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Abstract

Data assimilation in geophysical sciences aims at optimally estimating the state of the system
or some parameters of the system’s physical model. To do so, data assimilation needs three
types of information: observations and background information, a physical/numerical model,
and some statistical description that prescribes uncertainties to each componenent of the sys-
tem.

In my dissertation, new methodologies of data assimilation are used in atmospheric chem-
istry and physics: the joint use of a 4D-Var with a subgrid statistical model to consistently
account for representativeness errors, accounting for multiple scale in the BLUE estimation
principle, and a better estimation of prior errors using objective estimation of hyperparameters.
These three approaches will be specifically applied to inverse modelling problems focussing
on the emission fields of tracers or pollutants.

First, in order to estimate the emission inventories of carbon monoxide over France, in-situ
stations which are impacted by the representativeness errors are used. A subgrid model is in-
troduced and coupled with a 4D-Var to reduce the representativeness error. Indeed, the results
of inverse modelling showed that the 4D-Var routine was not fit to handle the representative-
ness issues. The coupled data assimilation system led to a much better representation of the
CO concentration variability, with a significant improvement of statistical indicators, and more
consistent estimation of the CO emission inventory.

Second, the evaluation of the potential of the IMS (International Monitoring System) ra-
dionuclide network is performed for the inversion of an accidental source. In order to assess
the performance of the global network, a multiscale adaptive grid is optimised using a criterion
based on degrees of freedom for the signal (DFS). The results show that several specific regions
remain poorly observed by the IMS network.

Finally, the inversion of the surface fluxes of Volatile Organic Compounds (VOC) are car-
ried out over Western Europe using EMEP stations. The uncertainties of the background values
of the emissions, as well as the covariance matrix of the observation errors, are estimated ac-
cording to the maximum likelihood principle. The prior probability density function of the con-
trol parameters is chosen to be Gaussian or truncated Gaussian distributed. Grid-size emission
inventories are inverted under these two statistical assumptions. The two kinds of approaches
are compared. With the Gaussian assumption, the departure between the posterior and the
prior emission inventories is higher than when using the truncated Gaussian assumption, but
that method does not provide better scores than the truncated Gaussian in a forecast experiment.

Keywords: Data assimilation, inverse modelling, 4D-Var, multiscale, representativeness
errors, maximum likelihood principle.
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Résumé

Dans les études géophysiques, l’assimilation de données a pour but d’estimer l’état d’un
système ou les paramètres d’un modèle physique de façon optimale. Pour ce faire, l’assimila-
tion de données a besoin de trois types d’informations : des observations, un modèle physique/-
numérique et une description statistique de l’incertitude associée aux paramètres du système.

Dans ma thèse, de nouvelles méthodes d’assimilation de données sont utilisées pour l’étude
de la physico-chimie de l’atmosphère : (i) On y utilise de manière conjointe la méthode 4D-Var
avec un modèle sous-maille statistique pour tenir compte des erreurs de représentativité. (ii)
Des échelles multiples sont prises en compte dans la méthode d’estimation BLUE. (iii) Enfin,
la méthode du maximum de vraisemblance est appliquée pour estimer des hyper-paramètres
qui paramètrisent les erreurs à priori. Ces trois approches sont appliquées de manière spéci-
fique à des problèmes de modélisation inverse des sources de polluant atmosphérique.

Dans une première partie, la modélisation inverse est utilisée afin d’estimer les émissions
de monoxyde de carbone sur un domaine représentant la France. Les stations du réseau d’ob-
servation considérées sont impactées par les erreurs de représentativité. Un modèle statistique
sous-maille est introduit. Il est couplé au système 4D-Var afin de réduire les erreurs de représen-
tativité. En particulier, les résultats de la modélisation inverse montrent que la méthode 4D-Var
seule n’est pas adaptée pour gérer le problème de représentativité. Le système d’assimilation
des données couplé conduit à une meilleure représentation de la variabilité de la concentration
de CO avec une amélioration très significatives des indicateurs statistiques.

Dans une deuxième partie, on évalue le potentiel du réseau IMS (International Monitoring
System) du CTBTO (preparatory commission for the Comprehensive nuclear-Test-Ban Treaty
Organization) pour l’inversion d’une source accidentelle de radionucléides. Pour évaluer la
performance du réseau, une grille multi-échelle adaptative de l’espace de contrôle est optimi-
sée selon un critère basé sur les degrés de liberté du signal (DFS). Les résultats montrent que
plusieurs régions restent sous-observées par le réseau IMS.

Dans la troisième et dernière partie, sont estimés les émissions de Composés Organiques
Volatils (COVs) sur l’Europe de l’ouest. Cette étude d’inversion est faite sur la base des obser-
vations de 14 COVs extraites du réseau EMEP. L’évaluation des incertitudes des valeurs des
inventaires d’émission et des erreurs d’observation sont faites selon le principe du maximum de
vraisemblance. La distribution des inventaires d’émission a été supposée tantôt gaussienne et
tantôt gaussienne tronquée. Ces deux hypothèses sont appliquées pour inverser le champs des
inventaires d’émission. Les résultats de ces deux approches sont comparés. Bien que la cor-
rection apportée sur les inventaires est plus forte avec l’hypothèse gaussienne que gaussienne
tronquée, les indicateurs statistiques montrent que l’hypothèse de la distribution gaussienne
tronquée donne de meilleurs résultats de concentrations que celle gaussienne.

Mots-clés : assimilation de données, modélisation inverse, 4D-Var, multi-échelle, erreurs
de représentativité, principe du maximum de vraisemblance.
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In the present study, data assimilation methods are used to estimate the sources of pollu-
tants which are part of the input data in a model of atmospheric physics. Such methods are very
useful because they provide reliable information on some physical parameters which would be
difficult or impossible to access otherwise (for instance experimentally) and help to calibrate
the numerical models to predict the future. These methods are not only in need of a physical
model, but also of observations and of some knowledge of the statistics on the errors related to
the model and to the observations.

During the two last decades, many studies have been published on the assimilation of in-situ
and satellite observations of pollutant concentrations. In particular, the present study focuses
on the assimilation of the in-situ observations of concentrations. The objective pursued is to
estimate the emission fluxes of carbon monoxide (CO) and the ability of the IMS (International
Monitoring System) of Comprehensive Nuclear-Test-Ban Treaty (CTBTO) to reconstruct ra-
dionuclide sources. A final purpose is to correct the emission inventories of Volatile Organic
Compounds (VOCs) with the help of the hyper-parameters (the errors related to the parameters
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and related to the observations) computed via the maximum likelihood method.

This chapter aims at introducing the necessary elements of data assimilation. Section 1.1
presents the different physical models of the atmosphere, as well as, the sources of uncertainty
related to them. In Section 1.2, the observations and their importance are discussed. The dif-
ferent kinds of errors between the observations and the simulations (modelling errors) will also
be explained. Section 1.3 gives a detailed description of inverse modelling, of the estimation of
the hyper-parameters of the objective function for data assimilation and finally, of the method
of multiscale data assimilation. The outline of the study will be presented in Section 1.4.

1.1 Chemistry-transport models

The assessment of the pollutant concentrations in the atmospheric boundary layer is essential
to improve air quality and prevent harmful impacts on human health. For many years, numer-
ical codes have been developed to compute the spatio-temporal concentrations of atmospheric
species. Most of them use Eulerian, Lagrangian and Gaussian numerical models. As will be
explained below, each have their strengths and weaknesses and are used in different, though
complementary, simulation contexts.

• The Eulerian models- are deterministic models. The pollutant motion is studied at spe-
cific locations in space (control volumes), through which air flows as time passes. In
these models each physical quantity such as velocity and acceleration of the fluid is
expressed as a function depending on space and time. As the Eulerian models are not
focused directly on each particle, the computed concentrations are continuous quantities.

• The Lagrangian models- are stochastic models which follow the particle (the pollutants)
trajectories in time. Each particle is labelled with a number. The concentration of a
pollutant is computed with the help of the number and mass of the particle in a specific
area. The computed concentrations that are discrete quantities are accurate near the
sources. The computational load increases linearly with the number of sources. Thus, in
an air quality context, Lagrangian models are suitable for accidental case studies.

• The Gaussian models- are based on analytical approximate solutions of the advection-
diffusion equation. The latter is not solved and the physical and chemical processes are
taken into account through parametrisations. They are suitable for operational studies
as the computing time required is short. However, they cannot easily handle complex
physical and chemical processes.

In this study the Eulerian code POLAIR3D of the POLYPHEMUS platform [Boutahar et al.,
2004; Quélo et al., 2007] and the Lagrangian code FLEXPART [Stohl et al., 2005] will be used.

1.1.1 Eulerian models

An Eulerian model is based on the spatial and temporal resolution of the equations describing
a physical system. In atmospheric studies, the equations are solved under the assumption of
incompressible flow and for diluted species (neglecting the pollutant actions on the fluid flow).
The concentration of the studied species is computed taking the flux, the production and the
loss of the species in the cell into account according to the following equation:
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∂c(x, t)

∂t
= −div (u(x, t)c(x, t)) + ∇ ·

(
ρK(x, t)∇

c(x, t)

ρ

)

−Λ(x, t)c(x, t) + χ(c(x, t),x, t) + σ(x, t) . (1.1)

In this equation, c(x, t) is the average concentration of the species at coordinate x and time
t and u their average velocity. K is the turbulent diffusion matrix. ρ is the density of the fluid.
Λ is the scavenging coefficient. Finally, χ and σ are the chemical reaction and the emission
terms, respectively. The different terms in Eq. (1.1) are:

• the transport term following two principles:

– the advection (div (u(x, t)c(x, t))) which accounts for the transport of the species
with the average fluid motion.

– the turbulent diffusion (∇·
(
ρK(x, t)∇ c(x,t)

ρ

)
) which accounts for the transport of

the species with the fluctuating fluid motion assuming a first order closure model.
The molecular diffusion of the species is neglected compared to their turbulent
diffusion.

• the wet scavenging term (Λ(x, t)c(x, t)) models the loss of species by absorption in
hydrometeors. The pollutants incorporated, for instance, in raindrops are transferred
from the atmosphere to the ground. The scavenging term is a sink term in the mass
transport equation.

• the chemistry term (χ(c(x, t),x, t)) accounts for the chemical reactions the species un-
dergo. It is a source term when the species are produced or a sink term when they are
consumed, however, it is zero for the inert pollutants.

• the volume emission term (σ(x, t)); it is a source of species in the mentioned equation.
It includes the emissions of pollutants due to human activities (anthropogenic sources),
e.g., traffic and industries, and due to natural (biogenic) sources, e.g., vegetation emission
and uplake biomass burning and volcanic eruptions.

One can show the existence and the uniqueness of the solution for the above evolutionary
equation (Eq. (1.1)) under the following conditions:

• The initial conditions are the concentrations at time t=0,

c(x, 0) = c0(x) , (1.2)

and show the state of the atmosphere at the beginning of the modelling process.

• The boundary conditions are the concentrations at the borders of the numerical domain:

– Boundary conditions at the ground level (z = 0):

K(xz=0, t)∇c(xz=0, t) · n = vdc(xz=0, t) − E(xz=0, t) , (1.3)

where, n is the unity vector normal to the surface z = 0 and directed towards
the outside of the domain. vd is the dry deposition velocity. The left side of Eq.
(1.3) displays the variation of the concentration at the ground with respect to time.
E(xz=0, t) is the surface emission.
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– The concentrations at the borders of the numerical domain, where the wind is in-
coming, ∂Ωin, are depicted by:

c(x, t) = c∂Ωin
(x, t) (x, t) ∈ ∂Ωin . (1.4)

∂Ωin =
⋃

t ∂Dt
in and Dt

in is the border of the spatial domain when the wind is incoming at
time t.

In POLAIR3D of the POLYPHEMUS, three numerical schemes, advection-diffusion-chemistry,
are integrated using the splitting principle. The suitable order for the set of operator is advec-
tion, diffusion and then chemistry. A Third-order Direct Space and Time (DST-3) scheme is
used to compute the advection term with flux limiter. The Rosenbrock method (second order) is
used to integrate the turbulent diffusion and the chemistry schemes. The positivity of solution
is guaranteed by the clipping condition.

1.1.2 Lagrangian models

A Lagrangian model is based on the computation in time of the labelled particle positions and
trajectory. The motion of particles is described by the following equation,

x(t + ∆t) = x(t) + v (x(t)) ∆t , (1.5)

where, x(t) is the position of the particle at time t and v is its velocity. The latter is the addition
of the wind vector averaged over the entire grid cell, v̄, and of the turbulent wind fluctuation,
vt. The variation of the turbulent wind fluctuations in the ith direction is given by the Langevin
equation,

∆vti(t) = ai(x,vt, t)∆t + bij(x,vt, t)∆wj . (1.6)

In the above equation, wj , is the incremental component of the Wiener’s stochastic process.
The mean value of wj is zero and its variance is ∆t. ai and bij are the drift and diffusion terms,
respectively (see Stohl et al. [2005]).

The radioactive decay, the wet and dry depositions are taken into account while describing
the mass of particles. Therefore, the mass of the particle k at time t, mk(t), can be written as
follows,

mk(t + ∆t) = mk(t)exp(−r∆t) . (1.7)

The coefficient r is defined as:

• for radioactive decay

r =
ln(2)

T1/2
, (1.8)

where, T1/2 is the half life of the particles.

• For wet scavenging
r = Λ . (1.9)

• For dry deposition

r =
vd(href)

2href
, (1.10)

where, vd is the dry deposition velocity and href is a height of reference (usually 15
metres, see Stohl et al. [2005]).
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The sources of emission are also taken into account with the mass of particles in a grid cell
at each instant.

Finally, the average concentration of pollutants at time t and position x is given by the
following Lagrangian formula,

c(x, t) =
1

|∆V (x)|

N∑

k=1

δk(x)mk(t) . (1.11)

Eq. (1.11) |∆V (x)|, is the volume of the grid cell to which the vector x is pointing. δk(x)
is the Dirac distribution that is unity if the particle k is located inside the grid cell to which x is
pointing and zero otherwise. N is the total number of particles. mk is the mass of the species
which are produced inside the mentioned grid cell. This is the source/sink term for the particle
k. Eq. (1.11) shows that the concentration is a discrete quantity in the Lagrangian model.

Instead of Eqs. (1.5) and (1.6), one can also use the following Fokker-Planck equation in
which the turbulent diffusion matrix, K (described in Sec. 1.1.1) appears:

xi(t + ∆t) = xi(t) +

(
vi(t) +

∂Ki

∂xi

)
∆t +

√
2Ki∆wi , (1.12)

where, i is the vector component index.

1.1.3 Uncertainty of the parameters of the model

The accuracy of any of the previously presented models depends strongly on the uncertainty
of the parameters [Mallet and Sportisse, 2006] and the sensitivity of the models to them. As it
is difficult to correct each source of uncertainty, it is important to identify those of them which
have the strongest effect on the results.

Here are listed the sources of uncertainty that can be met in the numerical simulations of
air quality:

• Input data: boundary and initial conditions, dry deposition velocity, emission inven-
tories, meteorological fields (temperature, pressure, wind, etc). These parameters are
closely dependent on the spatial and temporal domain which is chosen for the computa-
tion.

• Sub-grid parameterisations : mesoscale meteorological parameterisations, mesoscale
emission fields, etc.

• The accuracy in the description of the physical phenomena : the lack of understanding
of some phenomena can lead to a non comprehensive and incorrect theoretical represen-
tation of the reality.

• The numerical errors: errors due to the methods of discretisation and to the solvers.

It is important to know the sensitivity of the model to each of the above mentioned points in
order to get numerical results as close to reality as possible.

1.2 Observations

1.2.1 Air pollution observations

Measurements are necessary to quantify the state and quality of the atmosphere. They are
useful to estimate the needed parameters to run the numerical simulations and also to validate
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their results. The measurements can be performed by ground based stations, marine monitor-
ing buoy networks, airplanes, radiosondes, LIDARs and satellites. The in-situ stations provide
measurements at one single place and a network of several of them is needed to have wider spa-
tial sight of the air quality. The other instruments (airplane, Lidar, radiosonde and satellites)
can provide a spatial (vertical and horizontal) picture of the state of the atmosphere [Lahoz
et al., 2010]. The fixed measurement stations usually provide information with a greater ac-
curacy. Furthermore, at a given place, they can describe the evolution in time of the collected
information. They remain necessary in boundary layer studies.

1.2.2 Measurement stations: strengths and weaknesses

Stations provide in-situ measurements (observations) of a given pollutant in air at a given lo-
cation. The pollutant concentrations can be monitored in real time or samples of air can be
collected and analysed in laboratories. The relevance of the measurements depends on the
instruments which are used and also on the spatial representativity of the stations for the moni-
tored pollutant. The stations are organised into networks which enables regular, if not continu-
ous, temporal information for a whole surface area. The spatial relevance of the measurements
is increased with the density of the stations in the network.

To perform a numerical simulation and check its results with the help of the in-situ mea-
surements, the following points should be investigated:

• Assessment of the instrumental error.

• Spatial and temporal representativeness of the observations for the selected numerical
spatio-temporal domain.

• Observability or the ability of the measurement network, to provide as much information
as possible useful for the numerical model.

1.2.2.1 Instrumental error

The errors of measurement can arise from the data-recording facilities, the methods or pro-
cesses carried out and even from the interference of inexpert operators.

If µtrue is a vector of physical parameters (for instance, concentrations) dependent on some
continuous fields xtrue (for instance in the frame work of air quality studies, emission invento-
ries and meteorological data ), the following relation can be written,

µtrue = H(xtrue) , (1.13)

where H is a continuous operator linking µtrue to the continuous true state xtrue. The instru-
mental error (ǫmeas) is the departure of the measured value of µ from its true value.

µ = µtrue + ǫmeas . (1.14)

1.2.2.2 Representativeness error

Errors of representativeness arises of shifting from a continuous space to a discrete one. For
numerical modelling purposes, the continuous operator H is replaced by the discrete operator
H and the continuous true state xtrue by the discrete one xt. In that purpose, the restriction
operator Γs enables to shift from the continuous to the discrete spaces with a resolution s,

xtrue
Γs−→ xt . (1.15)
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The discrete operator H can be formalised as follows:

H = HΓ⋆
s , (1.16)

where Γ⋆
s is the prolognation operator (see section 1.3.4).

While writing the vector of physical parameters, µtrue, this time in the discrete space, an
additional error is brought into the theoretical relation, where ǫrep is called the representative-
ness error:

µtrue = Hxt + ǫrep . (1.17)

The summation of ǫmeas and ǫrep gives:

µ = Hxt + ǫmeas + ǫrep . (1.18)

Note that in data assimilation textbooks, the above equation is written as:

µ = Hxt + ǫt , (1.19)

where, the modelling error, ǫt, does not only include the measurement and representativeness
errors but also the error, ǫmodel, due to the physical model H(xtrue).

Let us specify that the loss of information arises from the discretisation of xtrue only, and
not from the operator H. In other words, the error of representativeness is generated by the
restriction operation.

As long as the results of the discrete model (at the available measurement points) remain
unaffected by the grid resolution (Γs), the representativeness error (ǫrep) can be assumed to be
small. Therefore, in the frame of air quality modelling, two categories of measurement stations
can be identified :

• The background stations- are located far from the pollution sources (for instance, re-
gional and rural stations). These stations help to measure the average quality of ambient
air and are not affected by the immediate impact of pollution sources. These are good
stations to fulfil the statement just above.

• The proximity stations- are located close to the pollution sources (for instance, urban,
traffic and industrial stations). The discrete model results at these stations are strongly
dependent on the grid resolution.

The proximity stations cannot be used for regional and global scale modelling as they
can not provide relevant information at low grid resolution. To use the proximity stations,
the resolution needs to be higher, which at global scale modelling this would challenge the
performances of the computer. Furthermore, at large scale, there won’t be enough available
meteorological and emission related data.

1.2.2.3 Observability

The observability of a network of stations for a given study is its ability to provide relevant
measurements for that particular study.

The observability of a network depends on the climatology of the area covered by the
network [Mason and Bohlin, 1995]. It also depends on the location of the sources of pollution
and their distance from the measurement stations. For instance, for pollutants with a small life
time, the network should be dense enough to be able to detect the pollution plume.
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The observability of the networks is an essential issue in inverse modelling to reconstruct
the sources of pollution from the observations. Furthermore, inverse modelling can help to
check the observability of the network and improve the network design. For instance, com-
bination of optimisation studies can be performed in order to design the spread of a network
[Abida and Bocquet, 2009]. Geostatistical methods, such as Kriging, are among the simplest
methods used for network design. Data assimilation can also be used at a higher level of com-
plexity.

1.3 Inverse modelling

Inverse modelling is a way to use the available information (e.g. measurements) in order to
determine some specific parameters of the model (e.g. emissions fields, initial conditions,
vertical diffusion, etc). The space of these parameters is called control space. Inverse modelling
is not only applied to estimate the parameters of the model, but also it is used to increase
the ability of the model of predicting a physical phenomena. For instance, in atmospheric
chemistry, inversion studies are focused on the estimation of the parameters that impact the
species concentration fields. The parameters of the model which should be estimated are the
initial state for short time simulations, or the emission fields, boundary conditions or diffusion
fields in long simulations.

In geophysical literature, data assimilation is the word commonly used for the methods
that help to find the true state of the parameters describing a phenomenon. Data assimilation
is a technique of inverse modelling for very large scale systems which are ill-posed. Although,
inverse modelling focuses on the parameters, data assimilation focuses on the outputs of the
model. The main problem in inverse modelling is the lack of data or the lack of observability of
the computed parameters. Therefore, having an initial idea about the background information
is essential. The latter are used to regulate (or adjust) the model parameters.

1.3.1 General description

In order to estimate the vector x ∈ R
n, n being the number of model parameters, from a set of

m observations represented by a vector µ ∈ R
m, the linear map H ∈ R

m×n (which depicts a
linear physical model) is used to link the model parameters to the observation vector,

µ = Hx + ǫ . (1.20)

In Eq.(1.20), ǫ ∈ R
m is the modelling error. The latter represents the mismatch between the

observations and the model results. The information arising from the observations is the key
to get reliable results from the model. However, the extraction of information using inverse
modelling in atmospheric studies is difficult for several reasons.

As it is often question in geophysical data assimilations, the system under study is often
largely underdetermined: i.e. m ≪ n. One of the techniques commonly used is to aggregate
the control parameters x into coarser variables to reduce the number of effective parameters.
One can assume a map g : R

n → R
l, where: x = g(α). The dimension of α ∈ R

l is a
nip-and-tuck of the dimension of the observations vector, µ. Although this methodology helps
to reduce the control parameters, it may lead to a loss in the resolution of the results.

Moreover, the results of the model (H) are not always sensitive enough with respect to all
the model parameters. In that case, the extraction of significant information in order to adjust
the parameters from the observations is difficult. For instance, in atmospheric studies, while
assimilating the source emission parameters, the model does not always retrieve the informa-
tion far from the observation. In atmospheric transport models, this is a common problem due
to the effective diffusion term generated by the turbulent mixing.
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Furthermore, the errors coming from the estimations of the model make it still more com-
plicated to find a reliable solution for x.

For all these reasons, the inverse problem is often ill-posed in atmospheric studies. There-
fore, it is mandatory that the a priori information (background or first guess) should be ac-
counted for, in order to resolve the inverse problem. The Bayesian approach (based on the
Bayes formalism) allows to consistantly include the statistics of the errors and the model pa-
rameters in the inversion system [Bennett, 1992; Kaipio and Somersalo, 2010; Rodgers, 2000].

1.3.2 Bayesian approach

1.3.2.1 Bayesian inference and maximum likelihood

The Bayesian inference is based on two antecedents, the probability of the a priori model pa-
rameters, denoted pb(x), and the modelling error probability, denoted pe(ǫ). The approach
leads to compute the posterior probability following the Bayes’ rule. The difficulties encoun-
tered by this approach are the estimations of the distribution, the uncertainties involved in the
background of the parameters and the statistical parameters of the modelling error. The prob-
ability density function (pdf ) of the modelling error (or observation mismatch) is called the
likelihood function. The latter can be interpreted as the probability of the observations, given a
vector of parameters evidence, pe(µ|x) = pe(µ − Hx). According to the Bayes’ rule

p(x|µ) =
pe(µ|x)pb(x)

p(µ)

=
pe(µ − Hx)pb(x)

p(µ)
.

(1.21)

The denominator term in Eq. (1.21), p(µ), is disconnected from the models and the control
parameters. This is the so-called marginal-likelihood or model evidence.

Different methods can be used to compute a reliable value for the vector x. One of them,
stands on maximising the probability of the variable x. The maximum a posteriori estimator
(MAP) specifies the solution of the parameters of the model according to

xa = argminx p(x|µ) . (1.22)

Often, the log-likelihood method is used for that purpose. Therefore, one can define the objec-
tive cost function as follows:

J(x) = −ln (pe(µ − Hx)) − ln (pb(x)) . (1.23)

The marginal log-likelihood term appears as a constant term in the cost function which can be
eliminated. Eq. (1.23) is a simple form of the cost function, normally used in the three dimen-
sional and four dimensional variational data assimilation (3D-Var and 4D-Var, respectively)
approaches [Sasaki, 1958; Lorenc, 1986; Le Dimet and Talagrand, 1986].

1.3.2.2 Gaussian statistics

The argument of the minimum of Eq. (1.23), is closely dependent on the statistical assump-
tions for the likelihood function pdf, pe, and the pdf of the prior model parameters, pb. The
assumption is commonly used for the modelling error in curve fitting method, such as the least



28 Chapter 1 – Introduction

squares. Let us assume that E(ǫ) = 0 and the model error covariance matrix is R = E[ǫtǫ
T
t ].

As a result, the pdf pe is

pe(µ|x) =
e−

1
2
ǫTR−1ǫ

√
(2π)m|R|

. (1.24)

The pdf of the a priori control variables can be chosen following different distributions.
Specifically, the selection of the distribution depends on the nature of the parameters. In most
data assimilation textbooks, this pdf is chosen to be Gaussian. Assume that xb is the vector
of a first guess of the control parameters such that E

[
xb − xt

]
= 0. Let’s also assume that

B = E
[
(xb − xt)(xb − xt)T

]
is the background error covariance matrix which represents the

information about the uncertainty of the first guess. Therefore

pb(x) =
e−

1
2
(x−xb)

TB−1(x−xb)

√
(2π)n|B|

. (1.25)

Using these two pdf, the cost function, Eq.(1.23), can be rewritten as:

J(x) =
1

2
(µ − Hx)TR−1(µ − Hx) +

1

2
(x − xb)

TB−1(x − xb) +
1

2
ln
(
(2π)m+n|R||B|

)
.

(1.26)
The very last term in Eq. (1.26) is independent from x, and the cost function can be reformu-
lated as

J(x) =
1

2
(µ − Hx)TR−1(µ − Hx) +

1

2
(x − xb)

TB−1(x − xb) . (1.27)

The argument of the minimum of Eq. (1.27) is equivalent to the solution of the maximum
likelihood method. The Gaussian assumption on the pdf of the a priori control variables leads
to the creation of a regulation term of the Tikhonov kind [Tikhonov and Arsenin, 1977]. That
regulation term guarantees the existence of a unique solution for the problem, even though the
inverse problem is ill-defined. This solution can be written as

xa = xb + BHT
(
R + HBHT

)−1
(µ − Hxb) , (1.28)

where,

K = BHT
(
R + HBHT

)−1
. (1.29)

K is the so-called gain matrix. This solution (Eq. (1.28)) is known as the Best Linear Unbiased
Estimator (BLUE).

1.3.2.3 The posterior distribution

If x and ǫ are two independent normal random vectors, then the posterior distribution p(x|µ)
follows the same distribution. According to Eq. (1.28),

xa − xt = (I − KH)(xb − xt) + Kǫt . (1.30)

The above equation is the key to estimate the statistical parameters of the posterior distribution
p(x|µ). Using Eq. (1.29), one can easily deduce that

E
[
xa − xt

]
= 0 , (1.31)
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and,

Pa = E
[
(xa − xt)(xa − xt)

T
]

= (I − KH)B

= B − BHT(R + HBHT)−1HB .

(1.32)

The a posteriori pdf, which constitutes the probabilistic Bayes’ interference result reads

p(x|µ) =
e−

1
2
(x−xa)TP

−1
a (x−xa)

√
(2π)n|Pa|

. (1.33)

1.3.2.4 The marginal likelihood

The likelihood of the observation set, p(µ), is a key to estimate of the uncertainty matrix, B

and R [Desroziers and Ivanov, 2001]. That’s why its computation is important. According to
the law of total probability:

p(µ) =

∫

Rn×Rm

δ(µ − Hx)pe(ǫ)pb(x)dxdǫ =

∫

Rn

pe(µ|x)pb(x)dx , (1.34)

where δ is Dirac delta function. Replacing Eq. (1.24) and Eq. (1.25) in the above formula gives

p(µ) =
1√

(2π)m+n|R||B|

∫

Rn

e−
1
2((µ−Hx)TR−1(µ−Hx)+(x−xb)

TB−1(x−xb))dx . (1.35)

The above equation (Eq. 1.24) can be reformulated as below (see Appendix A)

p(µ) =
1√

(2π)m+n|R||B|

∫

Rn

e−
1
2((µ−Hxb)

T(R+HBHT)−1(µ−Hxb)+(x−xa)TP
−1
a (x−xa))dx .

(1.36)
Finally:

p(µ) =
e−

1
2
(µ−Hxb)

T(R+HBHT)−1(µ−Hxb)

√
(2π)m|R + HBHT|

∫

Rn

e−
1
2
(x−xa)TP

−1
a (x−xa)

√
(2π)n|Pa|

dx . (1.37)

The term presented in the integral denotes the a posteriori pdf, p(x|µ). The integral in the
above formulation (Eq. (1.37)) is equal to unity. Then the pdf of the observation reads

p(µ) =
e−

1
2
(µ−Hxb)

T(R+HBHT)−1(µ−Hxb)

√
(2π)m|R + HBHT|

. (1.38)

1.3.2.5 Degrees of freedom for the signal

The goal of inverse modelling is to estimate the model parameters as reliably as possible.
That means the posterior uncertainty of the model parameters, compacted in the term Pa, is
smaller for a given prior uncertainty B. According to Eq. (1.32), if the term KH is close to
the identity matrix, the posterior value of the model parameters becomes more certain. The
symmetric matrix, A = KH, is the so-called averaging kernel. The degrees of freedom for the
signal (DFS) is a quantity closed to the a posteriori uncertainty of the model parameters. This
value extracts the fraction of the observations used in the data assimilation system to retrieve
the solution. It reads,

DFS = E
[
(xa − xb)

TB−1(xa − xb)
]

= Tr(A) = Tr(HK) = Tr(KH) . (1.39)
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The singular vector decomposition of the averaging kernel gives:

DFS =

m∑

l=1

wl . (1.40)

where wl is the lth eigenvalue of A.
When the observations are representative enough, the value of the DFS shows the quality of

the analysis. The higher is the DFS, the higher is the information recovered from the observa-
tions. The computation of the DFS is inconsistent under the non-Gaussian assumption for the
a priori pdf of the control parameters. However, under the positivity enforcing, in the presence
of the positive background of the control parameters and when the uncertainty of the control
parameters is not very high, that can be also applied. Note that, in a non-Gaussian context, the
computation of relative entropy can be used in order to understand the quality of assimilation
[Bocquet, 2008].

1.3.3 Prior error estimation

The results of the inverse system depend not only on the model and on the observations but
also on the prior error estimations. One of the difficulties for inverse modelling studies is the
assessment of the error covariance matrix, R and B. This section introduces the maximum
likelihood method in order to estimate the prior errors.

1.3.3.1 Gaussian assumption

Let us assume that the two error covariance matrix, B and R, are as follows

R = r2R0 , B = β2B0 . (1.41)

where R0 and B0 are the first estimation of the information about the prior parameters. r and β,
called hyper-parameters, are the parameters used to fix these two covariance matrices. In order
to obtain the more likely values for r and β, one has to maximise the pdf of the observations,
Eq. (1.38), with respect to r and β. The log-likelihood can be written as

lnp(µ|r, β) = −
1

2
(µ−Hxb)

T(R + HBHT)−1(µ−Hxb)− ln|R + HBHT|+ C , (1.42)

where C is a constant parameter. The optimisation of the above log-likelihood function, Eq.
(1.42), with respect to the hyper-parameters, gives

r2 =
(µ − Hxa)

TR−1
0 (µ − Hxa)

Tr(Im − HK)
, (1.43)

and,

β2 =
(xa − xb)

TB−1
0 (xa − xb)

Tr(KH)
. (1.44)

The above two equations (1.43 and 1.43) can be used in an iterative system which converges
to a fixed point. At each iteration, xa and K are obtained from equations (1.28 and 1.29). This
method was first presented by Desroziers and Ivanov [2001]. They also show that the method
is equivalent to the maximum likelihood.

