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Chapter 1

Introduction

A mixing layer is formed by bringing two streams of fluid, moving at different
velocities U1 and U2, together downstream of a splitter plate, as sketched in
figure 1.1. Such a flow configuration is generally considered as a prototype of
free shear flows which occur in a very broad spectrum of applications from nat-
ural phenomena to the engineering science, such as internal flows in propulsion
and combustor system (figure 1.2). Because of viscous diffusion a shear occurs
between the two streams giving rise to an inflectional velocity profile. Follow-
ing the hydrodynamic stability theory (Lin [69] and Drazin & Reid [37]), this
velocity profile is known to be unstable relative to small perturbations through
the Kelvin-Helmholtz (K-H) instability mechanism: waves are generated as they
travel downstream leading to the formation of large spanwise vortex structures.
The process in which interaction between neighbouring vortices results in the
formation of a larger vortex was referred to as vortex pairing, and has been exper-
imentally observed to govern the streamwise growth of the mixing layer (Winant
& Browand [121]). Furthermore, these organized quasi-two-dimensional struc-
tures were observed not only in laminar flows but also in turbulent flows where
they coexisted with fine-scale motions, as pictured in figure 1.3. They have
been generally acknowledged to be an intrinsic feature of free shear layers. The
so-called coherent structures have been extensively documented by numerous re-
searchers (Crow & Champagne [34], Brown & Roshko [25], Winant & Browand
[121], Browand & Weidman [24], among others). The discovery of quasi-ordered
coherent structures has changed our trend of thought about turbulence which
was previously viewed as a random process, which could be treated by a stochas-
tic approach. After recognition of the paramount role of large structures with a
long coherence length in free shear flows, traditional stochastic methods seemed
incapable of determining totally the characteristics of these structures. Some
researchers chose to rest upon classical hydrodynamic stability theory to study
these flow structures in the downstream development. Within this stability ap-
proach, large-scale vortical structures were conceptualized as a superposition
of several instability waves of different frequency in Fourier space. The goal
was to reveal the downstream evolution of these spatially growing waves (Ho &
Huerre [52]). Two distinct approaches have traditionally been adopted in the
linear stability problems: spatial and temporal approach. The so-called spatial
stability approach in which the behaviours of spatially (complex wavenumber
and real frequency) growing perturbations were determined, has been chosen by
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4 CHAPTER 1. INTRODUCTION

Figure 1.1: Sketch of a spatially developing mixing layer (Brown & Roshko [25]).

Michalke ([75], [76]) and Monkewitz & Huerre [79], to determine numerically the
temporal and spatial inviscid instability characteristics of a hyperbolic-tangent
velocity profile which is a good approximation of a shear layer. The spatial
approach has been reasonably successful in describing the spatial evolution of
vortical structures in forced experiments and seemed more adapted to a com-
parison with experiments. Such a behaviour was also observed for a spatially
developing boundary layer. For example, in the experiments of Schubauer &
Skramstad [102], the form of the perturbation created by an oscillating ribbon,
thus a real frequence, suggested a spatial evolution of the perturbation. On the
other hand, as demonstrated by Michalke [75], [76], Freymuth [40] and Huerre
& Monkewitz [55], the temporal (real wavenumber and complex frequency) ap-
proach dealing with the temporal evolution of an initial perturbation in the flow
failed to describe the forced instability waves in mixing layers.

1.1 From Amplifiers to oscillators

Crow & Champagne [34] were the first to discover that the shear layer of a jet
operated as a finely tuned amplifier of upstream perturbations. The sensitivity
of the shear layer to initial conditions has been subsequently studied by varying
the excitation frequency (Ho & Huang [51]). They have also shown that the
vortex merging could be manipulated by forcing the flow with a very low-level
near a subharmonic of the most-amplified frequency according to a linear stabil-
ity analysis. Indeed, this observed strong sensitivity of the evolution of the flow
structures to outside disturbances is associated with the noise amplifier char-
acteristics of the flow. The power spectrum of a measured signal is generally
broadband in the flow which displays extrinsic dynamics. Otherwise, the flow
can behave as an oscillator characterized by a well-defined frequency that is in-
sensitive to external low-level noise. Thus, they display intrinsic dynamics. For
example, co-flowing mixing layers and homogeneous jets belong to the former
class of flow whereas counterflow mixing layers, bluff-body wakes and hot jets
are known to be prototypes of oscillator-type flows (see Huerre & Monkewitz
[57], Huerre [54]). In order to describe these two distinct qualitative nature of
open flow dynamical behaviours, the concepts of convective and absolute insta-
bilities, first introduced in the context of plasma physics by Briggs [23] and Bers
[13], were developed in fluid mechanics by Huerre & Monkewitz [56]. These two
instability categories can be distinguished by characterizing the impulse flow
response localized in space and time of an open flow within the parallel-flow ap-
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(a)

(b)

Figure 1.2: (a) Kelvin-Helmholtz vortices in a cloud. (b) Internal mixing layer
flow in a propulsion system.

Figure 1.3: Large-scale coherent structures in a laminar and turbulent mixing
layer at the top and bottom (experiments by Brown & Roshko [25]).
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(a) (b)

Figure 1.4: Space-time wavepacket evolution, according to (a) convective insta-
bility; (b) absolute instability (Chomaz [27]).

proximation locally at each streamwise station. If perturbations taking the form
of a wavepacket is advected and amplify in time along the flow direction, the ve-
locity profile is said to be locally convectively unstable. In absence of continued
disturbance, the flow relaxes back to its initial state. A convectively unstable
flow behaves then as a noise amplifer. By contrast, perturbations can spread
throughout until the entire flow field is contaminated. The velocity profile is
said to be locally absolutely unstable. The flow behaves then as an oscillator.
The strict definition of convective/absolute instability for parallel open flows can
be found in Huerre & Monkewitz [57]. The distinction is highlighted in figure
1.4, in which we observe two different behaviours of wavepacket according to the
sketches of typical impulse responses in space and time. Within this context,
Lesshafft [64] has studied a hot jet flow that is absolutely unstable when the
inlet shear layer is sufficiently thick and strongly heated. He has highlighted
the onset of highly periodic oscillatory state in an asymptotic regime by DNS
(see figure 1.5). The synchronized asymptotic state is also demonstrated in the
spatio-temporal diagram in figure 1.6. It is worth noting that the flow gives
rise to a vortex pairing near the inlet even without the continued external forc-
ing caused by the absolutely unstable pocket at the inflow. Given the above
discussions, we may remark that, even though a shear flow such as a mixing
layer presented a very simple configuration, the spatio-temporal behaviour of
perturbations is a relatively complex phenomenon depending on a wide range
of parameters, such as the shear layer thickness, the heating and degree of the
shear.

1.2 Understanding of coherent structures by the

stability theory

It should be mentioned that the above linear stability theory is cast under
the parallel-flow assumption. That is, base flows are invariant with respect to
translations in the streamwise x direction. However, most of shear flows are not
uniform in x direction, and the base flow thickness θ increases with the down-
stream distance. The generalization to slowly diverging flows with small spread-
ing rate dθ/dx = O(ε), where ε ≪ 1 was first proposed by Crighton & Gaster
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Figure 1.5: Snapshots of synchronized oscillations in two absolutely unstable
jets: (a) no vortex pairing inside the thick shear layer jet (R/θ and S refer
to the shear layer thickness of the inlet profile and ambien-to-jet temperature
ratio, respectively); (b) vortex pairing inside the thin shear layer jet (Lesshafft
[64]).

Figure 1.6: Spatio-temporal diagrams of the radial perturbation velocity v(r =
1, x, t) in the long-time regime for the absolutely unstable case R/θ = 25, S =
0.55 (Lesshafft [64]).
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[32] within a Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) approach. The base
flow becomes Ub(y; θ(X)) and changes over a slow space scale X = εx. We
can note that the WKBJ formulation has been afterwards applied satisfactorily
to boundary layers (Bouthier [21]), jets (Crighton & Gaster [32]) and mixing
layers (Gaster, Wygnanski & Kit [41]). Furthermore, these non-parallel flow
corrections have been confirmed by the advancements in computing power and
the algorithms in the seventies. Later, a new numerical method emerged in the
middle of the eighties, clever and little expensive, which consisted of transform-
ing the solutions of the stability equations to an evolution in space, calculated
by a simple marching procedure in x, commonly called Parabolized stability
equations (PSE) (Herbert & Bertolotti [50]). In addition, this approach autho-
rized a detailed and efficient understanding of the linear and nonlinear effects,
combined with a weakly non-parallel correction (Bertolotti [14]). Henceforth,
the PSE has been used in numerous relevant studies of mixing layer dynamics.
More recently, Day, Mansour & Reynolds [36] used this technique to examine the
structure and stability of compressible reacting mixing layers. Cheung & Lele
[26] have investigated linear and nonlinear processes in mixing layer dynamics
and acoustic radiation through the linear and nonlinear PSE.

These stability theories, first valid for strictly parallel flows, and then were
subsequently extended to the weakly non-parallel flows. The perturbation en-
velope was thus weakly dependent on x. As a result, the stability problem
defined an eigenvalue problem where the two directions x and y were considered
as the eigendirections. With the help of a WKBJ development of the solution,
Chomaz, Huerre & Redekopp [29] have established that the existence of a pocket
of local absolute instability was a necessary, but non sufficient condition, of a
global instability appearance. This implies an intrinsic dynamics of the flow,
imposing the formation of coherent structures at the frequency of the global
instability. Here, the term global refers to the instability of the entire flow field.
Such self-sustained states are described by the so-called global modes taking the
following form (Chomaz, Huerre & Redekopp [29] and Monkewitz, Huerre &
Chomaz [80])

q = q̂ (X, y) e−iωGt

The associated dynamical structures are the global modes (q̂, ωG). The com-
plex vector field q̂ characterize their spatial structures whereas the temporal
behaviour is described by the complex global frequency ωG. For instance, this
frequency has been successively predicted for a weakly-non-parallel shear flow
through a global linear stability analysis (Monkewitz, Huerre & Chomaz[80]).
Also Pier [91] has discussed the fundamental criterion regarding the frequency
selection of global modes in cylinder wakes.

1.3 Noise sources of mixing layers

Because coherent structures are considered as a manifestation of instability
waves developing in fluid flows, the understanding of emergence of these struc-
tures have been thus studied finely by the stability analyses. However, the
question of whether these coherent structures in form of instability waves had
a sizable effect on the downstream evolution of the shear layer and the result-
ing acoustic radiation was not addressed until the seventies. Bishop, Ffowcs
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Williams & Smith [15] discovered that the main noise sources of the high-speed
jets were very large-scale wave-like undulations of the jet flow. Later, Liu [70] has
modelled these large-scale instabilities by decomposing the total flow into three
components: the time-dependent mean flow, the instability wave and the fine-
scale turbulence. The development of waves could then be described through
a shape assumption: the amplitude was determined by the energy equation;
the shape function and local characteristics were obtained from the local linear
stability theory. The role of shear-layer instability waves in mixing layer and
jet noise was also examined by Moore [82]. In his study, coherent structures
present in a subsonic jet were shown to govern the production of the turbulent
fluctuations that radiate broad-band jet noise. He noted that forcing the shear
layer at specific frequencies with a fluctuating pressure of only 0.08% of the jet
dynamics head might increase the noise over the whole subsonic Mach number
range. Furthermore, most of his flow features agreed well with the linear in-
viscid instability theory. One year later, the importance of large-scale coherent
structures of jet as a noise source were assessed by Ffowcs Williams & Kemp-
ton [120]. They proposed two models of the acoustic sources in a turbulent
jet: the first model referred to the instability waves that initially growed but
eventually saturated and decayed. This wave model has been shown to be able
to increase the radiated broad-band noise of a jet by forcing at one frequency.
The second model relating to the sudden pairing of eddies supported the idea
that the vortex pairing could be the mechanism primarily responsible for the
jet noise production. Inspired by the work of Crighton & Gaster [32] in which
they developed methods to model the growth of instability waves in a slowly
diverging jet flow through the multiple-scales expansion method, Tam & Morris
[113] demonstrated that the linear stability solution could be extended into the
far field to calculate the noise radiation associated with the instability waves. In
an attempt to construct a uniformly valid instability wave solution inside and
outside the jet. Tam & Burton [110], [111] then used the method of matched
asymptotic expansions. The resulting solution revealed that the sound genera-
tion mechanism in high-speed supersonic mixing layers was associated with the
Mach wave radiation generated by the large turbulence structures/instability
waves of the flow. From that time, it is well-established that in Mach wave
radiation, the instability wave is directly coupled to the acoustic field. It is
worth noting that all of these analyses cited above dealt with the high-speed
supersonic mixing layers or jets and were restricted to the direct sound radiation
of linear instability waves.

Nevertheless, the role of coherent structures/instability waves in the sound
radiation are less established. It was in 1964 that Powell [92] showed the vortex
pairing radiated sound with the quadrupole signature of jet noise, and Winant
& Browand [121] have suggested that the vortex pairing was the mechanism
primarily responsable for the jet noise generation. Then Ffowcs Williams &
Kempton [120] have proposed modelling the jet as a series of eddies that con-
vected downstream at a constant subsonic speed until they merged in pair and
then continued convecting downstream. Their vortex-pairing model have been
shown to support satisfactorily the vortex pairing mechanism suggested earlier
by Winant & Browand [121]. Later, Kibens [61] observed the natural broadband
noise of the jet to be suppressed and important radiated sound at the subhar-
monic frequencies by exciting a circular jet at the most amplified frequency of
the shear layer instability. He also identified the stationary sources inside the jet
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with the vortex pairing locations. Laufer & Yen [63] found that the stationary
acoustic sources were associated with the nonlinear saturation of the unstable
wave amplitudes of the shear layer at the vortex pairing locations. The corre-
sponding acoustic radiation varied nonlinearly with the source strength and was
highly directional and exponential. This was later confirmed by the observa-
tions of Bridges & Hussain [22]. It is thus shown that the noise characteristics
of subsonic flows are quite different from their supersonic counterparts.

1.4 Computational aeroacoustics

Previously, we have seen that the emergence of the coherent structures in shear
flows could be understood by the stability calculations. The correct descrip-
tion of these structures in the fluid flows can be accomplished in two ways:
direct computations or reduced-order models (or acoustic analogy for compress-
ible flows). As discussed by Lighthill [67], direct computations of aerodynamic
sound generation can be widely divided into three categories: the first com-
putes only the near-field region and subsequently an acoustic analogy is solved
to obtain the acoustic field; the second computes the near-field region and a
small extent of the acoustic region, the acoustic far-field is determined by solv-
ing the wave equation in the exterior domain given boudary data from the
near field: and the third computes both the near field and an important por-
tion of the acoustic field by solving the compressible Navier-Stokes equations in
both regions. In particular, owing to the time-dependent characteristics of the
aeroacoustic problems, several computational challenges of the Computational
aeroacoustics (CAA) arose with respect to the third category [109]: the very
short wavelengths of the high frequency waves; the extremely small amplitudes
of the acoustic waves relative to the mean flow; computational schemes must
have minimal numerical dispersion and dissipation; and radiation and outflow
boundary conditions must be imposed at the artificial exterior boundaries to
assist the waves to exit smoothly and avoid the reflection of outgoing sound
waves back into the computation domain and thus the contamination of solu-
tion. Thanks to significant advances in CAA algorithms, the latter have been
applied to several interesting noise prediction problems. For example, for su-
personic flows, Mitchell, Lele & Moin [78] computed the Mach wave radiation in
an axisymmetric supersonic jet. Freund, Lele & Moin [39] have performed the
DNS of a Mach number 1.92 supersonic turbulent jet to investigate its radiated
sound field (see figure 1.7 (a)). In the context of subsonic regime, Colonius, Lele
& Moin [30], Bogey, Bailly & JuvÃ c© [20] and Mitchell, Lele & Moin [77] have
investigated sound generated by vortex pairing in a two-dimensional compress-
ible mixing layer and a co-rotating vortex pair by using the direct numerical
simulations (DNS). Besides, large eddy simulation (LES) of a subsonic laminar
jet performed by Bogey & Bailly [19] is shown in figure 1.7 (b)). It should be
mentioned that there exist numerous noise sources in a turbulent jet, such as
mixing noise and breakdown of coherent structures at the end of potential core
for subsonic jets, and broadband shock-associated noise and screech tones in im-
perfectly expanded supersonic jets (see the review by Tam [108]). In the present
discussion, we focus on the sources in the shear layer developing just after the
nozzle exit. From the previous numerical simulations, two different mechanisms
of sound generation in mixing layers are clearly illustrated and contrasted: Mach
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(a) (b)

Figure 1.7: (a)DNS of a Mach 1.92 turbulent perfectly expanded jet and its
sound radiation (Freund, Lele & Moin [39]). (b) LES of a subsonic laminar jet
(Bogey & Bailly [19]).

wave radiation and vortex pairing sound (figure 1.7).

1.5 Modal decompositions

Nevertheless, the accurate description of coherent structures in two or three
dimensions requires a large number of degrees of freedom, yielding a high-
dimensional dynamical system representing the complex flow phenomena oc-
curred over the wide range of scales in both space and time. Solving such
problems by direct methods can become a prohibitively expensive computa-
tional task. Therefore, in practice, the identification of dominant structures are
often achieved by decomposing them into modes that are representative of the
principal flow dynamics. The dynamics is thus projected onto a low-dimensional
subspace with significantly fewer degrees of freedom. Within a linear approach,
global eigenmodes with respect to the linearized dynamics can be used to de-
scribe the underlying physical mechanisms (Bagheri et al. [8]). Furthermore,
the role of global modes in the acoustic radiation has been studied for globally
stable flows. For instance, Lesshafft [64] have investigated the acoustic field
associated with the global mode in a hot jet. Nichols & Lele [85] have examined
the sound generated by a superposition of global modes in a cold supersonic
jet. They have identified a mechanism of transient growth with a propagating
aerodynamic wavepacket which radiated an acoustic wavepacket to the far field.
The emission of an acoustic wavepacket is illustrated by plotting the snapshots
of the optimal transient response, as shown in figure 1.8. The most common
method remains is the Proper Orthogonal or Karhunen-Loève Decomposition
(POD), first introduced in the context of turbulence by Lumley [72] (see also
Holmes, Lumley, & Berkooz [53]). This method consisting of extracting modes
or empirical eigenfunctions that contain the highest kinetic energy on average
provides an optimal subspace in the sense that the error in the projection onto
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the subspace is minimized. A reduced-order model (ROM) can be obtained by
Galerkin projection of the governing equations onto the optimal POD subspace.
This stragegy has been applied to different variety of flow situations. From the
early work of Lumley [72], Sirovich [104], Aubry et al. [3], Rajaee, Karlsson &
Sirovich [93] and Ukeiley et al. [117] in incompressible regime to the more recent
studies undertaken by Rowley, Colonius & Murray [96] and Gloerfelt [43] in a
compressible regime, these works have formed the basis for explaining the dy-
namics of the predominant coherent structures in boundary layer, mixing layer
and cavity flow dynamics through the POD technique and further constitute a
reduced-order model based on global and POD modes. Another important per-
spective concerns flow control applications, where the low-dimensional models
have been incorporated into flow control strategies, (see Bergman, Cordier &
Brancher [12] for flow around a cylinder wake, and Barbagallo, Sipp & Schimid
[9] for the closed-loop control of an open cavity flow). However, we may point
out a principal disadvantage which is linked to the flow structures hierarchy in
term of energy representation (Noack et al. [86], Schmid [100]). More recently,
Schmid & Sesterhenn [101] and Rowley et al. [97]) have proposed an alterna-
tive tool to POD by decomposing the flow into Koopman modes or dynamic
modes to describe the global behaviour of complex nonlinear flows. This tech-
nique is based on the spectral analysis of a linear Koopman operator defined
for any nonlinear dynamical systems [73], and referred to as Dynamic Modes
Decomposition. This technique may be viewed as a nonlinear generalization of
global eigenmodes of a linearized system (Rowley et al. [97]). Since then, the
DMD has been applied to various fluid flows both numerically and experimen-
tally (Rowley et al. [97], Schmid [100] and Schmid et al. [98]). From these
evidences, the DMD algorithm has been proven as a reliable algorithm to ex-
tract spatio-temporal coherent structures from a sequence of data. Moreover,
in the investigation of the jet in crossflow for example (Rowley et al. [97]), the
Koopman modes seemed to capture the relevant frequencies more accurately
than global eigenmodes of the linearized dynamics, and decoupled the different
frequency components more effectively than modes determined by POD.

1.6 Acoustic analogy for sound prediction

Concerning the far-field sound prediction, another efficient way is the use of
acoustic analogy. It should be mentioned that earlier studies of the sound gen-
erated aerodynamically, that is, sound radiated from a fluid flow, have been used
to explain the production of frequencies in the flow by instability. It was not
until 1952 that Lighthill [65], [66] first proposed an acoustic analogy approach
to explain the behaviour of jet mixing noise. In this theory, he rearranged the
compressible equations of motion of gas into the form of a linear wave propa-
gation for a medium at rest with a quadrupole-type source term. The mixing
region is then replaced by a distribution of the acoustic sources. The original
Lighthill’s equation did not take into consideration of the mean flow interac-
tion effects, that is why Phillips [90], Lilley [68], and many others sought to
improve this by rearraging the Navier-Stokes equations into the form of an in-
homogeneous convective, or moving-medium, wave equation (Goldstein [47]).
To take into account for the effects of solid boundaries, the acoustic analogy
was then extended by Curle [35] and Ffowcs Williams & Hawkings (FW-H)
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[119]. The acoustic solution can be basically obtained through an appropriate
acoustic analogy using near-field source terms calculated from DNS calculation
(e.g. Bogey [17]). However, we can mention that Cheung & Lele [26] com-
bined the instability wave solution (PSE in their case) with the Lilley-Goldstein
acoustic analogy and their predicted far-field sound showed a good agreement
with the direct calculation. Kierkegaad et al. [62] were the first to use global
modes rather than the entire flow field to calculate the acoustic field through
the Curle’s equations on a two-dimensional flow over a cavity with smoothed
corners. Therefore, we believe that using this combined model-acoustic analogy
approach makes the computational effort significantly less expensive.

