21e− 17 5.74e− 03 4.35e− 03 << 1

points in each direction : 17, step size : 6.25e− 02

1 2 1.20e+ 00 3.10e− 01 1.16e+ 00 3.00e− 01 << 1

2 10 1.28e− 03 3.30e− 04 5.19e− 03 2.83e− 03 << 1

3 1 0.00e+ 00 0.00e+ 00 3.36e− 03 2.10e− 03 << 1

points in each direction : 33, step size : 3.12e− 02

1 2 0.00e+ 00 0.00e+ 00 1.36e− 04 9.50e− 05 << 1

points in each direction : 65, step size : 1.56e− 02

1 2 1.20e+ 00 1.51e− 01 1.20e+ 00 1.51e− 01 << 1

2 28 0.00e+ 00 0.00e+ 00 7.08e− 05 4.94e− 05 << 1

points in each direction : 129, step size : 7.81e− 03

1 2 1.20e+ 00 1.07e− 01 1.20e+ 00 1.07e− 01 << 1

2 54 2.78e− 17 3.75e− 18 6.66e− 05 3.85e− 05 2.00e− 02

points in each direction : 257, step size : 3.91e− 03

1 2 1.20e+ 00 7.53e− 02 1.20e+ 00 7.52e− 02 2.00e− 02

2 108 1.20e+ 00 7.53e− 02 1.20e+ 00 7.53e− 02 7.00e− 02

3 107 1.11e− 16 8.53e− 18 1.61e− 06 1.05e− 06 1.30e− 01

points in each direction : 513, step size : 1.95e− 03

1 2 1.20e+ 00 5.32e− 02 1.20e+ 00 5.32e− 02 1.30e− 01

2 212 1.11e− 16 9.82e− 18 4.53e− 07 3.02e− 07 3.00e− 01

points in each direction : 1025, step size : 9.77e− 04

1 2 1.20e+ 00 3.76e− 02 1.20e+ 00 3.76e− 02 3.00e− 01

2 422 1.11e− 16 1.15e− 17 1.69e− 07 1.18e− 07 9.40e− 01

points in each direction : 2049, step size : 4.88e− 04

1 2 2.03e− 07 4.50e− 09 5.22e− 07 2.57e− 07 9.40e− 01

2 1 1.11e− 16 8.52e− 18 1.16e− 07 7.40e− 08 9.50e− 01

96 CHAPTER 3. AMGπ FOR DISCOUNTED GAMES

3.3 Conclusion and perspective

In this chapter, we presented our algorithm AMGπ, which combines the policy iteration

algorithm with algebraic multigrid methods, for solving two player zero-sum stochastic

games. In the numerical tests, we compared AMGπ to the policy iteration algorithm with

a direct solver LU on a Isaacs PDE and observed that the computation time is smaller

when using AMGπ instead of the policy iteration with LU. Moreover, we noticed that the

computation time needed by AMGπ increases linearly with the size of the problem.

Furthermore, we also presented a full multi-level algorithm, called FAMGπ, for solving

two player zero-sum stochastic differential games. The numerical results on some stopping

differential stochastic games presented here show that FAMGπ improves substantially the

computation time of the policy iteration algorithm for this kind of games. Indeed the

computation time of FAMGπ seems to be in the order of the number of discretization

points whereas that of AMGπ algorithm is about 160 to 1700 times greater. This is due to

the large number of iterations needed by AMGπ for solving this kind of games. Indeed, this

number should be compared to the diameter of the graph associated to the corresponding

game problem, for instance the union of all graphs of the Markov chains associated to

fixed policies α and β.

The FAMGπ algorithm uses coarse grids discretizations of the partial differential equa-

tion and so cannot be applied directly to the dynamic programming equation of a two

player zero-sum stochastic game with finite state space. One may ask if adapting the

FAMGπ algorithm to this kind of games is possible. Indeed, the complexity of two player

zero-sum stochastic games is still unsettled, one only knows that it belongs to the com-

plexity class of NP∩coNP [Pur95], and any new approach maybe useful to understand this

complexity.

The results of this chapter were presented in the paper [AD12].

Chapter 4

Policy iteration algorithm for

zero-sum stochastic games with

mean payoff

In this chapter, we present a working paper [ADCTG12].

4.1 Introduction

The mean-payoff problem for zero-sum two player multichain games We con-

sider a zero-sum stochastic game with finite state space [n] := {1, . . . , n}, finite action

spaces A and B for the first and second player respectively, and perfect information. In

the case of the finite horizon problem, in which the payoff of the game induced by a pair

of strategies of the two players is defined as the expectation of the sum in finite horizon

of the successive rewards (the payments of the first player to the second player), Shapley

showed (see [Sha53]) that the value vτi of the game with horizon T and initial state i ∈ [n]

satisfies the dynamic programming equation vT+1 = f(vT), with a dynamic programming

operator f : Rn → Rn defined as :

[f(v)]i = min
a∈A

max
b∈B

∑
j∈[n]

P abij vj + rabi

 , ∀i ∈ [n], v ∈ Rn .

Here, rabi and P abij represent respectively the reward in state i ∈ [n] and the transition

probability from state i to state j ∈ [n], when the actions of the first and second players

are respectively equal to a ∈ A and b ∈ B.

The above dynamic programming operator f is order-preserving, meaning that v ≤
w =⇒ f(v) ≤ f(w) where ≤ denotes the partial ordering of Rn, and additively homo-

geneous, meaning that it commutes with the addition of a constant vector. These two

conditions imply that f is nonexpansive in the sup-norm (see for instance [CT80], see

also [GG04] for more background on this class of nonlinear maps). Moreover, f is poly-

hedral, meaning that there is a covering of Rn by finitely many polyhedra such that the

97

98 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

restriction of f to any of these polyhedra is affine. Kohlberg [Koh80] showed that if f

is a polyhedral self-map of Rn that is nonexpansive in some norm, then, there exist two

vectors η and v in Rn such that f(tη + v) = (t + 1)η + v, for all t ∈ R large enough. A

map of the form t 7→ tη + v is called a half-line, and η is its slope. It is invariant if it

satisfies the latter property. Moreover this property is equivalent to the following system

of nonlinear equations for the couple (η, v) :{
η = f̂(η) ,

η + v = f́η(v) ,
(4.1)

where the maps f̂ (the recession function) and f́η are constructed from f (see Section 4.2).

When f has an invariant half-line with slope η, the growth rate of its orbits (also called

the cycle time) χ(f) := limk→∞ f
k(v)/k exists and is equal to η. Here, fk denotes the k-th

iterate of f , and v is an arbitrary vector of Rn. This shows in particular that the value

of the finite horizon game satisfies limT→∞ v
T
i /T = ηi for any final reward. Moreover, ηi

gives the value of the game with initial state i, and mean payoff, that is such that the

payoff of the game induced by a pair of strategies of the two players is the Cesaro limit

of the expectation of the successive rewards. Then a vector v such that t 7→ tη + v is an

invariant half-line is called a relative value of the game, or bias. It is not unique, even up

to an additive constant.

In this paper, we give an algorithm to find an invariant half-line, or equivalently a

solution of (4.1), for general multichain games. This allows us in particular to determine

the mean payoff, as well as optimal strategies for both players. By multichain, we mean

that there is no irreducibility assumption on the Markov chains associated to the strategies

of the two players, which may have in particular several invariant measures.

Classes of games solvable by earlier policy iteration algorithms Policy iteration

is a general method initially introduced by Howard [How60] in the case of one player

problems (Markov decision processes). The idea is to compute a sequence of strategies as

well as certain valuations, which serve as optimality certificates, and to use the current

valuation to improve the strategy. The algorithm bears some resemblance with the Newton

method, as the strategy determines a sub or super-gradient of the dynamic programming

operator. The key of the analysis of policy iteration algorithms is generally to show that the

sequence of valuations which are computed satisfies a monotonicity property, from which it

can be inferred that the same strategy is never selected twice. In the discounted one player

case, the valuation which is maintained by the algorithm is nothing but the value vector of

the current policy. For one-player games with mean-payoff, in the unichain case (in which

every stochastic matrix associated to a strategy has only one final class), the valuation

consists of the mean payoff of the current strategy, as well as of a relative value. In both

cases, the monotonicity property is natural (it relies on the discrete maximum principle,

or properties of monotonicity and contraction of the dynamic programming operator, or

on the uniqueness of the invariant measure associated to a strategy). However, even for

4.1. Introduction 99

one player games, the extension to the multichain case is more difficult. It was initially

proposed by Howard [How60]. The convergence of his method was established by Denardo

and Fox [DF68].

The idea of extending Howard algorithm to the two player case appeared independently

in the work of Hoffman and Karp [HK66b] for a subclass of mean-payoff games with

imperfect information, and in the work of Denardo [Den67] for discounted games. Both

algorithms consist of nested iterations; the internal iterations are a simplified version of

the one player Howard algorithm. The algorithm for discounted games appeared also,

as an adaptation of the Hoffman-Karp algorithm, in the work of Rao, Chandrasekaran,

and Nair [RCN73, Algorithm 1] and of Puri [Pur95] (deterministic games with perfect

information). More recently, Raghavan and Syed [RS03] developed a related algorithm in

which strategy improvements involve only one state at each iteration.

The Hoffman-Karp algorithm requires the game to satisfy a strong irreducibility as-

sumption (each stochastic matrix arising from a choice of strategies of the two players

must be irreducible). Without an assumption of this kind, degenerate iterations, at which

the mean payoff vector is not improved, may occur, and so the algorithm may cycle (we

shall indeed see such an example in Section 4.6). This pathology appears in particular for

the important subclass of deterministic mean payoff games, for which the irreducibility

assumption is essentially never satisfied.

A natural idea to solve mean-payoff games, appearing for instance in the work of

Puri [Pur95], is to apply the policy iteration algorithm of Denardo [Den67] or Rao, Chan-

drasekaran, and Nair [RCN73, Algorithm 1] for discounted games, choosing a given dis-

count factor α sufficiently close to one, which allows one to determine the so-called Black-

well optimal policies. For deterministic games, when the rewards are integers with modulus

less or equal toW and the number of states is equal to n, Zwick and Paterson [ZP96] showed

that taking 1−α = 1/(4n3W) is sufficient to determine the mean payoff by a rounding ar-

gument. However this requires high precision arithmetics. In the case of stochastic games,

the situation is even worse, since examples are known in which the value of 1 − α to be

used for rounding has a denominator exponential in the number of states. In particular,

an approach of this kind is impracticable if one works in floating point (bounded preci-

sion) arithmetics. Hence, it is desirable to have a policy iteration algorithm for multichain

stochastic games relying only on the computation of mean payoffs and relative values as

in the algorithm of Howard [How60] and Denardo and Fox [DF68].

The first policy iteration algorithm not relying on vanishing discount, for general (mul-

tichain) deterministic mean payoff games, was apparently introduced by Cochet-Terrasson,

Gaubert and Gunawardena [CTGG99, GG98]. The former reference concerns the special

case in which the mean payoff is the same for all states at each iteration, whereas the

second one covers the general case, see also [CT01]. Details of implementation, as well

as experimental results were given in [DG06]. The idea of the algorithm of [CTGG99] is

to handle degenerate iterations by a tropical (max-plus) spectral projector. The latter is

a tropically linear retraction of the whole space onto the fixed point set of the dynamic

100 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

programming operator associated to a given strategy of the first player. When the mean

payoff or the current strategy is not improved, the new relative value is obtained by ap-

plying a spectral projector to the earlier relative value. The proof of termination of the

algorithm [CTGG99] relies on a key ingredient from tropical spectral theory, that a fixed

point of a tropically linear map is uniquely defined by its restriction to the critical nodes

(the nodes appearing infinitely often in a strategy which gives the optimal mean payoff).

Then, it was shown in [CTGG99] that at each degenerate iteration, the relative value

decreases, and that the set of critical nodes also decreases, from which the termination of

the algorithm can be deduced.

A related class of games consists of parity games, which can be encoded as special deter-

ministic games with mean payoff. A policy improvement algorithm for parity games was in-

troduced by Vöge and Jurdziński [VJ00]. This algorithm differs from the one of [CTGG99,

GG98] in that instead of the relative value, the algorithm maintains a set of relevant reach-

able vertices. Other policy algorithm for parity games or deterministic mean payoff games

were introduced later on by Bjorklund, Sandberg and Vorobyov [BSV04, BV07], and by

Jurdziński, Paterson, and Zwick [JPZ06]. An experimental comparison of algorithms for

deterministic games was recently made by Chaloupka [Cha11, Cha09], who also gave an

optimized version of the algorithm of [CTGG99, GG98, DG06].

In [BCPS04], Bielecki, Chancelier, Pliska, and Sulem used a policy iteration algo-

rithm to solve a semi-Markov mean-payoff game problem with infinite action spaces ob-

tained from the discretization of a quasi-variational inequality, based on the approach

of [CTGG99, GG98]. Their algorithm proceeds in a Hoffman and Karp fashion.

Policy iteration algorithm for stochastic multichain zero-sum games with mean

payoff Inspired by the policy iteration algorithm of [CTGG99, GG98] for deterministic

games, Cochet-Terrasson and Gaubert proposed in [CTG06] a policy iteration algorithm

for general stochastic games (see also [CT01] for a preliminary version). The relative

values are now constructed using the nonlinear analogues of tropical spectral projectors.

These nonlinear projectors where introduced by Akian and Gaubert in [AG03]. They can

be thought of as a nonlinear analogues of the operation of reduction of a super-harmonic

function, arising in potential theory. However, no implementation details were given in the

short note [CTG06], in which the algorithm was stated abstractly, in terms of invariant

half-lines.

We develop here fully the idea of [CTG06], and describe a policy iteration algorithm

for multichain stochastic games with mean-payoff (see Section 4.4.2). We explain how

nonlinear systems of the form (4.1) are solved at each iteration. We show in particular

how non-linear spectral projections can be computed, by solving an auxiliary (one player)

optimal stopping problem. This relies on the determination of the so called critical graph,

the nodes of which (critical nodes) are visited infinitely often (almost surely) by an optimal

strategy of a one player mean payoff stochastic game. An algorithm to compute the critical

graph, based on results on [AG03], is given in Section 4.5.3.

4.1. Introduction 101

We give the proof of the convergence theorem (which was only stated in [CTG06]).

In particular, we show that the sequence (η(k), v(k), C(k)) consisting of the mean payoff

vector, relative value vector, and set of critical nodes, constructed by the algorithm satisfies

a kind of lexicographical monotonicity property so that it converges in finite time (see

Section 4.4.3). The proof of convergence exploits some results of spectral theory of convex

order-preserving additively homogeneous maps, by Akian and Gaubert [AG03]. Hence, the

situation is somehow analogous to the deterministic case [CTGG99], the technical results of

tropical (linear) spectral theory used in [CTGG99] being now replaced by their non-linear

analogues [AG03]. Note also that the convergence proof of the algorithm of [CTGG99,

GG98] can be recovered as a special case of the present proof.

The convergence proof leads to a coarse exponential bound on the execution time

of the algorithm: the number of iterations of the first player is bounded by its number

of strategies, and the number of elementary iterations (resolutions of linear systems) is

bounded by the product of the number of strategies of both players.

We also show that the specialization of this algorithm to a one-player game gives an

algorithm which is similar to the multichain policy algorithm of Howard and Denardo and

Fox, see Section 4.5.2.

Then, we discuss an example (see Section 4.6) involving a variant of Richman games [LLP+99]

(also called stochastic tug-of-war [PSSW09], related with discretizations of the infinity

Laplacian [Obe05]), showing that degenerate iterations do occur and that cyclic may oc-

cur with naive policy iteration rules. Hence, the handling of degenerate iterations, that

we do here by nonlinear spectral projectors, cannot be dispensed with.

The present algorithm has been implemented in the C library PIGAMES by De-

tournay, see [Det12] for more information. We finally report numerical experiments (see

Section 4.7) carried out using this library, both on random instances of Richman type

games with various numbers of states and on a class of discrete games arising from the

monotone discretization of a pursuit-evasion differential game. These examples indicate

that degenerate iterations are frequent, so that their treatment cannot be dispensed with.

They also show that the algorithm scales well, allowing one to solve structured instances

with 106 nodes and 107 actions in a few hours of CPU time on a single core processor (the

bottleneck being the resolution of linear systems).

We note that our experimental results are consistent with earlier experimental tests

carried out for simpler algorithms (dealing with one player or deterministic problems) of

which the present one is an extension. These tests indicate that policy iteration algorithms

are fast on typical instances (although instances with an exponential number of iterations

have been recently constructed, as discussed in the next subsection). Indeed, in the case

of one-player deterministic games (maximal circuit mean problem), Dasdan, Irani and

Guptka [DIG98] concluded that the instrumentation of Howard’s policy iteration algorithm

by Cochet-Terrasson et al. [CTCG+98], in which each iteration is carried out in linear

time, was the fastest algorithm on their test suite. Dasdan latter on developed further

optimizations of this method [Das04]. More recent experiments by Georgiadis, Goldberg,

102 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

Tarjan, and Werneck [GGTW09] have indicated that the class of cycle based algorithms

(to which [CTCG+98, Das04] belongs) is among the best performers, close second to

the tree based method of Young, Tarjan, and Orlin [YTO91]. In the deterministic two

player case, Chaloupka [Cha09] compared several algorithms and observed that the one

of [CTGG99, GG98, DG06], with the optimization that he introduced (see also [Cha11]),

is experimentally the best performer.

Alternative algorithms and complexity issues Gurvich, Karzanov and Khachiyan [GKK88]

were the first to develop a combinatorial algorithm (pumping algorithm) to solve zero-sum

deterministic games with mean payoff. An alternative approach was developed by Zwick

and Paterson [ZP96], who showed that such a game can be solved by considering the

finite horizon game for a sufficiently large horizon, and applying a rounding argument.

Both algorithms are pseudo-polynomial. Other algorithms, also pseudo-polynomial, based

on max-plus (tropical) cyclic projections, with a value iteration flavor, have been devel-

oped by Butkovič and Cuninghame-Green [CGB03], Gaubert and Sergeev [GS07a], and

Akian, Gaubert, Nitiça and Singer [AGNS11]. Deterministic mean payoff games have

been recently proved to be equivalent to decision problems for tropical polyhedra (the

tropical analogue of linear programming) [AGG12b]. More generally, the results there

show that stochastic games problems with mean payoff can be cast as tropical convex

(non-polyhedral) programming problems.

The pumping algorithm of [GKK88] was recently extended to the case of stochastic

games with perfect information by Boros, Elbassioni, Gurvich, and Makino [BEGM10].

They showed that their algorithm is pseudo-polynomial when the number of states of

the game at which a random transition occurs remains fixed. No pseudo-polynomial

seems currently known without the latter restriction. Their algorithm applies to more

general games than the ones covered by the irreducibility assumption of Hoffman and

Karp in [HK66b], but it does not apply to all multichain games.

The question of the complexity of deterministic mean payoff games was raised in [GKK88],

and it has remained open since that time. Note in this respect that such games are known

to have a good characterization in the sense of Edmonds, i.e., to be in NP∩coNP. In-

deed, the strategies of one player can be used as concise certificates, as observed by Con-

don [Con92], Paterson and Zwick [ZP96]. Such games even belong to the class UP∩coUP

as shown by Jurdziński [Jur98]. We refer the reader to the discussion in [BSV04, JPZ06] for

more information. The arguments of Condon [Con92] also imply that zero-sum stochastic

games with perfect information (and finite state and action spaces) belong to NP∩coNP.

An important subclass of deterministic games with mean payoff consists of parity games.

These can be reduced to mean payoff deterministic games (Puri [Pur95]), which in turn

can be reduced to discounted deterministic games. The latter ones can be reduced to sim-

ple stochastic games (Zwick and Paterson [ZP96]). In [AM09], Andersson and Miltersen

generalized this result showing that stochastic mean payoff games with perfect informa-

tion, stochastic parity games and simple stochastic games are polynomial time equivalent.

4.2. Two player zero-sum stochastic games with discrete time and mean payoff 103

In particular, the decision problem corresponding to a game of any of these classes lies in

the complexity class of NP∩coNP.

Friedmann has recently constructed an example [Fri09] showing that the Vöge-Jurdjińsky

strategy improvement algorithm for parity games [VJ00] may require an exponential num-

ber of iterations. This also yields an exponential lower bound [Fri11] for the Hoffman-

Karp strategy improvement rule for discounted deterministic games [Pur95]. The result

of Friedmann has also been extended to total reward and undiscounted MDP by Fearn-

ley [Fea10a, Fea10b] and to simple stochastic games and weighted discounted stochastic

games by Andersson [And09].

Moreover, for Markov decision process with a fixed discount factor, some upper bound

on the number of policy iterations was given in [MH86]. Recently, Ye gave a the first

strongly polynomial bound [Ye05, Ye11]. The latter bound has been improved and gener-

alized to zero-sum two player stochastic games with perfect information factor by Hansen,

Miltersen and Zwick in [HMZ11], again for a fixed discount factor, giving the first strongly

polynomial bound for these games. Note that a polynomial bound for mean payoff games

does not follow from these results (to address the mean payoff case, we need to consider

the situation in which the discount factor tends to 1).

Complexity results of a different nature have been established with motivations from

numerical analysis (discretizations of PDE), exploiting in particular the relation between

policy iteration and the Newton method. The policy iteration algorithm for one-player

discounted games with an infinite number of actions has been proved to have a super-

linear convergence around the solution under suitable assumptions (see in particular the

works of Puterman and Brumelle [PB79], Akian [Aki90b], and Bokanowski, Maroso, and

Zidani [BMZ09]). Chancelier, Messaoud, and Sulem [CMS07] also considered, in view of

their application to quasi-variational inequalities, partially undiscounted infinite horizon

problems for which they proved the contraction of the policy iteration algorithm.

The plan of the paper is the following: Section 4.2 is recalling some background on

stochastic zero-sum two player games, Section 4.3 explains the construction of the non-

linear projection, Section 4.4 gives the algorithm, its practical version and its proof, Sec-

tion 4.5 gives the ingredients of the algorithm, Section 4.6 shows an example with possible

cycling of iterations when not using the notion of spectral projector, and Section 4.7 is for

the numerical experiments.

4.2 Two player zero-sum stochastic games with discrete time

and mean payoff

The class of two player zero-sum stochastic games was first introduced by Shapley in

the early fifties, see [Sha53]. We recall in this section basic definitions on these games in

the case of finite state space and discrete time (for more details see [Sha53, FV97, Sor03]).

We consider the finite state space [n] := {1, . . . , n}. A stochastic process (ξk)k≥0 on [n]

gives the state of the game at each point time k, called stage. At each of these stages, two

104 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

players, called “min” and “max” (the minimizer and the maximizer) have the possibility

to influence the course of the game.

The stochastic game Γ(i0) starting from i0 ∈ [n] is played in stages as follows. The

initial state ξ0 is equal to i0 and known by the players. Player min plays first, and chooses

an action ζ0 in a set of possible actions Aξ0 . Then the second player, max, chooses an

action η0 in a set of possible actions Bξ0 . The actions of both players and the current

state determine the payment rζ0η0ξ0
made by min to max and the probability distribution

j 7→ P ζ0η0ξ0j
of the new state ξ1. Then the game continues in the same way with state ξ1

and so on.

At a stage k, each player chooses an action knowing the history defined by ιk = (ξ0, ζ0,

η0, · · · , ξk−1, ζk−1, ηk−1, ξk) for min and (ιk, ζk) for max. We call a strategy or policy for a

player, a rule which tells him the action to choose in any situation. There are several classes

of strategies. AssumeAi ⊂ A and Bi ⊂ B for some sets A and B. A behavior or randomized

strategy for min (resp. max) is a sequence ᾱ := (α0, α1, · · ·) (resp. β̄ := (β0, β1, · · ·))
where αk (resp. βk) is a map which to a history hk = (i0, a0, b0, . . . , ik−1, ak−1, bk−1, ik)

with i` ∈ [n], a` ∈ Ai` , b` ∈ Bi` for 0 ≤ ` ≤ k (resp. (hk, ak)) at stage k associates a

probability distribution on a probability space over A (resp. B) which support is included

in the possible actions space Aik (resp. Bik). A Markovian strategy is a strategy which

only depends on the information of the current stage k: αk (resp. βk) depends only on ik

(resp. (ik, ak)), then αk(hk) (resp. αk(hk, ak)) will be denoted αk(ik) (resp. βk(ik, ak)). It

is said stationary if it is independent of k, then αk is also denoted by α and βk by β. A

strategy of any type is said pure if for any stage k, the values of αk (resp. βk) are Dirac

probability measures at certain actions in Aik (resp. Bik) then we denote also by αk (resp.

βk) the map which to the history assigns the only possible action in Aik (resp. Bik).

In particular, if ᾱ is a pure Markovian stationary strategy, also called feedback strategy,

then ᾱ = (αk)k≥0 with αk = α for all k and α is a map [n] → A such that α(i) ∈ Ai
for all i ∈ [n]. In this case, we also speak about pure Markovian stationary or feedback

strategy for α and we denote by AM the set of such maps. We adopt a similar convention

for player max : BM := {β : [n]×A→ B | β(i, a) ∈ Bi ∀i ∈ [n], a ∈ Ai}.
A strategy ᾱ = (αk)k≥0 (resp. β̄ = (βk)k≥0) together with an initial state determines

stochastic processes (ζk)k≥0 for the actions of min, (ηk)k≥0 for the actions of max and

(ξk)k≥0 for the states of the game such that

P (ξk+1 = j | ιk = hk, ζk = a, ηk = b) = P abij (4.2a)

P (ζk ∈ A′ | ιk = hk) = αk(hk)(A
′) (4.2b)

P (ηk ∈ B′ | ιk = hk, ζk = a) = βk(hk, a)(B′) , (4.2c)

where ιk := (ξ0, ζ0, η0, . . . , ξk−1, ζk−1, ηk−1ξk) is the history process, hk is a history vector

at time k: hk = (i0, a0, b0, . . . , ik−1, ak−1, bk−1, i) and A′ (resp. B′) are measurable sets in

A (resp. B). For instance, for each pair of feedback strategies (α, β) of the two players,

that is such that for k ≥ 0 : αk = α with α ∈ AM and βk = β with β ∈ BM , the state

4.2. Two player zero-sum stochastic games with discrete time and mean payoff 105

process (ξk)k≥0 is a Markov chain on [n] with transition probability

P (ξk+1 = j | ξk = i) = P
α(i)β(i,α(i))
ij for i, j ∈ [n] ,

and ζk = α(ξk) and ηk = β(ξk, ζk).

When the strategies ᾱ for min and β̄ for max are fixed, the payoff in finite horizon τ

of the game Γ(i, ᾱ, β̄) starting from i is

Jτ (i, ᾱ, β̄) = Eᾱβ̄i

[
τ−1∑
k=0

rζkηkξk

]
,

where Eᾱ,β̄i denotes the expectation for the probability law determined by (4.2). The mean

payoff of the game Γ(i, ᾱ, β̄) starting from i is

J(i, ᾱ, β̄) = lim sup
τ→∞

1

τ
Jτ (i, ᾱ, β̄).

When the action spaces Ai and Bi are finite sets for all i ∈ [n], the finite horizon game

and the mean payoff game have a value which is given respectively by:

vτi = inf
ᾱ

sup
β̄

Jτ (i, ᾱ, β̄), (4.3)

and

ρi = inf
ᾱ

sup
β̄

J(i, ᾱ, β̄), (4.4)

for all starting state i ∈ [n], where the infimum is taken among all strategies ᾱ for min and

the supremum is taken over all strategies β̄ for max (see [Sha53] for finite horizon games,

and [LL69] for mean payoff games).

Indeed, the value vτ of the finite horizon game satisfies the dynamic programming

equation [Sha53]:

vτ+1
i = min

a∈Ai

max
b∈Bi

∑
j∈[n]

P abij v
τ
j + rabi

 , ∀i ∈ [n], (4.5)

with initial condition v0
i = 0, i ∈ [n]. Moreover, optimal strategies are obtained for both

players by taking pure Markovian strategies ᾱ for min and β̄ for max such that, for all

k = 0, . . . , τ − 1, and i in [n], αk(i) attains the minimum in (4.5) with τ replaced by

τ − k − 1, and that, for all k = 0, . . . , τ − 1, i in [n] and a in Ai, βk(i, a) attains the

maximum in the expression of F (vτ−k−1; i, a) defined as follows:

F (v; i, a) = max
b∈Bi

∑
j∈[n]

P abij vj + rabi

 . (4.6)

We denote by f the dynamic programming or Shapley operator from Rn (that is here

equivalent to R[n]) to itself given by:

[f(v)]i := F (v; i) := min
a∈Ai

F (v; i, a), ∀i ∈ [n], v ∈ Rn. (4.7)

106 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

Then, the dynamic programming equation of the finite horizon game writes:

vτ+1 = f(vτ). (4.8)

The operator f is order-preserving, i.e. v ≤ w =⇒ f(v) ≤ f(w) where ≤ denotes

the partial ordering of Rn (v ≤ w if vi ≤ wi for all i ∈ [n]), and additively homogeneous,

i.e. it commutes with the addition of a constant vector, which means that f(λ + v) =

λ + f(v) for all λ ∈ R and v ∈ Rn, where λ + v = (λ + vi)i∈[n]. This implies that f

is nonexpansive in the sup-norm (see for instance [CT80]). Note that it was observed

independently by Kolokoltsov [Kol92], by Gunawardena and Sparrow (see [Gun03]) and

by Rubinov and Singer [RS01] that, conversely, if f : Rn → Rn is order-preserving and

additively homogeneous, then f can be put in the form (4.6,4.7), with possibly infinite

sets Ai and Bi.

When the action spaces Ai and Bi are finite sets for all i ∈ [n], the map f is also

polyhedral, meaning that there is a covering of Rn by finitely many polyhedra such that

the restriction of f to any of these polyhedra is affine. Kohlberg [Koh80] showed that if f

is a polyhedral self-map of Rn that is nonexpansive in some norm, then, there exist two

vectors v and η in Rn such that f(tη + v) = (t + 1)η + v, for all t ∈ R large enough. A

map ω : t ∈ [t0,∞) 7→ tη + v ∈ Rn, with t0 ∈ R, and η, v ∈ Rn, is called a half-line with

slope η. A germ of half-line at infinity is an equivalence class for the equivalence relation

on half-lines ω ∼ ω′ if ω(t) = ω′(t) for t ∈ R large enough. A germ can be identified

with the couple (η, v) of vectors of Rn. Hence, in the sequel, we shall use the expression

“half-line” either for a map ω : t ∈ [t0,∞) 7→ tη + v ∈ Rn, for its germ, or for the couple

(η, v). We shall say that it is invariant by f if it satisfies the latter property, that is

f(tη + v) = (t+ 1)η + v, for all t ∈ R large enough. The interest of an invariant half-line

is that its slope determines the growth rate of the orbits of f , χ(f) := limk→∞ f
k(w)/k.

