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Introducti TV Minimization: fine properties An Alternative for TV NL Spectrum Restoration Primal-Dual

Inverse problems in imaging

A damaged image g : Q C RY — R is represented as:
g = Ago +n.

Our aim: restore the image!
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Restoring by minimizing an energy

Various approaches: Partial Differential Equations, Statistical estimators,
Sparse representations, Variational methods.
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Introduction

Restoring by minimizing an energy

Various approaches: Partial Differential Equations, Statistical estimators,
Sparse representations, Variational methods.

Often, one minimizes an energy of the form

1
E(u) = 5| du — gll2 + AR(u).

The first term behaves as a data fidelity, whereas R(u) is a
regularization term that reflects an a priori distribution on images.
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Penalizing oscillations

The idea: highly oscillating images are less probable.

In 1963, Tychonov suggested to minimize the following

. 1
min —

A
Au—gla+ 2 2,
i, slau=gl3+3 [ (vl

In 1992, Rudin, Osher & Fatemi proposed the model

. 1 2
min Sldu—gl3 + 3TV (), (ROF)

where TV (u) :/ | D).
Q
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TV minimization

A =100
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TV Minimization: fine properties

Fine Properties of the Total
Variation Minimization Problem
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ROF’s model

For simplicity we consider the denoising problem

1 2
in —|u— A Du.
i lu=gl3+ [ D

» The TV term regularizes images without smoothing the edges of the
objects.

» TV produces an undesirable artifact: the staircasing phenomenon.

We are going to explore these properties further.
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» The TV term regularizes images without smoothing the edges of the
objects.
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We are going to explore these properties further.
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TV Minimization: fine properties

Discontinuities

Recently Caselles, Chambolle & Novaga (2008) showed that whenever
g € L>*(Q) N BV(Q), the discontinuity set satisfy

Ju C Jy.

In a sense, no new objects are created.
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TV Minimization: fine properties or TV NL Spect

An Anisotropic Energy

We generalized this result to energies of the form:

Q

5(u)=/ﬂ<1>(x,Du(x))dx+/\If(a:,u(a:))dm

where essentially
» & C? out of Q x RV \ {0}, positively 1-homogenenous and elliptic
in the second variable,
» U measurable in the first variable, strictly convex and coercive in the
second one.
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Theorem
Assuming that for a countable set D dense in R,

0¥ (-,t) e BV(Q)NL>®(Q), Vte D,
one has

Ju C U Jo,w (1)
teD

up to a set HN =1 negligible.
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One can adapt the proof of CCN provided:
» One can understand how our problem relates to a minimal surface
problem: denoting E, := {u > s}

Q

N/S(pé(ES,Q)jL/ES 8t\11(m,t)dx) ds.

/S]q)(x,Du(x))dx—i—/\Il(x,u(x))dx

Two minimal surfaces:

» One can get the desired regularity for the level sets combining

@ the theory of regularity for quasi-minimal surfaces,

o the Nirenberg's method,
@ the regularity theory for elliptic PDEs in non-divergence form.
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Refinement in the weighted case

Problem: What if the anisotropy is less regular?

For instance

1 2
mi Du| + =|ju—
B LR e

with w merely Lipschitz continuous.

Creation of jumps with w(z) = V/ZX{z<1} + TX{z>1} + 0.2
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Theorem
Let w: Q — R be positive, bounded, Lipschitz continuous with

Vw € BV(Q,RY) and g € BV(Q) N L*>(Q).
Then the minimizer w € BV (Q)) satisfies
Ju C Jg U Jyy

up to a HN ~'-negligible set.

If in addition we assume that w is of class C' we get that at the
discontinuity

(ut —u=) < (97 —g7) HY1-ae on J,.
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Theorem
Let w: Q — R be positive, bounded, Lipschitz continuous with

Vw € BV(Q,RY) and g € BV(Q) N L*>(9).
Then the minimizer v € BV (Q)) satisfies
Ju C Jg U Jdvw

up to a HN ~1-negligible set.

If in addition we assume that w is of class C'' we get that at the
discontinuity

(ut —u™) < (97 —g7) HN1-ae on J,.
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TV Minimization: fine properties

This is quite surprising if one thinks of

g: [0,2r)° — R

(z,y) {

2 + cos(x) if y > 0,
0 otherwise.

Level lines {u =t} for some Graph of u on one period.
values of t € (1,2). Some level lines are represented in red.
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Staircasing and discontinuities depend on A

Not much can be said in general.

In 1D, Ring (2000) and Briani, Chambolle, Novaga, Orlandi (2011) show
that the solutions u(t) of

1 2
in ¢ D —||lu — .
i ¢ [ 1Dul+ 5=l

form a semi-group.

