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istratives et les soucis informatiques.

Enfin, Je remercie ma famille pour leur soutien moral, leur encouragement et leur
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Introduction

Molecular motors perform various functions in life related processes: from cell
division and eukariotic organelle transport to breathing and organismic motility.

In this Thesis, we are focusing on the mechanical functioning of one of such motors, myosin
II, responsible for active force generation in skeletal muscles.

The semi-phenomenological chemo-mechanical models of muscle contraction operate
with kinetic constants depending on the elongation of an embedded spring, which allows
the authors of these models to involve ad hoc fitting functions into their models. In an
attempt to avoid this ambiguity we are proposing a set of models of a ’first principles’ type
where all constitutive elements are mechanical and can be in principle reproduced in a lab,
perhaps at a larger scale than in reality. In this desire to understand the phenomenon of
muscle contraction at a mechanical level we follow the approach developed by the Brow-
nian ratchets community which replaced the conventional chemistry-based interpretation
of active force generation (initiated by A. Huxley) by a study of Langevin dynamics of
mechanical systems with well defined energy landscapes. In the classical theory of Brow-
nian ratchets the motor is usually a system with one degree of freedom. In our PhD work
we systematically study a slightly more complex mechanical system with two degrees of
freedom. Bringing in an additional degree of freedom allows us to avoid the more conven-
tional stimulation of myosin motors through actin fibers (rocking and fleshing ratchets)
and instead concentrate on the ATP driven activity inside a single myosin head.

We recall that molecular motors convert chemical energy into mechanical work by
catalyzing the hydrolysis of adenosin triphosphate (ATP) to the adenosine di-phosphate,
freeing phosphate and using the released energy for generating motion against viscous
forces and pulling cargos. Our main assumption is that the fundamental mechanism of
chemo-mechanical transduction behind active force generation is basically the same in
all molecular motors (myosins, kynesins, dyneines, etc.) and therefore while addressing
specifically myosin II we obtain rather general results. To unify processive and nonpro-
cessive motors, we focus on the role of the conformational change known as power stroke
in the functioning of myosin II. Our interactions with V. Lombardi and other physiolo-
gists convinced us that the modeling of muscle contractions should be centered not around
attachment-detachment as in the case of the existing motor models but on the power stroke
which is usually neglected or under-represented in the ratchet based mechanical models.

By emphasizing the active role of the power stroke we are therefore building a bridge
between processive and nonprocessive motors. Thus, in the current models the former
are driven exclusively by the power stroke while the latter exclusively by attachment-
detachment. In this Thesis we present first examples of a nonprocessive motors driven
exclusively by the power stroke and exploiting the well known phenomenon of stochastic
resonance. While we deal only with one cross bridge and neglect collective effects, our
’single-legged’ nonprocessive motor has two degrees of freedom and therefore advances in
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a way very similar to the ’double-legged’ prosessive motor. This idea appears to be new
in the field of muscle mechanics.

Despite the fact that Brownian motors can operate without the power stroke mecha-
nism, most biologists perceive the power stroke as the major player in active force genera-
tion. Thus, according to the commonly accepted biochemical scheme, the myosin motors
go through four steps of the Lymn-Taylor cycle while pulling actin filaments and pro-
ducing a macroscopic force. Power stroke is involved in two out of the four stages of the
Lymn-Taylor cycle so that both the biochemistry and the energetics of the cycle essentially
depend on the power stroke related reactions. The mechanical role of the different stages
in the Lymn-Taylor cycle is still poorly understood, in particular, the relative role of the
power stroke in the activity of molecular motors has been ambiguous. In this Thesis we
construct a simple purely mechanical model of the Lymn-Taylor cycle and identify the role
of the power stroke as the main driver of contractility. The proposed perspective is different
from most existing approaches where the power stroke is largely viewed as a mechanism
of fast force recovery which does not require external fueling; at larger time scales, when
ATP hydrolysis becomes crucial, the power stroke has been also perceived as playing only
a secondary role. We question these basic tenets of the conventional mechanical models
and assign to the power stroke the main role in both the force generation and the relative
sliding of the actin and myosin filaments.

In our approach we abandon the phenomenological path of chemo-mechanical models
and build the model of muscle contraction on the idea of continuous stochastic dynamics in
multi-dimensional configuration space. The main outcome of our model is an interpretation
of the power stoke as an element consuming the energy of ATP hydrolysis and playing
active rather than passive role in force generation. We prescribe the energy landscape and
represent the ATP activity by a correlated component of the external noise. The ensuing
mechanical system can rectify random noise and produce mechanical work. We then study
the average behavior of various arrangements of the power stroke (bi-stable potential) and
the attachment/detachment element (periodic potential). To this end we either use direct
simulations of the Langevin’s system or compute the stationary probability distribution
from the corresponding Fokker-Planck equations. We identify averaged trajectories with
different stages of the Lymn-Taylor cycle and establish the energy balance by specifying
consumed energy and produced mechanical work. We also study the efficiency of different
proposed mechanical arrangements and show how it varies with the applied loading.

The attribution of active role to the power stroke reflects the biological reality im-
printed in the Lymn-Taylor cycle. The appreciation of this fact allows one to unify the
description of the power stroke and the process of attachment /detachment into a single
mechanical framework. To find the optimal interplay between these two subsystems we
study different arrangements of the power stroke and the attachment /detachment ele-
ments in the common framework of a stochastic model with coupled bi-stable and periodic
potentials. We propose three main modeling archetypes with motor driven contraction,
power stroke driven contraction and the synthetic model where power stroke not only
drives the process but also controls the attachment/detachment mechanism. We show
that all these mechanisms can partially reproduce the Lymn-Taylor cycle and we compare
their mechanical efficiency. Finally we develop a synthetic model where the strength of the
attachment/detachment mechanism depends on the state of the power stroke element. We
show that such model reproduces all four stages of the Lymn-Taylor cycle if the coupling
is hysteretic.

In this Thesis because of time limitations we could not make our model fully quantita-
tive and did not attempt to match specific dependencies observed in experiment. Instead,
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we focused exclusively on the development of a prototypical model reproducing all four
stages of the Lymn Taylor cycle. It is important to remember that previous mechanical
models could reproduce only two stages assuming that the other two stages are blended
into the picture implicitly. In this sense we were able to reproduce the qualitative exper-
imental picture more thoroughly than before. To match the observations quantitatively,
one needs to consider a collective action of many units of the type proposed in this Thesis,
which is the task we would like to pursue in the future.

In conclusion we mention that perhaps the most important new step in this work is
the creation of a conceptual bridge between the processive molecular motors and the non-
processive molecular motors. By associating the active role to the power stroke we can
now apply the same modeling framework equally successfully for the description of a single
kinesin motor and for the modeling of a large set of collectively operating myosin motors.





Chapter 1

Biological background

Before addressing the issue of mechanical modeling of molecular motors it is natural
to discuss the biological side of the problem. In this section we present several

examples of molecular motors which differ in both structure and function. We understand
a motor as a device designed to convert non-mechanical energy into mechanical motion
and to produce active force in static conditions. In the conventional internal combustion
engines the fuel is burned and the mechanical power is generated by hot gases. Most of the
molecular motors convert the chemical energy stored in adenosine triphosphate (ATP, or
other nucleotide-triphosphate) into mechanical energy by activating large rotations inside
protein molecules. In this way these nano-machines transform or transduce the input
energy (chemical) into the output energy (mechanical). In view of the small scale of the
protein molecules such engines are subjected to external thermal fluctuation that they
cannot ignore and must instead rectify and harvest. This dependence of the operation
cycle on fluctuations make molecular motors very different from the analogous macroscopic
devices.

1.1 Main types of unidirectional motor proteins

Inside living cells one finds are large variety of motor proteins, each one playing a particular
role in the cell’s organization and functioning. All of them have the ability to transform
a chemical energy into a mechanical motion. Different motors are responsible for different
processes: from cell division and eukariotic organelle transport to cytoskeleton remodeling
and muscle activity. Some molecular motors perform unidirectional motion and others are
able to induce rotational motion. In this Thesis we limit our attention to unidirectional
motors. Inside a cell a network of polar protein filaments plays the role of natural rails for
the motion of unidirectional molecular motors.

Myosin, kinesin, dynein are the most important biological prototypes of unidirectional
motors moving along specific tracks. The motors interact with the tracks through the
heads known also as active motor domains. The protein motors are stereospecific and the
biochemical composition of the motor domain depends on the nature of the rails. Thus,
myosins moves along actin filaments in both directions, while kinesins and dyneins move
along microtubules in different directions with kinesins moving toward the plus end and
dyneins–toward a minus end.

Linear motors of this type can be classified into two groups by using the concept of
the duty ratio: the fraction of time that each motors spends in the attached phase to the
total time of a cyclic step. Suppose that during each cycle a molecular motor spends time
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τon in the attached state where the conformation change leading to force generation takes
place, and time τoff while being detached from the filament, where the motor returns to
its initial conformation, recharges the force generating mechanism and prepares for the
next cycle. The duty ratio δ is then defined by the formula

δ =
τon

τon + τoff
. (1.1)

Motors with low duty ratio spend most of their enzymatic cycle in the detached state and
are called nonprocessive motors. Nonprocessive motors are designed to act in a collective
fashion. Motors with high duty ratio usually have the dimeric form with two legs/hands
and move by shifting one leg/hand over the other. They perform a processive motion and
are designed to act individually.

Kinesin is a standard example of a processive motor which moves continuously along
the microtubule surface while performing hundreds of unitary steps. In contrast myosin II
is a nonprocessive motor which is able to perform only a few unitary steps. Some myosins
are however processive, for instance, myosin V, see [124, 11]. As in the case of myosin’s
family, some dyneins are processive and some are nonprocessive. Independently of the
nature of the motor, its speed is about few nanometers per millisecond and the generated
force is about few pikonewtons [42].

The main topic of this Thesis is myosin/actin interaction performed by nonprocessive
motors. However, as we are planning to link different families of motor proteins we begin
with a short description of kinesin which is a typical processive motor.

1.2 Kinesin

Figure 1.1. The schematic structure of one microtubule. Adapted from Alberts[4]

The microtubules, the natural tracks for the motion of kinesins, have a helical cylin-
drical structure with diameter ≈ 30nm. The walls of the microtubule cylinder are made
of ≈ 13 protofilaments which are in turn formed by dimers linked head-to-tail. These
dimers are tubulin proteins composed of two similar subunits α-tubulin and β-tubulin.
The microtubule, as well as actin filaments, are polar with all asymmetrical subunits of
protofilaments oriented in the same direction. In most of the cells, microtubules are ori-
ented with their minus ends towards the centrosome and their plus ends towards the cell
periphery.

Kinesin was discovered during 1980’s [115] and its structure is similar to that of myosin
II. Most of the members of the kinesin family are dimetric molecules with two globular
motor domains, a tail and a stalk, see Fig.1.2. The globular head is formed by two
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Figure 1.2. a) Schematic representation of the architecture of kinesin structure. b) The
sketch of principals walk steps of kinesin along the microtubule in mechanochemical cycle.
Adapted from http://www.uic.edu/classes/bios/bios100/summer2006/kinesin.jpg

heavy chains and two light chains; the tail may also include light chains and different tail
configurations are specific for different transport functions [26, 27].

A significant difference between the conventional kinesin and the conventional myosin
resides in the fact that the two kinesin motor domains work in the coordinated manner
[132]. The mechanical and chemical cycles are coupled and both kinesin heads hydrolyse
ATP (adenosine triphosphate) into ADP (adenosine diphosphate) and Pi (free phosphate).
More precisely, the detachments from a microtubule require the hydrolysis of ATP, after a
quick release of Pi, the attachment of one head is catalysed by the release the ADP. When
one head in the dimer is attached to the microtubule (lead head), the other head (trailing)
moves a distance of 16nm and binds the next open beta tubulin, so the center of mass
of the dimeric kinesin moves through 8nm. Once bound, the trailing head becomes the
lead head and the process repeats. The correlated functioning of both heads distinguishes
kinesin from myosin II where one of the heads appear to be always passive at least in the
contraction phase of muscle activity. The particularity of kinesin family is in the fact that
one kinesin moves to minus end of the microtubule and another one moves toward its plus
end [35].

We now describe the kinesin cycle in more detail. Suppose that one head is attached to
the microtubule and is without nucleotides while the detached head carries the products
of the ATP hydrolysis. Then the bounding of ATP to the attached head catalyses the
attachment of the trailing head and the release of bounded ADP. The release of ADP in
turn catalyses the detachment of the first attached head, which hydrolyses the ATP into
ADP and Pi. The unbounded head releases quickly the Pi.

The development of different single-molecule techniques offered an opportunity of di-
rect characterisation of single processive motors in terms of force-velocity relations. The
measured stall force for a kinesin motor is in the interval 4 − 8 pN ; the maximal velocity
is 800 nm/s, Fig.1.3. The efficiency of energy transduction by kinesin can reach ≈ 50%,
estimated as Wmec/∆G, where Wmec is a mechanical work and ∆G is the chemical energy
of the ATP hydrolysis.

We now turn to the main subject of the Thesis, the acto-myosin system.

1.3 Acto-myosin complex

1.3.1 Actin

Actin filaments (F-actin) play the fundamental role in muscle contraction and cell motility,
moreover actin is one of the most present protein in the eukaryotic cells. Actin filaments
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Figure 1.3. Force-velocity curves for kinesin. The speed as a function of load force, the
dependence for the high ATP concentration a) and for the low ATP concentration b), the
data provided by Meyhöfer and Howard. Adapted from [80]. c) Temperature dependence
of force-velocity relation provided by Kawaguchi and Ishiwata. From bottom to top, open
triangles, 15◦C; closed squares, 20◦C; open squares, 25◦C; closed circles, 30◦C; open circles,
35◦C. Adapted from [58].

are formed by polymerisation of monomers and this process is governed by ATP hydrolysis.
Actin monomer protein is a globular molecule with weight of ≈ 43kDa (G-actin). The actin
monomer is an asymmetric molecule which contains four subdomains and a binding site for
ATP. Both F-actin monomer and G-actin are built from two similar parts. The resolved
model of tertiary and quaternary structure based on X-ray fibre diffraction indicates the
structural transition between two forms. This transition alternates the internal structure
of G-actin during the polymerisation in filaments, transforming it into the monomers of
F-actin[38, 84].

Because of the asymmetry of the monomers the actin polymer is polar. An actin
filament formed by two parallel protofilaments oriented in the same direction. The filament
can be described in a simplified way as a double helix with 13 monomers in 6 left-handed
turns every 36nm, Fig.1.4. The rise per subunit is 2.76nm. Along morphological helices the
actin monomers are spaced by 5.5nm. As a consequence of polarity, the rate of elongation
of the two ends of one filament are different. We call the ”barbed end”, the end where
the elongation rate is faster and we call the ”pointed end”, where the elongation rate is
slower. The two ends of a an actin filament have different affinities to the attachment
of new components [15]. The essential role of actin filaments is to provide the binding
sites for myosin heads. In skeletal sarcomere the actin filaments carry also other proteins
that regulate the contraction. For example the attached tropomyosin troponin complex,
Fig.1.4d), makes the actin/myosin interaction dependent on calcium concentration, [36].

1.3.2 Myosin

There is about 17 different classes of myosins 1. Probably the most studied is the first
discovered myosin II, myosin I and myosin V. All myosins except Myosin VI move toward
the plus end of an actin filament.

The principal lines of the structure are the same in all myosins [102] and the study of the
conventional myosin, myosin II, offers a good idea of the whole family. Myosin II is a very
large protein. Its molecular weight is approximately 520kD. The myosin consists of six
polypeptides: two 220kD heavy chains and two pairs of 20kD light chains( essential light

1Information about different myosin classes and their role in activity of living systems can be found
on:http://www.mrc-lmb.cam.ac.uk/myosin/Review/Reviewframeset.html

http://www.mrc-lmb.cam.ac.uk/myosin/Review/Reviewframeset.html
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Figure 1.4. The structural basis of actin filament. Not drown at scale, the pictures based
on research work of K.C.Holmes and T.Oda. a) The essential principle of the G-actin to
F-actin transition is more flat configuration of the actin monomer in filament by a twist of
two molecule domains. b) Sketch of a fundamental repeat of actin filament composed by
F-monomers. c) The schematic representation of geometrical structure of actin helix. d) An
actin double helix structure with bounded tropomyosin and troponin.

chain (ELC) and regulatory light chain (LCR)). The molecule is highly asymmetric. The
heavy chains form two identical globular amino-terminal myosin heads. The intertwined
α-helical carboxyl-terminal tails form the left-handed coil which is approximately 2nm
in diameter and is 150nm long. The myosin heads are ATP active being the catalytic
domains of the motor. The myosin cross-bridge may be decomposed in two parts: the heavy
meromyosin HMM and the light meromyosin LMM, Fig.1.5. The HMM may be further
decomposed into two fragments, the first one S1 (≈ 120kD) contains tree polypeptide
chains, the second one, S2 , is ATP inactive and is unable to interact with actin filaments.

The S1 fragment is the fully operational ATPase motor element and it is often used
in the in vitro assays as a substitution for the full cross-bridge. It is also a basic unit for
the X-ray diffraction study of the myosin motor head structure. Schematically, the myosin
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Figure 1.5. a) The electron micrograph two-headed myosin molecules with long tail.
Adapted from [7]. b) Sketch of myosin protein structure. Not drown to scale. The myosin
molecule can be cut in the short domain where α-helix is interrupted into several fragments:
HMM which can be separate into S1-heads, S2-short part of tail and LMM- rest part of
tail. c) The myosin molecule S1 from chicken skeletal muscle, [94]. The myosin S1 has
an elongated head consisting of a 7-stranded β-sheet and a C-terminal tail or ”neck” which
carries two calmodulin-like (calmodulin is a calcium-binding protein) light chains: the regu-
latory light chain and the essential light chain. The motor head 50kDa fragment spans two
domains: 50kDa upper domain and the 50kDa lower domain or an actin binding domain,
which S1 head binds to actin monomer. The actin-binding domain has been colored grey.
Reproduced from [39]. d)-e) The structure of myosin heads arrangement of the myosin fil-
ament, the three helices of myosin heads labeled : black, white and dashed. f) Scheme of
one coaxial helix has with subunit translation about 14.3−14.5nm and unit repeat 42.9nm,
adapted from [106]. filament.

head, has an ATP binding pocket (formed by a particular helix of one of the light chains)
and an actin binding interface, see Fig.1.5c). The head is linked to the neck region by a
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”converter” domain which plays the role of ”lever-arm”, [93, 41]. Multiple crystallographic
studies [93, 94, 37, 39, 40, 24] suggest that in the head of the myosin which is attached
to actin, the binding of ATP molecule induces changes in the catalytic domain. These
changes are transmitted to the lever-arm domain and cause an angular rotation of the
lever-arm relative to the head (power stroke).

It’s important to note that the core motor structure of the myosin is similar to the
that of the kinesin. In fact, a common ATP dependent conformational change mechanism
is used to generate motion in these seemingly so different motor proteins [114].

The myosin II molecules self assemble in bipolar or side polar filaments organized at
a larger scale. In muscle sarcomere, the myosin filaments form thick filaments. The thick
filaments have a constant size, each backbone is formed by packaging of myosin proteins
with the tails oriented toward the center and the heads oriented toward the periphery.
This organization forms the central region free of myosin heads projections known as the
bare zone in the middle of the myosin filament where passive cross-linking takes place.
The electron microscopy studies and the X-ray diffraction methods show that in 3D the
structure of the myosins head projections have an helicoidal arrangement, Fig.1.5d)-f).
The heads emerge from the filament backbone with a regular step of 14.5nm [106].

In the absence of ATP, the myosin and actin form a stable complex (rigor) which is
also formed by sub-fragment of myosin HMM and S1. In the presence of ATP complex
interaction of myosin and actin is observed. Thus in solution with added ion of K+

or Mg2+ the ATP molecule forms a complex with myosin and after the hydrolysis, the
products of the reaction ADP and Pi are released and the rigor complex dissociates. The
dissociation leads to a step-like motion of the myosin head along the actin filament. The
interaction has a cyclic character which we discuss in more detail in the next section. The
ATP activity in acto-myosin system is regulated by binding of the calcium [29].

1.4 Lymn-Taylor cycle

The first description of the force-producing mechanism in skeletal muscles based on acto-
myosin interaction was proposed in 1954 in the papers of A.F. Huxley [45] and H.E. Huxley
[33]. Both papers elucidated the striated structure of muscle myofibrils and introduced the
sliding filament hypothesis of muscle contraction. In [48] the idea was proposed that the
force is generated by the configuration changes inside cross-bridges. It was also conjectured
that the cross-bridge/actin angle changes as a result of the chemical hydrolysis of ATP.
In 1971 R.W. Lymn and E.W. Taylor proposed a chemo-mechanical scheme which linked
more specifically the conformational changes in the myosin head and the ATP splitting
reaction [70]. The proposed reaction cycle with four distinct chemical states remains a
reference in the field. More complex descriptions involving many more chemical states
have been proposed and used by the biochemical community between 1971 and now by
e.g. Bagshaw and Trentham [5], Taylor [110], Kawai and Halvorson [59], Ishijima et al.[50],
Smith et al., 2008[103, 104] to mention just a few.

Despite all these developments it remains commonly accepted based on spectroscopic
and cryo-electron microscopy studies of the myosin cross-bridge structure that a myosin
head always binds the actin site in a fixed configuration and that the relative movement of
the filaments is produced by the angle change inside the ”lever-arm”part of the cross bridge.
In this sense the simplest lever-arm hypotheses has a solid foundation. After the crystal
structure of the myosin at the end of the power stroke was resolved [93] it also became
clear that the main movement indeed arrives as a result of a power stroke. Smaller changes
in intrinsic myosin cross-bridge structure and the induced changes in conformation of the
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myosin neck region may be happening as well but they are strongly correlated with the
main chemical states which Lymn and Taylor linked to the fundamental ATP hydrolysis
cycle.

Figure 1.6. Representation of the Lymn-Taylor cycle.

The myosin ATP cycle can be viewed as a series of biochemical steps shown in Fig.1.6
and its mechanical interpretation is detailed below:

• 1 → 2 In the absence of bounded nucleotide, the myosin head is strongly attached
to actin. This is a rigor state or the post power stroke state. The ATP binding to
active motor domain irreversibly dissociates the myosin cross-bridge from the actin
filament forming the state known as M ∗ ATP with M as myosin.

• 2 → 3 The hydrolysis of ATP in the stable complex ADP∗Pi takes place next. This
is relatively rapid reaction which lasts about few msec. The hydrolysis products,
ADP and Pi, remain with myosin forming the complex M ∗ ADP ∗ Pi. During the
ATP hydrolysis, the power stroke is recharged which requires energy of ultimately
metabolic origin. This creates the pre power stroke state.

• 3 → 4 The affinity of myosin for actin depends on the bounded nucleotide in the
ATPase pocket of the active domain and it is high in the pre power stroke state.
The myosin head is reattached to the neighboring actin binding site, forming a new
complex AM ∗ ADP ∗ Pi.

• 4 → 1 The myosin-actin interaction in the attached state causes a change in the
orientation of the neck region of the cross-bridge (the power stroke) which is accom-
panied by the dissociation of Pi from the complex AM ∗ ADP. This conformational
change stretches the elastic connection to the backbone, generating a force of a few
pN , and advances the attached actin filament by ≈ 10nm. Following such relative
sliding of the filaments, ADP is released very quickly (within 2msec) and is replaced
within a msec by the ATP. As the result the myosin head is dissociated again starting
the next cycle.

In Fig.1.7 we show the crystal structures of myosin heads with bound nucleotides ATP
and products ADP and Pi, which represents the states 4 and 1 . This crystallographic
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reconstruction illustrates the fact that the hydrolysis of ATP is indeed accompanied by a
major conformational change (the power stroke).

Figure 1.7. Power Stroke of Myosin S1. a) A model of the strongly bound S1 myosin in
pre-power stroke configuration. b) The rigor state, the end of power stroke of S1 myosin.
Upon binding to actin, the converter domain undergoes a conformational change, amplified
by the lever arm that swings over 70◦ towards the Z-line. The rotation generate a linear
displacement of 10nm. Adapted from [24]

Experimental measurements show that different steps of the Lymn-Taylor cycle have
different rates. The fastest steps of the cycle are the power stroke and the attachment
process involving M ∗ ADP ∗ Pi. The typical time scale of the power stroke is about
two milliseconds. The hydrolysis of ATP occurs on a much slower time scale in solution
(≈ 100ms). These data must be interpreted with caution, because the time scales in a
solution and in a fiber may be different. Thus in a solution, different molecular motors are
not mechanically coupled to a loading device. Also, the presented cycle does not take into
account the tree dimensional geometry of the system (steric effects). In solution, with a
high concentration of actin, the attachment is a very fast step as soon as the myosin is in
its hydrolyzed state M∗ADP∗Pi, in particular, the probability for the myosin to attach is
sufficiently high. In the muscle, as the ’binding’ cites on the actin filament are separated
by a distance of 36nm [42], the hydrolyzed myosin heads may stay detached for a long
time if there is no binding site near their location. The averaged attachment rate is then
expected to be slower in the fiber than in a solution.

1.5 Single molecule experiments

In the previous section we presented a simple and commonly accepted chemo-mechanical
interpretation of single working cycle of the acto-myosin system. Most of the data on
myosin/actin interaction have been originally obtained from averaging the observations
done on muscle fiber with a large number of cross bridges acting simultaneously. More
recently, due to development of the techniques of single molecule manipulation, the direct
measurements in vitro became possible by using microneedles, optical traps and optical
sensors. Thus in the last decade the interaction of a single myosin molecule with actin
filament have been characterized.

Single molecule experiments allow one to study individual ATPase of myosin motor
domain [131, 130]. There are two typical experimental approaches in the single molecule
measurements: the study of sliding actin filaments on the carpet of myosin sub-units
and the measurement of steps of a single-myosin molecule ’walking’ on the actin filament
confined by laser traps, see Fig.1.8.

If we compare measurements in single molecule experiments with the data obtained on
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Figure 1.8. a) On the left, the scheme of the force measurement between single actin fila-
ments and single myosin using laser trap. On the right, the time course of displacements by
a single myosin molecule. White line represents raw data and black line represents the same
data passed through a low pass filter of 20 Hz bandwidth. The changes in stiffness calcu-
lated from the variance of the displacement data as a monitor of the interaction of myosin
with actin, adapted from [130]. b) Manipulation of single myosin molecules using a scan-
ning probe and measurement of substeps of myosin. A technique developed by T.Yanagida
group. On the right, we show the example of stepwise movements in the rising phase of the
displacements. Some backward steps were observed as indicated by arrows. c) A schematic
representation of most standard the three-bead optical trap assay. An actin filament is
suspended between two refractile beads manipulated by independent optical traps. A third
larger bead coated to surface and covered by myosin sub-fragments. Unitary events are
recorded by photodetector, adapted from [113].

muscle fibers, we notice a large difference of reported values of the power stroke size. Thus,
the power-stroke size inferred from muscle experiments is about 8 − 10nm, while single
molecule experiments suggest a 5 − 6nm, which is close to the size of one actin monomer
[82]. However some single molecule experiments produce values > 10nm,[129] which can
be explained in part by the difficulty of such measurement and in part by geometrical
arguments. In a single molecule in vitro measurements the movement of a myosin head is
limited by a single actin protofilament and the fixation of the scanning support. Instead, in
the sarcomere one myosin can interact with deferent actin filament because of 3D nature
of the actin myosin arrangement. Also in the muscle a large power stroke can be the
consequence of a collective interaction of many attached cross-bridges [83, 113, 10].

Despite many single molecule experiments the intrinsic mechanism of step size of
myosin motor power stroke during ATPase is not fully understood. Thus, Yanagida group
reports that multiple step may be produced during each biochemical cycle (from one to five
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steps for one ATP molecule), generating the displacements in the interval 5.3−30nm. One
interpretation of this result can be based on the idea of many rapid attachment/detachment
cycles taking place in a diffusive mode. Or one can think that the power stroke takes place
in multiple steps [61, 130]. An argument against single molecule experiments is that the
orientation of the myosin motor cannot be controlled so it may attach in some sub-optimal
way to the actin filament.

Finally in the Fig.1.9 we show some characteristic non-linear force-velocity curve ob-
tained in the single molecule experiments. The conventional lever-arm theory predicts the
characteristic shape of these curve which is a strong argument in favor of the simplest
Lymn-Taylor type interpretation of the data.

Figure 1.9. a) Force-velocity curve of individual S1 molecules. The velocity was obtained by
dividing the step size, 5.5nm, by the dwell time (filled circles). Bars indicate the standard
deviations for 10 − 30 steps. Open circles indicate the velocity corrected by the anisotropy
of the stepping direction. The solid line shows the Hill’s curve fitted to the corrected
velocity. Adapted from [60]. b) The HMM-1P and -2P force-velocity relationships. The
mechanical properties of an expressed heavy meromyosin (HMM) construct with only one
of its RLCs phosphorylated (HMM-1P) and for fully phosphorylated myosin (HMM-2P).
Adapted from [122]. c) Force-velocity curve for a myosin cross-bridge in rabbit psoas muscle,
where orthovanadate, noted V i, is analogue of free phosphate. Adapted from [87].

However from some contradictory observations, one can also conclude that the existing
lever-arm theory is not sufficient to explain the actin/myosin interaction fully. Thus, a
series of observations reported in [117, 99, 118] shows that the basic mechanism of force
generation may be the same in all members of the myosin family due to the structure
similarity of motor domains. Moreover, the authors argue that the results of their experi-
mental observations could be interpreted as an evidence that the power stroke takes place
in two steps. The duration of the first step depends on the amplitude of the load while the
duration of the second step is affected only by the ATP concentration. The explanation
of this observation in the framework of the lever-arm hypothesis is not easy.

The role played by the second head also remains a question. For instance in [112, 113]
one can find the experimental force-displacement curves, which can be interpreted as a
result of interaction between two heads. The authors offer two interpretation of their data:
the successive attachment of two heads, one after on other very quickly, and production
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by each head of 5nm independent displacement increments totaling 10nm. The second
explication agrees with [109] where the following scheme was proposed: the first head
slides along the actin filament searching for the second head the optimal orientation in
order produce the step of 10nm. As a result, one head plays a passive role while the
other head generates a full fledged power stroke. Interestingly, both explanations require
simultaneous interaction of both motor heads with actin for a finite period of time. To our
knowledge, there is no direct evidence of actin interaction with two-head myosin. Indirect
evidence has been reported in [95] where the resolved X-ray interference data appear to be
showing that both heads of one motor are strongly bound to the adjacent actin monomer.
In view of uncertainty we account in our modeling for only one head and assume that all
heads operate independently, [42].

Another issue that the classical interpretation neglects is that myosin heads interact
with actin filaments stereo-specifically. Thus in [107] we find indications that a motor binds
only to favorable oriented actin sites which explains that only 20% of myosin cross-bridges
are bound in active muscle fiber.

1.6 Muscle contraction

As we have already mentioned, the issue of myosin II/actin interaction originally emerged
from the study of muscle contraction. We recall that a skeletal muscle has a fibrous
structure. The fibers, showing the striated structure, are very long multinucleate cells. In
the heart striated muscles the cells are much shorter then in skeletal muscles and have a
single nucleus. Smooth muscles , say visceral muscles, do not show striations at all.

Figure 1.10. Schematic representation of a skeletal muscle sarcomere. Adapted from [111]

In skeletal muscles fibers are assembled in subunits known as myofibrils. Myofibrils
have a cylindrical structure and are themselves cross-striated; the repeating contractile unit
along their length is known as the muscle sarcomere, Fig.1.10. To describe fully muscle
contraction we need to first study a single sarcomere [47]. Each sarcomere is located
between two successive Z-discs. Large muscles are assemblies of millions of sarcomeres all
working collectively in a correlated fashion.

Muscle sarcomere is a well ordered array of interacting filaments of myosin and actin.
The actin filaments are oppositely oriented at the left and right sides of the sarcomere, the
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plus ends are always oriented toward the Z-discs. The actin filaments interact with the
myosins filaments. The shortening of a sarcomere takes place without change in length
of neither actin nor myosin filaments, see Fig.1.11. The contraction is caused by sliding
of myosin filaments along the actin tracks. It is a collective process with (≈ 300) cross
bridges active in every sarcomere [106]. Each sarcomere includes other proteins what we

Figure 1.11. The scheme of sliding theory of muscle contraction at the scale of the sarcomere.
On the left column: a cartoon representing the sliding of the filaments during contraction.
On the left column: an electron micrograph of a contracting sarcomere. The width of the
A band (dark) remains constant while the I band (white) shortens. Taken from [111].

did not mention yet but which play important role in regulating active force production:
titin, tropomyosin, troponin, α-actin and β − actinin, M -protein, C-protein. The actual
dynamic functioning of the chemo-mechanical regulation of myosin/actin interaction is a
complex research field which is outside the scope of this manuscript.

In the cross-section sarcomere shows a hexagonal arrangements with the actin filaments
at trigonal points of sub-lattice. The electron micrograph studies show two crystallographic
arrangements of myosin filaments: the simple hexagonal lattice and the super hexagonal
lattice, see the diagrammatic representation of the structure of striated muscle, showing
overlapping arrays of actin-myosin containing filaments in Fig.1.12.

We now turn to different techniques of the mechanical characterization of a single
muscle fiber. A stimulated muscle shortens and produces force. To study this force we can
control the imposed force - then the contraction is called isotonic. Imposing different forces
and measuring the speed of contraction we can obtain the force-velocity relation which one
of the main characteristics of muscle contraction. The isometric force, measured in the
hard loading device, varies with the imposed sarcomere length, Fig.1.13. Each point of the
curve tension versus elongation corresponds to a tetanic stimulation at a given sarcomere
length. The isometric force is directly linked to the degree of filaments overlap in each
sarcomere. The maximal isometric tension is reached between point B and C, which is
the main physiological range of the muscle. Such sarcomere length corresponds to the full
overlap of the thin and thick filaments. At sarcomere length less than 2µm, the ability of
cross-bridges to develop tension decrease. When the sarcomere is too short,between D and
E, the geometrical structure of the sarcomere is perturbed due to steric effects, (filament
buckling, bad attachment conditions). At longer length, from B to A, the sarcomere length
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Figure 1.12. Cristallic structure of sarcomere. a) Scheme of filament organisation in the
A-band of sarcomere, taken from [49]. b) The primitive vertebrate crystallographic lattice of
thick myosins and thin actin filaments with the ration of actin to myosin filament mentioned.
c) The structure lattice of higher organised vertebrate. The adjacent myosin filament are
nor oriented in the same way. Adapted from [105].

increases beyond 2.5µm, the degree of overlap decreases progressively and the tension
reduces. An advance of experimental techniques created the possibility of the study of

Figure 1.13. The isometric force is directly linked to the degree of filaments overlap in each
sarcomere. Adapted from [28].

fast transients associated with quick recovery of tension which is usually performed on “in
vitro” systems. These experiments were first performed by Huxley and Simmons in 1971
and have been since then considerably broadened and improved, most significantly by the
group of V. Lombardi.

Different experiential techniques are used to characterize isometric and isotonic tran-
sients (length and force clam devices ). In the length clam experiments, the activated
fiber exerts after a transient period a constant isometric tension T0, Fig.1.14. After this
stationary state is reached, a fast length step δ is applied, which is measured traditionally
in nanometers per half-sarcomere (nm/hs). In Fig.1.14a) we illustrate the evolution of the
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Figure 1.14. The results of fast transient responses. a) The length clamp experiments, after
the step is applied, the tension progressively recovers up to its initial value with a time scale
of about 100ms, taken from [46]. On an expanded time scale, the tension first decays during
the step up to T1 (elastic response) and then partially recovers to a fraction of the initial
tension, called T2, within ≈ 2ms after the step. b) The force clam setting reporting the fast
transients phases 1 and 2. The half-sarcomere first shortens elastically up to L1 and phase 2
sees an additional shortening up to L2. Measurement of L2 is done by a linear extrapolation
of phase 3 to the middle of the step (see the construction lines on T1 and L1 are the tension
and half-sarcomere length attained at the end of the loading step. They correspond to the
instant elastic response of the fiber. The T1 → T2 and L1 → L2 transitions are interpreted
as the power-stroke events among the attached myosin heads. From [90, 91].

tension during such length clamp experiment. The tension generated by the fiber reaches
the initial value in ≈ 100µs. At shorter time scales the tension exhibits different phases.
Thus, it first decays to T1 which is interpreted as an elastic response and then partially
recovers to a fraction of the initial tension T2, within ≈ 2ms after the step length change.
Such quick recovery to the T2 level produces a plateau on Fig.1.14a). The time scale of
fast transient response is the typical time of conformational change inside a single myosin
motor. The length step associated with the tension T1 is called L1, and similarly the
tension T2 corresponds to the length step L2.

In the force clam devices, the muscle fiber is first stimulated under isometric con-
ditions reaching a tetanus force T0. In this state the control device is switched to the
force clamp mode and a force step is applied, see Fig.1.14b). The fiber shortens and after
three transient phases, the steady state shortening regime is reached (phase 4 on Fig.1.15),
where the shortening velocity can be measured. The intermediate phases 1 and 2 mirror
some fast mechanical processes occurring at the scale of a cross-bridge before the attach-
ment/detachment process gets involved (Huxley and Simmons, 1971) while phase 3 already
reflects the onset of the attachment/detachment process [96]. In view of the similarity of
the underlying physical process at the microscale one can try to extract the analogs of the
isometric tension thresholds T1, T2 from the force clamp setting, see Fig.1.14.b). Indeed,
one can see that a half-sarcomere first shortens elastically up reaching L1 and then in
phase 2 shortens additionally to L2. Usually the measurement of L2 is done by a linear
extrapolation of phase 3 to the middle of the step. The summary of the data obtained in
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two types of experiments is shown in Fig.1.14c). One can see that length and force clam
devices produce essentially the same results regarding fast force/length recovery.

Figure 1.15. a) Force change normalised to the isometric tension T0. Lower trace: length
change in nm per half-sarcomere nm/hs. Transients phases 1 and 2 reveal the fast pro-
cess occurring at the scale of the cross-bridges. Phase 3 represents the onset of attach-
ment/detachment process and phase 4 is a steady state regime with shortening at constant
velocity, taken from [96]. b)The constant velocity attained in steady state 4 versus the ap-
plied normalised force T/T0. In shortening we observe the hyperbolic force-velocity relation
described in (Hill, 1938). The force for which the velocity is equal to 0 is called the stall
force. For low stretching, T/T0 < 120%, muscle resists the applied force before the velocity
diverges at T/T0 > 120%. Data are taken from [21]–for shortening phase and from [69]–for
lengthening phase. Adapted from [12]

In the right part of Fig.1.15 we show the force-velocity relation obtained for frog muscles
[21, 69]. In the shortening regime (negative velocities), the muscle acts against the applied
load and the dependence of the velocity on the force has a structure of a hyperbola (Hill,
1938). The shortening velocity progressively decreases as the force rises up to the stall
force level where the velocity is equal to zero. In the stretching regime (positive velocities),
the velocity remains close to 0 until the force reaches about 120% of the stall force and
then diverges up to the point where the force reaches ≈ 200% of isometric force leading to
the destruction of the fibre. This asymmetry suggests that the functioning of a muscle may
be very different in those two regimes. Shortening is a physiological regime where muscle
pulls the load while stretching takes place only in accidental situations where the structural
integrity of the muscle is threatened because the load is too high. For moderate stretching
loads the muscle keeps velocity close to 0 and therefore plays the role of a damper.

The hyperbolic force-velocity relation is a crucial property observed at many scales.
Thus hyperbolic force velocity behavior has been observed in a single molecule experiments
performed on an isolated cross-bridge [60]. On the other side, the whole cell may also
exhibit similar force-velocity relation in response to a fixed external traction [81].

1.7 Motor proteins and nanotechnology

Mathematical modeling of molecular motors is important not only for biology proper but
will also play an important role in the future biomimetic engineering applications. Thus
nanotechnology is presently mostly focused on imitating principles of cellular activity.
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Figure 1.16. The top figure, a C.Montemagno’s micro-mechanical device operated by mus-
cle bundles, adapted from[128]. The images showing the sequential movement of the device
during one step. a) Before contraction of the leg. b) During contraction of the leg. c) After
relaxation of the leg. Blue, green and red bars mark the start positions of the inorganic
scaffold and the motile leg, and the final position of the motile leg, respectively. d) Ro-
taxanes, the artificial structure in which the macrocycle is translocated from one position
(station) on the thread to a second site through biased Brownian motion in response to an
external trigger stimulation (light, electrons, reversible covalent bond formation). e) Cyclic
bending of cantilever beams by the cooperative action of several rotaxane motors. The sys-
tem based on bistable rotaxane structure in which each rotaxane has two positively charged
rings and four stations. Two stations are redox active and can be switched between neutral
and positively charged form. Adapted from [8]

Below we present a series of recent examples of the engineering research studying functional
possibility associated with such motor proteins as myosin and kinesin [73, 116].

Molecular size motors are expected be used at the nanoscale as control devices and as
devices carrying cargo. More specifically, they will be used as

• Smart sensing devices

• Devices for purification and separation

• Assembly devices participating in the construction of nanoelectronics

• Transport devices on a micro chip integrating multiple analyzing and delivery tasks.
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Figure 1.17. On the top figure, concept of a smart dust device using active transport by
molecular shuttles. a),b) The capture-transport-tag-transport-detect functional cycle of the
smart dust device, in which antibodies on microtubules capture antigens from solution.
Kinesin motors are activated, and collisions of antigen-loaded, gliding microtubules with
fluorescent particles functionalised with a second antibody lead to pick-up and transfer of
the fluorescent tags to the detection zone, indicating the presence of antigen. Reproduced
from[20]. c) Fabrication of gold nanowires using actin filaments as templates via polymer-
ization of gold-labeled actin monomers and subsequent metalization. On right, the AFM
image of a gold nanowire obtained by this procedure, all dimension are in nanometres,
adapted from [88]. d) Investigation of surface properties using molecular shuttles. The
Information about surface topography can be revealed in a time-integrated image of mi-
crotubules moving randomly on the surface. e) The height of the topographical features
can also be quantitatively deduced by the utilization of fluorescence-interference contrast.
Adapted form [1].

Resent engineering research in this field is focused on the development of optimal control
of motion in specified direction. This includes control of directionality of the transport
and the ability of the system to stop when it is necessary. Other tasks include pushing
and pulling different filaments (cargo systems) by using a combination of topological (geo-
metrical) and chemical control [25]. An example of the potential applications of myosin II
transport capabilities in technology is the ATP-powered transportation of metallic nano-
wires [88], see Fig.1.17c).The use of kinesin motors as biosensors was proposed in [20].
The authors used the adhered kinesin molecules for biochemical detection and delivery of
various components to the detection zone, see Fig.1.17a),b).

Individually myosin motors deliver only a minuscule mechanical work but in assembly
of millions of units they can generate a significant response at a macroscopic scale. As an
example of artificial devices powered by a collective functioning of a large number of myosin
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molecules we can mention micro-mechanical devices operated by muscle bundles [128]. In
Fig.1.16a),b),c) we show the step-like motion of a metallic leg attached to muscle tissue. A
single working contractile artificial element was developed in [13], see Fig.1.16d). Another
artificially generated system of macromolecules uses transitional metal-based templates for
the formation of two-component interlocked molecules imitating an element of a muscle
[43, 6]. The functional unit is translated from one position (station) on the thread to
another position through biased Brownian motion in response to external stimulation.
These systems are viewed as potential elements of molecular machinery able to perform a
cyclic response to external stimulation Fig.1.16e).

Despite all these successes, broad industrial use of molecular motors is still limited by
low stability of the biological components. For instance, biomolecular motors and filaments
have to be maintained in a very specific chemical environment to prevent denaturation and
other degradation effects [1].

1.8 Conclusions

In this section we reviewed a series of experimental observations regarding the functioning
of molecular motors. We have shown how the motors work individually and in groups and
how their activity can be used in artificial devices.

It is clear that the complexity behind the functioning and regulation of molecular
motors is enormous and considerably surpasses complexity of analogous artificial devices
developed by engineers of today. In this Thesis we obviously won’t be able to deal with
all this complexity and will instead focus on the development of simple and transparent
mathematical models capturing only some of the observed phenomenology. More specifi-
cally, we shall use as a prototype an interacting acto/myosin complex involved in muscle
contraction and shall try to reproduce only few biological details. In particular,

• We neglect the three dimensional structural organization of molecular motors and
do not attempt to deal directly with steric effects. Instead we limit our description
to 1D by projecting all relevant physics on one dimension.

• We assume that the actin filament is polar, which defines the preferred direction
of a walk along the filament. We assume the periodicity of the filament structure
associating the period with the size of a monomer. We also neglect filament elasticity
and assume that the filament (actin) is a rigid body.

• We neglect the full complexity of the full chemo - mechanical cycle involved in muscle
contraction and focus exclusively on the simplest four states of Lymn-Taylor cycle.
With each chemical state we associate a particular geometric/mechanical configura-
tion and the aim of our modeling will be to translate the meaning of different states
from the biochemical to mechanical language.

• We neglect the complex crystallographic structure of the cross-bridge, in particular
we deal with only one myosin head. The power stroke is viewed as a conformational
change causing either elongation or contraction of the cross bridge reference length.

In the next section we review several ingenious examples of the mechanical modeling
of molecular motors which we used as a source of inspiration.





Chapter 2

Theoretical modeling of molecular
motors

In this section we present several examples of the mathematical modeling of motor ac-
tivity. The presented models will be of two types: chemo-mechanical models and

mechanical models. The main difference is that in the case of chemo-mechanical models
dynamics is modeled by a set of chemical reactions while in the case of mechanical models,
actual stochastic dynamics of mechanical degrees of freedom is being considered. While
the relation between these two types of models is rather delicate and is not fully under-
stood, one can say that chemo-mechanical models can replace mechanical models when
the Kramers approximation is applicable. This is in fact often the case but surely not
always as we show in this work. We shall mostly focus on acto-myosin interaction but also
review several approaches used in the description of kinesin. We begin with two famous
chemo-mechanical models muscle contraction proposed by A.F.Huxley, one in 1957 focused
on attachment detachment and another one in 1971 focused on the power stroke. Both
of them strongly influenced the development of the research on myosin/actin interaction.
We shall then turn to the models of Brownian ratchets and then consider several synthetic
models.

2.1 Sliding filament model of A. Huxley (1957)

In 1957, the coupling mechanism of actin filament and myosin cross-bridges was still not
fully understood. The existing mathematical description was based on the phenomenolog-
ical model developed in 1938 by A.V. Hill which reproduced the hyperbolic dependence of
the shortening velocity on applied force, by using very general energy balance considera-
tions and some ad hoc phenomenological assumptions. A.F. Huxley [44] proposed the first
mechanism based model which also reproduced the hyperbolic force-velocity curve which
emerged as a solution of a differential rather than an algebraic equation. Most importantly
Huxley’s model produced the first link between the macroscopically measured relations and
the microscopical picture of the attachment / detachment process. Interestingly, the power
stroke which is a major element of the Lymn-Taylor cycle was not explicitly mentioned in
this model. However, as we show below, it was surely implied.

In the Huxley model a myosin tail is modeled as a linear spring connected to a rigid
backbone. It is assumed that the head M has an affinity to the specific binding site A on
the rigid actin filament which is always displaced at a certain distance from the location
of the relaxed head. Therefore when the head attaches, it always stretches the spring and
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in this sense the attachment and the power stroke are combined into one event.

Suppose that x is the potential attachment site for the head M on the actin filament
and that the spring is not stretched if x = 0. The myosin head is a subject to thermal
fluctuations and the head M oscillates around its equilibrium position x = 0. To break
the symmetry of thermal oscillations Huxley introduced a Markov rate functions f(x)
and g(x) controlling the affinity of myosin for particular locations at the actin fiber and
maintaining disequilibrium which is implicitly supported by the ATP hydrolysis. If f(x)
is the attachment rate and g(x) is the detachment rate Huxley assumed that f(x) is linear
for positive x with a maximum at h and equal to zero beyond this point and for negative
values of x. The detachment rate g(x) was taken to be large for negative values of x
and an increasing function for positive x. The rate function f(x) exceeds the g(x) on the
interval 0 < x < h which creates a tendency for a cross-bridge to be attached in a state
neat x = h and generates positive tension. According to these assumptions a cross-bridge
will be detached in the state of negative tension, see Fig.2.1.

Figure 2.1. The mechanism proposed by A. F. Huxley in 1957. a) Sketch of the model.
The part of system M modeled the myosin head is connected to the rigid backbone (thick
filament) by the linear spring of stiffness k. The strain of myosin head is noted x. The myosin
and actin filament are moving past each other at a velocity v. The symmetric Brownian
motion is biased by two function f(x) and g(x), assumed model the chemical reaction of
myosin/actin interaction. b) We shows how f(x) and g(x) depend on the binding site
position x. Attachment is accelerated with rate f(x), when M is displaced by Brownian
motion in positive direction, x > 0. The detachment process is accelerated by rate g(x) for
x < 0.