Here, fk denotes the k-th iterate of f , and w is an arbitrary vector of Rn. When it exists,

the growth rate χ(f) is called the cycle time of f . Indeed, if f(tη + v) = (t+ 1)η + v for

t ≥ t0, then fk(t0η + v) = (t0 + k)η + v for k ≥ 0, hence limk→∞ f
k(t0η + v)/k = η, and

by the nonexpansiveness of f , limk→∞ f
k(w)/k = η for all w ∈ Rn, that is χ(f) does exist

and is equal to η. For the game problem this shows that the value of the finite horizon

game has a linear growth with respect to time:

lim
τ→∞

1

τ
vτi = [χ(f)]i = ηi ,

where f is the Shapley operator defined in (4.6,4.7). Moreover, the value ρ of the mean

payoff game defined in (4.4) coincides with the slope of an invariant half-line of f , and

thus with the former limit:

ρi = ηi = [χ(f)]i.

Finally, when the action spaces are finite, one can easily see that the Shapley operator

f in (4.6,4.7) satisfies for all η, v ∈ Rn,

f(tη + v) = tf̂(η) + f́η(v) for t large, (4.9)

4.2. Two player zero-sum stochastic games with discrete time and mean payoff 107

where f̂ is the recession function of f (see [GG04]):

[f̂(η)]i := lim
t→∞

[f(tη)]i
t

= min
a∈Ai

max
b∈Bi

∑
j∈[n]

P abij ηj

 , i ∈ [n] , (4.10)

and f́η is what we shall call the tangent of f at infinity around the slope η:

[f́η(v)]i := lim
t→∞

[f(tη + v)− tf̂(η)]i = min
a∈Ái,η

max
b∈B́i,a,η

∑
j∈[n]

P abij vj + rabi

 , (4.11a)

with

Ái,η := argmin
a∈Ai

max
b∈Bi

∑
j∈[n]

P abij ηj

 (4.11b)

B́i,a,η := argmax
b∈Bi

∑
j∈[n]

P abij ηj

 . (4.11c)

Indeed, for an action a ∈ Ai and i ∈ [n], we have from the finiteness of the sets Bi :

F (tη + v; i, a) = max
b∈Bi

∑
j∈[n]

P abij (tηj + vj) + rabi

= max

b∈Bi

t∑
j∈[n]

P abij ηj + P abij vj + rabi

= max

b∈Bi

t∑
j∈[n]

P abij ηj

+ max
b∈B́i,a,η

∑
j∈[n]

P abij vj + rabi

 for t large

= t F̂ (η; i, a) + F́η(v; i, a)

where one denotes :

F̂ (η; i, a) := max
b∈Bi

∑
j∈[n]

P abij ηj

 (4.12)

F́η(v; i, a) := max
b∈B́i,a,η

∑
j∈[n]

P abij vj + rabi

 . (4.13)

Then, using the finiteness of the sets Ai, and

[f(tη + v)]i = F (tη + v; i) = min
a∈Ai

F (tη + v; i, a) ,

one obtains Equation (4.9).

From (4.9), we deduce easily that (η, v) is an invariant half-line of f if, and only if, it

satisfies: {
η = f̂(η) ,

η + v = f́η(v) .
(4.14)

This couple system of equations is what is solved in practice, when one looks for the value

function ρ = η of the mean payoff game.

108 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

4.3 Reduced super-harmonic vectors

We next present the non-linear analogue of a result of classical potential theory, on

which the policy iteration algorithm for mean payoff games relies. Recall that a self-map

f of Rn is order-preserving if v ≤ w =⇒ f(v) ≤ f(w), where ≤ denotes the partial

ordering of Rn, and that it is additively homogeneous if it commutes with the addition of

a constant vector. More generally, it is additively subhomogeneous, if f(λ+ v) ≤ λ+ f(v)

for all λ ≥ 0 and v ∈ Rn. It is easy to see that an order-preserving self-map f of Rn is

additively subhomogeneous if, and only if, it is nonexpansive in the sup-norm. (See for

instance [GG04] for more background on order-preserving additively homogeneous maps.)

We shall now recall some definitions and results of [AG03], where the corresponding

proofs can be found, up to an extension from additively homogeneous maps to subhomo-

geneous maps as in [AG03, §1.4]. To show the analogy with potential theory, we shall

say that a vector u ∈ Rn is harmonic with respect to an order preserving, additively

(sub)homogeneous map g of Rn if it is a fixed point of g, i.e. if g(u) = u, and that it

is super-harmonic if g(u) ≤ u. ([AG03] deals more generally with additive eigenvectors

and super-eigenvectors). We shall denote by H (g) and H +(g) the set of harmonic and

super-harmonic vectors respectively.

We say that a self-map g of Rn is convex if all its coordinates gi : Rn → R are convex

functions. Then, the subdifferential of g at a point u ∈ Rn is defined as

∂g(u) :=
{
M ∈ Rn×n | g(v)− g(u) ≥M(v − u), ∀v ∈ Rn

}
.

Hence,

∂g(u) =
{
M ∈ Rn×n | Mi. ∈ ∂gi(u)

}
, (4.15)

where Mi. denotes the i-th row of the matrix M . It can be checked that when g is

order-preserving and additively homogeneous (resp. subhomogeneous), ∂g(u) consists of

stochastic (resp. substochastic) matrices, that is matrices with nonnegative entries and

row sums equal to 1 (resp. less or equal to 1), see [AG03, Cor. 2.2 and (4)]. Assume g has

a harmonic vector u. We say that a node is critical if it belongs to a recurrence class of

some matrix M ∈ ∂g(u), where a recurrence class of M means a (final) communication

class F of M such that the F×F submatrix of M is stochastic (note that a recurrence class

may not exist if g is not additively homogeneous), see [AG03, §2.3 and 1.4]. One defines

also the critical graph Gc(g) of g as the union of the graphs of the F × F submatrices of

the matrices M ∈ ∂g(u), such that F is a recurrence class of M . The set of critical nodes

and the critical graph of g are independent of the choice of the harmonic vector u [AG03,

Prop. 2.5]. Indeed, when g arises from a stochastic control problem with ergodic reward,

a node is critical iff it is recurrent for some stationary optimal strategy.

If I is any subset of [n], we denote by rI the restriction from Rn to RI , such that

(rIv)i := vi, for all i ∈ I. For all u ∈ Rn, we define uI := rIu, and for all self-maps g of

Rn, we define gI := rI ◦ g. Let J := [n] \ I. We denote by ıI the canonical map identifying

RI × RJ to Rn, which sends (w, z) to the vector u such that ui = wi for all i ∈ I and

4.3. Reduced super-harmonic vectors 109

ui = zi for all i ∈ J . Then, the transpose r∗I of rI is the map from RI to Rn such that

r∗I (w) = ıI(w, 0). Finally, for all I, J ⊂ [n], and for all n × n matrices M , we denote by

MIJ the I × J submatrix of M .

Lemma 4.1. Let g denote a convex, order preserving, and additively homogeneous self-

map of Rn. Assume that u ∈ Rn is harmonic with respect to g. Denote by C the set of

critical nodes of g and by N = [n]\C its complement in [n]. Then, the map h : RN → RN

with h(w) := (rN ◦ g ◦ ıN)(w, uC) has a unique fixed point.

Proof. Since the map g is order preserving and additively homogeneous, it is nonexpansive

in the sup-norm, and so, the map h is also order preserving and nonexpansive in the sup-

norm, hence it is additively subhomogeneous. Since u is harmonic with respect to g,

that is a fixed point of g, uN is a fixed point of the map h. A classical result of convex

analysis (Theorem 23.9 of [Roc70]) shows in particular that if G is a finite valued convex

function defined on Rd, if A is a linear map Rp → Rd, and if H(v) := G(Av), then,

∂H(v) = A∗∂G(Av). Applying this result to every convex map Gi defined on Rn such

that Gi(w) := gi(w + ıN (0, uC)), with i ∈ N , and to the linear map A = r∗N , we deduce

that ∂hi(uN) is the projection on RN of the subdifferential of Gi at the point r∗N (uN), or

equivalently of the subdifferential of gi at the point r∗N (uN) + ıN (0, uC) = ı(uN , uC) = u.

Using (4.15), this implies that ∂h(uN) = {MNN | M ∈ ∂g(u)}. Since g is order preserving

and additively homogeneous, the elements of ∂g(u) are stochastic matrices, and by the

above equality, or since h is order preserving and additively subhomogeneous, the elements

of ∂h(uN) are substochastic matrices. Recall that the set of critical nodes of h is defined

as the set of nodes that belong to a final class F of some matrix P ∈ ∂h(uN) satisfying

that PFF is stochastic. Denote by F such a class. We have F ⊂ N . Moreover, since

∂h(uN) = {MNN | M ∈ ∂g(u)}, we can find a matrix Q ∈ ∂g(u) the N × N submatrix

of which, QNN , coincides with P . Since F ⊂ N , QFF coincides with PFF . Hence QFF is

a stochastic matrix, which implies that F is a recurrent class of Q. This shows that the

nodes of F are critical nodes of g, which contradicts the fact that the set of critical nodes

is C since F ⊂ N = [n] \ C. Therefore the set of critical nodes of h is empty. It follows

from Corollary 1.3 of [AG03] that h has a unique fixed point.

We shall need the following result of [AG03].

Lemma 4.2 ([AG03, (7) and Lemma 3.3]). Let g be a convex order-preserving additively

homogeneous self-map of Rn, with at least one harmonic vector. Denote by C the set

of critical nodes. If u is super-harmonic with respect to g, then g(u) = u on C, and

gω(u) := limk→∞ g
k(u) exists, is harmonic with respect to g and coincides with u on C.

Moreover, the map gω : H +(g) → H (g) is order-preserving, additively homogeneous,

convex, and is a projector.

The following result gives other characterizations of gω(u) that allows one to compute

it efficiently.

110 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

Theorem 4.3. Let g denote a convex, order preserving, and additively homogeneous self-

map of Rn. Assume that g admits at least one harmonic vector. Let C denote the set of

critical nodes of g, and let N denote its complement in [n], N = [n] \ C. For a super-

harmonic vector u, the following conditions define uniquely the same vector v:

(i) v = gω(u) := limk→∞ g
k(u);

(ii) v is harmonic and coincides with u on C;

(iii) v coincides with u on C and its restriction to N is a fixed point of the map h : w 7→
(rN ◦ g ◦ ıN)(w, uC);

(iv) v is the smallest super-harmonic vector that dominates u on C.

Proof. (i)⇒(ii): This follows from Lemma 4.2.

(ii)⇒(iii): Assume that the vector v is harmonic and coincides with u on C and let h be

defined as in Point (iii). Then, vN = h(vN), showing that vN is a fixed point of h.

(iii)⇒(i): Let v and h be as in Point (iii), hence vC = uC and vN is a fixed point of h. By

Lemma 4.2, w := gω(u) is harmonic with respect to g and wC = uC . Applying Lemma 4.1

to g and w (instead of u), and using wC = uC , we get that the fixed point of h is unique,

and thus equal to wN . This shows that vN = wN , and since vC = uC = wC , we get that

v = w = gω(u), that is Point (i).

(ii)⇒(iv): Let v be as in Point (ii). Since v is harmonic and coincides with u on C, it

is super-harmonic and dominates u on C. By ((ii)⇒(iii)), vN is a fixed point of h, with

h as in Point (iii). Assume now that w is super-harmonic and dominates u on C, that

is wC ≥ uC . Then, w ≥ g(w), and since g is order preserving, wN ≥ gN (wN , wC) ≥
gN (wN , uC) = h(wN). Since h is order-preserving, we deduce from wN ≥ h(wN) that

wN ≥ h1(wN) ≥ h2(wN) ≥ · · · . Since h is nonexpansive and admits a fixed point, every

orbit of h is bounded. Hence, hk(wN) has a limit as k tends to infinity, and this limit is a

fixed point of h. Applying Lemma 4.1 to g and v (instead of u), and using vC = uC , we

get that the fixed point of h is unique and equal to vN . It follows that wN ≥ vN . Since

v coincides with u on C and wC ≥ uC , we deduce that w ≥ v. This shows that v is the

smallest super-harmonic vector that dominates u on C.

(iv)⇒(ii): Let v be a minimal super-harmonic vector that dominates u on C (or the

smallest one if it exists). Since v is a super-harmonic vector, that is g(v) ≤ v, and g is

order-preserving, we get that g(g(v)) ≤ g(v), which shows that g(v) is also super-harmonic.

Moreover, by Lemma 4.2, g(v) coincides with v on C, hence it dominates u on C. Since

g(v) ≤ v, the minimality of v implies g(v) = v, which shows that v is harmonic. Since u

and v are super-harmonic vectors and g is order-preserving, we get that the infimum v∧u
of v and u is also a super-harmonic vector. Since v dominates u on C, we get that v ∧ u
equals u on C. Hence by the minimality of v, and v ∧ u ≤ v, we obtain that v = v ∧ u,

hence v ≤ u. This implies that v equals u on C, hence v satisfies (ii).

Let gω be defined as in Theorem 4.3. When g(v) = Mv is a linear operator, and M

is a stochastic matrix, gω(u) coincides with the reduced super-harmonic vector of u with

4.3. Reduced super-harmonic vectors 111

respect to the set C. When g is a max-plus linear operator, the operator gω coincides with

the spectral projector which has been defined in the max-plus literature, see [CTGG99].

For this reason, we call gω the (nonlinear) spectral projector of g.

We now define a spectral projector acting on half-lines. We assume that g is a polyhe-

dral, convex, order preserving, and additively homogeneous self-map of Rn. This implies

in particular that for all i ∈ [n], the domain of the Legendre-Fenchel transform g∗i of the

coordinate gi of g is included in the set of stochastic vectors, and that gi is the Legendre-

Fenchel transform of g∗i , hence can be put in the same form as in (4.6):

gi(v) = max
b∈Bi

∑
j∈[n]

P bij vj + rbi

 , (4.16)

where, for all i ∈ [n], P bi. ∈ Rn is a stochastic vector, rbi ∈ R, and Bi is the domain of

g∗i , see [AG03, Prop. 2.1 and Cor. 2.2]. Since the map gi is polyhedral, the domain of g∗i
is also a polyhedral convex set, see [Roc70, Th. 19.2], and since it is included in the set

of stochastic vectors, it is compact, hence it is the convex envelope of the finite set of its

extremals. Then, in (4.16), Bi can be replaced by this finite set.

Since g is polyhedral, order preserving, and additively homogeneous, we get by Kohlberg

theorem [Koh80] recalled in Section 4.2, that g has an invariant half-line (η, v), η is nec-

essarily equal to χ(g), and by (4.14), v and η satisfy η = ĝ(η) and η + v = ǵη(v), where

ĝ and ǵη are defined in (4.10) and (4.11a) respectively. When g is given by (4.16), these

maps can be rewritten as:

[ĝ(η)]i = max
b∈Bi

∑
j∈[n]

P bij ηj

 , i ∈ [n] , (4.17)

and

[ǵη(v)]i = max
b∈B́i,η

∑
j∈[n]

P bij vj + rbi

 , (4.18a)

B́i,η := argmax
b∈Bi

∑
j∈[n]

P bij ηj

 . (4.18b)

Let us fix an invariant half-line (η, v) of g. Denote ḡ(w) := ǵη(w)−η, then v is harmonic

with respect to ḡ: ḡ(v) = v. We define the set of critical nodes of g, C(g), to be the set

of critical nodes of ḡ. A half-line w : t 7→ tη + v is super-invariant if g ◦ w(t) ≤ w(t + 1),

for t large enough. From (4.9), this property is equivalent to the conditions η ≥ ĝ(η) with

vi ≥ ḡi(v) when ηi = ĝi(η). In particular when the equality η = ĝ(η) holds, it is equivalent

to v ≥ ḡ(v).

Corollary 4.4. Assume that g is a polyhedral, convex, order preserving, and additively

homogeneous self-map of Rn. Assume that w : t 7→ tη + v is a super-invariant half-line of

g with η = χ(g). Then, there exists a unique invariant half-line of g which coincides with

w on the set of critical nodes of g. It is given by t 7→ tη+ ḡω(v), where ḡ : w 7→ ǵη(w)− η.

112 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

Proof. As said above, an invariant half-line of g must be of the form t 7→ tη + z, where

η = χ(g) and z ∈ Rn is a fixed point of ḡ. If w : t 7→ tη + v is a super-invariant half-line

of g with η = χ(g), then η = ĝ(η), and by (4.9), we get v ≥ ḡ(v). From this, we deduce

that t 7→ tη + z is an invariant half-line of g which coincides with w on C, if and only if z

is harmonic with respect to ḡ and coincides with v on C. By Theorem 4.3, ḡω(v) is such

a harmonic vector, and it is the unique one. The corollary follows.

For any super-invariant half-line w of g with η = χ(g), we define gω(w) to be the

half-line t 7→ tη + ḡω(v).

4.4 Policy iteration algorithm for stochastic mean payoff

games

The following policy iteration scheme was introduced by Cochet-Terrasson and Gaubert

in [CTG06]. We first give, in Algorithm 4.1, an abstract formulation of the algorithm

similar to the one given in [CTG06], which is convenient to establish its convergence. A

detailed practical algorithm will follow and the proof of the convergence of the algorithm

will be given in the last subsection.

4.4.1 The theoretical algorithm

In order to present the algorithm, we assume that every coordinate of f : Rn → Rn is

given by:

fi(v) = min
a∈Ai

fai (v) , (4.19)

where Ai is a finite set, and fai is a polyhedral order preserving, additively homogeneous,

and convex map from Rn to R. These conditions all together are indeed equivalent to the

property that f is of the form (4.6,4.7), since as already observed any polyhedral order

preserving, additively homogeneous and convex map g from Rn to R can be put in the

form (4.16), with Bi a finite set. For all feedback strategies α ∈ AM = {α : [n]→ A, i 7→
α(i) ∈ Ai}, we denote by f (α) the self-map of Rn the i-th coordinate of which is given by

f
(α)
i = f

α(i)
i .

Algorithm 4.1 (Policy iteration for multichain mean payoff two player games [CTG06]).

Input: A map f the coordinates of which are of the form (4.19).

Output: An invariant half-line w : t 7→ tη + v of f and an optimal policy α ∈ AM .

1. Initialization: Set k = 0. Select an arbitrary strategy α(0) ∈ AM . Compute an

invariant half-line of f (α(0)), w(0) : t 7→ tη(0) + v(0).

2. If f ◦w(k)(t) = w(k)(t+ 1) holds for t large enough, the algorithm stops and returns

w(k) and α(k).

4.4. Policy iteration algorithm for stochastic mean payoff games 113

3. Otherwise, improve the strategy α(k) for w(k), by selecting a strategy α(k+1) such

that f ◦ w(k)(t) = f (α(k+1)) ◦ w(k)(t), for t large enough. The choice of α(k+1) must

be conservative, meaning that, for all i ∈ [n], α(k+1)(i) = α(k)(i) if fi ◦ w(k)(t) =

f
(α(k))
i ◦ w(k)(t), for t large enough.

4. Compute an arbitrary invariant half-line w′(t) : t 7→ tη(k+1) + v′ of f (α(k+1)). If

η(k+1) 6= η(k) then set v(k+1) = v′, i.e. w(k+1) = w′, and go to step 6. Otherwise

(η(k+1) = η(k)), we say that the iteration is degenerate.

5. Compute the invariant half-line w(k+1) = (f (α(k+1)))ω(w(k)) of f (α(k+1)), and define

v(k+1) and η(k+1) by w(k+1)(t) = tη(k+1) + v(k+1).

6. Increment k by one and go to step 2.

Let us give some details about the well posedness of this algorithm. First, the exis-

tence of the invariant half-lines in Steps 1 and 4 follows from Kohlberg theorem [Koh80]

applied to the polyhedral order preserving additively homogeneous maps f (α(k)) with k ≥ 1.

Second, due to the finiteness of the action sets Ai and the fact that the maps fai are poly-

hedral, the maps f and fai can be rewritten in the form (4.9). Hence, the test of Step 2

and the asymptotic optimization problem of Step 3 can be rewritten as an equality test for

(germs of) half-lines and the pointwise minimization of a finite set of half-lines, which are

transformed into systems of equations and lexicographical optimization problems, using

the representation of half-lines as couples (η, v) instead of maps w : t 7→ tη + v, see the

following section for details.

Finally, at each iteration k of Algorithm 4.1, w(k) : t 7→ tη(k) + v(k) is a super-invariant

half-line of f (α(k+1)). Indeed, by construction of α(k+1), and since w(k) is an invariant

half-line of f (α(k)), we get

f (α(k+1))(w(k)(t)) = f(w(k)(t)) ≤ f (α(k))(w(k)(t)) = w(k)(t+ 1) , (4.20)

for t large enough. Moreover, since w(k) is an invariant half-line of f (α(k)), we have

χ(f (α(k))) = η(k). Hence, in Step 5, w(k) is a super-invariant half-line of f (α(k+1)) with slope

η(k) equal to η(k+1) = χ(f (α(k+1))). By Corollary 4.4, there exists a unique invariant half-

line of f (α(k+1)) which coincides with w(k) on the set of critical nodes of f (α(k+1)) and it is

given by w(k+1) = (f (α(k+1)))ω(w(k)) : t 7→ tη(k+1)+v(k+1) with v(k+1) =
(
f̄ (α(k+1))

)ω
(v(k)).

Practical computations are detailed in the following sections.

4.4.2 The practical algorithm

All the steps of Algorithm 4.1 involve equality tests or pointwise minimizations of half-

lines. However, it would not be robust to do these tests on half-lines just by choosing an

arbitrary large number t in the equations and inequations to be solved. We shall rather

use the equivalence between the representation of a half-line as a map w : t 7→ tη+ v with

t large and that as a couple (η, v). This allows one to transform all the tests into systems

of equations or optimizations of finite sets of half-lines for the pointwise lexicographic

114 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

order (which is linear, for each coordinate). This means that we are solving the system

of equations (4.14). Then, using the notations of Section 4.2, the corresponding practical

algorithm of the formal Algorithm 4.1 is given below in Algorithm 4.2.

Algorithm 4.2 (Policy iteration for multichain mean payoff two player games).

Input: A map f the coordinates of which are of the form (4.19) and the notations (4.7,4.6)

and (4.11–4.13).

Output: An invariant half-line (η, v) of f and an optimal policy α ∈ AM .

1. Initialization: Set k = 0. Select an arbitrary strategy α(0) ∈ AM . Compute the

couple (η(0), v(0)) solution of{
η

(0)
i = F̂ (η(0); i, α(0)(i))

η
(0)
i + v

(0)
i = F́η(0)(v

(0); i, α(0)(i))
for all i ∈ [n] . (4.21)

2. If η(k) and v(k) satisfy System (4.14), or equivalently if α(k+1) = α(k) is solution

of (4.22) below, then the algorithm stops and returns (η(k), v(k)) and α(k).

3. Otherwise, improve the policy α(k) ∈ AM for (η(k), v(k)) in a conservative way, that

is choose α(k+1) ∈ AM such that
α(k+1)(i) ∈ argmin

a∈Á
i,η(k)

{
F́η(k)(v

(k); i, a)
}

α(k+1)(i) = α(k)(i) if α(k)(i) is optimal,

for all i ∈ [n] . (4.22)

4. Compute a couple (η(k+1), v′) for policy α(k+1) solution of{
η

(k+1)
i = F̂ (η(k+1); i, α(k+1)(i))

η
(k+1)
i + v′i = F́η(k+1)(v′; i, α(k+1)(i))

for all i ∈ [n] . (4.23)

If η(k+1) 6= η(k) then set v(k+1) = v′ and go to step 6. Otherwise, the iteration is

degenerate.

5.i) Let g := f (α(k+1)) (gi = F (·; i, α(k+1)(i))). Compute C(g) the set of critical nodes

of the map ḡ defined by : ḡ = ǵη(k+1)(·)− η(k+1), or equivalently:

ḡi(v) = F́η(k+1)(v; i, α(k+1)(i))− η(k+1)
i for all i ∈ [n] ,

for which v′ is a harmonic vector.

5.ii) Compute v(k+1) = ḡω(v(k)), that is the solution of:{
v

(k+1)
i = F́η(k+1)(v(k+1); i, α(k+1)(i))− η(k+1)

i i ∈ [n] \ C(g)

v
(k+1)
i = v

(k)
i i ∈ C(g) .

(4.24)

6. Increment k by one and go to Step 2.

4.4. Policy iteration algorithm for stochastic mean payoff games 115

It remains to precise how the steps are performed. Step 3 is just composed of lexico-

graphic optimization problems in finite sets. The systems (4.21) and (4.23) are the dynamic

programming equations of a one player multichain mean payoff game, they can be com-

puted by applying the policy iteration algorithm for multichain Markov decision processes

with mean payoff introduced by Howard [How60] and Denardo and Fox [DF68]. Note that

one can also choose to solve Systems (4.21) and (4.23) by applying Algorithm 4.2 to the

maps h = f (σ0) and h = f (α(k+1)) respectively, while replacing minimizations by maximiza-

tions, but in that case the algorithm is almost equivalent to that of Howard [How60] and

Denardo and Fox [DF68], see Section 4.5 below. In Step 5, the set of critical nodes of g,

that is that of ḡ, can be computed using a variant of the algorithm proposed in [AG03,

§ 6.3] described in Section 4.5.3. Finally, System (4.24) is the dynamic programming equa-

tion of an optimal control problem with infinite horizon stopped when reaching the set

C(g) which can be solved using the original policy iteration algorithm of Howard [How60].

We shall recall all these algorithms in Section 4.5.

4.4.3 Convergence of the algorithm

In this subsection, we show in Theorem 4.8 that Algorithm 4.1, or equivalently Algo-

rithm 4.2 terminates after a finite number of steps. This result is proved using Theorem 4.3.

Let first show some intermediate results.

The following lemma is known, see for instance Sorin [Sor04].

Lemma 4.5 (See [Sor04]). Let g denote an order preserving self-map of Rn, that is nonex-

pansive in the sup-norm, and has a cycle time χ(g). If w : t 7→ tη+ v is a super-invariant

half-line of g, then, χ(g) ≤ η.

Proof. We reproduce the argument, for completeness: if w : t 7→ tη + v is a super-

invariant half-line of g, that is g(w(t)) ≤ w(t + 1) for t ≥ t0 for some t0 ≥ 0, then,

gk(w(t)) ≤ w(t + k), for all k ≥ 0, and t ≥ t0, and so χ(g) ≤ limk→∞w(t0 + k)/k = η,

which shows Lemma 4.5.

Since, by (4.20), w(k) is a super-invariant half-line of f (α(k+1)), with slope η(k) =

χ(f (α(k))), it follows from Lemma 4.5 that :

Lemma 4.6. The sequence of strategies defined in Algorithm 4.1 is such that

χ(f (α(k+1))) ≤ χ(f (α(k))) .

We now examine degenerate iterations.

Lemma 4.7. Let (α(k))k≥1 be the sequence of strategies defined in Algorithm 4.1, and

assume that χ(f (α(k+1))) = χ(f (α(k))). Then, the following statements hold.

1. The half-line w(k+1) agrees with w(k) on the set of critical nodes of f (α(k+1)).

2. Every critical node of f (α(k+1)) is a critical node of f (α(k)).

116 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

3. w(k+1) ≤ w(k).

Proof. Let us use the notations: g := f (α(k+1)) (as in Algorithm 4.2) and h = f (α(k)). By

construction and assumption, we have η(k) = χ(h) = χ(g) = η(k+1), that we shall also

denote by η.

Point 1: Since, by (4.20), w(k) is a super-invariant half-line of g, with slope η(k) = χ(g),

and since w(k+1) is defined as gω(w(k)), the result follows from Corollary 4.4.

Point 2: Again, since w(k) is a super-invariant half-line of g, with slope η(k) = χ(g), we

deduce from the definition of ḡ and (4.9), that

ḡ(v(k)) ≤ v(k) . (4.25)

Then by Lemma 4.2, ḡ(v(k)) agrees with v(k) on C(ḡ) = C(g), the set of critical nodes of

g, and so, the equality g(w(k)(t)) = w(k)(t+ 1) holds on C(g) for t large. Since w(k) is an

invariant half line of f (α(k)), we get that fi(w
(k)(t)) = f

(α(k+1))
i (w(k)(t)) = w(k)(t + 1) =

f
(α(k))
i (w(k)(t)) for t large enough and i ∈ C(g). Hence, the conservative selection rule

ensures that α(k+1)(i) = α(k)(i) for all i ∈ C(g). This implies that gi = hi for all i ∈ C(g),

and since χ(g) = χ(h), we get from the definitions of ḡ and h̄ that

ḡi = h̄i for all i ∈ C(g) . (4.26)

Observe that v(k+1) is a fixed-point of ḡ, and that ḡ is a polyhedral additively homogeneous

order preserving convex selfmap of Rn. Hence the critical nodes of ḡ are the indices that

belong to a final class of a matrix M ∈ ∂ḡ(v(k+1)) (since the elements of ḡ(v(k+1)) are

stochastic matrices, all their final classes are recurrent). Let F be such a final class.

From (4.15), the line Mi· ∈ ∂ḡi(v(k+1)) for i ∈ F , that is ḡi(v)− ḡi(v(k+1)) ≥Mi·(v−v(k+1))

for all v ∈ Rn. Since v(k+1) is a fixed point of ḡ, v(k) a fixed point of h̄, and v(k+1) agrees

with v(k) on C(g) (from Point 1), we get that ḡi(v
(k+1)) = v

(k+1)
i = v

(k)
i = h̄i(v

(k)) for

all i ∈ C(g). From (4.26), we deduce that ḡi(v) − ḡi(v
(k+1)) = h̄i(v) − h̄i(v

(k)) for all

i ∈ C(g) and v ∈ Rn. Now, since F is a final class of M , hence F ⊂ C(g), and Mij = 0

for i ∈ F and j 6∈ C(g), we get that Mi·v
(k+1) = Mi·v

(k) for i ∈ F . This implies that

h̄i(v)− h̄i(v(k)) ≥Mi·(v− v(k)) for all v ∈ Rn and i ∈ F , which shows that Mi· ∈ ∂h̄i(v(k))

for i ∈ F . Let N := [n] \ F and define the matrix Q such that Qi· = Mi· if i ∈ F , and

Qi· be any element of ∂h̄i(v
(k)) if i ∈ N , then Q ∈ ∂h̄(v(k)). Hence, the F × F submatrix

of M is also a F × F submatrix of Q, and so F is a final class of Q. Since v(k) is a fixed

point of h̄, this implies that F is included in the set of critical nodes of h̄, which is also

by definition the set of critical nodes of h. This shows that all critical nodes of g are also

critical nodes of h, and shows Point 2.

Point 3: From (4.25), we get that ḡ(v(k)) ≤ v(k), hence the sequence ḡk(v(k)) is non-

increasing and ḡω(v(k)) ≤ v(k). Since η(k) = η(k+1), we get that w(k+1) = gω(w(k)) =

tη(k) + ḡ(v(k)) ≤ w(k).

Finally, we prove that the algorithm terminates.

4.5. Ingredients of Algorithm 4.1 or 4.2: one player games algorithms 117

Theorem 4.8. A strategy cannot be selected twice in Algorithm 4.1, and so, the algorithm

terminates after a finite number of iterations.

Proof. Assume by contradiction that the same strategy is selected twice in Algorithm 4.1,

that is α(s) = α(m) for some iterations 1 ≤ s < m of the algorithm before it stops.

