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In the broad light of day mathematicians check their
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Résumé

Dans cette thèse, nous présentons le fruit de trois années de recherche autour du thème des
arbres aléatoires continus et de différentes façons de les découper. Ce travail a donné lieu à
trois articles soumis pour publication à des revues scientifiques à comité de lecture :

• [ADH12b] Romain Abraham, Jean-François Delmas, and Patrick Hoscheit, A note on
the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces, à
paraître dans Electron. J. Probab. (2013).

• [ADH13] Romain Abraham, Jean-François Delmas and Patrick Hoscheit, Exit times for an
increasing Lévy tree-valued process, en révision pour Probab. Theory Related Fields (2013).

• [Hos12] Patrick Hoscheit, Fluctuations for the number of records on subtrees of the Continuum
Random Tree, prépublication arXiv :1212.5434 (2012).

Ces trois articles constituent, après une longue introduction au sujet, les trois chapitres
de cette thèse. Dans l’appendice, un résultat technique est présenté, qui étend légèrement un
résultat de [ADV10]. La preuve ne présente que peu de différences par rapport à la version
publiée, mais nous l’incluons par souci d’exhaustivité.

Topologie des arbres réels mesurés

Les arbres aléatoires continus sont des espaces métriques aléatoires appartenant à la classe
des arbres réels (ou R-arbres), c’est-à-dire des espaces métriques (T,d) tels que

(i) Pour tous s, t ∈ T , il existe une unique isométrie fs,t de [0,d(s, t )] vers T telle que
fs,t (0) = s et fs,t (d(s, t )) = t .

(ii) Pour tous s, t ∈ T , si q est une injection continue de [0,1] dans T telle que q(0) = s et
q(1) = t , alors q([0,1]) = fs,t ([0,d(s, t )]).

Les arbres réels sont naturellement munis d’une mesure borélienne, dite mesure de longueur
`, qui représente en quelque sorte la mesure de Lebesgue sur T . De plus, certains arbres,
notamment les arbres de Lévy définis plus bas, possèdent une mesure m, dite de masse qui
représente une mesure « uniforme » sur les feuilles de l’arbre.

Pour pouvoir définir et étudier des variables aléatoires à valeurs dans les arbres réels, la
question de la topologie des espaces d’arbres se pose naturellement. La topologie la plus usuelle,
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sur l’espace Tcpct des classes d’isométrie des arbres réels compacts, est la topologie de Gromov-
Hausdorff, proposée par M. Gromov ([Gro07]) dans le contexte de la théorie géométrique des
groupes. Il s’agit d’une topologie métrisable dont l’idée maîtresse est de comparer deux arbres
réels compacts grâce à leur distance de Hausdorff, quitte à les plonger tous deux dans un
espace métrique commun. Cette topologie a trouvé de nombreuses applications, notamment
pour l’étude de limites d’échelle de grands objets aléatoires.

Dans ce travail, nous nous sommes intéressés particulièrement à l’étude de topologies
sur les espaces métriques mesurés. En effet, pour étudier certaines propriétés des arbres, il
peut être intéressant de disposer de mesures permettant de choisir des points au hasard dans
l’arbre. Par exemple, si Tn est un arbre choisi uniformément parmi tous les arbres binaires
enracinés à n noeuds, quelle est la distance moyenne entre la racine et une feuille ? Autant le
choix d’une feuille uniforme dans un arbre discret ne pose pas de problème, autant il n’en va
pas de même pour les arbres aléatoires continus. Néanmoins, pour une large classe d’entre
eux, il est possible de construire des mesures portées par l’arbre ; il est donc pertinent de
chercher des topologies sur les espaces d’arbres qui prennent en compte cette dimension.

La littérature existante sur le sujet est déjà assez vaste, grâce à des liens avec la théorie du
transport optimal ([Vil09]) qui ont conduit différents auteurs à s’y intéresser ([Fuk87, Stu06a]).
Différentes approches existent ; certaines négligent les aspects géométriques des arbres au
profit des mesures qu’ils portent, telle la topologie de Gromov-faible ([Gro07, GPW08]),
d’autres combinent les deux, telle la topologie de Gromov-Hausdorff mesurée ([Eva08, Mie09]).
Toutefois, aucune de ces topologies ne permet de prendre en compte les arbres aléatoires de
Lévy dans leur généralité : en effet, dans le cas surcritique, les arbres de Lévy ne sont pas
compacts avec probabilité positive, et la mesure qu’ils portent n’est que σ-finie.

Dans l’article [ADH13a], nous avons donc développé une topologie sur la classe T des R-
arbres enracinés, localement compacts et complets, munis de mesures boréliennes localement
finies (finies sur les parties bornées). L’idée est de partir d’une distance de type Gromov-
Hausdorff-Prokhorov sur la classe des arbres réels compacts, munis de mesures finies, et
d’étendre cette distance à T par localisation. Plus précisément, soit

d c
GHP(T1,T2) = inf

(Z ,Φ1,Φ2)

(
d Z (Φ1(;1),Φ2(;2))+d Z

H (Φ1(T1),Φ2(T2))+d Z
Pr((Φ1)∗µ1, (Φ2)∗µ2)

)
,

la distance de Gromov-Hausdorff-Prokhorov compacte entre deux tels arbres (enracinés et
mesurés) (T1,;1,µ1) et (T2,;2,µ2). Dans cette expression, dH désigne la distance de Hausdorff
entre parties fermées d’un espace polonais Z, dPr désigne la distance de Prokhorov entre
mesures finies sur Z, et la borne inférieure porte sur tous les plongements isométriques Φ1,Φ2

de T1,T2 dans un espace métrique polonais (Z ,d Z ). La distance d c
GHP métrise en un sens la

topologie de la convergence faible de mesures finies sur des espaces compacts. La distance de
Gromov-Hausdorff-Prokhorov sur T est alors définie par

dGHP(T1,T2) =
∫ ∞

0
e−r (

1∧d c
GHP(BT1 (;1,r ),BT2 (;2,r ))

)
dr.

On vérifie que cette expression définit bien une distance sur T, et que la topologie ainsi définie
est une topologie d’espace métrique polonais, ce qui constitue un préalable indispensable à
l’étude de processus stochastiques sur T. La preuve de ce dernier résultat nécessite l’utilisation
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d’un critère de précompacité dans l’espace (T,dGHP) dont la démonstration, relativement
technique, constitue le coeur du chapitre 2.

Arbres aléatoires continus

Les arbres aléatoires que nous étudions appartiennent pour l’essentiel à la classe des arbres
de Lévy, qui sont des modèles d’arbres découverts par Le Gall et Le Jan ([LL98a, LL98b]).
La motivation initiale est de donner un sens à la généalogie des processus de branchement
à espace d’états continu (CSBP). Ceux-ci sont des processus de Markov (Zt , t ≥ 0) à valeurs
dans R+, représentant l’évolution de la taille d’une grande population, dont les individus sont
infinitésimaux. Les CSBP sont caractérisés par une fonction ψ, leur mécanisme de branchement,
qui est telle que

ψ(u) =αu +βu2 +
∫

(0,∞)

(
e−ux −1+ux1{x<1}

)
Π(d x), (1)

où α ∈ R, β ≥ 0 et où Π est une mesure σ-finie sur R+, telle que
∫

(1∧ x2)Π(d x) <∞. Les
trajectoires des CSBP peuvent être mises en relation, via la transformation de Lamperti, avec
les trajectoires d’un processus de Lévy spectralement positif. On peut donc identifier une
composante brownienne et une composante de sauts dans un CSBP général.

Il en va de même pour les arbres de Lévy : leurs points de branchements sont soit de
degré 3 (branchement binaire), correspondant à la partie « brownienne » du processus de
branchement, soit de degré infini, correspondant aux sauts du processus de branchement.
Une question fondamentale pour l’étude des arbres de Lévy est la question de la criticalité :
la population qu’ils modélisent s’éteint-elle presque sûrement ou bien peut-elle survivre en
temps infini ? Sous des conditions raisonnables (condition de Grey), le critère est simple :
si ψ′(0+) = 0 (cas critique) ou si ψ′(0+) > 0 (cas sous-critique), le processus s’éteint presque
sûrement (avec probabilité 1, il existe t0 ≥ 0 tel que Zt = 0 pour tout t ≥ t0). Par contre, si
−∞≤ψ′(0+) < 0, (cas sur-critique), avec probabilité positive, le processus ne s’éteint jamais.
L’arbre de Lévy correspondant sera donc compact dans les cas sous-critique et critique, alors
qu’avec probabilité positive, dans le cas sur-critique, il n’est pas compact, seulement localement
compact.

Divers travaux se sont intéressés à la question de la fragmentation des arbres de Lévy (ou
de leurs dérivés, tels l’arbre brownien d’Aldous ou l’arbre α-stable), notamment Aldous-Pitman
([AP98a]) et Miermont ([Mie03, Mie04]). La procédure la plus générale a été décrite par
Abraham, Delmas et Voisin ([ADV10]) et consiste à combiner une fragmentation homogène sur
le squelette de l’arbre, similaire à la fragmentation d’Aldous et Pitman, avec une fragmentation
biaisée par la taille des noeuds infinis. Sous certaines hypothèses, il est alors possible de montrer
que l’arbre ainsi élagué est encore un arbre de Lévy, avec un mécanisme de branchement
décrit explicitement.

Un cas particulier de l’élagage des arbres de Lévy vérifie une propriété de consistance : si
ψ est un mécanisme de branchement, on définit, pour θ > 0, le mécanisme de branchement

ψθ(u) =ψ(u +θ)−ψ(θ).
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En utilisant l’élagage d’Abraham-Delmas-Voisin sur un arbre de Lévy de mécanisme ψ, on peut
obtenir un arbre de Lévy, de mécanisme de branchement ψθ . De plus, la famille (ψθ,θ > 0) est
consistante, au sens où

ψθ+θ′ =
(
ψθ

)
θ′ =

(
ψθ′

)
θ ,

ce qui permet, via la procédure d’élagage, de construire un processus (Tθ,θ ≥ 0), à valeurs
dans T et indexé par θ de telle façon que pour tout θ ≥ 0, l’arbre Tθ soit un arbre de Lévy
de mécanisme de branchement ψθ . L’étude de ce processus, commencée dans [AD12a], se
heurte à l’absence d’une bonne description de ses trajectoires, en particulier de ses transitions
infinitésimales.

C’est dans ce contexte que nous avons introduit dans [ADH13b] une construction alternative
du processus d’élagage utilisant des mesures ponctuelles de Poisson à valeurs dans T. Cette
construction permet de montrer que les transitions du processus d’élagage sont telles qu’à
l’instant θ > 0, conditionnellement à Tθ, l’arbre Tθ− est obtenu en greffant un nouvel arbre
de Lévy, de mécanisme de branchement ψθ, sur une feuille de Tθ uniformément choisie.
Formellement, on peut écrire le générateur infinitésimal du processus de croissance obtenu
en retournant le temps, (T−θ, θ ∈ (−∞,0]), de la façon suivante : si θ < 0, si F est mesurable
bornée sur T et si T est un élément de T, alors

(LθF ) (T ) =
∫
T

mT (d s)
∫
T

Nψθ [dT ]
(
F (T ~ (T, s))−F (T )

)
.

Dans cette expression, mT désigne la mesure de masse de l’arbre T (mesure « uniforme » sur
les feuilles), la notation T ~ (T, s) désigne l’arbre obtenu en greffant T sur la feuille s ∈ T ,
et la mesure Nψθ [dT ] correspond à la loi de l’arbre greffé à l’instant θ (voir l’équation (3.40)
pour une expression explicite). Ce théorème est prouvé dans le chapitre 3 en appliquant de
façon itérative la propriété de Markov « spéciale » démontrée dans [AD12a], ce qui révèle au
passage une intéressante décomposition des arbres de Lévy en générations.

Nous appliquons ensuite cette description trajectorielle à l’étude du comportement du
processus d’élagage à certains temps d’arrêt, qui sont les instants où le processus franchit une
hauteur donnée :

Ah = sup{θ, Hmax(Tθ) > h} , 0 < h ≤∞.

Nous décrivons précisément la loi du couple (TAh−,TAh ) au moyen d’une décomposition
spinale, par rapport à l’épine dorsale �;,x�, où x est la feuille sur laquelle vient se greffer
l’arbre responsable du franchissement de la hauteur h. Cette décomposition est à rapprocher
des classiques décompositions de Bismut et de Williams.

Coupures et processus de records

En 1970, Meir et Moon s’intéressent au problème suivant : étant donné un arbre Tn discret,
enraciné, à n arêtes, on choisit uniformément l’une des arêtes, que l’on retire. On réitère
ensuite la procédure sur la composante connexe contenant la racine et on note X (Tn) le
nombre (aléatoire) de coupures ainsi effectuées jusqu’à ce que la racine soit isolée. Lorsque Tn

est un arbre aléatoire, le comportement de X (Tn) est connu dans certains cas. Notamment,
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lorsque Tn est un arbre de Galton-Watson critique, de variance σ2 finie, conditionné à avoir n
arêtes, Panholzer ([Pan06]) et Janson ([Jan06]) ont montré

lim
n→∞

X (Tn)

σ
p

n
=R,

où R est une variable aléatoire de loi Rayleigh, c’est-à-dire, distribuée suivant la densité
x exp(−x2/2)1[0,∞)(x). Cette loi est connue pour être la loi de la hauteur d’une feuille choisie
uniformément dans l’arbre brownien d’Aldous, qui est la limite d’échelle des arbres Tn

convenablement renormalisés. Plusieurs travaux ont été menés pour relier cette variable
aléatoire à un processus de fragmentation sur l’arbre continu.

La manière la plus naturelle de fragmenter l’arbre brownien d’Aldous a été découverte
par Aldous et Pitman ([AP98a]) et consiste à fragmenter le squelette de l’arbre suivant un
processus de Poisson à valeurs dans l’arbre. Il est démontré dans l’article original que cette
fragmentation est un exemple de fragmentation auto-similaire, d’indice 1/2, de mesure de
dislocation binaire, et sans érosion.

Cette fragmentation a été utilisée notamment par Bertoin et Miermont ([BM12]) pour
construire un arbre cut(T ) qui code la généalogie de la fragmentation d’Aldous-Pitman, et
qui est en même temps limite d’échelle d’arbres qui codent pour la fragmentation discrète des
arbres Tn . Le temps nécessaire à isoler la racine correspond alors à la hauteur d’une feuille
uniforme dans ces arbres. Comme cut(T ) est encore distribué comme un arbre brownien, on
retrouve la limite d’échelle de Janson (et des résultats plus généraux sur le temps nécessaire à
la séparation de k points de l’arbre).

Une approche différente a été choisie par Abraham et Delmas ([AD11]), qui examinent l’effet
de la fragmentation d’Aldous-Pitman sur des sous-arbres de l’arbre brownien T , obtenus en
sélectionnant des feuilles uniformes. Notons T∗

n le sous-arbre de T engendré par n feuilles
uniformes et la racine, privé de l’arête adjacente à la racine. La loi de T∗

n est connue depuis
Aldous ([Ald91a]) : il s’agit d’un arbre binaire enraciné, à n feuilles et à 2n −2 arêtes.

Abraham et Delmas considèrent alors le processus de séparation (ou de records) défini de
la façon suivante : pour tout s ∈T , on pose θ(s) l’instant auquel le point s est séparé de la
racine dans la fragmentation. Le processus (θ(s), s ∈ T ) est alors un processus de saut pur
défini sur l’arbre, qui croît vers +∞ à mesure que l’on se rapproche de la racine.

L’analogue du nombre de coupures X (Tn) est alors le nombre de sauts du processus θ sur
T∗

n . Abraham et Delmas démontrent que

lim
n→∞

X (T∗
n)p

2n
=

∫
T
θ(s)m(d s).

De plus, la quantité Θ= ∫
T θ(s)m(d s) est bien de loi Rayleigh, retrouvant ainsi le résultat de

Janson.
Dans le chapitre 4, nous présentons une étude des fluctuations de X (T∗

n)/
p

2n autour de
sa limite, sous forme d’un théorème central limite :

lim
n→∞n1/4

(
X ∗

np
2n

−Θ
)
= Z ,
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en loi, où Z admet pour fonction caractéristique E(1)∞
[
exp(i t Z )

] = E(1)∞
[
exp(−t 2Θ/

p
2)

]
. La

preuve de ce théorème repose essentiellement sur l’utilisation de martingales, qui sont naturel-
lement définies à partir des processus ponctuels de Poisson qui interviennent dans la définition
de la fragmentation d’Aldous-Pitman. En particulier, si X (T ) est le nombre de sauts1 de θ sur
un sous-arbre T ⊂T , on peut montrer par des arguments de martingales que

E [X (T )] = E
[∫

T
θ(s) `(d s)

]
E

[(
X (T )−

∫
T
θ(s) `(d s)

)2]
= E

[∫
T
θ(s) `(d s)

]
.

Ceci permet de relier le nombre de sauts de θ sur T∗
n à la valeur moyenne de θ sur T∗

n . Heuristi-
quement, tout repose alors sur la convergence faible des mesures uniformes `(d s)/`(Tn)1Tn (s)
vers la mesure de masse m(d s) de l’arbre (Aldous). Nous présentons dans le chapitre 4
des méthodes permettant de contrôler précisément ces convergences pour en examiner les
fluctuations.

1On peut avoir X (T ) =∞, en particulier si T contient la racine
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CHAPTER 1

Introduction

In this thesis, we present several contributions of the author to the theory of continuum ran-
dom trees. The following papers, each forming a chapter of this thesis, have been submitted
to peer-reviewed journals. In the appendix, a technical result proven by the author is added
for the sake of completeness, slightly generalizing a result appearing in [ADV10].

• [ADH12b] Romain Abraham, Jean-François Delmas, and Patrick Hoscheit, A note on the
Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces, to
appear in Electron. J. Probab. (2013).

• [ADH13] Romain Abraham, Jean-François Delmas and Patrick Hoscheit, Exit times for
an increasing Lévy tree-valued process, in revision for Probab. Theory Related Fields
(2013).

• [Hos12] Patrick Hoscheit, Fluctuations for the number of records on subtrees of the Continuum
Random Tree, preprint arXiv:1212.5434 (2012).

Motivation

This short introduction aims to paint a broad picture of the field, which has seen an enormous
development in the last ten years, by giving some historical perspective and by introducing
some of the research topics related to continuum random tree theory. We will usually not
try to give precise definitions of the terms used, referring to the appropriate papers for more
details.

The first formal definition of a continuum random tree goes back to the three seminal
papers by Aldous ([Ald91a, Ald91b, Ald93]), as well as the work by Le Gall ([Le 91]) on
trees in the representation of measure-valued processes. Aldous offers several equivalent
definitions of what he calls the compact continuum tree (later the Brownian tree), as well as
several convergence results. Among these, the following is of particular interest since it led to
important generalizations. We state it as in [Ald93].

Theorem 1 (Aldous, 1993). Let Tn be a conditioned Galton-Watson tree whose offspring distribution
ξ satisfies E[ξ] = 1 (ξ is critical), 0 < Var(ξ) =σ2 <∞ and GCD

(
{ j ∈ N, P(ξ= j ) > 0}

)= 1. Rescale

1



1. Introduction

the edges of Tn to have length σn−1/2. Let fn : �1,2n −1�→ R+ be the search-depth process for Tn .
Define f̄n = [0,1] → R+ by

f̄n(i /2n) = fn(i ) ; 1 ≤ i ≤ 2n −1 ; f̄n(0) = f̄n(1) = 0,

with linear interpolation between these values. Then, ( f̄n(t ), 0 ≤ t ≤ 1) → (2Bt , 0 ≤ t ≤ 1) in
distribution on C ([0,1]), where B is a standard normalized Brownian excursion.

The class of conditioned, finite-variance Galton-Watson trees is known to contain several
classical models of trees. For instance, uniform rooted plane binary trees are conditioned
Galton-Watson tree with ξ(0) = ξ(2) = 1/2; uniform rooted labelled trees (Cayley trees) corre-
spond to the case ξ(k) = e1/k !, k ≥ 0 (for a complete account of the theory, see [Jan12]). It is
remarkable that the limiting process (or the tree encoded by it) depends on ξ only through
its variance σ2. This kind of universal behavior is strongly reminiscent of the universality
of Brownian motion as a scaling limit for random walks (and indeed, Aldous’s result relies
crucially on Donsker’s invariance theorem).

This technique of encoding trees by continuous excursions proved very convenient and
quite suitable for generalizations. Most importantly, in 1998, Le Gall and Le Jan ([LL98b])
defined the general height process which encodes the genealogy of conservative continuous-
state branching processes by an excursion H : [0,σ] → R+. This in turn led to the definition of
Lévy trees by Duquesne and Le Gall ([DL02, DL05]). Lévy trees are a natural generalization of
Aldous’s Brownian tree, being the scaling limits of unconditioned Galton-Watson trees. They
are natural genealogical trees for continuous-state branching processes (CSBP), and, through
the snake construction by Le Gall ([Le 91, Le 93a]), they constitute a powerful tool for the
study of measure-valued branching processes. Indeed, a superprocess with general branching
mechanism ψ can always be represented as a cloud of Lévy snakes. This is very useful
when investigating the connections between superprocesses and nonlinear partial differential
equations of the form

1

2
∆u =ψ(u),

where ψ is the Laplace exponent of a spectrally positive Lévy process, see for instance [Le 94,
Le 95] for the case ψ(u) = u2. We refer to the seminal papers by Dynkin ([Dyn91, Dyn93]) for
more information on the link between superprocesses and partial differential equations.

Another motivation for studying continuum random trees is combinatorial. Indeed, many
asymptotic properties of combinatorial trees can be readily explained by features of the lim-
iting continuum random tree. For instance, using powerful singularity analysis methods,
Flajolet and Odlyzko ([FO80]) proved in 1982 that the height H(Tn) of a uniform binary tree
with n nodes has asymptotic distribution given by

lim
n→∞P

(
H(Tn)

2
p

n
∈ d x

)
= 4x

∑
k≥1

k2 (
2k2x2 −3

)
e−k2x2

d x,

known as the Theta distribution. Using Aldous’s theorem about the limiting distribution of
Tn , we can easily show that in fact

lim
n→∞

H(Tn)

2
p

n
= max

0≤t≤1
Bt ,

2



where Bt is a normalized Brownian excursion. Thus, the Theta distribution can be very natu-
rally accounted for as the maximum of a normalized Brownian excursion, which is interpreted
as the maximal height of a leaf in the Brownian CRT. Many more applications of this kind
are collected in [Drm09].

The interest for continuum random trees in combinatorics is not restricted to asymptotic
random tree theory alone: in recent years, a considerable literature has emerged on the topic
of random maps. These are random graph structures embedded in the two-dimensional sphere
(or higher-genera manifolds, see [Bet10]). Through the use of clever bijections (such as the
Cori-Vauquelin-Schaeffer bijection, see [CS04], or the Bouttier-di Francesco-Guitter bijection,
see [BdFG04]), the theory of planar maps is strongly connected with the theory of random
trees. Therefore, the asymptotic structure of planar maps is usually studied through the
Brownian CRT. A recent breakthrough was recently made independently by Le Gall ([Le 12])
and Miermont ([Mie12]) who proved that there exists a universal scaling limit for a large class
of random maps, named the Brownian map, which is related to Aldous’s CRT. A good survey
of the theory can be found in [LM12].

The asymptotic theory of random trees contains other scaling limits than the Brownian
CRT. Indeed, just as the Brownian CRT can be seen as a conditioned version of some specific
Lévy tree (associated with the branching mechanism ψ(u) = u2/2), there are non-Brownian
continuum random trees that arise as scaling limits of natural tree models. For instance, the
stable tree, with stability parameter α ∈ (1,2) is also a conditioned Lévy tree (with branching
mechanism ψ(u) = uα), and it was proven by Duquesne ([Duq03]) that it corresponds to
the scaling limit of conditioned Galton-Watson trees with a critical offspring distribution
having infinite variance, lying in the attraction domain of an α-stable distribution. Other
conditionings that lead to the stable CRT in the limit were considered in [Kor12a].

As these few examples show, there is a strong interest in continuum random trees, since
they arise naturally as scaling limits of many discrete models, whether it be branching pro-
cesses, random tree models or random maps. The contour process approach pioneered by
Aldous was completed by a more geometrical approach, starting with [EPW05]. The main
idea is to consider random trees (discrete and continuum) as metric spaces, endowed with
several measures. This enables among other things the detailed analysis of their geometrical
features. For instance, the fine topological properties of Lévy trees were extensively studied
by Duquesne ([DL05, DL06, Duq10, Duq12]).

In this framework, scaling limits of random discrete trees can therefore be seen as con-
vergence results in the appropriate space of metric spaces. This approach also enables to
define and study tree-valued processes, which will be our main interest. In the next sections, we
will present the general theory (in its present state, which is far from complete) of continuum
random trees seen as metric spaces, theory which will be used to define the Lévy tree-valued
pruning process of Abraham and Delmas ([AD12a]), as well as several other tree-valued pro-
cesses. Finally, we will give a summary of the fragmentation theory of self-similar CRTs and
its relation to certain cutting-edge edge-cutting procedures on discrete trees.

Although most—if not all—of the results presented here can be found elsewhere, we hope
that this synthetic presentation of the theory might prove useful.

3



1. Introduction

1.1 Topologies on tree spaces

This section will present a panorama of the different topologies that are used in continuum
random tree theory. We refer to the excellent books [BBI01] (Chapters 7 and 8) and [Vil09]
(Chapter 27) for pedagogical introductions to the subject.

The Gromov-Hausdorff topology

Although we will eventually turn to tree-like spaces, the basic theory of Gromov-Hausdorff
convergence requires only a metric structure. We want to define what it means for two metric
spaces (X ,d) and (X ′,d ′) to be “close”. If A and B are compact subspaces of some common
Polish1 metric space Z , then a good way to compare A and B is given by the Hausdorff
distance:

d Z
H (A,B) = inf

{
ε> 0; A ⊂ Bε and B ⊂ Aε

}
,

where Aε = {
x ∈ Z ; infy∈A d Z (x, y) < ε} is the ε-halo set of A. We want to make use of this

definition to compare “shapes” of trees. Even better, we want to define a distance between
tree-like structures that might not even be embedded in a common metric space. In order to
do this, we will use the procedure by Gromov:

Definition 2 (Gromov-Hausdorff distance). Let (X ,d) and (X ′,d ′) be two compact metric spaces.
The Gromov-Hausdorff distance between X and X ′ is defined by

dGH
(
X , X ′)= inf

(Z ,d Z ,Φ,Φ′)
d Z

H

(
Φ(X ),Φ′(X ′)

)
,

where the infimum is taken over all Polish metric spaces (Z ,d Z ) and over all isometric embeddings
Φ : X ,→ Z and Φ′ : X ′ ,→ Z .

Like most concepts in this section, the Gromov-Hausdorff distance was developed in the
framework of geometric group theory. Gromov first defined (and used) the notion in his
groundbreaking work on polynomial-growth groups ([Gro81]).

The Gromov-Hausdorff distance obviously assigns distance 0 to two isometric compact
metric spaces. Therefore, we will consider the space K of isometry classes of compact metric
spaces. On this space, it can then be proven that dGH is in fact a metric (a definite-positive,
symmetric function satisfying the triangle inequality). The ensuing metric topology will be
called Gromov-Hausdorff topology. A natural question is to wonder what its continuous func-
tions look like, and how it compares to other topologies on K.

A first remark in that direction is that Gromov-Hausdorff convergence does not preserve
topological invariants such as the genus. For instance, a sphere S2 with a very “small” handle
attached to it (which is a surface of genus 1) will converge in the Gromov-Hausdorff sense,
as the handle becomes smaller and smaller, towards the sphere S2 itself (of genus 0). There

1A Polish metric space is a complete and separable metric space (X ,d). A topological space is Polish if its
topology can be metrized by a complete and separable metric. Bourbaki uses the terminology “Polishable space”
(which is not the same as a polishable space).
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1.1. Topologies on tree spaces

are stronger topologies on K, such as the uniform topology or the Lipschitz topology, that do
preserve topological invariants of this kind.

The definition of the Gromov-Hausdorff distance, although relatively easy to picture and
to compute, does however not give a good insight into the topology it defines. There are
several different formulations of Gromov-Hausdorff convergence that are more topological in
nature, two of which we will describe now. First, the notion of ε-isometries: a map f : X → Y
is an ε-isometry if

sup
x,x ′∈X

∣∣dY ( f (x), f (x ′))−dX (x, x ′)
∣∣≤ ε

and if f (X ) is an ε-net in Y (meaning that every point in Y is at most at distance ε from a
point in f (X )). Of course, a 0-isometry is a classical isometry. Yet also for ε> 0, the existence
of ε-isometries gives some information about distance in the Gromov-Hausdorff sense:

Proposition 3. Let X ,Y be two compact metric spaces, and let ε> 0. Then, if dGH (X ,Y ) < ε, there
exists a 2ε-isometry X → Y . Conversely, if there exists an ε-isometry X → Y , then dGH (X ,Y ) < 2ε.

Hence, convergence in the Gromov-Hausdorff sense can be reduced to the existence of
ε-isometries with arbitrarily small ε. This description, as well as the simple fact that the
set of finite metric spaces is dense in K, leads to the other important characterization of
Gromov-Hausdorff convergence, which shows that it is basically all about convergence of
finite sets:

Proposition 4. Let (Xn , n ≥ 1) and X∞ be compact metric spaces. Then Xn converges to X∞ in
the Gromov-Hausdorff topology if and only if for every ε> 0, we can find finite ε-nets S(ε) ⊂ X and
S(ε)

n ⊂ Xn such that S(ε)
n converges to S(ε) in the Gromov-Hausdorff sense. Moreover, these sets can be

chosen in such a way that, for sufficiently large n, the sets S(ε)
n have same cardinality as S(ε).

As far as Gromov-Hausdorff convergence of finite sets is concerned, it can be shown that
it is equivalent to stronger convergences, such as the uniform convergence, which means that
all distances in the set converge. Therefore, if Xn converges in Gromov-Hausdorff sense to X ,
and if S ⊂ X is a finite set, we can find finite subsets Sn ⊂ Xn converging in a very strong sense
to S. This shows an important invariant for Gromov-Hausdorff convergence: if a property
can be expressed in terms of the distances between a finite number of points, then it will
be preserved in the Gromov-Hausdorff limit. We will see below an application of this fact.
Finally, let us describe a pre-compactness criterion in the Gromov-Hausdorff space:

Theorem 5 (Gromov). Let X be a class of compact metric spaces, such that

• There is a constant D such that for any X ∈X , we have diam(X ) ≤ D

• For every ε> 0, there exists a constant N (ε) ≥ 1 such that for every X ∈X , there exists an
ε-net X (ε) with at most N (ε) elements.

Then, the class X is pre-compact in the Gromov-Hausdorff topology. In other words, any sequence in
X contains a subsequence that converges in the Gromov-Hausdorff sense.

In the next section, we will see how the Gromov-Hausdorff convergence can be used in
the context of trees, and how it can be extended to non-compact spaces.
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1. Introduction

Real trees: the locally compact case

The geometrical objects known as real trees (or R-trees) have been extensively studied, most
notably in the context of geometrical group theory ([Bes02, Chi01, Dre84]). They will be the
natural state-space for the random trees we want to consider.

Definition 6 (Real tree). A metric space (T,d) is a real tree if the following properties are satisfied:

(i) For every s, t ∈ T , there is a unique isometric map fs,t from [0,d(s, t )] to T such that
fs,t (0) = s and fs,t (d(s, t )) = t .

(ii) For every s, t ∈ T , if q is a continuous injective map from [0,1] to T such that q(0) = s and
q(1) = t , then q([0,1]) = fs,t ([0,d(s, t )]).

A summary of the properties of real trees in a probabilistic context can be found in
[Eva08]. There is a characterization of real trees, the so-called four-point condition, stating
that real trees are the only complete, path-connected metric spaces X that satisfy, for all
x1,x2,x3,x4 ∈ X ,

d(x1,x2)+d(x3,x4) ≤ (d(x1,x3)+d(x2,x4))∨ (d(x3,x2)+d(x1,x4)).

This condition is exactly of the type specified earlier, that is, a property of the distances
between a finite number of vertices in the space. Therefore, the set Tcpct of compact real trees
is a closed subspace of K under Gromov-Hausdorff convergence. Much more can actually
be said about its topology, using the pre-compactness criterion for the Gromov-Hausdorff
topology. Using the following theorem, we can then define Tcpct-valued random processes
with nice properties.

Theorem 7 (Evans, Pitman, Winter [EPW05]). The set Tcpct of (isometry classes of ) compact real
trees, endowed with the Gromov-Hausdorff distance, is a Polish metric space.

Let us now describe a standard way of defining and studying trees, the contour process.
Let f be an excursion, that is, a continuous, nonnegative function with compact support [0,σ]
such that f (0) = f (σ) = 0. We can then define a real tree structure in the following way: on
the set [0,σ], let ∼ f be the equivalence relation such that

x ∼ f y ⇔ f (x) = f (y) = min
u∈[x∧y,x∨y]

f (u), x, y ∈ [0,σ].

Then, define a semimetric on [0,σ] by

d f (x, y) = f (x)+ f (y)−2 min
u∈[x∧y,x∨y]

f (u), x, y ∈ [0,σ].

Then, d f (x, y) = 0 if and only if x ∼ f y , so that d f defines a true metric on the quotient set
[0,σ]/∼. It can then be checked (see [DL06]) that the metric space T f = ([0,σ]/∼,d f ) is a
(compact) real tree. We will usually root the tree T f by distinguishing the equivalence class of
0, which we will note ;= 0. We use the notation p f for the projection map

p f : [0,σ] →T f x 7→ x.
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1.1. Topologies on tree spaces

This construction was actually well-known in the combinatorial community, since it provides
an easy way to encode tree structures in a functional way. When starting from a tree, a
contour process can, at least informally, be recovered by imagining a traveler starting at the
root and exploring the tree at unit speed, always turning left. Of course, this notion of left-
turning needs to be made precise, which we will not try to do here. For a very detailed
analysis of the relation between real trees and contour process descriptions, see [Duq06].

However, we can give an example by considering the so-called plane trees, which are
discrete trees in which the neighbor vertices of a given vertex are ordered. Let

U = ⋃
n≥0

(
N∗)n ,

with the convention (N∗)0 = {;}. The set U is Ulam’s universal tree, and plane trees are finite
subsets T ⊂U such that

• the empty word belongs to T : ;∈ T ;

• if a nonempty word belongs to T , its ancestor too : for all u = (u1, . . . ,un) ∈ T \ {;},←−u = (u1, . . . ,un−1) ∈ T ;

• for all u = (u1, . . . ,un) ∈ T , there exists an integer k(u) ≥ 0 such that (u1, . . . ,un , i )
belongs to T if and only if 1 ≤ i ≤ k(u) (if k(u) = 0, none of the children of u belong to
T ).

For instance, subcritical and critical Galton-Watson trees can be represented by plane trees
([Nev86]). Note that plane trees are a particular instance of compact real trees, rooted at ;,
with edges of unit length connecting every u ∈ T to its ancestor ←−u . We can also recover a
continuous excursion encoding for them by exploring the tree at unit speed in lexicographic
order (this is sometimes called the depth-first search process).

If T has n vertices, noted (u1 = ;, . . . ,un) in lexicographic order, it is then easy to see
that the contour process is an excursion C (T ) : [0,2n − 2] → R+. We can also consider the
Łukasiewicz path associated to T by defining recursively:

Wi (T ) =


0 if i = 0,

Wi−1(T )+k(ui−1)−1 if 1 ≤ i ≤ n,

0 if i > n.

It is a fundamental fact ([Le 05]) that the Łukasiewicz path of a Galton-Watson tree with
subcritical or critical offspring distribution ξ is distributed as a random walk (W0, . . . ,Wζ),
started at 0, with jump probabilities P(Wn+1 −Wn = k) = ξ(k +1) for k ≥−1, and stopped at
ζ = inf{n ≥ 0, Wn = −1}. This connection with a simple random walk gives (via Donsker’s
theorem) a heuristic for the rescaling in Aldous’s theorem, and has proved a very useful tool
in a number of contexts ([Kor12a, Kor12b, LM11, Mar08]).

Using the contour process correspondence between continuous excursions and real trees,
the convergence from Theorem 1 can be reformulated in terms of Gromov-Hausdorff con-
vergence. Indeed, the map f 7→ T f , defined on the set of excursions, can be shown to be

7
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Lipschitz continuous for the topology of uniform convergence on compact subsets of R+: it is
proven in [DL05] that, if f and g are two excursions, then

dGH
(
T f ,Tg

)≤ 2‖ f − g‖∞,

where ‖·‖∞ is the uniform norm. Therefore, Aldous’s theorem implies that the Galton-Watson
trees Tn encoded by their rescaled contour processes fn converge in the Gromov-Hausdorff
topology to the tree encoded by the normalized Brownian excursion.

However, the theory of Gromov-Hausdorff convergence only accounts for compact real
trees, whereas many natural examples we want to consider are not compact. For instance,
supercritical Galton-Watson trees are infinite with positive probability. Although the definition
of the Gromov-Hausdorff distance still makes sense for noncompact spaces, it is far too
restrictive. Indeed, consider the example of two-dimensional spheres (rnS

2) embedded in
R3, with some sequence of radii (rn n ≥ 1) converging to infinity. This sequence does not
converge to any compact metric space in the Gromov-Hausdorff sense, yet when looking at
a bounded neighbourhood of any point in S2, this neighbourhood will look more and more
like a subset of a two-dimensional plane. In this sense, we would like to say that locally, the
spheres (rnS

2, n ≥ 1) converge to the two-dimensional plane. The notion of convergence
which makes this precise is the pointed Gromov-Hausdorff convergence.

In order to make things more tractable, it is convenient to work with boundedly compact
metric spaces (spaces in which the balls of finite radius are compact). This is not too restric-
tive when working with real trees, since the Hopf-Rinow theorem guarantees that all locally
compact and complete real trees are indeed boundedly compact. Furthermore, we always as-
sume that the spaces are pointed, which means that some specific point (the root, in our case)
is distinguished. Then, following Duquesne and Winkel ([DW07]), we may define a metric on
isometry classes of pointed, locally compact and complete real trees by:

dpGH ((T1,d1,;1) , (T2,d2,;2)) =
∑
k≥1

2−k dGH
(
BT1 (;1,k),BT2 (;2,k)

)
,

where BX (x,r ) denotes the closed ball of radius r around x ∈ X . For more information about
the pointed Gromov-Hausdorff topology, we refer to [DW07] or to chapter 8 in [BBI01]. For our
purpose, what is important is that the set Tloc of (pointed isometry classes of) pointed, locally
compact and complete real trees, endowed with the pointed Gromov-Hausdorff distance dpGH,
is again a Polish metric space.

A natural question is to ask for the relationship between the two metrics we just defined:
on the one hand, the Gromov-Hausdorff distance between compact metric spaces and on
the other hand, the pointed Gromov-Hausdorff distance between pointed, locally compact
and complete real trees. When restricting the metric dpGH to the set of rooted compact
real trees, the two topologies are equivalent, in the sense that if (Tn ,;n) converges to (T,;)
in the pointed Gromov-Hausdorff sense, then Tn converges to T in the classical Gromov-
Hausdorff sense. Conversely, if Tn → T in the Gromov-Hausdorff sense, and if ; is any point
in T , there exists a sequence of points ;n ∈ Tn such that (Tn ,;n) converges in the pointed
Gromov-Hausdorff topology to (T,;).
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1.1. Topologies on tree spaces

The Gromov-weak topology

The concept of Gromov-Hausdorff convergence is strong enough to capture some of the
geometrical properties of converging sequences of spaces. However, it is also natural to
consider random metric spaces on which measures are defined. Therefore, topologies that
take these measures into account are needed. In order to compare measures, a standard tool
is the Prokhorov metric, which is defined by

dPr(µ,ν) = inf
{
ε> 0; µ(A) ≤ ν(Aε)+ε and ν(A) ≤µ(Aε)+ε for any closed set A

}
,

when µ and ν are finite measures2 defined on some common Polish metric space Z . It is
well-known that the Prokhorov metric metrizes the topology of weak convergence for finite
measures on Z (i.e. convergence against bounded continuous functions), and that the set
of probability measures on Z is closed for this topology. A beautiful theorem of Strassen
relates the Prokhorov distance between two probability measure and the existence of a good
coupling : if (S,d) is a separable metric space, and if µ,ν are probability measures on S, then
dPr(µ,ν) ≤ ε if and only if there exists a measure M on S ×S such that

• M(d x ×S) =µ(d x) and M(S ×d y) = ν(d y)

• We have M({d(x, y) ≥ ε}) ≤ ε.

In other words, if dPr(µ,ν) ≤ ε, there exists a S ×S-valued r.v. (X ,Y ) that has µ and ν as
marginals, and such that P(d(X ,Y ) ≥ ε) ≤ ε.

To paraphrase Villani ([Vil09]), there are essentially two viewpoints when dealing with
metric spaces endowed with measures. The first is to focus solely on the measures and their
support and so, to ignore zero-measure sets that might be relevant for the geometry of the
space. This is best captured by the Gromov-weak topology. The second point of view is to
consider that both the geometrical structure and the measures are important, and to say that
two spaces are close when their metric structures are Hausdorff-close and when the measures
they carry are simultaneously Prokhorov-close. The topologies in that framework are the
so-called Gromov-Hausdorff-Prokhorov topologies, for which we present a contribution by the
author in the next section.

In the probabilistic context, the Gromov-weak topology was explored in [GPW08] with
applications to Λ-coalescent tree-like spaces in mind. The relevant class of spaces are metric
measure spaces, that is, Polish metric spaces (X ,d) endowed with a probability measure µ. Just
like in the Gromov-Hausdorff case, we do not distinguish between two spaces (X ,d ,µ) and
(X ′,d ′,µ′) such that there is an isometry Supp(µ) → Supp(µ′) that transports µ onto µ′. The
set of (classes of) metric measure spaces is usually noted M.

On the class of metric measure spaces, there is a metric defined by

dGP
(
(X ,d ,µ), (X ′,d ′,µ′)

)= inf
(Z ,Φ,Φ′)

d Z
Pr((Φ)∗µ, (Φ′)∗µ′),

2All the measures considered in this introduction are of course assumed to be Borel measures. In order to keep
adjectives to a minimum, we will not systematically emphasize this point, but it should be clear in the reader’s
mind that we always implicitly make this assumption.
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1. Introduction

where the infimum is taken over all isometric embeddings Φ : X ,→ Z and Φ′ : X ′ ,→ Z into a
common Polish metric space Z , and where Φ∗µ is the push-forward of the measure µ by the
map Φ.

The topology on M generated by dGP is described in great detail in [GPW08], where it
is proven in particular that it coincides with the Gromov-weak topology studied3 by Gromov
([Gro81]). The fundamental idea behind the Gromov-weak topology is the following: a se-
quence of metric measure spaces (Xn ,dn ,µn) converges if and only if all subspaces spanned
by a finite number of points, sampled according to µn , converge. In some sense, the Gromov-
weak topology is “weaker” than Gromov-Hausdorff convergence : recall that all properties
pertaining to finite subspaces are continuous in the Gromov-Hausdorff topology. For example,
as was already mentioned, the maximal distance to the root is continuous in the Gromov-
Hausdorff topology, but not in the Gromov-weak topology. A good continuous function in
the Gromov-weak sense would be the mean distance to the root, i.e. the distance from the
root to a vertex sampled according to the measure.

An additional feature of the Gromov-Prokhorov metric, besides metrizing the Gromov-
weak topology, is that the ensuing metric space (M,dGP) is again a Polish metric space, so that
M-valued random processes can be defined and studied with powerful analytical methods (see
for instance [GPW12]).

The Gromov-Hausdorff approach and the Gromov-Prokhorov approach can be combined,
forming, necessarily, the Gromov-Hausdorff-Prokhorov metric. The relevant class of spaces
is the class Mcpct of compact metric measure spaces, carrying probability measures. They are
considered up to measure-preserving isometries (true isometries, obviously, not just isometric
maps between the supports of the measures). Following Miermont ([Mie09]), if (X ,d ,µ) and
(X ′,d ′,µ′) are classes in Mcpct, we define a metric by

d cpct
GHP(X , X ′) = inf

(Φ,Φ,Z )

(
d Z

H (Φ(X ),Φ′(X ′))∨d Z
Pr((Φ)∗µ, (Φ′)∗µ′)

)
,

where the infimum is taken over all isometric embeddings Φ : X ,→ Z and Φ′ : X ′ ,→ Z into a
common Polish metric space Z .

The topology induced by d cpct
GHP was described by Villani ([Vil09]) as measured Gromov-

Hausdorff topology : if (Xn = (Xn ,dn ,µn),n ≥ 1) is a sequence in Mcpct and if X = (X ,d ,µ) ∈
Mcpct, it can be checked that d cpct

GHP(Xn ,X ) converges to 0 if and only if there exists a sequence
of measurable εn-isometries fn : Xn → X such that εn → 0 and such that the transported
measures ( fn)∗µn converge weakly to µ. There are other metrics on Mcpct that metrize the
same topology, see for instance [EW06]. It can also be checked that (Mcpct,d cpct

GHP) is a Polish
metric space.

Of course, for the reasons mentioned earlier, when restricted to Mcpct, the topology in-
duced by d cpct

GHP is stronger than the one induced by dGP. It should however be stressed that the
two approaches are actually not as different as they look. Indeed, the main difference is how
these two topologies deal with sets of measure 0 that are somehow “significant” in a metric
sense. When restricting ourselves to metric measure spaces (X ,d ,µ) such that Supp(µ) = X ,

3Gromov describes another metric, the so-called ä1-metric, that also metrizes the Gromov-weak topology, see
[L1̈2].
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1.1. Topologies on tree spaces

the two approaches essentially coincide. For instance, when the measure satisfies a so-called
doubling property, it can be shown that dGP convergence is essentially equivalent to dGHP-
convergence. However, the spaces with which we are concerned do not satisfy this kind of
conditions, so that we need to make a choice. In the next paragraph, we describe a Gromov-
Hausdorff-Prokhorov topology for general (locally compact) real trees, with boundedly finite
measures.

The locally compact and boundedly finite case

In this paragraph, we shall summarize the results of Chapter 2, which contains the paper
[ADH13a], submitted for publication.

The main purpose of this work is to provide a natural state-space for Lévy tree-valued
processes. They might not be compact (in the supercritical case) and they might carry σ-
finite measures. Therefore, we use the space T of rooted, locally compact, complete real
trees, carrying locally finite Borel measures, in short, w-trees. These spaces will always be
considered up to rooted isometries that preserve the measure.

It is a consequence of the Hopf-Rinow theorem that if T is an element of T, then for
every r > 0, the closed ball BT (;,r ) is a rooted compact real tree and the restriction of
µ to BT (;,r ) is a finite Borel measure. This allows to define a metric on these spaces: if
T1 = (T1,d1,;1,µ1) and T2 = (T2,d2,;2,µ2) are two rooted compact real trees, endowed with
finite Borel measures, then define

d c
GHP(T1,T2) = inf

(Z ,Φ1,Φ2)

(
d Z (Φ1(;1),Φ2(;2))+d Z

H (Φ1(T1),Φ2(T2))+d Z
Pr((Φ1)∗µ1, (Φ2)∗µ2)

)
,

where the infimum is taken over all Polish metric spaces (Z ,d Z ) and over all isometric em-
beddings Φ1 : T1 ,→ Z and Φ2 : T2 ,→ Z . We then use the powerful idea of localization to
define a metric on the space T in the following way:

dGHP(T1,T2) =
∫ ∞

0
e−r (

1∧d c
GHP(BT1 (;1,r ),BT2 (;2,r ))

)
dr.