1.7 Proposed approach

All of studies cited previously underline the necessity of performing a global
stability analysis to understand the emergence of the fundamental frequencies in
the underlying fluid flow as well as a modal decomposition within both a linear
and a nonlinear framework to characterize the coherent structures primarily
responsable for the sound generation. The development of tools to analyse
and understand the emergence of coherent structures associated with the noise
production remains a fundamental issue in the fields of aeroacoustics. Thus, in
the context of this thesis, we propose to develop the methods of global stability
with respect to the compressible flows as well as a technique of calculation
of coherent structures applied to the nonlinear regimes based upon the DMD
method. In order to validate and illustrate the relevance of these tools, we
consider a co-flowing mixing layer, a typical noise amplifer, from a very simple
case where a single source is implicated in the far-field acoustic radiation to a
more complex case where two sources are present. We can emphasize that these
tools developed during this thesis may be applied to the more general flow case
without any assumptions about the parallelism.

1.8 Outline

The organization of this thesis is as follows. Chapter 2 gives a description of
flow parameters and the implementation of the nonlinear disturbance govern-
ing equations. The numerical methods for computational aeroacoustics used to
compute the mixing layer directly, algorithms for extracting global and Koop-
man modes as well as the convected FW-H equations in the acoustic analogy
approach are also presented. In chapter 3, the sound generated by only one sin-
gle vortex pairing in a mixing layer is investigated, as depicted in figure 1.9. The
results through the direct calculations, global modes stability within the linear
framework are presented, followed by a DMD analysis in a nonlinear approach.
Finally, the combined DMD-acoustic analogy is shown. Chapter 4 considers the
double vortex pairings case, as represented in figure 1.10. The sound computed
from DNS and DMD are provided and contrasted. Chapter 5 contains a discus-
sion of important conclusions from this work, followed by recommendations for
future work on the mixing layer noise problem.
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Figure 1.8: Snapshots of the superposition of global modes for the supersonic
jet. An acoustic wavepacket detaches from the jet between the second and third
frames (Nichols & Lele [85]).
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Figure 1.9: Schematic representation of a compressible forced mixing layer: one
single pairing case.
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U2

U1

Near field

Far field

Far field

Figure 1.10: Schematic representation of a compressible forced mixing layer:
double pairing case.



Chapter 2

Numerical Methods

In this chapter, we provide a detailed description of numerical methods and algo-
rithms that will be used during the next parts of this thesis. During this thesis,
starting from an existing homemade Navier-Stokes solver, i have developed two
perturbative versions in two and three dimensions for the investigation of the
aeroacoustics of subsonic mixing layers. The code is based on the perturbation
equations that govern the temporal evolution of the fluctuating quantities and
are obtained by substracting the Navier-Stokes equations written in terms of
a certain base flow from the same equations in terms of total flow variables.
Performed in this way, the perturbations are obtained directly.

2.1 Flow configuration

We consider the example of the hyperbolic-tangent mixing layer periodic in
the spanwise direction, as shown in figure 2.1, which is a legitimately accurate
representation of the mean velocity profiles. For compressible forced mixing
layer, it is common to divide the domain into a near-field region, where the
aerodynamics is dominant, and a far-field region, where the acoustics is to be
established. In addition, the base flow is given by:

ub(y) =
U1 + U2

2
+
U2 − U1

2
tanh

(

2y

δω(0)

)

(2.1)

where U1 and U2 are the speeds in the lower and upper streams, with vorticity
thickness δω(x) characterizing the growth of the shear layer by measuring locally
the vorticity thickness

δω(x) =
∆U

|(∂U/∂y)|max
(2.2)

where ∆U = U2 −U1 is the velocity difference across the layer. A compressible
mixing layer is characterized by two flow parameters: Uc andMci (Papamoschou
& Roshko [88]). In general, Uc is the velocity of the dominant waves and struc-
tures. In mixing layers, it is related to the large vortex structures in the flow.

Uc =
c2U1 + c1U2

c1 + c2
(2.3)

17
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Figure 2.1: Schematic representation of the velocity profile for a mixing layer.

where the speeds of sound in the upper and lower streams are denoted by c1 and
c2. By assuming the equality of speeds of sound c1 = c2 = c∞ and temperature
in the two free streams, we have

Uc =
U1 + U2

2
(2.4)

For a compressible flow, the convective Mach numbers in either of the two
streams can be defined as follows

Mci =
Ui − Uc

ci
(2.5)

where i = 1, 2. In the same way, the global convective Mach number is then
deduced

Mc =
∆U

2c∞

The Reynolds number based on the initial vorticity thickness δω(0) and the net
shear ∆U , is defined as

Reδω(0) =
∆Uδω(0)

ν
(2.6)

where ν denotes the kinematic viscosity which is taken to be constant.

2.2 Equation of motion

The full three-dimensional compressible Navier-Stokes equations along with the
perfect gas equation of state are used as a mathematical model to describe the
dynamic behaviour of the mixing layer. The governing equations in conservative
form may be written in the vector form

∂U

∂t
+
∂Ee

∂x
+
∂Fe

∂y
+
∂Ge

∂z
−
∂Ev

∂x
−
∂Fv

∂y
−
∂Gv

∂z
= 0 (2.7)
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The conservative variable vector is given by

U =













ρ
ρu
ρv
ρw
e













where ρ is the fluid density and u, v, w are the velocity components in the three
directions, respectively. The total energy per unit volume of fluid is defined as

e = ρ[CvT +
1

2
(u2 + v2 + w2)] =

p

γ − 1
+

1

2
ρ(u2 + v2 + w2) (2.8)

where p, T , cv and γ are the pressure, temperature, specific heat at constant
volume and specific ratio, respectively. The ratio of specific heats γ = cp/cv is
taken to be 1.4 in all computations. Note that, in (2.8), the ideal gas law p = ρrT
is used to relate between the thermodynamic variables, where the gas constant
r is fixed to 287.06. The specific heat at constant pressure cp and specific heat
at constant volume cv are defined as cv = cp/γ and cp = rγ/(γ − 1). Ee,Fe

and Ge are the inviscid convective fluxes in the three directions, respectively,
and are given by

Ee =













ρu
ρu2 + p
ρuv
ρuw

(e+ p)u













, Fe =













ρv
ρuv

ρv2 + p
ρvw

(e+ p)v













,

Ge =













ρw
ρuw
ρvw

ρw2 + p
(e+ p)w













while Ev,Fv and Gv are the viscous fluxes including both viscous stresses and
thermal conduction:

Ev =













0
τ11
τ12
τ13

uτ11 + vτ12 + wτ13 − q1













, Fv =













0
τ21
τ22
τ23

uτ21 + vτ22 + wτ23 − q2













,

Gv =













0
τ31
τ32
τ33

uτ31 + vτ32 + wτ33 − q3













The viscous stress tensor τij for a Newtonian fluid is defined as

τij = µ(
∂ui
∂xj

+
∂uj
∂xi

−
2

3
δij
∂uk
∂xk

)
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The dynamic viscosity µ is taken to be constant. The heat flux qi is related to
the temperature gradients following the Fourier’s law for heat conduction

qi = −k
∂T

∂xi

where k is the coefficient of thermal conductivity. The Prandtl number is Pr =
µcp/k, and we assume a constant value of Pr = 0.723.

Nonlinear Disturbance equations (NDE) have first been proposed by Morris
et al. [83] in the CAA methodology application to the prediction of the jet noise.
By decomposing the instantaneous flow variable into a mean flow and fluctuating
part, they obtained the disturbance equations. In their work, the mean flow
are calculated with a Reynolds averaged Navier-Stokes (RANS) solver, and the
pertubations quantities are determined directly. This NDE approach has been
used rather satisfactorily to calulate the acoustic fields in a supersonic jet or a
hot jet (Morris et al. [84] and Lesshafft [64]). This perturbative version of the
Navier-Stokes allows a better control of the base flow and the investigation of the
linear regime by omitting the nonlinear terms in the equations. To investigate
the behavior of small perturbations about the base flow, the flow vector q is
decomposed into the steady base flow qb and a perturbation component q′

q = qb + q′ (2.9)

Note that the base flow is frozen throughout the simulation. Substitution of
(2.9) into (2.7) results in a set of base flow and perturbation terms. After
rearrangement of these terms, the NDE in conservative form can be written as

∂U′

∂t
+
∂Ee

′

∂x
+
∂Fe

′

∂y
+
∂Ge

′

∂z
−
∂Ev

′

∂x
−
∂Fv

′

∂y
−
∂Gv

′

∂z
= 0 (2.10)

where

U′ =













ρ′

ρbu
′ + ρ′ub + ρ′u′

ρbv
′ + ρ′vb + ρ′v′

ρbw
′ + ρ′wb + ρ′w′

e′













(2.11)

the convective perturbation fluxes Ee

′,Fe

′ and Ge

′ containing both linear and
nonlinear terms are given by

Ee

′ =













ρu′ + ρ′ub
ρ′ub

2 + 2ρubu
′ + ρu′

2
+ p′

ρ(u′v + ubv
′) + ρ′ubvb

ρ(u′w + ubw
′) + ρ′ubwb

u′(eb + pb) + u(e′ + p′)













,Fe

′ =













ρv′ + ρ′vb
ρ(uv′ + vbu

′) + ρ′ubvb
ρ′vb

2 + 2ρvbv
′ + ρv′

2
+ p′

ρ(wv′ + vbw
′) + ρ′vbwb

v′(eb + pb) + v(e′ + p′)













,

(2.12)

Ge

′ =













ρw′ + ρ′wb

ρ(uw′ + wbu
′) + ρ′ubwb

ρ(w′v + wbv
′) + ρ′wbvb

ρ′wb
2 + 2ρwbw

′ + ρw′2 + p′

w′(eb + pb) + w(e′ + p′)













(2.13)
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and the viscous perturbation stresses Ev

′, Fv

′ and Gv

′ are given by

Ev

′ =













0
τ ′11
τ ′12
τ ′13

u′τ ′11 + v′τ ′12 + w′τ ′13 − q1
′













,Fv

′ =













0
τ ′21
τ ′22
τ ′23

u′τ ′21 + v′τ ′22 + w′τ ′23 − q2
′













,

Gv

′ =













0
τ ′31
τ ′32
τ ′33

u′τ ′31 + v′τ ′32 + w′τ ′33 − q3
′













The components of the perturbation viscous stress tensor τ ′ij are

τ ′ij = µ(
∂u′i
∂x′j

+
∂u′j
∂x′i

−
2

3
δij
∂u′k
∂x′k

) (2.14)

and the perturbation heat flux components qi
′ are written as follows

qi
′ = −k

∂T ′

∂xi
(2.15)

As soon as the conservative perturbation variable U′ is obtained from the
solution of (2.10), the velocity perturbation u′, v′, w′ may be obtained from U′

and the base flow values using (2.11), while the fluctuating pressure p′ may be
deduced from

e′ =
p′

γ − 1
+ (ρb + ρ′)(u′ub + v′vb + w′wb) +

1

2
(ρb + ρ′)(u′

2
+ v′

2
+ w′2)

+
1

2
ρ′(ub

2 + vb
2 + wb

2) (2.16)

2.3 Numerical methods for computational aeroa-

coustics

Two main difficulties should be considered when solving a computational aeroa-
coustics (CAA) code : propose an efficient algorithm for the acoustic wave
progagation and to use accurate boundary conditions for the truncated com-
putional domain truncated. Traditional computational fluid dynamics (CFD)
schemes are designed for their robustness, but are not really adapted for acous-
tic problems. In fact, acoustic waves have some typical features that should
be taken into account: their nondissipative and nondispersive character; the
extremely low amplitude of acoustic perturbations; and the need to be solved of
their high frequencies. Therefore, high-order centered finite difference schemes
are generally retained in CAA which are by construction non dissipative. The
use of such derivatives allows to obtain a very weak discretization error. These
schemes are optimized in the Fourier space: we minimize the error over a large
range of wavenumbers, and optimize the resolvability (i.e. meshgrid). The goal
is thus to control the resolvability limit, and to know the cut-off between resolved
and non-resolved scales.
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2.3.1 Time advancement

We consider the time integration of the set of equations

∂U′

∂t
= F(U′)

The conservative pertubation variables U′ are advanced in time using a high-
order optimized p substeps Runge-Kutta algorithm.

(U′)n+1 = (U′)n + δt

p
∑

i=1

biK
i with Ki = F



(U′)n +
i−1
∑

j=1

aijK
j , tn + cjδt





where ci =
∑i−1

j=1 aij for i = 1, ...p. Here, the p = 6 substep low-storage Runge-
Kutta algorithm with coefficients optimized in the frequency space by Bogey &
Bailly [18] is used since it provides a very good trade-off accuracy-stability and
cost.

As for all explicit methods, the time step δt has to be chosen to satisfy
the conditions of stability of the numerical scheme related to the convective
and the conduction-diffusion terms. Within one time step δt, no information is
transported further than one computional cell. For convective transport,

CFL = δt×max
i

[

|ui|+ c∞
∆xi

]

≤ 1.73,

and for viscous transport:

Cviscous = δt×max
i,j

[

ν

∆xi∆xj

]

≤
1

2
,

where CFL is the Courant-Friedrichs-Lewy (CFL) number. It is clear that the
time step has to be chosen according to the more restrictive of the two criteria.
For subsonic flows at moderate Reynolds numbers, the CFL criterion associated
with the convective transport is always the most restrictive.

2.3.2 Spatial derivatives

In order to calculate accurately the extremely small amplitudes of the acoustic
waves relative to the aerodynamic fields, a great care should be given to the
choice of the spatial discretization of the flux of the equation. The convec-
tive flux are responsible for the aerodynamically generated noise through the
nonlinear velocity terms. They describe also the acoustic wave propagation, in
particular all interactions between the velocity field and the acoustic fluctua-
tions. They should be discretized with a very accurate numerical scheme. Here,
we use the eleven-point-stencil DRP (Dispersion Relation Preserving) scheme,
introduced by Tam & Webb [114]

(

∂Ee

∂x

)

i,j

=
1

∆x

5
∑

l=−5

alEei+l,j,k
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Figure 2.2: Properties of the discretization schemes in the wavenumber space.
The exact relationship is displayed in the dotted line. (a) Effective wavenumber
of the standard schemes of order 2 ( ), 4 ( ), 6 ( ), 8 ( ), 10
( ) as a function of k∆x. (b) Discretization errors on a logarithmic scale.

The originality of this kind of scheme is that the coefficients al have not been de-
termined to to minimize the order of scheme, but to minimize the error between
the real wavenumber k and the effective wavenumber k⋆ written as

k⋆∆x = 2
5
∑

j=1

aj sin (jk∆x)

In figure 2.2, several effective wavenumbers of standard schemes of different
orders are plotted to study the properties of the discretization schemes in the
wavenumber space. Note that the dispersion error is given by |k⋆∆x− k∆x| /π.

As noted previously, the coefficients are determined by minimizing the dis-
persion error, rather than maximizing the formal truncature order of the cor-
responding Taylor expansion. Bogey & Bailly [18] define the dispersion error
as

E =

∫ ln(k∆x)h

ln(k∆x)l

|k⋆∆x− k∆x| d(ln(k∆x)) →
∂E

∂aj
= 0

where the two limits (k∆x)l et (k∆x)h have to be chosen. On a stencil of
2N+1 points, the coefficients aj for an optimized scheme of order 2M (M < N)
are calculated by satisfying the M first relationships canceling the terms of the
Taylor expansion until ∆x2M−1, and by addingM−N relationships ∂E/∂aj = 0
for 1 ≤ j ≤ M − N . For instance, for eleven-point-stencil optimized scheme

used in this study, the system

N
∑

j=1

2jaj = 1 ;

N
∑

j=1

j3aj = 0 ;
∂E

∂a1
= 0 ;

∂E

∂a2
=

0 ;
∂E

∂a3
= 0 is solved with (k∆x)l = π/16 and (k∆x)h = π/2. The coefficients

are given in Bogey and Bailly [18]. The effect of the optimization procedure
is clearly visible in figure 2.3, where the dispersion error of the eleven-point-
stencil optimized scheme is significantly reduced in the range between π/4 and
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Figure 2.3: Properties of the discretization schemes in the wavenumber space.
The exact relationship is displayed in the dotted line. (a) Effective wavenum-
ber of the tenth-order standard scheme ( ), and of the eleven-point-stencil
optimized scheme ( ) as a function of k∆x. (b) Discretization errors on a
logarithmic scale.

π/2 when compared with the standard tenth-order scheme. Furthermore, the
evaluation of the viscous terms is realized with a fourth-order central finite
differences.

2.3.3 Selective filtering

Centered finite difference schemes are non-dissipative and known to give rise to
grid-to-grid oscillations (every two points, i.e. k∆x = π). These under-resolved
spurious short waves are generally created in presence of discontinuities, such
as boundary treatment or grid stretching. Unphysical solutions can spread
throughout the whole domain, polluting the solutions and leading to numerical
instabilities. As a consequence, a centered selective filtering is introduced to
eliminate the high-frequency oscillations without affecting the physical solutions.

U′ (x0) = U′ (x0)−σdDf (x0) and Df (x0) =
N
∑

j=−N

djf (x0+j∆x)

with 0 ≤ σd ≤ 1. By applying the Fourier transform, we obtain the damping
function

Dk (k∆x) = d0 +
N
∑

j=1

2dj cos (jk∆x)

The damping functions of the standard filters are plotted in figure 2.4.
A centered filter is non-dispersive, so that we minimize the dissipative error,

defined as

E =

∫ ln(π/2)

ln(π/16)

Dk (k∆x) d(ln(k∆x))

In the present study, an optimized centered filter on an 11-point stencil whose
coefficients are given in [18] is used. When comparing to the standard 10th
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Figure 2.4: Properties of the selective filters in the wavenumber space. (a)
Damping function of the standard centered filters of order 2 ( ), 4 ( ),
6 ( ), 8 ( ), 10 ( ) as a function of k∆x. (b) Dissipation errors on
a logarithmic scale.

order filter in figure 2.5, it turns out that, for values of k∆x close to π/2, the
dissipation error is reduced. The optimization procedure however leads to a
greater residual dissipation error for low wavenumbers. In the test case and
DNS calculations, only the interior points are filtered with an amplitude of
σd = 0.2.

2.3.4 Boundary conditions

Within a theoretical framework, we often assume that the flow domain extends
to infinity in all directions. This is not the case for the computational do-
main which is inevitably finite. Efficient boundary conditions must therefore
be imposed along the finite computational domain to mimic a infinite continu-
ous medium. Despite numerous studies, there is no ideal formulation, and the
chosen conditions should be compatible with the physical conditions to be im-
posed, and with the numerical schemes used to discretize them. With dissipative
CFD codes, acoustic waves are often strongly attenuated, or even completely
dissipated before reaching the boundaries of the computational domain. In a
CAA simulation, low-dispersive and low-dissipative schemes are used, so that
the waves hit the boundaries, and must exit without generating spurious re-
flections which can overwhelm the physical waves. It is well-known that Euler
equations support small amplitude acoustic, vorticity and entropy waves. Thus,
the outgoing disturbances should contain a combination of these three waves. In
the present study, a set of radiation and outflow boundary conditions, proposed
by Tam & Dong [112], are used. They are applied to five rows of points with
decentered DRP scheme, and are advanced in time with the same 6 substeps
Runge-Kunta algorithm as for the interior points. We distinguish the outflow
conditions at the outflow boundary from the radiation conditions at the inflow,
top and bottom boundaries.
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Figure 2.5: Properties of the selective filters in the wavenumber space. (a)
Damping function of the eleven-point stencil optimized filter of Bogey et Bailly
[18] ( ), and of the tenth-order standard filter ( ) are compared. (b)
Dissipation errors on a logarithmic scale.