The χ2 method (see Ménard et al. [2000]; Tarantola [2005]) can be derived from Deroziers
method (see Chapnik et al. [2006]) and when one of the hyper-parameters is assumed to be
fixed. The method is useful in the variational data assimilation method [Koohkan and Bocquet,
2012; Michalak et al., 2005].
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1.3.3.2 Semi-normal assumption

When the model parameters that should be retrieved are all positive, the Gaussian pdf is not
appropriate. In that case, we assume the following Gaussian truncated pdf for the a priori model
parameters, is assumed:

pb(x) =
e−

1
2
(x−xb)

TB−1(x−xb)

√
(2π)n|B| (1 − Φ(B,xb,0))

Ix≥0 . (1.45)

In Eq. (1.45), Φ(B,xb,0) is the cumulative distribution function (cdf ), N(xb,B), computed
over the integral from minus infinity to zero. Ix≥0 is a function with the value zero if xi < 0 for
each i = 0, .., n and with the value unity elsewise. According to the semi-normal assumption,
the marginal probability function can be written as

p(µ|r, β) =
e−

1
2
(µ−Hxb)

T(R+HBHT)−1(µ−Hxb)

(1 − Φ(B,xb,0))
√

(2π)m|R + HBHT|

∫
e−

1
2
(x−xa)TP

−1
a (x−xa)

√
(2π)n|Pa|

Ix≥0dx .

(1.46)
The analytical computation of the hyper-parameters is difficult from Eq. (1.46). However, the
latter can be used by choosing the input values from within an allowed set of hyper-parameters
and computing the value of the function (Winiarek et al. [2011]; also in chapter 5). This method
is expensive for very large systems, but it can be used for a few thousand variables.

1.3.4 Multiscale data assimilation

1.3.4.1 Scaling operators

For a given domain, a regular grid, Ω, can be defined by a discretisation in space and time.
For instance, in a surface space and time discretisation (2D+T), Nx denotes the number of
grid cells along the longitude, Ny denotes the number of grid cells along the latitudes axis,
and Nt is the number of time step. Let us assume that Nfg = Nx × Ny × Nt is the finest
grid resolution of the spatio-temporal domain. x ∈ R

Nfg is the vector which gives the control
parameters for the finest resolution. Now, let us assume that R(Ω) is the dictionary of all
of the adaptative grids representing the domain. A representation ω is a member of R(Ω),
which gives a spatio-temporal discretisation of the domain, such that, xω ∈ R

N , N ≤ Nfg

(see Bocquet et al. [2011]; Bocquet [2009]). A restriction operator, Γω : R
N → R

Nfg denotes
how the vector of control parameters x is coarse-grained into the vector xω. Vice-versa, the
prolongation operator, Γ⋆

ω : R
Nfg → R

N , refines the vector xω into x̃ ∈ R
Nfg , where

xω = Γωx , x̃ = Γ⋆
ωxω . (1.47)

Since N ≤ Nfg, the loss of information occurs during the restriction operation. The com-
position of the prolongation and the restriction operator is the identity ΓωΓ⋆

ω = IN . The
operator Γ⋆

ω is ambiguous since additional information is needed to reconstruct the vector x

from x̃. A simplest choice for that operator is to set Γ⋆
ω = ΓT

ω . The best choice to determine
this operator is the use of the Bayes’ rule. The method is based on maximising the probability
of x, for a given representation xω. As mentioned before (Eq. (1.25)), the random variable x

can be assumed to be Gaussian: x ∼ N(xb,B). From Bayes’ rule, one can write

p(x|xω) =
p(x)δ(xω − Γωx)

pω(xω)
, (1.48)
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where δ is the Dirac distribution. For a linear operator Γω, the pdf of x in a representation ω,
pω(xω) remains Gaussian: xw ∼ N(xω

b ,Bω),

xω
b = Γωxb , Bω = ΓωBΓT

ω . (1.49)

The optimum solution of Eq. (1.48) can be computed with the help of the BLUE analysis

x⋆ = xb + Λ⋆
ω(xω − Γωxb) , (1.50)

where
Λ⋆

ω = BΓT
ω (ΓωBΓT

ω )−1 . (1.51)

Moreover, the projection operator is defined as,

Πω = Λ⋆
ωΓω , (1.52)

so that, we can choose the prolongation operator to be:

Γ⋆
ω : xω → (INfg

− Πω)xb + Λ⋆
ωxω . (1.53)

The composition of the restriction and the prolongation operator gives

Γ⋆
ωΓω : x → (INfg

− Πω)xb + Πωx . (1.54)

When xb = 0, the projection operator Πω is equal to Γ⋆
ωΓω. This operator satisfies the follow-

ing equations:

Π2
ω = Πω , ΠωB = BΠT

ω (1.55)

If the representation ω is coarse, Tr(Πω) ≪ Nfg. For a representation ω close to the finest
grid Ncg ≪ Tr(Πω) (Ncg is the number of cells in the coarsest grid resolution). The higher
Tr(Πω), the better the recovered information. However, this operator cannot be the identity
because the coarse-graining implies a loss of information.

1.3.4.2 Multiscale source receptor model

The source receptor model, Eq. (1.20), can be written in any representation ω. The Jacobian
matrix H in the representation ω changes to Hω = HΓ⋆

ω. The scale-dependent source-receptor
model is defined as:

µ = Hx + ǫ

= HΓ⋆
ωΓωx + H(INfg

− Γ⋆
ωΓω)x + ǫ

= Hωxω + ǫω .

(1.56)

Where, the ǫω is a scale-made dependent error:

ǫω = H(INfg
− Γ⋆

ωΓω)x + ǫ = H(INfg
− Πω)(x − xb) + ǫ (1.57)

Using Eq. (1.54), the source receptor model can be reformulated as

µ = Hxb + HΠω(x − xb) + ǫω . (1.58)

The observation covariance matrix in a representation ω is different from that one in the
finest grid

Rω = R + H(INfg
− Πω)BHT . (1.59)

The term H(INfg
− Πω)BHT, in the above equation, Eq. (1.59), leads to an increase of the

observation covariance matrix term. The term H(INfg
− Πω)(x − xb) is identified as the

aggregation error.
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1.3.4.3 Design criteria

DFS criterion

The degrees of freedom for the signal quantify the quality of the analysis. As presented in
Section 1.3.2.5, the DFS value is computed by the trace of the averaging kernel (Tr(KH)). In
a multi-scale context, one hopes to find a representation ω, which maximises the DFS. This
criterion is expressed as:

Jω = Tr(IN − B−1
ω Pω

a ) = Tr
(
ΠωBHT(R + HBHT)−1H

)
(1.60)

Fisher criterion

This criterion measures the reduction of uncertainty granted by the observations. This criterion
can be computed in the finest grid, Ω, according to

J = Tr
(
BP−1

a

)
= Tr

(
BHTR−1H

)
. (1.61)

For a given representation ω, the criterion reads

Jω = Tr
(
BωHT

ωR−1
ω Hω

)
= Tr

(
ΠωBHTR−1H

)
. (1.62)

The aggregation error is related to the representation. The two equations above (1.61-1.62) give
an assessment of that error. The following equation (1.63), presents the normalised aggregation
error for a given representation ω [Koohkan et al., 2012; Wu et al., 2011]:

Tr
(
R−1(Rω − R)

)
= Tr

(
BHTR−1H

)
− Tr(ΠωBHTR−1H) . (1.63)

Note that the Fisher criterion is the limiting case of the DFS criterion when R is inflating or B

is vanishing.

1.3.4.4 Adaptive tiling

To apply the multiscale extension in 2D+T, the dictionary of representations, R(Ω) should be
handled mathematically. Let us assume that Nx, Ny and Nt are multiples of 2nx , 2ny and
2nt , respectively. For each scale l = (lx, ly, lt), such that 0 ≤ lx ≤ nx, 0 ≤ ly ≤ ny and
0 ≤ lt ≤ nt, the domain is presented with Nfg×2−(lx+ly+lt) coarser cells. The latter are called
the tiles. In all directions, a coarser grid is made when two adjacent grids in each direction are
gathered into one. The physical quantities of the coarser cell are the average of those from the
finest grid cells.

A physical quantity in each cell of the finest grid, indexed by k is attached to a base vector
ui,j,h ∈ R

Nfg with 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny and 1 ≤ h ≤ Nt. At a coarser scale
l, this quantity in the finest grid, which is enumerated by k, attaches to the vector: vl,k =
∑2lx−1

δi=0

∑2ly−1
δj=0

∑2lt−1
δh=0 uik+δi,jk+δj ,hk+δh

, where (ik, jk, hk) denotes the index of cell k in
the coarser representation. For a representation ω of Ω, the projection operator defines:

Πω =
∑

l

nl∑

k=1

αω
l,k

vl,kv
T
l,k

vT
l,kvl,k

, (1.64)

where αω
l,k are the coefficients which define the representation ω. To obtain an admissible

representation ω, each parameter αω
l,k is set to 0 or 1. Each cell of the finest grid cell should be

attached in the representation ω. Therefore,

∑

l

nl∑

k=1

αω
l,kvl,k = (1, ..., 1)T . (1.65)
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The number of multiscale grid cells N should be imposed

Nfg × 2−(nx+ny+nt) ≤

nl∑

k=1

αω
l,k = N ≤ Nfg . (1.66)

1.3.4.5 Optimisation

In order to optimise the cost function, Jω, in a fixed number of tiles, the following Lagrangian
function is defined:

L(ω) =
∑

l

nl∑

k=1

αω
l,k

vl,kQvT
l,k

vT
l,kvl,k

+

Nfg∑

k=1

λk

(
∑

l

αω
l,k − 1

)
+ ξ

(
∑

l

nl∑

k=1

αω
l,k − N

)
. (1.67)

The first term on the right hand side of this equation stands for Jω. Q is the average kernel
matrix for the DFS criterion and is equal to BHTR−1H for the Fisher criterion. Since the
value of αω

l,k should be 0 or 1, a second term is added to the right hand side of Eq. (1.67). The
vector λ is the Lagrangian multiplier. The very last term of the above equation aims to satisfy
the condition of Eq. (1.66). ξ is a scalar and is called the Lagrange multiplier. The Lagrangian
objective function can be also written as follows:

L(ω) =
∑

l

nl∑

k=1

(
vl,kQvT

l,k

vT
l,kvl,k

+ vT
l,kλ + ξ

)
αω

l,k −

Nfg∑

k=1

λk − ξN (1.68)

The optimisation of the representation ω can be done by minimising the dual function of
L. Therefore, it comes:

L̂(λ, ξ) =
∑

l

nl∑

k=1

max

(
0,

vl,kQvT
l,k

vT
l,kvl,k

+ vT
l,kλ + ξ

)
αω

l,k −

Nfg∑

k=1

λk − ξN (1.69)

The above introduced cost function, L̂(λ, ξ), cannot be optimised directly using a gradient-
based minimisation algorithm. Besides, the uniqueness of the solution is not guaranteed.
To overcome that difficulty, a regularisation method for the cost function is used in Bocquet
[2009].

1.4 Outline

New methodologies of data assimilation are presented in the following chapters:

• In chapter 2 are detailed the adjoint of the Eulerian Chemistry Transport Model and the
4D-Var method.

• In chapter 3, the 4D-Var model is used to invert the emission inventories of carbon
monoxide provided by the EMEP (European Monitoring and Evaluation Program). The
observations used for the inversion are impacted with the representativeness error. As
the 4D-Var routine is not fit to handle the representativeness error, a subgrid model is
developed and coupled to the 4D-Var algorithm.

• chapter 4- introduces the observations to be retrieved from the International Monitoring
System (IMS) radionuclide network. The compatibility of the observation network with
data assimilation, in other words, the ability of the network to observe the radionuclide
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pollutants, is discussed. In order to build the Jacobian matrix of the atmospheric transport
model, the Lagrangian FLEXPART model and also the adjoint of the Eulerian POLAIR3D
model of POLYPHEMUSare used.

• In chapter 5 is shown the application which can be made of the maximum likelihood
method in order to estimate the uncertainty of the model parameters, as well as, the
covariance matrix of the model errors. A fast version of POLAIR3D CTM and its adjoint
are developed. The emission inventories of the Volatile Organic Compounds (VOCs) are
inverted. The observations extracted from the EMEP database are assimilated.

• Chapter 6 concludes on the achievements of this work and presents some interesting
points to investigate.

The points dealt with in chapter 2 and 3 are presented in Koohkan and Bocquet [2012].
The contents of chapter 4 was published in Koohkan et al. [2012]. Chapter 5 was submitted to
Atmospheric Chemistry and Physics.
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Chapter 2

Four-Dimensional Variational Data

Assimilation

Summary

The present chapter describes the 4D-Var method that we have used. First of all, an approxi-
mate adjoint model of the chemistry transport model is introduced and developed. The adjoint
solution is validated via a duality test. Then, the way this adjoint is taken into account in the
4D-Var algorithm is described. The latter algorithm is also checked through two gradient tests.
The duality test shows that the concentrations computed with the help of the adjoint solution
are in good agreement with the concentrations computed using the CTM, directly. The Pearson
correlation between the solutions of the two models for a tracer species is of 99.8%. The gradi-
ent of the cost function obtained with the adjoint model is compared with the one obtained with
the finite difference method. The results show that the gradient of the cost function obtained
via the adjoint solution is correct enough to be used in the optimisation algorithm.
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2.1 Introduction

Five decades after the appearance of data assimilation [Cressman, 1959; Gandin, 1963], Four-
Dimensional Variational method (4D-Var) has become one of the most important tools to esti-
mate the parameters of a physical model. Data assimilation combines experimental data, infor-
mation coming from models (chemistry and transport model in our case) and statistics of the
errors in order to find the optimum values of the parameters which minimise the observations
mismatch.

Variational data assimilation is a powerful method when it comes to constraining dynamical
systems by numerous observations. In variational data assimilation, all types of information
mentioned above are accounted for altogether in a two-term objective cost function J = Jo +
Jb. The first term Jo is a measure of the discrepancy between the observed and simulated
concentrations. The second term Jb evaluates the departure of the control parameters from
their first guess (background). By minimising the sum of these two terms, 4D-Var makes in
our case an optimal compromise while enforcing the fact that the simulated concentrations are
obtained from a given numerical transport model.

One way to minimise the cost function, J, is to use an analytical method, granted that the
function in question is continuous and derivable. That way supposes to solve the algebraic
equations equal to zero of the gradient function. The solution obtained is a minimum point if
the function is locally convex. This analytical method includes a system of n equations, where
n is the number of control parameters. It leads to find an analytical solution for the optimal
control parameters and actually performs well when the dimension of the problem is small.
Another way to minimise the cost function consists in using an iterative descent algorithm,
such as, the conjugate gradient or the quasi-Newton algorithm. In the descent algorithm, an
initial value for the control parameters is chosen and the local gradient of the cost function is
computed. The latter gradient shows the direction of decrease of the cost function. Therefore,
the optimal point (control parameters) for the cost function in that direction can be found by the
line search method. Using the updated parameters, the above described procedure is repeated
until the cost function is minimised.

In order to find the gradient of the cost function with respect to the control parameters, an
adjoint of the numerical model is needed. To compute that adjoint, besides hand calculation
which is almost impossible in air quality context, two methods can be used: the automatic
differentiation and the approximated adjoint [Krysta and Bocquet, 2007]. The former is used to
evaluate the derivative of a function specified by a computer program. The latter is an analytical
method which gives the adjoint solution of the chemistry transport model. The adjoint of a
dynamical model was first used by Kontarev [1980] and Hall and Cacuci [1983] for sensitivity
studies. Le Dimet and Talagrand [1986] proposed an algorithm for minimising the 4D-Var cost
function with the help of the adjoint dynamical equation in the framework of meteorology.

The adjoint model is described in Section 2.2. In Section 2.3, a continuous expansion of
the control optimal problem is introduced and control variables space are defined. Then, the
numerical discretisation of the 4D-Var system is presented. Finally, the optimisation algorithm
is described. The adjoint model, as well as, the descent algorithm are validated in Section 2.4.
A short conclusion follows in section 2.5.
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2.2 The adjoint model

In air quality modelling, the concentrations of pollutants at each time and location can be
obtained by a chemistry transport model (CTM). For the species with a linear chemistry and
physics, the Jacobian of the CTM can be computed either using the solution generated by the
CTM, or the one generated by the adjoint CTM model. For instance, in the studies of accidental
cases, when the source is pointwise, the Jacobian matrix of the model is easier to compute
using the solution of the CTM. In case the number of sources is higher than the number of
measurements, the Jacobian is easier to build via the adjoint model. Furtheremore, the adjoint
model can be used in the 4D-Var algorithm to compute the gradient of the cost function. That
is why, a particular attention has to be paid to the adjoint model when assimilating atmospheric
observations.

We can assume that c(x, t) is continuously differentiable on the space-time domain Ω =
D× [0, T ] (D denotes the spatial domain) and the chemical reaction operator χ is linear (which
is not always the case). Then Eq. (1.1) is multiplied by a sufficiently smooth function φ(x, t)
and integrated. The “weak” form of the CTM is:

∫

Ω
φ

(
∂c

∂t
+ ∇ · (uc) −∇ · (K∇c) + Λc − χ(c) − σ

)
dxdt = 0 (2.1)

Note that the density of air is assumed to be constant. The above equation can be trans-
formed into (see Roustan and Bocquet [2006a]):

∫

Ω
c

(
−

∂φ

∂t
−∇ · (uφ) −∇ · (K∇φ) + Λφ − χ†(φ)

)
dxdt =

−

∫

D

φ(T )c(T ) − φ(0)c(0)dx −

∫

∂Dbc×[0,T ]
(φcu) · dSdt

−

∫

∂Db×[0,T ]
(cK∇φ − φK∇c) · dSdt +

∫

Ω
φσdxdt

(2.2)

where χ† denotes the adjoint operator of the chemical reactions term, χ. ∂Db stands for the
ground surface boundary of the domain. ∂Dbc are the boundaries of the domain with the
exception of the ground surface. Note also that dS = dSn.

Before further developping Eq. (2.2), let us assume the following equation:

∂φ(x, τ)

∂τ
= div (u(x, τ)φ(x, τ)) + ∇ ·

(
ρK(x, τ)∇

φ(x, τ)

ρ

)

−Λ(x, τ)φ(x, τ) + χ†(φ(x, τ),x, τ) + π(x, τ) . (2.3)

πi(x, τ) is a continuous sampling function defined over the time-space domain and τ is the
reverse time variable: τ = T − t. Eq.(2.3) can be seen as a CTM, backward in time with
a reversed wind direction. One can set the following conditions for the above equation (Eq.
(2.3):

• final conditions:

φ(x, T ) = 0 x ∈ D (2.4)
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• border conditions (top, left, right, front and back sides):

φ(x, τ) = 0 ∀(x, τ) ∈ ∂Ωout (2.5)

∂Ωout =
⋃

t ∂Dt
out denotes the border when the wind is outgoing. Dt

out is the border of
the spatial domain when the wind is outgoing at instance t.

• Boundary conditions at ground level (z = 0):

K(xz=0, τ)∇φ(xz=0, τ) · n = vdφ(xz=0, τ) (2.6)

Using Eqs. (2.3 to 2.6), Eq. (2.2) can be rewritten as follows:

∫

Ω
cπdxdt =

∫

D

φ(0)c(0)dx −

∫

∂Ωin

(φcu) · dSdt

+

∫

∂Db×[0,T ]
φE · dSdt +

∫

Ω
φσdxdt ,

(2.7)

where, E = −E · n is the surface emission vector. Note that in the above equation, the term
K∇c and K∇φ are assumed to be zero at the top and around the domain.

2.3 The 4D-Var model

Four dimensional variational data assimilation (4D-Var) is used to invert the surface fluxes of
non-reactive species (tracers). The analysis of the emissions is achieved by computing the
minimum value of the following Lagrangian cost function:

J =
1

2

∫

D×Ω
(σ(x, t) − σb(x, t))B−1

σ (x, x̂, t)(σ(x̂, t) − σb(x̂, t))dxdx̂dt

+
1

2

∫

Db×Ωb

(E(xp, t) − Eb(xp, t))B
−1
E (xp, x̂p, t)(E(x̂p, t) − Eb(x̂p, t))dxpdx̂pdt

+
1

2

∫ T

0
(y(t) − Ht,x[c])R−1(t) (y(t) − Ht,x[c]) dt

+

∫

Ω
φ

(
∂c

∂t
+ ∇ · (uc) −∇ · (K∇c) + Λc − σ

)
dxdt .

(2.8)

The first and the second terms on the right hand-side of the equation above are represen-
tative of the cost of the background emissions. σ(x, t) is the volume emission inventories at
time t and coordinate x. σb(x, t) denotes its first guess. Bσ(x, x̂, t) is called the background
covariance of the volume emissions. E(xp, t) and Eb(xp, t) are the surface emission func-
tion and the background surface emission function at time t and at the surface coordinate xp.
BE(xp, x̂p, t) is called the background covariance of the surface emissions. Ωb denotes the
surface-time domain Db × [0, T ]. The third term represents the cost of the observation mis-
match. y(t) is the vector of observations at time t and Ht,x denotes the observation operator.
R(t) is the application related to the observations error covariance. The integral in the very last
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term is the model constraint. φ is the Lagrange multiplicatier. One can assume that φ belongs
to the following set:

φ ∈
{
w ∈ H2(Ω)|K∇w = vdw, w(T ) = 0

}
(2.9)

In the above set, H2(Ω) is a Sobolev space [Nikodym, 1933]. According to Sec. 2.2, the
equation (2.10) can be transformed into:

J =
1

2

∫

D×Ω
(σ(x, t) − σb(x, t))B−1

σ (x, x̂, t)(σ(x̂, t) − σb(x̂, t))dxdx̂dt

+
1

2

∫

Db×Ωb

(E(xp, t) − Eb(xp, t))B
−1
E (xp, x̂p, t)(E(x̂p, t) − Eb(x̂p, t))dxpdx̂pdt

+
1

2

∫ T

0
(y(t) − Ht,x[c])R−1(t) (y(t) − Ht,x[c]) dt

+

∫

Ω
c

(
−

∂φ

∂t
−∇ · (uφ) −∇ · (K∇φ) + Λφ + χ†(φ)

)
dxdt

−

∫

D

φ(0)c(0)dx +

∫

∂Din×[0,T ]
(φcu) · dSdt −

∫

∂Db×[0,T ]
E · dSdt −

∫

Ω
φσdxdt .

(2.10)

The optimisation of Eq. (2.10) with respect to the concentrations at time t and point x,
gives:

δJ

δc(x, t)
= −H

†
x,tR(t)−1 (y(t) − Ht,x[c])

−∂φ
∂t̂

−∇ · (uφ) −∇ · (K∇φ) + Λφ = 0 .
(2.11)

The positivity of the operator H
†
x,tR(t)−1Ht,x shows that the extrema function, c(x, t), is

a minimiser solution for the cost function. Setting

π(x, t) = H
†
t,xR(t)−1 (y(t) − Hx,t[c]) , (2.12)

Eq. (2.11) can be seen as the adjoint of the CTM (Eq. (2.3)) and φ is the solution of the adjoint
model. The gradient of the cost function, Eq. (2.10), with respect to the initial conditions, to
the surface and to the volume emissions, can be obtained with the following set of equations:

∂J

∂c0
= −

∫

Ω
φ0dx (2.13)

and,

δJ

δσ(t,x)
= −

∫

Ω
φdx +

∫

Ω
B−1

σ (x, x̂, t)(σ(x̂, t) − σb(x̂, t))dx̂ (2.14)

δJ

δE(t,xp)
= −

∫

∂Ωb

φdxp +

∫

Ωb

B−1
E (xp, x̂p, t)(E(x̂p, t) − Eb(x̂p, t))dx̂p . (2.15)

2.3.1 The control space

The dimension of the observation space is often smaller than that of the control space. The
system of equations is then under-determined. The background term of the cost function guar-
anties the uniqueness of the optimum solution for control parameters. Now, even though that
solution is found, the high uncertainty on the model parameters which should be optimised,
impacts on its reliability. Therefore, an alternate way for estimating it is to aggregate some of
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the parameters (of the same nature) together with the help of a secondary and coarser parameter
called a scaling factor. This choice leads to parameters which are less uncertain and decrease
the number of unknown parameters in the system. Besides, this methodology helps to estimate
the parameters through an extrapolation, even though there is a lack of observability at a spe-
cific moment and location. When estimating the emission inventories, one can assume that the
emission fields at a specific location depend on time and change periodically. Therefore, the
following changes are brought to the expression of σ and E.

σ(t,x) = α(t,xp)σb(t,x) , (2.16)

E(t,xp) = α(t,xp)Eb(t,xp) . (2.17)

In the equations above, xp is the image of the point x on the ground surface. α(t,xp) is
a time-periodic function (with the period Tα ). The scale factor function, α(t,xp), is the new
state vector which will be optimised instead of σ and E.

2.3.1.1 Numerical discretisation

The analysis and equations introduced in section 2.3 are based on a continuous model. To build
a numerical model, a discretisation of the equations is needed. First of all, a 3D grid is built to
discretise the continuous geometric space. Let’s consider a continuous function f(t,x). The
vector fk includes the discrete values of the function f at time tk all over the grid cells. The
observation operator at time tk can then be written as follows :

yk = Hkck + ǫk (2.18)

Hk is the linear observation operator that maps the concentrations from the state space to the
observation space. In Eq. (2.18), yk ∈ R

mk is the vector of the observed concentrations (mk

observations at time tk), ǫk is the vector of the observation errors at time tk, and ck is the vector
of the concentrations. The discrete form of the CTM equation, Eq. (1.1), can be written as:

ck = Mkck−1 + ∆tek , (2.19)

where Mk denotes the dynamical operator of the model from tk−1 to tk and ∆t is the model
integration time step. When there is no observation at the intermediate time tk, mk = 0. Vector
ek is representative of both the volume sources σk and of the fluxes Ek. Assuming eb

k is the
first guess of the emissions, one has:

eb
k,l = σb

k,l + δl,1Eb
k

∆
, (2.20)

where, ∆ is the height of the surface layer and l is the layer number. δ is the Kronecker’s delta:

δi,j =

{
0, if i 6= j

1, if i = j
(2.21)

According to Eq. (2.16) and Eq. (2.16):

ek =
∑

i∈∂Db

α(k−Nh[k/Nh]),ie
b
k,i (2.22)

where Nh is the number of time steps included in the time discretisation of α.
The 4D-Var data assimilation is used to invert the non-dimensional control variable vector
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α. Setting the same uncertainty for the surface and for the volume emissions, the first two
terms of equation (2.10) can be included in a term dependent on α. The cost function to be
minimised over the time-window [t0, tN ] becomes:

J(α) =
1

2

Nh−1∑

h=0

(αh − 1)T B−1
αh

(αh − 1)

+
1

2

N∑

k=0

(yk − Hkck)
T

R−1
k (yk − Hkck)

+

N∑

k=1

φT
k (ck − Mkck−1 − ∆tek) . (2.23)

Rk = E
[
ǫk(ǫk)

T
]

is the observation error covariance matrix, Bαh
= E

[
ǫb
h(ǫb

h)T
]

is the
background error covariance matrix, and 1 is the vector with entries 1. The vector αh is a
set of [α]i,j,h for which 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1, and 0 ≤ h ≤ Nh − 1. In
addition, ǫb

h = αt
h −1 is the background error, where αt

h is the unknown true state of the scale
factors at a given h. In order to minimise the cost function J with respect to α, with an iterative
gradient-based minimiser, the gradient of the cost function can be computed as follows:

∇αJ =
∂J

∂α
+

N−1∑

k=0

(
∂ek

∂α

)
∂J

∂ek

= B−1
α (α − 1) −

N−1∑

k=0

∆t

(
∂ek

∂α

)
φk . (2.24)

∂ek

∂α
is a matrix which describes the dependence of the source σ and emission E on the control

variable vector α. Its entries can be read out from Eq. (2.16) and Eq. (2.17), and depend on eb
k.

The optimisation of Eq. (2.23) with respect to the concentrations field at time tk gives:

φk = MT
k+1φk+1 + ∆k , (2.25)

where the normalised innovation ∆k is:

∆k = HT
k R−1

k (yk − Hkck) . (2.26)

Equation (2.25) is the adjoint model equation.

2.3.2 The optimisation algorithm

The limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) is an efficient quasi-Newton
optimisation method which can used in 4D-Var. The optimisation procedure uses a limited
memory variation update to approximate the inverse of the Hessian matrix. L-BFGS stores
only a few vectors that represent the approximation of the Hessian matrix, implicitly, by keep-
ing a history of the past m updates of the input variables and never explicitly forming it.

Let us assume that αk is the position at the kth iteration and gk = ∇J(αk). Updating
∆αk = αk+1 − αk and ∆gk = gk+1 − gk, one can define ρk = 1

(∆gk)Tαk
. The initial

approximate of the inverse Hessian at iteration k is set to H0
k . The algorithm starts with

• set q = gk
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• for i = k − 1, k − 2, . . . , k − m repeat:
ri = ρi(∆αi)

Tq
q = q − ri∆gi

• put z = H0
kq

• for i = k − m, k − 2, . . . , k − 1 repeat:
βi = ρi(∆gi)

Tz
z = z + ∆αk(ri − βi)

• set Hkgk = z

• obtain λ⋆ = argmin (J(αk + λHkgk)), using the line search minimisation.

• αk+1 = αk + λ⋆Hkgk.

• repeat the algorithm for the next iteration, k + 1, until the convergence of the solution
αk.

2.4 The verification of the 4D-Var routine

2.4.1 Validation of the approximate adjoint model

Following Bocquet [2012], an approximate but fast POLAIR3D adjoint model of the platform
POLYPHEMUS can be built. That adjoint model is the discretisation of the continuous adjoint.
This allows to use the CTM model, but propagating the concentrations backward in time with
reversed wind fields.

A simulated observation yi can be computed with both the forward model and the adjoint
model. When the numerical adjoint is correct, the results from the two method should coincide
to the numerical round-off errors. Hence, the discrepancy between the two can be viewed as a
measure of the quality of the adjoint. This is the so-called duality test [Davoine and Bocquet,
2007]. The duality test was generalised following Roustan and Bocquet [2006a]. The simulated
observation can be computed according to the two following equations:

yi =
∑

j∈D,k

ck,jπ
i
k,j∆vj∆t , (2.27)

yi =
∑

j∈D

φi
0,jc0,j∆vj +

∑

j∈∂Din,k

φi
k,jck,juk,j · ∆Sj∆t

+
∑

j∈∂Db,k

φi
k,jEk,j · ∆Sj∆t +

∑

j∈D,k

φi
k,jσk,j∆vj∆t . (2.28)

In Eq. (2.27), πi is the sampling function of the measurement i. It describes the measurement
process. ∆vj is the volume of the grid-cell j. ck,j is the concentration in cell j at time tk.
Hence, Eq. (2.27) connects the observation yi to the simulated concentration field. The second
equality Eq. (2.28) describes the same observation but using the adjoint model. φi

k,j is the value
of the solution of the adjoint model forced with the sampling ∆k = πi

k in cell j and time tk.
In Eq. (2.28), the first term of the right-hand side describes the contribution of the initial

conditions to yi. D is the space domain. The second, the third and the fourth terms represent the
contributions of the boundary conditions, of the surface emissions and of the volume emissions
respectively, to the measurement yi. ∂Din is the boundary where the wind field is incoming.
∂Db represents the ground.



Section 2.4 – The verification of the 4D-Var routine 45

The validation of the adjoint model is done, considering each term separately and setting
the other terms to zero. Figure 2.1 compares the measurements obtained with the forward
model and via the adjoint model for carbon monoxide. The latter model do not account for
chemistry reactions. For the present test of validation, the domain extends between [41.75N,
5.25W] (the left bottom corner) and [52.75N;12.25E] (the right top corner). The model is
run at a resolution of 0.5◦ × 0.5◦. Nine vertical levels are considered from the surface up to
an altitude of 2780 m. The intermediary levels are 30, 150, 350, 630, 975, 1360, 1800 and
2270m agl. The meteorological fields are provided by the European Centre for Medium Range
Weather Forecasts (ECMWF). The Pearson correlation coefficient between the CTM-based
concentrations and the adjoint-based concentrations is 99.8% in the surface emissions case (a),
99.8% in the volume emissions case (b), 99.7% in the initial conditions case (c), and 93% in
the boundary conditions case (d).
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Figure 2.1: The computed concentrations via the adjoint model due to (a) the surface emis-
sions, (b) the volume emissions, (c) the initial conditions and (d) the boundary conditions,
versus the measured concentrations.
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2.4.2 Verification of the gradient

In addition to the duality test, two kinds of gradient tests were carried out. In the first one,
based on random perturbations, the following ratio ρ was computed:

ρ =
J (e + βhe, c0 + βh0) − J (e, c0)

β
(
(∇eJ)T he + (∇c0

J)T h0

) . (2.29)

In Eq. (2.29), the cost function is seen as a function of both e and c0. he and h0 are the
perturbation vectors of the emissions and initial conditions. β is the perturbation coefficient.
When β tends towards zero, the ratio ρ must tend towards 1. In Fig. 2.2, ρ is plot as a function
of β. The instability which is observed for very low values of β is due to the round-off errors
[Zou et al., 1997].
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Figure 2.2: The perturbation test: Variation of the gradient ratio ρ with respect to the pertur-
bation coefficient β.

