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Motivation

» Gain a better understanding of the coherent flow structures

and their dynamics in the leading-edge region of swept wings

> |dentify the regions of maximum receptivity and sensitivity

Industrial research

Academic research




“The goal of any scientific study of a fluid-dynamical
process is not in the reproduction of its physical
features by direct numerical simulations but in the
extraction of the governing underlying mechanisms
from the data the DNS produces. In other words,
we are interested in the intrinsic flow behavior

captured by the dynamics of coherent structures.”
Mack & Schmid, 2010)
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Industrial research

 eiorente rag » Friction drag ~ 50% of total drag

— - Afterbody drag

for a subsonic aircraft

|— - Drag due to lift

» Laminar friction drag ~ 1/10 of

Drag,
percent

turbulent friction drag

Friction drag > Large savings are possible by

extending the laminar flow region

0

» An understanding of the

Drag components for a subsonic

aircraft; Thibert, Reneaux & instabilities leading to turbulence is

Schmitt, 1990 .
required



Academic research

Reed and Saric, 1989; Poll, 1978

Non-alignment between

the velocity vector and the
pressure gradient is at the
origin of three dimensional

boundary layers
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Swept-wing instabilities

Crossflow

Attachment line ——
U
SRYA
Uz

Local analysis based on simplified flow models provides us

with different instability mechanisms for different regions



Swept-wing instabilities — Attachment line

N\

Attachment-line instability: streamlines under the influence

of the most unstable modes; Lin & Malik 1996.



Swept-wing instabilities — Crossflow vortices
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Swept-wing instabilities

inflection
— point

crossflow

tangential -— component

component__

wall shear

Xt

— Crossflow vortices

Crossflow instability: streamlines of crossflow vortices

obtained from experimental results; Reed, 1988

normal



Swept-wing instabilities — Crossflow vortices

inflection
— point
crossflow
tangential «— component
component__
wall shear 2

N
spanwise

Streamwise velocity contours under the influence

of crossflow vortices, from experimental results; Haynes & Reed, 2000

normal



Swept-wing instabilities — Global analysis

Isosurfaces of the normal velocity component of the disturbance

Hypersonic flow with bow-shock inflow; Mack, 2009
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Procedure and tools

multigrid with
grid stretching
and adaptive
refinement

SLEPc:
Krylov-Schur,
shift-invert,

GMRES, ILU
preconditioning

Sensitivity

Receptivity



Procedures and tools — Governing equations

Vuu—vAu+ Vp
R(a) =

V-u

DA
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Procedures and tools — Governing equations

Vuu—-vAu+Vp = 0
R(a) =

V-u =0

Eq’=<88t+a—R )q’ =  L(Q)d=f
8(]Q

o8} A A
é\II:/ qle—atdt — ﬁﬁIZ(UB‘i‘A)ﬁ,:f,‘i‘qo
0




Procedures and tools — Receptivity and sensitivity

7 (obj,q,a+ f

bl

A) = obj — (g, (0B + A) g —f)

(a,b) = [qa"bdQ

DA



Procedures and tools — Receptivity and sensitivity

~

Lagrangian functional
7 (obj,q,a+,f,A) = obj — (§",(cB+ A)§ — f) J

(a,b) = [qa"bdQ

Receptivity
What is the variation of the

objective functional given a
variation in the forcing?

a—Iéf =0
of

6 (obj) = —(&*, of)




Procedures and tools — Receptivity and sensitivity

Lagrangian functional

I (Obj,ﬁ,é\]—i_,f,A) = Ob./ - <€]+7 (UB + A)é\] - ?>

Receptivity
What is the variation of the
objective functional given a
variation in the forcing?

a—%af =0
of

6 (obj) = —(&*, of)

(a,b) = [qa"bdQ

Sensitivity
What is the variation of the

objective functional given a
variation in the operator A?

0T
875A =0

5 (obj) = (&*,6Aq)
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Multigrid — Gauss-Seidel
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Poisson problem: error e™ = g — g of

the approximate solution at iteration m

agED aED aED

Ag=f

The Gauss-Seidel algorithm

» Simple and memory efficient
algorithm

» Fast convergence for high
wavenumbers

» Most of the computational
cost is related to the
reduction of the low
wavenumber error
components
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Multigrid — Gauss-Seidel Ag=f

The Gauss-Seidel algorithm

» Simple and memory efficient
algorithm

» Fast convergence for high
wavenumbers

» Most of the computational
cost is related to the

m= 5 reduction of the low
wavenumber error
Poisson problem: error e™ = g — g of
components

the approximate solution at iteration m
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Multigrid — Gauss-Seidel Ag=f

The Gauss-Seidel algorithm

» Simple and memory efficient
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Multigrid — Gauss-Seidel Ag=f
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Multigrid — Gauss-Seidel Ag=f