If one attachment/detachment event associated with a particular cross-bridge does not
influence the other similar events, one can model the system by a single particle distribution
function n(x, t) which can also be interpreted as a density of cross-bridge population with
strain x at time t. We can write the Master equation describing the kinetics of the system:

∂n

∂t
+ v

∂n

∂x
= (1 − n(x)) f(x) − n(x)g(x), (2.1)

where v is the velocity of the thin filament with respect to the thick filament. Notice
that we have here a continuum of chemical states labeled by x and that the relative
sliding of actin and myosin filaments is explicitly present through the convective term
which systematically shift the equilibrium for nonzero velocities. Interestingly, Huxley
emphasized the kinetics and neglected the diffusion which in fact changes the results only
slightly.

The detailed shape of the functions f(x) and g(x) is not important for us here, however,
one can use the piece-wise linearity of the original model to obtain an explicit solution.
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Therefore we assume that

f(x) =0, g(x) = g0, x < 0

f(x) =αx, g(x) = βx, 0 ≤ x ≤ h

f(x) =0, g(x) = βx, x > h

(2.2)

Under the assumption that the shortening takes place at constant speed v = dx
dt the

stationary distribution must solve the following ODE:

v
∂n

∂x
= f(x) − n(x)[f(x) + g(x)] (2.3)

This equation can be solved explicitly and we obtain

n(x, v) =





α

α + β

[
1 − exp(

α + β

2v
h2)

]
exp(−g0x

v
), x < 0

α

α + β

[
1 − exp(

α + β

2v
[h2 + x2])

]
, 0 ≤ x ≤ h

0, for x > 0

(2.4)

The tension generated by the system can be found from the formula

T (t) = k

∫ +∞

−∞
xn(t, x)dx (2.5)

where k is the stiffness of a linear spring. Suppose that a muscle fiber has cross sectional
area equal to A, that the length of one half-sarcomere is s/2, and that the number of
participating cross-bridges is mAs/2, where m is number of cross-bridges per unit volume.
Then the total force is

T (t) =
mAs

2
k

∫ +∞

−∞
xn(t, x)dx (2.6)

By using (2.4) and (2.6) we can compute explicitly the total force for a given contraction
speed

T (v) =
mAsk

2

α

α + β

[
1

2
h2 +

[
1 − exp(

α + β

2v
h2)

](
v

α + β
− v2

g20

)]
(2.7)

The isometric tetanic tension is the value of this tension at v = 0 which gives

T0 =
mAs(α)

2(α + β)

kh2

2
(2.8)

Finally, the energy consumption associated with shortening over the distance l per unit
volume can be estimated as

E(t) =
me

l

∫ +∞

−∞
f(x)(1 − n(t, x))dx (2.9)

where e is the consumed energy per one functional cycle. It is clear that in this formulation
the consumed energy can be viewed as fueling both attachment and the power stroke
without clear indication of the difference between the two processes. The consumed energy
partially dissipates as a heat and is partially transformed into mechanical work. In the
isometric case, when the velocity is equal to zero, all consumed energy is dissipated as
heat.
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Under the appropriate choice of parameters Huxley’s theory gave an adequate fit for
both the force-velocity curve and the relation between the load and the rate of energy
liberation found by A.V.Hill (1938). However this model cannot reproduce the character-
istic phenomena accompanying force transients when the muscle is shortened rapidly. As
we have seen, experimental observations suggest the presence of two mechanisms of force
generation rather than one and two time scales rather than one, which is incompatible
with the presented model.

2.2 Power stroke model of Huxley and Simmons (1971)

Observations of a peculiar muscle response to rapid length increments in the millisecond
range made it necessary to formulate a new mathematical model taking into account explic-
itly the power stroke [46]. At these time scales one can ignore the attachment/detachment
process and concentrate only on the force recovery by the attached myosin heads. Essen-
tially, the 1971 model proposed the first mathematical description of the conformational
change representing the power-stroke.

The model has two basic elements: a bi-stable element representing the S1 fragment
and described by a discrete double welled energy potential V (x) and a linear elastic element
Vm(x, y) representing the spring link between the S1 fragment and a thick filament, or
in others words the S2 part of the cross-bridge. The internal degree of freedom x was
interpreted as the angular position of the myosin head ( or rather its projection), while the
variable y can be viewed as the relative position of actin and myosin filaments. Each cross
bridge is assumed to be independent of the rest at least in the hard device experiment,
which makes the analysis rather straightforward.

In the original model each energy well was assumed to be infinitely steep and the
power stroke was viewed as a chemical reaction representing a jump process between the
two discrete state. The two wells are separated by a distance characterizing the power-
stroke size – a, see Fig.2.2 a), the energy of the linear elastic element is taken in form:
Vm(x, y) = 1/2k(y+y0+x)2. The transitions between the two well of the bistable potential
can stretch or relax the elastic element which makes biasing of particular energy wells a
mechanism of force generation.

The model describes the distribution of cross-bridges among the two energy wells.
For instance, after a quick length change, the distribution first does not change and the
tension T1 varies exclusively due to the elastic deformation of the spring. Eventually the
population of cross-bridges in both well starts to changes reaching the final steady state
with which one can associate the plateau value T2. It is clear that the system reaches the
equilibrium plateau at a much slower rate than the time scale responsible for the elastic
response T1.

More specifically, Huxley and Simmons denoted by k+ and k− the transition rates from
pre-power stroke to post-power stroke conformation and vice-versa. According to Kramers
theory of chemical reactions, [32] the rate constant k+ and k− are inversely proportional
to the exponential function of the size of the energy barriers which depend on the elastic
energy stored in the linear spring Vm. For ∆V > 0, see Fig.2.2a) the transition rates can
be written as

k+(y) = αexp

[
− 1

kBT
B1

]
= Const = k0+

k−(y) = αexp

[
− 1

kBT
(B0 + ∆V (y))

] (2.10)
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Figure 2.2. The original power stroke mechanism proposed by A.F. Huxley in 1971. a) Sketch
of the potential associated with conformational change in cross-bridge. This is discrete
potential composed by a potential with two wells separated by a distance a (the well at
x = −a/2 has offset energy v0) and the elastic part of system Vm(x, y), modeled the elastic
properties of myosin head. The barrier B1 is constant, only ∆V is functions of y. b) Total
potential energy when y = 0. This corresponds to the isometric initial condition. c) T1 and
T2 curves obtained with Huxley and Simmons 1971 model for different value of length step
y. d) The solid black line represent the rate following Huxley and Simmons paper, by a
squatters we plot the experiments data. Adapted from [12].

where α is a fitting constant and ∆V (y) is the difference between the energies of state 2
and state 1

∆V (y) =
1

2
k(y0 +

a

2
+ y)2 − 1

2
k(y0 −

a

2
+ y)2 + v0 = ka(y0 + y) + v0

. Considering the isometric tension where ∆V = 0, for y = 0 we can express v0 = −kay0,
see Fig.2.2b) which gives ∆V = kay. Therefore the chemical rates depend on overall strain
y. We can then rewrite k+ as

k−(y) = k0+exp

[
− 1

kBT
(kay)

]
(2.11)

Now, introduce n1 and n2 = 1− n1 as the fractions of the total number of attached cross-
bridges in states 1 and state 2. In the Kramers approximation the kinetics of the transition
between the two conformation states is described by the following first order ODE

dn2

dt
= k+ − (k+ + k−)n2. (2.12)

The system reaches the equilibrium with a rate τ

τ−1 = k+ + k− = k0+(1 + exp

[
− kay

kBT

]
) (2.13)

In the case of isometric contraction we can assume that n2(0) = 1
2 which gives us an initial

condition before the step application. Integrating the equation (2.12) with this initial
condition we can find n2(t) in the form

n2(t) =
k+

k+ + k−
+

(
1

2
− k+

k+ + k−

)
exp(− t

τ
) (2.14)
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By computing the force per cross-bridge corresponding each configurational state n2(t),
we obtain

T (y, t) = n1(t)k(y0 + y − a

2
) + n2k(y0 + y +

a

2
)

= k

[
y0 + y − (n2 −

1

2
)a

] (2.15)

The force plateau T2 is found by considering the limit T2 = lim
t→∞

T (y, t) giving

T2 = K

(
y0 + y − a

2
tanh[

kay

kBT
]

)
(2.16)

The T1 tension can be simply defined as the force value corresponding to the fixed values
of n1 and n2 which remain frozen in origin state 1/2:

T1 =
1

2
k(y0 + y − a

2
) +

1

2
k(y0 + y +

a

2
). (2.17)

Fixing the constants from their own data Huxley and Simmons were able to obtain the
functions T1 and T2 in accordance with experiment, see Fig.2.2c).

The above model of the power-stroke provides the first direct link between the rate
constants and the mechanical state of the system. This approach is also consistent with
the results of the crystallographic studies point to the rotation of the lever arm following
the conformational change. One problem with the model is that the mechanical states
of the system are interpreted as fixed chemical states and therefore the size of the power
stroke does not depend on the magnitude of the shortening step. Another problem is that
a more realistic choice of parameters makes the power stroke too slow and produces T2

curve with a negative slope in the isometric contraction regime which is not supported
by experiments. However, the Huxley-Simmons model has a clear mechanical origin and
most of these problems can be removed if one takes into consideration interaction between
different cross bridges (see below).

In this work we generalize the Huxley-Simmons model in a different way by first cou-
pling the power stroke with attachment detachment machinery and second, by introducing
active stimulation of the system through a correlated component of the environmental
noise.

2.3 Recent chemo-mechanical models

In 1974 T.L. Hill made an attempt to formalize and unify the existing approaches by
emphasize the necessity to link the kinetic constants, which in muscle mechanics become
functions of the relative position of actin and myosin filament x, with the corresponding
free energy landscape [34]. In 1978 E.Eisenberg and T.L. Hill proposed a model of muscle
contraction where in addition to x the energy depended on a variable describing the degree
of the conformational change x − y [18]. This was a first attempt of a synthesis bringing
together the approaches of Huxley 1975 where the only variable was x and of Huxley and
Simmons 1971 where the only variable was x − y. The problem is that the model still
treated the power stroke as a discrete transition and the authors studied jump dynamics
instead of a continuous dynamics.

Similar assumptions were widely used in many subsequent chemo-mechanical models
operating with more discrete states than in the Lymn-Taylor cycle. Usually in all these
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models one solves a set of master equations with kinetic constants constrained by the
detailed balance conditions. Still it leaves a lot of functional freedom in choosing how the
rate functions depended on the strain. Such models contain fitting functions and allow the
authors to reach an excellent agreement with excremental measurements.

A prominent example of such a theory is a three state model of Duke [16]. The model
assumes that in each of the states the free energy varies quadratically with x. By the
choice of the rate function one creates the preferred pathways allowing one to match the
experimental data. The model is schematically represented in the Fig.2.3 together with
the characteristic force velocity curve. Notice that the two detached states are represented

Figure 2.3. Duke 1999 description of muscle myosin kinetic cycle. a) The sketch of free
energy profiles for Duke’s chemo-mechanical model. The arrows indicate the typical reaction
pathway of particle. b) The variation of sliding velocity v/vmax with external load F/Fstall,
black line plots the estimations of Duke’s theory and the black circles are experimental
measurements of K.A.P. Edman, [17]. For more precisions see the Fig.3 of [16]

by strait lines. This model is characterized by a discrete set of parameters and is able to
reproduce quantitatively most of the data describing isotonic velocity transients. However,
the quick force recovery in isometric conditions is reproduced only qualitatively. A detailed
theoretical study of collective effects in the three state model was performed by A. Vilfan
and T.Duke in [119]. They observed instabilities in dynamics of a single half sarcomere
and give a detailed investigation of dynamics of many elements in series.

A simplified two-states version of Duke’s model was studied in [123]. The model has
single detached states and single attached state, which blends the pre-power-stroke and
the post-power-stroke chemical states into one state. The authors made an assumption
what the two attached states are always in equilibrium, which is a correct assumption
if we consider the attachment/detachment time scale. The attachment and detachment
rate functions in this model are strain dependent and can be viewed as the fast time
averaging of the rate functions proposed by Duke. The resulting model shows a good
agreement with experimental measurements and is able to explain the presence of damped
oscillations based on the study of the shape of the force-velocity curve. The model is also
able to predict the inhomogeneity in sarcomere lengths during isometric contractions.

Another interesting generalization of the Huxley 1957 model was proposed by A. Vilfan,
E. Frey and F. Shwabll [120]. This is a very flexible scheme allowing one to describe pro-
cessive motors such as kinesin or myosin V as well as myosin II. The model is characterized
by quadratic potential describing the deformation energy of a motor head V (x) = 1

2kmx2

with x = xa − xm − xd where xm–is the position of motor’s tail on a rigid backbone, xa
the position of a motor head relatively the actin track, and xd is the displacement due
to a conformational change in the motor head. In the attached state xd = 0 and in the
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detached state xd = dm, see Fig. 2.4. The transition between the two states – attached
and detached – is governed by the rate functions: fa for attachment and fd for detach-
ment. The attachment rate ta is considered to be constant while fd ≡ f(x) is a strain
depended function. The binding sites along the actin filament are discrete and distributed

Figure 2.4. The 1999 two state model by A.Vilfan, E. Frey and F.Schwabl. a) The schematic
picture of the motor with the rigid backbone distributed along a actin track with discrete
binding sites. b) The force-velocity curve –the solid line, with dashed line we show the mean
number of attached motors; dash-dotted line represents the mean force per attached motor
head. From [121].

with period L. The function na(x, t) describes the probability density for motor to be
at time t attached at x and function nd(t) describe the probability density for motor to
be detached at time t and free to diffuse. The dynamics of the probability densities is
described by the Master equation:

∂tna(x, t) = fana(x, t)P (x) − fd(x)nd(x, t) + v∂xna(x, t)

∂tnd(t) = −fana(x, t) +

∫
dxfd(x)nd(x, t)

(2.18)

The normalization condition for N motors take the form

nd(t) +

∫
dxna(x, t) = N (2.19)

The function P (x) defines the probability for the motor to attach and is obtaining by the
averaging of the Boltzmann type probability densities for single motor heads under the
hypothesis of random distribution of positions xm relatively the binding sites before the
attachment process. The generated force by the N motors is then

F (x) =

∫
dxna(x, t)∂xV (x). (2.20)

Depending on the definition of the symmetry breaking function fd(x) the model is able
to generate two types of force-velocity behaviors: the standard monotonously decreasing
velocity with increasing force and the hysteretic behavior around the point v = 0. In the
hysteretic regime one obtains two different values of velocity at one value of the force. In
particular, this model explains the possibility of spontaneous oscillations in cross-bridge
systems which were observed in acto-myosin systems [121].

A detailed study of chemical reactions associated with ATPase activity shows many
more chemical states than in the simple 4-state Lymn-Taylor cycle and by incorporating
some of these states one can achieve better agreement with experiment. However, the price
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is the complexity of the model and the increasing number of fitting functions. An important
step in the direction of a minimal extension of the Lymn-Taylor model was proposed by
V. Lombardi group. The proposed model has three attached states (noted A1,A2 and
A3) , two detached states (noted D1 and D2) and requires six forward rate functions.
Elementary force-generating step of a cross-bridge (power stroke) is now represented by a
set of transitions A1 ⇋ A2 and A2 ⇋ A3. To illustrate the complexity of the ensuing model
we show the rate functions, used in [89] on Fig.2.5. The variable x represents the relative
axial position of the myosin/actin filaments. The forward and reverse rates functions for

Figure 2.5. Chemo-mechanical G.Piazzesi and V.Lombardi model, adapted from [89]. a) On
the left, the ensemble of possible reactions between the chemical states: the three attached
states A1, A2, A3 and the two detached states D1, D2. On the right, the presentation of
free energy level associated to the chemical states of cross-bridge, the attached states are
harmonic with the same stiffness and the detached states have a fixed energy. b)–e) Shows
the rates transitions functions between the states.

the neighboring states with free energy level Gi(x) and Gj(x) (i = 1, 6 ) are related by the
detailed balance relations

kij
kji

= e
−

∆Gi,j
kBT . (2.21)

In the model the free energy profiles are fit in order a to produce the curves obtained
in experiment. The system of five differential equations governing the dynamics of the
distribution functions in each state (three attached and two detached) has the form

∂tni = −v∂xni(x, t) +
∑

i,j

njkji − ni

∑

i

kij (2.22)
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with normalization condition:
5∑

i=1

ni(x, t) = 1. (2.23)

The model shows a good agreement with the experimental observations if six fitting func-
tions are selected appropriately which is by itself a formidable task.

Probably the most complete model of collective acto-myosin interaction in skeletal
muscles was proposed by D.A.Smith [103, 104]. This model is able to reproduce almost all
known experimental observations related to isotonic and isometric contractions of skeletal
muscles. Moreover, it is the attempt to produce a comprehensive theory with a com-
plete description of mechanochemical cycle of one cross bridge, and incorporating also the
description of three-dimensional myosin-actin filaments lattices. The cross-bridge cycle
adopted in this model includes intermediate states between the pre-power stroke state and
the post-power stroke state. Again, the rate constants for the attachment and detachment
processes depend on the pre-power stroke strain in a phenomenological, semi-empirical
way. The resulting model is analytically opaque and can be viewed only as a numerical
tool.

2.4 Purely mechanical models of the power stroke

Despite the efficiency of chemo-mechanical models in fitting experimental data they are not
very satisfactory from mechanical point of view because it is not clear how the correspond-
ing force generating devices can be reproduced in the mechanical laboratory. It is therefore
of interest to propose an alternative, purely mechanical description of the mechanism of
muscle contraction. So far all the advances in this direction were focused on the modeling
of the power stroke which is conventionally viewed as a purely mechanical element. The
proposed models were aimed at reproducing the behavior of the system at small time scales
corresponded to quick force-recovery by power-stroke mechanism. In particular, the exist-
ing models of this type do not incorporate the description of the attachment-detachment
process. In contrast to the Huxley Simmons model, the mechanical models of the power
stroke operate with continuous variable describing the conformational change. In this
sense these models can be viewed as a development of the ideas suggested by E. Eisenberg
and T.L. Hill in [18].

The first model of this type, proposed by Marcucci and Truskinovsky [74], generalizes
the Huxley and Simmons model by replacing the discrete degree of freedom accounting
for the conformation of the myosin head by a continuous variable x. This degree of free-
dom can be interpreted as the projected angle between the sub-fragment S1 of the myosin
head and the actin filament. Since the structure of the half-sarcomeres is essentially one
dimensional, the authors choose to work with elongations instead of angles, by assuming
that there is a direct relation with the orientation of the myosin head. The introduction
of a continuous variable eliminates the necessity to deal with multiple discrete configura-
tions for the head domain, see Fig.2.6. The model takes into account two most important
mechanical characteristics of the myosin head: the head has at least two distinct confor-
mations, pre- and post-power-stroke which suggests the bistable potential shape; the head
has a series elasticity unit which is necessary to reproduce the mechanical response T1

after a length step in isometric contraction.

The bi-stable potential V (x), a mechanical energy associated with S1 structure, was
modeled as a piecewise quadratic function. This rather simple form can be explained by
the intention to make the computations analytically doable. In addition to this non convex
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Figure 2.6. Each myosin S1 sub-fragment is associated with a bi-stable energy v modeled
as a piecewise quadratic function of the rotational degree of freedom x. In addition to this
non convex energy, we associate with S1 a series linear elastic element (with stiffness k) that
models the stretching of the lever arm. Adapted from [12].

energy, a series linear elastic element with stiffness k has been added:

V (x, y) = V (x) +
1

2
(y − x− l0) (2.24)

where the bistable element V (x) is:

V (x) =

{
1
2k0x

2 + V0 if x > l
1
2k1(x− a)2 if x ≤ l

(2.25)

Here l is the location of the barrier, the point of intersection of the two parabolas in the
interval [−a, 0]. The well at x = 0 and the well x = 1 represent the states of pre- and post-
power-stroke conformations respectively. The value a is interpreted as the characteristic
length of the conformational change rather than the unique size of the power-stroke. The
parameter V0 is the energy difference between the pre-power-stroke and the post-power-
stroke configurations. To ensure the continuity of the potential V (x) the following relation
at x = l was imposed:

1

2
k0l

2 + V0 =
1

2
k1(l + a)2 (2.26)

One can see that this cross-bridge model is fully described by set of four parameters: k0,k1,l
and a. The use of the series quadratic element 1

2k(y − x− l0)
2 plays an important role in

this model providing metastability and allowing the authors to avoid multiple intermediate
states in the description of the power stroke mechanism. When the position y is moved, the
energy landscape changes. Eventually one of the minima can disappear which questions
the validity of the Kramers approximation. Interestingly, the use of continuous landscape
allowed the authors to propose simple and natural explanation of the force dependence of
the power stroke size.

The above model was generalized in the work of Caruel and Truskinovsky who con-
sidering the simplest elastic interaction between individual cross-bridges inside a half-
sarcomere, see Fig. 2.7. As a result the authors obtained a fully quantitative model of a
half-sarcomere which they were able to build in full agreement with experiments. Once
again, the attached myosin heads were represented as a set of parallel bi-stable springs de-
scribed by a piecewise quadratic potential. In addition, a linear elasticity of myofilaments
(actin and myosin filaments) was incorporated into the model which introduced a mean-
field type interaction between the cross-bridges and generated interesting collective effects
[12] The proposed model produced the first explanation of the observed difference in time



36 2 - Theoretical modeling of molecular motors

Figure 2.7. The sketch of mechanical model proposed by Caruel and Truskinovsky. Adapted
from [12]

scales between fast force/length recovery in soft and hard device. Moreover, the model has
shown that the power-stroke mechanism operates in an unstable regime opening the way
to the explanation of the inhomogeneous response in multi-sarcomere chains representing
myofibrils.

2.5 Brownian ratchets models

Another type of mechanical modeling relevant for muscle contraction and acto-myosin
interaction can be associated with the Brownian ratchet framework which was developed
in the last 20 years. The concept of Brownian ratchet gave an explanation of how motor
proteins can rectify thermal fluctuations and produce useful work. In this type of models
the description is stochastic because thermal fluctuations can no more be neglected and
on the contrary, play the crucial role in motor functionality.

In this type of models the energy liberated in a chemical reaction acts to rectify the
fluctuations produced by the thermal bath which allows the system to move in one partic-
ular direction. The simplest idea can be illustrated by the evolution of a dynamical system
with one degree of freedom x. With this degree of freedom we can associated a particular
free energy landscape V (x, t). The system interacts with a thermal bath, which we model
by the Langevin equation [68]. For a single particle of finite mass m we obtain





v =
dx

dt

m
d2x

dt2
= −∂V (x, t)

∂x
− η

dx

dt
+
√

2ηkBT ξ(t)

(2.27)

Usually the motor motion is dominated by viscous friction, due to the small size of the
motor and the inertial terms can be neglected. Then the motion of the particle is described
by the overdamped Langevin equation:

η
dx

dt
= −∂V (x, t)

∂x
+
√

2ηkBT ξ(t) (2.28)

where η is the viscous drag coefficient and
√

2ηkBTξ(t) is the random Langevin force which
is prescribed by the following two moments in accordance with the fluctuation dissipation
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theorem:

〈ξ(t)〉 = 0

〈ξ(t)ξ(s)〉 = 2ηkBTδ(t− s)
(2.29)

Here 〈•〉 denote the ensemble average and δ(t) is the Dirac function. What makes this
system Brownian ratchet is a particular time dependence of the energy landscape. In
particular, the potential V (x, t) must brake the phase space symmetry of the system which
is a necessary condition of generating a non-zero probability flux. More specifically, the
potential V (x, t) can be chosen in the following form:

• V (x, t) = V (x) − xf(t), where the correlated noise signal f(t) is an additive time
depended force. We call such a model the tilting or rocking ratchet. The space
depended part V (x) is space periodic with period L. The function f(t), or the
colored noise, describes the external source of energy and it is often chosen to be
time periodic. If we want the system to be able to generate a net directional flux,
then one of the two: the space periodic potential V (x) or the time periodic signal f(t)
must be chosen asymmetric. The simplest example of the rocked thermal ratchet
was proposed by Magnasco [72]

• V (x, t) = Ψ(t)V (x), where the colored noise is Ψ(t). We call such a model the
flashing ratchet. The space depended potential V (x) is periodic with period L. We
can interpret the function Ψ(t), as the switch which modifies the amplitude of the
potential V (x). The simplest form of the function Ψ(t) is “on-off” flashing, when
Ψ(t) takes only two value 1 and 0 and switches between them with a fixed time rate.
Once again to obtain a net directional flux, one of the two: space periodic potential
V (x) or time periodic excitation Ψ(t) must be chosen asymmetric. The simplest
example of the flashing ratchet was proposed by Ajdari and Prost [3]

Instead of using the colored noise one can consider the system with multiple thermal
baths as was originally proposed by Feynman. A simple example of such Brownian ratchet
is the motor driven by the position dependent temperature as in the model of Büttiker and
Landauer [9, 66]. In this model a Brownian particle is in contact with different reservoirs
at different positions, and is driven by the following Langevin equation:





v =
dx

dt

m
d2x

dt2
= −∂V (x)

∂x
− η

dx

dt
+
√

2ηkBT (x) ξ(t)

(2.30)

The model describes the motion of a Brownian particle with mass m and drag coefficient
η in a potential V (x); x denotes the position of the particle and ξ(t) is a Gaussian white
noise. The potential V (x) is a space periodic with space period L. The temperature
function T (x) varies along the potential with values T1 and T2, where T1 > T2, and is also
periodic with period L. The energetics of this model was studied in [?, 2].

A Brownian ratchet model with direct relevance to muscle contraction was proposed by
Ajdari, Jülicher and Prost [3, 52, 55]. It is a flashing ratchet where the colored component
of the noise is used as a multiplicative term in the energy modifying the amplitude of the
potentials barriers. To explain the functioning of this ratchet we can instead of using the
Langevin representation pass directly to the Fokker-Planck description.

Suppose that we have two energy landscapes W1 and W2 and in this sense it is a two-
state model, see Fig.2.8a). Different energy landscapes correspond to different chemical
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states, for example, attached and detached states of the myosin head may have different
interaction with an actin filament. Generally, the potentials are L periodic Wi(x + L) =
Wi(x) and are asymmetric Wi(x) 6= Wi(−x).

The evolution of the probability density functions describing each of the states is gov-
erned by the coupled equations:

∂tP1(x, t) + ∂xJ1(x, t) = −P1(x, t)ω12 + P2(x, t)ω21

∂tP2(x, t) + ∂xJ2(x, t) = −P2(x, t)ω21 + P1(x, t)ω12
(2.31)

where ω12 and ω21 are transition rate functions with period L, see Fig.2.8.a). As in chemo-

Figure 2.8. Flashing ratchet model of molecular motors developed by J.Prost, F.Jülicher,
A.Ajdari. a) The sketch of general two state model with two space periodic potential W1 and
W2, both potentials are space periodic asymmetric function. W1 and W2 define attached
and detached state. For myosin II description, W2 is usually flat, dashed black line. The
detachment activated in the minima of well of potential W1. At the unbound state W2

particle excited to jump in the maxima of potential W1, where the potential slop imitate
the power-stroke force generation. b) The schematic presentation of collective model of rigid
motors based on“on-off ratchet”, where W1 is space periodic potential presented the attached
state and W2 = 0 – it is detached state. The motions obtain by switching between this two
state. c) the picture with collective soft motors taking in account the individual elasticity of
motor. d) The sketch of collective model with added quadratic potential, presented by kf .

mechanical models, the transition rates between the two states need to be prescribed. The
necessary condition to obtain a directed motion is to break the detailed balance. To this
end the transition functions ω12 and ω21 are related as follows:

Ω(x) = ω12(x) + ω21e
−

W1(x)−W2(x)
kBT (2.32)

where ω12(x) is a function which controls the local deviation from thermal equilibrium
[54, 92, 85, 51]. The two-state model is consistent with the observed behavior of biological
motors and reproduces the typical force-velocity relation. In order to model the cooperative
effects in muscle fibers, N motors can be fixed on a rigid backbone, [53] or a quadratic
potential can be added to take into account the elasticity of the backbone, Fig.2.8c).
Such system shows dynamical instability around the stall force regime and can exhibit
bi-directional motion,[30, 31].

One can say that the models of Brownian ratchets incorporate the idea of the power
stroke implicitly. More specifically, in those models the power-stroke is not associated
with a conformational change occurring without net displacement along the molecular
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track, but is viewed as any motion down the energy well which generates elongation of the
linear spring. One of the goals of our work will be to extend the Brownian ratchet models
in the direction of accounting for the conformational change more explicitly. Another
limitation which we try to overcome is the assignment of activity exclusively to the actin
filament through either rocking or flashing terms in the energy. Instead, we shall attempt
to interpret the power stroke as the driving force of the process which is stimulated directly
by the ATP hydrolysis.

2.5.1 Kinesin models

As an inspiration of our approach, we discuss here a different type of Brownian ratchets
which have been so far applied exclusively for the description of dimeric motors such as
Kinesin . In this class of models each motors are represented as two particles rather
than one with each particle moving along the same periodic potential. This potential is
asymmetric and has periodic wells which represented the binding sites. The particles are
connected by a bi-stable spring representing a conformational change responsible for the
advance of the motor.

The simplest model of this type [14] is governed by the following system of overdamped
Langevin equations:

γ
dx1
dt

= −∂V (x1)

∂x1
− fload − k [x1 − x2 − l(t)] +

√
2kBTγξ1(t)

γ
dx2
dt

= −∂V (x2)

∂x2
− fload + k [x1 − x2 − l(t)] +

√
2kBTγξ2(t)

(2.33)

where x1,2 denote positions of the particles, γ is the frictional drag coefficient and V (x) is
the ratchet potential with a periodically placed piecewise linear wells and flat barriers; it is
essential that the well slope in backward direction is steeper when in the forward direction
see Fig.2.9. The parameter k denotes the stiffness of the bi-stable unit and l(t) is the rest
length which can take two values. Finally, ξ1,2(t) is again the Gaussian white noise with
autocorrelation function 〈ξi(t)ξj(s)〉 = 2kBTγδi,jδ(t − s) for i, j = 1, 2. The external load
force fload can be applied as well.

The bi-stability of the system rests in the fact that the parameter l(t) takes alternatively
two values –lmin and lmax. The switch between the two quadratic wells is governed by a
stochastic process which plays the role of the source of disequilibrium. Indeed, the ATP
induced switches of the rest length push the system out of thermal equilibrium and provide
the driving force to pull the cargo. The motor proceeds in a step by step fashion in one
direction, and shows different velocities at different external loads; the two limiting values,
lmin and lmax, can be designed to produce realistic size of the power stroke. To illustrate
the working of this ratchet suppose that lmin = 0 and the two particles start from the same
reference position. The change of the rest length, initiated by a stochastic process, pushes
the two heads in the opposite directions. Because of the asymmetry of the potential, only
one head makes a forward step of 8nm relaxing the spring. This unstrained configuration
is again perturbed by the sudden change of the reference length that comes back to zero.
Now the two heads are pulled together and end up again in the same well because the
asymmetry of the potential facilitates the forward step of the second head.

The model shows good agreement with kinesin experiments, see Fig.2.9, and can be
considered as rather realistic. Notice that the periodic potential in this model is passive
and all activity is concentrated in the bi-stable element. However, the model can also be
modified to move the activity into the periodic potential describing the (track) filament.
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Figure 2.9. The I.Derényi and T. Vicsek model. a) Sketch of the potential shape V (x) and
the subsequent steps of the motor cycle, from left to right. b) The force-velocity curves for
an individual motor at saturating ATP concentration, on the left part; and force-velocity at
low ATP concentration. From [14]

Thus, in [79] the authors study the motion of two Brownian particles coupled by a bi-
stable snap-spring on a periodically rocked landscape. Each of the particles is a Brownian
ratchet in the sense defined above and the role of the bistable potential is to synchronize
their motion. The corresponding system of overdamped Langevin equation can be written
in the form 




dx

dt
= − ∂[Φ(x) + V (x− y)]

∂x
+ ftilt(t) +

√
2D ξx(t)

dy

dt
= − ∂[Φ(y) + V (x− y)]

∂y
+ ftilt(t) +

√
2D ξy(t)

(2.34)

where Φ(x) and Φ(y) are two identical dimensionless ratchet potentials submitted to time
periodic rocking with intensity ftilt(t) which has zero average. The x and y are positions of
two legs and the rocking term act simultaneously on both positions.The bistable potential
V (x− y) describes the interaction between the two legs. The parameter D is the intensity
of the zero-mean statistically independent Gaussian white noises ξx(t) and ξy(t) acting on
particles x and y. The periodic rocking places the system out of thermal equilibrium. The
asymmetry of the ratchet potential ensures that this system can move directionally and
generate force if constrained.

2.6 Conclusions

Several models reviewed in this section represent different aspects of muscle contraction and
acto-myosin interaction. Each one emphasizes a particular physical aspect of the problem
and can be viewed as prototypical. None can be considered as fully comprehensive which
is not surprising in view of the enormous complexity of the underlying problem.

Most of the models are able to reproduce some experimental measurements at the
expense of introducing various phenomenological elements and bringing in fitting functions
and dependencies. The freedom to introduce intermediate power-stroke states and the
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multiplicity of the ways to break the detailed balance creates undesirable ambiguity. On the
other hand, the schematic models blend different states of the minimal Lymn-Taylor cycle
and do not allow to distinguish the power stroke from the attachment process. In general,
the most sophisticated fitting schemes mix mechanical and chemical description and bring
together jump and continuous stochastic processes. Different groups of researchers disagree
on where the ATP activity resides: in the attachment phenomenon, in the power stroke
or in both.

In this Thesis we attempt to formulate a set of simple toy-models which bring together
the ideas of Brownian ratchets focusing on attachment detachment and the ideas of Huxley
and Simmons regarding the functioning of the power stroke element. We try to remain in
the purely mechanical framework and keep the description fully transparent mathemati-
cally. Interestingly, to achieve such synthesis we need to overcome the distinction between
processive and non-processive motors making our model applicable for the description of
both a single-legged non-processive molecular motor Myosin II and a double-legged pro-
cessive motor kinesin. In the following sections we introduce our techniques step by step,
and then study systematically several model archetypes in the attempt to finally provide
a definitive mechanical interpretation of the Lymn-Taylor cycle.





Chapter 3

Ratchet element

In the large family of known Brownian ratchets, one model stands out as truly mechan-
ical in the sense that it is quite clear how the corresponding device can be built and

reproduced in the lab. This is a model of Magnasco [72] which we first tried to generalize
in order to accommodate for the conformational change and then ended up completely
rewriting. In this section we present an extended discussion of the original model which
incorporates later contributions as well [56]. In addition to the known results this sec-
tion contains new studies of the Magnasco ratchet placed in a mixed/hard device regime
and offers a comparison of the efficiency of the energy transduction in this system under
different loading conditions. Most importantly we systematically study the validity of
the adiabatic approximation adopted unconditionally by Magnasco and his followers and
compare the analytical results available in this approximation with the results of direct
numerical simulation of the stochastic Langevin equation.

3.1 Formulation of the model

The goal of the modeling is to ensure directed motion of a randomly walking particle in
a periodically rocked asymmetric potential. The associated one dimensional overdamped
Langevin equation reads

η
dx

dt
= −∂xV (x) + ftilt(t) +

√
2ηkBT ξ(t) (3.1)

where dx/dt is the velocity of the particle, η is the drag coefficient, kB is the Boltzmann
constant and T– the absolute temperature. The random environment is represented by
the white noise ξ(t), while the ATP activity is modeled by the time periodic force ftilt(t),
which rocks the infinitely periodic energy landscape V (x).

It is convenient to rewrite (3.1) in dimensionless form. We use the following definitions
of the nondimensional variables:

x̃
(
t̃
)
≡ 1

L
x
(
t = τ t̃

)

Ṽ (x̃) ≡ 1

Vmax
V (x = Lx̃)

f̃tilt

(
t̃ =

t

τ

)
≡ L

Vmax
ftilt(t)

ξ̃(t̃) ≡ ξ(t)τ−1/2

(3.2)
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where the time scale is chosen as follows

τ =
ηL2

Vmax
(3.3)

Here L the typical length inside the model, and Vmax is the energy scale. Applying the
transformation we obtain a new dimensionless parameter D = kBT

Vmax
and rewrite (3.1) in

the form
dx

dt
= −∂xV (x) + fext + ftilt(t) +

√
2D ξ(t) (3.4)

Here we added an external force fext representing the cargo which was absent in the original
model of Magnasco. We assume that the ratchet potential V (x) is periodic with period L,
see Fig.3.1. The time periodic driving force ftilt(t) is a symmetric square wave-like function
with amplitude A, see Fig.3.1. Obviously the time averaged effect of the rocking force
ftilt(t) must be equal to zero because otherwise we are dealing with a standard mechanical
ratchet. It is easy to show that in the absence of the tilting force the system reaches

Figure 3.1. a) Scheme of sawtooth ratchets potential V (x) with space period L = λ1+λ2 and
asymmetry ∆ = λ1 − λ2. b) Scheme of sawtooth ratchets potential with conservative load
V (x) − xfext. c) Scheme of a slow square wave time periodic function ftilt(t) of amplitude
A and time period T . d) Action of rocking force on saw-tooth potential.

thermal equilibrium with zero net current. However, as we show below the interplay
between asymmetry and out-of-equilibrium (meaning correlated) fluctuations is able to
produce the systematic net motion.

In addition to Langevin equation (3.4) we’ll be also using the corresponding Fokker-
Planck equation

∂P (x, t)

∂t
=

∂

∂x

[(
−∂V (x)

∂x
+ fext + ftilt(t)

)
P (x, t)

]
−D

∂2P (x, t)

∂x2
(3.5)

where P (x, t) is the distribution function for the mechanical variable x indicating the
probability for particle to be at point with coordinate x at time t.
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3.2 Adiabatic limit

In general the linear equation (3.5) with time dependent coefficients can be solved only
numerically. However, if the rocking combines slow and fast stages, one can search for
piece wise stationary solutions. Indeed, when the potential changes shape it takes some
time for the system to relax to equilibrium and if the rocking is much slower than the
time of relaxation, the piece wise equilibrium approximation known also as adiabatic ap-
proximation, may be adequate. To find stationary solution we need to fix the tilting force
and solve the Fokker-Planck equation with ∂tP (x, t) = 0. Moreover, in the case of tilted
periodic potential such stationary distributions can be obtained in quadratures [98].

Suppose for determinacy that the periodic rocking force is taken in the form of a square
wave signal with period T and amplitude A.

ftilt(t) =





+ A for n
T

2
≤ t ≤ (n + 1)

T

2
,

−A for (n + 1)
T

2
≤ t ≤ nT, n ∈ N

(3.6)

. In the adiabatic approximation we assume that the period T is sufficiently large. To
obtain stationary solutions of (3.5) with ftilt(t) = f = ±A it is convenient to define the
potential Φ(x) = V (x) − xf − xfext. B y using the fact that the flux

J = [∂xV (x) − f − fext]P (x) −D∂xP (x) (3.7)

is constant we obtain the following stationary distribution

Pst(x) = P0 exp(−Φ(x)

D
) − J

D
exp(−Φ(x)

D
)

x∫

0

exp(
Φ(x)

D
)dx. (3.8)

To find the integration constants P0 and J we recall that the stationary probability dis-
tribution Pst(x) must be periodic with period L. By using the fact that Φ(x + nL) =
Φ(x) − nL(f + fext) we can then write

J

L∫

0

exp(
Φ(x)

D
)dx− P0D

[
1 − exp(−L(f + fext)

D
)

]
= 0 (3.9)

To find the second condition we can use the normalization of the probability density∫ L
0 P (x)dx = 1. We obtain

P0

L∫

0

exp(−Φ(x)

D
)dx− J

D

L∫

0

exp(−Φ(x)

D
)

x∫

0

exp(
Φ(x′)

D
)dx′dx = 1 (3.10)

We can now eliminate P0 and obtain the following expression for J as a function of f and
fext:

J(f, fext) =
D
(

1 − e−
L(f+fext)

D

)

∫ L
0 e

Φ(x)
D dx

∫ L
0 e−

Φ(x)
D dx−

(
1 − e−

L(f+fext)
D

) ∫ L
0 e−

Φ(x)
D

∫ x
0 e

Φ(x′)
D dx′dx

(3.11)

Notice that the stationary current carries information about the time scale of the system,
because it is proportional to the inverse of the time necessary for the particle to cross the
length of one spacial period.
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To be more specific consider the following expression for the asymmetric saw-tooth
L-periodic potential

V (x) =





2Vmax

L
(x− nL) for nL ≤ x < nL +

L

F
,

2Vmax

L
((n + 1)L− x) for nL +

L

2
≤ x < (n + 1)L, n ∈ N

(3.12)

The shape of the potential is chosen to be asymmetric with the asymmetry factor ∆ =
λ1 − λ2 defining the direction of the motion. In this case the integrals can be computed
explicitly and we obtain

J(f, fext) =
P2

2 sinh(L(f+fext)
D )

DL2

V 2
max

(
cosh(

Vmax−∆
f+fext

2
D ) − cosh(L(f+fext)

2D )

)
− 2LP1P2

Vmax sinh(L(f−fext)
2D )

(3.13)
where

P1 = ∆ +
(f − fext)(L

2 − ∆2)

4Vmax
, and P2 =

(
1 − ∆(f − fext)

2Vmax

)2

−
(
L(f − fext)

2Vmax

)2

(3.14)
For the square wave rocking the tilting force takes the value A during one half of the

period and −A during the second half of the period. Therefore the parameter f in (3.13)
takes two value A and −A. To obtain the average value of the current we need to compute

〈J(f, fext)〉t =
1

T

∫ T

0
J(ftilt(t), fext)dt (3.15)

When T is sufficiently large we can approximate this integral by the following expression

Javg =
1

2
[J(A, fext) + J(−A, fext)] (3.16)

The mean drift velocity 〈v〉 is then given by the expression

〈v〉 = LJavg (3.17)

We can now apply our analytical results to study the parametric dependence of the
model. In our subsequent discussions we make the following selection of the secondary
parameters: Vmax = 1.5 , λ1 = 0.7 , λ2 = 0.3 and L = 1.

The main object of study is the particle current, or the average velocity, as a function
of the amplitude A. We first assume that the temperature is fixed and that fext = 0,
meaning that there is no cargo in the system.

Our formula (3.13) with a positive value of parameter f gives the behavior of system
tilted to the right, while with negative f we obtain the behavior of the system tilted to
the left. In Fig.3.2a) we show the behavior of both positive and negative branches as
functions of the tilt magnitude A. Since the two branches are not symmetric the average
probability flux in the adiabatic limit defined in (3.16) is different from zero, see Fig.3.2b).
The particle moves in forward direction along the x axis following the forward asymmetry
of the ratchet potential λ1 > λ2.

In Fig.3.2c) we show the region of low amplitude forcing, where the temperature in-
crease helps to increase the current. In this region of parameters the particle extracts
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Figure 3.2. The adiabatic probability flux Javg (average velocity) as function of amplitude
A for increasing temperatures D in soft device with fext = 0. a) The behavior of positive
and negative branches J± as functions of the tilt magnitude A. Note, the two branches are
not symmetric. b) We show the Javg for increasing values of D from bottom to down, the
thick solid line –D = 0.03, the dashed line – D = 0.3. As we see the probability current
vanishes with increasing of temperature and amplitude. c) The region of low amplitude
forcing, where the temperature increase helps to increase the probability current.

energy form the thermal bath in order to cross the potential barriers. Interestingly, that
here it is not the average tilt but its dispersion that drives the motion.

In Fig.3.2b) and Fig.3.2c) we show the dependence of Javg on temperature (diffusion
coefficient). As we see for small values of D there is a threshold in the forcing amplitude
A, below which the probability current has almost zero value. For the moderate value of
forcing, Javg is an increasing function of A and we observe the maximum at A close to 5.
For high amplitudes of the forcing Javg decreases again. The hight level of the correlated
input signal destroys the ratchet functionality. The high level of temperature has the same
effect, see Fig.3.2. One can use these data to optimize the ratchet’s output velocity.

The same analysis can be performed in the presence of external load fext. Thus, in
Fig.3.3 we show the results of the computations performed for same model parameters as
in Fig.3.2, but at the fixed value of external load fext = 0.3. The general trends do not

Figure 3.3. The adiabatic probability flux Javg (average velocity) as function of amplitude
A for increasing temperatures D in soft device with fext = 0.3. a) The Javg for increasing
value of D from bottom to down, the thick solid line –D = 0.03, the dashed line – D = 0.3.
Note the emergence on the negative values of the current in the regimes with small forcing
amplitude and high temperature. b) The region of low amplitude tilting, the presence of
thermal fluctuations is crucial.
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change however we observe the emergence on the negative values of the current in the
regimes with small forcing amplitude and high temperature. The probability flux in this
domain of parameters changes its direction, meaning that the external input of energy
is not sufficient for the particle to carry the load and it is instead being dragged by the
load. However, for sufficient large amplitude of forcing we observe that the system can
perform the mechanical work against the external load. As in the case with no load the
presence of thermal fluctuations is crucial in the regime with small amplitude of forcing. It

Figure 3.4. The behavior of the probability flux Javg as function of temperature D at
different amplitude A in soft device with fext = 0. a) The probability flux is maximized at
a finite value of temperature. The amplitude A increases from bottom to top, we show the
flux behavior at lowest A with black dashed line and at highest A – with solid thick line. b)
The plot of probability flux in the three different regimes of rocking: for low, intermediate
and hight amplitude A. c) The three different regimes of rocking force. With black solid
lines we show the derivative ∂x[V (x) − xfext], with blue line we show the low amplitude
range, with green lines - the intermediate range, and with red line - the high amplitude
range

is instructive to study the behavior of the probability flux as a function of temperature at
different amplitudes of forcing, see Fig.3.4. One can see that at low amplitudes of tilting,
see Fig.3.4a), the probability flux is maximized at a finite value of temperature where the
ratchet uses the thermal energy to generate the motion in the optimal way.

In general, we can distinguish three regimes where the behavior of the probability flux
Javg as function of temperature is radically different:

• the low amplitude regime, A < Vmax

λ1
− fext <

Vmax

λ2
+ fext

• the moderate amplitude regime, Vmax

λ1
− fext < A < Vmax

λ2
+ fext ,

• the high amplitude regime, Vmax

λ1
− fext <

Vmax

λ2
+ fext < A

In Fig.3.4c) we show the simple illustration of these three regimes. With black solid lines
we show the derivative ∂x[V (x) − xfext], with blue line we show the low amplitude range,
with green lines - the intermediate range, and with red line - the high amplitude range.
In Fig.3.4b) we display all three regimes. We notice that the flux shows a local maximum
at finite temperature in the range of low values of A. With increasing A the maximum
vanishes progressively by transforming into the plateau-like region. At large amplitudes
of the rocking force the system reaches the mechanical regime, where the flux becomes
a monotonically decreasing function of temperature. However, as we show later in this
section, one has to be careful in making conclusions from the adiabatic approximation at
low temperatures where the internal time scale may diverge.
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Figure 3.5. The behavior of the probability flux Javg as function of temperature D at
different amplitude A in soft device with fext = 0.3. a) The Javg plotted for increasing
value of A, from down to bottom, the lowest value with black dashed line and the highest
– with solid thick line. The function is maximised at finite temperature in regime of low
forcing. We observe the interval where the functions take a negative value, the system does
not perform any work. b) The plot of probability current in three different regime: for
low, intermediate and hight amplitude forcing. The flux shows a local maximum at finite
temperature in the range of low values of A. At large amplitudes of the rocking force the
system reaches the mechanical regime, where the flux becomes a monotonically decreasing
function of temperature.

The system exhibits almost the same behavior in the presence of an external load fext =
0.3, see Fig.3.5. Thus in Fig.3.5b), we see a maximum of the flux at finite temperature
and low A. With increasing A the maximum vanishes progressively. One again finds that
Javg may become negative in the high temperature regime which means that the ratchet
effect disappears. In this regime the system is carried by the load and the motor is unable
to perform useful mechanical work.

3.3 Validity of the adiabatic approximation

The above theoretical analysis and the corresponding simulations were based on the as-
sumption that the forcing frequency is much lower than the internal frequencies of the
system. To check the validity of this assumption we now compare the result obtained in
adiabatic approximation with direct numerical simulation of the Langevin equation (3.4).
In our numerical simulations we use the standard Euler scheme which is largely sufficient
to obtain the stable results considering the simple form of the potential. To ensure nu-
merical stability of the dynamics we take the time step to be sufficiently small ∆t = 10−3.
The total time of observation is about 100 times the period of rocking force. At t = 0 we
assume that the particle is at x = 0 with zero velocity, however, since we search for the
steady state regime we also tried uniform distribution of initial conditions over one period
of the potential. The ensemble averaging was performed over 104 trajectories.