It can be checked that dGHP defines a metric on T. When restricted to the set of compact real
trees, endowed with finite Borel measures, the topology generated by dGHP then coincides
with the topology defined by dc

GHP.
On T, the topology generated by dGHP coincides with the pointed measured Gromov-

Hausdorff topology defined in non-metric terms by Fukaya ([Fuk87]) as well as Lott and
Villani ([LV09]), in the following sense: if (Tn = (Tn ,;n ,dn ,µn),n ≥ 1) is a sequence in T and
if T ∈ T, then dGHP(Tn ,T ) → 0 if and only if there are sequences Rn →∞ and εn → 0, as
well as pointed, measurable εn-isometries

fn : BTn (;n ,Rn) → BT (;,Rn)

such that the transported measures ( fn)∗µn converge vaguely4 to µ. This is an important
point: in the dGHP metric, the measures converge vaguely, which means that loss of mass
might occur.

4Recall that vague convergence on a locally compact space is convergence against all continuous functions
vanishing outside a compact set.
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Indeed, consider the set of locally compact, complete real trees endowed with finite
measures. On this set, we can naturally extend the Gromov-Prokhorov metric dGP, which
gives a topology that is neither stronger (because of geometrical structure) nor weaker than
the Gromov-Hausdorff-Prokhorov topology (for instance, because the set of locally compact,
complete real trees endowed with probability measures is closed for dGP and not for dGHP).

However, when looking at compact real trees carrying probability measures, the topol-
ogy induced by dGHP is the same as the topology induced by d cpct

GHP, in the sense that if
dGHP(Tn ,T ) → 0, then the unrooted trees Tn converge in the d cpct

GHP sense to T . Conversely, if
d cpct

GHP(Tn ,T ) → 0, then for any root ; ∈ T , there exists a sequence of roots ;n ∈ Tn such that
(Tn ,;n) converges in the dGHP sense to (T,;).

To make things clearer, it is enlightening to think about the convergence of the measures
alone. The dGHP topology “corresponds” to vague convergence of boundedly finite measures
on locally compact spaces, whereas the dGP and d cpct

GHP topologies corresponds to weak con-
vergence for probability measures. When considering only compact spaces carrying finite
measures, the vague and weak topologies coincide.

In order to study the dGHP-topology, the following criterion describing the compact sets
of (T,dGHP) is very useful.

Theorem 8 (Abraham, Delmas, H. [ADH13a]). Let C be a subset of T, such that for every r ≥ 0:

(i) For every ε > 0, there exists a finite integer N (r,ε) ≥ 1, such that for any (T ,d ,;,µ) ∈ T,
there is an ε-net of BT (;,r ) with cardinal less than N (r,ε).

(ii) There exists M(r ) <∞ such that for every (T ,d ,;,µ) ∈C , we have µ(BT (;,r )) < M(r ).

Then C is relatively compact: every sequence in C admits a sub-sequence that converges in the dGHP

topology.

This pre-compactness criterion is instrumental in the proof of the completeness of the
metric space (T,dGHP), since a pre-compact Cauchy sequence always converges. This, along
with the density of “finite” length spaces with rational edge-lengths entails :

Theorem 9 (Abraham, Delmas, H. [ADH13a]). The metric space (T,dGHP) is complete and
separable.

This provides a correct framework for Lévy tree-valued processes for trees that are not
necessarily compact, as we shall see in the following section. Indeed, we can also prove the
following inequality, which shows that for any excursion f , the map(

[0,σ f ],Leb|[0,σ f ]
) 7→ (

T f = p f ([0,σ f ]),mT f = (p f )∗Leb|[0,σ f ]

)
is continuous, hence measurable in the Gromov-Hausdorff-Prokhorov topology, just as Du-
quesne and Le Gall’s inequality showed for the Gromov-Hausdorff topology on compact
metric spaces.

Proposition 10 (Abraham, Delmas, H. [ADH13b]). If f : [0,σ f ] → R+ and g : [0,σg ] → R+ are
continuous excursions, then we have:

dGHP(T f ,Tg ) ≤ 6‖ f − g‖∞+|σ f −σg |.
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1.2. Tree-valued processes

1.2 Tree-valued processes

The different topologies introduced in the previous section were introduced in order to pro-
vide appropriate state-spaces for stochastic processes. We will review the existing literature
on continuum tree-valued processes ; however, we will focus mainly on the pruning process of
Abraham-Delmas ([AD12a]), which is Lévy tree-valued.

Lévy trees

There are several possible definitions of Lévy trees. We will present here the historical def-
inition of Le Gall-Le Jan ([LL98b, LL98a]) and Duquesne-Le Gall ([DL02, DL05]), using the
characterization of trees by their contour processes, which, as we saw, behaves nicely with
respect to the topologies we use on tree-spaces.

Let ψ be a real-valued function, such that there exists α ∈ R, β≥ 0 and a σ-finite measure
Π on (0,∞) satisfying

∫
(1∧x2)Π(d x) <∞, such that

ψ(u) =αu +βu2 +
∫

(0,∞)

(
e−ux −1+ux1{x<1}

)
Π(d x). (1)

In this context, we will call ψ a branching mechanism. Of course, the function ψ can be seen
as the Laplace exponent of a spectrally positive Lévy process. Let X be such a Lévy process,
that is, a càdlàg process with independant, stationary increments such that

E
[
e−uX t

]= exp(tψ(u)), t ≥ 0,u ≥ 0.

We will always make the following assumptions on ψ:

Assumption 1 (Infinite variation). We have β> 0 or
∫

(0,1) x Π(d x) =∞.

This assumption is equivalent to the paths of the Lévy process X having infinite variation
a.s. Although the construction is still possible in the finite variation case, the ensuing tree has
a very different structure, which is essentially discrete5.

Assumption 2 (Conservativity). We have
∫

(0,ε] du/|ψ(u)| =∞ for any ε> 0.

Note that Assumption 2 is always satisfied if ψ′(0+) >−∞, which is equivalent to the in-
tegrability condition

∫
(1,∞) xΠ(d x) <∞. However, there exist branching mechanisms that are

conservative and yet ψ(0+) =−∞. For instance, ψ(u) = u log(u) is a very important example
of such a branching mechanism, associated to the Neveu tree, as well as the Bolthausen-Sznitman
coalescent. The branching mechanism ψ is said to be subcritical, critical or supercritical, ac-
cording to whether ψ′(0+) is positive, equal to zero or negative (the latter encompassing the
case ψ′(0+) =−∞).

A third, more restrictive assumption will sometimes be necessary. Notice that it implies
Assumption 1, but the converse is not true.

5For a more precise description, including the connection with queuing processes, see [LL98b]
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Assumption 3 (Grey condition). We have
∫ ∞ du/|ψ(u)| <∞.

The contour process of Lévy trees, called the height process, is defined, in the critical
or subcritical case, under Assumptions 1 and 2, in the following way. For any t ≥ 0, let
(X (t )

s = X t − X(t−s)−, 0 ≤ s ≤ t ) be its time-reversed process and let S(t ) be the supremum
process of X (t ). The local time process at 0 of S(t ) − X (t ) (suitably normalized) will be called
L(t ). Then, there exists ([DL02]) a l.c.s modification of the process (L(t )

t , t ≥ 0), which we will
note (Ht , t ≥ 0). It is important to notice that

Ht = 0 ⇔ X t = inf
u∈[0,t ]

Xu , (2)

since if X t is a current minimum time, then S(t )
s = 0 for all 0 ≤ s ≤ t and X (t )

s < 0 for all
0 < s ≤ t by definition. Therefore, we can take −It =− infu∈[0,t ] Xu as a local time process for
H at level 0. If x > 0, we note Tx the first time at which the height process has accumulated
more than x local time at 0. The distribution of the stopped height process (Ht , 0 ≤ t ≤ Tx )
will be noted Pψx .

Now, X −I is a Markov process, for which 0 is a regular point. Therefore, we can consider
its excursion measure above 0, suitably normalized, which we will note Nψ. It is not hard to
see, as in (2), that Ht only depends on the excursion of X − I that straddles t . Therefore, it
is possible to define H under the excursion measure Nψ. Of course, Nψ is not a probability
measure, but a σ-finite measure defined on the set of positive excursions [0,σ] → R+. Under
P
ψ
x , we will also note σ= Tx the length of the excursion of the height process. The distribution

of σ is then specified by its Laplace transform:

P
ψ
x

[
e−λσ

]
= exp

(−xNψ[1−exp(−λσ)]
)= exp

(−xψ−1(λ)
)

, λ> 0.

If a > 0, a local time process (La
s (H), 0 ≤ s ≤ σ) at level a can be constructed for H , under

P
ψ
x or under Nψ (see [DL02] for more details). The total amount of local time spent by the

height process at level a > 0, La
σ(H), is the continuum analog of the total generation size in a

Galton-Watson process. Indeed, we will see below that the local time processes of the height
process also have a branching structure, for which the height process defines a compatible
genealogy.

It should be noted that the height process is not, in general, a Markov process, except in
the case where Π= 0, where it is distributed as a (β-scaled) Brownian motion with drift −α,
reflected at 0. This makes it rather unwieldy to work with; however, it is a simple functional
of a more general Markov process, the exploration process. For a detailed study of the height
process, the exploration process and much, much more, see [DL02].

In order to define the associated real tree, a bit more regularity is required. Indeed, the
contour process needs to be continuous for Proposition 10 to apply6. Under Assumptions 1
and 2, the continuity of the height process is actually equivalent to Assumption 3, which leads
to the following definition.

6The case where H is not continuous, but where Assumptions 1 and 2 still hold is interesting. The height
process is then a.s. a Darboux, l.c.s. function, which is unbounded on every interval. Although the definition of the
tree using H is still possible in that case, the tree will no longer be locally compact, which requires new topological
insights. The Neveu tree, encoded by the height process with branching mechanism ψ(u) = u log(u) is in that case.
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1.2. Tree-valued processes

Definition 11 (Lévy tree). Let ψ be a critical or subcritical branching mechanism satisfying
Assumptions 1, 2 and 3, and let x > 0. The Lévy tree with branching mechanism ψ is the real tree
defined, under Pψx or under Nψ, by the ψ-height process (Ht , 0 ≤ t ≤σ), through the contour process
description.

The distribution of this tree is still written P
ψ
x (dT ) or Nψ[dT ]. Several constructions

exist to extend this definition to the supercritical case for ψ. Abraham and Delmas ([AD12a])
use a Girsanov relation on the truncated critical Lévy tree to define the truncated supercritical
Lévy tree. Let us briefly recall the construction. If ψ is a supercritical branching mechanism,
let θ∗ be the largest root of ψ′. The branching mechanism ψθ∗(u) =ψ(u+θ∗) is then critical,
so that we can consider the distribution Pψθ∗

x (resp. Nψθ∗ ) of the ψθ∗-Lévy tree.

Definition 12 (Supercritical Lévy trees). Let a ≥ 0. The distribution P
ψ,a
x (resp. Nψ,a ) of the

supercritical height process truncated at level a is defined with respect to the critical truncated
distribution by the absolute continuity relation(s) :

dPψ,a
x

dPψθ∗ ,a
x

= exp

(
−θ∗x +θ∗La

σ(H)+ψ(θ∗)
∫ a

0
Lb
σ(H)db

)
,

dNψ,a

dNψθ∗ ,a = exp

(
θ∗La

σ(H)+ψ(θ∗)
∫ a

0
Lb
σ(H)db

)
.

Using a Kolmogorov argument, it is then possible to define the distribution Pψx (dT ) (resp.
Nψ[dT ]) of the supercritical Lévy tree. Although this tree might no longer be compact (in
the supercritical case, we have σ = ∞ with positive probability), it is locally compact by
construction, and thus fits in the framework of locally compact, complete length spaces of
the previous section. We will list below several properties of Lévy trees, regardless of their
criticality. Most of the results in this section come either from the book [DL02] or the seminal
paper [DL06] which translated the theory of the exploration process into the language of real
trees.

Let us now describe more precisely what happens when cutting a Lévy tree at level a > 0.
Let

N T
a (d x,dT ′) = ∑

i∈Ia

δ(xi ,T i )(d x,dT ′)

be the point measure associated to the set of subtrees (T i , i ∈ Ia) started at level a, that is,
the (closure of the) connected components of the set {s ∈T , d(;, s) > a}, as well as the points
(xi , i ∈ Ia) at which they are attached to the level set T (a) = {s ∈T , d(;, s) = a}. Using the
local times at level a of the height process (La

s (H), s ≥ 0), it is possible to define measures
(`a(d s), a > 0), called local time measures, which satisfy, for every fixed a > 0, Nψ-a.e. :

• The measure `a is supported on the level set T (a) = {s ∈T , d(;, s) = a}

• If φ is a bounded, continuous function on T , then

〈`a ,φ〉 = lim
ε↓0

1

b(ε)

∫
φ(x)1{h(T ′)≥ε}N

T
a (d x,dT ′),

with b(ε) =Nψ[H(T ) ≥ ε].

15



1. Introduction

The local time measures `a can be constructed in such a way that the mapping a 7→ `a

is Nψ-a.e. càdlàg for the weak topology on finite measures on T . The discontinuities of this
mapping present an interesting structure, since they are related to the infinitary nodes in the
tree. Indeed, it is a striking feature of Lévy trees that the degree n(x) of vertices x ∈T (the
number of connected components of T \ {x}) can only be 1, 2, 3 or infinite. If n(x) = 1, x is
a leaf of the tree ; the set of all leaves will be noted Lf(T ). Else, we say that x belongs to
the skeleton of the tree, which we note Ske(T ). If n(x) ≥ 3, x is a branching point—binary if
n(x) = 3 and infinitary if n(x) =∞. There are binary branching points in T if and only if
β> 0 in the branching mechanism of T and there are infinitary branching points if and only
if Π 6= 0. The formula relating discontinuities of (`a , a > 0) and infinitary branching points is
as follows: if b is a discontinuity of the local time process, then there is a unique infinitary
branching point xb in T (b) and `b = `b−+∆bδxb , where ∆b > 0 is called width (or local time)
of the node xb and can be obtained by the approximation

∆b = lim
ε→0

1

b(ε)
Z (xb ,ε), (3)

where Z (xb ,ε) is the number of sub-trees originating from xb with height larger than ε.
The branching property of Lévy trees then states that for every a > 0, the conditional

distribution of the point measure N T
a (d x,dT ′) under Nψ[dT |H(T ) > a], given the trun-

cated tree {s ∈T , d(;, s) ≤ a}, is that of a Poisson point measure on T (a)×T with intensity
`a(d x)Nψ[dT ′]. Regarding cutting at heights, Lévy trees also enjoy a regenerative property. If
a,h > 0, let Z (a, a +h) be the number of subtrees of T started at level a with height greater
than h. Then, it can be proven that, conditionally on {Z (a, a +h) = p} for some integer
p, the p subtrees are independent, distributed according to N[dT |H(T ) > h]. In [Wei07],
Weill actually proved that this property characterizes subcritical and critical Lévy trees among
compact continuum random trees.

As was mentioned earlier, one of the main motivations to introduce Lévy trees was to
provide a genealogical structure for continuous-state branching processes. This is achieved
using the local time measures of the tree. Indeed, if ψ is a branching mechanism satisfying
Assumptions 1 to 3, and if x > 0, then the total mass process

Za = 〈`a ,1〉, a > 0

is distributed under Pψx as a CSBP with branching mechanism ψ, with Z0 = x. The local time
measures `a can also be integrated to form a measure on the whole tree T , which is called
mass measure:

m(d s) =
∫ ∞

0
`a(d s) d a.

A simple application of the occupation times formula shows that the mass measure is really
the push-forward of Lebesgue measure on the excursion interval [0,σ] coding for the Lévy
tree. Therefore, the mass measure is a locally finite measure on T , supported on Lf(T ) (in
the sense that m(T \ Lf(T )) = 0). Sometimes, m is referred to as the uniform measure on
leaves. Notice that m is without atoms, since the discontinuities of the total mass process
(Za , a > 0) are countable, hence of zero Lebesgue measure. There is another interesting
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measure that is naturally defined on Lévy trees: the length measure `T (d s) (or `(d s) when the
context is clear). This is the only Borel measure on T such that `(�x, y�) = d(x, y). It can be
thought of as Lebesgue measure on the skeleton of the tree. Indeed, `(Lf(T )) = 0. It is also a
σ-finite measure, that is always infinite, whereas the mass measure can be finite, for instance
in the critical and subcritical case, where σ= m(T ) <∞ a.e.

As we already mentioned in the motivation section, Lévy trees are the scaling limits for
large Galton-Watson trees, defined as follows. Let (ξ(n), n ≥ 1) be a sequence of critical
or subcritical probability measures on N, and let, for any n ≥ 1, T(n) be a Galton-Watson
tree with offspring distribution ξ(n), and (Y (n)

k , k ≥ 0) the associated Galton-Watson process,

started at Y (n)
0 = n. Then, we can state the following theorem about the scaling limits of the

T(n):

Theorem 13 (Duquesne, Le Gall [DL05]). Suppose there is a nondecreasing sequence (γn , n ≥ 1)
of positive integers, converging to +∞, such that the following convergence in distribution holds:

lim
n→∞

(
n−1Y (n)

bγn tc, t ≥ 0
)
= (Yt , t ≥ 0) , (4)

in the Skorokhod topology, where the limiting process Y is a CSBP with branching mechanism ψ.
Assume further that for every δ> 0,

liminf
n→∞ P

(
Y (n)
bγnδc = 0

)
> 0.

Then, for every a > 0, the tree γ−1
n T(n), conditioned on {H(T(n)) ≥ baγnc}, converges in distribution

(for the Gromov-Hausdorff topology) to the Lévy tree T with branching mechanism ψ, distributed as
Nψ[dT |H(T ) > a].

This theorem can be seen as a general, unconditioned version of Aldous’s convergence
result (Theorem 1). A particular case of Theorem 13 is the case where all the offspring
measures ξn coincide: ξn = ξ, n ≥ 1. In that case, the limiting CSBP must be stable, that is, ψ
is necessarily of the form ψ(u) = uα with α ∈ (1,2]. If ξ has finite variance, the limiting CSBP
in (4) will be a Feller diffusion, and the limiting tree a (scaled) Brownian tree.

Theorem 13 shows how Lévy trees arise as scaling limits of Galton-Watson trees with
initial population size growing infinite. However, Lévy trees can also be obtained as limits
of Galton-Watson trees, without rescaling, as was shown in [DW07, DW12]. Duquesne and
Winkel consider families (Fλ, λ ≥ 0) of Galton-Watson forests, that is, Galton-Watson trees
with exponential edge-lengths, attached by the root to the real line. These families are
assumed to be consistent, in the sense that, if λ < µ, the forest Fλ can be obtained from
the forest Fµ using some reduction operation such as independent percolation on leaves
with parameter λ/µ (but can be much more general, see [DW12]). Then, as λ → ∞, the
forest Fλ converges a.s. to a Lévy tree T with branching mechanism ψ determined by the
distribution of F1. The mass measure m(d s) arises as the weak limit of the empirical measure
λ−1 ∑

s∈Lf(Fλ)δs on the leaves of Fλ.
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Conditioned Lévy trees: Aldous’s tree and stable trees

We will now turn to the theory of conditioned Lévy trees, that is, Lévy trees conditioned on
{σ= 1}. This conditioning is degenerate, but can be made rigourous in the α-stable case, with
α ∈ (1,2]. Indeed, in this case, the paths of the Lévy process X satisfy the following scaling
property: if γ> 0,

(γ−1/αXγt , t ≥ 0)
(d)= (X t , t ≥ 0).

The height process H constructed using the excursions of X −I above 0 has a different scaling:
if γ> 0,

(γ1/α−1Hγt , t ≥ 0)
(d)= (Ht , t ≥ 0).

Using this scaling property, it is not difficult (using for instance the pathwise construction
by Chaumont, see [Cha97]) to construct a regular version (N(u), u > 0) of the conditional
distributions of X − I given {σ= u}, in the sense that if F is a measurable bounded functional
on the space of excursions,

Nψ[F ] =
∫ ∞

0
N(u)[F ] Nψ[σ ∈ du].

This, and the scaling property of the height process, allows for the definition of the so-called
normalized excursion of the height process, which is a process (H exc

t , 0 ≤ t ≤ 1) with a.s.
continuous paths, which is distributed as the rescaled process (σ1/α−1Hσt , 0 ≤ t ≤ 1) under
N[d H ]. The real tree encoded by H exc is a compact rooted real tree, for which the mass
measure is a probability measure, the α-stable tree.

In the case α= 2, we recover Aldous’s CRT, encoded by the normalized Brownian excur-
sion. If α ∈ (1,2), the stable tree is no longer binary ; all its branching points are infinitary, as
is the case in the unconditioned stable Lévy tree. Many things are known about the geometry
of the stable trees: for instance, its Hausdorff dimension and packing dimension are equal to
α/(α−1) ∈ [2,∞). Just like Lévy trees are scaling limits of large Galton-Watson trees, their
conditioned version can be expressed as scaling limits of conditioned Galton-Watson trees.
Of course, Theorem 1 is the first result in this direction, showing that the Brownian CRT
is the scaling limit of critical finite-variance Galton-Watson trees, conditioned on having n
vertices, with an edge-rescaling by a factor

p
n. Aldous’s result was extended to the stable

case by Duquesne ([Duq03]). In this case, we need to consider Galton-Watson trees T(n) with
offspring distribution ξ lying in the attraction domain of a stable distribution with parameter
α ∈ (1,2), conditioned on having n vertices. Rescaling the edges by some factor7 an , we get
the Gromov-Hausdorff convergence8 a−1

n T(n) →T α, where T α is the α-stable Lévy tree.
There are different ways of conditioning Galton-Watson trees by total population size,

and still obtaining stable CRTs in the limit. Kortchemski ([Kor12a]) considers Galton-Watson
trees conditioned on their total number of leaves. All of these convergence results use the

7The factor is such that if U1 +·· ·+Un are iid with distribution ξ, then a−1
n (U1 +·· ·+Un −n) converges in

distribution to an α-stable r.v.
8In this result, as in Aldous’s result, it is actually convergence of contour functions that is proven, which is

slightly stronger than Gromov-Hausdorff convergence.
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1.2. Tree-valued processes

deep connection between the contour process of a conditioned Galton-Watson tree and the
Łukasiewicz random walk. Therefore, convergence results for more general random discrete
trees are difficult to obtain because this connection fails. However, in a recent paper ([HM12]),
Haas and Miermont showed a very general convergence result for so-called Markov branching
trees. The limiting trees are self-similar fragmentation trees (see below), which are more general
than conditioned Lévy trees, since this class contains the Brownian tree, as well as the α-
stable trees with index α ∈ (1,2). A spectacular application of their results is the convergence
of uniform unordered trees with n vertices, with out-degree bounded by m, rescaled by a
factor

p
n, to the (scaled) Brownian CRT. In the same spirit, Rizzolo ([Riz11]) considers the

case of finite-variance Galton-Watson trees, with a more general conditioning on the number
of vertices with out-degree in a given subset A ⊂ N. The limiting tree is again the Brownian
CRT.

An alternative way of studying CRTs is by looking at their discrete subtrees. Aldous
([Ald93]) introduced the Brownian CRT as (the closure of) a projective limit of a consistent
family of discrete trees (R(k), k ≥ 1). Conversely, if (T ,d ,;,m) is a w-tree with finite mass
measure m, one can define its n-dimensional marginals by sampling n iid leaves (x1, . . . ,xn)
with distribution m(dx)/m(T ) and by defining Tn to be the subtree of T spanned by the
leaves (;,x1, . . . ,xn). The tree Tn is a discrete rooted tree with edge-lengths, with n leaves. In
most cases, the distribution of Tn is explicitly known. For the Brownian CRT, it was proven9

by Aldous ([Ald93]) that Tn is a uniform binary tree with n labelled leaves, and that the
edge-lengths of Tn are independent of the shape of Tn , distributed with density

f (e1, . . . ,e2n−1) = (e1 +·· ·+e2n−1)exp
(−(e1 +·· ·+e2n−1)2/2

)
, e1, . . . ,e2n−1 > 0.

For the α-stable tree, the marginals were computed in [DL02] (Theorem 3.3.3).
In the unconditioned case, Le Gall ([Le 93b]) considered the Brownian excursion and

showed an absolute continuity relation between the distributions of Tn under N and under
N(1): if F is a measurable functional on Tcpct, then

N(1) [F (Tn)] =N
[
` (Tn)e−`(Tn )2/2F (Tn)

]
.

Also, in the unconditioned Lévy case, if a random number M of leaves are sampled, where M
is a Poisson(λ)-distributed independent random variable, the marginal distribution of TM was
shown in [DL02] to be a Galton-Watson tree starting from one individual, with exponential
edge-lengths (with parameter ψ′(ψ−1(λ))), whose offspring distribution ξ(λ) is given by its
generating function

E
[

r ξ(λ)
]
= r + ψ((1− r )ψ−1(λ))

ψ−1(λ)ψ′(ψ−1(λ))
.

This observation, as well as the invariance of the family of distributions (ξ(λ), λ> 0) under
certain reduction operations, led to the definition of Lévy trees as an increasing limit of
Galton-Watson trees with offspring distribution ξ(λ), when λ→∞, in [DW07, DW12].

Finally, we should mention that the recent years have seen the beginning of a theory of
random processes defined on Brownian or stable CRTs. For instance, authors were able to

9Actually, in Aldous’s framework, this was the definition of the Brownian CRT.
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compute classical analysis features of CRTs such as volume growth or heat kernel estimates
([Cro07, CH10]) as well as study the behavior of classical processes such as Brownian motion
on the CRT ([AEW12, Cro09]), which is not the same object as Brownian motion indexed by
the CRT (the Brownian snake). In the opinion of the author, this is a very rich and exciting
subject which will see many developments in the years to come.

Spinal decompositions

A particularly convenient way of describing trees is by using so-called spinal decompositions.
The general principle is always the same: given a rooted real tree (T ,;), and given a leaf x
of the tree, consider the spine �;,x� linking the root ; to x. The set T \�;,x� is then a forest
F x = (Xi , i ∈ I ) of disjoint subtrees of T . For any connected component Xi of T \ �;,x�,
there is a unique point si ∈ �;,x� (the Most Recent Common Ancestor, MRCA, of Xi ) such
that ⋂

x∈Xi

�;, x� = �;, si �.

For any i ∈ I , we will write Ti for the tree ∪(Xi ∪ {si }), reunion of all the trees having MRCA
si , rooted at si ∈ �;,x�. Let Mx =∑

i∈I δ(d(;,si ),Ti ) be the point measure with values in R+×T
describing the forest F x and the way it is attached to the spine. Spinal decompositions
give the joint distribution of the spine �;,x� and the measure Mx for leaves selected in a
particular way. Of course, keeping in mind that Lévy trees are constructed using excursions
of real-valued random processes, most of these decompositions are actually classical path
decompositions of said processes.

For instance, if the leaf x is selected according to mass measure m, we easily see that this
corresponds to the classical Bismut decomposition of Brownian motion ([Bis85]) with respect
to a uniformly chosen point in the excursion interval [0,σ]. It should be stressed that the
choice of a leaf according to mass measure introduces a mass-biasing of the Lévy tree.

Theorem 14 (Duquesne, Le Gall [DL05]). Let ψ be a branching mechanism satisfying Assumptions
1 through 3. Then, if Φ is a measurable functional on R+×T,

Nψ
[∫

T
m(dx)exp(−〈Mx,Φ〉)

]
=

∫ ∞

0
e−ψ

′(0)ad a exp

(
−

∫ a

0
2β

(
Nψ

[
1−e−Φ(t ,T )

])
+

∫ ∞

0
rΠ(dr )Pψr

[
1−e−Φ(t ,T )

]
d t

)
.

In other terms, on a spine �;, s� with length selected with density exp(−ψ′(0)a)d a on
R+, Lévy trees are grafted: trees distributed as Nψ with intensity 2β1[0,a](x) d x and trees
distributed as Pψr with intensity 1[0,a](x) d x ⊗ rΠ(dr )1(0,∞)(r ). This decomposition can be
extended to describe the distribution of the tree T conditionally on the subtree Tn spanned
by the root and n uniform leaves ([Le 93b]).

When the tree is conditioned to have mass 1, the mass measure m is a probability
measure—there is no more mass-biasing. However, the spinal decomposition is not as easy
to describe in this case. It is known in the Brownian case that the length of the spine �;,x� is
Rayleigh-distributed. Furthermore, in the Brownian and stable cases, it is known ([HPW09])
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1.2. Tree-valued processes

that the spinal mass-distribution (the distribution of the vector (m(Ti ), i ∈ I ), ranked in de-
creasing order) is the Poisson-Dirichlet distribution with parameters (1−1/α,1−1/α). One
way of dealing with the conditioning is by disintegrating the unconditioned description of
Theorem 14. This method will be used in chapter 4 for approximating quantities defined on
T by their conditional expectations given Tn .

Another spinal decomposition arises when the leaf x is the highest leaf in the tree. This is
analog to the classical Williams decomposition of the Brownian excursion with respect to its
maximum ([Wil74]). By definition, the height of the highest leaf is distributed as the maximum
of the height process on the excursion interval [0,σ]. This distribution is characterized by its
“probability distribution function” b(x) =Nψ[H(T ) ≥ x], through the implicit equation:∫ ∞

b(x)

du

ψ(u)
= x, x > 0. (5)

The spinal decomposition with respect to the spine �;,x�, where x is the highest leaf in the
tree, is given by the following theorem:

Theorem 15 (Abraham, Delmas [AD09b]). Let ψ be a subcritical or critical branching mechanism
satisfying Assumptions 1 to 3. If (T ,d ,;,m) is a w-tree, let xmax ∈T be such that d(;,xmax) =
supx∈T d(;,x). Then, if Φ is a measurable functional on R+×T,

Nψ
[
exp

(−〈Mxmax ,Φ〉)]= ∫ ∞

0
dh µmax(h)

×exp

(
−

∫ h

0
d s

(
2βNψ[(1−exp−Φ(s,T ))1{H(T )≤h−s}]

+
∫ ∞

0
r e−r b(h−r )Π(dr )

[
1−e−rNψ[(1−exp−Φ(s,T ))1{H(T )≤h−s}]

]))
, (6)

where µmax(h) is the density of H(T ) determined by (5).

In other words, the height of the spine is selected according to µmax(h)dh, then Lévy trees
are grafted on the spine, in such a way that at level s ∈ [0,h], only Lévy trees restricted to
H(T ) ≤ h − s are grafted. For an extension to non-homogeneous branching rates, see [DH11].

Tree-valued processes

The development of the topological theory of tree-spaces starting with [EPW05] made the
definition and study of a number of tree-valued processes possible. We will review some of
the existing processes, focusing mainly on the pruning process of Abraham-Delmas-Voisin,
for which we will present a contribution by the author in the next section.

The definition of the root-growth with regrafting process of [EPW05] shows the strength
of the tree-valued method: by defining the process directly on the general tree-space, the
discrete and continuum trees are united in a same framework. The dynamic of this process
can informally be described as follows: start with the trivial tree {;} and with a set of cutting
times τ1 < τ2 < . . . distributed as the jump times of a Poisson process with intensity t d t .
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For 0 ≤ t < τ1, define the tree Tt as just a spine �;, t� with length t . At time τ1, select a
vertex x1 uniformly in the tree �;,τ1� and cut the tree at this vertex, giving two connected
components T (1)

τ1
, containing the root, and T (2)

τ1
, not containing the root. Then, re-graft T (2)

τ1

on the root. Continue the continuous growth of the root-edge in such a way that at time
τ2−, the tree Tτ2− is a Y-shaped tree with the root-edge of length τ2 −τ1. Cut again at a
uniform point and re-graft the bit not containing the root on the root. Continue growing the
root-edge continuously between the cutting times and perform cutting with regrafting at the
times τi . Then, as t →∞, the tree Tt converges a.s. to a Brownian CRT T∞. Furthermore,
this dynamic can be extended to infinite-length real trees (in which case cutting times are
dense in R+). Then, by relating this growth procedure with the stick-breaking construction
by Aldous ([Ald91a]), it can be shown that the distribution of the Brownian CRT is stationary
for this dynamic, and, started from any rooted real tree T , the root-growth with re-grafting
process will converge in distribution towards the Brownian CRT.

A somewhat related construction is the subtree-prune-and-regraft dynamic of [EW06]. In
this case, at cutting times, the tree is cut at a uniform point in the skeleton (uniform meaning
sampled according to length measure). Then, the bit not containing the root is grafted on
a uniformly (according to mass measure) selected leaf. It is interesting to note that, in this
paper, analytic methods such as Dirichlet forms were used on the tree-space in order to
define and study this random process. This enabled to show, for instance, that the trivial
tree is essentially polar for this dynamic, or that the distribution of the Brownian CRT is
stationary.

The pruning procedure on Lévy trees was defined by Abraham, Delmas and Voisin
([ADV10]), in order to give a continuum analog to the pruning of Poisson Galton-Watson trees
of [AP98b]. Furthermore, several results from the theory of branching processes ([AD09a,
AD09b]) pointed to the fact that a CSBP with branching mechanism ψ could be constructed
using another CSBP, with a “more subcritical” branching mechanism, with additional pro-
portional immigration. Pruning procedures that could account for these observations had
already been found in the purely Brownian case ([AS02, AP98a]) and in the case without
Brownian part ([AD07]). We will present the pruning procedure on Lévy trees in some detail,
as it will be central in this work. Note that we present only a particular case of the pruning
procedure which leads to a tree-valued process. The general case can be found in [ADV10].

If ψ is a branching mechanism, satisfying Assumptions 1 and 2, we define, for θ ∈ R, the
translated branching mechanism

ψθ(u) =ψ(u +θ)−ψ(θ).

This transformation is known as the Esscher transform. Note that when ψθ is well-defined (it
might not be, for instance ψ(u) = u logu for θ < 0), ψθ is indeed a branching mechanism,
and that Assumption 1 is still satisfied. However, it might very well be that ψθ is no longer
conservative for negative θ. Therefore, we will introduce the set of admissible translations

Θψ = {
θ ∈ R, ψθ is conservative

}
.

To give a few examples, for a Brownian branching mechanism ψ(u) = βu2, we see that
ψθ(u) = βu2 +2βθu, so that Θψ = R. If ψ(u) = uα, the α-stable branching mechanism, then
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1.2. Tree-valued processes

Θψ = [0,∞). It is important to notice that, if ψ is for example critical (ψ′(0) = 0), then ψθ will
be subcritical if θ > 0 and supercritical if θ ∈ Θψ∩ (−∞,0). The main idea of [ADV10] and
of [AD12a] is then to devise a cutting procedure on the Lévy tree with branching mechanism
ψ so that the trimmed tree is distributed as a Lévy tree with branching mechanism ψθ with
θ > 0. So, let T be a ψ-Lévy tree, and, conditionally on T , define

m(ske)(d x,dθ) = ∑
i∈I ske

δ(xi ,θi )(d x,dθ)

a Poisson point measure on T ×R+ with intensity 2β`T (d x)dθ. The atoms of this measure
are distributed on the skeleton of T . We also consider, conditionally on T , a Poisson point
measure

m(nod)(d x,dθ) = ∑
i∈I nod

δ(xi ,θi )(d x,dθ)

on T ×R+ with intensity ∑
y∈Br∞(T )

∆yδy (d x)dθ

where ∆x is the width of the node x. Notice that the T -components of the atoms of m(nod)

are always infinitary nodes in T . Moreover, if θ > 0, a node x ∈ Br∞(T ) is an atom of
m(nod)(d x, [0,θ]) with probability 1−exp(−θ∆x ). We then define the total measure of marks:

M (d x,dθ) = m(ske)(d x,dθ)+m(nod)(d x,dθ), (7)

and consider the family of w-trees (Tθ, θ ≥ 0), where the θ-pruned w-tree Tθ is defined by:

Tθ = {x ∈T , M (�;, x�×[0,θ]) = 0} .

In other words, Tθ is the subtree of T containing all the points that have no mark of
M (·, [0,θ]) on the branch connecting them to the root. In particular, we have T0 = T . The
family of w-trees (Tθ, θ ≥ 0) form a non-increasing process of real trees, in a sense that
Tθ′ ⊃Tθ for 0 ≤ θ′ ≤ θ. The following theorem is crucial in the understanding of the pruning
process. If T is a tree, if the (si , i ∈ I ) are leaves of T , and if the (Ti , i ∈ I ) are trees, we write
T ~i∈I (Ti , si ) for the tree T with the Ti grafted on the si .

Theorem 16 (Abraham, Delmas, Voisin [ADV10]). Let ψ be a branching mechanism satisfying
Assumptions 1 to 3, let θ > 0 and let T be distributed (under Pψx or under Nψ) as a ψ-Lévy tree.
Then, the pruned tree Tθ is a Lévy tree with branching mechanism ψθ . Furthermore, conditionally
on Tθ, the tree T can be written as

T =Tθ~i∈Iθ (Ti , si ),

where
∑

i∈Iθ δ(si ,Ti )(d s,dT ′) is a Poisson point measure on Tθ×T with intensity

mTθ (d x)

(
2βθNψ[dT ′]+

∫
(0,+∞)

Π(dr )
(
1−e−θr

)
P
ψ
r (dT ′)

)
,

and where T ~ (T ′, s) denotes the tree T with T ′ grafted on the leaf s ∈ T .
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Hence, the process (Tθ, θ ≥ 0) is a Lévy tree-valued process, such that, for any θ ≥ 0, Tθ

is distributed as a ψθ-Lévy tree. Another pruning process has been discovered by Curien and
Haas ([CH12]): they show that the stable CRTs are nested, in the sense that if 1 <α<α′ ≤ 2,
if T α is an α-stable CRT, then there exists a (rescaled) copy of an α′-stable CRT inside T α.
Their construction relies on clever pruning of nodes, and is not related to the general pruning
of Lévy trees (note that if ψ(u) = uα with α ∈ (1,2), then the translated branching mechanisms
(ψθ(u), θ ≥ 0) never correspond to another stable branching mechanism).

The tree-valued pruning process has also been studied by Li ([Li12]) using stochastic dif-
ferential equations. In this context, the tree-valued process (Tθ, θ ≥ 0) is described using a
path-valued process (X t (q), t ≥ 0, q ∈ T ) (where T is some interval depending on the branch-
ing mechanism), in which for any q ∈ T , (X t (q), t ≥ 0) is a CSBP10. Then, if Zq (d t ) = X t (q) d t
is the random measure defined by X (q), the process (Zq , q ∈ T ) is an inhomogeneous super-
process with nonlocal branching.

Finally, it should be noted that not all continuum tree-valued processes are related to Lévy
trees, unconditioned or conditioned. There is a growing literature on tree-valued processes in
the context of population genetics, whether it be coalescent trees ([GPW08, PW06, PWW10])
or forward population models like the tree-valued Fleming-Viot process ([DGP11, GPW12]).

An alternative pathwise construction of the pruning process

In this paragraph, we shall summarize the results of Chapter 3, which contains the paper
[ADH13b], submitted for publication.

The goal of this paper is to show how we can analyze the pathwise behavior of the
pruning process by giving an alternative construction based on Poisson point measures on
the tree-space. Note that the special Markov property of Theorem 16 only describes the
finite-dimensional distributions of the pruning process, but does not give any information on
its paths. We will define another Markov process having the same distribution as the pruning
process (Tθ,θ ≥ 0), whose paths will be easier to study. The main theorem is as follows:

Theorem 17 (Abraham, Delmas, H. [ADH13b]). Let ψ be a branching mechanism satisfying
Assumptions 1 to 3 and let θ > 0. Then there exists a T-valued process (Tq , q ∈Θψ∩ (−∞,θ]) that
has the same distribution as the stopped pruning process (Tq , q ∈Θψ∩ (−∞,θ]), and such that its
jump measure ∑

i∈I
δ(xi ,∆Ti ,qi )(d x,dT,d q)1Tqi − 6=Tqi

(q)

has a backward predictable projection mTq (d x) Nψq [dT] 1Θψ∩(−∞,θ](q) d q , where Nψq is the
σ-finite measure on T defined by:

Nψq [dT] = 2βNψq [dT]+
∫

(0,∞)
Π(dr )r e−qrP

ψq
r (dT)

In other words, at each jumping time q of the process, a tree ∆Tq distributed as Nψq [dT ]
is grafted on a uniformly selected leaf xq ∈ Tq , so that Tq− = Tq ~ (∆Tq , xq ). We can write

10Actually, Li describes the process “backwards in time”, so that for any t ≥ 0, we have Xt (q) ≤ Xt (q ′) if q ≤ q ′.
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down, at least formally, the infinitesimal generator Lθ of the (inhomogeneous) growth process
(T̂θ = T−θ, θ ∈ −Θψ): if θ ∈ −Θψ and if F is a measurable, bounded functional on T, for all
w-tree t, we have

(LθF ) (t) =
∫
t

mt(d s)
∫
T

Nψθ [dT ] (F (t~ (T, s))−F (t)) .

This theorem is proved by iterating the special Markov property of the pruning process
(Theorem 16) recursively, which incidentally reveals an interesting generational decomposition
of Lévy trees. We also give an application of this pathwise construction by studying special
jump times of the pruning process. For instance, let

Ah = sup
{
θ ∈Θψ, H(Tθ) > h

}
, 0 < h ≤∞

be the exit time out of the domain {T , H(T ) ≤ h}. In the paper [AD12a], the time A∞ was
studied. In particular, the tree at time A∞, which is a.s. finite, was related to a Lévy tree
conditioned to survive, suitably pruned. We substantially extend these results, not only by
considering all the cases 0 < h ≤∞, but also by describing precisely the jump TAh− TAh .
Let us introduce the notation

bθh(s) =Nψθ [H(T ) > h − s], 0 ≤ s < h.

so that Nψ[Ah > θ] = Nψ[H(Tθ) > h] = bθh(0). The function (bθh(s), 0 ≤ s < h) is uniquely
determined by the implicit equation ∫ ∞

bθh (s)

du

ψθ(u)
= h − s. (8)

Notice that when h = ∞, we get bθ∞(s) = ψ−1
θ

(0) for all s. We manage to derive the joint
distribution of (TAh−,TAh ) under the form of a spinal decomposition with respect to the
spine �;,x�, where x is the point on which the tree ∆TAh is grafted. Note that x is not the
highest leaf in the tree TAh . Contrasting with the Williams decomposition (Theorem 15), the
spinal subtrees are no longer uniformly grafted along the spine, but with a density skewed by
the potential b Ah

h .
We will state the result for the purely quadratic case ψ(u) = βu2; we refer to Theorem

3.33 in Chapter 3 for the complete description. In the quadratic case, equation (8) can be
explicitly solved:

bθh(s) = 2θ

e2βθ(h−s) −1
, 0 ≤ s < h,

if h < ∞ and bθ∞(s) = ψ−1
θ

(0) = 2|θ| for θ < 0. Then we can prove that, conditionally on
{Ah = θ}, the height of x is distributed with the following density:

Nψ[d(;,x) ∈ d x] ∝ bθh(x)exp

(
−|θ|x −

∫ x

0
bθh(u) du

)
d x, x ∈ [0,h).
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Furthermore, conditionally on {Ah = θ} and {d(;,x) = x}, the point process
∑

i∈I δ(d(;,si ),Ti )

recording the spinal decomposition with respect to �;,x� is distributed as a Poisson point
process on [0, x)×T with intensity

2β
(
θ+bθh(u)

)
1[0,x)(u)du Nψθ [dT , H(T ) < h −u].

In other words, seeing as how bθh(u) grows with u, many trees are grafted closer to x, but they
tend to be smaller than the trees grafted near the root, of which there are less. A particular
case of these results is h =∞, in which case we extend results from [AD12a]. In particular,
conditionally on A∞ = θ < 0 and on TA∞ =T , the tree TA∞− is distributed as TA∞~ (T∞, s),
where s is a uniform leaf of TA∞ and where T∞ is distributed as a ψθ-Lévy tree restricted on
having infinite mass. Also, in the quadratic case, we can derive the following explicit formula
for the probability that the jump at Ah is infinite, that is, the probability that Ah = A∞: for
h > 0 and θ < 0,

Nψ[Ah = A∞|A∞ = θ] = βθh

sinh2(βθh)
−cotanh(βθh)

1.3 Fragmentations of continuum random trees

Self-similar fragmentations of continuum random trees

Self-similar fragmentation processes were introduced by Bertoin ([Ber01, Ber02]). They are
Markov processes with values in the set S ↓ of nonincreasing nonnegative sequences (s1 ≥
s2 ≥ . . . ) such that

∑
si ≤ 1. The si represent the “size” of fragments, whatever the underlying

model. Self-similar fragmentations are characterized by a triple (α,c,ν), where α ∈ R is the
self-similarity index, c ≥ 0 is the erosion rate and ν(ds) is a σ-finite measure on S ↓ called
the dislocation measure. Informally, a fragment of size x will dislocate into fragments of size
xs at a rate xαν(ds), independently of all other fragments. Hence, if α < 0, the smaller
fragments dislocate faster than the big ones, whereas if α > 0, the big fragments dislocate
faster. If α= 0, the fragmentation rates are independent of fragment size. There can also be
a continuous erosion of the fragments, but the fragmentations we consider are not affected by
that phenomenon. We refer to the monograph [Ber06] for details on self-similar fragmentation
processes.

In their paper [AP98a], Aldous and Pitman considered a specific fragmentation of the
Brownian CRT. Given a rooted CRT (T ,;), they consider a Poisson point measure M on
T ×R+ with intensity `(d s)⊗ d t . Then, if t ≥ 0, they consider the random forest Ft =
(Ti (t ), i ∈ It ) of connected components of T defined by the marks of M (·× [0, t ]). This is
very similar to the pruning procedure on Lévy trees, except that all connected components
are kept, instead of just focusing on the one containing the root. It turns out that, in the
language later framed by Bertoin, the mass-partition process (m(Ti (t )), i ∈ It )↓, ranked in
decreasing order, is a self-similar fragmentation of index 1/2, with no erosion and with a
dislocation measure defined by

νAP ({s1 + s2 < 1}) = 0, νAP (s1 ∈ d x) = d x√
2πx3(1−x)3

, x ∈ [1/2,1).
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1.3. Fragmentations of continuum random trees

Notice that the second condition implies that all the fragmentation events are binary: frag-
ments always get shattered in exactly two pieces. In this very particular case described by
Aldous and Pitman, the time-reversal of the fragmentation process is a coalescent process,
the so-called standard additive coalescent. If mt is, at time t ≥ 0, the mass of the fragment
containing the root, then the process (mt , t ≥ 0) is equal in distribution to the process
(1/(1+τt ), t ≥ 0), where τ is a stable subordinator with index 1/2. This result can be recov-
ered from the pruning of a Lévy tree with branching mechanism ψ(u) = u2/2, conditioned on
{σ= 1}.

The fragmentation properties of stable trees were studied by Miermont using two dif-
ferent fragmentation procedures. First, the fragmentation at heights ([Mie03]), in which, at
time t ≥ 0, all vertices s of the tree with d(;, s) < t are discarded. The remaining con-
nected components form a random forest (Ti (t ), i ∈ It ) such that the associated mass process
((m(Ti (t )), i ∈ It ), t ≥ 0) is a self-similar fragmentation process with index 1/α−1 ∈ (−1/2,0),
and no erosion. The dislocation measure of the fragmentation is equal to Dανα, where Dα is
a deterministic constant, and where να is defined by∫

S ↓
G(s) να(ds) = E[

S1G
(
S−1

1 ∆S[0,1]
)]

,

for any measurable bounded functional G , where S is a stable subordinator with index 1/α.
Note that since the index of the fragmentation is negative, loss of mass occurs even though
there is no erosion and the dislocation measure is conservative.