Tam and Dong radiation boundary condition

By using the asymptotic solutions of the linearized Euler equations, Tam &
Dong have shown that in the far field the outgoing acoustic waves propagate in
the radial direction with respect to the noise source in the presence of a mean
flow. The boundary conditions which are applied at the inflow and the lateral
boundaries are expressed, in 2-D, cylinder coordinate system as

1

Vg

∂

∂t





ρ′

uj
p′



+

(

∂

∂r
+

1

2r

)





ρ− ρ̄
uj − ūj
p− p̄



 = 0 (2.17)

where (ρ, uj , p) are the density, velocity components and pressure, while the
mean flow variables are denoted by an overbar. Locally, the acoustic waves
propagate out of the computational domain in the direction of θ where (r, θ)
is the cylindrical coordinate centered at the noise source. In the presence of
the mean flow ū = (ūj), the acoustic waves propagate at a speed and direction
equal to the vector sum of the mean flow velocity and the mean sound speed
c̄ =

√

γp̄/ρ̄. Therefore, in 2-D, the group velocity of wave propagation Vg is
given by

Vg = ū.er +
√

c̄2 − (ū.eθ)2 with

{

er = (cos θ, sin θ)
eθ = (− sin θ, cos θ)

The 3-D formulation is obtained by following similar reasoning as in 2-D, the
group velocity becomes
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Vg = ū.er+
√

c̄2 − (ū.eθ)2 − (ū.eϕ)2 with







er = (sin θ cosϕ, sin θ sinϕ, cos θ)
eθ = (cos θ cosϕ, cos θ sinϕ,− sin θ)
eϕ = (− sinϕ, cosϕ, 0)

(2.18)
and a spherical spreading is assumed for the far-field solution

1

Vg

∂

∂t





ρ′

uj
p′



+

(

∂

∂r
+

1

r

)





ρ− ρ̄
uj − ūj
p− p̄



 = 0 (2.19)

Tam and Dong outflow boundary condition

In addition to the acoustic waves, the vorticity and entropy waves are assumed to
be advected downstream by the mean flow as well. The equation governing the
fluctuating pressure remains unchanged, but the three other ones are modified
in order to allow the exit of the aerodynamic fluctuations convected by the mean
flow. The following system is used for the outflow boundary conditions.



































































∂ρ′

∂t
+ ū.∇(ρ− ρ̄) =

1

c̄2
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∂p′

∂t
+ ū∇(p− p̄)

)

∂u′

∂t
+ ū.∇(u− ū) =

1

ρ̄

∂(p− p̄)

∂x

∂v′

∂t
+ ū.∇(v − v̄) =

1

ρ̄

∂(p− p̄)

∂y

1

Vg

∂p′

∂t
+
∂(p− p̄)

∂r
+

(p− p̄)

2r
= 0

.

The 3-D counterpart is given by



























































































∂ρ′

∂t
+ ū.∇(ρ− ρ̄) =

1

c̄2

(

∂p′

∂t
+ ū∇(p− p̄)

)

∂u′

∂t
+ ū.∇(u− ū) =

1

ρ̄

∂(p− p̄)

∂x

∂v′

∂t
+ ū.∇(v − v̄) =

1

ρ̄

∂(p− p̄)

∂y

∂w′

∂t
+ ū.∇(w − w̄) =

1

ρ̄

∂(p− p̄)

∂z

1

Vg

∂p′

∂t
+
∂(p− p̄)

∂r
+

(p− p̄)

2r
= 0

.

2.3.5 Test case of boundary conditions

The numerical techniques described in the previous sections are now applied
to an acoustic pulse in a moving medium. In this validation study, the radi-
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Figure 2.6: Acoustic pressure for the moving pulse in a mean flow Mach number
of M = 0.5 at four successive instants. Levels from −10 to 10 Pa.

ation and outflow boundary conditions are tested. The computational grid is
a Cartesian grid with uniform spacing in all two directions. The grid size is
101 × 101 and the computational domain is (Lx, Ly) = (±50,±50). The time
step is defined for the CFL number of 1, and is given by t = ∆x/c∞(1+M). The
acoustic pulse problem being an initial value problem is solved by prescribing
the inital condition in pressure. At the initial time, a Gaussian distribution is
thus introduced at the center (0, 0) of the computational domain, given by

p′ = 100 exp

[

−
ln 2

9
(x2 + y2)

]

where u0 = Mc∞ is the mean flow velocity of the moving medium. Figure 2.6
shows the four instants during the calculation. We may observe that most of
the acoustic waves has exited the computational domain at the last instant.
This indicates that there is no visible numerical reflection from the boundaries.
Therefore, the Tam and Dong radiation and outflow conditions have been well
validated for the NDE solver.

2.3.6 Sponge zone

The Tam and Dong outflow condition is used at the outflow boundary to al-
low the exit of vortical structures; nevertheless, some perturbations can still be
reflected. It is thus necessary to design a sponge zone to damp out the distur-
bances before they interact with the boundaries. An obvious way to accomplish
this is to apply a Laplacian filter in each direction. Inside the sponge zone,
the damping coefficient increases smoothly in space. The perturbations U′ are
filtered every time step in the outflow region according
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U′
i,j,k = U′

i,j,k − γmax

(

xi − xnx−nsx1

xnx−nsx2 − xnx−nsx1

)1.5
[

0.5U′
i,j,k

−0.25
(

U′
i−1,j,k +U′

i+1,j,k +U′
i,j−1,k +U′

i,j+1,k +U′
i,j,k−1 +U′

i,j,k+1

)]

(2.20)

for nx− nsx1 ≤ i ≤ nx− nsx2, and

U′
i,j,k = U′

i,j,k − γmax

[

0.5U′
i,j,k

−0.25
(

U′
i−1,j,k +U′

i+1,j,k +U′
i,j−1,k +U′

i,j+1,k +U′
i,j,k−1 +U′

i,j,k+1

)]

for nx− nsx2 < i ≤ nx− 1.

nx denotes the indice of the last grid point in the x-direction. And xnx−nsx1 and
xnx−nsx2 correspond to the abscissae of the beginning and the end of the zone.
One may remark that the upstream boundary of the sponge zone itself tends
to be reflective, which makes the choice of the damping coefficient subtle. In
most cases, γmax is chosen between 0.02 and 0.5 in such way that the damping
increases gradually from zero on a relatively long distance to obtain a satisfac-
torily result. In addition to the artificial damping, a grid stretching (around 3%
to 5% for the last grid points) is used to dissipate the vortical structures which
are hardly accounted for by the coarser grid, Note that this type of sponge zone
has been used successfully by Gloerfelt et Lafon [46] in the simulation of the
flow through a diaphragm in a duct.

2.4 Coherent structures: eigenmodes of the prop-

agator

In classical dynamical system theory, the evolution of flow variables q′ may be
rewritten into a dynamical system:

q′ (·+∆·) = B (∆·)q′(·) (2.21)

where B is called the propagator. In particular, we distinguish between temporal
analysis and spatial analysis. The first one is associated with · = t, where
t represents the time evolution. In this context, the mapping between two
consecutive times will be realized by the propagator B. The spatial counterpart
treats the up- or downstream evolution of perturbations that are generated at
a fixed position in space. In this second strategy, · = x, where x represents a
privileged spatial direction of the flow. For instance, in the near-field analysis, x
is the streamwise direction of the mixing layer, whereas in the far-field analysis, x
may be the radial direction of the propagating acoustic waves. The action of the
propagator according to these two point of views are represented schematically
in figures 2.7, 2.8. Therefore, the idea is to associate coherent structures with
eigenmodes of the propagator B. In the next sections, we will detail how this
theory may be applied to both a linear and a nonlinear framework.
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Temporal analysis

yy

Spatial analysis

x x

t t

Figure 2.7: Schematic representation of the action of the propagator B in a
spatial and temporal framework (1).

Temporal analysis

yy

Spatial analysis

x x

t t
B(∆t)

B(∆x)

Figure 2.8: Schematic representation of the action of the propagator B in a
spatial and temporal framework (2).

2.5 Linear model: global stability analysis

Global linear stability analysis is interested in the behaviour of the pertubations
evolving in a neighborhood of the steady state solution for large times, that is
the linear perturbation dynamics after a transient period. These exponentially
growing perturbations, the so-called linear global eigenmodes, represent spa-
tially coherent structures that grow or decay exponentially and pulsate with one
frequency. If any unstable global eigenmodes exist, pertubations will grow until
they saturate nonlinearly. To acquire a complete picture of the flow dynamics,
we choose to study the global behavior of the flow within a more general global
framework without assumption of parallelism of base flow in this first section.

2.5.1 Governing equations

Recall that throughout this thesis the equations governing the nonlinear space-
time dynamics of the flow are the compressible Navier-Stokes equations. They
can be written in the following form

∂q

∂t
= F (q) (2.22)

where q = (ρ, u, v, w, p)
T
denotes the primitive flow variables and F the Navier-

Stokes operator. A two-dimensional steady solution of (2.22), the so-called base
flow is hereafter defined by qb such that F (qb) = 0. The dynamics of a small
perturbation q′ superimposed on this steady base flow qb is governed by the
linearized Navier-Stokes equations
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∂q′

∂t
(x, t) = A (q′ (x, t))

q′ (x, t = 0) = q′
0

(2.23)

where x = (x, y, z)
T
, and A is the Jacobian operator of the Navier-Stokes

equations F linearized about the base flow qb (x, y) which is given by: A =
∂F/∂q|qb. Therefore, the asymptotic stability of the system (2.23) is deter-
mined by resolving the spectrum of the governing linear operator A (Schmid
[99]). Solutions of (2.23) may be thought in the form of normal modes

q′ (x, t) = q̂ (x) e−iωt (2.24)

The associated dynamical structures are referred to as global modes (ω, q̂) of
the base flow qb. Their spatial structure is characterized by the complex vector
field q̂ and their temporal behaviour by the complex ω = ωr + iωi. In this way,
the initial value problem (2.23) will be transformed into an eigenvalue problem
of the form

Aq̂ = −iωq̂ (2.25)

The eigenvalues and eigenvectors of A correspond to the global modes. In
particular, if ωi < 0, the base flow is asymptotically stable, the global modes will
decay for large times. Otherwise, if ωi > 0, then the solution F (qb (x, y)) = 0
is asymptotically unstable, whose unsteadiness is characterized by the angular
frequency ωr.

2.5.2 Matrix-free method: timestepper approach and prop-

agator

Global modes are computed by using the matrix-free method which are based
on flow field snapshots. That is, very large eigenvalue problems are solved based
only on snapshots of the flow field at different points in time whihout any large
matrices stored. Within the temporal framework, the snapshots are obtained
by abstract notion of a time stepper B (∆t). In this timestepper approach
(Tuckerman & Barkley [116]), starting with an initial perturbation q0, B (∆t)
is the evolution operator representing the action of the operator (2.23) from one
flow field to the next over a equidistant time interval ∆t.

q′ (t = ∆t) = B (∆t)q′
0, where B (∆t) is formally eA∆t (2.26)

The temporal evolution of our input data sequence from the flow field can be
represented schematically in figures 2.7, 2.8. The flow dynamics is thus asso-
ciated with this propagator. In most cases, our analysis is based on the flow
fields sampled at discrete time, it is then convenient to adopt the discrete-time
setting. This allows us to write (2.26) in a discrete dynamical system

q′
k+1 = B (∆t)q′

k (2.27)

where q′
k is the kth perturbation field.

In the previous section, the linear global eigenmodes have been defined as
the eigenvectors and eigenvalues of the discretized and linearized Navier–Stokes
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equations A. The dimension of the matrix A in (2.23) is so large that we cannot
compute the eigenvalues of A using direct methods, such as QR method. Fur-
thermore, since we are often interested in a small portion of the spectrum which
represents main instability mechanisms only, solving such an enormous eigen-
value problem becomes also pointless. For instance, Bagheri [5] showed several
examples of state-space dimension n for some flow cases, all of the computations
scale at least O(n3). Therefore, iterative methods, such as the Arnoldi, are of-
ten adopted to find approximates of the eigenvalues of A, in which the original
large-scale problem (2.23) is projected onto a dynamical system of significantly
fewer degrees of freedom. The resulting low-dimensional system can then be
solved by direct methods. The idea is to associate the coherent structures with
the eigenmodes of the propagator B. A subspace spanned by snapshots sampled
from flow fields may then be represented in the form of a snapshot sequence,
given by a matrix SN

SN = {q′
0,B (∆t)q′

0, [B (∆t)]2q′
0, ..., [B (∆t)]N−1q′

0} = {s0, s1, · · · , sN−1}
(2.28)

where s0 and sN−1 denote the first and the last entry of the sequence, respec-
tively. This time-stepper technique has become increasingly popular in both
stability analysis (Barkley, Gomes & Henderson[11], Barkley, Blackburn & Sher-
win [10], Blackburn, Barkley & Sherwin [16], Bagheri et al. [7] and Alizard &
Robinet [2]) and control design (Bagheri, Brandt & Henningson [6]). The time
step ∆t between two consecutive snapshots should be chosen properly and will
be further discussed in the next chapter.

2.5.3 Arnoldi algorithm

The well-known Arnoldi algorithm is a type of iterative method that succes-
sively orthogonalizes the vectors of the sequence (2.28), and therefore yields an
orthonormal sequence : SN

⊥ = { s⊥0 , · · · , s
⊥
N−1}. The orthonormalization has

been achieved by a Gram-Schmid method resulting in a decomposition of the
form

B (∆t)SN
⊥ = SN

⊥H+ reTS⊥
N (2.29)

with r a residual, eT = (0, · · · , 1) a unit vector of dimension N , S⊥
N a normalized

vector of dimension N such as S⊥
N ⊥ S⊥

N−1 and H an upper Hessenberg matrix
of dimension N ×N .

And hence the dominant eigenmodes of B (∆t) are approximated by com-
puting the eigenmodes of the reduced matrix H: the so-called Ritz values and
Ritz vectors of B (∆t) which are denoted by dk and ϑk with k ∈ (0, .., N − 1).
A residual value for each eigenmode of B (∆t) is evaluated according to

r|(ϑk)m|, k ∈ (0, .., N − 1) (2.30)

The dominant eigenvalues of A are derived from the latter







(ωi)k = Re (log (dk) /∆t)

(ωr)k = Im (log (dk) /∆t)
(2.31)
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where (ωi)k and (ωr)k are the temporal amplification rate and the angular
frequency of the mode k respectively. The sampling period ∆t has to be suffi-
ciently small to verify the Nyquist criterion. The underlying eigenvectors of A
are recovered through a simple matrix product

q′
k = SN

⊥ϑk (2.32)

This yields a more stable algorithm resulting a rapid convergence with a
satisfactory accuracy in the orthonormal basis.

2.5.4 Numerical implementation

The major task of the algorithm described above is to compute the upper Hes-
senberg matrix. Instead of the standard software ARPACK package commonly
used, we use a more generic self-made algorithm. For instance, our algorithm
allows to start with a chosen initial perturbation rather than some random
noise. Moreover, the choice of inner product in the projection step may also
be influential in compressible flows. We will demonstrate the eventual influ-
ence of the inner products in the next part. Thus, the sequence of snapshots
SN is orthonormalized with respect to the chosen inner product denoted by (, ),
through a Gram-Schmidt algorithm. This process is repeated until the following
criterion is satisfied.

max
i,j

( s⊥i , s
⊥
j ) < 10−16 , for i 6= j with (i, j) ∈ (0, .., N − 1)

2
(2.33)

By considering the system (2.29), the Hessenberg matrix of components Hi,j

is easily recovered by

Hi,j = (B (∆t) s⊥i , s
⊥
j ) (2.34)

where s⊥i represents the sample of the sequence SN
⊥. For (i = 0, .., N − 1),

B (∆t) s⊥i are derived successively from the following Gram-Schmidt step

B (∆t) s⊥i = B (∆t)

(

si −
i−1
∑

k=1

( s⊥k , si)

( s⊥k , s
⊥
k )

)

s⊥k

= B (∆t) (si)−
i−1
∑

k=1

( s⊥k , si)

( s⊥k , s
⊥
k )

B (∆t)
(

s⊥k
)

= (si+1)−

i−1
∑

k=1

( s⊥k , si)B (∆t)
(

s⊥k
)

(2.35)

with SN = B (∆t) (SN−1) and ( s⊥k , s
⊥
k ) = 1 from the normalization. The

dimension of the Krylov sequence SN is increasing until to reach a residual (2.30)
fixed to the machine precision for the considered eigenmodes. The eigenvalues
of H are computed using a QR algorithm from LAPACK library.
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2.6 Nonlinear model: Dynamic mode decompo-

sition analysis

When small flow disturbances grow exponentially until they reach a stage where
nonlinear effects become important and have to be taken into account, it is
necessary to undertake a modal analysis of the fully nonlinear flow. To study
the behaviour of complex nonlinear flow, a technique is used by decomposing
the flow into a set of Koopman modes (Rowley & al. [97]), determined from the
spectral analysis of the Koopman operator.

2.6.1 Koopman operator and Koopman modes

Consider a nonlinear evolving dynamical system as follows:

q′
k+1 = f(q′

k)

where f denotes a nonlineaire operator representing the underlying flow dynam-
ics. A linearization in the phase space yields to the dynmical system

q′
k+1 = B (∆t/∆x) (q′

k)

B (∆t/∆x) is therefore a linear operator as defined in the previous section (2.21).
Here, q′ is the vector-valued observable which may be any quantities of interest,
such as a velocity, pressure or density fields at various grid points in the flow
from either a physical experiment or a numerical simulation. In our work, we
have assumed that the propagator B (∆t/∆x) remains unchanged in the phase
space. As in Mezić [73], the vector-valued observable q′ may be expanded in
terms of the eigenfunctions ψj as

q′ =
N
∑

j=1

ψjvj (2.36)

where the eigenfunctions ψj are referred to as Koopman eigenfunctions, and the
associated vectors vj are the Koopman modes. The observable can be expressed
in term of the first entry q′

0 in the input snapshot sequence by iterating q′
0, then

the kth sample is given by

q′
k =

N
∑

j=1

λkjψj(q
′
0)vj (2.37)

Henceforth, the constant ψj(q
′
0) will be encompassed into vj for simplicity. The

Koopman eigenvalues, λj , therefore characterize the temporal behaviour of the
corresponding Koopman mode vj : the phase of λj determines its frequency,
and the magnitude determines the growth rate. As demonstrated in Rowley &
al. [97], for linear systems, these modes coincide with the global eigenmodes,
and for the special case of periodic systems, the modes can be determined by
the discrete temporal Fourier transform. In this nonlinear framework, the co-
herent structures are associated with the propagator B defined as the Koopman
operator.
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2.6.2 Dynamic Mode Decomposition

The Dynamic Mode Decomposition (DMD) algorithm which is described in
Rowley et 2009; Schmid 2010, will be summarized here. In contrast to the
Arnoldi algorithm, Rowley & al. [97] and Schmid [100] have proposed an algo-
rithm in which no normalization procedure is required. Consider the discrete
dynamical system (2.27) and the spanned Krylov subspace (2.28). Assuming
that the vector sN of the Krylov sequence become linearly dependent for certain
N . Therefore, the vector sN can be considered as a linear combination of the
previous vectors, that is

sN = c0s0 + c1s1 + · · ·+ cN−1sN−1 + r (2.38)

where cT = (c0, c1, · · · , cN−1) and r is a residual given by

r = sN − SNC (2.39)

which is minimized when ci is chosen such that r ⊥ {s0, s1, · · · , sN−1}. (2.38)
is rewritten in matrix form

BSN = SNC + reT (2.40)

Recall that B denotes the propagator from one data field to the next over a time
interval ( spatial) ∆t (∆x). Here, eT = (0, · · · , 1)

T
is the unit vector, and C is

a companion matrix with

C =















0 0 · · · 0 c0
1 0 · · · 0 c1
0 1 · · · 0 c2
...

. . .
...

0 0 · · · 1 cN−1















(2.41)

The spatial structures in the flow can be thus decomposed into Koopman modes.
The corresponding Koopman eigenvalues describe the temporal behaviour of the
Koopman modes. In other words, the phase of λj gives its frequency, and the
magnitude provides the growth rate. Regarding ψj , the Koopman eigenfunction
determines the amplitude of the associated Koopman mode. It is straightfor-
ward to show that, if the dynamics (2.27) is linear, then the eigenvalues of B are
also eigenvalues of the Koopman operator, and the eigenvectors of B coincide
with the Koopman modes. The eigenvalues and corresponding eigenvectors of
C are then approximations to the eigenvalues and eigenvectors of A, which we
call Ritz values and Ritz vectors, respectively.

2.7 Orthogonal projection

A solution of (2.23) may be decomposed into a basis formed by following global
modes/Koopman modes:

q′(x) =

m−1
∑

k=0

Kke
−iωktq̂k(x) (2.42)
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where e−iωktq̂k(x) are the global modes/Koopman modes and Kk are the scalar
expansion coefficients. Since the global mode and Koopman mode bases are non-
orthogonal, we need to perform a projection procedure in order to orthonormal-
ize the basis of interest. For non-normal flow problems, a bi-orthogonal projec-
tion of the system (2.23) onto a set of global modes is conventionally used (see
Barbagallo, Sipp & Schmid [9], Ehrenstein,Passaggia & Gallaire [38]). In this
context, the bi-orthogonal condition is employed to determine the components
of the initial condition of disturbance into the global modes expansion by:

Kk =
< q̂′

k

∗

,q′
0 >

< q̂′
k

∗

,q′
k >

with <,> a standard Hermitian scalar product. Nevertheless, when performing
a projection through a Hermitian inner product by using adjoint modes, a nu-
merical difficulty arises from the non-normality of the evolution operator, thus
resulting in the separation between adjoint and direct modes (Chomaz [28]).
Indeed, the projection into a global modes basis is governed by the values of
< q′∗

i ,q
′
i >. The strong non-orthogonality leads to the separation of the spatial

support of q′
i and q′∗

i . As observed for example by Alizard & Robinet [2], the
value of < q′∗

i ,q
′
i > decays gradually when increasing the non-orthogonality

until to reach a value close to zero 10−11. As a consequence, it becomes almost
impossible to numerically verify the biorthogonality condition. To overcome
this, Passaggia, Ehrenstein & Gallaire [89], Alizard & Robinet [2] and Ehren-
stein, Passaggia & Gallaire [38] proposed an orthogonal projection. Since the
basis of global modes is non-orthogonal, a modified Gram-Schmidt procedure
is undertaken to orthogonalize the basis. Let us denote the orthogonal basis:
(q′⊥

0 ,q′⊥
1 , · · · ,q′⊥

m−1) from the global modes expansion of dimension m through
the orthogonalization. The initial perturbation may be expanded as

q′
0(x) =

m−1
∑

k=0

Λkq
′⊥
k (x) (2.43)

Taking the orthogonality of the basis into consideration

Λp = (q′⊥
p ,q′

0) (2.44)

where (, ) is an energy-based inner product, defined in (3.3). Therefore, the
coordinates in the basis of global modes are recovered by making use of a matrix
product

K = P−1ξ (2.45)

with K = (K̂0, K̂1, · · · , K̂m−1)
T , and Λ = (Λ0,Λ1, · · · ,Λm−1)

T . The coeffi-
cients of P are given by: Pi,j = (q′⊥

j ,q′
i). This orthogonal projection is seen to

provide a better accuracy of the perturbation field than using the bi-orthogonal
property (See [2], [89], [38]).