Below we present the results of a series of numerical experiments which confirm the
consistency of our adiabatic approach and also reveal the parameter ranges where it fails.
The numerical results are juxtaposed with our analytical results representing stationary
solution of the Fokker-Planck equation in the adiabatic approximation. In Fig.3.6 we
show by the solid lines the analytically computed results and by the skaters we depict
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Figure 3.6. We show by the solid lines the analytically computed results and by the skaters
we depict the corresponding results of the direct numerical simulation of the Langevin
equation performed at a finite value of the time period T = 120 of the rocking force ftilt(t). a)
The particle current versus amplitude A. b) The mechanical work Wmec versus temperature
D. c) The average input of energy R versus temperature D. d) The mechanical efficiency
versus D. e) The Stokes efficiency versus D. See the detailed definitions for efficiency
functions below.

Figure 3.7. Comparison of the adiabatic theory and the direct numerical simulations. a)
The probability flux versus D provided by the direct numerical simulation of the Langevin
equation performed at a finite value of the time period T of the rocking force ftilt(t). b) The
mechanical efficiency versus D provided by the direct numerical simulation of the Langevin
equation performed at a finite value of the time period of the rocking force. c) The Stokes
efficiency versus D provided by the direct numerical simulation of the Langevin equation
performed at a finite value of the time period of the rocking force.

the corresponding results of the direct numerical simulation of the Langevin equation
performed at a finite value of the time period of the rocking force. In order to reproduce
the adiabatic regime in numerical simulations we take the tilting force ftilt(t) with a finite
but sufficiently large value of the period T . Interestingly, in the regime of slow time
variation of tilting force, sufficiently high precision can be obtained even for a stochastic
ensemble characterized by rather low number of averaged trajectories, say 102. the reason
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is that in regime of slow time variation of tilting force we are rather close to adiabatic
behavior of the motor system.

One can see that our numeric computations reproduce the analytic results almost per-
fectly in a broad range of regimes. Here we used the standard scheme with constant
time-step ∆t in each numerical simulation however to capture the regimes with low am-
plitude of rocking while maintaining sufficient resolution we had to use much smaller time
steps.

To summarize our results, for sufficiently large values of T , the numerical results are
in full agreement with the adiabatic limit. For instance, we always observe three different
regimes identified in the previous section in agreement with the adiabatic theory. For
instance, in the regimes with low and moderate amplitude of rocking it is always possible
to identify a finite temperature where the current is optimized before it decrease with
increasing D (kind of adiabatic stochastic resonance) . At high amplitudes of the forcing,
the current decreases monotonically as a function of temperature, because the ratchet
effect becomes progressively unimportant in this regime.

The agreement between the adiabatic theory and the direct numerical simulations are
not always perfect. Consider for instance a finite time period of rocking force, T = 1
and low value of the amplitude A. At low temperatures the behavior of the mechanical
efficiency in this system (see the detailed definitions for this case below) can be different
from the predictions of the adiabatic theory, see Fig.3.7b). Thus, in the direct numerical
simulations we observe that the mechanical efficiency attains its maximum at a finite
temperature. Instead, in the adiabatic theory we find that the efficiency is optimized at
zero temperature. We explain the difference with the adiabatic theory by the fact, what at
low temperature the internal time scale diverges and the adiabatic approximation becomes
invalid.

3.3.1 Force velocity relation

The introduction of the external load fext in the motor potential function (which represents
cargo) opens a possibility to study the efficiency of the energy transduction in our motor.
By varying the value of the external force we can also recover the force-velocity relation,
which furnishes a usual characterization of a motor. In our simulations we adopt a
physical rather than physiological definition of the external load and plot the response in
the axis [〈v〉, fext]. In this case the motor performs useful work moving against an external
forces. The negative sign of fext indicates the external load acts against the direction of
the motion of the motor.

In the absence of the input energy provided by ftilt(t), the system quickly reaches the
state of thermal equilibrium. In this state a non zero velocity indicates the action of an
external force fext. The direction of the motion is fully determined by the sign of fext.
In Fig.3.8a) we showed by the dashed line the behavior of the “force-velocity” relation in
the limit of A = 0, D = 0, by solid black line we presented the behavior of the system
for progressively increasing value of D, while keeping A = 0. One can see that in this
passive system we obtain the classical features of the frictional behavior when the sign of
the velocity is the same as the sign of the force.

In Fig.3.8b) we show the force-velocity curve for a similar system but in the presence
of the active force ftilt(t), i.e. A 6= 0. The dashed line corresponds to the lowest value
of D, the thick solid line–to the highest value of D. We observe that the emergence of
the active region with 〈v〉 > 0, fext < 0. In this domain the motor is able to perform the
mechanical work against the imposed load. Different modes of operation of the motor can



52 3 - Ratchet element

Figure 3.8. The plot of force-velocity relation for increasing temperature D. a) The plot
of prediction adiabatic theory in absent of input of energy for A = 0 for increasing D; the
dashed line –the pure mechanical behavior, A = 0 and D = 0, the thick line– the highest
value D. b) The plot of prediction of adiabatic theory in presence of input energy, A = 2,
for same increasing values of D.

be distinguished by looking at the sign of the energy dissipation produced by the system.
Passive regimes correspond to the cases where the dissipation is positive meaning that 〈v〉
and fext have the same direction: both positive or both negative. That means that input
energy is dissipated as in the classical nonequilibrium thermodynamics. More interesting
are the active regimes where the motor can transform the input energy into mechanical
work, i.e. the system anti-dissipates. In our representation such active regimes exist in
the region where 〈v〉 > 0, fext < 0. The motor uses the chemical energy of the ATP as the
input and performs the mechanical work by moving with a positive velocity 〈v〉 against
the negative force fext.

In Fig.3.9 we study the variation of the force-velocity relation with the amplitude of
rocking at fixed temperature (constant D). The dashed line corresponds to the lowest value
of A and the thick solid line–to the highest value of A. For small amplitudes of rocking the
particle follows closely the external force and performs almost no mechanical work against
the load. We need to surpass a threshold in the amplitude in order to generate significant
active transport. The increase of A increases the associated maximum value of velocity at
zero external load, which corresponds to the intersection of the force-velocity curve with
the axis fext = 0. Also we observe the increase of the value of the stall force defined as
the value of the load associated with zero average velocity of the motor. In other words
it is the maximum load that the motor system is able to support without moving. Notice
also that the probability current shows a maximum at a particular value of the amplitude
A. Overall, the force velocity relation is nonlinear passing from concave to convex shape
as the magnitude of the rocking force increases.

In Fig.3.10 we show the variation of the force-velocity relation with the temperature D
for a fixed value of the rocking amplitude A. At zero temperatures the system follows the
purely mechanical behavior without the stochastic term in the Langevin equation. The
dashed line corresponds to the smallest value of D and the thick solid line–to the largest
value of D. The increase of temperature (or diffusion coefficient) D progressively increases
the area between the force-velocity curve and the axes fext = 0 and 〈v〉 = 0. After the
threshold in D, as we have seen in the study of a free particle, the ratchet phenomenon gets
progressively lost, and the motor loses the ability to perform the mechanical work against
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Figure 3.9. The variation of the force-velocity relation with the amplitude A of rocking
at fixed temperature D = 0.01 in adiabatic theory. a) The force velocity response with
variation of A in interval 0.5 < A < 4.5, the dashed line corresponded to A = 0.5, solid
line to A = 4.5. On the b) we show only the region of positive mechanical work, we notice
the non-linear characteristics of force-velocity curves the note the convex and concave force-
velocity relation indicating by arrows. c) The force velocity response with variation of A in
interval of hight amplitude value of rocking force A, A > 5, the dashed line corresponded to
A = 4, solid line to A = 11. d) We show only the region of positive mechanical work. The
non-linearity vanished for linear behavior in region of positive mechanical work.

the external load. We notice the pronounced concave character of the force-velocity curve
at low value of the rocking amplitude A and low temperatures, see Fig.3.10a); the convex
force-velocity curve is obtained at intermediate values of A and low temperatures, see
Fig.3.10c).

3.3.2 Hard/mixed device

So far we have been studying the behavior of the Magnasco ratchet in a soft device which
implied that we applied external conservative load. In particular we associated the (max-
imal) force developed by the motor at zero average velocity with the stall force. Another
way to measure this force is to introduce the hard/mixed device by attaching to the motor
a fixed spring and measuring the developed average displacement.

Consider a coupled system where the ratchet is attached to a linear spring with the fixed
stiffness km. We impose the constant elongation to the free end of the spring z = Const.
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Figure 3.10. The variation of the force-velocity relation with the temperature D at fixed
amplitude of rocking A. On a) and b), we show the behavior of system for relatively low
amplitude characterised by concave force-velocity curve A = 2, see a) we loose the non
linearity and the ratchet mechanism with increase of D see b). On the figure c) and d), we
show the behavior of the system at medium value of A for which the force-velocity response
characterised by convex form, which is loosed with increase of temperature D.

The force developed by the motor is proportional to the elongation of the linear spring.
The corresponded stochastic differential equation can be written as

dtx = −∂xV (x) − km(x− z) + ftilt(t) +
√

2D ξ(t) (3.18)

To simplify the model we incorporated the reference spring length into the definition of the
coordinate z. In computation we chose the z = 0, the computation of the average value
of the motor coordinate x was done done in the steady state. The study was performed
by direct numerical simulations because the analytic evaluation of the integrals in the
adiabatic approximation does not appear feasible. In Fig.3.11b) we show the sketch of
our hard device for Magnasco thermal ratchet. Interestingly, this system can also be
interpreted as elementary experimental setup for the isometric test in muscle mechanics.

In Fig.3.11b) we plot the function 〈x〉 versus D for different values of the amplitude of
tilting force, A. We see that in this system the diffusion plays an important role. At low
forcing amplitude A, the curve show a maximum at finite value D which means that that
system produces optimal force at finite temperature (stochastic resonance).

We also notice that the force generated in the hard device is in the same range as
the stall force obtained from the adiabatic force-velocity curve in the soft device. For
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Figure 3.11. The Magnasco thermal ratchet force generation in hard and soft device config-
urations. a) We show the plot of adiabatic theory prediction of stall force as function of D
for increasing values of amplitude A. b) We characterize the force generated in hard device
by motor average position x at fixed z. We show the plot of average motor position versus
D for increasing amplitude A of rocking.

comparison we need to multiply the average value of x by the value of km, and in our
simulations we used the value km = 0.5. We observe, however, a systematic difference
between the behavior of the stall force in the soft device and in the hard device. We can
explain it by the different nature of the motion in these two force generation devices. Thus,
in the soft device the force is fixed and is a deterministic parameter fext. Instead, in the
hard device we obtain the force by averaging of the stochastic variable xt which means
that this force fluctuates and the stall force is just the average. We will developed this
idea much deeper by using a simpler example of a bistable system in the next chapter.

The difference between the plots for the force generated in soft and hard devices can
also be explained by the limited validity of the adiabatic theory in the case of temperatures
close to zero. The values were obtained by finding numerically the roots of the adiabatic
equation Javg(fext, A) = 0. For more definitive quantitative comparison a finite element
solution of the Fokker-Plank equation in both hard and soft devices is required which we
leave outside the scope of this Thesis.

3.3.3 Efficiency

In this section we present a study of the energetics for the Magnasco model at the fixed
value of the external load fext. Here we use the same ratchet parameters as in the previous
section, and throughout this section adopt the value fext = 0.3. In particular, we study
the average mechanical work and the average dissipation as functions of D. In this way
we can understand the role of the temperature in ratchet dynamics by using the energetic
terms. The main question is whether the temperature helps the motor to perform the
useful work against an externally imposed load or is it an obstacle?

In the adiabatic approximation of the Magnasco model the average probability current
Javg , (3.16), is the function of the amplitude A and temperature D. Notice first that
because of the cyclic nature of the motor the variation of the internal energy over one
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Figure 3.12. a) The variation of the mechanical work Wmec with the temperature D. b) The
variation of the input energy R with the temperature D. c) The variation of the mechanical
efficiency ǫmec with temperature D.

cycle T is equal to zero.
By using the known analytical expression for Javg we can compute the mechanical work

by the formula:

〈Wmec〉 =
1

tf − ti
(−fext〈v〉) =

fextL

2
(J(A,D) + J(−A,D)) (3.19)

In Fig.3.12a) we show the dependence of Wmec on D As the applied force remains constant
Wmec follows the behavior of Javg, see the previous section.

We can also compute the energy provided by the active source by using the definition,

〈R〉 =

〈
1

tf − ti

∫ t=tf

t=ti

∂tV (x, t)dt

〉
=

1

T

∫ T

0
dt

∫ λ

0
dx (∂tV (x, t)P (x, t)) =

=
1

T

∫ T

0
dt

∫ λ

0
dxF (t)J(F ) =

LA

2
(J(A,D) − J(−A,D)) (3.20)

The dissipation during the period T can now be extracted from the energy balance equation
〈Q〉 = −〈R〉 + 〈Wmec〉. In Fig.3.12b) we show the input energy R. At zero load fext, we
can have 〈R〉 = −〈Q〉. The heat is negative by definition which indicates that the energy
is being dissipated.

Next we can compute the efficiency of the energy transduction ǫmec defined as ratio of
the produced mechanical work and the consumed input energy,

ǫmec =
〈Wmec〉
〈R〉 =

fext
A

J(A) + J(−A)

J(A) − J(−A)
(3.21)

In (3.21) the numerator Wmec is proportional to the generated particle current Javg . As
we have shown in the previous section, Javg is maximized at finite temperature in first two
first regimes that we have identified for Magnasco ratchet, while in the high amplitude
regime Javg is a monotonically decreasing function of the temperature. However, the
denominator in (3.21) also varies with temperature. To better understand the behavior of
the ratio, it is convenient to rewrite the equation (3.21) in the form:

ǫmec =
fext
A


1 −

2
∣∣∣J(−A)

J(A)

∣∣∣

1 +
∣∣∣J(−A)

J(A)

∣∣∣


 (3.22)
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from this expression we can see that the mechanical efficiency is not simply proportional
to the particle current. In fact, the efficiency is a monotonically decreasing function of

temperature in all three regimes, because the fraction
∣∣∣J(−A)

J(A)

∣∣∣ is a monotonically increasing

function of temperature, [56].
One can see that somewhat counterintuitively, the state of a maximum current does

not correspond to maximum efficiency, see Fig.3.12c). As the efficiency does not show a
maximum at finite temperature, one can question whether the presence of thermal fluctu-
ation really helps the efficient energy transduction by the ratchet. Here we also need to
take in account the limitations of the adiabatic theory. However, one must first consider
the Stokes efficiency

ǫStokes =
η〈v〉2
〈R〉 (3.23)

as well as the rectifying efficiency

ǫrec =
η〈v〉2 + fext〈v〉

〈R〉 (3.24)

In Fig. 3.13 we show these measures of efficiency are indeed maximized at finite tempera-
ture.

Figure 3.13. a) We show the variation of the Stokes efficiency ǫStokes with temperature D.
b) We show the rectifying efficiency ǫrec with temperature D.

3.4 Rocking ratchet with temporal asymmetry

As we remarked one can use the asymmetry in both space and time to generate directional
current. In this section we extend the adiabatic theory for Magnasco ratchet to illustrate
the effect of time-asymmetry.

Consider again a Brownian particle in the space periodic potential which is tilted in
time. Suppose now that the potential is symmetric but the tilting is asymmetric : a
larger force acts for a shorter time while smaller force acts for a longer time ( in the
opposite direction). The force field are chosen in such way that areas in Fig.3.14 are equal,

S1 = S2. This ensures that there is no systematic directed force and
∫ t+T
t dtftilt(t) = 0.

Other results on tilted ratchets with time asymmetry can be found in [64, 63]. In this
section we apply these ideas to the study of the Magnasco ratchet.
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Figure 3.14. a)The time asymmetric rocking signal ftilt(t). The force field are chosen in
such way that areas of each segments, S1 and S2, are equal. b) The action of asymmetric
rocking ftilt(t) on the symmetric ratchet potential V (x).

The Langevin equation in this case is (3.4). We consider again the general piecewise
linear ratchet potential shown in Fig.3.1a). We can also study the adiabatic problem by
solving the corresponding Fokker-Planck equation with the constant tilting term. The
current in the stationary regime must be averaged over the period T of the driving force
ftilt(t). We assume that

ftilt(t) =





− 1 − α

1 + α
A, for , nT ≤ t < nT +

1 + α

2
T

A, for , nT +
1 + α

2
T ≤ t < (n + 1)T, n ∈ N

(3.25)

Here α is used as a parameter measuring temporal asymmetry. In the adiabatic limit the
averaged current Javg can be computed as

Javg = 〈J(fext, f
T
tilt(t))〉t =

1

T




1+α
2

T∫

0

. . . dt +

T∫

1+α
2

T

. . . dt




=
1 + α

2
J(fext,−

1 − α

1 + α
A) +

1 − α

2
J(fext, A)

(3.26)

We recall that here we consider symmetric saw-tooth potential, i.e. ∆ = 0; the phase
space symmetry is broken by time asymmetry parameter α = 0.7.

In Fig.3.16.a). b) we plot the behavior of Javg versus A and D without conservative
external load. We notice the similarity in behavior between the Magnasco thermal ratchet
and the time asymmetric thermal ratchet defined in this section.

On the Fig.3.16 we show the behavior of force-velocity curves for the ratchet model
with broken time symmetry, i.e. ∆ = 0 and α 6= 0, and we show the force-velocity curves
of the ratchet model with both broken time and space symmetry, i.e. ∆ 6= 0 and α 6= 0.

We notice same new interesting features by tuning the parameter ∆ and α. Notice
first that in the adiabatic limit the ratchet system with either space, or time asymmetry,
can not exhibit the reversal of the current at finite temperature. However, in the ratchet
system with α 6= 0 and ∆ 6= 0 one can obtain current reversals in the adiabatic regime.
To obtain such regimes we need to chose the parameters of the asymmetry in such a way
that the directions of the current in the cases of pure spatial and temporal asymmetries
are in opposite directions. For example, in Fig.3.17 the current is in the positive direction
when ∆ = 0.9 and α = 0, and in the negative direction when ∆ = 0 and α = 0.9. By
tuning the combination of these two parameter to α = 0.8 and ∆ = 0.9 we obtain the
phenomenon of current reversal with the increase of temperature D . It should be noted
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Figure 3.15. The typical characteristics of time asymmetric rocked ratchet with parameters
∆ = 0 and α = 0.7. a) The variation of the average current with amplitude A at different
temperature D. b) The variation of the average current with temperature D at different
regimes of amplitude A.

Figure 3.16. a) The variation of force-velocity curve with temperature D, for ∆ = 0 and
α = 0.7. b) The variation of force-velocity curve with amplitude A, for ∆ = 0 and α = 0.4.
c) We plot for example the force-velocity curve for ratchet motor with ∆ = 0.8 and α = 0.7
for different amplitude A, the both space and time symmetry are broken. d) We plot for
example the force-velocity curve for ratchet motor with ∆ = 0.8 and α = 0.7 for different
temperature value D.
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Figure 3.17. a) On the left, the time asymmetric forcing ftilt(t) with amplitude A = −2.7.
On the right, we recall the definition of saw-tooth potential. b) The variation of the average
current with the temperature D for the tuned parameter ∆ and α. With solid black line
we plot the average current for ∆ = 0.9 and α = 0.8, with dashed line we plot the average
current for ∆ = 0 and α = 0.8, and with dot-dashed line –the average current for ∆ = 0.9
and α = 0.

that this is not an additive effect separately arising from α and ∆. The current reversal
arises due to complex interplay of these two ratchet mechanisms. By using the known

Figure 3.18. The energetics of time asymmetric rocked ratchet model, the model parameters
∆ = 0 and α = 0.7 and fext = 0.3. a) The variation of the mechanical efficiency with
temperature for increasing amplitude A. b) The variation of Stokes efficiency with the
temperature for increasing amplitude A. c) The variation of rectification efficiency with
temperature for increasing amplitude A.

expressions for the average current we can now compute the corresponding energetics
quantities: mechanical work Wmec, the heat 〈Q〉 dissipated by the system, the input of
energy 〈R〉, and the work performed against the viscous media WStokes. We can then plot
the corresponded ratios ǫmec, ǫStokes and ǫrec, see Fig.3.18 a),b),c).

In the case of pure time asymmetry the computed energetic measures exhibit the same
behavior as in the case of spatial asymmetry in the original Magnasco ratchet. We may
again conclude that the thermal bath does not facilitate the energy transfer, as mechanical
efficiency does not show a maximum at a particular temperature, however we again recall
what the adiabatic theory may be incorrect at small values of D. The other two measures
of efficiency show such a maximum at the same value of the asymmetry parameters even
in the adiabatic limit.

Notice that by fine tuning of the asymmetry parameters α 6= 0 and ∆ 6= 0 one can
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Figure 3.19. The energetics of time asymmetric ratchet model with the fine tuned parameters
α = 0.8 and ∆ = 0.9 at load fext = 0.03. a) The variation of the mechanical efficiency with
temperature for increasing amplitude A. b) The variation of Stokes efficiency with the
temperature for increasing amplitude A. c) The variation of rectification efficiency with
temperature for increasing amplitude A.

obtain the regimes in which even in the adiabatic theory the mechanical efficiency ǫmec has
a maximum at a finite temperature D. For example, we find such a regime at fext = 0.03,
α = 0.8 and ∆ = 0.9, see Fig.3.19a),b),c).

3.5 Conclusions

In this section we studied a prototypical ratchet model first proposed by Magnasco which
we generalized in several directions. This model describes the overdamped motion of a
Brownian particle in a space periodic potential driven by a periodic tilting force. The
resulting motion shows high degree of complexity in the presence of a thermal noise how-
ever we show that the averaged motion can be directional and steady. We discussed
this one-dimensional ratchet model mostly in terms of the adiabatic approximation where
analytical solutions for the stationary regime are readily available. We compared these
analytical results with the results of direct numerical simulations performed on the orig-
inal Langevin equation and used this relatively transparent case to test and verify our
numerical procedures.

The presented model can be used to describe a molecular motor capable to carry cargo
and exert forces. The periodic tilting of the spatial potential can be interpreted as an
action of the ATP where we interpret correlations in the external signal as the sign of
non-equilibrium. The spatial potential can be viewed as describing an actin filament with
periodically positioned binding sites, and the transition from one minimum to the other
as attachment /detachment step of the molecular motor.

The main problem with the application of this description to acto-myosin interaction is
that it completely ignores the phenomenon of power stroke. One can say that the advance
of the motor is driven by the activity in actin filament expressed through the periodic
tilting of the actin potential. This effect is global and can hardly be viewed as a realistic
description of the energetically localized interaction between a cross bridge and a binding
site. In addition, we observe that our Magnasco type myosin is advancing by using a
mechanism which is principally different from the mechanism known to be used by kinesin
which is strange in view of their fundamental configurational similarity.

To address these concerns we develop in the next sections an alternative idea that the



62 3 - Ratchet element

activity is concentrated not in a filament but in the additional structure capable of under-
going a conformational transition. The incorporation of this additional structure requires
us to introduce additional internal variable making the minimal relevant Langevin equa-
tion two dimensional. We study several successively more elaborate working arrangements
for such a power stroke driven system, first completely abandoning the periodic potential
and then reinstating it again.



Chapter 4

Power stroke element

In this chapter we study the possibility of active force generation by an asymmetric
snap-spring placed in a Brownian environment. The model describes Brownian motor

activated by a periodic (correlated) tilting of the bi-stable potential. In the biological
perspective the model can be viewed as describing an isolated attached myosin cross bridge
represented as a linear spring in series with a bi-stable element (snap-spring). Usually such
cross bridges are considered to be passive elements in rigor state. Here we propose to view
this system as an ATP consuming device which can produce active force. While this
model does not allow one to represent isotonic contractions outside the stall force regime
it can be used to obtained surprisingly rich description of isometric contractions. In the
next chapters we further extend this model making it finally capable to capture isotonic
contractions. This is done at a price of an additional degree of freedom ’living’ in a passive
periodic potential. The advantage of the minimal model presented in this section is its
complete analytical transparency which is lost as the model becomes more realistic.

4.1 Snap-spring as a motor

Active element consumes input energy and in return generates force. Here we show that
a simple snap-spring with a double well energy may serve as a force generating device if
placed in a Brownian environment and subjected to additional correlated tilting with zero
average. The bi-stable potential must be asymmetric and for simplicity we choose it to be
piecewise quadratic. The our goal is to characterize the efficiency of the force generation
by such a system placed in either hard or soft experimental setup. The difference between
the two protocols is detailed below:

• To imitate the isometric setup we couple a bi-stable system with a linear spring
fixed at one end. By varying the reference length of the linear spring we can obtain
different force levels in the case of rocking input. This system will be referred to as
a hard device configuration.

• To imitate isotonic stall force set up we study a particle in a rocking bistable potential
subjected to the action of a fixed external force. Such system will be referred to as
a soft device.

Both system are shown in Fig.4.1.
As in the previous section we consider an over-damped Langevin equation

dy

dt
= −∂yG(y, t) +

√
2D ξ(t) (4.1)
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Figure 4.1. The graphic scheme of bistable system in two experimental setup: soft and hard
device.

The form of the energy G(X, t) depends on the protocol:

• In the hard device the potential is:

Gh.d.(y, t|z) = V (y) − yftilt(t) +
1

2
km(y − z − z0)2 (4.2)

The fixed parameter z can always be chosen to absorb the reference length z0 of the
linear spring with stiffness km.

• In the soft device the energy potential is:

Gs.d.(y, t|fext) = V (y) − yftilt(t) − yfext (4.3)

Here the fixed parameter is the conservative load fext.

The potential V (y) describing the snap-spring (power stroke element) is a non-convex
function with two local minima. It is asymmetric with one global minimum biased by
choice in order to distinguish between the pre-power stroke state and to post-power stroke
state. The particular shape of this potential does not affect our main conclusions.

To be specific we model V (y) by a piecewise quadratic function with minima in the
points y = 0 and y = a and a (singular) barrier at y = l. We could also remove this
singularity by considering a smoother transition between the two local minima by inserting
a third inverted parabola in the segment [l− δ1, l + δ2] representing the spinodal interval,
however it will not affect our conclusions. We therefore define:

V (y) =





1
2k0 (y)2 + ε0(l), y 6 l

1
2k1 (y − a)2 , y > l

(4.4)

The location of the spinodal point controls the value of the energy barrier ε0(l) through,

ε0 =
1

2

(
k1(l − 1)2 − k0l

2
)

(4.5)

The ATP activity is modeled again by the periodic external force ftilt(t) with zero average.
To obtain dimensionless formulations we introduce the following definitions

X̃t̃ =
1

a
Xτ t̃

Ṽ (ỹ, z̃) =
1

kma2
V (aỹ, az̃)

f̃ T̃
tilt(t̃) =

1

kma
fT
tilt

(
t

τ

)

ξ̃i(t̃) = ξi(t)τ
−1/2

(4.6)
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where τ =
ηy
km

is the main time scale. The main nondimensional parameter of the problem
is

D̃ =
kBT

kma2
(4.7)

In what follows we omit tildas and work exclusively with nondimensional equations. In
the hard device setting we need to compute the average generated force

f = 〈〈y〉〉 − z (4.8)

while in the soft device we need to compute the mean displacement 〈〈y〉〉. In both cases
by 〈〈•〉〉 we imply averaging over both the ensemble and the period of the external force.

Observe that in the absence of the white noise, D = 0, the trajectory y(t) is fully
determined by the potential shape and the input signal ftilt. In Fig.4.2 we show two
responses of the system: without a thermal bath and with a thermal bath. Suppose
that the amplitude of the correlated noise ftilt is small so that without thermal noise
the system always remains in the same energy well. In the figure we show two types of
rocking force: a square-wave signal and sinusoidal signal plotted by blue solid lines. One
can see that in the presence of the thermal noise the particle visits both potential wells
with the barrier crossing being correlated with the rocking. This shows that the noise
can considerably amplify the effect of the rocking which is known as the phenomenon of
stochastic resonance [22]. In other words, the system in contact with a thermal bath may

Figure 4.2. Two responses of the system: without a thermal bath D = 0 and with a thermal
bath D = 0.02. The corresponded equations solved with initial condition y(t0) = 0. The
values of parameters: k0 = 1.5, k1 = 0.43, l = 0.22.

need much weaker rocking signal to cross the potential barrier between the two well. This
effect is most probably used by the molecular motor systems operating in the environment
where the correlated signal is weak and the uncorrelated signal is strong.

Before we move to numerical experiments, we need to specify the values of parameters.
The bistable dimensionless potential V (y) in both, hard and soft devices will be of the
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form:

V (y) =





1
2k0 (y)2 + ε0(l) y 6 l

1
2k1 (y − 1)2 y > l

(4.9)

with

k0 = 1.5, k1 = 0.43, l = 0.22 (4.10)

. We define ftilt(t) as a symmetrical square wave function

ftilt(t) =





+A for n
T

2
≤ t ≤ (n + 1)

T

2

−A for (n + 1)
T

2
≤ t ≤ nT, n ∈ N

(4.11)

where we shall systematically vary T - the time period of rocking and A - the amplitude of
the driving force. The particular choice of the numerical parameters is not crucial for the
physical interpretation of our results. What is crucial, however, is the asymmetry of the
bi-stable potential shape. Our choice of the asymmetry was motivated by numerical values
for muscle power stroke in acto-myosin system fitted from experimental measurements by
M.Caruel. However, our main goal is not the reproduction of particular curves but rather
qualitative understanding of the feasibility of muscle contractions being driven by the
power stroke element.

4.2 Adiabatic approximation

We begin by writing the Fokker-Planck equation for our system

∂tP (y, t) = D∂y

[
P (y, t)

D
∂xG(y, t) + ∂yP (y, t)

]
(4.12)

where G(y, t) is one of the energies (4.2) or (4.3). We deal with a stationary loading in
confining potential and are interested in studying the mean displacement of our particle
〈〈y〉〉 defined by the integral:

〈〈y〉〉 =

∫

t
dt

∫

y
yP (y, t)dy (4.13)

To study the dependence of this displacement on various parameters of the system we
need to find first the associated periodic solution of the Fokker-Planck equation 4.12.
When the period of the rocking T is sufficiently large, one can expect that the adiabatic
approximation which we have successfully used and justified in the previous section will
also work in this case. Later we shall again check the validity of this analytical tool by
solving numerically the corresponding Langevin equation and independently by solving
the time dependent Fokker-Planck equation by the finite element method.

Let us replace the time depended periodic signal ftilt(t), by a constant term with
amplitude A. We then search for the corresponding stationary solution of the Fokker-
Planck equation (4.12) with constant coefficients. We obtain

Pst(y|A) = N−1 exp

(
−G(y|A)

D

)
(4.14)
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where N =
∫
y dy exp

(
−Gs(y|A)

D

)
is the normalization constant. The notation Pst(y|A)

indicate that the probability density is computed for the given value of the amplitude A.
We define the ensemble averaged displacement as

〈y(A)〉 =

∫ +∞

−∞
yPst(y|A)dy (4.15)

Now we recall that during one half of the period the function ftilt(t) takes the value +A
and during the other one half of the period - the value −A. We can then compute two
probability densities Pst(y|+A) and Pst(y|−A), defined by (4.14) for positive and negative
values of the rocking amplitude A. The averaging over the period can then be performed
according to the rule

〈〈y(A)〉〉 =
1

T

∫ T

0
dt

∫ +∞

−∞
yPst(y|A)dy =

1

2
[〈y(+A)〉 + 〈y(−A)〉] (4.16)

The computed average displacement depends not only on A but also on the temperature
D, however we do not explicitly mention this dependence.

To perform the calculation of the integrals in (4.14) in the case of hard device we take
advantage of the piecewise nature of the potential V (y). First, we develop the expression
for the normalization constant N :

Nh.d.(A, z) =

∫ +∞

−∞
exp

(
−Gh.d.(y|A, z)

D

)
dy =

l∫

−∞

. . . dy +

+∞∫

l

. . . dy (4.17)

where l is the barrier point in the bistable potential. We continue

∫ +∞

−∞
exp

(
−Gh.d.(y|A, z)

D

)
dy =

l∫

−∞

exp

(
−

1
2k0y

2 + 1
2km(y − z)2 + ε0 − yA

D

)
dy+

+∞∫

l

exp

(
−

1
2k1(y − 1)2 + 1

2km(y − z)2 − yA

D

)
dy

Similar expression can be obtained for the
∫ +∞
−∞ y exp(−Gh.d.(y|A, z)/D)dy . At the end

we can write an explicit expression for 〈y(A, z)〉h.d.

〈y(A, z)〉h.d. = N−1
h.d.

P h.d.
0

k0 + km

[
−D exp

(
−u20

)
+

A + kmz

2

√
2Dπ

k0 + km
erfc [−u0]

]

+ N−1
h.d.

P h.d.
1

k1 + km

[
D exp

(
−u21

)
+

k1 + A + kmz

2

√
2Dπ

k1 + km
erfc [u1]

]

(4.18)

where 1

Nh.d.(A, z) = P h.d.
0

√
2Dπ

k0 + km

1

2
erfc [−u0] + P h.d.

1

√
2Dπ

k0 + km

1

2
erfc [u1] (4.19)

1we use the special complementary error function noted erfc(x) = 2√
π

∫∞
x

e−t2dt
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and

P h.d.
0 = exp

[
− 1

2D

(
2ε0 + kmz2 − (A + kmz)2

k0 + km

)]

P h.d.
1 = exp

[
− 1

2D

(
k1 + kmz2 − (A + k1 + kmz)2

k1 + km

)]

u0 =

√
k0 + km

2D

(
l − A + kmz

k0 + km

)

u1 =

√
k1 + km

2D

(
l +

A + k1 + kmz

k1 + km

)

(4.20)

We can now express the mean value of the displacement (4.16) by using (4.18):

〈〈y(A, z)〉〉h.d. =
1

2
[〈y(+A, z)〉h.d. + 〈y(−A, z)〉h.d.] (4.21)

The force generated by the system can then be written as

fh.d.(A, z) = km[〈〈y(A, z)〉〉h.d. − z]. (4.22)

Knowing the explicit form of the solution in the hard device configuration we can
now easily find the corresponding expressions in the soft device configuration. To this
end we need to replace in (4.19) and (4.18) the ATP induced force A by the total force
A′ = A + fext and take the limit km → 0. As a result we obtain

Hard device
A≡A′

−−−→
lim

km→0

Soft device (4.23)

After taking the limit we find :

Ns.d.(A, fext) = P s.d
0

√
2Dπ

k0

1

2
erfc [−w0] + P s.d.

1

√
2Dπ

k0

1

2
erfc [w1] (4.24)

and

〈y(A, fext)〉s.d. = N−1
s.d.

P s.d.
0

k0

[
−D exp

(
−w2

0

)
+

A

2

√
2Dπ

k0
erfc [−w0]

]

+ N−1
s.d.

P s.d.
1

k1

[
D exp

(
−w2

1

)
+

k1 + A

2

√
2Dπ

k1
erfc [w1]

] (4.25)

where

P s.d.
0 = exp

[
− 1

2D

(
2ε0 −

(A + fext)
2

k0

)]

P s.d.
1 = exp

[
− 1

2D

(
k1 −

(A + fext + k1)2

k1

)]

w0 =

√
k0
2D

(
l − A + fext

k0

)

w1 =

√
k1
2D

(
l +

A + fext + k1
k1

)

(4.26)
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By using these expressions we can compute the average displacement

〈〈y(A, fext)〉〉s.d. =
1

2
[〈y(+A, fext)〉s.d. + 〈y(−A, fext)〉s.d.] (4.27)

To summarize, in the soft device we fix the value of the external load fext and measure
the average value of the mean displacement 〈〈y(A, fext)〉〉s.d.. Here the force is a know
deterministic parameter while the displacement is a fluctuation variable. In the hard
device, we define the force through the average displacement of the particle (4.22), so
we end up measuring the average value of the force. Therefore in the hard device both
the force and the displacement are fluctuating parameters. Now, the stall force can be
determined by using both protocols and an interesting question is how the stall forces
defined through these two types of measurements are related.

4.3 Computational results

In Fig.4.3 we show the average displacement versus amplitude of rocking in the hard device
configuration with z = 0, and km = 1.

To understand these results we notice that at D = 0 and small rocking amplitude A
the system remains in the first energy well and since it is quadratic, the average displace-
ment (together with the corresponding force) remains zero till the amplitude reaches the
threshold allowing the system to escape to the second energy well. At this threshold (in
A) the displacement jumps since the system now reaches the bottom of the second well.
Subsequent increase in the amplitude leads to oscillations in an asymmetric potential and
the average displacement gradually increases with A. In physical terms one can say that
in this ’large displacement regime’ the system produces force because it periodically pre-
forms the power stroke which is then continuously recharged due to the energy influx from
the rocking device. Since thermal diffusion is absent, the system behaves as a mechanical
ratchet. Interestingly this system can be used as a very sensitive indicator detecting the
strength of the correlated component of the noise. When temperature is different from

Figure 4.3. The average displacement versus amplitude A of rocking ftilt(t) in the hard
device with z = 0. Solid lines represent predictions of the adiabatic theory and the results
of direct numerical simulation of the Langevin equation plotted by scatters. The values of
parameters: k0 = 1.5, k1 = 0.43, l = 0.22.

zero D > 0, the system is in both wells even when the rocking amplitude is vanishingly
small because of thermally induced barrier crossing. That is why we see small thermal
expansion even at small values of A. At large temperature thermal diffusion completely
dominates rocking and thermal expansion is the only thing we see. At the intermediate
levels of thermal noise one can expect a stochastic resonance phenomenon when in some
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interval of rocking amplitudes the generated force (displacement) reaches its maximum at
finite temperature.

The analytical formulas presented in the previous section are obtained in the adiabatic
approximation under the assumptions that the period of rocking is large comparing to the
characteristic time of the thermal crossing of the barrier. The latter depend on D and the
adiabatic approximation clearly breaks as D → 0. Therefore the computations based on
the adiabatic assumption may misrepresent the fine detailed of the stochastic resonance.
In particular, the limit D → 0 in adiabatic approximation, is different from the actual me-
chanical response at zero temperature. Therefore in addition to analytical computations
based on the adiabatic approximation, we also performed here direct numerical simula-
tion of the Langevin equation plotted in Fig. 4.3 by scatters, while solid lines represent
predications of the adiabatic theory. One can see that at large D the results are perfectly
consistent however at small D the agreement is only qualitative. For instance, we see a
small disagreement at D = 0.01 in the intermediate range of amplitudes A. In Fig.4.4 we

Figure 4.4. The adiabatic dependence of average displacement 〈〈y〉〉, denoted y, versus
amplitude A in hard device and soft devices with increasing temperature D. With black
dashed lines we plot the limit D → 0 in the adiabatic approximation and with solid thick
black lines we plot the dependence for highest temperature D. The values of parameters:
k0 = 1.5, k1 = 0.43, l = 0.22.

compare the adiabatic dependence of the average displacement 〈〈y〉〉 on rocking amplitude
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A in hard device and soft devices. If the applied force fext and the prestress z are ap-
propriately adjusted the overall behavior of the two systems is rather similar. We observe
two major regimes. One regime, which we have already seen in Fig. 4.3 corresponds to the
negative values of both fext and z when the system starts in the pre power stroke state and
the force/displacement increases when rocking allows the system to cross the barrier. An-
other regime corresponds to positive fext and z when the system starts in the post power
stroke and the periodic rocking leads to the (initial) drop in the force/displacement as the
system starts to escape into the pre power stroke state. As the amplitude A increases, the
system oscillates between the wells and the asymmetry of the potential leads to eventual
gradual increase of the average displacement/force and the response becomes linear in A.

The temperature dependence of the passive force generated in hard and soft devices
can be studied already at A = 0. In Fig.4.5a). and Fig.4.5b). we show that the thermal
expansion in this system can be both positive and negative. Negative thermal expansion
takes place when the system is originally in the post power stroke state and diffusion facil-
ities crossing of the barrier and recharging the system into the pre power stroke state. As
temperature increases further the double well structure of the potential becomes progres-
sively less important and the thermal expansion first becomes linear and then eventually
saturates. In Fig.4.6 we subtract the passive thermal expansion at A = 0 from the av-

Figure 4.5. a) The variation of thermal expansion 〈y(A = 0, D)〉h.d. with the temperature
D in hard device for the positive and negative z. b) The variation of thermal expansion
〈y(A = 0, D)〉h.d. with the temperature D in soft device for the positive and negative external
load fext.

erage displacement to study the temperature dependence of the active component of the
displacement 〈〈y(A, z)〉〉h.d.−〈y(A = 0, z)〉h.d. in the hard device setting. One can see that
the active contribution to the displacement is strongly temperature dependent exhibiting
an extremum at a particular value of D which can be interpreted as the effect of stochastic
resonance (in a distorted adiabatic approximation). In particular the active component
is minimized if z > 0 and the system is originally in the post power stroke state and is
maximized if z < 0 and the system was originally in the pre power stroke state.

We now turn to more systematic comparison of the magnitude of the active forces
generated in soft and hard devices and in Fig.4.7, we show the resulting force - average
displacement curves.

We recall what the force generated in the hard device is defined as follows:

fh.d.(z,A) = km [〈〈y(z,A)〉〉h.d. − z] (4.28)

If the whole system is viewed as a linear spring with the total displacement z, the active
force plays a role of a prestress equal to the average value of the displacement y.
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Figure 4.6. The adiabatic variation of the active component 〈〈y(A, z)〉〉h.d.−〈y(A = 0, z)〉h.d.
in hard device with the temperature D for the different values of z. The values of parameters:
k0 = 1.5, k1 = 0.43, l = 0.22.

Instead we can study the dependence of the force fh.d. on 〈〈y〉〉h.d. by choosing different
values of the prestress z. The resulting parametric relation F [〈〈y〉〉h.d., fh.d.] becomes
nonlinear and even non-monotone so that several values of 〈〈y〉〉h.d. may correspond to the
same value of fh.d.. In this case we obtain a family of values for the stall force parameterized
by z implicitly representing location of the attachment site. In reality the range of available
values of the stall force is rather small because the attachment mechanism has a limited
strength. However, this effect will be studied in the next chapters and for now we consider
the attachment as infinitely strong.

What is important here is that the model suggests that we have a finite interval of
’stall forces’. Only one value is selected by the process that involves also attachment
detachment. The rest of the ’stall forces curve’ is revealed in experiments on fast force
recovery originated by Huxley and Simmons who called it the T2 curve.

We observe that in the force displacement relation obtained in the hard device at low
temperatures the left linear branch corresponds to strongly negative values of the variable
z and the right branch to the strongly positive value of z. In both cases the system is
practically confined to one of the energy wells. For the intermediate values of z the system
is close to the spinodal state and one can see that this passively unstable state can be
partially stabilized by active rocking. Interestingly, this stabilized region contains the
location of the physiological stall force know also as the isometric contraction force T0

In the soft device, the generated force again depends on the active prestress which is
here represented by 〈〈y〉〉s.d.. Characteristically in this case the F [〈〈y〉〉s.d., fext] relations
are strictly one-to-one for D > 0 which agrees with experiments on half force recovery
capturing only part of the T2 curve.

To make connection between the responses in hard and soft device we can consider the
limit km → 0 in the hard device configuration, see Fig.4.8. One can see that progressive
lowering the spring stiffness km, we can continuously go from the hard device setting to
the soft setting. Our next goal is to isolate the pure active component of the force. We
define the “the active force” as a difference between the total generated force due to active
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Figure 4.7. The comparison of force-displacement dependence in hard and soft device config-
urations in the adiabatic limit. a) The variation of the force-displacement with the increas-
ing temperature D, without the active tilting mechanism, A = 0. b) The variation of the
force-displacement in the presence of the active tilting mechanism at the fixed temperature
D = 0.02. Note the second local minima which is formed in the presence of rocking. c)
The variation of the force-displacement curve with the increasing amplitude A at the fixed
temperature D = 0.04. The parameters: k0 = 1.5, k1 = 0.43, l = 0.22.

rocking ftilt(t) and the passive force due to thermal expansion without rocking. To this
end we need to subtract from the total force the value of the passive at a given average
displacement. In the soft device we define:

F [〈〈y(A, fext)〉〉s.d., fext] −F [〈y(A = 0, fext)〉s.d., fext] . (4.29)

Similarly, in the hard device:

F [〈〈y(A, z)〉〉h.d., fh.d.(A, z)] −F [〈y(A = 0,D, z)〉h.d., fh.d.(A = 0, z)] (4.30)

where F [•, f(•)] is the parametric response curve in the coordinate plane f(•) versus •.
In Fig.4.9 and Fig.4.10 we illustrated our results.

First in Fig.4.9 we show the active component of the force at different values of the
amplitude A and fixed temperature. Notice the similarity between the responses in two
devices showing that active force is practically the same in both cases.
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Figure 4.8. The graphic illustration of the limit km → 0. a) The variation of the curve
force-displacement in the hard device with the progressive lowering the spring stiffness km.
b) We recall the typical curves force-displacement in hard and soft device configurations.

Figure 4.9. The plot of the isolated pure active component of the force in hard and soft device
obtained at the fixed temperature D = 0.01 for the increasing amplitude A of rocking. On
the top sketches we recall the force-displacement curves, the solid black lines corresponded to
the system with the rocking and the dashed black line corresponded to the system without
the rocking. The computation done in the adiabatic limit with the parameters: k0 =
1.5, k1 = 0.43, l = 0.22.

In Fig.4.10 we show the dependence of the active force on the temperature D at the
fixed value of the rocking amplitude A. Once again we notice that the behavior of the
active component is qualitatively similar in soft and hard devices. The common feature
of both figures is that the active component of force is positive when the system is in
the pre power stroke state and is directed towards the power stroke while it is negative
when the system is in the post power stroke state and is directed towards the recharging
of the power stroke mechanism. This response indicates ultimate stability of the state of
isometric contractions.
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Figure 4.10. The plot of the isolated pure active component of the force in hard and soft
device at the fixed amplitude A = 0.1 for two different temperatures. On the top sketches we
recall the force-displacement curves, the solid black lines corresponded to the system with
the rocking and the dashed black line corresponded to the system without the rocking. The
computation done in the adiabatic limit with the parameters: k0 = 1.5, k1 = 0.43, l = 0.22.

4.4 Tension-length curve

In this section we make another interesting observation regarding the obtained curves.
Suppose that we are in the hard device setting and we fix the prestress at z = 0. Then
the generated force is simply fh.d. = km〈〈y〉〉h.d.. This gives us a parametric function
F [〈〈y〉〉h.d., fh.d.] obtained after the elimination of km. This function is different from
the parametric function F [〈〈y〉〉h.d., fh.d.] studied above, see Fig.4.9 and Fig.4.10, where
the eliminated/varied parameter was z and km was fixed. Now, on the contrary, z is fixed
while km is varied. We interpret the ensuing relation as a tension-length curve for a muscle
where the number of attached cross bridges changes due, for instance, to varying overlap
between actin and myosin filaments. The corresponding prestress, however, remains the
same. In this section we explore the resulting curves while always using the simplest
adiabatic theory.

In Fig.4.11a) we show the implied parametric plot in the interval [0, km = kmax]. The
maximum elongation is obtained for km = 0 and we also obtain y → 0 as km → ∞
(pure soft and hard devices). We show the parametric curves for increasing value of the
amplitude A while the temperature is fixed at D = 0.01. For hight amplitude A the
temperature does not plays a big role and we can interpret our system as mechanical.
Instead, for low amplitudes where we must interpret our system as a thermal engine, we
observe an apparent plateau, see A = 0.045 in Fig.4.11b). Along the curve A = 0.045
the stiffness of the linear spring varies in the interval km ∈ [0, 1]. Moreover we observe
that when km ∼ 0 the system explores only the well 1 of the bi-stable potential (post
power stroke state), why the average displacement is close to y = 1. As km is increasing
the shape of the bistable potential changes progressively biasing more the well 0 of the
bi-stable potential (pre power stroke state), As a result the system explore only the are
around the bottom of the well 0 of the bistable potential,and the average displacement is
close to 0. At larger values of the rocking amplitude A and low km (close to zero), the the
system visits both local minima of the bistable potential. With increasing km the system
gets locked in the well 0 and the average displacement becomes close to zero.
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In Fig.1.13 we illustrate the implied analogy between the variation of the isometric
force with the imposed sarcomere length ( see the first chapter) and the behavior of our
simple system in the hard device with varying stiffness of the linear spring.

Figure 4.11. The implied parametric plot force-displacement in the interval [0, km = kmax],
the maximum elongation is obtained for km = 0 and we also obtain y → 0 as km → ∞
(pure soft and hard devices). a) We show the parametric curves for increasing value of
the amplitude A while the temperature is fixed at D = 0.01. With the black dot-dashed
line we plot the graph corresponded to lowest value of A and with the solid thick black
line–the graph for highest amplitude A. b) The implied parametric plot force-displacement
in the interval km ∈ [0, 1] for the regime of low amplitude. Note, we observe an apparent
plateau at A = 0.045. The computation done in the adiabatic limit with the parameters:
k0 = 1.5, k1 = 0.43, l = 0.22.