Then, χ(f (α(s))) = χ(f (α(m))) and since by Lemma 4.6, χ(f (α(s))) ≥ χ(f (α(s+1))) ≥ · · · ≥
χ(f (α(m))), we get the equality χ(f (α(s))) = χ(f (α(s+1))) = · · · = χ(f (α(m))). Hence, by

Lemma 4.7, Part 2, we have that C(f (α(m))) ⊂ C(f (α(m−1))) ⊂ · · · ⊂ C(f (α(s))) and

since α(s) = α(m), we get the equality C(f (α(m))) = C(f (α(m−1))) = · · · = C(f (α(s))).

So by Lemma 4.7, Part 1, w(s) and w(m) are both invariant half-lines of f (α(s)) with

slope χ(f (α(s))), that agree on C(f (α(s))). Hence by Corollary 4.4, w(s) = w(m). Since by

Lemma 4.7, Part 3, we have w(s) ≥ w(s+1) ≥ · · · ≥ w(m), it follows that w(s) = · · · = w(m).

In particular, w(s) = w(s+1). Hence, w(s)(t + 1) = w(s+1)(t + 1) = f (α(s+1)) ◦ w(s+1)(t) =

f (α(s+1)) ◦ w(s)(t) = f ◦ w(s)(t) for t large enough. It follows that w(s) is an invariant

half-line of f , and so, the algorithm stops at step s, which contradicts the existence of

iteration m, and so the same strategy cannot be selected twice in Algorithm 4.1.

Since the sets Ai are finite, the number of strategies (the elements of AM) is also finite,

and since a strategy cannot be selected twice, Algorithm 4.1 stops after a finite number of

iterations, that is bounded by the number of strategies.

4.5 Ingredients of Algorithm 4.1 or 4.2: one player games

algorithms

As said in Section 4.4.2, each basic step of the policy iteration algorithm for multichain

mean payoff zero-sum two player games (Algorithm 4.1 or 4.2) concerns the solution of one

player games, also called stochastic control problems or Markov decision processes, with

finite state and action spaces: a mean payoff problem for Systems (4.21) and (4.23), an

infinite horizon problem stopped at the boundary for System (4.24), and the set of critical

nodes of the corresponding dynamic programming operator in Step 5. We recall here

the policy iteration algorithm for solving stochastic control problems, with either infinite

horizon or mean payoff, and the algorithm proposed in [AG03, § 6.3] for computing a

critical graph, and explain how all these algorithms are applied in Algorithm 4.1 or 4.2.

By doing so, we shall also see that the classical Howard / Denardo-Fox algorithm can be

thought of as a special case of these algorithms, in which the second player has no choices

of actions.

In all the section, we consider the following dynamic programming or Shapley operator

of a one player game with finite state and action spaces: g is a map from Rn to itself,

given by :

[g(v)]i := max
b∈Bi

G(v; i, b) ∀i ∈ [n], v ∈ Rn , (4.27)

118 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

where

G(v; i, b) =
∑
j∈[n]

P bij vj + rbi , (4.28)

the vectors P bi· are substochastic vectors, for all i ∈ [n] and b ∈ Bi, and Bi are finite sets,

for all i ∈ [n]. Equivalently, g is a convex additively subhomogeneous order preserving

polyhedral selfmap of Rn.

Since player min does not exist, the set of feedback strategies for player max, BM , is

given by BM := {β : [n]→ B | β(i) ∈ Bi ∀i ∈ [n]}, where B contains all the sets Bi. For

each β ∈ BM , we denote by g(β) the self-map of Rn given by:

g
(β)
i (v) := G(v; i, β(i)) ∀i ∈ [n], v ∈ Rn .

We also denote by r(β) the vector of Rn such that r
(β)
i = r

β(i)
i and P (β) the n× n matrix

such that P
(β)
ij = P

(β(i))
ij , then g(β) : v 7→ P (β)v + r(β).

4.5.1 Policy iterations for one player games with discounted payoff

System (4.24) consists in finding the solution v of the equation v = ḡ(v) with v = u

on C(ḡ) where u ∈ Rn is super-harmonic with respect to ḡ, ḡ(u) ≤ u, and g is as in (4.27)

with (4.28). The solution v is thus the value of a one player game with infinite horizon

stopped when reaching the set C(ḡ) whose transition probabilities are given by the P bij ,

instantaneous reward is given by the rbi and final reward is given by ui, when the game is

in state i ∈ C(ḡ). This value function can be obtained using the classical policy iteration

algorithm of Howard [How60] for a one player game. From Theorem 4.3, v is solution of

the above equation, if and only if vC = uC and vN is a fixed point of the convex polyhedral

additively subhomogeneous order preserving selfmap h of RN , with C = C(ḡ), N = [n]\C,

and h defined as in Theorem 4.3, Point (iii), with g replaced by ḡ. One can also consider

the equivalent equation v = h(v) with hi = ḡi for i ∈ N and hi(v) = ui for i ∈ C and

v ∈ Rn. In that case, h is a convex polyhedral additively subhomogeneous order preserving

selfmap of Rn.

In these two settings, we need to solve an equation of the form v = g(v), where g is of

the form (4.27), and g has no critical node: C(g) = ∅. From [AG03, Corollary 1.3], g has

a unique fixed point and all the maps g(β) with β ∈ BM have a unique fixed point (since

their critical nodes are necessarily critical nodes of g). The policy iteration algorithm of

Howard applied to this equation is then given by Algorithm 4.3.

Algorithm 4.3 (Policy iteration of Howard [How60] for stochastic control problems).

Input: A map g of the form (4.27) with no critical node.

Output: The fixed point of g and an optimal policy β ∈ BM .

1. Initialization: Set k = 0. Select an arbitrary strategy β(0) ∈ BM .

2. Compute the value of the game v(k) with fixed feedback strategy β(k), that is the

solution of the linear system:

v(k) = g(β(k))(v(k)) .

4.5. Ingredients of Algorithm 4.1 or 4.2: one player games algorithms 119

3. If v(k) = g(v(k)), or equivalently if β(k+1) = β(k) is solution of (4.29) below, then the

algorithm stops and returns v(k) and β(k).

4. Otherwise, improve the policy β(k+1) ∈ BM for the value v(k) :

β(k+1)(i) ∈ argmax
b∈Bi

G(v(k); i, b) ∀i ∈ [n]. (4.29)

5. Increment k by one and go to Step 2.

It is known [How60] that v(k+1) ≤ v(k) and that the algorithm stops after a finite

number of steps.

4.5.2 Policy iteration for multichain one player games

Consider a one player game with dynamic programming operator g given by (4.27) and

mean payoff. Then, as explained in Section 4.2 in the more general two player case, the

mean payoff of the game is the slope η of any invariant half line (η, v) of g, which is also

any solution of the following couple system (see Equation (4.14)):{
η = ĝ(η)

η + v = ǵη(v) .
(4.30)

where ĝ and ǵη are defined in (4.10) and (4.11) respectively. In the present one player

case, they are reduced to:

[ĝ(η)]i := max
b∈Bi

Ĝ(η; i, b) and [ǵη(v)]i := max
b∈B́i,η

G(v; i, b) , (4.31)

with

Ĝ(η; i, b) =
∑
j∈[n]

P bij ηj and B́i,η := argmax
b∈Bi

∑
j∈[n]

P bij ηj

 , (4.32)

for all η, v ∈ Rn, i ∈ [n], b ∈ B. We refer also to [DF68, Put94] for the existence of

solutions to System (4.30), and for the proof that η solution of this system is the mean

payoff of the game in this one player context. The following algorithm for multichain

mean payoff Markov decision processes was introduced by Howard [How60] and proved to

converge by Denardo and Fox [DF68]:

Algorithm 4.4 (Policy iteration algorithm for multichain mean payoff one player games).

Input: A map g of the form (4.27) with (4.28), and the notations (4.31,4.32).

Output: An invariant half-line (η, v) of g and an optimal policy β ∈ BM .

1. Initialization: Set k = 0. Select an arbitrary strategy β(0) ∈ BM .

120 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

2. For each final class F of P (β(k)), denote by iF the minimal index of the elements of

F , and define S as the set of all these indices iF . Compute the couple (η(k), v(k)) for

policy β(k) solution of
η

(k)
i = Ĝ(η(k); i, β(k)(i)) i ∈ [n] \ S

η
(k)
i + v

(k)
i = G(v(k); i, β(k)(i)) i ∈ [n]

v
(k)
i = 0 i ∈ S .

(4.33)

3. If (η(k), v(k)) is solution of (4.30), or equivalently if β(k+1) = β(k) is solution of (4.34)

below, then the algorithm stops and returns (η(k), v(k)) and β(k).

4. Otherwise, improve the policy β(k+1) ∈ BM for (η(k), v(k)) in a conservative way,

that is choose β(k+1) ∈ BM such that :
β(k+1)(i) ∈ argmax

b∈B́
i,η(k)

G(v(k); i, b)

β(k+1)(i) = β(k)(i) if β(k)(i) is optimal,

for all i ∈ [n] . (4.34)

5. Increment k by one and go to Step 2.

The justifications and details of Algorithm 4.4 can be found in [DF68, Put94] and are

recalled in Section 4.8. Solving System (4.33) turns out to be a critical step. This can be

optimized by exploiting the structure of the system, we discuss this issue in Section 4.8. As

explained in Section 4.4.2, another way to solve a multichain mean payoff Markov decision

process may be to use Algorithm 4.1 or 4.2 in the particular case of a one-player game,

with maximizations instead of minimizations. In order to compare it with Algorithm 4.4,

we rewrite below Algorithm 4.2 in that case, with the above notations. Note that in the

one-player case, the map g of Step 5 of Algorithm 4.2 is affine, hence its critical graph

reduces to the final graph of its tangent matrix.

Algorithm 4.5 (Specialization of Algorithm 4.2 to the one player case).

Input: A map g of the form (4.27) with (4.28), and the notations (4.31,4.32).

Output: An invariant half-line (η, v) of g and an optimal policy β ∈ BM .

1. Initialization: Set k = 0. Select an arbitrary strategy β(0) ∈ BM . Compute the couple

(η(0), v(0)) solution of{
η

(0)
i = Ĝ(η(0); i, β(0)(i))

η
(0)
i + v

(0)
i = G(v(0); i, β(0)(i))

for all i ∈ [n] . (4.35)

2. If η(k) and v(k) satisfy System (4.30), or equivalently if β(k+1) = β(k) is solution

of (4.36) below, then the algorithm stops and returns (η(k), v(k)) and β(k).

3. Otherwise, improve the policy β(k) ∈ BM for (η(k), v(k)) in a conservative way, that

is choose β(k+1) ∈ BM such that
β(k+1)(i) ∈ argmax

b∈B́
i,η(k)

G(v(k); i, b)

β(k+1)(i) = β(k)(i) if β(k)(i) is optimal,

for all i ∈ [n] . (4.36)

4.5. Ingredients of Algorithm 4.1 or 4.2: one player games algorithms 121

4. Compute a couple (η(k+1), v′) for policy β(k+1) solution of{
η

(k+1)
i = Ĝ(η(k+1); i, β(k+1)(i))

η
(k+1)
i + v′i = G(v′; i, β(k+1)(i))

for all i ∈ [n] . (4.37)

If η(k+1) 6= η(k) then set v(k+1) = v′ and go to step 6. Otherwise, the iteration is

degenerate.

5.i) Compute C the set of final nodes of the matrix P (δk+1).

5.ii) Compute the solution v(k+1) of:{
v

(k+1)
i = G(v(k+1); i, β(k+1)(i))− η(k+1)

i i ∈ [n] \ C
v

(k+1)
i = v

(k)
i i ∈ C .

(4.38)

6. Increment k by one and go to Step 2.

Systems (4.35) and (4.37) are of the form:{
η = P η

η + v = P v + r ,
(4.39)

where r = r(δ) ∈ Rn and P = P (δ) is a stochastic matrix, with δ = β(0) or β(k+1). It can

be shown that the solution η of such a system is unique, that one can eliminate for each

final class F of P one of the equations ηi = (Pη)i with index i ∈ F , and that v is defined

up to an element of the kernel of I − P , the dimension of which is equal to the number of

final classes of P . When this number is strictly greater than one, and v(k+1) is chosen to be

any solution v′ of (4.37) in Algorithm 4.5, the algorithm may cycle, see Section 4.6 for an

example in the two player case. One way to handle this [DF68, Put94], is either to fix to

zero the value of µF v for each invariant measure µF of P with support in a final class F of

P , or to fix to zero the components of v with indices in some set S containing exactly one

node of each final class of P . In these two cases, the solution v of (4.39) becomes unique.

Moreover, if in Algorithm 4.5, (4.37) is combined with either the conditions µF v
′ = 0 or

the conditions v′S = 0 with S chosen in a conservative way, that is such that the same index

is chosen in F for iterations k and k+1, if F is a final class of P (β(k+1)) which is also a final

class of P (β(k)), then v′ = v(k) on the set of final nodes of P (β(k+1)) when η(k+1) = η(k),

which implies that v′ = v(k+1), hence Step 5 of Algorithm 4.5 becomes useless. This

shows that Algorithm 4.4 is equivalent to Algorithm 4.5, where (4.37) is combined with

the conditions v′S = 0, where S is the set of minimal indices of each final class of P (β(k+1)).

In other words, Algorithm 4.4 is a particular realization of Algorithm 4.5, where one

chooses one special solution v′ = v(k+1) of (4.37) at each iteration of the algorithm, even

when η(k+1) 6= η(k). Denardo and Fox proved [DF68, Put94] that the sequence of couples

(η(k), v(k))k≥1 of Algorithm 4.4 is non decreasing in a lexicographical order, meaning that

η(k+1) ≥ η(k), with v(k+1) ≥ v(k) when η(k+1) = η(k), and that Algorithm 4.4 stops after a

finite number of iterations (when the sets of actions are finite). Indeed, the convergence

of Algorithm 4.1, proved in Section 4.4.3, shows that this also holds for the little more

general Algorithm 4.5.

122 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

4.5.3 Critical graph

When a degenerate iteration (η(k+1) = η(k)) occurs in Step 4 of Algorithm 4.1, one

has to compute the critical nodes of g := f (α(k+1)), that is that of ḡ. This can be done by

applying the techniques of [AG03, § 6.3] , leading to Algorithm 4.6 below. More precisely,

one applies first the followings steps to the map ḡ and its harmonic vector v′, then apply

Algorithm 4.6.

Consider an additively homogeneous map g whose coordinates are defined as in (4.27)

with (4.28), and u a harmonic vector of g. For any set P of stochastic matrices, we define

Gf(P) as the union of the graphs of the matrices MFF , where M ∈ P and F is a final class

of M . Define

B̃i = {b ∈ Bi | G(u; i, b) = u} and Pi =
{
P bi· | b ∈ B̃i

}
. (4.40)

Then, the critical graph of g is given by

Gc(g) = Gf(∂g(u)), where ∂g(u) = co(P1)× · · · × co(Pn) , (4.41)

and co(·) denotes the convex hull of a set. The following algorithm computes the graph

in (4.41) for a general family {Pi}i∈[n], where Pi ⊂ Rn is a nonempty finite set of stochastic

vectors. Note that any such family {Pi}i∈[n] corresponds to the map g : Rn → Rn such

that

[g(v)]i = max
p∈Pi

pv for all i ∈ [n] , (4.42)

which has u = 0 as a harmonic vector, and is of the above form. Hence the algorithm

below corresponds also to the computation of the critical graph of this map g.

Before writing the algorithm, we recall some definitions of graph theory (see for in-

stance [CLRS01]). We define a graph G := (V,E) as a finite set of vertices (or nodes) V

and a set of edges (or arcs) E := {(i, j) | i, j ∈ V }. A path of length l ≥ 0 is a sequence

(i0, . . . , il) such that ik ∈ V for k ∈ {0, . . . , l} and (ik, ik+1) ∈ E for k < l. A strongly

connected component of G is the restriction G|V ′ of G to some subset of nodes V ′ ⊆ V ,

that is the graph (V ′, E′) with E′ := {(i, j) ∈ E | i, j ∈ V ′}, where V ′ is such that there

exists a path from each node i ∈ V ′ to every node j ∈ V ′. A strongly connected component

G′ is called trivial if it consists in exactly one node and no arcs. We define a final class of

G = (V,E) as a non trivial strongly connected component G′ = (V ′, E′) of G such that

there exists no arc (i, j) ∈ E with i ∈ V ′ and j ∈ V \V ′. Note that the strongly connected

components of a graph can be find using Tarjan algorithm, see [CLRS01].

Algorithm 4.6 (Algorithm to compute the critical graph, compare with [AG03, § 6.3]).

Input: (P1, · · · ,Pn) where Pi ⊂ Rn is a finite set of stochastic vectors for i ∈ [n].

Output: A graph depending on P1, · · · ,Pn, equal to Gf(co(P1)×· · ·× co(Pn)) if all the

Pi are nonempty; and its set of nodes.

1. Set F (0) = ∅, I(0) = [n], G(0) = ∅, Q(0)
i = Pi for i ∈ [n], and k = 0.

4.6. An example with degenerate iterations 123

2. If all the sets {Q(k)
i }i∈I(k) are empty, then the algorithm stops and returns G(k) and

F (k).

3. Otherwise, build the graph G = (I(k), E) with set of nodes I(k), and set of arcs

E =
{

(i, j) ∈ I(k) × I(k) | pj 6= 0 for some p ∈ Q(k)
i

}
. Set F as the union of final

classes of G.

4. Put I(k+1) = I(k) \ F and F (k+1) = F (k) ∪ F .

5. Set G(k+1) = G(k) ∪G|F where G|F denotes the restriction of G to F .

6. For all i ∈ I(k+1), define the sets Q(k+1)
i ⊂ RI(k+1)

of row vectors obtained by re-

stricting to I(k+1) the vectors p ∈ Q(k)
i such that

∑
j∈I(k+1) pj = 1.

7. Increment k by one, and go to Step 2.

The convergence (after at most n iterations) of this algorithm follows from variants

of Lemmas 4.7 and 4.9 of [AG03], applied to the maps gk constructed by (4.42) from the

families (Q(k)
i)i∈[n]. Indeed, if all the Q(k)

i with i ∈ I(k) are nonempty, the map gk is a

map from Rn to itself and Lemma 4.7 says that gk has at least one invariant critical class,

which implies that the set F of Step 3 is nonempty. Moreover, Lemma 4.9 says that, if all

the Q(k+1)
i with i ∈ I(k+1) are nonempty, the critical graph of gk is equal to the union of

G|F with the critical graph of the map gk+1.

In order to generalize these arguments, one needs to extend the notion of critical

graph to the case of a map g from (R ∪ {−∞})n to itself, of the form (4.42) with general

families {Pi}i∈[n] of (possibly empty) finite sets of stochastic vectors (or of the form (4.27)

with (4.28), with a harmonic vector u ∈ (R ∪ {−∞})n). For instance, define the critical

graph of g as the restriction to the set of nodes i ∈ [n] such that Pi is nonempty (or

ui 6= −∞) of the critical graph of g ∨ id, where id is the identity map and ∨ denotes the

supremum operation. Then, the identically −∞map has no critical class, any map g which

is not identically −∞ has an invariant critical class, and the above recurrence formula for

critical graphs is true even if gk+1 takes −∞ values. This shows that Algorithm 4.6

computes the critical graph of the map g associated to the family {Pi}i∈[n], even if some

of the sets of the family are empty.

Note that since Tarjan algorithm has a linear complexity in the number of arcs of a

graph, the complexity of the above algorithm is at most in the order of nm, where m is

the sum of the number of arcs of all the elements of Pi, i ∈ [n]. This is comparable with

the complexity of solving the linear systems of the form (4.33) by LU solvers, hence with

the other steps of Algorithm 4.2.

4.6 An example with degenerate iterations

In this section, we present an example of zero-sum two player stochastic game for

which we encounter a degenerate iteration when using the policy iteration algorithm for

the mean payoff problem, and showing that Step 5 of Algorithm 4.1 is essential to obtain

the convergence of the algorithm.

124 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

Before doing this, let us note that some degenerate cases may be not so problematic.

Indeed, as observed before, the map ḡ of Step 5 of Algorithm 4.2 is a polyhedral order

preserving additively homogeneous convex map. By [AG03, Theorem 1.1], the set of

fixed points of ḡ is isomorphic to a convex set which dimension is the number of strongly

connected components of the critical graph of ḡ and which is invariant by the translations

by a constant function. In particular, if the number of strongly connected components

of the critical graph is equal to one, then the set of fixed points of ḡ is exactly equal to

the translations of v′ by a constant, hence v(k+1) − v′ is a constant function. Since all the

maps considered in Algorithm 4.2 are additively homogeneous, this implies that taking v′

instead of v(k+1), that is applying the same steps as in the nondegenerate case, does not

change the sequence of policies (σk), and the invariant half lines are just translated by a

constant after this degenerate iteration. Hence, the second part of Step 5 may be avoided

in Algorithm 4.2, when one encounters only such degenerate iterations. However, to know

that ḡ has only one strongly connected component in its critical graph, one need to apply

the the first part of Step 5.

We show now an example for which degenerate iterations occur with two strongly

connected components of the critical graph of ḡ. We shall call these iterations strongly

degenerate.

We consider a directed graph, with a set of nodes (or edges) [n] and a set of arcs

E ⊂ [n]× [n], in which each arc (i, j) is equipped with a weight rij ∈ R, and consider the

map f from Rn to itself, defined by:

fi(v) =
1

2

(
max

j: (i,j)∈E
(rij + vj) + min

j: (i,j)∈E
(rij + vj)

)
. (4.43)

When the value of v is fixed at some “boundary” points, and the weights rij are inde-

pendent of j, the map f arises as the dynamic programming operator of the “tug of war”

game [PSSW09], which can viewed also as a discretization of the infinity Laplacian oper-

ator. Moreover the case where all the weights rij are equal to zero corresponds to a class

of auction games, called Richman game [LLP+99]. Therefore, the above map f appears

as the dynamic programming operator of a variant of these games with additive reward

and mean payoff.

We apply the policy iteration algorithm to such a game, with a graph of 5 nodes and

complete set of arcs E = [5]× [5]. Hence, the action spaces Ai and Bi in every state i ∈ [n]

can be identified with the set [5]. The weight of each arc (i, j) ∈ E is defined as the entry

rij of the following matrix :

r =

1 −1 0 0 0

1 −1 0 0 0

0 0 1 −1 0

0 0 1 −1 0

0 −1 0 −1 1

 ,

the adjacency graph of which is represented in Figure 4.1.

4.6. An example with degenerate iterations 125

1 1

2

 -1 1

 -1

3 1

4

 -1 1

 -1

5

 -1 -1

 1

Figure 4.1: Adjacency graph of r.

Let us fix the initial strategy α(0) for the first player, such that α(0)(1) = 2, α(0)(2) = 2,

α(0)(3) = 4, α(0)(4) = 4, α(0)(5) = 2. Then, the corresponding dynamic programming

operator f (α(0)) is given by

f
(α(0))
1 (v) = f

(α(0))
2 (v) =

1

2
(−1 + v2 + max(1 + v1,−1 + v2, v3, v4, v5))

f
(α(0))
3 (v) = f

(α(0))
4 (v) =

1

2
(−1 + v4 + max(v1, v2, 1 + v3,−1 + v4, v5))

f
(α(0))
5 (v) =

1

2
(−1 + v2 + max(v1,−1 + v2, v3,−1 + v4, 1 + v5)) .

In Step 1 of Algorithm 4.1, we compute an invariant half-line of f (α(0)) and obtain for

instance w(0)(t) = (η(0), v(0)), with v(0) = (0, 0,−0.5,−0.5, 0)T and η(0) = (0, 0, 0, 0, 0)T .

Since f(w(0)(t)) < f (α(0))(w(0)(t)), we need to improve the policy (Step 3) and get the

unique solution (even without the conservative policy): α(1)(1) = 2, α(1)(2) = 2, α(1)(3) =

4, α(1)(4) = 4, α(1)(5) = 4. The corresponding operator is then given by :

f
(α(1))
i = f

(α(0))
i 1 ≤ i ≤ 4,

f
(α(1))
5 (v) =

1

2
(−1 + v4 + max(v1,−1 + v2, v3,−1 + v4, 1 + v5)) .

We compute then (in Step 4) an invariant half-line (η(1), v′) of f (α(1)), and obtain η(1) =

(0, 0, 0, 0, 0)T and for instance v′ = (0, 0, 0.5, 0.5, 0.5)T . Since η(1) = η(0), the iteration is

degenerate.

Hence the algorithm enters in Step 5. Set g := f (α(1)). We have to compute the

critical graph of ḡ, which is here equal to g, for instance by applying Algorithm 4.6 to the

sets Pi defined in (4.40) with u = v′. They are given by P1 = P2 = {(0.5, 0.5, 0, 0, 0)},
P3 = P4 = {(0, 0, 0.5, 0.5, 0)}, P5 = {(0, 0, 0, 0.5, 0.5)}, then the critical graph of g is equal

to the final graph of P1×· · ·×P5, which is composed of two strongly connected components

with nodes {1, 2} and {3, 4}. Then, v(1) is the unique solution of:{
v

(1)
5 = f

(α(1))
5 (v) = 1

2(−1.5 + max(0,−1,−0.5,−1.5, v
(1)
5 + 1))

v
(1)
i = v

(0)
i i ∈ {1, 2, 3, 4} .

126 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

We obtain v(1) = (0, 0,−0.5,−0.5,−0.5) and since f(w(1)(t)) = f (α(1))(w(1)(t)), the algo-

rithm stops.

However, if we do not treat the degenerate case by using Step 5, and take for instance

v(1) = v′, we obtain f(w(1)(t)) < f (α(1))(w(1)(t)), hence we need to improve the strategy,

and obtain the unique solution α(2) = α(0). This means that the algorithm cycles, showing

the necessity of Step 5 in the policy iterations.

4.7 Implementation and numerical results

The numerical results presented in this section were obtained with a slight modification

of the policy iteration algorithm Algorithm 4.2) and of its ingredients of Section 4.5, all

implemented in the C library PIGAMES, see [Det12] for more information. All the tests

of this section were performed on a single processor: Intel(R) Xeon(R) W3540 - 2.93GHz

with 8Go of RAM.

These slight modifications take into account the fact that (linear or nonlinear) equations

may not be solved exactly (in exact arithmetics) because of the errors generated by floating-

point computations, and also of the possible use of iterative methods instead of exact

methods. Let us explain them briefly. For instance, the stopping criterion in Step 2

of Algorithm 4.2 can be replaced by a condition on the residual of the mean payoff,

f̂(η(k))−η(k) and the residual of the relative value, f́η(v
(k))−η(k)−v(k). Here, we consider

the infinity norm of the residual of the game that we define as 0.5 ∗ (‖f̂(η(k))− η(k)‖∞ +

‖f́η(v(k)) − η(k) − v(k)‖∞), where ‖ · ‖∞ denotes the sup-norm. Then, we stop the policy

iterations when the infinity norm of the residual of the game is smaller than a given value

εg > 0 or when the strategies cannot be improved. For the tests of this section, we took

εg = 10−12. We use the same condition for the stopping criterion of the intern policy

iterations, that is for Step 3 of Algorithm 4.3 and Step 3 of Algorithm 4.4. Moreover, the

optimization problems in Step 3 of Algorithm 4.2 and Step 4 of Algorithms 4.3 and 4.4,

are solved up to some precision. This means for instance that in Algorithm 4.2, one choose

α(k+1) ∈ AM such that, for all i ∈ [n],

F́η(k)(v

(k); i, α(k+1)(i)) ≤ εv + min
a∈Á

i,η(k),εη

{
F́η(k)(v

(k); i, a)
}

with

Ái,η,ε :=
{
a ∈ Ai | F̂ (η; i, a) ≤ ε+ f̂(η)]i

}
α(k+1)(i) = α(k)(i) if α(k)(i) is optimal,

(4.44)

for some given εη and εv > 0. Finally, the linear systems in Step 2 of Algorithms 4.3

and 4.4 are solved up to some precision, which may be lower bounded when the matrices

of the systems are ill-conditioned. See the Section 4.8 for details about the solution of

these linear systems.

4.7. Implementation and numerical results 127

4.7.1 Variations on tug of war and Richman games

We now present some numerical experiments on the variant of Richman games defined

in Section 4.6, constructed on random graphs. As in the previous section, we consider

directed graphs, with a set of nodes equal to [n] and a set of arcs E ⊂ [n]2. The dynamic

programming operator is the map f defined in (4.43), where the value rij is the reward of

the arc (i, j) ∈ E. In the tests of Figure 4.2 to Figure 4.4, we chose random sparse graphs

with a number of nodes n between 1000 and 50000, and a number of outgoing arcs fixed

to ten for each node. The reward of each arc in E has value one or zero, that is rij = 1

or 0. The arcs (i, j) ∈ E and the associated rewards rij are chosen randomly (uniformly

and independently). We start the experiments with a sizer of graph (number of nodes)

equal to n = 1000, then we increase the size by 1000 until reaching n = 10000, after we

increase the size by 10000 and end with a number of 50000 nodes. For each size that

we consider, we made a sample of 500 tests. The results of the application of the policy

iteration (Algorithm 4.2 with the above modifications) on those games are presented in

Figures 4.2 to 4.4 and are commented below.

Figure 4.2 gives for each size n, and among the sample of 500 tests, the number of

tests that encountered at least one strongly degenerate policy iteration for the first player.

Hence, these games require the degenerate case issue presented in this paper, that is

Step 5 of Algorithm 4.1 or 4.2. Moreover, from the data of Figure 4.2, we observe that

approximately between 10 and 15 percent of the tests have at least one strongly degenerate

policy iteration for the first player.

1000 3000 5000 7000 9000 30000

F
re
q
u
en
cy

0
20

40
60

80

Number of nodes

50000

Figure 4.2: Tests on a variant of Richman games constructed on random graphs. The

histogram shows for each size (number of nodes), the number of tests having at least one

strongly degenerate policy iteration for the first player, among 500 tests.

In the table below we report the number of strongly degenerate iterations that occur

in the global sample of tests.

Number of strongly degenerate iterations 0 1 2 3 6

Number of tests 6051 919 28 1 1

We observe that in general there is no more than one or two strongly degenerate policy

iterations for our sample of tests. Note that in this section, a strongly degenerate policy

iteration is to be understood as a strongly degenerate iteration for the first player only,

that is for Algorithm 4.2.

128 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

In Figure 4.3, we draw on the left curves that represent the number of policy iterations

for the first player, that is the number of iterations of Algorithm 4.2, as a function of the

size n of the graph. The dashed lines on top and bottom are respectively the maximum and

minimum value, over the sample of 500 tests, and the plain line is the average value, all as

a function of the size. We observe that the average number of first player’s policy iterations

is almost constant as the size increases. Using the same model of representation, we show

on the right of Figure 4.3 respectively the maximum, average and minimum values for the

total number of policy iterations for the second player, that is the sum of the numbers of

iterations of Algorithm 4.4 when applied by Algorithm 4.2, as a function of the size. We

also observe that these values do not vary a lot with the size.

0 10000 20000 30000 40000 50000

4
6

8
10

12

Number of nodes

It
er
at
io
n
s

0 10000 20000 30000 40000 50000

20
40

60
80

Number of nodes

Figure 4.3: Tests on a variant of Richman games constructed on random graphs. On

the left, the curves from top to bottom represent respectively the maximum, average,

minimum number of first player’s policy iterations, among 500 tests, as a function of the

number of nodes. On the right, the curves represent the total number of second player’s

policy iterations.