2.8 Integral methods for Acoustic analogy

In contrast to direct methods which are often very expensive, integral methods
based merely on near-field input provide an alternative to predict the acous-
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tic radiated sound, which consist in two steps: an aerodynamic code based
on CFD/CAA algorithms is employed to evaluate the flow field, and then an
integral formulation is applied to propagate the pressure fluctuations to the
acoustic far-field. There exist two major approaches: one is acoustic analogy,
which divides the domain into an aerodynamic region where the source terms
responsable for sound generation, and an acoustic region governed by a linear
wave equation; and the other one is the wave extrapolation method, which eval-
uates the acoustic far field from the knowledge of the near-field compressible on
a control surface. The latter are not limited to the aeroacoustics but are also
valid for any phenomena dominated by a linear wave equation, such as optics,
acoustics or electromagnetism.

2.8.1 Convected formulation of FW-H equations

To include the effects of solid surfaces in arbitrary motion, the acoustic analogy
originally proposed by Lighthill [65] was extended by Curle [35] and Ffowcs
Williams and Hawkings [119]. The FW-H equation is a rearrangement of exact
continuity and Navier-Stokes equations. A time-domain solution to the FW-H
equation can be obtained from the wave equation convolution with the free-
space Green function. The solution giving rise to an infinite time integral in two
dimensions remains the main difficulty. Indeed, the use of Heaviside function
can change the upper limit to a finite value, but the lower limit will always be
infinite. In addition, the time integration range needed to capture all of the
two-dimensional effects may be quite large (Lockard [71]). Therefore, to avoid
the expensive time integration and the evaluation of retarded time which may
be delicate to deal with, the FW-H equation is formulated into the frequency
domain in two dimensions (Lockard [71], Guo [48]). Besides, in presence of
an uniform flow, Ffowcs Williams and Hawkings proposed using a Lagrangian
co-ordinate transform assuming that the surface is moving in a fluid at rest.
By using the derivatives for an observer moving along with the mean flow in
the rewritting of the continuity and momentum equations (Goldstein [47]), an
inhomogeneous, uniformly moving medium wave equation is obtained. This
convected wave equation contains the convection effects in the wave operator.
Details of this spectral formulation in detail are provided in Gloerfelt [44].

In the case of mixing layer, no boundary is involved, the integral solution of
the convected FW-H equation is

p′(x, ω) = −

∫∫

f>0

Tij(y, ω)
∂2G(x|y, ω)

∂yi∂yj
dy (2.46)

The observer position and a source point are denoted by x and y. The angular
frequency is ω. Given that the sound sources are aerodynamic, we neglect
the entropic and viscous sources. The source terms are given by the following
expression

Tij ≈ ρ(ui − U∞
i )(uj − U∞

j ) (2.47)

where U∞
i are the components of the uniform mean velocity in the observer

domain. The Green function is written as

G(x|y, ω) = F (r1)H
(2)
0

(

krβ
β2

)

(2.48)
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where k = ω/c∞ denotes the wavenumber, and

F (r1) =
i

4β
exp

(

iMkr1
β2

)

The spatial derivatives of the Green functions can be calculated analytically
yielding
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(2.49)

where ri = xi−yi, M = U∞
i /c∞, β =

√

1−M2, rβ =
√

(x1 − y1)2 + β2(x2 − y2)2.

H
(2)
0 and H

(2)
1 are the Hankel functions of second kind, of first and second order,

respectively.

2.8.2 Numerical implementation using data from DNS or

ROM

Considering the quasi-periodic behaviour of the oscillations in the mixing layer,
the first step is to record the aerodynamic quantities during one period of the
DNS or ROM computations. Then, the source term Tij is calculated and trans-
formed into the frequency domain using the following Fourier transform

F [φ(x, t)] = φ(x, ω) =

∫ ∞

−∞

φ(x, t)e−iωt dt (2.50)

The integrals are thus evaluated at each point of an acoustic meshgrid. Finally,
an inverse Fourier transform is applied to recover the acoustic signal in the
time domain. Some special precautions should be taken into consideration when
transforming a signal that is not perfectly periodic. First, data must be recorded
during long enough time to represent low frequency components. Secondly, the
sampling rate must be quite high to account for the high frequencies. Lastly,
windowing and data segmenting techniques and can be used to compensate the
aperiodic components of the signal. This formulation in frequency domain has
been validated in the computation of noise radiation by a subsonic cavity flow
in Gloerfelt [42].



Chapter 3

Single vortex pairing: from

a linear to a nonlinear

model

Through the previous studies of Brown & Roshko [25] and Winant & Browand
[121], it has been generally acknowledged that large-scale vortex structures can
be initiated by exciting the flow with particular instability waves at the inlet
location. Note that the linear stability theory allows to determine the funda-
mental frequency f0 of the inlet instability wave, chosen based upon the most
unstable frequency of the mixing layer. In general, the excitation with f0 leads
to the downstream development of well-organized periodic coherent structures
in the flow, and further subharmonic forcing causes vortex pairing occurring
near the apparent acoustic source origin. The mechanism of sound generation
is due to the vortex pairing initiated by these two instability modes. This is in
correlation with the work of Colonius, Lele & Moin [30] and Bogey, Bailly &
Juvé [20].

In this chapter, the sound generated by only one single vortex pairing in the
flow is investigated. First, the results from the direct calculations are presented.
Then, a series of two computations of the mixing layer by means of a modal
decomposition method is performed: in the first series, a purely linear model
excluding the nonlinear interactions between modes is considered, a global sta-
bility analysis based on the global modes is used to calculate and describe the
behaviour of the instability waves emerging in the flow. In addition, the absence
of nonlinear interactions results in maintained exponential growth of the fun-
damental and first subharmonic modes. We then highlight the importance of
including the nonlinear interactions to capture the large-scale vortex structures
and eventually the radiated sound. Therefore, in the second set of computation,
a DMD analysis is performed in a fully nonlinear approach, and the results are
provided accordingly.
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Figure 3.1: The parallel base flow considered hereafter is illustrated.

3.1 Direct computation

First, the relevant numerical parameters for the compressible two-dimensional
shear layer are given. The Mach numbers of the high- and low-speed streams
are M1 = 0.12 and M2 = 0.47, respectively. The convective Mach number is
Mc = 0.176. The Reynolds number based on the initial vorticity thickness of
the mixing layer δω(0) = 1.6 × 10−3m and the velocity difference across the
layer ∆U , Re = ∆Uδω(0)/ν is 13692. This parallel tangent hyperbolic profile
is chosen as our base flow and is depicted in Figure 3.1.

To take into account several acoustic wavelengths, the grid is extended in
normal direction. Thus, a Cartesian grid of 441 by 441 grid points in the
x− and y− directions, respectively, is used. The computational domain is
(Lx, Ly) = (290,±300)δω(0) excluding the sponge zone. The grid in x is
uniform with spacing ∆xmin = 0.32δω(0) up to x = 160δω(0). The grid is
then highly stretched in the sponge zone. In the normal direction, the grid is
stretched at 1.8% from ∆ymin = 0.16δω(0) in the shear region around y = 0
to large y = ±300. To absorb outgoing acoustic waves with minimal reflection,
sponge layer defined in (2.20) are employed at the outflow boundary, extending
from x = 160δω(0) to x = 340δω(0). The damping coefficient of the Lapla-
cian filter γmax in (2.20) is chosen as 0.4. The grid resolution is shown in
figure 3.2. The CFL number of the simulation is 1 which gives a time-step
δt = ∆ymin/c∞ = 7.56 × 10−7 s. Note that test cases of the grid indepen-
dence have been performed, and the grid resolution is sufficient for the present
numerical investigation.

To compute directly the sound generated by vortex pairing in a mixing
layer, we force artificially the flow at its fundamental frequency, f0, and its first
subharmonic f0/2, as in the work of Bogey, Bailly & Juvé [20]. The amplitude of
f0 is double that of f0/2 which is the same as their simulation [20]. According
to Kelly’s analysis [60], the phase difference between the two waves is found
to play an important role in the amplification of the subharmonic mode, and
consequently, the nature of the vortex-interaction mechanism. More precisely,
the larger the initial phase difference β is, the slower the coalescence of the two
vortices is. Based on the observation from the temporal simulation of Riley &
Metcalfe ([94]), a vortex-pairing interaction occurs for all values of β apart from
those close to π. And when β is increased, one structure becomes thinner than
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Figure 3.2: Grid resolution for the mixing layer forced at f0 and f0/2. Every
ten points are represented.
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the other during the pairing process. Thus, we choose an intermediary value
β = π/2. The forcing is applied to the streamwise and cross-stream components
of the velocity perturbations, along the plane i = 6, at every time-step:



















u′(x, y) =
(y − y0)

∆y0
Uc

[

α1 sin (ω0t) + α2 sin (
ω0

2
t+ β)

]

Q

v′(x, y) = −
(x− x0)

∆y0
Uc

[

α1 sin (ω0t) + α2 sin (
ω0

2
t+ β)

]

Q

(3.1)

where (x0, y0) = (1.5δω(0), 0) corresponds to the plane i = 6. Note that this
choice is due to the decentered 11-point stencil near the border of calculation
domain. The fundamental frequency f0 is chosen as determined by Michalke
[74] for a hyperbolic-tangent velocity profile: f0 = 0.132Uc/δω(0) = 8250 Hz,
and ω0 = 2πf0 = 51836 rad/s is the associated angular frequency. Hereafter,
the angular frequency will be nondimensionalized with the convection velocity
and initial vorticity thickness δω(0) yielding 0.829 for the fundamental mode.
Likewise, the temporal growth rate ωi and the time t will also be used and repre-
sented in non-dimensional form throughout this thesis. The Gaussian function
is defined as

Q = exp

[

− ln 2
(x− x0)

2 + (y − y0)
2

∆y0
2

]

where its half-width is ∆y0 = 3∆ymin. The amplitudes of these two frequencies
are α1 = 2 × 10−4 and α2 = 10−4, respectively. This method of excitation
enables us to control the vortex pairings in the mixing layer ([107], [30] and
[20]).

An instantaneous vorticity field after the saturated regime in the mixing
near-field region is shown in figure 3.3. The spanwise vorticity plot exhibits ob-
viously the roll up and the fixed vortex pairings. The acoustic pattern shown in
figure 3.5 (a) illustrates the acoustic field resulting from vortex sound generation
mechanism.

The noise production through the nonlinear interaction of instability waves
can be as well captured by means of an acoustic analogy method by using the
near-field source terms calculated from the DNS. In this thesis, the convected
formulation of FW-H analogy is solved as discussed in the chapter 2. Since the
lowest frequency to resolve is f0/2, a transform of length at least 2/f0 is needed,
which corresponds to a pairing period Tapp during which large vortical structures
occur. We run the simulation after the satured regime for a pairing period. The
source is recorded and sampled every timestep in the near-field region extending
from x = 0 to x = 290δω(0) and y = −15δω(0) to y = 15δω(0) in the streamwise
and cross-stream directions, respectively. Here, we show the source data in this
near-field region by plotting the pressure fluctuations in figure 3.4. A regular
Cartesian grid of 101 × 121 points is used for the acoustic mesh grid. The
grid spacings in the x− and y− directions are ∆x = ∆y = 4 × 10−3 m. This
observation region is characterized by a static pressure p∞ = 105 Pa, a density
ρ∞ = 1.22kg/m3 and a speed of sound c∞ = 339 m/s.

The predicted fluctuating pressure from the acoustic analogy in the above
and bottom parts of the far field is shown in figure 3.5 (b). Comparing the results
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Figure 3.3: Total spanwise vorticity field in the near field. Levels from 5×104s−1

to 5× 104s−1.

Figure 3.4: Source data during one pairing sampled from the DNS. Pressure
fluctuations are shown.
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from the DNS (figure 3.5 (a)), the radiation patterns from the acoustic analogy
illustrate also that the acoustic waves emanate from the fixed vortex pairing
locations. In addition, from figure 3.6, we observe a double spiral structure with
four lobes, the sound generation mechanism is identified as a classical rotating
quadrupole source. This is in consistence with the findings of Powell [92] and
Mitchell, Lele & Moin [77], in which the noise production by a co-rotating
vortex pair was investigated theoretically and numerically. The radiated sound
from the acoustic analogy is seen to be well predicted by the acoustic analogy
qualitatively. To gain an insight into a quantitative knowledge of the acoustic
wave propagation in the far field, the sound pressure level, namely directivity,
will be measured in the acoustic far field. It is given in decibel according to

SPL = 20 log10

(

p′rms

p′ref

)

(3.2)

where p′ref = 2 × 10−5 Pa represents the standard reference sound pressure in
the air and p′rms is the root mean square (r.m.s.) values which was integrated
during one pairing period Tapp after the saturated regime. The directivity is
then evaluated by interpolating the values p′rms in the equidistant points on an
arc of radius 110δω(0) from the apparent source location: (x, y) = (64δω(0), 0).
This apparent source location corresponds to the vortex pairing zone which is
responsible for the acoustic radiation ([20]). The directivities from DNS and
using the acoustic analogy are plotted in figure (3.7). For the upper stream,
the peak acoustic radiation appears at θ ≈ 44◦ from DNS calculation while
θ ≈ 46◦ from the acoustic analogy. And the lower angles lobe at θ ≈ −45◦ from
DNS, at θ ≈ −43◦ from analogy prediction. Both the directivity and amplitude
of the acoustic predictions are consistent with DNS results. The predictions
from the acoustic analogy are found to be in good agreement with the acoustic
field from the DNS both qualitatively and quantitatively. As a consequence,
the DNS supplemented with convected formulation of FW-H acoustic analogy
have been used to investigate the sound generated by vortex pairing in a forced
mixing layer, and have been proven to been efficient to capture the acoustic wave
propagation in the far field. We can be confident about the results obtained from
the DNS validated by an appropriate acoustic analogy which are very important
since the reduced-order models will be subsequently constructed from the DNS.

3.2 Linear model: global stability analysis

As mixing layers have shown to act as noise amplifiers which are very sensitive
to external noise (Huerre & Monkewitz [57] and Huerre [54]), a linear model
based on global modes is proposed in order to analyse this classical type of flow.
On may remark that this study is performed on the parallel flow based on the
hyperbolic tangent profile illustrated in section 3.1. A parallel stability theory is
sufficient to determine the most unstable frequency and the corresponding spa-
tial amplification rate. Nevertheless, the aim of the present work is to propose a
general theory without any assumption about the flow configuration. A global
stability analysis is then performed on such a flow and a precise comparison
with a local theory is used to validate our method.
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(a) (b)

Figure 3.5: (a)Fluctuating pressure from DNS. (b) Far-field acoustic predictions
using the convected formulation of FW-H analogy. Levels from −100 Pa to 100
Pa in both figures.



46CHAPTER 3. SINGLE VORTEX PAIRING: FROMA LINEAR TOANONLINEARMODEL

(a) t=0 (b) Tapp/4

(c) Tapp/2 (d) 3Tapp/4

Figure 3.6: Vortex pairing process during one pairing period Tapp in the near-
field mixing region from the DNS. Fluctuating pressures are shown.
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Figure 3.7: Far-field directivity for a radius at 110δω(0) from the noise source
located at x = 64δω(0) and y = 0 from DNS shown in solid line, using the
acoustic analogy shown in dashed line.
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3.2.1 Numerical parameters for linearized DNS

In this first series of calculation, a global stability analysis is used to compute
the asymptotic behaviour of disturbances evolving near the steady-state solution
i.e. the linear perturbation dynamics. For that purpose, the nonlinear terms
in the perturbation convective fluxes (2.12) and (2.13) are neglected. In order
to compute the global modes, a method based on the snapshots sampled from
the linearized DNS is used. Because of the strong convective behaviour of the
instability waves in the flow, 601× 281 grid points in a computational domain
(Lx, Ly) = (130,±90)δω(0) excluding the sponge zone are employed. This choice
allows to include maximum flow dynamics in the streamwise direction. The grid
in x is uniform with spacing ∆xmin = 0.32δω(0) up to x = 130δω(0). The grid
is highly stretched in the sponge zones. In the normal direction, the grid is
stretched at 1.8% from ∆ymin = 0.16δω(0) in the shear region around y = 0
to large ±y. To absorb the eventual outgoing acoustic waves with minimal
reflection in the downstream directions, sponge layers defined in (2.20) are used
at the outflow boundary, extending from x = 130δω(0) to x = 300δω(0). The
damping coefficient of the Laplacian filter γmax in (2.20) is chosen for 0.4. We
have verified that the instability waves corresponding to f0 and f0/2 are resolved
using 25 and 12 grid points, respectively, which are well discretized by our
eleven-point stencil DRP scheme.

3.2.2 Coherent structures associated with the global modes

In this section, coherent structures associated with the global modes are inves-
tigated through the linear stability analysis. These global eigenmodes of the
mixing layer are computed by making use of the Arnoldi algorithm presented in
chapter 2. We first consider the influence of several numerical parameters on the
computation of the global mode decomposition. Then, the noise-amplifier-type
dynamics in a global approach is examined either by a temporal analysis or a
frequency domain analysis.

In modal decomposition analyses, the sampling period ∆t in the input data
sequence is a crucial parameter. The separation should be chosen properly
to reflect the characteristic time scale of the physical flow structures. On one
hand, to avoid aliasing ∆t should be small enough to discretize accurately higher
harmonics in the flow given by the Nyquist criterion. On the other hand, the
temporal separation should not be too close between the consecutive snapshots
since additional snapshots make no further improvement. In this way, ∆t is
chosen as a balance between the time scale and a sufficient temporal separation
of the Krylov vectors to ensure convergence of the iterative method. Based on
these observations, the sampling period in the present investigation is fixed to
∆t = 13δt (recall that δt is the time step from the DNS), which guarantees up
to 2f0 resolution.

Another subtle issue in the computation of global modes by Arnoldi algo-
rithm is the choice of a norm. It is well known that the energy is a convenient
quantity to measure the growth of a disturbance. We thus introduce energy-
based inner products. For incompressible flows, the standard inner product is
directly related to the kinetic energy, the technique is well-known:
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(q̂1, q̂2)E =

∫

Ω

[

1

2
ρb(û1

∗û2 + v̂1
∗v̂2)

]

dV (3.3)

where the superscript ∗ denotes the complex conjugate. Then the square of the
energy norm is defined as

‖q̂‖
2
= (q̂, q̂) = E (3.4)

For instance Day, Mansour & Reynolds [36] used this kind of inner product to
measure the energy of the mode. By contrast, this is not the case for compress-
ible flows, in which no obvious definition of disturbance measures is available.
Indeed, not only the kinematic variables are important, both thermodynamic
and kinematic variables contribute to the total energy, and must be taken into
account. Moreover, how to combine these two variables in a rational way is
not immediately apparent. Some choices of inner products for compressible
flows are considered. For instance, Rowley, Colonius & Murray [96] have intro-
duced a family of energy-based inner products for isentropic flows. By altering
a parameter, they choose to use the integral of the stagnation enthalpy or the
stagnation energy as the norm. In this thesis, we define the following form as
the compressible inner product that includes both kinetic and internal energies.

(q̂1, q̂2)E =

∫

Ω

[

1

2
ρb(û1

∗û2 + v̂1
∗v̂2) +

p̂1
∗p̂2

pb(γ − 1)

]

dV (3.5)

Note that the right-hand side of (3.5) is quadratic. We plot the global modes
spectra resulting from these two inner products using the same dimension of
Krylov subspace N = 180, as shown in figure 3.8. In this figure, the temporal
growth rate ωi of each eigenvalue is less than zero, which means that all of the
modes are temporally damped and hence the flow is globally stable. From a local
point of view, this globally stable flow is locally convectively unstable because
perturbations are constantly transported away from the unstable region. This
flow belongs to the noise amplifier class. The connection between the local
and global theories has been reviewed by Huerre & Monkewitz [57]. It is also
worth noting that the inner product choice has a limited impact on the spectra.
This observation is in accordance with our low-Mach-number flow configuration
(recall that the convective Mach number in question is Mc = 0.176).