Figure 4.12. The illustration of the analogy between the variation of the isometric force
with the imposed sarcomere length and the behavior of our simple system in the hard
device with varying stiffness of the linear spring. a) We recall the form of developed tension
versus length for single fiber [28]. b) The isometric force is directly linked to the degree of
filaments overlap between thin and thick filament in each sarcomere. We link the variation
of km with variation of the number Nxb of cross-bridge involved in tension generation, the
stiffness km increases with the number of cross-bridges involved in the process.

Each point on the experimental curve tension versus elongation in Fig.4.12a), corre-
sponds to a different state of tetanic stimulation with varying initial sarcomere length.
As shown by the scheme, the isometric force is directly linked to the degree of filaments
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overlap between thin and thick filament in each sarcomere. The physiological regime of
the muscle is characterized by a plateau. The isometric tension starts to eventually de-
crease with sarcomere length even though filaments are in full overlap. Let us interpret the
overlap as a number of cross-bridges interacting with actin. In isometric contraction we
shall neglect the role of attachment/detachment and attribute the active role only to the
power stroke mechanism and link the level of the force with the number of cross-bridges
involved in process, see Fig.4.12.b). In the hard device we may view the bistable potential
V (y) as a primitive model of the “collective power stroke” involving certain number Nxb

of cross-bridges. It is known that the motors consume ATP during isometric contraction,
which we model by the rocking action of ftilt(t). The rocking effectively changes the shape
of the bi-stable potential modeling. We link the variation of km with variation of the
number Nxb of cross-bridge involved in tension generation. More specifically, the stiffness
km increases with the number of cross-bridges involved in the process, however, it is not
important for our discussion, how exactly Nxb is related to km. In our lump model the
stiffness km describes the ensemble of Nxb cross-bridges with identical stiffnesses kxb.

The presented prototypical model can be viewed as a primitive mechanical attempt
to understand the tension-length curve in a sarcomere. The emergence of a characteristic
plateau, observed, for instance, in the regime with A = 0.045, is the consequence of
an asymmetric nature of the rocked bi-stable element. Usually, the plateau regime on
experimental tension-length curve is linked to the fact that the number of the interacting
cross-bridge remains the same. Here we argue that the plateau can also be obtained under
the assumption that the number of interacting cross bridges varies to ensure that the total
length of a sarcomere remains the same. This assumption may have its origin in the steric
effects.

4.5 Conclusions

In this chapter we studied a simple toy-model of a single bi-stable element rocked by a time
dependent periodic force at a finite temperature. The bistable potential is interpreted as
describing a power-stroke in a cross-bridge. In this sense we proposed a simple mechanical
interpretation of the power stroke based mechanism of active force generation in muscles
due to ATP hydrolysis. We investigated two typical experimental protocols: hard and
soft device, and presented some interesting manifestations of stochastic dynamics in both
system. We have shown that active force generated in both devices at small amplitude
of activation gets amplified by the thermal noise with the maximum effect at a particular
temperature. The system can actively either increase or decrease the force and shows the
effect of the dynamic stabilization of at least some spinodal states. The obtained T2 curves
agree with experiment in both soft and hard device and show that active contribution is
practically the same under both protocols. Based on the hard device configuration and
applying the idea of variable stiffness we were able to present a simple mechanical inter-
pretation of the plateau type variation of the isometric force with the imposed sarcomere
length.

In the next chapters we remove the constraint that the cross bridge is always attached
and consider much more complex stochastic dynamics involving at least two variables: one
leaving in a bi-stable potential and another one living in a periodic potential.





Chapter 5

Power stroke driven ratchets

In this chapter we combine the periodic and bi-stable potentials and propose a set of
integrative models which can describe both: the fast force recovery due to power

stroke (associated with the bi-stable potential) and the force velocity relations involving
attachment/detachment ( associated with the periodic potential). Our goal is to reinterpret
the conventional bio-chemical cycle of muscle contraction in terms of a simple mechanical
model of the myosin/actin interaction where we can identify relative mechanical roles of
the power stroke and of the attachment/detachment process. The novelty of our approach
is in shifting the activity function from the periodic potential as in the conventional models
of Brownian ratchets to the bi-stable potential. In this way we explore a possibility that
the power stroke machinery is not only crucial for passive fast force recovery but is also
essential for the active functioning of the main motor behind muscle contraction. In a
slightly different terms, we propose a new model of a Brownian ratchet with internal
degree of freedom which is driven by an internal rather than external flashing.

5.1 Introduction

We begin by recalling the bio-chemical scheme of muscle contraction based on the hydrol-
ysis of the ATP. We adopt the four-step Lymn-Taylor model for the myosin enzymatic
cycle [70]. In very general terms, this cycle implies two coordinates. Along one of them
there are two states, associated with two positions of the lever-arm corresponding to two
conformational states of the myosin head. Along the other one there are also two states
describing attached and detached configurations of the acto-myosin system. In 2D the
ensuing 2x2 = 4 configurations as usually represented as 4 vertices of a square. The
biochemical description of these four vertices goes as follows.

Upon binding of an ATP molecule, myosin detaches from actin in a very fast process
(detached, post power stroke). In the detached state myosin hydrolyzes ATP into stable
products: ADP and phosphate Pi and this reaction pushes the swing the level arm while
charging the power stroke mechanism (detached pre power stroke). Without the ATP the
myosin head reattaches to a neighbouring actin site (attached pre power stroke). In the
attached state the conformational change takes place which moves the actin filament by
6 − 10nm (attached, post power stroke). During the power stroke first the release of Pi
molecule takes place and at the end of the power stroke, ADP is also released. The new
ATP molecule can now bind to the myosin, and the cycle starts again. One can see that
on one side ATP facilitates detachment and on the other side its hydrolysis recharges the
power stroke element. The challenge is to translate this description into the language of a
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specific mechanical action of an external energy reservoir on a mechanical system with few
degrees of freedom. Below we list some physical effect that our prototypical model must
capture:

• The motor moves in a fluid medium and is subjected to random thermal fluctuations.
It can also receive indirected energy from an external reservoir.

• The received energy is converted/transduced into mechanical work with certain effi-
ciency.

• The unidirectional motion along the actin filament is due to the conformational
changes in the myosin head.

• The mechanical cycle of force generation includes four clearly distinguished stages
that can be associated with four steps of the biochemical cycle.

While the first two items in this list are standard, the last two items are new. Indeed,
usually the power stroke plays only a passive role in the models of non-processive motors
and the Lymn-Taylor cycle is usually lumped into two or at most three steps. Below we
discuss several specific mechanical set ups which can be potentially used as the mechanical
analogs of the Lymn-Taylor cycle. None of them can be dismissed without a detailed
quantitative study.

5.2 General formalism

The chemo-mechanical Lymn-Taylor cycle offers a highly organized vision of acto-myosin
interaction, and we need to map this “order” into space and time, using the language of
mechanics. Denote by A the attached state in the pre-power stroke configuration, by B
the attached state in the post-power-stroke configuration, by C the detached state in the
post-power stroke configuration and finally by D the detached state in the pre-power-stroke
configuration, see Fig. 5.1a. The progressing motor passes through different replicas of
the main four configurations as shown in Fig.5.1b. In Fig.5.1c we sketch a prototypical
energy landscape in the configurational space X where the replicas of the original four
states are represented by equivalent wells of the potential G(X, t). One can see that the
mechanical system must be at least two dimensional to reproduce the energy landscape
with this complexity. In real space the model can still be one dimensional with two internal
variables if different wells can be projected on a single spatial dimension. For instance,
we can interpret the attached configurations as the energy minimum states for one of the
internal variables along a space-periodic potential and the detached configurations as the
maxima/plateaus as it is illustrated in Fig.5.1d. The second variable, coupled to the first
one, may live in a double well potential which can also be projected into the same spatial
coordinate.

Inspired by the work of Magnasco [72] we represent the chemical activity of the highly
non equilibrium ATP hydrolysis by the action of a mechanical force with zero average. If
this mechanical action is not correlated, the underlying chemical reaction is in equilibrium.
Therefore we must present the mechanical action of the ATP hydrolysis as a correlated
noise. By grossly exaggerating the strength of the correlations, we shall be using a simple
periodic signal as the source of external energy. The internal mechanical device must work
as a ratchet. Being exposed to a correlated noise such ratchet should be able to consume
the indirected energy and transform it into the work or motion.
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Figure 5.1. a) The simple graphic representation of four-state Lymn-Taylor cycle. b) The
progressing motor passes through different replicas of the four configurations. c) The pro-
totypical energy landscape in the configurational space X where the replicas of the original
four states are represented by equivalent wells of the potential G(X, t). d) We interpret the
attached configurations as the energy minimum states for one of the internal variables along
a space-periodic potential and the detached configurations as the maxima/plateaus.

More specifically, our mechanical model will be dealing with three stochastic variables
x, y, z see the Fig.5.2. The motor head position is represented by x and the connection point
of a cross-bridge with a myosin filament is represented by z. The precise interpretation of
y is more delicate, because this variable describes the configuration of the lever-arm inside
the cross-bridge.

Figure 5.2. a) One myosin II protein projected from the myosin in the detached config-
uration, not drown to scale. b) The mechanical model of one cross-bridge. The motor
head position is represented by x variable and the connection point of a cross-bridge with a
myosin filament is represented by z variable. The y variable describes the configuration of
the lever-arm inside the cross-bridge.

We assume that the connection between the motor head and the motor tail attached
to the myosin filament can be modeled as a bi-stable spring. Inside the tail we introduce a
linear spring imitating the cross bridge stiffness. The interaction between the myosin head
and the actin filament is represented by a space periodic potential. This potential provides
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a very simplified description of the different bound configurations available in acto-myosin
system.

The energy provided by the ATP hydrolysis affects on one side the actin/myosin bound
states and on the other side - the conformational state of the lever-arm. This means that
the corresponding correlated force signal can affect coordinate either x or coordinate y or
even both. The coordinate z is assumed to be far away from the ATP source and will be
used to specify the external loading (soft or hard device).

To model the ensuing system we write the corresponding system of overdamped Langevin
equations:

η
dX

dt
= −∇G(X, t) + σξ(t) (5.1)

with

η =



ηx 0 0
0 ηy 0
0 0 ηz


 , X =



x(t)
y(t)
z(t)


 , ξ(t) =



ξx(t)
ξy(t)
ξz(t)


 (5.2)

Here σ is constant diagonal matrix:

σ =



√

2ηxD 0 0

0
√

2ηyD 0
0 0

√
2ηzD


 (5.3)

while ξ(t) is the vector Gaussian random variable with zero mean 〈ξi(t)〉 = 0, and with
correlations given by

〈ξi(t)ξj(s)〉 = δijδ(t− s), t > s, i, j = x, y, z. (5.4)

The function G(X, t) introduces the complex energy landscape of the motor device
coupling the space periodic potential, the bi-stable potential and the quadratic potential
describing the linear spring

G(X, t) = G(x, y, z, t) = Φ(x) +V (y−x)−xfx
tilt(t)− yf y

tilt(t) +
1

2
km(y− z)2− zfext (5.5)

Here, the bi-stable potential V (y − x) describes two conformational states of the power
stroke mechanism. We used y− x as the argument (instead of x− y), because it describes
the experimental situation better, see Fig.5.2b and c. The power stroke variable y − x
can be in two energy wells: “0” and “1”. We identify well “0” with the pre-power-stroke
state and well “1” with the the post-power-stroke state. The potential Φ(x) describes the
(typically) asymmetric ratchet-like potential: it is periodic function with period L so that
Φ(x+L) = Φ(x). We define the force term f i

tilt(t) imitating the ATP activity as a periodic
function with zero average over the period Ti; in general the function f i

tilt(t) does not have
to be the same for i = x and i = y as the corresponding time periods Ti may be different.
Finally the terms ηiẋi describe frictional forces and the drag coefficients are assumed to be
constants. The external cargo is represented by the force fext acting on the z coordinate.

In fact, as in the previous chapter, we can build two archetypal experimental device
–hard and soft. On the Fig.5.3 we illustrate two representations of the system depending
on whether we use y − x or x − y as a power stroke variable. In our computations we
usually use y−x, however to simplify the figures we will often use the configuration shown
in Fig.5.3a).

Notice that in the Fig.5.3 we present a model of a single cross-bridge described by three
internal variables. However, the third coordinate z is important only when we consider
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Figure 5.3. An illustration of two representations of the system in soft device configuration
depending on whether we use x− y a) or y − x b) as a power stroke variable.

Figure 5.4. The sketch of hard and soft device corresponded to the model of one single
cross-bridge.

interaction of several cross-bridges. For the description of a single cross bridge we will often
us two parametric model with coordinates x, y as it is shown in Fig.5.4a). This model is
sufficient in the case of soft device. The the case of hard device the model requires three
variables, however the variable z must be treated as fixed external parameter. In this
case the system can be again described by a system of two coupled overdamped Langevin
equations.

5.2.1 Energy landscape

Our equations (5.1) and (5.5) contain the bistable potential V (y − x) and the periodic
potential Φ(x). The sum of the potentials V (y − x) and Φ(x) defines the intrinsic energy
landscape of the motor.

To be specific, we define the double-well potential as a minimum of two parabolas with
stiffness k0 and k1. The bottoms of the energy wells are located in the points 0 and a;the
degenerate barrier is located at l:

V (y − x) =





1
2k0 (y − x)2 + ε0 (y − x) 6 l

1
2k1 (y − x− a)2 (y − x) > l

(5.6)

As k0 6= k1 and l 6= a/2 the bistable potential is asymmetric with ε0 = 1/2
(
k1(l − a)2 − k0l

2
)
.

We associate with the well “0” stiffness k0 and with the well “1” – stiffness k1. To model
asymmetric periodic potential Φ(x) we can use a combination of two trigonometric func-
tions, say

Φ(x) =
Vmax

2π

(
b0 sin(

2π(x− x0)

L
) + b1 sin(

4π(x− x0)

L
)

)
(5.7)

where b0 and b1 control the asymmetry of the potential and L is the period. The parameter
x0 prescribes the origin of the coordinate system and does not influence any of the results.

The tilting force, ftilt(t), imitating the ATP activity can also be defined as a trigono-
metric function with amplitude A and period T . By construction, the average force over
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the period must be equal to zero,
∫ T
0 dtftilt(t) = 0. For instance, we can consider:

ftilt(t) = A cos(
2πt

T
) (5.8)

Figure 5.5. The stationary probability distribution associated with energy G0(x, y) = Φ(x)+
V (y− x). Each maximum is a particular ’bound’ state that our system may occupy. a) We
present the system in orthogonal coordinates [y, x]. b) We present the system in coordinates
[y − x, x].

Consider now the intrinsic energy landscape

G0(x, y) = Φ(x) + V (y − x) (5.9)

in more detail. We recall that the energy minima in this landscape can be associated
with particular (chemical) states of the motor. In addition to the direct plot the energy
landscape we can also consider the stationary probability distribution:

Pst(x, y) = Z−1 exp

(
−G0(x, y)

D

)
(5.10)

where Z is normalization constant. It is clear that the minima of the energy landscape are
associated with the maxima of the probability distribution at fixed temperature, measured
by D = kBT .

In Fig.5.5 we show the stationary probability distribution associated with energy,(5.9).
It has a periodic structure along x axes due to the periodicity of the ratchet potential
defined in (5.7). The asymmetric probability maxima along y axes reflect the well of the
bi-stable potential (5.6). Each maximum is a particular ’bound’ state that our system may
occupy. In the figure we labeled the well “0” as A and the well “1” as B. The replica wells
are label as [A′, A′′, . . . ].

In Fig.5.5a) we present the system in orthogonal coordinates [y, x] while in Fig.5.5b)
we show the same system in coordinates [y− x, x]. The latter coordinates can be used for
the identification of the mechanical states with the bio-chemical states of the Lymn-Taylor
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cycle. In what follows all computations will be performed in orthogonal coordinates x, y
while all the plots will be presented in coordinates [y − x, x]. In Fig.5.5 we presented
the typical view of untitled landscape Φ(x) + V (y − x), this is also the landscape in the
soft device with zero load fext. The introduction of additional linear spring 1/2km(y −
z)2 in the hard device modifies the probability distribution because it changes the shape
of the effective bi-stable potential. Note that hard device configuration usually biases
considerably the landscape privileging the pre-power stroke configuration.

We can now discuss mechanical equivalents of the Lymn-Taylor states. Consider, for
instance, a cross-bridge in the soft device shown in 5.5. Under the action of the noise which
has thermal and correlated components the motor moves cyclically through different states
performing mechanic work. The question that we can ask is what will be the averaged
behavior and whether we can interpret particular dynamic configurations in the motor cycle
with the four states of the biochemical Lymn-Taylor cycle. In our two-dimensional energy
landscape we can identify the pre-power-stroke and the post-power-stroke configurations
with the two wells of the bistable potential. The minima of the periodic potential can
be viewed as the attached states. Regarding the detached states we shall consider three
possible interpretations:

• We can interpret the detached states as the maxima of our periodic potential Φ(x).
In this way we capture the fact that in the detached state the interaction force
between actin and myosin is equal to zero but essentially neglect the time spent by
the motor in the detached state. Doing so we misrepresent the duty ratio–the fraction
of time spent in the attached state. This makes it difficult to differentiate between
the processive and non-processive motors. However, in this way we obtain a unifying
description and develop a general framework allowing one to describe both kinesin,
an example of processive protein motor, and myosin II, the typical non-processive
motor.

• We can interpret the detached states as the special minima of the periodic potential
Φ(x). To this end we would need to change the definition of Φ(x) given in (5.7)
and introduce additional wells or plateau around each maximum while preserving
the periodicity Φ(x + L) = Φ(x) and the asymmetry. In this setting, the motor still
moves along the x coordinate only but can spend longer time in the special ’detached’
energy wells that may be very flat.

• Finally, we can take into account the steric effects and assume that in the detached
state the acto myosin interaction is weakened independently on the position of the
motor inside the periodic potential. This idea, taken from the theory of flashing
ratchets, will be pursued in the very last section of the Thesis and for now we focus
on the first two options.

In Fig.5.6 we illustrate two alternative representations of the cycle shown in Fig.5.1b)
based on the first representation of the detached state. The both shown cases the system
goes through four mechanical configurations which can be associated with the bio-chemical
states described by the Lymn-Taylor cycle. The question now is whether our mechanical
model can indeed exhibit such highly organized behavior.

5.3 The basic designs

The system (5.1) with potential (5.5) is very general and now we specify several archetypal
problem set ups which we later study in full detail. Our main idea is that the external
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Figure 5.6. An illustration of two alternative representations of the Lymn-Taylor cycle. a)
The detached states is the maxima of our periodic potential Φ(x). With the arrows we show
the possible motor cycles, we can interpret the transition A → B as a motor power-stroke.
b) The detached states is the special minima of the periodic potential Φ′(x). With the
arrows we show the possible motor cycles.

stimulation representing mechanical manifestation of the ATP hydrolysis is associated
mainly with the power-stroke rather than with actin filament. the power stroke in our
model is described by coordinate y − x and therefore we can model external correlated
signal by forces acting on coordinate x, coordinate y or even their difference x − y. We
define these three sub-family of motor devices below and formulate in each case a closed
two parametric stochastic description.

5.3.1 X-tilted model

Consider a system characterized in a soft device configuration by the potential G(X, t) :

G(x, y, t) = Φ(x) + V (y − x) − xftilt(t) − yfext (5.11)

The corresponding stochastic system with two degrees of freedom is described by the
following overdamped Langevin equations:





ηx
dx

dt
= − ∂xΦ(x) − ∂xV (y − x) + ftilt(t) +

√
2ηxD ξx(t)

ηy
dy

dt
= − ∂yV (y − x) + fext +

√
2ηyD ξy(t).

(5.12)

In X-tilted model, which was first introduced in [75], the correlated noise acts only on
x variable which can be interpreted as tilting of the periodic potential. To illustrate the
role of the correlated noise ftilt(t) on this model we can replace the time dependent force
ftilt(t) by a constant, which can be either positive +A and negative −A. We obtain time
independent potentials of the form

G(x, y,A) =

{
Φ(x) + V (y − x) − xA− yfext for ftilt(t) > 0

Φ(x) + V (y − x) + xA− yfext for ftilt(t) < 0
(5.13)
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With each of these potentials we can associate the stationary probability distribution
Pst(x, y − x,A) which can be written as:

Pst(x, y − x,A) =





Z−1
+ exp

(
−Φ(x) + V (y − x) − xA− yfext

D

)
for ftilt(t) > 0

Z−1
− exp

(
−Φ(x) + V (y − x) + xA− yfext

D

)
for ftilt(t) < 0

(5.14)
where Z+ and Z− are the corresponding normalization factors. In Fig.5.7a),b) we show
the probability distributions and the corresponding surface contour plot for the case when
fext = 0. As the tilting force ftilt(t) changes periodically from positive to negative value

Figure 5.7. X-tilted model in soft and hard device configuration. a) The stationary proba-
bility distribution and the corresponded surface contour plot in the positive phase of rocking
in soft device configuration with fext = 0. b) The stationary probability distribution and
the corresponded surface contour plot in the negative phase of rocking in soft device con-
figuration with fext = 0. c) The stationary probability distribution and the corresponded
surface contour plot in the positive phase of rocking in hard device configuration with z = 0.
d) The stationary probability distribution and the corresponded surface contour plot in the
negative phase of rocking in hard device configuration with z = 0. We decided change
the landscape parameters in hard device configuration in order to obtain the representative
illustration.

the rocking biases different energy wells in the periodic potential associated with the x
axes: when ftilt(t) > 0 the probability density has maxima at A′, B′ and when ftilt(t) < 0
the probability density has maxima at A,B.

To describe the hard device setting we use the potential G(X, t):

G(x, y, t) = Φ(x) + V (y − x) +
1

2
km(y − z)2 − xftilt(t) (5.15)

where z is now a parameter. The corresponding system of the overdamped Langevin
equations reads





ηx
dx

dt
= − ∂xΦ(x) − ∂xV (y − x) + ftilt(t) +

√
2ηxD ξx(t)

ηy
dy

dt
= − ∂yV (y − x) − km(y − z) +

√
2ηyD ξy(t)

(5.16)
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We can again define the stationary probability distribution in the adiabatic approximation
by considering two types of forces ftilt(t): positive and negative.

Pst(x, y − x,A ‖ z) =





Z−1
+ exp

(
−Gh.d.(x, y, z,A > 0)

D

)
for ftilt(t) > 0

Z−1
− exp

(
−Gh.d.(x, y, z,A < 0)

D

)
for ftilt(t) < 0

(5.17)

where Z+ and Z− are the corresponding normalization factors. For determinacy we take
z = 0 in (5.17) and obtain

Gh.d(x, y − x, z,A) =





Φ(x) + V (y − x) +
1

2
km(y − z)2 − xA for ftilt(t) > 0

Φ(x) + V (y − x) +
1

2
km(y − z)2 + xA for ftilt(t) < 0

(5.18)

In Fig.5.7c),d) we show the probability distributions defined by (5.17) and the correspond-
ing surface contour plot for the case when z = 0. Note what we changed the numeric values
of geometric parameter of energy landscape in order better to illustrate the characteristic
motor behavior of hard device configuration.

Notice that in soft device the tilting does not differentiate clearly between the pre and
post power stroke configurations while in the hard device the post power stroke configu-
rations is obviously biased.

In summary, the model with X-tilting attributes active role to the actin fiber described
by the periodic potential. Active interaction of the myosin head with this filament produces
a (Brownian) ratchet which is the main driving force behind the motor activity. The motor
is then expected to periodically recharge the power stroke element creating the cycling
process and ensuring the constant force generation. The power stroke is passive in this
scheme and in the next section we show that gives rise to the cycle reproducing only few
of the expected biochemical states.

5.3.2 Y-tilted model

In this setting we assume that the system characterized by the potential

G(x, y, t) = Φ(x) + V (y − x) − yftilt(t) − yfext (5.19)

where the rocking action is now applied only to y variable. The corresponding system of
the overdamped Langevin equations take the form





ηx
dx

dt
= − ∂xΦ(x) − ∂xV (y − x) +

√
2ηxD ξx(t)

ηy
dy

dt
= − ∂yV (y − x) + fext + ftilt(t) +

√
2ηyD ξy(t)

(5.20)

Once again, to illustrate the role of the correlated noise ftilt(t) on the motor dynamics
we consider an adiabatic setting and replace the variable force ftilt(t) by the constant force,
which can be positive +A and negative −A. We will then write

G(x, y,A) =

{
Φ(x) + V (y − x) − yA− yfext for ftilt(t) > 0

Φ(x) + V (y − x) + yA− yfext for ftilt(t) < 0
(5.21)
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Define again the stationary probability distribution Pst(x, y − x,A)

Pst(x, y − x,A) =





Z−1
+ exp

(
Φ(x) + V (y − x) − yA− yfext

D

)
for ftilt(t) > 0

Z−1
− exp

(
Φ(x) + V (y − x) + yA− yfext

D

)
for ftilt(t) < 0

(5.22)

where Z+ and Z− are the corresponding normalization factors. To make the action of the
driving force more transparent we take fext = 0 and show in Fig.5.8 the energy landscape
and the and the corresponding probability distribution function in the soft device. One can

Figure 5.8. Y-tilted model in soft and hard device configuration. a) The stationary proba-
bility distribution and the corresponded surface contour plot in the positive phase of rocking
in soft device configuration with fext = 0. b) The stationary probability distribution and
the corresponded surface contour plot in the negative phase of rocking in soft device con-
figuration with fext = 0. c) The stationary probability distribution and the corresponded
surface contour plot in the positive phase of rocking in hard device configuration with z = 0.
d) The stationary probability distribution and the corresponded surface contour plot in the
negative phase of rocking in hard device configuration with z = 0.

see that now the action of the tilting produces more complex biasing action. In particular,
in two subsequent attached states two different states of the power stroke mechanism may
be biased. Thus, at ftilt(t) > 0 the highest peak of the probability density is in B′ while
at ftilt(t) < 0, the highest peak is at A. This means that the advance of the motor in this
model is automatically accompanied with the power stroke making the two phenomena
practically indistinguishable.

In the hard device configuration we use the potential

G(x, y, t) = Φ(x) + V (y − x) +
1

2
km(y − z)2 − yftilt(t) (5.23)

where z is now a fixed parameter. The corresponding system of overdamped Langevin
equations takes the form





ηx
dx

dt
= − ∂xΦ(x) − ∂xV (y − x) +

√
2ηxD ξx(t)

ηy
dy

dt
= − ∂yV (y − x) − km(y − z) + ftilt(t) +

√
2ηyD ξy(t)

(5.24)
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As we see from Fig. 5.8c),d) the probability distribution is again strongly influenced by
the type of the loading device. In particular, one may have different states of the power
stroke mechanism biased in different phases of the external loading without the advance of
the motor along the actin filament. This opens the way of describing two attached states,
pre and post power stroke, shifting activity from actin filament to the power stroke itself.
In reality we do not know exactly with which degrees of freedom to associate the activity of
the ATP hydrolysis because all these effective variables characterizing a complex of large
number of molecules are geometrically very close and the mechanical action of the reaction
may even affect several degrees of freedom simultaneously. For instance, the variable Y
couples the attachment mechanism and the power stroke mechanism and therefore the
Y-tilted model may be considered as an intermediate between the X-tilted model making
the filament active and XY-tilted model assuming that activity is fully localized in the
power stroke element.

5.3.3 XY-tilted model

The XY-tilted model is characterized by the following potential

G(x, y, t) = Φ(x) + V (y − x) − (y − x)ftilt(t) − yfext (5.25)

In this model the external force tilts directly the bi-stable potential why the actin filament
remains fully passive. The potential (5.25) can be obtained from (5.5) by choosing Tx = Ty

and f y
tilt(t) = −fx

tilt(t). The corresponding system of the overdamped Langevin equations
takes the form





ηx
dx

dt
= − ∂xΦ(x) − ∂xV (y − x) − ftilt(t) +

√
2ηxD ξx(t)

ηy
dy

dt
= − ∂yV (y − x) + fext + ftilt(t) +

√
2ηyD ξy(t)

(5.26)

As in the other two cases we illustrate the role of the correlated component of the noise
ftilt which now acts in a coherent manner on variables x and y by replacing ftilt(t) with
a constant term which can be either positive +A or negative −A . We can write the
corresponding tilted potentials in the form

G(x, y,A) =

{
Φ(x) + V (y − x) −A− (y − x)fext for ftilt(t) > 0

Φ(x) + V (y − x) + A− (y − x)fext for ftilt(t) < 0
(5.27)

We can now compute the stationary probability distribution associated with different de-
gree of tilting

Pst(x, y,A) =





Z−1
+ exp

(
Φ(x) + V (y − x) −A− (y − x)fext

D

)
for ftilt(t) > 0

Z−1
− exp

(
Φ(x) + V (y − x) + A− (y − x)fext

D

)
for ftilt(t) < 0

(5.28)
where Z+ and Z− are the corresponding normalization factors; to simplify the picture we
again take fext = 0. In Fig.5.9a),b) we show the stationary probability and corresponded
surface contour plot in the case of soft device.

From Fig.5.9a),b) one can see that XY tilting can now bias the post power stroke in
the neighboring sites of the periodic potential which we could not achieve in any of the
previously considered models. This means that attachment detachment can take place
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Figure 5.9. XY-tilted model in soft and hard device configuration. a) The stationary
probability distribution and the corresponded surface contour plot in the positive phase of
rocking in soft device configuration with fext = 0. b) The stationary probability distribution
and the corresponded surface contour plot in the negative phase of rocking in soft device
configuration with fext = 0. c) The stationary probability distribution and the corresponded
surface contour plot in the positive phase of rocking in hard device configuration with z = 0.
d) The stationary probability distribution and the corresponded surface contour plot in the
negative phase of rocking in hard device configuration with z = 0.

without changing of the state of the power stroke element which opens additional ways of
reproducing the whole variety of chemical states constituting the Lymn-Taylor cycle.

In the hard device setting the potential takes the form:

G(x, y, t) = Φ(x) + V (y − x) +
1

2
km(y − z)2 − (y − x)ftilt(t) (5.29)

where z is again a fixed parameter. The corresponding system of the overdamped Langevin
equations reads





ηx
dx

dt
= − ∂xΦ(x) − ∂xV (y − x) − ftilt(t) +

√
2ηxD ξx(t)

ηy
dy

dt
= − ∂yV (y − x) − km(y − z) + ftilt(t) +

√
2ηyD ξy(t)

(5.30)

The energy landscape corresponding to different levels of tilt and the associated stationary
probability distribution are shown in Fig. 5.9c),d). This model shows a very reach behavior
which will be fully explored in the special chapter dedicated to the XY tilted model.

5.4 Conclusions

In this chapter we identified two crucial degrees of freedom which can be mechanically
associated with the power stroke and with the attachment detachment process in a single
cross bridge. We then proposed a series of models which are based on different interpreta-
tions of the mechanical role of the ATP activity expressed in terms of these two internal
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degrees of freedom. Since our goal is to consider models with active power stroke we will
not treat the most general case, where f y

tilt(t) and fx
tilt(t) are independent and focus on

three specific models:

• in X-tilted model when ftilt(t) acts on variable x, is

• in Y-tilted-model when ftilt(t) acts on variable y and

• in XY-tilted model when ftilt(t) acts on the difference y − x.

In Fig.5.10 we show the schematic picture illustrating these three different rocking mech-
anisms: notice that tilting about the Y axis provides nontrivial coupling between the
periodic and the bi-stable potentials. Each of our toy-models is a thermal ratchet exposed

Figure 5.10. The scheme illustrating three different rocking mechanism: X-tilted ratchet ,
Y-tilted ratchet model and XY-tilted ratchet.

to a colored noise with uncorrelated and correlated components of force having zero av-
erages. While all degrees of freedom are equally exposed to the white noise, only one of
them in each of the models is subjected to a correlated noise. By localizing the effect of the
tilting in these three different settings on a single internal degree of freedom, we can study
separately the possibilities that either only the actin filament is active (X tilted model), or
only the power stroke is active (X-Y tilted model). Finally, only the coupling between the
attachment and the power stroke elements may be active while both of them can remain
passive (Y tilted model).

The final selection of the adequate ac driving mode in this setting will come from the
better understanding of the microscopic, molecular scale phenomena taking place during
non-equilibrium enzymatic action of the ATP hydrolysis. However, another way to narrow
the class of acceptable models is to simulate different protocols and to compare the en-
suing macroscopic mechanical manifestations with what is known about the biochemical
nature of the underlying processes. Thus, an adequate model must be able to reproduce
all four stages of the minimal Lymn Taylor cycle and associate with the corresponding
chemical states specific mechanical configurations. As we show in the next chapters, each
of the discussed model imposes very restrictive constraints on stochastic dynamics of our
two parametric system and as a result the three proposed models are very different in
regard to their ability to reproduce the fine structure of the accepted biochemical cycle.
We examine each of the proposed protocols and obtain not only qualitative but also quan-
titative characterization of their adequacy. In particular, we compute the corresponding
force-velocity relations and study the parametric dependence for the mechanical efficiency
of the associated energy transduction mechanisms.



Chapter 6

X-tilted thermal ratchet

In this chapter we discuss the X-tilted ratchet model. This model was introduced in
[75] and here we present the first detailed analysis. In this model the power stroke

is a passive mechanism, and the ATP activity is represented by a correlated component
of the noise which acts directly on the periodic ratchet potential as in Magnasco model.
We explore the structure of the motor cycle in the ensuing system in soft in hard devices,
establish the force-velocity relation and study the energetics of the system.

6.1 Preliminaries

In this section we recall the main definitions for the X-tilted ratchet model. The main
feature of this model is that the correlated noise ftilt(t) with zero time average is applied to
the x variable. In Fig.6.1 we present a schematic illustration of the corresponding energy
landscape in coordinates [y − x, x]. This landscape is tilted periodically and biases the

Figure 6.1. X-tilted ratchet model the energy landscape biased by ftilt around one fictive
axe, we sketch of energy landscape with a fictive axe where rocking is applying.

states A′, B′ during the first half of the period and the states A,B during the second half
of the period.

We study this model in two regimes: isometric case or hard device regime (when we
fix the length) and isotonic case or soft device regime (when we fix the applied force). In
the soft device configuration the model is described by the system of coupled overdamped
Langevin equations:





ηx
dx

dt
= − ∂xΦ(x) − ∂xV (y − x) + ftilt(t) +

√
2ηxD ξx(t)

ηy
dy

dt
= − ∂yV (y − x) + fext +

√
2ηyD ξy(t)

(6.1)
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where ηx and ηy are viscous drag coefficients and D = kBT . The term fext describes
external conservative load. In the hard device the X-tilted ratchet is described by the
system: 




ηx
dx

dt
= − ∂xΦ(x) − ∂xV (y − x) + ftilt(t) +

√
2ηxD ξx(t)

ηy
dy

dt
= − ∂yV (y − x) − km(y − z) +

√
2ηyD ξy(t)

(6.2)

where again ηx and ηy are viscous drag coefficients and D = kBT . The parameter z
plays the role of the control parameter, and corresponds to the length of the linear spring
with stiffness km. The ξi(t) is the Gaussian random variable with zero mean and with
correlation

〈ξi(t)〉 = 0, 〈ξi(t)ξj(s)〉 = δijδ(t− s), t > s, i, j = x, y

It is convenient to rewrite the equations (6.1) and (6.2) in the dimensionless form. We
use the following definitions of the nondimensional variables:

X̃
(
t̃
)
≡ 1

a
X
(
t = τ t̃

)

Ṽ (x̃, ỹ) ≡ 1

kma2
V (x = ax̃, y = aỹ)

f̃tilt

(
t̃ =

t

τ

)
≡ 1

kma
ftilt(t)

ξ̃i(t̃) ≡ ξi(t)τ
−1/2

(6.3)

Here τ is the main time scale of the problem

τ =
ηy
km

(6.4)

The distance a between two minima of the potential V (y − x) introduces the character-
istic length scale, while the natural energy scale is kma2. The remaining nondimensional
parameters are now D̃ ≡ D

kma2
and α = ηy/ηx.

In the soft device the dimensionless system (6.1) takes the form:




dx

dt
= − α (∂xΦ(x) + ∂xV (y − x) − ftilt(t)) +

√
2αD ξx(t)

dy

dt
= − ∂yV (y − x) + fext +

√
2D ξy(t)

(6.5)

In the hard device configuration we obtain




dx

dt
= − α (∂xΦ(x) + ∂xV (y − x) − ftilt(t)) +

√
2αD ξx(t)

dy

dt
= − ∂yV (y − x) − km(y − z) +

√
2D ξy(t)

(6.6)

In the above for simplicity we omit the notation •̃.
The Fokker-Planck equations corresponding to the normalized systems of Langevin

equations (6.5) and (6.6) take the form:

• in the soft device configuration:

∂tP
s(x, y, t) =αD∂x

[
P s(x, y, t)

D
∂xG

s(x, y, t) + ∂xP
s(x, y, t)

]
+

D∂y

[
P s(x, y, t)

D
∂yG

s(x, y, t) + ∂yP
s(x, y, t)

] (6.7)
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where P s(x, y, t) is the probability density. The function Gs(x, y, t) is the energy
potential in the soft device

Gs(x, y, t) = Φ(x) + V (y − x) − xftilt(t) − yfext (6.8)

where fext is the external conservative load.

• in the hard device configuration:

∂tP
h(x, y, t) =αD∂x

[
P h(x, y, t)

D
∂xG

h(x, y, t) + ∂xP
h(x, y, t)

]
+

D∂y

[
P h(x, y, t)

D
∂yG

h(x, y, t) + ∂yP
h(x, y, t)

] (6.9)

where P h(x, y, t) is the probability density function, the function Gh(x, y, t) is the
energy potential in the hard device:

Gh(x, y, t) = Φ(x) + V (y − x) − xftilt(t) +
1

2
km(y − z)2 (6.10)

Here z is the control parameter, usually we take z = 0.

In the next sections we study this system by performing numerical simulations. To
simplify the numerical model we adopted the simplest descriptions of the functions Φ(x),
V (y − x) and ftilt(t). In particular we assumed that

Φ(x) =





Vmax

λ1
(x− nL), for nL ≤ x < nL +

L + ∆

2
Vmax

λ2
((n + 1)L− x), for nL +

L + ∆

2
≤ x < (n + 1)L, n ∈ N

(6.11)

where ∆ = λ1−λ2 is the parameter, which controls the potential asymmetry. The potential
is symmetric when ∆ = 0. By construction λ1 = (L+∆)/2 and λ2 = (L−∆)/2. A periodic
force ftilt(t) with period T is assumed to be a square wave signal with amplitude A

ftilt(t) =





+A for, for n
T

2
≤ t ≤ (n + 1)

T

2
,

−A for, for (n + 1)
T

2
≤ t ≤ nT, n ∈ N

(6.12)

. The bistable element is modeled by a piece-wise quadratic function with stiffness k0 and
k1. The minima are located in the points 0 and a, and the singular barrier is at l.

V (y − x) =





1
2k0 (y − x)2 + ε0 (y − x) 6 l

1
2k1 (y − x− a)2 (y − x) > l

(6.13)

As k0 6= k1 and l 6= a/2 the bistable potential is asymmetric with ε0 = 1/2
(
k1(l − a)2 − k0l

2
)
.

Usually we associate with phase ”0”the well characterized by the stiffness k0 and with phase
“1” – the well characterized by the stiffness k1. We illustrate the functions Φ(x), V (y− x)
and ftilt(t) in Fig.6.2a). The external force ftilt(t) takes in our model two value +A and
−A so we can easy illustrate the action of the tilting on the energy landscape by presenting
G(x, y, t) in two configuration associated with positive and negative phases of the rocking.
Our Fig.6.2b),c) shows the two-dimensional energy landscape biased by ftilt(t) in positive
and negative phases. The motor cycle is defined by the sequence of visited energy minima
during different stages of the rocking.
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Figure 6.2. The X-tilted ratchet. a)The sketch of potentials used in numeric applications.
b)The picture illustrate the action of ftilt(t) on two-dimensional energy landscape in plane
[y − x, x]. The increasing energy level scale graduated from cold color to hot colors. a) We
show unbiased landscape in soft device configuration we identify the occupancy motor state,
is intrinsic energy potential. b) The landscape corresponds to positive phase of ftilt(t) = A.
c) The landscape corresponded to the negative phase of ftilt(t) = −A.

6.2 A typical cycle of the X-tilted motor

6.2.1 Soft device

We begin with a series of numerical simulations of our system in the soft device. Assume
for determinacy that α = 1 and fext = 0. Other parameters are taken to be k0 = 1.5, k1 =
0.43, l = 0.22, a = 1, λ1 = 0.35, L = 0.5, Vmax = 1.5. Suppose that applied rocking force
has amplitude A = 2 and period T = 16. We perform computations by using the standard
Euler scheme with the time step ∆t = 1 × 10−3 and perform averaging over Nr = 1 × 103

realizations.

In Fig.6.3 we show the average trajectory of the motor. One can see that the system
reaches an oscillatory steady state with the average velocity 〈vx〉 = 〈vy〉 ≡ 〈v〉. In Fig.6.3b)
we show the time evolution of the system in coordinates [time, y − x]. We observe the
characteristic oscillations between the two wells of the effective bistable potential. Notice
that our motor crosses few space periods, see 6.3c). We define one motor cycle as segment
of the average trajectory corresponding to one period of the correlated nose ftilt(t). In
Fig.6.3d) where we show one cycle of the motor, one can associate the transition A” → B′

with the release of the power stroke mechanism and the transition B → A” with the
recharging of power stroke mechanism. Simultaneously, several attachment-detachment
events also take place.

In order to make sure that during each cycle the motor performs only one attachment-
detachment step along the potential Φ(x), we need to modify the parameters of the model.
Suppose that α = 0.2 ( control of the drift of x), take L = 3, and, in order to preserve
the value of the force acting on the particle, choose Vmax = 4.5. In Fig.6.4 we show the
new average trajectory of the motor associate with one cycle of the tilting force. As in the
previous case, the system reaches the steady state with a particular value of the average
velocity, see Fig.6.3a). The remaining fluctuations can be explained by the relatively small
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Figure 6.3. The X-tilted ratchet model in soft device configuration, fext = 0. a) The average
trajectory xt (solid black line) and yt (solid gray line). b) The time evolution of the system
in coordinates [time, y− x], note the characteristic oscillations between the two wells of the
effective bistable potential. c)The average trajectory in coordinates [y − x, x], note that
the motor crosses few space periods. d) One motor cycle as segment of average trajectory
during the time period T of the ftilt(t). The red scatters correspond to the positive phase of
the rocking ftilt(t) = +A and the blue scatters–to the negative phase of rocking ftilt = −A.
The colored bands indicate the structure of the energy landscape, the coldest colors indicate
the minima and hottest colors indicate the maxima. k0 = 1.5, k1 = 0.43, l = 0.22, a =
1, λ1 = 0.35, L = 0.5, Vmax = 0.75, α = 1 with the amplitude A = 2 and the period
T = 16.

number of stochastic realization Nr = 200.

Once again, we can identify the transition A′ → B′ with the motor power stroke, and
the transition B → A with the recharging of the power stroke. We therefore obtain a
2-states cycle (shown in Fig.6.4) where the detachment and re-attachment all take place
simultaneously with the recharge of the power stroke. Since the power stroke in this model
is passive, the advance of the motor is due exclusively to the asymmetry of the potential
V (y−x) and the motor must jump forward along the x axis in order to do the recharging
of the power stroke mechanism. Note, that the ratchet must make a sufficiently large step
in the forward direction in order to recharge the double well potential mechanically.

To summarize, the motor cycle can be decomposed into the following steps:

• 1 → 2 . First, because of the broken space symmetry, the motor advances in the
x direction and crosses the energy barrier associated with the maxima of the peri-
odic potential Φ(x). While doing the motor recharges the power stroke (performs
transition from the lower energy well 1 to the higher energy well 0 in the bistable
potential).
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Figure 6.4. The X-tilted ratchet model in soft device configuration, fext = 0. a) The
average trajectory xt (solid black line) and yt (solid gray line). b) The time evolution of
the system in coordinates [time, y− x], note the characteristic oscillations between the two
wells of the effective bistable potential. c)The average trajectory in coordinates [y − x, x],
note that the motor crosses few space periods. d) One motor cycle as segment of average
trajectory during the time period T of the ftilt(t). The red scatters correspond to the
positive phase of the rocking ftilt(t) = +A and the blue scatters–to the negative phase of
rocking ftilt = −A. The coldest colors indicate the minima and hottest colors indicate the
maxima. k0 = 1.5, k1 = 0.43, l = 0.22, a = 1, λ1 = 2.4, L = 3, α = 0.2 with the
amplitude A = 2 and the period T = 16.

• 2 → 3 . As the rocking force changes the sign, the new configuration of the energy
landscape drives the motor into backward direction along the x axis. However, the
motor is now trapped and instead of going backwards, it just performs the power-
stroke. Then the motor cycle starts again.

By varying parameters of the model we can obtain other cycles as well. For instance,
the motor step 1 → 2 can be made longer than a simple jump between the two nearest
periods. Also, by fine tuning of the parameters we can force the motor to move according
to the scheme 1 → 2’ → 2 , shown in Fig.6.5b). Moreover, the motor can advance few
periods along the x axis in the forward direction before accomplishing the power-stroke
2 → 3 and can also move backward during a few periods following the path 2 → 3’ →
3 . While both motor positions, 3’ and 3 , correspond to the same energy well “0”
of the bistable element, they are associated with different (nearest) wells of the periodic
potential, see Fig.6.3d).

6.2.2 Hard device

Adding to the energy the quadratic term 1/2km(y − z0)2 in the hard device changes the
energy landscape. To analyze the structure of the ensuing cycle, we fix the values of
z ≡ Const, z = 0. We use a simplified version of the model with k0 = k1 and we fix



6.2. A typical cycle of the X-tilted motor 99

Figure 6.5. The X-tilted ratchet model, the scheme of the motor cycle in the soft device
configuration. With the solid gray lines we plot the surface contours of the energy landscape
Φ(x) + V (y − x) for the fext = 0. a) The simplest motor cycle, in the positive phase of
rocking the motor advances in the x direction and recharges the power stroke. As the rocking
force changes the sign, the motor is trapped and performs the power-stroke. b) By varying
parameters the motor step can be made longer, the motor can advance few periods along
the x axis in the forward direction before accomplishing the power-stroke and can also move
backward during a few periods. On the scheme for simplicity motor cross just one period.

α = 5. We also adopt the following values of other relevant parameters: k0 = k1 = 7, l =
0.22, a = 1, L = 2, λ1 = 1.4, Vmax = 5 and fix the time period of rocking force at T = 20.

From Fig.6.4 one can see that the ensuing cycle is trivial showing only two-states
oscillations between the well “0” corresponding to larger value of x and the well “1” cor-
responding to lower value of x axis. We call this regime a diagonal cycling. Note what
in the soft device the motor with the same parameters would show a cycle presented in
6.5b), so the obtained path in a hard device is similar to what we have seen in Fig.6.3.

To study the effect of noise on the structure of the mechanical cycle we use direct
numerical simulations of our Langevin system and vary the parameter D. For each real-
ization we use the same amplitude of tilting A. In Fig.6.6 we show the average trajectory
of our stochastic process during one time period of the force ftilt(t) with A = 6. With solid
black lines we depict the level set representation of the energy landscape in the positive
phase of rocking (Φ(x) +V (y−x) + 1/2kmy2−xA) and with dashed black lines –the same
landscape in the negative phase of rocking (Φ(x) + V (y − x) + 1/2kmy2 + xA). We plot
the average trajectory by using different colors depending on the phase of rocking.

The cycle is stabilized after a short transient regime around a particular minimum of
the periodic potential (x = 2 in this case). At low temperature the stochastic process is
localized around only one minimum along the y−x dimension, see Fig.6.6a). The increase
of temperature gives to our particle sufficient energy to cross the potential barriers along
both y − x and x axes in particular it allows for a transition between the energy wells “0”
and “1” of the bi-stable potential, see Fig.6.6b),c). The 3-state cycle is formed if the motor
is able to displace itself along x sufficiently far in order to be able to recharge the power
stroke element. If we increase the parameter D further, the particle makes larger jumps
along the x direction, see 6.6d). At even higher temperature the system looses its the
ability to generate force. The increasing of the amplitude A of the correlated noise ftilt(t)
influences the motor cycle shape in the similar way (as the increase of D). In particular,
one can show that without rocking our system is unable to generate tension in the hard
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Figure 6.6. The X-tilted ratchet model in hard device configuration, the variation of the
motor cycle with the increasing temperature D at the constant amplitude A = 6. With solid
black lines we depict the level set representation of the energy landscape in the positive phase
of rocking and with dashed black lines –the same landscape in the negative phase of rocking.
The average motor trajectory plotted by the thick red line during the positive phase of ftilt(t)
and by the thick blue line during the negative phase. The light gray lines follow the single
stochastic realization during one time period. a) The cycle at D = 0.01. b) The cycle at
D = 0.065. c) The cycle at D = 0.08. d) The cycle at D = 0.3. The relevant parameters
k0 = k1 = 7, l = 0.22, a = 1, L = 2, λ1 = 1.4, Vmax = 5, α = 5 and the time period of the
rocking force T = 20.

device. By increasing the rocking amplitude we open more and more distant sites for the
transition.