A second test focuses on the cost function J(α). In particular, the derivative of J(β1) with
respect to β is computed with a β varying between 0 and 6. It is obtained either using the
gradient via the adjoint model or using the finite difference method. The results presented in
Fig. 2.3, show that the gradient computed via the adjoint model is well approximated [Chao
and Chang, 1992].

2.5 Conclusion

The adjoint solution of the CTM is essential to build the Jacobian matrix in the case that
the sources of pollutant are wide-spread (unlike the pointwise sources, for which the Jaco-
bian matrix is easy to build from the CTM). An approximate adjoint model of POLAIR3D (of
POLYPHEMUS) is developed and validated for a tracer species. The concentrations computed
with the help of the adjoint solution (see Eq. 2.28) are compared to the CTM concentra-
tions. The statistical indicators show that the two set of simulated concentrations are consistent
enough. The adjoint model in question is used in the 4D-Var algorithm to compute the gradient
of the cost function. The 4D-Var algorithm is checked with two grandient tests. When it is
question of inverse modelling with high frequency observations and there are no fast enough
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Figure 2.3: Scale factor test: Variation of the gradient and cost function with respect to the
scale factor β.

models available, the 4D-Var appears to be a convenient tool. These newly developed tools
will be used in the following chapters.

.
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Chapter 3

Inversion of regional carbon monoxide

fluxes: Coupling 4D-Var with a simple

subgrid statistical model

Summary

A four-dimensional variational data assimilation system (4D-Var) is employed to retrieve car-
bon monoxide (CO) fluxes at regional scale, using an air quality network. The air quality
stations that monitor CO are proximity stations located close to industrial, urban or traffic
sources. The mismatch between the coarsely discretized Eulerian transport model and the ob-
servations, inferred to be mainly due to representativeness errors in this context, lead to a bias
(average simulated concentrations minus observed concentrations) of the same order of mag-
nitude as the concentrations. 4D-Var leads to a mild improvement in the bias because it does
not adequately handle the representativeness issue. For this reason, a simple statistical sub-
grid model is introduced and is coupled to 4D-Var. In addition to CO fluxes, the optimisation
seeks to jointly retrieve influence coefficients, which quantify each station’s representativeness.
The method leads to a much better representation of the CO concentration variability, with a
significant improvement of statistical indicators. The resulting increase in the total inventory
estimate is close to the one obtained from remote sensing data assimilation. This methodology
and experiments suggest that information useful at coarse scales can be better extracted from
atmospheric constituent observations strongly impacted by representativeness errors.
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3.1 Introduction

In tracer transport studies, observations are infrequent in time and, for ground-measurements,
sparse in space. Furthermore, they do not intrinsically carry any information about the future.
That is why, complementarity, numerical models are used to assess the meteorological and
chemical state of the atmosphere. In air quality modelling, input data, such as initial and
boundary conditions, emission fluxes, and vertical diffusion coefficients are necessary to run
proper simulations. The uncertainties of these input data and perhaps the lack of understanding
of the underlying physical processes induce model errors in the simulations. To minimise
them, data assimilation (DA) methods can be used. They combine observational data, and
information coming from chemistry and transport models and their related error statistics in
order to find the optimal values of the parameters which minimise the errors.

Introducing optimal control theory ideas in geophysics, Le Dimet and Talagrand [1986]
used 4D-Var to assimilate meteorological observations. Fisher and Leny [1995] used 4D-Var
for the analysis of some chemically active tracer species. Lately, variational data assimilation
studies have focused on the inverse modelling of pollutant emission fields (e.g. Elbern et al.
[2007] and other references within Zhang et al. [2012]).

Focusing on carbon monoxide (CO), several modelling studies pointed out to the discrep-
ancy between the observations and the simulated concentrations. Using the Emission Database
for Global Atmospheric Research 3 (EDGAR3) inventory, before any correction, the model
global run of Fortems-Cheiney et al. [2011] underestimates the CO concentrations of about
5 to 10% with respect to the satellite observations for January, February and March 2005.
Emmons et al. [2010] compared the satellite observations to simulations of the the Model for
OZone And Related chemical Tracers, version 4 (MOZART-4), using the EDGAR3 inventory.
Displaying a similar trend, their results exhibit an underestimation of the CO concentrations
over Europe of about 10 to 20% for the same period.

That is why inverse modelling experiments have been carried out to update the CO flux
inventories. For instance, Mulholland and Seinfeld [1995]; Saide et al. [2011] focused on
urban scale. Yumimotoa and Uno [2006]; Kopacz et al. [2009] used 4D-Var or analytical
methods to invert the emissions at regional scale. Other studies have also been performed on
global scale: e.g. Pétron et al. [2002]; Stavrakou and Müller [2006]; Arellano and Hess [2006];
Fortems-Cheiney et al. [2009]; Kopacz et al. [2010]. These studies make use of ground-based
instruments that measure concentrations, or they make use of satellite instruments to infer
satellite-derived retrieval of CO. The former instruments are mostly used in conjunction with
regional scale models whereas the latter instruments are mostly used with global scale models.

In the case of an assimilation of observations over a short period (i.e. a few hours to
a few days), the parameters to be optimised are usually the initial conditions. With larger
data assimilation windows (i.e. a few days to a few months), the model is more sensitive to
other parameters, such as the emissions inventory, the meteorological fields and the boundary
conditions.
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In most top-down (i.e. inverse modelling) studies related to the global scale, the CO emis-
sions fluxes were found to be underestimated in the Northern hemisphere whereas they are
quite consistent with the measurements in the Southern hemisphere (e.g. Müller and Stavrakou
[2005]), or slightly overestimated (e.g. Arellano and Hess [2006]). This underestimation in the
Northern hemisphere is also found in the modelling studies (e.g. Emmons et al. [2010]).

Satellite and in-situ measurements require specific care when compared to transport mod-
els. The discrepancy between the observations and the model forecast of these observations
are known to be due to instrumental errors, deficiencies of the model and of the forcing fields
(model error), and the representativeness error. The assessment of this representativeness error
becomes a key issue when assimilating in-situ observations, which are the focus of this study.
Indeed, the model is operative at coarser scale and by construction cannot simulate subgrid
events. The in-situ observations do capture both the coarser scale pollutant plumes, but also
subgrid plumes that are not accounted for by the model. Therefore, there is a residual mismatch
due to unresolved scales known as the representativeness error. In data assimilation, it is often
considered part of model error, but formally ascribed to the observation error.

Due to the complexity of its estimation, an experience-based value is usually assumed for
that error. This value is often chosen to be the same for all measurements. Yet that is certainly
not true, because the nature of the measurements can be different (urban, rural, etc.). The
maximum possible representativeness error is often chosen for all observations. Alternatively
a χ2 criterion (used by Ménard et al. [2000] in tracer studies) can be implemented to estimate
the proper magnitude of the observational errors.

In this chapter, our goal is to estimate carbon monoxide surface emissions with inverse
modelling, using in-situ measurements from an air quality network. This network operates in
France and we wish to retrieve the emissions over France. Hence, as opposed to most of the
studies mentioned earlier, the focus is on mesoscale and lower troposphere modelling. These
measurements are abundant, but strongly impacted by representativeness errors since many
of them are influenced by nearby industrial, traffic or urban sources. Most of them aim at
measuring (some of) those influential sources. To perform emission inverse modelling in this
context, this lack of representativeness must be accounted for. One needs to demonstrate that
observations obtained at fine scale, and strongly impacted by representativeness errors, can be
assimilated with the aim of correcting a pollutant inventory defined at larger scale.

In Section 4.2, the atmospheric transport model (ATM) is introduced, as well as, a detailed
description of the observational data. The specifications of the control space are presented. An
investigation of the modelling of errors and of the uncertainties of the control parameters is
also reported. In Section 3.4, 4D-Var is used to optimise the spatio-temporal parameters of the
inventories with unsatisfactory results. Since there is a dramatic lack of representativeness of
the measurements, a simple subgrid statistical model is built in order to improve the 4D-Var
numerical results. The statistical model aims at taking into account the impact of close-by
sources on monitoring stations. Section 3.5 introduced and justifies this statistical model and
its tight coupling to 4D-Var. In Section 4.3, the inverse modelling experiment is performed with
the combination of 4D-Var and the subgrid statistical model, which will be called 4D-Var-ξ.
The analysis produced by the retrieval is studied. Validations with independent observations are
performed, notably using cross-validation and a long-term forecast of the CO concentrations.
In Section 5.5, the findings of this study are summarised. The potential and limitation of the
approach are discussed.
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3.2 Inverse modelling setup

First, details are given about the necessary ingredients of the inverse modelling study: the
transport model setup, the observations, the control variables (which are the scale factors of the
emission inventories) and the first guess provided by the initial inventory. How to incorporate
them in a 4D-Var-ξ system is then described, as well as the necessary statistical assumptions
on the errors present in the system.

3.3 Experiment setup

All runs of the model will be performed over France. The domain extends between [41.75N,
5.25W] (the left bottom corner) and [52.75N;12.25E] (the right top corner). The grid has
the resolution of 0.25◦ × 0.25◦. Nine vertical levels are considered from the surface up to
an altitude of 2780 m. The intermediary levels are 30, 150, 350, 630, 975, 1360, 1800 and
2270 m. The meteorological fields are provided by the European Centre for Medium Range
Weather Forecasts (ECMWF). These fields have a resolution of 0.36◦ × 0.36◦ and 60 vertical
levels. The time step is 3 hours. Concentrations from the global chemistry-transport model
MOZART, version 2 [Horowitz et al., 2003] are used to provide boundary conditions, and the
initial condition. A calibration factor of 1.2 is used to correct a global underestimation of
incoming carbon monoxide, following the global estimations of Emmons et al. [2010].

It has initially been examined that within our regional, lower troposphere setup, and for our
timescale, carbon monoxide is barely reactive. To do so, we have compared the photochemical
version of POLAIR3D to the tracer version (validated in Quélo et al. [2007]). A small bias of
5.8 µg m−3 is observed between the CO concentrations with or without reactions, i.e. about
2% of the average measurements. As a consequence, neglecting the reactions, we chose to use
the faster tracer version of the model.

3.3.1 Observations

The BDQA (Base de Données de la Qualité de l’Air1) is a database listing the concentrations
of several air quality pollutants over France. The (mostly hourly) collected observations are
provided by 600 monitoring stations distributed all over France. For carbon monoxide, 89
stations provide hourly measurements at ground level (with an average of 75 observations per
hour for the year 2005). These stations belong to one of the four different categories: industrial,
traffic, urban and suburban. This gives an indication of their environment but not necessarily of
their representativeness in an ATM. Larssen et al. [1999] define an area of representativeness
for a station as being an area in which the concentrations do not differ from the ones measured
at the station by more than a specified amount. This amount can be set to the total uncertainty
of the measurement or to a value not to be exceeded in order to fulfil data quality objectives.
Nappo et al. [1982] further precise that more than 90% of the concentrations measured in that
area should satisfy that definition. When these conditions cannot be satisfied for a station, the
latter is not deemed representative of its area.

In the case of carbon monoxide, the stations belonging to the BDQA network are far from
representative as it is very difficult to determine an area of representativeness for most of them.
These receptors are likely to be influenced by nearby surface fluxes [Henne et al., 2010]. Back-
ground stations, far from pollution sources, are missing.

For the experiments performed in this study, 8 weeks of BDQA observations will be assim-
ilated from January the 1st 2005 to February the 26th 2005, for a total of 107, 914 observations,

1details available at http://www.atmonet.org
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while up to more than 10 months of observations (548, 964), corresponding to the rest of the
year, will be used for validation. In another experiment, about 55% of the 107, 914 observations
will be assimilated and the rest of the 107, 914 observations will be used for validation.

The locations of the BDQA network CO monitoring stations, are shown in Fig. 3.1.
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Figure 3.1: The carbon monoxide monitoring stations of the BDQA network, sorted out by
their official type.

3.3.2 Inventory and control variables

The first guess (background information) on the fluxes needed to perform the model runs and
the inversions is provided by the anthropogenic emission from the European Monitoring and
Evaluation Programme (EMEP, details can be found at http://www.ceip.at) inventory, and the
biogenic emissions of the Model of Emissions of Gases and Aerosols from Nature (MEGAN)
model [Guenther et al., 2006]. The EMEP inventory is modulated using hourly, weekly and
monthly distribution coefficients. These coefficients are provided by the GENEMIS project
[GENEMIS, 1994]. The EMEP inventory has a resolution of 0.50◦ and the MEGAN inventory
has a resolution of 0.04◦. We have checked that the vegetation fire emissions over the domain
defined earlier and time window of this study can be neglected.

The aim of the present study is to determine the hourly grid-size optimal sources of carbon
monoxide, for both the volume source σ in Eq. (1.1), and the emission fluxes E of Eq. (1.3).
An estimation of the number of independent control variables over a data assimilation window
of 8 weeks, a domain of 58 × 43 grid-cells (0.25◦ × 0.25◦ resolution), and six levels for the
volume source, yield about 2 × 107 independent variables to retrieve. That is why we have
chosen to constrain the number of degrees of freedom of control space in the following way.

The year is divided into weeks, indexed by w = 0, . . . , Nw − 1 where Nw = 52. Each
week is divided into Nh = 56 3-hour periods, indexed by h = 0, . . . , Nh − 1. Each 3-
hour period is divided into Ns = 3 hours, indexed by s = 0, . . . , Ns − 1. A grid-cell has
space coordinates i, j, l (indices related to longitude, latitude and altitude respectively) and
time coordinates h, w, s (or using the global time index k = s + Ns(h + Nhw)). In order
to reduce the number of control variables to deal with, the discrete hourly grid-size volume
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sources σ and emissions E are parameterised according to

[σ]i,j,l,h,w,s = [α]i,j,h [σb]i,j,l,h,w,s , (3.1)

[E]i,j,h,w,s = [α]i,j,h[Eb]i,j,h,w,s , (3.2)

where [α]i,j,h are the non-dimensional effective control variables corresponding to the residual
degrees of freedom. They represent 58 × 43 × 56 = 139, 664 scalars. The first guesses σb

and Eb are the background sources stemming from the inventory. Let us make a remark on
the temporal cycles of the inventory, that are for instance due to vehicles traffic, urban heating,
industry, etc. Because the control variables [α]i,j,h are indexed by h, the intra-week temporal
cycles will be solved for in the inverse modelling experiments. However the longer cycles
will not be solved for, but are determined by the built-in cycles of the inventory: [σb]i,j,l,h,w,s

depends on the indexes w and s. For instance, seasonal cycles of urban heating are prescribed
by [σb]i,j,l,h,w,s.

The surface E and volume emission σ variables have a similar local signature and would
have a similar impact on a distant observation site, so that they would appear as ill-determined
variables in an inverse problem. That is the reason why they were parameterised in Eq. (3.1)
and Eq. (3.2) in terms of the same control vector α. It is convenient to introduce a composite
emission vector e, defined in the surface layer by

el=0 = σl=0 +
E

∆
, (3.3)

where ∆ is the height of the surface layer. Note that this equality assumes a well-mixed surface
layer. In the upper layers l ≥ 1, it is defined by

el = σl . (3.4)

In the following, the first guess about e (background) will be denoted eb. Correspondingly, one
has:

[eb]i,j,l=0,h,w,s = [σb]i,j,l=0,h,w,s +
[Eb]i,j,h,w,s

∆
and [eb]i,j,l 6=0,h,w,s = [σb]i,j,l 6=0,h,w,s .

(3.5)
As a result, Eq. (3.1) and Eq. (3.2) can be synthesised into

[e]i,j,l,h,w,s = [α]i,j,h[eb]i,j,l,h,w,s . (3.6)

3.3.3 4D-Var

In spite of the quasi-linear physics of carbon monoxide (at these space and time scales), the
computation of the Jacobian matrix is difficult to afford because of the very large set of data and
control variables we intend to use. 4D-Var is meant to handle such a computational problem
[Chevallier et al., 2005]. The details of the 4D-Var are reported in chapter 2.

3.3.4 Error modelling

In this section, we describe how the background and observation errors are statistically mod-
eled. The background errors on the independent variables α are first related to the traditional
background errors on e (hence σ and E). While the background error variances will be chosen
a priori, the observation errors will be determined through a χ2 diagnosis.
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3.3.4.1 Background error covariance matrix

The background error covariance matrix Bα defines the variances-covariances between the
different components of the departure of the scale factors α from αb = 1. In the inventory,
anthropogenic emissions significantly dominates the biogenic emissions (1.8% of the total in-
ventory over France). Assuming the anthropogenic sources (such as the individual industrial
sources, or urban heating sources) have errors that are barely spatially correlated, the error cor-
relation between grid-cells are taken as negligible, so that the covariance terms of that matrix
are set to zero. Note that other sources of anthropogenic sources, such as traffic might have ex-
tended correlated errors. We also neglect temporal correlations, which is a weaker assumption
even though the emission are mostly anthropogenic. As a consequence of our assumptions,
the prior errors are essentially represented by the variances of the prior emissions (diagonal
assumption for Bα).

Assuming that the emission errors are not time dependent, the variance of control variable
[α]i,j,h is:

[Bα]i,j,h =

Nw−1∑

w=0

Ns−1∑

s=0

Nl−1∑

l=0

[Be]
i,j,l,h,w,s

(
Nw−1∑

w=0

Ns−1∑

s=0

Nl−1∑

l=0

[eb]i,j,l,h,w,s

)2 , (3.7)

where

[Be]
i,j,l,h,w,s = E

[(
[e]i,j,l,h,w,s − [eb]i,j,l,h,w,s

)2
]

(3.8)

is the background error variance of the emission fluxes in the grid-cell of coordinates i, j, l at
time h, w, s. Since the data assimilation window of the experiments ahead is 8-week long, Nw

is now set to 8.

3.3.4.2 Observation error covariance matrix

In Eq. (2.18), ǫk includes the instrumental error and representativeness error of the observa-
tions. It is assumed that they are independent from site to site, and from observation time to
observation time. At this stage the variances are assumed to be the same for all observations,
which is crude since the representativeness error is expected to significantly vary between sta-
tions. Accordingly, Rk is modeled as a diagonal matrix:

Rk = r2Imk
, (3.9)

where Imk
is the identity matrix in observation space at time tk, and

r2 = ε2
repr + ε2

meas . (3.10)

εmeas is the standard deviation of instrumental error, and εrepr is the standard deviation of the
representativeness errors, which depends on the species, the station type, and the grid size
[Elbern et al., 2007].

To estimate the standard deviation parameter r, we resort to a χ2 diagnosis ([Ménard et al.,
2000; Elbern et al., 2007] for instance in the context of atmospheric chemistry). When the
statistics of the errors are consistent with the innovations, then one should expect that the
average value of the cost function is equal to half of the number of assimilated observations.
Accordingly r should be chosen such that:

{
min

α
J(α)

}
(r) ≃

m

2
(3.11)
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where m =
∑k=N

k=0 mk is the number of observations. Based on this diagnosis, an iterative
process can be used to estimate r. The algorithm begins by assuming an initial value, r0, for r.
At each iteration, ri+1 is computed by

r2
i+1 =

di
n

m − di
s

r2
i (3.12)

where di
s and di

n are twice the background part Jb of the cost function, and twice the observation
departure part Jo of the cost function respectively at the ith step. They respectively converge
to ds the number of degrees of freedom for the signal (hence the s), and to dn the number
of degrees of freedom for the noise (hence the n). The value of r is thus obtained when the
sequence of ri has converged. The method needs iterating because the minimum of the cost
function does not linearly depend on r.

We note that this iterative scheme is equivalent to that of Desroziers and Ivanov [2001]:
Eq. (3.12) coincides with Eq. (4) of Desroziers and Ivanov [2001] when the background term
is fixed. Since the method of Desroziers and Ivanov [2001] converges to one maximum of a
parameter likelihood, we conclude that so does our χ2 approach.

3.4 Application of 4D-Var

Following these assumptions, we perform the 4D-Var inversion of the α parameters. The as-
similation window of the experiment is in the winter period, from January 1 2005 to February
26 2005. For comparison, a free simulation is first performed using the inventories and bound-
ary conditions described earlier. Then, the α variables of Section 3.3.2 are inverted using
4D-Var.

At each grid-cell, the standard deviation of the prior error in the emission is set to 50% of
the prior emission. This value is consistent with Pétron et al. [2002] and Kopacz et al. [2010].
In Yumimotoa and Uno [2006], Pétron et al. [2004] and Fortems-Cheiney et al. [2009], the stan-
dard deviations are set to 100% of the prior emissions in each grid-cell, but using the EDGAR3
inventory and not over the Western Europe where the inventories are more ascertained.

An iterative test (χ2 criterion) for the same period is applied to estimate the observational
error variance. We found a standard deviation of r ≃ 652.5 µg m−3 for the observational error
using the χ2 method. It is very significant since it is of the order as the average observation
(662 µg m−3).

A comparison of the observations with the results of the model free run, as well as a com-
parison to the results of the data assimilation experiment (optimisation of α) are presented in
Tab. 3.1. The scores of this DA run show that the consistency between the analysed concentra-
tions and the observations is low, in spite of a Pearson correlation coefficient increasing from
0.16 to 0.36. Furthermore, the reduction of the bias O − C is unsatisfyingly small.

The total emission of the background inventory between January 1 to February 26 is 1.06
Tg. From the computation of the analysed fluxes using inverse modelling, we obtain 1.44
Tg, 36% higher than the total a priori emission. However, Fortems-Cheiney et al. [2011],
estimated that value to be 17% for Western Europe, during 2005, with the reference being the
EDGAR3 inventory, using biomass and anthropogenic emissions, and a spatial resolution of
2.5◦ × 3.5◦. Kopacz et al. [2010] estimated it between 16 − 24% from May 2004 to April
2005. This indicates a possible over-estimation of the emission by the 4D-Var analysis. In
Fig. 3.8 on page 68 are plotted 300 hours of the simulation and 4D-Var runs in the DA window,
for four stations. The four corresponding profiles are too smooth to represent the peaks of the
observation profile. This supports our assumption on the impact of representativeness error.
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Table 3.1: Comparison of the observations and the simulated or analysed concentrations. C
is the mean concentration, O is the mean observation, and NB= 2(C − O)/(C + O) is the
normalised bias. RMSE stands for root-mean square error. R is the Pearson correlation. FAx

is the fraction of the simulated concentrations that are within a factor x of the corresponding
observations. C, O, and the RMSE are given in µg m−3.

C O NB RMSE R FA2 FA5

Simulation (01/01–02/26 2005) 303 662 -0.74 701 0.16 0.52 0.90

Optimisation of α (4D-Var) 396 662 -0.50 633 0.36 0.59 0.92

Optimisation of ξ 615 662 -0.07 503 0.57 0.73 0.96

Coupled optimisation of α, ξ (4D-Var-ξ) 671 662 0.01 418 0.73 0.79 0.97

The BDQA CO network is mostly composed of proximity stations, whose observations are
likely to be influenced by local sources. Therefore, the lack of consistency between the model
and the observations could be explained by the direct impact of nearby pollution sources on
observations. The 4D-Var analysis cannot account for the local peaks of CO concentrations
since it uses a model that cannot resolve those subgrid-scale processes. However, we believe
that there is some useful signal to extract from these observations. To do so, one needs to
account for the subgrid processes. At least two state-of-the-art options are possible. The de-
terministic route consists in using explicit representations of partial information that one may
have about the subgrid processes, emissions, etc. These representations are incorporated into
the coarser model. This is what typically does a plume-in-grid model that uses some additional
information about short-range dispersion (e.g. Karamchandani et al. [2009] for an application
to CO subgrid traffic emission). A second route is of statistical nature. The aim is to make a
statistical regression between the observations and the coarse resolution model output, which
results in a fitted linear correspondence between the model to the observations. In geosciences,
downscaling techniques have taken this path (e.g. Guillas et al. [2008] for an application to
ozone concentrations). In this study, a statistical approach is chosen to represent the subgrid
effects. A deterministic modelling approach of the subgrid processes would theoretically be
desirable, but it requires additional subgrid information that we do not have here, and it would
be computationally more expensive.

3.5 Coupling 4D-Var with a subgrid statistical model

3.5.1 A simple subgrid statistical model

Assume that s is a continuous source field: it describes the emission at any spatial scale. Recall
that e is the discrete coarse-grained source that we use to drive the model. Ideally, s and e

should be related through a restriction, coarse-graining operator Γ, which acts as a low-pass
filter, filtering out the fine details of the source:

e = Γs . (3.13)

Following Bocquet et al. [2011], we can consider a prolongation operator Γ⋆, which refines a
coarse emission field e to a continuous field s⋆:

s⋆ = Γ⋆e . (3.14)

There is freedom in choosing Γ⋆. It could be a basic subgrid spatial interpolation operator, or it
could rely on additional subgrid information, or it could be obtained from a Bayesian inference
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[Bocquet et al., 2011]. For the purpose of this derivation, we do not have to specify a precise
form for Γ⋆. However, it is reasonable to assume ΓΓ⋆ = I. Besides, Γ⋆Γ is a projection
operator, not the identity, because of some details of the real fine scale emission field are lost
in the restriction process Γ.

If H is the Jacobian of a continuous multiscale hypothetical carbon monoxide model that
relates s to the measurements y, the vector collecting all measurements, then

y = Hs + ǫ

= HΓ⋆Γs + H (I − Γ⋆Γ) s + ǫ

= (HΓ⋆) e + H (I − Γ⋆Γ) s + ǫ . (3.15)

Assume Γ operates the coarse-graining at the finest scale accessible by the model. Therefore
HΓ⋆ could be identified with the Jacobian of our Eulerian ATM. Since I − Γ⋆Γ is a high-
pass projector (it retains the short-scale fluctuations of the real emission field), H(I − Γ⋆Γ)s
theoretically stands for the representativeness error [Wu et al., 2011].

Unfortunately, we do not have access to s or a multiscale model H, and one needs a simple
subgrid scale model to approximate H(I−Γ⋆Γ)s and close the equation. We assume this rep-
resentativeness error is mostly due to subgrid/nearby sources that have a strong impact on the
measurements which are not representative of the background carbon monoxide concentration
level. Another possibly significant source of error is the weakness of current vertical turbu-
lent diffusion parameterisations. Notice that part of it may be categorised as representativeness
errors when for instance the boundary layer height varies significantly within grid-cells.

Guided by the structure of H(I−Γ⋆Γ)s, we choose to model this nearby source influence
by the term

ξiΠi,ke (3.16)

where ξi is a positive scalar attached to a station indexed by i. Similarly to H(I − Γ⋆Γ)s,
ξiΠi,ke has a linear explicit dependence on the emission e. The influence coefficient ξi quan-
tifies the influence of local nearby sources onto the station. It can be interpreted as the time
(given in hours in the following) required to reach a CO concentration level equivalent to the
subgrid part of the measurement [y − Hc]i,k, by emitting Πi,ke which is based on the coarse-
grained inventory. This influence factor is assumed constant in time and it is a priori unknown.
Πi,k is an operator that linearly interpolates e at the station location and at time tk. If ξi is
vanishing, then the representativeness of the station is deemed good. Otherwise, a significant
ξi (a few hours and beyond) indicates a possible significant impact of nearby sources. Figure
3.2 illustrates this rationale.

This term is enforced in the observation model Eq. (2.18), which becomes, at any given
time:

y = Hc + ξ · Πe + ǫ̂ , (3.17)

where ξ · Πe is the vector of entries [ξ · Πe]i,k = ξiΠi,ke. The residual error ǫ̂ should statis-
tically be smaller than ǫ of Eq. (2.18) since part of the representativeness error should now be

accounted for by the subgrid term. We denote its covariance matrix with R̂ = E
[
ǫ̂ǫ̂T
]
. Under

independence assumptions, the two are connected by

R = E
[
ǫǫT
]

= ξ · ΠE
[
eeT

]
ΠT · ξT + R̂ . (3.18)
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A

B

Figure 3.2: Possible physical interpretation of the subgrid model. This mesh represents the
CO inventory of a spatial domain. The darker the blue shade, the bigger the emission in the
grid-cell. Notice the high emission zone in the south-east corner. A zoom is performed on
one of the central grid-cell (see in the magnifier). Inside this grid-cell is represented a finer
scale inventory inaccessible to the modeller that may represent the true multiscale inventory.
Two CO monitoring stations are considered. Station A is under the direct influence of a nearby
active emission zone that represents a significant contribution to the grid-cell flux. The model,
operating at coarser scales cannot scale the influence of this active zone onto station A, even
though it has an estimation of its total contribution through the grid-cell total emission. Differ-
ently, station B which is located in the same grid-cell, does not feel the active zone as much as
station A. Our subgrid statistical model assumes that the influence of the active subgrid zone
onto A or B has a magnitude quantified by the influence factors ξA and ξB . Obviously, in this
case, one has ξA ≫ ξB . Notice that both station A and station B are under the influence of the
south-east corner of the whole domain. But this influence is meant to be represented through
the Eulerian coarser ATM.
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3.5.2 Coupling to the 4D-Var system

Taking into account the statistical subgrid model, the 4D-Var cost function becomes:

J(α, ξ) =
1

2

Nh−1∑

h=0

(αh − 1)T B−1
αh

(αh − 1)

+
1

2

N∑

k=0

(yk − Hkck − ξ · Πek)
T

R̂−1
k (yk − Hkck − ξ · Πek)

+

N∑

k=1

φT
k (ck − Mkck−1 − ∆tek) . (3.19)

As mentioned in the previous section, if the subgrid model does account for a significant part
of the representativeness error, the error covariance matrix R̂k should differ from Rk since it
accounts for the residual errors. Its magnitude will be determined by the χ2 method.

A joint iterative optimisation of the scale factors α and the influence factor vector ξ is used
to minimise the cost function. Within each iteration, ξ is obtained by a minimisation of the cost
function under the constraint of positivity of the ξi. To perform the minimisation, one needs
the gradient with respect to ξ

∇ξJ(α, ξ) =

N∑

k=0

eT
k ΠTR̂−1

k (yk − Hkck − ξ · Πek) , (3.20)

and the innovation vector of Eq. (2.26) becomes

∆k = HT
k R̂−1

k (yk − Hkck − ξ · Πek) . (3.21)

After the ξi are optimised, the χ2 method is used to rescale the new observational error
covariance matrices R̂k = r̂Imk

. It is used iteratively until convergence of r̂. For each cycle
within this loop, the α are first optimised using 4D-Var for the current value of ξ and of the
R̂k. Then the R̂k are updated. Figure 3.3 summarises the minimisation procedure for the
coupled DA system (in short 4D-Var-ξ). Note that the first step of the minimisation can begin
by optimising either the influence factors ξ or the scale factor vector α. Our tests show that
the final results of both minimisations are consistent. However, the former approach shows a
faster convergence.

3.6 Application of 4D-Var-ξ

In this section, the 4D-Var-ξ system is first applied to the same setup as the 4D-Var analysis
of Section 3.4. The resulting analysis is discussed both in terms of retrieved emission and
in terms of analysed CO concentrations. Then, the system is validated with a comparison, a
cross-validation and a forecast experiments.

3.6.1 Analysis

3.6.1.1 Minimisation of the cost function

Figure 3.4 shows the minimisation of the cost function J in the two following cases: the op-
timisation of the scale factor vector α (4D-Var alone), and the optimisation of α and ξ with
4D-Var-ξ. In the latter case, several cycles of 9 iterations each are run. In each cycle, the in-
fluence factors are first optimised and 8 other iterations are used to optimise the scale factors.
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Figure 3.3: Schematic of the minimisation algorithm for the 4D-Var-ξ system.

This cycle is repeated 9 times, beyond which convergence is reached. For the first iteration of
a cycle, the diagonal elements (r̂) of the observational covariance matrix are diagnosed with
χ2. This may lead to a temporary increase of the cost function value as seen in Fig. 3.4. In
both cases the cost function J consistently converges to half of the observation numbers (that
is m/2 = 53, 957). The values of the observation and background terms of the cost function,
Jo and Jb respectively, have also been plotted (cf. Fig. 3.4).