In Figure 4.4, we present on the left the total cpu time (in seconds) needed by the

policy iteration to find the solution of the game. As for the two previous figures, the

curves from top to bottom show respectively the maximum, average and minimum values,

over the sample of 500 tests, as a function of the size of the graphs. Finally, on the

right of Figure 4.4, we give also the average of the total cpu time (in seconds) needed to

solve the game but we separated the tests with strongly degenerate policy iteration(s),

represented by the dashed line, from the non strongly degenerate ones, represented by the

plain curve. We observe that the average cpu time is somewhat greater for the tests with

strongly degenerate iteration(s). This is due to the additional steps needed for degenerate

iterations. Indeed, the cpu time of a degenerate iteration should be approximately the

double of that of a nondegenerate iteration, and since the number of policy iterations is

around 10 in the sample of tests, the average of the total cpu time of tests with (strongly)

degenerate iterations should be approximately 10 percent greater than that of the other

tests.

In addition, in Table 4.1, we give numerical results for ten tests of the variant of

Richman game, constructed on random large graphs with a number of nodes between 105

and 106. We observe that the number of iterations are of the same order as for the previous

sample of tests presented in Figure 4.3.

4.7. Implementation and numerical results 129

0 10000 20000 30000 40000 50000

0
50

15
0

25
0

T
im

e
(s
)

Number of nodes

0 10000 20000 30000 40000 50000

0
40

80
12
0

Number of nodes

Figure 4.4: Tests on a variant of Richman games constructed on random graphs. On

the left, the curves from top to bottom represent respectively the maximum, average and

minimum values of the total cpu time (in seconds) taken by the policy iteration algorithm,

among 500 tests, as a function of the number of nodes. On the right, the dashed line

represents the average among the tests that encounter at least one strongly degenerate

policy iteration for the first player, whereas the plain line represents the average among

the other tests.

Table 4.1: Numerical results on a variant of Richman game constructed on random large

graphs.

Number of Iterations of Total number Strongly degenerate Infinity norm CPU time

nodes first player of iterations iterations of residual (s)

100000 12 78 1 1.44e− 14 3.24e+ 02

200000 12 74 0 7.44e− 15 7.90e+ 02

300000 11 82 0 1.33e− 15 9.38e+ 02

400000 12 82 1 8.55e− 15 1.42e+ 03

500000 12 77 1 2.00e− 14 2.16e+ 03

600000 12 77 0 8.66e− 15 2.61e+ 03

700000 11 85 0 3.02e− 14 2.61e+ 03

800000 12 81 1 4.82e− 14 6.79e+ 03

900000 12 79 1 1.27e− 14 4.17e+ 03

1000000 12 90 1 3.33e− 15 1.96e+ 04

130 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

4.7.2 Pursuit evasion games

We consider now a pursuit evasion game with two players : a pursuer and an evader.

The evader wants to maximize the distance between him and the pursuer and the pur-

suer has the opposite objective. See for instance [BFS94, BFS99, LCS08] for a complete

description of general pursuit games. To simplify the model, we consider as state of the

game, the distance between the two players. Then, the state of the game is given by

x = xP − xE where xP is the position of the pursuer and xE the position of the evader.

We also restrict the state x to stay in a unit square centered in the 0-position, that is

x ∈ X := [−0.5, 0.5] × [−0.5, 0.5]. At each time of the game, the reward for the evader

is the euclidean square norm of the distance between the two players, i.e. ‖x‖22. Such a

game is a special class of differential games, the dynamic programming equation of which

is an Isaacs partial differential equation. Under our simplifications and assumptions, the

Hamiltonian of this equation is given by :

H(x, p) = max
a∈A(x)

(a · p) + min
b∈B(x)

(b · p) + ‖x‖22 ∀x ∈ X, p ∈ R2 , (4.45)

meaning that in the case of a finite horizon problem, the Isaacs equation would be given,

at least formally (but also in the viscosity sense) by :

−∂v
∂t

+H(x,∇v(x)) = 0 x ∈ X .

Here A(x) and B(x) are the sets of possible directions for the evader and the pursuer

respectively, when the state is equal to x ∈ X. On the boundary, we consider that only

actions keeping the state of the game in the domain X are allowed, hence the above

equation has to be satisfied until the boundary.

We shall consider this differential game with a mean-payoff criterion and the above

reward. This means that the analogous to System (4.14) is the following system of Isaacs

equations :
max
a∈A(x)

(a · ∇η(x)) + min
b∈B(x)

(b · ∇η(x)) = 0 , x ∈ X ,

−η(x) + max
a∈Áη(x)

(a · ∇v(x)) + min
b∈B́η(x)

(b · ∇v(x)) + ‖x‖22 = 0 , x ∈ X ,
(4.46)

where

Áη(x) :=argmax
a∈A(x)

(a · ∇η(x)) ,

B́η(x) :=argmin
b∈B(x)

(b · ∇η(x)) .

In classical pursuit-evasion games, such as in [BFS99], the reward is constant and the

value function is defined as the time (or the exponential of the opposite of the time) for

the pursuer to capture the evader, then the value function is solution of the stationary

Isaacs equation that is (4.46) with η ≡ 0, corresponding to the above Hamiltonian with

4.7. Implementation and numerical results 131

1 instead of ‖x‖22. In that case, the value is infinite when the pursuer’s speed is smaller

than the evader’s speed, and it is would be difficult to compute an optimal strategy using

Isaacs equation. Here by considering a mean-payoff problem, we may solve the problem

even when pursuer’s speed is smaller than the evader’s speed, as we shall see below. Note

that one may have kept the reward equal to 1, but then the optimal value η would have

given less information.

A monotone discretization, for instance a finite difference discretization scheme (see [KD92]),

of System (4.46) yields to System (4.14) for the dynamic programming operator f of a dis-

crete time and finite state space game, which then may be solved using our policy iteration

Algorithm 4.2.

In our tests, the domain X is discretized in each directions with a constant step size

h. Then the two players of the discrete game are moving on the discretized nodes of the

domain, similarly to the moves in a chess game. We assume also that the evader cannot

move when the euclidean norm of the relative distance between him and the pursuer is

less than 0.1, i.e when x ∈ B((0, 0); 0.1). We shall call the evader, the mouse and his set

of possible actions at each state of the game will given by :

A(x) :=

{(a1, a2) | al ∈ {0, 1,−1}, l = 1, 2} x ∈
◦
X \ B((0, 0); 0.1)

{(0, 0)} x ∈ B((0, 0); 0.1) ,

where
◦
X denotes the interior of X. The pursuer, that we shall call the cat, has the

following set of possible actions :

B(x) := {(b1, b2) | bl ∈ {0, b̄,−b̄}, l = 1, 2} x ∈
◦
X ,

where b̄ is a positive real constant and represents the speed of the cat. Moreover, on the

boundary of X, the sets A(x) and B(x) are restricted to avoid actions that bring the state

out of X.

Numerical results for this game are presented in Table 4.2 when b̄ = 0.999 , b̄ = 1 and

b̄ = 1.001 respectively. Note that the solution of the discretization of Equation (4.46) may

differ from the solution of the continuous equation. We observe that for b̄ = 0.999 and

b̄ = 1.001, we have a strongly degenerate iteration for the first player on the last iteration.

The optimal actions for the discretized problem with b̄ = 0.999 are represented in

Figure 4.5, at each node of the grid: the actions of the mouse are on the left, and that of

the cat are on the right. The optimal actions are approximately the same for the two other

values of b̄. When b̄ = 0.999, the speed of the cat is smaller than the speed of the mouse

(= 1). The numerical results for the discretized game give an optimal mean-payoff η such

that η(x) = 0.492 for x ∈ X \B((0, 0); 0.1) and η(x) = 0 for x ∈ B((0, 0); 0.1). This means

that the cat cannot catch the mouse when their starting positions are not too close and

the mouse can keep almost the maximum distance between them. The relative value is

represented on the left of Figure 4.6. When b̄ = 1, the speeds of the cat and the mouse are

equal. The numerical results for the discretized game give a relative value v approximately

132 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

Table 4.2: Numerical results for the mouse and cat example where b̄ is the speed of the cat.

The second column is the index of the iteration on the cat’s policies and the third column

is the corresponding total number of iterations on the mouse’s policies. The last column

indicates if the cat’s policy iteration is strongly degenerate. Number of discretization

nodes: 257× 257.

b̄ Cat policy Number of mouse Infinite norm of CPU time Strongly degenerate

iteration index policy iterations residual (s) iteration

0.999 1 2 1.25e− 06 2.59e+ 01 0

2 1 9.93e− 12 3.95e+ 01 0

3 1 5.68e− 14 7.35e+ 02 1

1 1 2 1.25e− 06 2.60e+ 01 0

2 1 3.39e− 21 3.84e+ 01 0

1.001 1 2 1.25e− 06 2.59e+ 01 0

2 1 1.96e− 14 6.51e+ 02 1

equal to zero for every starting point and an optimal mean-payoff η(x) ≈ ‖x‖22, meaning

that the cat and mouse keep the same initial distance all along the game. In the last

example, the speed of the cat b̄ = 1.001 is greater than that of the mouse (= 1). The

numerical results for the discretized game give an optimal mean-payoff η close to zero.

The relative value v is given on the right of Figure 4.6. In this case, the cat catches the

mouse.

Figure 4.5: Optimal actions for the mouse on the left and for the cat on the right.

4.8. Details of implementation of Policy Iteration for multichain one player games 133

-0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.6
-0.4

-0.2
0

0.2
0.4

0.6

-140
-120
-100
-80
-60
-40
-20

0
20

-0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.6
-0.4

-0.2
0

0.2
0.4

0.6

0
10
20
30
40
50
60
70
80
90

Figure 4.6: Relative value v for the mouse and cat game when the speed of the mouse is

one, the speed of the cat equals 0.999 on the left and 1.001 on the right.

4.8 Details of implementation of Policy Iteration for multi-

chain one player games

We explain in more details here why System (4.33) has a unique solution and is selecting

one special solution of System (4.37) with k instead of k+1, and how it is solved practically

(see also [DF68, Put94]).

Recall that System (4.37) is of the form (4.39) rewritten here:{
η = P η

η + v = P v + r ,

where r = r(δ) ∈ Rn and P = P (δ) is a stochastic matrix, with δ = β(k+1). Moreover,

System (4.33) corresponds to
ηi = (Pη)i i ∈ [n] \ S ,

ηi + vi = (Pv)i + ri i ∈ [n] ,

vi = 0 i ∈ S ,

(4.47)

where r and P are as before but with δ = β(k), and where S is composed of minimal

indices iF of each final classes F of P . Then one need to show that System 4.47 has a

unique solution and is selecting one special solution of System (4.39).

First, for all final classes F of P , PFF is an irreducible Markov matrix, hence the

equation ηF = (Pη)F , which is equivalent to ηF = PFF ηF , is also equivalent to the

condition that ηi = ηj for all i, j ∈ F . Moreover, PFF has a unique stationary (or invariant)

probability measure πF , that is a row probability vector solution of πF = πFPFF , and this

vector has strictly positive coordinates. This implies that one can eliminate, for each final

class F of P , one equation with index i in F in the equation η = Pη, without changing

the set of solutions. Hence, any solution of System 4.47 is also solution of (4.39).

Second, denote by F the union of final classes, and by T the union of transient classes,

that is the complement in [n] of F . Then, w is in the kernel of I − P if, and only if, it

134 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

satisfies wF = PFFwF , for all final classes F of P and wT = PT T wT + PT FwF . As said

before the first equations are equivalent to the conditions wi = wj for all i, j ∈ F . Since

PT T has transient classes only, it has a spectral radius strictly less than one, which implies

that given the vectors wF for all final classes F , the equation wT = PT T wT +PT FwF has

a unique solution wT . Hence, the dimension of the kernel of I −P is equal to the number

of final classes of P , and any element of this kernel which has one coordinate i ∈ F equal

to zero for each final classes F of P , has all its coordinates equal to zero. This implies that

given η ∈ Rn, the solution v of System (4.47) is unique if it exists (the difference between

two such solutions satisfies the above conditions). This also implies that the codimension

of the image of I −P is equal to the number of final classes. Hence, the image of I −P is

exactly equal to the set of vectors η ∈ Rn such that πF ηF = 0, for all final classes F of P .

A vector η ∈ Rn is such that System (4.47) has a solution v ∈ Rn if and only if η = Pη

and η− r is in the image of I −P . These conditions are equivalent to the three conditions

ηi = ηj for all i, j ∈ F , for all final classes F , ηT = PT T ηT + PT FηF , and πF ηF = πF rF ,

for all final classes F . The first and third conditions together are equivalent to ηi = πF rF ,

for all i ∈ F , and all final classes F of P , which gives a unique solution ηF . Since the

second one has a unique solution ηT , given ηF , we get that there is a unique vector η ∈ Rn

such that System (4.47) has a solution v ∈ Rn. In conclusion, System (4.47) has a unique

solution (η, v), which finishes the proof what we wanted to show.

One may try to solve System (4.47) by using usual LU methods, however when P is

not irreducible, such a method is not robust. We rather use the decomposition of P in

classes, and the previous properties. In particular, since PT T has a spectral radius strictly

less than 1, one can compute (η, v) solution of System (4.47) by first computing ηF and vF ,

for all final classes F of P , then computing successively ηT and vT which are respectively

fixed points of contracting affine systems with tangent linear operator PT T :{
ηT = PT T ηT + PT F ηF

vT = PT T vT + PT FvF + rT − ηT .

There exists two ways to compute ηF and vF . One is to compute the stationary

probability πF to determine ηF by ηi = πF rF , for all i ∈ F , and then solve the following

system with unknown vF ∈ RF :

vF = PFF vF + rF − ηF ,

by eliminating one equation (since one equation is redundant) with index j ∈ F , and

adding the condition vi = 0 for one element i ∈ F . Another method is to consider ηF as

constant, say ηi = η̄ for i ∈ F , and solve the system with unknowns η̄ ∈ R and v ∈ RF :

η̄ + vi =
∑
j∈F

Pij vj + ri, i ∈ F ,

by adding the condition vi = 0 for one element i ∈ F . In our algorithm, we choose the

index i = j ∈ F to be the minimal index of F (for a fixed total ordering of nodes). This

method gives the following algorithm to solve System (4.47).

4.8. Details of implementation of Policy Iteration for multichain one player games 135

Algorithm 4.7 (Solution of System (4.47)). Decompose the matrix P into irreducible

classes and permute nodes without changing the order in each class, such that P takes the

following form :

P =

P11 P12 P1m

0 P22 P2m

...
...

...
...

...

0 Pm−1,m−1 Pm−1,m

0 0 Pmm

where m denotes the number of irreducible classes and PII are square irreducible subma-

trices of P , for I = 1, . . . ,m. Note that, the class corresponding to a submatrix PII is final

if and only if the submatrices PIJ are all null for all J 6= I.

For each class I from m to 1, do the following :

Step 1. If I corresponds to a final class, that is PII is a stochastic matrix, do one of the

two following sequences of operations :

A. (a) Find the stationary probability πI of PII : πI PII = πI ,

(b) Set η̄ = πI rI and ηi = η̄ i ∈ I ,

(c) Solve the system with unknown vI ∈ RI :{
vi =

∑
j∈I Pijvj + ri − η̄ i ∈ I \ S ,

vi = 0 i ∈ S ∩ I ,
(4.48)

B. Solve the system with unknowns vI ∈ RI and η̄ ∈ R :{
η̄ + vi =

∑
j∈I Pijvj + ri i ∈ I ,

vi = 0 i ∈ S ∩ I ,

and set ηi = η̄ i ∈ I ,

Step 2. if I corresponds to a transient class, that is if PII is a strictly submarkovian matrix.

do the following steps :

2.1 compute ηI solution of the following system :

ηI = PIIηI +
∑
J>I

PIJηJ

2.2 compute vI solution of the following system :

vI = PIIvI +
∑
J>I

PIJvJ + rI − ηI .

In our numerical experiments, the linear system (4.33) at each intern policy iteration

is solved by using Algorithm 4.7. For the numerical experiments of Section 4.7.1, on each

final class, we used a SOR iterative solver to find the stationary probability πI and also to

compute the corresponding vI in method A in Step 1 of Algorithm 4.7. For the transient

class, we used the LU solver of the package [DEG+99].

136 CHAPTER 4. PI FOR STOCHASTIC GAMES WITH MEAN PAYOFF

The Successive Over-Relaxation (SOR) method is an iterative scheme that belongs to

the class of splitting methods or relation methods, see for instance [BP94]. It is derived

from the Gauss-Seidel relaxation scheme. Consider a matrix A ∈ Rn×n such that A =

D − L − U where D, −L, −U are respectively the diagonal, lower and upper triangular

part of A. The SOR smoothing operator is defined by Sw = M−1N where M = D − wL

and N = [(1− w)D + wU] for 0 < w < 2.

Consider the irreducible stochastic matrix PII ∈ RI×I and decompose I − P TII =

D − L − U where I is the identity matrix of RI×I . Starting from an initial positive

approximation π(0) ∈ RI , a SOR smoothing step to find the stationary probability of PII

is given by :

π(k) = Sw π
(k−1)

π(k+1) =
π(k)(∑
i∈[n] π

(k)
i

) ·
The sequence (π(2k))k≥0 converges to the transpose of the stationary probability of PII

when the limit limk→∞ S
(k)
w exists, see [BP94] for more details. To solve Equation (4.48),

decompose I −PII = D−L−U . Then, starting from an initial approximation v(0) ∈ RI ,
a SOR smoothing step consists in :

v(k) = (I − 1µ) (Sw v
(k−1) + M−1(rI − ηI))

where 1 = (1 . . . 1)T ∈ RI , and µ ∈ RI is a row vector such that µi = 1 for i ∈ S ∩ I,

and µi = 0 otherwise. The sequence (v(k))k≥0 converges to the solution of Equation (4.48)

when the limk→∞ S
(k)
w exists, see [BP94] for more details.

For the numerical tests of Section 4.7.2, we used the LU solver of the package [DEG+99]

in both cases.

Chapter 5

Multigrid methods for particular

linear systems with applications to

Markov Chains and to zero-sum

two player stochastic games with

mean payoff

In this chapter, we present some new algebraic multigrid schemes to solve particular

singular linear systems that arise for instance in the policy iteration algorithm for zero-

sum two player stochastic games with mean payoff. In Section 5.2, based on one of these

algebraic multigrid methods, we introduce a new method to find the stationary probability

of an irreducible Markov chain using a stochastic control (i.e. a one player stochastic game)

approach and the policy iterations of Howard [How60] and Denardo and Fox [DF68]. We

present numerical results on transition matrices of random walks on a square uniform grid.

In Section 5.3, we perform some numerical tests on ergodic differential pursuit-evasion

games by using a simplified version of the policy iteration algorithm for mean payoff zero-

sum two player games (Algorithm 4.2), where Step 5 is never visited, combined with an

algebraic multigrid algorithm.

5.1 Solving the linear systems

In this section, we explain which algorithms we use to find a couple (v, η) of vectors of

Rn solution of the linear system :

η = P η (5.1a)

η + v = P v + r (5.1b)

where r is a vector ofRn and P ∈ Rn×n+ is the transition probability matrix of an irreducible

Markov chain, that is P1 = 1 where 1 ∈ Rn is the vector of ones and P is irreducible.

137

138 CHAPTER 5. AMG FOR MEAN PAYOFF GAMES AND MARKOV CHAINS

Recall that this system is replaced by the following non-singular system :
ηi =

∑
j∈I Pijηj i ∈ I \ S ,

ηi + vi =
∑

j∈I Pijvj + ri i ∈ I ,

vi = 0 i ∈ S ∩ I ,

(5.2)

in Step 1 of Algorithm 4.7, which appears at least once in each policy evaluation step of

the policy iteration algorithm when solving a Markov Decision Process with mean payoff,

and hence in each intern policy iteration when solving a zero-sum two player stochastic

game with mean payoff.

There exists two commonly used methods to solve System (5.1) (or System (5.2)).

The first approach requires the stationary probability of the irreducible Markov chain

from which η can be computed and given η, it solves System (5.1b) with unknown v.

The second approach consists in solving System (5.1b) by considering that η is a constant

vector.

In the following sections, we shall use some numerical background of Section 2.4.

5.1.1 First Approach: using the stationary probability

This approach consists in first computing the stationary probability π of an irreducible

Markov chain with transition matrix P of Equation (5.1). Here, we assume that π is a

column vector and the stationary probability will be π. Hence, we need to find π ∈ Rn+
satisfying :

πTP = πT and πT 1 = 1. (5.3)

From [Put94, DF68], the solution η of Equation (5.1) equals a constant vector : η = η̄1

where η̄ = πT r ∈ R and 1 ∈ Rn is the vector of ones. Hence, replacing this value

in Equation (5.1b), the system becomes a singular consistent linear system that can be

solved to find the solution v.

From Chapter 2, the stationary probability can be computed using a specific direct

solver (see Section 2.4.1) or by iterative methods such as described in Section 2.4.2. We

shall use in particular the SOR splitting that we recall below.

Decompose the matrix P such that P T = PD + PL + PU where PD, PL and PU

are respectively the diagonal, the strictly lower triangular part and the strictly upper

triangular part of P T . Set D = (I − PD). Starting from an initial approximation π(0) ∈
(R∗+)n, such that (π(0))TP = (π(0))T and (π(0))T 1 = 1, a SOR smoothing step at iteration

k + 1 is given by :

π(k+1) =
Swπ

(k)

(1T Sw (π(k)))
(5.4)

with Sw = M−1N , M = (D − wPL), N = [(1 − w)D + wPU] and 0 < w < 1. The

following result shows the semi-convergence of Sw.

Proposition 5.1. Assume that P ∈ Rn×n+ is an irreducible stochastic matrix (P1 =

1). Decompose the matrix P such that P T = PD + PL + PU where PD, PL and PU are

5.1. Solving the linear systems 139

respectively the diagonal, the strictly lower and the strictly upper triangular part of P T .

Set D = (I − PD). Let Sw = M−1N with M = (D − wPL) and N = [(1− w)D + wPU].

Then the SOR smoothing operator Sw is semi-convergent for 0 < w < 1.

Proof. For n = 1, the result is trivial. For n > 1, since P ∈ Rn×n+ is irreducible and

0 < w < 1, we have that PD +wPL is a non negative matrix such that (PD +wPL) ≤ P T

and (PD + wPL) 6= P T . Hence by part 4 of Theorem 2.6, ρ(PD + wPL) < ρ(P) = 1.

Hence, for 0 < w < 1, we have that (I − (PD + wPL))−1 =
∑∞

k=0(PD + wPL)k ∈ Rn×n+

and N ∈ Rn×n+ . It follows that Sw ∈ Rn×n+ and the SOR splitting is regular. Moreover,

we have that :

Sw = (D − wPL)−1 [(1− w)D + wPU] (5.5a)

≥ (I + PD + wPL) [(1− w)D + wPU] (5.5b)

≥ (1− w)(I + PD)D + w(I + PD)PU + w(1− w)PLD (5.5c)

Since (I + PD) and D = (I − PD) are diagonal matrices with strictly positive diagonal

elements, the graph of Sw includes the graph of (I + P T). Since P is irreducible, the

operator (I + P T)n−1 ∈ (R∗+)n×n is a positive matrix and hence the smoother Sw is

primitive (since Sn−1
w ∈ (R∗+)n×n).

Moreover, the matrix NM−1 is column stochastic :

1T (P T) = 1T ,

1T w(PD + PU + PL) = w1T ,

1T [(1− w)D + wPU] = 1T (D − wPL),

1T [(1− w)D + wPU] (D − wPL)−1 = 1T .

Since NM−1 and M−1N are similar matrices, we have that ρ(Sw) = ρ(M−1N) = 1.

Hence, by part 8 of Theorem 2.6, the smoother Sw is semi-convergent.

Corollary 5.2. For π(0) ∈ (R∗+)n, the sequence of iterates
(
π(k)

)
k≥0

given by Equa-

tion (5.4) converges to the solution of Equation (5.3) if 0 < w < 1.

Proof. From Equation (5.3), we have that π(k+1) = c(k)Swπ
(k) with c(k) = (1TSw(π(k)))−1

and π(k+2) = c(k+1)c(k)S2
w(π(k)) where c(k+1)c(k) = (1TS2

w(π(k)))−1. Hence, it is equivalent

to normalize at each iteration or at the end of the iterations. From [BP94], since the

smoother Sw is semi-convergent, the iterates converge to the solution for any π(0) ∈ (R∗+)n.

Note that more general results of convergence were proposed and studied in [MP77,

NP79, Ple76].

Solving the singular consistent linear system

It remains then to find the solution v ∈ Rn of the linear system

η̄ + vi =
∑
j∈[n]

Pijvj + ri i ∈ [n] ,

140 CHAPTER 5. AMG FOR MEAN PAYOFF GAMES AND MARKOV CHAINS

where η̄ ∈ R, r ∈ Rn, P ∈ Rn×n+ are such that P1 = 1 and r − η̄1 is in the kernel of πT ,

hence in the range of (I − P). If we set b = r − η̄1 ∈ Rn, we have to solve the singular

consistent system :

v = Pv + b . (5.6)

This singular linear system admits an infinite set of solutions. A solution v is defined up

to the addition of a constant vector. Since πT (v − Pv − b) = −πT b = 0 for all v, and

π ∈ (R∗+)n, any equation in Equation (5.6) is a linear combination of the others. Hence,

we can remove a row with index s ∈ {1, . . . , n} of Equation (5.6) without changing the

set of solutions. This row equation can for instance be replaced by the equation vs = 0.

Then, we obtain a non singular system that can be solved by using for instance a direct

solver such as the Gauss elimination, see Section 2.1.

Another approach consists in adapting the relaxation schemes (see Section 2.2) for

singular systems. That is, for instance, we choose a coordinate s ∈ [n] and after each

relaxation step we remove the constant v
(k+1)
s to all the coordinates of the current approx-

imation v(k+1). In particular, we described the SOR splitting below.

Decompose the matrix P such that P = PD + PL + PU where PD, PL and PU are re-

spectively the diagonal, the strictly lower triangular part and the strictly upper triangular

part of P . Set D = (I − PD). Choose s ∈ [n] and let µ ∈ Rn be the row vector such that

µs = 1 and µi = 0 for i 6= s. Starting from an initial approximation v(0) ∈ Rn, a SOR

smoothing step at iteration k + 1 is given by :

v(k+1) = (I − 1µ) (Sw v
(k) + wM−1b) (5.7)

with Sw = M−1N , M = (D − wPL), N = [(1 − w)D + wPU] and 0 < w < 1. We first

show the following lemma.

Lemma 5.3. Let S ∈ Rn×n such that ρ(S) = 1, γ(S) < 1 and 1 is a simple eigenvalue of

S. Let z ∈ Rn be such that Sz = z and µ ∈ Rn the row vector such that µz = 1. Then,

we have ρ((I − zµ)S) < 1.

Proof. Since Sz = z, we have that

(I − zµ)S(I − zµ) = (I − zµ)(S − zµ), (5.8a)

= (I − zµ)S − (I − zµ)zµ, (5.8b)

= (I − zµ)S. (5.8c)

By induction, it follows that ((I − zµ)S)k = (I − zµ)Sk.

From the Jordan decomposition of S, since γ(S) < 1 and 1 is a simple eigenvalue of

S, we get that limk→∞ S
k = Q where Q is the spectral projection of S on the eigenspace

associated to the eigenvalue 1. If u is a left eigenvector of S such that uz = 1, we get that

Q = zu. Since ((I − zµ)S)k = (I − zµ)Sk, we have that

lim
k→∞

((I − zµ)S)k = (I − zµ)zu = (z − z)u = 0.

5.1. Solving the linear systems 141

This implies that all the eigenvalues of (I − zµ)S have modulus strictly less than one,

hence ρ((I − zµ)S) < 1.

Now, we show the semi-convergence of Sw of Equation (5.7).

Proposition 5.4. Assume that P ∈ Rn×n+ is an irreducible stochastic matrix (P1 = 1).

Decompose the matrix P = PD + PL + PU where PD, PL and PU are respectively the

diagonal, the strictly lower and the strictly upper triangular part of P . Set D = (I − PD).

Let Sw = M−1N with M = (D − wPL) and N = [(1 − w)D + wPU]. Let Sw = M−1N

with M = (D − wPL), N = [(1−w)D + wPU] and 0 < w < 1. Then, the operator Sw is

semi-convergent.

Proof. For n = 1, the result is trivial. For n > 1, since P ∈ Rn×n+ is irreducible and

0 < w < 1, we have that PD + wPL is a non negative matrix such that (PD + wPL) ≤ P

and (PD +wPL) 6= P . Hence by part 4 of Theorem 2.6, ρ(PD + wPL) < ρ(P) = 1. Hence,

for 0 < w < 1, we have that (I − (PD + wPL))−1 =
∑∞

k=0(PD + wPL)k ∈ Rn×n+ and

N ∈ Rn×n+ . It follows that Sw ∈ Rn×n+ and the SOR splitting is regular. Following the

same argument as in Equations (5.5) with P instead of P T , we have that the graph of Sw

includes the graph of (I + P). Since P is irreducible, the operator (I + P)n−1 ∈ (R∗+)n×n

is a positive matrix and hence the smoother Sw is primitive.

Moreover, the operator Sw is a row stochastic matrix :

P 1 = 1,

w(PD + PU + PL) 1 = w1,

[(1− w)D + wPU] 1 = (D − wPL) 1,

(D − wPL)−1 [(1− w)D + wPU] 1 = 1,

and ρ(Sw) = ρ(M−1N) = 1. Hence, by part 8 of Theorem 2.6, the operator Sw is semi-

convergent and we have :

lim
k→∞

Skw = 1πTw ,

where πw is the stationary probability of Sw.

Corollary 5.5. The iterates
(
v(k)

)
k≥0

of Equation (5.7) converge to a solution of Equa-

tion (5.6).

Proof. We have that a solution v of Equation (5.6) satisfies

v = (I − 1µ) (Sw v + wM−1b) .

Hence, the error e(k) = v(k) − v propagates as

e(k+1) = (I − 1µ)Sw e
(k) .

142 CHAPTER 5. AMG FOR MEAN PAYOFF GAMES AND MARKOV CHAINS

From the proof of Proposition 5.4, we have that Sw is stochastic and primitive. Hence by

Lemma 5.3, we get :

ρ((I − 1µ)Sw) < 1.

Note that in the method described in Equation (5.7), one can use any other vector

µ ∈ Rn+ such that µ1 = 1 or a another smoother S which is semi-convergent and the above

results old.

From this splitting method, we propose in Algorithm 5.1, an adaptation of the multigrid

Vcycle of Algorithm 2.2 to find an approximation of the solution of Equation (5.6). We use

the same notation as in Section 2.3.4. As for the non singular case, the multigrid method

starts with the construction of the L grids and the corresponding transfer operators, by

using for instance one of the methods of Section 2.3.5 or Section 2.3.6. Then, given an

initial approximation v(0) on the fine grid, it consists in applying successively the Vcycle

of Algorithm 5.1 until the iterates converge to the solution of the system. The resulting

algorithm that we shall call AMGsingular, is given in Algorithm 5.2.