In Fig.6.7 we present the schematic explanation of the observed 3-state cycle in the
hard device. After a transient stage the motor performs the following cycle in the clockwise
direction 1 → 2 → 3 → 1

• Transition 1 →2. The average trajectory is shown schematically by black arrows.
During the positive phase of ftilt(t), motor crosses the barrier in the forward direction
along the saw-tooth actin potential. It drags the bistable element and recharges the
power stroke element into the state 0, see Fig.6.6 (phase plotted in red).

• During the negative phase of ftilt(t) the motor makes the transition 2 → 3 → 1 ,
see Fig.6.6 (phase plotted in blue). The change of sign of the force ftilt(t) biases the
transition in the backward direction along the potential Φ(x). At the same time, the
transition 2 → 3 takes place (from well “0” to well “1”): it is natural to identify this
step with the “power stroke”. After the transition 3 → 1 the motor cycle can start
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Figure 6.7. The X-tilted ratchet, the scheme of the motor cycle in hard device configuration.
With the solid red lines we plot the surface contours of the energy landscape in positive
phase of the rocking and with the blue lines –the surface contours of the energy landscape
in negative phase of the rocking. The average trajectory is shown schematically by black
arrows. During the positive phase of ftilt(t), motor moves in the forward direction along the
saw-tooth actin potential and recharges the power stroke. The change of sign of the force
ftilt(t) biases the transition in the backward direction along the potential Φ(x) and at the
same time the motor performs the power-stroke.

again.

The main characteristic feature of this model is that the power stroke is recharged
together with the advance of the motor along the actin filament. This combines two
steps of the Lymn-Taylor cycle into one. The other two steps, the power stroke and the
detachment, are represented adequately by this mechanical model.

6.3 Force-Velocity relation

Next we study the force-velocity relation for the X-tilted ratchet placed in the soft device
configuration. Due to the presence of the active force ftilt(t) the motor can transform the
input energy into the mechanical work.

To characterize this work we adopt the physical definition of the sign of the external
load fext meaning that the positive force is acting in the positive direction along the
corresponding coordinate axis (physiological definition of the positive force is opposite to
ours). If we now plot the steady state relation between the applied external force and the
velocity, [〈v〉, fext], we obtain the desired force velocity relation.

We define the active work performed by motor against a conservative load as a negative
of the energy release rate fext〈v〉. Therefore the active work (energy supply) is positive
when the average velocity and the external force have opposite signs. This means what
the system is anti-dissipative, the motor uses (instead of dissipating) the external energy
and can therefore perform some useful work. The passive regimes correspond to the cases
where the average velocity and the external load have the same directions. Such system is
dissipative and the energy is released rather than being absorbed. The system is passive
and dissipative if the motor follows the direction imposed by the external load rather than
acting against the load, see Fig.6.8.

In our numerical experiments we use the following values of the motor parameters:
k0 = 1.5, k1 = 0.43, l = 0.22, a = 1, L = 1, λ1 = 0.7, Vmax = 1.5, , we fix α = 1 and
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we again fix the time period of the correlated noise at T = 20. In Fig.6.8 we show the
force velocity relation at different values of D when A = 2.5 and A = 4.5. In Fig.6.8a)

Figure 6.8. The force-velocity relation of X-tilted ratchet. a) The force velocity relation
with increasing temperature D at fixed amplitude A = 2.5 of ftilt(t). The area limited
by force-velocity curve and figure axes increases with D until the threshold value. We are
in the thermal ratchet regime. After the temperature threshold the thermal fluctuations
perturb the motion generation. b) The force velocity relation with increasing temperature
at fixed amplitude A = 4.5 of ftilt(t). Note the convex character of force-velocity curve at
D = 0.01 and compare to force-velocity curve at same temperature on the left picture. We
lose the convex character to linear progressively with increase of temperature. Here we are
in mechanical ratchet regime, the fluctuation provided by thermal bath perturb the system.
The relevant parameters: k0 = 1.5, k1 = 0.43, l = 0.22, a = 1, L = 1, λ1 = 0.7, Vmax =
1.5, α = 1, we fix α = 1 and we again fix the time period of the correlated noise at T = 20.

we show the force velocity relation at increasing temperatures D. At A = 2.5 we observe
the characteristic concave shape. The area limited by the curve and the axes increases
with D until the threshold is reached at D = 0.1. This shows that unlimited increase
of temperature leads eventually to the loss of the performance of the motor. The stall
force, defined in soft device as the value of force at zero average velocity, increases with
increasing temperature until the threshold value D and decrease afterwards. In Fig.6.8b)
we see how the force velocity relation changes at A = 4.5. We observe that the curve
becomes convex. With the increase of temperature D we progressively approach the linear
force velocity relation. Here we are in the mechanical ratchet regime and the presence of
thermal bath only diminishes the value of the generated force.

In summary, the performance of this motor system is similar to what we have seen in
the case of a simple Magansco ratchet. This means that the power stroke element does
not contribute to the overall behavior in a major way.
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6.4 Stochastic energetics

To study energetics of the X-tilted ratchet in the soft device we rewrite the equations 6.5
in the form 




∂x[Ψ(x) + V (y − x)] − ftilt(t) = − 1

α
dtx +

√
2D

α
ξx(t)

∂yV (y − x) − fext = −dty +
√

2D ξy(t)

(6.14)

We will go into the energetics along the motor trajectory. Therefore, we then multiply the
system by the vector dX in the Stratonovich sense. After what, using the definition of the
heat exchange in each of the processes δQi =

(
−ηdtxi +

√
2ηiDξi(t)

)
◦ dxi we can write

{
∂x [Ψ(x) + V (y − x)] ◦ dx− ftilt(t) ◦ dx = δQx

∂yV (y − x) ◦ dy − fext ◦ dy = δQy
(6.15)

We can define the intrinsic two-dimensional landscape in soft device configuration G0(xt, yt) =
Φ(xt) +V (yt−xt)− yfext. By using these definitions we rewrite the energy balance in the
form {

∂xG0 ◦ dx− ftilt(t) ◦ dx = δQx

∂yG0 ◦ dy = δQy
(6.16)

To study the steady state change of the energy of the system we need to average over one
time period T , and we can formally write

1

T

Xti+T∫

Xti

dG0(Xt) −
1

T

xti+T∫

xti

ftilt(t)dxt =
1

T

Xti+T∫

Xti

δQx + δQy (6.17)

where the time moment ti indicate the duration the transition regime. According to the
energetics [100] the input energy per time period R reads

R =
1

T

xti+T∫

xti

ftilt(t)dxt (6.18)

while the mechanical work Wmec takes the form

Wmec =
1

T

Xti+T∫

Xti

dG0(Xt) (6.19)

We can simplify the definition (6.19) observing that

1

T

Xti+T∫

Xti

dG0(Xt) =
1

T

Xti+T∫

Xti

d (Φ(Xt) + V (Xt)) −
1

T

yti+T∫

yti

fextdy (6.20)

Since the internal cycle is periodic we conclude that 1
T

∫Xti+T

Xti
d (Φ(Xt) + V (Xt)) ≡ 0.

Then the performed mechanical work Wmec,

Wmec = − 1

T

yti+T∫

yti

fextdy = −fext〈vy〉 (6.21)
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By using (6.17),(6.18),(6.21) we obtain the energy balance

Wmec ≡ R + Q (6.22)

where the total heat exchange Q is defined as follows

Q =
1

T

Xti+T∫

Xti

δQx + δQy (6.23)

We can now define the mechanical efficiency of the system as,

ǫmec =
Wmec

R
(6.24)

In order to measure the efficiency of the motion of an unloaded motor against the
viscous drag, we define the useful work as follows

WStokes = α−1〈vx〉2 + 〈vy〉2 (6.25)

Then the Stokes efficiency can be written as

ǫStokes =
WStokes

R
(6.26)

We can also compute the rectifying efficiency–the sum of Stokes and mechanical efficiencies
– which can be viewed as the global characteristic of the energy transduction by our ratchet
system:

ǫrec =
Wmec + WStokes

R
(6.27)

The above definition of efficiency works only in the soft device configuration, where we
are able to observe the motion of our motor. In the hard device configuration all injected
energy R is simply dissipated as heat and the energy balance can be written as follows
R = −Q. This gives us the value of the maintenance energy/heat which may be used as
the energetic measure associated with the stall force conditions.

To illustrate these definitions we apply to our motor the conservative load fext = −0.1
and use the following value of the parameters k0 = 1.5, k1 = 0.43, l = 0.22, a = 1, L =
2, λ1 = 0.7, Vmax = 1.5 . We also fix α = 1 and take T = 30. The system is out of
the adiabatic regime and we perform direct numerical study of the Langevin equations.
We use the Euler scheme with the time step ∆t = 0.5 × 10−3 and average over N3 = 104

stochastic realizations.
In Fig.6.9a) we present the average velocity of the motor as a function of temperature

D for several values of the rocking amplitude A. For small amplitudes A the motor shows
a maximum of velocity at a finite temperature which we can interpret as the phenomenon
of stochastic resonance. At high amplitudes A, the average velocity is a monotonically
decreasing function of D which means that for mechanical ratchet thermal fluctuations
work as an obstacle. By light green color we identify the region with negative velocity
where the motor is dragged backwards by the cargo. At small value of D the average
velocity may also be negative at some values of parameters.

In Fig.6.9b.) we show the consumed energy R as a function of D, again for the several
values of A. As the level of thermal fluctuations increases the motor needs more in order
to rectify the fluctuations and to preform the work. At large temperatures we observe
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Figure 6.9. The X-tilted model in soft device configuration with the conservative load
fext = −0.1. a) The variation of the average velocity 〈vy〉 with the increasing temperature
D for the different amplitudes A of the rocking force ftilt(t). For small amplitudes A
the motor shows a maximum of velocity at a finite temperature. At high amplitudes A,
the average velocity is a monotonically decreasing function of D. b) The variation of the
consumed energy R with the increasing temperature D for the different amplitudes A of
ftilt(t). As the level of thermal fluctuations increases the motor needs more in order to
rectify the fluctuations and to preform the work. The relevant parameters k0 = 1.5, k1 =
0.43, l = 0.22, a = 1, L = 1, λ1 = 0.7, Vmax = 1.5, α = 1 with time period T = 30 of the
rocking force.

saturation, showing that the motor dragged by the cargo consumes energy with a fixed
rate.

In Fig.6.10a) we show the mechanic work as a function of D for increasing A. By
color, we mark the region of positive and negative mechanic work. In Fig.6.10b) we show
the temperature dependence of the mechanical efficiency defined by (6.24). In the regime
of small amplitude A we observe a maximum of efficiency at finite temperature. With
increasing amplitude A, the maximum vanished and the efficiency becomes a monotonically
decreasing function of D, which is behavior characteristic for mechanic ratchet regime. By
light green color we indicate the regime of negative efficiency, where our motor is unable
to perform a positive mechanic work against the external force and works instead as an
active breaking mechanism.

In Fig.6.10c) we plot the Stokes efficiency as a function of D. By definition this is
always a positive function. The rectifying efficiency is shown in Fig.6.10d). The shape
of this function is dominated by the quadratic Stokes term. The important observation
is that this cumulative efficiency also has a maximum at a finite temperature where the
amplitude of the rocking is small and the device works as a Brownian ratchet.

6.5 Conclusions

In this section we presented the simplest arrangement of the motor combined with the
power stroke element. In this arrangement, the power stroke is passive and all the activity
is concentrated in the actin attachment sites. The working of such device is similar to the
mechanism of Magnasco ratchet. By assuming that it is the x variable which consumes
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Figure 6.10. The X-tilted model in soft device configuration with the conservative load
fext = −0.1. a) The variation of the mechanic work Wmec with the increasing temperature
D for different amplitudes A. b) The variation of the mechanic efficiency ǫmec with the
increasing temperature D for different amplitudes A. In the regime of small amplitude A
we observe a maximum of efficiency at finite temperature. c) The variation of the Stokes
efficiency with the increasing temperature D. By definition, this is always positive function.
For hight values of D the Stokes efficiency is increasing function of D, because we are
in regime there the motor follows the direction imposed by cargo. d) The variation of
the rectifying efficiency with the increasing temperature D. The shape of this function is
dominated by the quadratic Stokes term. The relevant parameters k0 = 1.5, k1 = 0.43, l =
0.22, a = 1, L = 1, λ1 = 0.7, Vmax = 1.5, α = 1 with time period T = 30 of the rocking
force.

the energy provided by the ATP (correlated noise ftilt(t)) we assume that all the ATP is
spent on detachment and reattachment while the bistable element, modeling the power
stroke, does not directly consume the metabolic energy and is largely carried/dragged
by such a motor. We have shown that with X-tilted model one cannot simulate the full
4−state Lymn-Taylor cycle and that detachment and the recharge of the power stroke are
always combined. Therefore, the passive nature of the power-stroke action is apparently
incompatible with the the biochemical perspective on muscle contraction and this model
must be improved. Essentially we must ensure that the energy provided by the time
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periodic (correlated) source and represented in our general scheme by the force ftilt(t),
act partially or fully on the internal variable describing the configuration of the bistable
element. In the following chapters we present several examples of the systems where the
bistable element plays an active role in the contraction cycle.





Chapter 7

Y-tilted ratchet

In this chapter we make the first step in the direction of making the power stroke
mechanism active. More specifically, we study the Y-tilted ratchet where the the

correlated component of the noise is applied to the y variable. This variable character-
izes the power stroke mechanism and is not directly related either to actin fiber, or to
attachment-detachment phenomenon. Such activation is therefore possible even in the
fully attached state and the corresponding active force will then be entirely due to the
power stroke activity. As in the previous chapter we study the motor cycle in the soft
in hard device configurations and make connection between mechanical and biochemical
intermediate states. In particular, we establish the force-velocity relation and perform its
parametric study by varying both the temperature and the amplitude of the correlated
noise. We then investigate the energetics of the Y-tilted motor and search for the regimes
with maximum rectifying efficiency.

7.1 Preliminaries

The Y-tilted ratchet is a system coupling the bistable potential V (y − x) with the space
periodic potential Φ(x). This mechanical system is exposed to white noise representing
thermal reservoir and the correlated noise which takes the form of a force acting on variable
y. On the scheme presented in Fig.7.1 we show one period of the two-dimensional energy
landscape with four mechanical configurations A,B,A′, B′ representing local minima of
the energy. We drew a fictitious axis around which the rocking is applied. One can see
that the tilting acts along the “diagonal” of this landscape and biases periodically either
the state B′, during the positive phase of rocking, or the state A, during the next negative
phase.

As before we study this system in two distinct configurations: isometric or hard device
(we fix the length of the system) and isotonic or soft device (we fix the external conservative
force). In the soft device configuration the system is described by the following system of
coupled overdamped Langevin equations:





ηx
dx

dt
= − ∂xΦ(x) − ∂xV (y − x) +

√
2ηxD ξx(t)

ηy
dy

dt
= − ∂yV (y − x) + ftilt(t) + fext +

√
2ηyD ξy(t)

(7.1)

where fext is the external conservative load. In the hard device the Y-tilted ratchet is
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Figure 7.1. Y-tilted ratchet design. We show the two-dimensional landscape biased by
ftilt(t) around a fictive axe.

described by the system





ηx
dx

dt
= − ∂xΦ(x) − ∂xV (y − x) +

√
2ηxD ξx(t)

ηy
dy

dt
= − ∂yV (y − x) − km(y − z) + ftilt(t) +

√
2ηyD ξy(t)

(7.2)

where ηx and ηy are viscous drag coefficients and D = kBT . Here z is the external control
parameter, which characterizes the stretch in the series linear spring with stiffness km.
Once again, the ξi(t) are Gaussian random variables with

〈ξi(t)〉 = 0, 〈ξi(t)ξj(s)〉 = δijδ(t− s), t > s, i, j = x, y

It will be convenient to use the dimensionless form of the equations (7.1) and (7.2). We
use the following scaling of the parameters (6.3) and the time scale (6.4). The dimensionless
system of Langevin equation for the Y-tilted motor in the soft device takes the form





dx

dt
= − α (∂xΦ(x) + ∂xV (y − x)) +

√
2αD ξx(t)

dy

dt
= − ∂yV (y − x) + fext + ftilt(t) +

√
2D ξy(t)

(7.3)

In the hard device we obtain accordingly





dx

dt
= − α (∂xΦ(x) + ∂xV (y − x)) +

√
2αD ξx(t)

dy

dt
= − ∂yV (y − x) − km(y − z) + ftilt(t) +

√
2D ξy(t)

(7.4)

We introduced the dimensionless parameters α =
ηy
ηx

and D̃ ≡ D
kma2 . In what follows we

omit •̃ for simplicity of notations. We observe that parameter α controls the scale of the
average velocity for the variable x. Indeed, after averaging the corresponding equation
over all realizations, we obtain:〈dtx〉 = −α (∂xΦ(x) + ∂xV (y − x)).

The Fokker-Planck equation corresponding to the normalized system of Langevin equa-
tions (7.3) and (7.4) takes the similar form mentioned in the previous chapter, the expres-
sions (6.7) and (6.9). In the soft device the Fokker-Planck equation reads with the energy
potential

Gs(x, y, t) = Φ(x) + V (y − x) − yftilt(t) + fext) (7.5)
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where fext is external conservative load. In the hard device the Fokker-Planck equation
reads with the energy potential

Gh(x, y, t) = Φ(x) + V (y − x) − yftilt(t) +
1

2
km(y − z)2 (7.6)

where z is the external control parameter.
In order to simplify the model and preserve the continuity with the X-tilted model

we use the same potentials Φ(x) (6.11), V (y − x) (6.13) and ftilt(t) (6.12) as in previous
chapter.

We illustrate the definition of Φ(x), V (y − x) and ftilt(t) in Fig.7.2a). Since the force
ftilt(t) is a simple square wave signal, the tilting has two phases: positive and negative.
In Fig.7.2b,c) we show the energy landscape in three configurations: untilted, in positive
and in negative phases of rocking. Notice that in this model tilting couples bistable and

Figure 7.2. The Y-tilted ratchet. a)The sketch of potentials used in numeric applications.
b)The picture illustrate the action of ftilt(t) on two-dimensional energy landscape in plane
[y − x, x]. The increasing energy level scale graduated from cold color to hot colors. a) We
show unbiased landscape in soft device configuration we identify the occupancy motor state,
is intrinsic energy potential. b) The landscape corresponds to positive phase of ftilt(t) = A.
c) The landscape corresponded to the negative phase of ftilt(t) = −A.

space periodic potentials.

7.2 A typical cycle of the Y-tilted motor

7.2.1 Soft device

In our numerical experiment we fix α = 1 and assume that k0 = 1.5, k1 = 0.43, l =
0.35, a = 1, L = 1, λ = 0.7, Vmax = 1.5. In Fig.7.3 we show the two-dimensional
representation of motor trajectory in the case of zero external load, fext = 0. The paths
were obtained by using the Euler scheme with time step ∆t = 0.5×10−3 and were averaged
over Nr = 100 realizations.

Notice that in the steady state regime the average velocity of variables x and y are the
same. The variable yt − xt describes the configuration of the bistable element at moment



112 7 - Y-tilted ratchet

Figure 7.3. The Y-tilted ratchet model in soft device configuration, fext = 0. a) The
average trajectory xt (solid black line) and yt (solid gray line). b) The time evolution of
the system in coordinates [time, y− x], note the characteristic oscillations between the two
wells of the effective bistable potential. c)The average trajectory in coordinates [y − x, x],
note that the motor crosses few space periods. d) One motor cycle as segment of average
trajectory during the time period T of the ftilt(t). The red scatters correspond to the
positive phase of the rocking ftilt(t) = +A and the blue scatters–to the negative phase of
rocking ftilt = −A. The colored bands indicate the structure of the energy landscape, the
coldest colors indicate the minima and hottest colors indicate the maxima. The relevant
parameters k0 = 1.5, k1 = 0.43, l = 0.35, a = 1, L = 1, λ1 = 0.7, Vmax = 1.5, α = 1 with
the amplitude A = 2.5 and the time period T = 16 of rocking at temperature D = 0.06.
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t, see Fig.7.3b). In Fig.7.3c) we show the averaged trajectory in the coordinate plane
[y − x, x]. By colored scatters we indicate one motor cycle during time period T . In
Fig.7.3d) we show the motor cycle on top of the energy landscape contour plot in positive
and negative phases of the rocking. We use red scatters to identify the part of the cycle
associated with the positive phase of ftilt, and blue scatters to show the path associated
with the negative phase of ftilt. From these figures we can see that our Y-tilted motor is
able to reproduce a four-states functional cycle A → B → B′ → A′, see Fig.7.3d). This
cycle is much more realistic than what we have seen in the X-tilted model and can be
directly compared with the biochemical theory behind the Lymn-Taylor cycle.

The schematic representation of the obtained mechanical cycle is shown in Fig.7.4.
The “power stroke” is clearly associated with the transition 1 → 2 (or A → B) and the
switch from positive to negative phase of the tilting force ftilt(t) recharges the power stroke
during the transition 3 → 4 . In more detail, the obtained mechanical cycle in the soft

Figure 7.4. The mechanical cycle of Y-tilted ratchet model in soft device configuration. a)
The simple, step by step, mechanical representation of the motor cycle. b) The average
trajectory path superposed with the surface contours of energy landscape (Φ(x) + V (y −
x) − yA by solid red contours and Φ(x) + V (y − x) + yA by solid blue contours). c) We
start at the end of negative phase of ftilt(t), then ftilt(t) changes the phase to positive,
the bi-stable element goes through the major transition which we identify with the power
stroke. While we remain in the positive phase of tilting ftilt(t) the motor makes a step along
x direction from state B to state B′. The correlated force changes its sign and the energy
landscape becomes tilted in the opposite direction. Following an immediate transition the
power stroke is getting recharged and the cycle can start again.

device can be characterized as follows:

• 1 → 1’ → 2 . We start at the end of negative phase of ftilt(t) when our Brownian
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particle explores the well “0” (or state A). Then ftilt(t) changes the phase to positive,
the energy landscape is now Φ(x) + V (y − x) − yA. After an immediate advance 1
→ 1’ , the bi-stable element goes through the major transition 1’ → 2 which we
identify with the power stroke.

• 2 → 3 . While we remain in the positive phase of tilting ftilt(t) the motor makes
a step along x direction from state B to state B′. This advance along the actin
filament is the direct consequence of the power stroke which is a driving force behind
the corresponding detachment and reattachment.

• 3 → 3’ → 4 . We now are in state 3 (or state B′), see Fig.7.3d). The correlated force
changes its sign and the energy landscape becomes tilted in the opposite direction
Φ(x) + V (y − x) + yA. Following an immediate transition 3 → 3’ the power stroke
is getting recharged by making the transition 3’ → 4 . Because of space asymmetry
of the actin potential Φ(x) the Brownian particle with coordinate x gets trapped
and does not move in the backward direction. Therefore the advance along the actin
filament has taken place and the cycle can start again.

Depending on the amplitude of the correlated noise term, the motor step 2 → 3 can be
longer or shorter. In particular, the system can jump over several periods of the potential
Φ(x). The length of such ’step’ is influenced by the fine structure of the energy landscape
and also depends on the stiffness of the bi-stable spring.

7.2.2 Hard device

To study the system in the isometric case, we fix z = 0 and use the following values for
the remaining parameters k0 = 7, k1 = 7, l = 0.22, a = 1, L = 2, λ = 1.4, Vmax = 5.
The computations are again performed by using Euler scheme with constant time step
∆t = 0.5 × 10−3 and the averaging is performed over N3 = 100 realizations. We increase
progressively the temperature D at fixed values of the amplitude A = 6 and the time
period T = 20.

The results are summarized in Fig.7.5. One can see that after a short transient regime
the motor performs a stable cycle. With solid lines we plot the energy level contours in the
positive phase (Φ(x) + V (y − x) + 1/2kmy2 − yA) and with dashed lines – in the negative
phase (Φ(x) +V (y−x) + 1/2kmy2 + yA). By dashed thick line we indicate the separation
between two wells of the bistable potential. The average motor trajectory is plotted by
thick red line during the positive phase of ftilt(t) and by thick blue line during the negative
phase. The light gray line shows a single stochastic realization during one time period.
On the bottom picture we show the averaged trajectory yt. We recall that the variable yt
is related directly to the tension

fh.d. = km (〈〈y〉〉 − z) (7.7)

where we must use z = 0 and km = 1. Therefore the averaged value 〈〈y〉〉 gives directly
the averaged tension in the system.

At small temperature D = 0.01 we observe oscillations between the conformational
states A and B inside the same space period of the actin potential (x = 0), see Fig.7.5a).
This behavior can be interpreted as a power-stroke (red path) followed by the recharging
(blue path) in the attached state. The little loop around the state B is a consequence of
the distorted landscape in the hard device. We can therefore speak here about a two state
cycle. With the increase of temperature the Brownian particle is able to explore larger
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Figure 7.5. The Y-tilted ratchet model in hard device configuration, the variation of the
motor cycle with the increasing temperature D at the constant amplitude A = 6. With solid
black lines we depict the level set representation of the energy landscape in the positive phase
of rocking and with dashed black lines –the same landscape in the negative phase of rocking.
The average motor trajectory plotted by the thick red line during the positive phase of ftilt(t)
and by the thick blue line during the negative phase. The light gray lines follow the single
stochastic realization during one time period. a) The motor cycle and generated average
tension at D = 0.01. b) The motor cycle and average tension at D = 0.1. c) The motor
cycle and average tension at D = 0.3. d) The motor cycle and average tension at D = 0.8.
The relevant parameters k0 = k1 = 7, l = 0.22, a = 1, L = 2, λ1 = 1.4, Vmax = 5, α = 5
and the time period of the rocking force T = 20.

areas of the two-dimensional landscape and at D = 0.1 we can stabilize the oscillations
between the state A′ and B′, see 7.5b). In this case the system reattached to a new cite
on the actin filament and stretched the spring. As the result the motor generates much
larger average tension, however, the cycle is still composed of only two states.

By increasing the temperature further, we are able to force the system to exhibit a four
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Figure 7.6. The Y-tilted ratchet model, the motor cycle in hard device configuration. With
solid gray lines we plot the energy level contours in positive phases of rocking (Φ(x)+V (y−
x)+1/2kmy2−yA) and with dashed gray lines we plot the energy level contours in negative
phase of rocking (Φ(x)+V (y−x)+1/2kmy2+yA). a) The two-state motor cycle, the average
trajectory is shown schematically by red arrows in positive phase of rocking and by blue
arrows in negative phase of rocking. b) The schematic explanations of the observed two-
states cycle. c) The four-state motor cycle, the average trajectory is shown schematically
by red arrows in positive phase of rocking and by blue arrows in negative phase of rocking.
d) The schematic explanations of the observed four-states cycle. For more details see the
description in the text.

state motor cycle, see Fig.7.5c). The motor first goes through mechanical configurations
A, B and then through the configurations B′, A′. Interestingly, in this regime the motor
generates smaller tension when in the regime of slightly lower temperature D = 0.1 when
the cycle consists of two states only. For even higher values of D we preserve the 4 states
cycle but we authorize the disadvantageous transitions in the backward direction long the
actin potential, see Fig.7.5d).

In Fig.7.6 we give schematic explanations of the observed two-states and four-states
cycles in the hard device configuration. With red arrows we sketch transitions in the
positive phase of rocking and with blue arrows – in the negative phase of rocking. More
specifically, in the ’two- state cycle’ we observe the following stages:

• 1 → 1’ → 2 . We start at the end of the phase of ftilt(t) with negative tilt. The Brow-
nian particle explores the state A (well “0” of the bistable element), see Fig.7.6b).
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The correlated noise changes the tilt to positive and the particle makes the imme-
diate transition 1 → 1’ . From this new configuration the Brownian particle performs
the power stroke 1’ → 2 . The motor then remain in the state B (well “1” of bistable
element).

• 2 → 2’ → 1 . While the system is in the state B (well “1”), see Fig.7.6b), the
correlated noise term ftilt(t) changes sign, creating again the negative tilt of the
energy landscape. The system undergoes an immediate transition 2 → 2’ . Because
of the spatial asymmetry of the actin potential the system remains trapped in the
same period of the periodic potential Φ(x) while the power stroke is recharged which
amounts to a transition 2’ → 1 . Afterwards the cycle can start again.

In the ’four-state cycle’ the stages are the following:

• 1 → 1’ → 2 . We start again at the end of the negative phase of the rocking.
The Brownian particle explores the state A (well “0”). As the correlated noise term
ftilt(t) changes the value from negative to positive, the system makes an immediate
transition 1 → 1’ , see Fig.7.6d). from this new configuration the particle performs
the power stroke 1’ → 2 .

• 2 → 3 . While in the positive phase of ftilt(t), the motor makes a jump into the next
nearest well in the positive x direction which is of course still a consequence of the
power stroke.

• 3 → 3’ → 4 . The system is now in the state 3 and the corresponding energy well is
B′ (well “1”), see Fig.7.6d). The correlated noise term changes the sign to negative
configuration, and the system undergoes immediate transition 3 → 3’ . Then the
instability causes the particle to perform the transition 3’ → 4 , which we identify
with recharging of the power stroke mechanism.

• 4 → 1 From the state A′ always following the phase space asymmetry, the motor
jumps in backward direction making the transition 4 → 1 . The system returns into
the initial state and the cycle can start again.

In summary, we obtain two types of cyclic motion simulating isometric muscle contrac-
tion. In the two-state regime the system is residing in a distant, force generating well of the
periodic potential while performing periodic oscillations between the two conformational
states of the power stroke element. The level of the generate force is high because the
cross bridge is firmly attached throughout the cycle. In the four-state regime, the system
is periodically reaching the distant well of the periodic potential but remains there only
for a limited time before returning back to the original attachment site. In this regime the
average force is smaller, however the mechanical cycle is closer to its biochemical analog.
Below we show how such difference in the structure of the cycle manifests itself in terms
of force velocity relation and the efficiency of the energy transduction.

7.2.3 Parametric study in the soft device setting

We now investigate more systematically the influence of the level of noise, both correlated
and uncorrelated, on the performance of the Y-tilted motor. As an example, we consider
the soft device setting and focus our attention on the behavior of the average velocity as
a function of temperature ( parameter D), amplitude of the correlated noise A and its
period T . For simplicity we fix the external load at zero fext = 0.
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Figure 7.7. The Y-tilted model in soft device with zero load fext = 0. The variation
of the average velocity with increasing temperature D computed at different frequencies
ω = 1/T of rocking force ftilt(t). a) At small amplitude A = 1.5 we observe the presence
of a velocity maximum at finite value temperature. b) The results of the measurements
at the amplitude A = 2.5. c) The results of the measurements at the amplitude A = 4.3.
d) The results of the measurements at the amplitude A = 6.5. In the regimes with high
amplitudes of rocking the stochastic resonance disappears and the average velocity becomes
a monotonically decreasing function of D.

In Fig.7.7a) we show the average velocity as a function of D, at different values of the
frequency ω characterizing the ftilt(t). At small amplitude A = 1.5 we observe the presence
of a velocity maximum at finite value temperature which characterizes the stochastic reso-
nance. The maximum shifts to larger values of temperature as we increase ω (decrease the
period T ) until the maximum disappears at ω < 0.0034. To interpret these observations
we recall that stochastic resonance takes place when the Kramers time of barrier crossing
which is increasing function of temperature is comparable to the characteristic period of
imposed oscillations. Therefore the two must increase along the velocity maximum which
what we see in our numerical experiments.

In Fig.7.7b),c),d) we show our experimental results at larger values of the amplitude
A = 2.5, A = 4.3, A = 6.5. One can see that in the regimes with high amplitudes of
rocking the stochastic resonance disappears and the average velocity becomes a monoton-
ically decreasing function of D. This means that the nature of the ratchet changes from
Brownian to purely mechanical and as a result the thermal noise changes its role from
assisting motor activity to being detrimental.

In Fig.7.8 we show the average velocity as a function of the driving period T . We
observe saturation at hight values of T when the time scale of the correlated noise becomes
much larger that the Kramers time in the bi-stable problem. From Fig.7.8a) we see that
the average velocity first grows at fixed T with increasing D but then starts to decrease.
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Figure 7.8. The Y-tilted model in soft device with zero load fext = 0. The variation
of the average velocity with the increasing time period T of ftilt(t) computed at different
temperatures D. a) The results of the measurements at the amplitude A = 1.5, note that
the average velocity first grows at fixed T with increasing D but then starts to decrease. b)
The results of the measurements at the amplitude A = 2.5, we are always in thermal ratchet
regime. c) The results of the measurements at the amplitude A = 4.3. d) The results of
the measurements at the amplitude A = 6.5, note that the average velocity decreases with
increasing D, meaning that the white noise interferes negatively with the force generation
process.

This means that we are in the thermal ratchet regime whose optimal performance requires
finite temperature instead, in Fig.7.8d), the average velocity decreases with increasing
D, meaning that the white noise interferes negatively with the force generation process,
which is characteristic for the mechanical ratchet regime. While we did not try to resolve
with sufficient accuracy the behavior at low values of T , there is probably always a local
maximum of performance sufficiently close to the origin, see Fig.7.8a),b).

7.3 Force-Velocity relation

The introduction of a non zero load fext in the soft device experiments opens a possibility
to recover the force-velocity curve. We recall that in the presence of active force ftilt(t)
the motor can transform the input energy into mechanical work. Once again we adopt the
physical definition of the sign of the external load in the plots [〈v〉, fext], see the scheme in
Fig.7.9. Then the mechanic work is negative (energy is dissipated) if the motor moves in
the direction imposed by the load.

In Fig.7.9a) we show the computed force-velocity relation while varying D at fixed
amplitude of rocking A = 2.5. We observe that the force velocity relation is concave
at D = 0.01. With the increase of temperature the area under the force-velocity curve
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Figure 7.9. The Y-tilted ratchet model. a) The variation of the force-velocity relation
with increasing temperature D at the amplitude A = 2.5, note the characteristic concave
shape at D = 0.01. With the increase of temperature the area under the force-velocity
curve decreases and the system generates smaller average velocity at zero load and smaller
stall force at zero velocity. b) The variation of the force-velocity relation with increasing
amplitude A at the temperature D = 0.01. We observe the characteristic concave shape of
the force-velocity curve in the interval ≈ 1.5 < A ≤≈ 3

decreases and the system generates smaller average velocity at zero load and smaller stall
force at zero velocity. Recall that we observed similar behavior for the X-tilted ratchet in
this almost mechanical (vs thermal) ratchet regime, see Fig.6.8. However, we observe that
our Y-tilted motor is less efficient in rectification of noise fluctuations, in comparison with
the X-tilted motor.

In Fig.7.9b) we show how the force-velocity relation changes when we vary the am-
plitude of rocking A at the fixed temperature D = 0.01. We observe the characteristic
concave shape of the force-velocity curve in the interval ≈ 1.5 < A ≤≈ 3, where we expect
that the system works as a thermal ratchet.

7.4 Stochastic energetics

In this section we study the temperature dependence of the energetics for the Y-tilted
ratchet. We again define the heat as δQi =

(
−ηdtxi +

√
2ηiDξi(t)

)
◦ dxi and write the

energy balance in the form

{
(∂xΨ(x) + ∂xV (y − x)) ◦ dx = δQx

∂yV (y − x) ◦ dy − ftilt(t) ◦ dy − fext ◦ dy = δQy
(7.8)

Introduce the averaged intrinsic energy G0(xt, yt) = Φ(xt)+V (yt−xt)−yfext over a period

1

T

Xti+T∫

Xti

dG0(Xt) −
1

T

xti+T∫

xti

ftilt(t)dyt =
1

T

Xti+T∫

Xti

δQx + δQy (7.9)
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where the time moment ti indicate the duration the transition regime. According to the
energetics [100] the input energy per time period R reads

R =
1

T

xti+T∫

xti

ftilt(t)dyt (7.10)

Now since the variation of the Φ(x) + V (y − x) over one period is equal to zero, the
mechanical work Wmec takes the form

Wmec =
1

T

Xti+T∫

Xti

dG0(Xt) = −fext〈vy〉 (7.11)

Then
Wmec ≡ R + Q (7.12)

where

Q =
1

T

X(t=ti+T )∫

X(t=ti)

δQx + δQy (7.13)

This allows us to define the mechanical efficiency

ǫmec =
Wmec

R
(7.14)

Similarly we introduce the Stokes work

WStokes = α−1〈vx〉2 + 〈vy〉2 (7.15)

and define the Stokes efficiency as

ǫStokes =
WStokes

R
(7.16)

Finally we can define the total rectifying efficiency

ǫrec =
Wmec + WStokes

R
(7.17)

These definitions make sense in the soft device configuration. In the hard device configu-
ration we simply have R = −Q.

In Fig.7.10a) we show the average velocity as a function of temperature at different
values of the amplitude A. For small amplitude A (Brownian ratchet) the motor exhibits
a maximum of velocity at finite temperature. At higher amplitude A (mechanical ratchet)
the average velocity decreases monotonically with D. Overall the Y-tilted model is gener-
ating smaller average velocities than the X-tilted model at the same values of parameters.
In Fig.7.10b) we plot the consumed energy R as a function of D and use the same range of
amplitudes A. One can see that as the temperature increases, the motor consumes more
and more energy in order rectify the fluctuations and preform a useful work. We also
again observe a saturation at high temperatures meaning that there is a limit of how much
thermal energy the motor can rectify.

In Fig.7.11b) we show the temperature dependence of mechanical efficiency, (7.14), for
increasing values of A. In the regime of small amplitudes A we again observe a maximum of
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Figure 7.10. The Y-tilted model in the soft device configuration with the conservative load
fext = −0.1. a) The variation of the average velocity 〈vy〉 with the increasing temperature D
for different amplitudes A of ftilt(t). For small amplitude A (Brownian ratchet) the motor
exhibits a maximum of velocity at finite temperature. At higher amplitude A (mechanical
ratchet) the average velocity decreases monotonically with D. b) The variation of the
consumed energy R with increasing temperature D for different amplitudes A of ftilt(t),
note that the motor consumes more and more energy in order rectify the fluctuations and
preform a useful work. The relevant parameters k0 = 1.5, k1 = 0.43, l = 0.22, a = 1, L =
1, λ1 = 0.7, Vmax = 1.5, α = 1 with time period T = 60 of rocking force.

mechanical efficiency at finite temperature. In the regime of high amplitudes the efficiency
becomes a monotonically decreasing function of D, which characterizes such system as a
mechanical ratchet. By light green color we indicate the regime with negative efficiency,
when the motor is unable to perform a positive mechanical work and can only resist
(drags) the imposed external load.Overall the Y-tilted ratchet is less efficient when the X-
tilted ratchet. We can explain this difference by the design of the active mechanism: the
consumed metabolic energy is partially consumed by the bi-stable element and partially
for forward steps long x.

In Fig.7.11c) we present the parametric study of the Stokes efficiency (7.15) and in
Fig.7.11d) of the rectifying efficiency (7.17). The qualitative behavior of these functions
is basically the same as in the case of X-tilted ratchet.

7.5 Conclusions

In this section we have shown that muscle contraction can be driven by the correlated
noise acting on an internal variable inside the power stroke mechanism. The system per-
forms 4-state cycle in the soft device configuration and either 2-state or 4-state cycle in
the hard device. We have shown that the maximal isometric tension is generated in the
2-state motor cycle implying strongly bound actin-myosin configuration. Although the
proposed framework is sufficient to describe the complete Lymn-Taylor cycle the ensuing
motor is slightly less efficient than in the X-tilted model. Overall this model is of interme-
diate nature while in the next section we study the fully power-stroke driven contraction
mechanism.
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Figure 7.11. The Y-tilted model in the soft device configuration with the conservative load
fext = −0.1. a) The variation of the mechanic work Wmec with the increasing temperature
D for different amplitudes A of ftilt(t). b) The variation of the mechanic efficiency ǫmec with
the increasing temperature D for different amplitudes A of ftilt(t). In the regime of small
amplitudes A we again observe a maximum of mechanical efficiency at finite temperature.
In the regime of high amplitudes the efficiency becomes a monotonically decreasing function
of D. c) The variation of the Stokes efficiency εStokes with the increasing temperature D
for different amplitudes A. By definition, this is always positive function. For hight values
of D the Stokes efficiency is increasing function of D, because we are in regime there the
motor follows the direction imposed by cargo. d) The variation of the rectifying efficiency
εrec with the increasing temperature D. The shape of this function is dominated by the
quadratic Stokes term. The relevant parameters k0 = 1.5, k1 = 0.43, l = 0.22, a = 1, L =
1, λ1 = 0.7, Vmax = 1.5, α = 1 with time period T = 60 of rocking force.





Chapter 8

XY-tilted thermal ratchet

In this chapter we consider a XY-tilted ratchet model where the biasing force is acting
directly on the y − x coordinate. This means that we are rocking/tilting the bi-

stable element proper. In this formulation, the model resembles the Brownian ratchet
description of kinesin where ATP acts on an internal bi-stable device forcing two legs to
move along the actin filament modeled by the spatial potential with periodically spaced
preferred attachment sites. In this sense the model considered in this chapter can be
viewed as a ’single-leg’ analog of the kinesin motor. What is important, in both models
the motor is driven through a power stroke element. To characterize the proposed design
we use the direct Langevin-based numerical simulations. As in the two previous sections
we first explore the fine structure of the averaged trajectories of the system in the phase
space in soft in hard device configurations and study the consistency of these mechanical
cycles with the prevailing biochemical cycle of muscle contraction. We then establish
force-velocity relations in the soft device case and study its parametric dependence by
varying temperature the amplitude/ frequency of the correlated component of the noise.
Finally we study elementary energetics of the ensuing motors and look for the regimes
with maximum efficiency. We show what the XY-tilted ratchet can partially reproduce all
four stages in the Lymn-Taylor cycle. We also presented evidence that this ratchet can
optimize its behavior by taking advantage of the phenomenon of stochastic resonance.

8.1 Preliminaries

As we have already mentioned, in the XY-tilted thermal ratchet the correlated force ftilt(t)
acts on the combination of variables y − x, which can be identified with an internal dis-
placement inside the bistable element. This means that the rocking force affects the power
stroke mechanism directly instead of implicitly modifying the internal state of this device
through other external degrees of freedom. In Fig.8.1 we illustrate the mechanical action
of the rocking force on our two dimensional energy landscape showing that in the case of
XY-tilted ratchet the ATP activity is fully decoupled from the actin filament.

We begin by formulating the model in our two standard cases, the isometric setting
where we fix the total length of the system and the isotonic case where we fix the exter-
nally applied force. We again refer to these two settings as hard device and soft device
configurations, respectively. In the soft device the model is described by the following
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Figure 8.1. XY-tilted ratchet model. The schematic sketch of the mechanical action of
rocking force on energy landscape. We show one period of energy landscape in coordinates
plane [y − x, x], the landscape wells noted A,B,A′, B′, we drew a fictive axe on each the
correlated noise is applied.

system of coupled overdamped Langevin equations:





ηx
dx

dt
= − ∂xΦ(x) − ∂xV (y − x) − ftilt(t) +

√
2ηxD ξx(t)

ηy
dy

dt
= − ∂yV (y − x) + ftilt(t) + fext +

√
2ηyD ξy(t)

(8.1)

In the hard device the XY-tilted ratchet is described by the system:
{
ηxdtx = − ∂xΦ(x) − ∂xV (y − x) − ftilt(t) +

√
2ηxD ξx(t)

ηydty = − ∂yV (y − x) − km(y − z) + ftilt(t) +
√

2ηyD ξy(t)
(8.2)

In both cases ηx and ηy are viscous drag coefficients and D = kBT . Here again z is external
control parameter, which prescribes the stretch of the linear spring with stiffness km, and
fext is the applied conservative load.

It will be convenient to introduce the nondimensional variables, we use the following
scaling of the parameters (6.3) and the time scale (6.4). Applying the normalization
we are left with the following dimensionless parameters D̃ ≡ D

kma2
and α =

ηy
ηx

. In the
nondimensional parameters the main system for the soft device case takes the form





dx

dt
= − α (∂xΦ(x) + ∂xV (y − x) + ftilt(t)) +

√
2αD ξx(t)

dy

dt
= − ∂yV (y − x) + fext + ftilt(t) +

√
2D ξy(t)

(8.3)

In the hard device configuration we obtain accordingly





dx

dt
= − α (∂xΦ(x) + ∂xV (y − x) + ftilt(t)) +

√
2αD ξx(t)

dy

dt
= − ∂yV (y − x) − km(y − z) + ftilt(t) +

√
2D ξy(t)

(8.4)

In both cases we omit •̃ for simplicity of notations.
The Fokker-Planck equation, corresponding to the normalized system of Langevin

equations in the soft device and hard device configuration, takes the similar form as
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Figure 8.2. The XY-tilted ratchet. a)The sketch of potentials used in numeric applications.
b)The picture illustrate the action of ftilt(t) on two-dimensional energy landscape in plane
[y − x, x]. The increasing energy level scale graduated from cold color to hot colors. a) We
show unbiased landscape in soft device configuration we identify the occupancy motor state,
is intrinsic energy potential. b) The landscape corresponds to positive phase of ftilt(t) = A.
c) The landscape corresponded to the negative phase of ftilt(t) = −A.

the expressions (6.7) and (6.9). In soft device the Fokker-Planck equation reads with
Gs(x, y, t) = Φ(x) +V (y−x)− (y−x)ftilt(t)− yfext where fext is the external control pa-
rameter. In the hard device configuration the corresponding Fokker-Planck equation reads
with Gh(x, y, t) = Φ(x) + V (y − x) − (y − x)ftilt(t) + 1

2km(y − z)2 and z is the external
control parameter. In our numerical simulations we use the same choices for the functions
Φ(x) (6.11), V (y − x) (6.13) and ftilt(t)(6.12) as in the previous chapters, see Fig.8.2.

We notice that a somewhat related model of two coupled rocking ratchets moving on
the same periodic potential has been recently used for the description of kinesin [76]. The
corresponded two dimensional system of over-damped Langevin equation has the form:





dx

dt
= − ∂xΦ(x) − ∂xV (x− y) − ftilt(t) +

√
2D ξx(t)

dy

dt
= − ∂yΦ(y) − ∂yV (x− y) + ftilt(t) +

√
2D ξy(t)

(8.5)

where Φ(x) and Φ(y) are two identical ratchet potentials. The V (x − y) is the bistable
potential describing the interaction between the two legs of the kinesin, whose positions
are given by x and y. Here as in our model the time periodic rocking signal with zero
average ftilt(t) acts on the coordinate x − y, meaning that the activity is concentrated
inside the bistable potential. In contrast to this ’two-legged’ model, our model can be
interpreted as ’one-legged’ which underlines the difference between processive and non-
processive motors. However, the fact that both types of motors are driven not through
the actin filament but through the bi-stable element opens the possibility for the unified
description inside a single framework.
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Figure 8.3. The scheme of kinesin-like mollecular motor in soft device configuration. a) The
concept of Brownian motor with two leg, developed in the works of L.Schimansky-Geier [79].
The rocking force applied on space periodic ratchet potential, see the details in Chapter 2.
b) The concept of Brownian motor with two leg developed in works of J.L. Mateos and
F.R. Alatriste, [76]. The rocking force applied on bistable potential. c) The molecular
motor developed in our work. The one-leg “mutant kinesin” jumping along space periodic
potential. The motion driven by the active bistable potential.

8.2 The XY-tilted motor cycles

In this section we perform a series on numerical experiments whose goal is to identify the
nature of the steady state cyclic motion.

8.2.1 Soft device

We use the following values of parameters: k0 = 1.5, k1 = 0.43, l = 0.35, a = 1. For the
periodic potential we use two sets of parameters λ1 = 0.35, L = 0.5, Vmax = 1, α = 1.
In Fig.8.4 we show the averaged trajectory of the XY-tilted ratchet exposed to square-
wave rocking force with amplitude A = 0.6 and the period T = 16 and also subjected to
thermal noise with D = 0.02. The simulation of the Langevin system was performed by
Euler scheme with ∆t = 10−3 and the results were averaged over Nr = 103 realizations.
The ensuing trajectory is surprising, because the motion takes place along the untilted
periodic potential and all external forces have zero average. The only non-equilibrium
entry in this model is a correlated tilting of the bi-stable potential associated with an
internal degree of freedom inside the motor mechanism.

We recall that the variable yt − xt describes the configuration of the bistable element
at moment t. In Fig.8.4c) we show the trajectory of the system in coordinates [y − x, x].
With colored scatters we represent one motor cycle during time period T , see Fig.8.4d).
By the red scatters we plot the average path of motor cycle during the positive phase of
ftilt, and by the blue scatters – the path associated with the negative phase of ftilt(t).