Theorem
Let @ = B(0,R) C RY, g € L*(Q2) radial. Then (u(t)), form a
semi-group.

Corollary
Ifx<p, J,CJyxand Sy CS,.

Discontinuities vanish, staircasing increases.
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Staircasing

Level lines of a T'V-minimizer

By looking at the level sets we prove that staircasing occurs
> at global extrema of g.

> at all extrema of w.
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Some perspectives

Our work paved the way for future researches:

» Staircasing occurs a.e. for a noisy image.
> For a general g, do we have J, C J)\?

» Study the regularity of the minimizers in the anisotropic setting.
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An Alternative for the Total
Variation
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A variant of TV

The idea: replace TV by

J(u, Q) inf / o],

Pga Du

where P is the “projection on gradients”.

Remark that
J(u) <TV(u).

Motivates the use of J in image processing.
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Dual formulation

Using Riesz's duality and some convex analysis:

Proposition
If Q@ C RY is a convex open set then for any u € BV (Q),

J(u, Q)= sup / Vw - Du.
weCk(Q) JQ
IVwll <1

Second order approach to reduce staircasing.
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An Alternative for TV

Theorem

Let Q C RN open and u = x the characteristic function of a set of
finite perimeter E in ), or more generally v € BV () with Du
concentrated on the jump set J,,. Then,

T(u, Q) = /Q | Dul.

J coincides with TV on “cartoon” images.

The idea:

» If u = xg with OF a C*! manifold.
Consider the signed distance w = d(z,Q \ E) — d(z, E).
A classical result asserts that:

w is C*1 near supp(Du) = OF and Vw = v.

J(u)Z/Vw-Du:/ V-Du:/|Du|.
Q OF Q
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> In the general case, we use some tools of geometric measure
theory to:
o localize the problem,
@ build w from scratch using the rectifiability of J,,.

wie(y) = v(z) v
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ROF revisited

Given © open and g € L?(Q2), consider the problem

: 1 2
ueHng(lQ) Fu) = §||u —gll5 + A (u).

Proposition
F has a unique minimizer uy € L?(2).

Proposition (An explicit solution)
Let g = Cxpo,1) and X > 0. Then, if C > AN, the minimizer of F is

ux = (C = AN)XB(0,1)-
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Numerical simulations: a noisy image

o=20 TV-minimizer, A = 25 j—minimizer, A=25

PSNR=22.1 PSNR=29.4 PSNR=29.3
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Numerical simulations: absence of staircasing

Initial g TV-minimizer, A = 100 J-minimizer, A = 100
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Motivations and perspectives

» J behaves mostly like TV without creating homogeneous regions.

» Some open issues: Poincaré inequality, canonical space?
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NL Spectrum Restoration

Adapted Basis for Non-Local
Reconstruction of Spectrum
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Non-Locality in images

Images have non-local features:
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Non-Locality in images
Recently developed models take into account this structure:

» Denoising proposed by Buades, Coll, Morel (2005):

1

NLMeans(g)(z) = m /Qg(y)w(x,y)dy

» Other inverse problems:
1
min 340 = gl5+ X [ [pu(e) ~ pulw)ule, )dedy
w QxQ

A key step is the computation of the similarity measure:

)l

[F2
UJ(Z', y) = exp <_ g h
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NL Spectrum Restoration

Spectrum reconstruction

The problem:
9=F ' (xmF(90))
Different masks M for various applications:

Inverse Acoustic
Spatial imaging Zoom Scattering Tomography

The aim: restore the spectrum.
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NLMeans Similarity Measure

In general, 6(z,y) = [[pg(2) = pg(y)ll:

Can we do better?

The aim: design a similarity measure é(x,y) that is adapted to the
problem of spectrum reconstruction.
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Adapted Atoms

The idea: design test functions (¢),, such that
g * Qo = go * o, Y.

One can compute an orthogonal basis iteratively

¢o = argmin {/ﬂ |q5(1’)|2|1’|12’dx, supp(F¢) C M, ||¢|l, > 1,¢ L Span{¢.-, o < a}}
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Similarity measure comparison
We define the following similarity measure:

S,y) = | D 9% ¢al@) — g% a(y)?

a<lap

Here ag sets how localized the considered atoms are.

Performance of this new similarity measure

Atom distance NLM distance

The 13 best matches (in red) for a fixed patch (in green).
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Numerical simulations: acoustic inverse scattering
Thanks to the Born approximation

(@, d) ~ / Xo(y)eFE-D gy,
]RN

we can use the data that comes out of the direct problem.
In a sense, we add noise.