Algorithm 5.1 Vcycle for singular system : u← V cycleSingular(u, b)

if l < L then

pre relaxation :

u|l ← (I |l − 1|lµ|l)(S|lu|l + w(M |l)−1b|l) (on Ω|l) ν1 times

coarse grid correction :

b|l+1 ← Rl+1
l (b|l −A|lu|l)

u|l+1 ← 0

u|l+1 ← V cycleSingular(u|l+1, b|l+1) ς times

u|l ← u|l + P ll+1u
|l+1

post relaxation :

u|l ← (I |l − 1|lµ|l)(S|lu|l + w(M |l)−1b|l) (on Ω|l) ν2 times

else

Solve A|Lu|L = b|L with µ|Lu|L = 0

end if

Other iterative methods can be used to solve non singular consistent systems see for

instance [BP94, Saa03]. In the next section, we discuss the second approach to solve

Equation (5.1).

5.1.2 Second Approach: Solving the linear system solving by considering

that η is a constant vector

The second approach consists in solving directly the linear system :

η̄ + vi =
∑
j∈[n]

Pijvj + ri i ∈ [n] , (5.9)

5.1. Solving the linear systems 143

Algorithm 5.2 AMG for System (5.6): v ← AMGsingular(v(0), P, b)

1. Set P |0 = P and A = I − P .

2. Choose a splitting A = M − N such that M ∈ Rn×n+ is invertible and S ∈ Rn×n+ .

The same splitting will be applied on all levels.

3. Construct the coarse grid operators for l = 1 to L:

– Build P l−1
l and Rll−1.

– Set P |l = Rll−1P
|l−1P l−1

l and A|l = I |l − P |l.
– Set S|l = (M |l)−1N |l where A|l = M |l −N |l.
– Choose s ∈ {1, · · · , nl} and set µ|l ∈ Rn such that µ

|l
s = 1 and µ

|l
i = 0 for i 6= s.

4. Initialize k = 0.

5. Compute v(k+1) = V cycleSingular(v(k), b).

6. If ‖b−Av(k+1)‖ < ε then STOP and return v(k+1).

7. Else, set k = k + 1 and go to Step 5.

where r ∈ Rn, P ∈ Rn×n+ is an irreducible stochastic matrix (P1 = 1), and η̄ ∈ R and

v ∈ Rn are the unknowns. Then, the solution η of Equation (5.1) is given by ηi = η̄,

i ∈ [n].

One can for instance use a direct method to find a solution of this system (see for

instance [Put94] and hereafter). If we fix the sth-coordinate of v to zero for s ∈ [n], we

can remove vs from the linear System (5.9). Then, we obtain a non singular linear system

with n unknowns. That is, if we choose s to be the first coordinate, the linear System (5.9)

becomes :
1 A12 . . . A1n

...
...

. . .
...

1 An2 . . . Ann

η̄

v2

...

vn

 =

r1

r2

...

rn

with A = I − P ∈ Rn×n. Indeed, it is equivalent to :

η̄

1

1
...

1

 +

A11 . . . A1n

...
. . .

...

An1 . . . Ann

0

v2

...

vn

 =

r1

r2

...

rn

and it can be solved for instance with the Gauss elimination algorithm or any algorithm

for solving non singular systems.

On the other hand, one may try to use an iterative solver, such as a splitting method,

on Equation (5.9). Let us apply, as in the previous section, a splitting method with

(I − P) = M −N directly to the system :

v = Pv + r,

144 CHAPTER 5. AMG FOR MEAN PAYOFF GAMES AND MARKOV CHAINS

with P ∈ Rn×n+ an irreducible stochastic matrix (P1 = 1) and r ∈ Rn, even when r is not

in the range of (I − P). This means that we define the k + 1th-iteration by :

v(k+1) = (I − 1µ) (S v(k) + M−1r),

with S = M−1N with µ ∈ Rn such that µs = 1 and µi = 0 for i 6= s. Since the system to

be solved is singular and inconsistent, the iterates may not converge. Indeed, a solution

of Equation (5.9) satisfies η̄1 + v = Pv+ r or equivalently (M −N)v = r− η̄1, which can

be rewritten as :

v = Sv +M−1(r − η̄1).

Fixing the s-th coordinate of v to zero, it becomes :

v = (I − 1µ) (Sv +M−1(r − η̄1)) .

Hence, the error e(k) = v(k) − v of the splitting method propagates as

e(k+1) = (I − 1µ)(S e(k) +M−1η̄1).

Moreover, if S1 = 1, by Equations (5.8), we have

e(k+1) = (I − 1µ)(Sk+1 e(0) +
k∑
i=0

SiM−1η̄1).

Hence, if we use the SOR splitting of Theorem 5.4, that is Sw, we have that Sw is a

stochastic and primitive matrix, so it is semi-convergent and the powers of Sw converge

towards 1πTw where πw is the stationary probability of Sw. Moreover, by Perron Frobenius

theory and the Jordan form, there exists a non singular matrix W such that :

Skw = W−1

(
1 0

0 Bk

)
W and 1πTw = W−1

(
1 0

0 0

)
W,

where B ∈ Rn−1×n−1 and ρ(B) = γ(Sw) < 1. Hence, there exist a γ(Sw) < c < 1 such

that Skw − 1πTw = O(ck). It follows that (I − 1µ)Skw = O(ck) and the limit of e(k+1) exists

and is equal to :

lim
k→∞

e(k+1) =
∞∑
i=0

(I − 1µ)SiwM
−1η̄1 ,

and µe = 0. Since this series may not be equal to zero, the sequence of iterates v(k)

converges towards a vector z such that µz = 0, which is not necessary the solution of

Equation (5.9). Note that if we had chosen the splitting (I − P) = M − N with M = I

and N = P , then S = P and we would get e = 0. But for the SOR splitting e 6= 0 in

general.

An alternative method to solve the linear System (5.9) is to use an iterative solver and

iterate on both solutions η ∈ Rn and v ∈ Rn. For this purpose, we shall adapt splitting

5.1. Solving the linear systems 145

method explained above. Set A = I − P and split A = M − N where M is invertible.

Define the smoother operator by S = M−1N . Choose s ∈ [n]. Then, given an initial

value v(0) ∈ Rn and by setting η̄(0) = ν (r − Av(0)), the k + 1th-iteration consists in the

following :

v(k+1) = (I − 1µ)(Sv(k) + M−1 (r − η̄(k)1)), (5.10a)

η̄(k+1) = ν (r − Av(k+1)), (5.10b)

where ν = 1
n1T , µ ∈ Rn+ such that µs = 1 and µi = 0 for i 6= s, and 0 < w < 1.

Theorem 5.6. Assume that P ∈ Rn×n+ is an irreducible stochastic matrix (P1 = 1).

Let A = I − P and decompose A = M − N such that M ∈ Rn×n+ is invertible and

S = M−1N ∈ Rn×n+ . Consider the iterates

v(k+1) = (I − 1µ)(Sv(k) + M−1 (r − η̄(k)1)), (5.11a)

η̄(k+1) = ν (r − Av(k+1)), (5.11b)

where µ, ν are row vectors of Rn+ such that ν = 1
n1T , µs = 1 and µi = 0 for i 6= s. Then,

the iterates converge to a solution of Equation (5.9) if ρ((I − 1ν)NM−1) < 1.

Proof. Replacing η̄(k) in Equation (5.11a), the iterates of Equations (5.11) can be rewritten

as :

v(k+1) = (I − 1µ) (Sv(k) + M−1 (r − 1ν(r − Av(k)))),

= (I − 1µ) (M−1(N + 1νA)v(k) + M−1 (I − 1ν)r). (5.12)

Moreover, a solution v of Equation (5.9) also satisfies :

Av − r = (ν(Av − r))1,

= 1ν(Av − r),

which can be rewritten as :

(I − 1ν)Av = (I − 1ν) r, (5.13)

that is equivalent to (M−N−1νA)v = (I−1ν)r or v = M−1(N+1νA)v+M−1(I−1ν)r.

If in addition, we choose v such that µv = 0, v satisfies :

v = (I − 1µ) (M−1(N + 1νA)v + M−1 (I − 1ν)r).

Hence, the scheme defined by Equation (5.12) amounts to apply the splittingM−(N+1νA)

to the operator (I − 1ν)A of System (5.13). Let

E = M−1(N + 1νA),

then the error e(k) = v(k) − v propagates as

e(k+1) = (I − 1µ)E e(k) .

146 CHAPTER 5. AMG FOR MEAN PAYOFF GAMES AND MARKOV CHAINS

Note that E is not a regular splitting since the term (N + 1νA) may not be non negative.

Since A = I −P and S = (I −M−1A), we have that one is an eigenvalue of E and the

vector 1 is a right eigenvector of E :

E1 = M−1(N + 1νA)1 = S1 = 1.

Moreover, the vector νM ∈ Rn is a left eigenvector :

νME = νMM−1(N + 1νA),

= νN + ν(M −N),

= νM.

The geometric multiplicity of the eigenvalue 1 is equal to one. Indeed, if z 6= 0 is such

that Ez = z, that is M−1(N + 1ν(I − P))z = z, we have :

1ν(I − P)z = (M −N)z,

z = Pz + 1ν(I − P)z,

Since P is a stochastic matrix, we have that 1 is a simple eigenvalue of P and hence z is

proportional to 1. Let us show that the algebraic multiplicity of the eigenvalue 1 is also

equal to one. Therefore, it remains to show that ker (I − E)2 = ker (I − E). Assume that

it is not the case, then there exists a non zero vector u ∈ ker (I − E)2 \ker (I − E). Hence,

we have that (I − E)u ∈ ker (I − E) \ {0}, that implies that

Eu = u+ c1 c 6= 0. (5.14)

Left multiply both side by νM , the left eigenvector of E, we obtain cνM1 = 0. Hence,

since M ∈ Rn×n+ is invertible, the last equation is impossible. Hence, the eigenvalue 1 is a

simple eigenvalue of E.

Let us show now that γ(E) < 1. First, we rewrite E :

E = M−1(N + 1νM (I − S)),

= S +M−11νM (I − S),

= (I −M−11νM)S +M−11νM, (5.15)

where M−11νM = (M−11νM)2 and (I −M−11νM) are projections. Setting K = (I −
M−11νM), we have that Ker(νM) = Ker(M−11νM) = Range(K) and Range(I −K) =

Range(M−11) = Ker(K).

From Equation (5.15), we have that Range(K) = Ker(νM) is invariant by E. Let

λ ∈ C and u ∈ Cn be such as Eu = λu. Multiplying both sides by νM , we obtain

νM(E − λI)u = 0. Since νME = νM , we get that (1 − λ)νMu = 0. Hence, if λ 6= 1,

we obtain that u ∈ Ker(νM), hence u is also an eigenvector of (I −M−11νM)S for the

eigenvalue λ. Since the operator (I −M−11νM)S is similar to (I − 1ν)NM−1, they have

the same eigenvalues. Hence, by assumption, we get that

γ(E) = ρ((I − 1ν)NM−1) < 1.

5.1. Solving the linear systems 147

By Lemma 5.3 applied to E, we get that ρ((I − 1µ)E) < 1. Hence, the iterates of Equa-

tions (5.11) converge to a solution of Equation (5.9)

Note that in Theorem 5.6, one can possibly find a weaker condition on the smoother

S or on the operator M such that the eigenvalue 1 of the operator E is simple. To have the

convergence of the scheme given in Theorem 5.6, it remains to show that ρ((I − 1ν)NM−1) <

1. In the following corollaries, we show some particular cases in which it is true.

Corollary 5.7. Assume that P ∈ Rn×n+ is an irreducible stochastic matrix (P1 = 1).

Let A = I − P and decompose wA = w(I − P) = M − N such that M = I and N =

(1− w)I + wP . Let S = M−1N . Then, replacing A by wA and r by wr in Theorem 5.6,

the iterates of Equations (5.11) converge to a solution of Equation (5.9).

Proof. We have that S = M−1N = N is primitive. Hence, ρ(N) = 1, γ(N) < 1 and 1 is a

simple eigenvalue of N . By Lemma 5.3, we have that ρ((I − 1ν)N) < 1. By Theorem 5.6,

we have the convergence of the iterates.

Corollary 5.8. Assume that P ∈ Rn×n+ is an irreducible bistochastic matrix (P1 = 1

and 1P T = 1). Let A = I − P and decompose wA = w(I − P) = M − N such that

M = (D − wPL) and N = ((1 − w)D + wPU) with D = I − PD. Let S = M−1N . Then,

replacing A by wA and r by wr in Theorem 5.6, the iterates of Equations (5.11) converge

to a solution of Equation (5.9).

Proof. Since, P is bistochastic, we have that 1TA = 0 or equivalently 1TM = 1TN ,

hence 1TNM−1 = 1T , i.e. NM−1 is a column stochastic matrix. Moreover, NM−1 is

similar to Sw which is primitive by the proof of Proposition 5.4, hence (NM−1)T is also

primitive. By Lemma 5.3, we have that ρ(NM−1(I − 1ν)) = ρ((I − 1ν)(NM−1)T) < 1.

We have that ((I−1ν)NM−1)k = (I−1ν)(NM−1(I−1ν))k−1NM−1. Hence limk→∞((I−
1ν)NM−1)k = 0 and ρ((I − 1ν)(NM−1)) < 1. By Theorem 5.6, we have the convergence

of the iterates.

From the smoothing process given by Equation (5.10), we define a new multigrid al-

gorithm that is given in Algorithm 5.3 and that we shall call AMGsingular2. It consists

in replacing the first equation of Equation (5.10) by one multigrid Vcycle for singular

system defined in Algorithm 5.1, that is replacing the splitting operator S by the operator

of a multigrid V-cycle. Note that since we did not succeed to prove the convergence of

the smoothing process given by Equation (5.10) in the general case, we do not have the

convergence multigrid scheme AMGsingular2. We observed that for some random prob-

lems, it may not converge in all cases, see for instance the numerical results of Section 5.2.

But for some regular problems, such as arising in pursuit differential games, we observed

convergence of AMGsingular2 in all our tests, see for instance the numerical results in

Section 5.3.

148 CHAPTER 5. AMG FOR MEAN PAYOFF GAMES AND MARKOV CHAINS

Algorithm 5.3 AMG for Equation (5.9): (v, η̄)← AMGsingular2(v(0), A, r, kM)

1. Set P |0 = P and A = I − P .

2. Choose a splitting A = M − N such that M ∈ Rn×n+ is invertible and S ∈ Rn×n+ .

The same splitting will be applied on all levels.

3. Construct the coarse grid operators for l = 1 to L:

– Build P l−1
l and Rll−1.

– Set P |l = Rll−1P
|l−1P l−1

l and A|l = I |l − P |l.
– Set S|l = (M |l)−1N |l where A|l = M |l −N |l.
– Choose s ∈ {1, · · · , nl} and set µ|l ∈ Rn such that µ

|l
s = 1 and µ

|l
i = 0 for i 6= s.

4. Set ν = 1
n1T .

5. Initialize k = 0 and set η̄(0) = ν (r − Av(0)).

6. Set b(k) = r − η̄(k).

7. Compute v(k+1) = V cycleSingular(v(k), b(k), µ).

8. Set η̄(k+1) = ν (r − Av(k+1)).

9. If (‖(r − Av(k+1))− η̄(k+1)1‖ < ε or k = (kM − 1)) then STOP,

return v(k+1) and η̄(k+1).

10. Else, increment k by one and go to Step 6.

In the next section, we introduce a new approach to find the stationary probability of

an irreducible Markov Chain by using a stochastic control approach, we define a policy

iteration algorithm combined with the multigrid algorithm AMGsingular2. In Section 5.3,

we present numerical results for some pursuit evasion games using the policy iteration

algorithm for zero-sum two player stochastic games combined with the multigrid algorithm

AMGsingular2.

5.2 Stochastic control for the stationary probability of an

irreducible Markov Chain

Here, we present a multiplicative multigrid method to find the stationary probability

of an irreducible Markov Chain which is based on a control approach and the multigrid

algorithm AMGsingular2. Recall that we have to find π ∈ Rn+ solution of

πT P = πT , πT1 = 1 (5.16)

where P ∈ Rn×n+ is a row stochastic and 1 = (1 · · · 1)T is the vector of ones in Rn. Since

π ∈ (R∗+)n, we can set

π = Exp(v) v ∈ Rn,

5.2. Stochastic control for the stationary probability of an irreducible Markov Chain 149

where Exp(v) := (exp(vi))i∈[n]. Then, Equation (5.16) is equivalent to :

vi = log

∑
j∈[n]

exp(vj)Pji

 := fi(v) i ∈ [n].

One can check using Holder inequality that the maps fi : Rn → R for i ∈ [n], are all

convex, hence

fi(v) = sup
u∈Rn

(uv − f∗i (u)) v ∈ Rn, i ∈ [n], (5.17)

where u ∈ Rn is considered as a row vector and f∗ is the Legendre-Fenchel transformation

of f (see [Roc70]). The ith-coordinate of the map f∗ is given by :

f∗i (u) = sup
w∈Rn

(uw − fi(w))

= sup
w∈Rn

uw − log

∑
k∈[n]

exp(wk)Pki

 . (5.18)

Since fi is differentiable, an optimal w in the previous expression satisfies necessary:

uj =
exp(wj)Pji∑

k∈[n]

exp(wk)Pki
for j ∈ [n]. (5.19)

Hence, an optimum in Equation (5.18) exists only if u ∈ Ai where

Ai :=
{
u ∈ Rn+ | u1 = 1 and uj = 0 if Pji = 0, j ∈ [n]

}
.

Indeed, since fi is non decreasing with respect to v and is additively homogeneous, f∗i (u) =

−∞ if u is not a stochastic vector (see for instance [AG03]). Moreover, if Pji = 0, fi(w)

does not depend on wj and f∗i (u) = +∞ if there exists j ∈ [n] such that uj 6= 0. When

u ∈ Ai, we get that :

wj = log

(
uj
Pji

)
+ fi(w) for j ∈ [n] s.t. Pji 6= 0,

and replacing this expression in (5.18), we get that :

f∗i (u) =
∑

j∈[n],Pji 6=0

log

(
uj
Pji

)
uj u ∈ Ai, i ∈ [n].

This map is the relative entropy of the probability vector u with respect to the positive

measure (Pji)j∈[n]. Note that, contrary to the usual definition of the relative entropy,

(Pji)j∈[n] is not necessarily a probability vector. From this Formula, Equation (5.17) can

be rewritten as

fi(v) = sup
u∈Ai

u v − ∑
j∈[n],
Pji 6=0

log

(
uj
Pji

)
uj

 , v ∈ Rn, i ∈ [n].

150 CHAPTER 5. AMG FOR MEAN PAYOFF GAMES AND MARKOV CHAINS

Now, for any row vector a ∈ Ai, we denote its jth-element by Ma
ij(= aj), hence we can

rewrite f as

fi(v) = max
a∈Ai

∑
j∈[n]

Ma
ij vj − f∗i (a)

 , v ∈ Rn, i ∈ [n]. (5.20)

Since a ∈ Ai is a stochastic row vector, Ma
ij can be consider as the probability transition

from state i to state j, where the action in state i is a. Hence, the map f is the dynamic

programming operator of a Markov decision process with transition probability p(j|i, a) =

Ma
ij and reward rai = f∗i (a) when the state is i and the action is a. The set of feedback

policies is given by

AM := {α : [n]→ A | α(i) ∈ Ai, i ∈ [n]} .

The transition probability matrix M (α) associated to a policy α ∈ AM is defined by

M (α) = (M
α(i)
ij)i,j∈[n]. and has a graph included in that of P T . Moreover, for each v ∈ Rn,

the optimal policy α ∈ AM associated to v satisfies Equation (5.19) where w is replaced by

v and u = α(i) (by duality, see [Roc70]). It implies that the transition probability matrix

M (α) is given by

M
(α)
ij = M

(α(i))
ij = (α(i))j =

exp(vj)Pji∑
k∈[n]

exp(vk)Pki
for i, j ∈ [n].

and the associated rewards are given by

r
(α)
i = −f∗i (α(i)) =

∑
j∈[n],Pji 6=0

log

(
M

(α)
ij

Pji

)
M

(α)
ij i ∈ [n].

Hence, for any optimal policy α associated to a value v, the associated matrix M (α) has

the same graph as P T . Then, one can restrict the optimization in Equation (5.20) to the

relative interior of Ai which is the set of vector u stochastic with the same support as

(Pji)j∈[n].

Now, we can find the fixed point v ∈ Rn of f by using the policy iteration algorithm

for Markov Decision Processes with mean payoff of [How60, DF68]. In this case, the fixed

point v of f is the relative value and the optimal mean payoff η of the MDP equals zero.

Since all the involved matrices are irreducible, it is enough to look for a η = η̄1 with

η̄ ∈ R, hence to solve the equation η̄1 + v = f(v). We give in Algorithm 5.4 the policy

iteration algorithm to solve Equation (5.20). In the policy evaluation step, we use the

multigrid algorithm AMGsingular2 (Algorithm 5.3) to solve the linear system. Hence,

the resulting algorithm that we shall call MCPIMG, is a new multigrid algorithm to find

the stationary probability of an irreducible Markov Chain. We do not prove convergence

for this algorithm since we do not have the convergence of AMGsingular2. As explained

in the next section, we did not succeed to obtain convergence for numerical tests using

AMGsingular for some random problems but when replacing the multigrid algorithm by

the relaxation scheme of Equation (5.10) with a SOR splitting, we observed convergence

in all cases. Hence, the multigrid algorithm AMGsingular2 still need some improvements.

5.2. Stochastic control for the stationary probability of an irreducible Markov Chain 151

Algorithm 5.4 Policy iteration for Markov Chains : MCPIMG

Input : A vector π(0) such that π(0) ∈ (R∗+)n, (π(0))T1 = 1 and an integer kM > 0.

Output : An approximation of the stationary probability π ∈ (R∗+)n solution of πT P = πT

with πT1 = 1.

1. Initialization: Set k = 0 and v(0) = Log(π(0)) (where Log(π) := (log(πi))i∈[n]).

2. Improve the policy by computing :

Mij =
π

(k)
j Pji

(π(k))T P·i
i, j ∈ [n]

and

ri = −
∑
j∈[n]

(
log

(
π

(k)
j

(π(k))T P·i

)
Mij

)
i ∈ [n].

3. Policy evaluation: find an approximation of the solution (η̄, v) ∈ R×Rn of

η̄ 1 + v = Mv + r η̄ ∈ R. (5.21)

by using a linear solver, for instance :

(v(k+1), η̄(k+1))← AMGsingular2(v(k),M, r, kM)

4. Set π(k+1) = Exp(v(k+1)).

5. If

∥∥∥∥(π(k+1)

(π(k+1))T 1

)T
P −

(
π(k+1)

(π(k+1))T 1

)T∥∥∥∥ < ε then the algorithm stops

and returns π(k+1)

(π(k+1))T 1
.

6. Otherwise, increment k by one and go to Step 2.

152 CHAPTER 5. AMG FOR MEAN PAYOFF GAMES AND MARKOV CHAINS

5.2.1 Numerical tests

In this section, we shall compare our algorithm MCPIMG (Algorithm 5.4) with the

algorithm MAA of [DSMM+08] (Algorithm 2.13). Let us first give some details about the

parameters of both methods. The implementation is in C.

In MAA and in the multigrid solver AMGsingular2 of MCPIMG, we use W (1, 2)-cycles

(i.e. ς = 2, ν1 = 1 and ν1 = 2 in Algorithm 5.1 and Algorithm 2.13). For MAA, we use the

SOR smoother adapted to Markov Chains of Equations (5.4) with w = 0.8. For algorithm

AMGsingular2 (in MCPIMG), we use the SOR smoother of Equations (5.10) also with

w = 0.8. For both algorithms, the initial approximation is the vector (1
n · · ·

1
n) ∈ Rn when

the size of the problem is n. The iterations of MAA and MCPIMG stop when the sup-

norm of the residual is smaller than 10−14, that is ‖(π(k+1))TP − (π(k+1))T ‖ < 10−14. We

use the same type of aggregation scheme for both MAA and MCPIMG algorithms.

When we performed the tests using the MCPIMG algorithm, we encountered some

difficulties of convergence due to the fact that the multigrid algorithm AMGsingular2 may

slightly diverge. When instead of the multigrid solver, we used the SOR smoother of Equa-

tions (5.10), we observed that the MCPIMG algorithm always converges. However, after

experimental tests, the divergence or slowly convergence of the multigrid solver occurs in

the first policy iterations only. Moreover, stopping the multigrid iterations and go forward

with the policy iterations does not affect the convergence of the policy iterations and we

observed that it is more efficient to fix the number of iterations of the multigrid solver.

Indeed in the first iterations, the policy evaluation step does not need to be accurate. This

is due to the fact that, the maps fi being regular, the policy iteration algorithm is equiv-

alent to the Newton method, and in this case, the number of multigrid iterations should

even increase exponentially with policy iterations (see for instance [Aki90a]). Hence, we

fixed the maximum number of W (1, 2)-cycles iterations for each policy evaluation step in

MCPIMG to five (kM = 5) and the precision for the multigrid solver to ε = 10−14.

Random walks on a square grid

Here, we present some numerical results on random matrices that represent random

walks on an uniform square grid. This problem is inspired from an example of the Markov

model of a random walk on a triangular grid from the book of [Saa92]. In our case, we

consider a square grid, represented in Figure 5.1 for 25 nodes, and a particle that moves

randomly on that graph from one node to one of its neighbors following the directed edges.

The transition probabilities between each node and its neighbors are chosen randomly.

The numbering of the nodes goes from bottom to top and from left to right. Then,

the corresponding transition probability matrix P ∈ Rn×n+ , whose elements Pij are the

probabilities that the particle jumps from node i to node j for i, j ∈ [n], has a sparsity

pattern represented in Figure 5.1 for n = 25.

The numerical results for random Markov walk on graphs are presented in Figure 5.2

and Figure 5.3 for a sample of 901 tests. We choose random probability transitions for

5.2. Stochastic control for the stationary probability of an irreducible Markov Chain 153

0 5 10 15 20 25

0

5

10

15

20

25

nz = 144

Figure 5.1: On the left, a random walk on a 5×5 square grid and on the right, the sparsity

pattern of the corresponding transition probability matrix.

0

20

40

60

80

100

120

140

160

0 2e+05 4e+05 6e+05 8e+05 1e+06

N
u

m
b

er
of

it
er

at
io

n
s

Number of nodes

MCPIMG
Wcycles of MCPIMG

MAA

10

100

1000

10000 1e+05 1e+06

N
u

m
b

er
o
f

it
er

at
io

n
s

Number of nodes

MCPIMG
Wcycles of MGMG

MAA

Figure 5.2: Number of iterations, given in log-scale on the right.

square grid graphs having a number of nodes n between 1002 and 10002. We increase by

one the number of points in each direction of the grid from 100 to 1000. In Figure 5.2, we

draw the number of iterations taken by both algorithms, we observe that the MCPIMG

take between 14 and 29 policy iterations with a mean value of 22.29, and the total number

of W (1, 2)-cycles iterations is between 70 and 142 with a mean value of 110.09. The

number of W (1, 2)-cycles for MAA is between 50 and 70 with a mean value of 64.40. For

both algorithms, when the test problems have large sizes, the number of iterations oscillate

around a constant value which is expected for a multigrid scheme.

In Figure5.3, we represent the cpu time (in seconds) needed by the MCPIMG and

MAA to find the stationary probability for the 901 tests of random walks. We can see

that MAA needs more time to solve a problem than MCPIMG, however when the size

of the problems increase, the two curves merge. If we consider only the problems of size

greater than 150000, the relationship between the logarithm of the computation time and

the logarithm of the size of the problem is almost linear for both algorithms with slope

154 CHAPTER 5. AMG FOR MEAN PAYOFF GAMES AND MARKOV CHAINS

0

20

40

60

80

100

120

140

160

0 2e+05 4e+05 6e+05 8e+05 1e+06

C
P

U
ti

m
e

(s
)

Number of nodes

MCPIMG
MAA

0.1

1

10

100

1000

10000 1e+05 1e+06

C
P

U
ti

m
e

(s
)

Number of nodes

MCPIMG
MAA

Figure 5.3: Time, given in log-scale on the right.

about 1.05 for MCPIMG and a slope of 0.99 for MAA. Hence, the computation time of

both algorithms seems to grow linearly with respect to the size of the problem, which is

expected for multigrid algorithms.

Comparing both algorithms, we conclude that they share both the properties expected

for multigrid algorithms. Note that some acceleration algorithms exist for the MAA

method in [DSMM+10a, DSMM+10b, DSMMS11, DSMSW10]. The MCPIMG may also

need some improvements by determining the best parameter kM multigrid iterations or by

increasing the number of multigrid iterations exponentially (as for instance in [Aki90a])

and by improving the AMGsingular2 algorithm.

5.3 Ergodic differential stochastic games : Isaacs equation

In this section, we shall apply policy iterations combined with the AMGsingular2

algorithm (Algorithm 5.3) to solve some ergodic differential games with mean payoff.

We first make some recalls about ergodic differential stochastic games with mean payoff,

i.e. the value of the game η is independent of the initial state, and their associated Bellman-

Isaacs equation. We refer also to [AB07, Bar09] for precise definitions of these games that

are called ergodic differential stochastic games with long-time-average reward.

5.3.1 Isaacs equations for mean payoff differential games

As in Section 1.3, we assume that the state space is a regular open subset X of Rd and

we suppose a probability space Ω is given, as well as a filtration (Ft)t≥0 over it. We consider

games which dynamics is governed by the following stochastic differential equation :

dξt = g(ξt, ζt, ηt) dt+ σ(ξt, ζt, ηt) dWt, (5.22)

with initial state ξ0 = x ∈ X . Here Wt is a d′-dimensional Wiener process on (Ω, (Ft)t≥0);

ζt and ηt are stochastic processes taking values in closed subsets A and B of Rp and

Rq respectively; (x, a, b) ∈ X × A × B 7→ g(x, a, b) ∈ Rd and (x, a, b) ∈ X × A × B 7→
σ(x, a, b) ∈ Rd×d′ are given functions. The processes ζt and ηt are assumed to be adapted

5.3. Ergodic differential stochastic games : Isaacs equation 155

to the filtration (Ft)t≥0 with ζt ∈ A(ξt) and ηt ∈ B(ξt) for all t ≥ 0, where A(x) ⊂ A and

B(x) ⊂ B are the sets of actions of the first and second players respectively when the state

of the game is equal to x ∈ X . We also consider strategies ᾱ = (αt)t≥0 (resp. β̄ = (βt)t≥0)

of player max (resp. min) determining the process (ζt)t≥0 (resp. (ηt)t≥0). In particular,

for pure Markovian stationary strategies, one has ζt = α(ξt) and ζt = β(ξt, ζt).

When the strategies ᾱ for min and β̄ for max are fixed, the payoff in finite horizon τ

of the game Γ(x, α, β) starting from x is

Jτ (x;α, β) = Eα,βx
[∫ τ

0
r(ξt, ζt, ηt)dt

]
where Eα,βx denotes the expected value and r is the running reward. The long-time-average

reward of the game Γ(x, α, β) is

J(x;α, β) = lim sup
τ→∞

1

2
Jτ (x;α, β) .

The mean payoff of the stochastic differential game starting at x is given by

η(x) = inf
α

sup
β
J(x;α, β)

where the infimum is taken among all strategies α for the minimizing player and the

supremum is taken over all strategies β for the maximizing player.