One can see that the XY-tilted motor performs a three-state functional cycle passing
through sites A → B → B′ → A′, see Fig.8.4d). First this motor device performs a power-
stroke while being attached to one particular state on the periodic landscape Φ(x) and after
that it moves in forward direction long Φ(x), while in same time recharging the power-
stroke mechanism. The overall behavior is very similar to what we have seen in the X-tilted
ratchet. The change of sign of the tilting force ftilt(t) both re-activates the power-stroke
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Figure 8.4. The XY-tilted ratchet model in soft device configuration, fext = 0. a) The
average trajectory xt (solid black line) and yt (solid gray line). b) The time evolution of
the system in coordinates [time, y− x], note the characteristic oscillations between the two
wells of the effective bistable potential. c)The average trajectory in coordinates [y − x, x],
note that the motor crosses few space periods. d) One motor cycle as segment of average
trajectory during the time period T of the ftilt(t). The red scatters correspond to the
positive phase of the rocking ftilt(t) = +A and the blue scatters–to the negative phase of
rocking ftilt = −A. The coloured bands indicate the structure of the energy landscape, the
coldest colors indicate the minima and hottest colors indicate the maxima. The relevant
parameters k0 = 1.5, k1 = 0.43, l = 0.35, a = 1, λ1 = 0.35, L = 0.5, Vmax = 1, α = 1
with time period T = 16 of the rocking force.

mechanism and causes the directional motion of the motor. The value of the amplitude
of tilting strongly influences the shape of the energy landscape in tilted configurations.
In each phase, positive and negative, the intrinsic bi-stability of the potential in y − x
direction may be either preserved or not.

In Fig.8.5 we present a schematic mechanical illustration showing the states visited by
the motor pass during one functional cycle. More specifically, the motor cycle in the soft
device can be described as follows:

• 1 → 1’ → 2 . We start the cycle at the very end of the negative phase of ftilt, see
Fig.8.5. Our Brownian particle exploits the well “0”, or state A. As the force ftilt(t)
changes from negative to positive, the energy becomes Φ(x) + V (y − x) − (y − x)A
and the particle makes an immediate transition 1 → 1’ . During the positive phase
of the force ftilt the system further undergoes a transition from well 0 to well 1 in
the bistable element 1’ → 2 which we identify with the power stroke.

• 2 → 3’ → 3 . We are now in state 2 corresponding to well “1”, state B, see Fig.8.4.
The correlated noise changes the sign and the energy becomes Φ(x) + V (y − x) +
(y − x)A. The system makes the step 2 → 3’ , and since the bistable potential now
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Figure 8.5. The mechanical cycle of XY-tilted ratchet model in soft device configuration. a)
The simple, step by step, mechanical representation of the motor cycle. b) The corresponded
average trajectory path superposed with the surface contours of energy landscape (Φ(x) +
V (y − x) − (y − x)A by solid red contours and Φ(x) + V (y − x) + (y − x)A by solid blue
contours). c) We start the cycle at the very end of the negative phase of ftilt, as the force
ftilt(t) changes from negative to positive, the energy becomes Φ(x) + V (y − x) − (y − x)A
and during the positive phase of the force ftilt the system further undergoes a transition
from well 0 to well 1 in the bistable element which we identify with the power stroke. The
correlated noise changes the sign and the energy becomes Φ(x) + V (y− x) + (y− x)A. The
system makes the step forward x, and since the bistable potential now biases the well ”0”,
the motor finalizes the recharging of the power stroke element. Then the cycle can start
again.

biases the well ”0”, the motor performs an additional transition 3’ → 3 , finalizing
the recharging of the power stroke element. Because of the spatial asymmetry the
periodic potential the attachment site does not change during such recharging. Then
the cycle can start again.

We observe that depending on the amplitude of the rocking, the motor cycle during
one time period T , can occur over one or several spatial periods of the actin potential.

In summary, we observed a clear evidence of the 3 step cycle. Here again the motor
advance and the recharging of the power stroke take place simultaneously. Those are two
stages where external energy supply is necessary and as we see, they cannot be separated
in the soft device setting.
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8.2.2 Hard device

The XY-tilted ratchet in a hard device is a complex system, where the correlated and
the white noise terms show an interesting interplay. In our experiments we fix the total
displacement at z = 0 and vary both the temperature and the amplitude of the correlated
noise. At zero temperature and weak amplitude of rocking the motor is unable to generate
a force and the configuration particle remains practically frozen in the original well. The
system exhibits the temperature and the amplitude thresholds whose crossing allows the
motor to form a cycle utilizing both the thermal fluctuations and the correlated noise.

In Fig.8.6 we show the simplest motor cycle exhibited by the average trajectory during
one time period of ftilt(t) in the hard device. The energy contours for the potential
Φ(x) + V (y − x) + 1/2kmy2 − (y − x)A are plotted with solid lines, and for the potential
Φ(x) + V (y − x) + 1/2kmy2 + (y − x)A – with dashed lines. The red color corresponds
to positive phase of rocking and the blue color – to the negative phase. Below each cycle
diagram we show the averaged trajectory y(t) during several time period where by dashed
line we indicate the observed average tension

fh = km (〈〈y〉〉 − z) (8.6)

Since z = 0 and km = 1 the quantity 〈〈y〉〉 can be used as the measure of tension in the
hard device.

One can see that at low temperatures our effective particle moves only between the
wells “0” (state A) and “1” (state B), see Fig.8.6a) for D = 0.01 and A = 2.4. This means
that the cross bridge is attached to a particular site of the actin potential while performing
random oscillations between two states of the power stroke element. In this regime the
system works as our bi-stable element in the hard device considered in Chapter 4.

With the increase of temperature D the motor eventually crosses the energy barrier
(detaches) and then stabilizes ( attaches) in the next site on the actin filament. In this
new attached position the motor continue to perform periodically first the power stroke
and then recharging of the power stroke (transitions between state A′ and state B′ ), see
8.6b) for D = 0.065 and A = 2.4. Observe that now the attachment site is distant from
the reference position, the spring is stretched and the motors shows two time higher level
of tension comparing to what we saw in Fig.8.6a).

By increasing the temperature and amplitude of colored noise further, we force the
motor to visit more sites on the energy landscape. Thus in Fig.8.6c) the motor periodically
changes the attachment site: the cycle is performed between the state A′ and the state
B, corresponding to different attachment sites along the potential Φ(x). In this regime
the motor is able to generate the highest level of average tension. The two states can be
interpreted as follows: first motor detachment and advance accompanied by the recharging
of the power stroke device and then the power stroke combined with re-attachment to the
original site. One can see that the two pairs of the biochemical steps are un-separable in
this mechanical setting.

The slanted two-state shape of the cycle is preserved also at higher values of D, see
Fig.8.6d). The fine structure of the cycle, however, looks a bit different because higher
level of noise authorizes supplementary transitions inside the landscape, see light gray
trajectory. After reach the optimal combination of the temperature D and the amplitude
value A the motor starts to generate less and less tension, see Fig.8.7. Eventually the
ratchet effect vanishes because the device progressively looses its ability to rectify thermal
fluctuations. Note also that at high temperature the motor changes the direction in which
the motor cycle is performed. Thus in Fig.8.7a) and b) the cycle is performed in the
clockwise direction (red line above blue line).
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Figure 8.6. The XY-tilted ratchet model in hard device configuration with z = 0. The
variation of the motor cycle shape with the increasing temperature D and amplitude A.
With solid lines we plot the surface contours of energy landscape in positive phase of ftilt(t)
and by red thick line we report the associated average trajectory path. With dashed lines we
show the surface contours of energy landscape in the negative phase ftilt(t) and by blue thick
line we report the associated average trajectory path. The light gray lines follow the single
stochastic realization during one time period. The cycle drives in the trigonometric sense.
a) The motor cycle at D = 0.01, A = 2.4 and the generated average tension. b) The cycle
at D = 0.065, A = 2.4 and the generated average tension. c) The cycle at D = 0.08, A = 4
and the generated average tension. d)The cycle at D = 0.1, A = 4 and the generated
average tension. The relevant parameters k0 = 1.5, k1 = 0.43, l = 0.35, a = 1, λ1 =
0.7, L = 1, Vmax = 1.5, α = 1 with the time period T = 10 of the ftilt(t), performed by
Euler scheme with ∆t = 10−3 and over Nr = 103 realizations.
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Figure 8.7. The XY-tilted ratchet model in hard device configuration with z = 0. The
variation of the motor cycle shape with the increasing temperature D and amplitude A.
With solid lines we plot the surface contours of energy landscape in positive phase of ftilt(t)
and by red thick line we report the associated average trajectory path. With dashed lines
we show the surface contours of energy landscape in the negative phase ftilt(t) and by blue
thick line we report the associated average trajectory path. The light gray lines follow
the single stochastic realization during one time period. The motor cycles are driven in
clockwise sense. a) The motor cycle at D = 0.2, A = 2.4 and the generated average tension.
b) The cycle at D = 0.4; A = 4 and the generated average tension. The relevant parameters
k0 = 1.5, k1 = 0.43, l = 0.35, a = 1, λ1 = 0.7, L = 1, Vmax = 1.5, performed by Euler
scheme with ∆t = 10−3 and over Nr = 103 realizations.

Figure 8.8. The XY-tilted ratchet model in hard device. The scheme of the motor cycle
corresponded to the trajectory Fig.8.6a). With solid gray lines we plot the energy level
contours in positive phases of rocking (Φ(x) + V (y − x) + 1/2kmy2 − (y − x)A) and with
dashed gray lines we plot the energy level contours in negative phase of rocking (Φ(x)+V (y−
x) + 1/2kmy2 + (y + x)A). a) The two-state motor cycle. b) The schematic explanations of
the observed two-states cycle, the average trajectory is shown schematically by red arrows
in positive phase of rocking and by blue arrows in negative phase of rocking.
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Figure 8.9. The XY-tilted ratchet model in a hard device. The scheme of the motor cycle
corresponded to the trajectory on Fig.8.6d). With solid gray lines we plot the energy level
contours in positive phases of rocking (Φ(x)+V (y−x)+1/2kmy2−(y−x)A) and with dashed
gray lines we plot the energy level contours in negative phase of rocking (Φ(x) +V (y− x) +
1/2kmy2 + (y + x)A). a) The four-state motor cycle. b) The schematic explanations of the
observed four-states cycle, the average trajectory is shown schematically by red arrows in
positive phase of rocking and by blue arrows in negative phase of rocking.

Figure 8.10. The scheme XY-tilted ratchet model in hard device configuration. The detailed
scheme of four-states clockwise motor cycle. With solid gray lines we plot the energy level
contours in positive phases of rocking (Φ(x) + V (y − x) + 1/2kmy2 − (y − x)A) and with
dashed gray lines we plot the energy level contours in negative phase of rocking (Φ(x) +
V (y − x) + 1/2kmy2 + (y + x)A). a) The four-state motor cycle , the average trajectory is
shown by red line in positive phase of rocking and by blue line in negative phase of rocking.
By examining a single stochastic realization, we observe that it is natural to introduce an
intermediate state (3) b) The schematic explanations of the observed four-states cycle.

The schematic representation of the simplest two-state hard device cycle is shown in
Fig.8.8.

• 1 → 1’ → 2 . We start again at the end of the negative phase of ftilt. The config-
urational particle explores the state A (well ”0”). Then ftilt changes sign and the
energy becomes tilted Φ(x) + V (y − x) + 1

2km(y)2 − (y − x)A. The particle makes
the immediate transition 1 → 1’ . During the positive phase of ftilt the particle
performs a transition 1’ → 2 , which we associate with the power stroke.

• 2 → 2’ → 1 . We are now in the state B (well “1”). The correlated force changes
the sign and the energy landscape tilts in the opposite direction Φ(x) + V (y − x) +
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1
2km(y)2 + (y − x)A. The motor makes instantaneous transition 2 → 2’ . Because
of the spatial asymmetry of the periodic potential, the system remains trapped in
the ’distant minimum’ of Φ(x) while performing the transition 2’ → 1 , which we
interpret as recharging of the power stroke mechanism. Now the cycle can start
again.

In Fig.8.9 we present schematic representation of the ’slanted’ cycle corresponding to
what we have seen in Fig.8.6d). We recall that this cycle ensures the maximum average
tension. Formally, the motor visits two sites corresponding to the stable states A′ (well
”0”) and B′, see Fig.8.9a). However, because of the peculiar shape of the cycle we can
distinguish two additional intermediate states denoted 1’ and 2’ . The nature of the
additional states is clear from our schematic explanations in Fig.8.9b). We notice what
in our schematic figures we can show only the average trajectory while the the trajecto-
ries corresponding to single stochastic realizations may demonstrate much more complex
shapes.

With the additional states taken into consideration we can interpret our periodic tra-
jectory as the following four-states cycle:

• 1 → 2’ → 2 . We start again at the very end of the negative phase of ftilt. The
configurational particle explores the state A′ (well “0”). Then ftilt changes the sign
from negative to positive and the particle makes a transition 1 → 2’ ’moving
back’ along the x coordinate. During the positive phase of ftilt the particle performs
additional transition 2’ → 2 and finds itself in the state B (well “1”). We interpret
the transition 2’ → 2 as the power stroke.

• 2 → 1’ → 1 . We now are in the state 2 , point B. The correlated force changes
its sign again to negative. The particle detaches and makes a ’forward jump’ to the
next site along the actin filament performing transition 2 → 1’ . Subsequently the
particle continues with the transition 1’ → 1 which we interpret as recharging of
the power stroke mechanism. Now, the cycle can start again.

In Fig.8.10 we illustrate the motor cycle performed in the clockwise direction, see
Fig.8.7a). In this figure, in order to make intermediate states more visible we utilized a
slightly modified potential with parameters:k0 = 1.5, k1 = 0.43, l = 0.35, a = 1, λ1 =
0.35, L = 0.5, Vmax = 1. With red lines we show the energy contours during the positive
phase of ftilt(t) and with blue color –the energy contours corresponding to the negative
phase of ftilt. By examining a single stochastic realization, we observe that it is natural
to introduce an intermediate state 3, marked by letter A, despite the fact that the average
cycle remains similar as in Fig.8.9.

Here a general comment is in order. So far, throughout three chapters devoted to
X,Y and XY-tilted ratchets we have always used the same potentials Φ(x) and V (y − x).
Both potential were asymmetric, and we controlled the asymmetry of Phi(x) through
the parameter ∆ = λ1 − λ2, and the asymmetry of V (y − x) through the ratio of the
stiffnesses k0/k1 and through the position of the barrier between the wells l. In fact, to
ensure the directional motion of the motor in Y-tilted and XY-tilted designs there is no
necessity to keep both potential asymmetric. Thus, we could have also used a symmetric
bistable potential V (y−x) together with an asymmetric spatially periodic potential Φ(x),
or we could have chosen to use the asymmetric bistable potential V (y − x) together with
symmetric spatially periodic potential Φ(x). It is important that the symmetry is broken
but the exact place of the asymmetry is not essential for the drift itself. More generally
our configurational space is two dimensional and the absence of the asymmetry in the
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’periodic dimension’ will be generically compensated by the asymmetry in the ’bistable
dimension’. The resulting drift, however, may be more or less efficient, for instance the
Peclet number measuring the relative efficiency of drift vs diffusion may be very different
for different designs.

8.3 Force-velocity relation

We begin our analysis of the macroscopic performance of the XY-tilted ratchet with the
study of the average velocity of an unloaded system in the soft device as a function of D
(temperature associated with the white noise term) and of the time period T ( time scale
associated with the correlated noise term). In Fig.8.11 we present the results of numerical
computations for the amplitudes A = 1.5, A = 2.5, A = 3, A = 4.5. Instead of T we use
as a parameter the frequency of the correlated noise term ω = 1/T .

Figure 8.11. The XY-tilted model in soft device configuration with zero load. The vari-
ation of the average velocity with the increasing temperature D computed for the differ-
ent frequencies ω = 1/T of rocking force ftilt(t). a) The results of computation at the
amplitude A = 1.5. b) The results of computation at the amplitude A = 2.5. We ob-
serve a clear maximum of the average motor velocity at finite value D which indicates
that we are encounting here the phenomenon of stochastic resonance. The growth of fre-
quency leads to an increase in the value of the velocity maximum until a certain limit
(ω = 0.2 in the graph) after which the the maximum value starts to decrease with fre-
quency. c) The results of computation at the amplitude A = 3. d) The results of com-
putation at the amplitude A = 4.5. At high values of the amplitudes the ratchet be-
comes purely mechanical and the maximum of velocity disappears. The relevant parameters
k0 = 1.5, k1 = 0.43, l = 0.35, a = 1, λ1 = 0.7, L = 1, Vmax = 1.5, performed by Euler
scheme with ∆t = 0.5 × 10−3 and over Nr = 104 realizations.

Quite expectedly we observe a clear maximum of the average motor velocity at finite
value D which indicates that we are encounting here the phenomenon of stochastic reso-



8.3. Force-velocity relation 137

Figure 8.12. The XY-tilted model in soft device configuration with zero load. The variation
of the average velocity with the increasing time period T of rocking ftilt(t) computed at
the different temperatures D. a) The amplitude A = 1.5, we observe peaked distribution of
velocity. The average velocity vanishes at large T as the system leaves the resonance regime.
At fixed low value of T the average velocity grows with increasing D until the limit value is
reached after which the drift rapidly disappears. b) The amplitude A = 6.5. The maximum
of velocity is achieved at D = 0 which means that we are dealing here with a classical
mechanical resonance. At fixed low T the average velocity decreases with increasing D. The
relevant parameters k0 = 1.5, k1 = 0.43, l = 0.35, a = 1, λ1 = 0.7, L = 1, Vmax = 1.5,
performed by Euler scheme with ∆t = 0.5 × 10−3 and over Nr = 104 realizations.

nance. The growth of frequency leads to an increase in the value of the velocity maximum
until a certain limit (ω = 0.2 in the graph) after which the the maximum value starts to
decrease with frequency, see Fig.8.11a),b). The observed phenomenon of stochastic reso-
nance is characteristic only for sufficiently low values of the amplitude A. At high values
of the amplitudes the ratchet becomes purely mechanical and the maximum of velocity
disappears, see Fig.8.11c),d). In the interval of low amplitudes of rocking the system be-
haves as Brownian ratchet and the origin of directional motion lies in delicate interaction
between white and colored components of the noise.

In Fig.8.12 we show the averaged velocity as a function of the period T for increasing
values of D. For A = 1.5, we observe peaked distribution of velocity which first gets more
localized with increasing D but eventually flattens out. The average velocity vanishes at
large T as the system leaves the resonance regime. At fixed low value of T the average
velocity grows with increasing D until the limit value is reached after which the drift rapidly
disappears. The reason is that sufficiently strong thermal noise destroys correlations kills
the directed motion. All these features suggest that at A = 1.5 we are dealing with a real
Brownian ratchet. At higher amplitude of the correlated noise A = 6.5 the behavior of the
average velocity is markedly different, see Fig.8.12b) where we show the average velocity
as a function of T at different values of D. The maximum of velocity is achieved at D = 0
which means that we are dealing here with a classical mechanical resonance. At fixed low
T the average velocity decreases with increasing D meaning that mechanical resonance
is being corrupted by thermal fluctuations and there is no positive interference between
random and correlated noises. This suggests that we are in the classical mechanical ratchet
regime.

The introduction of a non zero cargo fext in the soft device configuration opens the
possibility to recover the complete force-velocity relation. In Fig.8.13a) we study the effect
of the variation of temperature at low amplitude of rocking A = 2.5 on the force-velocity
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Figure 8.13. The XY-tilted ratchet in soft device configuration. a) The variation of the
force-velocity relation with the increasing temperature D at the fixed amplitude A = 2.5
of rocking. b) The variation of the force-velocity relation with the increasing amplitude A
of rocking at the fixed temperature D = 0.02. The model parameters are k0 = 1.5, k1 =
0.43, l = 0.35, a = 1, λ1 = 0.7, L = 1, Vmax = 1.5 T = 20. The direct Langevin
simulations performed with Euler scheme for time step ∆T = 0.5× 10−3 and Nr = 10× 104

stochastic realisations.

relation. At zero temperature the system exhibits purely mechanical behavior without
any ’anti-dissipation’ (no entrance into the white quadrants). The increase of temperature
D progressively increases the area between the force-velocity curve and the axes in the
domain of anti-dissipative behavior. We observe the pronounced concave character of
the force-velocity relation at sufficiently low temperatures. After the threshold in D the
concavity progressively vanishes and the profile becomes linear, while the motor loses its
ability to carry the cargo.

In Fig.8.13b) we illustrate the dependence of the force-velocity relation on the ampli-
tude A at fixed D = 0.02. At small amplitudes of rocking the motor follows closely the
external force fext and does not perform useful mechanical work. Only after a certain
threshold in amplitude the motor starts to generate active transport against the load. In
this regime the system acts as a purely mechanical ratchet.

8.4 Stochastic energetics

We now turn to the energetics of the XY-tilted ratchet at fixed value of the external load.
He we use the same landscape parameter as in the previous section, and throughout this
section adopt the value of conservative load fext = −0.3 and time period of rocking force
T = 16. The direct Langevin simulations were performed by using Euler scheme with the
time step ∆T = 1.0× 10−4 and the results were averaged over Nr = 10× 104 realizations.

According to the energetics [100], we again define the heat δQi =
(
−ηdtxi +

√
2ηiDξi(t)

)
◦

dxi and the consumption of energy dR = ftilt(t)(dy − dx). Then the energy balance can
be written as {

(∂xΦ(x) + ∂xV (y − x)) ◦ dx− dRx = δQx

∂yV (y − x) ◦ dy − fext ◦ dy − dRy = δQy
(8.7)
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We are interested in system behavior averaged over one time period T . We write the system
intrinsic energy G0(xt, yt) = Φ(x)+V (y−x)−yfext, since the variation of Φ(x)+V (y−x)
over a period is equal to zero we can define the mechanical work

Wmec =
1

T

Xti+T∫

Xti

dG0(Xt) = −fext〈vy〉 (8.8)

and

R =
1

T

yti+T∫

yti

ftilt(t)dyt −
1

T

xti+T∫

xti

ftilt(t)dxt (8.9)

Then the energy balance is
Wmec ≡ R + Q (8.10)

where

Q =
1

T

Xti+T∫

Xti

δQx + δQy (8.11)

The mechanical efficiency is then

ǫmec =
Wmec

R
(8.12)

The work of translation against viscous friction ( Stokes term) can be written as

WStokes = α−1〈vx〉2 + 〈vy〉2 (8.13)

which allows us to define the stokes efficiency

ǫStokes =
WStokes

R
(8.14)

Finally we can define the rectifying efficiency–the sum of the Stokes and the mechanical
efficiency

ǫrec =
Wmec + WStokes

R
(8.15)

In Fig.8.14a) we plot the average velocity as a function of temperature D for increasing
value of amplitude of rocking A. Observe a characteristic maximum at finite a temperature
for A = 1.5 and A = 2.5. At higher values of the amplitude A, the average velocity is a
decreasing function of D and in this range we are dealing with purely mechanical ratchet.
By light green color we mark the region with negative average velocity, where the motor
loses the ability to carry the external load and is instead being dragged by the load while
contributing some active resistance.

In Fig.8.14b). we show the consumed energy Rx and in Fig.8.14c)– the consumed
energy Ry. Notice that the former is an increasing function of temperature while the
latter is a decreasing function of temperature. In Fig.8.14d) we show the total energy
consumed by motor which appear to be temperature independent which is an interesting
property of XY tilted ratchet.

In Fig.8.15a) we show the mechanical work as a function of D at different amplitudes
of rocking A. we observe two regimes: with positive and with negative mechanic work.
In Fig.8.15b) we present the mechanical efficiency. At small amplitudes A we observe a
maximum of efficiency at finite temperature. With increasing A the maximum vanishes
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Figure 8.14. The XY-tilted model in the soft device configuration with the conservative load
fext = −0.1. a) The variation of the average velocity 〈vy〉 with the increasing temperature D
for different amplitudes A of ftilt(t). For small amplitude A (Brownian ratchet) the motor
exhibits a maximum of velocity at finite temperature. At higher amplitude A (mechani-
cal ratchet) the average velocity decreases monotonically with D. b) The variation of the
consumed energy Rx with increasing temperature D for different amplitudes A of ftilt(t),
note that the motor consumes more and more energy in order rectify the fluctuations and
preform a useful work. c) The variation of the consumed energy Ry with increasing tem-
perature D for different amplitudes A of ftilt(t), see (8.9), note what the level of consumed
energy decreases with D. d) The variation of the consumed energy R with increasing tem-
perature D for different amplitudes A of ftilt(t). The function appear to be temperature
independent which is an interesting property of XY tilted ratchet.The relevant parameters
k0 = 1.5, k1 = 0.43, l = 0.22, a = 1, L = 1, λ1 = 0.7, Vmax = 1.5, α = 1 with time period
T = 30 of rocking force.

and the efficiency becomes a monotonically decreasing function of D, as one can expect
in a purely mechanic ratchet. By light green color we indicated the regimes with negative
efficiency, where dissipation prevails. If we make the comparison between the efficiencies
of X-tilted, Y-tilted and XY-tilted ratchets we find that the XY device is least efficient.

In Fig.8.15c) we present the Stokes efficiency as a function of D. We observe maxima
at finite temperatures for low amplitude regimes and see that at high temperatures the
Stokes efficiency may increase with temperature. The rectifying efficiency is shown in
Fig.8.15d). Once again, at small amplitude of rocking we see thermal ratchet behavior
with a maximum of efficiency at finite temperature while at high rocking amplitudes we
see the mechanical ratchet behavior with efficiency decreasing with temperature.
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Figure 8.15. The XY-tilted model in the soft device configuration with the conservative load
fext = −0.1. a) The variation of the mechanic work Wmec with the increasing temperature
D for different amplitudes A of ftilt(t). b) The variation of the mechanic efficiency ǫmec with
the increasing temperature D for different amplitudes A of ftilt(t). In the regime of small
amplitudes A we again observe a maximum of mechanical efficiency at finite temperature.
c) The variation of the Stokes efficiency εStokes with the increasing temperature D for
different amplitudes A. By definition, this is always positive function. For hight values of D
the Stokes efficiency is increasing function of D, because we are in regime there the motor
follows the direction imposed by cargo. d) The variation of the rectifying efficiency εrec with
the increasing temperature D. The shape of this function is dominated by the quadratic
Stokes term. The relevant parameters k0 = 1.5, k1 = 0.43, l = 0.22, a = 1, L = 1, λ1 =
0.7, Vmax = 1.5, α = 1 with time period T = 30 of rocking force.

8.5 Conclusions

The association of the ATP activity with the power stroke element is motivated by the
dominating physiological perception that it is the power stroke which drives the muscle
contraction. In the XY-tilted model we attempted to quantitatively examine the most
radical mechanical implementation of this idea. We have shown that the corresponding
functional element driven by rocking bi-stable device can rectify thermal noise and ensure
directional advance of a molecular motor. More specifically, by remaining in purely me-
chanical framework we were able to obtain a stable cycle in both soft and hard devices
which converts colored noise into directional motion and structurally resembles the bio-
chemical Lymn-Taylor cycle. In the proposed XY device the primary agent is the power
stroke while the attachment detachment is a secondary structure which is necessary in
view of translational character of the motion. We have shown that average velocity is
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maximized at finite temperatures correlated to particular frequencies associated with ex-
ternal supply of energy. This suggest that the physical mechanism behind the activity of
the XY-tilted ratchet is associated with the phenomenon of stochastic resonance. The pro-
posed XY tilted ratchet can perform a positive mechanical work, however it is less efficient
than X-tilted and Y-tilted ratchets. To understand why such seemingly inefficient device
may be selected by evolution as the main driving force of muscle contraction, it is impor-
tant to remember that alternative more efficient strategies include mechanical activity of
actin filaments which may be imposable to ensure locally in a real muscle (nonprocessive)
setting.

While we can conclude that the XY tilted ratchet is a viable candidate as a mechanical
analog of the Lymn-Taylor cycle, we still have ambiguity of the interpretation of the
detached state which is not explicitly present in the proposed model. To deal with this
conceptual deficiency we consider in the next chapter a more complex model where the
XY tilted ratchet mechanism is augmented by taking into consideration the explicit steric
separation of thick and thin filaments.



Chapter 9

Synthetic model

We have developed in the previous chapters a mechanical framework allowing one to
describe muscle contraction as a power stroke driven mechanism. The advantage

of the proposed formalism is its transparency and analytical simplicity. However, the price
of such simplicity (reduction of the system to a set of interacting points moving along one
line) is a neglect of geometrical complexity, in particular, the omission of steric effects. In
this sense, the weakest point of the proposed model is the over schematic description of
the detached configuration which was described as a discrete set of points on the actin
filament corresponding to the maxima of the periodic potential. In reality, the detached
state is most probably continuous or at least spread over due to the geometrical separation
of the myosin head and the actin filament. In this chapter we formulate a synthetic model
which is set in the XY-titled framework but allows the actin potential to be stronger
(closer) or weaker (far) depending on the conformational state of the myosin head. By
introducing this additional coupling we assume that our bistable myosin head controls the
degree of detachment through steric separation from the actin filament. In some sense
the mechanism proposed in this chapter can be viewed as blend of flashing and rocking
thermal ratchets.

9.1 Detached state as a shallow minim of the energy

We recall that myosin II is a non-processive system which means that for each cross-bridge
the time spent in the detached state is much longer than the time of the attachment. Such
motors can operate only in groups and cooperation of different force producing units is
essential. In particular, we may conclude that while some of the cross bridges are attached
and produce forces, other cross bridges are detached and are simply carried along. This
suggests that the detached state cannot consist of discrete set of isolated points.

The simplest way of creating extended detached states in our two parametric framework
is to replace the maxima of the periodic potential by broad plateaus. For instance, we can
modify the saw-tooth potential Φ(x) by replacing the maxima of Φ(x) by the horizontal
segments. We can also insert shallow parabolas at the maxima of Φ(x), associating their
minima with the detached states. In this model we introduce the subdivision of the minima
of the periodic potential into attached and detached states. We may now associate the
detached time with the time spent in the detached energy well. Our computations show
that unless the new well is sufficiently deep, this time is small because the particle passes
quickly from one minimum to another. Therefore we were not able to obtain the desired
motor cycle in this setting.
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Figure 9.1. The simplest form of modified space periodic ratchet potential with introduced
detached state.

9.2 Control mechanisms

Recall that after the execution of the power stroke, the cross bridge detaches which sim-
plifies recharging of the power stroke mechanism. To capture this effect we can introduce
the control function Ψ(y − x) which depends on the state of the power stroke mechanism
but acts on the spatially periodic potential. The action results in switching it on and off
depending on the state of the bi-stable unit. When the periodic potential is on, the actin
potential is present which facilitates the attachment. When it is off, the actin filament is
far away and the attachment is impossible. This means that the myosin head is detached.
In geometrical terms turning the potential off means that the head moves away from actin
filament and turning it on means that the head again approaches the actin filament. This
can be interpreted as a steric effect when the power stroke results in displacement of the
myosin head away from the actin filament. Instead, the recharging makes the myosin head
again close to the actin filament.

To implement this idea we write the general energy potential G(x, y, z, t) in the form:

G(x, y, t) = Ψ(y − x)Φ(x) + V (y − x) − xfx
tilt(t) − yf y

tilt(t) − yfext (9.1)

where the term Ψ(y−x)Φ(x) describes the coupling between the configuration of the power
stroke and the state of the attachment. The simplest function Ψ(y − x) would be

Ψ(y − x) ∼ 1

2

(
1 + tanh

y − x− l

e

)
(9.2)

where e is a small parameter, which define the maximum slope of the control function.
One can see that the spatially periodic potential is ’on’ when the configurational particle
is in well B of the bistable potential (post-power stroke). As we show in Fig.9.2c) one can
replace the smooth function (9.2) by its piece-wise linear approximation.

In the soft device the XY-model with the coupling introduce above is described by the
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following system of over-damped Langevin equations:




ηx
dx

dt
= − ∂x [Ψ(y − x)Φ(x)] − ∂xV (y − x) − ftilt(t) +

√
2ηxD ξx(t)

ηy
dy

dt
= − ∂yV (y − x) − Φ(x)∂yΨ(y − x) + fext + ftilt(t) +

√
2ηyD ξy(t)

(9.3)

In the hard device we can similarly write:




ηx
dx

dt
= − ∂x [Ψ(y − x)Φ(x)] − ∂xV (x, y) − ftilt(t) +

√
2ηxD ξx(t)

ηy
dy

dt
= − ∂yV (y − x) − Φ(x)∂yΨ(y − x) − km(y − z) + ftilt(t) +

√
2ηyD ξy(t))

(9.4)

Figure 9.2. The graphic representation of control function Ψ(y−x). a) The control function
defined in way to activate the space periodic potential when the Brownian particle explores
the well B of bistable potential V (y−x). b) The control function define in way activate the
space periodic potential when the Brownian particle explores the well A of bistable potential
V (y − x). c) The piece-wise linear simplification of control function.

It will be convenient to introduce the nondimensional variables, we use the following
scaling of the parameters (6.3) and the time scale (6.4). Applying the normalization we are
left with the following dimensionless parameters D̃ ≡ D

kma2 and α =
ηy
ηx

. The dimensionless
system of Langevin equations in the soft device reads:





dx

dt
= − α (∂x [Ψ(y − x)Φ(x)] + ∂xV (y − x) + ftilt(t)) +

√
2αD ξx(t)

dy

dt
= − ∂yV (y − x) − Φ(x)∂yΨ(y − x) + fext + ftilt(t) +

√
2D ξy(t)

(9.5)

In the hard device we obtain similarly:




dx

dt
= − α (∂x [Ψ(y − x)Φ(x)] + ∂xV (y − x) + ftilt(t)) +

√
2αD ξx(t)

dy

dt
= − ∂yV (y − x) − Φ(x)∂yΨ(y − x) − km(y − z) + ftilt(t) +

√
2D ξy(t)

(9.6)

The corresponding Fokker-Planck equations have the similar structure as the expres-
sions (6.7) and (6.9) with in the soft device setting

Gs(x, y, t) = Ψ(y − x)Φ(x) + V (y − x) − (y − x)(ftilt(t) + fext) (9.7)

where fext is external load; in the hard device setting:

Gh(x, y, t) = Ψ(y − x)Φ(x) + V (y − x) − (y − x)ftilt(t) +
1

2
km(y − z)2 (9.8)
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where z is the external control parameter.
We use again the piece-wise linear approximation for Φ(x) (6.11), the square-wave

function for periodic tilting force ftilt(t) (6.12) and we define the bistable element V (y−x)
as usually by the formulas (6.13). Finally the control function Ψ(y − x) will be defined
either by (9.2) or by the corresponding piecewise linear approximation:

Ψ(y − x) =





0 for (y − x) < l − e
2

1
e (y − x) + e−2l

2e for l − e
2 6 (y − x) 6 l + e

2

1 for (y − x) > l + e
2

(9.9)

To illustrate the positive and negative phases of the tilting in the hard and soft device
settings we compute the corresponding stationary probability distributions. We define
Pst(x, y − x,A) in the soft device by :

Pst(x, y,A) =





Z−1
+ exp

(
−Gs(x, y,A)

D

)
, for ftilt(t) > 0

Z−1
− exp

(
−Gs(x, y,A)

D

)
, for ftilt(t) < 0

(9.10)

where Z+ and Z− are the normalization factors. To simplify the picture we can take
fext = 0 and then

Gs(x, y,A) =

{
Ψ(y − x)Φ(x) + V (y − x) − (y − x)A, for ftilt(t) > 0

Ψ(y − x)Φ(x) + V (y − x) + (y − x)A, for ftilt(t) < 0
(9.11)

Similarly we define Pst(x, y,A ‖ z) in the hard device, by assuming that z = 0 :

Pst(x, y,A ‖ z) =





Z−1
+ exp

(
−Gh(x, y, z,A)

D

)
for ftilt(t) > 0

Z−1
− exp

(
−Gh(x, y, z,A)

D

)
for ftilt(t) < 0

(9.12)

Here again Z+ and Z− are the normalization factors and

Gh(x, y, z,A) =





Ψ(y − x)Φ(x) + V (y − x) − (y − x)A +
1

2
km(y − z)2 for ftilt(t) > 0

Ψ(y − x)Φ(x) + V (y − x) + (y − x)A +
1

2
km(y − z)2 for ftilt(t) < 0

(9.13)
In Fig.9.3 we show the location of the maxima of the ensuing equilibrium probability
distribution in soft and hard devices.

9.3 Motor cycle in the soft device

To find the direction of the drift of our motor in the soft device configuration we need to
solve numerically the following system of equations:





dx

dt
= − α (∂x [Ψ(y − x)Φ(x)] + ∂xV (y − x) + ftilt(t)) +

√
2αD ξx(t)

dy

dt
= − ∂yV (y − x) − Φ(x)∂yΨ(y − x) + ftilt(t) + fext +

√
2D ξy(t)

(9.14)
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Figure 9.3. The XY-tilted model with control parameter in soft and hard device configura-
tions. The plot of the stationary probability distribution function and of corresponding con-
tour surface plot. For best graphic representation we replaced the saw-tooth potential Φ(x)
by equivalent sum of two sinus. a) The plot of functions Pst(x, y) and Pst(x, y, |ftilt| = 0 ‖ z)
with the corresponded surface contour plots in untitled configuration. b) The surface plot
of function Pst(x, y, |ftilt| < 0) and Pst(x, y, |ftilt| < 0 ‖ z) with the corresponded surface
contour plots in negative phase of tilting force. c) The plot of functions Pst(x, y, |ftilt| > 0)
and Pst(x, y, |ftilt| > 0 ‖ z) with the corresponded contour plots in positive phase of tilting.

First, we illustrate the delicate interplay of the asymmetry of both the periodic potential
and the bistable potential in the ultimate selection of the direction of motion. In Fig.9.4
we show how the average velocity depends on ∆ = λ1 − λ2 at different values of D.

In particular we observe non zero average flux at ∆ = 0, which means that motor can
move even on a symmetric periodic potential. Moreover we see that due to the asymmetry
of the bistable potential the motion is always biased towards positive values of x . To
emphasize the active role of the bistable potential in the following we shall only use the
symmetric spatially periodic potential Φ(x).

We fix the following values of parameters: α = 1, k0 = 1.5, k1 = 0.43, a = 1, l =
0.35, L = 1, Vmax = 1.5. The control function will be Ψ(x, y) taken in the form (9.2) with
e = 0.01. The correlated component of the noise will be characterized by the amplitude
A = 2.5 and the period T = 20. The white noise characterised by the temperature
D = 0.02.

In Fig.9.5 we show the averaged position of the system in the soft device configuration
with zero load. The averaged internal configuration y − x shown in Fig.9.5b) illustrates
characteristic oscillations between the two configurational states. In Fig.9.5c) we show
the shape of the averaged trajectory in coordinates [y − x, x]. Finally in Fig.9.5d) we
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Figure 9.4. The XY-tilted model with control function. The variation of the average velocity
with ∆ = λ1 − λ2 at different D. Note the presence of non zero average flux at ∆ = 0.
The relevant parameters k0 = 1.5, k1 = 0.5, a = 1, l0 = 0.2, L = 1, Vmax = 1.5, α = 1,
the control function Ψ(y − x) defined by (9.2) with e = 0.01.We apply the correlated noise
with the amplitude A = 2.5 and the time period T = 3. The numeric computation done by
simple Euler scheme with time step ∆t = 10−4 and for Nr = 104 number of realizations.

superimpose the motor cycle on the energy landscape in corresponding phases of the tilting.
By red scatters we show the averaged path in the positive phase of ftilt, and with the blue
scatters - in the negative phase of ftilt. The contour plot for the energy landscape has a
cut at point l.

We can identify the state A which corresponds to the valley in the energy landscape
describing the detached configuration. We can also identify the wells B,B′ corresponding
to different states of the power stroke element in the attached configuration. We conclude
that our XY-tilted motor performs a two-three state functional cycle passing through sites
A → B → B′ → A, which is similar to what we have seen in the XY-tilted model without
control.

In Fig.9.6 we show the averaged trajectory in the case of non-zero load, fext = −0.02.
We see that the general structure of the cycle is preserved, however the motor is surely
less efficient because of the periodic sliding in the direction of the load which is opposite
to the direction of motion. Notice the presence of the characteristic shift induced by the
load in the detached state, see the region selected by the dashed yellow line in Fig.9.6d).

In Fig.9.7 we present schematic representation of the ensuing cycle. We vaguely identify
three steps:

• 1 → 1’ → 2 . We start at the end of the negative phase of ftilt, see Fig.9.7a)
and e). The configurational particle is in the state A described by a valley of the
energy landscape which we identify with the detached state (Ψ(y − x) = 0). As we
see the detached particle is being dragged backwards by the load, see transition 1
→ 1’ . Then ftilt(t) changes phase from negative to positive, favoring post power
stroke configuration of the bistable potential. The system performs the power stroke
which prevents the sliding moreover, as soon as the particle crosses the barrier in the
bistable element, it gets attached attached ( Ψ(y − x) = 1), see 9.7b) and e). The
transition 1’ → 2 can be identified with the power stroke in the attached state. We
can also say that the attachment and the power stroke take place simultaneously.

• 2 → 3’ → 3 . We start in the attached post power stroke state 2 , see 9.7c) and e).
The external force changes sign, favoring now the pre-power stroke state. As a result
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Figure 9.5. The XY-tilted ratchet with control function in soft device configuration with
fext = 0 and at temperature D = 0.02. a) The average trajectory xt (solid black line) and
yt (solid gray line). b) The time evolution of the system in coordinates [time, y− x]. c)The
average trajectory in coordinates [y − x, x], note that the motor crosses few space periods.
d) One motor cycle as segment of average trajectory during the time period T of the ftilt(t).
The red scatters correspond to the positive phase of the rocking ftilt(t) = +A and the
blue scatters–to the negative phase of rocking ftilt = −A. The colored bands indicate the
structure of the energy landscape, the coldest colors indicate the minima and hottest colors
indicate the maxima. The relevant parameters k0 = 1.5, k1 = 0.43, l = 0.35, a = 1, λ1 =
0.5, L = 1, Vmax = 1, α = 1 with time period T = 20 and amplitude A = 2.5 of the rocking
force.

the motor makes a step forward in the x direction, see transition 2 → 3’ . As soon
as the configurational particle crosses the barrier between the two wells, we motor
detaches (Ψ(y − x) = 0), see 9.7d) and e). The motor continues to move forward in
the detached state, see transition 3’ → 3 which finally recharges the power stroke
mechanism. Here one can say that recharging leads to the detachment which in turn
facilitates this energy demanding stage. Then the cycle starts again.

In summary, we clearly identified a two state cycle. However, it can also be interpreted
as a four state cycle if we consider transition 1 → 1’ as attachment, transition 1’ → 2
as the power stroke in the attached state, transition 2 → 3’ as detachment and finally
transition 3’ → 3 as the recharging of the power stroke in the detached state.
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Figure 9.6. he XY-tilted ratchet with control function in soft device configuration with
fext = −0.02 and at temperature D = 0.02. a) The average trajectory xt (solid black line)
and yt (solid gray line). b) The time evolution of the system in coordinates [time, y − x].
c)The average trajectory in coordinates [y − x, x], note that the motor crosses few space
periods. d) One motor cycle as segment of average trajectory during the time period T of
the ftilt(t). The red scatters correspond to the positive phase of the rocking ftilt(t) = +A
and the blue scatters–to the negative phase of rocking ftilt = −A. The colored bands
indicate the structure of the energy landscape, the coldest colors indicate the minima and
hottest colors indicate the maxima. Note the presence of the shift induced by the load in
the detached state, the region selected by the dashed yellow line. The relevant parameters
k0 = 1.5, k1 = 0.43, l = 0.35, a = 1, λ1 = 0.5, L = 1, Vmax = 1, α = 1 with time period
T = 20 and amplitude A = 2.5 of the rocking force.

9.4 Motor cycle in the hard device

For convenience, we repeat here the Langevin equations describing the system in the hard
device





dx

dt
= − α (∂x [Ψ(y − x)Φ(x)] + ∂xV (y − x) + ftilt(t)) +

√
2αD ξx(t)

dy

dt
= − ∂yV (y − x) − Φ(x)∂yΨ(y − x) − km(y − z) + ftilt(t) +

√
2D ξy(t)

(9.15)

We fix z = 0, α = 1 and assume that k0 = 1.5, k1 = 0.5, a = 1, l0 = 0.2, L = 1, Vmax =
1.5. The control function Ψ(y − x) will be taken in the form (9.2) with either e = 0.02 or
in few cases –e = 0.2. We apply the same tilting force characterized by variable amplitude
A and a constant period T = 20.
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Figure 9.7. The schematic representation of the ensuing cycle of XY-tilted model with
control term in absence of external load. Through the picture a),b),c),d) we illustrate step
by step one motor cycle using very simplified sketch of energy landscape configurations. Note
that we does not represent the characteristic shift along x in detached states, Ψ(y− x) = 0.
e) The scheme of average trajectory path in soft device configuration.

For convenience we also recall here the definition of average tension:

fh.d. = km (〈〈y〉〉 − z) (9.16)

Since z = 0 and km = 1 the quantity 〈〈y〉〉 gives us directly the tension.
In Fig.9.8 we show the average configurational trajectory in the hard device during

one cycle at several values of A. With the red thick line we show the average trajectory
during the positive phase of the tilting force ftilt(t), and with blue line – during the
negative phase of ftilt(t). The light gray line shows a single stochastic realisation during
one motor cycle. Below each cycle we plot the averaged trajectory yt which characterizes
the mean tension measured in the hard device configuration. We show with red lines
the energy levels of the two-dimensional landscape in the positive phase Ψ(y − x)Φ(x) +
V (y − x) + 1/2kmy2 − (y− x)A (attached state) and with blue lines – the energy levels of
Ψ(y − x)Φ(x) + V (y − x) + 1/2kmy2 + (y − x)A (detached state).

One can see that at low amplitudes A the configurational particle is trapped in a
single well of the bistable system corresponding to post power stroke configuration, see
Fig.9.8a). Note that the system nevertheless generates positive tension (bottom picture)
because the system constantly attempts to perform the power stroke. However, after
passing the (degenerate) saddle point of the bistable potential the system does not have
enough energy to reach the second well of the bistable potential.

At higher amplitudes A, the motor is able to cross the energy barrier and to perform
the power stroke, see Fig.9.8b) - d). In Fig.9.9 we show the average trajectory in the hard
device while increasing temperature D. At the intermediate temperatures D we obtain
the motor cycle incorporating attached and detached states as well as pre and post power
stroke configurations. The growth of temperature D increases generated tension till a
threshold is reached after which the tension decreases as thermal fluctuations progressively
destroy the correlations in the system. Note the numerical value of the generated tension
in Fig.9.9a) and d): the system generates the same low tension at two very different values
of the temperatures. In between this two values of D, the value of the generated force
passes through a maximum.
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Figure 9.8. The XY-tilted model with control function in hard device configuration. The
variation of the motor cycle with the increasing amplitude A of rocking at constant temper-
ature D = 0.06. With the dark red lines we plot the surface contours of energy landscape
in positive phase of ftilt(t) and by red thick line we report the associated average trajec-
tory path. With the dark blue lines we show the surface contours of energy landscape
in the negative phase ftilt(t) and by blue thick line we report the associated average tra-
jectory path. The light gray lines follow the single stochastic realization during one time
period. The cycle drives in the trigonometric sense. a) The motor cycle at A = 0.6 and
the generated average tension (e=0.2). b) The cycle at A = 1.5 and the generated average
tension (e=0.02). c) The cycle at A = 2 and the generated average tension (e=0.2). d)The
cycle at A = 4.5 and the generated average tension (e=0.02). The relevant parameters
k0 = 1.5, k1 = 0.43, l = 0.35, a = 1, λ1 = 0.7, L = 1, Vmax = 1.5, α = 1 with the time
period T = 20 of the ftilt(t), performed by Euler scheme with ∆t = 10−3 and over Nr = 103

realizations.