The Jo of 4D-Var-ξ convergences to a higher value than the Jo of 4D-Var because the
coupled scheme is able to identify a higher fraction of the degrees of freedom as noise (repre-
sentativeness errors). The Jb of 4D-Var-ξ convergences to a smaller value than the Jb of 4D-Var
because the coupled scheme recognises that the degrees of freedom for the signal present in
the observations are significantly less important than what 4D-Var would assume. Specifically
the number of degrees of freedom for the signal is ds = 6, 316 with 4D-Var, whereas it is
ds = 2, 367 with 4D-Var-ξ. They stand for about 2% of the information load of the in-situ
observations. This shows that ignoring the representativeness issue leads to a severe over-
estimation of the information content of the dataset. The standard deviation of the residual
diagnosed observation error that was r ≃ 652.5 µg m−3 without the implementation of the
subgrid scheme is now r̂ ≃ 422 µg m−3.

3.6.1.2 Results: Scores

Statistical indicators are computed for the output of an 8-week experiment using the 4D-Var-ξ
scheme. They are reported in Tab. 3.1 (joint optimisation of ξ and α). A significantly better
agreement is obtained between the analysis and the observations. The large underestimation
of the CO concentrations (see the means in Tab. 3.1), is significantly reduced: the normalised
bias is as small as 1.4%. The total emission is diagnosed to be 1.16 Tg. This is an inventory
increase of about 9%, which is rather consistent with studies performed over Western Europe
using remote sensing. In addition to the bias reduction, it also leads to an increase of the
Pearson correlation coefficient up to 0.73. The optimisation of the influence coefficients, using
the a priori fluxes, leads to decrease the root mean square error (RMSE) from 701 µg m−3 to
503 µg m−3. The emission optimisation decreases this number down to 418 µg m−3. The
impact of the subgrid model on the RMSE is consistent with the predominance of the local
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Figure 3.4: Iterative decrease of the full cost function (black lines), of the background term
of the cost function Jb (blue lines), and of the observation departure term of the cost function
Jo (red lines). For the sake of clarity, the Jb values are to be read on the right y-axis. Two
optimisations are considered: with 4D-Var (dashed lines), and joint 4D-Var and ξ optimisation
(full lines), within the assimilation window of the first 8 weeks of 2005.

sources on the observations.

3.6.1.3 Results: Total stations scores

The scores for the simulations at each station are presented in Appendix B.1. The value of
the bias between the observations and the simulations lies between 10µg/m3 and 1922µg/m3.
The RMSE spreads from 195.5µg/m3 to 2500µg/m3. The Pearson coefficient changes from
-0.12 to 0.51. The FA2 coefficient varies between 0.05 and 0.86.

The same statistical indicators are displayed in Appendix B.2, as regards the results of the
4D-Var simulation. In this case, the bias between the simulated results and the corresponding
observations is between 0.8µg/m3 and 1852µg/m3. The RMSE changes from 183.7µg/m3

to 2422µg/m3. The correlation between the simulated results and the measurements varies
between -0.07 and 0.73. FA2 is changed from 0.07 to 0.93.

The third set of indicators coresponds to the 4D-Var-ξ results (see Appendix B.3). The
bias is decreased. It is now between 1µg/m3 and 301.3µg/m3. The RMSE ranges between
181.2µg/m3 and 1176µg/m3. The correlation is also increased and ranges between -0.01 and
0.78. In this case, FA2 varies between 0.31 and 0.98.

3.6.1.4 Results: Spatial distribution of the retrieval

The values of the scale factors α of the 4D-Var-ξ system range between 0.01 and 19.5, with
an average value of 1, showing that some important correction can be made to the inventory.
Figure 3.5 displays the carbon monoxide EMEP+MEGAN inventory (the first guess) integrated
over the first 8 weeks of 2005, for each grid-cell. Figure 3.6 displays the ratio of time-integrated
retrievals to the time-integrated EMEP+MEGAN inventory, for each grid-cell. Figure 3.6a dis-
plays the retrieval obtained using 4D-Var, whereas Fig. 3.6b displays the retrieval obtained
using 4D-Var-ξ. 4D-Var-ξ shows a much less pronounced correction than the 4D-Var retrieval,
which is consistent with the findings from the statistics discussed in the previous section. The
joint inverse modelling retrieval suggests an increase of the emissions in the South of Paris
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area, Lyons, La Rochelle, Lille and in the Mediterranean coast of France, pointing to an under-
estimation of the inventory. It suggests a decrease of the emissions in the area of Dunkerque, in
the area of Metz, and in the North of Paris area, pointing to an overestimation of the inventory.
The values of the scale factors (α) of the 4D-Var-ξ system range
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Figure 3.5: Time-integrated spatial distribution of the carbon monoxide EMEP+MEGAN in-
ventory over the first 8 weeks of 2005.

3.6.1.5 Results: scatterplots

In Fig. 3.7a, a scatterplot compares the observations to the concentrations simulated by the
model using the a priori emissions. It is clearly impacted by the representativeness errors,
since the variability of the observations is much stronger than that of the simulated concentra-
tions. In Fig. 3.7b, a second scatterplot compares the observations to the ATM concentrations
using the a posteriori emissions from 4D-Var. Even though 4D-Var corrects the shape of the
scatterplot, it is still highly impacted by representativeness errors. Figure 3.7c is a scatterplot of
the observations versus the concentrations diagnosed by the 4D-Var-ξ system. The representa-
tiveness errors have been significantly reduced. However, there is still a residual impact for the
smallest observations. This may be due to situations where carbon monoxide emitted locally is
not advected nearby monitoring station i, whereas ξi may be significant because of the impact
of the local source when the winds are blowing in the direction of the instrument. Indeed, our
simple statistical model cannot account for the changes in the local micro-meteorology, only
for its indirect impact.

3.6.1.6 Results: On-site profiles

Here, the focus is on the analysis at individual stations. The values of the station-dependent
influence factors ξi range between 0 and 97.5 h, with a median value of 5.9 h, and a mean value
of 11.3 h (Table 3.2 presents the value of the influence factor for each of the station).
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(a)

(b)

0.50 1.00 2.00

Figure 3.6: Ratio of the time-integrated CO flux retrieval to the EMEP+MEGAN time-
integrated CO flux for each grid-cell, in the 4D-Var case (a) and in the joint 4D-Var and subgrid
model case (b).
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Figure 3.7: Scatterplot during 8-week: (a) comparison between the concentrations via the
model and the observations, (b) comparison between the concentrations via the model using
the a posteriori emissions retrieved from 4D-Var and the observations, (c) comparison between
the concentrations diagnosed by the 4D-Var-ξ system and the observations. The colour bars
show the correspondence between the blue shade and the density of points of the scatterplot.
This density has been normalised so that its maximum is 1. Dashed lines are the FA5 dividing
lines, and dashed-dotted lines are the FA2 dividing lines.
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Table 3.2: The values of the influence factors ξi for the stations.
Station ξ Station ξ Station ξ

HAYANGE 3.06 Liane Boulogne Sud 11.91 DAIX 0.56

Marignane Ville 8.00 LIBERTE 1.34 Station MARSANNAY 4.54

Port de Bouc EDF 0.99 PASTEUR 0.59 BETHUNE PROX AUTO 5.66

PLOMBIERES 45.62 LA BASSEE/CENTRE 1.13 COUBERTIN 3.04

AIX CENTRE 5.21 Roubaix/Serres 1.01 ST ETIENNE ROND PT 15.84

TOULON FOCH 97.52 Hotel de ville 7.15 RIVE DE GIER 3.70

AVIGNON ROCADE 2.34 Rue de la Tour 7.62 Hotel Districal 11.56

Place Victor Basch 2.98 Grenoble Foch 24.75 Epinal 11.96

AUBERVILLIERS 0.00 Le Rondeau 16.29 Bar-le-Duc 20.27

Avenue des Champs Elysees 1.19 Strasbourg Clemenceau 8.07 Luneville 16.75

Boulevard peripherique Auteuil 2.67 Muhl.ASPA 3.33 BORDEAUX-BASTIDE 1.26

PARIS 1er Les Halles 0.00 CTRE VILLE MEGEVAND 11.19 MERIGNAC 4.56

Autoroute A1 - Saint-Denis 1.67 Amiens Saint Leu 2.89 SAMONZET 20.47

Rue Bonaparte 0.89 LAENNEC 2.84 ANGLET 9.26

Quai des Celestins 1.99 Halles centralles 5.86 Chalon centre ville 19.30

LeHavre Republique 23.11 PUITS GAILLOT 5.96 Champforgeuil 1.34

ESQUERCHIN A DOUAI 3.33 BERTHELOT 8.54 Hilaire Chardonnet 5.17

Jardin Lecoq CF 4.07 GARIBALDI 13.65 Montceau-les-Mines 9.87

Aurillac Centre 61.46 LA MULATIERE 6.84 Macon Paul Bert 10.31

Le Puy Fayolle 58.74 VAUCELLES 10.35 Le Creusot Molette 9.35

Rousillon 14.51 Cherbourg Paul Doume 8.03 Gambeta 11.92

Saint Denis 10.64 Batiment ELF-ATO 0.00 Mirabeau 14.96

Pres Arenes 5.20 Forbach(12) 1.51 Valence Trafic 10.71

Planas 9.52 GENERAL DE GAULLE 25.57 GONESSE 0.16

rue de la GRILLE 73.93 LA ROE 20.55 VICTOR HUGO 3.70

Place du Marche 13.30 Nice Pellos 45.84 METZ-BORNY 0.00

Mairie MALO 0.40 ANTIBES GUYNEMER 26.80 Brest 3 CDM 34.12

FORT-MARDYCK 0.04 ALEXIS CARREL ROUENG 1.16 Ecole Jules Ferry 5.23

Petite Synthe 0.09 Rouen Le Conquerant 3.88 place de VERDUN 2.59

Calais Centre 0.44 Pasteur 8.21
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In Fig. 3.8, four different time series of concentrations are displayed for four different
stations: the observations, the concentrations simulated with the a priori emissions, the con-
centrations obtained from 4D-Var, and 4D-Var-ξ concentrations. The traffic station of Lille
Pasteur, can be cited as an example of small influence factor value with ξi = 0.6 h. In that
station, the simulation concentrations are in quite good agreement with the observations. The
correlation between the observations and the simulated concentrations reaches 0.49. It is 0.74
for the 4D-Var-ξ results. At the station Paris, boulevard périphérique Auteuil (suburban), for
which ξi is of 2.7 h, the correlation increases from 0.29 up to 0.77. Orléans Gambetta (traffic
zone) station can be cited as an example with a moderate influence factor value of ξi = 11.9 h.
At this station, the Pearson correlation coefficient increases from 0.11 to 0.67 when using the
4D-Var-ξ system. The dependence of the observations and the local emissions is clearly shown
in Fig. 3.8c. The model simulation gives a smooth curve, whereas the observations are highly
fluctuating. The 4D-Var system is able to anticipate the trend of the concentrations, but cannot
predict the peaks. Furthermore, it over-estimates the inventory by trying to adjust to the peaks.

Figure 3.8d shows the concentrations in Nice Pellos (urban station) with a high influence
factor value of ξ = 45.8 h. The results of 4D-Var-ξ are in good agreement with the observations
whereas neither the simulation, nor 4D-Var are able to match the observations. The correlation
value is significantly increased from 0.32 to 0.68. It is also clear that although 4D-Var-ξ is able
to account for a substantial part of the peaks, it underestimates their maxima and overestimates
the minima, which may be due to residual representativeness error.

3.6.1.7 Results: sensitivity to the background standard deviation

The whole inverse modelling study using a background standard deviation is performed for the
carbon monoxide of 100%, instead of 50%. The results are qualitatively unchanged. They are
barely quantitatively changed. For instance, one retrieves a total of 1.18 Tg instead of 1.16 Tg
over the 8-week winter period. This relative insensitivity is mostly due to the use of the χ2

criterion.

3.6.2 Validation

A direct and reliable validation of a spatial emission inventory is currently out of reach for most
pollutants (see the in-depth discussion of Vestreng et al. [2007] about SO2). It is only possible
to compare with another independent estimation (top-down or bottom-up), which, as a relative
comparison approach, may not be as satisfying as a straight comparison to observations. Local
flux measurements are possible (e.g. for CO2) in some media but these are sparse and cannot
fully validate a spatial inventory. Therefore, a CO emission inventory can only be indirectly
validated. For instance one can compare the CO concentrations simulated with the inventory
to real measurements.

We shall first compare the total emitted carbon monoxide to an independent bottom-up
inventory over France. We will then compare simulated concentrations obtained with an in-
ventory retrieved from a training network, on a distinct validation network. Finally, after an
assimilation period of 8 weeks, we shall make a 10-month CO concentration forecast. The
forecasted concentrations will be compared to independent observations (that have not been
assimilated).
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Figure 3.8: Time series of CO concentrations for the first 300 hours of 2005, at four stations:
observations (blue), simulation using the prior emissions (red), simulation using the posterior
emissions of data assimilation (green) and simulation using the posterior emissions of 4D-Var-ξ
(black) with adjusted observations using the statistical subgrid model.
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3.6.2.1 Global comparison with the CITEPA inventory

The total retrieved CO emitted mass from 4D-Var-ξ is compared to the inventory of the Centre
Interprofessionnel Technique d’Études de la Pollution Atmosphérique (CITEPA2). According
to CITEPA, the total French inventory for 2005 is 5.3 Tg. We have inferred the total emitted
mass for the first 8 weeks of 2005 using the weekly and the monthly coefficients of GENEMIS
for each of the 11 sectors of the SNAP nomenclature of emitting activities. The contribution
of each SNAP sector to the total emission is estimated following EMEP distribution for this
year. Following this rationale, the total CO emitted mass of the CITEPA inventory is found to
be 1.15 Tg between January 1st, and February 26. This value is very close to 1.16 Tg obtained
with 4D-Var-ξ.

3.6.2.2 Cross-validation experiment

49 BDQA stations have been randomly selected as a training network. Inverse modelling will
be performed using the CO observations of this subnetwork for the first 8 weeks of 2005.
The rest of the stations of the BDQA network forms a 40-station validation network. The
observations of these stations will be compared to the simulated CO concentrations obtained
using the retrieved emission field inferred from the training set. The partition between the
BDQA stations is displayed in Fig. 3.9.
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Figure 3.9: The training (triangle) and validation (circle) subnetworks that partition the BDQA
stations measuring carbon monoxide. This partition is randomly generated for the cross-
validation experiment.

Three simulations for validation are performed: a simulation using the EMEP+MEGAN
background inventory; a simulation using the emissions retrieved with 4D-Var; and a simu-
lation using the emissions retrieved with 4D-Var-ξ. In addition to these three simulations, we
shall use the influence coefficients ξi attached to the stations of the validation network to correct
the concentrations, using the background emissions, the 4D-Var retrieved emissions, and the
4D-Var-ξ retrieved emissions. Even though these 40 factors have been inferred (in the previous

2http://www.citepa.org/emissions/nationale/Aep/aep_co.htm

http://www.citepa.org/emissions/nationale/Aep/aep_co.htm
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section) using observations of the full network, we believe they are intrinsic to the stations. In-
ferring them from a different (sufficiently large) observation set would yield close values. We
have checked this by comparing the ξi of the training network obtained from a 89-station (full
network) optimisation, with the ξi of the training network obtained from a 49-station (training
network) optimisation. The results, that are reported in a scatterplot Fig. 3.10, confirm that the
values are close, and support that they are intrinsic to each station.
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Figure 3.10: Scatterplot of the 49 ξi of the training network inferred from either the training
network or the full network (89 stations). Four ξi = 0 crosses are missing. In the four cases,
they were concordantly diagnosed to be 0 by the two inferences.

The statistical scores, as well as the total emitted mass, for these six validation experiments
are reported in table 3.3.

Table 3.3: Comparison of the observations and the forecasted concentrations on the validation
network for the first 8 weeks of 2005. The statistical indicators are described in Tab.3.1. Ad-
ditionally, the total retrieved emitted mass is given (in Tg). The corresponding value for the
retrieved mass using the full network is recalled in parenthesis.

Used inventory C O NB RMSE R FA2 FA5 Total mass

Background 296 697 -0.81 771 0.16 0.51 0.88 1.06 (1.06)

4D-Var 357 697 -0.65 726 0.28 0.57 0.89 1.25 (1.44)

4D-Var-ξ 310 697 -0.77 758 0.22 0.52 0.89 1.14 (1.16)

Background + climatological ξ 644 697 -0.08 538 0.60 0.73 0.96 1.06 (1.06)

4D-Var + climatological ξ 968 697 0.33 1216 0.40 0.67 0.94 1.25 (1.44)

4D-Var-ξ + climatological ξ 674 697 -0.03 514 0.64 0.75 0.96 1.14 (1.16)

Firstly 4D-Var-ξ without correction at the validation stations performs poorly, with scores
of the same order as 4D-Var. This is to be expected since 4D-Var-ξ is meant to be used in
conjunction with the ξ coefficients, which is not the case for this experiment. Secondly, 4D-Var
yields sensibly better scores than 4D-Var-ξ. This is due to the excessive correction of 4D-Var
that wrongly takes the CO peaks as a systematic bias. As should be, this bias correction equally
applies to the validation set, leading to slightly better scores than 4D-Var-ξ, but for the wrong
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reasons.
Applying the ξi coefficients of the validation stations to the concentrations obtained with

the first guess emissions considerably reduces the bias and improves all the other statistical
indicators as compared to the reference simulation. Applying the ξi coefficients of the vali-
dation stations to the concentrations obtained with the 4D-Var retrieved emissions leads to a
very large positive bias. Even though the approach is by construction inconsistent, it yields
significantly better scores as compared to using the 4D-Var retrieval without corrections on the
validation stations. Lastly, the ξi coefficients of the validation stations are used in conjunction
with the 4D-Var-ξ retrieved emission field. This leads to much higher scores than the other
experiments. These indicators are consistent with the scores obtained using the full network
data (in Tab. 3.1).

It is remarkable that the total retrieved mass of this last experiment, 1.14 Tg, is consistent
with that obtained by 4D-Var-ξ using all stations, that is 1.16 Tg. A convincing validation of
such a retrieval methodology would require such a consistency. The same is not true for 4D-Var
with 1.25 Tg obtained using the training subnetwork and 1.44 Tg using the full network, point-
ing to the inconsistency of the method that does not properly account for the representativeness
errors.

3.6.2.3 Forecast experiments

A validation forecast is performed over the year 2005. This second indirect validation is de-
manding since no new observation are assimilated over a ten-month period. That is why in
atmospheric chemistry/air quality a forecast is often considered a more stringent validation test
[Zhang et al., 2012]. However, our validation by a forecast has a limitation due to the statis-
tical subgrid model. It is meant to efficiently apply to the observational network employed in
the initial assimilation time-window. Notice that this limitation is inherent to any forecasting
system making use of some form of statistical adaptation.

Four runs are considered. They all use the ECMWF meteorological fields and the MOZART,
version 2, output for the initial and boundary conditions. The first run is a direct simulation
over 2005 that is driven by the EMEP+MEGAN inventory. The second one is a direct run from
February 26 to December 31, but using the optimal α obtained from the 4D-Var analysis from
January 1 to February 25, and Eq. (3.6) to generate the inventory. The third one is a direct run
from February 26 to December 31, using the EMEP+MEGAN inventory but using the optimal
ξ obtained from an optimisation over ξ of the total cost function from January 1 to February
25. The fourth one is a direct run from February 26 to December 31, but using the optimal
α and ξ parameters obtained from the 4D-Var-ξ analysis from January 1 to February 25, and
Eq. (3.6) to generate the inventory. None of the observations from February 26 to December
31 are assimilated. They are exclusively used for validation.

Such forecast requires a forecast of the emissions. The parameterisation of the emission by
the α allow us to do so. In particular some of the temporal (but not spatial) seasonal variability
is implicitly accounted for thanks to the GENEMIS temporal modulation present in the first
guess eb.

Firstly, we have focused on the first month forecast, from February 26 to March 26, where
one can assume that the winter emission trend endures. The results are in very good agree-
ment with the observations. For the forecast period, the correlation coefficient between the
observations and 4D-Var-ξ increases from 0.13 to 0.68. The RMSE is improved by about 40%
during the analysis period. Almost 68% of that improvement is due to the optimisation of the
influence factors ξi.

Secondly, we have extended the forecast period, from February 26 to December 31 across
seasons. The monthly results for the RMSE and the correlation coefficients, over the year 2005
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are presented in Fig. 3.11. Using 4D-Var-ξ, the RMSE decreases decreases by 282 µg m−3

within the analysis period, January 1 to February 26 (left side of the vertical dashed line). It
decreases by 172 µg m−3 during the forecast period, from February 26 to December 31 (right
side of the vertical dashed line). The improvement is remarkably persistent during the whole
10-month forecast period. It shows that choosing α and ξ as control vectors has a good prog-
nostic value. In spring and summer, the RMSE decreases for all four experiments. This can
be due to the decrease of urban heating during that period which is accounted for in the cycles
of the inventory but which reduces a source of uncertainty. It can also be seen that the RMSE
gain in the spring and summer is essentially due to the subgrid model identification, and not
the emission estimation, since 4D-Var-ξ and the optimal-ξ forecast yield the same RMSE. Un-
surprisingly, this means that the emission retrieval carried out over two winter months are not
optimal for the spring and summer months. Another possible explanation is the emergence of
new source of errors in the spring-summer time, such as the higher OH concentration that leads
to a higher reactivity of CO, or a stronger turbulent mixing in the boundary layer. However,
this should be balanced by a persistent gain in the spring-summer period of the correlation due
to the emission retrieval.

3.7 Conclusion

In this article, a 4D-Var data assimilation system was developed to estimate carbon monoxide
fluxes at regional scale. An approximate adjoint of the POLAIR3D model has been built and
validated for this 4D-Var system. A study over France, at a resolution of 0.25◦ × 0.25◦ is
conducted. We used the in-situ observations of the BDQA database that includes the observa-
tions from industrial, traffic, urban and suburban stations. They are strongly impacted by local
sources that the stations are meant to monitor. Hence, although the number of observations
is very significant, their information load is impacted by large representativeness errors. The
Pearson correlation coefficient between the simulated concentrations and the observations is
computed to be 0.16. A first 4D-Var inversion of the CO fluxes leads to a mild improvement
of the skill. The Pearson correlation climbs to 0.36. However looking at stations profile, it is
clear that the representativeness errors are not accounted for, since the analysis from 4D-Var
cannot reproduce the intense CO peaks. Besides, it leads to an artificially large increase of the
retrieved emissions.

Therefore, a simple model is developed to statistically represent the subgrid effects of
nearby sources. A coefficient attached to each station is used to estimate this influence. The
4D-Var system is coupled to this subgrid model and the fluxes are determined altogether with
the influence coefficients. The correlation coefficient reaches 0.73, while the bias between
the observations and the analysed concentrations is considerably reduced. The net increase
of the CO inventory is estimated to be 9%, consistent with other top-down approaches using
satellite data. Cross-validation experiments using a training subnetwork and a validation sub-
network demonstrates the consistency of the inventory estimation, whereas, in this context, the
traditional 4D-Var does not deliver consistent estimations with different training subnetworks.
Forecast experiments with the analysed coefficients and fluxes over 10 months, after an as-
similation window of 8 weeks, show remarkably persistent scores throughout the year. This
emphasises the relevance of the choice of ξ and α as joint control parameter vectors of the
4D-Var-ξ analysis.

We believe that this methodology and experiment show that, in this context, it is possible to
extract relevant information from observations strongly impacted by representativeness errors.
One limitation which is inherent to the statistical adaptation component of the system is that it
is meant to be used on a given monitoring network. A validation forecast can safely be made
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Figure 3.11: Monthly RMSE (left panel) and Pearson correlation (right panel) of four runs: a
pure forecast, a ten-month forecast initialised by an 8-week 4D-Var assimilation, a ten-month
forecast initialised by an 8-week window where the ξ are optimised and a ten-month forecast
initialised with an 8-week joint 4D-Var and ξ optimisation. The vertical dashed line indicates
the end of the assimilation window and the start of the forecasts.
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to additional stations, but statistical adaptation cannot be performed to these stations, if the
related influence factor ξi were not previously estimated.

To improve the present statistical subgrid model, which uses the influence factors to esti-
mate the immediate impact of the emissions on the observations, a more comprehensive sta-
tistical subgrid model could be used. For instance, that model could include the effects of the
wind direction, deposition parameters, etc, that are used or diagnosed in the coarse resolution
model. Computationally, it would not be as cheap as the subgrid model used here.

Beyond the carbon monoxide context of this study, it is believed that the integration of the
simple statistical subgrid scale into a 4D-Var can be generalised to pollutants whose observa-
tions could highly be impacted by representativeness errors.



Chapter 4

Potential of the International

Monitoring System radionuclide

network for inverse modelling

Summary

The International Monitoring System (IMS) radionuclide network enforces the Comprehensive
Nuclear-Test-Ban Treaty which bans nuclear explosions. We have evaluated the potential of the
IMS radionuclide network for inverse modelling of the source, whereas it is usually assessed by
its detection capability. To do so, we have chosen the degrees of freedom for the signal (DFS),
a well established criterion in remote sensing, in order to assess the performance of an inverse
modelling system. Using a recent multiscale data assimilation technique, we have computed
optimal adaptive grids of the source parameter space by maximising the DFS. This optimisa-
tion takes into account the monitoring network, the meteorology over one year (2009) and the
relationship between the source parameters and the observations derived from the FLEXPART
Lagrangian transport model. Areas of the domain where the grid-cells of the optimal adaptive
grid are large emphasise zones where the retrieval is more uncertain, whereas areas where the
grid-cells are smaller and denser stress regions where more source variables can be resolved.

The observability of the globe through inverse modelling is studied in strong, realistic and
small model error cases. The strong error and realistic error cases yield heterogeneous adaptive
grids, indicating that information does not propagate far from the monitoring stations, whereas
in the small error case, the grid is much more homogeneous. In all cases, several specific
continental regions remain poorly observed such as Africa as well as the tropics, because of
the trade winds. The northern hemisphere is better observed through inverse modelling (more
than 60% of the total DFS) mostly because it contains more IMS stations. This unbalance
leads to a better performance of inverse modelling in the northern hemisphere winter. The
methodology is also applied to the subnetwork composed of the stations of the IMS network
which measure noble gases.
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4.1 Introduction

4.1.1 The IMS network and the CTBT enforcement

The Comprehensive Nuclear-Test-Ban Treaty (CTBT) signed by 182 states bans nuclear ex-
plosions [United Nations, 1996]. The monitoring of the treaty is implemented by the United
Nations CTBT Organisation (CTBTO), based in Vienna, Austria. It operates an International
Monitoring System (IMS) and collects seismic, infrasound, hydroacoustic data as well as ra-
dionuclide (particulate matter and noble gases) activity concentrations. This article focuses on
the latter. Upon completion of the installation, the radionuclide IMS network will have 80 sta-
tions. As of June 2011, 60 stations are certified and operational. The instruments are radionu-
clide gamma detectors coupled to particle filters. They allow to deliver 24 hour-averaged activ-
ity concentrations for several particulate/aerosol species: caesium-137, caesium-134, iodine-
131 (aerosol form), etc. In the long term, 40 of those stations will also be able to measure noble
gases (xenon-131m, xenon-133, xenon-133m, xenon-135), among which 24 are operating as
of June 2011.

The locations of 79 (among 80) stations are detailed in the treaty, even though the actual lo-
cations could slightly differ (see http://www.ctbto.org/map). The design of the network
has been validated using dispersion modelling. For instance, using a global atmospheric trans-
port model (ATM), one can compute the ability of the monitoring network to detect a release
stemming from any location on Earth [Ringbom and Miley, 2009]. Recently, the radionuclide
IMS network has measured the Fukushima Dai-ichi plume throughout the world, although only
part of the observations has been disclosed.

http://www.ctbto.org/map
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The observations of the IMS network can be used to detect a nuclear tests, and to discrim-
inate nuclear test among underground explosions. They could also help to characterise a test
(location, signature and intensity) using inverse modelling techniques. The objective of this ar-
ticle is to determine the potential of the IMS radionuclide network for inverse modelling of the
source term, using rigorous mathematical tools in conjunction with global or regional ATMs.

4.1.2 Inverse modelling of tracers

The application of inverse modelling techniques to the reconstruction of the source term is re-
cent in atmospheric dispersion. The European Tracer Experiment (ETEX, Nodop et al. [1998]),
initially triggered by the Chernobyl accident, served as a playground to test inverse methodolo-
gies [Robertson and Langner, 1998; Pudykiewicz, 1998; Seibert and Stohl, 2000; Issartel and
Baverel, 2003; Bocquet, 2005a, b]. Full reconstructions using real data with results close to the
known characteristics of the source have been obtained [Bocquet, 2007; Krysta et al., 2008].
These authors used methodologies inspired by geophysical data assimilation techniques: the
field to retrieve is discretised into a spatially organised large set of source variables/parameters.
Alternatively, the so-called parametric methods rely on the optimisation of a restricted set of
variables that parametrise the source term. In the specific case of accidental dispersion, the
lat-lon coordinates and the emission rate parametrise the source [Delle Monache et al., 2008;
Yee et al., 2008].

As far as real radionuclide dispersion events are concerned, these methodologies have been
tested on the Algeciras dispersion event [Krysta and Bocquet, 2007; Delle Monache et al.,
2008], with about hundred caesium-137 integrated activity concentration measurements. The
results are satisfying but mostly because of the very simple shape of the source (a single peak).
The inverse modelling approach was also applied to the atmospheric source term of Cher-
nobyl (caesium-137, caesium-134, and iodine-131) by Davoine and Bocquet [2007]; Bocquet
[2012] with an estimation of the source terms consistent with the official UNSCEAR source term
[United Nations, 2000]. Reconstruction of the source term was also performed for a North Ko-
rea nuclear test measured by the IMS radionuclide network [Becker et al., 2010], although the
reconstruction was not strictly based on inverse modelling.

In this context, the inverse modelling approach remains a difficult one, because:

• the observations are ground-based and local. Activity concentration measurements are
sparse, infrequent or integrated, as opposed to gamma dose measurements. Moreover,
point-wise observations may lead to representativeness errors, depending on whether the
dispersion model is Eulerian or Lagrangian.

• The dispersion models remain imprecise. They are driven by meteorological fields of in-
creasing precision and reliability at a given resolution, but the planetary boundary layer
remains difficult to model, and the vertical turbulent diffusion is still uncertain. With only
a few documented field experiments, the microphysical properties of the radionuclides in
the atmosphere, are still difficult to grasp. Therefore the physical parametrisations imple-
mented in the ATMs (dry deposition, wet scavenging, aerosol modelling, granulometry
of particles) remain gross.

Beyond its own interest, inverse modelling of the source term is also the sine qua non
condition for a proper forecasting of the resulting plume, as was illustrated by Politis and
Robertson [2004]; Bocquet [2007]; Abida and Bocquet [2009].
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4.1.3 Objectives and outline

Detectability has been used to assess the performance of the IMS radionuclide network [Hour-
din and Issartel, 2000; Wotawa et al., 2003; Ringbom and Miley, 2009]. A more complex
criterion is a measure of the ability to interpolate activity concentrations in between the sta-
tions of the network, using geostatistical techniques (Wu and Bocquet [2011] and references
therein). It has been used to assess and even design a radionuclide monitoring network [Abida
et al., 2008]. One step further in complexity, our goal is to evaluate the potential of the IMS ra-
dionuclide network for inverse modelling, using an objective quantitative criterion: the degrees
of freedom for the signal.

In Section 4.2, we define the typical inverse modelling experiment that could serve the
CTBT enforcement. The average quality of an inversion is rigorously defined by the the de-
grees of freedom for the signal. We do not focus on the particular results of specific inverse
modelling experiments. This was done for instance by Winiarek et al. [2011] in the same
context. Instead, we focus on the average ability of inverse modelling to extract information
from the measurements. A multiscale formalism is used to rigorously diagnose how the in-
formation contained in the observations should optimally be spread in regions of the world.
In Section 4.3, the formalism is applied to the IMS radionuclide network using all influence
functions of year 2009 computed by the CTBTO. Adaptive grids that maximise the degrees of
freedom for the signal are computed. By construction, they are optimal for the assimilation of
observations. For a given number of grid-cells, they are numerically more efficient, and bear
less aggregation errors than regular grids with the same number of grid-cells. They rigorously
determine the ability of the monitoring network to resolve source variables through data assim-
ilation. Consequently, they allow to pinpoint well observed (from inverse modelling) as well as
poorly observed regions of the world. They have indirect implications on the way to optimise
the design of the network. The technique is also applied to the subnetwork of the stations that
monitor noble gases. The difference between an Eulerian and a Lagrangian model in the design
of those adaptive grids is examined, using a specific region of the globe. Conclusions are given
in Section 5.5.