The Gauss-Seidel algorithm

» Simple and memory efficient
algorithm

» Fast convergence for high
wavenumbers

» Most of the computational
cost is related to the

m= 38 reduction of the low
wavenumber error
Poisson problem: error e™ = g — g of
components

the approximate solution at iteration m
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Multigrid — Gauss-Seidel Ag=f

The Gauss-Seidel algorithm

» Simple and memory efficient
algorithm

» Fast convergence for high
wavenumbers

» Most of the computational
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m= 9 reduction of the low
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Multigrid — Gauss-Seidel Ag=f

The Gauss-Seidel algorithm

» Simple and memory efficient
algorithm

» Fast convergence for high
wavenumbers

» Most of the computational
cost is related to the

m= 10 reduction of the low
wavenumber error
Poisson problem: error e™ = g — g of
components

the approximate solution at iteration m
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Multigrid — Gauss-Seidel Ag=f

The Gauss-Seidel algorithm
» Simple and memory efficient
algorithm
» Fast convergence for high
wavenumbers

» Most of the computational
cost is related to the

m= 20 reduction of the low
wavenumber error
Poisson problem: error e™ = g — g of
components

the approximate solution at iteration m




Multigrid — Gauss-Seidel Ag=f

The Gauss-Seidel algorithm
» Simple and memory efficient
algorithm
» Fast convergence for high
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Multigrid — Gauss-Seidel Ag=f

The Gauss-Seidel algorithm
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Multigrid — Gauss-Seidel Ag=f

The Gauss-Seidel algorithm
» Simple and memory efficient
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Multigrid — Gauss-Seidel Ag=f
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Multigrid — Gauss-Seidel Ag=f

The Gauss-Seidel algorithm
» Simple and memory efficient
algorithm
» Fast convergence for high
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Multigrid — Gauss-Seidel Ag=f

The Gauss-Seidel algorithm
» Simple and memory efficient
algorithm
» Fast convergence for high
wavenumbers

» Most of the computational
cost is related to the

m= 80 reduction of the low
wavenumber error
Poisson problem: error e™ = g — g of
components
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Multigrid — Gauss-Seidel Ag=f

The Gauss-Seidel algorithm
» Simple and memory efficient
algorithm
» Fast convergence for high
wavenumbers

» Most of the computational
cost is related to the

m= 90 reduction of the low
wavenumber error
Poisson problem: error e™ = g — g of
components

the approximate solution at iteration m




Multigrid — Gauss-Seidel Ag=f

The Gauss-Seidel algorithm
» Simple and memory efficient
algorithm
» Fast convergence for high
wavenumbers

» Most of the computational
cost is related to the

m =100 reduction of the low
wavenumber error
Poisson problem: error e™ = g — g of
components

the approximate solution at iteration m




Multigrid — Gauss-Seidel

Ag="f
Error definition
" =q-q" =} &"i(x)

i (x) = exp (iOTx/h>

eigenvectors decomposition
el = Me™ —

leg 1 = 1Nl 5]
|Ag| >1 —  divergence
|Ag| <1 —  convergence

DA



Multigrid — Gauss-Seidel Ag=f

0 02 04 06 08 1

0> (y-wavenumber)

T ™
01 (x-wavenumber)

amplification factor p = |)\g| for the error amplitude: \sg’+1| =Xl leg|



Multigrid — Gauss-Seidel Ag=f
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Multigrid — Gauss-Seidel Ag=f
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Multigrid — Gauss-Seidel Ag=f
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vy = |
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Multigrid — Gauss-Seidel Ag=f

0 02 04 06 08 1

vy = |

@ 1

6> (y-wavenumber)
\

8h

i //////#

s
T2
01 (x-wavenum ber)

amplification factor p = |\g| for the error amplitude: |cf 1 = |l leg|



Multigrid — Gauss-Seidel

0 02 04 06 08 1

NI

6> (y-wavenumber)

01 (x-wavenumber)

amplification factor p = |\g| for the error amplitude: |e

m+1
6

8h

I =[Nl g’




Multigrid — Gauss-Seidel Ag=f
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6> (y-wavenumber)

01 (x-wavenum ber)

amplification factor p = |)\g| for the error amplitude: \€m+1| = [Ag| ]
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Multigrid — V-cycle

interpolation

Gauss-Seidel \ /

relaxation

/\’ solution
restriction /

(average)



Multigrid — Full approximation scheme

Ideas

> Represent the full solution
an all grids

» 7/ forcing of coarser grids’
equations guarantees the
same solution on all grids
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Multigrid — Full approximation scheme

Ideas

> Represent the full solution
an all grids
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Multigrid — Full approximation scheme