A second way of fragmenting the α-stable tree, which is in some sense the analog of
Aldous and Pitman’s fragmentation is the fragmentation at nodes ([Mie04]), where the nodes
of the tree are cut independently as time goes along: if ∆x is the width of node x, then it
gets cut at an exponential time with parameter ∆x . When a cutting occurs, the tree gets
fragmented into infinitely many bits, since there are infinitely many connected components
attached to the node. In this case, the fragmentation is self-similar, with index 1/α ∈ (1/2,1)
and no erosion. Surprisingly, the erosion measure is the same as for the fragmentation at
heights, generalizing a result by Bertoin ([Ber02]) for the Brownian CRT. We refer to the
original papers for a detailed discussion.

Self-similar fragmentations with negative index can also be described by means of a
continuum random tree, the so-called fragmentation tree, discovered by Haas and Miermont
([HM04]). The general idea is to represent a self-similar fragmentation with negative index
as the fragmentation at heights of a certain continuum random tree. More precisely, given a
triple (α,c,ν) characterizing a self-similar fragmentation (F (t ), t ≥ 0), the authors construct
a rooted weighted continuum random tree (T(α,c,ν),;,µ) such that its mass-fragmentation
process at heights ((µ(Ti (t ))↓, i ∈ It ), t ≥ 0), constructed as above, has the same distribution
as F . The results of Bertoin and Miermont then show that the Brownian CRT and the α-
stable CRT with α ∈ (1,2) are both examples of fragmentation trees, the Brownian tree being
associated with self-similarity index α=−1/2, erosion c = 0 and (binary) dislocation measure

ν(s1 ∈ d x) = νAP (s1 ∈ d x).

We already mentioned the fact that self-similar fragmentation trees are the scaling limits of a
very general class of discrete trees, the Markov branching trees ([HMPW08, HM12]).
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Edge-cutting procedures: discrete and continuum case

The edge-cutting problem, first studied by Meir and Moon ([MM70]), is as follows: given a
discrete rooted tree (Tn ,;) with n unit-length edges, select one edge e uniformly at random.
Remove e, as well as the connected component adjacent to e that doesn’t contain the root.
On the remaining tree, iterate this procedure. The (random) number of edge-removals needed
to isolate the root will be noted X (Tn). The question of the asymptotic behavior of X (Tn)
when n →∞ is not trivial even for very simple trees: for instance, if Tn = �0,n�, the line-tree
with n unit-length edges, we have E[X (Tn)] ∼ logn, and by an application of the Lindeberg-
Feller theorem, we get that (logn)−1/2(X (Tn)− logn) converges in distribution to a standard
Gaussian r.v.

When Tn is randomly chosen, the asymptotic very much depends on the shape of the
tree, the line-tree �0,n� and the star-shaped tree being extreme cases. The original paper by
Meir and Moon examined the case where Tn is a Cayley tree (a uniform rooted labeled tree
with n +1 vertices) and proved that

E[X (Tn)] ∼
√
πn

2
; Var(X (Tn)) ∼

(
2− π

2

)
n.

Later, Panholzer ([Pan06]) and Janson ([Jan06]) proved that for any critical, finite-variance
Galton-Watson tree conditioned on having n edges, we have a convergence in distribution

lim
n→∞

X (Tn)

σ
p

n
=R, (9)

where σ2 is the variance of the offspring distribution of Tn and where R has Rayleigh distri-
bution P(R ∈ d x) = x exp(−x2/2)1(0,∞)(x) d x. The proof of Janson relied strongly on Aldous’s
result (Theorem 1), and he actually proved that if µTn denotes the conditional distribution of
X (Tn)/(σ

p
n) given the rescaled tree σTn/

p
n, then we have

lim
n→∞µTn =µ2B (10)

where µ2B is a random probability measure, specified by a moment problem conditionally on
the Brownian excursion 2B arising as the limit of the rescaled contour process. Of course,
when averaging over 2B , one recovers the Rayleigh-distributed limit of (9). Since then, a
number of different approaches have been used to describe cutting procedures on the Brow-
nian CRT that could account for either the limiting distribution in (9) or the conditional
distribution µ2B in (10).

Using a reconstruction procedure on the CRT inspired by the classical Aldous-Broder
algorithm, Addario-Berry, Broutin and Holmgren ([ABBH11]) extended the Aldous-Pitman
fragmentation by discarding all fragmentation events that didn’t affect the root-fragment.
However, at each fragmentation time t a fragment Tt is separated from the root-fragment,
it is re-attached to a continuously growing spine �;,L(t )�, where the process (L(t ), t ≥ 0) is
a local time constructed from the fragmentation. When t →∞, the root-fragment reduces
to {;} and all the fragments will have been attached on the spine �;,L(∞)�. Then, L(∞) is
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1.3. Fragmentations of continuum random trees

Rayleigh-distributed and this distribution is related to the edge-cutting in discrete (Cayley)
trees, for which a similar reconstruction procedure can be defined.

Another approach was used by Bertoin and Miermont ([BM12]) in the case of critical,
finite-variance Galton-Watson trees, keeping track of all the fragments in the edge-removal
procedure in the discrete tree through the construction of another discrete tree cut(Tn). In
the same spirit, one can construct a continuum tree cut(T ) to keep track of the genealogy of
the fragments in the Aldous-Pitman fragmentation. Then, on the one hand, it is proven that
if T is a Brownian CRT, then cut(T ) is also distributed as a Brownian CRT. On the other
hand,

lim
n→∞

(
σTnp

n
,

cut(Tn)

σ
p

n

)
= (T ,cut(T )),

in distribution for the Gromov-weak topology. This explains Janson’s result, since X (Tn) is
exactly distributed as the height of a uniform leaf in cut(Tn), and since the height of a uniform
leaf is continuous with respect to the Gromov-weak topology.

We shall use yet another way of explaining the Rayleigh distribution in the limit of (9),
discovered by Abraham and Delmas ([AD11]). The idea is to look at the effect of the Aldous-
Pitman fragmentation on the subtrees Tn of the Brownian CRT T spanned by n uniformly
sampled leaves and the root. For any s ∈T , note θ(s) the time at which s gets separated from
the root in the Aldous-Pitman fragmentation. We use the notation P

(1)∞ for the distribution
of (T ,θ), reflecting the fact that θ(;) = ∞. The process θ can also be defined such that
θ(;) = q ∈ (0,∞), for which we will use the notation P(1)

q .
The analog of X (Tn) will be the quantity X ∗

n of jumps of the process θ on Tn lying above
the first branching point s;,n . Indeed, after the first mark appears on the edge �;, s;,n�, the
root will be separated from all other vertices in Tn , just as X (Tn) was the number of cuts
needed to isolate the root from all other vertices in Janson’s edge-cutting process. The main
result is then

Theorem 18 (Abraham, Delmas [AD11]). When n →∞, we have P(1)∞ -a.s.

lim
n→∞

X ∗
np

2n
=Θ, (11)

where we noted Θ= ∫
T θ(s)m(d s). Furthermore, the limiting r.v. Θ is Rayleigh-distributed under

P
(1)∞ .

Note that the normalizing factor
p

2n comes from the fact that Tn has n leaves, thus 2n−1
edges, whereas the trees Tn from [Jan06] were selected among trees with n edges. Hence, the
result is quite the same. It is also noteworthy that, conditionally on T =T2B , the limiting r.v.
actually has the distribution µ2B predicted by Janson’s result (10).

Finally, let us mention other results about the asymptotic behavior of X (Tn) for different
classes of trees. If Tn is a random recursive tree with n edges, it is proven in [DIMR08] that

lim
n→∞

X (Tn)− n
logn − n loglogn

log2 n
n

log2 n

= Z ,
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in distribution, where Z is a 1-stable random variable11. A similar result was proven in [Hol11]
for the much larger class of split trees, containing for instance binary search trees, quad trees,
tries, digital search trees. . . What is important is that the random recursive trees and split
trees belong to the class of so-called “logn” trees, meaning that their height is asymptotic to
logn, whereas the conditioned, finite-variance Galton-Watson trees belong to the “

p
n” class.

Fluctuations for the record process on the Brownian tree

In this paragraph, we shall summarize the results of Chapter 4, which contains the paper
[Hos12], submitted for publication.

The paper builds on the almost sure result of Abraham-Delmas (Theorem 18), and gives an
asymptotic result for the fluctuations of the number of records X ∗

n /
p

2n around its asymptotic
value Θ= ∫

T θ(s) m(d s).

Theorem 19 ([Hos12]). Under N(1)∞ , we have the following convergence in distribution:

lim
n→∞n1/4

(
X ∗

np
2n

−Θ
)
= Z , (12)

where Z is a random variable with characteristic function E(1)∞
[
e i t Z

]= E(1)∞
[

e−t 2Θ/
p

2
]

.

In other words, Z has the distribution of
p
ΘG , with G an independent standard normal

r.v. To prove this theorem, the main idea is to introduce martingales indexed by the tree T

and to use martingale limit theory to find a nontrivial limit in distribution. Indeed, recall
the definition of the Aldous-Pitman fragmentation by means of a Poisson point process M .
If we thin this point process by keeping only the marks that led to an actual separation of a
fragment from the root-fragment, i.e. the jumps of θ, we get a point process Mrec that is no
longer Poisson, but it can be shown that it has intensity θ(s)`(d s) on T . Hence, by using
standard point process theory, when looking at a single branch �x, y� ⊂T (not containing the
root), we get that the number X (�x, y�) of jumps on �x, y� satisfies:

E(1)
∞

[
X (�x, y�)

]= E(1)
∞

[∫
�x,y�

θ(s) `(d s)

]
and that

E(1)
∞

[(
X (�x, y�)−

∫
�x,y�

θ(s) `(d s)

)2]
= E(1)

∞
[∫

�x,y�
θ(s) `(d s)

]
.

Since X ∗
n = X (T∗

n), this enables to show that

lim
n→∞n1/4

(
X ∗

np
2n

−
∫

T∗
n

θ(s)
`(d s)

`(T ∗
n )

)
= Z ,

where, conditionally on Θ, Z is distributed as a centered Gaussian variable with variance
Θ. Theorem 19 then follows from the fact that n1/4(

∫
T∗

n
θ(s)`(d s)/`(T∗

n)−Θ) converges to 0,

11Specified by its characteristic function E[exp(i t Z )] = exp(i t log |t |−π|t |/2).
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1.3. Fragmentations of continuum random trees

which we prove using a general disintegration theorem: if
∑

i∈In
δ(Ti ,si ) is the point measure

describing the decomposition of T with respect to Tn , and if Fn is the σ-algebra generated
by Tn and by (θ(s), s ∈ Tn), then

Theorem 20 ([Hos12]). Let F be a nonnegative functional on T×T . Then

E(1)
∞

[ ∑
i∈In

F (Ti , si )

∣∣∣∣∣Fn

]
=

∫ 1

0

e−L2
n v/(2−2v)

p
2πv3/2(1− v)3/2

d v
∫

Tn

`(d s)E(v)
θ(s)[F (T , s)].

This proof of this theorem uses the same disintegration methods already used by Le
Gall ([Le 93b]) to derive the distribution of Tn under N(1) from its distribution under N.
In our context, this formula enables to estimate quite tightly the rate of convergence of
(E(1)∞ [Θ|Fn]−Θ) to 0, which entails Theorem 19.
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CHAPTER 2

Gromov-Hausdorff-Prokhorov convergence
of locally compact metric measure spaces

2.1 Introduction

In the present work, we aim to give a topological framework to certain classes of measured
metric spaces. The methods go back to ideas from Gromov [Gro07], who first considered
the so-called Gromov-Hausdorff metric in order to compare metric spaces who might not be
subspaces of a common metric space. The classical theory of the Gromov-Hausdorff metric
on the space of compact metric spaces, as well as its extension to locally compact spaces, is
exposed in particular in Burago, Burago and Ivanov [BBI01].

Recently, the concept of Gromov-Hausdorff convergence has found striking applications
in the field of probability theory, in the context of random graphs. Evans [Eva08] and Evans,
Pitman and Winter [EPW05] considered the space of real trees, which is Polish when endowed
with the Gromov-Hausdorff metric. This has given a framework to the theory of continuum
random trees, which originated with Aldous [Ald91a]. In the monograph by Evans [Eva08],
the author describes a topology on the space of compact real trees, equipped with a probabil-
ity measure, using the Prokhorov metric to compare the measures, thus defining the so-called
weighted Gromov-Hausdorff metric. Recently Greven, Pfaffelhuber and Winter [GPW08] take
another approach by considering the space of complete, separable metric spaces, endowed
with probability measures (metric measure spaces). In order to compare two such probabil-
ity spaces, they consider embeddings of both these spaces into some common Polish metric
space, and use the Prokhorov metric to compare the ensuing measures. This puts the empha-
sis on the probability measure carried by the space rather than its geometrical features. In his
monograph, Villani [Vil09] gives an account of the theory of measured metric spaces and the
different approaches to their topology. This theory, as well as the connection to mass trans-
portation problems, was also developed in [Stu06a, Stu06b]. Miermont, in [Mie09], describes
a combined approach, using both the Hausdorff metric and the Prokhorov metric to compare
compact metric spaces equipped with probability measures. The metric he uses (called the
Gromov-Hausdorff-Prokhorov metric) is not the same as Evans’s, but they are shown to give
rise to the same topology. This topology is stronger than the Gromov-Prokhorov topology,
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since it puts a stronger emphasis on the geometrical features of the spaces.
In the present paper, we describe several properties of the Gromov-Hausdorff-Prokhorov

metric, d c
GHP, on the set K of (isometry classes of) compact metric spaces, with a distin-

guished element called the root and endowed with a finite measure. Theorem 2.3 ensures
that (K,d c

GHP) is a Polish metric space. We extend those results by considering the Gromov-
Hausdorff-Prokhorov metric, dGHP, on the set L of (isometry classes of) rooted locally com-
pact, complete length spaces, endowed with a boundedly finite measure. Theorem 2.7 ensures
that (L,dGHP) is also a Polish metric space. The proof of the completeness of L relies on a pre-
compactness criterion given in Theorem 2.9. The methods used are similar to the methods
used in [BBI01] to derive properties about the Gromov-Hausdorff topology of the set of lo-
cally compact complete length spaces. This work extends some of the results from [GPW08],
which doesn’t take into account the geometrical structure of the spaces, as well as the re-
sults from [Mie09], which consider only the compact case and probability measures. This
comes at the price of having to restrict ourselves to the context of length spaces. In [Vil09]
the Gromov-Hausdorff-Prokhorov topology is considered for general Polish spaces (instead
of length spaces) but endowed with boundedly finite measures satisfying the doubling condi-
tion. We also mention the different approach of [ABBH11], using the ideas of correspondences
between metric spaces and couplings of measures.

This work was developed for applications in the setting of weighted Lévy trees (which
are elements of L), see Abraham, Delmas and Hoscheit [ADH13b]. We give an hint of those
applications by stating that the construction of a weighted tree coded in a continuous function
with compact support is measurable with respect to the topology induced by d c

GHP on K or
by dGHP on L. This construction allows us to define random variables on K using continuous
random processes on R, in particular the Lévy trees of [DL05] that describe the genealogy
of the so-called critical or sub-critical continuous state branching processes that become a.s.
extinct. The measure m is then a “uniform” measure on the leaves of the tree which has
finite mass. The construction can be generalized to super-critical continuous state branching
processes which can live forever; in that case the corresponding genealogical tree is infinite
and the measure m on the leaves is also infinite. This paper gives an appropriate framework
to handle such tree-valued random variables and also tree-valued Markov processes as in
[ADH13b].

The structure of the paper is as follow. Section 2.2 collects the main results of the paper.
The application to real trees is given in Section 2.3. The proofs of the results in the compact
case are given in Section 2.4. The proofs of the results in the locally compact case are given
in Section 2.5.

2.2 Main results

Rooted weighted metric spaces

Let (X ,d X ) be a Polish metric space. The diameter of A ∈B(X ) is given by:

diam(A) = sup
{
d X (x, y); x, y ∈ A

}
.
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For A,B ∈B(X ), we set:

d X
H (A,B) = inf

{
ε> 0; A ⊂ Bε and B ⊂ Aε

}
,

the Hausdorff metric between A and B , where

Aε =
{

x ∈ X ; inf
y∈A

d X (x, y) < ε
}

(2.1)

is the ε-halo set of A. If X is compact, then the space of compact subsets of X , endowed
with the Hausdorff metric, is compact, see theorem 7.3.8 in [BBI01]. To give pre-compactness
criterion, we will need the notion of ε-nets.

Definition 2.1. Let (X ,d X ) be a metric space, and let ε> 0. A subset A ⊂ X is called an ε-net of
B ⊂ X if:

A ⊂ B ⊂ Aε.

Notice that, for any ε> 0, compact metric spaces admit finite ε-nets and locally compact
spaces admit boundedly finite ε-nets. Let M f (X ) denote the set of all finite Borel measures
on X . If µ,ν ∈M f (X ), we set:

d X
P (µ,ν) = inf{ε> 0; µ(A) ≤ ν(Aε)+ε and ν(A) ≤µ(Aε)+ε for any closed set A},

the Prokhorov metric between µ and ν. It is well known (see [DVJ03] Appendix A.2.5) that
(M f (X ),d X

P ) is a Polish metric space, and that the topology generated by d X
P is exactly the

topology of weak convergence (convergence against continuous bounded functionals).
The Prokhorov metric can be extended in the following way. Recall that a Borel measure

is boundedly finite if the measure of any bounded Borel set is finite. Let M (X ) denote the set
of all boundedly finite Borel measures on X . Let ; be a distinguished element of X , which
we will call the root. We will consider the closed ball of radius r centered at ;:

X (r ) = {
x ∈ X ;d X (;, x) ≤ r

}
, (2.2)

and for µ ∈M (X ) its restriction µ(r ) to X (r ):

µ(r )(d x) = 1X (r ) (x)µ(d x). (2.3)

If µ,ν ∈M (X ), we define a generalized Prokhorov metric between µ and ν:

d X
gP(µ,ν) =

∫ ∞

0
e−r (

1∧d X
P

(
µ(r ),ν(r ))) dr. (2.4)

It is not difficult to check that d X
gP is well defined (see Lemma 2.6 in a more general framework)

and is a metric. Furthermore (M (X ),d X
gP) is a Polish metric space, and the topology generated

by d X
gP is exactly the topology of vague convergence (convergence against continuous bounded

functionals with bounded support), see [DVJ03] Appendix A.2.6.
When there is no ambiguity on the metric space (X ,d X ), we may write d , dH, and dP

instead of d X , d X
H and d X

P . In the case where we consider different metrics on the same space,
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2. Gromov-Hausdorff-Prokhorov topology

in order to stress that the metric is d X , we will write d d X

H and d d X

P for the corresponding
Hausdorff and Prokhorov metrics.

If Φ : X → X ′ is a Borel map between two Polish metric spaces and if µ is a Borel measure
on X , we will note Φ∗µ the image measure on X ′ defined by Φ∗µ(A) = µ(Φ−1(A)), for any
Borel set A ⊂ X .

Definition 2.2. • A rooted weighted metric space X = (X ,d ,;,µ) is a metric space (X ,d)
with a distinguished element ;∈ X , called the root, and a boundedly finite Borel measure µ.

• Two rooted weighted metric spaces X = (X ,d ,;,µ) and X ′ = (X ′,d ′,;′,µ′) are said to be
GHP-isometric if there exists an isometric one-to-one map Φ : X → X ′ such that Φ(;) =;′

and Φ∗µ=µ′. In that case, Φ is called a GHP-isometry.

Notice that if (X ,d) is compact, then a boundedly finite measure on X is finite and belongs
to M f (X ). We will now use a procedure due to Gromov [Gro07] to compare any two compact
rooted weighted metric spaces, even if they are not subspaces of the same Polish metric space.

Gromov-Hausdorff-Prokhorov metric for compact spaces

For convenience, we recall the Gromov-Hausdorff metric, see for example Definition 7.3.10 in
[BBI01]. Let (X ,d) and (X ′,d ′) be two compact metric spaces. The Gromov-Hausdorff metric
between (X ,d) and (X ′,d ′) is given by:

d c
GH

(
(X ,d), (X ′,d ′)

)= inf
ϕ,ϕ′,Z

d Z
H

(
ϕ(X ),ϕ′(X ′)

)
, (2.5)

where the infimum is taken over all isometric embeddings ϕ : X ,→ Z and ϕ′ : X ′ ,→ Z into
some common Polish metric space (Z ,d Z ). Note that Equation (2.5) does actually define a
metric on the set of isometry classes of compact metric spaces.

Now, we introduce the Gromov-Hausdorff-Prokhorov metric for compact spaces. Let
X = (X ,d ,;,µ) and X ′ = (X ′,d ′,;′,µ′) be two compact rooted weighted metric spaces, and
define:

d c
GHP(X ,X ′) = inf

Φ,Φ′,Z

(
d Z (Φ(;),Φ′(;′))+d Z

H (Φ(X ),Φ′(X ′))+d Z
P (Φ∗µ,Φ′

∗µ
′)
)

, (2.6)

where the infimum is taken over all isometric embeddings Φ : X ,→ Z and Φ′ : X ′ ,→ Z into
some common Polish metric space (Z ,d Z ).

Note that equation (2.6) does not actually define a metric, as d c
GHP(X ,X ′) = 0 if X and

X ′ are GHP-isometric. Therefore, we will consider K, the set of GHP-isometry classes of
compact rooted weighted metric space and identify a compact rooted weighted metric space
with its class in K. Then the function d c

GHP is finite on K2.

Theorem 2.3.

(i) The function d c
GHP defines a metric on K.

(ii) The space (K,d c
GHP) is a Polish metric space.
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2.2. Main results

We will call d c
GHP the Gromov-Hausdorff-Prokhorov metric. This extends the Gromov-

Hausdorff metric on compact metric spaces, see [BBI01] section 7, as well as the Gromov-
Hausdorff-Prokhorov metric on compact metric spaces endowed with a probability measure,
see [Mie09]. See also [GPW08] for another approach on metric spaces endowed with a
probability measure.

We end this Section by a pre-compactness criterion on K.

Theorem 2.4. Let A be a subset of K, such that:

(i) We have sup(X ,d ,;,µ)∈A diam(X ) <+∞.

(ii) For every ε> 0, there exists a finite integer N (ε) ≥ 1, such that for any (X ,d ,;,µ) ∈A , there
is an ε-net of X with cardinal less than N (ε).

(iii) We have sup(X ,d ,;,µ)∈A µ(X ) <+∞.

Then, A is relatively compact: every sequence in A admits a sub-sequence that converges in the
d c

GHP topology.

Notice that we could have defined a Gromov-Hausdorff-Prokhorov metric without refer-
ence to any root. However, the introduction of the root is necessary to define the Gromov-
Hausdorff-Prokhorov metric for locally compact spaces, see next Section.

Gromov-Hausdorff-Prokhorov metric for locally compact spaces

To consider an extension to non compact weighted rooted metric spaces, we will consider
complete and locally compact length spaces. We recall that a metric space (X ,d) is a length
space if for every x, y ∈ X , we have:

d(x, y) = infL(γ),

where the infimum is taken over all rectifiable curves γ : [0,1] → X such that γ(0) = x and
γ(1) = y , and where L(γ) is the length of the rectifiable curve γ. We recall that (X ,d) is a
length space if is satisfies the mid-point condition (see Theorem 2.4.16 in [BBI01]): for all
ε> 0, x, y ∈ X , there exists z ∈ X such that:

|2d(x, z)−d(x, y)|+ |2d(y, z)−d(x, y)| ≤ ε.

Definition 2.5. Let L be the set of GHP-isometry classes of rooted, weighted, complete and locally
compact length spaces and identify a rooted, weighted, complete and locally compact length spaces
with its class in L.

If X = (X ,d ,;,µ) ∈ L, then for r ≥ 0 we will consider its restriction to the closed ball of
radius r centered at ;, X (r ) = (X (r ),d (r ),;,µ(r )), where X (r ) is defined by (2.2), the metric
d (r ) is the restriction of d to X (r ), and the measure µ(r ) is defined by (2.3). Recall that the
Hopf-Rinow theorem implies that if (X ,d) is a complete and locally compact length space,
then every closed bounded subset of X is compact. In particular if X belongs to L , then
X (r ) belongs to K for all r ≥ 0.

We state a regularity lemma of d c
GHP with respect to the restriction operation.
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2. Gromov-Hausdorff-Prokhorov topology

Lemma 2.6. Let X and Y be in L. Then the function defined on R+ by r 7→ d c
GHP

(
X (r ),Y (r )

)
is

càdlàg.

This implies that the following function (inspired by (2.4)) is well defined on L2:

dGHP(X ,Y ) =
∫ ∞

0
e−r (

1∧d c
GHP

(
X (r ),Y (r ))) dr.

Theorem 2.7.

(i) The function dGHP defines a metric on L.

(ii) The space (L,dGHP) is a Polish metric space.

The next result implies that d c
GHP and dGHP define the same topology on K∩L.

Proposition 2.8. Let (Xn ,n ∈ N) and X be elements of K∩L. Then the sequence (Xn ,n ∈ N)
converges to X in (K,d c

GHP) if and only if it converges to X in (L,dGHP).

Finally, we give a pre-compactness criterion on L which is a generalization of the well-
known compactness theorem for compact metric spaces, see for instance Theorem 7.4.15 in
[BBI01].

Theorem 2.9. Let C be a subset of L, such that for every r ≥ 0:

(i) For every ε > 0, there exists a finite integer N (r,ε) ≥ 1, such that for any (X ,d ,;,µ) ∈ C ,
there is an ε-net of X (r ) with cardinal less than N (r,ε).

(ii) We have sup(X ,d ,;,µ)∈C µ(X (r )) <+∞.

Then, C is relatively compact: every sequence in C admits a sub-sequence that converges in the dGHP

topology.

2.3 Application to real trees coded by functions

A metric space (T,d) is a called real tree (or R-tree) if the following properties are satisfied:

(i) For every s, t ∈ T , there is a unique isometric map fs,t from [0,d(s, t )] to T such that
fs,t (0) = s and fs,t (d(s, t )) = t .

(ii) For every s, t ∈ T , if q is a continuous injective map from [0,1] to T such that q(0) = s
and q(1) = t , then q([0,1]) = fs,t ([0,d(s, t )]).

Note that real trees are always length spaces and that complete real trees are the only complete
connected spaces that satisfy the so-called four-point condition:

∀x1, x2, x3, x4 ∈ X , d(x1, x2)+d(x3, x4) ≤ (d(x1, x3)+d(x2, x4))∨ (d(x1, x4)+d(x2, x3)). (2.7)

We say that a real tree is rooted if there is a distinguished vertex ;, which will be called
the root of T .
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2.4. Gromov-Hausdorff-Prokhorov metric for compact metric spaces

Definition 2.10. We denote by T the set of (GHP-isometry classes of ) rooted, weighted, complete
and locally compact real trees, in short w-trees.

We deduce the following Corollary from Theorem 2.7 and the four-point condition char-
acterization of real trees.

Corollary 2.11. The set T is a closed subset of L and (T,dGHP) is a Polish metric space.

Let f be a continuous non-negative function defined on [0,+∞), such that f (0) = 0, with
compact support. We set:

σ f = sup
{

t ; f (t ) > 0
}

,

with the convention sup;= 0. Let d f be the non-negative function defined by:

d f (s, t ) = f (s)+ f (t )−2 inf
u∈[s∧t ,s∨t ]

f (u).

It can be easily checked that d f is a semi-metric on [0,σ f ]. One can define the equivalence
relation associated with d f by s ∼ t if and only if d f (s, t ) = 0. Moreover, when we consider
the quotient space

T f =
[

0,σ f
]

/∼
and, noting again d f the induced metric on T f and rooting T f at ; f , the equivalence
class of 0, it can be checked that the space (T f ,d f ,; f ) is a rooted compact real tree. We
denote by p f the canonical projection from [0,σ f ] onto T f , which is extended by p f (t ) =; f

for t ≥ σ f . Notice that p f is continuous. We define the Borel measure m f on T f as the
image measure of the Lebesgue measure on [0,σ f ] by p f . We consider the (compact) w-tree
T f = (T f ,d f ,; f ,m f ).

We have the following elementary result (see Lemma 2.3 of [DL05] when dealing with the
Gromov-Hausdorff metric instead of the Gromov-Hausdorff-Prokhorov metric). For a proof,
see [ADH13b].

Proposition 2.12. Let f , g be two compactly supported, non-negative continuous functions with
f (0) = g (0) = 0. Then, we have:

d c
GHP(T f ,T g ) ≤ 6‖ f − g‖∞+

∣∣∣σ f −σg
∣∣∣ . (2.8)

This result and Proposition 2.8 ensure that the map f 7→ T f (defined on the space of
continuous functions with compact support which vanish at 0, with the uniform topology)
taking values in (T∩K,d c

GHP) or (T,dGHP) is measurable.

2.4 Gromov-Hausdorff-Prokhorov metric for compact metric
spaces

Proof of (i) of Theorem 2.3

In this Section, we will prove that d c
GHP defines a metric on K.
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2. Gromov-Hausdorff-Prokhorov topology

First, we will prove the following technical lemma, which is a generalization of Remark
7.3.12 in [BBI01]. Let X = (X ,d X ,;X ,µX ) and Y = (Y ,d Y ,;Y ,µY ) be two elements of K. We
will use the notation X tY for the disjoint union of the sets X and Y . We will abuse notations
and note X ,µX ,;X and Y ,µY ,;Y the images of X ,µX ,;X and of Y ,µY ,;Y respectively by
the canonical embeddings X ,→ X tY and Y ,→ X tY .

Lemma 2.13. Let X = (X ,d X ,;X ,µX ) and Y = (Y ,d Y ,;Y ,µY ) be two elements of K. Then, we
have:

d c
GHP(X ,Y ) = inf

d

{
d(;X ,;Y )+d d

H(X ,Y )+d d
P (µX ,µY )

}
, (2.9)

where the infimum is taken over all metrics d on X tY such that the canonical embeddings
X ,→ X tY and Y ,→ X tY are isometries.

Proof. We only have to show that:

inf
d

{
d(;X ,;Y )+d d

H(X ,Y )+d d
P (µX ,µY )

}
≤ d c

GHP(X ,Y ), (2.10)

since the other inequality is obvious. Let (Z ,d Z ) be a Polish space and ΦX and ΦY be
isometric embeddings of X and Y in Z . Let δ > 0. We define the following function on
(X tY )2:

d(x, y) =


d Z (ΦX (x),ΦY (y))+δ if x ∈ X , y ∈ Y ,

d X (x, y) if x, y ∈ X ,

d Y (x, y) if x, y ∈ Y .

(2.11)

It is obvious that d is a metric on X tY , and that the canonical embeddings of X and Y in
X tY are isometric. Furthermore, by definition, we have

d
(;X ,;Y )= d Z (

ΦX (;X ),ΦY (;Y )
)+δ.

Concerning the Hausdorff distance between X and Y , we get that:

d d
H(X ,Y ) ≤ d Z

H (ΦX (X ),ΦY (Y ))+δ.

Finally, let us compute the Prokhorov distance between µX and µY . Let ε> 0 be such that
d Z

P (ΦX∗ µX ,ΦY∗µY ) < ε. Let A be a closed subset of X tY . By definition, we have:

µX (A) =µX (A∩X ) =ΦX
∗ µ

X (
ΦX (A∩X )

)
<ΦY

∗µ
Y ({

z ∈ Z , d Z (z,ΦX (A∩X )) < ε})+ε
=ΦY

∗µ
Y ({

z ∈ΦY (Y ), d Z (z,ΦX (A∩X )) < ε})+ε
≤µY ({y ∈ Y , d(y, A∩X ) < ε+δ})+ε
≤µY ({y ∈ X tY , d(y, A) < ε+δ})+ε.

The symmetric result holds for (X ,Y ) replaced by (Y , X ) and therefore we get that actually
d d

P (µX ,µY ) < ε+δ. This implies:

d d
P

(
µX ,µY )≤ d Z

H

(
ΦX

∗ µ
X ,ΦY

∗µ
Y )+δ.
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2.4. Gromov-Hausdorff-Prokhorov metric for compact metric spaces

Eventually, we get:

d
(;X ,;Y )+d d

H(X ,Y )+d d
P

(
µX ,µY )

≤ d Z (
ΦX (;X ),ΦY (;Y )

)+d Z
H

(
ΦX (X ),ΦY (Y )

)+d Z
H

(
ΦX

∗ µ
X ,ΦY

∗µ
Y )+3δ.

Thanks to (2.6) and since δ> 0 is arbitrary, we get (2.10).

We now prove that d c
GHP does indeed satisfy all the axioms of a metric (as is done in

[BBI01] for the Gromov-Hausdorff metric and in [Mie09] in the case of probability measures
on compact metric spaces). The symmetry and positiveness of d c

GHP being obvious, let us
prove the triangular inequality and positive definiteness.

Lemma 2.14. The function d c
GHP satisfies the triangular identity on K.

Proof. Let X1,X2 and X3 be elements of K. Let us assume that d c
GHP(Xi ,X2) < ri for

i ∈ {1,3}. With obvious notations, for i ∈ {1,3}, we consider, as in Lemma 2.13, metrics di on
Xi tX2. Let us then consider Z = X1 tX2 tX3, on which we define:

d(x, y) =
{

di (x, y) if x, y ∈ (Xi tX2)2 for i ∈ {1,3},

infz∈X2 {d1(x, z)+d3(z, y)} if x ∈ X1, y ∈ X3.
(2.12)

The function d is in fact a metric on Z , and the canonical embeddings are isometries, since
they are for d1 and d3. By definition, we have:

d d
H(X1, X3) =

(
sup

x1∈X1

inf
x3∈X3

d(x1, x3)

)
∨

(
sup

x3∈X3

inf
x1∈X1

d(x1, x3)

)
.

We notice that:

sup
x1∈X1

inf
x3∈X3

d(x1, x3) = sup
x1∈X1

inf
x2∈X2, x3∈X3

d1(x1, x2)+d3(x2, x3)

≤ d d1
H (X1, X2)+ inf

x2∈X2, x3∈X3

d3(x2, x3)

≤ d d1
H (X1, X2)+d d3

H (X2, X3).

Thus, we deduce that d d
H(X1, X3) ≤ d d1

H (X1, X2)+d d3
H (X2, X3).

As far as the Prokhorov distance is concerned, let εi , i ∈ {1,3} be such that d di
P (µi ,µ2) < εi .

Then, if A ⊂ Z is closed, we have:

µ1(A) =µ1(A∩X1) <µ2({x ∈ X1 tX2, d1(x, A∩X1) < ε1})+ε1

≤µ2(Aε1 ∩X2)+ε1

<µ3({x ∈ X3 tX2, d3(x, Aε1 ∩X2) < ε3})+ε1 +ε3

≤µ3(Aε1+ε3 )+ε1 +ε3,
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2. Gromov-Hausdorff-Prokhorov topology

where Aε = {z ∈ Z , d(z, A) < ε}, for ε= ε1 and ε= ε1 +ε3. A similar result holds with (µ1,µ3)
replaced by (µ3,µ1). We deduce that d d

P (µ1,µ3) < ε1 +ε3, which implies that

d d
P (µ1,µ3) ≤ d d1

P (µ1,µ2)+d d3
P (µ2,µ3).

By summing up all the results, we get:

d(;1,;3)+d d
H(X1, X3)+d d

P (µ1,µ3) ≤ ∑
i∈{1,3}

d di (;i ,;2)+d di
H (Xi , X2)+d di

P (µi ,µ2).

Then use the definition (2.6) and Lemma 2.13 to get the triangular inequality:

d c
GHP(X1,X3) ≤ d c

GHP(X1,X2)+d c
GHP(X2,X3).

This proves that d c
GHP is a semi-metric on K. We then prove the positive definiteness.

Lemma 2.15. Let X ,Y be two elements of K such that d c
GHP(X ,Y ) = 0. Then X = Y (as

GHP-isometry classes of rooted weighted compact metric spaces).

Proof. Let X = (X ,d X ,;X ,µX ) and Y = (Y ,d Y ,;Y ,µY ) in K such that d c
GHP(X ,Y ) = 0.

According to Lemma 2.13, we can find a sequence of metrics (d n ,n ≥ 1) on X tY , such that

d n(;X ,;Y )+d n
H(X ,Y )+d n

P (µX ,µY ) < εn , (2.13)

for some positive sequence (εn ,n ≥ 1) decreasing to 0, where d n
H and d n

P stand for d d n

H and
d d n

P . For any k ≥ 1, let Sk be a finite (1/k)-net of X , containing the root. Since X is compact,
we get by Definition 2.1 that Sk is in fact an ( 1

k −δ)-net of X for some δ> 0. Let Nk +1 be the
cardinal of Sk . We will write:

Sk = {x0,k =;X , x1,k , . . . , xNk ,k }.

Let (Vi ,k ,0 ≤ i ≤ Nk ) be Borel subsets of X with diameter less than 1/k, that is:

sup
x,x ′∈Vi ,k

d X (x, x ′) < 1/k,

such that ∪0≤i≤Nk Vi ,k = X and for all 0 ≤ i , i ′ ≤ Nk , we have Vi ,k ∩Vi ′,k =; and xi ,k ∈ Vi ,k if
Vi ,k 6= ;. We set:

µX
k (d x) =

Nk∑
i=0

µX (Vi ,k )δxi ,k (d x),

where δx ′(d x) is the Dirac measure at x ′. Notice that:

d X
H (X ,Sk ) ≤ 1

k
and d X

P (µX
k ,µX ) ≤ 1

k
·

We set y0,k = yn
0,k =;Y . By (2.13), we get that for any k ≥ 1,0 ≤ i ≤ Nk , there exists yn

i ,k ∈ Y
such that d n(xi ,k , yn

i ,k ) < εn . Since Y is compact, the sequence (yn
i ,k ,n ≥ 1) is relatively
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2.4. Gromov-Hausdorff-Prokhorov metric for compact metric spaces

compact, hence admits a converging sub-sequence. Using a diagonal argument, and without
loss of generality (by considering the sequence instead of the sub-sequence), we may assume
that for k ≥ 1,0 ≤ i ≤ Nk , the sequence (yn

i ,k ,n ≥ 1) converges to some yi ,k ∈ Y .

For any y ∈ Y , let x ∈ X such that d n(x, y) < εn and i ,k such that d X (x, xi ,k ) < 1
k −δ.

Then, we get:

d Y
(

y, yn
i ,k

)
= d n

(
y, yn

i ,k

)
≤ d n(y, x)+d X (

x, xi ,k
)+d n

(
xi ,k , yn

i ,k

)
≤ 1

k
−δ+2εn .

Thus, the set {yn
i ,k ,0 ≤ i ≤ Nk } is a (2εn +1/k −δ)-net of Y , and the set SY

k = {yi ,k ,0 ≤ i ≤ Nk }
is an 1/k-net of Y .

If k,k ′ ≥ 1 and 0 ≤ i ≤ Nk ,0 ≤ i ′ ≤ Nk ′ , then we have:

d Y (
yi ,k , yi ′,k ′

)≤ d Y
(

yn
i ,k , yi ,k

)
+d Y

(
yn

i ,k , yn
i ′,k ′

)
+d Y

(
yn

i ′,k ′ , yi ′,k ′
)

≤ d Y
(

yn
i ,k , yi ,k

)
+d Y

(
yn

i ′,k ′ , yi ′,k ′
)
+2εn +d X (

xi ,k , xi ′,k ′
)

,

and, since the terms d(yn
i ,k , yi ,k ) and d(yn

i ′,k ′ , yi ′,k ′) can be made arbitrarily small, we deduce:

d
(
yi ,k , yi ′,k ′

)≤ d
(
xi ,k , xi ′,k ′

)
.

The reverse inequality is proven using similar arguments, so that the above inequality is in
fact an equality. Therefore the map defined by Φ(xi ,k ) = (yi ,k ) from ∪k≥1Sk onto ∪k≥1SY

k is
a root-preserving isometry. By density, this map can be extended uniquely to an isometric
one-to-one root preserving embedding from X to Y which we still denote by Φ. Hence the
metric spaces X and Y are root-preserving isometric.

As far as the measures are concerned, we set:

µY ,n
k =

Nk∑
i=0

µX (Vi ,k )δyn
i ,k

and µY
k =

Nk∑
i=0

µX (Vi ,k )δyi ,k .

By construction, we have d n
P (µY ,n

k ,µX
k ) ≤ εn . We get:

d Y
P

(
µY

k ,µY )= d n
P

(
µY

k ,µY )≤ d Y
P

(
µY

k ,µY ,n
k

)
+d n

P

(
µY ,n

k ,µX
k

)
+d X

P

(
µX

k ,µX )+d n
P (µX ,µY )

< d Y
P

(
µY

k ,µY ,n
k

)
+εn + 1

k
+εn .

Furthermore, as n goes to infinity, we have that d Y
P (µY

k ,µY ,n
k ) converges to 0, since the yn

i ,k
converge towards the yi ,k . Thus, we actually have:

d Y
P

(
µY

k ,µY )≤ 1/k.

This implies that (µY
k ,k ≥ 1) converges weakly to µY . Since by definition µY

k = Φ∗µX
k and

since Φ is continuous, by passing to the limit, we get µY =Φ∗µX . This gives that X and Y

are GHP-isometric.

This proves that the function d c
GHP defines a metric on K.
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2. Gromov-Hausdorff-Prokhorov topology

Proof of Theorem 2.4 and of (ii) of Theorem 2.3

The proof of Theorem 2.4 is very close to the proof of Theorem 7.4.15 in [BBI01], where only
the Gromov-Hausdorff metric is involved. It is in fact a simplified version of the proof of
Theorem 2.9, and is thus left to the reader.

We are left with the proof of (ii) of Theorem 2.3. It is in fact enough to check that if
(Xn ,n ∈ N) is a Cauchy sequence, then it is relatively compact.

First notice that if (Z ,d Z ) is a Polish metric space, then for any closed subsets A,B , we
have d Z

H (A,B) ≥ |diam(A)−diam(B)|, and for µ,ν ∈ M f (Z ), d Z
P (µ,ν) ≥ ∣∣µ(Z )−ν(Z )

∣∣. This
implies that for any X = (X ,d X ,;X ,µ),Y = (Y ,d Y ,;Y ,ν) ∈K:

d c
GHP(X ,Y ) ≥ |diam(X )−diam(Y )|+ ∣∣µ(X )−ν(Y )

∣∣ . (2.14)

Furthermore, using the definition of the Gromov-Hausdorff metric (2.5), we clearly have:

d c
GHP(X ,Y ) ≥ d c

GH((X ,d X ), (Y ,d Y )). (2.15)

We deduce that if A = (Xn ,n ∈ N) is a Cauchy sequence, then (2.14) implies that con-
ditions (i) and (iii) of Theorem 2.4 are fulfilled. Furthermore, thanks to (2.15), the sequence
((Xn ,d Xn ),n ∈ N) is a Cauchy sequence for the Gromov-Hausdorff metric. Then point (2) of
Proposition 7.4.11 in [BBI01] readily implies condition (ii) of Theorem 2.4.

2.5 Extension to locally compact length spaces

First results

First, let us state two elementary lemmas. Let (X ,d ,;) be a rooted metric space. Recall
notation (2.2). We set:

∂r X = {x ∈ X ; d(;x , x) = r }.

Lemma 2.16. Let (X ,d ,;) be a complete rooted length space and r,ε> 0. Then we have, for all
δ> 0:

X (r+ε) ⊂ (
X (r ))ε+δ .

Proof. Let x ∈ X (r+ε)\X (r ) and δ> 0. There exists a rectifiable curve γ defined on [0,1] with
values in X such that γ(0) = ; and γ(1) = x, such that L(γ) < d(;, x)+δ ≤ r +ε+δ. There
exists t ∈ (0,1) such that γ(t ) ∈ ∂r X . We can bound d(γ(t ), x) by the length of the fragment
of γ joining γ(t ) and x, that is the length of γ minus the length of the fragment of γ joining
; to γ(t ). The latter being equal to or larger than d(;X ,γ(t )) = r , we get:

d(γ(t ), x) ≤ L(γ)− r < ε+δ.

Since γ(t ) ∈ X (r ), we get x ∈ (
X (r )

)ε+δ. This ends the proof.

Lemma 2.17. Let X = (X ,d ,;,µ) ∈ L. For all ε> 0 and r > 0, we have:

d c
GHP

(
X (r ),X (r+ε))≤ ε+µ(

X (r+ε) \ X (r )) .
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Proof. The identity map is an obvious embedding X (r ) ,→ X (r+ε) which is root-preserving.
Then, we have:

d c
GHP(X (r ),X (r+ε)) ≤ dH(X (r ), X (r+ε))+dP(µ(r ),µ(r+ε)).

Thanks to Lemma 2.16, we have dH(X (r ), X (r+ε)) ≤ ε.
Let A ⊂ X be closed. We have obviously µ(r )(A) ≤µ(r+ε)(A). On the other hand, we have:

µ(r+ε)(A) ≤µ(r )(A)+µ(A∩ (X (r+ε) \ X (r ))) ≤µ(r )(A)+µ(X (r+ε) \ X (r )).

This proves that dP(µ(r ),µ(r+ε)) ≤µ(X (r+ε) \ X (r )), which ends the proof.

It is then straightforward to prove Lemma 2.6.

Proof of Lemma 2.6. Let X = (X ,d X ,;X ,µX ) and Y = (Y ,d Y ,;Y ,µY ) be two elements of L.
Using the triangular inequality twice and Lemma 2.17, we get for r > 0 and ε> 0:∣∣d c

GHP(X (r ),Y (r ))−d c
GHP(X (r+ε),Y (r+ε))

∣∣≤ d c
GHP

(
X (r ),X (r+ε))+d c

GHP

(
Y (r ),Y (r+ε))

≤ 2ε+µX (
X (r+ε) \ X (r ))+µY (

Y (r+ε) \ Y (r )) .

As ε goes down to 0, the expression above converges to 0, so that we get right-continuity of
the function r 7→ d c

GHP(X (r ),Y (r )).
We write X (r−) for the compact metric space X (r ) rooted at ;X along with the induced

metric and the restriction of µ to the open ball {x ∈ X ; d X (;X , x) < r }. We define Y (r−)

similarly. Similar arguments as above yield for r > ε> 0:∣∣d c
GHP(X (r−),Y (r−))−d c

GHP(X (r−ε),Y (r−ε))
∣∣

≤ d c
GHP(X (r−),X (r−ε))+d c

GHP(Y (r ),Y (r−ε))

≤ 2ε+µX (
{x ∈ X , r −ε< d X (;X , x) < r }

)+µY (
{y ∈ Y , r −ε< d Y (;Y , y) < r }

)
.

As ε goes down to 0, the expression above also converges to 0, which shows the existence of
left limits for the function r 7→ d c

GHP(X (r ),Y (r )).

The next result corresponds to (i) in Theorem 2.7.

Proposition 2.18. The function dGHP is a metric on L.

Proof. The symmetry and positivity of dGHP are obvious. The triangle inequality is not
difficult either, since d c

GHP satisfies the triangle inequality and the map x 7→ 1∧ x is non-
decreasing and sub-additive.