4.2 Methodology of data assimilation

4.2.1 Inverse modelling with Gaussian statistical assumptions

The source parameters are the unknown variables. Each one of them is attached to a grid-cell
in a domain Ω, and to a time interval. At first, Ω will be the globe. At the end of Section 4.3,
Ω will be a limited area of the globe. We assume that the domain Ω is discretised. We shall
use unprojected (lat-lon) coordinates in the following, with Nx meridians and Ny −1 parallels.
The source vector σ is defined on this grid. It has an extension in time of Nt time-steps, so that
σ is a vector of dimension NxNyNt. The radionuclide plume is observed by the monitoring
network. The observations yield a measurement vector µ in R

d.
The physics of dispersion is assumed linear. This is the case for most transport and physical

processes: advection, diffusion, radioactive decay, dry deposition, and wet scavenging. This
assumption is true for noble gases or particulate matter, but could be breached for aged parcels
of radionuclides which can lead to the formation of aerosols, whose modelling implies complex
nonlinear equations.

With this assumption of linearity, and in the absence of boundary conditions, or using clean
air boundary conditions which are suitable for accidental release, a source-receptor relationship
between the observation vector µ and the source σ is established. It is formalised by the
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Jacobian matrix H

µ = Hσ + ǫ , (4.1)

where the vector ǫ represents errors of all kinds: instrumental error, representativeness error,
and model errors.

The simplest approach for non-parametric inverse modelling is to minimise the discrepancy

L(σ) =
1

2
(µ − Hσ)T R−1 (µ − Hσ) , (4.2)

where R = E
[
ǫǫT
]

is the observation error covariance matrix, which, in this ground obser-
vation context, is almost always assumed diagonal, even though transport model errors could
induce some cross-correlations. Following the Bayesian paradigm of geophysical data assim-
ilation, a background term (also called regularisation term in this inverse modelling context)
should be added to the cost function Eq. (4.2). This term is obviously unavoidable when the
number of variables to retrieve is greater than the number of observations. However, even with
a larger set of observations, a regularisation may be needed because of the errors that impov-
erish the information content of the observations, and because of the lack of observability of
some regions of the source space. It is often said that these inverse problems are ill-posed.

It was shown in Winiarek et al. [2011], that even when the location of the source is well
known (anticipated in the case of Fukushima Dai-ichi, or with delay in the case of the Cher-
nobyl) so that only a temporal rate profile should be retrieved, and even when the observations
are abundant, a background term is still necessary in a significant fraction of the cases. In the
case of Chernobyl, where the location is supposed to be known in re-analysis, Bocquet [2012]
has demonstrated that a problem without a properly defined background but with much more
observations than source parameters can lead to aberrant total retrieved activity for the source
term.

Therefore, it is often safer to use the objective function with a regularisation term:

L(σ) =
1

2
(µ − Hσ)T R−1 (µ − Hσ)

+
1

2
(σ − σb)

T
B−1 (σ − σb) , (4.3)

where σb is the first guess (or background), an estimation of the source before the observations
are assimilated, and B is the background error covariance matrix. In the context of an acciden-
tal release, it is reasonable to assume σb = 0 for the accidental source, since so little is known
about it. In the case of noble gases, there could be significant diffuse natural (radon) or anthro-
pogenic (xenon) emissions, that would have to be taken into account through an offset term
in Eq. (4.1), or incorporated into the inverse modelling scheme. In that latter case, a non-zero
diffuse background σb would be defined from their emission inventories.

Matrix B is a rather well studied object in meteorological and oceanographical data assim-
ilation, even though its modelling is complex. In our context, B is very poorly known, since it
is meant to measure our ignorance on the source term before the accident or the nuclear test,
which is difficult to quantify. The B matrix related to noble gas with an estimated background
which measures the errors in the inventory, may be better known. In the following, we are
not considering such non-trivial background, and we will focus on the accidental release part.
However the formalism used in this article can cope with more complex situations.

A posteriori parameter estimation techniques, such as L-curve, maximum-likelihood, gen-
eralised cross-validation [Vogel, 2002; Hansen, 2010], can efficiently help to assess the back-
ground term in an accidental context [Davoine and Bocquet, 2007; Krysta et al., 2008; Saide
et al., 2011], where a single realisation of the set of observations is available (as opposed to
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routine pollution). However it should be clear that the errors represented by R and B are very
difficult to assess in this context.

In the absence of any constraint such as the positivity of σ, the best linear unbiased esti-
mator of the source is given by the argument of the minimum of Eq. (4.3)

σa = σb + BHT
(
R + HBHT

)−1
(µ − Hσb) . (4.4)

The uncertainty of this estimator is given by the analysis error covariance matrix

Pa =
(
B−1 + HTR−1H

)−1
. (4.5)

which is obtained as the inverse matrix of the Hessian of Eq. (4.3), which represents the preci-
sion matrix of the estimator. It is often equivalently rewritten as

Pa = B − BHT
(
R + HBHT

)−1
HB , (4.6)

which is to be used later.
More advanced methodologies that are able to handle the non-Gaussianity of errors, can

lead to more sophisticated estimators of the a posteriori errors (see Bocquet et al. [2010] and
references therein). However, second-order moments of the error distribution still provide an
approximation of the posterior error statistics. In this case, Pa is approximately obtained as
the inverse of the Hessian of the cost function,

4.2.2 Information content and DFS

After the analysis, a scalar residual posterior uncertainty is given by Tr(Pa). The reduction of
uncertainty in the data assimilation process can be measured by a related quantity: Tr(IN −
PaB

−1), which identifies with the degrees of freedom for the signal, abbreviated DFS in the
following [Rodgers, 2000]. The DFS are often used in the inversion of satelite-based instrument
radiances. In our context, it measures the fractional number of observations that are effectively
used in the inversion to retrieve the source. Explicitly, one has

JDFS = Tr
(
IN − PaB

−1
)

= Tr
(
BHT

(
R + HBHT

)−1
H
)

. (4.7)

It is always lower or equal to the total number of observations d: 0 ≤ JDFS ≤ d.
As explained earlier, it is difficult to specify R and B, especially in the retrieval of sources

in atmospheric dispersion. Besides these matrices are context-dependent. In the absence of
significant correlations in-between observation errors, and in-between background errors, they
can be both chosen proportional to the identity matrix: R = χ2Id and B = m2IN . Yet, χ
and especially m still need to be estimated. However, in this article, we are not interested in
the precise values of χ and m. We are more interested in the degrees of freedom for the signal
available for the inversion. They depend on the ratio χ/m as can be checked on Eq. (4.7). To
some extent, reasoning in terms of DFS circumvents the necessity to reason on R and B.

Using the results of inverse modelling of actual dispersion problems: ETEX, Chernobyl,
Algeciras, or from the results of carbon dioxide inverse modelling [Krysta and Bocquet, 2007;
Krysta et al., 2008; Wu et al., 2011], we have found that the DFS usually represents 5% to 15%
for the total number of observation, for this kind of dispersion problem. In the following of
this study, rather than specifying χ, m, or the ratio χ/m, we shall assume that when dealing
with real observations, one should expect to reach a DFS of about 10% of the total number
of observations. In the future, with the reduction of model errors, this fraction of the DFS
may increase. However a strong reduction of the model or representativeness errors may not
necessarily lead to a strong increase of the ratio ρ = DFS/d, because of the ill-posed nature of
dispersion.
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4.2.3 Multiscale data assimilation

One usually considers a regular mesh, with grid-cells of constant size in one system of coordi-
nates, to discretise the source σ. However, adaptive grids can also be considered to model the
transport of pollutant [Constantinescu et al., 2008], or to perform source inversion [Bocquet,
2009; Bocquet et al., 2011; Bocquet and Wu, 2011]. Such grids are relevant to atmospheric
chemistry modelling because of the high heterogeneity of the emission fields. They are espe-
cially relevant in data assimilation for atmospheric dispersion when the observations are sparse,
because the (adjoint) model can carry information from the observations in a very heteroge-
neous manner. We shall adopt such an adaptive grid formalism following the methodology
developed in [Bocquet, 2009; Bocquet et al., 2011]. Details can be found in these references,
and we shall focus here on what is necessary to interpret the results.

The activity concentrations of the numerical transport model are defined on, or interpolated
to, a regular grid, which is the finest available grid in the rest of this article. In the case of the
CTBT problematic, the finest grid will be lat-lon, with Nx = 512 and Ny = 256. In particular
the Jacobian H computed with the numerical model, or possibly its adjoint, is defined in this
grid. The background error covariance matrix B is defined in this grid too.

One can define a restriction operator that coarse-grains a source σ defined in the finest grid
into a coarser σω defined in an adaptive grid ω with grid-cells of various sizes but all assembled
from grid-cells of the finest regular grid. A prolongation operator refines a coarse σω defined in
the adaptive grid ω into a source σ defined in the finest regular grid. Coarse-graining a vector
σ defined in the finest grid, then refining the result to project back to the finest grid does not
give σ back, because information is lost in the coarse-graining. Rather, it gives

σ −→ (INfg
− Πω)σb + Πωσ (4.8)

where Πω is a projection operator that can be defined from the action of the restriction and
the prolongation operators. Nfg is the number of grid-cells in the finest grid, so that INfg

is the identify operator defined in the corresponding vector space. A Bayesian construction
of the prolongation operator leads to a Πω which is B−symmetric: ΠωB = BΠT

ω . In the
accidental context, the assumption σb = 0 sets the constant term in Eq. (4.8) to zero. A
schematic representation of the action of Πω is drawn in Fig. 4.1. The errors caused only by
the aggregation of grid-cells can be formally computed [Bocquet et al., 2011]

ǫω = H
(
INfg

− Πω

)
(σ − σb) . (4.9)

Performing inverse modelling in the finest regular grid yields the DFS given by Eq. (4.7).
Bocquet et al. [2011] have shown that performing inverse modelling in the adaptive grid ω
yields the DFS

Jω
DFS = Tr

(
ΠωBHT

(
R + HBHT

)−1
H
)

. (4.10)

This result assumes that representativeness errors, such as Eq. (4.9), are taken into account
when changing resolution. The DFS can be used as a criterion to find the optimal adaptive
grid given a fixed total number of grid-cells N . The algorithm to perform this optimisation is
described in Bocquet [2009]; Bocquet et al. [2011]. In the context of atmospheric dispersion
with ground-based point-wise observations, an optimal adaptive grid can deliver much more
DFS than a regular grid with about the same number of grid-cells. The grid is usually refined
close to the observation sites. It also depends on the dispersion itself and the meteorology. The
size of a grid-cell offers a rigorous measure of the resolution defined by Rodgers [2000], that is
to say the capacity to resolve a variable from the observations. As opposed to using the inverse
of the diagonal entries of Pa, this measure does not rely on any approximation. In practice,
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Figure 4.1: Schematic for the projector Πω which operates in the finest regular grid cell.

if a location is encompassed in a large (respectively small) grid-cell, little (respectively much)
information will be obtained at this point from inverse modelling.

In the regime where χ/m is high (large error limit), it is clear that the objective function
Eq. (4.10) can be approximated by the simpler

Jω
fisher = Tr

(
ΠωBHTR−1H

)
, (4.11)

called the Fisher criterion in Bocquet et al. [2011]. Although the value of Eq. (4.11) can be
different from that of Eq. (4.10), it was observed that the optimal grids obtained with the two
criteria are very similar in the large χ/m limit.

Practically, for real applications, the ratio DFS/d ≃ 10% corresponds to a large χ/m, so
that the Fisher criterion can be used in place of the DFS criterion. Moreover, in that limit it can
be shown that the optimal grid is the grid that minimises the aggregation errors. Indeed, from
Eq. (4.9), and using the B−symmetry of Πω, the aggregation error covariance matrix is

Rω = H
(
INfg

− Πω

)
BHT . (4.12)

As a consequence, the normalised aggregation error can be assessed by

Tr
(
R−1Rω

)
= Tr

(
R−1HBHT

)
− Tr

(
R−1HΠωBHT

)

= Tr
(
BHTR−1H

)
− Tr

(
ΠωBHTR−1H

)

= Jfisher − Jω
fisher . (4.13)

That is why the maximisation of Jω
fisher entails a minimisation of the aggregation errors.
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The optimal adaptive grids that result from the optimisation of these criteria were shown to
be numerically efficient to perform inverse modelling [Bocquet, 2009]. They have better data
assimilation performance as compared to regular grids with the same number of grid-cells.
Moreover, we have just shown that they entail little aggregation errors by construction. There-
fore, building such grids could be used to perform inverse modelling of IMS data. However,
in the following, we shall rather focus on the fact that these grids rigorously pinpoint well
observed and poorly observed regions of the world for the purpose of inverse modelling.

4.3 Application to the IMS radionuclide network

4.3.1 Setup

The potential of the global IMS radionuclide network for data assimilation with an ATM is
studied in this section, using the formalism recalled in Section 4.2. A drastically simplified
version of the setup, with unrealistic physics and annual observations, was experimented in
Bocquet and Wu [2011] as a proof of concept.

Among the 80 targeted stations, 79 have assigned locations, and we shall consider these 79
stations. The year 2009 is the focus of the study. As mentioned earlier, activity concentrations
measurements are integrated over 24 hours. Therefore, 79 × 365 = 28, 835 observations are
considered. The Comprehensive Nuclear-Test-Ban Treaty Organisation has provided us with
one year of influence functions (also known as adjoint solutions, or footprints, or retroplumes),
attached to each one of these observations. They correspond to the rows of the Jacobian matrix
H built over one year. Those influence functions have been generated using the Lagrangian
ATM FLEXPART [Stohl et al., 2005], version 5 (with minor modifications by the CTBTO
scientists) driven by ECMWF meteorological fields at a resolution of 1◦ × 1◦. The tracer is
completely inert: only transport is considered. Hence, these influence functions represent an
upper bound of how far the influence of any radionuclide can reach. The temporal extend of
each influence function is 14 days, with a time step of ∆t = 3 hours.

Our goal is, given a fixed number of grid-cells N , to build the corresponding optimal
adaptive grid for the IMS network. As explained in Bocquet [2009], the optimal grid can
be chosen among a dictionary of adaptive grids. In this study, we shall choose the so-called
dictionary of tilings: the grid-cells (tiles) are rectangles, and their zonal, meridional and even
time lengths can be chosen independently. The adaptive grid in Fig. 4.1 is an example of a
tiling.

With the multiscale formalism recalled earlier, it is possible to built a grid which is adaptive
in space, but also in time (see the ETEX-I example of Bocquet [2009]). In this study we rather
focus on a static grid, that would be optimal on average over the whole 2009 year. However,
a simple average of H over the 365 days of the year is too naive an approach. Instead, it is
necessary to average over the optimality criterion, which has a non-linear dependence in H. In
the following, we use Jω

DFS, or its limiting case Jω
fisher, where the non-linear dependence in H

is obvious.

4.3.2 Daily-averaged criteria

More specifically, we look for optimal adaptive grids which are invariant by time translations
of 24 hours, and whose grid-cell length in time is 24 hours. Therefore Πω is invariant by
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translations of 24 hours. The averaged criteria are

〈Jω
DFS〉 = Tr

(
Πω〈BHT

(
R + HBHT

)−1
H〉
)

, (4.14)

〈Jω
fisher〉 = Tr

(
Πω〈BHTR−1H〉

)
. (4.15)

The brackets 〈·〉 represent the average over the 365 days of year 2009. For each one of the
365 contributions to the mean, one should identify the influence functions present in H that
contribute to BHT(R + HBHT)−1H, or BHTR−1H. For each day t of the year, a source
variable defined in a grid-cell can be causally connected through data assimilation to any of
the 79 stations. However, it is causally connected to only 14 observations, at day t + τ , with
τ = 0, . . . , 13, per station, through 14, 14-day long, influence functions.

Hence, for a given day, the number of observations that are used in the computation of
BHT(R+HBHT)−1H, or HTR−1H is d = 14×79 = 1106. Then, the resulting matrices are
averaged over the 365 days to obtain the criterion value: 〈Jω

DFS〉, and 〈Jω
fisher〉. The numerical

parallelised computation of the this average matrix demands a 3-day run on a 12-core Intel
Xeon machine. For the DFS criterion, d = 1106 represents the maximum possible DFS, since
the DFS criterion is now averaged over 365 days. In the rest of the article, these averaged
criteria 〈Jω

DFS〉, or 〈Jω
fisher〉 are used to determine time-invariant optimal adaptive grids.

4.3.3 Dependence of the DFS in the number of grid-cells

Each optimisation is performed at a given number of grid-cells N . Figure 4.2 shows the perfor-
mance of the adaptive grids as compared to the regular grids at different resolution. The DFS
criterion and the Fisher criterion are plotted as a function of the number N of tiles in the grid.

As mentioned in Section 4.2, we assume R = χ2Id and B = m2IN . Choosing a priori
particular values for χ and m is difficult, and maybe even methodologically wrong since it was
shown in Davoine and Bocquet [2007] that m should be determined a posteriori in such an
accidental context. Instead, we choose the values of χ/m so as to match a given ρ = DFS/d
ratio, which is more universal than the precise value of χ/m. In Fig. 4.2(b), we consider
the cases where ρ ≃ 10%, which is a good indication of the capability of current inverse
modelling system in the accidental context with ground point-wise observations. In Fig. 4.2(c),
we consider the case ρ ≃ 90%, as an indication for distant future systems with very low errors
(typically an error standard deviation 100 times smaller than in the current systems). Finally,
in Fig. 4.2(a), we consider the limiting Fisher criterion case which corresponds to small ρ.
This small ρ and conservative limit may be preferable, if one believes ρ = 10% is still too
optimistic an assumption. As shown by Fig. 4.2, the gap between the optimal grid and a
regular grid having the same number of grid-cells is increasing with the errors (instrumental,
representativeness and model errors). This gives away an increase of heterogeneity of retrievals
with the errors: information cannot propagate far from the network and help resolve source
variables.

The fact that the curves in Fig. 4.2 are monotonically increasing functions of N has been
proven in Bocquet et al. [2011]. However future complex inverse modelling experiments will
deal with scale-dependent model error, or with models operating at different scales (Lagrangian
at mesoscale and Eulerian at global scale, e.g. Rigby et al. [2011]). In that case, it is expected
[Peylin et al., 2001; Bocquet et al., 2011] that a maximum DFS be reached which does not
correspond to the finest regular grid.

In the following, the study is performed at finite N , i.e. a computationally affordable num-
ber of grid-cells N ≪ Nfg, where Nfg is the number of grid-cells in the finest grid. Besides,
the qualitative results (interpretation of the adaptive grids) will essentially be insensitive to the
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Figure 4.2: Fisher criterion (a), and degrees of freedom for the signal (b,c) of optimal tilings
and regular grids against the number of grid-cells in the representation. Upper panel (a): χ/m
is arbitrary (just a multiplicative factor). Middle panel (b): with χ/m = 100. Lower panel
(c): with χ/m = 1. The illustrations of Fig. 4.3 correspond to the points indicated by double
circles.

choice of N provided Ncg ≪ N ≪ Nfg, where Ncg is the number of grid-cells in the coarsest
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regular grid (Ncg = 8 in this study).

4.3.4 Interpretation of optimal grids

Typical optimal grids are displayed for N = 4096 in Fig. 4.3. Firstly, let us consider the

(a)

(b)

(c)

Figure 4.3: Optimal adaptive grids for N = 4096 grid-cells. Upper panel (a): from the Fisher
criterion optimisation, (b): from the DFS optimisation in the realistic case χ/m = 100. Lower
panel (c): from the DFS optimisation with little error χ/m = 1. The stations of the IMS
radionuclide network are indicated by triangles.
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Table 4.1: Distribution of the DFS over hemispheres and seasons.

DFS Whole year 2009 Mar-Apr-May Jun-Jul-Aug Sep-Oct-Nov Dec-Jan-Feb

NH 66.79 62.4 64.50 67.15 73.10

SH 39.06 41.49 33.75 35.88 45.23

Total 105.9 104.03 98.25 103.02 118.33

optimal grid based on the Fisher criterion. As explained earlier, it is impacted by the monitoring
network distribution: the mesh is refined close to the stations indicating the ability of the data
assimilation system to better resolve the source variables in these areas. It is also impacted
by the meteorological climatology. For instance, in the polar regions, the information remains
confined within the polar cells. As a result, stations in Antarctica do not significantly help in
resolving variables over the Antarctic Ocean. In this high-error limit, the mesh is especially
dense close to the observations: the information cannot propagate far from the stations.

Next, consider the realistic case where DFS/d ≃ 10%. Again, the grid is refined close to
the observations site, but to a lesser extent. The impact of the trade winds is clear. Information
is back-propagated from the tropical stations south-easterly in the South hemisphere, and north-
easterly in the North hemisphere. Besides, since those winds are very directive, information
cannot substantially reach the inter-tropical zone.

Finally, consider the case where model and representativeness errors are very small. The
information can back-propagate much farther than in the previous cases. In particular, in the
mid-latitude regions westerlies winds (maybe jets) efficiently back-propagate the information,
so that the mesh is relatively even in these regions. In the tropics, the impact of the trade winds
is even more obvious. Tropical regions that are not under direct observation are poorly resolved
by inverse modelling.

In moderately large wind conditions, sea and land breezes may have an influence on the
local climatological winds, near the shores. A clear impact on the optimal grids is the poor
observability of Africa, even though 6 stations are installed on the continent. Besides, the
Harmattan, which is a trade wind, leaves station RN13, Edea, Cameroon, with a poor visibility
on the continent. In general, for stations well inside the continent the impact of an observation
station is more isotropic, but also more short-ranged.

4.3.5 Distribution of the DFS over hemispheres and seasons

The degrees of freedom for the signal can be computed locally in the source space. To com-
pute the DFS attached to a subset of source variables, it suffices to compute the corresponding
subtrace in the DFS formula Eq. (4.7), that is to say a partial sum of the diagonal entries.
We have computed the DFS for the northern and the southern hemispheres, as well as for the
seasons, as defined by the four trimesters March-April-May, June-July-August, September-
October-November, December-January-February. Because the length of these periods can
slightly vary, their DFS are given as a mean and are therefore comparable. The results are
reported in Tab. 4.1. On average, the DFS of the northern hemisphere captures about 63%
of the total DFS, which is consistent with the fact that 48 stations out of 79 are in the north-
ern hemisphere. Because of this unbalance, some seasonal effects become evident. Indeed the
northern hemisphere winter shows a stronger DFS than in the summer. This might be explained
by the stronger westerlies winds in the winter, that propagate tracers (and related information)
farther away, as opposed to a more diffusive/stationary summer climatology.



88 Chapter 4 – CTBTO

4.3.6 Implication on the design of the network

Obviously this analysis has implications on the design of the network. The IMS radionuclide
network has been evaluated and perhaps designed using detectability criteria. In the same
context, other criteria could be based on the ability to map activity concentrations using the
data available from the network and geostatistical techniques [Abida et al., 2008]. Our criteria
are based on the ability of data assimilation to retrieve source parameters. As we pointed out,
it is dependent on the instrumental error, on the representativeness errors, and especially on
the modelling errors. However in all circumstances, some constant features have emerged and
could help in the re-allocation of stations.

4.3.7 Noble gas network

We shall perform the same study but with the noble gas network which is a subnetwork of
the IMS network, as stated in the treaty. Among the future noble gas 40 stations, 39 stations
have a designated location, while the 40th will be the currently unknown 35th station of the
80-station radionuclide network. That is why we have chosen to perform the adaptive grid
optimisation on this subset of 39 stations. The list of the stations can be found on the CTBTO
website (http://www.ctbto.org) and are displayed in an interactive map (http://www.
ctbto.org/map). Moreover, it is assumed that the measurement length are 24-hour long,
while 12-hour long measurements are also performed for noble gases.

We assume the same χ/m ratio as for the realistic case of the full IMS network. The total
number of observations is now 39 × 365 = 14, 235. It leads to a similar ratio ρ = DFS/d ≃
10%.

The behaviour of the DFS as a function of the number of grid-cells is plotted in Fig. 4.4.
Even though it should represent a similar case to Fig. 4.2(b), the shape of the DFS curve stands
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Figure 4.4: Degrees of freedom for the signal of optimal tilings and regular grids against the
number of grid-cells in the representation, in the case of the noble gas subnetwork (χ/m =
100). The illustrations of Fig. 4.5 correspond to the points indicated by double circles.

in between the Fig. 4.2(a) and Fig. 4.2(b) cases. The fact that only 39 stations are exploited

http://www.ctbto.org
http://www.ctbto.org/map
http://www.ctbto.org/map
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makes the globe significantly less observable by inverse modelling means. The information
from the observations cannot reach remote areas, and this translates into a more rounded DFS
curve, which makes optimal designed grids much more efficient than regular grid with the same
number of grid-cells.

The optimal tilings for N = 4096 and N = 32768 are drawn in Fig. 4.5. The former
allows a comparison with the full network case. The latter grid has a graphical interest since it
underlies the poorly observed regions of the globe (clear/dark regions). In particular it is clear
that the Pacific and the Intertropical Convergence Zone are much less observed than with the
full network. The large cell over Antarctica of the first map should not be interpreted as a too
significantly unobservable zone. Indeed, the genuine area of this cell is smaller than displayed
in lat-lon coordinates. Specifically, the large cell over Antarctica has an area about three times
smaller than the area of one of the two large grid-cells over the tropical Pacific.

(a)

(b)

Figure 4.5: Optimal adaptive grids for the 39-station noble gas network, for (a): N = 4096
and (b): 32768 grid-cells, using χ/m = 100. The 39 stations of the noble gas network are
indicated by triangles.

4.3.8 Eulerian and Lagrangian models

As a final experiment, the inverse modelling potential of the IMS network was investigated
in a limited-area domain (spanning [59◦W-109◦E]×[29◦S-69◦N]), using a Lagrangian ATM
(FLEXPART as used by the CTBTO), and a regional Eulerian ATM (POLYPHEMUS/POLAIR3D,
Quélo et al. [2007]). The limited area domain allowed us to use the regional model POLAIR3D,
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but it also allowed to significantly reduce the computational cost, since only 18 stations of the
IMS radionuclide network are considered in this domain. The influence functions obtained
from both models over the year 2009 simulate an atmospheric inert tracer (such as xenon-133
but without decay). The magnitude of the errors chosen for the experiment corresponds to the
realistic case, where DFS/d ≃ 10%. The maximal DFS (finest grid) for the Lagrangian model
is about 21, while the maximal DFS for the Eulerian model is about 25. In the present context,
the comparison of these two numbers should not be interpreted as a measure of the respective
merit of two inverse modelling systems. Indeed, each model should in principle be endowed
with its own magnitude of model errors in R. However, a qualitative comparison can be made
with the assumption that they both carry the same errors. The DFS curves of the two systems
are plotted in Fig. (4.6). A difference between the two types of simulation, is that since the
Lagrangian influence function are computed from the global footprints, they have re-entries of
tracer within the domain. To minimise the differential impact of re-entries, only 18 stations in
the domain, those within an angular distance of 10◦ away from the boundaries, have been kept.
We have checked that, on average, these re-entries do not impact the following quantitative
results.
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Figure 4.6: Degrees of freedom for the signal of optimal tilings and regular grids against the
number of grid-cells in the representation, in the case of the limited area models (χ/m = 100).
The illustrations of Fig. 4.7 correspond to the points emphasised by a double circle and a double
square.

There are differences between the two sets of curves. As the number of grid-cells N in-
creases, the DFS of the Eulerian inverse modelling system increases more than those of the
Lagrangian system. With the same R matrix, it does not imply that one system is better than
the other, but that the physics of dispersion (of the tracer and the information) is somehow
different. It shows that for a same N , the Eulerian grid is more heterogeneous than the La-
grangian grid. This means that, in the Eulerian case, the tracer extends less, leading to denser
influence functions around the stations. This is confirmed by Fig. 4.7 where optimal grids with
N = 16384 were chosen because it emphasises by contrast the poorly observed areas. It clearly
shows that the Lagrangian grid is less dense around the stations and extend farther. But it also
gives away sampling issues for the Lagrangian grid. By comparison of the two optimal grids,
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(a)

(b)

Figure 4.7: Optimal adaptive grids in the limited-area domain with N = 16384 grid-cells,
computed from a Jacobian matrix H obtained from the influence function of (a): a Lagrangian
model and (b): a Eulerian model, using χ/m = 100. Within this domain only 18 stations away
from the borders are considered. This helps to avoid re-entries of tracer in the Eulerian case.

it is clear that the Eulerian grid is more converged than the Lagrangian grid. We conjecture this
is due to the fact that with 560 × 103 particles, a Lagrangian influence function may sample
very well branches of the plume (better than the Eulerian model would do), but misses other
possible branches of the plume. Hence, on the one hand, the Lagrangian inverse modelling
system (with a limited number of particles) may capture information better than the Eulerian
system does, but on the other hand it may miss information because of undersampling issues.

4.4 Conclusion

The potential of the International Monitoring System (IMS) radionuclide network has been
evaluated for the inverse modelling of radionuclide releases: e.g. a nuclear explosion test or
nuclear accidents like Chernobyl or Fukushima Dai-ichi, or the inverse modelling of the diffuse
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sources of xenon radio-isotopes. We have proposed an evaluation methodology accounting
for the performance of the inversion (or data assimilation) system. This methodology differs
from the detection capability approach and the geostatistics approach in that: i) the degrees of
freedom for the signal (DFS) is chosen to be the criterion that assesses the information gain
from the observations to the whole domain through inversion; ii) optimal multiscale adaptive
grids of sources are constructed by maximising the DFS criterion; and iii) the radionuclide
network is evaluated by the spatial distribution of the grid-cells of the optimal adaptive grids.

For optimal grids, the inverse of the size of a grid cell measures the resolution defined as
the capacity to locally resolve the source by the inversion system. Therefore the dense mesh
indicates the regions where the source variables are well resolved. By contrast, for sparse
mesh, the over-aggregations of the regular grid cells at finer scale result in high uncertainties
of inverted sources.

We have constructed global optimal grids with the IMS radionuclide network for its evalu-
ation. The influence functions, which relate the observations with the sources, were generated
using the Lagrangian transport model FLEXPART driven by ECMWF meteorological fields at
a resolution of 1◦ × 1◦ over the 365 days of year 2009. The ratio ρ between the DFS and the
total number of observations was used to control different error levels in the inversion, i.e. the
error of a priori sources and the observational error that encapsulates the instrumental error, the
representativity error and the transport model error.

Grid optimisations have been performed for three cases with ρ ≃ 0 (very large observa-
tional error), ρ ≃ 10% (realistic observational error), and ρ ≃ 90% (accurate transport) re-
spectively. Some stable spatial patterns have emerged in the optimal grids with these different
settings. In all cases, the trade winds carry information towards the Intertropical Convergence
Zone along straight paths, leaving large unobserved areas in the tropics. For the case of large
observational errors, the optimal grid is very heterogeneous. The mesh is dense close to most
observation sites. The information propagation is not obvious except for the polar areas due
to the impact of the polar vortices. For realistic observational errors, there are still many areas
away from the information propagation path, e.g. the African continent.

When accurate atmospheric transport representation is assumed, the optimal grids become
more uniformly distributed, especially for the mid-latitude regions where westerlies winds pre-
vail. Such coverage is desirable. However, we do not believe current state-of-the-art ATM can
reach that accuracy level. Moreover, even with high accuracy and a good coverage of the globe
on average, the tropics will remain difficult to probe with inverse modelling.

