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Motivation
How to understand the nature of materials?

Perturb them and see what happens!
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Motivation

Optics: q→ 0, ω → 0

Drude model: ε(ω) = 1− ω2
p

ω(ω + iγ)

EELS: q 6= 0, ω 6= 0
Loss function −Im[ε−1(q, ω)]
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Motivation
Ab initio description of the full charge-carrier response of bismuth to external
perturbations: low-energy and high-energy response.
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Why do we need a new method for EELS?

1. Bridging the valence-loss and the core-loss EELS.

It is computationally ex-
pensive for state-of-the-
art methods to describe
EEL spectra of complex
systems in the energy
range up to 100 eV.

C. Wehenkel et al., Solid State Comm. 15, 555 (1974)
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Why do we need a new method for EELS?

2. Calculation of EEL spectra of large systems (hundreds of atoms).

Example: Calculation of surface plasmons
=⇒ Simulation of the surface is needed

Figure: View of a 5-layer slab model
of a surface, as used in periodic

calculation.
⇓

Large number of atoms
⇓

Computationally demanding task for
state-of-the-art methods

D. Scholl and J. Steckel, “DFT: A practical introduction” (2009).
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Low-energy response: photoexcited bismuth

Photoexcitation of Bi⇐⇒ Pump-probe THz expt. (L. Perfetti, J. Faure.)

Theoretical model is needed in order to explain the evolution of the Drude
plasma frequency ωp after the photoexcitation of Bi.
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Material: Semimetal Bismuth

J.-P. Issi, Aus. J. Phys. 32, 585 (1979)
M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
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Crystal and Electronic Structure

A7 rhombohedral structure:
Peierls distortion of sc lattice

Semimetallicity is due to the Peierls distor-
tion: Overlap between valence and conduc-
tion bands.

The Fermi surface consists of 1 hole pocket
and 3 electron pockets.

Y. Liu et al., Phys. Rev. B 52, 1566 (1995).
J.-P. Issi, Aus. J. Phys. 32, 585 (1979)
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Spin-orbit coupling (SOC)
Spin-orbit coupling is a coupling of electron’s spin S with its orbital motion L.

The SOC Hamiltonian reads:

HSOC ∝ ∇V (L · σ),

where V is the potential, and σ are Pauli spin-matrices: S = ~
2

(
σ 0
0 σ

)
.

material SOC-assisted split-
ting of levels at Γ (eV)

Si 0.04
GaAs 0.3
InSb 0.8
As 0.3
Sb 0.6
Pb 1.0
Bi 1.5

In bismuth the spin-orbit coupling is very strong!

A. Dal Corso, J. Phys. Condens. Matter 20, 445202 (2008).
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Kohn-Sham band structure of bismuth

X. Gonze et al., Phys. Rev. B 41, 11827 (1990)
A. B. Shick et al., Phys. Rev. B 60, 15484 (1999)

I. Timrov, J. Faure, N. Vast, L. Perfetti et al., Phys. Rev. B 85, 155139 (2012)
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Density Functional Theory

Ground-state: DFT

The Kohn-Sham equation:(
−1

2
∇2 + VKS(r)

)
ϕi (r) = εi ϕi (r).

The Kohn-Sham potential VKS(r):∫
ρ(r′)
|r− r′| dr′ +

δExc[ρ(r)]

δρ(r)
+ Vext (r).

The charge-density:

ρ(r) =
occ∑

i

|ϕi (r)|2.

The quantum Liouville equation:

[ ĤKS , ρ̂ ] = 0.

Hohenberg and Kohn, Phys. Rev. (1964)
Kohn and Sham, Phys. Rev. (1965)
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Historical note
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Time-Dependent Density Functional Theory

Ground-state: DFT

The Kohn-Sham equation:(
−1

2
∇2 + VKS(r)

)
ϕi (r) = εi ϕi (r).

The Kohn-Sham potential VKS(r):∫
ρ(r′)
|r− r′| dr′ +

δExc[ρ(r)]

δρ(r)
+ Vext (r).

The charge-density:

ρ(r) =
occ∑

i

|ϕi (r)|2.

The quantum Liouville equation:

[ ĤKS , ρ̂ ] = 0.

Hohenberg and Kohn, Phys. Rev. (1964)
Kohn and Sham, Phys. Rev. (1965)

Excited-state: TDDFT

The TD Kohn-Sham equation:(
−1

2
∇2 + VKS(r, t)

)
ϕi (r, t) = i

∂

∂t
ϕi (r, t).