We need to check that dGHP is definite positive. To that effect, let X = (X ,d X ,;X ,µ) and
Y = (Y ,d Y ,;Y ,ν) be two elements of L such that dGHP(X ,Y ) = 0. We want to prove that X

and Y are GHP-isometric. We follow the spirit of the proof of Lemma 2.15.
By definition, we get that for almost every r > 0, d c

GHP(X (r ),Y (r )) = 0. Let (rn , n ≥ 1) be
a sequence such that rn ↑∞ and such that for n ≥ 1, d c

GHP(X (rn ),Y (rn )) = 0. Since d c
GHP is a

metric on K, there exists a GHP-isometry Φn : X (rn ) → Y (rn ) for every n ≥ 1. Since all the X (r )
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are compact, we may consider, for n ≥ 1 and for k ≥ 1, a finite 1/k-net of X (rn ) containing the
root:

Sn
k =

{
xn

0,k =;X , xn
1,k , . . . , xn

N n
k ,k

}
.

Then, if k ≥ 1, n ≥ 1, 0 ≤ i ≤ N n
k , the sequence (Φ j (xn

i ,k ), j ≥ n) is bounded since the Φ j are
isometries. Using a diagonal procedure, we may assume without loss of generality, that for
every k ≥ 1, n ≥ 1, 0 ≤ i ≤ N n

k , the sequence (Φ j (xn
i ,k ), j ≥ n) converges to some limit yn

i ,k ∈ Y .
We define the map Φ on S :=⋃

n≥1, k≥1 Sn
k taking values in Y by:

Φ
(
xn

i ,k

)
= yn

i ,k .

Notice that Φ is an isometry and root preserving as Φ(;X ) = ;Y (see the proof of Lemma
2.15). The set Φ(Sn

k ) is obviously a 2/k-net of Y (rn ), and thus Φ(S) is a dense subset of Y .
Therefore the map Φ can be uniquely extended into a one-to-one root preserving isometry
from X to Y , which we will still denote by Φ. It remains to prove that Φ is a GHP-isometry,
that is, such that ν=Φ∗µ.

For n ≥ 1, k ≥ 1, let (V n
i ,k , 0 ≤ i ≤ N n

k ) be Borel subsets of X (rn ) with diameter less than

1/k, such that
⋃

0≤i≤Nk
V n

i ,k = X (rn ) and for all 0 ≤ i , i ′ ≤ Nk , we have V n
i ,k

⋂
V n

i ′,k = ; and
xn

i ,k ∈V n
i ,k if V n

i ,k 6= ;. We then define the following measures:

µn
k =

N n
k∑

i=0
µ

(
V n

i ,k

)
δxn

i ,k
and νn

k =
N n

k∑
i=0

µ
(
V n

i ,k

)
δyn

i ,k
.

Let A ⊂ X be closed. We obviously have µn
k (A) ≤µ(rn )(A1/k ) and µ(rn )(A) ≤µn

k (A1/k ) that is:

d X
P (µn

k ,µ(rn )) ≤ 1

k
· (2.16)

For any n ≥ 1, k ≥ 1, we have by construction νn
k = Φ∗µn

k and ν(rn ) = Φ
j
∗µ(rn ) for any

j ≥ n ≥ 1. We can then write, for j ≥ n:

d Y
P

(
νn

k ,ν(rn ))= d Y
P

(
Φ∗µn

k ,Φ j
∗µ(rn )

)
≤ d Y

P

(
Φ∗µn

k ,Φ j
∗µn

k

)
+d Y

P

(
Φ

j
∗µn

k ,Φ j
∗µ(rn )

)
≤ d Y

P

(
Φ∗µn

k ,Φ j
∗µn

k

)
+ 1

k
,

where for the last inequality we used d Y
P (Φ j

∗µn
k ,Φ j

∗µ(rn )) = d X
P (µn

k ,µ(rn )) and (2.16). Since the

two measures Φ∗µn
k and Φ

j
∗µn

k have the same masses distributed on a finite number of atoms,

and the atoms Φ j (xn
i ,k ) of Φ j

∗µn
k converge towards the atoms yn

i ,k of Φ∗µn
k , we deduce that:

lim
j→+∞

d Y
P

(
Φ∗µn

k ,Φ j
∗µn

k

)
= 0.

Hence, (νn
k ,k ≥ 1) converges weakly towards ν(rn ). According to (2.16), the sequence (µn

k ,k ≥ 1)
converges weakly to µ(rn ). Since we have νn

k =Φ∗µn
k and Φ is continuous, we get ν(rn ) =Φ∗µ(rn )

for any n ≥ 1, and thus ν=Φ∗µ. This ends the proof.
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We are now ready to prove Proposition 2.8. Notice that we will not use (ii) of Theorem
2.7 in this Section as it is not yet proved.

Proof of Proposition 2.8. By construction, the convergence in K∩L for the dGHP metric implies
the convergence for the d c

GHP metric. We only have to prove that the converse is also true.
Let X = (X ,d X ,;,µ) and Xn = (Xn ,d Xn ,;n ,µn) be elements of K∩L and (εn ,n ∈ N) be

a positive sequence converging towards 0 such that, for all n ∈ N:

d c
GHP(Xn ,X ) < εn .

Using Lemma 2.13, we consider a metric d n on the disjoint union Xn tX , such that we have
for n ∈ N, and writing d n

H and d n
P respectively for d d n

H and d d n

P :

d n(;n ,;)+d n
H(Xn , X )+d n

P (µn ,µ) < εn .

If xn ∈ X (r )
n , by definition of the Hausdorff metric, there exists x ∈ X such that d n(xn , x) ≤

d n
H(Xn , X ). Then, we have:

d n(;, x) ≤ d n(;,;n)+d n(;n , xn)+d n(xn , x) ≤ d n(;n ,;)+ r +d n
H(Xn , X ) < r +εn .

We get that x belongs to X (r+ε′n ) for some ε′n < εn and thus, according to Lemma 2.16, it
belongs to (X (r ))εn , since X is a complete length space. Therefore we have X (r )

n ⊂ (X (r ))εn .
Similar arguments yield X (r ) ⊂ (X (r )

n )εn . We deduce that:

d n
H

(
X (r )

n , X (r ))≤ εn . (2.17)

If A ⊂ Xn tX is closed, we may compute:

µ(r )
n (A) =µn

(
A∩X (r )

n

)≤µ(
Aεn ∩ (X (r )

n )εn
)+εn

≤µ(r )(Aεn )+µ
((

X (r )
n

)εn \ X (r )
)
+εn

≤µ(r )(Aεn )+µ(
X (r+2εn ) \ X (r ))+εn ,

since (X (r )
n )εn ⊂ (X (r ))2εn ⊂ X (r+2εn ). Similarly, we also have:

µ(r )(A) ≤µ(
A∩X (r−2εn ))+µ(

X (r ) \ X (r−2εn ))
≤µn

(
Aεn ∩ (

X (r−2εn ))εn
)
+µ(

X (r ) \ X (r−2εn ))+εn

≤µ(r )
n (Aεn )+µ(

X (r ) \ X (r−2εn ))+εn ,

since (X (r−2εn )
n )εn ⊂ X (r ). Hence, we finally deduce:

d n
P

(
µ(r )

n ,µ(r ))≤ εn +µ(
X (r+2εn ) \ X (r−2εn )) .

This and (2.17) yields:

d c
GHP(X (r )

n ,X (r )) ≤ 3d c
GHP(Xn ,X )+µ(

X (r+2εn ) \ X (r−2εn )) .

Therefore, if µ(∂r X ) = 0, we have limn→+∞ d c
GHP(X (r )

n ,X (r )) = 0. Since µ is by definition a
finite measure, the set {r > 0, µ(∂r X ) 6= 0} is at most countable. By dominated convergence,
we get limn→+∞ dGHP(Xn ,X ) = 0.
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In order to prove Theorem 2.9 on the pre-compactness criterion, we will approximate
the elements of a sequence in C by nets of small radius. The following lemma guarantees
that we can construct such nets in a consistent way. We use the convention that X (r ) =; if
r < 0. In the sequel, if r > 0 and k ≥ 0, we will often use the notation Ar,k (X ) for the annulus
X (r ) \ X (r−2−k ).

Lemma 2.19. If X = (X ,;,d ,µ) ∈ L satisfies condition (i) of Theorem 2.9, then for any k,` ∈ N,
there exists a 2−k -net of the annulus A`2−k ,k (X ) = X (`2−k ) \ X ((`−1)2−k ) with at most N (`2−k ,2−k−1)
elements.

Proof. Let S′ be a finite 2−k−1-net of X (`2−k ) of cardinal at most N (`2−k ,2−k−1). Let S′′ be the
set of elements x in S′∩ A(`−1)2−k ,k+1(X ) such that there exists at least one element, say yx ,
in A`2−k ,k (X ) at distance at most 2−k−1 of x. The set

(
S′∩ A`2−k ,k

)⋃
{yx , x ∈ S′′} is obviously

a 2−k-net of A`2−k ,k (X ), and its cardinal is bounded by N (`2−k ,2−k−1).

Proof of Theorem 2.9

Notice that we will not use (ii) of Theorem 2.7 in this Section as it is not yet proved.
The proof will be divided in several parts. The idea, as in [BBI01], is to construct an

abstract limit space, along with a measure, and to check that we can get a convergence (up to
extraction). Let (Xn ,n ∈ N) be a sequence in C , with Xn = (Xn ,d Xn ,;n ,µn). For `,k ∈ N, we
will write `k for `2−k .

Construction of the limit space.

Let `,k ∈ N. Recall that, by Lemma 2.19, we can consider An
`k ,k a 2−k−1-net of the annulus

A`k ,k (Xn) with at most N (`k ,2−k−2) elements. In order to have a finer sequence of nets, we
will consider:

Sn
`k ,k = ⋃

0≤k ′≤k

(
A`k ,k (Xn)∩An

d`k 2k′ e2−k′ ,k ′

)
.

By construction Sn
`k ,k is a 2−k−1-net of A`k ,k (Xn) with cardinal at most:

N̄
(
`k ,2−k−2

)
=

k∑
k ′=0

N
(
d`k 2k ′e2−k ′

,2−k ′−2
)

.

Let U`k ,k = {(k,`, i );0 ≤ i ≤ N̄ (`k ,2−k−2)} and U =⋃
k∈N,`∈N U`k ,k . We number the elements of

Sn
`k ,k in such a way that:

Sn
`k ,k ∪ {;n} = {xn

u , u = (k,`, i ),u ∈U`k ,k }, (2.18)

where (xn
u ,u ∈U ) is some sequence in Xn and xn

(k,`,0) =;n . Notice that Sn
`k ,k is empty for `k

large if Xn is bounded. For u,u′ ∈U , we set:

d n
u,u′ = d Xn

(
xn

u , xn
u′

)
.
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Notice that the sequence (d n
u,u′ ,n ∈ N) is bounded. Thus, without loss of generality (by

considering the sequence instead of the sub-sequence), we may assume that for all u,u′ ∈U ,
the sequence (d n

u,u′ ,n ≥ 1) converges in R to some limit du,u′ . We then consider an abstract
space, X ′ = {xu ,u ∈U }. On this space, the function d defined by (xu , xu′) 7→ du,u′ is a semi-
metric. We then consider the quotient space X ′/ ∼, where xu ∼ xu′ if du,u′ = 0. We will
denote by xu the equivalent class containing xu . Notice that du,u′ = 0 for any u = (k,`,0) and
u′ = (k ′,`′,0) elements of U and let ; denote their equivalence class. Finally, we let X be the
completion of X ′/ ∼ with respect to the metric d , so that (X ,d ,;) is a rooted complete metric
space.

Approximation by nets

We set:

U+
`k ,k = ⋃

0≤ j≤`
U j 2−k ,k , Sn,+

`k ,k = ⋃
0≤ j≤`

Sn
j 2−k ,k

=
{

xn
u ,u ∈U+

`k ,k

}
and S+

`k ,k =
{

xu ,u ∈U+
`k ,k

}
.

By construction Sn,+
`k ,k is a 2−k−1-net of X (`k )

n and Sn,+
`k ,k ⊂ Sn,+

`′
k′ ,k

′ as well as S+
`k ,k ⊂ S+

`′
k′ ,k

′ for any

k ≤ k ′ and `k ≤ `′k ′ .

Remark 1. We also have that for v ∈U \U+
`k ,k , either xn

v = ;n or d Xn (;n , xn
v ) > `k and either

xv =; or d(;, xv ) ≥ `k . Notice that the former inequality is strict but the latter is large.

A correspondence R between two sets A and B is a subset of A×B such that the projection
of R on A (resp. B ) is A (resp. B ). It is clear that the set defined by:

Rn,+
`k ,k =

{
(xn

u , xu),u ∈U+
`k ,k

}
(2.19)

is a correspondence between Sn,+
`k ,k and S+

`k ,k . The distorsion δn(`k ,k) of this correspondence
is defined by:

δn(`k ,k) = sup
{∣∣d Xn

(
xn

u , xn
u′

)−d(xu , xu′)
∣∣ ; u,u′ ∈U+

`k ,k

}
. (2.20)

Notice that for k ≤ k ′ and `k ≤ `′k ′ , we have:

δn(`k ,k) ≤ δn
(
`′k ′ ,k ′) . (2.21)

Since U+
`k ,k is finite, for all `,k ∈ N, we have by construction limn→+∞δn(`k ,k) = 0.

Lemma 2.20. The set S+
`k ,k is a 2−k -net of X (`k ).

Proof. Let x ∈ X (`k ). There exists v = (k ′,`′, j ) ∈ U such that d(x, xv ) < 2−k−3. Notice that
d(;, xv ) < `k +2−k−3. We may choose n large enough, so that δn(`k ∨`′k ′ ,k ∨k ′) < 2−k−3. As
xn

v ∈ Sn,+
`k∨`′k′ ,k∨k ′ , we have |d Xn (;n , xn

v )−d(;, xv )| < 2−k−3 and thus d Xn (;n , xn
v ) < `k +2−k−2.

Thanks to Lemma 2.16 and since Xn is a length space, we get that xn
v belongs to (X (`k )

n )2−k−2
.
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As Sn,+
`k ,k is a 2−k−1-net of X (`k )

n , there exists u ∈U+
`k ,k such that d Xn (xn

u , xn
v ) < 2−k−1 +2−k−2.

Furthermore, we have that xn
u and xn

v belongs to Sn,+
`k∨`′k′ ,k∨k ′ . We deduce that:

d(x, xu) ≤ d(x, xv )+d(xv , xu) ≤ 2−k−3 +δn
(
`k ∨`′k ′ ,k ∨k ′)+d Xn

(
xn

u , xn
v

)< 2−k .

This gives the result.

We give an immediate consequence of this approximation by nets.

Lemma 2.21. The metric space (X ,d) is a length space.

Proof. The proof of this lemma is inspired by the proof of Theorem 7.3.25 in [BBI01]. We will
check that (X ,d) satisfies the mid-point condition.

Let k ∈ N and x, x ′ ∈ X . According to Lemma 2.20, there exists ` ∈ N large enough and
u,u′ ∈ U+

`k ,k such that d(x, xu) < 2−k and d(x ′, xu′) < 2−k . For n large enough, we get that

δn(`k ,k) < 2−k . Since (Xn ,d Xn ) is a length space, there exists z ∈ Xn such that:∣∣2d Xn
(
z, xn

u

)−d Xn
(
xn

u , xn
u′

)∣∣+ ∣∣2d Xn
(
z, xn

u′
)−d Xn

(
xn

u , xn
u′

)∣∣≤ 2−k .

There exists u′′ ∈U+
`k ,k such that d Xn (xn

u′′ , z) ≤ 2−k . Then, we deduce that:

|2d(xu′′ , x)−d(x, x ′)|+ |2d(xu′′ , x ′)−d(x, x ′)|
≤ 4d(x, xu)+4d(x ′, xu′)+|2d(xu′′ , xu)−d(xu , xu′)|+ |2d(xu′′ , xu′)−d(xu , xu′)|
≤ 8 ·2−k +6δn(`k ,k)+ ∣∣2d Xn

(
xn

u′′ , xn
u

)−d Xn
(
xn

u , xn
u′

)∣∣+ ∣∣2d Xn
(
xn

u′′ , xn
u′

)−d Xn
(
xn

u , xn
u′

)∣∣
≤ 19 ·2−k .

Since k is arbitrary, we get that (X ,d) satisfies the mid-point condition and thus is a length
space.

Approximation of the measures

Let (V n
u ,u ∈ U`k ,k ) be Borel subsets of A`k ,k (Xn) with diameter less than 2−k such that⋃

u∈U`k ,k
V n

u = A`k ,k (Xn) and for all u,u′ ∈U`k ,k , we have V n
u

⋂
V n

u′ = ; and xn
u ∈ V n

u as soon
as V n

u 6= ;. We set U∞,k = ⋃
`∈N U`k ,k and we consider the following approximation of the

measure µn :
µn,k = ∑

u∈U∞,k

µn(V n
u )δxn

u
.

Notice that µ(`k )
n,k = ∑

u∈U`k ,k
µn(V n

u )δxn
u
. The measures µn,k are boundedly finite Borel mea-

sures on Xn . It is clear that the sequence (µn,k ,k ∈ N) converges vaguely towards µn as k

goes to infinity, since we have for any r ∈ N, d d Xn

P (µ(r )
n,k ,µ(r )

n ) ≤ 2−k . On the limit space X , we
define:

νn,k = ∑
u∈U∞,k

µn(V n
u )δxu and ν

{`k }
n,k = ∑

u∈U`k ,k

µn(V n
u )δxu .
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Notice that ν{`k }
n,k ≤ ν(`k )

n,k but they may be distinct as ν(`k )
n,k may have some atoms on ∂`k X which

are in S+
(`+1)k ,k but not in S+

`k ,k , as indicated in Remark 1.
Let us show that the sequence (νn,k ,k ∈ N) converges, up to an extraction, towards a

boundedly finite measure ν on X . For m ∈ 2−k N, we have:

νn,k (X (m)) = ∑
u∈U∞,k

µn(V n
u )1{d(xu ,;)≤m} ≤

∑
u∈U∞,k

µn(V n
u )1{d Xn (xn

u ,;n )≤m+δn (m,k)}

≤µn

(
X (m+δn (m,k)+2−k )

n

)
, (2.22)

where for the first inequality we used (2.20). Recall that for all `,k ∈ N, the sequence δn(`k ,k)
converges to 0 as n →∞. We define ηk = δnk (k,k). Using a diagonal argument, there exists
a sub-sequence (nk ,k ∈ N) such that:

ηk ≤ 2−k . (2.23)

By (2.21), we have δnk (m,k) ≤ ηk for k ≥ m. Thanks to property (ii) of Theorem 2.9, we get

that µnk (Xnk )(m+δnk
(m,k)+2−k ) is uniformly bounded in k ∈ N for m fixed. From the classical

pre-compactness criterion for vague convergence of boundedly finite measures on a Polish
metric space (see Appendix 2.6 of [DVJ03]), we deduce that there exists an extraction of the
sub-sequence (nk ,k ∈ N), which we still note (nk ,k ∈ N), such that (νnk ,k ,k ∈ N) converges
vaguely towards some boundedly finite measure ν on X . This implies the weak convergence
of the finite measures (ν(r )

nk ,k ,k ∈ N) towards ν(r ) as soon as ν(∂r X ) = 0. Since ν is boundedly
finite, the set

Aν = {r ≥ 0; ν(∂r X ) > 0} (2.24)

is at most countable. Thus, we have limn→+∞ dP(ν(r )
nk ,k ,ν(r )) = 0 for almost every r > 0.

Convergence in the dGHP metric.

We set X = (X ,d ,;,ν). Notice that X ∈ L thanks to Lemma 2.21. We will prove that
dGHP(Xnk ,X ) converges to 0.

Let r > 0. For any k ∈ N, set `= d2k r e and recall `k = 2−kd2k r e. We set:

Y n
k =

(
Sn,+
`k ,k ,d Xn ,;n ,µ(`k )

n,k

)
, Z n

k =
(
S+
`k ,k ,d ,;,ν{`k }

n,k

)
and W n

k =
(

X (`k ),d ,;,ν{`k }
n,k

)
.

The triangular inequalities give:

d c
GHP(X (r )

n ,X (r )) ≤ B 1
n +B 2

n +B 3
n +B 4

n +B 5
n +B 6

n , (2.25)

with:

B 1
n = d c

GHP

(
X (r )

n ,X (`k )
n

)
, B 2

n = d c
GHP

(
X

(`k )
n ,Y n

k

)
, B 3

n = d c
GHP

(
Y n

k ,Z n
k

)
,

B 4
n = d c

GHP

(
Z n

k ,W n
k

)
, B 5

n = d c
GHP

(
W n

k ,X (`k )
)

, B 6
n = d c

GHP

(
X (`k ),X (r )

)
.

Lemma 2.17 implies that:

B 1
n = d c

GHP

(
X (r )

n ,X (`k )
n

)
≤ 2−k +µn

(
X (`k )

n \ X (r )
n

)
. (2.26)
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As Sn,+
`k ,k is a 2−k−1-net of X `k

n and by definition of µn,k , we clearly have:

d d Xn

H

(
X (`k )

n ,Sn,+
`k ,k

)
≤ 2−k−1 and d d Xn

P

(
µ

(`k )
n ,µn,k 1Sn,+

`k ,k

)
≤ 2−k .

By considering the identity map from Sn,+
`k ,k to X (`k ), we deduce that:

B 2
n = d c

GHP

(
X

(`k )
n ,Y n

k

)
≤ 2−k+1. (2.27)

Recall the correspondence (2.19). It is easy to check that the function defined on the set(
Sn,+
`k ,k tS+

`k ,k

)2
by:

dn(y, z) =


d Xn (y, z) if y, z ∈ Sn,+

`k ,k ,

d(y, z) if y, z ∈ S+
`k ,k ,

inf
{

d Xn (y, y ′)+d(z, z ′)+ 1
2δn(`k ,k); (y ′, z ′) ∈Rn,+

`k ,k

}
if y ∈ Sn,+

`k ,k , z ∈ S+
`k ,k

(2.28)
is a metric. For this particular metric, we easily have dn(;n ,;) ≤ 1

2 δn(`k ,k) as well as:

d dn
H

(
Sn,+
`k ,k ,S+

`k ,k

)
≤ 1

2
δn(`k ,k) and d dn

P

(
µ

(`k )
n,k ,ν{`k }

n,k

)
≤ 1

2
δn(`k ,k).

We deduce that:
B 3

n = d c
GHP

(
Y n

k ,Z n
k

)≤ 3

2
δn(`k ,k). (2.29)

As S+
`k ,k is a 2−k-net of X `k , thanks to Lemma 2.20, we get:

B 4
n = d c

GHP

(
Z n

k ,W n
k

)≤ 2−k . (2.30)

Concerning B 5
n , we only need to bound the Prokhorov distance between ν

{`k }
n,k and ν

(`k )
n,k .

Recall that ν{`k }
n,k ≤ ν(`k )

n,k and that ν(`k )
n,k may differ only on ∂`k X . For A closed, we have:

ν
{`k }
n,k (A) ≤ ν(`k )

n,k (A) and ν
(`k )
n,k (A) ≤ ν{`k }

n,k (A)+νn,k (∂`k X ).

Recall (2.24). Let ρ(r ) ≥ r +3 such that ρ(r ) 6∈ Aν and:

εn,k = 2dP

(
ν

(ρ(r ))
n,k ,ν(ρ(r ))

)
. (2.31)

As `k ≤ r +2−k , we have:

νn,k (∂`k X ) ≤ ν((∂`k X )εn,k )+εn,k ≤ ν
(

X (r+2−k+εn,k )\X (r−2εn,k )
)
+εn,k .

We deduce that:

B 5
n = d c

GHP

(
W n

k ,X (`k )
)
≤ ν

(
X (r+2−k+εn,k )\X (r−2εn,k )

)
+εn,k . (2.32)
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2.5. Extension to locally compact length spaces

Lemma 2.17 and the fact that X is a length space gives:

B 6
n = d c

GHP

(
X (`k ),X (r )

)
≤ 2−k +ν

(
X (`k )\X (r )

)
. (2.33)

Putting (2.26), (2.27), (2.29), (2.30), (2.32), (2.33) in (2.25), we get:

d c
GHP(X (r )

n ,X (r )) ≤ 5 ·2−k +µn

(
X (`k )

n \X (r )
n

)
+ 3

2
δn(`k ,k)+ν

(
X (r+2−k+εn,k )\X (r−2εn,k )

)
+εn,k +ν

(
X (`k ) \ X (r )

)
. (2.34)

We give a more precise upper bound for µn(X (`k )
n \X (r )

n ). Using arguments similar to those
used to get (2.22), we have:

µn

(
X (`k )

n \X (r )
n

)
≤µn

(
X (`k )

n

)
−µn

(
X (`k−2−k )

n

)
≤ νn,k

(
X (`k+δn (`k ,k)+2−k )

)
−νn,k

(
X (`k−δn (`k ,k)−4·2−k )

)
.

For k ≥ r + 1, we have δn(`k ,k) ≤ δn(k,k) thanks to (2.21). Then using the sub-sequence
(nk ,k ∈ N) defined at the end of Section 2.5 with (2.23), we get that:

µnk

(
X (`k )

nk
\X (r )

nk

)
≤ νnk ,k

(
X (`k+2·2−k )

)
−νnk ,k

(
X (`k−5·2−k )

)
≤ ν

(
X (`k+2·2−k+εnk ,k )

)
−ν

(
X (`k−5·2−k−εnk ,k )

)
+2εnk ,k .

Notice that the sub-sequence (nk ,k ∈ N) does not depend on r : it is the same for all r ≥ 0.
Using (2.34), we get for k ≥ r +1:

d c
GHP(X (r )

nk
,X (r )) ≤ 5 ·2−k + 3

2
ηk +2ν

(
X (`k+2−k+εn,k )\X (`k−5·2−k−2εn,k )

)
+3εnk ,k .

As limk→+∞`k = r and limk→+∞ εnk ,k = 0, we get using (2.23), that for r 6∈ Aν:

lim
k→+∞

d c
GHP

(
X (r )

nk
,X (r ))= 0.

By dominated convergence, we get that limk→+∞ dGHP(Xnk ,X ) = 0. Thus we have a converg-
ing sub-sequence in C .

Proof of (ii) of Theorem 2.7

We need to prove that the metric space (L,dGHP) is separable and complete.

Lemma 2.22. The metric space (L,dGHP) is separable.

Proof. We can notice that the set K∩L is dense in (L,dGHP), since for X ∈ L, for all r > 0
we have X (r ) ∈K and dGHP(X (r ),X ) ≤ e−r . Every element of K can be approximated in the
d c

GHP topology by a sequence of metric spaces with finite cardinal, rational edge-lengths and
rational weights. Hence, (K∩L,d c

GHP) is separable, being a subspace of a separable metric
space. According to Proposition 2.8, (K∩L,dGHP) is also separable. As K∩L is dense in
(L,dGHP), we deduce that (L,dGHP) is separable.
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2. Gromov-Hausdorff-Prokhorov topology

Lemma 2.23. The metric space (L,dGHP) is complete.

Proof. Let (Xn ,n ∈ N), with Xn = (Xn ,d Xn ,;n ,µn), be a Cauchy sequence in (L,dGHP). It is
enough to prove that it is relatively compact. Thus, we need to prove it satisfies condition (i)
and (ii) of Theorem 2.9.

Assume there exists r0 ∈ R+ such that supn∈Nµn(X (r0)
n ) = +∞. By considering a sub-

sequence, we may assume that limn→+∞µn(X (r0)
n ) = +∞. This implies that for any r ≥ r0,

limn→+∞µn(X (r )
n ) =+∞. Thus, we have for any m ∈ N:

lim
n→+∞

∫ +∞

0
e−r (

1∧|µn(X (r )
n )−µm(X (r )

m )|) dr ≥ e−r0 .

Then use (2.14) to get that (Xn ,n ∈ N) is not a Cauchy sequence. Thus, if (Xn ,n ∈ N) is a
Cauchy sequence, then (ii) of Theorem 2.9 is satisfied.

Let gn,m(r ) = d c
GH((X (r )

n ,d X (r )
n ), (X (r )

m ,d X (r )
m )). On the one hand, use (2.15) to get:

lim
min(n,m)→+∞

∫ +∞

0
e−r (

1∧ gn,m(r )
)

dr = 0. (2.35)

On the other hand, using (2.15) and Lemma 2.17, and arguing as in the proof of Lemma 2.6,
we get that for any r,ε≥ 0:

|gn,m(r )− gn,m(r +ε)| ≤ 2ε.

This implies the functions gn,m are 2-Lipschitz. Thus, we deduce from (2.35), that for all r ≥ 0,
limmin(n,m)→+∞ gn,m(r ) = 0. Thus the sequence ((X (r )

n ,d X (r )
n ),n ∈ N) is a Cauchy sequence for

the Gromov-Hausdorff metric. Then point (2) of Proposition 7.4.11 in [BBI01] readily implies
condition (i) of Theorem 2.9.
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CHAPTER 3

Pathwise construction of the Lévy
tree-valued pruning process

3.1 Introduction

Lévy trees arise as a natural generalization to the continuum trees defined by Aldous [Ald91a].
They are located at the intersection of several important fields: combinatorics of large discrete
trees, Lévy processes and branching processes. Consider a branching mechanism ψ, that is a
function of the form

ψ(λ) =αλ+βλ2 +
∫

(0,+∞)

(
e−λx −1+λx1{x<1}

)
Π(d x) (3.1)

with α ∈ R, β≥ 0, Π a Lévy measure such that
∫

(0,+∞) 1∧ x2 Π(d x) <+∞. In the (sub)critical
case ψ′(0) ≥ 0, Le Gall and Le Jan [LL98b] defined a continuum tree structure, which can
be described by a tree T , for the genealogy of a population whose size is given by a CSBP
with branching mechanism ψ. We shall consider the distribution P

ψ
r (dT ) of this Lévy tree

when the CSBP starts at mass r > 0, or its excursion measure Nψ[dT ], when the CSBP is
distributed under its canonical measure. The ψ-Lévy tree possesses several striking features
as pointed out in the works of Duquesne and Le Gall [DL02, DL05]. For instance, the
branching nodes can only be of degree 3 (binary branching) if β> 0 or of infinite degree (when
removing the branching point, the tree is separated in infinitely many connected components)
if Π 6= 0. Furthermore, there exists a mass measure mT on the leaves of T , whose total mass
corresponds to the total population size σ= mT (T ) of the CSBP. We shall also consider the
extinction time of the CSBP which corresponds to the height Hmax(T ) of the tree T . The
results can be extended to the super-critical case, using a Girsanov transformation given by
Abraham and Delmas [AD12a].

In [AD12a], a decreasing continuum tree-valued process is defined using the so-called
pruning procedure of Lévy trees introduced in Abraham, Delmas and Voisin [ADV10]. By
marking a ψ-Lévy tree with two different kinds of marks (the first ones lying on the skeleton
of the tree, the other ones on the nodes of infinite degree), one can prune the tree by throwing
away all the points having a mark on their ancestral line connecting them to the root. The
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3. Pathwise construction of the pruning process

main result of [ADV10] is that the remaining tree is still a Lévy tree, with branching mecha-
nism related to ψ. The idea of [AD12a] is to consider a particular pruning with an intensity
depending on a parameter θ, so that the corresponding branching mechanism ψθ is ψ shifted
by θ:

ψθ(λ) =ψ(θ+λ)−ψ(θ).

Letting θ vary enables to define a decreasing tree-valued Markov process (Tθ,θ ∈ Θψ),
with Θψ ⊂ R the set of θ for which ψθ is well-defined, and such that Tθ is distributed according
to Nψθ . If we write σθ = mTθ (Tθ) for the total mass of Tθ, then the process (σθ,θ ∈Θψ) is a
pure-jump process. The case Π = 0 was studied by Aldous and Pitman [AP98a]. The time-
reversed tree-valued process is also a Markov process which defines a growing tree process.
Let us mention that the same kind of ideas have been used by Aldous and Pitman [AP98b]
and by Abraham, Delmas and He [ADH12] in the framework of Galton-Watson trees to define
growing discrete tree-valued Markov processes.

In the discrete framework of [ADH12], it is possible to define the infinitesimal transition
rates of the growing tree process. In [EW06], Evans and Winter define another continuum
tree-valued process using a prune and re-graft procedure. This process is reversible with
respect to the law of Aldous’s continuum random tree and its infinitesimal transitions are
described using the theory of Dirichlet forms.

In this paper, we describe the infinitesimal behavior of the growing continuum tree-valued
process, that is of (Tθ,θ ∈ Θψ) seen backwards in time. The Special Markov Property in
[ADV10] describes only two-dimensional distributions and hence the transition probabilities
but, since the space of real trees is not locally compact, we cannot use the theory of infinites-
imal generators to describe its infinitesimal transitions. Dirichlet forms cannot be used either
since the process is not symmetric (it is increasing). However, it is a pure-jump process and
our first main result shows that the infinitesimal transitions of the process can be described
using a random point process of trees which are grafted one by one on the leaves of the
growing tree. More precisely, let {θ j ; j ∈ J } be the set of jumping times of the mass process
(σθ,θ ∈ Θψ). Then, informally, at time θ j , a tree T j distributed according to Nψθ j [T ∈ •],
with:

Nψθ [T ∈ •] = 2βNψθ [T ∈ •]+
∫

(0,+∞)
Π(dr )r e−θrP

ψθ
r (T ∈ •),

is grafted at x j , a leaf of Tθ j chosen at random (according to the mass measure mTθ j ). We
also prove that the random point measure

N = ∑
j∈J
δ(x j ,T j ,θ j )

has predictable compensator:

mTθ (d x)Nψθ [dT ] 1{θ∈Θψ} dθ

with respect to the backwards in time natural filtration of the process. See Corollary 3.28 for
a precise statement.

Notice that the precise statement relies on the introduction of the set of locally compact
weighted real trees endowed with a Gromov-Hausdorff-Prohorov distance. Therefore, we
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3.1. Introduction

will assume that Lévy trees are locally compact, which corresponds to the Grey condition:∫ +∞ du
ψ(u) <∞. In the (sub)critical case this implies that the corresponding height process of

the Lévy tree is continuous and that the tree is compact. However, the tree-valued process is
defined in [ADV10] without this assumption and we conjecture that the jump representation
of the tree-valued Markov process holds without this assumption.

The representation using the random point measure allows to describe the ascension time
or explosion time (when it is defined):

A = inf
{
θ ∈Θψ, σθ <∞}

as inf {θ j ,mT j
(T j ) < ∞}, the first time (backwards in time) at which a tree with infinite

mass is grafted. This representation is also used in Abraham and Delmas [AD11, AD12b]
respectively on the asymptotics of the records on discrete subtrees of the continuum random
tree and on the study of the record process in general Lévy trees.

This structure, somewhat similar to the Poissonian structure of the jumps of a Lévy process
(although in our case the structure is neither homogeneous nor independent), enables us to
study the exit time of first passage of the growing tree-valued process above a given height:

Ah = sup
{
θ ∈Θψ, Hmax(Tθ) > h

}
.

We give the joint distribution of the ascension time and the exit time (A, Ah), see Proposition
3.31. In particular, Ah goes to A as h goes to infinity: for h very large, with high probability
the process up to A will not have crossed height h, so that the first jump to cross height h will
correspond to the grafting time of the first infinite tree, which happens at ascension time A.

We also give in Theorem 3.33 the joint distribution of (TAh−,TAh ) the tree just after and
just before the jumping time Ah . And we give a spinal decomposition of TAh along the
ancestral branch of the leaf on which the overshooting tree is grafted, which is similar to
the classical Bismut decomposition of Lévy trees. Conditionally on this ancestral branch, the
overshooting tree is then distributed as a regular Lévy tree, conditioned on being high enough
to perform the overshooting. This generalizes results in [AD12a] about the ascension time of
the tree-valued process. Notice that this approach could easily be generalized to study spatial
exit times of growing families of super-Brownian motions.

All the results of this paper are stated in terms of real trees and not in terms of the height
process or the exploration process that encode the tree as in [ADV10]. For this purpose, we
define in Section 3.2 the state space of rooted real trees with a mass measure (called here
weighted trees or w-trees) endowed with the so-called Gromov-Hausdorff-Prohorov metric
defined in Abraham, Delmas and Hoscheit [ADH13a] which is a slight generalization of the
Gromov-Hausdorff metric on the space of metric spaces, and also a generalization of the
Gromov-Prohorov topology of [GPW08] on the space of compact metric spaces endowed with
a probability measure.

The paper is organized as follows. In Section 3.2, we introduce all the material for our
study: the state space of weighted real trees and the metric on it, see Section 3.2 ; the
definition of sub(critical) Lévy trees via the height process ; the extension of the definition
to super-critical Lévy trees ; the pruning procedure of Lévy trees. In Section 3.3, we recall
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3. Pathwise construction of the pruning process

the definition of the growing tree-valued process by the pruning procedure as in [ADV10] in
the setting of real trees and give another construction using the grafting of trees given by
random point processes. We prove in Theorem 3.26 that the two definitions agree and then
give in Corollary 3.28 the random Point measure description. Section 3.4 is devoted to the
application of this construction on the distribution of the tree at the times it overshoots a
given height and just before, see Theorem 3.33.

3.2 The pruning of Lévy trees

Real trees

The first definitions of continuum random trees go back to Aldous [Ald91a]. Later, Evans,
Pitman and Winter [EPW05] used the framework of real trees, previously used in the context
of geometric group theory, to describe continuum trees. We refer to [Eva08, Le 06] for a
general presentation of random real trees. Informally, real trees are metric spaces without
loops, locally isometric to the real line.

More precisely, a metric space (T,d) is a real tree (or R-tree) if the following properties are
satisfied:

1. For every s, t ∈ T , there is a unique isometric map fs,t from [0,d(s, t )] to T such that
fs,t (0) = s and fs,t (d(s, t )) = t .

2. For every s, t ∈ T , if q is a continuous injective map from [0,1] to T such that q(0) = s
and q(1) = t , then q([0,1]) = fs,t ([0,d(s, t )]).

We say that a real tree is rooted if there is a distinguished vertex ;, which will be called the
root of T . Such a real tree is noted (T,d ,;). If s, t ∈ T , we will note �s, t� the range of the
isometric map fs,t described above. We will also note �s, t� for the set �s, t� \ {t }. We give
some vocabulary on real trees, which will be used constantly when dealing with Lévy trees.
Let T be a real tree. If x ∈ T , we shall call degree of x, and note by n(x), the number of
connected components of the set T \ {x}. In a general tree, this number can be infinite, and
this will actually be the case with Lévy trees. The set of leaves is defined as:

Lf(T ) = {x ∈ T \{;}, n(x) = 1} .

If n(x) ≥ 3, we say that x is a branching point. The set of branching points will be noted Br(T ).
Among those, there is the set of infinite branching points, defined by

Br∞(T ) = {x ∈ Br(T ), n(x) =∞} .

Finally, the skeleton of a real tree, noted Sk(T ), is the set of points in the tree that aren’t leaves.
It should be noted, following Evans, Pitman and Winter [EPW05], that the trace of the Borel
σ-field of T on Sk(T ) is generated by the sets �s, s′�, s, s′ ∈ Sk(T ). Hence, it is possible to
define a σ-finite Borel measure l T on T , such that

l T (Lf(T )) = 0 and l T (�s, s′�) = d(s, s′).
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3.2. The pruning of Lévy trees

This measure will be called length measure on T . If x, y are two points in a rooted real
tree (T,d ,;), then there is a unique point z ∈ T , called the Most Recent Common Ancestor
(MRCA) of x and y such that �;, x�∩�;, y� = �;, z�. This vocabulary is an illustration of the
genealogical vision of real trees, in which the root is seen as the ancestor of the population
represented by the tree. Similarly, if x ∈ T , we shall call height of x, and note by Hx the
distance d(;, x) to the root. The function x 7→ Hx is continuous on T , and we define the
height of T :

Hmax(T ) = sup
x∈T

Hx .

Gromov-Prohorov metric

Rooted weighted metric spaces

This section is inspired by [DW07], but for the fact that we include measures on the trees, in
the spirit of [Mie09]. The detailed proofs of the results stated in this Section are in [ADH13a].

Let (X ,d X ) be a Polish metric space. For A,B ∈B(X ), we set:

d X
H (A,B) = inf

{
ε> 0, A ⊂ Bε and B ⊂ Aε

}
,

the Hausdorff distance between A and B , where Aε = {x ∈ X , infy∈A d X (x, y) < ε} is the ε-halo
set of A. If X is compact, then the space of compact subsets of X , endowed with the Hausdorff
distance, is compact, see theorem 7.3.8 in [BBI01].

Recall that a Borel measure is locally finite if the measure of any bounded Borel set is
finite. We will use the notation M f (X ) for the space of all finite Borel measures on X . If
µ,ν ∈M f (X ), we set:

d X
P (µ,ν) = inf

{
ε> 0, µ(A) ≤ ν(Aε)+ε and ν(A) ≤µ(Aε)+ε for all closed set A

}
,

the Prohorov distance between µ and ν. It is well known that (M f (X ),d X
P ) is a Polish metric

space, and that the topology generated by d X
P is exactly the topology of weak convergence

(convergence against continuous bounded functionals).
If Φ : X → X ′ is a Borel map between two Polish metric spaces and if µ is a Borel measure

on X , we will note Φ∗µ the image measure on X ′ defined by Φ∗µ(A) = µ(Φ−1(A)), for any
Borel set A ⊂ X .

Definition 3.1.

• A rooted weighted metric space X = (X ,d X ,;X ,µX ) is a metric space (X ,d X ) with a
distinguished element ;X ∈ X and a locally finite Borel measure µX .

• Two rooted weighted metric spaces X = (X ,d X ,;X ,µX ) and X ′ = (X ′,d X ′
,;X ′

,µX ′
) are

said GHP-isometric if there exists an isometric bijection Φ : X → X ′ such that Φ(;X ) =;X ′

and Φ∗µX =µX ′
.

Notice that if (X ,d X ) is compact, then a locally finite measure on X is finite and belongs
to M f (X ). We will now use a procedure due to Gromov [Gro07] to compare any two compact
rooted weighted metric spaces, even if they are not subspaces of the same Polish metric space.
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3. Pathwise construction of the pruning process

Gromov-Hausdorff-Prohorov distance for compact metric spaces

Let X = (X ,d ,;,µ) and X ′ = (X ′,d ′,;′,µ′) be two compact rooted weighted metric spaces,
and define:

d c
GHP(X ,X ′) = inf

Φ,Φ′,Z

(
d Z

H (Φ(X ),Φ′(X ′))+d Z (Φ(;),Φ′(;′))+d Z
P (Φ∗µ,Φ′

∗µ
′)
)

, (3.2)

where the infimum is taken over all isometric embeddings Φ : X ,→ Z and Φ′ : X ′ ,→ Z into
some common Polish metric space (Z ,d Z ).

Note that equation (3.2) does not actually define a distance function, as d c
GHP(X ,X ′) = 0

if X and X ′ are GHP-isometric. Therefore, we shall consider K, the set of GHP-isometry
classes of compact rooted weighted metric space and identify a compact rooted weighted
metric space with its class in K. Then the function d c

GHP is finite on K2.

Theorem 3.2. The function d c
GHP defines a metric on K and the space (K,d c

GHP) is a Polish metric
space.

We shall call d c
GHP the Gromov-Hausdorff-Prohorov metric. This extends the Gromov-

Hausdorff metric on compact metric spaces, see [BBI01] section 7, as well as the Gromov-
Hausdorff-Prohorov metric on compact metric spaces endowed with a probability measure,
see [Mie09]. See also [GPW08] for an other approach on metric spaces endowed with a
probability measure.

Gromov-Hausdorff-Prohorov distance

However, the definition of Gromov-Hausdorff-Prohorov distance on compact metric space is
not yet general enough, as we want to deal with unbounded trees with σ-finite measures. To
consider such an extension, we shall consider complete and locally compact length spaces.

We recall that a metric space (X ,d) is a length space if for every x, y ∈ X , we have:

d(x, y) = infL(γ),

where the infimum is taken over all rectifiable curves γ : [0,1] → X such that γ(0) = x and
γ(1) = y , and where L(γ) is the length of the rectifiable curve γ.

Definition 3.3. Let L be the set of GHP-isometry classes of rooted weighted complete and locally
compact length spaces and identify a rooted weighted complete and locally compact length spaces
with its class in L.

If X = (X ,d ,;,µ) ∈ L, then for r ≥ 0 we will consider its restriction to the ball of radius r
centered at ;, X (r ) = (X (r ),d (r ),;,µ(r )), where

X (r ) = {x ∈ X ;d(;, x) ≤ r },

the metric d (r ) is the restriction of d to X (r ), and the measure µ(r )(d x) = 1X (r ) (x)µ(d x) is the
restriction of µ to X (r ). Recall the Hopf-Rinow theorem implies that if (X ,d) is a complete
and locally compact length space, then every closed bounded subset of X is compact. In
particular if X belongs to L , then X (r ) belongs to K for all r ≥ 0.

We state a regularity Lemma of d c
GHP with respect to the restriction operation.
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3.2. The pruning of Lévy trees

Lemma 3.4. Let X and Y belong to L. Then the function defined on R+:

r 7→ d c
GHP

(
X (r ),Y (r ))

is càdlàg.

This implies that the following function is well defined on L2:

dGHP(X ,Y ) =
∫ ∞

0
e−r (

1∧d c
GHP

(
X (r ),Y (r ))) dr.

Theorem 3.5. The function dGHP defines a metric on L and the space (L,dGHP) is a Polish metric
space.

The next result implies that d c
GHP and dGHP defines the same topology on K∩L.

Theorem 3.6. Let (Xn ,n ∈ N) and X be elements of K∩L. Then the sequence (Xn ,n ∈ N)
converges to X in (K,d c

GHP) if and only if it converges to X in (L,dGHP).

The space of w-trees

Note that real trees are always length spaces and that complete real trees are the only complete
connected spaces that satisfy the so-called four-point condition:

∀x1, x2, x3, x4 ∈ X , d(x1, x2)+d(x3, x4) ≤ (d(x1, x3)+d(x2, x4))∨ (d(x1, x4)+d(x2, x3)). (3.3)

Definition 3.7. We denote by T be the set of (GHP-isometry classes of ) complete locally compact
rooted real trees endowed with a locally finite Borel measure, in short w-trees.

We deduce the following Corollary from Theorem 3.5 and the four-point condition char-
acterization of real trees.

Corollary 3.8. The set T is a closed subset of L and (T,dGHP) is a Polish metric space.

Height erasing

We define the restriction operators on the space of w-trees. Let a ≥ 0. If (T,d ,;,m) is a
w-tree, let

πa(T ) = {x ∈ T, d(;, x) ≤ a} (3.4)

and (πa(T ),dπa (T ),;,mπa (T )) be the w-tree constituted of the points of T having height lower
than a, where dπa (T ) and mπa (T ) are the restrictions of d and m to πa(T ). When there
is no confusion, we will also write πa(T ) for (πa(T ),dπa (T ),;,mπa (T )). We will also write
T (a) = {x ∈ T, d(;, x) = a} for the level set at height a. We say a w-tree T is bounded if
πa(T ) = T for some finite a. Notice that a tree T is bounded if and only if Hmax(T ) is finite.
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3. Pathwise construction of the pruning process

Grafting procedure

We will define in this section a procedure by which we add (graft) w-trees on an existing
w-tree. More precisely, let T ∈ T and let ((Ti , xi ), i ∈ I ) be a finite or countable family of
elements of T×T . We define the real tree obtained by grafting the trees Ti on T at point xi .
We set T̃ = T t (⊔

i∈I Ti \{;Ti }
)

where the symbol t means that we choose for the sets T and
(Ti )i∈I representatives of isometry classes in T which are disjoint subsets of some common
set and that we perform the disjoint union of all these sets. We set ;T̃ = ;T . The set T̃ is
endowed with the following metric d T̃ : if s, t ∈ T̃ ,

d T̃ (s, t ) =


d T (s, t ) if s, t ∈ T,

d T (s, xi )+d Ti
(;Ti , t

)
if s ∈ T, t ∈ Ti \{;Ti },

d Ti (s, t ) if s, t ∈ Ti \{;Ti },

d T (xi , x j )+d T j
(;T j , s

)+d Ti
(;Ti , t

)
if i 6= j and s ∈ T j \{;T j }, t ∈ Ti \{;Ti }.