The results obtained in this study can also serve as a basis for reallocation or installation
of stations using the size of the adaptive grid-cells as an indication. It would be interesting to
compare the results of this approach with the results based on the detectability criterion.
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Estimation of volatile organic

compound emissions for Europe using

data assimilation

Summary

The emission of volatile organic compounds (VOCs) over western Europe for the year 2005 are
estimated via inverse modelling, by assimilation of in situ observations of concentration and
compared to a standard emission inventory. The study focuses on fifteen VOC species: five
aromatics, six alkanes, two alkenes, one alkyne and one biogenic diene. The inversion relies
on a validated fast adjoint of the chemistry transport model used to simulate the fate and trans-
port of these VOCs. The assimilated ground-based measurements over Europe are provided
by the European Monitoring and Evaluation Programme (EMEP) network. The background
emissions errors and the prior observational errors are estimated by maximum likelihood ap-
proaches. The positivity assumptions on the VOC emission fluxes is pivotal for a successful
inversion and this maximum likelihood approach consistently accounts for the positivity of the
fluxes. For most species, the retrieval leads to a significant reduction of the bias, which under-
lines the misfit between the standard inventories and the observed concentrations. The results
are validated through a forecast test and a cross-validation test. It is shown that the statistically
consistent non-Gaussian approach based on a reliable estimation of the errors offers the best
performance. The efficiency in correcting the inventory depends on the lifetime of the VOCs.
In particular, it is shown that the use of in-situ observations using a sparse monitoring network
to estimate emissions of isoprene is inadequate because its short chemical lifetime significantly
limits the spatial radius of influence of the monitoring data. For species with longer lifetime (a
few days), successful, albeit partial, emission corrections can reach regions hundreds of kilo-
metres away from the stations. Domainwide corrections of the emissions inventories of some
VOCs are significant, with underestimations on order of a factor of two of propane, ethane,
ethylene and acetylene.
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5.1 Introduction

Volatile organic compounds (VOCs) are of particular environmental concern because they are
precursors of secondary pollutants, such as ozone and fine particulate matter (PM2.5), and
some VOCs are pollutants in their own right due to their adverse carcinogenic and/or non-
carcinogenic health effects. Therefore, it is essential to have accurate emission inventories of
VOCs to conduct air quality modelling studies for the development of optimal emission con-
trol strategies and for air quality forecasting as well as to follow their temporal emission trends
over the years as emission control strategies get implemented. The large number of emission
sources, both anthropogenic and biogenic, and processes leading to those emissions (combus-
tion, evaporation, vegetation metabolism) make the development of accurate VOC emission
inventories difficult. Furthermore, VOC emissions cannot be derived from mass balances and
they must be obtained from experimental measurements conducted at the source of the emis-
sions. Also, emission testing is costly and some emission factors are developed for total VOCs
rather than for individual VOCs. Therefore, a chemical speciation must be applied to total VOC
emission factors using speciation data that are limited and uncertain. Although uncertainties
in anthropogenic emissions have been reduced over the years as a result of better characteri-
sation of major emission sources, uncertainties still remain. Furthermore, large uncertainties
are associated with biogenic emissions due to the difficulty of estimating the meteorology-
dependent emission rates for a large number of vegetation species as well as characterising the
land-use/land-cover of the area of interest. Therefore, several approaches have been used to
evaluate the accuracy of VOC emission inventories and, if appropriate, apply some correction.
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Uncertainties in emission inventories have been estimated, for example, by comparing am-
bient air measurements in tunnels with vehicle exhaust emission estimates [e.g., Staehelin et al.,
1998; Sawyer et al., 2000; Touaty and Bonsang, 2000; Stemmler et al., 2005; Ho et al., 2007].
However, such experiments characterise only one source category (on-road traffic) and focus
on a single location and time period. Satellite measurements have been used to assess VOC
emissions, but such techniques are limited by the number of VOCs that can be measured via
satellite-borne instruments [Vijayaraghavan et al., 2008] and to areas that are specific to a major
source category, e.g., the use of formaldehyde (an oxidation product of isoprene) to estimate
isoprene emissions in remote areas where biogenic emissions dominate [e.g., Shim et al., 2005;
Fu et al., 2007; Millet et al., 2008; Dufour et al., 2009]. Measurements of VOC concentrations
aloft have also been used to estimate fluxes of VOCs originating from an area [e.g., Hopkins
et al., 2009]; however, there are uncertainties associated with the mass balance method used to
estimate the atmospheric transport flux and relate it to an emission flux. Furthermore, such an
approach is limited to the estimation of an emission flux for a given region over a given period.
Comparisons of the output concentrations of air quality model simulations with observations
aloft [e.g., Xiao et al., 2008] or at ground level [e.g., Harley and Cass, 1995] provide some esti-
mates of uncertainties in VOC emissions; however, such information is typically also limited to
a specific region and period for which those measurements are available. Inverse modelling has
been conducted using ground-level ambient concentrations to estimate emission inventories for
some air pollutants, but such studies [e.g., Quélo et al., 2005; Elbern et al., 2007; Koohkan and
Bocquet, 2012] have focused so far on regulated air pollutants with ambient concentration data
available from routine monitoring networks and have not yet included VOCs.

It is, therefore, of great interest to investigate the current status of VOC emissions using
an approach that provides information for several major VOCs with spatial distribution over a
large domain and for a long period of time. To that end, we present here the first assessment of
the emissions of several VOCs measured routinely at several remote sites, that covers all VOC
sources over western and central Europe for an entire year.

In Section 5.2, the chemical transport model (CTM) used for modelling the VOCs is in-
troduced and its reduced counterpart is described. The source-receptor relationship is built
using an approximate adjoint model which is validated. The control variables (i.e., the emis-
sion fluxes), and the inversion modelling method are described. The method to estimate the
so-called hyperparameters that parametrise the prior error statistics is introduced. In Section
5.3, the setup of the numerical experiments is described. Details about the observations set
and the first guess inventory are provided. The optimal values of the hyperparameters to be
used in the inversions are computed. In Section 5.4, the results of the inversions are presented
and discussed. A forecast test and a cross-validation test are provided to validate the corrected
emission fluxes using independent observations. Conclusions are presented in Section 5.5.

5.2 Methodology

5.2.1 Full chemical transport model and reduced VOC model

The chemical transport model (CTM) POLAIR3D [Sartelet et al., 2007] of the POLYPHEMUS

air quality modelling system [Mallet et al., 2007] is chosen to model the atmospheric con-
centrations of chemical species. The numerical discretisation of the model for chemistry and
transport, based on a first order time splitting algorithm, can be summarised as follows:

ck+1 = Xk

(
Mk(c

k)
)

+ ∆t ek+1 (5.1)

where,
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• ck is the field of the concentrations of all simulated species at time step k.

• Mk is the linear advection-diffusion operator. It also includes the deposition processes.

• Xk is the chemical reaction operator

• ek is the emission field at time step k.

Table 5.1 lists the fifteen VOC species for which experimental measurements are avail-
able from the European Monitoring and Evaluation Programme (EMEP) database. In order
to simulate the concentrations of these species, the RACM 2 (Regional Atmospheric Chem-
istry Mechanism, version 2) chemical kinetic mechanism [Goliff and Stockwell, 2008] is used
within the CTM [Kim et al., 2009]. The chemical reactions considered for these species and
their typical lifetime are presented in Table 5.1. After undergoing oxidation reactions, these
fifteen primary species result in secondary species. The latter are not presented in Table 5.1
because they are not relevant to our study: they are not measured in the EMEP network and,
therefore, cannot be assimilated; they are, however, included in RACM 2 either explicitly or
via surrogate species. Some of the primary VOC species (isoprene, acetylene, ethane, ethy-
lene, benzene) are treated explicitly in RACM 2. The others are represented through a lumped
molecule approach and, therefore, need a specific treatment to be followed separately. They
are added as explicit species with their own oxidation reactions written in a way that does not
affect RACM 2.

This chemical mechanism involves more than three hundred reactions that result in non-
linear interactions among the chemical species. As a result, computational burden of inverse
modelling studies is very large. To address this issue, we developed a reduced chemical mecha-
nism, denoted Xk, which uses the concentration fields of the oxidants, hydroxyl radicals (OH),
ozone (O3) and nitrate radicals (NO3), provided as external data. The oxidant concentration
fields are pre-computed with RACM 2 and used later in the reduced mechanism. This approx-
imation makes sense if δXk(c

k) = Xk(c
k) − Xk(c

k) is small with respect to Xk(c
k). The

validation of this approximations is checked a posteriori in Section 5.4.1.1. When replacing
Xk by Xk, Eq. (5.1) becomes linear with respect to the emission fields and the computational
cost of inverse modelling becomes manageable.

5.2.2 The source receptor model

The source-receptor model provides the relationship between the emissions and the observa-
tions. For species s, this can be written as follows:

µs = Hses + λs + ǫs (5.2)

where µs ∈ R
ds represents the vector of the observations (ds is the number of observations for

species s). Hs is the Jacobian operator with respect to es and es = (es
0, e

s
1, . . . , e

s
k, . . . e

s
Nt

) ∈

R
E defines the hourly and spatially discretised emission vector, where E = Nt×Nx×Ny×Nz .

Nt is the total number of time steps, and Nx, Ny, Nz are the total number of elements (grid
cells) in the x, y and z directions. λs ∈ R

ds is the vector of the concentrations induced by the
initial and the boundary conditions for species s. If µs,ik is the observation of species s at time
tk at station i, λs

ik
is the concentration at the same time and location, computed with the full

CTM, i.e., Eq. (5.1), with es = 0. The vector ǫs represents the errors: representativeness error,
model error and instrumental error of the observations.

The Jacobian operator Hs can be built following two different methods. The first method
consists in using the CTM. Let us assume that es = δl,h,k′ is the unity source at the surface
coordinate l ∈ [1;Nx × Ny], altitude h ∈ [1;Nz] and time k′ ∈ [1;Nt], and equals zero
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Table 5.1: The volatile organic compounds, their (indicative) lifetime and reactions.

species symbol lifetime (days) reactions

isoprene ISO 0.07 ISO + OH →

ISO+ O3 →

ISO + NO3 →

RACM 2 acetylene ACE 110 ACE + OH →

reactions ethane C2H6 60 C2H6 + OH →

ethylene C2H4 1.45 C2H4 + OH →

C2H4 + O3 →

C2H4 + NO3 →

benzene BEN 11 BEN + OH →

propane C3H8 14 C3H8 + OH →

n-butane NBUT 7 NBUT + OH →

isobutane IBUT 7.5 IBUT + OH →

n-pentane NPEN 5 NPEN + OH →

additional isopentane IPEN 4 IPEN + OH →

reactions propene C3H6 0.625 C3H6 + OH →

to RACM2 C3H6 + O3 →

C3H6 + NO3 →

toluene TOLU 2.4 TOLU + OH →

o-xylene OXYL 1.1 OXYL + OH →

m-xylene⋆ MXYL 0.625 MXYL + OH →

p-xylene⋆ PXYL 1.05 PXYL + OH →

⋆ measured jointly in the EMEP monitoring network and represented with the symbol MPXYL.

anywhere else. The CTM simulated concentration for clean air boundary and initial conditions
at time tk and station i with this source term is stored in H

s,ik′
l,h . In order to compute the Hs

operator with this method, the CTM model needs to be run E times, which is computationally
intensive. That is why this method is usually restricted to point-wise emission sources.

The second method consists in using the adjoint model of the CTM [e.g., Roustan and
Bocquet, 2006b]. For a monitoring site i at time tk, using the linearity of the CTM for the
VOCs, the adjoint solution can be written as follows:

φk
i = M

†
k

(
X

†
k(φ

k+1
i )

)
+ ∆tπi

k (5.3)

where, πi
k = δi,k is the sampling function that represents the concentration measurement at

station i and time tk, X
†
k is the adjoint of Xk, and M

†
k is the adjoint of Mk. At the final

time Nt, φNt

i is chosen to be 0. The adjoint model is also computed for clean air boundary

conditions. Then, the Jacobian matrix is given by H
s,ik′
l,h = [φk′

i,s]l,h. The adjoint model is run d
times (d ≤

∑
s ds). This method is of great interest to reduce the computational time when the

problem is ill-posed (d ≪ E). It is appropriate for estimating the emissions originating from
spatially distributed sources.

The Jacobian matrix of the present study is computed row by row, that is using adjoint
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solutions.

5.2.3 Control space

In order to reduce the dimension of the control space, that is the space of the fluxes to be
estimated via inverse modelling, we introduce a relation between the effective control variables
αs and the emission es:

[es
k]l,h = [αs]l[e

s,b
k ]l,h . (5.4)

In this equation, es,b is the a priori (first guess or background) vector of emission for species
s. Obviously the first guess value of the scaling factors αs, is αs

b = 1, where 1 = (1, . . . , 1)T.
Indices k, l, h are respectively related to the time sequence, the horizontal space grid, and
the vertical grid. The αs factors, rather than the full 3D time-dependent emission fields of
Eq. (5.1), will be optimised. This choice of control parameters, which is only a function of
l, implies that the correction of the emission fluxes is spatially distributed in the horizontal
directions but that the vertical and the temporal distribution of the emission fluxes are not
modified by the data assimilation analysis.

5.2.4 Inversion method

Combining Eq. (5.2) with Eq. (5.4), one obtains

µs = Hsαs + λs + ǫs (5.5)

where Hs is the Jacobian matrix that relates µs to αs:

Hs
ik,l =

∑

k

[φk
s,i]l[e

s,b
k ]l . (5.6)

In order to optimise the α parameters, the following objective function with a regularisation
term is used:

Ls(α
s) =

1

2
(µs − Hsαs − λs)T R−1

s (µs − Hsαs − λs)

+
1

2
(αs − 1)T B−1

s (αs − 1) . (5.7)

The vector αs
b = 1 = (1, . . . , 1)T is the first guess of αs. Rs is the observation error co-

variance matrix. Bs is the background error covariance matrix. For each species, these two
matrices are both chosen to be diagonal with uniform variances, that is, Bs = m2

sINx×Ny ,
Rs = r2

sIds
. These statistical assumptions imply that we neglect any spatial and temporal

correlations between grid cells in the errors. The anthropogenic emissions of VOCs are not
expected to induce long-range correlation in the errors. However, potential important reasons
for this hypothesis to fail are when the biogenic VOC emissions have correlated errors due
for some VOCs common sources and similar emission model formulations, or when trans-
port model errors induce temporal correlation in the error covariance matrix. That is why our
diagonal assumption is an approximation.

In the following, two solutions of Eq. (5.7) are considered and compared. The first one
assumes that the errors are Gaussian-distributed and the analysed parameters αs

a are given by
the Best Linear Unbiased Estimator (BLUE):

αs
a = 1 + Ks (µs − Hs1 − λs) (5.8)
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where Ks is the gain matrix:

Ks = BsH
sT
(
Rs + HsBsH

sT
)−1

(5.9)

The second solution of Eq. (5.7) is obtained assuming a truncated Gaussian distribution for the
background error statistics, so that α is optimised under a positivity constraint of each one of
its entry [αs]l. As opposed to the Gaussian case, the retrieved scaling factors [αs]l cannot be
negative.

5.2.5 Estimation of hyperparameters

The parameters of the prior statistics, such as rs and ms, usually coined hyperparameters, often
need to be estimated because their first guess is usually inaccurate, while the dependence of the
retrieval on the hyperparameters can be dramatic [Davoine and Bocquet, 2007].

The estimation method for the hyperparameters depends on the statistical assumptions un-
derlying Eq. (5.7). In the first case, the error ǫs (in Eq. (5.5)) is assumed to be Gaussian-
distributed, ǫs ∼ N(0,Rs). The same assumption applies to the control parameters: αs ∼
N(1,Bs). The probability density function (pdf) of the observation vector can be computed as
follows:

p(µs|rs, ms) =

∫
p(µs|αs, rs, ms)p(αs|rs, ms)dαs =

∫
p(ǫs|rs)p(αs|ms)dαs (5.10)

or analytically,

p(µs|rs, ms) =
e−

1
2
(µs−Hs1−λs)T(Rs+HsBsH

sT)−1(µs−Hs1−λs)

√
(2π)ds |Rs + HsBsHsT|

. (5.11)

This pdf is also proportional to the likelihood of rs and ms. In order to estimate the hyperpa-
rameters rs and ms, Desroziers and Ivanov [2001] suggested an iterative method to converge
towards a fixed point. Chapnik et al. [2006] showed that this approach converges to one local
maximum of the likelihood. The maximisation of log (p(µs|rs, ms)) with respect to the two
hyperparameters gives the stationary conditions:

r2
s =

‖ µs − Hsαs
a ‖2

Tr (Ids
− HsKs)

, m2
s =

‖ αs
a − 1 ‖2

Tr (HsKs)
(5.12)

where ‖ · ‖ is the Euclidean norm.
However, the Desroziers method relies on Gaussian assumptions, and, for the sake of con-

sistency, one needs another approach to compute the likelihood under the truncated Gaussian
assumption [Winiarek et al., 2012]. In this case, the prior on the scaling factors is:

p(αs) =
e−

1
2
(αs−1)TB

−1
s (αs−1)

√
(2π)Nx×Ny |Bs| (1 − Φ1,Bs(0))

Iαs≥0 (5.13)

where Φ1,Bs(0) is the Gaussian cumulative density function (cdf) of N(1,Bs). Iαs≥0 is a
function equal to unity when [αs]l ≥ 0 for each l, and equal to zero otherwise. This pdf is re-
ferred to as N(1,Bs,0) or the truncated Gaussian distribution. From Eq. (5.10) and Eq. (5.13),
one can derive:

p(µs|r+
s , m+

s ) =
e−

1
2
(µs−Hs1−λs)T(Rs+HsBsH

sT)−1(µs−Hs1−λs)

√
(2π)ds |Rs + HsBsHsT|

×

∫
αs≥0

e−
1
2
(αs−1)T(Pa

s )−1(αs−1)

√
(2π)Nx×Ny |Bs| (1 − Φ1,Bs(0))

(5.14)
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where r+
s and m+

s refer respectively to the standard deviation of the error and of the emission
noise (departure of the surface fluxes from their a priori values) according to the truncated
Gaussian distribution. Pa

s is the a posteriori error covariance matrix of the control variables of
the Gaussian case,

Pa
s = Bs (I − KsHs) . (5.15)

Even though it is of formal use in the truncated Gaussian case, Pa
s is not the error covariance

matrix of the truncated Gaussian case. A mathematical hardship is that Eq. (5.15) requires the
computation of a 1, 768-dimensional (Nx × Ny) integral over the positive cone. To overcome
this difficulty, we resort to the sampling technique used by Winiarek et al. [2012].

5.3 Setup of the numerical experiments

5.3.1 Observations

The in situ observations used in this study are extracted from the EMEP database 1. The EMEP
monitoring network covers most of Europe. Eleven stations of western Europe are used in
this study, resulting in a rather sparse network. These stations measure the concentrations
of fourteen different VOCs. Note that the m-xylene and p-xylene are combined in a lumped
mp-xylene category. The observations are from January 11, 2005 to December 29, 2005.

Table 5.2 gives the number of observations used in the inversion per species and per station,
for a total of 18,675 observations from 11 stations. A forecast test will also be performed using
19,746 observations of the year 2006. The VOC station Kollumerwaard, in the Netherlands
(code NL0009R), does not provide any observation in 2005. However, this station provides
26,732 observations in 2006, and they will be used for cross-validation. The locations of the
EMEP sampling stations for VOCs are shown in Fig. 5.1.
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Figure 5.1: The 11 monitoring stations of the EMEP network for volatile organic compounds
whose observations are assimilated are indicated with a circle. The Kollumerwaard station in
the Netherlands used for validation only is indicated by a rhombus.

1details available at http://www.nilu.no/projects/ccc/emepdata.html

http://www.nilu.no/projects/ccc/emepdata.html
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Table 5.2: Number of observations for each species (Nobs
species) and number of observation dates

for each station (Nobs
station). The numbers 1-12 are given to help locate the stations on the map

of Fig. 5.1.

species Nobs
species station code Nobs

station

2005 2006 2005 2006

C3H8 1505 1415 1 CZ0003R 1397 1297

NBUT 1503 1414 2 DE0002R 948 1023

IBUT 1033 1453 3 DE0003R 837 990

NPEN 1501 1409 4 DE0007R 942 1029

IPEN 1610 1553 5 DE0008R 883 1054

C3H6 1497 1411 6 DE0009R 938 1020

TOLU 1441 1408 7 DE0043G 9206 9283

OXYL 868 1273 8 ES0009R 259 199

MPXYL 1318 1459 9 FR0008R 1215 1285

ISO 936 1309 10 FR0013R 769 1214

ACE 1034 1407 11 FR0015R 1281 1352

C2H6 1494 1409 12 NL0009R 0 26732

C2H4 1434 1416

BEN 1503 1410

5.3.2 Inversion and validation setup

Two simulation periods are considered. The first one is the the assimilation time window of the
study, from January 11 to December 29, 2005. The second one is the subsequent validation of
the inversion results and corresponds to the whole year 2006.

The simulation domain over western Europe extends between [40N, 8W] (the left bottom
corner) and [57N;18E] (the right top corner). The grid resolution is 0.5◦ × 0.5◦. Nine levels
are considered above the surface: 50, 250, 600, 1000, 1500, 2100, 2800, 3600 and 4500 m agl.
The control space discretisation follows the simulation grid, with Nx = 52 and Ny = 34. As a
result, the number of control variable [αs]l used in the inversion for each species s, is 1, 768.

The meteorological data are generated from the re-analysis fields of the European Centre
for Medium Range Weather Forecast (ECMWF), delivered in 60 vertical levels and every 3
hours, with a horizontal resolution of 0.36◦ × 0.36◦.

For anthropogenic emissions, the background emissions over the whole domain are pro-
vided by the EMEP inventory for the years 2005 and 2006 [Tarrasón et al., 2007; Fagerli
et al., 2008]. The anthropogenic emissions of EMEP have a resolution of 0.5◦ × 0.5◦. These
emissions are modulated in time with the help of the hourly, weekly and monthly distribution
coefficients, provided by the GENEMIS project [GENEMIS, 1994]. The biogenic emissions
of isoprene are also taken into account using the model proposed by Simpson et al. [1999]. All
these emissions are used as a first guess, eb, in the data assimilation experiments.

The initial and boundary conditions concentration fields are obtained from the global chem-
istry transport model MOZART 2 [Horowitz et al., 2003]. Since the species we are interested in
are not all explicitly present in MOZART 2, the values for the VOCs not included in MOZART
2 were inferred from the concentration fields of some species present in MOZART 2. The fac-
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Table 5.3: Factors applied to MOZART 2 explicit species concentrations to determine the
initial and boundary conditions of the model species.

species Factors and MOZART 2 species

C3H8 C3H8

NBUT 0.44 C3H8

IBUT 0.22 C3H8

NPEN 0.05 C3H8

IPEN 0.1 C3H8

C3H6 C3H6

TOLU 0.26 C3H8

OXYL 0.03 C3H8

MPXYL 0.03 C3H8

ISO 0.03 C3H8

ACE 0.35 C3H8

C2H6 C2H6

C2H4 C2H4

BEN 0.44 C3H8

tors applied for this inference are given in Table 5.3 [see Rudolph and Ehhalt, 1981; Rudolph
and Johnen, 1990; Penkett et al., 1993].

5.3.3 Verification of the adjoint solutions

In order to generate the adjoint solutions at a low computational cost, we have used an ap-
proximate adjoint model, following the construction of Bocquet [2005a]. Moreover, we have
assumed the lifetime of the species within the domain to be less than 10 days. After 10 days,
the VOCs are assumed to be out of the domain or consumed by chemical reactions, so that the
sensitivity of the concentrations within the domain to the emissions is negligible.

In order to check these approximations, the concentration fields from the adjoint model,
obtained from the contribution of the source (Hα when α = 1), were compared with the
concentration fields from the direct simulation (for e = eb, the EMEP inventory first-guess,
with clean air boundary and initial conditions). This is the so-called duality test [Davoine
and Bocquet, 2007]. The correlation between both computations, for all the species, is 0.995.
The average values of the direct model concentrations and adjoint model concentrations are
0.38 µg/m3 and 0.36 µg/m3, respectively. The normalised mean square error (NMSE) be-
tween the two sets of results is about 3 × 10−3. Figure 5.2 shows the comparison between
the source contribution estimated with the forward model and with the adjoint model. These
results indicate that the adjoint model is accurate enough for our inverse modelling purpose.

5.3.4 Values of the hyperparameters

In the Gaussian case, the optimal values of the hyperparameters rs and ms are obtained by
value screening of the pdf Eq. (5.11). Their optimal values are reported in Table 5.4 for each
species. As an example, Fig. 5.3 displays p(µs|rs, ms) for the species NBUT. The coordinates
are normalised with respect to the values of the hyperparameters obtained from the fixed-point
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Figure 5.2: Comparison of the source contributions estimated with the direct model and the
adjoint model.

solutions of Eq. (5.12). It can be seen that the optimal value of the likelihood Eq. (5.11) is
equal to the result of the fixed-point method.

A comparison between the likelihoods Eq. (5.11) and Eq. (5.14) is also shown in Table 5.4.
The optimal value of r+

s and m+
s computed with Eq. (5.14) are obviously different from rs

and ms. Remarkably r+
s is always larger than rs. Indeed, the Gaussian assumption inversion

incorrectly interprets part of the noise within the observations as useful information, while the
positivity constraint of the truncated Gaussian assumption offers less flexibility. Therefore, the
inversion based on Gaussian assumptions underestimates the errors’ magnitude. The compari-
son between m+

s and ms is of less relevance because the two parameters do not represent the
same statistical information within the Gaussian or truncated Gaussian assumptions.

As an example, Fig. 5.4 displays the likelihood of the hyperparameters for ethane in the
truncated Gaussian case. Again, the variables are normalised with respect to the values ob-
tained from the Desroziers method.

5.4 Inversion results

Four types of simulations conducted for the year 2005 are reported here:

• In case A, the VOC concentrations are simulated using the EMEP inventories, ek = eb
k

in Eq. (5.1). This is a free run serving as a reference since the observations are not
assimilated.

• In cases B1 and B2, the concentrations are simulated using the emissions obtained from
Eq. (5.4). The scaling factors αs used in this equation, are obtained by the minimisation
of Eq. (5.7). The L-BFGS-B optimisation tool [Byrd et al., 1995] is used under the
constraints that αs ≥ 0 (case B2). In case B1, we merely use the BLUE matrix formula,
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Table 5.4: Estimated standard deviations of the observation error and background error, under
the Gaussian likelihood and truncated-Gaussian likelihood. The units of rs and r+

s are µg/m3.

species rs ms r+
s

m+
s

C3H8 0.48 16.04 0.50 4.03

NBUT 0.36 2.02 0.37 0.64

IBUT 0.24 35.17 0.28 2.72

NPEN 0.19 6.01 0.20 0.76

IPEN 0.30 8.16 0.32 1.63

C3H6 0.14 14.22 0.15 2.84

TOLU 0.34 3.16 0.35 0.63

OXYL 0.08 16.75 0.09 1.33

PXYL 0.16 6.52 0.17 0.52

MXYL 0.16 6.52 0.17 0.52

ISO 0.46 82.65 0.60 2.61

ACE 0.35 41.26 0.36 8.23

C2H6 0.55 17.40 0.57 4.37

C2H4 0.35 31.19 0.40 3.93

BEN 0.24 11.12 0.27 1.11

Eq. (5.8), for the estimator of αs. However, it is assumed in both cases that the errors
are essentially Gaussian, so that the hyperparameters used in the inversion are computed
with the Gaussian likelihood following Section 5.2.5. Because the statistical assumptions
are different in the estimation of the fluxes and the estimation of the hyperparameters,
this may lead to inconsistencies. However, the fact that the r+ and r hyperparameters are
not too different proves that these inconsistencies are small. Yet, by construction, case
B1 can lead to negative emission fluxes. This may be considered unphysical but it might
have some potential use for air quality forecast.

We have also considered a third case B3, that takes the results of B2 and artificially sets
all negative values to zero. However, we found that because it is not a minimum of
Eq. (5.7), it leads to a poorly performing estimation. Therefore, case B3 uses ruled out
and is not reported here.

• Case C is similar to case B2 except that the hyperparameters are obtained using the trun-
cated Gaussian likelihood, following Section 5.2.5. In this case the estimation of the
emission fluxes and the estimation of the hyperparameters are statistically fully consis-
tent.

5.4.1 Analysis of the inversion results

5.4.1.1 A posteriori verification of the model linearisation

In the full CTM, which is used in the present study, the chemical kinetics of the reactions can
be written as follows:

X(c) =

(
δX(c)

X(c)
+ 1

)
X(c) (5.16)
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Figure 5.3: This density plot displays a monotonic transform of the likelihood of the hyperpa-
rameters for NBUT in the Gaussian case. The monotonic transform is used to obtain a better
contrast in the density plot. The abscissa and ordinate are normalised according to the optimal
parameters obtained from the fixed-point method.

where δX(c) denotes the variation of the VOC concentrations field with respect to the variation
of the oxidant concentration field. Until now, we assumed that δX(c) ≪ X(c), and that the
reduced model was linear. In order to check that hypothesis, the a priori and the a posteriori
oxidant concentration fields are compared. Fig. 5.5 shows the comparison of the concentration
fields of OH before and after data assimilation (case B2). Each point in the figure denotes the
average concentration of OH over the spatial domain for a 2-hour period. The mean value of
the concentrations is of 5.51×10−5 µg/m3 for the a priori fields and 5.02×10−5 µg/m3 for the
a posteriori fields. For the species NO3 and O3, the average values of the a priori concentrations
are 0.0147 µg/m3 and 87.73 µg/m3 respectively. They are 0.0131 µg/m3 and 88.73 µg/m3 for
the a posteriori concentrations. The Pearson correlation between the a priori and a posteriori
concentration fields is about 1.00. Furthermore, an examination of the a posteriori VOC con-
centration fields shows that the results obtained with the reduced linear model are very close
to those obtained with the complete model. The relative bias between the two sets of concen-
trations for all of the VOC species and over the entire spatial domain is 1% for the year 2005
and the correlation is 1.00. Therefore, since the oxidant concentration fields are little affected
by the VOC data assimilation, we consider that the hypothesis that the reduced model is about
linear is verified.
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Figure 5.4: A monotonic transform of the likelihood of the hyperparameters for C2H6 in the
truncated Gaussian case. The abscissa and ordinate are normalised according to the fixed-point
method.

5.4.1.2 Comparison to the observations

The fours runs A, B1, B2 and C are compared with the observations of the analysis period (year
2005). Statistical indicators for this comparison are reported in Table 5.5. For most species the
bias between the concentrations and the observations decreases with data assimilation, except
when the mean of the simulation is already close to the measurement mean. The root mean
square errors (RMSEs) and the normalised mean square errors (NMSEs) are systematically
improved in the re-analysis runs, which is consistent with the fact that our inversion scheme
minimises the quadratic error. For all species, except ACE, the Pearson correlation coefficients
R, FA2 and FA5 are remarkably improved in the re-analyses. Note that FAx is the fraction of
the simulated concentrations within a factor x of the corresponding observations. In the very
few cases where an indicator is not improved, other indicators are improved. The decrease of
the correlation in the ACE case is due to a very large bias, which is compensated by a very
significant improvement of the other indicators, starting with the bias.

Considering all species (14) and all statistical indicators (6) together, we have counted how
often the forecast runs B1, B2 and C beat the free run A: 81 times out of 84 in case B1; 80
times out of 84 in case B2; and 79 times out of 84 in case C.

The fact that run B1 is slightly closer to the observations than B2 and C is consistent with
the fact that optimisation on which B1 relies is less constrained than that of B2 or C (emission
fluxes can be negative in case B1). Yet, it does not prove that method B1 is better than method
B2 or C, since a comparison with the (already assimilated) observations is merely a check of



Section 5.4 – Inversion results 107

10
-7

10
-6

10
-5

10
-4

10
-3

Concentration via a priori VOC emissions (�g/m3
)

10
-7

10
-6

10
-5

10
-4

10
-3

C
o
n
ce

n
tr

a
ti

o
n
 v

ia
 a

 p
o
st

e
ri

o
ri

 V
O

C
 e

m
is

si
o
n
s 

(
�g/m3

)

Figure 5.5: Comparison between the a priori and a posteriori OH concentration fields.

consistency, not a validation.

5.4.1.3 Estimated inventories

The total emitted mass of the EMEP inventories for the fifteen species are compared with the a
posteriori emissions obtained from data assimilation following Gaussian assumption (B1/B2)
and truncated Gaussian assumption (C). The results are reported in Table 5.6. Caution must be
used on the interpretation of the results of the statistically consistent Gaussian case B1 since
fluxes are allowed to be negative in this case (e.g. isoprene emissions).

The results of case B2 and case C indicate that the EMEP inventories may underestimate
the true emissions for C3H8, IBUT, IPEN, C3H6, ACE, C2H6, C2H4, and BEN. They may
overestimate the true emissions for the other VOC species. For all the species, the total mass
obtained from the inversion based on the truncated Gaussian assumption (C case) is between
the EMEP inventory and the total mass estimated from the Gaussian assumption (case B2).
Comparison between cases A and C shows a strong correction for C3H8, ACE, C2H6, and
C2H4. It is less than 20% for NBUT, NPEN, IPEN, TOLU, OXYL and MXYL. Figure 5.6
presents the ratio between the correction of the emission (i.e., the total posterior emission
minus the total prior EMEP emissions) and the total prior emission for the Gaussian cases (B1
and B2) and the truncated Gaussian case (C).