Now, we consider the second order Hamiltonian given by

H(x, p,K) = min
a∈A(x)

max
b∈B(x)

[
1

2
tr(σσT (x, a, b)K) + p · g(x, a, b) + r(x, a, b)

]
where x ∈ X , p ∈ Rn,K ∈ Rn×n. We denote by Dxv (resp. D2

xv) the vector (resp. matrix)

of the first (resp. second) partial derivatives of v. Then assuming regularity assumptions

on X and on the functions g, σ and r, when η(x) is independent of the starting point x, the

mean payoff η of the game is the unique solution of the following dynamic programming

equation (see [AB07, Bar09]) :

η −H(x,Dxv,D
2
xv) = 0, x ∈ X . (5.23)

This partial differential equation is called Bellman-Isaacs equation. For problems with

mean-payoff, one can have either natural boundary conditions as in Section 4.7.2 (which

means that (5.23) is fulfilled up to the boundary of X , but since the sets A(x) and B(x)

may be different there, the Hamiltonian H is not necessarily continuous), or Neuman

boundary conditions as in the following section (which means that Equation (5.22) is

modified accordingly), or periodic boundary conditions.

In the general case, the mean payoff η(x) may depend on the initial state x, then, as

in Section 4.7.2, Equation (5.23) should be replaced by a system of equations involving

η and v similar to the discrete equation (4.14). First, we define some notation. For an

action a ∈ A(x) and an action b ∈ B(x), we denote

Hab(x, p,K) := p · g(x, a, b) +
1

2
tr(σσT (x, a, b)K) x ∈ X .

156 CHAPTER 5. AMG FOR MEAN PAYOFF GAMES AND MARKOV CHAINS

We define the Hamiltonian Ĥ by :

Ĥ(x, p,K) := min
a∈A(x)

max
b∈B(x)

Hab(x, p,K) x ∈ X

and the Hamiltonian H́η by :

H́η(x, p,K) := min
a∈Áη(x)

max
b∈B́η(x,a)

[
Hab(x, p,K) + r(x, a, b)

]
x ∈ X

where

Áη(x) := argmin
a∈A(x)

{
max
b∈B(x)

Hab(x,Dxη,D
2
xη)

}
and

B́η(x, a) := argmax
b∈B(x)

{
Hab(x,Dxη,D

2
xη)
}

.

Then, one is looking for a couple of values (η, v) satisfying the system of dynamic pro-

graming equations given by :{
Ĥ(x,Dxη,D

2
xη) = 0 x ∈ X

−η(x) + H́η(x,Dxv,D
2
xv) = 0 x ∈ X .

(5.24)

Clearly, due to the definition of H́η, η needs to be a C2 function, however the solution v

of the second equation of System (5.24) may be considered in the viscosity sense. When

a solution (η, v) is such that both η and v are C2 functions, one may expect that η gives

the mean payoff of the game.

The discretization of Bellman-Isaacs Equation (5.23) or (5.24) with monotone schemes

in the sense of [BS91], e.g. the difference scheme of [Kus77] (see Section 1.3.3), yields the

dynamic programming operator of a two player zero-sum stochastic game with discrete

state space and mean payoff. Hence the policy iteration algorithm of Section 4.4 can be

used to solve the resulting discrete equations.

In Section 4.7.2, we already solved an equation of the form (5.24), whereas below we

shall consider an ergodic stochastic game, so that Equation (5.23) will be sufficient.

5.3.2 Numerical results

We consider almost the same game model as in Section 4.7.2, with the difference that

here we assume as in [LCS08] that the movements are random by adding a fixed noise

to the differential equations. Recall that the game has two players : a pursuer and an

evader. The evader wants to maximize the distance between him and the pursuer and

the pursuer has the opposite objective. To simplify the model, we will consider as state

of the game, the distance between the two players, i.e. the state of the game will be

given by x = xP − xE where xP is the position of the pursuer and xE the position of

the evader. We also restrict x to stay in a unit square centered in the 0-position, that is

x ∈ X :=] − 0.5, 0.5[×] − 0.5, 0.5[. The payoff of the game at each time is the euclidean

square norm of the distance between the two players, i.e. ‖x‖22.

5.3. Ergodic differential stochastic games : Isaacs equation 157

Since the noise ε is constant, the optimal mean-payoff η(x) does not depend on the

initial position x. After discretization, the stochastic matrix P in System (4.39), associated

to any couple of possible stationary strategies, is irreducible. Then the Bellman-Isaacs

equation is of the form (5.23) and is given in the present problem by

− η + ε∆v + max
a∈A

(a · ∇v) + min
b∈B

(b · ∇v) + ‖x‖22 = 0 in X (5.25)

where A and B are the set of possible directions respectively for the evader and the pursuer.

In our tests, the domain X is discretized in each directions with a constant step size h.

Then, the two players are moving on the discretized nodes of the domain, similarly to the

moves in a chess game.

The king and the horse

We performed the tests of this section by using the policy iterations for mean payoff two

player games (see Algorithm 4.2 where the Step 5 is never visited since we have only one

irreducible class). In the policy evaluation step, we use AMGsingular2 (Algorithm 5.3) to

compute the couple of value η and relative value v of the game. We use the construction

of grids and coarse operators of [RS87, BHM00] which is recalled in Algorithm 2.6 of

Section 2.3.5 with the interpolation weights defined by Equation (2.15). We use V (1, 2)-

cycles and the stopping criterion for the iterations of AMGsingular2 is ‖r‖∞ < 10−15

where r is the residual for the linear system.

In the first example, we solve Equation (5.25) with ε = 0.5 and Neumann boundary

conditions. The evader is called the king and his set of possible actions at each state of

the game is :

A := {(a1, a2) | ai ∈ {0, 1,−1}, i = 1, 2}.

The pursuer, called the horse, has the following set of possible actions :

B := {(0, 0), (±1,±2), (±2,±1)}.

Note that contrarily to the example of Section 4.7.2, the sets A and B do not depend on

the state x ∈ X and so are not reduced to {(0, 0)} around 0, so that the game does not

stop when the horse catches the king. The numerical results presented in Table 5.1, were

performed on Equation (5.25) discretized on a grid with a constant step size h = 1/256 in

each directions. The optimal actions for the discretized problem at each node of the grid,

are represented in Figure 5.6 for both players. The optimal mean payoff for the discretized

problem is : η(x) = 0.141 ∀x ∈ X and the relative value v is represented in Figure 5.5 on

the left.

For the second example, we consider the same problem but we limited the actions of

the horse, which are now :

B := {(0, 0), (1, 2), (2, 1)}.

The optimal actions for the discretized problem at each node of the grid, are represented

in Figure 5.7 for both players. The optimal mean payoff for the discretized problem is :

158 CHAPTER 5. AMG FOR MEAN PAYOFF GAMES AND MARKOV CHAINS

King policy Number of horse Sup-norm of CPU time

iteration index policy iterations residual (s)

1 4 3.09e− 07 6.36e+ 01

2 3 1.73e− 17 1.11e+ 02

Table 5.1: Numerical results for the horse and the king example, performed on a 257×257

grid . Actions for the king : {(a1, a2) | ai ∈ {0, 1,−1}, i = 1, 2}, actions for the horse :

{(0, 0), (±1,±2), (±2,±1)}.

1

10

100

1000

1000 10000 100000 1e+06

C
P

U
ti

m
e

(s
ec

on
d

s)
(l

og
)

number of discretization nodes (log)

PI with LU (SuperLU)
PI with AMG

Figure 5.4: Numerical results for the king and horse example. Comparison between policy

iteration algorithm with the AMGsingular2 algorithm versus a LU solver (SuperLU) when

increasing the size of the problem.

η(x) = 0.194 ∀x ∈ X and the relative value v is represented in Figure 5.5 on the right. In

Table 5.2, we present numerical results when the Equation (5.25) is discretized on grids

with discretization step h = 1
26

, h = 1
27

, h = 1
28

and h = 1
29

respectively. From the fourth

column, we can see that fewer V (1, 2)-cycles are needed to solve the linear systems as

the algorithm progresses in the exploration of strategies of the second player. Moreover,

these numbers of V (1, 2)-cycles are essentially independent of the size of the grid, what is

expected for a multigrid scheme.

In Figure 5.4, we compare the policy iteration algorithm with a direct solver LU (Su-

perLU) that use the method of [PSS96, Ste97] (Section 2.4.1) to find the stationary prob-

abilities, versus the AMGsingular2 algorithm, when increasing by one the number of dis-

cretization points in each direction from m = 65 to m = 642. The stopping criterion for

the policy iterations used is 10−10. Note that for each test, the number of total policy

iterations (that is the number of linear systems to solve) is the same for both methods and

is around ten iterations. In Figure 5.4, if we consider the 298 problems of finest discretiza-

5.3. Ergodic differential stochastic games : Isaacs equation 159

Size of the King policy Number of Number of AMG Sup-norm of CPU time

grid iteration horse policy iterations residual (s)

index iterations

65× 65 1 5 9, 10, 9, 7, 1 5.82e− 06 1.25e+ 00

2 3 11, 8, 5 6.07e− 07 2.04e+ 00

3 2 8, 1 3.17e− 17 2.52e+ 00

129× 129 1 5 9, 10, 8, 6, 1 1.45e− 06 6.73e+ 00

2 3 11, 9, 5 1.76e− 07 1.09e+ 01

3 2 8, 4 1.42e− 10 1.37e+ 01

4 1 1 6.54e− 13 1.49e+ 01

257× 257 1 5 9, 13, 9, 6, 1 3.64e− 07 3.22e+ 01

2 3 12, 9, 4 4.70e− 08 5.20e+ 01

3 2 9, 4 3.97e− 10 6.47e+ 01

4 1 4 2.08e− 16 7.08e+ 01

513× 513 1 5 9, 12, 9, 6, 1 9.09e− 08 1.39e+ 02

2 4 10, 7, 4, 1 1.31e− 08 2.47e+ 02

3 2 7, 1 1.10e− 10 2.98e+ 02

4 1 1 8.14e− 13 3.22e+ 02

Table 5.2: Numerical results for the king and horse example. Actions for the king :

{(a1, a2) | ai ∈ {0, 1,−1}, i = 1, 2}, actions for the horse : {(0, 0), (1, 2), (2, 1)}. Policy

iterations with AMGsingular2 algorithm (V(1, 2)-cycle and precision 10−15).

160 CHAPTER 5. AMG FOR MEAN PAYOFF GAMES AND MARKOV CHAINS

-0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.6
-0.4

-0.2
0

0.2
0.4

0.6

-0.025
-0.02

-0.015
-0.01

-0.005
0

0.005

-0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.6
-0.4

-0.2
0

0.2
0.4

0.6

-0.015
-0.01

-0.005
0

0.005
0.01

0.015
0.02

Figure 5.5: Relative solution for the horse and king example. Actions for the king :

{(a1, a2) | ai = ±1 or 0}. Actions for the horse : {(0, 0), (±1,±2), (±2,±1)} on the left,

{(0, 0), (1, 2), (2, 1)} on the right. Neumann conditions and ε = 0.5 in (5.25).

Figure 5.6: Optimal actions for the king on the left and for the horse on the right.

tion (the half of the tests), the relationship between the logarithm of the computation

time and the logarithm of the size of the problem is almost linear with slope about 1.06

when using the AMGsingular2 algorithm, however the slope is about 1.28 for the policy

iteration algorithm with a LU solver. Hence, the computation time while using the policy

iterations with a AMGsingular2 algorithm seems to grow linearly with respect to the size

of the problem.

5.4 Conclusion

In this chapter, we presented some new algebraic multigrid algorithms to solve par-

ticular singular linear systems that arise for instance in the policy iteration algorithm

when solving zero-sum two player stochastic games with mean payoff. In particular, we

presented our algorithm AMGsingular2.

Furthermore, we introduced a new method to find the stationary probability of an

irreducible Markov chain using a stochastic control approach and presented our algorithm

MGPIMG which combines the policy iterations of [How60, DF68] and AMGsingular2.

5.4. Conclusion 161

Figure 5.7: Optimal actions for the king on the left and for the horse on the right.

In the numerical tests, we compared our algorithm MCPIMG with the algorithm MAA

of [DSMM+08] and showed that they share both the properties expected for multigrid algo-

rithms. We observed that MCPIMG is faster than MAA, however there exist acceleration

algorithms for the MAA method in [DSMM+10a, DSMM+10b, DSMMS11, DSMSW10].

We may also expect to improvement the MCPIMG algorithm for instance by increasing

the number of multigrid iterations exponentially at each policy iteration (as for instance

in [Aki90a]) or by improving the AMGsingular2 algorithm.

In the last section, we applied the policy iterations combined with AMGsingular2 to

solve some ergodic differential games with mean payoff. We compared the policy iteration

algorithm with a direct solver LU versus the policy iteration algorithm with AMGsingular2

on pursuit evasion games. We observed that the policy iterations with AMGsingular2 grow

linearly with respect to the size of the problem which is expected for a multigrid scheme.

We also mentioned that the multigrid algorithm AMGsingular2 sometimes diverges for

random problems. However, we observed that for regular problems such as for pursuit

evasion games, the AMGsingular2 converges in practice for all our tests. Hence, our

AMGsingular2 algorithm need some improvements.

162 CHAPTER 5. AMG FOR MEAN PAYOFF GAMES AND MARKOV CHAINS

Chapter 6

Modeling and implementation

In this chapter, we describe our modeling of a zero-sum two player stochastic game

of perfect information with discounted or mean payoff. We also present the main ideas

behind the implementation of our program PIGAMES .

For stochastic game with discounted payoff, we shall use the same notations as in

Chapter 1. Whereas for stochastic game with mean payoff, we shall use those of Chapter 4.

6.1 Modeling of a zero-sum two player stochastic game with

perfect information

6.1.1 Discounted Payoff

Here, we consider a zero-sum two player stochastic game with perfect information,

discounted payoff and discrete state space X = {1, . . . , n} as defined in Chapter 1. Recall

that the value function v of such game Γµ, defined by (1.6), is the unique solution v : X →
R of the following dynamic programming equation:

v(x) = max
a∈A(x)

 min
b∈B(x,a)

∑
y∈X

µ p(y |x, a, b) v(y) + r(x, a, b)

︸ ︷︷ ︸

=F (µv;x)

∀x ∈ X . (6.1)

For implementation purpose, when the actions sets A(x) and B(x, a) are finite for all x ∈ X
and a ∈ A(x), it is convenient to decompose Equation (6.1) by splitting the non-linear

and linear terms. Then, Equation (6.1) rewrites for each x ∈ X :
v(x) = max

a∈A(x)
v(x, a)

v(x, a) = min
b∈B(x,a)

{v(x, a, b) + r(x, a, b)} a ∈ A(x)

v(x, a, b) =
∑
y∈X

µ p(y|x, a, b) v(y) a ∈ A(x), b ∈ B(x, a) .

(6.2)

We interpret this decomposition in the following way. All nodes x from the state space

X are the nodes where max plays (that is where max chooses an action a in A(x)) and

163

164 CHAPTER 6. MODELING AND IMPLEMENTATION

0 1

(4, 9, 1, 100)(2, 6, 1, 2)

(2, 5, 1/3, 1)

(3, 7, 1, 4)

(3, 8, 1/2, 3)(3, 8, 1/2, 3)

(2, 5, 2/3, 1)

Figure 6.1: Example of a stochastic game.

are called max nodes. To a max node x and for each action a ∈ A(x), we associate an

artificial node, denoted by (x, a) :

x→ (x, a) a ∈ A(x) .

This node represents the node where min plays (that is where min chooses an action b in

B(x, a)) and is called min node. To a min node (x, a) and for each action b in B(a, x), we

associate an artificial node (x, a, b) :

(x, a)→ (x, a, b) b ∈ B(x, a) .

This node represents a distribution of probability on ∆(X) when in state x, player max

chooses action a and player min chooses action b and is called proba node :

(x, a, b)→ ∆(X) .

We also denote by Xplayer the set of all nodes associated to player where player is one of

max, min or proba. For instance, for the decomposition (6.2), the sets Xmax = X , Xmin =

{(x, a) | a ∈ A(x), x ∈ X} and Xproba = {(x, a, b) | b ∈ B(x, a), a ∈ A(x), x ∈ X}. Then,

we denote by X̄ the extended state space defined by X̄ = Xmax∪̇Xmin∪̇Xproba and we denote

by n̄ the cardinality of X̄ .

Example 6.1. Let n = 2, X = {0, 1}, A(0) = {2, 3}, A(1) = {4}, B(0, 2) = {5, 6},
B(0, 3) = {7, 8}, B(1, 4) = {9}, p(0 | 0, 2, 5) = 2/3, p(0 | 0, 3, 8) = 1/2, p(0 | 0, 2, 5) =

2/3, p(1 | 0, 2, 5) = 1/3, p(1 | 0, 3, 8) = 1/2, p(1 | 1, 4, 9) = 1, r(0, 2, 5) = 1, r(0, 2, 6) =

2, r(0, 3, 7) = 4, r(0, 3, 8) = 3 and r(1, 4, 9) = 100. This example is represented by

a graph in Picture 6.1 where the labels above the edges going from nodes x to y are

(a, b, p(y |x, a, b), r(x, a, b)), for all a ∈ A(x), b ∈ B(x, a) and x, y ∈ X . The decom-

position in max-min-proba nodes is represented in Picture 6.2 where the max nodes ,

x ∈ Xmax = {0, 1}, are represented in blue circles, the min nodes, a ∈ Xmin = {2, 3, 4}, are

in red circles and the proba nodes, b ∈ Xproba = {5, 6, 7, 8, 9}, are in green circles. The

label on the edge from a max node x to a min node a is the cost r(x, a) and from a min

node a to a proba node b is the cost r(x, a, b). The labels on the edges going from a node

b ∈ Xproba to a node y ∈ Xmax are the transition probabilities p(y |x, a, b).

When some action spaces are not finite, one cannot use the decomposition (6.2) any-

more. Hence, we introduce a new type of artificial node that we call oracle node. If

6.1. Modeling of a zero-sum two player stochastic game 165

0 1

2 3 4

5 6 7 8 9

0
0

0

1

2

4 3

100

1/3

2/3

1

1

1/2
1/2

1

Figure 6.2: Example of a decomposition of the stochastic game represented in Figure 6.1

in max-min-proba nodes.

all the action spaces are not finite, we keep the dynamic programming equation in its

original form Equation (6.1) and X̄ = X . If some of the action spaces are finite, we can

separate the nodes with non-linear parts from the nodes with linear parts. For instance,

if we consider Equation (6.1) with finite sets A(x) for x ∈ X and where the sets B(x, a)

are not finite for x ∈ X and a ∈ A(x), we obtain the following decomposition :

v(x) = max

a∈A(x)
v(x, a)

v(x, a) = min
b∈B(x,a)

∑
y∈X

µ p(y|x, a, b) v(y) + r(x, a, b)

 a ∈ A(x)
(6.3)

where the nodes x ∈ X are max nodes, the nodes (x, a) with x ∈ X , a ∈ A(x) are

min oracle nodes and X̄ = X∪̇ {(x, a) | x ∈ X , a ∈ A(x)}. Similarly, we can define

max oracle nodes and oracle selle nodes.

Note that the dynamic programming Equation (6.1) may be given in another form then

max-min-proba, for instance we can have the forms min-max-proba, proba-max-min,

etc, then we decompose the dynamic programming equation according these forms.

6.1.2 Mean Payoff

Now, we consider a zero-sum two player stochastic game with perfect information,

mean payoff and finite state space [n] = {1, · · · , n}, as defined in Chapter 4. Recall that

the mean value η : [n]→ R and relative value v : [n]→ R of the game are solution of the

166 CHAPTER 6. MODELING AND IMPLEMENTATION

following system, for i ∈ [n] :

ηi = min

a∈Ai
max
b∈Bi,a

∑
j∈[n]

P abij ηj

ηi + vi = min
a∈Ái,η

max
b∈B́i,a,η

∑
j∈[n]

P abij vj + ri,a,b

(6.4)

As for discounted payoff case, when the actions sets Ai and Bi,a are finite for all i ∈
[n], a ∈ Ai, one can decompose the dynamic programming equations (6.4) by splitting

the non-linear and linear terms. As in Section 6.1, we denote [n]player the set of all

nodes associate to player where player is one of max, min or proba. For instance,

for the decomposition (6.2), the sets [n]max = [n], [n]min = {(i, a) | a ∈ Ai, i ∈ [n]} and

[n]proba = {(i, a, b) | b ∈ Bi,a, a ∈ Ai, i ∈ [n]}. Then, we denote by ¯[n] the extended state

space defined by ¯[n] = [n]max ∪ [n]min ∪ [n]proba and we denote by n̄ the cardinality of ¯[n].

Then, we obtain the following decomposition of Equation (6.4) in max-min-proba, for

each i ∈ [n] :

η̄i = min
a∈Ai

η̄i,a

η̄i,a = max
b∈Bi,a

η̄i,a,b a ∈ Ai

η̄i,a,b =
∑
j∈[n]

P abij η̄j a ∈ Ai, b ∈ Bi,a

(6.5)

and

η̄i + vi = min
a∈Ái,η

vi,a

η̄i,a + vi,a = max
b∈B́i,a,η

{vi,a,b + ri,a,b} a ∈ Ái,η

η̄i,a,b + vi,a,b =
∑
j∈[n]

P abij vj a ∈ Ái,η, b ∈ B́i,a,η

(6.6)

where η̄i = 1
3ηi.

When the mean payoff of the game is independent of the initial state, that is ηi = η for

i ∈ [n], we can see that Equation (6.4) is equivalent to Equation (6.5)-(6.6) with η̄i = 1
3η

for i in [n]. Indeed, replacing η̄i by 1
3η, Equation (6.5)-(6.6) rewrites, for each i ∈ [n] :

1

3
η + vi = min

a∈Ai
vi,a

1

3
η + vi,a = max

b∈Bi,a
{vi,a,b + ri,a,b} a ∈ Ai

1

3
η + vi,a,b =

∑
j∈[n]

P abij vj a ∈ Ai, b ∈ Bi,a

6.2. Implementation details 167

that is equivalent to :

1

3
η + vi = min

a∈Ai

max
b∈Bi,a

∑
j∈[n]

P abij vj −
1

3
η + ri,a,b

− 1

3
η

 ,

η + vi = min
a∈Ai

max
b∈Bi,a

∑
j∈[n]

P abij vj + ri,a,b

 .

When the mean payoff of the game depends on the initial state, the same equivalence

holds with η̄i = 1
3ηi for i ∈ [n]. Indeed, replacing η̄i by 1

3ηi for i ∈ [n], in Equation (6.5),

gives :
1

3
ηi = min

a∈Ai
max
b∈Bi,a

∑
j∈[n]

P abij
1

3
ηj , (6.7)

and in Equation (6.6), gives :

1

3
ηi + vi = min

a∈Ái,η

 max
b∈B́i,a,η

∑
j∈[n]

P abij vj − η̄i,a,b + ri,a,b

− η̄i,a
 ,

since a, b are chosen in Ái,η, B́i,a,η respectively, we have η̄i,a = η̄i,a,b = 1
3ηi and :

ηi + vi = min
a∈Ái,η

max
b∈B́i,a,η

∑
j∈[n]

P abij vj + ri,a,b

 .

Note that similar decompositions exist when the dynamic programing equations are

given in other forms than max-min-proba, then the “coefficient 1
3” must be adapted to

the decomposition.

In the next section, we describe how this modeling is used in the implementation of

our program.

6.2 Technical details of implementation of AMGπ algorithm

In this section, we give the main ideas of how the program PIGAMES is implemented in

term of structures (objects) and algorithms used. We give the definitions of the structures

for the game given in the modeling of the previous section, then we explain how we adapt

the policy iteration algorithm these structures. We first consider stochastic games with

discounted payoff and then with mean payoff.

6.2.1 Discounted Payoff

Structure

The data of the game and the options for the algorithms are gathered in a structure

named Game problem which is represented in Structure 1. The nodes of the extended

state space X̄ are stored in some linked lists of Node Structures 2 (explained below). In

168 CHAPTER 6. MODELING AND IMPLEMENTATION

the Game problem structure, lists is an array of pointers to linked Node lists, the size

of this array is nl, to each pointer lists[i] (1 ≤ i ≤ nl) correspond a type type[i] which

can have the following value : max, min, proba, max oracle or min oracle, all the

nodes of the same lists[i] have the same type(s). When we have a list of oracle selle

nodes then it is linked twice in the array lists, once with type max oracle and once

with type min oracle that is for instance lists[1] = lists[2] with type[1] = max oracle

and type[2] = min oracle. The order of the lists in the array lists has an importance,

it depends of the form of the dynamic programming equation and lists[1] always points

to the list of nodes that represents the original state space X . The arrays maxit and ε of

size nl are the maximum numbers of iterations and the stopping criterion for the policy

iteration algorithm. The variable linear system is the reference of the linear system solver

chosen to solve the linear system in Step 1 of the policy iteration Algorithm 3.1. The

matrix P̄ : Rn̄×n̄ is the probability matrix corresponding to the selected strategies on the

extended state space X̄ . The vector r : X̄ → R is the corresponding cost vector. The

vector v : X̄ → R of the Game problem structure is the current approximation of the

solution of the game defined for the extended state space X̄ and the vector fv : X̄ → R

contains the application of dynamic programming operator on that approximation, that

is F (v).

Game Problem

int nl

number of lists

Node (*lists)[nl]

lists of nodes

int type[nl]

type[i] is the type of the above lists (max, min, proba,

max oracle or min oracle)

int maxit[nl]

maxit[i] is the maximum policy iterations for list i

double ε[nl]

ε[i] is the precision for policy iterations for list i

int linear solver

the reference of the linear solver chosen

matrix P̄

probability matrix

vector r̄

cost vector

vector v

value of the game

vector fv

6.2. Implementation details 169

F (v)

Structure 1.

For instance, for a game for which the dynamic programming Equation (6.1) is decom-

posed in Equation (6.2), we construct three lists (nl = 3), the first one lists[1] is of type

type[1] =max and represents the nodes x ∈ Xmax of the original state space X , the second

list lists[2] is of type type[2] =min and contains all the min nodes a ∈ Xmin, the last list

lists[3] is of type type[3] =proba and contains all the proba nodes b ∈ Xproba.

The Structure of a Node is represented in Structure 2. All the nodes are numbered

from one to n̄, this number is called the label of the node and it also represents its coor-

dinate in the vector v̄, the solution of the game extended to X̄ . The interpretation of the

other elements of the structure Node depends on the type of the node and are described

below.

Node

int label

label of the node

int np

number of nodes to which it points

int pointers[np]

nodes to which it points (correspond to the actions)

double probabilities[np]

probabilities[i] is the probability of pointers[i] (if any)

double costs[np]

costs[i] is the cost of pointers[i] (if any)

int strategy

chosen strategy in pointers

oracle oracle

special structure with information for oracle nodes

Node *next

pointer to the next node on the list

Structure 2.

For a max node x, the element np denotes the number of nodes to which it points,

that is the the cardinality of the action space A(x), the array pointers and costs of size

np contains respectively the labels of the nodes corresponding to the actions in A(x) and

the costs related to those actions. The strategy is the chosen action α(x) of the array

pointers. The same holds for a min node. For instance, for a max node x such as defined

in Equation (6.2), np equals the cardinally of A(x), if the actions a in A(x) are numbered

from one to np, then pointers[i] is the label of the ith-node a ∈ Xmin and costs[i] = r(x, a)

for i ∈ {1, · · · , np}. The element strategy is a chosen action a in A(x).

170 CHAPTER 6. MODELING AND IMPLEMENTATION

For a proba node x, the element np is the number of nodes y in X̄ for which the

probability going from node x to this node y is nonzero, the arrays pointers and probabilities

of size np contain respectively the labels of those nodes y and the probabilities of going

from x to node y. For instance, for a proba node (x, a, b) ∈ Xproba such as defined

in Equation (6.2), np equals the number of y ∈ X such that p(y|x, a, b) 6= 0, if those

nodes y are numbered from one to np, pointers[i] is the label of one of those y and

probabilities[i] = p(y|x, a, b) for i ∈ {1, · · · , np}.
For a max oracle node x, the special element oracle contains some information

about the node that may be used in a special oracle function when improving the strategy

in Step 3 of Algorithm 3.1 or Algorithm 3.2. In this case, np is the size of the arrays

pointers and probabilities, they contain respectively the labels and the corresponding non

null probabilities. The array costs is of size one and contains the reward at node x for the

chosen action. Those values are computed and given at each iteration of the Algorithm 3.1

or Algorithm 3.2 by a special oracle function provided by the user. The same hold for a

min oracle node. For instance, for a min oracle node (x, a) as defined in Equation (6.3),

a special oracle function returns, in the improvement Step 3 of Algorithm 3.1, the cost

costs = r(x, a, b) and the array probabilities of non null probabilities p(y|x, a, b) with the

corresponding array pointers of labels.

Policy iteration algorithm

An adaptation of the Algorithm 3.2 for the solution of the dynamic programming

Equation (6.1) of a zero-sum two player stochastic game to the above decomposition

and structure, is written in pseudo code in Algorithm 6.1, it starts with parameters:

player = 1 and the Game Problem GProblem that contains the game data. The

algorithm is constructed in a recursive form based on the lists of nodes of the Game

Problem structure to allow working with different decomposition models for different

forms of Equations (6.1). Starting from the first list, it recursively applies the policy

iteration algorithm (that is successively applies a policy evaluation step followed by a policy

improvement step until convergence) on each list and hence produce nested iterations (see

Section 3.1 and Figure 3.1). When the algorithm reaches the last list, that is the most

internal loop of the nested policy iterations, the policy evaluation step amounts to solve

a linear system. Note that in the case of a loop on a list of type proba, there is no

optimization needed in the improvement step and the policy evaluation step consists in

applying a chosen linear solver linearSolver() to find an approximation of the solution of

the system v = P̄ v+ r̄. For other lists, the policy improvement step consists in finding the

optimal strategy for the current value of the game and player. It also sets the corresponding

lines in the matrix P̄ . This is done in Algorithm 6.1 for each node of the current list,

depending on the type of the player. For a max or min node, the function argminmax()

returns the optimal action for the fixed strategy and the corresponding new row for the

matrix P̄ . For an oracle node, a function specialOracleFunction() provided by the user

also return the optimal action for the node and the corresponding probability row.

6.2. Implementation details 171

Algorithm 6.1a (v)← GPI(player,GProblem)

rv = 1;

while (|rv| > GProblem.ε[player] or k < GProblem.maxit[player]) do

if player < (GProblem.nl − 1) then

(v)← GPI(player + 1, GProblem);

else

(v)← linearSolver(v, P̄ , r̄);

end if

PImprovement(player,GProblem);

rv = Fplayer(v)− v;

end while

return v;

Algorithm 6.1b PImprovement(player,GProblem)

for each node in Gproblem.lists[player] do

switch (GProblem.type[player])

case max:

case min:

(strategy, P̄ (label, :))← argminmax(node,GProblem.type[player])

break;

case proba:

fvalProba(node,GProblem)

break;

case max oracle:

case min oracle:

(strategy, P̄ (label, :))← specialOracleFunction(node,GProblem.type[player])

break;

end switch

end for

172 CHAPTER 6. MODELING AND IMPLEMENTATION

6.2.2 Mean payoff

Now we consider zero-sum two player games with mean payoff. We first define the

structures of the game, then we explain how we adapt the policy iteration algorithm our

modeling of the game.