We conclude that the motor visits at less 2 different states, detached and attached. In
Fig.9.10 we show schematic trajectory of the motor cycle. The motor performs a stable
cyclic motion in the clockwise direction after a short transient. Below we interpret the
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Figure 9.9. The XY-tilted model with control function in hard device configuration. The
variation of the motor cycle with the increasing temperature D. With the dark red lines we
plot the surface contours of energy landscape in positive phase of ftilt(t) and by red thick
line we report the associated average trajectory path. With the dark blue lines we show
the surface contours of energy landscape in the negative phase ftilt(t) and by blue thick
line we report the associated average trajectory path. The light gray lines follow the single
stochastic realization during one time period. The cycle drives in the trigonometric sense.
a) The motor cycle at D = 0.02, A = 1.5 and the generated average tension. b) The cycle
at D = 0.06, A = 2 and the generated average tension. c) The cycle at D = 0.1, A = 2 and
the generated average tension. d)The cycle at D = 0.4, A = 1.5 and the generated average
tension. The relevant parameters k0 = 1.5, k1 = 0.43, l = 0.35, a = 1, λ1 = 0.7, L =
1, Vmax = 1.5, α = 1, e = 0.02 with the time period T = 20 of the ftilt(t), performed by
Euler scheme with ∆t = 10−3 and over Nr = 103 realizations.

motor steps in the following way:

• 1 → 1’ → 2 . We start as usually at the very end of the negative phase of the tilting
force ftilt(t). The motor is in detached state 1 (the valley “0”, Ψ(y−x) = 0). Then
the force ftilt(t) changes sign, and the configurational particle makes the transition
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Figure 9.10. The XY-tilted ratchet with control function. The detailed scheme of mo-
tor cycle in hard device configuration.The scheme XY-tilted ratchet model in hard de-
vice configuration. With red lines we show the surface contours of energy landscape in
positive phase of rocking (Ψ(y − x)Φ(x) + V (y − x) + 1/2kmy2 − (y − x)A) and with
the blue lines–the surface contours of energy landscape in negative phase of rocking
(Ψ(y − x)Φ(x) + V (y − x) + 1/2kmy2 + (y − x)A). a)-b) The motor is in detached state.
Then the force ftilt(t) changes sign, and the configurational particle makes the transition
which can be interpreted as attachment. During the positive phase the particle crosses the
energy barrier between the two wells of the bistable potential performing the power stroke.
c)-d) The motor now is attached. The ftilt(t) changes sign again, the motor performs a step
which can be interpreted as detachment. The subsequent transition in bi-stable element can
be interpreted as the recharging of the power stroke in the detached configuration.

1 → 1’ which can be interpreted as attachment, see Fig.9.10a). During the positive
phase of ftilt(t) the particle crosses the energy barrier between the two wells of the
bistable potential performing the power stroke 1’ → 2 .

• 2 → 2’ → 1 . We are now in state 2 corresponding to the conformation “1” in the
attached state. The correlated noise changes sign again, and due to the asymmetry
of the bi-stable potential, the motor performs a step 2 → 2’ which can be interpreted
as detachment, see Fig.9.10c). The subsequent transition 2’ → 1 can be interpreted
as the recharging of the power stroke in the detached configuration, see Fig.9.10d).
Then the cycle starts again.

In summary, the XY-tilted device with internal control (coupling) exhibits dynamics
which may be interpreted in two different ways: either as a two state cycle or as a four state
cycle. In the two site interpretation the attachment is accompanied by the power stroke
while the detachment comes together with recharging of the power stroke mechanism. In
the four site interpretation the mechanical cycle resembles the biochemical cycle of Lymn
and Taylor, however, the identification of different (transient) mechanical states with stable
chemical states remains ambiguous.

9.5 Force-Velocity relation

By applying a non zero load fext in the soft device setting we can recover the force-velocity
relation for the coupled model. As usually, we adopt a physical definition of the direction
for the external force when we plot the response in the axis [〈v〉, fext]. By green color
area we indicate the region of anti-dissipation where the average velocity and the external
force have opposite defections, see Fig.9.11. We recall that in such anti-dissipative regimes
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the motor uses the input energy to performs useful work. The passive dissipative regime
corresponds to the cases where the average velocity and the external load have the same
direction. That means that the motor is dragged by the external load and the input energy
can at most contribute to enhanced drug force.

To solve the Langevin equations we apply the Euler scheme with time step ∆t = 1 ×
10−4 and average over Nr = 104 numerical realizations. We fix α = 1 and use the following
parameters of the potential: k0 = 1.5, k1 = 0.43, a = 1, l = 0.35, L = 1, Vmax = 1.5.
The control function Ψ(x, y) is given by (9.2) with e = 0.01. The periodic component of
the noise has always a period T = 20.

Figure 9.11. The XY-tilted ratchet with control function in soft device configuration. a) The
variation of the force-velocity relation with the increasing amplitude A of rocking at the fixed
temperature D = 0.02. b) The variation of the force-velocity relation with the increasing
temperature D at the fixed amplitude A = 2.5 of rocking. The relevant parameters k0 =
1.5, k1 = 0.43, l = 0.35, a = 1, λ1 = 0.7, L = 1, Vmax = 1.5 e = 0.01, T = 20. The
direct Langevin simulations performed with Euler scheme for time step ∆T = 0.5 × 10−3

and Nr = 10 × 104 stochastic realisations.

In Fig.9.11a) we show the computed force-velocity relation at several values of A and
fixed temperature temperature D = 0.02. One can see that the ratchet device with internal
control can indeed performs a positive mechanical work against an external load (can carry
a cargo). As in other models, the force velocity relation is concave at small values of A
(thermal ratchet) and concave at large values of A (mechanical ratchet). In Fig.9.11b)
we show the sensitivity of the force-velocity relation to increasing temperature D at fixed
amplitude A = 2.5 . Notice almost linear behavior except when the temperature is small
( D = 0.01). With increase of temperature D the system passes through the optimum
regime, and then the performance of the motor eventually degrades.

In Fig.9.12a) we plot the average velocity as a function of amplitude A at different
values of the temperature D. The computation was performed in the presence of conser-
vative load, fext = −0.1. The system shows a maximum at a finite value of A, see the
curve corresponding to temperature D = 0.1. For higher amplitudes A the average veloc-
ity decreases. Notice the interval where the average velocity is negative and the motor is
dragged by the load because the energy input is not sufficient to reverse the direction of
motion. In Fig.9.12b) we show the average velocity as a function of temperature D at dif-
ferent values of the rocking amplitude A. Here the computations were performed without
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Figure 9.12. The XY-tilted model with control function in soft device. a) The variation of
the average velocity with the increasing amplitude A of ftilt(t), the computation performed
with conservative load fext = −0.01 for different values of D. The negative average velocity is
consequence of load. b) The variation of the average velocity with the increasing temperature
D for different values of amplitude A, the computation performed without external load.
The relevant parameters k0 = 1.5, k1 = 0.43, l = 0.35, a = 1, λ1 = 0.7, L = 1, Vmax =
1.5 e = 0.01, T = 20. The direct Langevin simulations performed with Euler scheme for
time step ∆T = 0.5 × 10−3 and Nr = 10 × 104 stochastic realisations.

any load, fext = 0. The motor performance shows a maximum at finite value of D which
is a manifestation of stochastic resonance. Here we clearly deal with thermal ( rather than
mechanical) ratchet system and the motor velocity is optimized at finite temperature.

9.6 Stochastic energetics

To study the energetics of our system we apply by now familiar procedure. We first rewrite
the system 9.5 in the form

{
(∂x [Ψ(y − x)Φ(x)] + ∂xV (y − x)) ◦ dx + ftilt(t) ◦ dx = δQx

∂yV (y − x) ◦ dy + Φ(x)∂yΨ(y − x) ◦ dy − ftilt(t) ◦ dy − fext ◦ dy = δQy
(9.17)

where we defined the heat by using Sekimoto formula δQi =
(
−η dxi

dt +
√

2ηiDξi(t)
)
◦ dxi,

see [100]. The all expressions have the similar form as for previously studied XY-tilted
ratchet model. We can define the mechanical work

Wmec =
1

T

Xti+T∫

Xti

dG0(Xt) = −fext〈vy〉 (9.18)

where G0 = Ψ(yt − xt)Φ(xt) + V (yt − xt) − ytfext. And the energy input R

R = Ry −Rx =
1

T

yti+T∫

yti

ftilt(t)dyt −
1

T

xti+T∫

xti

ftilt(t)dxt (9.19)

The energy balance finally written

Wmec = R + Q (9.20)



9.7. Conclusions 157

The mechanical efficiency can then be written as

ǫmec =
Wmec

R
(9.21)

The stokes efficiency is again

ǫStokes =
WStokes

R
(9.22)

where
WStokes = α−1〈vx〉2 + 〈vy〉2 (9.23)

Finally, the rectifying efficiency–the sum of Stokes and mechanical efficiencies, which can
be viewed as the global characteristic of the energy transformation in the ratchet system,
takes the form

ǫrec =
Wmec + WStokes

R
(9.24)

In Fig.9.13a) we present the results of numerical computations at a given value of the
applied load fext = −0.1. We first show the average velocity as a function of temperature
D at different values of the amplitude A. As expected the motor exhibits maxima at
performance at finite temperature for small amplitudes A = 2.5, A = 3, A = 4 and
A = 5.5. At higher amplitudes A, the average velocity is a monotonically decreasing
function of D. By light green color we indicate the region with negative velocity, where
the motor moves backwards. For instance, one can see that at A = 1.5 the motor consumes
energy but does not produce positive mechanical work.

In Fig.9.13d) we show the period averaged energy R consumed by the motor. With
increasing temperature D, the motor consumes more energy in order to perform a forward
motion along the actin filament, see Fig.9.13b). Interestingly, the part of the consumed
energy through y variable decreases with temperature D, see Fig.9.13c), exactly as we
have seen in the decoupled XY-tilted ratchet system.

In Fig.9.14b) we show the parametric dependence of mechanical efficiency. At small
amplitudes A we again see maxima of the energetic performance at finite temperatures.
With increasing A the maxima vanish and the efficiency becomes a monotonically de-
creasing function of D, which is characteristic for the mechanical ratchet regime. Notice
the peculiar behavior at small energy input A = 1.5, see Fig.9.14a) and Fig.9.14b). In
Fig.9.14c) we show the variation of Stokes efficiency with increasing temperature D. At
small amplitudes of the rocking and high temperatures D the Stokes efficiency, (9.22), is
an increasing function of D, because we are in regime where the motor is dragged by the
cargo, see Fig.9.14a). In Fig.9.14d) we study the variation of rectifying efficiency with
temperature D The behavior of this function is mostly controlled by the Stokes efficiency.

9.7 Conclusions

In this section we presented a synthetic ratchet model where rocking is combined with
flashing in a synchronized way. In this way we introduced the internal coupling which
imitates steric effects and regulates the distance of the myosin head from the actin filament
depending on the conformational state of the power stroke mechanism. This allowed us to
make the detachment state more integrated into the mechanical cycle. By introducing the
special multiplicative control function Ψ(y − x), we could associate the pre-power stroke
with a detached state (no interaction with the spatial periodic potential Φ(x)) and the
post power stroke – with the attached state (the system interacts strongly with the space
periodic potential Φ(x)). As the result the proposed model reproduces all four states



158 9 - Synthetic model

Figure 9.13. The XY-tilted model with control function in soft device configuration with
fext = −0.1. a) The variation of the average velocity 〈vy〉 with the increasing temperature
D at different amplitude A of rocking. b) The variation of consumed energy Rx with the
increasing temperature D at different amplitude A of rocking, see (9.19). c) The variation
of consumed energy Ry with the increasing temperature D at different amplitude A, see
(9.19). d) We show the variation of function R (the resulted energy consumed by motor)
with the increasing temperature D at different amplitude A. The relevant parameters k0 =
1.5, k1 = 0.43, l = 0.35, a = 1, λ1 = 0.7, L = 1, Vmax = 1.5 e = 0.1, T = 6. The
direct Langevin simulations performed with Euler scheme for time step ∆T = 0.5 × 10−3

and Nr = 10 × 104 stochastic realisations.

of the Lymn-Taylor cycle even though the individual states are interpreted as transient
mechanical configurations.

The schematic structures of the ensuing cycles in the hard and soft devices are presented
in Fig.9.15.

Most importantly, the proposed ratchet device is able to generate the directional motion
in the presence of a cargo and can produce force in isometric conditions. Interestingly,
the ratchet effect here is due to the asymmetry of the bistable potential while the actin
filament with its periodically located attachment sites is symmetric and passive. The
force-velocity curves and the motor energetics are similar to what we have seen in the
uncoupled XY-tilted model. However, the coupled model is preferable because it presents
the design with mechanically explicit detached state. Although our aim is to obtain a
model of a non-processive motor, the proposed mechanism is capable of working alone in
the absence of collective effects (kind of ’one-legged kinesin’). We expect that the most
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Figure 9.14. The XY-tilted ratchet with control function in soft device configuration with
fext = −0.1. a) The variation of mechanical work Wmec with the increasing temperature
D at different amplitude A. b) The variation of mechanical efficiency εmec (9.21) with the
increasing temperature D at different amplitude A. c) The variation of Stokes efficiency
εStokes (9.22) with the increasing temperature D at different amplitude A. d) The variation
of rectifying efficiency εrec (9.24) with the increasing temperature D at different amplitude
A of rocking. The relevant parameters k0 = 1.5, k1 = 0.43, l = 0.35, a = 1, λ1 = 0.7, L =
1, Vmax = 1.5 e = 0.1, T = 6. The direct Langevin simulations performed with Euler
scheme for time step ∆T = 0.5 × 10−3 and Nr = 10 × 104 stochastic realisations.

important consequences of the coupled model will be seen when the collective effects are
taken into consideration. This subject however is outside the limited scope of this Thesis.

Finally, we observe that while the proposed model offers a particular mechanical inter-
pretation of the detachment in the power stroke driven framework, other formulations are
possible as well. Thus, in the next chapter we continue working with the idea of a control
function but introduce a different type of control with a hysteretic memory which allows
one to reproduce the four states of the Lymn-Taylor cycle with even more certainty.
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Figure 9.15. The XY-tilted ratchet with control parameter. a) A simplified scheme of motor
cycle in hard device configuration. b) A simplified scheme of motor cycle in soft device.



Chapter 10

Synthetic model with hysteretic
control

We introduce a generalization of the synthetic model studied in the last chapter
where the feedback operator, coordinating the state of the attachment with the

conformational state of the power stroke element, has a hysteretic nature. This allows
us to build a mechanical device which has four distinct mechanical states that can be
associated with the biochemical states constituting the Lymn-Taylor cycle. The new model
is formulated in the same framework as our other models under the assumption that the
actin filament is passive and may not even be polar so that both the symmetry breaking
and the activity come from the power stroke element. The main new assumption is that the
relative displacement of the myosin head and the actin filament is a multi-valued function
of the internal configuration of the power stroke element which contain some elements of
an elementary history dependence. Behind such phenomenological assumption is the idea
of internal micro meta-stability which has to be studied at the molecular scale.

More specifically, the coupled model studied in the previous section has an obvious
shortcoming: the detachment takes place when the bistable element is in the spinodal state
meaning that it is just about to leave the energy well corresponding to pre-power stroke
state. As result, the power stroke remains incomplete because the detachment prevents
the system of reaching the second well of the bi-stable potential. This means that the
detachment must be delayed and should take place when the power stroke has been already
completed. Similarly, attachment must take place only after the power stroke element has
been recharged. This means that the control function must switch ’on’ and ’off’ the
periodic potential at different values of the variable y−x depending of the conformational
state of the bistable element. The model must implicitly contain some history dependence
which we implement in this chapter by using conventional Preisach operators.

10.1 Preliminaries

We recall that the main goal of this thesis was to construct a mechanical model of a Brow-
nian ratchet which is driven through the power stroke element and is fully compatible
with Lymn-Taylor cycle. As we have seen, the models presented in the previous chapters
reproduce the desired cycle only partially. The weak point of X-tilted, Y-tilted and XY-
tilted ratchet models was the ambiguous interpretation of the detached state. By using
a multiplicative control function we resolved this problem, however, the resulting model
can only be interpreted as a four state motor if transient states are interpreted as station-
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ary. In this chapter we follow the ideas pioneered by J.Prost, F.Jülicher and J.F.Joanny
[3, 52] and make the coordination between the power stroke mechanism and the attach-
ment/detachment mechanism more subtle. More specifically we assume that flashing is
not instantaneously coupled to the conformational state but instead takes place with a
delay.

We begin with writing a dimensionless system of the over-damped Langevin equations
for the case of general time depending control Ψ(t):





dx

dt
= − Ψ(t)∂xΦ(x) − ∂xV (y − x) − ftilt(t) +

√
2D ξx(t)

dy

dt
= − ∂yV (y − x) + ftilt(t) +

√
2D ξy(t)

(10.1)

Here Φ(x) is the periodic potential, V (x − y) is an asymmetric bistable potential and
ftilt(t) is time periodic rocking force ftilt(t) with zero average. The parameter D is the
intensity of the white noise. Suppose first that the function Ψ(t) takes two values 0 and 1
depending on the sign of the correlated component of the noise ftilt(t):

Ψ(t) =

{
1, for ftilt(t) ≥ 0

0, for ftilt(t) < 0
(10.2)

In this setting the motor cycle follows the scheme:

• The configurational particle makes a transition between the two wells of the bistable
potential: pre-power stroke→ post-power stroke in the attached configuration, as
Ψ(t) = 1 and ftilt(t) ≥ 0. During the power stroke the myosin head is attached.

• The configurational particle makes a reverse transition between the two wells of the
bistable potential: post-power stroke → pre-power stroke in the detached configu-
ration, as Ψ(t) = 0 and ftilt(t) < 0. During such recharging of the power stroke
mechanism the particle remains detached.

In Fig.10.1 we show a schematic graphic presentation of the resulting motor cycles in hard
and soft devices. One can see that in this way we have obtained a hybrid of rocking and
flashing ratchet devices. Thus, we may completely eliminate the rocking from the bi-stable
element and define the switch between the two configurations of the actin filament: with
periodic and with flat energies. In this way we obtained a conventional flashing ratchet
[3, 52]. If instead we eliminate the time dependent multiplicative term in front of the
periodic energy, we obtain the XY tilted rocking ratchet studied in Chapter 8.

The main problem with a purely flashing ratchet is that it defies simple mechanical
interpretation because it can not be formulated directly in terms of applied forces. There-
fore we prefer to stay in the framework of rocking ratchet approach and replace explicit
excitation of the actin potential by the (steric) coupling between the power stroke and the
attachment devices.

In the previous chapter we have already described a prototypical ratchet device with
internal control depending on the state of the bistable element. The corresponding set of
dimensionless overdamped Langevin equations was written in the form:





dx

dt
= − ∂x[Ψ(y − x)Φ(x)] − ∂xV (y − x) − ftilt(t) +

√
2D ξx(t)

dy

dt
= − Φ(x)∂yΨ(y − x) − ∂yV (y − x) + ftilt(t) +

√
2D ξy(t)

(10.3)
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Figure 10.1. The flashing multidimensional motor. The schematic graphic presentation of
motor cycle in isometric and isotonic regime. a) The hard device motor cycle. b) The soft
device motor. In the detached configuration, the Brownian particle diffuses and can take a
different paths to recharge the power-stroke.

where the control parameter was taken in the form:

Ψ(y − x) ∼ 1

2

(
1 + tanh

y − x− l

e

)
(10.4)

As we have seen, the ensuing device can work as a motor and can carry cargo , moreover
it partially reproduces all four states representing the bio-chemical Lymn-Taylor cycle.
However, the post power stroke state was only transient because of the detachment and
the pre-power stroke was only transient because of the attachment.

To overcome these shortcomings we can delay both the attachment and the detachment
and introduce a memory dependence in the multiplicative term Ψ(y − x). To this end we
first define two control functions: Ψ+(y − x) and Ψ−(y − x), where we recall that y − x
is the variable characterizing the state of the bistable element described by the potential
V (y − x) :

• The function Ψ+(y− x) affects the space periodic potential Φ(x) when the bi-stable
element switches from well A (pre-power stroke) to well B (post-power stroke).

• The function Ψ−(y− x) affects the space periodic potential Φ(x) when the bi-stable
element switches from well B (post-power stroke) to well A (pre-power stroke)

In Fig.10.2a) we shows the exact meaning of the two functions Ψ+(y − x) and Ψ−(y − x).
One can see that they associate attachment/detachment with reaching exactly the minima
of the corresponding wells. Another important feature of such model is that these two
functions have overlapping domains of definition.

The next step is to superpose these two control functions and incorporate the resulting
functional of the history of the process into the Brownian ratchet framework based on the
two-dimensional energy landscape Ψ±(y− x)Φ(x) + V (y−x)− (y− x)ftilt(t). In practice,
we need to define the operative branch which depends not only on the current value of
the variable y − x but also on its history y(τ) − x(τ), τ ≤ t. In other words we need to
introduce a memory into our mechanical system.
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Figure 10.2. The schematic construction of the memory operator. a) The exact meaning of
the two control functions Ψ+(y−x) and Ψ−(y−x), which control attachment / detachment.
The control function Ψ+(y − x) (red solid line) must be applied during the power stroke
when the particle moves from well A (pre-power stroke) into well B (post-power stroke). The
function Ψ−(y−x) (blue solid line) must be applied during the recovery power stroke when
the particle moves from the well B (post-power stroke) into the well A (pre-power stroke). b)

The hysteresis loop corresponding to the simplest memory control operator Ψ̂αβ. Numbers
α and β correspond to ”up”and ”down”switching value of input signal. Note that we assume
α ≤ β, the operator interacts only with the displacement yt − xt.

The construction presented below was inspired by the Preisach model of hysteresis
in magnetic systems [78]. First, we introduce an operator Ψ̂αβ which models the re-
lay switching between the attached and the detached state. This operator acts on the
displacement history y(t) − x(t) and the output Ψαβ = Ψ̂αβ[y(t) − x(t)] constitutes the
multiplicative term in front of the periodic potential. Now the energy of the system is:
G(x, y, t) = ΨαβΦ(x) + V (y − x) − (y − x)ftilt(t), where for simplicity we omit the terms
identifying soft or hard device configurations. The resulting ratchet device is described by
the following system of dimensionless overdamped Langevin equations:





dx

dt
= − Ψαβ∂xΦ(x) − ∂xV (y − x) − ftilt(t) +

√
2D ξx(t)

dy

dt
= − ∂yV (y − x) + ftilt(t) +

√
2D ξy(t)

(10.5)

The operator Ψ̂αβ in (10.5) is the simplest hysteresis-like operator. Numbers α and β
define the ”up” and the ”down” switching values of the input signal, see Fig.10.2b). We
limit the output of the operator Ψαβ only to two values 1 and 0. The operator has therefore

only two-positions, Ψ̂αβ [yt − xt] = 1 and Ψ̂αβ[yt − xt] = 0, which ultimately control the
proximity of the space periodic potential Φ(x). We can illustrate the action of our Preisach
operator as follows:

• Suppose that we start in the state with yt−xt < α. Then the output of the operator
is 1 or “up”. As the displacement yt − xt is increased, the descending branch abcde
is followed and the output of operator remains 1. When the displacement yt − xt
reaches the threshold β, the output switches to 0, or “down”. Further increase of the
displacement yt − xt does not change the state of the operator.

• Suppose now that we reverse the process so that the displacement yt−xt is decreasing
as we follow the ascending branch edfba. The output of the operator does not change
( remains 0, or “down”) until the threshold α is reached where the output switches
to 1, or “up”. Further decreasing of the displacement yt − xt does not change the
output.
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One can see that the value of the operator’s output at time t depends on the past history
of the variable yt − xt, in particular on the state of the system in the moment t − δt. In
our numeric algorithm we express the output of the operator Ψαβ at the time moment t
as follows:

Ψαβ =





1, for [yt−δt − xt−δt] < α

0, for [yt−δt − xt−δt] > β

Ψαβ remains unchanged if α ≤ [yt−δt − xt−δt] ≤ β

(10.6)

Here α and β define the ”up” and the ”down” switching values of the input signal yt−δt −
xt−δt.

We emphasize that our system (10.5) does not represent a conventional flashing ratchet,
because the output of the hysteresis operator Ψαβ cannot be given by an explicit function
of time. We can rather define the output of our operator as Ψαβ(yt−δt − xt−δt). By this
representation we emphasize the fundamental short memory structure of this operator: at
moment t the ratchet device remembers its state at time t− δt where δt may be arbitrary
small.

We can fix the parameters α and β rather freely respecting the rule α ≤ β, however,
the amplitude of the oscillations y−x under the action of the rocking force ftilt(t) must be
strictly larger than the difference β − α. For instance, in the case of zero load soft device,
we can choose the numbers α and β in the interval

α, β ∈
{
min[

ftilt(t)

k0
, 1 + ftilt(t)/k1], max[

ftilt(t)

k0
, 1 + ftilt(t)/k1]

}
(10.7)

10.2 Cycle structure in soft and hard devices

In our numerical simulations we use the symmetric (!) piece-wise linear saw-tooth potential
Φ(x) (Vmax = 1.5, L = 1, λ1 = λ2 = 0.5) , and the symmetric (!) bistable potential
V (y − x) formed by two parabolas with equal stiffness (k0 = k1 = 1.5, l = 0.5) We apply
square wave rocking signal with time period T = 10 and amplitude A = 3. We fix the ”up”
and ”down” thresholds to α = 0 and β = 2 and this is the only place the asymmetry enters
the problem. We perform our numerical simulations by using a simple Euler scheme with
a constant time step ∆t = 0.5 × 10−3 and average the results over Nr = 103 stochastic
realizations.

Despite the symmetry of both potentials, the motor shows directional movement (
backwards) along the x axis. In Fig.10.3 we show the average trajectory of a configurational
particle in the soft device configuration. In Fig.10.3b) we show the average motion with
a constant speed is accompanied by characteristic oscillations between the two distinct
wells of the bistable potential. In Fig.10.3c) we show the averaged trajectory reported in
the phase plane [y − x, x]. By colored scatters we indicate one motor cycle during time
period T . In Fig.10.3d) we juxtapose the motor cycle with the energy landscape in positive
and negative phases of the rocking. We use red scatters to identify the part of the cycle
associated with the positive phase of ftilt(t), and blue scatters to show the part of the path
associated with the negative phase of ftilt(t). In Fig.10.4 we show the computed motor
cycle in hard device. Here the rocking force was chosen to have a period T = 20 and
amplitude A = 3.5 and we fixed the ”up” and ”down” thresholds at α = 1 and β = 2.

In Fig.10.5 we present schematic illustrations of the obtained motor cycles in hard and
soft devices. From these figures we see that our ratchet system is able to reproduce a
four-states functional cycle which can be directly compared with the biochemical theory



166 10 - Synthetic model with hysteretic control

Figure 10.3. The average trajectory of XY-tilted model with memory control operator in
the soft device configuration at zero load. a) The average trajectory xt (solid black line) and
yt (solid gray line). b) The time evolution of the system in coordinates [time, y− x]. c)The
average trajectory in coordinates [y − x, x], note that the motor crosses few space periods.
d) One motor cycle as segment of average trajectory during the time period T of the ftilt(t).
The red scatters correspond to the positive phase of the rocking ftilt(t) = +A and the
blue scatters–to the negative phase of rocking ftilt = −A. The colored bands indicate the
structure of the energy landscape, the coldest colors indicate the minima and hottest colors
indicate the maxima. The relevant parameters k0 = k1 = 1.5, l = 0.5, λ1 = 0.5, L =
1, Vmax = 1, α = 0, β = 2 with time period T = 10 and amplitude A = 3 of the rocking
force.

behind the Lymn-Taylor cycle. Indeed, the obtained mechanical cycle in the soft device
can be described as follows:

• 1 → 1’ → 2 . As before we start at the very end of the negative phase of the rocking
ftilt(t) when our configurational particle explores the energy well “0”. The system is
in the attached state and Ψαβ = 1. Then the value of ftilt(t) changes from negative
to positive. After an immediate advance 1 → 1’ (in the backward direction long x),
the bi-stable element goes through the major transition 1’ → 2 which we identify
with the power stroke, see Fig.10.5b).

• 2 → 3 . As soon as the variable yt − xt reaches the threshold β, the motor gets
detached and we get Ψαβ = 0. While we remain in the positive phase of the tilting
ftilt(t) the motor finishes the power stroke ending up in the well “1”.

• 3 → 4 . We are now in state 3 (energy well ”1”), see Fig.10.5b). The periodic
external force changes its sign with the memory operator output Ψαβ = 0. Following
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Figure 10.4. The XY-tilted model with memory control operator in the hard device config-
uration with z = 0. a) With solid black lines we depict the level set representation of the
energy landscape in the positive phase of rocking and with dashed black lines –the same
landscape in the negative phase of rocking. The average motor trajectory plotted by the
thick red line during the positive phase of ftilt(t) and by the thick blue line during the
negative phase. b) The average tension measured by hard device. The relevant parameters
k0 = k1 = 1.5, l = 0.5, λ1 = 0.5, L = 1, Vmax = 1, α = 1, β = 2 with time period T = 20
and amplitude A = 3.5 of the rocking force.

Figure 10.5. The XY-tilted ratchet device with memory control operator. The scheme of
the 4-states motor cycle in hard and soft device configurations. a) The motor cycle in the
hard device configuration, we can identify the power-stroke in the attached configuration
➀→➁ and the recharging of power stroke in the detached configuration ➂→➃. We associate
each states ➀,➁,➂,➃ to the four states of Lymn-Taylor cycle. b) The motor cycle in the
soft device configuration. The motor moves in the backward direction along x axe. We
identify as the motor forward step with following power-stroke the transition ➀→➁ in the
attached configuration, we identify as the recharging of power stroke the transition➂→➃ in
the detached configuration.

the change in the energy landscape the power stroke gets recharged. As soon as the
displacement yt − xt becomes equal to α, the system passes into the attached state
Ψαβ = 1. This means that the motor returns into the initial configuration and the
cycle can start again.

Similar mechanical cycle in the hard device can be described as follows:

• 1 → 2 . We start at the end of the negative phase of the tilting ftilt(t) when our
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configurational particle explores the energy well “0”. The system is in the attached
state and Ψαβ = 1. Then ftilt(t) changes the sign to positive. The bi-stable element
goes through a transition 1 → 2 which we identify with the power stroke Fig.10.5a)
.

• 2 → 3 . As soon as the displacement yt − xt reaches the threshold β, the system
passes into the detached state with Ψαβ = 0. During the positive phase of tilting
ftilt(t) the motor finishes the power stroke advancing into the well “1”.

• 3 → 4 . We now are in state 3 (energy well ”1”), see Fig.10.5a). The periodic force
changes sign again and the energy landscape becomes tilted in the opposite direction
with the memory operator output equal to Ψαβ = 0. In response to the new driving
force the power stroke mechanism is getting recharged.

• 4 → 1 As soon as the displacement yt − xt becomes equal to α, the system passes
into the attached state Ψαβ = 1. Therefore during the negative phase of tilting
ftilt(t) the motor finishes the recharging of the power stroke ending up in the well
“1”. Therefore the motor returns into its initial configuration and the cycle can start
again.

We observe that in the conventional Brownian ratchet we need to brake spatial sym-
metry in order to obtain a directional motion. The system introduced in this chapter is
different: it advances on a fully symmetric two-dimensional energy landscape. Here the
phase space symmetry is broken by the presence of a memory operator, see Fig.10.6. In
fact the defined hysteresis loop id closely related to the displacement yt − xt in the effec-
tive bi-stable potential, but the mechanics of bi-stable element controlled by the correlated
noise term ftilt(t). Notice that by definition, the correlated noise acts in opposite phase on
yt and xt, see (10.5). In this way the memory loop not implicitly correlated with rocking
mechanism ftilt(t). Why we obtain the paradoxical situation, in the system characterized
by symmetric potentials Φ(x) and V (y − x) the direction of the average motion is defined
by the particular configuration of the hysteresis loop.

In fact, we can define two symmetric hysteresis operators: in the first case the attached
state is associated with the well A of the bistable potential and in the second case the
attached state is associated with the well B. We can then select the thresholds in a
symmetric way α = −β. In the ratchet system with the memory operator of the first type,
see the top trajectory in Fig.10.6c), the motor moves in the forward direction along x
axis. Instead, in the ratchet system with the memory operator of the second type, see the
bottom trajectory in Fig.10.6c), the motor moves in the backward direction. This shows
that the configuration of the memory operator output fully determines the direction of
the averaged motion. Note what the four-state structure of the motor cycle is preserved
in both types of hysteretic coupling.

10.3 Conclusions

By introducing a hysteretic coupling between the power stroke element and the attachment
mechanism we obtained a model of molecular motor whose direction of motion is controlled
solely by the orientation of the hysteretic loop. This idea may be useful outside the domain
of muscle mechanics because the proposed mechanism of the rectification of thermal noise
appear to be new.

In the muscle context, the strong point of the new approach is that it allows one to
explicitly introduce into the mechanical model all for distinct chemical states constituting
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Figure 10.6. The nature of asymmetry introduced by operator Ψ̂αβ. a) The particle moves
from the well A into the well B (solid blue arrows) during the detached configuration, which
now associated to positive phase of rocking. The motor moves from the well B into the well A
(solid red arrows) during the attached configuration, which now associated to negative phase
of rocking. b) The Brownian particle moves from the well A into the well B (the solid red
arrows) during the attached configuration, which associated to the positive phase of rocking.
The motor moves from the well B into the well A (the solid blue arrows) during the detached
configuration, which associated to the negative phase of rocking. c) The system characterized
by symmetric space periodic potential Φ(x) and symmetric double well potential V (y − x).
We define the output of hysteresis operator Ψαβ by symmetric values α = −β. Numbers α
and β correspond to ”down”and ”up”switching value of input signal. We assume two distinct
choices of output of hysteresis operator. The relevant parameters k0 = k1 = 1.5, the minima
of bistable element in −0.5, 0.5 so l = 0 and λ1 = 0.5, L = 1, Vmax = 1, α = −1, β = 1
with time period T = 5 and amplitude A = 2.5 of the rocking force.

the basic biochemical Lymn-Taylor cycle. Such chemo-mechanical identification opens new
perspectives in the physical understanding of the fundamental mechanics hidden behind
the existing chemo-mechanical models.

The memory operator, introduced in this chapter, can be viewed as an attempt of a 1D
description of the most elementary steric effect associated with myosin /actin interaction.
The origin of this effect lies in the fact that the power stroke is accompanied by the
separation of the actin myosin from the myosin head while the recharging of the power
stroke element leads to the myosin head coming closer to the actin filament. The hysteretic
nature of such effective coupling originates from the fact that not only the current state of
the power stroke matters but also whether it is in the phase of the strike or in the phase of
the recharging. This may mean that in realistic 3D settings the two processes, the strike
and the recharge, are not exactly symmetric which is difficulty to represent explicitly in
the 1D projection.





General discussion and conclusions

In this Thesis, we developed a new mathematical model simulating force-generating me-
chanical behavior of myosin II in skeletal muscles. The proposed model provides

the first purely mechanical description of both the power-stroke and the attachment-
detachment process. It reproduces all four main stages of the biochemical Lymn-Taylor
cycle without any reference to chemical states. To evaluate mechanical efficiency of the
resulting engines we used a simple methodology of stochastic energetics allowing one to
analyse the energy transduction associated with different motor designs. This approach is
complementary to the more conventional biochemical energetics which is commonly used
to evaluate efficiency of the myosin cycle.

We first suppressed the power stroke and presented a thorough study of the rock-
ing ratchet model adapted to the modeling of the myosin/actin interaction. We fo-
cused on the important difference between the soft and hard device loading configura-
tions which remained undervalued in the purely biochemical models. We then suppressed
the attachment-detachment and developed a separate theory of the power stroke driven
contractions in soft and hard device configurations. As a biproduct of this analysis we
developed a new understanding of the tension-length curve for a tetanized sarcomere in
isometric conditions.

To model the full cross-bridge mediated actin-myosin interaction we proposed a general
three dimensional phase space framework coupling a periodic potential with a bistable
potential. In this framework the periodic potential represents myosin/actin interaction;
the conformational change responsible for the power stroke is described by a double-well
potential. The internal driving, which represents the ATP activity, is represented as a
time periodic force with zero average. The correlations associated with this signal reflects
the nonequilibrium nature of the external reservoir.

Depending on the particular subunit where the external correlated force is applied,
we defined three archetypal designs of our thermal ratchet machinery. By localizing the
effect of the periodic rocking in these three different settings on a single internal degree of
freedom, we obtained X-tilted, Y-tilted and XY-tilted models:

• The X-tilted motor is the simplest arrangement where the external activity is con-
centrated in the actin filament. We have shown that with X-tilted design one can-
not simulate the full 4 − state Lymn-Taylor cycle because the detachment and the
recharge of the power stroke element are always combined. This model undermines
the role of the power stroke by treating it as a passive component of the contraction
mechanism. In addition, this model does not treat adequately the detached state of
the acto-myosin system.

• In the Y-tilted model the correlated noise acts on the internal variable located inside
the power stroke mechanism making both the power stroke and the actin filament
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active. The resulting ratchet performs 4-state cycle in the soft device and either
2-state or 4-state cycle in the hard device. This means that the proposed framework
is capable of mimicking the complete Lymn-Taylor cycle however the interpretation
of such internal solicitation in term of the molecular structure of the cross-bridges
remains ambiguous.

• XY-tilted model can be viewed as a ratchet system which is driven entirely through
the activity concentrated in the power stroke element while the actin filament is
treated as passive. This interpretation is compatible with the physiological percep-
tion that it is the power stroke which is the active element behind muscle contraction.
By treating the power stroke as the primary agent we view the attachment detach-
ment is a secondary process ensuring the translational character of the motion. This
model generates 3-state cycle which remain only partially compatible with the ex-
isting biochemical models.

While the XY tilted ratchet is a viable mechanical analog of the Lymn-Taylor cycle, we
still have an ambiguity in the interpretation of the detached state which is not explicitly
present in the proposed model. In all discussed models the detached state is represented
as a maximum of the periodic and therefore the detachment is always associated with a
horizontal displacement and takes place very quickly. Therefore we proposed two synthetic
models where the XY tilted ratchet mechanism is augmented by taking into consideration
the explicit steric separation of thick and thin filaments:

• In the first model a multiplicative ramp type control Ψ(y − x) is applied to space-
periodic potential Φ(x). We associated the pre-power stroke with a detached state
(no interaction with the spatial periodic potential Φ(x)) and the post power stroke
– with the attached state (the system interacts strongly with the space periodic
potential Φ(x)). In this way the detached state is fully integrated into the mechanical
cycle. As the result the proposed model reproduces all four states of the Lymn-
Taylor cycle even though the individual states are interpreted as transient mechanical
configurations. Most importantly, in this model the conformational state of the power
stroke mechanism regulates the distance of the myosin head form actin filament.

• In the second model we introduced a ratchet system with a hysteretic memory control
operator which allows one to associate particular mechanical configurations with
all four states of the Lymn-Taylor cycle with full confidence. By introducing such
delayed coupling between the power stroke element and the attachment mechanism
we obtained a model of molecular motor whose directional of motion is controlled
solely by the orientation of the hysteretic loop. The memory operator can be viewed
as an attempt of a 1D description of the most elementary steric effect associated with
myosin /actin or kinesin/microtubule interaction. The origin of this effect lies in the
fact that the power stroke is accompanied by the separation of the actin myosin
from the myosin head while the recharging of the power stroke element leads to
the myosin head coming closer to the actin filament. The hysteretic nature of such
effective coupling originates from the fact that the actin potential feels not only the
current state of the power stroke matters but also whether it is in the phase of the
strike or in the phase of the recharging.

In summary, we have shown that a very simple mechanical system is able to generate
complex stochastic motion, which is close to what is observed during muscle contrac-
tions. Starting from the existing approach of rocking ratchets and reinventing it in the



10.3. Conclusions 173

framework of the power stroke activity , we were able to unify the description of a single
processive molecular motor such as kinesin, with the description of the collectively op-
erating non-processive molecular motors such as myosin. In this way we built a bridge
between theoretical description myosin and kinesin motors that have so far been treated
as completely different. One can say that our ”kinesin-like” myosin is a mutant one-leg
ratchet device jumping under strong power-stroke pushes from one attached site to another
while transporting cargo. The next stage of the modeling should include a study of the
collectively operating myosin motors, see Fig.10.7

Figure 10.7. The scheme of collective model in hard and soft device incorporating Nxb single
cross-bridge each based on the power stroke driven thermal ratchet framework. Probably, the
one possible way describe the functional half-sarcomere. a) The hard device configuration.
b) The soft device configuration.

Using the proposed framework we can explore the possibility to match the real exper-
imental measurements done in vitro. This requires filtres the values of the parameters
using the experimental data and in this way we should be able obtain not only qualitative
but also quantitative results. Most importantly, given the purely mechanical nature of our
modeling, one can consider building the actual artificial molecular size devices based on
the principles developed in this work.





Appendix A

Theoretical background

In this section we review several important technical tools from the theory of stochas-
tic differential equations which we later use to study particular models of the power

stroke. In particular, we discuss the interpretation of solutions of a Langevin equation,
the formalism of Fokker-Plank equation, the numerical methods for solving stochastic dif-
ferential equations, the energetics of a stochastic system and the basics of the theory of
Brownian ratchets. This prepares us for the study of the power stroke element which we
view is a mechanical system with few degrees of freedom subjected to a thermal noise and
described by a system of stochastic differential equations. In contrast to white noise a
molecular motor is also subjected to correlated noise which characterizes the nonequilib-
rium nature of the environment and allows the motor to extract useful energy from this
environment.

A.1 Langevin equation

Langevin equation was originally proposed for the description of free Brownian motion.
More recently it is viewed as a universal way to describe the mechanics of a small object in
contact with a large system in thermal equilibrium. There are particular situations where
the Langevin equation can be derived rigorously from a microscopic model, for instance
when a heavy particle interacts with an infinite number of light particles and there is a
clear separation of time scales. More often this equation is simply postulated without any
reference to the particular Hamiltonian system at a smaller scale.

A general Langevin equation in multidimensional case with a configuration described
by a vector q = q1, q2 . . . , qn can be written as :

dqi
dt

= Fi(q) + Γi(t) (A.1)

where F = F1, F2 . . . , Fn is the deterministic force. The stochastic Langevin force is
expressed as an additive white noise Γ(t) = Γ1(t),Γ2(t), . . . ,Γn(t) where

〈Γi(t)〉 = 0,

〈Γi(t)Γj(s)〉 = Dijδ(t − s).
(A.2)

Instead of following stochastic trajectories directly one can instead study the evolution of
the probability density function P (q, t) which is described by the Fokker-Planck equation

∂P (q, t)

∂t
= −

∑

i

∂

∂qi
[FiP (q, t)] +

1

2

∑

ij

Dij
∂2P (q, t)

∂qi∂jq
. (A.3)
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The equation (A.1) simplifies if the Langevin force has only diagonal term, Dij ∼ 2Diδij .
Then we can write

dqi
dt

= Fi(q) +
√

2Di ξi(t) (A.4)

where we used the standard Gaussian white noise ξ(t) with the properties

〈ξi(t)〉 = 0,

〈ξi(t)ξj(s)〉 = δijδ(t − s)
(A.5)

Consider an inertial system subjected to the potential V (x1, x2, . . . , xN ). The correspond-
ing Langevin equation reads:





dxi
dt

= vi, i = 1, 2, . . . , d

m
dvi
dt

= −ηivi −
∂V (x1, . . . , xN )

∂xi
+
√

2Di ξi(t)

(A.6)

where the state vector consists of d components of displacement xi and d components of
velocity vi and ηi are the coefficient of viscous friction. The diffusion coefficients Di must
satisfy the fluctuation-dissipation relationships

Di = ηikBT, (A.7)

where T is the temperature. For a single particle we can rewrite

dv

dt
= − η

m
v +

η

m

√
2kBT

η
ξ(t) (A.8)

Here we made apparent the inertial time scale

τ0 =
m

η
(A.9)

After direct integration and taking the average we can express the mean value of velocity
as:

〈v(t)〉 = v(0) exp(− t

τ0
) (A.10)

where v(0) is defined by the initial conditions. For large t, the velocity distribution con-
verges to Maxwell distribution with time scale τ0. Using the known Stokes relation from
fluid mechanics, see [65], we can estimate the value of this time scale. For simplicity, we
consider the colloidal particle of radius r, with density ρ and assume that the viscosity of
fluid is η. Trough simple geometric consideration, we express the drag coefficient η = 6πζr
and the mass m = 4

3πρr
3. From these relations we can find that

τ0 =
2

9

ρ

ζ
r2 (A.11)

Notice that τ0 is proportional to the square of particle radius which lowers τ0 signifi-
cantly when we leave the macroscopic word. Thus, at r = 100nm, comparable to myosin,
we take the water viscosity at 20◦C approximatively equal to one centipoise, ζwater =
10−9g/(nm s), and using the density of latex 960kg/m3 for ρlatex ≈ 10−21g/nm3,we esti-
mate the inertial time scale to be ≈ 2, 2×10−9s which is much smaller than the time scale
of motor reaction cycle ≈ 10−3s.
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Consider now a particle under the action of the potential V (x). The provided demon-
stration was performed by H.Wang, [125].

We are interested, typically, in the time scale of chemical reaction. Let us show the
consequences of the limit τ0 → 0 on Langevin equation with inertia. To generalize our case
we introduce in the Langevin equation with inertial term and we introduce the potential
V (x), have,

dv

dt
= − 1

τ0

[
v +

D

kBT
∂xV (x) −

√
2Dξ(t)

]
(A.12)

we consider a model equation for velocity

dv

dt
= − 1

τ0
[v − g(t)] (A.13)

taking the limit of exact solution for τ0 → 0

v(t) = g(t) + exp

(
− t

τ0

)
[v(0) − g(0)] +

1

τ0

t∫

0

exp

(
− t− s

τ0

)
[g(s) − g(t)]dt (A.14)

ans the term with exponential goes to zero at the limit τ0 → 0

lim
τ0→0

v(t) = g(t) (A.15)

we can identify the function g(t) by

g(t) = − D

kBT
∂xV (x) +

√
2Dξ(t) (A.16)

we see that for limit τ0 → 0 the solution of equation (A.12) satisfy the relation

v =
dx

dt
= − D

kBT
∂xV (x) +

√
2Dξ(t) (A.17)

or we can rewrite the equation in familiar form:

dx

dt
=

1

η

(
−∂xV (x) +

√
2kBTηξ(t)

)
(A.18)

which is the overdamped Langevin equation. The limit τ0 → 0 called Einstein-Smoluchowski,
and the time scale τ0 is a Smoluchowski limit. This equation signify that If we interested
in the behavior for the time scales much larger than τ0, we can safely ignored the effect of
inertia – the high-friction. This will be our main modeling tool in what follows.

A.2 Stochastic differential equations

Notice that in our Langevin equation (A.18), the white noise term can be viewed as a
derivative of a Wiener process [23]. It is then natural to rewrite (A.18) as the Stochastic
Differential Equation (noted SDE):

dXt =
1

η

(
−∂xV (Xt)dt +

√
2kBTηdBt

)
(A.19)

where dBt is an increment of a Wiener process with variance dt. For numerical application
we use dBt ∼ N(0, 1).
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The task now is to define the stochastic process Xt. For a free particle we have
Xt ∼ N(0, 1) which means that the probability density of X is a normal distribution with
zeros mean and variance equal to 1, or in other terms that P (x) =

√
2π exp(−t2/2). For

a given initial condition X0 = x0, the solution of (A.19) can be written as

Xt = X0 +
1

η




t∫

0

−∂xV (Xt)dt +
√

2kBTη

t∫

0

dBt


 (A.20)

where, we first interpret the second term as an Itô stochastic integral. It is defined on the
interval [0, t] with a given partition t1, . . . , tn as follows

t∫

0

f(t)dBt = m.s. lim
n→∞

[
n∑

i=1

f(ti−1)(Bti −Bti−1)

]
(A.21)

where the essential properties of the increment dBt are:

ti+1∫

ti

(dBt)
2 = ti+1 − ti;

ti+1∫

ti

(dBt)
n+2 = 0, n > 0 (A.22)

We can also consider a more general form of SDE:

dXt = a(Xt, t)dt + b(Xt, t)dBt (A.23)

whose formal solution can be written in the form:

Xt = X0 +

t∫

0

a(Xt, t)dt +

t∫

0

b(Xt, t)dBt (A.24)

The integral in the last term can also be defined following either Stratonovich as

∫ t

0
b(Xt, t) ◦ dBt ⋍

∑

n

(
b(Xtn+1 , tn+1) + b(Xtn , tn)

2

)(
Btn+1 −Btn

)
(A.25)

and following Itô as

∫ t

0
b(Xt, t) · dBt ⋍

∑

n

b(Xtn , tn)
(
Btn+1 −Btn

)
. (A.26)

The difference of two schemes is the choice of a point, where we define the value of the func-
tion b(Xt, t). In the Itô approach we take the left point of interval and in the Stratonovich–
the middle point of interval. To understand the difference we can compute the integral of
a known function, for example of a Brownian motion Wt. The Stratonovich integral gives

∫ τ

0
Bt ◦ dBt ⋍

N−1∑

n=0

(
Btn+1 + Btn

2

)(
Btn+1 −Btn

)
=

=
1

2

N+1∑

n=0

B2
tn+1 −B2

tn =
1

2
B2

τ

(A.27)
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The Itô integral gives a different result

∫ τ

0
Bt · dBt ⋍

N−1∑

n=0

Btn

(
Btn+1 −Btn

)
=

=
1

2

N−1∑

n=0

((
B2

tn+1 −B2
tn

)
−
(
Btn+1 −Btn

)2)
=

=
1

2

(
B2

τ −B2
0

)
− 1

2

N−1∑

n=0

(
Btn+1 −Btn

)2

(A.28)

Here we can interpret the term under the sum as Btn+1 − Btn =
√

∆tGn, where with Gn

we denote the Gaussian distribution. Then the second term in the left hand side of the last
equation takes the form τ

2
1
N

∑N−1
n=0 G2

n. As we know the limit limN→∞
1
N

∑N−1
n=0 G2

n → 1
and therefore ∫ τ

0
Bt · dBt ⋍

N−1∑

n=0

Btn

(
Btn+1 −Btn

)
=

1

2
B2

τ −
τ

2
(A.29)

The use of these two different integration schemes is not just a mathematical trick to
solve a particular SDE, but it can also emerge naturally in the modeling of physical
phenomena,[62]. For instance, in same physical systems, white noise processes is usu-
ally used as a limit of a correlated or colored noise. In those cases the Stratonovich
interpretation may be appropriate for limiting stochastic differential equation obtained by
replacing the real noise by the Wiener process. On the other hand, real processes are often
discrete: the events may be happening at discrete time moments and the system can be
spatially discrete as well. In those cases Itô integral provides more natural approximation
of the real process. In this Thesis, all stochastic differential equation will be interpreted
as Itô stochastic differential equations. Even if Stratonovich interpretation is used to do
the computations which are easier in this case, the final expressions will be always given
in the Itô’s formulation.