5.4.1.4 Spatial distribution

The spatial extent of the corrections from the EMEP network depends on the nature of the
species. As an example, Fig. C.1 displays the spatial ratio between the posterior emissions and
the prior EMEP emissions for the species C2H6 (with an average lifetime of about 60 days),
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Table 5.5: Scores from the comparison between the observations and the simulated concentra-
tions for four simulations. For each species, the first line represents the scores for the simula-
tions with the a priori fluxes (case A). The scores of the second line and third lines are related
to the simulations with the a posteriori emissions from Gaussian hyper parameters estimation
(case B1 and case B2 respectively). The scores of the fourth line are related to the simulations
performed with the a posteriori emissions under the truncated Gaussian assumption (case C).
The means and the RMSE are in µg/m3. Bold numbers compared to the best agreement with
the observations.

species O case C RMSE NMSE R FA2 FA5

C3H8 1.13 A 0.54 0.83 1.14 0.77 0.40 0.946

B1 1.08 0.46 0.18 0.85 0.91 0.999

B2 1.07 0.49 0.20 0.83 0.91 0.998

C 1.04 0.51 0.22 0.82 0.90 0.998

NBUT 0.62 A 0.64 0.41 0.43 0.68 0.80 0.989

B1 0.59 0.36 0.35 0.75 0.85 0.996

B2 0.59 0.36 0.36 0.74 0.85 0.995

C 0.58 0.37 0.38 0.72 0.84 0.995

IBUT 0.33 A 0.18 0.37 2.21 0.55 0.59 0.960

B1 0.33 0.23 0.46 0.82 0.79 0.972

B2 0.33 0.28 0.69 0.71 0.78 0.978

C 0.31 0.30 0.86 0.65 0.77 0.984

NPEN 0.30 A 0.25 0.25 0.86 0.48 0.57 0.939

B1 0.26 0.18 0.41 0.70 0.77 0.987

B2 0.25 0.20 0.51 0.65 0.71 0.974

C 0.24 0.21 0.63 0.60 0.66 0.972

IPEN 0.51 A 0.45 0.42 1.39 0.42 0.44 0.875

B1 0.46 0.29 0.36 0.65 0.82 0.993

B2 0.45 0.31 0.42 0.60 0.78 0.989

C 0.43 0.32 0.47 0.56 0.77 0.989

C3H6 0.18 A 0.06 0.21 4.37 0.45 0.27 0.653

B1 0.16 0.13 0.61 0.72 0.78 0.970

B2 0.15 0.15 0.77 0.66 0.71 0.964

C 0.15 0.18 0.85 0.64 0.70 0.963

TOLU 0.46 A 0.46 0.39 0.73 0.47 0.65 0.953

B1 0.43 0.34 0.56 0.58 0.72 0.957

B2 0.43 0.35 0.60 0.56 0.70 0.959

C 0.43 0.36 0.64 0.53 0.68 0.960

OXYL 0.09 A 0.055 0.11 2.21 0.37 0.49 0.879

B1 0.086 0.07 0.65 0.74 0.68 0.962

B1 0.083 0.09 0.97 0.60 0.63 0.950

C 0.080 0.09 1.06 0.57 0.62 0.946

MPXYL 0.19 A 0.17 0.20 1.25 0.33 0.53 0.909

B1 0.17 0.15 0.71 0.59 0.65 0.956

B2 0.16 0.17 0.89 0.52 0.62 0.940

C 0.16 0.17 1.01 0.47 0.57 0.919

ISO 0.31 A 0.18 0.86 13.47 0.63 0.35 0.708

B1 0.31 0.46 2.22 0.91 0.45 0.716

B2 0.36 0.59 3.18 0.82 0.46 0.789

C 0.35 0.59 3.22 0.82 0.46 0.795

ACE 0.52 A 0.12 0.57 4.95 0.69 0.11 0.723

B1 0.49 0.34 0.45 0.67 0.72 0.995

B2 0.49 0.35 0.49 0.64 0.71 0.992

C 0.47 0.38 0.59 0.57 0.69 0.989

C2H6 1.93 A 1.17 0.99 0.43 0.78 0.76 1.000

B1 1.83 0.53 0.08 0.86 0.99 1.000

B2 1.81 0.55 0.09 0.85 0.99 1.000

C 1.76 0.59 0.10 0.83 0.99 1.000

C2H4 0.64 A 0.20 0.68 3.50 0.63 0.22 0.677

B1 0.61 0.33 0.28 0.85 0.81 0.987

B2 0.59 0.39 0.40 0.79 0.77 0.984

C 0.58 0.43 0.49 0.74 0.76 0.983

BEN 0.47 A 0.42 0.31 0.47 0.69 0.74 0.994

B1 0.46 0.23 0.25 0.81 0.84 0.977

B2 0.46 0.26 0.31 0.77 0.82 0.992

C 0.46 0.28 0.36 0.73 0.82 0.993
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Table 5.6: For all species, the total emitted mass (in Gg) for the EMEP inventory run (case A),
the a posteriori emissions under Gaussian assumption (cases B1 and B2) and the a posteriori
emissions under the truncated Gaussian assumption (case C).

symbols Case A Case B1 Case B2 Case C

C3H8 7.4 18.3 18.4 15.1

NBUT 19.0 16.5 16.8 18.0

IBUT 4.7 10.3 9.1 6.1

NPEN 9.7 7.1 7.8 8.9

IPEN 9.2 11.4 10.8 10.1

C3H6 4.1 5.4 5.9 5.4

TOLU 12.7 11.1 11.4 12.1

OXYL 2.6 1.9 2.4 2.5

PXYL 5.7 3.5 4.4 5.4

MXYL 2.3 2.4 2.1 2.2

ISO 165.0 -925.5 124.9 143.4

ACE 2.1 10.6 9.9 4.8

C2H6 7.2 22.9 22.0 17.2

C2H4 7.9 19.1 20.1 14.5

BEN 5.6 7.1 6.7 5.8
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Figure 5.6: The total emitted mass correction, normalised with respect to the total emitted
mass of the EMEP inventory for cases B1, B2 and C.
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IPEN (with an average lifetime of 4 days), OXYL (with a lifetime of about 1.1 days), and ISO
(with an average lifetime of 1.7 hours), respectively. Obviously, the corrections extend much
farther from the monitoring stations for the long-lived species, such as C2H6 and IPEN than
for the short-lived species.

As can be seen, with the B2 approach based on a Gaussian estimation of the prior errors,
the magnitude of the corrections is significantly higher than when using the fully consistent
non-Gaussian approach C. One way to put it is that, with the Gaussian assumption, part of
the error (noise) is mis-interpreted as valuable information (signal), so that the Gaussian as-
sumption leads to over-corrections. A similar phenomenon was put forward by Koohkan and
Bocquet [2012] in the inversion of carbon monoxide emission fluxes: the proper identification
of representativeness errors leads to smaller corrections of the emission fluxes.

Several studies have performed inverse modelling study of isoprene emissions over Europe.
To do so, they assimilate satellite observations of formaldehyde [e.g. Curci et al., 2010; Dufour
et al., 2009]. Specifically, they exploit the observations of SCIAMACHY (instrument operating
onboard the sunsynchronous Envisat satellite) with a resolution of 30 × 60 km2. The study of
Curci et al. [2010] shows an increase of about 5% for the MEGAN [Guenther et al., 2006]
emissions. Our results show that the emission of isoprene decreases by about 24% in case B2
and by 13% in case C for the emissions obtained from Simpson et al. [1999]. This discrepancy
is explained in part by the fact that the emission inventories of isoprene by Simpson et al.
[1999] and MEGAN differ significantly [Bessagnet et al., 2008; Sartelet et al., 2012] with the
former leading to greater isoprene emissions on average over Europe by a factor of about 2.5
[Sartelet et al., 2012]. This discrepancy is also explained by the very short lifetime of isoprene
(1-2 hours). Assimilation of in-situ observations are inoperative because the information is
not spread far enough by the model, because its transport representation becomes of minor
interest. Our results are only valid near the five stations measuring isoprene. On the contrary,
satellite observations are well-suited for this short-lived species as remote sensing offers an
(indirect) spatially well-resolved snapshot of the concentrations. In addition, the errors made
by approximate adjoint model (or automatic adjoint up to some numerical precision) are larger
for short-lived species [Bocquet, 2012]. As a consequence, the case of isoprene in this study is
somehow singular because its lifetime is too short. Nevertheless, most results of isoprene are
given in this study for the sake of comparison, and to document the inadequacy of the in situ
observations for regional inverse modelling in such a case.

5.4.2 Forecast test

In order to test and possibly validate the corrected inventory obtained from inverse modelling,
one needs observations that have not been assimilated. One stringent test is to perform a fore-
cast using the corrected inventory over a period of time different from the data assimilation
window, assuming some time persistence of the VOC inventories.

Four inventories are generated with Eq. (5.4), using the background EMEP emission es
b,

or αs
b = 1 (case A), and the scaling factors of cases B1, B2 and C. In each case, a forecast

is performed for the year 2006. These simulations are then compared with the independent
observations of year 2006.

Note that because some of the fluxes retrieved in case B1 are negative, and because numer-
ical schemes of CTMs often rely on the positivity of the concentrations, we had to circumvent
the difficulty. One solution consists in decomposing the scaling factors into a positive part and
a negative part: αs = αs

+ + αs
−, so that, invoking the linearity of physics, the concentrations

are given by Hs(αs) = Hs(αs
+) − Hs(−αs

−).
The statistical indicators are reported in Table 5.7. The results indicate that, for most

species, the scores are improved using the retrieved scaling factors of case B2 and case C,
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Figure 5.7: Gridded ratios of time-integrated retrieved flux to EMEP time-integrated flux for
C2H6, (a,b), IPEN (c,d), OXYL (e,f) and ISO (g,h). Green and blue colours correspond to
reduction of the emission fluxes, whereas red and pink colours correspond to increase of the
emission fluxes. The left column (a,c,e,g) corresponds to case B2 and the right column (b,d,f,h)
corresponds to case C. The species are ordered by decreasing lifetime.
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whereas they are degraded in case B1. Considering all species and all statistical indicators
together, we have counted how often the forecast runs B1, B2 and C beat the free run A: 41
times out of 84 in case B1; 69 times out of 84 in case B2; and 77 times out of 84 in case C.

The fully-consistent truncated Gaussian approach C performs best and beats the Gaussian-
based but positively constrained approach B2. Both positively constrained approaches beats the
fully consistently Gaussian approach B1. Since B1 partially leads to unphysical negative fluxes,
this could have been expected. However, as was shown by Bocquet [2012], an unconstrained
optimisation of parameters that are allowed to take unphysical values may sometimes lead to
valuable better forecasts because it compensates for other sources of model error. Obviously,
this is not the case here.

According to Table 5.7, an improvement of all the scores can be seen for C3H8, NBUT,
NPEN, C3H6, C2H6, C2H4 and BEN using the optimal scaling factors. However, the bias is
increased for OXYL (in case B2), MPXYL (in cases B2 and C) and ISO (in case B2), using the
corrected emissions. Despite that degraded bias, the other indicators are improved. For IBUT,
the RMSE is increased in case B2, and the correlation is decreased in cases B2 and C. The
statistical indicators show that the RMSE increases for IPEN using the corrected emissions.
For that species, the Pearson correlation coefficient is also deteriorated in case B2. For TOLU,
the bias, NMSE and FA5 are degraded using scaling factors. The RMSE is also increased in
case B2. The scores also show that a decrease of the Pearson correlation coefficient for ACE,
using the corrected emissions.

5.4.3 Cross-validation test

Since the EMEP Netherlands VOC station Kollumerwaard does not provide any observation
for the year 2005, that station is not included in the list of stations used for the analysis of
2005. Yet, for the year 2006, eleven out of fourteen VOCs were measured at Kollumerwaard,
excluding NBUT, ACE and C2H6. Kollumerwaard is located far from the other stations whose
observations lead to the corrections in the emission inventories. Therefore, we do not expect the
simulated concentrations of the VOC with a short lifetime, at this station, to be very sensitive
to the correction of the emissions. Indeed, as shown in Table 5.8, the scores obtained from the
comparison of the simulated concentrations in case A of ISO (lifetime of about 1.7 hours) with
the measurements are similar to those obtained from the comparison of the concentrations in
case B and C with the observations.

For species with a longer lifetime (about one day or two), for C3H6 (lifetime of 15 hours),
OXYL (lifetime of about 25-26 hours), MPXYL (lifetime of about 14-25 hours) and TOLU
(lifetime of 2.4 days), the corrections of the inventories are more spread over the domain.
The scores indicate that the results in case C are in a better agreement with the observations.
The results also show that for the species with a lifetime between 4 to 7 days (IBUT, NPEN,
and IPEN), the scores are deteriorated. It is likely that the corrections performed close to the
Kollumerwaard station, are not reliable enough. For the species with a lifetime longer than 10
days (C3H8 and BEN), the scores are remarkably improved. The emission inventories of C3H8

are corrected almost all over the domain.

Considering all species and all statistical indicators together, we have counted how often
the forecast runs B2 and C beat the free run A at the Kollumerwaard station: 34 times out of
66 in case B2; and 43 times out of 66 in case C. The use of the corrected emission from case C
has a positive impact on the forecast at the station, even though the station is far away from the
other stations whose observations were assimilated.
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Table 5.7: Scores of the forecast test (year 2006) from the comparison of the observations and
the simulated concentrations for four simulations: case A, case B1, case B2 and case C.

species O case C RMSE NMSE R FA2 FA5

C3H8 1.10 A 0.55 0.85 1.19 0.76 0.46 0.958

B1 1.14 0.63 0.32 0.80 0.85 0.992

B2 1.06 0.61 0.32 0.78 0.89 0.998

C 1.00 0.59 0.32 0.79 0.88 0.998

NBUT 0.56 A 0.75 0.45 0.49 0.72 0.70 0.977

B1 0.38 0.39 0.40 0.78 0.83 0.994

B2 0.62 0.36 0.38 0.76 0.80 0.994

C 0.65 0.37 0.38 0.76 0.79 0.994

IBUT 0.34 A 0.21 0.33 1.46 0.61 0.67 0.967

B1 0.36 0.46 1.73 0.49 0.56 0.825

B2 0.37 0.35 0.93 0.55 0.75 0.975

C 0.32 0.33 0.98 0.54 0.74 0.975

NPEN 0.29 A 0.31 0.31 1.08 0.45 0.56 0.919

B1 0.18 0.30 1.72 0.48 0.39 0.692

B2 0.26 0.28 1.03 0.51 0.61 0.949

C 0.27 0.27 0.94 0.52 0.62 0.950

IPEN 0.47 A 0.29 0.37 0.99 0.49 0.54 0.906

B1 0.37 0.62 2.17 0.31 0.43 0.733

B2 0.46 0.46 0.99 0.42 0.64 0.963

C 0.42 0.38 0.73 0.49 0.65 0.969

C3H6 0.19 A 0.08 0.24 3.86 0.44 0.39 0.674

B1 0.07 0.24 4.40 0.51 0.24 0.521

B2 0.13 0.20 1.58 0.60 0.50 0.877

C 0.13 0.20 1.62 0.60 0.49 0.873

TOLU 0.66 A 0.57 0.69 1.28 0.28 0.55 0.876

B1 0.47 0.73 1.65 0.25 0.56 0.852

B2 0.48 0.70 1.55 0.27 0.58 0.864

C 0.50 0.68 1.42 0.29 0.60 0.875

OXYL 0.07 A 0.07 0.07 1.05 0.42 0.54 0.885

B1 0.04 0.08 2.35 0.42 0.36 0.693

B2 0.06 0.07 0.98 0.52 0.54 0.918

C 0.07 0.07 0.95 0.50 0.56 0.910

MPXYL 0.21 A 0.21 0.25 1.45 0.32 0.51 0.856

B1 0.10 0.23 2.73 0.49 0.38 0.720

B2 0.16 0.21 1.38 0.50 0.53 0.885

C 0.18 0.22 1.33 0.44 0.53 0.863

ISO 0.31 A 0.35 1.04 10.25 0.21 0.26 0.571

B1 1.39 19.95 939.9 -0.18 0.16 0.287

B2 0.25 0.81 8.59 0.46 0.34 0.682

C 0.27 0.81 8.05 0.44 0.33 0.656

ACE 0.68 A 0.14 0.83 7.17 0.57 0.17 0.649

B1 0.49 0.58 1.00 0.60 0.63 0.966

B2 0.47 0.62 1.22 0.51 0.54 0.952

C 0.36 0.70 1.98 0.39 0.52 0.837

C2H6 1.89 A 1.15 1.05 0.51 0.78 0.80 0.998

B1 1.96 0.76 0.16 0.81 0.98 0.999

B2 1.78 0.76 0.17 0.78 0.97 1.000

C 1.71 0.75 0.17 0.79 0.97 0.999

C2H4 0.66 A 0.26 0.87 4.43 0.59 0.36 0.751

B1 0.39 0.74 2.15 0.65 0.39 0.713

B2 0.61 0.62 0.97 0.73 0.64 0.978

C 0.56 0.66 1.18 0.69 0.65 0.980

BEN 0.47 A 0.44 0.38 0.69 0.65 0.77 0.995

B1 0.57 0.42 0.65 0.70 0.71 0.966

B2 0.47 0.35 0.55 0.71 0.81 0.994

C 0.46 0.36 0.59 0.69 0.80 0.997
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Table 5.8: Scores at the Kollumerwaard station (for the year 2006) from the comparison of the
observations and the simulated concentrations for three simulations: case A, case B2 and case
C.

species case O C RMSE NMSE R FA2 FA5

A 0.82 2.12 3.24 0.05 0.39 0.799

C3H8 B2 1.69 0.97 1.81 2.08 0.43 0.63 0.936

C 0.81 1.87 2.56 0.47 0.56 0.932

A 0.44 0.33 1.32 0.54 0.60 0.868

IBUT B2 0.33 0.41 0.39 1.19 0.34 0.60 0.927

C 0.36 0.34 0.98 0.37 0.62 0.948

A 0.28 0.42 1.53 0.52 0.50 0.899

NPEN B2 0.42 0.18 0.48 2.99 0.48 0.45 0.859

C 0.23 0.44 2.00 0.53 0.52 0.917

A 0.43 0.59 1.32 0.20 0.48 0.868

IPEN B2 0.61 0.37 0.63 2.04 0.13 0.41 0.770

C 0.33 0.65 1.75 0.12 0.36 0.814

A 0.08 0.30 6.10 0.65 0.36 0.719

C3H6 B2 0.17 0.14 0.26 2.79 0.63 0.44 0.780

C 0.13 0.26 2.97 0.66 0.39 0.734

A 0.52 0.43 0.68 0.48 0.67 0.886

TOLU B2 0.53 0.35 0.35 0.64 0.72 0.61 0.937

C 0.39 0.33 0.52 0.73 0.67 0.942

A 0.06 0.10 1.51 0.52 0.39 0.847

OXYL B2 0.11 0.05 0.10 1.76 0.59 0.36 0.818

C 0.06 0.09 1.58 0.60 0.38 0.829

A 0.15 0.22 1.44 0.72 0.39 0.881

MPXYL B2 0.22 0.11 0.23 2.26 0.75 0.36 0.875

C 0.14 0.21 1.48 0.75 0.38 0.888

A 0.05 0.35 14.3 0.33 0.19 0.445

ISO B2 0.18 0.05 0.35 13.29 0.32 0.20 0.463

C 0.05 0.35 13.29 0.32 0.20 0.463

A 0.14 0.44 4.33 0.57 0.24 0.609

C2H4 B2 0.18 0.17 0.45 3.58 0.44 0.33 0.691

C 0.20 0.40 2.42 0.55 0.31 0.662

A 0.54 0.83 2.92 0.00 0.48 0.772

BEN B2 0.44 0.24 0.67 4.26 0.23 0.43 0.816

C 0.30 0.65 3.25 0.27 0.52 0.869



Section 5.5 – Conclusion 115

5.4.4 Information content and DFS

The degrees of freedom for the signal (DFS) is a metric that is representative of the fraction
of the observations effectively used in the inversion to retrieve the source [Koohkan et al.,
2012]. A better data assimilation system can either lead to an increase of the DFS when the
observations are better used by the system, or lead to a decrease of the DFS if the system
better diagnoses the errors and correctly identifies more noise in the observations [Koohkan
and Bocquet, 2012]. Therefore, a comparison of DFS from two data assimilation systems
relying on different assumptions is not straightforward. However, a comparison between DFS
of different species for the same data assimilation system is of simpler interpretation. The DFS
for each species is given by:

DFSs = E

[
(αs − 1)T B−1

s (αs − 1)
]

. (5.17)

The ratios between DFSs and Ls (see Eq.(5.7)) are reported in Table 5.9 for cases B1, B2, and
C. For all species, the ratio is greater for B1. Indeed, by permitting negative fluxes, the data
assimilation system is incorrectly interpreting degrees of freedom for the noise as DFS. As for
the positively constrained inversions, for almost all species except BEN, the ratio is greater in
the statistically consistent truncated Gaussian system. The DFS, 4 ± 2% in the B2 case, and
7 ± 2%, is consistent with the figures usually met in air pollution source inverse modelling
systems [Koohkan et al., 2012, argue that it is usually between 5% and 15% for dispersion
problems]. Isoprene is clearly identified as the species with the lower ratio in the B2 case.

Table 5.9: The ratio of DFS to the cost function for each species.

symbols case B1 case B2 case C

C3H8 0.076 0.055 0.108

NBUT 0.040 0.033 0.035

IBUT 0.142 0.052 0.067

NPEN 0.088 0.050 0.067

IPEN 0.072 0.044 0.069

C3H6 0.067 0.040 0.091

TOLU 0.045 0.030 0.031

OXYL 0.119 0.037 0.052

MPXYL 0.141 0.034 0.045

ISO 0.081 0.015 0.042

ACE 0.074 0.055 0.069

C2H6 0.080 0.060 0.131

C2H4 0.126 0.056 0.109

BEN 0.081 0.040 0.033

5.5 Conclusion

The goal of this study was to estimate the emission inventories of fifteen VOC species using
ground-based in situ measurements. The concentration observations at eleven stations from
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the EMEP network over western Europe were assimilated to perform inverse modelling of the
emission field for each one of the fifteen species, for the year 2005.

For that purpose, the Jacobian matrix, i.e., the source-receptor relationship, was built us-
ing the POLAIR3D CTM. To compute that matrix, a fast version of this CTM, as well as its
validated approximate adjoint model have been developed. The chemistry module of this fast
version only includes the chemical reactions between the VOC species and three oxidants (OH,
NO3 and O3), the concentrations of which are pre-computed with the full CTM.

For each species and each grid cell, a scaling factor that multiplies the local EMEP emission
flux, is computed. The uncertainty attached to the prior scaling factors and the covariance
matrix of the observation errors, which are crucial statistical components of the inversion, are
obtained using the maximum likelihood principle. The principle was implemented using two
different assumptions: (1) the errors attached to the scaling factors follow a Gaussian pdf or (2)
the scaling factor follows a truncated Gaussian pdf.

In the Gaussian case, the simulated concentrations for the year 2005 using the corrected
emissions lead to a significant improvement in most statistical indicators. However the fact
that the VOC fluxes are positive is not statistically accounted for, and this is shown to lead
to a probable over-fitting to the observations, and to over-corrections of the EMEP emissions.
Using a fully consistent truncated Gaussian assumption for the emission fluxes, including the
use of a non-Gaussian likelihood for the estimation of the hyperparameters, the corrections are
significantly smaller.

For short-lived species, it is shown that information cannot propagate far from the moni-
toring stations, so that the corrections are rather local to the stations. That is why we deem the
isoprene inversion to be unreliable. That is a typical case where remote sensing assimilation is
necessary to offer a satisfying coverage.

The corrected emissions have been partly validated thanks to a forecast conducted for the
year 2006 using independent observations. The simulations using the corrected emissions often
led to significant improvements in the statistical indicators. Considering all statistical indica-
tors, the fully consistent truncated Gaussian approach emerged as the best approach from this
test.

The 2006 forecasts have also been compared to the observations at the Kollumerwaard sta-
tion, the Netherlands. The Kollumerwaard station is not part of the 11 stations used in the
analysis of 2005. Even though this station is far away from the 2005 network, and its surround-
ings fluxes little affected by the 2005 analysis, some improvements are noticed for several
long-lived VOC species using the statistically consistent positively constrained inversion.



Chapter 6

Summary and perspectives

6.1 Conclusion

This study introduces new applications of data assimilation in air quality modelling. It is
divided in three different studies for which a brief description is presented hereafter.

In the first part of this PhD thesis, an adjoint model to the chemistry transport model,
as well as a 4D-Var routine are developed and validated. The 4D-Var routine developed is
used to invert the carbon monoxide emissions. The data assimilation approach to correct the
emission fields leading to a mild improvement only in the bias and the correlation (since it does
not handle the representativeness issue), a simple statistical subgrid model is introduced and
coupled to the 4D-Var routine.

In a second part, data assimilation is used as a decision-making support in order to assess
the ability of a monitoring network (as a matter of fact, the International Monitoring System
network of radionuclides) to reconstruct accidental sources.

In the third and last part, the maximum likelihood method is used to assess the hyper-
parameters of a cost function. In particular, that method is applied to invert the emissions of
Volatile Organic Compounds (VOCs).

6.1.1 Adjoint of chemistry transport model

The adjoint of the chemistry transport model based on the POLAIR3D Eulerian code of
POLYPHEMUS is validated in four steps, using the duality test, involving one term of the equa-
tion at a time (source terms of surface and volume emissions, initial and boundary conditions).
The concentrations computed using the CTM and its adjoint model are in good agreement.
The pearson coefficient is 99.8% when validating the surface and volume emission fields. It
is of 98.7% and 93% when validating the initial conditions and boundary conditions, respec-
tively. This shows that the developed adjoint model is reliable enough as the errors it yields are
much smaller than the modelling errors (departure between the observation and the simulated
concentrations).

6.1.2 4D-Var algorithm

The 4D-Var algorithm, using the newly developed adjoint model, is validated with the help of
two kinds of unity tests. In that aim, the gradient of the cost function computed within the
4D-var subroutine is compared to the one computed with the finite difference method. The first
test (perturbation) enabled to validate the gradient with respect to the emission fields and to the
initial conditions. The second test validated the gradient with respect to the control parameters
(periodical scale factors of the emissions).
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6.1.3 Representativeness error and subgrid model

The stations of BDQA recording carbon monoxide concentrations are impacted by representa-
tiveness errors. Comparisons between the observations and simulated concentrations show that
the variability of the observations is much stronger than that of the simulated concentrations.
The scores of a preliminary assimilation run via the 4D-Var method, for carbon monoxide and
during 8 weeks from January 1 2005, show that the consistency between the analysed concen-
trations and the observations is low, in spite of a Pearson correlation coefficient increasing from
0.16 to 0.36. The results also show that the 4D-Var method artificially over-estimates the total
emitted mass in the first 8 weeks of the year 2005. In order to take the representativeness issue
into account, which is an unresolved part of the model, a statistical subgrid model is developed
and is coupled to the CTM. That new subgrid model provides a coefficient ξi to each station
i. This statistical coefficient ξi links the average of the variation of the representativeness error
to the variation of the emission inventories. The subgrid model in question, although simple
removes an important part of the observation mismatch. The correlation between the observa-
tions and the simulated results of the coupled model , 4D-Var-ξ, increases to 0.73. The bias
between the simulated concentrations and the measurements is also eliminated using the 4D-
Var-ξ algorithm. The amount of the total emitted mass of CO is computed either with 4D-Var
and 4D-Var-ξ. That value is independent on the station locations for the network in case using
4D-Var-ξ, while it is sensitive to the network when using 4D-Var. This results is consistent
with the one obtained from CITEPA.

This study shows that the 4D-Var system is not able to assess the emission fluxes of CTM
for the case in which in-situ measurements are impacted by the representativeness errors. That
is why the estimation of representativeness errors is important for the assimilation of the mea-
surements of the proximity stations.

6.1.4 Multiscale method data assimilation and application to network design

Beyond the detection capability of an observation network and the geostatistics approaches, it
is crucial to evaluate the potential of a monitoring system for inverse modelling. To do so, mul-
tiscale adaptative grids of the IMS radionuclide network sources are built and optimised under
the DFS criterion. The influence functions linked to the observations are generated using the
Lagrangian transport model FLEXPART (driven by ECMWF meteorological fields) over the
year 2009. The ratio DFS/d (d is the total number of observations), which is used to control
the error of the a priori source and the modelling error (instrumental, representativeness and
transport model) is carried out for the system performance level. At each level of performace,
the adaptative grids are optimised. The results of the optimisation show that the IMS radionu-
clide network is not quite able to construct the source in the Intertropical Convergence Zone.
In case of the large modelling errors, the system is not able to construct the sources far from the
observation point. Considering the realistic case where DFS/d is about 10%, the information
from many locations, such as African continent, cannot be sufficiently propageted.

The same test is performed for the noble gas network. The results of the realistic case show
that the network does not perform well enough to detect the informations coming from the
Intertropical Convergence Zone, from the African continent and the central Asia.

6.1.5 Emission flux estimation for Volatile Organic Compounds

In this study, the method of data assimilation is used in order to estimate the emission fluxes of
fifteen Volatile Organic Compounds (five aromatics, six alkanes, two alkenes, one alkyne and
one biogenic diene). To begin with, it can be notice that the results of the CTM simulation show
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the discrepancies between the computed concentrations and the ground-based observations
provided by the European Monitoring and Evaluation Programme (EMEP) for the year 2005.
Furthermore, the RACM 2 (Regional Atmospheric Chemistry Mechanism, version 2) chemical
kinetic mechanism used within this CTM and contains more than three hundreds reactions.
The mentioned CTM is not fast enough. Therefore, a new version of that chemical kinetic
mechanism is built which uses pre-computed fields of oxidants (OH,NO3 and O3). The adjoint
of this fast CTM version is also developed and validated. As the concentrations of the computed
VOCs change linearly with respect to the emission fluxes, the Jacobian matrix of the model can
be built to be used in inversion problems. In the present data assimilation system, the number
of the unknown variables (gridded emissions) is higher than the number of the observations. In
order to reduce the dimension of the control space (the space of the gridded emission fluxes)
in the inverse problem, the scaling factors attached to each grid cell are introduced for the
emission fluxes. These are the very factors which would be estimated in the inversion system
instead of the gridded emission fluxes. The parameters of the errors (the uncertainty of the
control parameters and the observational error), used in the inversion system are obtained via a
maximum likelihood method. Three types of distributions for the prior flux errors are assumed:
Gaussian, Gaussian under positivity assumption and truncated Gaussian. The DA method leads
to a significant reduction of the bias between the observations and the simulated concentrations.
The statistical indicators show that the results of the model under the Gaussian assumption is in
better agreement with the observations of the year 2005 than the results of the models under the
Gaussian positive or under the truncated Gaussian assumptions. A forecast test is performed
for the observations of the year 2006. The statistical indicators of the model under truncated
Gaussian assumption outperform those of the Gaussian assumptions. The observations of the
year 2006 done in a single station in the Netherlands is used for a validation test. It is also
shown that the non-Gaussian approach provides the best scores.

The positivity assumption on the VOC emission fluxes is crucial for a successful inversion.
The Gaussian assumption on the VOC emissions leads to unrealistic emission fields. During
the analysis period, DA system without the positivity assumption on the emission fields more
reduce the departure between the observations and model compared to the system taking the
positivity assumption on the emission fields into account. However, the model is not physically
admissible (since the emission flux value can be negative): therefore, it does not able to model
a new set of observations. Although DA with Gaussian positive assumption on the emissions is
physically allowable, but it is not performance enough. Because the error parameters (Rs and
Bs) used for DA system are not compatible with the positivity assumption. DA system with
truncated Gaussian assumption on the emissions gives the best performance, not only due to
the positivity of the posterior emissions, but also to the accurate estimation of error parameters
used for DA system.

The test results also show that the efficiency in correcting the inventory depends on the life-
time of the VOCs, when using the in-situ observations. For instance, using a sparse monitoring
network to estimate the emissions of isoprene is not suitable because its short chemical life-
time significantly limits the spatial radius of influence of the monitoring data. For species with
longer lifetimes (a few days), emission corrections can reach regions hundreds of kilometres
away from the stations.

6.2 Outlook

The new applications of data assimilation presented in this study can be generalised to the
other pollutant species. For instance, the subgrid statistical model can be used for pollutants
whose observations are impacted by representativeness errors. The multiscale method is an
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advantageous method which helps to optimise the control space for inverse modelling. The
hyper-parameters (or error parameters) estimation under the positivity constraint is useful to
invert the initial condition, boundary condition, emission fluxes, etc.
Some perspectives for this thesis are presented in this section. The methodologies used in this
thesis can be optimised and extended. The DA method can be also used to estimate other
parameters of the model such as vertical diffusion and boundary conditions.