Structures

In this case, we use the same structure Node (Structure 2) and the structure Game

problem (Structure 1) to which we add some new elements : η : ¯[n] → R the mean

value of the game, v : ¯[n] → R becomes the relative value of the game and two new

arrays optimalSet[] and optimalSetη[]. In the optimization step of the policy iteration for

stochastic games with mean payoff, for each node i, the array pointers[] is sorted such

that the first optimalSet[i] elements contains the current optimal actions for that node,

similarly for optimalSetη[i] which determines the optimal set of node i for the current

value of η. The arrays optimalSet[·] and optimalSetη[·] correspond to the sets A(·),B(·)

and Á(·),η, B́(·),η respectively. The entire structure Game problem is given below.

Game Problem

int nl

number of lists

Node (*lists)[nl]

lists of nodes

int type[nl]

type[i] is the type of the above lists (max, min, proba,

max oracle or min oracle)

int maxit[nl]

maxit[i] is the maximum policy iterations for list i

double ε[nl]

ε[i] is the precision for policy iterations for list i

int linear solver

the reference of the linear solver chosen

matrix P̄

probability matrix

vector r̄

cost vector

vector v̄

relative value of the game

vector η

mean value of the game

vector f̄v

F (v)

6.2. Implementation details 173

int optimalSet[n]

optimalSet[i] is the optimal set for node i

int optimalSetη[n]

optimalSetη[i] is the optimal set for node i for η

Structure 3.

Algorithms

In this section, we adapt the algorithms of Chapter 4 and 5, to give the idea of how it

is implemented in the program PIGAMES .

Policy iteration algorithm

We present in Algorithm 6.2, a policy iteration algorithm for solving zero-sum two

player stochastic games with mean payoff which is an adaptation of Algorithm 4.2. We

also give in Algorithm 6.3 an adaptation of the policy iteration for MDP with mean payoff

of Algorithm 4.5. Both algorithm Algorithm 6.2- 6.3 use floating points and may use

iterative linear solvers. For this purpose, we introduce some precision parameters : εη, εv

and εLS . The parameter εLS is used as stopping criterion for the iterative linear solvers

called in Algorithm 6.4. The parameters : εη, εv are used for the comparison tests of the

values η(k) and v(k) respectively in the stopping criterion in Step 2 of Algorithm 6.2 and

Algorithm 6.3 and in the improvement of the strategies represented in Algorithm 6.5. We

do not give here the details of the implementation of the linear systems, they use the

algorithms described in Chapter 5.

The algorithm for the computation of the critical graph which is called in the degenerate

iterations of Algorithm 6.2, is given in the next section.

174 CHAPTER 6. MODELING AND IMPLEMENTATION

Algorithm 6.2 (α, η, v)← PImultichainTwo(α(0), β(0), η(0), v(0))

1. Compute an approximation (η(k+1), v(k+1)) of the solution (η, v) of the game for the

fixed policy α(k) :

(β(k+1), η(k+1), v(k+1), status)← PImultichainOne(β(k), η(k), v(k), player2)

2. 2.1 if (‖η(k) − η(k+1)‖ < εη and ‖v(k) − v(k+1)‖ < εv) then

STOP and return (α(k), η(k+1), v(k+1))

2.2 if ‖η(k) − η(k+1)‖ < εη and k > 0 then

i. Define P̄ from Equation (6.10) with α(k) and {B̃i}i∈[n]pl2

ii. C(g)← CriticalGraph(P̄)

iii. Solve{
v

(k+1)
i = F́η(k+1)(v(k+1); i, αk+1(i))− η(k+1)

i i ∈ [n] \ C(g)

v
(k+1)
i = v

(k)
i i ∈ C(g) .

with the policy iteration for MDP with discounted payoff.

3. Improve the policy α(k) for (η(k+1), v(k+1)) in a conservative way :

(α(k+1))← PIimprove(η(k+1), v(k+1), player1) (6.8)

4. if (α(k)(i) = α(k+1)(i) i ∈ [n]) then

return (α(k+1), β(k+1), η(k+1), v(k+1))

5. Increment k by one and go to Step 1.

Algorithm 6.3 (β, η, v)← PImultichainOne(β(0), η(0), v(0), player)

1. Compute an approximation (η(k+1), v(k+1)) of the solution (η, v) of the game for the

fixed policy β(k) :

(η(k+1), v(k+1))← LSsolve(η(k), v(k), P (β(k)), r(β(k)), εLS)

2. 2.1 if (‖η(k) − η(k+1)‖ < εη) and (‖v(k) − v(k+1)‖ < εv) then

STOP and return (β(k), η(k+1), v(k+1))

3. Improve the policy β(k) for (η(k+1), v(k+1)) in a conservative way :

(β(k+1))← PIimprove(η(k+1), v(k+1), player) (6.9)

4. if (β(k+1)(i) = β(k)(i) i ∈ [n]) then return (β(k+1), η(k+1), v(k+1))

5. Increment k by one and go to Step 1.

6.2. Implementation details 175

Algorithm 6.4 (η, v)← LSsolve(η, v, β(k), P, r, εLS)

(P, type)← tarjan(P)

for I ∈ {1, · · · ,m} do

if type(I) = FINAL then

(ηI , vI)← singularSolver(PII , ηI , vI , rI , εLS)

else if type(I) = TRANSIANT then

rhs =
∑

J>I PIJηJ

ηI ← livearSolver(PII , rhs, ηI , εLS)

rhs =
∑

J>I PIJvJ + rI − ηI
vI ← livearSolver(PII , rhs, vI , εLS)

end if

end for

The critical graph algorithm

Now, we give the adaptation of Algorithm 4.6 for the computation of the critical graph

to our model. This algorithm depends on the structure of the model. We consider here

the algorithm the max-min-proba decomposition, that is Equation (6.6)-(6.5). Suppose

max is the first player and min the second player.

Recall that in Step 5 of Algorithm 4.2, one has to compute the critical nodes of the

map ḡ defined by :

ḡi(v) := F́η(k+1)(v; i, α(i))− η(k+1)
i for all i ∈ [n] ,

with α = αk+1. Given an harmonic vector u, we denote the set

B̃a
i =

b ∈ B̄i,η(k+1) | − η(k+1)
i + rabi +

∑
j∈[n]

P abij ui = ui

 ,

and Pi =
{

(P
α(i)b
ij)j∈[n] | b ∈ B̃

α(i)
i

}
. The adaptation of the critical graph Algorithm 4.6

is given in Algorithm 6.6. First we define the matrix P̄ ∈ Rn̄×n̄ such that its non-null

elements are given by, for all i ∈ [n] :

P̄ (i, (i, a)) = 1 for a = α(i) (6.10)

P̄ ((i, a), (i, a, b)) = 1 for a = α(i) and b ∈ B̃a
i (6.11)

P̄ ((i, a, b), j) = P abij for a = α(i), b ∈ B̃a
i and j ∈ [n]. (6.12)

This matrix represents the sets Pi for i ∈ [n] that is, for a node i ∈ [n], the element

P̄ ((i, α(i)), (i, α(i), b)) equals one if the row vector (P̄ ((i, α(i), b)), j)j∈[n] belongs to Pi.
Similarly, the matrix P̄ (k) represents the sets Q(k) in Algorithm 4.6. Indeed, removing a

row vector of Q(k)
i which has a rowsum less than one in Algorithm 4.6 corresponds to set

the corresponding value P̄ (k)((i, α(i)), (i, α(i), b)) to zero in Algorithm 6.6. Note that in

our case, we only need the critical nodes and not the complete critical graph.

176 CHAPTER 6. MODELING AND IMPLEMENTATION

Algorithm 6.5 (β(k+1), {B́i,η}i∈[n]pl , {B̃i}i∈[n]pl)← PIimprove(η, v, β(k), player)

for i ∈ [n]pl do

B́i,η = ∅; B̃i = ∅; β(k+1)(i) = β(k)(i)

for b ∈ Bi do

if (P bi·η < P
β(k+1)(i)
i· η and player is min) or (P bi·η > P

β(k+1)(i)
i· η and player is max)

then

β(k+1)(i) = b

end if

end for

for b ∈ Bi do

if ‖P bi·η − P
β(k+1)(i)
i· η‖ < εη then

B́(i),η ← b

end if

end for

for b ∈ B́(i),η do

if ((P bi·v + rbi) < (P
β(k+1)(i)
i· v + r

β(k+1)(i)
i)) and player is min) or ((P bi·v + rbi) >

(P
β(k+1)(i)
i· v + r

β(k+1)(i)
i) and player is max) then

β(k+1)(i) = b

end if

end for

for b ∈ B́i,η do

if (‖(P bi·v + rbi)− (P
β(k+1)(i)
i· v + r

β(k+1)(i)
i)‖ < εv) then

B̃i ← b

end if

end for

if β(k)(i) ∈ B̃i then

β(k+1)(i) = β(k)(i)

end if

end for

6.2. Implementation details 177

Algorithm 6.6a F ← CriticalGraph(P̄)

Set N = ∅, F = ∅, P̄ (0) = P̄ and k = 0

Tarjan(P̄), put the final nodes in F and the transient nodes in N

Q′ ← N

while Q′ 6= ∅ do

Compute the set Q′ using Algorithm 6.6b and construct P̄ (k+1) by tacking from

P̄ (k) the rows and columns corresponding to the nodes in Q′. (That are the nodes

i ∈ [n] such that (i, a) ∈ Q′, the nodes (i, a) ∈ Q′ and the nodes (i, a, b) such that

P̄ (k)((i, a), (i, a, b)) = 1 for all (i, a) ∈ Q′.)

Tarjan(P̄ (k+1)), put the final nodes in F ′ and set F = F ∪ F ′

k + +

end while

return F the set of critical nodes

Algorithm 6.6b Compute Q′ set

for all node (i, a) in Q′ (from player 2) do

if (i, a) is ergodic then

Q′ = Q′ \ {(i, a)}
N = N \ {(i, a)}

else

for all node (i, a, b) such that P̄ ((i, a), (i, a, b)) 6= 0 (to proba) do

for all node y such that P̄ ((i, a, b), y) 6= 0 (to player 1) do

if j is an ergodic node then

P̄ ((i, a), (i, a, b)) = 0

break;

end if

end for

end for

if there is no (i, a, b) such that P̄ ((i, a), (i, a, b)) 6= 0 (a-th row is null) then

Q′ = Q′ \ {(i, a)}
end if

end if

end for

178 CHAPTER 6. MODELING AND IMPLEMENTATION

6.3 The linear solver: problems and issues

6.3.1 Tarjan Algorithm

The decomposition of Equation (6.1) in Equation (6.2) has an impact on the structure

of the matrix P̄ of the policy iteration algorithm, that arises in the linear system of the

most internal loop of the nested policy iterations. This matrix has dimension n̄ and

corresponds to the set of Equations (6.2). Indeed, when for each x ∈ Xmax we fix an action

a ∈ A(x) (that is the actions that determines the strategy for player max) and for each

node (x, a) ∈ Xmin we fix an action b ∈ B(x, a) (that determines the strategy for player

min), the non-linear terms in Equation (6.2) vanish and form the linear system v = P̄ v+ r̄.

The adjacency graph of the matrix P̄ induced by this decomposition is highly reducible

and it may compromise the efficiency of the chosen linear system solver. Therefore, we

decompose the linear System (6.2) into irreducible classes using Tarjan algorithm [Tar72]

(which is explained below). The system is then solved successively on each irreducible

classes.

We recall here the Tarjan algorithm in Algorithm 6.7 to construct strongly connected

components of a graph G = (V,E), this algorithm [Tar72] requires O(V + E) space and

time where V is the number of vertices and E is the number of edges of the graph G. Note

that for efficiently this algorithm is implemented in a equivalent non-recursive form in our

program PIGAMES .

Algorithm 6.7a Tarjan [Tar72]

for x ∈ G do

number[x]← −1;

lowlink[x]← −1;

end for

i← 0;

for x ∈ G do

if number[x] == −1 then

StrongConnect (x, i, number[], lowlink[]);

end if

end for

6.3. The linear solver: problems and issues 179

Algorithm 6.7b StrongConnect (x, i, number[], lowkink[])

lowlink[x]← i;

number[x]← i;

i+ +;

put x on Stack;

for y in adjacency list of x do

if number[y] == −1 then

StrongConnect (y, i, number, lowlink);

lowlink[y]← min {lowlink[x], lowlink[y]};

else if number[y] < number[x] then

if y is on Stack then

lowlink[x]← min {lowlink[x], lowlink[y]};

end if

end if

end for

if lowlink[x] == number[x] then

Start new strongly connect component SCC:

while number[top on Stack] ≥ number[x] do

y ← pop Stack;

put y on SCC;

end while

end if

180 CHAPTER 6. MODELING AND IMPLEMENTATION

6.4 The PIGAMES package

We present here the readme file of the PIGAMES package.

6.5 Contents of the package

The package PIGAMES contains the following subdirectories :

game/ main source code.

manual/ contains the manual files.

soft/ interface code for external packages.

The main directory PIGAMES also contains a README file with the instructions for the

installation of the package, a makefile and a file makefile.mk which contains some spec-

ifications to be completed by the user. The program requires that the libraries BLAS and

LAPACK (see below).

6.5.1 Installation

– Complete makefile.mk with your directories, libraries and flags.

– If some libraries are not installed on your system, modify solver.h, comment the

libraries that you do not have.

– Run make all to build the package (see the makefile for other commands).

The command make game_documentation builds the documentation in HTML pages

form that is available in pigames/manual/html/index.html. This pages can be accessed

using a usual browser.

6.5.2 Run

The main command is ./pigames, to get an overview of the possible commands, the

user can ./pigames help or simply ./pigames. The general form of call of the program

is

./pigames choice file_name(s)

where choice is an integer explained below, file_name(s) are input files and [dessin]

is an option for plotting a graph (if available for the chosen application). The different

options are the following:

– ./pigames 7 input_options input_data

Run the program to solve a stochastic game (discounted or mean payoff) whose

data is given in the file input_data and the options for the solver in the file

input_options.

– ./pigames 2 inputs/input_random_test.options

Run the program who generates a random two player zero-sum stochastic game with

discounted payoff, the options are in the file inputs/input_random_test.options.

6.5. Contents of the package 181

– ./pigames 3 inputs/input_richman_test.options

Run the program for a random Richman game with the options in the file

inputs/input_richman_test.options

– ./pigames 4 input_file

Run the program AMGπ to solve a HJB-Bellman equation (one player), the options

are in the input file, see for instance the file inputs/input_edp1_test.options.

– ./pigames 5 inputs_file

Same as choice 4 but instead the solver FAMGπ is used.

– ./pigames 21 input_file

Run the program AMGπ to solve an Isaacs equation, the options are in the input

file, for instance the file inputs/input_edpjeux1.options.

– ./pigames 22 input_file

Same as choice 21 but instead the solver FAMGπ is used.

– ./pigames 111 name_problem input_file Run the program to solve a stochastic

game with mean payoff of type name_problem, the options are in the file input_file.

For instance:

– ./pigames 111 richmanCTG example of the Richman game with mean payoff the

paper of Cochet-Terrasson and Gaubert [CTG06], see also the file

inputs/input_ergodic_richmanCTG for the options.

– ./pigames 111 saad example of zero-sum two player stochastic games where

transitions matrices are build using a modified version of the random walk code

of Saad Sparse-Kit package, see also the file

inputs/input_ergodic_saad for options.

– ./pigames 111 random example of zero-sum two player stochastic games with

random transitions matrices, see also the file

inputs/input_ergodic_random for options.

– ./pigames 111 pursuit inputfile example of pursuit games of Section 5.3.2,

see also the file

inputs/input_edp_pursuit for options.

– ./pigames 111 richman inputfile example of a random mean payoff Richman

game, see also the file

inputs/input_ergodic_richman for options.

– ./pigames 222 (use for debug functions only)

The above input option files contain default value and can be edited.

6.5.3 Input data file for discrete stochastic games

We describe how to use the following command :

./pigames 7 input_options input_data

which allows to run the program for solving a stochastic game (discounted or mean payoff)

with data given in the input_data and input_options files. In this case, the problem

must be entered in a max-min-probaform or similar without oracle nodes (see Section 6.1)

182 CHAPTER 6. MODELING AND IMPLEMENTATION

and the input_data has the following structure :

– (number of node lists)

– (types of the lists)*

– <list of lists>:

– <list of nodes>:

– (label) (type of the list)

– (number of arcs to which it points) (initial strategy)

– <array of pointers>: (size) (number)*

– <array of probabilities>: (size) (number)*

– <array of costs>: (size) (number)*

where the first line of this file contains the number of lists, the second line contains the

type of the lists in order (the first list is always the initial state space). The next lines

contain the definition of all the nodes that can be given in any order. Each node is defined

by a block of five lines as followed. The first line contains the label of the node followed

by the type of the list to which it belongs. The second line contains the number nodes to

which it points, that we shall call np, followed by the position of the strategy, that we shall

call st, in the array of pointers defined in the third line, 0 ≤ st < np. The third, fourth

and fifth lines contain respectively, the arrays of pointers, corresponding probabilities and

costs. Each of these arrays are defined by the size of the array followed by its elements.

When the array is empty it is defined by size 0. For instance, if we consider Example 6.1,

illustrated in Figure 6.1 and in max-min-proba form in Figure 6.2, we have the following

input file:

3 # number of list (nodes and arcs)

-12 -11 -13 # === type of the lists player1, player2, proba (-11 MIN, -12 MAX, -13 PROBA)

0 -12 # === new node MAX NODE ===

2 0

2 2 3

0

2 0 0

1 -12 # === new node MAX NODE ===

1 0

1 4

0

1 0

2 -11 # === new node MIN NODE ===

2 0

2 5 6

0

2 1 2

3 -11 # === new node MIN NODE ===

2 0

2 7 8

0

2 4 3

4 -11 # === new node MIN NODE ===

6.5. Contents of the package 183

1 0

1 9

0

1 100

5 -13 # === new node PROBA NODE ===

2 0

2 0 1

2 0.666666 0.333333

0

6 -13 # === new node PROBA NODE ===

1 0

1 1

1 1

0

7 -13 # === new node PROBA NODE ===

1 0

1 1

1 1

0

8 -13 # === new node PROBA NODE ===

2 0

2 0 1

2 0.5 0.5

0

9 -13 # === new node PROBA NODE ===

1 0

1 1

1 1

0

The corresponding options input file is given, for instance, by :

1 # linear system solver

1e-16 # precision for the linear solver if iterative

50 # max iterations for the linear solver solver if iterative

1 # game solver (1 Policy iteration)

100 100 100 # maximum policy iterations per list

1e-12 1e-12 1e-12 # precision tolerance for policy iterations per list

0 0.001 # 1 if mean payoff game, 0 if discounted payoff and lambda

13 # ergodic solver choice

0 1 2 # (first player, second player and proba list correspond to second line of file.data)

6.5.4 Option files for linear systems

In each of the options file called when running the program PIGAMES , there are

options for choosing the linear solvers to use. We give the values of those options below.

– Options for the linear solver:

– 11 : AMG home made solver (it can be parametrize using the file MG.options

explained hereafter).

184 CHAPTER 6. MODELING AND IMPLEMENTATION

– 13 : ML∗ smooth aggregation solver of the ML external package.

– 14 : UMFPACK∗ LU direct solver for sparse matrix from the UMFPACK external

package.

– 15 : AGMG∗ algebraic multigrid solver of aggregation type with K-cycle from the

AGMG external package

– 16 : SuperLU∗ LU direct solver for sparse matrix from the SuperLU external

package.

– 17 : Lapack∗ LU direct solver for dense matrix (use for small sizes) from the

LAPACK external package.

One of the above options minus 10 runs the Tarjan algorithm combined with the

chosen solver.

– Options for the ergodic linear solver:

– 11: SuperLU∗ old (2)

– 12: Home made multigrid for Markov chain (2)

– 13: SuperLU∗ for the stationary probability of the Markov chain and home multi-

grid for the singular linear system (2).

– 15: Home made adapted multigrid (1).

– 16: Multigrid for Markov chain (2) multiplicative special (MA)

– 17: LAPACK∗ (2)

– 18: LAPACK∗ (1)

– 19: SuperLU∗ (1)

– 20: SuperLU∗ (2)

– 21: UMFpack∗ (1)

– 22: UMFpack∗ (2)

When the solver name is followed by

– (2) it means that the computation is made in two times, first the mean value of

the game is computed using the stationary probability of the Markov Chain and

then the relative value is computed using a singular linear solver.

– (1) then the two values are computed simultaneous.

The options 12, 13, 15, 16 should be used with the MGS.options file for the linear

singular solver options and for the options 13, 16, together with the MGMC.options

for the solver for

– Note that all the above options with a ”∗” are external solvers from external libraries

that need to be installed separately. The library LAPACK is an LU solver for dense

matrices and the libraries SuperLU and UMFpack are LU solvers for sparse matrices.

In the the main source directory pigames/game/, one can find the option files for the

different home made multigrid solvers:

– MG.options contains the options for the multigrid solver that was implemented for

this thesis.

– MGMC.options contains the options for the multigrid solver that finds the stationary

probability of a Markov chain.

6.5. Contents of the package 185

– MGS.options contain the options for the multigrid solver for singular systems.

Those files are prefilled with standard values that can be changed, we explain below

some particular options.

– The value Multigrid Construction for the construction of the grids, in MG.options

and MGS.options, can have the following values :

– −12: for an Aggregation algorithm of [VMB96]

– −11: for a standard AMG construction.

– −14: for an aggregation type (for MGS.options only)

– 22: adaptive additive (for MGS.options only)

– 31: Smoother only (do not construct any grids).

– The value Interpolation for the construction of the interpolation operator, in MG.options

and for MGS.options if Construction is −11 or −12, can have the following values :

– 1: interpolation defined in the book of [BHM00]

– 2: interpolation positive negative AMG of the report of [Stü01]

– 3: interpolation positive negative AMG with truncation of the report of [Stü01]

– 4: interpolation defined in the book [RS87]

– 5: constant interpolation with selection of aggregation like in the book of [RS87]

– 15: Aggregation as in [VMB96] constant operator

– 16: Smooth Aggregation, aggregation as in [VMB96] with relaxed operator.

– The value Interpolation for the construction of the interpolation operator, in MGMC.options

and for MGS.options if Construction is −14 or 22, can have the following values :

– 20: Aggregation as in [VMB96] with constant operator

– 21: Aggregation with scaling as in [DSMM+08] and selection using first coloring

scheme of [RS87].

– 22: Aggregation as in [VMB96] and selection using first coloring scheme of [RS87].

– The value Galerkin operator, in MGS.options and MG.options, can be :

– 1 : the restriction operator is the transpose of interpolation

– 0: the transfer operators are defined as in [Vir07].

6.5.5 External packages

Here follow the external packages corresponding to the solvers of the previous section.

– LAPACK : http://www.netlib.org/lapack/# software/ (from [ABB+99]).

– AGMG : http://homepages.ulb.ac.be/ ynotay/ (from [Not10a]).

– SuperLU for sequential machines : http://crd.lbl.gov/ xiaoye/SuperLU/ (from [DEG+99])

– UMFpack: http://www.cise.ufl.edu/research/sparse/umfpack/ (from [Dav04]).

– ML of the trilinos package: http://trilinos.sandia.gov/download/trilinos-9.0.html

(from [HBH+03]).

– sparseKit : http://www-users.cs.umn.edu/ saad/software/SPARSKIT/index.html

(from [Saa03]).

Note that for some Linux distribution some rpm of debian packages may exists, in

particular for LAPACK.

186 CHAPTER 6. MODELING AND IMPLEMENTATION

Bibliography

[AB07] Olivier Alvarez and Martino Bardi. Ergodic problems in differential games. In

Advances in dynamic game theory, volume 9 of Ann. Internat. Soc. Dynam. Games,

pages 131–152. Birkhäuser Boston, Boston, MA, 2007.

[ABB+99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’

Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third

edition, 1999.

[AD12] Marianne Akian and Sylvie Detournay. Multigrid methods for two-player zero-sum

stochastic games. Numerical Linear Algebra with Applications, 19(2):313–342, 2012.

[ADCTG12] Marianne Akian, Sylvie Detournay, Jean Cochet-Terrasson, and Stéphane Gaubert.

Policy iteration algorithm for zero-sum stochastic games with mean payoff. preprint,

2012.

[AG03] M. Akian and S. Gaubert. Spectral theorem for convex monotone homogeneous

maps, and ergodic control. Nonlinear Analysis. Theory, Methods & Applications,

52(2):637–679, 2003.

[AGG08] A. Adjé, S. Gaubert, and É. Goubault. Computing the smallest fixed point of

order-preserving nonexpansive mappings arising in game theory and static analysis

of programs. In Proceedings of MTNS’08, 2008. See also arXiv:0806.1160.

[AGG10] Assalé Adjé, Stéphane Gaubert, and Eric Goubault. Coupling policy iteration with

semi-definite relaxation to compute accurate numerical invariants in static analysis.

In Andrew Gordon, editor, Programming Languages and Systems, volume 6012 of

Lecture Notes in Computer Science, pages 23–42. Springer Berlin / Heidelberg, 2010.

[AGG12a] A. Adjé, S. Gaubert, and É. Goubault. Coupling policy iteration with semi-definite

relaxation to compute accurate numerical invariants in static analysis. Logical meth-

ods in computer science, 8(1):1–32, 2012.

[AGG12b] M. Akian, S. Gaubert, and A. Guterman. Tropical polyhedra are equivalent to mean

payoff games. International of Algebra and Computation, 22(1):125001 (43 pages),

2012. doi10.1142/S0218196711006674, arxiv0912.2462.

[AGL08] Marianne Akian, Stéphane Gaubert, and Asma Lakhoua. The max-plus finite ele-

ment method for solving deterministic optimal control problems: basic properties

and convergence analysis. SIAM J. Control Optim., 47(2):817–848, 2008.

[AGNS11] M. Akian, S. Gaubert, V. Nitica, and I. Singer. Best approximation in max-

plus semimodules. Linear Algebra and its Applications, 435(12):3261–3296, 2011.

doi10.1016/j.laa.2011.06.009, arxiv1012.5492.

187

188 BIBLIOGRAPHY

[Aki90a] Marianne Akian. Analyse de l’algorithme multigrille FMGH de résolution

d’équations d’Hamilton-Jacobi-Bellman. In Analysis and optimization of systems

(Antibes, 1990), volume 144 of Lecture Notes in Control and Inform. Sci., pages

113–122. Springer, Berlin, 1990.

[Aki90b] Marianne Akian. Méthodes multigrilles en contrôle stochastique. Institut National

de Recherche en Informatique et en Automatique (INRIA), Rocquencourt, 1990.

Thèse, Université de Paris IX (Paris-Dauphine), Paris, 1990.

[Alt94] E. Altman. Flow control using the theory of zero sum Markov games. IEEE Trans.

Automat. Control, 39(4):814–818, 1994.

[AM09] Daniel Andersson and Peter Miltersen. The complexity of solving stochastic games

on graphs. In Yingfei Dong, Ding-Zhu Du, and Oscar Ibarra, editors, Algorithms and

Computation, volume 5878 of Lecture Notes in Computer Science, pages 112–121.

Springer Berlin / Heidelberg, 2009.

[And09] D. Andersson. Extending Friedmann s lower bound to the hoffman-karp algorithm.

preprint, June, 2009.

[Bar09] Martino Bardi. On differential games with long-time-average cost. In Advances in

dynamic games and their applications, volume 10 of Ann. Internat. Soc. Dynam.

Games, pages 3–18. Birkhäuser Boston Inc., Boston, MA, 2009.

[BB95] T. Başar and P. Bernhard. H∞-optimal control and related minimax design prob-

lems. Systems & Control: Foundations & Applications. Birkhäuser Boston Inc.,

Boston, MA, second edition, 1995. A dynamic game approach.

[BBB+10] M. Bolten, A. Brandt, J. Brannick, A. Frommer, K. Kahl, and I. Livshits. A

Bootstrap Algebraic Multilevel method for Markov Chains. ArXiv e-prints, April

2010.

[BC89] Dimitri P. Bertsekas and David A. Castañon. Adaptive aggregation methods for

infinite horizon dynamic programming. IEEE Trans. Automat. Control, 34(6):589–

598, 1989.

[BCPS04] T.R. Bielecki, J.-P. Chancelier, S.R. Pliska, and A. Sulem. Risk sensitive portfolio

optimization with transaction costs. Journal of computational Finance, 8(1):39–65,

2004.

[BEGM10] Endre Boros, Khaled Elbassioni, Vladimir Gurvich, and Kazuhisa Makino. A pump-

ing algorithm for ergodic stochastic mean payoff games with perfect information. In

Integer programming and combinatorial optimization, volume 6080 of Lecture Notes

in Comput. Sci., pages 341–354. Springer, Berlin, 2010.

[Bel57] Richard Bellman. Dynamic programming. Princeton University Press, Princeton,

N. J., 1957.

[Ber87] D. P. Bertsekas. Dynamic programming. Prentice Hall Inc., Englewood Cliffs, NJ,

1987. Deterministic and stochastic models.

[BFS94] M. Bardi, M. Falcone, and P. Soravia. Fully discrete schemes for the value function

of pursuit-evasion games. In Advances in dynamic games and applications (Geneva,

1992), volume 1 of Ann. Internat. Soc. Dynam. Games, pages 89–105. Birkhäuser

Boston, Boston, MA, 1994.

[BFS99] Martino Bardi, Maurizio Falcone, and Pierpaolo Soravia. Numerical methods for

pursuit-evasion games via viscosity solutions. In Stochastic and differential games,

BIBLIOGRAPHY 189

volume 4 of Ann. Internat. Soc. Dynam. Games, pages 105–175. Birkhäuser Boston,

Boston, MA, 1999.

[BHM00] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A multigrid

tutorial. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,

PA, second edition, 2000.

[BKS00] Martino Bardi, Shigeaki Koike, and Pierpaolo Soravia. Pursuit-evasion games with

state constraints: dynamic programming and discrete-time approximations. Discrete

Contin. Dynam. Systems, 6(2):361–380, 2000.

[BL78] A. Bensoussan and J.-L. Lions. Applications des inéquations variationnelles

en contrôle stochastique. Dunod, Paris, 1978. Méthodes Mathématiques de

l’Informatique, No. 6.

[BL82] A. Bensoussan and J.-L. Lions. Contrôle impulsionnel et inéquations quasi varia-

tionnelles, volume 11 of Méthodes Mathématiques de l’Informatique [Mathematical

Methods of Information Science]. Gauthier-Villars, Paris, 1982.

[BMR85] A. Brandt, S. McCormick, and J. Ruge. Algebraic multigrid (AMG) for sparse

matrix equations. In Sparsity and its applications (Loughborough, 1983), pages

257–284. Cambridge Univ. Press, Cambridge, 1985.

[BMZ09] Olivier Bokanowski, Stefania Maroso, and Hasnaa Zidani. Some convergence results

for Howard’s algorithm. SIAM J. Numer. Anal., 47(4):3001–3026, 2009.