Now, the convergence behaviour of the Arnoldi algorithm is illustrated as
the number of snapshots N is increased. The global residual of the algorithm is
displayed in figure 3.9 (a). Again, we notice that the choice of inner products
has no influence on the convergence behaviour of the Arnoldi algorithm. Also,
we observe a rapid convergence : at least 160 snapshots are needed. But, if
we continue to add snapshots to the Krylov suspace, the residual begins to
climb. This may be related to the fact that the Hessenberg matrix is a highly
non-normal matrix, which results in an ill-conditioned eigenvalue problem for
increasing number of snapshots (an overall discussion of non-normal operators
is provided in Trefethen [115]). From figure 3.9 (a), the range from N = 160 to
N = 180 seems to show a good convergence with the residual < 10−10 evaluated
by (2.30). We plot the eigenvalue spectra as the number of snapshots is increased
in this area from N = 180 to N = 200 to N = 220 in figure 3.9 (b). We remark
that, apart from N = 180, the spectra for N = 200 and N = 220 begin to pile
up for high frequencies. High frequencies are not resolved for more number of
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Figure 3.8: Effect of inner product on the eigenvalue spectrum: ♦, incompress-
ible inner product; •, compressible inner product.
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Figure 3.9: (a) Global residual history of the Arnoldi algorithm with respect to
the incompressible inner product (solide line) and compressible inner product
(dashed line) as a function of number of snapshots N . (b) Effect of Krylov
subspace basis of dimension N on the eigenvalue spectrum.

snapshots. Therefore, 180 snapshots appears to be a good compromise between
low and high frequency resolution.

Another important numerical parameter is the choice of streamwise extent.
We now demonstrate how the choice of the domain size in the streamwise di-
rection affects the computed global spectrum. based on empirical observations.
Thus, three domains of lengths Lx = 162, Lx = 192 and Lx = 222, labelled
L1, L2 and L3, respectively are considered. In all cases, the cross-stream extent
is fixed as Ly = 200. Figure 3.10 (a) shows the global spectra obtained for
these three domains. We observe that the temporal growth rate increases as
the streamwise extent is increased as well. This can be explained by the strong
difference in magnitude between the largest and smallest components (more
than about 1010 times in our case, see figure 3.14). This phenomenon can be
caused by the non-normality of the underlying global evolution operator, and
hence strong exponential growth of the global mode eigenvectors displayed in
the streamwise direction. Also, we find that the branch of the global mode spec-
trum is always situated below zero if we continue increasing Lx, but the residual
rises again (see figure 3.10 (b)). This is because as the convective non-normality
of the system also increases, leading to the increasing residual as Lx increases.
These are in consistence with the empirical observations by Heaton, Nichols &
Schmid [49] and Bagheri et al. [7]. Therefore, to obtain the longest domain to
represent the maximum wavelengths of the global mode with a comparatively
good convergence property, L3 turns out to be a good compromise with a global
residual equals to 10−11. Furthermore, the fact that a characteristic length
along streamwise direction is only associated with the size of the computation
domain and not an intrinsic spatial inhomogeneity of the flow leads to a spatial
dependency of the spectrum according to the streamwise length Lx.

Given the above parameter studies, N = 180 snapshots and L3 = 222 seem
to be an appropriate choice for the reference case.

Figure 3.11 show two examples of eigenvectors at two different angular fre-
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Figure 3.10: (a) Eigenvalue spectra for three domain lengths: ◦,L1 = 162; △,
L2 = 192; ♦, L3 = 222. (b) Corresponding global residual history with respect
to the three streamwise domain sizes: L1, L2, and L3.

(a) (b)

Figure 3.11: (a) Streamwise velocity component u′ of the eigenfunction corre-
sponding to the mode at the angular frequency ωr = 2πf0 = 0.852. (b) Stream-
wise velocity component u′ of the eigenfunction associated with the mode at a
higher angular frequency ωr = 1.606.

quencies. The wavelength decreases as the angular frequency ωr increases, which
satisfies the dispersion relation. Moreover, as a consequence of the convective
nature of the instabilities arising in the mixing layer, where disturbances grow
in amplitude as they are convected in the downstream direction, the global
eigenmodes are located far downstream, with the largest flow energy.

3.2.3 Temporal analysis: wavepacket dynamics

To characterize the noise amplifier dynamics which is sensitive to external forc-
ing exhibited by the mixing layer, we distinguish between two main approaches:
the flow response to a wavepacket localized in space and time in the transient
regime, and to a harmonic forcing in the asymptotic regime (Cossu & Chomaz
[31]). In this section, we first consider the flow response to a localized impulse
in a mixing layer. Thus, an initial perturbation of the form
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(a) (b)

Figure 3.12: (a) A snapshot from the DNS at initial time t = 0. (b) Snapshot
of the travelling wavepacket at later time t1 > t = 0. Pressure fluctuations are
illustrated in both figures.

(a) (b)

Figure 3.13: (a) Projected linear response at initial time of the mixing layer to
an initial velocity disturbance localized at (x = 20δω(0), 0). (b) The wavepacket
at later time t1 > t = 0 by using (2.42). Real parts of the pressure fluctuations
are shown in both figures.

u′ (x, y, t = 0) = αUc exp

[

− ln 2
(x− 20)2 + y2

(3∆ymin)
2

]

(3.6)

with amplitude α = 10−10, is introduced into the shear layer at (x = 20δω(0), 0).
The convection velocity is Uc = 100 m/s. Disturbances grow in amplitude and
propagate downstream for increasing time, resulting in the form of a localized
wavepacket. The system (2.23) can be simplified by projecting the linearized
Navier–Stokes equations onto a subpace of dimension m, in which the projected
perturbation field q′(x) = (ρ′, u′, v′, w′, p′)T is governed by the system defined
in (2.23)

We perform a projection onto a set ofm = 30 global modes using the orthog-
onal projection detailed in the previous chapter. The efficiency of the orthog-
onal projection onto the basis of global modes can be illustrated by depicting
the pressure perturbation components in figures 3.12 and 3.13. A snapshot of
the wavepacket resulting from the impulsive streamwise velocity perturbation at
the inlet of the shear layer from the linearized DNS at initial time t = 0 and its
projection are shown in figures 3.12 (a) and 3.13 (a). At later time t1 > t = 0,
the wavepacket is seen to propagate downstream. The advected wavepacket
and its projection obtained from our model (2.42) are shown in figures 3.12 (b)
and 3.13 (b). From these figures, we can see that our orthogonal projection
procedure is very competitive.
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As demonstrated by Cossu & Chomaz [31] in their examination of the linear
stability of the Ginzburg-Landau operator with spatially varying coefficients, the
streamwise non-normality of global eigenmodes resulting from the local convec-
tive instability may produce substantial transient growth of perturbation energy.
This non-normality of the linear evolution operator associated with the stream-
wise separation between the adjoint and direct global modes was first revealed
by Chomaz [28] because of the basic flow advection. The adjoint operator A∗

verifying < qa,Aqb >=< A∗qa,qb > for any qa and qb, the operator A is
non-normal if it does not commute with its adjoint

AA∗ 6= A∗A (3.7)

This short-time, transient behavior often corresponds to a local convective insta-
bility within a local framework. We plot the temporal evolution of the perturba-
tion energy E(t)/E(0) in figure 3.14. It is interesting to point out a considerable
exponential growth of the energy in the initial stage, and again this tendency is
not affected by the choice of the inner products. Through this temporal analysis
by considering the flow response to a localized impulse, we see that no sound
is produced by the subsonic mixing layer within the linear approach. An ad-
ditional nonlinear mechanism is responsible for the acoustic radiation. This is
not the case for the supersonic jet flows where Mach waves can directly radiate
to the far field in the linear regime (Tam & Morris [113], Tam & Burton [110]
and Nichols & Lele [85]).

3.2.4 Analysis in frequency domain: response to harmonic

forcing

Since the mixing layer behaves as a noise amplifier which is very sensitive to
the external forcing, it is then more natural to resort to the frequency domain
to characterize the flow response to the external perturbations by exploring the
spectral content (Alizard [1], Monokrousos et al. [81]). To model this type
of excitation in a global stability approach, a certain external forcing term f is
added to the system resulting from the linearization of the Navier-Stokes (2.23).

Let us consider f = f̂e−iωf t a small-amplitude forcing, characterized by a
forcing angular frequency ωf and the spatial structure f̂ . Concretely, it has the
following form

v′ (x, y, t = 0) = αUc sin(ωf t) exp

[

−
y2

(∆ymin)
2

]

(3.8)

with amplitude α = 10−12, is introduced near the plane i = 6. We shall consider
the flow response q′ governed by the following harmonically forced problem

∂q′

∂t
= Aq′ + f (3.9)

The general solution to this problem consists of a homogeneous and a particular
part

q′ = q′
0e

itA − i(A− ωfI)
−1f̂e−iωf t (3.10)

q′
0 depends on the initial conditions. As all eigenvalues of A are damped tem-

porally, the solution has an asymptotic long-time response
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Figure 3.14: Disturbance energies E(t)/E(0) with respect to the incompress-
ible inner product (solid line) and compressible inner product (dashed line) a
function of time.
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(a) (b)

Figure 3.15: (a) Forcing term. (b) Projected forcing term, demonstration of the
accuracy of the projected forcing term onto the global basis. Real parts of the
normal velocity perturbations are displayed.

q′ = −i(A− ωfI)
−1f̂e−iωf t (3.11)

Similarly to the superposition of global modes, the forcing term is decomposed
in the basis of global modes, and reads

f̂ =

m−1
∑

k=0

Kf
k q̂k (3.12)

Likewise, the flow response can also be decomposed in the basis of global modes:

f̂ =
m−1
∑

k=0

Kkq̂ke
−iωf t (3.13)

where the two coefficients Kf
k and Kk are related by:

Kk =
Kf

k

iωf − iωk

In the asymptotic regime, the response of the flow due to the forcing becomes

q′ = −
m−1
∑

k=0

Kki(A− ωfI)
−1q̂ke

−iωf t (3.14)

We project the forcing term in the orthonormalized basis through an orthogonal
projection as before. The forcing term has been chosen to take the shape of a
wavepacket located at the inlet in the streamwise direction, the cross-stream
components of the velocity perturbation before and after the projection are
shown in figure 3.15. The good agreement between these two implies that the
forcing term has been well projected in the basis of global modes.

To measure the response of a linear system described by A to a harmonic
forcing at a real frequency ωf , we introduce the following quantity

R(ωf ) =
‖q′‖

2

∥

∥

∥
f̂
∥

∥

∥

2 (3.15)

R is defined with respect to the norm induced by either incompressible or com-
pressible inner products defined previously. The response for each frequency
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Figure 3.16: Frequency response to the harmonic forcing. Incompressible inner
product: solide line, compressible inner product: dashed line.

using these two inner products is evaluated in figure 3.16. In both situations,
a pronounced peak for the fundamental frequency ωr = 0.88 is observed as
expected. This phenomenon is in agreement with the local spatial stability
analysis performed by Michalke.

Figure 3.17 and figure 3.18 show the temporal evolutions of the asymptotic
response to the forcing term ωf = 2πf0 and ωf = 2πf0/2 respectively. The
corresponding spatial structures are illustrated. In both situations, no acoustic
radiation is observed.

Certain stability properties of the instability waves, such as the wavelength,
wavenumber or growth rate obtained from the global modes computation can be
validated by performing a local stability analysis. First, the wavelength of the
instability wave at f0 can be obtained by depicting the streamwise evolution
of the real part of its normal velocity perturbations vr

′ along the centerline,
shown in figure 3.19 (a). The corresponding wavelength is thus derived from:
α = 2π/λ = 2π/7.31 = 0.86. Then, the temporal growth rates of f0 and f0/2
are determined by applying a linear regression of |(v′r(x, y = 0)|: 0.27 and 0.19,
shown in figure 3.20 (a). Simultaneously, these instability waves are obtained
by solving the parallel flow linear stability problem at each streamwise location.
It is defined by the following Rayleigh equation in a compressible regime (see
Jackson & Grosch [58] and Criminale, Jackson & Joslin [33]):
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(a) t=0 (b) π/2

(c) π (d) 3π/2

Figure 3.17: Asymptotic response to the forcing term : ωf = 2πf0. Real parts
of the pressure fluctuations at four instants over one cycle are plotted.

(a) t=0 (b) π/2

(c) π (d) 3π/2

Figure 3.18: Asymptotic response to the forcing term : ωf = 2π(f0/2). Real
parts of the pressure fluctuations at four instants over one cycle are plotted.
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Figure 3.19: (a) Real part of the normal velocity perturbations v′r(x, y = 0)
at the fundamental frequency f0 as a function of streamwise distance from the
global modes stability analysis. (b) Wavenumber αr as a function of the angular
frequency ωr from the local stability analysis.

d2p′

dy2
+

[

−
1

ρ0

dρ0
dy

+
2α

(ω − αu0)

du0
dy

]

dp′

dy
+
[

ρ0(αu0 − ω)2Mc
2 − α2

]

p′ = 0

(3.16)
The stability analysis yields the value of the wavenumber for f0: 0.89 (figures
3.19 (b)) and temporal growth rates σ = −αi for f0 and f0/2: 0.24 and 0.19
(figure 3.20 (b)). We find again the forcing angular frequency ωf that leads to
a maximum gain. Given these comparisons, we can conclude that for a given
instability mode (close to the most unstable or the subharmonic mode) the wave-
length and temporal growth rate are correctly predicted by the linear analysis
based upon the global modes. Therefore, the present method is validated and
should be efficient to deal with other flow configurations where the parallelism
hypothesis could not be verified. Nevertheless, one may remark that the diffi-
culty to converge the spectrum was expected since the pioneer work of Cossu
& Chomaz [31]. The latter authors illustrated, through a Ginzburg-Landau
equation, that an increasing of the parallelism of the flow leads to an increase
of the non-normality according to the streamwise direction. As a consequence,
the Jacobian matrix A is more ill-conditioned when the flow is fully parallel.

The eigenmodes behaviour can also be examined by comparing their inte-
grated modal energy from the direct calculation and global stability analysis.
To this end, the energy of the eigenmode of interest from the direct computation
is transformed in frequency domain by means of a Fourier discrete transform,
and instability wave energies are computed accordingly

q̂(x, y, ωm) =
1

N

N−1
∑

j=0

q′ (x, y, tj) e
−iωmtj (3.17)

The period T = 2π/ωm at the frequency of interest ωm is discretized by N sam-
ples. This procedure is achieved by using DFT Lapack library. The instability
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Figure 3.20: (a) Global modes analysis: logarithmic plots of the streamwise
evolution of the real part of the normal velocity perturbations |(v′r(x, y = 0)| for
frequencies f0 and f0/2. Linear regressions are depicted in long dashed lines.
(b) Local stability analysis: temporal growth rate versus the angular frequency.

wave energy is computed by every portion in x− direction using (3.3). The local
measure of the perturbation energy E at each streamwise station obtained from
the fully nonlinear DNS is displayed in figure 3.21. Focused on the linear stage,
we see that the two instability waves associated with f0 and f0/2 grow both
exponentially. However, f0 grows with more energy and more abruptly than
f0/2. This tendancy is in good agreement with the behaviours of eigenmodes
observed in figure 3.20 (a). One may observe that, beyond the initial exponen-
tial growth region, both of the eigenmodes begin to saturate once they join the
nonlinear stage of the flow.

Now we will see if this linear model produces sound when combining the
two frequencies f0 and f0/2. Figure 3.22 shows the asymptotic response to this
combined forcing through the total spanwise vorticity. No pairing phenomenon
is observed. Thus we can conclude that the linear global modes analysis fail to
model the vortex pairing mechanisms and consequently to predict the acoustic
radiation. It appears that the nonlinearity must be incorporated to obtain an
accurate description of vortex pairing process. The vital implications of non-
linear effects have also been observed by Cheung & Lele [26], who compared
the linear PSE with or without the mean flow correction and nonlinear PSE
simulations of a two-dimensional mixing layer. Nevertheless, we should recog-
nize the efficiency of the global modes stability analysis in predicting stability
characteristics for any flow configurations. The DMD analysis will be performed
within a fully nonlinear framework in the next section.

3.3 Nonlinear model: DMD analysis

The above linear global stability computation in which only the linear effects
are accounted for has been proven to be insufficient to capture accurately the
shear layer dynamics and consequently its acoustic behaviour. The inclusion
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Figure 3.21: Modal energy E for the fundamental mode f0 and first subharmonic
f0/2 with Fourier analysis from the fully nonlinear DNS calculation.

Figure 3.22: Asymptotic response to the combined forcing for f0 and f0/2. Total
spanwise vorticity are shown.
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N f0/2 f0 3f0/2 2f0
100 0.416 0.831 1.247 1.663
150 0.416 0.834 1.249 1.667
200 0.418 0.837 1.248 1.664
250 0.417 0.835 1.252 1.672
300 0.417 0.834 1.258 1.667

Table 3.1: Peak values of the angular frequency ωr as the number of snapshots
N is increased from 100 to 300 using the compressible inner product.

of nonlinear interactions between modes seems necessary to recover both the
hydrodynamics and aeroacoustics of the mixing layer. As pointed out in chapter
2, the nonlinear model consists in carrying out the DMD analyses within a
temporal and spatial framework. The dynamic information associated with the
coherent structures extracted from these two analyses will thus be illustrated.

3.3.1 DMD analysis within a temporal framework: coher-

ent structures extraction

The analysis is performed for the entire domain. 300 snapshots of the density,
velocity and pressure fluctuations at a sampling rate ∆T = 1.36 × 10−5 s are
saved during the direct computation. This sampling rate corresponds to 17
samples per pairing period Tapp and ensures especially the resolution of higher
harmonics in the flow. As we are in compressible flow regime, both incompress-
ible and compressible inner products defined in (3.5) will be tested in the DMD
algorithm. Tables 3.1 and 3.2 list the dominant values of angular frequency ωr

when the number of snapshots N is increased from 100 to 300 by using these
two inner products. We observe that each peak frequency is almost stagnant
and the choice of norm does not affect the values of the maximum frequencies.
The latter remark is in consistence with the fact that we are in presence of a
low-Mach-number flow (Mc = 0.176 in our flow configuration). Afterwards, 300
snapshots and the incompressible inner product will be used. The eigenvalues
are displayed in figure 3.23 (a). Nearly all the Ritz values are found to lie on
the unit circle |λj | = 1, which means that the sample points lie on or near an
attracting set. Figure 3.23 (b) plots the energies of the extracted modes as a
function of the frequency. Since the Koopman eigenvalues appear in complex
conjugate pairs, we only show their positive parts. Each mode represented by its
norm is depicted with a vertical line. The peak frequencies containing highest
energy are then identified and marked with the symbols 1, 2, 3, 4, which have
the same colouring as in the eigenvalues plots. These peak modes are referred as
to the the first subharmonic f0/2, the fundamental mode f0, the harmonic 2f0,
and marked 1, 2 and 4, respectively. Higher modes are also excited because of
all linear combinations of the frequencies, for instance, the nonlinear interaction
of f0/2 and f0 results in 3f0/2 marked 3 and so on.

These four representative Koopman modes as well as the mode 0 corre-
sponding to the mean perturbation will be projected onto the initial DNS data
to obtain their respective weight:
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N f0/2 f0 3f0/2 2f0
100 0.416 0.831 1.247 1.663
150 0.416 0.834 1.250 1.667
200 0.418 0.842 1.248 1.667
250 0.417 0.835 1.252 1.672
300 0.417 0.834 1.258 1.672

Table 3.2: Peak values of angular frequency ωr as the number of snapshots N
is increased from 100 to 300 by using the incompressible inner product.
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Figure 3.23: DMD analysis performed over the entire computational domain
using 300 snaphots: (a) Ritz values λj . (b) Energy spectrum of the Koopman
modes at each angular frequency ωr. In both figures, the Ritz values associated
with the most energetic modes are marked with 1, 2, 3 and 4, respectively.
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Figure 3.24: The real part of the vorticity fluctuations for the Koopman mode
at zero frequency is depicted.

P = (q′,q′
0) (3.18)

where (, ) represents the incompressible inner product defined in (3.3). q′ is
any projected Koopman mode onto the initial data q′

0 from the DNS. The
Koopman mode associated with the zero frequency is shown in figure 3.24. One
may observe that it corresponds to the mean deformation of the perturbation
due to nonlinear effects. It has for consequence to increase the mean vorticity
thickness of the mixing layer along the streamwise position. As expected, no
acoustic radiation is observed for this particular mode.

The projected modes in both the entire and the near-field domains are dis-
played using the pressure fluctuations component in figures 3.25, 3.26, 3.27 and
3.28, respectively. We immediately observe that the acoustic waves at f0/2 em-
anate from the region where the pairings occur (figure 3.25). Besides, the modes
f0, 3f0/2 or 2f0 produce little far-field noise (see levels in figures 3.26, 3.27 and
3.28), compared to the mode at f0/2. Therefore, the first subharmonic mode
contribute mainly to the acoustic radiation in the mixing layer. An another ob-
servation is also made: when forcing the flow with f0 and f0/2, these structures
associated with the Koopman modes can radiate sound directly to the far field
which totally differ from the global modes from the linear analysis. Therefore,
the DMD analysis in this nonlinear approach appears a relevant tool to describe
accurately the aeroacoustics of the mixing layer.