6.2.1 A more complex subgrid model

In chapter 3 a statistical subgrid model is introduced to take the representativeness issue into
account. Although simple, that statistical model significantly helps to better estimate model
errors. That subgrid model could also take the effects of the mesoscale wind direction into
account. Let us assume that the θt angle defines the wind direction at time t in a grid cell
where the station i is located. The subgrid model can be written as:

ξif(θt, θi)Πi,ke (6.1)

where f is the effective wind function and the angle θi accounts for the effective wind direction.
If θt = θi, then the impact of the nearby source on the station is maximum. A simple form for
function f can be:

f(θt, θi) = cos2
(

θt − θi

2

)
. (6.2)

The use of a such function can help to produce a more accurate physical model. In addition to
ξi, the unknown parameter θi is also estimated in the optimisation algorithm.

6.2.2 Network design through the minimisation of representativeness error

Comparison between model output and in-situ measurements are more or less impacted by
representativeness errors. The accessibility to the background station observations is essential
for inverse modelling [Koohkan and Bocquet, 2012] if one cannot precisely estimate repre-
sentativeness errors. The mismatch between the model results and the measurements done in
proximity stations (due to the local emission sources) decreases by increasing the resolution of
the model. This can be expressed by the representativeness term, H (I − Γ⋆Γ) s, mentioned
in chapter 3. If the mismatch between the observations and the simulation results remains
unchanged by choosing finer or coarser grid resolutions, then it can be concluded that the mea-
surements at the station of interest are not directly impacted by nearby sources. Therefore,
in order to minimise the representativeness errors, the choice of the in-situ stations (used to
compare their measurements with the computations) could be done by finding out the station
locations for which the results of the CTM remain unchanged with respect to the grid resolu-
tion. This kind of study can be made possible if emission inventories with fine resolution are
available (for example, using the EDGAR3 inventory with a resolution of 10km × 10km). To
give an example, this methodology can be used to set up a background observation network of
CO over France. Alternatively, one can pick up the stations with the lower ξi for a provisional
monitoring network.

6.2.3 Multiscale data assimilation for VOC species

One of the challenges in inverse problem studies is finding an optimal control space. In other
words, to decrease the cost of computation, instead of the real number of model parameters a
smaller number of parameters called the effective parameters are used for the computations.
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Of course, the computations run with the real and effective number of parameters must give
almost the same results at each observational time and location. The choice of optimal space
can be determined by multiscale data assimilation. The multiscale DA can be effective to
invert the emissions of the VOC species with short lifetime. The spatial distribution (Fig. C.1)
of these species show that the effective number of parameters which should be estimated is
smaller than the dimension of the control space. Furtheremore, this type of study helps to
better understand the quality of the assimilation performed in chapter 5. It also shows the
performance of the EMEP monitoring network for inverse modelling of VOCs. The Jacobian
matrices and the error parameters (Rs and Bs) computed for inverse modelling of VOCs can
be used for multiscale inverse modelling.

6.2.4 Inversion of the boundary conditions fields for long lifetime VOC species

In chapter 5, the emission fluxes of Volatile Organic Compounds are estimated using data
assimilation. For long lifetime species such as C3H8, ACE, C2H4and C2H6, the emission
fluxes are corrected even far from the in-situ stations and almost all over the domain (western
Europe). For these species, the influence of the boundary conditions on the observations should
not be neglected. To better estimate the simulated concentrations, a more accurate assessment
of the boundary conditions is needed. One of the additional challenges could be to invert the
boundary conditions field for long-range VOCs.
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Appendix A

A posteriori formalism of the cost

function

As explained in the chapter of introduction, it is important to reformulate the cost function
J(x), with the help of statistical information on the a posteriori values of the model parameters.

The background term of the cost function Jb(x) includes the statistical information about
the first guess of the model parameters. First of all, the following cost function is assumed:

J(x) = (µ − Hx)†R−1(µ − Hx) + (x − xb)
†B−1(x − xb) (A.1)

The first term on the right hand side of this function can be written as:

(µ − Hx)†R−1(µ − Hx) = (µ − Hxb)
†R−1(µ − Hxb)

+(x − xb)
†H†R−1H(x − xb)

−(µ − Hxb)
†R−1H(x − xb)

−(x − xb)
†H†R−1(µ − Hxb) . (A.2)

When using the inverse of the posterior covariance matrix of the model parameters, it comes:

P−1
a = B−1 + H†R−1H . (A.3)

Finally, one can write the cost function as follows:

J(x) = (µ − Hxb)
†R−1(µ − Hxb) + (x − xb)

†P−1
a (x − xb)

−(µ − Hxb)
†R−1H(x − xb) − (x − xb)

†H†R−1(µ − Hxb) . (A.4)

Now, using the BLUE analysis (Eq. (1.28)), the the second term on the right hand side of the
equation (A.4) can be written as:

(x − xb)
†P−1

a (x − xb) = (x − xa)
†P−1

a (x − xa)

+(µ − Hxb)
†K†P−1

a K(µ − Hxb)

+(µ − Hxb)
†R−1H(x − xa)

+(x − xa)
†H†R−1(µ − Hxb) . (A.5)

Therefore, it comes:

J(x) = (µ − Hxb)
†(R−1 + K†P−1

a K)(µ − Hxb) + (x − xa)
†P−1

a (x − xa)

−(µ − Hxb)
†R−1H(xb − xa) − (xb − xa)

†H†R−1(µ − Hxb) . (A.6)
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The BLUE analysis can be still formulated as:

xb − xa = −K(µ − Hxb) . (A.7)

Finally, the following cost function is detailed, this time, using the BLUE analysis,

J(x) = (µ − Hxb)
†(R−1 + K†P−1

a K − R−1HK − K†H†R−1)(µ − Hxb)

+(x − xa)
†P−1

a (x − xa) . (A.8)

The gain matrix, K, can be derived as a function of B and R (Eq. (1.29)). Then,

R−1 + K†P−1
a K − R−1HK − K†H†R−1 = (R + HBH†)−1. (A.9)

This leads to the following from of the cost function.

J(x) = (µ − Hxb)
†(R + HBH†)−1(µ − Hxb) + (x − xa)

†P−1
a (x − xa) . (A.10)



Appendix B

Carbon monoxide scores for each of

the stations

B.1 Simulation scores

Table B.1: Comparison of the observations and the simulated concentrations.

N C O RMSE R FA2 FA5

HAYANGE (industrial) 1273 343 584.3 545.5 0.28 0.51 0.91

Brest 3 CDM (traffic) 954 256.5 649.6 621.6 -0.01 0.44 0.87

SAMONZET (urban) 780 222.8 673.4 562.8 -0.04 0.24 0.88

TOULON FOCH (urban) 1330 239.1 995.9 1123 0.07 0.25 0.72

ALEXIS CARREL ROUENG (urban) 1275 295 356.3 263.3 0.25 0.72 0.95

Jardin Lecoq CF (urban) 1137 236.4 283.9 478.9 -0.09 0.36 0.69

VICTOR HUGO (traffic) 1320 271.6 367.3 465.3 0.16 0.39 0.75

Roubaix/Serres (traffic) 1244 357.6 539.3 378.2 0.47 0.71 0.98

Cherbourg Paul Doume (urban) 1341 244 342.1 226.7 0 0.81 0.99

Station MARSANNAY (urban) 1285 280 437.1 282.4 0.16 0.73 0.99

Saint Denis (traffic) 1341 252 895.7 903.2 0.28 0.29 0.79

Mirabeau (traffic) 1340 276.7 754.5 667.3 0.08 0.35 0.89

Grenoble Foch (traffic) 1323 247 1064 1053 0.14 0.15 0.7

Muhl.ASPA (traffic) 1308 298.5 451.5 425.7 0.16 0.68 0.96

Hotel de ville (urban) 1296 296.8 428.9 571.5 0.09 0.81 0.99

MERIGNAC (traffic) 781 260.9 581.9 477 0.19 0.53 0.96

Nice Pellos (urban) 1242 233.8 2156 2500 0.04 0.06 0.34

Ecole Jules Ferry (urban) 578 273.7 520.2 410.5 -0.04 0.63 0.96

GONESSE (periurban) 1073 472.3 554.7 293.7 0.48 0.86 0.99

Liane Boulogne Sud (traffic) 1141 270.6 367.8 351.3 0.32 0.51 0.89

VAUCELLES (urban) 1243 262.1 585 549.3 0.04 0.45 0.89

COUBERTIN (periurban) 1331 243.3 312.9 239.7 0 0.7 0.95

Gambeta (traffic) 1333 286.1 715.9 635.4 0.04 0.39 0.92

ANGLET (urban) 710 228.5 602.7 589.5 -0.08 0.4 0.89

Bar-le-Duc (urban) 1231 285 521.4 450.7 -0.02 0.65 0.96

Aurillac Centre (traffic) 1327 228.3 698.1 833.2 -0.09 0.35 0.78

CTRE VILLE MEGEVAND (traffic) 1337 266.5 457.8 367.9 0.13 0.62 0.95

LA ROE (traffic) 1316 267 755.8 668.3 0.05 0.32 0.9

AVIGNON ROCADE (traffic) 1341 317.7 683 658.7 0.51 0.57 0.96
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N C O RMSE R FA2 FA5

Epinal (urban) 1338 275.6 431.6 253.1 0.21 0.8 0.99

Macon Paul Bert (periurban) 1292 287.7 544.1 431.1 0.28 0.69 0.98

Rue de la Tour (urban) 1307 279.3 435.7 331.2 0.07 0.78 0.99

Strasbourg Clemenceau (traffic) 1164 308.3 816.4 700.5 0.1 0.36 0.93

Amiens Saint Leu () 584 299.4 511.1 382.9 0.29 0.77 0.98

Forbach (12) (urban) 1319 319.6 354.8 394.5 0.29 0.57 0.85

Place du Marche (urban) 1319 265.3 560.4 494.2 -0.09 0.56 0.94

Mairie MALO (traffic) 975 387.3 461.5 498.9 -0.06 0.68 0.88

Halles centralles (traffic) 1344 272.4 609.8 585.2 0.02 0.49 0.9

GENERAL DE GAULLE (traffic) 1285 264.5 597.4 568.2 -0.07 0.5 0.92

Valence traffic (traffic) 1329 260.6 462.9 359.1 -0.02 0.65 0.96

place de VERDUN (urban) 102 195.7 522.6 741.8 0.45 0.62 0.89

Le Puy Fayolle (traffic) 1222 221.7 831.2 880.8 -0.12 0.24 0.78

Le Creusot Molette (periurban) 1295 263.6 457 454.4 0.1 0.72 0.96

Marignane Ville (urban) 1341 273.9 527.7 444 0.3 0.65 0.96

Hotel Districal (urban) 1330 293.6 562.7 436.8 -0.08 0.64 0.97

METZ-BORNY (urban) 786 343.1 248 243 0.22 0.49 0.86

Port de Bouc EDF (urban) 1312 294.1 459.4 378.1 0.44 0.61 0.98

PLOMBIERES (traffic) 1342 260.8 1463 1500 0.17 0.13 0.49

AIX CENTRE (traffic) 1338 281.4 595.5 490 0.24 0.55 0.95

Place Victor Basch (traffic) 1316 447.1 1642 1463 0.22 0.23 0.72

AUBERVILLIERS (urban) 1203 505.3 408 332.8 0.35 0.68 0.95

Avenue des Champs Elysees (traffic) 1331 445.6 933.6 739.3 0.03 0.53 0.94

Boulevard peripherique Auteuil (traffic) 1326 423.7 1392 1164 0.29 0.23 0.86

PARIS 1er Les Halles (urban) 1304 480.5 435.9 229.8 0.35 0.85 0.99

Autoroute A1 - Saint-Denis (traffic) 1313 481.4 1255 970.3 0.32 0.34 0.93

Rue Bonaparte (traffic) 1267 473.3 896.2 642.9 0.25 0.58 0.99

Quai des Celestins (traffic) 1333 480.4 1420 1193 0.29 0.29 0.86

LeHavre Republique (traffic) 1333 259.1 582.6 580.7 0.03 0.39 0.89

ESQUERCHIN A DOUAI (traffic) 1340 327.3 555.8 396.4 0.32 0.7 0.99

Rousillon (traffic) 1254 240.3 553.6 512.1 -0.07 0.39 0.89

Pres Arenes (urban) 1323 250.2 518.6 581.3 0.31 0.63 0.95

Planas (traffic) 1308 283.5 869.3 925.8 0.28 0.35 0.84

rue de la GRILLE (traffic) 1320 240.1 1022 1054 -0.1 0.21 0.68

FORT-MARDYCK (industrial) 990 385.1 374.6 422.7 -0.1 0.49 0.88

Petite Synthe (periurban) 1130 370.7 384.1 450.3 0.08 0.62 0.96

Calais Centre (traffic) 1330 347.3 478.3 307.6 0.46 0.77 0.99

LIBERTE (traffic) 1341 353.3 603 540.8 0.45 0.72 0.96

PASTEUR (traffic) 1338 355.1 494.7 289.9 0.49 0.81 1

LA BASSEE/CENTRE (traffic) 1337 327.4 413.1 281 0.49 0.76 0.98

Le Rondeau (traffic) 1315 245.9 793.7 707.5 0.02 0.23 0.84

LAENNEC (traffic) 605 277 679.1 634.5 0.08 0.5 0.9

PUITS GAILLOT (traffic) 1340 318.7 815.2 702.2 0.21 0.39 0.93

BERTHELOT (traffic) 1340 315.3 1004 970.2 0.36 0.36 0.82

GARIBALDI (traffic) 1339 321.7 1407 1426 0.22 0.18 0.67

LA MULATIERE (traffic) 1341 308.8 829.6 693.1 0.34 0.35 0.92

Batiment ELF-ATO (industrial) 1075 328.1 257.3 196 0.24 0.62 0.92

ANTIBES GUYNEMER (urban) 1275 233.4 1279 1363 0.11 0.05 0.54

Rouen Le Conquerant (traffic) 1340 292.6 503.6 382.7 0.25 0.62 0.97
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N C O RMSE R FA2 FA5

Pasteur (urban) 1227 287.6 628.9 552.5 0.11 0.53 0.94

station DAIX (periurban) 1329 281.3 307.3 195.5 0.06 0.71 0.96

BETHUNE PROX AUTO (traffic) 1293 305.3 509.6 383.3 0.26 0.7 0.99

ST ETIENNE ROND PT (traffic) 1294 243.6 597.7 502.3 0.02 0.39 0.94

RIVE DE GIER (traffic) 1312 268.4 457 333.2 0.25 0.59 0.96

Luneville (urban) 1315 285 559.4 427.9 0.16 0.61 0.97

BORDEAUX-BASTIDE (traffic) 654 262.3 405.1 299.4 0.24 0.71 0.95

Chalon centre ville (traffic) 1265 277 691.9 616 0.11 0.39 0.93

Champforgeuil (periurban) 1154 276.5 301.3 230.4 0.25 0.63 0.83

Hilaire Chardonnet (periurban) 1185 277.8 406.1 240.6 0.14 0.83 0.99

Montceau-les-Mines (periurban) 1324 260.8 443.7 304.2 0.12 0.72 0.99

B.2 4D-Var scores

Table B.2: Comparison of the observations and the simulated concentrations diagnosed by the
4D-Var system.

N C O RMSE R FA2 FA5

HAYANGE (industrial) 1273 363.5 584.3 528.3 0.36 0.53 0.92

Brest 3 CDM (traffic) 954 257.2 649.6 620.8 -0.01 0.44 0.87

SAMONZET (urban) 780 215.1 673.4 569.1 -0.06 0.23 0.86

TOULON FOCH (urban) 1330 261.4 995.9 1108 0.07 0.28 0.74

ALEXIS CARREL ROUENG (urban) 1275 308.6 356.3 254.9 0.33 0.73 0.96

Jardin Lecoq CF (urban) 1137 239.5 283.9 474.2 0.01 0.35 0.69

VICTOR HUGO (traffic) 1320 277.3 367.3 458.9 0.25 0.4 0.76

Roubaix/Serres (traffic) 1244 440.8 539.3 295.4 0.69 0.83 0.98

Cherbourg Paul Doume (urban) 1341 245.7 342.1 225.1 0.02 0.81 0.99

Station MARSANNAY (urban) 1285 304.9 437.1 259.9 0.35 0.78 0.99

Saint Denis (traffic) 1341 271 895.7 873.4 0.48 0.3 0.85

Mirabeau (traffic) 1340 288.3 754.5 657.1 0.13 0.39 0.91

Grenoble Foch (traffic) 1323 273.3 1064 1023 0.35 0.16 0.78

Muhl.ASPA (traffic) 1308 304 451.5 423.9 0.16 0.69 0.96

Hotel de ville (urban) 1296 311.1 428.9 567.2 0.11 0.83 0.99

MERIGNAC (traffic) 781 269.6 581.9 466.7 0.29 0.55 0.96

Nice Pellos (urban) 1242 304.4 2156 2422 0.32 0.07 0.39

Ecole Jules Ferry (urban) 578 279 520.2 406.6 -0.03 0.64 0.96

GONESSE (periurban) 1073 749.3 554.7 317.1 0.71 0.82 0.98

Liane Boulogne Sud (traffic) 1141 283.5 367.8 340.7 0.4 0.53 0.9

VAUCELLES (urban) 1243 270.6 585 541.4 0.12 0.47 0.9

COUBERTIN (periurban) 1331 253.7 312.9 229.8 0.19 0.71 0.95

Gambeta (traffic) 1333 305.3 715.9 619.7 0.11 0.46 0.93

ANGLET (urban) 710 226.2 602.7 590.6 -0.07 0.4 0.89

Bar-le-Duc (urban) 1231 294.3 521.4 445.2 0 0.66 0.97

Aurillac Centre (traffic) 1327 240.2 698.1 824.7 -0.03 0.35 0.8

CTRE VILLE MEGEVAND (traffic) 1337 275.9 457.8 362.9 0.13 0.63 0.95

LA ROE (traffic) 1316 272.5 755.8 662.7 0.1 0.33 0.91

AVIGNON ROCADE (traffic) 1341 385.9 683 580.3 0.61 0.69 0.99

Epinal (urban) 1338 288.4 431.6 245.4 0.21 0.82 0.99

Macon Paul Bert (periurban) 1292 364.3 544.1 358.5 0.5 0.81 0.99

Rue de la Tour (urban) 1307 287.3 435.7 325.4 0.11 0.81 0.99
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N C O RMSE R FA2 FA5

Strasbourg Clemenceau (traffic) 1164 324.8 816.4 684.7 0.19 0.4 0.94

Amiens Saint Leu () 584 317.3 511.1 366.9 0.35 0.8 0.99

Forbach (12) (urban) 1319 329.3 354.8 393.8 0.29 0.56 0.85

Place du Marche (urban) 1319 274.3 560.4 487 -0.03 0.58 0.94

Mairie MALO (traffic) 975 417.8 461.5 491.3 0.01 0.68 0.89

Halles centralles (traffic) 1344 288.6 609.8 564.1 0.25 0.51 0.93

GENERAL DE GAULLE (traffic) 1285 270.3 597.4 563.9 -0.04 0.51 0.93

Valence traffic (traffic) 1329 305.1 462.9 341.3 -0.03 0.71 0.97

place de VERDUN (urban) 102 196.7 522.6 741.7 0.45 0.6 0.89

Le Puy Fayolle (traffic) 1222 227.8 831.2 873.4 0.01 0.24 0.79

Le Creusot Molette (periurban) 1295 279.5 457 442.6 0.21 0.75 0.97

Marignane Ville (urban) 1341 329.1 527.7 401.7 0.41 0.75 0.98

Hotel Districal (urban) 1330 304.3 562.7 426.2 0.01 0.67 0.97

METZ-BORNY (urban) 786 357.3 248 244.7 0.29 0.47 0.86

Port de Bouc EDF (urban) 1312 397.5 459.4 344.3 0.35 0.62 0.98

PLOMBIERES (traffic) 1342 297.9 1463 1461 0.3 0.15 0.57

AIX CENTRE (traffic) 1338 313.7 595.5 465.5 0.29 0.62 0.97

Place Victor Basch (traffic) 1316 879.1 1642 986.2 0.73 0.6 1

AUBERVILLIERS (urban) 1203 1041 408 760.3 0.57 0.28 0.83

Avenue des Champs Elysees (traffic) 1331 876.6 933.6 474.9 0.55 0.81 1

Boulevard peripherique Auteuil (traffic) 1326 791.5 1392 769.8 0.71 0.65 1

PARIS 1er Les Halles (urban) 1304 1003 435.9 703.1 0.63 0.41 0.96

Autoroute A1 - Saint-Denis (traffic) 1313 933.7 1255 532.9 0.73 0.85 1

Rue Bonaparte (traffic) 1267 970.8 896.2 380.3 0.72 0.91 1

Quai des Celestins (traffic) 1333 1002 1420 708.8 0.67 0.8 1

LeHavre Republique (traffic) 1333 265 582.6 576 0.07 0.44 0.9

ESQUERCHIN A DOUAI (traffic) 1340 361.9 555.8 367.8 0.41 0.74 0.99

Rousillon (traffic) 1254 243.3 553.6 507.9 0 0.39 0.9

Pres Arenes (urban) 1323 268.7 518.6 560 0.39 0.66 0.96

Planas (traffic) 1308 328.3 869.3 869 0.45 0.42 0.89

rue de la GRILLE (traffic) 1320 242.3 1022 1052 -0.07 0.21 0.69

FORT-MARDYCK (industrial) 990 414.2 374.6 424.7 -0.05 0.48 0.87

Petite Synthe (periurban) 1130 399.2 384.1 454.3 0.05 0.57 0.96

Calais Centre (traffic) 1330 410.5 478.3 254.9 0.63 0.85 0.99

LIBERTE (traffic) 1341 452.4 603 452 0.61 0.79 0.99

PASTEUR (traffic) 1338 462.8 494.7 202.3 0.72 0.93 1

LA BASSEE/CENTRE (traffic) 1337 365.4 413.1 248 0.62 0.79 0.98

Le Rondeau (traffic) 1315 274 793.7 676.8 0.29 0.26 0.89

LAENNEC (traffic) 605 293.2 679.1 613.4 0.29 0.53 0.92

PUITS GAILLOT (traffic) 1340 826.4 815.2 529.1 0.51 0.78 0.98

BERTHELOT (traffic) 1340 773.7 1004 589.1 0.64 0.77 0.99

GARIBALDI (traffic) 1339 860.1 1407 893 0.66 0.63 0.98

LA MULATIERE (traffic) 1341 690.5 829.6 435.4 0.57 0.85 0.99

Batiment ELF-ATO (industrial) 1075 338.3 257.3 199.4 0.25 0.62 0.92

ANTIBES GUYNEMER (urban) 1275 282.2 1279 1309 0.32 0.08 0.67

Rouen Le Conquerant (traffic) 1340 305.9 503.6 372 0.3 0.64 0.98

Pasteur (urban) 1227 316.3 628.9 535.8 0.1 0.57 0.96

station DAIX (periurban) 1329 306.5 307.3 183.7 0.28 0.73 0.95

BETHUNE PROX AUTO (traffic) 1293 325.4 509.6 364.3 0.35 0.73 0.99
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N C O RMSE R FA2 FA5

ST ETIENNE ROND PT (traffic) 1294 255.3 597.7 490.6 0.14 0.46 0.96

RIVE DE GIER (traffic) 1312 312.2 457 300.5 0.35 0.67 0.97

Luneville (urban) 1315 296.1 559.4 420.8 0.16 0.63 0.98

BORDEAUX-BASTIDE (traffic) 654 274.6 405.1 288.4 0.33 0.74 0.96

Chalon centre ville (traffic) 1265 309.9 691.9 588.1 0.22 0.48 0.96

Champforgeuil (periurban) 1154 311.1 301.3 228.4 0.27 0.63 0.83

Hilaire Chardonnet (periurban) 1185 312.5 406.1 216.3 0.32 0.89 1

Montceau-les-Mines (periurban) 1324 274.1 443.7 292.2 0.24 0.75 0.99

B.3 4D-Var-ξ scores

Table B.3: Comparison of the observations and the simulated concentrations diagnosed by the
4D-Var-ξ system.

N C O RMSE R FA2 FA5

HAYANGE (industrial) 1273 593.3 584.3 449 0.49 0.59 0.89

Brest 3 CDM (traffic) 954 650.6 649.6 388.4 0.57 0.82 0.99

SAMONZET (urban) 780 645.3 673.4 261.2 0.63 0.94 0.99

TOULON FOCH (urban) 1330 988.6 995.9 695.2 0.55 0.69 0.95

ALEXIS CARREL ROUENG (urban) 1275 366.9 356.3 241.1 0.39 0.72 0.95

Jardin Lecoq CF (urban) 1137 321.8 283.9 462.8 0.23 0.31 0.67

VICTOR HUGO (traffic) 1320 438.7 367.3 396.3 0.57 0.42 0.74

Roubaix/Serres (traffic) 1244 545.3 539.3 273.2 0.69 0.84 0.97

Cherbourg Paul Doume (urban) 1341 356.6 342.1 186 0.36 0.9 1

Station MARSANNAY (urban) 1285 444.8 437.1 217.4 0.41 0.87 0.99

Saint Denis (traffic) 1341 888.4 895.7 536 0.57 0.78 1

Mirabeau (traffic) 1340 762.8 754.5 372.2 0.61 0.84 0.99

Grenoble Foch (traffic) 1323 1062 1064 599.3 0.45 0.82 1

Muhl.ASPA (traffic) 1308 477.2 451.5 367.6 0.42 0.74 0.96

Hotel de ville (urban) 1296 461.2 428.9 521.5 0.35 0.84 1

MERIGNAC (traffic) 781 545.6 581.9 278.7 0.64 0.9 1

Nice Pellos (urban) 1242 2126 2156 1176 0.68 0.82 0.99

Ecole Jules Ferry (urban) 578 402 520.2 323.4 0.35 0.84 1

GONESSE (periurban) 1073 538.1 554.7 240.7 0.66 0.9 0.99

Liane Boulogne Sud (traffic) 1141 401.5 367.8 309.2 0.57 0.55 0.85

VAUCELLES (urban) 1243 597.2 585 376.9 0.53 0.71 0.93

COUBERTIN (periurban) 1331 320.8 312.9 217.4 0.28 0.7 0.95

Gambeta (traffic) 1333 730.4 715.9 349.5 0.67 0.86 0.99

ANGLET (urban) 710 549 602.7 378 0.56 0.81 0.98

Bar-le-Duc (urban) 1231 530.6 521.4 339.5 0.45 0.79 0.99

Aurillac Centre (traffic) 1327 722 698.1 576.3 0.54 0.6 0.93

CTRE VILLE MEGEVAND (traffic) 1337 468 457.8 296.5 0.35 0.72 0.95

LA ROE (traffic) 1316 758 755.8 378.4 0.56 0.88 1

AVIGNON ROCADE (traffic) 1341 702.6 683 456.9 0.67 0.81 0.99

Epinal (urban) 1338 440.1 431.6 181.2 0.48 0.96 1

Macon Paul Bert (periurban) 1292 548 544.1 318.3 0.48 0.84 1

Rue de la Tour (urban) 1307 443.1 435.7 270.7 0.35 0.87 1

Strasbourg Clemenceau (traffic) 1164 813.7 816.4 382.3 0.62 0.9 1

Amiens Saint Leu () 584 421.3 511.1 309.8 0.5 0.93 0.99
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N C O RMSE R FA2 FA5

Forbach (12) (urban) 1319 379.9 354.8 387.1 0.35 0.52 0.85

Place du Marche (urban) 1319 569.8 560.4 352.2 0.42 0.8 0.99

Mairie MALO (traffic) 975 446.4 461.5 477 0.14 0.68 0.89

Halles centralles (traffic) 1344 668.4 609.8 385.8 0.6 0.75 0.97

GENERAL DE GAULLE (traffic) 1285 624.4 597.4 370.1 0.59 0.82 0.99

Valence traffic (traffic) 1329 472.8 462.9 283.5 0.24 0.79 0.99

place de VERDUN (urban) 102 221.3 522.6 725.7 0.55 0.66 0.9

Le Puy Fayolle (traffic) 1222 811 831.2 574.6 0.41 0.78 0.99

Le Creusot Molette (periurban) 1295 472.6 457 384.5 0.35 0.78 0.99

Marignane Ville (urban) 1341 572.4 527.7 335.4 0.49 0.74 1

Hotel Districal (urban) 1330 568.5 562.7 318.2 0.32 0.89 1

METZ-BORNY (urban) 786 340.3 248 237.4 0.29 0.49 0.86

Port de Bouc EDF (urban) 1312 504.2 459.4 321.2 0.5 0.64 0.95

PLOMBIERES (traffic) 1342 1464 1463 653.8 0.69 0.86 1

AIX CENTRE (traffic) 1338 620.6 595.5 333.1 0.51 0.81 0.99

Place Victor Basch (traffic) 1316 1618 1642 542.8 0.78 0.96 1

AUBERVILLIERS (urban) 1203 531.9 408 295.9 0.61 0.72 0.96

Avenue des Champs Elysees (traffic) 1331 953.1 933.6 432.5 0.6 0.88 1

Boulevard peripherique Auteuil (traffic) 1326 1374 1392 431.6 0.77 0.98 1

PARIS 1er Les Halles (urban) 1304 516.2 435.9 216.1 0.59 0.88 0.99

Autoroute A1 - Saint-Denis (traffic) 1313 1219 1255 448.3 0.69 0.96 1

Rue Bonaparte (traffic) 1267 897.3 896.2 363 0.69 0.93 1

Quai des Celestins (traffic) 1333 1416 1420 527.6 0.73 0.96 1

LeHavre Republique (traffic) 1333 619.2 582.6 369.6 0.65 0.72 0.95

ESQUERCHIN A DOUAI (traffic) 1340 573.6 555.8 277.5 0.59 0.89 0.99

Rousillon (traffic) 1254 556.6 553.6 362.2 0.39 0.68 0.95

Pres Arenes (urban) 1323 537.2 518.6 479.3 0.46 0.7 0.98

Planas (traffic) 1308 899.2 869.3 574.6 0.64 0.78 0.99

rue de la GRILLE (traffic) 1320 1012 1022 621.8 0.46 0.81 1

FORT-MARDYCK (industrial) 990 380.3 374.6 413.5 -0.01 0.5 0.88

Petite Synthe (periurban) 1130 376.3 384.1 448.2 0.1 0.6 0.96

Calais Centre (traffic) 1330 485.7 478.3 237.9 0.65 0.86 0.99

LIBERTE (traffic) 1341 618 603 404.8 0.64 0.75 0.99

PASTEUR (traffic) 1338 499.8 494.7 195.1 0.74 0.93 1

LA BASSEE/CENTRE (traffic) 1337 432.7 413.1 238.4 0.66 0.79 0.97

Le Rondeau (traffic) 1315 783 793.7 408 0.41 0.8 0.97

LAENNEC (traffic) 605 476.3 679.1 454.3 0.65 0.81 1

PUITS GAILLOT (traffic) 1340 806 815.2 452.1 0.45 0.81 0.98

BERTHELOT (traffic) 1340 988.5 1004 629.4 0.45 0.69 0.99

GARIBALDI (traffic) 1339 1447 1407 738.7 0.62 0.82 0.99

LA MULATIERE (traffic) 1341 827.5 829.6 424 0.45 0.81 1

Batiment ELF-ATO (industrial) 1075 330.1 257.3 192.7 0.31 0.63 0.92

ANTIBES GUYNEMER (urban) 1275 1243 1279 753.7 0.52 0.89 0.99

Rouen Le Conquerant (traffic) 1340 521 503.6 269.8 0.58 0.8 0.97

Pasteur (urban) 1227 638.6 628.9 372.7 0.53 0.79 0.99

station DAIX (periurban) 1329 314.6 307.3 185.9 0.24 0.73 0.95

BETHUNE PROX AUTO (traffic) 1293 525.6 509.6 281.6 0.56 0.83 1

ST ETIENNE ROND PT (traffic) 1294 615.1 597.7 293.8 0.56 0.89 1

RIVE DE GIER (traffic) 1312 490.3 457 250.7 0.48 0.76 0.95
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N C O RMSE R FA2 FA5

Luneville (urban) 1315 569.3 559.4 287.7 0.51 0.86 1

BORDEAUX-BASTIDE (traffic) 654 383.2 405.1 227.3 0.57 0.86 0.96

Chalon centre ville (traffic) 1265 693.4 691.9 390.6 0.52 0.81 0.99

Champforgeuil (periurban) 1154 317.2 301.3 222.7 0.36 0.64 0.82

Hilaire Chardonnet (periurban) 1185 400 406.1 190.2 0.35 0.92 1

Montceau-les-Mines (periurban) 1324 448.9 443.7 218.7 0.45 0.89 1
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VOC emission scaling factor maps
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case B2 case C
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case B2 case C
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Figure C.1: Gridded ratios of time-integrated retrieved flux to EMEP time-integrated flux for
VOC species
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VOC scatterplots
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Figure D.1: comparison between the observations and the simulated concentrations (for the
year 2005) in four cases: case A (blue), case B1 (black), case B2 (red), case C (green).
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