The TD Kohn-Sham potential VKS(r, t):∫
ρ(r′, t)
|r− r′| dr′+

δExc[ρ(r, t)]

δρ(r, t)
+Vext (r, t),

The TD charge-density:

ρ(r, t) =
occ∑

i

|ϕi (r, t)|2.

The TD quantum Liouville equation:

[ ĤKS(t), ρ̂(t) ] = i
∂

∂t
ρ̂(t).

Runge and Gross, PRL (1984)
Onida, Reining, Rubio, RMP (2002)
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Fluctuation-dissipation theorem

Optical absorption

Perturbation: electric field
⇓

Polarization of the dipole:

d(ω) = χ(ω) Eext (ω)

χ is the polarization-polarization
correlation function

Im ε(ω) ∝ S(ω)

S(ω) =
2
π
ω Imχ(ω)

S is the oscillator strength

I Im ε: Measured experimentally
I S: Fluctuation of polarization
I Imχ: Dissipation of energy
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Two implementations of linear-response TDDFPT
Optical absorption spectra of finite systems

Conventional TDDFT approach

Independent-transition polarizability χ0

χ0(ω) =
∑
v,c

(fv−fc)
ϕc(r)ϕ∗v (r)ϕv (r′)ϕc(r′)
ω − (εc − εv ) + i η

Dyson-like equation:

χ = χ0 + χ0 (vCoul + fxc)χ

Onida, Reining, Rubio, RMP (2002)

Liouville-Lanczos approach

Definition:

χ(ω) ≡ Tr
(

Ṽ ′ext (r, ω) ρ̂′(ω)
)

ρ̂′(ω) =?

Quantum Liouville equation:

[ ĤKS(t), ρ̂(t) ] = i
∂

∂t
ρ̂(t)

Linearization + Fourier transform:

(ω − L̂) · ρ̂′(ω) = [Ṽ ′ext (ω), ρ̂0]

L̂ · ρ̂′ ≡ [Ĥ0
KS , ρ̂

′] + [V̂HXC, ρ̂
0]

χ(ω) = 〈Ṽ ′ext (ω)|(ω − L̂)−1[Ṽ ′ext (ω), ρ̂0]〉
⇓

Use of Lanczos recursion method
Rocca, Gebauer, Saad, Baroni, JCP (2008)
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L̂ · ρ̂′ ≡ [Ĥ0
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High-energy response

EELS: q 6= 0, ω 6= 0
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Fluctuation-dissipation theorem

Optical absorption

Perturbation: electric field
⇓

Polarization of the dipole:

d(ω) = χ(ω) Eext (ω)

χ is the polarization-polarization
correlation function

Im ε(ω) ∝ S(ω)

S(ω) =
2
π
ω Imχ(ω)

S is the oscillator strength

I Im ε: Measured experimentally
I S: Fluctuation of polarization
I Imχ: Dissipation of energy

EELS

Perturbation: electron beam
⇓

Double differential cross-section:

d2σ

dΩdω
∝ S(q,q;ω)

S(q,q;ω) = − 1
π

Imχ(q,q;ω)

S is the dynamic structure factor

χ(q,q; t) = 〈〈ρ̂q(t)ρ̂q(0)〉〉 is the
density-density correlation function

−Im ε−1(q,q;ω) ∝ −Imχ(q,q;ω)

I d2σ
dΩdω : Measured experiment.

I S: Fluctuation of density
I Imχ: Dissipation of energy
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TDDFPT: Liouville-Lanczos approach

Optical absorption

Perturbation: electric field

Definition:

χ(ω) ≡ Tr
(

Ṽ ′ext (r, ω) ρ̂′(ω)
)

ρ̂′(ω) =?

Quantum Liouville equation:

[ ĤKS(t), ρ̂(t) ] = i
∂

∂t
ρ̂(t)

Linearization + Fourier transformation:

(ω − L̂) · ρ̂′(ω) = [Ṽ ′ext (ω), ρ̂0]

L̂ · ρ̂′ ≡ [Ĥ0
KS , ρ̂

′] + [V̂HXC, ρ̂
0]

χ(ω) = 〈Ṽ ′ext (ω)|(ω − L̂)−1[Ṽ ′ext (ω), ρ̂0]〉
⇓

Use of Lanczos recursion method

EELS

Perturbation: electron beam

Definition:

χ(q,q;ω) ≡ Tr
(

Ṽ ′ext,q(r, ω) ρ̂′q(ω)
)

ρ̂′q(ω) =?