We define the mass measure on T̃ by:

mT̃ = mT +∑
i∈I

1Ti \{;Ti }mTi +mTi
(
{;Ti }

)
δxi ,

where δx is the Dirac mass at point x. It is clear that the metric space (T̃ ,d T̃ ,;T̃ ) is still
a rooted complete real tree. However, it is not always true that T̃ remains locally compact
(it still remains a length space anyway), or, for that matter, that mT̃ defines a locally finite
measure (on T̃ ). So, we will have to check that (T̃ ,d T̃ ,;T̃ ,mT̃ ) is a w-tree in the particular
cases we will consider.

We will use the following notation:(
T̃ ,d T̃ ,;T̃ ,mT̃

)
= T ~i∈I (Ti , xi ) (3.5)

and write T̃ instead of (T̃ ,d T̃ ,;T̃ ,mT̃ ) when there is no confusion.

Real trees coded by functions

Lévy trees are natural generalizations of Aldous’s Brownian tree, where the underlying process
coding for the tree (reflected Brownian motion in Aldous’s case) is replaced by a certain
functional of a Lévy process, the height process. Le Gall and Le Jan [LL98b] and Duquesne
and Le Gall [DL05] showed how to generate random real trees using the excursions of a Lévy
process. We shall briefly recall this construction, in order to introduce the pruning procedure
on Lévy trees. Let us first work in a deterministic setting.

Let f be a continuous non-negative function defined on [0,+∞), such that f (0) = 0, with
compact support. We set:

σ f = sup
{

t ; f (t ) > 0
}

,

with the convention sup;= 0. Let d f be the non-negative function defined by:

d f (s, t ) = f (s)+ f (t )−2 inf
u∈[s∧t ,s∨t ]

f (u).
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3.2. The pruning of Lévy trees

It can be easily checked that d f is a semi-metric on [0,σ f ]. One can define the equivalence
relation associated to d f by s ∼ t if and only if d f (s, t ) = 0. Moreover, when we consider the
quotient space

T f =
[

0,σ f
]

/∼
and, noting again d f the induced metric on T f and rooting T f at ; f , the equivalence class
of 0, it can be checked that the space (T f ,d f ,; f ) is a compact rooted real tree. We denote
by p f the canonical projection from [0,σ f ] onto T f , which is extended by p f (t ) = ; f for
t ≥ σ f . Notice that p f is continuous. We define m f , the mass measure on T f as the image
measure on T f of the Lebesgue measure on [0,σ f ] by p f . We consider the (compact) w-tree
(T f ,d f ,; f ,m f ), which we shall denote T f .

It should be noted that, if x ∈ T f is an equivalence class, the common value of f on
all the points in this equivalence class is exactly d f (;, x) = Hx . Notice that, in this setting,
Hmax(T f ) = ‖ f ‖∞ where ‖ f ‖∞ stands for the uniform norm of f .

We have the following elementary result (see Lemma 2.3 of [DL05] when dealing with the
Gromov-Hausdorff metric instead of the Gromov-Hausdorff-Prohorov metric).

Proposition 3.9. Let f , g be two compactly supported, non-negative continuous functions with
f (0) = g (0) = 0. Then:

d c
G HP

(
T f ,T g

)
≤ 6‖ f − g‖∞+

∣∣∣σ f −σg
∣∣∣ . (3.6)

Proof. The Gromov-Hausdorff distance can be evaluated using correspondences, see [BBI01],
section 7.3. A correspondence between two metric spaces (E1,d1) and (E2,d2) is a subset R
of E1×E2 such that for δ ∈ {1,2} the projection of R on Eδ is onto: {xδ; (x1, x2) ∈R} = Eδ. The
distortion of R is defined by:

dis(R) = sup
{|d1(x1, y1)−d2(x2, y2)|; (x1, y1) ∈R, (x2, y2) ∈R}

.

Let Z = E1 tE2 by the disjoint union of E1 and E2 and consider the function d Z defined on
Z 2 by: d Z = dδ on E 2

δ
for δ ∈ {1,2} and for x1 ∈ E1, x2 ∈ E2:

d Z (x1, x2) = inf

{
d1(x1, y1)+ 1

2
dis(R)+d2(y2, x2); (y1, y2) ∈R

}
.

Then if dis(R) > 0, the function d Z is a metric on Z . And we have:

d Z
H (E1,E2) ≤ 1

2
dis(R).

Let f , g be compactly supported, non-negative continuous functions with f (0) = g (0) = 0.
Following [DL05], we consider the following correspondence between T f and T g :

R=
{

(x f , xg ); x f = p f (t ) and xg = pg (t ) for some t ≥ 0
}

,

and we have dis(R) ≤ 4‖ f − g‖∞ according to the proof of Lemma 2.3 in [DL05]. Notice
(; f ,;g ) ∈R. Thus, with the notation above and E1 = T f , E2 = T g , we get:

d Z
H (T f ,T g ) ≤ 2‖ f − g‖∞ and d Z (; f ,;g ) ≤ 2‖ f − g‖∞.
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3. Pathwise construction of the pruning process

Then, we consider the Prohorov distance between m f and mg . Let A f be a Borel set of
T f . We set I = {t ∈ [0,σ f ]; p f (t ) ∈ A}. By definition of m f , we have m f (A f ) = Leb(I ). We set
Ag = pg (I ∩ [0,σg ]) so that mg (Ag ) = Leb(I ∩ [0,σg ]) ≥ Leb(I )− |σ f −σg |. By construction,
we also have that for any xg ∈ Ag , there exists t ∈ I such that pg (t ) = xg and such that
d Z (xg , x f ) = 1

2 dis(R), with x f = p f (t ) ∈ A f . This implies that Ag ⊂ (A f )r for any r > 1
2 dis(R).

We deduce that:

m f
(

A f
)
≤ mg (

Ag )+ ∣∣∣σ f −σg
∣∣∣≤ mg

(
(A f )r

)
+

∣∣∣σ f −σg
∣∣∣ .

The same is true with f and g replaced by g and f . We deduce that:

d Z
P

(
m f ,mg

)
≤ 1

2
dis(R)+

∣∣∣σ f −σg
∣∣∣≤ 2‖ f − g‖∞+

∣∣∣σ f −σg
∣∣∣ .

We get:

d Z
H

(
T f ,T g

)
+d Z

(
; f ,;g

)
+d Z

P

(
m f ,mg

)
≤ 6‖ f − g‖∞+

∣∣∣σ f −σg
∣∣∣ .

This gives the result.

Remark 2. We could define the correspondence for more general functions f : lower semi-continuous
functions that satisfy the intermediate values property (see [DL02]). In that case, the associated real
tree is not even locally compact (hence not necessarily proper). But the measurability of the mapping
f 7→ T f is not clear in this general setting, that is why we only consider continuous function f here
and thus will assume the Grey condition (see next Section) for Lévy trees.

Branching mechanisms

Let Π be a σ-finite measure on (0,+∞) such that we have
∫

(1∧x2)Π(d x) <∞. We set:

Πθ(dr ) = e−θr Π(dr ). (3.7)

Let Θ′ be the set of θ ∈ R such that
∫

(1,+∞)Πθ(dr ) <+∞. If Π= 0, then Θ′ = R. We also set
θ∞ = infΘ′. It is obvious that [0,+∞) ⊂Θ′, θ∞ ≤ 0 and either Θ′ = [θ∞,+∞) or Θ′ = (θ∞,+∞).

Let α ∈ R and β≥ 0. We consider the branching mechanism ψ associated with (α,β,Π):

ψ(λ) =αλ+βλ2 +
∫

(0,+∞)
(e−λr −1+λr 1{r<1})Π(dr ), λ ∈Θ′. (3.8)

Notice that the function ψ is smooth and convex over (θ∞,+∞). We say that ψ is conservative
if for all ε> 0: ∫

(0,ε]

du

|ψ(u)| = +∞.

A sufficient condition for ψ to be conservative is to have ψ′(0+) >−∞. This last condition is
actually equivalent to

∫
(1,∞) rΠ(dr ) <∞. We will always make the following assumption.

Assumption 1. The function ψ is conservative and we have β> 0 or
∫

(0,1)`Π(d`) =+∞.
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3.2. The pruning of Lévy trees

The branching mechanism is said to be sub-critical (resp. critical, super-critical) if
ψ′(0+) > 0 (resp. ψ′(0+) = 0, ψ′(0+) < 0). We say that ψ is (sub)critical if it is critical or
sub-critical.

We introduce the following branching mechanisms ψθ for θ ∈Θ′:

ψθ(λ) =ψ(λ+θ)−ψ(θ), λ+θ ∈Θ′. (3.9)

Let Θψ be the set of θ ∈Θ′ such that ψθ is conservative. Obviously, we have:

[0,+∞) ⊂Θψ ⊂Θ′ ⊂Θψ∪ {θ∞}.

If θ ∈Θψ, we set:
θ̄ = max

{
q ∈Θψ;ψ(q) =ψ(θ)

}
. (3.10)

We can give an alternative definition of θ̄ if Assumption 1 holds. Let θ∗ be the unique
positive root of ψ′ if it exists. Notice that θ∗ = 0 if ψ is critical and that θ∗ exists and is
positive if ψ is super-critical. If θ∗ exists, then the branching mechanism ψθ∗ is critical. We
set Θψ∗ for [θ∗,+∞) if θ∗ exists and Θ

ψ
∗ = Θψ otherwise. The function ψ is a one-to-one

mapping from Θ
ψ
∗ onto ψ(Θψ∗ ). We write ψ−1 for the inverse of the previous mapping. The

set {q ∈Θψ;ψ(q) =ψ(θ)} has at most two elements and we have:

θ̄ =ψ−1 ◦ψ(θ).

In particular, if ψθ is (sub)critical we have θ̄ = θ and if ψθ is super-critical then we have
θ < θ∗ < θ̄.

We will later on consider the following assumption.

Assumption 2. (Grey condition) The branching mechanism is such that:∫ +∞ du

ψ(u)
<∞.

Let us remark that Assumption 2 implies that β> 0 or
∫

(0,1) rΠ(dr ) =+∞.

Connections with branching processes

Let ψ be a branching mechanism satisfying Assumption 1. A continuous state branching
process (CSBP) with branching mechanism ψ and initial mass x > 0 is the càdlàg R+-valued
Markov process (Za , a ≥ 0) whose distribution is characterized by Z0 = x and:

E[exp(−λZa+a′)|Za] = exp(−Zau(a′,λ)), λ≥ 0,

where (u(a,λ), a ≥ 0,λ> 0) is the unique non-negative solution to the integral equation:∫ λ

u(a,λ)

dr

ψ(r )
= a ; u(0,λ) =λ. (3.11)

The distribution of the CSBP started at mass x will be noted Pψx . For a detailed presentation
of CSBPs, we refer to the monographs [Kyp06],[Lam08] or [Li11].
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3. Pathwise construction of the pruning process

In this context, the conservative assumption is equivalent to the CSBP not blowing up
in finite time, and Assumption 2 is equivalent to the strong extinction time, inf{a; Za = 0},
being a.s. finite. If Assumption 2 holds, then for all h > 0, Pψx (Zh > 0) = exp(−xb(h)), where
b(h) = limλ→+∞ u(h,λ). In particular b(h) is such that∫ ∞

b(h)

dr

ψ(r )
= h. (3.12)

Let us now describe a Girsanov transform for CSBPs introduced in [AD12a] related to the
shift of the branching mechanism ψ defined by (3.9). Recall notation Θψ and θ∞ from the
previous Section. For θ ∈Θψ, we consider the process Mψ,θ = (Mψ,θ

a , a ≥ 0) defined by:

Mψ,θ
a = exp

(
θx −θZa −ψ(θ)

∫ a

0
Zsd s

)
. (3.13)

Theorem 3.10 (Girsanov transformation for CSBPs, [AD12a]). Let ψ be a branching mecha-
nism satisfying Assumption 1. Let (Za , a ≥ 0) be a CSBP with branching mechanism ψ and
let F = (Fa , a ≥ 0) be its natural filtration. Let θ ∈ Θψ such that either θ ≥ 0 or θ < 0 and∫

(1,+∞) rΠθ(dr ) <+∞. Then we have the following:

1. The process Mψ,θ is a F -martingale under Pψx .

2. Let a, x ≥ 0. On Fa , the probability measure Pψθ
x is absolutely continuous w.r.t. Pψx , and

dPψθ
x |Fa

dPψx |Fa

= Mψ,θ
a .

The height process

Let (X t , t ≥ 0) be a Lévy process with Laplace exponent ψ satisfying Assumption 1. This
assumption implies that a.s. the paths of X have infinite total variation over any non-trivial
interval. The distribution of the Lévy process will be noted Pψ(d X ). It is a probability
measure on the Skorokhod space of real-valued càdlàg processes. For the remainder of this
section, we will assume that ψ is (sub)critical.

For t ≥ 0, let us write X̂ (t ) for the time-returned process:

X̂ (t )
s = X t −X(t−s)− , 0 ≤ s < t

and X̂ (t )
t = X t . Then (X̂ (t )

s ,0 ≤ s ≤ t ) has same distribution as the process (Xs ,0 ≤ s ≤ t ). We
will also write Ŝ(t )

s = sup[0,s] X̂ (t )
r for the supremum process of X̂ (t ).

Proposition 3.11 (The height process, [DL02]). Let ψ be a (sub)critical branching mechanism
satisfying Assumption 1. There exists a lower semi-continuous process H = (Ht , t ≥ 0) taking values
in [0,+∞], with the intermediate values property, which is a local time at 0, at time t , of the process
X̂ (t ) − Ŝ(t ), such that the following convergence holds in probability:

Ht = lim
ε↓0

1

ε

∫ t

0
1{I t

s ≤Xs≤I t
s +ε}d s

where I t
s = infs≤r≤t Xr . Furthermore, if Assumption 2 holds, then the process H admits a continuous

modification.
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3.2. The pruning of Lévy trees

From now on, we always assume that Assumptions 1 and 2 hold, and we always work with
this continuous version of H . The process H is called the height process.

For x > 0, we consider the stopping time τx = inf{t ≥ 0, It ≤ −x}, where It = I t
0 is the

infimum process of X . We denote by Pψx (d H) the distribution of the stopped height process
(Ht∧τx , t ≥ 0) under Pψ, defined on the space C+([0,+∞)) of non-negative continuous func-
tions on [0,+∞). The (sub)criticality of the branching mechanism entails τx <∞ Pψ-a.s., so
that under Pψx (d H), the height process has a.s. compact support.

The excursion measure

The height process is not a Markov process, but it has the same zero sets as X −I (see [DL02],
Paragraph 1.3.1), so we can develop an excursion theory based on the latter. By standard
fluctuation theory, it is easy to see that 0 is a regular point for X − I and that −I is a local
time of X − I at 0. We denote by Nψ the associated excursion measure. As such, Nψ is a
σ-finite measure. Under Pψx or Nψ, we set:

σ(H) =
∫ ∞

0
1{Ht 6=0}d t .

When there is no risk of confusion, we will write σ for σ(H). Notice that, under Pψx , σ= τx

and that under Nψ, σ represents the lifetime of the excursion. Abusing notations, we will
write P

ψ
x (d H) and Nψ[d H ] for the distribution of H under Pψx or Nψ. Let us also recall

the Poissonian decomposition of the measure Pψx . Under Pψx , let (a j ,b j ) j∈J be the excursion
intervals of X − I away from 0. Those are also the excursion intervals of the height process
away from 0. For j ∈ J , we shall denote by H ( j ) : [0,∞) → R+ the corresponding excursion,
that is

H ( j )
t = H(a j+t )∧b j , t ≥ 0.

Proposition 3.12 ([DL05]). Let ψ be a (sub)critical branching mechanism satisfying Assumption
1. Under Pψx , the random point measure N = ∑

j∈J δH ( j ) (d H) is a Poisson point measure with
intensity xNψ[d H ].

Local times of the height process

Proposition 3.13 ([DL02], Formula (36)). Let ψ be a (sub)critical branching mechanism satisfying
Assumption 1. Under Nψ, there exists a jointly measurable process (La

s , a ≥ 0, s ≥ 0) which is
continuous and non-decreasing in the variable s such that,

L0
s = 0, s ≥ 0

and for every t ≥ 0, for every δ> 0 and every a > 0

lim
ε→0

Nψ
[

1{sup H>δ} sup
0≤s≤t∧σ

∣∣∣∣ε−1
∫ s

0
1{a<Hr ≤a+ε} dr −La

s

∣∣∣∣]= 0.

Moreover, by Lemma 3.3. of [DL05], the process (La
σ, a ≥ 0) has a càdlàg modification

under Nψ with no fixed discontinuities.
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3. Pathwise construction of the pruning process

(Sub)critical Lévy trees

Let ψ be a (sub)critical branching mechanism satisfying Assumptions 1 and 2. Let H be the
height process defined under Pψx or Nψ. We consider the so-called Lévy tree T H which is the
random w-tree coded by the function H , see Section 3.2. Notice that we are indeed within
the framework of proper real trees, since Assumption 2 entails compactness of T H . The
measurability of the random variable T H taking values in T follows from Proposition 3.9
and Theorem 3.6. When there is no confusion, we shall write T for T H . Abusing notations,
we will write Pψx (dT ) and Nψ[dT ] for the distribution on T of T = T H under Pψx (d H) or
Nψ[d H ]. By construction, under Pψx or under Nψ, we have that the total mass of the mass
measure on T is given by:

mT (T ) =σ. (3.14)

Proposition 3.12 enables us to view the measure Nψ[dT ] as describing a single Lévy tree.
Thus, we will mostly work under this excursion measure, which is the distribution of the
(isometry class of the) w-tree T described by the height process under Nψ. In order to state
the branching property of a Lévy tree, we must first define a local time at level a on the tree.
Let (T i ,◦, i ∈ I ) be the trees that were cut off by cutting at level a, namely the connected
components of the set T \πa(T ). If i ∈ I , then all the points in T i ,◦ have the same MRCA
xi in T which is precisely the point where the tree was cut off. We consider the compact
tree T i = T i ,◦∪ {xi } with the root xi , the metric dT i

, which is the metric dT restricted to
T i , and the mass measure mT i

, which is the mass measure mT restricted to T i . Then
(T i ,dT i

, xi ,mT i
) is a w-tree. Let

N T
a (d x,dT ′) = ∑

i∈I
δ(xi ,T i )(d x,dT ′) (3.15)

be the point measure on T (a)×T taking account of the cutting points as well as the trees
cut away. The following theorem gives the structure of the decomposition we just described.
From excursion theory, we deduce that b(h) =Nψ[Hmax(T ) > h], where b(h) solves (3.12). An
easy extension of [DL05] from real trees to w-trees gives the following result.

Theorem 3.14 ([DL05]). Let ψ be a (sub)critical branching mechanism satisfying Assumptions 1
and 2. There exists a T -measure valued process (`a , a ≥ 0) càdlàg for the weak topology on finite
measure on T such that Nψ-a.e.:

mT (d x) =
∫ ∞

0
`a(d x)d a, (3.16)

`0 = 0, inf{a > 0;`a = 0} = sup{a ≥ 0;`a 6= 0} = Hmax(T ) and for every fixed a ≥ 0, Nψ-a.e.:

• `a is supported on T (a),

• We have for every bounded continuous function φ on T :

〈`a ,φ〉 = lim
ε↓0

1

b(ε)

∫
φ(x)1{h(T ′)≥ε}N

T
a (d x,dT ′) (3.17)

= lim
ε↓0

1

b(ε)

∫
φ(x)1{h(T ′)≥ε}N

T
a−ε(d x,dT ′), if a > 0. (3.18)
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Furthermore, we have the branching property: for every a > 0, the conditional distribution of the
point measure N T

a (d x,dT ′) under Nψ[dT |Hmax(T ) > a], given πa(T ), is that of a Poisson
point measure on T (a)×T with intensity `a(d x)Nψ[dT ′].

The measure `a will be called the local time measure of T at level a. In the case of Lévy
trees, it can also be defined as the image of the measure dsLa

s (H) by the canonical projection
p H (see [DL02]), so the above statement is in fact the translation of the excursion theory of
the height process in terms of real trees. This definition shows that the local time is a function
of the tree T and does not depend on the choice of the coding height function. It should
be noted that Equation (3.18) implies that `a is measurable with respect to the σ-algebra
generated by πa(T ).

The next theorem, also from [DL05], relates the discontinuities of the process (`a , a ≥ 0)
to the infinite nodes in the tree. Recall Br∞(T ) denotes the set of infinite nodes in the Lévy
tree T .

Theorem 3.15 ([DL05]). Let ψ be a (sub)critical branching mechanism satisfying Assumptions
1 and 2. The set {d(;, x), x ∈ Br∞(T )} coincides Nψ-a.e. with the set of discontinuity times of
the mapping a 7→ `a . Moreover, Nψ-a.e., for every such discontinuity time b, there is a unique
xb ∈ Br∞(T )∩T (b), and

`b = `b−+∆bδxb ,

where ∆b > 0 is called mass of the node xb and can be obtained by the approximation

∆b = lim
ε→0

1

b(ε)
n(xb ,ε), (3.19)

where n(xb ,ε) = ∫
1{x=xb }(x)1{Hmax(T ′)>ε}(T ′)N T

b (d x,dT ′) is the number of sub-trees originating
from xb with height larger than ε.

Decomposition of the Lévy tree

We will frequently use the following notation for the following measure on T:

Nψ[T ∈ •] = 2βNψ[T ∈ •]+
∫

(0,+∞)
rΠ(dr )Pψr [T ∈ •]. (3.20)

where ψ is given by (3.8).
The decomposition of a (sub)critical Lévy tree T according to a spine �;, x�, where x ∈T

is a leaf picked at random at level a > 0, that is according to the local time `a(d x), is given in
Theorem 4.5 in [DL05]. Then by integrating with respect to a, we get the decomposition of T

according to a spine �;, x�, where x ∈T is a leaf picked at random on T , that is according
to the mass measure mT . Therefore, we will state this decomposition without proof.

Let x ∈ T and {xi , i ∈ Ix } the set Br(T )∩�;, x� of branching points on the spine �;, x�.
For i ∈ Ix , we set:

T i =T \
(
T (x,xi ) ∪T (;,xi )) ,
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3. Pathwise construction of the pruning process

where T (y,xi ) is the connected component of T \ {xi } containing y . We let xi be the root of
T i . The metric and measure on T i are respectively the restriction of dT to T i and the
restriction of mT to T i \{xi }. By construction, if x is a leaf, we have:

T = �;, x�~i∈Ix (T i , xi ),

where �;, x� is a w-tree with root ;, metric and mass measure the restrictions of dT and mT

to �;, x�.
We consider the point measure on [0, Hx ]×T defined by:

Mx = ∑
i∈ix

δ(Hxi ,T i ).

Theorem 3.16 ([DL05]). Let ψ be a (sub)critical branching mechanism satisfying Assumptions 1
and 2. We have for any non-negative measurable function F defined on [0,+∞)×T:

Nψ
[∫

mT (d x)F (Hx ,Mx )

]
=

∫ ∞

0
d a e−ψ

′(0)a E

[
F

(
a,

∑
i∈I

1{zi≤a}δ(zi ,T i )

)]
,

where under E,
∑

i∈I δ(zi ,T i )
(d z,dT ) is a Poisson point measure on [0,+∞)×T with intensity

d z Nψ[dT ].

CSBP process in the Lévy trees

Lévy trees give a genealogical structure for CSBPs, which is precised in the next Theorem.
We consider the process Z = (Za , a ≥ 0) defined by:

Za = 〈`a ,1〉.
If needed we will write Za(T ) to emphasize that Za corresponds to the tree T .

Theorem 3.17 (CSBP in Lévy trees, [DL02] and [DL05]). Let ψ be a (sub)critical branching
mechanism satisfying Assumptions 1 and 2, and let x > 0. The process Z under Pψx is distributed as
the CSBP Z under Pψx .

Remark 3. This theorem can be stated in terms of the height process without Assumption 2.

Super-critical Lévy trees

Let us now briefly recall the construction from [AD12a] for super-critical Lévy trees using a
Girsanov transformation similar to the one used for CSBPs, see Theorem 3.10.

Let ψ be a super-critical branching mechanism satisfying Assumptions 1 and 2. Recall θ∗

is the unique positive root of ψ′ and that the branching mechanism ψθ is sub-critical if θ > θ∗,
critical if θ = θ∗ and super-critical otherwise. We consider the filtration H = (Ha , a ≥ 0),
where Ha is the σ-field generated by the random variable πa(T ) and the Pψθ∗

x -negligible
sets. For θ ≥ θ∗, we define the process Mψ,θ = (Mψ,θ

a , a ≥ 0) with:

Mψ,θ
a = exp

(
θx −θZa −ψ(θ)

∫ a

0
Zsd s

)
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3.2. The pruning of Lévy trees

By absolute continuity of the measures Pψθ
x (resp. Nψθ ) with respect to P

ψθ∗
x (resp. Nψθ∗ ),

all the processes Mψθ ,−θ for θ > θ∗ are H -adapted. Moreover, all these processes are H -
martingales (see [AD12a] for the proof). Theorem 3.14 shows that Mψθ∗ ,−θ∗ is H -adapted.
Let us now define the ψ-Lévy tree, cut at level a by the following Girsanov transformation.

Definition 3.18. Let ψ be a super-critical branching mechanism satisfying Assumptions 1 and
2. Let θ ≥ θ∗. For a ≥ 0, we define the distribution Pψ,a

x (resp. Nψ,a ) by: if F is a non-negative,
measurable functional defined on T,

E
ψ,a
x [F (T )] = Eψθ

x

[
Mψθ ,−θ

a F (πa(T ))
]

, (3.21)

Nψ,a[F (T )] =Nψθ

[
exp

(
θZa +ψ(θ)

∫ a

0
Zs(d s)F (πa(T )

)]
. (3.22)

It can be checked that the definition of Pψ,a
x (and of Nψ,a ) does not depend on θ ≥ θ∗.

The probability measures Pψ,a
x satisfy a consistence property, allowing us to define the

super-critical Lévy tree in the following way.

Theorem 3.19. Let ψ be a super-critical branching mechanism satisfying assumptions 1 and 2.
There exists a probability measure Pψx (resp. a σ-finite measure Nψ) on T such that for a > 0, we
have, if F is a measurable non-negative functional on T,

E
ψ
x [F (πa(T ))] = Eψ,a

x [F (T )],

the same being true under Nψ.

The w-tree T under Pψx or Nψ is called a ψ-Lévy w-tree or simply a Lévy tree.

Proof. For n ≥ 1, 0 < a1 < ·· · < an , we define a probability measure on Tn by:

P
ψ,a1,...,an
x (T1 ∈ A1, . . . ,Tn ∈ An) =Pψ,an

x (T ∈ An ,πan−1 (T ) ∈ An−1, . . . ,πa1 (T ) ∈ A1)

if A1, . . . , An are Borel subsets of T. The probability measures

(Pψ,a1,...,an
x , n ≥ 1, 0 < a1 < ·· · < an)

then form a projective family. This is a consequence of the martingale property of Mψθ ,−θ

and the fact that the projectors πa satisfy the obvious compatibility relation πb ◦πa = πb if
0 < b < a.

By the Daniell-Kolmogorov theorem, there exists a probability measure P̃ψx on the prod-
uct space TR+ such that the finite-dimensional distributions of a P̃

ψ
x -distributed family are

described by the measures defined above. It is easy to construct a version of a P̃ψx -distributed
process that is a.s. increasing. Indeed, almost all sample paths of a P̃ψx -distributed process
are increasing when restricted to rational numbers. We can then define a w-tree T a for
any a > 0 by considering a decreasing sequence of rational numbers an ↓ a and defining
T a = ∩n≥1T

an . Notice that T a is closed for all a ∈ R+. It is easy to check that the finite-
dimensional distributions of this new process are unchanged by this procedure. Let us then
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3. Pathwise construction of the pruning process

consider T =∪a>0T
a , endowed with the obvious metric dT and mass measure m. It is clear

that T is a real tree, rooted at the common root of the T a . All the T a are compact, so that
T is locally compact and complete. The measure m is locally finite since all the mT a

are
finite measures. Therefore, T is a.s. a w-tree. Then, if we define Pψx to be the distribution of
T , the conclusion follows. Similar arguments hold under Nψ.

Remark 4. Another definition of super-critical Lévy trees was given by Duquesne and Winkel
[DW07, DW12]: they consider increasing families of Galton-Watson trees with exponential edge
lengths which satisfy a certain hereditary property (such as uniform Bernoulli coloring of the leaves).
Lévy trees are then defined to be the Gromov-Hausdorff limits of these processes. Another approach
via backbone decompositions is given in [BKMS11].

All the definitions we made for sub-critical Lévy trees then carry over to the super-critical
case. In particular, the level set measure `a , which is πa(T )-measurable, can be defined
using the Girsanov formula. Thanks to Theorem 3.10, it is easy to show that the mass process
(Za = 〈`a ,1〉, a ≥ 0) is under Pψx a CSBP with branching mechanism ψ. In particular, with u
defined in (3.11) and b by (3.12), we have:

Nψ
[

1−e−λZa

]
= u(a,λ) and Nψ [Hmax(T ) > a] =Nψ [Za > 0] = b(a). (3.23)

Notice that b is finite only under Assumption 2. We set:

σ=
∫ +∞

0
Za d a = mT (T ) (3.24)

for the total mass of the Lévy tree T . Notice this is consistent with (3.16) and (3.14) which are
defined for (sub)critical Lévy trees. Thanks to (3.24), notice that σ is distributed as the total
population size of a CSBP with branching mechanism ψ. In particular, its Laplace transform
is given for λ> 0 by:

Nψ
[

1−e−λσ
]
=ψ−1(λ). (3.25)

Notice that Nψ[σ=+∞] =ψ−1(0) > 0.
We recall the following Theorem, from [AD12a], which sums up the situation for any

branching mechanism ψ.

Theorem 3.20 ([AD12a]). Let ψ be any branching mechanism satisfying Assumptions 1 and 2, and
let q > 0 such that ψ(q) ≥ 0. Then, the probability measure P

ψq
x on T is absolutely continuous w.r.t.

P
ψ
x , with

dP
ψq
x

dPψx
= Mψ,q

∞ = eqx−ψ(q)σ1{σ<+∞}. (3.26)

Similarly, the excursion measure Nψq on T is absolutely continuous w.r.t. Nψ and we have

dNψq

dNψ
= e−ψ(q)σ1{σ<+∞}. (3.27)

When applying Girsanov formula (3.27) to q = θ̄ defined by (3.10), we get the following
remarkable Corollary, due to the fact that ψθ(θ̄−θ) = 0.
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3.2. The pruning of Lévy trees

Corollary 3.21. Let ψ be a critical branching mechanism satisfying Assumptions 1 and 2, and
θ ∈Θψ with θ < 0. Let F be a non-negative measurable functional defined on T. We have:

e(θ̄−θ)x E
ψθ
x [F (T )1{σ<+∞}] = Eψθ̄

x [F (T )],

Nψθ [F (T )1{σ<+∞}] =Nψθ̄ [F (T )]. (3.28)

We deduce from Proposition 3.12 and Theorem 3.19 that the point process N T
0 (d x,dT ′)

defined by (3.15) with a = 0 is under Pψx (dT ) a Poisson point measure on {;}×T with intensity
σδ;(d x)Nψ[dT ′]. Then we deduce from (3.21), with F = 1, that for θ ≥ θ∗:

Nψθ

[
1−exp

(
θZa +ψ(θ)

∫ a

0
Zsd s

)]
=−θ. (3.29)

Pruning Lévy trees

We recall the construction from [ADV10] on the pruning of Lévy trees. Let T be a random
Lévy w-tree under Pψx (or under Nψ), with ψ conservative. Let

m(ske)(d x,dθ) = ∑
i∈I ske

δ(xi ,θi )(d x,dθ)

be, conditionally on T , a Poisson point measure on T ×R+ with intensity 2βlT (d x)dθ. Since
there is a.s. a countable number of branching points (which have lT -measure 0), the atoms
of this measure are distributed on T \ (Br(T )∪Lf(T )).

If Π = 0, we have Br∞(T ) = ; a.s. whereas if Π(R+) = ∞, Br∞(T ) is a.s. a countable
dense subset of T . If the latter condition holds, we consider, conditionally on T , a Poisson
point measure

m(nod)(d x,dθ) = ∑
i∈I nod

δ(xi ,θi )(d x,dθ)

on T ×R+ with intensity ∑
y∈Br∞(T )

∆yδy (d x)dθ

where ∆x is the mass of the node x, defined by (3.19). Hence, if θ > 0, a node x ∈ Br∞(T ) is
an atom of m(nod)(d x, [0,θ]) with probability 1−exp(−θ∆x ). The set{

xi , i ∈ I nod
}
=

{
x ∈T , m(nod)({x}×R+

)> 0
}

of marked branching points corresponds Pψx -a.s or Nψ-a.e. to Br∞(T ). For i ∈ I nod, we set

θi = inf
{
θ > 0, m(nod)({xi }× [0,θ]

)> 0
}

the first mark on xi (which is conditionally on T exponentially distributed with parameter
θxi ), and we set {

θ j , j ∈ Jnod
i

}
=

{
θ > θi , m(nod)({xi }× {θ}

)> 0
}
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3. Pathwise construction of the pruning process

so that we can write

m(nod)(d x,dθ) = ∑
i∈I nod

δxi (d x)

δθi (dθ)+ ∑
j∈Jnod

i

δθ j (dθ)

 .

We set the measure of marks:

M (d x,dθ) = m(ske)(d x,dθ)+m(nod)(d x,dθ), (3.30)

and consider the family of w-trees Λ(T ,M ) = (Λθ(T ,M ),θ ≥ 0), where the θ-pruned w-tree
Λθ is defined by:

Λθ(T ,M ) = {x ∈T , M (�;, x�×[0,θ]) = 0} ,

rooted at ;Λθ(T ,M ) =;T , and the metric dΛθ(T ,M ) and the mass measure mΛθ(T ,M ) are the
restrictions of dT and mT to Λθ(T ,M ). In particular, we have Λ0(T ,M ) =T . The family
of w-trees Λ(T ,M ) is a non-increasing family of real trees, in a sense that Λθ(T ,M ) is a
subtree of Λθ′(T ,M ) for 0 ≤ θ′ ≤ θ, see Figure 3.1. In particular, we have that the pruning
operators satisfy a cocycle property, for θ1 ≥ 0 and θ2 ≥ 0:

Λθ2

(
Λθ1 (T ,M ),Mθ1

)=Λθ2+θ1 (T ,M ),

where Mθ(A × [0, q]) = M (A × [θ,θ+ q]). Abusing notation, we write Nψ(dT ,dM ) for the
distribution of the pair (T ,M ) when T is distributed according to Nψ(dT ) and conditionally
on T , M is distributed as described above.

The following result can be deduced from [AD12a].

Theorem 3.22. Let ψ be a branching mechanism satisfying Assumptions 1 and 2. There exists
a non-increasing T-valued Markov process (Tθ,θ ∈ Θψ) such that for all q ∈ Θψ, the process
(Tθ+q ,θ ≥ 0) is distributed as Λ(T ,M ) under Nψq [dT ,dM ].

In particular, this Theorem implies that Tθ is distributed as Nψθ for θ ∈Θψ and that for
θ0 ≥ 0, under Nψ, the process of pruned trees (Λθ0+θ(T ),θ ≥ 0) has the same distribution as
(Λθ(T ),θ ≥ 0) under Nψθ0 [dT ].

We want to study the time-reversed process (T−θ,θ ∈ −Θψ), which can be seen as a
growth process. This process grows by attaching sub-trees at a random point, rather than
slowly growing uniformly along the branches. We recall some results from [AD12a] on the
growth process. From now on, we will assume in this section that the branching mechanism
ψ is critical, so that ψθ is sub-critical iff θ > 0 and super-critical iff θ < 0.

We will use the following notation for the total mass of the tree Tθ at time θ ∈Θψ:

σθ = mTθ (Tθ). (3.31)

The total mass process (σθ,θ ∈Θψ) is a pure-jump process taking values in (0,+∞].

Lemma 3.23 ([AD12a]). Let ψ be a critical branching mechanism satisfying Assumptions 1 and 2.
If 0 ≤ θ2 < θ1, then we have:

Nψ[σθ2 |Tθ1 ] =σθ1

ψ′(θ1)

ψ′(θ2)
·
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3.3. The growing tree-valued process

...

Figure 3.1: The pruning process, starting from explosion time A defined in (3.32).

Consider the ascension time (or explosion time):

A = inf
{
θ ∈Θψ, σθ <∞}

, (3.32)

where we use the convention inf; = θ∞. The following Theorem gives the distribution of
the ascension time A and the distribution of the tree at this random time. Recall that
θ̄ =ψ−1(ψ(θ)) is defined in (3.10).

Theorem 3.24 ([AD12a]). Let ψ be a critical branching mechanism satisfying Assumptions 1 and
2.

1. For all θ ∈Θψ, we have Nψ[A > θ] = θ̄−θ.

2. If θ∞ < θ < 0, under Nψ, we have, for any non-negative measurable functional F ,

Nψ[F (TA+θ′ ,θ′ ≥ 0)|A = θ] =ψ′(θ̄)Nψ
[

F (Tθ′ ,θ
′ ≥ 0)σ0e−ψ(θ)σ0

]
.

3. For all θ ∈Θψ, we have Nψ[σA <+∞|A = θ] = 1.

In other words, at the ascension time, the tree can be seen as a size-biased critical Lévy
tree. A precise description of TA is given in [AD12a]. Notice that in the setting of [AD12a],
there is no need of Assumption 2.

3.3 The growing tree-valued process

Special Markov Property of pruning

In [ADV10], the authors prove a formula describing the structure of a Lévy tree, conditionally
on the θ-pruned tree obtained from it in the (sub)critical case. We will give a general version
of this result. From the measure of marks, M in (3.30), we define a measure of increasing
marks by:

M ↑(d x,dθ′) = ∑
i∈I ↑

δ(xi ,θi )(d x,dθ′), (3.33)

75



3. Pathwise construction of the pruning process

with
I ↑ =

{
i ∈ I ske∪ I nod;M (�;, xi �× [0,θi ]) = 1

}
.

The atoms (xi ,θi ) for i ∈ I ↑ correspond to marks such that there are no marks of M on �;, xi �
with a θ-component smaller than θi . In the case of multiple θ j for a given node xi ∈ Br∞(T ),
we only keep the smallest one. In the case Π= 0, the measure M ↑ describes the jumps of a
record process on the tree, see [AD11] for further work in this direction. The θ-pruned tree
can alternatively be defined using M ↑ instead of M as for θ ≥ 0:

Λθ(T ,M ) =
{

x ∈T , M ↑(�;, x�×[0,θ]) = 0
}

.

We set:

I ↑
θ
=

{
i ∈ I ↑, xi ∈ Lf(Λθ(T ,M ))

}
=

{
i ∈ I ↑,θi < θ and M ↑(�;, xi �×[0,θ]) = 0

}
and for i ∈ I ↑

θ
:

T i =T \T ;,xi = {x ∈T , xi ∈ �;, x�},

where T y,x is the connected component of T \{x} containing y . For i ∈ I ↑
θ
, T i is a real tree,

and we will consider xi as its root. The metric and mass measure on T i are the restriction
of the metric and mass measure of T on T i . By construction, we have:

T =Λθ(T ,M )~i∈I ↑
θ

(T i , xi ). (3.34)

Now we can state the general special Markov property.

Theorem 3.25 (Special Markov Property). Let ψ be a branching mechanism satisfying Assump-
tions 1 and 2. Let θ > 0. Conditionally on Λθ(T ,M ), the point measure:

M
↑
θ

(d x,dT ′,dθ′) = ∑
i∈I ↑

θ

δ(xi ,T i ,θi )(d x,dT ′,dθ′)

under Pψr0
(or under Nψ) is a Poisson point measure on Λθ(T ,M )×T× (0,θ] with intensity:

mΛθ(T ,M )(d x)
(
2βNψ[dT ′]+

∫
(0,+∞)

Π(dr ) r e−θ
′rP

ψ
r (dT ′)

)
1(0,θ](θ

′) dθ′. (3.35)

Proof. It is not difficult to adapt the proof of the special Markov property in [ADV10] to get
Theorem 3.25 in the (sub)critical case by taking into account the pruning times θi and the
w-tree setting; and we omit this proof which can be found in [ADH13a]. We prove how to
extend the result to the super-critical Lévy trees using the Girsanov transform of Definition
3.18.

Assume that ψ is super-critical. For a > 0, we shall write Λθ,a(T ,M ) =πa(Λθ(T ,M )) for
short. According to (3.34) and the definition of super-critical Lévy trees, we have that for any
a > 0, the truncated tree πa(T ) can be written as:

πa(T ) =Λθ,a(T ,M )~i∈I ↑
θ

,
Hxi ≤a

(
πa−Hxi

(T i ), xi

)
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3.3. The growing tree-valued process

and we have to prove that
∑

i∈I ↑
θ

δ(xi ,T i ,θi )(d x,dT ′,dθ′) is conditionally on Λθ(T ,M ) a Pois-

son point measure with intensity (3.35). Since a is arbitrary, it is enough to prove that the
point measure Ma , defined by

Ma(d x,dT ′,dθ′) = ∑
i∈I ↑

θ

1{Hxi ≤a} δ(xi ,πa−Hxi
(T i ),θi )(d x,dT ′,dθ′),

is conditionally on Λθ,a(T ,M ) a Poisson point measure with intensity :

1[0,a](Hx ) mΛθ(T ,M )(d x) 1(0,θ](θ
′) dθ′(

2β(πa−Hx )∗Nψ(dT ′)+
∫

(0,+∞)
Π(dr ) r e−θ

′r (πa−Hx )∗P
ψ
r (dT ′)

)
. (3.36)

Recall θ∗ is the unique real number such that ψ′
θ∗(0) = 0, that is, such that ψθ∗ is critical.

Let Φ be a non-negative, measurable functional on Λθ,a(T ,M )×T× (0,θ] and let F be a
non-negative measurable functional on T. Let

B =Nψ [
F (Λθ,a(T ,M ))exp(−〈Ma ,Φ〉)] .

Thanks to Girsanov formula (3.22) and the special Markov property for critical branching
mechanisms, we get:

B =Nψθ∗
[

F (Λθ,a(T ,M ))exp(−〈Ma ,Φ〉)exp

(
θ∗Za(T )+ψ(θ∗)

∫ a

0
Zh(T )dh

)]
=Nψθ∗

[
F (Λθ,a(T ,M ))exp

(
θ∗Za(Λθ(T ,M ))+ψ(θ∗)

∫ a

0
Zh(Λθ(T ,M ))dh

)
exp

(
−

∫
mΛθ,a (T ,M )(d x)G(Hx , x,θ)

)]
,

with mΛθ,a (T ,M )(d x) = 1[0,a](Hx ) mΛθ(T ,M )(d x) and G(h, x,θ) equal to:∫ θ

0
dθ′

{
2βNψθ∗

[
1−exp

(
−Φ(x,πa−h(T ),θ′)+θ∗Za−h(T )+ψ(θ∗)

∫ a−h

0
Zt (T )d t

)]
+

∫
(0,+∞)

Πθ∗(dr )r e−θ
′rE

ψθ∗
r

[
1−exp

(
−Φ(x,πa−h(T ),θ′)

+θ∗Za−h(T )+ψ(θ∗)
∫ a−h

0
Zt (T )d t

)]}
.

By using the Poisson decomposition of Pψθ∗
r (Proposition 3.12), we see that G(h, x,θ) can be

written as:

G(h, x,θ) =
∫ θ

0
dθ′

{
2βg (h, x,θ′)+

∫
(0,∞)

Πθ∗(dr ) r e−θ
′r (

1−exp(−r g (h, x,θ′))
)}

,

with

g (h, x,θ′) =Nψθ∗
[

1−exp

(
−Φ(x,πa−h(T ),θ′)+θ∗Za−h(T )+ψ(θ∗)

∫ a−h

0
Zt (T )d t

)]
.
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Thanks to the Girsanov formula and (3.29), we get:

g (h, x,θ′) =Nψθ∗
[

(1−exp(−Φ(x,πa−h(T ),θ′)))exp
(
θ∗Za−h(T )+ψ(θ∗)

∫ a−h

0
Zt (T )d t

)]
+Nψθ∗

[
1−exp

(
θ∗Za−h(T )+ψ(θ∗)

∫ a−h

0
Zt (T ))d t

)]
=Nψ

[
1−exp(−Φ(x,πa−h(T ),θ′))

]
−θ∗.

With g̃ (h, x,θ′) =Nψ
[

1−exp(−Φ(x,πa−h(T ),θ′))
]

and thanks to (3.7), we get:

G(h, x,θ) =
∫ θ

0
dθ′

{
2βg̃ (h, x,θ′)+

∫
(0,∞)

Π(dr ) r e−θ
′r (

1−exp(−r g̃ (h, x,θ′))
)}

+ψ(θ∗)−ψθ(θ∗).

Notice that from the definition of G we have g replaced by g̃ , Πθ∗ replaced by Π and the
additional term ψ(θ∗)−ψθ(θ∗). As

∫
mΛθ,a (T ,M )(d x) = ∫ a

0 Zh(Λθ(T ))dh, we get:

B =Nψθ∗
[
F (Λθ,a(T ,M ))R(Λθ,a(T ,M ))

exp
(
θ∗Za(Λθ(T ,M ))+ψθ(θ∗)

∫ a

0
Zh(Λθ(T ,M ))dh

)]
, (3.37)

with

R(T ) = exp
(
−

∫
mT (d x)

∫ θ

0
dθ′

[
2βg̃ (Hx , x,θ′)+∫

(0,∞)
Π(dr ) r e−θ

′r (
1−exp(−r g̃ (Hx , x,θ′))

)])
. (3.38)

Taking Φ= 0 (and thus R = 1) in (3.37) yields:

Nψ[F (Λθ,a(T ,M ))]

=Nψθ∗
[

F (Λθ,a(T ,M ))exp
(
θ∗Za(Λθ(T ,M ))+ψθ(θ∗)

∫ a

0
Zh(Λθ(T ,M ))dh

)]
. (3.39)

Using (3.39) with F replaced by F R gives:

Nψ
[

exp(−〈Ma ,Φ〉)F (Λθ,a(T ,M ))
]
= B =Nψ [

F (Λθ,a(T ,M ))R(Λθ,a(T ,M ))
]

.

This implies that Ma is, conditionally on Λθ,a(T ,M ), a Poisson point measure with intensity
(3.36). This ends the proof.
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3.3. The growing tree-valued process

An explicit construction of the growing process

In this section, we will construct the growth process using a family of Poisson point measures.
Let ψ be a branching mechanism satisfying Assumptions 1 and 2. Let θ ∈Θψ. According to
(3.20) and (3.7), we have:

Nψθ [T ∈ •] = 2βNψθ [T ∈ •]+
∫

(0,+∞)
Π(dr )r e−θrP

ψθ
r (T ∈ •). (3.40)

Let T (0) ∈T with root ;. For q ∈Θψ and q ≤ θ, we set:

T(0)
q =T (0) and m(0)

q = mT (0)
.