To build a link between the two formulations we can use a result known as Itô formula
or Itô lemma . Consider an arbitrary function f of a stochastic variable Xt interpreted
as a solution of a general SDE. The Itô formula describes the change of variables in the
context of stochastic differential equations:

df(Xt) =

[
a(Xt, t)

∂

∂x
f(Xt) +

1

2
[b(Xt, t)]

2 ∂2

∂x2

f(Xt)

]
dt + b(Xt, t)

∂

∂x
f(Xt)dBt (A.30)

By applying this formula one can show that, see [23]:

• If we use the Itô SDE:

dXt = a(Xt, t)dt + b(Xt, t)dBt (A.31)

the corresponding Stratonovich SDE is:

dXt =

[
a(Xt, t) −

1

2
b(Xt, t)∂Xb(Xt, t)

]
dt + b(Xt, t) ◦ dBt (A.32)

• If we use the Stratonovich SDE

dXt = a(Xt, t)dt + b(Xt, t) ◦ dBt (A.33)
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the corresponding Itô SDE is:

dXt =

[
a(Xt, t) +

1

2
b(Xt, t)∂Xb(Xt, t)

]
dt + b(Xt, t)dBt (A.34)

Usually,a stochastic process Xt can be describe either by a stochastic differential equa-
tion , say the Langevin equation, or by the Fokker-Planck formalism based on the de-
scription of the probability distribution for the process Xt. Let’s us associate with ran-
dom variable Xt at each time t, the probability density P (x, t) > 0 with normalization∫
P (x, t) = 1. We can write

d

dt
〈f(Xt)〉 =

∫

x
f(x)

dP (x, t)

dt
dx =

∫

x

1

η
[−∂xV (x)f(x) + kBT∂xxf(x)]P (x, t)dx (A.35)

which after integration by parts and discarding the surface terms gives:

∫

x
f(x)

dP (x, t)

dt
=

∫

x
f(x)

1

η
[∂x[V (x)p(x, t)] + kBT∂xxP (x, t)] dx (A.36)

Since this equality is true for arbitrary f(x), we obtain the (forward) Fokker-Planck equa-
tion:

d

dt
P (x, t) =

1

η

[
∂

∂x
[V (x)P (x, t)] + kBT

∂2

∂x2
P (x, t)

]
(A.37)

with the initial condition P (x, t = t0) = P0(x).
The two problems (A.19) and (A.37) are equivalent under the condition that ∂xV (x)

is Lipschitzian and that there exist C ∈ R such that ∂xV (x) ≤ C(1 + |x|). There exists
a number of numerical methods to solve the problem of finding P (x, t) by using both
approaches [62]. Once the solution of (A.37) is found we can express the average as:

〈x(t)〉 =

∫

x

xP (x, t)dx (A.38)

where P (x, t) is the solution of (A.37).

A.3 Numerical solution of SDEs

Through the direct numerical simulation of the Langevin equation we can find the time
series recording motor positions. In numerical simulation we need to consider a time-
discretized version of the stochastic equation by introducing a time step ∆t. This step has
to be much shorter than the characteristic time scale of dynamics. We begin with now
classical Milstein scheme, which in one-dimensional case takes the form

Xn+1 =Xn +

(
a(Xn, n) − 1

2
b(Xn, n)∂xb(Xn, n)

)
∆t+

+ b(Xn, n)∆B +
1

2
b(Xn, n)∂xb(Xn, n)∆B2

(A.39)

where ∆B is an increment of the Wiener process and is therefore a Gaussian random
variable which we denote N(0,∆t). In our case b(Xn, n) = Const and the Milstein scheme
reduces to a simple Euler-Maruyama scheme:

Xn+1 = Xn + a(Xn, n)∆t + b∆B (A.40)
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We are interested in computing the average position of our random variable in discrete
moments ti :

〈x(ti)〉 =
1

Nr

j=Nr∑

j=1

xjti (A.41)

where Nr is the number of realizations, with each realization starting from the same initial
conditions; ti is the discrete numerical time:

t ∈ [0,∆t, 2∆t, ..., N∆t] (A.42)

where N is number of time step of numerical simulation.
The direct Langevin simulations give us access to the characteristics of the single motor

trajectory-path. Instead we could also solve numerically the Fokker-Planck equation by
using, for instance, the finite element method. In the finite elements method, the numerical
cost increases exponentially with the dimension d of the phase space (the dimension of the
discretization grid), thus they are not adapted for solving problems with d > 3. In our
case d ≈ 3 and therefore in most cases we had to deal directly with stochastic dynamics.
However, were it is necessary we also show the results obtained by the Fokker Plank
method and in fact all principal results have been verified by both methods.

In most of the cases, where the drift and diffusions are sufficiently smooth, the con-
vergence of the Euler scheme for Langevin dynamics with the order 0.5 is guaranteed. In
our case, we achieved a good numerical convergence and good interval confidence with
∆ = 1.0 × 10−4 − 1.0 × 10−3 and with Nr ≈ 103 − 104. In some cases it is advantageous
to use higher order schemes, for instance, Runge-Kutta scheme, which give more stable
results and have same other advantages [57]. This scheme is preferred in the case of non
constant drift coefficient or if we need to achieve high precision around extrema of the
potentials, however, in our case we found the simplest algorithm fully adequate.

Through numerical simulations we have access to the detailed behavior of the motor
at a given instant ti. One of the most important mechanical quantities what we need to
characterize is the average velocity of the motor. Several numerical definition of the in-
stantaneous velocity can be given. For instance, it can be viewed as a numerical derivative:

vi =
Xti+1 −Xti

ti+1 − ti
(A.43)

where Xti is the position of the motor at time ti of obtained by the numeric approximation
of stochastic process Xt. In fact, we are interested in the average value in stationary regime
over different realizations and we must therefore also average along the trajectory

〈v〉 =
1

N − 1

N−1∑

i=1

vi =
1

N − 1

1

Nr

N−1∑

i=1

Nr∑

j=1

xjti+1
− xjti

ti+1 − ti
(A.44)

As we use the numerical scheme with a constant time step ∆t, we can give an alternative
definition of motor velocity:

〈v⋆〉 =

N∑
i=1

Xti

N∑
i=1

ti

=

2
N∑
i=1

Xti

N(N + 1)τ
=

l⋆

τ⋆
(A.45)

were we introduced an apparent characteristic length, l⋆ ≡ 2
N(N+1)

N∑
i=1

Xti , traveled by the

motor during the time interval τ . In this way we defined the average velocity relatively
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to the “center of mass” of a generated set of trajectories. In this Thesis we retained
the definition based on the average instantaneous velocity which is better adopted to
mechanical interpretation . In the steady state this definition exhibits the following useful
property:

〈v〉 =
Xtf −Xti

tf − ti
(A.46)

where Xtf is the motor position at the final time instant tf , and Xti the motor position
at initial time instant ti.

A.4 The typical problem

A typical stochastic problem which we address in our study is characterized by the following
ingredients:

• A random source of fluctuations modeled as a Gaussian noise,and representing the
action of a thermal bath.

• Spacial and temporal periodicity, which reflects cycling functionality of our system.
Either space or time symmetry must be broken in order to generate the ratchet effect.

• All acting forces vanish after averaging over space, time, or corresponded statistical
ensembles.

• The detailed balance symmetry must be a broken which positions the system out of
equilibrium.

The spatial symmetry breaking is the central concept in the understanding of the
motion generation in ratchet systems [97] and we illustrate it by considering a simple one
dimensional overdamped Langevin equation

dx

dt
= −∂xV (x) + ftilt(t) +

√
2Dξ(t) (A.47)

where V (x) is a periodic potential, the term
√

2Dξ(t), modeling thermal fluctuations, is
a Gaussian white noise with zero average and time correlations 〈ξ(t)ξ(s)〉 ≡ 2Dδ(t − s),
for t > s. We recall that in thermal equilibrium, a Brownian particle cannot exhibit a
systematic drift in one preferential direction, due to the second law of thermodynamics
and therefore we added a correlated tilting force ftit(t) which places the system out of
thermal equilibrium. This function may be a fully deterministic periodic signal in time or
a stochastic process. The tilting force is zero if averaged over time averaging or over the
corresponding ensemble. The space periodic potential with the period L is symmetric if

V (x) = V (−x). (A.48)

Similarly, the periodic tilting force of period T is symmetric if

− ftilt(t) = ftilt(t +
T

2
) (A.49)

Consider a steady state defined by (A.47) for a symmetric potential V (x) and a symmetrical
periodic force ftilt(t) . We are interested in the average particle velocity over a long time
and consider only a stationary process. We therefore define the average velocity by

〈dx
dt

〉 = 〈ẋ〉 = lim
tf−t0→∞

x(tf ) − x(t0)

tf − ti
(A.50)
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Introduce the new variable z(t)

z(t) = −x(t +
T

2
) (A.51)

Taking in consideration the definition (A.50) we find that the time average current 〈 ˙z(t)〉
satisfy

〈 ˙z(t)〉 = −〈 ˙x(t)〉 (A.52)

On the other hand if we consider (A.47) for x(t) we can see that z(t) satisfies the same
equation. Therefore

〈 ˙z(t)〉 = 〈 ˙x(t)〉 (A.53)

and it view of the previous line

〈 ˙x(t)〉 = 0 (A.54)

We conclude what if both the space periodic potential and the periodic driving force are
symmetric, there is no ratchet effect. The same conclusion can be reached if both the
space periodic potential and the driving force are supersymmetric meaning that −V (x) =
V (x + L

2 ), −ftilt(t) = ftilt(−t) [97]. The non zero current can be therefore expected if
either the space periodic potential or the driving force break the symmetry. Moreover,
even in the case of a symmetric potential V (x) and a supersymmetric driven force ftilt(t)
the nonzero particle current can take place.

The simplest example of a system with an asymmetric potential and symmetric driven
force is the saw-tooth like ratchet with time periodic square wave driving proposed by
Magnasco [72], which we study in full detail in the next section.

A.5 Stochastic energetics

In this section we present several concepts that are necessary to analyze energetics of
various Brownian ratchets. The associated stochastic thermodynamics was developed only
in the last decades [100, 86, 101, 67].

We define R as the work done on a system by external forces; negative work R < 0
mean that the system does work itself. Suppose that a is an external control parame-
ter affecting the system potential V (x, a) meaning that the system can be manipulated
externally trough the variation of a. Then we can write

δR =
∂V (x, a)

∂a
da (A.55)

In addition to work, we can define the energy obtained from the thermal bath which we
call heat Q. Since the heat is a form of energy exchange with the thermal bath represented
by the two forces −η dx

dt +
√

2ηkBT ξ(t) we can define the heat as the work that these forces
exerts upon the particle advance dx(t). Then we obtain

δQ ≡
(
−η

dx

dt
+
√

2ηkBT ξ(t)

)
◦ dx(t) (A.56)

Here the symbol ◦ denotes multiplication in the Stratonovich sense, because the Stratonovich
formulation preserves the usual rules of differential calculus. Since the heat is not an exact
differential and depends on the trajectory Xt, we use δ instead of d. Now the energy
balance can be written as

dG

dt
=

δR

dt
+

δQ

dt
(A.57)
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If there is a conservative force applied to the system, it performs the mechanical work

dWmec = −fext ◦ dx. (A.58)

Then the energy balance can be rewritten as

dU

dt
+

dWmec

dt
=

δR

dt
+

δQ

dt
(A.59)

where dU/dt is the derivative of the internal energy of the system.

Figure A.1. Energy flow in a thermal Brownian motor in contact with a thermal bath and
a color noise bath–the external input of energy

To illustrate these notions consider first a particle described by the inertial Langevin
equation:

m
dv

dt
= −∂xV (x, t) − ηv +

√
2ηkBTξ(t). (A.60)

To obtain the energy balance we need to first rewrite (A.60) in the form:

dv =
1

m
(−∂xV (x, t)dt− ηvdt) +

√
2ηkBT

m
ξ(t)dt (A.61)

Then using the Itô’s formula (A.30) we obtain

dv2 =
1

m

(
− [ηv + ∂xV (x, t)] 2v +

1

m2

[√
2ηkBT

]2)
dt + 2

v

m

√
2ηkBTdB(t) (A.62)

If we now complete the total differential of the potential V (x, t) we obtain the desired
expression of the energy balance:

m
dv2

2
+ dV (x, t) =

= −2η

m

(
mv2

2
− kBT

2

)
dt + v

√
2ηkBTdB(t) + ∂tV (x, t)dt.

(A.63)

Here we can identify δR = ∂tV (x, t)dt as the work produced externally on the system. If
we define the change of total energy of the system as

dG = m
dv2

2
+ dV (x, t) (A.64)

we can write

dG = −2η

m

(
mv2

2
− kBT

2

)
dt + v

√
2ηkBT dB(t) + ∂tV (x, t)dt

= δQ + δR

(A.65)
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Here we identified δQ with

2η

m

(
mv2

2
− kBT

2

)
dt + v

√
2ηkBT (A.66)

which can be also justified based on the definition (A.56). To this end, we need to replace

−η dx
dt +

√
2ηkBT by mdv

dt + ∂xV (x, t) and use the formulas dx = vdt and d(v2)
2 = v ◦ dv.

Then by passing from Stratonovich to Itô calculus and using the we find:

δQ = −2η

m

(
mv2

2
− kBT

2

)
dt + v

√
2ηkBT dB(t) (A.67)

if we now take the average over the realization of the white noise we obtain

〈δQ〉 = −2η

m

(
m〈v2〉

2
− kBT

2

)
dt (A.68)

This formula shows that the loss or the gain of heat take place only if the velocity distri-
bution is out of equilibrium.

Consider now much larger time scales where one can use an overdamped Langevin
description and simply drop the inertia term:

η
dx

dt
= −∂xV (x, t) +

√
2ηkBTξ(t) (A.69)

If we multiply the left and the right hand sides by dx in the sense of Stratonovich, we
obtain

(
−η

dx

dt
+
√

2ηkBTξ(t)

)
◦ dx(t) = dV (x, t) − ∂tV (x, t) ◦ dt (A.70)

Now we can directly write the energy balance of system in the form

(
−η

dx

dt
+
√

2ηkBTξ(t)

)
◦ dx(t) + ∂tV (x, t) ◦ dt = dV (x, t)

= δQ + δR

(A.71)

The total change of energy of system is now

dG = dV (x, t) (A.72)

To find a different expression for the heat term we replace −η dx
dt +

√
2ηkBT ξ(t) by

∂xV (x, t), and we rewrite the dx using the expression (A.69):

δQ = −1

η
((∂xV (x, t))2 dt +

√
2η−1kBT∂xV (x, t) ◦ dB(t) (A.73)

Now, by applying the Itô formula to the term ∂xV (x, t) ◦ dB(t), we obtain

δQ = −1

η

(
(∂xV (x, t))2 − kBT∂

2
xV (x, t)

)
dt +

√
2η−1kBT ∂xV (x, t)dB(t) (A.74)

Finally by taking the average over all realizations of the stochastic process, we can write

〈δQ〉 = −1

η

[
〈(∂xV (x, t))2〉 − kBT 〈∂2

xV (x, t)〉
]
dt (A.75)
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We can now generalize the obtained expressions for the system with d degrees of free-
dom. Consider the vectorial Langevin system:

η
dX

dt
= −∇G(X, t) + σξ(t) (A.76)

where X and ξ(t) are d-dimensional vectors, η and σ are positive definite matrices and
ξ(t) is the stochastic vector function with the properties

〈ξi(t)〉 = 0, 〈ξi(t)ξj(s)〉 = δijδ(t − s), t > s, i, j = 1, 2, .., d (A.77)

Then the energy lost in the interaction with the thermostat can be written as

δQ ≡
(
−η

dX

dt
+ σξ(t)

)
◦ dX(t) (A.78)

while the external energy supply rate takes the form

δR = ∇aG(X, t) ◦ da. (A.79)

A.6 Second Law

In this section we go beyond the energy balance and consider a way to generalize the
second law of thermodynamics for our stochastic system which for simplicity we assume
to be overdamped. It is natural to define the entropy by the relation

S(t) = −kB

∫

Ω
p(x, t) ln p(x, t)dx, {x} ∈ Ω (A.80)

where p(x, t) is the probability density. The corresponding Fokker-Planck equation can be
written in the form:

∂tp = −∂xJ(x, t) (A.81)

where the function J(x, t) is the probability current:

J(x, t) = −1

η
p(x, t) [∂xV (x, t) + kBT∂x ln p(x, t)] (A.82)

We assume that the functions p(x, t) and J(x, t) haves the appropriate boundary condition
so that all surface integral vanish. Then taking the time derivative of (A.90) we obtain

∂S(t)

∂t
= −kB

∫

Ω
J(x, t)∂x (ln p(x, t)) dx− kB

∫

Ω
p(x, t)∂t (ln p(x, t)) dx (A.83)

we used that
∫
Ω ∂tp ln pdx =

∫
Ω J∂x(ln p)dx. The second integral in the right side is zero

and we can write
∂S

∂t
= −kB

∫

Ω
J(x, t)∂x (ln p(x, t)) dx (A.84)

The time derivative of the average heat flux in the overdamped system reads

〈δQ〉
dt

=

∫

Ω
∂xV (x, t)J(x, t)dx (A.85)

which allows us to write

∂S(t)

∂t
− 1

T

〈δQ〉
dt

=
η

T

∫

Ω

1

p(x, t)
(J(x, t))2 dx (A.86)
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To make a connection with the second law of thermodynamics we observe that the right
hand side is non negative

∂S(t)

∂t
− 1

T

〈δQ〉
dt

≥ 0 (A.87)

Similar analysis can be done in the case of inertial Langevin equation. The corresponding
Fokker-Planck equation can be written as

∂p(x, v, t)

∂t
= −∂xJx − ∂vJv (A.88)

where Jx and Jv are the associated probability fluxes

Jx = ∂x(vp(x, v, t))

Jv = − 1

m

(
∂xV (x, t) + ηv +

ηkBT

m
∂v ln p(x, v, t)

)
p(x, v, t)

(A.89)

The entropy in phase space [x, v] can be defined as follows

S = −kB

∫

Ω
(p ln p)dxdv, {x, v} ∈ {Ω} (A.90)

By computing the time derivative of the average heat flux we obtain

〈δQ〉
dt

=

∫

Ω
((∂xE(x, v, t))Jx + ∂vE(x, v, t)Jv)dxdv (A.91)

and after some manipulation the use of an identity

∫

Ω
(∂xV ∂v ln p− v∂xp) pdxdv = 0

we find that

dS

dt
− 1

T

〈δQ〉
dt

=
η

T

∫

Ω
p(x, v, t)

[
v +

kBT

m
∂v ln p(x, v, t)

]2
dxdv (A.92)

Once again, the right side of this expression is not negative and can be associated with
dissipation

∂S(t)

∂t
− 1

T

〈δQ〉
dt

≥ 0 (A.93)

As an application of these results we mention that in such system with constant temper-
ature, we can define the analogue of the Helmholtz free energy F

F = 〈G〉 − TS (A.94)

where G is the internal energy. Then the associated second law of thermodynamics can
be written as

dF

dt
− 〈∂tV (x, t)〉 = −T

(
dS

dt
− 1

T

〈δQ〉
dt

)
≤ 0 (A.95)

where 〈∂tV (x, t)〉 is the rate of energy supply by the external system containing all the
ATP related sources.
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A.7 Efficiency

In this section we study the efficiency of the energy transformation during one functional
cycle of an externally driven Brownian motor. We assume that the motor works in a
stationary regime and that the energy balance can be averaged over a cycle. If a motor
works against a conservative force then the energy the energy output is the potential energy
increase or the mechanical work done against the loads. The input energy is the chemical
energy consumed by the motor. Then we can define the mechanical efficiency as follows

ǫmec =
〈Wmec〉
〈R〉 (A.96)

where the averaging is over one cycle.

The definition (A.96) does not take into consideration that if the motor advances
directionally against viscous drag it is also producing useful output. That is why one can
also define Stokes efficiency in the case when the cargo is absent as follows [127, 126]

ǫStokes =
η〈v〉〈v〉
〈R〉 (A.97)

where 〈v〉 is the average velocity of the motor. Indeed, in this case R = −Q. Introduce

A = η〈v〉2 (A.98)

as the ”useful’ work of the motor against viscous resistance averaged over a motor time
cycle. We can now rewrite the energy balance as

0 = R + A + Q−A (A.99)

where Q⋆ = Q + A, can be reinterpreted as the new dissipated heat (with directional
component removed) [108, 71]. Then the energy balance can be written as

A = R + Q⋆ (A.100)

which justifies the definition (A.97). Now if the motor system performers a mechanical
work, (A.58) against a conservative external load fext we can rewrite the energy balance
as:

Wmec + A = R + Q⋆ (A.101)

In this case the full rectifying efficiency takes the form

ǫrec =
Wmec + A

R

=
Wmec + A

Wmec + A−Q⋆

(A.102)

which is the sum of Stokes efficiency and the mechanical efficiency [108]

ǫrec = ǫmec + ǫStokes (A.103)

These definitions will be repeatedly used in this work as the way to access the efficiency
of the energy transduction by different motor designs proposed in the Thesis.
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A.8 The approximation 2D → 1D

We look for more light description, for example in soft device, witch consist to use the one-
dimensional description instead the two-dimensional, inspiring by the works of T.C. Elston
and C.S. Peskin on the motor-cargo system,[19]. The one dimensional form is sufficient
complex to presented all proprieties of the model. We can write the general form of the
model based on overdamped Langevin equation (5.1) in two dimensional form:





ηx
dx

dt
= −∂xG(x, y, t) +

√
2ηxD ξxt

ηy
dy

dt
= −∂yG(x, y, t) +

√
2ηyD ξyt

(A.104)

A.8.1 The limit γy → ∞
We assume that the diffusion of the motor part corresponding to the dynamics in bistable
element is a fast process. The stochastical processes yt comes to equilibrium very fast
before the x associate processes has a time to move. So the system can by replaced by the
effective dynamics in x coordinate. we can write the associated Fokker-Planck equation
to the (A.104)

∂tP (x, y, t) =γx D∂x

[
P (x, y, t)

D
∂xG + ∂xP (x, y, t)

]
+

γyD∂y

[
P (x, y, t)

D
∂yG + ∂yP (x, y, t)

] (A.105)

the limit γy → ∞ get as the possibility associate to stochastical process Xt the probability
for any fixed x

P (y, t ‖ x) = Z−1
t Peff (x, t) exp

(
−G(x, y, t)

D

)
(A.106)

with normalization factor Zt

Zt =

∫ +∞

−∞
exp

(
−G(x, y, t)

D

)
dy (A.107)

This means what, we are associated to the process yt the measure of probability density

yt ∼ Z−1
t exp

(
−G(x, y, t)

D

)
dy = µXtdy (A.108)

in presence we can build the effective dynamics associated to the motor with equilibrated
stochastic process corresponded to x variable:

dxeff = −γx

[
b(xeff (x, t), t)

]
dt +

√
2γxDdW xeff

t (A.109)

where

b(xeff , t) =

∫ +∞

−∞
∂xG(x, y, t)µxtdx

=

∫ +∞
−∞ ∂xG(x, y, t)e−

G(x,y,t)
D dy

∫ +∞
−∞ e−

G(x,y,t)
D dy

(A.110)
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we can introduce the effective potential Φeff define as:

φeff (x, t) = −D ln

(∫ +∞

−∞
e−

G(x,y,t)
D dy

)
(A.111)

and the equation (A.109) can be expressed on the form

dx = −γx∂x

[
Φeff (x, t)

]
dt +

√
2γxDdW x

t (A.112)

The equation (A.112) is equivalent to the corresponding Fokker-Planck equation:

∂tPeff (x, t) = −∂xJeff (x, t)

Jeff (x, t) = −γxD

[
∂xPeff (x, t) +

Peff (x, t)

D
∂x(Φeff (x, t))

]
(A.113)

This the resulting effective diffusion equation that governs the motion of motor head with
averaged rapidly diffusing double-well part dynamics.
In present we can solve by direct numerical simulation the equation (A.112) and deduce
form them the characteristic of the system or find numerically the probability distribution
function for process yt from equation (A.113).

A.8.2 The stationary solution

Let us look for stationary solution of (A.113). We can see that the effective potential
φeff (x, t) satisfies the periodic condition

Φeff (x + nL, t) = Φeff (x) + n∆φeff , n ∈ N (A.114)

with

∆Φeff = −fextL (A.115)

So we can see the dynamics (A.113) has the standard form, this is precisely the equation
for a particle moving in a tilted periodic potential Φeff . The stationary probability dis-
tribution of (A.113) is periodic in x with period L. Because of the periodicity and after
normalization of stationary distribution in the periodicity interval we can express constant
probability flux of such system as:

Jeff =
γxD

α
L∫
0

e
Φeff (x)

D dx
L∫
0

e−
Φeff (x)

D dx−
∫ L
0 e−

Φeff (x)

D

x∫
0

e
Φeff (x′)

D dx′dx

(A.116)

where

α =
exp

(
−∆Φeff

D

)

exp
(
−∆Φeff

D

)
− 1

(A.117)

from (A.116) we can express the average velocity associated to the effective dynamics as:

〈v〉 = L

∫ T

0
Jeffdt (A.118)
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A.9 Conclusions

In this section we reviewed several important theoretical concepts [101, 77] which we ap-
plied in our analysis. We defined the stochastic process, introduced the concept of stochas-
tic differential equation (Langevin equation) and showed how it can be solved numerically.
We also presented an alternative way of analyzing the behavior of stochastic system by
studying the corresponding equation for probability density distribution (Fokker-Plank
equation). Then we introduced important definitions of of the different energy contribu-
tions to the power balance including the outside sources and the heat exchange with a
thermostat.





Appendix B

Energetics in 3D

I
n this section we extend the essential results on energetics obtained for the models with
2D energy landscape to the full three-dimensional models describing X-tilted, Y-tilted

and XY-tilted ratchets with attached cargo. We show what there is no major differences
between the behavior of two-dimensional and three-dimensional models of this type.

In Fig.B.1 we present the general 3D model of a motor placed in the soft loading device.
To introduce cargo we need to modify the energy potential by adding a new variable z:

Figure B.1. The sketch of simple 3D soft device, the model of one single cross-bridge adopted
as element of collective model used a big number of coupled cross-bridges.

• X-tilted ratchet :

G(x, y, z, t) = Ψ(x) + V (y − x) + 1/2km(y − z)2 − xftilt − zfext (B.1)

• Y-tilted ratchet :

G(x, y, z, t) = Ψ(x) + V (y − x) + 1/2km(y − z)2 − yftilt − zfext (B.2)

• XY-tilted ratchet :

G(x, y, z, t) = Ψ(x) + V (y − x) + 1/2km(y − z)2 − (y − x)ftilt − zfext (B.3)

The corresponding system of the coupled Langevin equations can be written in the follow-
ing general form: 




ηx
dx

dt
= − ∂xG(x, y, z, t) +

√
2ηxD ξx(t)

ηy
dy

dt
= − ∂yG(x, y, z, t) +

√
2ηyD ξy(t)

ηz
dz

dt
= − ∂zG(x, y, z, t) +

√
2ηyD ξz(t)

(B.4)
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where ηx and ηy are the viscous drag coefficients and D = kBT . The ξi(t) are a Gaussian
random variables characterized by the standard conditions:

〈ξi(t)〉 = 0, 〈ξi(t)ξj(s)〉 = δijδ(t − s), t > s, i, j = x, y, z

In our simulations we deal with the dimensionless form of (B.4) by using the scaling (6.3)
and (6.4). We obtain





dx

dt
= − α [∂xG(x, y, z, t)] +

√
2αD ξx(t)

dy

dt
= − ∂yG(x, y, z, t) +

√
2D ξy(t)

dz

dt
= − β [∂zG(x, y, z, t)] +

√
2βD ξz(t)

(B.5)

Here we introduced the following dimensionless parameters α =
ηy
ηx

, β =
ηy
ηz

. The normal-
ized ξi(t) variable is now characterized by:

〈ξi(t)〉 = 0, 〈ξi(t)ξj(s)〉 = δijδ(t − s), i, j = x, y, z

We observed no major differences in the behavior of the 3D model comparing to the
behavior of the analogous 2D model. The averaged trajectories and the motor cycles look
similar. The parametric dependence of the force-velocity relations with D and A are also
similar in 3D and 2D models.

More care need to be devoted to the 3D energetics. First we define the heat over the
period

Q =
1

T

X(t=ti+T )∫

X(t=ti)

δQx + δQy + δQz (B.6)

where δQi =
(
−η dxi

dt +
√

2ηiDξi(t)
)
◦dxi. Then we define the mechanical work Wmec over

the period as

Wmec =
1

T

Xti+T∫

Xti

dG0(Xt) = −fext〈vz〉 (B.7)

where G0(xt, yt, zt) = Φ(xt) +V (yt−xt) + 1
2km(yt− zt)

2− zfext. Finally, the input energy
consumed over one period is defined in same way as for the previously studied 2D systems,
see (6.18) (X-tilted),(7.10) (Y-tilted), (8.9)(XY-tilted). Then the energy balance for the
whole system can be written as:

Wmec ≡ R + Q. (B.8)

Now we can define the mechanical efficiency

ǫmec =
Wmec

R
(B.9)

and the Stokes efficiency

ǫStokes =
WStokes

R
(B.10)

where

WStokes = α−1〈vx〉2 + 〈vy〉2 + β−1〈vz〉2 (B.11)
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Figure B.2. The X-tilted model in soft device configuration with conservative load fext = 0.1.
a) The plot of the average velocity 〈vz〉 versus the temperatureD for the increasing value
of amplitude A rocking force ftilt. b) The consumed energy by the motor system R versus
temperature D for the increasing value of amplitude A.

Figure B.3. The X-tilted ratchet in soft device with the conservative load fixed fext = −0.1.
a) The mechanic work Wmec versus D for the increasing amplitude A. b) The mechanic
efficiency ǫmec versus D for the increasing amplitude A. c) The Stokes efficiency εStokes

versus temperature D for the increasing amplitude A, by definition this is a positive function.
d) The rectifying efficiency εrec versus temperature D for the increasing amplitude A. The
function reflects the transformation of energy input of energy into the global motion.

Finally, we introduce the rectifying efficiency as

ǫrec =
Wmec + WStokes

R
(B.12)

The system of the Langevin equations in the case of the X-tilted ratchet in the soft
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device can be written as:





dx

dt
= −α [∂xΦ(x) + ∂xV (y − x) − ftilt(t)] +

√
2αD ξx(t)

dy

dt
= −∂yV (y − x) − km(t)(y − z) +

√
2D ξy(t)

dz

dt
= βkm(y − z) + βfext +

√
2βD ξz(t)

(B.13)

The parameters of the bi-stable potential are:k0 = 1.5 , k1 = 0.43, l = 0.22, a =
1 and km = 1. We use asymmetric saw-tooth ratchet potential with parameters
Vmax = 1.5, L = 1, λ1 = 0.7 and λ2 = 0.3. The rocking square wave signal is
characterized by the period T = 30. All numerical computations were performed with the
constant time step ∆t = 0.5 × 10−3 and the results were averaged over Nr = 1 × 10−4

realizations. In all stationary regimes we observed that 〈vx〉 = 〈vy〉 = 〈vz〉.
In Fig.B.2a) we present the average velocity of the motor as a function of temperature

D for several values of the rocking amplitude A. For small amplitudes A the motor shows
a maximum of velocity at a finite temperature which we can interpret as the manifestation
of stochastic resonance. At high amplitudes A, the average velocity is a monotonically
decreasing function of D which means that system works as a mechanical ratchet with
thermal fluctuations playing the role of obstacles. Notice that at small values of D the
average velocity may be negative. In general the 3D system shows similar behavior as the
2D system with slightly smaller average velocity.

In Fig.B.3a) we show the mechanical work as a function of D at increasing A. By color,
we identify the regions of positive and negative mechanical work. In Fig.B.3b) we show
the temperature dependence of the mechanical efficiency. In the regime of small amplitude
A we observe a maximum of efficiency at finite temperature. With increasing amplitude
A, the maximum vanishes and the efficiency becomes a monotonically decreasing function
of D, which is behavior characteristic of a mechanical ratchet regime. By light green
color we indicate the regime of negative efficiency, where our motor is unable to perform
positive mechanic work against the external force and works instead as an active breaking
mechanism.

Finally, in Fig.B.3c) we plot the Stokes efficiency as a function of D. By definition this
is always a positive function. The rectifying efficiency is shown in Fig.B.3d). The shape
of this function is dominated by the quadratic Stokes term. The important observation
is that this cumulative efficiency also has a maximum at a finite temperature where the
amplitude of the rocking is small and the device works as a Brownian ratchet. Once again,
the general behavior of the 3D ratchet system is similar to what we have obtained for the
2D ratchet system.

Next we consider the system of Langevin equations describing the 3D version of the
Y-tilted ratchet in the soft device:





dx

dt
= −α [∂xΦ(x) + ∂xV (y − x)] +

√
2αD ξx(t)

dy

dt
= −∂yV (y − x) − km(t)(y − z) + ftilt(t) +

√
2D ξy(t)

dz

dt
= βkm(y − z) + βfext +

√
2βD ξz(t)

(B.14)

In Fig.B.4a) we show the average velocity as a function of temperature at different
values of the amplitude A. For small amplitude A (Brownian ratchet) the motor exhibits
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Figure B.4. The Y-tilted model in the soft device configuration with the conservative load
fext = −0.1. For simplicity we fix α = β = 1. a) The variation of the average velocity 〈vz〉
with the increasing temperature D for different amplitudes A of ftilt(t). For small amplitude
A (Brownian ratchet) the motor exhibits a maximum of velocity at finite temperature. At
higher amplitude A (mechanical ratchet) the average velocity decreases monotonically with
D. b) The variation of the consumed energy R with increasing temperature D for different
amplitudes A of ftilt(t), note that the motor consumes more and more energy in order rectify
the fluctuations and preform a useful work.

a maximum of velocity at finite temperature. At higher amplitude A (mechanical ratchet)
the average velocity decreases monotonically with D. In Fig.B.4b) we plot the consumed
energy R as a function of D and use the same range of amplitudes A. One can see that as
the temperature increases, the motor needs more energy in order rectify the fluctuations
and preform a useful work. We again observe a saturation at high temperatures meaning
that there is a limit of how much thermal energy the motor can rectify. The 3D system
shows again the same qualitative behavior as the 2D system but with smaller average
velocity.

In Fig.B.5b) we show the temperature dependence of the mechanical efficiency at in-
creasing values of A. In the regime of small amplitudes A we again observe a maximum of
mechanical efficiency at finite temperatures. In the regime of high amplitudes the efficiency
becomes a monotonically decreasing function of D, which characterizes such system as a
mechanical ratchet. In Fig.B.5c) we present the parametric study of the Stokes efficiency
and in Fig.B.5d) of the rectifying efficiency. The qualitative behavior of these functions is
basically the same as in the case of 2D Y-tilted ratchet.

Notice that the variation of β changes the ratio
ηy
ηz

and that in Y-tilted ratchet the
rocking force acts on the y coordinate. To check the role of the asymmetry of viscosity we
fix α = 1 and perform computations for two different values of β. In Fig.B.6 we show the
variation of the average velocity with the increasing temperature D for α = 1, β = 8 and
for α = 1, β = 0.2. We can compare the results with the simple case α = β = 1 shown
in Fig.B.4a). At constant temperature, the increase of β makes the value of the average
velocity larger while preserving the general behavior. In Fig.B.7 we report the dependence
of the efficiency on D in both cases. The influence of β studied in this section for Y-tilted
ratchet is similar for all other ratchet models: X-titled, and XY-tilted.
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Figure B.5. The Y-tilted ratchet model energetics, the conservative load is fixed to
fext = 0.1. For simplicity we fix α = β = 1. a) The mechanic work Wmec versus the
temperature D for the increasing amplitude A of ftilt(t). b) The mechanic efficiency ǫmec

versus the temperature D for the increasing amplitude A of ftilt(t). In the regime of small
amplitudes A we again observe a maximum of mechanical efficiency at finite temperature.
In the regime of high amplitudes the efficiency becomes a monotonically decreasing function
of D. c) The Stokes efficiency εStokes versus the temperature D for the increasing ampli-
tude A. By definition, this is always positive function. For hight values of D the Stokes
efficiency is increasing function of D, because we are in regime there the motor follows the
direction imposed by cargo. d) The rectifying efficiency εrec versus the temperature D for
the increasing amplitude A. The shape of this function is dominated by the quadratic Stokes
term..

Now we turn our attention to the 3D version of the XY-tilted ratchet in the soft device:




dx

dt
= −α [∂xΦ(x) + ∂xV (y − x) + ftilt(t)] +

√
2αD ξx(t)

dy

dt
= −∂yV (y − x) − km(t)(y − z) + ftilt(t) +

√
2D ξy(t)

dz

dt
= βkm(y − z) + βfext +

√
2βD ξz(t)

(B.15)

In Fig.B.8a) we plot the average velocity as a function of temperature D for increasing
values of the amplitude of rocking A. We again observe the characteristic maximum at
finite temperature for A = 1.5 and A = 2.5. At higher values of A, the average velocity
is a decreasing function of D and in this range we are dealing with a purely mechanical
ratchet. By light green color we mark the region with negative average velocity, where the
motor loses its ability to carry the external load and is instead being dragged by the load
while contributing some active resistance.

In Fig.B.8b) we show the consumed energy Rx and in Fig.B.8c)– the consumed energy
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Figure B.6. The 3D Y-tilted model in soft device configuration with conservative load fixed
at fext = −0.1. a) The plot of average velocity 〈vy〉 versus D for the increasing values of
amplitude A of ftilt(t) in the case α = 1, β = 8. The average velocity is highest than
in the case α = β = 1, see Fig.B.4a). The general behavior is preserved. b) The plot of
average velocity 〈vy〉 versus D for the increasing values of amplitude A of ftilt in the case
α = 1, β = 0.2. The value of the average velocity is smaller then in the case α = β = 1, see
Fig.B.4a). Note that we are not more able distinguish a monotonically decreasing regimes
of average velocity.

Ry. Notice that the former is an increasing function of temperature while the latter is a
decreasing function of temperature. In Fig.B.8d) we show the total energy consumed by
the motor which appear to be temperature independent which is an interesting feature of
the XY-tilted ratchet.

In Fig.B.9a) we show the mechanical work as a function of D at different amplitudes
of rocking A. We observe two regimes with the system producing positive and negative
mechanical work. In Fig.B.9b) we present the mechanical efficiency. At small amplitudes A
we observe a maximum of efficiency at finite temperature. With increasing A the maximum
vanishes and the efficiency becomes again a monotonically decreasing function of D.

In Fig.B.9c) we present the Stokes efficiency as a function of D. We observe maximum
at finite temperatures for low amplitude regimes and see that at high temperatures the
Stokes efficiency may even increase with temperature. The rectifying efficiency is shown
in Fig.B.9d). Once again, at small amplitudes of rocking we see thermal ratchet behavior
with a maximum of efficiency at finite temperature while at high rocking amplitudes we
see the mechanical ratchet behavior with efficiency decreasing with temperature.
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Figure B.7. The Y-tilted ratchet model energetics for β = 8 and β = 0.2, the conservative
load fext = −0.1 and coefficient α = 1. a) The mechanic efficiency ǫmec versus D. b) The
Stokes efficiency εStokes versus temperature D. c) The rectifying efficiency εrec versus D.
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Figure B.8. The XY-tilted model in the soft device configuration with the conservative
load is fixed to fext = −0.1. For simplicity we fix α = β = 1. a) The variation of
the average velocity 〈vy〉 with the increasing temperature D for different amplitudes A
of ftilt(t). For small amplitude A (Brownian ratchet) the motor exhibits a maximum of
velocity at finite temperature. At higher amplitude A (mechanical ratchet) the average
velocity decreases monotonically with D. b) The variation of the consumed energy Rx

with increasing temperature D for different amplitudes A of ftilt(t), note that the motor
consumes more and more energy in order rectify the fluctuations and preform a useful work.
c) The variation of the consumed energy Ry with increasing temperature D for different
amplitudes A of ftilt(t), see (8.9), note what the level of consumed energy decreases with
D. d) The variation of the consumed energy R with increasing temperature D for different
amplitudes A of ftilt(t). The function appear to be temperature independent which is an
interesting property of XY tilted ratchet.
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Figure B.9. The XY-tilted ratchet model in soft device with the conservative load fext = 0.1.
For simplicity we fix α = β = 1. a) The variation of the mechanic work Wmec with the
increasing temperature D for different amplitudes A of ftilt(t). b) The variation of the
mechanic efficiency ǫmec with the increasing temperature D for different amplitudes A of
ftilt(t). In the regime of small amplitudes A we again observe a maximum of mechanical
efficiency at finite temperature. c) The variation of the Stokes efficiency εStokes with the
increasing temperature D for different amplitudes A. By definition, this is always positive
function. For hight values of D the Stokes efficiency is increasing function of D, because we
are in regime there the motor follows the direction imposed by cargo. d) The variation of
the rectifying efficiency εrec with the increasing temperature D. The shape of this function
is dominated by the quadratic Stokes term.
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[55] F. Jülicher and J. Prost. Molecular motors: From individual to collective behavior.
Progress of Theoretical Physics Suplement, (130):9–16, 1998.

[56] H. Kamegawa, T. Hondou, and F. Takagi. Energetics of a forced thermal ratchet.
Physical Review Letters, 80(24):5251–5254, Jun 15 1998.

[57] N.J. Kasdin. Discrete simulation of colored noise and stochastic-processes and 1/fα

power-law noise generation. Proceedings of the IEEE, 83(5):802–827, May 1995.

[58] K. Kawaguchi and S. Ishiwata. Temperature dependence of force, velocity, and
processivity of single kinesin molecules. Biochemical and Physical Research Commu-
nications, 272(3):895–899, Jun 16 2000.

[59] M. Kawai and H.R. Halvorson. 2 step mechanism of phosphate release and the
mechanism of force generation in chemically skinned fibers of rabbit psoas muscle.
Biophysical Journal, 59(2):329–342, Feb 1991.

[60] K. Kitamura, M. Tokunaga, S. Esaki, A.H. Iwane, and T. Yanagida. Mechanism
of muscle contraction based on stochastic properties of single actomyosin motors
observed in vitro. Biophysics, 1:1–19, 2005.

[61] K. Kitamura, M. Tokunaga, A.H. Iwane, and T. Yanagida. A single myosin
head moves along an actin filament with regular steps of 5.3 nanometres. Nature,
397(6715):129–134, Jan 14 1999.



Bibliography 207

[62] P. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations
(Applications of Mathematics). Springer, 1997.

[63] R. Krishnan, J. Chacko, M. Sahoo, and A. M. Jayannavar. Stokes efficiency of
temporally rocked ratchets. Journal of Statistical Mechanics-Theory and Experiment,
Jun 2006.

[64] R. Krishnan, S. Roy, and A.M. Jayannavar. Enhanced thermodynamic efficiency in
time asymmetric ratchets. Journal of Statistical Mechanics-Theory and Experiment,
Apr 2005.

[65] P. Kundu and I. Cohen. Fluid Mechanics, Second Edition. Academic Press, 2 edition,
2001.

[66] R. Landauer. Motion out of noisy states. Journal of Statistical Physics, 53(1-2):233–
248, Oct 1988.

[67] T. Lelievre, G. Stoltz, and M. Rousset. Free Energy Computations: A Mathematical
Perspective. Imperial College Press, 1 edition, 2010.

[68] D.S. Lemons and A. Gythiel. Paul langevin’s 1908 paper“On the Theory of Brownian
Motion”. American Association of Physics Teachers, 65(11):1079–1081, 1997.

[69] V. Lombardi and G. Piazzesi. The contractile response during steady lengthening
of stimulated frog-muscle fibers. Journal of Physiology - London, 431:141–171, Dec
1990.

[70] R.W. Lymn and E.W. Taylor. Mechanism of adenosine triphosphate hydrolysis by
actomyosin. Biochemistry, 10(25):4617–4624, 1971.

[71] L. Machura, M. Kostur, P. Talkner, J.  Luczka, F. Marchesoni, and P. Hänggi. Brow-
nian motors: Current fluctuations and rectification efficiency. Physical Review E,
70(6, Part 1), Dec 2004.

[72] M.O. Magnasco. Forced thermal ratchets. Physical Review Letters, 71(10):1477–
1481, Sep 6 1993.

[73] A. Mansson, M. Sundberg, R. Bunk, M. Balaz, I.A. Nicholls, P. Omling, J.O. Tegen-
feldt, S. Tagerud, and L. Montelius. Actin-based molecular motors for cargo trans-
portation in nanotechnology - Potentials and challenges. IEEE Transactions on
Advanced Packaging, 28(4):547–555, Nov 2005.

[74] L. Marcucci and L. Truskinovsky. Mechanics of the power stroke in myosin II.
European Physical Journal E, 81(9):915–922, May 2010.

[75] L. Marcucci and L. Truskinovsky. Muscle contraction: A mechanical perspective.
European Physical Journal E, 32(4):411–418, Aug 2010.

[76] J. L. Mateos and F.R. Alatriste. Brownian motors and stochastic resonance. Chaos,
21(4), Dec 2011.

[77] M. Matsuo and S. Sasa. Stochastic energetics of non-uniform temperature systems.
Physica A, 276(1-2):188–200, Feb 1 2000.

[78] I.D. Mayergoyz. Mathematical Models of Hysteresis. Springer-Verlag, 1991.



208 Bibliography

[79] J. Menche and L. Schimansky-Geier. Two particles with bistable coupling on a
ratchet. Physics Letters A, 359(2):90–98, Nov 13 2006.
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Résumé:

Cette thèse est consacrée à la modélisation du fonctionnement mécanique de l’interaction
myosine II / actine, qui est responsable de la génération de force active dans les muscles
squelettiques à l’échelle nanométrique. Les unités contractiles du muscle contiennent les
filaments d’actine et de myosine, les derniers sont formés par un assemblage des myosines
II. La myosine II est un moteur moléculaire qui s’attache et se détache périodiquement au
filament d’actine en présence d’ATP. Afin de comprendre le phénomène de la contraction
musculaire d’un point de vue mécanique, nous suivons l’approche développée par la com-
munauté de cliquets Browniens, qui remplace l’interprétation chimique traditionnelle de
génération de force active par une étude de la dynamique de Langevin des systèmes mé-
caniques avec des paysages énergétiques bien définis. Nous mettons l’accent sur le rôle du
changement conformationnel, ou « power stroke », dans le fonctionnement de la myosine II.
Nous indentifions le « power stroke » comme le principal moteur de la contractilité, ce qui
reflète la réalité biologique. Nous proposons un modéle mécanique innovant et, en mettant
l’accent sur le rôle actif de « power stroke », nous établissons un lien entre les moteurs
processifs et nonprocessifs. Dans cette thèse, nous présentons les premiers exemples de
modèles de moteur moléculaire nonprocessif actionnés exclusivement par « power stroke »
et exploitant le phénomène de la résonance stochastique.

Abstract:

This thesis is devoted to the modeling of mechanical functioning of myosin II/actin in-
teraction, responsible for active force generation in skeletal muscles at nanometer scale.
The muscle contractile units contain actin filament and myosin II filaments formed by an
assembly of myosins II. The myosin II is molecular motor that periodically attaches and
detaches to the actin filament in presence of ATP. In order to understand the phenomenon
of muscle contraction from mechanical point of view, we follow the approach developed
by the Brownian ratchets community, which replaced the conventional chemistry-based
interpretation of active force generation by a study of Langevin dynamics of mechanical
systems with well defined energy landscapes. We focus on the role of the conformational
change known as power stroke in the functioning of myosin II. We identify the power stroke
as the main driver of contractility. The attribution of active role to power stroke reflects
the biological reality imprinted in the molecular motor functional cycle. We propose an
innovative mechanical model and by emphasizing the active role of the power stroke we are
therefore building a bridge between processive and nonprocessive motors. In this Thesis
we present the first examples of models of nonprocessive motors driven exclusively by the
power stroke and exploiting the well known phenomenon of stochastic resonance.
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