U0132143594

interpolation

Ideas
> Represent the full solution
an all grids
» 7/ forcing of coarser grids’
equations guarantees the
same solution on all grids

Advantages

» Treatment of non-linear
equations

» Natural approach to
adaptive grid refinement




Multigrid — Test case Ag=f

104 F T T T —
]
W<
107t .
=
Sy
i~y —— GS
€ 1076 |- 4 |- MG
2 — theo
“©
__E ]_0711 [ 17 1
d:ﬂ .]9\5\/;
10710 | | | | | [
0 5 10 15 20

n (iteration)

Convergence rate of the residual
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Base Flow — Configuration

Rec = 10°

A= 45°
Re, = 16000

Res =126




Base Flow — Computation

root grid = 129 x 33 129 x 33 129 x 33 129 x 33 257 X 65 257 X 65 257 X 65 257 X 65
finest grid = 257 x 65 1025 x 257 1025 x 257 1025 x 257 1025 x 257 2049 x 513 4007 x 1025 8193 x 1025
Rec = 1-10% 1-10* 1-10° 2.10° 5. 10° 5.10° 1-10° 1-10°
time (min) = 1.0 6.8 6.7 76 13 424 75.7 260.5
T T T T T
105 L
102 L
10—1 L
& 1074
10—7 L
10710 -
10718 | | | | | | | | | |
0 10 20 30 40 50 60 70 80

== [Rull == IRl —# [[Ru ||~ IRy |||




129 x 33

root g| 12033 120x 33 257 x 65 257 x 65 257 x 65 257 X 65
finest 257 X 65 57 1025 x 257 1025 x 257 1025 x 257 2049 x 513 4007 x 1025 8193 x 1025
1-1 3 1-10° 2.10° 5-10° 5.10° 1-10° 1-10°
time (m! N O 6.7 76 113 424 75.7 260.5
1.0 T T T T
1071
® 1074
1077
10710
10718 | | | | | | | | | |
0 10 20 30 40 50 60 70 80

== [Rull == IRl —# [[Ru ||~ IRy |||




129 x 33
1025 x 257

root grid = 129 x 33 257 x 65 257 x 65 257 x 65 257 x 65

finest grid = 2! 57 1025 x 357 1025 x 357 2049 x ?13 4097 x 16025 8193 x 16025
e (g = 1-10* S S S W
105 6.8 T T T T
102
1071
® 1074
1077
10710
10718 | | | | | | | | | |
0 10 20 30 40 50 60 70 80

== [Rull == IRl —# [[Ru ||~ IRy |||




Base Flow — Com

129 x 33

t grid = 129 x 33 12 33 257 x 65 257 x 65 257 x 65 257 x 65
fineat iiid = 257 i 65 10 1025 x 257 57 1025 i 257 2049 i 513 4097 xxlozs 8193 ;1025
Rec = 1-10° 1 105 5. 10° 5.10° 1-10° 1-10°
time (min) = 1.0 ° 113 424 75.7 260.5
T T T T
10°
102
1071
® 1074
1077 -
10710 L
—13 |
10 | | | | | | | | |
0 10 20 30 40 50 60 70 80

== [Rull == IRl —# [[Ru ||~ IRy |||




Base Flow — Computa

129 x 33

root grid = 129 x 33 129 x 33 12 65 257 x 65 257 x 65 257 x 65

finest grid = 257 X 65 1025 x 257 10 1025 x 557 57 2049 x 513 4097 x 1025 8193 x 1025
Rec = 1-10 1-10 1 5. 10 110 1-10

time (min) = 1.0 6.8 210 42.4 75.7 260.5

105 [T \ 7.6 / T T T

102 [
07
3 1074+

10—7 [

10710 -

10718 | | | | | | | | |

ol

10 20 30 40 50 60 70 80

== [Rull == IRl —# [[Ru ||~ IRy |||




Base Flow — Computation

257 X 65

root grid = 129 x 33 129 x 33 129 x 33 12

finest grid = 257 x 65 1025 x 257 1025 x 257  10:
Rec = 1-10% 1-10* 1-10°

time (min) = 1.0 6.8 6.7

65 257 x 65 257 x 65
13 4097 x 1025 8193 x 1025

1025 x 257 ; :
5.10° Lt s

105 113 T T

102 [

07

3 1074+

10—7 [

10710 -

10718 | | | | | | | | |

ol

10 20 30 40 50 60 70 80

== [Rull == IRl —# [[Ru ||~ IRy |||




Base Flow — Computation

257 X 65

meigid=  drags w0maam wmaam wmaam 1] 2049 X 513 \5s ais:waos
Rec = 1-10° 1-10* 1-10° 2.10° 5 105 1-10°
time (min) = 1.0 6.8 6.7 7.6 ° 260.5
15[ 42.4
102 .
07 .
& 1074 i
1077 - a
10710 - -
10718 | | | | | | | | | ]
0 10 20 30 40 50 60 70 80