Now, to assess the ability of the DMD analysis to describe the spatial and
temporal structures, the associated dispersion relation that relates frequencies
of waves to their corresponding wavenumbers will be examined through a local
stability analysis. We first consider the evolutions of the two dominant modes
f0/2 and f0 by plotting the modal energy defined in (3.3) as a function of x.
The results are shown in figure 3.29. In the linear region before the vortex roll
up, the growth of f0 dominates over f0/2. And for each of the fundamental
and first subharmonic this exponential growth of the energy is followed by sat-
uration and then decay. The saturation of the fundamental frequency, f0, and
its subharmonics f0/2 occurs near x = 35, 60, respectively. The developments
of these modes can also be confirmed by depicting the streamwise variations
of their pressure perturbations inside the sheared near-field region (along the
centerline y = 0), shown in figures 3.30 and 3.31, respectively. During the ini-
tial linear exponential growth region, the mode f0 exibits a stronger growth
rate than that of f0/2. Then, the wavelength of the instability waves at the
frequency of interest is obtained through a spatial Fourier analysis. The cor-
responding wavenumber αr can be derived from the relation: αr = 2π/λ. In
this way, the dispersion relation can be illustrated by plotting the wavenumber
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(a)
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Figure 3.25: (a) Real part of the pressure fluctuations for Koopman mode at
f0/2. Levels are shown from −80 Pa to 80 Pa. (b) A zoom in of this mode
inside the near-field region.
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(a)

(b)

Figure 3.26: Real part of the pressure fluctuations for Koopman mode at f0.
Levels are shown from −30 Pa to 30 Pa. (b) A zoom in of this mode inside the
near-field region.
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(a)

(b)

Figure 3.27: Real part of the pressure fluctuations for Koopman mode at 3f0/2.
Levels are shown from −20 Pa to 20 Pa. (b) A zoom in of this mode inside the
near-field region.
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(a)

(b)

Figure 3.28: Real part of the pressure fluctuations for Koopman mode at 2f0.
Levels are shown from 5 Pa to 5 Pa. (b) A zoom in of this mode inside the
near-field region.
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αr as a function of the angular frequency ωr varying from f0/2 to 2f0, shown
in figure 3.32. At the same time, we use the compressible Rayleigh equation in
(3.16) to describe the instability waves of the shear layer. The stability analysis
is performed on the actual mean profile measured from the DNS rather than
the hyperbolic tangent profile. Note that Rowley, Colonius & Basu [95] found
a good agreement between the linear stability calculations with respect to the
DNS mean flow velocity profiles and the DNS in his investigation of cavity flow
oscillation. In our case, we proceed in two regions separately: one is in the
principal exponential growth region of f0, say 0 < x/δω(0) < 20, one is in the
region where f0/2 dominates: 30 < x/δω(0) < 36. The isocontours of the tem-
poral growth rate σ and wavenumber αr as a function of the frequency and the
streamwise location inside the first region, are depicted in figure 3.33 and 3.34,
respectively. During the first region, nearly all the maximum temporal growth
rates tends towards the value of angular frequency ≈ 0.88 corresponding to the
value of f0. The value agrees quite well with ωr ≈ 0.83 derived from the figure
3.32. The most unstable instability waves develop at the frequency f0 as the
mixing layer evolves downstream. In the second region, figure 3.35 gives the
angular frequency of the most unstable instability waves: f0/2 ≈ 0.4, which is
the dominant mode this time. The wavenumbers from DMD and local stability
analyses compare also well. The temporal growth rates are found to decrease
with respect to the streamwise station, this can be explained by the saturations
of their instability waves. The behaviours of these waves can be validated by
the mean streamwise velocity plot in the near-field region of the mixing layer,
shown in figure 3.37. The thickness of the layer is basically seen to double in
the vicinity of the locations where the pairings occur. This nonparallelism of
the mixing layer confirm our choice of the stability analysis on the real mean
flow. Based on the above examinations, we can conclude that the Koopman
modes responsible to describe the dynamics of large-scale vortical structures
are accurately calculated by the DMD analysis.

3.3.2 Reconstruction of the flow dynamics through the

DMD analysis

Until now, we have demonstrated that the DMD analysis was capable of describ-
ing accurately the coherent structures associated with the Koopman modes. In
this section, we wish to reconstruct the entire shear layer dynamics in both the
near and far fields. Considering the non-orthogonality of the Koopman modes,
an orthogonal projection onto the Koopman modes basis will be employed, as
used in the linear global modes analysis. By increasing gradually the number
of modes m, we show for instance the time traces of the pressure fluctuations
at the pairing location (x, y) = (64δω(0), 0) during 3 pairing periods (figure
3.38). It is seen that the difference between DNS and DMD calculations be-
comes smaller when the number of modes m involved in the recovery procedure
is increased. In particular, the temporal evolution of the pressure p′(t) can be
almost recovered by the DMD analysis with 50 modes superimposed on the
zero-frequency mode (Cheung & Lele [26]). This mean flow correction is the
mode at zero frequency, which has been shown to play an important role in the
flow dynamic and thus should be taken into account (Noack et al. [87] and Sipp
& Lebedev [103]). Besides, we have verified that the addition of the base flow
to this zero-frequency mode yields the real mean flow. Furthermore, the need
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Figure 3.29: Streamwise evolution of energies E of the dominant modes at f0/2
and f0. Modal energy for the fundamental mode f0 in dashed lines, the first
subharmonic mode f0/2 in solid line.
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Figure 3.30: Streamwise evolution of the fluctuating pressure p′(x) along the
centerline y = 0 for the Koopman mode f0/2 . Perturbations from DNS are
shown in solid line, perturbations from DMD are depicted in dashed line.
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Figure 3.31: Streamwise evolution of the fluctuating pressure p′(x) along the
centerline y = 0 for the Koopman mode f0. Perturbation from DNS are shown
in solid line, perturbations from DMD are depicted in dashed line.
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Figure 3.32: The wavenumber αr is plotted as a function of the angular fre-
quency ωr. The four dominant modes are indicated in circles.
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Figure 3.33: Isocontours of temporal growth rate σ as a function of the angular
frequency ωr and streamwise position x/δω(0).
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Figure 3.34: Contours of constant wavenumber αr as a function of the angular
frequency ωr and streamwise position x/δω(0).
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Figure 3.35: Contours of constant temporal growth rate σ as a function of the
angular frequency ωr and streamwise position x/δω(0).
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Figure 3.36: Isocontours of wavenumber αr as a function of the angular fre-
quency ωr and streamwise position x/δω(0).
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Figure 3.37: Mean streamwise velocity contours in near-field mixing region.
Contour values are 44, 52, 68, 100, 132, 148, 152 m/s.
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Figure 3.38: Time history of the pressure fluctuations p′(t) at the pairing loca-
tion (x, y) = (64δω(0), 0). In red, from DNS calculation; in orange, mode 1; in
green, mode 1 and 2; in blue, mode 1, 2 and 3; in violet, mode 1,2, 3 and 4; in
black, with 50 modes.

to account for the higher harmonics and modal interaction becomes apparent
to recover the full underlying flow dynamics.

Moreover, the influence of the number of modes m on the flow dynamics
reconstruction can be ascertained by defining a residual r that is based on the
difference between the projected quantity q′ whatsoever the density, velocity
or pressure fluctuations, and the initial snapshot of perturbations q′

0 obtained
from DNS:

r =
‖ q′ − q′

0 ‖

‖ q′
0 ‖

(3.19)

The residuals r with respect to the streamwise velocity and pressure fluctuation
are thus plotted in figures 3.39 and 3.40, respectively. The residuals are observed
to drop significantly with the increase of the number of the modes. Especially,
the two plots fall abruptly when adding the 22-th mode to the reconstruction
procedure. There is no specific meaning for this mode. This phenomenon may
be understood by the fact that sometimes to obtain a better projection addi-
tional information shall be added to the spatial support of the Koopman modes
basis. Satisfactory results for 50 modes are obtained: r ≈ 10−4 for the stream-
wise velocity perturbations u′ and r ≈ 10−2 for the pressure perturbations p′.
Beyond 50 modes, the residuals reach a plateau where no further improvement
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Figure 3.39: Residual history of the streamwise velocity fluctuation u′ as a
function of number of Koopman modes m used in the projection.

is present with additional modes. Therefore, 50 modes will be used hereafter in
the following investigation.

As before, we first examine the ability of the DMD analysis to capture the
hydrodynamic motions in the near field. A qualitative assessment of the vortex
pairing mechanism is provided by the total spanwise vorticity plots at four
successive equidistant instants during one period in figure 3.42. When the results
from the nonlinear DMD calculations (figure 3.41) are compared against their
directly computed counterparts, we see that both the roll-up and vortex pairing
events seem to be quite well predicted by the DMD analysis. Cross-sections of
the fluctuating pressure along the centerline (y = 0) in figure 3.43 provides a
more quantitative examination of the spatial hydrodynamic behaviour of the
mixing layer. Moreover, the temporal behaviour can be illustrated by plotting
the fluctuating pressure at the center of the computational domain (70δω(0), 0)
during five pairing periods in figure 3.44. From these figures, we can conclude
that both the spatial and temporal behaviours of the mixing layer in the near-
field are well predicted by the DMD computation.

We have examined the aerodynamic behaviour provided by the DMD com-
putation. Now, it is of interest to investigate the acoustic behaviour prediction
in the far-field. The pressure perturbations from DNS serving as the reference
is plotted in figure 3.45 (a). The projected fluctuating pressure from DMD is
depicted in figure 3.45 (b). We see that the acoustic patterns are very simi-
lar by using the same levels and that acoustic waves emanate from the same
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Figure 3.40: Residual history of the pressure fluctuation p′ as a function of
number of Koopman modes m used in the projection.
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Figure 3.41: Follow-up of the vortex pairing at four successive equidistant in-
stants during one pairing period in the near-field mixing region from DNS. Total
spanwise vorticity is shown. Levels from −5× 104 /s to 5× 104 /s.
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Figure 3.42: Follow-up of the vortex pairing at four successive equidistant in-
stants during one pairing period in the near-field mixing region from DMD.
Total spanwise vorticity is shown. Levels from −5× 104 /s to 5× 104 /s.



3.3. NONLINEAR MODEL: DMD ANALYSIS 83

X/δw(0)

p’

0 50 100 150 200

-8000

-4000

0

Figure 3.43: Cross-section of the pressure perturbations p′(x) at the centerline
y = 0. Perturbations from DNS are shown in solid line, perturbations from
DMD are depicted in circles.
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Figure 3.44: Cross-section of the pressure fluctuation p′(t) at the center of the
domain (70δω(0), 0) during five pairing periods. Perturbations from DNS are
shown in solid line, perturbations from DMD are depicted in circles.
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(a) (b)

Figure 3.45: (a) Acoustic far field from DNS. (b) Acoustic far field from DMD.
Pressure fluctuations are shown in the physical domain. Levels from −150 Pa
to 150 Pa in both figures.

apparent source location: (x, y) = (64δω(0), 0). The direction and intensity of
acoustic waves can be further illustrated by plotting the sound pressure levels
(SPL). The r.m.s. values of the fluctuating pressure used in the SPL evaluation
is advanced in time during one pairing period. By interpolating the values of
p′rms at the equidistant points on an arc of radius 110δω(0) from the apparent
source location (x, y) = (64δω(0), 0). From figure 3.46, the DMD reconstruction
is in good agreement with the DNS both in term of magnitude and direction of
the acoustic fronts in the two streams.

This acoustic behaviour is further explored by considering cross-sections of
the pressure p′ in the x domain. In figure 3.47, the streamwise evolution of
the pressure is depicted in the far field, say y = 110δω(0). We see that the
DMD computation predicts well the pressure radiated to the far field, while the
predictions from nonlinear PSE calculation conducted by Cheung & Lele [26]
in their study of acoustic radiation of compressible mixing layers diverged from
their direct calculation by an order of magnitude. Similarly, cross-sections of
the pressure in y domain at various streamwise stations are also plotted. Three
positions are studied: at a point upstream of the vortex pairing location, the
cross-stream pressure p′(y) is shown in figure 3.48. The direct calculation and
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Figure 3.46: Far-field directivity for a radius at 110δω(0) from the noise source
located at x = 64δω(0) and y = 0 from DNS (solid line), from DMD (dashed
line).
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Figure 3.47: Streamwise evolution of the pressure perturbations p′(x) at y =
110δω(0). Perturbations from DNS are shown in solid line, perturbations from
DMD are depicted in circles.

DMD calculation both agree in the near field region (|y| < 20). Then, near
the vortex pairing location, the cross-stream pressure |p′(y)| is considered at
x = 64δω(0) (figure 3.49). The far-field behaviour of the pressure agrees well
between the two methods of calculation. At last, further downstream of the vor-
tex pairing location, for instance at x = 120δω(0) in figure 3.50 the DMD pro-
jection and direct calculations of the far field coincide. Given the considerations
of p′(y) at these three representative locations, DMD method seems to capture
well the acoustic behaviour of the mixing layer. Again, the pressure calculated
by nonlinear PSE in Cheung & Lele [26] was reported approximately two orders
of magnitude smaller than their direct calculations further downstream of the
vortex pairing location. Finally, the temporal behaviour of pressure perturba-
tions in the far-field region (y = 110δω(0)) is plotted in figure 3.51. The pressure
signal is seen to be fairly comparable to its directly computed counterpart.

3.3.3 Acoustic radiation from combined DMD-acoustic anal-

ogy

In the previous sections, the accuracy of the DMD analysis in predicting cor-
rectly the shear layer dynamics and the resulting acoustic radiation were as-
sessed. In this section, inspired by the work of Kierkegaad et al. [62] in which
they used a set of global modes as source data to obtain the far-field acoustic
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Figure 3.48: Cross-stream fluctuating pressure |p′(y)| around the roll-up loca-
tion: x = 30δω(0). Perturbations from DNS are shown in solid line, perturba-
tions from DMD are depicted in circles.
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Figure 3.49: Cross-stream pressure |p′(y)| at the vortex pairing location: x =
64δω(0). Perturbations from DNS are shown in solid lines, perturbation from
DMD are depicted in circles.
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Figure 3.50: Cross-stream pressure |p′(y)| at a point further downstream of the
vortex pairing location: x = 120δω(0). Perturbations from DNS are shown in
solid line, perturbations from DMD are depicted in circles.
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Figure 3.51: Temporal evolution of the pressure fluctuation p′(t) taken at
x = 64δω(0), y = 110δω(0). Perturbations from DNS are shown in solid line,
perturbations from DMD is depicted in circles.
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prediction, we will combine the DMD approach with an acoustic analogy, and
properly capture the acoustic wave propagation. The acoustic field is obtained
by solving an acoustic analogy with necessary source terms determined from the
near-field data of the DMD analysis. First of all, we should verify the accuracy
of the source terms information in the near-field. To this end, we perform a
DMD analysis only inside the near-field subdomain. The subdomain used here
is identical to that has been used for the acoustic analogy from DNS data in
section 3.1. We proceed as the DMD analysis in the entire domain. 300 snap-
shots are saved in the subdomain. The choice of the inner product has been
shown to have no effect on the computation. We thus adopt the incompressible
inner product for simplicity. When varying the number of snapshots N from
100 to 300, dominant values of the angular frequencies are listed in Table 3.3.
Peak frequencies are found to remain nearly the same with the increasing num-
ber of snapshots. Also, these frequencies peak at the rather similar locations
compared to Table 3.2. The number 300 will be used hereafter. The eigenvalues
as well as the energy spectra for N = 300 are then shown in figure 3.52 (a)
and (b), respectively. These plots are very similar to those obtained from the
DMD computation in the full domain. That is, four most energetic Koopman
modes are identified as before: f0/2, f0, 3f0/2 and 2f0. These modes are then
projected onto the initial DNS snapshot as (3.18). The projected modes are
shown in figures 3.53, 3.54, 3.55 and 3.56. The spatial structures seem to follow
those obtained from the DMD analysis performed in the entire domain by using
the same levels. The spatial and temporal evolutions of the instability waves in
the mixing layer are further examined by comparing the results from the DNS
and the DMD computations. The first comparison in figure 3.57 depicts the
reconstructed roll up and vortex pairing events during one pairing period. The
results resemble closely those computed directly by the DNS, shown previously
in figure 3.41. The second comparisons shown in figures 3.58 and 3.59 plot the
streamwise and temporal evolutions of the fluctuating pressure inside the near-
field region. Once again, both DMD and direct calculations agree in the spatial
and temporal evolutions in the near-field subdomain. Given these comparisons,
we see that in the near-field region of the flow, the coherent structures associ-
ated with Koopman modes are well predicted by the DMD analysis performed
over only the near-field domain. We therefore attempt to capture the acous-
tic wave propagation generated by these structures in this so-called combined
DMD-acoustic analogy approach. The acoustic grid resolution in the observa-
tion region is fixed as in the acoustic analogy from DNS. The source input data
from the DMD computation is stored during one pairing period in the subdo-
main. The obtained acoustic radiation patterns is shown in figure 3.60 (b), and
agree qualitatively with figure 3.60 (a) from the directly computed mixing layer.
In addition, the vortex sound generation mechanism is well identified.

To further explore the acoustic behaviour, the far-field directivity is evaluted
as determined by (3.2). In figure 3.61 the acoustic pressure in the far field
is plotted against the angle between the observation point at a distance of
110δω(0) from the apparent source origin. The directivity is strongly peaked
near θ ≈ 45◦ and θ ≈ −41◦ in the high- and low-speed streams respectively.
When compared to the equivalent directivity plots from the direct calculations,
the agreement is satisfactory. We therefore conclude that the Koopman modes
obtained from the DMD analysis in the subdomain describe well the instability
waves responsible for the acoustic radiation, which have been validated by the
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N f0/2 f0 3f0/2 2f0
100 0.416 0.832 1.247 1.663
150 0.416 0.834 1.251 1.667
200 0.418 0.838 1.249 1.664
250 0.417 0.835 1.252 1.665
300 0.417 0.834 1.258 1.667

Table 3.3: Dominant values of angular frequency ωr as the number of snapshots
N is increased from 100 to 300 using the incompressible inner product.
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Figure 3.52: DMD analysis performed over the near-field subdomain using 300
snaphots: (a) Ritz values λj . (b) Energy spectrum of the Koopman modes at
each angular frequency ωr. In both figures, the Ritz values associated with the
most energetic modes are marked with 1, 2, 3 and 4, respectively.

Figure 3.53: The Koopman mode at f0/2 using the pressure fluctuations. Levels
from −80 Pa to 80 Pa.

Figure 3.54: The Koopman mode at f0 using the pressure fluctuations. Levels
from −30 Pa to 30 Pa.
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Figure 3.55: The Koopman mode at 3f0/2 using the pressure fluctuations. Lev-
els from −20 Pa to 20 Pa.

Figure 3.56: The Koopman mode at 2f0 using the pressure fluctuations. Levels
from −5 Pa to 5 Pa.

Figure 3.57: Follow-up of the vortex pairing in the near-field mixing region from
DMD. Total spanwise vorticity is shown. Levels from −5× 104 /s to 5× 104 /s.
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Figure 3.58: Streamwise development of the velocity perturbations v′(x) along
the centerline y = 0. Perturbations from DNS are shown in solid line, pertur-
bations from DMD are depicted in circles.
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Figure 3.59: Temporal evolution of the pressure fluctuation p′(t) taken at the
center of the computational domain (70δω(0), 0). Perturbations from DNS are
shown in solid line, perturbations from DMD are depicted in circles.
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Figure 3.60: (a)Fluctuating pressure from DNS. (b) Far-field acoustic predic-
tions. Real part of the pressure perturbation using the acoustic analogy. Levels
from −100 Pa to 100 Pa in both figures.
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Figure 3.61: Far-field directivity for a radius at 110δω(0) from the noise source
located at x = 64δω(0) and y = 0 from DNS (solid line), using the acoustic
analogy from DMD (dashed line).

acoustic analogy. The DMD method provides a relevant tool to capture the
underlying flow dynamics. For the purpose of examining the radiated sound
field and thus its link to the coherent structures in the near field, a DMD
analysis within a spatial framework appears appropriate because of the spatial
evolution of the linear acoustic wave propagation in the far field.