Quantum Liouville equation:

[ ĤKS(t), ρ̂q(t) ] = i
∂

∂t
ρ̂q(t)

Linearization + Fourier transformation:

(ω − L̂) · ρ̂′q(ω) = [Ṽ ′ext,q(ω), ρ̂0]

L̂ · ρ̂′q ≡ [Ĥ0
KS , ρ̂

′
q] + [V̂HXC,q, ρ̂

0]

χ(q,q;ω) = 〈Ṽ ′ext,q(ω)|(ω − L̂)−1[Ṽ ′ext,q(ω), ρ̂0]〉
⇓

Use of Lanczos recursion method
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Pros & Contras

Conventional TDDFT approach

/ Numerous empty states

χ0(ω) =
∑
v,c

(fv−fc)
ϕc(r)ϕ∗v (r)ϕv (r′)ϕc(r′)
ω − (εc − εv ) + i η

/ Multiplication and inversion of
large matrices

χ = χ0 + χ0 (vCoul + fxc)χ

/ Calculation of χ0 and χ must be
repeated for each frequency

/ Scaling:
[Nv × Nc × Nk × N2

G + N2.4
G ]× Nω

, Approximations beyond the
adiabatic one are possible: fxc(ω)

Liouville-Lanczos approach

, No empty states (use of DFPT
techniques)

, No matrix inversions (use of
Lanczos recursion method)

, Lanczos recursion has to be done
once for all frequencies

, Scaling: Only a few times larger
than ground-state DFT calculations:

α[Nv × Nk × NPW ln NPW]× Niter

/ Limitation by the adiabatic aproxi-
mation: static fxc
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Testing of the Liouville-Lanczos approach
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Testing of the Liouville-Lanczos approach
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Testing of the Liouville-Lanczos approach
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Experimental EEL spectrum of Bi for q→ 0
Ab initio calculations are needed to understand the origin of 4 features.

C. Wehenkel et al., Solid State Comm. 15, 555 (1974)
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Comparison between experiment and theory
I Four features in the EEL spectrum are well reproduced.
I Accurate description of the the broad structure in 40 - 100 eV range.
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Effect of the spin-orbit coupling (SOC)
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Effect of the spin-orbit coupling (SOC)
I Integrated intensity is improved by SOC.
I Red-shift of peaks in the range 20 - 30 eV, due to splitting of 5d levels.
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Origin of the peaks between 20 - 30 eV
Interband transitions from the 5d semicore levels to lowest unoccupied levels.
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Effect of the 5d semicore levels
Ionization from 5d semicore levels =⇒ broad structure between 40 - 100 eV.

36/57



Plasmon dispersion
I Increase of q =⇒ blue-shift of the plasmon peak.
I Plasmon enters in electron-hole continuum =⇒ broadening of spectrum.
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Conclusions (I)

I Developed a new method for EELS - Liouville-Lanczos
approach;

I The new method is computationally more efficient then
conventional TDDFT method;

I The new method tested successfully on bulk Si and Al;

I First ab initio calculations of the EEL spectra in bulk Bi.
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Low-energy response

Optics: q→ 0, ω → 0

Drude intraband contribution to the dielectric function:

εintra(ω) = 1−
ω2

p

ω(ω + iγ)

40/57



Dielectric properties of Bi in equilibrium: Free carrier response

Time-resolved (pump-probe) terahertz experiment: L. Perfetti, J. Faure,
T. Kampfrath, C. R. Ast, C. Frischkorn, M. Wolf.

Circles: Experimental data
Solid lines: Fit by Drude model

Drude model:

ε(ω) = −
ω2

p,eq

ω(ω + iγ)
+ ε∞

⇓
Fitting:

Plasma freq. ωp,eq = 560 meV,
Scattering rate γ = 37 meV,

and ε∞ = 100.

The Drude model accurately fits expt. data =⇒ Free carrier response
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Photoexcited bismuth (q = 0, ~ω = 1.6 eV)

42/57



Photoexcited bismuth (q = 0, ~ω = 1.6 eV)

∆εintra(ω) is the change of the intraband dielectric function due to the photoex-
citation of bismuth.

∆εintra(ω) displays a free carrier response.

Fitting by the Drude model:

∆εintra(ω) = 1−
∆ω2

p

ω(ω + iγ)
, ω2

p = ω2
p,eq + ∆ω2

p .
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Photoexcited bismuth (q = 0, ~ω = 1.6 eV)
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Photoexcited bismuth (q = 0, ~ω = 1.6 eV)

44/57



Hypothesis

Just after the photoexcitation, electrons and holes stick in the true local extrema
of the valence and conduction bands.