[BP94] Abraham Berman and Robert J. Plemmons. Nonnegative matrices in the mathemat-

ical sciences, volume 9 of Classics in Applied Mathematics. Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, PA, 1994. Revised reprint of the

1979 original.

[BR82] Randolph E. Bank and Donald J. Rose. Analysis of a multilevel iterative method

for nonlinear finite element equations. Math. Comp., 39(160):453–465, 1982.

[Bra86] Achi Brandt. Algebraic multigrid theory: the symmetric case. Appl. Math. Comput.,

19(1-4):23–56, 1986. Second Copper Mountain conference on multigrid methods

(Copper Mountain, Colo., 1985).

[BS91] G. Barles and P. E. Souganidis. Convergence of approximation schemes for fully

nonlinear second order equations. Asymptotic Anal., 4(3):271–283, 1991.

[BSV04] H. Bjorklund, S. Sandberg, and S. Vorobyov. A combinatorial strongly subexponen-

tial strategy improvement algorithm for mean payoff games. Technical Report 05,

DIMACS, 2004.

[BV07] H. Bjorklund and S. Vorobyov. A combinatorial strongly subexponential strategy

improvement algorithm for mean payoff games. Discrete Appl. Math., 155:210229,

2007.

[BZ03] J. Frédéric Bonnans and Housnaa Zidani. Consistency of generalized finite difference

schemes for the stochastic HJB equation. SIAM J. Numer. Anal., 41(3):1008–1021

(electronic), 2003.

[CF09] Emiliano Cristiani and Maurizio Falcone. Fully-discrete schemes for the value func-

tion of pursuit-evasion games with state constraints. In Advances in dynamic games

and their applications, volume 10 of Ann. Internat. Soc. Dynam. Games, pages

177–206. Birkhäuser Boston Inc., Boston, MA, 2009.

190 BIBLIOGRAPHY

[CGB03] R.A. Cuninghame-Green and P. Butkovič. The equation a⊗x = b⊗y over (max,+).

Theoretical Computer Science, 293:3–12, 2003.

[CGG+05] A. Costan, S. Gaubert, E. Goubault, M. Martel, and S. Putot. A policy iteration

algorithm for computing fixed points in static analysis of programs. In Kousha

Etessami and Sriram Rajamani, editors, Computer Aided Verification, volume 3576

of Lecture Notes in Computer Science, pages 215–226. Springer Berlin / Heidelberg,

2005.

[Cha09] J. Chaloupka. Parallel algorithms for mean-payoff games: an experimental evalu-

ation. In Algorithms—ESA 2009, volume 5757 of Lecture Notes in Comput. Sci.,

pages 599–610. Springer, Berlin, 2009.

[Cha11] J. Chaloupka. Algorithms for Mean-Payoff and Energy Games. Phd thesis, Masaryk

University, 2011.

[CIL92] Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions. User’s guide to viscosity

solutions of second order partial differential equations. Bull. Amer. Math. Soc.

(N.S.), 27(1):1–67, 1992.

[CLRS01] T. H. Cormen, Ch. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algo-

rithms. MIT Press, Cambridge, MA, second edition, 2001.

[CM69] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices.

In Proceedings of the 1969 24th national conference, ACM ’69, pages 157–172, New

York, NY, USA, 1969. ACM.

[CMS07] J.-P. Chancelier, M. Messaoud, and A. Sulem. A policy iteration algorithm for fixed

point problems with nonexpansive operators. Math. Methods Oper. Res., 65(2):239–

259, 2007.

[Con92] A. Condon. The complexity of stochastic games. Inform. and Comput., 96(2):203–

224, 1992.

[Con93] Anne Condon. On algorithms for simple stochastic games. In Advances in compu-

tational complexity theory (New Brunswick, NJ, 1990), volume 13 of DIMACS Ser.

Discrete Math. Theoret. Comput. Sci., pages 51–71. Amer. Math. Soc., Providence,

RI, 1993.

[CT80] M.G. Crandall and L. Tartar. Some relations between non expansive and order

preserving maps. Proceedings of the AMS, 78(3):385–390, 1980.

[CT01] J. Cochet-Terrasson. Algorithmes d’itération sur les politiques pour les applications

monotones contractantes. Thèse, École des Mines de Paris, 2001.

[CTCG+98] Jean Cochet-Terrasson, Guy Cohen, Stéphane Gaubert, Michael Mc Gettrick, and

Jean-Pierre Quadrat. Numerical computation of spectral elements in max-plus al-

gebra. In Proc. of the IFAC Conference on System Structure and Control, Nantes,

July 1998.

[CTG06] Jean Cochet-Terrasson and Stéphane Gaubert. A policy iteration algorithm for zero-

sum stochastic games with mean payoff. C. R. Math. Acad. Sci. Paris, 343(5):377–

382, 2006.

[CTGG99] J. Cochet-Terrasson, S. Gaubert, and J. Gunawardena. A constructive fixed point

theorem for min-max functions. Dynamics and Stability of Systems, 14(4):407–433,

1999.

BIBLIOGRAPHY 191

[Das04] A. Dasdan. Experimental analysis of the fastest optimum cycle ratio and mean algo-

rithms. ACM Transactions on Design Automation of Electronic Systems, 9(4):385–

418, 2004.

[Dav04] Timothy A. Davis. Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multi-

frontal method. ACM Trans. Math. Softw., 30:196–199, June 2004.

[Dav06] Timothy A. Davis. Direct methods for sparse linear systems, volume 2 of Funda-

mentals of Algorithms. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, 2006.

[DEG+99] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph

W. H. Liu. A supernodal approach to sparse partial pivoting. SIAM J. Matrix

Analysis and Applications, 20(3):720–755, 1999.

[Den67] Eric V. Denardo. Contraction mappings in the theory underlying dynamic program-

ming. SIAM Rev., 9:165–177, 1967.

[Det12] Sylvie Detournay. Multigrid for zero-sum two player stochastic games. Phd thesis,

École Polytechnique, Palaiseau, France, 2012.

[DF68] E. V. Denardo and B. L. Fox. Multichain Markov renewal programs. SIAM J. Appl.

Math., 16:468–487, 1968.

[DG06] V. Dhingra and S. Gaubert. How to solve large scale deterministic games with mean

payoff by policy iteration. In Valuetools ’06: Proceedings of the 1st international

conference on Performance evaluation methodologies and tools, page 12, New York,

NY, USA, 2006. ACM Press.

[DIG98] A. Dasdan, S. S. Irani, and R. K. Guptka. An experimental study of minimum mean

cycle algorithms. Technical report # 98-32, UCI-ICS, 1998.

[DS00] Tuğrul Dayar and William J. Stewart. Comparison of partitioning techniques for

two-level iterative solvers on large, sparse Markov chains. SIAM J. Sci. Comput.,

21(5):1691–1705 (electronic), 2000. Iterative methods for solving systems of alge-

braic equations (Copper Mountain, CO, 1998).

[DSMM+08] H. De Sterck, Thomas A. Manteuffel, Stephen F. McCormick, Quoc Nguyen, and

John Ruge. Multilevel adaptive aggregation for Markov chains, with application to

web ranking. SIAM J. Sci. Comput., 30(5):2235–2262, 2008.

[DSMM+10a] H. De Sterck, T. A. Manteuffel, S. F. McCormick, K. Miller, J. Pearson, J. Ruge,

and G. Sanders. Smoothed aggregation multigrid for Markov chains. SIAM J. Sci.

Comput., 32(1):40–61, 2010.

[DSMM+10b] H. De Sterck, T. A. Manteuffel, S. F. McCormick, K. Miller, J. Ruge, and

G. Sanders. Algebraic multigrid for Markov chains. SIAM J. Sci. Comput.,

32(2):544–562, 2010.

[DSMMS11] H. De Sterck, K. Miller, T. Manteuffel, and G. Sanders. Top-level acceleration of

adaptive algebraic multilevel methods for steady-state solution to Markov chains.

volume 35, pages 375–403, 2011.

[DSMSW10] H. De Sterck, K. Miller, G. Sanders, and M. Winlaw. Recursively accelerated mul-

tilevel aggregation for Markov chains. SIAM J. Sci. Comput., 32(3):1652–1671,

2010.

[ES11] R. J. Elliott and T.K̃. Siu. A stochastic differential game for optimal investment of

an insurer with regime switching. Quant. Finance, 11(3):365–380, 2011.

192 BIBLIOGRAPHY

[Fal06] M. Falcone. Numerical methods for differential games based on partial differential

equations. Int. Game Theory Rev., 8(2):231–272, 2006.

[Fea10a] John Fearnley. Exponential lower bounds for policy iteration. In Automata, Lan-

guages and Programming, pages 551–562, 2010.

[Fea10b] John Fearnley. Strategy Algorithms for Games and Markov Decision Processes. PhD

thesis, The University of Warwick, Coventry, United Kingdom, 2010.

[Fle06] Wendell H. Fleming. Risk sensitive stochastic control and differential games. Com-

mun. Inf. Syst., 6(3):161–177, 2006.

[FM00] Wendell H. Fleming and William M. McEneaney. A max-plus-based algorithm for a

Hamilton-Jacobi-Bellman equation of nonlinear filtering. SIAM J. Control Optim.,

38(3):683–710 (electronic), 2000.

[Fri73] Avner Friedman. Stochastic games and variational inequalities. Arch. Rational

Mech. Anal., 51:321–346, 1973.

[Fri09] Oliver Friedmann. An exponential lower bound for the parity game strategy im-

provement algorithm as we know it. In LICS, pages 145–156. IEEE Computer

Society, 2009.

[Fri11] Oliver Friedmann. An exponential lower bound for the latest deterministic strategy

iteration algorithms. May 2011.

[FS89] W. H. Fleming and P. E. Souganidis. On the existence of value functions of two-

player, zero-sum stochastic differential games. Indiana Univ. Math. J., 38(2):293–

314, 1989.

[FS06] W. H. Fleming and H. M. Soner. Controlled Markov processes and viscosity solu-

tions, volume 25 of Stochastic Modelling and Applied Probability. Springer, New

York, second edition, 2006.

[FV97] Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer-

Verlag, New York, 1997.

[FVZ05] Robert D. Falgout, Panayot S. Vassilevski, and Ludmil T. Zikatanov. On two-grid

convergence estimates. Numer. Linear Algebra Appl., 12(5-6):471–494, 2005.

[GG98] S. Gaubert and J. Gunawardena. The duality theorem for min-max functions. C.R.

Acad. Sci., 326(1):43–48, 1998.

[GG04] S. Gaubert and J. Gunawardena. The Perron-Frobenius theorem for homogeneous,

monotone functions. Trans. of AMS, 356(12):4931–4950, 2004.

[GGTW09] L. Georgiadis, A. V. Goldberg, R. E. Tarjan, and R. F. F. Werneck. An experimental

study of minimum mean cycle algorithms. In Proceedings of the Eleventh Workshop

on Algorithm Engineering and Experiments (ALENEX09), pages 1–13, 2009.

[GGTZ07] Stephane Gaubert, Eric Goubault, Ankur Taly, and Sarah Zennou. Static analysis

by policy iteration on relational domains. In Rocco De Nicola, editor, Programming

Languages and Systems, volume 4421 of Lecture Notes in Computer Science, pages

237–252. Springer Berlin / Heidelberg, 2007.

[GKK88] V. A. Gurvich, A. V. Karzanov, and L. G. Khachiyan. Cyclic games and finding

minimax mean cycles in digraphs. Zh. Vychisl. Mat. i Mat. Fiz., 28(9):1407–1417,

1439, 1988.

BIBLIOGRAPHY 193

[GL81] A. George and J.W.H. Liu. Computer solution of large sparse positive definite

systems. Prentice-Hall series in computational mathematics. Prentice-Hall, 1981.

[GS07a] S. Gaubert and S. Sergeev. Cyclic projectors and separation theorems in idempotent

convex geometry. Fundamentalnaya i prikladnaya matematika, 13(4):33–52, 2007.

Engl. translation in Journal of Mathematical Sciences (Springer, New-York), Vol.

155, No. 6, pp.815–829, 2008.

[GS07b] Thomas Gawlitza and Helmut Seidl. Precise fixpoint computation through strategy

iteration. In Rocco De Nicola, editor, ESOP, volume 4421 of Lecture Notes in

Computer Science, pages 300–315. Springer, 2007.

[GS07c] Thomas Gawlitza and Helmut Seidl. Precise relational invariants through strategy

iteration. In Jacques Duparc and Thomas Henzinger, editors, Computer Science

Logic, volume 4646 of Lecture Notes in Computer Science, pages 23–40. Springer

Berlin / Heidelberg, 2007.

[GSA+12] Thomas Martin Gawlitza, Helmut Seidl, Assalé Adjé, Stéphane Gaubert, and Éric

Goubault. Abstract interpretation meets convex optimization. Journal of Sym-

bolic Computation, 47(12):1416 – 1446, 2012. International Workshop on Invariant

Generation.

[Gun03] J. Gunawardena. From max-plus algebra to nonexpansive maps: a nonlinear theory

for discrete event systems. Theoretical Computer Science, 293:141–167, 2003.

[GVL96] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins

Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore,

MD, third edition, 1996.

[HBH+03] Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoekstra, Jonathan Hu,

Tamara Kolda, Richard Lehoucq, Kevin Long, Roger Pawlowski, Eric Phipps, An-

drew Salinger, Heidi Thornquist, Ray Tuminaro, James Willenbring, and Alan

Williams. An Overview of Trilinos. Technical Report SAND2003-2927, Sandia

National Laboratories, 2003.

[HK66a] A. J. Hoffman and R. M. Karp. On nonterminating stochastic games. Management

Sci., 12:359–370, 1966.

[HK66b] A. J. Hoffman and R. M. Karp. On nonterminating stochastic games. Management

sciences, 12(5):359–370, 1966.

[HL94] Graham Horton and Scott T. Leutenegger. A multi-level solution algorithm for

steady-state markov chains. In SIGMETRICS ’94: Proceedings of the 1994 ACM

SIGMETRICS conference on Measurement and modeling of computer systems,

pages 191–200, New York, NY, USA, 1994. ACM.

[HMZ11] T.D. Hansen, P.B. Miltersen, and U. Zwick. Strategy iteration is strongly polyno-

mial for 2-player turn-based stochastic games with a constant discount factor. In

Innovations in Computer Science 2011, pages 253–263. Tsinghua University Press,

2011.

[Hop86] Ronald H. W. Hoppe. Multigrid methods for Hamilton-Jacobi-Bellman equations.

Numer. Math., 49(2-3):239–254, 1986.

[Hop87] Ronald H. W. Hoppe. Multigrid algorithms for variational inequalities. SIAM J.

Numer. Anal., 24(5):1046–1065, 1987.

194 BIBLIOGRAPHY

[How60] Ronald A. Howard. Dynamic programming and Markov processes. The Technology

Press of M.I.T., Cambridge, Mass., 1960.

[JPZ06] M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexponential algorithm

for solving parity games. In Proceedings of the ACM-SIAM Symposium on Discrete

Algorithms (SODA 2006), January 2006.

[Jur98] Marcin Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP. Inform.

Process. Lett., 68(3):119–124, 1998.

[KD92] Harold J. Kushner and Paul G. Dupuis. Numerical methods for stochastic control

problems in continuous time, volume 24 of Applications of Mathematics (New York).

Springer-Verlag, New York, 1992.

[KK71] H. Kushner and A. Kleinman. Accelerated procedures for the solution of discrete

markov control problems. Automatic Control, IEEE Transactions on, 16(2):147 –

152, apr 1971.

[Koh80] E. Kohlberg. Invariant half-lines of nonexpansive piecewise-linear transformations.

Math. Oper. Res., 5(3):366–372, 1980.

[Kol92] V. N. Kolokoltsov. On linear, additive, and homogeneous operators in idempotent

analysis. In Idempotent analysis, volume 13 of Adv. Soviet Math., pages 87–101.

Amer. Math. Soc., Providence, RI, 1992.

[Kus77] Harold J. Kushner. Probability methods for approximations in stochastic control and

for elliptic equations. Academic Press [Harcourt Brace Jovanovich Publishers], New

York, 1977. Mathematics in Science and Engineering, Vol. 129.

[LCS08] Dongxu Li, Jose B. Cruz, Jr., and Corey J. Schumacher. Stochastic multi-player

pursuit-evasion differential games. Internat. J. Robust Nonlinear Control, 18(2):218–

247, 2008.

[LL69] T. M. Liggett and S. A. Lippman. Stochastic games with perfect information and

time average payoff. SIAM Rev., 11:604–607, 1969.

[LLP+99] A. J. Lazarus, D. E. Loeb, J. G. Propp, W. R. Stromquist, and D. H. Ullman.

Combinatorial games under auction play. Games Econom. Behav., 27(2):229–264,

1999.

[LLPU96] Andrew J. Lazarus, Daniel E. Loeb, James G. Propp, and Daniel Ullman. Richman

games. In Games of no chance (Berkeley, CA, 1994), volume 29 of Math. Sci. Res.

Inst. Publ., pages 439–449. Cambridge Univ. Press, Cambridge, 1996.

[LM80] P.-L. Lions and B. Mercier. Approximation numérique des équations de Hamilton-

Jacobi-Bellman. RAIRO Anal. Numér., 14(4):369–393, 1980.

[McC87] Stephen F. McCormick, editor. Multigrid methods, volume 3 of Frontiers in Applied

Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadel-

phia, PA, 1987.

[MFL04] W.M. McEneaney, B.G. Fitzpatrick, and I.G. Lauko. Stochastic game approach to

air operations. IEEE Trans. Aero. Elec. Systems, 40:1191–1216, 2004.

[MH86] U. Meister and U. Holzbaur. A polynomial time bound for howard’s policy improve-

ment algorithm. OR Spectrum, 8:37–40, 1986. 10.1007/BF01720771.

[MM98] Ivo Marek and Petr Mayer. Convergence analysis of an iterative aggrega-

tion/disaggregation method for computing stationary probability vectors of stochas-

tic matrices. Numer. Linear Algebra Appl., 5(4):253–274, 1998.

BIBLIOGRAPHY 195

[MM03] Ivo Marek and Petr Mayer. Convergence theory of some classes of iterative ag-

gregation/disaggregation methods for computing stationary probability vectors of

stochastic matrices. Linear Algebra Appl., 363:177–200, 2003. Special issue on non-

negative matrices, M -matrices and their generalizations (Oberwolfach, 2000).

[MN08] C. Mense and R. Nabben. On algebraic multi-level methods for non-symmetric

systems—comparison results. Linear Algebra Appl., 429(10):2567–2588, 2008.

[MP77] Carl D. Meyer, Jr. and R. J. Plemmons. Convergent powers of a matrix with

applications to iterative methods for singular linear systems. SIAM J. Numer.

Anal., 14(4):699–705, 1977.

[MZ05] Rémi Munos and Hasnaa Zidani. Consistency of a simple multidimensional scheme

for Hamilton-Jacobi-Bellman equations. C. R. Math. Acad. Sci. Paris, 340(7):499–

502, 2005.

[Not10a] Yvan Notay. An aggregation-based algebraic multigrid method. Electronic Trans-

actions on Numerical Analysis, 37:123–146, 2010.

[Not10b] Yvan Notay. Algebraic analysis of two-grid methods: The nonsymmetric case. Nu-

mer. Linear Algebra Appl., 17(1):73–96, 2010.

[NP79] M. Neumann and R. J. Plemmons. Convergent nonnegative matrices and iterative

methods for consistent linear systems. Numer. Math., 31(3):265–279, 1978/79.

[NS03] A. Neyman and S. Sorin. Stochastic games and applications, volume 570. Springer

Netherlands, 2003.

[NV08] Yvan Notay and Panayot S. Vassilevski. Recursive Krylov-based multigrid cycles.

Numer. Linear Algebra Appl., 15(5):473–487, 2008.

[Obe05] A. M. Oberman. A convergent difference scheme for the infinity Laplacian: construc-

tion of absolutely minimizing Lipschitz extensions. Math. Comp., 74(251):1217–

1230, 2005.

[OZ05] N. Shimkin O. Ziv. Multigrid methods for policy evaluation and reinforcement

learning. In Proc. IEEE International Symposium on Intelligent Control (ISIC05).

IEEE, 2005.

[PAI69] M. A. Pollatschek and B. Avi-Itzhak. Algorithms for stochastic games with geomet-

rical interpretation. Management Sci., 15:399–415, 1968/1969.

[PB74] George Poole and Thomas Boullion. A survey on M -matrices. SIAM Rev., 16:419–

427, 1974.

[PB79] Martin L. Puterman and Shelby L. Brumelle. On the convergence of policy iteration

in stationary dynamic programming. Math. Oper. Res., 4(1):60–69, 1979.

[Ple76] R. J. Plemmons. M -matrices leading to semiconvergent splittings. Linear Algebra

and Appl., 15(3):243–252, 1976.

[Por75] Evan L. Porteus. Bounds and transformations for discounted finite Markov decision

chains. Operations Res., 23(4):761–784, 1975.

[Por80] E. L. Porteus. Improved iterative computation of the expected discounted return in

Markov and semi-Markov chains. Z. Oper. Res. Ser. A-B, 24(5):155–170, 1980.

[Por72] Evan L. Porteus. Some bounds for discounted sequential decision processes. Man-

agement Sci., 18:7–11, 1971/72.

196 BIBLIOGRAPHY

[PSS96] Bernard Philippe, Youcef Saad, and William J. Stewart. Numerical methods in

markov chain modelling. Operations Research, 40:1156–1179, 1996.

[PSSW09] Yuval Peres, Oded Schramm, Scott Sheffield, and David B. Wilson. Tug-of-war and

the infinity Laplacian. J. Amer. Math. Soc., 22(1):167–210, 2009.

[Pur95] Anuj Puri. Theory of hybrid systems and discrete event systems. PhD thesis, Uni-

versity of California at Berkeley, Berkeley, CA, USA, 1995.

[Put94] M. L. Puterman. Markov decision processes: discrete stochastic dynamic program-

ming. Wiley Series in Probability and Mathematical Statistics: Applied Probability

and Statistics. John Wiley & Sons Inc., New York, 1994.

[Rag03] T. E. S. Raghavan. Finite-step algorithms for single-controller and perfect infor-

mation stochastic games. In Stochastic games and applications (Stony Brook, NY,

1999), volume 570 of NATO Sci. Ser. C Math. Phys. Sci., pages 227–251. Kluwer

Acad. Publ., Dordrecht, 2003.

[RCN73] S. S. Rao, R. Chandrasekaran, and K. P. K. Nair. Algorithms for discounted stochas-

tic games. J. Optimization Theory Appl., 11:627–637, 1973.

[Roc70] R. T. Rockafellar. Convex analysis. Princeton University Press, 1970.

[RS87] J. W. Ruge and K. Stüben. Algebraic multigrid. In Stephen F. McCormick, ed-

itor, Multigrid methods, volume 3 of Frontiers Appl. Math., pages 73–130. SIAM,

Philadelphia, PA, 1987.

[RS01] A. M. Rubinov and I. Singer. Topical and sub-topical functions, downward sets and

abstract convexity. Optimization, 50(5-6):307–351, 2001.

[RS03] T. E. S. Raghavan and Zamir Syed. A policy-improvement type algorithm for solving

zero-sum two-person stochastic games of perfect information. Math. Program., 95(3,

Ser. A):513–532, 2003.

[RTV85] T. E. S. Raghavan, S. H. Tijs, and O. J. Vrieze. On stochastic games with additive

reward and transition structure. J. Optim. Theory Appl., 47(4):451–464, 1985.

[Saa92] Youcef Saad. Numerical methods for large eigenvalue problems. Algorithms and

Architectures for Advanced Scientific Computing. Manchester University Press,

Manchester, 1992.

[Saa03] Yousef Saad. Iterative methods for sparse linear systems. Society for Industrial and

Applied Mathematics, Philadelphia, PA, second edition, 2003.

[Sha53] L. S. Shapley. Stochastic games. Proc. Nat. Acad. Sci. U. S. A., 39:1095–1100,

1953.

[Sor03] Sylvain Sorin. Classification and basic tools. In Stochastic games and applications

(Stony Brook, NY, 1999) [NS03], pages 27–36.

[Sor04] S. Sorin. Asymptotic properties of monotonic nonexpansive mappings. Discrete

Event Dyn. Syst., 14(1):109–122, 2004.

[Ste97] William J. Stewart. Numerical methods for computing stationary distributions of

finite irreducible markov chains. In Advances in Computational Probability. Kluwer

Academic Publishers, 1997.

[Stü01] K. Stüben. An introduction to algebraic multigrid. In U. Trottenberg, C. W.

Oosterlee, and A. Schüller, editors, Multigrid. Academic Press Inc., San Diego, CA,

2001.

BIBLIOGRAPHY 197

[Świ96] Andrzej Świech. Another approach to the existence of value functions of stochastic

differential games. J. Math. Anal. Appl., 204(3):884–897, 1996.

[Tar72] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,

1(2):146–160, 1972.

[TR97] Frank Thuijsman and Thirukkannamangai E. S. Raghavan. Perfect information

stochastic games and related classes. Internat. J. Game Theory, 26(3):403–408,

1997.

[TY10] Eran Treister and Irad Yavneh. Square and stretch multigrid for stochastic matrix

eigenproblems. Numer. Linear Algebra Appl., 17(2-3):229–251, 2010.

[TY11] Eran Treister and Irad Yavneh. On-the-fly adaptive smoothed aggregation multigrid

for Markov chains. SIAM J. Sci. Comput., 33(5):2927–2949, 2011.

[Var62] Richard S. Varga. Matrix iterative analysis. Prentice-Hall Inc., Englewood Cliffs,

N.J., 1962.

[VBM01] Petr Vaněk, Marian Brezina, and Jan Mandel. Convergence of algebraic multigrid

based on smoothed aggregation. Numer. Math., 88(3):559–579, 2001.

[vdW77] J. van der Wal. Discounted Markov games; successive approximation and stopping

times. Internat. J. Game Theory, 6(1):11–22, 1977.

[vdW78] J. van der Wal. Discounted Markov games: generalized policy iteration method. J.

Optim. Theory Appl., 25(1):125–138, 1978.

[vdW80] J. van der Wal. Successive approximations for average reward Markov games. In-

ternat. J. Game Theory, 9(1):13–24, 1980.

[Vir07] Elena Virnik. An algebraic multigrid preconditioner for a class of singular M -

matrices. SIAM J. Sci. Comput., 29(5):1982–1991 (electronic), 2007.

[VJ00] J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm for solving

parity games. In Proceedings of 12th Int. Conf. on Computer Aided Verification

(CAV’2000), July 2000.

[VMB96] P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation

for second and fourth order elliptic problems. Computing, 56(3):179–196, 1996.

International GAMM-Workshop on Multi-level Methods (Meisdorf, 1994).

[vN76] J. A. E. E. van Nunen. A set of successive approximation methods for dis-

counted markovian decision problems. Mathematical Methods of Operations Re-

search, 20:203–208, 1976. 10.1007/BF01920264.

[VNM44] John Von Neumann and Oskar Morgenstern. Theory of games and economic behav-

ior. Princeton University Press, Princeton, 1944.

[Vri03] O. J. Vrieze. Stochastic games, practical motivation and the orderfield property

for special classes. In Stochastic games and applications (Stony Brook, NY, 1999)

[NS03], pages 215–225.

[Yan81] Mihalis Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J.

Algebraic Discrete Methods, 2(1):77–79, 1981.

[Ye05] Yinyu Ye. A new complexity result on solving the Markov decision problem. Math-

ematics of Operations Research, 30(3):733–749, 2005.

[Ye11] Yinyu Ye. The simplex and policy-iteration methods are strongly polynomial for

the markov decision problem with a fixed discount rate, 2011.

198 BIBLIOGRAPHY

[YTO91] N. Young, R.E. Tarjan, and J.B. Orlin. Faster parametric shortest path and mini-

mum balance algorithms. Networks, 21:205–221, 1991.

[ZP96] Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs.

Theoret. Comput. Sci., 158(1-2):343–359, 1996.

	Notations
	Introduction
	Stochastic Games with perfect information
	Dynamic programming equation
	Example of a game and applications
	Stochastic Differential Games

	Algorithms for stochastic games
	Policy iterations for zero-sum stochastic games
	Approximation and complexity
	Multigrid methods

	Contributions
	Handling stochastic discounted games with large state space
	Policy iterations for stochastic mutlichain games with mean payoff
	Multigrids methods for particular linear systems with applications to Markov chains and to zero-sum two player stochastic games with mean payoff
	Modeling and implementation

	Stochastic Games with perfect information
	The discrete case
	The model
	Payoff and dynamic programming equation

	Algorithms for Discounted Games
	Value iteration algorithm for two player stochastic games
	Policy iteration algorithm for Markov Decision Process with discounted payoff
	Policy iteration algorithm for two player games
	About the complexity of the policy iteration algorithm
	Approximation in Policy iterations

	The continuous case
	Differential games with regular controls.
	Differential games with optimal stopping control
	Discretization

	Methods for solving linear systems
	Direct solvers for linear systems
	Relaxation schemes
	Multigrids methods for non singular linear systems
	Geometric multigrid methods
	Algebraic multigrid methods
	Smoothing property
	Solution phase
	Setup phase : the classical way
	Setup phase : aggregation methods
	The AMG algorithm
	AGMG
	Other methods

	Stationary probability of Markov Chains
	Direct Solver
	Iterative Solver
	IAD for Markov Chains
	Multigrid for Markov Chains
	AMG for Markov Chains

	AMG for discounted games
	AMG for discounted games
	Policy iteration combined with algebraic multigrid method
	Full multi-level policy iteration

	Numerical results for discounted stochastic games
	Isaacs equations
	Optimal stopping game
	Stopping game with two optimal stopping

	Conclusion and perspective

	Policy iteration algorithm for zero-sum stochastic games with mean payoff
	Introduction
	Two player zero-sum stochastic games with discrete time and mean payoff
	Reduced super-harmonic vectors
	Policy iteration algorithm for stochastic mean payoff games
	The theoretical algorithm
	The practical algorithm
	Convergence of the algorithm

	Ingredients of Algorithm 4.1 or 4.2: one player games algorithms
	Policy iterations for one player games with discounted payoff
	Policy iteration for multichain one player games
	Critical graph

	An example with degenerate iterations
	Implementation and numerical results
	Variations on tug of war and Richman games
	Pursuit evasion games

	Details of implementation of Policy Iteration for multichain one player games

	Multigrid methods for particular linear systems with applications to Markov Chains and to zero-sum two player stochastic games with mean payoff
	Solving the linear systems
	First Approach
	Second Approach

	Stochastic control for the stationary probability of an irreducible Markov Chain
	Numerical tests

	Ergodic differential stochastic games : Isaacs equation
	Isaacs equations for mean payoff differential games
	Numerical results

	Conclusion

	Modeling and implementation
	Modeling of a zero-sum two player stochastic game
	Discounted Payoff
	Mean Payoff

	Implementation details
	Discounted Payoff
	Mean payoff

	The linear solver: problems and issues
	Tarjan Algorithm

	The PIGAMES package
	Contents of the package
	Installation
	Run
	Input data file for discrete stochastic games
	Option files for linear systems
	External packages

	Bibliography