We define the w-trees grafted on T (0) by recursion on their generation. We suppose that
all the random point measures used for the next construction are defined on T under a
probability measure QT (0)

(dω).
Suppose that we have constructed the family ((T(k)

q ,m(n)
q ),0 ≤ k ≤ n, q ∈Θψ∩(−∞,θ)). We

write
T(n) = ⊔

q∈Θψ, q≤θ
T(n)

q .

We define the (n + 1)-th generation as follows. Conditionally on all trees from generations
smaller than n, (T(k)

q , 0 ≤ k ≤ n, q ∈Θψ∩ (−∞,θ)), let

N n+1
θ (d x,dT ,d q) = ∑

j∈J (n+1)

δ(x j ,T j ,θ j )(d x,dT ,d q)

be a Poisson point measure on T(n) ×T×Θψ with intensity:

µn+1
θ (d x,dT ,d q) = m(n)

q (d x)Nψq [dT ] 1{q≤θ} d q.

For q ∈Θψ and q ≤ θ, we set

J (n+1)
q = {

j ∈ J (n+1), q < θ j
}

and we define the tree T(n+1)
q and the mass measure m(n+1)

q by:

T(n+1)
q =T(n)

q ~ j∈J (n+1)
q

(T j , x j ) and m(n+1)
q = ∑

j∈J (n+1)
q

mT j
(d x).

Notice that by construction, (T(n)
q ,n ∈ N) is a non-decreasing sequence of trees. We set

Tq the completion of ∪n∈NT(n)
q , which is a real tree with root ; and obvious metric dTq , and

we define a mass measure on Tq by mTq =∑
n∈Nm(n)

q .
For q ∈ Θψ and q < θ, we consider Fq the σ-field generated by T(0) and the sequence

of random point measures (1{q ′∈[q,θ]}N
(n)
θ

(d x,dT ,d q ′),n ∈N). We set Nθ =
∑

n∈NN n
θ

. The
backward random point process q 7→ 1{q≤q ′}Nθ(d x,dT ,d q ′) is by construction adapted to
the backward filtration (Fq , q ∈Θψ∩ (−∞,θ]).

The proof of the following result is postponed to Section 3.3.
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3. Pathwise construction of the pruning process

Theorem 3.26. Let ψ be a branching mechanism satisfying Assumptions 1 and 2. Under Qψθ :=
Nψθ [dT (0)]QT (0)

(dω), the process((
Tq ,dTq ,;,mT̄q

)
, q ∈Θψ∩ (−∞,θ]

)
is a T-valued backward Markov process with respect to the backward filtration F θ = (Fq , q ∈
Θψ∩ (−∞,θ]). It is distributed as ((Tq ,mTq ), q ∈Θψ∩ (−∞,θ]) under Nψ.

Notice the Theorem in particular entails that (Tq ,dTq ,;,mT̄q ) is a w-tree for all q .
We shall use the following lemma.

Lemma 3.27. Let ψ be a branching mechanism satisfying Assumptions 1 and 2. Let K be a
measurable non-negative process (as a function of q) defined on R+×T×T which is predictable with
respect to the backward filtration F θ . We have:

Qψθ

[∫
Nθ(d x,dT ,d q) K (q,Tq ,Tq−)

]
=Qψθ

[∫
K

(
q,Tq ,Tq~ (T , x)

)
µθ(d x,dT ,d q)

]
,

where µθ(d x,dT ,d q) =∑
n∈N∗ µn(d x,dT,d q) = mTq (d x)Nψq [dT ] 1{q∈Θψ,q≤θ} d q .

This means that the predictable compensator of Nθ is given by:

µθ(d x,dT ,d q) = mTq (d x)Nψq [dT ] 1{q∈Θψ,q≤θ} d q.

Notice this construction does not fit in the usual framework of random point measures as
the support at time q of the predictable compensator is the (predictable backward in time)
random set Tq ×T×Θψ.

Proof. Based on the recursive construction, we have:

Qψθ

[∫
Nθ(d x,dT ,d q) K (q,Tq ,Tq−)

]
=

+∞∑
n=0

Qψθ

[
Qψθ

[∫
N n
θ (d x,dT ,d q) K (q,Tq ,Tq~ (T , x))

∣∣∣ (T(k)
s , k ≤ n, s ≤ θ)

]]
.

Now, by construction, we have that:

Tq =T(n)
q ~ j∈J (n)

q
(T̃ j , x j )

for T̃ j = Tq \T
(x j ,;)
q which is a measurable function of 1{q ′>q}N

n
θ

(d x,dT ,d q ′) and of the
point measures 1{q ′>q}N

`
θ

(d x,dT ,d q ′) for ` ≥ n + 1. Therefore, applying a Palm formula
with the function

Fn

(
q,T , x,

∑
j∈J (n),q j>q

δ(x j ,T j ,θ j )

)
=Qψθ

[
K

(
q,T(n)

q ~ j∈J (n)
q

(T̃ j , x j ),

T(n)
q ~ j∈J (n)

q
(T̃ j , x j )~ (T , x)

) ∣∣∣ (T(k)
s , k ≤ n, s ≤ θ),N n

θ

]
,
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3.3. The growing tree-valued process

we get:

Qψθ

[∫
Nθ(d x,dT ,d q) K (q,Tq ,Tq−)

]
=

+∞∑
n=0

Qψθ

[
Qψθ

[∫
N n
θ (d x,dT ,d q)

Fn

(
q,T , x,

∑
j∈J (n),q j>q

δ(x j ,T j ,θ j )

) ∣∣∣ (T(k)
s , k ≤ n, s ≤ θ)

]]
=

+∞∑
n=0

Qψθ

[
Qψθ

[∫
µn
θ (d x,dT ,d q)

Fn

(
q,T , x,

∑
j∈J (n),q j>q

δ(x j ,T j ,θ j )

) ∣∣∣ (T(k)
s , k ≤ n, s ≤ θ)

]]
=

+∞∑
n=0

Qψθ

[
Qψθ

[∫
µn
θ (d x,dT ,d q) K

(
q,T(n)

q ~ j∈J (n)
q

(T̃ j , x j ),

T(n)
q ~ j∈J (n)

q
(T̃ j , x j )~ (T , x)

) ∣∣∣ (T(k)
s , k ≤ n, s ≤ θ)

]]
=

+∞∑
n=0

Qψθ

[∫
µn
θ (d x,dT ,d q) K

(
q,Tq ,Tq~ (T , x)

)]
=Qψθ

[∫
K

(
q,Tq ,Tq~ (T, x)

)
µθ(d x,dT ,d q)

]
.

It can be noticed that the map q 7→Tq is non-decreasing càdlàg (backwards in time) and
that we have, for j ∈ ∪n∈N J (n), x j ∈Tθ j : Tθ j− =Tθ j ~ (T j , x j ). In particular, we can recover
the random measure Nθ from the jumps of the process (Tq , q ∈Θψ∩ (−∞,θ]). This and the
natural compatibility relation of Nθ with respect to θ gives the next Corollary.

Corollary 3.28. Let ψ be a branching mechanism satisfying Assumptions 1 and 2. Let (Tθ,θ ∈Θψ)
be defined under Nψ. Let

N = ∑
j∈J
δ(x j ,T j ,θ j )

be the random point measure defined as follows:

• The set {θ j ; j ∈ J } is the set of jumping times of the process (Tθ,θ ∈Θψ): for j ∈ J , Tθ j− 6=Tθ j .

• The real tree T j is the closure of Tθ j− \Tθ j .

• The point x j is the root of T j (that is x j is the only element y ∈ Tθ j− such that x ∈ T j

implies �y, x� ⊂T j ).

Then the backward point process θ 7→ 1{θ≤q ′}N (d x,dT ,d q ′) defined on Θψ has predictable
compensator:

µ(d x,dT ,d q) = mTq (d x)Nψq [dT ] 1{q∈Θψ} d q,
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3. Pathwise construction of the pruning process

with respect to the backward left-continuous filtration F = (Fθ,θ ∈Θψ) defined by:

Fθ =σ((x j ,T j ,θ j );θ ≤ θ j ) =σ(Tq−;θ ≤ q).

More precisely, for any non-negative predictable process K with respect to the backward filtration F ,
we have:

Nψ
[∫

N (d x,dT ,d q) K
(
q,Tq ,Tq−

)]
=Nψ

[∫
µ(d x,dT,d q) K

(
q,Tq ,Tq~ (T, x)

) ]
. (3.41)

Remark 5. Notice that Assumption 2 is assumed only for technical measurability condition, see
Remark 2. We conjecture that this results holds also if Assumption 2 is not in force.

As a consequence, thanks to property 3 of Theorem 3.24, we get, with the convention
sup;= θ∞, that:

A = sup{θ j , j ∈ J and σ j =+∞} with σ j = mT j
(T j ).

Proof of Theorem 3.26

By construction, it is clear that the process (Tq , q ∈ Θψ ∩ (−∞,θ]) is a backward Markov
process with respect to the backward filtration (Fq , q ∈ Θψ∩ (−∞,θ]). By construction this
process is càglàd in backward time. Since the process (Tq , q ∈ Θψ) is a forward càdlàg
Markov process, it is enough to check that for θ0 ∈Θψ, such that θ0 < θ, the two dimensional
marginals (Tθ0 ,Tθ) and (Tθ0 ,Tθ) have the same distribution.

Replacing ψ by ψθ0 , we can assume that θ0 = 0 and 0 < θ. We shall decompose the big
tree T0 conditionally on the small tree Tθ by iteration. This decomposition is similar to the
one which appears in [AD07] or [Voi10] for the fragmentation of the (sub)critical Lévy tree,
but roughly speaking the fragmentation is here frozen but for the fragment containing the
root.

We set T (0) = Tθ and m̃(0) = mTθ , so that (T(0),m(0)) and (T (0),m̃(0)) have the same
distribution. Recall notation M ↑ from (3.33) as well as (3.34): T0 =T (0)~i∈I ↑,1

θ

(T i , xi ), where

we write I ↑,1
θ

= I ↑
θ

and where P 1 =∑
i∈I ↑,1

θ

δ(xi ,T i ,θi ) is, conditionally on T (0), a Poisson point

measure with intensity:

ν1(d x,dT ′,d q) = m̃(0)(d x)
(
2βNψ[dT ′]+

∫
(0,+∞)

Π(dr ) r e−qrP
ψ
r (dT ′)

)
1(0,θ](q) d q.

For i ∈ I ↑,1
θ

, we define the sub-tree of T i :

T̃ i =
{

x ∈T i ;M ↑(�xi , x�×[0,θi ]) = 0
}

.

Since T i is distributed according to Nψ (or to P
ψ
ri

for some ri > 0), using the property of
Poisson point measures, we have that conditionally on T 0 and θi , the tree T̃ i is distributed as
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3.3. The growing tree-valued process

Λθi (T ,M ) under Nψ (or under Pψri
) that is the distribution of T̃ i is Nψθi [dT ] (or P

ψθi
ri

(dT )),
thanks to the special Markov property. Furthermore we have T i = T̃ i ~i ′∈I ↑,2

θ,i
(T i ′ , xi ′) where

∑
i ′∈I ↑,2

θ,i

δ(xi ′ ,T i ′ ,θi ′ )

is, conditionally on T (0) and T̃ i a Poisson point measure on T̃ i ×T× (0,θ] with intensity:

mT̃ i
(d x)

(
2βNψ(dT ′)+

∫
(0,+∞)

Π(dr ) r e−qrP
ψ
r (dT ′)

)
1[0,θi )(q) d q.

Thus we deduce, using again the special Markov property, that:

Ñ 1
θ (d x,dT ,d q) = ∑

i∈I ↑,1

δ(xi ,T̃ i ,θi )(d x,dT ,d q)

is conditionally on T 0 a Poisson point measure on T (0) ×T×Θψ with intensity:

µ̃1(d x,dT ,d q) = m̃(0)
q (d x)Nψq [dT ] 1[0,θ)(q) d q,

with m̃(0)
q (d x) = m̃(0)(d x). We set T (1) =T (0)~i∈I ↑,1

θ

(T̃ i , xi ) for the first generation tree and

for q ∈ [0,θ]:

m̃(1)
q (d x) = ∑

i∈I ↑,1
θ

mT̃ i
(d x)1[0,θi )(q).

See Figure 3.2 for a simplified representation. We get that (T(1)
θ

, (m(1)
q , q ∈ [0,θ]),T(0),mT(0)

)

and (T (1), (m̃(1)
q , q ∈ [0,θ]),T (0),m̃(0)) have the same distribution.

Furthermore, by collecting all the trees grafted on T (1), we get that

T =T (1)~i ′∈I ↑,2
θ

(T i ′ , xi ′),

where I ↑,2
θ

=∪i∈I ↑,1
θ

I ↑,2
θ,i and where

P 2 = ∑
i ′∈I ↑,2

θ

δ(xi ′ ,T i ′ ,θi ′ )

is, conditionally on (T (1), (m̃(1)
q , q ∈ [0,θ]),T (0),m̃(0)) a Poisson point measure on T (1) ×T×

(0,θ] with intensity:

ν2(d x,dT ,d q) = m̃(1)
q (d x)

(
2βNψ(dT ′)+

∫
(0,+∞)

Π(dr ) r e−qrP
ψ
r (dT ′)

)
1[0,θ](q) d q.

Notice that:

T (1) = {x ∈T0;M ↑(�;, x�×[0,θ]) ≤ 1} and m̃(1)
θ

(d x)+m̃(0)(d x) = 1T (1) (x) mT0 (d x). (3.42)
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3. Pathwise construction of the pruning process

Figure 3.2: The tree T0, T (0), and a tree T i and its sub-tree T̃ i belonging to the first
generation tree T (1) \T (0).

Then we can iterate this construction, and by taking increasing limits we obtain that the
pair ((∪n∈NT(n)

θ
,
∑

n∈Nm(n)
θ

),T0) has the same distribution as (T ′,T (0)), where:

T ′ =
{

x ∈T0;M ↑(�;, x�×[0,θ]) <+∞
}

and m̃′(d x) = 1T ′(x) mT0 (d x).

To conclude, we need to check first that the completion of T ′ is T0, or as T0 is complete that
the closure of T ′ as a subset of T0 is exactly T0 and then that mT0 (T ′c ) = 0.

Notice that M ↑ has less marks than M . Then Proposition 1.2 in [AD07] in the case when
β= 0 or an elementary adaptation of it in the general framework of [Voi10], gives there is no
loss of mass in the fragmentation process. This implies that, if ψ is (sub)critical, then:

mT0 ({x ∈T0;M (�;, x�×[0,θ]) =∞} = 0. (3.43)

Then, if ψ is super-critical, by considering the restriction of T0 up to level a, πa(T0), and
using a Girsanov transformation from Definition 3.18 with θ = θ∗ and (3.43), we deduce that
(3.43) holds for πa(T0). Since a is arbitrary, we deduce by monotone convergence that (3.43)
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holds also in the super-critical case. Thus we have mT0 (T ′c ) = 0. Since the closed support
of mT0 is the set of leaves Lf(T0), we deduce that Lf(T ′) is dense in Lf(T0) and, as T ′ and
T0 have the same root, that Sk(T ′) = Sk(T0). This implies that the closure of T ′ is T0. This
ends the proof.

3.4 Application to overshooting

We assume that ψ is critical, θ∞ < 0 and Assumptions 1 and 2 hold. We shall write uθ (resp.
bθ) for the solution of (3.11) (resp. (3.12)) when ψ is replaced by ψθ, for a ≥ 0, h > 0 and
t ∈ [0,h): ∫ λ

uθ(a,λ)

dr

ψθ(r )
= a, and bθh(t ) = bθ(h − t ) with

∫ ∞

bθ(h)

dr

ψθ(r )
= h. (3.44)

We have uθ(a,bθ(h −a)) = bθ(h). Notice that ∂hbθ(h)/ψθ(bθ(h)) =−1 and also that we have
∂λuθ(a,λ) =ψθ(uθ(a,λ))/ψθ(λ) which implies that:

∂λuθ
(
a,bθ(h −a)

)
= ψθ(bθ(h))

ψθ(bθ(h −a))
=− ψθ(bθ(h))

ψθ(bθ(h −a))2
∂hbθ(h −a). (3.45)

We set for θ ∈Θψ and λ≥ 0:

γθ(λ) =ψ′
θ(λ)−ψ′

θ(0) =ψ′(λ+θ)−ψ′(θ) = ∂θψθ(λ). (3.46)

Notice the function γθ is non-negative and non-decreasing.
Recall that θ̄ =ψ−1 ◦ψ(θ). We deduce from (3.44) that for θ ∈Θψ, θ < 0 and h > 0:

θ̄+bθ̄(h) = θ+bθ(h) and ψθ̄(bθ̄(h)) =ψθ(bθ(h)). (3.47)

Exit times

Let h > 0. We are interested in the first time when the process of growing trees exceeds height
h, in the following sense.

Definition 3.29. The first exit time out of h is the (possibly infinite) number Ah defined by

Ah = sup
{
θ ∈Θψ, Hmax(Tθ) > h

}
,

with the convention that sup;= θ∞.

The constraint not to be higher than h will be coded by the function bθ(h) which is the
probability (under Nψ) for the tree T θ of having maximal height larger than h. By definition
of the function b, we have for θ ∈Θψ:

Nψ[θ ≤ Ah] =Nψ [Hmax(Tθ) ≥ h] = bθ(h). (3.48)
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Proposition 3.30. Let ψ be a critical branching mechanism with θ∞ < 0 and satisfying Assump-
tions 1 and 2. The function θ 7→ bθh is of class C 1 on (θ∞,+∞). And, under Nψ, the distribution of
Ah on (θ∞,+∞) has density θ 7→ −∂θbθ(h) with respect to the Lebesgue measure. We also have the
following expression for the density of Ah on (θ∞,+∞). Let θ∞ < θ and h > 0. Then:

−∂θbθ(h) =ψθ

(
bθ(h)

)∫ h

0
d a

γθ(bθ(a))

ψθ(bθ(a))
=

∫ h

0
d a γθ

(
bθ(h −a)

)
e−ψ

′(θ)a−∫ a
0 d x γθ(bθ(h−x)).

Notice that the distribution of Ah might have an atom at θ∞.

Proof. Notice that for θ∞ < θ, we have limλ→+∞ψ′′(λ) =β and limλ→+∞ψ′(λ) =+∞. In par-
ticular ψ′

θ
(λ)/ψθ(λ) is bounded for λ large enough. This implies that

∫ +∞ dr ψ′
θ

(r )/ψθ(r )2

is finite thanks to Assumption 2. We deduce that the function θ 7→ bθh is of class C 1 on
(θ∞,+∞) and, thanks to (3.48), that under Nψ, the distribution of Ah on (θ∞,+∞) has den-
sity θ 7→ −∂θbθ(h) with respect to the Lebesgue measure.

Taking the derivative with respect to θ in the last term of (3.44), using (3.46) and the
change of variable r = bθ(a) gives the first equality of the Proposition:

−∂θbθ(h) =ψθ

(
bθ(h)

)∫ +∞

bθ(h)
dr

γθ(r )

ψθ(r )2 =ψθ

(
bθ(h)

)∫ h

0
d a

γθ(bθ(a))

ψθ(bθ(a))
· (3.49)

From (3.44) we get that ∂t bθh(t ) =ψθ(bθh(t )). Hence, we have:

∫ t

0
ψ′
θ

(
bθh(r )

)
dr =

∫ t

0

ψ′
θ

(bθh(r ))

ψθ(bθh(r ))
∂t bθh(r ) dr = log

(
ψθ(bθh(t ))

ψθ(bθh(0))

)
.

This gives:

∫ t

0
γθ

(
bθh(r )

)
dr =

∫ t

0
ψ′
θ

(
bθh(r )

)
dr − tψ′(θ) = log

(
ψθ(bθh(t ))

ψθ(bθh(0))

)
− tψ′(θ). (3.50)

We deduce that:∫ h

0
d a γθ

(
bθ(h −a)

)
e−ψ

′(θ)a−∫ a
0 d x γθ(bθ(h−x)) =ψθ

(
bθ(h)

)∫ h

0
d a

γθ(bθ(a))

ψθ(bθ(a))
·

This proves the second equality of the Proposition.

Since we will also be dealing with super-critical trees, there is always the positive proba-
bility that in the Poisson process of trees an infinite tree arises, which will be grafted onto the
process, effectively making it infinite and thus outgrowing height h. In the next proposition,
we will compute the conditional distribution of overshooting time Ah , given A. Note that we
always have A ≤ Ah .
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Proposition 3.31. Let ψ be a critical branching mechanism with θ∞ < 0 and satisfying Assump-
tions 1 and 2. For θ∞ < θ0 < θ and θ0 < 0 (that is ψθ0 super-critical), we have, with θ̂ = θ̄0−θ0+θ:

Nψ[Ah ≥ θ|A = θ0] = 1−ψ′(θ̂)ψθ̂

(
bθ̂(h)

)∫ +∞

bθ̂(h)

dr

ψθ̂(r )2 ,

Nψ[Ah = A|A = θ0] =ψ′(θ̄0)ψθ̄0

(
bθ̄0 (h)

)∫ +∞

bθ̄0 (h)

dr

ψθ̄0
(r )2 ·

Since ψθ̄0
is sub-critical, we have ψ′(θ̄0) > 0 and ψθ̄0

(r ) ∼ rψ′(θ̄0) when r goes down to 0.

Since limh→+∞ bθ̄0 (h) = 0, we deduce that:

lim
h→+∞

Nψ[Ah = A|A = θ0] = 1.

This has a straightforward explanation. If h is very large, with high probability the process
up to A will not have crossed height h, so that the first jump to cross height h will correspond
to the grafting time of the first infinite tree which happens at the ascension time A.

We also deduce from (3.47) that:

Nψ[Ah = A|A = θ0] =ψ′(θ̄0)ψθ0

(
bθ0 (h)

)∫ +∞

bθ0 (h)

dr

ψθ0 (r )2 · (3.51)

Proof. We use the notation Z θ
h =Zh(T θ) and Zh =Zh(T 0). We have:

Nψ[Ah ≥ θ|A = θ0] =Nψ[Z θ
h > 0|A = θ0] =Nψ[Z A+(θ−θ0)

h > 0|A = θ0]

=ψ′(θ̄0)Nψ
[
σ01

{Z
(θ−θ0)
h >0}

e−ψ(θ0)σ0

]
=ψ′(θ̄0)Nψθ̄0

[
σ01

{Z
(θ−θ0)
h >0}

]
=ψ′(θ̄0)Nψ

[
σθ̄0

1
{Z

θ̄0+(θ−θ0)
h >0}

]
=ψ′(θ̄0)Nψ

[
σθ̄0

1
{Z θ̂

h >0}

]
,

where we used (2) of Theorem 3.24 for the third equality, Girsanov formula (3.27) for the
fourth and the homogeneity property of Theorem 3.22 in the fifth. We now condition with
respect to T θ̂ . The indicator function being measurable, the only quantity left to compute is
the conditional expectation of σθ̄0

given T θ̂ . Thanks to Lemma 3.23, the fact that θ̂ > 0 and
the homogeneity property, we get:

Nψ[Ah ≥ θ|A = θ0] =ψ′(θ̂)Nψ
[
σθ̂1

{Z θ̂
h >0}

]
=ψ′(θ̂)Nψθ̂

[
σ1{Zh>0}

]
.

Using that Nψθ̂ [σ] = 1/ψ′(θ̂), which can be deduced from (3.25), we get:

Nψ[Ah ≥ θ|A = θ0] =ψ′(θ̂)Nψθ̂ [σ]−ψ′(θ̂)Nψθ̂

[∫ h

0
Zad a1{Zh=0}

]
= 1−ψ′(θ̂)

∫ h

0
d a lim

λ→∞
Nψθ̂

[
Zae−λZh

]
.
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3. Pathwise construction of the pruning process

Now, conditioning by Za and using limλ→∞ uθ̂(h − t ,λ) = bθ̂h(t ) as well as (3.23), we get:

lim
λ→∞

Nψθ̂

[
Zae−λZh

]
= lim
λ→∞

Nψθ̂

[
Zae−Za uθ̂(h−a,λ)

]
=Nψθ̂

[
Zae−Za bθ̂h (a)

]
= ∂λuθ̂(s,bθ̂h(a)).

Then use (3.45) to get:∫ h

0
d a lim

λ→∞
Nψθ̂

[
Zae−λZh

]
=

∫ h

0
d a ∂λuθ̂(s,bθ̂h(a)) =ψθ̂(bθ̂(h))

∫ h

0
d a

|∂hbθ̂(h −a)|
ψθ̂(bθ̂(h −a))2

=ψθ̂(bθ̂(h))
∫ +∞

bθ̂(h)

dr

ψθ̂(r )2 ,

and thus deduce the first equality of the Proposition. Notice
∫ +∞ dr /ψθ(r )2 < +∞ thanks

to Assumption 2 (in fact this is true in general). Let θ go down to θ0 and use the fact that
Nψ-a.e. A ≤ Ah to get the second equality.

Remark 6. In the quadratic case ψ(u) = βu2, we can obtain closed formulæ. For all θ > 0, we
have:

uθ(t ,λ) = 2θλ

(2θ+λ)exp(2βθt )−λ and bθ(t ) = 2θ

e2βθt −1
·

We have the following exact expression of the conditional distribution for θ0 < θ, θ0 < 0 and with
θ̄0 = |θ0| = −θ0 and θ̂ = θ+2|θ0|:

Nψ[Ah ≥ θ|A = θ0] = 1+ (βθ̂h)/sinh2(βθ̂h)−cotanh(βθ̂h),

Nψ[Ah = A|A = θ0] =βθ0h/sinh2(βθ0h)−cotanh(βθ0h).

Notice that limθ0→−∞Nψ[Ah = A|A = θ0] = 1. This corresponds to the fact that if A is large, then
the tree TA is small and has little chance to cross level h. (Notice that TA has finite height but TA−
has infinite height.) Thus the time Ah is equal to the time when an infinite tree is grafted, that is to
the ascension time A.

Distribution of the tree at the exit time

Before stating the theorem describing the tree before it overshoots a given height h > 0 under
the form of a spinal decomposition, we shall explain how this spine is distributed. Recall
(3.46) for the definition of γθ .

Lemma 3.32. Let ψ be a critical branching mechanism satisfying Assumptions 1 and 2. Let θ ∈Θψ.
The non-negative function

f : t 7→ γθ(bθh(t ))exp
(
−

∫ t

0
γθ(bθh(r ))dr

)
(3.52)

is a probability density on [0,h) with respect to Lebesgue measure. If ξ is a random variable whose
distribution is f , then we have E[exp(−ψ′(θ)ξ)] <+∞.

Notice the integrability property on ξ is trivial if θ ≥ 0.
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3.4. Application to overshooting

Proof. Notice that f = g ′e−g with g (t ) = ∫ t
0 γθ(bθh(r )) dr . Thus we have∫ h

0
f =

∫ h

0
g ′e−g = e−g (0) −e−g (h)

and f is a density if and only if g (h) =∞. We deduce from (3.50) that
∫ t

0 γθ(bθh(r ))dr diverges
as t goes to h. The last part of Proposition 3.30 implies that e−ψ

′(θ)ξ is integrable.

Recall Equation (3.5) defining the grafting procedure.

Theorem 3.33. Let ψ be a critical branching mechanism satisfying Assumptions 1 and 2. Let
θ∞ < θ and let F be a non-negative measurable functional on T2. Then, we have:

Nψ
[
F (TAh ; TAh−)|Ah = θ]

= 1

E
[
e−ψ′(θ)Hx

] E
[

F
(
�;,x�~i∈I (T i , xi ) ; (�;,x�~i∈I (T i , xi ))~ (T,x)

)
e−ψ

′(θ)Hx

]
,

where the spine �;,x� is identified with the interval [0, Hx] (and thus y ∈ �;,x� is identified with
Hy ) and:

• The random variable Hx is distributed with density given by (3.52).

• Conditionally on Hx, sub-trees are grafted on the spine [0, Hx] according to a Poisson point
measure N =∑

i∈I δ(xi ,T i ) on [0, Hx]×T with intensity:

νθ(d a,dT ) = d a
(
2β(θ+bθh(a))Nψθ [dT , Hmax(T ) < h −a]

+
∫

(0,+∞)
rΠθ+bθh (x)(dr )Pψθ

r (dT , Hmax(T ) < h −a)
)
. (3.53)

• Conditionally on Hx and on N , T is a random variable on T with distribution

Nψθ [dT |Hmax(T ) > h −Hx].

In other words, conditionally on {Ah = θ}, we can describe the tree before overshooting
height h by a spinal decomposition along the ancestral branch of the point at which the
overshooting sub-tree is grafted. Conditionally on the height of this point, the overshooting
tree has distribution Nψθ [dT ], conditioned on overshooting.

If θ > 0 then ψ′(θ) > 0, and we can understand the weight e−ψ
′(θ)Hx /E

[
e−ψ

′(θ)Hx

]
as a

conditioning of the random variable Hx to be larger than an independent exponential random
variable with parameter ψ′(θ).

Remark 7. When h goes to infinity, we have, for θ ≥ 0, limh→+∞ bθ(h) = 0 and thus the
distribution of Ah concentrates on Θψ∩ (−∞,0). For θ < 0 and θ ∈ Θψ, we deduce from (3.47)
that limh→+∞ bθ(h) = θ̄− θ > 0. And the distribution of ξ in Lemma 3.32 clearly converges
to the exponential distribution with parameter γθ(bθ(+∞)) = ψ′(θ̄)−ψ′(θ). Then the weight

e−ψ
′(θ)Hx /E

[
e−ψ

′(θ)Hx

]
changes this distribution. In the end, Hx is asymptotically distributed as

an exponential random variable with parameter ψ′(θ̄). Notice this is exactly the distribution of the
height of a random leaf taken in TA , conditionally on {A = θ}, see Lemma 7.6 in [ADH12].
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3. Pathwise construction of the pruning process

Remark 8. A direct application of Theorem 3.33 with F (T ;T ′) chosen equal to

G(T ;T ′) = 1{mT (T )<+∞,mT ′ (T ′)=+∞}, (3.54)

allows to compute for θ < 0:

Nψ[A = Ah |Ah = θ] = (
ψ′(θ̄)−ψ′(θ)

) C (θ,h)

ψ′(θ̄)−ψ′(θ)C (θ,h)
,

where C (θ,h) = ψ′(θ̄)ψθ(bθ(h))
∫ +∞

bθ(h) dr ψθ(r )−2 = Nψ[A = Ah |A = θ]. The last equality is a
consequence of (3.51). As limh→+∞Nψ[A = Ah |A = θ] = 1, we get that

lim
h→+∞

Nψ[A = Ah |Ah = θ] = 1.

Remark 9. By considering the function G in (3.54) instead of F in the proof of Theorem 3.33, we
can recover the distribution of TA given in [ADH12], but we also can get the joint distribution of
(TA−,TA). Roughly speaking (and unsurprisingly), conditionally on {A = θ}, TA− is obtained from
TA by grafting an independent random tree T on a independent leaf x chosen according to mTA (d x)
and the distribution of T is Nψθ [dT, Hmax(T ) =+∞]. Notice that choosing a leaf at random on
TA gives that the distribution of TA is a size-biased distribution of Nψθ [dT ].

Proof of Theorem 3.33. Thanks to the compensation formula (3.41), we can write, if g is any
measurable functional R 7→ R+ with support in (θ∞,+∞):

Nψ[F (TAh ; TAh−)g (Ah)]

=Nψ
[∑

j∈J
1{Hmax(Tθ j )<h}F (Tθ j ; Tθ j ~ (T j , x j ))g (θ j )1{Hx j +Hmax(T j )>h}

]

=
∫
Θψ

dθ g (θ)B(θ,h),

where, using the homogeneity property and the Girsanov transformation (3.28):

B(θ,h) =Nψ
[

1{Hmax(Tθ)<h}

∫
mTθ (d x)

∫
Nψθ [dT ]F (Tθ ; Tθ~ (T, x))1{Hx+Hmax(T )>h}

]
=Nψθ

[
1{Hmax(T )<h}

∫
mT (d x)

∫
Nψθ [dT ]F (T ; T ~ (T, x))1{Hx+Hmax(T )>h}

]
=Nψθ̄

[
1{Hmax(T )<h}

∫
mT (d x)

∫
Nψθ [dT ]F (T ; T ~ (T, x))1{Hx+Hmax(T )>h}

]
.

Notice we only replaced Nψθ by Nψθ̄ in the last equality.
We explain how the term 1{Hmax(T )<h} changes the decomposition of T according to

the spine given in Theorem 3.16. Let Φ a non-negative measurable function defined on
[0,+∞)×T and ϕ a non-negative measurable function defined on [0,+∞). Using Theorem
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3.16 and notations therein, we get:

Nψθ̄

[∫
mT (d x) ϕ(Hx )e−〈Mx ,Φ〉1{Hmax(T )<h}

]
=

∫ ∞

0
d a ϕ(a)e−ψ

′
θ̄

(0)a
E

[
e−

∑
i∈I 1{zi ≤a}Φ(zi ,T̄ i )

∏
i∈I ,zi≤a

1{Hmax(T̄ i )<h−zi }

]

=
∫ h

0
d a ϕ(a) exp

(
−ψ′(θ̄)a −

∫ a

0
d x Nψθ̄

[
1−e−Φ(x,T )1{Hmax(T )<h−x}

])
.

Using the definition of Nψθ̄ , see (3.40), (3.46) and the Girsanov transformation (3.28), we get:

Nψθ̄

[
1−e−Φ(x,T )1{Hmax(T )<h−x}

]
= γθ̄

(
Nψθ̄

[
1−e−Φ(x,T )1{Hmax(T )<h−x}

])
= γθ̄

(
bθ̄(h −x)+Nψθ

[(
1−e−Φ(x,T )

)
1{Hmax(T )<h−x}

])
.

Thanks to (3.46) and (3.47), we have for λ≥ 0:

γθ̄(bθ̄(h −x)+λ) = γθ+bθ(h−x)(λ)+γθ(bθ(h −x))+ψ′(θ)−ψ′(θ̄).

Take λ=Nψθ
[(

1−e−Φ(x,T )
)

1{Hmax(T )<h−x}
]
, to deduce that:

Nψθ̄

[∫
mT (d x) ϕ(Hx )e−〈Mx ,Φ〉1{Hmax(T )<h}

]
=

∫ h

0
d a ϕ(a) exp

(
−ψ′(θ)a −

∫ a

0
d x γθ(bθ(h −x))

)
exp

(
−

∫ a

0
d x γθ+bθ(h−x)

(
Nψθ

[(
1−e−Φ(x,T )

)
1{Hmax(T )<h−x}

]))
=

∫ h

0
d a ϕ(a) exp

(
−ψ′(θ)a −

∫ a

0
d x γθ(bθ(h −x))

)
E
[

e−
∑

i∈I 1{zi ≤a}Φ(zi ,T̃ i )
]

,

where under E,
∑

i∈I δ(zi ,T̃ i )(d z,dT ) is a Poisson point measure on [0,h]×T with intensity
νθ in (3.53). Since Laplace transforms characterize random measure distributions, we get that
for any non-negative measurable function F̃ , we have:

Nψθ̄

[∫
mT (d x)F̃ (Hx ,Mx )1{Hmax(T )<h}

]
=

∫ h

0
d a e−ψ

′(θ)a−∫ a
0 d x γθ(bθ(h−x))E

[
F̃

(
a,

∑
i∈I

1{zi≤a}δ(zi ,T̃ i )

)]
.

If we identify the spine �;, x� (with its metric) to the interval [0, Hx ] (with the Euclidean
metric), we can use this result to compute B(θ,h) with:

F̃ (Hx ,Mx ) =
∫

Nψθ [dT | Hx +Hmax(T ) > h]F (T ; T ~ (T, x)),
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3. Pathwise construction of the pruning process

Mx = ∑
i∈Ix

δ(Hxi ,T i ) and T = [0, Hx ]~i∈Ix (T i , Hxi ). Since Nψθ [Hmax(T ) > h] = γθ(bθ(h)),
we have:

γθ(bθ(h −Hx ))F̃ (Hx ,Mx ) =
∫

Nψθ [dT ]F (T ; T ~ (T, x))1{Hx+Hmax(T )>h}.

Therefore, we have:

B(θ,h) =Nψθ̄

[
1{Hmax(T )<h}

∫
mT (d x)

∫
Nψθ [dT ]F (T ; T ~ (T, x))1{Hx+Hmax(T )>h}

]
=

∫ h

0
d a γθ(bθ(h −a))e−ψ

′(θ)a−∫ a
0 d x γθ(bθ(h−x))E

[
F̃

(
a,

∑
i∈I

1{zi≤a}δ(zi ,T̃ i )

)]
.

Thus, we get:

Nψ[F (TAh ; TAh−)g (Ah)]

=
∫
Θψ

dθ g (θ)
∫ h

0
d a γθ(bθ(h −a))e−ψ

′(θ)a−∫ a
0 d x γθ(bθ(h−x))

E

[
F̃

(
a,

∑
i∈I

1{zi≤a}δ(zi ,T̃ i )

)]
.

Then use the distribution of Ah under Nψ given in Proposition 3.30 to conclude.
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CHAPTER 4

Fluctuations for the number of records on
CRT subtrees

Introduction

The Continuum Random Tree (CRT) is a random metric measure space, introduced by Aldous
([Ald91a, Ald93]) as a scaling limit of various discrete random tree models. In particular, if we
consider µ, a critical probability measure on N, with variance 0 <σ2 <∞ and if we consider
a random Galton-Watson tree Tn with offspring distribution µ, conditioned on having n
vertices, then we have the following convergence in distribution:

lim
n→∞

σp
n

Tn =T , (4.1)

in the sense of Gromov-Hausdorff convergence of compact metric spaces (see for instance
[DL05] for more information about the Gromov-Hausdorff topology), where T is a CRT. The
family of conditioned Galton-Watson trees turns out to be quite large, since it contains for
instance uniform rooted planar binary trees (take µ(0) =µ(2) = 1/2) or uniform rooted labelled
trees (Cayley trees, take µ(k) = e1/k !, k ≥ 0). There is a combinatorial characterization of
conditioned Galton-Watson trees: they correspond to the class of so-called simply generated
trees (see [Jan12] for a detailed survey).

In their 1970 paper ([MM70]), Meir and Moon considered the problem of isolating the
root through uniform cuts in random Cayley trees. The problem is as follows: start with a
rooted discrete tree Tn , having exactly n edges (in our context, rooted means that, among
the n +1 vertices of Tn , one has been distinguished). At each step, remove an edge, selected
uniformly among all edges, then discard the connected component not containing the root.
This procedure is iterated on the remaining tree until the root is the only remaining vertex.
The number X (Tn) of cuts that is needed to isolate the root is random, with values in �1,n�.
Meir and Moon showed that when Tn is a uniform Cayley tree with n edges,

E[X (Tn)] ∼
p
πn/2 and Var(X (Tn)) ∼ (2−1/π)n.

Later, the limiting distribution was found to be the Rayleigh distribution (the distribution
on [0,∞) with density x exp(−x2/2)d x) by Panholzer for (a subset of) the class of simply
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4. Fluctuations for the number of records

generated trees ([Pan06]) and, using a different proof, by Janson for the class of critical,
finite-variance, conditioned Galton-Watson trees ([Jan06]).

In [Jan06], the distribution of the limiting Rayleigh variable was obtained using a moment
problem, but the question arose whether it had a connection with the convergence (4.1) above.
Indeed, it is well-known that the distance from the root to a uniform leaf of the CRT is
Rayleigh-distributed. As a consequence, several approaches were used to describe a cutting
procedure on the CRT that could account for the convergence of X (Tn)/

p
n. All these works

are relying on the Aldous-Pitman fragmentation of the CRT, first described in ([AP98a]).
We will give below a brief descriptions of this procedure, as it will be central in this work.
Using an extension of the Aldous-Broder algorithm, Addario-Berry, Broutin and Holmgren
described a fragmentation-reconstruction procedure for Cayley trees and its analog for the
CRT. The invariance they prove shows that the limiting random variable in Janson’s result
can indeed be realized as the height of a uniform leaf in a CRT. However, it is not the
same CRT as the one arising from the scaling limit of Tn/

p
n. Indeed, the random variables

n−1/2Tn and n−1/2X (Tn) do not converge jointly to a CRT T and the height of a random leaf
H(T ). Bertoin and Miermont ([BM12]) describe the so-called cut-tree cut(T ) of a given CRT
T following the genealogy of fragments in the Aldous-Pitman fragmentation. The limiting
variable can then be described as the height of a uniform leaf in cut(T ), which is again a
CRT, thus recovering Rayleigh distribution.

Following Abraham and Delmas ([AD11]), we shall use a different point of view, based on
the theory of records of Poisson point processes. We shall now review some of their results,
in order to set the notations and to describe the framework.

The Brownian CRT

In this section, we shall recall some basic facts about the Brownian CRT. For details, see
[Ald91a, DL05, Eva08]. We will write T for the set of (pointed isometry classes of) compact,
rooted real trees endowed with a finite Borel measure. Recall that real trees are metric spaces
(X ,d) such that

(i) For every s, t ∈ X , there is a unique isometric map fs,t from [0,d(s, t )] to X such that
fs,t (0) = s and fs,t (d(s, t )) = t . The image of fs,t is noted �s, t�.

(ii) For every s, t ∈ X , if q is a continuous injective map from [0,1] to X such that q(0) = s
and q(1) = t , then q([0,1]) = fs,t ([0,d(s, t )]).

There exists a metric on T that makes it a Polish metric space, but we will not attempt to
describe it here. For more details, see [ADH13a, Eva08].

The Brownian CRT (or Aldous’s CRT) is a random element of T, defined using the so-
called contour process description: if f is a continuous nonnegative map f : [0,σ] → R+, such
that f (0) = f (σ) = 0, then the real tree encoded by f is defined by T f = [0,σ]/∼ f , where ∼ f is
the equivalence relation

x ∼ f y ⇔ f (x) = f (y) = min
u∈[x∧y,x∨y]

f (u), x, y ∈ [0,σ].
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The metric on T f is defined by

d f (x, y) = f (x)+ f (y)−2 min
u∈[x∧y,x∨y]

f (u), x, y ∈ [0,σ],

so that d f (x, y) = 0 if and only if x ∼ f y . Hence, d f is definite-positive on T f and defines a
true metric. It can be checked (see [DL05]) that (T f ,d f ) is indeed a real tree. We define the
mass-measure mT f (d s) on T f as the image of Lebesgue measure on [0,σ] by the canonical
projection [0,σ] → T f . Thus, mT f is a finite measure on T f , with total mass mT f (T f ) = σ.
When the context is clear, we will usually drop the reference to the tree and write m for the
mass-measure mT .

Now, the Brownian Continuum Random Tree (CRT) corresponds to the real tree encoded
by f = 2Bex, twice the normalized Brownian excursion. Since the length of the normalized
Brownian excursion is 1 a.s., the CRT has total mass 1, i.e. the mass measure m is a probability
measure. The distribution of the CRT will be noted P, or sometimes P(1) if we want to
emphasize the fact that m has mass 1. Sometimes, we will consider scaled versions of the
CRT. If r > 0, we consider the scaled Brownian excursion

Bex,r
t =p

r Bex
t/r , t ∈ [0,r ]

and the associated real tree T2Bex,r , whose distribution will be noted P(r ). Note that the
transformation above corresponds to rescaling all the distances in a P(1)-distributed tree by a
factor

p
r .

The measure m is supported by the set of leaves of T , which are the points x ∈ T such
that T \{x} is connected. There is another natural measure ` defined on the CRT, called length
measure, which is σ-finite and such that `(�x, y�) = d(x, y). Also, the CRT is rooted at one
particular vertex ;, which is the equivalence class of 0, but it can be shown (see Proposition
4.8 in [DL05]) that if x is chosen according to m, then, if T x is the tree T re-rooted at x,
(T ,x) has same distribution as (T x,;).

When we consider the real tree T encoded by 2B , where B is an excursion of Brownian
motion, distributed under the (σ-finite) excursion measure N, we get that T is a compact
metric space, with a length measure ` and with a finite measure m. We will write σ for the
(random) total mass of m. Under N, σ is distributed as the length of a random excursion of
Brownian Motion, that is

N[σ≥ t ] =
√

2

πt
.

The Brownian CRT can be seen as a conditioned version of the tree distributed as N[dT ], in
the sense that, if F is some nonnegative measurable functional defined on the tree space T,
then

N[F (T )] =
∫ ∞

0

dσp
2π σ3/2

E(σ)[F (T )].

In the sequel, we shall make use of this disintegration of N, since some computations are
easier to do under N (see Proposition 4.5).
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The Aldous-Pitman fragmentation

Given a CRT T , we consider a Poisson point process

N (d s,d t ) = ∑
i∈I
δ(si ,ti )(d s,d t )

on T ×R+, with intensity `(d s)⊗d t . We will sometimes refer to N as the fragmentation
measure. If (si , ti ) is an atom of N , we will say that the point si was marked at time ti . For
t ≥ 0, we can consider the connected components of T separated by the atoms of N (·×[0, t ]).
They define a random forest Ft of subtrees of T . Aldous and Pitman proved that if we
consider the trees (Tk (t ),k ≥ 1) composing Ft , ranked by decreasing order of their mass,
then the process

((m(T1(t )),m(T2(t )), . . . ), t ≥ 0)

is a binary, self-similar fragmentation process, with index 1/2 and erosion coefficient 0, ac-
cording to the terminology later framed by Bertoin ([Ber02]).

Separation times

In order to give a continuous analogue to the cutting procedure on discrete trees described
above, we will use the Aldous-Pitman fragmentation on the CRT. Given a CRT T and a
fragmentation measure N , we will define, for any s ∈T , the separation time from the root ;
by

θ(s) = inf {t ≥ 0, N (�;, s�× [0, t ]) ≥ 1},

with the convention inf; = +∞. This separation process will be our main object of study.
Note that, under the definition above, conditionally on T , θ(;) =∞ a.s., and θ(s) <∞ a.s.
for all s 6= ;, since θ(s) is then exponentially distributed with parameter `(�;, s�) = d(;, s).
Note also that θ(s) →∞ when s →;, which justifies our convention for θ(;).

It is also possible to define the separation process started from any q ≥ 0, rather than
from infinity. In order to do this, we consider only the marks whose t-component is smaller
than q :

θ(s) = inf {0 ≤ t ≤ q, N (�;, s�× [0, t ]) ≥ 1}, (4.2)

with the convention inf; = q . Note that, under this definition, we always have θ(;) = q , as
well as limθ(s)s→; = q a.s. In the case where q = ∞, we recover the same distribution as
the separation process defined earlier. The (quenched) distribution of the separation process
started at q ∈ [0,∞] on a given CRT T will be noted PT

q .

We will also note P(r )
q the (annealed) distribution of the process (θ(s), s ∈ T ) started at

q ∈ [0,∞], when T is distributed as a Brownian CRT with mass r > 0:

P
(r )
q =

∫
T
P(r )(dT ) PT

q .

Again, to keep things simple, we will usually work under P∞ = P(1)∞ . The jump points of the
separation process correspond to points s marked by the fragmentation measure at a time t
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where they belong to the connected component of the root. This implies that they accumulate
in the neighbourhood of the root if q =∞. If T is a subtree of T , we note X (T ) the number
of jumps of the separation process on T . This number can be finite or infinite, according to
whether T contains the root or not, in the case q =∞.