Drude model:

∆ω2
p =

4πe2∆n
m

⇑ ∆n =⇒ ⇑ ∆ω2
p

Effective mass approximation
for the true local extrema:[

m∗−1(k)
]

i j
=

1
~2

∂2E(k)

∂ki ∂kj

Verification of the hypothesis: compare average effective masses of the true
local extrema with optical masses near the T and L points.
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Optical mass at L and T points

Definition of the optical mass on the basis of the Drude model:

∆ω2
p(T ) =

4πe2∆n(T )

mop

Semiclassical model:

∆ω2
p(T ) =

4πe2

3
v2

F

∫
g(E)

[
f ′FD(E ,T0)− f ′FD(E ,T )

]
dE

∆n(T ) =

∫
g(E) |fFD(E ,T )− fFD(E ,T0)| dE

where g(E) is the restricted DOS,
vF is the Fermi velocity of carriers,
fFD is the Fermi-Dirac distribution function.

g(E) and vF were calculated from first principles.
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Photoexcited electrons and holes get stuck in true local extrema
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Photoexcited electrons and holes get stuck in true local extrema
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Relaxation of carriers

The relaxation of carriers occurs due to electron-phonon (e-ph)
and hole-phonon (h-ph) scattering, and Auger recombination.
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Two regimes in the evolution of the plasma frequency

Rate equations =⇒ relaxation times τ

Relaxation of electrons and
holes, which were stuck in
the true local extrema

Electron-hole recombination
near the Fermi level
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Ab initio calculation of electron-phonon coupling

Photoemission experiment: L. Perfetti and J. Faure

At higher fluence of the photoexcitation (0.6 mJ/cm2), the A1g phonon mode
is activated in bismuth.

⇓
Due to electron-phonon interaction, the highest valence bulk band oscillates
with the frequency of the A1g phonon mode.

E. Papalazarou, I. Timrov, N. Vast, L. Perfetti et al., PRL 108, 256808 (2012).
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Conclusions (II)

I Theoretical description of free carrier response in photoexcited Bi.

I Evolution of the plasma frequency displays two regimes due to the
existence of true local extrema in the band structure of Bi.

I Relaxation of carriers occurs with a time rate of 0.6 ps, and the
electron-hole recombination occurs with a time rate of 4 ps.

I Wavevector-dependence of electron-phonon coupling is in agreement
with experiment.
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General conclusions (I)

1. Description of the full charge-carrier response in excited bismuth
from low energy to high energy range.

Low-energy response:
Theoretical model for the de-
scription of the free car-
rier dynamics in photoex-
cited bismuth.

High-energy response:
New method for EELS and
application to bismuth.
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General conclusions (II)

2. Importance of the electron-phonon coupling for the interpretation of
photoexcited bismuth.

Relaxation times in photoexcited
bismuth: 0.6 ps for carrier-
phonon scattering, and 4 ps for
electron-phonon recombination.

Ab initio calculations of wave-
vector-dependent electron-pho-
non coupling are in good agree-
ment with experiment.
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Perspectives

I Spin-orbit coupling: from bulk to surfaces

I Surfaces of Bi and of Bi compounds (Bi2Te3, Bi2Se3)

I Importance of electron-phonon coupling

I Relaxation times in Bi
I Thermoelectricity in Bi and Bi compounds (Bi2Te3, Bi2Se3)
I Occurrence of charge density waves in some materials

I Application of the Liouville-Lanczos approach for large systems

I Surface plasmons
I Acoustic surface plasmons
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Laboratoire des Solides Irradiés, École Polytechnique
Nathalie Vast, Luca Perfetti, Jelena Sjakste, Jérôme Faure, Paola Gava

SISSA – Scuola Internazionale Superiore di Studi Avanzati
Stefano Baroni

ICTP – The Abdus Salam International Centre for Theoretical Physics
Ralph Gebauer

56/57



Perspectives

I Spin-orbit coupling: from bulk to surfaces

I Surfaces of Bi and of Bi compounds (Bi2Te3, Bi2Se3)

I Importance of electron-phonon coupling

I Relaxation times in Bi
I Thermoelectricity in Bi and Bi compounds (Bi2Te3, Bi2Se3)
I Occurrence of charge density waves in some materials

I Application of the Liouville-Lanczos approach for large systems

I Surface plasmons
I Acoustic surface plasmons

57/57


	1. Introduction
	1.1 Motivation
	1.2 Material: Bismuth
	1.3 State of the art methods

	2. Results
	2.1 High-energy response: new approach for EELS
	2.2 Low-energy response: free-carrier response

	3. Conclusions