Original go Corrupted g NLMeans TV restored

PSNR 924 PSNR 9.25 PSNR 9.81 PSNR=9.42

Khalid Jalalzai Regularization of inverse problems in image processing
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Numerical simulations: closely located objects

Original g9 Corrupted ¢ NLMeans NL-Atom TV restored

I R, S

PSNR=8.2 PSNR=8.4 PSNR=14.5 PSNR=9.6
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Numerical simulations: Weight recomputation

_

W

//’/A &
PSNR=12.1 PSNR=9.27 PSNR=8.9

wn
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Numerical simulations: Tomography problem

Original go  Spectrum of go Corrupted g Spectrum of g

PSNR=22.4

NL-Atom then
NLMeans NL-Atom 1x NLMeans 20x NLMeans TV restored

PSNR=23.8 PSNR=24.9 PSNR=25.8 PSNR=24.8 PSNR=23.6
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Advantages

» Performs much better in some cases.
» The weight computation is faster.

» The weight recomputation is not mandatory.
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Primal-Dual

Convex Optimization: The
Primal-Dual framework
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Primal-Dual

Non-smooth minimization

Usually minimization is carried out by using gradient algorithms.

As far as we are concerned, we are interested in the minimization of
non-smooth energies of the form

min F(Az) + G(z).

xeX
» F Isc convex.

» G Isc uniformly convex with parameter .

New algorithms should be designed for such problems.
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Primal-Dual

The Primal-Dual framework
The idea: consider a dual variable y.

A recently developed algorithm aims to find a saddle point (&, §) of the
problem

min glg(z‘lx, y) +G(z) = F*(y)

and is inspired by the following

Algorithm 1 Arrow-Hurwicz's scheme

» lterations: For n > 1 update as follows:

2" = (I +70G) (2™ — TA™y"),
y" T = (I +c0F*)  (y" + oAz ).
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Primal-Dual

Adaptive stepsize

Chambolle, Pock (2010) propose the following modification:

Algorithm 2 Primal Dual with adaptive stepsize
» Initialization: o7 Al|? < 1, v < Y.

» lterations: For n > 1, consider the updates:
yn+1 — (I_|_O_naFw)—l(yn_|_0_n14§:n)7
2"t = (I 4+ 7,0G) " (2" — 7, A*y" ),
On =1/\/14 2797, Tnt1 = OnTn, Ont1 = 0n/0n,

i,n—l—l — xn—&-l 4 on(mn+1 _ mn)

Converges as O (- ).
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Surprisingly the complexity depends on ~:

Error kx|

teration n

Error ||2™ — Z||® for different values of ~
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Primal-Dual

A first explanation

Algorithm 3 Primal Dual with adaptive stepsize
» Initialization: o7 [|A[? < 1, v < 7.
» lterations: For n > 1, consider the following updates:

yn+1 _ (I_’_UnaF*)—l(yn -I-(TnALfn),
" = (I +7,0G)" (2™ — 1, A*y" 1),
On =1/\/14 2797, Tnt1 = OnTn, Ont1 = 0n/0n,

jn+1 _ xn+1 4 en(anrl _ xn)
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Primal-Dual

A first explanation

Algorithm 3 Primal Dual with adaptive stepsize

» Initialization: o7 [|A[? < 1, v < 7.

» lterations: For n > 1, consider the following updates:
y" = (I + 0, 0F*) " (y" + 0,AT"),
" = (I +7,0G)" (2™ — 1, A*y" 1),

9,, :1/\/ 1+ YTny, Tn+l = enTny On4+1 = Un/any

i,n+1 _ xn+1 4 en(anrl _ xn)
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Primal-Dual

One proved

Theorem
Let 79,00 > 0 such that og7o||A||> < 1 then the sequence (z")
converges to & and

neN

ZnHi — 2" < 4.

n

Complexity beyond O (n_12) best theoretical rate of convergence for
this class of problems.
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An Alternative for TV NL Spectrum Restoration

Comparison for ROF's denoising problem

10°
10 =
0 =
Ey 4
= H
5 2
Y ——Zhu-Chan
. Adaptive Arrow-Hurwic:
10 Nesterov Dual Zro G
ook TebaleDua R A
~——— Chambolle Dual t=1/4 Beck-Teboulle Dual
—— Adaptive Primal-Dual Proj-Grad Dual
o " Chambolo Dual
o (1) ‘ ‘ —— Adapivo Prma-oval |
10° 10" ? 10° 10" ? 10 10t
Iteration n Iteration n
e . n A2 n
Minimizer error ||z™ — || PSNR(z™, go)
Regularization of inverse problems in image processing
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for TV NL Spectrum Restoration Primal-Dual

Introduction TV Minimization: fine properties An Alternati

Some perspectives

» Prove that the dual variable converges for the adaptive Primal-Dual
algorithm.

» Devise the optimal uniform convexity parameter + that gives the
best rate and prove that it is beyond o (25 ).
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Merci |
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