3.3.4 DMD analysis within a spatial framework

In this section, we are interested in the capability of the DMD method within
the spatial framework based on the data gathered by DNS to capture the un-
derlying flow dynamics. As noted in chapter 2, the snapshot sequence may be
represented in space instead of in time. To better reveals acoustic characteristics
of the mixing layer, such as the wavelength, the directivity, our investigation
is performed over the polar coordinates (R, θ) rather than the Cartesian co-
ordinates (x, y). The priviliged direction x is then the radial direction R of
the propagating acoustic waves, the propagator is then B(∆R). The passage
from the polar to Cartesian coordinates is achieved by applying a second-order
spline interpolation. The center of the polar coordinates is chosen located near
the apparent source location: (64δω(0), 0). In this way, the extraction of the
snapshots are performed in (θ− t)- plane between two consecutive raidal direc-
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tion along R. The spatial DMD analysis proceed in the top and bottom parts
of the computational domain. The extracted zones are shown in black line in
figure 3.62. The zone in the top domain extends over 60 ≤ R/δω(0) ≤ 240,
35◦ ≤ θ ≤ 70◦, and the zone extracted from the bottom domain extends over
60 ≤ R/δω(0) ≤ 240, −100◦ ≤ θ ≤ −15◦. Each of the extracted zones can
cover essentially 3 wavelengths and the principal angles of the directivities. In
both computations, a regular distance of ∆R = 1.818 between two consecutive
snapshots is considered. The spatial spectra resulting from the top and bottom
domains are displayed in figure 3.63, in which the spatial growth rates σ of the
acoustic waves are plotted versus the wavenumber αR. For both cases, all of the
Koopman modes are seen to attenuate spatially, and the least damped modes
in the two domains are indicated with a vertical dashed line in the spectra. The
wavenumber associated with these modes is αR = 0.1, and their wavelength is
given by λ = 2π/αR = 2π/0.1 = 60. This wavelength seems to be close to
that of the principal emerging propagating acoustic waves, shown in figure 3.62.
The corresponding Koopman modes are shown in figures 3.64 (a) and 3.65 (a)
by plotting the density perturbations in (θ − t)- plane. The spatio-temporal
evolutions of acoustic fluctuations in the far field are thus clearly illustrated.
One may observe that the slope of these perturbations is non zero but constant
along the time, which gives an angular velocity of the acoustic perturbations for
a given wavenumber αR: dθ/dt. This is due to convection effects of the acous-
tic waves and refraction effects by the velocity gradient in the near-field shear
layer. Similar behaviour is observed in the bottom part with the opposite sign
of the angular velocity. Furthermore, the dominant frequencies of the acoustic
waves are obtained by Fourier transforming the density fluctuations ρ′ in time.
Figures 3.64 (b) and 3.65 (b) show that both values peak near ωr ≈ 0.41 which
corresponds to the frequency of f0/2. The directivity of the maximum magni-
tude of the acoustic waves peaks around θ ≈ 50◦. This may be attributed to
the main direction of the acoustic waves propagation in a global viewpoint, that
is to say, inside the focused zones shown in figure 3.62. From a local point of
view, the spatio-temporal evolution of the acoustic perturbations is illustrated
by considering three different radial locations: R/δω(0) = 60, R/δω(0) = 150
and R/δω(0) = 240 inside the bottom domain, as shown in figure 3.66 (a),
(b) and (c), respectively. We may observe that the velocity of the propagation
remains nearly the same and the directivity of acoustic waves varies with the
considered location. In either case, this represention in space and time gives us
a general information about the main direction of acoustic waves, then this is
in qualitative agreement with the directivities previously evaluated at the pair-
ing location and a certain distance from this source obtained from DNS and
DMD computations. The relationship between the spatial structures in the far
field and in the near-field is then established. Through the above DMD analy-
ses in two distinct approaches, the dynamics of the mixing layer has been well
described by the extracted Koopman modes. A fraction of the flow dynamics
captured in the near field is sufficient for the entire flow reconstruction.
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Figure 3.62: Extracted zones used in the spatial DMD analysis are shown in
black lines.
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Figure 3.63: Spatial spectra from the spatial DMD analysis performed in top
and bottom domain are shown in filled circles and triangles. The spatial growth
rate σ is plotted versus the wavenumber αR. The modes with the wavenumber
αR ≈ 0.1 correspond to the mode f0/2 (dashed line).
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Figure 3.64: (a) Spatial DMD analysis performed in the top domain: the dom-
inant frequency is f0/2, we associate this spatial structure with f0/2. Density
perturbations are plotted as a function of the angle θ and time t. (b) The dom-
inant frequency detaches near f0/2 through the Fourier transformed density
fluctuations in time.
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Figure 3.65: (a) Spatial DMD analysis performed in the bottom domain: the
dominant frequency is f0/2, we associate this spatial structure with f0/2. Den-
sity perturbations are plotted as a function of the angle θ and time t. (b) The
dominant frequency detaches near f0/2 through the Fourier transformed density
fluctuations in time.
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Figure 3.66: Space-time evolution of the acoustic perturbations considered at
(a) R/δω(0) = 60; (b) R/δω(0) = 150; (c) R/δω(0) = 240 in the bottom domain.



Chapter 4

Double vortex pairings

In the previous chapter, the noise produced by only one single vortex pairing in
the mixing layer has been investigated. We indicated that the nonlinear DMD
analysis could accurately predict both the near-field hydrodynamic behaviour
and the far-field acoustic radiation in the temporal and spatial approach. It
is worth noting that the shear layer dynamics is predominantly very complex
because of its strong dependence of the external noise. In this chapter we
wish to obtain a more complex flow configuration. Following Colonius, Lele &
Moin [30], we can obtain double vortex pairings by exciting the mixing layer
with a combination of 4 frequencies. The results from the DNS will be first
presented. Then, a fully nonlinear DMD analysis within both a temporal and
spatial framework will be accomplished. We will see if the DMD method is an
appropriate tool for the prediction of the underlying flow dynamics in a more
complex situation.

4.1 Direct computation

The flow parameters for this computation remain the same as in the one single
pairing case: the convective Mach number remains Mc = 0.176. Inspired by
the work of Colonius, Lele & Moin [30], the simulation is designed such that
four modes of the mixing layer could be simultaniously excited, that is, the
fundamental frequency f0 and its three subharmonics: f0/2, f0/4 and f0/8.
The excitation is achieved by introducing the following perturbations on the
streamwise and cross-stream velocity components at every time-step:
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(4.1)

where (x0, y0) = (1.5δω(0), 0) corresponds to the forcing location i = 6, and
ω0 = 2πf0 is the angular frequency of the fundamental mode. The half-width of
the Gaussian function is ∆y0 = 3∆ymin, and the combination of the frequencies
f(t) is applied as follows

103
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Figure 4.1: Vorticity field in the near-field sheared region. Levels: min: −5×104

/s, max: 5× 104 /s.
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Based on our empirical tests, the amplitudes of these four frequencies and the
phase shifts of the subharmonics relative to the phase of the fundamental have
been ajusted such as to obtain two different vortex pairings. The amplitudes
are α1 = 2× 10−4, α2 = 10−4, α3 = 5× 10−5 and α4 = 2.5× 10−5, respectively,
and the phase differences are: β1 = π/2, β2 = π and β3 = 3π/2 for f0/2, f0/4
and f0/8, respectively. The computational domain should be long enough to
take into account additional second pairings further downstream. It extends to
x/δω(0) = 250 in the streamwise direction resolved with 801 grid points, not
including the sponge zone. An instantaneous vorticity field after the saturated
regime in the mixing near-field region is shown in figure 4.1. Not only the
roll up and the first fixed vortex pairings are exhibited, three subsequent pairs
of larger vortices are also present further downstream. Figure 4.2 shows the
resulting radiated sound by plotting the fluctuating pressure in the far field.
Even though acoustic patterns appear less clear compared to the single pairing
case, we can tell however the primary mechanism of sound generation remains
the vortex pairings. An interference of acoustic waves seems to appear because
of the different sound sources in the shear layer.

4.2 Nonlinear model: DMD analysis

For this double vortex pairing case, we perform directly a DMD analysis in a
nonlinear approach. Both temporal and spatial analyses will be considered to
extract the underlying dynamic information from the flow field.

4.2.1 DMD analysis within a temporal framework: coher-

ent structures extraction

300 snapshots of instantaneous density, velocity and pressure fluctuations at a
sampling rate ∆t = 1.36 × 10−5 s are recorded during the direct simulation
after the saturated regime. As noted earlier, the choice of the norm has neg-
ligible impact on the results of computation because of the low Mach number
of the underlying flow. In practice, we use the norm based on the standard



4.2. NONLINEAR MODEL: DMD ANALYSIS 105

Figure 4.2: Far-field fluctuating pressure from the DNS calculation. Levels from
−300 to 300 Pa.
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N f0/4 f0/2 f0 3f0/4 3f0/8 f0/8
100 0.207 0.415 0.622 0.828 0.308 0.115
150 0.207 0.415 0.624 0.830 0.308 0.110
200 0.207 0.414 0.623 0.830 0.309 0.110
250 0.207 0.415 0.622 0.828 0.308 0.110
300 0.206 0.415 0.622 0.830 0.309 0.109

Table 4.1: Dominant values of angular frequency ωr as the number of snapshots
N is increased from 100 to 300 using the incompressible inner product.

incompressible inner product. To examine the eventual influence of the num-
ber of snapshots N in the input data sequence, 5 cases are carried out as N is
increased from 100 to 300. Dominant values of angular frequencies are noted
down in Table 4.1. We see that with the increasing N , these peak values are
found to remain the same approximately. Thus, we will use a maximum of 300
snapshots in the following computation. The eigenvalues for N = 300 and the
extracted Koopman modes are depicted in figures 4.3. Figure 4.3 (a) shows that
the saturated regime is reached because nearly all the Ritz values are found to
lie on the unit circle |λj | = 1. From figure 4.3 (b), the eigenmode energy plot
calculated from (3.3) provides the four dominant modes containing the maxi-
mum energies: f0/2, f0/4, f0, 3f0/4, 3f0/8, f0/8 marked 1, 2, 3, 4, 5 and 6,
respectively. Note that only the positive parts of eigenvalues are shown ow-
ing to their complex conjugate pair character. Since three forcing frequencies
f0/2, f0/4, f0/8 are present, more nonlinear combination between the modes
are possible. Here, nonlinear interactions of f0/8 and f0/2 results in 5f0/8, also
f0/4 and f0/8 results in 3f0/8, and so forth. Through the projection of these
modes onto the initial DNS snapshot as (3.18), we show the Koopman modes in
both the entire and near-field domains in figures 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9,
respectively. All modes are seen to participate to the far-field acoustic radiation
more or less. Nevertheless, the modes f0/4 and f0/2 contribute more to the
sound field than 3f0/4 and f0.

The evolutions of different instability waves in the mixing layer can be ex-
amined by measuring the energies for the eigenmodes f0, f0/2 and f0/4. The
energy of the eigenmode is computed as in (3.3) and plotted as a function of
streamwise distance, shown in figure 4.10. All these modes go through an initial
exponential growth stage, then they saturate near x = 30δω(0), 67δω(0), and
144δω(0), for f0, f0/2 and f0/4 respectively. It seems that the roll up takes
place when the fundamental f0 reaches its saturation position, and the acoustic
waves at the first two subharmonic frequencies f0/2 and f0/4 emanate from
the regions where the pairings occur. This is similar to the observations of
Laufer & Yen [63] and Bridges & Hussain [22]. The streamwise evolutions of
these waves illustrate as well their spatial behaviours in the shear layer, shown
in figures 4.13, 4.11 and 4.12 by plotting the pressure fluctuations as a func-
tion of x. Their spatial behaviours match closely the eigenmode energy plots.
Through the above discussions, the DMD analysis has been proven to predict
correctly both the hydrodynamics and aeroacoustics of the shear layer. In the
next section, the mixing layer dynamics will be attempted to be recovered from
the DMD analysis.
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Figure 4.3: DMD analysis performed over the entire computational domain
using 300 snaphots: (a) Ritz values λj . (b) Energy spectrum of the Koopman
modes at each angular frequency ωr. In both figures, the Ritz values associated
with the most energetic modes are marked with 1, 2, 3, 4, 5 and 6, respectively.

(a) (b)

Figure 4.4: (a) Real part of the pressure fluctuations for Koopman mode at
f0/2. (b) A zoom in of this mode inside the near-field region. Levels from −50
Pa to 50 Pa.
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(a) (b)

Figure 4.5: (a) Real part of the pressure fluctuations for Koopman mode at
f0/4. (b) A zoom in of this mode inside the near-field region. Levels from −50
Pa to 50 Pa.

(a) (b)

Figure 4.6: (a) Real part of the pressure fluctuations for Koopman mode at f0.
(b) A zoom in of this mode inside the near-field region. Levels from −10 Pa to
10 Pa.
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(a)

(b)

Figure 4.7: (a) Real part of the pressure fluctuations for Koopman mode at
3f0/4. (b) A zoom in of this mode inside the near-field region. Levels from −10
Pa to 10 Pa.

(a) (b)

Figure 4.8: (a) Real part of the pressure fluctuations for Koopman mode at
3f0/8. (b) A zoom in of this mode inside the near-field region. Levels from −10
Pa to 10 Pa.
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(a) (b)

Figure 4.9: (a)Real part of the pressure fluctuations for Koopman mode at f0/8.
(b) A zoom in of this mode inside the near-field region. Levels from −10 Pa to
10 Pa..
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Figure 4.10: Streamwise evolution of energies E of the dominant modes at f0,
f0/2 and f0/4. Integrated modal kinetic energy for the fundamental mode f0:
solid line, the first subharmonic mode f0/2: dashed line, the second subharmonic
mode f0/4: dashed-dotted line.
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Figure 4.11: Streamwise evolution of the fluctuating pressure p′(x) at f0/2
along the centerline y = 0. Perturbations from DNS are shown in solid line,
perturbations from DMD are depicted in dashed line.
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Figure 4.12: Streamwise evolution of the fluctuating pressure p′(x) at f0/4 at
y = 0. Perturbations from DNS are shown in solid line, perturbations from
DMD are depicted in dashed line.
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Figure 4.13: Streamwise evolution of the fluctuating pressure p′(x) at f0 at
y = 0. Perturbations from DNS are shown in solid line, perturbations from
DMD are depicted in dashed line.



114 CHAPTER 4. DOUBLE VORTEX PAIRINGS

t

p’

0 20 40 60-10000

-5000

0

5000 DNS
1
12
123
1234
ROM

Figure 4.14: Time history of the pressure fluctuations p′(t) along the the cen-
terline y = 0. In red, from DNS calculation; in orange, mode 1; in green, mode
1 and 2; in blue, mode 1, 2 and 3; in violet, mode 1,2, 3 and 4; in black, with
80 modes.

4.2.2 Reconstruction of the flow dynamics through the

DMD analysis

As mentioned in the single vortex pairing case previously, we perform an or-
thogonal projection onto the basis of Koopman modes to rebuild the entire flow
field. Modes are added continually in the projection procedure. The projection
performance can be illustrated by the temporal behaviour of the fluctuating
quantities. For example, we show the projected pressure perturbations evolu-
tion during 3 periods of f0/4 in figure 4.14. Compared to the computed pressure
from DNS, the recovery of the flow dynamics can be achieved with nearly 80
modes. To further explore the influence of the number of modes m on this per-
formance, an estimate of the residual r defined in (3.19) is realized. Residuals
r with the respect to u′ and p′ are plotted in figures 4.15 and 4.16, respectively.
We observe that r decrease in both plots as the number of modes m involved
in the projection is increased. Up to 80 modes, the residual with respect to
the streamwise velocity perturbations u′ can pretty much reach 10−3, and with
respect to pressure fluctuations p′ can achieve basically 10−1. Therefore, 80
modes will be used in the next.

First, we wish to recover the aerodynamic motions of the mixing layer. For
that purpose, the vortex pairing mechanism inside the near field is an important
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Figure 4.15: Residual history of the streamwise velocity fluctuations u′ as a
function of number of Koopman modes m used in the projection.
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Figure 4.16: Residual history of the pressure fluctuations p′ as a function of
number of Koopman modes m used in the projection.
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Figure 4.17: Follow-up of the vortex pairing at successive equidistant instants
over one period of f0/4 in the near-field mixing region from DNS. Total spanwise
vorticity is shown. Levels from −5× 104 /s to 5× 104 /s.
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Figure 4.18: Follow-up of the vortex pairing at successive equidistant instants
over one period of f0/4 in the near-field mixing region from DMD. Total span-
wise vorticity is shown. Levels from −5× 104 /s to 5× 104 /s.

point to consider. By fixing exactly the same time period as in DNS, that is, the
period corresponds to the second pairing f0/4, the reconstructed total spanwise
vorticity field at four successive equidistant instants during this period from the
DMD analysis is shown in figure 4.18. When compared to its directly computed
counterpart, depicted in figure 4.17, both the roll-up and two vortex pairing
events are captured quite satisfactorily by the present temporal DMD analysis.
This hydrodynamic behaviour can be further examined by considering the fluc-
tuating pressure evolution in the streamwise direction and in time. Figure 4.19
shows an excellent coherence between the DNS and DMD computations. Pres-
sure perturbations p′ that evolves over a total time corresponding to 5 periods
of the second subharmonic f0/4 inside the near-field mixing region of the flow,
for example, at the center of computational domain, is depicted in figure 4.20.
Again, excellent agreement between DMD analysis and DNS are observed.

Then, the far-field acoustic behaviour is investigated both quantitatively and
qualitatively. The projected pressure field given by the DMD prediction is shown
in figure 4.21 (b). The acoustic interference pattern is in close agreement with
that obtained from the DNS, shown in figure 4.21 (a), and illustrate the acous-
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Figure 4.19: Streamwise evolution of the pressure perturbations p′(x) along the
centerline y = 0. Perturbations from DNS are shown in solid line, perturbations
from DMD are depicted in circles.
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Figure 4.20: Pressure fluctuations p′, as a function of time at the center of the
domain. Perturbations from DNS are shown in solid line, perturbations from
DMD are depicted in dashed line.
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tic field resulting from vortex sound generation. Additionally, the amplitudes
of the radiated sound can be evaluted by plotting the r.m.s. of the pressure
fluctuation along the arc 110δω(0) away from the source locations. We con-
sider the saturation points as the apparent source locations (Colonius, Lele &
Moin [30]). In this double pairing case, two source origins have been identified:
(x, y) = (67δω(0), 0) and (x, y) = (144δω(0), 0). The results from the DNS and
DMD is shown in figures 4.22 and 4.23. The peak acoustic intensities are then
identified: one is in the direction θ ≈ 44◦ with the acoustic intensity about 127
dB and 126 dB. A more quantitative comparison can be carried out by plotting
the streamwise evolution of the pressure p′(x) at two vertical locations: inside
the shear regions of the flow (at y = 0) and in the far field (y = 110δω(0)), shown
in figures 4.19 and 4.24. Not surprisingly, in the near-field region of the flow the
pressure perturbations p′(x, y = 0) along the centerline are very well predicted
by the DMD computation. Nevertheless, in the acoustic field (at y = 110δω(0))
the prediction from DMD compares favorably with the DNS calculation. The
behaviour of the pressure eigenfunction is further explored by considering the
cross-sections of the pressure in the y direction at different streamwise locations.
At a point upstream of the first vortex pairing location, the fluctuating pres-
sure |p′(x = 55δω(0), y)| is considered in figure 4.25. The pressure calculated
by DMD agrees perfectly with its directly computed counterpart. The pressure
is again plotted around the second vortex pairing position, say x = 155δω(0),
(figure 4.26), both methods predict the same trend of decay of the pressure
eigenfunction. Further downstream of these two vortex pairing locations the
DMD prediction and direct computations of the far field begin to diverge, the
pressure calculated by DMD is approximately 1.5 orders of magnitude larger
than the direct calculation, as shown clearly in figure 4.27. Lastly, the time his-
tory of pressure signal in the far-field region (say, y = 110δω(0)) can be plotted
in figure 4.28, we see that the temporal behaviour of the fluctuating pressure
can be in large measure captured by the DMD reconstruction.

4.2.3 Coherent structures extraction from the subdomain

DMD analysis

In the previous section, we have demonstrated that the DMD performed over
the entire flow field is capable of predicting accurately both the aerodynamics
and aeroacoustics of the shear layer. The flow field can be totally recovered by
a few Koopman modes extracted from the DMD analysis. Since the coherent
structures are responsible for the acoustic radiation in the far field, their ac-
curate description is essential to the understanding of the aeroacoustics of the
mixing layer. In this section, we will see if the associated Koopman modes can
be extracted correctly from the DMD computation only carried out in a por-
tion of the flow field. We first define a subdomain that will be used in this set
of calculation. To take the larger wavelength of the second subharmonic into
account, we choose a subdomain that extends a little more in the cross-stream
section, that is, −55 < y/δω(0) < 55. We then perform a series of computa-
tions when varying the number of snapshots N from 100 to 300. Note that the
incompressible inner product is adopted as in the previous section. The peak
values of the angular frequency ωr resulting from these computations are tab-
ulated in Table 4.2. Two observations can be made. First, these values of ωr

are very close to those obtained from the DMD performed in the full domain
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(a) (b)

Figure 4.21: (a) Acoustic field from DNS. (b) Acoustic field from DMD. Pressure
fluctuations are shown in the physical domain. Levels from −300 Pa to 300 Pa
in both figures.