Linear record process

One can consider the record process on the real line (i.e. when T = R+), defined using a
Poisson point measure with intensity d s ⊗d t . We get, for any q ∈ (0,∞], a random process
(θ(s), s ≥ 1) such that θ(0) = q , PR+

q -a.s. The distribution of this process will be noted

Pq =PR+
q . We can consider the jump process

X t =
∑

s∈[0,t ]
1{θ(s−)>θ(s)},

counting the number of jumps of θ on [0, t ]. It should be noted that if q =∞, then θ jumps
infinitely often in the neighbourhood of the root, so that a.s. X t =∞ for any t > 0. It is easy
to check that, for any bounded, measurable functional g defined on [0, q], we have

Eq
[
g (θ(s))

]= e−qs g (q)+
∫ q

0
g (x)se−sx d x.

In particular,

Eq [θ(s)] = 1−e−qs

s
. (4.3)

When q <∞, if t ≥ 0, and conditionally on θ(t ) = q ′, the next jump of θ can be seen to be
equal to inf {s ≥ t , N ([0, q ′], [t , s]) ≥ 1}, which is exponentially distributed, with parameter q ′.
Thus, X is the counting process of a point measure on R+ with intensity θ(s)d s. Elementary
properties of counting processes of point measures (see [AD11] for more details) then show
that, for any q ∈ (0,∞), the processes(

Nt = X t −
∫ t

0
θ(s) d s, t ≥ 0

)
(4.4)(

N 2
t −

∫ t

0
θ(s) d s, t ≥ 0

)
(4.5)(

N 4
t −3

(∫ t

0
θ(s) d s

)2

−
∫ t

0
θ(s) d s, t ≥ 0

)
(4.6)

are Pq -martingales in the natural filtration of θ.

Number of records on subtrees

Given a CRT T , let (xn , n ≥ 1) be an iid sequence of leaves of T , sampled according to
m. If n ≥ 1, we consider Tn , the subtree spanned by the leaves (;,x1, . . . ,xn). The tree
Tn is a random rooted binary tree with edge-lengths, whose distribution is explicitly known
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4. Fluctuations for the number of records

(see [Ald93]). Its length Ln = `(Tn) is known to be distributed according to the Chi(2n)-
distribution, that is

P(Ln ∈ d x) = 21−n

(n −1)!
x2n−1 exp(−x2/2)1{x>0}. (4.7)

Note that the case n = 1 gives a Rayleigh distribution, as was mentioned earlier. It is proven
in [AD11] that, a.s.:

lim
n→∞

Lnp
2n

= 1. (4.8)

The tree Tn has exactly 2n −1 edges. The edge adjacent to the root will be noted �;, s;,n�,
where s;,n is the first branching point in Tn ; the height of s;,n is noted h;,n = `(�;, s;,n�). Re-
call from Proposition 5.3 in [AD11] that

p
nh;,n converges in distribution to a nondegenerate

random variable, and that we have the following moment computation, for α>−1:

E
[
hα;,n

]= Γ(α+1)

2α/2

Γ(n −1/2)

Γ(n +α/2−1/2)
∼n→∞ Γ(α+1)2−α/2n−α/2. (4.9)

We will also use the notation T∗
n = (Tn \ �;, s;,n�)∪ {s;,n} for the subtree above the lowest

branching point in Tn . When a new leaf xn is sampled, it gets attached to the tree Tn−1

through a new edge, that connects to Tn−1 at the vertex sn ∈ Tn−1. We write

Bn = (Tn \ Tn−1)∪ {sn} = �sn ,xn�.

The quantity X ∗
n is the continuum counterpart of the edge-cutting number X (Tn) that can

be found in the literature. Indeed, as soon as a jump appears on the first edge �;, s;,n�, all
subsequent jumps will be on this edge, even closer to the root. Thus, X ∗

n can be seen as
the number of cuts before the first cut on �;, s;,n� was made. In some sense, the first mark
appearing on �;, s;,n� is analog to the last cut needed to isolate the root in the discrete case.

The following theorem is the analog of the convergence (in distribution) that can be found
in [Jan06] X (Tn)/

p
n → R, where R is Rayleigh-distributed. We will write Θ for the mean

separation time
∫
T θ(d s)m(d s).

Theorem ([AD11]). We have P∞-a.s:

lim
n→∞

X ∗
np

2n
=Θ. (4.10)

Furthermore, under P∞, Θ has Rayleigh distribution.

Note that T∗
n has 2n − 2 edges, so that the rescaling is

p
2n. In comparison, Janson

considers random trees with n edges, which explains the difference between the two results.
It should be noted that Abraham and Delmas show a slightly more general result, since they
consider scaled versions of the CRT, proving the result under all the measures P(r )∞ , r > 0.
While our main result, Theorem 4.1 below is still true in these cases, we restrict ourselves to
the case of Aldous’s tree (r = 1) for convenience.

The purpose of this work is to investigate the fluctuations of X ∗
n /

p
2n around its limit Θ.

It is shown in Theorem 4.1, which is the main result of this work, that these fluctuations are
typically of the order n1/4.
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4.1. Variance in the weak convergence of length measure to mass measure

Theorem 4.1. Under P∞, we have the following convergence in distribution:

lim
n→∞n1/4

(
X ∗

np
2n

−Θ
)
= Z , (4.11)

where Z is a random variable which is, conditionally on Θ, distributed according to

E(1)
∞

[
e i t Z

∣∣∣Θ]
= e−t 2Θ/

p
2. (4.12)

In other words, Z is distributed as 21/4
p
ΘG , where G is an independent standard normal

random variable. As Θ is Rayleigh-distributed under E(1)∞ , the Laplace transform (4.12) can be
explicitly computed, but does not correspond to any known distribution.

The proof of Theorem 4.1 will be carried out in two steps: we write(
X ∗

np
2n

−Θ
)
= 1p

2n

(
X ∗

n −
∫

T∗
n

θ(s)`(d s)

)
+

(
1p
2n

∫
T∗

n

θ(s)`(d s)−Θ
)

. (4.13)

In Section 1, we will show that, when averaging over T , the variance arising from the random
choice of the leaves (xn , n ≥ 1) does not bring any significant contribution to (4.11). We
prove this by decomposing T conditionally on its subtree Tn and by proving a general
disintegration formula (Lemma 4.5). Therefore, the second term in (4.13) converges to 0 when
suitably renormalized.

In Section 2, we prove Theorem 4.1 by showing that, when properly rescaled, the differ-
ence (X ∗

n − ∫
T∗

n
θ(s)m(d s)) is asymptotically normally distributed (Proposition 4.4). This is a

consequence of the classical martingale convergence theorems of [HH80].
In the Appendix, we collect several technical lemmas.

4.1 Variance in the weak convergence of length measure to mass
measure

The main result of this section is Proposition 4.2.

Proposition 4.2. As n →∞, we have the following convergence in probability:

lim
n→∞n1/4

(∫
T∗

n

θ(s)
`(d s)p

2n
−Θ

)
= 0. (4.14)

Recall that, conditionally on T , we sample independent leaves (xn , n ≥ 1) with common
distribution m(dx). We will consider the filtration (Fn , n ≥ 1) defined by

Fn =σ ({(T1, . . . ,Tn), (θ(s), s ∈ Tn)}) , n ≥ 1.

A key step in the proof of the a.s. convergence of X ∗
n /

p
2n to Θ in [AD11] is the convergence

of Mn = E(1)∞ [Θ|Fn]. Since (Mn , n ≥ 1) is a closed L2 martingale, it converges P(1)∞ -a.s. (and in
L2) towards M∞ =Θ (notice that Θ is indeed F∞-measurable, since ∪n≥1Tn is dense in T ,
and since θ is continuous m-almost everywhere). The proof of Proposition 4.2 will be divided
in two. First, we prove the next proposition:

99



4. Fluctuations for the number of records

Proposition 4.3. We have the following convergence in probability:

lim
n→∞n1/4

(
1p
2n

∫
T∗

n

θ(s)`(d s)−E(1)
∞ [Θ|Fn]

)
= 0. (4.15)

Then, we prove a more precise statement than the convergence of E(1)∞ [Θ|Fn] towards Θ.

Proposition 4.4. We have
lim

n→∞n1/4 (
E(1)
∞ [Θ|Fn]−Θ)= 0, (4.16)

in probability, as n →∞.

Of course, Propositions 4.3 and 4.4 imply Proposition 4.2. Before we can prove Proposition
4.3, we need to describe more precisely how the marked tree (T ,θ) is distributed conditionally
on Fn .

Subtree decomposition

Given the subtree Tn , the set T \Tn is a random forest; let (Xi , i ∈ In) be the collection of its
connected components. For any connected component Xi of T \ Tn , there is a unique point
si ∈ Tn such that ⋂

x∈Xi

�;, x� = �;, si �.

For any i ∈ In , we will write Ti for the tree Xi ∪{si }, rooted at si ∈ Tn . We will sometimes use
the notation

En ={s ∈T , �;, s�∩T∗
n =;} (4.17)

= ⋃
i∈In , si∈�;,s;,n�

Xi

for the set of all vertices in the tree such that the unique path linking them to the root
intersects Tn on �;, s;,n�.

Many things are known about the distribution of the forest (Ti , i ∈ In). For instance,
Pitman pointed out (see [DGM06]) that the stickbreaking construction of the CRT in [Ald91a]
implied that the sequence (m(Ti ), i ∈ In), ranked in decreasing order, is distributed accord-
ing to the Poisson-Dirichlet distribution with parameters α = 1/2 and θ = n −1/2 (for more
background on Poisson-Dirichlet distributions, see [Pit06]). We will give another description,
focusing on the tree structure of T conditionally on Fn . This description can be seen as a
conditioned version of Theorem 3 in [Le 93b].

Lemma 4.5. Let F be a nonnegative functional on T×Tn . Then

E(1)
∞

[ ∑
i∈In

F (Ti , si )

∣∣∣∣∣Fn

]
=

∫ 1

0

e−L2
n v/(2−2v)

p
2πv3/2(1− v)3/2

d v
∫

Tn

`(d s)E(v)
θ(s)[F (T , s)]. (4.18)
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4.1. Variance in the weak convergence of length measure to mass measure

Proof. Let Y be a Fn-measurable random variable; let us compute E
(1)∞

[
Y

∑
i∈In

F (Ti , si )
]

.
In order to do this computation, we will perform a disintegration with respect to σ in the
following expression: for µ≥ 0,

I (µ) =N∞

[
Y

∑
i∈In

F (Ti , si )e−µσ
]

=N∞

[
Y

∑
i∈In

F (Ti , si )e−µσi e−µ
∑

j 6=i σ j

]
.

Using a Palm formula, we get:

=N∞
[∫

Tn

`(d s)Nθ(s)[F (T , s)e−µσ]exp

(
−

∫
Tn

`(d s)
∫ ∞

0

dup
2πu3/2

(1−e−µσ)

)]
=N∞

[
Y

∫
Tn

`(d s)Nθ(s)[F (T , s)e−µσ]e−Ln

p
2µ

]
,

since N[1− exp(−µσ)] = √
2µ. We can disintegrate the σ-finite measure Nθ(s) according to

the total mass σ:

I (µ) =N∞
[

Y
∫

Tn

`(d s)
∫ ∞

0

d vp
2πv3/2

E
(v)
θ(s)[F (T , s)e−µσ]e−Ln

p
2µ

]
=N∞

[
Y

∫
Tn

`(d s)
∫ ∞

0

d vp
2πv3/2

E
(v)
θ(s)[F (T , s)]e−µv

∫ ∞

0
Ln

drp
2πr 3

e−µr−L2
n /(2r )

]
,

using the well-known formula

ea
p

2s =
∫ ∞

0
e−sr ap

2πr 3
e−a2/2r dr,

for the Laplace transform of the density of the 1/2-stable subordinator (see for instance Chap-
ter III, Proposition (3.7) in [RY05]). By the Fubini-Tonelli theorem, we then get:

I (µ) =N∞
[

Y
∫

Tn

`(d s)
∫ ∞

0

d vp
2πv3/2

E
(v)
θ(s)[F (T , s)]e−µv

∫ ∞

v

Lne−µ(t−v) d tp
2π(t − v)3/2

e−L2
n /(2t−2v)

]
=

∫ ∞

0

e−µt d tp
2πt 3/2

N∞
[

Y
∫

Tn

`(d s)
∫ t

0

Ln t 3/2 d vp
2πv3/2(t − v)3/2

e−L2
n /(2t−2v)E

(v)
θ(s)[F (T , s)]

]
.

Now, we can use the scaling property of the marked tree (T ,θ) under N∞ and that the fact
the total mass σ has density d t/(

p
2πt 3/2) under N∞, to get that, for any Fn-measurable

random variable Y ,

E(1)
∞

[
Y

∑
i∈In

F (Ti , si )

]
=N∞

[
Y

1p
2π

∫ 1

0

Ln d v

v3/2(1− v)3/2
e−L2

n /(2−2v) ×
∫

Tn

`(d s)E(v)
θ(s)[F (T , s)]

]
.
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4. Fluctuations for the number of records

Now, recall the absolute continuity relation the distribution of Tn under N∞ and under E(1)∞
(Corollary 4 in [Le 93b]): for any measurable bounded functional G ,

E(1)
∞ [G(Tn)] =N∞

[
`(Tn)e−`(Tn )2/2G(Tn)

]
.

Since exp(−L2
n/(2−2v)) = exp(−L2

n/2) ·exp(−L2
n v/(2−2v)), we get:

E(1)
∞

[
Y

∑
i∈In

F (Ti , si )

]
= E(1)

∞
[

Y
1p
2π

∫ 1

0

d v

v3/2(1− v)3/2
e−L2

n v/(2−2v)
∫

Tn

`(d s)E(v)
θ(s)[F (T , s)]

]
.

Taking conditional expectations with respect to Fn gives the desired result.

Remark 10. Notice that if F (T , s) = m(T ), we find the striking identity

1p
2π

∫ 1

0

Lne−L2
n v/(2−2v)

v1/2(1− v)3/2
d v = 1. (4.19)

In other words, the function fa(v) = ae−a2v/(2−2v)/(
p

2πv1/2(1− v)3/2)) is a probability density on
(0,1) for any a > 0. This probability distribution has already been described in the context of the
Aldous-Pitman fragmentation: if a > 0, Aldous and Pitman show that it is the distribution of the
size of the fragment containing the root at time a. We refer to [AP98a, Ber06] for more information
on the “tagged fragment” process in self-similar fragmentations.

Proof of Proposition 4.3

We now have everything we need to prove Proposition 4.3.

Proof of Proposition 4.3. We will start from Lemma 7.4 in [AD11]: we have a.s. for n ≥ 1

−Rn ≤ E(1)
∞ [Θ|Fn]− 1

Ln

∫
T∗

n

θ(s) `(d s) ≤Vn , (4.20)

where we noted Vn = E(1)∞ [
∫
En
θ(s)m(d s)|Fn] (recall the definition of En in (4.17)) and where

Rn = exp(−L2
n/4)θ(h;,n)2/4. Furthermore, there P∞-a.s. exists a constant C > 0 such that

Rn ≤C n8e−L2
n /8.

Thus, considering that Ln/
p

2n converges a.s. to 1 (4.8), we get that n1/4Rn converges a.s. to
0. Therefore, we needn’t worry about the left-hand side of (4.20) and the only thing we need
to prove is that n1/4Vn converges in distribution to 0 as n →∞. The proof in [AD11] uses
a dominated convergence argument to show that Vn a.s. converges to 0, but we will need a
more precise estimate for Vn . By definition, using the notation

Θ(n)
i =

∫
Ti

θ(s) m(d s), i ∈ In ,
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4.1. Variance in the weak convergence of length measure to mass measure

we have

Vn = E(1)
∞

[∫
En

θ(s) m(d s)
∣∣∣Fn

]
= E(1)

∞

[ ∑
i∈In

Θi 1{si∈�;,s;,n�}

∣∣∣Fn

]
.

Using the disintegration formula from Lemma 4.5, we get:

Vn = 1p
2π

∫ 1

0

d v

v3/2(1− v)3/2
e−L2

n v/(2−2v)
∫
�;,s;,n�

E
(v)
θ(s)[Θ] `(d s).

Using the fact that θ(s) is, conditionally on Tn , exponentially distributed with parameter s,
we get:

E(1)
∞ [Vn |Tn] = 1p

2π

∫ 1

0

d v

v3/2(1− v)3/2
e−L2

n v/(2−2v)
∫ h;,n

0
d s

∫ ∞

0
se−stE

(v)
t [Θ] d t

≤ 1

2

∫ 1

0

d v

v3/2(1− v)3/2
e−L2

n v/(2−2v)
∫ h;,n

0
d s

(∫ v−1/2

0
st ve−st d t +

∫ ∞

v−1/2
s
p

ve−st d t

)
,

using the domination E(v)
q [Θ] ≤p

π/2min(qv,
p

v) (Lemma 4.12). For technical reasons, we will
restrict ourselves to the event {h;,n < 1/2}, but this will not be too restrictive, since h;,n → 0
a.s. Computing the integrals, we eventually get that E(1)∞ [Vn |Tn]1{h;,n<1/2} is dominated by

Wn =
(

1

2

∫ 1

0

d v

v1/2(1− v)3/2
e−L2

n v/(2−2v)
∫ h;,n

0

1−e−s/
p

v

s
d s

)
1{h;,n<1/2}.

We will use the domination (1−exp(−s))/s ≤ 1[0,1](s)+2/(s +1)1(1,∞)(s), which gives:

Wn ≤ 1

2

∫ 1

0

e−L2
n v/(2−2v)

v1/2(1− v)3/2
d v

(
h;,np

v
1{h;,n /

p
v≤1}

+
(
1+2log

(
h;,n/

p
v +1

2

))
1{h;,n /

p
v≥1}

)
1{h;,n<1/2}

=
(

1

2

∫ h2
;,n

0

e−L2
n v/(2−2v)

v1/2(1− v)3/2

(
1−2log2+2log

(
h;,np

v
+1

))
d v

)
1{h;,n<1/2} (4.21)

+
(

1

2

∫ 1

h2
;,n

e−L2
n v/(2−2v)

v1/2(1− v)3/2

h;,np
v

d v

)
1{h;,n<1/2}. (4.22)

As far as (4.21) is concerned, we can dominate exp(−αL2
n v/(1− v)) by 1 and (1− v)−3/2 by its

value at h2
;,n , i.e. (1−h2

;,n)−3/2 < (3/4)−3/2 to get:

(4.21)≤ 1

2(3/4)3/2

∫ h2
;,n

0

d vp
v

(
1−2log2+2log

(
h;,np

v
+1

))
1{h;,n<1/2} =C ·h;,n1{h;,n<1/2},
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4. Fluctuations for the number of records

where C is some deterministic constant. Concerning (4.22), we can bound 1/
p

v by 1/h;,n ,
to get:

(4.22)≤
(

1

Ln

∫ 1

h2
;,n

1

2

Lne−L2
n v/(2−2v)

v1/2(1− v)3/2
d v

)
1{h;,n<1/2}

≤
(

1

Ln

∫ 1

0

1

2

Lne−L2
n v/(2−2v)

v1/2(1− v)3/2
d v

)
1{h;,n<1/2} =

p
πp

2Ln
1{h;,n<1/2},

by equation (4.19). Putting things together, we get that P∞-a.s.

E(1)
∞ [Vn |Tn]1{h;,n<1/2} ≤C ·h;,n1{h;,n<1/2} +

p
πp

2Ln
. (4.23)

Now, n1/4h;,n1{h;,n<1/2} converges in L1 to 0 thanks to (4.9). Similarly, an easy moment
computation using (4.7) for the density of Ln shows that n1/4/Ln also converges in L1 to
0, so that the same is true for n1/4Vn1{h;,n<1/2}. Hence, n1/4Vn1{h;,n<1/2} converges to 0 in
probability. Since a.s. there is a (random) n0 ≥ 1 such that h;,n < 1/2 for any n ≥ n0, we also
get that n1/4Vn converges to 0 in probability. Combining this with the a.s. convergence to 0
for n1/4Rn , we indeed get a convergence in probability:

lim
n→∞n1/4

(
E(1)
∞ [Θ|Fn]− 1

Ln

∫
T∗

n

θ(s) `(d s)

)
= 0. (4.24)

To get the announced result, we still have to prove that

lim
n→∞n1/4

(
1

Ln
− 1p

2n

)∫
T∗

n

θ(s) `(d s) = 0. (4.25)

This is not difficult: simply write

n1/4
(

1

Ln
− 1p

2n

)∫
T∗

n

θ(s)`(d s) = n1/4
(
1− Lnp

2n

)(
1

Ln

∫
T∗

n

θ(s)`(d s)

)
.

Now, recall that 1/Ln
∫

T∗
n
θ(s)`(d s) converges to Θ P∞-a.s., hence in probability. Furthermore,

we can compute

n1/2E(1)
∞

[(
1− Lnp

2n

)2]
= n1/2E(1)

∞
(
1+ L2

n

2n
−2

Lnp
2n

)
,

Using the density (4.7) of Ln , we easily get that

E(1)
∞ [Ln] =p

2
Γ(n +1/2)

Γ(n)
; E(1)

∞
[
L2

n

]= 2n.

Therefore, after computations, we get n1/2E
(1)∞ [(1−Ln/

p
2n)2] ∼ 1/(8

p
n), so that in the end,

n1/4(1−Ln/
p

2n) converges to 0 in L2. This implies convergence in probability, hence the
convergence of (4.25).
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4.1. Variance in the weak convergence of length measure to mass measure

Rate of convergence in the Martingale Convergence Theorem

Before we can move on to Proposition 4.4, we are going to state a lemma that will be needed
in the proof.

Lemma 4.6. If 1 <α< 2, then, the sequence
∫

T∗
n
θ(s)α`(d s)/Ln is bounded in L1(P∞).

Proof. The main idea is that the measure `(d s)/Ln converges a.s. to the mass measure
m(d s), in the sense of weak convergence of probability measures on T . Since the function θ

is neither continuous nor bounded on T , we cannot use this fact directly, but it will be the
inspiration for the proof. We will compute the first moment of Zn = ∫

T∗
n
θ(s)α`(d s)/L∗

n , using
the notation L∗

n = `(T∗
n). Since θ(s) is, conditionally on T , exponentially distributed with

parameter `(�;, s�), we get

E(1)
∞ [Zn] = E(1)

∞
[∫

T∗
n

`(�;, s�)−α
`(d s)

L∗
n

]
= E(1)

∞
[∫

T
(d(;, s)−d(s,T∗

n))−α1T \En (s) m(d s)

]
,

where d(s,T∗
n) is the distance from the leaf s to the closed subtree T∗

n of T . The last equality
comes from the fact that if s is a leaf of T selected uniformly (according to m(d s)) among
all leaves of T \ En , then its projection π(s,Tn) on Tn is uniformly distributed (according to
length measure) on T∗

n . We will rewrite the last expression so as to make the leaves ;,x1, . . . ,xn

apparent. The set T \En can be written as

T \En = {s ∈T , �;,π(;,T∗
n)�∩�s,π(s,T∗

n)� =;}, (4.26)

since π(;,T∗
n) = s;,n . Note that T∗

n is actually the subtree spanned by the n leaves x1, . . . ,xn

and that its definition does not depend on ; or on s.
We then apply the fundamental re-rooting invariance of the Brownian CRT, which implies,

in this context, that when re-rooting T at s, the re-rooted tree T s is distributed as a CRT,
and the sequence (;,x1, . . . ,xn) is distributed as a sample of n+1 uniform leaves in T s . Thus,

E(1)
∞ [Zn] = E(1)

∞
[∫

T
(d(;, s)−d(s,T∗

n))−α1{�;,π(;,T∗
n )�∩�s,π(s,T∗

n )�=;}(s) m(d s)

]
= E(1)

∞
[∫

T
(d(;, s)−h;,n)−α1{�;,π(;,T∗

n )�∩�s,π(s,T∗
n )�=;}(s) m(d s)

]
,

since in the re-rooting, d(s,T∗
n) becomes d(;,T∗

n) = h;,n . Therefore, we get, using (4.26)
again,

E(1)
∞ [Zn] = E(1)

∞
[∫

T
(d(;, s)−h;,n)−α1T \En (s) m(d s)

]
= E(1)

∞
[∫

T (1)
n ∪T (2)

n

d(s;,n , s)−αm(d s)

]
,
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where T (1)
n and T (2)

n are the connected components of T \ (En ∪ {s;,n}), joined together by
their common root s;,n . We can now use the self-similarity property of the fragmentation at
heights of the Brownian CRT (see [Ber02]) which shows that, conditionally on σ(1)

n = m(T (1)
n )

and σ(2)
n = m(T (2)

n ), the trees T (1)
n and T (2)

n are rescaled copies of the Brownian CRT. Thus,

E(1)
∞ [Zn] = E(1)

∞
[∫

T (1)
n

d(s;,n , s)−αm(d s)

]
+E(1)

∞
[∫

T (2)
n

d(s;,n , s)−αm(d s)

]

= E(1)
∞

[∫
T (1)

n

(σ(1)
n )−α/2

(
d(s;,n , s)

(σ(1)
n )1/2

)−α
σ(1)

n
m(d s)

σ(1)
n

]

+E(1)
∞

[∫
T (2)

n

(σ(2)
n )−α/2

(
d(s;,n , s)

(σ(2)
n )1/2

)−α
σ(2)

n
m(d s)

σ(2)
n

]

= E(1)
∞

[(
(σ(1)

n )1−α/2 + (σ(2)
n )1−α/2)∫

T
d(;, s)−αm(d s)

]
,

using the scaling invariance of the Brownian CRT. Then, as 0 < 1 −α/2, we can simply
dominate (σ(1)

n )1−α/2 and (σ(1)
n )1−α/2 by 1 to get that

E(1)
∞ [Zn] ≤ 2 ·E(1)

∞
[∫

T
d(;, s)−αm(d s)

]
.

Now, since d(;, s) is Rayleigh-distributed under E(1)∞ , we easily see that it has moments of
order −α for any α< 2, which shows that E(1)∞ [Zn] is indeed bounded, ending our proof.

We can now turn to the proof of Proposition 4.4.

Proof of Proposition 4.4. Let Mn = E(1)∞ [Θ|Fn]. We will use the fact that

n1/4 (
Θ−E(1)

∞ [Θ|Fn]
)= n1/4

∞∑
k=n+1

E(1)
∞ [Mk −Mk−1|Fk−1]. (4.27)

Let ε> 0 be small enough, and consider the events

E 1
k = {Lk ≥ k1/2−ε} ; E 2

k = {k−2 ≤ h;,k ≤ 1/2}, k ≥ 1.

Recalling that L2
k is distributed as the sum of k independent exponential random variables

with parameter 1, a simple application of Chernoff’s inequality shows that

P∞
(
E 1

k

)≥ 1−k−εk . (4.28)

For E 2
k , we can use the moment estimation (4.9) for h;,k to find that, for any 0 ≤ α≤ 1, and

for any β> 0,

1−P∞
(
E 2

k

)=P∞
(
{h;,k > 1/2}∪ {h;,k < k−2}

)
≤P∞(h;,k > 1/2)+P∞

(
h−1
;,k ≥ k2

)
≤ 2βE(1)

∞
[

hβ;,k

]
+k−2αE(1)

∞
[

h−α
;,k

]
∼C ·k−β/2 +C ′ ·k−2αkα/2.
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Hence, by taking α= 1−η (and β> 3α), we get, for sufficiently large k,

P∞
(
E 2

k

)≥ 1−k−3/2+3/2η. (4.29)

Thus, combining equations (4.28) and (4.29), we get that∑
k≥1

P∞
((

E 1
k

)c ∪ (
E 2

k

)c
)
≤ ∑

k≥1
P∞

(
(E 1

k )c)+P∞
(
(E 2

k )c)<∞.

Thus, by the Borel-Cantelli lemma, there a.s. exists k0 ≥ 1 such that for k ≥ k0, Lk ≥ k1/2−ε

and k−2 ≤ h;,k ≤ 1/2. We will use this truncating events in the following way: since the event
Ek = E 1

k ∩E 2
k is Fk-measurable, the usual martingale computations show that

E(1)
∞

[(
n1/4

∞∑
k=n

(Mk −Mk−1)1Ek−1

)2]
= n1/2

∞∑
k=n

E(1)
∞ [(Mk −Mk−1)21Ek−1 ].

We will now give precise estimations of E(1)∞ [(Mk − Mk−1)2|Fk−1] using the disintegration
formula from Lemma 4.5. By definition, for all k ≥ 1, we can write

Θ=
∫
T
θ(s) m(d s) = ∑

i∈Ik

Θ(k)
i .

Then,

Mk = E(1)
∞ [Θ|Fk ]

= E(1)
∞

[ ∑
i∈Ik−1

Θ(k−1)
i

∣∣∣Fk

]
= E(1)

∞ [Θik |Fk ]+E(1)
∞

[ ∑
i∈Ik−1\{ik }

Θi

∣∣∣Fk

]
,

where ik is the unique index in Ik−1 such that xk ∈Tik . We then define:

Gk = E(1)
∞

[
Θ(k−1)

ik
|Fk

]
Hk = E(1)

∞
[ ∑

i∈Ik−1\{ik }
Θ(k−1)

i

∣∣∣Fk

]
−E(1)

∞
[ ∑

i∈Ik−1

Θ(k−1)
i

∣∣∣Fk−1

]
,

so that we have Mk −Mk−1 =Gk +Hk and

E(1)
∞

[
(Mk −Mk−1)2|Fk−1

]≤ 2E(1)
∞

[
G2

k |Fk−1
]+2E(1)

∞
[
H 2

k |Fk−1
]

.

As far as Gk is concerned, we note that, conditionally on Fk , Θ(k−1)
ik

can be written as∑
i∈Ik

Θ(k)
i 1{si∈Bk }, so that we can use the disintegration formula of Lemma 4.5 to get:

Gk = 1p
2π

∫ 1

0

e−L2
k v/(2−2v)

v3/2(1− v)3/2
d v

∫
Bk

E
(v)
θ(s)[Θ] `(d s).
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Hence, using this expression, we can now compute:

E(1)
∞ [G2

k |Fk−1] = E(1)
∞

[(
1p
2π

∫ 1

0

e−L2
k v/(2−2v)

v3/2(1− v)3/2
d v

∫
Bk

E
(v)
θ(s)[Θ] `(d s)

)2 ∣∣∣Fk−1

]

≤ E(1)
∞

[(
1p
2π

∫ 1

0

e−L2
k v/(2−2v)

v1/2(1− v)3/2
d v

∫
Bk

`(d s)θ(s)

)2 ∣∣∣Fk−1

]
,

since E(v)
θ(s)[Θ] ≤ vθ(s) (Lemma 4.12). Now, the measure

Lne−L2
n v/(2−2v)

p
2πv1/2(1− v)3/2

d v

is a probability density on [0,1] (cf. (4.19)), so that we get, using the fact that Lk−1 < Lk ,

E(1)
∞

[
G2

k |Fk−1
]≤ E(1)

∞
[(

1

Lk

∫
Bk

`(d s)θ(s)

)2 ∣∣∣Fk−1

]
≤ 1

L2
k−1

E(1)
∞

[(∫
Bk

`(d s)θ(s)

)2 ∣∣∣Fk−1

]
.

Now, conditionally on Fk−1, the record process on Bk has the distribution of an indepen-
dent record process on R+, started from θ(sk ), stopped at time `(Bk ). Furthermore, it is a
consequence from the stickbreaking construction of Aldous (see [Ald91a]) that, conditionally
on Fk−1, the random variables sk and `(Bk ) are independent. Furthermore, sk is distributed
uniformly on Tk−1, and `(Bk ) can be expressed as the length of the interval between the
(k −1)th and the kth jump of a Poisson process with intensity t1[0,∞)(t )d t . Therefore, condi-
tionally on Fk−1, `(Bk ) has density

rLk−1 (d x) = (Lk−1 +x)e−x2/2−Lk−1x d x. (4.30)

Thus, using the notation F (q, t ) = Eq [(
∫ t

0 θ(s)d s)2] for 0 < q <∞ and t ≥ 0, we get

E(1)
∞

[
G2

k |Fk−1
]≤ 1

L2
k−1

∫
Tk−1

`(d s)

Lk−1

∫ ∞

0
rLk−1 (d x)F (θ(s), x).

We will cut the integral in two parts, according to Tk−1 = T∗
k−1 ∪ (Tk−1 \ T∗

k−1). We then use
Lemma 4.10 to dominate F (θ(s), x): inequality (4.47) for s ∈ T∗

k−1 and (4.48) for s ∈ Tk−1 \T∗
k−1.

This leads to:

E(1)
∞

[
G2

k |Fk−1
]≤ 1

L2
k−1

∫
T∗

k−1

`(d s)

Lk−1

∫ ∞

0
rLk−1 (d x)

(
C1θ(s)3/2x3/2 +C2θ(s)x2)

+ 1

L2
k−1

∫
Tk−1\T∗

k−1

`(d s)

Lk−1

∫ ∞

0
rLk−1 (d x)

(
C3θ(s)1/2x1/2 +C4θ(s)−1/2x1/2)
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= C1

L2
k−1

(∫ ∞

0
rLk−1 (d x)x3/2

)(∫
T∗

k−1

`(d s)

Lk−1
θ(s)3/2

)

+ C2

L2
k−1

(∫ ∞

0
rLk−1 (d x)x2

)(∫
T∗

k−1

`(d s)

Lk−1
θ(s)

)

+ C3

L3
k−1

(∫ ∞

0
rLk−1 (d x)x1/2

)(∫
Tk−1\T∗

k−1

`(d s)θ(s)1/2

)

+ C4

L3
k−1

(∫ ∞

0
rLk−1 (d x)x1/2

)(∫
Tk−1\T∗

k−1

`(d s)θ(s)−1/2

)
.

We can then compute, using Lemma 4.11 for the asymptotic moments of rLk−1 (d x):

E(1)
∞

[
G2

k 1Ek−1

]= E(1)
∞

[
E(1)
∞

[
G2

k |Fk−1
]

1Ek−1

]
≤ E(1)

∞

[∫
T∗

k−1

`(d s)

Lk−1
θ(s)3/2

]
·O(k−7/4+7/2ε) (4.31)

+E(1)
∞

[(∫
T∗

k−1

`(d s)

Lk−1
θ(s)

)
1Ek−1

]
·O(k−2+4ε) (4.32)

+E(1)
∞

[(∫
Tk−1\T∗

k−1

`(d s)θ(s)1/2

)]
·O(k−7/4+7/2ε) (4.33)

+E(1)
∞

[(∫
Tk−1\T∗

k−1

`(d s)θ(s)−1/2

)]
·O(k−7/4+7/2ε). (4.34)

Using Lemma 4.6, we see that (4.31) is indeed of the order k−7/4+7/2ε. As far as (4.32)
is concerned, we will show the following lemma, which will be useful later on, and which
implies in particular that (4.32) is of the order k−2+4ε.

Lemma 4.7. E(1)∞
[(∫

T∗
k−1
θ(s)`(d s)/Lk−1

)2
1Ek−1

]
is bounded as k →∞.

Proof of Lemma 4.7. Recall (4.20):

−Rk−1 ≤ E(1)
∞ [Θ|Fk−1]− 1

Lk−1

∫
T∗

k−1

θ(s) `(d s) ≤Vk−1. (4.35)

Therefore, we can write

E(1)
∞

[(∫
T∗

k−1

`(d s)

Lk−1
θ(s)−E(1)

∞ [Θ|Fk−1]

)2

1Ek−1

]
≤ E(1)

∞
[
(Rk−1 ∨Vk−1)21Ek−1

]
≤ E(1)

∞
[
R2

k−11Ek−1

]+E(1)
∞

[
V 2

k−11Ek−1

]
.

Using (4.23), we can see that, since Ek−1 ∈σ({Tn}),

E(1)
∞

[
V 2

k−11Ek−1

]≤ E(1)
∞

[(
C ·h;,k−1 +

p
πp

2Lk−1

)2

1Ek−1

]
≤ E(1)

∞
[

(C ·h;,k−1 +
p
π/2/Lk−1)2

]
.
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Hence, as h;,k−1 and L−1
k−1 are integrable and decrease to 0 a.s., E(1)∞ [V 2

k−11Ek−1 ] converges
to 0 by monotone convergence. As for E(1)∞ [R2

k−11Ek−1 ], we use the fact that, conditionally on
Tk−1, θ(h;,k−1) is exponentially distributed with parameter h;,k−1 to find

E(1)
∞

[
R2

k−11Ek−1

]= E(1)
∞

[
1

16
e−L2

k−1/2h−4
;,k−11Ek−1

]
≤ 1

16
k8E(1)

∞
[

e−L2
k−1/2

]
,

which easily converges to 0 as k →∞. Hence, since E(1)∞ [Θ|Fk−1] converges in L2 to Θ, it is
of course L2-bounded, so that E(1)∞ [(

∫
T∗

k−1
θ(s)`(d s)/Lk−1)21Ek−1 ] is indeed bounded as k →∞,

as announced.

In the two remaining terms (4.33) and (4.34), the integral is taken on a single branch;
therefore, we can use the linear case to get

E(1)
∞

[(∫
Tk−1\T∗

k−1

`(d s)θ(s)1/2

)
1Ek−1

]
= E(1)

∞
[

E∞
[∫ h;,k−1

0
θ(s)1/2d s

]
1Ek−1

]
=C ·E(1)

∞ [h1/2
;,k−11Ek−1 ],

which easily converges to 0 as k → ∞. A similar argument shows that (4.34) converges to
0 as E(1)∞ [h3/2

;,k−11Ek−1 ]. Putting everything together, we find that E(1)∞ [G2
k 1Ek−1 ] is of the order

k−7/4+7/2ε as k →∞, so that the remainder
∑∞

k=n E
(1)∞ [G2

k 1Ek−1 ] is of the order n−3/4+7/2ε.
Turning to Hk , we note that Ik−1 \{ik } = {i ∈ Ik , si ∉ Bk }, so that, using Lemma 4.5, we get:

Hk =E(1)
∞

[ ∑
i∈Ik

Θ(k)
i 1{si∉Bk }

∣∣∣∣Fk

]
−E(1)

∞
[ ∑

i∈Ik−1

Θ(k−1)
i

∣∣∣∣Fk−1

]

=
∫ 1

0

e−L2
k v/(2−2v)

p
2πv3/2(1− v)3/2

d v
∫

Tk

`(d s)E(v)
θ(s)[Θ]1{s∉Bk }

−
∫ 1

0

e−L2
k−1v/(2−2v)

p
2πv3/2(1− v)3/2

d v
∫

Tk−1

`(d s)E(v)
θ(s)[Θ],

thus, considering that Tk = Tk−1 ∪ (Bk \ {sk }), and that of course `({sk }) = 0,

Hk =
∫ 1

0

d vp
2πv3/2(1− v)3/2

∫
Tk−1

`(d s)E(v)
θ(s)[Θ]

(
e−L2

k v/(2−2v) −e−L2
k−1v/(2−2v)

)
.

We then use the inequality |e−at −e−as | ≤ ae−at (s − t ), valid for any a > 0, and t ≤ s, to find:

E(1)
∞

[
H 2

k |Fk−1
]≤ (

1p
2π

∫ 1

0

e−L2
k−1v/(2−2v)

v3/2(1− v)3/2

v

2−2v
d v

∫
Tk−1

E
(v)
θ(s)[Θ] `(d s)

)2

×E(1)
∞

[
(L2

k −L2
k−1)2|Fk−1

]
. (4.36)
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On the one hand, we will use the change of variables

u = L2
k−1v/(2−2v) ⇔ v = u/(L2

k−1/2+u).

in the integral, which gives:(
1p
2π

∫ ∞

0

e−u

(L2
k−1/2)1/2

L2
k−1/2+u
p

u
du

∫
Tk−1

`(d s)

L2
k−1

E
(u/(L2

k−1/2+u))

θ(s) [Θ]

)2

. (4.37)

We then cut the integral in two parts, according to Tk−1 = T∗
k−1∪(Tk−1 \T∗

k−1), and we use the
simple domination E

(v)
θ(s)[Θ] ≤ vθ(s) on T∗

k−1, and the domination E
(v)
θ(s)[Θ] ≤ E(v)∞ [Θ] =p

πv/2
on Tk−1 \ T∗

k−1 to get

(4.37)≤
(

1p
π

∫ ∞

0

du

L3
k−1

L2
k−1/2+u
p

u
e−u

∫
T∗

k−1

`(d s)θ(s)
u

L2
k−1/2+u

+
∫ ∞

0

du

L3
k−1

L2
k−1/2+u
p

2u
e−uh;,k−1

p
u√

L2
k−1/2+u


2

.

The integrals can be computed, giving

(4.37)≤
(

1

2
p
πL2

k−1

∫ ∞

0

p
ue−u

∫
T∗

k−1

`(d s)

Lk−1
θ(s)+

∫ ∞

0

dup
2L2

k−1

√
1/2+u/L2

k−1e−uh;,k−1

)2

.

On the other hand, the term E
(1)∞ [(L2

k −L2
k−1)2|Fk−1] appearing in the domination (4.36) can

be expanded into

E(1)
∞

[
`(Bk )4|Fk−1

]+4L2
k−1E

(1)
∞

[
`(Bk )2|Fk−1

]+4Lk−1E
(1)
∞

[
`(Bk )3|Fk−1

]
Then, recall the density (4.30) of `(Bk ) conditionally on Fk−1. In the proof of Lemma 4.11,
we show that for any λ> 0, we have a.s.

E(1)
∞

[
` (Bk )λ |Fk−1

]
=

∫
rLk−1 (d x)xλ ≤C1 ·L−λ

k−1 +C2 ·L−λ−2
k−1

with C1 and C2 deterministic constants. Thus, E(1)∞ [(L2
k −L2

k−1)2|Fk−1] is a.s. bounded by
F (Lk−1), where F is a nonincreasing bounded nonnegative function. In the end, we get

E(1)
∞

[
H 2

k 1Ek−1

]≤ E(1)
∞

[(
C

L2
k−1

∫
T∗

k−1

θ(s)
`(d s)

Lk−1

+
∫ ∞

0

e−u du

2L2
k−1

√
1/2+u/L2

k−1h;,k

)2

F (Lk−1)1Ek−1

]

≤ F (k2−4ε)

(
C ·k−2+4εE(1)

∞

[(∫
T∗

k−1

θ(s)
`(d s)

Lk−1

)2]

+C ′ ·k−2+4ε
(∫ ∞

0
e−u

√
1/2+u/k1−2ε

)2

E(1)
∞ [h2

;,k ]

)
.
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Hence, using the fact that
∫

T∗
k−1
θ(s)`(d s)/Lk−1 is bounded in L2 (Lemma 4.7), we find that

E
(1)∞ [H 2

k 1Ek−1 ] =O(k−2+4ε). Putting this together with the estimate on E(1)∞ [G2
k 1Ek−1 ], we get that

E
(1)∞ [(Mk −Mk−1)21Ek−1 ] =O(k−7/4+7/2ε). If ε< 1/14,

E(1)
∞ [(Mk −Mk−1)21Ek−1 ] =O(k−7/4+7/2ε) = o(k−3/2).

Hence, we get

lim
n→∞n1/2

∞∑
k=n

E(1)
∞

[
(Mk −Mk−1)21Ek−1

]= 0.

This shows that the random sequence n1/4 ∑∞
k=n(Mk −Mk−1)1Ek−1 converges to 0 in L2, hence

in probability. But, since there a.s. exists k0 ≥ 1 such that 1Ek = 1 for all k ≥ k0, the sequence
n1/4 ∑∞

k=n(Mk −Mk−1) also converges to 0 in probability, which is what we wanted to prove.

4.2 Proof of the main theorem

We can now turn to the proof of the actual convergence towards a nontrivial limit, in the
asymptotic n1/4. The main idea is to apply the Martingale Central Limit Theorem (Corollary
3.1 in [HH80]) to

M∗
n = X ∗

n −
∫

T∗
n

θ(s) `(d s).

We recall this theorem below for convenience:

Theorem (Hall, Heyde [HH80]). Let (Mn , n ≥ 1) be a zero-mean square-integrable (Gn)-
martingale, and let η2 be an a.s. finite random variable. Suppose that, for some sequence an

increasing to +∞, we have

1. (Asymptotic smallness) For all ε> 0, we have the convergence in probability

lim
n→∞a−2

n

n∑
k=1

E
[

(Mk −Mk−1)21{|Mk−Mk−1|>εak }
∣∣Gk−1

]= 0

2. (Convergence of the conditional variance) We have the convergence in probability

lim
n→∞a−2

n

n∑
k=1

E
[
(Mk −Mk−1)2|Gk−1

]= η2.

Then, the sequence (a−1
n Mn , n ≥ 1) converges in distribution to a random variable Z with charac-

teristic function E[exp(−η2t 2/2)].
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4.2. Proof of the main theorem

However, M∗
n is not a martingale in the filtration (Fn , n ≥ 1), because the (n+1)st branch

Bn+1 might be connected to Tn through a vertex on �;, s;,n�. In that case, M∗
n+1 −M∗

n has
a nonnegative Fn-measurable part, corresponding to the atoms on �s;,n+1, s;,n�. For this
reason, we will consider

M̂n = ∑
s∈Tn \T1

1{θ(s−)>θ(s)} −
∫

Tn \T1

θ(s) `(d s), n ≥ 2

and M̂1 = 0. The process (M̂n ,n ≥ 1) is a (Fn)-martingale. It is actually more convenient to
introduce the filtration (Gn , n ≥ 1), defined by:

Gn =σ({(Tm , m ≥ 1), (θ(s), s ∈ Tn)}),

Notice that the branching point sn+1 = Bn+1 ∩Tn , as well as `(Bn+1) and θ(sn+1) are all
Gn-measurable. In this filtration, M̂ is also a martingale. Indeed, it is obvious that M̂ is
G -adapted. Furthermore, we have

M̂n+1 − M̂n = ∑
s∈Bn+1

1{θ(s−)>θ(s)} −
∫

Bn+1

θ(s) `(d s),

which is, conditionally on Gn , distributed as N`(Bn+1), where N is the martingale from (4.4) for
a linear record process started at θ(sn+1) . Thus, E(1)∞ [M̂n+1 − M̂n |Gn] = 0.

Convergence of the asymptotic variance

In order to get a convergence in distribution of n−1/4M̂n , we first need to compute the
asymptotic variance of the martingale. This is done in the following proposition.

Proposition 4.8. We have:

lim
n→∞

1p
n

n∑
k=2

E(1)
∞

[(
M̂k − M̂k−1

)2
∣∣∣Gk−1

]
=
p

2Θ, (4.38)

in probability.