== [Rull == IRl —# [[Ru ||~ IRy |||




Base Flow — Computation

257 X 65

e gid=  drags 10maam w0maam w0m g 10 aze 24 4097 X 1025 |5
) Rec = 1-10° 1-10* 1-10° 2.10° 5. 10° 1. 106
time (min) = 1.0 6.8 6.7 7.6 13
105 T T
102 L
10—1 L
& 1074 a
1077 - 7
10710 b
10718 | | | | | | | | | ]
0 10 20 30 40 50 60 70 80

== [Rull == IRl —# [[Ru ||~ IRy |||




Base Flow — Computation

257 X 65

t grid = 129 x 33 129 x 33 129 x 33 129 x 33 257 x 65 257 x 65 25
finet g:id = 257 i 65 1025 i 257 1025 i 257 1025 i 257 1025 i 257 2049 i o3 400] 8193 X 1025
Rec = 1-10° 1-10* 1-10° 2.10° 5. 10° 5.10° 1 106
time (min) = 1.0 6.8 6.7 76 1.3 24 .
T T T
105 L
102 .
107t 1 :
& 1074 i
1077 - a
10710 - -
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Base Flow — Streamlines
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Perturbations — Domains
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Perturbations — Spectrum I
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Perturbations — Direct and adjoint eigenvectors

Iso-contours of the u-compoment of the perturbation. Blue: negative, red: positive



Perturbations — Direct and adjoint eigenvectors

Direct eigenvector, attachment-line like structures



Perturbations — Direct and adjoint eigenvectors

Direct eigenvector, structure orientation is against streamlines



Perturbations — Direct and adjoint eigenvectors

Direct eigenvector, transition from attachment line to crossflow like structures



Perturbations — Direct and adjoint eigenvectors

Direct eigenvector, crossflow like structures



Perturbations — Direct and adjoint eigenvectors



Perturbations — Direct and adjoint eigenvectors

Adjoint eigenvector, localized upstream of and close to the attachment line region



Perturbations — Direct eigenvector

107t | 8

10—5 = R

1079} )

10—13 - -
curvilinear (chordwise)

Direct eigenvector, norm of the velocity as a function of the chordwise coordinate



Perturbations — Direct eigenvector

normal

curvilinear (chordwise)

Direct eigenvector, u component at fixed spanwise position;

logarithmic scale in color
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Perturbations — Receptivity § (amp) = —(§", 6f)

: 400
— : 200
£ ! 0
S :
2 . —200
___________ ______~__———""—‘—"""____,.""""""' —400

curvilinear (chordwise)

Adjoint eigenvector, u™ component at fixed spanwise location



Perturbations — Wavemaker
Sensitivity
7 (o0bj,8,d",F,A) = obj — (&". (0B + A)a )

T .. ek onn
540A=0 = §(c)=(a",0Aq)

0A — variation in the operator | Feedback forcing

» base-flow change SA = Cod (x — x0)

» boundary conditions
localized feedback forcing

dependent on the perturbation
e.g. small cylinder

» feedback forcing
> generic structural change

Giannetti & Luchini, 2003, 2007
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curvilinear (chordwise)

Wavemaker at fixed spanwise location, ut u
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Conclusions

Numerics Physics

» Multigrid has been proven » Direct modes show features

as an extremely efficient
solver for the non-linear
Navier-Stokes equations on
stretched grids and with
adaptive refinement

The Krylov subspace
method implemented in
SLEPc has been used to
identify the flow’s coherent
structures

The location of the outflow
boundary has no influence
on the stability results

of both attachment line and
crossflow vortices: they
share the same growth rate
and phase speed

The amplitude and growth
rate of the global
eigenvectors are dependent
on a very small region a few
boundary layer thicknesses
across the attachment line

The localization of the most
sensitive region suggests
local stability results are
valid




Future work

Numerics Physics

» Extension of multigrid to » The role of the adjoint’s

complex-valued linear
problems will provide a fast
and memory efficient
solution strategy for
eigenvector computations

Multigrid refinement
strategies for eigenvector
computations

Provide documentation and
clean up/optimize the code
(parallelization?)

boundary values regarding
receptivity to boundary
conditions

Identification of physical
mechanisms leading to the
transition between
attachment line and
crossflow vortices

Parametric study and
identification of the critical
Reynolds number
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Gauss-Seidel vs. Multigrid Ag=1f, 0,g=0
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Gauss-Seidel vs. Multigrid Ag=1Ff, 0,=0
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Gauss-Seidel vs. Multigrid
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Gauss-Seidel vs. Multigrid Ag=1f, 0,g=0
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