(see table 4.1). Secondly, the values seem to remain constant even though N is
increased. Therefore, the dominant modes are extracted properly by the DMD
analysis. The maximum number N = 300 will be considered in the following
investigation. Figure 4.29 show the eigenvalues and energy spectrum. The most
energetic Koopman modes are identified as before: f0/2, f0/4, f0, 3f0/4, 3f0/8
and f0/8. The corresponding Koopman modes after projecting them onto the
initial DNS snapshot defined in 3.18 are shown in figures 4.30, 4.31, 4.32, 4.33,
4.34 and 4.35 respectively. Similar features are found when compared to the
zoom in from the DMD analysis in the full domain. The behaviours of the in-
stability waves in the near-field region are further explored by comparing their
spatial and temporal evolutions from the DNS and the DMD calculations. The
reconstructed roll up and vortex pairing events during one period of f0/4 is il-
lustrated by plotting the total spanwise vorticity in the mixing region, depicted
in figure 4.36. When compared to its directly computed counterpart (see figure
4.17), the roll up and vortex pairing mechanisms are well captured by the DMD
computation. Cross-sections of the velocity perturbations v′(x) along y = 0
are also plotted to compare the spatial development of the near-field coherent
structures (see figure 4.37). We see that the spatial evolution of the coherent
structures can be totally predicted by our modal decomposition. Likewise, the
temporal evolution of the perturbations, for example, p′, during 5 periods of
f0/4 at a certain location, say at the center of the domain, matches closely that
of the DNS calculation, as shown in figure 4.38. Given these examinations, the
DMD method performed both over the full flow field and only a subdomain
have proven itself a relevant tool to describe the flow structures representing
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Figure 4.22: Far-field directivity for a radius at 110δω(0) from the noise source
located at x = 67δω(0) and y = 0 from DNS (solid line), from DMD (dashed
line).
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Figure 4.23: Far-field directivity for a radius at 110δω(0) from the noise source
located at x = 144δω(0) and y = 0 from DNS (solid line), from DMD (dashed
line).
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Figure 4.24: Streamwise evolution of the pressure perturbations p′(x) along
y = 110δω(0). Perturbations from DNS are shown in solid line, perturbations
from DMD are depicted in circles.
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Figure 4.25: Cross-stream pressure perturbations |p′(y)| at the downstream
position x = 55δω(0). Perturbations from DNS are shown in solid line, pertur-
bations from DMD are depicted in circles.
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Figure 4.26: Cross-stream pressure perturbations |p′(y)| at the downstream
position x = 155δω(0). Perturbations from DNS are shown in solid line, pertur-
bations from DMD are depicted in circles.
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Figure 4.27: Cross-stream pressure perturbations |p′(y)| at the downstream
position x = 218δω(0). Perturbations from DNS are shown in solid line, pertur-
bations from DMD are depicted in circles.
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Figure 4.28: Pressure fluctuations p′, as a function of time in the far field
x = 67δω(0), y = 110δω(0). Perturbations from DNS are shown in solid line,
perturbations from DMD are depicted in dashed line.
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N f0/4 f0/2 f0 3f0/4 3f0/8 f0/8
100 0.208 0.415 0.622 0.828 0.308 0.120
150 0.207 0.415 0.624 0.830 0.308 0.120
200 0.207 0.414 0.623 0.830 0.309 0.120
250 0.206 0.415 0.622 0.829 0.309 0.121
300 0.206 0.415 0.622 0.830 0.309 0.121

Table 4.2: Dominant values of angular frequency ωr as the number of snapshots
N is increased from 100 to 300 using the incompressible inner product.
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Figure 4.29: DMD analysis performed over the near-field subdomain using 300
snaphots: (a) Ritz values λj . (b) Energy spectrum of the Koopman modes at
each angular frequency ωr. In both figures, the Ritz values associated with the
most energetic modes are marked with 1, 2, 3, 4, 5 and 6, respectively.

the dominant dynamical information in the underlying fluid flow.

4.2.4 DMD analysis within a spatial framework

Previously, we have investigated the development of the near-field coherent
structures in the flow through the DMD analysis within a temporal framework.
Now, as demonstrated in the single pairing case, a DMD analysis within a spatial
framework can also be adopted to study the impact of near-field large coher-
ent structures evolution on the far-field. In the present case where two sources
coexist, we shall perform the spatial DMD analysis over the top and bottom
domains separately, and then for each domain, the two sources are considered
in turn. Four zones are then extracted and shown in figure 4.39. More pre-
cisely, the zones extracted from the top domain for the first and second source
extend over 50 ≤ R/δω(0) ≤ 250, 20◦ ≤ θ ≤ 100◦ and 40 ≤ R/δω(0) ≤ 315,
67◦ ≤ θ ≤ 117◦, respectively; the zones extracted from the bottom domain for
the first and second source extend over 50 ≤ R/δω(0) ≤ 300, −100◦ ≤ θ ≤ −30◦

and 40 ≤ R/δω(0) ≤ 315, −118◦ ≤ θ ≤ −50◦, respectively. The centers
of each zone associated with the polar coordinates correspond to the appar-
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Figure 4.30: The Koopman mode at f0/2 using the pressure fluctuations. Levels
from −50 Pa to 50 Pa.

Figure 4.31: The Koopman mode at f0/4 using the pressure fluctuations. Levels
from −50 Pa to 50 Pa.
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Figure 4.32: The Koopman mode at f0 using the pressure fluctuations. Levels
from −10 Pa to 10 Pa.

Figure 4.33: The Koopman mode at 3f0/4 using the pressure fluctuations. Lev-
els from −10 Pa to 10 Pa.
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Figure 4.34: The Koopman mode at 3f0/8 using the pressure fluctuations. Lev-
els from −10 Pa to 10 Pa.

Figure 4.35: The Koopman mode at f0/8 using the pressure fluctuations. Levels
from −10 Pa to 10 Pa.
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Figure 4.36: Follow-up of the vortex pairing at four successive equidistant in-
stants over one period of f0/4 in the near-field mixing region from DMD. Total
spanwise vorticity is shown. Levels from −5× 105 /s to 5× 105 /s.
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Figure 4.37: Streamwise development of the velocity perturbations v′(x) along
the centerline y = 0. Perturbations from DNS are shown in solid line, pertur-
bations from DMD are depicted in circles.
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Figure 4.38: Pressure fluctuations as a function of time p′(t) at the center of
the subdomain (128δω(0), 0). Perturbations from DNS are shown in solid line,
perturbations from DMD are depicted in dashed line.
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ent source locations: (67δω(0), 0) and (144δω(0), 0), based on the observations
from the DNS and DMD computations. The distance between every two snap-
shots is considered regular: ∆R = 1.818. The spatial spectra resulting from
the DMD analysis in the top domain are shown in figure 4.40. For the first
source, only one mode is exhibited. The wavelength is deduced from this figure:
λ = 2π/αR = 2π/0.1 = 60, and appears to correspond to the value of wavelength
of the main acoustic wave of the first source. Its spatio-temporal evolution is il-
lustrated in figure 4.41 (a) by plotting the fluctuating density ρ′ in (θ−t)- plane.
By Fourier transforming the density fluctuations in time (see figure 4.41 (b)),
we obtain the dominant angular frequency: ωr ≈ 0.415. By contrast, for the
second source, two modes detach from the spectra. The associated wavelengths
are λ = 2π/0.06 = 104 and λ = 2π/0.04 = 160, respectively. These wavelengths
correspond to those of f0/4 and f0/8. Likewise, the space-time behaviours of
these two eigenmodes can be shown in figures 4.42 (a) and 4.43 (a), respectively.
The peak angular frequencies are ωr ≈ 0.207 and ωr ≈ 0.103, shown in figures
4.42 (b) and 4.43 (b), respectively. These values of frequencies correspond well
to the frequencies of the dominant modes: f0/4 and f0/8. In the same way, the
spatial DMD analysis is performed over the lower domain, the resulting spectra
are shown in figure 4.44. As in the top domain, the eigenmode f0/2 always
appears for the first source. However, for the second source, it is no longer f0/8
but f0/2 detaches from the spectra. Their spatio-temporal evolutions are shown
in figures 4.45 (a), 4.46 (a) and 4.47 (a), respectively. Furthermore, we apply
the Fourier transform at every point of the domain to f0/2 (figure 4.45 (b)) in
order to get an interpretation of the entire physical space in Fourier space. We
see that the mode f0/2 dominates for the first source. Concerning the directiv-
ities of the propagating acoustic waves in the far field, they appear much less
net compared to the single pairing case because of the interferences of several
waves. However, the spatial DMD analysis provides us with an approximated
main direction with respect to each of the sources. Furthermore, one observe
as in the single pairing case a constant angular velocity of the acoustic waves
because of the convection effects of the acoustic waves and refraction effects by
the velocity gradient in the near-field shear layer. Since several spatial struc-
tures associated with the dominant frequency emerge in this case, we observe a
decrease in the angular velocity. This phenomenon can be explained by the fact
that the high-frequency waves are more influential by the refraction effects.

For this double pairing case, we conclude that the DMD analysis within the
temporal framework is appropriate to describe the dynamics of the coherent
structures in the near field: such as the roll up and vortex pairing processes.
The resulting acoustic radiation becomes more complex caused by more than one
existing sound source, however, it is quite well captured by the temporal DMD.
On the other hand, the spatial DMD analysis has been used to characterize the
acoustic waves features in the far field, such as, the directivities, wavenumbers
and frequencies, the results are satisfactory. Therefore, the relation between the
far-field radiated sound field and the coherent structures in the near field can
be established.
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Figure 4.39: Extracted zones used in the spatial DMD analysis for the first
source are shown in black lines; for the second source are shown in red line.
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Figure 4.40: Spatial spectra from the spatial DMD analysis performed over
the top domain. The spatial growth rate σ is plotted versus the wavenumber
αR. The modes with the wavenumbers αR ≈ 0.1, αR ≈ 0.06 and αR ≈ 0.04
correspond to the mode f0/2, f0/4 and f0/8, respectively.

(a)

ωr

F
F

T

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

(b)

Figure 4.41: (a) Spatial DMD analysis performed in the top domain for the first
source: the dominant frequency is f0/2, we associate this spatial structure with
f0/2. Density perturbations are plotted as a function of the angle θ and time t.
(b) Fourier transformed in time gives the peak frequency.
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Figure 4.42: (a) Spatial DMD analysis performed in the top domain for the sec-
ond source: the dominant frequency is f0/4, we associate this spatial structure
with f0/4. Density perturbations are plotted as a function of the angle θ and
time t. (b) The dominant frequency detaches near f0/4 through the Fourier
transformed density fluctuations in time.
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Figure 4.43: (a) Spatial DMD analysis performed in the top domain for the
second source: the dominant frequency is f0/8, we associate this spatial struc-
ture with f0/8. Density perturbations are plotted as a function of the angle θ
and time t. (b) The peak frequency corresponds to f0/8 through the Fourier
transformed density fluctuations in time.
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Figure 4.44: Spatial spectra from the spatial DMD analysis performed in the
lower domain. The spatial growth rate σ is plotted versus the wavenumber αR.
The modes with the wavenumbers αR ≈ 0.12 and αR ≈ 0.06 correspond to the
mode f0/2 and f0/4, respectively.
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Figure 4.45: (a) Spatial DMD analysis performed in the lower domain for the
first source: the dominant frequency is f0/2, we associate this spatial struc-
ture with f0/2. Density perturbations are plotted as a function of the angle θ
and time t. (b) The peak frequency corresponds to f0/2 through the Fourier
transformed density fluctuations in time.
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Figure 4.46: (a) Spatial DMD analysis performed in the lower domain for the
second source: the dominant frequency is f0/4, we associate this spatial struc-
ture with f0/4. Density perturbations are plotted as a function of the angle θ
and time t. (b) The peak frequency corresponds to f0/4 through the Fourier
transformed density fluctuations in time.
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Figure 4.47: (a) Spatial DMD analysis performed in the lower domain for the
second source: the dominant frequency is f0/2, we associate this spatial struc-
ture with f0/2. Density perturbations are plotted as a function of the angle θ
and time t. (b) The peak frequency corresponds to f0/2 through the Fourier
transformed density fluctuations in time.



Chapter 5

Conclusions

This chapter contains an overview of results and some suggestions for future
work.

5.1 Summary

A Navier-Stokes compressible solver in perturbative formulation in two and
three dimensions has been developed to investigate the far-field noise produc-
tion of subsonic shear layers. A set of linearized and fully nonlinear simulations
serving as a reference have been performed for a compressible two-dimensional
mixing layer, also the snapshots extracted from the DNS data were used subse-
quently in the modal decomposition analyses. Modal decomposition techniques
based on snapshots of numerical simulations in both a linear and nonlinear
approaches have been developed to describe the coherent structures that are
representives of the flow dynamic features and the acoustic radiations. The rel-
evance of these tools have been illustrated on a co-flowing mixing layer examples,
which is a typical noise amplifier.

For the case of a linear process, a global stability analysis has been performed
to characterize the instability waves behaviours of the flow, such as fundamen-
tal frequencies emerged in the underlying fluid flow (e.g. the most unstable
frequency). And then, modal decompositions based on the global modes in
both temporal and frequency domain was carried out to examine the typical
noise-amplifier-type dynamics of the mixing layer. The linear global stability
analysis has been shown capable of predicting the characteristic frequencies of
the flow. Contrary to the supersonic flows, no sound was predicted by this
linear model even with the combined forcing f0 and f0/2 as in the direct simu-
lations. The global mode decomposition was not sufficient to capture the vortex
pairings processes and the resulting acoustic radiation. An additional nonlinear
mechanism is then required.

In a nonlinear model, the Dynamic Mode Decomposition (DMD), recently
proposed by Schmid et al.[98] within both a temporal and a spatial framework
have been developed and applied to compressible flows. Two flow configurations
are considered: one single vortex pairing case and double pairing case. First,
based on a few Koopman modes which represent near-field coherent structures,
the vortex pairing processes and the acoustic radiation characteristics of a typi-
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Figure 5.1: Total vorticity field of the three-dimensional coflow mixing layer
([105]). View of an isosurface of the Q-criterion at the value 10−5 colored with
the streamwise vorticity (levels between ±105 /s).

cal subsonic mixing layer has been completely predicted by a temporal analysis
of the DMD. Moreover, the possibility to use subsets of the full numerical simu-
lation has been highlighted. Furthermore, it has been illustrated that the use of
snapshots of the near field is relevant to capture coherent structures which are
involved in source terms of the Lightill equation. In particular, a Lightill’s anal-
ogy based on these coherent structures predicts correct directivity and sound
pressure levels compared to DNS values.

Secondly, proceeding with the spatial DMD analysis, interesting acoustic
characteristics such as the directivities, angular velocities of the acoustic wave
propagation varying according to their spatial size and their typical frequencies
have been satisfactorily captured. The spatial analysis offered therefore an ef-
ficient analysis tool to describe the far-field sound radiation process and their
link to the near-field coherent structures. It should be mentioned the general
character with respect to these analysis tools: no weakly parallelism assump-
tion. Starting from a relatively simple flow configuration, we are now confident
about the performance of our analysis tools to apply to more complex flow
configurations.

Finally, one may precise that the Navier-stokes solver in three dimensions
has been well validated and applied to the three-dimensional flow cases (see Song
[105]). For instance, a numerical simulation in three dimensions has been carried
out, here we show a snaphot of the total vorticity using the Q-criterion [59].
We should take into consideration of the expensive cost in computer resources.
A difficult task remains the forcing at the inlet of the mixing layer in three-
dimensional simulations, which has not often be treated in the literature (e.g.
Babuke, Kloker & Rist [4]).

5.2 Suggestion for future work

Throughout this thesis, we have developed a reduced-order model based on
the Koopman mode decomposition, howerver, a method commonly used is the
POD/Garlerkin ROM. It seems then natural to compare these two decomposi-
tion methods. It will be also interesting to test the robustness of the Koopman
ROM, for instance, beyong the DNS temporal window.

Furthermore, the modal decomposition method developed in this thesis al-
lows to establish a hierarchy of coherent structures involved in the sound pro-
duction. A natural evolution of this work should be dedicated by manipulating
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such modes in order to significantly reduce the noise production. Control the-
ory regarding sensitivity analysis of aeroacoustic noise radiated from the flow
with respect to particular changes induced by local perturbations of mass and
energy is a first step to illuminate what type of control is required, and how the
original noisy flow can be quieted (Spagnoli & Airiau [106]). Adjoint modes of
the Koopman modes derived from an optimization of a functional cost which
has to be determined, should give some new insight into noise control.

Work may be dedicated to implementing a full optimal control technique
and proposing a relevant functional which provides the measure of the radiated
noise. Direct-adjoint iterations relied upon the reduced-order model based on
Koopman modes should be useful to minimize the optimization time in order to
deduce the forcing leading to an optimal noise reduction (Wei & Freund [118]).
More specially, a functional cost associated with a spatial amplification rate
determined by a DMD analysis within the spatial framework performed over
the far field, might be an interesting idea.

Finally, as noticed in the introduction, although a mixing layer flow appears
as an academic flow, it exhibits a wide variety of space and time dynamics,
depending upon a wide range of parameters, such as shear intensity, Mach
number or heating effects. In particular, we can cite a counterflow mixing layer
with a pocket of absolute instability, which could be an enlightening case. In
this respect, the Appendix is dedictated to a preliminary analysis of such a flow
configuration. We hope that this methodology may be applied to more complex
flow configurations, for instance, the supersonic flows where instability wave
radiate directly in the linear regime; or else complex three-dimensional flows,
for instance, the cavity flows or airfoils...
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Appendix

Counterflow mixing layer

It is convenient to characterize the mixing layer by the nondimensional pa-
rameter R, called the velocity ratio (Ho & Huerre [51]). R measures the rel-
ative magnitude of the shear ∆U with respect to the convection velocity Uc:
R = ∆U/(2Uc). A counterflow mixing layer is produced if R > 1, whereas a
co-flowing mixing layer is generated if R < 1. Contrary to co-flowing mixing
layers, typical noise amplifiers which are sensitive to external noise, counter-
flow mixing layers are known to behave as flow oscillators with a well-defined
frequency that is insensitive to low level noise. To describe these two distinct
qualitative nature of open flow dynamical behaviours, the concepts of convective
and absolute instabilities were developed by Huerre & Monkewitz [56] are often
used. In this context, the impulse flow response localized in space and time is
considered.

The linear impulse response of the counterflow mixing layer by means of
a linear direct numerical simulation. The velocities of the upper and lower
stream are −20 m/s and 100 m/s, respectively. Therefore, the velocity ratio
is R = 1.5, the convection velocity is Uc = 40 m/s and the convective Mach
number is 0.18. The Reynolds number based on the initial vorticity thickness
of the mixing layer δω(0) = 1.6 × 10−3m and the velocity difference across the
layer ∆U , Re = ∆Uδω(0)/ν is 13692. At initial time, we introduce the following
impluse perturbations with minimal initial acoustic transient (Gloerfelt & Le
Garrec [45]) at the center of computational domain (0, 0)
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The amplitude is γ = 10−10. The half-width of the Gaussian function is
3∆ymin. The computational domain extends over −250 ≤ x/δω(0) ≤ 250,
−90 ≤ x/δω(0) ≤ 90, resolved with 801 × 281 points. The grid in x and y are
uniform with minimal spacings ∆xmin = 0.32δω(0) and ∆ymin = 0.16δω(0),
respectively. Numerical sponge zones are implemented at the streamwise and
lateral boundaries to absorb outgoing acoustic waves with minimal reflection.
The grid is stretched in the sponge zones.

An instability analysis is performed to compare the results obtained from
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the above Linearized DNS calculation. Here, we adopt a spatio-temporal point
of view, thus α ∈ C and ω ∈ C. More specially, we are interested in the flow
response to a linear impluse localized in space and time. This can be determined
by the calculation of the Green function G(x, t), defined as

LG(x, t) = δ(x)(t) (5.2)

with the causality condition: G(x, t) = 0 if t < 0. Here, L denotes the operator
of the differantial equations, associated with the dispersion relation D(α, ω).
If we assume the base flow is homogeneous along the propagation direction x,
the solution can be sought in the form of normal modes. The formulation in
physical space of the Fourier-Laplace transform of the Green function is written
as

G(x, t) =
1

4π2

∫

L

∫

F

exp [i(αx− ωt)]

D(α, ω)
dαdω (5.3)

where L and F represent the integral contours along ω and α, respectively.
We remark that the choice of the contour L should be positioned above all
the singularities of the term of the integral (5.3), so as to respect the causality
condition (see Huerre & Monkewitz [56] for details). The study of flow response
in space and time amounts to the analyse of the behaviour of G(x, t) defined by
(5.3). This aspect is detailed in Huerre et al. [54].

If the flow is absolutely unstable, the wavepacket created at the initial time
is no longer advected away from the source, but grows gradually to contaminate
the entire flow. An symptotic study of the integral (5.3) allows to determine
the behaviour of G, along each spatio-temporal ray V = x/t by making use
of the so-called method of steepest descent. This latter takes the form of a
spatio-temporal wave as follows

G(x, t) ≈ t−1/2 exp i[α∗(V )V − ω∗(V )]t (5.4)

where the couple (α∗, ω∗) verifies

D(α∗, ω∗) = 0 and
∂D

∂α
(α∗, ω∗) = V (5.5)

with V = x/t ∈ R. The space-time dynamics of G can be determined by the
evolution of the temporal growth rate σ(V ) following each ray x/t

σ(V ) = ω∗
i (V )− α∗

i V (5.6)

In particular, if σ(x/t = 0) > 0, then the flow is absolutely unstable. Figure
5.2 (a) shows the temporal growth rate σ as a function of the spatio-temporal
ray x/t obtained theoretically by solving the compressible Rayleigh equations.
The propagation speeds of the upstream and the downstream fronts can be
derived from this figure: V − = −0.1 and V + = 2.1. They are compared to the
values of the edges of the wavepacket by plotting the spatio-temporal diagram
of the pressure perturbations resulting from the linearized simulation yielding
V − ≈ −0.105 and V + ≈ 2.04, shown in figure 5.2 (b). A good agreement
between them are observed.

Figure 5.3 shows snapshots of the wavepacket resulting from the impulse
perturbations introduced at the center of the domain (0, 0). Even without the
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Figure 5.2: (a) Temporal growth rate σ versus the spatio-temporal ray x/t;
(b) Spatio–temporal diagrams of the pressure perturbations. The edges of the
wavepacket V − and V + are shown in danshed lines.

continued external forcing, the flow is forced by the absolute instabilities that are
generated by the initial impulse perturbations, and results in counter-rotating
vortices in the upstream and downstream directions. This can be attributed
to the main characteristics of an oscillator-type flow that is insensitive to the
low-level external noise. We may observe that later several vortices tend to
coalesce to form a larger vortex, and so on. This process becomes more and
more random, and reaching a saturated regime seems less meaningful. However,
we can postulate that a new mechanism of sound generation may be attributed
to the vortex pairings in the transient regime before the saturated state.
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Figure 5.3: Snapshots of the wavepacket resulting from the impulse perturba-
tions initially introduced at (0, 0).
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