Proof. Using the martingale from (4.5), in the present case of a linear record process started
at θ(sk ), we easily get that, for k ≥ 2,

E(1)
∞

[(
M̂k − M̂k−1

)2
∣∣∣Gk−1

]
= E(1)

∞
[∫

Bk

θ(s) `(d s)
∣∣∣Gk−1

]
. (4.39)

A Law of Large Numbers argument will show that we have

lim
n→∞

1p
n

n∑
k=2

E(1)
∞

[∫
Bk

θ(s) `(d s)
∣∣∣Gk−1

]
= lim

n→∞
1p
n

∫
T∗

n \�s;,n ,x1�
θ(s) `(d s). (4.40)

We postpone the proof of this equality to the end of this section. Now, recall Proposition 6.3
in [AD11], which shows that a.s.

lim
n→∞

1p
n

∫
T∗

n

θ(s) `(d s) =
p

2Θ.
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4. Fluctuations for the number of records

Since Tn \ B1 = T∗
n \ �s;,n ,x1�, the convergence (4.38) will follow if we manage to prove that

Sn = 1p
n

∫
�s;,n ,x1�

θ(s) `(d s)

converges in probability to 0. We will simply compute the first moment:

p
nE(1)

∞ [Sn] = E(1)
∞

[∫
�s;,n ,x1�

θ(s) `(d s)

]
= E(1)

∞
[∫ L1

h;,n

θ(s) d s

]
= E(1)

∞
[∫ L1−h;,n

0
Eθ(s;,n )[θ(s)] d s

]
,

by the Markov property of θ at h;,n . We can compute this expectation using (4.3):

= E(1)
∞

[∫ L1−h;,n

0

1−e−sθ(s;,n )

s
d s

]

≤ E(1)
∞

[∫ L1

0

1

s
(sθ(s;,n))1/4 d s

]
= 4E(1)

∞
[
θ(s;,n)1/4L1/4

1

]
,

by the elementary inequality 1−exp(−t ) ≤ t 1/4. The Cauchy-Schwarz inequality then gives
the bound p

nE(1)
∞ [Sn] ≤C ·E(1)

∞
[
θ(s;,n)1/2]1/2

. (4.41)

As θ(s;,n) is, conditionally on T , exponentially distributed with parameter h;,n , we get

E(1)
∞ [Sn] ≤C ·n−1/2E(1)

∞ [h−1/2
;,n ]1/2,

which converges to 0 as n →∞ by (4.9), which shows (4.38).
We still have to show (4.40) to end the proof. The process(

Qn =
n∑

k=2

∫
Bk

θ(s)`(d s)−E(1)
∞

[∫
Bk

θ(s)`(d s)

∣∣∣∣Gk−1

]
, n ≥ 1

)
(4.42)

is a G -martingale. We will write

〈Q〉n =
n∑

k=1
E(1)
∞

[(∫
Bk

θ(s) `(d s)

)2 ∣∣∣∣Gk−1

]
−E(1)

∞
[∫

Bk

θ(s) `(d s)
∣∣∣Gk−1

]2

(4.43)

for its quadratic variation process. Conditionally on Gk−1, the process (θ(s), s ∈ Bk ) is dis-
tributed as a linear record process started from θ(sk ). Hence, using (4.9) and (4.3), we get:

E(1)
∞

[∫
Bk

θ(s) `(d s)
∣∣∣Gk−1

]
= Eθ(sk )

[∫ `(Bk )

0
θ(s) d s

]
=

∫ θ(sk )`(Bk )

0

1−e−u

u
du. (4.44)

Similarly, we have:

E(1)
∞

[(∫
Bk

θ(s) `(d s)

)2 ∣∣∣∣Gk−1

]
= Eθ(sk )

[(∫ `(Bk )

0
θ(s) d s

)2]

= 2 ·Eθ(sk )

[∫ `(Bk )

0
du

∫ u

0
d v θ(u)θ(v)

]
.
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4.2. Proof of the main theorem

The latter can be computed by applying the Markov property at u, as well as (4.3), giving

E(1)
∞

[(∫
Bk

θ(s) `(d s)

)2 ∣∣∣∣Gk−1

]
= 1

θ(sk )

∫ θ(sk )`(Bk )

0

1−e−s

s
−e−s d s

+2
∫ θ(sk )`(Bk )

0
d s

∫ s

0
d t

1

s − t

(
1−e−t

t
− 1−e−s

s

)
. (4.45)

Now, putting (4.44) and (4.45) together, compensations occur, so that we get, after tedious
computations:

〈Q〉n =
n∑

k=1
E(1)
∞

[(∫
Bk

θ(s) `(d s)

)2 ∣∣∣∣Gk−1

]
−E(1)

∞
[∫

Bk

θ(s) `(d s)
∣∣∣Gk−1

]2

=
n∑

k=1

2

θ(sk )

∫ θ(sk )`(Bk )

0

1−e−s

s
−e−s d s

+2
∫ θ(sk )`(Bk )

0
d s

∫ s

0
d t

se−s − te−t − (s − t )e−(s+t )

st (s − t )
.

The term se−s − te−t − (s − t )e−(s+t ) being negative for t < s, we get

0 ≤ 〈Q〉n ≤
n∑

k=1

2

θ(sk )

∫ θ(sk )`(Bk )

0

1−e−s

s
−e−s d s

≤
n∑

k=1

2

θ(sk )
θ(sk )`(Bk ) = 2

n∑
k=1

`(Bk ),

the second inequality coming from (1−e−s)/s −e−s ≤ 1 if s > 0. Then, recall that by defini-
tion,

∑n
k=1`(Bk ) ≤ Ln , and that Ln is the square root of a Gamma(n,1)-distributed variable

(Proposition 5.2 in [AD11]). Thus, for any γ> 1/2, we have

1

nγ
E(1)
∞ [〈Q〉n] ≤ 2

nγ
E(1)
∞ [Ln] → 0 (4.46)

Then, by the conditional Law of Large Numbers (Theorem 1.3.17 in [Duf97]), we get that
n−1/4−εQn converges a.s. to 0 for any ε> 0, which implies (4.40), hence ends the proof.

Asymptotic smallness

We now turn to the proof of the asymptotic smallness of the sequence (M̂n , n ≥ 1). In order
to prove this, we will use a Liapounov-type criterion, which is sufficient to prove asymptotic
negligibility.

Proposition 4.9. We have the following convergence in probability:

lim
n→∞

1p
n

n∑
k=1

E(1)
∞

[
(M̂k − M̂k−1)21{|M̂k−M̂k−1|>εn1/4}

∣∣∣Gk−1

]
= 0.
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4. Fluctuations for the number of records

Proof. We use the standard inequality 1{|M̂k−M̂k−1|>εn1/4} ≤ (M̂k − M̂k−1)2/ε2pn to get that, for
ε> 0:

1p
n

n∑
k=1

E(1)
∞

[(
M̂k − M̂k−1

)2
1{|M̂k−M̂k−1|>εn1/4}

∣∣∣Gk−1

]
≤ 1

ε2n

n∑
k=1

E(1)
∞

[(
M̂k − M̂k−1

)4
∣∣∣∣Gk−1

]
.

Using the martingale from (4.6), we find that:

1

ε2n

n∑
k=2

E(1)
∞

[(
M̂k − M̂k−1

)4
∣∣∣∣Gk−1

]
= 3

ε2n

n∑
k=2

E(1)
∞

[(∫
Bk

θ(s) `(d s)

)2 ∣∣∣∣Gk−1

]
+ 1

ε2n

n∑
k=2

E(1)
∞

[∫
Bk

θ(s) `(d s)
∣∣∣Gk−1

]
.

In this expression, the term n−1 ∑n
k=2E[

∫
Bk
θ(s)`(d s)|Gk−1] converges in probability to 0,

according to (4.39) and Proposition 4.8. Furthermore, recall from (4.43) that

3

ε2n

n∑
k=1

E(1)
∞

[(∫
Bk

θ(s) `(d s)

)2 ∣∣∣∣Gk−1

]
= 3〈Q〉n

ε2n
+ 3

ε2n

n∑
k=1

E(1)
∞

[∫
Bk

θ(s) `(d s)
∣∣∣Gk−1

]2

,

where Q is the martingale defined in (4.42). The quadratic variation process 〈Q〉n/n converges
in probability to 0 by (4.46). Also, applying Lemma 4.13 to ak = E(1)∞ [

∫
Bk
θ(s)`(d s)|Gk−1], we

find that
1

n

n∑
k=1

E(1)
∞

[∫
Bk

θ(s) `(d s)
∣∣∣Gk−1

]2

= 0,

which ends the proof.

Putting all the previous elements together, we can now prove Theorem 4.1.

Proof of Theorem 4.1. First, we write that

n1/4
(

X ∗
np

2n
−Θ

)
= M̂np

2n1/4
+ M∗

n − M̂np
2n1/4

+n1/4
(

1p
2n

∫
T∗

n

θ(s) `(d s)−Θ
)

.

The convergence in distribution of n−1/4M̂n towards a non-degenerate limit Z is a conse-
quence of the Martingale Central Limit Theorem recalled at the beginning of this section
with an = n1/4, as well as the two Propositions 4.8 and 4.9. Furthermore, the limiting random
variable Z is indeed distributed as announced:

E(1)
∞

[
ei t Z

]
= E(1)

∞
[

e−t 2
p

2Θ/2
]

.

The term en = M∗
n − M̂n can be expressed as

en = M∗
n − M̂n = ∑

s∈�s;,n ,x1�
1{θ(s−)>θ(s)} −

∫
�s;,n ,x1�

θ(s) `(d s).
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4.2. Proof of the main theorem

Using the martingale (4.5) to compute its second moment, we get

E(1)
∞

[
e2

n

]= E(1)
∞

[∫
�s;,n ,x1�

θ(s) `(d s)

]
,

so that n−1/4(M∗
n − M̂n) converges to 0 in L2, hence in distribution as n →∞, by the pre-

viously used bound (4.41). Finally, Proposition 4.3 and Proposition 4.4 show that the term
((2n)−1/2

∫
T∗

n
θ(s) `(d s)−Θ) brings no contribution in the asymptotic n1/4. This ends the

proof.

Remark 11. Note that, under our assumptions, since Θ > 0, P∞-a.s., we can actually prove that
the convergence in distribution of n−1/4M̂n is mixing (see [AE78] for more details on mixing limit
theorems). This implies in particular that we can obtain a standard normal limit by renormalizing
by the random factor Vn , where V 2

n is the conditional variance

V 2
n =

n∑
k=1

E(1)
∞

[(
M̂k − M̂k−1

)2
∣∣∣Gk−1

]
,

instead of the deterministic renormalization n1/4. Corollary 3.2 in [HH80] then shows that V −1
n M̂n

converges in distribution to a standard N (0,1) random variable.

Technical appendix

In this appendix, we shall state and prove several lemmas that are used throughout the paper.
They are purely analytic in nature, and their proof is elementary, so we gather them here, for
the reader’s convenience. First, we prove some universal bounds on F (q, t ) = Eq [(

∫ t
0 θ(s)d s)2].

Lemma 4.10. There exists C1,C2,C3,C4 > 0 such that

F (q, t ) ≤C1(qt )3/2 +C2qt 2 (4.47)

F (q, t ) ≤C3 log2(qt )+C4q−1/2t 1/2 (4.48)

Proof. First, we recall that, according to (4.45),

F (q, t ) = Eq

[(∫ t

0
θ(s) d s

)2
]

= 1

q

∫ qt

0

1−e−s

s
−e−s d s +

∫ qt

0
d s

∫ s

0
d t

1

s − t

(
1−e−t

t
− 1−e−s

s

)
:= F̃ (q, t )+G(ql ).

The two estimates (4.47) and (4.48) will come from an asymptotic analysis of

F̃ (q, t ) = 1

q

∫ qt

0

1−e−s

s
−e−s d s
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4. Fluctuations for the number of records

and

G(qt ) =
∫ qt

0
d s

∫ s

0
d t

1

s − t

(
1−e−t

t
− 1−e−s

s

)
.

Let us start with F̃ . We have

F̃ (q, t ) = 1

q

∫ qt

0

1−e−s

s
−e−s d s

= 1

q

(
γ+ log(qt )+

∫ ∞

qt

e−t

t
d t +e−qt −1

)
.

It is elementary to check that the function γ+ log(x)+ ∫ ∞
x

e−t

t d t + e−x − 1 is equivalent to
x2/4 when x → 0, and equivalent to log(x) = o(

p
x) when x →∞. Since

p
x = o(x2) in the

neighbourhood of +∞ and x2 = o(
p

x) in the neighbourhood of 0, by continuity, we can find
constants C2 and C4 such that F̃ (q, t ) ≤C2(qt )2/q and such that F̃ (qt ) ≤C4(qt )1/2/q .

Turning to the function G , we can write

G(x) =
∫ x

0
d s

∫ s

0
d t

1

s − t

(
1−e−t

t
− 1−e−s

s

)
=

∫ 1

0
du

∫ u

0
d v

1

u − v

(
1−e−xv

v
− 1−e−xu

u

)
,

so that

G ′(x) =
∫ 1

0
du

∫ u

0
d v

1

u − v
(e−xv −e−xu),

and that

G ′′(x) =
∫ 1

0
du

∫ u

0
d v

1

u − v
(ue−xu − ve−xv ).

Thus, we have G(0) = G ′(0) = 0 and G ′′(0) = 1. Since G is smooth, we get that G(x) ∼ x2/2
when x → 0.

As far as the asymptotic x → ∞ is concerned, we can express G ′(x) in terms of the
exponential integral1 function Ei (x) = ∫ x

−∞ exp(t )/t d t :

G ′(x) =
∫ 1

0
du

∫ u

0

d v

u − v
(e−xv −e−xu)

=
∫ 1

0
due−xu

∫ xu

0

d v

v
(ev −1)

=
∫ 1

0
due−xu(Ei (xu)− log(xu)−γ).

1Note that this integral is to be taken in the sense of Cauchy’s principal value.
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When x →∞, we get

G ′(x) ∼
∫ 1

0
due−xuEi (xu) = 1

x

∫ x

0
due−t Ei (t )

∼ log x

x
.

Integrating from 0 to x, we get G(x) ∼ log2 x = o(
p

x) when x →∞. Again,
p

(x) = o(x2) in the
neighbourhood of +∞ and x2 = o(

p
x) in the neighbourhood of 0, so that by continuity, there

exist two constants C1 and C2 such that G(x) ≤C1x2 and such that G(x) ≤C2x1/2. Thus, we
get the two dominations (4.47) and (4.48).

We now turn to a useful estimation of the moments of the distribution ra(d x) introduced
in (4.30):

ra(d x) = (a +x)e−x2/2−ax 1(0,∞)(x) d x.

Lemma 4.11. Let λ> 0. Then, if (a(n), n ≥ 1) is some sequence in R+ increasing to +∞, then, as
n →∞, we have

∫ ∞
0 ra(n)(d x)xλ =O(a(n)−λ).

Proof. This is fairly easy: if λ> 0, we can write∫ ∞

0
ra(n)(d x)xλ =

∫ ∞

0
xλ(a(n)+x)e−x2/2−a(n)x d x

=
∫ ∞

0

uλ

a(n)λ

(
a(n)+ u

a(n)

)
e−u2/(2a(n)2)−u du

a(n)

≤ 1

a(n)λ

∫ ∞

0
uλe−u du + 1

a(n)λ+2

∫ ∞

0
uλ+1e−u du,

which ends the proof.

Lemma 4.12. For any 0 < q <∞ and any v ≥ 0, we have

E
(v)
q [Θ] ≤

p
π/2min(qv,

p
v).

Proof. We will use formula (21) from [AD11], stating that, in our context, if Y is a Rayleigh-
distributed variable, then

E
(v)
q [Θ] =p

v
∫ q

p
v

0
E
[
e−tY ]

d t .

We simply expand the Laplace transform, giving

E
(v)
q [Θ] =p

v
∫ q

p
v

0

∫ ∞

0
xe−x2/2e−t x d x d t

=p
v

∫ ∞

0
e−x2/2

(
1−e−xq

p
v
)

d x.

Now, we use the obvious inequality 1− exp(−x) ≤ min(x,1), to get the desired domination,
since qv

∫ ∞
0 x exp(−x2/2) = qv and

p
v

∫ ∞
0 e−x2/2d x =p

πv/2.

119



4. Fluctuations for the number of records

Finally, the next lemma is needed to prove the asymptotic smallness of the martingale
M̂n .

Lemma 4.13. Let (an ,n ≥ 1) be a nonnegative sequence such that

lim
n→∞

1p
n

n∑
k=1

ak <∞.

Then, we have

lim
n→∞

1

n

n∑
k=1

a2
k = 0.

Proof. Let sn = n−1/2 ∑n
k=1 ak . Taking the difference sn − sn−1, we easily see that n−1/2an

converges to 0. Then, if ε> 0, there exists n0 ≥ 1 such that for all n ≥ n0, an < εpn. Thus, if
n ≥ n0, we have

sup
k≤n

ak ≤ sup
k<n0

ak + sup
n0≤k≤n

ak

≤ sup
k<n0

ak +ε,

which proves that actually

lim
n→∞

supk≤n akp
n

= 0.

Then, we simply write
1

n

n∑
k=1

a2
k ≤

(
supk≤n akp

n

)(
1p
n

n∑
k=1

ak

)
to conclude.
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APPENDIX A

Generalization of the special Markov
Property of the pruning process

In this chapter, we will give a proof of the special Markov property stated in Theorem 3.25,
in the subcritical case, when taking into account the pruning times. The proofs are adapted
from the proofs in [ADV10]. To state and prove the theorem, we will use the formalism of
the exploration process, which is a measure-valued Markov process describing the depth-first
exploration of a Lévy tree. For more precise definitions, see [DL02]. Let us first rephrase the
definitions of Section 3.2 in this context.

We will consider, for some (sub)critical branching mechanism ψ satisfying Assumption 1
the marked exploration process ((ρt ,mt ), t ≥ 0), where, for any t ≥ 0, conditionally on ρt ,
mt has two components, mske

t and mnod
t , representing marks on the skeleton and marks on

nodes respectively, which are such that

• mske
t is a σ-finite measure on R+×R+ such that, for any θ > 0, mske

t (·×[0,θ]) has support
included in Supp(ρt ).

• mnod
t is a σ-finite measure on R+ × R+ such that, for any θ > 0, mnod

t (· × [0,θ]) is
absolutely continuous with respect to ρt .

We will denote by S the state-space of the marked exploration process. More precise def-
initions can be found in ([Voi10]) where the measures are defined using a Lévy snake with
Poisson paths. Now, for some fixed θ > 0, we will consider the process (ρt ,mθ

t ), where

mθ
t (d x) =

(
mske

t (d x, [0,θ]),mnod
t (d x, [0,θ])

)
,

thus considering only the marks appearing between time 0 and time θ. If Oθ is the interior
of the set {s ≥ 0, mθ

s 6= 0}, let us write

Oθ = ⋃
i∈I

(
αθi ,βθi

)
and say that the intervals (αθi ,βθi )i∈I are the excursions intervals of the marked exploration
process S θ = (ρ,mθ) away from {s ≥ 0, mθ

s = 0}. We also define the following continuous
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A. Special Markov property of the pruning process

additive functional of the process ((ρt ,mθ
t ), t ≥ 0):

At =
∫ t

0
1{mθ

s =0} d s for t ≥ 0. (A.1)

We set Cθ
t = inf {r > 0, Ar > t }, the right-continuous inverse of A, with the convention that

inf;=∞. For every i ∈ I , let us define the measure-valued process S i ,θ = (ρi ,θ,mi ,θ). For
every f ∈ B+(R+), t ≥ 0, we set, if Ht = 〈ρt ,1〉,〈

ρi ,θ
t , f

〉
=

∫
[H

αθ
i

,+∞)
f (x −Hαθi

)ρ(αθi +t )∧βθi (d x)

〈
(ma)i ,θ

t , g
〉
=

∫
(H

αθ
i

,+∞)×R+
f (x −Hαθi

,θ′)ma
(αθi +t )∧βθi

(d x,dθ′) with a ∈ {nod,ske}
(A.2)

and mi ,θ
t = ((mnod)i ,θ

t , (mske)i ,θ
t ). Furthermore, if i ∈I , we define θi by:

θi = inf

{
θ ∈ R+,mθ

αθi

(
[0, Hαθi

]× [0,θ]
)
6= 0

}
. (A.3)

Let F θ∞ be the σ-field generated by S θ = ((ρCθ
t

,mCθ
t

), t ≥ 0). We will use the notation
P∗
µ,Π(dS ) to denote the law of the marked exploration process S started at (µ,Π) ∈ S and

stopped when ρ reaches 0. For ` ∈ (0,+∞), we will write P∗
`

for P∗
`δ0,0.

Let us now state the Special Markov Property (Theorem 3.25):

Theorem 1 (Special Markov property). Let φ be a non-negative measurable function defined on
R+×M f (R+)×S×R+. Then, we have P-a.s.

E

[
exp

(
− ∑

i∈I

φ(Aαθi
,ραθ−i

,S i ,θi )

) ∣∣∣ F θ
∞

]

= exp

(
−

∫ θ

0
dθ′

∫ ∞

0
du 2βN

[
1−e−φ(u,µ,·,θ′)

]
|µ=ρθu

)
exp

(
−

∫ θ

0
dθ′

∫ ∞

0
du

∫
(0,∞)

`e−θ
′`π(d`)

(
1−E∗`[e−φ(u,µ,·,θ′)]|µ=ρθu

))
. (A.4)

In other words, the law under P of the excursion process
∑

i∈I δ(Aαi ,ραi −,S i ,θi )(du,dµ,dS ,dθ′),
given F θ∞, is the law of a Poisson point measure with intensity

1{u≥0}du 1{θ′∈[0,θ)}dθ
′δρ̃u (dµ)

(
2βN(dS )+

∫
(0,∞)

`e−θ
′`π(d`)P∗

`(dS )

)
.

Remark 12. The special Markov property proven here is nothing else but a disintegrated version
of the special Markov property in [ADV10]. Indeed, when integrating over [0,θ], we get exactly the
formulation from Theorem 16, in which we don’t have access to the pruning times. However, this
information is needed to prove (Chapter 3) that the recursively defined tree-growth process has the
same distribution as the time-returned pruning process.
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We will sometimes need the M f (R+)-valued process η= (ηt , t ≥ 0) defined by

ηt (dr ) =β1[0,Ht ](r ) dr + ∑
0<s≤t

Xs−<I s
t

(Xs − I s
t )δHs (dr ).

The process η is the dual process of ρ under N (see Corollary 3.1.6 in [DL02]). Let the
measures N0(d x,d`,du), N1(d x,d`,du,dθ′) and N2(d x,dθ′) be independent Poisson point
measures respectively on [0,+∞)3, [0,+∞)4 and [0,+∞)2 with respective intensity

d x `π(d`)1[0,1](u)du, d x `e−θ
′`π(d`)1[0,1](u)dudθ′ and 2βd xdθ.

For every a > 0, let us denote by Ma the law of the measures (µ,ν,mnod,mske) defined by: for
any f ∈B+(R+), g ∈B+(R+×R+),

〈µ, f 〉 =
∫ (

N0(d x,d`,du)+N1(d x,d`,du,dθ′)
)

1[0,a](x)u` f (x)+β
∫ a

0
f (r ) dr,

〈ν, f 〉 =
∫ (

N0(d x,d`,du)+N1(d x,d`,du,dθ′)
)

1[0,a](x)(1−u)` f (x)+β
∫ a

0
f (r ) dr,

〈mnod, g 〉 =
∫

N1(d x,d`,du,dθ′)1[0,a](x)u`g (x,θ′)

〈mske, g 〉 =
∫

N2(d x,dθ′)1[0,a](x)g (x,θ′).

We finally set M = ∫ +∞
0 d a e−αaMa . Using the construction of the snake, it is easy to

deduce from Proposition 3.1.3 in [DL02], the following Poisson representation.

Proposition. For every non-negative measurable function F on M f (R+)4,

N

[∫ σ

0
F (ρt ,ηt ,mt ) d t

]
=

∫
M(dµdνdm)F (µ,ν,m),

where m = (mnod,mske) and σ= inf{s > 0;ρs = 0} denotes the length of the excursion.

Preliminaries

Fix t > 0 and η> 0. For S = (Ss = (ρs ,ms), s ≥ 0), we set

B = {σ(S ) =+∞}∪{
Tη(S ) =+∞}∪{

Lη(S ) =−∞}
,

where σ(S ) = inf{s > 0;ρs = 0} is the length of the current excursion above 0, where Tη(S ) =
inf{s ≥ 0;〈ρs ,1〉 ≥ η} and Lη(S ) = sup{s ∈ [0,σ(S )];〈ηs ,1〉 ≥ η}, with the convention inf; =
+∞ and sup;=−∞. We consider non-negative bounded functions φ satisfying the assump-
tions of the Special Markov Property and the four following conditions:

(h1) φ(u,µ,S ,θ) = 0 for any u ≥ t .

(h2) (u,θ) 7→φ(u,µ,S ,θ) is uniformly Lipschitz (with a constant that does not depend on µ

and S ).
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A. Special Markov property of the pruning process

(h3) φ(u,µ,S ,θ) = 0 on B ; and if S ∈ B c then φ(u,µ,S ,θ) depends on S only through
(Su ,u ∈ [Tη,Lη]).

(h4) The function µ 7→φ(u,µ,S ,θ) is continuous with respect to the metric

D(µ,µ′) = dPr(µ,µ′)+|〈µ,1〉−〈µ′,1〉|
on M f (R+), where dPr is the Prokhorov metric on M f (R+) (recall that dPr metrizes
weak convergence in M f (R+)).

Lemma 2. Let φ be a function satisfying (h1 −h3) and let w be defined on (0,∞)× [0,∞)×
M f (R+)×R+ by

w(`,u,µ,θ) = E∗`
[

e−φ(u,µ,·,θ)
]

.

Then, for N-a.e. µ ∈ M f (R+), the function (`,u,θ) 7→ w(`,u,µ,θ) is uniformly continuous on
(0,∞)× [0,∞)×R+.

The proof of this lemma is exactly the same as in [ADV10], as the stronger hypothesis (h2)
we made on φ enables us to get uniform continuity in the θ variable as well.

Stopping times

Let R(d t ,du) be a Poisson point measure on R2+ (defined on (S,F )) independent of F∞ with
intensity the Lebesgue measure. We denote by Gt the σ-field generated by R(·∩ [0, t ]×R+).
For every ε> 0, the process Rε

t := R([0, t ]×[0,1/ε]) is a Poisson process with intensity 1/ε. We
denote by (eεk ,k ≥ 1) the time intervals between the jumps of (Rε

t , t ≥ 0). The random variables
(eεk ,k ≥ 1) are i.i.d. exponential random variables with mean ε, and are independent of F∞.
They define a mesh of R+ which is finer and finer as ε decreases to 0.

For ε> 0, we consider T ε
0 = 0, Mε

0 = 0 and for k ≥ 0,

Mε
k+1 = inf

{
i > Mε

k ; mθ

T ε
k +

∑i
j=Mε

k
+1

eεj
6= 0

}
,

Sεk+1 = T ε
k +

Mε
k+1∑

j=Mε
k+1

eεj ,

T ε
k+1 = inf

{
s > Sεk+1; mθ

s = 0
}

,

(A.5)

with the convention inf;=+∞. For every t ≥ 0, we set τεt =
∫ t

0 d s 1⋃
k≥1[T ε

k ,Sεk+1)(s) and

F e
t =σ(Ft ∪Gτεt

). (A.6)

Notice that T ε
k and Sεk are F e-stopping times.

Now we introduce a notation for the process defined above the marks on the intervals[
Sεk ,T ε

k

]
. We set, for a ≥ 0, H̄a the level of the first mark, ρ−

a the restriction of ρa strictly
below it, ρ+

a the restriction of ρa above it and θa the index of the first mark:

H̄a = sup{t > 0,ma([0, t ]) = 0}, ρ−
a = ρa(·∩ [0, H̄a)) (A.7)
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and ρ+
a is defined by ρa = [ρ−

a ,ρ+
a ], that is for any f ∈ B+(R+),

〈ρ+
a , f 〉 =

∫
[H̄a ,∞)

f (r − H̄a) ρa(dr ). (A.8)

θa = inf
{
θ′ ∈ [0,θ], ma([0, Ha]× [0,θ′]) 6= 0

}
(A.9)

with the convention θa =∞ if there is no mark present at time a, that is, when ρ+
a = 0.

For k ≥ 1 and ε> 0 fixed, we define S k,ε = (
ρk,ε,mk,ε

)
in the following way: for s > 0 and

f ∈ B+(R+)

ρk,ε
s = ρ+

(Sεk+s)∧T ε
k

,〈
(ma)k,ε

s , f
〉
=

∫
(H̄Sε

k
,+∞)

f (r − H̄Sεk
)ma

(Sεk+s)∧T ε
k

(dr ), with a ∈ {nod,ske},

and mk,ε
s = ((mnod)k,ε

s , (mske)k,ε
s ). Notice that ρk,ε

s ({0}) = ρSεk
({H̄Sεk

}).

Finally, we define θk,ε = θSεk
which is the index of the lowest mark present at time Sεk .

For k ≥ 1, we consider the σ-field F (ε),k generated by the processes (S(T ε
`
+s)∧Sε

`+1−, s > 0) for
` ∈ {0, . . . ,k −1} Notice that for k ∈ N∗

F (ε),k ⊂F e
Sεk

. (A.10)

Approximation of the functional

Remember we want to compute the conditional distribution of
∑

i∈I φ(Aαθi
,ραθ−i

,S i ,θi ),
where I is the index set of the excursions of the exploration process above the marks.
Now, we decompose, for every i ∈ I , the excursion S i into the excursions (S̄ i

j , j ∈ J ) the
exploration process makes above its minimum mass process. The last excursions, which cor-
respond to excursions above 0, are assembled in one single excursion. If g is a functional, we
will define

g∗(S ) = ∑
j∈J

g (S j ),

where the sum is taken over all the excursions above the minimum mass process. The
following lemma, which generalizes a result from [ADV10], enables us, when computing the
conditional expectation we want, to use the approximation given by the ε-mesh defined above:

Lemma 3. P-a.s., we have, for ε> 0 small enough,

∑
i∈I

φ
(

Aαi ,ραi−,S i ,θi
)
=

∞∑
k=1

φ
(

ASεk
,ρ−

Sεk
,S k,ε,θk,ε

)
=

∞∑
k=1

φ∗
(

ASεk
,ρ−

Sεk
,S k,ε,θk,ε

)
, (A.11)

where the sums have a finite number of non-zero terms.

The proof is exactly the same as in [ADV10], and relies on hypotheses (h1) and (h3) we
made earlier.

125



A. Special Markov property of the pruning process

Computation of the conditional expectation

What we want to prove is the following lemma. This is where we need to be careful in treating
the pruning times, because major differences exist with [ADV10].

Lemma 4. For every F̃∞-measurable non-negative random variable Z , we have

E

[
Z exp

(
−

∞∑
k=1

φ∗
(

ASεk
,ρ−

Sεk
,S k,ε,θk,ε

))]
= E

[
Z

∞∏
k=1

Kε

(
ASεk

,ρ−
Sεk

)]
,

where γ=ψ−1 (1/ε) and

Kε(r,µ) = ψ(γ)

φθ(γ)

∫ θ

0
dθ′

γ− v(r,µ,θ′)
ψ(γ)−ψ(v(r,µ,θ′))[

2β+
∫ 1

0
du

∫
(0,∞)

`2e−θ
′`π(d`) w(u`,r,µ,θ′)e−γ(1−u)`

]
, (A.12)

with
w(`,r,µ,θ′) = E∗`

[
e−φ(r,µ,·,θ′)

]
and v(r,µ,θ′) =N

[
1−e−φ(r,µ,·,θ′)

]
. (A.13)

Proof. Step 1. We introduce first a special form of the random variable Z .
Let p ≥ 1. Recall that Ht ,t ′ denotes the minimum of H between t and t ′ and that H̄t

defined by A.7 represents the height of the lowest mark. We set

ξ
p−1
d = sup

{
t > T ε

p−1; Ht = HT ε
p−1,Sεp

}
,

ξ
p
g = inf

{
t > T ε

p−1; Ht = H̄Sεp and Ht ,Sεp = Ht

}
.

ξ
p−1
d is the time at which the height process reaches its minimum over [T ε

p−1,Sεp ]. By definition
of T ε

p−1, mT ε
p−1

= 0 (there is no mark on the linage of the corresponding individual). On the

contrary, mSεp 6= 0, mSεp ({H̄Sεp }) 6= 0 but mSεp ([0, H̄Sεp )) = 0. In other words, at time Sεp , some
mark exists and the lowest mark is situated at height H̄Sεp . Roughly speaking, ξp

g is the time
at which this lowest mark appears. Let us recall that, by the snake property, m

ξ
p−1
d

= 0 and

consequently, ξp−1
d < ξp

g a.s.
We consider a bounded non-negative random variable Z of the form Z = Z0Z1Z2Z3,

where the bounded, non-negative random variables (Zi ,0 ≤ i ≤ 3) are such that Z0 ∈F (ε),p−1,
Z1 ∈σ(Su ,T ε

p−1 ≤ u < ξp−1
d ), Z2 ∈σ(Su ,ξp−1

d ≤ u < ξp
g ) and Z3 ∈σ(S(T ε

k +s)∧Sεk+1−, s ≥ 0,k ≥ p).

Step 2. Using the strong Markov property of the exploration process several times, we
finally get

E

[
Z exp

(
−

p∑
k=1

φ∗(ASεk
,ρ−

Sεk
,S k,ε,θk,ε)

)]

= E
[

Z0 exp

(
−

p−1∑
k=1

φ∗(ASεk
,ρ−

Sεk
,S k,ε,θk,ε)

)
φ

(
ASεp−1

,ρ−
Sεp−1

,ρT ε
p−1

)]
, (A.14)
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with
φ(b,µ,ν) = E∗ν

[
Z1Z2E

∗
ρ+
τ′

[
e−φ

∗(b+Aτ′ ,µ,·,θτ′ )
]
E∗ρ−

τ′
[Z3]

]
, (A.15)

where τ′ is distributed under P∗
ν as Sε1.

Step 3. We compute the function φ given by A.15. To simplify the formulas, we set

F (b′,µ′,θ′) = E∗µ′
[

e−φ
∗(b+b′,µ,·,θ′)

]
; G(µ′) = E∗µ′ [Z3]

(the dependence on b and µ of F is omitted) so that

φ(b,µ,ν) = E∗ν
[

Z1Z2F (Aτ′ ,ρ
+
τ′ ,θτ′)G(ρ−

τ′)
]

. (A.16)

Lemma 5. We set q(du,d`,dθ′) = 2βδ(0,0)(du,d`)dθ′+du `2e−θ
′`π(d`)dθ′ and by convention

π({0}) = 0. We have:

φ(b,µ,ν) = Eν
[

Z1Z2
ΓF (Aτ′)

Γ1
G(ρ−

τ′)

]
, (A.17)

where for a non-negative function f defined on [0,∞)×M f (R+)×R+

Γ f (a) =
∫

[0,1]×[0,∞)
q(du,d`,dθ′)

∫
M(dρ′,dη′,dm′) e−γ〈ρ

′,1〉−γu` f (a,η′+ (1−u)`δ0,θ′)

and for f = 1, Γ1 does not depend on a.

The proof of this lemma, although quite technical, can actually be given by adapting the
proof in [ADV10] mutatis mutandis. For this reason, we will not repeat it here.

We now use the particular form of F to compute ΓF . Using the Poissonian structure of
the excursions of the exploration above its minimum, we get

F (a,µ′,θ′) = E∗µ′
[

e−φ
∗(b+a,µ,·,θ′)

]
= E∗µ′({0})

[
e−φ(b+a,µ,·,θ′)

]
e
−µ′((0,∞))N

[
1−e−φ(b+a,µ,·,θ′)

]
.

Using w and v defined in A.13, we get

Ms

[
e−γ〈ρ,1〉−γu`F (a,η+ (1−u)`δ0,θ′)

]
= w((1−u)`,b +a,µ,θ′)e−γu`Ms

[
e−γ〈ρ,1〉e−v(b+a,µ,θ′)〈η,1〉

]
= w((1−u)`,b +a,µ,θ′)e−γu` exp

(
−s

(
ψ(γ)−ψ(v(b +a,µ,θ′))

γ− v(b +a,µ,θ′)
−α

))
.

We deduce that

ΓF (a) =
∫ θ

0
dθ′

γ− v(b +a,µ,θ′)
ψ(γ)−ψ(v(b +a,µ,θ′))(

2β+
∫ 1

0
du

∫
(0,∞)

`2 exp(−θ′`)π(d`) w(u`,b +a,µ,θ′)e−γ(1−u)`
)

,
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A. Special Markov property of the pruning process

and with F = 1, Γ1 = γ
ψ(γ)

φθ(γ)
γ = φθ(γ)

ψ(γ) .
Finally, plugging this formula in A.17 and using the function Kε introduced in A.12, we

have
φ(b,µ,ν) = Eν[Z1Z2Kε(b + Aτ′ ,µ)G(ρ−

τ′)]. (A.18)

Step 4. Induction.
Plugging the expression A.18 for φ in A.14, and using the arguments backward from A.14

we get

E

[
Z exp

(
−

p∑
k=1

φ∗(ASεk
,ρ−

Sεk
,S k,ε,θkε)

)]

= E
[

Z exp

(
−

p−1∑
k=1

φ∗(ASεk
,ρ−

Sεk
,S k,ε,θk,ε)

)
Kε(ASεp ,ρ−

Sεp
)

]
.

In particular, using a monotone class argument, we see that this equality holds for any non-
negative Z measurable w.r.t. the σ-field F̄ ε∞ = σ((SCt , t ∈ [AT ε

k
, ASεk+1

]),k ≥ 0). Notice that
Kε(ASεp ,ρ−

Sεp
) is measurable w.r.t. F̄∞. So, we may iterate the previous argument and let p go

to infinity to finally get that for any non-negative random variable Z ∈ F̄∞, we have

E

[
Z exp

(
−

∞∑
k=1

φ∗(ASεk
,ρ−

Sεk
,S k,ε)

)]
= E

[
Z

∞∏
k=1

Kε(ASεk
,ρ−

Sεk
)

]
.

Intuitively, F̄ ε∞ is the σ-field generated by F̃∞ and the mesh ([AT ε
k

, ASεk+1
],k ≥ 0). As F̄ ε∞

contains F̃∞, the Lemma is proved.

Computation of the limit

Again, the analysis in [ADV10] remains valid. We will only recall the following result, which
we will of course apply to Kε in order to pass to the limit in our conditional expectation:

Corollary 6. There exists a sub-sequence (ε j , j ∈ N) decreasing to 0, s.t. P-a.s. for any t0 ≥ 0 and
any continuous function h defined on R+×M f (R+) such that h(u,µ) = 0 for u ≥ t0, we have, with
γ j =ψ−1(1/ε j ),

lim
j→∞

φ1(γ j )−1
∞∑

k=1
h(A

S
ε j
k

,ρ−
S
ε j
k

) =
∫ ∞

0
h(u,ρθu) du.

The next lemma ensures that Kε converges uniformly to the expected limit:

Lemma 7. There exists a deterministic function R s.t. limε→0 R(ε) = 0 and for all ε > 0 and
µ ∈M f (R+), we have:

sup
r≥0

∣∣∣∣φθ(γ) log(Kε(r,µ))−
∫ θ

0

(
2βv(r,µ,θ′)

−
∫

(0,∞)
`e−θ

′`π(d`)
(
1−w(`,r,µ,θ′)

)
dθ′

)∣∣∣∣≤R(ε). (A.19)
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Proof. The same transformations as in [ADV10] show that:

Kε(r,µ) =
∫ θ

0
dθ′

(
1− v(r,µ,θ′)/γ

1−ψ(v(r,µ,θ′))/ψ(γ)

)
1

φθ(γ)

(
∂φθ′

∂θ′
(γ)−

∫
(0,∞)

πθ′(d`)
∫ γ`

0
e−sd s(1−w(`− s/γ,r,µ,θ′))

)
, (A.20)

with πθ′(d`) = e−θ
′`π(d`). Now, writing 1/(1−ψ(v)/ψ(γ)) = 1+ψ(v)/ψ(γ)+R1(r,µ,θ′,γ) and

∫
(0,∞)

πθ′(d`)
∫ γ`

0
e−sd s(1−w(`− s/γ,r,µ,θ′))

=
∫

(0,∞)
πθ′(d`)

∫ γ`

0
e−sd s(1−w(`,r,µ,θ′))

−
∫

(0,∞)
πθ′(d`)

∫ γ`

0
e−sd s(w(`− s/γ,r,µ,θ′)−w(`,r,µ,θ′)) (A.21)

we get the following exact expression for φθ(γ) logKε(r,µ):

φθ(γ) log

(
1+

∫ θ

0
dθ′

(
− 1

φθ(γ)

∂φθ′

∂θ′
(γ)

v(r,µ,θ′)
γ

+ 1

φθ(γ)

∂φθ′

∂θ′
(γ)

ψ(v(r,µ,θ′))

ψ(γ)

+ 1

φθ(γ)

∫
(0,∞)

πθ′(d`)(1−e−γ`)(1−w(`,r,µ,θ′))+R2(r,µ,θ′,γ)

))
, (A.22)

where R2(r,µ,θ′,γ) is the sum of 14 terms. The analysis in Section A shows that there exists
C1 > 0 such that for all r ≥ 0 and θ′ ∈ [0,θ],∣∣∣∣∫

(0,∞)
πθ′(d`)

∫ γ`

0
e−sd s

(
w(`− s/γ,r,µ,θ′)−w(`,r,µ,θ′)

)∣∣∣∣≤ C1

γ
(A.23)

In a similar way, using hypothesis (h3), we see that there exists C2 > 0 such that when γ is
sufficiently large, for all r ≥ 0 and θ′ ∈ [0,θ],

∣∣R1(r,µ,θ′,γ)
∣∣≤ C2

ψ(γ)2 (A.24)

A detailed computation of R2(r,µ,θ′,γ) then shows that, when γ is sufficiently large, there
exists C3 > 0 such that, for every r ≥ 0 and θ′ ∈ [0,θ],

∣∣R2(r,µ,θ′,γ)
∣∣≤ C3

ψ(γ)
(A.25)

Thus, when developing the logarithm, we get:
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∣∣∣∣φθ(γ) log(Kε(r,µ))−
∫ θ

0
2βv(r,µ,θ′)−

∫
(0,∞)

`e−θ
′`π(d`)

(
1−w(`,r,µ,θ′)

)
dθ′

∣∣∣∣
=

∣∣∣∣∫ θ

0
dθ′

(
v(r,µ,θ′)

(
∂φθ′

∂θ′
(γ)/γ−2β

)
−

∫
(0,∞)

πθ′(d`)e−γ`(1−w(`,r,µ,θ′))

+∂φθ′
∂θ′

(γ)
ψ(v(r,µ,θ′))

ψ(γ)
+R3(r,µ,θ′,γ)

)∣∣∣∣ (A.26)

where R3 takes into account the error term R2 as well as the error terms arising from the
approximation log(1−u) ' u. As such, considering (A.25) and considering that, for every
r ≥ 0,

∣∣∣∣∫ θ

0

((
∂φθ′

∂θ′
(γ)−2β

)
v(r,µ,θ′)

)
dθ′

∣∣∣∣ ≤ c1|φθ(γ)/γ−2β| (A.27)∣∣∣∣∫ θ

0

∂φθ′

∂θ′
(γ)

ψ(v(r,µ,θ′))

ψ(γ)
dθ′

∣∣∣∣ ≤ c2|φθ(γ)/ψ(γ)| (A.28)

with suitable constants c1 and c2, we easily get the result.

Thus, using Corollary 6 along with the previous Lemma, we get the following convergence:

Lemma 8. Let φ satisfying condition (h1)–(h3). There exists a sub-sequence (ε j , j ∈ N) decreasing
to 0, s.t. P-a.s.

lim
j→∞

∞∏
k=1

Kε j (A
S
ε j
k

,ρ−
Sεk

) = exp−
∫ θ

0
dθ′

∫ ∞

0
du

(
2βv(u,ρθu ,θ′)

+
∫

(0,∞)
`e−θ

′`π(d`) (1−w(`,u,ρθu ,θ′))

)
.

End of the proof

Let Z ∈ F̃∞ non-negative such that E[Z ] < ∞. Let φ satisfying hypothesis of the Special
Markov Property, along with (h1)–(h3). We have, using notation of the previous sections

E

[
Z exp

(
−∑

i∈I
φ(Aαi ,ραi−,S i ,θi )

)]

= lim
j→∞

E

[
Z exp

(
−

∞∑
k=1

φ∗
(

A
S
ε j
k

,ρ−
S
ε j
k

,S k,ε j ,θk,ε j

))]

= lim
j→∞

E

[
Z

∞∏
k=1

Kε j (A
S
ε j
k

,ρ−
S
ε j
k

)

]

= E
[

Z exp

(
−

∫ ∞

0
du

∫ θ

0
dθ′

(
2βv(u,ρθu ,θ′)+

∫
(0,∞)

`e−θ
′`π(d`) (1−w(`,u,ρθu ,θ′))

))]
,
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where we used Lemma 3 and dominated convergence for the first equality, Lemma 4 for
the second equality, Lemma 8 and dominated convergence for the last equality. By using a
monotone class argument and by monotonicity, we can remove hypotheses (h1)–(h3). To end
the proof of the first part, notice that∫ ∞

0
du

∫ θ

0
dθ′

(
2βv(u,ρθu ,θ′)+

∫
(0,∞)

`e−θ
′`π(d`) (1−w(`,u,ρθu ,θ′))

)
is F̃∞-measurable and so this is P-a.s. equal to the conditional expectation (i.e. the left hand
side term of (A.4)).
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Résumé. Cette thèse est consacrée à l’étude de certains processus aléatoires à valeurs
dans les arbres continus. Nous définissons d’abord un cadre conceptuel pour cette étude, en
construisant une topologie polonaise sur l’espace des R-arbres localement compacts, com-
plets et munis d’une mesure borélienne localement finie. Cette topologie, dite de Gromov-
Hausdorff-Prokhorov, permet alors la définition de processus de Markov à valeurs arbre.
Nous donnons ensuite une nouvelle construction du processus d’élagage d’Abraham-Delmas-
Voisin, qui est un exemple de processus qui prend ses valeurs dans les arbres de Lévy. Notre
construction, qui dévoile une nouvelle structure généalogique des arbres de Lévy, est tra-
jectorielle, et permet d’identifier explicitement les transitions du processus d’élagage. Nous
appliquons cette description à l’étude de certains temps d’arrêt, comme le premier temps
auquel le processus franchit une hauteur donnée. Nous décrivons le processus à cet instant
grâce à une nouvelle décomposition de type spinal. Enfin, nous nous intéressons à la frag-
mentation d’Aldous-Pitman de l’arbre brownien d’Aldous. En particulier, nous étudions, à
la suite d’Abraham et Delmas, l’effet de cette fragmentation sur les sous-arbres discrets de
l’arbre brownien. Le nombre de coupures nécessaires avant d’isoler la racine, convenablement
renormalisé, converge vers une variable aléatoire de Rayleigh ; nous donnons un théorème
central limite qui précise les fluctuations autour de cette limite.

Abstract. In this thesis, we study continuum tree-valued processes. First, we define an
abstract framework for these processes, by constructing a metric on the space of locally com-
pact, complete R-trees, endowed with a locally finite Borel measure. This topology, called
Gromov-Hausdorff-Prokhorov topology, allows for the definition of tree-valued Markov pro-
cesses. We then give a new construction of the pruning process of Abraham-Delmas-Voisin,
which is an example of a Lévy tree-valued process. Our construction reveals a new genealog-
ical structure of Lévy trees. Furthermore, it is a pathwise construction, which describes the
transitions of the process explicitly. We apply this description to the study of certain stopping
times, such as the first moment the process crosses a given height. We describe the process at
that time through a new spinal decomposition. Finally, we focus on the Aldous-Pitman frag-
mentation of Aldous’s Brownian tree. Following Abraham and Delmas, we study the effect
of the fragmentation on discrete subtrees of the Brownian tree. The number of cuts needed
to isolate the root, suitably renormalized, converges towards a Rayleigh-distributed random
variable; we prove a Central Limit Theorem describing the fluctuations around this limit.
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